
ULTRIX

Reference Pages
Section 3: Library Routines

Order Number: AA-L Y16B-TE

Reference Pages Section 3: Library Routines

Order Number: AA-L Y16B-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes the routines available in the ULTRIX libraries for programmers on
both RISe and V AX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

mamaarlo
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
ULTRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XU!

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T in the USA and other countries.

\

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intro that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(1mh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands
This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls
This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, intro(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines
This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files
This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the fonnat of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system fonnats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous infonnation, including ASCII character codes,
mail addressing fonnats, text fonnatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system opemtion and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and VAX platfonns.
Pages that have no platfonn label beside the title apply to both platfonns. Reference
pages that apply only to RISC platfonns have a "RISC" label beside the title and the
VAX-only reference pages that apply only to VAX platfonns are likewise labeled
with ' 'VAX." If each platfonn has the same command, system call, routine, file
fonnat, or special file, but functions differently on the different platfonns, both
reference pages are included, with the RISC page first.

Reference Page Format
Each reference page follows the same general fonnat. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, date(l). This title is used throughout the
documentation set.

The headings in each reference page provide specific infonnation. The standard
headings are:

Name

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Provides the name of the entry and gives a short description.

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

/

\

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the UL TRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(l)

In syntax descriptions and routine definitions, a horizontal ellipsis "-
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRlX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(l) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages
The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the ls(l) reference page:

% man ls

To display the passwd(l) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(IX) reference page for details.

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

Standard C Routines (3)

Insert tabbed divider here.
Then discard this sheet.

(

intro(3)

Name
intro - introduction to library functions

Description
This section describes functions that may be found in various libraries. The library
functions are those other than the functions that directly invoke ULTRIX system
primitives, described in section 2. Section 3 has the libraries physically grouped
together. The functions described in this section are grouped into various libraries:

Sections 3 and 3s
The (3) functions are the standard e library functions. The e library also includes all
the functions described in Section 2. These routines are included for compatibility
with other systems. In particular, a number of system call interfaces provided in
4.2BSD have been included for source code compatibility. The (3s) functions
comprise the standard I/O library. Together with the (3n), (3xti), (3yp) and (3)
routines, these functions constitute library tibe, which is automatically loaded by the
e compiler (cc), the Pascal compiler (pc), and the FORTRAN compiler (f77).
(FORTRAN and Pascal are optional and may not be installed on your system.)
Declarations for these functions may be obtained from the include file, <stdio.h>.
The link editor I d(1) searches this library under the -Ie option. Declarations for
some of these functions may be obtained from include files indicated on the
appropriate pages.

VAX Only

On V AX machines, the GFLOA T version of tibe is used when you use
the cc(l) command with the -Mg option, or you use the Id(l)
command with the -leg option. The GFLOA T version of libe must be
used with modules compiled with cc(l) using the -Mg option.

Note that neither the compiler nor the linker Id(1) can detect when
mixed double floating point types are used, and your program may
produce erroneous results if this occurs on a V AX machine.

Section 3cur
The (3cur) library routines make up the XlOpen curses library. These routines are
different from the 4.2BSD curses routines contained in Section 3x.

Section 3f
The (3f) functions are all functions callable from FORTRAN. These functions
perform the same jobs as do the (3) functions. An unsupported FORTRAN compiler,
f77, is included in the VAX distribution. FORTRAN is available as a layered product
on both V AX and RISe machines.

Section 3int
The (3int) functions assist programs in supporting native language interfaces. They
are found in the internationalization library tibi.

Subroutines 3-1

intro (3)

Section 3krb
The library of routines for the Kerberos authentication service. These routines support
the authentication of commonly networked applications across machine boundaries in
a distributed network.

Section 3m
The (3m) functions constitute the math library, !ibm. They are automatically loaded
as needed by the Pascal compiler (pc) and the FORTRAN compiler (f77). The link
editor searches this library under the -1m option. Declarations for these functions
may be obtained from the include file, < math.h >.

VAX Only

On V AX machines, the GFLOA T version of !ibm is used when you use
the ld(l) command with the -leg option. Note that you must use the
GFLOAT version of /ibm with modules compiled using the cc(1)
command with the -Mg option.

Note that neither the compiler nor the linker ld(l) can detect when
mixed double floating point types are used, and the program may
produce erroneous results if this occurs on a VAX machine.

Section 3ncs
This section describes the NCS (Network Computing System) library routines. The
Title, Name, and See Also sections of the NCS reference pages do not contain the
dollar ($) sign in the command names and library routines. The actual NCS
commands and library routines do contain the dollar ($) sign.

Section 3n
These functions constitute the internet network library,

Section 3x
Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

Section 3xti
The X/Open Transport Interface defines a transport service interface that is
independent of any specific transport provider. The interface is provided by way of a
set of library functions for the C programming language.

Section 3yp
These functions are specific to the Yellow Pages (YP) service.

Environmental Compatibility
The libraries in Sections 3, 3m, and 3s contain System V and PO SIX compatibility
features that are available to general UL TRIX programs. This compatibility
sometimes conflicts with features already present in UL TRIX. That is, the function
performed may be slightly different in the System V or POSIX environment. These
features are provided for applications that are being portt(d from System V or written

3-2 Subroutines

Files

intro(3)

for a POSIX environment.

The descriptions in these sections include an ENVIRONMENT section to describe
any differences in function between System V or POSIX and the standard C runtime
library.

The System V compatibility features are not contained in th,e standard C runtime
library. To get System V -specific behavior, you must specify that the System V
environment is to be used in compiling and linking programs. You can do this in
one of two ways:

1. Using the -YSYSTEM_FIVE option for the cc command.

2. Globally setting the environment variable PROG_ENV to SYSTEM_FIVE. If
you are using the C shell, you would execute the following line, or include it in
your .login file:

setenv PROG ENV SYSTEM FIVE - -
If you are using the Bourne shell, you would execute the following line, or
include it in your .profile file:

PROG_ENV=SYSTEM_FIVE ; export PROG_ENV

In both cases, the cc(l) command defines the preprocessor symbol SYSTEM_FIVE,
so that the C preprocessor, /1 ib / cpp, will select the System V version of various
data structures and symbol definitions.

In addition, if cc(l) invokes ld(l), the library libcV.a (the System V version of the
Standard C library) is searched before libc.a to resolve references to the System-V
specific routines. Also, if -1m is specified on either the cc(l) or the ld(l) command
line, then the System V version of the math library will be used instead of the regular
ULTRIX math library.

The POSIX compatibility features are included in the library libcP.a, so the only
special action needed is to specify ·YPOSIX on the cc(l) command line or set the
environment variable PROG_ENV to POSIX. Either action will cause the cc(1)
command to define the preprocessor symbol POSIX and search the POSIX library.

/usr/lib/libc.a

/usr/lib/lib3g.a

/usr/lib/libm.a

/usr/lib/libc_p.a

/usr/lib/m_g.a

/usr/lib/libm_p.a

(VAX only)

(VAX only)

(VAX only)

(VAX only)

Subroutines 3-3

intro (3)

Diagnostics
Functions in the math library (3m) may return conventional values when the function
is undefined for the given arguments or when the value is not representable. In these
cases the external variable ermo is set to the value EDOM (domain error) or
ERANGE (range error). For further information, see intro(2). The values of
EDOM and ERANGE are defined in the include file <math.h>.

See Also
cc(1), Id(1), nm(1), intro(2) intro(3), intro(3s), intro(3f), intro(3m), intro(3n)

3-4 Subroutines

Name

Syntax

a64l, 164a - convert long integer and base-64 ASCII string

long a641 (s)
char *s;

char *164a (I)
long I;

a641 (3)

Description
These functions are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for 2-11, A
through Z for 12-37, and a through z for 38-63.

The a641 subroutine takes a pointer to a null-tenninated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains more than
six characters, a 6 41 will use the first six.

The 164 a subroutine takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164 a returns a pointer to
a null string.

Restrictions
The value returned by 164 a is a pointer into a static buffer, the contents of which are
overwritten by each call.

Subroutines 3-5

abort(3}

Name

Syntax

abort - generate an illegal instruction fault

#include <stdlib.h>

void abortO

Description
The abort subroutine executes an instruction which is illegal in user mode. This
causes a signal that normally terminates the process with a core dump, which may be
used for debugging.

Diagnostics

Illegal instruction - core dumped
- Bourne shell.

Illegal instruction (core dumped)
- C shell.

Environment
When your program is compiled using the System V or POSIX environment, abort
closes open files before aborting the process with an lOT fault.

Restrictions
The abort function does not flush standard I/O buffers. Use fflush(3s). For
further information, see fclose(3s).

See Also
adb(1), exit(2), sigvec(2), fclose(3s)

3-6 Subroutines

(

\,

Name

Syntax

abs, labs - integer absolute value

#include <stdlib.h>
#include <stdlib.h>

long labs(i)
long i;

int abs(i)
int i;

long labs(i)
long i;

Description

abs(3)

The abs and labs functions return the absolute value of their integer operand. The
labs function does the same for a long into

Restrictions
Applying the abs or labs function to the most negative integer generates a result
which is the most negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

See Also
fioor(3m)

Subroutines 3-7

alarm (3)

Name

Syntax

alarm - schedule signal after specified time

#include <unistd.h>

unsigned alarm(seconds)
unsigned seconds;

Description
The alarm subroutine causes signal SIGALRM, see signal(3), to be sent to the
invoking process in a number of seconds given by the argument. Unless caught or
ignored, the signal terminates the process.

The alarm requests are not stacked. Successive calls reset the alarm clock. If the
argument is 0, any alarm request is canceled. Because of scheduling delays,
resumption of execution of when the signal is caught may be delayed an arbitrary
amount. The longest specifiable delay time is 100000000 seconds. Values larger than
100000000 will be silently rounded down to 100000000.

The return value is the amount of time previously remaining in the alarm clock.

Environment
When your program is compiled using the System V environment, alarm rounds up
any positive fraction of a second to the next second.

When your program is compiled using the POSIX environment, alarm takes a
parameter of type unsigned, and returns a value of type unsigned.

See Also
getitimer(2), sigpause(2), sigvec(2), signal(3), sleep(3)

3-8 Subroutines

Name

Syntax

assert - program verification

#include <assert.h>

assert(expression)

assert (3)

Description
The assert macro indicates expression is expected to be true at this point in the
program. It causes an abort(3) with a diagnostic comment on the standard error
when expression is false (0). Compiling with the cc(l) option -DNDEBUG
effectively deletes assert from the program.

Diagnostics
• Assertion failed: a, file f n'. The a is the assertion that failed; f is the source file and
n the source line number of the assert statement.

Subroutines 3-9

atof(3)

Name

Syntax

atof, atoi, atol, strtol, strtoul, strtod - convert ASCII to numbers

#include <math.h>

double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

long strtol(nptr, eptr, base)
char *nptr, **eptr;
int base;

unsigned long strtoul(nptr, eptr, base)
char *nptr, **eptr;
int base;

double strtod (nptr, eptr)
char *nptr, **eptr;

unsigned long strtoul(nptr, eptr, base)
char *nptr, **eptr;
int base;

Description
These functions convert a string pointed to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the string.

The atof function recognizes (in order), an optional string of spaces, an optional
sign, a string of digits optionally containing a radix character, an optional 'e' or 'E',
and then an optionally signed integer.

The atoi and atol functions recognize (in order), an optional string of spaces, an
optional sign, then a string of digits.

The strtol function returns as a long integer, the value represented by the
character string nstr. The string is scanned up to the first character inconsistent with
the base. Leading white-space characters are ignored.

If the value of eptr is not (char **) NULL, a pointer to the character terminating the
scan is returned in **eptr. If no integer can be formed, **eptr is set to nstr , and zero
is returned.

If base is positive and not greater than 36, it is used as the base for conversion. After
an optional leading sign, leading zeros are ignored, and Ox or OX is ignored if base is
16.

If base is zero, the string itself determines the base thus: After an optional leading
sign, a leading zero indicates octal conversion, and a leading Ox or OX hexadecimal
conversion. Otherwise, decimal conversion is used.

3-10 Subroutines

(

\

atof(3)

Truncation from long to int can take place upon assignment, or by an explicit cast.

The strtoul function is the same as strtol except that strtoul returns, as an
unsigned long integer, the value represented by the character string nstr.

The strtod function returns as a double-precision floating point number, the value
represented by the character string pointed to by nptr. The string is scanned up to the
first unrecognized character.

The strtod function recognizes an optional string of white-space characters, as
defined by isspace in ctype, then an optional sign, then a string of digits optionally
containing a radix character, then an optional e or E followed by an optional sign or
space, followed by an integer.

If the value of eptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by eptr. If no number can be formed, *eptr
is set to nptr, and zero is returned.

The radix character for atof and strtod is that defined by the last successful call
to set locale category LC NUMERIC. If set locale category LC NUMERIC
has not been called successfully, or if the radix character is not defined for a
supported language, the radix character is defined as a period (.).

International Environment

LC CTYPE If this environment variable is set and valid, strtod uses the
international language database named in the definition to
determine character classification rules.

LC_NUMERIC If this environment is set and valid, atof and strtod use the
international language database named in the definition to
determine radix character rules.

LANG

Diagnostics

If this environment variable is set and valid atof and strtod
use the international language database named in the definition to
determine collation and character classification rules. If
LC CTYPE or LC NUMERI C is defined, their definition
supercedes the defuiition of LANG.

The atof function returns HUGE if an overflow occurs, and a 0 value if an
underflow occurs, and sets ermo to ERANGE. HUGE is defined in <math. h>.

The atoi function returns INT_MAX or INT_MIN (according to the sign of the
value) and sets ermo to ERANGE, if the correct value is outside the range of values
that can be represented.

The atol function returns LONG_MAX or LONG_MIN (according to the sign of
the value) and sets ermo to ERANGE, if the correct value is outside the range of
values that can be represented.

The strtol function returns LONG_MAX or LONG_MIN (according to the sign of
the value) and sets ermo to ERANGE, if the correct value is outside the range of
values that can be represented.

Subroutines 3-11

atof(3)

The strtoul function returns ULONG_MAX and sets errno to ERANGE, if the
correct value is outside the range of values that can be represented.

The strtod function returns HUGE (according to the sign of the value), and sets
errno to ERANGE if the correct value would cause overflow. A 0 is returned and
errno is set to ERANGE if the correct value would cause underflow.

See Also
ctype(3), setlocale(3), scanf(3s), environ(5int)

3-12 Subroutines

(
\,

Name

Syntax

bsearch - binary search a sorted table

#include <stdlib.h>

void *bsearch (key, base, nel, sizeof (*key), compar)
void *key, *base;
size t nel;
int (*compar)();

bsearch (3)

Description
The bsearch subroutine is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order according to a
provided comparison function. The key points to the datum to be sought in the table.
The base points to the element at the base of the table. The nel is the number of
elements in the table. The compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The function
must return an integer less than, equal to, or greater than zero according to whether
the first argument is to be considered less than, equal to, or greater than the second.

Diagnostics
A NULL pointer is returned if the key cannot be found in the table.

Notes
The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

See Also
hsearch(3), Isearch(3), qsort(3), tsearch(3)

Subroutines 3-13

bstring (3)

Name

Syntax

bcopy, bcmp, bzero, ffs - bit and byte string operations

bcopy(bl, b2, length)
char *bl, *b2;
int length;

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bzero(bl, length)
char *bl;
int length;

ffs(i)
int i;

Description
The functions bcopy, bcmp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3) do.

The bcopy function copies length bytes from string bi to the string b2.

The bcmp function compares byte string bi against byte string b2, returning zero if
they are identical, non-zero otherwise. Both strings are assumed to be length bytes
long.

The bzero function places length 0 bytes in the string bi.

The ffs finds the first bit set in the argument passed it and returns the index of that
bit. Bits are numbered starting at 1. A return value of 0 indicates the value passed is
zero.

Restrictions
The bcmp and bcopy routines take parameters backwards from strcmp and
strcpy.

3-14 Subroutines

Name

Syntax

clock - report CPU time used

#include <time.h>

clock _ t clock ()

CLOCKS PER SEC - -

clock(3)

Description
The clock routine returns the amount of CPU time (in microseconds) used since the
first call to clock. The time reported is the sum of the user and system times of
the calling process and its terminated child processes for which it has executed
wai t(2) or system(3). To determine the time in seconds, the value returned by
clock should be divided by the value of the macro CLOCKS_PER_SEC.

The resolution of the clock is 16.667 milliseconds.

Restrictions
The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the
value returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes).

See Also
wait(2), times(3), system(3)

Subroutines 3-15

conv(3)

Name

Syntax

toupper, tolower, _toupper, _tolower, toascii - translate characters

#include <ctype.h>

int toupper(c)
int c;

int tolower(c)
int c;

int toupper(c)
int c;
int tolower(c)
int c;
int toascii(c)
int c;

Description
The functions toupper and tolower have as their domain the range of the getc
function. If the argument to toupper represents a lowercase letter, the output from
the fuction is the corresponding uppercase letter. If the argument to tolower
represents an uppercase letter, the result is the corresponding lowercase letter.

The case of c depends on the definition of the character in the language database.
Because the case of a character can vary between language databases, the case of c
depends on what language database is in use. Specifically, the case of arguments
depends on what property tables are associated the LC_CTYPE category. Property
tables are associated with the LC_CTYPE category by a successful call to the
set locale function that includes the LC_CTYPE category. If no successful call to
define LC_CTYPE has occurred or if the character case information is unavailable for
the language in use, the rules of the ASCII coded character set determine the case of
arguments.

If the argument to the toupper function does not have the uppercase attribute,
toupper returns the argument unchanged. Likewise, if the argument to the
tolower function does not have the lowercase attribute, tolower returns it
unchanged.

The macros toupper and tolower have the same affect as toupper and
tolower. The difference is"that the argument to the macros must be an ASCII
character (that is, a character in the domain -1 to 127) and the argument must have
the appropriate case. Arguments to toupper must have the uppercase attribute
and arguments to _tolower must the lowercase attribute. The result of supplying
arguments to these· macros that are outside the domain or do not have the appropriate
case is undefined. These macros operate faster than the toupper and tolower
functions.

The macro toascii converts its argument to the ASCII character set. The macro
converts its argument by truncating the numerical representation of the argument so
that it is between -1 and 127. You can use this macro when you move an application

3-16 Subroutines

conv(3)

to a system other than an UL TRIX system.

International Environment

LC CTYPE If this environment variable is set and valid, conv uses the
intemationallanguage database named in the definition to
determine character classification rules.

See Also
ctype(3int), setlocale(3), getc(3)

Subroutines 3-17

crypt (3)

Name

Syntax

crypt, crypt16, setkey, encrypt - DES encryption

char *crypt(key, salt)
char *key, *salt;

char *crypt16(key, salt)
char *key, *salt;

setkey(key)
char *key;

Description
The crypt subroutine is the password encryption routine. It is based on the NBS
Data Encryption Standard, with variations intended to frustrate use of hardware
implementations of the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a
2-character string chosen from the set [a-zA-ZO-9./J. The salt string is used to
perturb the DES algorithm in one of 4096 different ways, after which the password is
used as the key to encrypt repeatedly a constant string. The returned value points to
the encrypted password, in the same alphabet as the salt. The first two characters are
the salt itself.

The crypt 16 subroutine is identical to the crypt function except that it will
accept a password up to sixteen characters in length. It generates a longer encrypted
password for use with enhanced security features.

The other entries provide primitive access to the actual DES algorithm. The
argument of setkey is a character array of length 64 containing only the characters
with numerical value 0 and 1. If this string is divided into groups of 8, the low-order
bit in each group is ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64
containing Os and Is. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES
algorithm using the key set by setkey. If edflag is 0, the argument is encrypted; if
non-zero, it is decrypted.

Restrictions
The return values from crypt and crypt 16 point to static data areas whose
content is overwritten by each call.

Environment

Default Environment

In the default environment on systems that do not have the optional encryption
software installed the encrypt function expects exactly one argument, the data to
be encrypted. The edflag argument is not supplied and there is no way to decrypt
data. If the optional encryption software is installed the encrypt function behaves

3-18 Subroutines

(

(

\.

crypt(3)

as it does in the POSIX environment. The syntax for the default environment
follows:

encrypt(block)
char *block;

POSIX Environment

In the POSIX environment the encrypt function always expects two arguments. The
encrypt function will set errno to ENOSYS and return if edjlag is non-zero and
the optional encryption software is not present. The syntax for the POSIX
environment follows:

encrypt(block, edflag)
char *block;
int edflag;

In all cases the setkey function will set errno to ENOSYS and return if the
optional encryption software is not present.

See Also
login(l), passwd(l), yppasswd(lyp), getpass(3), auth(5), passwd(5), passwd(5yp)
ULTRIX Security Guide for Users and Programmers

Subroutines 3-19

ctime(3)

Name

Syntax

ctime, localtime, gmtime, asctime, difftime, mktime, timezone, tzset - date and time
functions

As shown, the ctime, localtime, gmtime, asctime, difftime,
mktime, and tzset calls are common to both the non-System V environment and
the System V environment.

Common to Both Environments

#include <time.h>

void tzsetO

char *ctime(clock)
time_t *clock;

char *asctime(tm)
struct tm *tm;

struct tm *localtime(clock)
time_t *clock;

struct tm *gmtime(clock)
time_t *clock;

double ditftime(timel, timeD)
time_t time}, timeD;

time_t mktime(timeptr)
struct tm *timeptr;

extern char *tzname[2];

BSD Environment Only
char *timezone(zone, dst)

System V and POSIX Environments Only
extern long timezone;

extern int daylight;

Description

The tzset call uses the value of the environment variable TZ to set up the time
conversion information used by local time.

IfTZ does not appear in the environment, the file /etc/zoneinfo/localtime
is used by local time. If this file fails for any reason, the Greenwich Mean Time
(GMT) offset as provided by the kernel is used. In this case, Daylight Savings Time
(DST) is ignored, resulting in the time being incorrect by some amount if DST is
currently in effect. If this fails for any reason, GMT is used.

3-20 Subroutines

/'

ctime(3)

If TZ appears in the environment but its value is a null string, GMT is used; if TZ
appears and its value is not a null string, its value is interpreted using rules specific to
the System V and non-System V environments.

Programs that always wish to use local wall clock time should explicitly remove the
environmental variable TZ with unsetenv (3) .

The ctime call converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character
string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1985\n\0

The local time and gmtime calls return pointers to tm structures, described
below. The 10 cal time call corrects for the time zone and possible DST; gmt ime
converts directly to GMT, which is the time the UL TRIX system uses.

The asctime call converts a tm structure to a 26-character string, as shown in the
previous example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are in the
<time.h> header file. The structure declaration is:

struct tm {
int
int
int
int
int
int
int
int
int

long
char

} ;

tm sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm isdst;

tm_gmtoff;
*tm zone;

/* seconds (0 - 59) */
/* minutes (0 - 59) */
/* hours (0 - 23) */
/* day of month (1 - 31) */
/* month of year (0 - 11) */
/* year - 1900 */
/* day of week (Sunday = 0) */
/* day of year (0 - 365) */
/* flag: daylight savings time in

effect */
/* offset from GMT in seconds */
/* abbreviation of timezone name */

tm isdst is nonzero if DST is in effect.

tmJmtoft'is the offset (in seconds) of the time represented from GMT, with positive
values indicating East of Greenwich.

The difftime call computes the difference between two calendar times: time}
timeO and returns the difference expressed in seconds.

The mktime call converts the broken-down local time in the tm structure pointed to
by timeptr into a calendar time value with the same encoding as that of the values
returned by time. The values of tm _ wday and tm Jday in the structure are
ignored, and the other values are not restricted to the ranges indicated above for the
tm structure. A positive or zero value for tm_isdst causes mktime to presume that
DST, respectively, is or is not in effect for the specified time. A negative value
causes mktime to attempt to determine whether DST is in effect for the specified
time. On successful completion, the values of tm _ wday and tm Jday are set
appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to the ranges indicated above. If the calendar time
cannot be represented, the function returns the value (time_t)-l.

Subroutines 3-21

ctime (3)

The external variable tzname, contains the current time zone names. The function
tzset sets this variable.

BSD and POSIX Environment Only
If TZ appears in the environment and its value is not a null string, its value has one
of three formats:

or

:pathname

or

stdoffset[dst[offset] [,start[/time],end[/time] J]

If TZ is the single colon format (first format), GMT is used.

If TZ is the colon followed by a pathname format (second), the characters following
the colon specify a pathname of a tzfile(5) format file from which to read the
time conversion information. If the pathname begins with a slash, it represents an
absolute pathname; otherwise the pathname is relative to the system time conversion
information directory / etc/ zoneinfo. If this file fails for any reason, the GMT
offset as provided by the kernel is used.

If the first character in TZ is not a colon (third format), the components of the string
have the following meaning:

std and dst Three or more characters that are the designation for the standard
(std) or summer (dst) time zone. Only std is required; if dst is
missing, then summer time does not apply in this locale. Upper
and lowercase letters are explicitly allowed. Any characters except
a leading colon (:), digits, comma (,), minus (-), plus (+), and
ASCII NUL are allowed.

offset

start and end

3-22 Subroutines

Indicates the value to be added to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ssJ]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is
required and may be a single digit. The offset following std is
required. If no offset follows dst, summer time is assumed to be
one hour ahead of standard time. One or more digits may be used;
the value is always interpreted as a decimal number. The hour
must be between zero and 24, and the minutes (and seconds) - if
present - between zero and 59. If preceded by a "_", the time zone
is east of the Prime Meridian; otherwise it is west (which may be
indicated by an optional preceding "+").

Indicates when to change to and back from summer time. Start
describes the date when the change from standard to summer time
occurs and end describes the date when the change back happens.
The format of start and end must be one of the following:

Jn The Julian day n (1 ~ n ~ 365). Leap days are not
counted. That is, in all years, including leap years,

(
\

(

(

\,

(

time

ctime(3)

February 28 is day 59 and March 1 is day 60. It is
impossible to explicitly refer to the occasional February
29.

n The zero-based Julian day (0 $; n $; 365). Leap days are
counted, and it is possible to refer to February 29.

Mm.n.d The nth d day of month m (1 $; n $; 5, 0 $; d $; 6, 1 $; m $;

12). When n is 5 it refers to the last d day of month m.
Day 0 is Sunday.

The time field describes the time when, in current time, the change
to or from summer time occurs. Time has the same format as offset
except that no leading sign (a minus sign (-) or a plus sign (+» is
allowed. The default, if time is not given, is 02:00:00.

As an example of the previous format, if the TZ environment variable had the value
EST5EDT4,M4.1.0,MI0.5.0 it would describe the rule, which went into effect in
1987, for the Eastern time zone in the USA. Specifically, EST would be the
designation for standard time, which is 5 hours behind GMT. EDT would be the
designation for DST, which is 4 hours behind GMT. DST starts on the first Sunday
in April and ends on the last Sunday in October. In both cases, since the time was
not specified, the change to and from DST would occur at the default time of 2:00
AM.

The time zone call remains for compatibility reasons only; it is impossible to
reliably map timezone's arguments (zone, a 'minutes west of GMT' value and dst, a
'daylight saving time in effect' flag) to a time zone abbreviation.

If the environmental string TZNAME exists, timezone returns its value, unless it
consists of two comma separated strings, in which case the second string is returned
if dst is non-zero, else the first string. If TZNAME does not exist, zone is checked
for equality with a built-in table of values, in which case timezone returns the time
zone or daylight time zone abbreviation associated with that value. If the requested
zone does not appear in the table, the difference from GMT is returned; that is, in
Afghanistan, timezone (- (60*4+30) ,0) is appropriate because it is 4:30 ahead
of GMT, and the string 'GMT +4:30' is returned. Programs that in the past used the
timezone function should return the zone name as set by localtime to assure
correctness.

System V Environment Only
IfTZ appears in the environment its value specifies a pathname of a tzfile(5)
format file from which to read the time conversion information. If the pathname
begins with a slash, it represents an absolute pathname; otherwise the pathname is
relative to the system time conversion information directory I etc/ zoneinfo.

If TZ appears in the environment and using the value as a pathname of a t z f i 1 e(5)
format file fails for any reason, the value is assumed to be a three-letter time zone
name followed by a number representing the difference between local time and GMT
in hours, followed by an optional three-letter name for a time zone on DST. For
example, the setting for New Jersey would be EST5EDT.

Subroutines 3-23

ctime(3)

System V and POSIX Environment Only
The extemallong variable tirnezone contains the difference, in seconds, between
GMT and local standard time (in EST, tirnezone is 5*60*60), The external
variable daylight is nonzero if and only if the standard USA DST conversion should
be applied. These variables are set whenever tzset, ctirne, localtirne,
rnktirne, or strftirne are called.

Restrictions

Files

The return values point to static data whose content is· overwritten by each call. The
tm_zone field ofa returned struct tm points to a static array of characters, which
will alsobe overwritten at the next call (and by calls to t z set) .

/etc/zoneinfo time zone infonnation directory
/etc/zoneinfo/localtime local time zone file

See Also
gettimeofday(2), getenv(3), strftime(3), time(3), tzfile(5), environ(7)

3-24 Subroutines

(

Name

Syntax

ctype(3)

isalpha, is upper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, is graph,
iscntrl, isascii - character classification macros

#include <ctype.h>

int isaJpha (c)

iot c;

Description

These macros classify character-coded integer values according to the rules of the
coded character set (codeset) identified by the last successful call to set locale
category LC _ CTYPE. All macros return non-zero for true and zero for false.

If set locale category LC_CTYPE has not been called successfully, or if character
classification information is not available for a supported language, then characters
are classified according to the rules of the ASCII 7-bit coded character set, returning
o for values above octal 0177.

The macro isascii provides a result for all integer values. The rest provide a
result for BOF and values in the character range of the codeset identified by the last
successful call to set locale category LC_CTYPE.

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a digit

c is a hexadecimal digit, by default [0-9], [A-F], or [a-f]

c is an alphanumeric character

c is a space, tab, carriage return, new line, or form feed

c is a punctuation character (neither control, alphanumeric, nor
space)

c is a printing character, by default code 040(8) (space) through
0176 (tilde)

c is a printing character, like isprint except false for space

c is a delete character (0177) or ordinary control character (less
than 040) except for space characters

c is an ASCII character, code less than 0200

International Environment

LC CTYPE If this environment variable is set and valid, ctype uses the
intemationallanguage database named in the definition to
determine character classification rules.

Subroutines 3-25

ctype(3)

LANG

See Also

If this environment variable is set and valid, ctype uses the
intemationallanguage database named in the definition to
detennine the character classification rules. If LC CTYPE is
defined, that definition supercedes the definition Of LANG.

conv(3), setlocale(3), stdio(3s), environ(5int), ascii(7)
Guide to Developing International Software

3-26 Subroutines

Name

Syntax

directory (3)

opendir, readdir, telldir, seekdir, rewinddir, c10sedir - directory operations

#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(dirname)
char *dirname;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loe)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

int c1osedir(dirp)
DIR *dirp;

Description
The opendir library routine opens the directory named by filename and associates a
directory stream with it. A pointer is returned to identify the directory stream in
subsequent operations. The pointer NULL is returned if the specified filename can
not be accessed, or if insufficient memory is available to open the directory file.

The readdir routine returns a pointer to the next directory entry. It returns NULL
upon reaching the end of the directory or on detecting an invalid seekdir
operation. The readdir routine uses the getdirentries system call to read
directories. Since the readdir routine returns NULL upon reaching the end of the
directory or on detecting an error, an application which wishes to detect the
difference must set ermo to 0 prior to calling readdir.

The telldir routine returns the current location associated with the named
directory stream. Values returned by telldir are good only for the lifetime of the
DIR pointer from which they are derived. If the directory is closed and then
reopened, the telldir value may be invalidated due to undetected directory
compaction.

The seekdir routine sets the position of the next readdir operation on the
directory stream. Only values returned by telldir should be used with
seekdir.

The rewinddir routine resets the position of the named directory stream to the
beginning of the directory.

The closedir routine closes the named directory stream and returns a value of 0 if
successful. Otherwise, a value of -1 is returned and ermo is set to indicate the error.
All resources associated with this directory stream are released.

Subroutines 3-27

directory (3)

Examples
The following sample code searches a directory for the entry name.

len = strlen(name);

dirp = opendir(".");

for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp))

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {

closedir(dirp);

return FOUND;

closedir(dirp);

return NOT_FOUND;

Environment
In the POSIX environment, the file descriptor returned in the DIR structure after an
opendir () call will have the FD_CLOEXEC flag set. See <fcntl.h> for more
detail.

Return Value
Upon successful completion, opendir () returns a pointer to an object of type DIR.
Otherwise, a value of NULL is returned and ermo is set to indicate the error.

The readdir () routine returns a pointer to an object of type struct dirent upon
successful completion. Otherwise, a value of NULL is returned and ermo is set to
indicate the error. When the end of the directory is encountered, a value of NULL is
returned and ermo is not changed.

The telldir () routine returns the current location. No errors are defined for
telldir (), seekdir () , and rewinddir () .

The closedir () routine returns zero upon successful completion. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

Diagnostics
The closedir () routine will fail if:

[EBADF]

[EINTR]

The dirp argument does not refer to an open directory stream.

The routine was interrupted by a signal.

The opendir () routine will fail if:

[EACCES] Search permission is denied for any component of dirname or read
permission is denied for dirname.

[ENAMETOOLONG]

3-28 Subroutines

The length of the dirname string exceeds { PATH_MAX}, or a
pathname component is longer than {NAME_MAX}.

[ENOENT]

[ENOTDIR]

[EMFILE]

[ENFILE]

directory (3)

The dirname argument points to the name of a file which does not
exist, or to an empty string and the environment defined is POSIX
or SYSTEM_FIVE.

A component of dirname is not a directory.

Too many file descriptors are currently open for the process.

Too many files are currently open in the system.

The readdir () routine will fail if:

[EBADF]

See Also

The dirp argument does not refer to an open directory stream.

close(2), getdirentries(2), Iseek(2), open(2), read(2), dir(5)

Subroutines 3-29

div(3)

Name

Syntax

diy, ldiv - integer division

#include <stdlib.h>

div t div(numer, denom)
int numer;
int denom;

Idiv _t Idiv(numer, denom)
long numer;
long denom;

Description
The di v and ldi v functions return the quotient and remainder of the division of the
numerator numer by the denominator denom.

The return types div_t and ldiv_t are defined, in stdlib.h, as follows:

Restrictions

typedef struct {
int quot; /* quotient */
int rem; /* remainder */
div_t; /* result of div() */

typedef struct {
long quot;
long rem;
ldiv_t;

/* quotient */
/* remainder */

/* result of ldiv() */

If division by zero is attempted, the behavior of di v and ldi v is undefined.

3-30 Subroutines

'\
)

Name

Syntax

drand48(3)

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 -
generate unifonnly distributed pseudo-random numbers

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

Description

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand4 8 return non-negative double-precision floating
point values unifonnly distributed over the interval [0.0, 1.0).

Functions lrand.48 and nrand48 return non-negative long integers unifonnly
distributed over the interval [0, 231).

Functions mrand4 8 and jrand48 return signed long integers unifonnly distributed
over the interval [_231 ,231).

Functions srand48, seed48 and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand4 8 is called.
Although it is not recommended practice, constant default initializer values will be
supplied automatically if drand4 8, lrand48 or mrand4 8 is called without a
prior call to an initialization entry point. Functions erand48, nrand48 and
j rand4 8 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi, according
to the linear congruential fonnula

Xn+1 = (aXn+C)modm n~O.

The parameter m = 248 ; hence 48-bit integer arithmetic is perfonned. Unless
lcong48 has been invoked, the multiplier value a and the addend value C are given
by

Subroutines 3-31

drand48 (3)

Notes

a = 5DEECE66D 16 = 273673163155 8

C=B 16 =13 8•

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (leftmost) bits of Xi and
transformed into the returned value.

The functions drand4 8, lrand48 and mrand4 8 store the last 48-bit Xi generated
in an internal buffer; that is why they must be initialized prior to being invoked. The
functions erand48, nrand48 and j rand4 8 require the calling program to
provide storage for the successive Xi values in the array specified as an argument
when the functions are invoked. That is why these routines do not have to be
initialized. The calling program merely has to place the desired initial value of Xi
into the array and pass it as an argument. By using different arguments, functions
erand48, nrand48 and j rand4 8 allow separate modules of a large program to
generate several independent streams of pseudo-random numbers. That is, the
sequence of numbers in each stream will not depend upon how many times the

. routines have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary value
330E16 ·

The initializer function seed4 8 sets the value of Xi to the 48-bit value specified in
the argument array. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some future
time - use the pointer to get at and store the last Xi value, and then use this value to
reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the
multiplier value a, and the addend value c. Argument array elements param[O-2]
specify Xj, param[3-5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After lcong4 8 has been called, a subsequent call to either srand48 or
seed48 will restore the "standard" multiplier and addend values, a and c, specified
on the previous page.

The source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist. Instead, they are replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m -1].

3-32 Subroutines

(

'\

/

See Also
rand(3)
ULTRIX Programmer's Manual, Unsupported

drand48 (3)

Subroutines 3-33

ecvt(3)

Name

Syntax

ecvt, fcvt, gcvt - output conversion

char *ecvt(value, ndigit, deept, sign)
double value;
iot ndigit, *deept, *sign;

char *fcvt(value, ndigit, deept, sign)
double value;
iot ndigit, *deept, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

Description
The ecvt routine converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer thereto. The position of the radix character relative to the
beginning of the string is stored indirectly through deept (negative means to the left
of the returned digits). If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero. The low-order digit is rounded.

The fcvt routine is identical to ecvt, except that the correct digit has been
rounded for FORTRAN F-format output of the number of digits specified by ndigits.

The gcvt routine converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf It attempts to produce ndigit significant digits in FORTRAN
F format if pos~ible, otherwise E format is used, ready for printing. Trailing zeros
may be suppressed.

The symbol used to represent a radix character is obtained from the last successful
call to set locale category LC NUMERIC. The symbol can be determined by
callin.g: -

nl_langinfo (RADIXCHAR);

If setlocale category LC_NUMERIC has not been called successfully, or ifthe
radix character is not defined for a supported language, the radix character defaults to
a period (.).

International Environment

LC NUMERIC If this environment is set and valid, ecvt uses the international
language database named in the definition to determine radix
character rules.

LANG

3-34 Subroutines

If this environment is set and valid, ecvt uses the international
language database named in the definition to determine radix
character rules. If LC NUMERIC is defined, its definition
supercedes the definition of LANG.

ecvt(3)

Restrictions
The return values point to static data whose content is overwritten by each call.

See Also
setlocale(3), nl_Ianginfo(3int), printf(3int), printf(3s)
Guide to Developing International Software

Subroutines 3-35

SC emulate_branch (3)

Name

Syntax

emulate_branch, execute_branch - branch emulation

#include <signal.h>

emulate _ branch(scp, branch_instruction)
struct sigcontext *scp;
unsigned long branch_instruction;

execute branch(branch instruction)
unsigned long branchjnstruction;

Description
The emulate_branch function is passed a signal context structure and a branch
instruction. It emulates the branch based on the register values in the signal context
structure. It modifies the value of the program counter in the signal context structure
(sc yc) to the target of the branch _instruction. The program counter must initially be
pointing at the branch and the register values must be those at the time of the branch.
If the branch is not taken the program counter is advanced to point to the instruction
after the delay slot (sc yc += 8).

If the branch instruction is a 'branch on coprocessor 2' or 'branch on coprocessor 3'
instruction, emulate branch calls execute branch to execute the branch in
data space to determine if it is taken or not. -

Return Value
The emulate branch function returns a 0 if the branch was emulated
successfully. A non-zero value indicates the value passed as a branch instruction was
not a branch instruction.

The execute branch function returns non-zero on taken branches and zero on
non-taken branches.

Restrictions
Since execute_branch is only intended to be used by emulate_branch it
does not check its parameter to see if in fact it is a branch instruction. It is really a
stop gap in case a coprocessor is added without the kernel fully supporting it (which
is unlikely).

See Also
cachefiush(2), sigvec(2), signal(3)

3-36 Subroutines

Name

Syntax

end, etext, edata - last locations in program

extern end;
extern etext;
extern edata;
extern eprol;

end(3) R

Description
These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the
initialized data region, and eprol is the first instruction of the user's program that
follows the runtime startup routine.

When execution begins, the program break coincides with end, but it is reset by the
routines brk(2), malloc(3), standard input/output stdio(3s), the profile (-p)
option of cc(1), and so forth. The current value of the program break is reliably
returned by sbrk(O). For further information, see brk(2).

See Also
cc(l), brk(2), malloc(3), stdio(3s)

Subroutines 3-37

!\X end(3)

Name

Syntax

end, etext, edata - last locations in program

extern end;
extern etext;
extern edata;

Description
These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the
initialized data region, and end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the
routines brk(2), malloc(3), standard input/output stdio(3s), the profile (-p)
option of cc(l), and so forth. The current value of the program break is reliably
returned by 'sbrk(O)'. For further information, see brk(2).

See Also
brk(2), malloc(3), stdio(3s)

3-38 Subroutines

Name

Syntax

exec1, execv, exec1e, exec1p, execvp, exect, environ - execute a file

exec1(name, argO, argi, ... , argn, (char *)0)
char *name, *argO, *argi, ••. , *argn;

execv(name, argv)
char *name, *argv[];

exec1e(name, argO, argi, ... , argn, (char *)0, envp)
char *name, *argO, *argi, ... , *argn, "'envp[];

exec1p(file, argO, argi, .•. , argn, (char *)0)
char *file, *argO, *argl, ... , "'argn;

execvp(file,argv)
char *fiIe, *argv[];

exect(name, argv, envp)
char *name, *argv[], *envp[];

extern char **environ;

execl (3) RI

Description
These routines provide various interfaces to the execve system call. Refer to
execve(2) for a description of their properties; only brief descriptions are provided
here.

In all their forms, these calls overlay the calling process with the named file, then
transfer to the entry point of the core image of the file. There can be no return from
a successful exec. The calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
arg[O], arg[1] ... address null-terminated strings. Conventionally arg[O] is the
name of the file.

Two interfaces are available. execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings
constituting the file and the arguments; the first argument is conventionally the same
as the file name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance.
The arguments to execv are the name of the file to be executed and a vector of
strings containing the arguments. The last argument string must be followed by a 0
pointer.

The exect version is used when the executed file is to be manipulated with
ptrace(2). The program is forced to single step a single instruction giving the
parent an opportunity to manipulate its state.

VAX-11

On VAX-ll machines, this is done by setting the trace bit in the process
status longword.

Subroutines 3-39

SC exec I (3)

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

The argv is directly usable in another execv because argv[argc] is O.

The envp is a pointer to an array of strings that constitute the environment of the
process. Each string consists of a name, an "=", and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(l) passes an
environment entry for each global shell variable defined when the program is called.
See environ(7) for some conventionally used names. The C run-time start-off
routine places a copy of envp in the global cell environ, which is used by execv
and execl to pass the environment to any subprograms executed by the current
program.

The execlp and execvp routines are called with the same arguments as execl
and execv, but duplicate the shell's actions in searching for an executable file in a
list of directories. The directory list is obtained from the environment.

Restrictions
If execvp is called to execute a file that turns out to be a shell command file, and if
it is impossible to execute the shell, the values of argv[O] and argv[-l] will be
modified before return.

Diagnostics

Files

If the file cannot be found, if it is not executable, if it does not start with a valid
magic number if maximum memory is exceeded, or if the arguments require too
much space, a return constitutes the diagnostic; the return value is -1. For further
information, see a. out(5). Even for the super-user, at least one of the execute
permission bits must be set for a file to be executed.

Ibin/sh Shell, invoked if command file found by execlp or execvp

See Also
csh(l), execve(2), fork(2), environ(7)

3-40 Subroutines

Name

Syntax

execl, execv, execle, execlp, execvp, exect, environ - execute a file

execl(name, argO, argl, ... , argn, (char *)0)
char *name, *argO, *argl, ... , *argn;

execv(name, argv)
char *name, *argv{};

execle(name, argO, argl, ... , argn, (char *)0, envp)
char *name, *argO, *argl, ... , *argn, *envp{};

execlp(file, argO, argl, ... , argn, (char *)0)
char *file, *argO, *argl, ... , *argn;

execvp(file ,argv)
char *file, *argv[];

exect(name, argv, envp)
char *name, *argv[], *envp{};

extern char **environ;

exec I (3) VJ

Description
These routines provide various interfaces to the execve system call. Refer to
execve(2) for a description of their properties; only brief descriptions are provided
here.

In all their forms, these calls overlay the calling process with the named file, then
transfer to the entry point of the core image of the file. There can be no return from
a successful exec. The calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
arg[O], arg[l] ... address null-terminated strings. Conventionally arg[O] is the
name of the file.

Two interfaces are available. execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings
constituting the file and the arguments; the first argument is conventionally the same
as the file name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance.
The arguments to execv are the name of the file to be executed and a vector of
strings containing the arguments. The last argument string must be followed by a 0
pointer.

The exect version is used when the executed file is to be manipulated with
ptrace(2). The program is forced to single step a single instruction giving the
parent an opportunity to manipulate its state. On the VAX-II this is done by setting
the trace bit in the process status longword.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

Subroutines 3-41

a.x execl (3)

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. As indicated, argc is conventionally at least one and the first
member of the array points to a string containing the name of the file.

The argv is directly usable in another execv because argv[argc] is O.

The envp is a pointer to an array of strings that constitute the environment of the
process. Each string consists of a name, an "=", and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(l) passes an
environment entry for each global shell variable defined when the program is called.
See environ(7) for some conventionally used names. The C run-time start-off
routine places a copy of envp in the global cell environ, which is used by execv
and execl to pass the environment to any subprograms executed by the current
program.

The execlp and execvp routines are called with the same arguments as execl
and execv, but duplicate the shell's actions in searching for an executable file in a
list of directories. The directory list is obtained from the environment.

Restrictions
If execvp is called to execute a file that turns out to be a shell command file, and if
it is impossible to execute the shell, the values of argv[O] and argv[-l] will be
modified before return.

Diagnostics

Files

If the file cannot be found, if it is not executable, if it does not start with a valid
magic number, if maximum memory is exceeded, or if the arguments require too
much space, a return constitutes the diagnostic; the return value is -1. For further
information, see a. out(5). Even for the super-user, at least one of the execute
permission bits must be set for a file to be executed.

Ibin/sh Shell, invoked if command file found by execlp or execvp

See Also
csh(I), execve(2), fork(2), environ(7)

3-42 Subroutines

'\

Name

Syntax

exit - terminate a process after flushing any pending output

exit(status)
iot status;
iot atexitifunc)
void (*/unc)O;

exit (3)

Description
The exit function tenninates a process after calling the Standard I/O library
function, _cleanup, to flush any buffered output. The exit function never returns.

The atexi t function registers a function to be called (without arguments) at nonnal
program tennination; functions are called in the reverse order of their registration
(that is, most recent first). If a function is registered more than once, it will be called
more than once.

Return Value
The ate x i t function returns zero if the registration succeeds, or -1 if the function
pointer is null or if too many functions are registered.

See Also
exit(2), intro(3s)

Subroutines 3-43

SC fpc(3)

Name

Syntax

fpc, gecfpc_csr, secfpc3sr, swapRM, swapINX - floating-point control registers

#include <mips/fpu.h>

int get Jpc _ csrO

int setJpc_csr(csr)
int csr;

int get_fpc JrrO

jnt swapRM(x)
jnt X;

jnt swapINX(x)
int X;

Description
These functions are to get and set the floating-point control registers of RISe
floating-point units. All of these functions take and return their values as 32 bit
integers.

The file <mips/fpu.h> contains unions for each of the control registers. Each union
contains a structure that breaks out the bit fields into the logical parts for each control
register. This file also contains constants for fields of the control registers.

RISe floating-point implementations have a control and status register and an
implementation revision register. The control and status register is returned by
get fpc csr. The routine set fpc csr sets the control and status register
and returns the old value. The impiementation revision register is read-only and is
returned by the routine get_fpc_irr.

The function swapRM sets only the rounding mode and returns the old rounding
mode. The function swapINX sets only the sticky inexact bit and returns the old
one. The bits in the arguments and return values to swapRM and swapINX are right
justified.

3-44 Subroutines

Name

Syntax

fp_class - classes of IEEE floating-point values

#include <fp _ class.h>

int fp_class_d(double x);

int fp_class_f(float x);

Description
These routines are used to determine the class of IEEE floating-point values. They
return one of the constants in the file < f P _ c 1 ass. h> and never cause an exception,
even for signaling NaNs. These routines are to implement the recommended function
class(x) in the appendix of the IEEE 754-1985 standard for binary floating-point
arithmetic. The constants in <fp_class .h> refer to the following classes of
values:

Constant Class

FP _SNAN Signaling NaN (Not-a-Number)
FP _QNAN Quiet NaN (Not-a-Number)
FP _POS_INF +00 (positive infinity)
FP _NEG_INF -00 (negative infinity)
FP _POS_NORM positive normalized nonzero
FP _NEG_NORM negative normalized nonzero
FP _POS_DENORM positive denormalized
FP _NEG_DENORM negative denormalized
FP _POS_ZERO +0.0 (positive zero)
FP _NEG_ZERO -0.0 (negative zero)

Also See
ANSI/lEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

Subroutines 3-45

frexp (3)

Name

Syntax

frexp, ldexp, modf - split into mantissa and exponent

#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double Idexp(value, exp)
double value;

double modf(vaiue, iptr)
double value, *iptr;

Description
The frexp subroutine returns the mantissa of a double value as a double quantity, x,
of magnitude less than 1.0 and greater than or equal to 0.5 (0.5 <= Ixl < 1) and stores
an integer n such that value = x*2**n indirectly through eptr.

The ldexp returns the quantity value*2**exp.

The modf returns the positive fractional part of value and stores the integer part
indirectly through iptr.

Return Value
If ldexp would cause overflow, ±HUGE_ VAL is returned (according to the sign of
value) and errno is set to ERANGE. If ldexp would cause underflow, 0 is returned
and errno is set to ERANGE.

3-46 Subroutines

Name

Syntax

ftoi (3)

ftoi, itof, dtoi, itod, gtoi, itog - convert floating values between V AX and IEEE
format

iot ftoi(value)
float "'value;

iot itof(value)
float "'value;

int dtoi(value)
double *value;

iot itod(value)
double "'value;

iot gtoi(value)
double *value;

iot itog(value)
double *value;

Description
The following C library functions convert floating values between V AX and IEEE
formats.

The ftoi function converts the specified VAX ffioat number to IEEE single
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The i tof function converts the specified IEEE single-precision number to VAX
ffioat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, overflow).

The dtoi function converts the specified VAX dfloat number to IEEE double
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The it od function converts the specified IEEE double-precision number to VAX
dfloat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow or overflow).

The gtoi function converts the specified VAX gftoat number to IEEE double
precision format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

The it og function converts the specified IEEE double-precision number to V AX
gfloat format. It returns zero if successful and nonzero without performing the
conversion if not successful (for example, underflow).

Subroutines 3-47

ftok(3)

Name

Syntax

ftok - standard interprocess communication package

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

Description
All interprocess communication facilities require the user to supply a key to be used
by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for forming a key is to use the
ftok, file to key, subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as
a sequence number. There are many other ways to form keys, but it is necessary for
each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each
other's operation. Therefore, it is strongly suggested that the most significant byte of
a key in some sense refer to a project so that keys do not conflict across a given
system.

The ftok subroutine returns a key based on path and id that is usable in subsequent
msgget, semget, and shmget system calls. The path must be the path name of
an existing file that is accessible to the process. The id is a character which uniquely
identifies a project. Note that ftok will return the same key for linked files when
called with the same id and that it will return different keys when called with the
same file name but different ids.

Return Value
The ftok subroutine returns (keLt) -1 if path does not exist or if it is not
accessible to the process.

Warning
If the file whose path is passed to ftok is removed when keys still refer to the file,
future calls to ftok with the same path and id will return an error. If the same file
is recreated, then ftok is likely to return a different key than it did the original time
it was called.

See Also
intro(2), msgget(2), semget(2), shmget(2)

3-48 Subroutines

!

\

(

"

'\

/

Name

Syntax

ftw - walk a file tree

#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

ftw(3)

Description
The ftw subroutine recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw callsfn, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure
containing information about the object, and an integer. For further information, see
stat(2). Possible values of the integer, defined in the <ftw.h> header file, are
FfW _F for a file, FfW _D for a directory, FfW _DNR for a directory that cannot be
read, and FTW _NS for an object for which stat could not successfully be executed.
If the integer is FTW _DNR, descendants of that directory will not be processed. If
the integer is FTW _NS, the the contents of the stat structure will be undefined. An
example of an object that would cause FfW _NS to be passed to fn would be a file in
a directory with read but without execute (search) permission.

The ftw subroutine visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error is detected within ftw (such as an I/O error). If the
tree is exhausted, f t w returns zero. If fn returns a nonzero value, f t w stops its tree
traversal and returns whatever value was returned by fn. If ftw detects an error, it
returns -1, and sets the error type in ermo.

The ftw subroutine uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. The depth must not be greater than the number
of file descriptors currently available for use. The ftw subroutine will run more
quickly if depth is at least as large as the number of levels in the tree.

Restrictions
Because ftw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at the cost of
considerable complexity.
The ftw subroutine uses malloc(3) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by /ongjmp being executed by fn or
an interrupt routine, ftw will not have a chance to free that storage, so it will remain
permanently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its next
invocation.

Subroutines 3-49

ftw(3)

Diagnostics

[EACCES] Search permission is denied on a component of path or read
permission is denied for path.

[ENAMETOOLONG]

[ENOENT]

[ENOTDIR]

[ENOMEM]

See Also
stat(2), malloc(3)

3-50 Subroutines

The length of the path string exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX}.

The path argument points to the name of a file which does not
exist, or to an empty string and the environment defined is POSIX
or SYSTEM_FIVE.

A component of path is not a directory.

Not enough memory was available to complete the file tree walk.

Name

Syntax

getauthuid (3)

getauthuid, storeauthent, setauthfile, endauthent - get/set auth entry

#include <sys/types.h>
#include <auth.h>

AUTHORIZATION *getauthuid(uid)
uid_t uid;

int storeauthent(auth)
AUTHORIZATION *auth;

void setauthfile(pathname)
char *pathname;

int endauthentO

Description

The getauthuid function looks up the auth entry for the specified user ID and
returns a pointer to a static area containing it.

The storeauthent function will store the specified auth entry into the local auth
database, overwriting any existing entry with the same a _ uid field.

The setauthfile function will set the pathname of the file to be used for the
local auth database in all subsequent operations.

The endauthent functions closes the auth database. Subsequent calls to
getauthuid and storeauthent will reopen it.

The auth database may be distributed via the BIND/Hesiod naming service.

Restrictions
Only the super-user and members of the group au thread may read information from
the auth database.

Only the super-user may modify the auth database.

The auth databse may not be distributed via the Yellow Pages service.

Return Value
Functions which return a pointer value will return the null pointer (0) on EOF or
error. Other functions will return zero (0) on success and a negative value on failure.

Subroutines 3-51

getauthuid (3)

Files
/etc/auth. [pag,dir]

See Also
getpwent(3), auth(5), edauth(8)
Security Guidefor Users and Programmers
Security Guide for Administrators
Guide to the BINDIHesiod Service

3-52 Subroutines

Name

Syntax

getcwd - get pathname of working directory

char *getcwd (buf, size)
char *buj;
iot size;

getcwd(3)

Description
The getcwd subroutine returns a pointer to the current directory pathname. The
value of size must be at least two greater than the length of the pathname to be
returned.

If bufis a NULL pointer, getcwd will obtain size bytes of space using malloc(3)
In this case, the pointer returned by getcwd may be used as the argument in a
subsequent call to free.

The function is implemented by using popen(3) to pipe the output of the pwd(1)
command into the specified string space.

Examples

char *ewd, *getewd();

if ((ewd = getewd((ehar *)NULL, 64)) == NULL) {

perror ("pwd") ;
exit(l);

printf("%s\n", ewd);

Return Value
Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

Diagnostics

[EINVAL]

[ERANGE]

[EACCES]

[ENOMEM]

The size argument is zero or negative.

The size argument is greater than zero, but is smaller than the
length of the pathname+ 1;

Read or search permission is denied for a component of the
pathname.

Insufficient storage space is available.

Subroutines 3-53

getcwd(3)

See Also
pwd(1), malloc(3), popen(3)

3-54 Subroutines

\
!

/

Name

Syntax

getenv, setenv, unsetenv - manipulate environment variables

char *getenv(name)
char *name;

setenv(name, value, overwrite)
char *name, value;
int overwrite;

void unsetenv(name)
char *name;

getenv(3)

Description
The getenv subroutine searches the environment list for a string of the form name
= value and returns a pointer to the string value if such a string is present, otherwise
getenv returns the value 0 (NULL). For further information, see environ(7).

The setenv subroutine searches the environment list in the same manner as
getenv. If the string name is not found, a string of the form name=value is added
to the environment. If it is found, and overwrite is non-zero, its value is changed to
value. The setenv subroutine returns 0 on success and -Ion failure, where failure
is caused by an inability to allocate space for the environment.

The unsetenv subroutine removes all occurrences of the string name from the
environment. There is no library provision for completely removing the current
environment. It is suggested that the following code be used to do so.

static char *envinit [1];
extern char **environ;
environ = envinit;

All of these routines permit, but do not require, a trailing equals sign (=) on name or
a leading equals sign on value.

See Also
csh(l), shq), execve(2), putenv(3), environ(7)

Subroutines 3-55

getgrent (3)

Name

Syntax

getgrent, getgrgid, getgrnam, setgrent, endgrent - get group entry

#include <grp.h>

struct group *getgrentO

struct group *getgrgid(gid)
gid_t gid;

struct group *getgrnam(name)
char *name;

setgrentO

endgrentO

Description
The getgrent, getgrgid and getgrnam subroutines each return pointers to an
object with the following structure containing the broken-out fields of a line in the
group database:

struct group /* see getgrent(3) */
char *gr_name;
char *gr-passwd;
int gr_gid;
char **gr_mem;

} ;

struct group *getgrent(), *getgrgid(), *getgrnam();

The members of this structure are:

gr_name
gr_passwd
gr~id
gr_mem

The name of the group.
The encrypted password of the group.
The numerical group-ID.
Null-terminated vector of pointers to the individual member names.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. The endgrent may be called to close the group database when
processing is complete.

The getgrent subroutine simply reads the next line while getgrgid and
getgrnam search until a matching gid or name is found (or until EOF is
encountered). The getgrent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire file.

A call to setgrent must be made before a while loop using getgrent in order
to perform initialization and an endgrent must be used after the loop. Both
getgrgid and getgrnam make calls to setgrent and endgrent .

3-56 Subroutines

getgrent (3)

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.

If YP is running, getgrent does not return the entries in any particular order. See
the Guide to the Yellow Pages Service for setup information.

The group database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BINDIHesiod Service for more information.

Return Value
A null pointer (0) is returned on EOF or error.

Files
jete/group

See Also
group(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

Subroutines 3-57

3C gethostsex (3)

Name

Syntax

gethostsex - get the byte sex of the host machine

#include <sex.h>
int gethostsexO

Description
The gethostsex routine returns one oftwo constants, BIGENDIAN or
LITTLEENDIAN, for the sex of the host machine. These constants are in sex.h.

See Also
swapsex(3)

3-58 Subroutines

getlogin (3)

Name
getlogin - get login name

Syntax
char *getloginO

Description
The getlogin subroutine returns a pointer to the login name as found in
/ etc/utmp. It may be used in conjunction with getpwnam to locate the correct
password file entry when the same userid is shared by several login names.

If get login is called within a process that is not attached to a typewriter, it returns
NULL. The correct procedure for determining the login name is to first call
get login and if it fails, to call getpw (getuid).

Restrictions
The return values point to static data whose content is overwritten by each call.

Return Value
Returns NULL (0) if name not found.

Files
/etc/utmp

See Also
getgrent(3), getpw(3), getpwent(3), utmp(5)

Subroutines 3-59

getmountent (3)

Name
getmountent - get infonnation about mounted file systems without blocking

Syntax
#include <sys/types.h>
#include <sys/param.h>
#include <sys/mount.h>

getmountent(start, buffer, nentries)
int "'start;
struct fs data "'buffer;
int - nentries;

Description
The getmountent library routine retrieves mounted file system infonnation from
memory without blocking. The file system infonnation retrieved (the number of free
inodes and blocks) might not be up to date. If the accuracy of the file system
infonnation retrieved is critical, you should use statfs or getmnt instead of
getmountent.

The start argument is the current logical location within the internal system mount
table and must be initially set to O. The buffer argument is the holding area for the
returned infonnation; that is, the fs_data structures. The size of buffer should be
at least the number of entries times the size of the f s _ da t a structure, in bytes.

The nentries argument defines the number of mount table entries that are to be
retrieved.

The number of file systems described by the infonnation placed in buffer is returned.
The start argument is updated so that successive calls can be used to retrieve the
entire mount table.

Return Value

Upon successful completion, a value indicating the number of struct fs_data
structures stored in buffer is returned. If there are no more file systems in the mount
table, a is returned. Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

Diagnostics

EINVAL

EFAULT

EIO

See Also

Invalid argument.

Either buffer or start causes an illegal address to be referenced.

An I/O error occurred while reading from the file system.

getmnt(2), statfs(3)

3-60 Subroutines

Name

Syntax

getopt - get option letter from argument vector

#include <stdio.h>
int getopt (argc, argv, optstring)
int argc;
char **argv;
char *optstring;

extern char *optarg;
extern int optind, opterr;

getopt(3)

Description
The get opt subroutine returns the next option letter in argv that matches a letter in
optstring. The optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that mayor may not be
separated from it by white space. The optarg is set to point to the start of the option
argument on return from getopt.

The function get opt places in optind the argv index of the next argument to be
processed. The external variable optind is automatically initialized to 1 before the
first call to get opt.

When all options have been processed (that is, up to the first non-option argument),
get opt returns BOF. The special option - may be used to delimit the end of the
options; BOF will be returned, and - will be skipped.

Diagnostics
The function get opt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter that is not included in optstring. Setting
opterr to 0 disables this error message.

Examples
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options f and
0, both of which require arguments:

#inelude <stdio.h>
main (arge, argv)
int arge;
char **argv;
{

int e;
extern int optind, opterr;
extern char *optarg;

while «e = get opt (arge, argv, "abf:o:")) != EOF)
switch (c) {
case 'a':

Subroutines 3-61

getopt(3)

See Also
getopt(l)

3-62 Subroutines

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc ();

break;
case 'f':

ifile = optarg;
break;

case ' 0' :

ofile = optarg;
bufsiza = 512;
break;

case '?':
errflg++;

}
if (errflg) {

fprintf (stderr, "usage: ..• H);
exit (2);

for optind < argc; optind++) {
if (access (argv[optind], 4»

Name

Syntax

getpass - read a password

char *getpass(prompt)
char *prompt;

getpass(3)

Description
The getpass subroutine reads a password from the file Idev/tty, or if that
cannot be opened, from the standard input, after prompting with the null-terminated
string prompt and disabling echoing. The getpass subroutine can return up to
PAS S MAX characters. PAS S MAX is defined in
lusr / includel sys/limi ts. h. A pointer is returned to a null-terminated
string of at most 16 characters.

Environment
When your program is compiled using the System V environment, if the file
I dev Itt y cannot be opened, a NULL pointer is returned. An interrupt will
terminate input and send an interrupt signal to the calling process before returning.

Restrictions
The return value points to static data whose content is overwritten by each call.

Files
Idev/tty

See Also
crypt(3)

Subroutines 3-63

getpw(3)

Name

Syntax

getpw - get name from uid

getpw(uid, but)
char *buf;

Description
The getpw routine has been superseded by getpwuid, see getpwent(3).

The getpw routine searches the password file for the (numerical) uid, and fills in buf
with the corresponding line; it returns nonzero if uid could not be found. The line is
null terminated.

Diagnostics
Nonzero return on error.

Files
/etc/passwd

See Also
getpwent(3), passwd(5yp)

3-64 Subroutines

Name

Syntax

getpwent (3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile - get password entry

#include <pwd.h>

struct passwd *getpwentO

struct passwd *getpwuid(uid)
uid_t uid;

struct passwd *getpwnam(name)
char *name;

void setpwentO

void endpwentO

void setpwfile(pathname)
char *pathname

Description
The routines, getpwent, getpwuid and getpwnam, each retum a pointer to an
object with the following structure containing the broken-out fields of a line in the
password database:

struct passwd { /* see getpwent(3) *1
char *pw_name;
char *pwyasswd;
uid t pw uid;
gid_t pw_gid;
int pw_quota;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_ shell;

} ;

struct passwd *getpwent(), *getpwuid(), *getpwnam();

The fields pw quota and pw comment are unused; the others have meanings
described in passwd(5). -

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. Endpwent may be called to close the password database when processing
is complete.

The getpwent subroutine simply retieves the next entry while getpwuid and
getpwnam search until a matching uid or name is found (or until all entries are
exhausted). The getpwent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire database.

A call to setpwent must be made before a while loop using getpwent in order
to perform initialization and an endpwent must be used after the loop. Both
getpwuid and getpwnam make calls to setpwent and endpwent .

Subroutines 3-65

getpwent (3)

The setpwfile subroutine sets the pathname of the ASCII passwd file and
optional hashed database to be used for local passwd lookups. If a passwd file has
been left open by a call to setpwent or getpwent, setpwfile will close it
first. Setpwfile does not directly affect the use of distributed passwd databases.

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.

If YP is running, getpwent does not return the entries in any particular order. See
the Guide to the Yellow Pages Service for setup information.

The password database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BINDIHesiod Service for more information.

Return Value
Null pointer (0) returned on BOP or error.

Files
/etc/passwd

See Also
getlogin(3), passwd(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-66 Subroutines

Name

Syntax

getrpcent (3n)

getrpcent, getrpcbynumber, getrpcbyname, setrpcent, endrpcent - get rpc entry

#include <netdb.h>

struct rpcent *getrpcentO

struct rpcent *getrpcbynumber(number)
int number;

struct rpcent *getrpcbyname(name)
char *name;

setrpcent(stayopen)
int stayopen;

endrpcent()

Description
The getrpcent, getrpcbynumber and getrpcbyname subroutines each
return pointers to an object with the following structure containing the broken-out
fields of a line in the rpc database:

struct rpcent { /* see getrpcent(3) */
char *r_name;
char **r_aliases; /* alias list */
char r_number; /* rpc program number */

} ;

struct group *getrpcent(), *getrpcbynumber(), *getrpcbyname();

The members of this structure are:

cname The name of the rpc.
caliases A zero-terminated list of alternate names for the rpc.
r_number The rpc program number for the rpc.

If the stayopen flag on the setrpcent subroutine is NULL, the rpc database is
opened. Otherwise the setrpcent has the effect of rewinding the rpc database.
The endrpcent may be called to close the rpc file when processing is complete.

The getrpcent subroutine simply reads the next line while getrpcbynumber
and getrpcbyname search until a matching gid or name is found (or until EOF is
encountered). The getrpcent subroutine keeps a pointer in the database, allowing
successive calls to be used to search the entire file.

A call to setrpcent must be made before a while loop using getrpcent in
order to perform initialization and an endrpcent must be used after the loop. Both
getrpcbynumber and getrpcbyname make calls to setrpcent and
endrpcent.

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.

Subroutines 3-67

getrpcent (3n)

If YP is running, getrpcent does not return the entries in any particular order.
See the Guide to the Yellow Pages Service for setup information.

The rpc database may also be distributed by the BINDlHesiod naming service. See
the Guide to the BINDIHesiod Service for more information.

Return Value
A null pointer (0) is returned on BOP or error.

Files
/etc/rpc

See Also
rpc(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-68 Subroutines

Name

Syntax

getsvc - get a pointer to the svcinfo structure

#include <sys/svcinfo.h>

struct svcinfo *getsvcO

getsvc{3}

Description

The getsvc call retrieves infonnation from the system about the svcinfo
structure by returning a pointer to the structure. This structure is initialized the first
time a getsvc call is made. The contents ofthe / etc/ svc. conf file are parsed
and stored in the svcinfo structure. Ifthe / etc/ svc. conf file is modified, the
contents of this structure will be updated upon the next get s vc call.

The / etc/ svc. conf file contains the names of the databases that can be served by
YP, BIND, or local files and the name service selection for each database. It also has
settings for four security parameters. The database service selection and security
parameters are stored in the svcinfo structure.

The following structure exists in the svcinfo . h file:

#define SVC_DATABASES 20
#define SVC PATHSIZE 8
struct svcinfo {

} ;

int svcdate; /* Last mod date of /etc/svc.conf */

int svcpath[SVC_DATABASES] [SVC_PATHSIZE]; /* indexed by

struct {

databases and choice O=first choice
l=second choice, etc value stored is

source */

int passlenmin;
int passlenmax;
int softexp;
int seclevel;

svcauth;

The svcdate field contains the date that the / etc/ svc. conf file was last
modified. The svcpath array contains the name service choices for each database.
The svcauth structure contains the values for the four security parameters:
password length minimum (passlenmin), password length maximum (passlenmax),
soft expiration date of a password (softexp), and security mode of a system (secleve/).

Subroutines 3-69

getsvc(3)

Examples

Files

The following programming example shows how to use the getsvc call to use the
information in the svcinfo structure to process specific host information.
#include <sysisvcinfo.h>
struct svcinfo *svcinfo;

if ((svcinfo = getsvc()) != NULL)
for (i=O; (j = svcinfo->svcpath[SVC_HOSTS) [i)) != SVC_LAST; i++)

switch (j) {
case SVC BIND:

/* process BIND hosts */
case SVC YP:

/* process YP hosts */
case SVC LOCAL:

/* process LOCAL hosts */

/etc/svc.conf
/usr/include/sys/svcinfo.h

See Also
svc.conf(5), svcsetup(8)

3-70 Subroutines

Name

Syntax

getttyent, getttynam, setttyent, endttyent - get ttys file entry

#include <ttyent.h>
struct ttyent "'getttyent ()
struct ttyent "'getttynam (name) char "'name;
int setttyent ()
int endttyent ()

getttyent (3)

Description

These functions allow a program to access data in the file /etc/ttys. The
getttyent function reads the letc/ttys file line by line, opening the file if
necessary. setttyent rewinds the file, and endttyent closes it. getttynam
searches from the beginning of the file until a matching name is found, or until end
of-file is encountered.

The functions getttyent and getttynam each return a pointer to an object that
has the following structure. Each element of the structure contains one field of a line
in the letc/ttys file.

struct ttyent { /* see getttyent(3) */

#define
#define
#define

#define

#define
#define

char *ty_name; /* terminal device name */
char *ty_getty; /* command to execute, usually getty */
char *ty_type; /* terminal type for termcap (3X) */
int ty_status; /* status flags (see below for defines) */
char *ty_window; /* command to start up window manager */
char *ty_comment;/* usually the location of the terminal */
} ;

TTY ON Oxl /* enable logins (startup getty) */
TTY SECURE Ox2 /* allow root to login */
TTY LOCAL Ox4 /* line is local direct connect and

should ignore modem signals */
TTY SHARED Ox8 /* line is shared - i.e. can be use -

for both incoming and outgoing
connections. */

TTY TRACK OxlO /* track modem status changes */
TTY TERMIO Ox20 /* open line with termio defaults */

extern struct ttyent *getttyent();
extern struct ttyent *getttynam();

A description of the fields follows:

ty _name is the name of the terminal's special file in the directory I dev .

ty Jetty is the command invoked by ini t to initialize terminal line characteristics.
This command is usually getty(8), but any arbitrary command can be
used. A typical use is to initiate a terminal emulator in a window system.

ty _type is the name of the default terminal type connected to this tty line. This is
typically a name from the termcap(5) data base. The environment
variable 'TERM' is initialized with this name by login(l).

Subroutines 3-71

getttyent (3)

ty _status is a mask of bit flags that indicate various actions allowed on this
terminal line. The following is a description of each flag.

TTY ON
Enables logins. For instance, ini t(8) will start the specified
getty command on this entry.

TTY SECURE
Allows root to login on this terminal. TTY_ON must also be
included for this to work.

TTY LOCAL
Indicates that the line is to ignore modem signals.

TTY SHARED
Indicates that the line can be used for both incoming and outgoing
connections.

TTY TERMIO

ty_window

Indicates that a line is to be opened with default terminal attributes
which are compliant with System Five termio defaults. The line
discipline will be set to be TERMIODISC.

is the quoted string of a command to execute for a window system
associated with the line. If none is specified, this will be a null string.

ty_comment
Currently unused.

Restrictions

The information returned is in a static area, so you must copy it to save it. (Static
areas are described in "The C Programming Language," ULTRIX Supplementary
Documents, Vol. II:Programmers.)

Return Value

A null pointer (0) is returned on an end-of-file or error.

Files
/etc/ttys The file examined by these routines.

See Also
ttyname(3), ttys(5), init(8)

3-72 Subroutines

Name

Syntax

getwd - get current working directory pathname

char *getwd(pathname)
char *pathname;

getwd(3)

Description
The get wd subroutine copies the absolute pathname of the current working directory
to pathname and returns a pointer to the result.

Restrictions
The get wd subroutine may fail to return to the current directory if an error occurs.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Return Value
The getwd subroutine returns zero and places a message in pathname if an error
occurs.

Subroutines 3-73

hesiod(3)

Name

Syntax

hes_init, hes_to_bind, hes_error, hes_resolve - routines for using Hesiod

#include <hesiod.h>

hes_initO

char *hes_to_bind(HesiodName, HesiodNameType)
char *HesiodName, *HesiodNameType;

hes_errorO

har **hesJesolve(HesiodName, HesiodNameType)
char *HesiodName, *HesiodNameType;

Description
The he s _in it () routine opens and reads the Hesiod configuration file,
/ et c / he s i od . con f to extract the left hand side and right hand side of the Hesiod
name.

The hes to bind () routine takes as arguments a HesiodName and
HesiodNameType and returns a fully qualified name to be handed to BIND.

The two most useful routines to the applications programmer are hes_error ()
and hes resolve (). The hes error () routine has no arguments and returns
an integer which corresponds to a set of errors which can be found in hesiod. h
file.

#define RES_ER_UNINIT -1

#define RES ER OK 0

#define RES ER NOTFOUND 1

#define RES_ER_CONFIG 2

#define RES_ER_NET 3

The hes resolve () routine resolves given names via the Hesiod name server. It
takes as arg\.JIllents a name to be resolved, the HesiodName, and a type
corresponding to the name, the HesiodNameType, and returns a pointer to an array
of strings which contains all data that matched the query, one match per array slot.
The array is null terminated.

If applications require the data to be maintained throughout mUltiple calls to
hes _ resol ve () , the data should be copied since another call to
hes_resolve () will overwrite any previously-returned data. A null is returned if
the data cannot be found.

3-74 Subroutines

\

hesiod(3)

Examples
The following example shows the use of the Hesiod routines to obtain a Hesiod name
from a Hesiod database:

Files

#include <hesiod.h>

char *HesiodName, *HesiodNameType;
char **hp;

hp = hes_resolve(HesiodName, HesiodNameType);
if (hp == NULL) {

error = hes_error();
switch (error) {

else
process (hp) ;

/etc/hesiod.conf
/usr/include/hesiod.h

See Also
hesiod.conf(5), bindsetup(8)
Guide to the BINDIHesiod Service

Subroutines 3-75

hsearch (3)

Name

Syntax

hsearch, hcreate, hdestroy - manage hash search tables

#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

Description
The hsearch subroutine is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at which an
entry can be found. The item is a structure oftype ENTRY (defined in the
<search.h> header file) containing two pointers: item.key points to the comparison
key, and item.data points to any other data to be associated with that key. (Pointers
to types other than character should be cast to pointer-to-character.) The action is a
member of an enumeration type ACTION indicating the disposition of the entry if it
cannot be found in the table. ENTER indicates that the item should be inserted in
the table at an appropriate point. FIND indicates that no entry should be made.
Unsuccessful resolution is indicated by the return of a NULL pointer.

The hcreate subroutine allocates sufficient space for the table, and must be called
before hsearch is used. The nel is an estimate of the maximum number of entries
that the table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

The hdestroy subroutine destroys the search table, and may be followed by
another call to hcreate .

Restrictions
Only one hash search table may be active at any given time.

Diagnostics
The hsearch subroutine returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table is full.

The hcreate subroutine returns zero if it cannot allocate sufficient space for the
table.

See Also
bsearch(3),lsearch(3), string(3), tsearch(3)

3-76 Subroutines

Name

Syntax

insque, remque - insert/remove element from a queue

struct qelem {
struct qelem *(LJorw;
struct qelem *'Lback;
char 'Ldata[];
) ;

insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

insque(3)

Description
The insque and rernque subroutines manipulate queues built from doubly linked
lists. Each element in the queue must in the form of "struct qelem." The insque
subroutine inserts elem in a queue immediately after pred. The rernque subroutine
removes an entry elem from a queue.

Subroutines 3-77

is nan (3)

Name

Syntax

isnan - test for NaN

#include <math.h>

int isnan (x)
double x;

Description
The isnan function returns 1 if x is NaN (the IEEE floating point reserved not-a
number value) and zero otherwise. On VAX, the return value is always zero.

3-78 Subroutines

\
)

Name

Syntax

13tol, Ito13 - convert between 3-byte integers and long integers

void 13tol (Ip, cp, n)
long *Ip;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

13tol (3)

Description
The 13 t 0 1 subroutine converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by lp.

The 1to13 performs the reverse conversion from long integers (lp) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers are
three bytes long.

Restrictions
Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

See Also
fs(5)

Subroutines 3-79

lockf(3)

Name

Syntax

lockf - record locking on files

#include <unistd.h>

lockf(fildes, function, size)
long size;
int fildes, function;

Description
The lockf subroutine allows sections of a file to be locked. These are advisory
mode locks. Locking calls from other processes which attempt to lock the locked file
section return either an error value or are put to sleep until the resource becomes
unlocked. All the locks for a process are removed when the process terminates. For
more information about record locking, see fcntl(2).

Thefildes is an open file descriptor. The file descriptor must have O_WRONLY or
O_RDWR permission in order to establish lock with this function call.

The function is a control value which specifies the action to be taken. The
permissible values for function are defined in <unistd.h> as follows:

#define F ULOCK 0 /* Unlock a previously locked section */
#define FLOCK 1 /* Lock a section for exclusive use */
#define F TLOCK 2 /* Test and lock a section for exclusive use */
#define F TEST 3 /* Test section for other processes locks */

All other values of function are reserved for future extensions and result in an error
return if not implemented.

F _TEST is used to detect if a lock by another process is present on the specified
section. F _LOCK and F _TLOCK both lock a section of a file if the section is available.
F _UNLOCK removes locks from a section of the file.

The size is the number of contiguous bytes to be locked or unlocked. The resource to
be locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size. If size is zero, the section from the
current offset through the largest file offset is locked (that is, from the current offset
through the present or any future end-of-file). An area need not be allocated to the
file in order to be locked, as such locks may exist past the end-of-file.

The sections locked with F _LOCK or F _TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. When this occurs, or
if adjacent sections occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of active locks and this
table is already full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F _LOCK causes the calling process to sleep until the resource is available.
F _TLOCK causes the function to return a -1 and set errno to [EACCES] error if the
section is already locked by another process.

3-80 Subroutines

lockf (3)

F_ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining
sections are sti11locked by the process. Releasing the center section of a locked
section requires an additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by accessing another process's locked resource. Thus calls to lock or fcntl
scan for a deadlock prior to sleeping on a locked resource. An error return is made if
sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. You can use the alarm(3)
command to provide a timeout facility in applications which require this facility.

File region locking is supported over NFS, if the NFS locking service has been
enabled.

Restrictions
Unexpected results may occur in processes that do buffering in the user address
space. The process may later read or write data which is or was locked. The
standard I/O package is the most common source of unexpected buffering.

Return Value
Upon successful completion, 0 is returned. Otherwise, a -1 is returned and the
global variable errno is set to indicate the error.

Diagnostics
The lockf subroutine fails if:

[EBADF]

[EACCESS]

[EDEADLK]

[EINVAL]

See Also

The fildes is not a valid open descriptor.

The cmd is F 3LOCK or F _TEST and the section is already locked by
another process. Or, the file is remotely mounted, and the NFS
locking service has not been enabled.

The cmd is F _LOCK or F _TLOCK and a deadlock would occur. Also
the cmd is either of the above or F _ULOCK and the number of
entries in the lock table would exceed the number allocated on the
system.

The value given for the request argument is invalid.

close(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2), lockd(8c)

Subroutines 3-81

Isearch (3)

Name

Syntax

lsearch, lfind - linear search and update

#include <search.h>
#include <sys/types.h>

void *lsearch (key, base, neip, width, compar)
void *key;
void *base;
size t *nelp;
size -t width;
int (*compar)();

void *lfind (key, base, nelp, width, compar)
void *key;
void *base;
size_t *nelp;
size t width;
int (*compar)();

Description
The lsearch subroutine is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a datum may be
found. If the datum does not occur, it is added at the end of the table. The key
points to the datum to be sought in the table. The base points to the first element in
the table. The nelp points to an integer containing the current number of elements in
the table. The width is the size of an element in bytes. The integer is incremented if
the datum is added to the table. The compar is the name of the comparison function
which the user must supply (strcmp, for example). It is called with two arguments
that point to the elements being compared. The function must return zero if the
elements are equal and non-zero otherwise.

The lfind subroutine is the same as Isearch except that if the datum is not found, it
is not added to the table. Instead, a NULL pointer is returned.

NOTE
The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

Restrictions
Undefined results can occur if there is not enough room in the table to add a new
item.

3-82 Subroutines

Isearch (3)

Return Value
If the searched for datum is found, both lsearch and lfind return a pointer to it.
Otherwise, lfind returns NULL and lsearch returns a pointer to the newly added
element.

See Also
bsearch(3),hsearch(3), tsearch(3)

Subroutines 3-83

se malloc(3)

Name

Syntax

malloc, free, realloc, calloc, alloca - memory allocator

char *malloc(size)
unsigned size;

free(ptr)
void *ptr;

char *realloc(ptr, size)
void *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

char *alloca(size)
int size;

Description
The malloc and free subroutines provide a simple general-purpose memory
allocation package. The malloc subroutine returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc.
This space is made available for further allocation, but its contents are left
undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is
overrun or if some random number is handed to free.

The malloc subroutine maintains multiple lists of free blocks according to size,
allocating space from the appropriate list. It calls sbrk to get more memory from
the system when there is no suitable space already free. For further information, see
brk(2).

The realloc subroutine changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

In order to be compatible with older versions, realloc also works if ptr points to a
block freed since the last call ofmalloc, realloc, or calloc. Sequences of
free, malloc, and realloc were previously used to attempt storage
compaction. This procedure is no longer recommended.

The calloc subroutine allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

The alloca subroutine allocates size bytes of space associated with the stack frame
of the caller. This temporary space is available for reuse when the caller returns. On
MIPS machines, calling alloca(O) reclaims all available storage. On VAX
machines, the space is automatically freed on return.

3-84 Subroutines

malloc (3) RI~

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

Restrictions
When realloc returns 0, the block pointed to by ptr may be destroyed.

Currently, the allocator is unsuitable for direct use in a large virtual environment
where many small blocks are kept, since it keeps all allocated and freed blocks on a
circular list. Just before more memory is allocated, all allocated and freed blocks are
referenced.

Because the alloca subroutine is machine dependent, its use should be avoided.

Diagnostics
The malloc, realloc, and calloc subroutines return a null pointer (0) if there
is no available memory or if the arena has been detectably corrupted by storing
outside the bounds of a block.

Subroutines 3-85

'AX malloc (3)

Name

Syntax

malloc, free, realloc, calloc, alloca - memory allocator

#include <stdJib.h>

void *malloc(size)
size_t size;

free(ptr)
void *ptr;

void *realloc(ptr. size)
void *ptr;
size_t size;

void *calloc(nelem. elsize)
size_t nelem. elsize;

void *alloca(size)
size_t size;

Description
The malloe and free subroutines provide a simple general-purpose memory
allocation package. The malloe subroutine returns a pointer to a block of at least
size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloe.
This space is made available for further allocation, but its contents are left
undisturbed.

Needless to say, grave disorder will result if the space assigned by malloe is
overrun or if some random number is handed to free.

The malloe subroutine maintains multiple lists of free blocks according to size,
allocating space from the appropriate list. It calls sbrk to get more memory from
the system when there is no suitable space already free. For further information, see
brk(2).

The realloe subroutine changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

If ptr is a null pointer, then realloe behaves like malloe for the specified size.
If size is zero, then realloe frees the space pointed to by ptr.

In order to be compatible with older versions, realloe also works if ptr points to a
block freed since the last call of malloe, realloe, or ealloe. Sequences of
free, malloe, and realloe were previously used to attempt storage
compaction. This procedure is no longer recommended.

The ealloe subroutine allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

3-86 Subroutines

(

malloc(3) VA

The alloca subroutine allocates size bytes of space in the stack frame of the caller.
This temporary space is automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

Restrictions
When realloc returns 0, the block pointed to by ptr may be destroyed.

Currently, the allocator is unsuitable for direct use in a large virtual environment
where many small blocks are kept, since it keeps all allocated and freed blocks on a
circular list. Just before more memory is allocated, all allocated and freed blocks are
referenced.

The alloca subroutine is machine dependent.

Diagnostics
The malloc, realloc, and calloc subroutines return a mill pointer (0) if there
is no available memory or if the arena has been detectably cotrupted by storing
outside the bounds of a block.

The malloc, realloc, calloc, and alloca subroutines will fail and no
additional memory will be allocated if one of the following is true:

[ENOMEM] The limit, as set by setrlimit(2), is exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the
system) is exceeded.

[ENOMEM] Insufficient space exists in the swap area to support the expansion.

Subroutines 3-87

memory (3)

Name

Syntax

memccpy, memchr, memcmp, memcpy, memmove, memset - memory operations

#include <string.h>

void *memccpy (sl, s2, c, n)
void *sl, *s2;
int C;
size_t n;

void *memchr (s, c, n)
void *s;
int C;
size_t n;

int memcmp (sl, s2, n)
void *sl, *s2;
size_t n;

void *memcpy (sl, s2, n)
void *sl, *s2;
size_t n;

void *memset (s, c, n)
void *s;
int C;
size_t n;

void *memmove (sl, s2, n)
void *sl, *s2;
size_t n;

Description
These functions operate efficiently on memory areas (arrays of characters bounded by
a count, not terminated by a null character). They do not check for the overflow of
any receiving memory area.

The memccpy subroutine copies characters from memory area s2 into sl, stopping
after the first occurrence of character c has been copied, or after n characters have
been copied, whichever comes first. It returns a pointer to the character after the
copy of c in sl , or a NULL pointer if c was not found in the first n characters of s2.

The memchr subroutine returns a pointer to the first occurrence of character c in the
first n characters of memory area s, or a NULL pointer if c does not occur.

The memcmp subroutine compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or greater than 0, according as sl is
lexicographically less than, equal to, or greater than s2.

The memcpy subroutine copies n characters from memory area s2 to sl. It returns
sl.

3-88 Subroutines

memory (3)

The memmove subroutine is like memcpy , except that if sl and s2 specify
overlapping areas, memmove works as if an intermediate buffer is used.

The memset subroutine sets the first n characters in memory area s to the value of
character c. It returns s.

Restrictions
The memcmp subroutine uses native character comparison, which is signed on
PDP-lis, unsigned on other machines.

Character movement is performed differently in different implementations of
memccpy and memcpy. Thus overlapping moves, using these subroutines, may
yield unpredictable results.

Subroutines 3-89

mkfifo (3)

Name

Syntax

mkfifo - make a FIFO special file

#include <sys/types.h>
#inClude <sys/stat.h>
int mkftfo(path, mode)
char *path;
mode_t mode;

Description
The mkfifo function creates a new FIFO special file whose name is path. The file
permission bits of the new FIFO are initialized from mode, where the value of mode,
is one (or more) of the file permission bits defined in <sys/stat.h>. The mode
argument is modified by the process's file creation mask (see umask(1)).

The FIFO's owner ID is set to the process's effective user ID. The FIFO's group ID
is set to the process's effective group ID.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
retUrned and erma is set to indicate the error.

Diagnostics
The mk f if 0 function will fail and the FIFO will not be created if:

[EACCES]

[EEXIST]

A component of the path prefix denies search permission.

The named file exists.

[ENAMETOOLONG]

[ENOTDIR]

[ENOENT]

[EROFS]

[EFAULT]

[ELOOP]

[EIO]

[ENOSPC]

[ENOSPC]

3-90 Subroutines

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

A component of the path prefix is hot a directory.

A component of the path prefix does not exist or the path
argument points to an empty string.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred while making the directory entry.

The directory in which the entry for the new FIFO is being placed
cannot be extended because there is 110 space left on the file
system.

There are no free inodes on the file system on which the node is
being created.

