LQUUWUUOUOUWOLWUOOLOUOOUOUW
LUUUOUOUOOOLOWOUOUVOLOOOLOOUW
QUL OUOOLUUOLLUOLUOLOLW

555555551 <
AL 5559
A< gC<aC<< <

el
333333333333333333

AAA
AAA
AAA

AAAAAAAAA

RRRRRRRRRRRR

RRRRRRRRRRRR

RRRRRRRRRRRR
RRR
RRR
RRR

T RRRRRRRRRRRR
T RRRRRRRRRRRR

RRR

RRR

RRR

RRR

RRR

RRR

RRR

RRR

RRR

T RARRRRRRRRRK

17
17
1A

——
b
— -
[l o o ol ol ol ol il ol ol ol ol ol ol ol ol ol ol
|l ol o ol ol ol ol ol ol Sl o ol o ol ol o ol ol o
b b b b b b b b b b b ¢ b b b b b b b

” T - e~ A W ——
— TasesarTasa e secarase te rTa e sasarg g rtR TR e fartataratstars
wiww Wi
[VERVERVY) [VERVWEVe]
[VOIVeRVY) [V RVEIVE)
[VEIVEIVY) [VEANVIVE] www
Wil [YORVNEVE) Wi w
[VEISW]IVY) VOV V] (VNS VVY)
[VOIVIVV) VUV VY] [VEIVVIVE]
[ESNSVN) [VERVERNE) [SWISVEVE]
(YIVU VY] VYISV e] Wi
[SURVERVY) [FUIVEVE) SV RVORVY]
[VVIVE]VE] [SUIVE IV] [YVIVeVE]
[VVIVVe] [FVAFEREE) [VVIVeeu]
WWWIWWWWWIWWWWWwWwWiwuwwwwwiw
[VU]VVVVVUIVE VU IVE VS AVEEVEIVVEVERVO RN VATV VIV IV vE]
[FVIVEVEIVEIVE VIV RVV IV IVEVE IV IV IVE IV VU VIV VW VE I VY]
OO LW
oo Lo
OO Lo
oo oo
L L) LW
LU DOO
LUO LU
o~ oo (RS L]
WO VOO
DO L L Y W
(84 OO (ST
oo OO

FILE]D**TBKDST

b o e o G e o o o o o e o
Rl el e e e e e e

o
—

I

o

wv VWV
Vv VL
wwv wnm (717,
wwv wwv Vv
wwv v wwn
v 717, wwnv
wwv 717, (717
wuv (717, wwv

VWV v

Vv v

Y =-1-1-1-1-1-1-1-1-)

- -0 - -
oo ao
aa i
aa aa
aa aon
aa faya
ao ao
Y =0-1-1-1-1-1-1-1-1-1-1-1-
ococoocoocoocaooocoan
VS VS VSV 0 M MM
M M N M MM M N

MM M M
MM 3 M
b4 Y4
b 44
3 M
V474
M 0 0 0 0 2 0L 0 0 2 0 N ME X
M NE 0 N N NE N N N NE NE M NN

@ ”
@

@ @
@ @

o]

@ [o2]

BB DDDBDBDD
——

b

-

——

P e e e e e e e e e . e (e
(e and od ol o ond o d od d o o o g
——

b

——

T
T

o000 CgO0COQ [= L=]
[« J«J«Jofa e JaJa) [« Ja
[« =) [« X]
oo [« X
[« L= [« X = (= L=
oo oo (= L=}
[« X«] (= L=
[« J =} [« X=
o000 00000C0
COoO000OC0g000
W [VRVE]
Wl [YEVV)
ww ww [FNRVE)
ww ww Ghsiid
[VETVY) [V V] W
[VEVE) [VE]VV] [FVRVE)
Wi wuw [VEVE)
ww ww [V

N
TBKDST.REQ;1 16-SEP-1984 16:58:14.02 Page 1

: DSTRECRDS == DEFINITION FILE FOR THE DEBUG SYMBOL TABLE

5 Version: 'v04-000"

itiii!i".!t!'lt'"itittttttitt.tt'ttttt'ittltttit't'l'i'ttt'i'tt'il't'it'tt'
e *
i+ COPYRIGHT (c) 1978, 1980, 1982, 1984 BY .
i+ DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. "
{* ALL RIGHTS RESERVED. ' »
: *
i+ THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
i ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE ¢
i INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
i* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
i= OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
{+ TRANSFERRED. .
: 4
i* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
s AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
{+ CORPORATION. .
i ITY FOR THE USE OR RELIABILITY OF ITS -

*

3

t* DIGITAL ASSUMES NO RESPONSIBILITY
IS NOT SUPPLIED BY DIGITAL.

1
i* SOFTWARE ON EQUIPMENT WHICH
'
‘e
R R e e e T ety
1

L
S

WRITTEN BY
Bruce Olsen August, 1980
Bert Beander August, 1981
Bert Beander November, 19

MODULE FUNCTION
This REQUIRE file describes the structure of the Debug Symbol Table
?onorated by the VAX compilers and interpreted bl the VA Debu?ger.
t includes definitions for all field names and Literals used in
building or interpreting the Debug Symbol Table (DST).

DISCLAIMER

This interface is not supported by Digital. While the Debug Symbol
Table interface is believed to be correctly described here, Digital
does not guarantee that all descriptions in this definition file are
correct and complete. Also, while thi? interface is expected to be
reasonably stable across releases, Digital cannot guarantee that it
will not change in future releases of VAX DEBUG, VAX VMS, the VAX
compilers, or other software. ?pnard-confat ble additions to %his
interface are more Likely than incompatible changes, but individuals
and organizations who use this interface stand some risk that their
work will be partially or wholly invalidated by future releases of
VAX DEBUG or other Digital software. Digital reserves the right to

83.

18}

[P —————————— e L b b T

TBKDST.REQ; 16=-SEP-1984 16:53:12.0§ Page 2 TBKC

! make future incompatible changes to the Debug Symbol Table interface.

- g 0 S G - - -

TBKDST.REQ;1 16-SEP-1984 16:58:12.0§ Page 3 TBKI

TABLE OF CONTENTS

! !
! !
| !
| !
: Purpose of the Debug Symbol Table « « + + « o+« .. § :
i General Structure of the DST S SR AT |
' Boraration OF 00 BT . & i i i vt i e A e :
' Location of the DST uithin the lmage File :
! Overall Structuro of the DST Ml P L L B S e 1 -
' Nesting within the DST P =l PG B 1 :
; Data Representation in the DST SR ST i 14 :
g Fi.ld Acc.ss N.cros . E . L] L - . - . - . . . L - . 16 E
! The DST Record Header Format cvviie W §
i Supported Values for DSTSB_TYPE + « + « + « « . 18 !
| VAX Standard Tlpe N e ot BRI G i : 18 :
: Internal Type (odes for DEBUG o vy 13 :
5 Othor DSY Type Coll8 .« & o 5 o ¢ ¢ 5 o 5 5 & o . 5w w2 :
i Module DST Records N A RGN R e 22 5
: The Module Begin DST Record” 2 :
E The Moduls ENE DBT ReCorS . - o + s s % 5 ¢ 5 & 5 5 » & 26 :
i Routine DST Records . e R b A e 27 }
! Th' ROUtiﬂC B!‘ fﬂ DST RQCO"d 2 & 8 & 8 = e ® & & ® ® ®» o 28 i
E th. Routin. Eﬂ DST RQCO"d . . . - . . - . . . e . & @ . 29 i
| Lonieol Dlock POT BUBr®l s i s s b a v s snr s asires BN :
! ‘h. alOCk B. iﬂ Dsr R.Cord g & % B " & B S5 " " B 5 ® B B 31 ;
E ‘h. BlOCk Eﬂ DST a.cord 5 5 % 9B W B w8 W8 32 i
i Data Symbol DST Records . . « ¢ « o« o o+ ¢ ¢ ¢ o s o s o s o » 33 :
: The Standard Data DST Record+ ¢« ¢ ¢ v « + & 35 :
! The Descriptor Format DST Record . . + + « « « « « « « « 38 :
: The Trailing Value Specification DST Record 40 :
; The Separate Type Specification DST Record &2 :
i ST Bolug DoeaiTieeltont . . i i s it h s a s i ew s 4% '
: Standard Value Spocifications R R « . & :
! Descriptor Valuo Spocif CORVOME 5 5.5 % 5 & 5D B N 4? :
! Trailing Value Spec v: ue Spocifications A 4 :
H VS=Follows Value S SORTONE o b % xR R A :
: Calls on C ilor-%onerated ThunkS o ¢ ¢ ¢ ¢ o s o s o« &9 :
! 'h' DS‘ St‘C ".Ch ﬂ. So i

;

i

i

i

i

i

!

TBKDST.REQ;1

|
.
|
-
i
.
|
.
|
-
|
.
|
.
\
.
|
.
|
.
|
.
i
-
1
.
!
-
|
.
|
-
L
-
i
-
|
L
|
-
1
.
|
-
i
.
|
-
1
.
1
-
H
-
|
.
]
-
|
-
|
-
!
.
|

M

1
-
)
-
1
-
)
.
1
-
1
-
|
.
i
-
|
.
l
.
1
-
]
.
1
-
1
.

Type Specification DST Records .

DST Type Specifications
et s {friiing o
pafeiotcr Log Soni LI iod

icai . *
ed Pointer Typ ?pocif COtions . .+ .+ »

Ty

Pointer Type Specifications .
Picture Type Specifications .
Arra¥ Type Specifications . .
Set Type Spocific05 oS i & »
Subrange Tgpe ecifications
File Type Specifications . .
Area Type Specifications . .,
Offset Type Specifications .

Self-Relative
Task Type Spec

Novel Length (pe Specifications

fications . .
Enumeration Type DST Records . .

abel Type Specifications

D
16-SEP-1984 16:58:14.0§ Page &

The Enumeration Type Begin DST Record . .
The Enumeration Type Element DST Record .
The Enumeration Type End DST Record . . .

Record Structure DST Records i
The Record Begin DST Record .
The Record End DST Record . .

The Variant Set Begin DST Recor

The variant Value DST Record
Tag Value Range Specifications
The Variant Set End DST Record

BLISS Data DST Records

The BLISS Special Cases DST Record

The BLISS Field DST Record .

Label DST Records « . .
The Label DST Record X

d

The Label-or-Literal DST Record

The Entry Point DST Record . . .

The PSECT DST Record T Tl i S M~ g P Ry e

Line Number PC-Correlation DST Records . e

Line Number PC-Correlation Commands

PC-Correlation Command Semantics

.
.
.
.
.
wn
wn

.
NNNNOOAOAONONONONONONWUWWNY

WO =0 S O=OV0N VIS NN —=0O0V00~NON N — =20000

~N -~~~

VOV OO0 WO~~~

0
~

O
v

.

.

.

.
(=3l]
oo~

-
.
o
-
Ll
-
Ll
e

TBKI

TBKDST.REQ;1

58:15.02 Page 5

16-SEP-1984 16:
Source File Correlation DST Records . . . « « & ¢ &« o o o &« & 1?7
BORLOrY DONED PRE0 & 4.5 2 5 % 5 52 » 8 o 5" b s o u]
2R SUrel P . s s 62 s s a0 a b B ensrss s
Set Source Record Number Long . « .« & « + ¢« ¢ « ¢« ¢« « « « N
Set Source Record Number Word s s o s o ne s 118
Set Line Number Long s s s n s ve s 1B
Set Line Number Wor - ST S SRS N 712
Increment Line Number Byto s 89 o'n» 18
Count Form-Feeds as Source Records « « « & . 8 119
Define N Lines Word D S i AR M - s 13
DTN B LINDD BV ¢ ¢ ¢ o ¢ &+ 59 5. 5% 5 5 89 & s » Y37
The Definition Line Number DST Record « « « « « « « « 118
Th. st.t‘c Link Dsr R.cord k3 - - L - . . . o . L] . 11?
rh' Pr°l°° Ds‘ R.cord . . . - . - . L] . . L] - . 120
The Version Number DST Record . . . + &+ « ¢ ¢ o « = = « = =« « 12
The COBOL Global Attribute DST Record . . . « « « « « « « « « 122
The Overloaded Symbol DST Record PRER e P B T |
EONETODETON DOT Motor S & o » 5 o 4 8 8 5 8 56 5 b s b 125
OO0 D87 DRI s 2 s b 2 e R E AN E SR S s 157
The Global=]s-Next DST BISOMY & 5 6 5% s E ke s 7
The External=Is-Next DST Record « ¢ & « & « s « = 7
The Threaded-Code P(-Correlation DST Record 1 7
The COBOL Hack DST Record s kN w1
The Value Specification DST Record « « « « « « 130
DST Record Declaration Macro . . « ¢« ¢ ¢« ¢« ¢« s ¢« s s e s s « M

S

TBK

F.-.-,-.-.-._.-.-.-.-,-.-.---c-.---u----.-a----.-—-—u-.-.-----.-o-.-o-o—.-.--.---—-----—'—‘-'--—l-

F
TBKDST.REQ;1 16=-SEP=-1984 16:58:1‘.03 Page 6

-

PURPOSE OF THE DEBUG SYMBOL TABLE

The Debug Symbol Table (DST) is the s¥nbol table that the VAX compilers
roduce to pass s{u?ol table information to the VAX chuggor and to the
AX Traceback facility. The DST is a languago-indcpondon sya?ol table

in the sense that all VAX compilers output symbol information in ih.

same format, regardless of source Language. This symbol information is
emitted into the object modules produced b‘ the compiler. It is then
passed throush the linker into the executable 1aago file that the Linker
enerates EBUG or TRACEBACK can then retrieve the symbol information
rom the {nago file.

The furposo of the Debug ?ynbol Table is thus to permit the Tractbask
facility to gﬁvo a s{nbol ¢ stack dump on abnormal program termination
and to permit DEBUG to supgort fully s;nbolic debugging. Other Digital
software may also use the DST information for various purposes.

To support these purposes, the Dobug Symbol Table represents all major
aspects of program structure and data representation. It can represent
modules, routines, lexical blocks, Labels, and data symbols and it can
represent ’ll nesting relationships between such symbols. It can also
describe Line number and source Line information. It can describe all
data types supported bz DEBUG, includina complex types such as record
structures and enumeration types. In addition, it can describe arbi-
trarily complex value and address computations.

The Debug Symbol Table is solely intended to sugport compiled Languages,
not interpreted lLanguages. The DST representation assumes that source
Lines have been compiled into VAX instructions and that those instruc-
tions are actuall¥ executed, not interpreted. Such DEBUG facilities as
breakpoints and single-stepping will not work if this assumption is
violated. Similarly, it is assumed that data objects have addresses
that can be accessed directly when these objects are examined or depo-
sited into. DST information is thus generated b; all compilers that
x:t Diaggnsgpports. but not by the interpreters for lLanguages such as

or .

T
1EI

TBKDST.REQ;1 16-SEP-1984 16:58:12.0§ Page 7

GENERAL STRUCTURE OF THE DST

This snc}ion describes the general structure of the Debug Symbol Table.
It explains how the DST is generated by the ¥arious VAX compilers, how
it is passed along to the executable image file by the Linker, and how
it is accotsos in the image file by DEBUG or TRACEBACK. This section
also describes in general terms how the DST is structured internally:
how it is subdivided into modules, routines, lexical blocks, and indi-
vidual symbols, how nesting relationships are represented, and how data
symbols, including their values and data t{pcs. are represented. The
exact formats of the various Debug Symbol Table records and other fine-
rained detail are described later in this definition file, not here,
ut the coarse structure of the DST and how that structure is accessed
are outlined in this section.

GENERATION OF THE DST

The Debug Symbol Table (DST) is generated b{ the ﬁilors for all VAX
lungua?os supgortod by DEBUG. During compilation, the compiler cutputs
the DST for the module being compiled into the corresponding object
file. When the linker is invoked, it does relocation and global-symbol
resolution on the DST text and then outputs it into the executable image
ile. Beyond knowing what must be relocated, the Linker has no specia
knoulodgo of the format or contents of the DST. Finally, the Dobuagor
reads the DST information from the executable image file during a debug-
?1ng session, or Traceback reads it when giving a traceback in response
o an unhand(ed severe exception during image execution.

A compiler outputs DST information in the form of two kinds of object
records, TBT records and DBT records. (See the Linker manual for a
full description of the VAX object Language accepted by the Linker.)
ALL "'traceback'’ information goes into the TBT records and all '‘symbol
information goes into the DBT records. When }ho user later Links using
the plain LINK command, only the DST information in the TBT records are
copied to the executable image file. These records contain enough in-
formation for Traceback to give a call-stack traceback. If the user
Links with the LINK/DEBUG command, all information in both the TBT and
the DBT records are copied to the executable image file. These records
together give all D?T nformation needed for ful s¥nbol1c dobuggin?.
The user can also Link with LINK/NOTRACEBACK, in which case no DST in-
formation at all is copied to the executable image file.

It is not possible to have th’ Linker cop¥ the DBT records without also
copying the TBT records; the information in the TBT records is requi ‘ed
for the information in the DBT records to make sense.

The ‘'‘traceback’ information in the TBT records includes all Module Begin
and End DST records, all Routine Begin and End DST records, all Lexical
Block Begin and End DST records, and all Line Number PC-Correlation DST
records. It -a‘ also include Version Number DST records. ALl other DST
records should be included in DBT records.

o

H
TBKDST.REQ;1 16=-SEP-1984 16:58:14.03 Page 8

- —— - -~ — - - -~ -~

Most VAX compilers h?gt 8 /DEBUG qua if;or which in its most general
form has two subqual ’rs: IDEBU%t(NOJTRACEBACK ,[NOJSYMBOLS). The
unadorned /ofaus aya ifier is equivalent to /DEBUG=(TRACEBACK,SYMBOLS);
it causes all DST in oraati?n t? be output. /DEBUG=TRACEBACK causes
only the traceback information (the TBT records) to be outg?t by the
compiler. /DEBUG=(NOTRACE ,NOSYMBOL) causes no DST information to be
output at all. Finally, /DEBUG=(NOTRACE,SYMBOLS) causes all DST infor-
mation cucop} Line Number P(-Correlation DST records to be output (this
combination s lar?oly pointless although it savo: some oiT space).
Note that the module, routine, and lexical block information, which

t? as trocob’ck 1nfornot on, must be output if any synbo(informa=-
t ond t‘ougput since it defines the scopes within which other symbols
are defined.

When the Linker outputs the Debug Symbol Table to the executable image
file, it may also output two more image sections: the Global Symbol
Table (GST) and the Debug Module Table (DMT). These two tables are
enerated if the LINK/DEBUG command is used, not otherwise. The Global
ymbol Table contains records for all globa[symbols known to the Linker
in the current user program. DEBUG uses the GST as 1 symbol table of
Last resort when DST information is not available, either because the
module containing some global symbol was compiled without DST informa-
tion being output or because the module is not set (with SET MODULE) in
the current debugging session. The GST information is not as complete
as thg DST information for the same symbols because the GST has no type
description (the linker does not need to know about data types).

The Debug Module Table (DMT) is an indexing structure for the DST. It
contains one record for each module in the DST. This record contains

a pointer to the start of the DST for the corresponding module, the size
of the DST for that module, the number of PSECTs in that module, and the
address ranges of all those PSECTs. The DMT allows DEBUG to initialize
its Module Table and its Static Address Table without actually hovin? to
read through the entire DST; because the DMT is very small compared to
the DST, it can be scanned much more efficiently.

The details of how the DST, the GST, and the DMT are accessed in the
executable image file are explained in the next section.

TBK

P smsmsmas s oms o - -

TBKDST.REQ;1 16-SEP=-1984 16:58:11.0§ Page 9

[P ————————— e e I T Lt Lt e L L L T T T L T e

long
long
long

long
long
long
long
long

LOCATION OF THE DST WITHIN THE IMAGE FILE

The Debug s‘nbol Toblo 13 accessed through pointer information found in
tho exec le image f ’ header block. This header block contains a
o1 ntor na fixod locat on (IHDSW_ SYHDBGOFF) which poi n} s to a small
lock Later in the header wnich gives the size and lLocation of the
Dobu? s¥nbol Table (DST), the Global Symbol Table (GST), and the Debug
e Table (DMT)., The first part of the executable 1-090 file header
Llooks as follows:

- . e - am - - . LA A L L 1 1 1 J -.--------.

+

, :
+ +
i i
+ - - - e mmcnccccccccscrccccecceee ceocacaes +
| i
: :
']
+ +

- - T R D R D P T T D R D S R G P ED ED TD S D ED D) D D WD R R ER D D WP €D b Ch D D D R D G D D S O W @

Here IHDSW_SYMDBGOFF contains the byte offset rolativo to the start of
the header of an Image Header Symbol Table Descri Ytor. The Image Header
Symbol Table Descriptor (IHS) in turn has the following format:

S _Iwssipstvan T
i___ lgESL,ESTVBN _________________ i
oo IHSS_GSTRECS P tnssuostaks i
i-_-__ b IHSSL DHTVBN Sl DD o B 2t i
i____‘_--__-____--__-____EESSL DHIBYTES Q. i L e i
Here IHSSW_DSTBLKS and IHSSL DSVVBN givo tho sizo (in blocks) loca-

tion (Virtual Block Number) ©f the o Symbol Table (DST) uith n
executable image file. The fields lHS TRECS and IHWS L GSTVBN ,i
the size (in GST records) and start location (Virtual Block Number

the Global Syn?ol Table (GST). Finally, the fields lHStL DMTBYTES and
IHSSL_DMTVBN give the size (in bytes) and start loﬁation Tvirtual Block
Nuabor) of tho Debug Nodulc Table (DMT). The described below.
These f names aro d clared by nacro? in SVSSLlBRARV:LlB 5 2. The
symbol 1no _SYMDBGOF F 95 also defined in SYSSLIBRARY:L1B.L3

Pointers to the Image Header and the Image Header Symbol Table Descrip-
tor are declared as follows:

Fl-.-.-.-'-.-.—.—.-D-I-l-l-l-i-l-l-l-.-.-

TBK

LIT

-

— T—— o —

TBKDST.REQ; 1 16=-SEP-1984 1e=sa=1i.o§ Page 10 TBK

IHDPTR: REF BLOCK[BYTE)
IHSPTR: REF BLOCKLIHSSK_LENGTH,BYTE)

The Image File Header in ’n oxccutablo ina e file points to the Image
Header Symbol Table descr ptor as oscr abov’ S of fio
IHDSL _LNKFLAGS in the ima 0 header t’ % nou ? .o.
one produced by the VMS V&.0 or lator nﬂcr. and the lHSSt VBN and
IHSS on;avtes fields oxist in the g’ Header § {lbo Ta e descriptor.
is not set, thi an "'old'" image and those 0 lds do not
oxist.) If non-zoro. IHSSL DHTVBN ives the Virtual Blo Number 1
the image file of the Debug Module Table (tho DHT) IHS L DHTBVTES
then ives the size of the DMT in bytes. The DMT is onl ‘ gu Lt if the
user did a8 LINK/DEBUG; 1f he did not, IHSSL_DMTVBN and IHSSL_DMTBYTES
are zero.

The Debug Module Table co ains one entry per module in the Debug
Symbol Table (the DST). This is the format of each such DMT entry:
decceo= = e e e e e e s e R e et e e o e e w = - +
long i DST oddross of Module Begin DST Rocord i
long i Size in L, tes 2f nodulﬁ s DST i
long i Unused--Must Be Zero : Nunber of PSECTs for module i
long i Start lddross of first PSECT in module i
long i A e Length of first PSECT in module in bytes i
. § (Two Longwords per PSECT) i '
: ‘ i
S S I~ + i N
long i Start address of last PSECT in module i : 5
Long i Length of Last PSECT in module in _bytes i : g

Longuord 0 givos the address r,lativo to the start f tho DST of the
Module o? n DST Record for this module. Longuord vos tho size

of the DS n bytes for th o same module. Longuor ? ves the number

of PSECTs in the module . the number of statically lllocato

progron soctions and this is followed by that nu-bor o tuo-longuord

Bai g give the start address and longt ltos of each such

Since the number of PSECTs cannot oxcood 6 the upper two
bytos “of longword 2 are available for future expansion.

The DAMT is used durin' DEBUG initialization to initialize DEBUG'S Run-
Time Symbol Table (RST) and Program Static Address Table (Program SAT).
Usin? the DMT is much f?stor thon the alternative procedure, namely

reading through the entire DST to pick up the needed information. The

K
TBKDST.REQ;1 16-SEP=1984 16:58:16.0§ Page 11

O S S S T - - —

information in the DMT ontr{ is_enough to build a Module RST Entry for
each module in_the DST and the PSECT information is used to build the
Program SAT. The amount of RST symbol table ?poco needed per module is
not computable from the DMT information, but is estimated by multiplying
the DST size of each module by an appropriate scale factor.

OVERALL STRUCTURE OF THE DST

The Debug Symbol tahlg consists of a contiguo¥s so?uonco of DST records.
Each DST record contains a tuo-b¥to header which gives the length of the
record in bytes and the type of the record. The structure of the rest
of the record (if an‘) is d?torninod by the record type. The length of
the DST in 512-byte blocks is given in the image file header; if the DST
does not fill the Last block, that block is zero-padded to the end.

The Largest structural unit within the DST is the module. Each module
represents the symbol table information of a zoﬁoratoly compiled object
module. The DST for a module always begins with a Module Begin DST rec-
ord and ends with a Module End DST record. The Module Begin DST record
gives the name of the module and the ?ourco Language in which it was
written. The Module End DST record simply marks the end of the module
and contains no other information. As noted above, if present, the
Dobu? Module Table (DMT) points to the Module Boain DST record of each
module represented in the DST. DEBUG uses the DMT (if present) to lo-
cate all modules in the DST.

The DST as a whole thus always begins with the Module Begin DST record
for the first module in the DST. It is followed by the symbol informa=
tion for that module. Then comes the Module End DST record for that
module. Immediately after that Module End DST record comes the Module
Begin DST record for the next module, and so on to the end of the whole
DST, where the Module End DST record for the Last module is found. The
rest of that image file block is zero-filled to the next block boundary.
Note that there 1s no break between modules in the DST.

NESTING WITHIN THE DST

For most languages, the symbol table must represent a variety of nesting
relationships. Routines are nested within modules, data s‘n ols are
declared within routines, and even routines are nested within routines.
Certain data construits. in particular record structures, contain addi-
tional nesting relationships. In th’ Debug s¥nbol Table, such nesting
relationships are represented by Begin-End pairs of DST records. Ve
have already seen above that the largest subunit of the DST, namely the
module, is represented by a Module ?cgin DST record and a Module End DST
record bracketting the DST information for the module.

This principle extends to other nesting relationships. The DST informa-
tion for a routine is thus represented b; 3 Routine Begin DST record and
a Routine End DST record enclosing the DST information for all symbols

e e e AL

TBKI

TBKDST.REQ;1 16-SEP-1984 16:58:1k.O§ Page 12

- Y W W e S S T S S T S S S g S g

local to or nested within that routine. Similarly, Lexical blocks (such
as BEGIN-END blocks or their equivalents in various lLanguages) are re-
Brosontod by Block Bogin and Block End DST records enclosing sho symbol
ST records local to that lexical block., The nesting of routines and
blocks within one another to any depth (within reason) is represented by
the proper nesting of the corresponding Begin and End DST records.

An example na; help clarify this notion. The following example shows a
?:ggrsg in a tictitious Language along the corresponding sequence of DST
rds:

Program Structure DST Record Seguence
HODUEEG?NS Module Begin M
VAR SYM_M1: INTEGER; Data SYM_M1 (DTYPE_L)
VAR SYM“M2: REAL; Data SYM_M2 (DTYPEF)
ROUTéEEl=1 = Routine Begin R1
VAR SYM_R11: BOOLEAN; Data SYM_R11 (BOOLEAN)
VAR SYM_R12: INTEGER; Data SYM R12 (DTYPE L)
END; Routine End (for R1Y
aourggglzz = Routine Begin R2
VAR SYM_R21: DOUBLE; Data SYM_R21 (DTYPE_D)
VAR SYM“R22: INTEGER; Data SYM“RZ22 (DTYPE L)
Routégglz A= Routine Begin R2A
VAR SYM_R2A: BYTE; Data 3YM_R2A (DTYPE_B)
BEGIN Block Begin (no name)
VAR BLK_V1: WORD; Data BLK V1 (DTYPE W)
ROUI%?ElSZBLKR = Routine Begin R2BLRR
FOO:BEGIN Block Begin FOO
VAR FOO_V:REAL; Data FOO_V (DTYPE_F)
END; Block End (for FOO)
VAR R2BLK_V2:REAL; Data R2BLK_V2 (DTYPE_F)
END; Routine End (for R2BLCKR)
VAR BLK_V2: DOUBLE; Data BLK_V2 (DTYPE_D)
END; Block End (for no name)
END; Routine End (for R2A)
VAR SYM_R23: REAL; Data SYM_R23 (DTVPS F)
END; Routine End (for R2Y
END; Module End

Here module (compilation unit) M contains two module-level data items,

TBK

€ O ~ U O O

TN G S S

LI

Memimimem
" -0

e
p—

M
TBKDST.REQ;1 16=-SEP=-1984 16:58:14.0§ Page 13

SYM_M1 and SYH M2, lnd two routinos. R1 ? Routine RZ 1n turn con=-
tains sever tos sa ymbols (SYM_R?2 SYH RZZ and SYM R23) and a
nested routine RéA. R2ZA in turn contdins an anonymous BEGIR-END block,
that blocks con lins tuo local data symbols BLK_V1 and BLK_V2 and a
local routine R LKR local routine RZBLKR contdins a data symbol and a
labollod B GIN-END b(?ck FOO, and block FOO contains one Local symbol
FOO_V. this nest is represented b{ Bogin and End DST rocords in
the chug Syubol Table as illustrated on the right.

