RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR » RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR

RRR RRR

RRR RRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

MMM MMM
MMM MMM
MMM MMM
MMMMMM ~ MMMMMM
MMMMMM ~ MMMMMM
MMMMMM MMMMMM
MMM MMM MMM
MMM MMM MMM
MMM MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM

SSSSSSSSSSSS
SSSSSSSSSSSS
SSS5SS555S8SS
SSS
SSS
SSS
SSS
SSS
SSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSS
$SS
SSS
SSS
SSS
SSS

| NT!

NT!
NT{
NT{
NT!
NT!
NT!
NT!
NT{
NT!
NT!
NT{
NT{
NT!
NT{
NT{
NT{
NT{
NT{
NT{
NT{

NT!

NT!
NT!
NT!
NT!
NT!
NT!
NT!

NT
NT!
NT!
NT!
NT!
NT
Pl

G 15
**f ILE*~[D*+*RM3SPLUDR
RRRRRRRR MM MM 333333 SSSSSSSS PPPPPPPP LL uu Uu DDDDDDDD RRRRRRRR
RRRRRRRR MM MM 333333 SSSSSSSS PPPPPPPP LL uu Uu DDDDDDDD RRRRRRRR
RR RR MMMM MMMM 33 33 SS PP Y L uu Uuu DD DD RR RR
RR RR MMMM MMMM 33 %) PP PP LL uu Uu DD DD RR RR
RR RR MM MM MM) PP PP LL) U DD DD RR RR
RR RR MM MM MM s 3 PP ” L uu Uuu DD DD RR RR
RRRRRRRR MM MM 32 SS55SS PPPPPPPP LL U Uuu DD DD RRRRRRRR
RRRRRRRR MM MM 3 $SSSSS PPPPPPPP LL uu U DD DD RRRRRRRR
RR RR MM MM 33 S PP LL uu uu DD DD RR RR
RR RR MM MM 33 SS PP LL uu Uuu DD DD RR RR
RR RR MM MM 33 33 S PP LL uu U DD DD RR RR cesse
RR RR MM MM 33 33 SS PP LL uu Uuu DD DD RR RR seee
RR RR MM MM 333333 SSSSSSSS PP LLLLLLLLLL Uuuuuuuuuuy DDDDDDDD RR RR sees
RR RR MM MM 333333 SSSSSSSS PP LLLLLLLLLL Uuuuuuuuuu DDDDDDDD RR RR cese
LL 111111 SSSSSSSS
LL 111111 SSSSSSSS
LL I1 SS
LL 11)
LL 11 SS
LL 11 S$
LL 11 SSSSSS
LL 11 SSS5SS
LL 11 SS
LL 11 SS
LL 11 SS
LL 11 SS
LLLLLLLLLL 111111 SSSSSSSS
LLLLLLLLLL 111111 SSS5S5S5SSS

sz |

H15
RM3SPLUDR 6-Sep-1984 02:03: AX=11 Bliss=32 V&.0=74
2-3ep-198 18:031 CIRnSsPLubR.832: 1 Page 1)

1
1 -1984 RMS . SRCIRM3SPLUDR.B32; 1

: 1 0081 MODULE RM3SPLUDR (LANGUAGE (8563532) 0

: g §8 § ;DENT = 'v04-000'

; 4 084 BEGIN

: 5 005 1!

: 9 0889 } ztttttt"ttttt'tttttttttt!'*.t"'t't"i'f't""tf""t!tt"t"'t""ttt't"t'
: . *
: 8 0008 1 '+ COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
;9 0009 1 i+ DIGITAL EQUIPMENT CORPGRATION, MAYNARD, MASSACHUSETTS. .
: }? 88}? } E: ALL RIGHTS RESERVED. *
M H ®
: 1§ 881§ 1 ! THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
: 1 1 1 ! ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
: 14 0014 1 !+ INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER +
H 15 0015 1 !+ COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY =
: 16 0019 1 !* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
H }g 88}8 } s: TRANSFERRED. *
M . i
: 19 0019 1 !+ THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
H 20 0020 1 '+ AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
: %1 88%1 } t* CORPORATION. *
H ® #
H Zi 002% 1 '~ DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
3 24 0026 1 !* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. .
: £ 0025 1 !+ *
: £ 00%? 1 !» *
- %; 8828 } !t"'ti't"t"itttt'tttQttttﬁtttt"t'it'itttt'itt'itttttttttttttttt'tttttittt
: 2 00%9 1 1+s

;] B 0030 1!

: 3} 88%1 } E FACILITY: RMS32 INDEX SEQUENTIAL FILE ORGANIZATION

H 23 OOB% 1 ! ABSTRACT:

3 34 0036 1! split user data record buckets

. 0035 1!

R . 0036 1!