[EDQUOT]

[EDQUOT]

[ESTALE]

mkfifo(3)

The directory in which the entry for the new FIFO is being placed
cannot be extended because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

The user's quota of inodes on the file system on which the FIFO is
being created has been exhausted.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the

See Also

connected party did not properly respond after a period of time
which is dependent on the communications protocol.

mknod(1), umask(1)

Subroutines 3-91

mktemp(3)

Name

Syntax

mktemp - make a unique file name

char *mktemp(template)
char *template;

Description
The mktemp subroutine replaces template by a unique file name, and returns the
address of the template. The template should look like a file name with six trailing
X's, which will be replaced with the current process ID and a unique letter.

Note: The use of mktemp is not recommended for new applications. See
tmpnam(3) for less error-prone alternatives.

See Also
getpid(2), tmpfile(3), tmpnam(3)

3-92 Subroutines

monitor(3) RI

Name
monitor, monstartup, moncontrol - prepare execution profile

Synopsis
monitor(lowpe, highpe, buffer, bufsize, nfune)
int (*lowpe)O, (*highpe)O;
short buffer[];

monstartup(lowpe, highpe)
int (*lowpe)O, (*highpe)O;

moneontrol(mode)

Description
These functions use the system call profil(2) to control program-counter sampling.
Using the option -p when compiling or linking a program automatically generates
calls to these functions. You do need not to call these functions explicitly unless you
want more control.

Typically, you would call either moni tor or monstartup to initialize pc
sampling and enable it; call moncontrol to disable or reenable it; and call
moni tor at the end of execution to disable sampling and record the samples in a
file.

Your initial call to monitor enables pc-sampling. The parameters lowpc and
highpc specify the range of addresses to be sampled. The lowest address is that of
low pc and the highest is just below highpc. The buffer parameter is the address of a
(user allocated) array of buJsize short integers, which holds a record of the samples;
for best results, the buffer should not be less than a few times smaller than the range
of addresses sampled. The nfunc parameter is ignored.

The environment variable PROFDIR determines the name of the output file and
whether pc-sampling takes place: if it is not set, the file is named mon.out; if set to
the empty string, no pc-sampling occurs; if set to a non-empty string, the file is
named string/pid.progname, where pid is the process id of the executing program and
progname is the program's name as it appears in argv[O]. The subdirectory string
must already exist.

To profile the entire program, use the following:

extern eprol(), etext();

monitor (eprol, etext, buf, bufsize, 0);

The routine eprol lies just below the user program text, and etext lies just above
it, as described in end(3). (Because the user program does not necessarily start at a
low memory address, using a small number in place of eprol is dangerous).

The monstartup routine is an alternate form of monitor that calls sbrk (see
brk(2» for you to allocate the buffer.

The function moncontrol selectively disables and re-enables pc-sampling within a
program, allowing you to measure the cost of particular operations. The function
moncontrol (0) disables pc-sampling, and moncontrol (1) reenables it.

Subroutines 3-93

SC monitor(3)

Files

To stop execution monitoring and write the results in the output file, use the
following:

monitor(O);

mon.out
libprofl.a

default name for output file
routines for pc-sampling

See Also
cc(l), Id(1), profil(2), brk(2)

3-94 Subroutines

Name

Syntax

monitor, monstartup, moncontrol - prepare execution profile

monitor(lowpe, highpe, buffer, bufsize, nfune)
int (*lowpe)O, (*highpe)O;
short buffer[];

monstartup(lowpe, highpe)
int (*lowpe)O, (*highpe)O;

moneontrol(mode)

monitor(3) VA

Description
There are two different forms of monitoring available: An executable program
created by:

cc -p ...

automatically includes calls for the prof(l) monitor and includes an initial call to its
start-up routine monstartup with default parameters; monitor need not be called
explicitly except to gain fine control over profil buffer allocation. An executable
program created by:

cc -pg • • .

automatically includes calls for the gprof(l) monitor.

The monstartup is a high level interface to profil(2). The lowpc and highpc
specify the address range that is to be sampled; the lowest address sampled is that of
lowpc and the highest is just below highpc. The monstart up subroutine allocates
space using sbrk(2) and passes it to moni tor (see below) to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain
functions, in the buffer. Only calls of functions compiled with the profiling option
-p of cc(l) are recorded.

To profile the entire program, it is sufficient to use

extern etext();
monstartup((int) 2, etext);

The etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon. out, use

monitor (0);

then prof(l) can be used to examine the results.

The moncontrol subroutine is used to selectively control profiling within a
program. This works with either prof(l) or gprof(l) type profiling. When the
program starts, profiling begins. To stop the collection of histogram ticks and call
counts use moncontrol(O); to resume the collection of histogram ticks and call counts
use moncontrol(l). This allows the cost of particular operations to be measured.
Note that an output file will be produced upon program exit regardless of the state of
moncontrol.

Subroutines 3-95

'AX monitor(3)

Files

The monitor subroutine is a low level interface to profil(2). The lowpc and
highpc are the addresses of two functions; buffer is the address of a (user supplied)
array of buJsize short integers. At most nfunc call counts can be kept. For the results
to be significant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the range of
locations sampled. The moni tor subroutine divides the buffer into space to record
the histogram of program counter samples over the range lowpc to highpc, and space
to record call counts of functions compiled with the -p option to cc(l).

To profile the entire program, it is sufficient to use

extern etext();
monitor«int) 2, etext, buf, bufsize, nfunc);

mon.out

See Also
cc(l), gprof(l), prof(l), profil(2), sbrk(2)

3-96 Subroutines

Name

Syntax

ndbm(3)

dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,
dbm_nextkey, dbm_error, dbm3learerr - data base subroutines

#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

DBM *dbm_open(fi/e,jlags, mode)
char *file;
int jlags, mode;

void dbm close(db)
DBM *db;

datum dbm fetch(db, key)
DBM *db;
datum key;

int dbm_store(db, key, content,jlags)
DBM *db;
datum key, content;
intjlags;

int dbm_delete(db, key)
DBM *db;
datum key;

datum dbm_firstkey(db)
DBM *db;

datum dbm_nextkey(db)
DBM *db;

int dbm error(db)
DBM-*db;

int dbm clearerr(db)
DBM-*db;

Description
These functions maintain key/content pairs in a data base. The functions will handle
very large (a billion blocks) databases and will access a keyed item in one or two file
system accesses. This package replaces the earlier dbm(3x) library, which managed
only a single database.

The keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal
ASCII strings, are allowed. The data base is stored in two files. One file is a
directory containing a bit map and has .dir as its suffix. The second file contains all
data and has .pag as its suffix.

Subroutines 3-97

ndbm(3}

Before a database can be accessed, it must be opened by dbm_open. This will open
and/or create the files file .dir and file .pag depending on the flags parameter (see
open(2)).

Once open, the data stored under a key is accessed by dbm Jetch and data is placed
under a key by dbm_store. Theflags field can be either DBM_INSERT or
DBM_REPLACE. DBM_INSERT will only insert new entries into the database and
will not change an existing entry with the same key. DBM_REPLACE will replace
an existing entry if it has the same key. A key (and its associated contents) is deleted
by dbm_delete. A linear pass through all keys in a database may be made, in an
(apparently) random order, by use of dbm_firstkey and dbm_nextkey.
dbm_firstkey will return the first key in the database. dbm_nextkey will return the
next key in the database. This code will traverse the data base:

for (key = dbm _ firstkey(db); key.dptr != NULL; key =
dbm_nextkey(db))

dbm _error returns non-zero when an error has occurred reading or writing the
database. dbm c1earerr resets the error condition on the named database.

Diagnostics
All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dptr. If
dbm_store called with aflags value of DBM_INSERT finds an existing entry with
the same key it returns 1.

Restrictions
The' .pag' file will contain holes so that its apparent size is about four times its
actual content. Older systems may create real file blocks for these holes when
touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar)
without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 4096 bytes). Moreover all key/content pairs that hash together must fit on
a single block. dbm_store will return an error in the event that a disk block fills
with inseparable data.

dbm_delete does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by dbm _ firstkey and dbm _ nextkey depends on a
hashing function, not on anything interesting.

See Also
dbm(3X)

3-98 Subroutines

nice(3)

Name
nice - set program priority

Syntax
nice(incr)

Description
The scheduling priority of the process is augmented by incr. Positive priorities get
less service than normal. Priority lOis recommended to users who wish to execute
long-running programs without flack from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is
limited to the range -20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged
process to return to normal priority from an unknown state, nice should be called
successively with arguments -40 (goes to priority -20 because of truncation), 20 (to
get to 0), then 0 (to maintain compatibility with previous versions of this call).

Environment
When your program is compiled using the System V environment, upon success,
nice returns -20.

See Also
nice(1), fork(2), setpriority(2), renice(8)

Subroutines 3-99

SC nlist(3)

Name

Syntax

nlist - get entries from name list

#include <nlist.h>

nlist(filename, nl)
char *filename;
struct nUst nl[];

Description
The nlist subroutine examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an array of structures
containing names, types and values. The list is terminated with a null name. Each
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. If the name is not found, both
entries are set to O. See a. out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file
/vrnunix. In this way programs can obtain system addresses that are up to date.

Diagnostics
If the file cannot be found or if it is not a valid namelist -1 is returned; otherwise, the
number of unfound namelist entries is returned.

The type entry is set to 0 if the symbol is not found.

See Also
a.out(5)

3-100 Subroutines

Name

Syntax

nlist - get entries from name list

#include <Dlist.h>

Dlist(fileDame, D)
char *fileDame;
struct Dlist DI[];

nlist(3) V)

Description
The nlist subroutine examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an array of structures
containing names, types and values. The list is terminated with a null name. Each
name is looked up in the name list of the file. If the name is found, the type and
value of the name are inserted in the next two fields. If the name is not found, both
entries are set to o. See a. out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file
/vrnunix. In this way programs can obtain system addresses that are up to date.

Diagnostics
All type entries are set to 0 if the file cannot be found or if it is not a valid name list.

See Also
a.out(5)

Subroutines 3-101

pathconf (3)

Name

Syntax

pathconf, fpathconf - get configurable pathname variables (POSIX)

#include <unistd.h>

long pathconf(path, name)
char *path;
int name;

long fpathconf(fildes, name)
int fildes, name;

Description
The pathconf(3) and fpathconf(3) functions provide a method for the
application to determine the current value of a configurable limit or option that is
associated with a file or directory.

For pathconf(3), the path argument points to the pathname of a file or directory.
For fpathconf(3), thefildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or
directory. The following table lists the variables which may be queried and the
corresponding value for the name argument. The values for the name argument are
defined in the <unistd.h> header file.

Variable

LINK MAX
MAX_CANON
MAX INPUT
NAME MAX
PATH MAX
PIPE BUF
_POSIX_CHOWN_RESTRICTED

POSIX NO TRUNC - --
POSIX VDISABLE - -

Return Value

name Value

PC LINK MAX - - -
PC MAX CANON - - -
PC MAX INPUT - - -
PC NAME MAX - - -
PC PATH MAX - - -
PC PIPE BUF - - -

_PC_CHOWN_RESTRICTED
PC NO TRUNC - - -
PC VDISABLE

Upon successful completion, the pathconf(3) and fpathconf(3) functions return
the current variable value for the file or directory.

If name is an invalid value, pathconf(3) and fpathconf(3) return -1 and errno
is set to indicate the reason. If the variable corresponding to name is not defined on
the system, pathconf(3) and fpathconf(3) return -1 without changing the value
of errno.

3-102 Subroutines

pathconf (3)

Diagnostics
The pathconf(3) and fpathconf(3) functions fail if the following occurs:

[EINVAL] The value of the name argument is invalid.

See Also
<unistd.h>

Subroutines 3-103

pause (3)

Name
pause - stop until signal

Syntax
pauseO

Description
The pause subroutine never returns normally. It is used to give up control while
waiting for a signal from kill(2) or an interval timer, see setitimer(2}. Upon
termination of a signal handler started during a pause, the pause call will return.

Diagnostics
The pause subroutine always returns:

[EINTR] The call was interrupted, that is, always returns-1.

See Also
kill(2), select(2), sigpause(2}

3-104 Subroutines

Name

Syntax

perror, strerror, sys_errlist, sys_nerr - system error messages

perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

#include <string.h>

char *strerror(err)
int err;

perror(3)

Description
The perror subroutine produces a short error message on the standard error file
describing the last error encountered during a call to the system from a C program.
First the argument string s , if it is not a null pointer, is printed followed by a colon
and a space; then the message and a new line are printed. Most usefully, the
argument string is the name of the program which incurred the error. The error
number is taken from the external variable errno which is set when errors occur but
not cleared when nonerroneous calls are made. For further information, see
intro(2).

To simplify variant formatting of messages, the vector of message strings sys _ errlist
is provided; errno can be used as an index in this table to get the message string
without the new line. The sys _ nerr is the number of messages provided for in the
table; it should be checked because new error codes may be added to the system
before they are added to the table. The strerror function will also return a
pointer to the message text for a given error number.

See Also
intro(2), errno(2), psignal(3)

Subroutines 3-105

pfopen(3)

Name

Syntax

pfopen - open a packet filter file

pfopen(ifname, flags)
char *ifname;
int flags;

Description
The packet filter (see packetfilter(4» provides raw access to Ethemets and
similar network data link layers. The routine pfopen is used to open a packet filter
file descriptor. The routine hides various details about the way packet filter files are
opened and named.

The ifname argument is a pointer to a npIl-terminated string containing the name of
the interface for which the application is opening the packet filter. This name may be
the name of an actual interface on the system (for example, "deO", "qe2") pr it may
be a pseudo-interface name of the form "pfn", used to specify the nth interface
attached to the system. For example, "pfO" specifies the .first such interface. If
ifname is NULL, the default interface ("pfo") is used.

The flags argument has thp same meaning as the corresponding argument to the
open(2) system call.

The file descriptor returned by pfopen is otherwise identical to one returned by
open(2).

Diagnostics
The pfopen routine returns a negative integer if the file could not be opelled. This
may be because of resource limitations, or because the specified interface does not
exist.

If there are a lot of packet filter applications in use, the pfopen routine might take a
while.

See Also
open(2), packetfilter(4)
The Packet Filter: An Efficient Mechanism/or User Level Network Code

3-106 Subroutines

Name

Syntax

popen, pclose - initiate I/O to/from a process

#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

popen(3)

Description
The arguments to popen are pointers to null-tenninated strings containing
respectively a shell command line and an I/O mode, either "r" for reading or "w" for
writing. It creates a pipe between the calling process and the command to be
executed. The value returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the
associated process to tenninate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and
a type "w" as an output filter.

Environment
Differs from the System V definition in that ENFILE is not a possible error
condition.

Diagnostics
The popen routine returns a null pointer if files or processes cannot be created, or
the shell cannot be accessed.

The pclose routine returns -1 if stream is not associated with a 'popened'
command.

Restrictions
Buffered reading before opening an input filter may leave the standard input of that
filter mispositioned. Similar problems with an output filter may be forestalled by
careful buffer flushing, for instance, with f flu s h. For further infonnation, see
fclose(3).

The popen routine always calls sh, and never calls csh.

See Also
sh(l), pipe(2), wait(2), system(3), fclose(3s), fopen(3s)

Subroutines 3-107

psignal (3)

Name

Syntax

psignal, sys_siglist - system signal messages

psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist[];

Description
The psignal subroutine produces a short message on the standard error file
describing the indicated signal. First the argument string s is printed, then a colon,
then the name of the signal and a new-line. Most usefully, the argument string is the
name of the program which incurred the signal. The signal number should be from
among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided. The signal number can be used as an index in this table
to get the signal name without the newline. The define NSIG defined in <signal.h>
is the number of messages.

See Also
sigvec(2), perror(3)

3-108 Subroutines

"\

Name

Syntax

putenv - change or add value to environment

int putenv (string)
char *string;

putenv(3)

Description
The string points to a string of the form "name=value." The putenv subroutine
makes the value of the environment variable name equal to value by altering an
existing variable or creating a new one. In either case, the string pointed to by string
becomes part of the environment, so altering the string will change the environment.
The space used by string is no longer used once a new string-defining name is
passed to putenv .

Diagnostics
The putenv subroutine returns nonzero if it was unable to obtain enough space via
malloe for an expanded environment, otherwise zero.

Warnings
The putenv subroutine manipulates the environment pointed to by environ, and
can be used in conjunction with getenv. However, envp (the third argument to
main) is not changed.
This routine uses malloe(3) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then
exit the calling function while string is still part of the environment.

See Also
execve(2), getenv(3), malloc(3), environ(7)

Subroutines 3-109

putpwent (3)

Name

Syntax

putpwent - write password file entry

#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE */;

Description
The putpwent subroutine is the inverse of getpwent(3). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam) ,
putpwent writes a line on the stream/ which matches the format of
/etc/passwd.

Diagnostics
The putpwent subroutine returns non-zero if an error was detected during its
operation, otherwise zero.

Caution
The putpwent routine uses <stdio.h>, which causes it to increase the
size of programs, not otherwise using standard I/O, more than might be
expected.

3-110 Subroutines

Name

Syntax

qsort - quicker sort

#include <stdlih.h>

void qsort(base, nel, width, campar)
void *base;
size t nel, width;
int (*campar)O;

qsort(3)

Description
The qsort subroutine is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number of elements;
the third is the width of an element in bytes; the last is the name of the comparison
routine to be called with two arguments which are pointers to the elements being
compared. The routine must return an integer less than, equal to, or greater than 0
according as the first argument is to be considered less than, equal to, or greater than
the second.

See Also
sort(l)

Subroutines 3-111

rand (3)

Name

Syntax

rand, srand - random number generator

#include <stdlib.h>

srand(seed)
unsigned seed;

randO

Description
The newer random(3) should be used in new applications. The rand subroutine
remains for compatibility.

The rand subroutine uses a multiplicative congruential random number generator
with period 232 to return successive pseudo-random numbers in the range from 0 to
231_1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to
a random starting point by calling srand with whatever you like as argument.

Environment
For the System V environment, the rand subroutine returns numbers in the range
from 0 to 215_1.

See Also
random(3)

3-112 Subroutines

Name

Syntax

random (3)

random, srandom, initstate, setstate - better random number generator; routines for
changing generators

long randomO

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

Description
The random subroutine uses a non-linear additive feedback random number
generator employing a default table of size 31 long integers to return successive
pseudo-random numbers in the range from 0 to (2**31)-1. The period of this random
number generator is very large, approximately 16*«2**31)-1).

The random/ srandom subroutines have (almost) the same calling sequence and
initialization properties as rand/ srand. The difference is that rand(3) produces a
much less random sequence - in fact, the low dozen bits generated by rand go
through a cyclic pattern. All the bits generated by random are usable. For example,
"randomO&Ol" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the
amount of state information used is much more than a single word. (Two other
routines are provided to deal with restarting/changing random number generators.)
Like rand(3), however, random will by default produce a sequence of numbers that
can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be
initialized for future use. The size of the state array (in bytes) is used by
ini tstate to decide how sophisticated a random number generator it should use
the more state, the better the random numbers will be. (Current "optimal" values for
the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will
be rounded down to the nearest known amount. Using less than 8 bytes will cause
an error). The seed for the initialization (which specifies a starting point for the
random number sequence, and provides for restarting at the same point) is also an
argument. Ini tstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. The setstate subroutine returns a pointer to the previous state
array; its argument state array is used for further random number generation until the
next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either
by calling initstate (with the desired seed, the state array, and its size) or by
calling both setstate (with the state array) and srandom (with the desired seed).

Subroutines 3-113

random (3)

The advantage of calling both setstate and srandom is that the size of the state
array does not have to be remembered after it is initialized.

With 256 bytes of state infonnation, the period of the random number generator is
greater than 269, which should be sufficient for most purposes.

Diagnostics
If in its tat e is called with less than 8 bytes of state infonnation, or if set s tat e
detects that the state infonnation has been garbled, error messages are printed on the
standard error output.

See Also
rand(3)

3-114 Subroutines

Name

Syntax

re_comp, re_exec - regular expression handler

char *re_comp(s)
char *s;

re exec(s)
char *s;

regex(3)

Description
The re _camp subroutine compiles a string into an internal form suitable for pattern
matching. The re_exec subroutine checks the argument string against the last
string passed to re _camp.

The re camp subroutine returns 0 if the string s was compiled successfully;
otherwise a string containing an error message is returned. If re _camp is passed 0
or a null string, it returns without changing the currently compiled regular expression.

The re _ exe c subroutine returns 1 if the string s matches the last compiled regular
expression, 0 if the string s failed to match the last compiled regular expression, and
-1 if the compiled regular expression was invalid (indicating an internal error).

The strings passed to both re_camp and re_exec may have trailing or embedded
newline characters; they are terminated by nulls. The regular expressions recognized
are described in the manual entry for ed(1), given the above difference.

Diagnostics
The re exec subroutine returns -1 for an internal error.

The re _camp subroutine returns one of the following strings if an error occurs:

No previous regular expression
Regular expression too long
unmatched \(
missing]
too many \(\) pairs
unmatched \)

See Also
ed(l), ex(1), egrep(I), fgrep(I), grep(l)

Subroutines 3-115

remove (3)

Name

Syntax

remove - removes files

remove (path)
char *path;

Arguments

path Provides the specification for a file or directory.

Description
The remove library function removes a file. If the path does not name a directory
then remove(path) is equivalent to unlink(path). If the path does name a directory
then remove(path) is equivalent to rmdir(path).

Return Value
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code
is stored in the global location errno.

See Also
errno(2), rmdir(2), unlink(2)

3-116 Subroutines

Name

Syntax
#include <sys/types.h>
#include <netinetlin.h>
#include <arpainameser.h>
#include <resolv.h>

resolver (3)

res_mkquery(op, dname, class, type, data, datalen, newrr, buf, bujlen)
int op;
char *dname;
int class, type;
char *data;
int datalen;
struct rrec *newrr;
char *buf;
int bujlen;

res_send(msg, msglen, answer, anslen)
char *msg;
int msglen;
char *answer;
int anslen;

res_in itO
dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
char *exp dn, *comp dn;
int length; -
char **dnptrs, **lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)
char *msg, *eomorig, *comp _ dn, exp _ dn;
int length;

Description
The resolver routines are used for making, sending, and interpreting packets to BIND
servers. Global information that is used by the resolver routines is kept in the
variable res. Most of the values have reasonable defaults and you need not be
concerned with them. The options are a simple bit mask and are or'ed in to enable.
The options stored in _res. options are defined in /usr / include/resolv. h
and are as follows:

RES INIT

RES DEBUG

RES AAONLY

RES USEVC

RES STAYOPEN

True if the initial name server address and default domain
name are initialized, for example if re s _ in i t has been
called.

Print debugging messages.

Accept authoritative answers only.

Use TCP connections for queries instead of UDP.

This is used with RES_USEVC to keep the TCP connection

Subroutines 3-117

resolver (3)

open between queries. This is useful only in programs that
regularly do many queries. You should normally use UDP.

RES RECURSE Set the recursion desired bit in queries. This is the default.
The res_send routine does not do iterative queries and
expects the BIND server to handle recursion.

RES DEFNAMES Append the default domain name to single label queries. This
is the default.

The following lists the routines found in / u s r /1 ib / 1 ibc . a

res init

res _ mkquery

res send

dn_comp

3-118 Subroutines

This routine reads the initialization file to get the default domain
name and the Internet address of the initial hosts running the
name server. If this line does not exist, the host running the
resolver is tried.

This routine makes a standard query message and places it in but.
The res _ mkquery routine returns the size of the query or -1 if the
query is larger than buflen.

op The opcode is usually QUERY, but can be any of the query
types defined in nameser.h.

Dname
This variable is the domain name. If dname consists of a
single label and the RES DEFNAMES flag is enabled, which
is the default, dname is appended with the current domain
name. The current domain name is defined in a system file,
but you can override it by using the environment variable
LOCALDOMAIN.

This routine sends a query to the BIND servers and returns an
answer. It calls the res init routine. If RES INIT is not - -
set, res send sends the query to the local name server, and
handle timeouts and retries. The length of the message is
returned or -1 if there were errors.

This routine compresses the domain name exp _ dn and stores it in
comp dn. The size of the compressed name is returned or -1 if
there were errors. The length is the size of the array pointed to
by comp_dn.

dnptrs
This variable is a list of pointers to previously compressed
names in the current message. The first pointer points to the
beginning of the message and the list ends with NULL.

lastdnptr
This is a pointer to the end of the array pointed to by
dnptrs. A side effect is to update the list of pointers for
labels inserted into the message by dn Jomp as the name is
compressed. If dnptr is NULL, the names are not
compressed. If lastdnptr is NULL, the list is not updated.

Files

resolver (3)

This routine expands the compressed domain name comp dn to
a full BIND domain name. Expanded names are converted to
upper case.

msg This variable is a pointer to the beginning of the message.

exp dn
- This variable is a pointer to a buffer of size length for the

result. The size of the compressed name is returned or -1 if
there was an error.

/etc/resolv.conf
/usr/include/resolv.h
/usr/include/arpa/nameser.h

See Also
named(8), resolv.conf(5)
Guide to the BINDIHesiod Service

Subroutines 3-119

scandir(3)

Name

Syntax

scandir - scan a directory

#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)O;
int (*compar)O;

alphasort(dl, d2)
struct direct "''''dl, *"'d2;

Description
The scandir subroutine reads the directory dirname and builds an array of pointers
to directory entries using malloc(3). It returns the number of entries in the array
and a pointer to the array through name list .

The select parameter is a pointer to a user supplied subroutine which is called by
scandir to select which entries are to be included in the array. The select routine
is passed a pointer to a directory entry and should return a non-zero value if the
directory entry is to be included in the array. If select is null, then all the directory
entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed to
qsort(3) to sort the completed array. If this pointer is null, the array is not sorted.
The alphasort is a routine which can be used for the com par parameter to sort the
array alphabetically.

The memory allocated for the array can be deallocated withfree by freeing each
pointer in the array and the array itself. For further information, see malloc(3).

Diagnostics
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot
allocate enough memory to hold all the data structures.

See Also
. directory(3), malloc(3), qsort(3), dir(5)

3-120 Subroutines

Name

Syntax

setjmp, longjmp - non-local goto

#include <setjrnp.h>

int setjrnp (env)
jrnp _ buf env;

void longjrnp (env, val)
jrnp bufenv;
int Val;

setjmp (3) RI:

Description
The set jrnp and longjrnp functions help deal with errors and interrupts
encountered in a low-level subroutine of a program.

The set jrnp function saves its stack environment in env (whose type, jmp but. is
defined in the <setjmp.h> header file) for later use by longjrnp. It returns the
value O.

The longjrnp function restores the environment saved by the last call of setjrnp
with the corresponding env argument. After longjrnp finishes, program execution
continues as if the corresponding call of set jrnp (which must not itself have
returned in the interim) had just returned the value val. The longjrnp function
cannot cause setjrnp to return the value O. If longjrnp is invoked with a second
argument of 0, setjrnp returns 1. At the time of the second return from setjrnp,
all accessible data have values as of the time longjrnp is called. However, global
variables have the expected values. For example, those as of the time of the
longjrnp(see

Examples

#include <setjmp.h>

jmp_buf env;
int i = 0;
main ()
{

void exit();

if(setjmp(env) != 0) {
(void) printf("value of i on 2nd return from setjmp: %dO, i);
exit(O);

(void) printf("value of i on 1st return from setjmp: %dO, i);
i = 1;
g();
/*NOTREACHED*/

Subroutines 3-121

SC setjmp (3)

g()
{

longjmp(env, 1);
/*NOTREACHED*/

If the a.out resulting from this C language code is run, the output is as follows:

value of i on 1st return from setjmp:O

value of i on 2nd return from setjmp:l

Restrictions

NOTE

Unexpected behavior occurs if longjrnp is called without a previous
call to setjrnp, or when the last such call was in a function which has
since returned.

The values of the registers on the second return from set jrnp are register values at
the time of the first call to setjrnp, not those of the longjrnp. Thus, variables in
a given function can produce unexpected results in the presence of set jrnp,
depending on whether they are register or stack variables.

See Also
signal(2).

3-122 Subroutines

Name

Syntax

setjmp, longjmp - nonlocal goto

#include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

_setjmp(env)
jmp_buf env;

Jongjmp(env, val)
jmp_buf env;

setjmp (3) V.

Description
These routines are useful for dealing with errors and interrupts encountered in a low
level subroutine of a program.

The set jmp subroutine saves its stack environment in env for later use by
longjmp. It returns value O.

The longjmp subroutine restores the environment saved by the last call of setjmp.
It then returns in such a way that execution continues as if the call of set jmp had
just returned the value val to the function that invoked set jmp, which must not
itself have returned in the interim. However, longjmp cannot cause set jmp to
return the value O. If longjmp is invoked with a val of 0, set jmp will return 1.
All accessible data have values as of the time longjmp was called.

The setjmp and longjmp subroutines save and restore the signal mask
sigsetmask(2), while _set jmp and _longjmp manipulate only the C stack and
registers.

Restrictions
The set jmp subroutine does not save current notion of whether the process is
executing on the signal stack. The result is that a longjmp to some place on the
signal stack leaves the signal stack state incorrect.

See Also
sigstack(2), sigvec(2), signal(3)

Subroutines 3-123

setlocale (3)

Name

Syntax

setlocale - set localization for internationalized program

#include <Iocale.h>

char *setlocale (category, locale)
int category;
char *locale;

Description
The set locale function changes or queries the run-time environment of the
program. The function can affect the settings of language, territory, and codeset in
the program's environment.

In the category argument, you specify what part of the run-time environment you
want to affect. Possible values for category are shown in the following table:

Effect of Specifying Environment Variable
category the Value Affected

LC_ALL Sets or queries entire LANG
environment

LC_COLLATE Changes or queries LC_COLLATE
collation sequences

LC_CTYPE Changes or queries LC_CTYPE
character classification

LC_NUMERIC Changes or queries LC_NUMERIC
number format
information

LC_TIME Changes or queries time LC_TIME
conversion parameters

LC_MONETARY Changes or queries LC_MONETARY
monetuyinformation

You change only one part of the program's locale in a single call to set locale,
unless you use the category LC _ALL.

The locale argument is a pointer to a character string containing the required setting
of category in the following format:

language[_territory[.codeset)) [@modifier)

You use language to specify the native language you want in the program
environment. You can specify what dialect of the native language you want in
_territory, and the codeset to be used in codeset. For example, the following string
specifies the French native language, as spoken in France (as opposed to
Switzerland), and the Digital Multinational Character Set:

LANG = FRE FR.MCS

You use @modifier to select a specific instance of an environment setting within a
single category. For example, you could use @modifier to select dictionary sorting
of data, as opposed to telephone directory sorting. You can use @modifier for all
categories, except LC _ALL.

3-124 Subroutines

(
\

setlocale (3)

The following preset values of locale are defined for all the settings of category:

"C"

""

NULL

Specifies setting the locale to the minimum C language environment, as
specified by the ANSI standard for the C language. (Draft ANSI X3.159)

Specifies using the environment variable corresponding to category to set
the locale. If the appropriate environment variable is not set, the LANG
environment variable is used. If LANG is not set, set locale returns an
error.

Queries the current international environment and returns current locale
setting. You can use the string set locale returns only as input to a
subsequent setlocale call; in particular, the string cannot be printed
for category LC_ALL. The string setlocale returns is a pointer to
static data area that might be written over.

International Environment

INTLINFO

Examples

The INTLINFO environment variable specifies the directory to
search for language databases. The default is to search the
/usr/lib/intln directory.

The following calls to the set locale function set the environment to the French
language and then modify the collating sequence to German dictionary collation:

setlocale (LC_ALL, nFRE_FR.MCS n);
setlocale (LC_COLLATE, nGER_DE.MCS@dict n);

You can use the set locale function to bind the specific language requirements of
a user to the program as follows:

status = setlocale (LC_ALL, nn);

For this example to work properly, the user of the international program sets the
LANG variable before running the program. Once LANG is set and the program
runs, this call causes set locale to use the definition of LANG to set the current
locale. You should test the value of s tat u s after the call completes to be sure no
errors occur.

Return Values
If you pass valid setting for category and locale, other than NULL, setlocale
changes the current locale and returns the string associated with that locale.

If locale is NULL, set locale returns the string associated with category for the
current locale. The current locale is unchanged. The string set locale returns may
not be in a printable format.

If either the category or locale argument is invalid, set locale returns NULL. The
setlocale function does not modify the locale if any part of the call is invalid.

The set locale function stores its return values in a data area that may be written
over. You should move the return value to another location if you want to use it in
your program.

Subroutines 3-125

setlocale (3)

See Also
ic(1int), nClanginfo(3int), printf(3int), environ(5int), lang(5int)
Guide to Developing International Software

3-126 Subroutines

(

\

/

Name

Syntax

setpgid - set process group (POSIX)

#include <sys/types.h>
int
setpgid(pid, pgrp)
pid_t pid, pgrp;

setpgid (3)

Description
The setpgid function is used to either join an existing process group or create a
new process group within the session of the calling process (see setsid(2)). Upon
successful completion, the process group ID of the process that has a process ID
which matches pid is set to pgrp. If pid is zero, then the call applies to the current
process. In addition, if pgrp is zero, the process ID of the indicated process is used.

This function is available only in the POSIX environment.

Return Value
The setpgid function returns 0 when the operation is successful. If the request
fails, -1 is returned and the global variable errno indicates the reason.

Diagnostics
The setpgid function fails and the process group is not altered if one of the
following occurs:

[EACCES] The value of the pid argument matches the process ID of a child
process of the calling process and the child process has
successfully executed an exec function.

[EINVAL]

[EPERM]

[ESRCH]

The value of the pgrp argument is less than zero or is not a
supported value.

The process indicated by the pid argument is a session leader.

The value of the pid argument matches the process ID of a child
process of the calling process and the child process is not in the
same session as the calling process.

The value of the pgrp argument does not match the process ID of
the process indicated by the pid argument and there is no process
with a process group ID that matches the value of the pgrp
argument in the same session as the calling process.

The value of the pid argument does not match the process ID of
the calling process of a child process of the calling process.

Subroutines 3-127

setpgid (3)

See Also
getpgrp(2), setsid(2)

3-128 Subroutines

Name

Syntax

setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

#include <sys/types.h>
#include <unistd.h>

setuid(uid)
uid t uid;
seteuid(euid)
uid t euid;
setnJid(ruid)
uid_t ruid;

setgid(gid)
gid_t gid;
setegid(egid)
gid_t egid;
setrgid(rgid)
gid_t rgid;

setuid (3)

Description
The setuid subroutine sets both the real and effective user ID of the current
process to the ID specified. Likewise, the setgid subroutine sets the real and
effective group ID of the current process to the ID specified.

The seteuid subroutine sets the effective user ID of the current process, while the
setegid subroutine sets the effective group ID of the current process.

The setruid subroutine sets the real user ID of the current process, while the
setrgid subroutine sets the real group ID of the current process.

These calls are only permitted to the super-user or if the argument is the real or
effective ID.

Environment

POSIX
SYSTEM FIVE
When your program is compiled in POSIX or System V mode the following
semantics apply when using the setuid or setgid functions:

If the process is the super-user the real, effective, and saved set (as described in
execve(2» user/group ID are set to uid.

If the process is not the super-user, but uid is equal to the real or the saved set
user/group ID, the effective user/group ID is set to uid. The real and saved set
user/group ID remain unchanged.

POSIX
In POSIX mode, the setuid function returns a value oftype uid_t. The setgid
function returns a value of type gid_t.

Subroutines 3-129

setuid (3)

Return Values
Zero is returned if the user ID or group ID is set; -1 is returned otherwise.

See Also
setreuid(2), setregid(2), getuid(2), getgid(2)

3-130 Subroutines

Name

Syntax

sigaction - software signal facilities (POSIX)

#include <signal.h>

struct sigaction {
void (*sa handler)();
sigset_t sa_mask;
int sa_flags;

};

int sigaction(sig, vec, ovec)
int sig;
struct sigaction *vec, *ovec;

sigaction (3)

Description I'l/
The si/g'action call is the POSIX ~quiva!e.!1~_!C>..the sigvec(2))system call. This call
behaves as described on the sigvec(2) reference page with the following
modifications:

• The signal mask is manipulated using the sigsetops(3) functions.

• A process can suppress the generation of the SIGCHLD when a child stops by
setting the SA_NOCLDSTOP bit in sa Jags.

• The SV _INTERRUPT flag is always set by the system when using
sigaction(3) in POSIX mode. The flag is set so that interrupted system
calls will fail with the EINTR error instead of getting restarted.

Return Value
A 0 return value indicated that the call succeeded. A -1 return value indicates an
error occurred and ermo is set to indicated the reason.

Diagnostics
The sigaction system call fails and a new signal handler is not installed if one of
the following occurs:

[EFAULT]

[EINVAL]

[EINVAL]

See Also

Either vee or ovec points to memory which is not a valid part of
the process address space.

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

sigvec(2), sigsetops(3), sigprocmask(3), sigsuspend(3), sigpending(2), setjmp(3),
siginterrupt(3), tty(4)

Subroutines 3-131

siginterrupt(3)

Name

Syntax

siginterrupt - allow signals to interrupt system calls

siginterrupt(sig, flag)
int sig, flag;

Description
The siginterrupt system call is used to change the system call restart behavior
when a system call is interrupted by the specified signal. If the flag is false (0), then
system calls will be restarted if they are interrupted by the specified signal and no
data has been transferred yet. System call restart is the default behavior on 4.2 BSD.

If the flag is true (1), then restarting of system calls is disabled. If a system call is
interrupted by the specified signal and no data has been transferred, the system call
will return -1 with ermo set to EINTR. Interrupted system calls that have started
transferring data will return the amount of data actually transferred. System call
interrupt is the signal behavior found on 4.1 BSD and AT&T System V systems.

Note that the new signal handling semantics are not altered in any other way. Most
notably, signal handlers always remain installed until explicitly changed by a
subsequent sigvec(2) call, and the signal mask operates as documented in
sigvec(2.) Programs may switch between restartable and interruptible system call
operation as often as desired in the execution of a program.

Issuing a siginterrupt call during the execution of a signal handler will cause
the new action to take place on the next signal to be caught.

Environment
This library routine uses an extension of the sigvec(2) system call that is not
available in UL TRIX 2.0 or earlier versions. Hence it should not be used if
backward compatibility is needed.

Return Value
A 0 value indicates that the call succeeded. A -1 value indicates that an invalid
signal number has been supplied.

See Also
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2)

3-132 Subroutines

Name

Syntax

signal - simplified software signal facilities

#include <signal.h>

(*signal(sig, func»O
void (*func)O;

signal (3) R

Description
The signal subroutine is a simplified interface to the more general sigvec(2)
facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the background. For further information, see t t y(4). Signals are optionally
generated when a process resumes after being stopped, when the status of child
process changes, or when input is ready at the control terminal. Most signals cause
termination of the receiving process if no action is taken; some signals instead cause
the process receiving them to be stopped, or are simply discarded if the process has
not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file
< signal.h >:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGTTIN
SIGTTOU
SIGIO
SIGXCPU
SIGXFSZ

1 Hangup
2 Interrupt
3* Quit
4* Illegal instruction
5* Trace trap
6* lOT instruction
7* EMT instruction
8* Floating point exception
9 Kill (cannot be caught or ignored)
10* Bus error
11 * Segmentation violation
12* Bad argument to system call
13 write on a pipe with no one to read it
14 Alarm clock
15 Software termination signal
16- Urgent condition present on socket
17+ Stop (cannot be caught or ignored)
18+ Stop signal generated from keyboard
19- Continue after stop
20 - Child status has changed
21 + Background read attempted from control terminal
22+ Background write attempted to control terminal
23- I/O is possible on a descriptor (see fcnt1(2»
24 Cpu time limit exceeded (see setrlimit(2»
25 File size limit exceeded (see setrlimit(2»

Subroutines 3-133

;C signal (3)

SIGVTALRM 26
SIGPROF 27
SIGWINCH 28-
SIGUSR1 30
SIGUSR2 31
SIGCLD
SIGABRT

Virtual time alarm (see setitimer(2»
Profiling timer alarm (see setitimer(2»
Window size change
User defined signal
User defined signal
System V name for SIGCHLD
X/OPEN name for SIGIOT

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is
termination (with a core image for starred signals) except for signals marked with -
or +. Signals marked with - are discarded if the action is SIG_DFL; signals marked
with + cause the process to stop. If June is SIG_IGN the signal is subsequently
ignored and pending instances of the signal are discarded. Otherwise, when the
signal occurs further occurrences of the signal are automatically blocked and June is
called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler June
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate
prematurely, the call is automatically restarted. In particular this can occur during a
read or wri te(2) on a slow device (such as a terminal; but not a file) and during a
wait(2).

The value of signal is the previous (or initial) value of June for the particular
signal.

After a fork(2) or vfork(2) the child inherits all signals. The execve(2) system
call resets all caught signals to the default action; ignored signals remain ignored.

Environment

Notes

When your program is compiled using the System V environment the handler
function does NOT remain installed after the signal has been delivered.

Also, when a signal which is to be caught occurs during a read, write, or iocd to a
slow device (like a terminal, but not a file); or during a pause; or wait that does not
return immediately, the signal handler function is executed, and then the
interrupted system call may return a -1 to the calling process with ermo set to
EINTR.

The handler routine can be declared as follows:

handler {sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. The MIPS hardware exceptions are mapped to specific
signals as defined by the table below. The parameter code is either a constant as
given below or zero. The parameter sep is a pointer to the sigeontext structure
(defined in <signai.h», that is the context at the time of the signal and is used to
restore the context if the signal handler returns.

3-134 Subroutines

signal (3) R

The following defines the mapping of MIPS hardware exceptions to signals and
codes. All of these symbols are defined in either <signal.h> or <mips/cpu.h>:

Hardware exception Signal Code

Integer overflow SIGFPE EXC_OV
Segmentation violation SIGSEGV SEXC_SEGV
Illegal Instruction SIGILL EXC_II
Coprocessor Unusable SIGILL SEXC_CPU
Data Bus Error SIGBUS EXC_DBE
Instruction Bus Error SIGBUS EXC_IBE
Read Address Error SIGBUS EXC_RADE
Write Address Error SIGBUS EXC_ WADE
User Breakpoint (used by debuggers) SIGTRAP BRK_USERBP
Kernel Breakpoint (used by prom) SIGTRAP BRK_KERNELBP
Taken Branch Delay Emulation SIGTRAP BRK_BD_TAKEN
Not Taken Branch Delay Emulation SIGTRAP BRK_BD_NOTTAKEN
User Single Step (used by debuggers) SIGTRAP BRK_SSTEPBP
Overflow Check SIGTRAP BRK_OVERFLOW
Divide by Zero Check SIGTRAP BRK_DIVZERO
Range Error Check SIGTRAP BRK_RANGE

When a signal handler is reached, the program counter in the signal context structure
(sc yc) points at the instruction that caused the exception as modified by the branch
delay bit in the cause register. The cause register at the time of the exception is also
saved in the sigcontext structure (sc cause). If the instruction that caused the
exception is at a valid user address it can be retrieved with the following code
sequence:

if(scp->sc_cause & CAUSE_BD) {
branch_instruction = * (unsigned long *) (scp

>scyc) ;
exception_instruction = * (unsigned long *) (scp

>scyc + 4);
}
else

exception_instruction = * (unsigned long *) (scp
>scyc) ;

Where CAUSE_BD is defined in <mips/cpu.h>.

The signal handler may fix the cause of the exception and re-execute the instruction,
emulate the instruction and then step over it or perform some non-local goto such as
a longjump() or an exit().

If corrective action is performed in the signal handler and the instruction that caused
the exception would then execute without a further exception, the signal handler
simply returns and re-executes the instruction (even when the branch delay bit is set).

If execution is to continue after stepping over the instruction that caused the
exception the program counter must be advanced. If the branch delay bit is set the
program counter is set to the target of the branch else it is incremented by 4.

Subroutines 3-135

3C signal (3)

This can be done with the following code sequence:

if(scp->sc_cause & CAUSE~BD)
emulate_branch (scp, branch_instruction);

else
scp->scyc += 4;

Emulate _ branch() modifies the program counter value in the sigcontext structure to
the target of the branch instruction. See emulate _branch(3) for more details.

For SIGFPE's generated by floating-point instructions (code == 0) the floating-point
control and status register at the time of the exception is also saved in the sigcontext
structure (sc Jpc _ csr). This register has the information on which exceptions have
occurred. When a signal handler is entered the register contains the value at the time
of the exception but with the exceptions bits cleared. On a return from the signal
handler the exception bits in the floating-point control and status register are also
cleared so that another SIGFPE does not occur (all other bits are restored from
sc Jpc _ csr).

For SIGSEGV and SIGBUS errors the faulting virtual address is saved in
sc _ badvaddr in the signal context structUre.

The SIGTRAP's caused by break instructions noted in the above table and all other
yet to be defined break instructions fill the code parameter with the first argument to
the break instruction (bits 25-16 of the instruction).

Return Value
The previous action is returned on a successful call. Otherwise, -1 is returned and
errno is set to indicate the error.

Diagnostics
The signal subroutine fails and action is not taken if one of the following occurs:

[EINVAL]

[EINVAL]

See Also

The sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

kill(I), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3), tty(4)

3-136 Subroutines

Name

Syntax

signal - simplified software signal facilities

#include <signal.h>

(*signal(sig, func»O
void (*func)O;

signal (3) V J.

Description
The signal subroutine is a simplified interface to the more general sigvec(2)
facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the backgrourid. For further information, see t t y(4). Signals are optionally
generated when a process resumes after being stopped, when the status of child
process changes, or when input is ready at the control terminal. Most signals cause
termination of the receiving process if no action is taken; some signals instead cause
the process receiving them to be stopped, or are simply discarded if the process has
not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file
< signal.h >:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGTTIN
SIGTTOU
SIGIO
SIGXCPU
SIGXFSZ

1 Hangup
2 Interrupt
3* Quit
4* Illegal instruction
5* Trace trap
6* lOT instruction
7* EMT instruction
8 * Floating point exception
9 Kill (cannot be caught or ignored)
10* Bus error
11 * Segmentation violation
12* Bad argument to system call
13 write on a pipe with no one to read it
14 Alarm clock
15 Software termination signal
16- Urgent condition present on socket
17+ Stop (cannot be caught or ignored)
18+ Stop signal generated from keyboard
19 - Continue after stop
20- Child status has changed
21+ Background read attempted from control terminal
22+ Background write attempted to control terminal
23- I/O is possible on a descriptor (see fcnt1(2»
24 Cpu time limit exceeded (see setrlimit(2»
25 File size limit exceeded (see setrlimit(2»

Subroutines 3-137

AX signal (3)

SIGVTALRM 26
SIGPROF 27
SIGWINCH 28.
SIGSHORT 29
SIGUSR1 30
SIGUSR2 31
SIGCLD
SIGABRT

Virtual time alann (see setitimer(2))
Profiling timer alann (see setitimer(2»
Window size change
System V record locking
User defined signal
User defined signal
System V name for SIGCHLD
XlOPEN name for SIGIOT

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is
termination (with a core image for starred signals) except for signals marked with.
or +. Signals marked with • are discarded if the action is SIG_DFL; signals marked
with + cause the process to stop. If June is SIG_IGN the signal is subsequently
ignored and pending instances of the signal are discarded. Otherwise, when the
signal occurs further occurrences of the signal are automatically blocked and June is
called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler June
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate
prematurely, the call is automatically restarted. In particular this can occur during a
read or write(2) on a slow device (such as a terminal; but not a file) and during a
wait(2).

The value of signal is the previous (or initial) value of June for the particular
signal.

After a fork(2) or vfork(2) the child inherits all signals. The execve(2) system
call resets all caught signals to the default action; ignored signals remain ignored.

Return Value
The previous action is returned on a successful call. Otherwise, -1 is returned and
ermo is set to indicate the error.

Diagnostics
The signal subroutine will fail and no action will take place if one of the
following occur:

[EINVAL]

[EINVAL]

Notes (VAX-11)

The sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

The handler routine can be declared:

handler (sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a parameter which is either a constant as given below or, for
compatibility mode faults, the code provided by the hardware. The scp is a pointer
to the struet sigcontext used by the system to restore the process context from before

3-138 Subroutines

signal (3) V fl

the signal. Compatibility mode faults are distinguished from the other SIGILL traps
by having PSL_CM set in the psI.

The following defines the mapping of hardware traps to signals and codes. All of
these symbols are defined in < signal.h >:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

Environment

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF _TRAP
FPE_FL TDIV _TRAP
FPE_FLTUND_TRAP
FPE_DECOVF _TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF _FAULT
FPE_FLTDIV _FAULT
FPE_FLTUND_FAULT
faulting virtual addr
faulting virtual addr
ILL_PRIVIN_FAULT

ILL_RESOP _FAULT
ILL_RESAD_FAULT

hardware supplied code

When your program is compiled using the System V environment the handler
function does NOT remain installed after the signal has been delivered.

Also, when a signal which is to be caught occurs during a readO, writeO, or ioctlO
to a slow device (like a terminal, but not a file); or during a pauseO; or waitO that
does not return immediately, the signal handler function will be executed, and then
the interrupted system call may return a -1 to the calling process with ermo set to
EINTR.

See Also
kill(1), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
sigvec(2), setjmp(3), tty(4)

Subroutines 3-139

sigprocmask (3)

Name

Syntax

sigprocmask - examine and change blocked signals (POSIX)

#include <signaI.h>

int sigprocmask(how, set, oset)
int how;
sigset_t *set, *oset;

Description
The sigprocmask system call is used to examine and/or change the calling
process's signal mask. If the value of the argument set is not NULL, it points to a set
of signals that will be used to change the currently blocked set.

The value of the argument how indicates the manner in which the set is changed as
defined by the following values, defined in <signa1.h>:

SIG BLOCK
The resulting signal set is the union of the current set and the signal set
pointed to by the argument set.

SIG UNBLOCK
The resulting signal set is the intersection of the current set and the
complement of the signal set pointed to by the argument set.

SIG SETMASK
The resulting signal set is the signal set pointed to by the argument set.

If the argument oset is not NULL, the previous mask is stored in the space pointed to
by oset. If the value of the argument set is NULL, the process's signal mask is
unchanged; thus, the sigprocmask(3) function can be used to enquire about
currently blocked signals.

The signal masks used as arguments to this function are manipulated using the
sigsetops(3) functions.

As a system restriction, SIGKILL and SIGSTOP cannot be blocked.

Return Value
A 0 return value indicates a successful call. A -1 return value indicates an error and
errno is set to indicated the reason.

3-140 Subroutines

\

sigprocmask (3)

Diagnostics
The s i gp ro cma s k function fails and the signal mask remains unchanged if the
follow occurs:

[EINVAL]

See Also

The value of the how argument is not equal to one of the defined
values.

kill(2), sigsetmask(2), sigvec(2), sigblock(2), sigsetops(3)

Subroutines 3-141

sigsetjmp (3)

Name

Syntax

sigsetjmp, siglongjmp - nonlocal goto

#include <setjrnp.h>

sigsetjrnp(env, savemask)
sigjrnp_buf env;

siglongjrnp(env, val)
sigjrnp _ buf env;

Description
These routines deal with errors and interrupts encountered in a low-level subroutine
of a program.

The sigsetjrnp subroutine saves its stack environment in env for later use by
siglongjrnp. It returns a value of O. If the value of the savemask argument is not
zero, the sigsetjrnp subroutine also saves the process' current signal mask as part
of the calling environment.

The siglongjrnp subroutine restores the environment saved by the last call of
sigsetjrnp with the supplied env buffer. If the env argument was initialized by a
call to the sigset jrnp subroutine with a nonzero savemask argument, the
siglongjrnp subroutine restores the saved signal mask. It then returns in such a
way that execution continues as if the call of sigset jrnp had just returned the
value val to the subroutine that invoked sigset jrnp, which must not itself have
returned in the interim. However, siglongjrnp cannot cause sigset jrnp to
return the value O. If siglongjrnp is invoked with a val of 0, sigsetjrnp returns
a value of 1. All accessible data have values as of the time siglongjrnp was
called.

Restrictions
The sigset jrnp subroutine does not save the current notion of whether the process
is executing on the signal stack. When you invoke the siglongjrnp subroutine, the
signal stack is left in an incorrect state.

See Also
sigstack(2), sigvec(2), signal(3), sigprocmask(3)

3-142 Subroutines

Name

sigsetops (3)

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - manipulate signal sets
(POSIX)

Syntax
#include <signal.h>

~--"-"-"-"--""'--'-' "."- .",

(int sigemptyset(set))
\ sigset_t *set; ... ---

int sigfillset (set)
sigset_t *set;

int sigaddset(set,sig)
sigset_t *set;
int sig;

int sigdelset(set,sig)
sigset _ t * set;
int sig; _-:::---_ •. _

- int sigismember(set,sig)
(' sigset_t *set;

int sig;

Description
The sigsetops(3) functions manipulate signal sets used by the other POSIX signal
functions sigaction(3,) sigprocmask(3,) sigsuspend(3) .

. ~ The sigemptyset(3) function initializes the signal set pointed to by the argument
set so that all signals are excluded. -

The sigfillset(3) function initializes the signal set pointed to by the argument
set so that all signals are included.

The sigaddset(3) and sigdelset(3) functions respectively add and delete the
individual signal specified by the value of the argument sig from the signal set
pointed to by the argument set .

.. __ - The sigismember(3) function tests whether the signal specified by the value of the
argument sig is a member of the set pointed to by the argument set.

Return Value
Upon successful completion, the sigismember(3) function returns a value of 1 if
the specified signal is a member of the set. If it is not a member of the set, a value
of 0 is returned.

If the sigaddset(3,) sigdelset(3,) or sigismember(3) functions fail a-I
value is returned and errno is set to indicate the reason.

Subroutines 3-143

sigsetops (3)

Diagnostics
The sigsetops(3) function will fail and the signal mask will remain unchanged if
one of the following occur:

[EINVAL]

See Also

The value of the sig argument is not a valid signal number

sigprocmask(3), sigaction(3), sigsuspend(3), sigpendiog(2)

3-144 Subroutines

Name

Syntax

sigsuspend - wait for signal (POSIX)

sigsuspend(sigmask)
sigset_t *sigmask;

- --------~-~--- ~~~~~~-

sigsuspend (3)

Description
The sigsuspend system call is the POSIX equivalent ofthe sigpause(2) system
call. The behavior of this call is as described on the sigpause(2) reference page
except, the signal mask is manipulated using the sigsetops(3) functions.

See Also
sigpause(2), sigaction(3), sigvec(2)

Subroutines 3-145

sleep (3)

Name

Syntax

sleep - suspend execution for interval

unsigned
sleep(seconds)
unsigned seconds;

Description
The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be up to 1 second less than that
requested, because scheduled wakeups occur at fixed I-second intervals, and an
arbitrary amount longer because of other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs.
The previous state of this timer is saved and restored. If the sleep time exceeds the
time to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent I second later.

Return Value
The value returned by sleep is the unslept amount(the requested time minus the
time actually slept). This return value may be non-zero in cases where the caller had
an alarm set to go off earlier than the end of the requested time, or where sleep was
interrupted due to a caught signal(see ENVIRONMENT below).

Environment

POSIX
SYSTEM_FIVE
When your program is compiled in POSIX or System V mode, the sleep will be
terminated by any caught signal. The sleep function will return following execution
of the signal's catching routine.

See Also
setitimer(2), sigpause(2)

3-146 Subroutines

Name

Syntax

statfs, - get file system statistics

#include <sys/types.h>
#include <sys/param.h>
#include <sys/mount.h>

statfs(path, buffer)
char *path;
struct fs _data *buffer;

statfs(3)

Description
The s tat f s library routine returns up-to-date information about a mounted file
system. The path is the path name of any file within the mounted file system. The
buffer is a pointer to an fs_data structure as defined in getmnt(2).

Return Value
Upon successful completion, a value of 1 is returned. If the file system is not
mounted, 0 is returned. Otherwise, -1 is returned and the global variable errna is
set to indicate the error.

Diagnostics
The s tat f s library routine fails if one or more of the following are true:

[ENOTDIR]

[EINVAL]

A component of the path prefix of path is not a directory.

path contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EFAULT]

[EIO]

See Also

The length of a component of path exceeds 255 characters, or the
length of path exceeds 1023 characters.

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of
path.

Too many symbolic links were encountered in translating path.

buffer or path points to an invalid address.

An I/O error occurred while reading from the file system.

getmnt(2), getmountent(3)

Subroutines 3-147

ISC staux (3)

Name

Syntax

staux - routines that provide scalar interfaces to auxiliaries

#include <syms.h>

long st auxbtadd(bt)
long bi;

long st _ auxbtsize(iaux, width)
long iaux;
long width;

long st_auxisymadd (isym)
long isym;

long st_auxrndxadd (rfd,index)
long rfd;
long index;

long st auxrndxadd (idn)
long ido;

void st_addtq (iaux,tq)
long iaux;
long tq;

long st _ tqhigh _ aux(iaux)
long iaux;

void st_shifttq (iaux, tq)
int iaux;
int tq;

long stJaux_copyty (ifd, psym)
long ifd;
pSYMR psym;

void st _ changeaux (iaux, aux)
long iaux;
AUXU aux;

void st_changeauxrndx (iaux, rfd, index)
long iaux;
long rfd;
long index;

Description
Auxiliary entries are unions with a fixed length of four bytes per entry. Much
infonnation is packed within the auxiliaries. Rather than have the compiler front-ends
handle each type of auxiliary entry directly, the following set of routines provide a
high-level scalar interface to the auxiliaries:

st _auxbtadd Adds a type infonnation record (TIR) to the auxiliaries. It
sets the basic type (bt) to the argument and all other fields to
zero. The index to this auxiliary entry is returned.

3-148 Subroutines

st auxbtsize

st auxrndxadd

st auxrndxadd idn - -

st shifttq

st_changeauxrndx

See Also
stfd(3)

staux(3) RIg,

Sets the bit in the TIR, pointed to by the iaux argument.
This argument says the basic type is a bit field and adds an
auxiliary with its width in bits.

Adds an index into the symbol table (or any other scalar) to
the auxiliaries. It sets the value to the argument that will
occupy all four bytes. The index to this auxiliary entry is
returned.

Adds a relative index, RNDXR, to the auxiliaries. It sets the
rfd and index to their respective arguments. The index to
this auxiliary entry is returned.

Works the same as st_auxrndxadd except that RNDXR is
referenced by an index into the dense number table.

Copies the type from the specified file (ifd) for the specified
symbol into the auxiliary table for the current file. It returns
the index to the new aux.

Shifts in the specified type qualifier, tq (see sym.h), into the
auxiliary entry TIR, which is specified by the 'iaux' index
into the current file. The current type qualifiers shift up one
tq so that the first tq (tqO) is free for the new entry.

Adds a type qualifier in the highest or most significant non
tqNil type qualifier.

Returns the most significant type qualifier given an index
into the files aux table.

Changes the iauxth aux in the current file's auxiliary table to
aux.

Converts the relative index (RNDXR) auxiliary, which is
specified by iaux, to the specified arguments.

Subroutines 3-149

tlse stcu (3)

Name

Syntax

stcu - routines that provide a compilation unit symbol table interface

#include <syms.h>

pCHDRR st cuinit 0
void st setchdr (pchdr)
pCHDRR pchdr;

pCHDRR st _ currentpchdrO

void st _freeO

long st extadd (iss, value, st, sc, index)
long iss;
long value;
long st;
long SCi
long index;

pEXTR st pext iext (iext)
long iext; -

pEXTR st pext rndx (rndx)
RNDXR riidx; -

long st_iextmaxO

long st_extstradd (str)
char *str;

char *st str extiss (iss)
long iSs;- -

long st_idnJndexJext (index, fext)
long index;
long fext;

long st idn rndx (rndx)
RNDXRrndx;

pRNDXR st pdn idn (idn)
long idn; - -
RNDXR stJndx_idn (idn)
long idn;

void st setidn (idndest, idnsrc)
long idndest;
long idnsrc;

Description
The stcu routines provide an interface to objects that occur once per object, rather
than once per file descriptor (for example, external symbols, strings, and dense
numbers). The routines provide access to the current chdr (compile time hdr), which
represents the symbol table in running processes with pointers to symbol table

3-150 Subroutines

stcu (3) RIS

sections rather than indices and offsets used in the disk file representation.

A new symbol table can be created with st cuinit. This routine creates and initializes
a CHDRR (see cmpirs/stsupport.h). The CHDRR is the current chdr and is used in
all later calls.

NOTE

A chdr can also be created with the read routines (see stio(3». The
st _ cuinit routine returns a pointer to the new CHDRR record.

st currentchdr Returns a pointer the current chdr.

st setchdr Sets the current chdr to the pchdr argument and sets the per file
structures to reflect a change in symbol tables.

st Jree Frees all constituent structures associated with the current chdr.

st extadd Lets you add to the externals table. It returns the index to the new
external for future reference and use. The ifd field for the external
is filled in by the current file (see stfd(3». For more details on
the parameters, see sym.h.

st yext _iext and st yext Jndx

st iextmax

Returns pointers to the external, given a index referencing them.
The latter routine requires a relative index where the index field
should be the index in external symbols and the rfd field should be
the constant ST_EXTIFD. NOTE: The externals contain the same
structure as symbols (see the SYMR and EXTR definitions).

Returns the current number of entries in the external symbol table.

The iss field in external symbols (the index into string space) must point into external
string space.

st extstradd Adds a null-terminated string to the external string space and
returns its index.

st str extiss Converts that index into a pointer to the external string.

The dense number table provides a convenience to the code optimizer, generator, and
assembler. This table lets them reference symbols from different files and externals
with unique densely packed numbers.

st _idn _index Jext Returns a new dense number table index, given an index into the
symbol table of the current file (or if fext is set, the externals
table).

st idn rndx

st rndx idn

stydn_idn

Returns a new dense number, but expects a RNDXR (see sym.h to
specify both the file index and the symbol index rather than
implying the file index from the current file. The RNDXR
contains two fields: an index into the externals table and a file
index rsyms can point into the symbol table, as well). The file
index is ST_EXTIFD (see stsupport.h) for externals.

Returns a RNDX, given an index into the dense number table.

Returns a pointer to the RNDXR index by the idn argument.

Subroutines 3-151

ISC stcu(3)

See Also
stfe(3), stfd(3)

(

3-152 Subroutines

Name

Syntax

stfd(3) RI~

stfd - routines that provide access to per file descriptor section of the symbol table

#include <syms.h>

long st currentifd 0
long st)fdmax 0
void st setfd (ifd)
long ifd;

long stJdadd (filename)
char *filename;

long st_symadd (iss, value, st, sc, freloc, index)
long iss;
long value;
long st;
long sc;
long freloc;
long index;

long st_auxadd (aux)
AUXU aux;

long st_stradd (cp)
char *cp;

long stJineadd (line)
long line;

long st_pdadd (isym)
long isym;

long st)fd_pcfd (pcfdl)
pCFDR pcfdl;

pCFDR st_pcfd_ifd (ifd)
long ifd;

pSYMR st.J>sym_ifd_isym (ifd, isym)
long ifd;
long isym;

pAUXU st_pauxJfdJaux (ifd, iaux)
long ifd;
long iaux;

pAUXU st paux iaux (iaux)
long iaux; - -

char *st_str_iss (iss)
long iss;

Subroutines 3-153

SC stfd(3)

char *st str ifd iss (ifd, iss)
long ifd; - -
long iss;

pPDR st_ppd_ifd_isym (ifd, isym)
long ifd;
long isym;

char * st malloc (ptr,psize,itemsize,baseitems)
char *ptr;
long *size;
long itemsize;
long baseitems;

Description
The stfd routines provide an interface to objects handled on a per file descriptor (or
fd) level. For example: local symbols, auxiliaries, local strings, line numbers,
optimization entries, procedure descriptor entries, and the file descriptors. These
routines constitute a group because they deal with objects corresponding to fields in
the FDR structure.

A fd can be activated by reading an existing one into memory or by creating a new
one. The compilation unit routines st Jeadbinary and st Jeadst read file descriptors
and their constituent parts into memory from a symbol table on disk.

The st Jdadd adds a file descriptor to the list of file descriptors. The lang field is
initialized from a user specified global sl _lang that should be set to a constant
designated for the language in symconst.h. The [Merge field is initialized from the
user specified global scmerge that specifies whether the file is to start with the
attribute of being able to be merged with identical files at load time. The fBigendian
field is initialized by the gethostsex(3) routine, which determines the permanent
byte ordering for the auxiliary and line number entries for this file.

The st Jdadd adds the null string to the new files string table that is accessible by the
constant issNull (0. It also adds the filename to the string table and sets the rss field.
Finally, the current file is set to the newly added file so that later calls operate on that
file.

All routines for fd-Ievel objects handle only the current file unless a file index is
specified. The current file can also be set with st setfd.

Programs can find the current file by calling sl currenlifd, which returns the current
index. Programs can find the number of files 6y calling sl _ifdmax. The fd routines
only require working with indices to do most things. They allow more in-depth
manipulation by allowing users to get the compile time file descriptor (CFDR see
stsupport.h) that contains memory pointers to the per file tables (rather than indices
or offsets used in disk files). Users can retrieve a pointer to the CFDR by calling
stycJd_ifd with the index to the desired file. The inverse mapping sl_ifdycJd exists,
as well.

Each of fd's constituent parts has an add routine: sl symadd, sl slradd, sl lineadd,
slydadd, and sl_auxadd. The parameters of the add-routines correspond tO'the fields
of the added object (see sym.h). The pdadd routine lets users fill in the isym field
only. Further information can be added by directly accessing the procedure descriptor
entry.

3-154 Subroutines

stfd(3) RI~

The add routines return an index that can be used to retrieve a pointer to part of the
desired object with one of the following routines: st ysym _isym, st _str _iss, and
st yaux _iaux.

NOTE

These routines only return objects within the current file. The following
routines allow for file specification: stysym_ifd_isym, st_aux_ifd_iaux,
and st_str _ifd_iss.

The st ypd _ifd _isym allows access to procedures through the file index for the file
where they occur and the isym field of the entry that points at the local symbol for
that procedure.

The return index from scsymadd should be used to get a dense number (see stcu).
That number should be the ucode block number for the object the symbol describes.

See Also
stcu(3), stfe(3), sym.h(5), stsupport.h(5)

Subroutines 3-155

SC stfe(3)

Name

Syntax

stfe - routines that provide a high-level interface to basic functions needed to access
and add to the symbol table

#include <syms.h>

long st_filebegin (filename)
char *filename;

long st endallfiles 0
long st fileend (idn)
long ido;

long st_blockbegin(iss, value, sc)
long iss;
long value;
long sc;

long st textblockO

long st_blockend(size)
long size;

long stJ>rocend(idn)
long idn

long stJ>rocbegin (idn)
long idn;

char *st str idn (idn)
long idn; -

char *st_symJdn (idn, value, sc, st, index)
long idn;
long *value;
long *sc;
long *st;
long *index;

long st abs ifd index (ifd, index)
long ifd; - -
long index;

long st_fglobalJdn (idn)
long idn;

pSYMR st J>sym Jdn _offset (idn, offset)
long idn;
long offset;

long st _pdadd Jdn (idn)
long idn;

3-156 Subroutines

stfe(3) RI~

Description
The stfe routines provide a high-level interface to the symbol table based on common
needs of the compiler front-ends.

st Jtlebegin

stJtleend

st _blockbegin

Takes a file name and calls stJdadd (see stfd(3)). If it is
a new file, a symbol is added to the symbol table that for
that file or symbol, and the user supplied routine, st Jeinit, is
called. This allows special file parameters to be initialized.
For example, the C front-end adds basic type auxiliaries to
each file's aux table so that all variables of that type can
refer to a single instance instead of making individual copies
of them. The rountine st Jtlebegin returns a dense number
that references the symbol added for this file. It tracks files
as they appear in a CPP line directive with a stack. It
detects (from the order of the CPP directives) that a file ends
and calls st Jtlend. If a file is closed with a st Jtleend, a new
instance of the filename is created. For example, multiply
included files.

Requires the dense number from the corresponding
st Jtlebegin call for the file in question. It then generates an
end symbol and patches the references so that the index field
of the begin file points to that of one beyond the end file.
The end file points to the begin file.

Is called at the end of execution to close off all files that
have not been ended by previous calls to stJtlebegin. CPP
directives might not reflect the return to the original source
file; therefore, this routine can possibly close many files.

Supports both language blocks (for example, C's left curly
brace blocks), beginning of structures, and unions. If the
storage class is scText, it is the former; if it is scInfo, it is
one of the latter. The iss (index into string space) specifies
the name of the structure/etc, if any.

If the storage class is scText, we must check the result of st blockbegin. It returns a
dense number for outer blocks and a zero for nested blocks.-The non-zero block
number should be used in the BGNB ucode. Users of languages without nested
blocks that provide variable declarations can ignore the rest of this paragraph. Nested
blocks are two-staged: one stage occurs when the language block is detected and the
other stage occurs when the block has content. If the block has content (for example,
local variables), the front-end must call st textblock to get a non-zero dense number
for the block's BGNB ucode. If the block-does not have content and st textblock is
not called, the block's st blockbegin and st blockend do not produce block and end
symbols. - -

If it is scInfo, st _ blockbegin creates a begin block symbol in the symbol table and
returns a dense number referencing it. The dense number is necessary to build the
auxiliary required to reference the structure/etc. It goes in the aux after the TIR along
with a file index. This dense number is also noted in a stack of blocks used by
st blockend.

Subroutines 3-157

SC stfe(3)

The st_blockbegin should not be called for language blocks when the front-end is not
producing debugging symbols.

The st _ blockend requires that blocks occur in a nested fashion. It retrieves the dense
number for the most recently started block and creates a corresponding end symbol.
As infileend, both the begin and end symbol index fields point at the other end's
symbol. If the symbol ends a structure/etc., as detennined by the storage class of the
begin symbol, the size parameter is assigned to the begin symbol's value field. It is
usually the size of the structure or max value of a enum. We only know it at this
point. The dense number of the end symbol is returned so that the ucode ENDB can
use it. If it is an ignored text block, the dense number is zero and no ENDB should
be generated.

In general, defined external procedures or functions appear in the symbols table and
the externals table. The external table definition must occur first through the use of a
st _ extadd. After that definition, st yrocbegin can be called with a dense number
referring to the external symbol for that procedure. It checks to be sure we have a
defined procedure (by checking the storage class). It adds a procedure symbol to the
symbol table. The external's index should point at its auxiliary data type infonnation
(or if debugging is off, indexNil). This index is copied into the regular symbol's
index field or a copy of its type is generated (if the external is in a different file than
the regular symbol). Next, we put the index to symbol in the external's index field.
The external's dense number is used as a block number in ucodes referencing it and
is used to add a procedure when in the st ydadd _idn.

styrocend

st str idn

st Jglobal_idn

Creates an end symbol and fixes the indices as in blockend
and fileend, except that the end procedure reference is kept in
the begin procedure's aux rather than in the index field
(because the begin procedure has a type as well as an end
reference). This must be called with the dense number of the
procedure's external symbol as an argument and returns the
dense number of the end symbol to be used in the END
ucode.

Returns the string associated with symbol or external
referenced by the dense number argument. If the symbol was
anonymous (for example, there is not a symbol), a (char *),
-1 is returned.

Returns the same result as st str idn, except that the rest of
by the idn are returned in the arguments.

Returns a 1 if the symbol associated with the specified idn is
non-static; otherwise, a 0 is returned.

Returns the absolute offset for a dense number. If the symbol
is global, the global's index is returned. If the symbol
occurred in a file, the sum of all symbols in files occurring
before that file and the symbol's index within the file is
returned.

Adds an entry to the procedure table for the st yroc entry
generated by procbegin. This should be called when the
front-end generates code for the procedure in question.

3-158 Subroutines

sUe (3) RI

See Also
stcu(3), stfd(3), sym.h(5), stsupport.h(5)

Subroutines 3-159

stime (3)

Name

Syntax

stime - set time

int stime (tp)
long *tp;

Description
The stime system call sets the system's time and date. The tp argument points to
the value of time as measured in seconds from 00:00:00 GMT January 1, 1970.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Diagnostics

[EPERM]

See Also

The effective user ID of the calling process is not the superuser.

gettimeofday(2), time(3)

3-160 Subroutines

Name

Syntax

stio(3) RI:

stio - routines that provide a binary read/write interface to the MIPS symbol table

#include <syms.h>

long stJeadbinary (filename, how)
char *fiIename;
char how;

long stJeadst (fn, how, filebase, pchdr,flags)
long fn;
char how;
long filebase;
pCHDRR pchdr;
long flags;

void st_ writebinary (filename, flags)
char *fiIename;
long flags;

void st_writest (fn, flags)
long fn;
long flags;

Description

The CHDRR structure (see cmplrs/stsupport.h and the stcu(3». represents a
symbol table in memory. A new CHDRR can be created by reading a symbol table
in from disk. The st Jeadbinary and st Jeadst routines read a symbol table in from
disk.

The routine st Jeadbinary takes the file name of the symbol table and assumes the
symbol table header (HDRR in sym.h occurs at the beginning of the file. The
st Jeadst assumes that its file number references a file positioned at the beginning of
the symbol table header and that the filebase parameter specifies where the object or
symbol table file is based (for example, non-zero for archives).

The second parameter to the read routines can be r for read only or a for appending
to the symbol table. Existing local symbol, line, procedure, auxiliary, optimization,
and local string tables cannot be appended. If they didn't exist on disk, they can be
created. This restriction stems from the allocation algorithm for those symbol table
sections when read in from disk and follows the standard pattern for building the
symbol table.

The symbol table can be read incrementally. If pchdr is zero, stJeadst assumes that
a symbol table has not been read yet; therefore, it reads in the symbol table header
and file descriptors. The flags argument is a bit mask that defines what other tables
should be read. The t y* constants for each table, defined in stsupport.h, can be
ORed. Ifflags equals -1, all tables are read. If pchdr is set, the tables specified by
flags are added to the tables that have already been read. The pchdr's value can be
taken from st_currentychdr. See stcu(3.)

Subroutines 3-161

ISC stio(3)

Line number entries are encoded on disk; the read routines expand them to longs.

If the version stamp is out of date, a warning message is issued to stderr. If the
magic number in the HDRR is incorrect, st _error is called. All other errors cause the
read routines to read non-zero; otherwise, a zero is returned.

The routines st _ write binary and st _ writest are symmetric to the read routines,
excluding the how and pchdr parameters. The jlags parameter is a bit mask that
defines what table should be written. The st y* constants for each table, defined in
stsupport.h, can be ORed. Ifjlags equals -1, all tables are written.

The write routines write sections of the table in the approved order, as specified in
the link editor Id(1) specificatipn.

Line numbers are compressed on disk.

The write routines start all sections of the symbol table on four-byte boundaries.

If the write routines encounter an error, st error is called. After writing the symbol
table, further access to the taple by other routines is undefined.

See Also
stcu(3), stfs(3), stfw (3), sym.h(5), sterror(5) stsupport.h(5)

3-162 Subroutines

Name

Syntax

strcoll - string collation comparison

iot strcoll (sl, s2)
char *sl, *s2;

strcoll (3)

Description
The strcoll function returns an integer less than, equal to, or greater than zero
depending on whether the string pointed to by sl is lexicographically less than, equal
to, or greater than the string pointed to by s2.

The strcoll function performs the comparison by using the collating information
defined in the program's locale, category LC_COLLATE.

In the C locale, characters collate as if they are unsigned. In all cases strcoll
works as if strxfrm were called on sl and s2, and strcmp was called on the
resulting strings.

International Environment

LC_COLLATE Contains the user requirements for language, territory, and codeset
for the character collation format. LC COLLATE affects the
behavior of regular expressions and the string collation functions in
strcoll. If LC COLLATE is not defined in the current
environment, LANG provides the necessary default.

LANG If this environment is set and valid, strcoll uses the
intemationallanguage database named in the definition to
determine the character collation formatting rules. If

See Also

LC _COLLATE is defined, its definition supercedes the definition of
LANG.

string(3), setlocale(3), strxfrrn(3), environ(5int)

Subroutines 3-163

strftime (3)

Name

Syntax

strftime - convert time and date to string

#include <time.h>

int strftime (s, maxsize, format, tm)
char *s;
size t maxsize;
char *format;
struct tm *tm;

Description

The strftime function places characters in the array pointed to by s. No more
than maxsize characters are placed into the array. The format string controls this
process. This string consists of zero or more directives and ordinary characters. A
directive consists of a % character followed by a character that determines the
behavior of the directive. All ordinary characters are copied unchanged into the
array, including the terminating null character.

Each directive is replaced by the appropriate characters as shown in the following
table. The characters are determined by the program's locale category LC_TIME and
the values contained in the structure pointed to by tm.

Directive Replaced by

%a Locale's abbreviated weekday name
%A Locale's full weekday name
%b Locale's abbreviated month name
%B Locale's full month name
%c Locale's date and time representation
%d Day of month as a decimal number (01-31)
%0 Date (%m/%d/%y)
%h Locale's abbreviated month name
%H Hour as a decimal number (00-23)
%1 Hour as a decimal number (01-12)
%j Day of year (001-366)
%m Number of month (01-12)
%M Minute number (00-59)
%n Newline character
%p Locale's equivalent to AM or PM
%r Time in AM/PM notation
%S Second number (00-59)
%t Tab character
%T Time (%H/%M/%S)
%U Week number (00-53), Sunday as first day of week
%w Weekday number (O[Sunday]-6)
%W Week number (00-53), Monday as first day of week
%x Locale's date representation
%X Locale's time representation

3-164 Subroutines

strftime (3)

%y Year without century (00-99)
% Y Year with century
%Z Timezone name, no characters if no timezone
%% %

If a directive is used that is not contained in the table, the results are undefined.

International Environment

LC TIME

LANG

Return Value

Contains the user's requirements for language, territory, and
codeset for the time format. LC TIME affects the behavior of the
time functions in strftime. If LC TIME is not defined in the
current environment, LANG provides the necessary default.

If this environment is set and valid, strftime uses the
international language database named in the definition to
determine the time formatting rules. If LC _TIME is defined, its
definition supercedes the definition of LANG.

If the total number of reSUlting characters, including the terminal null character, is not
more than maxsize, the strftime function returns the total of resultant characters
placed into the array pointed to by s, not including the terminating null character. In
all other cases zero is returned and the contents of the array are indeterminate.

As the timezone name is not contained in the tm structure the value returned by
%Z is determined by the timezone function, see ctime.

See Also
ctime(3), setlocale(3)

Subroutines 3-165

string (3)

Name

Syntax

strcasecmp, strncasecmp, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, index, rindex - string operations

#include <strings.h>

or

#include <string.h>

strcasecmp(sl, s2)
char *sl, *s2;

strncasecmp(sl, s2, n)
char *sl, *s2;

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

int strcmp(sl, s2)
char *sl, *s2;

int strncmp(sl, s2, n)
char *sl, *s2;
int n

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;
int n

size t strlen(s)
char*s;

char *strchr(s, c)
char *s;
int c;

char *strrchr(s, c)
char *s;
int c;

char *strpbrk(sl, s2)
char *sl, *s2;

size_t strspn(sl, s2)
char *sl, *s2;

size_t strcspn(sl, s2)
char *sl, *s2;

3-166 Subroutines

char *strtok(si, s2)
char *si, *s2;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;
char *strstr(si, s2)
char *si, *s2;

Description

string (3)

The arguments si, s2, and s point to strings (arrays of characters terminated by a null
character). The functions strcat, strncat, strcpy, and strncpy
subroutines all alter si. These functions do not check for overflow of the array
pointed to by si.

The strcat subroutine appends a copy of string s2 to the end of string si. The
strncat subroutine copies at most n characters. Both return a pointer to the null
terminated result.

The strcmp subroutine compares its arguments and returns an integer greater than,
equal to, or less than 0, according as si is lexicographically greater than, equal to, or
less than s2. The strncmp subroutine makes the same comparison but looks at at
most n characters. The strcasecmp and strncasecmp subroutines are identical
in function, but are case insensitive. The returned lexicographic difference reflects a
conversion to lower-case.

The strcpy subroutine copies string s2 to si, stopping after the null character has
been copied. The strncpy subroutine copies exactly n characters, truncating s2 or
adding null characters to si if necessary. The result will not be null-terminated if the
length of s2 is n or more. Each function returns si.

The strlen subroutine returns the number of characters in s, not including the
terminating null character.

The strstr subroutine returns a pointer to the first occurrence of s2 (excluding the
terminating null character) in sl, or a NULL pointer if s2 does not occur in s1. If
strlen(s2) is zero, strstr returns s1.

The strchr (strrchr) function returns a pointer to the first (last) occurrence of
character c in string s, or a NULL pointer is c does not occur in the string. The null
character terminating a string is considered to be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in string si of any
character from string s2, or a NULL pointer if no character from s2 exists in si.

The strspn (strcspn) subroutine returns the length of the initial segment of
string si which consists entirely of characters from (not from) string s2.

The strtok subroutine considers the string si to consist of a sequence of zero or
more text tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer si specified) returns a pointer to the first
character of the first token, and will have written a null character into si immediately
following the returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be made with the first
argument a NULL pointer) will work through the string si immediately following

Subroutines 3-167

string (3)

that token. In this way, subsequent calls will work through the string sl until no
tokens remain. The separator string s2 may be different from call to call. When no
token remains in sl, a NULL pointer is returned.

The index (rindex) subroutine returns a pointer to the first (last) occurrence of
character c in string s, or zero if c does not occur in the string.

NOTE

The <string.h> header file is provided for compatibility with System V;
both <string.h> and <strings.h> refer to the same file.
The strcmp and strncmp subroutines do unsigned character
comparisons.

3-168 Subroutines

Name

Syntax

strxfrm - string transfonnation

size_t strxfrm (to, from, maxsize)
char *to;
char *from;
size_t maxsize;

strxfrm (3)

Description
The strxfrm function transfonns the string pointed to by from and places the
resulting string into the array pointed to by to. The transfonnation is such that two
transfonned strings can be ordered by the strcmp function as appropriate to the
program's locale category LC_COLLATE.

The length of the resulting string may be much longer than the original. No more
than maxsize characters are placed into the resulting string including the
tenninator. If the transformed string does not exceed maxsize characters, the
number of characters (less the tenninator) is returned. Otherwise the number of
characters (less the tenninator) in the transfonned string is returned and the contents
of the array are undefined.

International Environment

LC_COLLATE Contains the user requirements for language, territory, and codeset
for the character collation fonnat. LC COLLATE affects the
behavior of regular expressions and the string collation functions in
strxfrm. If LC_COLLATE is not defined in the current
environment, LANG provides the necessary default.

LANG If this environment is set and valid, strxfrm uses the
intemationallanguage database named in the definition to
detennine the character collation fonnatting rules. If

See Also

LC_COLLATE is defined, its definition supercedes the definition of
LANG.

string(3), setlocale(3), strcoll(3), environ(5int)

Subroutines 3-169

stty(3)

Name

Syntax

stty, gtty - set and get terminal state

#include <sgtty.h>

stty(fd, but')
int fd;
struct sgttyb *buf;

gtty(fd, but')
int fd;
struct sgttyb *buf;

Description
This interface has been superseded by ioctl(2).

The s tty subroutine sets the state of the terminal associated with fd. The gt t Y
subroutine retrieves the state of the terminal associated with fd. To set the state of a
terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is
"ioctl(fd, TIOCGETP, buf)". See ioctl(2) and tty(4) for an explanation.

Return Value
If the call is successful 0 is returned, otherwise -1 is returned and the global variable
ermo contains the reason for the failure.

See Also
ioctl(2), tty(4)

3-170 Subroutines

Name

Syntax

swab - swap bytes

swab(from, to, nbytes)
char *from, *to;

swab(3)

Description
The swab subroutine copies nbytes bytes pointed to by from to the position pointed
to by to, exchanging adjacent even and odd bytes. It is useful for carrying binary
data between machines. The nbytes should be even.

Subroutines 3-171

ISC swapsex(3)

Name

Syntax

swap_word, swap_half, swap_filehdr, swap_aouthdr, swap_senhdr, swap_hdr,
swap_fd, swap_fi, swap_sym, swap_ext, swap_pd, swap_dn, swap_opt, swap_aux,
swap_reloe, swap_ranlib - swap the sex of the specified structure

#include <sex.h>
#include <filehdr.h>
#include <aouthdr.h>
#include <scnhdr.h>
#include <sym.h>
#include <symconst.h>
#include <cmplrs/stsupport.h>
#include <reloc.h>
#include <ar.h>

long swap word(word)
long word;

short swap _ half(half)
short half;

void swap _ filehdr(pfilehdr, destsex)
FILHDR *pfilehdr;
long destsex;

void swap_aouthdr(paouthdr, destsex)
AOUTHDR *paouthdr;
long destsex;

void swap scnhdr(pscnhdr, destsex)
SCNHDR *pscnhdr;
long destsex;

void swap hdr(phdr, destsex)
pHDRR piidr;
long destsex;

void swap_fd(pfd, count, destsex)
pFDR pfd;
long count;
long destsex;

void swap _ fi(pfi, count, destsex)
pFIT pfi;
long count;
long destsex;

void swap _ sym(psym, count, destsex)
pSYMR psym;
long count;
long destsex;

3-172 Subroutines

void swap_ext(pext, count, destsex)
pEXTR pext;
long count;
long destsex;

void swap yd(ppd, count, destsex)
pPDR ppd;
long count;
long destsex;

void swap _ dn(pdn, count, destsex)
pRNDXR pdn;
long count;
long destsex;

void swap _ opt(popt, count, destsex)
pOPTR popt;
long count;
long destsex;

void swap_aux(paux, type, destsex)
pAUXU paux;
long type;
long destsex;

void swap reloc(pre/oc, count, destsex)
struct relOc *preloc;
long count;
long destsex;

void swap ranlib(pranlib, count, destsex)
struct ranllb *pranlib;
long count;
long destsex;

Description

swapsex(3) RI

All swapsex routines that swap headers take a pointer to a header structure to
change the byte's sex. The destsex argument lets the swapsex routines decide whether
to swap bitfields before or after swapping the words in which they occur. If destsex
equals the hostsex of the machine you are running on, the flip happens before the
swap; otherwise, the flip happens after the swap. Although not all routines swap
structures containing bitfields, the destsex is required.

The s w a p _ a ux routine takes a pointer to an aux entry and a type, which is a
ST_AUX_ * constant in cmplrs/stsupport.h. The constant specifies the type of the
aux entry to change the sex of. All other swapsex routines are passed a pointer to
an array of structures and a count of structures to have the byte sex changed. The
routines swap word and swap half are macros declared in sex.h. Only the
include files that describe the structures being swapped have to be included.

See Also
gethostsex(3)

Subroutines 3-173

sysconf(3)

Name

Syntax

sysconf - get configurable system variables (POSIX)

#include <unistd.h>

long sysconf(name)
int name;

Description
The sysconf function provides a method for the application to determine the
current value of a configurable system limit or option.

The name argument represents the system variable to be queried. The following table
lists the system variables which may be queried and the corresponding value for the
name argument. The values for the name argument are defined in the <unistd.h>
header file.

Variable

ARG MAX
CHILD MAX
CLK_TCK
NGROUPS MAX
OPEN MAX
PASS MAX
_POSIX_JOB_CONTROL
_POSIX_SAVED_IDS
_POS IX_VERS ION

XOPEN VERSION - -

Return Value

name Value

SC ARG MAX - - -
SC CHILD MAX - - -

_SC_CLK_TCK
_SC_NGROUPS_MAX

SC OPEN MAX - - -
SC PASS MAX - - -
SC JOB CONTROL - - -

_SC_SAVED_IDS
SC VERSION
SC XOPEN VERSION - - -

Upon successful completion, the sysconf function returns the current variable
value on the system.

If name is an invalid value, sysconf returns -1 and ermo is set to indicate the
reason. If the variable corresponding to name is not defined on the system, sysconf
returns -1 without changing the value of ermo.

Diagnostics
The sysconf function fails if the following occurs:

[EINVAL] The value of the name argument is invalid.

3-174 Subroutines

Name

Syntax

syslog, openlog, closelog - control system log

#include <syslog.h>

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelogO

syslog(3)

Description
The syslog subroutine arranges to write the message onto the system log
maintained by s y s log(8). The message is tagged with priority and it looks like a
printf(3s) string except that %m is replaced by the current error message
(collected from err no). A trailing new line is added if needed. This message is
read by syslog(8) and output to the system console or files as appropriate. The
maximum number of parameters is 5.

If special processing is needed, openlog can be called to initialize the log file.
Parameters are ident which is prepended to every message, and logstat which is a bit
field indicating special status; current values are:

LOG PID
log the process id with each message; useful for identifying daemons.

The openlog returns zero on success. If it cannot open the file / dev / log, it
writes on / dev / console instead and returns-1.

The c los e 1 og can be used to close the log file.