Additional nesting must be re rosontod for data. A record (called a
structure in some Languages) gonpos te data object containing sonc
number of rocord components of rious data types. A record component
may itself be a record. In ad t on, some languages allow records to
have ' variants (as in PASCAL), which imposes additional structure that

must be represented in the DST.

£ rocord type is represented by a Rocord Begin and Record End DST record
pair rackotting the DST records for the record components. This notion
is illustrated by this program segment and the corrcsponding DST:

Progran Structure DST Record Sequence

TYPE RECTYP = Record Begin (RECTYP)

RECORD OF

COMP1: INTEGER; Data COMP1 (DTYPE_L)

COHPS: REAL ; Data COMP2 (DTYPE_F)

COMP3: DOUBLE; Data COMP3 (DTYPE'D)

END; Record End (for RECTYP)
Here RECTYP is a record t Each ogject of this t¥g0 is a record con-
taining three conponents. and COMP3. s structure is

represented in he DST b{ Recor Beg‘n DST record followed by Data DST
records for the conponon s followed bz a8 Record End DST record. The
addresses specified in the component DST records are bit or byto offsets
from the start of the RECTYP record as a whole.

In this oxanplc. the Record Begin DST rocor? for RECTYP na; in fact ro-
resent either a record type or a record object. A field in the Record
?in DSY rocord indicatos which. However, let us assume that RECTYP

ines a record ’f How do we then declare ob?.cts of that type?
The follouing example illustrates how:

Program Structuro DST Record Sequence

Data REC1 (So?;lgte; ¢)

TYPE RECTYP = Record Begin
RECORD OF
COMP1: INTEGER; Data COMP1 (DTYPE_L)
COHPi: REAL ; Data COMP2 (DTYPE® F)

COMPS5: DOUBLE; Data COMP3 (DTYPE'D)
END; Record End (for RECTYP)

S—

TBK

Memimoms=

S - -

SOX

et

TBKDST.REQ;1

medi atcly

represented

in the section on 'R
tion file.

- S S T S S G S S

Here the same record type RECTYP is defined.

are also doiinod REC1 and REC2.

Soparato ;po Spccif cation DST record s.
ollowed by a DST cor?

The REC1 Separate Type Spccif catio

by the RECT P Rocord Begin

n DST rccor
recor

N
16=-SEP-1984 16:58:14.0§ Page 14

Data RECZ (ScpiypSpoc)
Type Spec DST rocord
(ln? roct Type S
nting to REC YP)

Two objects of that tyge
Both data obiects are reartscnto

rocor must b
ho synb?l s data typo.
s nne ately followed
is of the RECTYP data

ho REC?2 Scparat’ Typc SDQcif cltion DST rocord is immediately

a ypt Spoc

eparate
y a Recor record or
points to a Rocord Bogin DST rccor .

Program Structuro

TYPE RECTYP =
RECORD OF
COMP1: INTEGE
CASE TAG: aOOLEAu OF

FALSE: (
COMP2: REAL:;
COMPS: DOUBLE);

TRUE

END CASE;
END;

ication DST record.

s (
COMP4: INTEGER);

This record contains an
Indirect i e Specification that points back to the Record Begin DST
record for ECTYP. Hence REC2 is also of that record type.

Records may be nested in the sense that a

an object of some record type. rocord
resented the same way as ong
o ‘po Specification ST rocor "

record component may itself be
conponent of a record type is
othor o ect oi a rocord t{po. namely by
This record mus
Spociiicotion DST record that

be follouod
d component can also be

‘ a Record Begin DST record diroctly if this record is
marked as defining an object rather than a type.

Record variants, as found in PASCAL, introduce additional structure.
detailed description of how variants are represented in the DST is found
ecord Structure DST Records'

Later in this defini-

Here we will only give an example that illustrates the gene-
ral scheme that is used:

DST Record Sequence

Data REC1 (SepTypSpec)
Record Begin ?ngie

Data COMP1 (DTYPE L)
Data TAG (BOOLEANY
Variant Set Begin
(tag variable = TAG)
Variant Value for E
Data COMP2 (DTYPE_
Data COMP3 (DTYPE™
r

E

variant Value fo UE

Data COMP4& (DTYP
Variant Set End
Record End (for RECTYP)

=

FAL
F)
D)
TR
L)

TBK

w0 »—-

TBKDST.REQ;1 16=SEP-1984 16:58:12.0§ Page 15

VAR REC1: RECTYP;

Nesting is also used to describe enumeration types as found in PASCAL
and some other languages. An enumeration type is described by an Enum=
eration Type Begin DS recor? fol}ouod by Enumeration T{Ye Element DST
records for all the enumeration Literals of the tygo followed by an
Enumeration Type End DST record. Any actual o?‘ec f the enumeration
tzge must be described by a Separate T¥po Specitication DST record.
{‘ks example illustrates what the DST for an enumeration type looks

e:

Program Structure DST Record Sequence

Data HUE (SOpTypEBec)

TYPE COLOR = (Enum Type Begin COLOR
RED Enum Type Element RED
GREEN, Enum Type Element GREEN
BLUE Enum Type Element BLUE
3 Enum Type End (COLOR)

VAR HUE: COLOR;

VAR PAINT: COLOR; Data PAINT (SepTypSpec)

ype Spec DST record
(Indirect Type Sgec
pointing to COLOR)

A more detailed description is found in the section entitled '‘Enumera-
tion Type DST Records'' lLater in this definition file.

For some DST record types, DEBUG ignores all nesting relationships below
the module level. Line Number PC-lorrelation DST records, for example,
may be scattered throughout the DST for a module. DEBUG treats all such
DST records as defining the Line number information for the module as a
whole, regardless of how they may be scattered within or outside the
routines and blocks of the module. 51nillrl‘ Source File Correlation
DST records may be scattered throughout the §T for a module. Records
such as these can be genoratod wherever the compiler finds it most con=-
venient to generate them.

DATA REPRESENTATION IN THE DST

Data Symbols are described in the DST by a variety of representations.
Fundamentally, all such representations give three pieces of information
about each data symbol: its name, its address or value, and its data
type. DEBUG needs additional information about a data s¥abol. in parti-
cular its scope of declaration, but that information is implicit in the
nesting structure of the DST as described above.

The name is given by a Counted ASCII string in the data symbol's DST

De
ITE

TBKDST.REQ;1 16~SEP-1984 16:58:12.0§ Page 16

o S e T S S S S S -

taining one byte of control information and a longword address, offset,
or value. However, if this five-byte encoding is not adequate to de-
scribe the address or value, escapes to a more complex value specifica-
tion Later in the DST record are available. The data type ..K be repre-
sented by a one-byte type code, but if that is not adequate there are
several escapes to a more conp(ox type description elsewhere in the DST.

The standard five-byte value specification can specify an¥ 32-bit or
smaller Literal value, ang static b‘te address, any register address,
and any address that can be formed ¥ one indexing operation off a reg-
ister or one indirection or both. If a VAX Standard Descriptor exists
for the symbol in user memory, the five-byte oncoding can describe the
descriptor address b{ any of the above means; the actual data address is
then retrieved from the descriptor.

record. The value or address can be given by a five-byte oncodin?'con-
d

The standard five-byte value specification is adequate for the bulk of
all data symbols. However, there are cases when it is inadequate. It
cannot describe Literal values longer than 32 bits, it cannot describe
very complex address computations, and it cannot describe bit addresses
unless an appropriate descriptor {s available in user memory. For these
cases, the first byte of the five-byte encoding must have one of several
special escape values. The remaining longword then contains (in most
cases) a pointer to a more complex value specification Later in the same
DST record. That more complex value specification may consist of a VAX
Standard Descriptor or a 'VS-Follows'' Value Specification. A VS-Follows
Value Specification can, in the most complex case, contain a routine to
be executed by DEBUG to compute the desired value or address. This rou-
tine may even call compiler-generated thunks when the complexity of the
address computation so requires.

The details of these more complex value specifications are given in the
section entitled 'DST Value Specifications'' Later in this definition

ile. The point being made h’ro is simply that the DST provides a
simple and compact value specification mechanism that is adequate for
all simple cases, but it also provides several escapes to arbitrarily
complex DST Value Specifications. These complex value specifications
are capable of describing all known address and value computations
required by the lLanguages supported by DEBUG.

Data type specifications are done in a similar ua‘. For all simple,
atomic data types, a single type byte describes the data type of a data
symbol. However, there are several escape mechanisms for more conelox
data types. One mechanism is to take the type information from a VAX
Standard Descriptor found either in user memory or in the DST. Another
is to use a Separate Type Specification DST record for th? data symbol.
The data type is then described by a second DST record which immediately
follows the Separate Tyge Specification DST record. This second record
must be a Record Begin DST record (describing a record t{pc) an Enume-
ration Type Begin DST record (descr bin' an 1nuaoration ypof. or a Tlpo
Specification DST record. A tago S?oci fCIE on DST record can describe
any data type supported by DEBUG. It contains a DST Type Spocificlti?n
for the data t{pf in question. This Tygo Specification may be an Indi-
rect Type Specification, pointing to ST r’cord elsewhere in the DST
that defines the data type. Alternatively, it may describe the desired
data type directly and may be as complex as the data type requires.

TBKI

- e R G g S S

TBKDST,.REQ;1 16=-SEP-1984 16:58:12.0§ Page 17 TBK

DST Type Specifications are described in a separation section elsewhere
in this definition file. The point boin? made here is sinpl{ that the
simple one-byte type specification is available for simple data types,

but several escapes to arbitrarily sonplox DST type specifications are
available when the simple type specification is inadequate.

D
1E

TN G S R S S R S S R g S

LIT

- ——— e e w eratee

TBKDST.REQ;1 16=-SEP-1984 16:58:15.03 Page 18

1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
]
i
i
i
a
i
i
i
i
;
i
i
i
;
i
i
i
i
i
i
a
i
i
i
;
i
i
i
i
i
i
L

FIELD ACCESS MACROS

The following macros are used in dcfining BLISS field names for all data
structures in the Debug Symbol Table. These macros supply the position,
size, and sign-extension values when used in FIELD doc?arat ons for
BLOCK and BLOCKVECTOR data structures. They are used instead of their
numeric equivalents because tho‘ are clearer and lLess error-prone. The
various generic forms (as specified by the lLetters in the names) are as

follows:
A Materialized address
L Longword
W lero-extended word
B lero-extended byte
'} lero-extended bit field
Sw Sign-extended word
S8 Sign-extended byte
SV Sign-extended bit field

The ''A"" form should be used whenever the field being defined is such
that only the address of the field may be materialized in a structure
reference; that is, fetch and store operations on the field are not
valid. An example of such a field is an ASCII string.

Each of the 'V'' and ''SV'' forms take one or two parameters. The first
parameter is the bit position within the lonauord or byte and the
second is the field size in bits. The second parameter is oetiongl:

f omitted, it defaults to 1. Thus V_(5) means bit 5 while V_(5,3)
means the $-bit field starting at bit 5 and cndin? at bit 7. "Bit
fositions are counted from the Low-order (least significant) end of the

ongword, starting at zero.

This follouing field access macros are used in DSTRECRDS.REQ., Their
actual definitions are found in STRUCDEF.REQ, but are shown here for
the convenience of the reader.

MACRO
A_ = 0, g. X. ! Address of a field
Ao = 0, 32, X, ! Longword
w_ = 0, 16, X. ! Word, 2ero-extended
B_ = 0, 8, X ' g te zoro-oxsonded
VI(P.S) = P, RIF INULLES) NTHEN i ¥Lséb§tz;¥.ld %, 1 Unsigned
! ©
Sw_ = 0,16, 11, ! Wword, sign-extended
SB_ = 0, 8, : g!te si!n-cxtcndod
SVZ(P,$)= P, XIF INULLTS) XTHEN i LSébi F1, 1 %, ! Signed

t field

Bring in the field access macro definitions from STRUCDEF.L32.
IBRARY *LIBS:STRUCDEF.L32';

TBKI

D«
1El

TV o R S

F
TBKDST.REQ;1 16-SEP-1984 16:58:16.0§ Page 19

THE DST RECORD HEADER FORMAT

|

i

:

|

: ALL DST records have the s anc general fornat consisting of a fixed
! two-byte header followed by zero or more elds whose format is

! determined by the DST record's type. This is the format of all DST
; records:

i

! deccccccn= cecccsccccsceccaeaae R R el R R - e o +
E byte i DSTSB_LENGTH i
gbm : DSTSB_TYPE :
{ovar DSTSA_NEXT 5
é § lero or more additional fields depending on §
g the value of the DSTSB_TYPE field
| 5 i
! ' '
! B e e R - - S S S D S T D D D D R T D R +
|

i

1

! These fields appear in all DST records.

l

f

IELD DS;:?EADER FIELDS =
DST$B_LENGTH

=[(0,8_1. ! The longth of this DST record, not
! includi ng this longth byte
DSTSB_TYPE = E T e g. ! The type of this DST record
DSTSA_NEXT =01, A_ ! The next DST record starts at this
i ! Llocation plus DSTSB_LENGTH

e

TBKI

W e R e R S e

TBKDST.REQ; 1 16=-SEP=-1984 16:58:12.0; Page 20 TBKI

SUPPORTED VALUES FOR DSTSB_TYPE

ALL supgortod values of the DST record type field (DSTSB _TYPE) are
Listed here. If the xoluo is in the range of DSCSK_DTYPE_LOWEST to
DSCSK_DTYPE_HIGHEST, it is a VAX Standar Y{R Code and gTves the
data type of the object being defined, In s case, the record is
a Standard Data DST Record or one of its variants, Otherwise, th

i
type value must be in the range DSTSK_LOWEST to DSTSK_MHIGHEST or it

1\]
H i
!' i
]]
i |
\ |
H |
i |
!)
[]
! may be DSTSK_BLI. In these cases, the type code denofes the type of ¢ by
' the DST record and the format of the record is determined by type ;
! value. ALl other tyﬂo codes are un;uptortod by DEBUG. The type codes b)
! between DSCSK_DTYPE_HIGHEST and DSTSK_LOWEST ?r! rosgrvod for future :
! use by Di?itat. The type codes in the rango 92 = 255 are potentially : b
! reserved Yor use b‘ customers, although DEBUG does not support any :
; Sgsh type codes. DEBUG ignores all records with unsupported type ; Le
: codes. i by
] |
i '
E VAX STANDARD TYPE CODES :
]]
! As mentioned above, VAX Standard Type Codes can be used as DST record :
! t¥pe codes for data symbols. The type code then Bivos the data t‘po :
: of the symbol in addition to indicating that the DST record has the :
; Standard Data DST record format or a variant thereof. :
]]
i i D
! ALL VAX Standar? Type Codes are Listed here for convenience. They are !
: commented out since they are actually declared in STARLET.REQ. FIEL
LITERAL
! DSCSK_DTYPE_2 =0, ! Unspecified (May not appear in DST).
' DSCSK DTYPE_V =1, I Bit.
! DSCSK_DTYPE_BU = g. ! Byte logical.
! DSCSK_DTYPE_WU = 3, ! Word logical.
! DSCSK_DTYPE_LU =4, ! Longword logical.
! DSCSK_DTYPE_QU =5, ! Quadword logical.
! DSCSK_DTYPE_B = ?. ! Byte integer.
! DSCSK_DTYPE_W =7, ! Word integer.
: DSC::_DYVPE_L B 8. ! Longword integer.
! DSCSK_DTYPE_Q = ! Quadword integer.
! DSCSK_DTYPE_F s ¥ 1 Singlo-procis on floating.
! DSCSK_DTYPE_D =11, ! Double=-precision floating.
! DSCSK_DTYPE_FC = 1}. : onglox.
! DSCSK_DTYPE_DC = 15, ! Double-precision Complex.
! DSCSK_DTYPE_T = 14, ! ASCI] text string.
! DSCSK_DTYPE_NU = 15, ! Numeric string, unsigned.
! DSCSK_DTYPE_NL = l’. ! Numeric string, left separate sign,
! DSCSK_DTYPE_NLO = 17, ! Numeric string, l:tt overpunched sign.
! DSCSK_DTYPE_NR = 18. ! Numeric string, right separate sign.
! DSCSK_DTYPE_NRO =19, ! Numeric string, right o¥orpunchod sign
! DSCSK_DTYPE_NZ = 20, ! Numeric string, zoned sign.

TBKDST.REQ;1

i
L =d=d-1-]

) ol med 4 g — — —F —d b —4 -9
-

VOV VOO0

mmm mmmm
.
OrNMNTD
VM
‘ol
POPONOND

OO0O00O00O0000D0

OCO0O0O0O000U00U0 ©OO00

PE ~VU
TYPE-ADT
DSCSK_DTYPE_VT

NO WS GIN = OV ~NONW SN -

-

v

12,2}

U

™

—

-
nuumuEEERNEEN
S " % 8 S S S S S S | ss

SCSK_DTYPE_LOWEST =1 !
SCSKDTYPE "HIGHEST =30 i

INTERNAL TYPE CODES FOR DEBUG

H
16-SEP-1984 16:53:16.02 Page 21

Packed decimal strin?.

Sequence of instructions.

Proco?uro entry mask.

Descriptor, used for arrays of
namic strings

Octaword logical

Octaword n?o?cr

Double froc B ?n G floating, 64 bit
Quadruple precision floatin bit

1
Double precis on complex Ggfloating
Quadruple precision conp[ox. H floating
COBOL intermediate temporary
Bound Procedure Value
Bound Label Value
Bit Unaligned
Absolute Date=Time
Unused (not supported by DEBUG)
Varying Text

The next two values are used for range checking of the type values
in DST entries. They are used mainly in CASE statements.

Lowest DTYPE data type we support
Highest DTYPE data type we support

The following definitions are used internally in DEBUG, but are not
supported in the DST. They should be deleted here if they are made
into standard VAX type codes declared in STARLET.REQ. These numbers

]

1

]

]

)

]

'

! may change from one release of DEB

; always be larger than DSCSK_DTYPE_

]

; Define DEBUG-internal type codes.

LITERAL
DSCSK_DTYPE_AC = gg. :
DSCSK_DTYPE_A2 =39, !
DSCSK_DTYPE_TF = 40, !
DSCSK_DTYPE_SV =41, !
DSCSK_DTYPE_SVU = 4;. :
DSCSK_DTYPE_F IXED = 43, ;

t
]

owing literals are used
for the range of DTYPE

UG to the next because they must
HIGHEST.

ASC

ASCIZ Text

Boolean True/False (lLength in bits)

Signed bit-field (llifned)

Signed bit-field (unaligned)

Fixed b narl used for FIXED in ADA
and FIXED BINARY in PL/I1. This
code is used the tlpo conversion
tables in DBGEVALOP.

as CASE statement bounds internally
codes used.

TBKI

L

Di
1E

TV o S -

TBKDST.REQ;1 16-SEP-1984 16:53:1£.O§ Page 22

LITERAL

! other
_ITERAL

1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
L

DBGSK_MINIMUM_DTYPE = 2 ! L?ucst internal DEBUG dtype value
DBGSK “MAXIMUM-DTYPE = 4%; i Wighest internal DEBUG dtype value

The following definition is only used internally in DEBUG. It is

a DTYPE code that is tcn?ornrily put into a Value Descriptor to
tell the address expression interpreter that the Value Descriptor
came from a litor:l constant. It does not ha¥o to be in the above
range because it is only used during the parsing of address expres-
sions., After the address expression has been tarsod. f the DTYPE
is LITERAL, it is then changed to DSCSK_DTYPE_L.

Dttt

DSCSK_DTYPE_LITERAL = 191; ! value is from a Literal constant

OTHER DST TYPE CODES

The follouing literals are the DST ty?c codes other than VAX Standard
T¥pe Codes which can appear in DSTSB_TYPE. Each indicates the format

of the record which contains it and most indicate the kind of object
being described by that record. When new DST records are defined, the
type code is assigned by making DSTSK_LOWEST one smaller and using that
value. The type codes 8govo ggtsx_HlGHEST (191) are reserved, the idea
being that the DTYPEs 192 = 255 are architecturally reserved to users.
DEBUG ignores all DST records whose t‘ge codes are not DST$SK_BLI, in
the range from DSCSK DTYPE LOWEST to DSCSK_DTYPE_HIGHWEST, or in the
range DSTSK_LOWEST TO DSTSR_HIGHEST.

| Define all Additional Debug Symbol Table record type codes. Note that the
! BLISS Special Cases record has code 2ero (for historical reasons). ALl

type codes are in the range DSTSK_LOWEST to DSTSK_HIGHEST.

?ST&K_BL! =0, ; BLISS Special Cases Record
DSTSK_LOWEST = 153, ! Lowest numbered DST record in this

: rana:;-usod for range checking
DSTSK_VERSION = 153, ! Version ber Record
DSTSK_COBOLGBL = 12‘. ! COBOL Global Attr bu%o Record
DSTSK_SOURCE = 155, ! Source File Correlation Record
DSTSK_STATLINK = 159. ! Static Link Record
DSTSK_VARVAL = 157, ! Variant Value Record
DST$K_BOOL = 158, ! Atomic object of type BOOLEAN,

: Allocated on: yt‘.

: low order bit = 1 if TRUE

i low order bit = 0 if FALSE.
DSTSK_EXTRNXT = 159, ! External-Is-Next Record (Obsolete)
DSTSK_GLOBNXT = 160, ! Global=Is-Next record (Obsolete)
DSCSK_DTYPE_UBS = 161, ! DEBUG intorn,l use onl{ (unaligned

! bit string) (Obsolete)
DSTS$K_PROLOG = 162, ! Prolog Record

TBK|

TBKDST.REQ;1 16-SEP-1984 16:58:1i.0§ Page 23 TBK

DSTSK_SEPTYP = 163, ! Separate Type Specification Record :
DSTSK_ENUMELT = 164, : Enanoroto y?ypop tclont Record :
DST:&_ENUHBEG = 125. | Enumerated Type Bo n Record :
DSTSKTENUMEND = 1 ?. ' Enunorato ‘pe End Record :
OSTSK-VARBEG = 12 y ! Variant Set Begin Record :
DSTSKZVAREND = 1 s. | variant Set End Record :
DSTSK_OVERLOAD = 19 . ! Ovorl?a?Q Symbol record :
DSTSK_DEF_LNUM = 170, ' D on Line Number Record :
DSTSK_RECBEG = 171, | Record Begin Record :
DSTSK_RECEND = 17;. : Record Ena Record :
DSTSKCCONTIN = 173, | Continuat ?n Record :
DST:K_VALSPEC = 174, ! Value Spoi I ca‘ion Record :
EHA D | Jehiltenn =
= ’ ! Bloc in Record :
DSTSK_BLKEND = 177, ! Block En Record :
DSTSK_COB_HACK = 178, ! COBOL Hack Record (Obsolete) :
! = 179, ! Reserved to DEBUG :
' = 130. | Reserved to DEBUG :
DSTSK_ENTRY = 181 | Entry Point Record :
DSTSK_L INE_NUM_REL rR1{ ! throadod Code PC-Corrclation :
= Tg;. ' Record (Obsolete) :
DSTSK_BLIFLD = 183, ! BLISS Field Record :
DSTSK_PSECT = 184, ! PSECT Record :
DSTSK_LINE _NUM = 185, ! Line Number PC-Correlation Record :
DSTSKZLBLORLIT = 189. ! Label-or-Literal Record :
33}35:5335%6 - }gl: i h:g:{,“§§°$g Record i
DSTSK_MODEND = 189, ! Module End Record
DSTSK_RTNBEG = 190, ! Routine Begin Record
DSTSK_RTNEND = 191, ! Routine End Record
DSTSK_HIGHEST = 191; 5 Highest numbered DST record in this

range--used for range checking
NOTE TO DEVELOPERS:

New DST Records should not be added at this end of the DST record number
range. VAX Standard Type Codes 192 - 255 are reserved to users. Hence
DEBUG does not usc type codes in that range, even though DEBUG does not
support user-defined tlgu codes. New DST record numbers should be allocated
by decrementing DSTSK EST and using that number for the new DST record.

1
TBKDST.REQ;1 16=-SEP=-1984 16:58:14.02 Page 24

MODULE DST RECORDS

The Debug §¥n?ol Table for each separately conpilcd module must be
enclosed w na Hodulc-aoginlnodulo-ind pair ? T rocords. The
Module Gogin DST "ﬁf" mus thu be the very f rs} T record for

any sogaratc y compiled module .o.. any object file) and the Module
End record must be the vor¥ st DST roc rd for the module. Only
one ulo-ﬂc nlﬂodulo- End pa r ouo n what the Linker sees

ES a ng e object mod mul t Lo H?dule-scginlnodulo-ind pairs
are incl u ed in ono ob cct nodulo. DE Y ? t.. the first such
pair and ignore the rest because the linker will only tell DEBUG about
the Location of the first Module Begin record.)

The Hodulo-Bogianodu%o-End pair defines a s‘nbolic sco 0 which con-
tains all sym o s def DST records uit in that g r. The module
has the name given in the Hodulo Begin DST record. The Language of the
object module is also encoded in the Module Bogin record.

e ————————————e——

TBK

Y e P P R S G S G e -
< o ~~ O o oD

TBKDST.REQ;1 16-SEP-1984 16:58:1&.0§ Page 25
THE MODULE BEGIN DST RECORD

The Module Begin DST Record marks the be inning of tho DST for a module.
This D?T record also ves the name of the module and i e sourco lan-
guage in which th : module was written. The Mo ulo Beg n Record
must be the the first DST record of every compilation uni ('module’
and it must be matched by a Modul ? End DST Record that cnds the DST for
that module. Only one Module Boa n DST Record is allowed to appear in
the DST for a separately compiled object module.

This is the format of the Module Begin DST Record:

p)

el PO LY T SRR
gty SR et Bl s SRRORERRE.
byte } DSTSB_MODBEG_UNUSED !
o e RN DSTSL_MODBEG_LANGUAGE !
A __DSTSB_MODBEG_NAME :
et ; The Module Name in ASCII ;

! (The name's Length is given by DST$SB_MODBEG_NAME) §

 SO— P T — ‘

Define the fields and size of the Module Begin DST Record.
IELD DST%HODBEG FIELDS =

DST$B_MODBEG_UNUSED E g " }.
DSTSL_MODBEG_LANGUAGE . L. J,

I
I
I
I
I
I
l
I
l
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
l
l
I
F

Unused--Must Be Zero
Languago code of Language in
ich noduln was written

DST$B_MODBEG_NAME = . B_1 Count blt' n nane counted
SCII string
TES:
LITERAL
DSTSK_MODBEG_SIZE = 8; ! Size in b‘tos of the fixed part of
! the Module Begin DST record

! Define all the Language codes that may ﬁpear in the DSTSL_MODBEG_LANGUAGE
i field of the Module Begin DST record. (Note thot DEBUG may not actually
' support all languages that have language codes.)

ittenAL

TBK

D T33O0 C

M emsmimsmomsmomaommo

el
-4

Fo-o-o-o-
O

s
-

O W -

M
TBKDST.REQ;1 16-SEP=-1984 16:58:14.0§ Page 26

DSTSK_MIN_LANGUAGE = 0, ! Smallest language code
DSTSK_MACRO = ?. ! Macro

DSTSK_FORTRAN = 1, ! Fortran

DSTSK_BLISS @ ;. ! Bliss

DST$K_COBOL = 3, ! Cobol

DSTSK_BASIC =4, | Basic

DSTSK_PLI =9, ! PL/I

DSTSK_PASCAL = ?. ! Pascal

DSTSK_C =7, ' C

DSTSK_RPG = g. ! RPG

DSTSK_ADA = ! Ada

DSTSKTUNKNOWN = 10, | Language Unknown
DSTSK_MAX_LANGUAGE = 10; ! Largest lLanguage code

Here also we define all the same languaga codes using names with the DBGS
prefix. This prefix is used in DEBUG for historical reasons. These names
may cvcntually be discardod.
lTERAL

DBGSK MIN_LANGUAGE = DSTSK_MIN LANGUAGE. ! Smallest Language code

DBGSK_MACRO = DSTSK_MACRO,” ! Macro

DBGSK"FORTRAN = osrsx_rOAtnAN.! Fortran

DBGSK™BLISS = DSTSK_BLISS, ! Bliss-32

PBGSK”COBOL = DSTSK_COBOL, ! Cobol

DBGSK _BASIC = DSTSK_BASIC, ! Basic

DBGSK_PLI = DSTSK_PLI ' PL/I

DBGSK PASCAL = DSTSK™PASCAL, | Pascal

DBGSK_C = DSTSK_ ' C

DBGSK “RPG = DSTSK"RPG, i RPG

DBGSK_ADA = DSTSK_ADA, ! Ada

DBGSK™ _UNKNOWN =

DSTSK UNKNOWN,, | Lanauage Unknown
DBGSK MAX_LANGUAGE = DST$K_MAX_LANGUAGE; ' Largest language code

Language UNKNOWN requires some spocill oxplanation. DEBUG supports '‘unknown'’
Langquages with a standard set of DEBUG funﬁtiona ty. This standard set in-
cludes all L on,uago-indcpondcnt functionll ty plus vanilll-flavored Language
expressions. Identifiers are ossuno to allow A -2, 0-9, e Synbol
references may include subs§r pti nq (using round () or square f parcnt heses)
and record component selection ng dot-notation as in A.B.C). Most simple

operators are allowed in languagc expressions.