R 0037 1 ! ENVIRONMENT:

;] B 0038 1!

H 39 0039 1! VAX/VMS OPERATING SYSTEM

;40 0040 1!

2 L1 0041 1 !==

H §2 0042 1

H 43 0043 1!

3 L4 0044 1 ! AUTHOR: Wendy Koenig CREATION DATE: 5=JUL=-78 14:46
: & 0045 1!

;. 46 0046 1!

: 47 0047 1 ! MODIFIED BY:

; 48 0048 1!

;49 0049 1! v03-013 JWT0157 Jim Teague 23-Feb=-1984

S 0050 1! When RMS attempted to calculate whether a series of

;} N 0051 1! duplicate records (including the new record) would

3 Si 005; 1! fit within a single bucket, it neglected to account

: 3 0053 1! for the fact that the first record in the chain will

T 005¢ 1! underao full expansion when it ends up as the first

: 2% 0055 1! record in the new bucket. If it is currently partially

: 20 0059 1! compressed based on the previous key, then that could

e 0057 1! (and sometimes DID) cause bucket overflow when the

LR LR T P T P T P T P PR PR F R R P TR LN TR LR TN LN TR N T

TR R R e s e s s e e e e PR P P PR A T T A L L L L T N

RM3SPLUDR 11-%29-19 4 Qifg?sis AX=11 Biisi-SZ V4.0=74 Page S

V04~ 14=Sep=1984 RMS.SRCJRM3SPLUDR.B32;
3 2 82 1! duplicate chain is moved n’rrily into the new bucket.

B 1! Keep track of the compression count for the first

;. 60 060 1! record in the dup chain, and add it to the total

3 21 821 } ; size of the chain before comparing to bucket size.

: © Obi 1! v03-012 JWT0142 Jim Teague 16=Dec~-1983

: gg 82? } ; Correct incorrect bucket VBN comparison.

;66 0069 1! v03=011 MCNOOOS Maria del C. Nasr 22-Mar-1983

: 2; 882 } ; More changes in the linkages

: o 0098 1! v03-010 MCNOOO?7 Maria del C. Nasr 28-Feb-1983

: ;? 887? } s Reorganize linkages

N 007; 1! v03-009 TMK0004 Todd M. Kat2 10-Nov-1982

: I 00735 1! At the present time, under certain circumstances, the number
. 0076 1! of RRVs which will be required to be created when a simple

- 19 0075 1! two-bucket split is done is being incorrectly calculated. This
: 16 0076 1 ! will happen onl‘ durin? SUPDATEs when the record being updated
RS 0077 1! is to go into the old (left) bucket and prior to the split is

: 78 o078 1 ! in its original bucket. Even then it does not happen under all
s 79 0079 1! possible circumstances, but only when duplicate records are

: 80 0080 1! involved. It is possib[o that the number 2% RRVs calculated to
;] 8 0081 1! be required will be several Less than the a:ztual number which

: 8 0082 1! will be needed. Under certain circumstances, the number of RRVs
: 8 0083 1! needed nal actually be calculated as a negative number - an

;. B4 0086 1 ! impossibility. Much depends upon the bucket composition. While
Ry B% 0085 1! this does not influence the actual creation of RRVs, what it

;. 86 0086 1! does affect is where the bucket split point is calculated to be
ER g 0087 1! since RRVsS to be created do take up space in the old (left)

;. B8 0088 1 ! bucket. In fact, this problem came to my attention because of

;3 B 0089 1! the occurrance of a bucket split which resulted in the right

: W 009% 1! bucket, the new bucket, being empty, and the old (left) bucket
. 0091 1! containing all the records even though there was no room for

;3 9 0092 1! them (or the bucket split would not have been required in the

: 9 00935 1! first place). This split was caused by the number of RRVs

. 94 0096 1! required being calculated as ~1 instead of 0 such that, instead
3 99 0095 1! of having the RRV spacial requirements added to the left bucket
: 39 8889 } ; size requirements, they were subtracted.

: 9 0098 1 ! To fix this problem | have adjusted how the number of needed

R, . 0099 1! RRVs are to be calculated. To start, the number of needed RRVs
; 100 0100 1! is calculated to be the number of records (including the record
: W 0101 1! be!n? ufdated which is not Currcntl¥ in the bucket) whose

: 10§ 010; 1! original bucket is the bucket splitting. Then, as the split

: 10 0103 1! point of the bucket is adjusted from Left to right, this number
;. 104 0106 1! is decremented as records (which are in their orginal bucket)

; 105 0105 1! are designated to stay in the left or old bucket. This is where
: 10? 0106 1! my change comes in. Previously, that the updated record was to
: Y0 0107 1! stay in the old bucket was determined at several different

; 108 0108 1! points, and each time the count of the number of needed RRVs

: 109 0109 1! was decremented, as lLong as the other conditions were met.

