

ptrace (2) �R�I�~�

locations can be written in this way: the general registers, the floating point
status and registers, and certain bits of the processor status word. The old value
at the address is returned.

7 The data argument is taken as a signal number and the traced process's
execution continues at location addr as if it had incurred that signal. Normally,
the signal number is 0 to indicate that the signal causing the stop should be
ignored. The signal number might be the value fetched out of the process's
image, which identifies the signal that caused the stop. If addr is (int *)1,
execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal number
from the stop is SIGTRAP. TRAPCAUSE contains CAUSESINGLE. This is
part of the mechanism for implementing breakpoints.

20 This is the same as zero, except it is executed by the tracing process and the pid
field is nonzero. The process with that pid stops and becomes a traced process.
On a signal, the traced process returns control· to the tracing process, rather than
the parent. The tracing process must have the same uid as the traced process.

21,22
Returns MAXREG general or MAXFREG floating registers, respectively. Their
values are copied to the locations starting at the address in the tracing process
specified by the addr argument.

24,25
Same as 20 and 21, but writes the registers instead of reading them.

26 Specifies a watchpoint in the data or stack segment of the traced process. If any
byte address starting at the addr argument and continuing for the number of
bytes specified by the data argument is accessed in an instruction, the traced
process stops execution with a SIGTRAP. TRAPCAUSE contains
CAUSEWATCH, and TRAPINFO contains the address causing the trap. This
ptrace returns a watchpoint identifier (wid). MAXWIDS specifies the maximum
number of watchpoints for each process.

27 The data argument specifies a wid to delete.

28 Turns off the tracing for the traced process with the specified pid.

29 Returns an open file descriptor for the file attached to pid. This request is useful
in accessing the symbol table of a process created with the execve call.

As indicated, these calls (except for request 0 and 20) can be used only when the
subject process has stopped. The wait call is used to determine when a process stops;
in such a case, the "termination" status returned by wait has the value 0177. This
value indicates that the process has stopped, rather than terminated. If multiple
processes are being traced, wa i t can be called multiple times, and it returns the
status for the next stopped or terminated child or traced process.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities
on subsequent exec(2) calls. If a traced process calls execve, it stops before
executing the first instruction of the new image showing signal SIGTRAP. In this
case, TRAPCAUSE contains CAUSEEXEC and TRAPINFO does not contain
anything interesting. If a traced process calls execve again, the same thing occurs.

System Calls 2-139

SC ptrace (2)

If a traced process forks, both parent and child are traced. Breakpoints from the
parent are not copied into the child. At the time of the fork, the child is stopped with
a SIGTRAP. The tracing process can then terminate the trace if desired.
TRAPCAUSE contains CAUSEFORK and TRAPINFO contains the pid of its parent.

Restrictions
On an ULTRIX system, the ptrace system call succeeds only if the user owns the
binary being traced or if the user is root.

The request 0 call should be able to specify signals that are to be treated normally
and not cause a stop. In this way, for example, programs with simulated floating
point, which use "illegal instruction" signals at a very high rate, can be efficiently
debugged.

The error indication, -1, is a legitimate function value; when an error occurs, the
ermo variable is set to explain the condition that caused the error.

It should be possible to stop a process on occurrence of a system call; in this way, a
completely controlled environment could be provided.

Return Value
A 0 value is returned if the call succeeds. If the call fails, a -1 is returned, and the
global variable errno is set to indicate the error.

Diagnostics
The ptrace call fails under the following conditions:

[EIO]

[ESRCH]

[EIO]

[EIO]

[EPERM]

See Also

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

dbx(1), wait(2), sigvec(2)

2-140 System Calls

Name

Syntax

ptrace - process trace

#include <signaJ.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

ptrace(2) VA

Description
The ptrace system call provides a means by which a parent process may control
the execution of a child process, and examine and change its core image. Its primary
use is for the implementation of breakpoint debugging. There are four arguments
whose interpretation depends on a request argument. Generally, pid is the process ID
of the traced process, which must be a child (no more distant descendant) of the
tracing process. A process being traced behaves normally until it encounters some
signal whether internally generated like "illegal instruction" or externally generated
like "interrupt". See sigvec(2) for the list. Then the traced process enters a
stopped state and its parent is notified via wai t(2). When the child is in the stopped
state, its core image can be examined and modified using ptrace. If desired,
another ptrace request can then cause the child either to terminate or to continue,
possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

a This request is the only one used by the child process; it declares that the
process is to be traced by its parent. All the other arguments are ignored.
Peculiar results will ensue if the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D
space are separated (for example, historically on a pdp-II), request 1 indicates I
space, 2 D space. The addr must be even. The child must be stopped. The
input data is ignored.

3 The word of the system's per-process data area corresponding to addr is
returned. The addr must be even and less than 512. This space contains the
registers and other information about the process; its layout corresponds to the
user structure in the system.

4,5 The given data is written at the word in the process's address space
corresponding to addr, which must be even. No useful value is returned. If I
and D space are separated, request 4 indicates I space, 5 D space. Attempts to
write in pure procedure fail if another process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few
locations can be written in this way: the general registers, the floating point
status and registers, and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution
continues at location addr as if it had incurred that signal. Normally the signal
number will be either a to indicate that the signal that caused the stop should be
ignored, or that value fetched out of the process's image indicating which signal
caused the stop. If addr is (int *)1 then execution continues from where it
stopped.

System Calls 2-141

I AX ptrace (2)

8 The traced process tenninates.

9 Execution continues as in request 7; however, as SOon as possible after
execution of at least one instruction, execution stops again. The signal number
from the stop is SIGTRAP. (On the VAX-ll the T-bit is used and just one
instruction is executed.) This is part of the mechanism for implementing
breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject
process has stopped. The wai t call is used to detennine when a process stops; in
such a case the "tennination" status returned by w a i t has the value 0177 to
indicate stoppage rather than genuine tennination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities
on subsequent execve(2) calls. If a traced process calls execve, it will stop
before executing the first instruction of the new image showing signal SIGTRAP.

On a VAX, "word" also means a 32-bit integer, but the "even" restriction does not
apply.

Environment
When your program is compiled using the System V environment, requests 7 and 9
return the value of the data argument on success, ermo is set to ESRCH if the pid
does not exist, EIO if the address is out of bounds.

Return Value
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and
the global variable ermo is set to indicate the error.

Restrictions
In ULTRIX, the ptrace system call will only succeed if the user owns the binary
being traced or if the user is root.

Diagnostics

[EIO]

[ESRCH]

[BIO]

[EIO]

[EPERM]

See Also

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

adb(I), sigvec(2), wait(2)

2-142 System Calls

Name

Syntax

quota - manipulate disk quotas

#include <sysltypes.h>
#include <sys/param.h>
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr;

quota(2)

Description
The quota call manipulates disk quotas for file systems that have had quotas
enabled with setquota. The cmd parameter indicates a command in the following
list that is applied to the user ID uid. The arg parameter is a command specific
argument and addr is the address of an optional, command specific data structure,
which is copied in or out of the system. The interpretation of arg and addr is given
with each command in the list that follows:

Q_SETDLIM
Set disk quota limits and current usage for the user with ID uid. The arg
parameter is a major-minor device indicating a particular file system. The
addr parameter is a pointer to a struct dqblk structure, defined in
<sys/quota.h>. Only the superuser can issue this call.

~GETDLIM
Get disk quota limits and current use for the user with ID uid. The
remaining parameters are identical to the ~SETDLIM command
parameters.

~SETDUSE
Set disk use limits for the user with ID uid. The arg parameter is a
major-minor device indicating a particular file system. The addr is a
pointer to a struct dqusage structure, defined in <sys/quota.h>. Only the
superuser can issue this call.

~SYNC Update the on-disk copy of quota uses. The uid, arg, and addr parameters
are ignored.

~SETUID
Change the calling process's quota limits to those of the user with ID uid.
The arg and addr parameters are ignored. Only the superuser can issue
this call.

~SETWARN
Alter the disk usage warning limits for the user with ID uid. The arg is a
major-minor device indicating a particular file system. The addr
parameter is a pointer to a struct dqwam structure, which is defined in
<sys/quota.h>. Only the superuse can issue this call.

~DOWARN
Warn the user with user ID uid about excessive disk use. This call causes
the system to check its current disk use information and print a message

System Calls 2-143

quota(2)

Return Value

on the tenninal of the caller for each file system on which the user is over
quota. If the arg parameter is specified as NODEV, all file systems that
have disk quotas are checked. Otherwise, arg indicates a specific major­
minor device to be checked. Only the superuser can issue this call.

A successful call returns 0 and, possibly, more infonnation specific to the command
specified in the cmd parameter; when an error occurs, the value -1 is returned and the
global variable ermo is set to indicate the reason.

Diagnostics
A quota call fails when one of the following occurs:

[EINVAL]

[EINVAL]

[ESRCH]

[EPERM]

[ENODEV]

[EFAULT]

[EUSERS]

See Also

The kernel has not been compiled with the QUOTA option.

The cmd parameter is invalid.

No disk quota is found for the indicated user.

Only the superuser can issue the call and the caller is not the
superuser.

The arg parameter is being interpreted as a major-minor device,
and it indicates an unmounted file system.

An invalid addr parameter is supplied; the associated structure
could not be copied in or out of the kernel.

The quota table is full.

setquota(2,) quotacheck(8,) quotaon(8)
"Disk Quotas in a UNIX Environment", ULTRIX Supplementary Documents, Volume
3:System Manager

2 144 System Calls

Name

Syntax

read, ready - read from a file

cc = read(d, buf, nbytes)
int cc, d;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

read (2)

Arguments

d File descriptor.

buf

nbytes

iov

iovcnt

Description

Character pointer where information is stored.

Integer that tells you how many bytes to read.

Pointer to an iovec structure.

The number of iovec structures to be processed.

The system call read attempts to read nbytes of data from the object referenced by
the descriptor d into the buffer pointed to by buf. The readv system call performs
the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iovec following array: iov[O], iov[l], ... , iov[iovcnt-l].

For readv, the iovec structure is defined as follows:

struct iovec {
caddr t
int iov len;

) ;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv system call fills an area completely before
proceeding to the next area.

On objects that are capable of seeking, the read starts at a position given by the
pointer associated with d. See lseek(2) for more information. Upon return from
read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The
value of the pointer associated with such an object is undefined.

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, read returns zero to indicate end­
of-file.

System Calls 2-145

read (2)

• If some process has the pipe open for writing and O_NDELA Y or
O_NONBLOCK is set, read returns a -1, ermo is to [EWOULDBLOCK]. If
some process has the pipe open for writing and O_NDELA Y and
O_NONBLOCK are clear, read blocks until data is written or the pipe is
closed by all processes that opened the pipe for writing.

Upon successful completion, read and readv return the number of bytes actually
read and placed in the buffer. The system reads the number of bytes requested if the
descriptor references a file which has that many bytes left before the end-of-file; this
is not true in any other instance.

Unless the SV _INTERRUPT bit has been set for a signal, the read system calls are
automatically restarted when a process receives a signal while waiting for input. See
also sigvec(2).

Return Value
If the returned value is 0, then end-of-file has been reached.

If the read is successful, the number of bytes actually read is returned. Otherwise, a
-1 is returned and the global variable ermo is set to indicate the error.

Diagnostics
The read and readv system calls fail if one or more of the following are true:

[EBADF]

[EFAULT]

[EINTR]

[EIO]

[ESTALE]

The d argument is not a valid file or socket descriptor open for
reading.

The but points outside the allocated address space.

A read from a slow device was interrupted before any data arrived
by the delivery of a signal.

An I/O error occurred while reading from the file system.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[EWOULDBLOCK]
The O_DELAY or O_NONBLOCK flag is set for the file
descriptor and the process would be delayed in the read operation.

In addition, readv may return one of the following errors:

[EINVAL]

[EINVAL]

[EINVAL]

[EFAULT]

The iovcnt was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit
integer.

Part of the iov points outside the process's allocated address space.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party· did not respond after a period of time detennined
by the communications protocol.

2-146 System Calls

Environment
SYSTEM_FIVE

When you use the System V environment, note the following:

read (2)

• If your program is compiled in this environment, a read and readv system
call returns 0 if the file has been set up for non-blocking I/O and the read
would block.

• In this environment, the parameter nbytes is of type int instead of type
unsigned.

POSIX

In the POSIX environment, [EAGAIN] is returned in errno instead of
[EWOULDBLOCK].

See Also
dup(2), open(2), pipe(2), sigvec(2), socket(2), socketpair(2)

System Calls 2-147

readlink (2)

Name

Syntax

readlink - read value of a symbolic link

cc = readliok(path, buf, bufsiz)
iot cc;
char *path, *buf;
iot bufsiz;

Description
The readlink system call places the contents of the symbolic link path in the
buffer buf, which has size buJsiz. The contents of the link are not null terminated
when returned.

Return Value
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if
an error occurs, placing the error code in the global variable errno.

Diagnostics
The readlink system call fails under the following conditions:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EINVAL]

[EFAULT]

[ELOOP]

[EIO]

[ETIMEDOUT]

See Also

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The named file is not a symbolic link.

The buJ extends outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred while reading from the file system.

A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

Istat(2), symlink(2), stat(2)

2-148 System Calls

Name

Syntax

reboot - reboot system or halt processor

#include <sys/reboot.h>

reboot(howto)
int howto;

reboot (2)

Arguments

howto The howto argument is a mask of options passed to the bootstrap program.

Description

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place.
RB_HALT should be used with caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire
as to what file should be booted. Normally, the system is booted
from the file "xx(O,O)vmunix" without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk
consistency check and then multi-user operations. RB_SINGLE
prevents the consistency check, rather simply booting the system
with a single-user shell on the console. RB_SINGLE is
interpreted by the init(8) program in the newly booted system.
This switch is not available from the system call interface.

Only the superuser may reboot a machine.

The reboot system call reboots the system, and is invoked automatically in the
event of unrecoverable system failures. The system call interface permits only
RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media or used in manual bootstrap
procedures. When none of these options (for example, RB_AUTOBOOT) is given,
the system is rebooted from file vmunix in the root file system of unit 0 of a disk
chosen in a processor-specific way. Normally, an automatic consistency check of the
disks is then performed.

