RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR » RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR

RRR RRR

RRR RRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

MMM MMM
MMM MMM
MMM MMM
MMMMMM ~ MMMMMM
MMMMMM ~ MMMMMM
MMMMMM MMMMMM
MMM MMM MMM
MMM MMM MMM
MMM MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM

SSSSSSSSSSSS
SSSSSSSSSSSS
SSS5SS555S8SS
SSS
SSS
SSS
SSS
SSS
SSS
SSSSSSSSS
SSSSSSSSS
SSSSSSSSS
SSS
$SS
SSS
SSS
SSS
SSS

| NT!

NT!
NT{
NT{
NT!
NT!
NT!
NT!
NT{
NT!
NT!
NT{
NT{
NT!
NT{
NT{
NT{
NT{
NT{
NT{
NT{

NT!

NT!
NT!
NT!
NT!
NT!
NT!
NT!

NT
NT!
NT!
NT!
NT!
NT
Pl

1 16
wef [LE**D**RM3CMPRSS

RRRRRRRR MM MM §3333§ CCCCCCCC MM MM PPPPPPPP RRRRRRRR SSSSSSSS SSSSSSSS

RRRRRRRR MM MM 3333 CCCCCCCC MM MM PPPPPPPP RRRRRRRR SSSSSSSS SS5SSSSS

RR RR MMMM MMMM 23 33 CC MMMM MMMM PP PP RR RR SS SS

RR RR MMMM MMMM 33 §3 cC MMMM MMMM PP PP RR RR SS SS

RR RR MM MM MM . . < ¢ MM MM MM PP PP RR RR SS $S

RR RR MM MM MM 33 CC MM MM MM PP PP RR RR SS §S

RRRRRRRR MM MM 33 CC MM MM PPPPPPPP RRRRRRRR SSSSSS SSSSSS

RRRRRRRR MM MM 33 cC MM MM PPPPPPPP RRRRRRRR $SSSSS $SSSSS

RR RR MM MM 33 (C MM MM PP RR RR 5§ SS

RR RR MM MM 33 CC MM MM PP RR RR SS SS

RR RR MM MM 33 33 (C MM MM PP RR RR SS SS coee
RR RR MM MM 33 3 €C MM MH PP RR RR S$ SS sose
RR RR MM MM 333333 CCCCCCCC MM MM PP RR RR SSSSSSSS SSSSSSSS cecs
RR RR MM MM 333333 ccccccce mm MM PP RR RR SSSSSSSS SSSSSSSS cene
LL IT1111 SSSSSSSS

LL 111111 SSSSSSSS

LL 11 SS

LL 11)

LL 11)

LL 11 SS

LL 11 S5SSSS

LL 11 $SSSSS

LL 11 SS

LL 11 SS

LL I1 SS

LL 11 S§

LLLLLLLLLL IT1111 SSSSSSSS

LLLLLLLLLL 111111 SSSS5SS8SS

RM3CMPRSS
Table of contents

® B
59

(16)

DEF I
RM$S
RNMSF

NIT
RCH
RNT

IONS
CMPR = Search a (ompressed Index
-CMPR - Compute a Record's Front

J

(o

1
. 16=SEP~1984 01:07:33 VAX/VMS Macro v04=00

SIDR, or Data Bucket
mpression Count

Page

0

K 16
RM3CMPRSS 16-SEP=1984 01:07:33 VAX/VMS Macro V04=00 o 1
v04-000 ~SEp-108e 10 0ii30 FRRCV R IRet e R an:r Poor],

$BEGIN RM3CMPRSS,000,RMSRMS3,<>,<PI(,NOWRT,QUAD>

AL RAARARARRRRR A ARt RRRRRRRdR Rt RRRRRR iR R R i it R i 200

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

T FTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
CCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
REOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
ON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY

»
B
B
B
B
*
B
“
.
«

ED. *
B
»
B
*
-
B
-
B
L
B

16
HIS SO
ONLY IN A
INCLUSION
COPIES THE
OTHER PERS
TRANSFERR

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
eggPoa:??Bg NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR_ RELIABILITY OF ITS
SOF TWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

LA 2 20 2B 2 2N N I 2R B 2R OE I B R 2 B I O 2

AR AR AR R R Rt R R R0 R i R RRtRdRRRRRRRRRRRRRRRE]

iol=lelelelelelelelelelelelaclelaleclecleclaleleclclelalalelalelele]
(=leleleleleleleleleleleleleleleleleleelelelelelelelelelelels)

(=il =l=lelelelei=i=ii "t =il lalelelelelclalelclclecleleleleclelelclalelel=]

[elaleleleleld=l=lelalclelelelelelelelecleleleclalec elaleleclelelelelelelels]
NN S AN = OO 0O NN WSS N = O O 00 N O LSS N = O 0 00 NOM N SN = © O 00 N O N S LN = OO 00 N0 N SS LaiR) —

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

% 4

g s Facility: RMS32 Index Sequential File Organization
03 g s Abstract:
00 33 3 This modules contains the routines to handle compressed buckets
88 g : and compressed records.
88 g ; Environment: VAX/VMS Operating System
88 g ; Author: Todd M. Kat2 Creation Date: 13-Aug-1982
88 2 ; Modified By:
00 42 ; v03-008 TMK0006 Todd M. Katz 03-Feb=-1983
000 43 ; Add support for Recovery Unit Journalling and RU ROLLBACK
000 44 ; Recovery of ISAM files. This involves a change to RMSSRCH_CMPR.
000 45 ; Check both for IRCSV_DELETED and IRCSV_RU_DELETED before setting
000 46 ; the IRBSV_DUPS_SEEN Tlag. Previously, Just IRCSV_DELETED was
888 2 3 being checked.
000 49 . v03-007 TMK0005 Todd M. Katz 16-Sep=-1982 i
00 50 ; The field IRBSB_SRCHFLAGS has been changed to a word in size.
88 g 3 Fix all the references to it.
080 33 3 If a record is encountered with a ke¥ that is an exact duplicate
000 g : of the search key, then set the bit IRB$V_DUP KEY.rcaardgess
80 3 of whether the record is or isn't marked delefed if RMS is
08 ; : currently positioning for insertion.

1
RM3CMPRSS s 18-

V04-000 21988 08:9%:38 YRMEVeRcTansomeass 0l Page 4,

SEP

SEP- RMS . SRCIRM3CMPRSS . MAR; 1
n

E

ce enhancement. RMS does not have to call
T_REC to position to the next record in the bucket.

s an index record, then the address of the next record
DDR + current key size + 2 for compression overhead.

rforma

$GETNE

s
4

€Y b =g =y

. 2 * |
—- - XE®
*Der O
Mmoo

is is anyother type of record, (primary data or SIDR) then
RMS knows that the record size field makes up the last two bytes
of the record overhead ?nd can use the quantity there + the
record overhead to posit on to the next record.

At the present time, RMS positions past deleted records even
when the search would otherwise be terminated because of the
key value of the current record, the search key value, and the
goal of the search. This is incorrect, and inconsistant with the
manner in which the rest of the searcﬁing is performed. It
creates problems during next record posi ioning which always
tries to first position to the current record before positioning
to the next record, and thus, could end up positioning past a
stream's internal current record because its marked deleted, and
therefore wrongly assume that the record had been completely
deleted from the file. The solution to this problem is to return
the record that the search terminates at regardless of whether
the record is or isn't marked deleted, and to let the upper
ée{et aoutines decide what to do if the record is in fact marked
eleted.

