RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR » RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR  RRR

RRR  RRR

RRR  RRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

MMM MMM
MMM MMM
MMM MMM
MMMMMM ~ MMMMMM
MMMMMM ~ MMMMMM
MMMMMM  MMMMMM
MMM MMM MMM
MMM MMM MMM
MMM MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM

SSSSSSSSSSSS
SSSSSSSSSSSS
SSS5SS555S8SS
SSS
SSS
SSS
SSS
SSS
SSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSS
$SS
SSS
SSS
SSS
SSS

| NT!

NT!
NT{
NT{
NT!
NT!
NT!
NT!
NT{
NT!
NT!
NT{
NT{
NT!
NT{
NT{
NT{
NT{
NT{
NT{
NT{

NT!

NT!
NT!
NT!
NT!
NT!
NT!
NT!

NT
NT!
NT!
NT!
NT!
NT
Pl




RM.
vOi

"tf]LE'\lD"RHSGE1

l
l

3

—_—

——

—_——

—_—

B e e e e
D e e el e e e e

e

——

e

——

ww Wi
wiw wuw
i Wil [V
ww Wil [YO]V]
wiwd wiw [PV}
Wi Wil wiw)
Wi Wi wiul
wiw Wil Wi

'CIC) OOVY
oo S 29
T [CIC) [0
OV VY DO
hCTC [C 1
oo oo
[CICICTCICICICIC I TC )
LOLLLVLLVLLVLLY
MMM MMM
MMMV MMM
M MM (Al
MM MM M
MM MM
MM ok
ok vk MM
M MM
MM MM
M M

TEIIETEEEEEEEE
xaxooa s
xxaco @ x

xa oo x &

xo - -4 [- e 4

ada xXxea

oo oo

o o

xa o

XXX EXoXonao

crrararxxxxxaxa

o wVnn
N Vnnn
Vv 7. 17, wuv
nwv Vv [V, 17, ]
Vv wwv wuv
Vv Vv wvivm
AV Vv [V 17 ]
Vv Vv (V.17 ]
VW v
YY) win
P oy By
P — g

e g e ey St ) S o g Sy &—§ —q ]
Ll L L L L D Lo L L L — .
—— ..

lol- o
i}
-
-
-
i }
-
-4 J
e -
LD ddddd D DD DD
B L L e [ [ S R R P




RM3GET

NN AN AIPINININI AN = — b b b b b s 2

85 B HWWWNN
NN B AN =2 O O 00 NN VS AN = OO0 00 N O W 8N N =2 O O 00 NN N 85 NN =2 O 0 00 O™ VN 55 (N =2 O 0 00 N ON VNV BN NN =

TR TR R LR TR TR T O o L L R O e i L I e i I A R LI T

VAIVAWVVAWVAWAWES S8 N

olelelelelelslelslelelelelelelelslelsels]
P b cd e e e e ek B DO O OOOOOO

i=d=d=l=l=lelalelaleleleleleleclelelalelaleleleleclclelals
OO0000000O

LN LN NN N N NN N AN N RO RO RO N RO RO D

O 00NN SN AN = O O 00 N ON NS AN = O 0 00 N ON N S5 W) = O 0 00 IO N BN (N0 —

=lelelelelalelelelels]
=lelelelelelelelelele

0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1984 01:45:3 '
poi98s 9316713 AT

3
-Se L -
-Se MASTER:[RMS.

0

MODULE RM3GET (LANGUAGE (BLISS32) ,
}DENT = 'v04-000'
QEGIN

itttttttttt'!lt!tltt'tt'tttfttt'tttttttttttittttitttttttttttttttttttttttttl't
e

' COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
'* DIGITAL EQUIPMENT fORPORATION. MAYNARD, MASSACHUSETTS. .
;: ALL RIGHTS RESERVED. *
: W
'* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
'* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
t* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
'* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
!* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
E' TRANSFERRED. *
" *
'* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
'* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
g' CORPORATION. *
I #
‘= DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
E' SOF TWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
'w i
i
i:ttttittttttttttttttttttttttttttttttttt'tttt'tttttttttttttttttttttttttttttt:

T4
)
; FACILITY: RMS32 INDEX SEQUENTIAL FILE ORGANIZATION
| Abstract: : , :
: This module implements the get and find record operations
E for the indexed file organization.
i
| ENVIRONMENT :
: VAX/VMS OPERATING SYSTEM
E--
AUTHOR: E. H. MARISON CREATION DATE: 18-APR-78 13:11

MODIFIED BY:

v03-025 JWT0193 Jim Teague 13-Aug-1984
Fix bug in re-accessing records after they have been
found to be locked. IT a process had done a $GET on
a record, then a SRELEASE, and then had to wait to
$GET the record a second time, too much context was
still around from the first $GET. This caused problems
when the sought-after record had been deleted. RMS
treated the SGET + SRELEASE + SGET case just Like

P Lk Lk L

32 v4.0

-74 p
SRCIRM3GET.B32;1

1
(1)

1

<
o=

TR R R R R R T T T T T e e e e L L T e T T P T T T PR T PR TR PR PR TR TR TR TR TR TR TR TR TR T TN T T e




H 3

RM3GET 16-Sep=-1984 01:45:39 VAX=11 Bliss=32 v4.0-74 Page 2
' V04-000 1‘-509-1986 ?3:01: 4 DISKSVHSHASTER:[RHS.SRiiRHSGET.BSZ:1 . (M
: 28 058 1 ! a SFIND + SGET case, and would end up with the wrong

. ]

|3 Bi

: &) 061 3 3 Also, improve SGET/SFIND performance. Leave the

: © 006§ ¥ 3 infinite GET_RECORD Loop immediately if GET_RECORD

: 6 0065 1! returns an unqualified success status. Formerly,

3 o5 0064 1 ! RMS was forced to grind through an unbelievably

: 9 0065 1! erverted IF test EVERY TIME it returned from

; g? 8829 } : ET_RECORD.

: 68 0068 1 ! v03-024 TSk0001 Tama® Krichevsky ~ 15-Jun=-1983

: 8 88 8 } : Change addressing mode to long relative for RMSRU_RECLAIM.

E -0 0071 1! v03-023 MCNOO15 Maria del C. Nasr 24-Mar-1983

; ; 88; } 5 More lLinkages reorganization.

;3 I8 0074 1! v03-022 TMK0015 Todd M. Kat2 11-Mar-1983

=, 00 ] § If RMS had to wait for a record lock, and it must re-position
: I 0C76 1! to the primary data record by calling RMSFIND_BY_RRV, then make
} 1T 0077 1! sure the primary data bucket conta1n1ng the record is locked

: B o078 1! exclusively if the possibility exists that some reclamation

: gg 88;8 } : maybe done (the file is write accessed and RU Journallable).

: % 0081 1! v03-021 MCNOO14 . Maria del C. Nasr 24-Feb-1983

$ g% 8gg } E Reorganize linkages

;B4 0084 1! v03-020 TMK0014 Todd M. Katz ~ 14-Jan=-1983

: 8 o085 1 ! Add support for Recovery Unit Journalling and RU ROLLBACK

: 86 ooge 1 ! Recovery of ISAM files. Support involves modifications to

: gg 883; } : RMSGET3B and RMSGET_RECORD.

