333333333

AAAAAAAAA
AAAAAAAAA

§
:

NNN
NNN
NNN
NNN
NNN
NNN
NNNNNN
NNNNNN
NNNNNN

NNN
NNN
NNN

NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNN
NNNNNN
NNNNNN
NNNNNN
NNN
NNN
NNN
NNN
NNN
NNN

J 16

AAAAAAAAA

AAAAAAAAA

AAAAAAAAA
AAA RAA
ABA AAA
LR LEE
AbA AAA
AAA AAA
AAA AAA
AAA AAA
AAA ALK
AAA AAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
ABALAAAAAAAABAA
ALA AAA
AAA ARA
AAA AAA
AAA AAA
AAA AAA
hAA ABA

GGGGGGGGE
GGGGGGGE6
6GGGGGGGG6

GGGGGG
GGGGGG
GGGGG6

GGGGGGGGE
GGGGGGGE6
GGGGGGGG6

GGG
GGG
GGG

GGG
GGG
GGG

GGG
GGG
GGG

mmm
mmm
mmm
mmm
mmm
mmm
mimm
mmm
mmm
mimm
mmm
mmm

mmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm

mmm

mmm

mmm

mmm

mmm

mmm

mmm

mmm

mmm

mmm
mmm
mmm
mmm
mmm
mmm
mmm
mmm
mmm
mmm
mmm
mmm

D 15

FILEID*+*VMSINSTAL

D e e e e N e oy Sy Sy
b b B B e e B e e o e o e o

e
——
b
wun X 11
wwun 711717,
wwn v wwv
wwv wwuv wn
wwv wwnv wwn
wun v 717
wwuv wwnvn wwv
.17, wunv wwv

VW 7,17,

1.1, wn
TEETTITITLIIZTZZTZZZ
F

=
=2
=
=
==
==

TEEZZTIZIZIZTZIZZZZZ
EZTZTILTTELETITZTZTZTZ22
g g Lo Lo]
s]

lemlanlon bop b lon lon Lan Lo o Lo Lo Lo Lo]
D) S S)) G) G G)) G] By
— e Sy g

— —
wuv wvurunwv
wuv v
wwvm wwuv wwv
wuv wwvm wuv
wv vV wv
wuv wvv (% 1%]
wvuvm wwvm wwvm
wwvm wwm wv
(e L v L7] wwv
(P LV XV, 7] wuvm

S35 >>
2> >
>>
>
>>
>>
>>
>2>
S>3 >>
S>>

Wi [V V)
Wil L L
[N iy bl
Wil Wi bl
shd il bt bt R
e) wlu S LA
RSN iy Lhd b
wul L Lid et

[RIVEISVITV [VE SVERTU VU JNGAVETVE JVEYVE]
)) A LA LA B L)) R L A A LA

* LP—hal —t ® EE C W I-Hl.ﬂom.mnv
M WRBX&D> --> 0. M e o =3
. . . s
. . . .
L] L] © Kl
. . . .
-l d
_ o
i —d
, il il
+ -
{ - =d
| -
_ -
| -l el)))))) d)) i) D
h -) e))) el el e)) d D
“ << CCC<CCL<<
_ dddddd<dCcCT<<
“ << <<
< < <<
_ < < o <
<< <<
<< <<
ey 33
qCgCC<<< <<
dddddd<d S
——
o b
b~
e

VMS Development
16 September 1984

DEVELOPER'S GUID
DEVELOPER'S GUID

to the

VAX/VMS VMSINSTAL PROCEDUR
VAX/VMS VMSINSTAL PROCEDURE

Th

S
fo
ex

Al
ca
is

F 15

1 INTRODUCTION

VMSINSTAL is a procedure which supports the installation of software
roducts on an existing VAX/VMS system. It is used to install both
S products (updates and up?rodcs) an? optional software products.
It completely subsumes the functionality of VMSUPDATE and the current
VMSINSTAL. Our current plans are to remove VMSUPDATE and the old
VMSINSTAL in a future major release.

This document describes the features of VMS V4.0 VMSINSTAL, and
out a set of guidelines for layered products to use when desi
their installation procedures. Therefore, some of the feag
described herein do not agpty to the VMS v§.x

The use of VMSINSTAL and adherence to the guidel
the following goals.

Lay
nin
ure
¥orsions of VMSINSTAL
nes will accomplish

0 Product kits are composed of BACKUP savesets, which allow
files Llarger than a singlo console volume to be included in
the kit. urthermore, BACKUP can recover from media errors
in some cases.

0 Products may be installed from a wide variety of media,
including console media, tapes, disks, and the network.

o Multiple products can be included on the same distribution
volume. This is wuseful for software specialists and may
become a distribution scheme in the future.

o Consistency among software product installations will be
increased.

o Software product installation procedures should be more
immune to changes in VMS from one version to the next.

1.1 Software Product Conventions

In order tovgroduco a software product that can be smoothly integrated
into the S environment, and that can coexist with other products,
you must follow certain conventions when designing and building the
product. These conventions are described in detail in various
documents available from the Spit Brook SQM group. ALl such documents
can be obtained by logging into the VMSINFO account on AURORA
(password VMSINFO).

4.

Th
an

Pa

G 15

1.2 ldentifying Products

Each VAX software pro?uct is identified b{ & facilit; code. This is a
sequence of to six alphameric characters. The facility code must
be registered with the central VMS Produst registrar, who can be
contacted by sending mail to AURORA::Facility_Registrar.

As versions and dates are released, they are assigned unique
version/update numbers. These are -d‘git integers in the form vvu,
where vv is the major version number and u 1is the update. Ffor
::osg%o. VMS V3.0 receives the number 030, while the first update will

1.3 A Quick User's Guide

The s‘ston manager installs software products by Llogging into the
SYSTEM account and invoking VMSINSTAL. No other commands are required
%ottstablish the environment. The VMSINSTAL procedure is invoked as
ollows:

$ @SYSSUPDATE:VMSINSTAL (product,...] [devicel
The first parameter specifies the Rroduct(s) that the user wishes to
install. VMSINSTAL prompts if this parameter is omitted. A product
can have one of three forms.

o facvwu = The particular version/update of the specified
product is installed.

o fac = AlLL versions and updates of the specified product are
installed in order.

o * - Every product on the distribution volume is installed by
installing all versions and updates in order.
Products are installed in alphabetical order.
The second parameter identifies the device where the distribution
vo%g:o: are to be mounted. VMSINSTAL prompts if this parameter is
omitted.

The procedure also accepts various options which are described in
Chapter 5.

&,

T
t!

bl
(s

Pi

4.

T
c¢

vi

mn
S)
Ve
re

H15

2 PACKAGING SOF TWARE PRODUCTS

A VMS software groduct is distributed to the customer in a form called
3 "W . A kit consists of ocne or more BACKUP savesets, each with a
standardized name. VMSINSTAL allows these savesets to reside on anl
disk or tape media, including, of course, the console media. Eac
saveset is named as follows:

vv 1is the major version number
U is the update number
s is a sequence .etter

facvvu.s where fac is the faiility code

The facilit; code and version/update number have alroad¥ been
described. he sequence letter provides for 26 savesets per kit. The
following paragraphs describe the kits in greater detail.

o Floppy = Each volume Label for a floppy kit should be in the
format facnn, where fac 1is the facility code and nn is a
sequence number. The kit must be created directly on the
master distribution volumes using BACKUP to create sequential
disk savesets. The follouin? qualifiers are required:
/INTERCHANGE, /VERIFY, /BLOCK_SIZE=9000, /GROUP_SIZE=25. The
Latter two result in optimal use of the blocks on the
floppies. Don't forget to initialize double-density floppies
for single-density use, or the SDC will have problems.

o TUS8 = Just Llike floppies.

0 Magnetic Tape = The na?netic tape volume label should be in
the format fac, where fac is the facility code. The kit must
be created directly on the master volume wusing BACKUP to
create savesets. The following qualifiers are required:
/INTERCHANGE, /VERIFY. The savesets must be placed on the
tape 1in order. If desired, any number of kits may be placed
on one magnetic tape.

o Files=11 Disk = A kit may be created diroctl¥ into an
arbitrary directory of a Files-11 disk. This is not
currently a distribution method, but may become one in_ the
future. The follouina qualifiers are required:
/INTERCHANGE, /VERIFY. 1If desired, any number of kits may be
placed in a directory.

The conventions described for volume labels are strong sug?estions,
although VMSINSTAL requires no particular Labelling scheme. The owner
UIC of files in the savesets is irrelevent. The protection of files
must be as specified in section 3.3.1,

Pi

‘u

T
cc

cc

4.

T
st

115

2.1 The SPKITBLD Procedure

The rather messy rules described above are embodied in a DCL pr?c'duro

named SPKITBLD.COM. This procedure may be used to build your kits, or

you may steal code from 1 or your own procedures. The Llatest

;:rsiont of SPKITBLD will be kept in the same public directory as this
cument.

SPKITBLD is invoked as follows:
$ @SPKITBLD [facvvul [device) [a-files]

The first parameter is the name of the kit to be built. VMSINSTAL
prompts if this parameter is omitted.

The second parameter is the device on which the kit is to be built.
If you want to build the kit in a Files=11 directory, then the
arameter can finclude a directory specification. Volume
nitialization 1is performed when appropriate. VMSINSTAL prompts if
this parameter is omitted.

The third parameter is a list of specifications of the files to be
placed in the primary kit saveset A, Stickiness prevails and
ui%g:o;ds are allowed. VMSINSTAL prompts if this parameter is
omitted.

SPKITBLD always prompts for information about additional savesets.

P

J 15

3 THE INSTALLATION PROCEDURE

The VMSINSTAL procedure, a bundled and supported VMS fa 1lit‘
provides the Llogic to install software products on an exist ni vhs$
system. It accomplishes this installation b¥ interacting in a
standardized fashion with the software product kit.

falls into three major categories.

1. VMSINSTAL aasunos that the kit has been created as described
in Chapter 2.

This interaction

2. VMSINSTAL assumes that the principal saveset is the one with
sequence letter A. This saveset must begin on volume 1 of
the kit, and it must contain a DCL “procedure named
KITINSTAL.COM.

3. KITINSTAL.COM drives the installation of the product by
requesting services from VMSINSTAL. These services are
requested by recursively invoking VMSINSTAL with the
app[? ri:ta parameters. Hence they are referred to as

callbacks''.

3.1 Overview Of VMSINSTAL Logic
VMSINSTAL performs the following steps when invoked.
1. Initialize and set up the standard environment.

2. Prompt for the device parameter if not supplied by the user,
and verify this parameter.

5. Ask the user which products are to be installed from the next
distribution volume set. Also allow the user to exit. Mount
ghetf{{sg volume of the set and make a List of products to be

nstalled.

4. Establish the final file environment for the installation.
This includes the use of tailoring to create the maximum free
space on the system disk (if this is a small disk system).

5. Prepare to install the next product on the Llist. If there
are no more products, go back to step 3.

6. Set up the environment necessary to install the product.
This includes the creation of a working directory for the
kit's installation procedure.

m
S
=
S
r

Pi

K15

7. Restore all of saveset A into the kit's working directory.

Invoke the KITINSTAL procedure restored from saveset A. The
rocedure will utilize callbacks to offeﬁt the installation.
ome callbacks may not be performed immediately, but deferred

until after the procedure has completed.