At the present time, RMSSRCH_CMPR always starts its search with
the first record in the current bucket. This is unacceptable
because of the above made change - ie, searches may now
terminate with deleted records, and thus, may have to resume
positioning somewhere within the bucket in order to find a
non-deleted record. Fortunately, this change is easy to make
provided several assumptions hold:

1. The aoal of the search does not change between invocations
of RMSSRCH_CMPR.

2. The search key does not change between invocations of
RMSSRCH_CMPR.

2. The bucket being searched is kept locked between invocations
of this routine.

(=lelelelelelelelelelelalelelelelelelelelelale]

[eleleleleleleleleleleleleleolelelelolelelelelelalealelelelalelelelelelacleleleleleleleleclele/alelolelelelelelelelele]
elelelelelelelelelelelelelelelel=le =ttt o000 bl lolelelalelelelelelelelelelelelelalelelaclaclalalels]
leolelelelelalalalelelele e el il =l == =i il lslslslslalelelelclelelelelslelslclelelelslesleslalelslals]
— e = ek = O OO OO OO OO O VOV VVOVOVOVOVVOVOCOCCOONCOC00 NNNNNNNN~N~NOo OO OO ONONONONVAN
S NN = OOV NS AN = OO 0O NN VSN = OO0 00 NN S N = O O 00 NN N 8 N = OO 00 NN NS i — OO 00
ETEIEAI AR TR TR TR T A A PR PR PR TR PR PR E PR PEA TR PR PR PR PR PR PR TR PR FE TR PR TR TR TR R R TR TR PR PR TR PR PR PR TR PR PR TR TR TR PR TR

1 3. The keys are always in ascending order in the bucket, and the
8 } compression of these keys are always correct.
g If these assumptions hold true, then it will always possible to
0 3 resume the search in the middle of a bucket, and return whether
0 1 the next record has a.ke{ value equal to (if the goal of the
9 3 search is EQ) or GT (if the goal of the search is GT or EQ) the
8 } search key.
-3 v03-006 KBT0159 Keith B. Thompson 21-Aug-1982
8 } Reorganize psects
9 112 v03-005 TMK0004 Todd M. Katz 13-Aug-1982
000 113 ; Completely re-wrote the routine responsible for searching
000 114 ; compressed buckets, and the routine responsible for determining

" 16
RM3CMPRSS 16-SEP-1984 01:07:33 VAX/VMS Macro V04~ -
v04-000 8- SEn- 108 00:00:38 YRNEVeR Tacsmenesooar: 1 o 5

88§ }}; : the amount of front compression of records.

000 117 : Added support for prologue 3 SIDRs to both the compressed ke
008 113 3 bucket sggrching rguting and the front conpressionpdctcrninizg
00 119 ; routine.

0000 1%0 3

0000 121 ;==

DEFINITIONS 2-35::1834 ?6 gk 28 !354 C cnpgssogAa i1 S (3)

.SBTTL DEFINITIONS

RM3
V04

3 Internal Structure Symbol Definitions

OCOO0O00 DOVO0O0O0O
OO0 O0C
(=l=le]

OOCOC OO
[———

OO0O0OC o000
NN (NPONORONI NN
NN 2OV NOM WIS

OO0O0O0O

: AT o o R, sl 3 . e
{ {

1 i

RMXCMPRSS 16-SEP=1984 01:07:33 VAX/VMS Macro V04=00 Page | RM3

' v04--000 MPR = Search a (Compressed Index ?-SEP-19gk ?6: 4:20 [RMS.SRCIRM3CMPRSS.MAR;1 . (g)f V04
;

.SBTTL RMSSRCH_CMPR - Search a Compressed Index, SIDR, or Data Bucket

RMSSRC

+44

FUNCTIONAL DESCRIPTION: i

This routine performs an equal search or a greater=than search on a
primary data, SIDR, or index bucket with compressed key records usin? ,
the search key found in keybuffer 2. The search may start with the first 1
record in the bucket, or with a record somewhere in the middle of the ;
bucket. When the search is completed, REC_ADDR is positioned to the |
|
!
|

record to be returned, and RO contains the status of the search.

This routine makes some basic assumptions which can not be violated
without expecting totally unpredicatble search results.

1. It is assumed that the kels of the records in the bucket are strictly
in ascending order, and that they are always as fully compressed
as they can be for the position they occupy.

2. The two key compression bytes always follow whatever record overhead
is present in the record (if any), regardless of the bucket type. The
first key compression byte is always the number of bytes of key
present, and the second key compression byte is always the amount of
front compression of the key.

3. Record overhead is a fixed quantity for each record type.
Furthermore, if a record has record overhead associated with it, the
record's size minus the record overhead is always stored in the lLast
two bytes of record overhead.

elelelelelelelalelelolelalelelelelalel=lele e e o el ™ ™ "™,
=l=lelolelelelelelelclalclalolealalelelalclelalalelalalal=lele Tk

OCOO0O0O0OO0OO0OOOO0OO0OO0O0O0OOCOOOOO0OOO0OOOO0OO0O0O0CO |
=l=lalelelelelelelelelelelelelelalalelelelelelelelelelelelele ey

4. Whenever RMS is positioning for insertion it performs a greater-than

— e e e il e el D i D e e e D D il D il D el il D) - — = D — — — — —D —d —d — — it —— - D D — - — — —d — D -) il) D D — el
5OV NN NN N NN NN NOOONONONONONONON OV WNYNAWTWNIAAWIAVANSS S5 BN 8N 85 85 85 8 8 5 W
N =2 OV NO WSS NN = OV NN AN = O V00NN S IN) = OV NON N BN AN = O O O NN N SS N = OO0 00 ~IO~

TR R A e R R R R R T T TR T A PR P P PR P PR R T R P P P T T P P PR PR PR T PR P PR P PR PR R A PR PR PR TR PR P PR P D D

8888 search,

0000 5. The decision to terminate a search is based on the goal of the search

0000 and the outcome of the comparison between the key of the record bein

0000 returned and the search key. It is never based on anything else abou

8888 the record, for example, whether the record is marked deleted or not.

8888 6. If this routine is called to resume a search within a bucket then:

0000 a. The bucket has been locked between routine invocations,

0000 b. IRABLIRBSL_LST_NCMP] still points to the last record with a zero

0000 front-compressed key. s : -

8800 c. The goal of all consecutive routine invocations is identical
00 (either EQ or GT). : :

3888 d. The search key has not changed between routine invocations.