: 110 8110 1! Unfortunately, this allowed for this determination to take place
e i 111 1! more than once, and for the RRV count to be decremented multiple
: 11; 811; 1! times for the same record. My fix prevents this from occurring.
: 11 113 3 % While it is still determined in several places that the updated
;0 114 0114 1! record is to go in the old bucket, I have made sure that those

I A TR T PR P P P T R L L P L e L R T P T P T T TR TR LA LA T E T PR T E T T L T T e

15
RM3SPLUDR -Sep= :03: -1 - .0-
V04=000" %5-2:8-1382 W08 YAws. SnedmndsAlubR:835:t !

places are orthogei®! to one another, so that the RRV count is
not decremented more than once for tﬁo same record, the record
whose update is causing the split.

v03-008 kBT0234 Keith B. Thompson 23-Aug-1982
Reorganize psects

v03-007 TMx0003 Todd M. Kat2 02=Jul=1982

Implement RMS cluster solut on for next record Dositioning.
The next record positioning context is now kept in the IRAB,
where it maybe retrieved from, instead of in the NRP List
which has been eliminated. When refering to the RFA address of
the new/changed primary data record use the subfields
IRBSL_PUTUP_VBN and IRBSW_PUTUPD_ID.

v03-006 MCNO0O6 Maria del C. Nasr 29-Jun=1982
Allow keys of different data types other than string
in prologue 3 files.
Change all CHSCOMPARE calls to RMSCOMPARE_KEY to compare
keys taking into consideration the different data types.

v03-005 MCNOOQOS Maria del C. Nasr 11=Jun=1982
Eliminate overhead at end of data bucket that was to be
used for duplicate continuation bucket processing.

v03-004 TMK0002 Todd M. Katz 31-May-1982
Performance enhancements. I have made four changes to the
routine RMSSPLIT_UDR_3 which should cut done on the length of
the bucket scans required at various times to re-exgand ke‘s.
The enhancements involve setting the IRAB field IRBSL_LST_NCMP
to the current record if key compression is enabled and the
key of the current record is zero front compressed during
various bucket scans required in the determination of the
split point(s). The first of these scans is made to position
to and extract the key of the Last record in the bucket.
The second and third scans are when the split code has decided
that the best split point is one record previous to the current
position, and must scan the bucket to obtain the record
previous to that position so its key can be extracted and used
durina he index update. The forth scan is the right-to-left

i

WSS AN == O O 00 NN N SN AN = OO0 B ~IOMN N

t
record-by-record scan made to decide whether a two-bucket
split is po:sible, and if so, where is the best place to
split. In aL. four cases, | have added code to set the
Last noncompressed record gointer before continuing the scan
with the next record, if the current record was zero front
compressed.

v03-003 TMK0001 Todd M. Katz 10-May-1982
The olaorithn for determining the split point of a prologue
b

W =O VNV W =O VRNV NN =20V~

three data bucket with compressed keys first determines whether
a two-bucket split can be done by scanning the old bucket from
left=-to-right record-by-re ord determining whether the Lefthand
sides and righthand sides of each possi?lo split point will

fit into a bucket, This size determination must take into
account the position of insertion of the new (or updated)
record, and the size determination of the righthand side must
take into account the number of characters currently front

MR IR R LR R IR R R R R R R R TR R e e e e e L L e e A R R L E A T A A R L T e T T T
) i o e e e) i D e))))))) e) e D e e D D e D D D D D D D e D D D D D D D e D D e D D D D D D e e D d D

Nﬂooogagoooomummmmmmmub F o2 2t ok ok a2 aF >F > buuugwuwuwmm—aaaaa
[elelelelelelelelelelelclelelelelalelaleleleolelelelelelelelelele e)]
S PR N S NG U G gp—gp—g—gp— p— p—— g A e I T Y Y Y Y Y Y W Y Y Y W S U S U — g y_——_—
NNOOOOOOONON OO VWAV SN 85 55 85 55 55 85 B B B NN N AN U A NN PO PONO NI NN PN =3 =3 b b s
= O 00 N N 8 AN =2 O O 00 O VN IS LN =2 © O 00 N ON W8S AN =2 O 0 00 N O B LN = O O 00 O N SN N = OO 00 ~O N
))) o =) —)))) =))) - -) — — - —l =) — - —d)))) =D - = = D) = =) =) D) — = — ——l) — = — el - D D ol ol