9. Performs all callbacks which were deferred in step 8.

10. Invoke the product's Installation Vverification Procedure
(IVP) if available.

11. Clean up_and delete the kit's working directory. Loop back
to step 5 tor the next product.

12. This is a special step that is onl¥ performed if the system
crashed during an installation. It is invoked directly from
StARIgPEC?T to clean up after the crash. See Appendix for
more detail.

13. This is a special steB that is performed when cop¥ing kit
savesets into a disk directory for Later installation. See
Chapter 5 for more detail.

The following sections expand upon the above information.

3.2 The Kit's Installation Procedure

The primary installation procedure for a software product is named
KITINSTAL.COM, Subprocedures may also be supplied if needed. The
Brinary procedure must occoEt a request code as its first parameter.

hen the procedure is invoked by VMSINSTAL to install the product, it
does so in the following manner.

$ SKITINSTAL VMIS_INSTALL kit=-debug

Therefore, every kit's procedure must handle the request code
VMIS_INSTALL, which means to perform an installation of the product.
The request code is also used under other circumstances, as described

no
throughout this document. The procedure must not blindtz perform a
GOTO to the request code, treating it as a label. This is because we
may add request codes in the future, which will cause an error. The
procedure must check for specific requests and ignore all others.

The kit-debug parameter is a boolean value which specifies whether or
not the kit debug option was requested when VMSINSTAL was invoked.
Please see Chapter for more detail.

P

The installation procedure must exit back to VMSINSTAL with

If the installation was successful, exit with the status VMI
If it failed in an unrecoverable way, exit with \'\MI$ FAILURE
unknown request code is received, exit with VMIS$_UNSOPPORTED

3.3 The Installation Environment

When VMSINSTAL executes the kit's installation procedure, it provides
a strictly-defined environment in which the procedure must operate.

3.3.1 Defaults

When the kit's installation orocedure is invoked, the following
process defaults will be in effect. The procedure must not change the
defaults except via callbacks.

0 ALL components of the message prefix will be displayed.
o ALlL privileges will be enabled, except for BYPASS.

o The UIC will be [1,4].
0

The default file protection will be system:RWED, owner:RWED,
a;oup:RUED world:RE. This may be changed in the future.

te that files restored from a product saveset will keep
their ori?inol protection, which should be the same as the
default. The process default only pertains to files created
during the installation.

0 The default device and directory will be MISSING:[MISSING];
therefore all file references must be explicit.

3.3.2 Naming Conventions

Any logicol names or global s‘nbols which VMSINSTAL defines will begin
with the prefix VMIS. If the kit's procedure needs logical names or
lobal symbols, their names must begin with the facility code and a
ol lar si?n (e.g., FORTS). The kit's procedure may define local
symbols with any name.

The kit's procedure should be very careful to avoid abbreviations in

no

DCL commands. Verbs must not be abbreviated because special symbols
may be defined for them b{ VMSINSTAL. Qualifiers should also be
sgelled out, but abbreviation to four letters or more is allowed if
absolutely necessary.

T
P

P

Tl

M 15

If the kit needs installation ¥ubprotcdur's. they may be assigned any
name. Any number of additional levels of procedure invocation are
allowed (up to the Limits of DCL), but callbacks may only be performed
from KITINSTAL.COM and its direct callees.

3.3.3 Logical Names

The following logical names are defined when the kit's procedure is
invoked.

0 VMISKWD = The kit's uorkin? directory created by VMSINSTAL.
ALl references to the working directory must be made via this
logical name.

0 VMISROOT - The top-level system directory for the taratt

system on which the product is to be installed. ALl
references to system directories must be of the for

references to system directories must be of the form
VMISROOT:[SYSxxx]. You cannot use the SYS$ logical names

VMISROOT:[SYSxxx]. You cannot wuse the SYS$ logical names,
nor can you refer directly to the system device

nor can you refer directly to the system device.

0 VMISSPECIFIC - The system-specific top-level system directory
for the target system on which the product is to be
installed. In those cases where no common system directory
structure 1is in wuse, VMISSPECIFIC will be identical to
VMISROOT. If a common system directory exists, VMISSPECIFIC
will still point to the system-specific top-lLevel system
director¥ while VMISROOT will point to the common top-level
system directory.

3.3.4 Global Symbols

The following global symbols are defined when the kit's procedure is
invoked.

0 TRUE and FALSE - Symbolic constants which can be used to
assign boolean values to symbols.

0 VMISALTERNATE_ROOT - A boolean symbol which specifies whether
or not the product is being installed to an alternate root.
You should try to write an installation procedure which
doesn't need to know.

0 VMISCALLBACK = This is the symbol that 1is wused to perform
callbacks to VMSINSIAL.

Pi

Tl

Pi

N15

o VMISCOMMON_ROOT = A boolean symbol which specifies whether or
not the product is being installed to a common system root.

0 VMISCONSOLE - A boolean symbol which specifies whether or not
the distribution device is a console device.

0 VMISDEVICE = The distribution device as an ASCI! string.

0 VMIS FAILURE - The failure status returned by callbacks and
by the kit's procedure. It has a severity of warning.

0 VMISPLACE - The location of the distribution volume as an
ASCII1 string.

0 VMISPRODUCT - The product identification in the standard
format facvvu.

© VMISREMOTE - A boolean s¥mbol which specifies whether or not
the distribution volume is on a remote node.

0 VMIS _SUCCESS = The success status returned by callbacks and
by the kit's procedure.

0 VMIS_UNSUPPORTED = The status returned by the kit's
in;tallation procedure if it 1is passed an unknown request
code.

0 VHISVHS_VER§ION - The version of VMS which is currently
running. f a released version, this string will have the
form "RELEASED,vwu''. If a update field test version, this
string will have the form '‘UPDATE FT,vwu'', Finall‘. if an
Hﬂg" e field test baselevel, this string will have the form

GRADE FT,xxxx'’', where xxxx is the full baselevel
identification (not necessaril¥ four characters). You cannot
tell from the baselevel identification which version is being
field tested. (See the appendices for examples on how to
decode VMISVMS_VERSION.)

3.4 Additional Conventions
This section describes some additional conventions that the kit's

installation procedure must follow, fhese are miscellaneous
convent ions and are described in no particular order.

10

=TI OTMMOMNDZ R R =T OMMOMNMDZ B NG =TT OMMOMNDZE M R =T OMMOMNDZREr N =T OMMOND

B 16

3.64.1 Error Handling

The kit's installation procedures must have an ON WARNING statement to
tandle errors. These errors may occur in the kit's procedures
themselves, or they may be returned by a callback (VMIS FAILURE is a
warning status). In the best of all possible worlds, This OM WARNING
statement can just exit, propagating the status up a level:

$ ON WARNING THEN EXIT $STATUS

If the procedure must do some cleanup, however, then the error
handling might Look as follows:

% ON WARNING THEN GOTO ERROR

$ERROR:

3 S = $STATUS

% Clean up. You must close any files you opened.
$ Make sure to handle any errors that occur in the
$ clean up.

$ EXIT S

3.4.2 Asking Questions

Ask all questions of the user at the beginning of the installation
procedure, so that afterwards the user can go out for a quickie. If
the installation is being done from a fast device, such as a real disk

or tape, the wuser won't have to wait around during the entire
installation.

3.4.3 SET Command
Use of the SET command is Limited to the following cases.
© SET VERIFY if in kit debug mode.
0o SET ON and SET NOON
0 SET FILE to alter files in the kit's working directory only.

n

€16

3.4.4 SHOW Command

The kit's installation procedures must never rely on the format of
output from the SHOW command, or any other utility.

3.64.5 Compatibility Mode

The kit's installation procedures must not make use of compatib
mode under the assumption that it is bundled with VMS. Compatib

ility
ility
mode may be unbundled in the future,

3.4.6 Referencing Other Products

Installation procedures may reference and invoke other optional
software products. There are essentially four Llevels of such
referencing.

1. The procedures do not need to reference any other optional
products.

2. The procedures need to alter their flow based wupon the
existence of another roduct, but do not reference the
product. Use the FIND_FILE callback to determine tne
existence of the product.

3. The procedures need to reference another product's files, but
do not invoke the product. Use the FIND_FILE callback to
determine the existence of the product and set up a Llogical
name to reference a file.

4. The procedures need to invoke another product. Use the
FIND _FILE callback to determine the existence of the product.
Invoke the product in the standard fashion. NOTE that the
invocation of another product probably involves implicit
references to the other product's files. VMSINSTAL assumes
these files are in the system root or on a user disk.

3.4.7 Global State

If the installation procedure changes the global state of the system,
except insofar as callbacks are concerned, it must restore the state
before terminating. Some examples are as follows.

12

D 16

o If the installation procedure needs to INSTALL an image in
order to complete the installation, it must deINSTALL the
1no?o before oxitin?. Thi’ pertains only to images needed
during the installation itself. INSTALLs that must be done
for product wuse should be done in the groduct-sgecific
startup command procedure (see the SET STARTUP callback).

3.5 The 1vP

Each product should provide an Installation Verification Procedure
which verifies the completeness and accuracy of installation. If the
kit's installation procedure declares that such a procedure exists,
then VMSINSTAL will perform it after the installation is completed.
VMSINSTAL does this by invoking KITINSTAL as folows.

$ QVMISKWD:KITINSTAL VMIS_IVP

Thus, a kit's installation procedure must handle the request code
VMIS_IVP if it declares an IVP. VMSINSTAL tries to set up a realistic
on:iron:cnt for the IVP before it runs. The following points are
relevent.

0 ALL files will be in their final resting place.

o If the installation procedure declared a froduct-s ecific
startup procedure with the SET STARTUP callback, VMSINSTAL
will invoke it before the IVP.

0 The default diroctor{ will be set to the kit's uorkin?
?g;ectory. thus simulating a user's default directory in rea
e.

0 The IVP cannot use callbacks.

KITINSTAL.COM must exit back to VMSINSTAL with a status. Exit with
VMIS_SUCCESS if the IVP is successful, or with VMIS_FAILURE if the IVP
is unsuccessful. Note that VMSINSTAL does not attempt to ''undo'’ an
installation if the IVP fails. It is up to the installation procedure
to ensure that the ?roduct is installed in its entirety and to further
ensure that the [VP will not fail. This na‘ sound sarcastic, but
adhc:;nce to such a philosophy will produce the best installation
procedur e,

13

E 16

& THE CALLBACKS

This chapter describes the callbacks provided by VMSINSTAL. The
syntax of each callback is pro?on ed in the standard pseudo=-BNF
for?at.ti Some of the metalinguistic symbols require further
explanation,

0 KEYWORDS = Ke;uords are specified in upper case. They must
not be abbreviated in any way.

o logical = A logical name to be defined ?(the callback.
These logical names must begin with the facility prefix fac$.
By convention, use the logical name consisting sjnply of ghe
prefix {if it will never be referenced after being specified
in the callback.

o s{nbol = A global symbol to be equated b{ the callback.
Global symbols must begin with the facility prefix fac$.
Again, use just the prefix if the symbol is never referenced.

0 dd - A disk and directory specification. References to the
kit's working directory are made using the lLogical name
VMISKWD. References to system directories are made using the
logical name VMISROOT and an explicit directory, such as
VMISROOT:(SYSLIB]). Other references must specify an explicit
device logical name (not device number) and a directory. A
logical name may be used for the entire specification. At
the time of reference, the disk must be mounted and the
directory must exist.

o nt - A file name and type. The type is always required, but
no version may be specified. Neither logical names nor
wildcarding are allowed.

0 ¢dnt - A complete file specification, consisting of a disk,
director;. name, and type. A logical name may be used, but
wildcarding is not allowed.

o options - ALL options are specified as a comma-separated list
of single=character codes. Embedded spaces are not allowed.

