oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBES uuu uuu 199999999944
oODDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBEB uuu uuu GGGGGGG6GLG6
DDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBE uuu uuu [dddddddddddd
oDD | DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

oDD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUWU GGG

00D DOD EESEEEEEEEEE 888888888888 Yy UUU GGG

oDD ODD EEEEEEEEEEEE 888888888888 uuu UUU GGG

oDD DDD EEEEEEEEEEEE 888888888888 uuu UUU GGG

oDD DDD EEE 888 BBB UUU UW G666 GGGGGGGGG
DDD DDD EEE 888 BBB UUU UUW GGG GGGGGGGGG
0DD DDD EEE 888 BBB UUU UUW GGG GGGGGGGGE
DDD DDD EEE 888 B8BB UUU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG GGG
o0DDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBAB UuuuuUuuUuUUL GGGGGGGEG
oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBEB VUV RVVVVVVVVVVY GGGGGGGG6
oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBEB VUV VTV VVVVVVTITY GGGGGGGG6

F [LED**DSTRECRDS

oDDDDDDD
0DDDDDDD
0D 0D
0D DD
+])] 0D
00 0D
DD DD
0D 0D
0D 0D
']] 0D
DD ']
0D 0D
0DDDDDDD
00DDDDDD
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RRRRRRRR
RRRRRRRR
RR RR

RR RR

RR RR
RR RR
RR RR
RR RR

117
T

mmmmmmmmmmmmmm
mmmmmmmmmmmmmm

——
-t

TT RRRRRRRR
TT RRRRRRRR
RR
RR
RR
RR
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RR
RR

N = ———
ot g 4 —) 4 — — —

mmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmm

H13

VYOIV OIYOVNOYOYOYOV D
(alalalalalalelelsele)

ooDDDDDD
ooDODDDD

b0 0D
DoODDODDD

oODDDDDD

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1;.}3 Page 1

bbb L D L D L L L L L L L L LYY YY)

DSTRECRDS == DEFINITION FILE FOR THE DEBUG SYMBOL TABLE

-y - - -

Version: 'v04-000"*

fot¢c".t|'t't't"toot'ttt-tont't'--tntn'-ﬁttt-ttttttttttt"'t'ttft-tttttttt.
e *
t* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
i DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. v
E: ALL RIGHTS RESERVED. :
is THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED +
'* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE «
i* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER +
:* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY «
t* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY «
E' TRANSFERRED. *
‘e “
t* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE «
t* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT «
5: CORPORATION. :
i DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
'* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. :

*

*

e
e
R i I e R L R R R R R R R R R R 2322222222322 22322222 2222 22212111112

]
WRITTEN BY
Bruce Olsen August, 1980.
Bert Beander August, 1981
Bert Beander November, 1983.

MODULE FUNCTION
This REQUIRE file describes the structure of the Debug Symbol Table
Yenorotcd by the VAX compilers and interpreted b{ the VA Debu?ger.
t includes definitions for all field names and literals used in
building or interpreting the Debug Symbol Table (DST).

:

i

i

i

:

i

i

i

i

i

i

! DISCLAIMER
! This interface is not gupported by Digital. While the Debug ?ylbol
: Table interface is believed to be correctly described here, Digital
- does not guarantee that all descriptions in this definition file are
- correct and complete. Also, while this interface is expected to be
: reasonably stable across releases, Digital cannot guarantee that it
: will not change in future releases of VAX DEBUG, VAX VAS, the VAX

: compilers, or other software. ward-compatible additions t? his
' interface are more likely than incompatible changes, but individuals
: organizations who use this intorfago stand some risk that their

: work will be partially or wholly inval dasod by future releases of

! VAX DEBUG or other Digital software. Digital reserves the right to

- make future incompatible changes to the Debug Symbol Table interface.

e —

DSTRECRDS.REQ;1 16=-SEP=1984 16:69:1*.13 Page 2

TABLE OF CONTENTS

|}

i

[]

i

; Purpose of the Debug Symbol Table ¢ ¢ ¢ ... §
i General Structure of the DST b .
! Generation of the DST . . & & & ¢ ¢ &« & « o o o o & é

' Location of the DST within the Image File

! Overall Structure of the DST s o onne
: SOt VIR WO DB . , s v v s o x s b esesne e I
; Data Representation in the DST & ¢ ¢ ¢ ¢ « « « « 14
g Field Access MacrosS . . . « « « « « « « « o &« "W oy o T 16
g The DST Record Header FOrMat . . &« v « « o o « « » « « « « « 17
i Supported Values for DSTSB_TYPE « + v « « « o« « « . » 18
' VAX Standard Type CodeS ¢ « « « « « « o o & o s 3
' Internal Type Codes for DEBUG « « « ¢ « « « = =« =« 19
; Other DST Type Codes . . . & & & « « o« « « & TP
!. Mul. DS' ..cords . - L) . - - . . L] L] . L] e - . L] R L] . . - 5%
' The Module Begin DST Record . . &« « & ¢ o ¢ « o o « « & &

5 The Module End DST Record S ane ok we e
i R IN0 DY D00 5 . ¢ 2 v s 2 s e s s e e s s s nee B
H The Routine Begin DST Record SRR e O
3 The Routine End DST Record . . . «. « ¢« ¢ « « « « . % . B
i L'l‘c.l alock os' Records S = - K3 L] . L] . . . L] L] . - - . L] . 30
' The Block Begin DST Record e s n e es e B
; The Block End DST Record W N RN s & 2N
E D't. s,.“l DS' “.cord‘ - k2 L] L] 2 L] - . L] . . k3 . L] . . 33
! The Standard Data DST Record sa ks en I
! The Descriptor Format DST Record « ¢« ¢« ¢« « « « «» 38
: The Trailing Value Specification DST Record 40
; The Separate Type Specification DST Record &2
i DST Value SPecifications . . . v « o « « « o « o o o o o . 43
. Standard Value Specifications 'k w's o B
! Descriptor Value Specifications « ¢« « ¢ ¢« « « « « &b
- Trailing Value Spec v,lue Specifications &7
' VS-Follows Value Specifications « v « « « o &« s « 58
: Calls on C iler=Generated Thunks . . . «. « ¢« « « « « « &9
! 'h. DST st.c n'chin. . L] - - . L] L] . . - .- L] . L 2 L] . . . so

DSTRECRDS.REQ;1 16=-SEP-1984 16:‘9:1?.23 Page 3

.
.
-
.
.
-
.
®
=
.
-
o
W
wn

Type Specification DST Records . .

]

]

! DST Type Spocificati S R ko E Y o e R e

- { % Type Spoc?f?cations R A T O S 3
- Dosir ptor Type Spog 1cations s o s ssesee e I
! ndirect Type Spcc ica ons s A n s n s eossenss B
! d Pointer Spcc LIRS & & v s 0 s 25w e B
! Po nter Type Spoc RIS s 2 o555 s ssesasss B
! Picture Typo Spocifications e e AR es s s B
: Array Type pog MWD o s s sssssaseosesass OB
! Set Type Spoc WORIONE 5 ¢ o0 s o 5865 o8558 69
: SUbrongo ?p,c ISR IONE & ¢ v s 2 s o 0 0o s 0w ©
! le Type poc cati ons P R T s s 08
. Ar'. T ?. p'c c‘t on‘ L] L] L} L] . L] - L] L] L] - . . . - e 99
! Offset Type Sg ications s s es s aeeeeeeess IV
- Novol Len po Spoci ications * % o 5o seae I
: Self-Rela 1vo abel Type Spocifications S A S e 75
: Task Type Specifications & ¢ ¢ ¢ ¢ « o « s« « o« o 1
: Enumeration Type DST Records . "SE W e s B
! The Enumeration Type Begin OST Record . . . » = & & » . . T4
! The Enumeration Type Element DST Record « « « « « 15
E The Enumeration Type End DST Record « &« « o o« « 75
! Record Structure DST Records . . . &« &« ¢ ¢ o « « « « « « « « 16
' The Record D IS NCWE o 658980 nsssnre I8
' The Record End DST Record N S s a5 19
' The Variant Set Bogin DEY BSOS & e s ae e s e R 80
' Th. V‘r‘.nt v.lu. sT R.cord . . L] L] . - - . o - L] . L] £ 81
! Tag Value Range Specifications 82
: The Variant Set End DST Record w5 nwn N
! BLISS Data DST Records R s wn s B
! The BLISS Special Cases DST Record . . &« o o o o o o ot 86
: The BLISS Field DST Record S - & 8 x s » M
. L.b‘l os‘ R.‘Ords a e . L L] . £l o L] L] - . L] L . L] . el . L] . L] 92
' The L.b'l os' R.cord . L] L] L] . L2 . L] . - Ll L] . L] 92
: The Label-or-Literal DST Record - o » o o o .. 93
: 'h' Entr, Point ost Record L] - K] L] L] - . . L] - L] . . L] Ll L . 9‘
: The PSECT DST Record . . &« & & ¢ ¢ o o « o = « = ¢ e i W
! Line Number PC-Correlation DST Records . . . « « « « « « « « 97
- Line Number PC-Correlation Commands « « « « « « «» 98
' PC-Correlation Command Semantics P e e e 100

DSTRECRDS.REQ;1

Source rilo Corrolation DST Records
Declare S i. s 6 & & @
Set Source F

The
The
The
The
The

Set Source Record Number Long
Set Source Record Number Wor
Set Line Number Lon W T
Set Line Number Wor : . & ®
Increment Line Number Byte .
Count Form-Feeds as Source Reco
Define N Lines Word
Define N Lines Byte

Definition Line Number DST Record . .
Static Link DST Record
Prolog DST Record « « « « &

e @ & @

d

e & e s o o o 0
e o Ne o o o o o s @
. e
. e o 8 8 o 0 0 0 s e e
- ® ® 8 8 & ® 8 8 8 e e
. e & & 8 o 8 & o 8 o

Version Number DST Record « « « &

COBOL Global Attribute DST Record

The Overloaded Symbol DST Record
Continuation DST Records $ 2 E e S e
Obsolete DST Records ¢ & $ e

The Global-Is-Next DST Record . "
The External-Is-Next DST Record > 5
The Threaded-Code P(C-Correlation DST Record
The COBOL Hack DST Record . . . « « « « « &
The Value Specification DST Record o

DST Record Declaration Macro . . . « « « « « &

e & & & & 8 & 0 0
® & & & & 8 & " 8 0
e & & & & & & & & &
& & & & & & & & & & @
@ & & & 8 8 8 & 8 8 @

L] L]
° L
L] .
L] .
. L]
. L]
. .

16-SEP-1984 16:49:15. 50 Page &

- b e e e b e e e o e d
oo

N Y =
NSNS Sl —~

0

DSTRECRDS.REQ;1 16-SEP=-1984 16:49:1?.}3 Page 5

LRl R R i B R R L T R L e L L I T o

PURPOSE OF THE DEBUG SYMBOL TABLE

The oobug Symbol Table (DST) is the s;nbol table that the VAX compilers
roduce to pass symbol table information to the VAX chuggor and to the
AX Traceback facility. The DST is a lan?uago-indopondon symbol table

in the sense that all VAX compilers output symbol information in the

same format, regardless of source language. This symbol information is
emitted into the object modules Rroducod bz the compiler. It is then
passed through the linker into the executable 1nago file that the linker

?onorntos. EBUG or TRACEBACK can then retrieve the
rom the image file.

The purpose of the Debug Symbol Table is thus to permit the Traceback
facility to givo a symbolic stack dump on abnormal program termination
and to permit DEBUG to supgort fully s¥nbolic debugging. Other Digital
software may also use the DST information for various purposes.

symbol information

To support these purposes, the Debug Symbol Table represents all major
aspects of program structure and data representation. It can represent
modules, routines, lexical blocks, Labels, and data symbols and it can
represent all nesting relationships between such symbols. It can also
describe Line number and source Line information. It can descrive all
data types supported by DEBUG, includina complex types such as record
structures and enumeration types. In addition, it can describe arbi-
trarily complex value and address computations.

The Debug Symbol Table is solely intended to support compiled languages,
not interpreted languages. The DST representation assumes that source
Lines have been compiled into VAX instructions and that those instruc-
tions are actuall¥ executed, not interpreted. Such DEBUG facilities as
breakpoints and single-stepping will not work if this assumption is
violated. Similarly, it is assumed that data objects have addresses
that can be accessed directly when these objects are examined or depo-
sited into. DST information is thus generated b; all compilers that
XQ{ Diaganggpports. but not by the interpreters for languages such as
or .

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1?.}3 Page 6

GENERAL STRUCTURE OF THE DST

This section describes the general structure of the Debug Symbol Table.
It explains how the DST is generated by the various VAX 1onpilors. how
it is passed ul?ng to ‘ho oxciutlble naae file by the Linker, and how
it is accesses the image file by DEBUG or TRACEBACK. This section
also describes in general terms how the DST is structured intorna%ly:
how it is subdivided into modules, routines, lexical blocks, and indi-
vidual symbcls, how nesting relationships are represented, and how data
symbols, including their values and data t{pcs. are represented. The
exact formats of the various Debug Symbol Table records and other fine-

rained detail are described later in this definition file, not here,

t the coarse structure of the DST and how that structure is accessed
are outlined in this section.

GENERATION OF THE DST

The Debug Symbol Table (DST) is generated b{ the compilers for all VAX
langua?es supported by DEBUG. Durina compilation, the compiler outputs
the DST for the module being compiled into the corrcspondin? object
file. When the Llinker is invoked, it does relocation and global=-symbol
resolution on the DST text and then outputs it into the executable image
ile. Beyond knowing what must be relocated, the Linker has no specia
knowledge of the format or contents of the DST. Finally, the Debugger
reads the DST information from the executable image file during a debug-
ging session, or Traceback reads it when giving a traceback in response
o an unhand(ed severe exception during image execution.

A compiler outputs DST information in the form of two kinds of object
records, TBT records :nd DBT records. (See the Linker manual for a
full description of the VAX object language accepted by the linker.)
ALL *‘traceback’’ information goes into the TBT records and all ‘''symbol
information goes into the DBT records. When the user Later Links using
the plain LINK command, only the DST information in the TBT records are
copied to the executable ino?o file. These records contain enough in-
formation for Traceback to give a call-stack traceback. If the user
links with the LINK/DEBUG command, all information in both the TBT and
the DBT records are copied to the executable i-o?c file. These records
together give all DST information needed for ful s¥nbolic debuagin?.
The user can also Link with LINK/NOTRACEBACK, in which case no DST in-
formation at all is copied to the executable image file.

It is not possible to have the linker cop¥ the DBT records without also
copying the TBT records: the information in the TBT records is required
for the information in the DBT records to make sense.

The '‘traceback'’ information in the TBT records includes all Module Begin
and End DST records, all Routine Beain and End DST records, all Lexical
Block Begin and End DST records, and ali Line Number PC-Correlation DST
records. It -a‘ also include version Number DST records. ALl other DST
records should be included in DBT records.

I I e e L T T

4
DSTRECRDS.REQ;1 16=-SEP-1984 16:69:12.}0 Page 7

e R e

form has two subqualifiers: /DEBUG=(INOJTRACEBACK,[NOJSYMBOLS). The
unadorned /DEBUG qualifier is equivalent to /DEBUG=(TRACEBACK,SYMBOLS):
it causes all DST information to be output. /DEBUG=TRACEBACK causes
only the traceback information (the TBT records) to be output b{ the
compiler. /DEBUG=(NOTRACE,NOSYMBOL) causes no DST information to be
output at all. Finmally, IﬁEBUG=(NOTRACE.$VHBOLS) causes all DST infor-
mation except Line Number PC-Correlation DST records to be output (this
combination is lar?ely pointless although it saves some DST space).
Note that the module, routine, and lexical block information, which
counts as traceback information, must be output if any symbo(informa-
tiondi?iousput since it defines the scopes within which other symbols
are defined.

Most VAX compilers have a /DEBUG gua ifier which in its most general

When the Linker outputs the Debug Symbol Table to the executable image
file, it may also output two more image sections: the Global Symbol
Table (GST) and the Debug Module Table (DMT). These two tables are
enerated if the LINK/DEBUG command is used, not otherwise. The Global
ymbol Table contains records for all global symbols known to the linker
in the current user program. DEBUG uses the GST as a symbol table of
Llast resort when DST information is not available, either because the
module contoining some global symbol was compiled without DST informa=
tion being output or because the module is not set (with SET MODULE) in
the current debugging session. The GST information is not as complete
as the DST information for the same symbols because the GST has no type
description (the Linker does not need to know about data types).

The Debug Module Table (DMT) is an indexing structure for the DST. It
contains one record for each module in the DST. This record contains

a pointer to the start of the DST for the corresponding module, the size
of the DST for that module, the number of PSECTs in that module, and the
address ranges of all those PSECTs. The DMT allows DEBUG to in{tlglize
its Module Table and its Static Address Table without actually hav1ng to
read through the entire DST; because the DMT is very small compared to
the DST, it can be scanned much more efficiently.

The details of how the DST, the GST, and the DMT are accessed in the
executable image file are explained in the next section.

|
RER———

[l T PR — Y.

4
DSTRECRDS.REQ; 16=-SEP=-1984 16:69:1&.;0 Page 8

long
long
long

long
Llong
long
long
long

P e L L T T L L b T LT T T T ey ———

LOCATION OF THE DST WITHIN THE IMAGE FILE

The Debug Symbol Table is accessed through poirter information found in
the executable image file header block. This header block contains a
go1ntor in a fixed location (IHDSW_SYMDBGOFF) which points to a small

lock Later in the header which gives the size and location of the
Debu? S;nbol Table (DST), the Global Symbol Table (GST), and the Debug
Module Table (DMT). The first part of the executable image file header
looks as follows:

+*
[}
}
?
g
k]
H
4
]
4
9
¢
i
1
]
il
i
]
i
f
(]
#
i
i
"
[}
[}
i
il
o
fi
'
[}
[
[}
[}
i3
1]
]
]
(]
(]
]
]
'
]
0
(]
@
4
1
+

P coccce P on § o
]
]

Here IHDSW_SYMDBGOFF contains the byte offset relative to the start of
the header of an Inage Header Symbol Table Descrlftoq. The Image Header
Symbol Table Descriptor (IHS) in turn has the following format:

D e S +
: IHSSL_DSTVBN :
b R W T R R '
L wstwgsTRecs i IAsseostaks |
: IHSSL_DMTVBN :
B o whpwevies

Here [HSSW_DSTBLKS and IHSSL_DSTVBN give the size (in blocks) and loca-
tion (virtual Block Number) of the Debug Symbol Table (DST) within the
executable image file. The fields IHSSW_GSTRECS and IHSSL_GSTVBN give
the size (in GS5T records) and start location (Virtual Block Number) of
the Global Symbol Table (G3T). Finally, the fields IHSSL_DMTBYTES and
IHSSL_DMTVBN give the size (in bytes) and start location TVirtual Block
Number) of the Debug Module Table (DMT). The DMT is described below.
These field names are declared by macros in SYSSLIBRARY:LIB 5 2. The
symbol IHDSW_SYMDBGOFF is aiso defined in SYSSLIBRARY:LIB.L32.

Pointers to the Image Header and the Image Header Symbol Table Descrip-
tor are declared as follows:

O T e S e W RS T R G S R R R R S S S G S R G e R G G e R R e

long
long
long
long
long

long
long

4
DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:12.10 Page 9

IHDPTR: REF BLOCKE BYTE)
IHSPTR: REF BLOCKCIHSSK_LENGTH,BYTE]

The Image Filt Header in an executable image file points to the Ina?
Header l Table descriptor as described above. If b of fie d
IHDSL_LN FLAGS in the image header is set, this is a neu ?
ore Eroducod by the VMS V4.0 or Later Linker, and the lHStL _DM vén ond
lHS% DMTBYTES fields exist in the Image Header Symbol Tablé descriptor.
5 is not set, this is an ‘‘old'' image and those fiolds do not
exist) If non-zero. IHSSL_DMTVBN gives the Virtual Block Number in
the iaage file of the Debug Module Table (the DHT) IHSSL DHTBVTES
then a ves the size of the DMT in bytes. The DMT is onl‘ guilt the
user did a LINK/DEBUG; if he did not, IHSSL DHTVBN and IHSSL_DM"3YTES
are zero.

The Debug Module Table con ?

ns one entry per module in the Debug
Symbol Table (the DST).

i
s is the format of each such DMT entry:

- -
§
t
9
{
. |
{

Unused=--Must Be Zero : Number of PSECTs for module !

......... - o Bl R ke R b L RS 4

Start address of first PSECT in module '
Longth of first PSECT in module in bytes

¢
0
i
t
1
8
8
0
1
8
?
[l
l
l
#
]
L]
il
i
]
&
1
]
]
[}
[}
[]
]
1
L]
H
v
]
i
[]
]
]
b
[
[}
[}
[}
]
L}
]
[}
[}
]
]
[}
]
]
'
0
i
i
i
4
'
3
b
'
s

@ e PP rccncnccnndond os o

Longuord 0 gives the address relativo to the start of the DST of the
Module Be? n DST Record for this module. Longword 1 givos the size

of the DST in bytes for the same module. Longword 2 ? ves the number

of PSECTs in the module (ﬁ.c.. the number of statically allocated

program sections), and this is followed by that number of two-longword
airs which give the start address and Llength (in ltes) of each such
SECT. Since the number of PSECTs cannot exceed 65K, the upper two

bytes of longword 2 are available for future expansion.

The DMT is used durin? DEBUG initialization to initialize DEBUG'S Run-
Time Symbol !able (RS) and Program Static Address Table (Program SAT).
Usin? the DMT is much faster than the alternative procedure, nanely

reading through the entire DST to pick up the needed information. The

4
DSTRECRDS.REQ;1 16-SEP=1984 16:69:1;.;0 Page 10

P I M S I mIEm Il SIS SIS SIS MBI B SR B SIS IS SISl gy g EE eSS g En S S S G S e e Ry

information in the DMY entr; is_enough to build a Module RST Entry for
each module in the DST and the PSECT information is used to build the
Program SAT. The amount of RST symbol table space needed per module is
not computable from the DMT information, but is estimated by multiplying
the DST size of each module by an appropriate scale factor.

OVERALL STRUCTURE OF THE DST

The Debug Symbol Table consists of a contiguous seguence of DST records.
Each DST record contains a two-byte header which gives the length of the
record in bytes and the type of the record. The structure of the rest
of the record (if an;) is determined by the record type. The lLength of
the DST in 512-byte blocks is given in the image file header; if the DST
does not fill the Last block, that block is zero-padded to the end.

The largest structural unit within the DST is the module. Each module
represents the symbol table information of a sogaratoly compiled object
module. The DST for a module always begins with a Module Begin DST rec-
ord and ends with a Module End DST record. The Module Begin DST record
gives the name of the module and the source language in which it was
written. The Module End DST record simply marks the end of the module
and contains no other information. As noted above, if present, the
Debu? Module Table (DMT) points to the Module Beain DST record of each
module represented in the DST. DEBUG uses the DAT (if present) to lo-
cate all modules in the DST.

The DST as a whole thus alua‘s begins with the Module Begin DST record
for the first module in the DST, It is followed by the symbol informa-
tion for that module. Then comes the Module End DST record for that
module. Immediately after that Module End DST record comes the Module
Be?in DST record for the next module, and so on to the end of the whole
DST, where the Module End DST record for the Last module is found. The
rest of that image file block is zero-filled to the next block boundary.
Note that there 1s no break between modules in the DST.

NESTING WITHIN THE DST

fFor most Languages, the symbol table must represent a variety of nesting
relationships. Routines are nested within modules, data symbols are
declared within routines, and even routines are nested within routines.
Certain data constructs, in particular record structures, contain addi-
tional nesting relationships. In the Debug S;-bol Table, such nesting
relationships are represented by Begin-End pairs of DST records. We
have already seen above that the largest subunit of the DST, namely the
module, is represented b! 8 Module Begin DST record and a Module End DST
record bracketting the DST information for the module.

This principle extends to other nesting relationships. The DST informa-
tion for a routine is thus represented b; a Routine Begin DST record and
3 Routine End DST record enclosing the DST information for all symbols

DSTRECRDS.REQ;1

D e L e L T T T T T T T ™ T M T T

F 14
16=-SEP=-1984 16:59:15.}0 Page 11

local to or nested within that routine., Similarly, Lexical blocks (such
as BEGIN-END blocks or their equivalents in various languages) are re-
resented by Block Bogin and Block End DST records enclosing 5ho symbol
T records local to that lexical block. The nesting of routines and
blocks within one another to any depth (within reason) is represented by
the proper nesting of the corresponding Begin and End DST records.