Return Value
If successful, this call never returns. Otherwise, a -1 is returned, and an error is
stored in the global variable errno.

System Calls 2-149

reboot(2)

Diagnostics
The reboot call fails under the following condition:

[EPERM]

See Also

The caller is not the superuser.

crash(8v), halt(8), init(8), reboot(8)

2-150 System Calls

Name

Syntax

recv, recvfrom, recvmsg - receive a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromJen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

- - ------- - -- ---~--------

recv (2)

Description
The recv, recvfrom, and recvmsg system calls are used to receive messages
from a socket.

The recv call can be used only on a connected socket. The recvfrom and
recvmsg calls can be used to receive data on a socket, whether or not it is in a
connected state. For further information, see connect(2).

If from is nonzero, the source address of the message is filled in. The fromlen is a
value-result parameter, initialized to the size of the buffer associated with from, and
modified on return to indicate the actual size of the address stored there. The length
of the message is returned in cc. If a message is too long to fit in the supplied
buffer, excess bytes can be discarded, depending on the type of socket the message is
received from. For further information, see socket(2).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking. If the socket is nonblocking, a cc of -1 is
returned, and the external variable ermo is set to EWOULDBLOCK. For further
information, see ioctl(2).

The select(2) call can be used to determine when more data arrives.

The flags argument to a send call is formed by ~Ring one or more of the values
following values:

#define
#define

MSG OOB
MSG_PEEK

Ox!
Ox2

/* process out-of-band data */
/* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly
supplied parameters. This structure has the following form, as defined in
<sys/socket.h>:

System Calls 2-151

recv (2)

struct msghdr {
caddr t
int
struct
int
caddr t
int

} ;

msg_name; /* optional address */
msg_namelen; /* size of address */
iov *msg_iov; /* scatter/gather array */
msg_iovlen; /* # elements in msg_iov */
msg_accrights; /* access rights sent/received */
msg_accrightslen;

Here, msg_ name and msg_ name len specify the destination address if the socket is
unconnected; msg_ name can be given as a null pointer if no names are desired or
required. The msg_iov and msg_iovlen describe the scatter gather locations, as
described in read(2). Access rights to be sent along with the message are specified
in msg_ accrights , which has length msg_ accrightslen .

Return Value
These calls return the number of bytes received, or -1 if an error occurred.

Diagnostics
The recv call fails under the following conditions:

[EBADF] The argument s is an invalid descriptor.

[EINVAL] The argument length of the message is less than O.

[EMSGSIZE] The message sent on the socket was larger than the internal
message buffer.

[ENOTCONN] A call was made to recv from an unconnected stream socket.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK]

[EINTR]

[EFAULT]

See Also

The socket is marked nonblocking and the receive operation would
block.

The receive was interrupted by delivery of a signal before any data
was available for the receive.

The data was specified to be received into a nonexistent or
protected part of the process address space. The argument fromlen
points outside the process address space.

read(2), send(2), socket(2)

2-152 System Calls

Name

Syntax

rename - change the name of a file

renamelfrom, to)
char *from, *to;

rename(2)

Description
The rename system call causes the link named from to be renamed to. If to exists,
then it is first removed. Bothfrom and to must be of the same type (that is, both
directories or both nondirectories) and must reside on the same file system.

The rename system call guarantees that an instance of to will always exist, even if
the system should crash in the middle of the operation.

Return Value
A zero (0) value is returned ifthe operation succeeds. Otherwise rename returns -1,
and the global variable errno indicates the reason for the failure.

Restrictions
The system can deadlock if a loop in the file system graph is present.and two
processes issue the rename call at the same time. For example, suppose a directory,
dirname, contains a file, dirname/filename. Suppose that file is hard-linked
to a directory, secondir, and the secondir directory contains a file,
secondir I secondfile. If secondir I secondfile is hard-linked to
dirname, a loop exists. Now suppose one process issues the following rename
call:

rename (dirname/filename secondir/secondfile)

At the same time, another process issues the following rename call:

rename (secondir/secondfile dirname/filename)

In this case, the system can deadlock. The system administrator should replace hard
links to directories with symbolic links.

Diagnostics
The rename system call fails and neither of the argument files are affected under the
following conditions:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

A component of either path prefix is not a directory.

A component of the from path does not exist, or a path prefix of to
does not exist.

Either from or to points to an empty string and the environment
defined is POSIX or SYSTEM_FIVE.

A component of either path prefix denies search permission.

The to file exists, the directory containing from is marked sticky,
and neither the containing directory nor the to directory is owned
by the effective user ID.

System Calls 2-153

rename (2)

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

The directory containing from is marked sticky, and neither the
containing directory nor the from directory is owned by the
effective user ID.

The link named by to and the file named by from are on different
logical devices (file systems). Note that this error code is not
returned if the implementation permits cross-device links.

The requested link requires writing in a directory with a mode that
denies write permission.

The requested link requires writing in a directory on a read-only
file system.

The path points outside the process's allocated address space.

[EINV AL] The from is a parent directory of to, or an attempt is made to
rename dot (.) or dot-dot (..).

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[EISDIR]

[ENOSPC]

[EDQUOT]

[EIO]

A component of either pathname exceeded 255 characters, or the
entire length of either pathname exceeded 1023 characters.

Too many symbolic links were encountered in translating either
pathname.

Thefrom is a directory, but to is not a directory.

The to is a directory, but from is not a directory.

The directory in which the entry for the new name is being placed
cannot be extended, because there is no space left on the file
system containing the directory.

The directory in which the entry for the new name is being placed
cannot be extended, because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

An I/O error occurred while making or updating a directory entry.

[ENOTEMPTY] The to is a directory and is not empty.

[EBUSY]

See Also
open(2)

2-154 System Calls

The directory named by from or to is a mount point.

Name

Syntax

rmdir - remove a directory file

rmdir(path)
char *path;

rmdir(2)

Description
The rmdir system call removes a directory file whose name is given by path. The
directory must not have any entries other than dot (.) and dot-dot (..).

If one or more processes have the directory open when the last link is removed, the
dot and dot-dot entries, if present, are removed before rmdir () returns and no new
entries may be created in the directory. The directory, however, is not removed until
all references to the directory have been closed.

Return Value
A zero (0) is returned if the remove succeeds; otherwise, a -1 is returned, and an
error code is stored in the global location ermo .

Diagnostics
The named file is removed unless one or more of the following are true:

[ENOTEMPTY] The named directory contains files other than dot and dot-dot.

[EPERM] The directory containing the directory to be removed is marked
sticky, and neither the containing directory nor the directory to be
removed are owned by the effective user ID.

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

A component of the path is not a directory.

The named directory does not exist or path points to an empty
string and the environment defined is POSIX or SYSTEM_FIVE.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The directory to be removed is the mount point for a mounted file
system.

The directory entry to be removed resides on a read-only file
system.

The path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[EIO]

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters. .

An I/O error occurred while deleting the directory entry or
deallocating the inode.

System Calls 2-155

rmdir(2)

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
mkdir(2), unlink(2)

2-156 System Calls

Name

Syntax

select - synchronous I/O multiplexing

#include <sys/time.b>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

select (2)

Description
The select system call examines the I/O descriptors specified by the bit masks
readfds, writefds, and execptfds to see if they are ready for reading, writing, or have
an exceptional condition pending. The I/O descriptors can be pointers to arrays of
integers, if multiple fd' s are required to be selected. File descriptor f is represented
by the bit I «f in the mask. The nfds descriptors are checked, that is, the bits from 0
through nfds-I in the masks are examined. The select system call returns, in
place, a mask of those descriptors that are ready. The total number of ready
descriptors is returned in nfound.

If timeout is a nonzero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be nonzero, pointing to a O-valued
timeval structure.

Any of readfds, writefds, and execptfds can be given as zero (0) if no descriptors are
of interest.

Return Value
The select system call returns the number of descriptors that are contained in the
bit masks, or -I if an error occurred. If the time limit expires, select returns O.

Restrictions
If a process is blocked on a select waiting for input from a socket and the sending
process closes the socket, the s e 1 e ct notes this as an exception rather than as data.
Hence, if the select is not currently looking for exceptions, it waits indefinitely.

The descriptor masks are always modified on return, even if the call returns as the
result of the timeout.

Diagnostics
An error return from select indicates:

[EBADF]

[EINTR]

[EINVAL]

One of the bit masks specified an invalid descriptor.

A signal was delivered before the time limit expired and before
any of the selected events occurred.

The specified time limit is unacceptable. One of its components is
negative or too large.

System Calls 2-157

select (2)

See Also
accept(2), connect(2), read(2), recv(2), send(2), write(2)

2-158 System Calls

Name

Syntax

semctl - semaphore control operations

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

int semetl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

} arg;

int val;
struct semid ds *buf;
ushort array!];

semctl (2)

Description
The sernctl system call provides a variety of semaphore control operations as
specified by cmd. The following cmds are executed with respect to the semaphore
specified by semid and semnum:

GETVAL

SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval. For further information, see
intro(2).

Set the value of semval to argo val. When this command is
successfully executed, the semadj value corresponding to the
specified semaphore in all processes is cleared.

Return the value of sempid.

Return the value of semncnt.

Return the value of semzcnt.

The following cmds return and set every semval in the set of semaphores:

GETALL
SETALL

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by arg.array When
this command is successfully executed, the semadj values
corresponding to each specified semaphore in all processes are
cleared.

The following cmds are also available:

Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2).

Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to by arg.buf:

semyerm.uid
semyerm.gid
semyerm.mode /* only low 9 bits */

System Calls 2-159

semctl (2)

This command can only be executed by a process that has an effective user 10 equal
to superuser or to the values of sem perm.nid or sem perm.enid in the data
structure associated with semid. - -

Return Value

Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a process
that has an effective user ID equal to either that of superuser or to
the value of sem _perm.nid in the data structure associated with
semid.

Upon successful completion, the value returned depends on cmd, as follows:

GETVAL

GETP10

GETNCNT

GETZCNT

All other

The value of semval.

The value of sempid.

The value of semncnt.

The value of semzcnt.

A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Diagnostics
The semctl system call fails if any of the following is true:

[E1NVAL]

[E1NVAL]

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

See Also

The semid is not a valid semaphore identifier.

The semnum is less than zero or greater than sem _ nsems.

The cmd is not a valid command.

Operation permission is denied to the calling process. For further
information, see errno(2).

The cmd is SETV AL or SET ALL, and the value to which semval
is to be set is greater than the system imposed maximum.

The cmd is equal to IPC_RMIO or 1PC_SET and the effective user
10 of the calling process is not equal to that of superuser nor to the
value of sem perm.nid in the data structure associated with
semid. -

The arg .buf points to an illegal address.

ermo(2), intro(2), semget(2), semop(2)

2-160 System Calls

Name

Syntax

semget - get set of semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
keLt key;
int nsems, semfig;

semget(2)

Description
The semget system call returns the semaphore identifier associated with key. A
semaphore identifier and associated data structure and set containing nsems
semaphores are created for key, if one of the following is true:

• The key is equal to IPC_PRIV A TE

• The key does not already have a semaphore identifier associated with it, and
(semflg & IPC_CREAT) is true.

For further information, see intro(2).

Upon creation, the data structure associated with the new semaphore identifier is
initialized as follows:

• The sem _perm.cuid, sem _perm.uid, sem _perm.cgid and sem _perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

• The low-order nine bits of sem _perm. mode are set equal to the low-order nine
bits of semfig.

• The sem_nsems is set equal to the value of nsems.

• The sem_otime is set equal to zero (0) and sem_ctime is set equal to the current
time.

Return Values
Upon successful completion, a nonnegative integer, namely a semaphore identifier, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the error.

Diagnostics
The semget system call fails if any of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

The nsems is either less than or equal to zero or greater than the
system-imposed limit

A semaphore identifier exists for key, but operation permission, as
specified by the low-order nine bits of semfig would not be
granted. For further information, see errno(2).

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems and
nsems is not equal to zero.

System Calls 2-161

semget(2)

[ENOENT]

[ENOSPC]

[EEXIST]

See Also

A semaphore identifier does not exist for key and (semjig &
IPC_CREAT) is false.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers in
the system would be exceeded.

A semaphore identifier exists for key but «semjlg & IPC_CREAT)
& (semjig & IPC_EXCL » is true.

semctl(2), semop(2), ftok(3)

2-162 System Calls

Name

Syntax

semop - semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf *sops[J;
int nsops;

semop(2)

Description
The semop system call is used to atomically perform an array of semaphore
operations on the set of semaphores associated with the semaphore identifier specified
by semid. The sops is a pointer to the array of semaphore-operation structures.
The nsops is the number of such structures in the array. The contents of each
structure includes the following members:

short sem_num;
short sem_op;
short sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem _op is performed on the corresponding
semaphore specified by semid and sem_num.

The sem_op specifies one of three semaphore operations as follows:

1. If sem_op is a negative integer, one of the following occurs:

• If semval is greater than or equal to the absolute value of sem_op, the absolute
value of sem op is subtracted from semval. For further information, see
intro(2). Also, if (semJlg & SEM_UNDO) is true, the absolute value of
sem_op is added to the calling process's semadj value for the specified
semaphore. For further information, see exi t(2).

• If semval is less than the absolute value of sem _ op and (sem Jig &
IPC_NOWAIT) is true, semop returns immediately.

• If semval is less than the absolute value of sem op and (sem_fIg &
IPC_NOWAIT) is false, semop increments the semncnt associated with the
specified semaphore and suspend execution of the calling process until one of
the following occurs:

• If the semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncnt associated with the specified semaphore
is decremented, the absolute value of sem op is subtracted from semval, and if
(semJlg & SEM_UNDO) is true, the absOiute value of sem_op is added to the
calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the
system. For further information, see semctl(2). When this occurs, ermo is
set equal to EIDRM, and a value of -1 is returned.

System Calls 2-163

semop(2)

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3).