ALL callbacks return an exit status. VMIS_SUCCESS is returned if the
callback could be completed without error. VMIS_FAILURE, a warning,
is returned if anything went wrong.

14

F 16

4.1 ASK

This callback is used to ask the user a question and obtain a vali
answer. It also supports the question mark help feature of VMSINSTAL

$ VMISCALLBACK ASK symbol prompt [default] [options] [help]
Parameters

d

symbol = The name of a global symbol to be equated to the answer.
T ; onsuo; will be blank compressed, blank trimmed, uncommented,
and upcased.

prompt = A quoted strin? containing the question to be asked. Do
not include any trailing punctuation or whitespace; this is
formatted automatically.

default = The default answer. If not specified, the wuser must
enter an answer, Specify the default for boolean questions as
“'YES'' or ''NO'.

options - A comma-separated List of single-character options.

© B - Boolean. The user must answer YES or NO. The integer 1
or 0 is returned as the answer.

© D - Double space. A Lline is skipped before asking the
question.

0 H = Help first. The help information is displayed before the
question is asked. This is wuseful for very complicated
questions,

0 I - Integer. The user must answer with an integer.

0 N = Null answer. A null answer is allowed. This only makes
sense when a string is requested and no default is provided.

o R~ Rina bell. The terminal bell is rung before the question
is asked.

o S~ Strin?. The answer can be any character string. This is
the default data type.

0 Z = CTRL/Z returned. If the wuser enters CTRL/Z, it is

returned as a string of the form '"*2''. Without this option,
CTRL/Z is ignored.

15

G 16

help = Help information. This can be ?nquote? stri?? containing
on.

the help, ?r a quoted procedure vo?at t procedure
invocation, it must b:?in with an at sign (@) and nal nvoke an‘
procedure in the kit. Typically it would invoke KITINSTAL.CO

and pass it a request code, as follows:
"@VMISKWD:KITINSTAL HELP_WHATEVER'

Because the request code does not begin with VMIS, it can't
conflict with a request code passed by VMSINSTAL.

4.2 CHECK_NET_UTILIZATION

This callback is used to check that there are enough free blocks on
the system disk to successfully complete the installation. The net

mus
block usage for a product must be obtained using the statistics option
(see Chapter 5).

$ VMISCALLBACK CHECK_NET_UTILIZATION symbol blocks
Parameters

symbol = The name of a global symbol, set to true if the required
free blocks are available, false otherwise.

blocks = The net number of blocks used by the product, that is,
the lngnber of blocks wultimately used when the installation is
complete.

4.3 CHECK_VMS_VERSION

This callback is obsolete, but 1is retained in VMSINSTAL for
compatability with V3. Use the VMISVMS_VERSION global symbol for
these checks. (See the appendices for an example on how to decode
VMISVMS_VERSION)

This callback allows you to check the version of the running VMS
system, in the event that your product has some dependency on the
version. A test is performed to determine if the specified version
requirements are met,

$ VMISCALLBACK CHECK_VMS_VERSION symbol [version] [baselevell

16

H 16

Parameters

synbo% = The name of a ?lobal symbol which is set to true if the
test is passed, false it not.

version = This parameter is used when a released version of VMS
is currently running. It is in the format vvu, and the test is
passed if the specified version of VMS, or a later version, is
:un:i:g.' {{ the parameter is omitted, all VMS versions cause the
est to fail.

baselevel - This parameter is used when a field test baselevel of
VMS is currentl¥ running. If in the format xxx, where xxx is the
baselevel identification oxcluding the leading X or Y, then the
test is passed if the speciiied baselevel of VMS is running., 1If
in the format xxx-¥¥¥. then the test is passed if a baselevel of
VMS in the specified ran?e is running. If the parameter is
omitted, all field test baseleve ¢

ls cause t test to pass.

4.4 CONTROL_Y
This callback must be invoked when the user enters CTRL/Y. The first
command in every installation grocedure must either be as specified
below, or it must go to a Label which performs cleanup and then the
CONTROL_Y callback.

$ ON CONTROL_Y THEN VMISCALLBACK CONTROL_Y
Notes

The callback returns a fatal status, which will result in the

execution of your ON WARNING statement. If you do not include
ever

this line in every command procedure, and the user enters CTRL/Y

at the wrong time, all hell breaks loose.

4.5 CREATE_ACCOUNT

This callback is used to create a new account in SYSUAF.DAT. It
should be used sparingly, if ever.

$ VMISCALLBACK CREATE_ACCOUNT username qualifiers

17

116

Parameters
username - The username to be associated with the account.

qualifiers = A sequence of qualifiers as accepted by the ADD
command of the AUTHORIZE wutility. The qualifiers must be
enclosed in quotation marks.

Notes

In most instances, software products need not create new
accounts. As an example, it is usually unnecessary to create a
system management account for your product, because the system
manager can perform all management from the standard SYSTEM
account. Your product must not assume that it knows the UIC for
a new account, but must ask the user.

4.6 CREATE_DIRECTORY

This callback is used to create a directory on the system disk or some
other user disk.

$ VMISCALLBACK CREATE_DIRECTORY {SYSTEM hierarchy) [qualifiers]
{USER dd)

Parameters

SYSTEM heirarchy = This combination of parameters is used when
you want to create a director; underneath the system root. The
directory name must not begin with ‘'SYS'', For example, SYSTEM
SYSHLP.FOO will create the directory VMISROOT : [SYSHLP.F00).

USER dd = This combination is used to create an orbitrgr{
diroctor‘ on a user disk. For example, USER WRKD$:[SNORK] wil
create the top-level SNORK directory on the user work disk.

qualifiers = A sequence of ?ualificrs for the CREATE/DIRECTORY
command . You can speci ‘ one or more of the follouing:
/OWNER_UIC, /PROTECTION, /VERSION_LIMIT. The qualifiers must be
enclosed in quotation marks.

Notes
Do not create directories on a wuser disk unless absolutely

necessary. Most layered products are associated with a
particular system root and thus should appear in that root.

18

J 16

&.7 DELETE_FILE

This callback is used to delete an o?solcto file created by a previous
installation. Remember, BYPASS privilege is not enabled.

$ VMISCALLBACK DELETE_FILE ddnt
Parameters
ddnt = The complete specification of the file to be deleted.

4.8 FIND_FILE

This callback is used by VMSINSTAL whenever it must locate a file
specified in another callback. You must also use FIND_FILE itself
when you need to reference a system file for some purpose not
supported b{ a callback. Files in the kit's working directory may be
referenced directly.

$ VMISCALLBACK FIND_FILE logical ddnt [default) locate [symboll

Parameters

logical = A logical name which will goint at the file when the
callback returns. ALl references to the file from that point on
must be made via the logical name.

ddnt = A full or partial specification of the file to be located.

default - A full or partial file specification to be used as the
default when parsing the previous parameter.

locate - A comma-separated list of single-character codes that
specifies how the file is to be located. The items in the Llist
ngst be chosen from the following, and must appear in the order
shown.

W - kit's Working directory. Check the kit's working
directory for a file with the matching name and type.

S - as Specified. Check the directory specified by the ddnt
and default parameters. If the file is not found there, and
this is a small disk system, check the corresponding
directory on the lLibrary disk, if any.

19

K 16

E - Error. If the file has not yet been found, produce an
error message and exit with status VMIS_FAILURE.

0 - system-specific root. Use the system-specific root, if
installing to a common root, when searching for a matching
name and type.

s‘nbol - This optional global symbol will be equated to reflect
the results of the callback, as follows.

SYMBOL VALUE MEANING

" W was included in the locate list,
and the fiie was found in the kit's
working directory.

& i 3 was included in the locate Llist,
and the file was found in the
specified directory.

5 E was included in the locate list,
and an error was reported.

None of the above.
Notes

If you ever try to reference a system file directly, without
going through some callback, your installation procedure will be
prone to breakage.

&.9 GENERATE_SDL_DEFINITIONS

This callback is used to generntc SDL definitions. The generated
files will be located in the kit's working directory with the language
specific file extensions.

$ VMISCALLBACK GENERATE_SDL_DEFINITIONS module_file_Language -
Cqualifiers] [options)

Parameters
module _file - The name of the module to be extracted from
STARLETSD.TLB for proccssinf ?{l SDL. If the module name is
-e’ e

preceded bz an ‘9", then modu is assumed to be a e,
found 1in VMISKWD: (i.e. shipped on the kit). This file should

20

L 16

contain one module name per line. VMISKWD:.DAT is wused as the
?g{ault file specification when searching for the module name
ile.

languago = The name of any supported SDL output Language. 1f
more than one langua?o output is desired, separate them with a
comma, and enclose the [ist with quotation marks.

qualifiers = This is an optional List of one or more valid SDL
qualifiers which will be applied to the SDL command. This allows
special processing to be done on the SDL output at the discretion
of the Llayered product. The qualifiers must be enclosed in
quotation marks.

options = This is an optional list of single character options,

separated by commas. There are none currently defined and is
reserved for future expansion.

4.10 GET_SYSTEM_PARAMETER

This callback is wused to obtain the current value of a system
parameter.

$ VMISCALLBACK GET_SYSTEM_PARAMETER symbol name
Parameters

symbol - The name of a global symbol to be equated to the value
of the parameter.

name - The full name of the parameter to be obtained.
Notes
There is no way to set the value of a system parameter. You may

make recommendations to the system manager, but you cannot set
the parameters.

4.11 MESSAGE
This callback is used to display a message in the standard VMS format.

21

M 16

$ VMISCALLBACK MESSAGE severity id text ...
Parameters

severity = The severity of the message. Use the standard codes
S, 1, W, and E. You may not generate a fatal error.

id = The mnemonic identification of the message. This allows
cross-referencing in your installation guide.

text - The actual text of the message(s). You can specify up to
three message Llines, the first of which will be prefixed with a
percent sign (X) and the remainder with a hyphen (=),

Notes
It is not necessary to use this callback when displaying Llarge

blocks of explanatory text. You should use it when displaying
important messages about the status of the installation.

4.12 PATCH_IMAGE
This callback is used to patch an existing native-mode image.

$ VMISCALLBACK PATCH_IMAGE logical patch=-nt [image=-ddnt] =
Coptions]

Parameters
logical = A logical name which will point at the patched image
when the callback returns. ALl references to the image from that
point on must be made via the logical name.
patch=nt = The name and tyﬁe of the file containing patch
commands. All desired patch commands, and only patch commands,
must be present in this file. The file must reside in the kit's
working directory, and may be deleted after the callback returns
in order to save disk space.
image<ddnt - The full specification of the image to be patched.
options - a comma-separated list of options.

o J = Journal. C(reate or update a patch journal in the same
directory as the image.

22

B e e e e et ot o s o = ¢ e m—

0 K = Keep. Do not purge old versions of the image.
© A - Absolute. Use absolute mode when patching image
| (PATCH/ABSOLUTE...)

‘Notes

It the iuago is not specified in the callback, it is assumed to
be specified on the first Line of the patch command file. This
line consists of an exclamation point and the full image
specification. Furthermore, if an ogtion list is present after
the specification, it is merged in with the option List specified
| in the callback.

4.13 PRINT_FILE
This callback is used to queue a file to SYSSPRINT for printing.
$ VMISCALLBACK PRINT_FILE ddnt [copies)
Parameters
ddnt - The full specification of the file to be printed.
copies = The number of copies to be printed. The default is one.