An example ao; help clarify this notion.
program in a fi
records:

Program Structure

MODULE M =
BEGIN
VAR SYM_M1: INTEGER;
VAR SYMZM2: REAL;

ROUTINE R1 =
BEGIN
VAR SYM_R11: BOOLEAN;
VAR SYM_R12: INTEGER;

ROUTINE R2 =
BEGIN
VAR SYM ng;: ?oue
A=

_ LE
VAR SYM'R NTEGER;
ROUT INE "R

BEGIN
VAR SYM R2A: BYTE;
BEGIN

VAR BLK_V1: WORD;
noutlng :zean =

BEGI
FOO:BEGIN

VAR FOO_V:REAL;
END;

VAR R2BLK_V2:REAL:
END;

VAR BLK_V2: DOUBLE;
END;

END;
VAR SYM_R23: REAL;
END;

Here module (compilation unit) M contains two

The following example shows a
ctitious Language along the corresponding sequence of DST

DST Record Sequence

Module Begin M

Data SYM_M1 (DTYPE_L)
Data SYM_M2 (DTYPE_F?

Routine Begin R1

Data SYM_R11 (BOOLEAN)
Data SYM R12 (DTYPE L)
Routine End (for R1Y

Routine Begin R2

Data SYM_R21 (DTYPE_D)
Data SYM _R22 (DTYPE_L)
Routine Begin R2A

Data SYM_R2A (DTYPE_B)
Block Begin (no name)
Data BLK_V1 (DTYPE W)
Routine Begin R2BLRR

Block Begin FOO
Data FOO_V (DTYPE_F)
Block End (for FOO)

Data R2BLK_V2 (DTYPE F)
Routine End (for R2BLKR)

Data BLK_v2 (DTYPE_D)
Block End (for no name)

Routine End (for R2A)

Data SYM _R23 (DTVPS F)
Routine End (for R2Y

Module End

module~level data items,

4
DSTRECRDS.REQ;1 16=-SEP=1984 16:49:1?.;0 Page 12

I s e e L L Rl R R e —

SYM_M1 and SYM_M2, and two routines, R ?nd R2. _Routine R2 in_turn con-
tains several tosll daia symbols (SYM_R21, SYM_R22, and SYM R23) and a
nested routine R2A. RZ2A in turn contains an anon'aous BEGIR-END block,
that blocks contains two local data symbols BLK_V1 and BLK_V2 and a
local routine RZBLKR, local routine RZBLKR contains a data symbol and a
Labelled BEGIN-END block FOO, and block FOO contains one Local symbol
FOO_V. ALL this nesting is represented b{ Begin and End DST records in
the Debug Symbol Table as illustrated on the right.

Additional nesting must be represented for data. A record (called a
structure in some Languages) is a composite data object containing some
number of record components of various data types. A record component
may itself be a record. In addition, some languages allow records to
have ‘‘variants’ (as in PASCAL), which imposes additional structure that
must be represented in the DST.

A record type is represented by a Record Begin and Record End DST record
pair bracketting the DST records for the record components. This notion
is illustrated by this program segment and the corresponding DST:

Program Structure DST Record Sequence
TYPE RECTYP = Record Begin (RECTYP)
RECORD OF
COMP1: INTEGER; Data COMP1 (DTYPE_L)
COHP;: REAL ; Data COMP2 (DTYPE_F)
COMP3: DOUBLE; Data COMP3 (DTYPE D)
END; Record End (for RECTYP)

Here RECTYP is a record type. Each ogject of this t¥ge is a record con-
taining three components, COMP1, COMP2, and COMP3. is structure is
represented in the DST by a Record Bogin DST record followed by Data DST
records for the components followed b‘ a8 Record End DST record. The
addresses specified in the component DST records are bit or byte offsets
from the start of the RECTYP record as a whole.

In this example, the Record Begin DST record for RECTYP na¥ in fact re-
grosent either a record type or a record object. A field in the Record
e?in DST record indicates which. However, let us assume that RECTYP
defines a record type. How do we then dec(are objects of that type?

The following example illustrates how:

Program Structure DST Record Sequence

Data REC1 (SepTlESeec)
TYPE RECTYP = Record Begin (RECTYP)
RECORD OF
COMP1: INTEGER; Data COMP1 (DTYPE_L)
COHPi: REAL; Data COMP2 (DTYPE_F)
COMP5: DOUBLE; Data COMPS (DTYPE D)
END; Record End (for RECTYP)

H 14
DSTRECRDS.REQ;1 16-SEP-1984 16:69:15.;0 Page 13

L Ll L L T L T T T A A A S S A S SRS ———

Data REC2 (SepTypSpec)

Type-Spci DST record
(Indirect Type Spec
pointing to RECTYP)

Here the same record type RECTYP is defined. Two objects of that type
are also defined, REC1 and REC2. Both data objects are represented by
Separate t;pc Specification DST records. Such a DST record must be im=
mediately followed by a DST rccor? that defines the symbol's data type.
The REC1 Soearato Type Specification DST record is immediately followed
by the RECTYP Record Begin DST record; hence REC1 is of the RECTYP data
tyfo. The REC2 Separate Type Specification DST record is immediately
followed by a Type Specification DST record. This record contains an
Indirect Tygc Specification that points back to the Record Begin DST
record for RECTYP. Hence REC2 is also of that record type.

Records may be nested in the sense that a record component may itself be
an object of some record type. A record component of a record type is
regrosontod the same way as on‘ other object of a record type, namely by
a Separate l‘pe Specification DST record. This record must be followed
by a Record Begin DST record or by a T¥ge Specification DST record that
points to a Record Begin DST record. e record component can also be
represented b{ 8 Record Begin DST record directly if this record is
marked as defining an object rather than a type.

Record variants, as found in PASCAL, introduce additional structure. A
detailed description of how variants are represented in the DST is found
in the section on ‘Record Structure DST Records'' Later in this defini-
tion file. Here we will only give an example that illustrates the gene-
ral scheme that is used:

s (

COMP4: INTEGER);
END CASE;

END;

Program Structure DST Record Sequence
Data REC1 (SeptEgSeec)
TYPE RECTYP = Record Begin (RECTYP)
RECORD OF
COMP1: INTEGER; Data COMP1 (DTYPE L)
CASE TAG: BOOLEAN OF Data TAG (BOOLEANY
Variant Set Begin
(tag variable = TAG)
FALSE: (Variant Value for FALSE
COMP2: REAL:; Data COMP2 (DTYPE_F)
COMP3: DOUBLE); Data COMP3 (DTYPE_D)
TRUE variant Value for TRUE

Data COMP4& (DTYPE_L)
Variant Set End
Record End (for RECTYP)

4
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.;0 Page 14

PRI BRI IR IR I BRI T R I RIS EIEI SIS R B IS IEIEI I BT IEIEMITBIEEEEEEEIEEEEIE IER IR IR R R LA ER SRR R G R P R R R R R R S . -

VAR REC1: RECTYP;

Nesting is also used to describe enumeration ty?os as found in PASCAL
and some other lLanguages. An enumeration type is ?oscribed by an Enum=
eration Type Begin DST record followed by Enumeration the Element DST
records for all the enumeration Literals of the type followed by an
Enumeration Type End DST record. Any actual o?‘oct f the enumeration
t‘ e must be described by a Separate T¥po Specitication DST record.
Iiks example illustrates what the DST for an enumeration type looks
e:

Program Structure DST Record Sequence

Data HUE (Soplypgsoc)

TYPE COLOR = (Enum Type Begin COLOR
RED Enum Type Element RED
GREGN. Enum Type Element GREEN
BLUE Enum Type Element BLUE
); Enum Type End (COLOR)

VAR HUE: COLOR;

VAR PAINT: COLOR; Data PAINT (SepTypSpec)

Type Spec DST record
(Indirect Type Spec
pointing to COLOR)

A more detailed description is found in the section entitled '‘Enumera-
tion Type DST Records'’ Later in this definition file.

For some DST record types, DEBUG ignores all nesting relationships below
the module level. Line Number PC-Lorrelation DST records, for example,
may be scattered throughout the DST for a module. DEBUG treats all such
DST records as defining the Line number information for the module as a
whole, regardless of how they may be scattered within or outside the
routines and blocks of the module. Sinilarl‘ Source File Correlation
DST records may be scattered throughout the §T for a module. Records
such as these can be gencratod wherever the compiler finds it most con-
senient to generate them.

DATA REPRESENTATION IN THE DST

Data Symbols are described in the DST by a variety of representations.
Fundamentally, all such representations aive three pieces of information
about each data symbol: its name, its address or value, and its data
type. DEBUG needs additional information about a data symbol, in parti-
cular its scope of declaration, but that information is implicit in the
nesting structure of the DST as described above.

The name is given by a Counted ASCII string in the data symbol's DST

4
DSTRECRDS.REQ;1 16-SEP-1984 16:69:1;.}0 Page 15

P IS I I R R RS SR R RS R TR SRR R R R R RS R G G RS R SRS RS G SSRGS R S G G G R R R R G G G e .

record. The value or oddrosf can be given by a five-byte encoding con-
taining one byte of control information and a longword address, offset,
or value. However, if this five-byte encoding is not adequate to de-
scribe the address or value, escapes to a more complex value specifica-
tion Later in the DST record are available. The data type ua‘ be repre-
sented by a one-byte type code, but if that is not adequate there are
several escapes to a more conp[ox type description elsewhere in the DST.

The standard five-byte value specification can specify any 32-bit or
smaller Literal value, any static blte address, any register address,
and any address that can be formed ; one indexing operation off a reg-
ister or one indirection or both. 8 VAX Standard Descriptor exists
for the symbol in user memory, the five-byte encoding can describe the
descriptor address by any of the above means; the actual data address is
then retrieved from the descriptor,

The standard fivo-b‘to value specification is adequate for the bulk of
all data symbols. However, there are cases when it is inadequate. It
cannot describe Literal values longer than 32 bits, it cannot describe
very complex address computations, and it cannot describe bit addresses
unless an appropriate descriptor is available in user memory. For these
cases, the first byte of the five-byte encoding must have one of several
special escape values. The remaining longword then contains (in most
cases) a pointer to a more complex value specification lLater in the same
DST record. That more complex value specification may consist of a VAX
Standard Descriptor or a ''VS-Follows'' Value Specification. A VS=-Follows
Value Specification can, in the most complex case, contain a routine to
be executed by DEBUG to compute the desired value or address. This rou=-
tine may even call compiler-generated thunks when the complexity of the
address computation so requires.

The details of these more complex value specifications are given in the
section entitled 'DST Value Specifications'' Later in this definition

ile. The point being made here is simply that the DST provides a
simple and compact value specification mechanism that is adequate for
all simple cases, but it also provides several escapes to arbitrarily
complex DST Value Specifications. These complex value specifications
are capable of describing all known address and value computations
required by the Languages supported by DEBUG.

Data type specifications are done in a similar ua‘. For all simple,
atomic data types, a single type byte describes the data type of a data
symbol. However, there are several escape mechanisms for more complex
data types. One mechanism is to take the type information from a VAX
Standard Descriptor found either in user memory or in the DST. Another
is to use a Separate Type Specification DST record for the data symbol.
The data type is then described by a second DST record which immediately
follows the Separate Type Specification DST record. This second record
must be a Record Bogin ST record (describing a record t{po) an Enume-
ration Type Bogin DPST record (doscrfbin? an enumeration 7905. or a T‘pe
Specification DST record. A lago Specitication DST record can describe
any data type supported by DEBUG. It contains a DST Type Specification
for the data t{po in question. This Iyso Specification may ?0 an Indi-
rect Type Specification, pointing to ST record elsewhere in the DST
that defines the data type. Alternatively, it may describe the desired
data type directly and may be as complex as the data type requires.

DSTRECRDS.REQ;1

- - - - -

R
16-SEP=-1984 16:49:15.50 Page 16

DST T¥po 1clficuti s are doscribod 1n I soparation sec 1on elsewhere
in this def

tion fil ‘ aade oro s np that the
simple one-byte type spoc cot 5 lva Llable for simple data types,
but several escapes ‘o arbitrari ly omplex DST ¥

pe specifications are
available when the simple type specification is inadequate.

4
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1&.;0 Page 17

F - SRS SR RS R R SRS RS RS RS R RS R e G e R G R RS GRGEEG R R G R G EeERe ESE e S e E y -

FIELD ACCESS MACROS

The following macros are used in dofining BLISS field names for all data
structures in the Debug Symbol Table. ese nacros quply the position,
size, and sign-extension values when used in FIELD declarations for
BLOCK and BL CKVECTOR data structures. They arc used instead of their
numeric equivalents because th 0; are clearer and less error-prone. The
various generic forms (as specified by the letters in the names) are as

follows:
& Materialized address
L Longword
W lero-extended uord
B lero=-extended b¥
v lero-extended bit field
S Sign-oxtondo uord
S8 Sign-extended b{
Sv Sign-oxtondod bit field

The "'A'" form should be used whenever the field being defined is such
that only the address of the field may be materialized in a structure
reference; that is, fetch and store operations on the field are not
valid. An example of such a field is an ASCII string.

Each of the 'V'' and ''SV'' forms take one or two parameters. The first
parameter is tho bit position uithin the lonauord or byte and the
second is tho field size 1n bits. The ;econ paraneter s oetional
if omitted, it dofaults to 1. Thus v) nelns bit 5

neans the $-bit field starting at bit™ S and ondin? “Bit

fos tions are counted from the low-order (least s gnificant) end of the
ongword, starting at zero.

This follouingifield access macros are used in DSTRECRDS.REQ. Their

actual definitions are found in STRUCDEF.REQ, but are shown here for
the convenience of the reader.

MACRO

A_ = 0, 0, 01X, ! Address of a field
R = 0, 32, 01X, ! Longword
w_ = 0,16, 02X, ! Word, zero-extended
B_ = 0, 8, 01X ! B 141 zero-extended
Vo(P,S) = P, XIF INULL(S) XTHEN 3 LSE § '%.lg %. ! Unsigned
H
Sw_ = 8. 16, 1 X, i Uord. sign-oxtonded
SB_ = 0, 8, 1% i in-oxtended
SVZ(P,$)= P, "XIF INULLIS) BTHEN lest L L signed
. .

Bring in the field access macro definitions from STRUCDEF.L32.
| IBRARY 'LIBS:STRUCDEF.L32";

&
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1?.}0 Page 18

THE DST RECORD HEADER FORMAT

ALL DST records have the same general fornat consisting of a fixed
two-byte header followed by zero or more elds whose format is
determined by the DST record's type. lhis is the format of all DST

records:
+ -—-- Tosoc o me oo e
byte i DSTSB_LENGTH i
g byte ! DST$B_TYPE 2 ;
var | DSTSA_NEXT ;
§ lero or more additional fields depending on §
| the value of the DSTSB_TYPE field :
T S e e S— +

i
i
i
i
i
i
i
i
i
i
i
i
i
i
£

These fields appear in all DST records.
1IELD DS}%HEADGR FIELDS =
DSTSB_LENGTH =[0,8_1, ! The length of this DST record, not
: includi ng this length byte
DSTSB_TYPE =[1,8_1. ! The type of this DST record
DSTSATNEXT =[1,A_] ; The next DST record starts at this

location plus DST$B_LENGTH
TES;

——

4
DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1!.;0 Page 19

SUPPORTED VALUES FOR DSTSB_TVYPE

]
i
i
]
: ALl supported values of the DST record type field (DSTSB _TYPE) are
' listed here. If the valye is in the range of DSCSK_DTYPE_LOWEST to
' DSCSK_DTYPE_MIGHMEST, it is a VAX Standar T{R! Code"and gives the
i data type of the object being defined. In this case, the record is
! a Standard Data DST Record or one of its variants. Otherwise, the
: type value must be in the range DSTSK_LOWEST to DSTSK_HIGHEST or it
4 may be DSTSK_BLI. In these cases, the type code denofes the type of
! the DST record and the format of the record is determined by type
' value. ALl other tyﬁo codes are unsuprortod by DEBUG. The type codes
- between DSCSK_DTYPE_HIGHEST and DSTSK_LOWEST org ros;rvod for future
! use by Di?itat. The type codes in the ronge 192 - 255 are potentially
! reserved for use bz customers, although DEBUG does not support any
5 sggh type codes. DEBUG ignores all records with unsupported type
: codes.
)
i
]
: VAX STANDARD TYPE CODES
]
' As mentioned above, VAX Standard Type Codes can be used as DST record
: t¥pe codes for data symbols. The type code then gives the data t‘pe
: of the symbol in addition to indicating that the DST record has the
E Standard Data DST record format or a variant thereof.
]
)
! ALL VAX Standard Type Codes are lListed here for convenience. They are
; commented out since they are actually declared in STARLET.REQ.
LITERAL
! DSCSK_DTYPE_2 =0, ! Unspecified (May not appear in DST).
! DSCSK_DTYPE_V =1, ! Bit.
! DSCSK_DTYPE_BU = g. ! Byte logical.
! DSCSK_DTYPE_WU = 3, ! Word logical.
! DSCSK_DTYPE_LU =4, ! Longword logical.
! DSCSK_DTYPE_QU =5, ! Quadword logical.
! DSCSK_DTYPE_B = 9. ! Byte integer.
! DSCSK_DTYPE_W =17, ! Word integer.
! DSCSK_DTYPE_L = s. ! Longword integer.
! DSCSK_DTYPE_Q = ! Quadword integer.
! DSCSK_DTYPE_F = 16. . Singlc-precis on floating.
! DSCSK_DTYPE_D =11, ! Double=-precision floating.
! DSCSK_DTYPE_FC = 1;. ! Complex.
! DSCSK_DTYPE_DC = 15, ! Double=-precision Complex.
! DSCSK_DTYPE_T = 14, ! ASCII text string.
! DSCSK_DTYPE_NU = 15, ! Numeric string, unsigned. =
! DSCSK_DTYPE_NL = 16, ! Numeric string, left separate sign.
! DSCSK_DTYPE_NLO =17, ! Numeric string, left overpunched sign.
! DSCSK_DTYPE_NR = 13. ! Numeric strinrg, right separate sign,
! DSCSK_DTYPE_NRO =19, ! Numeric string, right overpunched sign
! DSCSK_DTYPE_NZ = 20, ! Numeric string, zoned sign.

DSTRECRDS.REQ;1

nmunn
NN NN NN NN PO
. s s s

—N N —A———

CO0O0UO000 O©OOO0CO
wVurunuunnuym vy
]
COO0O0OO0O00 OO0

TYPE-CIT
“DTYPE “BPV
DSCSK"DTYPE “BLV
DSCSK DTYPE "VU
DSCSK™DTYPE "ADT

DSCSK_DTYPE_VT

HunuHuNNENEN
NO WS GBI =O0VNOMNW SR —

Rt B R T T R T T T
® % % % % S ST S S ST S S N

DSCSK_DTYPE_LOWEST 1 !
37: !

DSCSK_DTYPE_HIGHEST

INTERNAL TYPE CODES FOR DEBUG

Define DEBUG-internal type codes.

1TERAL
DSCSK_ b
DSCSK™DTYPE-AZ
DSCSK-DTYPETF
DSCSKDTYPE SV
DSCSK™DTYPE~SVU
DSCSK™DTYPE "F IXED

Mimrimiaiaicmiemicimtm i -

:K DTYPE _AC

T]
¥ ¥ O V]
WA = OO 00
. % & & 8 8

! The following literals are used
; in DEBUG for the range of DTYPE

1
16-SEP-1984 16:49:12.33 Page 20

Packed decimal strin?.

Sequence of instructions.

Procedure entry mask.

Descriptor, used for arrays of
dynamic strings

Octaword logical

Octaword in e?er

Double precision G floating, 64 bit

Quadruple precision floating, 128 bit

Double precision complex, G floating

Quadruple precision complex, H floa ing

COBOL intermediate temporary

Bound Procedure Value

Bound Label Value

B8it Unaligned

Absolute Date-Time

Unused (not supported by DEBUG)

Varying Text

The next two values are used for range checking of the type values
in DST entries. They are used mainly in CASE statements.

Lowest DTYPE data type we support
Highest DTYPE data type we support

The following definitions are used internally in DEBUG, but are not
supported in the DST. They should be deleted here
into standard VAX type codes declared in STARLET.REQ. These numbers
may change from one release of DEBUG to the next because they must

always be larger than DSCSK_DTYPE_

if they are made

HIGHEST.

ASCIC Text

ASCIZ Text A

Boolean True/False (length in bits)

Signed bit-field (aligned)

Signed bit-field (unaligned)

Fixed binar; used for FIXED in ADA
and FIXED BINARY in PL/I. This
code is used the tlpe conversion
tables in DBGEVALOP.

as CASE statement bounds internally
codes used.

DSTRECRDS.REQ;1 16=SEP=1984 16:49:1&.}3 Page 21

LITERAL

'
i
i
i
i
i
i
i
i
i
:
i
i
i
i
:
i
]
i
i
L

DBGSK _MINIMUM_DTYPE

o s =0 ! Lowest internal DEBUG dtype value
DBGSK “MAX IMUM™DTYPE =48, iAW {

L
ighest internal DEBUG dtype value

The following definition is only used internally in DEBUG. It is

a DTYPE code that is temporarily put into a Value Descriptor to
tell the address expression interpreter that the Value Descriptor
came from a literal constant. It does not have to be in the above
range because it is only used during the parsing of address expres-
sions. After the address expression has been Earsed. if the DTYPE
is LITERAL, it is then changed to DSCSK_DTYPE_L.

- ——————

DSCSK_DTYPE _LITERAL = 191; ! value is from a Literal constant

OTHER DST TYPE CODES

The following Literals are the DST ty?e codes other than VAX Standard
T;pe Codes which can appear in DST$SB_TYPE. Each indicates the format

of the record which contains it and most indicate the kind of object
being described by that record. When new DST records are defined, the
type code is assigned by naking DSTSK_LOWEST one smaller and using that
value. The type codes above DSTSK_HIGHEST (191) are reserved, the idea
beina that the DTYPEs 192 - 255 are architecturally reserved to users.
DEBUG ignores all DST records whose tzge codes are not DST$K_BLI, in
the range from DSCSK _DTYPE LOWEST to DSCSK_DTYPE_MWIGHEST, or in the
range DSTSK_LOWEST TO DSTSR_HIGHEST.

! Define all Additional Debug Symbol Table record type codes. Note that the
: BLISS Special Cases record has code zero (for historical reasons). ALl
! other type codes are in the range DSTSK_LOWEST to DSTSK_HIGHEST.
ITERAL
QSISK_BLI =0, ; 8LISS Special Cases Record
DSTSK_LOWEST = 153, ! Lowest numbered DST record in this
- ranac--used for range checking
DSTSK_VERSION = 153, ! Version Number Record
DSTSK_COBOLGBL = 154, ! COBOL Global Attribute Record
DST$K_SOURCE = 155, ! Source File Correlation Record
DSTSK_STATLINK = 156, ! Static Link Record
DSTSK_VARVAL = 157, ! Variant Value Record
DST$K_BOOL = 158, ! Atomic object of tyge BOOLEAN,
: Allocated one b:te.
: low order bit = 1 if TRUE
i low order bit = 0 if FALSE.
DSTSK_EXTRNXT = 159, ! External-Is-Next Record (Obsolete)
DSTSK_GLOBNXT = 160, ! Global-Is-Next record (Obsolete)
DSCSK_DTYPE_UBS = 161, ! DEBUG internal use onlr (unaligned
' bit string) (Obsolete)
DST$K_PROLOG = 162, ! Prolog Record

DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1g.;8 Page 22

DSTSK_SEPTYP = 163, ! Separate Tygc Specification Record
DSTSKCENUMELT = 164, ! Enumerated Type Element Record
DSTSKCENUMBEG = 165, ! Enumerated Type Bo in Record
DSTSKENUMEND = 169. ! Enunorltod T‘po Record
DSTSK_VARBEG = 167, ! Variant Set in Record
DSTSK_VAREND = 168, ! Variant Set End Record
DSTSK_OVERLOAD = 199. ! Overloaded Symbol record
DSTSK_DEF _LNUM = 170, ! Definition Line Number Record
DSTSK_RECBEG = 171, ! Record Begin Record
DSTSK_RECEND = 17;. ! Record End Record
DSTSK_CONTIN = 173, ! Continuation Record
DSTSK_VALSPEC = 174, : Valuo Spocificl ion Record
DSTSK_TYPSPEC = 175, ! ificat on Record
DSTSK_BLKBEG = 179. 'B k o in Record
DSTSK_BLKEND = 177, ! Block End Record
DSTSK_COB_HACK = 178, ! COBOL Hack Rocord (Obsolete)

! = 179, ! Reserved to DEBUG

! = 180, ! Reserved to DEBUG
DSTSK _ENTRY = 181 ! Entry Point Record
DSTSK LINE_NUM_REL _R1{ i Threaded Code PCe Correlation

= TB;. ! Record (Obsolete)

DSTSK BLIFLD = 183, ! BLISS Field Record
DSTSK_PSECT = 184, ! PSECT Record

DSTSKCLINE NUM = 185, ! Line Number PC-Correlation Record
DSTSK “LBLORLIT = 186, ! Label-or-Literal Record
DSTSK_LABEL = 187, ! Label Record
DSTSK“MODBEG = 188, ! Hodule Beain Record
DSTSK_MODEND = 189, ! Module End Record
DSTSK_RTNBEG = 190, ! Routine Begin Record
DSTSK_RTNEND = 191, ! Routine End Record
DSTSK_HIGHEST = 191; ; Highest numbered DST record in this

range--used for range checking
NOTE TO DEVELOPERS:

New DST Records should not be odded at this end of the DST record number
range. VAX Standard Type Codes 192 - 255 are reserved to users. Hence
DEBUG does not use type codes in that range, even though DEBUG does not
support user-defined t(BU codes. New DST record numbers should be allocated
by decrementing DST$K ES(and using that number for the new DST record.