TR . 0089 1 ! The purpose of the routines within this module is to retrieve
3 90 009% 1! a non-deleted primary data record by the user specified access
. 0091 1! mode. If durin? its search for such a record RMS in its

- N 0092 1! low=-level routines encounters records that are marked

: 9 0093 1! RU_DELETE, RMS will try and delete them for good at this time
: 94 0096 1! provided it has write access to the file and the Recovery Unit
; 82 8882 } ; in which they were deleted has completed successfully.

3 W 0097 1! If RMS is able to delete a primary data record marked RU_DELETE
: 9 0098 1! in these low-level routines, then RMS proceeds to continue

;] 99 0099 1! looking for a non-deleted pr1qar¥ data record just as if it _had
: 100 0100 1 ! encountered a deleted record in the first place. Likewise, if
: 100 8101 1! RMS is unable to delete a record that is marked RU_DELETE

: 102 1D§ ¥ 3 because it does not have write access to the file, it nerel;

: 103 0103 1! continues its search. However, if RMS is unable to delete the
: 104 0104 1 ! record for good in these low-(evel routines because the

: 105 0105 1! Recover; Unit in which it was marked RU_DELETE has not

: 106 0106 1 ! successfully terminated, then RMS returns this record as if it
: 107 0107 1 ! was the non-deleted primary data record to be returned, and

; 108 0108 1! lets a higher-level routine decide whether or not to wait for
: 109 0109 1! the Recovery Unit in which the record was deleted to complete,
3 }}? 8}}? } : or to return an error to the user.

; 1R 011§ 3 The routines within this module are the high-level routines

; 113 011y 1 ¢ which decide what to do with RU_DELETEd records that are

: 114 0114 1! returned from the low=-level posTtioning routines.
ot " e

1
|

<™
=X

TR R TR R E T T e e e TR TR FE R L T P T R T R R R A TR T T P PR TR I R TR P PR A PR R TR R R D E N




3
RM3GE T 18-500-1984 01:45:39  VAX=11 Bliss=32 Vé.0-74
0022600 -+ 11:37:30  Jisxdimonadtea

a 3
14=Sep=1984 SMASTE .

P
:[RHS.SRCiRHSGE'.832:1 (1

1. If RMS is unable to lock such a record because another
procis:dcurrontly has it locked, then an RLK error is
returned.

2. 11 RMS is able to lock such a record, regardless of whether
it had to wait for it or not, then if it finds that the
record is not marked RU_DELETE it will return it provided
all other normal conditions have been met.

3. If on the other hand, RMS finds that the record is still
marked RU_DELETE after it has locked it, then it will delete
the record for good at this time (if the stream has write
access to the file), and continue the search for a
no?-gelagxd primary data record provided the access mode is
not by .

I have also made two other changes in su Eort of RU Journalling
and Recovery. First, the ROP bit RABSV_NLK is totally i?nored
whenever a stream is currently within a Recovery Unit. Finally,
it is also possible that a RU_UPDATE marked recnrd might be
re-formatted before releasing the bucket in which it is found
rovided the stream has write access to the file. The record
eing re-formatted in this case can only be the record that is
to be returned as the non-deleted primary data record.

I have made an additional change to RMSGET_RECORD. If RMS is
currently randomly positioning by key to what it thinks is the
current record, then it quer; locks the current record to make
sure that this record is in fact locked to avoid a window in
which the record is deleted between the time the record lock is
released, and the bucket in which the record is found is
accessed. If the user has sgecified record waiting it is
disabled for this query lock. Currently it is disabled by
clearing the RABSV_WAT bit if it is set, and then .
re-esta llshin? its state after the ?uery lock. The state bit
IRBSV_NO_Q_WAIT maybe set to accomplish this same thing and it
avoids modifying the user's contol block.

I have created a routine RMSPOS_RFA whose functionality
parallels that of RMSPOS_SEQ and RMSPOS_KEY. That is, the
routine RMSGET_RECORD will call this routine whenever it is to
position to the next primary data record by RFA instead of
performing the positioning itself.

v03-019 TMK0013 Todd M, Katz 09-Nov-1982
Fix a bug in record unlocking. Whenever RMS must wait for a
record lock (the RABSV_WAT ROP bit is set), and upon being
granted the lock finds that the record it has been waited on has
een deleted, RMS must perform a re-positionlng. (There is one
exception to this rule, If RMS was accessing the record by its
RFA then the record deleted error is returned,) RMS must also
perform a re-positioning whenever it is posxtion1n? by means of
an alternate e{ and has had to wait for a record lock. As part
of this re-posi ioniqg RMS must release the lock it obtained
during the prior posi ¥oning attempt. The problem is that RMS
was using the wrong RFA when 1t went to release the record

TR TR IR R R TR R R TR TR R T T e e L L L e R R A A R T I T I I L LTI m I T T T T L T T O
R A ————— Y — g e e N Y G S G Y SO S G R S S S Y S Y 'Y
NNOOOOOOOOO O VNN WVWVIWAWNIWAIUNES S5 BN IS BN IS 0 5 B B WA N NN N N NN PO PO N PO RO NI RO AN —b b s b s
= OO NV NN = OOV NO NS WA = OO 00 N WV B AN = O O 00 N O N S N = O 0 00 N VYV IS AN = OO0 00~ W
elelelelalelelelelelalelelalalelalelelalalelaleleleleclelelelalelelalelalelelelelelaleleleleleoleleolealeolelelelelele]
— ol ol ol ) ) ) D ) -l -l b ) -l - - - — - b ) — =l -l = ) - -l D el D el D D D D ) D il D D el el el D ) D ) ) ) ) ) D el el el
e 1o Yo Yo Xo o He o Ho To Jo JV W IV LV LV IV IV LV IV IV L0l okl P o F o o o J AW W TP TN T TP TP T W TN T ST ST ST ST ST NT N T T T N S e
= OV NV NN = O VN WS N = OO0 N WS NN = O 000 NN W B AN = OO 00 N O WV S IR = OO0 00~ O
— e ) ol ) el ) el ) il ) —l D ) = —d - — il il ) - i D D — i e ) D = e - - -l -l -l - - - = ) — - - b - e ) i - - -l ) - — el




d 3
RHSGSBO 16-509-1934 0}:45: 9 VAX=11 Bliss=32 v4.0-74 Page &
V04~ 14=Sep=1984 13:01:24 DISKSVMSMASTER: [(RMS.SRCIRM3GET.B32;:1 1)

whenever it was re-positioning because the record it had to wait
for had been deleted while it was waiting for it. The RFA it was
using was the RFA of the current record. This record had been
locked durin? the previous positioning operation, and had been
unlocked during the first positioning attempt of the current
operation. The lock RMS wants to release is for the record
locked during the previcus positioning attempt.

—
~N~

The fix for this problem is relatively straightforward. RMS
never has to re=-position unless it has had to wait for a record
lock. Therefore, what | did was set the state bit OK_WAT_STATUS
whenever a re-positioning has to be done instead of just

setting it whenever the re-positioning is being done because
RMS had to wait for a record lock while positioning along an
alternate index. The setting of this state bit forces RMS to
unlock the correct record during the re-positioning attempt.

v03-018 TMK0012 Todd M. Kat2 29-0ct-1982
Make sure that RMS has the index descriptor for the prtmar¥ key
before the size of the primary data record to be returned is
determined, the record unpacked (if the file is a prologue 3
file), and the record moved into the user's buffer.

v03-017 TMK0011 Todd M. Katz 11-0¢ct-1982
Fix a record locking bug. Whenever the ROP bit RABSV_WAT is set
the possibility exists that RMS might have to wait for a record
lock. If RMS is positioning by means of an alternate index, and
has to wait for such a record lock, then it had to give ug the
SIDR bucket while it was waiting. Because it gave up the SIDR
bucket, the information which it has inorder to update the NRP
List can no longer be considered valid. Since there is no way
for RMS is to easily re-access the SIDR bucket, RMS must
re-position to it by ro-callin? GET_RECORD. Part of this
re-positioning includes unlocking the ver{ same primary data
record which 1t had to wait for a record Lock on. Unfortunately,
GET_RECORD uses the NRP information to unlock primary data
records, and RMS of course, didn't get to the point where it
updated the NRP! Therefore, RMS is either not unlocking any
record, or it is unlocking the wrong record. Both cases
represent errors.