&.14 PRODUCT

This callback provides a simple facility for adding product=-specific
callbacks tc VMSINSTAL's caliback repertoire. When a set of products
form a logical grouping (e.g., VAX Information Architecture, RSX/VAX),
there may vcr{ well be some additional callbacks which the products in
the group would Like to share. In this case, the base product in_ the
group f(e.g., (DD, RSX) can g;ov1de a command procedure conta1nina
additional callback logic. The PRODUCT callback is the window throug

which installation procedures obtain the services of that procedure.

$ VMISCALLBACK PRODUCT procedure:callback parameter ...

23

S —— e

— |

P — e

iPoralotors

; procedure = The name of the procedure which provides the required
c:léa;ct. It is assumed to reside in SYSSUPDATE with a file type

0 o

callback = The name of the desired callback.

| parameter - The remainder of the parameters are simply passed on
! to the product-specific callback.

Notes

The status returned by the PRODUCT callback is the status

returned by the product-specific callback. Conventions for

ﬁgd\n i. groduct-specifnc callback procedure are outlined in
R $e

4.15 PROVIDE_DCL_COMMAND

This callback is used to add a DCL command to the DCL command tables.
I1f the command already exists, it is replaced.

$ VMISCALLBACK PROVIDE_DCL_COMMAND nt
Parameters
nt = The file name and type of the CLD file. It must reside in
the kit's working directory, and may be deleted after the
callback returns in order to save disk space.

Notes

The command is also added to the active process command tables.
V?u may add more than one command by using the callback multiple
times.

4&.16 PROVIDE_DCL_KELP

This callback is used to insert help into the DCL help Llibrary. If
the help already exists, it is replaced.

rL3

| S S —

o e s e -+

$ VMISCALLBACK PROVIDE _DCL_MELP nt

Parameters
nt = The file name and type of the help text file. It must
reside in the kit's working directory, and may be deleted after
the callback returns in order to save disk space.

Notes

You no{ provide more than one help entry by using this callback
multiple times. Only a top-level help entry may be inserted.

&.17 PROVIDE_FILE
This callback is used to provide a complete new file as part of the
software product. If the file already exists, a new version is
created.
$ VMISCALLBACK PROVIDE_FILE logical nt dd [options]
Parameters
logical = A logical name which will point at the file when
callback returns., ALl references to the file from that point on
mus” be made via the logical name.

nt = The file name and type of the file being provided. It must
reside in the kit's working directory.

dd - The target disk and directory for the file.
options - A comma-separated List of options.
0 K - Keep. ©0 not purge old versions of the file.

© L = Library. Put the file on the library disk if this is a
tailored system,

o 0~ S¥ste--specific. Move the file to the system=specific
root 1f installing to a common root.

Notes
no

Do not wuse this callback to provide arn image. See the
PROVIDE _IMAGE callback.

25

PAPPAPPAARPAPRAPRAPRARARRARAARRAARPRNRPRARPRPRARPARPAARAANANN

e e e e et a1 . e e 3 e

i E 1
'4.18 PROVIDE_IMAGE
This callback is used to provide a complete new image as part of the

software product. It the image already exists, a new version is
created.

$ VMISCALLBACK PROVIDE_IMAGE Logical nt dd [options] [eco-list]
Parameters

loTical = A logical name which will Roint at the image when
callback returns. ALl references to the image from that point on
must be made via the logical name.

nt - The file name and t¥po of the image being provided. It must
reside in the kit's working directory.

dd = The target disk and directory for the image.
options = A comma-separated lList of options.

o E - ECO List. The following parameter specifies a Llist of
ECO levels which are to be set in the image.

0 | = IMAGELIB. Add a sharable image to IMAGELIB.OLB so that
it will be automatically searched by the Linker.

0 K - Keep. Do not purge old versions of the image.

© L = Library. Move the image to the library disk if this is a
tailored system.

© 0 - System-specific. Move the image to the system=-specific
root 1f installing to a common root.

eco-list - A comma-separated List of ECO level numbers which are
to be set in the image. This parameter is used only if the E
option 1s present.

Notes
If the image was INSTALLed before the installation began, it will

be reINSTALLed afterwards. Compatibility-mode images must also
be provided with this callback.

26

S—

PP POPAPPRR APRPRY APRARARARAY AP APRPRY AP PR, AN

w— <ﬂo-<<°~ ‘------

- ...S_-.---.—o —

Gy Sp- o

S:ﬁ-----.--

- —_—

|

|
|

4.19 RENAME_FILE
This callback is used to rename a file which was created by a previo
installation. The file name and type can be changed, ‘u
cannot be moved from one directory to another,
SVMISCALLBACK RENAME _FILE ddnt new=-nt
Parameters
ddnt = The complete specification of the file to be renamed.

new=nt = The new file name and type for the file.

4.20 RESTORE_SAVESET

This callback is used by VMSINSTAL to restore the primary kit savese
You may also use it to restore savesets other than the primary one.

$ VMISCALLBACK RESTORE_SAVESET saveset [options])
Parameters

us
L

t the file

t.

saveset - The single-letter identification of the saveset to be
restored. The entire contents of the saveset are restored into
the kit's working directory. If a file to be restored already

exists in the directory, an error results.
options - A comma-separated List of options.

© N - Next volume. The saveset begins on the next volume of
the distribution volume set. VMSINSTAL will figure that out
if you don't specify this option, but with a few funny

messages appearing on the console.

Notes

Not all savesets need be restored, but they must be restored in
alphabetical order. Restored files will have owner UIC [1,4] and
whatever protection they had when saved. This protection should
be as specified in section 3.3.1; a future enhancement to
VMSINSTAL may force this to be true. You must alter th: owner

UIC and protection after files are restored.

27

P TEETUTRI———

PAAPPAPAPAAPARPAAPRAPRAPAANAAAARA NN

nlalsl
] o
ecs

PAPAPAPRPAARR AAAROO

wr
=2C

T Tl L an <4 T L PR T N T

s-—o-o—

F.-'-.-.-S‘-.-.-

4.21 SECURE_FILE
This callback is used to alter the security information associated
with files. It should only be used by a product for which security is

a major feature, such as a hospital application. In most cases, the
default system security is fine.

$ VMISCALLBACK SECURE_FILE ddnt [owner-uic] [protection]
Parameters

ddnt - The full specification of the file whose security is to be
altered.

gune;-uic = The new UIC for the files, in the standard format
g.. B

protection - The new protection for the files, in the standard
format. Do not enclose the protection string in parentheses.

Notes

You have to be very careful if your installation manipulates
files which have special security. Any callback that generates a
new version of the file, such as PATCH_IMAGE, will cause the
default security to be assigned. You must explicitl‘ set the
security back to your special values. The security on VMS system
files must never be altered.

&.22 SET [vP

This callback is used to determine whether or not the product's IVP is
run after the installation.

$ VMISCALLBACK SET IvP E;gsg [options]
{ASK)
Parameters
YES = Run the IVP.

NO - There is no IVP supplied with this product. This 1is the
default.

28

PAPA
f"-—.-.-p-_.

AN
M oo

PAAAN<
| it —

Ll L 1
il

ﬂﬂﬂ“§

““"'“”5
- —

T TR~

fr o e

ASK = There is an IVP, but ask the user if it should be run.
options = A comma-separated list of single-character options.
© H - Help first. When in ASK mode, this option specifies that

the help information for the question be displayed before the
question is asked.

4.23 SET PURGE

This callback is used to specify whether or not files reflaied by this
installation are to be purged during or after the installation.

$ VMISCALLBACK SET PURGE %LSS% [options])
{ASK)
Parameters
YES = Purge all files during or after the installation.

NO = Do not purge file during or after the installation. This is
the default.

ASK = Ask the user.
options - A comma-separated list of single-character options.
0 H - Help first. When in ASK mode, this option specifies that

the help information for the question be displayed before the
question is asked.

Notes

If a file was provided with callbacks that specified the keep (K)
option, it is never purged.

29

PAPRARY POPPAAPRPAPAPAARAANAN

P p——

PP P PPOPPAPAPRRPANAARAAY RPN PAN

€t e, CECCCCC s ==

. -—— Eomt e -

- MmO rmcmoms s -

)

4&.264 SET REBOOT

This callback is used to sgecify that a system reboot 1is necessary
after the installation. This callback is reserved for VMS updates and
upgrades; layered products should never reboot.

$ VMISCALLBACK SET REBOOT {;85%

Parameters
YES - Reboot after the instailation,
NO = No reboot is necessary. This is the default.

.25 SET SAFETY

This callback is used to specify the safety Level of the installation.
$ VMISCALLBACK SET SAFETY {YES peak)

{CONDITIONAL peak)

{NO)

Parameters

YES peak - System safety should be optimized at the expense of
disk blocks. This option 1is_ the default, and produces the
highest degree of recovery capability should the system crash

no
during the installation. Running in safety mode does not
guarantee the success of _installations performed while other
rocesses are active. The peak parameter specifies the peak
lock utilization during a safety mode installation. This number
nus
must be obtained using the statistics option (see Chapter 5).
CONDITIONAL peak - If the specified peak blocks are available,
then ogtinize.safet¥: otherwise do not. This is the option that
should be specified 1f at all possible.

NO - System safety should be ignored in order to save disk space.

30

O A R R S o O R R R B U o oS R e
N =Nt DNt Comrmimr e =D

Ll L L L]
Ll 7 AV LR

" ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬁg
—— Crmrmr el NN =X V=N

4.26 SET STARTUP

This callback fis wused to specify {our pr?duct-spo ific startup
procedure so that it can be invoked after the installation and before
the IVP is run. This callback does not YUt the installation procedure
in SYSSMANAGER; wuse a PROVIDE_FILE callback for this purpose. This
callback does not tell the syste™ manager about the procedure.

$ VMISCALLBACK SET STARTUP nt

Parameters
nt = The file name and type of ¥our product-specific installation
procedure. It is assumed to ultimately reside in the SYSSMANAGER
directory.

Notes

By isolating all product-specific startue activities in one
procedure, you minimize the changes to SYSTARTUP.COM, make the
system manager's job easier, and allow a simulation of startup
before the IVP is run.

4.27 SUMSLP_TEXT

This callback is used to edit an existing text file or Library member
with the SUMSLP editor.

$ VHISCA%%BACK SUMSLP_TEXT logical command-nt -

ddnt FILE) old=-checksum [new-checksum] [options]]

{ddnt ,member type)
Parameters

lqgical - A logical name which will point at the edited file or
Library when the callback returns. ALl references to the file or
Library from that point on must be made via the logical name.

command-nt - The name and type of the file containing SUMSLP edit
commands. ALl desired commands, and only commands, must be
present in this file. The file must reside in the kit's working
directory, and may be deleted after the callback returns in order
to save disk space.

31

=
r=Nemee CO=DWNO

PAPPAPAPAARRN PO AAN

SES9-

PPRAP PAPRARPAPRAN

CZ'-: Crmsmem

L L L T L T T 1
B b pedBei D

<
=
o d

’ K 1

ddnt FILE = The full sracification of the text file to be edited.
If you want to edit a Library member, use the following format.

ddnt .member type - The full specification of the Library
contaﬂning the member to be edited. Immediately following is a
comma and the name of the member. The tggc parameter specifies
the type of the Library: HELP, MACRO, T

old=checksum = The checksum of the file or member prior to
editing. This 1is wused by VMSINSTAL to ensure that you are
editing what you think you are editing. This checksum is
calculated usi ng the Checksum utili “; which will be shipped with
the new VMSINSTAL. If the checksum fails, VMSINSTAL reports an
error and returns unsuccessfully.

new-checksum = The checksum of the file or member after editing
This s used by VMSINSTAL if the old checksum does not match the
file or member, so that it can produce any informatory message
rather than an error message.

options = A comma-separated List of options.
0 K - Keep. Do not purge old versions of the file.