1
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1&.38 Page 23

MODULE DST RECORDS

The Debug Sznbol Table for each separately compiled module must be
enclosed within a Hodule-Bogin/Hodule-End pair ?f ST records. The
Module Begin DST ro?ord must thus be the very first DST record for

any scgarately compiled module (i.e., any object file) and the Module
End DST record must be the ver{ Llast DST record for the module. Only
one Module-Begin/Module-End pair is allowed in what the Linker sees

as a single object module. (If nultiglo Module-Begin/Module-End pairs
are included in one object module, DE ?G will only see the first such
pair and ignore the rest because the Linker will only tell DEBUG about
the location of the first Module Begin record.)

The Hodulo-ncggnlnodulc-ind pair defines a s‘ubolic scope which con-
tains all symbols defined by DST records within that pair. The module
has the name given in the Module Begin DST record. The language of the
object module is also encoded in the Module Begin record.

Miciaiare

DSTRECRDS.REQ;1

i byte
i byte
i byte
i Long
i byte

. var

i Define the fields and size of
FIELD osnnooaec FIELDS =

DSTSB MODBEG_UNUSED
DSTSL_MODBEG_LANGUAGE

DST$B_MODBEG_NAME

LITERAL

Define all the Language codes that ma
field of the Module Begin DST record.
support all Languages

| ITERAL

THE MODULE BEGIN DST RECORD

The Module acgin DST Rocord marks the be
ves the nono of t
le was wri tten.

bc the the first DST record of ever
ond it must be matched by & Hodulo End D
that module.
the DST for a separatcly conpilo

This is the format of the Module Begin DST Record:

This DST record
in which th

l!.oau

F 1
16=SEP-1984 16:49:15.38 Page 24

inning of the DST for a module.
e module and the source lLan-
The Module Bogin DST Record
compilation unit ("‘module'”)
Record that ends the DST for
in DST Record is allowed to appear in
object module.

The Module Name in ASCII
(The name's length is given by DST$B_MODBEG_NAME)

T T T T T

DSTSK_MODBEG_SIZE : Size in b‘

- Unuscd--nust Be Zero
: Language code of Language in

ich module was written

i Count blt' in naae counted

SCII string

tes of the fixed part of
odule Begin DST record

pear in the DSTSL_MODBEG_IL. ANGUAGE
ote that DEBUG may not actually
hat have longuage codes.)

DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1?.13 Page 25

DSTSK_MIN_LANGUAGE = 0, ! Smallest Language code
DSTSK_MACRO = ?. ! Macro o
DSTSK_FORTRAN =1, ! Fortran

DSTSK_BLISS = ;. ! Bliss

DSTSK_COBOL = 3, ! Cobol

DSTSK_BASIC = 4, ! Basic

DSTSK_PLI = 5, ! PL/]

DSTSK_PASCAL = ?. ! Pascal

DSTSK_C =7, : €

DSTSK "RPG =8, i RPG

DSTSK_ADA =9 ! Ada

DSTSKZUNKNOWN = 10, i Language Unknown
DSTSKTMAX_LANGUAGE = 10; ! Largest language code

! Here also we define all the same lanauago codes using names with the DBGS
! prefix. This prefix is used in DEBUG for historical reasons. These names
; may cvontually be discarded.

LlTERAL
DBGSK_MIN_LANGUAGE = DSTSK_MIN LANGUAGE. ! Smallest Language code
DBGSK_MACRO = DSTSK_MACRO Macro
DBGSK_FORTRAN = DSTSK_FORTRAN.! Fortran
DBGSK_BL1SS = DSTSK_BLISS, ! Bliss-32
DBGSK_COBOL = D.I$K_COBOL, ! Cobol
DBGSK “BASIC = DSTSK_BASIC, ! Basic
DBGSK_PLI = DSTSK_PLI ' PL/I]
DBGSK_PASCAL = DSTSK_PAS{AL, | Pascal
DBGSK_C = DSTSK_C : €
DBGSK _RPG = DSTSK'RPG, | RPG
DBGSK_ADA = DSTSK_ADA, ! Ada
DBGSK_UNKNOWN = DSTSK™ UNKNOWN, i Lan vage Unknown
DBGSK_MAX_LANGUAGE = DSTSK MAX_LANGUAGE; ' Largest language code

Language UNKNOWN requires some special oxplanation. DEBUG supports '‘unknown’’
Lanquages with a standard set of DEBUG functionality. This standard set in-

¢ ludes all lan?uago-independont functionolity plus 'vanilla=-flavored" Language
expressions. entifiers are assuno toallowA-2,0-9,8, and _. Symbol
references may include subscript n? (using round () or square f] paréentheses)
and record component selection (using dot=notation as in A.B.C). Most simple
operators are allowed in lLanguage expressions.

vhile not ofticially supported, lanquag UNKNOHN is intendcd as an escape for
compiiers which do not yet have true DEBUG E ort. y specifying language
code DSTSK_UNKNOWN in the DSTSL_MODBEG_LANGUA d, such languagos can
take advantage of whatever support DEBOG providos for unknown anguagos.

and when true DEBUG support is provided, a ney anauago code for the new
Language can be allocated b{ incrc-ontin DSTSK_MA NGUAGE by one and as-
signing that Language code to the new languogo.

DEBUG treats any out-of=-range Lan 8 age code in the Module Begin DST record as
being oquivalont to Language UNK Use of the DSTSK_JUNKN on?ua?e code
or any out-of-ra o L age code is intended for intofnal use bl
. DEBUG's unknown ngu?go sugport is not officiaily sup ed and is
ubject to possibly inconpat anges in future releases o DEBUG.

P I EIE ESIEIEMI I M I I I -

DSTRECRDS.REQ;1

i Internally, DEBUG
! guage code above

285°%

ts the lan
s truncate

80

16=-SEP=-1984 16:49:1?.13 Page 26

age code as a byte value, Hence any lan-
tg its low-ordog eight bits. ’

DSTRECRDS.REQ;1 16-SEP=1984 16:49:1&.13 Page 27

i
i
i
i
i
i
i
L

ITERAL

THE MODULE END DST RECORD

The Module End DST Record must be the Last DST record in the DST for a
compilation unit. Its sole purpose is to mark the end of the DST for
a separately compiled object module. There can be only one Module End
DST record per module, matching the previous Module Begin DST record.
This is its format:

S e PP
[}
[}
[
¢
i
il
]
f
B
4
i
&
i
i
]
9
]
1
)
+

- X T - - - - - mEeosoen e oo +

Define the size in bytes of the Module End DST Record.

DSTSK_MODEND_SIZE = 2; ! Size of Module End record in bytes

DSTRECRDS.REQ;1 16=SEP-1984 16:49:1%.%8 Page 28

€ S S S T RS S S S W RS RS G S S S G e e e e

ROUTINE DST RECORDS

A routine is represented in the Debug Symbol Table by a pair of DST
records, namely a Routine Begin DST record which is matched with a
Later Routine End DST record. ALL DST records between the Routine
Begin and the Routine End DST records represent the symbols that are
declared in that routine or in nested routines or blocks. Nested rou-
tines are represented in the DST b‘ nested Routine-Begin/Routine-End
pairs. Lexical blocks (BEGIN-END blocks or the Like, dopondin? on
the lonauo e) may also be nested freely outside or inside routin
provided all blocks and routines are properly nested.

Consider the following example of nested blocks and routines. 1If
routine R1 contains a nested routine R2 and a lexical block B! and
if block B1 contains routine R3 and Block B2, the DST would have the
following sequence of DST records:

Module Begin for whole module
...module-level data DST records...
Routine Begin for R1

..-local data DST records for R1...
Routine Begin for R2
...local data DST records for R2...
Routine End for R2
Block Begin for B1
...local data DST records for B1...
Routine Begin for R3
..slOcal data DST records for R3...
Routine End for R3
Block Begin for B2
...local data DST records for B2...
Block End for B2
Block End for Bl
Routine End for R
Module End for whole module

In addition to defining a symbol scope, the Routine-Begin/Routine-End
?air defines the name and address range of the correspondin? routine.
he name and start address is found in the Routine Begin DST record

and the b{tc length of the routine is found in the Routine End DST
record. It is assumed that the start address is also the entry point
to the routine. The Routine Begin record also indicates whether the
routine uses a CALLS/CALLG Linkage or a JSB/BSB linkage.

DSTRECRDS.REQ;1

byte
byte
byte
long
byte

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
!
!
]
i
i
i
i
: var
1
i
i
i
i
i
i
i
;
i
i
F

LITERAL

Define the fields and size
IELD DSTSRTNBEG_FIELDS =
SET

THE ROUTINE BEGIN DST RECORD

The Routine Begin DST record marks the b:ginnin

associated scope. This record contains

16=-SEP=1984 16:&9:15.}3 Page 29

of a routine and the

e routine's name and start

address and indicates whether the routine is a CALLS/CALLG routine
or a JSB/BSB routine. It must be matched by a Routine End DST record
Later in the DS;‘ except if the Language of the current module is

MACRO. (Since

CRO routines have entry points but no well defined

end points, the Routine End record can and must be omitted for this
Llanguage. This exception applies to no other lLanguage.)

This is the format of the Routine Begin DST record:

DSTSB_LENGTH

DSTSB_TYPE (= DSTSK_RTNBEG)

DSTSV_RTNBEG_UNUSED

DSTSL_RTNBEG_ADDRESS

DSTSB_RTNBEG_NAME

The Routine Name in ASCII

L AL LR T T TR S AT T R L

DSTSV_RTNBEG_UNUSED

DSTSV_RTNBEG™NO_CALL E 52 3:59: ;; i:

(The name's length is given by DSTSB_RTNBEG_NAME)

.......... emmeees

....... o TR

'NO_CALL '

cosscsecscssfesesces -d

rapp—p— - e e = w - coececee$d

Unused=-Must Be Zero
This bit is set if this rou-

tine is invoked with a
JSB or BSB rather a CALLS
or CAL;G instruction

DSTSL_RTNBEG_ADDRESS = [3, L_ 1, The routine's start address
and entry point address

DST$B_RTNBEG_NAME =[(7,8_1 The count byte of the rou-
tine's Counted ASCII name

TES:

DSTSK_RTNBEG_SI1ZE -

8. ; Byte size of the fixed part of the

Routine Begin DST record

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1%.}3 Page 30
THE ROUTINE END DST RECORD

The Routine End DST Record marks the end of a routine's scope in the
DST. It also contains the byte Length of the routine's code. (Note

that Routine End DST records must be omitted for Language MACRO but

are nandatorz for all other lLanguages.) This is the format of the

Routine End DST record:

4 - L il R
byte i DSTSB_LENGTH (= 6) i
byte i DSTSB_TYPE (= DSTSK_RTNEND) i
byte i Unused (Must Be Zsro) i
long i DSTSL_RTNEND_SIZE i

Define the fields of the Routine End DST record.
1ELD DS;:?TNEND_FIELDS =
gggtL_RtNEND_SIZE =[3, L. 1! The Length of the routine in bytes

)
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
|
i
i
i
i
i
f

DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.;8 Page 31

TEIEIE. BIEIEI T I Il I I s iRl TGl E s s g g Ey - gy -y -

LEXICAL BLOCK DST RECORDS

A 'Lexical Block'' is any programming languagc construct other than a
routine that defines a scope within which symbols can be declared.
What distinguishes a “block' from a "‘routine’’, from DEBUG's point of
view, is that a block is always entered by jumping to it or iinply
falling into it while a routine is always cnferod b{ a call instruc-
tion of some sort. A routine has a entry go nt that can be called;
8 block does not. Hence BEGIN-END blocks in BLISS and PL/]1 are blocks
and so are Paragraphs and Sections in COBOL. Subroutines, functions,
and procedures, on the other hand, are ‘‘routines’’.

Blocks and routines do have one thing in common, however. Both define
syntactic units within which other symbols can be defined. The pur=-
pose of representing blocks in the DST is to define the scopes they
o?clg:o and to give the address ranges of the corresponding bodies

of code.

A lexical block is represented in the Debug Symbol Table by a pair

of DST records, namely a Block Begin DST record which is matched with
a later Block End DST record. ALL DST records between the Block Begin
and the Block End DST record represent the symbols that are declare

in that lexical block or in nested routines or blocks. Nested blocks
are represented in the DST by properly nested Block-Begin/Block-End
pairs. Routines and blocks may freely be nested within one another,
using the appropriate proper nesting of the corresponding Begin and
End DST records.

The start address of a block's code is qivon in the Block Begin DST
record and the byte length of that code’is given in the Block End

DST record. The name of the block is given in the Block-Begin record.
If a block has no name (which is common for BEGIN-END blocks), the
null name is tivon (the name of Length zero). Blocks with nu(l.nanes
cannot be explicitly referenced in DEBUG, but Line numbers within such
blocks can be used to specify breakpoint locations or symbol scopes.

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:12.;3 Page 32
THE BLOCK BEGIN DST RECORD

The Block Begin DST Record marks the beg inning of a loxical block and
the associated scope. This record contains the b ‘s name and start
address. It must be matched by a Block End DST rocord later in the
DST. This is the fornot of the Block Begin DST record:

coesccscssscccsces S

E byte E DST$B_LENGTH N B S :
: byte ! DSTSB_TYPE (= DSTSK_BLKBEG) :
: byte ! DST$8_BLKBEG_UNUSED Bttty
{ long ! DSTSL_BLKBEG_ADDRESS :
: byte } DST$B_BLKBEG Nfgg_ __________ T AT, :
T ; The Block's Name in ASCII ;

| (The name's length is given by DST$B_BLKBEG_NAME) §

ks & PR LB AR H

i pefine the fields of the Block Begin DST record.

t
|
|
|
i
5
i
|
|
|
|
|
1
§
1
1
|
1
i
|
|
|
|
|
i
b
b
1
1
1
|
1
F

F 1ELD ostsaanes _FIELDS =
STtB _BLKBEG_UNUSED = E g. 8. a. ! Unused--ﬂust Be Zero
DST&L —BLKBEG_ADDRESS = e L. 4o ! The block's start address
DSTSB_BLKBEG_NAME =[7,8_1

! Tho count byte of the block's
TES : Counted ASCII name

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1!.}8 Page 33
THE BLOCK END DST RECORD

The Block End DST Record marks the end of a lexical blogk's scope in

1

i

i

]

i the DST, It also contains the byte Length of the block's code. This

5 is the format of the Block End DST record:

i

! T T T T I L T T T T T T YYYYYSS cooccescscceccee e cocee$

; byte i DSTSB_LENGTH (= 6) i

g byte ! ke DST$B_TYPE (= DSTSK_BLKEND) :

i byte : Unused (Must Be Zero) :
long | DSTSL_BLKEND_SIZE :

]
i
! * - e TS -----.
]
|
i
E Define the fields of the Block End DST record.
FIELD DSTSBLKEND_FIELDS =

SET

gégsL_aLKEND_SIZE =[3,L_]! The byte Length of the lexical block

o ——

1
DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1&.38 Page 34

DATA SYMBOL DST RECORDS

Data symbols are represented in the Debug Symbol Table by data DST
records which come in se¥cral varieties. ALl such DST records give
three pieces of information about each symhol: the data type of the
Synggt. the value or address or the symbolL, and the name of the
symbol.

The Standard Data DST record is the simplest form of data DST symbol
record and is used for most ordinarx atomic data objects. It repre-
sents the data type by a one-byte VAX Standard Type Code. It repre-
sents the value or addr;ss of the slnbol by a simple five-byte encoding
capable of specifying 32-bit Literal values, absolute addresses, reg-
ister locations, and addresses computed as offsets from a register.
possibly includ‘ng indirection. It is also possible to specify that
the computed address is the address of a VAX Standard Descriptor for
the data symbol. Finally, the name is represented as a Counted ASCII
character string.

There are several reasons why a Standard Data DST record may not be
adequate to represent a data symbol. First, the symbol's data type
may be too complicated to represent by a one-byte type code. In this
case, one of several available escape mechanisms must be used so that
expanded type information can be included in the symbol's DST informa-
tion. Second, if the symbol is a Literal (a named constant), its
value may be too Large to fit in one Longword. In this case, an ex-
panded value specification must be used. And third, if the symbol is
a variable, its address may be specified by a more coa?licated compu=
tation than can be represented in the Standard Data DST record. In

this case, an escape to a more complicated value specification must
be used.

Expanded type specifications come in three main forms: Descriptor
Format DST records, Separate Type Specification DST records, and
various specialized DST records that handle various special kinds
of data types such as record structures, enumeration types, and
BLISS structures.

Descrigtor Format DST records are used when the data object must be
described by a VAX Standard Descriptor and has a static address.

packed dzcimal data cbject, for xanele must be described by a
descriptor that specifies the object's length and scale factor. 1f

3 descriptor exists in user memory at run-time, the Standard Data

DST record can be used, but otherwise it is necessary to include the
descriptor directly in the DST within a Descriptor Format DST record.
These DST records are used for all static arrays and other data objects
that can be described by VAX Standard Descriptors.

For data types that can be described by neither one-byte type codes
nor VAX Standard Descriptors, a Separate Type Specification DST record
m:st be used. 10 this case the DST record's t‘go field indicates that
the type specification is found is a separate DST record which imme-
diately follows the present DST record. The DST record that follows
must be a Type Specification, Record Begin, or Enumeration Type Begin

|

 DSTRECRDS.REQ; 1

|
i

W R G R R e e e e

DST record. These records can describe all data types supported by
DEBUG in full detail.

As mentioned above, the third data type ‘‘escape’’ mechanism is to use
one of a number of specialized DST records that describe data symbols
of special kinds. BLISS structures and fields, for example, are de-
scribed by special DST records, as are enumeration t‘po elements.
These DST records will not be further described in this section; they
are described elsewhere in this definition file.

Expanded '‘value Specifications'' must be used for data sznbols whose
values or addresses are too long or too complicated to be described
by the Standard Data DST record. A D-Floating constant, for example,
has too lLarge a value (B bytes) to fit in a Standard Data DST record.
A ‘based variable'' in PL/] may require a complicated computation or
even a call on a conpilor-gonerated thunk to compute the variable's
address. For these and other cases, a Trailing Value Specification
DST record must be used. Such a record includes a Value Specifica-
tion which may be arbitrarily complex.

Trailing Value Specification DST records are sometimes used to speci-
fy both type and address information. An array with dynamic array
bounds, for instance, must be described in the DST if no descriptor
exists in user memory at run-time. A Trailin? Value Specification
can be used to compute the entire descriptor for such an array at
DEBUG-time. The descriptor then gives both the array address and
type information such as the element type and the array bounds.

16-SEP-1984 16:69:1?.;8 Page 35

DSTRECRDS.REQ;1 16=-SEP=1984 16:69:1;.}8 Page 36
THE STANDARD DATA DST RECORD

The Standard Data DST record is used to describe most simple scalar
data objects such as integers, floating=point numbers, and complex
numbers. The data tlso is represented by the one-byte VAX Standard
Type Code in the DSTSB_TYPE fieid. The value DST$K_BOOL is also
accepted; it denotes that the data symbol is a Bool&an variable or
value which is TRUE if the Low-order bit is set and FALSE otherwise.

The value specification in the Standard Data DST record indicates
the symbol's value or address or how to compute the symbol's address.
The details are found below.

This is the format of the Standard Data DST record:

- - B T R R D e +

DST$B_LENGTH

- e S O R D D D D D R T D T SR D TR S SH S5 R D S D D D R D R YD D G S D ED S SD D e D G WP 0O B W W ’

DSTSB_TYPE i

-——- : I i R et ey Y

~ DSTSV_REGNUM i DISP i INDIR i DSTSV_VALKIND i

DSTSL_VALUE
DSTSB_NAME

byte
byte
byte
long
byte

var

The Symbol Name in ASCII
(The name's length is given by DST$B_NAME)

L L LT T T SR S S S S——.
]

Define the fields of the Standard Data DST record. These fields are also
used in many other DST records of similar formats.

IELD DSTSSTD_FIELDS =
SET

DST$B_VFLAGS
DSTSV_VALKIND

Y 6 R e

Value-Flags (access information)

. 8_ 1,
E g. v:<3 2)],! How to interpret the specified value
o v,(ZS], ! Set if address of a

DSTSV_INDIRECT ddress is produced
: by indicated computation (do an
- indirection to compute address)

DSTSV_DISP =[2, v_(3)], ! Set if content of DSTSL_VALUE is used
: as a displacement off a register
: specified in DSTSV_REGNUM

DSTSV_REGNUM = [2, v_(4,4)],! Number of register used in displace~
: ment mode addressin

DSTSL _VALUE = E ;. L.), ! value, address, or bit offset

DSTSB_NAME - o 8_ 1 ; Count byte of the symbol name field,

a counted ASCII string

f
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.}8 Page 37
TES:

! Define all special values that nl¥ appear in the DST$B_VFLAGS field. 1If one
! of these values apgeors in that field, the DSTSL_VALUE field has some speciatl
! meaning indicated the special value. In such cases, the DSTSB_VFLAGS sub-
! fields have no meaning. Not all of these sgocial values may appear in a
! Standard Data DST record (see the comments below), but they are all listed
| here for completeness. Note that these values (with one exception) all have
! the top four bits set=--hence he¥ cannot be normal VFLAGS values since the
; REGNUM field cannot contain 15 (indicating the PC) in a normal VFLAGS value.
LITERAL

DSTSK_VFLAGS _NOVAL

128, ! A fla? which indicates that no value
s specified, i.e. the object
being described is a type. This
value may only appear in a Record
Be?in DST record.

This value is DST$B_VFLAGS signals a
data item that was never
allocated (and hence has no
address). For example, PASCAL
does not allocate variables
that are not referenced.

This value in DSTSB_VFLAGS signals a
Descriptor Format DST record

This value in DST$B_VFLAGS signals a
Trailin? Value Spec DST record

Value Specification Follows (allowed
only in a Trailing Value Spec)

A flag indicating that DSTSL_VALUE
contains a bit offset (used
only for record components)

DSTSK_VFLAGS_UNALLOC

249,

DST$K_VFLAGS_DSC 250,
DSTSK_VFLAGS_TVS 251,
DSTS$K_VS_FOLLOWS = 253,
DSTSK_VFLAGS_BITOFFS 255;

Provided the DBGSB_VFLAGS field does not have one of the above special values,
the DBGSV_VALKIND Field indicates what kind of value or address is computed :
by the value computation. The possible values of this field are defined here.

Memimime=

ITERAL

DSTSK_VALKIND_LITERAL =0, ! DSTSL_VALUE contains a literal value

DSTSK_VALKIND_ADDR "B ™ ! Computation produces the address of
! the data object

DSTSK_VALKIND_DESC =2, ! Computation produces the address of a
- VAX Standard Descriptor for the
: data object

DSTSK_VALKIND_REG = 3; i Value is contained in the register

whose number is in DSTSL_VALUE

If the DSTSK_VFLAGS field does not contain one of the special values listed
above, then the computation that produces the value or address of the data
object proceeds as follows:

1. [If the VALKIND field contains DS!SK_VALK{ND LITERAL, the symbol is a
constant whose value is given by thé DSTSL_VALUE field. Such constants

1
DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1?.38 Page 38

O g g g R G R R Ry . e -

can be up to 32 bits long.

2. 1f the VALKIND field contains DSTSK_VALKIND REG, the symbol is a vari-
able bound to a register. The register number of that register is
given by the DSTSL_VALUE field.

3. Otherwise, the symbol is a variable with a non-register address. To
compute that address, the DSTSL_VALUE field is picked up.

&. 1f the DSTSV_DISP bit is set, the contents of the register whose reg-
ister number is givon by the DSTSV_REGNUM field is added to the value
picked up from the DSTSL_VALUE field.