Examples

syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp", LOG_PID);
syslog(LOG_INFO, "Connection from host %d", CallingHost);

See Also
syslog(8)

Subroutines 3-175

system (3)

Name

Syntax

system - issue a shell command

system(string)
char *string;

Description
If the string argument is the NULL pointer (0) the system function tests the
accessibility of the command interpreter sh(1). The function will return zero for
failure to find the command interpretter, and positive if successful.

If the string argument is non-NULL the system routine causes the string to be
given to sh(1) as input as if the string had been typed as a command at a terminal.
The current process waits until the shell has completed, then returns the exit status in
the form that wai t(2) returns.

Diagnostics
Exit status 127 indicates the shell couldn't be executed.

See Also
execve(2), wait(2), popen(3)

3-176 Subroutines

Name

Syntax

time, ftime - get date and time

#include <time.h>
time_t time((long *)0)

time t time(tloc)
time-t *tloc;

#include <sys/timeb.h>

ftime(tp)
struct timeb *tp;

time(3)

Description
The time subroutine returns the time since 00:00:00 GMT, Jan. 1, 1970, measured
in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The f time entry fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>:

struct timeb
{

time_t time;
unsigned short millitmi
short timezonei
short dstflagi

} i

The structure contains the time since the epoch in seconds, up to 1000 milliseconds
of more-precise interval, the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time
applies locally during the appropriate part of the year.

See Also
date(I), gettimeofday(2), settimeofday(2), ctime(3)

Subroutines 3-1 n

times (3)

Name

Syntax

times - get process times

#include <sys/times.h>

clock t
times(buffer)
struct tms *buffer;

Description
The times subroutine returns time-accounting information for the current process
and for the terminated child processes of the current process. All times are in 11HZ
seconds, where HZ is equivalent to 60.

The following structure is returned by time s :

struct tms {

} ;

clock t tms_utime;
clock t tms_stime;
clock t tms_cutime;
clock t tms_cstime;

/* user time */
/* system time */
/* user time, children */
/* system time, children */

The children times are the sum of the children's process times and their children's
times.

Return Value
If successful, the function times returns the elapsed time since 00:00:00 GMT,
January 1, 1970 in units of 1/60's of a second. When the function times fails, it
returns -1

See Also
time(1), getrusage(2), wait3(2), time(3)

3-178 Subroutines

Name

Syntax

tsearch, tfind, tdelete, twalk - manage binary search trees

#include <search.h>

void *tsearch (key, rootp, compar)
void *key;
void **rootp;
int (*compar)();

void *tfind (key, rootp, compar)
void *key;
void **rootp;
int (*compar)();

void *tdelete (key, rootp, compar)
void *key;
void **rootp;
int (*compar)();

void twalk (root, action)
void * root;
void (*action)();

tsearch (3)

Description
The tsearch subroutine is a binary tree search routine generalized from Knuth
(6.2.2) Algorithm T. It returns a pointer into a tree indicating where a datum may be
found. If the datum does not occur, it is added at an appropriate point in the tree.
The key points to the datum to be sought in the tree. The rootp points to a variable
that points to the root of the tree. A NULL pointer value for the variable denotes an
empty tree; in this case, the variable will be set to point to the datum at the root of
the new tree. The compar is the name of the comparison function. It is called with
two arguments that point to the elements being compared. The function must return
an integer less than, equal to, or greater than zero according as the first argument is to
be considered less than, equal to, or greater than the second.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it
if found. However, if it is not found, tfind will return a NULL pointer. The
arguments for tfind are the same as for tsearch.

The tdelete subroutine deletes a node from a binary search tree. It is generalized
from Knuth (6.2.2) algorithm D. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of
the tree. The tdelete subroutine returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

The twalk subroutine traverses a binary search tree. The root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for' a walk below that
node.) The action is the name of a routine to be invoked at each node. This routine
is, in turn, called with three arguments. The first argument is the address of the node
being visited. The second argument is a value from an enumeration data type typedef
enum { pre order, postorder, endorder, leaf} VISIT; (defined in the <search.h>

Subroutines 3-179

tsearch (3)

header file), depending on whether this is the first, second or third time that the node
has been visited (during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in the tree, with the
root being level zero.

Notes

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being
compared.

Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

Note that the root argument to twalk is one level of indirection less
than the rootp arguments to tsearch and tdelete.

Return Value
A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tsearch, tfind, and tdelete if rootp is
NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

Restrictions
Results are unpredictable if the calling function alters the pointer to the root.

Diagnostics
A NULL pointer is returned by tsearch and tdelete if rootp is NULL on entry.

See Also
bsearch(3), hsearch(3), Isearch(3)

3-180 Subroutines

/

Name

Syntax

ttyname, isatty, ttyslot - find tenninal name

char *ttyname(filedes)

isatty(filedes)

ttyslotO

ttyname(3)

Description
The ttyname subroutine returns a pointer to the null-tenninated path name of the
tenninal device associated with file descriptor filedes (this is a system file descriptor
and has nothing to do with the standard I/O FILE typedet).

The is at t y subroutine returns 1 if filedes is associated with a tenninal device, 0
otherwise.

The ttyslat subroutine returns the number ofthe entry in the ttys(5) file for the
control tenninal of the current process.

Restrictions
The return value points to static data whose content is overwritten by each call.

Diagnostics

Files

The t t yname subroutine returns a null pointer (0) if filedes does not describe a
tenninal device in directory / dev .

The tty slat subroutine returns 0 if / et c / tty s is inaccessible or if it cannot
detennine the control tenninal.

/dev/*
/etc/ttys

See Also
ioct1(2), ttys(5)

Subroutines 3-181

ulimit (3)

Name

Syntax

ulimit - get and set user limits

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description
This function provides control over process limits. An explanation of the cmd values
follow.

Value Explanation

1 Get the process's file size limit. The limit is in units of 512-byte blocks
and is inherited by child processes. Files of any size can be read.

2 Set the process's file size limit to the value of newlimit. Any process can
decrease this limit, but only a process with an effective user ID of superuser
can increase the limit. The u 1 imi t system call fails and the limit remains
unchanged, if a process with an effective user ID other than superuser
attempts to increase its file size limit.

3 Get the maximum possible break value. For further information, see
brk(2).

Return Value
Upon successful completion, a nonnegative value is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

Diagnostics

[EINVAL]

[EPERM]

See Also
brk(2), write(2)

3-182 Subroutines

Bad value for cmd.

The effective user ID of the calling process is not superuser.

(

Name

Syntax

utime - set file times

#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;

utime(3)

Description
The path points to a pathname naming a file. The utime function sets the access
and modification times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the
access and modification times are set to the values contained in the designated
structure. Only the owner of the file or the super-user can use utime this way.

The function utime causes the time of the last file status change(scctime) to be
updated with the current time.

The times in the following structure are measured in seconds since 00:00:00 GMT,
January 1, 1970.

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

};

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned, and errna is set to indicate the error.

Diagnostics
The utime function fails, if any of the following is true:

[EACCES]

[EACCES]

[EFAULT]

[EFAULT]

[ENOENT]

[ENOTDIR]

Search permission is denied by a component of the path prefix.

The effective user ID is not super-user, not the owner of the file,
times is NULL, and write access is denied.

The times is not NULL and points outside the process's allocated
address space.

The path points outside the process's allocated address space.

The named file does not exist or path points to an empty string and
the environment defined is PO SIX or SYSTEM_FIVE.

A component of the path prefix is not a directory.

Subroutines 3-183

utime(3)

[EPERM]

[EROFS]

The effective user ID is not a super~user, not the owner of the file,
and times is not NULL.

The file system containing the file is mounted read-only.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not respond after a period of time detennined
by the communications protocol.

See Also
stat(2)

3-184 Subroutines

(
i
\

(
\

(

Name

Syntax

valloc - aligned memory allocator

#include <stdlib.h>

void *valloc(size)
size_t size;

valloc(3)

Description
The valloc subroutine allocates size bytes aligned on a page boundary. It is
implemented by calling malloc(3) with a slightly larger request, saving the true
beginning of the block allocated, and returning a properly aligned pointer.

Diagnostics
The valloc subroutine returns a null pointer (0) if there is no available memory or
if the arena has been detectably corrupted by storing outside the bounds of a block.
The valloc subroutine will fail and no additional memory will be allocated if one
of the following is true:

[ENOMEM] The limit, as set by setrlimit(2), is exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the
system) is exceeded.

[ENOMEM] Insufficient space exists in the swap area to support the expansion.

Subroutines 3-185

varargs(3)

Name

Syntax

varargs - variable argument list

#in elude <varargs.h>

function(va _ alist)
va del
va)ist pvar;
va _ start(pvar);
f = va _ arg(pvar, type);
va end(pvar);

Description
This set of macros provides a means of writing portable procedures that accept
variable argument lists. Routines having variable argument lists, such as
printf(3s), that do not use varargs are inherently nonportable, since different
machines use different argument passing conventions.

va_alist is used in a function header to declare a variable argument list.

va_del is a declaration for va_alist. Note that there is no semicolon after va_del.

vaJist is a type which can be used for the variable pvar, which is used to traverse
the list. One such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argument in the list pointed to by pvar. The
type is the type the argument is expected to be. Different types can be mixed, but it
is up to the routine to know what type of argument is expected, since it cannot be
determined at runtime.

va _ end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

Examples

#include <varargs.h>
execl(va_alist)
va dcl
{

3-186 Subroutines

va_list ap;
char *file;
char *args[lOO];
int argno = 0;

va_start (ap) ;
file = va_arg(ap, char *);
while (args[argno++] = va_arg(ap, char *»
B;
va_end (ap) ;
return execv(file, args);

!

varargs(3)

Restrictions
It is up to the calling routine to determine how many arguments there are, since it is
not possible to determine this from the stack frame. For example, execl passes a 0
to signal the end ofthe list. The printf command can tell how many arguments
are supposed to be there by the format.

Subroutines 3-187

vlimit (3)

Name

Syntax

vlimit - control maximum system resource consumption

#include <sys/vlimit.h>

vlimit(resource, value)

Description
This facility has been superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not
individually exceed value on the specified resource. If value is specified as -1, then
the current limit is returned and the limit is unchanged. The resources which are
currently controllable are:

LIM_NORAISE Pseudo-limit; if set nonzero then the limits may not be raised.
Only the super-user may remove the noraise restriction.

LIM_CPU The maximum number of cpu-seconds to be used by each process.

LIM_FSIZE The largest single file which can be created.

LIM_DATA The maximum growth of the data+stack region via sbrk(2)
beyond the end of the program text.

LIM_STACK The maximum size of the automatically-extended stack region.

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be
given to the program. If memory is tight, the system will prefer to
take memory from processes which are exceeding their declared
LIM_MAXRSS.

Because this information is stored in the per-process information this system call
must be executed directly by the shell if it is to affect all future processes created by
the shell; limit is thus a built-in command to csh(l).

The system refuses to extend the data or stack space when the limits would be
exceeded in the normal way. A break call fails if the data space limit is reached, or
the process is killed when the stack limit is reached. Since the stack cannot be
extended, there is no way to send a signal.

A file I/O operation which would create a file which is too large will cause a signal
SIGXFSZ to be generated, this normally terminates the process, but may be caught.
When the cpu time limit is exceeded, a signal SIGXCPU is sent to the offending
process; to allow it time to process the signal it is given 5 seconds grace by raising
the cpu time limit.

3-188 Subroutines

/
I

\

vlimit(3)

Restrictions
If LIM_NORAISE is set, then no grace should be given when the CPU time limit is
exceeded.

See Also
csh(l)

Subroutines 3-189

vtimes(3)

Name
vtimes - get information about resource utilization

Syntax
vtimes(par _ vm, ch _ vm)
struct vtimes *par _ vm, *ch _ vm;

Description
This facility has been superseded by getrusage(2).

The vt ime s routine returns accounting information for the current process and for
the terminated child processes of the current process. Either par _vm or ch_vm or
both may be 0, in which case only the information for the pointers which are non
zero is returned.

After the call, each buffer contains information as defined by the contents of the
include file /usr/include/sys/vtimes.h:

struct vtimes {

} ;

int vm_utime;
int vm_stime;
1* divide next two by
unsigned vm_idsrss;
unsigned vm_ixrss;
int vm_maxrss;
int vm majflt;
int vm=minflt;
int vm_nswap;
int vm_inblk;
int vm_oublk;

1* user time (*HZ) *1
1* system time (*HZ) *1

utime+stime to get averages *1
1* integral of d+s rss *1
1* integral of text rss *1
1* maximum rss *1
1* major page faults *1
1* minor page faults *1
1* number of swaps *1
1* block reads *1
1* block writes *1

The vm_utime and vm_stime fields give the user and system time respectively in
60ths of a second (or 50ths if that is the frequency of wall current in your locality.)
The vm idrss and vm ixrss measure memory usage. They are computed by
integrating the number of memory pages in use each over cpu time. They are
reported as though computed discretely, adding the current memory usage (in 512
byte pages) each time the clock ticks. If a process used 5 core pages over 1 cpu
second for its data and stack, then vm idsrss would have the value 5*60, where
vm utime+vm stime would be the 60~ The vm idsrss integrates data and stack
segment usage: while vm _ixrss integrates text segment usage. The vm _ maxrss
reports the maximum instantaneous sum of the text+data+stack core-resident page
count.

3-190 Subroutines

\

(
I

\

(
I

I

\

vtimes(3)

The vm _ majflt field gives the number of page faults which resulted in disk activity;
the vm _ minjit field gives the number of page faults incurred in simulation of
reference bits; vm nswap is the number of swaps which occurred. The number of file
system input/output events are reported in vm _inblk and vm _ oublk These numbers
account only for real I/O. Data supplied by the caching mechanism is charged only
to the first process to read or write the data.

See Also
wait3(2), time(3)

Subroutines 3-191

X/Open curses Routines (3eur)

Insert tabbed divider here.
Then discard this sheet.

Name

Syntax

intro (3cur)

intro - introduction to the X/Open Curses Package, which optimizes terminal screen
handling and updating

#include <cursesX.h>
cc [options] files -lcursesX [libraries]

Description

The curses (cursor optimization) package is the X/Open set of library routines used
for writing screen-management programs. Cursor optimization minimizes the amount
the cursor has to be moved around the screen in order to update it. Screen
management programs are used for tasks such as moving the cursor, printing a menu,
dividing a terminal screen into windows or drawing a display on a screen for data
entry and retrieval.

The curses package is split into three parts: screen updating, screen updating with
user input, and cursor motion optimization. Screen-updating routines are used when
parts of the screen need to be changed but the overall image remains the same. The
cursor motion part of the package can be used separately for tasks such as defining
how the cursor moves in response to tabs and newline characters

The curses routines do not write directly to the terminal screen (the physical
screen): instead, they write to a window, a two-dimensional array of characters
which represents all or part of the terminal screen. A window can be as big as the
terminal screen or any smaller size down to a single character.

The <cursesX. h> header file supplies two default windows, stdscr (standard
screen) and curser (current screen) for all programs using curses routines. The
stdscr window is the size of the current terminal screen. The curser window is
not normally accessed directly by the screen-management program; changes are made
to the appropriate window and then the refresh routine is called. The screen
program keeps track of what is on the physical screen and what is on stdscr.
When refresh is called, it compares the two screen images and then sends a
stream of characters to the terminal to make the physical screen look like stdscr.

The header file <cursesX. h> defines stdscr to be of the type WINDOW*. This
is a pointer to a C structure which includes the starting position of the window on the
screen and the window size.

Some curses routines are designed to work with a pad. A pad is a type of
window whose size is not restricted by the size of the screen. Use a pad when you
only need part of a window on the screen at anyone time, for example when running
a spreadsheet application.

Other windows can be created with newwin and used instead of stdscr for
maintaining several different screen images, for example, one window can control
input/output and another can display error messages. The routine subwin creates
subwindows within windows. When windows overlap, the contents of the current
screen show the most recently refreshed window.

Subroutines 3-193

intro (3cur)

Among the most basic routines are move and addch. These routines are used to
move the cursor around and to add characters to the default window, stdscr.

All curses data is manipulated using the routines provided by the curses library.
You should not use routines or system calls from other libraries in a curses
program as they may cause undesirable results when you run the program.

Using Curses

The curses library has three types of routines; Main routines, TERMINFO routines
and TERMCAP compatibility routines

The terminfo routines are a group of routines within the curses library which
provide a database containing descriptions of many terminals that can be used with
curses programs. The term cap compatibility routines are provided as a conversion
aid for programs using termcap.

Most screen handling can be achieved using the Main routines. The following hints
should help you make the most of the screen-handling routines.

The <cursesX. h> header file must always be included whenever curses
functions are used in a program. Note that the header file includes <sgtty. h> to
enable the terminal to use the features provided by UL TRlX. All the manual
definitions assume that <cursesX. h> has been included in the code.

The header file defines global variables and data structures, and defines several of the
routines as macros. The integer variables LINES and COLS are defined so that when
a curses program is run on a particular terminal, initscr assigns the vertical and
horizontal dimensions of the terminal screen to these variables.

A curses program must start by calling the routine initscr to allocate memory
space for the windows. It should only be called once in a program, as it can
overflow core memory if it is called repeatedly. The routine endwin is used to exit
from the screen-handling routines.

Most interactive screen-oriented programs need character-at-a-time input without
echoing. To achieve this, you should call:

nonl () ;
cbreak();
noecho();

immediately after calling ini tscr. All curses routines that move the cursor,
move it relative to the home position in the upper left comer of the screen. The
(LINES, COLS) coordinate at this position is (1,1). Note that the vertical coordinate

y is given first and the horizontal coordinate x is given second. The -1 in the
example program takes the home position into account to place the cursor on the
centre line of the terminal screen. The example program displays MIDSCREEN in
the centre of the screen. Use the refresh routine after changing a screen to make
the terminal screen look like stdscr.

Example Program
#include <cursesX.h>
main ()

initscr(); /*initialize terminal settings, data
** structures and variables*/

move(LINES/2 -1, COLS/2 -4);

3-194 Subroutines

intro (3cur)

addstr ("MID") ;
refresh(); /* send output to update terminal

** screen */
addstr ("SCREEN") ;
refresh(); /* send more output to terminal

** screen */
endwin(); /*restore all terminal settings */

Main Routines

Routines listed here can be called when using the curses library. Routines that are
preceded by a w affect a specified window, those preceded by a p affect a specified
pad. All other routines affect the default window stdscr. Windows are specified
by a numeric argument, for example: winch (win) where win is the specified
window.

addch(ch)

addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vert, hor)

clear()
clearok(win, bi)
clrtobot()
clrtoeol()
cbreak()
delay _output(ms)
delch()
deleteln()
delwin(win)
doupdate()
echo()
endwin()
erase()
erasechar()
fixterm()
fiash()
fiushinp()
getch()
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has_He)
idlok(win, bi)

Add a character to stdscr (like putchar wraps to next
line at end of line)
Call addch with each character in str
Tum off named attributes
Tum on named attributes
Set current attributes to attrs
Display current terminal speed
Sound beep on terminal
Draw a box around edges of win,
vert and hor are characters to use for vertical
and horizontal edges of box
Clear stdscr
Clear screen before next redraw of win
Clear to bottom of stdscr
Clear to end of line on stdscr
Set cbreak mode
Insert ms millisecond pause in output
Delete a character
Delete a line
Delete win
Update screen from all wnoutrefresh
Set echo mode
End window modes
Erase stdscr
Return user's erase character
Restore tty to in "curses" state
Flash screen or beep
Throwaway any typeahead
Get a character from tty
Get a string through stdscr
Establish current tty modes
Get (y, x) coordinates
True if terminal can do insert character
True if terminal can do insert line
Use terminal's insert/delete line if bf != a

Subroutines 3-195

intro (3cur)

inch()
initscr()

Get character at current (y, x) coordinates
Initialize screens

insch(c) Insert a character
Insert a line insertln()

intrflush(win, bi)
keypad(win, bi)
killchar()
leaveok(win, flag)

Interrupt flush output if bf is TRUE
Enable keypad input
Return current user's kill character
Leave cursor anywhere after refresh if
flag!=O for win. Otherwise cursor must be left
at current position

longname()
meta(win, flag)
move(y, x)

Return verbose name of terminal
Allow meta characters on input if flag != 0
Move to (y, x) on stdscr

NOTE: The following routines prefixed with mv require y and x coordinates to
move to, before performing the same functions as the standard routines. As an
example, mvaddch performs the same function as addch, but y and x coordinates
must be supplied first. The routines prefixed with mvw also require a window or pad
argument.

mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow,
newcol)
mvde1ch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fInt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwde1ch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fInt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)
newterm(type, fd)

newwin(lines, cols,
begin_y, begin_x)
nlO
nocbreak()
nodelay(win, bi)
noecho()
nonl()
norawO

3-196 Subroutines

low level cursor motion

Create a new pad with given dimensions
Set up new terminal of given type to output
on fd
Create a new window

Set newline mapping
Unset cbreak mode
Enable nodelay input mode through getch
Unset echo mode
Unset newline mapping
Unset raw mode

overlay(winl, win2)
overwrite(winl, win2)
pnoutrefresh(pad, pminrow,
pmincol, sminrow, smincol,
smaxrow, smaxcol)
prefresh(pad, pminrow,
pmincol, sminrow, smincol,
smaxrow, smaxcol)
printw(fmt, argl, arg2, ...)
raw()
refresh()
resetterm()
resetty()
saveterm()
savetty()
scanw(fmt, argl, arg2, ...)
scroll(win)
scrollok(win, flag)
seCterm(new)
setscrreg(t, b)
setupterm(term, filenum, errret)
standend()
standout()
subwin(win, lines, cols,
begin_y, begin_x)
touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wc1ear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fint,
argl, arg2, ...)
wrefresh(win)
wscanw(win, fmt,

Overlay wini on win2
Overwrite wini on top of win2
Like prefresh but with no output
until doupdate called

intro (3cur)

Refresh from pad starting with given upper
left corner of pad with output to
given portion of screen
printf on stdscr
Set raw mode
Make current screen look like stdscr
Set tty modes to "out of curses" state
Reset tty flags to stored value
Save current modes as "in curses" state
Store current tty flags
scanf through stdscr
Scroll win one line
Allow terminal to scroll if flag != 0
Switch between different terminals
Set user scrolling region to lines t through b
Low level terminal setup
Clear standout mode attribute
Set standout mode attribute
Create a subwindow

"change" all of win
Turn off debugging trace output
Turn on debugging trace output
Use file descriptor fd to check typeahead
Produce printable version of ch
Add character to win
Add string to win
Turn off attrs in win
Turn on attrs in win
Set attrs in win to attrs
Clear win
Clear to bottom of win
Clear to end of line on win
Delete char from win
Delete line from win
Erase win
Get a character through win
Get a string through win
Get character at c~ent (y, x) in win
Insert char into win
Insert line into win
Set current (y, x) coordinates on win
Refresh but no screen output
printf on win

Make screen look like win
scanf through win

Subroutines 3-197

intro (3cur)

argl, arg2, ...)
wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

Caution

Set scrolling region of win
Clear standout attribute in win
Set standout attribute in win

The plotting library plot(3x) and the curses(3cur) library both use the names
erase () and move (). The curses versions are macros. If you need both
libraries, put the plot(3x) code in a different source file to the curses(3cur) code,
and/or #undef move () and erase () in the plot(3x) code.

TERMINFO Level Routines

If the environment variable TERMINFO is defined, any program using curses will
check for a local terminal definition before checking in the standard libraries. For
example, if the standard place is /usr / lib/terminfo, and set to vt100, the
compiled file will normally be found in /usr/lib/terminfo/v/vtlOO. The v
is copied from the first letter of vt100 to avoid creating huge directories. However, if
TERMINFO is set to /usr /mark/myterms, curses will first check
/usr/mark/myterms/v/vtlOO, and if that fails, will then check
/ u s r / 1 ib / t e rmi n f 0/ v / vt 1 0 O. This is useful for developing experimental
definitions or when there is no write permission for /usr /lib/terminfo.

These routines should be called by programs that need to deal directly with the
terminfo database, but as this is a low level interface, it is not recommended.

Initially, the routine setupterm should be called. This will define the set of
terminal-dependent variables defined in terminfo(5). The include files
<cursesX. h> and <term. h> should be included to get the definitions for these
strings, numbers, and flags. Parameterized strings should be passed through tparm
to instantiate them. All terminfo strings (including the output of tparm) should be
printed with tputs or putp. Before exiting, resetterm should be called to
restore the tty modes.

Programs which want shell escapes or <CTRLjZ> suspending can call resetterm
before the shell is called and fixterm after returning from the shell.

fixterm()

resetterm()
setupterm(term, fd, rc)

tparm(str, pi, p2, ... , p9)
tputs(str, affcnt, putc)

3-198 Subroutines

Restore tty modes for terminfo use
(called by setupterm)
Reset tty modes to state before program entry
Read in database. Terminal type is the
character string term, all output is to UL TRIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1
is normal. The simplest call would be
setupterm(O, I, 0) which uses all defaults
Instantiate string str with parms p.
Apply padding info to string str 1

affcnt is the number of lines affected,
or I if not applicable. Putc is a
putchar-like function to which the characters
are passed, one at a time

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

A function that calls tputs
(str, 1, putchar)
Output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below
Chars are passed to putchar-like
function putc
Like vidputs but outputs through
putchar

intro (3cur)

Termcap Compatibility Routines

Errors

The following routines were included as a conversion aid for programs that use
termcap. Their parameters are the same as for termcap. They are emulated using the
terminfo database.

DO NOT use these routines in new programs.

tgetent(bp, name) Look up termcap entry for name
tgetflag(id) Get boolean entry for id
tgetnum(id) Get numeric entry for id
tgetstr(id, area) Get string entry for id
tgoto(cap, col, row) Apply parms to given cap
tputs(cap, affcnt, fu) Apply padding to cap calling fn as putchar

As an aid to compatibility, the object module termcap . 0 has been provided in
/usr / lib/termcap. o. This module should be linked into an application before
resolving against the curses library. If your application contains references such as
UP then recompile using

cc [options] files /usr /lib/termcap. 0 -lcursesX [fibs]

No errors are defined for the curses functions.

Return Values
For most curses routines, the OK value is returned if a routine is properly
completed and the ERR value is returned if some error occurs.

See Also
ioctl(2), getenv(3), printf(3s), putchar(3s), scanf(3s), plot(3x), terminfo(5), tic(l),
termcap(5)
Guide to X/Open Curses Screen-Handling

Subroutines 3-199

addch (3cur)

Name

Syntax

addch, waddch, mvaddch, mvwaddch - add character to window

#include <cursesX.h>

int addclt(ch)
chtype ch;

int waddch(win, ch)
WINDOW *win;
chtype ch;

int mvaddch(y, x, ch)
int y, X;
chtype ch;

int mvwaddch(win, y, X, ch)
WINDOW *win;
int y, X;
chtype ch;

Description
The routine addch inserts the character ch into the default window at the current
cursor position and the window cursor is advanced. The character is of the type
chtype which is defined in the <cursesX. h> header file, as containing both data
and attributes.

The routine waddch inserts the character ch into the specified window at the current
cursor position. The cursor position is advanced.

The routine mvaddch moves the cursor to the specified (y, x) position and inserts
the character ch into the default window. The cursor position is advanced after the
character has been inserted.

The routine mvwaddch moves the cursor to the specified (y, x) position and inserts
the character ch into the specified window. The cursor position is advanced after the
character has been inserted.

All these routines are similar to putchar. The following information applies to all
the routines.

If the cursor moves on to the right margin, an automatic newline is performed. If
scrollok is enabled, and a character is added to the bottom right corner of the
screen, the scrolling region will be scrolled up one line. If scrolling is not allowed,
ERR will be returned.

If ch is a tab, newline, or backspace, the cursor will be moved appropriately within
the window. If ch is a newline, the clrtoeol routine is called before the cursor is
moved to the beginning of the next line. If newline mapping is off, the cursor will be
moved to the next line, but the x coordinate will be unchanged. If ch is a tab the
cursor is moved to the next tab position within the window. If ch is another control
character, it will be drawn in the AX notation. Calling the inch routine after adding
a control character returns the representation of the control character, not the control
character.

3-200 Subroutines

addch (3cur)

Video attributes can be combined with a character by or-ing them into the parameter.
This will result in these attributes being set. The intent here is that text, including
attributes, can be copied from one place to another using inch and addch. For
further information, see standout(3cur).

The addch, mvaddch, and mvwaddch routines are macros.

Return Value
The addch, waddch, mvaddch, and mvwaddch functions return OK on success
and ERR on error.

See Also
clrtoeol(3cur), inch(3cur), scrollok(3cur), standout(3cur), putchar(3s)

Subroutines 3-201

addstr (3cur)

Name

Syntax

addstr, waddstr, mvaddstr, mvwaddstr - add string to window

#include <cursesX.h>

int addstr(str)
char *str;

int waddstr(win, str)
WINDOW *win;
char *str;

int mvaddstr(y, x, str)
int y, X;
char *str;

int mvwaddstr(win, y, X, str)
WINDOW *win;
int y, X;
char *str;

Description
The addstr routine writes all the characters of the null-terminated character string
str on the default window at the current (y, x) coordinates.

The routine waddstr writes all the characters of the null terminated character string
str on the specified window at the current (y, x) coordinates.

The routine mvaddstr writes all the characters ofthe null terminated character
string str on the default window at the specified (y, x) coordinates.

The routine mvwaddstr writes all the characters of the null terminated character
string str on the specified window at the specified (y, x) coordinates.

The following information applies to all the routines. All the routines return ERR if
writing the string causes illegal scrolling. In this case the routine will write as much
as possible of the string on the window.

These routines are functionally equivalent to calling addch or waddch once for
each character in the string.

The routines addstr, mvaddstr, and mvwaddstr are macros.

Return Value
The addstr, waddstr, mvaddstr, and mvwaddstr functions return OK on
success and ERR on error.

See Also
addch(3cur), waddch(3cur)

3-202 Subroutines

Name

Syntax

attroff (3cur)

attroff, attron, attrset, standend, standout, wstandend, wstandout, wattroff, wattron,
wattrset - attribute manipulation

#include <cursesX.h>

int attroff(attrs)
int attrs;

int wattroff(win, attrs)
WINDOW *win;
int attrs;

int attron(attrs)
int attrs;

int wattron(win, attrs)
WINDOW *win;
int attrs;

int attrset(attrs)
int attrs;

int wattrset(win, attrs)
WINDOW *win;
int attrs;

int standend()

wstandend(win)
WINDOW *win;

int standout()

int wstandout(win)
WINDOW *win;

Description
These routines manipulate the current attributes of a window.

The routine attroff turns off the named attributes (attrs) of the default window
without turning any other attributes on or off.

The routine attron turns on the named attributes of the default window without
affecting any other attributes.

The routine at t r set sets the current attributes of the default window to the named
attributes attrs, which is of the type chtype, and is defined in the
<cursesX. h> header file.

The routine standout switches on the best highlighting mode available on the
terminal for the default window and it is functionally the same as
attron(A_STANDOUT1) .

Subroutines 3-203

attroff (3cur)

The routine standend switches off all highlighting associated with the default
window. It is functionally the same as attrset(O), in that it turns off all attributes.

The routine wattroff switches off the named attributes, attrs, for the specified
window. Other attributes are not changed.

The routine watt ron turns on the named attributes of the specified window without
affecting any others.

The routine wattrset sets the current attributes of the specified window to
attrs.

The routine wstandout switches on the best highlighting mode available on the
terminal for the specified window. Functionally it is the same as
wattron(A_STANDOUT1) .

The routine wstandend switches off all highlighting associated with the specified
window. Functionally it is the same as wattrset(O); that is, it turns off all
attributes.

Attributes

Attributes can be any combination of A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_BLINK and A_UNDERLINE. These constants are defined in the
<cursesX. h> header file. They are also described in the Guide to X/Open Curses
Screen-Handling. Attributes can be combined with the C language I (or) operator.

The current attributes of a window are applied to all characters that are written into
the window with addch or waddch. Attributes are properties of the character, and
move with the character through any scrolling and insert/delete line/character
operations. Within the restrictions set by the terminal hardware they will be
displayed as the graphic rendition of characters put on the screen.

The routines attroff, attron and attrset are macros.

Return Value
Theattroff,wattroff,attron,wattron,attrset,wattrset,
standend, wstandend, standout, and wstandout functions return OK on
success and ERR on error.

See Also
addch(3cur)
Guide to X/Open Curses Screen-Handling

3-204 Subroutines

baud rate (3cur)

Name
baudrate - return terminal baudrate

Syntax
int baudrate()

Description
The baudrate routine returns the output speed of the terminal in bits per second,
for example 9600, as an integer.

Return Value
The baudrate function returns the baudrate in bits per second.

Subroutines 3-205

beep (3cur) .

Name

Syntax

beep, flash - generate audiovisual alarm

#include <cursesX.h>

int beep()

int ftash()

Description
The beep routine sounds the audible alarm on the terminal, if possible, otherwise it
flashes the screen.

The routine flash flashes the screen, if possible, otherwise it sounds the audible
alarm.

If neither signal can be used on a particular terminal, nothing happens.

Return Value
The beep and flash functions return OK on success and ERR on error.

3-206 Subroutines

Name

Syntax

box - draw box

#include <cursesX.h>

int box(win, vert, hor)
WINDOW *win;
chtype vert, hor;

box (3cur)

Description
The box routine draws a box around the edge of the window. The arguments vert
and hor are the vertical and horizontal characters the box is to be drawn with.

If vert and hor are 0 or unspecified, then default characters are used.

If scrolling is disabled and the window encompasses the bottom right corner of the
screen, all corners are left blank to avoid an illegal scroll.

Return Value
The box function returns OK on success and ERR on error.

Subroutines 3-207

cbreak (3cur)

Name

Syntax

cbreak, nocbreak - set/clear cbreak mode

int cbreak()

int nocbreak()

Description
The routine cbreak puts the terminal into CBREAK mode. In this mode,
characters typed by the user are immediately available to the program and etase/kill
character processing is not performed. Interrupt and flow control characters are
unaffected by this mode.

The routine nocbreak disables CBREAK. In this case the terminal driver will
buffer input until a newline or carriage return is typed.

The initial settings that determine whether or not a terminal is in CBREAK mode are
dependent on the terminal driver implementation. As a result of this, it is not
possible to determine if a terminal is in CBREAK mode, as it is an inherited
characteristic. It is necessary to call cbreak to ensure that the terminal is set to the
correct mode for the application.

Return Value
The cbreak and nobreak functions retum OK on success and ERR on error.

3-208 Subroutines

Name

Syntax

clear, wclear - clear window

#include <cursesX.h>

int c1ear()

int wclear(win)
WINDOW *win;

clear (3cur)

Description
The clear routine resets the entire default window to blanks and sets the current
(y, x) coordinates to (0, 0).

The routine wclear resets the entire specified window to blanks and sets the current
(y, x) coordinates to (0, 0).

The clear routine assumes that the screen may have garbage on it that it doesn't
know about. The routine first calls era s e which copies blanks to every position in
the default window, and then clearok, which clears the physical screen completely
on the next call to refresh for stdscr .

The routine clear is a macro.

Return Value
The clear and wclear functions return OK on success and ERR on error.

See Also
clearok(3cur), erase(3cur), refresh(3cur)

Subroutines 3-209

clearok (3cur)

Name

Syntax

clearok - enable screen clearing

#include <cursesX.h>

int clearok(win, bf)
WINDOW *win;
bool bf;

Description
If b f is TRUE, the next call to re f re s h(3cur) for the specified window will clear
the window completely and redraw the entire window without changing the original
screen's contents. This is useful when the contents of the screen are uncertain. If the
window is stdscr the entire screen is redrawn.

Return Value
The clearok function returns OK on success and ERR on error.

See Also
refresh(3cur)

3-210 Subroutines

Name

Syntax

clrtobot, wclrtobot - clear to end of screen

#include <cursesX.h>

int clrtobot()

int wclrtobot(win)
WINDOW *win;

clrtobot (3cur)

Description

The clrtobot routine begins at the current cursor position in the default window
and changes the remainder of the screen to blanks. The current cursor position is also
changed to a blank.

The wclrtobot routine begins at the current cursor position in the specified
window and changes the rest of the screen to blanks, including the current cursor
position.

The routine clrtobot is a macro.

Return Value
The clrtobot and wclrtobot functions return OK on success and ERR on error.

Subroutines 3-211

clrtoeol (3cur)

Name

Syntax

clrtoeol, wclrtoeol - clear to end of line

#include <cursesX.h>

int c1rtoeol()

int wclrtoeol(win)
WINDOW *win;

Description
The clrtoeol routine erases the current line to the right of the cursor, inclusive, on
the default window.

The routine wclrtoeol erases the current line to the right of the cursor, inclusive,
on the specified window.

The routine clrtoeol is a macro.

Return Value
The clrtoeol and wclrtoeol functions return OK on success and ERR on error.

3-212 Subroutines

Name

Syntax

deCprog_mode, deCshelCmode - save terminal modes

int def yrog_ mode()

int deCshell_mode()

Description
The defyrog_mode routine saves the current terminal modes as the program if
the terminal is running under curses. The stored terminal modes are used by the
reset prog mode(3cur) routine. This function is used whert the user makes a
temporary exit from curses.

The routine def shell mode saves the current terminal modes as the shell if the
terminal is not rmming under curses. The stored terminal modes are used by the
reset_shell_mode(3cur) routine.

Both routines are called automatically by in its cr(3cur).

Return Value
The defyrog_mode and def_shell_mode functions return OK on success and
ERR on errOr.

See Also
initscr(3cur), resecprog_mode(3cur), resecsheICmode(3cur)

Subroutines 3-213

delay_output (3cur)

Name

Syntax

delay_output - cause short delay

int delay output(ms)
int ms; -

Description
Insert 10 x ms millisecond pause in output. The largest number allowed for ms is
0.5 seconds (500 milleseconds).

Return Value
The delay_output function returns OK on success and ERR on error.

3-214 Subroutines

Name

Syntax

delch, mvdelch, mvwdelch, wdelch - remove character from window

#include <cursesX.b>

int delcb()

int wdelcb(win)
WINDOW *win;

int mvdelcb(y, x)
int y, x;

iot mvwdelcb(wio, y, x)
WINDOW *win;
iot y, x;

delch (3cur)

Description
The delch routine deletes the character under the cursor in the default window. All
characters to the right on the same line are moved to the left one position and the last
character on the line is filled with a blank. The cursor position does not change.

The routine wdelch deletes the character under the cursor in the specified window.
All characters to the right on the same line are moved to the left one position and the
last character on the line is filled with a blank. The cursor position does not change.

The routine mvdelch moves the cursor to the specified position in the default
window. The character found at this location is deleted. All characters to the right
on the same line are moved to the left one position and the last character on the line
is filled with a blank. The cursor position does not change.

The routine mvwdelch moves the cursor to the specified position in the specified
window. The character found at this location is deleted. All characters to the right
on the same line are moved to the left one position and the last character on the line
is filled with a blank. The cursor position does not change.

The routines delch, mvdelch and mvwdelch are macros.

Return Value
The delch, mvdelch, mvwdelch and wdelch functions return OK on success
and ERR on error.

Subroutines 3-215

deleteln (3cur)

Name

Syntax

deleteln, wdeleteln - remove line from window

#include <:cursesX.h>

int deleteln()

int wdeleteln(win)
WINDOW *win;

Description
The deleteln routine deletes the current line of the default window. Alllines
below the current line are moved up one line. The bottom line of the window is
cleared. The cursor poSition does not change.

The routine wdeletelh deietes the current line of the specified window. Alliines
below the current line are moved up one line. The bottom line of the window is
cleared. The cursor position does not change.

The routine deleteln is a macro.

Return Value
The deleteln and wdeleteln functions return OK on success and ERR on error.

3-216 Subroutines

Name

Syntax

delwin - delete window

#include <cursesX.h>

int delwin(win)
wINnow *win;

Description

delwin (3cur)

The delwin routine deletes the named window, freeing all memory associated with
it. Where windows overlap, sub windows should be deleted before the main window.

Return Value
The delwin function returns OK on success and ERR on error.

Subroutines 3-217

draino (3cur)

Name

Syntax

draino - wait for output to drain

draino(ms)
int ms;

Description
This function waits until there is only ms milliseconds worth of output left in the
output queue. The restrictions on the number of milleseconds delay are detennined
by napms(3cur).

See Also
napms(3cur)

3-218 Subroutines

Name

Syntax

echo, noecho - enable/disable terminal echo

int echo()

int noecho()

echo (3cur)

Description
The echo routine enables echoing of characters typed by the user. The noecho
routine disables echoing of characters typed by the user.

Initially, input characters are echoed. Subsequent calls to echo and noecho do not
flush typeahead.

Return Value
The echo and noecho functions return OK on success and ERR on error.

Subroutines 3-219

endwin (3cur)

Name
endwin - restore initial terminal environment

Syntax
int endwin()

Description
This routine restores tty modes, moves the cursor to the lower left comer of the
screen and resets the terminal to the last non-curses mode.

A program should always call endwin before exiting or escaping from curses
mode temporarily. Call refresh or doupdate to resume after a temporary
escape.

Return Value
The endwin function returns OK on success and ERR on error.

See Also
doupdate(3cur), refresh(3cur)

3-220 Subroutines

Name

Syntax

erase, werase - copy blanks into window

#include <cursesX.h>

int erase()

int werase(win)
WINDOW *win;

erase (3cur)

Description
The erase routine copies blanks to every position in the default window, the
we r a s e routine copies blanks to every position in the specified window.

The routine era s e is a macro.

Return Value
The erase and werase functions return OK on success and ERR on error.

Subroutines 3-221

erasechar (3cur)

Name

Syntax

erasechar - return current ERASE character

#include <cursesX.h>

char erasechar()

Description
The user's current erase character is returned.

Return Value
The erasechar function returns the user's current erase character.

3-222 Subroutines

Name

Syntax

ftushinp - discard typeahead

#include <cursesX.h>

int flushinp()

Description

flushinp (3cur)

Any typeahead input that has not been read by the program is discarded.

Return Value
The flushinp function returns OK on success and ERR on error.

See Also
typeahead(3cur)

Subroutines 3-223

getch (3cur)

Name

~yntax

getch, mvgetch, mvwgetch, wgetch - read character

#include <cursesX.h>

int getch()

int wgetch(win)
WINDOW *win;

int mvgetch(y, x)
int y, x;

int mvwgetch(win, y, x)
WINDOW *win;
int y, x;

Description
The getch routine reads a character from the terminal associated with the default
window.

The wgetch routine reads a character from the terminal associated with the specified
window.

The routine rnvgetch reads a character from the terminal associated with the default
window at the specified position.

The routine rnvwgetch reads a character from the terminal associated with the
specified window at the specified position.

The following information applies to all the routines. In nodelay mode, if there is
no input waiting, the integer ERR is returned. In delay mode, the program waits
until the system passes text through to the program. Usually the program will restart
after one character or after the first newline, but this depends on how cbreak is set.
The character will be echoed on the designated window unless noecho has been set.

If keypad is TRUE, ami a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in the
<cursesX. h> header file with integers beginning with 0401. The function key
names begin with KEY _. Function keys and their respective integer values are
described in the Guide to X/Open Curses Screen-Handling

If a character is received that could be the beginning of a function key (such as
escape), curses sets a timer. If the remainder of the sequence does not come
within tne designated time, the character will be passed through, otherwise the
function key value is returned. Consequently, there may be a delay after a user
presse~ the escape key before the escape is returned to the program.

~ '. - ~

Usin~ the escape key for a single character function is discouraged.

The routines getch, rnvgetch and rnvwgetch are macros.

3-224 Subroutines

getch (3cur)

Return Value
Upon successful completion, the getch, mvgetch, and wgetch functions return
the character read.

If in delay mode and no data is available, ERR is returned.

See Also
cbreak(3cur), keypad(3cur), nodelay(3cur), noecho(3cur)
Guide to X/Open Curses Screen-Handling

Subroutines 3-225

getstr (3cur)

Name

Syntax

getstr, mvgetstr, mvwgetstr, wgetstr - read string

#include <cursesX.h>

int getstr(str)
char *str;

int wgetstr(win, str)
WINDOW *win;
char *str;

int mvgetstr(y, x, str)
int y, x;
char *str;

int mvwgetstr(win, y, x, str)
WINDOW *win;
int y, x;
char *str;

Description
The getstr routine reads characters from the terminal associated with the default
window and stores them in a buffer until a carriage return or newline is received from
stdscr. The routine getch B is called by getstr to read each character.

The routine wgetstr reads characters from the terminal associated with the
specified window. The characters are read from the current cursor position until a
newline or carriage return is received.

The routine mvgetstr reads characters from the terminal associated with the default
window. The characters are read from the specified cursor position until a newline or
carriage return is received.

The routine mvwgetstr reads characters from the terminal associated with the
specified window. The characters are read from the specified cursor position until a
newline or carriage return is received.

The following information applies to all the routines.

The resulting string is placed in the area pointed to by the character pointer s t r .
The user's erase and kill characters are interpreted. The area used to hold the string
is assumed to be large enough to handle it, as getstr does not check for buffer
overflow. If the area is not large enough, the result will be unpredictable.

The routines getstr, mvgetstr and mvwgetstr are macros.

3-226 Subroutines

getstr (3cur)

Return Value
The getstr, mvgetstr, mvwgetstr and wgetstr functions return OK on
success and ERR on error.

See Also
getch(3cur)

Subroutines 3-227

getyx (3cur)

Name

Syntax

getyx - get cursor position

#include <cursesX.h>

int getyx(win, y, x)
WINDOW *win;
int y, x;

Description
The cursor coordinates of the window are placed in the two integer variables y and
x . This routine is implemented as a macro, so no & is necessary before the
variables.

Return Value
No return value is defined for this function.

3-228 Subroutines

Name

Syntax

has_ic - detennine whether insert/delete character available

#include <cursesX.h>

t>ool has Jc()

Descriptjon
True if the tenninal has insert- and delete-character capabilities.

The routines insch and delch are always available in the curses library if the
tenninal does not have the required capabilities.

Return Value
This function returns TRUE if the tenninal has insert character and delete character
capabilities, otherwise it returns FALSE.

See Also
delch(3cur), insch(3cur)

Subroutines 3-229

Name

Syntax

has_il - detennine whether insert/delete line is available

#include <cursesX.h>

bool has Jl()

Description
This function will return the value TRUE if the tenninal has insert- and delete-line
capabilities, or if it can simulate them using scrolling regions. This function might
be used to check if it would be appropriate to turn on physical scrolling using the
scrollok routine.

The routines insertln and deleteln are always available in the curses library
if the tenninal does not have the required facilities.

Return Value
This function returns TRUE if the tenninal has insert line and delete line capabilities,
or can simulate them using scrolling regions, otherwise it returns FALSE.

See Also
deleteln(3cur), insertln(3cur), scrollok(3cur)

3-230 Subroutines

Name

Syntax

idlok - enable use of insert/delete line

#include <cursesX.h>

int idfok(win, bf)
WINDOW *win;
boof bf;

idlok (3cur)

Description
If enabled (bf is TRUE), curses uses the insert/delete line hardware of terminals
if it is available. If disabled, curses will not use this feature. This option should be
enabled only if the application needs insert/delete line; for example, for a screen
editor. It is disabled by default as insert/delete line can be visually annoying when
used in some applications.

If insert/delete line cannot be used, curses will redraw the changed portions of all
lines.

NOTE

The terminal hardware insert/delete character feature is always used if
available.

Return Value
The idlok function returns OK on success and ERR on error.

Subroutines 3-231

inch (3cur)

Name

Syntax

inc~, mvinch, mvwinch, winch - return character from window

#include <cursesX.h>

chtype inch,O

ch~ype wi~ch(win)
WINDOW *win;

chtype ~vinch(y, x)
int y, x;

chtype mvwinch(win, y, x)
WINDOW*win;
int y, X;

Description
The inch routine returns the character at the current cursor position in the default
window. If any attributes are set for that character, their values will be or-ed into
the value returned.

The routine mvinch returns the character at the specified po&ition in the default
window. If any attributes are set for that positton, their values will be or-ed ipto
the value returned. ' .

The winch routine returns the character at the current position in the named
window. If any attributes are set for that position, their values will be or-ed into
the value returned. .

The mvwinch routine returns the character at the specified position in the named
window. If any attributes are set for that positio:p, their values will be or-ed into
the value retwned. .

The following information applies to all the rOlltipes.
!

The predefined constants A_CHARTEXT and A_ATTRIBUTES, defined in
<cursesX. h>, can be used with 'the & (logical and) operator to ~xtract the
character or attributes alon~.

The inch, winch, mvinch and mvwinch routines are lJlacr<~s.

Ret",rn Value
Upon succesilful completion, the inch, mvinch, mvwinch and winch functions
retuin the Eharacter at the selected position. Otherwise, the mvinch and mvwinch
functions return ERR.

3-232 Subroutines

Name

Syntax

initscr - initialize terminal environment

#include <cursesX.h>

WINDOW *initscr

initscr(3cur)

Description
This routine determines the terminal type, initializes all curses data structures and
allocates memory space for the windows. It also arranges that the first call to the
refresh routine will clear the screen.

The first routine called in a program using curses routines should almost always be
in its cr. If errors occur, in its c r will write an appropriate error message to
standard error and exit. If the program needs an indication of error conditions,
newterm should be used instead of ini tscr.

Note that the curses program should only call initscr once as it may overflow
core memory if it is called repeatedly. If this does occur, ERR is returned.

Return Value
The ini tscr function returns stdscr on success, and calls exit on error.

See Also
newterm(3cur), refresh(3cur)

Subroutines 3-233

insch (3cur)

Name

Syntax

insch, mvinsch, mvwinsch, winsch - insert character

#include <cursesX.h>

int insch(ch)
chtype ch;

int winsch(win, ch)
WINDOW *win;
chtype ch;

int mvinsch(y, x, ch)
int y, X;
chtype ch;

int mvwinsch(win, y, X, ch)
WINDOW *win;
int y, X;
chtype ch;

Description

The insch routine inserts the character ch at the current cursor position on the
default window.

The mvinsch routine inserts the character ch at the specified cursor position on the
default window.

The winsch routine inserts the character ch at the current cursor position on the
specified window.

The mvwinsch routine inserts the character ch at the specified cursor position on
the specified window.

All the routines cause the following actions. All characters from the cursor position
to the right edge are moved one space to the right. The last character on the line is
always lost, even if it is a blank. The cursor position does not change after the insert
is completed.

The insch, mvinsch and mvwinsch routines are macros.

Return Value
The insch, mvinsch, mvwinsch, and winsch functions return OK on success
and ERR on error.

3-234 Subroutines

Name

Syntax

insertln, winsertln - insert line

#include <cursesX.h>

int insertln()

int winsertln(win)
WINDOW *win;

------------- ----

insertln (3cur)

Description
The insertln routine inserts a blank line above the current line in the default
window. All lines below and including the current line are moved down. The bottom
line is lost and the current line becomes blank. The (y, x) coordinates are unchanged.

The winsertln routine inserts a blank line above the current line on the specified
window. All lines below and including the current line are moved down. The bottom
line is lost and the current line becomes blank. The (y, x) coordinates are unchanged.

The routine insertln is a macro.

Return Value
The insertln and winsertln functions return OK on success and ERR on error.

Subroutines 3-235

intrflush (3cur)

Name

Syntax

intrflush - enable flush on interrupt

#ioclude <cursesX.h>

iot iotrfiush(wio, bf)
WINDOW *wio;
bool bf;

Description
If intrflush is enabled, pressing an interrupt key (interrupt, break, quit) flushes
all output in the tty driver queue. This gives the effect of a faster response to the
interrupt but causes the curses program to have an inaccurate picture of what is on
the screen. Disabling the option prevents the flush.

The default for the option is dependent on the tty driver settings. You have to force
the terminal into the state you require. The window argument is ignored.

Return Value
The intrflush function returns OK on success and ERR on error.

3-236 Subroutines

Name

Syntax

keypad - enable keypad

#include <cursesX.h>

int keypad(win, bf)
WINDOW *win;
bool bf;

keypad (3cur)

Description
This option enables the keypad of the user's terminal. If the keypad is enabled,
pressing a function key (such as an arrow key) will return a single value representing
the function key. For example, pressing the left arrow key results in the value
KEY_LEFT being returned.. For more information see the Guide to X/Open Curses
Screen-Handling.

The routine get ch is used to return the character. If the keypad is disabled,
curses does not treat function keys as special keys and the program interprets the
escape sequences itself. Keypad layout is terminal dependent; some terminals do not
even have a keypad.

Return Value
The keypad function returns OK on success and ERR on error.

See Also
getch(3cur)
Guide to X/Open Curses Screen-Handling

Subroutines 3-237

killchar (3cur)

Name

Syntax

killchar - return current kill character

#include <cursesX.h>

char killchar()

Description
The user's current line kill character is returned.

Return Value
The killchar function returns the user's current line kill character.

3-238 Subroutines

Name

Syntax

leaveok - enable non-tracking cursor

#include <cursesX.h>

int leaveok(win, bf)
WINDOW *win;
boo) bf;

leaveok (3cur)

Description
This option allows the cursor to be left wherever the update happens to leave it.
Normally, the cursor is left at the current location (y, x) of the window being
refreshed. This routine is useful for applications where the cursor is not used, since it
reduces the need for cursor motions. If possible, the cursor is made invisible when
this option is enabled.

This option is initially disabled, and is not enabled until the value of b f is changed
from FALSE to TRUE.

Return Value
The leaveok function returns OK on success and ERR on error.

Subroutines 3-239

long name (3cur)

Name
longname - return full terminal type name

Syntax
char *Iongname()

Description
This routine returns a pointer to a static area containing a verbose description of the
current terminal. The maximum length of a verbose description is 128 characters. It
is defined only after the call to the initscr routine or the newterm routine.

The static area is overwritten by each call to newterm and is not restored by
set term. The value should be saved between calls to newterm if longname is
going to be used with multiple terminals.

Return Value
The longname function returns a pointer to a verbose description of the current
terminal on success and the null pointer on error.

See Also
initscr(3cur), newterm(3cur), secterm(3cur)

3-240 Subroutines

Name

Syntax

meta - force the number of significant bits on input

meta(win, bf)
WINDOW *win;
bool bf;

meta (3cur)

Description
This function forces the user's terminal to return 7 or 8 significant bits on input. To
force 8 bits to be returned, invoke met a with b f as TRUE. To force 7 bits to be
returned, invoke meta with bf as FALSE.

The window argument is always ignored, but it must still be a valid window to avoid
compiler errors.

Subroutines 3-241

move (3cur)

Name

Syntax

move, wmove - move cursor in window

move(y, x)

wmove(win, y, x)
WINDOW *win;
int y, x;

Description
The move routine moves the cursor associated with the default window to the given
location (y, x), where y is the row, and x is the column. This routine does not move
the physical cursor of the terminal until the refresh routine is called.

The wmove routine moves the cursor associated with the specified window to the
given location (y, x). This does not move the physical cursor of the terminal until
the wrefresh routine is called.

For both routines the position specified is relative to the upper left corner of the
window, which is (0,0).

The routine move is a macro.

See Also
refresh(3cur), wrefresh(3cur)

3-242 Subroutines

Name

Syntax

mvcur - low-level cursor movement

mvcur(oldrow, oldcol, newrow, newcol)
int oldrow, oldco), newrow, newco);

Description
This function controls low-level cursor motion with optimization.

mvcur (3cur)

Subroutines 3-243

mvwin (3cur)

Name

Syntax

mvwin - move window

mvwin(win, y, x)
WINDOW *win;
int y, x;

Description
Move the window so that the upper left comer will be at position (y, x). It is an
error to move the window off the screen. If you try to do this the window is not
moved.

3-244 Subroutines

Name

Syntax

napms - sleep

oapms(ms)
iot ms;

napms (3cur)

Description
This function causes the program to sleep for ms milliseconds. The number of
milliseconds is limited to 1000.

Subroutines 3-245

newpad (3cur)

Name

Syntax

newpad - create new pad

#include <cursesX.h>

WINDOW *newpad(nlines, ncols)
int nlines, ncols;

Description
The newpad routine creates a new pad data structure. A pad differs from a window
in that it is not restricted by the screen size, and it is not necessarily associated with a
particular part of the screen. Pads can be used when large windows are needed. Only
part of the pad will be on the screen at anyone time.

Automatic refreshes of pads for example, from scrolling or echoing of input, do not
occur.

You cannot call the refresh routine with a pad as an argument; use the routines
prefresh or pnoutrefresh instead.

Note that these two routines require additional parameters to specify both the part of
the pad to be displayed and the screen location for the display.

Return Value
On success the newpad function returns a pointer to the new WINDOW structure
created .. On failure the function returns a null pointer.

See Also
pnoutrefresh(3cur), prefresh(3cur), refresh(3cur)

3-246 Subroutines

Name

Syntax

newterm - open new terminal

#include <stdio.h>
#include <cursesX.h>

SCREEN *newterm(type, outfd, infd)
char *type;
FILE *outfd, *infd;

newterm (3cur)

Description
Programs using more than one terminal should call the newterm routine for each
terminal instead of initscr. The routine newterm should be called ONCE for
each terminal.

The newterm routine returns a variable of type SCREEN * which should be saved
as a reference to that terminal. There are three arguments. The first argument
type, is the type of the terminal to be used in place of TERM. The second
argument, outfd, is a file pointer for output to the terminal. The third argument,
infd, is a file pointer for input from the terminal. The program must also call the
endwin routine for each terminal, after each terminal has finished running a
curses application.

Return Value
On success the newterm function returns a pointer to the new SCREEN structure
created. On failure the function returns a null pointer.

See Also
endwin(3cur), initscr(3cur)

Subroutines 3-247

newwin (3cur)

Name

Syntax

newwin - create new window

#include <eursesX.h>

WINnOW *newwin(nlines, neols, beginJ, begin_x)
lnt nlines, neols, beginJ, begin_x;

Description
The function newwin creates a new window with the number of lines, nlines,
and columns, neals. The upper left comer of the window is at line begin_y,
column begin_x.

tf either nlines or neals is zero, they will be defaulted to LINES - begin y
and COLS - begin_x. A new full-screen window is created by calling -
newwin(O,O,O,O).

Return Value
On success the newwin function returns a pointer to the new WINDOW structure
created. On failure the function returns a null pointer.

3-248 Subroutines

Name

Syntax

nl, nonl - enable/disable newline control

#include <cursesX.h>

int nl()

int nonl()

nl (3cur)

Description
The nl routine enables the newline control translations. When newline control is
enabled, a newline is translated into a carriage return and a linefeed on output, and a
return is translated into a newline on input. Initially, these translations do occur.

The non 1 routine disables these translations, allowing the curses program to use
the linefeed capability of the terminal, resulting in faster cursor motion. The nl
routine is a macro.

Return Value
The nl and nonl functions return OK on success and ERR on error.

Subroutines 3-249

nodelay (3cur)

Name

Syntax

nodelay - disable block during read

#include <cursesX.h>

int nodelay(win, bf)
WINDOW *win;
bool bf;

Description
This option causes the getch routine to be a non-blocking call. If no input is ready,
and nodelay is enabled, getch will return the integer ERR. If nodelay is
disabled, getch will wait until input is ready.

Return Value
The nodelay function returns OK on success and ERR on error.

See Also
getch(3cur)

3-250 Subroutines

Name

Syntax

overlay, overwrite - overlay windows

#include <cursesX.h>

int overlay(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

int overwrite(srcwin, dstwin)
WINDOW *srcwin, *dstwin;

overlay (3cur)

Description
The overlay routine copies all the text from the source window srcwin on top of
the destination window dstwin. The two windows are not required to be the same
size. The copy starts at (0, 0) on both windows. The copy is non-destructive, so
blanks are not copied.

The overwrite routine copies all of srcwin on top of destwin. The copy
starts at (0, 0) on both windows. This is a destructive copy as blanks are copied.

Return Value
The overlay and overwrite functions return OK on success and ERR on error.

Subroutines 3-251

prefresh (3cur)

Name

Syntax

prefresh, pnoutrefresh - refresh pad

#include <cursesX.h>

int prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
WINDOW *pad;
int pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol;

int pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
WINDOW *pad;
int pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol;

Description
The prefresh routine copies the specified pad to the physical terminal screen. It
takes account of what is already displayed on the screen to optimize cursor
movement.

The pnoutrefresh routine copies the named pad to the virtual screen. It then
compares the virtual screen with the physical screen and performs the actual update.

These routines are analogous to the routines wrefresh and wnoutrefresh
except that pads, instead of windows, are involved. Additional parameters are also
needed to indicate what part of the pad and screen are involved. The upper left comer
of the part of the pad to be displayed is specified by pminrow and pmincol. The
co-ordinates sminrow, smincol, smaxrow, and smaxcol specify the edges of
the screen rectangle that will contain the selected part of the pad.

The lower right comer of the pad rectangle to be displayed is calculated from the
screen co-ordinates. This ensures that the screen rectangle and the pad rectangle are
the same size.

Both rectangles must be entirely contained within their respective structures.

Return Value
The pre fresh and pnoutrefresh functions return OK on success and ERR on
error.

See Also
wnoutrefresh(3cur), wrefresh(3cur)

3-252 Subroutines

Name

Syntax

printw (3cur)

printw, mvprintw, mvwprintw, wprintw - formatted write to a window

#include <cursesX.h>

int printw(fmt [, arg] ...)
char *fmt;

int wprintw(win, fmt [, arg] ...)
WINDOW *win;
char *fmt;

int mvprintw(y, x, fmt [, arg] ...)
int y, X;
char *fmt;

int mvwprintw(win, y, X, fmt [, arg] ...)
WINDOW *win;
int y, X;
char *fmt;

Description
The printw routine adds a string to the default window starting at the current
cursor position. This routine causes the string that would normally be output by
printf to be output by addstr.

The routine wprintw adds a string to the specified window starting at the current
cursor position. This routine causes the string that would normally be output by
printf to be output by waddstr.

The routine mvprintw adds a string to the default window starting at the specified
cursor position. This routine causes the string that would normally be output by
printf to be output by addstr.

The routine mvwprintw adds a string to the specified window starting at the
specified cursor position. This routine causes the string that would normally be
output by printf to be output by waddstr.

All these routines are analogous to printf. It is advisable to use the field width
options of printf to avoid leaving unwanted characters on the screen from earlier
calls.

Return Values
The printw, mvprintw, mvwprintw, and wprintw functions return OK on
success and ERR on error.

See Also
addstr(3cur), waddstr(3cur), printf(3s)

Subroutines 3-253

putp(3cur)

Name

Syntax

putp - pad and output a string

putp(str)
char *str;

Description
The putp routine outputs the string str one character at a time. The routine
put char is used to control the output.

See Also
putchar(3s)

3-254 Subroutines

/

\

Name

Syntax

raw, noraw - enable/disable raw mode

int raw()

int noraw()

raw (3cur)

Description

The raw routine sets the terminal into RA W mode. RAW mode is similar to
CBREAK mode, in that characters are immediately passed through to the user
program as they are typed. In RA W mode, the interrupt, quit, suspend and flow
control characters are passed through uninterpreted, and do not generate a signal.

The behavior of the BREAK key depends on the settings of bits that are not
controlled by curses.

The noraw routine disables RAW mode.

Return Value
The raw and noraw functions return OK on success and ERR on error.

Subroutines 3-255

refresh (3cur)

Name

Syntax

refresh, wrefresh - refresh window

#include <cursesX.h>

iot refresh()

int wrefresh(win)
WINDOW *win;

Description
The routine wrefresh copies the named window to the physical terminal screen,
taking into account what is already there in order to optimize cursor movement.

The routine refresh does the same, using stdscr as a default screen.

These routines must be called to get any output on the terminal, as other routines
only manipulate data structures. .

Unless leaveok has been enabled, the physical cursor of the terminal is left at the
location oftl1e window's cursor. The routine refresh is a macro.

Return Value
The refresh and wrefresh functions retum OK on success and ERR on error.

See Also
leaveok(3cur)

3-256 SubrQutines

Name

Syntax

resetty, savetty - restore/save terminal modes

int resetty()

int savetty()

resetty (3cur)

Description
The savetty routine saves the current state of the terminal modes in a buffer. The
routine resetty restores the state of the terminal modes to what it was at the last
call to savetty.

Return Value
The resetty and savetty functions return OK on success and ERR on error.

Subroutines 3-257

Name

Syntax

reseCprog_mode, reseCshell_mode - restore tenninal mode

int reset_prog_modeO

int reset _ sbell_ mode()

Description

The resetyrog_mode routine restores the terminal modes to those saved by the
defyrog_mode routine.

The reset_sheIl_mode routine restores the terminal modes saved by the
def shell mode routine.

These routines are called automatically by endwin and doupdate after an
endwin. Nonnally these routines would not be called before endwin.

Return Value
The resetyrog_mode and reset_sheIl_mode functions return OK on
success and ERR on error.

See Also
deCprog_mode(3cur), deCshell_mode(3cur), doupdate(3cur), endwin(3cur)

3-258 Subroutines

Name

Syntax

restartterm - restart terminal for curses application

restartterm(term, filenum, errret)
char *term;
int filenum;
int *errret;

restartterm (3cur)

Description
This function sets up the current terminal term after a save/restore of a curses
application program. restartterm assumes that the windows and modes are the
same for the restarted application as when memory was saved. It assumes that the
terminal type and dependent settings, such as baudrate, may have changed. The
routine setupterm is called to extract the terminal information from the
terminfo database and set up the terminal.

See Also
setupterm(3cur), terminfo(5)

Subroutines 3-259

scanw (3cur)

Name

Syntax

scanw, mvscanw, mvwscanw, wscanw - fonnatted read from window

#include <cursesX.h>

int scanw(fmt [, arg] •••)
char *fmt;

int wscanw(win, fmt [, arg] ...)
WINDOW *win;
char *fmt;

int mvscanw(y, x, fmt [, arg] .•.)
int y, X;
char *fmt;

int mvwscanw(win, y, x, fmt [, arg] ...)
WINDOW *win;
int y, X;
char *fmt;

Description
These routines correspond to scanf. The function scanw reads input from the
default window. The function wscanw reads input from the specified window. The
function mvscanw moves the cursor to the specified position and then reads input
from the default window. The function mvwscanw moves the cursor to the specified
position and then reads input from the specified window.

For all the functions, the routine wgetstr is called to get a string from the window,
and the resulting line is used as input for the scan. All character interpretation is
carried out according to the scanf function rules.

Return Value
Upon successful completion, the scanw, mvscanw, mvwscanw and wscanw
functions return the number of items successfully matched. On end-of-file, they
return EOF. Otherwise they return ERR.

See Also
wgetstr(3cur), scanf(3s)

3-260 Subroutines

Name

Syntax

scroll - scroll window

#include <cursesX.h>

int scroIl(win)
WINnOW *win;

scroll (3cur)

Description
The window is scrolled up one line. This involves moving the lines in the window
data structure.

You would not normally use this routine as the terminal scrolls automatically if
scrollok is enabled. A typical case where scroll might be used is with a
screen editor.

Return Value
The scroll function returns OK on success and ERR on error.

See Also
scrollok(3cur)

Subroutines 3-261

scrollok (3cur)

Name

Syntax

scrollok - enable screen scrolling

#include <cursesX.h>

int scrollok(win, bj)
WINDOW *win;
bool bf;

Description
This option controls what happens when the cursor is moved off the edge of the
specified window or scrolling region, either from a newline on the bottom line, or
typing the last character of the last line. If disabled, (bfis FALSE) the cursor is left
on the bottom line. If enabled, the window is scrolled up one line and then refreshed.

Return Value
The scrollok function returns OK on success and ERR on error.

3-262 Subroutines

Name

Syntax

setscrreg, wsetscrreg - set scrolling region

#include <cursesX.h>

int setscrreg(top, bot)
int top, bot;

int wsetscrreg(win, top, bot)
WINDOW *win;
int top, bot;

setscrreg (3cur)

Description

The setscrreg routine sets the scrolling region for the default window.

The wsetscrreg routine sets the scrolling region for the named window. Use
these routines to set a software scrolling region in a window.

For both routines, the line numbers of the top and bottom margins of the scrolling
region are contained in top and bot. Line 0 is the top line of the window.

If this option and scrollok are enabled, an attempt to move off the bottom margin
line will cause all lines in the scrolling region to scroll up one line. Only the text of
the window is scrolled.

Return Value
No return values are defined for these functions.

See Also
scrollok(3cur)

Subroutines 3-263

setupterm (3cur)

Name

Syntax

setupterm - perform low level terminal setup

setupterm(term, filenum, errret)
char *term;
int filenum;
int *errret;

Description
This function sets up the terminal from the terminfo database. The parameter
term is the terminal type. If this parameter is set to NULL then the environment
variable TERM will be used. The filenum parameter is an ULTRIX file descriptor,
not a stdio pointer. It is used for all the output generated by setupterm.

The terminfo boolean, numeric and string values are stored in a structure of type
TERMINAL.

After setupterm returns successfully the variable cur_term is initialized. This
variable points to the TERMINAL structure. The cur_term pointer can be saved
before calling setupterm again as further calls to setupterm allocate new space;
the space pointed to by cur_term is not overwritten.

See Also
restartterm(3cur)

3-264 Subroutines

Name

Syntax

seCterm - switch between terminals

#include <cursesX.h>

SCREEN *set term(new)
SCREEN *new;

set_term (3cur)

Description
This routine is used to switch between different terminals. The screen reference new
becomes the new current terminal. The previous terminal screen reference is returned
by the routine.

This is the only routine which manipulates SCREEN pointers; all the others change
the current terminal only.

Return Value
The set_term function returns a pointer to the previous SCREEN structure on
success and a null pointer on error.

Subroutines 3-265

subwin (3cur)

Name

Syntax

subwin - create subwindow

#include <eursesX.h>

WINDOW *subwin(orig, nlines, neols, beginy, begin_x)
WINDOW *orig;
int nlines, neols, beginy, begin_x;

Description
This routine creates a new sub-window within a window. The dimensions of the
sub-window are nlines lines and ncols columns. The sub-window is at position
(begin_y, begin_x) on the screen. This position is relative to the screen, and
not to the window orig.

The sub-window is made in the middle of the window orig, so that changes made
to either window will affect both. When using this routine, it will often be necessary
to call touchwin before calling wrefresh.

Return Value
On success the subwin function returns a pointer to the new WINDOW structure
created. On failure the function returns a null pointer.

See Also
touchwin(3cur), wrefresh(3cur)

3-266 Subroutines

Name

Syntax

tgetent (3cur)

tgetent, tgetnum, tgoto, tgetstr, tgetftag - emulate termcap for old programs

int tgetent(bp, name)
char *bp, *name;

int tgetOag(id)
char *id;

tgetnum(id)
char *id;

tgetstr(id, area)
char *id, *area;

tgoto(cap, col, row)
char *cap;
int col, row;

Description
All these functions are included for compatibility with application programs that used
the old termcap database.

Do not use these functions in new curses application programs.

Subroutines 3-267

touchwin (3cur)

Name

Syntax

touchwin - touch window

#include <cursesX.h>

int touchwin(win)
WINDOW *win;

Description
This routine discards all optimization information for the specified window and
assumes that the entire window has been drawn on.

This is sometimes necessary when using overlapping windows, as a change to one
window will affect the other window. The records of which lines have been changed
may not be correct for the window which has not been changed directly.

Return Value
The touchwin function returns OK on success and ERR on error.

3-268 Subroutines

tparm (3cur)

Name
tpann - instantiate a string

Syntax
char *tparm(str, pl, p2, ...)

Description
This function instantiates the string str with the parameters pI, p2, A pointer is
returned which points to the result of s t r with the parameters applied.

Subroutines 3-269

tputs (3cur)

Name

Syntax

tputs - pad and output string

tputs(str, count, putc)
register char *str;
int count;
int (*putc)O;

Description
This function adds padding to the string str and outputs it. The string must be
either a terminfo string variable or the return value from tparm, tgetstr or
tgoto. The variable count is the number of lines affected; this is set to 1 if not
applicable. The function putc is a put char style routine. The characters are
passed to putc one at a time.

See Also
putchar(3s), terminfo(5), tparm(3cur)

3-270 Subroutines

(

Name

Syntax

traceon, traceoff - enable or disable debug trace output

traceooO

traceoffO

traceon (3cur)

Description
These functions turn the debugging trace output on and off when you use the debug
version of the curses library /usr/lib/libdcursesX.a.

Subroutines 3-271

typeahead (3cur)

Name

Syntax

typeahead - check for typeahead

int typeahead(fd)
int fd;

Description
If typeahead is enabled, the curses program looks for typeahead input
periodically while updating the screen. If input is found, the current update will be
postponed until refresh or doupdate is called again. This allows faster response
to commands typed in advance.

Normally, the input FILE pointer passed to the newterm routine, will be used to do
this typeahead checking. If the routine ini tscr was called, the input FILE pointer
is passed to stdin.

The typeahead routine specifies that the file descriptor fd is to be used to check
for typeahead. If f d is -1, then typeahead is disabled.

Return Value
No retUrn values are defined for this function.

See Also
doupdate(3cur), initscr(3cur), newterm(3cur), refresh(3cur)

3-272 Subroutines

Name

Syntax

unctrl - convert character to printable form

#include <cursesX.h>

char *unctrl(c)
chtype c;

unctrl (3cur)

Description
The unctrl routine expands the character c into a character string which is a
printable representation of the character.

Control characters are displayed in the AX notation. Printing characters are displayed
normally. The unctrl routine is a macro, defined in the unctrl. h header file.
This header file is included by the cursesX. h header file described in
intro(3cur), so you do not have to include it again.

Return Value
The unctrl macro returns a string.

See Also
intro(3cur)

Subroutines 3-273

vidattr (3cur)

Name

Syntax

vidattr, vidputs - output a string that sets terminal display

vidattr(attrs)
vidputs(attrs, pute)

Description
The vidattr routine outputs a string that sets the video attributes attrs for the
terminal. The characters in the string are passed one at a time to the routine
put char.

The vidputs routine is similar, except that the string characters are passed to the
routine putc. Video attributes are described in The Guide to X/Open Curses
Screen-Handling

See Also
putchar(3s)
Guide to X/Open Curses Screen-Handling

3-274 Subroutines

Name

Syntax

wnoutrefresh, doupdate - do efficient refresh

#include <cursesX.h>

iot wooutrefresh(wio)
WINnOW *wio;

iot doupdate()

wnoutrefresh (3cur)

Description
The wnoutrefresh routine updates screens more efficiently than using the
wrefresh routine by itself. The wnoutrefresh routine copies the named
window to a data structure referred to as the virtual screen (stdscr). The virtual
screen contains what a program intends to display on the physical terminal screen.
The routine doupdate compares the virtual screen to the physical screen and then
does the actual update. These two routines allow multiple updates with more
efficiency than wrefresh.

The routine wrefresh works by calling wnoutrefresh, and then calling
doupdate. If a programmer wants to output several windows at once, a series of
calls to wrefresh will result in alternating calls to wnoutrefresh and
doupdate, causing several bursts of output to the screen. If wnoutrefresh is
called first for each window, doupdate only needs to be called once, resulting in
only one burst of output. This usually results in fewer total characters being
transmitted and less CPU time used.

Return Value
The doupdate and wnoutrefresh functions return OK on success and ERR on
error.

See Also
wrefresh(3cur)

Subroutines 3-275

Internationalization Routines (3int)

Insert tabbed divider here.
Then discard this sheet.

---- -------------- ----

intro(3int)

Name
intro - introduction to international subroutines

Description
The internationalization package provides a convenient method of writing or
converting applications so that they can operate in the application user's natural
language.

The package consists of the following:

• Tools for the creation and modification of message catalogs

• An international function library, which is called libi

• A set of international functions available in the C library, libc

• An international compiler that creates language support databases from
special source files

• An announcement and initialization mechanism

• A utility for converting data from one codeset to another codeset

When you use international library functions in a C program, compile it with the
-1 i option to include libi, as shown:

% cc -0 prog prog.c -li

Some of the international functions are available in the standard C library. You need
not compile with the -1 i option if you use only those functions. The functions that
are available in the standard C library are set locale, strftime, strxfrm, and
strco11.

Libraries

catgetmsg

catgets
catopen
nUnit

nUanginfo
nl_printf
nescanf
printf
scanf
vprintf

setlocale
strftime
strxfrm
strcoll

Internationalization Library Calls

get message from a message catalog (provided for XPG-2
compatibility)
read a program message
open or close a message catalog
set localization for internationalized program (provided for
XPG-2 compatibility)
language information
print formatted output (provided for XPG-2 compatibility)
convert formatted input (provided for XPG-2 compatibility)
print formatted output
convert formatted input
print formatted output of varargs argument list

Standard C Library Calls

set localization for internationalized program
convert time and date to string
string transformation
string collation comparison

Subroutines 3-2n

intro (3int)

Header Files

i_defs.h
i_errno.h
langinfo.h

locale.h

nUypes.h

See Also

contains language support database structure
contains error numbers and messages
contains the hinginfo definitions for the
locale database
contains the declarations used by the ANSI
setlocale and localeconv functions
contains the definitions for all the
internationalization (Hbi) functions

iconv(1), extract(lint), gencat(1int), ic(lint), strextract(lint), strmerge(1int),
trans(lint), ctype(3), setlocale(3), strcoll(3), strftime(3), strxfrm(3), catgets(3int),
catopen(3int), nl_langinfo(3int), printf(3int), scanf(3int), vprintf(3int), environ(Sint),
lang(Sint), nl_types(Sint), pattems(Sint)
Guide to Developing International Software

3-278 Subroutines

Name

Syntax

catgetmsg - get message from a message catalog

#include <nl_types.h>

nl catd catd;
int set num, msg num, buften;
char *buf; -

catgetmsg (3int)

Description
The catgetmsg function has been superceded by the catgets function. You
should use the catgets function to get messages from a message catalog. You
might want to rewrite calls to the catgetmsg function so that they use the
catgets function. The catgetmsg function is available for compatibility with
XPG-2 conformant software and might not be available in the future. For more
information on using catgets, see the catgets(3int) reference page.

The function catgetmsg attempts to read up to buflen -1 bytes of a message string
into the area pointed to by buf. The parameter buflen is an integer value
containing the size in bytes of buf. The return string is always terminated with a null
byte.

The parameter catd is a catalog descriptor returned from an earlier call to catopen
and identifies the message catalog containing the message set (set _ num) and the
program message (msg_ num).

The arguments set_num and msg_num are defined as integer values for maximum
portability. Where possible, you should use symbolic names for message and set
numbers, rather hard-coding integer values into your source programs. If you use
symbolic names, you must include the #include file gencat -h creates in all the
program modules.

Return Value
If successful, catgetmsg returns a pointer to the message string in buf. Otherwise,
if catd is invalid or if set num or msg num are not in the message catalog,
catgetmsg returns a pOinter to an empty (null) string.

See Also
intro(3int), gencat(lint), catopen(3int), catgets(3int), nl_types(Sint)
Guide to Developing International Software

Subroutines 3-279

catgets (3int)

Name

Syntax

catgets - read a program message

#ioclude <ol_types.h>

char *catgets (catd, set_num, msg_num, s)
01 catd catd;
iot set_num, msg_num;
char *s;

Description
The function catgets attempts to read message msg_num in set set_num from the
message catalog identified by catd, The parameter catd is a catalog descriptor
returned from an earlier call to catopen, The pointer, s, points to a default
message string. The catgets function returns the default message if the identified
message catalog is not currently available.

The catgets function stores the message text it returns in an internal buffer area.
This buffer area might be written over by a subsequent call to catgets. If you
want to re-use or modify the message text, you should copy it to another location.

The arguments set num and msg num are defined as integer values to make programs
that contain the c';tgets call portable. Where possible, you should use symbolic
names for message and set numbers, instead of hard-coding integer values into your
source programs. If you use symbolic names, you must include the header file that
gencat &-h creates in all your program modules.

Examples
The following example shows using the catgets call to retrieve a message from a
message catalog that uses symbolic names for set and message numbers:

nl_catd catd = cat open (messages.msf, 0)
message = catgets (catd, error_set, bad_value, "Invalid value")

When this call executes, catgets searches for the message catalog identified by the
catalog descriptor stored in catd. The function searches for the message identified
by the bad_value symbolic name in the set identified by the error_set
symbolic name and stores the message text in message. If catgets cannot find
the message, it returns the message Invalid value.

Return Values
If catgets successfully retrieves the message, it returns a pointer to an internal
buffer area containing the null terminated message string. If the call is unsuccessful
for any reason, catgets returns the default message in s.

See Also
intro(3int), gencat(lint), catgetmsg(3int), catopen(3int), nl_types(Sint)
Guide to Developing International Software

3-280 Subroutines

Name

Syntax

catopen, catclose - open/close a message catalog

#include <nl_ types.h>

nl_catd catopen (name, oflag)
char *name;
int oflag;

int catclose (catd)
nl_catd catd;

catopen (3int)

Description
The function cat open opens a message catalog and returns a catalog descriptor.
The parameter name specifies the name of the message catalog to be opened. If
name contains a slash (/), then name specifies a pathname for the message catalog.
Otherwise, the environment variable NLSPATH is used with name substituted for
%N. For more information, see environ(Sint) in the ULTRIX Reference Pages. If
NLSP ATH does not exist in the environment, or if a message catalog cannot be
opened in any of the paths specified by NLSP ATH, the current directory is used.

The oflag is reserved for future use and must be set to zero (0). The results of setting
this field to any other value are undefined.

The function catclose closes the message catalog identified by catd.

Restrictions
Using catopen causes another file descriptor to be allocated by the calling process
for the duration of the catopen call.

Return Value
If successful, catopen returns a message catalog descriptor for use on subsequent
calls to catgetmsg, catgets and cat close. If unsuccessful, catopen
returns (nl_catd) -1.

The catclose function returns 0 if successful, otherwise -1.

See Also
intro(3int), setlocale(3), catgetmsg(3int), catgets(3int), environ(Sint), nl_types(Sint)
Guide to Developing International Software

Subroutines 3-281

nLlanginfo (3int)

Name

Syntax

nl_Ianginfo - language infonnation

#include <nl_types.h>
#include <langinfo.h>

char *nl)anginfo (item)
nl)tem item;

Description
The function nl_langinfo returns a pointer to a null-tenninated string containing
infonnation relevant to a particular language or cultural area. The language is
identified by the last successful call to the appropriate set locale category. The
categories are shown in the following table and are defined in <langinfo. h>.

For instance, the following example would return a pointer to the string representing
the abbreviated name for the first day of the week, as defined by setlocale
category LC_TIME:

nl_langinfo (ABDAY_l);

If the set locale category has not been called successfully, langinfo data for a
supported language is not available, or item is not defined, then nl_langinfo
returns a pointer to an empty (null) string. In the C locale, the return value is the
American English string defined in the following table:

Identifier Meaning C locale Category

NOSTR Negative response no LC_ALL
YESSTR Positive response yes LC_ALL
D_T]MT Default date and time format %a %b %d

%H:%M:%S%Y LC_TIME
D_FMT Default date format %m/%d/%y LC_TIME
T_FMT Default time format %h:%m:%s LC_TIME

DAY_l Day name Sunday LC_TIME
DAY_2 Day name Monday LC_TIME

DAY_7 Day name Saturday LC_TIME

ABDAY_l Abbreviated day name Sun LC_TIME
ABDAY_2 Abbreviated day name Mon LC_TIME
ABDAY_3 Abbreviated day name Tue LC_TIME

ABDAY_7 Abbreviated day name Sat LC_TIME

MON_l Month name January LC_TIME
MON_2 Month name February LC_TIME
MON_3 Month name March LC_TIME

3-282 Subroutines

nLlanginfo(3int)

MON_12 Month name December

ABMON_l Abbreviated month name Jan
ABMON_2 Abbreviated month name Feb

ABMON_12 Abbreviated month name Dec

RADIXCHAR Radix character
THOUSEP Thousands separator
CRNCYSTR Currency format
AM_STR String for AM AM
PM_STR String for PM PM
EXPL_STR Lower case exponent character e
EXPU_STR Upper case exponent character E

See Also
intro(3int), ic(lint), setlocale(3int), environ(5int), nCtypes(5int)
Guide to Developing International Software

LC_NUMERIC
LC_NUMERIC
LC_MONETARY
LC_TIME
LC_TIME
LC_NUMERIC
LC_NUMERIC

Subroutines 3-283

nLprintf(3int)

Name

Syntax

nl_printf, nljprintf, nl_sprintf - print formatted output

#include <stdio.h>

int nl_printf (format [, arg] ...)
char *format;

int nl_fprintf (stream,format [, arg] ...)
FILE * stream;
char *format;

int ntsprintf (s,format [, arg] ...)
char *s ,format;

Description
The international functions nl printf, nl fprintf, and nl sprintf are
identical to and have been superceded by the international functions printf,
fprintf, and sprintf in a library. You should use the printf, fprintf, and
sprintf functions when you write new calls to print formatted output in an
international program. For more information on these functions, see the
pr int f(3int) reference page.

You can continue to use existing calls to the nlyrintf, nl_fprintf, or
nl_sprintf international functions. These functions remain available for
compatibility with XPG-2 conformant software, but may not be supported in future
releases of the ULTRIX system.

The nlyrintf, nl_fprintf, and nl_sprintf international functions are
similar to the printf standard I/O function. (For more information about the
printf standard I/O function, see the printf(3s) reference page.) The difference
is that the international functions allow you to use the I%digit$ conversion sequence
in place of the % character you use in the standard I/O functions. The digit is a
decimal digit n from 1 to 9. The international functions apply conversions to the n th
argument in the argument list, rather than to the next unused argument.

You can use % conversion character in the international functions. However, you
cannot mix the % conversion character with the %digit$ conversion sequence in a
single call.

You can indicate a field width or precision by an asterisk (*), instead of a digit string,
in format strings containing the % conversion character. If you use an asterisk, you
can supply an integer argument that specifies the field width or precision. In
forma t strings containing the %digit$ conversion character, you can indicate field
width or precision by the sequence *digit$. You use a decimal digit from 1 to 9 to
indicate which argument contains an integer that specifies the field width or
precision.

The conversion characters and their meanings are identical to printf.

You must use each digit argument at least once. The results of not using an
argument are undefined.

3-284 Subroutines

nLprintf(3int)

International Environment

LC NUMERIC If this environment is set and valid, nl printf uses the
international language database named iii the definition to
determine radix character rules.

LANG If this environment variable is set and valid n 1 y r i n t f uses the
international language database named in the definition to
determine collation and character classification rules. If
LC _ NUMERI C is defined, its definition supercedes the definition of
LANG.

Examples
The following example illustrates using an argument to specify field width:

nlyrintf ("%1$d:%2$.*3$d:%4$.*3$d\n",
hour, min, precision, sec);

The format string *3$ indicates that the third argument, which is named precision,
contains the integer field width specification.

To print the language independent date and time format, use the following
nlyrintf statement:

nlyrintf (format, weekday, month, day, hour, min);

For United States of America use, format could be a pointer to the following
string:

"%l$s, %2$s %3$d, %4$d:%5$.2d\n"

This format string produces the following message:

Sunday, July 3, 10:02

For use in a German environment, format could be a pointer to the following
string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

This format produces the following message:

Sonntag, 3. Juli, 10:02

See Also
intro(3int), setlocale(3), nl_scanf(3int), printf(3int), scanf(3int), printf(3s), putc(3s),
scanf(3s), stdio(3s)
Guide to Developing International Software

Subroutines 3-285

nLscanf (3int)

Name

Syntax

nl_scanf, nLfscanf, nl_sscanf - convert formatted input

#include <stdio.h>

int nl_scanf (format [, pointer] ...)
char *format;

int nl fscanf (stream,format [, pointer] ...)
f'ILE-* stream;
char *format;

int nl_ sscanf (s ,format [, pointer] ...)
char * s, *format;

Description
The internati()nal functions nl scanf, nl fscanf, and nl sscanf are
identical to and have been superceded by the international functions scanf,
fscanf, and sscanf 4t /fbi. You should use the scanf, fscanf, and sscanf
functions when you write new calls to convert formatted input in international
programs. For more information on these functions, see the scanf(3int) reference
page.

You can continue to use existing calls to the nl_scanf, nl_fscanf, or
nl_sscanf functions. These functions remain available for compatibility with
XPG-2 conformant software, but may not be supported in future releases of the
ULTRIX system.

The nl scanf, nl fscanf, and nl sscanf international functions are similar
to the scanf standard I/O function. (For more information on the scanf standard
I/O function, see scanf(3s) reference page.) The difference is that the international
fQnctions allow you to use the %digit$ conversion character in place of the %
character you use in the standard I/O functions. The digit is a decimal digit n from 1
t() 9. The international functions apply conversions to the n th argument in the
fU'gllment list, rather than to the next unused argument.

You can use the % conversion character in the international functions. However, you
cannot mix the % conversion character with the Ofpdigit$ conversion character in a
single call.

International Environment

LC NUMERIC If this environment is set and valid, nl scanf uses the
international language database named in the definition to
determine radix character rules.