Notes

It the file or librar‘ nenber is not specified in the callback,

it is assumed to Dbe spec ified on the first Line of the SUMSLP

command file. This Line consists of the characters dash,

senicolon exclanation oint {=;!) followed by parameters &, S.
6, 7 and 8 as described above.

.28 TELL_QA

There is a Quality Assurance (QA) roug at Spit Brook which installs
Layered product kits on various baselevels of VMS. We hope to catch

Yroblans at an early stage, so that the fixes to VMS and/or the
ayered products can be made in a timely fashion.

The QA Yroup will check nany aspacts of ¥our product installation. 1If
tnar f nd that you ara do n? something in a nonstandard fashion, they
wil conp Lain to you. f this nons tand dard operation s assantial
there is no point in uasting everyone' s time with the coaﬁ) nt.
callback is used to bring these cssant ial deviations to the Q olks
attention. When the installation s done in QA mode (see Chapter 5),
information specified by TELL_QA is displayed on the terminal. when

52

PR PAPPAANARN
B i B Y

<=

c€<<<<

POAPRPAPAY PRAAAAPARAPRARAN

DO DO DN € mrmem

< -NmO= -

ﬂ'ﬂﬂﬂﬂ(ﬂﬂﬂg L
(2

V-

oo e e e

{ L 1
:rqn normally, such as at a customer site, the information is not
‘displayed.

$ VMISCALLBACK TELL_QA message
Parameters

:;35090 - A quoted string to be displayed when installing in QA
..

Notes
If you have a special problem and consult with a VMS developer,

you may be told to include this callback in front of the
resulting installation code.

4.29 UPDATE_ACCOUNT

This callback is used to update an account in SYSUAF.DAT. It should
be used sparingly, if ever.

$ VMISCALLBACK UPDATE_ACCOUNT username qualifiers
Parameters
username - The username that identifies the account.
qualifiers - A sequence of qualifiers as accepted by the MODIFY
command of the AUTHORIZE wutility. The qualifiers must be
enclosed in quotation marks.
Notes

You may only update an account that was originally created by
your product. Please also see the notes under CREATE_ACCOUNT.

4.30 UPDATE_FILE

This callback is used to update an existing file, It is only used
when wupdating the file in place, that is, perforning an update that
modifies an existing copy of the f‘lg. First issue the UPDATE_FILE
callback, and then reference and modify the file via the logical name.

33

s T

PAPAPPAPRPAY POPAPARARARAN

f‘o.—-ﬂcmo-: <""'"<<<'f"""

L — -

””ﬂﬂﬂ“'ﬂ;
—“—N S —QE V==

e e o 0
e, -

.—

$ VMISCALLBACK UPDATE_FILE logical ddnt
Parameters

logical = A logical name which will point at the file when
callback returns. ALl references to the file from that point on
must be made via the logical name.

ddnt = The complete specification of the existing file to be
no
updated. You may not create a new version of the file.

Notes

This callback is not wused to wupdate Libraries (see
UPDATE _L IBRARY) . If you need to create a new version of an
existing file, and none of the other callbacks are sufficient for
your purposes, then create the new version in the workin

directory. Once the new version is ready, use the PROVIDE_FIL

callback to replace the old version.

4.31 UPDATE_L IBRARY
This callback is used to update an existing library.

$ VMISCALLBACK UPDATE_LIBRARY logical Lib=ddnt type -
qualifiers [file=-ddnt]

Parameters
logical = A logical name which will point at the Llibrary when
callback returns. ALl references to the library from that point
on must be made via the logical name.

Lib=ddnt - The complete specification of the existing Library to
be updated.

§Eg? = The type of the Library: HELP, MACRO, OBJECT, SHARE,
Quelifiers - A sequence of qualifiers for the Librarian. The
qualifiers must be enclosed in quotation marks.

iile=ddnt - The full specification of the input/output file for
the Librarian, if reauirod by the qualifiers. This specification

-ar include wildcards. The file may be deleted after the
callback returns in order to save disk space.

5t

PPOPARPAPAR POPPAPPARRARARY

PANPAPARY AANPARRARNARAN
eV Wrmbn Crmrimime R r~—bs-

=
N eVt FOOOMOOOWV i == <.~

B SAARAARARAAAA

'o"WWWW' ----- B P ermr=e -
PANPAARAARAARAARARAARA

wn

-!DE' S - -

D D D R D WD B P D

(]
fiers.

ather than
alifi

uggested that you use the /REPLACE operation r
Be careful not to rely on defaults in the gu

is s
NSERT

Notes

35

S VMSINSTAL OPTIONS

VMSINSTAL accepts various options which can simplify the creaticn and
dobuggl:s of your installation procedure. You reqguest these options
by ap ing two or three parameters to the invocation of VMSINSTAL.

$ SVMSINSTAL product device OPTIONS List [root])

It requires two parameters so you don't do it accidentally. The
:or{th parameter is a comma-separated Llist of option letters, 2s
ollows.

0 A - Auto-answer. This feature allows you to pre-answer the
questions asked during the installation of a product and then
gso the answers a a later date. If the file

SYSUPD]facvvu.ANS exists, VMSINSTAL uses the answers in the
file and does not bother askin xou the questions. If there
is no such file, VMSINSTAL asks you the questions
interactively and records the answer in a new file for Llater
use.

o B - invoked during Booting. This option is wused when
VMSINSTAL s invoked from STARTUP.(COM after a crash during
installation.

o (- Callback trace. VMSINSTAL traces all callbacks and Lists
them in the file [SYSUPD]facvvu.(BT.

© D - Debug mode. This option is wused in the debu?ging of
VMSINSTA itself. Do not use it when debugging your
installation procedure.

0 G - Get savesets. This option is used to copy the savesets
comprisi 8 kit into a disk directory for Later
installation. ALl kit savesets are copied, but no
installation is performed. Parameter 5 can specify the disk
and directory into which the savesets are to be copied.

o K - Kit de mode. VMSINSTAL passes a boolean parameter to
the kit's 1installation procedure when requesting that it do
an installation. This parameter reflects the presence or
absence of the K option. The kit's installation procedure
can then modify its behavior as desired.

© L = file Log. VMSINSTAL defines special symbols for commands
so that all file activity is logged to the terminal. This is
why command verbs cannot be abbreviated. Normally, file
a.tivity is not logged.

e ———

o e et o oA
-0 O~

PAARARAPA A
e vn i i WD s

POAPPAPPAPRPAPRAPAAPRAPRANARAPARARARARAARAAARAR

@
A - P>

o
-

;----.-‘n.-.--’.-—.-W!._-.-'ﬂ.-.-.-ﬂ!.--.-ﬂ.-.-.-
- -> - - - -

M mr -
-

o

¢ 2

Q - QA mode. This option specifies that the installation
should be done in QA mode. Any TELL_OQA callbacks performed
gy ghet kit's installation procedure are logged to the
erminal.

R = alternate Root. The product is installed in a system
root other than that of the running system. Parameter 5 must
specify the root in the forma ddcu:[SYSn.J"". This
alternate root must contain a full complement of VMS
software. The VMS system in the alternate root must be at
the same version/update level as the runnin? system. If the
installation procedure references any other [ayered products,
thed versions of the products on the running system will be
used.

S = Statistics report. VMSINSTAL produces a statistics
report in the file [SYSUPD]facvvu.ANL. This report contains
@ description of the hardware and software on which the
installation was performed, disk usage statistics, and a list
of files added, deleted, modified, and accessed by the
installation. Correct disk usage statistics require that the
system disk contain a full complement of VMS software and
enough free blocks for an installation in safety mode. Note
that the statistics pertain onll to the system disk, so that
the Library disk on a small disk system is not included.

37

PPAPPPAPAPAAARPAARAN

P s LT T T TR o 4 [
o ™ ™

M N
-

A SAMPLE INSTALLATION PROCEDURE

The following is the installation procedure for FMS, This procedure
is a very good sample for analysis by would-be installation procedure
implementers.

KITINSTAL.COM

COPYRIGHT (C) 1983 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE 1S FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION
OF THE ABOVE COPYRIGHT NOTICE. TYHIS SOFTWARE OR ANY OTHER COPIES

THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER
PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND
SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

LA AA A A AR AR AR R e Rttt el it iIss i

This procedure installs VAXFMS V2.1 on VMS using VMSINSTAL
Setup error handling

ON CONTROL_Y THEN YMISCALLBACK CONTROL_Y
ON WARNING THEN GOTO ERR_EXIT

Handle INSTALL, IVP and unsupported parameters passed by VMIINSTAL

1 .EQS. "‘VMIS_INSTALL'' THEN GOTO INSTALL
1 .EQS. "‘VMISTIVP'' THEN GOTO IVP
IT VMIS_UNSUPPORTED

]
INSTALL:

Let VMSINSTAL know we have an IVP which must be executed,
and that all replaced files are to be purged.

)

'

1

)

VMISCALLBACK SET IVP YES
ISCALLBACK SET PURGE YES

Check for valid VMS version
Will install to any version 3.2 or later.

PARPPAPAVARPARANAPRARAPR AR AR AR AP ANPRPPRPRPRARR AR AR

38

B (

Duri
infc
infc
rea
s f

VMSI
recc

The
3.1!

The
cras

$
$
¢
$
t
%
$
$
¥
$
$
¢
$
$
$
$
$
$
4
t
$
$
$
$
$
$
$
$
$
13
$
$
$
$
$
$
$
£
i
3
$
$
$
$

VMISCALLBACK CHECK VMS VERSION VAXFMSSVMS 032
I[F .NOT,. VAXFMSSVMS THEN VM] SALL A&K MESSAGE E BADVMS =

''This kit requires Version 3.2 or a subsequent version of VMS''
IF .NOT. VAXFMSSVMS THEN EXIT VMiS$_FAILURE

]

i Check for enough free blocks on system disk.
5 Need a uin?nzggof 5800. 4

1

VMISCALLBACK CHECK NET UTILIZATION VAXFMSS 5000
IF .NOT, VAXFMSS TREN UMISCALLBACK MESSAGE E NOSPACE -
‘'‘System disk does not contain enough free blocks to install FMS'
[F .NOT. VAXFMSS THEN EXIT VMIS_FAILURE
:
L]

Check for vZ.0 FMS
Onlscnhhpgcx FIND FILE VAXFMSS VMISROOT:([SYSEXEJFMSFED.EXE -

VAXFMSSY
IF VAXFMSSV2FED .EQS. 'S’ THEN wOTO 20% 'v2.0 FED IS THERE

; Check for V1 FMS

VMISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSEXEIFED.EXE -

S VAXFMSSVIFED
IF VAXFMSSVIFED .EQS. ''S'* THEN GOTO 108 'V1 FED IS THERE
VMISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSEXEIFUT.EXE -

S VAXFMSSVIFUT
IF VAXFMSSVIFUT .EQS. ''S'" THEN GOTO 10% 'V1 FUT 1S THERE
9010 208

- Clean up parts of Version 1
Remove the old FDV object modules from STARLET.OLB.