5. 1f the DSTSV_INDIRECT bit is set, the address computed so far is treated
as the address of a pointer that points to the actual data object. In
other words, an indirection is done.

6. I1f the value of the VALKIND field is DSTSK_VALKIND_ADDR, the address
computed so far is treated as the address of thz data object.

7. 1t the value of the VALKIND field is DSTSK_VALKIND_DESC, the address
computed so far is treated as the address of a VAX Standard Descriptor
for the data object. The actual addres: of the object, along with its
other attributes such as type and size, must therefore be retrieved
from that descriptor.

As this description indicates, nodoratel; complicated address computations
can be specified in the Standard Data DST record. For.example, the address
of the second formal garonotor to a routine, passed b‘ reference, can be
described by nkin' DSTSV_REGNUM = 12 (for register AP), DSTSL_VALUE = 8
(to indicate an offset of 8 bytes from AP to get at the second lLongword in
the argument vector), DSTSV_DISP = 1 (to indicate that DSTSL_VALUE is to be
treated as a displacement off AP), and DSTSV_INDIRECT = 1 (t0 indicate an
indirection since the ar?unont is gassed by reference). DSTSV_VALKIND =
DSTSK_VALKIND_ADDR in this case. If the parameter were 8assed by descrip-
tor, however, DSTSV_VALKIND should be DSTSK_VALKINKD DESC, with all other
fio(ds having the same values as in the passed-by-reference case.

DSTRECRDS.REQ;
; THE DESCRIPTOR FORMAT DST RECORD
i
J The Descriptor Format DST record is used when a VAX Standard
\ Descriptor must be included in the DST for a static symbol. It
! includes the descriptor directly in the DST record right after
: the name field. This record is ossentiallg identical to the
! Standard Data DST record except that the DSTSB VFLAGS field has
' the special value DSTSK_VFLAGS _DSC and the DSTSL_VALUE field is
: a relative byte offset To the VAX descriptor Latér in the record.
; This is the format: 5
i
! & - - - - cocseccen coecsecsesee$
E byte i 3 oL DSTSB_LENGTH i
g byte ! {7 DSTSB_TYPE :
g byte ! DSTSB_VFLAGS (= DST$K_VFLAGS_DSC) !
{ long ! DSTSL_DSC_OFFS
! byte DSTSB_NAME (also DSTSA_DSC_BASE) : :
i var : ' E
; : The Symbol Name in ASCII 5 ;
g § (The name's length is given by DSTSB_NAME) § §
e =
i + . ceecteccccccccncccccsccccncssccanann ¢
E long i DSC$B_CLASS i DSCSB_DTYPE i DSCSW_LENGTH ; i<--+
{ long ! DSCSA_POINTER !
i var ‘ 1
; ' Other VAX Standard Descriptor Fields ;
g § depending on the descriptor class §
b s
i + . B
i
i
)
; Define the fields of the Descriptor Format DST record.
FIELD os;:gsc,rIELos = ‘

DSTSL_DSC_OFFS = ([3, L_ J, | Offset in bytes to descriptor

! from DSTSA_DSC_BASE
DSTSA_DSC_BASE = 7, A_] ! pescriptor starfs af this loc-
! ation ¢ DSTSL_DSC_OFFS

TES;

16-SEP-1984 16:69:12.18 Page 39

DSTRECRDS.REQ;1 16=-SEP=1584 16:&9:1;.&8 Page 40

; Note that the address of the descriptor is computed as follows:
i DST_RECORDLDSTSA_DSC_BASE] + .DST_RECORDLDSTSL_DSC_OFFS]

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1‘.18 Page 41
THE TRAILING VALUE SPECIFICATION DST RECORD

The Trailing Value Specification DST record is used when an expanded
value specification is needed to conguto a data S{nbol's value or
address. It includes a Value Specification directly in the DST rec-
ord right after the name field. This record is ossontialla identical
to the Standard Data DST record except that the DST$B _VFLAGS field has
the special value DSTSK_VFLAGS_TVS and the DSTSL_VALUE field is a
relative byte offset to the Value Specification Tater in the record.
This is the format:

- - e @ e = = -4

+
byte ! DSTSB_LENGTH '

+ -t - B bl 2
byte i QSTSB_1VPE . i
byte i DSTSB_VFLAGS (= DSTSK_WFLAGS_TVS) i
long i 3 DSTSL_TVS_OFFSET s i---t
byte ~ DSTSB_NAME (also DSTSA_TVS_BASE) §
var : ‘ : i

; The Symbol Name in ASCII E '

§ (The name's length is given by DST$SB_NAME) § é

- el —— ¢ 1
var : | ==t

' DST Value Specification 5

; - et il e B e R L L R D LR L R R LT YR - l)

Define the fields of the Trailing Value Specification DST record.

IELD osgg}vs_rlELos =
DSTSL_TVS_OFFSET = [3, L_ 1.
DSTSA_TVS_ BASE =7, A_]

Y - . O e e

Offset in b;tes to trailing Value Spec
from DSTSA_TVS_BASE

Trailing Value Spec starts a: this
location + .DSTSL_TVS_OFFSET

famsame o -

TES;
?o{f that the address of the trailing Value Specification is computed as
ollows:

DST_RECORDLDSTSA_TVS_BASE] + .DST_RECORDLDSTSL_TVS_OFFSET]

DSTRECRDS.REQ;1

! Also n?tc that va
! Later in this def

tnied

16-SEP-1984 16:49:1?.18 Page &2

pecifications are described in a separate section
on file.

S ——

1
DSTRECRDS.REQ;1 16=SEP-1984 16:49:1&.38 Page 43
THE SEPARATE TYPE SPECIFICATION DST RECORD

The Separate Tlpe Specification DST record is used when the data type
of the symbol being described is too complex to be described by a
a one-byte type code or a VAX Standard Descriptor, This DST record
must be immediately followed by a Type Specification, Record Begin,
or Enumeration Type Boain DST record which describes the data type
of the data symbol. (Only Continuation DST records may intervene.)
The format of the Separate T!po Specification DST record is essentfal-
ly identical to that of the Standard Data DST record. It may contain
a Trailing Value Specification if neccssar‘ to describe the symbol's

(]

1

i

i

i

i

i

i

i

i

i

]

i

g value or address. This is the format of the record:

i

i + B e L
| byte ! 4 DST$B_LENGTH :
g byte ! DSTSB_TYPE (= DSTSK_SEPTYP) !
| byte : DSTSB_VFLAGS _ :
g long ! DSTSL_VALUE :
| byte : t DSTSB_NAME :
i var : H
; g The Symbol Name in ASCII 5
g § (The name's length is given by DST$B_NAME) §
fo] i
i + - P ———— +
! var : '
; ; A Trailing Value Specification or nothing, ;
g § depending on the value of DSTSB_VFLAGS field §
B i
i + J— S ——— +

PSS

M
DSTRECRDS.REQ;1 16=-SEP-1984 16:&9:15.%8 Page &4

L T Ll b b R DR L R R R i i i e L L I I I L L L L T I

byte

g
[te]

L T T

DST VALUE SPECIFICATIONS

A DST Value Specification specifies the value or address of some symbol.
Value Spocifiiat1on can occur in a number ?f places in the Debug Symbol
Table. The simplest forms of Value Spegif cations occur in the Standard
Data DST record. A somewhat more complicated form occurs in Descriptor
Format DST records where a VAX Standard Descriptor is included in the
DST record to give more congloto address information (and t{po informa-
tion). The Trailing Value Specification DST record has a simple five-
byte Value Specification at the beginning of the record which ?oints to
a more ¢ lex Value Sposification at the end of the record. hat more
complex Value Specification can be any kind of Value Specification, in=
cluding the most general forms.

In addition, Value Specifications aa¥ occur in a number of Type Speci-
fications. In these cases, they typically generate values (as opposed
to addresses), such as subrange bounds for a subrange data type, or they
enerate full VAX Standard Descriptors in order to specify some sort of
ata type, such as a dynamic array.

ALL Value Specifications start with one byte, the DST$B VS VFLAGS field.
In Standard Data DST records, this field and the DST$B_UFLAGS field are
synonymous, If this field has one of the special valués DSTSK_VFLAGS_xx
described in the Standard Data DST Record section above, the format of
the Value Specification depends on that value. Otherwise the VILAGS
field is interpreted as a set of subfields, namely DST$V_VS_REGNUM
DSTSV_VS_DISP, DSTSV_VS_INDIRECT, and DSTSK_VS_VALKIND. “This is also
described in detail Tn the Standard Data DST Record section above.

STANDARD VALUE SPECIFICATIONS

As indicated above, if the DST$B_VS_VFLAGS field does not have a special
value, the Value Specification is a Standard Value Specification and has
the following structure:

temecnccmnrmcce= R
1 DISP ! INDIR ! SV_VS_VALKIND !

DSTSL_VS_VALUE :

'
-
[
;

DSTSV_VS_REGNUM

S

Define the fields of the various kinds of Value Specifications. Also define
; the declaration macro.

FIELD DSTSVS_WDR_FIELDS =
SET

DST$B_VS_VFLAGS
DSTSV_VS_VALKIND

E 0. B_ 8. ! value-flags (access info)
0, v_(0,2)], ! How to interpret the value

DSTRECRDS.REQ;1

DS“L _VS_VALUE
DSTSL_VS_DSC_OFFS

DSTSA_VS_DSC_BASE
DSTSL_VS_TVS_OFFSET
DSTSA_VS_TVS_BASE
DSTSW_VS_LENGTH

m
4
L
<
<
m
x
m
2
nnwnmn

DSTSB_VS_ALLOC
DSTSA_VS_MATSPEC

TES;

16=-SEP=-1984 16:49:1!.36 Page 45

. V_(2) }. ! Set to get indirection
. V_(5) 1, ! Set for register disglacenent
o N 8,40 3, ! Reg1ster number f ndex n
1. 4. 3o Value, address, or bit of set
. Offset in bytes to descriptor

from DSTSA_VS_DSC_BASE
Descriptor starfts at this loca-

tion ¢ DSTSL_VS_DSC_OFFS
Offset in bytes to Value™S Eec

from DSTSA_VS_TVS_BAS
Value Spec starfts at this loca-

tion ¢ DSTSA_VS_ TVS OFFSET

Length of Value Spec”in ‘tes

not counting the VFLAG

and VS_LENGTH fields
Allocation Tndicator
Location of Materialization

Specification

—

L
t)t-b.r-r-<<<
L W S = Y o ')

-~

S

- s

>» @
8

(W]
-

e

DSTSVAL_SPEC = BLOCKL,BYTE] FIELD(DSTSVS_HDR_FIELDS) X;

LITERAL
DSTSK_VS_ALLOC_STAT
DSTSK_VS_ALLOC_DYN

: declaration macro.
fIELD osg:ns FIELDS =

DSTSB_MS_KIND
DSTSB_MS_MECH
DSTSB_MS_FLAGBITS
DSTSV_MS_NOE VAL
DSTSV_MS_DUMARG
DSTSAZMS_MECH_SPEC
DSTSL_MS_MECH_RTNADDR

TES:

QHACRO

§' The following values may appear
!Ll"ﬂlt

B s
BITADDR z

: The following Literal values may appear in the DST$B_VS_ALLOC field.

1, ! Value is static
&3 ! Value is dynamic

: Define the fields of the Materialization Specification. Also define the

The kind of value produced

The mechanism whereby produced

Flag bits

Purpose of this bit not clear

Include du-n‘ argunent on call

Location of Mechanism § ec

Routine address for cal
compiler-generated thunk

I = O

rrIrYrYrtY ™
WP = O
T % S 8 8 8N
c->.<.<.wu:w
—~~
" SNs 8 8
d

—J
-

DSTSMATER_SPEC = BLOCK[,BYTE] FIELD(DSTSMS_FIELDS) X;

in the DSTSB_MS_KIND field.

1. : The value is a byte address
- i The value is a bit address (a Longword
| byte address plus a longword bit

TV e .- - -

DSTRECRDS.REQ;1

DSTSK_MS_BITOFFS

DSTSK_MS_RVAL
DSTSK “MSREG

DSTSK_MS_DSC

;; The following values may appear
LITERAL

DSTSK_MS_MECH_MIN
DSTSK MS_MECH_RTNCALL

DSTSK_MS_MECH_STK
DSTSK “MS ME CH_RTN_NOFP
DSTSK MS ME CH_MAX

WA

16=-SEF-1984 16:49:1&.36 Page 46

offset from the byte address)

|
3, ! The value is a bit offset (normally a

' bit offset from the start of a

' record--used for record components)
4, ! The value is a Literal value (constant)
. : The value is a register number (the

: address is a register address)
6; ! The value is a VAX standard descriptor

in the DSTSB_MS_MECH field.

! Minimum code -

! Routine call on a compiler=-

: enerated thunk

! DST S ack nachine routine

Same as '"1'' but no FP passed in
! Maximum code

O o e e

1
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:12.30 Page &7
DESCRIPTCR VALUE SPECIFICATIONS

It the DSTSB_VS_VFLAGS field has the special value DSTSK_VFLAGS_DSC,
this is a DeScriptor Value Specification, Such a Value Specification
contains an offset relative to the end of the Value Specification that
points to a VAX Standard Descriptor later in the same DST record. That
descriptor then contains_the actual address that the Value Specifica-
tion seeks to specify. This is thus the format:

P m e - - crcoccses S e GRS e e . e T e P EETEEEE DD @SS s +
byte i DST$B_VS_VFLAGS (= DSTSK_VFLAGS_DSC) i
Llong i DSTSL_VS_DSC_OFFS i---f
var ! DSTSA_VS_DSC_BASE E o
§ Other Fields in DST Record ok
; - D EEm e e oo m e e Cheecccrcccc e c e e == ; i
var E E<--+
§ VAX Standard Descriptor Giving Symbol Address é
;---- -aae ---;

The address of the VAX Standard Descriptor is computed as follows:
DSC_PTR = VS_PTRIDSTSA_VS_DSC_BASE] + .VS_PTRLDSTSL_VS_DSC_OFFS];

L Lt L L Lk Tk T L T T L e S

e —— — - - RS DS e S . . — —— - —— - - -

D I I L kL kT b Lk T

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1;.36 Page 48
TRAILING VALUE SPEC VALUE SPECIFICATIONS

1t the DSTSB_VS_VFLAGS field has the special value DSTSK_VFLAGS_TVS,
this is a !raxl?ng Value Spec value Specification. Such"a Value
Specification contains a pointer relative to DSTSA_VS_TVS _BASE that
?oints to another Value Specification Later in the same DST record.

his second vValue Specification is nornall{ of the most general and
power ful form of value Sgacification. namely the VS-Follows Value Spec~
ification. In effect, the Trailing Value Spec format is a five-byte
Value Specification (small enough to fit in a Data DST Record) which
?oints to a larger Value Specification elsewhere in the same DST record.
This Larger Value Specification can be arbitrarily large and complex

in order to do whatever computation is necessary to obtain the desired
value, address, or descriptor.

This is the format of the Trailing Value Spec value Specification:

’ - e - ----------------'-----------------*
byte ! DST$B_VS_VFLAGS (= DSTSK_VFLAGS_TVS) :
long ! DSTSL_VS_TVS_OFFSET

’-- - - - - - e e @ T T e
var DSTSA_VS_TVS_BASE :

Other Fields in DST Record §

PR C——

var
The Trailing Value Specification
(Normally a DST$SK_VS_FOLLOWS Value Specification)

cassssscsnsnss § seseseases
[]
i
[}
[}
'
(]
]
El
0
]
]
]
L]
]
i
"
i
l
]
i
8
§
'
]
i
i
[l
El
[}
[}
]
]
)
)
]
)
)
)
)
]
]
bl
'
]
]
8
i
]

I - R e R A e L L L L T

The address of the Trailing Value Specification is computed as follows:
TVS_PTR = VS_PTRIDSTSA_VS_TVS_BASE] + .VS_PTRCDSTSL_VS_TVS_OFFSET];

 DSTRECRDS.REQ; 1

[L Lk Lk L L S e L T T

byte
word
byte

var

E 1
16=SEP-1984 16:49:15.30 Page 49

VS=FOLLOWS VALUE SPECIFICATIONS

It the DSTSB_VS_VFLAGS field has the special value DSTSK_VS_FOLLOWS,
this is a VS=Follows Value Specification. This is the most general
and powerful form of Value Specification. The spesification itself
can be arbitrarily long, but it can also do an arbitrarily complex
computation_in order to compute the desired value, address, or de-
scriptor. This is the format of the VS-Follows Value Spec%ficat\on:

............. ------------------------’

‘ DST$B_VS_VFLAGS (=DSTSK_VS_FOLLOWS) i

‘ OSSO TECOCEEeE e T TR EE DG e *

- ev e e o -k oSO S - e e e ?l------*

.
¢
; DSTSA_VS_MATSPEC
é A Materialization Specification
‘

'
v
‘
'
B
:
'
‘
'
.

+

A VS-Follows Value Specification contains a Materialization Specifica-
tion which indicates how the value is materialized. This specifica-
tion indicates what kind of value is being produced, by what mechanism
it is Yroduged. and in detail how it is produced. it also contains
some flag bits.

The kind of value beina produced can be a 32-bit byte address, a 64-bit
bit address (a byte address followed by a 32-bit bit offset), a bit
offset (relative to the start of a record--useq only for record compon-
ents), a literal value (a constant or ‘R-value'’), a register address,
or an actual VAX Standard Descriptor. VAX Standard Descriptors are

mainly produced by Value Specification within Type Specifications where

E} descrigtor must be built to describe a data type such as an array
type with run=-time subscript bounds.

Values can be produced by two mechanisms. One is a routine call on a
compiler-generated thunk. In this case, the compiler generates a rou-
tine in the object code which when called produces the desired value.
The address of the routine is specified in the Mechanism Sgocificatlon.
The other mechanism is a DST Stack Machine routine. The D3T Stack
Machine is a virtual machine which DEBUG emulates. To use it, the com-

iler generates code for this virtual machine which, when executed at
EBUG-time, produces the desired value. The DST Stack Machine form of
Mechanism Specification constitutes the most general and powerful form
of value specification supported by DEBUG.

DSTRECRDS.REQ;1

e e T Lk L T L I et e T

byte
word
byte
byte
byte
byte
Long

16-SEP-1984 16:49:1?.33 Page 50

CALLS ON COMPILER-GENERATED THUNKS

The Routine Call Mechanism Specification specifies the address of a
compiler-generated routine (a thunk) which DEBUG can call to perform
the desired value computation. This form of Mechanism Specification
must be used for PL/] "BASED'' variables since the address of such a
variable can depend on the value returned by a user-defined function.
In this case, the Mechanism Specification consists of a single Longword
giving the address of the compiler-generated thunk to call.

This is the format of the whole Value Specification when the Routine
Call Mechanism Specification is used:

e c s crcccr e e eeee Teococeseese o os D B e e L +

: DST$B_VS_VFLAGS (=DSTSK_VS_FOLLOWS) i

’----------------------------------.---------------*

: DSTSW_VS_LENGTH (= 8) :

e rr e e s R C e ® D= oo e ceccecsccscesecscccese e crccccecscccscssccene +

: DST$B_VS_ALLOC (= DSTS$K_VS_ALLOC_DYN) :

’ el ECCOOS PO eSO TP TTTE DD TEVDOOD DO DS WS ’

: DSTSB_MS_KIND :

- e e T, T TECE®D @D ®@ @SS e - - 4+

DSTSB_MS_MECH (= DSTSK_MS_MECH_RTNCALL) :

:
’ eSS ee - eEeoOEe eSS REeeee eSO TTTTNDEEE S ‘

DSTSB_MS_FLAGBITS :

'
* @ o oo +
)
.

DSTSL_MS_MECH_RTNADDR i

.--------------F'------------------------“----------------. ‘

The called routine is gassod the address of a vector of register values
as its one argument. This vector contains all register value for the
scope (call frame) in which the symbol having this Value Sgecification
is declared. The vector contains the values of registers RO - R11, AP,
FP, SP, PC, and PSL in that order. The routine is allowed to use all
such values in its computations, but is not allowed to change the con-
tents of the register vector. in addition, the routine is passed the
value of FP (the Frame Pointer) in register R1.

The value of the routine should be returned to DEBUG in register RO.

The DSTSV_MS_DUMARG bit should be set in the DSTSB_MS_FLAGBITS field if
the called routine expects to return a value Longer than one longword.
If DSTSV_MS_DUMARG is set, the address of an octaword (four=-longword)
puffer is passed as the first argument to the called routine with the
expectation that the routine's value will be returned to this buffer.
The address of the register vector is then the second argument.

H
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:15.36 Page 51

o e R e e R R e e e e e e e e

byte
word
byte
byte
byte
byte

var

THE DST STACK MACHINE

The DST Stack Machine is a virtual machine emulated by DEBUG. This
machine can push and pop values on a stack and can perform a variety
of arithmetic and logical operations., It can also call compiler-
generated thuiks, The DST Stack Machine is used when a value must be
computed at DEBUG-time and the Standard Format Value Specification is
not adequate and a compiler-generated thunk to dc the whole computation
seems undesirable. In such cases, the compiler can generate a Mecha-
nism Specification which consists of code for the Stack Machine. At
DEBUG-time, when the value in question is needed, DEBUG will interpret
this code until the STOP instruction is encountered. The value that
remains on the top of the Stack Machine stack is then taken to be the
desired value.

The format of the whole Value Specification when a DST Stack Machine
Mechanism Specification is used is as follows:

e oo == - - e D T D D D D) W e D S e e e e o +

: DSTSB_VS_VFLAGS (=DSTSK_VS_FOLLOWS) :

. -TeeeeE-eeeeee eSS eSS eSS e e e e eSS EESS e e ’

: DSTSW_VS_LENGTH i

...... LT

: DST$B_VS_ALLOC i

. easeeoeoeoeoeooeebeoeoGaaeeaGeee e e reooew ------‘

! DSTSB_MS_KIND !

T L T L L L L L T .

: DSTSB_MS_MECH (= DSTSK_MS_MECH_STK) :

’ e e EEEeE eSS e PO eSS RO R RO R R0 WD ® S E e ’

DSTSB_MS_FLAGBITS :

T e S e EEnEE S eSS TS e U G e T D D DG e S e S S Er S D S D ’

DSTSA_MS_MECH_SPEC
DST Stack Machine Routine

@ cescscssas P e

'
1
'
]
]
]
]
1
]
L)
Mmoo - et emnE D ®s e o ek 4

Here the DSTSB_VS _ALLOC field should have the value DST$K_VS_ALLOC DYN
it any kind of address is computed and DSTSK_VS_ALLOC_STAT if a Literal
value (a constant) is computed. The need for this field is not clear
since DEBUG ignores it at present.

The stack ugon which the DST Stack Machine operates consists of 256
locations where each Location is a longword. The stack grows toward
smaller addresses and shrinks toward larger addresses; in this regard
it is Like the VAX call stack. A DST Stack Machine Routine consists

of a Squcnco of Stack Machine instructions ending in a STOP instruc-
tion (DSTSK_STK_STOP). When the machine stops, the top location or
locations on the stack constitute the value of the routine. The length
of the value is determined by the DSTSB_MS_KIND field.

DSTRECRDS.REQ;1 16=-SEP=1984 16:&9:1;.3& Page 52

e e L L T T

L

-

P i mimimimimimemsms - -

! popped ¢

The DST Stack Machine supports the instructions tabulated in the re-
mainder of this section. Each instruction consists of a one-byte op-
code followed bz zero or more operand bytes, doponding on the op=code.
In this description, the top'' stack cell refers to the most recently
pushed cell still on the stagk and the ''second'’' cell refers to the next
most recently pushed cell still on the stack. Each cell contains a
longword value.

i Define the Push Register instructions. These instructions push the indicated

register value on the Stack Machine stack. The register values are taken from

: the scope (call frame) of the symbol for which the value is being computed.

ITERAL
DSTSK_STK_LOW =0, ! Lower bound for range checking
DSTSK_STK_PUSHRO =0, ! Push the value of register RO
DSTSK_STK_PUSHR1 =1, ! Push the value of register RI
DSTSK_STK_PUSHR = i. ! Push the value of register R
DSTSK_STK_PUSHR = 3, ! Push the value of register R
DSTSK_STK_PUSHRG =4, ! Push the value of register Ré
DSTSK_STK_PUSHRS =5, ! Push the value of register RS
DSTSK_STK_PUSHRéG = 6, ! Push the value of register Ré
DSTSK_STK_PUSHR? =7, ! Push the value of register R7
DSTSK_STK_PUSHRS = 8, ! Push the value of register R8
DSTSK_STK_PUSHRY =9 ! Push the value of register R9
DSTSK_STK_PUSHR10 = 10, ! Push the value of register R10
DSTSK_STK_PUSHR11 = 11, ! Push the value of register R11
DSTSK_STK_PUSHRAP = lg. ! Push the value of the AP
DSTSK_STK_PUSHRFP = 15, ! Push the value of the FP
DSTSK_STK_PUSHRSP = 14, ! Push the value of the SP
DSTSK_STK_PUSHRP(= 15; ! Push the value of the PC

Define the Push Immediate instructions. These instructions are used to push
constant values on the Stack Machine stack. The constant value to push Zomes
immediately after the instruction op-code. For the signed and unsigned in-
structions, the value to push is zero-extended or sign-extended to 32 bits

as appropr‘ato. In the case of the Push Immediate Variable instruction, the
b‘te after the op-code gives the byte length of the constant value to push.
The constant value to push then folloss immediately after that lLength byte.
The constant value is zero-extended to the nearest longword boundary on the
high-address end and the resulting block is pushed onto the stack.