2. If sem_op is a positive integer, the value of sem_op is added to semval and, if
(semJlg & SEM_UNDO) is true, the value of sem_op is subtracted from the calling
process's semadj value for the specified semaphore.

3. If sem _ op is zero, one of the following occurs:

• If semval is zero, semop returns immediately.

• If semval is not equal to zero and (semJlg & IPC_NOWAIT) is true, semop
returns immediately.

• If semval is not equal to zero and (semJlg & IPC_NOWAIT) is false, semop
increments the semzcnt associated with the specified semaphore and suspend
execution of the calling process, until one of the following occurs:

The semval became zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the
system. When this occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3).

Upon successful completion, the value of sempid for each semaphore specified in the
array pointed to by sops is set equal to the process ID of the calling process.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

Diagnostics
The semop fails if any of the following is true for any of the semaphore operations
specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]

[EACCESS]

[EAGAIN]

[ENOSPC]

[EINVAL]

2-164 System Calls

The sempid is not a valid semaphore identifier.

The sem num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

The nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process. For further
information, see errno(2).

The operation would result in suspension of the calling process,
but (sem Jig & IPC_NOW AIT) is true.

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

The number of individual semaphores for which the calling process
request a SEM_ UNDO would exceed the limit.

[ERANGE]

[ERANGE]

[EFAULT]

[EINTR]

[EIDRM]

See Also

semop(2)

An operation would cause a semval to overflow the system­
imposed limit.

An operation would cause a semadj value to overflow the system­
imposed limit.

The sops points to an illegal address.

The semop returns due to the receipt of a signal.

The semid has been removed from the system.

execve(2), exit(2), fork(2), semct1(2), semget(2), signal(3)

System Calls 2-165

send (2)

Name

Syntax

send, sendto, sendmsg - send a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

Description
The send, sendto, and sendmsg system calls are used to transmit a message to
another socket. The send system call may be used only when the socket is in a
connected state, while the sendto and sendmsg system calls may be used at any
time.

The address of the target is given by to, with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, the error EMSGSIZE is returned, and the message is not
transmitted. If the address specified in the argument is a broadcast address, the
SO_BROADCAST option must be set for broadcasting to succeed.

No indication of failure to deliver is implicit in a send. Return values of -1
indicate some locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted,
send normally blocks, unless the socket has been placed in nonblocking I/O mode.
The select(2) call can be used to determine when it is possible to send more data.

The flags parameter can be set to MSG_OOB to send out-of-band data on sockets
that support this features (for example, SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

The call returns the number of characters sent, or -1 if an error occurred.

2-166 System Calls

Diagnostics

[EBADF]

[EDEST ADDRREQ]

[EFAULT]

[EINVAL]

[EINTR]

[ENOTCONN]

[ENOTSOCK]

[EMSGSIZE]

[EPIPE]

[EWOULDBLOCK]

See Also

send (2)

An invalid descriptor was specified.

A required address was omitted from an operation on a
socket.

An invalid user space address was specified for a parameter.

An invalid argument length for the message was specified.

The send was interrupted by delivery of a signal.

The socket is not connected.

The argument s is not a socket.

The socket requires that messages be sent atomically, and
the size of the message to be sent made this impossible.

A write on a pipe or socket for which there is no process to
read the data.

The socket is marked nonblocking, and the requested
operation would block.

recv(2), getsockopt(2), socket(2)

System Calls 2-167

setgroups (2)

Name

Syntax

setgroups - set group access list

#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, *gidset;

Description
The setgroups system call sets the group access list of the current user process
according to the array, gidset. The ngroups parameter indicates the number of entries
in the array and must be no more than NGROUPS, as defined in <sys/param. h>.

Only the superuser can set new groups.

Return Value
A 0 value is returned on success, -Ion an error, with the error code stored in ermo.

Diagnostics
The setgroups call fails if:

[EPERM]

[EFAULT]

See Also

The caller is not the superuser.

The address specified for gidset is outside the process address
space.

getgroups(2), initgroups(3x)

2-168 System Calls

Name

Syntax

setpgrp - set process group

setpgrp(pid, pgrp)
int pid, pgrp;

------."...,.~"" ""''''_'_.., ... _-
setpgrp(2)

Description
The setpgrp system call sets the process group of the specified process pid to the
specified pgrp. If pid is zero, the call applies to the current process.

If the invoker is not the superuser, the affected process must either have the same
effective user-id as the invoker or be a descendant of the invoking process.

Return Value
The setpgrp system call returns zero (0) when the operation is successful. If the
request fails, -1 is returned, and the global variable errno indicates the reason.

Environment
SYSTEM_FIVE

When your program is compiled using the System V environment, setpgrp is
called without arguments and the new process group id is returned if successful.

Diagnostics
The setpgrp system call fails and the process group is not altered, if one of the
following occur:

[EPERM]

[ESRCH]

See Also
getpgrp(2)

The effective user ID of the requested process is different from that
of the caller and the process is not a descendent of the calling
process.

The requested process does not exist.

System Calls 2-169

setquota (2)

Name

Syntax

setquota - enable/disable quotas on a file system

setqnota(special, file)
char *special, *file;

Description
Disk quotas are enabled or disabled with the setquota call. The special indicates
a block special device on which a mounted file system exists. If file is nonzero, it
specifies a file in that file system from which to take the quotas. If file is zero, then
quotas are disabled on the file system. The quota file must exist; it is normally
created with the quotacheck program.

Only the superuser can tum quotas on or off.

Return Value
A zero (0) return value indicates a successful call. A value of -1 is returned when an
error occurs, and ermo is set to indicate the reason for failure.

Diagnostics
The setquota system call fails when one of the following occurs:

[ENODEV]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EROFS]

[EACCES]

[EACCES]

[EINVAL]

[EINVAL]

The special does not exist.

The special is not a block device.

The major device number of special is out of range. (This indicates
no device driver exists for the associated hardware.)

A component of either path prefix is not a directory.

The file resides on a read-only file system.

The file resides on a file system different from special.

The file is not a plain file.

Either pathname contains a character with the high-order bit set.

The kernel has not been compiled with the QUOTA option.

[ENAMETOOLONG]

[ENOENT]

[ELOOP]

[EPERM]

[EACCES]

[EIO]

2-170 System Calls

A component of either pathname exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

The file does not exist.

Too many symbolic links were encountered in translating either
pathname.

The caller is not the superuser.

Search permission is denied for a component of either path prefix.

An I/O error occurred while reading from or writing to the file
containing the quotas.

[EFAULT]

See Also

setquota (2)

The special or path points outside the process's allocated address
space.

quota(2), edquota(8), quotacheck(8), quotaon(8),
"Disk Quotas in a UNIX Environment", Supplementary Documents, Vol. III:System
Manager

System Calls 2-171

setregid (2)

Name

Syntax

setregid - set real and effective group ID

setregid(rgid, egid)
int rgid, egid;

Description
The real and effective group ID's of the current process are set to the arguments.

Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID for the -1 parameter.

Environment

BSD
If the process is superuser, or rgid and egid matches with the real group ID, the
effective group ID, or the saved set-group-id (as described in execve(2)), then the
real, effective, and saved set-group-id are set to rgid, egid, and egid,
respectively.

POSIX
SYSTEM-FIVE
When your program is compiled in POSIX or SYSTEM-FIVE mode, the following
semantics apply when using the setregid function.

If the process is the superuser, the real, effective, and saved set-group-id (as described
in execve(2)) are set to rgid, egid, and egid, respectively.

If the process is not the superuser, but the rgid and egid matches the real group
ID, the effective group ID (only in SYSTEM-FIVE and BSD environment), or the
saved set-group-id, then the effective ID is set to egid. The real group ID and the
saved set-group-id are left unchanged.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

Diagnostics

[EPERM]

See Also

The current process is not the superuser and the egid and rgid
specified does not match with the real group ID or the effective
group ID (only in SYSTEM-FIVE and BSD environment) or the
saved set-group-id.

getgid(2), setreuid(2), setgid(3)

2-172 System Calls

Name

Syntax

setreuid - set real and effective user ID's

setreuid(ruid, euid)
intruid, euid;

setreuid (2)

Description
The real and effective user ID's of the current process are set according to the
arguments. If ruid or euid is -1, the current uid is filled in by the system.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of-l
is returned and ermo is set to indicate the error.

Environment

BSD
If the process is superuser, or ruid and euid matches with the real user ID, the
effective user ID, or the saved set-user-id (as described in execve(2)), then the real,
effective, and the saved set-user-id are set to ruid, euid, and euid, respectively.

POSIX
SYSTEM-FIVE
When your program is compiled in the POSIX or SYSTEM-FIVE mode, if both
arguments to setreuid are -1, the system call returns a value of -1 and ermo is
set to [EINVAL].

The following semantics apply when using the setreuid function:

If the process is the superuser, the real, effective, and saved set-user-id (as described
in execve(2)) are set to ruid, euid, and euid, respectively.

If the process is not the superuser, but the ruid and euid matches with the real
user ID, the effective user ID (only in the SYSTEM-FIVE and BSD environments),
or the saved set-user-id, then the effective ID is set to euid. The real user ID and
the saved set-user-id are left unchanged.

Diagnostics

[EPERM]

See Also

The current process is not the superuser and the euid and ruid
specified does not match with the real user ID, the effective user
ID (only in SYSTEM-FIVE and BSD environment), or the saved
set-user-id.

getuid(2), setregid(2), setuid(3)

System Calls 2-173

setsid (2)

Name

Syntax

setsid - POSIX create session and set process group ID

#include <sys/types.h>
pid_t
setsidO

Description
The setsid system call creates a new session, if the calling process is not a process
group leader. The calling process is the session leader of the new session, the
process group leader of the new process group, and does not have a controlling
terminal. The process group ID of the calling process is set equal to the process ID
of the calling process.

Return Value
Upon successful completion, the setsid system call returns the value of the process
group ID of the calling process. If the setsid system call fails, -1 is returned, and
the global variable errno indicates the reason.

Diagnostics
The setsid system call fails and a new session is not created if the following
occurs:

[EPERM]

See Also

The calling process is already a process group leader.

The process group ID of a process other than the calling process
matches the process ID of the calling process.

getpgrp(2), setpgid(3)

2-174 System Calls

setsysinfo (2)

Name
setsysinfo - set system information

Syntax
#include <sys/types.h>
#include <sys/sysinfo.h>

setsysinfo(op, buffer, nbytes, arg, flag)
unsigned op;
char *buffer;
unsigned nbytes;
unsigned arg;
unsigned flag;

Description
The setsysinfo system call modifies system information. The op argument
specifies the operation to be performed. Values for op are defined in the
<sys/ sysinfo. h> header file. The optional buffer and nbytes arguments are used
to pass data, which varies depending upon op. When buffer and nbytes are not
required, they should be set to NULL. The optional arg argument can be used with
certain op values for additional information. When arg is not required, it should be
set to NULL. The optional flag argument can be used with certain op and arg values
for additional information. When flag is not required it should be set to NULL.

Possible op values are:

op = SSCNVPAIRS
Use a list of name-value pairs to modify predefined system variables. Buffer
is an array of name-value pairs, where name is one of a predefined set of
system variables defined in the <sys/sysinfo.h> header file.

Possible name values are:

SSIN NFSPORTMON
A Boolean that determines whether incoming NFS traffic is
originating at a privileged port or not.

SSIN NFSSETLOCK
A Boolean that determines whether NFS (daemon) style file and
record locking are enabled or not.

SSIN_PROG_ENV
Set the compatibility mode of the process. Possible values are
A_BSD, A_POSIX, or A_SYSV.

SSIN_UACSYS (RISC only)
A Boolean that deteremines whether or not the system prints an
"unaligned access fixup" message. Use of this is restricted to the
superuser.

SSIN UACPARNT (RISC only)
- A Boolean that is set in the current process's parent proc structure. It

turns printing of "unaligned access fixups" on or off. This flag is
inherited across forks and execs. If parent is init, it returns EPERM.

System Calls 2-175

setsysinfo (2)

SSIN UACPROC (RISC only)
- A Boolean value that is set in the proc structure to turn off/on

printing of "unaligned access fixup" messages. This flag is inherited
across forks and execs.

The value is a legal value for name. The nbytes argument defines the number
of name-value pairs in buffer. The arg and flag arguments are not used.

op = SSCZERO_STRUCT
Each member of a system structure is set to zero. The arg defines the
structure type.

Possible values for arg are:

SSIS NFS CLSTA T
- NFS client statistics.

SSIS NFS SVSTA T
- NFS server statistics.

SSIS RPC STAT
- RPC statistics. The flag argument is used for a particular arg value,

to further define the operation or a resultant action to be performed.
The buffer and nbytes arguments are not used.

Permission checking is done on a structure-by-structure basis.

op = SSCSET_STRUCT

Return Value

Each member of a system structure is set to a supplied value. The arg defines
the structure type.

Possible values for arg are as defined for op SSCSTRUCT_ZERO. Theflag
argument is used for a particular arg value, to further define the operation or
a resultant action to be performed. The buffer argument is the address of a
structure of the appropriate type that contains the desired values. The nbytes
argument specifies the amount of data to be transfered that is· stored at buffer.

A zero (0) is returned if the call succeeds. If the call fails, -1 is returned, and the
global variable errno is set to indicate the error.

Diagnostics

[EFAULT]

[EINVAL]

[EPERM]

See Also
getsysinfo(2)

2-176 System Calls

Either buffer or arg causes an illegal address to be referenced.

The op, arg, or flag argument is invalid.

Permission is denied for the operation requested

Name

Syntax

shmctl - shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid _ds *buf;

shmctl (2)

Description
The shrnctl system call provides a variety of shared memory control operations, as
specified by cmd. The following cmds are available:

IPC STAT

IPC SET

IPC RMID

Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf. The
contents of this structure are defined in intro(2).

Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:

shmyerm.uid
shmyerm.gid
shmyerm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective
user 10 equal to either that of the superuser or to the value of
shrnyerrn. uid in the data structure associated with shmid.

Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data structure
associated with it. This cmd can only be executed by a process that
has an effective user 10 equal to either that of the superuser or to
the value of shrnyerrn. uid in the data structure associated with
shmid.