0000 CALLING SEQUENCE:

0000

8888 BSBW RMSSRCH_CMPR

0888 INPUT PARAMETERS: i

l
008 R1 - if ?. greater-than or equal search ;
880 if 1, greater-than search ;
000 IMPLICIT INPUT: {
%

| D 1

 RM3CMPRSS 16-SEP-1984 01:07:33 VAX/VMS Macro V04=00 Page
v04-000 RM$SRCH_CMPR = Search a Compressed Index g-SEP-19gk ?6:24:20 RMS.SRCIRM3CMPRSS.MAR; 1 . (g)
0
80 RS = BKT_ADDR - address of bucket
8 BKTSW_FREESPACE =~ offset to first free byte in bucket
BKT$B_INDEXNO - key of reference of bucket
; 80 BKT$B_LEVEL - level of bucket
|
f 88 R6 - REC_ADDR - address of where to begin search
88 R7 - IDX_DFN - address of index descriptor
00 R9 - IRAB - address of IRAB
00 IRBSL _KE YBUF - address of contigious keybuffers
00 IRB$B_KEYSZ - size of the search key
00 IRBSV_LAST _GT - if set, GT search result ocurred
00 IRBSV_POSIRSERT = if set, gositioning for insertion
88 IRBSW_SRCHFLAGS = search flags
00 R10 - IFAB - address of IFAB
88 IFBSW_KBUFSZ - size of each keybuffer
00 OUTPUT PARAMETERS:
88 NONE
88 IMPLICIT OUTPUT:
00 IRBSV_DUP_KEY = if set, there is at least one data record in the file
00 (deleted or otherwise) with a key identical to that of
00 the search key
00 IRBSV_DUPS_SEEN - if set, there is at least one primary data record with
00 a key fdentical to that of the searc key.
00 IRBSV_LAST_GT = if set, the result of this search was that the search
00 key was less than the record positioned to,
00 IRBSL_LST_NCMP address of Last key with no front compression
00 IRBSL_LST_REC address of last primary data record in duplicate chain

number of the record found
address of record found

IRBSL "REC_COUNT
REC_ABDR

ROUTINE VALUE:

RO: =1, search key
0, search key
1, search key

SIDE EFFECTS:

If gositionin for insertion within a primary data bucket, and a record
with a key value duplicate of the keK of the record to be inserted is
encountered, IRBSV_DUP_KEY is set, IRBSV_DUPS_SEEN is set (provided

the record is not marked deleted), and the address of the record is
placed in IRBSL_LST REC. In fact at the conclusion of the search, this
same field will confain the address of the last such qulicato
encountered while REC_ADDR points to the record that follows it which
is where the new record will be inserted., Of course, if the bucket is a
SIDR bucket, then there can only be one instance of a record with a
given key value in a bucket.

record found
record found
all records in the bucket

v iiA

elelelelelelelelelelelel=l=l=l=le === ==

[= e e e L L e e o e o e ==
OO NN NN = OV NO WS NN = O VO NS N = OO O NS LWIN = OO0 00 NN NS IR = OO0 00 NN SN

TR R s s e s s s e e R PR TR PR P PR P PR P R P P T P PR P P P PR PR P PR PR R PR PR PR P PR PR PR R PR DR PR P TR T TR T T

[el=l=l=l=l=lele el =imi=l=l=lml =il =l === = e = = = e e =4
[slslslelslelelalelelelelelelelelelelclelelelelelsdlelelelelelalelelelclalelelelelcalalelelelelelelelelelelelalelele]
585558 8 5 5 2 5~ 2~ N NN NN A N AN NN NI N NI NINININ) == b e e e ek e e ed 3 O O O O O O O O OOV VOO OO0

AINLAINLNLNLNIN N NN NI NN NN N NN NN NN NI N N NN NI NI NN N NN NN PO NI NN NN NINININONIND =3 =3 b 3 b 3 —a

o

Whenever the search key is greater that the key of all the records in

E 1
RM3CMPRSS -SEP-1
V0&4=000 '83EP-198

AX/VMS Macro V04-00 Page
RM$SRCH_CMPR = Search a Compressed Index 5-SEP=-19

7:33 7
4:20 [RMS.SRCIRM3CMPRSS.MAR;1 (3)
0s
is

p igioned at the end of the bucket

4 01:
4 16:
s le
S 1 ndependent of bucket type.

0 gO 3 the bucket, then REC_ADDR i ft
S1 : when this status is returned. This

0 8 S§ s
0 54
800 55 R
00 56

v
o

M$SRCH_CMPR: : ‘ BK]

091€E 8F BB “PUSHR #*M<R1,R2,R3,R4,R8,R11> ; save the working registers BK1

PSt

RM!
$Al

VR —— — e —— = - ——

|

—

RM3CMPRSS
v04-000

AT A T A TR TR PR T P P P P P PR P PR PR PR PR PR P PR PR PR PR PR A PR P PR PR B R 1)

OO O O OO O OO0 00000000 000000000000 NN NNNNNNNNOTOOONONOONONONON N

LA LAANANNI N A AN N AN NN NI NN RIS NN N N NN N NI NN NI RN NI NN NI NN NN N NONONOND
NN = OV NO NS AN = OV NO WS AN = O V00NN S AN = OV NS N = OV 0NN S IR —= OO 00

VIO OO NVIOP» WWOWV v
O =N DSV ONWNOe i
O Y=Y =D PO W=T W
OO0 MWW =W ST OO0
(elelelelelelelelelelelelelelelelelelele -]
[eslelelelelelelelelelelalelealelelelelelele)
WNNOPONINIRNONINONIN) =2 cd e e ek e ek =2 O O O

NI OWVMNNIOO O M ONWWOMD D
— e e ek b QOO OO OOOOO

NN AN AN NN N NN NN

F 3

1
RM$SRCH_CMPR - Search a Compressed Index 5-SEP-19

Register Usage:

RO
R1

R2

R3

R&
R5
R6
R7
R8

R9

R10
R11

-t
L 4

108:

:33 AX/VMS Macro V04=-00 Page
:20 [RMS.SRCIRM3CMPRSS.MAR:1

- Result of the comparison between the search key and the '‘last’' record.

Set to the type of bucket for determining the amount of record overhead.
Number of bytes of search key and record key to be compared.

Scratch

register,

Offset in the search key to the byte where the comparison between the

search key and the key of

the '‘current'’ record is to begin.

Working register for CMPC3 and CMPC5. X
Working register during next record positioning.

Number of bytes of record overhead, not including key compression bytes.

Address
Address
Address

Address
address

Address
Address
Address

MOVZWL
ADDLZ

CMPL
BLSSU
BRW

MOVZBL
BEQLU
CLRL
BRB

TSTB
BEQLU
MNEGL

BSBW
MOVL

ADDL3

CMPL
BEQLU

of the beginning of the bucket in memory.

in memory of the current record in the bucket.

of the index descriptor.

in memory of the first free byte in the bucket. Effectively the

of the end of the bucket.

of the IRAB.
of (ne IFAB.

of keybuffer 2. Effectively the address of the search key.

BKTSW_FREESPACE(RS) ,R8

RS,R8
R6,R8

B
1408
ggTSB_LEVEL(RS).R1
R&
158
BKT$B_INDEXNO(RS)
108
#,R1
RMSREC_OVHD
RO,R4

—_—

#BKT$C_OVERHDSZ RS ,R1

R1,.R6
15§

; compute the address of the first free
; byte in the bucket, and put it in R8

; if the bucket is empty, return a GT
; status (primary data or SIDR buckets)
; otherwise continue

; if this is an index bucket, then as

index records do not contain any

: overhead intialize R4 to 0, and skip
; call to determine record overhead

; if this is a primary data bucket
; setup R1 with a 0, else it is a SIOR
; bucket and a =1 is placed in R1

: determine the amount of overhead in
: each record and store it in R4

; get address of first record in bucket

: if RMS is to start search with first
; record, then go start search

e ———————————————————————————————)

RM?
VA)

34¢

795
16

RM3

CMPRSS

v04=-000

00A6 €9

0098

58
58

0A

03 42 A9
0098

01 Ab44

Fé
00CF

9 56

00B4 CA
60 A9

0094 (9

12-SEP-19SA 01:g
RM$SRCH_CMPR = Search a Compressed Index S5-SEP=-1984 16:24:

00

co
D4

4

3
3
3
3
3
3
3
3
3

8000OO°O°OOOOOO°OOOOOOO
(ml=lelelelelelelelolelelelelelelelelelesleclalelelelelelalelclelslalelelalelelalalals]

Y Y T o o I At 2t T L L
DD NNVNNOT O OOV NNANNOI IO BB DD

[elelelelelelele =it sed b=l

BBC
118: BRW
12%: CMPB
13s: gkasu

15%: CSB

MOVL

MOVZWL
ADDL2

CLRL

LA U WA U LA U U N N N U N U U RN U A NN A NN N U U N U AN NN N R N AN N NN NN NN
VIAWAWNIWNWNUNWNWNESS 85 85 85 85 B 8 5 8 5 NN N NN A NN IR NN NI NI NN PO NOND) =8 b b
NONWN S AN =2 OO 00 NN S LN = O O 00 N O VNS N = O 0 00 N OM N SN AN = O D 00 ~JO~

RMS is resumin
bucket. The ru

record's key is
search key, then the current record
Therefore, such a status can be immediately returned.

record's key is
then the current record's key must
such a status maybe immediately returned.