ITERAL
DSTSK_STK_PUSHIMB = 19. ! Push Immediate Byte (signed)
DSTSK_STK_PUSHIMW =17, ! Push Immediate Word (signed)
DSTSK_STK PUSHIML = 18, ! Push Immediate Lon?uord (signed)
DSTSK_STK_PUSHIM VAR = 24, ! Push Immediate Variable
DETSK”STK PUSHIMBU = 25, ! Push Immediate Byte Unsigned
DSTSK_STK_PUSHIMWU = 26; ! Puch Immediate Word Unsigned

Define the Push Indirect instructions. For these instructions, the top stack
cell is pofped and the one, two, gr four bytes at the address given by the
ell are sign extended to 32 bit- and pushed on the stack. For the

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.3& Page 53

! unsigned instructions, the value is instead zero-extended to 32 bits and
1 pushed on the stack.

LITERAL

| DSTSK_STK_PUSHINB = 20, ! Push Indirect Byte (signed)
DSTSK_STK_PUSHINW = 21, ! Push Indirect Word (signed)
DSTSK-STK PUSHINL = ;. ! Push Indirect Longword (signed)
DSTSK_STK_PUSHINBU = 2/, ! Push Indirect Byte Unsignea
DSTSK_STK_PUSHINWU = 28; ! Push Indirect Word Unsigned

?! Define the arithmetic and logical instructions. These instruction pop the

! top two cells on the stack, perform the indicated operation on these operands,
; and push the result back onto the stack.

LITERAL

DSTSK_STK_ADD = 19, Add--The top two cells on the stack
are popped from the stack and
added together. The resulting
sum is pushed onto the stack.

Subtract=--The second cell on the stack
is subtracted from the top cell.
Both are popped from the stack.
The resulting difference is then
pushed onto the stack.

Multiply==The top two stack cells are
popped from the stack and multi-
plied. The resulting product is
then pushed onto the stack.

Divide--The top stack cell is divided

]
i
i
i
i DSTSK_STK_SuB ;
i
i
i
i
i
i
]
i
E by the second stack cell. Both
]
i
i
i
]
i
i
i
i
i
i
i

29.

| DSTSK_STK_MULT 30,

3,

DSTSK_STK_DIV

are popped from the stack. Their
quotient is then pushed onto the

stack.

Logical Shift==Shift the second stack
cell by the number of bits given
by the top stack cell; ﬁop oth
operands and push the shifted
second cell on the stack

Rotate--Rotate the second stack cell
b; the number of bits given by
the top stack cell; pop both

operands and push the rotated
second cell on the stack

DSTSK_STK_LSH = 32,

DSTSK_STK_ROT 33;

! Define the Copy and Exchange instructions. These instructions make a copy
' of the top stack cell or exchange the top two cells on the stack.

{

i

| LITERAL

| DSTS$K_STK_COP
|

= 34, ! Copy==A cop‘ of the top stack cell
! is pushed onto the stack
DSTSK_STK_EXCH = 35; : Exchange--The top two stack cells are

interchanged

X _1
DSTRECRDS.REQ;1 16=SEP=-1984 16:&9:1?.30 Page 54

Define the Store instructions. Following the op=-code, these instructions

]
! contain a byte which is interpreted as a signed offset into the stack. The
! low-order byte, word, or longword of the top stack cell is stored into the
: b‘te. word, or longword given bl the current stack pointer plus four plus
! the signed offset into the stack. (In short, the offset is an offset from
! the second stack cell.) After that, the top stack cell is popped. These
! instructions permit values to be stored into stack Locations other than the
3 top or second stack cell.
LITERAL
DSTSK_STK_ST0_B = 36, ! Store Byte into Stack
DSTSK_STK_STO W = 37, ! Store Word into Stack
DSTSK_STKZS10°L = 58; ! Store Longword into Stack

! Define the Pop instruction. This instruction singly pops the top stack cell,
; meaning that the top stack cell is removed from the stack and discarded.

LITERAL
DSTSK_STK_POP = 39; ! Pop Top Stack Cell

Define the Stop instruction. This instruction stops the DST Stack Machine and
is required at the end of every DST Stack Machine routine. Whatever value is
left at the t » of the stack when the Stop insctruction is executed is taken to
be the value .t the Stack Machine routine. This value may be a Longword (a
b{to address, for example), two lon?uords (byte address and bit offset), any
size lLiteral value (an H-F[oating Literal, for instance), or a full VAX Stan-
dard Descriptor, depending on the value of the DST$B_MS_KIND field.

LITERAL

-

DSTSK_STK_STOP = 23; ! Stop the Stack Machine

Define the Routine Call instructions. These instructions call a compiler-
rated routire (a thunk) whose address is ziven b¥ the top stack cell.
fore the call actually occurs, the top stack cell is poptod. The value
that is returned by the thunk is then pushed onto the stack.

The Routine Call instruction works as follows. The address of the thunk to
to be called is taken from the top stack cell. The top cell is then popped.
The thunk, which is called with a CALL instruction, gets twu arguments. The
first argument is the address of a vector of register values for the scoge
(call fraie) of the symbol to which this Value gpocificotion belongs. This
vector contains the values of ro?istors RO = R11, AP, FP, SP, PC, and PSL in
that order; the called thunk is free to read any value it wants from this
vector but no; not store into it. The second glronotor is a pointer to the
top of the DST Stack Machine stack after the thunk address has been popped.
A Stack Machine routine can thus conﬂutc arguments to iho thunk and push them
on the stack before push n? the thun anross and calling the thunk. In
addition, the value of FP in the s¥nbol s scope 1s passed to the thunk in
register R1. The routine's value 1s expected to be returned in register RO.
This value is pushed onto the stack.

The Routine Call With Alternate Return instruction works this same way except
that the address of an octaword buffer (4 longwords) is passed to the thunk

—

!
|
|
!
|

i

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1&.36 Page 55

! as the first argument, with the register vector being the second argument and
! the stack address being the third argument. In this case, the routine value
! is expected to be returned to the octaword buffer, not in register 0. The

E whole octaword buffer is then pushed onto the stack.
L

ITERAL

DSTSK_STK_RTNCALL = 40, ! Routine Call (value returned in R0O)
DSTSK_STK_RTNCALL ALT = 41, ! Routine Call With Alternate Return
DSTSKZSTKCRTN_NOFP = 44; ! Routine Call - no FP passed in

! Define the Push Record Address instructions. These instructions push the
! addr .55 of the outer-most or inner-most record structure for which the cur-
! rent symbol is a record component. They are used for constructing VAX Stan-
! dard Descriptors on the Stack Machine stack when some part of the descriptor
! depends on some other component of the same record. In PL/1, for instance,
! the subscript bounds of an array component of a record may depend on another
! component of that record. In such cases, the only way to get the address of
! that other component in the current record is to use ocne of the Push Record
! Adaress instructions. The Push Outer Record Addiess instruction pushes the
! address of the outer-most record of which the current symbol is a component
! while the Push Inner Record Address instruction pushes the address of the
; inner-most record of which the current symbol is a component.
LITERAL

DSTSK_STK_PUSH_OUTER

STK_ £ _REC = Ag. ! Push Outer Record Address
DSTSK-STK_PUSH_INNERCREC = 43;

= ! Push Inner Record Address

! Define the highest op-code value accepted by the DST Stack Machine. This
5 value is used for op=-code range checking.

LITERAL
DSTSK_STK_MHIGH = &44; ! Upper bound for range checking

! END OF VALUE SPECIFICATION DESCRIPTION.

e —

SN b e e S e e e e T e e e e e e e e e R e

byte
byte
byte

var

var

M
' DSTRECRDS.REQ;1 16=SEP-1984 16:49:15.3& Page 56

THE TVYPE SPECIFICATION DST RECORD

The Type Specification DST record gives the most general data t‘pe
descr gtion available in the Debu? Symbol Table. It contains the
name of the data type being described and a DST Type Specification
that describes the type. The type name is used in lLanguages where
data tltos can be named, such as PASCAL. If no t¥p¢ name exists,
the null name (the name of 2ero length) is specified in this record.
DST Type Specifications are described in detail in the next section
of this definition file.

Type Specification DST records either immediately follow Separate
Type Specification DST records or are pointed to by Indirect Type
Specifications or Novel Length Type Specifications elsewhere in
the DST for the current module.

This is the format of the Type Specification DST record:

R L TR B el = - = ceccccecrcrcescenrwese e +

' DSTSB_LENGTH '

R R - e B e el 4

: DST$B_TYPE (= DSTSK_TYPSPEC) :

.-----------.----------‘ Rl

: DSTSB_TYPSPEC_NAME

‘-‘-----’--.

The Type Name in ASCII
(The name's Length is given by DSTSB_TYPSPEC_NAME)

DSTSA_TYPSPEC_TS_ADDR
The DST Type Specification for the
Data Type being defined

$ rrrassnssssssss P rrrssncnnnnn
e eE .- .- —————— - -

- - - DS S Soo oo ESS s -‘-------’

Define the fields of the Type Specification DST record.

IELD DSI:}VPSPEC_FIFLDS B

D.i$B_TYPSPEC_NAME 2 F N WA ! The count b¥te for the Counted
. ASCI% ype Name
DSTSA_TYPSPEC_TS_ADDR = [3, A_) ! The Location of the DST Type
: Specification

TES;

i ——— e e ——————— e ——————

PRI BRI R RIS IR R IER I RIS IR IR IR IR I BT RSB E IEm TR L SRS R R e R ey

word
byte

var

' DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.30 Page 57

PST TYPE SFECIFJICATIONS

A DST Type Spocification specifies the data type of some data symbol.

DST T¥p¢ Specif ications constitute the most general form of data }ype

description available in the Debug § nbol Table. Thty are found

only one kind of DST record, namely the Type Specification DST record.

However, some Type Specifications contain nested Type Spocifications.

uhich pernits quite complex type descrigt ons. For cxang parent
¥po for a Subrange data type is given by a nested Type pecification

thin the Subrange Type Spoci'ication.

This is the general format of all DST Type Specifications:

A vata symbol whose data type must be described b¥ a DST Type Specifi-
cation is described by a Separato T‘pe S?ec fication DST record. This
DST record is immediately followed ype pecification DST record
which contains the DST Type Specification for the symbol's data type.

To conserve DST space when scvcral symbols have the same data tys the
Type Specification that follows the oparote Ty? Sgocificat on DSt
record may be an Indirect Y;pe Specification. he Indirect Type Speci-
fication then contains a DS poi nter to the actual Type Specification
DST record for the symbol's type. l a single copy of this actual
Type Specification is then needed. Hu tiple symbols of the same Record
or Enumeration type must also use Separate Type Spccification DST
records folloucd T’f cification DST records containing Indirect
Type Specif cotions. is case, the Indirect Type Specifications
point to the Record Be n or Enumeration Type Begin DST record for the
record or enumeration type being specified.

In fact, the only Ty ?e Specification that can refer to a record or enum=
eration type is the Indirect Type Specification. (The Novol %on?th Type
Specification can too but is not nornall; used this ua! ype
Specification is thus used within othor lpe Speci 1ca 1ons when record
or enumeration ty s must bo speci or oxaap o. uhon tho element
type of an array ? record ?r enuncrat on type, t specified by an
lndiroct !ygo Specification within the Array Type Spoc fication, S ni-
larly, if t tor?ot of a typed pointer is a record or onunor?}ion %
obiect, the target type is specified by an Indirect Type Specification

DSTRECRDS .REQ;1 16=-SEP-1984 16:49:1?.38 Page 58

E within the Typed Pointer Type Specification.

i

i

i Define all the fields that can appear in the various Type Specifications.
5 Also define the declaration macro.

FIELD DST&{YPE_SPEC_FIELDS z

of this subrange type

DSTSA_TS_SUBR_PAR_TSPEC_ADDR= [7, A_ 1,! Location of the parent type
T‘pe Sgecificatiou within
the Subrange

Y¥Ye Spec
Language code for file type

SE
DSTSW_TS_LENGTH =0, w1, ! The b;tc Length of the Type
: pecification not includ-
: ing this Length field
DSTSB_TS_KIND = o 8. 4o ! The Type Specification kind
DSTSB_TS_ATOM_TYP = s B 2s ! The Atomic data type code
DSTSA_TS_DSC_VSPEC_ADDR = g W = ! The VAX dgscrigtor Value Spec
DSTSL_TS_IND_PTR B o Lo & ! Indirect Type Spec DST pointer
DSTSA_TS_TPTR_TSPEC_ADDR= . A_ D, ! Typed Pointer parent type Type
: Specification location
DSTSB_TS_PIC_DLENG =[3,8_1, ! The byte Length of data objects
! of this picture t;pe
DSTSB_TS_PIC_LANG =[4, 8B_1, ! The DST language code for this
! picture data t¥pe
DSTSB_TS_PIC_PLENG el L 3 ! The Length of the picture
' string in this Type Spec
DSTSA_TS_PIC_ADDR =[6, A1, ! The Location where the picture
: is encoded in Type Spec
DSTSB_TS_ARRAY_DIM = E 5 0 2 ! The number of array dimensions
DSTSA_TS_ARRAY_FLAGS_ADDR=[&, A_ 1, ! The lLocation of the array flags
! that indicate Type Specs
! for the subscript types
DSTSL_TS_SET_LENG sE3 L) i The Length in bits of data
: objects of this Set type
DSTSA_TS_SET_PAR_TSPEC_ADDR = [7, A_],! The Location of the Set's
: parent tyge Type Spec
DSTSL_TS_SUBR_LENG e g Sl % ; The length in bits of objects
1
i
i
DSTSB_TS_FILE_LANG = E 3. B 1 :
DSTSA_TS_FILE_RCRD_TYP = [4, A_ 1, ! Location of Type Spec ?1ving

: element type for file ;
DSTSA_TS_AREA BYTE LEN = E g. A_ }' ! Length in bytes of PL/I ''area’
DSTSA_TS_OFFSET_VALSPEC = W gl = ! Location of Value Spec ,1ving

: base address of PL/I area
DSTSL_TS_NOV_LENG 3§ "5y ! The "'novel™ Llength in bits of

- objects of this data t;pe
DSTSL_TS_NOV_LENG_PAR_TSPEC = [7, L_ J,! DST pointer to Yaront type for

: this ‘‘novel length™ type
DSTSL_TS_SELF_LENG s [3.4 ! Table length for this arra‘ of
’Es : PL/]1 Self-Relative Labels

MACRO
DSTSTYPE_SPEC = BLOCKL,BYTE] FIELD(DSTSTYPE_SPEC_FIELDS) X;

B R R MRS RERS AR RS RS Ry e g ey

DSTRECRDS.REQ;1

16-SEP-1984 16:49:15.30 Page 59

E The following are the values that may appear in the DST$B_TS_KIND field.

LITERAL
DSTSK_TS_DTYPE_LOWEST
DSTSK TS ATOM
DSTSK TS DSC
DSTSK TS IND
DSTSK TS TPTR
DSTSK TS PTR
DSTSK TS PIC
DSTSK TS ARRAY
DSTSK TS SE1
DSTSK_TS_SUBRANGE
DSTSK_TS_FILE
DSTSK TS AREA
DSTSK TS OFFSET
DSTSK TS _NOV_LENG
DSTSK_TS”IND TSPEC
DSTSK_TS_SELF_REL_LABEL
DSTSK TS RFA
DSTSK™ T8 “TASK
DSTSK TS DTYPE_WIGHEST

! The following set of literals

-==Lowest Type Spec kind
Atomic Type B
VAX Standard esciptor Type Spec
ndirect Type Spec
Typed Pointer Type Spec
Pointer T pe Spec
Picturod pec
Arra¥ ype poc
ype Spec
Subrange Type Y
bnusod--OVl‘lab e for future use
File Type Spec
Area Type Spec (PL/1)
Offset ype Spec (PL/I)
Novel Length rpe Spec
DEBUG internally generatad pointer
f Spec (cannot opgear in DST)
Self-Re ative Label Type Spec (PL/I
Record File Address Type Spec (BASI
Task Type Spec (ADA)
-=-=Highest Type Spec kind

nuunmnnnnnnmueHBHERN

. % 8 S 88

to
N
)
C

— e e el e e e i e D) QD O LS NN =S D

COOONO: VIS NN O~ & s & & s s & & »

Ssw 8 »
-

give the lengths in bytes of those Type

: Specifications which have a fixed Length.

LITERAL
DSTSK_TS_ATOM_LENG
DSTSK_TS_IND_CENG
DSTSKTS_PTRTLENG
DSTSK"TS_FILE_LENG
DSTSK_TS_AREALENG
DSTSK_TS_OFFSET_LENG
DSTSK_TS_NOV_LERG_LENG
DSTSK_TS_TASK_LENG

Atomic Ty ?e Spec Length
Indirect Type Spec length
Pointer Type Spec length

File Type pec length

Area Type Spec length

Offset ype Spec len th

Novel Length Ye Spec length
Task Type Spec length

nuuwnnunnmn
N =3 N SN
-bs % % % 8 8

)

—

B
.
|
.
)
-
]
-
]
.
i
-
i
-
|
v
i
.
]
.
)
-
|
-
1
.
|
.
|
-
1
.
1
-
|
-
]
-
|
-
1
.
1
.
1
-
)
-
1
-
|
-
|
.
]
-
|
-
)
.
L)
.
1
-
1
-
)
-
)
.
1
-
)
-
)
.
)
.
|
M
'
-
]
-
]
.
'
.
)
.

word
byte
byte

word
byte

var

DSTRECRDS.REQ;1 16=-SEP-1984 16:‘9:1g.38 Page 60

ATOMIC TYPE SPECIFICATIONS

The Atomic T¥Re s?ecificotion is used to describe an atomic VAX standard
data type. is {Y. Specification consists of the standard Type Speci-
fication header followed by a single byte containing the VAX standard
data type code (one of the DSCSK_DTYPE_x codes). The

Atomic Type Speci-
fication has the following format: ype 5p

*----------

cocsccscees ccocssses$

: DSTSW_TS_LENGTH (= 2) :

*--.-------. - e > - ‘

: DSTSB_TS_KIND (= DSTSK_TS_ATOM) !

R R e b e L T T T PO cececcccscecsccecceee cecccecccccscccceces +

: DST$B_TS_ATOM_TYP

* - ------------------------------------’

DESCRIPTOR TYPE SPECIFICATIONS

The Descriptor Type Specification is used for VAX Standard Data Types
that can be described by VAX Standard Descriptors but cannot be de-
scribed by an atomic trpe code. Packed decimal, which requires a
digit length and a scale factor, and ASCI] text, which requires a
str\n? length, are examples of such data types. The Descriptor Type
Specification contains a Value Specification which must produce a

VAX Standard Descriptor. This is the format:

........................ e R e

DSTSW_TS_LENGTH :
DST$B_TS_KIND (= DSTS$K_TS_DSC) :

+

'

'
brccvcaee
:

+ BT e e T T e
:

.

]

]

]

L

]

]

L

+

DSTSA_TS_DSC_VSPEC_ADDR
Value Specification Yielding a VAX Standard Descriptor

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1;.38 Page 61

word
byte
long

INDIRECT TYPE SPECIFICATIONS

The Indirect Type Specification is used when the actual Type Specifica~
tion desired is found in another DST record. This Type Specification
contains a DST pointer which points to that other DST record. The DST
pointer contains the byte offset relative to the start of the whole DST
of the DST record that gives the actual type information. The pointed-
to DST record must be one of thre$ kinds of DST records: a Type Speci-
fication DST record, a Record Begin DST record, or an Enumeration Type
Begin DST record. fhe Indirect Type Specificatior is the only Type
Specification that can refer to a record or enumeration type; those
t;pes are too complex (gotentially) to be referred to any other way.
This is the format of the Indirect Type Specification:

+ ------------------------.-----------’
'
'

DSTSW_TS_LENGTH (= 5) ;
DST$B_TS_KIND (= DST$K_TS_IND) :

.......... ------------------------------------’

DSTSL_TS_IND_PTR :

- - D T D D S D D S P D D R D D P 5 S D +

e

F
DSTRECRDS.REQ;1 16=SEP-1984 16:&9:15.38 Page 62

! word

byte

var

! word

byte

TYPED POINTER TYPE SPECIFICATIONS

The Typed Pointer Type Specification describes a typed pointer data
type, noanin? a pointer to a specific other data type. Pointer-to-
integer, as found in PASCAL and other languages, is an example of a
tzpe pointer type. In this example, integer is the ''‘parent type''.
This Type Sgoci ication contains an embedded Type Specification which
specifies the parent type for the typed pointer type. This is the
format of the Type Pointer Type Specification:

..... e eSS OREEEEEETEEDEER BRSPS ® @SS ’

4 T DSTSW_TS_LENGTH ,

- L L T T cece--$

DST$B_TS_KIND (= DSTSK_TS_TPTR) :

- S ------------------’

DSTSA_TS_TPTR_TSPEC_ADDR '

Type Specification. for Parent Type that

P cocoscasscvonn @ oo P oo P

Objects of Typed Pointer Type Point to §
+

POINTER TYPE SPECIFICATIONS

The Pointer Type Specification is used for pointer types which are not
typed, meaning that the type of object that the pointer points to is
not known at compile=-time. PL/I Eointers are examples of this kind of
pointer type. Since there is no known parent type, none is sgecifled
in this Type Specification. The Pointer Type Specfficat1on t

the simplest possibl - format:

us has

........ B R i

DSTSW_TS_LENGTH (= 1) :

+
L
[l
. ---’
L}
.
+

DSTSB_TS_KIND (= DSTSK_TS_PTR) :

......... -——- B e e e

DSTRECRDS.REQ;1 16=SEP=-1984 16:69:1?.38 Page 63

|
-
)
-
i
-
!
.
.
-
|
-
|
.
)
-
|
M
|
-
1
.
|
-
|
-
i
.
1
i
B
-
|
-
i
-
1
.
1
.
B
-
|
.
|
.
1
-
)
-
)
-
1
-
!
-
¢
.
|
.
)
-
1
.
)
-
)
-
'
.
)
-
)
-
|
-
|
.
i
-
!
.
:
-
1
.
|
-
|
-
1
.
1
-
1
.
)
.
]
.
|
-
|
.
)
.
)
-
]
-
I
.

word
byte
byte
byte
byte

var

var

PICTURE TYPE SPECIFICATIONS

The Picture T; e Specification is used for picture data types as found
in COBOL and PL/1. Because the exact semantics of picture data types
vary between lLanguages, this Type Specification contains the language
code associated with this specific picture type. It also contains the
byte Length of objects of the picture type, an cncoding of the picture,
and a language-specific picture encoding (usually the EDITPC pattern
string). The actual data obZects of the picture data type are assumed
to be represented as ASCII character strings.

This is the format of the Picture Type Specification:

haddid R R DR R X R R N X X N YY) ‘

DSTSW_TS_LENGTH '

--- cecocscsccsconass ¢+

DST$B_TS_KIND (= DSTSK_TS_PIC) '

.......... - -TseeeeeseeeeeeeeeRe®S ---.--------’

DST$B_TS_PIC_DLENG !

o e e e TO DO DEEmDE DS S - *

DSTSB_TS_PIC_LANG '

- - e -------------------------------------’

DST$B_TS_PIC_PLENG

DSTSA_TS_PIC_ADDR
Picture String Encoding

+
'
L)
b rccnccccccccccan - -
)
)

Value Specification Yielding a
Language-Specific Encoding of Picture Semantics

o T T I T T SN R I 3

B L T I ST -

'hi DST$B_TS_PIC_DLENG field contains the Length in bytes of each data
object of this picture type. DEBUG assumes that picture objects are
represented internally as ASCII character strings.

The lLanguage code in the DSTSB_TS_PIC_LANG field is the same as that
used in the Module Begin DST record.