SHM LOCK Lock the shared memory segment specified by shmid in memory.
Lock prevents the shared memory segment from being swapped or
paged. This cmd can only be executed by a process that has an
effective user 10 equal to the superuser.

SHM _UNLOCK Unlock the shared memory segment specified by shmid. This cmd
can only be executed by a process that has an effective user 10
equal to the superuser.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of-1
is returned, and ermo is set to indicated the error.

System Calls 2-177

shmctl (2)

Diagnostics
The shmctl system call fails if any of the following is true:

[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EINVAL]

[EINVAL]

[EFAULT]

See Also

The shmid is not a valid shared memory identifier.

The cmd is not a valid command.

The cmd is equal to IPC_ST A T, and read permission is denied to
the calling process. For further information, see errno(2).

The cmd is equal to IPC_RMID or IPC_SET, and the effective
user ID of the calling process is not equal to that of the superuser
or to the value of shm perm. uid in the data structure associated
with shmid. -

The cmd is equal to SHM_LOCK or SHM_ UNLOCK and the
effective user ID of the calling process is not equal to that of the
superuser.

The cmd is equal to SHM_LOCK, and the shared memory segment
is currently locked by this process.

The cmd is equal to SHM_ UNLOCK, and the shared memory
segment specified by shmid is not currently locked in memory by
this process.

The bufpoints to an illegal address.

shmget(2), shmop(2)

2-178 System Calls

Name

Syntax

shmget - get shared memory segment

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
keLt key;
int size, shmflg;

shmget(2)

Description
The shmget system call returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment
of size size bytes are created for key, if one of the following is true:

The key is equal to IPC_PRIVATE. For further information, see intro(2).

The key does not already have a shared memory identifier associated with it,
and (shmfig & IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

Theshm-Ferm.cuid,shm-Ferm.uid,shm-Ferm.cgid,and
shm-Ferm. gid are set equal to the effective user ID and effective group ID
of the calling process.

The low-order nine bits of s hm -Fe rm . mode are set equal to the low-order
nine bits of shmfig. The s hm _ s eg s z is set equal to the value of size.

The shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal
to zero (0). The shm ctime is set equal to the current time.

Return Value
Upon successful completion, a non-negative integer, namely, a shared memory
identifier is returned. Otherwise, a value of -1 is returned and erma is set to
indicated the error.

Diagnostics
The shmget system call fails if any of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

The size is less than the system-imposed minimum or greater than
the system-imposed maximum.

A shared memory identifier exists for key, but operations
permission, as specified by the low-order nine bits of shmflg,
would not be granted. For further information, see errno(2).

A shared memory identifier exists for key, but the size of the
segment associated with it is less than size and size is not equal to
zero.

System Calls 2-179

shmget(2)

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

See Also

A shared memory identifier does not exist for key, and (shmflg &
IPC_CREAT) is false.

A shared memory identifier is to be created, but the system­
imposed limit on the maximum number of allowed shared memory
identifiers would be exceeded.

A shared memory identifier and the associated shared memory
segment are to be created, but the amount of available physical
memory is not sufficient to fill the request.

A shared memory identifier exists for key, but «shmflg &
IPC_CREAT) and (shmflg & IPC_EXCL» is true.

shmctl(2), shmop(2), ftok(3)

2-180 System Calls

Name

Syntax

shmop, shmat, shmdt - shared memory operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmftg)
int shmid;
char *shmaddr;
int shmftg;

int shmdt (shmaddr)
char *shmaddr;

shmop(2}

Description
The shmat system call attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling
process. The segment is attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is true, the segment is
attached at the address given by (shmaddr- (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is false, the segment is
attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONL Y) is true.
Otherwise, it is attached for reading and writing.

The shmdt system call detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.

Return Value
Upon successful completion, the return values are as follows:

• The shmat system call returns the data segment start address of the attached
shared memory segment.

• The shmdt system call returns a value of zero (0).

Otherwise, a value of -1 is returned, and ermo is set to indicate the error.

Diagnostics
The s hma t system call fails and not attach the shared memory segment, if any of the
following is true:

[EINVAL]

[EACCES]

The shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process. For further
information, see errno(2).

System Calls 2-181

shmop(2)

[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

The available data space is not large enough to accommodate the
shared memory segment.

The shmaddr is not equal to zero, and the value of (shmaddr­
(shmaddr modulus SHMLBA)) is an illegal address.

The shmaddr is not equal to zero, (shmflg & SHM_RND) is false,
and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system imposed limit.

The shrndt fails and does not detach the shared memory segment if:

[EINVAL]

See Also

The shmaddr is not the data segment start address of a shared
memory segment.

execve(2), exit(2), fork(2), shmct1(2), shmget(2)

2-182 System Calls

Name

Syntax

shutdown - shut down full-duplex connection

shutdown(s, how)
int s, how;

Description

shutdown (2)

The shutdown call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is 0, further receives are disallowed. If
how is 1, further sends are disallowed. If how is 2, further sends and receives are
disallowed.

Return Value
A zero (0) is returned if the call succeeds, -1 if it fails.

Diagnostics
The call succeeds unless:

[EBADF] The s argument is not a valid descriptor.

[ENOTSOCK] The s argument is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

See Also
connect(2), socket(2)

System Calls 2-183

sigblock (2)

Name

Syntax

sigblock - block signals

sigblock(mask)
iot mask;

Description
The sigblock system call causes the signals specified in mask to be added to the
set of signals currently being blocked from delivery. Signal i is blocked if the ith bit
in mask is a 1.

It is not possible to block SIGKILL or SIGSTOP. This restriction is silently imposed
by the system.

The previous set of masked signals is returned.

See Also
kill(2), sigsetmask(2), sigvec(2)

2-184 System Calls

Name

Syntax

sigpause - atomically release blocked signals and wait for interrupt

sigpause(sigmask)
iot sigmask;

sigpause (2)

Description
The sigpause system call assigns sigmask to the set of masked signals and then
waits for a signal to arrive. On return, the set of masked signals is restored. The
sigmask is usually 0 to indicate that no signals are now to be blocked. The
sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2) at the beginning of a
critical section of code. Variables modified on the occurrence of the signal are
examined to determine if there is any work to be done. The process pauses, awaiting
work, by using sigpause with the mask returned by sigblock.

See Also
sigblock(2), sigvec(2)

System Calls 2-185

sigpending (2)

Name

Syntax

sigpending - examine pending signals

#include <signal.h>

sigpending(set)
sigset _ t * set;

Description
The sigpending system call stores the set of signals that is blocked from delivery
and pending for the calling process in the space pointed to by the argument set.

The set argument is manipulated by using the sigsetops(3) functions.

Return Value
A zero (0) return value indicates that the call succeeded. A -1 return value indicates
an error occurred, and errno is set to indicate the reason.

Diagnostics
The sigpending system call fails if the following occurs:

[EFAULT]

See Also

The set argument points to memory that is not a valid part of the
process address space.

sigprocmask(3), sigsetops(3)

2-186 System Calls

Name

Syntax

sigsetmask - set current signal mask

sigsetmask(mask)
int mask;

sigsetmask (2)

Description
The sigsetmask system call sets the current signal mask (those signals that are
blocked from delivery). Signal i is blocked if the ith bit in mask is a 1.

The system quietly disallows SIGKILL or SIGSTOP to be blocked.

The previous set of masked signals is returned.

See Also
kill(2), sigblock(2), sigpause(2), sigvec(2)

System Calls 2-187

sigstack (2)

Name

Syntax

sigstack - set or get signal stack context

#include <signal.h>

struct sigstack {
caddr t ss sp;
int - ss_onstack;

};

sigstack(ss, oss)
struct sigstack *ss, *oss;

Description
The sigstack system call allows users to define an alternate stack on which
signals are to be processed. If ss is nonzero, it specifies a signal stack on which to
deliver signals and tells the system if the process is currently executing on that stack.
When a signal's action indicates its handler should execute on the signal stack
(specified with a sigvec call), the system checks to see if the process is currently
executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal
handler's execution. If oss is nonzero, the current signal stack state is returned.

Signal stacks are not grown'automatically, as is done for the normal stack. If the
stack overflows, unpredictable results may occur.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

Diagnostics
The sigstack system call fails and the signal stack context remains unchanged, if
one of the following occurs.

[EFAULT]

See Also

Either ss or oss points to memory that is not a valid part of the
process address space.

sigvec(2), setjmp(3)

2-188 System Calls

Name

Syntax

sigvec - software signal facilities

#include <signaI.h>

struct sigvec {
void (*sv handler)O;
sigset _ t sv _mask; -
int sv _flags;

};

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

sigvec (2) RI~

Description
The system defines a set of signals that can be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process
can specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process can also specify that a default action is to be taken
by the system when a signal occurs. Normally, signal handlers execute on the
current stack of the process. This can be changed, on a per-handler basis, so that
signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation blocked, but other signals can occur. A global signal mask
defines the set of signals currently blocked from delivery to a process. The signal
mask for a process is initialized from that of its parent (normally, 0). It can be
changed with a sigblock(2) or sigsetmask(2) call, or when a signal is
delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process, it is
delivered to the process. When a signal is delivered, the current state of the process
is saved, a new signal mask is calculated (as described later), and the signal handler
is invoked. The call to the handler is arranged so that, if the signal handling routine
returns normally, the process resumes execution in the context from before the
signal's delivery. If the process wishes to resume in a different context, it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the
duration of the process's signal handler (or until a sigblock or sigsetmask call
is made). This mask is formed by taking the current signal mask, adding the signal
to be delivered, and ORing in the signal mask associated with the handler to be
invoked.

_, The sigvec System call assigns a handler for a specific signal. If vee is nonzero, it
specifies a handler routine and mask to be used when delivering the specified signal.
Further, if the SV _ ONSTACK bit is set in sv Jags, the system delivers the signal to
the process on a signal stack, specified with sigstack(2). If ovee is nonzero, the
previous handling information for the signal is returned to the user.

System Calls 2-189

SC sigvec (2)

The following is a list of all signals with names as in the include file <signal. h>:

SIGHUP 1 Hangup
SIGINT 2 Interrupt
SIGQUIT 3* Quit
SIGILL 4* Illegal instruction
SIGTRAP 5* Trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* Floating point exception
SIGKILL 9 Kill (cannot be caught, blocked, or ignored)
SIGBUS 10* Bus error
SIGSEGV 11 * Segmentation violation
SIGSYS 12* Bad argument to system call
SIGPIPE 13 Write on a pipe with no one to read it
SIGALRM 14 Alarm clock
SIGTERM 15 Software termination signal
SIGURG 16. Urgent condition present on socket
SIGSTOP 17+ Stop (cannot be caught, blocked, or ignored)
SIGTSTP 18+ Stop signal generated from keyboard
SIGCONT 19. Continue after stop (cannot be blocked)
SIGCHLD 20. Child status has changed
SIGTTIN 21+ Background read attempted from control terminal
SIGTTOU 22+ Background write attempted to control terminal
SIGIO 23. I/O is possible on a descriptor (see fcntl(2))
SIGXCPU 24 Cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 File size limit exceeded (see setrlimit(2))
SIGVTALRM 26 Virtual time alarm (see setitimer(2))
SIGPROF 27 Profiling timer alarm (see setitimer(2))
SIGWINCH 28. Window size change
SIGLOST 29 Lock not reclaimed after server recovery
SIGUSRI 30 User-defined signal 1
SIGUSR2 31 User-defined signal 2
SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The signals marked with asterisks (*) in this list cause a core image if not caught or
ignored. Explanations of the meaning of the periods (.) and plus signs (+) are
included in the following paragraph.

Once a signal handler is installed, it remains installed until another sigvec call is
made or an execve(2) is performed. The default action for a signal can be
reinstated by setting sv handler to SIG_DFL. This default is termination (with a core
image for signals marked with asterisks (*)), except for signals marked with periods
(.) or plus signs (+). Signals marked with periods (.) are discarded if the action is
SIG_DFL. Signals marked with plus signs (+) cause the process to stop. If
sv_handler is SIG_IGN, the signal is subsequently ignored, and pending instances of
the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return, by
setting the SV _INTERRUPT bit in sv Jiags. The affected system calls are read,
write, or ioctl on a slow device (such as a terminal, but not a file), flock, and
wait.

2-190 System Calls

sigvec (2) RI~

After a fork or vfork, the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt flags.

The execve system call resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ignored, the signal
mask remains the same; signals that interrupt system calls continue to do so.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or
SIGCONT. This is done silently by the system.

The SV _INTERRUPT flag is not available in ULTRIX 2.0 or earlier versions.
Therefore, it should not be used if backward compatibility is needed.

Return Value
A zero (0) value indicates that the call succeeded. A -1 return value indicates an
error occurred, and errno is set to indicated the reason.

Diagnostics

Notes

The sigvec system call fails and no new signal handler is installed, if one of the
following occurs:

[EFAULT] Either vee or ovee points to memory that is not a valid part of the
process address space.

Sig is not a valid signal number. [EINVAL]

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

The handler routine can be declared:

void handler (sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. MIPS hardware exceptions are mapped to specific
signals as defined by the following table. Code is a parameter that is either a
constant or zero. The sep is a pointer to the sigeontext structure (defined in
<s ignal. h>, that is the context at the time of the signal and is used to restore the
context, if the signal handler returns.