6 1

Tes

BSV_LAST GT,-

6)CR4] , -
$B_KEYSZ(R9)

4
1
9
1(R6)
IRBSB
1

1

OO »OD

I
R
0
(
R
1
1

$

#IRBSV_LAST GT,-
IRBSW_SRCHFLCAGS (R9)

R6,IRBSL_LST_NCMP(R9)

I1FBSW_KBUFSZ (R10) ,R11
IRBSL KEYBUF (R9) ,R11

IRBSL _REC_COUNT (R9)

$W_SRCHFCAGS (R9) ,128

:33 AX/VMS ggc o V04-00 Page

r
0 C(RMS.SRCIRM3CMPRSS.MAR;1

search, and not starting with the first record in the
for resuming a search are as follows:

1. If the goal of the search is GT, then as the previous record must have
been GT the search key, so must the current record. Therefore the search
can immediately terminate with this status.

2. If the goal of the search is EQ, then if the number of bytes the current
front compression is equal to or exceeds the size of the
and the search key must also be EQ.

3. If the goal of the search is EQ, but the number of bytes the current
front compressed is Less than the size of the search key,
be greater than the search key, and

if the result of the Last routine
invocation was LT, then so is the_
result of this contigious invocation

determine whether the key of the
current record is equal to or
greater than the search key and
return the appropriate status

E RMS is to start the search with the first record in the bucket.

it the search is starting with the
first record in the bucket then there
is no previous context

the first non-compressed record

compute the address of keybuffer 2
and place it in R11

RMS is positioned to the first record

? |
(7)§

wef

r e — - - — -~ —— ———

H 1

RM3CMPRSS 16=SEP-1984 01:07:33 VAX/VMS Macro V04=00 Page 10 RM
v04-000 RM$SRCH_CMPR - Search a (ompressed Index 2-$EP-1934 16:g4:20 !RHS.SRCJRH3CHPRSS.HAR:1 ® @
8SF 59 :
SF 60 ; :
05 61 ; The only time it is ever necessary to compare the key of the current record .
| O5F 6§ ; Wwith the search key is when the number of bytes the key of the current record .
; 005F 65 ; is compressed is the same as the offset to the character in the search key .
| 005F 64 ; which terminated key comparison the Last time it was done, The comparison is :
005F 65 ; now done to see whether this frevious comparison term1nating character (and .
00S5F 66 . implicitel; the rest that follow it in the search key) is still greater then :
882; g; ; its opposite in the key of the new current record. : :
005F 69 ; The comparison starts in the search key with the character that had previously .
005F 70 ; terminated such a comparison, and the number of bytes of key to be compared B
005F 71 ; is the minimum of the number of bytes thus remaining in the search key and the :
882: g;i : number of bytes in the key of the current record. :
005F g?k : Note that this strategy guarentees that a comparison is always done between :
005F 75 ; the search key and the key of the first record in the bucket. :
00SF 376 . 3
005F 377 : :
52 D& 8825 g;g CLRL R2 ; initialize the search key offset to 0 :
51 00A6 C9 9A 0061 gBO 208: MOVZBL IRBSB_KEYSZ(R9),R1 ; compute the number of bytes in the 3
o1 N 8823 ng SUBB2 R2,R1 ; search key remaining to be compared :
6646 51 91 0069 383 CMPB R1,(R6)LR4] ; use the minimum of the search key :
06 1B 006D 384 BLEQU 30§ ; bytes remaining and the current record 3
51 6644 9A 8895 ggg MOVZBL (R6)[R&],R1 ; key size as the key comparison size :
6B42 02 A64L 51 29 0073 387 30%: CMPC3 R1,2(R6)CR4],(R11)LR2] ; if the search key is equal to or less :
65 13 007A 388 BEQLU 1008 : than the current record key process :
59 1A 007C 389 BGTRU 90% ; accordingly, otherwise position to the :
SO0 01 9A 0076 390 MOVZBL #1,RO : next record in the bucket :
0081 3N :
0081 392 : s ; :
0081 393 : Position to the record which follows the current record in the bucket. Before ;
0081 394 ; perform1n? this positioning, save the address of the old current record if it :
0081 395 ; was zero front compressed. :
0081 396 : 3
0081 397 d) :
N .7 9 883; 333 40%: suBL3 R11,R3,.R2 ; compute terminating search key offset :
01 A644 95 0085 400 50%: TSTB 1(R6)[R4] : if the key of the current record is 3
05 12 0089 401 BNEQU 55% : 0 front compressed, save its address :
0098 C9 56 0O 8838 28; MOVL R6,IRBSL_LST_NCMP(R9) ; before positioning to the next record :
0C A5 95 0090 404 55%: TSTB BKTSB_LEVEL(RS) ; if this is an index bucket then next :
OA 13 0093 405 BEQL 60% ; record position equals the current 3
53 66 9A 0095 406 MOVZBL (R6),R3 : record position + current record key :
56 02 A643 9E 0098 407 MOVAB 2(R6JLCR31,R6 : size + two bytes for the key :
0A 1N 083? 283 BRB 62% ; compression overhead :
56 54 (0 809F 410 60%: ADDL2 R4 ,R6 ; otherwise, next record position equals :
3 N Ag 3C 08A2 411 MOVZWL -g(Rb).RS : current record position + record :
56 5 co 80:3 2}; ADDL2 R3,R6 : overhead + record size :
0094 C9 D6 00A9 414 628: INCL IRBSL_REC_COUNT(R9) ; increment the record counter :

|
l

RM3CMPRSS 16-SEP-1984 01:07:33 VAX/VMS Macro V04-00 Page 11 RM
v04-000 RMSSRCH_CMPR - Search a Compressed Index g-SEP-1984 16:34:30 !RHS.SRC]RHSCHPRSS.HAR;1 ’ (10) Vo

AD 416 ; :

88AD 419 : There are a number of circumstances under which the result of the comparison :

Q0AD 418 ; between the key of the new current record and the search key is known or can :

8:8 218 ; be quickly determined without actually performing the comparison. -

Q0AD 421 ; 1. If RMS has positioned to the end of the bucket, or to a RRV record within :

88:8 2 § 3 a primary data bucket then the search is terminated with a GT status. :

Q0AD 424 ; 2. If the search key was found to be equal to the key of the Last record, but -

00AD 425 ; the front compression of the key of the current record is less than the :

00AD 426 ; size of the search key, then the search key will be Less than the key of :

88:8 2 g : new current record and it is processed as such. F

Q0AD 429 ; 3. If the search key was found to be equal to the key of the last record, and :

00AD 430 ; the front compression of the key of the new current record is either equal :