The DST$B_TS_PIC _PLENG field gives the byte length of the picture
encoding Tn the DST$A_TS_PIC_ADDR field. The picture encoding in the
DSTSA_TS_PIC_ADDR field consTsts of a sequence of words. The high-
order byte of each word contains an unsigned repetition factor and
the low=order byte contains the ASCII reeresentotion of the repeated
picture character. Hence the picture 5999.99 is represented by this

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1!.36 Page 64

sequence of byte values: L1, "9, 2. (The same

picture can be written as '813)9 .2)9" §

the ogtionol Value $pecification at tho end of the Piituro pe Spoci-

ficat ields the address of the EDITPC pattern str ng that performs
the encoding associatod with this picture *ypo. DE BUG uses this pattern
strinq with the EDITPC instruction when do EPOSITS into objects of
this picture t‘pe. f the value Specification is omitted, DEBUG can
only doposit character strings into such objects since it does not know
how to encode numeric values.

DSTRECRDS.REQ;1 16=-SEP=1984 16:49:1&.38 Page 65

|
-
1
.
]
-
i
-
)
-
]
-
'
.
|
.
]
.
L)
-
|
-
)
-
L)
d
i
-
|
-
i
-
)
-
1
-
1
-
)
-
1
-
)
-
|
.
)
-
)
-
|
-
)
.
i
.
)
.
]
-
1
-
'
.
1
.
i
Al
'
-
1
-
)
-
1
.
|
-
H
-
)
-
)
-
]
.
1
-
)
.
]
.
)
-
|
-
|
.
]
.
1
.
'
-
!
.
)
-
]
.
]
.

word
byte
byte

var

var

var

var

var

ARRAY TYPE SPECIFICATIONS

The Array Type Specification sg0cifies an Array data t¥po. This speci-
fication can be guite complex because it not only specifi

each array of this type, but also specifies the corresponding element
data type and all subscript data t{pes. The element sype and the types
of the subscripts are given by additional Type Specifications nested
within the Array Type Specification.

This is the format of the Array Type Specification:

’ Ll R L X X X Ry R R ‘

' DSTSW_TS_LENGTH i

reccccce= ceecee —cccceccsccnccrccscceee ceceseecwd

: DSTSB_TS_KIND (= DSTSK_TS_ARRAY) !

R - e - --------------------’
~ DSTSB_TS_ARRAY_DIM
DSTSA_TS_ARRAY_FLAGS_ADDR

Bit Vector of Flags Indicating What Type

Specifications are Given Below
(The vector's bit Llength is given by DSTSB_TS_ARRAY_DIM)

Value Specification Producing an Array Descriptor

Optional Type Specification for Array Element Data Type

Optional Type Specification for First Subscript Data Type

More Optional Type Specifications for Subscript Data Types

cncssscnscace cncacne § cesecess f Cesnss P cecncnananenanenas § oo
cecccscsccsn ¢ cecscane cecnccen ceanes d cesscs e an s aeanen @ =-

‘------‘--’

Here the DSTSB_TS_ARRAY_DIM field gives the number of dimensions of this

es the shape of

DSTRECRDS.REQ;1 16=SEP- 1984 16:&9:1;.38 Page 66

E I I Ll d e T . T T T T TTT===

array t{po. Next, DSTSA_TS_ARRAY_FLAGS_ADDR gives the lLocation of a
bit-vector which indicatés what nested Ty?o Specifications are found
Later in this Array Type Specification. If bit 0 is set, a nested Type
Specification is included for the arra¥ element type (the cell type).
After that, if bit n is set, a nested Type Specif io}ion for the n-th
subscrigt type is included in this Array Type Specification. 1If a bit
in the bit-vector is zero (not set), the corresponding Type Specifica=-
tion is omitted from the Array Type Specification. If the element type
specification is omitted, %ho element type is assumed to be given b{ the
arra{ descriptor's DTYPE field. If a subscript type specification is
omitted, the subscript type is assumed to be longword integer (DTYPE_L).
(Subscr{pt Type Specifications are mainly needed for enumeration type
subscripts as allowed in PASCAL.)

The number of bits in the bit-vector is DST$B_TS _ARRAY DIM
for the elem"nt type. The whole DSTSA_TS_ARRAY_FLAGS_XKDDR

?%u{ one more
e
course rounded up to the nearest byte boundary.

d is of

The array descriptor Value Specification that follows the bit-vector
field produces a VAX Standard Descriptor for the arraz. (The descr1?tor
class must be DSCSK_CLASS_A, DSCSK_CLASS_NCA, or DSCSK_CLASS_UBA.) This
array descriptor gives the strides (or multipliers) and the Tower and
upper bounds for all of the array dimensions. It also gives the element
data type, including its scale factor, digit count, or other type infor-
mation as apprcpriste. However, the descriptor's element type can be
overridden an element sze Specification as noted above; in this case
the DSCSB_NTYPE field of the descriptor should be zero.

The Array Type Specification is normally only used in two situations.
First, it is used if the array t;pe does not have a compile-time-con-
stant descriptor (for example, it it has variable array bounds) and no
run-time descriptor exists in the user's address space. Second, it is
used if the array type cannot be described a VAX Standard Descr{ptor.
either because the element type sannot be described by a VAX Standard
Descriptor or because the subscript types are not integers. (Element
types such as records, enumeration types, and tygod pointers cannot be
described h‘ VAX Standard Descriptors.) If neither of these situations
pertains, there are simpler ways of describing array types in the DST
using Standard Data or Descriptor Format DST records.

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1?.35 Page 67

SET TYPE SPECIFICATIONS

The Set Tyfo Specification specifies a Set data type as in PASCAL. A
Set type a va¥s has a parent data t{pe. For the set-of-integers type
for example, integer is the parent type. The parent type must be either
integer, some enumeration type, or a subrango of those types. DEBUG
assumes that the Set type is represented internally as a bit=string
where a given bit is set if and only if the corres onding integer or
enumeration type element is a member of the set. The n-th bit of the
bit-string (starting at bit 0) is assumed to correspond to the n=th
element of the parent type. The length of the bit-string is part of

the Set type and is specified in the Set Type Specification.

This is the format of the Set Type Specification:

Type Specification Specifying the Set's Parent Type

oré | TTTOSTSW_TS_LENGTH
byte E__ osns_ts_x1Ng_g_osrii:rs,§giz::::::::::€
long | OSTSLTSSET.LENG ¢
var ! DSTSA_TS_SET_PAR_TSPEC_ADDR

P cocccncans

‘--------------------------------------.----. - e e e o e

Here the DSTSL_TS_SET_LENG field gives the bit Length of an object of
the Set data t¥pe. DSTSA_TS_SET_PAR_TSPEC_ADDR marks the location of
an embedded DST Type Specification for the parent type of the Set type.
Typically this is an Atomic T‘pe Specification for type integer, an
Indirect Type Specification that points to an Enumeration Type Begin

DST record, or a Subrange Type Specification.

DSTRECRDS.REQ;1

P S e g S S e g e e e e e e e e

word
byte
Llong
var

var

var

16-SEP-1984 16:49:1%.38 Page 68

SUBRANGE TYPE SPECIFICATIONS

The Subrange typc Spocification describcs a Subrange data typo noaning
A subrango of some ordinal {po such as integer or an onunorat ¥po.
is Typo Sgccification specifies the parent t‘po (the or ginal dinal

¥po and the lower and upgor bounds of the subrange. It also g vus the
bit length of obj oits of the Subrange type. This is the format of the

Subrango Type Specification:

*---O-------------- ------ e e S T OO T TTDDEEEEE S D@ S0 EE ’

i i DSTSW_TS_LENGTH i

i DSTSB_TS_KIND (= DSTSK_TS_SUBRANGE) i

i DSTSL_TS_SUBR_LENG i

: DSTSA_TS_SUBR_PAR_TSPEC_ADDR E

§ Type Specification Specifying the Subrange's Parent Type §

; - e o s e S S5 e LB A L L L L L L L L X X ¢ X X ¥ ¥ 3 --eeee ;

§ Value Specification Giving the Lower Bound of the Subrange E

; cCoeeeesee ;

§ Value Specification Giving the Upper Bound of the Subrange §

e R oy S oS S A +

Here the DSTSL_TS_SUBR_LENG field ives the length in bits of objects

of the Subrange data tyg DSTSA_TS_SUBR_PAR_TSPEC_ADDR nlrks the

location of a DST 'K pecificat?on for the parent type of the sub-

range. ¥p ically an Atomic Type Specification for tyge ntcger

ggton lnddrect typo Specification pointing to an Enumeration Type Begin
record.

The two Value Specifications in this Type Specification specify the
lower and ugper bounds of the subrange. These bounds values must be
values of the parent type.

DSTRECRDS.REQ;1 16=-SEP=1984 16:69:1?.36 Page 69

'
i
i
i
A
i
i
i
.
i
.
i
i
i
i
.
:
i
i
.
i
-
i
!
i
i
i
.
i
i
ol
i
il
i
.
i
i
:
i
-
i
:
:

i

.

i
i
i
i
.

word
byte
byte
var

FILE TYPE SPECIFICATIONS

The File ‘;E. Specification specifies a File data type as found in
PASCAL or PL/I, for example. Since the interpretation of File types
varies from lonauage to Language, the lLanguage code for this File

type is included in the Type Specification. Optionally, a file record
1‘90 Specification can be included specifying the type of a record in
this file type. A PASCAL File-of-Reals, for instance, would have Real
(F-Floating) as its file record type.

This is the format of the File Type Specification:

4 o = o o eececssccssccecscccscecssceee - o -- e R

- T
i DSTSB_TS_KIND (= DSTSK_TS_FILE) '
R st s piLe s T
5 DSTSA_TS_FILE_RCRD_TYP 5
§ Type Specification Giving the File Record Type §
B s S g ——

Here the DSTSB_TS_FILE_LANG field contains the lLanguage code for this
file. The same lLanguage codes are used as in the Module Begin DST
record. DSTSA_TS_FILE_RCRD_TYP is the location of a DST T¥pe Specifi-
cation for the record t f" if applicable. This Type Specification is
optional; if omitted, file-of-characters is assumed.

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1?.35 Page 70

word
byte

var

AREA TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG Vv4.0.

The Area Type Specification describes a PL/] '‘area"’ t{pe. PL/] areas
are regions of memory whose base addresses are determined at run=time.
Areas are always used in conjunction with PL/] Offsets (see below).
This is the format of the Area Type Specification:

- - e - - —---------.-----------.----.-------.-.--’

DSTSW_TS_LENGTH !

..................... T

DST$B_TS_KIND (= DSTSK_TS_AREA)

+
'
'

+
i

kS - cecsecscecscscsosesrcscocosoceeceeseew
:
'
'
'
'
]
'
'
L

+

DSTSA_TS_AREA_BYTE_LEN
Value Specification Giving the Area Byte Length

Here the DSTSA TS _AREA_BYTE_LEN value Specification specifies the byte
length of the PL/T Area.

DSTRECRDS.REQ;1 16=SEP-1984 16:49:12.33 Page 71

)
4
)
-
|
-
!
-
)
.
1
-
)
.
1
.
1
.
!
-
|
-
)
A
1
-
)
-
1
-
i
-
!
.
1
.
'
-
|
.
)
-
)
.
|
.
)
.
|
bl
1
.
1
-
)
-
)
-
1
.
|
.
|
.
|
.
1
.
)
.
'
.
|
.

word
byte

var

var

OFFSET TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v&4.0.

The Offset Type Specification describes a PL/1 "'offset' type. PL/I
offsets are offsets relative to the start of a PL/]l ""area’" (see above),
a dynamically allocated roaion of memory. The Offset Type Specifica~
tion specifies the base address of the associated area and the byte
offset value of this offset type. This is the format:

’------.’--- - e LR LR R X ’

DSTSW_TS_LENGTH :

e w0 @ m e m a cecscscscscsecccsas +

DST$B_TS_KIND (= DSTSK_TS_OFFSET) i

eSS eSS eSS OO EEREEEE S ’

DSTSA_TS_OFFSET_VALSPEC

Value Specification Giving the Base Address §
of the Area Associated with this Offset §
+

Value Specification Giving the Byte Offset value

@ cccncone P oaccccccncccns so P o

'
'
'
'
'
'
'
'

+

Here the DSTSA_TS_OFFSET_VALSPEC Value Specification produces the base
address of the asSociated area and the second Value Specification gives
the byte offset value into the area.

TN o R e P R S R

1
i
i
i
i
i
i
i
i
i
i
i
.
)
i
i
.
]
i
i
;
i
i

: word
! byte

Llong

long

DSTRECRDS .REQ;1 16-SEP-1984 16:69:1&.38 Page 72

NOVEL LENGTH TYPE SPECIFICATIONS

The Novel Length Type Specification is used to sgecif an; data t¥pe
that is identical to a parent data type except that the objects of _this
new t;pe have a different Length (a "novel’ or at;gical length). This
Txge pecification is used for the components of PACKED records in
PASCAL, for example. A boolean component of a packed record consists

of a single bit (the novel length) while all other booleans consist of

a byte (the normal Length). To describe the packed boolean type, a
Novel Lenath !{ge 5gec fication is used which specifies the novel Llength
and points to the DST description of the parent type, namely the normal
boolean type. DEBUG accessed objects of a Novel=-Length type by expand-
ing them to the normal length for that type.

This is the format of the Novel Length Type Specification:

R e e e e L L L L T T T T T I —— +$

DSTSW_TS_LENGTH (= 9) :

Al R R R ------’

DSTSB_TS_KIND (= DSTSK_TS_NOV_LENG) '

'
.
+
'
L
L L L L T Es e e O T ERNTRERTTT O TD@@E DD @S E @ +

‘
+
'
.
+

DSTSL_TS_NOV_LENG !

e eE R CeEE @D E @SR DS e - - - .

DSTSL_TS_NOV_LENG_PAR_TSPE(:

eSO e e e OO TTOTDEE DN EEE S S .

Here the DSTSL_TS NOV_LENG field contains the “novel'' Length of this
data type. The DSTSL_TS_NOV_LENG_PAR_TSPEC field is a DST pointer which
contains the byte offSet relative to the start of the whole DST of the
DST record_that specifies the parent type. The pointed-to DST record
must be a Type Specification DST record, a Record Begin DST record, or
an Enumeration Type Begin DST record, (Typicall¥ it is a Type Specifi-
cation DST record containing an Atomic Type Sgec fication for type inte-
ger or boolean or an Enumeration Type Begin DST record.)

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1!.38 Page 73

- S e e g e e e ey

word
byte

word
byte

SEL"-RELATIVE LABEL TYPE SPECIFICATIONS

The Self-Relative Label Type Specification specifies the type of a PL/I

self-relative'’ Label. Such a Label is actually a Label array, meaning

that it must be indexed by an integer value to yield a specific label
value. The internal representation consists of an array of longwords
where each arra¥ element contains a label value relative to the start of
the array. Mak n? the element values relative to the start of the array
ensures that the label array is Position=Independent (PIC).

This is the format of the Self-Relative Label Type Specification:

.............. cosssssscscses$

DSTSW_TS_LENGTH (= 1) :

Rt R R R R R R R R R R R R R YRR R R R R R R R Y ’

DSTSB_TS_KIND (= DSTS$K_TS_SELF_REL_LABEL) :

- - e S ST ST e e ---—--------------------’

PO

TASK TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG Vv4.0.

The Task Type Specification specifies the data type of task objects
as found in ADA. Objects of the Task data type are assumed to have
longword values understood by the ADA multi-tasking kernel. Since
no additional information is associated with the Task data type, the
Task Type Specification has the minimal format:

- e e) &

"DSTSW_TS_LENGTH (= 1) !
DSTSB_TS_KIND (= DSTS$K_TS_TASK) :

- - ----------------‘---*------------’

P ST

| END OF TYPE SPECIFICATION DESCRIPTION.

DSTRECRDS.REQ;1 16=-SEP=1984 16:69:1§.38 Page 74

ENUMERATION TYPE DST RECORDS

]

i

i

i

- Enumeration tlpes. as found in PASCAL and C, are represented in the
: DST by three kinds of DST records. The Enumeration T{R. Begin DST

: record describes the type itself, giving the bit length of objects

: of that type and the name of the type (e.g., COLOR). This record

' is followed by some number of Enumeration Type Element DST records,
: one for each element, or Literal, in the type (e.g., RED, BLUE, and
: GREEN). Each Enumeration T{pe Element DST record g*vos the name and
! numeric value of one Literal of the enumeration t¥p¢. The whole type
; description is then terminated by an Enumeration Type End DST record.
1

i

i

i

i

i

i

i

i

i

The Enumeration Type Begin and Enumeration Type End DST records thus
bracket the List of elements of the type, much Like other Begin-End
pairs in the DST. The Enumeration Type Element DST records within
those brackets do not have to be in numeric order of their values,
although it is desirable if they are. For Languages Like ADA, where
the numeric values of the elements need not go up sequentially with
the Llogical element positions, the Enumeration Type DST Elements do
have to be order of their log*cal positions, however. No other kinds
of DST records (except Continuation DST records) may appear between
the Enumeration Type Begin and the Enumeration Type End DST records.

F
DSTRECRDS.REQ;1 16=-SEP-1984 16:69:15.33 Page 75
THE ENUMERATION TYPE BEGIN DST RECORD

The Enumeration Type Begin DST record specifies the name of an
enumeration type and the bit length of objects of that type.

It also serves as the opening bracket for a List of Enumeration
Type Element DST records, and must be matched by a closing
Enumeration Type End DST record. This is record's format:

L B i L cecscscsscscsccrsscsscecsccssssssssene®

byte i__-_______-_____________-BEIEE:LENGTH R L e, i
O A eainn i bt St st o B B TRAS
byte ! DS!SB_ENUHBEG_LENE '
byte | osTss_gnvmetc e
! ; The Name of the Enumeration Type in ASCII ;

E (The name's Llength is given by DSTSB_ENUMBEG_NAME) §

. i e A R W e 9 H

Define the fields of the Enumeration Type Begin DST record.
IELD DS;:;NUHBEG_FIELDS =

1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
! e ccccsccesee -
)
i
i
i
i
i
i
i
i
i
i
i
i
i
F

DSTSB_ENUMBEG_LENG =[2, 8_1, ! Bit Length of data objects of
s this enumeration type
DST$B_ENUMBEG_NAME =[3,8_1 : Count byte for the Counted

ASCII Type Name
TES; :

DSTRECRDS.REQ;1 16=SEP=1984 16:49:1?.38 Page 76
THE ENUMERATION TYPE ELEMENT DST RECORD

The Enumeration Type Element DST record specifies the name and value
of one element (one Literal) of an enumeration type. It may only

ag ear between an Enumeration Type Begin and an Enumeration Type End

DST record. The underlying representation of enumeration types is
assumed to be unsigned integer. The DSTSB_VFLAGS field in this record
has its normal interpretation (see the Standard Data DST record for
the details). Hence the DSTSV_VALKIND field will have the value
DSTSK_VALKIND_LITERAL and the DSTSL_VALUE field will have the appro-
priate integer value in this case.

This is the format of the Enumeration Type Element DST record:

tecccaw cesccccccccaes crscnr e em e mm - --e -

byte i < DSTSB:£ENGTH i
byte i DSTSB_TYPE (= DSTSK_ENUMELT) i
byte i DSTSB_VFLQGS £ i
Llong i DSTSL_VALUE i
byte ! DSTSB_NAME '
AL T TR ——= AL DI e R T R L e L Ty +
var H !
5 The Name of the Enumeration Literal in ASCII 3
E (The name's length is given by DSTSB_NAME) E
S S S S A e +

THE ENUMERATION TYPE END DST RECORD

The Enumeration Type End DST record terminates the description of an
enumeration type. This is the record's format:

e ™ e e e

: DST$B_LENGTH :

’------,-- LA L L L L L L X 1 J ’

: DSTSB_TYPE (= DSTSK_ENUMEND) '

e m e D e e = @@ e S D e G e T e D S5 S S o 0 D D T W R WP W @D UD Ge e S > e e D - e o b

o o
< %
~ o~
n o

P Ll Rk R L R T e L L T

H
DSTRECRDS.REQ;1 16-SEP-1984 16:69:15.38 Page 77

S R S e - Ry -

RECORD STRUCTURE DST RECORDS

Record structures, or simply records, refer to the aggregates of non-
homogeneous components found in many Languages. In some lLanguages,
such constructs are called "‘records’” (in PASCAL and (OBOL, for example)
and in others they are called "'structures'’ (in PL/I, for example).
Here we will call them “‘records’’. What all records have in common is
that they consist of a set of named components, each corresponding to
some field in the record structure. The components can in general be
of any data types supported by the lLanguage.

In the bebu? S{nbol Table, a record is represented b¥ a8 Record Begin
DST record Tfollowed by some number of data object DST records, one for
oazh record component, followed by a Record End DST record. Any data
object DST record within a Record-Begin/Record-End pair is taken to
denote a component of that enclosing record specification. Other DST
records may also appear between the Record-Begin/Record-End pair, such
as Type Specification and other DST records that specify the data types
of t : components. However, only data DST records denote record com=-
ponents.

Nested records are defined by record components which are themselves
records. The t‘pe of a record component which is itself a record is
defined b{ another Record-Begin/Record=End pair of DST records. This
additional record definition may appear inside the original record
definition, but does not have to do so--an Indirect Type Specification
pointing to a record definition outside the original recerd definition
is also legal. Conversely, a record definition inside another record
definition does not define a nested record unless some component of
the outer record actually references the inner record definition. In
short, the DST can only describe one level of record components at a
time, but any component can be of any arbitrary data type including
another record type.

The Record Begin DST record is unusual in that it can define both a
data t‘ge and a data object. If the DSTSB _VFLAGS field has the special
value DSTSK_VFLAGS_NOVAL, then the Record Begin DST record defines an
abstract data type. An; object of this data t{po must be represented
b¥ a Separate Type Specification DST record which innodiatel; precedes
either the Record Begin DST record or a Type Specification DST record
that contains an Indirect Type Specification that points to the Record
Begin DST record. In this case, the name in the Record Begin record is
taken to be the name of the data type, not of any ob?oct of that type.

However, if the DSTSB_VFLAGS field does not contain DSTSK_VFLAGS_NOVAL,
then the Record Begin DST record defines both a data type and a data
object of that type. This form can be used for languages such as COBOL
which do not have named data types. In this case, the DST$B_VFLAGS and
DSTSL_VALUE fields specify the address of the record object Tn the same
way as in _the Standard Data DST record. It is still legal to have
Indirect Type Specifications pointing to this Record Begin DST record,
using it strictly as a type definition.

Some languages, such as PASCAL, allow record variants. (In ADA, the

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.38 Page 78

R L L T T T o ey ———

same concept is called ‘‘'discriminated’’ records.) An objcgt of a record
t¥po with variants contains some set of components found in all objects
of that type plus some set of conponont1 that vary from one record
variant to the next. Which of the varying components are actually
present in a given record may be determined by the value of a "'tag
variable'' which is a fixed component of the record. Variants may also
be nested so that variants have variants.

In the DST, record variants are described by variant Set Begin DST
records, Variant Value DST records, and Variant Set End DST records.
The Variant Set Begin DST record marks the beginning of a set of record
variants, where each variant consists of some set of record components.
The variant Set Begin DST record indicates which record component con=-
stitutes the tag variable that discriminates between the variants in
the set. This tag variable must be a component of the same record and
must precede the Variant Begin DST record in the DST. The Variant
Begi?lDSI'record also gives the bit size of the variant, if known at
compile=time.

The variant Value DST record marks the beginnin of a single record
variant. It also specifies all tag variable values or value ranges
that indicate the presence of this variant in a given record object.
ALl record components (indicated by data DST records) after this Vari-
ant Value DST record and before the next Variant Value or Variant Set
End DST record are taken to be components in this variant.

The variant Set End DST record marks the end of some set of variants
u}::}n :hroco:d specification. It also terminates the last variant
- n the set.

A record type with variants is thus specified as follows. First a
Record Begin DST record marks the beginning of the record specifica~
tion. After that come data DST records that denote all fixed compo-
nents of the record type. Then comes a Variant Set Begin DST record
that marks the beginning of a set of variant definitions and identi-
fies the tag variable (if any) for that variant set. lnnodiatcl‘
thereafter comes the first Variant Value DST record. It marks the
start of the first variant and identifies the values or value ranges
of the tag variable that correspond to this specific variant.

After the first variant Value DST record come the data DST records

for the record components in this particular variant. Next comes the
Variant Value DST record for the next variant, along with its component
DST records, and so on for each variant in the variant set. After the
Last component DST record for the lLast variant in the set comes a
Variant Set End DST record. It is followed by the DST records for any
additional record components, gossibl‘ including additional variant

set definitions. Then comes the the Record End DST record.

Variant sets u0¥ be nested inside variant sets. Such nesting is indi-
cated in the DS b; the corresponding proper nesting of Variant Set
Begin and Variant Set End DST records.