S S S S S S S e

-0V~

RM3SPLUDR
vo«-oto

-
-~J

(VN

000000000000 ~N~N~NN~N~N~
SN =OVO~NONWNS

SERIRJRES2SIEIRR

02000
VIS WIN) —
OO0O0O0O0O0ODOO0O0O0O0O0OCOO0O0O0O0O0O0O0O0O0O0O0O0O0OVO0O0O0OOOOOOOOOOOOOOOOOOOOOOOO

MNONLRNLNIMNLNLNLNL NN N NLNVNI NI NN NI PO NI N NI NINONOI NI NOND b b cd ccd e cd o e e D e D D e D D D D D e D e) e e o)
PONINININININININ) = b e e e o e e =ed =2 O O O OO OO O OOV VOV VYOOV V0000000000000 000000 N~ ~N~N~N~N~NI~

LR TR A R TR TR LR TR T A T P P P R PR LR PR LA L TR P L AL PR LA TR TR LR TR TR TR TR LN TN TN N T T T T N TR Y TR I R I
OO NS NN = O V00 NN WS N = O O 00 NN VNV 8 N = O O 00 N O SN AR) = O O 00 O N S N = O 0 00 ~JON VN S AR
QS Q" —g——p—— ——Y— Y— YR P P P e Y AT YN Y O O G S U G S Y Y Y Y ——Y

MUNLNLNLALNINLALNI NNV NN NI NPV NI NI NI NN NI NININININI N =B b cd b d e D d o o D o D D D D e)) o D

mw@mamaooc:sao\nam-oouwg

PORINININININININ) = b b b ek b ek b =d = O O O

K 15
16-360-108¢ T4:0TE0 KRns!setinndsRlubR 82

compressed of what will become its low-order (and thus
non-compressed key) record. What was nissing, and what this
change rectifies, is tha} what may become the |low-order record
of the righthand bucket is in fact the new (updated) record
whose insertion is forcing this split to take place, In this
case, the number of front co.pressed characters to be added to
the rivhthgnd side total must come from the compressed key in
keybuffer 5, if this is an SUPDATE, or from the compressed key
in the record buffer whose address is stored in IRBSL_RECBUF,
if this is a $SPUT. This change will be included as a patch on
the v3.1 update floppy.

v03-002 MCNOOO4 Maria del C. Nasr 31-Mar-1982
Do not count records that will rnot need rrv's when moved out
of the bucket. Their id's cannot be recycled in plg 3 files.

v03-001 MCNOOO3 Maria del C. Nasr 25-Mar-1982
Use macro to calculate keybuffer address.

v02-016 DJD00O1 Darrell Duffy 1-March-1982
Fix references to RBF for better probing

v02-015 MCNO002 Maria del C. Nasr 09-Jul=1981
Fix a problem with update of the {irst record in a duplicate
chain, in both old code, and new code. Also fix problem in
new code with non-compressed keys.

v02-014 MCNOOO1 Maria del C. Nasr 02=-Jun=1981
Add the routine to split prologue 3 data buckets.

v02-013 REFORMAT Ron Schaefer 23=Jul=1980 14:10
Reformat the source

v02-012 CDS0000 Christian Saether 01=-Jan=1980 15:00
FIX PROBLEM WHEN SPLITTING BECAUSE OUT OF ID'S.

REVISION HISTORY:

Hend; Koenig 18-SEP-78 16:53
X0002 - FIX BUG IN BACKING UP PAST NEW RECORD

Hend§ Koenig 19-SEP-78 10:52
X0003 - DO SPLIT AT POINT OF INSERT IF ASCENDING ORDER DETECTED

Hendl Koenia 12-0CT-78 13:21
X0004 - CHANGES FOR UPDATE

Wend Koenia 18-0CT-78 14:03
IOOO; - IF é PASS BY POS_INSERT WHILE SKIPPING OVER DUPS, NOTE IT

Wendy Koenig 18-0CT-78 14:37
X0006 = FIX SOME PROBLEMS W/ 4=BKT SPLIT (SUPDATE ONLY)