While not officially supportod Language UNKNOWN is intonded as an escape for
compiiers which do not ‘ot ; true D BUG suagort. By specifying language
code DSTSK_UNKNOWN in the DSTSL_MODBEG _LANGUAGE field, such Languages can
take advantage of whatever support DEBOG providos for unknoun Languages. If
and when true DEBUG support is provi 0? new Lan uag code for the new
Language can be allocated b{ incrementing DSTSK_MA NGUAGE by one and as-
signing that Language code to the new Language.”

DEBUG treats on{ out-of-rlngc Language code in the Mo ulo Begin DST record as
ing equivalon to anquago NBHN Use of the DSTSK_UNKNOWN lan?uagc code
or any out-of=-range lLanguage code is intended for intornal use b(D g
DEBUG'S ?n nown= anguggt sugport is not officially supgo ed
‘oct to possibly incompatible changes in future releases o DEBUG.

TBK

St O tirrrt ~QO0 O D>

TBKDST.REQ;1

i Internally, DEBUG
! guage code above 2

N
16-SEP-1984 16:58:14.0§ Page 27

eats the lan

age code as a byte
is truncate

Hence any lan-
to its low-order e

ight bits

Rt SR TR SR EE T WS AR S RS S S S RS GSS RS G . - -G Ay -

TBK

< O ~ O O ©OT

L

TBKDST.REQ;1 . 16=SEP-1984 16:58:12.0? Page 28

|
i
i
i
i
i
!
|
i
i
i
i
i
i
i
i
i
i
i
i
L

THE MODULE END DST RECORD

The Module End DST Record must be the Last DST record in the DST for a
compilation unit. 1Its sole purpose is to mark the end of the DST for
a separately compiled object module. There can be only one Module End

T record per module, matching the previous Module Begin DST record.
This is its format:

! DST$B_LENGTH (= 1) i

------------- Bl L T i D L et 4

d DSTS$B_TYPE (= DSTSK_MODEND) i

Define the size in bytes of the Module End DST Record.

ITERAL

DSTSK_MODEND_SIZE = 2; ! Size of Module End record in bytes

TBKI

! Ne

TBKDST.REQ;1 16-SEP-1984 16:58:12.0§ Page 29

P S - - ——— -

ROUTINE DST RECORDS

A routine is represented in the Debug Symbol Tabl? by a pair of DST
records, namely a Routine Begin DST record which is matched with a
Later Routine End DST record. ALl DST records between the Routine
Begin and the Routine End DST records represent the symbols that are
declared in that routine or in nested routines or blocks. Nested rou-
tines are represented in the DST b‘ nested Routine-Begin/Routine-End
pairs. Lexical blocks (BEGIN-END blocks or the Like, depondin? on

the lanauago) may also be nested freely outside or inside routines,
provided all blocks and routines are properly nested.

Consider the following example of nested blocks and routines. 1If
routine R1 contains a nested routine R2 and a lexical block B1 and

block B1 contains routine R3 and Block B2, the DST would have the
following sequence of DST records:

Module Begin for whole module
.+ .module~level data DST records...
Routine Begin for R1
...Local data DST records for R1...
Routine Begin for R2
...local data DST records for RZ2...
Routine End for R2
Block Begin for Bl
...lOcal data DST records for Bl...
Routine Begin for R3
... local data D§T records for R3...
Routine End for R
Block Begin for B2
...local data DST records for B2...
Block End for B2
Block End for B1
Routine End for R1
Module End for whole module

In addition to defining a symbol scope, the Routine-Begin/Routine-End
air defines the name and address range of the corresponding routine.
he name and start address is found in the Routine Begin DST record

and the b{to length of the routine is found in the Routine End DST

record. It is assumed that the start address is also the entry point
to the routine. The Routine Begin record also indicates whether the
routine uses a CALLS/CALLG linkage or a JSB/BSB linkage.

o BT

Vi

1E|

-

0
TBKDST.REQ; 16-SEP-1984 16:58:16.0? Page 30

B o T ey T T L kL g —— R

LITERAL

byte
byte
byte
long
byte

var

Define the fields and size of the Routine Begin DST record.
F1ELD DS;&RTNBEG FIELDS =

T

THE ROUTINE BEGIN DST RECORD

The Routino Begin DST record marks the bcginnin of a routine and the
associated ssopo. This record contai ng routine's name and start
address and indicates whether the routine is a CALLS/CALLG routine

or a JSB/BSB routine. It must be matched by a Routine End DST record
lator in the DST, except if the Language o tho current module is
MACRO. (Since MACRO routines have entry po nts but no well defined
end points, the Routine End record can and must be omitted for this
language. This exception applies to no other language.)

This is the format of the Routine Begin DST record:

" DST$B_TYPE (= DSTSK_RTNBEG) A !

DSTSV_RTNBEG UNUSED .NO CALL:

The Routine Name in ASCII
(The name's Length is given by DSTSB_RTNBEG_NAME)

L A b e S S S S
i
]
]

DSTSV_RTNBEG_UNUSED
DSTSV_RTNBEG_NO_CALL

E S. v_(0, 7) g. Unused--Must Be ‘oro
. V_(7, 1)], ! This bit is set if this rou-
tine is invoked with a

JSB or BS? rather a CALLS
n

- -

or CAL struction
DSTSL_RTNBEG_ADDRESS = [3, L_ 1. The routino s start address
and entry point address
DSTSB_RTNBEG_NAME pE V0 3 The count byte of the rou-
tine's Counted ASCII name
TES;
DSTSK_RTNBEG_SIZE = 8; : Byto size of the fixed part of the

Routine Begin DST record

TBKDST.REQ;1 16-SEP=-1984 16:58:15.0? Page 31

THE ROUTINE END DST RECORD

H

|

1

: The Routine End DST Record marks the end of a routine's scope in the
: DST. It also contains the byte lLength of the routine's code. (Note
: that Routine End DST records must be omitted for Language MACRO but
: are nondatorg for all other lLanguages.) This is the format of the

E Routine End DST record:

i

E broccccncaccans B e et R B Rl e R E R @

; byte i DSTSB_LENGTH (= 6) i

g byte ! DSTSB_TYPE (= DSTSK_RTNEND) !

g byte ! Unused (Must Be Zero) !

g long ! DSTSL_RTNEND_SIZE !

i

]

g Define the fields of the Routine End DST record.

:

1ELD DS%E?TNEND_FIELDS =
?STbL_R!NEND_SlIE = [3, L.]! The Length of the routine in bytes

TBK|

B S S R S R R R S W S R R R R e

F
TBKDST.REQ;1 16-SEP-1984 16:58:1&.0? Page 32

W S - — - -

LEXICAL BLOCK DST RECORDS

A "Lexical Block'' is any programming languago construct other than a
routine that defines a scope within which symboks can be declared.
What distinguishes a “block’’ from a "'routine'’, from DEBUG's point of
view, is that a block is always entered by ’unping to it or ’inply
falling into it while a routine is always entered by a call instruc-
tion of some sort. A routine has a entry ?oint that can be called;
a block does not. Hence BEGIN-END blocks in BLISS an? PL/1 are blocks
and so are Paragraphs and Sections in (OBOL. Subroutines, functions,
and procedures, on the other hand, are ‘‘routines’'.

Blocks and routines do have one thing in common houo¥or. Both define
syntactic units within which other symbols can be defined. The pur-
pose of representing blocks in the DST is to define the scopes they
c?clgao and to give the address ranges of the corresponding bodies

of code.

A lexical block is represented in the Debug Symbol Table by a pair

of DST records, namely a Block Begin DST record which is matched with
a later Block End DST record. ALU DST records between the Block Begin
and the Block End DST record represent the symbols that are declare

in that lexical block or in nested routines or blocks. Nested blocks
are represented in the DST by properly nested Block-Begin/Block=-End
pairs. Routines and blocks may freely be nested within one another,
using the appropriate proper nesting of the corresponding Begin and
End DST records.

The start address of a block's code is given in the Block Begin DST
record and the byte Length of that ?odo is given in the Block End

DST record. The name of the block is given in the Block-Begin record.
It a block has no name (which is common for BEGIN-END blocks), the
null name is ?iven (the name of Length zero). locks with null names
cannot be explicitly referenced in DEBUG, but Line numbers within such
blocks can be used to specify breakpoint locations or symbol scopes.

TBK

TN b S S e S e S R R e S -

TBKDST.REQ;1 16-SEP-1984 16:58:12.0& Page 33 Bk
: THE BLOCK BEGIN DST RECORD
]
! The Block Begin DST Rocor? marks the bcginning of a l,xical block and
- the associated scope. 5 rocord contains the block's name and start
! address. It must be matched by a Block End DST record Later in the
: DST. This is the format of the Block Begin DST record:
]
! oo cscscscsen - cosee kL L L L D D L L L L L L L L L L T T X3 L
; byte i DSTSB LENGTH '
e e e s s e e e S S S R A CrErA T E TS - O eeeeeeee e cececcccccscsccccaccen +
; byte i DSTtB TYPE (= DSTSK BLKBEG) '
: LR R G, p——— +
E byte i % 5 DST$B_BLKBEG_UNUSED = i
g long ! DSTSL_BLKBEG_ADDRESS :
g byte ! DST$B_BLKBEG_NAME :
i var ! : MAC
: ; The Block's Name in ASCII 5
: (The name's Length is given by DST$3_BLKBEG_NAME) i
i a i :
! P R — S + LIT
]
]
H
: Define the fields of the Block Begin DST record. ' D
FIELD DSTSBLKBEG_FIELDS = i d
DSTS8_BLKBEG UNUSED = [2. B_). ! Unused--Must Be Zero FIE
DSTSL _BLKBEG_ADDRESS = o b do ! The block's start address
DST$B_BLKBEG_NAME = . B_ ! Ihc count byte of the block's
! Counted ASCII name
TES:;
MA(
'
'
LI

H
TBKDST.REQ;1 16-SEP-1984 16:58:16.0& Page 34

THE BLOCK END DST RECORD

The Block End DST Recor narks the end of a Llexical blo k's scope in
‘ It also contains the byte longth of the block s code. This
s the format of the Block End DST record

e TR G
byte i L DST$B_TYPE ('-25125-2555221------------------i
byte i_ Unused (Must Be Esrgl_-__--_...______-____i
long i = DST$L BLEE§2_§1£§ _______________________ i

Define the fields of the Block End DST record.
1ELD Ds;:OLKEND FIELDS =

?E;QL BLKEND_SIZE = [3. L_ J ! The byte Length of the Lexical block

'
|
l
l
I
l
l
l
l
l
l
l
I
l
l
l
l
l
l
l
l
l
f

TBK

S
LIT

TBKDST.REQ;1 16=-SEP-1984 16:58:1!.03 Page 35

[———————————— e R b L R b T T e e LT

DATA SYMBOL DST RECORDS

Data symbols are represented in the Debug S{nbol Table by data DST
records which come in seyeral varieties. ALl such DST records give
three pieces of information about each symbol: the data type of the

:ynggt. the value or address or the symbol, and the name of the
ymbol .

The Standard Data DST record is the simplest form of data DST symbol
record and is used for most ordinarl atomic data objects. It repre-
sents the data type by a onc-blto VAX Standard Type Code. It repre-
sents the value or address of the S{nbol by a simple five-byte encoding
apable of specifying 32-bit Literal values, absolute addresses, reg-
ster locations ang addresses computed as offsets from a rogistor.
possibly 1nclud‘ng ndirection. It is also possible to specify that
the computed address is the address of a VAX Standard Descriptor for
the data symbol. Finally, the name is represented as a Counted ASCII
character string.

There are several reasons why a Standard Data DST record may not be
adequate to represent a data symbol. First, the symbol's data type
may be too complicated to rcfrosent by a one-byte type code. In this
case, one of several available escape mechanisms must be used so that
expanded type information can be included in the symbol's DST informa-
tion. Second, if the sgnbol is a Literal (a named constant), its
value may be too Large to fit in one Longword. in this case, an ex-
panded value specification must be used. And third, if the symbol is
a variable, its address may be specified by a more complicated compu-
tation than can be represented in the Standard Data DST record. In
g:is c;so. an escape to a more complicated value specification must
used.

Expanded type specifications come in three main forms: Descriptor
format DST records, Separate Type Specification DST records, and
various specialized DST records that handle various special kinds
of data types such as record structures, enumeration types, and
BLISS structures.

Doscrig:or Format DST records are used when the data object must be
described by a VAX Standard Descriptor and has a stotig address. A
packed decimal data object, for xauqlo must be described by a
descriptor that specifies the ob’oct s (ength and scale factor. If

8 descriptor exists in user memory at run-time, the Standard Data

DST record can be used, but otherwise it is necessary to include the
descriptor directly in the DST within a Descriptor Format DST record.
These DST records are used for all static arrays and other data objects
that can be described by VAX Standard Descriptors.

For data types that can be described b{ neither on’-?yto type codes
nor VAX Standard Descriptors, a Separate T(po Specification DST record
must be used. In this saso the DST record's t‘go field indicat’s that
the type sfecif cation is found is a separate D37 record which imme-
diately follows the grcsont DST record. The DST record that follows
must be a Type Specification, Record Begin, or Enumeration Type Begin

TBK

<

TBKDST.REQ;1

- - - — - - - — - - - - - - - -

DST record. These records can describe all data types supported by
DEBUG in full detail.

As mentioned above, the third data type '‘escape’’ mechanism is to use
one of ’ number of sfocializod DST rocord’ that describe data symbols
ot special kinds. BLISS structures and fields, for example, are de-
scribed by special DST records, as are enumeration tl?‘ elements.
These DST records will not be furth:r described in this section; they
are described elsewhere in this definition file.

Expanded '‘Value Specifications'' must be used Ior data symbols whose
values or addresses are too long or too con?l cated to be described
by the Standard Data DST record. A D-Float n? constant, for example,
has too largz 8 value (8 bytes) to fit ina $S 1ndord Data DST record.
A "based variable' in PL/]1 may require a complicated computation or
even a call on a compiler-generated thunk ;o compute the variable's
address. For these and other cases, a Trailing Value Specification
DST roc?rd must be used. Such a record includes a Value Specifica-
tion which may be arbitrarily complex.

Trailing Value Specification DST records are sometimes used to speci-
fy both type and address information. An array with dynamic array

ds, for instance, must be described in the DST if no descriptor
exists in user -onorz at run=time. A trailin' Value Specification
can be used to compute the entire descriptor for such an array at
DEBUG-time. The descriptor then gives both the array address and
type information such as the element type and the array bounds.

16-SEP-1984 16:58:1i.0§ Page 36

TBK

S R T S S e S e e R S S e R R e e e

K
TBKDST.REQ;1 16-SEP-1984 16:55:14.03 Page 37
THE STANDARD DATA DST RECORD

The Standard Data DST record is used to describe most simple scalar
data objects such as 1ntogers. floating=point numbers, and complex
numbers. The data t lgo ro resented by the one-byte VAX Standard
Type Codo in the DSTSB _TYPE field. The vo ue DSTSK_BOOL is also
accepted; it denotes that the data symbol is a Boolean variable
value uh‘ch is TRUE 1f the low-order bit is set and FALSE otherw so.

The value spocificotiou in the Standard Data DST record 1n91cctes

the symbol's value or address or how to compute the symbol's address.

The dotails are found below.

This is the format of the Standard Data DST record:

L B e e b L P Eocs e s s me ®-- ceecsesees$
byte i osrsa LENGTH i
byte | DSTSB TVPE H

£ ---: B R e 4
byte i DSTSV_REGNUM \ VISP . INDIR | DSTSV _VALKIND i

- D b R T e e L L T

long i % DSTSL_VALUE i
byte i DSTSB_NAME i
var 1 '

E The Symbol Name in ASCII 5

(The name's length is given by DSTSB_NAME)

- S— T S ——— +

Define the fields of the Standard Data DST record. These fields are also
used in many other DST records of similar formats.

FIELD DSTSSTD_FIELDS =
SET
g Ve
- $J

Y ¢ e e g -

DST$B_VFLAGS
DSTSV_VALKIND

Valuo-rlags (access 1nforn,¥10n)
osrsv INDIRECT

How to in orprot the specified value

Set i a r’ss of address is produced
’tod computation (do an

1nd rection to cgtputo address)

DSTSV_DISP =[2, v_(3) J. Set if cont’nt of DST VALUE 5 used
?conon§ a register
spo n DSTSV_R ugn
DSTSV_REGNUM =[2, v_(4 ,6)1,1 Number o stor uso? in displace-
ment no e add

Value, address, or bit o'fsot
Count byte of the symbol name field,

DSTSL _VALUE = E ;. L. 1.
. a counted ASCII string

DSTSB_NAME - B]

et —————————tiey

TBK

e R e

TBKDST.REQ;1 16=-SEP=-1984 16:53:1&.0& Page 38 TBK

TES:

! Define all special values that ua¥ appear in the DSTSB_VFLAGS field. If one
! of these values apgoor: in that field, the DSTSL_VALUE field ha; some special
! oning indicated the spec al value. In such“cases, the DSTSB_VF AG sub-
! iiolds have no meaning. Not all of these sgoc al valuos may appear

! Standard Data DST rocord (see the comments but they are all listed

! here for completeness. Note that these voluos uit one exception) all have
! the top four bits set=--hence { canno} be normal VFLAGS values since the

E REGNUH field cannot contain 15 (indicating the PC) in a normal VFLAGS value.
L

1TERAL
DSYSK_VFLAGS_NOVAL = 128, & fla? uhich indicates that no value
s specified, i.e. the objoct
bcing doscriﬁod s a t{po.

uo na on y appear in a Rocord

DSTSK_VFLAGS _UNALLOC 249,

l

l

l

l

! ord.

! This va?uc is DSTSB VFLAGS signals a
: data item that was never

: allocated (and hence has no

: address). For example, PASCAL

! does not allocate variables

! that are not referenced,

! This valuo in DSTSB_VFLAGS signals El
! Descriptor Forlat DST record

! This valuo in DSTSB_VFLAGS signals El
i Trailing Value Spec DST record
i Valuo S ocif cation Follous (allowed
| nly ailing Value Spec)
i A ilag indicating that DSTSL _VALUE

i contains a bit offset (uUsed

i only for record components)

DSTSK_VFLAGS_DSC 250,
DSTSK_VFLAGS_TVS = 251,
DSTSK_VS_FOLLOWS 253,
DSTSK_VFLAGS_BITOFFS 255;

~ F F oo oTD £ or

Provided the DBGSB_VFLAGS field does not have one of the above s?ecial vnlues.
the DBGSV_VALKIND Tield indicates what kind of value or address is computed
by the value computation. The possible values of this field are defined here.

Meisimimem

| ITERAL
DSTSK_VALKIND_LITERAL = 0, ! DSTSL_VALUE contains a Literal value
DSTSKZVALKIND_ADDR =1, : Conpufatigntprog co: the address of
ata objec
DSTSK_VALKIND_DESC ® B i Computation produces thg address of a
: xAg Standard Descriptor for the
ata obje
DSTSK_VALKIND_REG = 3; : Value is con gnod in the register

whose number is in DSTSL_VALUE

O e G P S S S S S S R - ———— - - —_———_—— -~

If the DSTSK_VFLAGS field does not contain one of the special values listed
above, then the computation that produces the value or address of the data
object proceeds as follows:

1. If the VALKIND field contains DSTSK_VALKIND LITERAL, the symbol is a
constant whose value is given by the DSTSL_VALUE f eld. Such constants

M
TBKDST.REQ;1 16=-SEP-1984 16:58:14.0? Page 39 TBk

can be up to 32 bits long.

2. 1f the VALKIND fiol? contains DSTSK_VALKIND REG, the symbol is a vari-
able bound to a register. The regiSter number of that register is
given by the DSTSL_VALUE field.

3. Otherwise, the symbol is a variable with a non-register address. To

compute that address, the DSTSL_VALUE field is picked up.

4. 1f the DSTSV_DISP bit is set, the contents of t

ster number is givon b DSTSV_REGNUM fie

e

l the
picked up from the DSTSL_VALUE field.

5. 1f the DSTSV_INDIRECT bit is set, the address computed so far is treated
as the address of a pointer that points to the actual data object. In
other words, an indirection is done.

6. If the value of the VALKIND field is DSTSK_VALKIND_ADDR, the address
computed so far is treated as the address of the data object.

7. If the value of the VALKIND field is DSTSK_VALKIND_DESC, the address
computed so far is treated as the address of a VAX Standard Descriptor
for the data object. The actual address of the object, along with its
other attributes such as type and size, must therefore be retrieved
from that descriptor.

h1 register whose reg-
ld is added to the value

As this description indicates, nodcratol; complicated address computations
can be specified in the Standard Data DST record. For example, the address
of the second formal garanoter to a routine, passed bz reference, can be
described by nakin? DSTSV_REGNUM = 12 (for register AP), DSItL_VﬂLUE =8
(to indicate an offset of 8 bytes from AP to get at the second Longword in
the argument vector), DSTSV_DISP = 1 (to indicate that DSTSL_VALUE is to be
treated as a displacement off AP), and DSTSV_INDIRECT = 1 (to indicate an
ndirection since the ar?unent is gassed by reference). DSTSV_VALKIND =
DSTSK_VALKIND_ADDR in this case. If the parameter were 8assod by descrip-
tor, Rowever, DST$V_VALKIND should be DSTSK_VALKINKD_DESC, with all other
fields having the same values as in the passed-by-reference case.

T T T Y T

N
TBKDST.REQ;1 16=-SEP-1984 16:58:14.03 Page 40
THE DESCRIPTOR FORMAT DST RECORD

The Descriptor Foraat DST rogord is usod when a VA! Standard
Descriptor must be ncludod n the DST or a static 1ynbo .
includes the doscriptor di roc} y in th rccord r ght ter
the name field. This record 5 essent |ll§ dentical to the
Standard Data DST record excep: that the DSTSB VFLAGS field has
the special value DST K_VFLAGS DSC and the DSTSL _VALUE field is

a relative byte offset To the VAX descriptor Later in the record.
this is the format:

\
]
v
]
]
|
]
]
i
]
]
]
]
! pmmmsee - e e a2 = - - e s o o w ceccscacae - o=
; byte 1 DSTSB LENGTH i
g byte ! DSTSB_TYPE :
g byte } osrsa VFLAGS (= DSTSK_VFLAGS _DSC) !
g long | DSTSL_DSC _OFFS Jowet
! byte : DSTSB_NAME (also DSTSA_DSC_BASE) ! !
i var H H E
E 5 The Symbol Name in ASCII 5 E
: § (The name's Length is given by DST$B_NAME) § f
ot) o
! e e = oo B D e A e e kR + :
; long i DSCSB_CLASS i DSCSB DTVPE 3 DSCSU LENGTH i(--#
g long ! oscsA pgxutsn !
i var H H
: 5 Other VAX Standard Descriptor Fields 5
: § depending on the descriptor class E
e s
) G e e e o T e S e e S D D D D S N R S P S D e W e TS [—— +
]
]
]
g Define the fields of the Descriptor Format DST record.
FIELD os;:gsc-erLos =
DSTSL_DSC_OFFS =(C 3, L_ 1. ! Offset in b;tcs to descriptor
! T$A_DSC BAS%
DSTSA_DSC_BASE =[7, A_] ! Dcscriptor starfs af this loc-
: i ation + DSTSL_DSC_OFFS

TES;

TBk

T omemememom i, ams s - w-e -

rﬂ-l-‘-'-.-.-.-.-l-.-
o e PV B AR s Y

s
—

TBKDST.REQ;1 16-SEF=1984 16:58:12.0§ Page 41 TBK(

; Note that the address of the descriptor is computed as follows: Lour

! ! opL
! DST_RECORDLDSTSA_DSC_BASE] + .DST_RECORDLDSTSL_DSC_OFFS] élTE

! De
i ar
!

LITE

:
LITE

B e —

TBKDST.REQ;1 16=-SEP=-1984 16:58:12.0§ Page &2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
£

THE TRAILING VALUE SPECIFICATION DST RECORD

The Trailin Value Specification DST rocord is ustd uhon an expanded
value spoc1 iation is needed to con ute a a} mbol's value or
address. ncludes a v.%uc Spcci cation rectly n t o DST

ord right aftor the name is record is essentia E ont cal
to the Standard Data DST rocord excopt that thc DST$B VF%A S ficld has
the special value DSTSK_VFLAGS_TVS and the DSTSL_VALUE field is a
relative byte offset to the Value Specification Tater in the record.
This is the format:

e S +
byte i DSTSB_LENGTH i
byte i DSTSB_TYPE '
-- 4+
byte i DSTSB_VFLAGS (= DSISK VFLAGS_TVS) i
long i DSTSL_TVS OFFSET i---t
byte i DSTSB _NAME (also DSTSA_TVS BASE) i E
var 1 1 E
| The Symbol Name in ASCII E E
§ (The name's length is given by DSTSB_NAME) i i
T III————=~. s |
var ' | K==4
; DST value Specification |
T A P —— +

Define the fields of the Trailing Value Specification DST record.
IELD osggtvs FIELDS =

DSTSL_TVS_OFFSET = [3, L_ 1. : Offsot in b;%g: gsstgxiling Value Spec
DSTSA_TVS BASE =L[7, A_] ' Trailing value Spec starts at this
=t : location + .DSTSL_TVS_OFFSET

?o{e that the address of the trailing Value Specification is computed as
ollows:

DST_RECORDCDSTSA_TVS_BASE] + .DST_RECORDLDSTSL_TVS_OFFSET)

e SO C A A

D
TBKDST.REQ; 1 16-SEP-1984 16:58:15.05 Page 43 TBKI

! Also note that Value Specifications are described in a separate section
! Later in this definition file.

IT

TBKDST.REQ;1 16=-SEP-1984 16:53:1E.O§ Page 44

O ——— - — -~ -~ — -

byte
byte
byte
long
byte

var

var

THE SEPARATE TYPE SPECIFICATION DST RECORD

The Separate zpo Spocifisation DST record is usod whon ho data typo
of the symbol being described is too couplox to be .'i
a one-byte type code or a VAX Standard Descriptor s
must be 1nn diately follovcd by a Type ?pccif co%ion. Rocord Begin,
or Enumeration Tyfo 808 n DST record which describes the data type
of the data symbo (Only Continuation DST records may intervene.)
The format of the Separate Tgpo Specification DST record is essential-
ly identical to that of the Standard Data DST record, It may contai
& Trailing Value Spocifisotion if nocossar‘ to doscr*be the symbol's

(]

record

value or address. This is the format of the record

e e e e E .S mEE e .- e = e e +
i sk ot b e B S £ P e -
A P R DSTSB_TYPE (= DSTSKSEPTYE) .
Pk T b S RS bk e BRI LA, ST S Ao :
Al LR B, 2 L™ s o SOGLT O < :
SRRt Rt NS bbb o S A SO S SO :
The Symbol Name in ASCII
(The name's Length is given by DSTSB_NAME)
S ——— .
§ A Trailing Value Specification or nothing, §
§ depending on the value of DST$SB_VFLAGS field i
R L B e R AL e D e s ‘

TBK

< O o o

T 0 S S S g e e g e

F
TBKDST.REQ;1 16=-SEP=1984 16:58:14.0§ Page 45

DST VALUE SPECIFICATIONS

A DST value Specification specifies the value or address of some symbol.
Value Specif ﬁation can occur in a number ?f p%accs in th? Debug Symbol
Table. The simplest forms of Value Spoiif cations occur in the Standard
Data DST record. A somewhat more complicated form ?cc?rs in Dc’cr tor
Format DST records where a VAX Standard Descriptor is included in the
DST record to givz more conglotn ’ddr ss information (and type informa-
tion). The Trailing Value Specification DST record has a simple five-
byte Value Specification ’§ the beginning of the record which points to
a more ¢ lex Value Specification at the end of the record. That more
complex Value Specification can be any kind of Value Specification, in-
cluding the most general forms.

In addition, Value Specifications aa* occur in a number of Type Speci-
fications. In these cases, they typically generate values (as opposed
to addresses), such as subrange ?ounds for a subrange data type, or they

aonorato full VAX Standard Descriptors in order to specify some sort of
ata type, such as a dynamic array.

]

i

\

\

i

\

i

i

i

i

i

i

i

i

i

\

i

i

i

i

i

]

! ALl Value Specifications start with one byte, the DST$B VS _VFLAGS field.
' In Standard Data DST records, this field and the DST$B_UFLAGS field are
! synonymous. If this field has one of the special values DSTSK_VFLAGS_xx
! described in the Standard Data DST Record section above, the format of
! the Value Specification depends on that value. Otherwise the VFLAGS
' field is interpreted as a set of subfields, namely DSTSV_VS_REGNUM

! DSTSV_VS _DISP, DSTSV_VS_INDIRECT, and DSTSK_VS_VALKIND, “This is also
; described in detail Tn The Standard Data DST Record section above.

]

i

i

i

i

i

i

i

i

1

i

i

i

i

i

.

i

i

i

i

i

3

STANDARD VALUE SPECIFICATIONS

As indicated above, if the DST$B_VS_VFLAGS field does not have a special
value, the Value Specification is a Standard Value Specification and has
the following structure:

QU tecccccccccccnna +
DSTSV_VS_REGNUM 1 DISP i INDIR | S$V_VS_VALKIND

+
'
‘= B R T e R R e TR 3
'
+

byte H
DSTSL_VS_VALUE i

long

Define the fields of the various kinds of Value Specifications. Also define
the declaration macro.