LANG

3-286 Subroutines

If this environment variable is set and valid nl scanf uses the
international language 'database named in the definition to
determine collation and character classification rules. If
LC NUMERIC is defined, its definition supersedes the definition of
L~G.

nLscanf (3int)

Examples
The following shows an example of using the nl_scanf function:

nl_scanf("%2$s %l$d", integer, string)

If the input contains " january 9 ", the n 1 scan f function assigns 9 to integer and
"january" to string. -

Return Values
These functions return either the number of items matched or EOF on end of input,
along with the number of missing or invalid data items.

See Also
intro(3int), setlocale(3), strtod(3), strtol(3), nl_printf(3int), printf(3int), scanf(3int),
getc(3s), printf(3s), scanf(3s)
Guide to Developing International Software

Subroutines 3-287

printf(3int)

Name

Syntax

printf, fprintf, sprintf - print formatted output

#include <stdio.h>

int printf (format [, arg]...)
char *format;

int fprintf (stream,format [, arg] ...)
FILE * stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s,format;

Description
The international functions printf, fprintf, and sprintf are similar to the
printf standard I/O functions. The difference is that the international functions
allow you to use the %digit$ conversion character in place of the % character you use
in the standard I/O functions. The digit is a decimal digit n from 1 to 9. The
international functions apply conversions to the n th argument in the argument list,
rather than to the next unused argument.

You can use the % conversion character in the international functions. However, you
cannot mix the % conversion character with the %digit$ conversion character in a
single call.

You can indicate a field width or precision by an asterisk C*) instead of a digit string
in format strings containing the % conversion character. If you use an asterisk, you
can supply an integer arg that specifies the field width or precision. In format strings
containing the %digit$ conversion character, you can indicate field width or precision
by the sequence *digit$. You use a decimal digit from 1 to 9 to indicate which
argument contains an integer that specifies the field width or precision.

The conversion characters and their meanings are identical to printf.

You must use each digit argument at least once.

In all cases, the radix character printf uses is defined by the last successful call to
set locale category LC_NUMERIC. If set locale category LC_NUMERIC has
not been called successfully or if the radix character is undefined, the radix character
defaults to a period C.).

International Environment

LC NUMERIC If this environment is set and valid, printf uses the international
language database named in the definition to determine radix
character rules.

3-288 Subroutines

printf (3int)

LANG If this environment variable is set and valid printf uses the
international language database named in the definition to
determine collation and character classification rules. If
LC _ NUMERI C is defined, its definition supercedes the definition of
LANG.

Examples
The following example illustrates using an argument to specify field width:

printf ("%1$d:%2$.*3$d:%4$.*3$d\n",
hour, min, precision, sec);

The format string *3$ indicates that the third argument, which is named precision,
contains the integer field width specification.

To print the language independent date and time format use the following printf
statement:

printf (format, weekday, month, day, hour, min);

For American use, format could be a pointer to the following string:

"%l$s, %2$s %3$d, %4$d:%5$.2d\n"

This string gives the following date format:

Sunday, July 3, 10:02

For use in a German environment, format could be a pointer to the following string:

"%l$s, %3$d. %2$s, %4$d:%5$.2d\n"

This string gives the following date format:

Sonntag, 3. Juli, 10:02

Return Values
printf and fprintf return zero for success and EOF for failure. The sprintf
subroutine returns its first argument for success and EOF for failure.

In the System V and POSIX environments, printf, fprintf, and sprintf
return the number of characters transmitted for success. The sprintf function
ignores the null terminator (\0) when calculating the number of characters
transmitted. If an output error occurs, these routines return a negative value.

See Also
intro(3int), setlocale(3), scanf(3int), printf(3s), putc(3s), scanf(3s), stdio(3s)
Guide to Developing International Software

Subroutines 3-289

scanf (3int)

Name

Syntax

scanf, fscanf, sscanf - convert formatted input

#include <stdio.h>

int scanf(format [, pointer]...)
char *format;

int fscanf(stream,format [, pointer] ...)
FILE * stream;
char *format;

int sscanf(s ,format [, pointer]...)
char *s, *format;

Description
The international functions scanf, fscanf, and sscanf are similar to the
scanf standard I/O functions. The difference is that the international functions allow
you to use the %digit$ conversion character in place of the 1% character you use in
the standard I/O functions. The digit is a decimal digit n from 1 to 9. The
international functions apply conversions to the n th argument in the argument list,
rather than to the next unused argument.

You can use % conversion character in the international functions. However, you
cannot mix the % conversion character with the %digit$ conversion character in a
single call.

In all cases, scanf uses the radix character and collating sequence that is defined by
the last successful call to setlocale category LC_NUMERIC or LC_COLLATE.
If the radix or collating sequence is undefined, the scanf function uses the C locale
definitions.

International Environment

LC COLLATE Contains the user requirements for language, territory, and codeset
for the character collation format. LC COLLATE affects the
behavior of regular expressions and the string collation functions in
scanf. If LC COLLATE is not defined in the current
environment, LANG provides the necessary default.

LC NUMERIC If this environment is set and valid, scanf uses the international
language database named in the definition to determine radix
character rules.

LANG

3-290 Subroutines

If this environment variable is set and valid scanf uses the
international language database named in the definition to
determine collation and character classification rules. If
LC NUMERIC or LC COLLATE is defined, their definitions
supersede the definition of LANG.

Examples
The following shows an example of using the scanf function:

scanf("%2$s %I$d", integer, string)

scanf (3int)

Ifthe input is " january 9 ", the scanf function assigns 9 to integer and
"january" to string.

Return Values
The scanf function returns the number of successfully matched and assigned input
fields. This number can be zero if the scanf function encounters invalid input
characters, as specified by the conversion specification, before it can assign input
characters.

If the input ends before the first conflict or conversion, scanf returns EOP. These
functions return EOP on end of input and a short count for missing or invalid data
items.

Environment
In POSIX mode, the E, F, and X formats are treated the same as the e, f, and x
formats, respectively; otherwise, the upper-case formats expect double, double, and
long arguments, respectively.

See Also
intro(3int), setlocale(3), strtod(3), strtol(3), printf(3int), getc(3s), printf(3s), scanf(3s)
Guide to Developing International Software

Subroutines 3-291

vprintf (3int)

Name

Syntax

vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va list ap;

int vfprintf (stream, format, ap)
FILE * stream;
char *format;
va list ap;

int vsprintf (s, format, ap)
char * s, *format;
va list ap;

Description
The international functions vprintf, vfprintf, and vsprintf are similar to
the vprintf standard I/O functions.

Likewise, the vprintf functions are similar to the printf functions except they are
called with an argument list as defined by varargs instead of with a variable
number of arguments.

The international functions allow you to use the %digit$ conversion character in
place of the % character you use in the standard I/O functions. The digit is a
decimal digit n from 1 to 9. The international functions apply conversions to the nth
argument in the argument list, rather than to the next unused argument.

You can use the % conversion character in the international functions. However, you
cannot mix the % conversion character with the %digit$ conversion character in a
single call.

You can indicate a field width or precision by an asterisk (*) instead of a digit string
in format strings containing the % conversion character. If you use an asterisk, you
can supply an integer arg that specifies the field width or precision. In format strings
containing the %digit$ conversion character, you can indicate field width or precision
by the sequence *digit$. You use a decimal digit from 1 to 9 to indicate which
argument contains an integer that specifies the field width or precision.

The conversion characters and their meanings are identical to printf.

You must use each digit argument at least once.

3-292 Subroutines

Examples

#include <stdio.h>
#include <varargs.h>

main(}
{

char *function_name = "vpr";
char *argl = "hello world";
int arg2 = 2;
char *arg3 = "study";

char *i18nfmt = "%l$s %3$d\n";

test (function_name, i18nfmt, argl, arg2, arg3};
}

test (va_alist)
va dcl
{

va_list args;
char *fmt;
char string[1024];

va_start(args};

(void}printf("function %s: ", va_arg(args, char *)};

fmt = va_arg(args, char *};

(void) vprintf (fmt, args);

va_end (args) ;
}

See Also

vprintf (3int)

setlocale(3), scanf(3int), printf(3s), printf(3int), vprintf(3s), putc(3s), scanf(3s),
stdio(3s), varargs(3)
Guide to Developing International Software

Subroutines 3-293

I

~

Kerberos Routines (3krb)

Insert tabbed divider here.
Then discard this sheet.

Name

Syntax

intro - introduction to the Kerberos subroutines

#include <krb.h>

#include <des.h>

cc [options] files -Ikrb -Iknet
-Ides -Iacl [libraries]

intro (3krb)

Description
The Kerberos subroutines can provide for the authentication of and protection against
the unauthorized modification of every message sent accross a TCP/IP network from
one application to another. In addition, they provide a means to provide for the
creation of access control lists (ACL) which an application can use with Kerberos
authentication, to determine if another application is authorized to perform a
particular action.

The krb svc int (3krb) routines are designed to initialize the Kerberos libraries
so that the other Kerberos routines can function properly. The krb svc ini t
routines are used to contact a Kerberos server to obtain a ticket-granting ticket that
can be used by the kerberos (3krb), krb sendmutual (3krb), and
krb_sendauth (3krb) routines. They also initialize pieces of Kerberos library
data. To use these routines, the libraries libkrb. a, libknet. a, and libdes . a
must be linked with your application in the order listed.

The kerberos (3krb) routines krb_mk_req and krb_rd_req are designed to
provide for the initial authentication of an application to another. They are designed
to be used with applications that support "on-the-wire" protocols in which
authentication information can be placed. The kerberos (3krb) routines
krb mk safe and krb rd safe are designed to provide for the authentication
of alld protection against the modification of every message sent between two
applications after the initial authentication message. To use these routines, the
libraries libkrb. a, libknet. a, and libdes. a must be linked with your
application in the order listed.

The krb sendmutual (3krb) routines are designed to provide for the mutual
authentication of two applications after the initial authentication of one application, X
to another, Y. To provide mutual authentication, Y's identity is proven by the
krb sendmutual routines to X. To use these routines, the libraries libkrb. a,
libknet. a, and libdes. a must be linked with your application in the order
listed.

The krb sendauth (3krb) routines are designed to provide both the initial
authentication that krb mk req and krb rd req provide, as well as the mutual
authentication of the krb sendmutal roUtines. The krb sendauth routines are
designed to be used with applications that do not have room in the protocols they
support for authentication information. To use these routines, the libraries
libkrb. a, libknet. a, and libdes. a must be linked with your application in
the order listed.

Subroutines 3-295

intro (3krb)

Files

The krb_get_lrealm (3krb) routines are designed to provide information to the
user about the Kerberos environment. To use these routines, the library libkrb. a
must be linked with your application.

The des_crypt (3krb) routines are designed to provide support for the above
routines with respect to Data Encryption Standard (DES) keys. The
des_quad_cksum routine can be used to provide support for the authentication of
and protection against the modification of every message sent between two
applications after the initial authentication message. It is designed to be used only
with applications that have room in their "on-the-wire" protocol for authentication
information. To use these routines, the library libdes. a must be linked with your
application.

The krb_set_tkt_string (3krb) routines are designed allow the user of the
Kerberos libraries to modify some of the default settings of the Kerberos libraries.
To use these routines, the library libkrb. a must be linked with your application.

The acl_ check (3krb) routines are designed to provide for the creation and use
of access control lists (ACL). After an application, X, correctly authenticates the
identity of another, Y, the application X has the ability to assign access rights to Y,
based on Y's identity. The routines above provide for the authentication of
applications while the acl_check (3krb) routines provide the ability to store the
access rights associated with each application. To use these routines, the library
libacl . a must be linked with your application.

/usr/lib/libkrb.a

/usr/lib/libknet.a

/usr/lib/libdes.a

/usr/lib/libacl.a

See Also
All the other Kerberos reference pages:

acl3heck(3krb)
des_crypt(3krb)
kerberos(3krb)
krb~eClrealm(3krb)
krb_sendauth(3krb)
krb_sendmutual(3krb)
krb_sectkcstring(3krb)
krb_svc_init(3krb)
krb.conf(5krb)
krb_slaves(5krb)
krb_dbase(5krb)
excsrvtab(8krb)
kdb_destroy(8krb)
kdb_edit(8krb)
kdb _init(8krb)
kdb_uti1(8krb)
kdestroy(8krb)

3-296 Subroutines

kerberos(8krb)
kinit(8krb)
klist(8krb)
kprop(8krb)
kpropd(8krb)
kstash(8krb)

intro (3krb)

Subroutines 3-297

acl_check (3krb)

Name

Syntax

acl3heck - Access control list (ACL) library routines.

cc <files> -Iacl -I krb

#include <krb.h>

acl_ canonicalize _principal (principal, buf)
char *principal;
char *buf;

ad_check (aclJtle, principal)
char *aclJtle;
char *principal;

aci_exact_match (aclJtle, principal)
char *acl Jtle;
char *principal;

ad_add (aclJtle, principal)
char *acl Jtle;
char *principal;

ad_delete (aclJtle, principal)
char *ac(file;
char *principal;

adJnitialize (aclJtle, mode)
char *acl Jtle;
int mode;

kname_parse (primary_name, instance_name,
realm name, principal)

char *primary name;
char *instance name;
char *realm name;
char *principal;

Arguments

principal The name of a principal. Principal names consist of from one to three
fields. The first field must be included because it stores the primary name
of the principal. The second field is not always required. It begins with a
period (.), and stores the instance name of the principal. The third field is
not always requred. It begins with an "at" sign (@), and stores the realm
name of the principal. The principal name format can be expressed as:

3-298 Subroutines

name [.instance] [@realrn]

For example, all of the names below are legitimate principal names:

venus
venus.root
venus@dec.com
venus. @dec. com
venus.root@dec.com

acL check (3krb)

buf Pointer to the buffer that stores the canonical form of a principal name.
The canonical form is derived from the form of a principal name. Like a
principal name, it includes a primary name in its first field. Unlike a
principal name, it must include an instance name as its next field even if
the instance name is blank. Also, unlike a principal name, it must contain
a realm field. If a canonical name is derived from a principal name that
has no realm field, the local realm returned by
krb get lrealm (3krb) is used as the realm field in the canonical
name. Of the above examples, only the last two are in canonical form.

aclyle The path name of the file in which the access control list (ACL) is stored.

mode If the ACL file, aclyle, does not currently exist when
acl_ini tialize is called, the file aclyle, is created with read, write,
and access mode bits set equal to mode.

primary name
- The primary name portion of principal, returned by knameyarse.

ANAME_SZ bytes of storage space must be allocated for primary_name.

instance name
- The instance name of principal, returned by knameyarse. INST_SZ

bytes of storage space must be allocated for instance_name.

realm name

Description

The realm name of principal, returned by knameyarse. REALM_SZ
bytes of storage space must be allocated for realm_name.

The routines of the acl check library allow you to perform various administrative
functions on an access control list (ACL). An ACL is a list of Kerberos principals in
which each principal is represented by a text string. The routines of this library
allow application programs to refer to named ACLs to test whether a principal is a
member of an ACL, and to add or delete principals from the ACL file.

The routines of the acl_ check library are:

acl_ canonicalize _principal

acl check

Stores the canonical form of the principal name pointed to by principal in
the buffer pointed to by buf. This buffer must contain enough space to
store a full canonical principal name (MAX_PRINCIPAL_SIZE
characters). No meaningful value is returned by
acl_canonicalizeyrincipal.

- Verifies that the principal name, principal, appears in the ACL file,
aclYle. This routine returns a zero (0) if the principal does not appear in
the ACL, or if there is an error condition. If the principal is a member of
the ACL, a one (1) is returned. The acl check routine always
canonicalizes a principal before trying to fud it in the ACL. acl_ check
will determine if there is an ACL entry in the aclyle which exactly
matches principal, principal, or if principal matches an ACL entry which
contains a wildcard. A wildcard appears in place of a field name in an
ACL entry and is represented as an asterisk (*). A wildcard in a field
name of an ACL entry allows the ACL entry to match a principal name

Subroutines 3-299

acl_check (3krb)

that contains anything in that particular field. For example, if there is an
entry, venus. *@dec. com in the ACL, the principals,
venus.root@dec.com,venus.@dec.com,and
venus. planet@dec. com would be included in the ACL. The use of
wildcards is limited, for they may be used in only the three following
configurations in an ACL file:

name.*@realm
.@realm
.@*

acl exact match
-Verifies that principal name, principal, appears in the ACL file,
acl_file. This routine returns a zero (0) if the principal does not
appear in the ACL, or if any error occurs. If the principal is a member of
the ACL, acl exact match returns a non-zero. The
acl_exact_;Latch routine does not canonicalize a principal before the
ACL checks are made, and it does not support wildcards. Only an exact
match is acceptable. So, for example, if there is an entry,
venus. *@dec. com in the ACL, only the principal
venus. *@dec. com would match the ACL entry. This routine makes it
easy to find ACL entries with wildcards.

ad_add Adds the principal name, principal, to the ACL file, aclJzle. This routine
returns a zero (0) if it successfully adds the principal to the ACL.
Otherwise, if there was an internal error, or if the principal is already in
the ACL, the acl_add routine returns a non-zero value. The acl_add
routine canonicalizes a principal, but treats wildcards literally.

ad_delete
Deletes the principal, principal, from the ACL file, aclJzle. The routine
returns a zero (0) if it successfully deletes the principal from the ACL.
Otherwise, if there was an internal error or if the principal is not in the
ACL, the acl delete routine returns a non-zero value. The
acl delete routine canonicalizes a principal, but treats wildcards
liteniIly.

ad initialize
- Initializes the ACL file, aclJzle. If the named aclJzle does not exist,

acl initialize creates one with the permissions specified by the
mode argument. If the ACL exists, acl_initialize removes all
previously stored principal members of the list. This routine returns a zero
(0) if successful or a nonzero if it fails.

kname _parse

3-300 Subroutines

parses the principal name, principal, and stores the primary name of the
principal in principal_name, the instance name of the principal in
instance_name, and the realm name of the principal in realm_name.
knameyarse returns KNAME_FMT if the principal name is incorrectly
formatted or if it is too long to be a principal name. It returns
KSUCCESS if the parsing of the principal name succeeded.

acLcheck (3krb)

See Also
kerberos(3krb), krb_geclrealm(3krb)

Subroutines 3-301

des_crypt (3krb)

Name

Syntax

des_crypt - Data Encryption Standard (DES) encryption library routines.

#include <des.h>

int des_string_to_key (str, key)
char *str;
C_Block *key;

int des_is_weak_key (key)
C_Block key;

unsigned long des_quad_cksum (input, output, length,
iterations, seed)

unsigned char *input;
unsigned long *output;
long length;
int iterations;
C Block * seed;

int des_key_sched (key, schedule)
C Block key;
Key_schedule schedule;

Arguments

key For des_string_to_key, key is a pointer to a C_Block of 8-byte
length. For des quad cksum, des is weak key, and
des_key_sched, key 18 a pointer to iDES key.-

str A string that is converted to an 8-byte DES key.

input Pointer to a block of data to which a quadratic checksum algorithm is
applied.

output Pointer to a pre-allocated buffer that will contain the complete output from
the quadratic checksum algorithm. For each iteration of the quadratic
checksum applied to the input, eight bytes (two longwords) of data are
generated.

length Length of the data to which the quadratic checksum algorithm will be
applied. If input contains more than length bytes of data, then the
quadratic checksum will only be applied to length bytes of input.

iterations The number of iterations of the des quad cksum algorithm to apply to
input. If output is NULL, then one iterationof the algorithm will be
applied to input, no matter what the value of iterations is. The maximum
number of iterations is four.

seed An 8-byte quantity used as a seed to the input of the des_quad_cksum
algorithm.

schedule A representation of a DES key in a form more easily used with encryption
algorithms. It is used as input to the krb_sendmutual routines.

3-302 Subroutines

des_crypt (3krb)

Description
The des_crypt routines are designed to provide the cryptographic routines which
are used to support authentication. Specifically, des quad cksum and
des_key_sched are designed to be used with the DES key which is shared
between one Kerberos principal and its authenticated peer to provide an easy
authentication method after the initial Kerberos authentication pass.
des_string_to_key and des_is_weak_key are designed to enable the input
and inspection of a key by a user before that key is used with the Kerberos
authentication routines. The de s _crypt routines are not designed for general
encryption.

The library makes extensive use of the locally defined data types C Block and
Key_schedule. The C_Block struct is an 8-byte block used by the various
routines of the des_crypt library as the fundamental unit for DES data and keys.

Routines

string_to _key
Converts a null-terminated string of arbitrary length to an 8-byte, odd
byte-parity DES key. The str argument is a pointer to the character string
to be converted and key points to a C Block supplied by the caller to
receive the generated key. The one-way function used to convert the
string to a key makes it very difficult for anyone to reconstruct the string
from the key. No meaningful value is returned.

desJs _weak_key
de s _ i s _weak_key checks a new key input by a user to determine if it
belongs to the well known set of DES keys which do not provide good
cryptographic behavior. If a key passes the inspection of
des is weak key, then it can be used with the des quad cksum
routille. The inPUt is a DES key and the output is equal to I if the key is
not a safe key to use; it is equal to 0 if it is safe to use.

des quad cksum
- -Produces a checksum by chaining quadratic operations on cleartext data.

des_quad_cksum can be used to produce a normal quadratic checksum
and, if used with the DES key shared between two authenticated Kerberos
principals, it can also provide for the integrity and authentication
protection of data sent from one principal to another.

Input of length bytes are run through the des_quad _ cksum routine
iterations times to produce output. If output is NULL, one iteration is
performed and output is not affected. If output is not NULL, the quadratic
checksum algorithm will be performed iterations times on input, placing
eight bytes (two longwords) of result in output for each iteration. At all
times, the low-order bits of the last quadratic checksum algorithm pass are
returned by des_quad_cksum.

The quadratic checksum algorithm performs a checksum on a few bytes of
data and feeds the result into the algorithm as an addition input to the
checksum on the next few bytes. The seed serves as the additional input
for the first checksum operation and, therefore, the final checksum that
results depends upon the seed input into the algorithm. If the DES key
shared between two Kerberos principals is used as the initial seed, then

Subroutines 3-303

des_crypt (3krb)

since the checksum that results depends upon the seed, the ability to
produce the checksum proves identity and authentication. Also, since the
message cannot be altered without knowledge of the seed, it also provides
for data integrity.

des_key _ sched

3-304 Subroutines

des_key _sched is used to convert the key input into a new format that
can be used readily with encryption functions. The result, schedule, can
be used with the krb sendmutual functions to enable mutual
authentication of two Kerberos principals.

o is returned from des_key_sched if sucessful.

-1 is returned if the each byte of the key does not have odd parity.

-2 is returned if the key is a weak key as defined by
des_is_weak_key.

Name

Syntax

kerberos - Kerberos authentication library routines

#include <des.h>
#include <krb.h>

int krb _ mk _ req(tkt _ authen _out, Lservice, Linstance,

KTEXT
char
char
char
uJong

f realm, checksum)
tkt authen out;
*/service,-:-
*[instance;
*[realm;
checksum;

int krb rd req(tkt authen in, I service, I instance,
- - {hostaddr, ad: srvtab Jzle)

KTEXT tkt _ authen _in;
char * I service;
char * (instance;
u Jong / hostaddr;
AUTH DAT *ad;
char * srvtab Jzle;

int krb _get _ cred(C service, Linstance,
/ realm, cred)

char */ service;
char *[instance;
char *[realm;
CREDENTIALS- *cred;

long krb_mk_safe(in, out, in_length, key,
l_addr, Laddr)

u char *in;
u -char *out;
u)ong in_length;
C Block * key;
struct sockaddr in *1 addr;
struct sockaddr -in *L addr;

long krbJd_safe(in, in_length, key,Laddr,

u char
u_Iong
C Block
struct sockaddr in
struct sockaddr -in
MSG DAT -

I_addr, msg_data)
* in;
in_length,'
*key;
*/ addr;
*(addr;
*msg_ data,'

kerberos (3krb)

Subroutines 3-305

kerberos (3krb)

Arguments

f service Character pointer to the primary name of the foreign principal. The local
principal is the principal that calls the routines listed above. The local
principal tries to communicate with the foreign principal.

f instance Character pointer to the instance name of the foreign principal.

f realm Character pointer to the realm name of the foreign principal.

I service Character pointer to the primary name of the local principal.

I instance Character pointer to the instance name of the local principal.

tkt authen out
- Pointer to the text structure in which the Kerberos library routines build

the ticket-authenticator pair. This structure is designed to be sent to the
foreign principal to authenticate the local principal's identity to the
foreign principal. Storage must be allocated for tkt _ authen _out.

tkt authen in

checksum

- Pointer to the ticket-authenticator pair that the Kerberos library uses to
authenticate the foreign principal to the local principal. The data in this
structure must have been generated by a call to krb_mk_req by the
foreign principal and transmitted by the foreign principal to the local
principal.

The checksum parameter is input to krb mk req. It is packaged with
the ticket-authenticator pair that is sent to the foreign principal. The
checksum serves as a secret piece of data that can be known only to the
foreign principal if the foreign principal is authenticated as the foreign
principal. It is used to facilitate mutual authentication with
krb sendmutual and krb recvmutual. See
krb:=sendmutual (3krb) for information about these two routines.

f hostaddr Address of the machine from which the foreign principal sent the
tkt authen in data. - -

L addr Address of the socket that the foreign principal is using to communicate
with the local principal.

I addr Address of the socket that the local principal is using to communicate
with the foreign principal.

ad Pointer to the AUTH_DAT structure that describes the authentication
association between the local and foreign principals. The ad structure is
output from krb_rd_req. You must allocate space for the ad
structure.

srvtab Jzle The path name of the file that contains the key of the principal obtaining
a ticket. If this value is set equal to a string of zero length,

3-306 Subroutines

srvtab file [0] ='\[)', the default service table (srvtab) file is used.
If this value is set equal to the NULL

(

key

cred

in

kerberos (3krb)

pointer, then the key of the service is not read from the srvtab file, but is
read from storage space internal to the libraries. The srvtab Jzle
parameter cannot be set equal to the NULL string on the first call to
krb rd req. The default srvtab file value is set to letc/srvtab,
although this value can be changed by a call to the
krb_set_srvtab_string function. (See the
krb_set_tkt_string (3krb) reference page).

Pointer to the C_Block input to krb mk safe and krb rd safe. It
contains a Data Encryption Standard(DES) key. The keythatis usually
used is the session key between the local and foreign principal.

A pointer to a credentials structure that is allocated by the caller of
krb_get_cred and filled with data by krb_get_cred. The
credentials structure includes the ticket that the local principal uses to
authenticate the foreign principal. It also includes other authentication
information associated with the foreign principal.

Character pointer to the user data that must be included in a safe
message.

out Character pointer to the safe message output by krb_mk_safe. The in
parameter may not overlap with out.

in _length Length of the user data, in.

msg_data The msg_data parameter is a pointer to a MSG_DAT structure which
must be allocated by the caller of krb rd safe and which is filled by
krb rd safe with information about thesafe message. A pointer to
the user data sent within the safe message is also included in msg data.

Description
The krb_mk_req calls are designed to be used by two principals that are
attempting to authenticate themselves for the first time as well as by two principals
that have authenticated once, but wish to authenticate all data passed between them.

The krb mk req and krb rd req routines are designed to be used by
applicatiOns that communicate over a network, require the authentication of both
parties across the communication path, and support "on-the-wire" protocols in which
authentication data can be placed. These routines perform only the authentication of
the first message sent between such applications. krb mk req creates a ticket
authenticator pair that can be included in the "on-the-Wire"protocol of an application,
and krb_rd_req reads the ticket-authenticator pair.

The krb mk safe and krb rd safe routines are used by applications that
require that every message passed between them be authenticated and free from
unauthorized modifications, and whose "on-the-wire" protocol has no room for
authentication data. These routines only provide for the authentication and integrity
protection of a message if the first authenticated message has already been sent by the
krb mk req/krb rd req pair or the krb sendauth/krb recvauth pair.
See krb=sendauth (3krb) for more information about the latter pair.

The krb mk safe routine encapsulates user data inside the krb mk safe "on
the-wire"message authentication protocol. krb rd safe can interpret the message
authentication protocol and the message, and return the data encapsulated by
krb mk safe. Since any application which is modified to use krb_mk_safe or

Subroutines 3-307

kerberos (3krb)

krb_rd_safe must encapsulate its "on-the-wire" protocol within the "on-the-wire"
protocol of krb_mk_safe, the application must develop a method of distinguishing
between the old and new "on-the-wire" protocols.

The des_quad_cksum routine (see des_crypt (3krb)) can be used to provide
some of the guarantees of the krb mk safe and krb rd safe routines without
encapsulating the protocol of the application. - -

The routines of this library make extensive use of the following locally defined data
types: KTEXT, AUTH_DAT, CREDENTIALS, C_Block, and MSG_DAT. For
specific information on the definitions of these data types, see the de s . hand
krb. h files.

Routines and Structures

krb_mkJeq

Used to produce the data necessary to authenticate a principal "A" to a principal "B".
It takes as input a checksum and the primary name, instance name, and realm name
of the service to which the principal "A" is attempting to authenticate itself.
krb mk req outputs a text structure in which the ticket to communicate with
princlpal"B" and an authenticator have been combined to form a ticket-authenticator
pair.

The appiication "A" must pass the ticket-authenticator pair to the principal "B" where
it carl be read by krb_rd_req. Once the ticket-authenticator pair has been read
and verified, "A" has been authenticated to "B". Unless an attacker possesses the
session key contained in the ticket, the attacker will be unable to modify or replay the
ticket-authenticator pair.

The checksum can be used with krb sendmutual and krb recvmutual to
provide for the authentication of "B" to "A" after krb rd req authenticates "A" to
"B". Although the checksum value can be any value kIiown only to "A", it is
recommended that the checksum value used differ every time krb_mk_req is
called. The following is a list ofthe return values from krb_mk_req and, ifthey
are error codes, their possible cause:

KFAILURE I etc/krb. conf file (see krb. conf (5krb)) cannot be
opened, or it is not properly formed.

NO_TKT_FlL The ticket file does not exist.

TKT _FIL_ACC The ticket file cannot be opened or the ticket file cannot be
accessed.

TKT_FIL_LCK The ticket file could not be locked for access.

TKT _FIL_FMT The ticket file format is incorrect.

AD_NOTGT There is no ticket-granting ticket in the ticket file that can be used
to ask for a ticket to communicate with the foreign principal.

SKDC_CANT A Kerberos server must be contacted so that krb mk req can
perform its function, but the attempt cannot be made because a
socket cannot be opened or bound, or because there is no Kerberos
server listed in I etc/krb. conf.

SKDC_RETRY A Kerberos server needs to be contacted, but none responded even
after several attempts.

3-308 Subroutines

kerberos (3krb)

INTK_PROT

KSUCCESS

krb_rd_req

Kerberos protocol error.

All went well.

This routine is used to read the authentication data produced by principal "A" with
krb_mk_req and sent by "A" to principal "B". It takes as input the primary name
and instance name of the local principal "B", as well as the authentication data sent
to "B", the address of the machine from which "A" sent the ticket-authenticator pair,
and the name of the file in which to find the key of the local principal. If the
authentication attempt is successful, krb rd req will fill the ad structure with data
about the authenticated association between "A" and "B".

The krb_rd_req routine returns zero (RD_AP_OK) upon successful
authentication. If a packet was forged, modified, or replayed, then authentication
fails.

The following is a list of the error values returned from krb mk req and their
possible causes: - -

RD_AP _VERSION
The versions of Kerberos used by the caller of kr b _ mk _ re q is
incompatible with the krb_rd_req version.

RD_AP _MSG_TYPE
The ticket-authenticator pair given to krb rd req was not
actually a ticket-authenticator pair. --

RD_AP _UNDEC The ticket was indecipherable. This error can be caused by a
forged or a modified message.

RD_AP _INC ON The message given to krb rd req contains an internal
inconsistency. This could occurif the ticket in the ticket
authenticator pair does not match the authenticator.

RD_AP _BADD The ticket-authenticator pair cannot be used from the address,
Lhostaddr.

RD _AP _TIME The authenticator in the ticket-authenticator pair is too old to be
used to authenticate the foreign principal.

RD_AP _NYV The time at which the ticket of the ticket-authenticator pair was
created, is too far ahead of the time of the local host of the local
principal.

RD _AP _EXP The ticket is too old to be used.

krb _get _ cred

Searches the caller's ticket file for the authentication information associated with the
principal specified by the Lservice, Linstance, andLrealm. If krb_get_cred
finds information in the ticket file, it fills a credentials structure with the information
and returns the status, GC_OK.

The following is a list of the error values returned from krb _ mk _ req and their
possible causes:

NO_TKT_FIL The ticket file does not exist.

Subroutines 3-309

kerberos (3krb)

TKT_FIL_ACC The ticket file cannot be opened or the ticket file cannot be
accessed.

TKT _FIL_LCK The ticket file could not be locked for access.

TKT _FIL_FMT The ticket file fonnat is incorrect.

krb mk safe

Infonnation concerning the principal does not exist in the ticket
file.

Creates an authenticated but unencrypted message from text pointed to by in, of a
length indicated by in_length. The routine uses the private session key (*key) to seed
the checksum algorithm, des quad cksum, that it uses as part of the
authentication process. (For more information about des quad cksum, see the
des_crypt (3krb) reference page.) The krb_mk_safe routine also uses the
arguments 1_ addr and L addr for authentication purposes.

A safe message does not provide privacy, but does provide protection against
modifications in addition to providing authentication. The encapsulated message and
header produced by krb_mk_safe are placed in the area pointed to by out. The
routine returns the length of the output or a negative one (-1), indicating an error.

krb rd safe

Authenticates a received krb mk safe message and writes the appropriate fields in
the message data structure MSGJ>AT. The argument in points to the beginning of
the received message. The argument in _length specifies the length of the message.
The krb rd safe routine uses the private session key (*key) to seed the
des_quad_cksum routine (see the des_crypt (3krb) reference page) as part of
its authentication process. The routine fills in the following MSG_DAT fields:

MSG_DAT Field Description

a pp _ da t a Pointer to the application data
app_length Length of the app_data
time sec Timestamp of the message in seconds
time 5ms Timestamp of the message in 5-millisecond units
swap A 1 if the byte order of the receiver is different

from that of the sender

Note that the application must still detennine if it is appropriate to byte-swap
application data; the Kerberos protocol fields are already taken care of.

The krb rd safe routine returns RD_AP _OK if the message, in, is authenticated
and has not been modified when it was sent between the foreign and the local
principal. It is up to the caller to check the time sequence of messages and to check
against recently replayed messages. The following is a list of the error values
returned by krb_rd_req and their possible causes:

-1

3-310 Subroutines

A system call used by krb_rd_safe returned an error.

The Kerberos version of the k r b mk sa f e code that generated
message, in, is not supported by the krb_rd_safe version
used.

kerberos (3krb)

RD_AP _MSG_TYPE
The message, in, is not really a message produced by
krb mk safe.

RD_AP _MODIFIED
The address of the machine from which in was sent does not
match the address of the machine on which the krb mk safe
message, in, was generated, or
The message was modified when it was sent from the foreign to
the local principal, or
The message, in, is too small to be the message produced by
krb_mk_req.

The difference between the time at which the message, in, was
produced by krb_mk_req and the time at which it was read by
krb _ rd _ req is too large. The time difference must be within
five minutes.

Restrictions

Files

The caller of the functions, krb rd req and krb rd safe, must check the time
order of messages and protect against replay attempts. -

/usr/include/krb.h

/usr/lib/libkrb.a

/usr/include/des.h

/usr/lib/libdes.a

/etc/srvtab

See Also
des3rypt(3krb), krb_sendmutual(3krb), krb_sendauth(3krb), krb_svc_init(3krb),
krb_seCtkCstring(3krb), krb.conf(5krb)

Subroutines 3-311

Name

Syntax

krb~eClrealm - Host/realm identification routines.

#include <krb.h>
#include <des.h>

krb get Irealm (realm, n)
char *realm;
int n;

char *krb_get_phost (alias)
char *alias;

Arguments

alias

realm

n

Identifies a host whose name is to be converted to an instance name. The
alias string is overwritten with the instance name. The alias string must
be stored in a buffer of at least INST_SZ characters.

Identifies a specific realm.

Specifies a specific position in a series of Kerberos hosts; must be set to O.

Description

Files

The routines of krb get lrealm allow an application to obtain information on
host/realm relationships ina Kerberos network. The routines of this library are:

krb get phost
- - Converts the hostname pointed to by alias, which can be either an official

name or an alias, into the instance name to be used in obtaining Kerberos
tickets.

krb _get Jrealm
Initializes realm with the nth realm of the local host. The argument realm
should be large enough to contain the maximum realm name determined
by the constant REALM_SZ. The local realm name is stored in the
/ etc/krb. canf file. See the krb. canf (5krb) reference page.

/etc/krb.canf

See Also
kerberos(3krb), krb.conf(5krb)

3-312 Subroutines

(

Name

Syntax

krb_sendauth{3krb)

krb_sendauth, krb_recvauth - Kerberos authentication library routines.

#include <krb.h>
#include <des.h>
#include <netinet/in.h>

int krb_sendauth (options,fd, tkt_authen,Lservice,
Linst, Lrealm, checksum, msg_ data,
cred, schedule, I addr, / addr,
version_in) - -

long
int
KTEXT
char
char
char
uJong
MSG DAT
CREDENTIALS
Key_schedule
struct sockaddr in
struct sockaddr-in
char

options;
fd;
tkt authen;
*/service;
*[instance;
*[realm;
checksum;
*msg data;
*cred;
schedule;
*I_addr;
*/ addr;
*version _in;

int krbJecvauth (options,fd, tkt_authen_out, I_service,
I instance, f addr, I addr, ad,
srvtab Jzle, schedule-: version_out)

options; long
int
KTEXT
char
char
struct sockaddr in
struct sockaddr -in
AUTH DAT -
char
Key-schedule
char

fd;
tkt authen out;
*1 service;
*rinstance;
*[addr;
*raddr - ,
*ad;
* srvtab Jzle;
schedule;
*version _out;

Arguments

options Defined in /usr/include/krb. h. To specify multiple options,
construct the options argument as a bitwise-OR of the desired options. The
options are as follows:

KOPT_DONT_MK_REQ
krb sendauth will not use the krb mk req function (see
kerberos (3krb)) to produce the tiCket-authenticator pair,
authen tkt. Instead, the ticket-authenticator pair is read from the
argument, tkt _puthen.

Subroutines 3-313

krb_sendauth (3krb)

KOP'CDONT_CANON
krb_sendauth will not convert the instance name, Linstance,
to canonical fonn. If KOPT_DONT_CANON is not set, the
instance name used is the output from krb_getyhost (see
krb_get_lrealm (3krb)) with argumentLinstance as
input.

KOPT_DO_MUTUAL
krb_sendauth and krb_recvauth provide authentication
on both ends of the network connection. Otherwise, the caller
of krb sendauth is authenticated to the caller of
krb recvauth, but the caller of krb recvauth is not
authenticated to the caller of krb sendauth. For mutual
authentication to occur, both krb=sendauth and
krb_recvauth must be called with this option set.

Lservice Character pointer to the primary name of the foreign principaL The local
principal is the principal that calls the above routines. The foreign
principal is the principal with which the local principal is attempting to
communicate. If KOPT_DONT_MK_REQ is set and
KOPT_DO_MUTUAL is not, thenLservice should be set equal to the
NULL pointer.

Linstance
Character pointer to the instance name of the foreign principal. If
KOPT_DONT_MK_REQ is set and KOPT_DO_MUTUAL is not, then
Linstance should be set equal to the NULL pointer.

f realm Character pointer to the realm name of the foreign principal. If the fJealm
parameter is set equal to the NULL pointer, then the local realm is used as
the f realm. If KOPT_DONT_MK_REQ is set and KOPT_DO_MUTUAL
is not, then Lservice should be set equal to the NULL pointer.

I_service Character pointer to the primary name of the local principal.

I instance
- Character pointer to the instance name of the local principal.

fd The file descriptor used to send data to the foreign principal, or the file
descriptor from which data from the foreign principal can be read. In either
case, the file descriptor must be associated with a socket that uses blocking
I/O.

tkt authen
- Pointer to the text structure in which the Kerberos library routines build the

ticket-authenticator pair. This structure is designed to be included within
the krb sendauth message sent to the foreign principal to authenticate
the local principal's identity to the foreign principal. This structure can be
either input to krb_sendauth or output from krb_sendauth
depending on whether KOPT_DONT_MK_REQ is set or not set. In either
case, storage must be allocated for tkt _ authen.

tkt authen out
- Pointer to the ticket-authenticator pair that krb_recvauth reads from

within the krb sendauth message. The krb sendauth message is
sent by krb_sendauth to the local principal to authenticate the foreign
principal to the local principal. Storage must be allocated for
tkt authen out. - -

3-314 Subroutines

/
I
\

checksum

msg_data

krb_sendauth (3krb)

Input to krb sendauth; checksum is packaged in the krb sendauth
message that is sent to the foreign principal. It serves as a secret piece of
data that can only be known to the foreign principal if the foreign principal
is authenticated as the foreign principal. It is used to facilitate mutual
authentication, so if the KOPT_DO_MUTUAL is not set, the value of this
argument is inconsequential. If both KOPT_DONT_MK_REQ and
KOPT_DO_MUTUAL are set, then the checksum parameter must be equal
to the checksum value used by krb mk req in the creation of the ticket-
authenticator pair, authen tkt. --

Pointer to a structure which is filled with the mutual authentication message
sent by krb_recvauth and interpreted by krb_sendauth. The
message sent from krb_sendauth to krb_recvauth, the message that
includes the ticket-authenticator pair, authenticates only the caller of
krb sendauth to the caller of krb recvauth. An additional
message, the one returned by krb_sendauth inside msg_data, must be
sent by krb recvauth and interpreted by krb sendauth in order to
authenticate the caller of krb recvauth to the caller of
krb_sendauth. If the KOiYCDO_MUTUAL option is set, space must
be allocated for the msg data structure. Otherwise, since no message will
be sent from krb_rec;-auth to krb_sendauth, the msg_data
parameter should be set equivalent to the NULL pointer.

cred a pointer to a credentials structure that is output from krb sendauth.
The credentials structure includes the ticket that the local pnncipal uses to
authenticate to the foreign principal as well as other authentication
information associated with the foreign principal. If the
KOPT_DO_MUTUAL option is set, space must be allocated for the cred
structure and the cred structure will be filled in by krb_sendauth.
Otherwise, the cred structure will not be filled in by krb sendauth, so
the cred parameter should be set equivalent to the NULL pointer.

schedule a key schedule, derived from the session key between the local and foreign
principals, that is output from krb sendauth and krb recvauth. If
the KOPT_DO_MUTUAL option is set, the key schedule will be filled in;
otherwise, the key schedule will not be filled. In any case, space must be
allocated for the key schedule.

f_ addr the address of the socket that the foreign principal is using to communicate
with the local principal. If the KOPT_DO_MUTUAL option is not set on a
call to krb sendauth, then the! addr parameter should be set
equivalent to the NULL pointer. f_addr should never be set to NULL on a
call to krb recvauth.

I addr the address of the socket that the local principal is using to communicate
with the foreign principal. If the KOPT_DO_MUTUAL option is not set,
the 1_ addr parameter should be set equivalent to the NULL pointer.

ad a pointer to the AUTH_DAT structure that describes the authentication
association between the local and foreign principals. Since it is output
from krb_recvauth, space for the ad structure must be allocated.

Subroutines 3-315

krb_sendauth (3krb)

srvtabJtle
path name of the file that contains the key of the principal obtaining a
ticket. If this value is set equal to a string of zero length,
srvtab file [0] ='\0', the default service table file (srvtab) value is
used. If this value is set equal to the NULL pointer, then the key of the
service is not read from the srvtab file, but is read from storage space
internal to the libraries. The srvtab Jrle parameter cannot be set to the
NULL string on the first call to krb sendauth. The default srvtab file
value is set to / et c / s rvt ab although this value can be changed by a call
to the krb_set_srvtab_string function (see
krb_set_tkt_string (3krb).

version in
An application-specific version string input to krb sendauth. This
argument allows the caller of krb sendauth to pass an application
specific version string, within the krb_sendauth message format, that
the caller of krb recvauth can use to match against its own version
string. The version string can be up to KRB_SENDAUTH_ VLEN
characters long and, in addition, it can be set equal to the NULL string.

version out

Description

- An application-specific version string output from krb recvauth. This
argument allows the caller of krb_recvauth to receive the application
specific version string included in the krb sendauth message that was
sent by the foreign principal. The version string can be up to
KRB_SENDAUTH_ VLEN characters long.

The krb_sendauth (3krb) routines are designed to be used by applications that
communicate over a network, require the authentication of both parties accross the
communicatjons path, and which support "on-the-wire" protocols that have no room
for authentication information. The krb sendauth (3krb) routines are designed
to perform only the authentication of the first message sent between such
applications. Therefore, the krb_sendauth (3krb) routines should be used
before any other communication occurs between the authenticating principals.

After the communications channel between the applications has been established, but
before any communication takes place, and before the "on-the-wire" protocol of the
application comes into effect, krb sendauth creates a message which can
authenticate the caller of krb sendauth, "A", to the caller of krb recvauth,
"B". krb sendauth then sends the message to "B" where it is read from the
communications channel by krb_recvauth.

Next, krb_recvauth attempts to authenticate "A" by producing a response to "A"
which, depending upon the value of KOPT_DO_MUTUAL and the success of the
authentication of "A" by krb recvauth, will contain either an error code, a code
indicating success, or a mutual authentication message. krb_recvauth sends the
response and returns to "B". krb_sendauth receives the message from "B", tries
to authenticate "B" if KOPT_DO_MUTUAL is set, and then returns to "A".

Since the authentication information is sent between the applications before the "on
the-wire" protocol of the application comes into effect, the application must develop
some method of distinguishing between the new authenticated initial message
exchange and an old unauthenticated initial message exchange.

3-316 Subroutines

krb_sendauth(3krb)

The krb_sendauth (3krb) routines make extensive use ofthe locally defined
data types KTEXT, MSG_DAT, CREDENTIALS, and Key_schedule. For specific
information on the definitions of these data types, see the des. hand krb. h files.

The routines found in the krb sendauth (3krb) library are krb_sendauth
and krb recvauth: -

krb sendauth

The krb_sendauth function is designed to authenticate a local principal, "A", to
the principal specified by the! service,f instance, and! realm parameters, "B", and
to allow the authentication of iTB" to "A"as well. krb sendauth uses file
descriptor /d, to send the authentication message that WIll authenticate "A" to
principal "B". It returns, in the tkt authen parameter, the ticket-authenticator pair
used to authenticate "A" to "B". The version in parameter contains an application
specific version string which is transmitted to"B" along with the authentication
message.

If mutual authentication is selected as an option, the file descriptor, /d will be used to
receive a mutual authentication message from "B". To allow the mutual
authentication to take place, I addr and / addr must be set equal to the address of the
sockets which the local and foreign principals use to communicate. A value known
only to "A" must be input to krb_sendauth as the checksum parameter. As the
result of mutual authentication, cred will be filled with data describing the
authentication information associated with "B", schedule will be set equal to the
key_schedule of the session key between "A" and "B", and msg data will be set
equal to the mutual authentication message sent from "B" to "A".

/d must be a file descriptor associated with a blocking socket. Otherwise,
krb_sendauth will not function correctly.

If "A" has been correctly authenticated to "B" and mutual authentication was not
chosen as an option, or if "A" has been correctly authenticated to "B", and "B"
correctly authenticated to "A" and mutual authentication was chosen as an option,
then KSUCCESS is returned by krb_sendauth.

The following is a list of most of the error values from krb _ sendauth. Since
krb sendauth calls other section 3 Kerberos routines (3krb) to perform its
function, some of the error codes are references to the error codes of other functions:

SENDAUTH_OPNOTSUP
The options bits sent to krb sendauth contain a bit which
is set, but does not correspond to an option.

SENDAUTH_ WR krb sendauth could not write the authentication message to
"B" using/d.

KFAILURE The letc/krb. conf file cannot be opened, or
The I etc/krb. conf file (see krb. conf (5krb)) is not
formed properly, or
An authentication message was sent from "A" to "B", but "B"
could not successfully identify "A", or
A mutual authentication message was sent from "B" to "A",
but "A" could not successfully identify "B".

-1 Negative one is returned if each byte of the session key does
not have odd parity.

Subroutines 3-317

krb_sendauth (3krb)

-2

INTK_PROT

GC_NOTKT

Negative two is returned if the session key is a weak key as
defined by des_is_weak_key (see des_crypt (3krb).

The ticket file does not exist.

The ticket file cannot be opened or the ticket file cannot be
accessed.

The ticket file could not be locked for access.

The ticket file format is incorrect.

There is no ticket-granting-ticket in the ticket file that can be
used to ask for a ticket to communicate with the foreign
principal.

A Kerberos server must be contacted in order for
krb_sendauth to perform its function, but the attempt
cannot be made because a socket cannot be opened or bound,
or there is no Kerberos server listed in I etc/krb. conf.

A Kerberos server needs to be contacted, but none responded
even after several retries.

Kerberos protocol error.

Information concerning the foreign principal does not exist in
the ticket file.

RECVNnJT_OPNOTSUP
The options bits sent to krb recvmutal (see
krb_senctmutual (3krbj) contain a bit which is set, but
does not correspond to an option.

If the message cannot be read from the file descriptor jd,
SENDMUT_RD is returned.

RD_AP _VERSION If the Kerberos version used to create the mutual authentication
message is not supported by krb recvmutual, then
RD_AP _ VERSION is returned. -

If the message read from the file descriptor, jd, is not a mutual
authentcation message, RD_AP _MSG_TYPE is returned.

RD_AP _MODIFIED If the mutual authentication message has been modified
between the "B" and "A" or it was in some way incorrectly
produced, RD_AP _MODIFIED is returned.

RD_AP_TIME

krb recvauth

Returned if the mutual authentication message is too old.

The krb_recvauth function is designed to wait for a message from
krb sendauth on the file descriptorjd, receive the message and attempt to
authenticate the foreign principal, "A", to the local principal determined by the
I_service and I_instance parameters. The srvtab Jde must contain the private key of
principal "B". The tkt_authen_out parameter is filled with the ticket-authenticator
pair sent within the krb_sendauth message received by "B" from "A". ad is
filled with information that describes the authentication association between "A" and
"B". version_out is filled with the application version string included in the

3-318 Subroutines

krb_sendauth (3krb)

krb_sendauth message.

If mutual authentication is selected as an option, the file descriptor fd, will be used to
send a mutual authentication message to "A". To allow the mutual authentication to
take place, I addr and f addr must be set equal to the address of the sockets that the
local and foreign principals are using to communicate. As the result of mutual
authentication, schedule will be set equal to the key_schedule of the session key
between "A" and "B".

fd must be a file descriptor that is associated with a blocking socket. Otherwise,
krb_recvauth will not function correctly.

If "A" has been correctly authenticated to "B" and mutual authentication was not
chosen as an option, or if mutual authentication is an option and "A" has been
correctly authenticated to "B" and "B" has sent a mutual authentication message to
"B", then KSUCCESS is returned by krb_recvauth.

The following is a list of most of the error values from krb_recvauth. Since
krb recvauth calls other section 3 Kerberos routines (3krb) to perform its
function, some of the error codes are references to the error codes of other functions.

RECVAUTH_OPNOTSUP
The options bits sent to krb_recvauth contain a bit which
is set but does not correspond to an option.

krb recvauth could not read the authentication message
sent to "B" usingfd.

RECVAUTH_TKTLEN
The length of the ticket-authenticator pair within the
krb_sendauth message is longer than the maximum or less
than or equal to O.

RD_AP _VERSION The versions of Kerberos used by the caller of
krb_sendauth is incompatible with the krb_recvauth
version.

The ticket-authenticator pair given to krb _ recvauth was
not really a ticket-authenticator pair.

The ticket could not be decyphered. This error can be caused
by a forged or modified message.

The message given to krb_recvauth contains an internal
inconsistency. This could occur if the ticket in the ticket-
authenticator pair does not match the authenticator.

The ticket-authenticator pair cannot be used to authenticate a
principal from the address specified by f addr.

The authenticator in the ticket-authenticator pair is too old to
be used to authenticate the foreign principal.

The time at which the ticket of the ticket-authenticator pair was
created is too far ahead of the time of the local host of the local
principal.

The ticket is too old to be used.

Subroutines 3-319

krb_sendauth (3krb)

-1 Negative one is returned if the each byte of the session key
does not have odd parity.

-2 Negative two is returned if the session key is a weak key as
defined by des_is_weak_key.

SENDMUT_OPNOTSUP
The options bits sent to krb_sendmutal contains a bit
which is set but does not correspond to an option.

SENDMUT_MAKMSG

SENDMUT_WR

Restrictions

If there is an error in forming the mutual authentication
message itself, SENDMUT_MAKMSG is returned.

If the mutual authentication message cannot be written to the
file descriptor jd, SENDMUT _ WR is returned.

krb_sendauth and krb_recvauth will not work properly on sockets set to
nonblocking I/O mode.

See Also
kerberos(3krb), krb_sendmutual(3krb), krb_svc_init(3krb), des_crypt(3krb,
krb~eClrealm(3krb), krb_seCtkCstring(3krb), krb.conf(5krb).

3-320 Subroutines

Name

Syntax

krb_sendmutual (3krb)

krb_sendmutual, krb_recvmutual- Kerberos mutual authentication routines

#include <krh.h>
#include <des.h>

int krb_sendrnutual (options, msg_out, success,jd,
Laddr, l_addr, ad, schedule)

long
KTEXT
int
int
struct sockaddr in
struct sockaddr -in
AUTH DAT -
Key_schedule

options;
msg_out;
success;
fd;
*f addr;
*raddr;
*ad: ,
schedule;

int krbJecvrnutual (options,fd, checksum, msg_in,
msg data, cred, schedule, I addr,
f addr) -

long
int
u long
KTEXT
MSG DAT
CREDENTIALS
Key_schedule
struct sockaddr in
struct sockaddr -in

options;
fd;
checksum;
msg_in;
*msg data;
*cred;
schedule;
*1 addr;
*{addr;

Arguments

options defined in /usr / include/krb. h. There is only one option currently
supported, KOP'CNORDWR. If this option is not set, the mutual
authentication information is read either from the supplied file descriptor,
fd, or sent accross the supplied file descriptor, fd. If it is specified, then
no data is read from or written to the file descriptor; instead, data is read
from and written to the buffers supplied as parameters, msg_in, msg_out.

fd the file descriptor used to send data to the foreign principal, or it is the file
descriptor from which data from the foreign principal can be read.

The foreign principal is the principal to which the principal that calls a
krb sendmutual (3krb) routine, the local principal, is attempting to
mutually authenticate itself. The file descriptor must be associated with a
socket that uses blocking I/O. The fd parameter is not used if the
KOPT_NORDWR option is set.

L addr the address of the socket that the foreign principal uses to communicate
with the local principal.

Subroutines 3-321

krb_sendmutual (3krb)

I addr

msg_out

success

ad

checksum

cred

schedule

3-322 Subroutines

the address of the socket that the local principal uses to communicate with
the foreign principal.

If KOPT_NORDWR is sent as an option, msg out is used as a buffer to
store the mutual authentication data that should be sent to the foreign
principal. If KOPT_NORDWR is not set, msg_out is not used and the
mutual authentication message is written to fd.

If success is not set to KSUCCESS, then the mutual authentication
message generated by krb_sendrnutual is a message indicating failure.
This parameter is useful if the initial attempt to authenticate the foreign
principal failed. Since this initial authentication attempt failed, then the
attempt to authenticate the local principal to the foreign principal also
must fail. If success is set to KSUCCESS, then a mutual authentication
message is generated.

a pointer to the AUTH_DAT structure that describes the authentication
association between the local and foreign principals. The ad structure is
output from krb_rd_req (see kerberos (3krb)) and is used as input
to krb_sendmutual. Space for the ad structure must be allocated.

input to krb_recvrnutual, it must have the same value as the
checksum used as input to krb_rnk_req (see kerberos (3krb)) or to
krb sendauth (see krb sendauth (3krb)). The checksum is
included in the ticket-authellticator pair produced by krb_rnk_req and
sent by krb_sendauth to the foreign principal. It serves as a secret
piece of data that can only be known to the foreign principal if the foreign
principal was authenticated as the foreign principal. It is included by
krb_sendmutual in the mutual authentication message. If the
checksum input to krb recvrnutual matches the one sent back by
krb sendmutual, then the caller of krb sendmutual is
authenticated to the caller of krb recvrnutual.

If KOPT_NORDWR is sent as an option, then data in msg_in is read as if
it contained the mutual authentication bits sent to the local principal by
the foreign principal. If KOPT_NORDWR is not set, then msg_in is not
used and the mutual authentication message is read from fd.

a structure returned by krb recvrnutal that is filled with the mutual
authentication message sentto the local principal as well as information
about the status of the message. Space must be allocated for the msg_ data
structure.

a pointer to a credentials structure that is input to krb_recvrnutual.
The credentials structure that cred points to must be the credentials
structure that includes the ticket that the local principal uses to
authenticate the foreign principal. This credential structure is usually
obtained through the use of krb_get_cred (See kerberos (3krb)).

the key schedule derived from the session key between the local and
foreign principals. It is input to both krb_sendmutual and
krb recvrnutual, and it can be generated from the session key with
des:=key_sched (see des_crypt (3krb)).

\

krb_sendmutual (3krb)

Description
The krb_sendmutual (3krb) routines are designed to be used by applications
which communicate over the network, support "on-the-wire" protocols in which
authentication information can be placed, and require both parties in the
communications process to be authenticated to the other (mutual authentication).
They are best used with krb mk req and krb rd req. If a principal "A" calls
krb_mk_req and sends theoutput to principal "B",-which uses krb_rd_req to
interpret the data successfully, then "B" will have authenticated principal "A". But,
principal "A" will not know that the message it sent was really received by "B". To
prove the identity of principal "B" to principal "A" after the calls to krb_mk_req
and krb_rd_req are finished, the krb_sendmutual (3krb) calls are used.

krb sendmutual and krb recvmutual can also be used with krb mk req
and krb_rd_req by applications which cannot tolerate additions to their"oll="the
wire" protocols. After the communications channel between "A" and "B" is
established, but before "A" and "B" communicate and before the "on-the-wire"
protocol of the applications comes into effect, krb mk req and krb rd req can
be used as described above to authenticate "A" to '13". krb sendmutual and
krb _ recvmut ual can then be used with the KOPT_NORDWR option not set to
authenticate "B" to "A".

Since the authentication information is sent between the applications before the "on
the-wire" protocol of the application comes into effect, the application must develop
some way to distinguish between the new authenticated initial message exchange and
an old unauthenticated initial message exchange. This is not a recommended use for
krb sendmutual and krb recvmutual. If you do not want to modify the
"on-the-wire" protocol of an application, yet want to authenticate the application, then
use the krb_sendauth (3krb) routines.

The routines of this library make extensive use of the following locally defined data
types: KTEXT, AUTH_DAT, CREDENTIALS, Key_schedule, and MSG_DAT. For
more specific information on the definitions of these data types, see the de s . hand
krb . h files.

krb sendmutual

krb_sendmutual is used to produce and possibly send the data that will
authenticate principal "B" to principal "A". If the authentication of principal "A" did
not succeed, success should be set to KFAILURE, and krb sendmutual produces
a message indicating authentication failure. If it is set to KSUCCESS, then
krb_sendmutual produces the data necessary to authenticate "B" to "A". If the
option KOPT_NORDWR is set, the data is written to buffer mS8_out; otherwise, it is
written to file descriptor, fd.

The following is a list of the return values and, if they are error codes, their possible
cause:

SENDMUT OPNOTSUP
The options bits sent to krb_sendmutal contain a bit that is
set but does not correspond to an option.

SENDMUT PARAM
The mS8_out structure must have space within it allocated to
store the message. Otherwise, SENDMUT_PARAM is
returned if the KOPT_NORDWR option is set.

Subroutines 3-323

krb_sendmutual (3krb)

SENDMUT MAKMSG

SENDMUT WR

KSUCCESS

krb recvmutual

If there is an error in forming the mutual authentication
message itself, SENDMUT_MAKMSG is returned.

If the message cannot be written to the file descriptor fd,
SENDMUT_WR is returned.

If the message has been correctly formed, KSUCCESS is
returned.

The krb recvmutual routine interprets the mutual authentication message sent to
principal" A" by principal "B". If the KOPT_NORDWR option is set,
krb_recvmutual reads from buffer msg_in, the message sent from "B" to "A".
Otherwise, it reads the message from file descriptor, fd. The checksum sent as input
to krb recvmut ual must be the same checksum used as input to krb mk req.
The checksum is an integral part of proving the identity of principal "B" to "A". The
following is a list of the return values and, if they are error codes, their possible
cause:

llECVMUT OPNOTSUP
. - The options bits sent to krb recvmutal contain a bit that is

set, but does not correspond to an option.

RECVMUT_MSGLEN
The size of the msg_in buffer is incorrect.

If the message cannot be read from the file descriptor fd, then
SENDMUT _RD is returned.

RD AP VERSION If the Kerberos version used to create the mutual authentication
message is not currently supported by krb recvmutual,
then RD_AP _VERSION is returned. -

RD AP MSG TYPE - - -

RD AP MODIFIED

RD AP TIME

KFAILURE

KSUCCESS

3-324 Subroutines

If the message that is read from the file descriptor fd, or input
as msg_in is not a mutual authentication message,
RD_AP _MSG_TYPE is returned.

If the message has been modified between principals "B" and
"A", or if was incorrectly produced, then RD_AP _MODIFIED
is returned.

If the mutual authentication message is too old, RD _AP _TIME
is returned.

If principal "A" was not authenticated to principal "B", or if the
mutual authentication message fails to identify "B",
KFAILURE is returned.

If principal "B" has been correctly authenticated to principal
"A", KSUCCESS is returned.

krb_sendmutual (3krb)

Restrictions
krb sendmutal and krb recvmutal will not work properly with sockets that
do not use blocking I/O. -

See Also
kerberos(3krb), krb_sendauth(3krb), des3rypt(3krb), krb_svc_init(3krb)

Subroutines 3-325

Name

Syntax

krb_seCtkCstring, krb_secsrvtab_string - Environmental setup of the Kerberos
libraries

#include <krb.h>

void krb_set_tkt_string (filename)
char *filename

void krb_set_srvtab_string (filename)
char *filename

Arguments

filename The filename of the Kerberos ticket cache file or the name of the service
table file.

Description

Files

The krb set tkt string routine sets the default name of the file that holds a
cache of service tickets and associated session keys belonging to a Kerberos
principal. The routine accepts a filename for the cache and copies this name into the
local storage of libkrb. The default before any calls to krb set tkt string,
is /var / dss/kerberos /tkt/tkt [uid] where uid is the user ill of the process
that calls krb_set_tkt_string.

You should call krb_set_tkt_string during Kerberos initialization to assure
that any routines called later receive the proper name if they require the filename of
the cache.

The krb set srvtab string routine sets the default name of the file that
stores the-keys of the Kefberos applications running on the local host. The routine
accepts a filename for the service table file and copies this name into the local storage
of libkrb.

You should call krb_set_srvtab_string during the Kerberos initialization of
a service to assure that any subsequently called routines that require the filename of
the service table receive the proper name. The default, before any calls to the
krb_set_srvtab string, is /etc/srvtab.

/var/dss/kerberos/tkt/tkt[~d]

/etc/srvtab

See Also
kerberos(3krb), krb _sendauth(3krb), krb_sendmutual(3krb)

3-326 Subroutines

Name

Syntax

krb_svc_init, krb_gecsvc_in_tkt, krb-secpw _in_tkt - Kerberos authentication
initialization routines

#include <krb.h>
#include <des.h>

krb_svcJnit (user, instance, realm, lifetime,
srvtab Jzle, tkt Jzle)

char *user, *instance, *realm;
int lifetime;
char * srvtab Jzle, *tkt Jzle;

krh_get_svc_in_tkt (user, instance, realm, service,
service instance, lifetime,
srvtab]ile)

char * user, *instance, *realm, *service,;
char * service instance;
int lifetime;-
char * srvtab Jzle;

krb _get _pw _in _ tkt (user, instance, realm, service,
service _instance, lifetime,
password)

char
char
int
char

* user, *instance, *realm,;
*service, *service instance;

lifetime; -
*password;

Arguments

user For krb_get_svc_in_tkt and krb_getyw_in_tkt, the primary
name of the principal that is obtaining a ticket that will authenticate it to
principal, service. For krb _ svc _ ini t, the primary name of the
principal that is obtaining a ticket to communicate with the ticket-granting
service.

instance For krb_get_svc_in_tkt and krb_getyw_in_tkt, the instance
name of the principal that is obtaining a ticket that will authenticate it to
principal, service. For krb svc ini t, the instance name of the
principal that is obtaining a tlcketto communicate with the ticket-granting
service.

realm

service

For krb_get_svc_in_tkt and krb_getyw_in_tkt, the realm
name of the principal that is obtaining a ticket that will authenticate it to
principal, service. For krb svc ini t, the realm name of the principal
that is obtaining a ticket to Communicate with the ticket-granting service.

The primary name of the service for which a ticket will be obtained.

service instance
The instance of the service for which a ticket will be obtained.

lifetime The number of five-minute intervals for which the obtained ticket should

Subroutines 3-327

be valid. Values greater than 255 will be set to 255. Values greater than
the maximum lifetime allowed for tickets given to the requesting principal
will be set to the maximum lifetime allowed. The maximum lifetime of
the tickets granted to a principal is determined when the principal is added
to the Kerberos database.

srvtab Jtle The path name of the file that contains the key of the principal obtaining a
ticket. If this value is set to the NULL pointer, the default service table
(srvtab) file value is used. The default srvtab file value is set by
default to / etc/ srvtab, although this value can be changed by a call
to the krb_set_srvtab_string function. (Refer to
krb_set_tkt_string (3krb)).

tkt Jtle The path name of the file into which the credentials and tickets of the user
or service should be placed. If the tkt Jde parameter is equal to the NULL
pointer, then the default ticket file value is used. The default ticket file
value is set equal to /var/dss/kerberos/tkt/tkt. [uid] where
uid is the user ID of the process that calls the above functions. The
default ticket file value can be changed by the
krb_set_tkt_string (3krb) function call.

password The password of the principal that is obtaining a ticket that will
authenticate it to principal, service. If the password input is the NULL
string, then krb_get_pw_in_tkt will prompt for a password on
stdout and read the password from stdin.

Description
The krb _ svc _ ini t (3krb) routines are designed to obtain for the requesting
principal a ticket to communicate with a specific service. They require that the
password/key of the requesting principal be either available as an argument, or
available from the srvtab Jtle argument or from stdin. Since the
krb_svc_init (3krb) routines always require a password, they are best used to
obtain the ticket used to communicate with the ticket-granting service. The ticket
granting ticket is used by the other Kerberos routines to obtain tickets to
communicate with principals other than the ticket-granting service, without needing
the key of the principal.

The krb sendauth (3krb) routines as well as the kerberos (3krb) routines
will not work as intended without the presence of a ticket-granting ticket.

The routines of krb_svc_init (3krb) are as follows:

krb svc init

For the principal with a primary name of user, an instance name of instance, and a
realm name of realm, the krb svc ini t routine obtains a ticket that the principal
can use to communicate with the ticket-granting service. The key of the principal is
read from srvtab Jtle and the ticket obtained is placed in tkt Jtle.

If the realm argument is equivalent to the NULL string, then the realm of which the
local host is a member, is used by default. If lifetime is equivalent to 0, then the
default lifetime, 255, is used. If srvtab Jtle is not equivalent to the NULL string, (
then the srvtab Jtle parameter is used as the service table (srvtab) file name and the
default srvtab file is set equal to the srvtab Jtle parameter. If srvtab Jtle is equivalent

3-328 Subroutines

to NULL, then the default srvtab file is used. If the tkt yle parameter is not
equivalent to the NULL string, then the tkt y,le parameter is used as the ticket file
name and the default ticket file is set equal to the tkt y,le parameter. If the tkt y,le
parameter is NULL, then the default ticket file value is used.

krb _ svc _ ini t returns INT_OK if krb _ svc _ ini t has successfully obtained a
ticket-granting ticket. The following is a list of most of the error values returned
from krb_svc_init and their possible cause:

KFAILURE
The I etc/krb. conf file (see krb. conf (Skrb)) cannot be opened
or it is not properly formed, or
The service table (srvtab) file does not exist, or
A read of the srvtab file failed, or
The srvtab file is badly formatted, or
The srvtab file did not contain the key of the principal with primary
name, user, or
A write to the ticket file failed.

SKDC_CANT
A Kerberos server must be contacted so that krb svc ini t can
perform its function, but the attempt cannot be made because a socket
cannot be opened or bound, or there is no Kerberos server listed in
letc/krb. conf.

SKDC_RETRY
A Kerberos server needs to be contacted, but none responded even after
several attempts.

INTK_PROT
Kerberos protocol version mismatch. The version of the Kerberos
protocol supported by krb svc ini t does not match the Kerberos
protocol version supported by the kerberos (8krb) daemon.

INTK_BADPW
The ticket returned by the kerberos daemon did not decrypt correctly.
This is usually caused by an incorrect service password.

INTK_ERR
The ticket sent from the kerberos daemon was not a ticket to
communicate with the ticket-granting service, or
The ticket file cannot be accessed, or
The ticket file could not be created, or
A write operation to the ticket file failed.

TKT_FIL_LCK
The ticket file could not be locked for access.

krh_get_svc_in_tkt

For the principal with a primary name of user, an instance name of instance and a
realm name of realm, the krb get svc in tkt routine obtains a ticket to
communicate with the principal that has a primary name of service and an instance
name of service _instance. The key of the requesting primary is read from the file
srvtab y,le and the tickets are placed in the default ticket file. If the srvtab y,le

Subroutines 3-329

argument is equivalent to the NULL string, then the default srvtab file value is used
instead of the srvtab Jtle parameter. The default srvtab file value and default ticket
file value can be changed respectively by krb set srvtab sting and
krb_set_tkt_string. To obtain the ticket-granting ticket, the service
parameter must be set equal to "krbtgt" and the service _instance argument must be
set equal to the realm name of the local realm.

krb get svc in tkt returns INT_OK if krb get svc in tkt has
successfuliY obtained-a ticket to communicate with princiPal, service. The following
is a list of most of the error values returned from krb get svc in tkt and their
possible causes: - - --

KFAILURE
The /etc/krb. conf file cannot be opened or it is not properly
formed, or
A read of the service table (srvtab) file failed, or
The srvtab file did not contain the key of the principal with primary
name, user, or
A write to the ticket file failed.

SKDC_CANT
A Kerberos server must be contacted in order for krb svc ini t to
perform its function, but the attempt cannot be made because a socket
cannot be opened or bound, or there is no Kerberos server listed in
letc/krb. conf.

SKDC_RETRY
A Kerberos server needs to be contacted but none responded even after
several attempts.

INTK_PROT
Kerberos protocol version mismatch. The version of the Kerberos
protocol supported by krb_get_svc_in_tkt does not match the
Kerberos protocol version supported by the kerberos daemon.

INTK_BADPW
The ticket returned by the kerberos daemon did not decrypt correctly.
This is usually caused by an incorrect service password.

INTK_ERR
The ticket sent from the kerberos daemon was not a ticket to
communicate with the ticket-granting service, or
The ticket file cannot be accessed, or
The ticket file could not be created, or
A write operation to the ticket file failed.

TKT_FIL_LCK
The ticket file could not be locked for access.

krb _get _pw In _ tkt

For the principal with a primary name of user, an instance name of instance, and a

(

\

(

realm name of realm, the krb_getyw_in_tkt routine obtains a ticket to (
communicate with the principal with a primary name of service and an instance name "'-
of service instance. The key of the principal must be input either as the password

3-330 Subroutines

parameter or, if the password field is equivalent to the NULL string, the password
must be input from stdin.

The tickets that are obtained are placed in the default ticket file. The default ticket
file can be changed by the krb set tkt string function. To obtain the ticket
granting ticket, the service parameter must be set equal to "krbtgt" and the
service _instance argument must be set equal to the realm name of the local realm.

krb_getyw_in_tkt returns INT_OK if krb_get_pw_in_tkt has
successfully obtained a ticket to communicate with principal, service. The following
is a list of most of the error values returned from krb _get yw _in _ tkt and their
possible causes:

KFAILURE
/ etc/krb. conf file cannot be opened or it is not properly formed. A
write to the ticket file failed.

SKDC_CANT
A Kerberos server must be contacted in order for krb svc ini t to
perform its function but the attempt cannot be made because-a socket
cannot be opened or bound, or there is no Kerberos server listed in
/ etc/krb. conf.

SKDC_RETRY
A Kerberos server needs to be contacted but none responded even after
several attempts.

INTK_PROT
Kerberos protocol version mismatch. The version of the Kerberos
protocol supported by krb_getyw_in_tkt does not match the
Kerberos protocol version supported by the kerberos daemon.

INTK_BADPW
The ticket returned by the kerberos daemon did not decrypt correctly.
This is usually caused by an incorrect user password.

INTK_ERR
The ticket sent from the kerberos daemon was not a ticket to
communicate with the ticket-granting service, or
The ticket file cannot be accessed, or
The ticket file could not be created, or
A write operation to the ticket file failed.

TKT_FIL_LCK
The ticket file could not be locked for access.

See Also
krb--seClrealm(3krb), krb_seCtkCstring(3krb), kerberos(3krb), krb_sendauth(3krb),
kerberos(8krb)

Subroutines 3-331

Math Routines (3m)

Insert tabbed divider here.
Then discard this sheet.

intro(3m)

Name
intro - introduction to mathematical library functions

Description
These functions constitute the math library, !ibm. They are automatically loaded as
needed by the FORTRAN compiler f77(1). The link editor searches this library
under the "-1m" option. Declarations for these functions may be obtained from the
include file <math.h>.

VAX Only

On VAX machines, the GFLOAT version of !ibm is used when you use
the ld(l) command with the leg option. Note that you must use the
GFLOAT version of !ibm with modules compiled using the cc(l) with
the -Mg option.

Also on V AX machines, note that neither the compiler nor the linker
ld(l) can detect when mixed double floating point types are used, and
the program may produce erroneous results if this occurs.

System V Compatibility

Files

This library contains System V compatibility features that are available to general
ULTRIX programs. For a discussion of how these features are documented, and how
to specify that the System V environment is to be used in compiling and linking your
programs, see intro(3).

/usr/lib/libma
/usr/lib/libmg.a (VAX only)

Subroutines 3-333

SC asinh (3m)

Name

Syntax

asinh, acosh, atanh - inverse hyperbolic functions

#include <math.h>

double asinh(x)
double X;

double acosh(x)
double X;

double atanh(x)
double X;

Description
The asinh, acosh, and atanh functions compute the designated inverse
hyperbolic functions for real arguments.

Errors Because of Roundoff, Etc.

These functions inherit much of their error from the loglp(3m) function.

Diagnostics
The acosh function returns the default quiet NaN if the argument is less than one.

The atanh function returns the default quiet NaN if the argument has an absolute
value greater than or equal to one.

See Also
exp(3m), math(3m)

3-334 Subroutines

\

Name

Syntax

asinh, acosh, atanh - inverse hyperbolic functions

#include <math.h>

double asinh(x)
double X;

double acosh(x)
double X;

double atanh(x)
double X;

asinh (3m) V

Description
These functions compute the designated inverse hyperbolic functions for real
arguments.

Return Value
The function acosh returns 0.0 if the argument is less than 1.

The function atanh returns the HUGE value if the argument has absolute value
greater than or equal to 1.

See Also
exp(3m), intro(3m)

Subroutines 3-335

bessel (3m)

Name

Syntax

jO, jl, jn, yO, yl, yn - bessel functions

#include <math.h>

double jO(x)
double x;

double jl(x)
double x;

double jn(n,x)
double x;

double yO (x)
double x;

double yl(x)
double x;

double yn(n,x)
double x;

Description
These functions calculate bessel functions of the first and second kinds for real
arguments and integer orders.

Return Value
Negative arguments cause yO, yl, and yn to return NaN. Arguments too large in
magnitude cause yO, yl, and yn to return NaN.

Arguments too large in magnitude cause j 0, j 1, and j n to return zero.

Environment
When your program is compiled using the System V environment, nonpositive
arguments cause yO, yl and yn to return the value HUGE and to set ermo to
EDaM. In addition, a message indicating DOMAIN error is printed on the standard
error output.

Arguments too large in magnitude cause j 0, j 1, yO, and y 1 to return zero and to
set ermo to ERANGE. In addition, a message indicating TLOSS error is printed on
the standard error output.

These error-handling procedures may be changed with the matherr(3m) function.

See Also
math(3m)

3-336 Subroutines

(

\

Name

Syntax

erf, erfc - error functions

#include <math.h>

double erf(x)
double X;

double erfc(x)
double X;

Description
The erf function returns the error function of X defined as follows:

erf(x) = 2/sqrt(pi)*integral from 0 to x of exp(-t*t) dt.

The erfc function returns l.O-erf(x).

erf(3m) RI

The entry for the erfc function is provided because of the extreme loss of relative
accuracy if erf (x) is called for large x and the .result subtracted from 1. For example
if x = 10, 12 places are lost.

Return Value
The erf and erfc functions return NaN when x is NaN.

See Also
math(3m)

Subroutines 3-337

AX en (3m)

Name
err, erfc - error function and complementary error function

Syntax
#include <math.h>

double ert (x)
dobble x;

double erfc (x)
double x;

Description
. x

The erf function returns the errOr function of x, defined as ~ f-t l dt.
'17t 0

The erfc function, which returns 1.0 - er/(x), is provided because of the extreme
loss of relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g. for x = 5, 12 places are lost).

See Also
exp(3m)
ULTRIX Programmer's Manual, Unsupported

3-338 Subroutines

Name

Syntax

exp, expml, log, loglO, loglp, pow - exponential, logarithm, power

#include <math.h>

double exp(x)
double X;

float fexp(x)
float X;

double expml(x)
double X;

float fexpml(x)
float X;

double log(x)
double X;

float flog(x)
float X;

double 10glO(x)
double X;

float floglO(x)
float X;

double loglp(x)
double X;

float floglp(x)
float X;

double pow(x,y)
double x,y;

exp(3m) R

Description

The exp and £exp functions return the exponential function of X for double and
float data types, respectively.

The expm1 and £expm1 functions return exp(x)-l accurately, including tiny X for
double and float data types, respectively.

The log and £ 1 og functions return the natural logarithm of X for double and float
data types, respectively.

The 10g10 and £10g10 functions return the logarithm of X to base 10 for double
and float data types, respectively.

Subroutines 3-339

;C exp(3m)

The loglp and floglp functions return 10g(l+x) accurately, including tiny x for
double and float data types, respectively.

The pow function returns x**y.

Error (due to roundoff)
The exp, log, expml, and loglp functions are accurate to within an ulp, and
loglO is accurate to within approximately 2 ulps; an ulp is one Unit in the Last
Place.

The pow function is accurate to within 2 ulps when its magnitude is moderate, but
becomes less accurate as the pow result approaches the overflow or underflow
thresholds. Theoretically, as these thresholds are approached, almost as many bits
could be lost from the result as are indicated in the exponent field of the floating
point format for the resultant number. In other words, up to 11 bits for an IEEE 754
double-precision floating-point number. However, testing has never verified loss of
precision as drastic as 11 bits. The worst cases have shown accuracy of results to
within 300 ulps for IEEE 754 double-precision floating-point numbers. In general, a
pow (integer, integer) result is exact until it is larger than 2**53 (for IEEE 754
double-precision floating-point).

Return Value
All of the double precision functions return NaN if x or y is NaN.

The exp function returns HUGE_ VAL when the correct value would overflow, and
zero when the correct value would underflow.

The log and loglO functions return NaN when x is less than or equal to zero or
when the correct value would overflow.

The pow function returns NaN if x or y is NaN. When both x and yare zero, 1.0 is
returned. When x is negative and y is not an integer, NaN is returned. If x is zero
and y is negative, -HUGE_VAL is returned.

The sqrt function returns NaN when x is negative.

See Also
math(3m)

3-340 Subroutines

/

\

Name

Syntax

exp(3m) V

exp, expm1, log, 10glO, log1p, pow, sqrt - exponential, logarithm, power, square root

#include <math.h>

double exp(x)
double X;

double expml(x)
double X;

double log(x)
double X;

double loglO(x)
double X; .

double loglp(x)
double X;

double pow(x,y)
double x,y;

double sqrt(x)
double X;

Description
The exp function returns the exponential function of x.

The expml function returns exp(x)-1 accurately even for tiny x.

The log function returns the natural logarithm of X; loglO returns the base 10
logarithm.

The loglp function returns log(l+x) accurately even for tiny x.

The pow function returns x raised to the y power.

The s qrt function returns the square root of x.

Return Value
The exp function returns HUGE_ V AL and sets ermo to ERANGE when the correct
value would overflow. When the correct value would underflow it returns zero and
ermo is set to ERANGE.

The expml function returns HUGE_ V AL and sets ermo to ERANGE when the
correct value would overflow. When the correct value would underflow it returns -1.

The log and loglO functions return -HUGE_VAL and set ermo to EDOM when X

is less than or equal to zero. When the correct value would overflow flow they return
-HUGE_ VAL and ermo is set to ERANGE.

The loglp function returns -HUGE_VAL and sets ermo to EDOM when X is less
than or equal to -1. When the correct value would overflow flow it returns
-HUGE_VAL and ermo is set to ERANGE.

Subroutines 3-341

exp(3m)

The pow function has many special cases. When x and y are both zero it returns 1.0.
When x is negative and y is not an integer value it returns zero and ermo is set to
EDOM. When x is zero and y is negative it returns -HUGE_ VAL and ermo is set to
EDOM. When the correct value would overflow HUGE_ V AL is returned arid ermo
is set to ERANGE. When the correct value would underflow zero is returned and
ermo is set to ERANGE.

The sqrt function returns zero and sets ermo to EDOM when x is negative.

Environment
When your program is compiled using the System V environment, exp returns
HUGE when the correct value would overflow, and sets ermo to ERANGE; exp
returns zero when the correct value would underflow, and sets ermo to ERANGE.

The log and loglO functions return HUGE and set ermo to EDOM when x is
nonpositive. An error message is printed on the standard error output.

The pow function returns zero and sets ermo to EDOM when x is non-positive and y
is not an integer, or when x and yare both zero. In these cases, a message indicating
DOMAIN error is printed on the standard error output. When the correct value for
pow would overflow, pow returns HUGE and sets ermo to ERANGE.

The sqrt function returns zero and sets ermo to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3m).

NOTE

DOMAIN error is only printed in the System V environment.

See Also
hypot(3m), intro(3m), sinh(3m)

3-342 Subroutines

(

Name

Syntax

floor(3m) R

floor, ffioor, fabs, ceil, ceil, trunc, ftrunc, fmod, rint - floor, absolute value, ceiling,
truncation, floating point remainder and round-to-nearest functions

#include <math.h>

double floor(x)
double X;

float ftloor(x)
float X;

double ceil(x)
double X;

float fceil(x)
float X;

double trunc(x)
double X;

float ftrunc(x)
float X;

double fabs(x)
double X;

double fmod (x, y)
double x, y;

double rint(x)
double X;

Description
The floor and ffloor routines return the largest integer which is not greater than
x for double and float data types, respectively.

The ceil and fceil routines return the smallest integer which is not less than x
for double and float data types, respectively.

The trunc and ftrunc routines return the integer (represented as a floating-point
number) of x with the fractional bits truncated for double and float data types
respectively.

The fabs routine returns the absolute value I xl.

The fmod routine returns the floating point remainder of the division of X by y: zero
if y is zero or if x/y would overflow; otherwise the number f with the same sign as x,
such that X = iy + f for some integer i, and Ifl < I yl.

The rint routine returns the integer (represented as a double precision number)
nearest x in the direction of the prevailing rounding mode.

In the default rounding mode, to nearest, rint (x) is the integer nearest x with the
additional stipulation that if Irint(x)-xl=l/2 then rint (x) is even. Other rounding
modes can make rint act like floor or ceil, or round towards zero.

Subroutines 3-343

)C floor(3m)

Another way to obtain an integer near x is to declare (in C)
double x; int k; k = x;

The C compiler rounds x towards 0 to get the integer k. Also note that, if x is larger
than k can accommodate, the value of k and the presence or absence of an integer
overflow are hard to predict.

The fabs routine is in libc.a rather than libm.a.

See Also
abs(3), ieee(3m), math(3m)

3-344 Subroutines

(

\

/

(

Name

Syntax

floor(3m) VJ

fabs, floor, ceil, fmod, rint - absolute value, floor, ceiling, floating point remainder,
and round-to-nearest functions

#include <math.h>

double floor(x)
double X;

double ceil(x)
double X;

double fabs(x)
double X;

double fmod (x, y)
double x, y;

double rint(x)
double X;

Description
The fabs routine returns the absolute value I x I.

The floor routine returns the largest integer no greater than x.

The ceil routine returns the smallest integer no less than x.

The fmod routine returns the floating point remainder of the division of X by y: zero
if y is zero or if x/y would overflow; otherwise the number f with the same sign as x,
such that X = iy + ffor some integer i, and Ijl < Iyl.

The rint routine returns the integer (represented as a double precision number)
nearest x in the direction of the prevailing rounding mode.

See Also
abs(3), intro(3m)

Subroutines 3-345

,C gamma (3m)

Name

Syntax

gamma, 19amma, signgam - log gamma function

#include <math.h>

double g~mmal(x)
~ouble X;

double 19amma(x)
d<!uble X;

extern int signgam;

Descriptio,",
The g aroma function returns In I r(I X I) I. The sign of r(I X I) is returned in the
external integer signgam. The following C program might be used to calculate r:
y = gamma (x) i

if (y > 88.0)
error () i

Y = exp(y)i
if (signgam)

y = -Yi

The 19amma function is another name for the gamma function.

Return Value
The gamma and 19amma functions return NaN when x is NaN or when it is an
integer value less than or equal to zero. On overflow gamma and 19amma functions
return HUGE_ VAL.

Environment
When your program is compiled using the System V environment for nonpositive
integer values, aUOE is returned, and errno is set to EDaM. A message indicating
DOMAIN error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets errna to
ERANGE.

These error-handling procedures may be changed with the function matherr(3m).

See Also
matherr(3m)

3-346 Subroutines

(

Name

Syntax

gamma, 19amma, sign gam - log gamma function

#include <math.h>

double gamma(x)
double X;

double Igamma(x)
double X;

extern int signgarn;

gamma(3m) VP

Description
The gamma function returns In I r(I X I) I. The sign of r(I X I) is returned in the
external integer signgarn. The following C program might be used to calculate r:
y = gamma (x) ;
if (y > 88.0)

error();
y = exp(y);
if (signgam)

y = -y;

The 19amma function is another name for the gamma function.

Return Value
The gamma and 19amma functions return HUGE_VAL and set ermo to EDOM
when x is an integer value less than or equal to zero. When the correct value would
overflow they return HUGE_ V AL and set ermo to ERANGE.

Environment
When your program is compiled using the System V environment for nonpositive
integer values, HUGE is returned, and ermo is set to EDOM. A message indicating
DOMAIN error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets ermo to
ERANGE.

These error-handling procedures may be changed with the function rnatherr(3m).

See Also
matherr(3m)

Subroutines 3-347

SC hypot (3m)

Name

Syntax

hypot, cabs - Euclidean distance, complex absolute value

#include <math.h>

double hypot(x,y)
double x,y;

float fbypot(float x, float y)

double cabs(z)
struct {double x,y;} z;

float fcabs(z)
struct {float x,y;} z;

Description
The hypot, fhypot, cabs, and fcabs functions return the following:

sqrt (x*x+y*y)

This computation prevents underflows and overflows only if the final result dictates
it.

The functions fhypot and fcabs are equivalent to the hypot and cabs function
with the exception of float data type.

Error
When rounding off, for example, below 0.97 uips. Consequently hypot
(5.0,12.0) = 13.0 exactly; in general, hypot and cabs return an integer whenever
an integer might be expected.

The same cannot be said for the shorter and faster version of hypot and cabs that
is provided in the comments in cabs.c; its error can exceed 1.2 uips.

Return Value
If the correct value overflows, hypot and cabs return HUGE_VAL. If x or y is
NaN, then NaN is returned.

See Also
math(3m), sqrt(3m)

3-348 Subroutines

Name

Syntax

hypot, cabs - Euclidean distance

#include <math.h>

double hypot(x,y)
double x,y;

double cabs(z)
struct {double x,y;} z;

hypot(3m)

Description
The hypot and cabs functions return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

Return Value
The hypot and cabs functions return HUGE_VAL and sets ermo to ERANGE
when the correct value would overflow.

Environment
When your program is compiled using the System V environment, if the correct
value would overflow, hypot returns HUGE and sets ermo to ERANGE.

These error-handling procedures may be changed with the function matherr(3m).

The cabs subroutine does not exist in the System V environment. For sqrt, see
exp(3m).