00000000~ ~NNN~N~N

oo
VIS NN = O VNV WA =000~ wgmdooaﬁomb

To fix this what I have done is added an input parameter to
GET_RECORD, If it is set, RMS is re-positioning because of the
above mentioned problem, and uses the RFA internally saved
from the prior positioning attempt to unlock the record;
otherwise, the RFA from the current record saved as part of the
NRP context is used. Furthermore, whenever RMS does such a
re-positioning, it now notes that it had to do so because of
an OK_WAT success status positioning on an alternate key of
reference. If it is successful at re-positioning, it sets

the status to OK_WAT which represents the status that it would
have returned if the re-positioning had not been necessary.

| have made two additional changes concerning when
re-Dos1tioning is required. First, if RMS ls.posit1oning by key
value, and after ua\t\ng for a record lock finds that the record
it has been waited for has been deleted, then RMS will perform a

[eleleleleleleleleleleleleleleleleleleleleleleletislslelelelelelalelelelelelalelelelelelelelelelelelelelelelelelele]

AORUNUINIALAI NN NN NINIRNIA NI NI NI NN NI NI NI NONI NI RO NUNUND b b b b e e ced i el o o ) e e e i o o o D ) o o o o o e
PRLINININLININININ) = b e e e e e e et =2 O O O OO OO0 OO0 O VOOV OV OOOVOVOVO0000000000000000 ~N~N NN NN~~~

TR R A R T R TR A R R TR R TR T PR T L L L L T N T N TR A I I L T TmmMmmmM ™M T T ™ T
QOO L WM = O V00 NN S NN = OO 00 NN SN LN =2 O D 00 NON W B AN = O 0 00 O VN S IR = O O 00 O N B WAD
— il ol ) il wld ol ol ) b b -l b b = =l - -l - b ) = = = -l - -l -l D - - b - - - - - -l - -l - — ) - - ) D el D il il e o el

AURININIRL NI NIAL NN NI NININI NI NN NI NI NI NI NI PO NINONI NONIND = b cd cd od d e e e e o e D e e o e e ) i e e o o o

NNNNNNNNN-‘—‘-‘-‘-‘-‘-‘-‘-‘—'OOO&
NV NN =OVRNOWVNSM NN <=OYV~N

<m
o=

TR R R R AR N E T E T M E I R T E T T e e R TR TR R L L T R R R R R R R R R P T Y R TR LR A SR TR TR TR




£ 85 B W NN NN NN NI NN

WN = OV NON WSS NI = OO

NINIAININININININI NI NN

v03-016

[ Yo e Ne Ne Ne HeHe Jo IV IV IV IV IV IV IVIVIVY S S S S S N

v03-015

[elelelelelelelelelelele el el el el e e el mlellelelslelelelelelelelalelwleleleleTelelelelaelelelelelelelelelele]

NONONIALNLNL AL NN NN NI NNV NI NN NN NI NNV NI N NN N NI NI NN NI NN A NN NN NI NI NN
e e el el e el e il D ol sl sl e s s o il i sl el e ) o D o e el il D el il o ) i e e e o e D e e e e D sl e e e e e S e e i

IR TR TR R R R TR PR LR TR R T L T o e T o T R R L L A S S A .
O —————— .

WIS WAWNN =2 OOV NO WS WIN = OV NO WS N = OOV N NI AN = OV ~NO

OO0 NN NN NNNNNNO

Co o000 0000~~~
VIS N = OV~

)
16=5
14-Sep=-1984
re-positioning to the next record which matches the search key
in keybuffer 2 according to the characteristics of the search.
Formerly, RMS was just returning a record deleted error, but |
believe the other approach has more merit. Second, whenever RMS
is positioning by an alternate key of reference (sequentially or
randonmly by e¥ value), and must wait for a record Lock, then
RMS must re-position to re-establish the NRP information for the
SIDR. Formerly, this re-Bositooning was not done if RMS was
performing a random $FIND. However, since the stream which has
the record locked can delete the SIDR array positioned to by the
waiting stream without deleting the actual primary data record
(by means of an SUPDATE), then as the record eventua$l¥ returned
would not have the ‘‘correct'’ alternate key if re=-positioning
were not done, | believe that this requires this re-positioning
to take place, even though the NRP is not going to be updated

by this particular operation.

Finally, the Last thing I did was make some changes on how the
record unlocking is done when buffer errors are encountered
during a SGET/SFIND. At this point the record has alread‘ been
locked, and must be unlocked before control returns to the
user. The routine GET_RECORD returns information in AP to
RMSGET3B as to whether any special action is required to unlock
this record on buffer errors. Unfortunately, AP is used
throughout the remainder of RMSGET3B as input to record
unpacking and key extraction; thus, its contents should a buffer
error be detected and the record need to be unlocked, are
unreliable. To fix this problem, | now set a flag bit on return
from GET_RECORD if in fact special action will be required to
unlock the record on buffer errors, and reference this bit

in that circumstance rather than the AP,

TMK0010 Todd M. Katz 29-Sep-1982

If a file is a prologue 3 file with alternate keys, and RMS

is positioning by means of an alternate key of reference, then
RMS was not unpacking the record before returning it to the user
because it assummed that the record had been unpacked during the
ﬁositionin and there was no need to unpack it a second time.
owever, while this is true, RMS at this point does not know

the unpacked record's size. Thus, for the time being RMS must
always unpack the record before moving it into the user's

record buffer if the file is a prologue 3 file.

TMK0009 Todd M. Katz 09-Sep=-198¢
The field IRB$SB_SRCHFLAGS is now a word in size. Change all
references to if.

Whenever RMS is positioning by means of an alternate key of
reference (IRB$SB_RP_KREF > 0), then there is never a need in the
local routine GET_RECORD to extract the alternate key of the
record positioned to into keybuffer 2. This is because as part

of posttionnng to the Br1nary data record from the SIDR in the
:ir;t'?lacs. he SIDR key has already been extracted into
eybuffer 2.

