
ULTRIX

Reference Pages
Section 2: System Calls

Order Number: AA-L Y15B-TE

Reference Pages Section 2: System Calls

Order Number: AA-L Y15B-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual defines system calls (entries into the ULTRIX kernel) that are used by all
programmers for both RISe and V AX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IJDmDDma
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XUI

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intra that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(1mh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands

This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls
This section defines system calls (entries into the ULTRIX kernel) that are used by
all programmers. The introduction to Section 2, intra(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines

This section describes the routines available in ULTRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files

This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and VAX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a "RISC" label beside the title and the
VAX-only reference pages that apply only to V AX platforms are likewise labeled
with ' , VAX. " If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format
Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, date(1). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name Provides the name of the entry and gives a short description.

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the UL TRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(l)

In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(l) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages
The ULTRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the Is(1) reference page:

% man ls

To display the passwd(1) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(1X) reference page for details.

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

intro(2)

Name
intro - introduction to system calls

Syntax
#include <errno.h>

Description
Section 2 describes the UL TRIX system calls, which are the entries into the UL TRIX
kernel. In this section, reference pages with the extension 2yp are specific to the
Yellow Pages (YP) service. Those pages ending in 2nfs are specific to the Network
File System (NFS) service.

Additionally, some Section 2 reference pages contain an ENVIRONMENT section
that describes differences between the POSIX or SYSTEM V environment and the
UL TRIX operating system.

Environmental Compatibility
Some system calls contain System V and POSIX features that are compatible with
UL TRIX programs. These features are provided for applications that are being
ported from System V or POSIX. Occasionally, the System V and POSIX features
conflict with features present in the UL TRIX system. For example, a function
performed under the UL TRIX operating system can produce different results in the
System V or POSIX environment. If conflicts exist, the ENVIRONMENT section of
the reference page highlights these differences.

Neither the System V compatibility features nor the POSIX compatibility features are
not contained in the standard C runtime library. To use the compatibility features,
you must set your programming environment to System V or PO SIX when you
compile or link your programs. To set the System V or POSIX environment, do
either of the following:

1. Use the -Y option for the cc command. For example, the following
demonstrates compiling a program in the System V environment first, and then
in the POSIX environment:

% cc -YSYSTEM_FIVE prograrn.c
% cc -YPOSIX prograrn.c

2. Globally set the environment variable PROG_ENV to SYSTEM_FIVE or to
POSIX.

If you are using the C shell, execute the following line or include it in your
.login file:

setenv PROG_ENV SYSTEM_FIVE

Replace "SYSTEM_FIVE" with "POSIX" if you are using the POSIX
environment.

If you are using the Bourne or the System V shell, execute the following line
or include it in your . pro f i 1 e file:

PROG ENV=POSIX ; export PROG ENV

System Calls 2-1

intro (2)

Replace "POSIX" with "SYSTEM_FIVE" if you are using the System V
environment.

In each instance, the cc command defines a preprocessor symbol, either
SYSTEM_FIVE or POSIX. When the SYSTEM_FIVE symbol is defined, the C
preprocessor, cpp, selects the System V data structures and symbol definitions.
When the POSIX symbol is defined, cpp selects the POSIX data structures and
symbol definitions.

In addition, if cc invokes the ld linker, it resolves references to routines by
searching the System V version of the Standard C library (libcV. a) or the
POSIX version of the Standard C library (1 ibcP . a) before it searches 1 ibc . a.
The linker searches 1 ibcV . a when the SYSTEM_FIVE symbol is defined. It
searches libcP. a when POSIX is defined.

In the System V environment, if you specify the -1m option on either the cc or the
ld command line, the linker includes the System V math library, instead of the
ULTRIX math library, in your program.

Return Value
Most system calls have one or more return values. An error condition is indicated by
an otherwise impossible return value. This value is usually -1. When a function
returns an error condition, it also stores an error number in the external variable
errno. This variable is not cleared on successful calls. Thus, you should test
errno only after an error has occurred.

All return codes and values from functions are of type int unless otherwise noted.

For a list of the errors and their names as given in <errno.h>, see the errno(2)
reference page.

Definitions
The following terms are used in Section 2:

Descriptor
An integer assigned by the system when a file is referenced by open, dup,
pipe, or a socket is referenced by socket or socketpair The descriptor
uniquely identifies an access path to that file or socket from a given process or
any of its children.

Directory
A directory is a special type of file that contains references to other files, called
links. By convention, a directory contains at least two links called dot (.) and
dot-dot (..). Dot refers to the directory itself and dot-dot refers to its parent
directory.

Effective User Id, Effective Group Id, and Access Groups

2-2 System Calls

Access to system resources is governed by the the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user
ID and real group ID respectively. Either can be modified through execution
of a set-user-ID or set-group-ID file, or possibly by one of its ancestors. For
more information, see execve(2).

The group access list is an additional set of group IDs used only in determining

intro (2)

resource accessibility. Access checks are performed as defined under the term
File Access Permissions.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions
are used in determining whether a process may perform a requested operation
on the file, such as opening a file for writing. Access permissions are
established at the time a file is created. They can be changed with the chmod
call.

File access is separated into three types: read, write, and execute. Directory
files use the execute permission to control whether or not the directory can be
searched.

File access permissions are interpreted by the system as they apply to three
different classes of users: the owner of the file, those users in the file's group,
and anyone else. Every file has an independent set of access permissions for
each of these classes. When an access check is made, the system decides if
permission should be granted by checking the access information applicable to
the caller.

Read, write, and execute/search permissions on a file are granted to a process
in the following instances:

• The process's effective user ID is that of the superuser.

• The process's effective user ID matches the user ID of the owner
of the file and the owner permissions allow the access.

• The process's effective user ID does not match the user ID of the
owner of the file, but either the process's effective group ID
matches the group ID of the file or the group ID of the file is in the
process's group access list and the group permissions allow the
access.

• Neither the effective user ID nor the effective group ID and group
access list of the process match the corresponding user ID and
group ID of the file, but the permissions for other users allow
access.

Read, write, and execute/search permissions on a file are not granted, as
follows:

File Name

• If the process is trying to execute an image and the file system is
mounted no execute, execute permission is denied.

• If the process's effective UID is not root, the process is attempting
to access a character or block special device, and the file system is
mounted with nodev, access is denied.

• If the process's effective UID is not root, the process is trying to
execute an image with the setuid or setgid bit set in the file's
permissions, and the file system is mounted nosuid, execute
permission is denied.

Names consisting of up to {FILENAME_MAX} characters can be used to
name an ordinary file, special file, or directory.

System Calls 2-3

intra (2)

These characters can be selected from the set of all ASCII characters excluding
null (0) and the ASCII code for backslash (\). The parity bit (bit 8) must be O.

A void using asterisks (*), question marks (?), or brackets ([]) as part of
filenames because of the special meaning attached to these characters by the
shell.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions, the permission
required for an operation is specified by a token. The token argument is the
type of permission needed and it is interpreted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and write permissions are granted to a process if one or more of the
following are true:

• The effective user 10 of the process is superuser.

• The effective user 10 of the process matches msgyerm.[cjuid in
the data structure associated with msqid and the appropriate bit of
the user portion (0600) of msgyerm.mode is set.

• The effective user 10 of the process does not match
msgyerm.[cjuid, but the effective group 10 of the process
matches msgyerm.[cjgid and the appropriate bit of the group
portion (060) of msgyerm.mode is set.

• The effective user 10 of the process does not match
msgyerm.[cjuid and the effective group 10 of the process does
not match msgyerm.[cjgid, but the appropriate bit of the other
portion (06) of msgyerm.mode is set.

If none of the previous conditions are true, the read and write permissions are
denied.

Message Queue Identifier

2-4 System Calls

A message queue identifier (msqid) is a unique positive integer created by a
msgget system call. Each msqid has a message queue and a data structure
associated with it. The data structure is referred to as msqid _ ds and contains
the following members:

struct
ushort
ushort
ushort
ushort
time t
time t
time_t

ipc-Ferm msg-Ferm;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/*operation permission struct*/
/*number of msgs on q*/
/*max number of bytes on q*/
/*pid of last msgsnd operation*/
/*pid of last msgrcv operation*/
/*last msgsnd time*/
/*last msgrcv time*/
/*last change time*/
/*Times measured in secs since*/
/*00:00:00 GMT, Jan.l, 1970*/

The msgyerm structure is an ipc yerm structure that specifies the message
operation permission. The msgyerm structure includes the following
members:

ushort cuid; /*creator user id*/

ushort cgid;
ushort uid;
ushort gid;
ushort mode;

/*creator group id*/
/*user id*/
/*group id*/
/*r/w permission*/

intro (2)

The msg qnum member is the number of message currently on the queue. The
msg_ qbytes member is the maximum number of bytes allowed on the queue.
The msg_lspid member is the process ID of the last process that performed a
msgrcvoperation. The msg_lrpid member is the process ID of the last
process that performed a msgop operation. The msg stime member is the time
of the last msgop operation, msgJtime is the time of the last msgrcv
operation, and msg_ ctime is the time of the last msgct 1 operation that
changed a member of the above structure.

Parent process ID
A new process is created by a currently active process. For further
information, see fork(2). The parent process ID of a process is the process
ID of its creator.

Pathname
A pathname is a null-terminated character string containing an optional slash
(/), followed by zero or more directory names separated by slashes. This
sequence can optionally be followed by another slash and a filename. The total
length of a pathname must be less than {PATHNAME_MAXI characters.

If a pathname begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working directory. A
slash by itself names the root directory. A null pathname refers to the
current directory.

Process ID
Each active process in the system is uniquely identified by a positive integer
called a process ID. The range of this ID is from 0 to {PROC_MAX}.

Process Group ID
Each active process is a member of a process group that is identified by a
positive integer called the process group ID. This is the process ID of the
group leader. This grouping permits the signaling of related processes. For
more information, see killpg(2) and the job control mechanisms described in
csh(l).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer called the real user
ID.

'Each user is also a member of one or more groups. One of these groups is
distinguished from others and used in implementing accounting facilities. The
positive integer corresponding to this group is called the real group ID.

All processes have a real user ID and real group ID. These are initialized from
the equivalent attributes of the parent process.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. A
process's root directory does not need to be the root directory of the root file
system.

System Calls 2-5

intro(2)

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created by a
semget system call. Each semid has a set of semaphores and a data structure
associated with it. The data structure is referred to as semid ds and contains
the following members:

struct
ushort
time t
time t

ipc-perm sem-perm; /*operation permission struct*/
sem_nsems; /*number of sems in set */
sem_otime; /*last operation time*/
sem_ctime; /*last change time*/

/*Times measured in secs since*/
/*00:00:00 GMT, Jan. 1, 1970*/

The sem yerm is an ipc yerm structure that specifies the semaphore operation
permission. This structure includes the following members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;

/*creator user id*/
/*creator group id*/
/*user id*/
/*group id*/
/*r/a permission*/

The value of sem _ nsems is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a
sem num. The sem num values run sequentially from 0 to the value of
sem=nsems minus 1. The sem otime member is the time of the last semop
operation, and sem ctime is the time of the last sernet 1 operation that
changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort
short
ushort
ushort

semval;
sempid;
semncnti
semzcnt;

/*semaphore value*/
/*pid of last operation*/
/*# awaiting semval > cval*/
/*# awaiting semval = 0*/

The semval member is a non-negative integer. The sempid member is equal to
the process ID of the last process that performed a semaphore operation on this
semaphore. The semncnt member is a count of the number of processes that
are currently suspended awaiting this semaphore's semval to become greater
than its current value. The semzcnt member is a count of the number of
processes that are currently suspended awaiting this semaphore's semval to
become zero.

Semaphore Operation Permissions

2-6 System Calls

In the semop(2) and semetl(2) system call descriptions, the permission
required for an operation is specified as {token}. The token argument is the
type of permission needed and it is interpreted as follows:

00400
00200
00060
00006

Read by user
Alter by user
Read, Alter by group
Read, Alter by others

Read and alter permissions on a semid are granted to a process if one or more
of the following are true:

• The effective user ID of the process is superuser.

• The effective user ID of the process matches sem yerm.[c J uid in

intro(2}

the data structure associated with semid and the appropriate bit of
the user portion (0600) of sem yerm.mode is set.

• The effective user ID of the process does not match
semyerm.[cjuid, but the effective group ID of the process matches
semyerm.[cjgid and the appropriate bit of the group portion (060)
of sem yerm.mode is set.

• The effective user ID of the process does not match
semyerm.[cjuid and the effective group ID of the process does
not match sem yerm.[c j gid, but the appropriate bit of the other
portion (06) of sem yerm.mode is set.

If none of the previous conditions are true, the read and alter permissions are
denied.

Session

Each process group is a member of a session. A process is considered to be a
member of the session of which its process group is a member. Typically there
is one session per login.

Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive integer created by a
shmget system call. Each shmid has a segment of memory (referred to as a
shared memory segment) and a data structure associated with it. The data
structure is referred to as shmid_ds and contains the following members:

struct
int
ushort
ushort
short
time t
time t
time t

ipc-perm shm-perm;
shm_segsz;
shm_cpid;
shm_lpid;
shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

/*operation permission struct*/
/*size of segment*/
/*creator pid*/
/*pid of last operation*/
/*number of current attaches*/
/*last attach time*/
/*last detach time*/
/*last change time*/
/*Times measured in secs since*/
/*00:00:00 GMT, Jan. 1,1970*/

The shmyerm member is an ipc yerm structure that specifies the shared
memory operation permission. This structure includes the following members:

ushort cuid;
ushort cgid;
ushort uid;
ushort gid;
ushort mode;

/*creator user id*/
/*creator group id*/
/*user id*/
/*group id*/
/*r/w permission*/

The shm _segz member specifies the size of the shared memory segment. The
shm_cpid member is the process ID of the process that created the shared
memory identifier. The shm lpid member is the process ID of the last process
that performed a shmop operation. The shm nattch member is the number of
processes that currently have this segment attached. The shm atime member is
the time of the last shmat operation, shm dtime is the time of the last shmdt
operation, and shm_ctime is the time of the last shmctl operation that
changed one of the members of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmctl(2) system call descriptions, the permission

System Calls 2-7

intro (2)

required for an operation is given as {token}. The token argument is the type
of permission needed and it is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and write permissions on a shmid are granted to a process if one or more
of the following are true:

• The effective user 10 of the process is superuser.

• The effective user 10 of the process matches shmyerm.[c]uid in
the data structure associated with shmid and the appropriate bit of
the user portion (0600) of shm yerm.mode is set.

• The effective user 10 of the process does not match
shmyerm.[c]uid, but the effective group ID of the process
matches shmyerm.[c]gid and the appropriate bit of the group
portion (060) of shm yerm.mode is set.

• The effective user 10 of the process does not match
shmyerm.[c]uid and the effective group 10 of the process does
not match shmyerm.[c]gid, but the appropriate bit of the other
portion (06) of shmyerm.mode is set.

If none of the previous conditions are true, the read and write permissions are
denied.

Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket
has queues for sending and receiving data.

Sockets are typed according to their communications properties. These
properties determine whether messages sent and received at a socket require the
name of the partner, if communication is reliable, and if the format is used in
naming message recipients.

Each instance of the system supports some collection of socket types. See
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications
protocols. Each protocol set supports addresses of a certain format. An
Address Family is the set of addresses for a specific group of protocols. Each
socket has an address chosen from the address family in which the socket was
created.

Special Processes
Those processes that have a process 10 of 0, 1, and 2 are considered special
processes. Process 0 is the scheduler. Process 1 is the initialization process
in it , and is the ancestor of every other process in the system. It controls the
process structure. Process 2 is the paging daemon.

Superuser

2-8 System Calls

A process is recognized as a superuser process and is granted special privileges
if its effective user 10 is O.

intra (2)

tty Group ID

See Also

Each active process can be a member of a terminal group that is identified by a
positive integer called the tty group ID. This grouping is used to arbitrate
between multiple jobs contending for the same terminal. For more
information, see csh(l) and tty(4).

cc(1), csh(I), tty(4), intro(3), perror(3)

System Calls 2-9

accept (2)

Name

Syntax

accept - accept a connection on a socket

#include <sys/types.h>
#include <sys/socket.h>

accept(s, addr, addrlen)
int ns, s;
struct sockaddr *addr;
int *addrlen;

Description
The accept system call accepts a connection on a socket. The argument s is a
socket that has been created with the socket, call, bound to an address with the
bind, call and is listening for connections after a listen call. The accept
system call extracts the first connection on the queue of pending connections, creates
a new socket with the same properties of s and allocates a new file descriptor, ns, for
the socket. If no pending connections are present on the queue, and the socket is not
marked as nonblocking, accept blocks the caller until a connection is present. If
the socket is marked nonblocking and no pending connections are present on the
queue, accept returns an error. The accepted socket, ns, cannot be used to accept
more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication is
occurring. The addrlen is a value-result parameter; it should initially contain the
amount of space pointed to by addr. On return, addr contains the actual length in
bytes of the address returned. This call is used with connection-based socket types,
currently with SOCK_STREAM.

You can use the select call for the purposes of doing an accept call by selecting
the socket for reading.

Return Value
The call returns -1 on error. If the call succeeds, it returns a non-negative integer
which is a descriptor for the accepted socket.

Diagnostics
The accept call fails if:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

[EFAULT] The addr parameter is not in a writable part of the user address
space.

2-10 System Calls

accept(2)

[EWOULDBLOCK]
The socket is marked nonblocking and no connections are present
to be accepted.

See Also
bind(2), connect(2), listen(2), select(2), socket(2)

System Calls 2-11

access (2)

Name

Syntax

access - determine the accessibility of file

#ioclude <uoistd.h>
accessible = access(path, mode)
iot accessible;
char *path;
iot mode;

Description
The system call, access, checks the given file path for accessibility according to
mode. The argument mode is an inclusive OR ofthe bits R_OK, W_OK, and X_OK.
Specifying the argument mode as F _OK tests whether the directories leading to the
file can be searched and whether the file exists.

The real user 10 and the group access list (including the real group 10) are used to
verify permissions. This call is useful to set-UID programs.

Note that only access bits are checked. The access call may indicate that a
directory is writeable, but an attempt to open the directory fails, although files are
present in the directory. Additionally, a file may appear to be executable, but
execve fails unless the file is in proper format.

If a path cannot be found, or if the desired access modes are not granted, a -1 value
is returned; otherwise, a 0 value is returned.

Diagnostics
Access to the file is denied if any of the following is true:

[EACCES]

[EFAULT]

[EIO]

[ELOOP]

Permission bits of the file mode do not permit the requested access
or search permission is denied on a component of the path prefix.
The owner of a file has permission checked with respect to the
owner's read, write, and execute mode bits. Members of the file's
group, other than the owner, have permission checked with respect
to the group's mode bits. All others have permissions checked
with respect to the other mode bits.

The path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file
system.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

2-12 System Calls

A path component length exceeds 255 characters or the-length· of
path exceeds 1023 characters.

The file referred to by path does not exist or the path points to an
empty string and the environment defined is POSIX or
SYSTEM_FIVE.

[ENOTDIR]

[EROFS]

[ESTALE]

[ETIMEDOUT]

[ETXTBSY]

See Also
chmod(2), stat(2)

access (2)

A component of the path prefix is not a directory.

Write access is requested for a file on a read-only file system.

The file handle given in the argument was invalid. The file
referred to by that file handle no longer exists or has been revoked.

A connect request or remote file operation fails because the
connected party did not respond after a period of time determined
by the communications protocol.

Write access is requested for a pure procedure (shared text) file
that is being executed.

System Calls 2-13

acct(2)

Name

Syntax

acct - turn accounting on or off

acct(file)
char *file;

Description
The system is prepared to write a record in an accounting file for each process as it
terminates. This call, with a null-terminated string naming an existing file as
argument, turns on accounting; records for each terminating process are appended to
file. An argument of 0 causes accounting to be turned off.

The accounting file format is given in acct(5).

This call is permitted only to the superuser. Accounting is automatically disabled
when the file system the accounting file resides on runs out of space. It is enabled
when space once again becomes available.

Return Value
On error, -1 is returned. The file must exist and the call may be exercised only by
the superuser. It is erroneous to try to turn on accounting when it is already on. If
successful, 0 is returned.

Diagnostics
The acct system call will fail if one of the following is true:

[EPERM]

[ENOTDIR]

The caller is not the superuser.

A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

[EIO]

2-14 System Calls

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file does not exist.

The path name is not a regular file.

The named file resides on a read-only file system.

The file points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred while reading from or writing to the file
system.

acct(2)

Restrictions
No accounting is produced for programs running when a crash occurs. In particular,
nonterminating programs are never accounted for.

See Also
acct(5), sa(8)

System Calls 2-15

adjtime(2)

Name

Syntax

adjtime - correct the time to allow synchronization of the system clock

#include <sys/time.h>

adjtime(delta,olddelta)
struct timeval *delta;
struct timeval *olddelta;

Description

Note

The adjtime system call changes the system time, as returned by
gettimeofday, moving it backward or forward by the number of microseconds
corresponding to the timeval delta.

The time is maintained by incrementing it with a machine-dependent tick every clock
interrupt. If delta is negative, the clock is slowed down by incrementing it in smaller
ticks until the correction is made. If delta is positive, a larger tick is used. Thus, the
time is always a monotonically increasing function. A time correction from an
earlier call to adjtime may not be finished when adjtime is called again. If
olddelta is nonzero, then the structure pointed to will contain, upon return, the
number of microseconds still to be corrected from the earlier call.

This call can be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

The adjtime call is restricted to the superuser.

Time is incremented in 3.906ms ticks on MIPS and tOms ticks on V AX. When
adjtime is called with an argument other than zero, ticks of 9ms or 11ms are used
until the time is corrected. A delta of less than Ims has no effect.

Return Value
A return value of 0 indicates that the call succeeded. A return value of -1 indicates
that an error occurred, and in this case an error code is stored in the global variable
errno.

Diagnostics
The following error codes may be set in errno:

[EFAULT]

[EPERM]

2-16 System Calls

An argument points outside the process's allocated address space.

The process's effective user ID is not that of the super-user.

adjtime (2)

See Also
date(1), gettimeofday(2)

System Calls 2-17

Name
atomic_op - perfonn test and set operation.

Syntax
#include <sys/iock.h>

int atomic_op(op, addr)
int op;
int *addr;

Arguments

op

addr

Description

This argument is the operation type. If the operation type is
ATOMIC_SET, this call specifies the test and set operation on
location addr. If the operation type is ATOMIC_CLEAR, this -call
specifies the clear operation on location addr.

This is the target address of the operation.

The at ami c _ op call provides test and set operation at a user address.

For RISC systems, at ami c _ op is executed as a system call. For V AX systems, a
system call is not executed for this library function.

Return Value
If the atomic_op operation succeeds, then 0 is returned. Otherwise a -1 is returned,
and a more specific error code is stored in errno.

Diagnostics

[EBUSY]

[EINVAL]

[EACCES]

[EALIGN]

2-18 System Calls

The location specified by addr is already set.

The op is not a valid operation type.

The address specified in addr is not write accessible.

The addr is not on an integer boundary.

Name

Syntax

audcntl - audit control

#include <sys/audit.h>

audcntl(request, argp, len, cntl, auditJd)
int request;
char *argp;
int len;
char cntl;
audit_ID_t audit_id;

audcntl(2)

Description
The audcntl system call provides control over options offered by the audit
subsystem. All requests are privileged. The following list describes the requests:

GET SYS AMASK and SET SYS AMASK
- The system audit mask determines which system events are logged.

GET_SYS_AMASK places the values of the system audit mask into a
buffer pointed at by argp. SET_SYS_AMASK takes the values from a
buffer pointed at by argp and assigns them to the system audit mask.
Getting or setting the system mask returns the number of bytes transferred
between the user's buffer and the audit mask. Len is the size of the user's
buffer. The amount of data moved between the audit mask and the user's
buffer is the smaller of the audit mask size and the buffer size.

GET TRUSTED AMASK and SET TRUSTED AMASK
- The trusted audit mask determines which-trusted events are logged.

GET_TRUSTED_AMASK places the values of the trusted audit mask into
a buffer pointed at by argp. SET_TRUSTED_AMASK takes the values
from a buffer pointed at by argp and assigns them to the trusted audit
mask. Getting or setting the trusted events mask returns the number of
bytes transferred between the user's buffer and the audit mask. Len is the
size of the user's buffer. The amount of data moved between the audit
mask and the user's buffer is the smaller of the audit mask size and the
buffer size.

GET PROC AMASK and SET PROC AMASK
The process audit mask-determiIies which system events are logged for the
current process. GET_PROC_AMASK places the values of the process
audit mask into a buffer pointed at by argp. SET_PROC_AMASK takes
the values from a buffer pointed at by argp and assigns them to the
process audit mask. Getting or setting the process mask returns the
number of bytes transferred between the user's buffer and the audit mask.
Len is the size of the user's buffer. The amount of data moved between the
audit mask and the user's buffer is the smaller of the audit mask size and
the buffer size.

GET PROC ACNTL and SET PROC ACNTL
- GE'~CPROC_ACNTL returns the audit control flags (the audcntl byte) of

the current process (see a udi t . h). Audit control flags determine

System Calls 2-19

audcntl(2)

whether auditing for the process is ON or OFF, and if ON, whether the
process audit mask is logically ANDed or ORed with the system audit
mask. SET_PROC_ACNTL assigns the values of the audit control flags
from entl and returns the previous values of the flags.

GET AUDSWITCH and SET AUDSWITCH
- GET _AUDSWITCH returns the value of the system audit switch. A return

value of 1 indicates aUditing is turned on. A value of zero indicates
auditing is turned off. SET_AUDSWITCH assigns the value of entl to the
system audit switch and returns the previous audit switch value. A value
of 1 turns auditing on. A value of zero turns auditing off.

FLUSH AUD BUF
- Flushes kernel audit buffer out to / dev / audi t.

GETPAID and SETPAID
GETPAID returns the audit ID of the calling process. SETPAID assigns
the value of audit id to the process audit ID. SETPAID is effective only
if audit_id is greater than O.

Return Value

The values returned for successful calls can be found under the description of the
specific call request.

If a call fails, a -1 is returned.

Diagnostics

The audcntl call fails under the following conditions:

[EFAULT]

[EACCES]

[EINVAL]

[EPERM]

The argp argument contains an invalid address.

The user does not have the privileges needed to perform this
operation.

The value of the len or request argument is invalid or audit _id was
previously set.

The user is not privileged to get or set the audit ID, or the user
attempted to get the audit ID when it was not set.

[EOPNOTSUPP] The request argument contains an unsupported operation.

2-20 System Calls

Name

Syntax

audgen - generate an audit record

audgen(event, tokenp, argv)
int event;
char *tokenp, *argv[];

audgen(2)

Description
The audgen system call generates an audit record, which gets placed in the auditlog.

The argument event is an integer indicating the event type of the operation being
audited (see audit. h). The value of event must be between
MIN_TRUSTED_EVENT and MIN_TRUSTED_EVENT+N_TRUSTED_EVENTS.

The argument tokenp is a null-terminated array of token types (see audi t . h), each
of which represents the type of argument referenced by the corresponding *argv
argument.

The argument argv is a pointer to an array containing the actual arguments or
pointers to those arguments that are to be recorded in the audit record. A pointer to
the actual argument is placed in that array when the argument is a string, array, or
other variable length structure. Arguments represented as int's or short's are placed
directly in that array. Each member of the array must be word-aligned. You cannot
change the values for the audicid, uid, ruid, pid, ppid, device, IP address, or hostid
(secondary tokens for these values are available).

Return Value
Upon successful completion, audgen returns a value of O. Otherwise, it returns a
value of -1 and sets the global integer variable errno to indicate the error.

Restrictions
The audgen call is a privileged system call. No record is generated if the specified
event is not being audited for the current process. The maximum number of
arguments referenced by argv is AUD_NPARAM (8).

Diagnostics
The audgen system call fails under the following conditions:

[EACCES]

[EINVAL]

The user is not privileged for this operation.

The value supplied for the event, tokenp, or argv argument is
invalid.

System Calls 2-21

bind(2)

Name

Syntax

bind - bind a name to a socket

#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

bind(s, name, namelen)
int s;
struct sockaddr un *name;
int namelen; -

Description
The bind system call assigns a name to an unnamed socket. When a socket is
created with the socket call, it exists in a name space (address family) but has no
name assigned. The bind system call requests that name be assigned to the socket.

Binding a name in the UNIX domain creates a socket in the file system that must be
deleted by the caller when it is no longer needed, using the unlink system call.

The sockaddr argument specifies a general address family. The sockaddr _un
argument specifies an address family in the UNIX domain.

The rules used in name binding vary between communication domains. Consult the
reference pages in the ULTRIX Reference Pages Section 4: Special Files for detailed
information.

Return Value
If the bind is successful, the call returns a 0 value. A return value of -1 indicates an
error, which is further specified in the global variable ermo.

Diagnostics
The bind call fails under the following conditions:

[EBADF] S is an invalid descriptor.

[ENOTSOCK] S is not a socket.

[EADDRNOTA VAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL]

[EACCESS]

2-22 System Calls

The socket is already bound to an address.

The requested address is protected. and the current user has

bind(2)

inadequate pennission to access it.

[EFAULT] The name parameter is not in a valid part of the user address
space.

The following errors are specific to binding names in the UNIX domain:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[ELOOP]

[EIO]

[EROFS]

[EISDIR]

See Also

A component of a pathname exceeds 255 characters, or an entire
pathname exceeds 1023 characters.

A prefix component of the path name does not exist.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred while making the directory entry or
allocating the inode.

The name would reside on a read-only file system.

A null pathname was specified.

connect(2), getsockname(2), listen(2), socket(2), unlink(2)

System Calls 2-23

ISC brk(2)

Name

Syntax

brk, sbrk - change data segment space allocation

#include <sysltypes.h>

char *brk(addr)
char *addr;

char *sbrk(incr)
int incr;

Description
The brk system call sets the system's idea of the lowest data segment location not
used by the program (called the break) to addr (rounded up to the next multiple of
the system's page size). Locations greater than addr and below the stack pointer are
not in the address space and thus will cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data
space and a pointer to the start of the new area is returned.

When a program begins execution by execve, the break is set at the highest
location defined by the program and data storage areas. Ordinarily, therefore, only
programs with growing data areas need to use brk.

The get r 1 imi t(2) system call may be used to determine the maximum permissible
size of the data segment; it will not be possible to set the break beyond the rlim _max
value returned from a call to getrlimit(2). For example:

OxlOOOOOOO + rIp -> rlim max

Return Value
Upon successful completion, the brk system call returns a value of 0 or -1 if the
program requests more memory than the system limit. The sbrk system call returns
-1 if the break could not be set.

Restrictions
Setting the break may fail due to a temporary lack of swap space. It is not possible
to distinguish this from a failure caused by exceeding the maximum size of the data
segment without consulting getrlimit.

Diagnostics
The sbrk system call fails and no additionally memory is allocated if one of the
following is true:

2-24 System Calls

[ENOMEM]

[ENOMEM]

[ENOMEM]

The limit, as set by setrlimit(2) was exceeded.

The maximum possible size a data segment (compiled into
the system) was exceeded.

Insufficient space existed in the swap area to support the
expansion.

brk(2) RI~

See Also
execve(2), getrlimit(2), setrlimit(2), ulimit(2)

System Calls 2-25

AX brk{2}

Name

Syntax

brk, sbrk - change core allocation

#include <sys/types.h>

caddr_t brk(addr)
caddct addr;

caddct sbrk(incr)
int incr;

Description
The brk system call sets the system's idea of the lowest data segment location not
used by the program (called the break) to addr (rounded up to the next mUltiple of
the system's page size). Locations greater than addr and below the stack pointer are
not in the address space and will thus cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data
space and a pointer to the start of the new area is returned.

When a program begins execution using execve, the break is set at the highest
location defined by the program and data storage areas. Ordinarily, therefore, only
programs with growing data areas need to use sbrk.

The get r 1 imi t system call may be used to determine the maximum permissible
size of the data segment. It will not be possible to set the break beyond the
rlim _ max value returned from a call to get r 1 imi t, for example, etext + rip
-rlim_max. See end(3) for the definition of etext.

Return Value
If the call is successful, brk returns a 0 value. If the program requests more
memory than the system limit, b r k returns -1. If the break could not be set, b r k
returns -1.

Restrictions
Setting the break may fail due to a temporary lack of swap space. It is not possible
to distinguish this from a failure caused by exceeding the maximum size of the data
segment without consulting get r 1 imi t.

Diagnostics
The sbrk call fails and no additional memory is allocated under the following
conditions:

[ENOMEM]

[ENOMEM]

[ENOMEM]

2-26 System Calls

The limit, as set by setrlimit, is exceeded.

The maximum possible size of a data segment (compiled into the
system) is exceeded.

Insufficient space exists in the swap area to support the expansion.

brk{2} VA:

See Also
execve(2), getrlimit(2), setrlimit(2), end(3), malloc(3)

System Calls 2-27

ISC cachectl (2)

Name

Syntax

cachectl - mark pages cacheable or uncacheable

#include <mips/cachectl.h>

cachectl(addr, nbytes, op)
char *addr;
int nbytes, op;

Description
The cachectl system call allows a process to make ranges of its address space
cacheable or uncacheable. Initially, a process's entire address space is cacheable.

The op parameter is one of the following:

CACHEABLE Make the indicated pages cacheable.

UNCACHEABLE Make the indicated pages uncacheable.

The arguments CACHEABLE and UNCACHEABLE affect the address range
indicated by the addr and nbytes parameters. The addr must be page aligned, and
nbytes must be a multiple of the page size.