Wendy Koenig, 24=-0CT-78 14:03
X0007 - MAKE CHANGES CAUSED BY SHARING CONVENTIONS

Wendy Koenig, 7-NOV-78 8:58

"M IENETITIEE T R s e e e e e e e T T L L L L L L T T T P T P PR TR TR LR LR L T T T

15
RM3SPLUDR 1%-80 =-1984 :03: AX=11 Bliss=32 v4&.0-74 Page
V04~ 14-5:3-1934 ?5:81:53 !ans.sncﬁnnisrLuon.asz: . (1)
; 3 3 } ; X0008 = FIX EMPTY_BKT BUG, NOT BEING SET WHEN SHOULD BE
3 1 1 1! Wend Koenie 22=-JAN=79 17:03
: g ! 5 } ; X0009 - IF COA TRIES TO FORCE US TO SPLIT ALL DUPS, SPLIT AT POS_INS
P2% 023 11 wWendy Koeni 24=JAN=79 9:51
;23 0238 1 | X0010 = CONBITION HOLDS EVEN IF LOA NOT SET
5 S 7 0 9 1! Hend{ Koenig 29=-JAN=79 15:58
; % 3 8 3 } I X0011 = FIX PROBLEM W/ DUPLICATE ENTRIES IN INDEX
: gao 0240 1 ineens
: 41 0241 1
: Ag 0 45 1 LIBRARY 'RMSLIB:RMS':
: 26 0245 1
: o4k 0244 1 REQUIRE "RMSSRC:RMSIDXDEF':
3 45 0309 1
3 46 0310 1 ! define default psects for code
;247 8%‘1 1!
: 24LB 1; 1 PSECT
: 549 0313 1 CODE = RMSRMS3(PSECT_ATTR),
: 250 0314 1 PLIT = RMSRMS3(PSECT_ATTR);
;. 2N 0315 1
: 25% 0316 1 ! Linkages
: £9 0317 1!
;. 254 0318 1 LINKAGE
: 255 0319 1 L_COMPARE KEY,
: 256 0320 1 L_PRESERVE1
;257 0321 1 L RABREG_4567,
; 258 032§ 1 L_RABREG_67,
: €39 0323 1 L_REC_OVRAD,
: 260 0324 1
: 261 0325 1 ! Local linkages
3 26; 0326 1!
: %6 0327 1 RLSBUILD_KEY = JSB () :
: 264 0328 1 GLOBAL (R _IDX DFN) PRESERVE(1,2,3.4.5),
;265 0359 1 RLSMOVE _KEY = JSB (REBGISTER = 0, REGISTER = 6) :
: %g? 833? } GLOBAL (R_RAB, R_IRAB, R_IFAB, R_IDX_DFN, R_BKT_ADDR);
; 268 033§ 1 ! Forward Routine
: 269 0333 1!
: 570 0334 1
;2N 0335 1 FORWARD ROUTINE
3 g?g 8%;9 4 RMSBUILD KEY : RLSBUILD KEY NOVALUE,
: ;‘ 9338 } RMSMOVE _REY : RLSMOVE_REY NOVALUE;
: 75 8 39 1 ! External Routines
: 276 40 1!
;2 0341 1
| ZB 0;2; 1 EXTERNAL ROUTINE
s 277 1 RMSMOVE : RLSPRESERVE1,
: 280 %4 1 RMS$RE CORD_VBN : RLSPRESERVE1,
: 28 %S5 1 RMSRE CORDKEY : RLSPRESERVE1,
: ag g&g 1 RMS$REC_OVRAD : RLSREC_OVHD
; 28 47 1 RMSVBN™S1ZE : RLSPRESERVE !
: 284 0348 1 RMSCOMPARE _KEY : RLSCOMPARE_KEY,
: 285 0349 1 RM$ COMPARE "REC : RLSRABREG_B7,

15
o= T B SR
; &

86 0350 1 RMSGE TNEXT_REC : RLSRABREG_67;

N 15
RM3SPLUDR -Sep- :03: - - .0=
V04-000 16-360108¢ 601188 YRS alinndsRtuba832:] ot

+4

.

ALGORITHM FOR A TWO-BUCKET 50/50 SPLIT

GIVEN: that the record will not fit in the bucket.
i.e., we must split the bucket in some form.

INPUTS: the bucket, the record size and the position
to insert the record in the bucket

GOALS: to make the split as efficient as possible:
1) to create the fewest number of new buckets possible
2) to use the space in the availsz"le buckets efficiently ==
i.e., the bucket with the mos% available space should contain
the most data after the split.

ALGORITHM IN A NUTSHELL:

1) A two-bucket split will occur IF AND ONLY IF there is a point in
the bucket at which all records to the left of the point and
necessary rrv's fit in a single bucket and all records to the right
of the goint fit in a single bucket. This point must be on a
record boundary and must not be in the middle of a chain of

duplicates.

2) Given that such a point exists, the most optimal point for a
2-bucket split is the point at which the actual data records
are divided evenly between the available space in the origlnal
bucket and the available space in the new (previously empty) bucket.

_n..a..o-a.-agoo

In theor{.ithorofore. the idea is to find a point in the bucket such that

00000000 NN NNNNNNNNOOONONON O OO O O VYTV

NN AN = OO 00 N W 8 WAIN = OO 00 N O S LN = © O 00 N O WV ES N = O O 00 NON N SN N —

U U U U U U N U U U AN N N N N N R NN N N

L L L NN L L L L L U L U U U U AN U N U N N N NN N N

loleale]
—d e el il s D el i D e D i i s i i i i i D D il D D i D e i D D i i D e e el D S D D el el D el el el e el el el ol el i e e

e S S S e

S e BB Be 0000000808080 8090809090008 s% e 90069509 % 0050890 %0 000090809000 080000e BNV N N0V EVeNePIBeBeBeBRe e
U U L U U U LA U U A A U U U AN U U N N N N N N N N

0

%

4
;

17 the point is on a boundary between duplicate records and that

}g 1) records in the left hand side / space in the left hand bucket
20 2) records in the right hand side / space in the right hand bucket.
el 8 In practice, the idea is to mimimize the absolute difference between
Zg 8 ratio 1) and ratio 2). Just to make it clearer, ‘'records in the left
2 86 hand side'' means the total size of the data records left of this point
24 8 (not including rrv's of any kind) and ''space in the left hand bucket''
%S 8 means the bucketsize of the data bucket minus the total size of existing
59 g rrv's and the total size of rrv's which would have to be generated.