00AD 431 ; to or greater-than the size of the search key, then the search key will :

00AD 43; s also be equal to the key of the new current record and is processed as :

00AD 433 ; such. The front compression of the key of the new current record maybe :

00AD 436 ; greater-than the size of the search key because RMS maybe performing a :

00AD 435 ; eneric search with a search key smaller in size than the full size of a :

88:8 2%9 3 ey for this key of reference. :

O0AD 438 ; 4. If the search key was found to be greater-than the key of the last record, :

00AD 439 ; and the front compression of the key of the new current record is -

00AD 440 ; greater-than the position in the search ke‘ where the last comparison :

00AD 441 ; erminated, then the search key will also be greater-than the key of the :

8828 22% : new current record and RMS proceeds to position to the next record. :

00AD 444 ; 5. If the search key was found to be greater-than the key of the last record, :

00AD 445 ; but the front compression of the key of the new current record is less-than :

00AD 446 ; the position in the search keg where the lLast comparison terminated, then :

00AD 447 ; the search key will be less-than the key of the new current record and is -

88:8 223 3 processed as such. :

O0CAD 450 ; In the remaining circumstances a direct comparison between the key of the new :

00AD 451 ; current record and the search key is required, and is performed. :

00AD 455 3 3

00AD 45 :

58 56 D1 OQ0AD 454 CMPL R6,R8 ; if RMS is at the end of the bucket ;

0C 1E 00BO0 455 BGEQU 65§ : or has positioned ti a RRV record :

01 AS 89 008 456 BISB3S BKTSB_INDEXNO(RS) - ; in a primary data bucket then 3

51 0C AS 008 457 BKT$B_LEVEL (RS) ,R{ : go return a status of GT (search key s

07 12 00B8 458 BNEQU 70% ; greater than all the records in the :

03 66 03 51 808A 459 BBC #IRCSV_RRV, (R6),70% ; bucket) H

0088 1 08%5 zg? 65%: BRW 140% :

S0 D5 o00C1 465 708: TSTL RO ; if the Last comparison's result was GT 3

09 14 00C3 46 BGTR 80% : then go decide between cases & or 5 or 3

0822 222 : whether a key comparison must be made 3

52 01 A64L 9N 80(5 466 (MPB 1(R6)[R&],R2 ; if CASE 2 holds true process as :

Og 1F 00CA 467 BLSSU 90% : less=than, but if CASE 3 holds true 3

5 1" §8EE 263 BRB 115% ; process as equal :

52 01 A644 N OCS 4?0 80%: CMPB 1(R6)LR4],R2 : +f CASE 4 holds true ?o osition to :

B0 1A 00D 471 BGTRU 308 : the next record, but if CASE 5 holds 3

8A 13 00pS 472 BEQLU 0% ; true process as less-than otherwise :

- e e —e e e e ee— e

J 3
-SEP=1984 01:07:33 VAX/VMS Macro v04-00 I 1 RM'
SEP-1984 ?6:3&:20 ! - 5

RM3CMPRSS 13
- RMSSRCH_CMPR = Search a Compressed Index 5- RMS.SRCIRM3CMPRSS.MAR; 1 (10)

v04-000

<
<

|

RMS has positioned to a record whose key is greater than that of the search
key. Return this status.

» 9 I8 90$: MNEGL #1,R0O ; setup the status in RO to be LT and
SSB #IRBSV_LAST GT,- : save that the result of this search
IRBSW_SRCHFCAGS (R9) : was GT in case the search must resume
60 N BRB 150% ; go return this status

On an actual search key = current record ke¥ comparison, the parts of the
key that were compared were found to be equivalent. This does not necessairly
mean that the two keys are in fact identical. If the size of the search key
(including those characters front compressed but not rear-end truncated) is
less than or equal to the size of the key of the current record, then in fact
the two keys are identical, and are processed as such. However, if because of
rear-end truncation the search key is greater in size then the key of the
current record, then the comparison between the two keys must be continued.
This is done by extending the key of the current record bl the lLast character
present, and conparin? the remaining bytes in the search key with it alone. If
the two keys are still identical thez are processed as such; otherwise, they
are processed depending on whether the search key is greater-than or
less=than the key of the current record.

gttt e b=l sleleleslelelelelelelelalelclelelacleaclelaclelaleleclelalelals]

- et OQOOOOTMTM M I MIMMMMMMMmMMmMMmMMmMMmMMmMMmMMmMMmMMmMMmMMmMMmMMMMOoOODUO0UD0O00D0D000)

S =ODMEESTMDODWVIANT T 0D = b e ed b b e ed e cd e e D e e o e e TV o o YNNI N~
LA TR TETATA TR TEATATA SRR TR B TR 'Y

VIVIWIWTIWVIWIWVIVIVIVIVIVIWVIVIVIVAISS S B B B B B S
— d e e e =k 2 O OO O OO OO OO0V VYOV VOOV VOO0 N NNNNNN

OSSN = OO 00NN N S AN = OO 00 NN NV SN IN) = OO 00 N O NS N = O 000~ N BN

elelelelelelele el e ittt bl =l lolelelelelelalelelalalelalelals]

51 01 AbLL 66446 81 1008: ADDB3 (R6)LR4),1(R6)LR&I,R1T ; if the size of the search key is
51 00A6 C9 9N CMPB IRBSB_KEYSZ(R9) ,R1 ; less-than or equal to the size of the
28 1B BLEQU 110% : current record's key, process as equal
5¢ 53 Sg (3 SUBL3 R11,R3,R2 ; determine where in the search key the
S D& CLRL R3 : comparison stopped and how many search
53 00A6 C9 52 83 SUBB3 R2,IRB$B_KEYSZ(R9),R3 ; key bytes remain to be compared
51 6644 9A MOVZBL (R6)[R4],R1 ; compute the offset to the last
51 ° 01 A441 9E MOVAB 1(R&ICRIS,R1 : character in the current record's key
53 6641 6641 01 2D CMPC5 M1 ,(R6)CR1],(R6)CR1],- ; compare the remaining search key bytes
6842 R3: (R11)[R2] : with the current record key's last
(8 1A BGTRU 90% : character, and continue ﬁrocessing
06 13 BEQLU 110% ; depending upon whether t e¥ are
S0 01 9A MOVZBL #1,RO ; identical, the search key 1s less-than
FF6A 31 BRW 40$; the current record's key or vice versa

TR R R R s s s o e o TR PR T R L L L L TR L L T T L T T T T L T PR L LR PR T PR PR TR TR D LR LN T

Rinsioiione s LT . ki . T

<§“-_1

———— ——— —-»--w-—-w ———

5
3CMPRSS -SEP=1984 01:07:33 VAX/VMS Macro V04=00 p
20 SEp-198¢ 96:90138 ¢ M3CMPRS 3

1 13 RM'
04-0C0 RMS$SRCH_CMPR = Search a Compressed Index g- RMS.SRCIRM3CMPRSS.MAR; 1 (12)

VO

The ssarch key has been found to be identical with the key of the current
record.

If the goal of the search is to find an equal match then RMS is done and
should return such a status provided the record is not a primary data record
marked deleted. In such an instance, RMS continues the search with the next
primary data record in the bucket.