Changing a page from UNCACHEABLE state to CACHEABLE state causes both the
instruction and data caches to be flushed.

Return Value
The cachectl system call returns 0 on success. If errors are detected, the
cachectl system call returns -1 with the error cause indicated in errno.

Diagnostics

[EFAULT]

[EINVAL]

[EINVAL]

2-28 System Calls

Some or all of the address range addr to (addr+nbytes-l) are not
accessible.

The op parameter is not CACHEABLE or UNCACHEABLE.

The addr parameter is not page aligned, or the nbytes parameter is
not a multiple of pagesize.

Name

Syntax

cache flush - flush the instruction cache, data cache, or both

#include <mips/cachectl.h>

cacheflush(addr, nbytes, cache)
char *addr;
int nbytes, cache;

cacheflush (2) RI~

Description
Flushes contents of indicated caches for user addresses in the range of addr to
(addr+nbytes-l). The cache parameter is one of the following:

ICACHE

DCACHE

BCACHE

Return Value

Flush only the instruction cache.

Flush only the data cache.

Flush both the instruction and data caches.

The cacheflush system call returns 0 when errors are not detected. If errors are
detected, the cache flush system call returns -1 with the error cause indicated in
errno.

Diagnostics

[EFAULT]

[EINVAL]

Some or all of the address range in the addr to (addr+nbytes-l)
are not accessible.

The cache parameter is not ICACHE, DCACHE, or BCACHE.

System Calls 2-29

chdir (2)

Name

Syntax

chdir - change working directory

chdir(path)
char *path;

Description
The path is the pathname of a directory. The chdir system call causes this
directory to become. the current working directory, which is the starting point for
pathnames that do not begin at the root directory (f).

For a directory to become the current directory, the process must have execute
(search) access to the directory.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Environment
Differs from the System V definition in that ELOOP is a possible error condition.

Diagnostics
The chdir system call fails and the current working directory is unchanged under
the following conditions:

[ENOTDIR] A component of the pathname is not a directory.

[ENAMETOOLONG]
A component of a pathname exceeds 255 characters, or an entire
path name exceeds 1023 characters.

[ENOENT] The named directory does not exist or the path points to an empty
string and the environment defined is POSIX or SYSTEM_FIVE.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] The path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[ESTALE] The file handle given in the argument was invalid. The file
referred to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

2-30 System Calls

See Also
chroot(2)

chdir (2)

System Calls 2-31

chmod(2)

Name

Syntax

chmod, fchmod - change mode of file

#include <sys/types.h>
#include <sys/stat.h>

chmod(path, mode)
char *path;
mode_t mode;

fchmod(fd, mode)
int fd;
mode_t mode;

Description
The file whose name is provided by path or referenced by the descriptor fd has its
mode changed to mode. Modes are constnlcted by ORing combinations of the
following:

S ISUID

S ISGID

S ISVTX

- 04000 set user ID on execution

- 02000 set group ID on execution

- 01000 save text image after execution

S IRUSR - 00400 read by owner

S IWUSR - 00200 write by owner

S IXUSR - 00100 execute (search on directory) by owner

S IRWXG - 00070 read, write, execute (search) by group

S IRWXO - 00007 read, write, execute (search) by others

If an executable file is set up for sharing (the default), the mode S_ISVTX prevents
the system from abandoning the swap-space image of the program-text portion of the
file when its last user terminates. The ability to set this bit is restricted to the
superuser.

If the mode S_ISVTX (sticky bit) is set on a directory, an unprivileged user cannot
delete or the rename files of other users in that directory. For more information on
the sticky bit, see sticky(8).

Only the owner of a file or the superuser can change the mode.

Writing a file or changing the owner of a file clears the set-user-id and set-group-id
bits of that file. Turning off these bits when a file is written or its owner changed
protects the file from remaining set-user-id or set-group-id after being modified. If a
file, specifically a program, remained set-user-id or set-group-id after being modified,
that file could allow unauthorized access to other files or accounts.

2-32 System Calls

chmod(2)

Environment

System Five
ELOOP is a possible error condition.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

Diagnostics
The chmod system call fails and the file mode remains unchanged under the
following conditions:

[EACCES]

[EFAULT]

[BIO]

[ELOOP]

Search permission is denied on a component of the path prefix.

The path argument points outside the process's allocated address
space.

An I/O error occurred while reading from or writing to the file
system.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

[ENOTDIR]

[EPERM]

[EROFS]

[ESTALE]

A pathname component exceeds 255 characters, or an entire
pathname exceeds 1023 characters.

The named file does not exist.

A component of the path prefix is not a directory.

The effective user ID does not match the owner of the file and the
effective user ID is not the superuser.

The named file resides on a read-only file system.

The file handle given in the argument is invalid. Either the file
referred to by that file handle no longer exists or it has been
revoked.

The f chmod system call fails under the following conditions:

[EBADF]

[EINVAL]

[BIO]

[EROFS]

The descriptor is not valid.

The fd refers to a socket, not to a file.

An I/O error occurred while reading from or writing to the file
system.

The file resides on a read-only file system.

[ETIMEDOUT] A connect request ot remote file operation failed because the
connected party did not respond after a period of time determined
by the communications protocol.

System Calls 2-33

chmod(2)

See Also
open(2), chown(2)

2-34 System Calls

Name

Syntax

chown, fchown - change owner and group of a file

#include <sys/types.h>

chown(path, owner, group)
char *path;
uid_t owner;
gid_t group;

fchown(fd, owner, group)
intfd;
uid_t owner;
gid_t group;

chown(2)

Description
The chown and fchown system calls change the owner and group of the file named
by path or referenced by fd . Only the superuser can change the owner of a file.
Other users can change the group-id of a file that they own to another group to which
they belong. .

If you specify -1 in owner or group, the corresponding owner-id or group-id of the
file is unchanged.

The chown system call clears the set-user-id and set-group-id bits on the file when it
returns successfully, unless the call is made by the superuser. Clearing these bits
when a file's owner is changed protects the file from remaining set-user-id or set­
group-id after being modified. If a file, specifically a program, remained set-user-id
or set-group-id after being modified, that file could allow unauthorized access to
other files or accounts.

You should use the fchown system call with the file locking primitives because
fchown preserves any locks you previously obtained with the flock system call.
For more information about file locking, see the flock(2) reference page.

Return Value
The chown and f chown calls return zero if the operation is successful; if an error
occurs they return -1 and store a more specific error code in the global variable
errno.

Environment

System Five

Differs from the System V definition in that only the superuser can change the
ownership of a file. In addition, ELOOP is a possible error condition.

System Calls 2-35

chown(2)

POSIX

When your program is compiled in the POSIX environment, the owner argument is
of type uid _t, and the group argument is of type gid J

Diagnostics
The chown system call fails and the file is unchanged under the following
conditions:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

[ELOOP]

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix.

The effective user-id is not the superuser.

The named file resides on a read-only file system.

The pathname points outside the process's allocated address space.

Too many symbolic links are encountered in translating the
pathname.

[Era] An I/O error occurs while reading from or writing to the file
system.

[EST ALE] The fd argument is invalid because the file referred to by that file
handle no longer exists or has been revoked.

The fchown system call fails if:

[EBADF]

[EINVAL]

[EPERM]

[EROFS]

[EIO]

[ETIMEDOUT]

See Also

The fd argument does not refer to a valid descriptor.

The fd argument refers to a socket, not a file.

The effective user-id is not the superuser.

The named file resides on a read-only file system.

An I/O error occurred while reading from or writing to the file
system.

A connect request or remote file operation fails because the
connected party does not properly respond after a period of time
that is dependent on the communications protocol.

chmod(2), flock(2)

2-36 System Calls

Name

Syntax

chroot - change root directory

chroot(dirname)
char *dirname;

chroot(2}

Description
The dirname is the address of the pathname of a directory, terminated by a null byte.
The chroot system call causes this directory to become the root directory (/).

For a directory to become the root directory, a process must have execute (search)
access to the directory.

This call is restricted to the superuser.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate an error.

Diagnostics
The chroot system call fails and the root directory is unchanged under the
following conditions:

[ENOTDIR] A component of the dirname is not a directory.

[ENAMETOOLONG]
A component of a dirname exceeded 255 characters, or an entire
dirname exceeded 1023 characters.

[ENOENT] The dirname argument points to the name of a directory which
does not exist, or to an empty string and the environment defined
is POSIX or SYSTEM_FIVE.

[EFAULT] The dirname points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[EST ALE] The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

[EPERM] The effective user ID is not that of superuser.

System Calls 2-37

chroot(2)

See Also
chdir(2)

2-38 System Calls

Name

Syntax

close - delete a descriptor

c1ose(fd)
intfd;

close (2)

Description
The close call deletes a descriptor from the per-process object reference table. If
the descriptor is the last reference to the underlying object, then the object is
deactivated. For example, on the last close of a file, the current seek pointer
associated with the file is lost. On the last close of a socket, c los e discards
associated naming information and queued data. On the last close of a file holding an
advisory lock, the lock is released. For further information, see flock(2).

A process's descriptors are automatically closed when a process exits, but because
each process can have a limited number of active descriptors, close is necessary for
programs that deal with many descriptors.

When a process forks, all descriptors for the new child process reference the same
objects as they did in the parent process before the fork. For further information, see
fork(2). If a new process is then to be run using execve, the process would
normally inherit these descriptors. Most of the descriptors can be rearranged with the
dup2 system call or deleted with close before execve is called. However, if any
descriptors are needed if the execve fails, they must be closed if the execve
succeeds. For this reason, the call, fcntl(d, F _SETFD, 1), is provided. This call
arranges that a descriptor is closed after a successful execve call. The call, fcntl(d,
F _SETFD, 0), restores the default, which is to not close the descriptor.

When c los e is used on a descriptor that refers to a remote file over NFS, and that
file has been modified by using wr i t e(2), then any cached wr i t e data is flushed
before close returns. If an asynchronous write error has occurred previously with
this remote file, or occurred as part of the flush operation described above, then
c los e returns -1 and ermo will be set to the error code. The return code from
close(2) should be inspected by any program that can write over NFS.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and the global integer variable, erma, is set to indicate the error.

Diagnostics
The close system call fails under the following conditions:

[EBADF]

[EINTR]

D is not an active descriptor.

The close function was interrupted by a signal.

If an error occurs on an asynchronous write over NFS, the error cannot always be
returned from a w r i t e system call. The error code is returned on c los e or
fsync. The following are NFS-only error messages:

[EACCESS] The requested address is protected, and the current user has
inadequate permission to access it.

System Calls 2-39

close (2)

[ENOSPC] There is no free space remaining on the file system containing the
file.

[EDQUOT] The user's quota of disk blocks on the file system containing the
file has been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file
system.

[EROFS] The file is on a read-only file system.

[ESTALE] The fd argument is invalid because the file referred to by that file
handle no longer exists or has been revoked.

[ETIMEDOUT] A write operation failed because the server did not properly
respond after a period of time that is dependent on the
mount(8nfs) options.

See Also
accept(2), execve(2), fcntl(2), fiock(2), fsync(2), open(2), pipe(2), socket(2),
socketpair(2), write(2)

2-40 System Calls

Name

Syntax

connect - initiate a connection on a socket

#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

connect (2)

Description
The connect call initiates a connection on a socket. The parameter s is a socket.
If the socket is of type SOCK_DGRAM, this call permanently specifies the peer to
which datagrams are sent. If it is of type SOCK_STREAM, this call attempts to
make a connection to another socket. The other socket is specified by name, which is
an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way. The size of the structure sockaddr is
name/en.

Return Value
If the connection or binding succeeds, then 0 is returned. Otherwise, a -1 is returned,
and a more specific error code is stored in errno.

Diagnostics
The call fails under the following conditions:

[EBADF] The s is not a valid descriptor.

[ENOTSOCK] The s is a descriptor for a file, not a socket.

[EADDRNOT A VAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT]
Addresses in the specified address family cannot be used with this
socket.

[EINPROGRESS]
The connection is requested on a socket with FNDELA Y set
(using fcntl(2».

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a
connection.

[ECONNREFUSED]
The attempt to connect was forcefully rejected.

[ENETUNREACH]
The network is not reachable from this host.

System Calls 2-41

connect (2)

[EADDRINUSE] The address is already in use.

[EF A ULT] The name parameter specifies an area outside the process address
space.

[EWOULDBLOCK]
The socket is nonblocking, and the connection cannot be
completed immediately. You can select the socket for writing by
using the select system call while it is connecting.

The following errors are specific to connecting names in the UL TRIX domain:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

See Also

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

The named socket does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the
pathname.

accept(2), fcntl(2), getsockname(2), select(2), shutdown(2), socket(2)

2-42 System Calls

Name

Syntax

creat - create a new file

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <limits.h> /*Definition of OPEN_MAX*/
creat(name, mode)
char *name;
mode_t mode;

creat(2)

Description
The creat system call creates a new file or prepares to rewrite an existing file
called name, given as the address of a null-terminated string. If the file did not exist,
it is given mode mode, as modified by the process's mode mask. For further
information, see umask(2). Also, see chmod(2) for the construction of the mode
argument.

If the file did exist, its mode and owner remain unchanged, but it is truncated to zero
length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in
the past by programs to construct a simple exclusive locking mechanism. It is
replaced by the O_EXCL open mode, or flock(2) facility.

No process may have more than OPEN_MAX files simultaneously.

Return Value
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor that permits only writing.

Environment
Differs from the System V definition in that ELOOP and ENXIO are possible error
conditions, but ENFILE and ENOS PC are not.

Diagnostics
The creat system call fails and the file is not created or truncated under the
following conditions:

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[EISDIR]

A component of the path prefix is not a directory.

Search permission is denied for a component of the path prefix.

The file does not exist, and the directory in which it is to be
created is not writable.

The file exists, but it is unwritable.

The file is a directory.

System Calls 2-43

creat (2)

[EMFILE]

[EROFS]

[ENXIO]

[ETXTBSY]

[EFAULT]

Too many files are open.

The named file resides on a read-only file system.

The file is a character special or block special file, and the
associated device does not exist.

The file is a pure procedure (shared text) file that is being
executed.

The name points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EOPNOTSUPP] The file is a socket, which is not implemented.

[ENAMETOOLONG]

[ENOENT]

[ENFILE]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[EIO]

[ESTALE]

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file does not exist.

The system file table is full.

The directory in which the entry for the new file is being placed
cannot be extended, because there is no space left on the file
system containing the directory.

There are no free inodes on the file system on which the file is
being created.

The directory in which the entry for the new file is being placed
cannot be extended because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

The user's quota of inodes on the file system on which the file is
being created has been exhausted.

An I/O error occurred while making the directory entry or
allocating the inode.

The "file handle" given in the argument is invalid. The file
referred to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the

See Also

connected party did not properly respond after a period of time that
is dependent on the communications protocol.

close(2), chmod(2), open(2), umask(2), write(2)

2-44 System Calls

Name

Syntax

dup, dup2 - duplicate an open file descriptor

newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

dup(2)

Description
The dup system call duplicates an existing object descriptor. The argument oldd is a
small non-negative integer index in the per-process descriptor table. The value must
be less than the size of the table, which is returned by getdtablesize. The new
descriptor, newd, returned by the call is the lowest numbered descriptor that is not
currently in use by the process.

The object referenced by the descriptor does not distinguish between references using
oldd and newd in any way. Thus, if newd and oldd are duplicate references to an
open file, read, write, and lseek calls all move a single pointer into the file. If
a separate pointer into the file is desired, a different object reference to the file must
be obtained by issuing an additional open call.

In the second form of the call, specify the value of newd needed. If this descriptor is
already in use, the descriptor is first deallocated as if a close call had been done.

Return Value
The value -1 is returned if an error occurs in either call. The external variable errno
indicates the cause of the error.

Diagnostics
The dup and dup2 system calls fail under the following conditions:

[EBADF]

[EMFILE]

[EINTR]

See Also

The oldd or newd is not a valid active descriptor.

Too many descriptors are active.

The dup () or dup2 () function was terminated prematurely by a
signal.

accept(2), c1ose(2), getdtablesize(2), Iseek(2), open(2), pipe(2), read(2), socket(2),
socketpair(2), write(2)

System Calls 2-45

errno (2)

Name
ermo - introduction error numbers

Syntax
#include <ermo.h>

Description
The errno external variable is set when an error occurs in a system call. You can
use the value stored in ermo to obtain a more detailed description of the error than is
given in the system call's return value. The errno variable is not cleared on
successful system calls, so you should check its value only when an error is reported.

Return Value
Most system calls have one or more return values. An error condition is indicated by
an otherwise impossible return value. This value is almost always -1. All return
codes and values from system call are of type int, unless otherwise noted.

When an error occurs, most calls store one of the following values, as defined in
<ermo.h>, in the ermo variable:

o Unused.

1 EPERM Not owner
This error indicates an attempt to modify a file in some way forbidden except
to its owner or the superuser. It is also returned for attempts by ordinary users
to do things allowed only to the superuser.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
does not, or when one of the directories in a pathname does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist or
is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit) that the program catches
occurred during a system call. If execution resumes after the asynchronous
signal is processed, it will appear as if the interrupted system call returned this
error condition.

5 EIO I/O error
Some physical I/O error occurred during a read or write. This error may
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist or to an area
beyond the limits of the device. This error might also occur when an illegal
tape drive unit number is selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

2-46 System Calls

errno (2)

8 ENOEXEC Exec format error
A request is made to execute a file that does not start with a valid magic
number, although it has the appropriate permissions. For further information,
see a. out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file or a read request is made for a file
that is open only for writing. Likewise, a write request made to a file open only
for reading causes this error.

10 ECHILD No children
The program issued a wai t call and the process has no active or unwaited-for
children.

11 EAGAIN No more processes
In afork, the system's process table is full or the user is not allowed to create
any more processes.

12 ENOMEM Not enough core
During an execve or brk, a program asks for more core or swap space than
the system is able to supply. A lack of swap space is normally a temporary
condition. However, a lack of core is not a temporary condition; the maximum
size of the text, data, and stack segments is a system parameter.

13 EACCES Permission denied
The call attempts to access a file in some way forbidden by the protection
system.

14 EF A UL T Bad address
The system encountered a hardware fault in attempting to access the arguments
of a system call.

15 ENOTBLK Block device required
The call specifies a plain file where a block device is required.

16 EBUSY Mount device busy
The call attempts to mount a device that was already mounted or to unmount a
device on which there was an active file directory, an open file, current
directory, mounted-on file, or active text segment. Or, the call attempts to
modify a partition table incorrectly. See the restrictions in chpt(8).

17 EEXIST File exists
An existing file is mentioned in an inappropriate context.

18 EXDEV Cross-device link
The call attempts to form a hard link to a file on another device.

19 ENODEV No such device
The call attempts to perform an invalid operation on a device, such as write to
a read-only device.

20 ENOTDIR Not a directory
A file that is not a directory is specified where a directory is required, for
example, in a pathname or as an argument to chdir.

21 EISDIR Is a directory
The call attempts to write on a directory.

System Calls 2-47

errno (2)

22 EINV AL Invalid argument
An invalid argument is specified. For example, the call might specify
dismounting a device that is not mounted or reading or writing a file for which
seek has generated a negative pointer. This error is also set by math
functions, as described in the intro(3) reference page.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more open calls
can be processed.

24 EMFILE Too many open files
The process has opened too many files. The customary configuration limit is 20
files per process.

25 ENOTTY Not a typewriter
The file named in an ioctl call is not a terminal or one of the other devices
to which the call applies.

26 ETXTBSY Text file busy
The call attempts to execute a pure-procedure program that is currently open
for writing or reading. Or, the call attempts to open for writing a pure­
procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeds the maximum (about 109 bytes).

28 ENOS PC No space left on device
A device runs out of space during a write to an ordinary file.

29 ESPIPE Illegal seek
An Iseek call specifies a pipe or other device that Iseek does not support.

30 EROFS Restricted operation on a file system
The call attempts to access a file or directory on a mounted file system when
that permission has been revoked. For example, the call attempts to write a file
on a file system mounted read only.

31 EMLINK Too many links
The call attempts to make more than {LINK_MAX} hard links to a file.

32 EPIPE Broken pipe
The call attempts to write on a pipe or socket for which there is no process to
read the data. This condition normally generates a signal; the error is returned
if the signal is ignored.

33 EDOM Argument too large
The argument of a function in the math package (which is described in the
ULTRIX Reference Pages, Section 3: Subroutines) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (which is described in the ULTRIX
Reference Pages, Section 3: Subroutines) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block.
The call attempts an operation that would cause a process to block on an object
in nonblocking mode. For further iriformation, see ioctl(2).

2-48 System Calls

errno (2)

36 EINPROGRESS Operation now in progress
The call is performing an operation that takes a long time to complete, such as
a connect call, on a nonblocking object. For further information, see
ioctl(2).

37 EALREADY Operation already in progress
The call attempts an operation on a nonblocking object that already has an
operation in progress.

38 ENOTSOCK Socket operation on non-socket
The call attepmts to perform a socket-specific operation on an entity that is not
a socket.

39 EDEST ADDRREQ Destination address required
A required address is omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket is larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol is specified that does not support the semantics of the socket type
requested. For example, you cannot use the ARPA Internet UDP protocol with
type SOCK_STREAM.

42 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt or setsockopt call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or an implementation for
it does not exist.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or an
implementation for it does not exist.

45 EOPNOTSUPP Error-operation not supported
The call attempts an unsupported operation, such as trying to accept a
connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or an
implementation for it does not exist.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol is specified. For example,
you cannot use PUP Internet addresses with ARPA Internet protocols.

48 EADDRINUSE Address already in use
The call attempts to use an address that is already in use. Each address can be
used only once.

49 EADDRNOT A V AIL Cannot assign requested address
The call attempts to create a socket with an address not on this machine.

50 ENETDOWN Network is down
A socket operation encountered a network that is not operating.

51 ENETUNREACH Network is unreachable
A socket operation attempts to reach an unreachable network.

System Calls 2-49

errno (2)

52 ENETRESET Network dropped connection on reset
The host to which the program was connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort has occurred internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection has been forcibly closed by a peer. This error usually results
from the peer executing a shutdown call.

55 ENOBUFS No buffer space available
The system lacks sufficient buffer space to perform an operation on a socket or
pipe.

56 EISCONN Socket is already connected
A connect request names an already connected socket, or a sendto or
sendmsg request on a connected socket specifies a destination other than the
connected party.

57 ENOTCONN Socket is not connected
A request to send or receive data could not complete because the socket is not
connected.

58 ESHUTDOWN Cannot send after socket shutdown
A request to send data could not complete because the socket has already been
shut down with a previous shutdown call.

59 ETOOMANYREFS Too many references: cannot splice

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the
communication protocol.) For example, this error occurs when an NFS file
system is mounted with the "soft," option and the server is not responding to
file operation requests.

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This error usually results from trying to connect to a service that is inactive on
the remote host.

62 ELOOP Too many levels of symbolic links
A pathname lookup involves more than eight symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeds 255 characters, or an entire path name
exceeds 1023 characters.

64 EHOSTDOWN Host is down
A socket operation has failed because the destination host is down.

65 EHOSTUNREACH No route to host
A socket operation attempts to reach an unreachable host.

66 ENOTEMPTY Directory not empty
A directory with entries other than dot (.) and dot-dot (..) is specified in a
rmdir or rename call.

2-50 System Calls

errno(2)

67 EPROCLIM Too many processes
Creating the process would cause the user to exceed the number of user
processes that are available. The maxuprc option in the configuration file
controls this limit.

68 EUSERS Too many users
A login process would exceed the maximum allowable login processes for
which the system is licensed.

69 EDQUOT Disk quota exceeded
A wr i te to an ordinary file, the creation of a directory or symbolic link, or
the creation of a directory entry has failed because the user's quota of disk
blocks is exhausted. Or, the allocation of an inode for a newly created file has
failed because the user's quota of inodes is exhausted.

70 EST ALE Stale NFS file handle
Information used by the operating system to identify a file in an NFS file
system that is no longer valid. This error code results from operating on a
remote file that no longer exists on the server or resides in a file system that
has been moved to a different device on the server.

71 EREMOTE Too many levels of remote in path
A remote NFS client has requested an operation on a file that is remote to the
server as well. An attempt has been made to mount an NFS remote file system
that is not. local to the specified server. This error code cannot occur except in
response to a failed mount call.

72 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the
specified message queue. For further information, see msgop(2).

73 EIDRM Identifier removed
In semaphores, shared memory, or message queues, the caller tried to access
the identifier after it had been removed from the system.

74 EALIGN Alignment error
Alignment error of some type has occurred, for example, cluster, page, or
block.

75 ENOLCK No locks available
A file locking request could not be fulfilled because a system limit on the
number of active locks would have been exceeded.

76 ENOSYS Function not implemented

See Also

The requested function is not available in UL TRIX. Included for POSIX
compatibility only.

perror(3)

System Calls 2-51

execve(2)

Name

Syntax

execve - execute a file

execve(name, argv, envp)
char *name, *argv[], *envp[];

Description
The execve system call transforms the calling process into a new process. The new
process is constructed from an ordinary file called the new process file. This file is
either an executable object file, or a file of data for an interpreter. An executable
object file consists of an identifying header, followed by pages of data representing
the initial program (text) and initialized data pages. Additional pages can be
specified by the header to be initialized with zero data. For further information, see
a. out(5).

An interpreter file begins with a line of the form "#! interpreter". When an
interpreter file is executed the system executes the specified interpreter, giving it the
name of the originally executed file as an argument, shifting over the rest of the
original arguments.

There can be no return from a successful execve because the calling core image is
lost. This is the mechanism whereby different process images become active.

The argument argv is an array of character pointers to null-terminated character
strings. These strings constitute the argument list to be made available to the new
process. By convention, at least one argument must be present in this array, and the
first element of this array should be the name of the executed program, the last
component of name.

The argument envp is also an array of character pointers to null-terminated strings.
These strings pass information to the new process, but they are not directly
arguments to the command. For further information, see environ(7).

Descriptors open in the calling process remain open in the new process, except for
those for which the close-an-exec flag is set. For further information, see close(2).
Descriptors which remain open are unaffected by execve.

Ignored signals remain ignored across an execve, but signals that are caught are
reset to their default values. The signal stack is reset to be undefined. For further
information, see s i gve c(2).

Each process has real user and group IDs and effective user and group IDs. The real
ID identifies the person using the system; the effective ID determines his access
privileges. The execve system call changes the effective user and group ID to the
owner of the executed file if the file has the set-user-ID or set-group-ID modes. The
real user ID is not affected.

The new process also inherits the following attributes from the calling process:

Process ID See getpid(2)
Parent process ID See getpid(2)
Process group ID See getpgrp(2)
Access groups See getgroups(2)

2-52 System Calls

Working directory
root directory
Control terminal
Resource usages
Interval timers
Resource limits
File mode mask
Signal mask

See chdir(2)
See chroot(2)
See tty(4)
See getrusage(2)
See getitimer(2)
See getrlimit(2)
See umask(2)
See sigvec(2)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

execve(2)

The argc argument is the number of elements in argv (the "arg count") and argv is
the array of character pointers to the arguments themselves.

The envp argument is a pointer to an array of strings that constitute the environment
of the process. A pointer to this array is also stored in the global environ variable.
Each string consists of a name, an equal sign (=), and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell sh(1) passes an
environment entry for each global shell variable defined when the program is called.
See environ(7) for some conventionally used names.

If execve returns to the calling process, an error has occurred; the return value is -1
and the global variable ermo contains an error code.

Environment

POSIX, System Five
When your program is compiled using the POSIX or System V environment, the
effective user ID and effective group ID of the new process image are saved (as the
saved-set-uid and saved-set-gid) for later use by the setuid, setgid, and kill
functions.

Restrictions
If a program's effective user ID is not the superuser, but it is executed when the real
user ID is root, then the program has the powers of the superuser.

Diagnostics
The execve system call fails and returns to the calling process under the following
conditions:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

The new process file does not exist.

A component of the path prefix is not a directory.

Search permission is denied for a component of the path prefix.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

The new process file has the appropriate access permission, but it
has an invalid magic number in its header.

System Calls 2-53

execve(2)

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

[EIO]

The new process file is a pure procedure (shared text) file that is
currently open for writing or reading by some process.

The new process requires more virtual memory than is allowed by
the imposed maximum. For further information, see
get r 1 irni t(2).

The number of bytes in the new process's argument list is larger
than the system-imposed limit of {ARG_MAX} bytes.

The new process file is not as long as indicated by the size values
in its header.

The path, argv, or envp points to an illegal address.

An I/O error occurred while reading from the file system.

[ENAMETOOLONG]

[ELOOP]

[EROFS]

[EROFS]

[ESTALE]

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

Too many symbolic links were encountered in translating the
pathname.

If binaries cannot be executed from the file system.

If setuid and setgid programs cannot be executed from the
file system.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the

See Also

connected party did not properly respond after a period of time that
is dependent on the communications protocol.

exit(2), fork(2), exec1(3), environ(7)

2-54 System Calls

Name

Syntax

_exit - tenninate a process

#include <stdlib.h>
void _exit(status)
int status;

exit (2)

Description
The function, _ exi t, tenninates a calling process with the following consequences:

• All of the file descriptors open in the calling process are closed.

• If the parent process of the calling process is executing a wai t, it is notified of
the calling process's tennination and the low-order eight bits of status are made
available to it. For further infonnation, see wai t(2).

• The parent process ID of all of the calling process's existing child processes
and zombie processes are also set to 1. This means that the initialization
process inherits each of these processes as well. For further infonnation, see
intro(2),

• Each attached shared memory segment is detached and the value of
shm _ nattach in the data structure associated with its shared memory identifier
is decremented by 1.

• For each semaphore for which the calling process has set a semadj value, (see
semop(2),) that semadj value is added to the semval of the specified
semaphore.

• If the process has a process, text, or data lock, an unlock is perfonned.

• An accounting record is written on the accounting file if the system's
accounting routine is enabled. For more infonnation, see acct(2).

Calling exit directly circumvents all cleanup. Most C programs call the library
routine ;xi t(3), which perfonns cleanup actions in the standard I/O library before
calling _exit.

Environment

POSIX, System V
The exit function differs from the System Vas well as POSIX definition in that
even if the calling process is a process group leader, the SIGHUP signal is not sent to
each process that has a process group ID equal to that of the calling process.

The exit function also differs in that the exi t routine is declared as type int
instead of type void.

See Also
fork(2), wait(2), exit(3), signal(3).

System Calls 2-55

exportfs (2nfs)

Name

Syntax

exportfs - exports an NFS file system

#include <sys/mount.h>
exportfs(name, rootuid, exflags)
char *namc;
int rootuid, exflags;

Description
The exportfs system call allows the specified local file system to be mounted
remotely by an NFS client. This system call is usually called from mountd.
Security on the exported file systems can be improved by setting the root mapped
user ID, rootuid, and two mount structure flags, exflags for the local file system,
name.

The name argument is a pointer to a null-terminated string containing the path name
of the file system being exported.

The rootuid argument is used to set the user ID that root maps to. By default, root
maps to user id -2.

The exflags argument contains the flags that are to be set in the mount structure
corresponding to name. The following flags are the only possible flags accepted by
exportfs:

#define M NOFH
#define M_EXRONLY

OxlOOO
Ox2000

/* no fhandle flag */
/* export read-only */

Setting the M_NOFH flag does not allow access to the fhandle of the file system's
root gnode. The M_EXRONLY flag exports a filesystem read only.

The expo rt f s system call returns a value of 0 upon successful completion of a
operation, and -1 upon failure.

Diagnostics

[EPERM]

[EIO]

[EFAULT]

[ENOENT]

See Also

Not superuser.

Not enough memory in the system to service the request.

Bad address or bad length of name.

The name cannot be found.

exports(5nfs), mountd(8nfs)

2-56 System Calls

Name

Syntax

fcnt! - file control

#include <fcntl.h>

res = fcnt! ifd, request, arg)
int res;
int fd, request, arg

fcntl (2)

Arguments
The following arguments can be used with fcntl:

fd Descriptor to be operated on. Depending on the function selected by the
request argument, the fd argument can be a file descriptor returned by an
open system call, or a socket descriptor returned by a socket system
call.

request

arg

Description

Defines what you want done. The possible values are defined in
<fcntl. h>. See the Description section for more infonnation.

Varies according to the request argument. See the Description section
for more infonnation.

The fcntl system call provides for control over descriptors. The descriptors can be
either file descriptors returned by the open system call or socket descriptors returned
by the socket system call.

Possible request arguments are the following:

F _DUPFD - Return New Descriptor

The shell provides an example of when a new descriptor is useful. Suppose the shell
receives a command such as:

cat > myfile

The shell needs to redirect the output of the cat command from the file descriptor 1
(standard output) to a new file named myfile. The fcntl call, using the old file
descriptor of 1, to obtain a new file descriptor for the file my f i 1 e .

F DUPFD When request is set for F _DUPFD:

The fcntl call returns a new descriptor. The new file descriptor
returned has the following characteristics:

• The file descriptor returned is the lowest numbered available
descriptor that is greater than or equal to the argument arg.

• The descriptor has the same object references as the original
descriptor. That is, if the original file descriptor referred to a file,
the new file descriptor refers to a file. If the original descriptor
referred to a socket, the new file descriptor refers to a socket.

System Calls 2-57

fentl (2)

• The new descriptor shares the same file pointer if the object was a
file. (A file pointer points to an inode, which in turn points to a
file. Thus, the new descriptor refers to the same file as the old
descriptor.)

• The new descriptor has the same access mode as the old
descriptor (read, write, or read/write).