:
i
i
108:
VMISCALLBACK UPDATE LIBRARY VAXFMSSSTARLET VMISROOT:[SYSLIBISTARLET.OLB -
: OBJECT *“/DELETE=(FDV,FDVMSG,FDVDAT,FDVERR,FDVTIO f
:
; Save FMS V1 FDVSHARE.OPT and FDVSHR.EXE by renaming it to +.0LD
VMISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSLIBIFDVSHARE.OPT =
*"''S VAXFMSSSHARESTAT

IF VAXFMSSSHARESTAT .NES. ''S'' THEN GOTO 15%
BACKUP VMISROOT:[SYSLIBIFDVSHARE.OPT VMISKWD:FDVSHARE .OLD/OWNER=0RIGINAL
VMISCALLBACK DELETE _FILE VMISROOT:[SYSLIBIFDVSHARE.OPT
VMISCALLBACK PROVIDE_FILE VAXFMSS FDVSHARE.OLD VMISROOT:[SYSLIB]
$:

ISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSLIBIFDVSHR.EXE -

*'S VAXFMSSSHRSTAT

F VAXFMSSSHRSTAT .MES. ''S"' THEN GOTO 20%
BACKUP VMISROOT:(SYSLIBIFDVSHR.EXE VMISKWD:FDVSHR.OLD/OWNER=ORIGINAL

15
VM
I

39

LFOVXFR,HLL ,HLLDFN)"'

Thit
call
call
exal

F
foll
is i

Wher
inc!

and

The
ill
t?oi
pic
and

The
call

PAARPAPPAAPRPAPAPRAAAAAAAAAPNAN

CLUSTER
CLUSTER
CLUSTER

CLUSTER
GS’ATCN

PAPRPAPARN FARN

F

VMISCALLBACK DELETE FILE VMISROOT:[SYSLIBIFDVSHR,EXE
VRISCALLBACK PROVIDE_FILE VAXFMSS FDVSHR.OLD VMI$ROOT:[SYSLIB)
l

2

.03

: Restore saveset B and go.
YﬂlttALLBACK RESTORE _SAVESET B
:
L

Link and supply to system the FMS and FDV Message files

INK /SHAREABLE=VMISKWD : FMSMSG VMISKWD : FMSMSG
VHl‘CALLBACK PROVIDE IMAGE VAXFMSS FMSMSG.EXE VMISROOT:[SYSMSG]
LINK /SHAREABLE=VMISKWD:FDVMSG VMIS$KWD : FDVMSG
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FDVMSG.EXE VMISROOT:[SYSMSG] I

Link Form Driver and FI0 as shared Library.

l
l
l
l
i Build the image. NOTE THAT THE GSMATCH NUMBER MUST BE UPDATED
: FOR EACH RELEASE AND POINT RELEASE!
LINK

INK /SHAREABLE = Vﬂl‘KUD FDVSHR =
/NOMAP

VMISKWD: rxosnsnsc OPT/OPTIONS, =
SYSSINPUT : /OPT 1ONS

FDV_TRANSFER, , ,VMISKWD: FDVLIB/INCLUDE=fDVSXFR

FOVTF10,,,vMi$kwD:FIOLIB/LIB

FOV_T10,,,VMISKWD: FDVLIB/lNCLUDE = (FDVSTIOTSK, -
FOVSTIOGET,
FOVSTIOSI2,
FDVSTIORDY, =
FOVSTIOCOM)

FDOV_CORE,,,VMISKWD: FOVLIB/L IBRARY

LEQDAL,2.101

2 Insert 1 module to STARLET

wBJECT "/REPLACE' VMISKWD:FDVPLITRM.0BJ
g Put V2 FDVSHR in the System Library and install in IMAGELIB
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FDVSHR.EXE VMISROOT:[SYSLIB] I

: Form Upgrade Utility

LINK /JEXECUTABLE=VMISKWD:FMSFUU -
VMISKWD :FUUL IB/LIBRARY/INCLUDE=FUUSTOP,-
VMISKWD:FV1,~-

40

VMISCALLBACK UPDATE _L IBRARY VAXFMSSSTARLET VMISROOT:(SYSLIBISTARLET.OLB -

The

VMISKWD : FMSPTR
SYSSINPUT/OPT 16N
$KWD : F DVSHR/ SHAREABLE

Forms Application Aids

LINK /EXECUTABLE=VMISKWD: FMSFAA =
VMISKWD: FAALIB/LIBRARV/INCLUDE FAASMAIN, -
VMISKWD : FMSPT
SYSSINPUTIOPTIbN

$KWD : FDVSHR/ SHAREABLE

"
g g Form Librarian
$ LINK /EXECUTABLE=VMISKWD:FMSFLI -
3:{::38 FLILIBILIBRARVIINCLUDE FLISDRIVER,-

svssxurut/oprlén
$KWD : FDVSHR/ SHAREABLE

1
1
; form Language
L

INK /EXECUTABLE=VMISKWD:FMSFLG =
VMISKWD : FLGLIB/LIBRARY/INCLUDE DRIVER,=
VMISKWD : F
svssxururloptxéu

$KWD : FDVSHR/SHAREABLE

Form Tester

LINK /EXECUTABLE=VMISKWD:FMSFTE -
VMISKWD: F!EL!SILIBRARYI!NCLUDE FTE,=-
VMISKWD : FMSPT
svssxnpuvropr;én

sxuo FDVSHR/SHAREABLE

Form Editor

LINK EXECUTABLE=VM

=VMISKWD : FMSFED
VISKWD:FEDL]
i

1 -
B/INCLUDE=FEDSFED/L IBRARY, =
B/INCLUDE=FDVSVECTOR/L IBRARY ,~-
B/ INCLUDE=FDVSMEMRES/L IBRARY , -

VMISKWD:FEuL
VMISKkwo: FEDL

Lot

$KWD : FOVSHR/SHAREABLE
Add FMS and qualifiers to DCL
ISCALLBACK PROVIDE_DCL_COMMAND FMSDCL.CLD
Now update the system help library

O'ﬂﬂﬂﬂ';
.-.-.-; Rp—

&0

PAPARYR PAPRAARAPARPAAAAARAN

PP P PPPPAPRPRAPRNRPRRRS Ve

H 2

yﬂl$CALLlACK PROVIDE _DCL_HELP FMS.HLP

: Now put everything in its place

VMISCALLBACK PROVIDE _IMAGE VAXFMSS FMSFUU.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FMSFED.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FMSFAA.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FMSFTE.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FMSFLG.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDE_IMAGE VAXFMSS FMSFLI.EXE VMISROOT:[SYSEXE
VMISCALLBACK PROVIDEZFILE VAXFMSS HLLI .0BJ VMISROOT:[SYSLIB

Give System Manager an FMS Startup procedure

l

i

l

VMISCALLBACK PROVIDE FILE VAXFMSS -

: FMSTARTUP.COM =~ VMISROOT:([SYSMGR] K
l

Tell VMSINSTALL about FMSTARTUP
YﬂliCALLBACK SET STARTUP FMSTARTUP.COM
TYPE SYSSINPUT

VAX=11 FMS utilities have built successfully.
Continuing installation.

Provide the FMS Sample Application Programs
Create [SYSHLP.EXAMPLES.FMS] (check to see if it is there, first)

VMISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSHLP.EXAMPLESIFMS.DIR -
*"TS VAXFMSSEXAMPSTAT
!f VAXFMSSEXAMPSTAT .EQS. ''S'' THEN GOTO 308 'THEN IT'S THERE

?HISCALLBACK CREATE_DIRECTORY SYSTEM SYSHLP.EXAMPLES.FMS

?08:

i Create SMPVECTOR and SMFMEMRES - Need to tell system that FMSFAA
! and FDVSHR are temporarily in VMISKWD in order to use the DCL

: commands necessary.

DEFINE FDVSHR VMISKWD:FDVSHR.EXE
qerlne FMSFAA VMISKWD:FMSFAA.EXE

FMS/VECTOR/OUTPUT=VM]$KWD : SNPVECTOR -
VMISKWD : SAMP.FLB
FMS/MEMORY/OUTPUT=VMISKWD : SMPMEMRES -
VMISKWD : SAMP.FLB/FORM= (HELP_KEYS ,HELP_MENU)

1
DEASSIGN FDVSHR

&2

L L L ﬂﬂﬂﬂﬂgﬂ PPAPAPAPAPAAAARAAAAN
[4 ~~

<
[

PP PPN

: ?EASSIGN FMSFAA
g g Compile and Link SAMP in each Language.
g l reeBASICren
]
% QHIQCAE}BACK FIND FILE VAXFMSS VMISROCT:[SYSEXEIBASIC.EXE =
'S VAXFMSSBASSTAT
$ IF VAXFMSSBASSTAT .NES. ''S'' THEN GOTO 50%
$ SET NOON
$ BASIC/0BJECT=VMISKWD :SAMP.0B) VMISKWD : SAMP.BAS
$ IF _NOT, $STATUS THEN GOTO 40%
$ SET ON
2 ?010 50%
$ 40%:
$ SET ON
$ TYPE SYSSINPUT
The BASIC version of the VAX-11 FMS Sample Agplication failed
to compile. See the VAX-11 FMS Installation Guide and Release
Notes for error recovery.
The installation procedure is continuing...
$!
$!
$ 50%:
$ SET NOON
$ LINK/EXECUTABLE=VMISKWD : SAMP .EXE VMISKWD:SAMP.0BJ,=
YMISKWD : SMPVECTOR.0BJ, -
VMISKWD : SMPMEMRES .0BJ , -
SYSSINPUT/OPTION
VMISKWD : FDVSHR/SHAREABLE
$ IF _NOT. SSTATUS THEN GOTO 70%
: ?ET ON
$ 608:
: YnltCALLBACK PROVIDE_IMAGE VAXFMSS SAMP.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ 70%:
$ SET ON
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMP.BAS VMISROOT:[SYSHLP.EXAMPLES.FMS])
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPBAS . COM VMISROOT:(SYSHLP.EXAMPLES.FMS)
: YHISCALLBACK PROVIDE _FILE VAXFMSS FDVDEF .BAS VMISROOT:(SYSHLP.EXAMPLES.FMS]
$ i seeBLSSene
$!
% vnlscnkksacx FIND FILE VAXFMSS VMISROOT:[SYSEXEIBLISS32.EXE -
'S VAXFMSSBLISTAT
: {f VAXFMSSBLISTAT _NES. ''S'" THEN GOTO 90%

43

J 2

INE FOVDEF VMISKWD:FDVDEF.REQ

SSIOSJ CT!VHI‘KUD:SAH?BL%.OBJ VMISKWD : SAMPBLI.BLI
.NOT STATUS THEN GOTO

SIGN FDVDEF
JEXECUTABLE=VMISKWD : SAMPBL]. EXE VMISKWD: SAMPBLI.0BJ

VHISKUD SMPVECTOR.0BJ, VMISKWD:SMPMEMRES.OBJ, SYS‘INPUT/OPTION
WD :FDVSHR/SHAREABLE

.sg . $STATUS THEN GOTO B80S

3C9°‘BACK PROVIDE _IMAGE VAXFMSS SAMPBLI.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS]

Do
M rmm

;ﬂb

?5 PP P PPN
r— g

ﬂ‘”‘:

-V tps O
—fp—

83
g

808%:
SETY
TYPE SYSSINPUT

The BLISS version of the VAX=11 FMS Sample Afflicotion failed

to compile or Link. See the VAX-11 FMS Installation Guide and
Release Notes for error recovery.

The installation procedure is continuing...