IELD DSTSVS_HDR_FIELDS =
SET

DSTSB_VS_VFLAGS B E 8. B_ 8. ! Value-flags (access info)
DSTSV_VS_VALKIND = . V_(0,2) 1, ! How to interpret the value

TBK

S S -

TBKDST.REQ;1 16-SEP=-1984 16:58:12.0; Page 46

DSTSV_VS_INDIRECT =[0, v_(g)]. ! Set t to get 1nd1roc}10n
DSTSV_VS_DISP E . V2(3) 3, i Set for rogistor d sglaconcnt
DSTSV_VS_REGNUM = . V_(6,4) J' i Rogistor number for indexing
DSTSL_VS_VALUE = e be]. [Value, address, or bit offset
DSTSL_VS osc _OFFS s L 1,03 ! 0f fso; in b; :s to descriptor

: rom DSTSA VS DSC_BASE
DSTSA_VS_DSC_BASE =[5, A1, ! Descri gtor starfs ot this loca-

’ t ?n + DSTSL_V _DSC OFFS
DSTSL_VS_TVS_OFFSET 2 & " .y " ! Offset in bytes to V goc

: from DSTSA_VS TVS AS
DSTSA_VS_TVS_BASE o k5 A 3 ! Value Spec starfs at this loca-

: tion ¢+ DSTSA_VS TVS OFFSET
DSTSW_VS_LENGTH = (1, v 1], ! Length of Va Spoc n ‘tos

' not count n' e VFLAG

: and VS_LENGTH fiolds
DSTSB_VS_ALLOC = E 3. b]. ! Allocation Tndicator
DSTSA_VS_MATSPEC = [4, A ; Location of Materialization

Specification
TES;

MACRO
DSTSVAL_SPEC = BLOCKL,BYTE] FIELD(DSTSVS_HDR_FIELDS) X;

; The following Literal values may appear in the DST$B_VS_ALLOC field.

LITERAL
DSTSK_VS_ALLOC_STAT » % ! Value is static
DSTSK_VS_ALLOC_DYN = 2; ! Vvalue is dynamic

! Define the fields of the Materialization Specification. Also define the
' declaration macro.

FIELD osg:ns FIELDS =

DSTSB_MS_KIND =[0,8_1. ! The kind of value produced

gg;:g =§ ?EEEBITS =[1, g_ ¢ 5 I?o lg?hanisa whereby produced
= . B_ ! Fla s

DSTSV_MS_NOE VAL = . V_I() g : Purgoso of this bit not clear

DSTSV_MS_DUMARG = . V_(1) ! Include argunont on call

DSTSA_MS_MECH_SPEC = . A]. : Location of echanism Spec

DSTSL_MS_MECH_RTNADDR = o L ; Routine address for call on

compiler-generated thunk

MACRO
DSTSMATER_SPEC = BLOCKL,BYTE] FIELD(DSTSMS_FIELDS) X;

; The following values may appear in the DSTSB_MS_KIND field.

LITERAL
DSTSK_MS BYTADDR

NS _ 1, he value is a byte address
DSTSK_MS_BITADDR

3 |
8o ! The value is a bit address (a lLongword
: byte address plus a longword bit

TBK

Ve ey -y - - -
b

MA(

TBKDST.REQ; 1
DSTSK_MS_BITOFFS : 3,
DSTSK_MS_RVAL = 4,
DSTSKMS“REG =S5,
DSTSK_MS_DSC = 6;

H
16-SEP-1984 16:58:14.05 Page 47

otfso fro- the byte ddross)
The va uo ’ bit offset nornl
ffset fron the start o a

rocor --uso? for rocord onpononts)
val uc teral valuo constant)
The va ue is ’ reg st*r number

dress is ster addros}

The valuo is » VAx standard descriptor

p—y
- 4
L)

.- -

E The following values may appear in the DSTSB_MS_MECH field.

LITERAL
DSTSK_MS_MECH_RTNCALL = 1,

DSTSK_MS_MECH_STK = 2;

! Routine call on a compiler-
i enerated thunk
i DST Stack Machine routine

TBKDST.REQ;1 1€-SEP-1984 16:58:11.05 Page 48
DESCRIPTOR VALUE SPECIFICATIONS

If the DSTSB_VS_VFLAGS fiold ha‘ the special value DST!K VFLA S DSE
this is a DeScriptor Value Specification. Such a value %px ication
contains an offset relative to the end of the Valuo Specification that
pointt to a VAX Standard Descriptor lLater in the same DST record. That
oscr ptor then contains tho actual address that the value Specifica-
tion seeks to specify. This is thus the format:

L B et TR R R +
byte i DSTSB_VS VFLAGS (= DSTSK_VFLAGS_DSC) i
long i DSTSL VS_DSC OFFS i---t
var | DSTSA_VS_DSC_BASE a1
§ Other Fields in DST Record g i
- — S — 5§
var 5 E(--+
§ VAX Standard Descriptor Giving Symbol Address g
S— R— S ———— ‘

The address of the VAX Standard Descriptor is computed as follows:
DSC_PTR = VS_PTRLCDSTSA_VS_DSC_BASE] + .VS_PTRLDSTSL_VS_DSC_OFFS];

- - — - —— - —

TBK

o W S S S S e S e e R

TBKDST.REQ;1 16-SEP-1984 16:58:11.05 Page 49
TRAILING VALUE SPEC VALUE SPECIFICATIONS

1f tho DSTSO XS VFLAGS field has the spos ’l value DSTSK_VFLAGS_TVS,
this is a Tra lTng ¥aluo Sp ¢ Value Specification. Such"a Value
Spoc f cation conta ns 8 po n;’r relative to DSTSA_VS_TVS_BASE that
ints to another Vo u’ pecification Later in the same DST record.

his second Value Spe ‘ ?n ’ nornoll{ of the most general and
owerful form of Value Spec a: on, namely the VS~ follous aluc Spoc-
fication. In effect, the Tra ng v.luo Spec format is a five=-b ¥
Value Specification (saoll enough it in a Data DSTY Rocord) wh

oints to a larger V|l?? Specificat on olstuhor! in tho sa-o DST rocord.
his Larger Value Specification ﬁan be arbitrar l{ go and complex

in order to do whatever gonputat on is necessary to obtain the desired
value, address, or descriptor.

This is the format of the Trailing Value Spec Value Specification:

R L +
byte i DSISB M) VFLAGS (= DSTSK_VFLAGS_ TVS) i
long i v DSTSL_VS_TVS_OFFSET i—--t
var | DSTSA_VS_TVS_BASE e

Other Fields in DST Record

-— - T T .
var 5 5<--¢

E The Trailing Value Specification E

(Normally a DSTSK_VS_FOLLOWS Value Specification)

do —— S —— ‘

The address of the Trailing Value Specification is computed as follows:
TVS_PTR = VS_PTRLDSTSA_VS_TVS_BASE] + .VS_PTRLDSTSL_VS_TVS_OFFSET];

TBK

e R R R e -

e e —

v
TBKDST.REQ;1 16=-SEP-1984 16:58:14.0§ Page 50

S e S S S T T S N G - -

byte
word
byte
var

VS=FOLLOWS VALUE SPECIFICATIONS

If the DSTSB_VS_VFLAGS fiold ha¥ } pocial aluo DST&K vs FOLLOWS,
this is a VS=Foll ous Value Spoc on. i ’ ’ genera
and gouorf?l form of Value pzcificot on. lhc spo cation itsel
can be arbitrarily long, but it can al s? do an arb trar ly conplox
computation in order to compute the desired value, address ? 1
scriptor. This is the format of the VS-Follows Value Specification:

D e coscsssccsssssscases +

i DSTSB_VS VFLAGS (=DSTSK VS_FOLLOWS) i

i DSTSU_VS_LENGTH i

i DSTSB_VS_ALLOC i

3 DSTSA_VS_MATSPEC |

§ A Materialization Specification i

; - - e O E T TS Em ™. ;

A VS-Follows Value Specification contains a Materialization Specifica~-
tion which indicates how the value is materialized. This specifica-
tion indicates what kind of value is being produced, by what mechanism
it is fYroduc:d. and in detail how it is produced. ft also contains
some 5.

The kind of value beina produced can be a gs bit b{to address, a 64-bit
bit address (a byte address follouod by a bit bit offsot) a bit
offset (relative to the start of a rccprd--usoq only for record compon=
ents), a literal value (a const’nt or '"R-val a register address,
or an actual VAX Standard Doscr ptor. VAX tandard Descriptors are
mainly producod by Value Specification uith n Type Specifications where

a descri Rtor must be built to describe a data type such as an array
typo with run-time subscript bounds.

Valucs can be produced by tuo acghonisns. One is a routine call on a
coap lor-gonor?tod thunk. s cast the compiler generates a rou-
tine int bject code uhich vhen 3, 01 produces th GGsiro? xalug
The address of the routi no s spoci ed in the Hochan s- Sgoc f cat on.
The other mechanism is a DST Stack Machine rout ne. Stack

L] ch ne is a virtual nachin’ uhich DEBUG onu lt.} to uso it, the com-
B ler gcnorltos code for th ? virtual machine ch, when executed at
EBUG~ producos the desired value. The DST Stack Machine form of
Hochan S §p % cation constitutes the most gonorll and powerful form
of value specification supported by DEBUG.

TBK

- - - - - -y - -

TBKDST.REQ; 1 16-SEP=-1984 16:55:1&.05 Page 51 TBK
CALLS ON COMPILER-GENERATED THUNKS

The Routine Call Mechanism Specification specifies the address of a
compiler-generated routine (a thunk) which DEBUG can call to gorforu
the desired value computation. This form of Mechanism Specification
must be used for PL/1 "BASED'' variables since the address of such a
variable can dogond on the value returned by a user-defined function.
In this case, the Mechanism Spgcif cation consists of a single longword
giving the address of the compiler-generated thunk to call.

This is the format ?f the whole Value Specification when the Routine
Call Mechanism Specification is used:

B e e - R RS TR M EE D e @RS DD eSS e o ¢

e I SRR, SNt R s BV SRR : -
e L T e I O csovonastova— : b
il T b s Bl b e s SRR b
byte i e DST$B;!$_§IND B e N i .
byte i DST&a,ES,HECN (= DSTSK_HS_HEEH_RI!E&EEE ____________ i :
byte i ________ = DSTSB,HE:FLAGBITS ____________________ i ;
long i LA 4 Eile:HS-EECH-RTNABEB _____________________ i

The called routine is passed the address of a vector of register values v

as its one argument, This vector contains all register value for the
scope (call frame) in which the symbol having this Value Specification
is declared. The vector contains the values of registers RO - R11, AP,
FP, SP, PC, and PSL in that order. The routine is allowed to use all
such values in its computations, but is not allowed to change the con-
tents of the register vector. In addition, the routine is passed the
value of FP (the Frame Pointer) in register R1.

The value of the routine should be returned to DEBUG in register RO.

The DSTSV_MS_DUMARG bit should be set in the DSTSB_MS_FLAGBITS field if
the called routine expects to return a value longer than one longword.
If DSTSV_MS_DUMARG is set, the address of an octaword (four-lLongword)
buffer is passed as the first argument to the called routine with the
expectation that the routine's value will be returned to this buffer.
The address of the register vector is then the second argument.

T e NS S S R S S T S S S S S G G

[——— e b e LRl Ll

M
TBKDST.REQ;1 16=-SEP=1984 16:58:14.0§ Page 52

THE DST STACK MACHINE

The DST Stack Machine is a virtual nachino onulatod by DEBUG. This
machine can push and pop values on a stack tan perform a ariety
of arithmetic and logical operations. It can so call compiler-
generated thunks. The DST Stack Machine is used when a v?}uo must bc
computed at DEBUG-time and the Standard Format Value Specification is
not adequate and a compiler=-generated thunk to do the whole coagutation
soons undcs rable. In such cases, the compiler can gcnorato a Mecha-
nism SQQC fication which cons sts of code for the Stack Machine. At
DE UG-time, when the valu’ quest on s needed, DEBUG will interpret

s code until the STOP instruction is oncountorod. The value that
ronoins on the top of the Stack Machine stack is then taken to be the
desired value.

The format of the whole Value Specification when a DST Stack Machine
Mechanism Specification is used is as follows:

Nl I XX Y
word | - DSTSU VS LENGTH '
T BV e T s ey
byte i ______ e DSTSB_MS KIND i
byte i____________w_-flsa MS HECH (= DSTSK ns HEE!_EIEI ______________ i
byte i ___________ - DSTSB-HS-FLAGBITS _________________ i
var | DSTSA_MS_MECH_SPEC 5

§ DST Stack Machine Routine g

v e et s |

Here the DSTSB VS_ALLOC field should have the value DSTSK_VS_ALLOC_DYN

f any kind of address is computed and DSTSK_VS ALLO? f TAY iT a Literal
value (a constant) is computed. The need for this field is not cloar
since DEBUG ignores it at present.

The stack upon which the DST Stack Hachino oporatos consists of 256
locations where each ocas on is a onoword. he stack groui toward
snaller addresses and nk s toward larger 1ssos. s regard

is Like the VAx cal staﬁ A DST Stack Hach ne Routine consists

guonco of Stack Machine instrug ons ending in a STOP instruc-

tion (DSTSK_STK_STOP). When the mach ne stops. & location or
locations on the stack constitute the ’ rou ine. The length
of the value is determined by the DSTSB HS KIND field

- - S T S S S S S G e e e -

TB¥

TBKDST.REQ;1

The DST Stack Hachinz supports
main dor o thi s section. Each

In this doscr
pushed cell on the sta

longword value.

]
|
1
1\
]
]
]
]
]
i
: Define the Push Register instructions.
|
l
L

1TERAL

DSTSK_STKZPUSHR
DSTSK_STK_PUSHR
DSTSK_STK_PUSHR8
DSTSK_STK_PUSHR9
DSTSK_STK_PUSHR10
DSTSK_STK_PUSHR11
DSTSK_STK_PUSHRAP
DSTSK_STK_PUSHRFP
DSTSK_STK_PUSHRSP
DSTSK_STK_PUSHRPC

-t et 2 3 3 OO NO VAN = OO

VIS AN =2 & = & & & & 5 & & &

R NN
®sn % s s ®

]

i

(]

[

; as appropr

g e constant value to push then fo

E

LITERAL
DSTSK_STK_PUSHIMB = 1?.
DS"K STK PUSHIHU = 17,
DS"K STK PUSH]HL = 18,
DS“K STK PUSH!H VAR = 264,
DSTSK_STKPUSHIMBU = 295,
DSTSKZSTKZPUSHIMWU = 26;

! Defino the Push Indirect instructions.

register value on the Stack Machine stack.
the scope (call frame) of the symbol for which the value is being computed.

e st Rt Er tEr t SR SRt SR ¢ C Er S S A e - -

Define the Push lnnodiate instructions.

N
16-SEP-1984 16:58:14.0§ Page 53

he instructions tabulated in the re-

nstruction consists of a one-byte op~

code followed { zero or more operand b tos. depend ng on the op-code.
on. the top stack ce| ref ers to the

most recently
he socond cell refers to the next

most rocnntly pushod cell stsll on tho stack. Each cell contains a

These instructions push the indicated
The register values are taken from

Lower bound for range checking
Push the value of register R

Push the value of register R1
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of register
Push the value of the AP

Push the value of the FP

Push the value of the SP

Push the value of the PC

-t = O 00 NO WS NN = O

DOV VDDVDDVDVDDD
-0

These instructions are used to push

constant values on the Stack Machine stack. The constant value to push comes
immediately after tho instruction op-code. Ffor the signed and unsi gno n-
structions, the value to push is zerc-exten.ed or sign-extended to

fate. In the case of tho Push lanodiote Variable instruction, the
‘to after the op-code gives the {to length of the constant value to push.

T lows ianed ately after that Length byte.
The constant value is 2ero-extended to the nearest lLongword boundary on the
high-address end and the resulting block is pushed onto the stack.

Push Immediate Byte (signed)
Push Immediate Word (signed)
Push Immediate Lon?uord (signed)
Push Immediate Var

Push Immediate Byte Unsigned
Puch Immediate Word Unsigned

For these instructions, the top stack

i cell is porped and the one, two, or four bytes at the address given by t

! popped cel

are sign extended to 32 bits and pushed on the stack. For the

1Bk

PR p——————————— A e e e e L L L L L L T

TBKDST.REQ;1 16=-SEP-1984 16:58:12.02 Page 54

! unsigned instructions, the value is jnstead zero-extended to 32 bits and
; pushed on the stack.

LITERAL
DSTSK_STK_PUSHINB = 20, ! Push Indirect Byte (signed)
DSTSK_STK_PUSHINW = 21, ! Push Indirect Word (signed)
DSTSK_STK_PUSHINL E ;. ! Push Indirect Longword (sianed)
DSTSK_STK_PUSHINBU = 2/, ! Push Indirect Byte Unsigne
DSTSK_STK_PUSHINWU = 28; ! Push Indirect Word Unsigned

! Define the arithmetic and logical instructions. These instruction pop the
! top two cells on the stack, perform the indicated operation on these operands,
E and push the result back onto the stack.

LITERAL
DSTSK_STK_ADD =19, Add=-The top two cells on the stack

are popped from the stack and
added together. The resulting
sum is pushed onto the stack.

DSTSK_STK_SUB = 29, Subtract--The second cell on the stack
is subtracted from the top cell.
Both are popped from the stack.
The resulting difference is then
pushed onto the stack.

Multiply==The top two stack cells are
popped from the stack and multi-
plied. The resulting product is
then pushed onto the stack.

]

i

i

i

H

i

]

i

|

DSTSK_STK_MULT ;

i
i k

3, ; Divide=-The top stack cell is divided

]

i

i

i

i

i

i

i

i

i

i

i

5

30,

DSTSK_STK_DIV

by the second stack cell. Both
are popped from the stack. Their
quotient is then pushed onto the

stack.

Logical Shift--Shift the second stack
cell by the number of bits given
by the top stack cell; gop oth
operands and push the shifted
second cell on the stack

Rotate--Rotate the second stack cell
b‘ the number of bits given by
the top stack cell; pop both
operands and push the rotated
second cell on the stack

DST$K_STK_LSH 32,

33;

DSTSK_STK_ROT

! Define the Copy and Exchange instructions. These instructions make a copy
; of the top stack cell or exchange the top two cells on the stack.

LITERAL

DSTSK_STK_COP = 34, ! Copy=-=A cop‘ of the top stack cell
! is pushed onto the stack
DSTSK_STK_EXCH = 35; ; Exchange==The top two stack cells are

interchanged

TBK

B G S S - -

TBKDST.REQ;1 16-SEP=1984 16:58:12.0! Page 55

! Define the Store 1nstrucsions. Following ;ho op-code, these instructions

! contain a byte which is interpreted as a signed offset into the stack. The
! low-order byte, word, or Longword of the top stack cell is stored into the
' b‘to. word, or longword given by the current stack pointer plus four plus

! the signed offset into the stack. (In short, the offset is an offset from
! the second stack cell.) After that, the top stack cell is popped. These

! instructions permit values to be stored into stack locations other than the
; top or second stack cell.

L

ITERAL

DSTSK_STK_STO_B = 36, ! Store Byte into Stack
DSTSK_STK_STO_W = 37, ! Store Word into Stack
DSTSK_STK_S10_L = 38; ! Store Longword into Stack

! Define the Pop instruction. This instruction simgly pops the top stack cell,
E meaning that the top stack cell is removed from the stack and discarded.

LITERAL
DSTSK_STK_POP = 39, ! Pop Top Stack Cell

! Define the Stop instruction. This instruction stops the DST Stack Machine and
! is required at the end of every DST Stack Machine routine. Whatever value is
! left at the top of the stack when the Stop instruction is executed is taken to
! be the value of the Stack Machine routine. This value may be a Longword (a

! b{te address, for example), two lon?uords (byte address and bit offset), any

! size literal value (an H-F[oating Literal, for instance), or a full VAX Stan-
s dard Descriptor, depending on the value of the DST$B_MS_KIND field.

L

ITERAL
DSTSK_STK_STOP = 23; ! Stop the Stack Machine

Define the Routine Call instructions. These instructions call a compiler=-
enerated routine (a thunk) whose address is given b{ the top stack cell.
efore the call actually occurs, the top stack cell is pop:od. The value

that is returned by the thunk is then pushed onto the stack.

The Routine Call instruction works as follows. The address of the thunk to
to be called is taken from the top stack cell. The tog cell is then popped.
The thunk, which is called with a CALL instruction, gets two arguments. The
first argument is the address of a vector of register values for the scogo
(call frame) of the symbol to uhish this Xaluc gpoc fication belongs. Thi
vector contains the values of re - R11, AP, FP, SP, PC, and PSL in
that order; the called thunk is Tree to read any value it wants from this
vector but -.; not store into it. The second Raranot&r is a pointer to the
top of the DST Stack Machine stack after the thunk address has been popped.
A Stack Machine routine can thus compute arguments to the thunk and push them
on the stack before push n? the thun agdross an? calling the thunk. In
addition, the value of FP in the s;nbol s scope is passed to the thunk in
register R1. The routine's value is expected to be returned in register RO.
This value is pushed onto the stack.

sters R

S e S S R S S S e S e - - -

The Routine Call With Alternate Returr instruction works this same way except
that the address of an octaword buffer (& lLongwords) is passed to the thunk

e

TBK

< ~ O <

TBKDST.REQ;1 16-SEP=-1984 16:58:12.03 Page 56

as the first argument, with the register vector being the second argument and
the stack address being the third argument. In this case, the routine value
is expected to be returned to the octaword buffer, not in register RO. The
whole octaword buffer is then pushed onto the stack.

ITERAL

]
i
i
i
i
L

$K_STK_RTNCALL = 40, ! Routine Ca
$K_STK_RT 61;

£ Ll (value returned in RO)
K_RTNCALL_ALT ! Routine Call With

Alternate Return

! Define the Push Record Address instructions. These instructions push the

! address of the outer-most or inner-most record structure for which the cur-
! rent symbol is a record component. Thc¥ are used for constructing VAX Stan-
! dard Descriptors on the Stack Machine stack when some part of the descriptor
! depends on some other component of the same record. In PL/I, for instance,
! the subscript bounds of an array component of a record may depend on another
! component of that record. In such cases, the only way to get the address of
! that other component in the current record is to use one of the Push Record
! Address instructions. The Push Outer Record Address instruction pushes the
. address of the outer-most record of which the current symbol is a component
! while the Push Inner Record Address instruction pushes the address of the

5 inner-most record of which the current symbol is a component.

L

ITERAL

DSTSK_STK_PUSH_OUTER_REC = 4;. ! Push Outer Record Address
DSTSK_STK_P JREC = 43;

USH_INNER ! Push Inner Record Address

! Define the highest op-code value accepted by the DST Stack Machine. This
; value is used for op=-code range checking.

LITERAL
DSTSK_STK_HIGH = 43; ! Upper bound for range checking

! END OF VALUE SPECIFICATION DESCRIPTION.

TBk

e § S R S S G S g e G

TBKDST.REQ;1

|
i
i
i
i
i
i
i
i
i
i
i
i
i
|
i
i
i
i
4
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:
i
i
i
i
i
a
i
:
i
i
i
i
i
f

byte
byte
byte

var

var

THE TYPE SPECIFICATION DST RECORD

The Type Specification DST record gives the most general data tlpc
description available in the Debu? Symbol Table. It conttins the
name of the data type being described an? a DST Type Specification
that describes the type. The type name is used in Languages where
data trgos can be named, such as PASCAL. If no t¥po name exists,
the null name (the name of zero length) is specified

DST T{po Specifications are described in detail in the next section
of this definition file.

Type Specification DST records either immediately follow Separate
Type Specification DST records or are pointed to by Indirect Type
Specifications or Novel Length Type Specifications elsewhere in
the DST for the current module.

This is the format of the Type Specification DST record:

The Type Name in ASCII
(The name's Length is given by DST$B_TYPSPEC_NAME)

The DST Type Specification for the
Data Type being defined

Define the fields of the Type Specification DST record.

IELD DS!S{YPSPEC-FIELDS =

SE

DSTSB_TYPSPEC_NAME =[2,8_1.
DSTSA_TYPSPEC_TS_ADDR = [3, A_]
TES;

ype Name

- - -

Specification

16=-SEP=-1984 16:58:1i.0§ Page 57

in this record.

The count b;to for the Counted
ASCI{
The location of the DST Type

St

TBk

- - ———— - - _— - - - - - —— -
-~

F
TBKDST.REQ;1 16-SEP-1984 16:58:14.05 Page 58

[Il Tl T T L T I T T T T I T I T I T N T ™MLY

word
byte

var

DST TYPE SPECIFICATIONS

051 Type Spociiicttion spociiios tho data type of some data symbol.
{pe Specificat constitute the nost oncrol form of data ypc
description available in the Dobu? S{ le. They ro found
only one kind of DST roiord. namely the Typc Spocificot on DST r cord
However, some Type Spec fications cont in nested Type Specifications,
uhich pornits quite complex type dcscr tions. For example, the parent
¥ for a Subrange data type is gi ¥ y a nested Type Specification
within the Subrange Type Specificat

This is the general format of all DST Type Specifications:

L T L A e] cnscecsccsserrrcrcccece o= %

i DSTSW_ TS LENGTH |

& dota symbol whose data type must be described b{ a DST Type Specifi-
cation is doscri bed { a Separate T‘po Specification DST record. This
DST record is immediately followed ype Specification DST record
which contains the DST Type Specificotion for the symbol's data type.

To conserve DST space when several s bols havo the same data tyg the
Type Specification that follows the ar’to y? S eciiication sf
record may be an ln?iroct T{pt ?pocificat on. he Indirect T¥?c Speci~-
fication hon contains a 9 po ntor to the actual Typo Spoﬁ cation
DST rocord or xhc ‘ s type. { ’ single copy oi th s actual
Type Specificat 5 thon needed. Multiple symbols ? ? same Record
or Enumeration tygo must also use ’parotc Type Speci icat on DST

rocords f l Tygt Rgciiicat on DST records conta nin? Indirect
e Spec icot ons. In case, tho Indirect Type Specif ca;é:n:h‘

nt to the Rccor? !cg n or inunerat on Type Begin DST record
on type

rocord or enumerat being specified.

In iact. the T Specification that can roior to record or enum=
75 Ine Thaire iic

T ion, h T
.;::iOﬂ t{?:n an too bu:. : ,i.ngg::l 3:03nthi’ clﬂovol #.n?;po e
n ?zhor pe Specific jons when record

Specifi cati?n s thus used uith
or :nunorat on types must be spcc ed. or examp c. uhon th element
yp? of an array ’ ’ record numeration type, ’ 1poc ied b{ gn
{nd rect !{:o Specif cat on w th n the Array ypo Spoc fication]
arly, ¢ target o ’ typed ?? nter is cord or onUlcrtsion ype
obioct. tho target type is specified by an lnd rect Type Specification

T8I

TBKDST.REQ;1

16-SEP-1984 16:58:15.08 Page 59

within the Typed Pointer Type Specification.

]
]
l
l
i Define all the fields that can appear in the various Type Specifications.
: Also define the declaration nacrg? e
F

IELD DSTSTYPE_SPEC_FIELDS =

MACRO

S
DSTSW_TS_LENGTH =[0, w1,
DST$B_TS_KIND . B_ 1.
DSTSB TS”ATOM_T . B).
DSTSATTS os VSPEC ADDR = [3. A= 3!
DSTSL-TS_IND o i
osrsA " -1PIR rspec _ADDR= [3. A= 3.
DST$B_TS_PIC_DLENG =[3, 81,
DSTSB_TS_PIC_LANG =[4, 8_1,
DSTSB_TS_PIC_PLENG =[5, 8.1,
DSTSA_TS_PIC_ADDR =[6, A1,
DSTSB_TS_ARRAY_DIM E 3, B].
DSTSA-TS-ARRAYFLAGS_ADDR=[4. A~ 1.

DSTSL_TS_SET_LENG ¥ & EH

DSTSA_TS_SET_PAR_TSPEC_ADDR = [7, A_ J,

DSTSL_TS_SUBR_LENG =[3. L 2

DSTSA_TS_SUBR_PAR_TSPEC_ADDR= [7, A_ 1,

DST3A-TS-F ILERCRD_TYe = [4. Az 1
DST3A-1S-0FFSET VACSPEC = [3. A- 3:
DSTSL_TS_NOV_LENG =3 L 1)
DSTSL_TS_NOV_LENG_PAR_TSPEC = [7, L_ 1.
DSTSL_TS_SELF_LENG =[3 L.

TES;

P - e — - - - - ——— - ——— -

The bg %ongth of the Type
pecification not 1nclud-
ing this ’ ngth f
The T po Speci cation k nd
The Atomic da‘ type code
The VAX descr gtor Value Spec
Indirect Type Spec DST pointer
Typed Pointer parent type Type
Specification Location
The byte l0ngth of data objocts
of this picture t¥
The DST language code for this
picturo data type
The Llength of the picture
string in this Type Spec
The location where the picture
is encoded in Type Spec
The nuubor of array d nonsions
The location of the array flags
that indicate typc pecs
for tho subscr pt t{pos
The lon?th in
ects o th s Sot type
The locat gntof tho Sot s
aren
The lgn th in,gzts of og’octs
of this subrange type
Location of the parent type
Type Specification within
the Subrange T‘ e Spec
Language code for file type
Locction of Type Spe '1ving
’non ype or ile
Length ytes of PL/1 '‘area'’
Location of Value Spec giving
base a dross of PL/1 area
The '‘no Llength in bits of
!octs of this data type
DST po ntcr to toront type tor
is no length™ type
Tablo longth or thi array of
PL/I Sclf—!olat ve Labels

DSTSTYPE_SPEC = BLOCKC,BYTE) FIELD(DSTSTYPE_SPEC_FIELDS) X;

B

18I

R R - —— -

TBKDST.REQ;1

H
16-SEP-1984 16:58:16.05 Page 60

E The following are the values that may appear in the DST$SB_TS_KIND field.