The following defines the mapping of MIPS hardware exceptions to signals and
codes. All of these symbols are defined in either <signa/.h> or <mips/epu.h>:

Hardware exception Signal Code

Integer overflow SIGFPE EXC_OV
Segmentation violation SIGSEGV SEXC_SEGV
Illegal instruction SIGILL EXC_II
Coprocessor unusable SIGILL SEXC_CPU
Data bus error SIGBUS EXC_DBE
Instruction bus error SIGBUS EXC_IBE
Read address error SIGBUS EXC_RADE

System Calls 2-191

SC sigvec (2)

Write address error
User breakpoint (used by debuggers)
Kernel breakpoint (used by prom)
Taken branch delay emulation
Not taken branch delay emulation
User single step (used by debuggers)
Overflow check
Di vide by zero check
Range error check

SIGBUS
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP

EXC_WADE
BRK_USERBP
BRK_KERNELBP
BRK_BD_TAKEN
BRK_BD_NOTTAKEN
BRK_SSTEPBP
BRK_OVERFLOW
BRK_DIVZERO
BRK_RANGE

When a signal handler is reached, the program counter in the signal context structure
(sc yc) points at the instruction that caused the exception, as modified by the branch
delay bit in the cause register. The cause register at the time of the exception is also
saved in the sigcontext structure (sc cause). If the instruction that caused the
exception is at a valid user address, it can be retrieved with the following code
sequence:

if(scp->sc_cause & CAUSE_BD) {

else

branch_instruction = * (unsigned long *) (scp->sc-pc);
exception_instruction * (unsigned long *) (scp->sc-pc + 4);

exception_instruction = * (unsigned long *) (scp->sc-pc);

CAUSE_BD is defined in <rnips/cpu.h>.

The signal handler can fix the cause of the exception and re-execute the instruction,
emulate the instruction and then step over it, or perform some nonlocal redirection,
such as a longjurnp () or an exit ().

If corrective action is performed in the signal handler and the instruction that caused
the exception would then execute without a further exception, the signal handler
simply returns and re-executes the instruction (even when the branch delay bit is set).

If execution is to continue after stepping over the instruction that caused the
exception, the program counter must be advanced. If the branch delay bit is set, the
program counter is set to the target of the branch. Otherwise, it is incremented by
four. This can be done with the following code sequence:

if(scp->sc_cause & CAUSE_BD)
emulate_branch (scp, branch_instruction);

else
scp->sc-pc += 4;

Emulate branch() modifies the program counter value in the sigcontext structure to
the target of the branch instruction. See ernulate_branch(3) for more details.

For SIGFPE's generated by floating-point instructions (code == 0) thejioating-point
control and status register at the time of the exception is also saved in the sigcontext
structure (scJpc_csr). This register has the information on which exceptions have
occurred. When a signal handler is entered, the register contains the value at the time
of the exception but with the exceptions bits cleared. On a return from the signal
handler, the exception bits in the floating-point control and status register are also
cleared so that another SIGFPE will not occur (all other bits are restored from
scJpc_csr).

For SIGSEGV and SIGBUS errors, the faulting virtual address is saved in
sc _badvaddr in the signal context structure.

2-192 System Calls

sigvec (2) RIS

The SIGTRAPs caused by break instructions noted in the previous table and all
other yet to be defined break instructions fill the code parameter with the first
argument to the break instruction (bits 25-16 of the instruction).

See Also
kill(l), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
setjmp(3), siginterrupt(3), tty(4)

System Calls 2-193

'AX sigvec (2)

Name

Syntax

sigvec - software signal facilities

#include <signal.h>

struct sigvec {
void (*sv handler) 0;
sigsect sv _mask; -
int sv _flags;
} ;

sigvec(sig, vee, ovec)
int sig;
struct sigvec *vec, *ovec;

Description
The system defines a set of signals that can be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt; the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process
can specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process can also specify that a default action is to be taken by
the system when a signal occurs. Normally, signal handlers execute on the current
stack of the process. This can be changed on a per-handler basis so that signals are
taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation to be blocked, but other signals can occur. A global signal
mask defines the set of signals currently blocked from delivery to a process. The
signal mask for a process is initialized from that of its parent (normally 0). It may be
changed with a sigblock or sigsetmask call, or when a signal is delivered to
the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process, it is
delivered to the process. When a signal is delivered, the current state of the process
is saved, a new signal mask is calculated (as described later), and the signal handler
is invoked. The call to the handler is arranged so that, if the signal handling routine
returns normally, the process resumes execution in the context from before the
signal's delivery. If the process wishes to resume in a different context, it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the
duration of the process's signal handler (or until a sigblock or sigsetmask call
is made). This mask is formed by taking the current signal mask, adding the signal
to be delivered, and ~Ring in the signal mask associated with the handler to be
invoked.

The s igvec system call assigns a handler for a specific signal. If vee is nonzero, it
specifies a handler routine and mask to be used when delivering the specified signal.
Further, if the SV _ON STACK bit is set in sv Jags, the system delivers the signal to
the process on a signal stack, specified with sigstack. If ovec is nonzero, the
previous handling information for the signal is returned to the user.

2-194 System Calls

sigvec (2) VA:

The following is a list of all signals with names as in the include file <5 ignal . h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16. urgent condition present on socket
SIGSTOP 17+ stop (cannot be caught, blocked, or ignored)
SIGTSTP 18+ stop signal generated from keyboard
SIGCONT 19. continue after stop
SIGCHLD 20. child status has changed
SIGTTIN 21 + background read attempted from control terminal
SIGTTOU 22+ background write attempted to control terminal
SIGIO 23. I/O is possible on a descriptor (see fcntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVTALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28. window size change
SIGLOST 29 lock not reclaimed after server recovery
SIGUSRI 30 user defined signal 1
SIGUSR2 31 user defined signal 2
SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The signals marked with asterisks (*) in this list cause a core image if not caught or
ignored. Explanations of the meaning of the periods (.) and plus signs (+) are
included in the following paragraph.

Once a signal handler is installed, it remains installed until another 5 igvec call is
made or an execve is performed. The default action for a signal can be reinstated
by setting sv _handler to SIG_DFL. This default is termination (with a core image for
signals marked with asterisks (*», except for signals marked with periods (.) or plus
signs (+). Signals marked with periods (.) are discarded if the action is SIG_DFL.
Signals marked with plus signs (+) cause the process to stop. If sv _handler is
SIG_IGN the signal is subsequently ignored, and pending instances of the signal are
discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return, by
setting the SV _INTERRUPT bit in sv Jags. The affected system calls are read,
write, or ioctl on a slow device (such as a terminal; but not a file), flock, and
wait.

System Calls 2-195

'AX sigvec (2)

After a fork or vfork, the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt flags.

The execve system call resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ignored, the signal
mask remains the same; signals that interrupt system calls continue to do so.

The mask specified in vee is not allowed to block SIGKILL or SIGSTOP. This is
done silently by the system.

The SV _INTERRUPT flag is not available in ULTRIX 2.0 or earlier versions.
Therefore, it should not be used if backward compatibility is needed.

Notes

The handler routine can be declared:

void handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number into which the hardware faults and traps are mapped as
defined in the following table. The code is a parameter that is either a constant or, for
compatibility mode faults, the code provided by the hardware. Compatibility mode
faults are distinguished from the other SIGILL traps by having PSL_CM set in the
psI. The scp is a pointer to the sigcontext structure (defined in <signal. h>), used
to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of
these symbols are defined in <signal. h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

2-196 System Calls

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF _TRAP
FPE_FLTDIV _TRAP
FPE_FL TUND_ TRAP
FPE_DECOVF _TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF _FAULT
FPE_FLTDIV _FAULT
FPE_FLTUND_FAULT
faulting virtual addr
faulting virtual addr
ILL_PRIVIN_FAULT

ILL_RESOP _FAULT
ILL_RES AD_FAULT

hardware-supplied code

sigvec(2) VA

Return Values
A zero (0) value indicates that the call succeeded. A -1 return value indicates an
error occurred, and errno is set to indicate the reason.

Diagnostics
The sigvec system call fails and no new signal handler is installed, if one of the
following occurs:

[EFAULT]

[EINVAL]

[EINVAL]

Environment

SYSTEM_FIVE

Either vee or ovee points to memory that is not a valid part of the
process address space.

The sig argument is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

You can not use the sigvec call in your program under SYSTEM_FIVE
environment.

See Also
kill(I), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
setjmp(3), siginterrupt(3), tty(4)

System Calls 2-197

socket (2)

Name

Syntax

socket - create an endpoint for communication

#include <sysltypes.h>
#include <syslsocket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

Description
The socket system call creates an endpoint for communication and returns a
descriptor.

The operation of sockets is controlled by socket-level options, defined in the file
<sys / socket. h> and explained in the section, Socket-level Options. The calls
setsockopt(2) and getsockopt(2) are used to set and get options.

Arguments
The af parameter specifies an address format. Addresses specified in later operations
using the socket are interpreted according to these formats. The formats are defined
in the include file <sys/socket. h>:

AF UNIX
AF INET
AF IMPLINK
AF DLI

UNIX path names
ARPA Internet addresses
IMP "host at IMP" addresses
For access to broadcast devices (Ethernet)

The type argument specifies the semantics of communication. The defined types are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_SEQPACKET

The SOCK_STREAM and SOCK_DGRAM types are available only if your system
includes the TCP/IP network. For example, if you can use the rlogin command to
log in to a remote ULTRIX node, your system supports these socket types.

A SOCK_STREAM type provides sequenced, reliable, 2-way-connection-based byte
streams with an out-of-band data transmission mechanism. A SOCK_DGRAM
socket supports datagrams (connectionless, unreliable messages of a fixed maximum
length, typically small).

SOCK_RAW sockets provide access to internal network interfaces and are available
only to the super-user.

The SOCK_SEQPACKET type is the socket protocol to request when you want to
communicate with other Digital systems using DECnet.

Socket types are discussed further in following sections.

The protocol argument specifies the protocol to be used with the socket. Normally,
only a single protocol exists to support a particular socket type using a given address
format. However, it is possible that many protocols may exist, in which case a

2-198 System Calls

socket (2)

particular protocol must be specified in this manner. The protocol number to use is
particular to the communication domain in which communication is to take place.
For further information, see services(5) and protocols(5).

Socket Type SOCK_STREAM

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data can be sent or received on
it. A connection to another socket is created with a connect call. Once connected,
data can be transferred using read and wri te calls or some variant of the send
and recv calls. When a session has been completed, a close may be performed.
Out-of-band data can also be transmitted as described in send(2) and received as
described.in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then the
connection is considered broken and calls will indicate an error with -1 returns and
with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for an extended period (for example, 5 minutes). A
SIGPIPE signal is raised if a process sends on a broken stream; this causes processes
that do not handle the signal to exit.

Socket Types SOCK_DGRAM and SOCK_RAW

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. It is also possible to receive datagrams at
these sockets with recv(2).

An fcntl(2) call can be used to specify a process group to receive a SIGURG
signal when the out-of-band data arrives.

SOCK_DGRAM sockets are the only type of socket allowed by the Data Link
Interface.

Socket Type SOCK_SEQPACKET

SOCK_SEQPACKET sockets are similar to datagrams except that they are
guaranteed to be received in the sequence that they are sent. They are also
guaranteed to be error-free.

Socket-Level Options

The operation of sockets is controlled by socket-level options. These options are
defined in the file, <sys/socket. h>. The calls setsockopt and
getsockopt are used to set and get options.

Options other than SO_LINGER take an integer parameter that should be nonzero, if
the option is to be enabled, or zero (0), if it is to be disabled. SO_LINGER uses a
"linger" structure parameter defined in < s y sis ocket . h>. This structure specifies
the desired state of the option and the linger interval (see the following).

System Calls 2-199

socket (2)

SO DEBUG Tum on recording of debugging information
so REUSEADDR Allow local address reuse
SO KEEPALIVE Keep connections alive
SO _ DONTROUTE Do not apply routing on outgoing messages
SO LINGER Linger on close if data present
SO_BROADCAST Permit sending of broadcast messages
SO ACCEPTCONN Socket has had listenO
SO=:USELOOPBACK Bypass hardware when possible
SO OOBINLINE Leave received OOB data in line

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates the rules used in validating addresses supplied in a
bind call should allow reuse of local addresses.

SO_KEEP ALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection
is considered broken and processes using the socket are notified through a SIGPIPE
signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network interface,
according to the network portion of the destination address.

SO_LINGER controls the actions taken when unsent messages are queued on the
socket and a close is performed. When using the setsockopt to set the linger
values, the option value for the SO_LINGER command is the address of a linger
structure:

struct linger {
int 1 - onoff; /* option on/off */
int l_linger; /* linger time */

} ;

If the socket promises reliable delivery of data and l_onoff is nonzero, the system
blocks the process on the close attempt until it is able to transmit the data or until
it decides it is unable to deliver the information. A timeout period, termed the linger
interval, is specified in I_linger in seconds. If l_onoff is set to zero (0) and a close
is issued, the system processes the close in a manner that allows the process to
continue as quickly as possible.

SO_BROADCAST is used to enable or disable broadcasting on the socket.

Return Value
A -1 is returned if an error occurs. Otherwise, the return value is a descriptor to be
used in other calls to refer to the socket.

Diagnostics
The socket call fails if:

[EAFNOSUPPORT]

[ESOCKTNOSUPPORT]

The specified address family is not supported in this
version of the system.

The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]
The specified protocol is not supported.

2-200 System Calls

socket (2)

[EPROTOTYPE]
Request for a type of socket for which there is no supporting protocol.

[EMFILE] The per-process descriptor table is full.

[ENOBUFS]
No buffer space is available. The socket cannot be created.

See Also
accept(2), bind(2), c1ose(2), connect(2), getsockname(2), getsockopt(2), ioctl(2),
listen(2), read (2), recv(2), select(2), send(2), setsockopt(2), shutdown(2),
socketpair(2), protocols(5), services(5), write(2),
"A 4.2 BSD Interprocess Communication Primer," ULTRIX Supplementary
Documents, Vol. III:System Manager,
Guide to the Data Link Interface

System Calls 2-201

socketpair (2)

Name

Syntax

socketpair - create a pair of connected sockets

#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

Description
The socketpair call creates an unnamed pair of connected sockets in the specified
domain d, of the specified type, and using the optionally specified protocol. The
descriptors used in referencing the new sockets are returned in sv[O] and sv[l]. The
two sockets are indistinguishable.

Return Value
A zero (0) is returned if the call succeeds, -1 if it fails.

Diagnostics
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this
machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket
pairs.

[EFAULT]

See Also

The address sv does not specify a valid part of the process
address space.

pipe(2), read(2), write(2)

2-202 System Calls

Name

Syntax

startcpu - start a CPU

startcpu(cpunumber)
int cpunumber;

Description

startcpu (2)

The start cpu system call starts the CPU specified by cpunumber. Any non-boot
CPU can be started using this system call. Only a superuser can execute this system
call.