See Also
exp(3m)

Subroutines 3-349

C ieee (3m)

Name

Syntax

copysign, drem, finite, 10gb, scalb - copysign, remainder, exponent manipulations

#include <math.h>

double copysign(x,y)
double x,y;

double drem(x,y)
double x,y;

int finite(x)
double X;

double logb(x)
double X;

double scalb(x,n)
double X;
int n;

Description
These functions are required, or recommended by the IEEE standard 754 for
floating-point arithmetic.

The copysign function returns x with its sign changed to y's.

The drern (x, y) function returns the remainder r := x - n*y where n is the integer
nearest the exact value of x/y. Additionally if I n-x/yl = 1/2, then n is even.
Consequently the remainder is computed exactly and I rl ~ I y1/2. Note that
drern (x, 0) is the exception (see DIAGNOTICS).

Finite(x) = 1 just when -00 < x < +00,

= 0 otherwise (when I xl = 00 or x is NaN)

The 10gb (x) returns a signed integer converted to double-precision floating-point
and so chosen that 1 ~ I xI/2**n < 2 unless x = 0 or I xl = 00 or x lies between 0 and
the Underflow Threshold.

Scalb(x,n) = x*(2**n) computed, for integer n, without first computing 2**N.

Diagnostics
IEEE 754 defines drem(x,O) and drem(oo,y) to be invalid operations that produce a
NaN.

IEEE 754 defines logb(±oo) = +00 and 10gb(0) = -00, and requires the latter to signal
Division-by-Zero.

Restrictions
IEEE 754 currently specifies that logb(denormalized no.) = logb(tiniest normalized
no. > 0) but the consensus has changed to the specification in the new proposed IEEE (
standard p854, namely that logb(x) satisfy \

1 ~ scalb(1 xl,-logb(x» < Radix ... = 2 for IEEE 754

3-350 Subroutines

for every x except 0, 00 and NaN. Almost every program that assumes 754's
specification will work correctly if 10gb follows 854's specification instead.

IEEE 754 requires copysign(x,NaN) = ±x b~t says nothing else about the sign of a
NaN.

See Also
floor(3M), fp_class(3), math(3M)

Subroutines 3-351

SC isnand(3m)

Name

Syntax

isnand, isnanf - test for floating point NaN (Not-A-Number)

#include <ieeefp.h>

int isnand (dsrc)
double dsrc;

int isnanf (fsrc)
float fsrc;

Description
The isnand and isnanf routines return the value 1 for true if the argument dsrc
or fsrc is a NaN; otherwise they return the value 0 for false.

Neither routine generates any exception, even for signaling NaNs.

The isnan function is implemented as a macro included in <ieeefp.h>.

3-352 Subroutines

math (3m) RI

Name
math - introduction to mathematical library functions

Description
These functions constitute the C math library libm. There are two versions of the
math library /ibm.a and libm43.a.

The first, !ibm.a, contains routines written in MIPS assembly language and tuned for
best performance and includes many routines for the float data type. The routines in
there are based on the algorithms of Cody and Waite or those in the 4.3 BSD release,
whichever provides the best performance with acceptable error bounds. Those
routines with Cody and Waite implementations are marked with a '*' in the list of
functions below.

The second version of the math library, libm43.a, contains routines all based on the
original codes in the 4.3 BSD release. The difference between the two version's error
bounds is typically around 1 unit in the last place, whereas the performance
difference may be a factor of two or more.

The link editor searches this library under the "-1m" (or "-lm43") option.
Declarations for these functions may be obtained from the include file <math.h>.
The Fortran math library is described in "man 3f intro".

List Of Functions
The cycle counts of all functions are approximate; cycle counts often depend on the
value of argument. The error bound sometimes applies only to the primary range.

Error Bound (ULPs) Cycles
Name Description libm.a Iibm43.a libm.a Iibm43.a

acos inverse trig function 3 3 ? ?
acosh inverse hyperbolic 3 3 ? ?

function
asin inverse trig function 3 3 ? ?
asinh inverse hyperbolic 3 3 ? ?

function
atan inverse trig function 1 1 152 260
atanh inverse hyperbolic 3 3 ? ?

function
atan2 inverse trig function 2 2 ? ?
cabs complex absolute 1 1 ? ?

value
cbrt cube root 1 1 ? ?
ceil integer no less than 0 0 ? ?
copysign copy sign bit 0 0 ? ?
cos* trig function 2 1 128 243
cosh* hyperbolic function ? 3 142 294
drem remainder 0 0 ? ?
erf error function ? ? ? ?

Subroutines 3-353

"'C ~ math(3m)

erfc complementary ? ? ? ?
error function

exp* exponential 2 1 101 230
expml exp(x)-1 1 1 281 281
fabs absolute value 0 0 ? ?
fatan* inverse trig function 3 64
fcos* trig function 1 87
fcosh* hyperbolic function ? 105
fexp* exponential 1 79
flog* natural logarithm 1 100
floor integer no greater 0 0 ? ?

than
fsin* trig function 1 68
fsinh* hyperbolic function ? 44
fsqrt square root 1 95
ftan* trig function ? 6i
ftanh* hyperbolic function ? 116
hypot Euclidean distance 1 1 ? ?
jO bessel function ? ? ? ?
jl bessel function ? ? ? ?
jn bessel function ? ? ? ?
19amma log gamma function ? ? ? ?
log* natural logarithm 2 1 119 217
10gb exponent extraction 0 0 ? ?
10glO* logarithm to base 10 3 3 ? ?
10g1p 10g(1 +x) 1 1 269 269
pow exponential x**y 60-500 60-500 ? ?
rint round to nearest 0 0 ? ?

integer
scalb exponent adjustment 0 0 ? ?
sin* trig function 2 1 101 222
sinh* hyperbolic function ? 3 79 292
sqrt square root 1 1 133 133
tan* trig function ? 3 92 287
tanh* hyperbolic function ? 3 156 293
yO bessel function ? ? ? ?
yl bessel function ? ? ? ?
yn bessel function ? ? ? ?

In 4.3 BSD, distributed from the University of California in late 1985, most of the
foregoing functions come in two versions, one for the double-precision "D" format in
the DEC VAX-II family of computers, another for double-precision arithmetic
conforming to the IEEE Standard 754 for Binary Floating-Point Arithmetic. The
two versions behave very similarly, as should be expected from proprams more
accurate and robust than was the norm when UNIX was born. For mstance, the
programs are accurate to within the numbers of ulps tabulated above; an ulp is one
Unit in the Last Place. And the programs have been cured of anomalies that afflicted
the older math library !ibm in which incidents like the following had been reported:

sqrt(-1.0) = 0.0 and log(-1.0) = -1.7e38.
cos(1.0e-11) > cos(O.O) > 1.0.
pow(x, 1.0) -:f. x when x = 2.0,3.0,4.0, ... , 9.0.

3-354 Subroutines

pow(-1.0,1.0elO) trapped on Integer Overflow.
sqrt(1.0e30) and sqrt(1.0e-30) were very slow.

math (3m) RH

RIse machines conform to the IEEE Standard 754 for Binary Floating-Point
Arithmetic, to which only the notes for IEEE floating-point apply and are included
here.

BIEEE STANDARD 754 Floating-Point Arithmetic:

This standard is on its way to becoming more widely adopted than any other design
for computer arithmetic.

The main virtue of 4.3 BSD's !ibm codes is that they are intended for the public
domain; they may be copied freely provided their provenance is always
acknowledged, and provided users assist the authors in their researches by reporting
experience with the codes. Therefore no user of UNIX on a machine that conforms
to IEEE 754 need use anything worse than the new !ibm.

Properties of IEEE 754 Double-Precision:

Wordsize: 64 bits, 8 bytes. Radix: Binary.
Precision: 53 significant bits, roughly like 16 significant decimals.

If x and x' are consecutive positive Double-Precision numbers (they
differ by 1 ulp), then
1.1e-16 < 0.5**53 < (x'-x)/x:::; 0.5**52 < 2.3e-16.

Range: Overflow threshold = 2.0**1024 = 1.8e308
Underflow threshold = 0.5**1022 = 2.2e-308

Overflow goes by default to a signed 00.
Underflow is Gradual, rounding to the nearest integer multiple of
0.5**1074 = 4.ge-324.

Zero is represented ambiguously as +0 or -0.
Its sign transforms correctly through multiplication or division, and is
preserved by addition of zeros with like signs; but x-x yields +0 for
every finite x. The only operations that reveal zero's sign are
division by zero and copysign(x'±O). In particular, comparison (x >
y, x;::: y, etc.) cannot be affected by the sign of zero; but if finite x =
y then 00 = l/(x-y) *" -l/(y-x) = -00.

00 is signed.
it persists when added to itself or to any finite number. Its sign
transforms correctly through mUltiplication and division, and
(finite)/±oo = ±O (nonzero)/O = ±oo. But 00-00, 00*0 and 00/00 are, like
0/0 and sqrt(-3), invalid operations that produce NaN. ...

Reserved operands:
there are 2**53-2 of them, all called NaN (Not a Number). Some,
called Signaling NaNs, trap any floating-point operation performed
upon them; they could be used to mark missing or uninitialized
values, or nonexistent elements of arrays. The rest are Quiet NaNs;
they are the default results of Invalid Operations, and propagate
through subsequent arithmetic operations. If x *" x then x is NaN;
every other predicate (x > y, x = y, x < y, ...) is FALSE if NaN is
involved.

Subroutines 3-355

SC math (3m)

3-356 Subroutines

NOTE

Trichotomy is violated by NaN. Besides being FALSE,
predicates that entail ordered comparison, rather than
mere (in)equality, signal Invalid Operation when NaN is
involved.

Rounding:
Every algebraic operation (+, -, *, I, ."f) is rounded by default to
within half an ulp, and when the rounding error is exactly half an ulp
then the rounded value's least significant bit is zero. This kind of
rounding is usually the best kind, sometimes provably so; for
instance, for every x = 1.0,2.0, 3.0.4.0 •...• 2.0**52. we find
(x/3.0)*3.0 == x and (x/lO.O)*lO.O == x and ... despite that both the
quotients and the products have been rounded. Only rounding like
IEEE 754 can do that. But no single kind of rounding can be proved
best for every circumstance. so IEEE 754 provides rounding towards
zero or towards +00 or towards -00 at the programmer's option. And
the same kinds of rounding are specified for Binary-Decimal
Conversions. at least for magnitudes between roughly 1.0e-1O and
1.0e37.

Exceptions:
IEEE 754 recognizes five kinds of floating-point exceptions. listed
below in declining order of probable importance.

Exception

Invalid Operation
Overflow@±oo
Divide by Zero
Underflow
Inexact

Default Result

NaN. or FALSE

±oo
Gradual Underflow
Rounded value

NOTE

An Exception is not an Error unless handled badly.
What makes a class of exceptions exceptional is that no
single default response can be satisfactory in every
instance. On the other hand, if a default response will
serve most instances satisfactorily. the unsatisfactory
instances cannot justify aborting computation every time
the exception occurs.

For each kind of floating-point exception. IEEE 754 provides a Flag that
is raised each time its exception is signaled. and stays raised until the
program resets it. Programs may also test, save and restore a flag. Thus.
IEEE 754 provides three ways by which programs may cope with
exceptions for which the default result might be unsatisfactory:

1) Test for a condition that might cause an exception later. and branch to
avoid the exception.

2) Test a flag to see whether an exception has occurred since the
program last reset its flag.

math (3m) RI

3) Test a result to see whether it is a value that only an exception could
have produced.

NOTE
The only reliable ways to discover whether Underflow has
occurred are to test whether products or quotients lie closer to
zero than the underflow threshold, or to test the Underflow
flag. (Sums and differences cannot underflow in IEEE 754; if
x:t: y then x-y is correct to full precision and certainly
nonzero regardless of how tiny it may be.) Products and
quotients that underflow gradually can lose accuracy gradually
without vanishing, so comparing them with zero (as one might
on a VAX) will not reveal the loss. Fortunately, if a gradually
underflowed value is destined to be added to something bigger
than the underflow threshold, as is almost always the case,
digits lost to gradual underflow will not be missed because
they would have been rounded off anyway. So gradual
underflows are usually provably ignorable. The same cannot
be said of underflows flushed to O.

At the option of an implementor conforming to IEEE 754, other ways to
cope with exceptions may be provided:

4) ABORT. This mechanism classifies an exception in advance as an
incident to be handled by means traditionally associated with
error-handling statements like "ON ERROR GO TO ... ". Different
languages offer different forms of this statement, but most share the
following characteristics:

No means is provided to substitute a value for the offending
operation's result and resume computation from what may be the
middle of an expression. An exceptional result is abandoned.

In a subprogram that lacks an error-handling statement, an exception
causes the subprogram to abort within whatever program called it,
and so on back up the chain of calling subprograms until an
error-handling statement is encountered or the whole task is aborted
and memory is dumped.

5) STOP. This mechanism, requiring an interactive debugging
environment, is more for the programmer than the program. It
classifies an exception in advance as a symptom of a programmer's
error; the exception suspends execution as near as it can to the
offending operation so that the programmer can look around to see
how it happened. Quite often the first several exceptions tum out to
be quite unexceptionable, so the programmer ought ideally to be able
to resume execution after each one as if execution had not been
stopped.

6) ... Other ways lie beyond the scope of this document.

The crucial problem for exception handling is the problem of Scope, and the
problem's solution is understood, but not enough manpower was available to
implement it fully in time to be distributed in 4.3 BSD's !ibm. Ideally, each
elementary function should act as if it were indivisible, or atomic, in the sense that ...

Subroutines 3-357

3C math (3m)

i) No exception should be signaled that is not deserved by the data supplied to
that function.

ii) Any exception signaled should be identified with that function rather than with
one of its subroutines.

iii) The internal behavior of an atomic function should not be disrupted when a
calling program changes from one to another of the five or so ways of handling
exceptions listed above, although the definition of the function may be
correlated intentionally with exception handling.

Ideally, every programmer should be able conveniently to turn a debugged
subprogram into one that appears atomic to its users. But simulating all three
characteristics of an atomic function is still a tedious affair, entailing hosts of tests
and saves-restores; work is under way to ameliorate the inconvenience.

Meanwhile, the functions in !ibm are only approximately atomic. They signal no
inappropriate exception except possibly ...

Over/Underflow
when a result, if properly computed, might have lain barely within
range, and

Inexact in cabs, cbrt, hypot, log10 and pow
when it happens to be exact, thanks to fortuitous cancellation of
errors.

Otherwise, ...
Invalid Operation is signaled only when

any result but NaN would probably be misleading.
Overflow is signaled only when

the exact result would be finite but beyond the overflow threshold.
Divide-by-Zero is signaled only when

a function takes exactly infinite values at finite operands.
Underflow is signaled only when

the exact result would be nonzero but tinier than the underflow
threshold.

Inexact is signaled only when
greater range or precision would be needed to represent the exact
result.

Exceptions on RISe machines:

3-358 Subroutines

The exception enables and the flags that are raised when an exception
occurs (as well as the rounding mode) are in the floating-point control and
status register. This register can be read or written by the routines
described on the man page fpc(3). This register's layout is described in
the file <mipslfpu.h> in UMIPS-BSD releases and in <syslfpu.h> in
UMIPS-SYSV releases.

What is currently available is only the raw interface which was only
intended to be used by the code to implement IEEE user trap handlers.
IEEE floating-point exceptions are enabled by setting the enable bit for
that exception in the floating-point control and status register. If an
exception then occurs the UNIX signal SIGFPE is sent to the process. It
is up to the signal handler to determine the instruction that caused the
exception and to take the action specified by the user. The instruction that
caused the exception is in one of two places. If the floating-point board is
used (the floating-point implementation revision register indicates this in

Restrictions

math (3m) R

it's implementation field) then the instruction that caused the exception is
in the floating-point exception instruction register. In all other
implementations the instruction that caused the exception is at the address
of the program counter as modified by the branch delay bit in the cause
register. Both the program counter and cause register are in the sigcontext
structure passed to the signal handler (see signal(3)). If the program is
to be continued past the instruction that caused the exception the program
counter in the signal context must be advanced. If the instruction is in a
branch delay slot then the branch must be emulated to determine if the
branch is taken and then the resulting program counter can be calculated
(see emulate_branch(3) and signal(3)).

When signals are appropriate, they are emitted by certain operations within the codes,
so a subroutine-trace may be needed to identify the function with its signal in case
method 5) above is in use. And the codes all take the IEEE 754 defaults for granted;
this means that a decision to trap all divisions by zero could disrupt a code that
would otherwise get correct results despite division by zero.

See Also
fpc(3), signal(3), emulate_branch(3)
R2010 Floating Point Coprocessor Architecture
R2360 Floating Point Board Product Description

An explanation of IEEE 754 and its proposed extension p854 was published in the
IEEE magazine MICRO in August 1984 under the title "A Proposed Radix- and
Word-length-independent Standard for Floating-point Arithmetic" by W. J. Cody et
al.

Articles in the IEEE magazine COMPUTER vol. 14 no. 3 (Mar. 1981), and in the
ACM SIGNUM Newsletter Special Issue of Oct. 1979, may be helpful although they
pertain to superseded drafts of the standard.

Subroutines 3-359

,X math err (3m)

Name

Syntax

matherr - error-handling function for System V math library

#include <math.h>

int matherr (x)
struct exception *x;

Description
The matherr subroutine is invoked by functions in the System V Math Library
when errors are detected. Users may define their own procedures for handling errors
by including a function named matherr in their programs. The rnatherr
subroutine must be of the form described above. A pointer to the exception structure
x will be passed to the user-supplied rnatherr function when an error occurs. This
structure, which is defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred, from the
following list of constants (defined in the header file):

DOMAIN domain error
SING Singularity
OVERFLOW overflow
UNDERFLOW underflow
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that had the
error. The variables argl and arg2 are the arguments to the function that had the
error. The retval is a double that is returned by the function having the error. If it
supplies a return value, the user's rna the r r must return nonzero. If the default error
value is to be returned, the user's rnatherr must return O.

If rnatherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, ermo is set to
nonzero and the program continues.

Examples

matherr (x)
register struct exception *x;
{

3-360 Subroutines

switch (x->type) {
case DOMAIN:
case SING: /* print message and abort */

fprintf(stderr, "domain error in %s\n", x->name);
abort ();

(
\0

BESSEL:
yO, yl, yn
(neg. no.)

EXP:
POW:

matherr (3m) v)
case OVERFLOW:

if (!strcmp("exp", x->name» {
/* if exp, print message, return the argument */
fprintf(stderr, "exp of %f\n", x->argl);
x->retval = x->argl;

else if (!strcmp("sinh", x->name»

else

/* if sinh, set errno, return 0 */
errno = ERANGE;
x->retval = 0;

/* otherwise, return HUGE */
x->retval = HUGE;

break;
case UNDERFLOW:

return (0); /* execute default procedure */
case TLOSS:
case PLOSS:

/* print message and return 0 */
fprintf(stderr, "loss of significance in %s\n", x->name);
x->retval = 0;
break;

return (1);

DEFAULT ERROR HANDLING PROCEDURES

TYJ)es of Errors
DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

- - H 0 M,O *
M,-H - - - - -

- - H 0 -
- - H 0 - -

(neg.)**(non- M,O - - - - -
int\ 0**0

LOG:
log(O): - M,-H - - - -
lo~(neg.): M,-H - - - - -
SORT: MO - - - - -
GAMMA: - M,H - - - -
HYPOT: - - H - - -
SINH COSH: - - H - - -
SIN COS: - - - - M,O *
TAN: - - H - MO *
ACOS ASIN: MO - - - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed.
H HUGE is returned.

-H -HUGE is returned.
o 0 is returned.

Subroutines 3-361

3C sin (3m)

Name

Syntax

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions and their inverses

#include <math.h>

double sin(x)
double Xj

float fsin(x)
float Xj

double cos(x)
double Xj

float fcos(x)
float X;

double tan (x)
double Xj

float ftan(x)
float X;

double asin(x)
double X;

float fasin(x)
float X;

double acos(x)
double Xj

float facos(x)
float Xj

double atan(x)
double X;

float fatan(x)
float Xj

double atan2(y,x)
double y,xj

float fatan2(y,x)
float y,xj

Description
The sin, cos, and tan functions return trigonometric functions of radian arguments
X for double data types.

The fsin, fcas, and ftan functions return trigonometric functions for float data
types.

The as i nand fa sin functions return the arc sine in the range -rc/2 to rc/2 for
double and float data types, respectively.

3-362 Subroutines

sin (3m) RI,

The acos and facos functions return the arc cosine in the range 0 to 1t for double
and float data types, respectively.

The atan and fat an functions return the arc tangent in the range -1t/2 to 1t/2 for
double and float data types, respectively.

The atan2 and fatan2 functions return the arc tangent of y/x in the range -1t to 1t,
using the signs of both arguments to determine the quadrant of the return value for
double and float data types, respectively.

Error (due to roundoff)
When P stands for the number stored in the computer in place of1t = 3.14159 26535
897932384626433 and "trig" stands for one of "sin", "cos" or "tan", then the
expression "trig(x)" in a program actually produces an approximation to trig(x*1t/P),
and "atrig(x)" approximates (P/1t)*atrig(x). The approximations are close.

P differs from 1t by a fraction of an u/p; the difference is apparent only if the
argument x is huge, and even then the difference is likely to be swamped by the
uncertainty in x. Every trigonometric identity that does not involve 1t explicitly is
satisfied equally well regardless of whether P = 1t. For example, sin2(x)+cos2(x) = 1
and sin(2x) = 2 sin(x)cos(x) to within a few ulps regardless of how big x is. Ther~fore, the
difference between P and 1t is unlikely to effect scientific and engineering
computations.

Return Value
All the double functions return NaN if NaN is passed in.

If I xl> 1 then asin (x) and acos (x) will return the default quiet NaN.

The atan2 function defines atan2 (0,0) = NaN.

See Also
hypot(3m), math(3m), sqrt(3m)

Subroutines 3-363

AX sin(3m)

Name

Syntax

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

#include <math.h>

double sin(x)
double X;

double cos(x)
double X;

double tan(x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double X;

double atan2(x,y)
double x,y;

Description
The subroutines sin, cos and tan, return trigonometric functions of radian
arguments. The magnitude of the argument should be checked by the caller to make
sure the result is meaningful.

The asin subroutine returns the arc sin in the range -n/2 to n/2.

The acos subroutine returns the arc cosine in the range 0 to n.

The at an subroutine returns the arc tangent of X in the range -n12 to n12.

The atan2 subroutine returns the arc tangent of x/y in the range -n to n.

Restrictions
The value of tan for arguments greater than about 2**31 is unreliable.

Return Value
Arguments of magnitude greater than 1 cause asin and acos to return zero and set
errna to EDOM.

The atan2 function returns zero and sets errna to EDOM when X and yare both
zero.

Environment
When your program is compiled using the System V environment, sin, cos and \(
t an lose accuracy when their argument is far from zero. For arguments sufficiently
large, these functions return 0 when there would otherwise be a complete loss of

3-364 Subroutines

sin (3m) VJ

significance. In this case a message indicating TLOSS error is printed on the
standard error output. For less extreme arguments, a PLOSS error is generated but
no message is printed. In both cases, errna is set to ERANGE.

The t an subroutine returns HUGE for an argument which is near an odd multiple of
1t/2 when the correct value would overflow, and sets errna to ERANGE.

Arguments of magnitude greater than 1.0 cause as in and acos to return 0 and to
set errna to EDOM. In addition, a message indicating DOMAIN error is printed on
the standard error output.

These error-handling procedures may be changed with the function matherr(3m).

Subroutines 3-365

3C sinh(3m)

Name

Syntax

sinh, cosh, tanh - hyperbolic functions

#include <math.h>

double sinh(x)
double X;

float fsinh(x)
float x;

double cosh(x)
double X;

float fcosh(x)
float X;

double tanh(x)
double X;

float ftanh(x)
float X;

Description
These functions compute the designated hyperbolic functions for double and float
data types.

Error

Below 2.4 ulps (unit in the last place).

Diagnostics
The sinh and cosh functions return +00 (and sinh may return -00 for negative x) if
the correct value would overflow.

See Also
math(3m)

3-366 Subroutines

(

(

Name

Syntax

sinh, cosh, tanh - hyperbolic functions

#include <math.h>

double sinh(x)

double cosh(x)
double X;

double tanh(x)
double X;

sinh(3m) V

Description
These functions compute the designated hyperbolic functions for real arguments.

Return Value
The sinh and cosh functions return HUGE_VAL and set errno to ERANGE when
the correct value would overflow.

Environment
When your program is compiled using the System V environment, sinh and cosh
return HUGE (and sinh may return HUGE or negative x) when the correct value
would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function matherr(3m).

Subroutines 3-367

;C sqrt(3m}

Name

Syntax

cbrt, sqrt - cube root, square root

#include <math.h>

double cbrt(x)
double X;

double sqrt(x)
double X;

float fsqrt(f1oat x)
float X;

Description
The cbrt function returns the cube root of x.

The sqrt and fsqrt functions return the square root of X for double and float data
types respectively.

Error Due to Roundoff and Other Reasons
The cbrt function is accurate to within 0.7 ulps.

The sqrt function on this machine conforms to IEEE 754 and is correctly rounded
in accordance with the rounding mode in force; the error is less than half an ulp in
the default mode (round-to-nearest). An ulp is one Unit in the Last Place carried.

Diagnostics
The sqrt function returns the default quiet NaN when X is negative indicating the
invalid operation.

See Also
math(3m)

3-368 Subroutines

(

Network Routines (3n)

Insert tabbed divider here.
Then discard this sheet.

intro (3n)

Name
intro - introduction to network library functions

Description
This section describes functions that are available for interprocess communication
(lPC). IPC takes place using sockets. The socket(2) system call creates a
communications channel based on domain, type, and protocol.

Sockets are created without names. The bind(2) system call is used to connect a
name to a socket.

A connection with another process must be made before data can be transferred on a
bound socket. The connect(2) system call is used to rendezvous with another
process. This process must be listening on a bound socket using the listen(2)
system call. This listening process can accept a connection request using the
accept(2) system call.

Once two processes have connected and accepted an IPC, data can be transferred with
the following system calls: read(2); wri te(2); send(2), and recv(2).

Connectionless sockets are also possible (a socket is bound and data can be
transferred). They use the following system calls to transfer data: sendto and
recvfrOffi.

IPC operates in three domains:

UNIX Local node

INTERNET

DECNET

Local area network (LAN)

DECnet network

These types of sockets are available for IPC:

stream

datagram

Sequenced, reliable, unduplicated data
CONNECTED socket
record boundaries not preserved
all domains

Not guaranteed to be sequenced, reliable, or
unduplicated
user protocol needed to give guarantees
UNCONNECTED socket
record boundaries preserved
UNIX and INTERNET domains

sequenced packet Like stream socket, except record boundaries preserved
DECNET domain only

raw Access to communications protocols

Subroutines 3-369

intro{3n)

Internet Addresses Routines
The inet routines manipulate Internet addresses.

Network Data Base File Routines
Standard mapping routines are used to retrieve entries in network data base files.
Several routines operating on each data base file are identified by a group name:

gethostent Retrieves entries from jete/hosts

getnetent

getprotoent

getservent

Retrieves entries from jete/networks

Retrieves entries from /ete/protoeols

Retrieves entries from / etc/ services

Specific routines perfonn particular operations on each data base file:

get ... ent Reads the next line of the file; opens the file, if necessary.

set ... ent Opens and rewinds the file.

end ... ent Closes the file.

get ... byname Searches the file sequentially from the beginning until a
matching name is found, or EOF is encountered.

get ... byaddr Searches the file sequentially from the beginning until a
matching address is found, or EOF is encountered.

get ... byport Searches the file sequentially from the beginning until a
matching port number is found, or EOF is encountered.

get ... bynumber
Searches the file sequentially from the beginning until a
matching protocol number is found, or EOF is encountered.

Each network library routine returns a pointer to a structure reflecting individual
fields of a line in one of the network data base files. The structure for each data base
file contains some of the fields in the following list, with the prefix x replaced by a
different letter in each file:

x addr

x_addrtype

x aliases

x name

x net

xyort

xyroto

3-370 Subroutines

pointer to a network address, returned in network-byte order

address family of the address being returned

alternate names

length of an address, in bytes

official name

network number, returned in machine-byte order

resident port

protocol number

Name

Syntax

byteorder(3n} RI

htonl, htons, ntohl, ntohs - convert values between host and network byte order

#include <sys/types.h>
#include </bsd/netinetlin.h>

netlong = htonl(hostlong);
u Jong netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u Jong hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

Description
These routines convert 16 and 32 bit quantities between network byte order and host
byte order. These routines are defined as null macros in the include file
<netinet/in.h> .

These routines are most often used in conjunction with Internet addresses and ports
as returned by gethostbyname(3n) and getservent(3n).

See Also
gethostbyname(3n), getservent(3n)

Subroutines 3-371

AX byteorder (3n)

Name

Syntax

htonl, htons, ntohl, ntohs - convert values between host and network byte order

#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u)ong netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

Description
These routines convert 16-bit and 32-bit quantities between network byte order and
host byte order. On some non-ULTRIX machines these routines are defined as null
macros in the include file <netinet/in.h>.

These routines are most often used with Internet addresses and ports as returned by
gethostent(3n) and getservent(3n).

Restrictions
The V AX handles bytes in the reverse from most everyone else.

See Also
gethostent(3n), getservent(3n)

3-372 Subroutines

Name

Syntax

gethostent (3n)

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get hosts entry

#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen;

endhostentO

Description
The gethostent, gethostbyname, and gethostbyaddr subroutines return
a pointer to an object with the following structure containing the broken-out fields
reflecting information obtained from the hosts database.

struct hostent {

char *h_name; /* official name of host */
char **h aliases; /* alias list */
int h_addrtype; /* address type */
int h_length; /* length of address */
char **h addr list; /* list of addresses from name server

#define
} ;

h - addr h addr list [0] /* address for backward compatibility -

The members of this structure are:

Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currentiy always AF _lNET.

The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are
returned in network byte order.

lfthe stayopen flag on a sethostent subroutine is NULL, the hosts database is
opened. Otherwise the sethostent has the effect of rewinding the host s
database. The endhostent may be called to close the hosts database when
processing is complete.

*/
*/

The gethostent subroutine simply reads the next line while gethostbyname
and gethostbyaddr search until a matching name, or addr, len, type is found (or
until EOF is encountered). The gethostent subroutine keeps a pointer in the
database, allowing successive calls to be used to search the entire file.

Subroutines 3-373

gethostent (3n)

The gethostbyname and gethostbyaddr subroutines query the hosts
database.

A call to sethostent must be made before a while loop using gethostent in
order to perform initialization and an endhostent must be used after the loop.
Both gethostbyname and gethostbyaddr make calls to sethostent and
endhostent.

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet address format is currently understood.

If yP is running, gethostent does not return the entries in any particular order.
See the Guide to the Yellow Pages Service for setup information.

The hosts database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BINDIHesiod Service for more information.

Return Value
Null pointer (0) returned on EOF or error.

Files
jete/hosts

See Also
hosts(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-374 Subroutines

Name

Syntax

getnetent (3n)

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get networks entry

#include <netdb.h>

struct netent *getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net; int type;

setnetent(stayopen)
int stayopen;

endnetentO

Description
The getnetent, getnetbyname, and getnetbyaddr subroutines each return
a pointer to an object with the following structure containing the broken-out fields of
a line in the networks database.

struct netent {

} ;

char *n_name;
char **n_aliases;
int n_addrtype;
long n_net;

1* official name of net *1
1* alias list *1
1* net number type *1
1* net number *1

The members of this structure are:

The official name of the network.

A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned: AF _INET.

The network number. Network numbers are returned in machine byte
order.

If the stayopen flag on a setnetent subroutine is NULL, the networks database
is opened. Otherwise the setnetent has the effect of rewinding the networks
database. The endnetent may be called to close the networks database when
processing is complete.

The getnetent subroutine simply reads the next line while getnetbyname and
getnetbyaddr search until a matching name or net number is found (or until BOF
is encountered). The type must be AF _INET. The getnetent subroutine keeps a
pointer in the database, allowing successive calls to be used to search the entire file.

A call to setnetent must be made before a while loop using getnetent in
order to perform initialization and an endnetent must be used after the loop. Both
getnetbyname and getnetbyaddr make calls to setnetent and
endnetent.

Subroutines 3-375

getnetent (3n)

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood.

If YP is running, getnetent does not return the entries in any particular order.
See the Guide to the Yellow Pages Service for setup information.

The networks database may also be distributed via the BIND/Hesiod naming service.
See the Guide to the BINDIHesiod Service for more information.

Return Value
Nqll pointer (0) returned on EOF or error.

Files
jete/networks

See Also
networks(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-376 Subroutines

Name

Syntax

getprotoent (3n)

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get
protocols entry

#include <netdb.h>

struct protoent *getprotoentO

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen;

endprotoentO

Description
The getprotoent, getprotobyname, and getprotobynumber subroutines
each return a pointer to an object with the following structure containing the broken
out fields of a line in the protocols database.

struct protoent {
char *p name;
char **p_aliases;
long pyroto;

/* official name of protocol *1
1* alias list *1
1* protocol number *1

} ;

The members of this structure are:

p_name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

If the stayopen flag on a setprotoent subroutine is NULL, the protocols database
is opened. Otherwise the setprotoent has the effect of rewinding the protocols
database. The endprotoent may be called to close the protocols database when
processing is complete.

The getprotoent subroutine simply reads the next line while
getprotobyname and getprotobynumber search until a matching name or
proto number is found (or until EOF is encountered). The getprotoent
subroutine keeps a pointer in the database, allowing successive calls to be used to
search the entire file.

A call to setprotoent must be made before a while loop using getprotoent
in order to perform initialization and an endprotoent must be used after the loop.
Both getprotobyname and getprotobynumber make calls to setprotoent
and endprotoent .

Subroutines 3-377

getprotoent (3n)

Restrictions
All infonnation is contained in a static area so it must be copied if it is to be saved.
Only the Internet protocols are currently understood.

If yP is running, getprotoent does not return the entries in any particular order.
See the Guide to the Yellow Pages Service for setup infonnation.

The services database may also be distributed using the BIND/Hesiod naming
service. See the Guide to the BINDIHesiod Service for more infonnation.

Return Value
Null pointer (0) returned on EOP or error.

Files
/etc/protocols

See Also
protocols(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-378 Subroutines

Name

Syntax

getservent (3n)

getservent, getservbyname, getservbyport, setservent, endservent - get services entry

#include <netdb.h>

struct servent *getserventO

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endserventO

Description
The getservent, getservbyname, and getservbyport subroutines each
return a pointer to an object with the following structure containing the broken-out
fields of a line in the network services database.

struct servent {

} ;

char *s_name;
char **s_aliases;
long syort;
char *syroto;

The members of this structure are:

/* official name of service */
/* alias list */
/* port service resides at */
/* protocol to use */

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned
in network byte order.

s_proto The name of the protocol to use when contacting the service.

lfthe stayopen flag on a setservent subroutine is NULL, the services
database is opened. Otherwise, the setservent has the effect of rewinding the
services database. The endservent subroutine may be called to close the
services database when processing is complete.

The getservent subroutine reads the next line; getservbyname and
getservbyport search until a matching name or port is found (or until EOF is
encountered). The getservent subroutine keeps a pointer in the database,
allowing successive calls to be used to search the entire file. If a non-NULL protocol
name, proto, is also supplied, searches must also match the protocol.

The setservent routine must be called before a while loop that uses
getservent in order to initialize variables in the setservent routine and an
endservent must be used after the loop. Both getservbyport and
getservbyname make calls to setservent and endservent.

Subroutines 3-379

getservent (3n)

Restrictions
All information is contained in a static area so it must be copied if it is to be saved.

If the Yellow Pages Service is running, getservent does not return the entries in
any particular order. See the Guide to the Yellow Pages Service for setup
information.

The services database can also be distributed by the BIND/Hesiod naming
service. See the Guide to the BINDIHesiod Service for more information.

Return Value
Null pointer (0) returned on EOF or error.

Files
/etc/services

See Also
services(5), svc.conf(5)
Guide to the BINDIHesiod Service
Guide to the Yellow Pages Service

3-380 Subroutines

Name

Syntax

inet{3n)

ineCaddr, ineCnetwork, ineCntoa, ineCmakeaddr, ineClnaof, ineCnetof - Internet
address manipulation routines

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpaiinet.h>

unsigned long inet_addr(cp)
char *cp;

unsigned long inet _ network(cp)
char *cp;

char *inet ntoa(in)
struct in_addr in;

struct in addr inet makeaddr(net, Ina)
int net, Ina; -

int inet Inaof(in)
struct in_addr in;

int inet netof(in)
struct in_addr in;

Description
The routines inet_addr and inet_network each interpret character strings
representing numbers expressed in the Internet standard "." notation, returning
numbers suitable for use as Internet addresses and Internet network numbers,
respectively. The routine inet_ntoa takes an Internet address and returns an
ASCII string representing the address in "." notation. The routine
inet makeaddr takes an Internet network number and a local network address
and constructs an Internet address from it. The routines inet netof and
inet_lnaof break apart Internet host addresses, returnip.g the network number and
local network address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right).
All network numbers and local address parts are returned as machine format integer
values.

Internet Addresses
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from
left to right, to the four bytes of an Internet address. Note that when an Jnternet
address is viewed as a 32-bit integer quantity on the V AX, the byt~s referred to
above appear as "d.c.b.a". That is, VAX bytes are ordered from right to l~ft.

Subroutines 3-381

inet{3n)

When a three-part address is specified, the last part is interpreted as a 16-bit quantity
and placed in the right most two bytes of the network address. This makes the
three-part address format convenient for specifying Class B network addresses as
"128.net.host" .

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity
and placed in the right most three bytes of the network address. This makes the
two-part address format convenient for specifying Class A network addresses as
"net.host" .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as "parts" in a "." notation may be decimal, octal, or
hexadecimal, as specified in the C language (i.e. a leading Ox or OX implies
hexadecimal; otherwise, a leading 0 implies octal; otherwise, the number is
interpreted as decimal).

Return Value
The value -1 is returned by inet_addr and inet_network for malformed
requests.

See Also
gethostent(3n), getnetent(3n), hosts(5), networks(5)

3-382 Subroutines

Name

Syntax

snmpext (3n)

snmpextregister, snmpextgetreq, snmpextrespond, snmpexterror -library routines
available for building the Extended ULTRIX SNMP Agent (Extended Agent)

#include <protocols/snmp.h>
#include <protocols/snmperrs.h>

struct objident {
short ncmp;
unsigned long cmp[SNMPMXID];

} ;

struct snmpareg {
short
objident

} ;

struct snmparspdat {
short
short
char

} ;

oidtype;
oid;

type;
octets;
*rspdat;

snmpextregister(reg, community)
struct snmpareg *reg;
char *community;

snmpextgetreq(reqoid, reqinst)
objident *reqoid;
objident *reqinst;

snmpextrespond(reqoid, rspinst, rspdat)
objident *reqoid;
objident *rspinst;
struct snmparspdat *rspdat;

snmpexterror(error)
long error;

/* number of components */
/* components * /

/* object id type */
/* object id/*

/* response data type * /
/* number of octets in response data */
/* response data */

Description

The following library routines are available for building the Extended Agent:

snmpextregister
Used to register the Extended Agent's Management Information Base (MIB) to
the ULTRIX SNMP Agent (Agent). The reg parameter is provided by the
caller with the object identifiers to be registered. The community parameter is
provided by the caller with the community name (a null-terminated string).

Subroutines 3-383

snmpext(3n)

This library routine waits for a registration confirmation from the Agent. The
process is blocked until the confirmation arrives. When the confirmation
arrives, the routine returns the status of the registration.

The program issues this call before any other Extended SNMP Library calls. It
does this because the snmpextregister library routine creates a UNIX
domain socket to the Agent on behalf of the caller.

snmpextgetreq
Used to receive a request for a MIB variable from the Agent. If there is no
outstanding request from the Agent, the process is blocked until a request
arrives from the Agent.

When the Extended Agent receives a request from the Agent, the reqoid
parameter contains the object identifier for the requested variable. The reqinst
parameter contains the object instance identifier for the requested variable. If
the request does not contains an object instance, the reqinst->ncmp record
contains a zero.

snmpextrespond
Used to return the requested variable to the Agent. The reqoid parameter is the
object identifier from the snmpextgetreq library call. The rspinst parameter
is the object instance associated with the returning variable. If there is no
object instance associated with the returning variable, a null parameter must be
supplied. The rspdat parameter is the returning variable.

Note that the Agent maintains a configurable timer for outstanding requests to
the Extended Agent. Therefore, the Extended Agent must be able to respond
within the Agent's timeout interval in order to prevent a premature timeout in
the Agent.

See the / etc/ snmpd. conf file for your system's default timeout value.

snmpexterror

Restrictions

Used to return an error to the Agent. The error parameter is the error code to
be returned to the Agent. The error code is one of the following:

NOERR-successful SNMP get-next-request end-oj-table. This happens when
the requested instance does not exist.

NOSUCH-Unknown requested object identifier.

GENERRS-Generic error.

BADVAL-Bad variable value.

For the snmpextregister routine, the object identifier must have the prefix
1.3.6.1 to be registered. If it does not, the registration is rejected.

Return Value
If an error occurs, a negative value is returned.

3-384 Subroutines

(

snmpext(3n}

Diagnostics

[BADVERSION] Bad or obsolete protocol version

[BINDERR] Failed to bind the socket

[GENSUC] MIB successfully registered

[NOSOCK] Socket does not exist

[NOSVC] MIB registration was rejected

[PKTLENERR] Maximum size message exceeded or community name is too large

[RCV _ERR] Reception failed

[SND_ERR] Transmission failed

Files

/ etc/ snmpd. conf SNMP configuration file

See Also
snmpd.conf(5n), snmpd(8n), snmpsetup(8n)
Guide to Network Programming

Subroutines 3-385

Network Computing System Routines (3ncs)

Insert tabbed divider here.
Then discard this sheet.

intro (3ncs)

Name
intro - introduction to the Network Computing System's (NCS) library routines

Description
This section describes the NCS library routines.

NOTE
The Title, Name, and See Also sections of the NCS reference pages do
not contain the dollar ($) sign in the command names and library
routines. The actual NCS commands and library routines do contain the
dollar ($) sign.

The NCS commands and library routines are as follows:

• Error Text Database Operations (e r r 0 r _ $)

• Interface to the Location Broker (lb _ $)

• Fault Management (pfm_$)

• Program Management (pgm _ $)

• Interface to the Remote Procedure Call Runtime Library (rpc _ $)

• Remote Remote Procedure Call Interface (r rpc _ $)

• Operations on Socket Addresses (socket_$)

• Operations on Universal Unique Identifiers (uuid_ $)

Error Text Database Operations

The error text database operations use the error_$c_get_text and
error_$c_text library routines to convert status codes into textual error
messages. The runtime library reports operational problems back to the application
following a call by setting the 'all' field ofthe status_$t structure. A value of
status_$ok indicates that no errors were detected. Any other value implies that a
problem occurred. The status_$t structure and the error_$ routines can be used to
display a textual representation of the error condition.

Data Types
This section describes the data types used in error_$ routines.

The e r ro r _ $ routines take as input a status code in status _ $t format.

status_$t A status code. Most of the NCS routines supply their completion status in
this format. The status _ $t type is defined as a structure containing a long
integer:

struct status_$t
long all;

However, the routines can also use status $t as a set of bit fields. To
access the fields in a returned status code,-you can assign the value of the
status code to a union defined as follows:

Subroutines 3-387

intro (3ncs)

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
modc : 8;

short code;
s;

long all;
} status_u;

all All 32 bits in the status code. If all is equal to status _ $ok, the
routine that supplied the status was successful.

fail If this bit is set, the error was not within the scope of the module
invoked, but occurred within a lower-level module.

subsys
This indicates the subsystem that encountered the error.

mode
This indicates the module that encountered the error.

eode
This is a signed number that identifies the type of error that occurred.

Interface To The Location Broker
The lb $ library routines implement the programmatic interface to the Location
Broker Client Agent. The file /usr / include/ idl/ c/glb. h defines this
interface.

External Variables
This section describes the external variable used in lb _ $ routines.

Constants

An external uuid $t variable that is preassigned the value of
the nil UUID. DO' not change the value of this variable.

This section describes constants used in lb _ $ routines.

Ib _ $default Jookup _handle
Used as an input in Location Broker lookup routines.
Specifies that a lookup is to start searching at the beginning
of the database.

Ib_$server)lagJoeal Used in the flags field of an Ib_$entry_t variable. Specifies
that an entry is to be registered only in the Local Location
Broker (LLB) database. See the description of
Ib _ $server _ flag_tin the Data Types section.

status _ $ok A constant used to check status. If a completion status is
equal to status _ $ok, then the routine that supplied it was
successful.

Data Types
This section describes data types used in lb _ $ routines.

Ib _ $entry _tAn identifier for an object, a type, an interface, and the
socket address used to access a server exporting the interface
to the object. The Ib_$entry_t type is defined as follows:

3-388 Subroutines

intro (3ncs)

typedef struct lb Sentry t lb_$entry_t;
struct lb_$entry_t { -

uuid_$t object;
uuid_$t obj_type;
uuid_$t obj_interface;
lb $server flag t flags;
ndr_$char annotation[64j;
ndr_$ulong_int saddr_len;
socket_$addr_t saddr;

} ;

object

obLtype

obLinterface

flags

annotation

saddr len

saddr

A uuid $t. The UUID for the
object. -Can be uuid_$nil if no
object is associated.

A uuid _ $t. The UUID for the type
of the object. Can be uuid $nil if
no type is associated. -

A uuid $t. The UUID for the
interface. Can be uuid $nil if no
interface is associated. -

An Ib _ $server _ flag_ t. Must be 0
or Ib _ $server _ flagJocal. A value
of 0 specifies that the entry is to be
registered in both the Local
Location Broker (LLB) and global
Location Broker (GLB) databases.
A value of Ib _ $server _ flagJocal
specifies registration only in the
LLB database.

A 64-character array. User-defined
textual annotation.

A 32-bit integer. The length of the
saddr field.

A socket $addr t. The socket
address of the server.

Ib_$lookup_handle_t A 32-bit integer used to specify the location in the database
at which a Location Broker lookup operation will start.

Ib_$server_flag_t A 32-bit integer used to specify the Location Broker
databases in which an entry is to be registered. A value of 0
specifies registration in both the Local Location Broker
(LLB) and Global Location Broker (GLB) databases. A
value oflb_$server_flagJocal specifies registration only in
the LLB database.

socket_$addr_t A socket address record that uniquely identifies a socket.

status_$t A status code. Most of the NCS routines supply a
completion code in this format. The status _ $t type is
defined as a structure containing a long integer:

Subroutines 3-389

intro (3ncs)

Example

struct status_$t
long all;
}

However, the system calls can also use status $t as a set of
bit fields. To access the fields in a returned status code, you
can assign the value of the status code to a union defined as
follows:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
modc : 8;

short
s;

long all;

all

fail

subsys

mode

code

code;

All 32 bits in the status code. If all
is equal to status _ $ok, the system
call that supplied the status was
successful.

If this bit is set, the error was not
within the scope of the module
invoked, but occurred within a
lower-level module.

This indicates the subsystem that
encountered the error.

This indicates the module that
encountered the error.

This is a signed number that
identifies the type of error that
occurred.

A 128-bit value that uniquely identifies an object, type, or
interface for all time.

The following statement looks up information in the GLB database about a matrix
multiplication interface:

Ib_$lookup_interface (&matrix_id, & lookup_handle, max_results,
&num_results, &matrix_results, &st);

Fault Management

The pfrn _ $ routines allow programs to manage signals, faults, and exceptions by
establishing clean-up handlers.

A clean-up handler is a piece of code that ensures a program terminates gracefully
when it receives a fatal error. A clean-up handler begins with a pfrn_ $cleanup
call, and usually ends with a call to pfrn_$signal or pgrn_$exit, though it can
also simply continue back into the program after the clean-up code.

3-390 SLibroutines

intro (3ncs)

A clean-up handler is not entered until all fault handlers established for a fault have
returned. If there is more than one established clean-up handler for a program, the
most recently established clean-up handler is entered first, followed by the next most
recently established clean-up handler, and so on to the first established clean-up
handler if necessary.

There is a default clean-up handler invoked after all user-defined handlers have
completed. It releases any resources still held by the program, before returning
control to the process that invoked it.

Constants

pfm $init signal handlers
- - - A constant used as theflags parameter to pfm $init,

causing C signals to be intercepted and converted to PFM
signals.

Data Types
This section describes the data typed used in pfm_$ routines.

pfm _ $c1eanup Jec A record type for passing process context among clean-up
handler routines. It is an opaque data type.

status_$t A status code. Most of the NCS routines supply a
completion code in this format. The status _ $t type is
defined as a structure containing a long integer:

struct status_$t
long all;
}

However, the system calls can also use status_$t as a set of
bit fields. To access the fields in a returned status code, you
can assign the value of the status code to a union defined as
follows:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
modc : 8;

short
s;

long all;

all

fail

subsys

code;

All 32 bits in the status code. If all
is equal to status _ $ok, the system
call that supplied the status was
successful.

If this bit is set, the error was not
within the scope of the module
invoked, but occurred within a
lower-level module.

This indicates the subsystem that
encountered the error.

Subroutines 3-391

intro (3ncs)

modc

code

Program Management

This indicates the module that
encountered the error.

This is a signed number that
identifies the type of error that
occurred.

The NCS software products contain a portable version of the pgm $exi t routine.
The include file for the PFM interface (see the Syntax section of the pfm(3ncs)
reference pages) contains a declaration for this routine.

Interface To The Remote Procedure Call

The rpc _ $ library routines implement the NCS Remote Procedure Call (RPC)
mechanism.

The rpc_ interface is defined by the file /usr/include/idl/rpc. idl.

Most of the rpc _ $ routines can be used only by clients or only by servers. This
aspect of their usage is specified at the beginning of each routine description, in the
Name section.

External Variables
This section describes the external variable used in rpc _$ routines.

uuid _ $nil An external uuid _ $t variable that is preassigned the value of
the nil UUID. Do not change the value of this variable.

Constants
This section describes constants used in rpc $ routines.

rpc _ $mod A module code indicating the RPC module.

status _ $ok A constant used to check status. If a completion status is
equal to status _ $ok, then the routine that supplied it was
successful. See the description of the status _ $t type.

rpc _ $unbound _port A port number indicating to the RPC runtime library that no
port is specified. Identical to socket _ $unspec _port.

The following 16-bit-integer constants are used to specify the communications
protocol address families in socket _ $addr _ t structures. Note that several of the
rpc_$ and socket_$ calls use the 32-bit-integer equivalents of these values.

socket _ $unspec Address family is unspecified.

socket_$internet Internet Protocols (IP).

Data Types
This section describes data types used in rpc _$ routines.

handle _tAn RPC handle.

rpc_$epv_t An entry point vector (EPV). An array of
rpc_$server_stub_t, pointers to server stub procedures.

rpc_$generic_epv_t An entry point vector (EPV). An array of (
rpc _ $generic _server_stub _ t, pointers to generic server stub
procedures.

3-392 Subroutines

intro (3ncs)

rpc_$if_spec_t An RPC interface specifier. This opaque data type contains
infonnation about an interface, including its UUID, the
current version number, any well-known ports used by
servers that export the interface, and the number of
operations in the interface.

rpc _ $mgr _ epv _tAn entry point vector (EPV). An array of pointers to
manager procedures.

rpc_$shut_checkJn_t A pointer to a function. If a server supplies this function
pointer to rpc _ $allow Jemote _shutdown, the function will
be called when a remote shutdown request arrives, and if the
function returns true, the shutdown is allowed. The
following C definition for rpc_$shut_check_fn_t illustrates
the prototype for this function:

status_$t

typedef boolean (*rpc_$shut_check_fn_tl
handle t h,
status~:St *stl

The handle argument can be used to detennine infonnation
about the remote caller.

A socket address record that uniquely identifies a socket.

A status code. Most of the NCS system calls supply their
completion status in this fonnat. The status _ $t type is
defined as a structure containing a long integer:

struct status_$t {
long all;
}

However, the system calls can also use status _ $t as a set of
bit fields. To access the fields in a returned status code, you
can assign the value of the status code to a union defined as
follows:

typedef union {
struct {

unsigned fail : 1,
subsys : 7,
modc : 8;

short
s;

long all;
status_u;

all

fail

subsys

code;

All 32 bits in the status code. If all
is equal to status _ $ok, the system
call that supplied the status was
successful.

If this bit is set, the error was not
within the scope of the module
invoked, but occurred within a
lower-level module.

This indicates the subsystem that
encountered the error.

Subroutines 3-393

intro (3ncs)

modc

code

This indicates the module that
encountered the error.

This is a signed number that
identifies the type of error that
occurred.

A 128-bit value that uniquely identifies an object, type, or
interface for all time.

The following statement allocates a handle that identifies the Acme company's
payroll database object:

h = rpc_$alloc_handle (&acme-pay_id, socket_$internet, &st);

Remote Remote Procedure Call Interface
The rrpc _ $ library routines enable a client to request information about a server or
to shut down a server.

The rrpc_ interface is defined by the file /usr / include/ idl/ rrpc. idl.

Constants
This section describes constants used in rrpc $ calls.

The rrpc_$sv constants are indices for elements in an rrpc_$stat_vec_t array. Each
element is a 32-bit integer representing a statistic about a server. The following list
describes the statistic indexed by each rrpc _ $sv constant:

rrpc_$sv_calls_in The number of calls processed by the server.

rrpc $sv rcvd The number of packets received by the server.

rrpc _ $sv _sent

rrpc_$sv_calls_out

rrpc _ $sv _fragJesends

The number of packets sent by the server.

The number of calls made by the server.

The number of fragments sent by the server that
duplicated previous sends.

rrpc _ $sv _ dup _ frags Jcvd
The number of duplicate fragments received by
the server.

A constant used to check status. If a completion status is
equal to status _ $ok, then the system call that supplied it was
successful.

Data Types
This section describes data types used in rpc_$ routines.

handle t An RPC handle.

rrpc_$interface_vec_t An array of rpc_$if_spec_t, RPC interface specifiers.

rrpc_$stat_vec_t An array of 32-bit integers, indexed by rrpc_$sv constants,
representing statistics about a server.

rpc_$if_spec_t An RPC interface specifier. An opaque data type containing (
information about an interface, including the VVID, the '"

3-394 Subroutines

intro (3nes)

version number, the number of operations in the interface,
and any well-known ports used by servers that export the
interface, and any well-known ports used by servers that
export the interface. Applications may need to access two
members of rpc_$if_spec_t:

id A uuid $t indicating the interface UUID.

vers An unsigned 32-bit integer indicating the interface
version.

Operations on Socket Addresses
The socket $ library routines manipulate socket addresses. Unlike the routines
that operating-systems such as BSD UNIX provide, the socket_ $ routines operate
on addresses of any protocol family.

The file lusr/include/idl/socket. idl defines the socket interface.

Constants
This section describes constants used in socket_$ routines.

The socket_$eq constants are flags indicating the fields to be compared in a
socket _ $equal call.

socket _ $e<L hostid Indicates that the host IDs are to be compared.

socket_$e<Lnetaddr Indicates that the network addresses are to be
compared.

socket_$e<Lport Indicates that the port numbers are to be
compared.

socket _ $e<L network Indicates that the network IDs are to be compared.

socket_$unspec_port A port number indicating to the RPC runtime library that no
port is specified.

The following 16-bit -integer constants are values for the socket _ $addr Jamily _ t
type, used to specify the address family in a socket_$addr_t structure. Note that
several of the rpc_$ and socket_$ routines use the 32-bit-integer equivalents of these
values.

socket_$unspec Address family is unspecified.

socket_$internet Internet Protocols (IP).

status _ $ok A constant used to check status. If a completion status is
equal to status _ $ok, then the system call that supplied it was
successful.

Data Types
This section describes data types used in socket _ $ routines.

socket _ $addr Jamily _ t
An enumerated type for specifying an address family. The
Constants section lists values for this type.

socket_$addrJist_t An array of socket addresses in socket_$addr_t fonnat.

Subroutines 3-395

intro (3ncs)

A structure that uniquely identifies a socket address. This
structure consists of a socket _ $addr JamilL t specifying an
address family and 14 bytes specifying a socket address.

A structure that uniquely identifies a host. This structure
consists of a socket_$addr_family_t specifying an address
family and 12 bytes specifying a host.

socket _ $len Jist _tAn array of unsigned 32-bit integers, the lengths of socket
addresses in a socket _ $addr Jist _ t.

socket $local sockaddr t
- - An array of 50 characters, used to store a socket address in a

format native to the local host.

socket_$net_addr_t A structure that uniquely identifies a network address. This
structure consists of a socket _ $addr Jamily _ t specifying an
address family and 12 bytes specifying a network address. It
contains both a host ID and a network ID. '

socket_$string_t An array of 100 characters, used to store the string
representation of an address family or a socket address.

status_$t

3-396 Subroutines

The string representation of an address family is a textual
name such as dds, ip, or unspec.

The string representation of a socket address has the format
family:host [port], where family is the textual name of an
address family, host is either a textual host name or a
numeric host ID preceded by a #, and port is a port number.

A status code. Most of the NCS system calls supply their
completion status in this format. The status _ $t type is
defined as a structure containing a long integer:

struct status_$t
long all;
}

However, the system calls can also use status_$t as a set of
bit fields. To access the fields in a returned status code, you
can assign the value of the status code to a union defined as
follows:

typedef union {
struct {

all

s;

unsigned fail : 1,
subsys : 7,
modc : B;

short code;

long all;

All 32 bits in the status code. If all
is equal to status _ $ok, the system
call that supplied the status was
successful.

fail

subsys

mode

code

intro (3ncs)

If this bit is set, the error was not
within the scope of the module
invoked, but occurred within a
lower-level module.

This indicates the subsystem that
encountered the error.

This indicates the module that
encountered the error.

This is a signed number that
identifies the type of error that
occurred.

Operations On Universal Unique Identifiers
The uuid _ $ library routines operate on UUIDs (Universal Unique Identifiers).

The uuid_ interface is defined by the file /usr/include/idl/uuid. idl.

The completion status. /usr/include/idl/uuid. idl

External Variables
This section describes external variables used in uuid _ $ routines.

uuid $nil
- An external uuid _ $t variable that is preassigned the value of the nil

UUID. Do not change the value of this variable.

Data Types
This section describes data types used in uuid_$ routines.

status _ $t A status code. Most of the NCS system calls supply their completion
status in this format. The status _ $t type is defined as a structure
containing a long integer:

struct status_$t
long all;
)

However, the system calls can also use status_$t as a set of bit fields. To
access the fields in a returned status code, you can assign the value of the
status code to a union defined as follows:

typedef union {
struct {

all

fail

s;

unsigned fail : 1,
subsys : 7,
modc : 8;

short code;

long all;

All 32 bits in the status code. If all is equal to
status _ $ok, the system call that supplied the
status was successful.

If this bit is set, the error was not within the scope
of the module invoked, but occurred within a
lower-level module.

Subroutines 3-397

intro (3ncs)

subsys

mode

code

This indicates the subsystem that encountered the
error.

This indicates the module that encountered the
error.

This is a signed number that identifies the type of
error that occurred.

uuid_$string_t
A string of 37 characters (including a null terminator) that is an ASCII
representation of a VVID. The format is
cccccccccccc off 0 hi 0 h2 0 h3 0 h4 0 h5 0 h6 0 h7, where cccccccccccc is the
timestamp, ff is the address family, and hi ... h7 are the 7 bytes of host
identifier. Each character in these fields is a hexadecimal digit.

uuid_$t A 128-bit value that uniquely identifies an object, type, or interface for all
time. The uuid _ $t type is defined as follows:

Example

typedef struct uuid_$t {
unsigned long time high;
unsigned short time_low;
unsigned short reserved;
unsigned char family;
unsigned char (host) [7] ;

uuid_$t;

time_high
The high 32 bits of a 48-bit unsigned time value which is the number
of 4-microsecond intervals that have passed between 1 January 1980
00:00 GMT and the time of VVID creation.

time low
-The low 16 bits of the 48-bit time value.

reserved
16 bits of reserved space.

family
8 bits identifying an address family.

host 7 bytes identifying the host on which the VVID was created. The
format of this field depends on the address family.

The following routine returns as foo_uuid the VVID corresponding to the
character-string representation in foo_uuid_rep:

uuid_$decode (foo_uuid_rep, &foo_uuid, &status);

3-398 Subroutines

Name

Syntax

errocc~eCtext - return subsystem, module, and error texts for a status code

void erroc$c~eCtext(status, subsys, subsysmax, module, modulemax,
error, errormax)

status_$t status;
char * subsys;
long subsysmax;
char *module;
long modulemax;
char *error;
long errormax;

Arguments

status

subsys

subsysmax

module

modulemax

error

errormax

A status code in status _ $t fonnat.

A character string. The subsystem represented by the status code.

The maximum number of bytes to be returned in subsys.

A character string. The module represented by the status code.

The maximum number of bytes to be returned in module.

A character string. The error represented by the status code.

The maximum number of bytes to be returned in error.

Description

Files

The error $c get text routine returns predefined text strings that describe the
subsystem, the module, and the error represented by a status code. The strings are
null tenninated. See the intro(3ncs) reference page which lists all of the possible
diagnostics that could be returned in status. all.

lusr/lib/stcode.db

See Also
intro(3ncs)

Subroutines 3-399

Name

Syntax

error_c .. Jext - return an error message for a status code

void error_$c_text(status, message, messagemax)
status_$t status;
char *message;
int messagemax;

Arguments

status

message

messagemax

A status code in status _ $t format.

A character string. The error message represented by the status
code.

The maximum number of bytes to be returned in message.

Description

Files

The error_ $c_text routine returns a null terminated error message for reporting
the completion status of a routine. The error message is composed from predefined
text strings that describe the subsystem, the module, and the error represented by the
status code. See the intro(3ncs) reference page which lists all of the possible
diagnostics that could be returned in status. all.

lusr/lib/stcode.db

See Also
intro(3ncs)

3-400 Subroutines

Name

Syntax

Ib_lookup_interface (3ncs)

Ib_Iookup_interface - look up infonnation about an interface in the Global Location
Broker database

#include <idVc/lb.h>

void Ib_$lookup_interface(obLinteiface, lookup_handle, max _ numJesults,
num _results, results, status)

uuid_$t *obj inteiface;
lb_$lookupjlandle_t *lookup handle;
unsigned long max num results;
unsigned long * numJesults;
lb_$entry_t results[];
status _ $t * status;

Arguments

obLinterJace

lookup _handle

max num results

num results

results

status

Description

The UUID of the interface being looked up.

A location in the database.

On input, the lookup handle indicates the location in the
database where the search begins. An input value of
Ib_$default_lookup_handle specifies that the search will
start at the beginning of the database.

On return, the lookup handle indicates the next unsearched
part of the database (that is, the point at which the next
search should begin). A return value of
lb $default lookup handle indicates that the search
reached the end of the database; any other return value
indicates that the search found at most max num results
matching entries before it reached the end of the database.

The maximum number of entries that can be returned by a
~, single routine. This should be the number of elements in the

results array.

The number of entries that were returned in the results array.

An array that contains the matching GLB database entries,
up to the number specified by the max_numJesults
parameter. If the array contains any entries for servers on
the local network, those entries appear first.

The completion status.

The lb $lookup interface routine returns GLB database entries whose
obj intiit"ace fields match the specified interface. It returns infonnation about objects
that can be accessed through that interface.

Subroutines 3-401

The Ib $lookup interface routine cannot return more than max num results
matching entries at a time. The lookup handle parameter enables you to find all
matching entries by doing sequentia1lookups.

If you use a sequence of lookup routines to find entries in the database, it is possible
that the returned results will skip or duplicate entries. This is because the Location
Broker does not prevent modification of the database between lookups, and such
modification can change the locations of entries relative to a lookup _handle value.

It is also possible that the results of a single lookup routine will skip or duplicate
entries. This can occur if the size of the results exceeds the size of an RPC packet
(64K bytes).

Examples
The following statement looks up information in the GLB database about a matrix
multiplication interface:

lb_$lookup_interface (&matrix_id, &lookup_handle, max_results,
&num_results, &matrix_results, &st);

Diagnostics
This section lists status codes for errors returned by this Ib _ $ routine.

lb $database invalid The format of the Location Broker database is out of date.
- - The database may have been created by an old version of the

Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

lb _ $database _busy

lb $not registered - -

lb $server unavailable

The Location Broker database is currently in use in an
incompatible manner.

The Location Broker does not have any entries that match
the criteria specified in the lookup or unregister routine. The
requested object, type, interface, or combination thereof is
not registered in the specified database. If you are using an
Ib $lookup object localorlb $lookup range
routine specifying an LLB, check that you have specified the
correct LLB.

The Location Broker cannot access the database. Among the
possible reasons:

1. The database does not exist.

2. The database exists, but the Location Broker cannot
access it.

- - The Location Broker Client Agent cannot reach the
requested GLB or LLB. A communications failure occurred
or the broker was not running.

3-402 Subroutines

(

Files
/usr/include/idl/c/glb.h

See Also

Ib_lookup_interface (3ncs)

intro(3ncs), Ib_Iookup_object(3ncs), Ih_Iookup_range(3ncs), Ib_Iookup_type(3ncs)

Subroutines 3-403

Name

Syntax

Ib_Iookup_object - look up information about an object in the Global Location
Broker database

#include <idVc/lb.h>

void lb_$lookup_object(object, lookup_handle, max_numJesults,
num_results, results, status)

uuid $t *object;
lb _ $Tookup _handle _t * lookup_handle;
unsigned long max num results;
unsigned long * num results;
lb Sentry t results[Ii
status _$ t *' status;

Arguments

object

lookup_handle

max num results

num results

results

status

3-404 Subroutines

The UUID of the object being looked up.

A location in the database.

On input, the lookup _handle indicates the location in the
database where the search begins. An input value of
lb_$default_lookup_handle specifies that the search will
start at the beginning of the database.

On return, the lookup handle indicates the next unsearched
part of the database (that is, the point at which the next
search should begin). A return value of
Ib $default lookup handle indicates that the search
reached the end of the database; any other return value
indicates that the search found at most max num results
matching entries before it reached the end of the database.

The maximum number of entries that can be returned by a
single routine. This should be the number of elements in the
results array.

The number of entries that were returned in the results array.

An array that contains the matching GLB database entries,
up to the number specified by the max num results
parameter. If the array contains any entries for servers on
the local network, those entries appear first.

The completion status. If the completion status returned in
status. all is equal to status $ok, then the routine that
supplied it was successful. -

Description
The lb $lookup object routine returns GLB database entries whose object field
matcheS-the specified object UUID.

The lb $lookup object routine cannot return more than max num results
matching entries at a time. The lookup _handle parameter enables you to-find all
matching entries by doing sequential lookups.

If you use a sequence of lookup routines to find entries in the database, it is possible
that the returned results will skip or duplicate entries. This is because the Location
Broker does not prevent modification of the database between lookups, and such
modification can change the locations of entries relative to a lookup_handle value.

It is also possible that the results of a single lookup routine will skip or duplicate
entries. This can occur if the size of the results exceeds the size of an RPC packet
(64K bytes).

Examples
The following statement, looks up GLB database entries for the object identified by
bank id:

Ib_$lookup_object(&bank_id, &lookup_handle,
MAX_LOCS, &n_locs, bank_loc, &status);

Diagnostics
This section lists status codes for errors returned by this lb _ $ routine in
status. all.

Ib _ $database Jnvalid The format of the Location Broker database is out of date.
The database may have been created by an old version of the
Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

Ib_$database_busy The Location Broker database is currently in use in an
incompatible manner.

Ib_$not_registered The Location Broker does not have any entries that match
the criteria specified in the lookup or unregister routine. The
requested object, type, interface, or combination thereof is
not registered in the specified database. If you are using an
lb $lookup object localorlb $lookup range
routine specifyfrig an LLB, check that you have specified the
correct LLB.

Ib _ $cant _access The Location Broker cannot access the database. Among the
possible reasons:

1. The database does not exist.

2. The database exists, but the Location Broker cannot
access it.

Subroutines 3-405

Ib_lookup_object (3ncs)

Files

Ib $server unavailable
- - The Location Broker Client Agent cannot reach the

requested GLB or LLB. A communications failure occurred
or the broker was not running.

/usr/include/idl/c/glb.h

See Also
intro(3ncs), Ib_Iookup_interface(3ncs), Ib_lookup_objecclocal(3ncs),
Ib_Iookup_range(3ncs), Ib_lookup_type(3ncs)

3-406 Subroutines

Name

Syntax

Ib_Iookup_objecClocal - look up information about an object in a Local Location
Broker database

#include <idl/c/lb.h>

void Ib_$lookup_objecClocal(object, location, location length, lookup handle
max_num_results, num_results, results, status)

uuid $t *object;
socket $addr t * location;
unsigned long location length;
lb $lookup handle t */ookup handle;
unsigned long max -num results;
unsigned long *num results;
lb Sentry t results[];
status _ $t "* status;

Arguments

object

location

location_length

lookup _handle

max num results

num results

The VVID of the object being looked up.

The location of the LLB database to be searched. The
socket address must specify the network address of a host.
However, the port number in the socket address is ignored,
and the lookup request is always sent to the LLB port.

The length, in bytes, of the socket address specified by the
location field.

A location in the database.

On input, the lookup handle indicates the location in the
database where the search begins. An input value of
lb _ $default Jookup _handle specifies that the search will
start at the beginning of the database.

On return, the lookup handle indicates the next unsearched
part of the database (iliat is, the point at which the next
search should begin). A return value of
lb $default lookup handle indicates that the search
reached the end of the database; any other return value
indicates that the search found at most max num results
matching entries before it reached the end of the database.

The maximum number of entries that can be returned by a
single routine. This should be the number of elements in the
results array.

The number of entries that were returned in the results array.

Subroutines 3-407

results

status

Description

An array that contains the matching GLB database entries,
up to the number specified by the max num results
parameter. If the array contains any entries for servers on
the local network, those entries appear first.

The completion status. If the completion status returned in
s tat us. a 11 is equal to status _ $ok , then the routine that
supplied it was successful.

The 1b_ $lookup_object_1ocal routine searches the specified LLB database
and returns all entries whose object field matches the specified object.

The lb $lookup object local routine cannot return more than
max _ num JesuIts matching entries at a time. The lookup_handle parameter enables
you to find all matching entries by doing sequential lookups.

If you use a sequence of lookup routines to find entries in the database, it is possible
that the returned results will skip or duplicate entries. This is because the Location
Broker does not prevent modification of the database between lookups, and such
modification can change the locations of entries relative to a lookup_handle value.

It is also possible that the results of a single lookup routine will skip or duplicate
entries. This can occur if the size of the results exceeds the size of an RPC packet
(64K bytes).

Examples
The following statement looks up information about the object locobj. Since there is
only one entry on any host, the routine will return at most one result:

lb_$lookup_object_local (&locobj_id, &location, location_length,

Diagnostics

&lookup_handle, 1, &num_results,
&results, &status);

This section lists status codes for errors returned by this lb _ $ routine in
status. all.

Ib_$database_invalid The format of the Location Broker database is out of date.

Ib $database busy - -

Ib _ $not Jegistered

3-408 Subroutines

The database may have been created by an old version of the
Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB that
was accessed may be running out-of-date software; in this
case, update all Location Brokers to the current software
version.

The Location Broker database is currently in use in an
incompatible manner.

The Location Broker does not have any entries that match
the criteria specified in the lookup or unregister routine. The
requested object, type, interface, or combination thereof is
not registered in the specified database. If you are using an
lb_$lookup_object_localorlb_$lookup_range

Files

Ib $server unavailable

routine specifying an LLB, check that you have specified the
correct LLB.

The Location Broker cannot access the database. Among the
possible reasons:

1. The database does not exist.

2. The database exists, but the Location Broker cannot
access it.

- - The Location Broker Client Agent cannot reach the
requested LLB. A communications failure occurred or the
broker was not running.

/usr/include/idl/c/glb.h

See Also
intro (3ncs), Ib_Iookup_range(3ncs)

Subroutines 3-409

Name

Syntax

Ib_Iookup_range - look up information in a Global Location Broker or Local
Location Broker database

#include <idVc/lb.h>

void lb_$lookup_range(object, obLtype, obLinterface, location,

uuid_$t *object;
uuid_$t *obj type;
uuid_$t *obFinter!ace;
sockeC$addi:,J *location;

location length, lookup handle, max num results,
numJesults, results, status) --

unsigned long location_length;
lb_$lookup_handle_t *lookup handle;
unsigned long max num results;
unsigned long *num results;
lb_$entry _t results[];
status_$t *status);

Arguments

object

obLtype

obj interface

location

location_length

lookup _handle

3-410 Subroutines

The UUID of the object being looked up.

The UUID of the type being looked up.

The UUID of the interface being looked up.

The location of the database to be searched. If the value of
location _length is 0, the GLB database is searched.
Otherwise, the LLB database at the host specified by
location is searched; in this case, the port number in the
socket address is ignored, and the lookup request is sent to
the LLB port.

The length, in bytes, of the socket address specified by the
location field. A value of 0 indicates that the GLB database
is to be searched.

A location in the database.

On input, the lookup _handle indicates the location in the
database where the search begins. An input value of
Ib _ $default Jookup _handle specifies that the search will
start at the beginning of the database.

On return, the lookup handle indicates the next unsearched
part of the database (that is, the point at which the next
search should begin). A return value of
Ib $default lookup handle indicates that the search
reached the end of the database; any other return value
indicates that the search found at most max num results
matching entries before it reached the end of the database.

max num results

num results

results

status

Description

The maximum number of entries that can be returned by a
single routine. This should be the number of elements in the
results array.

The number of entries that were returned in the results array.

An array that contains the matching GLB database entries,
up to the number specified by the max num results .
parameter. If the array contains any entries for servers on
the local network, those entries appear first.

The completion status. If the completion status returned in
status. all is equal to status_$ok ,then the routine that
supplied it was successful.

The lb $lookup range routine returns database entries whose object, obj type,
and obj~interface fields match the specified values. A value of uuid_$nil in any of
these input parameters acts as a wildcard and will match any value in the
corresponding entry field. You can specify wildcards in any combination of these
parameters.

The lb $lookup range routine cannot return more than max num results
matching entries at a time. The lookup_handle parameter enables-you to find all
matching entries by doing sequential lookups.

If you use a sequence of 100kllP routines to find entries in the database, it is possible
that the returned results will skip or duplicate entries. This is because the Location
Broker does not prevent modification of the database between lookups, and such
modification can change the locations of entries relative to a lookup_handle value.

It is also possible that the results of a single lookup routine will skip or duplicate
entries. This can occur if the size of the results exceeds the size of an RPC packet
(64K bytes).

Examples
The following statement looks up information in the GLB database about servers that
export the matrix interface for any objects of type array. The variable glb is defined
elsewhere as a null pointer.

lb_$lookup_range(&uuid_$nil, &array_id, &matrix_id, glb, 0,
&lookup_handle, max_results,
&num_results, results, &status);

Diagnostics
This section lists status codes for errors returned by this lb _ $ routine in
status. all.

Ib_$database_invalid The format of the Location Broker database is out of date.
The database may have been created by an old version of the
Location Broker; in this case, qelete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

Subroutines 3-411

Files

Ib _ $not _registered

Ib _ $server _unavailable

The Location Broker database is currently in use in an
incompatible manner.

The Location Broker does not have any entries that match
the criteria specified in the lookup or unregister routine. The
requested object, type, interface, or combination thereof is
not registered in the specified database. If you are using an
Ib $lookup object localmlb $lookup range
routine specifyIng an LLB, check that yOU have specified the
correct LLB.

The Location Broker cannot access the database. Among the
possible reasons:

1. The database does not exist.

2. The database exists, but the Location Broker cannot
access it.

The Location Broker Client Agent cannot reach the
requested LLB. A communications failure occurred or the
broker was not running.

/usr/include/idl/c/glb.h

See Also
intro(3ncs), Ib_Iookup_interface(3ncs), Ib_Iookup_object(3ncs),
Ib_Iookup_objecClocal(3ncs),lb_100kup_type(3ncs)

3-412 Subroutines

Name

Syntax

Ib_Iookup_type -look up information about a type in the Global Location Broker
database

#inc1ude <idVc/lb.h>

void lb_$lookup_type(obj type, lookup handle, max num results,
- numJesults, results,-status)

uuid_$t *obLtype;
lb_$lookup_handle_t *lookup handle;
unsigned long max _ num JesuIts;
unsigned long *num results;
lb Sentry t results!];
status_$t *status;

Arguments

obLtype

lookup_handle

max num results

num results

results

status

The UUID of the type being looked up.

A location in the database.

On input, the lookup handle indicates the location in the
database where the search begins. An input value of
Ib _ $default Jookup _handle specifies that the search will
start at the beginning of the database.

On return, the lookup handle indicates the next unsearched
part of the database (that is, the point at which the next
search should begin). A return value of
lb _ $default Jookup _handle indicates that the search
reached the end of the database; any other return value
indicates that the search found at most max num results
matching entries before it reached the end of the database.

The maximum number of entries that can be returned by a
single routine. This should be the number of elements in the
results array.

The number of entries that were returned in the results array.

An array that contains the matching GLB database entries,
up to the number specified by the max _ num Jesuits
parameter. If the array contains any entries for servers on
the local network, those entries appear first.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successful.

Subroutines 3-413

Description
The lb_$lQokup_type routine returns GLB database entries whose obLtype
fields matcp. the specified type. It returns information about all objects of that type
and about all interfaces to each of these objects.

The lb $lQokup type routine cannot return more than max num results
matching entries at a time. The lookup handle parameter enables you to find all
matching entries py doing sequential lookups.

If you use a sequence of lookup routines to find entries in the database, it is possible
that the returned results will sJdp or duplicate entries. This is because the Location
Broker does not prevent modification of the database between lookups, and such
modification can change the locations of entries relative to a lookup_handle value.

It is also possible that the results of a single lookup routine will skip or duplicate
entries. TQis can occur if the size of the results exceeds the size of an RPC packet
(64K bytes).

Examples
The following statement looks up information in the GLB database about the type
array:

lb_$lookup_type (&array_id, &lookup_handle, max_results,
&num_results, &results, &status);

Diagnostics
This section lists status codes for errors returned by this lb _ $ routine in
status. all.

Ib _ $database Jnvalid The format of the Location Broker database is out of date.
The database may have been created by an old version of the
Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

Ib_$database_busy The Location Broker database is currently in use in an
incompatible manner.

Ib_$notJegistered The Location Broker does not have any entries that match
the criteria specified in the lookup or unregister routine. The
requested object, type, interface, or combination thereof is
not registered in the specified database. If you are using an
lb $lookup object localorlb $lookup range
routine specifyIng an LLB, check that you have specified the
correct LLB.

lb _ $cant _access The Location Broker cannot access the database. Among the
possible reasons:

3-414 Subroutines

1. The database does not exist, and the Location Broker
cannot create it.

Files

lb $server unavailable

2. The database exists, but the Location Broker cannot
access it.

3. The GLB entry table is full.

- - The Location Broker Client Agent cannot reach the
requested GLB or LLB. A communications failure occurred
or the broker was not running.

/usr/include/idl/c/glb.h

See Also
intro(3ncs), Ib_Iookup_interface(3ncs), Ib_Iookup_object(3ncs),
Ib_Iookup_range(3ncs)

Subroutines 3-415

Ib_register (3ncs)

Name

Syntax

lb_register - register an object and an interface with the Location Broker

#include <idl/c/lb.h>

void lb_$register(object, obLtype, obLinterface, flags, annotation,
location, location_length, entry, status)

uuid $t *object;
uuid::)t *obL type;
uuid_$t *obLinterface;
lb_$servecfta~t flags,'
unsigned char annotation[64];
sockeC$addr_t *location;
unsigned long location length;
lb_$entry_t *entry; -
status_$t * status;

Arguments

object

obLtype

obLinterjace

flags

annotation

location

location_length

entry

status

Description

The UUID of the object being registered.

The UUID of the type of the object being registered.

The UUID of the interface being registered.

Must be either Ib_$server_ftagJocal (specifying registration
with only the LLB at the local host) or 0 (specifying
registration with both the LLB and the GLB).

A character array used only for informational purposes. This
field can contain a textual description of the object and the
interface. For proper display by the lb _ admin tool, the
annotation should be terminated by a null character.

The socket address of the server that exports the interface to
the object.

The length, in bytes, of the socket address specified by the
location field.

A copy of the entry that was entered in the Location Broker
database.

The completion status. If the completion status returned in
status. all is equal to status $ok, then the routine that
supplied it was successful. -

The lb $register routine registers with the Location Broker an interface to an
object and the location of a server that exports that interface. This routine replaces
any existing entry in the Location Broker database that matches object, obL type,
obLinterjace, and both the address family and host in location; if no such entry
exists, the routine adds a new entry to the database.

3-416 Subroutines

I b_register (3ncs)

If the flags parameter is lb_ $server_flag_local, the entry is registered only
in the LLB database at the host where the call is issued. Otherwise, the flag should
be 0 to register with both the LLB and the GLB databases.

Examples
The following statement registers the bank interface to the object identified by
bank id:

lb_Sregister (&bank_id, &bank_Suuid, &bank_Sif_spec.id, 0,
BankName, &saddr, slen, &entry, &status);

Diagnostics

Files

This section lists status codes for errors returned by this lb _ $ routine in
status. all.

Ib_$database_invalid The format of the Location Broker database is out of date.
The database may have been created by an old version of the
Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

lb _ $database _busy The Location Broker database is currently in use in an
incompatible manner.

lb_$update_failed The Location Broker was unable to register the entry.

lb_$cant_access The Location Broker cannot access the database. Among the
possible reasons:

lb $server unavailable

1. The database does not exist, and the Location Broker
cannot create it.

2. The database exists, but the Location Broker cannot
access it.

3. The GLB entry table is full.

- - The Location Broker Client Agent cannot reach the
requested GLB or LLB. A communications failure occurred
or the broker was not running.

/usr/include/idl/c/glb.h

See Also
intro(3ncs), Ib_unregister(3ncs)

Subroutines 3-417

Ib_unregister (3ncs)

Name

Syntax

lb_unregister - remove an entry from the Location Broker database

#include <idl/c/lb.h>

void lb_$unregister(entry, status)
lb_$entry _t *entry;
status_$t * status;

Arguments

entry

status

Description

The entry being removed from the Location Broker database.

The completion status. If the completion status returned in status. all
is equal to status _ $ok , then the routine that supplied it was successful.

The lb $unregister routine removes from the Location Broker database the
entry that matches entry. The value of entry should be identical to that returned by
the lb $register routine when the database entry was created. However,
lb $unregister does not compare all of the fields in entry-,-the annotation field,
and the port number in the saddr field.

This routine removes the entry from the LLB database on the local host (the host that
issues the routine). If the flags field of entry is equal to 0, it removes the entry from
the GLB database. If the flags field is equal to lb $server flag local, it deletes only
the LLB entry. - --

Examples
The following statement unregisters the entry specified by BankEntry, which was
obtained from a previous lb_$register routine:

lb_$unregister (&BankEntry, &status);

Diagnostics
This section lists status codes for errors returned by this lb _ $ routine in
status. all.

lb_$database_invalid The format of the Location Broker database is out of date.
The database may have been created by an old version of the
Location Broker; in this case, delete the out-of-date database
and reregister any entries that it contained. The LLB or
GLB that was accessed may be running out-of-date software;
in this case, update all Location Brokers to the current
software version.

lb _ $database _busy The Location Broker database is currently in use in an
incompatible manner.

Ib_$notJegistered The Location Broker does not have any entries that match

3-418 Subroutines

Files

Ib $update failed - -

Ib _ $server _unavailable

Ib_unregister (3ncs)

the criteria specified in the unregister routine. The requested
object, type, interface, or combination thereof is not
registered in the specified database.

The Location Broker was unable to register or unregister the
entry.

The Location Broker cannot access the database. Among the
possible reasons:

1. The database does not exist.

2. The database exists, but the Location Broker cannot
access it.

The Location Broker Client Agent cannot reach the
requested GLB or LLB. A communications failure occurred
or the broker was not running.

/usr/include/idl/c/glb.h

See Also
intro(3ncs), Ib_register(3ncs)

Subroutines 3-419

pfm_cleanup (3ncs)

Name

Syntax

pfm3leanup - establish a clean-up handler

#include <idl/c/base.h>
#include <idl/c/pfm.h>

status_$t pfm_$cleanup(cleanup record)
pfm_$cleanup_rec *cleanup Jecord;

Arguments

cleanup Jecord

Description

A record of the context when pfm $cleanup is called. A
program should treat this as an opaque data structure and not
try to alter or copy its contents. It is needed by
pfm $rls cleanup and pfm $reset cleanup to
restore the context of the calling process at the clean-up
handler entry point.

The pfm_ $cleanup routine establishes a clean-up handler that is executed when a
fault occurs. A clean-up handler is a piece of code executed before a program exits
when a signal is received by the process. The clean-up handler begins where
pfm_ $cleanup is called; the pfm_ $cleanup routine registers an entry point
with the system where program execution resumes when a fault occurs. When a fault
occurs, execution resumes after the most recent call to pfm_ $cleanup.

There can be more than one clean-up handler in a program. Multiple clean-up
handlers are executed consecutively on a last-in/first-out basis, starting with the most
recently established handler and ending with the first clean-up handler. The system
provides a default clean-up handler established at program invocation. The default
clean-up handler is always called last, just before a program exits, and releases any
system resources still held, before returning control to the process that invoked the
program.

Diagnostics

When called to establish a clean-up handler, pfm _ $cleanup returns the status
pfm _ $cleanup _set to indicate the clean-up handler was successfully established.
When the clean-up handler is entered in response to a fault signal, pfm_ $cleanup
effectively returns the value of the fault that triggered the handler.

This section lists status codes for errors returned by this pfm_ $ routine in
status.all.

pfm_$bad]ls_order Attempted to release a clean-up handler out of order.

pfm _ $cleanup _not Jound
There is no pending clean-up handler.

pfm $cleanup set - - A clean-up handler was established successfully.

3-420 Subroutines

(

Files

pfm_cleanup (3ncs)

pfm _ $c1eanup _set_signalled
Attempted to use pfm_$c1eanup_set as a signal.

pfm $invalid cleanup rec
- - -Passed an invalid clean-up record to a routine.

pfm $no space Cannot allocate storage for a clean-up handler.

NOTE

Clean-up handler code runs with asynchronous faults inhibited. When
pfm_ $cleanup returns something other than pfm_$c1eanup_set
indicating that a fault has occurred, there are four possible ways to leave
the clean-up code:

• The program can call pfm_ $signal to start the next clean-up
handler with a different fault signal.

.• The program can call pgm $exi t to start the next clean-up handler
with the same fault signal.-

• The program can continue with the code following the clean-up
handler. It should generally call pfm_ $enable to reenable
asynchronous faults. Execution continues from the end of the clean
up handler code; it does not resume where the fault signal was
received.

• The program can reestablish the handler by calling
p fm _ $ re set _ c 1 e an up before proceeding.

lusr/include/idl/c/base.h
lusr/include/idl/base.idl
lusr/include/idl/c/pfm.h

See Also
intro(3ncs), pfm_signal(3ncs)

Subroutines 3-421

pfm_enable (3ncs)

Name

Syntax

pfm_enable - enable asynchronous faults

#inc1ude <idl/c/base.h>
#inc1ude <idl/c/pfm.h>

void pfm_$enable()

Description
The pfm_ $enable routine enables asynchronous faults after they have been
inhibited by a routine to pfm_ $inhibi t; pfm_ $enable causes the operating
system to pass asynchronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm $enable returns, there can be at most one fault waiting
on the process. If more than one fault was received between routines to
pfm_$inhibit and pfm_$enable, the process receives the first asynchronous
fault received while faults were inhibited.

See Also
intro (3ncs), pfm_enable_faults (3ncs), pfm_inhibit (3ncs)

3-422 Subroutines

Name

Syntax

pfm_enablejaults - enable asynchronous faults

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void pfm_$enable_faultsO

Description
The pfm $enable faults routine enables asynchronous faults after they have
been inhibited by a call to pfm $inhibit faults; pfm $enable faults
causes the operating system to pass asynchronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault.
Consequently, when pfm $enable faults returns, there can be at most one
fault waiting on the process. If more than one fault was received between routines to
pfm_$inhibit_faults and pfm_$enable_faults, the process receives the
first asynchronous fault received while faults were inhibited.

Diagnostics

Files

This section lists the status codes for errors returned by this p f m _ $ routine.

pfm_$badJIs_order Attempted to release a clean-up handler out of order.

pfm $cleanup not found
- - - There is no pending clean-up handler.

pfm_$cleanup_set A clean-up handler was established successfully.

pfm _ $cleanup _set_signalled
Attempted to use pfm_$c1eanup_set as a signal.

pfm _ $invalid _cleanup Jec
Passed an invalid clean-up record to a routine.

pfm_$no_space Cannot allocate storage for a clean-up handler.