Eliminate all references to the routine RMSKEY_TYPE_CONV, since
this routine doesn't do anything anyway.

|

3
ep=-1984 ?1:45:39 VAX=11 Bliss=32 V4.0-74 :
e 3:01:264 DISKSVMSMASTER: [RMS.SRCIRM3GET.B32;1

<™
=

AR E ST A R TR T A R PR PR TR DR A T LR O e L L e e T R A A R I I T T T T T T """ L




WNIANN NN NN NINININI NI NONINOND

OO0 VOO VOOV OO0

N = OV NOWVS BN =O VNN NN =OVO N WV WIN = O V0NNV S WIN = OO0 N N B NN = OV 0~

WA NN N AN NN N NN = b b b b B 2 02 2 O OO

[eleleleleleleleleleleleleleleleleleleleleleleleleleleleclelelelelelelelelelelolelelalelalelelolelelolelelelelelele]
L L L U U U U U U U U U U U U U U U U U U N U U U U N U O O O U N NN NN N NN N

£ 8 B NN N N NN AN NN N PRI NI NN N NININ) = b e b B e d 2 2 O O O O O OO O
— i i i il e i il e D D i D D e i e D i i e el D e il i e i D el D i D D e il el D il ol D D oD il D D D il D D el e D il el D i

o S S S S S e S e e e e e

A TR T A TR R T PR L PR PR PR PR LA PR PR PR LA PR PR PR T A D AR LA LA L LA TR TR T T TR T T T I I T TSI TS T T T T T YR A N e

Lt U LU U U U W U U N U N U U U N U A AN U U AN O U N N N N R NN N NN NN

[k kv LV IV
N=OOV~N

Bliss=32 v&.0-74
5 C

x=11
SKSVMSMASTER: CRMS. SR e 5

g Pa
RM3GET.B32:1 (1)

The only time it is necessarg to check for a valid packed
decimal key is when the key type is packed decimal. It is never
necessary to check for a valid packed decimal typ§ when there is
more than one segment and the file is a prologue 3 file. The
packed decimal verfication routine no longer requires

parameters,

v03-014 KBT0294 Keith B. Thompson 23-Aug=-1982
Reorganize psects

v03-013 TMk0008 Todd M. Kat? 10=Aug=-1982

At the present time, when the accessing of a record by RFA
fails, the error returned bl RMSF IND_BY_RRV is the error that
gets reported to the user. (hange this So that if this routine
returns an error of RMS$S_EOF (because the RFA VBN is greater
than the VBN of an‘ gr1nary data bucket), this error %ets mapped
into an error of RMSS_RNF,

v03-012 MCNOO13 Maria del C. Nasr 10-Aug=-1982
Check for Less than 0 on call to RMSCOMPARE_KEY so that
tlnngnaagzls done correctly. This is to fix bug introduced
y .

v03-011 TMK0007 Todd M. Kat2 ) 19-Jun-1982
Implement the RMS cluster NRP solution. Basically this involves
removal of the NRP cells from system space, and the maintenance
of the next record positioning context locally within the IFAB.
Changes required to the routines in this module are as follows:

1. The routine SETUP_NRP_DATA now sets up the current record
context in the process local IRAB instead of in the
system-wide NRP cell.

2. The IRAB variables IRBSL_NEXT VBN and IRBSW_NEXT_ID are
used to temporarily hold the RFA address of the "next"'
primary data record until the updating of the local NRP
context cakes place. This is because nothing in the local
NRP context maybe modified, until everything is modified!

3. The local routines must also be modified both to make use
of the next record positioning context now saved within
the IRAB instead of within a systemwide NRP cell.

4. 1f RMS encounters the end-of-file set the IRBSV_EOF bit.
This bit is also cleared after successfully posTtioning
randomly by key value. The former function of this bit
has now been taken over by the new bit IRBSV_CON_EOF.

SFecial processina is required for $GETs following random
$FINDs. A random $FIND does not change the notion of what
the next record is although it does change the notion of
what the current record is! Example with the record seguence

AB - sequential SG?! to A, random $FIND to O, SDELETE
0, followed by a sequential $GEf returns B, the next record.
The random $FIND changed the current record to 0, but did
not change the next record to 0! The RMS cluster solution

.._1

<
<%

TR TR TR R R R R T T e e e e e e e T P R R R L L N T T L N e T e R TR R R LR R T T T T T R T R TR L I )




-

n3
RM3GET 16=Sep=1984 01:45:39 VAX=11 Bliss=32 v4.0-74 Page 7
V04-000 14-300-1984 15:07:30  D1SKSVMIHASTER. CAMS ShC RM3GET.B32:1 O (1)
;343 0343 1! for NRP positioning handles this by keeping the current
;. 344 8 44 1 ; primary data record's RFA and the ‘FA o? tge primary data
: 345 45 1 i record for NRP positioning in separate fields. Most
;. 346 0346 1! operations set all NRP fields and as a result the RFA
;347 8 &7 1! address of the current primary data record and the RFA
: S48 48 1 ; address of the primary data record used for NRP positioning
: 349 0349 1! are the same. However, a random $FIND will set only the
: 350 0350 1! current prinar¥ data record's RFA field. If the random
3 331 0351 1! $FIND is immediately followed by a sequential S$GET, then it
3 35% 0355 1 ; is only at that moment that the local NRP context is setup
: ;g‘ 8%5‘ } i to return the randomly found record as the next racord.
; 355 0355 1 i Also, it is no longer necessary within GET_RECORD to loo
: 3% 0356 1! on calls to RMSPOS_SEQ or RH‘PBS_KEY when these rout!nespreturn
s 3 0357 1! RLK errors. An RLK error could occur only when positioning on
: 358 0358 1! an alternate index and signalled that re-pos1tioning shou?d be
3 339 0359 1! forced. This re-positioning is now handled at a much Lower
: gg? 8%2? } E level, and there is no longer any need to force it.
;. 362 036§ 1! During the performance optimization of TMK0005 one incorrect
: 363 0363 1! assumption was made: that no deleted records were encountered
;. 364 0364 1! between the last record retrieved, whose key is in ke‘buffer ¥s
;365 0365 1! and the new record that has just been retrieved. If this is
: 366 0366 1 ! true, the optimization holds, but if it is not, we can not use
;3 307 0367 1 ! the key of the Last retrieved record to uncompress the key of
; 368 0368 1 ! the new record, because the compression of the key of the new
;369 0369 1! record is based upon the intervening deleted records, and not
: 370 0370 1! the key of the Last record. In such a situation, the key of
: 37 0371 1! the new record must be extracted, and re-expanded in the old
: g;g 8;;% } ; way performing a bucket scan if necessary.
P37 0376 1! Finally, it will no Longer be necessary to unpack the primar
: 375 0375 1! data record when the file is a prologuz 3 filg. and RHg is ;
: 376 0376 1 ! currently gosttaonina by an alternate key since th2 record
s Mt 0377 1! will have been already unpacked and is within the internal
; %;g 8;;3 } ; record buffer.
: 380 0380 1! v03-010 MCNO012 Maria del C. Nasr 29-Jun=1982
; 381 0381 1! Allow ke{s of different data tyges other than string.
: 38% 038% 1! Change all CHSCOMPARE calls to RMSCOMPARE _KEY to compare
: §§4 8%%4 } ; keys taking into consideration the different data types.
; 385 0385 1! v03-009 TMK0006 Todd M. Katz 26-May-1982
: 386 8386 ] 2 1 have changed how the ROP=LIM ke‘ comparison is performed.
. 387 87 1! Formerly, the routine RMSCOMPARE _REC was being called. It was
. 388 0388 1! being called because the (incorréct) assumption existed that
;. 389 0389 1! the key of the iext record might have to be extracted and
: 390 0390 1! re-expanded, if key compression was enabled, in order to make
;. 9N 0391 1! the comparison., As it turns out, at this po*nt in the
: 39 039§ 1! operation, RMS has already extracted (and re-expanded if
: 59 839 ]!} necessary’ the ke{ of the next record into keybuffer 2. Thus,
;. 394 9% 1! in order to make the comparison, only a CHSCOMPARE between
: 395 0395 1! the key in the user's key buffer and the key in keybuffer 2
: 396 039 1! need be made. Thus, this comparison has now been made prologue
;397 0397 1! independent, it is a performance optimization for all prologue
;. 398 0398 1! versions, and the performance realized for prologue 3 files
;399 0399 1! is considerable because it eliminates the need for one more