\ Return Values
The startcpu call returns 0 if the CPU was started successfully, or else it returns
-1 and sets ermo appropriately.

Diagnostics

[EPERM]

[EBUSY]

[ENODEV]

[EINVAL]

See Also

The caller is not a superuser

The CPU is already running

No CPU present by the given cpunumber

Invalid value for cpunumber. A valid cpunumber is between 0 and
31.

stopcpu(2), startcpu(8), stopcpu(8)

System Calls 2-203

stat (2)

Name

Syntax

stat, lstat, fstat - get file status

#include <sys!types,h>
#include <sys!stat,h>

stat(path, buf)
char *path;
struct stat *buf;

Istat(path, but>
char *path;
struct stat *buf;

fstat(fd, but>
intfd;
struct stat *buf;

Description
The stat system call obtains infonnation about the file path. Read, write, or
execute pennission of the named file is not required, but all directories specified in
the path name that leads to the file must be reachable.

The lstat system call is like stat, except when a named file is a symbolic link.
In this instance, 1 s tat returns infonnation about the link; s tat returns infonnation
about the file that is referenced by the link.

The fstat system call and the open system call obtain the same infonnation about
an open file referenced by the argument descriptor.

The buf is a pointer to a s tat structure. Infonnation about a file is placed in the
s tat structure. The contents of the structure pointed to by buf includes the
following:
struct stat {

dev t st dev; 1* device inode resides on *1 -
ina t st ino; 1* this inode's number *1 -
u short st _mode; 1* protection *1
short st nlink; 1* number or hard links to the file *1 -
short st_uid; 1* user-id of owner *1
short st_gid; 1* group-id of owner *1
dev t st - rdev; 1* the device type, for inode that is device
off t st size; 1* total size of file *1 -
time t st atime; 1* file last access time *1
int st_sparel;
time t st_mtime; 1* file last modify time *1
int st_spare2;
time t st ctime; 1* - file last status change time *1
int st_spare3;
long st_blksize; 1* optimal blocksize for file system ilo ops *1
long st_blocks; 1* actual number of blocks allocated *1
long st spare4;
u_long ;t_gennum; 1* file generation number *1

} ;

2-204 System Calls

*1

sCatime

scmtime

scctime

stat (2)

The time when file data was last read or modified. This is changed by
the system calls mknod(2) utimes(2) and read(2) For efficiency,
sCatime is not set when a directory is searched.

The time when data was last modified. It is not set by changes of
owner, group, link count, or mode. It is changed by the system calls
mknod(2) utimes(2) and write(2)

The time when file status was last changed. It is set by writing and
changing the i-node. It can be changed by the following system calls:
chmod(2) chown(2) link(2) mknod(2) unlink(2) utimes(2 and
write(2)

The status information word sf_mode has the following bits:

#define S IFMT 0170000 1* type of file *1
#define S IFDIR 0040000 1* directory *1
#define S IFCHR 0020000 1* character special *1
#define S IFBLK 0060000 1* block special *1
#define S IFREG 0100000 1* regular *1
#define S IFLNK 0120000 /* symbolic link * /
#define S IFSOCK 0140000 1* socket *1
#define S IFIFO 0010000 /* FIFO - named pipe */
#define S ISUID 0004000 /* set user id on execution */
#define S ISGID 0002000 /* set group id on execution */
#define S ISVTX 0001000 /* save swapped text even after use */
#define S IREAD 0000400 /* read permission, owner */
#define S IWRITE 0000200 /* write permission, owner *1
#define S IEXEC 0000100 1* execute/search permission, owner *1

The mode bits 0000070 and 0000007 encode group and others permissions. For
further information, see chmod(2).

Whenfd is associated with a pipe, fstat returns a buffer with only sCblksize set.

Environment
SYSTEM_FIVE

Unlike the System V definition, ELOOP is a possible error condition.

Restrictions
Applying fstat to a socket returns a zeroed buffer and [EOPNOTSUPP].

The fields in the stat structure marked sf_spare] , sf _spare2, and sf _spare3 are used
when inode time stamps expand to 64 bits. This, however, can break certain
programs that depend on the time stamps being contiguous in calls to u time s.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

Diagnostics
The stat and lstat system calls fail if any of the following is true:

[EACCES]

[EFAULT]

Search permission is denied for a component of the path prefix.

The buf or name points to an invalid address.

System Calls 2-205

stat (2)

[EIO]

[ELOOP]

An I/O error occurred while reading from or writing to the file
system.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

[ENOTDIR]

A component of a pathname exceeds 255 characters, or an entire
path name exceeds 1023 characters.

The named file does not exist or path points to an empty string and
the environment defined is POSIX or SYSTEM_FIVE.

A component of the path prefix is not a directory.

The fstat system call fails if one or more of the following are true:

[EBADF] The fildes is not a valid open file descriptor.

[EFAULT]

[EIO]

The but points to an invalid address.

An I/O error occurred while reading from or writing to the file
system.

[EOPNOTSUPP] The file descriptor points to a socket.

[ETIMEDOUT] A connect request or remote file operation failed because the -
connected party did not respond after a period of time determined
by the communications protocol.

See Also
chmod(2), chown(2), link(2), mknod(2), read(2), unlink(2), utimes(2), write(2)

2-206 System Calls

Name

Syntax

stopcpu - stop a CPU

stopcpu(cpunumber)
int cpunumber;

Description

stopcpu(2)

The stopcpu system call stops the CPU specified by cpunumber. Any nid-boot
CPU can be stopped using this system call. Only a superuser can execute the
stopcpu system call.

Return Values
The stopcpu call returns 0 if the CPU was stopped successfully, or else it returns
-1 and sets erma appropriately.

Diagnostics

[EPERM]

[EACCES]

[EBUSY]

[EINVAL]

See Also

The caller is not a superuser

Trying to stop boot CPU

The CPU is already stopped or no such CPU present

Invalid value for cpunumber. A value cpunumber is between 0 and
31.

startcpu (2), startcpu (8), stopcpu (8)

System Calls 2-207

swapon(2)

Name

Syntax

swapon - add a swap device for interleaved paging/swapping

swapon(special)
char *special;

Description
The swapon system call makes the block device special available to the system for
allocation for paging and swapping. The names of potentially available devices are
known to the system and defined at system configuration time. The size of the swap
area on special is calculated at the time the device is first made available for
swapping.

Restrictions
There is no way to stop swapping on a disk so that the pack may be dismounted.

Diagnostics
The swapon system call succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EPERM]

[ENOTBLK]

[EBUSY]

[EINVAL]

[ENXIO]

[EIO]

[EFAULT]

See Also

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named device does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the
pathname.

The caller is not the super-user.

The special is not a block device.

The device specified by special has already been made available
for swapping.

The device configured by special was not configured into the
system as a swap device.

The major device number of special is out of range. (This
indicates that no device driver exists for the associated hardware.)

An I/O error occurred while opening the swap device.

The special points outside the process's allocated address space.

config(8), swapon(8)

2 208 System Calls

Name

Syntax

symlink - make symbolic link to a file

syrnlink(narnel, narne2)
char *narne1, *narne2;

symlink(2)

Description
A symbolic link name2 is created to name} (name2 is the name of the file created,
name} is the string used in creating the symbolic link). Either name can be an
arbitrary path name. The files need not be on the same file system.

Return Value
Upon successful completion, a zero (0) value is returned. If an error occurs, the error
code is stored in errno, and a -1 value is returned.

Diagnostics
The symbolic link is made, unless one or more of the following are true:

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

A component of the name2 prefix is not a directory.

The name2 already exists.

A component of the name2 path prefix denies search permission.

The file name2 would reside on a read-only file system.

The name} or name2 points outside the process's allocated address
space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

[BIO]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EDQUOT]

A component of either pathname exceeded MAXNAMELEN
characters, or the entire length of either pathname exceeded
MAXPATHNAME characters.

The named file does not exist.

An I/O error occurred while making the directory entry for name2,
or allocating the inode for name2, or writing out the link contents
of name2.

The directory in which the entry for the new symbolic link is being
placed cannot be extended, because there is no space left on the
file system containing the directory.

The new symbolic link cannot be created, because there is no
space left on the file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic
link is being created.

The directory in which the entry for the new symbolic link is being

System Calls 2-209

symlink(2)

[EDQUOT]

[EDQUOT]

[EIO]

placed cannot be extended because the user's quota of disk blocks
on the file system containing the directory has been exhausted.

The new symbolic link cannot be created because the user's quota
of disk blocks on the file system that will contain the symbolic
link has been exhausted.

The user's quota of inodes on the file system on which the user's
symbolic link is being created has been exhausted.

An I/O error occurred while making the directory entry or
allocating the inode.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
In(1), link(2), readlink(2), stat(2), unlink(2)

2-210 System Calls

sync (2)

Name
sync - update super-block

Syntax
syncO

Description
The sync system call causes all information in memory that should be on disk to be
written out. This includes modified superblocks, modified i-nodes, and delayed block
I/O.

Programs that examine a file system, for example, fsck or df, use the sync
system call. The writing, although scheduled, is not necessarily complete upon return
from sync.

See Also
sync(l), fsync(2), update(8)

System Calls 2-211

;C syscall (2)

Name
syscall- indirect system call

Syntax
syscall(number, args, ...)

Description
The syscall system call performs the system call whose assembly language
interface has the specified number, and further arguments args. There may be no
arguments.

The return value of the system call is returned.

Diagnostics
If an error occurs, syscall returns -1 and sets the external variable errno.

See Also
ermo(2)

2-212 System Calls

syscall(2) VI

Name
syscall - indirect system call

Syntax
syscall(number, arg, ...)

Description
The syscall system call performs the system call whose assembly language
interface has the specified number, register arguments rO and r 1, and further
arguments arg.

The rO value of the system call is returned.

Restrictions
There is no way to simulate system calls such as pipe, which return values in
register r 1 .

Diagnostics
When the C-bit is set, syscall returns -1 and sets the external variable erma.

See Also
ermo(2), pipe(2)

System Calls 2-213

truncate (2)

Name

Syntax

truncate, ftruncate - truncate a file to a specified length

truncate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

Description
The truncate system call causes the file named by path or referenced by fd to be
truncated to, at most, length bytes in size. If the file previously was larger than this
size, the extra data is lost. With ftruncate, the file must be open for writing.

Return Value
A value of zero (0) is returned if the call succeeds. If the call fails, a -1 is returned,
and the global variable errno specifies the error.

Restrictions
Partial blocks discarded as the result of truncation are not zero-filled. This can result
in holes in files that do not read as zero.

Diagnostics
The truncate system call succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

Search permission is denied for a component of the path prefix.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being
executed.

The path points outside the process's allocated address space.

[ENAMETOOLONG]

[ELOOP]

[EIO]

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred updating the inode.

The ftruncate system call succeeds unless:

[EBADF] The fd is not a valid descriptor.

2-214 System Calls

truncate (2)

[EINVAL] The fd references a socket, not a file.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
open(2)

System Calls 2-215

umask(2)

Name

Syntax

umask - set file creation mask

#include <sys/types.h>
#include <sys/stat.h>

oumask = umask(numask)
mode _ t oumask, numask;

Description
The umask system call sets the process's file mode creation mask to numask and
returns the previous value of the mask. The low-order nine bits of numask are used
whenever a file is created, clearing corresponding bits in the file mode. (For further
information, see chmod(2).) This clearing allows each user to restrict the default
access to his or her files.

The value is initially 022 (write access for owner only). The mask is inherited by
child processes.

The previous value of the file mode mask is returned by the call.

Environment

POSIX
When your program is compiled in POSIX mode, the numask argument is of type
mode_t and the umask function returns a value of type mode_to

See Also
chmod(2), mknod(2), open(2)

2-216 System Calls

Name

Syntax

uname - get name of current system

#include <limits.h>
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

uname(2)

Description
The uname system call stores information identifying the current system in the
structure pointed to by name.

The uname system call uses the structure defined in <sys/utsname. h> whose
members are:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

The constant SYS_NMLN is defined in <limits. h>.

The uname system call returns a null-terminated character string naming the current
ULTRIX system in the character array, sysname. Similarly, nodename contains the
name that the system is known by on a communications network. The release and
version further identify the operating system. The machine contains a standard name
that identifies the hardware that the ULTRIX system is running on.

Return Value
Upon successful completion, a nonnegative value is returned. Otherwise, -1 is
returned, and ermo is set to indicate the error.

Diagnostics

[EFAULT] The uname system call fails if name points to an invalid address.

System Calls 2-217

unlink(2)

Name

Syntax

unlink - remove directory entry

unlink(path)
char *path;

Description
The unlink system call removes the entry for the file path from its directory. If
this entry was the last link to the file, and no process has the file open, then all
resources associated with the file are reclaimed. If, however, the file was open in any
process, the actual resource reclamation is delayed until it is closed, even though the
directory entry has disappeared.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and ermo is set to indicate the error.

Diagnostics
The unlink system call succeeds unless:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

A component of the path prefix is not a directory.

The named file does not exist or path points to an empty string and
the environment defined is POSIX or SYSTEM_FIVE.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The entry to be unlinked is the mount point for a mounted file
system.

The named file resides on a read-only file system.

The path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[EPERM]

[EPERM]

[EPERM]

2-218 System Calls

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file is a directory and the effective user ID of the
process is not the superuser.

The named file is a directory and the environment is defined is
POSIX.

The directory containing the file is marked sticky, and neither the
containing directory nor the file to be removed are owned by the
effective user ID.

[EIO]

unlink(2)

An I/O error occurred while deleting the directory entry or
deallocating the inode.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

[ETXTBSY]

Environment

The named file is the last link to a shared text executable and the
environment defined is POSIX or SYSTEM_FIVE.

Differs from the System V definition in that ELOOP is a possible error condition.