/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro(3ncs), pfm_enable(3ncs), pfm_inhibicfaults (3ncs)

Subroutines 3-423

pfm_inhibit (3ncs)

Name

Syntax

pfm_inhibit - inhibit asynchronous faults

#include <idVc/base.h>
#include <idVc/pfm.h>

void pfm_$inhibitO

Description

Files

The pfm $inhibit routine prevents asynchronous faults from being passed to the
calling process. While faults are inhibited, the operating system holds at most one
asynchronous fault. Consequently, a call to pfm _ $ inhibi t can result in the loss
of some signals. It is good practice to inhibit faults only when absolutely necessary.

NOTE

This routine has no effect on the processing of synchronous faults such
as floating-point and overflow exceptions, access violations, and so on.

/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro (3ncs), pfm_enable(3ncs), pfm_inhibitjault (3ncs)

3-424 Subroutines

(

Name

Syntax

pfm_inhibiCfaults - inhibit asynchronous faults

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void pfm_$inhibiCfaults ()

Description

Files

The pfm_$inhibit_faults routine prevents asynchronous faults from being
passed to the calling process. While faults are inhibited, the operating system holds
at most one asynchronous fault. Consequently, a call to pfm_ $inhibi t_faul ts
can result in the loss of some signals. It is good practice to inhibit faults only when
absolutely necessary.

NOTE

This call has no effect on the processing of synchronous faults such as
floating-point and overflow exceptions, access violations, and so on.

/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro (3ncs), pfm_enable_faults (3ncs), pfm_inhibit (3ncs)

Subroutines 3-425

pfm_init (3nes)

Name

Syntax

pfm_init - initialize the PPM package

#include <idVc/base.h>
#include <idVc/pfm.h>

void pfm_$init(jiags)
unsigned long flags;

Arguments

flags

pfm _ init _signal_handlers
Currently the only valid flag value. A flag's variable must be set to
contain this value or the call will perform no initialization. A call to
pfm init signal handlers causes C signals to be intercepted and
converted to PFM signals. On UL TRIX and VMS systems, the
signals intercepted are SIGINIT, SIGILL, SIGFPE, SIGTERM,
SIGHUP, SIGQUIT, SIGTRAP, SIGBUS, SIGSEGV, and SIGSYS.

Description

Files

The call to pfm_ $ini to establishes a default set of signal handlers for the routine.
The call to p fm $ in i t () should be made prior to the application's use of all other
runtime RPC routines. This enables the RPC runtime system to catch and report all
fault and/or interrupt signals that may occur during normal operation. Additionally,
the user may provide a fault processing clean-up handler for application-specific exit
handling.

/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro(3ncs), pfm3Ieanup(3ncs)

3-426 Subroutines

(

Name

Syntax

pfm_reseCcleanup - reset a clean-up handler

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void pfm_$reseCcleanup(cleanup record, status)
pfm_$cleanup_rec *cleanup record;
status_$t *status; -

Arguments

cleanup_record

status

A record of the context at the clean-up handler entry point.
It is supplied by pfm_$cleanup, when the clean-up
handler if first established.

The completion status. If the completion status returned in
status. all is equal to status_$ok, then the routine that
supplied it was successful.

Description
The pfm $reset cleanup routine reestablishes the clean-up handler last entered
so that any subsequent errors enter it first. This procedure should only be used
within clean-up handler code.

Diagnostics

Files

This section lists status codes for errors returned by this p fm _ $ routine in
status. all.

pfm_$badJls_order Attempted to release a clean-up handler out of order.

pfm_$c1eanup_not_found
There is no pending clean-up handler.

pfm_$c1eanup_set A clean-up handler was established successfully.

pfm _ $invalid _cleanup Jec
Passed an invalid clean-up record to a routine.

pfm_$no_space Cannot allocate storage for a clean-up handler.

lusr/include/idl/c/base.h
lusr/include/idl/base.idl
lusr/include/c/pfm.h

See Also
intro(3ncs)

Subroutines 3-427

Name

Syntax

pfm_rls3leanup - release clean-up handlers

#include <idVc/base.h>
#include <idVc/pfm.h>

void pfm_$r1s_cleanup(cleanup record, status)
pfm_$cleanup_rec *cleanup record;
status_$t *status; -

Arguments

cleanup Jecord

status

Description

The clean-up record for the first clean-up handler to release.

The completion status. If status is pfm_$badJls_order, it
means that the caller attempted to release a clean-up handler
before releasing all handlers established after it. This status
is only a warning; the intended clean-up handler is released,
along with all clean-up handlers established after it. If the
completion status returned in status. all is equal to
status _ $ok, then the routine that supplied it was successful.

The pfm_ $r ls _cleanup routine releases the clean-up handler associated with
cleanup Jecord and all clean-up handlers established after it.

Diagnostics
This section lists the status codes for errors returned by this p f m _ $ routine in
status. all.

pfm_$badJls_order Attempted to release a clean-up handler out of order.

pfm $c1eanup not found
- - - There is no pending clean-up handler.

pfm_$c1eanup_set A clean-up handler was established successfully.

pfm _ $c1eanup _set_signalled
Attempted to use pfm_$c1eanup_set as a signal.

pfm $invalid cleanup rec
- - -Passed an invalid clean-up record to a routine.

3-428 Subroutines

(

Files
/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro(3ncs)

Subroutines 3-429

pfm_signal (3ncs)

Name

Syntax

pfm_signal - signal the calling process

#include <idVc/base.h>
#include <idVc/pfm.h>

void pfm_$signal(fault _signal)
status_$t *fault _signal;

Arguments

A fault code.

Description
The pfm $signal routine signals the fault specified by fault signal to the calling
process. It is usually called to leave clean-up handlers. -

Diagnostics

Files

This section lists status codes for errors returned by this pfm_ $ routine.

pfm_$badJls_order Attempted to release a clean-up handler out of order.

pfm $cleanup not found
- - - There is no pending clean-up handler.

A clean-up handler was established successfully.

pfm _ $cleanup _set_signalled
Attempted to use pfm_$cleanup_set as a signal.

pfm $invalid cleanup rec
- - -Passed an invalid clean-up record to a routine.

pfm $no space Cannot allocate storage for a clean-up handler.

NOTE
This routine does not return when successful.

lusr/include/idl/c/base.h
lusr/include/idl/base.idl
lusr/include/idl/c/pfm.h

See Also
intro(3ncs)

3-430 Subroutines

Name

Syntax

pgm_exit - exit a program

#include <idl/c/base.h>
#include <idl/c/pfm.h>

void pgm_$exitO

pgm_exit (3ncs)

Description

Files

The pgm_ $exi t routine exits from the calling program and returns control to the
process that invoked it. When pgm $exi t is called any files left open by the
program are closed, any storage acquired is released, and asynchronous faults are
reenabled if they were inhibited by the calling program.

The pgm_ $exi t routine always calls pfm_ $signalO with a status of status_$ok.

/usr/include/idl/c/base.h
/usr/include/idl/base.idl
/usr/include/idl/c/pfm.h

See Also
intro(3ncs)

Subroutines 3-431

Name

Syntax

rpc_alloc_handle - create an RPC handle (client only)

#include <idVc/rpc.h>

handle_t rpc_$alloc_handle(object, family, status)
uuid_$t *object;
unsigned long family;
status_$t *status;

Arguments

object

family

status

Description

The UUID of the object to be accessed. If there is no
specific object, specify uuid_$nil.

The address family to use in communications to access the
object. Currently, only socket_$ internet is supported.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successful.

The rpc $alloc handle routine creates an unbound RPC handle that identifies
a particuiar object but not a particular server or host.

If a remote procedure call is made using the unbound handle, it will effect a
broadcast to all Local Location Brokers (LLBs) on the local network. If the call's
interface and the object identified by the handle are both registered with any LLB,
that LLB forwards the request to the registering server. The client RPC runtime
library returns the first response that it receives and binds the handle to the first
responding server.

Examples
The following statement allocates a handle that identifies the Acme company's
payroll database object:

h = rpc_$alloc_handle (&acme-Fay_id, socket_$internet, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

rpc _ $comm Jailure

rpc_$unkJf

3-432 Subroutines

The client was unable to get a response from the server.

The requested interface is not known. It is not registered in
the server, the version number of the registered interface is
different from the version number specified in the request, or
the UUID in the request does not match the UUID of the
registered interface.

Files

rpc $cant create sock
- - - The RPC runtime library was unable to create a socket.

rpc _ $cant _bind_sock The RPC runtime library created a socket but was unable to
bind it to a socket address.

rpc _ $wrong_ boot_time

rpc $not in call - --

The server boot time value maintained by the client does not
correspond to the current server boot time. The server was
probably rebooted while the client program was running.

An internal error.

This error can occur if a server has crashed and restarted. A
client RPC runtime library sends the error to the server if the
client makes a remote procedUre call before the server
crashes, then receives a response after the server restarts.

An internal protocol error.

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro (3ncs), rpcjree_handle(3ncs), rpc_seCbinding (3ncs)

Subroutines 3-433

Name

Syntax

rpc_allow _remote_shutdown ~ allow or disallow remote shutdown of a server (server
only)

#include <idl/c/rpc.h>

void rpc_$allow_remote_shutdown(allow, checkproc, status)
unsigned long allow;
rpc _ $shut _check In _t checkproc;
status_$t *status;

Arguments

allow

checkproc

status

Description

A value indicating 'false' if zero, 'true' otherwise.

A pointer to a Boolean function.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successful.

The rpc $allow remote shutdown routine allows or disallows remote callers
to shut down a server using rrpc $shutdown.

By default, servers do not allow remote shutdown via rrpc_ $shutdown. If a
server calls rpc $allow remote shutdown with allow true (not zero) and
checkproc nil, then remote shutdown will be allowed. If allow is true and checkproc
is not nil, then when a remote shutdown request arrives, the function denoted by
checkproc is called and the shutdown is allowed if the function returns true. If allow
is false (zero), remote shutdown is disallowed.

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status.all.

rpc _ $not _in_call

rpc_$you_crashed

3-434 Subroutines

An internal error.

This error can occur if a server has crashed and restarted. A
client RPC runtime library sends the error to the server if the
client makes a remote procedure call before the server
crashes, then receives a response after the server restarts.

An internal protocol error.

Files
/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro(3ncs), rpc_shutdown(3ncs), rrpc_shutdown(3ncs)

Subroutines 3-435

rpc_bind (3ncs)

Name

Syntax

rpc_bind - allocate an RPC handle and set its binding to a server (client only)

#include <idl/c/rpc.h>

handle_t rpc_$bind(object, sockaddr, slength, status)
uuid_$t *object;
sockeC$addct * sockaddr;
unsigned long slength;
status_$t * status;

Arguments

object

sockaddr

slength

status

Description

The UUID of the object to be accessed. If there is no
specific object, specify uuid _ $oil.

The socket address of the server.

The length, in bytes, of sockaddr.

The completion status. If the completion status returned in
s tat us. a 11 is equal to status _ $ok , then the routine that
supplied it was successful.

The rpc _ $bind routine creates a fully bound RPC handle that identifies a
particular object and server. This routine is equivalent to an
rpc_$alloc_handle routine followed by an rpc_$set_binding routine.

Examples
The following statement binds the binop client to the specified object and socket
address. The loc parameter is the result of a previous call to
rpc_ $narne_to_sockaddr which converted the host name and port number to a
socket address.

rh = rpc_$bind (&uuid_$nil, &loc, llen, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status.all.

rpc_$caot_biod ... sock The RPC runtime library created a socket but was unable to
bind it to a socket address.

rpc _ $oot)o _call

rpc_$proto_error

3-436 Subroutines

An internal error.

An internal protocol error.

Files
/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

rpc_bind (3ncs)

See Also
intro(3ncs), rpc_clear_hinding(3ncs), rpc_clear_servechinding(3ncs),
rpc_seChinding (3ncs)

Subroutines 3-437

Name

Syntax

rpc_cleacbinding - unset the binding of an RPC handle to a host and server (client
only)

#include <idl/c/rpc.h>

void rpc_$c1eacbinding(handle, status)
handle_t handle;
status_$t * status;

Arguments

handle The RPC handle whose binding is being cleared.

status The completion status. If the completion status returned in status. all
is equal to status _ $ok , then the routine that supplied it was successful.

Description
The rpc _ $ clear_binding routine removes any association between an RPC
handle and a particular server and host, but it does not remove the association
between the handle and an object. This routine saves the RPC handle so that it can
be reused to access the same object, either by broadcasting or after resetting the
binding to another server.

A remote procedure call made using an unbound handle is broadcast to all Local
Location Brokers (LLBs) on the local network. If the call's interface and the object
identified by the handle are both registered with any LLB, that LLB forwards the
request to the registering server. The client RPC runtime library returns the first
response that it receives and binds the handle to the first server that responded.

The rpc_ $clear_binding routine is the inverse of the rpc_ $set_binding
routine.

Examples
Clear the binding represented in handle:

rpc_$clear_binding (handle, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

rpc $not in call - -- An internal error.

rpc $proto error - - An internal protocol error.

3-438 Subroutines

Files
lusr/include/idl/c/rpc.h
lusr/include/idl/rpc.idl

See Also
intro (3ncs), rpc_bind (3ncs), rpc_c1eacservecbinding(3ncs), rpc_secbinding(3ncs)

Subroutines 3-439

Name

Syntax

rpc3lear_servecbinding - unset the binding of an RPC handle to a server (client
only)

#include <idVc/rpc.h>

void rpc_$clear_servecbinding(handle, status)
handle_t handle;
status_$t *status;

Arguments

handle

status

Description

The RPC handle whose binding is being cleared.

The completion status. If the completion status returned in
status. all is equal to status_$ok ,then the routine that
supplied it was successful.

The rpc $clear server binding routine removes the association between an
RPC handle and a particular server (that is, a particular port number), but does not
remove the associations with an object and with a host (that is, a network address).
This call replaces a fully bound handle with a bound-to-host handle. A bound-to-host
handle identifies an object located on a particular host but does not identify a server
exporting an interface to the object.

If a client uses a bound-to-host handle to make a remote procedure call, the call is
sent to the Local Location Broker (LLB) forwarding port at the host identified by the
handle. If the call's interface and the object identified by the handle are both
registered with the host's LLB, the LLB forwards the request to the registering
server. When the client RPC runtime library receives a response, it binds the handle
to the server. Subsequent remote procedure calls that use this handle are then sent
directly to the bound server's port.

The rpc $clear server binding routine is useful for client error recovery
when a server dies.-The port that a server uses when it restarts is not necessarily the
same port that it used previously; therefore, the binding that the client was using may
not be correct. This routine enables the client to unbind from the dead server while
retaining the binding to the host. When the client sends a request, the binding is
automatically set to the server's new port.

Diagnostics
This section lists status codes for errors returned by this rp c _ $ routine in
status. all.

rpc _ $not)o _call

rpc_$proto_error

3-440 Subroutines

An internal error.

An internal protocol error.

Files
/usr/include/idl/rpc.idl
/usr/include/idl/c/rpc.h

See Also
intro(3ncs), rpc_hind(3ncs), rpc_cleachinding(3ncs), rpc_sechinding(3ncs)

Subroutines 3-441

Name

Syntax

rpc_dup_handle - make a copy of an RPC handle (client only)

#include <idVc/rpc.h>

handle_t rpc_$dup_handle(handle, status)
handle_t handle;
status_$t *status;

Arguments

handle The RPC handle to be copied.

status The completion status. If the completion status returned in s tat us. all
is equal to status _ $ok , then the routine that supplied it was successful.

Description

Files

The rpc_$dup_handle routine returns a copy of an existing RPC handle. Both
handles can then be used in the client program for concurrent multiple accesses to a
binding. Because all duplicates of a handle reference the same data, an
rpc $set binding, rpc $clear binding, or
rpc=)clear_server_bir1ding routine made on anyone duplicate affects all
duplicates. However, an RPC handle is not freed until rpc $free handle is
called on all copies of the handle. - -

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro(3ncs), rpc_aUoc_handle(3ncs), rpc_free_handle(3ncs)

3-442 Subroutines

Name

Syntax

rpcjree_handle - free an RPC handle (client only)

#include <idl/c/rpc.h>

void rpc_$free_handle(handle, status)
handle_t handle;
status_$t * status;

Arguments

handle The RPC handle to be freed.

status The completion status. If the completion status returned in status. all
is equal to status_$ok , then the routine that supplied it was successful.

Description
The rpc_$free_handle routine frees an RPC handle. This routine clears any
association between the handle and a server or an object and releases the resources
identified by the RPC handle. The client program cannot use a handle after it is
freed.

Examples
The following statement frees a handle:

rpc_$free_handle (handle, &status);

Diagnostics

Files

This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

rpc $not in call - -- An internal error.

rpc $proto error - - An internal protocol error.

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro (3ncs), rpc_alloc_handle(3ncs), rpc_dup_handle(3ncs)

Subroutines 3-443

rpc_inCLbinding (3ncs)

Name

Syntax

rpc_inq_binding - return the socket address represented by an RPC handle (client or
server)

#include <idVc/rpc.h>

void rpc_$inq_binding(handle, sockaddr, slength, status)
handle_t handle;
sockec$addr_t *sockaddr;
unsigned long *slength;
status_$t * status;

Arguments

handle

sockaddr

slength

status

Description

An RPC handle.

The socket address represented by handle.

The length, in bytes, of sockaddr.

The completion status. If the completion status returned in
status. all is equal to status_$ok, then the routine that
supplied it was successful.

The rpc _ $ in'L binding routine enables a client to determine the socket address,
and therefore the server, identified by an RPC handle. It is useful when a client uses
an unbound handle in a remote procedure call and wishes to determine the particular
server that responded to the call.

Examples
The Location Broker administrative tool, lb admin, uses the following statement
to determine the GLB that last responded to a lookup request:

rpc_$in~binding(lb_$handle, &global_broker_addr,
&global_broker_addr_len, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

An internal error.

rpc_$proto_error An internal protocol error.

rpc _ $unbound _handle

3-444 Subroutines

The handle is not bound and does not represent a particular
host address. Returned by rpc _ $ in'L binding.

Files
/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro(3ncs), rpc_hind(3ncs), rpc_sechinding(3ncs)

Subroutines 3-445

rpc_inCLobject (3nc$)

Name

Syntax

rpc_inq_object - return the object UUID represented by an RPC handle (client or
server)

#include <idl/c/rpc.h>

void rpc_$inq_object(handle, object, status)
handle_t handle;
uuid_$t *object;
status_$t * status;

Arguments

handle

object

status

An RPC handle.

The UUID of the object identified by handle.

The completion status. If the completion status returned in
s tat us. a 11 is equal to status _ $ok , then the routine that
supplied it was successful.

Description I
The rpc_$in<L.0bject routine enables a client or server to determine the
particular object that a handle represents.

If a server exports an interface through which clients can access several objects, it
can use rpc _ $ in<L. ob j ect to determine the object requested in a call. This
routine requires an RPC handle as input, so the server can make the call only if the
interface uses explicit handles (that is, if each operation in the interface has a handle
parameter). If the interface uses an implicit handle, the handle identifier is not passed
to the server.

Examples
A database server that manages multiple databases must determine the particular
database to be accessed whenever it receives a remote procedure call. Each manager
routine makes the following call; the routine then uses the returned UUID to identify
the database to be accessed:

rpc_$in~object (handle, &db_uuid, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

3-446 Subroutines

The requested interface is not known. It is not registered in
the server, the version number of the registered interface is
different from the version number specified in the request, or
the UUID in the request does not match the UUID of the
registered interface.

Files

rpc _ $not _in_call

rpc_$proto_error

An internal error.

An internal protocol error.

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro(3ncs)

Subroutines 3-447

rpc_listen (3ncs)

Name

Syntax

rpc_listen -listen for and handle remote procedure call (RPC) packets (server only)

#include <idl/c/rpc.h>

void rpc_$listen(max_calls, status)
unsigned long max_calls;
status_$t * status;

Arguments

max calls

status

Description

This value indicates the maximum number of calls that the server
is allowed to process concurrently. On ULTRIX systems, this
value should be 1; any other value is ignored and defaulted to one.

The completion status. If the completion status returned in
status. all is equal to status_$ok ,then the routine that
supplied it was successful.

The rpc_ $listen routine dispatches incoming remote procedure call requests to
manager procedures and returns the responses to the client. You must issue
rpc_$use_family or rpc_$use_family_wk before you use
rpc_ $listen. This routine normally does not return. A return from this routine
indicates either an irrecoverable error, or that an rpc shutdown call has been
issued. If status. all is equal to status_$ok ,the-assumption is that
rpc_$shutdown has occurred.

Examples
Listen for incoming remote procedure call requests.

rpc_$listen (1, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

rpc _ $not _in _call

rpc_$you_crashed

rpc_$proto_error

rpc _ $bad ykt

3-448 Subroutines

An internal error.

This error can occur if a server has crashed and restarted. A
client RPC runtime library sends the error to the server if the
client makes a remote procedure call before the server
crashes, then receives a response after the server restarts.

An internal protocol error.

The server or client has received an ill-formed packet.

Files
/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl
/usr/include/idl/c/rpc.h

See Also
intro(3ncs), rpc_shutdown(3ncs)

rpc_listen (3ncs)

Subroutines 3-449

Name

Syntax

rpcname_to_sockaddr - convert a host name and port number to a socket address
(client or server)

#include <idl/c/rpc.h>

void rpc_$name_to_sockaddr(name, nlength, port, family, sockaddr,
slength, status)

unsigned char name;
unsigned long nlength;
unsigned long port;
unsigned long family;
sockeC$addr_t *sockaddr;
unsigned long *slength;
status_$t *status;

Arguments

name

nlength

port

family

sockaddr

slength

status

3-450 Subroutines

A string that contains a host name and, optionally, a port and
an address family. The format is family:host [port], where
family: and [port] are optionaL If you specify afamily as
part of the name parameter, you must specify
socket_$unspec in the family parameter. Thefamily part of
the name parameter is ip; host is the host name; port is an
integer port number.

The number of characters in name.

The socket port number. This parameter should have the
value rpc_$unhound_port if you are not specifying a well
known port; in this case, the returned socket address will
specify the Local Location Broker (LLB) forwarding port at
host. If you specify the port number in the name parameter,
this parameter is ignored.

The address family to use for the socket address. This value
corresponds to the communications protocol used to access
the socket and determines how the sockaddr is expressed. If
you specify the address family in the name parameter, this
parameter must have the value socket_$unspec.

The socket address corresponding to name, port, and family.

The length, in bytes, of sockaddr.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successfuL

Description
The rpc_ $name_to_sockaddr routine provides the socket address for a socket,
given the host name, the port number, and the address family.

You can specify the socket address information either as one text string in the name
parameter or by passing each of the three elements as separate parameters(name,
port, andfamily); in the latter case, the name parameter should contain only the
hostname.

Diagnostics

Files

This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

rpc _ $not _in_call

rpc_$proto_error

An internal error.

An internal protocol error.

NOTE

This routine has been superseded by the socket_$from_name
routine.

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro (3ncs), rpc_sockaddcto _name(3ncs), socketjrom_name(3ncs)

Subroutines 3-451

rpc_register (3ncs)

Name

Syntax

rpc_register - register an interface (server only)

#include <idl/c/rpc.h>

void rpc_$register(ifspec, epv, status)
rpc_$iCspec_t *ifspec;
rpc_$epv _t epv;
status_$t * status;

Arguments

ifspec

epv

status

Description

The interface being registered.

The entry point vector (EPV) for the operations in the
interface. The EPV is always defined in the server stub that
is generated by the NIDL compiler from an interface
definition.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successful.

The rpc_$register routine registers an interface with the RPC runtime library.
After an interface is registered, the RPC runtime library will pass requests for that
interface to the server.

You can call rpc_$register several times with the same interface (for example,
from various subroutines of the same server), but each call must specify the same
EPV. Each registration increments a reference count for the registered interface; an
equal number of rpc_ $unregister routines are then required to unregister the
interface.

Examples
The following statement registers the bank interface with the bank server host's RPC
runtime library:

rpc_$register (&bank_$if_spec, bank_$server_epv, &status);

Diagnostics
This section lists status codes for errors returned by this rpc _ $ routine in
status. all.

3-452 Subroutines

The requested operation does not correspond to a valid
operation in the requested interface.

Files

rpc _ $not)n _call

rpc_$you_crashed

rpc $proto error - -
rpc _ $ilIegal_ register

rpc_register (3ncs)

The maximum number of interfaces is already registered
with the RPC runtime library; the server must unregister
some interface before it registers an additional interface.

An internal error.

This error can occur if a server has crashed and restarted. A
client RPC runtime library sends the error to the server if the
client makes a remote procedure call before the server
crashes, then receives a response after the server restarts.

An internal protocol error.

You are trying to register an interface that is already
registered and you are using an EPV different from the one
used when the interface was first registered. An interface
can be multiply registered, but you must use the same EPV
in each rpc_ $register routine.

The server or client has received an ill-formed packet.

/usr/include/idl/c/rpc.h
/usr/include/idl/rpc.idl

See Also
intro(3ncs), rpc_register_mgr(3ncs), rpc_registecobject(3ncs), rpc_unregister(3ncs)

Subroutines 3-453

Name

Syntax

rpc_registecmgr - register a manager (server only)

#include <idVc/rpc.h>

void rpc_$registecmgr(type, ijspec, sepv, mepv, status)
uuid_$t *type;
rpc_$iCspect *ijspec;
rpc_$generic_epv _t sepv;
rpc_$mgr_epv _t mepv;
status_$t * status;

Arguments

type

ijspec

sepv

mepv

status

Description

The UUID of the type being registered.

The interface being registered.

The generic EPV, a vector of pointers to server stub
procedures.

The manager EPV, a vector of pointers to manager
procedures.

The completion status. If the completion status returned in
status. all is equal to status_$ok , then the routine that
supplied it was successful.

The rpc_ $register_mgr routine registers the set of manager procedures that
implement a specified interface for a specified type.

Servers can invoke this routine several times with the same interface (ijspec) and
generic EPV (sepv) but with a different object type (type) and manager EPV (mepv)
on each invocation. This technique allows a server to export several implementations
of the same interface.

Servers that export several versions of the same interface (but not different
implementations for different types) must also use rpc $register mgr, not
rpc_ $register. Such servers should supply uuid':::-$nil as the type to
rpc_$register_mgr.