• The new descriptor shares the same file status flags as the old file
descriptor. (See the discussion of F _GETFL and F _SETFL for a
description of file status flags.)

• The close-on-exec flag associated with the new file descriptor is
set to remain open across execve system calls. (See the
discussion of F _GETFD and F _SETFD for a description of the
close-on-exec flag.)

F _GETFD and F _SETFD - Close-on-exec Flag

Each file descriptor points to an entry in an array of file pointers that, among other
things, define certain characteristics for the file. One such characteristic is the close­
on-exec flag. This flag defines whether or not a file remains open across calls to
execve. If cleared, the file descriptor remains open in the new image loaded by
the call to execve. If set, the file descriptor is closed in the new image loaded by
the call to execve .

F GETFD

F SETFD

When request is set to F _GETFD:

The f cn t 1 call returns the close-on-exec flag associated with the file
descriptor fd. If the low-order bit of the value returned by f cn t 1 is
0, the file remains open across calls to execve. If the low-order bit
of the value returned by fcntl is 1, the file descriptor is closed
across calls to execve .

When request is set to F _SETFD:

The fcntl call sets the close-on-exec flag associated withfd to the
low-order bit of arg (0 or 1).

F _GETFI and F _SETFL - Descriptor Status

Each file descriptor points to an entry in an array of file pointers that, among other
things, define the file's current status. One such item of status, for example, is
whether or not input/output operations to a file are currently blocked.

You might want to program your process to allow blocking so that a user who runs
your process in the background, while doing other work in the foreground, need not
see output from the background job displayed on the screen.

These and other status indicators are discussed in the list that follows. Some status
indicators do not apply to all types of descriptors. The a_APPEND status, for
example, is meaningless for sockets.

F GETFL When request is set to F _GETFL:

The fcntl call returns the file's descriptor status flags. The
following names have been defined in <fcntl. h> for these status

2-58 System Calls

F SETFL

fcntl (2)

flags:

o NDELAY Nonblocking I/O. If no data is available to a read
call, or if a write operation would block, the call
returns -1 with the error [EWOULDBLOCK]. The
flag FNDELA Y is an obsolete synonym for
O_NDELAY.

o FSYNC (O_SYNC) Synchronous write flag. Forces
subsequent file writes to be done synchronously. For
further information, see write(2.) The flag
OFSYNCRON is an obsolete synonym for
FSYNCRON.

o APPEND Force each write to append at the end of file. This
corresponds to the action taken with the 0 _APPEND
flag of open. The flag FAPPEND is an obsolete
synonym for O_APPEND.

FASYNC Enable the SIGIO signal to be sent to the process
group when I/O is possible. For example, send
SIGIO when data is available to be read.

o NONBLOCK
- POSIX environment, nonblocking I/O flag. See

o _NDELA Y request for description of operation.
The flag FNBLOCK is an obsolete synonym for
O_NONBLOCK.

When request is set to F _SETFL:

The fcntl call sets descriptor status flags specified in arg (see
F _GETFL). Refer to the F _SETOWN section for more information.

F _GETOWN and F _SETOWN - Get Or
With these requests, your process can recognize the software interrupts SIGIO or
SIGURG. As described in sigvec, SIGIO is a signal indicating that I/O is possible
on a descriptor. SIGURG indicates an urgent condition present on a socket.

F GETOWN When request is set to F_GETOWN:

The fcntl call returns the process ID or process group currently
receiving SIGIO and SIGURG signals. Process groups are returned
as negative values.

F SETOWN When request is set to F _SETOWN:

The fcntl call sets the process or process group to receive SIGIO
and SIGURG signals; process groups are specified by supplying arg
as negative. Otherwise, arg is interpreted as a process ID. Refer to
the F _SETFL section for more information.

System Calls 2-59

fcntl (2)

F _GETLK, F _SETLK, and F _SETLKW - Locking
With these requests, your process can:

• Test a file for a region that might have been read-locked or write-locked by
another process.

• Set or clear a file region read or write lock.

e Set a file region read or write lock, sleeping, if necessary, until locks previously
set by other processes are unlocked.

When a read lock has been set on a segment of a file, other processes can also set
read locks on that file segment or portions thereof.

A read lock prevents any other process from write locking the protected area. More
than one read lock can exist for a given region of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any other process from read locking or write locking the
protected region. Only one write lock can exist for a given region of a file at a given
time. The file descriptor on which a write lock is being placed must have been
opened with write access.

Locks can start and extend beyond the current end of a file, but cannot be negative
relative to the beginning of the file.

Changing or unlocking a region from the middle of a larger locked region leaves two
smaller regions with the old setting at either end. Locking a region that is already
locked by the calling process causes the old lock to be removed and the new lock
type to take effect.

All locks associated with a file for a given process are removed when a file descriptor
for that file is closed by that process or the process holding that file descriptor
terminates. Locks are not inherited by a child process in a fork(a)2 system call.

F GETLK When request is set to F _ GETLK:

The fcntl call gets the lock information for a read or write locked
region. In the call, you pass a lock description in a variable of type
struct flock pointed to by argo

If the region defined in the flock structure is already locked by a
process other than the caller, a description of the existing lock is
returned in the flock structure. If no lock is found that would prevent
this lock from being created, then the structure is passed back
unchanged except for the lock type which will be set to F _ UNLCK.

The flock structure is defined as follows:

struct flock {
short
short
long
long
int

} ;

l_type;
l_whence;
l_start;
l_len;
lyid;

2-60 System Calls

F SETLK

fentl (2)

Data Passed in flock:

In the data you pass in flock, the I_type value defines the lock type to
be tested for: F _RDLCK for a read lock and F _ WRLCK for a write
lock.

The I whence value defines the point from which the starting byte of
the region is to be measured. If I whence is 0, the value in I start is
taken as the starting byte of the region. If I_whence is I , the-current
file offset plus the value of I start is taken as the starting point. If
I_whence is 2, the file size plus the value of I_start is taken as the
starting point.

The I len value is the length of the region to be tested, in bytes. If
I len is zero, the length to be tested extends to the end of file. If
rlen is zero and I start is zero, the whole file is to be tested. If
rlen is negative, the area affected starts at I start + I len and ends at
rstart - 1. - -

The I yid value has no significance in the data passed.

Data Returned in flock:

The I_type value can be F _RDLCK if the region passed is under a
read lock. F _ WRLCK means that the region passed is under a write
lock. F _UNLCK means that the region is not currently locked by
any process that would prevent this lock from being created; for
example, the region might be locked by the caller.

The I whence, I start, and I len values have similar meanings as
discussed under Data Passed~ except that they define the region
currently under read or write lock.

The lyid value is only used with F _GETLK to return the value for a
blocking lock. An example of a blocking lock is a write lock
currently set by a process other than the calling process.

When request is set to F _SETLK:

You set or clear a file region lock according to the variable of I_type
in the struct flock pointed to by arg. (The flock structure is shown
under the description of F _GETLK, preceding.)

The Ctype value is used to establish read (F _RDLCK) and write
(F _ WRLCK) locks, as well as remove either type of lock
(F _ UNLCK). If a read or write lock cannot be set, f cn t 1 will
return immediately with an error value of-1.

F SETLKW When request is set to F _SETLKW:

The fcntl call takes the same action as for F _SETLK, except that
if a read or write lock is blocked by other locks, the process sleeps
until the segment is free to be locked.

System Calls 2-61

fcntl (2)

Files and region locking are supported over the Network File System (NFS) services
if you have enabled the NFS locking service.

Return Values
Upon successful completion, the value returned depends upon the request argument
as follows:

F _DUPFDA new file descriptor.
F _GETFDValue of flag (only the low-order bit is defined).
F _GETFLValue of flags.
F _GETOWNValue of file descriptor owner.
otherValue other than-I.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Diagnostics
The fcntl fails if under the following conditions:

[EBADF]

[EBADF]

[EFAULT]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EACCES]

[EMFILE]

[ENOSPC]

2-62 System Calls

The fildes argument is not a valid open file descriptor.

The environment defined is POSIX, the request argument is
F _SETLK or F _SETLKW, the type of lock, I_type, is a shared
lock (F _RDLCK), andfildes is not a valid file descriptor open for
reading, or the type of lock, I type, is an exclusive lock
(F _ WRLCK), and fildes is not a valid file descriptor open for
writing.

The arg is pointing to an address outside the process's allocated
space.

The request argument is F _DUPFD, and arg is negative or greater
than the maximum allowable number. For further information, see
getdtablesize(2).

The request argument is F _SETSYN, to change the write mode of
a file to synchronous, and this operation is not valid for the file
descriptor. For example, the file was opened for read-only
operations.

The request argument is F _ GETLK,F _SETLK, or SETLKW and
the data arg points to is not valid.

The request argument is invalid.

The fildes argument refers to a file that does not support locking.

The request argument is F _SETLK, the type of lock (1 type) is a
read (F _RDLCK) or write (F _ WRLCK) lock, and the region of the
file to be locked is already write locked by another process. Or,
the type is a write lock and the region of the file to be locked is
already read or write locked by another process. Or, the file is
remotely mounted and the NFS locking service is not enabled.

The request argument is F _DUPFD, and the maximum allowed
number of file descriptors is currently open, or no file descriptors
greater than or equal to arg are available.

The request argument is F _SETLK or F _SETLKW, the type of

[EDEADLK]

fentl (2)

lock is a read or write lock, and there are no more file locking
headers available (too many files have segments locked). Or, there
are no more record locks available (too many file segments
locked).

The request argument is F _SETLKW, and the lock is blocked by
some lock from another process that is sleeping (waiting) for that
lock to become free. This detection avoids a deadlock situation.

[EOPNOTSUPP] Attempting an operation that is not valid for the file descriptor.

[EINTR]

Environment

This can occur if the file descriptor argument, jd, points to a socket
address, and the request argument is only valid for files.

The request argument is F _SETLKW and the function was
interrupted by a signal.

The fcntl description differs from the POSIX and XPG3 definitions in that
ENOLCK is not a possible error condition.

See Also
close(2), execve(2), getdtablesize(2), open(2), sigvec(2), lockd(8c)

System Calls 2-63

flock (2)

Name

Syntax

flock - apply or remove an advisory lock on an open file

#include <sys/file.h>

#define LOCK SH 1
#define LOCK-EX 2
#define LOCK-NB 4
#define LOCK-UN 8

ftock(fd, operation)
int fd, operation;

1* shared lock */
/* exclusive lock */
/* don't block when locking */
/* unlock */

Description
The flock system call applies or removes an advisory lock on the file associated
with the file descriptor, fd. A lock is applied by specifying an operation parameter
that is the inclusive OR of LOCK_SH or LOCK_EX and, possibly, LOCK_NB. To
unlock an existing lock, operation should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files,
but do not guarantee consistency; that is, processes might still access files without
using advisory locks, possibly resulting in inconsistencies.

The locking mechanism allows two types of locks: shared locks and exclusive locks.
At any time, multiple shared locks can be applied to a file. However, multiple
exclusive locks, or shared and exclusive locks cannot be applied simultaneously on a
file.

A shared lock can be upgraded to be an exclusive lock, and an exclusive lock can
become shared, simply by specifying the appropriate lock type. This change results in
the previous lock being released and the new lock applied. When upgrading, do not
include LOCK_NB in operation, because there is a possibility that other processes
have requests for locks, or have gained or released a lock.

Requesting a lock on an object that is already locked normally causes the caller to
blocked until the lock can be acquired. If LOCK_NB is included in operation, the
call is not blocked; instead, the call fails and the error EWOULDBLOCK is returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through
dup or fork call do not result in multiple instances of a lock, but rather multiple
references to a single lock. If a process holding a lock on a file forks and the child
explicitly unlocks the file, the parent loses its lock.

Processes blocked awaiting a lock may be awakened by signals.

Return Value
Zero is returned if the operation was successful; on an error, a -1 is returned and an
error code is stored in the global variable, ermo.

2-64 System Calls

Diagnostics
The flock call fails under the following conditions:

[EWOULDBLOCK]

flock(2)

The file is locked and the LOCK_NB option was specified.

[EBADF] The argumentfd is an invalid descriptor.

[EINVAL] The argumentfd refers to an object other than a file.

[EOPNOTSUPP] Invalid operation is requested. The argumentfd refers to a socket.

Restrictions
File region locking is not supported over NFS.

See Also
close(2), dup(2), execve(2), fork(2), open(2)

System Calls 2-65

fork(2)

Name

Syntax

fork - create a new process

#include <sysltypes.h>
#include <unistd.h>

pid = forkO
pid_t pid;

Description
The for k system call causes creation of a new process. The new process (child
process) is an exact copy of the calling process except for the following:

• The child process has a unique process ID.

• The child process has a different parent process ID (that is, the process ID of
the parent process).

• The child process has its own copy of the parent's descriptors. These
descriptors reference the same underlying objects, so that, for instance, file
pointers in file objects are shared between the child and the parent, so that a
1 seek(2) on a descriptor in the child process can affect a subsequent read or
write by the parent. This descriptor copying is also used by the shell to
establish standard input and output for newly created processes as well as to set
up pipes.

• The child processes resource utilizations are set to O. For further information,
see setrlimi t(2).

Return Value
Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and the global
variable erma is set to indicate the error.

Diagnostics
The for k system call fails and no child process are created under the following
conditions:

[EAGAIN]

[EAGAIN]

[ENOMEM]

See Also
execve(2), wait(2)

2-66 System Calls

The system-imposed limit {PROC_MAX} on the total number of
processes under execution would be exceeded.

The system-imposed limit {CHILD_MAX} on the total number of
processes under execution by a single user would be exceeded.

There is insufficient swap space for the new process.

Name

Syntax

fsync - synchronize a file's in-core state with that on disk

fsync(jd)
intfd;

fsync(2)

Description
The fcync system call causes all modified data and attributes offd to be moved to a
permanent storage device. This results in all in-core modified copies of buffers for
the associated file to be written to a disk.

The f s yn c call should be used by programs that require a file to be in a known
state, for example, in building a simple transaction facility.

Return Value
A 0 value is returned on success. A -1 value indicates an error.

Diagnostics
The fsync call fails under the following conditions:

[EBADF] The fd argument is not a valid descriptor.

The fd argument refers to a socket. [EINVAL]

[EIO] An I/O error occurred while reading from or writing to the file
system.

[EINTR] The fsync () function was interrupted by a signal.

If an error occurs on an asynchronous write over NFS, the error cannot always be
returned from a wr i t e system call. The error code is returned on c los e or
fsync. The following are NFS-only error messages:

[EACCESS] The requested address is protected, and the current user has
inadequate permission to access it.

[ENOSPC] There is no free space remaining on the file system containing the
file.

[EDQUOT] The user's quota of disk blocks on the file system containing the
file has been exhausted.

[EROFS] The file is on a read-only file system.

[EST ALE] The fd argument is invalid because the file referred to by that file
handle no longer exists or has been revoked.

[ETIMEDOUT] A write operation failed because the server did not properly
respond after a period of time that is dependent on the
mount(8nfs) options.

System Calls 2-67

fsync(2)

See Also
sync(l), close(2), sync(2), write(2), update(8)

2-68 System Calls

Name

Syntax

getdirentries (2)

getdirentries - gets directory entries in a generic directory format

#include <sys/dir.h>

cc = getdirentries(fd, buf, nbytes, basep)
int cc, fd;
char *buf;
int nbytes;
long *basep;

Description

The getdirentries system call puts directory entries from the directory
referenced by the file descriptor fd into the buffer pointed to by buj, in a generic
directory format. Up to nbytes of data are transferred. The nbytes of data must be
greater than or equal to the block size associated with the file. For further
information, see stat(2). Sizes less than nbytes can cause errors on certain file
systems.

The data returned in the buffer is a series of direct structures, each containing the
following entries:

unsigned long
unsigned short
unsigned short
char

d_ino;
d_reclen;
d_namlen;
d_name[MAXNAMLEN + 1);

The d _ino entry is a number that is unique for each distinct file in the file system.
Files that are linked by hard links have the same d ino . For further information, see
link(2). The dJeclen entry is the length, in bytes, of the directory record. The
d _ namlen entry specifies the length of the file name. The d _name entry contains a
null-terminated file name. Thus, the actual size of d _name can vary from 2 to
MAXNAMLEN + 1.

The generic directory structures are not necessarily tightly packed. The d Jeclen
entry may be used as an offset from the beginning of a direct structure to the next
structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position
pointer associated with fd is set to point to the next block of entries. The pointer is
not necessarily incremented by the number of bytes returned by getdirentries.
If the value returned is zero, the end of the directory has been reached. The current
position pointer may be set and retrieved by lseek. The getdirentries system
call writes the position of the block read into the location pointed to by basep. It is
not safe to set the current position pointer to any value other than a value previously
returned by lseek or a value previously returned in the location pointed to by basep
or zero.

System Calls 2-69

getdirentries (2)

Return Value
If successful, the number of bytes actually transferred is returned. Otherwise, a -1 is
returned and the global variable errno is set to indicate the error.

Diagnostics
The getdirentries system call fails under the following conditions:

EBADF The fd is not a valid file descriptor open for reading.

ENOTDIR Thefd is not a directory.

EFAULT

BIO

EINTR

EPERM

Either buf or basep points outside the allocated address space.

While reading from or writing to the file system, an I/O error
occurred.

A read from a slow device was interrupted by the delivery of a
signal before any data arrived.

The user does not have read permission in the directory.

NOTE
The getdirentries system call is not the suggested interface for
reading directories. The opendir, readdir, and telldir routines
offer a standard interface. See the directory(3) reference page for
information on these routines.

See Also
c1ose(2), link(2), Iseek(2), open(2), stat(2), directory(3)

2-70 System Calls

Name

Syntax

getdomainname (2yp)

getdomainname, setdomainname - get or set name of current domain

getdomainname(name, namelen)
char *name;
int name/en;

setdomainname(name, namelen)
char *name;
int namelen;

Description

The getdomainname system call returns the domain name of the current
processor, as set by setdomainname .

The setdomainname system call sets the domain of the host machine to be name,
which has a length specified by namelen. This system call is restricted to the
superuser and is normally used only when the system is bootstrapped.

The purpose of domains is to allow merging of two distinct networks that have
common host names. Each network can be distinguished by having a different
domain name. At the current time, only the Yellow Pages service makes use of
domains.

The name argument is the address where the name of the current domain is stored.

The name len argument specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Restrictions
Domain names are limited to 31 characters.

Return Value
If the call succeeds, a value of 0 is returned. If the call fails, a value of -1 is
returned and an error code is placed in the global location, errna.

Diagnostics

[EFAULT]

[EPERM]

The name parameter contains an invalid address.

The caller was not the superuser. This error message only applies
to the setdomainname system call.

System Calls 2-71

getdtablesize (2)

Name

Syntax

getdtablesize - get descriptor table size

Dds = getdtablesizeO
iot Dds;

Description
Each process has a fixed size descriptor table that is guaranteed to have at least 20
slots. The entries in the descriptor table are numbered with small integers starting at
O. The call getdtablesize returns the size of this table.

See Also
c1ose(2), dup(2), open(2)

2-72 System Calls

Name

Syntax

getgid, getegid - get group identity

#include <sys/types.h>
#include <unistd.h>

gid = getgidO
gid_t gid;

egid = getegidO
gid_t egid;

getgid(2)

Description
The getgid system call returns the real group ID of the current process, and the
getegid call returns the effective group ID.

The real group 10 is specified at login time.

The effective group 10 is more transient and determines additional access permission
during execution of a "set-group-10" process. The getgid call is most useful with
processes that are "set-group-10."

Environment
Differs from the System V definition in that the return values are of type int, instead
of type unsigned short.

See Also
getuid(2), setregid(2), setgid(3)

System Calls 2-73

getgroups (2)

Name

Syntax

getgroups - get group access list

#include <sys/types.h>
#include <unistd.h>

int
getgroups(gidsetsize, gidset)
int gidsetsize;
gid_t *gidset;

Description
The getgroups call gets the current group access list of the user process and stores
it in the array gidset. The gidsetsize parameter indicates the number of entries that
can be placed in gidset and is modified on return to indicate the actual number of
groups returned.

Return Value
Upon success, the call returns the actual number of groups returned to array gidset.
No more than NGROUPS, as defined in <sys/param.h>, are returned.

A value of -1 indicates that an error occurred, and the error code is stored in the
global variable, errno.

Environment

POXIX

When your program is compiled in the POSIX environment, the gidset argument
should be defined as follows:

gid_t gidset[];

Additionally, in the POSIX environment, if the gidsetsize argument is zero,
getgroups returns the number of supplemental group IDs associated with the
calling process, without modifying the array pointed to by the gidset argument.

Diagnostics
The getgroups call fails under the following conditions:

[EINVAL]

[EFAULT]

See Also

The gidsetsize argument is smaller than the number of groups in
the group set.

The gidset argument specifies invalid addresses.

setgroups(2), initgroups(3x)

2-74 System Calls

Name

Syntax

gethostid (2)

gethostid, seth os tid - get or set the unique identifier of the current host

hostid = gethostidO
int hostid;

sethostid(hostid)
int hostid;

Description
The sethostid system call establishes a 32-bit identifier for the current processor
that is intended to be unique among all UNIX systems in existence. This is normally
a DARPA Internet address for the local machine. This call is allowed only to the
superuser and is normally performed at boot time.

Return Value
The gethostid system call returns the 32-bit identifier for the current processor.

See Also
hostid(l), gethostname(2)

System Calls 2-75

gethostname (2)

Name

Syntax

gethostname, sethostname - get or set the name of the current host

gethostname(name, namelen)
char *name;
int name len;

sethostname(name, namelen)
char *name;
int namelen;

Description
The gethostname system call returns the standard host name for the current
processor; as previously set by sethostname. The namelen parameter specifies
the size of the name array. The returned name is null-terminated unless insufficient
space is provided.

The sethostname system call sets the name of the host machine to be name,
which has length namelen. This call is restricted to the superuser and is normally
used only when the system is bootstrapped.

Return Value

o If the call succeeds, it returns a value of zero.

-1 If the call fails, a value of -1 is returned and an error code is placed in the
global location, errno.

Restrictions
Host nam~s are limited to 31 characters and may contain only lower case ASCII
characters a to z, numbers 0 to 9, dashes (-), underscores C), and periods (.).

Diagnostics
The gethostname system call fails under the following condition:

[EFAULT] The name parameter points outside the process's allocated address
space.

The sethostname system call fails under the following conditions:

[EPERM]

[EINVALl

See Also

The caller is not the superuser.

The name or name/en parameter is an invalid address.

hostname(l), gethostid(2)

2-76 System Calls

Name

Syntax

getitimer (2)

getitimer, setitimer - get or set value of interval timer

#include <sys/time.h>

#define ITIMER REAL 0
#define ITIMER -VIRTUAL 1
#define ITIMER=PROF 2

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

/* real time intervals * /
/* virtual time intervals * /
/* user and system virtual time */

Description
The system provides each process with three interval timers, defined in <sys/time.h>.
The getitimer call returns the current value for the timer specified in which,
while the seti timer call sets the value of a timer (optionally, returning the
previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

} ;

If it value is nonzero, it indicates the time to the next timer expiration. If it interval
is nonzero, it specifies a value to be used in reloading it value when the timer
expires. Setting it_value to 0 disables a timer. Setting it_interval to 0 causes a timer
to be disabled after its next expiration (assuming it_value is nonzero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution (on MIPS, 3.906 milliseconds; on VAX, 10 milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered
when this timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by interpreters
in statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal is delivered. Because this signal
may interrupt in-progress system calls, programs using this timer must be prepared to
restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. The
timerclear sets a time value to zero, timerisset tests if a time value is nonzero, and
timercmp compares two time values (beware that >= and <= do not work with this
macro).

System Calls 2-77

getitimer (2)

Return Value
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and a more precise error code is placed in the global variable, ermo.

Diagnostics
The possible errors are:

[EFAULT]

[EINVAL]

See Also

The value structure specified a bad address.

A value structure specified a time that was too large to be handled.

gettimeofday(2), sigvec(2), pause(3)

2-78 System Calls

Name

Syntax

getmnt - get information about mounted file systems

#include <sys/types.h>
#include <sys/param.h>
#include <sys/mouot.h>

getmnt(start, buffer, nbytes, mode, path)
int *start;
struct fs data * buffer;
iot nhytes, mode;
char *path;

getmnt(2)

Description
The getrnnt system call retrieves information about mounted file systems.

The mode argument is one of the following: STAT_ONE, NOSTAT_ONE,
STAT_MANY,OrNOSTAT_MANY.

If mode is STAT ONE or NOS TAT ONE, then path is the name of a single file
system for which information is deSired, start and nbytes are ignored, and buffer is
assumed to be large enough to hold one f s _ da t a structure.

If mode is STAT_MANY or NOSTAT_MANY, then path is ignored. The start
argument is the current logical location within the internal system mount table and
must be initially set to o. The start argument is updated to reflect the current logical
location within the system mount table, allowing successive executions of getrnnt
to retrieve information about all the mounted file systems. The nbytes argument
defines the size of buffer, into which the file system information is returned. Buffer
sizes must be a multiple of sizeof (struct fs data) bytes. Largerbuffer
sizes allow information about mUltiple file systems to be returned.

If mode is NOSTAT ONE or NOSTAT MANY, then dynamic fs data information
(the number of free Inodes and the number of free blocks) could-be out of date, but
these calls are guaranteed to return. The file system information in memory is not
updated.

If mode is STAT_ONE or STAT_MANY, then the file system information in memory
is updated. However, if the server of any file system for which information is being
retrieved is down, then these calls will hang until the server responds.

When information about multiple file systems is returned, it is stored within
consecutive buffer locations. The information for each file system is described by the
structure f s data:

struct fs_data {
struct fs_data_req fd_req;
u int fd spare[1131i

}; 1* 2560 bytes *1

1* required data *1
1* spare *1

struct fs_data_req {
u_int flags;
u_int mtsize;
u_int otsize;

1* required part for all file systems *1
1* how mounted *1
1* max transfer size in bytes *1
1* optimal transfer size in bytes *1

System Calls 2-79

getmnt(2)

Return Value

u int
u_int
u int
u int
u_int
u int
u int
u int
int
dev_t
dev_t
char
char

bsize; /* fs block size in bytes for vm code */
fstype; /* see .. /h/fs_types.h */
gtot; /* total number of gnodes */
gfree; /* # of free gnodes */
btot; /* total number of lK blocks */
bfree; /* # of free lK blocks */
bfreen; /* user consumable lK blocks */
pgthresh; /* min size in bytes before paging*/
uid; /* uid that mounted me */
dey; /* major/minor of fs */
pad; /* alignment: dey t is a short*/
devname[MAXPATHLEN + 4]; /* name of dev */
path[MAXPATHLEN + 4]; /* name of mount point */

Upon successful completion, a value indicating the number of fs data structures
stored in buffer is returned. If the file system is not mounted (mode is STAT ONE or
NOSTAT_ONE) or there are no more file systems in the mount table (mode is-
STAT MANY or NOSTAT MANY), 0 is returned. Otherwise, -1 is returned and the
globaCvariable ermo is set to indicate the error.

Diagnostics

[ENOTDIR]

[EINVAL]

A component of the path prefix of path is not a directory.

Invalid argument.

[ENAMETOOLONG]

[ENOENT]

[EACCESS]

[ELOOP]

[EFAULT]

[EIO]

See Also
gfsi(5)

2 ... 80 System Calls

The length of a component of path exceeds 255 characters, or
the length of path exceeds 1023 characters.

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix
of path.

Too many symbolic links were encountered in translating path.

Either buffer or start causes an illegal address to be referenced.

An I/O error occurred while reading from the file system.

Name

Syntax

getpagesize - get system page size

pagesize = getpagesizeO
int pagesize;

getpagesize (2)

Description
The getpagesize system call returns the number of bytes in a page. Page
granularity is the granularity of many of the memory management calls.

The page size is a system page size and may not be the same as the underlying
hardware page size.

See Also
pagesize(1), sbrk(2)

System Calls 2-81

getpeername (2)

Name

Syntax

getpeername - get name of connected peer

#include <sys/types.h>
#include <sys/socket.h>

getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

Description
The getpeername returns the name of the peer connected to socket s. The
name/en parameter should be initialized to indicate the amount of space pointed to by
name. On return, it contains the actual size, in bytes, of the name returned.

Return Value
A zero is returned if the call succeeds, and -1 is returned if it fails.

Restrictions
Names bound to sockets in the UNIX domain are inaccessible; getpeername
returns a zero length name.

Diagnostics
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EFAULT] The name parameter points to memory not in a valid part of the
process address space.

See Also
bind(2), getsockname(2), socket(2)

2-82 System Calls

Name

Syntax

getpgrp - get process group

#include <sys/types.h>
#include <unistd.h>

pgrp = getpgrp(pid)
pid_t pgrp;
pid_t pid;

getpgrp(2)

Description
The system call getprgrp returns the process group of the specified process. If pid
is zero, the call applies to the current process.

Process groups are used for distribution of signals and by terminals to arbitrate
requests for their input. Processes that have the same process group as the terminal
are the foreground and may read, while others block with a signal if they attempt to
read.

This call is used by programs such as csh(l) to create process groups in
implementing job control. The TIOCGPGRP and TIOCSPGRP calls described in
t t y(4) are used to get and set the process group of the control terminal.

Environment
When your program is compiled in the System V or POSIX environment, getpgrp
is called without arguments and the process group of the current process is returned.

Additionally, in POSIX mode, getpgrp returns a value type of pidJ

Diagnostics
The getpgrp call fails under the following condition:

[ESRCH]

See Also

No such process, PID.

getuid(2), setpgrp(2), tty(4)

System Calls 2-83

getpid(2)

Name

Syntax

getpid, getppid - get process identification

#include <sys!types.h>
#include <unistd.h>

pid = getpidO
pid_t pid;

ppid = getppidO
pid_t ppid;

Description
The getpid system call returns the process ID of the current process. Most often it
is used, with the host identifier gethostid, to generate uniquely named temporary
files.

Return Value
The getppid system call returns the process ID of the parent of the current process.

Environment

POSIX
When your program is compiled in POSIX mode, the getpid and getppid
functions return a value of type pid J

See Also
gethostid(2)

2-84 System Calls

Name

Syntax

getpriority, setpriority - get or set program scheduling priority

#include <sys/time.h>
#include <sys/resource.h>

#define PRIO PROCESS
#define PRIO-PGRP
#define PRIO-USER

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

o
1
2

1* process *1
1* process group */
/* user id */

getpriority (2)

Description
The scheduling priority of the process, process group, or user, as indicated by which
and who, is obtained with the getpriority call and set with the setpriority
call. The which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who
is interpreted relative to which (a process identifier for PRIO_PROCESS, process
group identifier for PRIO_PGRP, and a user ID for PRIO_USER). The prio is a
value in the range -20 to 20. The default priority is 0; lower priorities cause more
favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The setpriori ty call sets the
priorities of all of the specified processes to the specified value. Only the superuser
may lower priorities.

Return Value
Since getpriority can legitimately return the value -1, it is necessary to clear the
external variable ermo prior to the call, then check it afterward to determine if a -1 is
an error or a legitimate value. The setpriori ty call returns 0 if there is no error
or -1 if there is.

Diagnostics
The getpriori ty and setpriori ty system calls fail under the following
conditions:

[ESRCH]

[EINVAL]

No processes were located using the which and who values
specified.

The which was not one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER.

In addition to the errors indicated above, setpriority can fail under the following
conditions:

[EPERM] A process was located, but neither its effective nor real user ID
matched the effective user ID of the caller.

System Calls 2-85

getpriority (2)

[EACCES]

See Also

A user other than the superuser attempted to change a process
priority to a negative value.

nice(1), fork(2), renice(8)

2-86 System Calls

Name

Syntax

getrlimit, setrlimit - control maximum system resource consumption

#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
int resource;
struct rlimit *rlp;

setrlimit(resource, rip)
int resource;
struct rlimit *rlp;

getrlimit (2)

Description
Limits on the consumption of system resources by the current process and each
process it creates can be obtained with the get r limi t call and set with the
set r 1 imi t call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used
by each process.

RLIMIT _FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT _DATA the maximum size, in bytes, of the data segment for a process.
This limit defines how far a program can extend its break with
the sbrk system call.

RLIMIT _STACK the maximum size, in bytes, of the stack segment for a process.
This limit defines how far a program's stack segment can be
extended, either automatically by the system or explicitly by a
user, with the sbrk system call.

RLIMIT_CORE the largest size, in bytes, of a core file that may be created.

RLIMIT_RSS the maximum size, in bytes, to which a process's resident set
size may grow when there is a shortage of free physical
memory. Exceeding this limit when free physical memory is in
short supply results in an unfavorable scheduling priority being
assigned to the process.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is
exceeded, a process may receive a signal (for example, if the cpu time is exceeded),
but it will be allowed to continue execution until it reaches the hard limit (or
modifies its resource limit). The system uses just the soft limit field of the resources
RLIMIT_CORE and RLIMIT_RSS. The rlimit structure is used to specify the hard
and soft limits on a resource, as shown:

struct rlimit {
int rlim_cur;

} ;

/* current (soft) limit */
/* hard limit */

System Calls 2-87

getrlimit (2)

Only the superuser may raise the maximum limits. Other users may alter rlim cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max. -

An "infinite" value for a limit is defined as RLIM_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call
must be executed directly by the shell if it is to affect all future processes created by
the shell; limit is thus a built-in command to csh.

The system refuses to extend the data or stack space when the limits would be
exceeded in the normal way: a break call fails if the data space limit is reached, or
the process is killed when the stack limit is reached. Because the stack cannot be
extended, there is no way to send a signal.