If the goal of the search is to find a greater-than match, then RMS will also
continue the searc® with the next record in the bucket. However, before
continuing the search, if RMS is positioning for insertion within a data
bucket, then as the key of the new record will be identical to the key of the
current record, RMS saves the address of the current record as the lLast record
seen in the data bucket with this key value. RMS will also indicate that a

a record with a ke‘ duglicate to that of the new record has been seen b
setting a bit in the IRAB, provided the current record is not marked deleted,
and it will indicate that some record with this key value has been seen by
setting another bit in the IRAB, regardless of the setting of the current

— LA TETETE PR TR PR PR PR PR PR PR PR PR PR PR TR PR TR TR 1

S =0V ONSTODODOWOOO & = = O 0 OO NNNNNNNNNNNNNNNNNNNNNNNN

18
19

0

a

4
:
358
g 9

0
531
53§
53
534
535
536
537
538
539
540
342
345
544
545
546
547
548
549
550
551
552
553
254
55
556
557
558
559
560
561
562

elelelelelelelelalelelcleleleclcleleleleclelelelelelelelealelelelelelelelelelelelelelelslels)
S B NN N N NPNOMNOMNOMPNOPNINININD = 3 e D ed D B D D D BB DD DD DD DD DB ed B e d e ||

S N I B it B S N N o S N N O L i e R N

record.
50 D& 108: CLRL RO ; setup the status in RO to be equal
6E D5 TSTL (SP) ; if the goal of the search is an equal
31 13 BEQLU 150% : match then go an EQ status, otherwise
». NN D SUBL3 R11,R3,R2 ; compute terminating search key offset
0C AS 95 1158: T1STB BKTSB_LEVEL(R5) ; if rms is not currently positioning
20 12 BNEQU 130% : for insertion within a data bucket,
00 E1 B8C #IRBSV_POSINSERT, = : then continue the search for a record
1B 42 A9 IRBSW_SRCHFLAGS(R9),1308; with a key greater-than the search key
SSB #1RBSV_DUP_KEY,~ ; otherwise, save the address of the
IRBSW_SRCHFLAGS (R9) ; current record, set a bit indicatin
4 A9 S6 DO MOVL R6,IRBSL _LST _REC(R9) ; that a duplicate key was encountere
1 AS 95 TSTB BKT$B_INDEXNO(RS) ; during the search, and indicate that
08 12 BNEQ 120% ; duplicates have been seen during the
09 66 Og EQ BBS #IRCSV_DELETED,(R6),1308; search if the current record is a
66 0 E0 BBS #iRCtV,RU_DELEfE.(RG).- : SIDR, or if the current record is a
05 130$: primary data record that is not
80 8F 88 1208: BISB2 #IRBSM_DUPS_SEEN, - ; marked either deleted or deleted
44 A9 gRBSB_SPL_BTTS(Ré) ; within a Recovery Unit
FF3C 3 1308: BRW 0%

TR E s s e s s e e e e e e P T P P PR R L L TR TR T T T T T T TR T PR PR PR A PR TR IR TR PR L T T L A

o e e = .

‘ B

|

RM3CMPRSS 16=-SEP=1984 01:07:33 VAX/VMS Macro V04=-00 Page 14 |
ika-OOO RMSSRCH_CMPR = Search a Compressed Index g-SEP-19gk ?6:84:%0 RMS.SRCIRM3CMPRSS .MAR; 1 ’ (14) |
} 149 64
| 149 65 ;
| 149 66 . RMS has found that the search key is ?reater-than the key of every record
| 149 2 ;: in the bucket. In this case RMS will immediately terminate the search with
149 3 ; & greater~-than status.
R i
|
! 50 01 9A 0149 71 1408: MOvZBL #1,RO : 9o terminate the search with a status f
15 11 014C 7§ BRB 1608 : of greater-than - |
i
i 14E 75 ; Return the status of the search to the caller of this routine. If the bucket §
| 14E 79 ; that was searched was a data level bucket, and RMS was not gositioning for ;
1 014E 77 ; insertion, then save the address of the current record as the lLast zero ﬁ
i 014E 78 ; front compressed record encountered provided it is zero front compressed
s 014E 579 ; and there is a record to be returned (ie - the status of the search is not
014 580 ; greater-than).
014 581 ;
i 014E Sgi
OC A5 95 014t 583 1508: T1STB BKT$B_LEVEL (RS) ; immediately return the appropriate
" 12 8}31 gsg BNEQU 160% ; Status if this is not a data bucket
00 EO 015% Sgb BBS #1RBSV_POSINSERT,- ; if RMS is positioning for insertion
0B 42 A9 8}23 Sgg IRBSW_SRCHFLAGS(R9),1608; then immediately return status
01 A644 95 0158 289 TSTB 1(R6)LR4L] ; if the current record is zero front
05 12 015C 590 BNEQU 160% ; compressed then save its address as
0098 (9 56 DO 8}25 231 MOVL R6,IRBSL_LST_NCMP(R9) ; the last seen zero-compressed record
091 8F BA 0163 S9§ 1608: POPR #*M<R1,R2,R3,R4,R8,R11> ; restore the registers used and
05 0167 594 RSB ;s return

<0
ox

LR R LN TR

———————— we - - T—

{

! M1
 RM3CMPRSS 16=SEP=1984 01:07:33 VAX/VMS M
' v04=000 £ ?6: J"

v04-00 P
RMSSRCH_CMPR = Search a Compressed Index 5-SEP=-1984 4:20 [RMS,.SRC ¢ g

r
RM3CMPRSS .MAR; 1
j .SBTTL RMSFRNT_CMPR - Compute a Record's Front Compression Count

! +4+4

FUNCTIONAL DESCRIPTION:

This routine's responsibility is to take a proposed point of insertion
of a new record, and determine the amount of front comgression the key
of the new record will have if it is inserted there. The record maybe

3 prinar¥ data, an index, or a SIDR record. There are two assumptions

which this routine makes:

1. The kezs of the records in the bucket are in ascending order and are
correctly compressed (ie - they are as compressed as they can be for
their place in the bucket).

2. Each record in the bucket is preceeded by the same number of bytes of
overhead, a constant for the type of file and type of bucket, and
key compression overhead always consists of two Ktes - the first the
size of the key that is present, and the second the number of bytes
of front compression.

INPUT PARAMETERS:
R6 - address where new record is to be inserted
R8 - address of key of new record
(including key compression overhead)
IMPLICIT INPUT:

RS

BKT_ADDR

address of primary/index/SIDR bucket

BKT$B_INDEXNO = index number of bucket
BKT$B_LEVEL - level of bucket

R7 - IDX_DFN - address of index descriptor
TDX$B_KEYSZ - size of key

R9 - IRAB - address of IRAB
IRBSL_LST_NCMP - address of lLast key not compressed
IRBSL_REC_COUNT = number of preceeding records

R10 - IFAB - address of IFAB
OUTPUT PARAMETERS:
NONE

IMPLICIT QUTPUT:
NONE

ROUTINE VALUE:

RO = number of characters which can be front compressed
SIDE EFFECTS:

NONE

[elelelelelelelelelelelelelelelelelelelalelalelelelelalelalelelelalelalelelelelelelelelelelelelelelelelelelsle el
— e e o e o D e D D e o el o ol D o ol e e s s e e o o D) s e e o e el e e S D o o D o o o s S o s ol S e e D o S s
oo-ooooorooooorooooooooooooooooooooooooooooororororovONOMOCNOCKMOCOONMOMONMONONMONAONMOMCONAOAONOMOOMONAONMOFONMOFPOMONOROMOM
0 00 0o 0o 00 00 0o 0o 0o 00 0o 0B 00 0o GO 00 00 0o Co 0o G 0o GO 0o Co G0 00 0o Co 0o GO 0B 0o Co 0O 0O 0 0O 0O 0 0O CO G 0O GO Co 0D 0O 0o 0B 00 00 00 00 0o Co 0D
oooooorororOrOrOFOMOOAOrOMOrOOrOOrOOOOOFOOOOOFOOrOrOrOrOrOrOFOFOrOOOOMOMOMOMOMOOFONONONVYVWWA
VAVAUNES BN 85 85 85 8 85 85 8 B NN N N N N N WNHAIN) PO PO N PRI N PO PRI NN =2 b e e e e e = ek 2 O O O O OO0 OO OOV OVOY
N == OO 00 NS NN = O OO NN W 8 N = O 0 00 NOMN SN AN = O OV 00 NN N8 N = O 0 00 NN NS N 2 O 0 00 ~NO~