LITERAL
DST$K_TS_DTYPE_LOWEST
DSTSK TS"ATOM ~
DSTSK™TS™DSC
DSTSK"TS”IND
DSTSK TS _TPTR
DSTSK TS "PTR
DSTSK TS PIC
DSTSK TS ARRAY
DSTSK TS SE1
DSTSKZTS SUBRANGE
DSTSK_TS_FILE
DSTSK TS AREA
DSTSK TS OFF SET
DSTSK™TS NOV_LENG
DSTSK TS IND TSPEC
DSTSK_TS_SELF_REL_LABEL
ostsx,rs,urA
DSTSK TS TASK
DSTSK TS DTYPE_HIGHEST

! The following set of Literals
' Specifications which have a fi

LlTElAL

DSTSK_TS_ATOM_LENG
DSTSK_TS_IND_CENG
DSTSK_TS_PTRTLENG
DSTSKTS_FILE_LENG
DSTSK_TS_AREATLENG
DSTSKCTS_OFFSET _LENG
DSTSKTS_NOV_LERG_LENG
DSTSKTS_TASR_LENG

i e e il s i s e LY OO O LS NN =S =

OOONOs WVISSWLIMN =S = = = = = = = = »

. % 8 8 8 s

---Loucst Tyg Spec kind
Atomic T ec

VAx Standard osciptor Type Spec
Indirect Tz

Ty?od Pointer Type Spec

. nter T po Spec

ctured pec
Arra; Typo poc
Sot ype
Subrange T Yoc
Unusod--avn ob for future use
File Type S

ec

Area Type Spoc (PL/1)

Offset ypo S oc (PL/1)

Novel Length e Spec

DEBUG 1ntornal gcnorotod pointer
f Spec (cannot appear in DS

S!lf‘RQ ativo Label type pec (PL/I

Rccord File Address Type Spec (BASI

Task Type Spec (ADA)

-==Highest Type Spec kind

give the lengths in bytes of those Type
xed length.

N = NN NN

e & % & 8 s

Atomic Ty ?e Spec length
Indircct ype Spec length
Pointer Type Spoc Length

File Typo pec lLength

Area Type Spec length

Offset Type Spec Length

Novel Length Type Spoc Llength
Task Type Spec length

18I

B S SRS R - — -

TBKDST.REQ;1 16-SEP-1984 16:58:1!.05 Page 61

|
-
|
-
|
-
1
-
|
-
|
.
|
-
|
.
|
-
|
.
1
.
1
.
|
.
|
-
1
-
1
-
)
.
)
-
1
.
|
-
|
.
i
.
|
.
|
-
|
.
|
.
)
-
1
L
1
.
i
.
!
.
1
.
i
-
|
-
|
-
i
-
i
.
]
.
1
-
|
-
{
-
|
-
[}
-
1
.
i
-

word
byte
byte

word
byte

var

ATOMIC TYPE SPECIFICATIONS

The Atomic T;Ro s?ocification is used to describe an atomic VAX standard
data type. is {f’ Spocificagion consists of the standard Type Speci-
fication header followed by a nalo byte contoining the VAX standard

data type code (one of the DSCSK_DTYPE_x codes). The Atomic Type Speci-
fication has the following formaft:

D e e b R e Rl -

DSTSW_TS_LENGTH (= 2) :

- e ETOTUOTT DO DN DD EEDEEED DD ’

DSTSB_TS_KIND (= DSTSK_TS_ATOM) :

- e o @ --eeeeeeeeeeeeeaeTeSeBaeSee --.--‘-------‘

DSTSB_TS_ATOM_T (P :

B kR R e e e B R L

[P S -

DESCRIPTOR TYPE SPECIFICATIONS

The Descriptor Type Specification is used for VAX Standard Data Types
that can be described by VAX Standard Descriptors but cannot be de-
scribed by an atomic type code. Packed decimal, which requires a
digit Llength and a scale factor, and ASCI] text, which requires a
string length, are examples of such data types. The Descriptor Type
Specification contains a Value Specification which must produce a

VAX Standard Descriptor. This is the format:

DSTSW_TS_LENGTH :
DSTSB_TS_KIND (= DSTSK_TS_DSC)

+
DSTSA_TS_DSC_VSPEC_ADDR |

Value Specification Yielding a VAX Standard Descriptor g
+

PUPTR Y. Lk .

18

S e S S e O

TBKDST.REQ;1 16=-SEP-1984 16:58:11.02 Page 62

- e e - -

word
byte
long

INDIRECT TYPE SPECIFICATIONS

Tho lndiroct Typt Specification is used when the actual Typo g?ocifica-
esired i und in another DST record. Th Type poc cat on
conto ns a DSY po ntcr which points to that other os rccor DST
pointer contains the b t’ offset relative to the star} of the uholo DSt
of the DST record that gives the act*al typo nformation. The po ntgd-
to DST record must be ono 0 thrc’ nds of DST records: a Typ 1
fication DST record, a Record Begin DST rcc?rd or an Enunorat on Typo
Begin DST record. fhe lnd rect Type Spocif cation 1 the only Type
Spocif cation that can refer to a record or enumeration type; those
‘pos are too complex (potentially) to be referred to any other way.
This is the format of the Indirect Type Specification:

DSTSW_TS_LENGTH (= 5) i

- --------------— - S S o -‘

DSTSB_TS_KIND (= DSTSK TS IND) i

cecscsscssssssssesse s -------_ ----- cescceeccsssceceee +

DSTSL_TS_ IND PTR

EE TS sesen eSS e - .- S ——— +

..-’-.’--.

18

G e S e -

K
TBKDST.REQ; 16-SEP-1984 16:58:1&.0! Page 63

TYPED POINTER TYPE SPECIFICATIONS

The Typed Pointcr Typo Sgocification describes a typed pointcr data
}ypv. meani n? pointer to a specific other data type. Pointer=-to-
ntoao ° ound in PASCA# and other onguago s on example of a
Kgo pointor ¥¥ In this example, ntogor oron type''

T po Sgoc cotion contn ns an cnbcdd d Typo Spec ﬁation uhich
specifies t arent }ypo for the ty?e? ntor type. s is the
fornat of the Type Po ficati

nter Type Spec on:

- - Mmoo ®® oo s .--.---.-.-’

!

|

t

!

[

|

|

|

|

|

|

|

|

H +

E word i f DSTSW_TS_LENGTH i

g byte ! DSTSB_TS_KIKD (= DSTSK_TS_TPTR) |

4 - OO EEEEEEEEE RS EEE S -----------’
tovar DSTSA_TS_TPTR_TSPEC_ADDR 5

: § Type Specification for Parent Type that §

: § Objects of Typed Pointer Type Point to §
P s

i T == +

|

1

|

|

: POINTER TYPE SPECIFICATIONS

i

: The Pointer Type Specification is used for pointer t{pos which are not
: typed, meaning that tho type of object that the pointer points to is
: not known at ¢ ilo-t no. PL/I Bointors are examples of this kind of
: pointor type. Since there is_no known parent type, none is sgocified
: in this Type Spocificotion. The Pointer Type Specification thus has
; the simplest possible format:

)

! e e +

1 word i DSTSW_TS_LENGTH (= 1) i

{ byte ! DSTSB_TS _KIND (= DSTSK_TS_PTR) :

—y
[+ 4]

TV . . S .. -

e

TBKDST.REQ;1 16=SEP=-1984 16:58:1&.0! Page 64

word
byte
byte
byte
byte

]

i

i

!

]

\

i

i

i

i

i

]

i

i

i

i

!

]

i

]

i

i

i

]

i

!

E

5 var
i

i

i

i

; var
i
i
!
L]
i
i
i
i
]
[
]
i
]
i
]
i
i
i
i
i
i

PICTURE TYPE SPECIFICATIONS

The Picture tho Specification is used for picture data types as found
in COBOL and PL/I. Bccnus? the exact tcmantics of picture data types
vary between languagos this T{p, Sp’c fication contains the lLanguage
code associated with this specific picture type. It also contains the
byte length of objoi§1 of the picture type, an oncoding of the gicture.
and a language-specific picture encoding (¥sually the EDITPC pattern
string). The actual data obIocts of the picture data type are assumed
to be represented as ASCII character strings.

This is the format of the Picture Type Specification:

DSTSW_TS_LENGTH :

+
'
'
B e o s o - ceccscecsscrescceeaeee weoe - - o
'
+
[}
]

DST$B_TS_KIND (= DST$K_TS_PIC) :

- Ll e e T e = e e e b L L LR &

DST$B_TS_PIC_DLENG

........ - R e e e S N R e R e Dn S e o e e §

DSTSB_TS_PIC_PLENG '

-—-- - o e o o o e e e e e Rk L

DSTSA_TS_PIC_ADDR 5
Picture String Encoding i

Value Specification Yielding a

P rrmncncr e rrrrmr e me o -

:
Language-Specific Encoding of Picture Semantics §
]
+

ct of "this picture type. DEBUG assumes that picture objects are
represented internally as ASCII character strings.

The lLanguage code in the DSTSB_TS_PIC_LANG field is the same as that
used in the Module Begin DST record.

The DST$B_TS_PIC_PLENG field givos the byte Length of the picture
encoding Tn The DSTSA_TS_PIC_ADDR field. The picture encoding in the
DSTSA_TS_PIC_ADDR field cConsTsts of a s1qucncc of words. The high-
order byte of each word contains an unsigned repetition factor and
the low=order byte contains the ASCII rssrc;an}ot on of the repolt?d
picture character. Hence the picture $999. s represented by this

Lg’QDSTSB_TS PIC_DLENG field contains the longth in bytes of each data
i

S S ——

18

- S S G S S S S S S R S RS R R N S S g e G e G W e g g e S e

M
TBKDST.REQ;1 16=SEP=-1984 16:58:14.0! Page 65

uence of byte values: ''S'’ 1, "9, 2. (The same
’gturo con bo written &8 "S(S)§ ;g)§” §

The optional Value Spocification ot tho end of the Piiturt pe Speci-
ficat on olds th addrot ‘ DITPC pattern str ng tha ?cr orms
the enc associated with this picture g pe. DE UG ¥sos this pattern
string w th the EDITPC 1nstruction when doing DEPOSITS into objects o
this picture t‘pc. f the value Specification is omitted, DEBUG can
only doposit character strings into such objects since it does not know
how to encode numeric values.

- —

T8

S S e S S O WS S - S S S S S S S S S S S S G g R W e -

N
TBKDST.REQ;1 16=-SEP=1984 16:56:14.0g Page 66

ARRAY TYPE SPECIFICATIONS

The Arrly Type Spesificution sgccifios an Array data t{p’ This speci-
fication can be ?u T cong ecause it not only spec os the shape of
each array of this type, but o sO spoc fios tho corresponding element
data type and all su scr pt ata {pos. he element :ypo and the types
of the subscripts are given ditional Type Specifications nested
within the Array Type Specif cat on.

This is the format of the Array Type Specification:

\
i
i
i
i
\
B
i
i
i
i
i
i
i
' tecccccccnaa T S +
; word i % DSISU TS LENGTH i
g byte ! DST$B_TS xmo (= gsm TS_ARRAY) !
g byte ! DST$B_TS_ARRAY DIM :
{ var | DSTSA_TS_ARRAY_FLAGS_ADDR !
g § Bit Vector of Flags Indicating What Type §
g § Specifications are Given Below E
g E (The vector's bit Llength is given by DSTSB_TS_ARRAY_DIM) E
i i s
i e T T S .
! var 1]
; 5 Value Specification Producing an Array Descriptor 5
i O — S —— ‘
! var] H
; 5 Optional Type Specification for Array Element Data Type g
B |
i e s e e e G e e e e e m—m e —- - 4
! var H H
; 5 Optional Type Specification for First Subscript Data Type !
i : ;
i + - - ceeececcccccccccncncea- B
vr s
g § More Optional Type Specifications for Subscript Data Types E
i : E
] ' :
i ; LXK X R X X X X X X X X X X X X X 3 S EE DU S E S 0
]
i
i
i

Here the DST$B_TS_ARRAY_DIM field gives the number of dimensions of this

- e S A G S - - ——— - - -

—
m

TBKDST.REQ;1 16-SEP-1984 16:58:12.02 Page 67

array t{po. Next, DSTSA_TS_ARRAY_FLAGS_ADDR gives the location of a
bit-vector which indicatés what nested Tygt S?Qcifications are found
Later in this Array Type Specification. If bit 0 is set, a nested Type
S?ccification is included for the orrl¥ element §¥po (the cell type).
After that, if bit n is set, a nested Type Speci gaiion for the n=th
subscrigt type is included fn this Array Type Specification. If a bit
in the bit-vector is 2ero (not set), the corrospondin? T‘po Specifica=
tion is omitted from the Array Type Specification. If the element type
specification is omitted, the element type is assumed to be given b¥ the
arra{ descriptor's DTYPE field. If a su scri?t type specification is
omitted, the subscript type is assumed to be longword integer (DTYPE_L).
(Subscr{pt Type Specifications are mainly needed for enumeration type
subscripts as allowed in PASCAL.)

The number of bits in the bit-vector is DST$B_TS _ARRAY_DIM plus one more
for the element type. The whole DSTSA_TS_ARRAY_FLAGS_ADDR field is of
course rounded up to the nearest byte boundary.

The array descriptor Value Specification that follows the bit=-vector
field produces a VAX Standard Descriptor for the arral. e descri?tor
class must be DSCSK_CLASS_A, DSCSK_CLASS_NCA, or DSCSK_CLASS_UBA.) This
array descriptor gives the strides (or multipliers) and the Tower and
upper bounds for all of the array dimensions. It also gives the element
data type, including its scale factor, digit count, or other type infor-
mation as appropriate. However, the descriptor's element ty?c can be
overridden z an element T‘pe Specification as noted above; in this case
the DSCSB_DTYPE field of the descriptor should be zero.

The Array Type Specification is normally only used in two situations.
First, it is used if the array t¥pe does not have a compile-time-con-
stant descriptor (for example, it it has variable array bounds) and no
run-time descriptor exists in the user's address space. Second, it is
used if the array type cannot be described a VAX Standard Dcscr%ptor.
either because the element type $annot be described by a VAX Standard
Descriptor or because the subscript types are not integers. (Element
types such as records, enumeration types, and tlged pointers cannot be
described b‘ VAX Standard Descriptors.) If neither of these situations
pertains, there are simpler ways of describing array types in the DST
using Standard Data or Descriptor Format DST records.

TBK

= ~» F & =T

TN v o e S e S g e G e e S -

TBKDST.REQ;1 16=-SEP-1984 16:58:12.02 Page 68

i word
i byte
| long

. var

SET TYPE SPECIFICATIONS

The Set Type Specification specifies a Set data type as in PASCAL. A
Set type always has a poront data type. For the set-of-integers type
for example, integer i the parent “ype. The parcnt type must be ei ither
integer, some enumeration type, or a subrang f those tyg’ D BUG
assumes that th’ Set type is represented internally as a bit=strin

where a given bit is set if and only if the corres onding intogor or
enumeration type element is nonbor of the set. The n=-th bit of the
bit-string (starting at bit) is assunod to corrospon? to the n-th
element of the parent type. The length of the bit-string is part of

the Set type and is spocifiod in the Set Type Specification.

This is the format of the Set Type Specification:

DSTSA_TS_SET_PAR_TSPEC_ADDR
Type Specification Specifying the Set's Parent Type

+
)
]

+
]
1

+
)
'

e D n D S T D R I M D @ S R o A S B G R Gh 6 G Gk oo w0 O e R G e +
]
1
]
]
1)
)

]
)
]
'

+

B S S ——.
]
¢

Here the DSTSL_TS SET LENG field gives the bit Length of an object of
the Set data t¥p TS_SET_PAR_TSPEC_ADDR marks the location of
an embedded Typo Spec?tication for the parent type of the Set type.
Typically this is an Atomic Type Specification for type integer
lndirect Type Spocification that points to an Enuneration Type éegtn
DST record, or a Subrange Type Specification.

TBk

MA(

D
TBKDST.REQ;1 16=-SEP-1984 16:58:14.02 Page 69

word
byte
long
var

var

var

SUBRANGE TYPE SPECIFICATIONS

The Subrango Type Specification describes a Subrange data typo nelning
a subrange o ?ono ord t¥ pe such as into er or an enumeratio ¥p¢.
This Type Sgcc iication spcc fies the parcnt tlpo (the original ord nal
¥pe) and the lower and upper bounds of the subrange. It also givcs the
bit length of objects of the Subrange type. This 1s the format of t
Subrange Type Specification:

o
w
F
_4
cn
x
Ll B~ 4
ZIw»v
D1 —-
©
AI:
n
—.
oI
(70 I I |
-
eI m
RZ
D
-0-0
mz
g
-+]
=
12
o
m
S

DSTSA_TS_SUBR_PAR_TSPEC_ADDR
Type Specification Specifying the Subrange's Parent Type

B L T S ————
<
[
P
c
]
wy
©
o
o
-
—
—.
(2
5]
-~
-
o
-
(2]
—fio
<
-
=
o
-~
¥
L]
—
o
<
3]
e
@
o
c
>
a
o
-
-~
¥
L J
w
c
o
-
@
3
o
]

Here the DSTSL_TS_SUBR_LENG field gives the lLength in bits of ob octs
of the Subrange data ty e. DSTSA_TS_SUBR_PAR_TSPEC_ADDR marks t

location of a DST t pec ification for the parent type of the sub-
range. {p ically an Atonic Type Specification for ty?e integer
or an Indirect Type Specification pointing to an Enumeration Type Begin

DST record.

The two Value Specifications in this Type Specification specify the
lower and ugper bounds of the subrange. These bounds values must be
values of the parent type.

T8

TN b o S R S S R S e S T G e e e

MAI

TBKDST.REQ;1 16=-SEP-1984 16:58:15.02 Page 70

FILE TYPE SPECIFICATIONS

The File T;E Specification spegifios a File data t {po as found in
PASCAL or /1, for oxan le. nce the 1ntorprctat on of File typos
varies f ron languago anguage, %ho Language code for this File
typo is ncludo the Type Specificati on. Optionally, a file record
zgc S cc fication can be included spec f; ng the type of a record in
t ;p A PASCAL File-of-Reals, for instance, would have Real
(F-Floating as its file record type.

This is the format of the File Type Specification:

bom- - wm w e R e e e T R

+
:
+
DST&B_TS_FILE_LANG !
+

+
.
5 DSTSA_TS_FILE_RCRD_TYP
‘

Type Specification Giving the File Record Type

Here the DSTS$B_ Ts FILE LANG field contains the lanauage code for this
file. The same anYuagc codes are used as in the Module Begin DST
record. DSTSA_TS_F LE RCRD_ TYP is the location of a DST T¥po Specifi=
cation for the record ¥Y f applicable. This Type Specification is
optional; if omitted, f e-of-characters is assumed.

18

TBKDST.REQ;1

v
i
:
:
.
|
i
i
i
i
i
|
i
i
i
i
i
i
i
i
|
i
:
i
i
i
i
i

word
byte
var

AREA TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG Vv&4.0.

The Area Type Specification describes a PL/I '‘area' t{po. PL/1 areas
are regions of memory whose base addresses are determined at run-time.
Areas are always used in conjunction with PL/] Offsets (see below).
This is the format of the Area Type Specification:

’ - -

i DSTSW_TS_LENGTH i
i DSTSB_TS_KIND (= DSTSK_TS_AREA) i
: DSTSA_TS_AREA_BYTE_LEN '
§ Value Specification Giving the Area Byte Length i
; ----------------------- Rt R i B R et R et ;

Here the DSTSA_TS_AREA_BYTE_LEN value Specification specifies the byte
length of the PL/] Area.

F
16=-SEP=1984 16:58:14.02 Page 71

-l
@

T o S R e e SR e

TBKDST.REQ;1 16-SEP-1984 16:53:12.02 Page 72

|
i
i
i
i
i
i
i
i
i
i
i
i
!
[}
i
i
i
i
)
i
1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

word
byte

var

var

OFFSET TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v4.0.

The Offset Type Spocificasion describes a PL/] ''offset'’ type. PL/I
offsets are offsets relative to the start of a PL/] "'area’ (see above),
a dynamically allocated rogion of memory. The Offset Type Specifica-
tion specifies the base address of the associated area and the byte
offset value of this offset type. This is the format:

’--- - - . -TeeoeeeeeeeSeBEaSeee ’

: DSTSW_TS_LENGTH :

- e oo seseew ’

DSTSB_TS_KIND (= DSTSK_TS_OFFSET) :
DSTSA_TS_OFFSET_VALSPEC
Value Specification Giving the Base Address

of the Area Associated with this Offset

L i I

Here the DSTSA_TS_OFFSET_VALSPEC Value Specification produces the base
address of the asSociated area and the second Value Specification gives
the byte offset value into the area.

18

Y et S

—

H
TBKDST.REQ;1 16-SEP-1984 16:58:14.02 Page 73

NOVEL LENGTH TYPE SPECIFICATIONS

The Novel Length Type Specification is used to specif ‘ data t ;p

that is ident cal o a parent data type except that t o objects this

nou type aze a different Length (a “novel’ or at;gica Length). This
xgo poc ification is used for the components o CKED records i n

for oxonplo. A boolean conponont of a packed record c001 sts

of a s{nglo bit tho novel length) while all other booleans cons s of

a byte (the norna on th) To escribe the packe ?oo ean type
Novel Hongth (Re ¥ usod which specifies tho nove(longth
and po nts to D T doscr ption o the parent t{pe. namely the normal

boolean type. DEBUG accessed objects of a Novel=-

ength type by expand-
ing them to the normal length for that type.

This i the format of the Novel Length Type Specification:

| word ’:-“:: DSTSW_TS_LENGTH (= 9) T R
byte _DSTSB_TS KIND (= DSTSK TS NOVLENG) !
Llong | OSTSLTSNOV.LENG :
i long ! DSTSL_TS_NOV_LENG_PAR_TSPEC :

o= - B e e e e e e e S +

Here the DSTSL_TS _NOV_LENG field contains the '‘novel'' Length of this
data type. The DSTSL_TS_NOV_LENG_PAR_TSPEC field is a DST pointer which
contains the byte offset relative to the start of the uholo DST of the
DST record that specifies the parent typc. The pointed-to DST record
must be a Type Specification DST record Rccord Begin DST record, or
an Enumeration Type Begin DST rocord. 1 yp ca l{ it is a Type Specifi-
cation DST record containing an Atomic Type S fication for type inte-

]
]
\
]
L
]
]
1
]
|
]
]
|
\
]
]
|
]
]
i
|
]
]
]
]
{]
1
]
]
1
]
]
]
]
]
]
]
]
: ger or boolean or an Enumeration Type Begin D T record.)

TBKDST.REQ;1 16=-SEP=-1984 16:58:11.02 Page 74

word
byte

word
byte

SELF-RELATIVE LABEL TYPE SPECIFICATIONS

The Self-Relative Label Type Specification specifies the type of a PL/I
“'self-relative’’ Label. Such a label is actually a Label array, meaning
that it must be indexed by an integer value to yield a spogif ¢ Lab ol
value. The 1ntornal representation consists of an array of longwords
where each arr|¥ element conta ns n Llabel value relative to the start of
the arral ng the e enon} values relative to the start of the array
ensures that the (abel array is Position=Independent (PIC).

This is the format of the Self-Relative Label Type Specification:

- - R i R S Y

DSTSH TS LENGTH (= 1) '

= e - S > e W o D e = e G S D e W W T G R W e D S S D cocsace$

S panPy

TASK TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v4.0.

Tho Task Type Specification specifies the data type of task objects
ound in ADA. Objects of the Task data t{pc are assulod to have
longuord values understood by the ADA multi-tasking kernel. Since
no additional information is associatcd with the Task data type, the
Task Type Specification has the minimal format:

- - moerocecscscceceeo oo oo 4+

DSTSU TS_LENGTH (= 1)

°
w
g
-Q
M
R
s
=z
<o
o
"

o
w
-
o
R
-.
Ul
-.
>
wv
>
~—

| END OF TYPE SPECIFICATION DESCRIPTION.

TE

TBKDST.REQ;1 16-SEP-1984 16:58:1i.0§ Page 75

- —— - - -

ENUMERATION TYPE DST RECORDS

Enumeration tlgcs. as found in PASCAL and C, are represented in the
DST by three kinds of DST records. The Enunor’tion Tlgo Begin DST
record describes the type itself, giving the bit Leng f objects

of that type and the name of the type (e.g.. COLOR). This record

is followed by some number of Enumeration Type Element DST records,
one for each element, or Literal, in the type (e.g., RED, BLUE, and
GREEN). Each Enumeration T{po E(ement DST record g{vcs the name and
numeric value of one Lliteral of the enumeration type. The whole type
description is then terminated by an Enumeration Type End DST record.

The Enumeration Type Begin and Enumeration Type End DST records thus
bracket the List of elements of the type, much Like other Bogin-ind
pairs in the DST. The Enumeration Type ELement DST records within
those brackets do not have to be in numeric order of their values,
although it is desirable if they are. For Languages Like ADA, where
the numeric values of the elements need not go up sequentially with
the Llogical element positions, the Enumeration Type DST Elements do
have to be order of their log ca% positions, however. No other kinds
of DST records (except Continuation DST roc?rds) may appear between

the Enumeration Type Begin and the Enumeration Type End DST records.

TE

K
TBKDST.REQ;1 16=-SEP-1984 16:53:14.02 Page 76

THE ENUMERATION TYPE BEGIN DST RECORD

The Enumeration Type Begin DST record specifies the name of an
enumeration type and the bit length of objects of that type.

It also serves as the opening bracket for a List of Enumeration
Type Element DST records, and must b n,tchcd by a ? osing
Enumeration Type End DST record. This 1s record's format:

- - - oo -----------------.-.----.--’

DSTSB_LENGTH :

..... R b R

~ DST$B_TYPE (= DSTSK_ENUMBEG)
DST$B_ENUMBEG_LENG

byte
byte
byte
byte

(]
[

var
The Name of the Enumeration Type in ASCII

(The name's Length is given by DST$B_ENUMBEG_NAME)

@ crcssssssasn e Pponpondond

Define the fields of the Enumeration Type Begin DST record.

IELD osgg$NUHBEG_FlELDS =
DST$B_ENUMBEG_LENG =[2,8_1,
DST$B_ENUMBEG_NAME =[(3, 8_1
TES;

TV ¢ - - - - -

Bit Length of data objects of
this enumeration t{pe

Count byte for the Counted
ASCII Type Name

[p—————— A e el el R L

TBKDST.REQ;1

S - - ——— - - - —— - - - - — - - - - -

byte
byte
byte
long
byte

var

byte
byte

THE ENUMERATION TYPE ELEMENT DST RECORD

The Enumeration Type Element DST record specifies the name and value
of one element (one Literal) of an enumeration type. It may only

ag ear between an Enumeration Type Begin and an Enumeration Type End

DST record. The undorl¥ ng representation of enumeration t{g:s is
assumed to be unsigned integer. The DST$B_VFLAGS field in s record
has its normal interpretation (see the S¥andar Data DST record for
the details). Hence the DSTSV_VALKIND field will have the value
DSTSK_VALKIND_LITERAL and the BSTSL_VALUE field will have the appro-
priate integer value in this case.

This is the format of the Enumeration Type Element DST record:

.......... meccsceeem oo oo e e

DST$B_LENGTH :
" DST$B_TYPE (= DSTSK_ENUMELT) :
DSTSB_VFLAGS :
DSTSL_VALUE :
DSTSB_NAME :

- - - - —cccecsccsscsscssecces e cecseecsceeeeeee 4+

The Name of the Enumeration Literal in ASCII
(The name's length is given by DSTSB_NAME)

S — : o @ oo f oo o= P
b
i
1
i
1
]
]
i
]
(]
i
(]
t
[}
[
il
i
2
i
i
[
]
i
]
(]
[
'
]
]
1
[
]
l
4
[
]
L]
(]
'
]
'
]
]
]
]
]
'
0
]
'
+

THE ENUMERATION TYPE END DST RECORD

The Enumeration Type End DST record terminates the description of an
enumeration type. This is the record's format:

L - - L Y et L

i DSTSB_LENGTH i

-—soe D W @ . W +

! DST$B_TYPE (= DST$K_ENUMEND) :

toerscrrc e s s s s === L T T T T 2k T +

16-SEP-1984 16:58:1&.02 Page 77

TE

I T T ey e L L Lk L e

M
TBKDST.REQ;1 16=-SEP-1984 16:58:14.02 Page 78

L T e L I Il T L T T T T T T L mLTIomTsS

RECORD STRUCTURE DST RECORDS

Record structures, or simply records, refer to the aggregates of non-
homogeneous components found in many languagcs. In some languages,
such constructs are called “'records™ (in PASCAL and COBOL, for example)
and in others they are called "structures’’ (in PL/I, for example).

Here we will call them ''records''. What all records have in common is
that they consist of a set of named components, each corrospondin? to
some field in the record structure. The components can in general be
of any data types supported by the Language.

In the chuv S{nbol Table, a record is represented by a Record Begin
DST record Tollowed by some number of data object DST records, one for
each record component, followed by a Record End DST record. lny data
ob?oct DST record within a Record-Begin/Record-End pair is taken to
denote a component of that enclosing record specification. Other DST
records may also appear between the Record-Begin/Record-End pair, such
as Type Specification and other DST records that specify the data types
of t : components. However, only data DST records denote record com=
ponents.

Nested records are defined by record components which are themselves
records. The type of a record component which is itself a record is
defined by another Record-Begin/Record-End pair of DST records. This
additional record definition may appear inside the original record
definition, but does not have to do so--an Indirect Type Specification
pointing to a record definition outside the original record definition
is also legal. Conversely, a record definition inside another record
definition does not define a nested record unless some component of
the outer record actually references the inner record definition. In
short, the DST can only describe one level of record components at a
time, but any component can be of any arbitrary data type including
another record type.