A file I/O operation that creates too large a file causes the SIGXFSZ signal to be
generated. This condition normally terminates the process, but may be caught. When
the soft cpu time limit is exceeded, a signal SIGXCPU is sent to the process.

Return Value
A 0 return value indicates that the call succeeded, changing or returning the resource
limit. A return value of -1 indicates that an error occurred, and an error code is
stored in the global location errno.

Environment

System Five
When your program is compiled in the System V environment, the SIGXFSZ signal
is not generated.

Diagnostics
The get r 1 imi t call fails under the following conditions:

[EFAULT] The address specified for rip is invalid.

[EPERM]

[EINVAL]

See Also
csh(l), quota(2)

2-88 System Calls

The limit specified to setrlimi t would have raised the
maximum limit value, and the caller is not the superuser.

Resource is greater than or equal to RLIM_NLIMITS.

Name

Syntax

getrusage (2)

getrusage - get infonnation about resource utilization

#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE SELF 0
#define RUSAGE-CHILDREN -1

getrusage(who, rusage)
int who;
struct rusage *rusage;

1* calling process */
1* terminated child processes *1

Description
The getrusage system call returns infonnation describing the resources utilized by
the current process or all its tenninated child processes. The who parameter is one of
RUSAGE_SELF and RUSAGE_CHILDREN. If rusage is nonzero, the buffer it
points to will be filled in with the following structure:

struct rusage
struct timeval ru utime; /* user time used */ -
struct timeval ru - stime; /* system time used */
int ru_maxrss;
int ru - ixrss; /* integral shared text size */
int ru ismrss /* integral shared memory size */ -
int ru - idrss; /* integral unshared data size */
int ru isrss; /* integral un shared stack size */
int ru_minflt; /* page reclaims */
int ru_majflt; /* page faults */
int ru_nswap; /* swaps */
int ru - inblock; /* block input operations */
int ru - oublock; /* block output operations */
int ru_msgsnd; /* messages sent */
int ru_msgrcv; /* messages received */
int ru_nsignals; /* signals received */
int ru nvcsw; /* voluntary context switches */ -
int ru - nivcsw; /* involuntary context switches */

} ;

The fields are interpreted as follows:

ru utime The total amount of time spent executing in user mode.

ru stime The total amount of time spent in the system executing on behalf of the
processes.

ru maxrss
- The maximum resident set size utilized (in bytes).

ru ixrss An "integral" value indicating the amount of text memory used that was
also shared among other processes. This value is expressed in units of
kilobytes * seconds-of-execution and is calculated by summing the number
of shared memory pages in use each time the internal system clock ticks
and then averaging over 1-second intervals.

ru_ismrss An integral value of the amount of shared memory residing in the data

System Calls 2-89

getrusage (2)

segment of a process (expressed in units of kilobytes * seconds-of
execution).

ru idrss An integral value of the amount of un shared memory residing in the data
segment of a process (expressed in units of kilobytes * seconds-of­
execution).

ru isrss An integral value of the amount of un shared memory residing in the stack
segment of a process (expressed in units of kilobytes * seconds-of­
execution).

ru minfit The number of page faults serviced without any I/O activity; here, I/O
activity is avoided by "reclaiming" a page frame from the list of pages
awaiting reallocation.

ru majfit The number of page faults serviced that required I/O activity.

ru _ nswap The number of times a process was "swapped" out of main memory.

ru inblock
- The number of times the file system had to perform input.

ru oublock
The number of times the file system had to perform output.

ru_msgsnd
The number of ipc messages sent.

ru_msgrcv
The number of ipc messages received.

ru _ nsignals
The number of signals delivered.

ru nvcsw The number of times a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed, usually to
await availability of a resource.

ru nivcsw
The number of times a context switch resulted due to a higher priority
process becoming runnable or because the current process exceeded its
time slice.

The numbers ru inblock and ru oublock account only for real I/O. Data supplied by
the cacheing mechanism is charged only to the first process to read or write the data.

Restrictions
There is no way to obtain information about a child process that has not yet
terminated.

Diagnostics
The getrusage call fails under the following conditions:

[EINV AL] The who parameter is not a valid value on RUSAGE_SELF or
RUSAGE_CHILDREN.

[EFAULT]

2-90 System Calls

The address specified by the rusage parameter is not in a valid part
of the process address space.

getrusage (2)

See Also
gettimeofday(2), wait(2)

System Calls 2-91

getsockname (2)

Name

Syntax

getsockname - get socket name

#include <sys/typos.h>
#include <sys/socket.h>

getsockname(s, name, namelen)
int S;
struct sockaddr *name;
int *namelen;

Description
The getsockname system call returns the current name for the specified socket
descriptor s. The name len parameter should be initialized to indicate the amount of
space pointed to by name. On return it contains the actual size, in bytes, of the name
returned.

Return Value
A zero is returned if the call succeeds, -1 if it fails.

Restrictions
Names bound to sockets in the UNIX domain are inaccessible; getsockname
returns a zero-length name.

Diagnostics
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the
operation.

[EF A UL T] The name parameter points to memory not in a valid part of the
process address space.

See Also
bind(2), socket(2)

2-92 System Calls

Name

Syntax

getsockopt, setsockopt - get or set options on sockets

#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

getsockopt (2)

Description
The getsockopt and setsockopt system calls manipulate options associated
with a socket. Options can exist at multiple protocol levels; they are always present
at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level, the
protocol number of the appropriate protocol controlling the option must be supplied.
For example, to indicate an option is to be interpreted by the TCP protocol, level
should be set to the protocol number of TCP. For further information, see
getprotoent(3n).

The parameters optval and optlen are used to access option values for setsockopt.
For getsockopt, they identify a buffer in which the values for the requested
options are to be returned. For getsockopt, optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval and modified on return
to indicate the actual size of the value returned. If no option value is to be supplied
or returned, optval can be supplied as O.

The optname parameter and any specified options are passed un interpreted to the
appropriate protocol module for interpretation. The include file <sys/socket.h>
contains definitions for socket level options. For further information, see
socket(2). Options at other protocol levels vary in format and name. Consult the
arp(4p), ip(4p), tcp(4p) or udp(4p) reference pages for details.

Return Value
A zero is returned if the call succeeds, and -1 is returned if it fails.

Diagnostics
The getsockopt call fails under the following conditions:

[EBADF] The argument s is not a valid descriptor.

System Calls 2-93

getsockopt (2)

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT]
The option is unknown.

[EF A UL T] The address pointed to by optval is not in a valid part of the
process address space. For get sock opt , this error can also be
returned if optlen is not in a valid part of the process address
space.

See Also
socket(2), getprotoent(3n), Guide to the Data Link Interface

2-94 System Calls

Name

Syntax

getsysinfo - get system information

#include <sys/types.h>
#include <sys/sysinfo.h>

getsysinfo(op, buffer, nbytes, start, arg)
unsigned op;
char * buffer;
unsigned nbytes;
int *start;
char *arg;

getsysinfo (2)

Description
The getsysinfo system call retrieves information from the system.

The op argument specifies the operation to be performed. Values for op are defined in
the <sys/sysinfo.h> header file.

Possible op values are as follows:

GSI BOOTDEV
Return the BOOTDEV string, which is used for the installation.

GSI NETBLK
Return the entire NETBLK structure, which is used for the network installation.

GSI PROG ENV
Return the compatibility mode of the process. Possible values are A_BSD,
A_POSIX, A_SYSTEM_FIVE as defined in <sys/exec.h>.

GSI MAX UPROCS
Return-the maximum number of processes allowed per user id.

GSI TTYP
Return the major and minor numbers of the controlling terminal.

GSI_UACSYS (RISC only)
Return current value of flag that determines whether or not to print "unaligned
access fixup" message on a system-wide basis.

GSI_UACPARNT (RISC only)
Return current value of flag in parent process's structure for printing unaligned
access messages.

GSI_UACPROC (RISC only)
Return current value of flag in process's structure for printing of unaligned
access messages.

The nbytes argument defines the size of buffer into which the system information is
returned.

The start argument is the current logical location within the internal system table
referenced by the op, and it must be initially set to O. The start argument is updated
to reflect the current logical location within the system table, allowing successive

System Calls 2-95

getsysinfo (2)

executions of getsysinfo to retrieve information about all the system structures
specified by op.

The start argument is set to 0 when all system information requested by op has been
retrieved.

The optional arg argument may be used by certain op's for additional information.
When arg is not required, it should be set to NULL.

When information about multiple system structures is returned, it is stored within
consecutive buffer locations. The information for each system structure is dependent
upon op.

Return Value

Upon successful completion, a value indicating the number of requested items stored
in buffer is returned. If the information requested by op is not available, getsysinfo
returns a zero. Otherwise, -1 is returned, and the global variable, errno, is set to
indicate the error.

Diagnostics

[EFAULT]

[EINVAL]

[EPERM]

See Also
setsysinfo(2)

2-96 System Calls

Either buffer, start, or arg causes an illegal address to be
referenced.

The op argument is invalid.

Permission is denied for the operation requested

Name

Syntax

gettimeofday, settimeofday - get or set date and time

#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct time zone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

gettimeofday (2)

Description
The gettimeofday system call returns the system's notion of the current
Greenwich time and the current time zone. Time returned is expressed relative in
seconds and microseconds since midnight January 1, 1970.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
long tv_sec;
long tv_usee;

1* seconds since Jan. 1, 1970 *1
1* and microseconds *1

} ;

struct timezone {
int tz minuteswest; 1* of Greenwich *1
int tz=dsttime; /* type of dst c.orrection to apply *1

} ;

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
time applies locally during the appropriate part of the year.

Only the superuser can set the time of day.

Return Value
A 0 return value indicates that the call succeeded. A -1 return value indicates an
error occurred, and in this case an error code is stored into the global variable errno.

Diagnostics
The gettimeofday call fails under the following conditions:

An argument address referenced invalid memory. [EFAULT]

[EPERM] A user other than the superuser attempted to set the time.

See Also
date(1), stime(2), ctime(3)

System Calls 2-97

getuid(2)

Name

Syntax

getuid, geteuid - get user identity

#include <sys/types.h>
#include <unistd.h>

uid = getuidO
uid_t uid;

euid = geteuidO
uid_t euid;

Description
The getuid system call returns the real user ID of the current process, geteuid
the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives
the process additional permissions during execution of "set-user-ID" mode
processes, which use get uid to determine the real-user-id of the process which
invoked them.

Environment

System Five
Differs from the System V definition in that the return values are of type int, instead
of unsigned short.

POSIX
When your program is compiled in POSIX mode, the getuid and geteuid
functions return a value of type uidJ The getgid and getegid functions return a
value of type gid J

See Also
getgid(2), setreuid(2)

2-98 System Calls

Name

Syntax

ioctl - control device

#include <sys/ioctI.h>

ioctl(d, request, argp)
int d, request;
char *argp;

ioctl (2)

Description
The ioctl call perfonns a variety of functions on open descriptors. In particular,
many operating characteristics of character special files (for example, tenninals) can
be controlled with ioctl requests. Certain ioctl requests operate on a number of
device types. These include infonnational ioctl requests, such as devio and
nbuf. The descriptions of various devices in the Reference Pages, Section 4:
Special Files discuss how ioctl applies to them. Also consult <sys/ioctl.h> for
more infonnation.

An ioctl request has encoded in it whether the argument is an "in" parameter or
"out" parameter, and the size of the argument argp in bytes. Macros and defines
used in specifying an ioctl request are located in the file <sys/ioctl.h>.

Return Value
If an error has occurred, a value of -1 is returned, and erma is set to indicate the
error.

Diagnostics
The ioctl call fails under the following conditions:

[EBADF]

[ENOTTY]

[ENOTTY]

[EINVAL]

[EFAULT]

See Also

The d is not a valid descriptor.

The d is not associated with a character special device.

The specified request does not apply to the kind of object which
the descriptor d references.

The request or argp is not valid.

The argp points to memory that is not part of the process' address
space.

execve(2), fcnt1(2), devio(4), intro(4n), mu(4), nbuf(4), tty(4)

System Calls 2-99

kill (2)

Name

Syntax

kill - send signal to a process

#include <sys/types.h>
#include <signal.h>

kill(pid, sig)
pid_t pid;
int sig;

Description
The system call kill sends the signal sig to a process specified by the process
number pid. The sig can be a signal specified in a sigvec call or it can be 0. If
the sig is 0, error checking is performed, but a signal is not sent. This call can be
used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise
this call is restricted to the superuser with the exception of the signal SIGCONT.
The signal SIGCONT can always be sent to a child or grandchild of the current
process.

If the process number is 0, the signal is sent to all other processes in the sender's
process group.

If the process number is negative but not -1, the signal is sent to all processes whose
process-group-id is equal to the absolute value of the process number.

The above two options are variants of killpg.

If the process number is -1, and the user is the superuser, the signal is broadcast for
all processes except to system processes and the process sending the signal.

Processes may send signals to themselves.

Environment
System Five
POSIX

When your program is compiled in the System V or POSIX environment, a signal is
sent if either the real or effective uid of the sending process matches the real or
saved-set-uid (as described in execve(2)) of the receiving process. In addition, any
process can use a pid of -1, and the signal is sent to all processes subject to these
permission checks.

In POSIX mode, the pid argument is of type pid J

Return Value
Upon successful completion, a value of ° is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

2-100 System Calls

kill (2)

Diagnostics
The kill system call fails under the following conditions:

[EINVAL]

[EPERM]

[ESRCH]

See Also

The sig is not a valid signal number.

The sending process is not the superuser, and its effective user ID
does not match the effective user ID of the receiving process.

No process can be found corresponding to that specified by pid.

execve(2), getpgrp(2), getpid(2), killpg(2), sigvec(2), pause(3)

System Calls 2-101

killpg (2)

Name

Syntax

killpg - send signal to process or process group

killpg(pgrp, sig)
int pgrp, sig;

Description
The killpg system call sends the signal sig to the process group pgrp. See
sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective
user ID, otherwise this call is restricted to the superuser with the exception of the
signal SIGCONT. The signal SIGCONT can be sent to any process which is a
descendant of the current process.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and the global variable errno is set to indicate the error.

Diagnostics
The killpg system call fails and a signal is not sent under the following
conditions:

[EINVAL]

[EPERM]

[ESRCH]

See Also

The sig is not a valid signal number.

The sending process is not the superuser and all of the target
processes have an effective user ID that differs from that of the
sending process.

No process can be found corresponding to that specified by pgrp.

getpgrp(2), kill(2), sigvec(2)

2-102 System Calls

Name

Syntax

link - link to a file

Iink(name}, name2)
char *name}, *name2;

Iink(2)

Description
A hard link to name} is created; the link has the name name2. The name} must
exist.

With hard links, both namel and name2 must be in the same file system. Unless the
caller is the superuser, name} must not be a directory. Both the old and the new
link share equal access and rights to the underlying object.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and erma is set to indicate the error.

Diagnostics
The link system call fails and no link is created under the following conditions:

[ENOTDIR] A component of either path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[ENOENT]

[ENOENT]

[EACCES]

[EACCES]

[EEXIST]

[EPERM]

[EXDEV]

[EROFS]

[EFAULT]

[ELOOP]

A component of either pathname exceeded 255 characters, or the
entire length of either pathname exceeded 1023 characters.

A component of either path prefix does not exist.

The file named by name} does not exist.

When name} or name2 point to an empty string and the
environment defined is POSIX or SYSTEM_FIVE.

A component of either path prefix denies search permission.

The requested link requires writing in a directory with a mode that
denies write permission.

The link named by name2 does exist.

The file named by namel is a directory, and the effective user ID
is not that of superuser or the environment defined is PO SIX.

The link named by name2 and the file named by name} are on
different file systems.

The requested link requires writing in a directory on a read-only
file system.

One of the pathnames specified is outside the process's allocated
address space.

Too many symbolic links were encountered in translating one of
the pathnames.

System Calls 2-103

Iink(2)

[ENOSPC] The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

[EDQUOT] The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file
system to make the directory entry.

[EST ALE] The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

[EMLINK] The number of links to the file named by path1 would exceed
{LINK_MAX}.

Environment
In the POSIX environment, linking to directories is not allowed.

See Also
symlink(2), unlink(2)

2-104 System Calls

Name

Syntax

listen - listen for connections on a socket

Iisten(s, backlog)
iot s, backlog;

listen (2)

Description
To accept connections, a socket is first created with a socket call, a backlog for
incoming connections is specified with listen, and then the connections are
accepted with the accept call. The listen call is needed only for sockets of type
SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending
connections may grow to. If a connection request arrives with the queue full, the
client receives an error with an indication of ECONNREFUSED.

Restrictions
The backlog is currently limited to 8.

Return Value
A 0 return value indicates success. A -1 indicates an error.

Diagnostics
The call fails under the following conditions:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen.

See Also
accept(2), connect(2), socket(2)

System Calls 2-105

Iseek(2)

Name

Syntax

lseek, tell - move read or write pointer

#include <sys/types.h>
#include <unistd.h>

pos = Iseek(d, offset. whence)
ofCt pos;
int d, whence;
ofCt offset;

pas = tel1(d)
off_t pas;
int d;

Description
The system call1seek moves the file pointer associated with a file or device open
for reading or writing.

The descriptor d refers to a file or device open for reading or writing. The lseek
system call sets the file pointer of d as follows:

• If whence is SEEK_SET, the pointer is set to offset bytes.

• If whence is SEEK_CUR the pointer is set to its current location plus offset.

• If whence is SEEK_END, the pointer is set to the size of the file plus offset.

Seeking beyond the end of a file and then writing to the file creates a gap or hole that
does not occupy physical space and reads as zeros.

The tell system call returns the offset of the current byte relative to the beginning
of the file associated with the file descriptor.

Environment

System Five

If you compile a program in the System Five environment, an invalid whence
argument causes SIGSYS to be sent. This complies with the behavior described in
the System V Interface Definition (SVID), Issue 1.

Return Value
Upon successful completion, a long integer (the current file pointer value) is returned.
This pointer is measured in bytes from the beginning of the file, where the first byte
is byte O. (Note that some devices are incapable of seeking. The value of the pointer
associated with such a device is undefined.) If a value of -1 is returned, errno is set
to indicate the error.

2-106 System Calls

Iseek(2)

Diagnostics
The lseek system call fails and the file pointer remains unchanged under the
following conditions:

[EBADF]

[EINVAL]

[ESPIPE]

See Also
dup(2), open(2)

The fildes is not an open file descriptor.

The whence is not a proper value.

The fildes is associated with a pipe or a socket.

System Calls 2-107

mkdir(2)

Name

Syntax

mkdir - make a directory file

#include <sys/types.h>
#include <sys/stat.h>

mkdir(path, mode)
char *path;
mode_t mode;

Description
The mkdi r system call creates a new directory file with name path. The mode of
the new file is initialized from mode. The protection part of the mode is modified by
the process's mode mask. For further information, see umask(2).

The directory's owner ID is set to the process's effective user ID. The directory's
group ID is set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask:
all bits set in the process's file mode creation mask are cleared. For further
information, see umask(2.)

Return Value
A 0 return value indicates success. A -1 return value indicates an error, and an error
code is stored in errno.

Diagnostics
The mkdir system call fails and a directory is not created if the following occurs:

[EISDIR] The named file is a directory, and the arguments specify it is to be
opened for writing.

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

2-108 System Calls

A component of a pathname exceeded 255 characters, or an entire
pathname excei;lded 1023 characters.

A component of the path prefix does not exist or the path argument
points to an empty string and the environment defined is POSIX or
SYSTEM_FIVE.

Search permission is denied for a component of the path prefix, or
write permission is denied on the parent directory to be created.

The named file resides on a read-only file system.

The named file exists.

The path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

mkdir(2)

[EIO] An I/O error occurred while reading from or writing to the file system.

[EIO] An I/O error occurred while making the directory entry or allocating
the inode.

[ENOSPC] The directory in which the entry for the new directory is being placed
cannot be extended, because there is no space left on the file system
containing the directory.

[ENOSPC] The new directory cannot be created, because there is no space left on
the file system that will contain the directory.

[ENOS PC] There are no free inodes on the file system on which the directory is
being created.

[EDQUOT] The directory in which the entry for the new directory is being placed
cannot be extended, because the user's quota of disk blocks on the file
system containing the directory has been exhausted.

[EDQUOT] The new directory cannot be created, because the user's quota of disk
blocks on the file system that will contain the directory has been
exhausted.

[EDQUOT] The user's quota of inodes on the file system on which the directory is
being created has been exhausted.

[ESTALE] The file handle given in the argument is invalid. The file referred to
by that file handle no longer exists or has been revoked.

[ETIMEDOUT]
A "connect" request or remote file operation failed because the
connected party did not properly respond after a period of time that is
dependent on the communications protocol.

[EMLINK] The link count of the parent directory would exceed {LINK_MAX}.

See Also
chmod(2), stat(2), umask(2)

System Calls 2-109

mknod(2)

Name

Syntax

mknod - make a directory or a special file

#include <sys/types.h>
#include <sys/stat.h>

int mknod(path, mode, dev)
char *path;
mode_t mode;
int dev;

Description
The mknod system call creates a new file whose name is path. The mode of the new
file (including special file bits) is initialized from mode, where the value of mode is
interpreted as follows:

S_IFMT -0170000 File type; one of the following:
S_IFIFO-OOlOOOO FIFO special
S_IFCHR-0020000 Character special
S_IFDIR-0040000 Directory
S_IFBLK-0060000 Block special
S_IFREG-OlOOOOO

or 0000000 Ordinary file

S_IRWXU-0007000 Execution mode; made from the following:
S_ISUID-0004000 Set user ID on execution
S_ISGID-0002000 Set group ID on execution
S_ISVTX-000I000 Save text image after execution

00777 Access permissions; made from the following:
S_IREAD-0000400 Read by owner
S_IWRITE-0000200 Write by owner
S_IEXEC-OOOOlOO Execute (search on directory) by owner
s_IRWXG-0000070 Read, write, execute (search) by group
S_fRWXD-0000007 Read, write, execute (search) by others

The file's owner ID is set to the process's effective user ID. The file's group ID is
set to the process's effective group ID.

Values of mode other than those in the preceeding list are undefined and should not
be used. The low-order nine bits of mode are modified by the process's file mode
creation mask: all bits set in the process's file mode creation mask are cleared. For
further infonnation, see umask(2). If mode indicates a block or character special
file, dev is a configuration dependent specification of a character or block I/O device.
If mode does not indicate a block special or character special device, dev is ignored.

For file types other than FIFO special, only the superuser can invoke the mknod
system call.

2-110 System Calls

mknod(2)

Return Value
The mknod system call returns a value of 0 upon successful completion. Otherwise,
mknod returns a value of -1, and sets erma to indicate the error.

Diagnostics
The mknod system call fails and the file mode is unchanged under the following
conditions:

[EPERM]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

The process's effective user ID is not superuser.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[EACCES]

[EIO]

[ENOSPC]

[ENOSPC]

[EDQUOT]

[EDQUOT]

[ESTALE]

[ETIMEDOUT]

See Also

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

Search permission is denied for a component of the path prefix.

An I/O error occurred while making the directory entry or
allocating the inode.

The directory in which the entry for the new node is being placed
cannot be extended, because there is no space left on the file
system.

There are no free inodes on the file system on which the node is
being created.

The directory in which the entry for the new node is being placed
cannot be extended because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

The user's quota of inodes on the file system on which the node is
being created has been exhausted.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

mkdir(1), chmod(2), execve(2), stat(2), umask(2), fs(5)

System Calls 2-111

mount(2)

Name

Syntax

mount, umount - mount or unmount a file system

#include <sys/types.h>
#include <sys/fs _ types.h>

mount(special, name, rwflag, type, options)
char *specia/, *name;
int rwflag, type;
char *options;

umount(dev)
dev_t dev;

Description
The mount system call announces to the system that a file system has been mounted
on special file, special. References to file name refer to the root file on the newly
mounted file system.

The special argument is a pointer to a null-terminated string containing the pathname
of the file system being mounted.

The name argument is a pointer to a null-terminated string containing the pathname
of the root file on the newly mounted file system. The name must already exist and
must be a directory. Its old contents are inaccessible while the file system is
mounted.

The rwflag argument is used to determine whether the file system can be written on;
if it is 0, the file system is writable, if nonzero, the file system is write-protected.
Physically write-protected disks and magnetic tape file systems must be mounted
read-only. The mount call also detects devices that are offline at mount time and
returns the appropriate error.

The type argument identifies the file system type that is being mounted. The file
system types are defined in the <fs_types.h> file.

The options argument specifies certain parameters that can be used to define how the
file system is to be mounted.

The dev argument identifies the device that contains the file system that is to be
unmounted.

Environment
Programs compiled in the System V environment cause mount and umount to set
ermo to ENOTDIR, instead of EPERM (illegal char in directory name) or EROFS
(directory on read only filesystem). If the process is not the superuser, ermo is set to
EPERM, instead of ENODEV, and if the file does not exist, ermo is set to ENOENT,
instead of ENODEV.

Also in the System V environment, only the low-order bit of rwflag is checked to
determine write permission.

2-112 System Calls

mount(2)

Return Value
The mount system call returns 0 upon successful completion of a mount operation;
it returns -1 if the mount operation fails.

The umount system call announces to the system that the device dev no longer
contains a file system. The associated directory reverts to its ordinary interpretation.

The umount system call returns 0 if the dismount operation succeeds; -1 if it fails.

Diagnostics
The mount call fails under the following conditions:

[EPERM]

[ENODEV]

[ENOTBLK]

[ENXIO]

[EINVAL]

[EINVAL]

[EINVAL]

[ENOTDIR]

[EBUSY]

The caller is not the superuser.

A component of special does not exist or the device is offline.

The special is not a block device.

The major device number of special is out of range (indicating that
no device driver exists for the associated hardware).

The file system type is out of range.

The super block for the file system had a bad magic number or an
out-or-range block size.

The file system has not been unmounted cleanly, and the force
option has not been set.

A component of name is not a directory, or a path prefix of special
is already mounted.

Another process currently holds a reference to name, or special is
already mounted.

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EMFILE]

[ENOMEM]

[EIO]

[EFAULT]

[EROFS]

A component of either pathname exceeded 255 characters, or the
entire length of either pathname exceeded 1023 characters.

Too many symbolic links were encountered in translating either
pathname.

A component of name does not exist.

No space remains in the mount table.

Not enough memory was available to read the cylinder group
information for the file system.

An I/O error occurred while reading the super block or cylinder
group information.

The special or name points outside the process's allocated address
space space.

The special is a write-locked device and the user did not set the
rwfiag.

The umount command fails under the following conditions:

[EPERM] The caller is not the superuser.

System Calls 2-113

mount(2)

[EINVAL]

[EBUSY]

[EIO]

[EREMOTE]

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

An I/O error occurred while writing the super block or other
cached file system information.

An attempt has been made to mount an NFS remote file system
that is not local to the specified server. This cannot occur except
in response to a failed mount(2).

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
mount(2nfs), mount(8), umount(8)

2-114 System Calls

Name

Syntax

mount, umount - mount or remove an NFS file system

#include <sys/types.h>
#include <sys/fs_types.h>

mount(special, name, rwjlag, type, options)
char *special, *name;
int rwjlag, type;
char *options;

unmount(dev)
dev_t dev;

mount(2nfs)

Description
The mount system call announces to the system that a remote NFS file system has
been mounted on directory name. References to file name refer to the root file on the
newly mounted file system.

The special argument is a pointer to a null-terminated string containing the pathname
of the file system being mounted. It is of the form:

host:pathname

The name argument is a pointer to a null-terminated string containing the pathname
of the root file on the newly mounted file system. The name must already exist and
must be a directory. Its old contents are inaccessible while the file system is
mounted.

The rwjlag argument is used to determine whether the file system can be written to;
if it is 0, the file system is writable, if nonzero, the file system is write-protected.

The type argument identifies the file system type that is being mounted. The
DEFINE statement for the nfs type is:

#define GT_NFS Ox04

The nfs file system type is defined in the <fs_types.h> file.

The options argument specifies certain parameters that can be used to define how the
file system is to be mounted. The mount (8nf s) 0 description lists the available
NFS options.

The following structure is used by the nfs mount user-level routine as the fifth
argument when making a mount system call.

struct nfs _gfs_mount {

struct sockaddr in addr; /* File server address /* -
fhandle t fh; /* File handle to be mounted /*
int flags; /* Flags handler /*
int wsize; /* Write size in bytes /*
int rsize; /* Read size in bytes /*
int timeo; /* Initial timeout in.l secs. /*
int retrans; /* Times to retry send /*
char *hostname; /* Server's host name /*
char *optstr; /* Options string /*

System Calls 2-115

mount (2nfs)

int gfs_flags;
int pg_thresh;

/* GFS flags /*
/* Page threshold for exec /*

} ;

Return Value
The moun t system call returns a value of 0 upon successful completion of a
operation, -1 if the operation fails.

The umount system call announces to the system that the remote file system
mounted on directory name is no longer available. The directory name reverts to its
ordinary interpretation.

The umount system call returns 0 if the dismount operation succeeds, -1 if it fails.

Diagnostics
The mount call fails under the following conditions:

[EPERM]

[ENODEV]

[EINVAL]

[ENOTDIR]

[EBUSY]

The caller is not the superuser and is not the owner of the mount
point.

A component of special does not exist.

The pathname contains a character with the high-order bit set.

A component of name is not a directory.

Another process currently holds a reference to name.

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EMFILE]

[EFAULT]

[ESTALE]

A component of the pathname exceeded 255 characters, or the
entire length of the pathname exceeded 1023 characters.

Too many symbolic links were encountered in translating the
pathname.

A component of name does not exist.

No space remains in the mount table.

The special or name points outside the process's allocated address
space space.

The /handle given in the argument was invalid. The file referred
to by that file handle no longer exists or has been revoked.

The umount call fails under the following conditions:

[EPERM]

[EINVAL]

[EBUSY]

[EIO]

2-116 System Calls

The caller is not the superuser and is not the owner of the mount
point.

The requested mounted-on directory is not in the mount table.

A process is holding a reference to a file located on the file system.

An I/O error occurred while writing cached file system
information.

mount(2nfs)

See Also
mount(2), gfsi(5), mount(8nfs)

System Calls 2-117

mprotect (2)

Name

Syntax

mprotect - memory protection control

#include <sys/mman.h>
#include <sys/types.h>

int mprotect (addr, len, prot)
caddr t addr;
int len~ prot;

Description
The rnprotect system call changes the protection of portions of an application
program's data memory. Protection is performed on page cluster boundaries. The
default protection for data memory on process invocation is user READ/WRITE.
The addr argument is the beginning address of the data block and must fall on a page
cluster boundary.

The len argument is the length of the data block, in bytes. The length of the block is
rounded up to a cluster boundary, and the size of the block to be protected is
returned.

The prot argument is the requested protection for the block of memory. Protection
values affect only the user process. Protection values are defined in <mman.h> as:

1* protections are
#define PROT READ
#define PROT=WRITE
#define PROT_EXEC

chosen from these bits, ORed together *1
Oxl 1* pages can be read *1
Ox2 1* pages can be written *1
Ox4 1* pages can be executed *1

Setting the prot argument to zero (0) indicates that the process cannot reference the
memory block, without causing a fault.

A protected page faults if the protection is violated, and a SIGBUS signal is issued.
If the process has a handler defined for the SIGBUS signal, the code parameter,
described in sigvec(2) and signa1(3), is used to pass in the virtual address that
faulted.

Restrictions
The page cluster size may change in future versions of UL TRIX. As a result,
getpagesize should be used to determine the correct len argument, and sbrk or
rna 11 a c should be used to determine the correct addr argument.

If the user handles a SIGBUS signal, the signal handler must either abort the process
or correct the condition that caused the protection fault (SIGBUS). If some
corrective action is not taken, an infinite loop results because the faulting instruction
is restarted. If the user permits the default SIGBUS handler to be used, the process
aborts if a referenced page causes a fault.

The VAX architecture makes the following implications; PROT_WRITE implies
(PROT_WRITE I PROT_READ I PROT_EXEC), and PROT_READ implies
(PROT_READ I PROT_EXEC).

2-118 System Calls

mprotect (2)

Only the application can change the mprotect call's private data space. This
means that attempts to change text, shared memory, or stack space causes a EACCES
failure.

Return Value
Upon successful completion, the size of the protected memory block, in bytes, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Diagnostics
The mprotect call fails under the following conditions:

[EALIGN]

[EINVAL]

[EACCES]

See Also

The addr argument is not on a cluster boundary.

The prot argument is not a valid protection mask.

The memory block is not fully contained within private data space.

getpagesize(2), sbrk(2), sigvec(2), malloc(3), signal(3)

System Calls 2-119

msgctl (2)

Name

Syntax

msgcd - message control operations

#include <sysltypes.h>
#include <syslipc.h>
#include <syslmsg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid _ ds, buf;

Description
The msgctl system call provides message control operations as specified by cmd.
The following cmds are available:

Place the current value of each member of the data structure
associated with msqid into the structure pointed to by buf The
contents of this structure are defined in intro(2).

Set the value of the following members of the data structure
associated with msqid to the corresponding value found in the
structure pointed to by but:

msgyerm.uid
msgyerm.gid
msgyerm.mode/* only low 9 bits */
msg_qbytes

This cmd can be executed only by a process that has an effective user ID that is equal
to superuser or the value of either msgyerm.uid or msgyerm.cuid in the data
structure associated with msqid. Only the superuser can raise the value of
msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure
associated with it. This command can only be executed by a
process that has an effective user ID equal to either that of the
superuser or to the value of msgyerm.uid in the data structure
associated with msquid.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Diagnostics
The msgctl system call fails under the following conditions:

[EINVAL]

[EINVAL]

[EACCES]

2-120 System Calls

The msqid is not a valid message queue identifier.