DSTRECRDS.REQ;1 16=-SEP=-1984 16:69:1*.33 Page 79
THE RECORD BEGIN DST RECORD

The Record Begin DST record marks the beginning of a record type
definition in the DST. It must be followed by the DST records for

the components of that record and by a matching Record End DST record.
The Record Begin DST record has essentially the same format as the
Standard Data DST record, but with two exceptions. First, an extra
longword gives the bit Length of the record tygo :nd second, the
DBGSB_VFLAGS field may haxc the special value DSTSK_VFLAGS_NOVAL to
indicate that this is strictly a type definition, not also the defini-
tion of a record object. If a normal value spec*fication is used, a
record o?joct is being declared as well as a record type. In this
case, a Trailing value Specification may be included at the end of the
DST record if necessary to describe the record's address.

The bit size of objects of this record type is also given in the DST
record. This size should be included if the size is known at compile=-
time. If it is not known at compile-time, it should be specified as
zero.

This is the format of the Record Begin DST record:

- e - - - EEE S S EEG ST S ’

DST$B_LENGTH :
DST$B_TYPE (=DST$K_REGBEG) :

-----------------..---------------’

DSTSB_VFLAGS :

L R T -$

DSTSL_VALUE i

..... S OCE T EEEEEEEED SRS EEE S SRS E S S ST S S S ‘

DSTSB_NAME

8
]
a
H
[
[
4
i
B
8
§
4
i
]
4
]
b
8
o
il
il
0
b
]
o
*

byte
byte

long

I ST S S
)
]

byte

var
The Name of the Record or Record Type in ASCII

+
% (The name's length is given by DSTSB_NAME)
+
‘

" DSTSL_RECBEG_SIZE

long

@ oo P ecccccccncnn ¢ o=

Define the fields of the Record Begin DST record. Also declare the macro
that defines the trailer part of the DST record.

IELD DST$?ECBEG_TRAILEN_FIELDS

SE
DSTSL _RECBEG_SIZE = [0 , L_J ! The bit size of data objects of this
TES ! record type (or 0 1f unknown)

]
H
\
\
i
i
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
; byte
i
i
i
i
i
i
i
:
3
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

DSTRECRDS.REQ;1 16-SEP-1984 16:69:1§.38 Page 80

L Y e e L L T T oo o e e ® e e cescssscsccssesse$

byte | DSTSB_TYPE (= DSTSK_RECEND) '

e e ceeosceceeese e- ceoccscscccecseee LT Y 3

MACRO
DSTSRECBEG_TRLR = BLOCKL ,BYTE] FIELD(DSTSRECBEG_TRAILER_FIELDS) X;
; THE RECORD END DST RECORD
i
i The Record End DST record marks the end of a record type definition in
2 the D51, %n effect, it terminates the scope set up by the matching
; Record Begin DST record. This is the record's format:
i
i .------- eSS eTe T TV OTTCT VDT OV DD W E DD DD ’
! byte ! DSTSB_LENGTH (= 1) :
i
1\

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1&.33 Page 81
THE VARIANT SET BEGIN DST RECORD

The Variant Set Begin DST record marks the beginning of the DST
description of a set of record variants. This DST record also
identifies the to? variable that discriminates between the variants
in the variant set. The tag variable is identified by a pointer

to the DST record for the tag variable. This DST pointer consists
of a b‘to address relative to the start of the DST. The size in
bits of this variant set, meaning the size of the Largest variant

in the set, is also included. If this size is not known at compile=
time, it should be set to zero.

This is the format of the Variant Set Begin DST record:

e - - o S o o LR il k 4

byte : ~ DSTSB_LENGTH :
byte ! DSTSB_TYPE (= DSTSK_VARBEG) i
’ - e - D S S S S S S S R W S S e S e R W S S S S LA R R X X X X T X X 3 . e e e e
byte ! DSTSB_VFLAGS i
e ces e e oo - cececcccecceecesae cocoesccecene
long i DSTSL_VALUE i
byte ! DSTSB_NAME '
e e e e e e e e e e e e e e e - e e e TS - - - +
var : :
3 The Name of the variant Set in ASCII ;
§ (The name's length is given by DST$SB_NAME) E
§ (This name is normally null) §
; - e e e e L] - e R e G D G0 R W A D WD WS R D e O B @ ;
long i - DSTSL_VARBEG_S]ZE_ i
long i DSTSL_VARBEG_TAG_PTR i

Define the fields of the Variant Set Begin DST record. Also define the
declaration macro for the trailer part of the record.

TN 6 S S S S S e e

1ELD 05;2¥ARBEG-TRAILER_FIELDS]
DSTSL_VARBEG_SIZE =[0,L_), ! Size in bits of variant part
! of record (or zero)
DSTSL_VARBEG_TAG_PTR =[4, L_) | Pointer to TAG field DST
! record relative to the
1€S : start of the DST

MACRO

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1?.38 Page 82

DSTSVARBEG_TRAILER = BLOCK[,BYTE] FIELD(DSTSVARBEG_TRAILER_FIELDS) %;

DSTRECRDS.REQ;1 ' 16=-SEP-1984 16:49:1?.33 Page 83
THE VARIANT VALUE DST RECORD

The variant Value DST record marks the beginning of a new record
variant within a variant set. It also marks the end of the previous
variant (if on;). It is always found between a Variant Set Begin
and a Variant Set End DST record. Since the vVariant Set Begin DST
record has already specified the tag variable, the Variant Value

DST record only specifies the tag value or values that correspond

to the present variant. It also specifies the size in bits of this
variant if known at compile-time (otherwise zero is specified). The
Variant Value DST record is fo}louod b{ the data DST records (includ-
ina nested variants if appropriate) which constitute the components
of this specific variant.

A variant may have many tag values or tag value ranges. This DST
record thus specifies a set of tag value ranges. The way these
ranges are specified is described in detail on the following page.

This is the format of the variant Value PST record:

D B e I R e L +

DSTSB_LENGTH i

- oeeeseeceeeeGoee oot oGTeGSS®nes ’

DSTSB_TYPE (= DSTSK_VARVAL) :

- e - .- D o G D D R R S TH D TS S D S G . 6 0 SooOoeoooo oo oo ’

DSTSL_VARVAL _SIZE i

- --------.-------‘

DSTSW_VARVAL_COUNT i
DSTSA_VARVAL _RNGSPEC
lero or More Tag Value Range Specifications

(The number of Range Specs is given by DSTSW_VARVAL_COUNT)

byte
byte
long

word

var

§ cccccrsscncnsc o ooy on =

P ——

Define the fields of the variant Value DST record.
1ELD DS;:¥ARVAL_FIELDS =

B o D L Tl bl s g A ———

DSTSL_VARVAL_SIZE = E g. . g. ! Bit size of this variant part
DSTSW_VARVAL _COUNT B " : The nu:?o; ?fl{ag value ranges
: which follow
DSTSA_VARVAL _RNGSPEC =[8,A] ! Location where the ta? value
: range specs star

TES;

DSTRECRDS.REQ;1

|
-
|
N
)
-
)
-
]
-
|
-
L]
-
|
-
'
-
1
-
1
-
)
.
)
-
1
.
|
-
'
.
|
4
]
-
|
-
]
-
L]
.
'
.
|
-
)
-
]
-
]
-
1
.
L)
-
|
.
1
-
)
-
)
M
1
-
|
.
'
-
1
M
1
.
|
.
)
.
1
.
!
.
1
-
|
.
|
.
)
.
1
-
1
M
'
-

byte

var

byte

var

var

TAG VALUE RANGE SPECIFICATIONS

Each Tag value Range Specification in a Variant Value DST record
consists of a byte specifying the kind ?f the range specification
followed by one or two Value Specifications. If one Value Speci-

fication is given, that gives the ta? value==the range consists of
f cations are given, thg; s?tfi-
“ u-

that one value. If two Value Specif
fy the lowest and highest values in the tag value range.
strations below show the two possible formats of Tag Value Range
Specifications:

‘ Bl R LR R R Y Y Y - e o .o ’

DSTSB_VARVAL_RNGKIND (= DSTSK_VARVAL_SINGLE) :

)
1
‘ - e G ek b W G G D G D WD B W . -------------.---...--.--0

; DSTSA_VARVAL _RNGADDR
é A DST value Specification Giving a Variant Tag Value

’--------------.-------‘---------------------'-.

-

’-----------------------------------.---------------------------‘

DSTS$B_VARVAL_RNGKIND (= DST$K_VARVAL_RANGE) :

- - -------.’------.-----’

DSTSA_VARVAL _RNGADDR '
A DST value Specification Giving the Lower Bound

*
[
H

for a Range of Variant Tag Values

A DST value Specification Giving the Upper Bound

@ rerncernssss P e s s n-
]
]
6
g
]
i
]
5
[
4
4
)
4
8
7
8
i
]
i
i
]
]
4
]
2
]
]
0
]
8
]
]
8
i
]
i
8
¢
8
)
b
[
i
'
@
i
1
0
'
[
8
]
f
]
]
i
¢
1
8
L]
'
i
i

+
for a Range of variant Tag Values E
‘

Define the fields of the Tag vValue Range Specification.

1ELD DST$¥ARVAL_RNG_FIELDS =

SE
DSTSB_VARVAL _RNGKIND = E 0. 8, }.
DSTSA_VALVAL_RNGADDR = [1,

TES;

! Location of first value
. Specification

16=-SEP=-1984 16:49:1!.33 Page B84

! Tag Value Range Spec kind

DSTRECRDS.REQ;1 16=SEP=-1984 16:69:1&.38 Page 85

3 Define the possible values of the DSTSB_VARVAL_RNGKIND field.

LITERAL
DSTSK_VARVAL _SINGLE =1, ! The range consists of a single value
DSTSK_VARVAL _RANGE = 2; : The range is given by a lower and an
! upper bound (two value specs).

r

' DSTRECRDS.REQ; 1

byte
byte

16=-SEP-1984 16:49:1g.38 Page 86

THE VARIANT SET END DST RECORD

The variant Set End DST record marks the end of record variant set;
it toruinotot a set of variants which have the same tag variable.
This is the format of the Variant Set End DST record:

R e R +

DSTSB_LENGTH (= 1) :

-EEaGeGaeEeeEe e et eSS eSO EESe e .

DSTSB_TYPE (= DSTSK_VAREND) :

ceeseceeeceeeeeececrcTeGoeGceeGEeee®e e cesceccsccccceaas -—-é

PN

T ey

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1§.33 Page 87

BLISS DATA DST RECORDS

BLISS data objects are represented by several different kinds of DST
records. Ordinary scalar objects, such as simple integers, are repre-
sented by the Standard Data DST record or its variants. However, the
more specialized BLISS data types such as Vectors, Bitvectors B(ocks.
and Blockvectors, are represented by a special DSt record called the
BLISS Special Cases DST record. Pointers to such objects (e.g., REF
VECTOR) are also represented by this DST record. In addition, BLISS
field names are represented by their own kind of DST record, the BLISS
rie%? DST record. Both of these record kinds are described in this
section,

The BLISS Special Cases DST record and the BLISS Field DST record are
supported for BLISS only. They should not be generated by compilers
for any other language.

B e R R R R ey

DSTRECRDS.REQ;1

|
-
)
.
1
.
1
-
)
-
)
.
)
-
)
.
)
.
L)
M
)
M
)
-
1
.
)
-
1
-
1
-
)
-
)
.
)
-
1
-
)
.
)
M
)
.
)
-
|
M
|
.
1
.
)
M
)
-
i
A
!
-
1
-
)
.
!
.
]
.
)
.
)
.
)
M
)
.
1
.
)
M
|
.
'
.
!
.
|
.
)
M
1
M
)
-
)
M
'
.
|
.
]
.
!
-
|
-
U
.
'
.

byte
byte
byte
byte
byte
byte

var

long
byte

var

long

F &
16=SEP=1984 16:49:15.30 Page 88

THE BLISS SPECIAL CASES DST RECORD

The BLISS Special Cases DST record is used to describe a number of
data objects whose da}a types are specific to the BLISS Language only.
This includes such objects as BLISS vVectors, Bitvectors, Blocks, an
Blockvectors and pointers to these objects (REF VECTOR, REF BLOCK,

and so on). This DST record should not be generated for any Language
other than BLISS.

This DST records consist

5 ur parts: The DST header fields, the
fields in the set DS?SBL%

of fo
: FIELD, a variable~length set of fields, and

the fields in the set DSTSBLI_TRAIL_FIELDS. The variable-length set

of fields can be ontty consist of The fields in DSTSBLI VEC FIELDS

the fields in DSTSBLI BITVEC FIELDS, the fields in DSTSBLI BCOCK_FIELDS
or the fields in DSTSBLI_BLKVEC_FIELDS. Which set of fields ag?ears
in the variable-length part depends on the value of BLISV_BLI_STRUC,
which indicates which type of symbol is being defined.

This is thus the format of the BLISS Special Cases DST record:

P -

R e R - o W +

DSTSB_LENGTH]

)
+» LR R Rl kR it 3
'
'

DSTSB_TYPE (= DSTSK_BLI) '
' DST$B_BLI_LNG '

- ———-----------------------------‘

' USTSB_BLI_FORMAL '

trccccce o= - recencernececscececeecaeeee EE TR

: o, DSTSB_BLI_VFLAGS’ i
iBLl_gEFi Unused--Must Be lero i DSTSV_BLI_STRUC i
DSTSA_BLI_SYM_ATTR

vVariable-Length Portion of DST Record

DSTSL_BLI_VALUE

—————— o - - -

DST$B_BLI_NAME '

--------------------------‘

The BLISS Symbol Name in ASCII
(The name's Llength is given by DST$B_BLI_NAME)

'
'
'
'
'
s
'
'
'
'

+
'

@ rrcnnnnanncn P re P e P e

' DSTSL_BLI_SIZE

R e e T L +

N

DSTRECRDS.REQ;1

The variable=length portion of the DST record can have several forms
as discussed above. One Bossibilit; is that it is absent altogether.
This occurs if the DSTSV_BLI_STRUC field contains DSTSK_BLI_NOSTRUC.

However, if DSTSV_BLI_STRUC has the value DSTSK_BLI_VEC, the variable~-
length portion of the DST record has the following Format:

’--------------------------------- D S @ S W e e A ‘

long | DSTSL_BLI_VEC_UNITS !

’-- ---------------.-----------.---’

byte | DSY%V-BLI_VEC:SIGN:EXT ' DSTSV_BLI_VEC_UNIT_SIZE '

L X - bomr e e rc e T e e c e oo an @ oo @ oo +

If DSTSV_BLI_STRUC has the value DSTSK_BLI_BITVEC, the variable-Length
portion of the DST record has the following format:

’-- - - eSS OO EREEEEE S 0

long ! DSTSL_BLI_BITVEC_SIZE :

R R R e e R e e crceccsccscscccsaa +

If DSTSV_BLI_STRUC has the value DSTSK_BLI_BLOCK, the variable-length
portion of the DST record has the following format:

© DSTSL_BLI_BLOCK_UNITS :

+
)
'
ks - - - ——- b - crcececcessceececseseeee$
)
]
+

long
byte

Unused i DSTSv_BLI_BLOCK_UNIT_SIZE !

cr e rcrcermeEE T E e o ®® oo L e +

If DSTSV_BLI_STRUC has the value DSTSK_BLI_BLKVEC, the variable-length
portion of the DST record has the following format:

e moeeme®®® e

long

DSTSL_BL1_BLKVEC_BLOCKS !

... ’

DSTSL_BLI_BLKVEC_UNITS :

.
'
+
]
.
* - - - e E o E w we w w L]
'
L]
+

DST$B_BLI_BLKVEC_UNIT_SIZE '

APPSR EEE eSS .

long
byte

gefins the fields in the header portion of the BLISS Special Cases DST
ecord.

4
16-SEP-1984 16:49:1?.30 Page 89

—

| H &
DSTRECRDS .REQ;1 16=SEP=1984 16:49:15.30 Page 90

FIELD DSTSBLI_FIELDS =
SET

DST$B_BLI_LNG =[2,8_1, Length in bytes of the set of
fields between this one
and _TRAIL_FIELDS

between 3 and T2

DSTSA_BLI_TRLR1 = [3, A1), The first :roilor is at this

location + DSTSB_BLI LNG
DST$B_BLI_FORMAL =[3,8_1, Flag set if this symbol iS
routine forma paraaeter

DSTSB_BLI_VFLAGS = E 4, B Value access inforuation

DSTSB_BLI_SYM_TYPE =[5, B, The type of the BLISS synbol

as doscr bed b{
lowing sub=fi S‘

'
SNNO il
. s

DS!SV BLI_STRUC =[5, v (0,3 ! The structure of this symbol
sed = [5, v_(3,4) ! This field Must Be Zero
DS!SV BLI_REF =[5, v _(7,1) i Flag set if this is a REF
1 = REF, 0 = no REF)
DSTSA_BLI_SYM_ATTR el A)

Address of variable len? th
attribute segment
this DST record

Semsmmasmme e B B S IR AR - -

TES;

5 These are the possible values of the DST$B_BLI_STRUC field.

LITERAL
DSTSK_BLI_NOSTRUC =0, ! Not a BLISS structure
DSTSK_BLI_VEC = 1, ! BLISS vector
DSTSK™BLI BITVEC = i. ! BLISS Bitvector
DSTSK”BLI_BLOCK = 3, ! BLISS Block
DSTSKBLI_BLKVEC = &; ! BLISS Blockvector

! Define the fields in the variable-length part of the BLISS Special Cases

! DST record when the value of the BLISV_BLI_STRUC field is DST$K_BLI_VEC.

; This field describes a BLISS Vector.

FIELD DS;E?LI_VEC_FIELDS =
DSTSL_BLI_VEC_UNITS

DSTSV_BLI_VEC_UNIT_SIZE

L6, L_1J]., ! Number of elements allocated
: n the vector)
£ 10, v_(0,4)] ! The vector element unit
size: 1 = byte 2 =
word, and & = [ongword
[10, v_(4, &)j ! Sign extonsion ?
1 sign extension

DSTSV_BLI_VEC_SIGN_EXT

! 0 = no sign extension
TES;
Define the fields in the variable-length ?ar e BLISS S?eciol Cases
DST record when the value of the BLIS R ld is DST$K_BLI_BITVEC.
This field describes a BLISS Bttvector.

'
i
i
i
f

IELD DSTSBLI_BITVEC_FIELDS =

DSTRECRDS.REQ;1 16=SEP=-1984 16:69:1;.38 Page 91

SEI
?E{‘L BLI_BITVEC_SIZE = L 6, L_) ! The number of bits in the bitvector

! Define the fields in the variable-lLength part of t ci
! DST record when the value of the BLISV_BL -STR f

5 Trese fields describe a BLISS Block.

F

F IELD os;gu_smcx_rmos =

DSTSL_BLI_BLOCK_UNITS =[6,L_1), ! The number of units allocated
: in the block

DSTSV_BLI_BLOCK_UNIT_SIZE = [10, v_(0, 4) J ! The unit size of the
: block: 1 = byte, 2 =
: word, and & = longword

he BLISS Special Cases
ield is DSTSK_BLI_BLOCK.

TES:

! Define the fields in the variable-len th art of t
! DST record when the value of the BLIS STR Cf
; These fields describe a BLISS Blockvecfor.

FIELD DS}%?L!_BLKVEC_FIELDS =

DSTSL_BLI_BLKVEC_BLOCKS

he BLISS Special Cases
ield

is DSTSK_BLI_BLKVEC.

L. : The number of blocks in the

blockvector
DSTSL_BLI_BLKVEC_UNITS = [10, .' The number of units per block
DSTSB_BLI_BLKVECUNIT_SIZE =

14, B ! The block unit sizo 1 = byte,
68 i = word, & = longword

! Define the fields in the first trailer portion of the BLISS Special Cases

! DST record. Also define the declaration macro.

FlELD DS;%?L!,TRAlLl-FlELDS =
DSTSL_BLI_VALUE = C 0, L_],

! Value longword, interpreted
' according to contents of
' DSTSB_BLI_VFLAGS

(4, 8_1, : Count byte of the syabol name
I
i

DSTSB_BLI_NAME =

Counted ASCII string
DSTSA_BLI_TRLR2 = [5, A_] ! The second trailer starts at this
s location + DSTSB_BLI_NAME

MACRO
DSTSBLI_TRAILERY! = BLOCK[,BYTE] FIELD(DSTSBLI_TRAIL1_FIELDS) X;

! Define the fields in the second trailer portion of the BLISS Special Cases
' DS! record. Also define the declaration macro.

fIELD DSTSBLI_TRAIL2_FIELDS =

DSTRECRDS.REQ;1 16-SEP-1984 16:69:1!.38 Page 92

SETY
gg;SL,OtX_SllE =[0,L.1] ! Size of the Bliss data item in bytes

DSTSBLI_TRAILER2 = BLOCKL,BYTE] FIELD(DSTSBLI_TRAIL2_FIELDS) X;

4
DSTRECRDS.REQ;1 16-SEP-1984 16:69:1§.30 Page 93
THE BLISS FIELD DST RECORD

The BLISS Field DST record describes a BLISS field name. BLISS field
names are declared in FIELD declarations in BLISS. Each BLISS field
name is bound to an n-tuple of numbers. Usually the n-tuple is a four-
tuple and the numbers represent a byte or lLongword offset, the bit
offset within that byte or longword, the bit [ength of the field being
described, and a sign-extension flag. DEBUG supports references to
such fields in BLISS Blocks and Blockvectors. owever, a BLISS field
can be any n-tuple. If n is not &, the field name can only be used in
EXAMIN® commands, but not in Block or Blockvector references.

The BLISS Field DST record should not be generated for any language
other than BLISS. This is the format of the record:

- - - e e e wn SO eSS eSO eEEEEEEee .

byte E__ = ~ DSTSB_LENGTH N ST 2 T Y i
i * e e — el
i TR RNt e o ot ST S L .
long i . DSTSL_BL!ELD_COHPS e EROP e __i
O kot e e i .
- ; The Name of the BLISS Field in ASCII ;
(The name's length is given by DST$SB_BLIFLD_NAME)
i e ARt b :
i § A Vector of Longwords Containing the Integer ;
§ Values of the Components of the BLISS Field Definition §
§ (The number of values is given by DSTSB_BLIFLD_COMPS) §
- AEbESa PSR 3% g I RIE S ..

Define the fields of the BLISS Field DST record.
1ELD DS}%?LIFLD_!IELDS =

]
-
1
-
1
.
L)
-
L)
-
]
-
'
-
'
.
|
-
]
-
)
-
]
.
]
-
|
-
)
.
'
-
i
.
)
-
|
L
]
.
|
-
'
i
1
.
'
.
L)
-
1
-
1
-
)
-
1
-
)
-
]
.
|
-
|
.
|
.
)
.
|
-
)
A
)
.
)
.
)
-
1
-
)
-
)
.
)
-
|
-
1
-
1
.
1
.
)
.

DSTSB_BLIFLD_UNUSED = + 0. 3 ! Unused--Must Be Zero
DSTSL _BLIFLD_COMPS = o L 4o ! The number of components
DSTSB_BL IFLD_NAME = o B ; The count byte of the field

name Counted ASCII string
TES;

DSTRECRDS.REQ;1

D R L e b L I g g —

byte
byte
byte
long
byte

var

16=-SEP=1984 16:69:1&.38 Page 94

LABEL DST RECORDS

Labels are represented by two different DST records. A Label, in the
sense used here, is a symbol bound to an instruction address. Labels
do not include routine, lexical block, and ontr¥ point symbols, however,
A Label can be represented by either a Label DST record ?r a Label-or-
Literal DST record. The Label-or-Literal DST record is intended only
for Language MACRO, it appears. (The histor‘ on the origin and intent
of this record is unclear, however.) ALl other Languages should use

the Label DST record for (abels.

THE LABEL DST RECORD

The Label DST record specifies the name and address of a Label in the
the current module. A label in this sense is always bound to an in-
struction address, not a data address. This is the DST record normally
used for Labels in high-level languages. The DSTSL_VALUE field of this
record contains the code address to which the lLabel is bound.