8 G
29 9 IMPLEMENTATION:
30 9 This algorithm needs two scans of the bucket. The first scan is very
§1 9 quick and determines the total size of the existing rrv’'s. It also

g 9 counts the number of rrv's that would have to be generated in a worst
3 9 case situation (i.e., all records would be moved out). Thus, as the
34 9 second scan proceeds, all information needed to calculate the above

35 33 ratios EXACTLY is available.

3 400 n order for there to be a 2-bucket split, there must be a point

38 401 n the bucket such that the ri?ht hand side fits in a single bucket.
39 605 Scanning from the left (beginning) of the bucket, we can find the

0 40 first point at which the right hand side will fit. Since as we
41 404 continue scannina to the right we are decreasing tho.right hand side,
2 8205 the righthand side will continue to fit as we scan rightward.
44 0689 It at this point, the left hand side will not fit, we can not possibly

. Failaila T oYe sl

s W SNV T B W

N et TN b b T g B T T P V. L B F i i

L — ——— . . N G~ &

B 16
RM3SPLUDR 16-Sep=-1984 02:03:2 AX=11 Bliss=32 V4.0=74 Pa
VOG-ObO 14-503-1934 ?5:81:4 RHS.SRC&RH SPLUDR.B32; . (2)

will be inserted at the end of the duplicate chain. A far more common
situyation is created by RMS-11 (at least thru v1.5) when loadina a
file in oscendin? prinarl key saauence will pack the buckets 100%
(or the load factor) full, including records of non-dupe key values
at the end of continuation buckets.

At any rate, the fact that the situation exists notuithstandin?,
much of the code that follows is there to keep duplicates together
when splitting, and to put only records with duplicate key values
in continuation buckets. It appears to be a good thin? to do from
an overall space efficiency standpoint over a period of time, but
the code could robnbl‘ be considerably simplified if it wasn't
necessary. With all that in mind, the sglit situation with all
possible record 'partitions' within the

: ucket prior to splitting
is as follows:

: % 8608 3.3 have a 2-bucket split, since continuing our scan would only make

;. 346 409 1! the left hand side Larger (or it may stsy the same size). Once we
;347 0410 1! have found a point at which we can do a 2-bucket split we can always
;. S48 0411 1! return to it, if in our search for a more optimal split point we
;349 41§ | Lleave the range in which the Left hand side will fit, .

; 3550 615 1! This can occur if the records in the bucket are of miminal size,

} §S1 414 1! that is to say that the records are the same size as rrv's and

: 325 02;2 } ; t?egefore no additional space for data is gained by scanning to the

: 354 0013 1 i Zigie

3 323 0418 1! At this point (the first point at which the right hand side will fit),
: ng 0419 1! ratio 1 is Less than ratio 2. As we proceed to the right, ratio 1 will
: i 0420 1! increase and ratio 2 will decrease. This is due to the fact that

: 28 0621 1! the size of the right hand size (the numerator of ratio 2) decreases
: 30 04 g 1! as we move rightward and the available space in the right bucket is a
: 360 04% 1! constant (the denominator of ratio 2). In ratio 1, both the numerator
3 30 0626 1! and denominator are increasing, but the numerator is increasing at a
;] 26 0625 1! faster rate. As soon as we reach a point where ratio 1 is greater

' 06%6 1! than or equal to ratio 2, we can stop the scan. Now we have a choice
;364 0427 1! of split points available. We can use this point or the one immediately
;. 365 0428 1! before it (if such a point exists), The decision is made by

: 366 04%9 s 3 minimizing the absolute difference between the ratios and we have an
3 32; 823? } ; optimal split point.

;369 063% ¥ 3

: 30 0433 1! Things become complicated by the presence of duelicate records.