The cmd is not a valid command.

The cmd is equal to IPC_ST A T and read operation pennission is

[EPERM]

[EPERM]

[EFAULT]

See Also

msgctl (2)

denied to the calling process. For further infonnation, see
intro(2).

The cmd is equal to IPC_RMID or IPC_SET and the effective user
ID of the calling process is not equal to that of the superuser or to
the value of msgyerm.uid in the data structure associated with
msqid.

The cmd is equal to IPC_SET, an attempt is being made to
increase to the value of msg qbytes, and the effective user ID of
the calling process is not equal to that of superuser.

The but points to an illegal address.

msgget(2), msgop(2)

System Calls 2-121

msgget(2)

Name

Syntax

msgget - get message queue

#include <sys!types.h>
#include <sys!ipc.h>
#include <sys!msg.h>

int msgget (key, msgftg)
keLt key;
int msgftg;

Description
The msgget system call returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure are
created for key if one of the following is true:

• The key is equal to IPC_PRIV A TE

• The key does not already have a message queue identifier associated with it,
and (msgfig & IPC_CREAT) is true. For further information, see intro(2).

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

• The msgyerm.cuid, msgyerm.uid, msgyerm.cgid and msgyerm.gid
members are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

• The low-order nine bits of msgyerm.mode are set equal to the low-order nine
bits of msgfig.

• The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and mgsJtime members
are set equal to O.

• The msgJtime is set equal to the current time.

• The msg_ qbytes is set equal to the system limit.

Return Value
Upon successful completion, a non-negative integer, which is a message queue
identifier, is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

Diagnostics
The msgget system call fails under the following conditions:

[EACCES]

[ENOENT]

2-122 System Calls

A message queue identifier exists for key but operations
permission, as specified by the low-order nine bits of msgfig,
would not be granted. For further information, see intro(2).

A message queue identifier does not exist for key and the logicl
operation (msgfig & IPC_CREAT) is false.

[ENOSPC]

[EEXIST]

See Also

msgget(2)

A message queue identifier is to be created, but the system­
imposed limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

A message queue identifier exists for key but the logical operation
«msgflg & IPC_CREAT) & (msgflg & IPC_EXCL)) is true.

msgctl(2), msgop(2), ftok(3)

System Calls 2-123

msgop(2)

Name

Syntax

msgsnd, msgrcv - message operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
void *msgp;
size_t msgsz;
int msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
void *msgp;
size_t msgsz;
long msgtyp;
int msgflg;

Description
There are two message operations system calls, msgsnd and msgrcv .

msgsnd
The msgsnd system call is used to send a message to the queue associated with the
message queue identifier specified by msqid. The msgp parameter points to a
structure containing the message. This structure is composed of the following
members:

long mtype; /* message type */
char mtext[]; /* message text */

The mtype parameter is a positive integer that can be used by the receiving process
for message selection. For more information, see the msgrcv section of this
reference page. The mtext parameter is any text of length msgsz bytes. The msgsz
parameter can range from 0 to a system-imposed maximum.

The msgflg parameter specifies the action to be taken if the number of bytes already
on the queue is equal to msg_qbytes. (For further information, see intro(2).) The
parameter also specifies what happens when the total number of messages on all
queues system-wide is equal to the system-imposed limit.

If either of these conditions is true, and if (msgflg & IPC_NOW AIT) is true, the
message is not sent and the calling process returns immediately. However, if either
of the conditions is true and (msgflg & IPC_NOW AIT) is false, the calling process
suspends execution until one of the following occurs:

• The condition responsible for the suspension no longer exists, in which case
the message is sent.

• The msqid parameter is removed from the system. For further information, see
msgctl(2). When this occurs, errno is set equal to EIDRM, and a value of
-1 is returned.

2-124 System Calls

msgop(2)

• The calling process receives a signal that is to be caught. In this case, the
message is not sent and the calling process resumes execution in the manner
prescribed in signal(3).

The msgsnd system call fails and no message is sent under the following conditions:

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

The msqid parameter is not a valid message queue identifier.

Operation permission is denied to the calling process. For more
information, see errno(2).

The mtype parameter is less than 1.

The message cannot be sent for one of the reasons cited above and
(msgfig & IPC_NOW AIT) is true.

The msgsz parameter is less than zero or greater than the system­
imposed limit.

The msgp parameter points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (for more information, see errno(2)):

• The msg_qnum is incremented by 1.

• The msg_lspid is set equal to the process ID of the calling process.

• The msg_stime is set equal to the current time.

msgrcv
The msgrcv system call reads a message from the queue associated with the
message queue identifier specified by msqid and places it in the structure pointed to
by msgp. This structure is composed of the following members:

long
char

mtype;
mtext[];

/* message type */
/* message text */

The mtype parameter is the received message's type, as specified by the sending
process. The mtext parameter is the text of the message. The msgsz parameter
specifies the size, in bytes, of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfig & MSG_NOERROR) is true. The
truncated part of the message is lost and no indication of the truncation is given to
the calling process.

The msgtyp parameter specifies the type of message requested, as follows:

• If msgtyp is equal to 0, the first message on the queue is received.

• If msgtyp is greater than 0, the first message of type msgtyp is received.

• If msgtyp is less than 0, the first message of the lowest type that is less than or
equal to the absolute value of msgtyp is received.

The msgfig parameter specifies the action to be taken if a message of the desired type
is not on the queue. These specified actions are as follows:

• If (msgfig & IPC_NOW AIT) is true, the calling process returns immediately
with a value of -1 and ermo set to ENOMSG.

• If (msgfig & IPC_NOW AIT) is false, the calling process suspends execution
until one of the following occurs:

System Calls 2-125

msgop(2)

A message of the desired type is placed on the queue.

The msqid parameter is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case, a
message is not received and the calling process resumes execution in the
manner prescribed in signal(3).

The msgrcv system call fails and no message is received under the following
conditions:

[EINVAL]

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

[EFAULT]

The msqid parameter is not a valid message queue identifier.

Operation permission is denied to the calling process.

The msgsz parameter is less than O.

The mtext parameter is greater than msgsz and (msgflg &
MSG_NOERROR) is false.

The queue does not contain a message of the desired type and
(msgtyp & IPC_NOW AIT) is true.

The msgp parameter points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid:

• The msg_ qnum is decremented by 1.

• The msg_lrpid is set equal to the process ID of the calling process.

• The msgJtime is set equal to the current time.

Return Values
If the msgsnd or msgrcv system calls return due to the receipt of a signal, a value
of -1 is returned to the calling process, and ermo is set to EINTR. If they return due
to removal of msqid from the system, a value of -1 is returned, and ermo is set to
EIDRM.

Upon successful completion, the return value is as follows:

• The msgsnd system call returns a value of O.

• The msgrcv system call returns a value equal to the number of bytes actually
placed into mtext.

Otherwise, a value of -1 is returned, and ermo is set to indicate the error.

See Also
ermo(2), intro(2), msgctl(2), msgget(2), signal(3)

2-126 System Calls

Name

Syntax

nfs_svc, nfs_biod - invoke NFS daemons

nfs_svc(sock)
int sock;

nfs_biodO

nfs _svc (2nfs)

Description

The nfs svc system call starts an NFS daemon listening on the socket referenced
by the file descriptor sock. The socket must be an AF _INET address fonnat, and a
SOCK_DGRAM socket type (protocol UDP/lP). This system call is used by nfsd.

If the process is killed, the system call returns the diagnostic EINTR.

The nfs biod implements the NFS daemon that handles asynchronous I/O for an
NFS client. This system call is used by biod. Unlike nf s svc, this system call
does not return any diagnostics if the process is killed. -

Diagnostics

[EINTR]

See Also

The NFS daemon, nfs_svc, process was killed.

socket(2), biod(8nfs), nfsd(8nfs)

System Calls 2-127

open(2}

Name
open - open for reading or writing

Syntax
#include <sys/file.h>
#include <Iimits.h> 1* definition of OPEN MAX *1

open(path, flags, mode)
char *path;
int flags, mode;

Description
The open system call opens a specified file and returns a descriptor for that file. The
file pointer used to mark the current position within the file is set to the beginning of
the file.

The file descriptor remains open across execve system calls. The close system
call closes the file descriptor.

A process cannot have more than OPEN_MAX file descriptors open simultaneously.

Arguments

path is the address of a string of ASCII characters representing a path name,
terminated by a null character. The path name identifies the file to be
opened.

mode is only used with the O_CREAT flag. The file is created with the specified
mode, as described in chmod(2) and modified by the process's umask value.
For further information, see umask(2).

flags defines how the file is to be opened. This argument is formed by ORing the
following values:

2-128 System Calls

o RDONLY Open for reading only.

o WRONLY Open for writing only.

o RDWR Open for reading and writing.

o NDELAY Do not block on open when opening a port (named pipe)
with O_RDONLYor O_WRONLY:

If O_NDELA Y is set, an open for read only returns
without delay. An open for write only returns an error
if no process currently has the file open for reading.

If O_NDELAY is clear, an open for read only blocks
until a process opens the file for writing. An open for
write only blocks until a process opens the file for
reading.

o NONBLOCK POSIX definition of O_NDELA Y. See O_NDELA Y for
explanation of functionality.

o APPEND Append on each write.

o CREAT

o TRUNC

O_EXCL

O_BLKINUSE

Create file if it does not exist.

Truncate size to O.

Error if create and file exists.

Block if file is in use.

o BLKANDSET Block if file is in use; then, set in use.

o FSYNC Do file writes synchronously.

open(2)

o NOCTTY In the POSIX environment, if this flag is set and path
identifies a terminal device, the open () function will
not cause the terminal device to become the controlling
terminal for the process.

Opening a file with ° _APPEND set causes each write on the file to be
appended to the end.

If O_TRUNC is specified and the file exists, the file is truncated to zero
length.

If O_EXCL is set with O_CREAT and the file already exists, the open
returns an error. This can be used to implement a simple exclusive access
locking mechanism.

If the O_NDELAY or O_NONBLOCK flag is specified and the open call
would result in the process being blocked for some reason, the open returns
immediately. For example, if the process were waiting for carrier on a dialup
line, an open with the O_NDELA Y or O_NONBLOCK flag would return
immediately. The first time the process attempts to perform I/O on the open
file, it blocks.

If the O_FSYNC flag is specified, each subsequent write (see wri te(2» for
the file is synchronous, instead of the default asynchronous writes. Use this
flag to ensure that the write is complete when the system call returns. With
asynchronous writes, the call returns when data is written to the buffer cache.
There is no guarantee that the data was actually written out to the device.
With synchronous writes, the call returns when the data is written from the
buffer cache to the device.

O_BLKINUSE and O_BLKANDSET provide a test and set operation similar
to a semaphore. O_BLKINUSE causes the open to block if another process
has marked the file as in use. The open blocks in the system at a point
where no references to the file are established.

There are two ways to mark a file as in use:

• Use the ioctl(2) system call with the request argument set to
FIOSINUSE or TIOCSINUSE. For further information, see tty(4).

• Use the O_BLKANDSET flag to open(2)

O_BLKANDSET caused the open to block if another process has marked
the file in use. When the open resumes, the file is marked in use by the
current process.

If O_NDELAY is used with either O_BLKINUSE or O_BLKANDSET, the
open failed if the file is in use. The external variable errno is set to
EWOULDBLOCK in this case.

System Calls 2-129

open(2)

NOTE

The in use flag cannot be inherited by a child process, nor can it be
replicated by the dup system call.

When the in use flag is cleared, all processes that are blocked for that reason resume.
The open continues to block if another process marks the file as in use again.

The in use flag can be cleared in three ways:

• When the file descriptor marked as in use is closed

• When the process that set the in use flag exits

• When an ioctl system call is issued and FIOCINUSE or TIOCCINUSE is
specified in the request argument.

Environment

System Five
When your program is compiled using the System V environment, and O_NDELAY
is specified, subsequent reads and writes are also affected.

Return Values
Upon successful completion, an integer value greater than -1 is returned.

Diagnostics
The open call fails under the following conditions:

[EACCES]

[EACCES]

[EACCES]

[EDQUOT]

[EDQUOT]

[EEXIST]

[EFAULT]

[ENFILE]

[EINVAL]

[EIO]

[EISDIR]

2-130 System Calls

The required permissions for reading, writing, or both are denied
for the named flag.

Search permission is denied for a component of the path prefix.

O_CREAT is specified, the file does not exist, and the directory in
which it is to be created does not permit writing.

O_CREAT is specified, the file does not exist, and the directory in
which the entry for the new file is being placed cannot be
extended, because the user's quota of disk blocks on the file
system containing the directory has been exhausted.

O_CREAT is specified, the file does not exist, and the user's quota
of inodes on the file system on which the file is being created has
been exhausted.

O_CREAT and O_EXCL were specified and the file exists.

The path points outside the process's allocated address space.

The system file table is full.

An attempt was made to open a file with the O_RDONLY and
O_FSYNC flags set.

An I/O error occurred while making the directory entry or
allocating the inode for O_CREAT.

The named file is a directory, and the arguments specify it is to be

open (2)

opened for writing.

[ELOOP] Too many symbolic links were encountered in translating the
pathname.

[EMFILE] {OPEN_MAX} file descriptors are currently open.

[ENAMETOOLONG]
A component of a pathname exceeds 255 characters or an entire
pathname exceeds 1023 characters.

[ENOENT] O_CREAT is not set and the named file does not exist.

[ENOENT]

[ENOENT]

[ENOSPC]

[ENOSPC]

[ENOTDIR]

[ENXIO]

[ENXIO]

[ENXIO]

[EOPNOTSUPP]

[EROFS]

[ESTALE]

[ETIMEDOUT]

[ETXTBSY]

A necessary component of the path name does not exist.

The path argument points to an empty string and the process is
running in the POSIX or SYSTEM_FIVE environment.

O_CREAT is specified, the file does not exist, and the directory in
which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the
directory.

0_ CREA T is specified, the file does not exist, and there are no
free inodes on the file system on which the file is being created.

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the
device associated with this special file does not exist.

The O_NDELAY flag is given, and the file is a communications
device on which there is no carrier present.

O_NONBLOCK is set, the named file is a FIFO, 0_ WRONLY is
set and no process has the file open for reading.

An attempt was made to open a socket that is not set active.

The named file resides on a read-only file system, and the file is to
be modified.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

A connect request or remote file operation failed because the
connected party did not respond after a period of time determined
by the communications protocol.

The file is a pure procedure (shared text) file that is being executed
and the open call requests write access.

[EWOULDBLOCK]

[EINTR]

The open would have blocked if the O_NDELAY was not used.
The probable cause for the block is that the file was marked in use.

A signal was caught during the open () function.

System Calls 2-131

open(2)

See Also
chmod(2), c1ose(2), dup(2), fcnt1(2), lseek(2), read(2), write(2), umask(2), tty(4)

2-132 System Calls

Name

Syntax

pipe - create an interprocess channel

include <limits.h> /*Definition of PIPE_MAX * /
pipe(fildes)
int fildes[2J;

pipe(2)

Arguments

fildes Passing an address as an array of two integers into the pipe system call.

Description
The pipe system call creates an I/O mechanism called a pipe. The file descriptors
returned can be used in read and write operations. Their integer values will be
the two lowest available at the time of the pipe function call. The O_NONBLOCK
and FD_CLOEXEC flags will be clear on both file descriptors.

When the pipe is written using the descriptor fildes[1], up to PIPE_MAX bytes of
data are buffered before the writing process is suspended. A read using the descriptor
fildes[O] picks up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes
(created by subsequent fork calls) pass data through the pipe with read and
wri te calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

For further information on how read and write calls behave with pipes, see the
read(2) and wr i te(2) reference pages.

A signal is generated if a write on a pipe with only one end is attempted.

Restrictions
Should more than 4096 bytes be necessary in any pipe among a loop of processes,
deadlock may occur.

The underlying implementation of pipes is no longer socket based, but rather
implemented through the file system. Any application that needs socket functionality
from pipes should use the socketpair system call.

Return Values
The function value zero is returned if the pipe was created; -1 if an error occurred.

Diagnostics
The pipe call fails if:

[EMFILE]

[ENFILE]

[EFAULT]

Too many descriptors are active.

The system file table is full.

The fildes buffer is in an invalid area of the process's address
space.

System Calls 2-133

pipe(2)

Environment
Differs from the System V definition in that ENFILE is not a possible error
condition.

See Also
sh(1), fork(2), read(2), socketpair(2), write(2)

2-134 System Calls

Name

Syntax

plock - lock or unlock process, text, or data in memory

#include <sys/lock.h>

int plock (op)
int op;

plock(2)

Description
The plock call allows the calling process to lock its text segment (text lock), its
data segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to page outs, and the process is immune to
swap outs. The plock call also unlocks these segments.

The op argument specifies the following:

PRO CLOCK Lock text and data segments into memory (process lock)

TXTLOCK Lock text segment into memory (text lock)

DATLOCK Lock data segment into memory (data lock)

UNLOCK Remove locks

Return Value
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned, and ermo is set to indicate the error.

Diagnostics
The plock call fails under the following conditions:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

Restrictions

The effective user ID of the calling process is not superuser.

The op argument is equal to PROCLOCK, and a process lock, a
text lock, or a data lock already exists on the calling process.

The op argument is equal to TXTLOCK, and a text lock or a
process lock already exists on the calling process.

The op argument is equal to DA TLOCK, and a data lock or a
process lock already exists on the calling process.

The op argument is equal to UNLOCK, and no type of lock exists
on the calling process.

The effective user ID of the calling process must be superuser to use this call.

Both PROCLOCK and TXTLOCK lock the text segment of a process, and a locked
text segment is locked for all sharing processes.

Because the effective user ID of the calling process is superuser, take care not to lock
more virtual pages than can be contained in physical memory. A deadlock can result.

System Calls 2-135

plock(2)

See Also
execve(2), exit(2), fork(2), shmctl(2)

2-136 System Calls

Name

Syntax

profil - execution time profile

profil(buff, bufsiz, offset, scale)
char *buff;
iot bufsiz, offset, scale;

profil (2)

Description
The buff points to an area of core whose length (in bytes) is given by bufsiz. After
this call, the user's program counter (pc) is examined each clock tick (on RISe
machines, 4 milliseconds; on VAX machines, 10 milliseconds); offset is subtracted
from the pc, and the result is multiplied by scale. If the resulting number
corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the
left: OxlOOOO gives a 1-1 mapping of program counter's to words in buff; Ox8000
maps each pair of instruction words together. Ox2 maps all instructions onto the
beginning of buff, producing a non-interrupting core clock.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving
a buJsiz of O. Profiling is turned off when an execve is executed, but remains on in
both child and parent after a fork. Profiling is turned off if an update in buff would
cause a memory fault.

Return Value
A 0, indicating success, is always returned.

See Also
gprof(I), setitimer(2), monitor(3)

System Calls 2-137

SC ptrace (2)

Name

Syntax

ptrace - process trace

#include <signal.h>
#include <sys/ptrace.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

Description
The system call ptrace provides a means by which a process can control the
execution of another process, and examine and change its core image. Its primary
use is for the implementation of breakpoint debugging. There are four arguments
whose interpretation depends on a request argument. Generally, pid is the process ID
of the traced process. A process being traced behaves normally until it encounters
some signal, whether internally generated, like "illegal instruction," or externally
generated, like "interrupt." For more information, see sigvec(2) ..

Upon encountering a signal, the traced process enters a stopped state and its tracing
process is notified by means of wai t. If the traced process stops with a SIGTRAP,
the process might have been stopped for a number of reasons. Two status words
addressable as registers in the traced process's uarea qualify SIGTRAPs:
TRAPCAUSE, which contains the cause of the trap, and TRAPINFO, which contains
extra information concerning the trap.

When the traced process is in the stopped state, its core image can be examined and
modified using ptrace. If desired, another ptrace request can then cause the
traced process either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

o This request is the only one that can be used by a child process. The child
process can declare that it is to be traced by its parent. All other arguments are
ignored. Unexpected results occur if the parent process does not expect to trace
the child process.

1,2 The word in· the traced process's address space at addr is returned. If I and D
space are separated (for example, historically on a PDP-II), request 1 indicates I
space, request 2 indicates D space. The addr must be 4-byte aligned. The
traced process must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is
returned. The addr is a constant defined in ptrace.h. This space contains the
registers and other information about the process; the constants correspond to
fields in the user structure in the system.

4,5 The given data is written at the word in the process's address space
corresponding to addr, which must be 4-byte aligned. The old value at the
address is returned. If I and D space are separated, request 4 indicates I space,
request 5 indicates D space. Attempts to write in pure procedure fail if another
process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few

2-138 System Calls

ptrace (2) RI~

locations can be written in this way: the general registers, the floating point
status and registers, and certain bits of the processor status word. The old value
at the address is returned.

7 The data argument is taken as a signal number and the traced process's
execution continues at location addr as if it had incurred that signal. Normally,
the signal number is 0 to indicate that the signal causing the stop should be
ignored. The signal number might be the value fetched out of the process's
image, which identifies the signal that caused the stop. If addr is (int *)1,
execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal number
from the stop is SIGTRAP. TRAPCAUSE contains CAUSESINGLE. This is
part of the mechanism for implementing breakpoints.

20 This is the same as zero, except it is executed by the tracing process and the pid
field is nonzero. The process with that pid stops and becomes a traced process.
On a signal, the traced process returns control· to the tracing process, rather than
the parent. The tracing process must have the same uid as the traced process.

21,22
Returns MAXREG general or MAXFREG floating registers, respectively. Their
values are copied to the locations starting at the address in the tracing process
specified by the addr argument.

24,25
Same as 20 and 21, but writes the registers instead of reading them.

26 Specifies a watchpoint in the data or stack segment of the traced process. If any
byte address starting at the addr argument and continuing for the number of
bytes specified by the data argument is accessed in an instruction, the traced
process stops execution with a SIGTRAP. TRAPCAUSE contains
CAUSEWATCH, and TRAPINFO contains the address causing the trap. This
ptrace returns a watchpoint identifier (wid). MAXWIDS specifies the maximum
number of watchpoints for each process.

27 The data argument specifies a wid to delete.

28 Turns off the tracing for the traced process with the specified pid.

29 Returns an open file descriptor for the file attached to pid. This request is useful
in accessing the symbol table of a process created with the execve call.

As indicated, these calls (except for request 0 and 20) can be used only when the
subject process has stopped. The wait call is used to determine when a process stops;
in such a case, the "termination" status returned by wait has the value 0177. This
value indicates that the process has stopped, rather than terminated. If multiple
processes are being traced, wa i t can be called multiple times, and it returns the
status for the next stopped or terminated child or traced process.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities
on subsequent exec(2) calls. If a traced process calls execve, it stops before
executing the first instruction of the new image showing signal SIGTRAP. In this
case, TRAPCAUSE contains CAUSEEXEC and TRAPINFO does not contain
anything interesting. If a traced process calls execve again, the same thing occurs.

System Calls 2-139

SC ptrace (2)

If a traced process forks, both parent and child are traced. Breakpoints from the
parent are not copied into the child. At the time of the fork, the child is stopped with
a SIGTRAP. The tracing process can then terminate the trace if desired.
TRAPCAUSE contains CAUSEFORK and TRAPINFO contains the pid of its parent.

Restrictions
On an ULTRIX system, the ptrace system call succeeds only if the user owns the
binary being traced or if the user is root.

The request 0 call should be able to specify signals that are to be treated normally
and not cause a stop. In this way, for example, programs with simulated floating
point, which use "illegal instruction" signals at a very high rate, can be efficiently
debugged.

The error indication, -1, is a legitimate function value; when an error occurs, the
ermo variable is set to explain the condition that caused the error.

It should be possible to stop a process on occurrence of a system call; in this way, a
completely controlled environment could be provided.

Return Value
A 0 value is returned if the call succeeds. If the call fails, a -1 is returned, and the
global variable errno is set to indicate the error.

Diagnostics
The ptrace call fails under the following conditions:

[EIO]

[ESRCH]

[EIO]

[EIO]

[EPERM]

See Also

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

dbx(1), wait(2), sigvec(2)

2-140 System Calls

Name

Syntax

ptrace - process trace

#include <signaJ.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

ptrace(2) VA

Description
The ptrace system call provides a means by which a parent process may control
the execution of a child process, and examine and change its core image. Its primary
use is for the implementation of breakpoint debugging. There are four arguments
whose interpretation depends on a request argument. Generally, pid is the process ID
of the traced process, which must be a child (no more distant descendant) of the
tracing process. A process being traced behaves normally until it encounters some
signal whether internally generated like "illegal instruction" or externally generated
like "interrupt". See sigvec(2) for the list. Then the traced process enters a
stopped state and its parent is notified via wai t(2). When the child is in the stopped
state, its core image can be examined and modified using ptrace. If desired,
another ptrace request can then cause the child either to terminate or to continue,
possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

a This request is the only one used by the child process; it declares that the
process is to be traced by its parent. All the other arguments are ignored.
Peculiar results will ensue if the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D
space are separated (for example, historically on a pdp-II), request 1 indicates I
space, 2 D space. The addr must be even. The child must be stopped. The
input data is ignored.

3 The word of the system's per-process data area corresponding to addr is
returned. The addr must be even and less than 512. This space contains the
registers and other information about the process; its layout corresponds to the
user structure in the system.

4,5 The given data is written at the word in the process's address space
corresponding to addr, which must be even. No useful value is returned. If I
and D space are separated, request 4 indicates I space, 5 D space. Attempts to
write in pure procedure fail if another process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few
locations can be written in this way: the general registers, the floating point
status and registers, and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution
continues at location addr as if it had incurred that signal. Normally the signal
number will be either a to indicate that the signal that caused the stop should be
ignored, or that value fetched out of the process's image indicating which signal
caused the stop. If addr is (int *)1 then execution continues from where it
stopped.

System Calls 2-141

I AX ptrace (2)

8 The traced process tenninates.

9 Execution continues as in request 7; however, as SOon as possible after
execution of at least one instruction, execution stops again. The signal number
from the stop is SIGTRAP. (On the VAX-ll the T-bit is used and just one
instruction is executed.) This is part of the mechanism for implementing
breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject
process has stopped. The wai t call is used to detennine when a process stops; in
such a case the "tennination" status returned by w a i t has the value 0177 to
indicate stoppage rather than genuine tennination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities
on subsequent execve(2) calls. If a traced process calls execve, it will stop
before executing the first instruction of the new image showing signal SIGTRAP.

On a VAX, "word" also means a 32-bit integer, but the "even" restriction does not
apply.

Environment
When your program is compiled using the System V environment, requests 7 and 9
return the value of the data argument on success, ermo is set to ESRCH if the pid
does not exist, EIO if the address is out of bounds.

Return Value
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and
the global variable ermo is set to indicate the error.

Restrictions
In ULTRIX, the ptrace system call will only succeed if the user owns the binary
being traced or if the user is root.

Diagnostics

[EIO]

[ESRCH]

[BIO]

[EIO]

[EPERM]

See Also

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

adb(I), sigvec(2), wait(2)

2-142 System Calls

Name

Syntax

quota - manipulate disk quotas

#include <sysltypes.h>
#include <sys/param.h>
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr;

quota(2)

Description
The quota call manipulates disk quotas for file systems that have had quotas
enabled with setquota. The cmd parameter indicates a command in the following
list that is applied to the user ID uid. The arg parameter is a command specific
argument and addr is the address of an optional, command specific data structure,
which is copied in or out of the system. The interpretation of arg and addr is given
with each command in the list that follows:

Q_SETDLIM
Set disk quota limits and current usage for the user with ID uid. The arg
parameter is a major-minor device indicating a particular file system. The
addr parameter is a pointer to a struct dqblk structure, defined in
<sys/quota.h>. Only the superuser can issue this call.

~GETDLIM
Get disk quota limits and current use for the user with ID uid. The
remaining parameters are identical to the ~SETDLIM command
parameters.

~SETDUSE
Set disk use limits for the user with ID uid. The arg parameter is a
major-minor device indicating a particular file system. The addr is a
pointer to a struct dqusage structure, defined in <sys/quota.h>. Only the
superuser can issue this call.

~SYNC Update the on-disk copy of quota uses. The uid, arg, and addr parameters
are ignored.

~SETUID
Change the calling process's quota limits to those of the user with ID uid.
The arg and addr parameters are ignored. Only the superuser can issue
this call.

~SETWARN
Alter the disk usage warning limits for the user with ID uid. The arg is a
major-minor device indicating a particular file system. The addr
parameter is a pointer to a struct dqwam structure, which is defined in
<sys/quota.h>. Only the superuse can issue this call.

~DOWARN
Warn the user with user ID uid about excessive disk use. This call causes
the system to check its current disk use information and print a message

System Calls 2-143

quota(2)

Return Value

on the tenninal of the caller for each file system on which the user is over
quota. If the arg parameter is specified as NODEV, all file systems that
have disk quotas are checked. Otherwise, arg indicates a specific major­
minor device to be checked. Only the superuser can issue this call.

A successful call returns 0 and, possibly, more infonnation specific to the command
specified in the cmd parameter; when an error occurs, the value -1 is returned and the
global variable ermo is set to indicate the reason.

Diagnostics
A quota call fails when one of the following occurs:

[EINVAL]

[EINVAL]

[ESRCH]

[EPERM]

[ENODEV]

[EFAULT]

[EUSERS]

See Also

The kernel has not been compiled with the QUOTA option.

The cmd parameter is invalid.

No disk quota is found for the indicated user.

Only the superuser can issue the call and the caller is not the
superuser.

The arg parameter is being interpreted as a major-minor device,
and it indicates an unmounted file system.

An invalid addr parameter is supplied; the associated structure
could not be copied in or out of the kernel.

The quota table is full.

setquota(2,) quotacheck(8,) quotaon(8)
"Disk Quotas in a UNIX Environment", ULTRIX Supplementary Documents, Volume
3:System Manager

2 144 System Calls

Name

Syntax

read, ready - read from a file

cc = read(d, buf, nbytes)
int cc, d;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

read (2)

Arguments

d File descriptor.

buf

nbytes

iov

iovcnt

Description

Character pointer where information is stored.

Integer that tells you how many bytes to read.

Pointer to an iovec structure.

The number of iovec structures to be processed.

The system call read attempts to read nbytes of data from the object referenced by
the descriptor d into the buffer pointed to by buf. The readv system call performs
the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iovec following array: iov[O], iov[l], ... , iov[iovcnt-l].

For readv, the iovec structure is defined as follows:

struct iovec {
caddr t
int iov len;

) ;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv system call fills an area completely before
proceeding to the next area.

On objects that are capable of seeking, the read starts at a position given by the
pointer associated with d. See lseek(2) for more information. Upon return from
read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The
value of the pointer associated with such an object is undefined.

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, read returns zero to indicate end­
of-file.

System Calls 2-145

read (2)

• If some process has the pipe open for writing and O_NDELA Y or
O_NONBLOCK is set, read returns a -1, ermo is to [EWOULDBLOCK]. If
some process has the pipe open for writing and O_NDELA Y and
O_NONBLOCK are clear, read blocks until data is written or the pipe is
closed by all processes that opened the pipe for writing.

Upon successful completion, read and readv return the number of bytes actually
read and placed in the buffer. The system reads the number of bytes requested if the
descriptor references a file which has that many bytes left before the end-of-file; this
is not true in any other instance.

Unless the SV _INTERRUPT bit has been set for a signal, the read system calls are
automatically restarted when a process receives a signal while waiting for input. See
also sigvec(2).

Return Value
If the returned value is 0, then end-of-file has been reached.

If the read is successful, the number of bytes actually read is returned. Otherwise, a
-1 is returned and the global variable ermo is set to indicate the error.

Diagnostics
The read and readv system calls fail if one or more of the following are true:

[EBADF]

[EFAULT]

[EINTR]

[EIO]

[ESTALE]

The d argument is not a valid file or socket descriptor open for
reading.

The but points outside the allocated address space.

A read from a slow device was interrupted before any data arrived
by the delivery of a signal.

An I/O error occurred while reading from the file system.

The file handle given in the argument is invalid. The file referred
to by that file handle no longer exists or has been revoked.

[EWOULDBLOCK]
The O_DELAY or O_NONBLOCK flag is set for the file
descriptor and the process would be delayed in the read operation.

In addition, readv may return one of the following errors:

[EINVAL]

[EINVAL]

[EINVAL]

[EFAULT]

The iovcnt was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit
integer.

Part of the iov points outside the process's allocated address space.

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party· did not respond after a period of time detennined
by the communications protocol.

2-146 System Calls

Environment
SYSTEM_FIVE

When you use the System V environment, note the following:

read (2)

• If your program is compiled in this environment, a read and readv system
call returns 0 if the file has been set up for non-blocking I/O and the read
would block.

• In this environment, the parameter nbytes is of type int instead of type
unsigned.

POSIX

In the POSIX environment, [EAGAIN] is returned in errno instead of
[EWOULDBLOCK].

See Also
dup(2), open(2), pipe(2), sigvec(2), socket(2), socketpair(2)

System Calls 2-147

readlink (2)

Name

Syntax

readlink - read value of a symbolic link

cc = readliok(path, buf, bufsiz)
iot cc;
char *path, *buf;
iot bufsiz;

Description
The readlink system call places the contents of the symbolic link path in the
buffer buf, which has size buJsiz. The contents of the link are not null terminated
when returned.