‘ O
$ 908:
$ VMISCALLBACK PROVIDE _FILE VAXFMSS SAMPBLI.BLI VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPBLI.COM VMISROOT:[SYSHLP.EX2MPLES.FMS]
: YHISCALLBACK PROVIDE_FILE VAXFMSS FDVDEF.REQ VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ | ***FORTRAN® *+
$ i
¢ VHI‘CA&}BACK FIND FILE VAXFMSS VMISROOT:[SYSEXEJFORTRAN.EXE -
S VAXFMSSFORSTAT

: !F VAXFMSSFORSTAT .NES. "S" THEN GOTO 1108
$ SET NOON
$ LIBRARY/CREATE/TEXT VMISKWD:SMPFORTXT -

VMISKWD : SMPACCOM.FOR /MODULE=ACCOUNT _COMMON,~

VMI$KWD : SMPREGCOM.FOR /MODULE=REGISTER COMMON, -

VMISKWD : SMPSTATUS.FOR /MODULE=STATUS AREA,-

VMISKWD : SMPWORK.FOR /MODULE =WORK JAREA
$ IF .NOT, SSTATUS THEN GOTO 100%
$ DEFINE SMPFORTXT VMISKWD:SMPFORTXT,.TLB
$ DEFINE FOVDEF VMISKWD:FDVDEF.FOR
$ FORTRAN/OBJECT=VMISKWD : SAMPF OR . 0BJ VMISKWD : SAMPFOR. FOR
$ IF .NOT. SSTATUS THEN GOTO 1008
$ DEASSIGN SMPFORTXT
$ DEASSIGN FDVDEF
$ LINK/E

KEC%KABLE=VHISKUD :SAMPFOR.EXE VMISKWD: SAHPFO 08J,
WD:SMPVECTOR.0BJ, VMIS$KWD:SMPMEMRES.0BJ, SYSSIN PUTIOPIION
VMISKWD : FDVSHR/SHAREABLE

“h

wef]

.321. $STATUS THEN GOTO 100%

BC?%b%ACK PROVIDE _IMAGE VAXFMSS SAMPFOR.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS]

R P D P o D B P o
’5“85“3:
e g

el 2l
<™

T ON

PE SYSSINPUT

The GURTRAN version of the VAX=11 FMS Sample Application failed
to compile or Link, See the VAX=11 FMS Installation Guide and
Release Notes for error recovery.

The installation procedure is continuing...

$!

$ 110%:

$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPFOR.FOR VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPFOR.COM VMISROOT:(SYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDEFILE VAXFMSS FDVDEF.FOR VMISROOT: EYSHLP.EXAHPLES.FHSJ
$ VMISCALLBACK PROVIDE_FILE VAXFMSS$S SMPACCOM.FOR VMISROOT:CSYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SMPREGCOM.FOR VMISROOT:[SYSHLP.EXAMPLES. rnsg
$ VMISCALLBACK PROVIDEFILE VAXFMSS SMPSTATUS.FOR VMISROOT:[SYSHLP.EXAMPLES.FMS
g YHISCALLBACK PROVIDE FILE VAXFMSS SMPWORK.FOR VMISROOT:[SYSHLP.EXAMPLES.FMS)
$! weaPASCAL®*e

’ l

§ VHI$CAk}ﬂACK FIND FILE VAxrnss VMISROOT : [SYSEXEJPASCAL .EXE -

VAXFMSSPASSTA

g gETVAxFNSQPASS!AT .NES. "S" THEN GOTO 130%

$ PASCAL/ENVIRONMENT=VMISKWD:/0BJECT=VMISKWD: VMISKWD:FDVDEF.PAS

$ IF .NOT. SSTATUS THEN GOTO 1 s

$ DEFINE FDVDEF VMISKWD:FDVDEF.P

3 PASCALINOENV!RONHENT/OBJECngllSKUD :SAMPPAS.0BJ VMISKWD:SAMPPAS.PAS

$ IF .NOT. SSTATUS THEN GOTO 120

$ DEASSIGN FDVDEF

$ DEFINE FDVDEF VMISKWD:FDVDEF.0BJ

$ LINK/EXECUTABLE=VMISKWD : SAMPPAS.EXE VMISKWD:SAMPPAS.0BJ, VMISKWD:FOVDEF.08J,
: VMISKWD : SMPVECTOR.0BJ, VMISKWD:SMPMEMRES.0BJ, SYSSINPUT/OPTION
VMISKWD: FDVSNRISHAREABLE

$ DEASSIGN FDVDEF

$ IF .NOT. SSTATUS THEN GOTO 120%

: §£t ON

$ VMIS cusbaAcx PROVIDE_IMAGE VAXFMS$S SAMPPAS.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS)
: §or 1308

$ 1208:

$ SET ON

45

_$25
$ TYPE SYSSINPUT

The PASCAL version of the VAX=11 FMS plo Atplication failed
to compile or Link. See the VAX=11 FMS Installation Guide and
Release Notes for error recovery. (

The installation procedure is continuing... DEF A

< L P
EXW
et s e (O
ﬂ'”’

CALLBACK PROVIDE_FILE VAXFMSS SAMPPAS.PAS VMISROOT:[SYSHLP.EXAMPLES.FMS
CALLBACK PROVIDE_FILE VAXFMSS SAMPPAS.COM VMISROOT:[SYSHLP.EXAMPLES,FMS
CALLBACK PROVIDE_FILE VAXFM3$ FDVDEF.PAS VMISROOT:[SYSHLP.EXAMPLES.FMS

eee(eew

Hl%CAg}BACK FIND FILE VAXFMSS VMISROOT:[SYSEXEJVAX11C.EXE -
S VAXFMSSCSTAT
VAXFMSSCSTAT .NES. ''S'' THEN GOTO 150%

E

NOON

INE FOVDEF VMISKWD:FDVDEF .H

OBJECT=VMISKWD : SAMPCC.0B8J VMISKWD:SAMPCC.C

NOT. SSTATUS THEN GOTO 140$

SIGN FDVDEF

JEXECUTABLE=VMISKWD : SAMPCC.EXE VMISKWD:SAMPCC.0BJ, =
VMISKWD : SNPVECTOR.OBJ, VMISKWD:SMPMEMRES.O0B)
VMISROOT : CSYSLIBICRTLIB/LIBRARY, SYSSINPUT/OPTION

$KWD : FDVSHR/ SHAREABLE

E .NOT. $STATUS THEN GOTO 140$

Ml

‘C?%B%ACK PROVIDE_IMAGE VAXFMSS SAMPCC.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS]

PPAPPPAPAY PP PAPRARNN

f‘Q—ﬂOU’-—' < - - -
=—MTmoamm -

2P N7

Ve

VMi
$1
$ SETY
sV
$ GOTO
%
: $:

$ € SvSthPUI

The C version of the VAX=11 FMS Sanple Application failed

to compile or Link. See the VAX=11 FMS Installation Guide and
Release Notes for error recovery.

l

140
SET ON
TYP
The installation procedure is continuing...

VM
[

’ l

$ 1508:

$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPCC.C VMISROOT :CSYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPCC. COH VMISROOT:(SYSHLP.EXAMPLES.FMS]
: ISCALLBACK PROVIDE_FILE VAXFMSS FDVDEF.H VMISROOT:(SYSHLP.EXAMPLES.FMS]
I

vee(OBOL 2%

46

MISCALLBACK FIND FILE_VAXFMSS VMISROOT:([SYSEXEICOBOL.EXE =
$ VAXENSSCOBSTAT,
VAXFMSSCOBSTAT .NES. "'S'* THEN GOTO 1708

-

b3

s$v

$1

$!

$ SET

$ DEFINE FDVDEF VMISKWD:FDVDEF.LIB

$ DEFINE SAMPCCB VMISKWD:SAMPCOB.LIB

$ DEFINE SMPCOBUAR VM]SKWD:SMPCOBUAR.LIB

$ COBOL/OBJECT=VMISKWD:SAMPCOB,0BJ VMISKWD:SAMPCOB.COB
$ IF .NOT. S$STATUS THEN GOTO 160%

$ DEASSIGN FDVDEF

$ DEASSIGN SAMPCOB

$ DEASSIGN SMPCOBUAR

$ LINK/EXECUTABLE=VMISKWD :SAMPCOB.EXE VMISKWD: SAMPCOB.0BJ

0BJ, -
VMISKWD : SNPVECTOR.0BJ, VMISKWD: SMPMEMRES.0BJ, SYSSINPUT/OPTION
KWD : FDVSHR/SHAREABLE

VMIS
: §21°821' $STATUS THEN GOTO 160%
1 VHlSCAsLBACK PROVIDE _IMAGE VAXFMSS SAMPCOB.EXt VMISROOT:[SYSHLP.EXAMPLES.FMS]
: 90!0 1708
$ 1608:
$ SET ON
$ TYPE SYSSINPUT

The COBOL version of the VAX=11 FMS Sample Affligation failed

to compile or Link., See the VAX=11 FMS Installation Guide and

Release Notes for error recovery.

The installation procedure is continuing...
s]
:]70‘:
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPCOB.COB VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPCOB.COM VMISROOT:[SYSHLP.EXAMPLES.FMS])
$ VMISCALLBACK PROVIDE_FILE VAXFMSS FDVDEF.LIB VMISROOT:[SYSHLP.EXAMPLES.FMS]
$ VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPCOB.LIB VMISROOT:[SYSHLP.EXAMPLES.FMS]
: YHISCALLBACl PROVIDE _FILE VAXFMSS SMPCOBUAR.LIB VMISROOT:[SYSHLP.EXAMPLES.FMS]
$! 121 WALLL
$!
$ VMISCALLBACK FIND FILE VAXFMSS VMISROOT:[SYSEXEIPLIG.EXE -

S VAXFMSSPLISTAT

% !r VAXFMSSPLISTAT .NES. ''S'' THEN GOTO 190%
$ SET NOON
$ DEFINE FDVDEFCAL VMISKWD:FDVDEFCAL.PLI
$ PLI/OBJECT=VMISKWD : SAMPPL].0BJ VMISKWD:SAMPPLI.PLI
$ IF .NOT. SSTATUS THEN GOTO 180%
$ DEASSIGN FDVDEFCAL

4“7

$2!

Psec
$PL]
$OWA

LIE

STF

_XPC

$coe

LIE

_STH

XP(

$ LINK/EXECUTABLE=VMISKWD :SAMPPL].EXE VMISKWD:SAMPPLI,.JBJ, =
VMISKWD : SMPVECTOR.0BJ, VMISKWD:SMPMEMRES.0BJ, SYSSinPuT/0PTION
VMIS$KWD : FDVSHR/SHAREABLE
If _.NOT. $STATUS THEN GOTO 180%
§ET ON

gs%ac?%kgACK PROVIDE_IMAGE VAXFMSS SAMPPLI.EXE VMISROOT:[SYSHLP.EXAMPLES.FMS]
)

1808:
SET ON
TYPE SYSSINPUT
The PL/1 version of the VAX-11 FMS Sample Application failed

to compile or Link. See the VAX=-11 FMS Installation Guide and
Release Notes for error recovery.