3 3} 0636 1 ! When duplicate records occupy more than one bucket, the subsequent

: 372 0635 1! buckets are termed continuation buckets. In prologue version 1 and

: 203 0436 1! 2 files, there is a pointer from the index to the first bucket only,
: 26 0437 1! and the continuation buckets are found only from the horizontal Links
3 32 0438 1 ! in the buckets. At one point, it was thought that disaster would

s 276 06439 1 ! ensue if the continuation buckets ever had a record with a key value
3 M{ 0440 1 ! other than that of the duplicates. Normally, this will not happen

; 378 0441 1! because the key value of the index pointer to the first bucket will

3 MY 044% 1! be the same as that of the duplicate records in the chain and a record
; 380 0443 1! with a higher ke¥ value will follow the next index pointer down when
. 0446 1! positioning for insert., This will place it in the next bucket beyond
: 382 0445 1! the chain of continuation buckets. However, a bucket in which the

: 283 0446 1 ! record with the highest value has been deleted that subsequentl¥

; 384 0647 1! recieves a series of duplicates creating a continuation chain will

; 385 0448 1! generate a situation where a record with a kel value between that

; 386 82g } ; of the duplicate chain and the original high key value of the bucket
: 0451 1!

: 0452 1!

: 845 |

: 456 1!

: 0455 1!

: 0456 1!

: 0457 1!

: 0458 1!

: 8&5 !

: 460 1!

: 846 1!

: 462 1!

: 0463 1!

: 0466 1 !

SN =2 O VO NO WS NN = OV~ S~

RM3

R N LI R T T T T T T s e e o e P PR P R T R TR LR DR L L e L e T T T T TR TR T T R TR IR L A L R R ETE TR

40
40

&~
o
¥

PR P P P P P P P P A S T ¥ F
gwuuuwwNNNNNNNNNN—a—o—--—-------—-ooooo
ONO WS WN = OV N VIISNMANN =2 OV~ N SSM AN =2 OO0 00~

~
WINWN
O

440

SPtUDR
v04-000

(elelelelelelelelelelelelclelalelelalelelelelsls]
Rt L Ittt 2t b ol af aF ¥ B o o N o

000000000000 000000 NNNNNNNNNNOOOONO~
OO NN S NN = OOV O ~N O ES WN) = OV 0 ~NON

0489

iedol=lelelelel

[elelelelelelealelelelelelelalelelelelelolele)
VI AT AT UIWVILA LA BT TT IV VA VAAWDA LY
- S OO~V NN) = OV NS W= O

PON o e e e ol i e e e ek DO O

[T N W N S W — p——" —— g Y P PP P P e T N R R G W Y R Y DU QU W DU DR DU DU W I DU D - g

[AR ——————————— e e L T I T T T T T T T T T YT T S T T T T TS T T T TS ST TSTS

16
16-Se0-1080 02:03:28 YAX-TL BLisso32 vi.0-707

! low set ! low dupes !! high dupes ! high set !

point of insert (new record)

From the point of view of the split code, an update operation in
which the record is growing and causes a split is identical (almost)
to a new record being inserted. The original record is removed from
the bucket after determining that the updated record will cause a
split and the updated record is more or less treated as a new record.
One of the most important differences is that in an update situation,
the 'new' record gets the id of the old record, rather than a new id.
Another is that because duplicate records are always inserted at

the end of a chain of duplicates, some split cases can only occur

on an update operation.

In fact, the situation postulated above can happen only in an update
situation, and may cause 3 new buckets to be generated on the split
operation. This will occur when the updated record is in the

middle of a group of duplicate records and grows to the extent that
no other records will fit in the bucket with it anymore.

Using 1 byte key values to make this easier to visualize, the bucket
above prior to the ugdate may look Like this (the artificial
partitioning of the bucket corresponds to the breakdown above):

tABCIDODIDIDIPIESFSG!

/\
this record gets updated

The record being updated changes size and grows such that it
needs an entire bucket for itself. To keep all the duplicates
together, the situation after the split lLooks Llike this:

'ABCDDD! => !'D! = !'!'DD! => 'EFG'
this is the these two are
original bucket continuation buckets

The original bucket probably had an index pointer with the value 'G’
pointin? to it (or some previous bucket if there was a previous index
update failure). After the selit, the key value for that pointer will
be updated to have the key value 'D', and the key value that used to
point to it (;-vbably '6'), will now point to the right hand bucket
(with 'E', 'F', and "G' in it). The continuation buckets never have
an index pointer to them.

AlLL other split situations are a variation of this one, with

one or more of the 'partitions’' not present, dep,ndent on the key
value and position of insert within the bucket of the record being
inserted or updated. Ffor example, if there are no duplicates, there
are no 'low dupes' or 'high dupes’'. Or if the Qositton of insert is
at the end of the bucket, there is no "high set’.

Now that]|'ve started on it, may as well try to document some other

Page

9

(2)

D 16
RM3SPLUDR 16-Sep=-1984 02:03:2 AX=11 Bliss=32 V4.0-742
v04-000 14-598-19 4 95:81:4 RHS.SRCSRH%SPLUDR.832:1

interesting split situations. Note that a '2 bu%ket sglit' means
that there are 2 buckets after the split, i.e., 1 new bucket is
added. The situation described above is a & bucket split.