Return Value
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if
an error occurs, placing the error code in the global variable errno.

Diagnostics
The readlink system call fails under the following conditions:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EINVAL]

[EFAULT]

[ELOOP]

[EIO]

[ETIMEDOUT]

See Also

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The named file is not a symbolic link.

The buJ extends outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred while reading from the file system.

A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

Istat(2), symlink(2), stat(2)

2-148 System Calls

Name

Syntax

reboot - reboot system or halt processor

#include <sys/reboot.h>

reboot(howto)
int howto;

reboot (2)

Arguments

howto The howto argument is a mask of options passed to the bootstrap program.

Description

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place.
RB_HALT should be used with caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire
as to what file should be booted. Normally, the system is booted
from the file "xx(O,O)vmunix" without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk
consistency check and then multi-user operations. RB_SINGLE
prevents the consistency check, rather simply booting the system
with a single-user shell on the console. RB_SINGLE is
interpreted by the init(8) program in the newly booted system.
This switch is not available from the system call interface.

Only the superuser may reboot a machine.

The reboot system call reboots the system, and is invoked automatically in the
event of unrecoverable system failures. The system call interface permits only
RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags
are used in scripts stored on the console storage media or used in manual bootstrap
procedures. When none of these options (for example, RB_AUTOBOOT) is given,
the system is rebooted from file vmunix in the root file system of unit 0 of a disk
chosen in a processor-specific way. Normally, an automatic consistency check of the
disks is then performed.

Return Value
If successful, this call never returns. Otherwise, a -1 is returned, and an error is
stored in the global variable errno.

System Calls 2-149

reboot(2)

Diagnostics
The reboot call fails under the following condition:

[EPERM]

See Also

The caller is not the superuser.

crash(8v), halt(8), init(8), reboot(8)

2-150 System Calls

Name

Syntax

recv, recvfrom, recvmsg - receive a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromJen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

- - ------- - -- ---~--------

recv (2)

Description
The recv, recvfrom, and recvmsg system calls are used to receive messages
from a socket.

The recv call can be used only on a connected socket. The recvfrom and
recvmsg calls can be used to receive data on a socket, whether or not it is in a
connected state. For further information, see connect(2).

If from is nonzero, the source address of the message is filled in. The fromlen is a
value-result parameter, initialized to the size of the buffer associated with from, and
modified on return to indicate the actual size of the address stored there. The length
of the message is returned in cc. If a message is too long to fit in the supplied
buffer, excess bytes can be discarded, depending on the type of socket the message is
received from. For further information, see socket(2).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking. If the socket is nonblocking, a cc of -1 is
returned, and the external variable ermo is set to EWOULDBLOCK. For further
information, see ioctl(2).

The select(2) call can be used to determine when more data arrives.

The flags argument to a send call is formed by ~Ring one or more of the values
following values:

#define
#define

MSG OOB
MSG_PEEK

Ox!
Ox2

/* process out-of-band data */
/* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly
supplied parameters. This structure has the following form, as defined in
<sys/socket.h>:

System Calls 2-151

recv (2)

struct msghdr {
caddr t
int
struct
int
caddr t
int

} ;

msg_name; /* optional address */
msg_namelen; /* size of address */
iov *msg_iov; /* scatter/gather array */
msg_iovlen; /* # elements in msg_iov */
msg_accrights; /* access rights sent/received */
msg_accrightslen;

Here, msg_ name and msg_ name len specify the destination address if the socket is
unconnected; msg_ name can be given as a null pointer if no names are desired or
required. The msg_iov and msg_iovlen describe the scatter gather locations, as
described in read(2). Access rights to be sent along with the message are specified
in msg_ accrights , which has length msg_ accrightslen .

Return Value
These calls return the number of bytes received, or -1 if an error occurred.

Diagnostics
The recv call fails under the following conditions:

[EBADF] The argument s is an invalid descriptor.

[EINVAL] The argument length of the message is less than O.

[EMSGSIZE] The message sent on the socket was larger than the internal
message buffer.

[ENOTCONN] A call was made to recv from an unconnected stream socket.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK]

[EINTR]

[EFAULT]

See Also

The socket is marked nonblocking and the receive operation would
block.

The receive was interrupted by delivery of a signal before any data
was available for the receive.

The data was specified to be received into a nonexistent or
protected part of the process address space. The argument fromlen
points outside the process address space.

read(2), send(2), socket(2)

2-152 System Calls

Name

Syntax

rename - change the name of a file

renamelfrom, to)
char *from, *to;

rename(2)

Description
The rename system call causes the link named from to be renamed to. If to exists,
then it is first removed. Bothfrom and to must be of the same type (that is, both
directories or both nondirectories) and must reside on the same file system.

The rename system call guarantees that an instance of to will always exist, even if
the system should crash in the middle of the operation.

Return Value
A zero (0) value is returned ifthe operation succeeds. Otherwise rename returns -1,
and the global variable errno indicates the reason for the failure.

Restrictions
The system can deadlock if a loop in the file system graph is present.and two
processes issue the rename call at the same time. For example, suppose a directory,
dirname, contains a file, dirname/filename. Suppose that file is hard-linked
to a directory, secondir, and the secondir directory contains a file,
secondir I secondfile. If secondir I secondfile is hard-linked to
dirname, a loop exists. Now suppose one process issues the following rename
call:

rename (dirname/filename secondir/secondfile)

At the same time, another process issues the following rename call:

rename (secondir/secondfile dirname/filename)

In this case, the system can deadlock. The system administrator should replace hard
links to directories with symbolic links.

Diagnostics
The rename system call fails and neither of the argument files are affected under the
following conditions:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

A component of either path prefix is not a directory.

A component of the from path does not exist, or a path prefix of to
does not exist.

Either from or to points to an empty string and the environment
defined is POSIX or SYSTEM_FIVE.

A component of either path prefix denies search permission.

The to file exists, the directory containing from is marked sticky,
and neither the containing directory nor the to directory is owned
by the effective user ID.

System Calls 2-153

rename (2)

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

The directory containing from is marked sticky, and neither the
containing directory nor the from directory is owned by the
effective user ID.

The link named by to and the file named by from are on different
logical devices (file systems). Note that this error code is not
returned if the implementation permits cross-device links.

The requested link requires writing in a directory with a mode that
denies write permission.

The requested link requires writing in a directory on a read-only
file system.

The path points outside the process's allocated address space.

[EINV AL] The from is a parent directory of to, or an attempt is made to
rename dot (.) or dot-dot (..).

[ENAMETOOLONG]

[ELOOP]

[ENOTDIR]

[EISDIR]

[ENOSPC]

[EDQUOT]

[EIO]

A component of either pathname exceeded 255 characters, or the
entire length of either pathname exceeded 1023 characters.

Too many symbolic links were encountered in translating either
pathname.

Thefrom is a directory, but to is not a directory.

The to is a directory, but from is not a directory.

The directory in which the entry for the new name is being placed
cannot be extended, because there is no space left on the file
system containing the directory.

The directory in which the entry for the new name is being placed
cannot be extended, because the user's quota of disk blocks on the
file system containing the directory has been exhausted.

An I/O error occurred while making or updating a directory entry.

[ENOTEMPTY] The to is a directory and is not empty.

[EBUSY]

See Also
open(2)

2-154 System Calls

The directory named by from or to is a mount point.

Name

Syntax

rmdir - remove a directory file

rmdir(path)
char *path;

rmdir(2)

Description
The rmdir system call removes a directory file whose name is given by path. The
directory must not have any entries other than dot (.) and dot-dot (..).

If one or more processes have the directory open when the last link is removed, the
dot and dot-dot entries, if present, are removed before rmdir () returns and no new
entries may be created in the directory. The directory, however, is not removed until
all references to the directory have been closed.

Return Value
A zero (0) is returned if the remove succeeds; otherwise, a -1 is returned, and an
error code is stored in the global location ermo .

Diagnostics
The named file is removed unless one or more of the following are true:

[ENOTEMPTY] The named directory contains files other than dot and dot-dot.

[EPERM] The directory containing the directory to be removed is marked
sticky, and neither the containing directory nor the directory to be
removed are owned by the effective user ID.

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

A component of the path is not a directory.

The named directory does not exist or path points to an empty
string and the environment defined is POSIX or SYSTEM_FIVE.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The directory to be removed is the mount point for a mounted file
system.

The directory entry to be removed resides on a read-only file
system.

The path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[EIO]

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters. .

An I/O error occurred while deleting the directory entry or
deallocating the inode.

System Calls 2-155

rmdir(2)

[ETIMEDOUT] A connect request or remote file operation failed because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
mkdir(2), unlink(2)

2-156 System Calls

Name

Syntax

select - synchronous I/O multiplexing

#include <sys/time.b>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

select (2)

Description
The select system call examines the I/O descriptors specified by the bit masks
readfds, writefds, and execptfds to see if they are ready for reading, writing, or have
an exceptional condition pending. The I/O descriptors can be pointers to arrays of
integers, if multiple fd' s are required to be selected. File descriptor f is represented
by the bit I «f in the mask. The nfds descriptors are checked, that is, the bits from 0
through nfds-I in the masks are examined. The select system call returns, in
place, a mask of those descriptors that are ready. The total number of ready
descriptors is returned in nfound.

If timeout is a nonzero pointer, it specifies a maximum interval to wait for the
selection to complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, the timeout argument should be nonzero, pointing to a O-valued
timeval structure.

Any of readfds, writefds, and execptfds can be given as zero (0) if no descriptors are
of interest.

Return Value
The select system call returns the number of descriptors that are contained in the
bit masks, or -I if an error occurred. If the time limit expires, select returns O.

Restrictions
If a process is blocked on a select waiting for input from a socket and the sending
process closes the socket, the s e 1 e ct notes this as an exception rather than as data.
Hence, if the select is not currently looking for exceptions, it waits indefinitely.

The descriptor masks are always modified on return, even if the call returns as the
result of the timeout.

Diagnostics
An error return from select indicates:

[EBADF]

[EINTR]

[EINVAL]

One of the bit masks specified an invalid descriptor.

A signal was delivered before the time limit expired and before
any of the selected events occurred.

The specified time limit is unacceptable. One of its components is
negative or too large.

System Calls 2-157

select (2)

See Also
accept(2), connect(2), read(2), recv(2), send(2), write(2)

2-158 System Calls

Name

Syntax

semctl - semaphore control operations

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

int semetl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

} arg;

int val;
struct semid ds *buf;
ushort array!];

semctl (2)

Description
The sernctl system call provides a variety of semaphore control operations as
specified by cmd. The following cmds are executed with respect to the semaphore
specified by semid and semnum:

GETVAL

SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval. For further information, see
intro(2).

Set the value of semval to argo val. When this command is
successfully executed, the semadj value corresponding to the
specified semaphore in all processes is cleared.

Return the value of sempid.

Return the value of semncnt.

Return the value of semzcnt.

The following cmds return and set every semval in the set of semaphores:

GETALL
SETALL

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by arg.array When
this command is successfully executed, the semadj values
corresponding to each specified semaphore in all processes are
cleared.

The following cmds are also available:

Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2).

Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to by arg.buf:

semyerm.uid
semyerm.gid
semyerm.mode /* only low 9 bits */

System Calls 2-159

semctl (2)

This command can only be executed by a process that has an effective user 10 equal
to superuser or to the values of sem perm.nid or sem perm.enid in the data
structure associated with semid. - -

Return Value

Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a process
that has an effective user ID equal to either that of superuser or to
the value of sem _perm.nid in the data structure associated with
semid.

Upon successful completion, the value returned depends on cmd, as follows:

GETVAL

GETP10

GETNCNT

GETZCNT

All other

The value of semval.

The value of sempid.

The value of semncnt.

The value of semzcnt.

A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

Diagnostics
The semctl system call fails if any of the following is true:

[E1NVAL]

[E1NVAL]

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

See Also

The semid is not a valid semaphore identifier.

The semnum is less than zero or greater than sem _ nsems.

The cmd is not a valid command.

Operation permission is denied to the calling process. For further
information, see errno(2).

The cmd is SETV AL or SET ALL, and the value to which semval
is to be set is greater than the system imposed maximum.

The cmd is equal to IPC_RMIO or 1PC_SET and the effective user
10 of the calling process is not equal to that of superuser nor to the
value of sem perm.nid in the data structure associated with
semid. -

The arg .buf points to an illegal address.

ermo(2), intro(2), semget(2), semop(2)

2-160 System Calls

Name

Syntax

semget - get set of semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
keLt key;
int nsems, semfig;

semget(2)

Description
The semget system call returns the semaphore identifier associated with key. A
semaphore identifier and associated data structure and set containing nsems
semaphores are created for key, if one of the following is true:

• The key is equal to IPC_PRIV A TE

• The key does not already have a semaphore identifier associated with it, and
(semflg & IPC_CREAT) is true.

For further information, see intro(2).

Upon creation, the data structure associated with the new semaphore identifier is
initialized as follows:

• The sem _perm.cuid, sem _perm.uid, sem _perm.cgid and sem _perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

• The low-order nine bits of sem _perm. mode are set equal to the low-order nine
bits of semfig.

• The sem_nsems is set equal to the value of nsems.

• The sem_otime is set equal to zero (0) and sem_ctime is set equal to the current
time.

Return Values
Upon successful completion, a nonnegative integer, namely a semaphore identifier, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the error.

Diagnostics
The semget system call fails if any of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

The nsems is either less than or equal to zero or greater than the
system-imposed limit

A semaphore identifier exists for key, but operation permission, as
specified by the low-order nine bits of semfig would not be
granted. For further information, see errno(2).

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems and
nsems is not equal to zero.

System Calls 2-161

semget(2)

[ENOENT]

[ENOSPC]

[EEXIST]

See Also

A semaphore identifier does not exist for key and (semjig &
IPC_CREAT) is false.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers in
the system would be exceeded.

A semaphore identifier exists for key but «semjlg & IPC_CREAT)
& (semjig & IPC_EXCL » is true.

semctl(2), semop(2), ftok(3)

2-162 System Calls

Name

Syntax

semop - semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf *sops[J;
int nsops;

semop(2)

Description
The semop system call is used to atomically perform an array of semaphore
operations on the set of semaphores associated with the semaphore identifier specified
by semid. The sops is a pointer to the array of semaphore-operation structures.
The nsops is the number of such structures in the array. The contents of each
structure includes the following members:

short sem_num;
short sem_op;
short sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem _op is performed on the corresponding
semaphore specified by semid and sem_num.

The sem_op specifies one of three semaphore operations as follows:

1. If sem_op is a negative integer, one of the following occurs:

• If semval is greater than or equal to the absolute value of sem_op, the absolute
value of sem op is subtracted from semval. For further information, see
intro(2). Also, if (semJlg & SEM_UNDO) is true, the absolute value of
sem_op is added to the calling process's semadj value for the specified
semaphore. For further information, see exi t(2).

• If semval is less than the absolute value of sem _ op and (sem Jig &
IPC_NOWAIT) is true, semop returns immediately.

• If semval is less than the absolute value of sem op and (sem_fIg &
IPC_NOWAIT) is false, semop increments the semncnt associated with the
specified semaphore and suspend execution of the calling process until one of
the following occurs:

• If the semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncnt associated with the specified semaphore
is decremented, the absolute value of sem op is subtracted from semval, and if
(semJlg & SEM_UNDO) is true, the absOiute value of sem_op is added to the
calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the
system. For further information, see semctl(2). When this occurs, ermo is
set equal to EIDRM, and a value of -1 is returned.

System Calls 2-163

semop(2)

The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3).

2. If sem_op is a positive integer, the value of sem_op is added to semval and, if
(semJlg & SEM_UNDO) is true, the value of sem_op is subtracted from the calling
process's semadj value for the specified semaphore.

3. If sem _ op is zero, one of the following occurs:

• If semval is zero, semop returns immediately.

• If semval is not equal to zero and (semJlg & IPC_NOWAIT) is true, semop
returns immediately.

• If semval is not equal to zero and (semJlg & IPC_NOWAIT) is false, semop
increments the semzcnt associated with the specified semaphore and suspend
execution of the calling process, until one of the following occurs:

The semval became zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the
system. When this occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal(3).

Upon successful completion, the value of sempid for each semaphore specified in the
array pointed to by sops is set equal to the process ID of the calling process.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and errno is set to indicate the error.

Diagnostics
The semop fails if any of the following is true for any of the semaphore operations
specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]

[EACCESS]

[EAGAIN]

[ENOSPC]

[EINVAL]

2-164 System Calls

The sempid is not a valid semaphore identifier.

The sem num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

The nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process. For further
information, see errno(2).

The operation would result in suspension of the calling process,
but (sem Jig & IPC_NOW AIT) is true.

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

The number of individual semaphores for which the calling process
request a SEM_ UNDO would exceed the limit.

[ERANGE]

[ERANGE]

[EFAULT]

[EINTR]

[EIDRM]

See Also

semop(2)

An operation would cause a semval to overflow the system­
imposed limit.

An operation would cause a semadj value to overflow the system­
imposed limit.

The sops points to an illegal address.

The semop returns due to the receipt of a signal.

The semid has been removed from the system.

execve(2), exit(2), fork(2), semct1(2), semget(2), signal(3)

System Calls 2-165

send (2)

Name

Syntax

send, sendto, sendmsg - send a message from a socket

#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

Description
The send, sendto, and sendmsg system calls are used to transmit a message to
another socket. The send system call may be used only when the socket is in a
connected state, while the sendto and sendmsg system calls may be used at any
time.

The address of the target is given by to, with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, the error EMSGSIZE is returned, and the message is not
transmitted. If the address specified in the argument is a broadcast address, the
SO_BROADCAST option must be set for broadcasting to succeed.

No indication of failure to deliver is implicit in a send. Return values of -1
indicate some locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted,
send normally blocks, unless the socket has been placed in nonblocking I/O mode.
The select(2) call can be used to determine when it is possible to send more data.

The flags parameter can be set to MSG_OOB to send out-of-band data on sockets
that support this features (for example, SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

The call returns the number of characters sent, or -1 if an error occurred.

2-166 System Calls

Diagnostics

[EBADF]

[EDEST ADDRREQ]

[EFAULT]

[EINVAL]

[EINTR]

[ENOTCONN]

[ENOTSOCK]

[EMSGSIZE]

[EPIPE]

[EWOULDBLOCK]

See Also

send (2)

An invalid descriptor was specified.

A required address was omitted from an operation on a
socket.

An invalid user space address was specified for a parameter.

An invalid argument length for the message was specified.

The send was interrupted by delivery of a signal.

The socket is not connected.

The argument s is not a socket.

The socket requires that messages be sent atomically, and
the size of the message to be sent made this impossible.

A write on a pipe or socket for which there is no process to
read the data.

The socket is marked nonblocking, and the requested
operation would block.

recv(2), getsockopt(2), socket(2)

System Calls 2-167

setgroups (2)

Name

Syntax

setgroups - set group access list

#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, *gidset;

Description
The setgroups system call sets the group access list of the current user process
according to the array, gidset. The ngroups parameter indicates the number of entries
in the array and must be no more than NGROUPS, as defined in <sys/param. h>.

Only the superuser can set new groups.

Return Value
A 0 value is returned on success, -Ion an error, with the error code stored in ermo.

Diagnostics
The setgroups call fails if:

[EPERM]

[EFAULT]

See Also

The caller is not the superuser.

The address specified for gidset is outside the process address
space.

getgroups(2), initgroups(3x)

2-168 System Calls

Name

Syntax

setpgrp - set process group

setpgrp(pid, pgrp)
int pid, pgrp;

------."...,.~"" ""''''_'_.., ... _-
setpgrp(2)

Description
The setpgrp system call sets the process group of the specified process pid to the
specified pgrp. If pid is zero, the call applies to the current process.

If the invoker is not the superuser, the affected process must either have the same
effective user-id as the invoker or be a descendant of the invoking process.

Return Value
The setpgrp system call returns zero (0) when the operation is successful. If the
request fails, -1 is returned, and the global variable errno indicates the reason.

Environment
SYSTEM_FIVE

When your program is compiled using the System V environment, setpgrp is
called without arguments and the new process group id is returned if successful.

Diagnostics
The setpgrp system call fails and the process group is not altered, if one of the
following occur:

[EPERM]

[ESRCH]

See Also
getpgrp(2)

The effective user ID of the requested process is different from that
of the caller and the process is not a descendent of the calling
process.

The requested process does not exist.

System Calls 2-169

setquota (2)

Name

Syntax

setquota - enable/disable quotas on a file system

setqnota(special, file)
char *special, *file;

Description
Disk quotas are enabled or disabled with the setquota call. The special indicates
a block special device on which a mounted file system exists. If file is nonzero, it
specifies a file in that file system from which to take the quotas. If file is zero, then
quotas are disabled on the file system. The quota file must exist; it is normally
created with the quotacheck program.

Only the superuser can tum quotas on or off.

Return Value
A zero (0) return value indicates a successful call. A value of -1 is returned when an
error occurs, and ermo is set to indicate the reason for failure.

Diagnostics
The setquota system call fails when one of the following occurs:

[ENODEV]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EROFS]

[EACCES]

[EACCES]

[EINVAL]

[EINVAL]

The special does not exist.

The special is not a block device.

The major device number of special is out of range. (This indicates
no device driver exists for the associated hardware.)

A component of either path prefix is not a directory.

The file resides on a read-only file system.

The file resides on a file system different from special.

The file is not a plain file.

Either pathname contains a character with the high-order bit set.

The kernel has not been compiled with the QUOTA option.

[ENAMETOOLONG]

[ENOENT]

[ELOOP]

[EPERM]

[EACCES]

[EIO]

2-170 System Calls

A component of either pathname exceeded 255 characters, or the
entire length of either path name exceeded 1023 characters.

The file does not exist.

Too many symbolic links were encountered in translating either
pathname.

The caller is not the superuser.

Search permission is denied for a component of either path prefix.

An I/O error occurred while reading from or writing to the file
containing the quotas.

[EFAULT]

See Also

setquota (2)

The special or path points outside the process's allocated address
space.

quota(2), edquota(8), quotacheck(8), quotaon(8),
"Disk Quotas in a UNIX Environment", Supplementary Documents, Vol. III:System
Manager

System Calls 2-171

setregid (2)

Name

Syntax

setregid - set real and effective group ID

setregid(rgid, egid)
int rgid, egid;

Description
The real and effective group ID's of the current process are set to the arguments.

Supplying a value of -1 for either the real or effective group ID forces the system to
substitute the current ID for the -1 parameter.

Environment

BSD
If the process is superuser, or rgid and egid matches with the real group ID, the
effective group ID, or the saved set-group-id (as described in execve(2)), then the
real, effective, and saved set-group-id are set to rgid, egid, and egid,
respectively.

POSIX
SYSTEM-FIVE
When your program is compiled in POSIX or SYSTEM-FIVE mode, the following
semantics apply when using the setregid function.

If the process is the superuser, the real, effective, and saved set-group-id (as described
in execve(2)) are set to rgid, egid, and egid, respectively.

If the process is not the superuser, but the rgid and egid matches the real group
ID, the effective group ID (only in SYSTEM-FIVE and BSD environment), or the
saved set-group-id, then the effective ID is set to egid. The real group ID and the
saved set-group-id are left unchanged.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

Diagnostics

[EPERM]

See Also

The current process is not the superuser and the egid and rgid
specified does not match with the real group ID or the effective
group ID (only in SYSTEM-FIVE and BSD environment) or the
saved set-group-id.

getgid(2), setreuid(2), setgid(3)

2-172 System Calls

Name

Syntax

setreuid - set real and effective user ID's

setreuid(ruid, euid)
intruid, euid;

setreuid (2)

Description
The real and effective user ID's of the current process are set according to the
arguments. If ruid or euid is -1, the current uid is filled in by the system.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of-l
is returned and ermo is set to indicate the error.

Environment

BSD
If the process is superuser, or ruid and euid matches with the real user ID, the
effective user ID, or the saved set-user-id (as described in execve(2)), then the real,
effective, and the saved set-user-id are set to ruid, euid, and euid, respectively.

POSIX
SYSTEM-FIVE
When your program is compiled in the POSIX or SYSTEM-FIVE mode, if both
arguments to setreuid are -1, the system call returns a value of -1 and ermo is
set to [EINVAL].

The following semantics apply when using the setreuid function:

If the process is the superuser, the real, effective, and saved set-user-id (as described
in execve(2)) are set to ruid, euid, and euid, respectively.

If the process is not the superuser, but the ruid and euid matches with the real
user ID, the effective user ID (only in the SYSTEM-FIVE and BSD environments),
or the saved set-user-id, then the effective ID is set to euid. The real user ID and
the saved set-user-id are left unchanged.

Diagnostics

[EPERM]

See Also

The current process is not the superuser and the euid and ruid
specified does not match with the real user ID, the effective user
ID (only in SYSTEM-FIVE and BSD environment), or the saved
set-user-id.

getuid(2), setregid(2), setuid(3)

System Calls 2-173

setsid (2)

Name

Syntax

setsid - POSIX create session and set process group ID

#include <sys/types.h>
pid_t
setsidO

Description
The setsid system call creates a new session, if the calling process is not a process
group leader. The calling process is the session leader of the new session, the
process group leader of the new process group, and does not have a controlling
terminal. The process group ID of the calling process is set equal to the process ID
of the calling process.

Return Value
Upon successful completion, the setsid system call returns the value of the process
group ID of the calling process. If the setsid system call fails, -1 is returned, and
the global variable errno indicates the reason.

Diagnostics
The setsid system call fails and a new session is not created if the following
occurs:

[EPERM]

See Also

The calling process is already a process group leader.

The process group ID of a process other than the calling process
matches the process ID of the calling process.

getpgrp(2), setpgid(3)

2-174 System Calls

setsysinfo (2)

Name
setsysinfo - set system information

Syntax
#include <sys/types.h>
#include <sys/sysinfo.h>

setsysinfo(op, buffer, nbytes, arg, flag)
unsigned op;
char *buffer;
unsigned nbytes;
unsigned arg;
unsigned flag;

Description
The setsysinfo system call modifies system information. The op argument
specifies the operation to be performed. Values for op are defined in the
<sys/ sysinfo. h> header file. The optional buffer and nbytes arguments are used
to pass data, which varies depending upon op. When buffer and nbytes are not
required, they should be set to NULL. The optional arg argument can be used with
certain op values for additional information. When arg is not required, it should be
set to NULL. The optional flag argument can be used with certain op and arg values
for additional information. When flag is not required it should be set to NULL.

Possible op values are:

op = SSCNVPAIRS
Use a list of name-value pairs to modify predefined system variables. Buffer
is an array of name-value pairs, where name is one of a predefined set of
system variables defined in the <sys/sysinfo.h> header file.

Possible name values are:

SSIN NFSPORTMON
A Boolean that determines whether incoming NFS traffic is
originating at a privileged port or not.

SSIN NFSSETLOCK
A Boolean that determines whether NFS (daemon) style file and
record locking are enabled or not.

SSIN_PROG_ENV
Set the compatibility mode of the process. Possible values are
A_BSD, A_POSIX, or A_SYSV.

SSIN_UACSYS (RISC only)
A Boolean that deteremines whether or not the system prints an
"unaligned access fixup" message. Use of this is restricted to the
superuser.

SSIN UACPARNT (RISC only)
- A Boolean that is set in the current process's parent proc structure. It

turns printing of "unaligned access fixups" on or off. This flag is
inherited across forks and execs. If parent is init, it returns EPERM.

System Calls 2-175

setsysinfo (2)

SSIN UACPROC (RISC only)
- A Boolean value that is set in the proc structure to turn off/on

printing of "unaligned access fixup" messages. This flag is inherited
across forks and execs.

The value is a legal value for name. The nbytes argument defines the number
of name-value pairs in buffer. The arg and flag arguments are not used.

op = SSCZERO_STRUCT
Each member of a system structure is set to zero. The arg defines the
structure type.

Possible values for arg are:

SSIS NFS CLSTA T
- NFS client statistics.

SSIS NFS SVSTA T
- NFS server statistics.

SSIS RPC STAT
- RPC statistics. The flag argument is used for a particular arg value,

to further define the operation or a resultant action to be performed.
The buffer and nbytes arguments are not used.

Permission checking is done on a structure-by-structure basis.

op = SSCSET_STRUCT

Return Value

Each member of a system structure is set to a supplied value. The arg defines
the structure type.

Possible values for arg are as defined for op SSCSTRUCT_ZERO. Theflag
argument is used for a particular arg value, to further define the operation or
a resultant action to be performed. The buffer argument is the address of a
structure of the appropriate type that contains the desired values. The nbytes
argument specifies the amount of data to be transfered that is· stored at buffer.

A zero (0) is returned if the call succeeds. If the call fails, -1 is returned, and the
global variable errno is set to indicate the error.

Diagnostics

[EFAULT]

[EINVAL]

[EPERM]

See Also
getsysinfo(2)

2-176 System Calls

Either buffer or arg causes an illegal address to be referenced.

The op, arg, or flag argument is invalid.

Permission is denied for the operation requested

Name

Syntax

shmctl - shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid _ds *buf;

shmctl (2)

Description
The shrnctl system call provides a variety of shared memory control operations, as
specified by cmd. The following cmds are available:

IPC STAT

IPC SET

IPC RMID

Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf. The
contents of this structure are defined in intro(2).

Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:

shmyerm.uid
shmyerm.gid
shmyerm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective
user 10 equal to either that of the superuser or to the value of
shrnyerrn. uid in the data structure associated with shmid.

Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data structure
associated with it. This cmd can only be executed by a process that
has an effective user 10 equal to either that of the superuser or to
the value of shrnyerrn. uid in the data structure associated with
shmid.

SHM LOCK Lock the shared memory segment specified by shmid in memory.
Lock prevents the shared memory segment from being swapped or
paged. This cmd can only be executed by a process that has an
effective user 10 equal to the superuser.

SHM _UNLOCK Unlock the shared memory segment specified by shmid. This cmd
can only be executed by a process that has an effective user 10
equal to the superuser.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of-1
is returned, and ermo is set to indicated the error.

System Calls 2-177

shmctl (2)

Diagnostics
The shmctl system call fails if any of the following is true:

[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EINVAL]

[EINVAL]

[EFAULT]

See Also

The shmid is not a valid shared memory identifier.

The cmd is not a valid command.

The cmd is equal to IPC_ST A T, and read permission is denied to
the calling process. For further information, see errno(2).

The cmd is equal to IPC_RMID or IPC_SET, and the effective
user ID of the calling process is not equal to that of the superuser
or to the value of shm perm. uid in the data structure associated
with shmid. -

The cmd is equal to SHM_LOCK or SHM_ UNLOCK and the
effective user ID of the calling process is not equal to that of the
superuser.

The cmd is equal to SHM_LOCK, and the shared memory segment
is currently locked by this process.

The cmd is equal to SHM_ UNLOCK, and the shared memory
segment specified by shmid is not currently locked in memory by
this process.

The bufpoints to an illegal address.

shmget(2), shmop(2)

2-178 System Calls

Name

Syntax

shmget - get shared memory segment

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
keLt key;
int size, shmflg;

shmget(2)

Description
The shmget system call returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment
of size size bytes are created for key, if one of the following is true:

The key is equal to IPC_PRIVATE. For further information, see intro(2).

The key does not already have a shared memory identifier associated with it,
and (shmfig & IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

Theshm-Ferm.cuid,shm-Ferm.uid,shm-Ferm.cgid,and
shm-Ferm. gid are set equal to the effective user ID and effective group ID
of the calling process.

The low-order nine bits of s hm -Fe rm . mode are set equal to the low-order
nine bits of shmfig. The s hm _ s eg s z is set equal to the value of size.

The shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal
to zero (0). The shm ctime is set equal to the current time.

Return Value
Upon successful completion, a non-negative integer, namely, a shared memory
identifier is returned. Otherwise, a value of -1 is returned and erma is set to
indicated the error.

Diagnostics
The shmget system call fails if any of the following is true:

[EINVAL]

[EACCES]

[EINVAL]

The size is less than the system-imposed minimum or greater than
the system-imposed maximum.

A shared memory identifier exists for key, but operations
permission, as specified by the low-order nine bits of shmflg,
would not be granted. For further information, see errno(2).

A shared memory identifier exists for key, but the size of the
segment associated with it is less than size and size is not equal to
zero.

System Calls 2-179

shmget(2)

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

See Also

A shared memory identifier does not exist for key, and (shmflg &
IPC_CREAT) is false.

A shared memory identifier is to be created, but the system­
imposed limit on the maximum number of allowed shared memory
identifiers would be exceeded.

A shared memory identifier and the associated shared memory
segment are to be created, but the amount of available physical
memory is not sufficient to fill the request.

A shared memory identifier exists for key, but «shmflg &
IPC_CREAT) and (shmflg & IPC_EXCL» is true.

shmctl(2), shmop(2), ftok(3)

2-180 System Calls

Name

Syntax

shmop, shmat, shmdt - shared memory operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmftg)
int shmid;
char *shmaddr;
int shmftg;

int shmdt (shmaddr)
char *shmaddr;

shmop(2}

Description
The shmat system call attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling
process. The segment is attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is true, the segment is
attached at the address given by (shmaddr- (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is false, the segment is
attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONL Y) is true.
Otherwise, it is attached for reading and writing.

The shmdt system call detaches from the calling process's data segment the shared
memory segment located at the address specified by shmaddr.

Return Value
Upon successful completion, the return values are as follows:

• The shmat system call returns the data segment start address of the attached
shared memory segment.

• The shmdt system call returns a value of zero (0).

Otherwise, a value of -1 is returned, and ermo is set to indicate the error.