The Record Begin DST record is unusual in that it can define both a
data t‘go and a data obzoct. If the DSTSB_VFLAGS field has the special
value DSTSK_VFLAGS_NOVAL, then the Record Begin DST record defines an
abstract data type. An¥ object of this data type must ?c represented
a Separate Type Specification DST record which immed atolg precedes
either the Record Bo?in DST record or a Type S ocifiiation DST record
that contains an Indirect Type Specification that points to the Record
Begin DST record. In this case, the name in the Record Begin record is
taken to be the name of the data type, not of any object of that type.

However, if the DST$B_VFLAGS field does not contain DSTSK_VFLAGS_NOVAL,

then the Record Begin DST record defines both a data type and a data
oh]cct of that type. This form can be used for Languages ggch as COBOL
wh T$8 _VFLAGS and

ah do not have named data types. In this case, the
PETSL_VALUE fields speci { the address of the record object Tn the same
way as in the Standard D? 8 DST record. It is still legal to have
Indirect !{p’ Specifications poiniing to this Record Begin DST record,
using it strictly as a type definition.

Some lLanguages, such as PASCAL, allow record variants. (In ADA, the

TE

Fl

"Memosmome =

V- -

N
TBKDST.REQ;1 16=-SEP-1984 16:58:14.02 Page 79

- e Y S S S T S S RS RS S RS RS S G S O RS S G G G S S G e -

same concept is called ''discriminated'' records.) An °b3°it of a record
t¥po with variants contains some set of components found in all objects
of that type plus some set of conponont? that vary from one record
variant to the next. Which of the varying components are actually
present in a given roc?rd may be determined by the value of a "'tag
variable'' which is a I xed coaponon} of the record. Variants may also
be nested so that variants have variants.

In the DST, record variants are described b{ Variant Set Begin DST
records, Variant Value DST records, and Var oni Szt End DST records.
The Variant Set Begin DST record marks the beginn n? of a set of record
variant?. where each variant consist1 of some set of record components.
The Variant Set Begin DST record indicactes which recerd component ?on-
stitutes the tag variable that discriminates between the variants in
the set. This tag variable must be a component of the same record and
must precede the Variant Begin DST record in the DST. The variant
Begi?loszirecord also gives the bit size of the variant, if known at
compile=time.

The Variant Value DST record marks the be inninf of a single record
variant. It also specifies all tag variable values or value ranges
that indicate the presence of this variant in a given record object.
ALl record components (indicated by data DST records) after this Vari-
ant Value DST record and before the next Variant Value or Variant Set
End DST record are taken to be components in this variant.

The Variant Set End DST record marks the end of some set of variants
u}::}n :hrcco:d specification. It also terminates the last variant
w n the set.

A record type with variants is thus specified as follows. First a
Record Begin DST record marks the beginning of the record specifica-
tion. After that come data DST records that denote all fixed compo-
nents of the record t{po. Then comes a Variant Set Begin DST record
that marks the beginning of a set of variant definitions and identi-
fies the tag variable (if any) for that variant set. Immediatel
thereafter comes the first Variant Value DST record. It marks the
start of the first variant and identifies the values or ¥aluo ranges
of the tag variable that correspond to this specific variant.

After the first Variant Value DST record come the data DST records

for the record components in this particular variant. Next comes the
Variant Value DST record for the next variant, along with its component
DST records, and so on for each variant in the variant set. After the
Last component DST record for the Last variant in the set comes a
Variant Set End DST record. It is followed by the DST records for any
additional record components, gossibl‘ including additional variant

set definitions. Then comes the the Record End DST record.

Variant sets na¥ be nested inside erilnt sets. Such nesting is indi-
cated in the DST by the corresponding proper nesting of Variant Set
Begin and Variant Set End DST records.

Tl

Moo=

Memomomms =

Mewsmosm

TBKDST.REQ;1 16=-SEP-1984 16:58:12.&9 Page 80
THE RECORD BEGIN DST RECORD

The Record Begin DST record marks the beginning of a record type
definition in the DST. It must be followed ?y the DST records for

the components of that record and by a matching Record End DST record.
The Record Begin DST record has essentially the same format as the
Standard Data DST rosord. but with two exceptions. First, an extra
longuord ives the bit length of the record tyBo gnd second, the
DBGSB_VFLAGS field may have the special value DSTSK_VFLAGS_NOVAL to
indicate that this is strictly a type definition, not also the defini-
tion of a record object. If a normal value spec{fication is used, a
record object is being declared as well as a record type. In this
case, a Trailing Value Specification may be included at the end of the
DST record if necessary to describe the record's address.

The bit size of objects of this record type is also given in the DST
record. This size should be included if the size is known at compile=-
time. If it is not known at compile~time, it should be specified as
zero.

This is the format of the Record Begin DST record:

. b DL
byte i __________________ EEISB_TYPE (=ESTSK:REG§E§1 ___________________ i
N s e k. o SATARETIS e Y o :
long i ___________________ : 2§T$L:VAL9§ __________________________ i
byte i ___________________ _ 05733:§f§§ ___________________________ i
e ; The Name of the Record or Record Type in ASCII ;

§ (The name's length is given by DSTSB_NAME) §

S SR s e S i S et etk ‘
o, A5 I AR T e D i :

+
g
i
j
]

Define the fields of the Record Begin DST record. Also declare the macro
that defines the trailer part of the DST record.

FIELD os;gecaes_mm.ea,rmos =

DSTSL_RECBEG_SIZE = [0 , L_] ! The bit size of data Sbiects of this
res : record type (or f unknown)

- -

Bk

MAC

—

TBKDST.REQ;1 16=-SEP=-1984 16:58:12.39 Page 81

MACRO

byte
byte

DSTSRECBEG_TRLR = BLOCKL,BYTE] FIELD(DSTSRECBEG_TRAILER_FIELDS) X;

THE RECORD END DST RECORD

The Record End DST record marks the end of a record type definition in
the DST. In effect, it terminates the scope set up by the matching
Record Begin DST record. This is the record's format:

+ - R E Y bl R Y e e] +
' DSTSB_LENGTH (= 1) i
boceomnmome o - B R R
] DSTSB_TYPE (= DSTSK_RECEND) i
R o R i e P = o o e o =

T8I

TN st - S W S S S W e S e e e e S

D1
TBKDST.REQ;1 16-SEP=1984 I6:58:14.0g Page 82
THE VARIANT SET BEGIN DST RECORD

The Variant Set Begin DST record marks the beginning of the DST

description of a set of record variants. This DST record also

identi 109 the tag variablc that discriminates between the variants

in thc variant se tag variable is identified by a pointer

to the DST record for tho tag var ‘able. This DST pointer consists

o a b;tc addross relative to the start of the DST. The size in
bits of this variant set, meaning the size of the largost variant

in the set, is also included. If this size is not known at compile~

time, it should be set to zero.

This is the format of the Variant Set Begin DST record:

]
]
]
]
]
]
]
1
(]
]
]
]
]
]
]
]
! L 4
E byte 1 STSB LENGTH i
g byte ! osrse TYPE (= DSTSK _VARPEG) :
g byte ! DSTSB_VFLAGS !
g long ! _DSTSL_VALUE :
i byte ! “DsTS8 _NAME |
| B - - - - - - - - - - - . - - - - - 4
! var : |
: s The Name of the Variant Set in ASCII 5
: E (The name's Llength is given by DST$B_NAME) g
: E (This name is normally null) §
i \ ;
! ; .. +
; long ! DSTSL VARBEG_SIZE i
H - - --- --------------------------
; long i DSTSL_VARBEG_!AG_PTR i
:
l
i pefine the fields of the Variant Set Begin DST record. Also define the
: declaration macro for the trailer part of the record.
FIELD DS§:¥ARBEG_TRAILER-FIELDS =
DSTSL_VARBEG_SIZE =[0,L_1, ! Size in bits of variant part
: of record (or zero)
DSTSL_VARBEG_TAG_PTR =[4&, L_] ! Pointer to TAG field DST
! record relative to the
s ! start of the DST

MACRO

—————————————

T8

B — . ——— - — - -

1
TBKDST.REQ;1 16=-SEP=-1984 16:58:15.09 Page 83

DSTSVARBEG_TRAILER = BLOCKL,BYTE] FIELD(DSTSVARBEG_TRAILER_FIELDS) X;

18

W S e R e e R N e S R R R e

F1
TBKDST.REQ;1 16-SEP-1984 16:58:14.08 Page B84
THE VARIANT VALUE DST RECORD

The Variant Value DST record marks the beginning of a new record
variant within a variant set, It also marks the end of the roxious
variant (if ln;). It is always found between a Variant Set Eog n
and a Variant Set End DST recorc. Since the Variant 51t Begin DST
record has already sgog fied the ctag variable, the Variant Value
DST record only specifies the tag value or va[uog that correspond
to the present variant. It also specifies the size in bits of this
variant if known at compile-time (otherwise zero is specified). The
Variant Value DST record is followed b{ the data DST records (includ-
ing nested variants if appropriate) which constitute the components
of this specific variant,

A variant may have many tag values or tag value ranges. This DST
record thus spo?itios a set of tag value ranges. The way these
ranges are specified is described in detail on the following page.

This is the format of the Variant Value DST record:

T — cecmcn= - ceccccccccscccccccsanccncscnasnan

! R DETOR AN . T !
bt § Pt T Y s
long of _ DST3L:!fRVAgziizs________________ _____ __i
o e o SO UL B :
var DST$A_VARVAL _RNGSPEC

lero or More Tag Value Range Specifications E
(The number of Range Specs is given by DSTSW_VARVAL_COUNT) §
+

$ crcccncnccnnne o P .=

Define the fields of the variant Value DST record.
IELD DS}:¥ARVAL_51ELDS =

]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
E byte
i
i
i
]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:

DSTSL_VARVAL _SIZE B E e L. 3 ! Bit size of this variant part

DSTSW_VARVAL _COUNT =[6, W ! The number of tag value ranges
g which follow

DSTSA_VARVAL _RNGSPEC =[8,A] ! Location where the tag value

e : range specs star

—
@

R R R e R G

TBKDST.REQ;1 16-SEP-1984 16:58:12.69 Page 85
TAG VALUE RANGE SPECIFICATIONS

Each Tag v.luo Range Spgiification in a Variont Value DST record

consists of a byte specifying the kind of the r nge specification

followed by one or two Vo!uo Spocificat ons. one Value ipoci-

fication is givon‘ that vos he ‘o? va uo--t e range consists of
¢

]
:
:
:
;
\
i
H that one value. If two Val uo Spo ations aro given, thcg - oci-
: fy the lowest and highest values in the tag value range. e illu-
! strations below show the two possible formats of Tag Value Range
; Specifications:
:
i L T L e L L L T T IS coweosesccseaees coccsecsecscesseeed
E byte i DST&B VARVAL_RNGKIND (= DSTSK_VARVAL_SINGLE) i
g var | DSTSA_VARVAL _RNGADDR 5
; § A DST Value Specification Giving a Variant Tag Value ;
W a
i L e L L L T T T T T A —— 4
]
i
i
! o= - - e e T e e o e e S T R S G S R e e 4
E byte i DSTSB VARVAL _RNGKIND (= DSTSK_ VARVAL RANGE) i
{ovar | DSTSA_VARVAL _RNGADDR 5
g E A DST Value Specification Giving the Lower Bound §
g E for a Range of Variant Tag Values §
i E i
i L e e L D L L L L i T T P ——— +
! var ' 1
; 5 A DST Value Specification Giving the Upper Bound |
g § for a Range of Variant Tag Values §
it s
i B g S S S S ——— 4
]
i
1
; Define the fields of the Tag Value Range Specification.
FIELD os;:VARVAL RNG_F.=1DS =

DSTSB_VARVAL _RNGKIND = E 0, B_ }. ! Tag Value Range Spec kind

DSTSATVALVAL_RNGADDR = [1, A

! Location of first Value
TES | Specification

N T

T8

TN 0 - S -

H
TBKDST.REQ;1 16=-SEP-1984 16:58:16.&? Page 86
; Define the possible values of the DSTSB_VARVAL_RNGKIND field.

LITERAL
DSTSK_VARVAL _SINGLE =1, ! The range fonsists of a single value
DSTSK_VARVAL _RANGE = 2; ! The range is given by a lower and an
: upper bound (two value specs).

TE

TBKDST.REQ;1 16-SEP-1984 16:58:11.68 Page 87

THE VARIANT SET END DST RECORD

The vVariant Set End DST ro?ord marks the end of record variant set:;
it terminates a set of variants which have the same tag variable.
This is the format of the Variant Set End DST record:

B - — — - -

== cocccccn= o= b LB TR R Lt L e L L] ¢
byte ! DSTSB_LENGTH (= 1) :
byte i DSTSB_TYPE (= DSTSK_VAREND) i

B e e S e S S e o T - - —_ -~ —

1
TBKDST.REQ;1 16-SEP-1984 16:58:1i.0g Page 88

- - - - - - - - - - - - -

BLISS DATA DST™ RECORDS

records. Ordinary scalar objects, such as simple integers, are repre-
sented by thz Standard Data DST record or its variants. However, the
more specialized BLISS data types such as Vectors, Bitvectors B[ocks.
and Blockvectors, are represented b{ 8 special 0Sf record called the
BLISS Special Cases DST record. Pointers to such objects (e.g., REF
VECTOR) are also represented by this DST record. In addition, BLISS
field names are represented by their own kind of DST roiord. the ?LISS
Fiot? DST record. Both of these record kinds are described in this
section.

The BLISS Special Cases DST record and the BLISS Field DST record are
supported for BLISS only. They should not be generated by compilers
for any other Language.

BLISS data objects are ropr;zontod by sovora*adiff:rcnt kinds of DST

P.-‘-I-I-G-O-O--.-.-l-'-I-‘-Q-.-.-.-'-Q-.-.-.'l-.-l---.-.’.-.-'-.-.-._.-C-l-

Momimem

TBKDST.REQ;1

L S S S D S S S S e e S g g e

byte
byte
byte
byte
byte
byte
var

long
byte
var

long

THE BLISS SPECIAL CASES DST RECORD

The BLISS Special Cases DST record is usod to doscribo a number of

data objects whose data types are specific to 5ho BLISS Language only.

This 1ncludos such objects as BLISS V ctors tvectors, Blocks, and

Blockvectors and pointers to these objects lREF VECTOR, REF BLOCK.

and so on). This DST record should not be generated for any language
other than BLISS.

This DST records consists of four parts Tho DST header fiolds. the
fields in the set DSTSBLI FIELD aria lc- ongt :1 Y iel s. and
the fiolds in the set DST!BL%_tﬁAlL FIELDS, The variable-length set

of fields can be ou ty, consist the fiolds in DSTSBLI _VEC _FIELDS

the fields in DSTS$B 6ITVEC FIELDS, the fields in DST Btl BEOCK FIELDS.
or the fields in DSTSBLI_BLKVEC_FIELDS. Which set of fields lg?cars

in the variable-length part depends on the value of BLISV_BLI_STRUC,

which indicates which type of symbol is being defined.
This is thus the format of the BLISS Special Cases DST record:

..... - - B i 4

DSTSB_LENGTH '
DST$B_TYPE (= DSTSK_BLI) i

e e e R e e W I W G D e = G5 W €2 % Sp SO D b W DGR e G W W AN @D W G G W0 @ G &

DST$B_BLI_LNG i

- - e - - SO EOOW TR - .- *

DSTSB_BLI_FORMAL '

................ L ek 3

DSTSB _BLI_VFLAGS
‘- ‘- - cetecccccccccccccccccccnns

iBLI REF‘ Unused=--Must Be Zero ' DST&V BLI_STRUC

...................................

DSTSA_BLI_SYM_ATTR
Variable-Length Portion of DST Record

--0--+--+'--¢--¢

:
+
:
|
+
DSTSL_BLI_VALUE !
‘
|
:
.
'

DSTSB_BLI_NAME

The BLISS Symbol Name in ASCII
(The name's Llength is given by DSTSB_BLI_NAME)

DSTSL BLI SIZE

- R i R L ittt o R B

PO PR Y ST, L T T

K
16-SEP-1984 16:58:14.69 Page B89

Tt

TBKDST.REQ;1

- - P S S S - - - ——— - -

The variable-length portion of iht DST record can have several forms
as discussed above. One possibil t¥ is that i‘ is absent altogether.
This occurs if the DSTSV_BLI_STRUC tield contains DSTSK_BLI_NOSTRUC.

However, if DSTSV _BLI_STRUC has the value DSTSK_BLI_VEC, the variable-
length portion of the DST record has the following Format:

R e e - o o o R bl ke R R L L +

long i _DSTiL_BLl:VEC-UNlTS i
byte i DSTSV_BLI_VEC_SIGN_EX i DSTSV_BLI_VEC_UNIT_SIZE i

If DSTSV_BLI_STRUC has the value DSTSK_BLI_BITVEC, the variable-length
portion of the DST record has the following format:

+ coew - - - - L B e L TR 4+
long i _DSTSL_BLI_BITVEC:SIZE i

If DSTSV_BLI_STRUC has the value DST$K_BLI_BLOCK, the variable-lLength

portion of the DST record has the following format:

L D e e L L T +
long i - DSTsL_BLl_gLOCK_UNITS i
byte i_ Unused i DSTSV_BLI_BLOCK_UNIT_SIZE i

If DSTSV_BLI_STRUC has the value DST$K_BLI_BLKVEC, the variable-length

portion of the DST record has the following format:

o= - - it R T e ke +
long i - DSTSL_BLI_BLKVEC_BLOCKS i
long i DSTSL_BLI_BLKVEC_UNITS i
byte ! DSTSB_BLI_BLKVEC_UNIT_SIZE '

oo e o - oo e oo L R e EE L +

gefin: the fields in the header portion of the BLISS Special Cases DST
ecord.

16-SEP-1984 16:58:1&.89 Page 90

Tl

O T S S S G S G

TBKDST.REQ;1

FIELD DS;%?LI_FIELDS =
DST$B_BLI_LNG

DSTSA_BLI_TRLR1
DSTSB_BLI_FORMAL
BBV
DSTSV_BLI_STRUC
bsTeV BEI _REF
DSTSA_BLI_SYM_ATTR

TES;

5 These are the possible values
LITERAL

DST$K_BLI_NOSTRUC
DST$K BLITVEC
DSTSK BLIBITVEC
DSTSK“BLI“BLOCK
DSTSK™BLI BLKVEC

l
l
l
l
FIELD DS;:?L!_VEC_FIE;DS =

DSTSL_BLI_VEC_UNITS

DSTSV_BLI_VEC_UNIT_SIZE
DSTSV_BLI_VEC_SIGN_EXT
TES;

'
i
i
i

F

FIELD DSTSBLI_BITVEC_F'eibs =

C

C
C

s
E

C

M
16=-SEP=-1984 16:58:14.8? Page 9N

2, B_1, ! Length in bytes of the set of
: fields between this one
: and TR l FIELDS
: betuo n
3, A_], : rst ‘railor is at this
! location ¢ DST$B BLg LNG
3. 8_1, ! Flag set if this symbol is
! routine forma paranoter
4, B_ 1. ! Value access information
5 5 3 ! The type of the BLISS symbol
: as described hy the fol-
: lowing sub=-fields:
5, v_(0,3)], ! The structure of this symbol
g. V_(3,4) 1, ! This field Must Be Zero
. V_(7,1) : ! Fla sot if this is a REF
: 0 = no REF)
6, A_] E Address of variablo Len th
|

attributo segment
this DST record

of the DST$B_BLI_STRUC field.

SN =O

Define the fields in the variable-len th art of t
DST record when the value of the BLISV_BLI_STRUC f
This field describes a BLISS Vector.

! Define the fields in the variable-length gart of S?oc
: DST record when the value of the BLISV_BLI_STRUC ld is DSTSK_
This field describes a BLISS Bitvector.

Sse & 8 o

C6,L_1, ! Number of elements allocated
: in the vector
C 10, v_(O.A).] ! The vector clonen unit

size: 1 =
: word, and = [onguord
L 10, v_(4,4)] ! Sign oxtonsion ?
: 1 = sign extension
: 0 = no sign extension

Tl

o S S S e S S G e S S S S e

N
TBKDST.REQ;1 16=-SEP-1984 16:58:14.62 Page 92

SET

gggSL BLI_BITVEC_SIZE = L 6, L_] ! The number of bits in the bitvector
! Define the fields in the varioblo-lon th ?or e BLISS S?QCill Cases
! DST record when the value of the BLISV_ R ld is DST$K _BLI _BLOCK.

: These fields describe a BLISS Block. c e
FIELD DS;E?LI-BLOCK_FIELDS =
DSTSL_BLI_BLOCK_UNITS

L 6.L_1, ! The number of units allocated
! in the block

€ 10, v_(0, 4) J ! The unit size of the
block: 1 = byte. 2 =
! word, and 4 = longword

DSTSV_BLI_BLOCK_UNIT_SIZE

TES;
! Define the fields in the variable-length ?ar BLISS Spe 1al Cases
i DST record when the value of the BLIS R l is DSTSK_BLI_BLKVEC.

: These fields describe a BLISS Blockvccfor.
FIELD DS;:?LI,BLKVEC_FIELDS =
DSTSL_BLI_BLKVEC_BLOCKS

DSTSL_BLI_BLKVEC_UNITS
DST$B_BLI_BLKVEC_UNIT_SIZE

TES;

C6,L_1], ! The number of blocks in the
i blockvector

E 10. k- g.! The number of units per block
! The block unit size 1 = byte,
: 2 = word, 4 = longuord

! Define the fields in the first trailer portion of the BLISS Special Cases
' DST record. Also define the declaration macro.

flELD DSES?LI_TRAIL1_FIELDS =

E
DSTSL_BLI_VALUE = L 0, L_ J, ! Value longword, interpreted
: according to contents of
i DSTSB_BLI_VFLAGS
DSTSB_BLI_NAME (4, 8_1, : Count byte of the symbol name
DSTSA_BLI_TRLR2 :

TES;

Countcd ASCII string
L5, A_1 ! The second trailer starts at this
location + DSTSB_BLI_NAME

MACRO
DST$BLI_TRAILER1 = BLOCKL.BYTE] FIELD(DSTSBLI_TRAIL1_FIELDS) X;

! Define the fields in the second trailer portion of the BLISS Special Cases
; DST record. Also define the declaration macro.

FIELD DSTSBLI_TRAIL2_FIELDS =

et Rt E Gt At It At At En ARl ER Gl Er s G AR R SR S S St R Rl Rl T R P S S A PSR S S T e s e P TR S AR S SR s s T G S S S S S - - - - -

TBKDST.REQ; 1 16-SEP-1984 16:53:12.B Page 93 TBK

SET
gggtL-BLl_SIZE r L L3 ! Size of the Bliss data item in bytes

MACRO
DSTSBLI_TRAILER2 = BLOCKC,BYTE] FIELD(DSTSBLI_TRAIL2_FIELDS) X;

- e e S RS S S S S e s e e G g R -

1
TBKDST.REQ;1 16-SEP-1984 16:58:12.01 Page 94
THE BLISS FIELD DST RECORD

The BLISS Field DST record describes a BLISS field name. BLISS field
names are declared in FIELD declarations in BLISS. Each BLISS field
name is bound to an n-tuple of numbers. Usually the n-tuple is a four-
tuple and the numbers represent a byte or %on?uord offset, the bit
offset within that byte or Longword, the bit [ength of the field being
described, and a sign-extension flag. DEBUG supports references to
such fields in BLISS Blocks and Blockvectors. However, a BLISS field
can be any n-tuple. If n is not 4, the field name can only be used in
EXAMINE commands, but not in Block or Blockvector references.

The BLISS Field DST record should not be generated for any lLanguage
other than BLISS. This is the format of the record:

\

i

i

i

i

i

i

i

i

i

i

i

]

i

i

i

i

! L Y e e L L L T T X T +
; byte i DSTSB_LENGTH i
g byte ! DSTSB_TYPE (= DSTSK_BLIFLD) '
g byte } DST$B_BLIFLD_UNUSED :
g long ! DSTSL_BLIFLD_COMPS :
g byte ! DST$B_BLIFLD_NAME :
i var 1 i
E E The Name of the BLISS Field in ASCII E
g g (The name's length is given by DST$B_BLIFLD_NAME) g
B a
E R L L T Y L L L L L L L L L L T L L T 4
! var i i
; 5 A Vector of Longwords Containing the Integer 5
g E Values of the Components of the BLISS Field Definition i
g E (The number of values is given by DSTSB_BLIFLD_COMPS) g
i i E
) SR . ORRECI— :
I

i

]

; Define the fields of the BLISS Field DST record.

P

IELD DSTSBLIFLD_FIELDS =
DST$B_BLIFLD_UNUSED
DSTSL-BLIFLD-COMPS
DSTSB-BLIFLD NAME

TES;

Unused=-Must Be Zero

The number of components

The count byte of the field
name Counted ASCII string

e

oo

Bk

R ——————————————————————— LR et e e R L

D1
TBKDST.REQ;1 16-SEP-1984 16:58:14.0; Page 95

- S -

byte
byte
byte
long
byte

var

LABEL DST RECORDS

Labels are represented by two different DST records. A label, in the
sense used here, is a symbol bound to an instruction address, Labels
do not include routine, lexical block, and entr¥ point symbols, however.
A Label can be represented by either a Label DST record or a Label-or-
Literal DST record. The Label-or-Literal DST record is intended only
for Language MACRO, it appears. (The histor‘ on the origin and intent
of this record is unclear, however.) ALl other Languages should use
the Label DST record for (abels.

THE LABEL DST RECORD

The Label DST record specifies the name and address of a Label in the
the current module. A label in this sense is always bound to an in-
struction address, not a data address. This is the DST record normally
used for Labels in high-level Languages. The DSTSL_VALUE field of this
record contains the code address to which the Label is bound.

This is the format of the Label DST record:

tomcccnea B B B
e e R o L™ s b i I L A .
S R ke .
s e O i sy :
A AR e M0 b B S i :
R SRR L e Sl B ek .
; The Label Name in ASCII E
§ (The name's length is given by DSTSB_NAME) §
b A o A ‘

8

S R - -

TBKDST.REQ;1 16-SEP=1984 16:58:12.53 Page 96

e G N - -

byte
byte
byte
Llong
byte

var

THE LABEL-OR-LITERAL DST RECORD

The Label=-or=-Literal DST record spocifios the name and address of a
Label (meaning a code locat on) r the nln: and va ue of an integer
literal (a named constant). It is not rc y clear why this DST
record exists since Labels can be descr y Label DST records and
integer litoro* can be descri bo? with Standard Data DST records.

Most Llikel DST record was intended for on?uago MACRO uhoro
there is Little distinftion botueen Labels and Literals; one is relo-
catable and the other is not hat is about all. 1If DSTSV_VALKIND
has the value DSTSK _VALKIND ADDR. thc symbol is a abel and if"it has
the value DSTSK_VALRIND_LITERAL, the symbol is a Literal. The address
of the Label or the value of the Literal is found in the DSTSL_VALUE
field. It is recommended that high-level llnguagos avoid this DST
:ocgrddand use the Label DST record or the Standard Data DST record
nstea

This is the format of the Label-or-Literal DST record:

......... - e S e e L S G e Sm S G S o B G 63 G o o wm e o em e o o om o

DSTSB_LENGTH '

+
)
]
drcccccrccrcrc e e e= D e e e e e e e e e e e R &
:
+
'
]

DSTSB TYPE (= DSTSK_LBLORLIT) i

DSTSV_VALKIND !

c
]
c
w
@
a
i
]
=
[-
w
-~
w1
™
~
[
,
o
S i 2

The Label or Literal Name in ASCII
(The name's length is given by DSTSB_NAME)

18

e o F S e P S S e S e e R S R S G e e RS G e e -

F 1
TBKDST.REQ;1 16-SEP-1984 16:58:15.0; Page 97

THE ENTRY POINT DST RECORD

The Entry Point DST rocord dcscribos n ENTRY name in the FORTRAN or
PL/1 sense. In other words, it describes a secondary entry point to
the routine within which th‘s DST rocord is nested. This record should
never be generated for the ngin ontrz point to a routing since that
entry point is already doscr bod by hc Rout ne Begin DST record. An
entry point described by the ntr{ Point DST record is always assumed
to be called through tho CALLSICA LG instructions (not JSB/BSB). The
DSTSL_VALUE field contains the address of the entry point,

This is the format of the Entry Point DST record:

g PSSRV L NS Ry
) IO ORI i Mian B st s SADE TR
s OeORSENRES -----------‘.’2‘.‘.‘.!‘.’::’.“."2E-§!-3!ES---------.------------i
long i _______ e Saa DSTSE_VAEUE A A T ---------_--i
i TR i ISP o

var
The Entry Point Name in ASCII

(The name's length is given by DSTSB_NAME)

G R S g e -

@ cecncccncccs § o=

TBKDST.REQ;1 16-SEP=-1984 16:58:12.81 Page 98

THE PSECT DST RECORD

Define the fields of the PSECT DST record.
1ELD DST:PSECT FIELDS =

1

i

i

]

: Tho PSECT DST rocord sp 1c1fios the name, address ? Llength of

: PSECT, where a s a Prog ron Section in tﬁo L nkor sense.
i PSECT D§T rocords lro only used. for languago MACRO uhcro t is

: possible to generate code or dato at the beginn na

: without having an othcr lo el on thlt codo G 1 norcs PSECT
: DST records for all other | ?uagos since high-lovol anguages

E have other code and data labo hat are more appropriate.

g This is the format of the PSECT DST record:

i

i T —— cemeecceccccccccccccccccccecccccaceacenaan +
5 byte i DST&B LENGTH i
g byte ! DSTSB_TYPE (= DSTSK_PSECT) !
| byte : DSTSK_PSECT_UNUSED ;
! Long : DSTSL_PSECT_VALUE :
g byte ! DSTSB_PSECT_NAME (also DSKSB_PSECT_TRLR_OFFS) !
Pvar | DSTSA_PSECT_TRLR_BASE 5
| § The Name of the PSECT in ASC1I |
g ! (The name's length is given by DSTSB_PSECT_NAME) §
i E E
! D e T S . .
5 long i ~DSTSL PSECT SIZE i
:

i

i

i

F

DSTSB_PSECT_UNUSED = . B ! Unused=--Must Be Zero
DSTSL_PSECT_VALUE = s B ! Start address of the PSECT
DSTSB_PSECT_NAME = e B 3 ! The coutn byte in the PSECT

! name (Ounted ASCII string

DSTSB_PSECT_TRLR_OFFS =7, B_ 1], ! Byte offset to the PSECT DST

! record trailer fields
DSTSA_PSECT_TRLR_BASE = [8, A_) ! Base address for offset to
‘s : DST record trailer fields

; Define the PSECT DST record trailer fields. Also define the declaration
! macro.