If a server uses rpc_ $register_mgr to register a manager for a specific interface
and a specific type that is not nil, the server must use rpc $register object
~~~an~~ --

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

3-454 Subroutines 

The requested operation does not correspond to a valid 
operation in the requested interface. 



Files 

rpc $too many ifs - - -

rpc_$not_in_call 

rpc_$you_crasbed 

rpc_$proto_error 

rpc _ $illegal_ register 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the UUID in the request does not match the UUID of the 
registered interface. 

The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

An internal error. 

This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

An internal protocol error. 

You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be multiply registered, but you must use the same EPV 
in each rpc_ $register routine. 

/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro (3ncs), rpc_register(3ncs), rpc_registecobject(3ncs), rpc_unregister(3ncs) 

Subroutines 3-455 



rpc_register_object (3ncs) 

Name 

Syntax 

rpc_registecobject - register an object (server only) 

#include <idl/c/rpc.h> 

void rpc_$registecobject(object, type, status) 
uuid_$t *object; 
uuid_$t *type; 
status_$t *status; 

Arguments 

object 

type 

The UUID of the object being registered. 

The UUID of the type of the object. 

status The completion status. Ifthe completion status returned in status. all 
is equal to status _ $ok , then the routine that supplied it was successful. 

Description 
The rpc_$register_object routine declares that a server supports operations 
on a particular object and declares the type of that object. 

A server must register objects with rpc_ $register_object only if it registers 
generic interfaces with rpc $register mgr. When a server receives a call, the 
RPC runtime library searches for the objectidentified in the call (that is the object 
that the client specified in the handle) among the objects registered by the server. If 
the object is found, the type of the object determines which of the manager EPVs 
should be used to operate on the object. 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc $unk if - -

rpc $not in call - --
rpc $proto error - -

3-456 Subroutines 

The requested operation does not correspond to a valid 
operation in the requested interface. 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the UUID in the request does not match the UUID of the 
registered interface. 

The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

An internal error. 

An internal protocol error. 



Files 

rpc_register_object (3ncs) 

rpc_$illegal]egister You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be mUltiply registered, but you must use the same EPV 
in each rpc_$register routine. 

/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs), rpc_register(3ncs), rpc_register_mgr(3ncs), rpc_unregister(3ncs) 

Subroutines 3-457 



Name 

Syntax 

rpc_secasync_ack - set or clear asynchronous-acknowledgement mode (client only) 

#include <idVc/rpc.h> 

void rpc_$secasync_ack (state) 
unsigned long state; 

Arguments 

state 

Description 

If "true" (nonzero), asynchronous-acknowledgement mode is 
set. If "false" (zero), synchronous-acknowledgement mode 
is set. 

The rpc_ $set_async_ack call sets or clears asynchronous-acknowledgement 
mode in a client. 

Synchronous-acknowledgement mode is the default. Calling 
rpc $set async ack with a nonzero value for state sets asynchronous
acknowledgement mode. Calling it with a zero value for state sets synchronous
acknowledgement mode. 

After a client makes a remote procedure call and receives a reply from a server, the 
RPC runtime library at the client acknowledges its receipt of the reply. This "reply 
acknowledgement" can occur either synchronously (before the runtime library returns 
to the caller) or asynchronously (after the runtime library returns to the caller). 

It is generally good to allow asynchronous reply acknowledgements. Asynchronous
acknowledgement mode can save the client runtime library from making explicit 
reply acknowledgements, because after a client receives a reply, it may shortly issue 
another call that can act as an implicit acknowledgement. 

Asynchronous-acknowledgement mode requires that an "alarm" be set to go off 
sometime after the remote procedure call returns. Unfortunately, setting the alarm 
can cause two problems: 

3-458 Subroutines 

1 There may be only one alarm that can be set, and the application 
itself may be trying to use it. 

2 If, at the time the alarm goes off, the application is blocked in a 
system call that is doing I/O to a "slow device" (such as a terminal), 
the system call will return an error (with the EINTR ermo); the 
application may not be coded to expect this error. If neither of these 
problems exists, the application should set asynchronous
acknowledgement mode to get greater efficiency. 

( 



Files 
/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs) 

Subroutines 3-459 



Name 

Syntax 

rpc_seCbinding - bind an RPC handle to a server (client only) 

#include <idVc/rpc.h> 

void rpc_$seCbinding(handle, sockaddr, slength, status) 
handle_t handle; 
sockeC$addct * sockaddr; 
unsigned long slength; 
status_$t *status; 

Arguments 

handle 

sockaddr 

slength 

status 

Description 

An RPC handle. 

The socket address of the server with which the handle is 
being associated. 

The length, in bytes, of sockaddr. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The rpc _ $ set _ binding routine sets the binding of an RPC handle to the 
specified server. The handle then identifies a specific object at a specific server. Any 
subsequent remote procedure calls that a client makes using the handle are sent to 
this destination. 

You can use this routine either to set the binding in an unbound handle or to replace 
the existing binding in a fully bound or bound-to-host handle. 

Examples 
The following statement sets the binding on the handle h to the first server in the 
lbresul ts array, which was returned by a previous Location Broker lookup 
routine,lb_lookup_interface: 

rpc_$set_binding (h, &lbresults[O] .saddr, lbresults[O].saddr_len, 
&status); 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc_$cant_bind_sock The RPC runtime library created a socket but was unable to 
bind it to a socket address. 

rpc _ $not _in_call 

rpc_$proto_error 

3-460 Subroutines 

An internal error. 

An internal protocol error. 



Files 
/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro (3ncs), rpc_aUoc_handle(3ncs), rpc_c1eacbinding(3ncs), 
rpc31ear_server_binding(3ncs) 

Subroutines 3-461 



Name 

Syntax 

rpc_secfaulcmode - set the fault-handling mode for a server (server only) 

#include <idl/c/rpc.h> 

unsigned long rpc_$secfaulcmode(state) 
unsigned long state; 

Arguments 

state If 'true' (not zero), the server exits when a fault occurs. If 'false' (zero), 
the server reflects faults back to the client. 

Description 
The rpc_ $set_faul t_mode function controls the handling of faults that occur in 
user server routines. 

In the default mode, the server reflects faults back to the client and continues 
processing. Calling rpc_ $set_faul t_mode with value other than zero for state 
sets, the fault-handling mode so that the server sends an rpc_$comm_failure fault 
back to the client and exits. Calling rpc_$set_fault_mode with state equal to 
zero resets the fault-handling mode to the default. 

This function returns the previous state of the fault-handling mode. 

Diagnostics 

Files 

This section lists status codes for errors returned by this rpc _ $ routine. 

rpc _ Soot Jo _call An internal error. 

rpc $proto error - - An internal protocol error. 

/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs) 

3-462 Subroutines 



Name 

Syntax 

rpc_seCshorCtimeout - set or clear short-timeout mode (client only) 

#include <idl/c/rpc.h> 

unsigned long rpc_$secshort_timeout(handle, state, status) 
handle_t handle; 
unsigned long state; 
status_$t *status; 

Arguments 

handle An RPC handle. 

on If 'true' (not zero), short-timeout mode is set on handle. If 'false' (zero), 
standard timeouts are set. 

status The completion status. If the completion status returned in status. all 
is equal to status _ $ok , then the routine that supplied it was successful. 

Description 
The rpc $set short timeout routine sets or clears short-timeout mode on a 
handle. if a client uses a handle in short-timeout mode to make a remote procedure 
call, but the server does not respond, the call fails quickly. As soon as the server 
responds, standard timeouts take effect and apply for the remainder of the call. 

Calling rpc_$set_short_timeout with a value other than zero for state sets 
short-timeout mode. Calling it with state equal to zero, sets standard timeouts. 
Standard timeouts are the default. 

This routine returns the previous setting of the timeout mode in s tat us. all. 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc $not in call - -- An internal error. 

An internal protocol error. 

Files 
/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs) 

Subroutines 3-463 



rpc_shutdown (3ncs) 

Name 

Syntax 

rpc_shutdown - shut down a server (server only) 

#include <idl/c/rpc.h> 

void rpc_$shutdown(status) 
status_$t * status; 

Arguments 

status The completion status. If the completion status returned in status. all 
is equal to status_$ok , then the routine that supplied it was successful. 

Description 
The rpc $shutdown routine shuts down a server. When this routine is executed, 
the serverstops processing incoming calls and rpc $listen returns. 

If rpc_ $shutdown is called from within a remote procedure, that procedure 
completes, and the server shuts down after replying to the caller. 

Diagnostics 

Files 

This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc _ $comm Jailure The call could not be completed due to a communication 
problem. 

rpc_$notJn_call An internal error. 

rpc_$proto_error An internal protocol error. 

/usr/include/idl/c/rpc.h 
lusr/include/idl/rpc.idl 

See Also 
intro(3ncs), rpc_allow_remote_shutdown(3ncs), rpc_listen(3ncs), 
rrpc_shutdown (3ncs) 

3-464 Subroutines 



Name 

Syntax 

rpc_sockaddr_to_name - convert a socket address to a host name and port number 
(client or server) 

#include <idl/c/rpc.h> 

void rpc_$sockaddcto_name(sockaddr, slength, name, nlength, 
port, status) 

sockec$addct *sockaddr; 
unsigned long slength; 
unsigned char name; 
unsigned long *nlength; 
unsigned long *port; 
status_$t * status; 

Arguments 

sockaddr 

slength 

name 

nlength 

port 

status 

Description 

A socket address. 

The length, in bytes, of sockaddr. 

A string that contains the host name and the address family. 
The format isfamily:host [port] where family is ip. 

On input, nlength is the length of the name buffer. On 
output, nlength is the number of characters returned in the 
name parameter. 

The socket port number. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The rpc_$sockaddr_to_name routine provides the address family, the host 
name, and the port number identified by the specified socket address. 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc _ $not _in_call 

rpc_$proto_error 

An internal error. 

An internal protocol error. 

NOTE 

This routine has been superseded by the socket_ $to_name routine. 

Subroutines 3-465 



rpc_sockaddr_to_name (3ncs) 

Files 
/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs), rpc_name_to_sockaddr(3ncs), sockecto_name(3ncs) 

3-466 Subroutines 



Name 

Syntax 

rpc_unregister - unregister an interface (server only) 

#include <idl/c/rpc.h> 

void rpc_$unregister(ifspec, status) 
rpc_$iCspec_t *ifspec; 
status_$t *status; 

rpc_unregister (3ncs) 

Arguments 

ifspec 

status 

Description 

An rpc_$if_spec_t. An interface specifier obtained from a 
previous RPC register call. The interface being unregistered. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok ,then the routine that 
supplied it was successful. 

The rpc_ $unregister routine unregisters an interface that the server previously 
registered with the RPC runtime library. After an interface is unregistered, the RPC 
runtime library will not pass requests for that interface to the server. 

If a server uses several rpc $register or rpc $register mgr routines to 
register an interface more than once, then it must can rpc $unr~gister an equal 
number of times to unregister the interface. -

Examples 
The following statement unregisters a matrix arithmetic interface: 

rpc_$unregister (&matrix_$if_spec, &status); 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc _ $unk _ if 

rpc $not in call - --

The requested operation does not correspond to a valid 
operation in the requested interface. 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the UUID in the request does not match the UUID of the 
registered interface. 

An internal error. 

An internal protocol error. 

Subroutines 3-467 



rpc_unregister (3ncs) 

Files 
/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro (3ncs), rpc_register(3ncs), rpc_registecmgr(3ncs), rpc_registecobject(3ncs) 

3-468 Subroutines 



Name 

Syntax 

rpc_use_family - create a socket of a specified address family for a remote procedure 
call (RPC) server (server only) 

#include <idVc/rpc.h> 

void rpc_$usejamily(family, sockaddr, slength, status) 
unsigned long family; 
sockec$addct * sockaddr; 
unsigned long *slength; 
status_$t * status; 

Arguments 

family 

sockaddr 

slength 

status 

Description 

The address family of the socket to be created. The value must be 
one of socket $internet or socket $unspec. - -
The socket address of the socket on which the server will listen. 

The length, in bytes, of sockaddr. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The rpc_ $use_family routine creates a socket for a server without specifying its 
port number. The RPC runtime software assigns a port number. If a server must 
listen on a particular well-known port, use rpc $use family wk to create the 
socket. - - -

A server listens on one socket per address family, regardless of how many interfaces 
that it exports. Therefore, servers should make this call once per supported address 
family. 

Examples 
The following statement creates a server's socket: 

rpc_$use_family (family, &saddr, &slen, &status); 

Diagnostics 
This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc $cant create sock 
- - - The RPC runtime library was unable to create a socket. 

rpc _ $not In _call 

rpc_$proto_error 

An internal error. 

An internal protocol error. 

Subroutines 3-469 



Files 

rpc _ $too _ manLsockets 
The server is trying to use more than the maximum number 
of sockets that is allowed; it has called 
rpc_$use_family or rpc_$use_family_wk too 
many times. 

rpc _ $addr In _use The address and port specified in an 
rpc $use family wk routine are already in use. This 
is caused by-multiple calls to rpc_$use_family_wk 
with the same well-known port. 

/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs), rpc_usejamily_wk(3ncs) 

3-470 Subroutines 



Name 

Syntax 

rpc_usejamily_wk - create a socket with a well-known port for a remote procedure 
call (RPC) server (server only) 

#include <idl/c/rpc.h> 

void rpc_$usejamily_wk(family, ifspec, sockaddr, slength, status) 
unsigned long family; 
rpc_$iCspec_t *ifspec; 
sockeC$addct * sockaddr; 
unsigned long * slength; 
status_$t * status; 

Arguments 

family 

ifspec 

sockaddr 

slength 

status 

Description 

The address family of the socket to be created. This value 
corresponds to the communications protocol used to access the 
socket and determines how the sockaddr is expressed. The value 
must be one of socket $unspec or socket $internet. - -
The interface that will be registered by the server. Typically, this 
parameter is the interface if_spec generated by the NIDL compiler 
from the interface definition; the well-known port is specified as an 
interface attribute. 

The socket address of the socket on which the server will listen. 

The length, in bytes, of sockaddr. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The rpc $use family wk routine creates a socket that uses the port specified 
through the if spec parameter. Use this routine to create a socket only if a server 
must listen on-a particular well-known port. Otherwise, use rp c _ $ use _ f ami 1 y . 

A server listens on one socket per address family, regardless of how many interfaces 
that it exports. Therefore, servers that use well-known ports should make this call 
once per supported address family. 

Examples 
The following statement creates the well-known socket identified by sockaddr for 
an array processor server: 

rpc_$use_family_wk (socket_$internet, &matrix$if_spec, 
&sockaddr, &slen, &status); 

Subroutines 3-471 



rpc_use_family_wk (3ncs) 

Diagnostics 

Files 

This section lists status codes for errors returned by this rpc _ $ routine in 
status. all. 

rpc Scant create sock 
- - - The RPC runtime library was unable to create a socket. 

rpc $not in call - -- An internal error. 

rpc_$proto_error An internal protocol error. 

rpc _ $too _many_sockets 

rpc _ $bad ykt 

The server is trying to use more than the maximum number 
of sockets that is allowed; it has called 
rpc_$use_family or rpc_$use_family_wk too 
many times. 

The server or client has received an ill-formed packet. 

The address and port specified in an 
rpc $use family wk routine are already in use. This 
is caused by-multiple calls to rpc_$use_family_wk 
with the same well-known port. 

/usr/include/idl/c/rpc.h 
/usr/include/idl/rpc.idl 

See Also 
intro(3ncs), rpc_use_family(3ncs) 

3-472 Subroutines 



Name 

Syntax 

rrpc_in<t-interfaces (3ncs) 

rrpc_inq_interfaces - obtain a list of the interfaces that a server exports 

#include <idVc/rrpc.h> 

void rrpc_$inq_interfaces(handle, max _ifs, ifs, I_if, status) 
handle_t handle; 
unsigned long max _ifs; 
rrpc_$interface_ vec_t ifs []; 
unsigned long *1 if; 
status_$t * status; 

Arguments 

status 

An RPC handle. 

The maximum number of elements in the array of interface 
specifiers. 

An array of rpc_$if_spec_t. 

The index of the last element in the returned array. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

Description 

Files 

The rrpc_ $inCLinterfaces routine returns an array of RPC interface 
specifiers. 

/usr/include/idl/c/rrpc.h 
/usr/include/idl/rrpc.idl 

See Also 
intro(3ncs) 

Subroutines 3-473 



rrpc_inCLstats (3ncs) 

Name 

Syntax 

rrpc_inq_stats - obtain statistics about a server 

#include <idl/c/rrpc.h> 

void rrpc_$inq_stats(handle, max_stats, stats, I_stat, status) 
handle_t handle; 
unsigned long max stats; 
rrpc_$staC vec_t stats; 
unsigned long *I_stat; 
status_$t * status; 

Arguments 

handle A remote procedure call (RPC) handle. 

max stats The maximum number of elements in the array of statistics. 

stats An array of 32-bit integers representing statistics about the server. A set 
of rrpc_$sv constants defines indices for the elements in this array. The 
following list describes the statistic indexed by each rrpc _ $sv constant: 

I stat 

status 

Description 

rrpc _ $sv _calls_in 
The number of calls processed by the server. 

rrpc_$svJcvd 
The number of packets received by the server. 

rrpc $sv sent 
- - The number of packets sent by the server. 

rrpc $sv calls out 
- - The number of calls made by the server. 

rrpc $sv frag resends 
- - The number of fragments sent by the server that 

duplicated previous sends. 

rrpc $sv dup frags rcvd 
- - The number of duplicate fragments received by the server. 

The index of the last element in the returned array. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok ,then the routine that supplied it 
was successful. 

The rrpc_ $inCLstats routine returns an array of integer statistics about a server. 

3-474 Subroutines 



Files 
/usr/indlude/idl/c/rrpc.h 
/usr/include/idl/rrpc.idl 

See Also 
intro(3ncs) 

rrpc_inCLstats (3ncs) 

Subroutines 3-475 



rrpc_shutdown (3ncs) 

Name 

Syntax 

rrpc_shutdown - shut down a server 

#include <idl/c/rrpc.h> 

void rrpc_$shutdown(handle, status) 
handle_t handle; 
status_$t * status; 

Arguments 

handle 

status 

A remote procedure call (RPC) handle. 

The completion status. If the completion status returned in status. all 
is equal to status _ $ok , then the routine that supplied it was successful. 

Description 
The rrpc $ shutdown routine shuts down a server, if the server allows it. A 
server can use the rpc $allow remote shutdown routine to allow or disallow 
remote shutdown. - - -

Diagnostics 

Files 

This section lists status codes for errors returned by this r rp c _ $ routine in 
status. all. 

rrpc $shutdown not allowd 
- You send an rrpc_shutdown request to a server that has not issued an 

rpc_allow_remote_shutdown call. 

/usr/include/idl/c/rrpc.h 
/usr/include/idl/rrpc.idl 

See Also 
intro(3ncs), rpc_allow Jemote_shutdown(3ncs), rpc_shutdown(3ncs) 

3-476 Subroutines 



Name 

Syntax 

socket_equal (3ncs ) 

sockecequal - compare two socket addresses 

#include <idllc/socket.h> 

boolean sockeC$equal(sockaddr1, s1length, sockaddr2, s2length, flags, 
status) 

sockeC$addr_t *sockaddrl; 
unsigned long s1length; 
sockeC$addct *sockaddr2; 
unsigned long s2length; 
unsigned long flags; 
status_$t *status; 

Arguments 

sockaddr1 

s1length 

sockaddr2 

s2length 

flags 

status 

Description 

A socket address. The socket address is the structure 
returned by either rpc_use_family or 
rpc_use_family_wk. 

The length, in bytes, of sockaddr 1. 

A socket address. The socket address is the structure 
returned by either rpc_use_family or 
rpc_use_family_wk. 

The length, in bytes, of sockaddr2. 

The logical OR of values selected from the following: 

socket _ $e<L hostid Indicates that the host IDs are to be 
compared. 

socket _ $e<L netaddr Indicates that the network addresses 
are to be compared. 

socket _ $e<Lport Indicates that the port numbers are 
to be compared. 

socket _ $e<L network Indicates that the network IDs are to 
be compared. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The socket _ $equal routine compares two socket addresses. The flags parameter 
determines which fields of the socket addresses are compared. The call returns 'true' 
(not zero) if all of the fields compared are equal, 'false' (zero) if not. 

Subroutines 3-477 



socket_Qqual (3ncs) 

Examples 

Files 

The following routine compares the network and host IDs in the socket addresses 
sockaddrl and sockaddr2: 

if (socket_$equal (&sockaddrl, sllength, &sockaddr2, s2length, 
socket_$e~network I socket_$e~hostid, &status)) 

pr~ntf ("sockaddrs have equal network and host IDs\n"); 

/usr/include/id~/c/socket.h 
/u~r/include/idl/socket.idl 

See Also 
intro(3ncs} 

3-478 Subroutines 



Name 

Syntax 

sockecfamily jrom_name - convert an address family name to an integer 

#include <idl/c/socket.h> 

unsigned long sockeC$family_from_name(name, nlength, status) 
sockeC$string_t name; 
unsigned long nlength; 
status_$t *status; 

Arguments 

name 

nlength 

status 

The textual name of an address family. Currently, only ip is 
supported. 

The length, in bytes, of name. 

The completion status. If the completion status returned in 
s tat us. a 11 is equal to status _ $ok , then the routine that 
supplied it was successful. 

Description 
The socket_$family_from_name routine returns the integer representation of 
the address family specified in the text string name. 

Examples 

Files 

The server program for the banks example, /usr/examples/banks/bankd. c 
accepts a textual family name as its first argument. The program uses the following 
socket_ $family _from_name routine to convert this name to the corresponding 
integer representation: 

family = socket_$family_from_name 
(argv[l], (long)strlen(argv[l]), &status); 

/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

See Also 
intro (3ncs), sockeCfamily _to_name(3ncs), sockecfrom_name(3ncs), 
sockecto_name(3ncs) 

Subroutines 3-479 



Name 

Syntax 

sockecfamily_to_name - convert an integer address family to a textual name 

#include <idl/c/socket.h> 

void sockeC$family_to_name(family, name, nlength, status) 
unsigned long family; 
sockeC$string_t name; 
unsigned long *nlength; 
status_$t * status; 

Arguments 

family 

name 

nlength 

status 

Description 

The integer representation of an address family. 

The textual name off amity. Currently, only ip is supported. 

On input, the maximum length, in bytes, of the name to be 
returned. On output, the actual length of the returned name. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

The socket _ $ f ami I y _ to _name routine converts the integer representation of an 
address family to a textual name for the family. 

Files 
/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

See Also 
intro(3ncs) 

3-480 Subroutines 



Name 

Syntax 

sockeCfrom_name - convert a name and port number to a socket address 

#include <idl/c/socket.h> 

void sockeC$from_name(family, name, nlength, port, sockaddr, slength, 
status) 

unsigned long family; 
sockeC$strin~t name; 
unsigned long nlength; 
unsigned long port; 
sockeC$addct *sockaddr; 
unsigned long * slength; 
status_$t * status; 

Arguments 

family 

name 

The integer representation of an address family. Value can be 
socket _ $internet or socket _ $unspec If the family parameter is 
socket _ $unspec, then the name parameter is scanned for a prefix of 
family: (for example, ip:). 

A string in the format family: host [port], wherefamily:, host, and [port] 
are all optional. 

The family is an address family. The only valid family is ip. If you 
specify afamily as part of the name parameter, you must specify 
socket $unspec in the family parameter. 

The host is a host name. A leading number sign (#) can be used to 
indicate that the host name is in the standard numeric form (for example, 
#192.9.8.7). If host is omitted, the local host name is used. 

The port is a port number. If you specify a port as part of the name 
parameter, the port parameter is ignored. 

nlength The length, in bytes, of name. 

port A port number. If you specify a port number in the name parameter, this 
parameter is ignored. 

sockaddr A socket address. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in status. all 
is equal to status _ $ok , then the routine that supplied it was successful. 

Description 
The socket_$from_name routine converts a textual address family, host name, 
and port number to a socket address. The address family and the port number can be 
either specified as separate parameters or included in the name parameter. 

Subroutines 3-481 



socket_from_name (3ncs) 

Files 
/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

See Also 
intro (3ncs), sockecfamily _from_name (3ncs ), sockeCto _name(3ncs) 

3-482 Subroutines 



Name 

Syntax 

sockecto_name - convert a socket address to a name and port number 

#inc1ude <idl/c/socket.h> 

void sockeC$to_name(sockaddr, slength, name, nlength, port, status) 
sockeC$addct * sockaddr; 
unsigned long slength; 
sockeC$string_t name; 
unsigned long *nlength; 
unsigned long *port; 
status_$t * status; 

Arguments 

sockaddr 

slength 

name 

nlength 

port 

status 

A socket address. The socket address is the structure 
returned by either rpc $use family or 
rpc_$use_family~k. -

The length, in bytes, of sockaddr. 

A string in the formatfamily:host{portJ, wherefamity is the 
address family and host is the host name; host may be in the 
standard numeric form (for example, #192.1.2.3) if a textual 
host name cannot be obtained. Currently, only ip is 
supported for family. 

On input, the maximum length, in bytes, of the name to be 
returned. On output, the actual length of the name returned. 

The port number. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok , then the routine that 
supplied it was successful. 

Description 

files 

The socket $to name routine converts a socket address to a textual address 
family, host name, and port number. 

/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

See Also 
intro(3ncs), sockecfamily _to_name(3ncs), sockecfrom_name(3ncs), 
sockecto_numeric_name(3ncs) 

Subroutines 3-483 



Name 

Syntax 

sockecto_numeric_name - convert a socket address to a numeric name and port 
number 

#include <idVc/socket.h> 

void sockeC$to_numeric_name(sockaddr, slength, name, nlength, port, 
status 

sockec$addr_t * sockaddr; 
unsigned long slength; 
sockeC$string_t name; 
unsigned long *nlength; 
unsigned long *port; 
status_$t * status; 

Arguments 

sockaddr 

slength 

name 

nlength 

port 

status 

A socket address. The socket address is the structure 
returned by either rpc_ $use_family or 
rpc_$use_family_wk. 

The length, in bytes, of sockaddr. 

A string in the formatfamily:host[portl, where family is the 
address family and host is the host name in the standard 
numeric form (for example, #192.7.8.9 for an IP address). 
Currently only ip is supported for family. 

On input, the maximum length, in bytes, of the name to be 
returned. (error if less than size of "nnnnn.nnnn"). On 
output, the actual length of the name returned. 

The port number. 

The completion status. If the completion status returned in 
s tat us. a 11 is equal to status _ $ok , then the routine that 
supplied it was successfuL 

Description 

Files 

The socket $to numeric name routine converts a socket address to a textual 
address familY, a numeric host name, and a port number. 

/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

3-484 Subroutines 



See Also 
intro (3ncs), sockeCfamily _to_name (3ncs ), socketjrom_name(3ncs), 
sockeCto_name(3ncs) 

Subroutines 3-485 



Name 

Syntax 

sockeC valid_families - obtain a list of valid address families 

#include <idl/c/socket.h> 

void sockec$valid_families (max Jamilies, families, status) 
unsigned long *max Jamilies; 
sockeC$addcfamily _t families[ ]; 
status_$t *status; 

Arguments 

max Jamilies 

families[ J 

status 

The maximum number of families that can be returned. 

An array of socket_$addr_family_t. Possible values for 
this type are enumerated in 
/usr/include/idl/nbase. idl. Currently, only ip 
is supported for family. 

The completion status. This variable is set if the families[ J 
array is not long enough to hold all the valid families. If the 
completion status returned in status. all is equal to 
status _ $ok , then the routine that supplied it was successful. 

Description 
The socket $valid families routine returns a list of the address families that 
are valid on the calling hOst. 

Examples 

Files 

The following routine returns the valid address family: 

socket_$va1id_fami1ies (1, &fami1ies, $status); 

/usr/include/idl/socket.idl 
/usr/include/idl/c/socket.h 

See Also 
intro(3ncs), sockeC validjamily(3ncs) 

3-486 Subroutines 



Name 

Syntax 

sockec valid_family - check whether an address family is valid 

#inc1ude <idVc/socket.h> 

boolean sockeC$valid_family(family, status) 
unsigned long family; 
fBstatus_$t *status; 

Arguments 

family 

status 

The integer representation of an address family. 

The completion status. If the completion status returned in 
status. all is equal to status_$ok ,then the routine that 
supplied it was successful. 

Description 
The socket_$valid_family routine returns 'true' if the specified address 
family is valid for the calling host, 'false' if not valid. 

Examples 

Files 

The following routine checks whether socket_$internet is a valid address family: 

internetvalid = socket_$valid_family(socket_$internet, &status); 

lusr/include/idl/socket.idl 
lusr/include/idl/c/socket.h 

See Also 
intro (3ncs), sockec valid_families (3ncs) 

Subroutines 3-487 



uuid_decode (3ncs) 

Name 

Syntax 

uuid_decode - convert a character-string representation of a UUID into a UUID 
structure 

#include <idl/c/uuid.h> 

void uuid_$decode(s, uuid, status) 
uuid_$strin~tJ s; 
uuid_$t *uuid; 
status_$t *status; 

Arguments 

s 

uuid 

status 

The character-string representation of a UUID. 

The UUID that corresponds to s. 

The completion status. If the completion status returned in status. all 
is equal to status _ $ok , then the routine that supplied it was successful. 

Description 
The u u i d _ $ de c ode routine returns the UUID corresponding to a valid character
string representation of a UUID. 

Examples 

Files 

The following routine returns as foo_uuid the UUID corresponding to the character
string representation in foo_uuidJep: 
uuid_$decode (foo_uuid_rep, &foo_uuid, &status); 

/usr/include/idl/uuid.idl 
/usr/include/idl/c/uuid.h 

See Also 
intro(3ncs), uuid_encode(3ncs) 

3-488 Subroutines 



Name 

Syntax 

uuid_encode(3ncs) 

uuid_encode - convert a uuro into its character-string representation 

#include <idVc/uuid.h> 

void uuid_$encode(uuid, s) 
uuid_$t *uuid; 
uuid_$strin~t s; 

Arguments 

uuid A uuro. 
s The character-string representation of uuid. 

Description 
The uuid _ $encode routine returns the character-string representation of a UUIO. 

Examples 

Files 

The following routine returns as foo _ uuid Jep the character-string representation for 
the uuro foo _ uuid: 

/usr/include/idl/uuid.idl 
/usr/include/idl/c/uuid.h 

See Also 
intro(3ncs), uuid_decode(3ncs) 

Subroutines 3-489 



uuid_equal (3ncs) 

Name 

Syntax 

uuid_equal- compare two UUIDs 

#include <idVc/uuid.h> 

boolean uuid_$equal(ul, u2) 
uuid_$t *ul; 
uuid_$t *u2; 

Arguments 

ul A UUID. 

u2 Another UUID. 

Description 
The uuid_ $encode routine compares the UUIDs ul and u2. It returns 'true' if 
they are equal, 'false' ifthey are not. 

Examples 

Files 

The following code compares the UUIDs bar _ uuid and foo _ uuid: 

if (uuid $equal (&bar uuid, &foo uuid)) 
printf ("bar and foo UUIDs are equal\n"); 

else 
printf ("bar and foo UUIDs are not equal\n"); 

/usr/include/idl/uuid.idl 
/usr/include/idl/c/uuid.h 

See Also 
intro(3ncs) 

3-490 Subroutines 



Name 

Syntax 

uuid~en - generate a new UUID 

#include <idVc/uuid.h> 

void uuid_$gen(uuid) 
uuid_$t *uuid; 

Arguments 

uuid A pointer to a UUID structure to be filled in. 

Description 

uuid_gen (3ncs) 

The uuid $gen routine returns a new UUID. Typically used when creating a new 
remote apPlication. 

Examples 

Files 

The following routine returns as new _ uuid a new UUID: 

uuid_$gen (&new_uuid); 

/usr/include/idl/uuid.idl 
/usr/include/idl/c/uuid.h 

See Also 
intro(3ncs) 

Subroutines 3-491 





Standard I/O Routines (3s) 

Insert tabbed divider here. 
Then discard this sheet. 





Name 

Syntax 

stdio - standard buffered input/output package 

#include <stdio.h> 

FILE *stdin; 
FILE *stdout; 
FILE *stderr; 

intra (3s) 

Description 
The functions described in section 3s constitute a user-level buffering scheme. The 
in-line macros getc and putc(3s) handle characters quickly. The higher level 
routines gets, fgets, scanf, fscanf, fread, puts, fputs, printf, 
fprintf, fwrite all use getc and putc; they can be freely intermixed. 

A file with associated buffering is called a stream, and is declared to be a pointer to a 
defined type FILE. The fopen(3s) subroutine creates certain descriptive data for a 
stream and returns a pointer to designate the stream in all further transactions. There 
are three normally open streams with constant pointers declared in the include file 
and associated with the standard open files: 

stdin standard input file 
stdout standard output file 
stderr standard error file 

A constant 'pointer' NULL (0) designates no stream at all. 

An integer constant EOF (-1) is returned upon end of file or error by integer 
functions that deal with streams. 

Any routine that uses the standard input/output package must include the header file 
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in 
sections labeled 3S are declared in the include file and need no further declaration. 
The constants, and the following 'functions' are implemented as macros; 
redeclaration of these names is perilous: getc, get char , putc, putchar, 
feof, ferror, fileno. 

VAX Only 

On VAX machines, the GFLOAT version of libe is used when you use 
the cc(l) command with the -Mg option, or you use the Id(1) 
command with the -leg option. The GFLOAT version of libe must be 
used with modules compiled with cc(l) using the -Mg option. 

Also note that neither the compiler nor the linker Id(1) can detect when 
mixed double floating point types are used, and the program may 
produce erroneous results if this occurs on VAX machines. 

Subroutines 3-493 



intro(3s) 

System V Compatibility 
This library contains System V compatibility features that are available to general 
UL TRIX programs. For a discussion of how these features are documented, and how 
to specify that the System V environment is to be used in compiling and linking your 
programs, see intro(3). 

Diagnostics 

Files 

The value EOF is returned uniformly to indicate that a FILE pointer has not been 
initialized with fopen, input (output) has been attempted on an output (input) 
stream, or a FILE pointer designates corrupt or otherwise unintelligible FILE data. 

For purposes of efficiency, this implementation of the standard library has been 
changed to line buffer output to a terminal by default and attempts to do this 
transparently by flushing the output whenever a read(2) from the standard input is 
necessary. This is almost always transparent, but may cause confusion or 
malfunctioning of programs which use standard I/O routines but use read(2) 
themselves to read from the standard input. 

In cases where a large amount of computation is done after printing part of a line on 
an output terminal, it is necessary to fflush(3s) the standard output before going 
off and computing so that the output will appear. 

/lib/libc.a 
/usr/lib/libcg.a (V AX only) 

See Also 
open(2), close(2), read(2), write(2), fread(3s), fseek(3s), ferror(3s), fc1ose(3s), 
fopen(3s) 

3-494 Subroutines 

( 



Name 

Syntax 

ctennid - generate file name for tenninal 

#include <stdio.h> 

char *ctermid(s) 
char *s; 

ctermid (3s ) 

Description 
The ctermid subroutine generates the pathname of the controlling tenninal for the 
current process, and stores it in a string. 

If s is a NULL pointer, the string is stored in an internal static area, the contents of 
which are overwritten at the next call to ctermid, and the address of which is 
returned. Otherwise, s is assumed to point to a character array of at least 
L_ctermid elements. The pathname is placed in this array and the value of sis 
returned. The constant L ctermid is defined in the <stdio.h> header file. 

NOTE 

The difference between ctermid and ttyname(3) is that ttyname 
must be handed a file descriptor and returns the actual name of the 
tenninal associated with that file descriptor, while ctermid returns a 
string ( / dev / tty) that will refer to the tenninal if used as a file name. 
Thus ttyname subroutine is useful only if the process already has at 
least one file open to a tenninal. 

See Also 
ttyname(3) 

Subroutines 3-495 



cuserid (3s ) 

Name 

Syntax 

cuserid - get character login name of the user 

#include <stdio.h> 

char *cuserid (s) 
char *s; 

Description 
The cuserid subroutine generates a character-string representation of the login 
name of the owner of the current process. If s is a NULL pointer, this representation 
is generated in an internal static area, the address of which is returned. Otherwise, s 
is assumed to point to an array of at least L_cuserid characters; the representation 
is left in this array. The constant L cuserid is defined in the <stdio.h> header file. 

Return Value 
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a 
NULL pointer, a null character (\0) will be placed at s[O]. 

In POSIX mode, if s is not a NULL pointer, s is the return value. 

Environment 
When your program is compiled using the POSIX environment, cuserid returns 
the name associated with the effective userid of the calling process. When compiled 
in the BSD or System V environments, it returns the name associated with the login 
activity on the controlling terminal, if any. Otherwise, it returns the same as in the 
POSIX environment. 

See Also 
getlogin(3), getpwent(3) 

3-496 Subroutines 



Name 

Syntax 

fclose, mush - close or flush a stream 

#include <stdio.h> 

fclose(stream) 
FILE * stream; 

mush (stream) 
FILE * stream; 

fclose(3s) 

Description 
The fclose routine causes any buffers for the named stream to be emptied, and the 
file to be closed. Buffers allocated by the standard input/output system are freed. 
The fclose routine is performed automatically upon calling exit. 

The fflush routine causes any buffered data for the named output stream to be 
written to that file. If stream is NULL, all open output streams are flushed. The 
stream remains open. 

Diagnostics 
These functions return EOF if buffered data cannot be transferred to an output stream. 

Environment 
If not called in POSIX mode, these functions return EOF if stream is not associated 
with an output file. In POSIX mode, if stream is associated with an input file, the 
file pointer is positioned following the last byte read from that stream. 

See Also 
close(2), fopen(3s), setbuf(3s) 

Subroutines 3-497 



ferror(3s) 

Name 

Syntax 

ferror, feof, c1earerr, fileno - stream status inquiries 

#include <stdio.h> 

feof(strearn) 
FILE *stream; 

ferror(strearn) 
FILE *stream 

clearerr(strearn) 
FILE *stream 

fileno(stream) 
FILE *stream; 

Description 
The ferror function returns nonzero when an error has occurred reading or writing 
the named stream, otherwise zero. Unless cleared by clearerr, the error 
indication lasts until the stream is closed. 

The feof function returns nonzero when end of file is read on the named input 
stream, otherwise zero. 

The clearerr function resets both the error and EOF indicators on the named 
stream. 

The fileno function returns the integer file descriptor associated with the stream, 
see open(2). 

These functions are implemented as macros; they cannot be redeclared. 

See Also 
open(2), fopen(3s) 

3-498 Subroutines 



Name 

Syntax 

fgetpos, fsetpos - save and restore stream position 

#include <stdio.h> 

int fgetpos (stream, pos) 
FILE * stream; 
fpos_t *pos; 

int fsetpos (stream, pos) 
FILE * stream; 
fpos_t *pos; 

Description 
The fgetpos function stores the current position of stream in pos. 

fgetpos (3s ) 

The fsetpos function restores stream to the position returned by an earlier 
fgetpos call. 

Return Value 
If successful, the return value is zero; on failure, a nonzero value is returned and 
ermo is set to the appropriate value. 

See Also 
fseek(3s) 

Subroutines 3-499 



fopen{3s) 

Name 

Syntax 

fopen, freopen, fdopen - open a stream 

#include <stdio.h> 

FILE *fopen (filename, type) 
char *filename, *type; 

FILE *freopen (filename, type, stream) 
char *filename, *type; 
FILE *stream; 

FILE *fdopen (fildes, type) 
intfildes; 
char *type; 

Description 
The fopen routine opens the file named by filename and associates a stream with it. 
The f open routine returns a pointer to the FILE structure associated with the 
stream. 

The filename points to a character string that contains the name of the file to be 
opened. 

The type is a character string having one of the following values: 

"r" Open for reading 

"w" Truncate or create for writing 

"a" Append; open for writing at end of file, or create for writing 

"A" Append with no overwrite; open for writing at end-of-file, or create 
for writing 

"r+" Open for reading and writing 

"w+" Truncate or create for reading and writing 

"a+" Append; open or create for reading and writing at end-of-file 

"A+" Append with no overwrite, open or create for update at end-of-file 

The letter "b" can also follow r, w, or a. In some C implementations, the "b" is 
needed to indicate a binary file, however, it is not needed in ULTRIX. If "+" is used, 
the "b" may occur on either side, as in "rb+" or "w+b". 

The freopen routine substitutes the named file in place of the open stream. The 
original stream is closed, regardless of whether the open ultimately succeeds. The 
freopen routine returns a pointer to the FILE structure associated with stream. 

The freopen routine is typically used to attach the preopened streams associated 
with stdin, stdout and stderr to other files. 

The fdopen routine associates a stream with a file descriptor. File descriptors are 
obtained from open, dup, creat, or pipe(2), which open files but do not return 
pointers to a FILE structure stream. Streams are necessary input for many of the 

3-500 Subroutines 



fopen(3s) 

Section 3s library routines. The type of stream must agree with the mode of the 
open file. 

When a file is opened for update, both input and output may be done on the resulting 
stream. However, output may not be directly followed by input without an 
intervening fseek or rewind, and input may not be directly followed by output 
without an intervening fseek, rewind, or an input operation which encounters 
end-of-file. 

When a file is opened for append with no overwrite (that is when type is "A" or 
"A+"), it is impossible to overwrite information already in the file. The fseek 
routine may be used to reposition the file pointer to any position in the file, but when 
output is written to the file, the current file pointer is disregarded. All output is 
written at the end of the file and causes the file pointer to be repositioned at the end 
of the output. If two separate processes open the same file for append, each process 
may write freely to the file without fear of destroying output being written by the 
other. The output from the two processes will be intermixed in the file in the order 
in which it is written. 

Return Value 
The fopen and freopen routines return a NULL pointer on failure. 

Environment 

SVSTEM_V 

When your program is compiled using the System V environment, append with no 
overwrite is specified by using the "a" or "a+" type string, and the "A" and "A+" type 
strings are not allowed. 

POSIX 

In the POSIX environment, the "a" and "a+" strings, and the "A" and "A+" strings 
specify append with no overwrite. 

See Also 
creat(2), dup(2), open(2), pipe(2), fclose(3s), fseek(3s). 

Subroutines 3-501 



fread(3s) 

Name 

Syntax 

fread, fwrite - buffered binary input/output 

#include <stdio.h> 

size_t fread(ptr, size, nitems, stream) 
void *ptr; 
size t size, nitems; 
FILE *stream; 

size_t fwrite(ptr, size, nitems, stream) 
void *ptr; 
size t size, nitems; 
FILE * stream; 

Description 
The fread function reads into a block beginning at ptr, nitems of data of the size 
size (usually sizeof *ptr) from the named input stream. It returns the number of 
items actually read. 

If stream is stdin and the standard output is line buffered, then any partial output line 
will be flushed before any call to read(2) to satisfy the fread. 

The fwri te function appends, at most, nitems of data of the size size (usually sizeof 
*ptr) beginning at ptr to the named output stream. It returns the number of items 
actually written. 

Return Value 
The fread and fwri te functions return 0 upon end of file or error. 

See Also 
read(2), write(2), fopen(3s), getc(3s), gets(3s), printf(3s), putc(3s), puts(3s), scanf(3s) 

3-502 Subroutines 



Name 

Syntax 

fseek, ftell, rewind - reposition a file pointer in a stream 

#include <stdio.h> 

int fseek(stream, offset, ptrname) 
FILE * stream; 
long offset; 
int ptrname; 

long ftell(stream) 
FILE *stream; 

void rewind(stream) 
FILE *stream; 

fseek(3s) 

Description 
The fseek function sets the position of the next input or output operation on the 
stream. The new position is at the signed distance offset bytes from the beginning, 
the current position, or the end of the file, according as ptrname has the value 
SEEK_SET, SEEK_CUR, or SEEK_END. 

The fseek function undoes any effects of ungetc(3s). 

The ftell function returns the current value of the offset relative to the beginning 
of the file associated with the named stream. It is measured in bytes and is the only 
foolproof way to obtain an offset for fseek. 

The rewind (stream) function is equivalent to fseek (stream, OL, 0, SEEK_SET), 
except that no value is returned. 

Return Value 
The fseek function returns -1 for improper seeks, otherwise O. 

See Also 
Iseek(2), fopen(3s) 

Subroutines 3-503 



getc(3s) 

Name 

Syntax 

getc, getchar, fgetc, getw - get character or word from stream 

#include <stdio.h> 

int getc(stream) 
FILE *stream; 

int getcharO 

int fgetc(stream) 
FILE *stream; 

int getw(stream) 
FILE *stream; 

Description 
The getc function returns the next character from the named input stream. 

The get char function is identical to getc (stdin). 

The fgetc function behaves like getc, but is a genuine function, not a macro. It 
may be used to save object text. 

The getw function returns the next word (in a 32-bit integer on a VAX-ll or MIPS 
machine) from the named input stream. It returns the constant EOF upon end of file 
or error, but since that is a good integer value,jeojand ferror(3s) should be used 
to check the success of get w. The get w assumes no special alignment in the file. 

Restrictions 
Because it is implemented as a macro, getc treats a stream argument with side 
effects incorrectly. In particular, 'getc(*f++);' doesn't work as expected. 

Diagnostics 
These functions return the integer constant EOF at end of file or upon read error. 

A stop with message, 'Reading bad file', means an attempt has been made to read 
from a stream that has not been opened for reading by fopen. 

See Also 
fopen(3s), fread(3s), gets(3s), putc(3s), scanf(3s), ungetc(3s) 

3-504 Subroutines 



Name 

Syntax 

gets, fgets - get a string from a stream 

#include <stdio.h> 

char *gets(s) 
char *s; 

char *fgets(s, D, stream) 
char *s; 
FILE *stream; 

gets (3s) 

Description 
The gets routine reads a string into s from tp.e standard input stream stdin. The 
string is terminated by a newline character, which is replaced in s by a null character. 
The get s routine returns its argument. 

The fgets routine reads n-l characters, or up to a newline character, whichever 
comes first, from the stream into the string s. The last character read into s is 
followed by ~ null character. The fgets routine returns its first argument. 

Restrictions 
The gets routine deletes a newline, while fgets keeps it. 

Diagnostics 
The gets and fgets routines return the constant pointer NULL upon end of file or 
error. 

See Also 
ferror(3s), fread(3s), getc(3s), puts(3s), scanf(3s) 

Subroutines 3-505 



printf(3s) 

Name 

Syntax 

printf, fprintf, sprintf - fonnatted output conversion 

#include <stdio.h> 

int printf(format [, arg ] ... ) 
char *format; 

int fprintf( stream,format [, arg ] ... 
FILE * stream; 
char *format; 

BSD Environment 
char *sprintf( s ,format [, arg ] ... ) 
char * s ,format; 

System V and POSIX Environments 
int sprintf( s, format [, arg ] ... ) 
char * s , format; 

Description 
The printf function places output on the standard output stream, stdout. The 
fprintf subroutine places output on the named output stream. The sprintf 
subroutine places output in the string s, and appends the null tenninator '\0' to the 
end of the string. 

The first argument controls how each of these functions converts, fonnats, and prints 
the other arguments. The first argument is a character string that contains two types 
of objects, characters and conversion specifications. These functions copy characters 
that appear in the first argument to the output stream. Conversion specifications 
cause these functions to convert the next succesive argument and send the fonnatted 
argument to the output stream. 

You introduce conversion specifications using the percent sign (%). Following the 
%, you can include: 

• Zero or more flags, which modify the meaning of the conversion specification. 

• An optional minus sign (-), which specifies left adjustment of the converted 
value in the indicated field. 

• An optional digit string that specifies a field width. If the converted value has 
fewer characters than the field width, printf pads the value with blanks. By 
default, p r i n t f pads the value on the left. If the conversion string specifies 
the value is left -j ustified, p r i n t f pads the value on the right. If the field 
width begins with a zero, printf pads the values with zeros, instead of 
blanks. 

• An optional period (.), which separates the field width from the next digit 
string. 

• An optional digit string specifying a precision. The precision controls the 

3-506 Subroutines 



printf (3s) 

number of digits that appear after the radix character, exponential and floating
point conversions. Precision also controls the maximum number of characters 
that are placed in the converted value for a string. 

• The character h or I specifying that a following d, i, 0, n, x, or X corresponds 
to an integer or longword integer argument. You can use an uppercase L or a 
lowercase I. 

• A character that indicates the type of conversion to be applied. 

A field width or precision can be an asterisk (*), instead of a digit string. If you use 
an asterisk, you can include an argument that supplies the field width or precision. 

The flag characters and their meanings are as follows: 

The result of the conversion is left-justified within the field. 

+ The result of a signed conversion always begins with a sign (+ or -). 

blank 
If the first character of a signed conversion is not a sign, p r i n t f pads the 
value on the left with a blank. If the blank and plus sign (+) flags both appear, 
printf ignores the blank flag. 

# The result has been converted to a different fonnat. The value is to be 
converted to an alternative fonn. 

For c, d, s, and u conversions, this flag has no effect. 

For 0 

conversions, this flag increases the precision to force the first digit of the result 
to be a zero. 

For x or X conversions, printf pads a non-zero result on the left with Ox or 
OX. 

For e, E, f, g, and G conversions, the result always contains a radix character, 
even if no digits follow that character. (A radix character usually appears in 
the result of these conversions only if a digit follows it.) 

For g and G conversions, printf does not remove trailing zeros from the 
result. 

The conversion characters and their meanings are as follows: 

dox Convert the integer argument to decimal, octal, or hexadecimal notation, 
respecti vel y. 

f Convert the floating point or double precision argument to decimal notation in 
the style [- j ddd.ddd, where the number of d s following the radix character is 
equal to the precision for the argument. If the precision is missing, p r i n t f 
prints six digits. If the precision is explicitly zero, the function prints no digits 
and no radix characters. 

e Convert the floating point or double precision argument in the style [- jd. 
ddde±dd, where one digit appears before the radix character and the number of 
digits that appear after the radix character is equal to the precision. When you 
omit the precision, printf prints six digits. 

g Convert the floating point or double precision argument to style d, style f, or 
style e. The style pr inf uses depends on the fonnat of the converted value. 

Subroutines 3-507 



printf(3s) 

The function removes trailing zeros before evaluating the format of the 
converted value. 

If a radix character appears in the converted value that is followed by a digit, 
p r i n t f uses style d. If the converted value contains an exponent that is is 
less than -4 or greater than the precision, the function uses style .BR e . 
Otherwise, the printf function uses style f. 

c Print the character argument. 

s Print the character argument. The printf function prints the argument until it 
encounters a null characters or has printed the number of characters specified 
by the precision. If the precision is zero or has not been specified, printf 
prints the character argument until it encounters a null character. 

u Convert the unsigned integer argument to a decimal value. The result must be 
in the range of 0 through 4294967295, where the upper bound is defined by 
MAXUNIT. 

Convert the integer argument to decimal. (This conversion character is the 
same as d.) 

n Store the number of characters formatted in the integer argument. 

p Print the pointer to the argument. (This conversion character is the same as 
%08X). 

% Print a percent sign ( % ). The function converts no argument. 

A non-existent or small field width never causes truncation of a value. Padding takes 
place only if the specified field width exceeds the length of the value. 

In all cases, the radix character pr int f uses is defined by the last successful call to 
setlocale category LC_NUMERIC. If set locale category LC_NUMERIC has 
not been called successfully or if the radix character is undefined, the radix character 
defaults to a period (.). 

International Environment 

LC NUMERIC If this environment is set and valid, printf uses the international 
language database named in the definition to determine radix 
character rules. 

LANG 

Restrictions 

Ifthis environment variable is set and valid printf uses the 
intemationallanguage database named in the definition to 
determine collation and character classification rules. If 
LC NUMERIC is defined, its definition supercedes the definition of 
LANG. 

The printf function cannot format values that exceed 128 characters. 

3-508 Subroutines 



printf(3s) 

Examples 
To print a date and time in the form Sunday, July 3, 10:02, where weekday and 
month are pointers to null-terminated strings use the following function call: 

printf("%s, %5 %d, %02d:%02d", 
weekday, month, day, hour, min); 

To print 7t to 5 decimal places use the following call: 

printf("pi = %.5f", 4*atan(1.O)); 

Return Values 
In the BSD environment, printf and fprintf return zero for success and EOF 
for failure. The sprintf subroutine returns its first argument for success and EOF 
for failure. 

In the System V and POSIX environments, pr int f, fpr int f, and spr int f 
return the number of characters transmitted for success. The sprintf function 
ignores the null terminator (\0) when calculating the number of characters 
transmitted. If an output error occurs, these routines return a negative value. 

See Also 
ecvt(3), nl_printf(3int), nl_scanf(3int), setlocale(3), putc(3s), scanf(3s), environ(5int) 
Guide to Developing International Software 

Subroutines 3-509 



putc{3s) 

Name 

Syntax 

putc, putchar, fputc, putw - put character or word on a stream 

#include <stdio.h> 

int putc(c, stream) 
char c; 
FILE * stream; 

putchar(c) 

fputc(c, stream) 
FILE * stream 

putw(w, stream) 
FILE * stream; 

Description 
The put c routine appends the character c to the named output stream. It returns the 
character written. 

The put char (c) routine is defined as putc (c, stdout). 

The fputc routine behaves like putc, but is a genuine function rather than a 
macro. 

The putw routine appends word (that is, int) w to the output stream. It returns zero. 
The putw routine neither assumes nor causes special alignment in the file. 

Restrictions 
Because it is implemented as a macro, putc treats a stream argument with side 
effects incorrectly. In particular, 'putc(c, *f++);' doesn't work as expected. 

Diagnostics 
The putc, put char , and fputc functions return the constant EOF upon error. 
The putw function returns a non-zero value on error. 

See Also 
fc1ose(3s), fopen(3s), fread(3s), getc(3s), printf(3s), puts (3s) 

3-510 Subroutines 



Name 

Syntax 

puts, fputs - put a string on a stream 

#include <stdio.h> 

puts(s) 
char *s; 

fputs(s, stream) 
char *s; 
FILE *stream; 

puts (3s) 

Description 
The puts subroutine copies the null-terminated string s to the standard output 
stream stdout and appends a new line character. 

The fputs subroutine copies the null-terminated string s to the named output 
stream. 

Neither routine copies the terminal null character. 

Restrictions 
The puts subroutine appends a new line, while fputs does not. 

See Also 
fopen(3s), gets(3s), putc(3s), printf(3s), ferror(3s) fread(3s) 

Subroutines 3-511 



scanf(3s) 

Name 

Syntax 

scanf, fscanf, sscanf - convert formatted input 

#include <stdio.h> 

int scanf(jormat[, pointer] ... ) 
char *format; 

int fscanf( stream ,format [, pointer ] ... ) 
FILE * stream; 
char *format; 

int sscanf( s, format [, pointer] ... ) 
char *s, *format; 

Description 
Each function reads characters, interprets them according to a format, and stores the 
results in its arguments. Each expects, as arguments, a control string, format, and a 
set of pointer arguments that indicate where to store the converted input. The 
scanf function reads from the standard input stream stdin. The fscanf function 
reads from the named input stream. The s scan f function reads from the character 
string s. 

In the format string you specify how to convert the input stream. You may use one 
or more conversion specifications in a single format string, depending on the number 
of pointer arguments you specify. Conversion specifications are introduced by a 
percent sign and specify the format of one input field. You may also use spaces, 
tabs, form feeds, new-line characters, alphabetic characters, and numbers in the 
format string. The following list describes conversion specifications and the other 
components of a format string: 

• Conversion specifications have the following format: 

% [*J [wJ [1] [h] [code] 

* 

w 

h 

Each conversion specification must be introduced by a percent sign. The rest 
of the conversion specification is optional and has the following purpose: 

Specifies that an input field in the input string is not read by scanf; that is, 
the function skips the field. 

Specifies the maximum field width. 

Specifies that the variable where the input value is stored is a longword integer 
or a double-precision variable. The scanf function ignores the I if the input 
field is a character string or a pointer. 

Specifies that the variable where the input value is stored is a short integer or 
floating-point variable. The scanf function ignores the h if the input field is 
a character string or a pointer. 

type Specifies the conversion code. Possible values for the conversion code are 
described in the paragraphs that follow. 

3-512 Subroutines 



scanf{3s} 

• Alphabetic characters and numbers that appear inside the format string, but not 
in a conversion specification, specify that scanf ignore those characters in the 
input string. 

• The white-space characters in a format string that appear outside of a 
conversion specification normally have no effect on how scanf formats data. 
The exception is when the white space character precedes the c conversion 
code in the format string. In this case, the white space causes scanf to ignore 
leading white space in the input field. Normally, scanf treats leading white 
space as part of the input character string for the c conversion code. 

Each conversion specification in the format string directs the conversion of the next 
input field. The scanf function stores the result of each conversion in the pointer 
that corresponds to the conversion specification. Thus, the conversion specification 
controls how scanf converts the first unread input field, and scanf stores the 
result in the first pointer. The second conversion specification controls how scanf 
converts the next input field. The scanf function stores the result of the second 
conversion in the second pointer, and so on. 

You do not include pointers for conversion specifications that contain the asterisk 
character. These specifications cause scanf to ignore an input field, so no pointer 
storage is needed. 

An input field is defined as a string of non-space characters; it begins at the first 
unread character and extends to the first inappropriate character or EOF. An 
inappropriate character is one that is not valid for the value scanf is reading. For 
example, the letter "z" is invalid for an integer value. If the scanf function does 
not reach EOF and encounters no inappropriate characters, the field width is the 
number of characters specified by w. For all conversion codes except left-bracket ( [) 
and c, scanf ignores leading white space in an input field. 

The conversion code controls how scanf converts an input field. The data type of a 
pointer that corresponds to a conversion specification must match the conversion 
code. For example, the pointer that corresponds to a c conversion code must point to 
a character variable. The pointer that corresponds to a d conversion code must point 
to an integer, and so on. The following list describes the valid conversion codes: 

% The input field is a percent sign. The scanf function does not move any 
value to pointer. 

d D The input field is a decimal integer; the corresponding pointer must point 
to an integer. If you specify h ,pointer can point to a short integer. 

u U The input field is an unsigned decimal integer; pointer must point to an 
unsigned integer. 

o 0 The input field is octal integer is expected; the corresponding pointer must 
point to an integer. If you specify h ,pointer can be a short integer. 

x X The input field is a hexadecimal integer; the corresponding pointer must 
point to an integer pointer. If you specify h, pointer can be a short 
integer. 

Subroutines 3-513 



scanf{3s) 

e,f,g The input field is an optionally signed string of digits. The field may 
contain a radix character and an exponent field begins with a letter E or e, 
followed by an optional sign or space and an integer. The pointer must 
point to a floating-point variable. If you specify I, pointer must point to a 
double-precision variable. 

s The input field is a character string. The pointer must point to an array of 
characters large enough to contain the string and a termination character 
(\0). The scanf function adds the termination character automatically. A 
white-space character terminates the input field, so the input field cannot 
contain spaces. 

c The input field is a character or character string. The pointer must point to 
either a character variable or a character array. 

3-514 Subroutines 

The scanf function reads white space in the input field, including leading 
white space. To cause scanf to ignore white space, you can include a 
space in front of the conversion specification that includes the c. 

The input field is a character string. The pointer must point to an array of 
characters large enough to contain the string and a termination character 
(\0). The scanf function adds the termination character automatically. 

Following the left bracket, you specify a list of characters and a right 
bracket ( ]). The scanf function reads the input field until it encounters 
a character other than those listed betweenthe brackets. The scanf 
function ignores white-space characters. 

You can change the meaning of the characters within the brackets by 
including a circumflex (A) character before the list of characters. The 
circumflex causes scanf to read the input field until it encounters one of 
the characters in the list. 

You can represent a range of characters by specifying the first character, a 
hyphen (-), and the last character. For example, you can express 
[0123456789] using [0-9]. When you use a hyphen to represent a range 
of characters, the first character you specify must precede or be equal to 
the last character you specify in the current collating sequence. If the last 
character sorts before the first character, the hyphen stands for itself. The 
hyphen also stands for itself when it is the first or the last character that 
appears within the brackets. 

To include the right square bracket as a character within the list, put the 
right bracket first in the list. If the right bracket is preceded by any 
character other than the circumflex, scanf interprets it as a closing 
bracket. 

At least one input character must be valid for this conversion to be 
considered successful. 

The input field is an integer. If the field begins with a zero, scanf 
interprets it as an octal value. If the field begins with "OX" or "Ox, 
scanf interprets it as a hexadecimal value. The pointer must point to an 
integer. If you specify h, pointer can point to a short integer. 

( 



scanf{3s) 

n The scanf function maintains a running total of the number of input 
fields it has read so far. This conversion code causes scanf to store that 
total in the integer that corresponds to pointer. 

p The input field is a pointer. The pointer must point to an integer variable. 

In all cases, scanf uses the radix character and collating sequence that is defined by 
the last successful call to set locale category LC NUMERIC or LC COLLATE. 
If the radix or collating sequence is undefined, the scanf function uses the C locale 
definitions. 

International Environment 

LC NUMERIC If this environment is set and valid, scanf uses the international 
language database named in the definition to determine radix 
character rules. 

LANG If this environment variable is set and valid scanf uses the 
international language database named in the definition to 
determine collation and character classification rules. If 
LC NUMERIC is defined, its definition supersedes the definition of 
LANG. 

Restrictions 
You cannot directly determine whether conversion codes that cause scanf to ignore 
data (for example, brackets and asterisks) succeeded. 

The scanf function ignores any trailing white-space characters, including a newline 
character. If you want scanf to read a trailing white-space character, include the 
character in the conversion code for the data item that contains it. 

Examples 
The following shows an example of calling the scanf function: 

int i, n; float x; char name[50]; 

n = scanf("%d%f%s",&i, &X, name); 

Suppose the input to the scanf function appear as follows: 

25 54.32E-1 thompson 

In this case, scanf assigns the value 25 to the i variable and the value 5.432 to the x 
variable. The character variable name receives the value thompson\O. The function 
returns the value 3 to the n variable because it read and assigned three input fields. 

The following example demonstrates using the d conversion code to cause scanf to 
ignore characters: 

int i; float x; char name[5]; 

scanf("%2d%f %*d %[0-9]", &i, &x, name); 

Suppose the following shows the input to the function: 

56789 0123 56a72 

In this case, the scanf function assigns the value 56 to the i variable and the value 

Subroutines 3-515 



scanf{3s) 

789.0 to the x variable. The function ignores the 0123 input field, because the %*d 
conversion specification causes scanf to skip one input field. The function assigns 
56 to name; it reads the first two characters in the last input field and stops at the 
third character. The letter 'a' is not in the set of characters from 0 to 9. 

Return Values 
The scanf function returns the number of successfully matched and assigned input 
fields. This number can be zero if the scanf function encounters invalid input 
characters, as specified by the conversion specification, before it can assign input 
characters. 

If the input ends before the first conflict or conversion, scanf returns EOP. These 
functions return EOF on end of input and a short count for missing or invalid data 
items. 

Environment 
In POSIX mode, the E, F, and X formats are treated the same as the e, f, and x 
formats, respectively; otherwise, the upper-case formats expect double, double, and 
long arguments, respectively. 

See Also 
atof(3), nCscanf(3int), getc(3s), printf(3s), environ(5int) 
Guide to Developing International Software 

3-516 Subroutines 

( 



Name 

Syntax 

setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream 

#include <stdio.h> 

setbuf(stream, buj) 
FILE *stream; 
char *buf; 

setbuffer(stream, buf, size) 
FILE * stream; 
char *buf; 
int size; 

setlinebuf(stream) 
FILE * stream; 

int setvbuf(stream, buf, type, size) 
FILE * stream; 
char *buf; 
int type; size_t size; 

setbuf(3s) 

Description 
The three types of buffering available are unbuffered, block buffered, and line 
buffered. When an output stream is unbuffered, information appears on the 
destination file or terminal as soon as written; when it is block buffered many 
characters are saved up and written as a block; when it is line buffered characters are 
saved up until a new line is encountered or input is read from stdin. The routine 
fflush, may be used to force the block out early. Normally all files are block 
buffered. For further information, see fclose(3s). A buffer is obtained from 
rnalloc(3) upon the first getc or putc on the file. If the standard stream stdout 
refers to a terminal it is line buffered. The standard stream stderr is always 
unbuffered. 

The setbuf routine is used after a stream has been opened but before it is read or 
written. The character array buf is used instead of an automatically allocated buffer. 
If buf is the constant pointer NULL, input/output will be completely unbuffered. A 
manifest constant BUFSIZ tells how big an array is needed: 

char buf[BUFSIZ]; 

The setbuffer routine, an alternate form of setbuf, is used after a stream has 
been opened but before it is read or written. The character array buf whose size is 
determined by the size argument is used instead of an automatically allocated buffer. 
If buf is the constant pointer NULL, input/output will be completely unbuffered. 

The setlinebuf routine is used to change stdout or stderr from block buffered or 
unbuffered to line buffered. Unlike setbuf and setbuffer it can be used at any 
time that the file descriptor is active. 

Subroutines 3-517 



setbuf(3s) 

The setvbuf routine may be used after a stream has been opened but before it is 
read or written. Type determines how stream will be buffered. Legal values for type, 
defined in stdio.h are: 

causes input/output to be fully buffered. 

causes output to be line buffered; the buffer will be flushed when a 
new line is written, the buffer is full, or input is requested. 

causes input/output to be completely unbuffered. 

If bufis not the NULL pointer, the array it points to will be used for buffering, 
instead of an automatically allocated buffer. The size specifies the size of the buffer 
to be used. The constant BUFSIZ in <stdio.h> is suggested as a good buffer size. If 
input/output is unbuffered, buf and size are ignored. 

By default, output to a terminal is line buffered and all other input/output is fully 
buffered. 

A file can be changed from unbuffered or line buffered to block buffered by using 
freopen. For further information, see fopen(3s). A file can be changed from 
block buffered or line buffered to unbuffered by using freopen followed by 
setbuf with a buffer argument of NULL. 

Restrictions 
The standard error stream should be line buffered by default. 

The setbuffer and setlinebuf functions are not portable to non 4.2 BSD 
versions of UNIX. 

See Also 
malloc(3), fclose(3s), fopen(3s), fread(3s), getc(3s), printf(3s), putc(3s), puts(3s). 

3-518 Subroutines 

( 



Name 

Syntax 

tmpfile - create a temporary file 

#include <stdio.h> 

FILE *tmpfile () 

tmpfile (3s ) 

Description 
The tmpfile subroutine creates a temporary file and returns a corresponding FILE 
pointer. The file will automatically be deleted when all references to the file have 
been closed. The file is opened for update. 

See Also 
creat(2), unlink(2), fopen(3s), mktemp(3), tmpnam(3s) 

Subroutines 3-519 



tmpnam{3s) 

Name 

Syntax 

tmpnam, tempnam - create a name for a temporary file 

#include <stdio.h> 

char *tmpnam (s) 
char *s; 

char *tempnam (dir, pfx) 
char *dir, *pfx; 

Description 
These functions generate file names that can safely be used for a temporary file. 

The tmpnam subroutine always generates a file name using the path-name defined as 
P tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result in 
aninternal static area and returns a pointer to that area. The next call to tmpnam 
will destroy the contents of the area. If s is not NULL, it is assumed to be the 
address of an array of at least L _ tmpnam bytes, where L _ tmpnam is a constant 
defined in <stdio.h>; tmpnam places its result in that array and returns s. 

The tempnam subroutine allows the user to control the choice of a directory. The 
argument dir points to the path-name of the directory in which the file is to be 
created. If dir is NULL or points to a string which is not a path-name for an 
appropriate directory, the path-name defined as P tmpdir in the <stdio.h> header 
file is used. If that path-name is not accessible, limp will be used as a last resort. 
This entire sequence can be up-staged by providing an environment variable 
TMPDIR in the user's environment, whose value is a path-name for the desired 
temporary-file directory. 

Many applications prefer their temporary files to have certain favorite initial letter 
sequences in their names. Use the pfx argument for this. This argument may be 
NULL or point to a string of up to five characters to be used as the first few 
characters of the temporary-file name. 

The tempnam subroutine uses malloc(3) to get space for the constructed file name, 
and returns a pointer to this area. Thus, any pointer value returned from tempnam 
may serve as an argument to free. For further information, see malloc(3). If 
tempnam cannot return the expected result for any reason, that is malloc failed, or 
none of the above mentioned attempts to find an appropriate directory was successful, 
a NULL pointer will be returned. 

Notes 
The tmpnam and tempnam routines generate a different file name each 
time they are called. 

Files created using these functions and either fopen or creat are 
temporary only in the sense that they reside in a directory intended for 
temporary use, and their names are unique. It is the user's responsibility 
to use unlink(2) to remove the file when its use is ended. 

3-520 Subroutines 

( 

( 



tmpnam (3s) 

Restrictions 
If called more than 17,576 times in a single process, these functions will start 
recycling previously used names. 

Between the time a file name is created and the file is opened, it is possible for some 
other process to create a file with the same name. This can never happen if that other 
process is using these functions or mktemp, and the file names are chosen so as to 
render duplication by other means unlikely. 

See Also 
creat(2), unlink(2), fopen(3s), malloc(3), mktemp(3), tmpfile(3s) 

Subroutines 3-521 



ungetc(3s) 

Name 

Syntax 

ungetc - push character back into input stream 

#include <stdio.h> 

ungetc(c, stream) 
FILE *stream; 

Description 
The ungetc routine pushes the character c back on an input stream. That character 
will be returned by the next getc call on that stream. The ungetc routine returns 
c. One character of pushback is guaranteed in all cases. 

The f seek(3s) routine erases all memory of pushed back characters. 

Diagnostics 
The unget c routine returns EOP if it cannot push a character back. 

Environment 
In POSIX mode, the file's BOP indicator is cleared. 

See Also 
fseek(3s), getc(3s), setbuf(3s) 

3-522 Subroutines 

( 

\ 

( 



Name 

Syntax 

vprintf (3s) 

vprintf, vfprintf, vsprintf - print fonnatted output of a varargs argument list 

#include <stdio.h> 
#include <varargs.h> 

int vprintf (format, ap) 
char *format; 
vaJist ap; 

int vfprintf (stream, format, ap) 
FILE *stream; 
char *format; 
vaJist ap; 

int vsprintf (s, format, ap) 
char *s, *format; 
va_list ap; 

Description 
The vprintf, vfprintf, and vsprintf routines are the same as printf, 
fprintf, and sprintf, respectively, except that instead of being called with a 
variable number of arguments, they are called with an argument list as defined by 
varargs(3). 

Examples 
The following demonstrates how vfprintf could be used to write an error routine. 

#include <stdio.h> 
#include <varargs.h> 

/* 
* error should be called like 
* error (function_name, format, argl, arg2 ... ); 
*/ 

/*VARARGSO*/ 
void 
error (va_alist) 
/* Note that the function name and format arguments cannot be 

* separately declared because of the definition of varargs. 
*/ 

va dcl 
{ 

va_list args; 
char *fmt; 

Subroutines 3-523 



vprintf (3s ) 

va start(args); 
/*-print out name of function causing error */ 
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»; 
fmt = va arg(args, char *); 
/* print-out remainder of message */ 
(void)vfprintf(stderr, fmt, args); 
va end(args); 
(void) abort ( ); 

See Also 
varargs(3) 

3-524 Subroutines 



Special Library Routines (3x) 

Insert tabbed divider here. 
Then discard this sheet. 





intro (3x) 

Name 
intro - introduction to miscellaneous library functions 

Description 

Files 

These functions constitute minor libraries and other miscellaneous runtime facilities. 
Most are available only when programming in C. 

The list below includes libraries which provide device-independent plotting functions, 
terminal-independent screen management routines for two-dimensional nonbitmap 
display terminals, functions for managing data bases with inverted indexes, and 
sundry routines used in executing commands on remote machines. The routines 
getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the 
standard C runtime library "-Ie". All other functions are located in separate libraries 
indicated in each manual entry. 

/lib/libc.a 
/usr/lib/libdbm.a 
/usr/lib/libtermcap.a 
/usr/lib/libcurses.a 
/usr/lib/lib2648.a 
/usr/lib/libplot.a 

Subroutines 3-525 



creatediskbyname (3x) 

Name 

Syntax 

creatediskbyname - get the disk description associated with a file name 

#include <disktab.h> 

struct disktab * 
creatediskbyname(name) 
char *name; 

Description 
The creatediskbyname subroutine takes the name ofthe character device special 
file representing a disk device (for example, / dev / r r a 0 a) and returns a structure 
pointer describing its geometry information and the default disk partition tables. It 
obtains this information by polling the controlling disk device driver. The 
creatediskbyname subroutine returns information only for MSCP and SCSI 
disks. 

The <disktab. h> file has the following form: 

#define DISKTAB "/etc/disktab" 

struct disktab 
char *d_name; /* drive name */ 
char *d_type; /* drive type */ 
int d secsize; /* sector size in bytes */ 
int d_ntracks; /* # tracks/cylinder */ 
int d_nsectors; /* # sectors/track */ 
int d_ncylinders; /* # cylinders */ 
int d_rpm; /* revolutions/minute */ 
struct partition { 

int p-size; /* #sectors in partition 
short p_bsize; /* block 
short p-fsize; /* frag 

dyartitions [8]; 
} ; 

struct disktab *getdiskbyname(); 
struct disktab *creatediskbyname(); 

Diagnostics 

size in bytes */ 
size in bytes */ 

*/ 

Successful completion of the creatediskbyname subroutine returns a pointer to a 
valid disktab structure. Failure of this subroutine returns a null pointer. The 
subroutine fails if it cannot obtain the necessary information from the device driver or 
disktab file. 

A check is done to ensure that the disktab file exists and is readable. This check 
ensures that the subroutine is not being called because the disktab file was 
accidentally removed. If there is no disktab file, the subroutine fails. 

The creatediskbyname subroutine also fails if it cannot determine disk 
geometry attributes by polling the driver. This can occur if the disk is not an MSCP 
or SCSI disk. In some cases where the disk consists of removable media and the 
media is not loaded, the driver will be unable to determine disk attributes. 

3-526 Subroutines 

( 



creatediskbyname (3x) 

Restrictions 
The creatediskbyname subroutine returns infonnation only for MSCP and SCSI 
disks. 

See Also 
getdiskbyname(3x), ra(4), rz(4), disktab(5) 

Subroutines 3-527 



curses (3x) 

Name 
curses - screen functions with optimal cursor motion 

Syntax 
cc [ flags ] files -lcurses -Itermcap [ libraries ] 

Description 
These routines give the user a method of updating screens with reasonable 
optimization. They keep an image of the current screen, and the user sets up an 
image of a new one. Then the refresh subroutine tells the routines to make the 
current screen look like the new one. To initialize the routines, the routine 
initscr must be called before any of the other routines that deal with windows 
and screens are used. The routine endwin should be called before exiting. 

Functions 
addch(ch) 
addstr(str) 
box( win, vert,hor) 
clearO 
clearok( scr, boolf) 
clrtobotO 
clrtoeolO 
crmodeO 
delchO 
deletelnO 
delwin(win) 
echoO 
endwinO 
eraseO 
getchO 
getcap(name) 
getstr(str) 
gettmodeO 
getyx(win,y,x) 
inchO 
initscrO 
insch(c) 
insertlnO 
leaveok( win,boolf) 
longname(termbuf,name) 
move(y,x) 
mvcur(lasty ,lastx,newy ,newx) 
newwin(lines,cols,begin_y,begin_x) 
nlO 
nocrmodeO 
noechoO 
nonlO 
norawO 
overlay(winI,win2) 

3-528 Subroutines 

add a character to stdscr 
add a string to stdscr 
draw a box around a window 
clear stdscr 
set clear flag for ser 
clear to bottom on stdscr 
clear to end of line on stdscr 
set cbreak mode 
delete a character 
delete a line 
delete win 
set echo mode 
end window modes 
erase stdser 
get a char through stdscr 
get terminal capability name 
get a string through stdscr 
get tty modes 
get (y,x) co-ordinates 
get char at current (y,x) co-ordinates 
initialize screens 
insert a char 
insert a line 
set leave flag for win 
get long name from termbuf 
move to (y,x) on stdser 
actually move cursor 
create a new window 
set newline mapping 
unsetcbreak mode 
unset echo mode 
unset newline mapping 
unset raw mode 
overlay wini on win2 



overwrite( win 1. win2) 
printw(fmt.arg 1.arg2 •... ) 
rawO 
refreshO 
resettyO 
savettyO 
scanw(fmt.arg 1.arg2 •... ) 
scroll(win) 
scrollok(win.boolt) 
setterm(name) 
standendO 
standoutO 
subwin(win.lines.cols.begin_y.begin_x) 
touchwin(win) 
unctrl(ch) 
waddch(win.ch) 
waddstr(win.str) 
wdear( win) 
wclrtobot( win) 
wclrtoeol(win) 
wdelch( win.c) 
wdeleteln( win) 
werase(win) 
wgetch(win) 
wgetstr(win.str) 
winch(win) 
winsch(win.c) 
winsertln(win) 
wmove(win.y.x) 
wprintw( win.fmt.arg 1.arg2 •... ) 
wrefresh( win) 
wscanw( win.fmt.arg 1.arg2 •... ) 
wstandend(win) 
wstandout(win) 

See Also 

curses (3x) 

overwrite win 1 on top of win2 
printf on stdscr 
set raw mode 
make current screen look like stdscr 
reset tty flags to stored value 
stored current tty flags 
scanf through stdscr 
scroll win one line 
set scroll flag 
set term variables for name 
end standout mode 
start standout mode 
create a subwindow 
"change" all of win 
printable version of ch 
add char to win 
add string to win 
clear win 
clear to bottom of win 
clear to end of line on win 
delete char from win 
delete line from win 
erase win 
get a char through win 
get a string through win 
get char at current (y.x) in win 
insert char into win 
insert line into win 
set current (y.x) co-ordinates on win 
printf on win 
make screen look like win 
scanf through win 
end standout mode on win 
start standout mode on win 

ioctl(2). getenv(3). tty( 4). termcap(3x). termcap(5) 
Screen Updating and Cursor Movement Optimization: A Library Package. ULTRIX 
Supplementary Documents Vol. II:Programmer 

Subroutines 3-529 



dbm(3x) 

Name 

Syntax 

dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines 

typedef struct { 
char *dptr; 
int dsize; 

} datum; 

dbminit(file) 
char *fiIe; 

datum fetch(key) 
datum key; 

store(key, content) 
datum key, content; 

delete(key) 
datum key; 

datum firstkeyO 

datum nextkey(key) 
datum key; 

Description 
These functions maintain key/content pairs in a data base. The functions will handle 
very large (a billion blocks) databases and will access a keyed item in one or two file 
system accesses. The functions are obtained with the loader option -Idbm. 

Keys and contents are described by the datum typedef. A datum specifies a string of 
dsize bytes pointed to by dptr. Arbitrary binary data, as well as nonnal ASCII strings, 
are allowed. The data base is stored in two files. One file is a directory containing a 
bit map and has' .dir' as its suffix. The second file contains all data and has' .pag' as 
its suffix. 

Before a database can be accessed, it must be opened by dbmini t. At the time of 
this call, the files file .dir and file .pag must exist. (An empty database is created by 
creating zero-length' .dir' and' .pag' files.) 

Once open, the data stored under a key is accessed by fetch and data is placed 
under a key by store. A key (and its associated contents) is deleted by delete. 
A linear pass through all keys in a database may be made, in an (apparently) random 
order, by use of firstkey and nextkey. The firstkey will return the first key 
in the database. With any key nextkey will return the next key in the database. 
This code will traverse the data base: 

for (key = firstkey(); key.dptr != NULL; key = nextkey(key» 

3-530 Subroutines 



dbm(3x) 

Restrictions 
The . pagfile four times its actual content. Older UNIX systems may create real file 
blocks for these holes when touched. These files cannot be copied by normal means 
(cp, cat, tp, tar, ar) without filling in the holes. 

The dptr pointers returned by these subroutines point into static storage that is 
changed by subsequent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size 
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on 
a single block. The store will return an error in the event that a disk block fills 
with inseparable data. 

The delete does not physically reclaim file space, although it does make it 
available for reuse. 

Return Value 
Routines that return a datum indicate errors with a null (0) dptr. All functions that 
return an int indicate errors with negative values. A zero return indicates a successful 
completion. 

Subroutines 3-531 



,C disassembler (3x) 

Name 
disassembler - disassemble a MIPS instruction and print the results 

Syntax 

int disassembler (iadr, regstyle, gecsymname, gecregvalue, geCbytes, prinCheader) 
unsigned iadr; 
int regstyle; 
char *(*geCsymname)O; 
int (*geCregvalue)O; 
long (*geCbytes)O; 
void (*prinCheader)O; 

Description 
The disassembler function disassembles and prints a MIPS machine instruction on 
stdout. 

The argument is the instruction address to be disassembled. The reg style parameter 
specifies how registers are named in the disassembly. The value is 0 if compiler 
names are used; otherwise, hardware names are used. 

The next four arguments are function pointers, most of which give the caller some 
flexibility in the appearance of the disassembly. The only function that must be 
provided is get_bytes. All other functions are optional. The get_bytes function is 
called without arguments and returns the next byte or bytes to disassemble. 

The get _ symname is passed an address, which is the target of a jal instruction. If null 
is returned or if get symname is null the disassembler prints the address; otherwise, 
the string name is printed as returned from get symname. If get regvalue is not null, 
it is passed a register number and returns the cUrrent contents of the specified 
register. The disassembler function prints this information along with the instruction 
disassembly. If print_header is not nUll, it is passed the instruction address, iadr, 
and the current instruction to be disassembled, which is the return value from 
get_bytes. The print_header function can use these parameters to print any desired 
information before the actual instruction disassembly is printed. 

If get bytes is null, the disassembler returns -1 and ermo is set to EINV AL; 
otherwise, the number of bytes that were disassembled is returned. If the 
disassembled word is a jump or branch instruction, the instruction in the delay slot is 
also disassembled. 

See Also 
Idfcn(5) 

3-532 Subroutines 



Name 

Syntax 

getdiskbyname - get disk description by its name 

#include <disktab.h> 

struct disktab * 
getdiskbyname(name) 
char *name; 

getdiskbyname (3x) 

Description 
The getdiskbyname subroutine takes a disk name (for example, RM03) and 
returns a structure describing its geometry information and the standard disk partition 
tables. All information obtained from the disktab(5) file. A separate subroutine 
called creatediskbyname dynamically generates disktab entries by obtaining 
disk geometry information from the controlling device driver. 

<disktab.h> has the following form: 
#define DISKTAB "/etc/disktab" 

struct disktab 
char *d_name; /* drive name */ 
char *d_type; /* drive type */ 
int d_ secsize; /* sector size in bytes */ 
int d_ntracks; /* # tracks/cylinder */ 
int d_nsectors; /* # sectors/track */ 
int d_ncylinders; /* # cylinders */ 
int d_rpm; /* revolutions/minute */ 
struct partition { 

int p-size; /* #sectors in partition 
short p_bsize; /* block 
short p-fsize; /* frag 

dyartitions[B]; 
} ; 

struct disktab *getdiskbyname(); 
struct disktab *creatediskbyname(); 

See Also 
creatediskbyname(3x), disktab(5) 

size in bytes */ 
size in bytes */ 

*/ 

Subroutines 3-533 



getfsent (3x) 

Name 

Syntax 

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor 
file entry 

#include <fstab.h> 
#include lusr/include/sys/fs _ types.h 

struct fstab *getfsentO 

struct fstab *getfsspec(spec) 
char *spec; 

struct fstab *getfsfile(file) 
char *file; 

struct fstab *getfstype(type) 
char *type; 

int setfsentO 

int endfsentO 

Description 
All routines operate on the file / et c / f stab, which contains descriptions of the 
known file systems. The routine setfsent opens this file. The routine 
getfsent reads the next file system description within /etc/fstab opening the 
file if necessary. The endfsent routine closes the file. 

The getfsspec, getfsfile, and getfstype routines sequentially scan the 
file /etc/fstab for specific file system descriptions. The getfsspec routine 
searches for a description with a matching special file name field. The routine 
getfsfile searches for a description with a matching file system path prefix field. 
The routine getfstype searches for a description with a matching file system type 
field. 

The getfsent, getfsspec, getfstype, and getfsfile each return a 
pointer to a representation of the description they have matched or read. 
Representations are in the format of the following structure: 

#define 
#define 
#define 
#define 
#define 

FSTAB RW 
FSTAB RO 
FSTAB_RQ 
FSTAB_SW 
FSTAB xx 

struct fstab 

} ; 

3-534 Subroutines 

char *fs_spec; 
char *fs_file; 
char *fs_type; 
int fs_freq; 
int fS-Fassno; 
char *fs_name; 
char *fs_opts 

"rw" /* read-write device */ 
"ro" /* read-only device */ 
"rq" /* read-write with quotas */ 
"sw" /* swap device *1 
"xx" /* ignore totally *1 

/* block special device name 
/* file system path prefix 

*/ 
*1 

1* 
/* 
/* 
1* 
/* 

rw,ro,sw or xx *1 
dump frequency, in days *1 
pass number on parallel dump *1 
name of the file system type *1 
arbitrary options field *1 



getfsent (3x) 

Return Value 
A NULL or 0 is returned, but errno is not set on detection of errors. 

Restrictions 
All descriptions are contained in static areas, which should be copied. 

Files 

/etc/fstab 

See Also 
fstab(5) 

File system information file. 

Subroutines 3-535 



initgroups(3x) 

Name 

Syntax 

initgroups - initialize group access list 

initgroups(name, basegid) 
char *name; 
int basegid; 

Description 
The ini tgroups subroutine reads through the group file and sets up, using the 
setgroups(2) call, the group access list for the user specified in name. The 
basegid is automatically included in the groups list. Typically this value is given as 
the group number from the password file. 

Restrictions 
The ini tgroups subroutine uses the routines based on getgrent(3). If the 
invoking program uses any of these routines, the group structure will be overwritten 
in the call to ini tgroups . 

Return Value 
The ini tgroups returns -1 if it was not invoked by the superuser. 

Files 
/etc/group 

See Also 
setgroups(2) 

3-536 Subroutines 



Name 

Syntax 

ldahread - read the archive header of a member of an archive file 

#include <stdio.h> 
#include <ar .h> 
#include <filehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

int ldahread (ldptr, arhead) 
LDFILE *ldptr; 
ARCHDR *arhead; 

Idahread (3x) R 

Description 
If TYPE(ldptr) is the archive file magic number, the ldahread function reads the 
archive header of the common object file currently associated with ldptr into the area 
of memory beginning at arhead. 

The 1 dahre ad function returns success or failure. If TYPE(ldptr) does not 
represent an archive file or if it cannot read the archive header, ldahread fails. 

See Also 
intro(3x), Idclose(3x), Idopen(3x), ar(5), Idfcn(5) 

Subroutines 3-537 



3C Idclose (3x) 

Name 

Syntax 

ldclose, ldaclose - close a common object file 

#include <stdio.h> 
#include dilehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

int ldclose (ldptr) 
LDFILE *ldptr; 

int ldaclose (ldptr) 
LDFILE *ldptr; 

Description 
The ldopen and ldclose functions provide uniform access to simple object files 
and qpject files that are members of archive files. An archive of common object files 
can be processed as if it is a series of simple common object files. 

If l'YPE(ldptr) does not represent an archive file, ldclose closes the file and frees 
the memory allocated to the LDFILE structure associated with ldptr. If TYPE(ldptr) 
is the magic number for an archive file and if archive has more files, ldclose 
reinitializes OFFSET(ldptr) to the file address of the next archive member and returns 
failure. The LDFILE structure is prepared for a later ldopen(3x). In all other cases, 
ldclose returns success. 

The ldaclose function closes the file and frees the memory allocated to the 
LDFILE str'qcture associated with ldptr regardless of the value of TYPE(/dptr). The 
ldaclose function always returns success. This function is often used with 
ldaopen. 

See Also 
fclose(3s), intro(3x) Idopen(3x), Idfcn(5), paths.h( 4) 

3-538 Subroutines 



Name 

Syntax 

ldfhread - read the file header of a common object file 

#include <stdio.h> 
#include <filehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

int Idfhread (ldptr, filehead) 
LDFILE * ldptr; 
FILHDR *filehead; 

Idfhread (3x) RI: 

Description 
The Idfhread function reads the file header of the common object file currently 
associated with ldptr . It reads the file header into the area of memory beginning at 
filehead. 

The Idfhread function returns success If ldfhread cannot read the file header, it 
fails. 

Usually, Idfhread can be avoided by using the macro HEADER(ldptr) defined in 
<ldfcn.h> see Idfcn(5». Note that the information in HEADER is swapped, if 
necessary. The information in any field, fieldname, of the file header can be accessed 
using HEADER(ldptr ).fieldname. 

See Also 
intro(3x), Idclose(3x), Idopen(3x), Idfcn(5). 

Subroutines 3-539 



SC Idgetaux (3x) 

Name 

Syntax 

ldgetaux - retrieve an auxiliary entry, given an index 

#include <stdio.h> 
#include <filehdr.h> 
#include <sym.h> 
#include <Idfcn.h> 

pAUXU Idgetaux (ldptr, iaux) 
LDFILE ldptr; 
long iaux; 

Description 
The ldgetaux function returns a pointer to an auxiliary table entry associated with 
iaux. The AUXU is contained in a static buffer. Because the buffer can be 
overwritten by later calls to ldgetaux, it must be copied by the caller if the aux is 
to be saved or changed. 

Note that auxiliary entries are not swapped as this routine cannot detect what 
manifestation of the AUXU union is retrieved. If LDAUXSW AP(ldptr, ldf) is non
zero, a further call to swap _ aux is required. Before calling the swap _ aux routine, the 
caller should copy 

If the auxiliary cannot be retrieved, ldgetaux returns null (defined in <stdio.h» for 
an object file. This occurs in the following instances: 

• The auxiliary table cannot be found 

• The iaux offset into the auxiliary table is beyond the end of the table 

Typically, ldgetaux is called immediately after a successful call to ldtbread to 
retrieve the data type information associated with the symbol table entry filled by 
ldtbread. The index field of the symbol, pSYMR, is the iaux when data type 
information is required. If the data type information for a symbol is not present, the 
index field is indexNi and ldgetaux should not be called. 

See Also 
intro(3x), Idclose(3x), Idopen(3x), Idtbseek(3x), Idtbread(3x), Idfcn(5). 

3-540 Subroutines 



Name 

Syntax 

Idgetname (3x) RI~ 

ldgetname - retrieve symbol name for object file symbol table entry 

#include <stdio.h> 
#include <filehdr.h> 
#include <sym.h> 
#include <ldfcn.h> 

char *ldgetname (ldptr, symbol) 
LDFILE * ldptr ; 
pSYMR * symbol ; 

Description 
The ldgetname function returns a pointer to the name associated with symbol as a 
string. The string is contained in a static buffer. Because the buffer can be 
overwritten by later calls to ldgetname, the caller must copy the buffer if the name 
is to be saved. 

If the name cannot be retrieved, ldgetname returns null (defined in <stdio.h» for 
an object file. This occurs in the following instances: 

• The string table cannot be found 

• The name's offset into the string table is beyond the end of the string table 

Typically, ldgetname is called immediately after a successful call to 
ldtbread. The ldgetname retrieves the name associated with the symbol table 
entry filled by the function, ldtbread. 

See Also 
intro(3x), ldclose(3x), ldopen(3x), ldtbseek(3x), ldtbread(3x), ldfcn(5). 

Subroutines 3-541 



SC Idgetpd (3x) 

Name 

Syntax 

ldgetpd - retrieve procedure descriptor given a procedure descriptor index 

#include <stdio.h> 
#include <filehdr.h> 
#include <sym.h> 
#include <Idfcn.h> 

long Idgetpd (ldptr, ipd, ppd) 
LDFILE ldptr; 
long ipd; 
pPDR ipd; 

Description 
The ldgetpd function returns success or failure depending on whether the 
procedure descriptor with index ipd can be accessed. If it can be accessed, the 
structure pointed to by ppd is filled with the contents of the corresponding procedure 
descriptor. The isym, iline, and iopt fields of the procedure descriptor are updated to 
be used in further LD routine calls. The adr field is updated from the symbol 
referenced by the isym field. 

The PDR cannot be retrieved when the following occurs: 

• The procedure descriptor table cannot be found. 

• The ipd offset into the procedure descriptor table is beyond the end of the table. 

• The file descriptor that the ipd offset falls into cannot be found. 

Typically, ldgetpd is called while traversing the table that runs from 0 to 
SYMHEADER(ldptr).ipdMax - 1. 

See Also 
Idc1ose(3x), Idopen(3x), Idtbseek(3x), Idtbread(3x), Idfcn(5) 

3-542 Subroutines 

( 

\ 



Name 

Syntax 

Idlread (3x) RI: 

ldlread, ldlinit, ldlitem - manipulate line number entries of a common object file 
function 

#include <stdio.h> 
#include dilehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

int ldlread (ldptr, fcnindx, linenum, linent) 
LDFILE *ldptr; 
long fcnindx; 
unsigned short linen urn; 
LINER linent; 

int ldlinit (ldptr, fcnindx) 
LDFILE *ldptr; 
long fcnindx; 

int ldlitem (ldptr, linenum, linent) 
LDFILE *ldptr; 
unsigned short linen urn; 
LINER linent; 

Description 
The Idlread function searches the line number entries of the common object file 
currently associated with ldptr. The Idlreadfunction begins its search with the 
line number entry for the beginning of a function and confines its search to the line 
numbers associated with a single function. The function is identified by fcnindx, 
which is the index of its local symbols entry in the object file symbol table. The 
Idlread function reads the entry with the smallest line number equal to or greater 
than linenum into linent. 

The dlinit and Idlitern functions provide the same behavior as Idlread. 
After an initial call to Idlread or Idlini t, Idli tern can be used to retrieve a 
series of line number entries associated with a single function. The Idlini t 
function simply finds the line number entries for the function identified by fcnindx. 
The Idli tern function finds and reads the entry with the smallest line number equal 
to or greater than linenum into linent. 

The functions Idlread, Idlini t, and Idli tern each return either success or 
failure. The Idlread function fails if one of the following occurs: 

• If line number entries do not exist in the object file. 

• If fcnindx does not index a function entry in the symbol table. 

• If it does not find a line number equal to or greater than linenum. 

The Idli tern fails if it does not find a line number equal to or greater than linenum. 

Subroutines 3-543 



SC Idlread (3x) 

See Also 
Idclose(3x), Idopen(3x), Idtbindex(3x), Idfcn(5) 

3-544 Subroutines 

( 



Name 

Syntax 

Idlseek (3x) RI~ 

Idlseek, ldnlseek - seek to line number entries of a section of a common object file 

#include <stdio.h> 
#include <fUehdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

int Idlseek (ldptr, sectindx) 
LDFILE *ldptr; 
unsigned short sectindx; 

int Idnlseek (ldptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

Description 
The 1 dl see k function seeks to the line number entries of the section specified by 
sectindx of the common object file currently associated with ldptr. 

The Idnlseek function seeks to the line number entries of the section specified by 
sectname. 

The Idlseek and Idnlseek functions return success or failure. 

NOTE 

Line numbers are not associated with sections in the MIPS symbol table; 
therefore, the second argument is ignored, but maintained for historical 
purposes. 

If they cannot seek to the specified line number entries, both routines fail. 

See Also 
Idc1ose(3x), Idopen(3x), Idshread(3x), Idfcn(5) 

Subroutines 3-545 



SC Idohseek (3x) 

Name 

Syntax 

ldohseek - seek to the optional file header of a common object file 

#include <stdio.h> 
#include dilehdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

int Idohseek (ldptr) 
LDFILE *ldptr; 

Description 
The ldohseek function seeks to the optional file header of the common object file 
currently associated with ldptr. 

ldohseek function returns success or failure. If the object file does not have an 
optional header or if it cannot seek to the optional header, ldohseek fails. 

The program must be loaded with the object file access routine library Iibmld.a. 

See Also 
Idc1ose(3x), Idopen(3x), Idfhread(3x), Idfcn(5) 

3-546 Subroutines 

( 



Name 

Syntax 

ldopen, ldaopen - open a common object file for reading 

#include <stdio.h> 
#include dilehdr.h> 
#include <syms.h> 
#include <ldfcn.h> 

LDFILE *ldopen (filename, ldptr) 
char *filename; 
LDFILE *ldptrj 

LDFILE *ldaopen (filename, oldptr) 
char *filename; 
LDFILE *oldptr; 

Id readst (ldptr, flags) 
LDFILE * ldptr; 
intflags; 

Idopen (3x) RI~ 

Description 
The ldopen and ldclose functions provide uniform access to simple object files 
and to object files that are members of archive files. An archive of common object 
files can be processed as if it is a series of simple common object files. 

If ldptr has the value nUll, ldopen opens filename, allocates and initializes the 
LDFILE structure, and returns a pointer to the structure to the calling program. 

If ldptr is valid and TVPE(ldptr) is the archive magic number, ldopen reinitializes 
the LDFILE structure for the next archive member of filename. 

The ldopen and ldclose functions work in concert. The ldclose function 
returns failure only when only when TYPE(ldptr) is the archive magic number and 
there is another file in the archive to be processed. Only then should ldopen be 
called with the current value of ldptr. In all other cases, but especially when a new 
filename is opened, ldopen should be called with a nullldptr argument. 

The following is a prototype for the use of ldopen and 

/* for each filename to be processed*/ 

ldptr = NULL; 
do 

if ( (ldptr = ldopen(filename, ldptr)) != NULL) 

} 

/* check magic number * / 
/* process the file * / 

} while (ldclose(ldptr) == FAILURE ); 

Subroutines 3-547 



ISC Idopen (3x) 

If the value of oldptr is not NULL, Idaopen opens filename anew and allocates and 
initializes a new LDFILE structure, copying the fields from oldptr. The Idaopen 
function returns a pointer to the new LDFILE structure. This new pointer is 
independent of the old pointer, oldptr. The two pointers can be used concurrently to 
read separate parts of the object file. For example, one pointer can be used to step 
sequentially through the relocation information while the other is used to read 
indexed symbol table entries. 

The Idopen and Idaopen functions open filename for reading. Iffilename cannot 
be opened or if memory for the LDFILE structure cannot be allocated, both functions 
return NULL. A successful open does not ensure that the given file is a common 
object file or an archived object file. 

The Idopen function causes the symbol table header and file descriptor table to be 
read. Further access, using ldptr, causes other appropriate sections of the symbol 
table to be read (for example, if you call1dtbread, the symbols or externals are 
read). To force sections for each symbol table in memory, callidreadst with 
ST_P* constants or'ed together from st_support.h. 

See Also 
fopen(3s), Idclose(3x), Idfcn(5) 

3-548 Subroutines 

( 



Name 

Syntax 

Idrseek (3x) RI 

ldrseek, ldnrseek - seek to relocation entries of a section of a common object file 

#include <stdio.h> 
#include <filehdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

int Idrseek (ldptr, sectindx) 
LDFILE *ldptr; 
unsigned short sectindx; 

int Idnrseek (ldptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

Description 
The 1 dr see k function seeks to the relocation entries of the section specified by 
sectindx of the common object file currently associated with ldptr. 

The ldnrseek function seeks to the relocation entries of the section specified by 
sectname. 

The functions ldrseek and ldnrseek returns success or failure. If sectindx is 
greater than the number of sections in the object file, ldrseek fails; if there is no 
section name corresponding with sectname, ldnrseek fails. If the specified section 
does not have relocation entries or if it cannot seek to the specified relocation entries, 
either function fails. 

NOTE 

The first section has an index of one. 

See Also 
Idc1ose(3x), Idopen(3x), Idshread(3x), Idfcn(5) 

Subroutines 3-549 



SC Idshread (3x) 

Name 

Syntax 

ldshread, ldnshread - read an indexed or named section header of a common object 
file 

#include <stdio.h> 
#include dilehdr.h> 
#include <scnhdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

int Idshread (ldptr, sectindx, secthead) 
LDFILE *ldptr; 
unsigned short sectindx; 
SCNHDR *secthead; 

int Idnshread (ldptr, sectname, secthead) 
LDFILE *ldptr; 
char *sectname; 
SCNHDR *secthead; 

Description 
The Idshread function reads the section header specified by sectindx of the 
common object file currently associated with ldptr into the area of memory beginning 
at secthead. 

The Idnshread functions reads the section header specified by sectname into the 
area of memory beginning at secthead. 

The Idshread and Idnshread functions return success or failure. If sectindx is 
greater than the number of sections in the object file, ldshread fails. If there is no 
section name corresponding with sectname, Idnshread fails. If it cannot read the 
specified section header, either function fails. 

NOTE 

The first section header has an index of one. 

The program must be loaded with the object file access routine library Iibmld.a. 

See Also 
Idclose(3x), Idopen(3x), Idfcn(5). 

3-550 Subroutines 

( 



Name 

Syntax 

Idsseek (3x) RI 

Ids seek, ldnsseek - seek to an indexed or named section of a common object file 

#include <stdio.h> 
#include <filehdr .h> 
#include <syms.h> 
#include <Idfcn.h> 

int Ids seek (Idptr, sectindx) 
LDFILE *ldptr; 
unsigned short sectindx; 

int Idnsseek (Idptr, sectname) 
LDFILE *ldptr; 
char *sectname; 

Description 
The Idsseek seeks to the section specified by sectindx of the common object file 
currently associated with Idptr. 

The Idnsseek seeks to the section specified by sectname. 

The Ids seek and Idnsseek return success or failure. If sectindx is greater than 
the number of sections in the object file, Ids seek fails; if there is no section name 
corresponding with sectname, Idnsseek fails. If a no section data for the specified 
section does not exist or if it cannot seek to the specified section, either function 
fails. 

NOTE 

The first section has an index of one. 

The program must be loaded with the object file access routine library libmld.a. 

See Also 
Idclose(3x), Idopen(3x), Idshread(3x), Idfcn(5) 

Subroutines 3-551 



)C Idtbindex (3x) 

Name 

Syntax 

ldtbindex - compute the index of a symbol table entry of a common object file 

#include <stdio.h> 
#include <fiIehdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

long Idtbindex (ldptr) 
LDFILE *ldptr; 

Description 
The Idtbindex returns the (long) index of the symbol table entry at the current 
position of the common object file associated with ldptr. 

The index returned by Idtbindex can be used in later calls to Idtbread(3x). 
Idtbindex returns the index of the symbol table entry that begins at the current 
position of the object file; therefore, if Idtbindex is called immediately after a 
particular symbol table entry has been read, it returns the the index of the next entry. 

If there are no symbols in the object file or if the object file is not positioned at the 
beginning of a symbol table entry, Idtbindex fails and returns BADINDEX (-1). 

Note that the first symbol in the symbol table has an index of zero. 

See Also 
Idc1ose(3x), Idopen(3x), Idtbread(3x), Idtbseek(3x), Idfcn(5) 

3-552 Subroutines 



Name 

Syntax 

Idtbread (3x) RI~ 

ldtbread - read an indexed symbol table entry of a common object file 

#include <stdio.h> 
#include <filehdr.h> 
#include <syms.h> 
#include <Idfcn.h> 

int Idtbread (ldptr, symindex, symbol) 
LDFILE *ldptr; 
long symindex; 
pSYMR *symbol; 

Description 
The ldtbread reads the symbol table entry specified by symindex of the common 
object file currently associated with ldptr into the area of memory beginning at 
symbol. 

ldtbread returns success or failure. If symindex is greater than the number of 
symbols in the object file or if it cannot read the specified symbol table entry, 
ldtbread fails. 

The local and external symbols are concatenated into a linear list. Symbols are 
accessible from symnum zero to 
SYMHEADER(ldptr}.isymMax+SYMHEADER(ldptr}.iextMax. The index and iss 
fields of the SYMR are made absolute (rather than file relative) so that routines 
ldgetname(3x), ldgetaux(3x), and ldtbread proceed normally given those 
indices. Only the sym part of externals is returned. 

Note that the first symbol in the symbol table has an index of zero. 

See Also 
Idc1ose(3x), Idgetname(3x), Idopen(3x), Idtbseek(3x), Idgetname(3x), Idfcn(5) 

Subroutines 3-553 



ISC Idtbseek (3x) 

Name 

Syntax 

ldtbseek - seek to the symbol table of a common object file 

#include <stdio.h> 
#include <filehdr .h> 
#include <syms.h> 
#include <ldfcn.h> 

int ldtbseek (ldptr) 
LDFILE *ldptr; 

Description 
The ldtbseek function seeks to the symbol table of the object file currently 
associated with ldptr. 

The ldtbseek function returns success or failure. If the symbol table has been 
stripped from the object file or if it cannot seek to the symbol table, ldtbseek fails. 

See Also 
Idc1ose(3x), Idopen(3x), Idtbread(3x), Idfcn(5) 

3-554 Subroutines 



Name 

Syntax 

malloc{3x) 

malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator 

#include <malloc.h> 
char *malloc (size) 
unsigned size; 

void free (ptr) 
char *ptr; 

char *realloc (ptr, size) 
char *ptr; 
unsigned size; 

char *calloc (nelem, elsize) 
unsigned nelem, elsize; 

int mallopt (cmd, value) 
int cmd, value; 

struct mallinfo mallinfo (max) 
int max; 

Description 
The rnalloc and free subroutines provide a simple general-purpose memory 
allocation package, which runs considerably faster than the rnal1oc(3) package. It 
is found in the library rna 11 0 c, and is loaded if the option -lrna 11 0 c is used with 
cc(1) or Id(1). 

The rnalloc subroutine returns a pointer to a block of at least size bytes suitably 
aligned for any use. 

The argument to free is a pointer to a block previously allocated by rnalloc. 
After free is performed, this space is made available for further allocation, and its 
contents have been destroyed. See rnal10pt below for a way to change this 
behavior. 

Undefined results will occur if the space assigned by rnalloc is overrun or if some 
random number is handed to free. 

The realloc subroutine changes the size of the block pointed to by ptT to size 
bytes and returns a pointer to the (possibly moved) block. The contents will be 
unchanged up to the lesser of the new and old sizes. 

The calloc subroutine allocates space for an array of nelem elements of size elsize. 
The space is initialized to zeros. 

The rnallopt subroutine provides for control over the allocation algorithm. The 
available values for cmd are: 

M_MXF AST Set max/ast to value . The algorithm allocates all blocks below the size 
of maxfast in large groups and then doles them out very quickly. The 
default value for max/ast is O. 

M_NLBLKS Set numlblks to value . The above mentioned large groups each contain 

Subroutines 3-555 



malloc(3x) 

numlblks blocks. The numlblks must be greater than O. The default 
value for numlblks is 100. 

M_ GRAIN Set grain to value . The sizes of all blocks smaller than maxfast are 
considered to be rounded up to the nearest multiple of grain . The 
grain must be greater than O. The default value of grain is the 
smallest number of bytes which will allow alignment of any data type. 
Value will be rounded up to a multiple of the default when grain is 
set. 

M_KEEP Preserve data in a freed block until the next malloc, realloc, or 
calloc. This option is provided only for compatibility with the old 
version of malloc and is not recommended. 

These values are defined in the malloc.h header file. 

The mallopt subroutine may be called repeatedly, but may not be called after the 
first small block is allocated. 

The mallinfo subroutine provides information describing space usage. It returns 
the following structure: 

struct mall info 
int arena; 1* total space in arena *1 
int ordblks; /* number of ordinary blocks */ 
int smblks; 1* number of small blocks */ 
int hblkhd; 1* space in holding block headers */ 

int hblks; /* number of holding blocks */ 
int usmblks; /* space in small blocks in use */ 
int fsmblks; /* space in free small blocks *1 
int uordblks; /* space in ordinary blocks in use */ 
int fordblks; /* space in free ordinary blocks */ 
int keepcost; /* space penalty if keep option */ 

/* is used */ 

This structure is defined in the malloc.h header file. 

Each of the allocation routines returns a pointer to space suitably aligned (after 
possible pointer coercion) for storage of any type of object. 

Restrictions 
This package usually uses more data space than malloc(3). 
The code size is also bigger than malloc(3). 
Note that unlike malloc(3), this package does not preserve the contents of a block 
when it is freed, unless the M_KEEP option of mallopt is used. 
Undocumented features of malloc(3) have not been duplicated. 

3-556 Subroutines 



malloc(3x) 

Return Value 
The malloc, realloc, and calloc subroutines return a NULL pointer if there 
is not enough available memory. When realloc returns NULL, the block pointed 
to by ptr is left intact. If mallopt is called after any allocation or if cmd or value 
are invalid, nonzero is returned. Otherwise, it returns zero. 

See Also 
brk(2), malloc(3) 

Subroutines 3-557 



;C nlist (3x) 

Name 

Syntax 

nlist - get entries from name list 

#include <nlist.h> 

nlist(fllename, nl) 
char *fiIename; 
struct nlist nl[]; 

cc ••• -Imld 

Description 
The n 1 i s t subroutine examines the name list in the given executable output file and 
selectively extracts a list of values. The name list consists of an array of structures 
containing names, types and values. The list is terminated with a null name. Each 
name is looked up in the name list of the file. If the name is found, the type and 
value of the name are inserted in the next two fields. If the name is not found, both 
entries are set to O. For the structure declaration, see lusrlincludelnlist.h. 

This subroutine is useful for examining the system name list kept in the file Ivmunix. 
In this way programs can obtain system addresses that are up to date. 

Diagnostics 
If the file cannot be found or if it is not a valid namelist -1 is returned; otherwise, the 
number of unfound namelist entries is returned. 

The type entry is set to 0 if the symbol is not found. 

See Also 
a.out(5) 

3-558 Subroutines 



Name 

Syntax 

plot(3x} 

openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl, box, 
color, dot - graphics interface 

openplO 

eras eO 

label(s) 
char s[]; 

line(xl, yl, x2, y2) 

circle(x, y, r) 

arc(x, y, xO, yO, xl, yl) 

move(x, y) 

cont(x, y) 

point(x, y) 

Iinemod(s) 
char s[]; 

space(xO, yO, xl, yl) 

c1oseplO 

box(xO, xl, yO, yl) 

color(c) 

dotO 

Description 
These subroutines generate graphic output in a device-independent manner. See 
plot(5) for a description of their effect. The openpl subroutine precedes the other 
subroutines as it opens the device for writing. The closepl subroutine flushes the 
output. The box, co1or, and dot routines are used by the Ivp16 and hp7475a 
plotters only. 

String arguments to label and linemod are null-terminated and do not contain 
newlines. 

Many of these functions have additional options for different output devices. They 
are accessed by the ld(l) options as follows: 

-lplot device-independent graphics stream on standard output for 
plot(1g) filters 

-lplotaed 

-lplotbg 

-lplotdumb 

-lplotgigi 

ABD 512 color graphics terminal 

BBN bitgraph graphics terminai 

dumb terminals without cursor addressing or line printers 

gigi graphics terminal 

Subroutines 3-559 



plot (3x) 

-Iplotgrn 

-lplot2648 

-lplot7221 

-Iplotimagen 

-1300 

-1300s 

-1450 

-14013 

-14014 

-lIvpl6 

See Also 

grn files 

HP 2648 graphics tenninal 

HP 7221 graphics tenninal 

Imagen laser printer (default 240 DPI resolution) 

GSI 300 tenninal 

GSI 300S tenninal 

DASI 450 tenninal 

Tektronix 4013 tenninal 

Tektronix 4014 tenninal 

DEC LVP16 and HP7475A plotters 

graph(lg), plot(1g), plot(5) 

3-560 Subroutines 

( 



Name 

Syntax 

ranhash (3x) RI 

ranhashinit, ranhash, ranlookup - access routine for the symbol table definition file in 
archives 

#include <ar.h> 

int ranhashinit(pran, pstr, size) 
struct ranlib *pran; 
char *pstr; 
int size; 

ranhash(name) 
char *name; 

struct ranlib *ranhash(name) 
char *name; 

Description 
The function ranhashini t initializes static information for future use by 
ranhash and ranlookup. The argument pran points to an array of ranlib 
structures. The argument pstr points to the corresponding ranlib string table (these 
are only used by ranlookup). The argument size size is the size of the hash table 
and should be a power of 2. If the size is not a power of 2, a 1 is returned; otherwise, 
a 0 is returned. 

The function ranhash returns a hash number given a name. It uses a multiplicative 
hashing algorithm and the size argument to ranhashini t. 

The ranlookup function looks up name in the ranlib table specified by ranhashinit. 
It uses the ranhash routine as a starting point. Then, it does a rehash from there. 
This routine returns a pointer to a valid ranlib entry on a match. If no matches are 
found (the "emptiness" can be inferred if the ran_off field is zero), the empty ranlib 
structure hash table should be sparse. This routine does not expect to run out of 
places to look in the table. For example, if you collide on all entries in the table, an 
error is printed tostderr and a zero is returned. 

See Also 
ar(l), ar(5) 

Subroutines 3-561 



rcmd(3x) 

Name 

Syntax 

rcmd, rresvport, ruserok - routines for returning a stream to a remote command 

rem = rcmd(ahost, inport, [oeuser, remuser, emd, fd2p); 
char **ahost; 
u _short inport; 
char *[oeuser, *remuser, *emd; 
int *fd2p; 

s = rresvport(port); 
int *port; 

ruserok(rhost, superuser, ruser, [user) 
char *rhost; 
int superuser; 
char *ruser, *luser; 

Description 
The rcmd subroutine is used by the superuser to execute a command on a remote 
machine using an authentication scheme based on reserved port numbers. The 
rresvport subroutine is a routine that returns a descriptor to a socket with an 
address in the privileged port space. The ruserok subroutine is a routine used by 
servers to authenticate clients requesting service with rcmd. All three functions are 
present in the same file and are used by the rshd(8c) server (among others). 

The rcmd subroutine looks up the host *ahost using gethostbyname(3n), 
returning -1 if the host does not exist. For further information, see 
gethostent(3n). Otherwise *ahost is set to the standard name of the host and a 
connection is established to a server residing at the well-known Internet port inport. 

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller and 
given to the remote command as stdin and stdout. If fd2p is nonzero, then an 
auxiliary channel to a control process will be set up, and a descriptor for it will be 
placed in *fd2p. The control process will return diagnostic output from the 
command (unit 2) on this channel, and will also accept bytes on this channel as being 
UNIX signal numbers, to be forwarded to the process group of the command. If fd2p 
is 0, then the stderr (unit 2 of the remote command) will be made the same as the 
stdout and no provision is made for sending arbitrary signals to the remote process, 
although you may be able to get its attention by using out-of-band data. 

The protocol is described in detail in rshd(8c). 

The rresvport subroutine is used to obtain a socket with a privileged address 
bound to it. This socket is suitable for use by rcmd and several other routines. 
Privileged addresses consist of a port in the range 0 to 1023. Only the superuser is 
allowed to bind an address of this sort to a socket. 

The ruserok subroutine takes a remote host's name, as returned by a 
gethostent(~n) routine, two user names and a flag indicating if the local user's 
name is the sqperuser. It then checks the files / etc/hosts. equi v and. rhosts ( 
in the user's home directory to see if the request for service is allowed. A 1 is 
returned if the machine name is listed in the h 0 s t s . e qu i v file, or the host and 

3-562 Subroutines 



rcmd(3x) 

remote user name are found in the. rhosts file. Otherwise ruserok returns-1. 
If the superuser flag is 1, the checking of the hosts. equi v file is bypassed. 

See Also 
rlogin(lc), rsh(lc), gethostent(3n), rexec(3x), rexecd(8c), rlogind(8c), rshd(8c) 

Subroutines 3-563 



rexec(3x) 

Name 

Syntax 

rexec - return stream to a remote command 

rem = rexec(ahost, in port, user, passwd, cmd, fd2p); 
char **ahost; 
u short inport; 
char *user, *passwd, *cmd; 
int *fd2p; 

Description 
The rexec subroutine looks up the host *ahost using gethostbynarne, returning 
-1 if the host does not exist. For further information, see gethostent(3n). 
Otherwise *ahost is set to the standard name of the host. If a username and 
password are both specified, then these are used to authenticate to the foreign host. If 
all this fails, the user is prompted for the information. 

The port in port specifies which well-known DARPA Internet port to use for the 
connection; it will normally be the value returned from the call 
"getservbyname("exec", "tcp")". For further information, see getservent(3n). 
The protocol for connection is described in detail in rexecd(8c). 

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller and 
given to the remote command as stdin and stdout. If fd2p is nonzero, then an 
auxiliary channel to a control process will be set up, and a descriptor for it will be 
placed in *fd2p. The control process will return diagnostic output from the 
command (unit 2) on this channel and will also accept bytes on this channel as being 
UNIX signal numbers, to be forwarded to the process group of the command. If fd2p 
is 0, then the stderr (unit 2 of the remote command) will be made the same as the 
stdout and no provision is made for sending arbitrary signals to the remote process, 
although you may be able to get its attention by using out-of-band data. 

See Also 
gethostent(3n), getservent(3n), rcmd(3x), rexecd(8c) 

3-564 Subroutines 



Name 

termcap (3x) 

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent operation 
routines 

Syntax 
char PC; 
char *BC; 
char *UP; 
short ospeed; 

tgetent(bp, name) 
char *bp, *name; 

tgetnum(id) 
char *id; 

tgetflag(id) 
char *id; 

char * 
tgetstr(id, area) 
char *id, **area; 

char * 
tgoto(cm, destcoi, destline) 
char *cm; 

tputs(cp, affcnt, outc) 
register char *cp; 
int affcnt; 
int (*outc)(); 

Description 
These functions extract and use capabilities from the terminal capability data base 
termcap(5). These are low level routines; see curses(3x) for a higher level 
package. 

The tgetent function extracts the entry for terminal name into the buffer at bp. 
The bp should be a character buffer of size 1024 and must be retained through all 

. subsequent calls to tgetnum, tgetflag, and tgetstr. The tgetent 
function returns -1 if it cannot open the termcap file, 0 if the terminal name given 
does not have an entry, and 1 if all goes well. It will look in the environment for a 
TERMCAP variable. If found, and the value does not begin with a slash, and the 
terminal type name is the same as the environment string TERM, the TERMCAP 
string is used instead of reading the term cap file. If it does begin with a slash, the 
string is used as a pathname rather than / etc/termcap. This can speed up entry 