1

<20
o=

TE R R T R R T R T R T R O T R R TR s T s s v o e TR R L L T R TR IR R R R R R T E R R R E TR T T T T s T




RM3GE T

v04-000

; 400 400
) 401
: &0 aog
; &0 040
;. 404 0404
;405 0405
;. 406 0406
;. 407 0407
; 408 0408
;. 409 0409
: 410 0410
;N ¢611
H 41§ 041;
Y 041
s 414 0414
;. 615 0415
: 416 0416
;. 617 0417
: 418 0418
;. 419 0419
: 420 0420
;s 621 0421
;s 422 042%
; 423 042
;424 0424
; 25 0425
;626 0426
;427 0427
; 428 0428
;429 0429
; 430 0430
: 63 0431
: 432 0432
: 433 0433
; 434 04634
: 435 0635
; 436 0436
: 437 0437
; 438 0438
;439 0439
;440 0440
A 0461
P4k 044
;44 044
i 4bd 0444
;445 0445
;&b 0446
; b4 0447
; 448 0448
;449 0449
: 450 0450
;451 0451
; &5 045
;45 045
; 454 0454
;455 0455
;. 456 0456

— ) ) ol D el -l ) - - ) - b — —) -l b - - - - - -l - ) - - — D el o il D D -l D - - =) - — — — — — ) ) ) ) ) - - - b - = —]

v03-008

v03-007

v03-006

v03-005

v03-004

N 3
16=-Sep=1984 ?1:45: 9 VAX=11 Bliss=32 V4.0-74
3:01:2¢4 DISKSVMSMASTER: (RMS.SRCIRM3GET.B32;1

14=Sep=-1984

bucket scan which was unnecessarily being done to re-expand
the key of the next record.

TMK0005 Todd M, Katz 26=May=-1982
Performance enhancement. After successfull‘ positioning to the
next record, RMS extracts its key intc keybuffer 2. If key
compression is enabled this mandates another bucket pass to
re-expand the kel. However, if RMS is positioningy sequentially,
then it has the key of the previous record retrieved saved in
keybuffer 1. RMS can use this key to supply any characters
front compressed off the key of the current record instead of
performing another bucket pass to expand the key.

TMK0004 Todd M. Katz 24-":;-1982

Performance enhancement. When performing a $GET on a prologue 3
file, the record found must be unpacked before it is returned.
Part of this unpackin? includes extraction of the primary key
from its position in front of the data record, and its
re-expansion if key compression is enabled. But if we are
position1n2 by primary key of reference then there is really no
need to extract and re-expand the primary kez because KMS
already has it in the proper form within keybuffer 2. To

signal to the routine RMSUNPACK_REC, that there is no need to
extract and re-expand the prinar¥ key of the found data record,
but that it maybe found in keybuffer 2, we initialize AP to 2
before c:lllnq the routine when the key of reference is the
primary key.

LJAOOOB Laurie Anderson 08-Apr-1982 _
Must check for allocation of IDX_DFN, before access fields in
it. The IDX_DFN will not be allocated if there is an error
returned from RMSKEY_DESC which is called by GET_RECORD.

TMK0003 ~ Todd M. Katz 01-Apr-1982

If record locking is enabled, in GET_RECORD we lLock the record
we have found. IT we had to wait for this record, the status_
returned is an alternate success (OK_WAT). We should be setting
the IRBSV_UNLOCK_RP bit so that whenever we have finished

with this record RMS will know to release it, but because our
status is OK_WAT and not success, the current flow of control
forces a return before this bit can be set. Therefore, the
fossib1l1ty exists that once a process has waited for a record
ock and successfully Locks the record, it will not release the
lock unless explicitel¥ told to do so (such as by an explicit
SRELEASE). To avoid this undesirable possibility, we will

make sure that IRBSV_UNLOCK_RP will be set even when we had

to wait for a record lock.

TMK0002 Todd M. Katz 26-Mar-1982
Under two different set of circumstances we will have to
release the record lock obtained in GET_RECORD.

1. 1f we have decided to make another iterative call to
GET_RECORD and we have locked a record within the last
call, then we must release this lock before attempting
to locate the next record in the current call.

Page

(1

e L L L <D ]




: —
RM3GE T g - |
oL 500 16=-Sep=1984 01:45:39 VAX=11 Bliss=32 V&.0-74 | '
e ah 14-599-1924 3:01:34 DISKSVMSMASTER: [RMS.SRC RMSGET.BBZNNge (1?5 382'
1
: : 2. If we are currentl f |
E 2 ; - y performing a random $FIND/SGET, an :
. 4%8 8223 } : :e mgst wait in our attempt to lock the record we ﬁaced : {
f %80 8eed 1 gunb (RABSV_WAT is set), and upon returning and reaccessing Y
i o e 0 B the ucket wé found that this record has been deleted by : ¥
: o8 2l 1 the stream that previously had it locked, then we must ;1
: @ 0465 { rglease our Lock on this deleted record éefore returning : 1
i 07 s 8 B the status of deleted record from RMSGET3B. : 1
;465 0465 1 ! Both i 1
: of these record lock releases may be si :
. . > 3 signal : 1
@ Ee i e St e it 8 Sl Jelel Tl S
: ; . record w then be locked either withi : 3
: 228 8223 } : GE?_R CORD in the former case or within RMSGET3B ?n tﬁe Tlﬁ?l?. : }
;470 0670 1 | v03-003 TMK0001 21
i ol BB s Todd M. Katz 24=-Mar-1982 : )
' all references to te ke : 1
| 2;§ 8:; } E R ybuffers to use the macro : }
: 2;2 82;2 } : 1f an error status of RLK is returned on an attempt to g }
P ek 282 1 get gfdata record, try again until the record is retrieved : 3
Lo 0 1 or a different error is returned. This will only cccur when : 1
‘AT B8 1 ogr key of reference is other than key 0, and someone else had : 1
: o8 ey 11 the pr1?ary data (or RRV) bucket locked when we attempted to : 1
: a80 280 1 acgess t from the SIDR. The SIDR bucket must be released ;
i 0 1 Graatock S cuatSon: snd tecurning: an ervor of RLK Wil 2
: N, a urning an error o ' :
: 28% 823% } ; guarentee that this is what uillghappen. M. . ; }
;4B 0484 1 1 It th i : ]
k1 : e attempt to sequentially access a record results in :
: 422 gzgg } i status of record deleted being returned from GET_RECORD, ’ 3 }
i+ 087 1 atte?pt to sequentially retrieve the very next récord, and &
{288 3e88 1 i continue doing this until some other status is returned. This P
{489 289 1 situation can develop if we try for a record lock and end up : )
= 0u89 11 uaiting (the ROP WAT bit is set) for it. While we are waiting i1
s 2e97 1§ i ah' process (or stream) which has the record lock deletes it. i1
i 033 1 : s? control returns to this process, the status it gets back : 1
{49 Reo8 1 ;g cates that it had to wait, and so it reacesses the bucket : 1
i Reoe 1 e record was in (it had to release it when it went for the : ]
!+ 098 1 i r:cord lock) and now finds the record is deleted and returns i1
;oo 0495 11 that status. i1
;497 0497 1 ! when 2
b 3 : control returns to RMSGETRECORD from RMSPOS_SEQ, ;
. ‘gg 8238 } : RMS$POS_KEY, or RMS$FIND_BY_RRV with a success stafus, the next ; }
¢ 930 't & record has been found, the bucket containing it has been I
: 3% 0500 1 tocked§ and the IRAB fields IRBSL_RFA_VBN, IRBSW_RFA_ID, and =
‘29 0202 1 i xggsu_ AVE_POS contain the infornation necessary to update the I
: 8 2208 1 N - context to that of the ''found'’ record. If a decision is i1
: 20282 11 Ta : Eg lock the record, and RMS has to stall for the record i1
¢ 305 020¢ 1 i loc ABSV_WAT is set and some other stream has the record i
‘308 0208 1 i ocked) then when the lock is obtained, the bucket containing i1
¢ 307 0208 1 i the record is no longer Locked (if we have to wait for the i
¢ 308 9208 1 i record lock we must release the lock on the bucket to avoid the g
i 308 0308 1 pqs§1b1l1ty of deadlock), and the NRP updating information i1
= 0308 1! within the IRAB can no longer be considered valid because the i1
{3 0217 1 uc gt containing the record might have split moving the record i1
1 il 13 to the new bucket, and the record itself might even have been P
¢ 28 051% 8 deleted. If we are acgesstn? this file by i?s primary key, i1
; [ then as its record pointer (RP) information is still valid, i