See Also
close(2), link(2), rmdir(2)

System Calls 2-219

ustat(2)

Name

Syntax

ustat - get file system statistics

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, but')
dev t dev;
struct ustat *buf;

Description
The us tat call returns information about a mounted file system. The dev argument
is a device number identifying a device containing a mounted file system. The buf
argument is a pointer to a ustat structure that includes the following elements:

daddr t f_tfree;
ino t f_tinode;
char f_fname[S12J;
char f_fpack[6J;

/* Total free blocks (Kbytes) */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */

The f Jpack always returns a null string.

Environment

SYSTEM V

Differs from System V definition in that the size of the Cfname structure element is
512 instead of 6, and the dev parameter is type dev_t instead of int.

Diagnostics
The ustat call fails if any of the following is true:

[EINV AL] The dev argument is not the device number of a device containing
a mounted file system.

[EFAULT] The buf argument points outside the process's allocated address
space.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
stat(2), fs(5)

2-220 System Calls

Name

Syntax

utimes - set file times

#include <sys/time.h>
#include <utime.h>

utimes(file, tvp)
char *file;
struct timeval *tvp[2};

utimes(2)

Description
The utimes call uses the accessed and updated times from the tvp vector to set the
corresponding recorded times for file.

If tvp is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file, the superuser, or have write
permission to use utimes in this manner.

If tvp is not NULL, the caller must be the owner of the file or the superuser.

The inode-changed time of the file is set to the current time.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

Diagnostics
The u time s system call fails if one or more of the following are true:

[EACCES]

[EACCES]

[EFAULT]

[EIO]

[ELOOP]

Search permission is denied for a component of the path
prefix.

The tvp argument is NULL and the caller is not the owner of
the file; write access is denied.

The file or tvp points outside the process's allocated address
space.

An I/O error occurred while reading or writing the affected
inode.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG] A component of a pathname exceeds 255 characters, or an
entire pathname exceeds 1023 characters.

[ENOENT]

[ENOTDIR]

[EPERM]

The named file does not exist.

A component of the path prefix is not a directory.

The tvp argument is not NULL, the caller has write access,
the caller is not the owner of the file, and the caller is not the
superuser.

System Calls 2-221

utimes(2)

[EROFS]

[ETIMEDOUT]

See Also
stat(2)

2-222 System Calls

The file system containing the file is mounted read-only.

A connect request or remote file operation failed, because the
connected party did not respond after a period of time
determined by the communications protocol.

Name

Syntax

vfork - spawn new process in a virtual memory-efficient way

pid = vforkO
int pid;

vfork(2)

Description
The vfork can be used to create new processes without fully copying the address
space of the old process, which is inefficient in a paged environment. It is useful
when the purpose of fork would have been to create a new system context for an
execve. The vfork system call differs from fork in that the child borrows the
parent's memory and thread of control until a call to execve or an exit (either by a
call to exi t(2) or abnormally.) The parent process is suspended while the child is
using its resources.

The vfork system call returns a value of zero (0) in the child's context and, later,
the pid of the child in the parent's context.

The vfork system call can normally be used just like fork. It does not work,
however, to return while running in the childs context from the procedure which
called vfork, because the eventual return from vfork would then return to a
nonexistent stack frame. Be careful, also, to call exit rather than exit if you cannot
call execve, because exit will flush and close stindard I/O channels and thereby
cause problems in the parent process's standard I/O data structures. Even with fork
it is wrong to call exit, because buffered data would then be flushed twice.

Restrictions
To avoid a possible deadlock situation, processes which are children in the middle of
a vfork are never sent SIGTTOU or SIGTTIN signals. Rather, output or ioctls are
allowed, and input attempts result in an end-of-file indication.

Diagnostics
Same as for fork.

See Also
execve(2), fork(2), sigvec(2), wait(2)

System Calls 2-223

vhangup(2)

Name
vhangup - virtually hang up the current control terminal

Syntax
vhangup ()

Description
The vhangup system call initializes a terminal line. For example, the ini t
command uses vhangup to ensure that the previous user's processes cannot access
the terminal anymore.

First, vhangup searches the system tables for references to the current terminal (the
control terminal of the invoking process) and revokes access permissions on each
instance of the terminal that it finds.

The vhangup system call also removes all references to the inode that corresponds
to the control terminal. The vhangup system call then invokes the kernel's device
close routine to tum the terminal off. Finally, vhangup sends a hangup signal
(SIGHUP) to the process group of the control terminal. For further information, see
t t y(4) for a description of process groups.

When vhangup finishes, a terminal line is initialized; no other processes refer to
this line. The only way for other processes to access the control terminal is through
the special file, / dev / tty. All other requests will yield 1/0 errors (EBADF).

See Also
init(8)

2-224 System Calls

Name

Syntax

wait, wait3, waitpid - wait for process to tenninate

#include <sys/types.h>
#include <sys/wait.h>

pid = wait(status)
pid_t pid;
union wait *status;

pid = wait«union wait*)O)
pid_t pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
pid t pid;
union wait *status;
int options;
struct rusage *rusage;

pid = waitpid(pid, status, options)
pid_t pid;
union wait *status;
int options;

wait(2)

Description
The wai t system call causes its caller to delay either until a signal is received or one
of its child processes tenninates. If a child process has died since the last wa it,
return is immediate, returning the process id and exit status of one of the tenninated
child processes. If a child process does not exist, return is immediate, with the value
-1 returned.

On return from a successful wait call, if status is nonzero, the high byte of status
contains the low byte of the argument to exit supplied by the child process; the low
byte of status contains the tennination status of the process. A more precise
definition of the status word is given in <sys/wai t. h>.

The wai t3 system call provides an alternate interface for programs that must not
block when collecting the status of child processes. The status parameter is defined
as above. The options parameter is used to indicate that the call should not block if
there are no processes that wish to report status (WNOHANG), or that only children
of the current process, which are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP,
or SIGSTOP signal, should have their status reported (WUNTRACED). If rusage is
nonzero, a summary of the resources used by the tenninated process and all its
children is returned (this infonnation is not available for stopped processes).

When the WNOHANG option is specified and no processes wish to report status,
wai t 3 returns a pid of zero (0). The WNOHANG and WUNTRACED options can
be combined by ORing the two values.

System Calls 2-225

wait(2)

See sigvec(2) for a list of tennination statuses (signals). A 0 status indicates
nonnal tennination. A special status (0177) is returned for a process stopped by the
process tracing mechanism, ptrace(2). If the 0200 bit of the tennination status is
set, a core image of the process was produced by the system.

If the parent process tenninates without waiting on its children, the initialization
process (process ID = 1) inherits the children.

The wai tpid system call provides an interface for programs that want to wait for a
specific child process or child processes from specific process groups. The wai tpid
system call behaves as follows:

• If pid is equal to -1, status is requested for any child process.

• If pid is greater than zero, it specifies the process ID of a single child process
for which status is requested.

• If pid is equal to zero, status is requested for any child process whose process
group ID is equal to that of the calling process.

• If pid is less than -1, status is requested for any child process whose process
group ID is equal to the absolute value of pid.

The status and options arguments are defined as above. The wai tpid system call
behaves identically to the wai t system call, if the pid argument has a value of-1
and the options argument has a value of zero (0).

The wai t, wai t3, and waitpid system calls are automatically restarted when a
process receives a signal while awaiting tennination of a child process, unless the
SV _INTERRUPT bit has been set for that signal. See sigvec(2).

The following macros, defined in <sys/wai t. h> can be used to interpret the
infonnation contained in the status parameter returned by the wait functions; the
stat_val argument is the value pointed to by the status argument.

WIFEXITED(stat val)
Evaluates to a nonzero value, if status was returned for a child process that
tenninated nonnally.

WEXITST ATUS(stat val)
If the value of WIFEXITED(stat val) is nonzero, this macro evaluates to
the low-order eight bits of the starus argument that the child process
passes to _ exi t or exi t, or the value the child process returned from
main.

WIFSIGNALED(stat val)
Evaluates to a nonzero value, if status was returned for a child process that
tenninated due to the receipt of a signal that was not caught.

WTERMSIG(stat val)
If the value of WIFSIGNALED(stat val) is nonzero, this macro evaluates
to the number of the signal that caused the tennination of the child
process.

WIFSTOPPED(stat _val)

2-226 System Calls

wait(2)

Evaluates to a nonzero value, if status was returned for a child process that
is currently stopped.

WSTOPSIG(stat _val)
If the value of WIFSTOPPED(stat val) is nonzero, this macro evaluates to
the number of the signal that caused the child process to stop.

Return Value
If wai t, wait 3, or wai tpid returns due to a stopped or terminated child process,
the process ID of the child is returned to the calling process. Otherwise, a value of
-1 is returned, and ermo is set to indicate the error.

The wa i t 3 and wa i t pi d system calls return -1, if there are no children not
previously waited for. A value of zero (0) is returned, if WNOHANG is specified
and there are no stopped or exited children.

Environment
SYSTEM_FIVE

When your program is compiled using the System V environment, when the SIGCLD
signal is being ignored, wai t continues until all children terminate. SIGCLD is the
same as SIGCHLD.

In addition, when using the System V environment, status is of type int *.
POSIX

When using the POSIX environment, status is of type int *.
In addition, the SV _INTERRUPT flag is always set in POSIX mode, causing the
above system calls to always fail, if interrupted by a signal.

Diagnostics
The wai t, wai t3, or wai tpid system calls fail and return is immediate, if any of
the following is true:

[ECHILD]

[ECHILD]

[EINTR]

[EINVAL]

[EFAULT]

See Also

The calling process has no existing unwaited-for child processes.

The process or process group specified by pid does not exist or is
not a child of the calling process.

The function was interrupted by a signal. The value of the location
pointed to by status is undefined.

The value of the options argument is not valid.

The status or rusage arguments point to an illegal address.

exit(2), ptrace(2), sigvec(2)

System Calls 2-227

write(2)

Name

Syntax

write, writev - write on a file

write lfd, buf, nbytes)
intfd;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

writev lfd, iov, ioveclen)
intfd;
struct iovec *iov;
int ioveclen;

Arguments

fd Descriptor returned by a creat, open, dup, fcntl, pipe, or
socket system call.

buf

nbytes

iov

ioveclen

Description

Points to the buffer containing the data to be written.

Positive integer defining the number of bytes to be written from the
buffer.

Points to a data structure oftype iovec, which defines the starting
location of the set of vectors forming the array and the length of each
individual vector in the array to be written.

This structure is defined in <sys/uio. h> as follows:

struct iovec {

caddr_t iov_base;
int iov_len ;

} ;

The caddr t data type is defined in <sys/types. h> and is the
recommended way to define an address for a character value. In any
case, the address iov base is the starting address of the set of
vectors. The integer value iov _len is the length of each individual
vector, in bytes.

Defines the number of vectors in the array of data to be written. Note
that the numbering of the vectors begins with 0 and proceeds through
ioveclen -1.

The wri te system call attempts to write a buffer of data to a file. The wri tev
system call attempts to write an array of buffers of data to a file.

2-228 System Calls

write(2)

When a file is opened to a device capable of seeking (such as a disk or tape), the
write starts at the position given by the file pointer associated with the file descriptor,
fd. This file pointer is the offset, in bytes, from the beginning of the file where the
write is to begin. When the file is first opened, the file pointer is set at O. It can be
modified by the read(2) lseek(2) and write system calls. When the write call
returns, the file pointer is incremented by the number of bytes actually written.

When the file is opened to a device not capable of seeking (such as sockets, pipes, or
terminals), the write starts at the current position. The value of the pointer associated
with such an object is undefined.

By default, wr i t e does asynchronous writes. That is, after the data is written to a
buffer cache, control returns to the program. The actual write to a device takes place
after control returns. However, if you use an open or fcntl call to open a file for
synchronous writes, control does not return to the program until after the buffer cache
has been written to the device.

If a program is using wr i te to a remote file over NFS, and an asynchronous write
error occurs, then all subsequent wr i t e requests will return -1 and ermo will be set
to the asynchronous error code. Also, a subsequent fsync(2) or close(2) will
likewise fail. The return code from close(2) should be inspected by any program
that can write over NFS.

Write requests to a pipe (or FIFO) are handled the same as a regular file, with the
following exceptions:

• A file offset is not associated with a pipe. Therefore, each wr i t e request
appends to the end of the pipe.

• Write requests less than or equivalent to {PIPE_BUF} bytes are not interleaved
with data from other processes doing writes on the same pipe. Write requests
greater than {PIPE_BUF} bytes can interleave on arbitrary boundaries with
writes by other processes.

• If the O_NDELA Y and O_NONBLOCK flags are clear, a write can cause the
process to block, but, under normal completion, it returns nbytes.

• If the O_NDELAY or O_NONBLOCK flag is set, the write function does
not block the process. Write requests less than or equal to {PIPE_BUF} bytes
either succeed and return nbytes or -1, and ermo is set to [EWOULDBLOCK].
Write requests that exceed {PIPE_BUF} bytes can return complete success,
partial write, or no success, and ermo is to [EWOULDBLOCK].

Environment

SYSTEM V
When your program is compiled using the System V environment, and the file was
opened with the ° _NDELA Y flag set, a w r i t e to a full pipe (or FIFO) returns a
zero (0), rather than an error, as for the ULTRIX non-System V environment.

Differs from the System V definition in that the value nbytes is int, rather than
unsigned.

System Calls 2-229

write(2)

When your program is compiled using POSIX environment, EAGAIN is returned in
ermo, in place of EWOULDBLOCK.

Return Value
Upon successful completion, the number of bytes actually written is returned.
Otherwise, a -1 is returned, and errno is set to indicate the error.

Diagnostics
The wri te system call fails and the file pointer will remain unchanged, if any of the
following is true:

[EACCESS]

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

The file does not permit writing. NFS only.

The fd argument is not a valid descriptor open for writing.

An attempt was made to write to a pipe that is not open for reading
by any process.

An attempt was made to write to a socket of type
SOCK_STREAM that is not connected to a peer socket.

An attempt was made to write a file that exceeds the process's file
size limit, set by ulimi t(2) or the maximum file size
(approximately 2 Gigabytes).

Part of the array pointed to by iov or data to be written to the file
points outside the process's allocated address space.