The mos§ interostin? split from an index updating point of view,

is the 3 bucket split where a record is being inserted in the middle
of the bucket and doesn't fit in a bucket with either the Low set

or the high set. Again with 1 byte key values to illustrate:

G (this is supposed to represent an index
5 pointer to this bucket with key value 'g')
v

/\
new record with key value 'D' inserted, but is so large
that it has to have bucket of its own.

After split (with new index pointers):

€ —mem
S——_
€ ~eeelDd

TAELY = TP =» TEFPQ?!

The new pointer '(' is the bucket pointer from the original index
record 'G' with the new key value 'C'., The 'D' pointer is an
entirely new record (i.e ke¥ value 'D' and bucket pointer). The
pointer 'G' is the key value from the original record 'G' with
a new bucket pointer. The bucket pointer for the 'D' bucket comes
from irbSL_vbn_mid and the bucket pointer for the 'G' bucket comes
from irb$SL_vbn_right. Remember that all of this stuff works correctly
if the index update failed and we got to the bucket thats splitting
by following the horizontal bucket Links at the data level. :
For example, consider the following case where prior index corruption
499 exists:

6 (index update failed when right hand bucket split off
i during a previous insert operation)
v

IABC! = (P IE!

/\
new record 'E' will be inserted here and cause split

After split:

.

oo

-~
[elelelelelalelelelalelalealealelelelelelelelelelwlaleleleleleoleolaleleoleleleleleleolaleleololelaeleleleleleolelelelelele]
VI WA AW AT T A A T AT AT T AT A T T TG LT U T T T T VAT T T TN T VT ATV UL
NNNNNNNNNOOOOOO O OO O VYW IWVIVAIVAIVAIALSS 55 55 35 35 55 05 5 5 25 WA NN LN AN PO RO NI RN
00 NN VM N =2 O 0O 00 NN N 8 NN = © 0 00 N OM N SN AN =2 © O 00 N ON NV 8N WMD) =2 & 0 00 O WV S AN =2 O 0 00 N O N ES LN
— o s el il el)) =))) =) D) = =)) —d — — — — — - -l —l — — ——) —)) D D) D D D D D D) D D) — — = — — — — —

AR AR I T T T R T s O R R TR A TR T E PE PR PR PR PR PR PR DR P LR T T T TN T N T T TN I TS T TN T T T R R A R
O . S e O S R T S RS RS S S S S N R S R R -

VAUAWVIWA VAWV AWV WA
8320:000
VIS AN = OV NOWVSWN=O

— it e e e e OO

- -
-0

N —
~ 0O

16
RQBEPbgDR }5:3:3:}332 ?§§8¥§£8 AX=11 B5isg*32 V4.0=742

v04-0 RMS.SRCIRM3SPLUDR.B32;1
: 1 0579 1! v v

; §1? B0 J 1 @ sesseeses $ esseess evess -

3 218 °81 1! IAPL]l » 19081 = 188}

i 519 § i §§ eseasenes $ seseses seceses

: 920 05 1!

3 3¢} 8286 1t The reason for the index updating behavior becomes more obvious.

3 2 i g 1! The key value of the original down pointer 'G' has been changed to
i -2 589 1! the new value 'E', but retaining the original bucket pointer. Note
;924 587 1! that we split the bucket with '0D' in it, yet there is no bucket pointer
: 3¢ 588 1! to it now (there wasn't before). The key value 'G' of the original
;. 926 0589 1! bucket Eointer 'G' has been used with a new bucket pointer for the
3 557 0590 1! new bucket created by the split (this is irb$L_vbn_right),.

3 3528 0591 1! Sometimes there will be a bucket split and no rFecords will be

: S§9 059% S 3 in the left hand bucket after the split. This may hapgen if the

3 2N 0593 1! record being inserted belongs at the beginning of the bucket, but

3 331 0596 1! there are enough rrv's present so that it doesn't physically fit.

: SiZ 0595 1! In that_case, all of the existing records will have to be moved out
3 239 0596 1 ! also. This mor also occur if there are no id values left in the

s 53 0597 1 ! bucket (typically caused by deleted rrv's). In this case, we would
: 535 0598 1! Like to swing the index pointer aua¥ from the 'empty' bucket to :
: 536 0599 1! keep random access times from deteriorating. As of prolo?ue versions
s 237 0600 1 ! 1 and 2, however, it will remain in the horizontal Link of data

: 238 0601 1! buckets. However, we can only change the down pointer if it already
3 3 0602 1 ! points to that bucket or we can potentially create crossed down

3 gz? 828‘ } ; pointers. The situation is illustrated below:

: Sk% 0605 1! C I (index update failed on a previous split)
: 54 0606 1! ' '

;566 0607 1! ' '

;545 0608 1 ! v v

i 546 009<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>