T I O R I IR O IR R T e T O = - r

4
RM3GET 12-59 =198% 01:45:39 VAX=11 Bliss=32 V4.0-74 Pa 10 RM3
v04-000 14-593-1936 13:01:%4 DISKSVMSMASTER: [RMS.SRCIRM3GET.B32;1 » (N V04

we can call RMSFIND_BY_RRV to lock ihe bucket. Once the bucket
has been again locked, the information necessary to update

the next record context can be obtained and we can proceed.
However, if we are accessing this record by an alternate

key and we stall, then there is no easy ua; to reobtain the
next record context information necessary for later updating of
the NRP Llist. Thus, if the primary data record which we have
locked is not deleted, and if we are performing a se?uential
$FIND, or a SGET operation (for which NRP List updating is
mandator¥). then we have no choice but regeat this lengthy
process from the beg1nning. This is done BYby noting on return
from GET_RECORD, that we hay

(OK_WAT), that we our ke

v IVWLDA

PONINININD — —> b —s 3 s

COWNO N WM = OO0 NO NS AN = OO 00 NN NS N = O O 00 NN WV S5 NN = O 0 00 N O VL 8 IR = OO 00 O W B

e an alternate success status
3 l of reference is not the primary key,
and that we have not locked the primary data bucket.

v03-002 LJADDO6 Laurie Anderson 23-Mar-1982
If the get record caused an RTB error, then the prlmarg key
was not copied into an RMS internal buffer. This key buffer
is used to avoid un-locking a record during a random access
for 03 exact match by key when that record is the current
record.

v03-001 KPLOOO9 Peter Lieberwirth 17-Mar-1982
Set UNLOCK_RP on errors reaccessing record after successful
wait for -~ecord lock. This will cause the record to be
unlocked on the way out.

Add sutitles.

VAN VIS BN BN 35 035 8 B 5 5 B NN N N NN N A NI PO R AN NI NORORIND) = = b 3 s
SN = OO0 NN S AW = O O 00 NN IS NN = O O 00 NN SN N = OO 00 ~IO N o~

TR TR LR TR L T TR T T T T T T T o e o o A A A A A P
WVVAWAAUA VTUA WA A VWA UA T AT T AT A A VT A T TA A AT WA T T AT WA T U UA T W A VT VWA
eleleclalelelelalelealelelealeleleleleleleleleleleleleleleleleclelelelelelelelelelalelaclelelelelelelelelelel=lelele]
— S ol il il il el el wld el il il ol el ol il wlh il o il il ) il i el ) dd ) D el D il el ) D il el ) el o il D ) e e ) i el ) il el el e sl i s

TR T TR TR R R E T R R O T R R R s T e e s s e e e L P L R R R R R A AR R R T R E O T T O T T AT T

3
5
5
5
5
5
53
53
53
53
53
53
53
53
53
54
34
54 v02-025 DJDO0O1 ~ Darrell Duffy 1-March-1982
gz Clean up probing of input parameters
54 v02-024 KPLO0OS Peter Lieberwirth  5-Nov-1981
54 Add support for PUT to EOF b‘ clearing internal EOF flag on
gz random gets, and returning RMS$_EOF on sequential gets.
55 v02-023 KPL0007 Peter Lieberwirth 7-0ct-1981
gg Fix bug on reacessing buffer logic on secondary key.
55 v(2-022 KPLO0O6 Peter Lieberwirth 2=0ct-1981
55 Fix bugs related to interaction of WAT bit set when QUERY_LCK
5 55 is called. When re-accessing same record, don't WAT even if
6 55 user said to until real lock logic. Also, when QUERY_LCK
7 55 called with WAT set in lock logic of GET_RECORD, remember to
8 55 reaccess the bucket if RMS stalled. Fix reaccess logic to |
8 gz work with secondary keys. (Oops!) ‘
61 56 v02-021 KPL0QOS Peter Lieberwirth 23-Aug-1981 .
6§ 56 Fix incorrect and misleadino ~:i.cu.2™v due to V0?2 yl8,
25 gg Also, allocate a temporarv variable more <irticently. ‘
65 56 : v02-020 MCNOO11 M2ra del C. Nasr 24=Jul-1981
g? gg 5 Implement key type conversion,
68 56 : v02-019 MCNO010 Maria del C. Nasr 23-Jul-1981
98 29 ; Incorporate all the following changes:




—mmm PP SR AR S = : ; r——

; D & ‘
,ansegt 16-Sep=-1984 01:45:39  VAX=-11 Bliss=32 V4.0-74 Page 11 RM3
v04-000 14-Sep-1984 13:01:24  DISKSVMSMASTER:[RMS.SRCIRM3GET.B32;1 (1M V04
;SN 0571 1! Use RMSREC_OVHD, and user's buffer to get ke ;]
3 27§ 057% 1} Use key buffer & to ungack primar key? g : 1
: 57 0573 1| Include code for unpac in? of prologue 3 data records. ;]
;576 0574 1 ! Change calling sequence of RMSFIND_BY_RRV. : 1
: 305 0575 1 | Increase size of record identifier to"a word in the IRB, 2
: 579 0576 1! NRP, and RLB. : ¥
: i 0577 11} Modify routine to handle new prologue 3 data structure ;]
: g;g 82;3 8 changes (base Level 1), : g
: 280 0580 1! v02-018 kPLC004 P. Lieberwirth 15-Jan-1981  3:15 .
;981 0581 1! Change GET_RECORD to reaccess bucket if it had to be given : ]
3 SB§ 058% 1! up for wait on record. Implements new ROP functionality : ]
;383 3334 1 implied by WAT and RELA. : ]
: 58S 0585 1! V02-017 SPR33597 P. Lieberwirth 24=Nov=1980 10:00 ;]
: 986 0586 1! Fix bu?_ubere omitted fetch operator caused incorrect test ;]
; 287 0587 1 ! for va 1d1t‘ of NRP. Bug caused incorrect operation on 3
;. S88 0588 1 ! sequential SFINDs. Clarify some commentary by cleaning up 3 9
: ggg 8238 } 5 some spelling mistakes, and explaining FIND some more. . }
3 gg% 823} } ; v02-016 REFORMAT K. E. Kinnear 24=Jul=1980 9:54 . }
s 293 0593 1! vC2-015 CDS0073 C. D. Saether 4 17-Jan-1980 2:35 : }
;994 0594 1! Restructure current record unlocking logic to add check .
; 29 0595 1! when duplicates aren't allowed to avoid record lock window : 1
; 28? 8239 } : and reaccessing current record. : }
: 598 0598 1 ! v02-014 PSK0005 P. S. Knibbe : 18-Dec=1979 5:00 ]
: 599 0599 1! Check that packed decimal keys are in the correct format. : 1
: 600 0600 1 ! 3 3
;. 601 06 1 ! REVISION HISTORY: s ]
: 602 0602 1! 3 3
: 603 0603 1! v02-013 : C. D. Saether 12=Jul=1979 11:30 : 1
: ggg 828? } ; Level calling RMSCOMPARE_REC should be =1, : }
: 606 0606 1 ! voi1-012 W. Koenig 6-Feb=-1979 17:19 : ]
: 607 0607 1! Fill in user's RFA after some other checks. :
: 608 0608 1 ! . 3 3
: 609 0609 1 ! vo1-011 _ W. Koenig 6-Dec-1978 10:19 : 1§
; g}? 82}? } ; Impiement RMSS_OK_LIM. : }
s 8¢ 061% 1 v01-010 W. Koenig 5-Dec-1978 10:25 : 1
. 613 0613 1! Don't return DCT Field. 3
: 614 0614 1! : : ]
: 615 0615 1! v01-009 w. Koen1a - - 24=-0ct=-1978 14:02 :
: g}g 82}9 } ; Make changes caused by sharing conventions, : }
: 618 0618 1 ! v01-008 . Koenia : 5=Cct=1978 14:02 g 3
: g}g 8213 } : lero all the NRP flags when resetting the NRP data. : }
: 621 06%1 ¥ 1 v01-007 W. Koenig 26-Sep=-1978 16:42 : )
3 S¢e 062§ 1§ Don't zero the RP information after a successful get or : |
: 623 06 1! sequential find. : !
;624 86 & 11} ; i1
: 625 625 1! v01-006 W. Koenxa 26-Sep=-1978 13:15 I3 |
: 626 0626 1! Can no longer 2zero out RP_SECOND as a longword. 3 1
; 087 0627 1 ! ‘: 1
B el 2 S St W e P e




TR R R R R R T R T R R T R O T R T s sy ey e e e T R R R R A E T T T LA T E T A I TR T R T E T A T R TR TR 1]

4

ansc 15 Sep~1984 01:45:39 VAX=11 Bliss=32 V&.0-74 Page 12 RM3
600 14-592-1934 ?;:01: 4 DISKSVMSMASTER: [RHS SRCIRM3GET.B32:1 9 (1) V04
628 6 g 1! v01-005 C. D. Saether 21=Sep=1978 16:44 5 3
2 8 g 3 } ; Clear SRCFLAGS always. E }
631 0631 1! v01-004 W. Koenig 21-Sep=1978 15:50 : 1
g g 82 5 } ; Return the data to the user on any seccess, not just ''suc'’. : }
634 86 T v01=-003 C. D. Saether 20=-Sep=1976 16:25 3 }
g 2 02 g } : Clear NRP update flags when storing NRP. : }
637 0637 1! v01=-002 C. D. Saether 12=-Sep=-1978 15:21 3}
638 0638 1! Remove NXTBDB setup on RFA access. 3 3
639 8639 1! 3 3
640 640 1 !revne : 3
641 0641 1 s 3
64 064 1 LIBRARY 'RMSLIB:RMS'; : 3
64 0643 1 $ ]
644 064 1 REQUIRE 'RMSSRC:RMSIDXDEF'; 5 3
645 0709 1 3
646 0710 1 ! Define default psects for code : )
647 0711 1! 3
648 0712 1 PSECT 2 9
649 0713 1 CODE = RMSRMS3(PSECT _ATTR), 3 )
650 0714 1 PLIT = RMSRMS3(PSECT ATTR): 3 3
651 0715 1 : 9
652 0716 1 ! Linkages. : 3
653 0717 1! 3
654 0718 1 LINKAGE 3
655 0719 1 L COHPARE _KEY, 2 3
656 0720 1 L-JSB §
657 0721 1 L-Js801, | i1
658 0722 1 L PRESERVE1 . 3
659 0723 1 L_QUERY_AND_LOCK, | 3]
660 0724 1 L RABREG : 3
661 0725 1 L RABREG 67, : 3
662 0726 1 L_RABREG_7, : 9
663 0727 1 L REC OVRD. 3 3
664 0728 1 : 9
665 07%9 1 ! Local Linkages. : 3
666 0730 1 i 3 )
667 0731 1 L _GET_RECORD = JSB () : : 3
668 0732 1 GLOBAL (COMMON RABREG R_REC_ADDR, R_IDX_DFN) 'S5
669 0733 1 nopnsssnvs e e b D 33
670 0734 1 L_SETUP_NRP = JSB () : i)
671 0735 1 GLOBAL (COHHON RABREG R_IDX_DFN) 3 )
672 0736 1 NOPRESERVE (2,73, 4, 5); : 1
673 0737 1 i : 1
674 0738 1 ! Forward Routines. 3 9
675 07%9 1! 3 1
676 0740 1 FORWARD ROUTINE : 1
677 0741 1 GET_RECORD : L_GET_RECORD; il
678 074§ 1 : 1
679 0743 1 ! External Routines. $ 1
680 0744 1! s 1
681 8745 1 EXTERNAL ROUTINE :
682 746 1 RMSCOMPARE _KEY : RLSCOMPARE KEY, 3
683 0747 1 RM$F IND BY RRV : RLSRABREG_ 7 3 1
684 0748 1 RMSKEY_DEST : RLSRABREG. : 1




R R R R R R R R R R R R R R R R R R R R BB T . . " : , 4 ——

|

Fo4
RM3GE 1 16-Sep=-1984 01:45:39  VAX=11 Bliss=32 V4.0=74 Page 13 RM:
vo«-Soo 14-5.3-1984 13:01:24 ozsxsvnsnAsrea:cnns.sncgnnscer.asz;1 - V0!
; 685 0749 1 RMSLOCK : RLSQUERY_AND_LOCK,
; 686 750 1 RMSNOREAD _LONG : RL$JSB,
: 687 7;1 1 RMSNOWRT_CONG : RL$JSB
: 688 7 § 1 RMSPCKDEC CHECK : RLSRABREG_7
: 689 072 1 RM$POS_KEY : RLSRABREG-67,
;690 0754 1 RM$POS “RF A : RLSRABREG-67.
;691 0755 1 RMSPOS " SEQ : RLSRABREG 67,
;69 8759 1 RMSQUERY _LCK : RLSQUERY lu;_Locx.
;69 757 1 RMSRE CORD_IC : RLSRABREG 67;
;694 0758 1 RMSRE CORDKE Y : RLSPRESERVE1,
;695 0759 1 RMSRE CORD ~ VBN : RLSPRESERVE1,
;69 8760 1 RMSREC_OVAD : RLSREC_OVHD
;69 761 1 RMSRLSBK T : RLSPRESERVE],
;698 0reg 1 RMSRU_RECLAIM : RLSRABREG_67 ADDRESSING_MODE( LONG_RELATIVE ),
;699 0763 1 RMSUNCOCK : RLSQUERY_AND_LOCK,
;o700 8764 1 RMSUNPACK _REC : RL$JSBO1?
;701 765 1