into programs that call tgetent, as well as to help debug new terminal 
descriptions or to make one for your terminal if you cannot write the file 
/etc/termcap. 

The tgetnum function gets the numeric value of capability id, returning -1 if is not 
given for the terminal. The tgetflag returns 1 if the specified capability is present 
in the terminal's entry, 0 if it is not. The tgetstr function gets the string value of 
capability id, placing it in the buffer at area, advancing the area pointer. It decodes 

Subroutines 3-565 



term cap (3x) 

Files 

the abbreviations for this field described in termcap(5), except for cursor 
addressing and padding information. 

The tgoto function returns a cursor addressing string decoded from em to go to 
column destcol in line destline. It uses the external variables UP (from the up 
capability) and BC (if be is given rather than bs) if necessary to avoid placing \0, AD 
or A@ in the returned string. Programs that call tgoto should be sure to turn off 
the XTABS bites), because tgoto may now output a tab. Note that programs using 
termcap should in general turn off XTABS anyway, because some terminals use 
control I for other functions, such as nondestructive space. If a % sequence is given 
that is not understood, then tgoto returns "OOPS". 

The tputs function decodes the leading padding information ofthe string cp; affcnt 
gives the number of lines affected by the operation, or I if this is not applicable, outc 
is a routine that is called with each character in turn. The external variable ospeed 
should contain the output speed of the terminal as encoded by s t t y(3). The 
external variable PC should contain a pad character to be used (from the pc 
capability) if a null (A@) is inappropriate. 

/usr/lib/libtermcap.a -ltermcap library 
/etc/termcap data base 

See Also 
ex(l), curses(3x), termcap(5) 

3-566 Subroutines 



XlOpen Transport Interface Routines (3xti) 

Insert tabbed divider here. 
Then discard this sheet. 





intro (3xti) 

Name 
intro - introduction to the XlOpen Transport Interface (XTI) 

Description 
The X/Open Transport Interface defines a transport service interface that is 
independent of any specific transport provider. The interface is provided by way of a 
set of library functions for the C programming language. 

Transport Providers 
The transport layer can comprise one or more transport providers at the same time. 
The transport provider identifier parameter passed to the t _ open () function 
determines the required transport provider. 

Transport Endpoints 
A transport endpoint specifies a communication path between a transport user and a 
specific transport provider, which is identified by a local file descriptor (fd). When a 
user opens a transport provider identifier, a local file descriptor fd is returned that 
identifies the transport endpoint. 

Synchronizing Endpoints 
One process can simultaneously open severalfds. In synchronous mode, however the 
process must manage the different actions of the associated transport connections 
sequentially. Conversely, several processes can share the samefd (by fork () or 
dup () operations) but they have to synchronize themselves so as not to issue a 
function that is unsuitable to the current state of the transport endpoint. 

Modes Of Service 
The transport service interface supports two modes of service: connection mode and 
connectionless mode. A single transport endpoint cannot support both modes of 
service simultaneously. 

The connection-mode transport service is circuit-oriented and enables data to be 
transferred over an established connection in a reliable, sequential manner. In 
contrast, the connectionless-mode transport service is message-oriented and supports 
data transfer in self-contained units with no logical relationship required among 
multiple units. 

Error Handling 
Two levels of error are defined for the transport interface. The first is the library error 
level. Each library function has one or more error returns. A return of -1 indicates a 
failure. An external integer, t_errno, which is defined in the header file <xti.h>, 
holds the specific error number when such a failure occurs. This value is set when 
errors occur but is not cleared on successful library calls, so it should be tested only 
after an error has been indicated. If implemented, a diagnostic function, t _error, 
prints out information on the current transport error. The state of the transport 
provider may change if a transport error occurs. 

Subroutines 3-567 



intro (3xti) 

The second level of error is the operating system service routine level. A special 
library level error number has been defined called [TSYSERR], which is generated 
by each library function when the operating system service routine fails or some 
general error occurs. When a function sets t_errno to [TSYSERR], the specific 
system error can be accessed through the external variable errno. 

Key For Parameter Arrays 
Each XTI function description, includes an array that summarizes the content of the 
input and output parameter. The key is as follows: 

Key Description 

x The parameter value is meaningful (input 
parameter must be set before the call and output 
parameter must be read after the call). 

(x) The content of the object pointed by the x pointer 
is meaningful. 

? The parameter value is meaningful, but the 
parameter is oprtional. 

(?) The content of the object pointed by the? pointer 
is optional. 

/ The parameter value is meaningless. 
= After the call, the parameter keeps the same value 

as before the call. 

3-568 Subroutines 



Name 

Syntax 

caccept - accept a connect request 

#include <xti.h> 

int t _ accept(fd, resfd, call) 
intfd; 
int resfd; 
struct t_call *call; 

t_ accept (3xti ) 

Arguments 

fd Identifies the local transport endpoint where the connect indication 
arrived. 

resfd 

call 

Description 

Specifies the local transport endpoint where the connection is to be 
established. 

Contains information required by the transport provider to complete the 
connection. 

The Call argument points to a t_call structure that contains the following 
members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

In call, the members have the following meanings: 

addr Specifies the address of the caller. 

opt 

udata 

sequence 

Indicates any protocol-specific parameters associated with 
the connection. 

Points to any user data to be returned to the caller. 

Is the value returned by t_listen () that uniquely 
associates the response with a previously received connect 
indication. 

A transport user issues this function to accept a connect request. A transport user can 
accept a connection on either the same, or on a different local transport endpoint than 
the one on which the connect indication arrived. Before the connection can be 
accepted on the same endpoint (resfd==fd), the user must have responded to any 
previous connect indications received on that transport endpoint by means of 
t accept () or t snddis (). Otherwise, t accept () fails and sets t errno 
to-[TBADF]. - - -

Subroutines 3-569 



t_accept (3xti) 

If a different transport endpoint is specified (resfd!=fd), the endpoint must be bound 
to a protocol address (if it is the same, q/en must be set to 0) and must be in the 
T_IDLE state before the t_accept () is issued. 

For both types of endpoints, t_accept () fails and sets t_errno to [TLOOK] if 
there are connection indications, (for example, connect or disconnect) waiting to be 
received on that endpoint. 

The values of parameters specified by opt and the syntax of those values are 
protocol-specific. The udata argument enables the called transport user to send user 
data to the caller and the amount of user data must not exceed the limits supported by 
the transport provider as returned in the connect field of the info argument of 
t open () or t getinfo (). If the len field of udata is zero, no data is sent to 
the caller. -

All the maxlen fields are meaningless. 

Parameters Before Call After Call 

fd x / 
resfd x / 
call->addr.maxlen / / 
call->addr.len x / 
call->addr.buf ?(?) / 
call->opt.maxlen / / 
call->optJen x / 
call->opt.buf ?(?) / 
call->udata.maxlen / / 
call->udata.len x / 
call->udata.buf ?(?) / 
call->sequence x / 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] The file descriptor fd or resfd does not refer to a transport 
endpoint, or the user is illegally accepting a connection on 
the same transport endpoint on which the connect indication 
arrived. 

[TOUTSTATE] 

[TACCES] 

[TBADOPT] 

3-570 Subroutines 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd, or the transport endpoint 
referred to by resfd is not in the appropriate state. 

The user does not have permission to accept a connection on 
the responding transport endpoint or to use the specified 
options. 

The specified options were in an incorrect format or 
contained illegal information. 

( 



[TBADDATA] 

[TBADADDR] 

[TBADSEQ] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

t_8ccept (3xti) 

The specific amount of user data was not within the bounds 
allowed by the transport provider. 

The specified protocol address was in an incorrect format or 
contained illegal information. 

The specified sequence number was invalid. 

An asynchronous event has occurred on the transport 
endpoint referenced by fd and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

cconnect(3xti), cgetstate(3xti), Clisten(3xti), copen(3xti) , coptmgmt(3xti), 
crcvconnect(3xti) 

Subroutines 3-571 



Name 

Syntax 

Calloc - allocate a library structure 

#include <xti.h> 

char *t alloc(fd, struct type, fields) 
intfd; - -
int struct type; 
intfields; 

Arguments 

fd Refers to the transport endpoint through which the newly allocated 
structure is passed. 

struct _type Specifies the allocated structure where each structure can subsequently be 
used as an argument to one or more transport functions. 

fields 

Description 

The struct _type argument must specify one of the following: 

T BIND STR 
T CALL STR - -
T OPTMGMT STR 
T DIS STR 
T UNITDATA STR - -
T UDERROR STR - -
T INFO STR 

struct 
struct 
struct 
struct 
struct 
struct 
struct 

t bind 
t call 
t_optmgmt 
t discon 
t unitdata 
t uderr 
Unfo 

Specifies which buffers to allocate, where the argument is the bitwise-OR 
of any of the following: 

T ADDR The addr field of the t bind, t call, t unitdata, 
or t_uderr structures (Size obtained from info _addr). 

T OPT The opt field of the t_optmgmt, t_call, t_unitdata, or 
t_uderr structures (size obtained from info_options). 

T UDA TA The udata field of the t _call, t _ discon, or t _ uderr 
structures (for T_CALL_STR, size is the maximum value 
of info connect and info discon; for T_DIS_STR, size is 
the value of info discon;for T_UNITDATA_STR, size is 
the value of info =tsdu). 

TALL All relevant fields of the given structure. 

The t_alloc () function dynamically allocates memory for the various transport 
function argument structures as listed under the ARGUMENTS section. This function 
allocates memory for the specified structure and also allocates memory for buffers 
referenced by the structure. 

Each of the accepted structures, except t _ in f 0 ( ) , contains at least one field of type 
struct netbuf For each field of this type, the user can specify that the buffer for that 
field should be allocated as well. The length of the buffer allocated is based on the 

3-572 Subroutines 



size infonnation returned in the t_open () or t_getinfo () . 

For each field specified infields, t alloc () allocates memory for the buffer 
associated with the field and initializes the len field to zero and the buf pointer and 
maxlen field accordingly. Because the length of the buffer allocated is based on the 
same size infonnation that is returned to the user on t open () and 
t_getinfo () ,fd must refer to the transport endpoint through which the newly 
allocated structure will be passed. In this way, the appropriate size infonnation can be 
accessed. If the size value associated with any specified field is -lor -2, 
t alloc () will be unable to detennine the size of the buffer to allocate and will 
fail, setting t_errno to [TSYSERR] and errno to [EINVAL]. For any field not 
specified infields, bufwill be set to NULL and maxlen will be set to zero. 

Use of t_alloc () to allocate structures helps to ensure the compatibility of user 
programs with future releases of the transport interface functions. 

Parameters Before Call After Call 

fd x / 
strucctype x / 
fields x / 

Return Value 
Upon successful completion, t_alloc () returns a pointer to the newly allocated 
structure. On failure, NULL is returned. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TNOTSUPPORT] This function is not supported by the current implementation 
ofXTI. 

[TSYSERR] A system error has occurred during execution of this 
function. 

[TNOSTRUCTYPE] An unsupported struct_type has been requested. 

See Also 
cfree(3xti), Cgetinfo(3xti), copen(3xti) 

Subroutines 3-573 



Name 

Syntax 

Cbind - bind an address to a transport endpoint 

#include <xti.h> 

int t_bind(fd, req, ret) 
intJd; 
struct t_bind *req; 
struct t_bind *ret; 

Arguments 

Jd Refers to the transport endpoint which will be associated with a protocol 
address. 

req Points to a t_bind structure containing the following members: 

struct netbuf addr; 
unsigned qlen; 

The addr field of the t _bind () structure specifies a protocol address, 
and the qlen field is used to indicate the maximum number of 
outstanding connect indications. 

ret Points to a t _bind () structure. See the req argument. 

Description 
This function associates a protocol address with the transport endpoint specified by Jd 
and activates the transport endpoint. In connection mode, the transport provider can 
begin enqueuing incoming connect indications or servicing a connection request on 
the transport endpoint. In connectionless mode, the transport user can send or receive 
data units through the transport endpoint. 

Parameters Before Call After Call 

fd x / 
req->addr.maxlen / / 
req->addr.len x>=O / 
req->addr.buf x(x) / 
req->qlen x>=O / 
ret->addr.maxlen x / 
ret->addr.len / x 
ret->addr.buf x (x) 
ret->qlen / x>=O 

The req argument is used to request that an address, represented by the netbuf 
structure, be bound to the given transport endpoint. The len specifies the number of 
bytes in the address, and buJ points to the address buffer. The maxlen has no meaning 
for the req argument. On return, ret contains the address that the transport provider 
actually bound to the transport endpoint; this may be different from the address 
specified by the user in req. In ret, the user specifies maxlen, which is the maximum 

3-574 Subroutines 

( 

\ 



size of the address buffer, and buf, which points to the buffer where the address is to 
be placed. On return, len specifies the number of bytes in the bound address, and buf 
points to the bound address. If maxlen is not large enough to hold the returned 
address, an error results. 

If the requested address is not available, or if no address is specified in req (the len 
field of addr in req is zero), the transport provider assigns an appropriate address to 
be bound only if automatic generation of an address is supported and returns that 
address in the addr field of ret. The user can compare the addresses in req and ret to 
determine whether the transport provider bound the transport endpoint to a different 
address than that requested. In any XTI implementation, if the t bind () function 
does not allocate a local transport address, then the returned address is always the 
same as the input address and the structure req->addr must be filled by the user 
before the call. If the local address is not furnished for the call (req->addr.len=O), 
the t_bind () returns -1 with t_errno set to [TNOADDR]. 

The req may be NULL if the user does not wish to specify an address to be bound. 
Here, the value of qlen is assumed to be zero, and the transport provider must assign 
an address to the transport endpoint. Similarly, ret may be NULL if the user does not 
care what address was bound by the provider and is not interested in the negotiated 
value of qlen. It is valid to set req and ret to NULL for the same call, in which case 
the provider chooses the address to bind to the transport endpoint and does not return 
the information to the user. 

The qlen field has meaning only when initializing a connection-mode service. It 
specifies the number of outstanding connect indications the transport provider should 
support for the given transport endpoint. An outstanding connect indication is one 
that has been passed to the transport user by the transport provider but has not been 
accepted or rejected. A value of qlen greater than zero is meaningful only when 
issued by a passive transport user that expects other users to call it. The value of qlen 
will be negotiated by the transport provider and may be changed if the transport 
provider cannot support the specified number of outstanding connect indications. On 
return, the qlen field in ret contains the negotiated value. 

This function allows more than one transport endpoint to be bound to the same 
protocol address. The transport provider, however, must support this capability also, 
it is not allowable to bind more than one protocol address to the same transport 
endpoint. If a user binds more than one transport endpoint to the same protocol 
address, only one endpoint can be used to listen for connect indications associated 
with the protocol address. 

In other words, only one t_bind () for a given protocol address can specify a value 
of qlen greater than zero. In this way, the transport provider can identify which 
transport endpoint should be notified of an incoming connect indication. If a user 
attempts to bind a protocol address to a second transport endpoint with a value of 
qlen greater than zero, the transport provider assigns another address to be bound to 
that endpoint or, if automatic generation of addresses is not supported, returns -1 and 
sets t_errno to [TADDRBUSY]. 

When a user accepts a connection on the transport endpoint that is being used as the 
listening endpoint, the bound protocol address will be found to be busy for the 
duration of the connection, until a t unbind () or t close () call has been 
issued. No other transport endpoints may be bound for listening on that same 
protocol address while that initial listening endpoint is active (in the data transfer 
phase or in the T _IDLE state). This prevents more than one transport endpoint bound 

Subroutines 3-575 



to the same protocol address from accepting connect indications. 

Return Value 
Upon successful completion, t_bind () returns 0 and -Ion failure, and t_errno is 
set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TBADADDR] 

[TNOADDR] 

[TACCES] 

[TBUFOVFL W] 

[TSYSERR] 

[TADDRBUSY] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence. 

The specified protocol address was in an incorrect format or 
contained illegal information. 

The transport provider could not allocate an address. 

The user does not have permission to use the specified 
address. 

The number of bytes allowed for an incoming argument is 
not sufficient to store the value of that argument. The 
provider's state changes to T_IDLE and the information to 
be returned in ret is discarded. 

A system error has occurred during execution of this 
function. 

The address requested is in use and the transport provider 
cannot be allocate a new address. 

Calloc(3xti), Cc1ose(3xti), copen(3xti), Coptmgmt(3xti), Cunbind(3xti) 

3-576 Subroutines 

( 



Name 

Syntax 

cclose - close a transport endpoint 

#include <xti.h> 

int t close fd) 
intjd; 

t_close (3xti) 

Arguments 

fd Identifies the local transport endpoint. 

Description 
The t _ c los e () function informs the transport provider that the user is finished 
with the transport endpoint specified by fd and frees any local library resources 
associated with the endpoint. In addition, t _ c los e () closes the file associated with 
the transport endpoint. 

The t_close () function should be called from the T_UNBND state. However, this 
function does not check state information, so it can be called from any state to close 
a transport endpoint. If this occurs, the local library resources associated with the 
endpoint are freed automatically. In addition, close () is issued for that file 
descriptor; the t close () abortives if there are no other descriptors in this or in 
another process that references the transport endpoint and breaks the transport 
connection that may be associated with that endpoint. 

Parameters Before Call After Call 

fd x / 

Return Value 
The t close returns 0 on success and -1 on failure, and t errno is set to indicate 
the error. -

Diagnostics 
On failure, t _ errno is set to the following: 

The specified file descriptor does not refer to a transport endpoint. 

See Also 
cgetstate(3xti), copen(3xti), Cunbind(3xti) 

Subroutines 3-577 



t_connect (3xti) 

Name 

Syntax 

cconnect - establish a connection with another transport user 

#include <xti.h> 

int t connect(fd, sndeall, reveal!) 
intjd; 
struct t call *sndeall; 
struct (call *reveall; 

Arguments 

fd Identifies the local transport endpoint where communications is 
established. 

sndeall 

reveall 

Description 

Specifies information needed by the transport provider to establish a 
connection. 

Specifies information that is associated with the newly established 
connection. 

The sndeall and reveall point to a t_call structure that contains the 
following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

This function enables a transport user to request a connection to the specified 
destination transport user. This function can be issued only in the T_IDLE state. 

In sndeall, the argument addr specifies the protocol address of the destination 
transport user. The opt argument presents any protocol-specific information that 
might be needed by the transport provider. The udata argument points to optional 
user data that may be passed to the destination transport user during connection 
establishment. The sequence argument has no meaning for this function. 

On return in reveall, addr argument returns the protocol address associated with the 
responding transport endpoint. The opt argument presents any protocol-specific 
information associated with the connection. The udata argument points to optional 
user data that may be returned by the destination transport user during connection 
establishment. The sequence argument has no meaning for this function. 

3-578 Subroutines 

( 

( 



t_connect (3xti) 

The opt argument pennits users to define the options that can be passed to the 
transport provider. These options are specific to the underlying protocol of the 
transport provider. The user can choose not to negotiate protocol options by setting 
the len field of opt to zero. In this case, the provider may use default options. 

Parameters Before Call After Call 

resfd x / 
sndcall->addr .maxlen / / 
sndcall->addr.len x / 
sndcall->addr .buf x(x) I 
sndcall->opt.maxlen I I 
sndcall->opt.len x I 
sndcall->opt.buf ?(?) / 
sndcall->udata.maxlen / / 
sndcall->udata.len x / 
sndcall->udata.buf ?(?) I 
sndcall->sequence I / 
rcvcall->addr.maxlen x / 
rcvcall->addr .len I x 
rcvcall->addr. buf x (x) 
rcvcall->opt.maxlen x / 
rcvcall->opt.len / x 
rcvcall->opt.buf x (x) 
rcvcall->udata.maxlen x / 
rcvcall->udata.len / x 
rcvcall->udata.buf x (?) 
rcvcall->sequence / I 

If used, sndcall->opt.buf structure must point to the corresponding options structures 
(isoco _options, isocl_ options or tcp _options). The maxlen and buj fields of the 
netbuf structure pointed by rcvcalladdr and rcvcall->opt must be set before the call. 

The udata argument enables the caller to pass user data to the destination transport 
and receive user data from the destination user during connection establishment. 
However, the amount of user data must not exceed the limits supported by the 
transport provider as returned in the connect field of the info argument of 
t _open ( ). If the len of udata is zero in sndcall, no data are sent to the destination 
transport user. 

On return, the addr, opt, and udata fields of rcvcall updates to reflect values 
associated with the connection. Thus, the maxlen field of each argument must be set 
before issuing this function to indicate the maximum size of the buffer for each. 
However, rcvcall can be NULL, in which case no infonnation is given to the user on 
return from t _connect ( ) . 

By default, t connect () executes in synchronous mode and waits for the 
destination user's response before returning control to the local user. A successful 
return (that is, a return value of zero) indicates that the requested connection has been 
established. However, if O_NONBLOCK is set by means of t_open () or 
fcntl (), t_connect () executes in asynchronous mode. In this case, the call 
waits for the remote user's response but returns control immediately to the local user 
and returns -1 with t_errno set to [TNODATA] to indicate that the connection has 

Subroutines 3-579 



t_ connect (3xti) 

not yet been established. In this way, the function simply initiates the connection 
establishment procedure by sending a connect request to the destination transport 
user. The t_rcvconnect () function is used in conjunction with t_connect () 
to determine the status of the requested connection. 

Return Value 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TOUTSTATE] 

[TNODATA] 

[TACCES] 

[TBADOPT] 

[TBADADDR] 

[TBADDATA] 

[TBUFOVFL W] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The function was issued in the wrong sequence. 

O_NONBLOCK was set, so the function successfully 
initiated the connection establishment procedure but did not 
wait for a response from the remote user. 

The user does not have permission to use the specified 
address or options. 

The specified protocol options were in an incorrect format or 
contained illegal information. 

The specified protocol address was in an incorrect format or 
contained illegal information. 

The amount of user data specified was not within the bounds 
allowed by the transport provider. 

The number of bytes allocated for an incoming argument is 
not sufficient to store the value of that argument. If executed 
in synchronous mode, the provider's state, as seen by the 
user, changes to T_DATAXFER, and the connect indication 
information to be returned in rcvcall is discarded. 

An asynchronous event has occurred on this transport 
endpoint and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

caccept(3xti), Calloc(3xti), Cgetinfo(3xti), clisten(3xti), copen(3xti), 
coptmgmt(3xti), crcvconnect(3xti) 

3-580 Subroutines 

( 

\ 



Name 

Syntax 

Cerror - produces error message 

#include <xti.h> 

int t_error(errmsg) 
char *errmsg; 
extern char *t errlist[j; 
extern int t _ nerr; 

t_error (3xti) 

Arguments 

errmsg Is a user-supplied error message that gives context to the error. 

Description 
The terror () function produces a message on the standard error output that 
describes the last error encountered during a call to a transport function. 

The terror () f\lnction prints the user-supplied error message followed by a 
colon and a standard error message for the current error defined in t _ errno. If 
t_errno is [TSYSERR], t_error () also prints a standard message for the current 
value contained in errno. 

To simplify variant formatting of messages, the array of message strings t_errlist is 
provided: t _ errno can be used as an index in this table to get the message string 
without the newline. The t nerr is the largest message number provided for in the 
t errlist table. -

The t_errno variable is set only when an error occurs and is not cleared on 
successful calls. 

Parameters Before Call After Call 

errmsg x / 

Examples 
If a t connect () function fails on transport endpointfd2 because a bad address 
was given, the following call may follow the failure: 

t_error ("t_connect failed on fd"): 

The diagnostic message to be printed would look like: 

t_connect failed on fd2: Incorrect transport address format 

where "Incorrect transport address format" identifies the specific error that occurred, 
and "Cconnect failed on fd2" tells the user which function failed on which transport 
endpoint. 

Subroutines 3-581 



t_ error (3xti) 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to the following: 

[TNOTSUPPORT] 

3-582 Subroutines 

This function is not supported by the current implementation 
ofXTI. 

! 

\ 



Name 

Syntax 

cfree - free a library structure 

#include <xti.h> 

int t Jree(ptr, struct Jype) 
char *ptr; 
int struct _type; 

Arguments 

ptr Points to one of the seven structure types described for t _ all 0 C () • 

struct _type Identifies the type of that structure, which must be one of the following: 

Description 

T BIND STR 
T CALL STR - -
T OPTMGMT STR 
T DIS STR 
T UNITDATA STR - -
T_UDERROR_STR 
T INFO STR 

struct t bind; 
struct C call 
struct t _ optmgmt 
struct t discon 
struct t unitdata 
struct t - uderr 
struct t-info 

Each of these structures is used as an argument to one or more transport 
functions. 

The t_free () function frees memory previously allocated by t_a11oc (). This 
function frees memory for the specified structure and also frees memory for buffers 
referenced by the structure. 

Parameters 

ptr 
strucCtype 

Before Call After Call 

x / 
x / 

The t _ free () function checks the addr, opt, and udata fields of the given structure 
(as appropriate) and free the buffers pointed to by the buJfield of the netbuf 
structure. If buJis NULL, t_free () does not attempt to free memory. After all 
buffers are freed, t free () frees the memory associated with the structure pointed 
to by ptr. -

Results are undefined if ptr or any of the buJ pointers points to a block of memory 
not previously allocated by t_a11oc () . 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Subroutines 3-583 



Diagnostics 
On failure, t_errno is set to one of the following: 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 
calloc(3xti) 

3-584 Subroutines 

This function is not supported by the current implementation 
ofXTI. 

A system error has occurred during execution of this 
function. 

( 



Name 

Syntax 

Cgetinfo - get protocol-specific service information 

#include <xti.h> 

int t~etinfo(fd, info) 
intfd; 
struct t_info *info; 

t_geti nfo (3xti ) 

Arguments 

fd Identifies the file descriptor that is associated with the underlying 
transport protocol from which the current characteristics are to be 
returned. 

info Specifies the structure that is used to return the same information 
returned by t_open (). Points to a tJnfo structure which contains the 
following members: 

long addr; /* max size of the transport protocol address */ 

long options; 

long tsdu; 

long etsdu; 

long connect; 

long discon; 

long servtype; 

/* max number of bytes of protocol-specific options */ 

/* max size of a transport service data unit (TSDU) */ 

/* max size of an expedited transport service data unit 
(ETSDU) */ 

/* max amount of data allowed on connection 
establishment functions * / 
/* max amount of data allowed on t snddis () and 
t_rcvdis () functions */ -

/* service type supported by the transport provider * / 

The values of the fields have the following meanings: 

addr A value greater than or equal to zero indicates the 
maximum size of a transport protocol address; a value of 
-1 specifies that there is no limit on the address size; and 
a value of -2 specifies that the transport provider does not 
provide user access to transport protocol addresses. 

options A value greater than or equal to zero indicates the 
maximum number of bytes of protocol-specific options 
supported by the provider; a value of -1 specifies that 
there is no limit on the option size and a value of -2 
specifies that the transport provider does not support user
settable options. 

tsdu A value greater than zero specifies the maximum size of a 
transport service data unit (TSDU); a value of zero 
specifies that the transport provider does not support the 
concept of TSDU, although it does support the sending of 

Subroutines 3-585 



t_geti nfo (3xti ) 

3-586 Subroutines 

etsdu 

connect 

discon 

servtype 

a data stream with no logical boundaries preserved across 
a connection; a value of -1 specifies that there is no limit 
on the size of a TSDU and a value of -2 specifies that the 
transfer of normal data is not supported by the transport 
provider. 

A value greater than zero specifies the maximum size of 
an expedited transport service data unit (ETSDU); a value 
of zero specifies that the transport provider does not 
support the concept of ETSDU, although it it does support 
the sending of an expedited data stream with no logical 
boundaries preserved across a connection; a value of -1 
specifies that there is no limit on the size of ETSDU; and 
a value of -2 specifies that the transfer of expedited data 
is not supported by the transport provider. 

A value greater than or equal to zero specifies the 
maximum amount of data that may be associated with 
connection establishment functions; a value of -1 specifies 
that there is no limit on the amount of data sent during 
connection establishment; and a value of -2 specifies that 
the transport provider does not allow data to be sent with 
connection establishment functions. 

A value greater than or equal to zero specifies the 
maximum amount of data that may be associated with the 
t_snddis () and t_rcvdis () functions; a value-l 
specifies that there is no limit on the amount of data sent 
with these abortive release functions; and a value of -2 
specifies that the transport provider does not allow data to 
be sent with the abortive release functions. 

This field specifies the service type supported by the 
transport provider, as described. 

If a transport user is concerned with protocol independence, the sizes 
may be accessed to determine how large the buffers must be to hold each 
piece of information. Alternatively, the t alloc () function can be 
used to allocate these buffers. An error results if a transport user exceeds 
the allowed data size on any function. The value of each field may 
change as a result of option negotiation, and t getinfo () enables a 
user to retrieve the current characteristics of the underlying transport 
protocol. 

The servtype field of info specifies one of the following values on return: 

T COTS The transport provider supports a connection-mode service 
but does not support the optional orderly release facility. 

T COTS ORD - - The transport provider supports a connection-mode service 
with the optional orderly release facility. 



Description 

t_geti nfo (3xti ) 

The transport provider supports a connectionless-mode 
service. For this service type, t open () returns -2 for 
ETSDU, connect and discon. 

This function returns the current characteristics of the underlying transport protocol 
associated with file descriptor fd. The info structure is used to return the same 
information returned by t open (). This function enables a transport user to access 
this information during any phase of communications. 

Parameters Before Call After Call 

fd x / 
info->addr / x 
info->options / x 
info->tsdu / x 
info->etsdu / x 
info->connect / x 
info->discon / x 
info->sertype / x 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

This function is not supported by the current implementation 
ofXTI. 

A system error has occurred during execution of this 
function. 

Calloc(3xti), copen(3xti) 

Subroutines 3-587 



t_getstate (3xti) 

Name 

Syntax 

Cgetstate - get the current state 

#include <xti.h> 

int t _getstatelfd) 
intfd; 

Arguments 

fd Identifies the local transport endpoint the current state is returned from. 

Description 
The t_getstate () function returns the current state of the transport provider 
associated with the transport endpoint specified by fd. 

Parameters Before Call After Call 

fd x / 

Return Value 
Upon successful completion, t_getstate () returns the current state. On failure, a 
value of -1 is returned, and t errno is set to indicate the error. The current state is 
one of the following: -

T UNBND Unbound 

T IDLE Idle 

T OUTCON Outgoing connection pending 

T INCON Incoming connection pending 

T DATAXFER Data transfer 

T OUTREL Outgoing orderly release (waiting for an orderly release indication) 

T INREL Incoming orderly release (waiting to send an orderly release 
request) 

If the provider is undergoing a state transition when t_getstate () is called, the 
function fails. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. This error may be returned when the fd has been 
previously closed or an erroneous number has been passed to 
the call. 

[TSTATECHNG] The transport provider is undergoing a transient state change. 

3-588 Subroutines 



[TNOTSUPPORT] 

[TSYSERR] 

See Also 
copen(3xti) 

t_getstate (3xti) 

This function is not supported by the current implementation 
of XTI. 

A system error has occurred during execution of this 
function. 

Subroutines 3-589 



t_listen (3xti) 

Name 

Syntax 

Clisten - listen for a connect request 

#include <xti.h> 

int t Jistenlfd, call) 
intfd; 
struct t_call *call; 

Arguments 

fd Identifies the local transport endpoint where the connect indication 
arrived. 

call Contains infonnation describing the connect indication. The call points 
to a t_call structure which contains the following members: 

Description 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

The members of the t_call structure have the following meanings: 

addr Returns the protocol address of the calling transport user. 

udata 

sequence 

Returns any user data sent by the caller on the connect 
request. 

Identifies the returned connect indication with a unique 
number. The value of sequence enables the user to listen 
for multiple connect indications before responding to any 
of them. 

Because this function returns values for the addr, opt, and udata fields of 
call, the maxlen field of each must be set before issuing the 
t_listen () to indicate the maximum size of the buffer for each. 

This function listens for a connect request from a calling transport user. The fd 
identifies the local transport endpoint where connect indications arrive. On return, 
call contains infonnation describing the connect indication. 

By default, t_listen executes in synchronous mode and waits for a connect 
indiction to arrive before returning to the user. However, if O_NONBLOCK is set by 
means of t open () or fcntl (), t listen () executes asynchronously, 
reducing to a poll for existing connect Indications. If none are available, it returns -1 
and sets t_errno () to [TNODATA]. 

3-590 Subroutines 

( 



t_listen (3xti) 

Parameters Before Call After Call 

fd x / 
call->addr.maxlen x / 
call->addr.1en / x 
ca1I->addr.buf x (x) 
call->opt.maxlen x / 
call->optJen / x 
call->opt. buf x (x) 
call->udata.maxlen x / 
call->udata.1en / x 
call->udata.buf x (?) 
call->sequence / x 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] 

[TOUTSTA TE] 

[TBADQLEN] 

[TBUFOVFLW] 

[TNODATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

The qlen of the endpoint referenced by fd is zero. 

The number of bytes allocated for an incoming argument is 
not sufficient to store the value of that argument. The 
provider's state, as seen by the user, changes to T_INCON, 
and the connect indication information to be returned in call 
is discarded. The value of sequence returned can be used to 
do a t_snddis (). 

O_NONBLOCK was set, but no connect indications had 
been queued. 

An asynchronous event has occurred on the transport 
endpoint and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

fcntl(2), caccept(3xti), calloc(3xti), Cbind(3xti), cconnect(3xti), copen(3xti), 
Coptmgmt(3xti), Crcvconnect(3xti) 

Subroutines 3-591 



Name 

Syntax 

Clook - look at the current event on a transport endpoint 

#include <xti.h> 

int tJookifd) 
intfd; 

Arguments 

fd Identifies the transport endpoint where the current event is returned. 

Description 
This function returns the current event on the transport endpoint specified by fd. This 
function enables a transport provider to notify a transport user of an asynchronous 
event when the user is issuing functions in synchronous mode. Certain events require 
immediate notification of the user and are indicated by a specific error, [TLOOK], on 
the current or next function to be executed. 

This function also enables a transport user to poll a transport endpoint periodically 
for asynchronous events. 

Parameters Before Call After Call 
:- . 

fd x / 

Return Value 
Upon successful completion, t _look () returns a value that indicates which of the 
allowable events has occurred or returns zero if no event exists. One of the following 
events is returned: 

T LISTEN 

T CONNECT 

T DATA 

T EXDATA 

T DISCONNECT 

T UDERR 

T ORDREL 

T GODATA 

T GOEXDATA 

Connection indication received 

Connect confirmation received 

Normal data received 

Expedited data received 

Disconnect receiveq 

Datagram error mdication 

Orderly release indication 

Flow control restrictions on normal data flow have 
been lifted. Normal data can be sent again. 

Flow control restrictions on expedited data flow 
have been lifted. Expedited data can be sent again. 

On failure, -1 is returned, and t_errno is set to indicate the error. 

3-592 Subroutines 



Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TSYSERR] A system error has occurred during execution of this 
function. 

See Also 
copen(3xti), Csnd(3xti), csndudata(3xti) 

Subroutines 3-593 



Name 

Syntax 

Copen - establish a transport endpoint 

#include <xti.h> 

#include <fcntI.h> 
int t_open(name, ojiag, info) 
char *name; 
int ojiag; 
struct t info *info; 

Arguments 

name Points to a transport provider identifier. 

ojiag Identifies any open flags as in open (). The ojiag argument is 
constructed from O_RDWR optionally ORed with O_NONBLOCK. 
These flags are defined by the header file <fcntl.h>. 

info Returns various default characteristics of the underlying transport 
protocol by setting fields in the info structure. This argument points to a 
t_info () structure that contains the following members: 

long addr /* max size of the transport protocol address */ 

long options /* max number of bytes of protocol specific options */ 

long tsdu /* max size of a transport service data unit (TSDU) */ 

long etsdu 

long connect 

long discon 

long servtype 

/* max size of expedited transport service data unit 
(ETSDU) */ 

/* max amount of data allowed on connection 
establishment functions */ 

/* max amount of data allowed on t snddis () and 
t _ rcvdi s () functions */ -

/* service type supported by the transport provider * / 
The values of the fields have the following meanings: 

3-594 Subroutines 

addr A value greater than or equal to zero indicates the 
maximum size of a transport protocol address; a 
value of -1 specifies that there is no limit on the 
address size; and a value of -2 specifies that the 
transport provider does not provide user access to 
transport protocol addresses. 

options A value greater than or equal to zero indicates the 
maximum number of bytes of protocol-specific 
options supported by the provider; a value of -1 
specifies that there is no limit on the option size; 
and a value of -2 specifies that the transport 
provider does not support user-settable options. 



tsdu 

etsdu 

connect 

discon 

servtype 

A value greater than zero specifies the maximum 
size of a transport service data unit (TSDU); a value 
of zero specifies that the transport provider does not 
support the concept of TSDU; although it does 
support the sending of a data stream with no logical 
boundaries preserved across a connection; a value of 
-1 specifies that there is no limit on the size of an 
ETSDU; and a value of -2 specifies that the transfer 
of normal data is not supported by the transport 
provider. 

A value greater than zero specifies the maximum 
size of an expedited transport service data unit 
(ETSDU); a value zero specifies that the transport 
provider does not support the concept of ETSDU, 
although it does support the sending of an expedited 
data stream with no logical boundaries preserved 
across a connection; a value of -1 specifies that 
there is no limit on the size of an ETSDU; and a 
value -2 specifies that the transfer of expedited data 
is not supported by the transport provider. 

A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with connection establishment functions; a value of 
-1 specifies that there is no limit on the amount of 
data sent during connection establishment; and a 
value of -2 specifies that the transport provider does 
not allow data to be sent with connection 
establishment functions. 

A value greater than or equal to zero specifies the 
maximum amount of data that may be associated 
with the t snddis () and t rcvdi$ () 
functions; a value of -1 specifies that there is no 
limit on the amount of data sent with these abortive 
release functions; and a -2 specifies that the 
transport provider does not allow data to be sent 
with abortive release functions. 

This field specifies the service type supported by the 
transport provider, as described. 

If a transport user is concerned with protocol independence, the sizes can be accessed 
to determine how large the buffers must be to hold each piece of information. 
Alternately, the t alloc () function may be used to allocate these buffers. An error 
will result if a transport user exceeds the allowed data size on any function. 

The servtype field of info specifies one of the following values on return. 

T COTS The transport provider supports a connection-mode 
service but does not support the optional orderly 
release facility. 

T _COTS _ ORD The transport provider supports a connection-mode 
service with the optional orderly release facility. 

Subroutines 3-595 



T CLTS The transport provider supports a connectionless-mode 
service. For this service type, t _open () returns-2 
for etsdu, connect, and discon. 

A single transport endpoint may support only one of the above services at one time. 
If info is set to NULL by the transport user, no protocol information is returned by 
t_open (). 

Description 
The t _open () function must be called as the first step in the initialization of a 
transport endpoint. This function establishes a transport endpoint by supplying a 
transport provider identifier that indicates a particular transport provider, that is a 
transport protocol, and returns a file descriptor that identifies that endpoint. 

The t _open () function returns a file descriptor that is used by all subsequent 
functions to identify that particular local transport endpoint. 

Parameters Before Call After Call 

name x / 
oflag x / 
info->addr / x 
info->options / x 
info->tsdu / x 
info->etsdu / x 
info->connect / x 
info->discon / x 
info->servtype / x 

Return Value 
Upon successful completion, t_open () returns a file descriptor. On failure, -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADFLAG] An invalid flag is specified. 

[TBADNAME] 

[TSYSERR] 

See Also 
open(2) 

3-596 Subroutines 

Invalid transport provider name. 

A system error has occurred during execution of this 
function. 



/ 

Name 

Syntax 

Coptmgmt - manage options for a transport endpoint 

#include <xti.h> 

int t_optmgmt(fd, req, ret) 
intJd; 
struct t_optmgmt *req; 
struct t _ optmgmt * ret; 

t_optmgmt{3xti) 

Arguments 

Jd Identifies a bound transport endpoint. 

req Points to a t _ optmgmt structure. See also ret argument. 

ret Points to a t_optmgmt structure containing the following members: 

struct netbuf opt; 
long flags; 

The meanings of the fields are as follows: 

opt Identifies protocol options. 

flags 
Specifies the action to take with these options. 

The options are represented by a netbuf structure in a manner similar to the address 
in t _bind (). The req argument is used to request a specific action of the provider 
and to send options to the provider. The len field specifies the number of bytes in the 
options. The buJfield points to the options buffer, and the maxlen field has no 
meaning for the req argument. The transport provider can return options and flag 
values to the user through ret. For ret, maxlen specifies the maximum size of the 
options buffer, and buJ points to the buffer where the options are to be placed. On 
return, len specifies the number of bytes of options returned. The maxlen field has no 
meaning for the req argument, but must be set in the ret argument to specify the 
maximum number of bytes the option buffer can hold. The actual structure and 
content of the options is imposed by the transport provider. 

The flags field of req must specify one of the following actions: 

T NEGOTIATE This action enables the user to negotiate the values of 
the options specified in req with the transport 
provider. The transport provider evaluates the 
requested options and negotiates the values, returns 
the negotiated values through ret. 

T CHECK This action enables the user to verify whether the 
options specified in req are supported by the transport 
provider. On return, the flags field of ret has either 
T_SUCCESS or T_FAILURE set to indicate to the 
user whether options are supported. These flags are 
only meaningful for the T_CHECK request. 

Subroutines 3-597 



t_ optmgmt (3xti) 

T DEFAULT This action enables a user to retrieve the default 
options supported by the transport provider into the 
opt field of ret. In req, the len field of opt must be 
zero and the buf field may be NULL. 

Description 
The t _ optmgmt () function enables a transport user to receive, verify, or negotiate 
protocol options with the transport provider. 

If issued as part of the connectionless-mode service, t optmgmt () may block due 
to flow control constraints. That is, the function does not complete until the transport 
provider has processed all previously sent data units. 

Parameters Before Call After Call 

fd x / 
req->opt.maxlen / / 
req ->optJen x / 
req->opt.buf x(x) / 
req->flags x / 
ret->opt.maxlen x / 
ret ->optJen / x 
ret->opt.buf x (x) 
ret->flags / x 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t _ errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TOUTSTATE] 

[TACCES] 

[TBADOPT] 

[TBADFLAG] 

[TBUFOVFLW] 

[TNOTSUPPORT] 

[TSYSERR] 

3-598 Subroutines 

The function was issued in the wrong sequence. 

The user does not have permission to negotiate the specified 
options. 

The specified protocol options were in an incorrect format or 
contained illegal information. 

An invalid flag was specified. 

The number of bytes allowed for an incoming argument is 
not sufficient to store the value of that argument. The 
information to be returned in ret is discarded. 

This function is not supported by the current implementation 
of XTI. 

A system error has occurred during execution of this 
function. 



t_optmgmt(3xti) 

See Also 
t accept(3xti), t alloc(3xti), t connect(3xti), t getinfo(3xti), 
t~)isten(3xti), t=open(3xti), t_;cvconnect(3xti)-

Subroutines 3-599 



Name 

Syntax 

Crcv - receive data or expedited data sent over a connection 

#include <xti.h> 

int tJcvifd, buf, nbytes, flags) 
intfd; 
char *buf; 
unsigned nbytes; 
int *flags; 

Arguments 

fd 

buf 

nbytes 

flags 

Description 

Identifies the local transport endpoint through which data arrives. 

Points to a receive buffer where user data is placed. 

Specifies the size of the receive buffer. 

Specifies optional flags. Can be set on return from t _rev () . 

This function receives either normal or expedited data. 

By default, t rev () operates in synchronous mode and waits for data to arrive if 
none is currently available. However, if O_NONBLOCK is set (by means of 
t_open () or fentl (), t_rev () executes in asynchronous mode and fails if no 
data is available. 

On return from the call, if T_MORE is set in flags this indicates that there is more 
data and the current transport service data unit (TSDU) or expedited transport service 
data (ETSDU) must be received in multiple t rev () calls. Each t rev () with 
the T_MORE flag set indicates that another t -rev () must follow immediately to 
get more data from the current TSDU. The end of the TSDU is identified by the 
return of a t rev () call with the T_MORE flag not set. If the transport provider 
does not support the concept of a TSDU as indicated in the info argument on return 
from t open () or t getinfo () , the T_MORE flag is not meaningful and 
should be ignored. -

On return, the data returned is expedited data if T_EXPEDITED is set inflags. Ifthe 
number of bytes of expedited data exceeds nbytes, t rev () sets T_EXPEDITED 
and T _MORE on return from the initial call. Subsequent calls to retrieve the 
remaining ETSDU have T_EXPEDITED set on return. The end of the ETSDU is 
identified by the return of a t_rev call with the T_MORE flag not set. 

If expedited data arrives after part of a TSDU has been retrieved, receipt of the 
remainder of the TSDU is suspended until the ETSDU has been processed. Only after 
the full ETSDU has been retrieved (T_MORE not set) will the remainder of the 
TSDU be available to the user. 

In synchronous mode, the only way for the user to be notified of the arrival of normal 
or expedited data is to issue this function or check for the T_DATA or T_EXDATA 
events using the t_look () function. 

3-600 Subroutines 



t_ rcv (3xti ) 

Parameters Before Call After Call 

fd x / 
buf x (x) 
nbytes x / 
flags / x 

Return Value 
Upon successful completion, t rev () returns the number of bytes received. On 
failure, a value of -1 is returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TNODATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

O_NONBLOCK was set, but no data is currently available 
from the transport provider. 

An asynchronous event has occurred on the transport 
endpoint and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

fcntl(2), cgetinfo(3xti), Clook(3xti), copen(3xti), csnd(3xti) 

Subroutines 3-601 



t_rcvconnect (3xti) 

Name 

Syntax 

Crcvconnect - receive the confirmation from a connect request 

#include <xti.h> 

int t rcvconnectlfd, call) 
intjd; 
struct t_call *call; 

Arguments 

fd Identifies the local transport endpoint where communications is 
established. 

call Contains information associated with the newly established connection. 

Description 

Call points to a Ccall structure that contains the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

The members of the t_call structure have the following meanings: 

addr Returns the protocol address associated with the 
responding transport endpoint. 

opt 

udata 

sequence 

Presents any protocol-specific information associated with 
the transport endpoint. 

Points to any optional user data that may be returned by 
the destination transport user during connection 
establishment. 

Has no meaning for this function. 

This function enables a calling transport user to determine the status of a previously 
sent connect request. Is used in conjunction with t_connect () to establish a 
connection in asynchronous mode. The connection is established on successful 
completion of this function. 

The maxlen field of each argument must be set before issuing this function to indicate 
the maximum size of the buffer for each. However, call can be NULL, in which case 
no information is given to the user on return from t rcvconnect (). By default, 
t_rcvconnect () executes in synchronous mode and waits for the connection to 
be established before returning. On return, the addr, opt, and udata fields reflect 
values associated with the connection. 

3-602 Subroutines 

! 
\ 



t_rcvconnect (3xti) 

Parameters Before Call After Call 

fd x / 
call->addr.maxlen x / 
call->addr.1en / x 
call->addr.buf x (x) 
call->opt.maxlen x / 
call->optJen / x 
call->opt.buf x (x) 
call->udata.maxlen x / 
call->udata.len / x 
call->udata.buf x (?) 
call->sequence / / 

If O_NONBLOCK is set by means of t open () or fcntl (), 
t_rcvconnect () executes in asynchronous mode and reduces to a poll for 
existing connect confirmations. If none is available, t _ rcvconnect () fails and 
returns immediately without waiting for the connection to be established. The 
t rcvconnect () function must be reissued at a later time to complete the 
connection establishment phase and retrieve the information returned to call. 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_crrno is set to indicate the error. 

Diagnostics 
On failure, t _ e r rn 0 () is set to one of the following: 

[TBADF] 

[TBUFOVFL W] 

[TNODATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TOUTSTATE] 

[TSYSERR] 

The specified file descriptor does not refer to a transport 
endpoint. 

The number of bytes allocated for an incoming argument is 
not sufficient to store the value of that argument. The 
connect information to be returned in call is discarded. The 
provider's state, as seen by the user, is changed to 
DATAXFER. 

O_NONBLOCK was set, but a connect confirmation has not 
yet arrived. 

An asynchronous event has occurred on the transport 
connection and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

A system error has occurred during execution of this 
function. 

Subroutines 3-603 



t_rcvconnect (3xti) 

See Also 
caccept(3xti), calloc(3xti), Cbind(3xti), Cconnect(3xti), clisten(3xti), copen(3xti), 
coptmgmt(3xti) 

3-604 Subroutines 



Name 

Syntax 

Crcvdis - retrieve information from disconnect 

#include <xti.h> 

int t rcvdis(fd, discon) 
int/d; 
struct t_discon *discon; 

t_rcvdis (3xti) 

Arguments 

fd 

discon 

Identifies the local transport endpoint. 

Points to a t_discon structure containing the following members: 

struct netbuf udata; 

Description 

int reason; 
int sequence: 

The members of the t _ discon struct have the following meanings: 

udata 

reason 

sequence 

Identifies any user data that was sent with the disconnect. 

Specifies the reason for the disconnect through a 
protocol-dependent reason code. 

Identifies an outstanding connect indication with which 
the connection is associated. The sequence field is only 
meaningful when t _ rcvdi s () is issued by a passive 
transport user who has executed one or more ClistenO 
functions and is processing the resulting connect 
indications. If a disconnect indication occurs, sequence 
can be used to identify which of the outstanding connect 
indications is associated with the disconnect. 

This function is used to identify the cause of a disconnect and to retrieve any user 
data sent with the disconnect. 

If a user does not care if there is incoming data and does not need to know the value 
of reason or sequence, discon may be NULL and any user data associated with the 
disconnect is discarded. However, if a user has retrieved more than one outstanding 
connect indication, by means of t_listen () and discon is NULL, the user will be 
unable to identify with which connect indication the disconnect is associated. 

Subroutines 3-Sj)5 



t_rcvdis (3xti) 

Parameters Before Call After Call 

fd x / 
discon->udata.maxlen x / 
discon->udata.len / x 
discon->udata.buf x (?) 
discon->reason / x 
discon->sequence / ? 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno () is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[TBADF] The specified file descriptor fd does not refer to a transport 
endpoint. 

[TOUTSTATE] 

[TNODIS] 

[TBUFOVFLW] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

No disconnect indication currently exists on the specified 
transport endpoint. 

The number of bytes allocated for incoming data is not 
sufficient to store the data. If fd is a passive endpoint with 
oent > 1, it remains in state T _INeON; otherwise, the 
endpoint state is set to T_IDLE. The disconnect indication 
information to be returned in diseon will be discarded. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

calloc(3xti), Cconnect(3xti), Clisten(3xti), copen(3xti), Csnddis(3xti) 

3-606 Subroutines 

( 
I 
\ 



Name 

Syntax 

Crcvrel - acknowledge receipt of an orderly release indication 

#include <xti.h> 

int t Jcvrel(fd) 
intfd; 

t_rcvrel (3xti) 

Arguments 

fd Identifies the local transport endpoint. 

Description 
This function is used to acknowledge receipt of an orderly release indication. After 
receipt of this indication, the user cannot attempt to receive more data, because such 
an attempt will block forever. However, the user can continue to send data over the 
connection if t_sndrel () has not been issued by the user. 

This function is an optional service of the transport provider, and is only supported if 
the transport provider returned service type T_COTS_ORD on t_open () or 
t_getinfo (). 

Parameters Before Call After Call 

fd x / 

Return Value 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned, and t_errnoO is set to indicate the error. 

Diagnostics 
On failure, t_errno () is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TNOREL] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

No orderly release indication currently exists on the specified 
transport endpoint. 

An asynchronous event has occurred on the transport 
endpoint and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

Subroutines 3-607 



t_rcvrel (3xti) 

See Also 
Cgetinfo(3xti), Copen(3xti), Csndrel(3xti) 

3-608 Subroutines 



Name 

Syntax 

Crcvudata - receive a data unit 

#include <xti.h> 

int tJcvudataifd, unitdata, flags) 
intfd; 
struct t unitdata *unitdata; 
int *flags: 

t_rcvudata (3xti) 

Arguments 

fd Identifies the local transport endpoint through which data is received. 

Holds information associated with the received data unit. The unitdata 
argument points to a t_unitdata structure containing the following 
members: 

unitdata 

Description 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata 

On return from this call, the members have the following meanings: 

addr Specifies the protocol address of the sending unit. 

opt 

udata 

flags 

Identifies protocol-specific options that were associated 
with this data unit. 

Specifies the user data that was received. 

Set on return to indicate that the complete data unit was 
not received. 

This function is used in connectionless mode to receive a data unit from another 
transport user. 

By default, t_revudata () operates in synchronous mode waits for a data unit to 
arrive if none is currently available. However, if O_NONBLOCK is set by means of 
t _ open () or fen t 1 () , udata executes in asynchronous mode and fails if no data 
units are available. 

The max/en field of addr, opt, and udata must be set before issuing this function to 
indicate the maximum size of the buffer for each. 

If the buffer defined in the udata field of unitdata is not large enough to hold the 
current data unit, the buffer fills and T_MORE sets inflags on return to indicate that 
another t revudata () should be issued to retrieve the rest of the data unit. 
Subsequeflt t_revudata () calls return zero for the length of the address and 
options until the full data unit has been received. 

Subroutines 3-609 



t_rcvudata (3xti) 

Parameters Before Call After Call 

fd x / 
unitdata->addr.maxlen x / 
unitdata ->addr .len / x 
unitdata->addr .buf x (x) 
unitdata->opt.maxlen x / 
unitdata ->opt.len / x 
unitdata->opt. buf x (x) 
unitdata->udata.maxlen x / 
unitdata->udata.1en / x 
unitdata->udata.buf x (x) 
flags / x 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADFJ 

[TOUTSTA TE] 

[TNODATAJ 

[TBUFOVFL W] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

o _NONBLOCK was set, but no data units are currently 
available from the transport provider. 

The number of bytes allocated for the incoming protocol 
address or options is not sufficient to store the information. 
The unit data information to be returned in unitdata is 
discarded. 

An asynchronous event has occurred on the transport 
endpoint and requires immediate attention. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

fcnt1(2), calloc(3xti), copen(3xti), Crcvuderr(3xti), Csndudata(3xti) 

3-610 Subroutines 

( 
\ 
\ 



Name 

Syntax 

Crcvuderr - receive a unit error indication 

#include <xti.h> 

int t rcvuderr(fd, uderr) 
int/d; 
struct t_uderr *uderr; 

t_rcvuderr (3xti) 

Arguments 

fd Identifies the local transport endpoint through which the error report is 
received. 

uderr 

Description 

Points to a t_uderr structure containing the following members: 

struct netbuf addr; 
struct netbuf opt; 
long error; 

On return from this call, the members have the following meanings: 

addr Specifies the destination protocol address of the erroneous 
data unit. 

opt Identifies protocol-specific options that were associated 
with the data unit. 

error Specifies a protocol-dependent error code. 

This function is used in connectionless mode to receive information concerning an 
error on a previously sent data unit and should be issued following a unit data error 
indication. It informs the transport user that a data unit with a specific destination 
address and protocol options produced an error. 

The max/en field of addr and opt must be set before issuing this function to indicate 
the maximum size of the buffer for each. 

If the user does not care to identify the data unit that produced an error, uderr may be 
set to NULL, and t rcvuderr () simply clears the error indication without 
reporting any infomlation to the user. 

Subroutines 3-611 



t_rcvuderr (3xti) 

Parameters Before Call After Call 

fd x / 
uderr->addr.maxlen x / 
uderr->addr.1en / x 
uderr->addr.buf x (x) 
uderr->opt.maxlen x / 
uderr->optJen / x 
uderr->opt.buf x (x) 
uderr->error / x 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one of the following: 

[BADF] 

[TNOUDERR] 

[TBUFOVFL W] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

No unit data error indication currently exists on the specified 
transport endpoint. 

The number of bytes allocated for the incoming protocol 
address or options is not sufficient to store the information. 
The unit data error information to be returned in uderr will 
be discarded. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

crcvudata(3xti), csndudata(3xti) 

3-612 Subroutines 

;' 

\. 



Name 

Syntax 

Csnd - send data or expedited data over a connection 

#include <xti.h> 

int t_snd(fd, buf, nbytes,flags) 
intfd; 
char *buj; 
unsigned nbytes; 
intflags; 

Arguments 

fd Identifies the local transport endpoint over which data should be sent. 

Points to the user data. buf 

nbytes 

flags 

Description 

Specifies the number of bytes of user data to be sent. 

Specifies any optional flags described below: 

T EXPEDITED 

T MORE 

If set inflags, the data is sent as expedited data and is 
subject to the interpretations of the transport provider. 

If set in flags, this indicates to the transport provider 
that the transport service data unit (TSDU) or expedited 
transport service data unit (ETSDU) is being sent 
through multiple t snd () calls. Each t snd () with 
the T_MORE flag set indicates that another t snd () 
follows with more data for the current TSDU.-The end 
of TSDU or ETSDU is identified by a t snd () call 
with the T_MORE flag not set. Use of T-:MORE 
enables a user to break up large logical data units 
without losing boundaries of those units at the other end 
of the connection. The flag implies nothing about how 
the data is packaged for transfer below the transport 
interface. If the transport provider does not support the 
concept of a TSDU as indicated in the info argument on 
return from t open () or t get info () , the 
T_MORE flagis not meaningfUl and should be ignored. 

This function is used to send either normal or expedited data. 

By default, t snd () operates in synchronous mode and may wait if flow control 
restrictions prevent the data from being accepted by the local transport provider at the 
time the call is made. However, if O_NONBLOCK is set by means of t _open () or 
fcntl (), t_snd () executes in asynchronous mode, and fails immediately, if there 

Subroutines 3-613 



are flow control restrictions. The process can arrange to be infonned when the flow 
control restrictions are cleared by means of t_look () . 

On successful completion, t _ snd () returns the number of bytes accepted by the 
transport provider. Nonna1ly, this equals the number of bytes specified in nbytes. 
However, if O_NONBLOCK is set, it is possible that only part of the data is 
accepted by the transport provider. In this case, t snd () returns a value that is less 
than the value of nbytes. If nbytes is zero and sending of zero octets is not supported 
by the underlying transport service, the t_snd () returns -1 with t_errno set to 
[TBADDATA]. 

The size of each TSDU or ETSDU must not exceed the limits of the transport 
provider as returned in the TSDU or ETSDU fields of the info argument of 
t_open () or t_getinfo (). Failure to comply results in protocol error (see 
[TSYSERR] under the DIAGNOSTICS section). 

The error [TLOOK] may be returned to infonn the process that an event, such as a 
disconnect, has occurred. 

It is important to remember that the transport provider treats all users of a transport 
endpoint as a single user. Therefore if several processes issue concurrent t snd () 
calls, then the different data may be intennixed. -

Parameters Before Call After Call 

fd x / 
buf x(x) / 
nbytes x / 
flags x / 

Return Value 
Upon successful completion, t _ errno returns the number of bytes accepted by the 
transport provider. On failure, a value of -1 is returned, and t_errno is set to indicate 
the error. 

In asynchronous mode, if the number of bytes accepted by the transport provider is 
less than the number of bytes requested, this may indicate that the transport provider 
is blocked due to flow control. 

Diagnostics 
On: failure, t _ errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TOUTSTATE] 

[TBADFLAG] 

[TFLOW] 

[TBADDATA] 

3-614 Subroutines 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

An invalid flag was specified. 

O_NONBLOCK was set, but the flow control mechanism 
prevented the transport provider from accepting any data at 
this time. 

Illegal amount of data: zero octets is not supported. 

I 
l 
\ 



[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

An asynchronous event has occurred on the transport 
endpoint. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. A protocol error may not cause t_errno to fail until 
a subsequent access of the transport endpoint. 

t_getinfo(3xti), t_open(3xti), t_rcv(3xti) 

Subroutines 3-615 



t_snddis (3xti) 

Name 

Syntax 

Csnddis - send user-initiated disconnect request 

#include <xti.h> 

int t snddis(fd, call) 
intjd; 
struct t _ call*call; 

Arguments 

fd Identifies the local transport endpoint of the connection. 

call Specifies information associated with the abortive release. 

Call points to a t_call structure which contains the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 
int sequence; 

Description 
This function is used to initiate an abortive release on an already established 
connection or to reject a connect request. 

Parameters Before Call After Call 

fd x / 
call->addr.maxlen x / 
call->addr.len x / 
call->addr.buf / / 
call->opt.maxlen / / 
call->opt.len / / 
call->opt.buf / / 
call->udata.maxlen / / 
call->udata.len x / 
call->udata.buf ?(?) / 
call->sequence ? / 

The values in call have different semantics, depending on the context of the call to 
t_snddis (). When rejecting a connect request, call must be non-NULL and 
contain a valid value of sequence to uniquely identify the rejected connect indication 
to the transport provider. The sequence parameter is only meaningful, if the transport 
connection is in the T _INeON state. The addr and opt fields of call are ignored. In 
all other cases, call needs be used only when data is being sent with the disconnect 
request. The addr, opt, and sequence fields of the t_call () structure are ignored. 
If the user does not wish to send data to the remote user, the value of call can be 
NULL. 

3-616 Subroutines 

( 

( 

/ 

\ 

" 



t_snddis (3xti) 

The udata field specifies the user data to be sent to the remote user. The amount of 
user data must not exceed the limits supported by the transport provider as returned 
in the discon field of the info argument of t open () or t get info (). If the len 
field of the udata is zero, no data is sent to the remote user:-

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TBADDATA] 

[TBADSEQ] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

The amount of user data specified was not within the bounds 
allowed by the transport provider. Some outbound data 
queued for this endpoint can be lost. 

An invalid sequence number was specified, or a NULL call 
structure was specified when rejecting a connect request. 
Some outbound data queued for this endpoint can be lost. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

Cconnect(3xti), Cgetinfo(3xti), clisten(3xti), copen(3xti) 

Subroutines 3-617 



t_sndrel (3xti) 

Name 

Syntax 

Csndrel - initiate an orderly release 

#include <xti.h> 

int t sndrel(fd) 
intjd; 

Arguments 

fd Identifies the local transport endpoint where the connection exists. 

Description 
This function is used to initiate an orderly release of a transport connection and 
indicates to the transport provider that the transport user has no more data to send. 
After issuing t_sndrel (), the user can not send any more data over the 
connection. However, a user can continue to receive data if an orderly indication has 
not been received. 

This function is an optional service of the transport provider and is only supported if 
the transport provider returned service type T_COTS_ORD on t _open () or 
t_getinfo (). 

Parameters Before Call After Call 

fd x / 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TFLOW] 

[TLOOK] 

3-618 Subroutines 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

O_NONBLOCK was set, but the flow control mechanism 
prevented the transport provider from accepting the function 
at this time. 

An asynchronous event has occurred on the transport 
endpoint referenced by fd and requires immediate attention. 

( 



[TNOTSUPPORT] 

[TSYSERR] 

See Also 

t_sndrel (3xti) 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. 

Cgetinfo(3xti), copen(3xti), Crcvrel(3xti) 

Subroutines 3-619 



t~sndudata (3xti) 

Name 

Syntax 

Csndudata - send a data unit 

#include <xti.h> 

int t _ sndudata(fd, unitdata) 
intfd; 
struct t_unitdata *unitdata; 

Arguments 

fd Identifies the local transport endpoint through which data will be sent. 

unitdata Points to a t_unitdata structure containing the following members: 

struct netbuf addr; 
struct netbuf opt; 
struct netbuf udata; 

The members have the following meanings: 

addr Specifies the protocol address of the destination user. 

opt Identifies protocol-specific options that the user wants 
associated with the request. 

udata Specifies the user data to be sent. 

Description 
This function is used in connectionless mode to send a data unit to another transport 
user. 

Parameters Before Call After Call 

fd x / 
unitdata->addr.maxlen / / 
unitdata->addr.1en x / 
unitdata->opt.maxlen / / 
unitdata->opt.len x / 
unitdata ->opt. buf ?(?) / 
unitdata->udata.maxlen / / 
unitdata -> udata.len x / 
unitdata->udata.buf x(x) / 

If the len field of udata is zero, and sending of zero octets is not supported by the 
underlying transport service, the t_sndudata () returns -1 with t_errno set to 
[TBADDATA]. 

By default, t sndudata () operates in synchronous mode and may wait if flow 
control restrictions prevent the data from being accepted by the local transport 
provider at the time the call is made. However, if O_NONBLOCK is set by means of 
t_open () or fcntl () , t_sndudata () executes in asynchronous mode and 

3-620 Subroutines 

" 

\ 



t_sndudata (3xti) 

fails under such conditions. The process can arrange to be notified of the clearance of 
a flow control restriction by means of t_look (). 

If the amount of data specified in udata exceeds the TSDU size as returned in the 
tsdu field of the info argument of t open () or t get info () , the provider 
generates a protocol error. See [TSYSERR] under the DIAGNOSTICS section. If 
t_sndudata () is issued before the destination user has activated its transport 
endpoint, the data unit can be discarded. 

Return Value 
Upon successful completion, a value of 0 is returned. On failure, a value of -1 is 
returned, and t_errno is set to indicate the error. 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] 

[TOUTSTATE] 

[TFLOW] 

[TBADDATA] 

[TLOOK] 

[TNOTSUPPORT] 

[TSYSERR] 

See Also 

The specified file descriptor does not refer to a transport 
endpoint. 

The function was issued in the wrong sequence on the 
transport endpoint referenced by fd. 

O_NONBLOCK was set, but the flow control mechanism 
prevented the transport provider from accepting any data at 
this time. 

Illegal amount of data; zero octets are not supported. 

An asynchronous event has occurred on the transport 
endpoint. 

This function is not supported by the underlying transport 
provider. 

A system error has occurred during execution of this 
function. A protocol error cannot cause t sndudata () to 
fail until a subsequent access of the transport endpoint. 

fent1(2), calloe(3xti), copen(3xti), Crevudata(3xti), Crcvuderr(3xti) 

Subroutines 3-621 



Name 

Syntax 

csync - synchronize transport library 

#include <xti.h> 

int t_sync(fd) 
intfd; 

Arguments 

fd Identifies the local transport endpoint. 

Description 
For the transport endpoint specified by fd, t_sync () synchronizes the data 
structures managed by the transport library with information from the underlying 
transport provider. In doing so, t sync () can convert an uninitialized file 
descriptor to an initialized transport endpoint, by updating and allocating the 
necessary library data structures. The file descriptor, which is assumed to have 
referenced a transport endpoint, has to be obtained by means of an open (), dup () , 
or be the result of a fork and exec (). The function also allows two cooperating 
processes to synchronize their interaction with a transport provider. 

For example, if a process forks a new process and issues an exec (), the new 
process must issue at_sync () to build the private library data structure associated 
with a transport endpoint and to synchronize the data structure with the relevant 
provider information. 

It is important to remember that the transport provider treats all users of a transport 
endpoint as a single user. If multiple processes are using the same endpoint, they 
should coordinate their activates so as not to violate the state of the transport 
endpoint. The t _ s yn c () function returns the current state of the transport endpoint 
to the user, thereby enabling the user to verify the state before taking further action. 
This coordination is valid only among cooperating processes; it is possible that a 
process or an incoming event could change the endpoint's state after at_sync () is 
issued. 

Parameters Before Call After Call 

fd x / 

Return Value 
Upon successful completion, t_sync returns the state of the transport endpoint. On 
failure, a value of -1 is returned, and t errno is set to indicate the error. The state 
returned is one of the following: -

T IDLE Idle 

T OUTCON 
Outgoing connection pending 

3-622 Subroutines 

( 
r 

\ 

( 



T_INCON Incoming connection pending 

T DATAXFER 
Data transfer 

T OUTREL 
Outgoing orderly release (waiting for an orderly release indication). 

T INREL Incoming orderly release (waiting for an orderly release request) 

Diagnostics 
On failure, t _ errno is set to one of the following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. This error may be returned when the fd has been 
previously closed or an erroneous number may have been 
passed to the call. 

[TSTATECHNG] 

[TSYSERR] 

See Also 

The transport endpoint is undergoing a state change. 

A system error has occurred during execution of this 
function. 

dup(2), exec(2), fork(2), open(2) 

Subroutines 3-623 



t_unbind (3xti) 

Name 

Syntax 

Cunbind - disable a transport endpoint. 

#include <xti.h> 

int t_unbind(fd) 
intJd; 

Arguments 

Jd Identifies the transport endpoint that the t _unbind () function disables. 

Description 
The t_unbind () function disables the transport endpoint specified by Jd that was 
previously bound by t _bind (). On completion of this call, no futher data or 
events destined for this transport endpoint are accepted by the transport provider. 

Parameters Before Call After Call 

fd x / 

Return Value 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is 
returned, and t _ errno is set to indicate the error. 

Diagnostics 
On failure, t_errno is set to one ofthe following: 

[TBADF] The specified file descriptor does not refer to a transport 
endpoint. 

[TOUTST ATE] 

[TLOOK] 

[TSYSERR] 

See Also 
Cbind(3xti) 

3-624 Subroutines 

The function was issued in the wrong sequence. 

An asynchronous event has occurred on the transport 
endpoint. 

A system error has occurred during execution of this 
function. 

I 

( 
\ 

\ 



Yellow Pages Routines (3yp) 

Insert tabbed divider here. 
Then discard this sheet. 



\ 



intro(3yp) 

Name 
intro - introduction to Yellow Pages (YP) library functions 

Description 
This section describes those functions that are in the Yellow Pages library. 

Subroutines 3-625 



getnetgrent (3yp) 

Name 

Syntax 

getnetgrent, setnetgrent, endnetgrent, innetgr - get network group entry 

innetgr(netgroup, machine, user, domain) 
char *netgroup, *machine, *user, *domain; 

setnetgrent(netgroup) 
char *netgroup 

endnetgrentO 

getnetgrent(machinep, userp, domainp) 
char **machinep, **userp, **domainp; 

Description 

Files 

The innetgr routine accesses the netgroup file and checks to see if the specified 
input parameters match an entry in the file. The routine returns 1 if it matches an 
entry, or 0 if it does not. Any of the three strings; machine, user, or domain can be 
NULL, which signifies any string in that position is valid. 

The getnetgrent routine returns the next member of a network group. After the 
call, machinep will contain a pointer to a string containing the name of the 
machine part of the network group member, and similarly for userp and domainp. If 
machinep, userp or domainp is returned as a NULL pointer, it signifies any string 
is valid. The getnetgrent routine allocates space for the name by using the 
malloc routine. This space is released when an endnetgrent call is made. The 
getnetgrent routine returns 1 if it succeeds in obtaining another member of the 
network group, or 0 if it reaches the end of the group. 

The setnetgrent routine establishes the network group from which 
getnetgrent will obtain members, and also restarts calls to getnetgrent from 
the beginning of the list. If the previous setnetgrent call was to a different 
network group, an endnetgrent call is implied. 

The endnetgrent routine releases the space allocated during the getnetgrent 
calls. 

letc/netgroup 
letc/ypldomainlnetgroup 
letc/ypldomainlnetgroup.byuser 
letc/ypldomainlnetgroup.byhost 

3-626 Subroutines 

/ 

\ 



Name 

Syntax 

ypclnt (3yp) 

yp~eCdefaulcdomain, yp_bind, yp_unbind, yp_match, yp_first, yp_next, yp_all, 
yp_order, yp_master, yperr_string, ypprocerr - Yellow Pages client package 

#include <rpcsvc/ypcInt.h> 

yp _get_default _ domain( outdomain) 
char **outdomain; 

yp_bind(indomain) 
char *indomain; 

void yp_unbind(indomain) 
char *indomain; 

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen) 
char *indomain; 
char *inmap; 
char *inkey; 
int inkeylen; 
char **outval; 
int *outvallen; 

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen) 
char *indomain; 
char *inmap; 
char **outkey; 
int *outkeylen; 
char **outval; 
int *outvallen; 

yp_next(jndomain, inmap, inkey, inkeylen, outkey, outkeylen, 
char *indomain; 
char *inmap; 
char *inkey; 
int inkeylen; 
char **outkey; 
int *outkeylen; 
char **outval; 
int *outvallen; 

yp_all(indomain, inmap, incallback) 
char *indomain; 
char *inmap; 
struct ypall_ callback incallback; 

yp_order(indomain, inmap, outorder) 
char *indomain; 
char *inmap; 
int *outorder; 

yp _ master(indomain, inmap, outname) 
char *indomain; 
char *inmap; 

Subroutines 3-627 



ypclnt (3yp ) 

char **outname; 

char *yperr_string(incode) 
int incode; 

ypprot _ err(incode) 
unsigned int incode; 

Description 
This package of functions provides an interface to the Yellow Pages (YP) data base 
lookup service. The package can be loaded from the standard library, 
Ilib/libc. a. Refer to ypfiles(5yp) and ypserv(8yp) for an overview of the 
Yellow Pages, including the definitions of map and domain, and for a description of 
the servers, data bases, and commands that constitute the YP application. 

All input parameters names begin with in. Output parameters begin with out. Output 
parameters of type char ** should be addresses of uninitialized character pointers. 
The YP client package allocates memory using malloc(3). This memory can be 
freed if the user code has no continuing need for it. For each outkey and outval, two 
extra bytes of memory are allocated at the end that contain NEWLINE and NULL, 
respectively, but these two bytes are not reflected in outkeylen or outvallen. The 
indomain and inmap strings must be non-null and null-terminated. String 
parameters that are accompanied by a count parameter cannot be null, but can point 
to null strings, with the count parameter indicating this. Counted strings need not be 
null-terminated. 

All functions of type int return 0 if they succeed, or a failure code (YPERR_ xxxx ) 
if they do not succeed. Failure codes are described under Diagnostics. 

The YP lookup calls require a map name and a domain name. It is assumed that the 
client process knows the name of the map of interest. Client processes fetch the 
node's default domain by calling yp_get_default_domain, and use the 
returned outdomain as the indomain parameter to successive YP calls. 

To use YP services, the client process must be bound to a YP server that serves the 
appropriate domain. The binding is accomplished with yp _bind. Binding need not 
be done explicitly by user code; it is done automatically whenever a yP lookup 
function is called. The yp bind function can be called directly for processes that 
make use of a backup strategy in cases when YP services are not available. 

Each binding allocates one client process socket descriptor; each bound domain 
requires one socket descriptor. Multiple requests to the same domain use that same 
descriptor. The yp _unbind function is available at the client interface for 
processes that explicitly manage their socket descriptors while accessing multiple 
domains. The call to yp unbind makes the domain unbound, and frees all per
process and per-node resources used to bind it. 

If an RPC failure results upon use of a binding, that domain will be unbound 
automatically. At that point, the ypclnt layer will retry forever or until the operation 
succeeds. This action occurs provided that ypbind is running, and either the client 
process cannot bind a server for the proper domain, or RPC requests to the server 
fail. 

3-628 Subroutines 

( 



ypclnt (3yp) 

The ypbind -s option allows the system administrator to lock ypbind to a 
particular domain and set of servers. Up to four servers can be specified. An 
example of the -s option follows: 

/etc/ypbind -s domain,serverl[,server2,server3,server4] 

The ypclnt layer will return control to the user code, either with an error code, or 
with a success code and any results under certain circumstances. For example, control 
will be returned to the user code when an error is not RPC-related and also when the 
ypbind function is not running. An additional situation that will cause the return of 
control is when a bound ypserv process returns any answer (success or failure). 

The yp_match function returns the value associated with a passed key. This key 
must be exact; no pattern matching is available. 

The yp_first function returns the first key-value pair from the named map in the 
named domain. 

The yp _next function returns the next key-value pair in a named map. The inkey 
parameter should be the outkey returned from an initial call to yp first (to get 
the second key-value pair) or the one returned from the nth call to yp next (to get 
the nth + second key-value pair). -

The concept of first and of next is particular to the structure of the YP map being 
processed; there is no relation in retrieval order to either the lexical order within any 
original (non-YP) data base, or to any obvious numerical sorting order on the keys, 
values, or key-value pairs. The only ordering guarantee made is that if the 
yp_first function is called on a particular map, and then the yp_next function is 
repeatedly called on the same map at the same server until the call fails with a reason 
of YPERR_NOMORE, every entry in the data base will be seen exactly once. 
Further, if the same sequence of operations is performed on the same map at the 
same server, the entries will be seen in the same order. 

Under conditions of heavy server load or server failure, it is possible for the domain 
to become unbound, then bound once again (perhaps to a different server) while a 
client is running. This can cause a break in one of the enumeration rules; specific 
entries may be seen twice by the client, or not at all. This approach protects the 
client from error messages that would otherwise be returned in the midst of the 
enumeration. Enumerating all entries in a map is accomplished with the yp _a 11 
function. 

The yp_all function provides a way to transfer an entire map from server to client 
in a single request using TCP (rather than UDP as with other functions in this 
package). The entire transaction take place as a single RPC request and response. 
The yp all function can be used like any other yP procedure, to identify the map 
in the normal manner, and to supply the name of a function that will be called to 
process each key-value pair within the map. Returns from the call to yp _all occur 
only when the transaction is completed (successfully or unsuccessfully), or when the 
foreach function decides that it does not want to see any more key-value pairs. 

The third parameter to yp _all is 

struct ypall_callback *incallback 
int (*foreach) (); 
char *data; 

} ; 

Subroutines 3-629 



ypclnt (3yp) 

The function foreach is called 

foreach(instatus, inkey, inkeylen, inval, invallen, indata); 
int instatus; 
char *inkey; 
int inkeylen; 
char *inval; 
int invallen; 
char *indata; 

The instatus parameter will hold one of the return status values defined in 
<rpcsvc/yp_prot.h> - either YP _TRUE or an error code. (See ypprot_err, below, 
for a function that converts a YP protocol error code to a ypclnt layer error code.) 

The key and value parameters are somewhat different than defined in the syntax 
section above. First, the memory pointed to by the inkey and inval parameters is 
private to the yp_all function and is overwritten with the arrival of each new key
value pair. It is the responsibility of the foreach function to do something useful 
with the contents of that memory, but it does not own the memory itself. Key and 
value objects presented to the foreach function look exactly as they do in the 
server's map - if they were not newline-terminated or null-terminated in the map, 
they will not be here either. 

The indata parameter is the contents of the incallback->data element passed to 
yp _all. The data element of the callback structure may be used to share state 
information between the foreach function and the mainline code. Its use is 
optional, and no part of the YP client package inspects its contents. 

The foreach function returns a Boolean value. It should return zero to indicate 
that it wants to be called again for further received key-value pairs, or nonzero to 
stop the flow of key-value pairs. If foreach returns a nonzero value, it is not 
called again; the functional value of yp _all is then O. 

The yp_order function returns the order number for a map. 

The yp _rna s t e r function returns the machine name of the master YP server for a 
map. 

The yperr_string function returns a pointer to an error message string that is 
null-terminated but contains no period or new line. 

The ypprot err function takes a yP protocol error code as input and returns a 
ypclnt layer error code, which may be used in turn as an input to yperr string. 

Diagnostics 
All integer functions return 0 if the requested operation is successful, or one of the 
following errors if the operation fails. 

#define YPERR_BADARGS 
#define YPERR_RPC 
#define YPERR_DOMAIN 
#define YPERR_MAP 
#define YPERR_KEY 
#define YPERR_ YPERR 
#define YPERR_RESRC 
#define YPERR_NOMORE 
#define YPERR_PMAP 

3-630 Subroutines 

1 /* args to function are bad * / 
2 /* RPC failure - domain has been unbound */ 
3 /* can't bind to server on this domain */ 
4 /* no such map in server's domain */ 
5 /* no such key in map * / 
6 /* internal yp server or client error * / 
7 /* resource allocation failure */ 
8 /* no more records in map database */ 
9 /* can't communicate with portmapper */ 

( 



Files 

#define YPERR_ YPBIND 
#define YPERR_YPSERV 
#define YPERR_NODOM 

/usr/include/rpcsvc/ypclnt.h 
/usr/include/rpcsvc/yp_prot.h 

See Also 
ypfiles( 5yp), ypserv(8yp) 

ypclnt (3yp) 

10 /* can't communicate with ypbind */ 
11 /* can't communicate with ypserv * / 
12 /* local domain name not set */ 

Subroutines 3-631 



yppasswd (3yp) 

Name 

Syntax 

yppasswd - update user password in yellow pages password map. 

#include <rpcsvc/yppasswd.h> 

yppasswd( oldpass, newpw) 
char *oldpass; 
struct passwd *newpw; 

Description 
The yppasswd routine uses Remote Procedure Call (RPC) and External Data 
Representation (XDR) routines to update a user password in a Yellow Pages 
password map. The RPC and XDR elements that are used are listed below under the 
RPC INFO heading. 

If oldpass is indeed the old user password, this routine replaces the password entry 
with newpw. It returns 0 if successful. 

RPC Information 

program number: 
YPPASSWDPROG 

xdr routines: 
xdcppasswd(xdrs, yp) 

XDR *xdrs; 

procs: 

struct yppasswd *yp; 
xdr_yppasswd(xdrs, pw) 

XDR *xdrs; 
struct passwd *pw; 

YPPASSWDPROC_UPDATE 
Takes struct yppasswd as argument, returns integer. 
Same behavior as yppasswd() wrapper. 
Uses UNIX authentication. 

versions: 
YPPASSWDVERS_ORIG 

structures: 

See Also 

struct yppasswd { 

} ; 

char *oldpass; /* old (unencrypted) password */ 
struct passwd newpw; /* new pw structure * / 

yppasswd(l yp), yppasswdd(8yp) 

3-632 Subroutines 

< 

\ 

( 



A 

abort subroutine (standard C), 3-6 

abs subroutine (standard C), 3-7 

absolute value function, 3-7, 3-343, 3-345 

acos subroutine, 3-363 

acos subroutine (math), 3-364 

acosh subroutine, 3-335 

addch macro, 3-200 

See also putchar subroutine 

addch subroutine, 3-528 

addstr macro, 3-202 

addstr subroutine, 3-528 

alarm subroutine (standard C), 3-8 

See also sleep subroutine (standard C) 

alloca subroutine, 3-84, 3-86 

arc subroutine, 3-559 

arccosine function, 3-364 

arcsine function, 3-364 

arctangent function, 3-364 

argument list 

portable procedures for variable, 3-186 

argument vector 

getting option letter, 3-61 

ASCII character 

classifying, 3-25 

ASCII string 

converting long integer to, 3-5 

converting to, 3-34 

converting to numbers, 3-10 

asctime subroutine (standard C), 3-20 

asin subroutine, 3-362 

asin subroutine (math), 3-364 

asinh subroutine, 3-335 

assert macro, 3-9 

atan subroutine, 3-363 

atan subroutine (math), 3-364 

atan2 subroutine, 3-363 

atan2 subroutine (math), 3-364 

atanh subroutine, 3-335 

atof subroutine (standard C), 3-10 

isalpha subroutine, 3-10 

atoi subroutine, 3-10 

atol subroutine, 3-10 

attroff macro, 3-203 

attron macro, 3-203 

attrset macro, 3-203 

auth database (general) 

getting/setting entry, 3-51 

a641 subroutine, 3-5 

B 

baudrate subroutine, 3-205 

bcmp subroutine, 3-14 

bcopy subroutine, 3-14 

beep subroutine, 3-206 

bessel keyword (math), 3-336 

binary search routine, 3-13 

managing tree searches, 3-179 

bit 

determining setting in byte, 3-14 

box subroutine, 3-207, 3-528 

bsearch subroutine, 3-13 

tsearch subroutine, 3-13 

bstring keyword, 3-14 

buffering 

types of, 3-517 

Index 



byte 

swapping with PDP-11s, 3-171 

byte sex, 3-58 

byteorder keyword, 3-372 

bzero subroutine, 3-14 

c 
C library 

See also libc library 

cabs function, 3-348 

cabs subroutine, 3-349 

calloe subroutine (special library), 3-555 

calloe subroutine (standard C), 3-84, 3-86 

catclose subroutine, 3-281 

catgetmsg subroutine, 3-279 

catgets subroutine, 3-280 

catopen subroutine, 3-281 

cbreak subroutine, 3-208 

ceil subroutine, 3-343, 3-345 

ceiling function 

returning integer, 3-343, 3-345 

circle subroutine, 3-559 

clear macro, 3-209 

clear subroutine, 3-528 

c1earerr subroutine, 3-498 

c1earok subroutine, 3-210, 3-528 

clock subroutine, 3-15 

c10sedir subroutine, 3-27 

c1oselog subroutine, 3-175 

c10sepl subroutine, 3-559 

c1rtobot macro, 3-211 

c1rtobot subroutine, 3-528 

c1rtoeol macro, 3-212 

c1rtoeol subroutine, 3-528 

connect request 

determining status, 3-602 

listening for, 3-590 

connection 

receiving expedited data, 3-600 

receiving nonnal data, 3-600 

connectionless mode 

receiving data, 3-609 

receiving error infonnation, 3-611 

Index-2 

connectionless mode (cont.) 

sending data, 3-620 

cont subroutine, 3-559 

cos subroutine, 3-362 

cos subroutine (math), 3-364 

cosh subroutine (math), 3-367 

cosine function, 3-364 

creatediskbyname subroutine, 3-526 

crmode subrQutine, 3-528 

crypt subroutine 

encryption, ~ 18 

ctermid subroutine, 3-495 

See also ttyname subroutine 

compared with ttyname subroutine, 3-495 

ctime subroutine (stalldard C), 3-20 

System V and, 3-23 

ctype keyword, 3-25 

curses library, 3-193 

curses package, 3-193, 3-528 

main routines, 3-193 

subroutine list, 3-528 

cursor 

optimizing movement, 3-193, 3-528 

cuserid subroutine, 3-496 

See also getlogin subroutine 

o 
data base subroutine, 3-530 

Data Encryption Standard, 3-18 

date 

converting to ASCII, 3-20 

getting, 3-177 

dbm keyword, 3-530 

dbminit subroutine, 3-530 

restrictions, 3-531 

defj>rog_mode subroutine, 3-213 

See also resecproLmode subroutine 

def_sheltmode subroutine, 3-213 

See also reseCshell_mode subroutine 

delay_output subroutine, 3-214 

delch subroutine, 3-215, 3-528 

dele~e subroutine, 3-530 



deleteln subroutine, 3-216, 3-528 

delwin subroutine, 3-217, 3-528 

directory 

See also working directory 

descending tree, 3-49 

operations, 3-27 

scanning, 3-120 

directory keyword, 3-27 

disconnect 

retrieving infonnation, 3-605 

disk 

getting description, 3-526, 3-533 

div subroutine (ANSI C), 3-30 

doupdate subroutine, 3-275 

draino subroutine, 3-218 

drand48 subroutine, 3-31 

E 

echo subroutine, 3-219, 3-528 

ecvt subroutine, 3-34 

edata subroutine, 3-37, 3-38 

effective group ID 

setting, 3-129 

effective user ID 

setting, 3-129 

encryption 

crypt subroutine, 3-18 

end subroutine, 3-37, 3-38 

endauthent subroutine, 3-51 

endfsent subroutine, 3-534 

endgrent subroutine, 3-56 

endhostent subroutine, 3-373 

endnetent subroutine, 3-375 

endnetgrent subroutine, 3-626 

endprotoent subroutine, 3-377 

endpwent subroutine, 3-65 

endrpcent subroutine, 3-67 

endservent subroutine, 3-379 

endttyent subroutine, 3-71 

endwin subroutine, 3-220, 3-528 

environ subroutine, 3-39, 3-41 

environment 

changing, 3-109 

environment (cont.) 

getting variable values, 3-55 

environment (POSIX) 

See POSIX environment 

environment (System V) 

See System V environment 

erand48 subroutine, 3-31 

erase macro (curses), 3-221 

erase subroutine (curses), 3-528 

erase subroutine (plot), 3-559 

erasechar subroutine, 3-222 

erf function, 3-337 

erf subroutine, 3-338 

erfc function, 3-337 

erfc subroutine, 3-338 

error function, 3-338 

System V and, 3-360 

error message (system) 

getting, 3-105 

error messages 

transport function, 3-581 

error_cJet_text, 3-399 

error_c_text, 3-400 

etext subroutine, 3-37, 3-38 

Euclidean distance, 3-349 

execi subroutine, 3-39, 3-41 

execie subroutine, 3-39, 3-41 

execip subroutine, 3-39, 3-41 

exect subroutine, 3-39, 3-41 

execv subroutine, 3-39, 3-41 

execve system call 

See also execl subroutine 

execvp subroutine, 3-39, 3-41 

diagnostics, 3-40, 3-42 

restricted, 3-40 

restrictions, 3-42 

_exit subroutine, 3-43 

exit subroutine (standard C), 3-43 

exp function, 3-339 

exp subroutine (math), 3-341 

erf subroutine, 3-341 

System V and, 3-342 

expml function, 3-339 

Index-3 



expml subroutine (math), 3-341 

exponent 

splitting into, 3-46 

exponential function, 3-341 

F 

fabs subroutine, 3-343, 3-345 

Fault Management 

pfm3leanup, 3-420 

pfm_enable, 3-422 

pfm_enable_faults, 3-423 

pfm_inhibit, 3-424 

pfm_inhibiCfaults, 3-425 

pfm_init, 3-426 

pfm_reseccleanup, 3-427 

pfm_rls_cleanup, 3-428 

pfm_signal, 3-430 

fclose subroutine, 3-497 

fcnU system call 

See also locld subroutine 

fcvt subroutine, 3-34 

fdopen subroutine, 3-500 

feof subroutine, 3-498 

ferror subroutine, 3-498 

fetch subroutine, 3-530 

fexp function, 3-339 

fexpml function, 3-339 

mush subroutine, 3-497 

ft's subroutine, 3-14 

fgetc subroutine (standard I/O), 3-504 

fgets subroutine, 3-505 

file 

See also temporary file 

executing, 3-39, 3-41 

locking region, 3-80 

setting access time, 3-183 

setting modification time, 3-183 

file name 

making unique, 3-92 

file system 

getting information on mounted, 3-60 

maintaining, 3-79 

Index-4 

fileno subroutine, 3-498 

files 

remove, 3-116 

firstkey subroutine, 3-530 

flash subroutine, 3-206 

floating point remainder, 3-343, 3-345 

flog function, 3-339 

floglp function, 3-339 

floglO function, 3-339 

floor function 

returning integer, 3-343, 3-345 

floor subroutine, 3-345 

flushinp subroutine, 3-223 

fopen subroutine, 3-500 

System V and, 3-501 

formatted input 

converting, 3-512 

formatted output 

printing, 3-506 

printing from argument list, 3-523 

fpathconf subroutine, 3-102 

fp _class routine 

RISe only, 3-45 

fprintf function, 3-506 

fprintf subroutine, 3-288 

fputc subroutine, 3-510 

fputs subroutine, 3-511 

fread subroutine, 3-502 

free subroutine (special library), 3-555 

free subroutine (standard C), 3-84, 3-86 

freopen subroutine, 3-500 

frexp subroutine, 3-46 

fscanf function, 3-512 

fscanf subroutine, 3-290 

fseek subroutine (standard I/O), 3-503 

fstab file 

See also getfsent subroutine 

closing, 3-534 

getting entry, 3-534 

getting file system name, 3-534 

getting file system type, 3-534 

getting special file name, 3-534 

setting, 3-534 



ftell subroutine (standard I/O), 3-503 

ftime subroutine, 3-177 

ftok subroutine, 3-48 

ftw subroutine, 3-49 

fwrite subroutine, 3-502 

G 
gamma function, 3-346, 3-347 

gamma subroutine, 3-346, 3-347 

gcvt subroutine, 3-34 

getauthuid subroutine, 3-51 

getc subroutine (standard I/O), 3-504 

See also unget subroutine 

getcap subroutine, 3-528 

getch macro, 3-224 

getch subroutine, 3-528 

See also nodelay subroutine 

getchar subroutine, 3-504 

getcwd subroutine (standard C), 3-53 

getdiskbyname subroutine, 3-533 

getenv subroutine (standard C), 3-55 

See also putenv subroutine 

getfsent subroutine, 3-534 

getfsfile subroutine, 3-534 

getfsspec subroutine, 3-534 

getfstype subroutine, 3-534 

getgrent subroutine, 3-56 

restrictions, 3-57 

getgrgid subroutine, 3-56 

getgmam subroutine, 3-56 

gethostbyaddr subroutine, 3-373 

gethostbyname subroutine, 3-373 

gethostent subroutine, 3-373, 3-373 

restrictions, 3-374 

svc.conf file and, 3-373 

gethostsex(3) reference page, 3-58 

getlogin subroutine, 3-59 

getmountent subroutine, 3--60 

See also statfs subroutine 

getnetbyaddr subroutine, 3-375 

getnetbyname subroutine, 3-375 

getnetent subroutine, 3-375 

restrictions, 3-376 

getnetgrent subroutine, 3-626 

getopt subroutine, 3--61 

getpass subroutine, 3-63 

See also crypt subroutine 

getprotobyname subroutine, 3-377 

getprotoent subroutine, 3-377 

restrictions, 3-378 

getpw subroutine, 3-64 

getpwuid subroutine, 3-64 

getpwent subroutine, 3-65 

See also putpwent subroutine 

restrictions, 3-66 

getpwnam subroutine, 3-65 

getpwuid subroutine, 3-65 

getrpcbyname subroutine, 3-67 

getrpcbynumber subroutine, 3-67 

getrpcent subroutine, 3-67 

restrictions, 3-67 

gets subroutine, 3-505 

getsllrvbyname subroutine, 3-379 

getservbyport subroutine, 3-379 

getservent subroutine, 3-379 

restrictions, 3-380 

getstr macro, 3-226 

getstr subroutine, 3-528 

getsvc call, 3-69 

gettmode subroutine, 3-528 

getttyent subroutine, 3-71 

restrictions, 3-72 

getttynam subroutine, 3-71 

getw subroutine, 3-504 

getwd subroutine, 3-73 

getyx macro, 3-228 

getyx subroutine, 3-528 

gmtime subroutine (standard C), 3-20 

graphics interface, 3-559 

group access list 

initializing, 3-536 

group file (general) 

getting entry, 3-56, 3-67 

gtty subroutine, 3-170 

Index-5 



H 

hash table search routine, 3-76 

has)c subroutine, 3-229 

See also delch subroutine 

See also insch subroutine 

has_i1 subroutine, 3-230 

See also deleteln subroutine 

See also insertln macro 

hcreate subroutine, 3-76 

hdestroy subroutine, 3-76 

hes_error routine, 3-74 

hes)nit routine, 3-74 

hesiod,3-74 

hesJesolve routine, 3-74 

hes_to_bind routine, 3-74 

hosts file 

getting entry, 3-373 

hsearch subroutine, 3-76 

restrictions, 3-76 

htonl subroutine, 3-372 

htons subroutine, 3-372 

hyperbolic function, 3-367 

inverse, 3-335 

hypot function, 3-348 

hypot subroutine, 3-349 

idlok subroutine, 3-231 

inch macro, 3-232 

inch subroutine, 3-528 

index subroutine (standard C), 3-147 

inet keyword, 3-381 

inet_addr subroutine, 3-381 

inetJnaof subroutine, 3-381 

inet_makeaddr subroutine, 3-381 

inet_netofsubroutine, 3-381 

inet_network subroutine, 3-381 

inet_ntoa subroutine, 3-381 

initgroups subroutine, 3-536 

initscr subroutine, 3-233, 3-528 

See also newterm subroutine 

See also refresh macro 

Index-6 

initstate subroutine, 3-113 

innetgr subroutine, 3-626 

insch macro, 3-234 

insch subroutine, 3-528 

insertln macro, 3-235 

insertln subroutine, 3-528 

insque subroutine, 3-77 

Interface to the Location Broker 

lb_register, 3-417 

lb_unregister, 3-418 

Interface to the Remote Procedure Call, 3-434 

rpc_alloc_handle, 3-432 

rpc_bind, 3-436 

rpc_clear_binding, 3-438 

rpc_clear_server_binding, 3-440 

rpc_free_handle,3-443 

rpC_inCLbinding, 3-444 

rpc_inCLobject, 3-446 

rpc_name_to_sockaddr, 3-451 

rpc_register, 3-452 

rpc_register_mgr, 3-454 

rpc_register_object, 3-456 

rpc_secasync_ack, 3-458 

rpc_seCbinding, 3-460 

rpc_secfauicmode, 3-462 

rpc_secshorUimeout, 3-463 

rpc_shutdown, 3-464 

rpc_sockaddr_to_name, 3-465 

rpc_unregister, 3-467 

rpc_usejamily, 3-469 

rpc_usejamiyCwk,3-471 

international subroutines 

introduction, 3-277 

Internet address 

manipulation routines, 3-381 

specifying, 3-381 

interprocess communication facility 

See IPC , 
interprocess communication package, 3-48 

intrflush subroutine, 3-236 

intro(3) keyword, 3-1 

intro(3cur) keyword, 3-193 

intro(3m) keyword, 3-333 



intro(3n) keyword, 3-369 

intro(3x) keyword, 3-525 

intro(3yp) keyword, 3-625 

IPC 

library functions, 3-369 

isalnum subroutine, 3-25 

isalpha subroutine, 3-25 

atof subroutine (standard C), 3-10 

isascii subroutine, 3-25 

isatty subroutine (standard C), 3-181 

iscntrl subroutine, 3-25 

isdigit subroutine, 3-25 

isgraph subroutine, 3-25 

islower subroutine, 3-25 

isprint subroutine, 3-25 

ispunct subroutine, 3-25 

isspace subroutine, 3-25 

isupper subroutine, 3-25 

J 

jO subroutine, 3-336 

jl subroutine, 3-336 

jn subroutine, 3-336 

jrand48 subroutine, 3-31 

K 

Kerberos files 

intro.3krb, 3-295 

Kerberos routines 

acl_add, 3-299 

acl_canonicalize-principal, 3-299 

acl_check, 3-299 

acl_delete, 3-299 

acl_exacCrnatch, 3-299 

acl_initialize, 3-299 

des_crypt, 3-303 

des_key_sched, 3-303 

des_quad_cksurn, 3-303 

des_strin~toJcey, 3-303 

kerberos 3, 3-307 

knarne_parse, 3-299 

krb~eccred, 3-307 

Kerberos routines (cont.) 

krb~eUrealrn, 3-312 

krb~ecphost, 3-312 

krb~ecpw_in_tkt, 3-328 

krb~eUvc_in_tkt, 3-328 

krb_mk_req, 3-307 

krb_mk_safe, 3-307 

krb_rd_req, 3-307 

krbJd_safe, 3-307 

krb_recvauth, 3-316 

krb_recvrnutual, 3-323 

krb_sendauth, 3-316 

krb_sendmutual,3-323 

krb_seurvtab_string, 3-326 

krb_sectkUtring, 3-326 

krb_svc_init, 3-328 

keypad subroutine, 3-237 

kill system call 

See also pause subroutine 

killchar subroutine, 3-238 

L 

13tol subroutine, 3-79 

label subroutine, 3-559 

labs subroutine (ANSI C), 3-7 

Ib_lookup_object, 3-401, 3-405 

Ib _lookup _ objecUocal, 3-408 

IbJookupJange, 3-411 

IbJookup_type, 3-414 

Icong48 subroutine, 3-31 

Idexp subroutine, 3-46 

Idiv subroutine (ANSI C), 3-30 

leaveok subroutine, 3-239, 3-528 

lfind subroutine, 3-82 

libc library 

contents, 3-1 

Iibm library 

contents, 3-2 

diagnostics and, 3-4 

introduction, 3-333 

library 

functions, 3-1 

Index-7 



library function 

miscellaneous, 3-525 

line subroutine (plot), 3-559 

linear search routine, 3-82 

Iinemod subroutine, 3-559 

localtime subroutine (standard C), 3-20 

lockf subroutine, 3-80 

diagnostics, 3-81 

restrictions, 3-81 

log function, 3-339 

log subroutine (math), 3-341 

loglp function, 3-339 

loglp subroutine (math), 3-341 

loglO function, 3-339 

loglO subroutine (math), 3-341 

logarithm function, 3-341 

login name 

getting, 3-59 

getting character-string representation, 3-496 

longjmp subroutine, 3-123 

longname subroutine, 3-240, 3-528 

Irand48 subroutine, 3-31 

Isearch subroutine, 3-82 

ltol3 subroutine, 3-79 

164a subroutine, 3-5 

M 

mallinfo subroutine, 3-555 

structure returned, 3-556e 

malloc subroutine (special library), 3-555 to 3-557 

restrictions, 3-556 

malloc subroutine (standard C), 3-84, 3-86 

See also rnalloc subroutine (special library) 

restricted, 3-85 

restrictions, 3-87 

manop subroutine, 3-555 

mantissa 

splitting into, 3-46 

math library 

See libm library 

matherr subroutine, 3-360 

error-handling procedures, 3-36lt 

using, 3-360e 

Index-8 

memccpy subroutine, 3-88 

restrictions, 3-89 

memchr subroutine, 3-88 

memcmp subroutine, 3-88 

memcpy subroutine, 3-88 

memmove subroutine, 3-88 

memory 

See also shared memory 

allocating, 3-84, 3-86, 3-185, 3-555 to 3-557, 

3-572 

freeing, 3-583 

operations, 3-88 

shared memory, 3-86 

memory area 

defined, 3-88 

memory keyword, 3-88 

memset subroutine, 3-88 

meta subroutine, 3-241 

mkfifo function, 3-90 

mktemp subroutine, 3-92 

modf subroutine, 3-46 

moncontrol subroutine, 3-95 

monitor subroutine, 3-95 

monstartup subroutine, 3-95 

move macro (curses), 3-242 

move subroutine (curses), 3-528 

move subroutine (plot), 3-559 

mrand48 subroutine, 3-31 

mvaddch macro, 3-200 

mvaddstr macro, 3-202 

mvcur subroutine, 3-243, 3-528 

mvdelch subroutine, 3-215 

mvgetch macro, 3-224 

mvgetstr macro, 3-226 

mvinch macro, 3-232 

mvinsch macro, 3-234 

mvprintw subroutine, 3-253 

mvscanw subroutine, 3-260 

mvwaddch macro, 3-200 

mvwaddstr macro, 3-202 

mvwdelch subroutine, 3-215 

mvwgetch macro, 3-224 

mvwgetstr macro, 3-226 



mvwin subroutine, 3-244 

mvwinch macro, 3-232 

mvwinsch macro, 3-234 

mvwprintw subroutine, 3-253 

mvwscanw subroutine, 3-260 

N 

name list 

defined, 3-100, 3-101 

napms subroutine, 3-245 

NBS Data Encryption Standard, 3-18 

NCS commands and library routines, 3-387 

netgroup file 

See also innetgr subroutine 

getting member entry, 3-626 

networks file 

getting entry, 3-375 

newpad subroutine, 3-246 

newterm subroutine, 3-247 

newwin subroutine, 3-248, 3-528 

nextkey subroutine, 3-530 

nice subroutine, 3-99 

nl macro, 3-249 

nl subroutine, 3-528 

nlJprintf subroutine, 3-284 

nlJscanf subroutine, 3-286 

nUst subroutine, 3-100, 3-101 

nl)anginfo subroutine, 3-282 

nlJrintf subroutine, 3-284 

nl_scanf subroutine, 3-286 

nJ_sprintf subroutine, 3-284 

nl_sscanf subroutine, 3-286 

nocbreak subroutine, 3-208 

nocrmode subroutine, 3-528 

nodelay subroutine, 3-250 

noecho subroutine, 3-219, 3-528 

nonl subroutine, 3-249, 3-528 

noraw subroutine, 3-255, 3-528 

nrand48 subroutine, 3-31 

ntohl subroutine, 3-372 

ntohs subroutine, 3-372 

o 
opendir subroutine, 3-27, 3-28e 

openlog subroutine, 3-175 

openpl subroutine, 3-559 

See also plot file 

Operations on Socket Addresses 

sockecequal, 3-477 

sockecfamilyjrom_name, 3-479 

sockecfamily_to_name, 3-480 

sockecfrom_name, 3-481 

sockeCto_name, 3-483 

sockeCto...,numeric_name, 3-484 

sockeC valid_families, 3-486 

sockecvaIid_family, 3-487 

Operations on Univeral Unique Identifiers 

uuid_equal, 3-490 

Operations on Universal Unique Identifiers 

uid_encode, 3-489 

uuid_decode, 3-488 

uuid~en, 3-491 

orderly release 

acknowledging receipt, 3-607 

overlay subroutine, 3-251, 3-528 

overwrite subroutine, 3-251, 3-528 

p 

packetfilter 

pfopen subroutine, 3-106 

password 

reading, 3-63 

updating in YP map, 3-632 

password file (general) 

getting entry, 3-65 

getting name from, 3-64 

. writing entry, 3-110 

pathconf subroutine, 3-102 

pause subroutine, 3-104 

pclose subroutine, 3-107 

perror subroutine (standard C), 3-105 

pfopen subroutine, 3-106 

plot keyword, 3-559 

Index-9 



pnoutrefresh subroutine, 3-252 

point subroutine, 3-559 

popen subroutine, 3-107 

POSIX environment 

specifying, 3-2 

pow function, 3-340 

pow subroutine, 3-341 

power function, 3-341 

prefresh subroutine, 3-252 

printf function, 3-506 

printf subroutine, 3-288 

See also printw subroutine 

See also vprintf subroutine 

conversion specification list, 3-506 

printing date, 3-509 

restrictions, 3-508 

System V and, 3-289, 3-509 

printw subroutine, 3-253, 3-528 

priority 

setting, 3-99 

process 

getting limits, 3-182 

getting resource accounting, 3-190 

getting time-accounting information, 3-178 

initiating I/O, 3-107 

limiting resource consumption, 3-188 

setting limits, 3-182 

suspending, 3-104, 3-146 

terminating after flushing pending output, 3-43 

terminating with core dump, 3-6 

process group 
setting, 3-127 

program 

debugging, 3-123, 3-142 

profiling, 3-95 

specifying addresses, 3-37, 3-38 

verifying, 3-9 

Program Management 

pgm3xit, 3-431 

protocols file 

getting entry, 3-377 

pseudorandom number 

generating, 3-31 

Index-10 

psignal subroutine, 3-108 

ptrace system call 
See also exect subroutine 

putc subroutine, 3-510 

putchar subroutine, 3-510 

putenv subroutine, 3-109 

putp subroutine, 3-254 

putpwent subroutine, 3-110 

puts subroutine, 3-511 

putw subroutine, 3-510 

Q 

qsort subroutine (standard C), 3-111 

queue 
removing elements, 3-77 

R 
rand subroutine (standard C), 3-112 

See also random subroutine 

random number 

See also pseudorandom number 

random number generator, 3-112, 3-113 

random subroutine, 3-113 

raw subroutine, 3-255, 3-528 

rcmd subroutine, 3-562 

readdir subroutine, 3-27 

real group ID 

setting, 3-129 

real user ID 
setting, 3-129 

realloc subroutine (special library), 3-555 

realloc subroutine (standard C), 3-84, 3-86 

re_comp subroutine, 3-115 

re_exec subroutine, 3-115 

refresh macro, 3-256 

refresh subroutine, 3-528 

regex keywor~, 3-115 

regular expression handler, 3-115 

Remote Procedure Call 

rpc_listen, 3-448 

Re~ote Remote Procedure Call 

rrpc_in'l-stats, 3-474 



Remote Remote Procedure Call Interface 

rrpc_in<Linterface, 3-473 

rrpc_shutdown, 3-476 

remove 

files, 3-116 

remove files, 3-116 

remque subroutine, 3-77 

resetJlrog_mode subroutine, 3-258 

reset_shell_mode subroutine, 3-258 

resetty subroutine, 3-257, 3-528 

resolver routines, 3-117 

and BIND servers, 3-117 

restartterm subroutine, 3-259 

rewind subroutine, 3-503 

rewinddir subroutine, 3-27 

rexec subroutine, 3-564 

rindex subroutine (standard C), 3-147 

rint subroutine, 3-345 

round-to-nearest function, 3-343, 3-345 

rpc_allowJemote_shutdown, 3-434 

rresvport subroutine, 3-562 

rrpc )nq)nterface 

Remote Remote Procedure Call Interface, 3-473 

ruserok subroutine, 3-562 

s 
savetty subroutine, 3-257, 3-528 

scandir subroutine, 3-120 

scanf function, 3-512, 3-515 

conversion specification list, 3-512 

scanf subroutine, 3-290 

conversion specification list, 3-290 

restrictions, 3-515 

scanw subroutine, 3-260, 3-528 

screen 

updating, 3-193, 3-528 

scroll subroutine, 3-261, 3-528 

scrollok subroutine, 3-262, 3-528 

seed48 subroutine, 3-31 

seekdir subroutine, 3-27 

sendind data 

normal, 3-613 

sending data 

expedited, 3-613 

services file 

getting entry, 3-379 

setauthfile subroutine, 3-51 

setbuf subroutine, 3-517 

setbuifer subroutine, 3-517 

setegid subroutine, 3-129 

seteuid subroutine, 3-129 

setfsent subroutine, 3-534 

setgid subroutine, 3-129 

setgrent subroutine, 3-56 

sethostent subroutine, 3-373 

setitimer system call 

See also pause subroutine 

setjmp subroutine, 3-123 

setlinebuf subroutine, 3-517 

setlocale subroutine, 3-124 

setnetent subroutine, 3-375 

setnetgrent subroutine, 3-626 

setpgid function, 3-127 

setprotoent subroutine, 3-377 

setpwent subroutine, 3-65 

setpwfile subroutine, 3-65 

setrgid subroutine, 3-129 

setrpcent subroutine, 3-67 

setruid subroutine, 3-129 

setscrreg subroutine, 3-263 

setservent subroutine, 3-379 

setstate subroutine, 3-113 

set_term subroutine, 3-265 

setterm subroutine, 3-528 

settyent subroutine, 3-71 

setuid subroutine, 3-129 

setupterm subroutine, 3-264 

setvbuf subroutine, 3-517 

shell command 

issuing, 3-176 

sigaction system call, 3-131 

diagnostics, 3-131 

sigaddset subroutine, 3-143 

sigblock system call 

See also sigsuspend system call 

Index-11 



sigdelset subroutine, 3-143 

sigemptyset subroutine, 3-143 

sigfillset subroutine, 3-143 

siginterrupt, :3--132 

sigismember subroutine, 3-143 

siglongjmp subroutine, 3-142 

signal, 3-143 

blocking, 3-140 

changing action, 3-133, 3-137 

releasing blocked, 3-145 

signal handler 

assigning, 3-131 

signal message 

getting, 3-108 

signal subroutine (standard C), 3-133, 3-137 

mapping hardware traps to signals, 3-139 

return value, 3-136, 3-138 

signal list, 3-133, 3-137 

sigprocmask system call, 3-140 

sigsetjmp subroutine, 3-142 

sigsuspend system call, 3-145 

sigvec system call 

See also signal subroutine (standard C) 

sin subroutine, 3-362 

sin subroutine (math), 3-364 

restrictions, 3-364 

return value, 3-364 

System V and, 3-364 

sine function, 3-364 

sinh subroutine (math), 3-367 

sleep subroutine (standard C), 3-146 

snmpext 

library routines, 3-383 

Socket Call 

socket to numeric name, 3-484 

sort routine, 3-111 

space subroutine, 3-559 

special file 

creating, 3-90 

sprintf function, 3-506 

sprintf subroutine, 3-288 

sqrt subroutine (math), 3-341 

square root function, 3-341 

Index-12 

srand subroutine, 3-112 

srand48 subroutine, 3-31 

srandom subroutine, 3-113 

sscanf function, 3-512 

sscanf subroutine, 3-290 

standard buffered input/output package 

See stdio macro package 

standard 10 

subroutines for, 3-510 

standend subroutine, 3-203, 3-528 

standout subroutine, 3-203, 3-528 

stdio macro package, 3-493 

diagnostics, 3-494 

stime system call, 3-160 

See also gettimeofday system call 

store subroutine, 3-530 

storeauthent subroutine, 3-51 

strcat subroutine, 3-147 

See also bcopy subroutine 

diagnostics, 3-147 

strchr subroutine, 3-147 

strcmp subroutine, 3-147 

strcoll subroutine, 3-163 

strcpy subroutine, 3-147 

strcspn subroutine, 3-147 

stream 

appending, 3-502 

assigning buffering to, 3-517 

closing, 3-497 

defined, 3-493 

flushing, 3-497 

getting character from, 3-504 

getting string from, 3-505 

getting word from, 3-504 

opening, 3-500 

pushing character back, 3-522 

putting character on, 3-510 

putting string on, 3-511 

putting word on, 3-510 

reading, 3-502 

repositioning, 3-503 

returning to remote command, 3-562, 3-564 

status queries, 3-498 

( 
\ 

( 



strftime subroutine, 3-164 

string 

operations on null-terminated, 3-147 

operations on variable-length, 3-14 

string keyword, 3-147 

strlen subroutine, 3-147 

strncat subroutine, 3-147 

strncmp subroutine, 3-147 

strncpy subroutine, 3-147 

strpbrk subroutine, 3-147 

strrchr subroutine, 3-147 

strspn subroutine, 3-147 

strtod subroutine, 3-10 

strtok subroutine, 3-147 

strtol subroutine, 3-10 

strxfrm subroutine, 3-169 

stty subroutine, 3-170 

See also ioctI system call 

subroutine 

See also specific subroutines 

executing at specified time, 3-8 

subroutines 

international, 3-277 

subwin subroutine, 3-266, 3-528 

swab subroutine, 3-171 

sysconf subroutine, 3-174 

sys_errlist subroutine, 3-105 

syslog subroutine, 3-175 

sys _ nerr subroutine, 3-105 

sys_siglist subroutine, 3-108 

system log 

controlling, 3-175 

system subroutine (standard C), 3-176 

System V environment 

specifying, 3-2 

T 

t_accept system call, 3-569 

t _ alloc system call, 3-572 

tan subroutine, 3-362 

tan subroutine (math), 3-364 

tanh subroutine (math), 3-367 

t_bind system call, 3-574 

t_c1ose system call, 3-577 

See also copen system call 

t_connect system call, 3-578 

tdelete subroutine, 3-179 

telldir subroutine, 3-27 

tempnam subroutine, 3-520 

temporary file 

creating, 3-519 

naming, 3-520 

termcap keyword, 3-565 

terminal 

finding name, 3-181 

generating file name for, 3-495 

getting state, 3-170 

independent operation routines, 3-565 

setting state, 3-170 

updating screen, 3-193, 3-528 

t_error system function, 3-581 

tfind subroutine, 3-179 

t_free system call, 3-583 

See also Calloc system call 

tgetent subroutine, 3-267, 3-565 

See also curses package 

See also termcap file 

tgetflag subroutine, 3-267, 3-565 

tgetnum subroutine, 3-267, 3-565 

t_getstate system call, 3-588 

tgetstr subroutine, 3-267, 3-565 

tgoto subroutine, 3-267, 3-565 

time 

converting to ASCII, 3-20 

getting, 3-177 

reporting, 3-15 

setting, 3-160 

time subroutine (standard C), 3-177 

times subroutine, 3-178 

timezone subroutine, 3-20 

Uisten sytem call, 3-590 

tJook system call, 3-592 

tmpfile subroutine, 3-519 

See also mktemp subroutine 

See also tmpname subroutine 

Index-13 



tmpnam subroutine, 3-520 

See also mktemp subroutine 

See also tmpfile subroutine 

toacsii subroutine, 3-16 

_ tolower subroutine, 3-16 

tolower subroutine (standard C), 3-16 

t _open system call, 3-596 

t_optmgmt system call, 3-598 

touchwin subroutine, 3-268, 3-528 

_toupper subroutine, 3-16 

toupper subroutine, 3-16 

tparm subroutine, 3-269 

tputs subroutine, 3-270, 3-565 

traceon subroutine, 3-271 

transport connection 

abortive release, 3-616 

orderly release, 3--618 

transport endpoint 

closing, 3-577 

disabling, 3--624 

initializing, 3-596 

polling for asynchronous events, 3-592 

protocol address, 3-574 

returning current event, 3-592 

transport library 

synchronizing, 3--622 

transport protocol 

returning characteristics, 3-587 

transport provider 

returning current state, 3-588 

transport user 

accepting connection, 3-569 

protocol options, 3-598 

requesting a connection, 3-578 

t JCv system call, 3-600 

tJcvconnect system call, 3--602 

tJcvdis system call, 3-605 

tJcvreI. system call, 3-607 

tJcvudata system call, 3--609 

truncation, 3-343 

tsearch subroutine, 3-179 

diagnostics, 3-180 

restrictions, 3-180 

Index-14 

t_snd system call, 3-613 

t_snddis system call, 3-616 

t_sndrel system call, 3-618 

t_sndudata system call, 3-620 

t_sync system call, 3-622 

t_tcvuderr system call, 3--611 

ttyname subroutine, 3-181 

See also ctermid subroutine 

ttys file 

accessing data, 3-71 

field definitions, 3-71 

ttyslot subroutine, 3-181 

t_unbind system call, 3--624 

twalk subroutine, 3-179 

typeahead subroutine, 3-272 

tzet subroutine, 3-20 

u 
ulimit system call, 3-182 

unctrl macro, 3-273 

unctrl subroutine, 3-528 

ungetc subroutine, 3-522 

utime function, 3-183 

v 
valloc subroutine, 3-185 

varargs subroutine, 3-186 

See also vprintf subroutine 

example, 3-186 

restrictions, 3-187 

vfprintf subroutine, 3-292, 3-523 

vidattr subroutine, 3-274 

vidputs subroutine, 3-274 

vlimit subroutine, 3-188 

See also getrlirnit system call 

restrictions, 3-189 

Ivmunix file 

examining name list, 3-100, 3-101 

vprintf subroutine, 3-292, 3-523 

writing an error routine and, 3-523e 

vsprintf subroutine, 3-292 

( 
\ 



vtimes subroutine, 3-190 

See also getrusage system call 

w 
waddch subroutine, 3-200, 3-528 

waddstr subroutine, 3-202, 3-528 

wattroff subroutine, 3-203 

wattron subroutine, 3-203 

wattrset subroutine, 3-203 

wclear subroutine, 3-209, 3-528 

wclrtobot subroutine, 3-211, 3-528 

wclrtoeol subroutine, 3-212, 3-528 

wdelch subroutine, 3-215, 3-528 

wdeleteln subroutine, 3-216, 3-528 

werase subroutine, 3-221, 3-528 

wgetch subroutine, 3-224, 3-528 

wgetstr subroutine, 3-226, 3-528 

winch macro, 3-232 

winch subroutine, 3-528 

window 

defined, 3-193 

winsch macro, 3-234 

winsch subroutine, 3-528 

winsertln subroutine, 3-235, 3-528 

wmove subroutine, 3-242, 3-528 

wnoutrefresh subroutine, 3-275 

working directory 
getting pathname, 3-53, 3-73 

wprintw subroutine, 3-253, 3-528 

wrefresh subroutine, 3-256, 3-528 

See also wnoutrefresh subroutine 

wscanw subroutine, 3-260, 3-528 

wsetscrreg subroutine, 3-263 

wstandend subroutine, 3-203, 3-528 

wstandout subroutine, 3-203, 3-528 

x 
XlOpen Transport Interface 

introduction, 3-567 

y 

yO subroutine, 3-336 

yl subroutine, 3-336 

yn subroutine, 3-336 

yP client interface, 3-628 

yP service 

library function, 3-625 

yp _all subroutine, 3-628 

yp _bind subroutine, 3-628 

ypclnt keyword, 3-628 

yperr_string subroutine, 3-628 

yp -'irst subroutine, 3-628 

YPJet_default_domain SUbroutine, 3-628 

yp_master subroutine, 3-628 

yp_match subroutine, 3-628 

yp_next subrllUtine, 3-628 

yp _order subroutine, 3-628 

yppasswd subroutine, 3-632 

ypprot_err subroutine, 3-628 

yp_unbind subroutine, 3-628 

Inc!ex-15 



( 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing 
your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from 
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call 
800-DIGIT AL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internar* 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital Subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

SSB Order Processing - WMOlE15 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

-", * For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments ULTRIX 
Reference Pages Section 3: Library Routines 

AA-L Y16B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: Excellent Good Fair Poor 

Accuracy (software works as manual says) 0 0 0 0 
Completeness (enough information) 0 0 0 0 
Clarity (easy to understand) 0 0 0 0 
Organization (structure of subject matter) 0 0 0 0 
Figures (useful) 0 0 0 0 
Examples (useful) 0 0 0 0 
Index (ability to find topic) 0 0 0 0 
Page layout (easy to find information) 0 0 0 0 

What would you like to see more/less of? 

What do you like best about this manual? 

What do you like least about this manual? _____________________ _ 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? _____ _ 

NameITitle Dept. 
Company ________________________________ ___ Date ________ _ 

Mailing Address ______________________________________ _ 

Email ____________ Phone 



--. Do Not Tear - Fold Here and Tape 

IIiIDama 1M 

-----------------------------rrl-r~---------::::::~---- ( 

NECESSARY 
IF MAILED IN THE 
UNITED STATES 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OPEN SOFTWARE PUBLICATIONS MANAGER 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NASHUA NH 03062-9987 

1111111 dh III 111111111 h lid III II I II 1111 1111 h II11I 

I 
I 

.--. Do Not Tear - Fold Here .---------------------------------------------------------------~ 

Cut 
Along 
Dotted 
Line 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

:( 
:\", 

C I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Reader's Comments ULTRIX 
Reference Pages Section 3: Library Routines 

AA-L Y16B-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: Excellent Good Fair Poor 

Accuracy (software works as manual says) D D D D 
Completeness (enough information) D D D D 
Clarity (easy to understand) D D D D 
Organization (structure of subject matter) D D D D 
Figures (useful) D D D D 
Examples (useful) D D D D 
Index (ability to find topic) D D D D 
Page layout (easy to find information) D D D D 

What would you like to see morelless of? 

What do you like best about this manual? _____________________ _ 

What do you like least about this manual? 

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using? 

NamefTitle Dept. 
Company ___________________________________________ ___ Date _____ _ 

Mailing Address _____________________________________________ _ 
_____________ Emrul ___________ _ 

Phone 



- -. Do Not Tear - Fold Here and Tape 

IlrlDIII01M 
-----------------------------rrl-r~---------::::::~---- ( 

NECESSARY 
IF MAILED IN THE 
UNITED STATES 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
OPEN SOFTWARE PUBLICATIONS MANAGER 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NASHUA NH 03062-9987 

111111.111.11111111.11.1.11.111 I. 1 •• 11 .1. I. 111.11111 

---. Do Not Tear - Fold Here .---------------------------------------------------------------~ 

Cut 
Along 
Dotted 
Line 