8

AP S S S -

H
TBKDST.REQ;1 16-SEP-1984 16:58:16.8; Page 99

]
FIELD osggsect_muen_rmos =
gégiL-PSECT_SllE =[0,L.] ! Number of bytes in the PSECT

MACRO

DSTSPSECT_TRAILER = BLOCKL,BYTE] FIELD(DSTSPSECT_TRAILER_FIELDS) X;

Note that the address of the PSECT DST record tailer is computed as follows:
DST_RECORDCDSTSA_PSECT_TRLR_BASE] + .DST_RECORDLDSTSB_PSECT_TRLR_OFFS]

T8

TBKDST.REN:1 16-SEP-1984 16:58:11.81 Page 100

R —————————— N Y e e L T NN T O T T LI T T T T T LI LYY

byte
byte

var

LINE NUMBER PC=-CORRELATION
DST RECORDS

The Line Number PC-Correlation DST record specifies the correlation

between Listing Line numbers, as assigned by the compiler, an

addresses. It thus the means whereby the compiler tells DEBUG where

the generated object code for each source Line starts and how lon

ggtis in sytos. This is the format of the Line Number PC-Correlation
record:

b - - EEm S e @ S e o S I S0 5 N D D @D D > W W e G e O E 4

: DST$B_LENGTH !

--------- D e T R e e e ek 4

i DSTSB_TYPE (= DSTSK_LINE_NUM) i

One or More Line Number PC-Correlation Commands

After the two-byte header, each Line Number PC-Correlation DST record
contains a sequence of Line Number PC-Correlation commands. Each such
command sets or manipulates one or more state variables used by DEBUG
in the interpretation of these commands. The main state variables are
the current Line number and the current PC address, but there are seve-
ral others as well. The exact semantics of the various commands are
described in the sections that follow.

Line Number PC-Correlation DST records are associated with the module
within which they appear. The must thus appear between the Module
Begin and the Module End DST records for the current module. There are
no further restrictions on where th.‘ may appear, however. In particu-
Lar, they need not be nested within the routines or lexical blocks that
they describe. It is thus legal to generate all Line Number PC-Corre-
Lation DST records for a module after the Last Routine End DST record,
for instance. These records can also be interspersed between Routine
and Block Begin and En? records in any way convenient for the congilor
implementer. However it 1s done, DEBUG treats them as belonging to the
module as a whole.

The Line Number PC-Correlation information .'l be spread over as many
DST records as necessary. No Line Number PC-Lorrelation command may be
broken across record boundaries, but otherwise the Line Number PC-Corre-
Llation DST records within a module are considered to constitute a single
command stream. The Continuation DST record may not be used to continue
Line Number PC-Correlation DST records.

18

TBKDST.REQ;1 16=SEP=1984 16:58:1i.6§ Page 101

; Define the fields of the Line Number PC-Correlation DST record.
fFLELD osgg%lne_nun_rleLos =
ggng_LINE_NUH_DATA = [2, A_] ! Start address of PC-correlation data

LINE NUMBER PC-CORRELATION COMMANDS

Each PC-Correlation command consists of a command byte possibly fol=-
lowed by a parameter byte, word, or longword. The presence, size, and
meaning of the parameter field {s determined by the command byte. This
illustration summarizes the structure of one command:

R - - - - - - - AL L LT L LI LI L LYY Ll
byte i COMMAND _BYTE i
var 1 \
5 lero or One Parameter Field E
§ (Byte, Word, or Longword) E
4 - S S S S S RS +

The command byte contains a command code. If this command code is
negative, this is a Delta-PC command. A Delta-PC command specifies
by how nan¥ bytes to increment the PC to get to the start of the

next Line (see detailed doscrigtion below). This byte count is en-
coded directl¥ in the command byte: If the command code is negative,
its no?ativo s the PC increment. The Delta-PC command has no param-
eter field. If the command code is positive, it specifies some other
command as described below. In this case, there may be a parameter
field, depending on the command code.

Define the command codes allowed in Line Number PC-Correlation commands.
If the command code is 2ero or negative, the command is a one-byte Delta-P(
command. Here we define the command-code range for the Delta-Pl command.

ITERAL
DSTSK_DELTA_PC_LOW = =128, ! The lower bound on Delta-PC commands
DSTSK_DELTA_PC_HIGH = 0; ! The upper bound on Delta-PC commands

P - e . S S ey S - -

! Define the PC-correlation command codes other than the Delta-PC command.
s These command codes are always positive.

LITERAL

e =

TE

[————————————————— e L L Rl

TBKDST.REQ;1

PRI It I I i I m I S I Mm-S -y - -

byte

byte
byte

byte
vord

byte
long

K
16-SEP-1984 16:58:14.6} Page 102
DSTSK_DELTA_PC_W =1 ! Delta=PC Word command
DSTSK"DELTA™PC L = 1%, i pelta-PC Longword command
DSTSKZINCR_CINOM = i. ! Increment Line Number Byte command
DSTSK_INCR_LINUM_W = ! Increment Line Number Word command
DSTSK_INCR klnun L =18, | Increment Line Number Longword command
DSTSK_SET_CINUM_TNCR = &4, ! Set Line Number Increment Byte command
DSTSK_SET_LINUM_INCR W = 5, ! Set Line Number Increment Word command
DSTSK_RESET_LINOM_INCR = 9. ! Reset Line Number Increment command
DSTSK_BEG_STMT_moDE =7, ' Boa n Statement Mode command
DSTSK_END_STMT_MODE =8 ! End Statement Mode command
DSTSK_SET_STMTRUM =18, i Set Siltonont Number Byte command
DSTSK_SET_LINUM_B =19, ! Set Line Number Byte command
DSTSK_SET_LINUM =9 ! Set Line Number Word command
DSTSK_SET_LINUM_L =20, | Set Line Number Longword command
DSTSK_SET_PC = 10, ! Set Relative PC Byte command
DSTSK_SET_PC_W =11, ! Set Relative PC Word command
DSTSK_SET_PC_L = 12, ! Set Relative PC Longword command
DSTSK_SET_ABS_PC = 16, ! Set Absolute PC Longword command
TSK_TERA = 14, ! Terminate Line Byte command

DSTSK_TERM_W =15, ! Terminate Line Word command
?ST&K_TERH,L = 21, g Terminate Line Longword command
DSTSK_PCCOR_LOW = =128, ! Smallest vaiue allowed in the first

! byte of a PC-correlation command
DSTSK_PCCOR_MIGH = 21; ; Largest value allowed in the first

byte of a PC-correlation command

The parameter field, if present, contains an unsigned byte, unsigned
word, or longword value. The possible PC-Correlation command formats

thus look as follows:

4 - e T T cocccccne +
' COMMAND _BYTE '
+ - - - ceccccccccccccccncccane +
+ db L Ll DL D L D DD L D D D DL DL DL D D L L T L T L T +
i COMMAND _BYTE i
i NEXT_UNS_BYTE (Unsigned Byte Value) i
+ ——— B e T ceecenee. -
i . COMMAND _BYTE i
i NEXT_UNS_WORD (Unsigngg Word Value) i
e T T T T T +
i COMMAND _BYTE i
: NEXT_UNS_LONG (Longword Value) '

TE

1
TBKDST.REQ; 16-SEP=1984 16:58:1&.0} Page 103

b= - - - cremcecss s ma s oo neresrmsem e e e == 4

PC~CORRELATION COMMAND SEMANTICS

The individual connlnds are described separately below. To clarify what
these commands actual l do, each is followed by a formal semantic de-
scription using BLISS- ike pseudo-code. This description show what the
command does to a number of state variables used bz EBUG uhon inter-
preting these commands. The state variables are the following:

CURRENT_LINE == The current lLine number.

CURRENT_STMT == The current statement number.

CURRENT_INCR == The current Line number increment.

CURRENT_STMT_MODE == The stateaont mode fllg set to TRUE when
statement mode is set, set to FALSE otherwise;

START_PC == The start address of the lowest-address routine
in the current module;

CURRENT_PC == The current PC value (code nddross)

CURRENT_MARK == The Line-open/line-closed flag; set to LINE_OPEN
when Line numbers are being dof ined and set to
LINE_CLOSED when a routine has been terminated
and new Lines are not being defined.

The initial values of these state variables when the PC-Correlation
commands for a given module are interpreted are as follows:

CURRENT_LINE = 0;

CURRENT® STMT = 1:

CURRENT INCR = 1;

CURRENT STMT noot FALSE;

START_PC = Start address of the lowest-address
routine in the current module;

CURRENT_PC = START_PC;

CURRENT MARK = LINE_CLOSED;

The sections below describe the format and semantics of each of the
individual PC-Correlation commands.

THE DELTA=PC COMMAND

This command defines a correlation between a Line number and a PC value.
The current Line number is incremented by the current incro-ent vt
(normally 1) and the current PC value is incremented by the ne at ve of
thc command b‘tc. The resulting Line number then has the resulti n?
value. In other words, both the Line number and the PC value are incre-
mented before the correlation is ostablishe
(the negative of the command code) thus sp:
forward to get to the start of the line be
formal semantics of the command:

The PC increment value
cifies how man bytes to go
ng defined. These are the

TE

W - -

M
TBKDST.REQ;1 16=-SEP-1984 16:58:14.61 Page 104

P O L L T L T L L el et b T A ——

%aeﬁuansnt_srnt_nooe

CURRENT_STMT = CURRENT_STMT + 1
LSECURRENT-LINE = CURRENT_LINE + CURRENT_INCR;
CURRENT_PC = CURRENT_PC = PC_COMMANDCCOMMAND_BYTE];
CURRENT_MARK = LINE_OPEN;

The value of CURRENT_PC now contains the start address of the listing
Line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_W COMMAND

This command is Like the normal Delta=PC command except that the PC
increment value is given in an unsigned word following the command
code. These are the semantics:

%;Eﬁunnint_STnT_HODE

LSECURRENT_STHT = CURRENT_STMT + 1

CURRENT_LINE = CURRENT_LINE + CURRENT_INCR;
CURRENT_MARK = LINE_OPEN;
CURRENT_PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_WORD];

The value of CURRENT_PC now contains the start address of the lListing
line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_L COMMAND

This command is Like the normal Delta-PC command except that the PC
increment value is given in an unsigned lLongword following the command
code. These are the semantics:
{;E£URRENI_STHT_HODE
CURRENT_STMT = CURRENT_STMT + 1
CURRENT_LINE = CURRENT_LINE + CURRENT_INCR;
CURRENT_MARK = LINE_OPEN;

Tl

B — -y - —— - - —— .-G -

N
TBKDST.REQ;1 16-SEP-1984 16:58:14.6; Page 105
CURRENT_PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_LONG];

The value of CURRENT_PC now contains the start address of the Listing
Line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that line-open mode is now set.

THE DS1S¥ _INCR_LINUM COMMAND

This command increments the current Line number by the value given in
the unsigned byte following the command code. I[f statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDCNEXT_UNS_BYTE];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_INCR_LINUM_W COMMAND

This command increments the current Line number by the value given in
the unsigned word following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDCNEXT_UNS_WORD];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_INCR_LINUM_L COMMAND

This command increments the current Line number by the value given in

the unsigned longword following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal

semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDCNEXT_UNS_LONG);
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_SET_LINUM_INCR COMMAND

This command set the current Line number increment value to the value
specified in the unsigned byte following the command code. If state-

P ERt ARt GRS G T AR R AR AR e S S SRS G S S e T D G D S D S G g Sy — - - - - - w_-— . - — -

S S S TR S e e S S S S S g e T M S G G e R R G g e

e ——————————— - ———
—

B 1
TBKDST.REQ; 1 16-SEP=-1984 16:58:14.0§ Page 106 TBKI

ment mode is set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT_INCR = PC_COMMANDCNEXT UNS_BYTE];
IF CURRENT_STMT_MODE THEN CURRENT_STMT ='1;

THE DSTSK_SET_LINUM_INCR_W COMMAND

This command set the current Line number increment value to the value
specified in the unsigned word following the command code, If state-
ment mode is set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT INCR = PC_COMMANDCNEXT UNS_WORDJ;
IF CURRENT_STMT_MODE THEN CURRENT_STMT ='1;

THE DSTSK_RESET_LINUM_INCR COMMAND

This command resets the current |ine number increment value to 1. 1If
statement mode is set, the current statement number is set to 1 as well.
These are the semantics:

CURRENT INCR = 1;
IF CURRENT_STMT_MODE THEN CURRENT_STMT = 1;

THE DSTSK_BEG_STMT_MODE COMMAND

This command sets statement mode, meaning that subsequent Delta-PC com=-
mands will increment the curren? statement number within the current
line and not the current Line i1tself. This fonnand is only allowed in
the Line-open state. Statement mode can optionally be used by Languages
that have multiple statements per Line. This command also set the cur-
rent statement number to 1. These are the semantics:

IF CURRENT MARK NEQ LINE_OPEN THEN SIGNAL(Invalid DST Record);
CURRENT_STAT_MODE = TRUE?
CURRENT_STMT ™= 1;

THE DSTSK_END_STMT_MODE COMMAND

e P O e Py ——— - - — - - — -~ ———— -

TBKDST.REQ;1 16=-SEP-1984 16:58:12.65 Page 107

T L i i L et et el b L LT T T T ———

This command clears statement mode so that that subsequent Delta=PC com-
mands will again increment the current Line number, not the statement
number. The command also set the current statement number to 1. These
are the semantics:

CURRENT _STMT_MODE = FALSE;

CURRENT_STMT = 1;

THE DSTSK_SET_LINUM_B COMMAND

This command sets the current line number to the value specified in the
unsigned byte that follows the command code. These are the semantics:

CURRENT_LINE = PC_COMMANDLCNEXT_UNS_BYTE];

THE DSTSK_SET_LINUM COMMAND

This command sets the current Line number to the value specified in the
unsigned word that follows the command code. These are the semantics:

CURRENT_LINE = PC_COMMANDCNEXT_UNS_WORD];

THE DSTSK_SET_LINUM_L COMMAND

This command sets the current Line number to the value specified in the
longword that follows the command coge. These are the semantics:

CURRENT _LINE = PC_COMMANDCNEXT_UNS_LONG);

THE DSTSK_SET_STMTNUM COMMAND

This command sets the current statement number to the value specified
in the unsigned word that follows the command code. The command should
only be used when statement mode is set. These are the semantics:

CURRENT _STMT = PC_COMMANDCNEXT_UNS_WORD];

TBK

L LT T T T T T T TR

e S S S -

P et et Ay - - -

D1
TBKDST.REQ;1 16-SEP-1984 16:53:14.0§ Page 108

e P e S e R e e SR e e B — G ——— - - — - —— —

THE DSTSK_SET_PC COMMAND

This command sets the current PC value to be the value specified in the
unsigned byte following the command code added to the start address of
the (owest-address routine in the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF CURRENT _MARK NEQ LINE_CLOSED THEN SlGNAL(lnvaSid DST Record);
CURRENT_PC™= START_PC + PC_COMMANDLNEXT_UNS_BYTE

THE DSTSK_SET_PC_W COMMAND

This command sets the current PC value to be the value specified in the
unsigned word following the command code added to the start address of
the lowest-address routine in the current module. This command is only
allowed in the line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ LINE_CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT _PC™= START_PC + PC_COMMANDCNEXT_UNS_WORD];

THE DSTSK_SET_PC_L COMMAND

This command sets the current PC value to be the value specified in the
longword following the command code added to the start address of the
lowest-address routine in the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ LINE_CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT_PC = START_PC + PC_COMMANDCNEXT_UNS_LONG];

THE DSTSK_SET_ABS_PC COMMAND

This command sets the current PC value to be the absolute address speci-
fied in the lon?uord following the command code. This command is only
allowed in the line-closed state. These are the formal semantics:

IF CURRENT HA;% NEQ LINE CLOSED THEN ilGNAL(lnvalid DST Record);
_COMMANDLR :

CURRENT_PC"= EXT_UNS_LONG

THE DSTSK_TERM COMMAND

TBK

-~ oF o oTr

TN - S S e R -

e ——— N — - —

1
TBKDST.REQ;1 16-SEP-1984 16:58:1E.O§ Page 109 TBK

This command terminates the P(-Correlation command sequence for the
current routine or other program unit and specifies sho number of b‘tos
in the last &ine specified by a Delta=PC command. Since the Delta-P(
command specifies how many bltos precede the Line bfin? defined, the
Terminate command is needed to say how many bytes are in that Line
(i.e., how many bytes will increment the Pl to the first byte past the
current program unit). The number of bytes in the Last Line is speci-
fied bl the unsigned byte following the command code. This command also
sets the line-closed state. These are the semantics of the command:

CURRENT_PC = CURRENT _PC + PC_COMMANDCNEXT_UNS_BYTE);
CURRENT_MARK = LINE_CLOSED;

THE DSTSK_TERM_W COMMAND

This command terminates the PC-Correlation command sequence for the cur-
rent routine or other program unit and specifies the number of bytes in
the Last Line of that program unit. It is a variant of the DSTSK_TERM

command described above. The number of bytes in the Last Line is speci-

B L Lt b T kT R ——

fied b‘ the unsigned word following the command code. This command also v
sets the line-closed state. These are the semantics of the command:
CURRENT _PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_WORD];
CURRENT_MARK = LINE_CLOSED;
THE DSTSK_TERM_L COMMAND
This command terminates the P(-Correlation command sequence for the cur-
rent routine or other program unit and specifies the number of bytes in D
the Last Lline of that program unit. It is a variant of the DSTSK_TERM
command described above. The number of bytes in the last Line is speci- IE

fied by the longword following the command code. This command also sets
the Line-closed state. These are the semantics of the command:

CURRENT _PC = CURRENT PC + PC_COMMANDCNEXT_UNS_LONG];
CURRENT_MARK = LINE_TLOSED;

T — O —— - - . - - -

! END OF LINE NUMBER PC-CORRELATION DST RECORD DESCRIPTION.

e e e e e et e e e e e . et —]

F
TBKDST.REQ; 1 16=-SEP=-1984 16:53:14.35 Page 110 m’

SOURCE FILE CORRELATION
DST RECORDS

The Source File Correlation DST record is used to specify the correla-
tion between Listing Line numbers on the one hand and source files and
source file record numbers on the other. These records enable DEBUG
to display source Lines during the debugging session.

The Source File Correlation DST record has the following format:

----------------------------- R e e e Sy

DSTSB_LENGTH

byte
byte

A variable number of

+
+
+

var E
E Source File Correlation commands
+

P crcccocncnccen @ oo ¢ o=

After the Length and DST type bytes, the record consists of a sequence
of Source File Correlation commands. These commands specify what source
files contributed sourﬁo Lines to this module and how the module's list~-
1ng Line numbers are Lined ug with the source files and record numbers
within those source files. he available commands are described indi-
vidually below.

If the Source File Correlation commands needed to fully describe the
current module will not fit in a single Source Line Correlation DST
record, th.{ can be spread over any number of such DST records. These
records will be processed sequcntiall¥. in the order that they appear,
until there are no more such records for the current module.

TN o e N N N G R e e

The purpose of the Source File Correlation commands is to allow DEBUG
to construct a table of gprrola‘ions between Line numbers and source

records. A ''line r'" in this context means the Listing lin’ num= \
ber. This is the Line number which is printed in the program Listin

and is o?tput to the P(-Correlation DST records by the c?ngilor. (PC~

Correlation DST records correlate Listing Line numbers with Program
Counter values.) A corresponding source Line is identified b¥ wo ,
things: a source file and a record number within that source tile.

The semantics of the Source File Correlation commands can be understood
in terms of manipulating three state variables and issuing one command.
The three state variables are:

- T R e e S G e S ey -

LINE_NUM == The current Listing Line number. 5

TBKDST.REQ;1 16=-SEP-1984 16:58:12.6? Page 111

SRC_FILE == The File ID of the current source file,
i.e. a small integer uniquely defining
the source file.

SRC_REC == The record number (in the RMS sense) in
the current source file of the current
source Line.

LINE_NUM is assumed to have an initial value of 1 while SRC_FILE and
SRC_REC are initially undefined. The one command is:

DEF INE (LINE_NUM, SRC_FILE, SRC_REC)

This command declares that Line number LINE_NUM is as?o$iatod with the
source Line at record number SRC_REC in the file specified by SRC_FILE.

]

i

\

\

\

i

i

i

i

i

i

i

i

i

i

! Given this, the compiler must output a sequence of Source File Correla-
: tion commands which cause LINE_NUM, SRC_FILE, and SRC_REC to be set up
: appropriately and which cause the proper DEF fNE operations to be issued
: to allow DEBUG to generate the correct Line number to source record
! correlation table. (DEBUG na{ not actuoll¥ generate the full table,
! but it must be able to generate anl part of such a table it needs.)
- The semantics of each Source File Correlation command is described

; below in terms of these state variables and commands.

! Line numbers must be DEFINEd in sequential order, from lowest line

! number to highest Line number, in the Source File Correlation commands
! for one module. The source records these Line numbers correlate with
; may be in any order, of course.

]

i

i

i

i

1

i

i

i

1

i

i

i

i

i

i

;

i

i

i

f

It should be clear from what follows that the source for one module may
come from many source files. This can be caused bz plus=-Lists on the
compiler command (e.g., SFORTRAN/DEBUG A+B+(C) and by INCLUDE statements
in the source. Also, source Lines may come from modules within source
Libraries as well as from independent source files.

Form feeds in source files, or more precisely source file records which
contain nothing but a sing[o form feed (CNTL-L) character, are counted
as individual sources Lines in some languaaos but are ignored (not as-
signed Line numbers) in other Languages. DEBUG will handle either con-
vention, but DEBUG's default behavior is that form feed records are
ignored in sources files. They are not displayed and they do not count
toward the source file record number of subsequent source records. To
-ak; DEBUG count such records, the DSTSK_SRC_FORMFEED command must be
used.

Define the lLocation of the first command in the DST record.
1ELD DS}S%OUICE_EIELDS =

E
gzgtA_SRC_FIRS!_CHD = [2, A_) ! Location of first command in record

! Define the command codes for all the Source File Correlation commands.

18I

TBKDST.REQ;1

'

LITERAL
DSTSK_SRC_MIN_CMD
DSTSK-SRC-DECCF ILE
DSTSK SRC SETFILE
DSTSK SRC_SETREC_L
DSTSK SRC-SETREC W
DSTSK SRC-SETLNUM_L
DSTSK-SRC_SETLNUM™W
DSTSKZSRCZINCRLNUM_B
i
DSTSK_SRC_DEFLINES_W
DSTSKZSRCZDEFLINES8
i
l
DSTSK_SRC_FORMFEED
DSTSK_SRC MAX_CMD

! Define the fields of the Source
; corresponding declaration macros.

FIELD os;:;ac_connAno_rxeLos z

OO NS AN = OO 00 NOMNN S~ N) — —

Sem % % & 8 8 & % % S 8 8" 8" ST W a8

D e e R e e

Line

16-SEP-1984 16

Minimum command co
Declare a source
Set the current so
Set source record
Set source record
Set Listing Line n

Increment ilting
Unused--available

Unused=--avail ablo

Unused--available
Count Form=Feeds a

Correlation commands.

Unu?o d--available f
ne N separate |
Define N separate L1
Unused=--ava l ble for

Unused--available for

:58:12.&5 Page 112

e f?r CAS‘ ran
or g ao ulo

urco o (word

nunber (lon uord)

number (word)

umber (longword)

Set Listing Line number (word)

ine number (byte)
or future use

r future use
nes (word)

nes (byte)
future use

for future use
future use

for future use

$ source records

Maximum command code for CASE ranges

Also define the

% Field common to all Source File Correlation commands.

@stsa_snc_connAno

i The fields of the Declare Suurce File command.

DST$B_SRC_DF _LENGTH

:ss,:

" -
P
o
o
ﬂ
?E
w
e
I
o

$W_SRC_UNSWORD
38 SRC_UNSBYTE

=C0,8_1, ! Command code

=[(1,8_1, : Length of this command

= . B_1, ! Flag bits--rosorvod (MBZ)

= . W_ 1, ! Source file's File ID

= . A_ D, ! Creation date and (ime or mod-
H ule insortion date and time

= 1;. L. 1. ! End-of-File block number

=L 17, W_J, ! First Free B‘t. in EOF block

= (19, B_J, ! Record and File Organization

= 0, B], ! Source file name counted ASCII

= 1. A_], : (count byte, string addr)

information in all other commands.

=C1.L_1. : Unsignod lonauord parameter

=L 1, Wl i Unsi gned word parameter

=[(1, 8, i Unsignod byte parameter

; Declare trailer field in the Declare Source File command.
FIELD DSTSSRC_DECLFILE_TRLR_FIELDS =

-
w

D et e et e Ek ko L L R R

TBKDST.REQ;1 16-SEP-1984 16:58:11.65 Page 113

RC_D _LIBMODNAME = E 0. B, }. ! Module name counted ASCII
RC_DF _LIBMODNAME = [1, A_ ! (count byte, string addr)

E Declaration macros for Source File Correlation command and trailer blocks.

MACRO

C

SRC_COMMAND = BLOCK[,BYTE (DSTSSRC_C
C_CMDTRLR = BLOCK .BYTE (DSTSSRC_D

STSS OMMAND _F IEL S X,
STSSR ECL

FILE_TRLR_FIELDS) X;

S -

8

[————————————————— L L Ll Ll L Ll R LT

1
TBKDST.REQ;1 16-SEP-1984 16:58:1i.0§ Page 114

P T Ll Ll L T T I e L L T T P ——

byte
byte
byte
word
quad
long
word
byte
var

var

— ey

DECLARE SOURCE FILE (DSTSK_SRC_DECLFILE)

This command declares a source file which contributos source Lines to
the current module., It declares the nano of tho file, its creation
date and time and various other attributes, ’ command also assigns
a one-word ''file to this source file. This s the format of the
Declare Source Filo command:

DSTSB SRC DF LENGTH '

- e e on @ ---- - - - . RS f

DSTSB SRC_DF _FLAGS :
DSTSU SRC_DF _FILEID i

- - B e e Ee e o o o o o v o

DSTSQ_SRC_DF _RMS_CDT '
DSTSL_SRC_DF _RMS_EBK i

- - -—-- cesesccsscssse L T +

e cecmeseeam e —-- Ees e mmm me = e L3

DST$B_SRC DF F ILENAME i

- -——---w- - e rcceec e ome e cTecccscccceccccemese 4

Prcpec oo ocdhochoedhen
]
Ll
[
[l
I
)
!
[
[
]
i
4
§
ld
g
bl
i
[l
[l
)
2
l
)
]
]
[
El
[
+

B Y it RS cecccrnrcsc e m e - -4

The fields in this command are the following:

DSTSB_SRC_DF _LENGTH = The Length of this command, i.e. the number of
byteS remaining in tho command after this field.

DST$B_SRC_DF_FLAGS - Bit flags. This field is reserved for future use.
At present this field Must Be Zero.

DSTSW_SRC_DF_FILEID - The one-word '‘File ID' of this source filo. This
1 Le"ID, uhich can Later be used in the Set File command
simply ’ unique number which th, compiler assigns to ea h sourco
file wh ch contributes source l ne io the current modu :
source file thus has a number (the File ID) and is ident fiod
that number in the Set File (DSTSK_SRC_SETFILE) command.

DST$Q_SRC_DF_RMS_CDT = The froation dato and time of this source file.
This quadword quantity should retr ovod with a SXABDAT
cxto ed attribute block from RHS via 1 SOPEN or SDISPLAY
system service. The creation date and time should be taken
from the XABSQ_CDT field of the XAB.

If the sourcz file is a dulo in ? source Library, this field
should contain the nodulo s Insertion Date and Time in the Lib-

8

he 4 BT T —

TBKDST.REQ;1

O S T G GG Gy - -

4
16-SEP-1984 16:58:16.65 Page 115

rary. This value should be re riovod with the LBRSSET_MODULE
Librarian call. The Library file's creation date is not used.

DSTSL_SRC_DF RH5558K = The End-of=-File block number for this source

fTle, s onauord quantity should be retrieved with a
$XABFNC extended attibute block from RMS v a the $0PEN or
$DISPLAY system service. The End-of-File block number should
be taken from the XABSL_EBK field of the XAB.

This field should be zero for modules in source Libraries.