Diagnostics
The s hma t system call fails and not attach the shared memory segment, if any of the
following is true:

[EINVAL]

[EACCES]

The shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process. For further
information, see errno(2).

System Calls 2-181

shmop(2)

[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

The available data space is not large enough to accommodate the
shared memory segment.

The shmaddr is not equal to zero, and the value of (shmaddr­
(shmaddr modulus SHMLBA)) is an illegal address.

The shmaddr is not equal to zero, (shmflg & SHM_RND) is false,
and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system imposed limit.

The shrndt fails and does not detach the shared memory segment if:

[EINVAL]

See Also

The shmaddr is not the data segment start address of a shared
memory segment.

execve(2), exit(2), fork(2), shmct1(2), shmget(2)

2-182 System Calls

Name

Syntax

shutdown - shut down full-duplex connection

shutdown(s, how)
int s, how;

Description

shutdown (2)

The shutdown call causes all or part of a full-duplex connection on the socket
associated with s to be shut down. If how is 0, further receives are disallowed. If
how is 1, further sends are disallowed. If how is 2, further sends and receives are
disallowed.

Return Value
A zero (0) is returned if the call succeeds, -1 if it fails.

Diagnostics
The call succeeds unless:

[EBADF] The s argument is not a valid descriptor.

[ENOTSOCK] The s argument is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

See Also
connect(2), socket(2)

System Calls 2-183

sigblock (2)

Name

Syntax

sigblock - block signals

sigblock(mask)
iot mask;

Description
The sigblock system call causes the signals specified in mask to be added to the
set of signals currently being blocked from delivery. Signal i is blocked if the ith bit
in mask is a 1.

It is not possible to block SIGKILL or SIGSTOP. This restriction is silently imposed
by the system.

The previous set of masked signals is returned.

See Also
kill(2), sigsetmask(2), sigvec(2)

2-184 System Calls

Name

Syntax

sigpause - atomically release blocked signals and wait for interrupt

sigpause(sigmask)
iot sigmask;

sigpause (2)

Description
The sigpause system call assigns sigmask to the set of masked signals and then
waits for a signal to arrive. On return, the set of masked signals is restored. The
sigmask is usually 0 to indicate that no signals are now to be blocked. The
sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2) at the beginning of a
critical section of code. Variables modified on the occurrence of the signal are
examined to determine if there is any work to be done. The process pauses, awaiting
work, by using sigpause with the mask returned by sigblock.

See Also
sigblock(2), sigvec(2)

System Calls 2-185

sigpending (2)

Name

Syntax

sigpending - examine pending signals

#include <signal.h>

sigpending(set)
sigset _ t * set;

Description
The sigpending system call stores the set of signals that is blocked from delivery
and pending for the calling process in the space pointed to by the argument set.

The set argument is manipulated by using the sigsetops(3) functions.

Return Value
A zero (0) return value indicates that the call succeeded. A -1 return value indicates
an error occurred, and errno is set to indicate the reason.

Diagnostics
The sigpending system call fails if the following occurs:

[EFAULT]

See Also

The set argument points to memory that is not a valid part of the
process address space.

sigprocmask(3), sigsetops(3)

2-186 System Calls

Name

Syntax

sigsetmask - set current signal mask

sigsetmask(mask)
int mask;

sigsetmask (2)

Description
The sigsetmask system call sets the current signal mask (those signals that are
blocked from delivery). Signal i is blocked if the ith bit in mask is a 1.

The system quietly disallows SIGKILL or SIGSTOP to be blocked.

The previous set of masked signals is returned.

See Also
kill(2), sigblock(2), sigpause(2), sigvec(2)

System Calls 2-187

sigstack (2)

Name

Syntax

sigstack - set or get signal stack context

#include <signal.h>

struct sigstack {
caddr t ss sp;
int - ss_onstack;

};

sigstack(ss, oss)
struct sigstack *ss, *oss;

Description
The sigstack system call allows users to define an alternate stack on which
signals are to be processed. If ss is nonzero, it specifies a signal stack on which to
deliver signals and tells the system if the process is currently executing on that stack.
When a signal's action indicates its handler should execute on the signal stack
(specified with a sigvec call), the system checks to see if the process is currently
executing on that stack. If the process is not currently executing on the signal stack,
the system arranges a switch to the signal stack for the duration of the signal
handler's execution. If oss is nonzero, the current signal stack state is returned.

Signal stacks are not grown'automatically, as is done for the normal stack. If the
stack overflows, unpredictable results may occur.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

Diagnostics
The sigstack system call fails and the signal stack context remains unchanged, if
one of the following occurs.

[EFAULT]

See Also

Either ss or oss points to memory that is not a valid part of the
process address space.

sigvec(2), setjmp(3)

2-188 System Calls

Name

Syntax

sigvec - software signal facilities

#include <signaI.h>

struct sigvec {
void (*sv handler)O;
sigset _ t sv _mask; -
int sv _flags;

};

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

sigvec (2) RI~

Description
The system defines a set of signals that can be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process
can specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process can also specify that a default action is to be taken
by the system when a signal occurs. Normally, signal handlers execute on the
current stack of the process. This can be changed, on a per-handler basis, so that
signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation blocked, but other signals can occur. A global signal mask
defines the set of signals currently blocked from delivery to a process. The signal
mask for a process is initialized from that of its parent (normally, 0). It can be
changed with a sigblock(2) or sigsetmask(2) call, or when a signal is
delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process, it is
delivered to the process. When a signal is delivered, the current state of the process
is saved, a new signal mask is calculated (as described later), and the signal handler
is invoked. The call to the handler is arranged so that, if the signal handling routine
returns normally, the process resumes execution in the context from before the
signal's delivery. If the process wishes to resume in a different context, it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the
duration of the process's signal handler (or until a sigblock or sigsetmask call
is made). This mask is formed by taking the current signal mask, adding the signal
to be delivered, and ORing in the signal mask associated with the handler to be
invoked.

_, The sigvec System call assigns a handler for a specific signal. If vee is nonzero, it
specifies a handler routine and mask to be used when delivering the specified signal.
Further, if the SV _ ONSTACK bit is set in sv Jags, the system delivers the signal to
the process on a signal stack, specified with sigstack(2). If ovee is nonzero, the
previous handling information for the signal is returned to the user.

System Calls 2-189

SC sigvec (2)

The following is a list of all signals with names as in the include file <signal. h>:

SIGHUP 1 Hangup
SIGINT 2 Interrupt
SIGQUIT 3* Quit
SIGILL 4* Illegal instruction
SIGTRAP 5* Trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* Floating point exception
SIGKILL 9 Kill (cannot be caught, blocked, or ignored)
SIGBUS 10* Bus error
SIGSEGV 11 * Segmentation violation
SIGSYS 12* Bad argument to system call
SIGPIPE 13 Write on a pipe with no one to read it
SIGALRM 14 Alarm clock
SIGTERM 15 Software termination signal
SIGURG 16. Urgent condition present on socket
SIGSTOP 17+ Stop (cannot be caught, blocked, or ignored)
SIGTSTP 18+ Stop signal generated from keyboard
SIGCONT 19. Continue after stop (cannot be blocked)
SIGCHLD 20. Child status has changed
SIGTTIN 21+ Background read attempted from control terminal
SIGTTOU 22+ Background write attempted to control terminal
SIGIO 23. I/O is possible on a descriptor (see fcntl(2))
SIGXCPU 24 Cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 File size limit exceeded (see setrlimit(2))
SIGVTALRM 26 Virtual time alarm (see setitimer(2))
SIGPROF 27 Profiling timer alarm (see setitimer(2))
SIGWINCH 28. Window size change
SIGLOST 29 Lock not reclaimed after server recovery
SIGUSRI 30 User-defined signal 1
SIGUSR2 31 User-defined signal 2
SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The signals marked with asterisks (*) in this list cause a core image if not caught or
ignored. Explanations of the meaning of the periods (.) and plus signs (+) are
included in the following paragraph.

Once a signal handler is installed, it remains installed until another sigvec call is
made or an execve(2) is performed. The default action for a signal can be
reinstated by setting sv handler to SIG_DFL. This default is termination (with a core
image for signals marked with asterisks (*)), except for signals marked with periods
(.) or plus signs (+). Signals marked with periods (.) are discarded if the action is
SIG_DFL. Signals marked with plus signs (+) cause the process to stop. If
sv_handler is SIG_IGN, the signal is subsequently ignored, and pending instances of
the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return, by
setting the SV _INTERRUPT bit in sv Jiags. The affected system calls are read,
write, or ioctl on a slow device (such as a terminal, but not a file), flock, and
wait.

2-190 System Calls

sigvec (2) RI~

After a fork or vfork, the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt flags.

The execve system call resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ignored, the signal
mask remains the same; signals that interrupt system calls continue to do so.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or
SIGCONT. This is done silently by the system.

The SV _INTERRUPT flag is not available in ULTRIX 2.0 or earlier versions.
Therefore, it should not be used if backward compatibility is needed.

Return Value
A zero (0) value indicates that the call succeeded. A -1 return value indicates an
error occurred, and errno is set to indicated the reason.

Diagnostics

Notes

The sigvec system call fails and no new signal handler is installed, if one of the
following occurs:

[EFAULT] Either vee or ovee points to memory that is not a valid part of the
process address space.

Sig is not a valid signal number. [EINVAL]

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

The handler routine can be declared:

void handler (sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. MIPS hardware exceptions are mapped to specific
signals as defined by the following table. Code is a parameter that is either a
constant or zero. The sep is a pointer to the sigeontext structure (defined in
<s ignal. h>, that is the context at the time of the signal and is used to restore the
context, if the signal handler returns.

The following defines the mapping of MIPS hardware exceptions to signals and
codes. All of these symbols are defined in either <signa/.h> or <mips/epu.h>:

Hardware exception Signal Code

Integer overflow SIGFPE EXC_OV
Segmentation violation SIGSEGV SEXC_SEGV
Illegal instruction SIGILL EXC_II
Coprocessor unusable SIGILL SEXC_CPU
Data bus error SIGBUS EXC_DBE
Instruction bus error SIGBUS EXC_IBE
Read address error SIGBUS EXC_RADE

System Calls 2-191

SC sigvec (2)

Write address error
User breakpoint (used by debuggers)
Kernel breakpoint (used by prom)
Taken branch delay emulation
Not taken branch delay emulation
User single step (used by debuggers)
Overflow check
Di vide by zero check
Range error check

SIGBUS
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP
SIGTRAP

EXC_WADE
BRK_USERBP
BRK_KERNELBP
BRK_BD_TAKEN
BRK_BD_NOTTAKEN
BRK_SSTEPBP
BRK_OVERFLOW
BRK_DIVZERO
BRK_RANGE

When a signal handler is reached, the program counter in the signal context structure
(sc yc) points at the instruction that caused the exception, as modified by the branch
delay bit in the cause register. The cause register at the time of the exception is also
saved in the sigcontext structure (sc cause). If the instruction that caused the
exception is at a valid user address, it can be retrieved with the following code
sequence:

if(scp->sc_cause & CAUSE_BD) {

else

branch_instruction = * (unsigned long *) (scp->sc-pc);
exception_instruction * (unsigned long *) (scp->sc-pc + 4);

exception_instruction = * (unsigned long *) (scp->sc-pc);

CAUSE_BD is defined in <rnips/cpu.h>.

The signal handler can fix the cause of the exception and re-execute the instruction,
emulate the instruction and then step over it, or perform some nonlocal redirection,
such as a longjurnp () or an exit ().

If corrective action is performed in the signal handler and the instruction that caused
the exception would then execute without a further exception, the signal handler
simply returns and re-executes the instruction (even when the branch delay bit is set).

If execution is to continue after stepping over the instruction that caused the
exception, the program counter must be advanced. If the branch delay bit is set, the
program counter is set to the target of the branch. Otherwise, it is incremented by
four. This can be done with the following code sequence:

if(scp->sc_cause & CAUSE_BD)
emulate_branch (scp, branch_instruction);

else
scp->sc-pc += 4;

Emulate branch() modifies the program counter value in the sigcontext structure to
the target of the branch instruction. See ernulate_branch(3) for more details.

For SIGFPE's generated by floating-point instructions (code == 0) thejioating-point
control and status register at the time of the exception is also saved in the sigcontext
structure (scJpc_csr). This register has the information on which exceptions have
occurred. When a signal handler is entered, the register contains the value at the time
of the exception but with the exceptions bits cleared. On a return from the signal
handler, the exception bits in the floating-point control and status register are also
cleared so that another SIGFPE will not occur (all other bits are restored from
scJpc_csr).

For SIGSEGV and SIGBUS errors, the faulting virtual address is saved in
sc _badvaddr in the signal context structure.

2-192 System Calls

sigvec (2) RIS

The SIGTRAPs caused by break instructions noted in the previous table and all
other yet to be defined break instructions fill the code parameter with the first
argument to the break instruction (bits 25-16 of the instruction).

See Also
kill(l), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
setjmp(3), siginterrupt(3), tty(4)

System Calls 2-193

'AX sigvec (2)

Name

Syntax

sigvec - software signal facilities

#include <signal.h>

struct sigvec {
void (*sv handler) 0;
sigsect sv _mask; -
int sv _flags;
} ;

sigvec(sig, vee, ovec)
int sig;
struct sigvec *vec, *ovec;

Description
The system defines a set of signals that can be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt; the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process
can specify a handler to which a signal is delivered, or specify that a signal is to be
blocked or ignored. A process can also specify that a default action is to be taken by
the system when a signal occurs. Normally, signal handlers execute on the current
stack of the process. This can be changed on a per-handler basis so that signals are
taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation to be blocked, but other signals can occur. A global signal
mask defines the set of signals currently blocked from delivery to a process. The
signal mask for a process is initialized from that of its parent (normally 0). It may be
changed with a sigblock or sigsetmask call, or when a signal is delivered to
the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process, it is
delivered to the process. When a signal is delivered, the current state of the process
is saved, a new signal mask is calculated (as described later), and the signal handler
is invoked. The call to the handler is arranged so that, if the signal handling routine
returns normally, the process resumes execution in the context from before the
signal's delivery. If the process wishes to resume in a different context, it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the
duration of the process's signal handler (or until a sigblock or sigsetmask call
is made). This mask is formed by taking the current signal mask, adding the signal
to be delivered, and ~Ring in the signal mask associated with the handler to be
invoked.

The s igvec system call assigns a handler for a specific signal. If vee is nonzero, it
specifies a handler routine and mask to be used when delivering the specified signal.
Further, if the SV _ON STACK bit is set in sv Jags, the system delivers the signal to
the process on a signal stack, specified with sigstack. If ovec is nonzero, the
previous handling information for the signal is returned to the user.

2-194 System Calls

sigvec (2) VA:

The following is a list of all signals with names as in the include file <5 ignal . h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16. urgent condition present on socket
SIGSTOP 17+ stop (cannot be caught, blocked, or ignored)
SIGTSTP 18+ stop signal generated from keyboard
SIGCONT 19. continue after stop
SIGCHLD 20. child status has changed
SIGTTIN 21 + background read attempted from control terminal
SIGTTOU 22+ background write attempted to control terminal
SIGIO 23. I/O is possible on a descriptor (see fcntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVTALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28. window size change
SIGLOST 29 lock not reclaimed after server recovery
SIGUSRI 30 user defined signal 1
SIGUSR2 31 user defined signal 2
SIGCLD System V name for SIGCHLD
SIGABRT X/OPEN name for SIGIOT

The signals marked with asterisks (*) in this list cause a core image if not caught or
ignored. Explanations of the meaning of the periods (.) and plus signs (+) are
included in the following paragraph.

Once a signal handler is installed, it remains installed until another 5 igvec call is
made or an execve is performed. The default action for a signal can be reinstated
by setting sv _handler to SIG_DFL. This default is termination (with a core image for
signals marked with asterisks (*», except for signals marked with periods (.) or plus
signs (+). Signals marked with periods (.) are discarded if the action is SIG_DFL.
Signals marked with plus signs (+) cause the process to stop. If sv _handler is
SIG_IGN the signal is subsequently ignored, and pending instances of the signal are
discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return, by
setting the SV _INTERRUPT bit in sv Jags. The affected system calls are read,
write, or ioctl on a slow device (such as a terminal; but not a file), flock, and
wait.

System Calls 2-195

'AX sigvec (2)

After a fork or vfork, the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt flags.

The execve system call resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ignored, the signal
mask remains the same; signals that interrupt system calls continue to do so.

The mask specified in vee is not allowed to block SIGKILL or SIGSTOP. This is
done silently by the system.

The SV _INTERRUPT flag is not available in ULTRIX 2.0 or earlier versions.
Therefore, it should not be used if backward compatibility is needed.

Notes

The handler routine can be declared:

void handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number into which the hardware faults and traps are mapped as
defined in the following table. The code is a parameter that is either a constant or, for
compatibility mode faults, the code provided by the hardware. Compatibility mode
faults are distinguished from the other SIGILL traps by having PSL_CM set in the
psI. The scp is a pointer to the sigcontext structure (defined in <signal. h>), used
to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of
these symbols are defined in <signal. h>:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

2-196 System Calls

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF _TRAP
FPE_FLTDIV _TRAP
FPE_FL TUND_ TRAP
FPE_DECOVF _TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF _FAULT
FPE_FLTDIV _FAULT
FPE_FLTUND_FAULT
faulting virtual addr
faulting virtual addr
ILL_PRIVIN_FAULT

ILL_RESOP _FAULT
ILL_RES AD_FAULT

hardware-supplied code

sigvec(2) VA

Return Values
A zero (0) value indicates that the call succeeded. A -1 return value indicates an
error occurred, and errno is set to indicate the reason.

Diagnostics
The sigvec system call fails and no new signal handler is installed, if one of the
following occurs:

[EFAULT]

[EINVAL]

[EINVAL]

Environment

SYSTEM_FIVE

Either vee or ovee points to memory that is not a valid part of the
process address space.

The sig argument is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or
SIGSTOP.

You can not use the sigvec call in your program under SYSTEM_FIVE
environment.

See Also
kill(I), kill(2), ptrace(2), sigblock(2), sigpause(2), sigsetmask(2), sigstack(2),
setjmp(3), siginterrupt(3), tty(4)

System Calls 2-197

socket (2)

Name

Syntax

socket - create an endpoint for communication

#include <sysltypes.h>
#include <syslsocket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

Description
The socket system call creates an endpoint for communication and returns a
descriptor.

The operation of sockets is controlled by socket-level options, defined in the file
<sys / socket. h> and explained in the section, Socket-level Options. The calls
setsockopt(2) and getsockopt(2) are used to set and get options.

Arguments
The af parameter specifies an address format. Addresses specified in later operations
using the socket are interpreted according to these formats. The formats are defined
in the include file <sys/socket. h>:

AF UNIX
AF INET
AF IMPLINK
AF DLI

UNIX path names
ARPA Internet addresses
IMP "host at IMP" addresses
For access to broadcast devices (Ethernet)

The type argument specifies the semantics of communication. The defined types are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_SEQPACKET

The SOCK_STREAM and SOCK_DGRAM types are available only if your system
includes the TCP/IP network. For example, if you can use the rlogin command to
log in to a remote ULTRIX node, your system supports these socket types.

A SOCK_STREAM type provides sequenced, reliable, 2-way-connection-based byte
streams with an out-of-band data transmission mechanism. A SOCK_DGRAM
socket supports datagrams (connectionless, unreliable messages of a fixed maximum
length, typically small).

SOCK_RAW sockets provide access to internal network interfaces and are available
only to the super-user.

The SOCK_SEQPACKET type is the socket protocol to request when you want to
communicate with other Digital systems using DECnet.

Socket types are discussed further in following sections.

The protocol argument specifies the protocol to be used with the socket. Normally,
only a single protocol exists to support a particular socket type using a given address
format. However, it is possible that many protocols may exist, in which case a

2-198 System Calls

socket (2)

particular protocol must be specified in this manner. The protocol number to use is
particular to the communication domain in which communication is to take place.
For further information, see services(5) and protocols(5).

Socket Type SOCK_STREAM

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data can be sent or received on
it. A connection to another socket is created with a connect call. Once connected,
data can be transferred using read and wri te calls or some variant of the send
and recv calls. When a session has been completed, a close may be performed.
Out-of-band data can also be transmitted as described in send(2) and received as
described.in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that
data is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then the
connection is considered broken and calls will indicate an error with -1 returns and
with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in
the absence of other activity. An error is then indicated if no response can be elicited
on an otherwise idle connection for an extended period (for example, 5 minutes). A
SIGPIPE signal is raised if a process sends on a broken stream; this causes processes
that do not handle the signal to exit.

Socket Types SOCK_DGRAM and SOCK_RAW

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. It is also possible to receive datagrams at
these sockets with recv(2).

An fcntl(2) call can be used to specify a process group to receive a SIGURG
signal when the out-of-band data arrives.

SOCK_DGRAM sockets are the only type of socket allowed by the Data Link
Interface.

Socket Type SOCK_SEQPACKET

SOCK_SEQPACKET sockets are similar to datagrams except that they are
guaranteed to be received in the sequence that they are sent. They are also
guaranteed to be error-free.

Socket-Level Options

The operation of sockets is controlled by socket-level options. These options are
defined in the file, <sys/socket. h>. The calls setsockopt and
getsockopt are used to set and get options.

Options other than SO_LINGER take an integer parameter that should be nonzero, if
the option is to be enabled, or zero (0), if it is to be disabled. SO_LINGER uses a
"linger" structure parameter defined in < s y sis ocket . h>. This structure specifies
the desired state of the option and the linger interval (see the following).

System Calls 2-199

socket (2)

SO DEBUG Tum on recording of debugging information
so REUSEADDR Allow local address reuse
SO KEEPALIVE Keep connections alive
SO _ DONTROUTE Do not apply routing on outgoing messages
SO LINGER Linger on close if data present
SO_BROADCAST Permit sending of broadcast messages
SO ACCEPTCONN Socket has had listenO
SO=:USELOOPBACK Bypass hardware when possible
SO OOBINLINE Leave received OOB data in line

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates the rules used in validating addresses supplied in a
bind call should allow reuse of local addresses.

SO_KEEP ALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection
is considered broken and processes using the socket are notified through a SIGPIPE
signal.

SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network interface,
according to the network portion of the destination address.

SO_LINGER controls the actions taken when unsent messages are queued on the
socket and a close is performed. When using the setsockopt to set the linger
values, the option value for the SO_LINGER command is the address of a linger
structure:

struct linger {
int 1 - onoff; /* option on/off */
int l_linger; /* linger time */

} ;

If the socket promises reliable delivery of data and l_onoff is nonzero, the system
blocks the process on the close attempt until it is able to transmit the data or until
it decides it is unable to deliver the information. A timeout period, termed the linger
interval, is specified in I_linger in seconds. If l_onoff is set to zero (0) and a close
is issued, the system processes the close in a manner that allows the process to
continue as quickly as possible.

SO_BROADCAST is used to enable or disable broadcasting on the socket.

Return Value
A -1 is returned if an error occurs. Otherwise, the return value is a descriptor to be
used in other calls to refer to the socket.

Diagnostics
The socket call fails if:

[EAFNOSUPPORT]

[ESOCKTNOSUPPORT]

The specified address family is not supported in this
version of the system.

The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]
The specified protocol is not supported.

2-200 System Calls

socket (2)

[EPROTOTYPE]
Request for a type of socket for which there is no supporting protocol.

[EMFILE] The per-process descriptor table is full.

[ENOBUFS]
No buffer space is available. The socket cannot be created.

See Also
accept(2), bind(2), c1ose(2), connect(2), getsockname(2), getsockopt(2), ioctl(2),
listen(2), read (2), recv(2), select(2), send(2), setsockopt(2), shutdown(2),
socketpair(2), protocols(5), services(5), write(2),
"A 4.2 BSD Interprocess Communication Primer," ULTRIX Supplementary
Documents, Vol. III:System Manager,
Guide to the Data Link Interface

System Calls 2-201

socketpair (2)

Name

Syntax

socketpair - create a pair of connected sockets

#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

Description
The socketpair call creates an unnamed pair of connected sockets in the specified
domain d, of the specified type, and using the optionally specified protocol. The
descriptors used in referencing the new sockets are returned in sv[O] and sv[l]. The
two sockets are indistinguishable.

Return Value
A zero (0) is returned if the call succeeds, -1 if it fails.

Diagnostics
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this
machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket
pairs.

[EFAULT]

See Also

The address sv does not specify a valid part of the process
address space.

pipe(2), read(2), write(2)

2-202 System Calls

Name

Syntax

startcpu - start a CPU

startcpu(cpunumber)
int cpunumber;

Description

startcpu (2)

The start cpu system call starts the CPU specified by cpunumber. Any non-boot
CPU can be started using this system call. Only a superuser can execute this system
call.

\ Return Values
The startcpu call returns 0 if the CPU was started successfully, or else it returns
-1 and sets ermo appropriately.

Diagnostics

[EPERM]

[EBUSY]

[ENODEV]

[EINVAL]

See Also

The caller is not a superuser

The CPU is already running

No CPU present by the given cpunumber

Invalid value for cpunumber. A valid cpunumber is between 0 and
31.

stopcpu(2), startcpu(8), stopcpu(8)

System Calls 2-203

stat (2)

Name

Syntax

stat, lstat, fstat - get file status

#include <sys!types,h>
#include <sys!stat,h>

stat(path, buf)
char *path;
struct stat *buf;

Istat(path, but>
char *path;
struct stat *buf;

fstat(fd, but>
intfd;
struct stat *buf;

Description
The stat system call obtains infonnation about the file path. Read, write, or
execute pennission of the named file is not required, but all directories specified in
the path name that leads to the file must be reachable.

The lstat system call is like stat, except when a named file is a symbolic link.
In this instance, 1 s tat returns infonnation about the link; s tat returns infonnation
about the file that is referenced by the link.

The fstat system call and the open system call obtain the same infonnation about
an open file referenced by the argument descriptor.

The buf is a pointer to a s tat structure. Infonnation about a file is placed in the
s tat structure. The contents of the structure pointed to by buf includes the
following:
struct stat {

dev t st dev; 1* device inode resides on *1 -
ina t st ino; 1* this inode's number *1 -
u short st _mode; 1* protection *1
short st nlink; 1* number or hard links to the file *1 -
short st_uid; 1* user-id of owner *1
short st_gid; 1* group-id of owner *1
dev t st - rdev; 1* the device type, for inode that is device
off t st size; 1* total size of file *1 -
time t st atime; 1* file last access time *1
int st_sparel;
time t st_mtime; 1* file last modify time *1
int st_spare2;
time t st ctime; 1* - file last status change time *1
int st_spare3;
long st_blksize; 1* optimal blocksize for file system ilo ops *1
long st_blocks; 1* actual number of blocks allocated *1
long st spare4;
u_long ;t_gennum; 1* file generation number *1

} ;

2-204 System Calls

*1

sCatime

scmtime

scctime

stat (2)

The time when file data was last read or modified. This is changed by
the system calls mknod(2) utimes(2) and read(2) For efficiency,
sCatime is not set when a directory is searched.

The time when data was last modified. It is not set by changes of
owner, group, link count, or mode. It is changed by the system calls
mknod(2) utimes(2) and write(2)

The time when file status was last changed. It is set by writing and
changing the i-node. It can be changed by the following system calls:
chmod(2) chown(2) link(2) mknod(2) unlink(2) utimes(2 and
write(2)

The status information word sf_mode has the following bits:

#define S IFMT 0170000 1* type of file *1
#define S IFDIR 0040000 1* directory *1
#define S IFCHR 0020000 1* character special *1
#define S IFBLK 0060000 1* block special *1
#define S IFREG 0100000 1* regular *1
#define S IFLNK 0120000 /* symbolic link * /
#define S IFSOCK 0140000 1* socket *1
#define S IFIFO 0010000 /* FIFO - named pipe */
#define S ISUID 0004000 /* set user id on execution */
#define S ISGID 0002000 /* set group id on execution */
#define S ISVTX 0001000 /* save swapped text even after use */
#define S IREAD 0000400 /* read permission, owner */
#define S IWRITE 0000200 /* write permission, owner *1
#define S IEXEC 0000100 1* execute/search permission, owner *1

The mode bits 0000070 and 0000007 encode group and others permissions. For
further information, see chmod(2).

Whenfd is associated with a pipe, fstat returns a buffer with only sCblksize set.

Environment
SYSTEM_FIVE

Unlike the System V definition, ELOOP is a possible error condition.

Restrictions
Applying fstat to a socket returns a zeroed buffer and [EOPNOTSUPP].

The fields in the stat structure marked sf_spare] , sf _spare2, and sf _spare3 are used
when inode time stamps expand to 64 bits. This, however, can break certain
programs that depend on the time stamps being contiguous in calls to u time s.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

Diagnostics
The stat and lstat system calls fail if any of the following is true:

[EACCES]

[EFAULT]

Search permission is denied for a component of the path prefix.

The buf or name points to an invalid address.

System Calls 2-205

stat (2)

[EIO]

[ELOOP]

An I/O error occurred while reading from or writing to the file
system.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

[ENOTDIR]

A component of a pathname exceeds 255 characters, or an entire
path name exceeds 1023 characters.

The named file does not exist or path points to an empty string and
the environment defined is POSIX or SYSTEM_FIVE.

A component of the path prefix is not a directory.

The fstat system call fails if one or more of the following are true:

[EBADF] The fildes is not a valid open file descriptor.

[EFAULT]

[EIO]

The but points to an invalid address.

An I/O error occurred while reading from or writing to the file
system.

[EOPNOTSUPP] The file descriptor points to a socket.

[ETIMEDOUT] A connect request or remote file operation failed because the -
connected party did not respond after a period of time determined
by the communications protocol.

See Also
chmod(2), chown(2), link(2), mknod(2), read(2), unlink(2), utimes(2), write(2)

2-206 System Calls

Name

Syntax

stopcpu - stop a CPU

stopcpu(cpunumber)
int cpunumber;

Description

stopcpu(2)

The stopcpu system call stops the CPU specified by cpunumber. Any nid-boot
CPU can be stopped using this system call. Only a superuser can execute the
stopcpu system call.

Return Values
The stopcpu call returns 0 if the CPU was stopped successfully, or else it returns
-1 and sets erma appropriately.

Diagnostics

[EPERM]

[EACCES]

[EBUSY]

[EINVAL]

See Also

The caller is not a superuser

Trying to stop boot CPU

The CPU is already stopped or no such CPU present

Invalid value for cpunumber. A value cpunumber is between 0 and
31.

startcpu (2), startcpu (8), stopcpu (8)

System Calls 2-207

swapon(2)

Name

Syntax

swapon - add a swap device for interleaved paging/swapping

swapon(special)
char *special;

Description
The swapon system call makes the block device special available to the system for
allocation for paging and swapping. The names of potentially available devices are
known to the system and defined at system configuration time. The size of the swap
area on special is calculated at the time the device is first made available for
swapping.

Restrictions
There is no way to stop swapping on a disk so that the pack may be dismounted.

Diagnostics
The swapon system call succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[ELOOP]

[EPERM]

[ENOTBLK]

[EBUSY]

[EINVAL]

[ENXIO]

[EIO]

[EFAULT]

See Also

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named device does not exist.

Search permission is denied for a component of the path prefix.

Too many symbolic links were encountered in translating the
pathname.

The caller is not the super-user.

The special is not a block device.

The device specified by special has already been made available
for swapping.

The device configured by special was not configured into the
system as a swap device.

The major device number of special is out of range. (This
indicates that no device driver exists for the associated hardware.)

An I/O error occurred while opening the swap device.

The special points outside the process's allocated address space.

config(8), swapon(8)

2 208 System Calls

Name

Syntax

symlink - make symbolic link to a file

syrnlink(narnel, narne2)
char *narne1, *narne2;

symlink(2)

Description
A symbolic link name2 is created to name} (name2 is the name of the file created,
name} is the string used in creating the symbolic link). Either name can be an
arbitrary path name. The files need not be on the same file system.

Return Value
Upon successful completion, a zero (0) value is returned. If an error occurs, the error
code is stored in errno, and a -1 value is returned.

Diagnostics
The symbolic link is made, unless one or more of the following are true:

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

A component of the name2 prefix is not a directory.

The name2 already exists.

A component of the name2 path prefix denies search permission.

The file name2 would reside on a read-only file system.

The name} or name2 points outside the process's allocated address
space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[ENOENT]

[BIO]

[ENOSPC]

[ENOSPC]

[ENOSPC]

[EDQUOT]

A component of either pathname exceeded MAXNAMELEN
characters, or the entire length of either pathname exceeded
MAXPATHNAME characters.

The named file does not exist.

An I/O error occurred while making the directory entry for name2,
or allocating the inode for name2, or writing out the link contents
of name2.

The directory in which the entry for the new symbolic link is being
placed cannot be extended, because there is no space left on the
file system containing the directory.

The new symbolic link cannot be created, because there is no
space left on the file system that will contain the symbolic link.

There are no free inodes on the file system on which the symbolic
link is being created.

The directory in which the entry for the new symbolic link is being

System Calls 2-209

symlink(2)

[EDQUOT]

[EDQUOT]

[EIO]

placed cannot be extended because the user's quota of disk blocks
on the file system containing the directory has been exhausted.

The new symbolic link cannot be created because the user's quota
of disk blocks on the file system that will contain the symbolic
link has been exhausted.

The user's quota of inodes on the file system on which the user's
symbolic link is being created has been exhausted.