LA TR R A T A A TR A PR PR PR PR PR EE PR PR PR PR PR PR R A LA R L R L T T P P P P P P P PR A TR PR PR T PR PR PR PR TR PR R TR A T T

15

(16)

B

?

l

<2
o=

T TR TR e e s s s e e e e P TR TR DR L R R T T T T L L T P T P P PR PR PR PR TR PR PR P PR R PR LA D L T N

s e e e — ey

N1

RM3ICMPRSS 16-SEP-1984 01:07: AX/VMS Macro V04-00 Page 16
v04-000 RMSFRNT_CMPR = Compute a Record's Front g-SEP-19gk ?6:g4:33 RMS.SRCIJRM3CMPRSS.MAR; 1 v (}6)
16 2;3
16 & RMSFRNT_CMPR::
8815 8F 16 655 PUSHR #*M<R1,R2,R3,R4,R11> ; save the working registers
094 C9 DD 19 656 PUSHL IRBSL_REC_COUNT(R9) : save the record count
7E }7 ggg CLRL -(SP) : 0 is current front compression guess
17 659 ;
17 660 : If the size of the ke‘ is zero bytes, or if the new record is to be inserted
017 661 ; at the beainning of the bucket, then go return indicating that the key of the
017 66; ; new record will not have to be front compressed.
017 663 ;
817 664
68 95 017 665 TSTB (R8) ; if the new record's key size is zero
» 13 8};: gg? BEQLU 50% ; then return 0 bytes front compresion
51 55 O0E C1 0176 668 ADDL3 #BKTSC_OVERHDSZ,R5,R1 ; if the new record is to be inserted as
51 56 D1 017A 669 CMPL R6,R1 ; the first record in the bucket then
5% 18 0170 670 BLEGU 50§ ; go return 0 bytes front compression

<
o=

TR R R e e e e F R T PR P TR PR P T R TR L T A L L L L L L L R L L L T L L T L PR L LA A T LA AT A TR P T E PR TR T R T

S —— — , r—-

B 2 !
: 8 EAXIVHS Macro V04-00 Page }

12-SEP-1984 01=87 RM3
RMSFRNT_CMPR = Compute a Record's Front ~SEP=1984 16:24: RMS.SRCIRM3CMPRSS . MAR; 1 (

RM3CMPRSS
v04-000

oW
oo~y
~

<
g

Before a determination can be made of the front compression that will be

required for the key of the new record there are some necessary preparations.
Register Usage: 5
RO = Size of the key of the current record in the bucket.

R1 = Set to the type of bucket for determining the amount of record overhead.
Offset to the Last character of the current record's key.

RZ2 = Offset to the character in the key of the new record where the
comparison is to resume.

R3 = Number of bytes of the new record's key remaining to be compared with
the key of the current record.

R4 = Number of bytes of record overhead, not including key compression bytes.
RS = Address of the beginning of the bucket in memory.
R6 = Address in memory of the current record in the bucket.

R7 = Addre s of the index descriptor.

R8 =~ Address of the key of the new record to be inserted.
R9 = Address of the IRAB.

R10 - Address of the IFAB.

N O e I e R i e I I I e TR e e e T I R e R I e e

OO0 OOVOV00000000000 N NN NN NN NNNNNNNNNNNNNNNNNNNNNNNNSNSNNNNNN
NNNNNNNNNNNNNNNNSNNSNSNSNSNSNN OO OCVOCMOCOCOCMOCOCOo>o>OoOorOrOrOrOMOAOAOMOMOOM

PONVNIN) = b b e e e e e ek 2 O O O O O O OO OOV VOV VOV VOOV N NNNNNNN
N = OO 00NN NS AN = OO 00 NN N SN N = © 0 00 N O WSS N — OO 00 NN N BN AN = OO 00 NIOMN WSS AN

([elclealealelealelclelealeleleleleleleleolelelelelelelelelelelelelelele]
OO == OO NNNLITIT I AT AN AT AT AN AT T T T T T T T T T TR T TR R M

R11 - Address in memory of the bucket address where the new record is to be
inserted.
58 56 DO MOVL R6,R11 : save the point of insertion in R11 and
56 0098 €9 DO MOVL IRBSL_LST_NCMP(R9) ,R6 ; initialize REC_ADDR to the address of
: the last zero-compressed record
51 O0C A5 9A MOVZBL BKT$B_LEVEL(RS) ,R1 ; if this is an index bucket, then as
06 13 BEQLU 10% ; index records do not contain any
56 D4 CLRL R& ; overhead initialize R4 to 0, and skip
0OE N BRB 308 : call to determine record overhead }
01 AS 95 108: TSTB BKT$B_INDEXNO(RS) : if this is a primary data bucket, ;
83 13 BEQL 20% ; setup Rl with a 0, else it is a SIDR g
3 G B MNEGL #1.R1 : bucket and a -1 is placed in Rl ‘
FEG4' 30 208: BSBW RMSREC_OVHD ; determine the amount of overhead in
5« 50 DO MOVL RO,R4 ; each record and store it in R4

N T T T R R T AT A TR A TR A TR R PR T R R L LI PR LR LR R LR L L I PR TR I A T PR T E T ETE PR A TR TR T AL EE P D L R A DA R D L O T

c 2 |
RM3CMPRSS 16=SEP=1984 01:07:3 AX/VMS Macro V04=00 Page 18 | RM3
v04-000 RMSFRNT _CMPR = Compute a Record's Front g-SEP-19gb 16:g4:23 !RHS.SRCJRHBCHPRSS.HAR;1 . (20) | V04
19F 725 i H
19¢ 7 9 : | :
19F 727 ; The records in the bucket are assumed to be in ascendin? order and correctly H
19F 728 ; compressed. Therefore, if RMS's current best guess for the front compression :
019F 729 :; of the key of the new record is Less then the front compression count of the -
819F 730 ; key of the current record, then there will be no need to compare the two keys. :
19F 731 ; because the current record's key can not contribute any more to the :
819F 7 i ; compression of the key of the new record then was contributed by the key of :
19fF 7335 ; lLast record the new record's key was compared with. Only if the current front :
019F 734 ; compression estimate and the front compression count of the current record are :
019F 735 ; the same will it be necessary to compare the two keys, because only then can :
819F 4 9 ; the key of the current record influence the compression of the key of the new :
19F 737 :; record. :
019F 738 ; :
019F 739 :
01 A6L4 6E 91 O019F 740 308: CMPB (SP),1(R6)[R4] ; if compression counts arn't identical :
25 12 01Aé 741 BNEQ 40% : then go position to the next record :
01A6 74§ :
01A6 743 ; : ;
01A6 744 ; Compare the key of the new record with the key of the current record. Because :
01A6 745 ; the current record's kg{ is fully compressed, rear-end truncated as well as :
0Q1A6 746 ; front compressed, it will be necessary to extend it by its Last character as -
01A6 747 ; necessary, Furthermore, the comparison starts in the key of the new record, :
01A6 748 ; not with its first character, but with the first character past those RMS has :
01A6 749 ; already determined will be front compressed. :
01A6 750 ; :
01A6 751 : : :
S0 6644 9A 01A6 75% MOvVZBL (R6)LR&], RO ; setup RO and R1 with the size of and :
51 01 AO44 9E OQ1AA 75 MOVAB 1(RO)CR&],R1 ; offset to the Last character in the :
8}:: ;gg ; current record's key respectively ;
52 DO OQ1AF 756 MOVL (SP) ,R2 ; setup R2 and R3 with the offset to :
53 20 A7 9A 01B2 757 MOVZBL IDX$B_KEYSZ(R7),R3 : the first character to be compared :
53 2 01B6 758 SUBLZ R2,R3 ; and the number of bytes to compare in 3
0189 759 ; the new record’'s key respectively :
e e =
53 6641 02 A644 S50 20 0189 76 CMPC5 RO,2(R6)[R4],(R6)[R1],- ; compare the ke¥ of the new record :
02 AB&2 8}52 ;24 R3,2(R8)[R2] ; with the key of the current record :
6E 53 SB (3 01C4 765 SUBLY RB8,R3,(SP) ; compute a new best guess for the front 3
6E 02 (2 01C8 766 SuBL2 #2,(SP) : compression of the new record's key 3
01C(B 767 ; correcting for compression overhead 3 3
| @
| H
i :
r .
SR AP