[EWOULDBLOCK]

[ENOSPC]

[EDQUOT]

[EIO]

[EINTR]

[EINVAL]

[EROFS]

[ESTALE]

[ETIMEDOUT]

2-230 System Calls

The O_NDELA Y or O_NONBLOCK flag is set for the file
descriptor and the process would be delayed in the write operation.

There is no free space remaining on the file system containing the
file.

The user's quota of disk blocks on the file system containing the
file has been exhausted.

An I/O error occurred while reading from or writing to the file
system.

The write operation was interrupted, no data was transferred.

The nbytes argument is negative.

The file is on a read-only file system. NFS only.

The fd argument is invalid because the file referred to by that file
handle no longer exists or has been revoked. NFS only.

A write operation failed because the server did not properly
respond after a period of time that is dependent on the
mount(8nfs) options. NFS only.

write (2)

See Also
close(2), creat(2), dup(2), fcnt1(2), fsync(2), lseek(2), open(2), pipe(2), socket(2)

System Calls 2-231

A

accept system call, 2-10

access system call, 2-12

accounting file

turning on, 2-14

acct system call, 2-14

adjtime system call, 2-16

advisory lock

defined, 2-64

audcntl system call, 2-19

return value, 2-20

audgen system call, 2-21

diagnostics, 2-21

restricted, 2-21

audit control, 2-19

B

bind system call, 2-22

See a/so listen system call

brk system call, 2-26

c
chdir system call, 2-30

See also chroot system call

chmod system call, 2-32

chown system call, 2-35

chroot system call, 2-37

clock

synchronizing, 2-16

close system call, 2-39

See also open system call

connect system call, 2-41

See also shutdown system call

creat system call, 2-43

See a/so open system call

o
data memory

changing protection, 2-118

changing size, 2-26

datagram

defined, 2-198

device

allocating for paging, 2-208

allocating for swapping, 2-208

directory

creating, 2-108, 2-110

getting entries, 2-69 to 2-70

removing, 2-155

renaming, 2-153

disk quota

enabling,2-170

manipulating, 2-143

domain

getting name, 2-71

setting name, 2-71

dup system call, 2-45

dup2 system call, 2-45

E

effective group ID

getting, 2-73, 2-98

setting, 2-172

effective user ID

getting, 2-98

setting, 2-173

Index

errno error list, 2-46

errno variable, 2-46

executable object file

defined, 2-52

execution time

profiling, 2-137

execve system call, 2-52

See also environ global variable

diagnostics, 2-53

restricted, 2-53

_exit system call, 2-55

exportfs system call, 2-56

F

fchmod system call, 2-32

fchown system call, 2-35

fcntl system call, 2-57

file

close system call, 2-57

diagnostics, 2-62

dup2 system call, 2-57

request definitions, 2-57

return value, 2-62

applying advisory lock, 2-64

changing group, 2-35

changing mode, 2-32

changing owner, 2-35

checking accessibility, 2-12

creating, 2-43, 2-110

creating hard link, 2-103

creating symbolic link to, 2-209

executing, 2-52

getting statistics, 2-220

getting status, 2-204

marking in use, 2-128

opening, 2-128

reading, 2-145

reading symbolic link, 2-148

renaming, 2-153

setting access time, 2-221

setting mode mask, 2-216

setting modification time, 2-221

setting protection, 2-32

Index-2

file (cont.)

synchronizing buffers with disk, 2-67

truncating to specified length, 2-214

unlinking, 2-218

file descriptor

See also process reference table

controlling, 2-57, 2-99

deleting, 2-39

duplicating, 2-45

process reference table, 2-45

file pointer

moving, 2-106

file system

examining, 2-211

exporting, 2-56

getting information on mounted, 2-79

mounting, 2-112 to 2-114

removing, 2-112 to 2-114

flock system call, 2-64

fork system call, 2-66

See also vfork system call

fstat system call, 2-204

fsync system call, 2-67

ftruncate system call, 2-214

G

getdirentries system call, 2-69 to 2-70

diagnostics, 2-70

return value, 2-70

getdomainname system call, 2-71

getdtablesize system call, 2-72

getegid system call, 2-73

geteuid system call, 2-98

getgid system call, 2-73

getgroups system call, 2-74

gethostid system call

See also getpid system call, 2-75

gethostname system call, 2-76

getitimer system call, 2-77

getmnt system call, 2-79

getpagesize system call, 2-81

getpeername system call, 2-82

getpgrp system call, 2-83

See also setpgrp system call

See also tty interface

getpid system call, 2-84

getppid system call, 2-84

getpriority system call, 2-85

getrlimit system call, 2-87

parameter list, 2-87

getrusage system call, 2-89 to 2-91

diagnostics, 2-90

fields, 2-89 to 2-90

restricted, 2-90

getsockname system call, 2-92

getsockopt system call, 2-93

getsysinfo system call, 2-95

gettimeofday system call, 2-97

See also adjtime system call

See also stime system call

getuid system call, 2-98

group access list

getting, 2-74

setting, 2-168

H

hard limit

specifying, 2-87

host ID

getting, 2-75

setting, 2-75

host name

getting, 2-76

setting, 2-76

interlocked access, 2-18

test and set

test and clear, 2-18

interpreter file

defined, 2-52

interval timer

getting value, 2-77

setting value, 2-77

interval timer (cont.)

types, 2-77

intro(2) keyword, 2-1

ioctl system call, 2-99

K
kill system call, 2-100

See also pause subroutine

killpg system call, 2-102

L

link system call, 2-103

See also symlink system call

See also unlink system call

listen system call, 2-105

accept system call, 2-105

Iseek system call, 2-106

Istat system call, 2-204

M

message

control operations, 2-120

getting queue identifier, 2-122

operations, 2-124 to 2-126

mkdir system call, 2-108

mknod system call, 2-110

mount system call (general)

diagnostics, 2-113, 2-112 to 2-114

System V and, 2-112

mount system call (NFS)

diagnostics, 2-116, 2-115 to 2-117

mprotect system call, 2-118

msgctl system call

msgget system call, 2-120

msgsnd system call, 2-120, 2-120

msgget system call

See also ftok subroutine

See also msgsnd system call

diagnostics, 2-122, 2-122

msgop keyword, 2-124 to 2-126

Index-3

msgrcv system call

See also msgctl system call

See also msgget system call

msgsnd system call, 2-124 to 2-126

N
new process file

defined, 2-52

NFS file system

mounting remote, 2-115 to 2-117

nfs_biod system call, 2-127

nfsd daemon

invoking, 2-127

nfs_svc system call, 2-127

o
open system call, 2-128

p

See also close system call

diagnostics, 2-130

flags, 2-128

System V and, 2-130

page size

getting, 2-81

pipe

creating, 2-133

pipe system call, 2-133

plock system call, 2-135

restricted, 2-135

process

controlling resource consumption, 2-87

creating, 2-66

creating efficiently, 2-223

getting information about resource utilization, 2-89

getting process group, 2-83

getting scheduling priority, 2-85

setting scheduling priority, 2-85

signaling, 2-100

terminating, 2-55

tracing, 2-141 to 2-142

Index-4

process (cont.)

waiting for termination, 2-225

process group

defined, 2-83

setting, 2-169

signaling, 2-102

process ID

getting, 2-84

process reference table

getting size, 2-72

profil system call, 2-137

ptrace system call, 2-141 to 2-142

diagnostics, 2-142

restricted, 2-142

System V and, 2-142

Q

quota system call, 2-143

command list, 2-143

diagnostics, 2-144

R
read system call

diagnostics, 2-146, 2-145

send system call, 2-145

System V and, 2-147

write system call, 2-145

readlink system call, 2-148

readv system call, 2-145

real group ID

getting, 2-73, 2-98

setting, 2-172

real user ID

getting, 2-98

setting, 2-173

reboot system call, 2-149

recv system call

See also send system call

diagnostics, 2-152

msghdr structure, 2-151e, 2-151

recvfrom system call, 2-151

recvmsg system call, 2-151

rename system call, 2-153

rmdir system call, 2-155

root directory

changing, 2-37

s
sbrk system call, 2-26

select system call, 2-157

semaphore

control operations, 2-159

getting, 2-161

operations, 2-163 to 2-165

semctl system call, 2-159

commands, 2-159

diagnostics, 2-160

semget system call, 2-159

semop system call, 2-159

semget system call, 2-161

See a/so ftok subroutine

See a/so semctl system call

See a/so semop system call

diagnostics, 2-161

semop system call, 2-163 to 2-165

See a/so semctl system call

See a/so semget system call

diagnostics, 2-164

send system call, 2-166

See also recv system call

diagnostics, 2-167

sendmsg system call, 2-166

sendto system call, 2-166

session

creating, 2-174

setdomainname system call, 2-71

setgroups system call, 2-168

sethostid system call, 2-75

sethostname system call, 2-76

setitimer system call, 2-77

setpgrp system call, 2-169

See a/so getpgrp system call

setpriority system call, 2-85

setquota system call, 2-170

See a/so quota system call

setregid system call, 2-172

setreuid system call, 2-173

setrIimit system call, 2-87

setsid system call, 2-174

setsockopt system call, 2-93

setsysinfo system call, 2-175

seUimeofday system call, 2-97

shared memory

control operations, 2-177

getting, 2-179

operations, 2-181

shmat system call, 2-181

See a/so shrnctl system call

shmctl system cal

plock system call, 2-177

shmctl system call

commands, 2-177

diagnostics, 2-178, 2-177

shrnop system call, 2-177

shmdt system call, 2-181

See a/so shrnget system call

shmget system call

See a/so ftok subroutine

See a/so shrnctl system call

See a/so shrnop system call

diagnostics, 2-179, 2-179

shmop system call, 2-181

shutdown system call, 2-183

sigblock system call, 2-184

See a/so sigpause system call

See a/so sigsetmask system call

signal,2-186

See a/so signal mask

blocking, 2-184

releasing blocked, 2-185

signal handler

assigning, 2-189 to 2-193, 2-194

signal mask

setting, 2-187

signal stack

getting context, 2-188

setting context, 2-188

Index-5

sigpause system call, 2-185

sigpending system call, 2-186

diagnostics, 2-186

sigsetmas~ system call, 2-187

sigstack system call, 2-188

sigvec system call, 2-189 to 2-193, 2-194

diagnostics, 2-191, 2-197

signal list, 2-190, 2-195

VAX notes, 2-196

SMP

startcpu, 2-203

stopcpu, 2-207

SOCK_DGRAM socket type, 2-199

socket

accepting connection, 2-10

binding to a name, 2-22

creating, 2-198

creating connected pair, 2-202

defined types, 2-198

getting name, 2-92

getting options, 2-93

getting peer name, 2-82

initiating a connection, 2-41

mUltiplexing synchronous I/O, 2-157

queuing connections, 2-105

reading, 2-145

receiving message from, 2-151

sending message from, 2-166

setting options, 2-93

shutting down full-duplex connection, 2-183

writing, 2-228

socket system call, 2-198

accept system call, 2-198

address formats, 2-198

bind system call, 2-198

connect system call, 2-198

diagnostics, 2-200

getsockname system call, 2-198

options, 2-199

pipe system call, 2-198

recv system call, 2-198

return value, 2-200

socketpair system call, 2-198

Index-6

socketpair system call, 2-202

See also getpeemame system call

See . also pipe system call

SOCK_RAW socket type, 2-199

SOCK_SEQPACKET socket type

defined, 2-199

SOCK_STREAM socket type

defined,2-199

soft limit

specifying, 2-87

special file

creating, 2-110

stat system call, 2-204

See also ustat system call

diagnostics, 2-205

restricted, 2-205

swapon system call, 2-208

symlink system call, 2-209

See also readlink system call

See also stat system call

diagnostics, 2-209

sync system call, 2-211

syscall system call, 2-212, 2-213

system

getting name, 2-217

getting version number, 2-217

identifying machine type, 2-217

rebooting, 2-149

system call

introduction, 2-1

T

performing indirect, 2-212, 2-213

specifying POSIX environment, 2-1

specifying System V environment, 2-1

tell system call, 2-106

terminal

revoking access, 2-224

test and set

test and clear, 2-18

time

getting, 2-97

setting, 2-97

truncate system call, 2-214

u
umask system call, 2-216

umount system call (general), 2-112

umount system call (NFS), 2-115

uname system call, 2-217

unlink system call, 2-218

ustat system call, 2-220

utimes system call, 2-221

v
vfork system call, 2-223

See also fork system call

vhangup system call, 2-224

w
wait system call, 2-225

See also exit system call

diagnostics, 2-227

System V and, 2-227

wait3 system call, 2-225

waitpid system call, 2-225

working directory

changing, 2-30

write system call, 2-228

See also read system call

See also send system call

diagnostics, 2-230

System V and, 2-229

writev system call, 2-228

Index-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
8oo-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

8oo-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 2: System Calls

M-L Y15B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? _____________________ _

What do you like least about this manual? _____________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

NamelTitle ______________________ _ Dept. ______ _
Company _______________________ ___

Date
Mailing Address _____________________________ _

Email ___________ _ Phone ______ _

-. Do Not Tear - Fold Here and Tape

-----------------------------rfl-rll----------::::::A~:---
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111 111

- -. Do Not Tear - Fold Here . - - -- - - - ------- - - - - - ------- - -- - - ------- - - - - - - - --- - ----- - - - - - - - -- ~

Cut
Along
Dotted
Line

,I
\

Reader's Comments ULTRIX
Reference Pages Section 2: System Calls

AA-L Y15B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? ______________________ _

What do you like least about this manual? ______________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle ________________________ Dept.

Company ___________________ ------- Dare _________ _

Mailing Address ______________________________ _

_____________ EmMI _____________ Phone ___________ __

I
I
I
I
I
I

-----------------------------rrl-rll----------::~:::---I
II NECESSARY

-. Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFlWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111111111111111111 1111111111 II 1111 1111111111

IF MAILED IN THE
UNITED STATES

- -. Do Not Tear - Fold Here .- - - - ----- - - - -- - -- ----- - -- - - -- - ---- - - -- - -- - - - {

Cut
Along
Dotted
Line