Lol ol L Ll ol Ll

The installation procedure is continuing...
L)

1908 :

VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPPLI.PLI VMISROOT:(SYSHLP.EXAMPLES
VMISCALLBACK PROVIDE_FILE VAXFMSS SAMPPLI.COM VMISROOT:CSYSHLP.EXAMPLES
VMISCALLBACK PROVIDE FILE VAXFMSS FDVDEFCAL.PLI VMISROOT:[SYSHLP.EXAMPL

VMISCALLBACK PROVIDEZFILE VAXFMSS FDVDEFFNC.PLI VMISROOT:[SYSHLP.EXAMPL
g Move over form library, data file, SMPVECTOR and SMPMEMRES
VMISCALLBACK PROVIDE_FILE VAXFMSS$ SMPVECTOR.O0BJ VMISROOT:[SYSHLP.EXAMPLE
VMISCALLBACK PROVIDE-FILE VAXFMSS SMPMEMRES.0BJ VMISROOT:[SYSHLP.EXAMPLE
VMISCALLBACK PROVIDE_FILE VAXFMSS SAMP.FLB VMISROOT : CSYSHLP.EXAMPLE
VMISCALLBACK PROVIDEZFILE VAXFMSS SAMP.DAT VMISROOT : CSYSHLP.EXAMPLE
E Tell manager about installing the shared Llibrary

TYPE SYSSINPUT

System Manager:

PAPPAPAPRAPAPAPRAARPAN
wvnnumom
e & = @
T
P P Px

Ugon completion of this installation, please be sure to edit
the system startup files as described in the VAX=11 FMS
Installation Guide and Release Notes.

$!

$ IF FSVERIFY() THEN SET NOVERIFY

: §XIT VMIS_SUCCESS

g § End of VAXFMS instzllation
$ IVP:

$!

$! Set up error handling

48

$25

Psec

_XPC

MSGY
MSGY
MSGY

MSGY

$!
$ ON WARNING THEN EXIT VMI
: 9" CONTROL_Y THEN EXIT v
$

TYPE SYSSINPUT
Beginning the VAX=11 FMS Installation Verification Procedure.

$_FAILY
MIS_FA

F RE
TS_FAILURE

Make a copy of our master Library
HSILISRARVICREAYEINOLOG IVP.FLB FMSSEXAMPLES:SAMP.FLB
. Two commands will get an 'Information' message.
TYPE SYSSINPUT
Please ignore the following informational messages:

PAARA AN
- - - -

Try extracting a form from a Library

: Now try the /delete function
fﬂSlLlBRARV/DELETE IVP . FLB/FORM=CHECK

$!

$!

‘ l

: ﬁHSILlBQARYIEXTRACT/NOLOG/OUTPUT'ACYDAT IVP/FORM=ACCOUNT_DATA
: § Now do a directory of the Library

: EHS/DIRECTORYIOUTPUT'NL IVP.FLB

: g Now do a back translate

g ﬁHSIDESCRlPTION/FULLIOUTPUT =CHECK IVP/FORM=CHECK
g g How about a memory resident module of forms?

2 fHSIHEHORY RESIDENT/QOUTPUT=MEMORY ACTDAT.FRM

: g Did it produce a valid obj file?

: eNALYlEIOBJECYIOUYPUT'NL MEMORY

: g How about a UAR vector module?

g fHSIVECTORIOUTPUT=VECTOR ACTDAT.FRM

: g Did it produce a valid obj file?

: éNALVZEIOGJECTIOUTPUT=NL: VECTOR

$

%

3

3

49

0 00 oo G0 OO € O D oo O CO T T 00 0
PSS SrSvr v e eSS S-Sy

oo
PPy

s g e et
m
adn

POPAPPAPRAPRPAPANA

! Successful test

FSVERIFY() THEN SET NOVERIFY
IT VMIS_SUCCESS

|
.
i

: End of VAXFMS VP

: End of VAX FMS KITINSTAL.COM
gi EXIT:

S = $STATUS

it

R $VEIIFV() THEN SET NOVERIFY

50

e

B CRASH RECOVERY

During an installation, VMSINSTAL attempts to record enough state
information so that i can recover from a ;xston crash. This
information is recorded in the file SYSSUPDATE :VMIMARKER.DAT, which is
irooic? when installation of a product is begun, and deleted when it

s finished. 1If, during a system boot, STARTUP.COM notices that
VRIMARKER.DAT exists, it 1invokes VMSINSTAL with the B option,
VMSINSTAL 1nspo%ts the state at the time the crash occurred, and
recovers according to the step in progress.

The steps in the following paragraphs refer to the overview in section

0 Steps 5, 6, 7 = The user is told to simply start again.

0 Step 8 - If the installation was done in safety mode, then
there are two possibilicties. If a library was being updated
at the time of the crash, the user is told to restore it from
backup and start again. If something else was happening, the
user can simply start again.

If the installation was done in unsafe mcde, then the user is
told to restore the s{sten disk from backup and start again.
Ther: ;s no way to tell what was happening when the system
crashed.

0 Step 9 = The deferred callbacks are reexecuted. This should
complete the installation satisfactorily.

o Steps 10, 11 = The user is told that the installation was
completed satisfactorily.

The documentation for VMSINSTAL will have a thorough description of
crash recovery.

51

C PRODUCT-SPECIFIC CALLBACK PROCEDURES

This optondin describes the conventions for coding a roduct-sgocific
callback procedure suitable for wuse with the VMSINSTAL PRODUCT
callback. The easiest way to present the conventions is with an
example. Let's say that FOOBAR, the base product for a product group,
1aoaoina to provide a callback procedure. The procedure is named
FOOBARINS.COM, because the file name should be the product mnemonic
fol lowed b{ as much of the word "'INSTALL'" as possible. This procedure
is placed in SYSSUPDATE during the installation of FOOBAR.

When another product wants to perform a callback to the procedure, it
includes the following Line in its installation procedure.

$ VMISCALLBACK PRODUCT FOOBARINS:INCREMENT -
PRODSINC COUNTFILE.DAT VMISROOT:[SYSUPD] 2

and FOOBARINS receives parameters as follows:

P1 “'INCREMENT""

> *PRODS INC"*

R “'COUNTF ILE ,DAT"*

Pé .gnxsnoohtsvsurol

P5
Pb-’a LR L

The INCREMENT callback is a phony callback for urposes of
illustration. The parameter order for callbacks should follow the
those of standard callbacks as closol; as possible. The best idea is
pick a standard callback that is similar to the one you are designing
and mimic its parameter order,

The following procedure is a simple example of a product-specific
callback procedure.

$! First thing to do is set up a CTRL/Y handler

$! and an error handler. We don't want to traf

:! warnings because they can happen legitimately.

% ON CONTROL_Y THEN VMISCALLBACK CONTROL_Y

: ON ERROR TREN EXIT $STATUS

:! Now we can case on the callback code.

: GOTO 'P1

:; INCREMENT logical name-type directory integer

$! This callback will increment the number stored in
$! the file by the specified integer. A new file

$! will be created and put back in the original .
$! place, with the logical name defined to point at it.

52

=

o

y .3
1
:lNCREHENT:
$! Begin by finding the file with the number to be
$! incremented. IY the find fails, then return a
$! status to inform the caller.

.-

PAPPAPPAARPAPPAARPARRPARPPARRS

VMISCALLBACK FIND FILE 'P2 'P3 ‘P4 S.E
IF .NOT. SSTATUS THEN EXIT SSTATUS

Read the record in the file, which contains the number
to be incremented.

OPEN/READ VMISPRODUCT FILE ‘P2
READ VMISPRODUCT FILE NUMBER
CLOSE VMISPRODUCT_FILE

Create a new version of the file in the working directory,
and put the incremented number in it.

OPEN/WRITE VMISPRODUCT _FILE VMISKWD:'P3
WRITE VMISPRODUCT_FILE 'FSINT(FSINT(NUMBER) + FSINT(PS))
CLOSE VMISPRODUCT_FILE

Provide the new file, which will replace the old one,
Also define the logical name to point at the final file.

VMISCALLBACK PROVIDE_FILE 'P2 'P3 'P4
EXIT SSTATUS

The following conventions must be followed.
0 The procedure must establish a CTRL/Y handler that

(eventually) invokes the CONTROL_Y callback.

The procedure must establish an error handler that
(eventually) exits with the status that caused the handler to
be invoked. Warnings are not trapped, because they are
routinely returned from other callbacks.

The first parameter to the procedure is the callback request

code.

Case on this parameter with a GOTO.

The code to implement a callback must follow all of the
conventions outlined elsewhere in this manual. In

articular
he FIND FiLE callback can be used to determine the existence

files must be referenced with standard callbacks.

and location of a file. Logical names and global symbols

must begin with VMIS$

the VMSINSTAL facility name, because

the callback procedure is a logical extension of VMSINSTAL.

53

6 3

0 The return status from a standard callback must be checked

with an [F statement 0 determine success r failure.
co:s: failure is a warning, the error handler will not be
nvoked.

The callback must return with either VMIS SUCCESS or

VMIS_FAILURE status, which is propagated bBack to the
installation procedure.

54

$2!

val

22883888888 88888888888888888888838888883333383858

D EXAMPLE FOR DECODING VMISVMS_VERSION

The following .'..8&. shows some techniques and methods for decoding
the VMISVMS_VERSI symbol. While this example only checks for a
sgocific version, the techniques shown here can be easily adapted to
check for a range of versions.

$! uncomment one of the definitions of productStype

$! uncomment one of the definitions of product$version
$! product$type = 'REESASED if onla on released VMS software
$! productS$version = "'04 S &,

$! product$type = "UPGRADE''
$! productSversion = '‘X2M9
productStype = "UPDATE

product$version = "'041"
vai_type = fSelement(0,''." ,vmiSvms_version)
vai_type = fSelement(0,"’ ",vni_t;ge) !Ignore the ' FT'' if there
vai_version = fSelement(1,”,"',ymiSvms_version) !Get version string
goto v_‘'product$type’
v_released:

if product$Stype .nes. vmi_type then goto vrl20
! Check the major and minor versions separately

if fSextr(.g.producttvorsion) .nes, fSextr(0,2,vmi_version) then gotu vrl20
if fSextr(2,1,product$version) .les. fSextr(2,1,vmi_version) then goto v_ok

vmiScallback MESSAGE e version =
“This kit must be instalied on an existing VMS ''product$version system.''
exit vmi$_failure
$v_update:
if (g:oductityfo .nes. vmi_type) then goto vupd20
$! It must the fieldtest of the version we expect
% it fSextr(0,3,productSversion) .eqs. fSextr(0,3,vmi_version) then goto v_ok

vmiScallback MESSAGL e fieldtest -
*“This kit can only be installed on field test version ''productS$version'."

if only runs on major vers. fieldtest
Y‘ft? for instance
f on { runs on vms .n maint, update
fieldtest (X4.1 for example)
X4.1 for instance

':ﬂﬂﬂﬂﬂﬂﬂﬂ’ﬂﬂﬂ
’

Lol oL

$vupd20:
$ up

$ exit vmi$_failure
$v_upgrade:
$ if (productStype .nes. vmi_type) then goto vup?ZO
$! The Last 3 characters of the version must match. The first letter
$! of the version on the system must be .ge. the one we expect.
$ if fSextr(1,3,product$version) .nes. fSextr(1,3,vmi_version) then goto vupaZO
: o if fSextr(0,1,product$version) .les. fSextr(0,1,vmi_version) then goto v_o
vupg20:
$ vmiScallback MESSAGE e fieldtest -) ; :
“This kit can only be installed on VMS version '‘product$version system.'
: . exit vmi$_failure
v_ok:

55

$2!

vali

2SS S S8 88282888888833333222

=

-G e e e

28888383838

288888333

1232 ‘BT13A-SE L EQUIPMENT CORPORA
U UAX/VUMS V3 0 _ % ENTIAL AND PROPRIET

TION
ARY

| 0233 AH-BT13A-SE | | IPMENT CDRF’DRHION
VAX/VMS V4.0 o L AND PROPRIETARY