RM3CMPRSS
=000

D 2 g
V04)

16=-SEP=1
RMSFRNT_CMPR - Compute a Record's front g- EP=1

g AX/VMS Macro V04~00 Page

r
RMS.SRCIRM3CMPRSS .MAR; 1

8¢ 34:90:33

Increment the current record pointer to the next record in the bucket. If the
address of the new current record is the same as the address of the point

of insertion of the new record, then go return the number of bytes the key of
the new record will have to be front compressed. Otherwise, go determine
whether the front compression of the key of the current record is the same

as RMS's current guess of the front compression of the key of the new record,

LT TR TR PR PR PR TR TR LR 2

1(B 9
1(B ;??
18 77
1(B 77;
1(8 77
1(B 774
1(B 775
1(B 77?
18 77 and the two ko‘s will have to be compared, or whether the latter is
}Eg ;;8 greater-than the former and they will not have to be compared.
1(B 780
FE32' 30 }EE ;g1 408$: BSBW RMSGE TNEXT_REC ; position to next record in the bucket
58 56 D1 0Q1CE 7 g CMPL R6,R11 : if RMS has gositioned to the point of
W §}g1 ;gg BLSSU 30§ ; insertion then returr, else continue
103 786 ;
01D 78? : Return the number of bytes the the key of the new record will have to be front
8}8 ;gg ; compressed if the new record is to go at the indicated place of insertion.
810 790
50 BEDO 01D 791 508 POPL RO ; Load front compression count into RO
0094 89 BEDO 01D6 POPL IRBSL REC-CgUNT(R9) ; restore the record count
O81€ 8F BA 01DB 79 POPR #*M<RT,R27R3,R4,R11> : restore the working registers and
05 O1DF 794 RSB ; return
01E0 795 .END

i
S

2=

TR L e e e e T T T P R L L L L L L T L L L L T T T L R L L L L TR TR LR L L L T

RM3ICMPRSS 16-SEP-19 AX/VMS M v04-00
Symbol table g-SEP-19g ? g 3 RMS. SRCJ H RSS.MAR;1
$$.PSECTY _EP = 80 ?0
SSRMSTEST = A
$SRMS_PBUGCHK = 00 18
$SRMS " TBUGCHK = 00 8
$SRMS “UMODE = 4
BKT$B_INDEXNO = 00001
BKTSB_LEVEL = C
BKTSC® _OVERHDSZ = 0000000€E
BKTSW_FREESPACE = 000 ng
1DX$SB_KEYSZ =0 8 020
{;B:: Kguggl = 0000 024
IRBSB_SPL BITS = 8888862
IRBSL_KE YBUF = 0000030
IRBSL_LST_NCMP = 00000098
IRBSL_LST_REC = 0000004C
IRBSL_RECTCOUNT = 00008094
IRBSM_DUPS_SEEN = 0000 088
IRBSV_DUP_REY = 0000000
IRBSV LAST 6T = 0000000A
IRBSV_POSINSERT = 0000000
IRBSW_SRCHFLAGS = 0000004
IRCSV_DELETED = 0000000
IRCSV_RRV = 0000000
IRCSVTRU_DELETE = 00000005
RMSFRAT _CMPR 00000168 RG 01
RMSGE TNEXT_REC TERERREN x o0
RMSREC OVMD Y232222) W 01
RM$SRCA_CMPR 00000000 RG 01
e nsc s e e o oo ¢
! Psect synopsis !
L +
PSECT name Allocation PSECT No. Attributes
ABS 00000000 ¢ 0.) 00 (0.) NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
RH&RHSS Q00001E0 (480.) 01 (¢ 1.) PIC USR CON REL GBL NOSHR EXE RD NOWRT NOVEC QUAD
$ABSS 00000000 (0.) 02 (2.) NOPIC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
L 4
i Performance indicators :
Phase Page faults CPU Time Elapsed Time
Initialization 3 80:00:00.97 0: 0:01.14
Command processing m 0:00: 2. 0:00:04.
Pass 1 240 0:00:05.9 8:8 :19.
Symbol table sort 0 0:00:00.7 :00:01.4
Pass 164 0:00: .02 0:00: .i1
Symbol table output S 0:00:00. :00:00.13
Psect synopsis output 1 0:00:00. 5 : 8 . 34
Cross-reference output 0 8: :00. : g.go
Assembler run totals 554 :00:09.71 0:00:35.89

The working set Limit was 1350 pages.

Page (S

: |
2)§
|

<®
A4

B 80000000000 BeBe B850 8.%88s%s%000800, LA TR PR T T L P P P P T T P P PR P RN PR TN TR LR T

2
RM3CMPRSS 16=-SEP=-1984 AX/VMS Macro V04=00
VAX=11 Macro Run Statistics g -SEP=1 93 ?6 36 38 RMS. SRCJ 3 CMPRSS.MAR:1

34246 bytes (67 pages) of virtual memory were used to buffer the intermediate do

There were 30 pages of symb tlblo space alloca ed to hold 509 non-local snd local symbols.
source Lines were read in Pass 1, producing 14 object records in Pass

16 pages of virtual memory were usod to define 15 macros.

............................

Macro Library name Macros defined
SDUA :[RMS.0BJJRMS .MLB; 1
SDUA :LSYS.0BJJLIB.MLB;1
55$DUA28: [SYSLIBISTARLET.MLB; 2

TOTALS (all Libraries) 1

597 GETS were required to define 11 macros.
There were no errors, warnings or information messages.
MACRO/LIS=LISS:RM3CMPRSS/0BJ=0BJS :RM3CMPRSS MSRCS:RM3CMPRSS/UPDATE=(ENHS :RM3CMPRSS) +EXECMLS/LIB+LIBS:RMS/LIB

e 3

Nl

RM?

<
<

B0 e 00 00 B BeBe 8080800080980 5050000000000 000s9s50: %N EVEVEVEVE VRNV VI VEVEVENE VL VEVEVE VIV VLRIV TIRINENE DR,

o