DSTSW_SRC_DF RHS FFB = Th’ first froo byto of the End-of-filt block

for this source is word quant t; should be retrieved
uith SXABFHC oxtcndcd lttributo lock from RMS via the SOPEN

$DISPLAV system service. The first free byte value should
bo taken from the XABSW_FFB ficld of the XAB.

This field should be zero for modules in source lLibraries.

DSTSB_SRC_DF_RMS_RFO - The file organization and record format of this

source file. This byte value should be retrieved with a

$XABFHC extended attribute block from RMS via the SOPEN or
SDISPLAY system service. The file organization and record
format should be taken from the XABSB_RFO field of the XAB.

This field should be zero for modules in source Libraries.

DSTSB_SRC_DF _FILENAME - the full filename of the source file. This is

the Tully specified fi lonanc. complete with device nane and
version number, in which all wild cards and loa cal nanos have
been resolved. This strin should be retrieved wi t F

block from RMS via the SOPEN or SSEARCH systel ervice. Tho
desired string is the 'Resultant String'' specified b‘ the
NAMSL RSA $8_RSS, and NAMSB_RSL fields of the SNAM block.
Here the file name is represented as a Counted ASCII string (a
one-byte character count followed by the name string).

DST$B_SRC_DF_LIBMODNAME - The source Librar lodulo name (if applicable)

or the null string. If the source file is actually a module in

3 source Library, the DST$B_SRC_DF FILENAHE field gives the
ilename of the source Library and the DST$B_SRC_DF _L IBMODNAME
field gives the name of the source module within that library.

If the source file does not come from a source librory. t

field (DST$B_SRC_DF_LIBMODNAME) contains the null (zero- 7ngth)

string. This field is represented as a Counted ASCII string.

e ————————————

18

S e T S D S S e R RS RS S W R R R e G G e e g

TBKDST.REQ;1 16=SEP-1984 16:58:12.65 Page 116
SET SOURCE FILE (DSTSK_SRC_SETFILE)

This conaand sets tho c?rront source file to the file denoted by

ono-uor? lo ID iven in tho command. The set file is then i
from which furth or source Lines are taken when the corresponding
ing Lines are defined. This is the format of the command:

the
file
list=

B el R e e T R e L e me = = e i o e o o -=d

byte
word

[R —
)
l
l
Ll
!
i
l
l
i
L}
[}
]
i
[}
"
[}
]
[}
1
!
£
4
6
[
]
i
4
i
(]
i
1
i
d
I
a
"
i
4
[}
"
§
[}
)
]
'
)
[}
[}
]
]
§
]
&
i
]
)
B
&
]
i
+

The semantics of this command is:
SRC_FILE := file ID from command

SRCCREC := set to current source record for this
source file

SET SOURCE RECORD NUMBER LONG (DSTSK_SRC_SETREC_L)

This command sets the current source file record number to the longword
value specified in the command. Its format is:

byte
long

DSTSL _SRC_UNSLONG: The desired new source record number '

---- -- +

U
I
i
)
i
i
i
1
8
]
]
]
1
§
n
]
[
1]
l
l
[}
[}
bl
[}
"
&
i
!
]
!
1l
il
i
)
i
4
b
¥
+

The semantics of this command is:

- — - - - -~ G N . G - -

SRC_REC := longword value from command

18

Fl

LI
TBKDST.REQ;1 16=-SEP-1984 16:58:16.0§ Page 117

B - — - ——_——— . — - —-— -~ — - — - — -

byte

word

byte

,_
)

SET SOURCE RECORD NUMBER WORD (DSTSK_SRC_SETREC_W)

This command set the current source file record number to the word
value specified in the command. It is thus a more compact form of
the DSTSK_SRC_SETREC_L command. Its format is:

<
"]
g
w
- N |
ﬂ
%
=
o
-~
L1}
L - |
wm
-
[od
X
(ﬂ
P+
ﬂ
M
m
-
=
m
ﬂ
t
A4

o
w
-
Ll
t
tﬂ
o
ﬁ
C
=
§
e
p_—
- 4
o
Q
@
w
ale
ﬁ
o
ﬂ.
3
o
4
w
o
c
’
(2]
.
’
W
(2]
o
’
ﬂ.
>
c
3
o
o
-

The semantics of this command is:
SRC_REC := word value from command

SET LINE NUMBER LONG (DST$SK_SRC_SETLNUM_L)

This command set the current Listing Line number to a Longword value
specified in the command. Its format is:

+ e T T S S . +
i DBGSB SRC COHHAND (= DSTSK SRC_SETLNUM_L) i
i DS!:E SRC UNSLONG The desired Listing Line number i

The semantics of this command is:
LINE_NUM := longword value in commmand

18

L L Ll b L T T pepp—p——— A

N
TBKDST.REQ; 1 16-SEP-1984 16:58:15.08 Page 118
SET LINE NUMBER WORD (DSTSK_SRC_SETLNUM_W)

This command sets the current listing line number to a one-word value
specified in the command., Its forma 3

.................. - e oD em o mm Ll g ------.-----.---------*

DBGSB SRC_COMMAND (= DSTSK <SRC_SETLNUM_ U) !

+
\
+ .—-----------n- -------. ------ escocaseeed
|
+

byte
word

DSTSU SRC_UNSWORD: The desired Listing Line nunber '

----- e s e e e c s e e e e mE S =S eSS e oo

The semantics of this command is:
LINE_NUM := word value in command

INCREMENT LINE NUMBER BYTE (DST$K_SRC_INCRLNUM_B)

This command increments the current listing Line number by a one-byte
value specified in the command. Its forma 3

byte
byte

The semantics of this command is:
LINE_NUM := LINE_NUM + byte value in command

O S S S O S RS G G G G G R S

T8

BT L L L T T el et g e e L L L T T T T

- S -

1
TBKDST.REQ; 16=SEP-1984 16:58:12.0; Page 119

byte

COUNT FORM-FEEDS AS SOURCE RECORDS (DSTSK_SRC_FORMFEED)

This command speﬁifics that DEBUG should count source rocord} which
consists of nothing but a Form-Feed character (CNTL-L) as being
distinct, numbered source records, In some languages, such records
are not considered to be source Lines; instead hey are regarded as
control information. The compiler then does not assign Line numbers
to them and DEBUG ignores them completely--they are not displayed

as part of the source and they do not contribute to the source record
numbering of source files. However, if the DSTSK_SRC_FORMFEED command
is specified in the Source File Correlation DST Record f?r a module,
then such records count as normal records; they can be displayed and
they are assigned source file record numbers.

I1f used, this command must appear before any commands that actually
define source Lines. Making it the first command in the first
Source File Correlation Record for the module is a good choice.

o
[»]
(7]
ey
o
]
wi
o
™
]
[l |
§l
= 1
o
1]
o
v
p—
[ad
>x
3
wv
-}
')
§

-
o
P]
=
“
m
m
o
N

R L e] B e L L T e L +

The semantics of this command is to set a mode fla? which says to
count Form=Feed records as normal records. The default behavior
is to ignore form=-feed records.

TBK

2O

PEEET L LT TR et et et e et e e R R T

-
e
m

FIE

MAC

1
TBKDST.REQ;1 16=SEP-1984 16:58:12.02 Page 120

- — - -

B e - —— - - -

B ———— - ————— .

byte
word

byte
byte

DEFINE N LINES WORD (DSTSK_SRC_DEFLINES_W)

This command defines the source file and source record numbers fur
a specified number of Listing Line numbers. The specified number is
given by a one-word count in the command. The command format is:

b e m e = m o e e T T TR, LR Y R ewd

| DBGSB_SRC_COMMAND (= DSTSK SRC DEFLlNES W) '

b= - - - e D e D P R TR D TR D T R R R D D e ¢+

The semantics of this command is:
DO the nggbea of times specified in the command:

DEF INE (L INE_NUM snc -FILE, SRC_REC);
LINE_NUM :="LINE NUM~+ 1;
Ezg REC := SRC REC . 1;

DEFINE N LINES BYTE (DSTSK_SRC_DEFLINES_B)

This command defines the source file and source record number for

2 spocifiod number of Listing Line numbers. The specified number is
? ven by a one-blto count in the command. This is thus a more compact
orm of the DSTSK_SRC_DEFLINES_W command. Its format is:

i DBGSB SRC_COMMAND (= DST$K_SRC DEFLINES B) '

L e e e --- -------------------------------------- 4

: DSTSB SRC _UNSBYTE: Tho number of lines to define H

The semantics of this command is:

DO the ngzb?; of times specified in the command:

DEF INE (LINE_NUM, SRC FI#E SRC_REC);
an NUM :="LINE N
o C_REC := SRC REc +1:

i END OF SOURCE FILE CORRELATION DST RECORD DESCRIPTION.

F 1€

D1
TBKDST.REQ;1 16-SEP-1984 16:5!:14.0§ Page 121

!
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
i
i
i
i
;

byte
byte
byte
long

THE DEFINITION LINE NUMBER
PST RECORD

NOTE: THIS DST RECORD IS NOT SUPPORTED BY DEBUG V4.0.

The Definition Line Number DST record specifies the Listing Line number

at which a data symbol or other ob?oct is defined or declared. The

intent is to make use of this information in future DEBUG commands so

that a user can see the declaration source Line for a specified symbol.

The Definition Line Number DST record must immediately follow the data

?%Tdrccord of the data object whose Line of definition is being speci-
ed.

This is the format of the Definition Line Number DST record:

- e e o e e D w w B i A) +

‘ DSTSB_LENGTH (= 6) '

T L L L L L L L L T 4

! DSTSB_TYPE = (DSTSK_DEF_LNUM) !

bemee= o EEmoe s -- L L Y T T T T Lo +

Define the fields of the Definition Line Number DST record. The unused byte

in the DST record is reserved for future use.

IELD DS;:?EF_LNUH_FIELDS =

gg;sL_DEF_LNUH_LINE =[3,L_)! The definition Line number

TBK

2.-;-—.-.-.—.-.-.-.-.-—-—.-.-._

TBKDST.REQ;1 16=-SEP-1984 16:58:1i.6g Page 122

THE STATIC LINK DST RECORD

The Static Link DST rocord specifies the ''Static Link'' for a routine.
The Static Link is a go inter to thc VAX call frame for the proper up-
scope invocation of t uter routine within which the present invoca-
tion of the present routine is nested. The Static Link is thus used
when DEB G does up-lovol addrossing n rosponso to user commands., A
Static Link DST Record 1 s always lS’OC iated with the inner-most routine
within whose Routino-ao? and Rout nc-End rocords it is nested. The
Static Link DST Record is optional==-it noo not be ?s ?y Languages

or for routines which do not keep track of static Links in their run=-
time environments. In fact, the Static Link DST record only makes a
difforonco for recursive routines that pass routines as parameters, a
fairly obscure situation.

This is the format of the Static Link DST record:

L e e e e Lk LT N SR EEC S e E eSS e D o e e o e +

|
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
E byte | DSTSB_LENGTH t
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
F

3 ’ --ﬂ-----‘
| byte i DST$B_TYPE (=DSTSK_STATLINK) i
P ovar DSTSA_SL_VALSPEC g
: A DST Value Specification Giving the Value of the |
g Static Link, i.e. the FP vValue of the Routine Invocation §
E Statically Up-Scope from this Scope §
;--- ;
i pefine the fields of the Static Link DST record.

f IELD os§g§tAthNx_r15Los =

DSTSA_SL_VALSPEC =[2, A 1] ! Location of Value Spec giving
res : the up-scope FP value

wef

TBKDST.REQ;1

F1
16-SEP-1984 16:58:16.02 Page 123

THE PROLOG DST RECORD

The Prolog DST record tells DEBUG where to put routine breakpoints.
It is used for routines that have prolog code that must be executed
before data objects can be freely examined or otherwise accessed

from DEBUG. Such prolog code typicall

sets up stack locations and

descriptors for formal parameters or other data objects. By putting
routine breakpoints on the first instruction after the prol?? codol
a

as specified in the Prolog DST record,
storage and formal paramete

DEBUG ensures that loca

rs are a(essible to the user.

Prolog DST records are optional. If omitted for some routine, DEBUG

simply uses the routine start address

record is counted as be
Point DST record before

tracepoints requested b(the user. |If
?nging with the nearest

t, not counting nested routines.

for routine breakpoints or

specified, the Prolo? DST
Routine Begin or Entry
Placing

the Prolog DST record immediately after the Routine Begin or Entry

This is the format of the Prolog DST record:

byte
byte
long

i m= -

...... E R T R R

DSTSB_LENGTH (=5) :

DST$B_TYPE (= DSTSK_PROLOG) i

DSTSL_PROLOG_BKPT_ADDR :

‘------------------‘------------------‘-‘----------‘ﬁ-----------’

Define the fields of the Prolog DST record.
F IELD os;:¢a0Loc_f1£Los =
gg;sL_PROLoc_axrt_Aonn = (2,11

]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
\
i
i
]
E Point DST record with which it is associated is good practice.
]
i
\
i
i
i
i
i
i
i
i
i
i
i
i
F

! The routine breakpoint address

8

I»
iw
e
iw
iw
i
e
e
i %
e
e
i
i
e
iw
iw
v
e
e
i
e

3.3 ®
TBKDST.REQ;1 16-SEP=-1984 16:58:14.03 Page 124

THE VERSION NUMBER DST RECORD

]

i

i

1

: The Version Number DST record gives the version number of the compiler
H that compiled the current module. The Version Number DST Record must
' be nested within the Module Begin and Module End DST R’cords for the

: module in question. DEBU? 1?noros this record except in special cases
1 when it is necessary to distinguish between old and new versions of the
5 compiler that generated a given object module.

g This is the format of the Version Number DST record:

i

i R e L - - R b et

; byte i DSTSB_LENGTH (= 3) i

g byte ! DSTSB_TYPE (= DSTSK_VERSION) !
gbm ! DSTSB_VERSION_MAJOR !
gbm ! DSTSB_VERSION_MINOR :

i

i

% Define the fields of the Version Number DST record.

F

IELD DS;:¥ERS!ON-FIELDS =

DST$B_VERSION_MAJOR = E g B g.
?é;SB,VERSION_HlNOR B “

ze major version number

'T7
! The minor version number

[————————— L T e L L L T R

H
TBKDST.REQ;1 16-SEP-1984 16:53:14.62 Page 125

e e e -

byte
byte

THE COBOL GLOBAL ATTRIBUTE
DST RECORD

The COBOL Global Attribute DST record indicates that the symbol whose
DST record 1nacdiltolz follows has the COBOL ‘‘global'' attribute. This
attribute specifies that the symbol is visible in nested COBOL scopes
(routines) within the scope (routine) in which the s¥|bol is declared.
Without this attribute, a symbol is only visible in its scosg of decla-
ration but not within any nested scopes. In this regard, COBOL differs
from most other lLanguages. DEBUG thus needs to know this attribute in
order to implement the COBOL scope rules correctly.

The COBOL Global Attribute DST record is only generated by the COBOL
compiler. If it precedes the DST record for some symbol, that symbol
is deemed to have the COBOL global attribute; if it omitted, the sym=-
bol is deemed not to have the global attribute. DEBUG ignores this
attribute for all other lLanguages.

This is the format of the COBOL Global Attribute DST record:

DSTSB_LENGTH (= 1) |

....................... B ek R T 3

DSTSB_TYPE (= DST$K_COBOLGBL) !

........ - - - EL LT L R Y

S o ocP
)
I

T, bt

18

R -

S S e S e .

TBKDST.REQ;1

S ———————————— e e L et L L L T L L L T T T e

byte
byte
byte

var

word

var

THE OVERLOADED SYMBOL DST RECORD

NOTE: THIS DST RECORD IS NOT SUPPORTED BY DEBUG v4.0.

The Overloaded Symbol DST record is use? ? indicate that a given
symbol name is overloaded. The record indicates which other synbols
in the DST are possible resolutions to the overlecading. It is used
by the ADA compiler.

n the same scope. e routine name is R, DEBUG disambiguates the
1ndividual instsncos gf tho overloaded routinc name with the invented
names R_ and sc on. DEBUG roquiros the ADA compiler to
generate nornat 651 Fecords for these ro?t nes, using the invented
nanos. DEBUG also rcquiros the ADA compiler to generate the Overloaded

T record with the original overloaded name ''R'' in order to
inforn DEBUG of the overloading.

After th¢ longth and t;pc tiolds this record contains a Counted ASCII
string wi e name o the over(oaded symbol. Followi n? the Counted
ASCII string. there is a word fiold containing a count o tho number

of overloaded instances of the name in this scope. Next there is a
vector of pointers, one for each instance, pointing to the DST records
for the instances of the overloaded s nbo(These DST pointers consist
of byte offsets relative to the start of the whole DST.

This is the format of the Overloaded Symbol DST record:

n ADA it is possiblo to have more than one routine ?f th’ same name
g

o
w
1
P
rm
=
(1]
-
x|

*
]
(]
]
L)
(]
]
]
[
i
1
il
L
i
[}
0
[}
[}
1
]
i

o
w
F
-.
-
0
M
—
"
o
w”m
—
[o4
8
O
<
m
1201
|
o
>
O
~

*

The Overloaded Symbol Name in ASCII
(The name's length is given by DSTSB_OL_NAME)

DSTSW_OL_COUNT
DSTSA_OL_VECTOR
A Vector of Longword Pointers to the DST Records
of the Symbols with Invented Names that Constitute

the Instances of this Overloading

Bk Lok LT S SIS S

cCmsere e ce e cnee e P rr e rr s rsan -

1
16=-SEP-1984 16:58:11.03 Page 126

1
TBKDST.REQ;1 16=-SEP-1984 16:58:1i.0§ Page 127

1
]
\
]
; Define the fields of the Overloaded Symbol DST record.
FIELD Dsg:?VERLOAD_FIELDS z

DSTSB_OL_NAME =[2, B_],

DSTSA_OL_TRAILER= [3, A_)

TES;

Count byte of the ovorloadcd symbol
name Counted ASCII stri ng

The trailer fields start at t is
location + .DST$B_O

- - -

! Define the fields of the Overloaded Symbol DST record trailer portion. Also
' define the corresponding declaration macro.

FIELD DSV:OVERLOAD TRLR_FIELDS =

DSTSW_OL_COUNT = E 0, v_ }. ! Number of instances in this scope
DSTSA_OL_VECTOR = & ! Vector of DST pointers to instances
TES: i of overloaded symbol

MACRO
DSTSOVERLOAD_TRLR = BLOCKLC,BYTE] FIELD(DSTSOVERLOAD_TRLR_FIELDS) X;

This is a short BLISS example of how the trailer fields are accessed:

LOCAL
DSTPTR: REF DSTSRECORD. :
OVERLOAD_COUNT ! The number of overloadings
OVERLOAD " TRAILER: ! Pointer to DST record trailer
REF BSTSOVERLOAD TRLR, !
OVERLOAD _VECTOR ! Vector of DST-record pointers to the
REF VECTORL.LONG); ! instances of this overloading

! Pointer to DST record

: Here we assume that DSTPTR points to the Overloaded Symbol DST record.

OVERLOAD_TRAILER = DSTPTRCDSTSA OL_TRALER] + .DSTPTRCDSTSB_OL_NAME];
OVERLOAD~COUNT = ,OVERLOAD_TRAICERTDSTSB_OL_COUNT);
OVERLOADVECTOR = OVERLOAD_TRAILERCDSTSATOL-VECTOR);

S - -

]

—
[+ ¢}

*

=
>

MA

K1
TBKDST.REQ;1 16=-SEP-1984 16:58:16.0§ Page 128

CONTINUATION DST RECORDS

When the text of a Debug Symbol Table rocor? is longer than 255 bytes,
it is no longer possible to hold that text in a single g T record since
the DSTSB_LENGTH field cannot hold a value Larger than 255. In this
case it is necessary to generate the original DST record followed by

as nan¥ sontinuation DST records as nocossar¥ 80 hold the fusg text.

The or g nal DST record then holds at Least 100 and at most 255 bytes of
text. Each Continuation DST record consists of the standard two-byte
header followed by the continued text of the original DST record.

This is the format of the Continuation DST record:

+
byte i DSTSB_LENGTH i
byte i DSTSB_TYPE (= DSTSK_CONTIN]
- e G ey S S D O S e e nm e e B 4
var E 5
§ The Continued Text of the Previous DST Record ;
R S S T —— +

DEBUG reconstitutes a continued DST record by concatonatin? the text

of the first DST record with the text portions of its Continuation DST
records. In effect, the first two bytes of each Continuation DST record
are stripped out. ﬁn{ further interpretation of the DST text is then
done on the concatenated copy.

Certain kinds of DST records are not allowed to be continued with Con-
tinuation DST records. These records are Module Beain Routine Begin,
Block Begin, Label, Label-or-Literal, Entry Point, SECT, Line Number
PC=Corre at‘on. and Source File Correlation DST records. In addition,
DST records with fixed sizes, such as Module End and Routine End DST
records, are not allowed to be cont nued. Line Number PC-Correlation
and Source File Correlation DST records caﬂn?t be continued with Con-
tinuation DST records, but one can have multiple sugh records in one
module; they can thus be continued, but through a different mechanism.
The records that re,lly need to be continued, such as Standard Data

T records and their variants (Descriptor Format and Trailing Value
Specification Format records), Separate 7{?0 Specification DST records,
and Type Specification DST records, can all be continued using the
Continuation DST record mechanism.

Define the fields of the Continuation DST record.

- S S S S e S e S e S e ey

———————y

I

-
m

o

=
>

TBKDST.REQ;1

FIELD DS;%%ONTIN_FIELDS =
DSTSA_CONTIN =
TES:

(2,A 1]

16=-SEP=1984 16:58:1&.33 Page 129

! Address of continuation text

|

—f
m

-

O S G S S -

>

M
TBKDST.REQ;1 16=-SEP-1984 16:58:16.32 Page 130

. - — S S S M O e e S g -

OBSOLETE DST RECORDS

There are several obsolete DST records. These are records that were
at one time generated b{ compilers, but are no lLonger used by any cur-
rent version of any Digital comgilcr. Some of these records were not
properly thought out and were abandoned when it was realized that their
intended uses could not be implemented. Others were at one time used
and useful, but were generated by now-obsolete compilers. Sugh records
are not generated by current compiler versions, and the capabilities

they provided ar2 now provided more general mechanisms in other DST
records.

None of the obsolete DST records should be ?onoratod by any future
compilers, and their use will not necessarily be supported by DEBUG.

THE GLOBAL=-IS=NEXT DST RECORD

The Global-is=Next DST record is now obsolete. It consisted of just the
DSTSB_LENGTH byte and the DSTSB_TYPE byte. DSTSK_GLOBNXT was the type
code. The purpose of this record was never properly thought out and

no support for it was ever implemented. It should not be generated by
any future compilers or compiler versions.

THE EXTERNAL=IS=NEXT DST RECORD

The External=-is=Next DST record is now obsolete. It consisted of Zust
the DSTSB_LENGTH byte and the DSTSB_TYPE byte. DSTSK_EXTRNXT was the
type code. The purpose of this record was never Rrogerly thought out
and no support for it was ever implemented. It should not be generated
by any future compilers or compiler versions.

THE THREADED-CODE PC-CORRELATION DST RECORD

This DST record is identical in format to the Line Number PC-Correlation
DST record except that the record typg code is DSTSK_LINE_NUM_REL_R11.
It was used an obsolete COBOL compiler according to Legend” (the memo-
ries are a hazy by now). The idea was that the threaded code gene-
rated by this sonp Ller consisted of a vector of longwords where each
longword contained the address ?f ? run-ting support routine to call.
Register R11 pointed to the beginning of this vector. The code aono-
rated for a source line thus consisted of some number of Longwords

with addresses to call (or perhaps jump to--the exact dftails are lost
in the mists of time). The lLine number PC-correlation information
passed to DEBUG c?nsisted of Line numbers correlated with byte-offsets
relative to R11 (i.e., to the start of the threaded code). Breakpoints

N
TBKDST.REQ;1 16=-SEP=-1984 16:58:16.62 Page 131

S e S D S RS RS e . - - - - - -

were placed on a specified Line by looking up th: corrosp?nding offset
relative to R11 and then ?toring an address within DEBUG into that
location. When the location was reached, DEBUG was entered. DEBUG
could then convert the ‘PC'', 1.e. the threaded-code Location, back to

a Line number to announce the broakpoin}. It is not clear how, or even
whether, tracing, stepping, and watchpoints were implemented.

The Threaded=-Code PC=-Correlation DST record is no Llonger suppor}od by
DEBUG and should not be generated by any current or future compilers.

THE COBOL HACK DST RECORD

The COBOL Hack DST record was at one time used to support formal argu-
ments to COBOL procedures. It has now been superceded by the more
general Value Specification mechanism, and is thus obsolete. It is

no longor generated by the COBOL com ‘lor. and it should not be gene-
rated by any current or future compilers. Future versions of DEBUG
may not support it.

The fields of this record consist of the fields of the Standard Data
DST record followed by a type field that specifies the data type and
then a sequence of commands for the DEBUG stack machine. (See the sec~-
tion on Value Specifications for details on the DEBUG stack machine.)
The ro}ult of intorproting the stack machine routine is the address of
the object described by this record. The DST$B_VFLAGS and DSTSL_VALUE
fields are zero unless the object has a descriptor. In this Llatter
case they specify the Location of the descriptor. The result of the
stack machine routine is placed in the DSCSA_POINTER field of the
descriptor before it is used. In addition, Tf it is an array descrip-
tor, the DSCSA_AD field is added to the result of the stack machine
routine and the result is placed in the DSCSA_AO field before the
descriptor is used.

The type field following the name field contains the VAX Standard Type
Code of the object being described here. If the object also has a
descriptor, its DSCSB_DTYPE field must agree with this code.

The stack machine commands used in this context are those described
in the section entitled ‘‘The DEBUG Stack Machine' in the chapter on
DST vValue Specifications.

This is the format of the COBOL Hack DST record:

TE

LI

e — pe——

1
TBKDST.REQ;1 16-SEP~1984 16:58:1%.03 Page 132 TBK

‘----------------.----------C----.-----------’ ' ”
byte } DSTSB_LENGTH : :
byte ! DSTSB_TYPE (=DSTSK_ C0B_HACK) : :
byte } DSTSB_VFLAGS : =
long | DSTSL_VALUE '

§----------------------------.---. EEEESnSEEES GG DS S-S eSS - + ++
byte } DST$B_NAME :
var

The Name of the Data Symbol in ASCII
(The name's length is given by DSTSB_NAME)

- - —— WG -

B ———— - - - - - - —-— - - - - - —

IR SRR e S E——— +
byte i DSTSB_CH_TYPE !
- D R T D D D D T D D D D S D S R S - +
var E DSTSA_CH_STKRTN_ADDR E
é Instruction Sequence for the DEBUG Stack Machine §
S S BSESa— - --
FIE
Define the fields of the Cobol Hack DST record. Also define the declaration
macro for the trailer fields.
FIELD DS;:?OB_HACK_FIELDS =
?E%&A_COBHACK_YRLR =[8, A ! Location of trailer fields E’D
: [
FIELD osr:cu TRLR_FIELDS = s
DST$B_CH_TYPE = E 0. B_ g. ! VAX standard data type LIT
DSTSA_CH_STKRTN_ADDR =1, A_ ! Start of stack routine code
TES; MAC

MACRO
DSTSCH_TRLR = BLOCKL,BYTE) FIELD(DSTSCH_TRLR_FIELDS) X;

1
TBKDST.REQ;1 16=SEP=-1984 16:58:12.0§ Page 133
VALUE SPECIFICATION DST RECORDS

The Value Specification DST record contains nothing but a DST value
Sgecificotion. However, there appears to be no use for this record
since all DST value Sﬁocificntions that are actually us?d appear in
other DST records. This record was probably designed with some use
in mind, but was then abandoned when better ways of addressing the
origina(need were devised. DEBUG ignores this DST record, and it
is believed that no compilers actually generate it. This OST record
should not be generated by any future compilers.

This is the format of the Value Specification DST record:

byte ! DSTSB_LENGTH |

’-----------------‘-- ----------------*
byte

DSTSB_TYPE (= DSTSK_VALSPEC)
var

+
E A DST value Specification
N

.................................... ------‘---------------.-ﬁ-“

Define the fields of the Value Specification DST record.
1IELD DS%S¥ALSPEC_FIELDS =

£
DSTSA_VS_VALSPEC_ADDR = [2, A_] ! The start location of the
TES ! Value Specification

B L P

TBK

4

FIE

01
TBKDST.REQ;1 16=-SEP=-1984 16:58:14.0? Page 134

DST RECORD DECLARATION MACRDO

This macro allows BLISS sxnbols which are declared DSTSRECORD or
REF DSTSRECORD to be qualified by all the fi’ld names present in
the various DST record formats It is anticipated that us?rs will
declare separate symbols for field sets which describe tra ling
fields in DST records; a pointer to the PSECT DST record trailer,
for example, would be declared to be a REF DSTSPSECT_TRAILER.
Separate macros are supplied above for all such trailer fields.

Define the declaration macro for all DST records.

CRO
DSTSRECORD = BLOCK [256,BYTE] FIELD(

DSTSHEADER FIELDS,

mmm
Bl b e T e et

S,

e
-

MrEmey s OWs s
w
L]

CVNe=Mee O WVrEoOVVVWL
O © U
(7 T 7. T 7, B r~orss.
- “ - owno
(7,13
-

rooownrunromrs
Vs Os
. s

S
0S)X;

! END OF DSTRECRDS.REQ.

8

*
-

FIl

A AH-BT13A-SE

A0 A DIGI
TVV VAX/VMS V4.0 CONF

i o

TAL EQUIPMENT CORPORATION
IDENTIAL AND PROPRIETARY