An I/O error occurred while making the directory entry or
allocating the inode.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
In(1), link(2), readlink(2), stat(2), unlink(2)

2-210 System Calls

sync (2)

Name
sync - update super-block

Syntax
syncO

Description
The sync system call causes all information in memory that should be on disk to be
written out. This includes modified superblocks, modified i-nodes, and delayed block
I/O.

Programs that examine a file system, for example, fsck or df, use the sync
system call. The writing, although scheduled, is not necessarily complete upon return
from sync.

See Also
sync(l), fsync(2), update(8)

System Calls 2-211

;C syscall (2)

Name
syscall- indirect system call

Syntax
syscall(number, args, ...)

Description
The syscall system call performs the system call whose assembly language
interface has the specified number, and further arguments args. There may be no
arguments.

The return value of the system call is returned.

Diagnostics
If an error occurs, syscall returns -1 and sets the external variable errno.

See Also
ermo(2)

2-212 System Calls

syscall(2) VI

Name
syscall - indirect system call

Syntax
syscall(number, arg, ...)

Description
The syscall system call performs the system call whose assembly language
interface has the specified number, register arguments rO and r 1, and further
arguments arg.

The rO value of the system call is returned.

Restrictions
There is no way to simulate system calls such as pipe, which return values in
register r 1 .

Diagnostics
When the C-bit is set, syscall returns -1 and sets the external variable erma.

See Also
ermo(2), pipe(2)

System Calls 2-213

truncate (2)

Name

Syntax

truncate, ftruncate - truncate a file to a specified length

truncate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

Description
The truncate system call causes the file named by path or referenced by fd to be
truncated to, at most, length bytes in size. If the file previously was larger than this
size, the extra data is lost. With ftruncate, the file must be open for writing.

Return Value
A value of zero (0) is returned if the call succeeds. If the call fails, a -1 is returned,
and the global variable errno specifies the error.

Restrictions
Partial blocks discarded as the result of truncation are not zero-filled. This can result
in holes in files that do not read as zero.

Diagnostics
The truncate system call succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

Search permission is denied for a component of the path prefix.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being
executed.

The path points outside the process's allocated address space.

[ENAMETOOLONG]

[ELOOP]

[EIO]

A component of a pathname exceeded 255 characters, or an entire
path name exceeded 1023 characters.

Too many symbolic links were encountered in translating the
pathname.

An I/O error occurred updating the inode.

The ftruncate system call succeeds unless:

[EBADF] The fd is not a valid descriptor.

2-214 System Calls

truncate (2)

[EINVAL] The fd references a socket, not a file.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
open(2)

System Calls 2-215

umask(2)

Name

Syntax

umask - set file creation mask

#include <sys/types.h>
#include <sys/stat.h>

oumask = umask(numask)
mode _ t oumask, numask;

Description
The umask system call sets the process's file mode creation mask to numask and
returns the previous value of the mask. The low-order nine bits of numask are used
whenever a file is created, clearing corresponding bits in the file mode. (For further
information, see chmod(2).) This clearing allows each user to restrict the default
access to his or her files.

The value is initially 022 (write access for owner only). The mask is inherited by
child processes.

The previous value of the file mode mask is returned by the call.

Environment

POSIX
When your program is compiled in POSIX mode, the numask argument is of type
mode_t and the umask function returns a value of type mode_to

See Also
chmod(2), mknod(2), open(2)

2-216 System Calls

Name

Syntax

uname - get name of current system

#include <limits.h>
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

uname(2)

Description
The uname system call stores information identifying the current system in the
structure pointed to by name.

The uname system call uses the structure defined in <sys/utsname. h> whose
members are:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

The constant SYS_NMLN is defined in <limits. h>.

The uname system call returns a null-terminated character string naming the current
ULTRIX system in the character array, sysname. Similarly, nodename contains the
name that the system is known by on a communications network. The release and
version further identify the operating system. The machine contains a standard name
that identifies the hardware that the ULTRIX system is running on.

Return Value
Upon successful completion, a nonnegative value is returned. Otherwise, -1 is
returned, and ermo is set to indicate the error.

Diagnostics

[EFAULT] The uname system call fails if name points to an invalid address.

System Calls 2-217

unlink(2)

Name

Syntax

unlink - remove directory entry

unlink(path)
char *path;

Description
The unlink system call removes the entry for the file path from its directory. If
this entry was the last link to the file, and no process has the file open, then all
resources associated with the file are reclaimed. If, however, the file was open in any
process, the actual resource reclamation is delayed until it is closed, even though the
directory entry has disappeared.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and ermo is set to indicate the error.

Diagnostics
The unlink system call succeeds unless:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

A component of the path prefix is not a directory.

The named file does not exist or path points to an empty string and
the environment defined is POSIX or SYSTEM_FIVE.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to
be removed.

The entry to be unlinked is the mount point for a mounted file
system.

The named file resides on a read-only file system.

The path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG]

[EPERM]

[EPERM]

[EPERM]

2-218 System Calls

A component of a pathname exceeded 255 characters, or an entire
pathname exceeded 1023 characters.

The named file is a directory and the effective user ID of the
process is not the superuser.

The named file is a directory and the environment is defined is
POSIX.

The directory containing the file is marked sticky, and neither the
containing directory nor the file to be removed are owned by the
effective user ID.

[EIO]

unlink(2)

An I/O error occurred while deleting the directory entry or
deallocating the inode.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

[ETXTBSY]

Environment

The named file is the last link to a shared text executable and the
environment defined is POSIX or SYSTEM_FIVE.

Differs from the System V definition in that ELOOP is a possible error condition.

See Also
close(2), link(2), rmdir(2)

System Calls 2-219

ustat(2)

Name

Syntax

ustat - get file system statistics

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, but')
dev t dev;
struct ustat *buf;

Description
The us tat call returns information about a mounted file system. The dev argument
is a device number identifying a device containing a mounted file system. The buf
argument is a pointer to a ustat structure that includes the following elements:

daddr t f_tfree;
ino t f_tinode;
char f_fname[S12J;
char f_fpack[6J;

/* Total free blocks (Kbytes) */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */

The f Jpack always returns a null string.

Environment

SYSTEM V

Differs from System V definition in that the size of the Cfname structure element is
512 instead of 6, and the dev parameter is type dev_t instead of int.

Diagnostics
The ustat call fails if any of the following is true:

[EINV AL] The dev argument is not the device number of a device containing
a mounted file system.

[EFAULT] The buf argument points outside the process's allocated address
space.

[ETIMEDOUT] A connect request or remote file operation failed, because the
connected party did not properly respond after a period of time that
is dependent on the communications protocol.

See Also
stat(2), fs(5)

2-220 System Calls

Name

Syntax

utimes - set file times

#include <sys/time.h>
#include <utime.h>

utimes(file, tvp)
char *file;
struct timeval *tvp[2};

utimes(2)

Description
The utimes call uses the accessed and updated times from the tvp vector to set the
corresponding recorded times for file.

If tvp is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file, the superuser, or have write
permission to use utimes in this manner.

If tvp is not NULL, the caller must be the owner of the file or the superuser.

The inode-changed time of the file is set to the current time.

Return Value
Upon successful completion, a value of zero (0) is returned. Otherwise, a value of -1
is returned, and errno is set to indicate the error.

Diagnostics
The u time s system call fails if one or more of the following are true:

[EACCES]

[EACCES]

[EFAULT]

[EIO]

[ELOOP]

Search permission is denied for a component of the path
prefix.

The tvp argument is NULL and the caller is not the owner of
the file; write access is denied.

The file or tvp points outside the process's allocated address
space.

An I/O error occurred while reading or writing the affected
inode.

Too many symbolic links were encountered in translating the
pathname.

[ENAMETOOLONG] A component of a pathname exceeds 255 characters, or an
entire pathname exceeds 1023 characters.

[ENOENT]

[ENOTDIR]

[EPERM]

The named file does not exist.

A component of the path prefix is not a directory.

The tvp argument is not NULL, the caller has write access,
the caller is not the owner of the file, and the caller is not the
superuser.

System Calls 2-221

utimes(2)

[EROFS]

[ETIMEDOUT]

See Also
stat(2)

2-222 System Calls

The file system containing the file is mounted read-only.

A connect request or remote file operation failed, because the
connected party did not respond after a period of time
determined by the communications protocol.

Name

Syntax

vfork - spawn new process in a virtual memory-efficient way

pid = vforkO
int pid;

vfork(2)

Description
The vfork can be used to create new processes without fully copying the address
space of the old process, which is inefficient in a paged environment. It is useful
when the purpose of fork would have been to create a new system context for an
execve. The vfork system call differs from fork in that the child borrows the
parent's memory and thread of control until a call to execve or an exit (either by a
call to exi t(2) or abnormally.) The parent process is suspended while the child is
using its resources.

The vfork system call returns a value of zero (0) in the child's context and, later,
the pid of the child in the parent's context.

The vfork system call can normally be used just like fork. It does not work,
however, to return while running in the childs context from the procedure which
called vfork, because the eventual return from vfork would then return to a
nonexistent stack frame. Be careful, also, to call exit rather than exit if you cannot
call execve, because exit will flush and close stindard I/O channels and thereby
cause problems in the parent process's standard I/O data structures. Even with fork
it is wrong to call exit, because buffered data would then be flushed twice.

Restrictions
To avoid a possible deadlock situation, processes which are children in the middle of
a vfork are never sent SIGTTOU or SIGTTIN signals. Rather, output or ioctls are
allowed, and input attempts result in an end-of-file indication.

Diagnostics
Same as for fork.

See Also
execve(2), fork(2), sigvec(2), wait(2)

System Calls 2-223

vhangup(2)

Name
vhangup - virtually hang up the current control terminal

Syntax
vhangup ()

Description
The vhangup system call initializes a terminal line. For example, the ini t
command uses vhangup to ensure that the previous user's processes cannot access
the terminal anymore.

First, vhangup searches the system tables for references to the current terminal (the
control terminal of the invoking process) and revokes access permissions on each
instance of the terminal that it finds.

The vhangup system call also removes all references to the inode that corresponds
to the control terminal. The vhangup system call then invokes the kernel's device
close routine to tum the terminal off. Finally, vhangup sends a hangup signal
(SIGHUP) to the process group of the control terminal. For further information, see
t t y(4) for a description of process groups.

When vhangup finishes, a terminal line is initialized; no other processes refer to
this line. The only way for other processes to access the control terminal is through
the special file, / dev / tty. All other requests will yield 1/0 errors (EBADF).

See Also
init(8)

2-224 System Calls

Name

Syntax

wait, wait3, waitpid - wait for process to tenninate

#include <sys/types.h>
#include <sys/wait.h>

pid = wait(status)
pid_t pid;
union wait *status;

pid = wait«union wait*)O)
pid_t pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
pid t pid;
union wait *status;
int options;
struct rusage *rusage;

pid = waitpid(pid, status, options)
pid_t pid;
union wait *status;
int options;

wait(2)

Description
The wai t system call causes its caller to delay either until a signal is received or one
of its child processes tenninates. If a child process has died since the last wa it,
return is immediate, returning the process id and exit status of one of the tenninated
child processes. If a child process does not exist, return is immediate, with the value
-1 returned.

On return from a successful wait call, if status is nonzero, the high byte of status
contains the low byte of the argument to exit supplied by the child process; the low
byte of status contains the tennination status of the process. A more precise
definition of the status word is given in <sys/wai t. h>.

The wai t3 system call provides an alternate interface for programs that must not
block when collecting the status of child processes. The status parameter is defined
as above. The options parameter is used to indicate that the call should not block if
there are no processes that wish to report status (WNOHANG), or that only children
of the current process, which are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP,
or SIGSTOP signal, should have their status reported (WUNTRACED). If rusage is
nonzero, a summary of the resources used by the tenninated process and all its
children is returned (this infonnation is not available for stopped processes).

When the WNOHANG option is specified and no processes wish to report status,
wai t 3 returns a pid of zero (0). The WNOHANG and WUNTRACED options can
be combined by ORing the two values.

System Calls 2-225

wait(2)

See sigvec(2) for a list of tennination statuses (signals). A 0 status indicates
nonnal tennination. A special status (0177) is returned for a process stopped by the
process tracing mechanism, ptrace(2). If the 0200 bit of the tennination status is
set, a core image of the process was produced by the system.

If the parent process tenninates without waiting on its children, the initialization
process (process ID = 1) inherits the children.

The wai tpid system call provides an interface for programs that want to wait for a
specific child process or child processes from specific process groups. The wai tpid
system call behaves as follows:

• If pid is equal to -1, status is requested for any child process.

• If pid is greater than zero, it specifies the process ID of a single child process
for which status is requested.

• If pid is equal to zero, status is requested for any child process whose process
group ID is equal to that of the calling process.

• If pid is less than -1, status is requested for any child process whose process
group ID is equal to the absolute value of pid.

The status and options arguments are defined as above. The wai tpid system call
behaves identically to the wai t system call, if the pid argument has a value of-1
and the options argument has a value of zero (0).

The wai t, wai t3, and waitpid system calls are automatically restarted when a
process receives a signal while awaiting tennination of a child process, unless the
SV _INTERRUPT bit has been set for that signal. See sigvec(2).

The following macros, defined in <sys/wai t. h> can be used to interpret the
infonnation contained in the status parameter returned by the wait functions; the
stat_val argument is the value pointed to by the status argument.

WIFEXITED(stat val)
Evaluates to a nonzero value, if status was returned for a child process that
tenninated nonnally.

WEXITST ATUS(stat val)
If the value of WIFEXITED(stat val) is nonzero, this macro evaluates to
the low-order eight bits of the starus argument that the child process
passes to _ exi t or exi t, or the value the child process returned from
main.

WIFSIGNALED(stat val)
Evaluates to a nonzero value, if status was returned for a child process that
tenninated due to the receipt of a signal that was not caught.

WTERMSIG(stat val)
If the value of WIFSIGNALED(stat val) is nonzero, this macro evaluates
to the number of the signal that caused the tennination of the child
process.

WIFSTOPPED(stat _val)

2-226 System Calls

wait(2)

Evaluates to a nonzero value, if status was returned for a child process that
is currently stopped.

WSTOPSIG(stat _val)
If the value of WIFSTOPPED(stat val) is nonzero, this macro evaluates to
the number of the signal that caused the child process to stop.

Return Value
If wai t, wait 3, or wai tpid returns due to a stopped or terminated child process,
the process ID of the child is returned to the calling process. Otherwise, a value of
-1 is returned, and ermo is set to indicate the error.

The wa i t 3 and wa i t pi d system calls return -1, if there are no children not
previously waited for. A value of zero (0) is returned, if WNOHANG is specified
and there are no stopped or exited children.

Environment
SYSTEM_FIVE

When your program is compiled using the System V environment, when the SIGCLD
signal is being ignored, wai t continues until all children terminate. SIGCLD is the
same as SIGCHLD.

In addition, when using the System V environment, status is of type int *.
POSIX

When using the POSIX environment, status is of type int *.
In addition, the SV _INTERRUPT flag is always set in POSIX mode, causing the
above system calls to always fail, if interrupted by a signal.

Diagnostics
The wai t, wai t3, or wai tpid system calls fail and return is immediate, if any of
the following is true:

[ECHILD]

[ECHILD]

[EINTR]

[EINVAL]

[EFAULT]

See Also

The calling process has no existing unwaited-for child processes.

The process or process group specified by pid does not exist or is
not a child of the calling process.

The function was interrupted by a signal. The value of the location
pointed to by status is undefined.

The value of the options argument is not valid.

The status or rusage arguments point to an illegal address.

exit(2), ptrace(2), sigvec(2)

System Calls 2-227

write(2)

Name

Syntax

write, writev - write on a file

write lfd, buf, nbytes)
intfd;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

writev lfd, iov, ioveclen)
intfd;
struct iovec *iov;
int ioveclen;

Arguments

fd Descriptor returned by a creat, open, dup, fcntl, pipe, or
socket system call.

buf

nbytes

iov

ioveclen

Description

Points to the buffer containing the data to be written.

Positive integer defining the number of bytes to be written from the
buffer.

Points to a data structure oftype iovec, which defines the starting
location of the set of vectors forming the array and the length of each
individual vector in the array to be written.

This structure is defined in <sys/uio. h> as follows:

struct iovec {

caddr_t iov_base;
int iov_len ;

} ;

The caddr t data type is defined in <sys/types. h> and is the
recommended way to define an address for a character value. In any
case, the address iov base is the starting address of the set of
vectors. The integer value iov _len is the length of each individual
vector, in bytes.

Defines the number of vectors in the array of data to be written. Note
that the numbering of the vectors begins with 0 and proceeds through
ioveclen -1.

The wri te system call attempts to write a buffer of data to a file. The wri tev
system call attempts to write an array of buffers of data to a file.

2-228 System Calls

write(2)

When a file is opened to a device capable of seeking (such as a disk or tape), the
write starts at the position given by the file pointer associated with the file descriptor,
fd. This file pointer is the offset, in bytes, from the beginning of the file where the
write is to begin. When the file is first opened, the file pointer is set at O. It can be
modified by the read(2) lseek(2) and write system calls. When the write call
returns, the file pointer is incremented by the number of bytes actually written.

When the file is opened to a device not capable of seeking (such as sockets, pipes, or
terminals), the write starts at the current position. The value of the pointer associated
with such an object is undefined.

By default, wr i t e does asynchronous writes. That is, after the data is written to a
buffer cache, control returns to the program. The actual write to a device takes place
after control returns. However, if you use an open or fcntl call to open a file for
synchronous writes, control does not return to the program until after the buffer cache
has been written to the device.

If a program is using wr i te to a remote file over NFS, and an asynchronous write
error occurs, then all subsequent wr i t e requests will return -1 and ermo will be set
to the asynchronous error code. Also, a subsequent fsync(2) or close(2) will
likewise fail. The return code from close(2) should be inspected by any program
that can write over NFS.

Write requests to a pipe (or FIFO) are handled the same as a regular file, with the
following exceptions:

• A file offset is not associated with a pipe. Therefore, each wr i t e request
appends to the end of the pipe.

• Write requests less than or equivalent to {PIPE_BUF} bytes are not interleaved
with data from other processes doing writes on the same pipe. Write requests
greater than {PIPE_BUF} bytes can interleave on arbitrary boundaries with
writes by other processes.

• If the O_NDELA Y and O_NONBLOCK flags are clear, a write can cause the
process to block, but, under normal completion, it returns nbytes.

• If the O_NDELAY or O_NONBLOCK flag is set, the write function does
not block the process. Write requests less than or equal to {PIPE_BUF} bytes
either succeed and return nbytes or -1, and ermo is set to [EWOULDBLOCK].
Write requests that exceed {PIPE_BUF} bytes can return complete success,
partial write, or no success, and ermo is to [EWOULDBLOCK].

Environment

SYSTEM V
When your program is compiled using the System V environment, and the file was
opened with the ° _NDELA Y flag set, a w r i t e to a full pipe (or FIFO) returns a
zero (0), rather than an error, as for the ULTRIX non-System V environment.

Differs from the System V definition in that the value nbytes is int, rather than
unsigned.

System Calls 2-229

write(2)

When your program is compiled using POSIX environment, EAGAIN is returned in
ermo, in place of EWOULDBLOCK.

Return Value
Upon successful completion, the number of bytes actually written is returned.
Otherwise, a -1 is returned, and errno is set to indicate the error.

Diagnostics
The wri te system call fails and the file pointer will remain unchanged, if any of the
following is true:

[EACCESS]

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

The file does not permit writing. NFS only.

The fd argument is not a valid descriptor open for writing.

An attempt was made to write to a pipe that is not open for reading
by any process.

An attempt was made to write to a socket of type
SOCK_STREAM that is not connected to a peer socket.

An attempt was made to write a file that exceeds the process's file
size limit, set by ulimi t(2) or the maximum file size
(approximately 2 Gigabytes).

Part of the array pointed to by iov or data to be written to the file
points outside the process's allocated address space.

[EWOULDBLOCK]

[ENOSPC]

[EDQUOT]

[EIO]

[EINTR]

[EINVAL]

[EROFS]

[ESTALE]

[ETIMEDOUT]

2-230 System Calls

The O_NDELA Y or O_NONBLOCK flag is set for the file
descriptor and the process would be delayed in the write operation.

There is no free space remaining on the file system containing the
file.

The user's quota of disk blocks on the file system containing the
file has been exhausted.

An I/O error occurred while reading from or writing to the file
system.

The write operation was interrupted, no data was transferred.

The nbytes argument is negative.

The file is on a read-only file system. NFS only.

The fd argument is invalid because the file referred to by that file
handle no longer exists or has been revoked. NFS only.

A write operation failed because the server did not properly
respond after a period of time that is dependent on the
mount(8nfs) options. NFS only.

write (2)

See Also
close(2), creat(2), dup(2), fcnt1(2), fsync(2), lseek(2), open(2), pipe(2), socket(2)

System Calls 2-231

A

accept system call, 2-10

access system call, 2-12

accounting file

turning on, 2-14

acct system call, 2-14

adjtime system call, 2-16

advisory lock

defined, 2-64

audcntl system call, 2-19

return value, 2-20

audgen system call, 2-21

diagnostics, 2-21

restricted, 2-21

audit control, 2-19

B

bind system call, 2-22

See a/so listen system call

brk system call, 2-26

c
chdir system call, 2-30

See also chroot system call

chmod system call, 2-32

chown system call, 2-35

chroot system call, 2-37

clock

synchronizing, 2-16

close system call, 2-39

See also open system call

connect system call, 2-41

See also shutdown system call

creat system call, 2-43

See a/so open system call

o
data memory

changing protection, 2-118

changing size, 2-26

datagram

defined, 2-198

device

allocating for paging, 2-208

allocating for swapping, 2-208

directory

creating, 2-108, 2-110

getting entries, 2-69 to 2-70

removing, 2-155

renaming, 2-153

disk quota

enabling,2-170

manipulating, 2-143

domain

getting name, 2-71

setting name, 2-71

dup system call, 2-45

dup2 system call, 2-45

E

effective group ID

getting, 2-73, 2-98

setting, 2-172

effective user ID

getting, 2-98

setting, 2-173

Index

errno error list, 2-46

errno variable, 2-46

executable object file

defined, 2-52

execution time

profiling, 2-137

execve system call, 2-52

See also environ global variable

diagnostics, 2-53

restricted, 2-53

_exit system call, 2-55

exportfs system call, 2-56

F

fchmod system call, 2-32

fchown system call, 2-35

fcntl system call, 2-57

file

close system call, 2-57

diagnostics, 2-62

dup2 system call, 2-57

request definitions, 2-57

return value, 2-62

applying advisory lock, 2-64

changing group, 2-35

changing mode, 2-32

changing owner, 2-35

checking accessibility, 2-12

creating, 2-43, 2-110

creating hard link, 2-103

creating symbolic link to, 2-209

executing, 2-52

getting statistics, 2-220

getting status, 2-204

marking in use, 2-128

opening, 2-128

reading, 2-145

reading symbolic link, 2-148

renaming, 2-153

setting access time, 2-221

setting mode mask, 2-216

setting modification time, 2-221

setting protection, 2-32

Index-2

file (cont.)

synchronizing buffers with disk, 2-67

truncating to specified length, 2-214

unlinking, 2-218

file descriptor

See also process reference table

controlling, 2-57, 2-99

deleting, 2-39

duplicating, 2-45

process reference table, 2-45

file pointer

moving, 2-106

file system

examining, 2-211

exporting, 2-56

getting information on mounted, 2-79

mounting, 2-112 to 2-114

removing, 2-112 to 2-114

flock system call, 2-64

fork system call, 2-66

See also vfork system call

fstat system call, 2-204

fsync system call, 2-67

ftruncate system call, 2-214

G

getdirentries system call, 2-69 to 2-70

diagnostics, 2-70

return value, 2-70

getdomainname system call, 2-71

getdtablesize system call, 2-72

getegid system call, 2-73

geteuid system call, 2-98

getgid system call, 2-73

getgroups system call, 2-74

gethostid system call

See also getpid system call, 2-75

gethostname system call, 2-76

getitimer system call, 2-77

getmnt system call, 2-79

getpagesize system call, 2-81

getpeername system call, 2-82

getpgrp system call, 2-83

See also setpgrp system call

See also tty interface

getpid system call, 2-84

getppid system call, 2-84

getpriority system call, 2-85

getrlimit system call, 2-87

parameter list, 2-87

getrusage system call, 2-89 to 2-91

diagnostics, 2-90

fields, 2-89 to 2-90

restricted, 2-90

getsockname system call, 2-92

getsockopt system call, 2-93

getsysinfo system call, 2-95

gettimeofday system call, 2-97

See also adjtime system call

See also stime system call

getuid system call, 2-98

group access list

getting, 2-74

setting, 2-168

H

hard limit

specifying, 2-87

host ID

getting, 2-75

setting, 2-75

host name

getting, 2-76

setting, 2-76

interlocked access, 2-18

test and set

test and clear, 2-18

interpreter file

defined, 2-52

interval timer

getting value, 2-77

setting value, 2-77

interval timer (cont.)

types, 2-77

intro(2) keyword, 2-1

ioctl system call, 2-99

K
kill system call, 2-100

See also pause subroutine

killpg system call, 2-102

L

link system call, 2-103

See also symlink system call

See also unlink system call

listen system call, 2-105

accept system call, 2-105

Iseek system call, 2-106

Istat system call, 2-204

M

message

control operations, 2-120

getting queue identifier, 2-122

operations, 2-124 to 2-126

mkdir system call, 2-108

mknod system call, 2-110

mount system call (general)

diagnostics, 2-113, 2-112 to 2-114

System V and, 2-112

mount system call (NFS)

diagnostics, 2-116, 2-115 to 2-117

mprotect system call, 2-118

msgctl system call

msgget system call, 2-120

msgsnd system call, 2-120, 2-120

msgget system call

See also ftok subroutine

See also msgsnd system call

diagnostics, 2-122, 2-122

msgop keyword, 2-124 to 2-126

Index-3

msgrcv system call

See also msgctl system call

See also msgget system call

msgsnd system call, 2-124 to 2-126

N
new process file

defined, 2-52

NFS file system

mounting remote, 2-115 to 2-117

nfs_biod system call, 2-127

nfsd daemon

invoking, 2-127

nfs_svc system call, 2-127

o
open system call, 2-128

p

See also close system call

diagnostics, 2-130

flags, 2-128

System V and, 2-130

page size

getting, 2-81

pipe

creating, 2-133

pipe system call, 2-133

plock system call, 2-135

restricted, 2-135

process

controlling resource consumption, 2-87

creating, 2-66

creating efficiently, 2-223

getting information about resource utilization, 2-89

getting process group, 2-83

getting scheduling priority, 2-85

setting scheduling priority, 2-85

signaling, 2-100

terminating, 2-55

tracing, 2-141 to 2-142

Index-4

process (cont.)

waiting for termination, 2-225

process group

defined, 2-83

setting, 2-169

signaling, 2-102

process ID

getting, 2-84

process reference table

getting size, 2-72

profil system call, 2-137

ptrace system call, 2-141 to 2-142

diagnostics, 2-142

restricted, 2-142

System V and, 2-142

Q

quota system call, 2-143

command list, 2-143

diagnostics, 2-144

R
read system call

diagnostics, 2-146, 2-145

send system call, 2-145

System V and, 2-147

write system call, 2-145

readlink system call, 2-148

readv system call, 2-145

real group ID

getting, 2-73, 2-98

setting, 2-172

real user ID

getting, 2-98

setting, 2-173

reboot system call, 2-149

recv system call

See also send system call

diagnostics, 2-152

msghdr structure, 2-151e, 2-151

recvfrom system call, 2-151

recvmsg system call, 2-151

rename system call, 2-153

rmdir system call, 2-155

root directory

changing, 2-37

s
sbrk system call, 2-26

select system call, 2-157

semaphore

control operations, 2-159

getting, 2-161

operations, 2-163 to 2-165

semctl system call, 2-159

commands, 2-159

diagnostics, 2-160

semget system call, 2-159

semop system call, 2-159

semget system call, 2-161

See a/so ftok subroutine

See a/so semctl system call

See a/so semop system call

diagnostics, 2-161

semop system call, 2-163 to 2-165

See a/so semctl system call

See a/so semget system call

diagnostics, 2-164

send system call, 2-166

See also recv system call

diagnostics, 2-167

sendmsg system call, 2-166

sendto system call, 2-166

session

creating, 2-174

setdomainname system call, 2-71

setgroups system call, 2-168

sethostid system call, 2-75

sethostname system call, 2-76

setitimer system call, 2-77

setpgrp system call, 2-169

See a/so getpgrp system call

setpriority system call, 2-85

setquota system call, 2-170

See a/so quota system call

setregid system call, 2-172

setreuid system call, 2-173

setrIimit system call, 2-87

setsid system call, 2-174

setsockopt system call, 2-93

setsysinfo system call, 2-175

seUimeofday system call, 2-97

shared memory

control operations, 2-177

getting, 2-179

operations, 2-181

shmat system call, 2-181

See a/so shrnctl system call

shmctl system cal

plock system call, 2-177

shmctl system call

commands, 2-177

diagnostics, 2-178, 2-177

shrnop system call, 2-177

shmdt system call, 2-181

See a/so shrnget system call

shmget system call

See a/so ftok subroutine

See a/so shrnctl system call

See a/so shrnop system call

diagnostics, 2-179, 2-179

shmop system call, 2-181

shutdown system call, 2-183

sigblock system call, 2-184

See a/so sigpause system call

See a/so sigsetmask system call

signal,2-186

See a/so signal mask

blocking, 2-184

releasing blocked, 2-185

signal handler

assigning, 2-189 to 2-193, 2-194

signal mask

setting, 2-187

signal stack

getting context, 2-188

setting context, 2-188

Index-5

sigpause system call, 2-185

sigpending system call, 2-186

diagnostics, 2-186

sigsetmas~ system call, 2-187

sigstack system call, 2-188

sigvec system call, 2-189 to 2-193, 2-194

diagnostics, 2-191, 2-197

signal list, 2-190, 2-195

VAX notes, 2-196

SMP

startcpu, 2-203

stopcpu, 2-207

SOCK_DGRAM socket type, 2-199

socket

accepting connection, 2-10

binding to a name, 2-22

creating, 2-198

creating connected pair, 2-202

defined types, 2-198

getting name, 2-92

getting options, 2-93

getting peer name, 2-82

initiating a connection, 2-41

mUltiplexing synchronous I/O, 2-157

queuing connections, 2-105

reading, 2-145

receiving message from, 2-151

sending message from, 2-166

setting options, 2-93

shutting down full-duplex connection, 2-183

writing, 2-228

socket system call, 2-198

accept system call, 2-198

address formats, 2-198

bind system call, 2-198

connect system call, 2-198

diagnostics, 2-200

getsockname system call, 2-198

options, 2-199

pipe system call, 2-198

recv system call, 2-198

return value, 2-200

socketpair system call, 2-198

Index-6

socketpair system call, 2-202

See also getpeemame system call

See . also pipe system call

SOCK_RAW socket type, 2-199

SOCK_SEQPACKET socket type

defined, 2-199

SOCK_STREAM socket type

defined,2-199

soft limit

specifying, 2-87

special file

creating, 2-110

stat system call, 2-204

See also ustat system call

diagnostics, 2-205

restricted, 2-205

swapon system call, 2-208

symlink system call, 2-209

See also readlink system call

See also stat system call

diagnostics, 2-209

sync system call, 2-211

syscall system call, 2-212, 2-213

system

getting name, 2-217

getting version number, 2-217

identifying machine type, 2-217

rebooting, 2-149

system call

introduction, 2-1

T

performing indirect, 2-212, 2-213

specifying POSIX environment, 2-1

specifying System V environment, 2-1

tell system call, 2-106

terminal

revoking access, 2-224

test and set

test and clear, 2-18

time

getting, 2-97

setting, 2-97

truncate system call, 2-214

u
umask system call, 2-216

umount system call (general), 2-112

umount system call (NFS), 2-115

uname system call, 2-217

unlink system call, 2-218

ustat system call, 2-220

utimes system call, 2-221

v
vfork system call, 2-223

See also fork system call

vhangup system call, 2-224

w
wait system call, 2-225

See also exit system call

diagnostics, 2-227

System V and, 2-227

wait3 system call, 2-225

waitpid system call, 2-225

working directory

changing, 2-30

write system call, 2-228

See also read system call

See also send system call

diagnostics, 2-230

System V and, 2-229

writev system call, 2-228

Index-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
8oo-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

8oo-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 2: System Calls

M-L Y15B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? _____________________ _

What do you like least about this manual? _____________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

NamelTitle ______________________ _ Dept. ______ _
Company _______________________ ___

Date
Mailing Address _____________________________ _

Email ___________ _ Phone ______ _

-. Do Not Tear - Fold Here and Tape

-----------------------------rfl-rll----------::::::A~:---
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111 111

- -. Do Not Tear - Fold Here . - - -- - - - ------- - - - - - ------- - -- - - ------- - - - - - - - --- - ----- - - - - - - - -- ~

Cut
Along
Dotted
Line

,I
\

Reader's Comments ULTRIX
Reference Pages Section 2: System Calls

AA-L Y15B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? ______________________ _

What do you like least about this manual? ______________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle ________________________ Dept.

Company ___________________ ------- Dare _________ _

Mailing Address ______________________________ _

_____________ EmMI _____________ Phone ___________ __

I
I
I
I
I
I

-----------------------------rrl-rll----------::~:::---I
II NECESSARY

-. Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFlWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111111111111111111 1111111111 II 1111 1111111111

IF MAILED IN THE
UNITED STATES

- -. Do Not Tear - Fold Here .- - - - ----- - - - -- - -- ----- - -- - - -- - ---- - - -- - -- - - - {

Cut
Along
Dotted
Line