— e il il il il el e e s B o D B A A A A A A A A A A A _A A _ A A _ A A _A A _A & & =

LR TR LR L LR L L T L L L T T T T LT N N T T T T TR T

Ristspmmirm o R o L T M- LS DS S Rt I S —



LR R e e N e e e T T T P PR TR L LR L L L L TR A PR TR TR R PR T R TR TR DR TR T i T i T O T I e T T R TR TR I

708

N NNNNNNNNVN NN NN

POIPINIRIND b b e e e d s o b B O
W =00 NP NN =00

1
SETUP_NRP_DATA 1

o0
~N -~
oo~
~Cc~

=lelelelelelelelelelelelelelelelelelele]
NNNNNNNNNNNNNNNNNNNNY
0000 00 00 00 0000 00 N NNNNNNNNNOO
NS AN = OO0 NN S i) = O O 00

0o 0o Co G0 o O 0o 0o Co 0o 0o 0o
PUONIND b o ol i i cd s
N = OO0 NN NN -

elelelelelelelelelelels
) = i e e i e e e i e e e e e ) e il el el e i il e i il il e e e e e e e i el ) e i e e i e e e e e e e o i e e el e e

XSBITL *SETUP_NRP_DATA'
ROUTINE SETUPZNRPZDATA : L_SETUP_NRP NOVALUE =

T4e

|

5 FUNCTIONAL DESCRIPTION:

| This routine saves the next record positioning data
in the IRAB from the temporary IRAB locations filled
in during the positioning to the primary data record.

i CALLING SEQUENCE:
SETUP_NRP_DATA()

i INPUT PARAMETERS:
NONE

i IMPLICIT INPUTS:

IRAB
IRBSL_FIRST_ID Current SIDR's first SIDR array element D
IRBSL_FIRST VBN = Current SIDR's first SIDR array element VBN
IRBSL_KEYBU Pointer to keybuffers (to access keybuffer 2)

IRBSW JEXT_ID

IRBSL_NEXT_VBN

IRBSW_RFA_TD

IRBSL_RFATVBN

IRBSB_RP_RREF

IRBSW_SAVE_POS
IFAB

]
]
]
1
]
:
i
]
]
]
]
|}
]
]
]
]
]
: ID of current primary data record
]

]

]

]

!

E IFBSW_KBUFSZ
]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

1

]

]

VBN of current primary data record

ID of current record (SIDR/primary)

VBN of current record (SIDR/primary)

Key of reference used to retrieve user data record
Number of elements before current SIDR element

Size of keybuffer (to access keybuffer 2)

i OUTPUT PARAMETERS:
NONE

| IMPLICIT OUTPUTS:
IRAB

IRBSW_CUR_COUNT

_CUR_ Number of elements before current SIDR element
IRBSW_CUR_ID i

ID of current record (SIDR/primary)

IRB$B_CUR_KREF Key of reference of current record (SIDR/primary)
IRBSL_CUR_VBN VBN of current record (SIDR/primary) .
IRBSV_EOF clear indicating stream is not at end-of-file
IRBSL _KE YBUF Pointer to keybuffers (to access keybuffer 1)

iRBSW”POS_ID
IRBSL"POS VBN
IRBSL-SIDR_VBN
IRBSW™SIDR™ID
IRBSW_UDR_ID
IRBSL “UDR”VBN

| ROUTINE VALUE:
NONE

ID of primary data record for NRP positioning
VBN of primary data record for NRP positioning
Current SIDR's first SIDR array element VBN
Current SIDR's first SIDR array element ID

1D of current primary data record

VBN of current primary data record

BEGIN

4
ep-19g4 91:45:%9 VAX=11 Bliss=32 Vv4.0-74 Pa
ep=-1984 13:01:24 DISKSVMSMASTER: [RMS.SRCIRM3GET.B32;1




LR R R R N e R L L o L R L R R R R A T A T I T

—— e ————— e —— S— e—— - r—

H &4
16=5ep=1984 01:45:39  VAX=11 Bliss=32 V4.0-74 Page 15 RM?
SETUP_NRP_DATA 14-Se3-1924 ?3:01:24 olsxsvnsnAsren:[nns.sncinnsest.ssz;l % (@ V04
08 3
e ¢ e e
8§ 9 COMMOR_RAB_STR;
83 g ; Indicate that this stream is no longer at the file's end of file.
83 ? iRABLIRBSV_EOF] = 0;
8%3; % Move the VBN of the current record into the appropriate IRAB location
83§§ IRABLIRBSL_CUR_VBN] = ,IRABLIRBSL_RFA_VBNJ; |
0836 ¢ t 1f the current record happens to also be the primary data record, then |
83%; E move its ID into the appropriate IRAB location. ,
0839 if .IRABLIRBSB_RP_KREF] EQLU 0 |
0840 THEN i
8321 IRABLIRBSW_CUR_ID] = ,.IRABLIRBSW_RFA_ID]
0845 2 ! 1f the current record hagpens to be a SIDR, then it has no ID to save,
0844 2 ! and instead save the SIDR first array element's VBN and ID (this uniquely
0845 ¢ ! indetifies the SIDR), and the number of array elements preceeding the
0846 % ! current element (which points to the primary data record that is being
0847 ! retrieved).
0848 2 :
0849 g ELSE
0850 BEGIN
0851 3 lRABElRB‘H_CUR COUNT] = .IRABLIRBSW_SAVE P0S];
oasg 3 IRABLIRBSL-SIDR_VBN]™ = .IRAB[IRBSL FIRST_VBNJ;
0853 3 IRABCIRBSW_SIDRTID]™ = .IRABLCIRBSW FIRSTID];
g g o
0856 ¢ ! Move the RFA of the current primary data record from its temporary
0857 ! Location into the local NRP context and make it both the current primary .
8323 ; data record and the primary data record for NRP positioning.
0860 5 IRABLIRBSL_UDR_VBN] = .IRABEIRBSL_NEXT_VBN]:
8321 IRABLIRBSW_UDR_ID] = .IRABLIRBSW_NEXT_ID];
086 S IRABLIRBSL _POS_VBN] = ,IRABLIRBSL _NEXT_VBN];
832? IRABLIRBSW_POS_ID] = .IRABLIRBSW_NEXT_ID];
886 ! Setup up the key of reference of the current record, and move the key of
ogga : the current record into keybuffer 1.
0869 g IRABLIRBSB_CUR_KREF) = .IRABLIRBSB_RP KREF];
0870 2 CHSMOVE (. IFABLTFBSW_KBUFSZ], KEYBUF_ABDR(2), KEYBUF_ADDR(1));
0871 2 RETURN;
OB?; 2
0873 1 END;

LTITLE RM3GET
.ITENT  \V04-000\

LEXTRN RMSCOMPARE _KEY, RMS$FIND_BY_RRV




: Routine Size:

81

SETUP_NRP_DATA

60 B9

93 bytes,

0874 1

04 A9
00A8 (9
oo (9
00C0 (9
00B4 (9
00BE (9
0080 (9
ooBC €9
00AC (9
00BA (9<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>