This is the format of the Label DST record:

bosoas - cm- crccccceccceee= cececccecccersscecceseeee e -——--

: DSTSB_LENGTH

o= -

! DSTSB_TYPE (= DST$K_LABEL)

’------ L J - L X K X X K X X X X X X X X X X X ¥ X X X ¥ X ¥ X 1
Unused=--Must Be Zero
i DSTSL_VALUE

DST$B_NAME

1
k
i

The Label Name in ASCII
(The name's Llength is given by DSTSB_NAME)

'
'
+
'
'
+
'
'
+
]
'

L 4+
'
4+
'
'
'
'
'
'
'
'
'
]
'
)
+

$ cocsccsncace ond o P o
L

DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1?.38 Page 95
THE LABEL-OR=-LITERAL DST RECORD

The Labol-or-titorol DST reiord spocifios the name and address of a
Label (meaning a code locat r the nan, and value of an integer
Literal (a nanc? constant). It is not rely clear why this DST
record oxists since lobols can be described by Label DST records and
integer Literals can be oscribcd with Stondard Data DST records.
Most Likely this DST record was intended for an?uago MACRO whoro
there is l ttlt distins on botuoon Labels and toro s; one is relo-
cltoblo and the other is not that is about al . 1f DSTSV_VALKIND
has the value DSTSK_VALKIND ﬂDDR the symbol is abel and if"it has
the value DSTSK_VALRIND_LITERAL, the symbol is a l teral. The address
of the llbol or the value of the Literal is found in the DSTSL_VALUE
field. It is recommended that high-level languages avoid this DST
:ocgrddand use the Label DST record or the Standard Data DST record
nstead.

This is the format of the Label-or-Literal DST record:

R b e - T oo - -

L R el did e e L L T T T T e

adadl M o it ¥ e B R S MR s
byte i__ --____EEIEE TYPE (= DSTSK LBLORLIT) TR i
wee i-------------9233!922§E!E-E!-f!i2------- S USTIN WaLRIW &
long i ________ 7 b DSTSL_VALUE s 2 SR e i
I o s R, st o PR R e SRR TN .
53 ; The Label or Literal Name in ASCII ;

§ (The name's length is given by DSTSB_NAME) :

SR et k. IR m i R v L, .

DSTRECRDS.REQ;1 16-SEP=1984 16:49:1?.33 Page 96

THE ENTRY POINT DST RECORD

The Entry Point DST record doscribos an ENTRY name in the FORTRAN or
PL/]1 sense. ?thor words, it describes a secondary entry point to
the routine within which th*s DST rocord is nested. This record should
never be generated for the main ontr po nt to l routine since that
entry point is alroody described by he Routine Begin DST record. An
entry point doscrib d by the Entr{ Point DST record is always assumed
to be called through th CALLS/CALLG instructions (not JSB/BSB). The
DSTSL_VALUE field conta ns the address of the entry point.

This is the format of the Entry Point DST record:

e e e e S S S R E RN EEREDE B - - D D e S G W e S = . -4

B - W G G G RS SR G . -

W e TR
byte i_._ -----_----BEIEE_TVPE (= DStSK N i A e P i
¢ TR --------‘.’222!9::'.‘2!3-!!-.’.!58--..--.-------.--..-..i
PORG: R il sl S] POVRL DRAS - !
byte i __________________ Mol DSYSB_QQQE) R e P ______i
e ; The Entry Point Name in ASCII ;

E (The name's length is given by DST$SB_NAME) E

RN e RS AL

DSTRECRDS.REQ;1

} THE PSECT DST RECORD

i

)

! The PSECT DST record specifies the name, address, on? length of

! a8 PSECT, where a PSECT is a Program Section in the Linker sense.

: PSECT DST records are only used for Language MACRO where it is

- possible to generate code or data at the boginnina of a PSECT

: without having an[other Label on that code. DEBUG ignores PSECT
: DST records for all other lan?uages since high-level (anguages

E have other code and data lLabels that are more appropriate.

g This is the format of the PSECT DST record:

i

5 ’— - e e ---O----------.-------------’
} byte i DSTSB_LENGTH i
g byte ! DSTSB_TYPE (= DSTSK_PSET) :
4 ‘ - e oeoeos - - e sSoesse-oeoeosesesseeoseseseseeSae®
; byte i DSTSK_PSECT_UNUSED i
g long ! DSTSL_PSECT_VALUE :
g byte ! DSTSB_PSECT_NAME (also DSK$B_PSECT_TRLR_OFFS) :
g var ! DSTSA_PSECT_TRLR_BASE g
g § The Name of the PSECT in ASCII §
g § (The name's length is given by DSTSB_PSECT_NAME) §
Ea a
i S i M R
; long i DSTSL_PSECT_SIZE i
]

; Define the fields of the PSECT DST record.

3

! Define the PSECT DST record trailer fields.
! macro.

IELD DSTSPSECT_FIELDS =
SET

16=-SEP-1984 16:49:1?.38 Page 97

DSTSB_PSECT_UNUSED = i. B ! Unused--Must Be Zero
DSTSL _PSECT_VALUE = " A ! Start address of the PSECT
DST$B_PSECT_NAME s{ 7 8 1 ! The coutn byte in the PSECT

' name (COunted ASCII string
DSTSB_PSECT_TRLR_OFFS =07, B_ 1, ! Byte offset to the PSECT DST

: record trailer fields
DSTSA_PSECT_TRLR_BASE = [8, A_) ! Base address for offset to
s : T record trailer fields

Also define the declaration

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1&.33 Page 98
s
FIELD DSTSPSECT_TRAILER_FIELDS =

ggggL-PSECT_SlZE =[0,L.1] ! Number of bytes in the PSECT

MACRO
DSTSPSECT_TRAILER = BLOCKL,BYTE] FIELD(DSTSPSECT_TRAILER_FIELDS) X;

E Note that the address of the PSECT DST record tailer is computed as follows:
i DST_RECORDCDSTSA_PSECT_TRLR_BASE] + .DST_RECORDCDSTSB_PSECT_TRLR_OFFS]

I I I T T T T T T T T T T T T T T T T TN T T I e e R e e T T, L T T T T T

——

DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.38 Page 99

byte
byte

va -

LINE NUMBER PC-CORRELATION
DST RECORDS

The Line Number P(-Correlation DST record specifies the correlation

between Listing Line numbers, as assigned by the compiler, and PC

addresses. It thus the means whereby the compiler tells 6EBUG where

the generated object code for each source Line starts and how lon

;g‘ls in gytcs. This is the format of the Line Number PC=Correlation
record:

. - e -’-‘-------------'-----------..-----------‘

: DSTSB_LENGTH :

e c s crcrcrc e s s s ec e e ae e cereceoo o= cecccccecccccsscsessas +

DSTSB_TYPE (= DSTSK_LINE_NUM) :

......... Al R R R T LR X XX X R R R R R R R R R .
'

One or More Line Number P(-Correlation Commands

@® coccscnce § o

L]
]
il
]
1
'
'
........................ coseccsccsssssscsecnsescases

After the two-byte header, each Line Number P(-Correlation DST record
contains a sequence of Line Number P(-Correlation commands. Each such
command sets or manipulates one or more state variables used bz DEBUG
in the interpretation of these commands. The main state variables are
the current Line number and the current P(C address, but there are seve=-
ral others as well. The exact semantics of the various commands are
described in the sections that follow.

Line Number P(-Correlation DST records are associated with the module
within which they appear. The must thus agpear between the Module
Begin and the Module End DST records for the current module. There are
no further restrictions on where they may appear, however. In particu-
Lar, they need not be nested within the routines or lexical blocks that
they describe. It is thus legal to generate all Line Number PC-Corre-
Lation DST records for a module after the Last Routine End DST record,
for instance. These records can also be interspersed between Routine
and Block Begin and End records in any way convenient for the compiler
implementer. However it is done, DEBUG treats them as belonging to the
module as a whole.

The Line Number P(-Correlation information may be spread over as many
DST records as necessary. No Line Number PC-Correlation command may be
broken across record boundaries, but otherwise the Line Number PC-Corre-
lation DST records within a module are considered to constitute a single
command stream. The Continuation DST record may not be used to continue
Line Number P(-Correlation DST records.

DSTRECRDS.REQ;1 16-SEP=-1984 16:49:1;.38 Page 100

E Define the fields of the Line Number PC=Correlation DST record.
FIELD osgg%xne_wn_mws =
gégiA_LlNE_NUH-DATA = [2, A_] ! Start address of PC-correlation data

LINE NUMBER PC~CORRELATION COMMANDS

Each PC-Correlation command consists of a command byte possibly fol=-
lowed by a parameter byte, word, or longword. The presence, size, and
meaning of the parameter field is determined by the command byte. This
illustration summarizes the structure of one command:

‘ Eadidiadn i I I I R X e - e L L X X X L X X X X ¢ ¢ ¥ ¥ ¥ ¥ ¥ ¥ 13 0

byte i COMMAND _BYTE H
....... ------------------------.-----------’

var : H
5 lero or One Parameter Field E

§ (Byte, Word, or Longword) i

; - - o ST T -------------------------------;

The command byte contains a command code. If this command code is
negative, this is a Delta-PC command. A Delta-PC command specifies
by how many bytes to increment the P(to get to the start of the

next line (see detailed description below). This byce count is en-
coded directl¥ in the command byte: If the command code is negative,
its negative is the PC increment. The Delta-P(C command has no param-
eter field. If the command code is positive, it specifies some other
command as described below. In this case, there may be a parameter
field, depending on the command code.

Define the command codes allowed in Line Number PC-Correlation commands.
f the command code is zero or negative, the command is a one-byte Delta-P(
: command. Here we define the command-code range for the Delta-Pl command.

LITERAL
DSTSK_DELTA_PC_LOW
DSTSK DELTAPC HIGH

1
:
:
:
;
;
i
:
.
!
|
i
i
i
i
i
i
i
.
1
i
i
i
-
!
i
i
i
i
i
i
i
i
i
i
i
-
1
i
i
i

=128, ! The lower bound on Delta=P(commands
0; ! The upper bound on Delta=PC commands

: Define the P(-correlation command codes other than the Delta-PC command.
; These command codes are always positive.

LITERAL

4
DSTRECRDS.REQ;1 16=SEP-1984 16:49:15.33 Page 101

o e e P e

byte

byte
byte

byte
word

byte
long

DSTSK_DELTA_PC_W = ! Delta=PC Word command
DSTSK-DELTATPC L =17, i Delta-PC Longword command
DSTSK_INCR_CINOM = i. ! Increment Line Number Byte command
DSTSK_INCR_LINUM W = ! Increment Line Number Word command
DSTSK_INCR_LINUM L = 18, i Increment Line Number Longword command
DSTSK_SET_CINUM_INCR s &, ! Set Line Number Increment Byte command
DSTSK_SET_LINUM_INCR W = 5, ! Set Line Number Increment Word command
DSTSKTRESET_LINOM_INCR = 6, ! Reset Line Number Increment command
DSTSK_BEG_STMT_MODE =7, ' Beain Statement Mode command
DSTSK_END_STMT _MODE =8 ! End Statement Mode command
DSTSK_SET_STMTRUM = 18, ! Set Statement Number Byte command
DSTSK_SET_LINUM_B =19, ! Set Line Number Byte command
DSTSK_SET_LINUM =9 ! Set Line Number Word command
DSTSK_SET_L INUM_L =20, | Set Line Number Longword command
DSTSK_SET_PC = 10, ! Set Relative PC Byte command
DSTSK_SET_PC_W =11, ! Set Relative PC Word command
DSTSK_SET_PC_L = 12, ! Set Relative PC Longword command
DSTSK_SET-ABS_PC = 16, ! Set Absolute PC Longword command
DSTSKTERM =14, ! Terminate Line Byte command
DSTSK_TERM_W = 15, ! Terminate Line Word command
?STSK_TERH_L = 21, E Terminate Line Longword command
DSTSK_PCCOR_LOW = =128, ! Smallest value allowed in the first

: byte of a PC=correlation command
DSTSK_PCCOR_HIGH = 21; 3 Largest value allowed in the first

byte of a PC-correlation command

The parameter field, if present, contains an unsigqed byte, unsigned
word, or longword value. The possible PC-Correlation command formats
thus look as follows:

o == cercecceccereceecee= P R e R 3
: COMMAND _BYTE :
temecccc s e e e c e e s e e e s s E e T E e C e e R e e S e c A E et e a e o £
trecocvcoccsssssssassass cosecesessereeesseceeeeanee +
: COMMAND _BYTE i
¢ = B R ——

i NEXT_UNS_BYTE (Unsigned Byte Value) i
¢ - -——- ceecscscrscsc s s r s s T crce e e - - +
' COMMAND _BYTE i
PEeTr— - -— e s e e

i _NEXT_UNS_WORD (Unsigned Word Value) i
.--O SO NEEEEESEES . BEEEE TS ‘
i CEQQAND,BY!E i
: NEXT_UNS_LONG (Longword Value) '

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:12.38 Page 102

’ Radnda R R R R X R R ¥R ’

PC~CORRELATION COMMAND SEMANTICS

The individual commands are described separately below. To clarify what
these commands actuall{ do, each is followed by a formal semantic de-
scription using BLISS-like pseudo-code. This descrigtion-shou what the
command does to a number of state variables used b‘ EBUG when inter-
preting these commands. The state variables are the following:

CURRENT_LINE == The current Line number.

CURRENT_STMT == The current statement number.

CURRENT_INCR == The current Line number increment.

CURRENT_STMT_MODE == The statement mode flag: set to TRUE when
statement mode is set, set to FALSE otherwise;

START_PC == The start address of the lowest-address routine
in the current module;

CURRENT_PC == The current PC value (code address).

CURRENT_MARK == The line-open/line-closed flag; set to LINE_OPEN
when Line numbers are being defined and set to
LINE_CLOSED when a routine has been terminated
and new Lines are not being defined.

The initial values of these state variables when the PC-Correlation
commands for a given module are interpreted are as follows:

CURRENT _LINE = 0;
CURRENT_STMT = 1;
CURRENT_INCR = 1

CURRENT STMT MODE = FALSE:

START_PC = Start address of the lowest-address
routine in the current module;

CURRENT_PC = START PC;

CURRENT_MARK = LINE_CLOSED;

The sections below describe the format and semantics of each of the
individual PC-Correlation commands.

THE DELTA=PC COMMAND

This command defines a correlation between a Line number and a PC value.
The current Line number is incremented by the current increment value
(normally 1) and the current PC value is incremented by the negative of
the command h‘te. The resulting Line number then has the resu tin? PC
value. In other words, both the Line number and the PC value are incre-
mented before the correlation is established. The PC increment value
(the negative of the command code) thus specifies how many bytes to go
forward to get to the start of the Line being defined. These are the
formal semantics of the command:

P e————— e L I, N I T LT T T TS

DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.33 Page 103

- T R S R R R e P R e R R R e g e R

%aeauaneut_srnt_nooe
CURRENT _STMT = CURRENT_STMT + 1
SECURRENT-LlNE = CURRENT_LINE ¢ CURRENT_INCR;
CURRENT_PC = CURRENT_PC = PC_COMMANDCCOMMAND BYTE];
CURRENT_MARK = LINE_OPEN;

The value of CURRENT_PC now contains the start address of the Listing
Line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_W COMMAND

This command is Like the normal Delta<-PC command except that the PC
increment value is given in an unsigned word following the command
code. These are the semantics:
IF CURRENT_STMT_MODE
THEN
SECURRENI-STHT = CURRENT_STMT + 1
CURRENT_LINE = CURRENT_LINE + CURRENT_INCR;

CURRENT _MARK = LINE_OPEN;

EN;
CURRENT-PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_WORD];

The value of CURRENT_PC now contains the start address of the Listing
line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_L COMMAND

This command is Like the normal Delta-PC command except that the PC
increment value is given in an unsigned longword following the command
code. These are the semantics:
{;ESURRENT_STHT-HODE
CURRENT_STMT = CURRENT_STMT + 1
CURRENT_LINE = CURRENT_LINE + CURRENT_INCR;

CURRENT _MARK = LINE_OPEN;

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.33 Page 104

R I L T T T T R I N e LT

CURRENT_PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_LONG];

The value of CURRENT_PC now contains the start address o
Line sgccifiod by the values of CURRENT_LINE and CURRENT
that Line-open mode is now set.

f the Listing
STMT. Note

THE DSTSK_INCR_LINUM COMMAND

This command increments the current Line number by the value given in
the unsigned byte following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDLNEXT_UNS_BYTE];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_INCR_LINUM_W COMMAND

This command increments the current Line number by the value given in
the unsigned word following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT_LINE + PC_COMMANDCNEXT_UNS_WORD];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_INCR_LINUM_L COMMAND

This command increments the current Line number by the value given in_

the unsigned longword following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal

semantics of the command:

CURRENT _LINE = CURRENT LINE + PC_COMMANDLNEXT_UNS_LONG];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_SET_LINUM_INCR COMMAND

This command set the current Line number increment value to the value
specified in the unsigned byte following the command code. If state-

DSTRECRDS.REQ; 16-SEP-1984 16:49:1;.33 Page 105

t
L
i
-
)
-
1
-
)
.
1
-
|
.
|
.
)
b
'
-
1
.
1
.
1
.
'
.
1
-
'
-
|
-
)
-
)
-
)
.
)
-
1
-
)
M
]
-
|
.
)
-
)
.
|
-
1
.
1
-
l
-
)
-
)
-
1
.
'
-
t
-
1
-
i
-
|
-
H
.
1
-
1
-
1
-
)
L4
)
-
+
.
)
-
)
-
]
-
'
-
|
-
'
.
1
-
|
-
)
M
1
-

ment mode is set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT _INCR = PC_COMMANDLNEXT UNS BYTE]);
IF CURRENT_STMT_MODE THEN CURRENT_STMT = 1;

THE DSTSK_SET_LINUM_INCR_W COMMAND

This command set the current Line number increment value to the value
specified in the unsigned word following the command code. If state-
ment mode is set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT INCR = PC_COMMANDCNEXT UNS_WORD);
IF CURRENT_STMT_MODE THEN CURRENT STMT ='1;

THE DSTSK_RESET_LINUM_INCR COMMAND

This command resets the current Line number increment value to 1. 1If
statement mode is set, the current statement number is set to 1 as well.
These are the semantics:

CURRENT INCR = 1;
IF CURRENT_STMT_MODE THEN CURRENT_STMT = 1;

THE DSTSK_BEG_STMT_MODE COMMAND

This command sets statement mode, meaning that subsequent Delta-PC com-
mands will increment the current statement number within the current
Line and not the current Line itself. This command is only allowed in
the Line-open state. Statement mode can optionally be used by languages
that have multiple statements gor line. This command also set the cur-
rent statement number to 1. These are the semantics:

IF CURRENT MARK NEQ LINE_OPEN THEN SIGNAL(Invalid DST Record);
CURRENT_STRT_MODE = TRUE;
CURRENT_STMT = 1;

THE DSTSK_END_STMT_MODE COMMAND

DSTRECRDS.REQ;1 16-SEP-1984 16:69:1§.33 Page 106

D L e A ———

This command clears statement mode so that that subsequent Delta-PC com=
mands will again increment the current Line number, not the statement
number., The ¢ and also set the current statement number to 1. These
are the semantics:

CURRENT_STMT_MODE = FALSE;
CURRENT STMT = 1;

THE DSTSK_SET_LINUM_B COMMAND

This command sets the current Line number to the value specified in the
unsigned byte that follows the command code. These are the semantics:

CURRENT _LINE = PC_COMMANDCNEXT_UNS_BYTE];

THE DSTSK_SET_LINUM COMMAND

This command sets the current Line number to the value specified in the
unsigned word that follows the command code. These are the semantics:

CURRENT_LINE = PC_COMMANDLNEXT_UNS_WORD];

THE DSTSK_SET_LINUM_L COMMAND

This command sets the current Line number to the value specified in the
longword that follows the command code. These are the semantics:

CURRENT_LINE = PC_COMMANDCNEXT_UNS_LONG];

THE DSTSK_SET_STMTNUM COMMAND

This command sets the current statement number to the value specified
in the unsigned word that follows the command code. The command should
only be used when statement mode is set. These are the semantics:

CURRENT_STMT = PC_COMMANDLNEXT_UNS_WORD];

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1&.38 Page 107

e Lk b L e L e LT T L T T T T T ™

THE DSTSK_SET_PC COMMAND

This command sets the current P(C value to be the value specified in the
unsirnod byte following the command code added to the start address of
the (owest-address routine in the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ L INE CLOSED THEN SIGNAL (lnvalid DST Record):
CURRENT _PC™= START_PC + PC_COMMANDENEXT_UNS_BYTE];

THE DSTSK_SET_PC_W COMMAND

This command sets the current PC value to be the value specified in the
unsigned word following the command code added to the start address of
the (owest-address routine in the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF _CURRENT_MARK NEQ LINE_CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT _PC"= START_PC + PC_COMMANDCNEXT_UNS_WORD];

THE DSTSK_SET_PC_L COMMAND

This command sets the current PC value to be the value specified in the
longword following the command code added to the start address of the
lowest-address routine in the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ LINE_CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT_PC™= START_PC + PC_COMMANDLINEXT_UNS_LONG);

THE DSTSK_SET_ABS_PC COMMAND

This command sets the current PC value to be the absolute address speci-
fied in the lonruord following the command code. This command is only
allowed in the [ine-closed state. These are the formal semantics:

IF _CURRENT_MARK NEOQ LINE CLOSED THEN glGNAL(lnvalid DST Record);
CURRENT_PC™= PC_COMMANDLREXT_UNS_LONG);

THE DSTSK_TERM COMMAND

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:12.38 Page 108

el L R e e e T

This command terminates the PC-Corr’lation command sequence for the
current routine or other program unit and specifies Eho number of b;tcs
in the last }1n¢ specified by a Delta-PC command. Since the Delta=PC
command specifies how many b{tos precede the Line boin' defined, the
Terminate command is needed to say how many bytes are in that Line
(i.e., how many by}os will increment the Pl to the first byte past the
current program unit). The number of bytes in the Last Line is speci~-
fied bK the unsigned byte following the command code. This command also
sets the Line-closed state. These are the semantics of the command:

CURRENT_PC = CURRENT PC ¢ PC_COMMANDCNEXT_UNS_BYTE];
CURRENT_MARK = LINE_CLOSED;

THE DSTSK_TERM_W COMMAND

This command terminates the PC-Correlation command sequence for the cur-
rent routine or other program unit and specifies the number of bztos in
the Last Line of that program unit. It is a variant of the DSTSK_TERM
command described above. The number of bytes in the Last line is speci-
fied bK the unsigned word following the command code. This command also
sets the Line-closed state. These are the semantics of the command:

CURRENT_PC = CURRENT _PC ¢ PC_COMMANDCNEXT_UNS_WORD];
CURRENT_MARK = LINE_CLOSED;

THE DSTSK_TERM_L COMMAND

This command terminates the P(-Correlation command sequence for the cur-
rent routine or other srogram unit and specifies the number of bytes in
the Llast Line of that program unit. It is a variant of the DSTSK_TERM
command described above. The number of bytes in the Last line is speci-
fied by the longword following the command code. This command also sets
the Line-closed state. Thess are the semantics of the command:

CURRENT _PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_LONG];
CURRENT_MARK = LINE_CLOSED;

END OF LINE NUMBER PC-CORRELATION DST RECORD DESCRIPTION.

DSTRECRDS.REQ;1 16-SEP-1984 16:&9:1?.38 Page 109

- e S RS S SR T S S R S S e RS R S RS S S R S S S S G e ey

byte
byte

var

SOURCE FILE CORRELATION
DST RECORDS

The Source File Correlation DST record is used to specify the correla-
tion between Listing Line numbers on the one hand and source files and
source file record numbers on the other. These records enable DEBUG
to display source Lines during the debugging session.

The Source File Correlation DST record has the following format:

d === e e g

! DST$B_LENGTH

.--- A R R R R R R R R K R R R R R R Ry

DSTSB_TYPE (= DSTSK_SOURCE)

)

A variable number of
Source File Correlation commands

P —

After the Length and DST type bytes, the record consists of a sequence
of Source File Correlation commands. These commands specify what source
files contributed source Lines to this module and how the module's list~-

Line numbers are Lined u? with the source files and record numbers
within those source files. The available commands are described indi-
vidually below.

If the Source File Correlation commands needed to fully describe the
current module will not fit in a single Source Line Correlation DST
record, they can be spread over any number of such DST records. These
records will be processed sequcntialli. in the order that they appear,
until there are no more such records for the current module.

The purpose of the Source File Correlation commands is to allow DEBUG
to construct a table of correlations between Line num crt and source
records. A '‘line number’ in this context means the Listing lLine num=-
ber. This is the Line number which is printed in the program Listin
and is output to the PC-Correlation DST records by the cougiltr. (PC~
Correlation DST records correlate Listing Line numbers with Program
Counter values.) A corresponding source lLine is identified b¥ wo
things: a source file and a record number within that source file.

The semantics of the Source File Corrola‘ion commands can be understood
in terms of manipulating three state variables and issuing one command.
The three state variables are:

LINE_NUM == The current Listing Line number.

DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:12.38 Page 110

SRC_FILE == The File ID of the current source file,
i.e. a small integer uniquely defining
the source e.

SRC_REC == The record number (in the RMS sense) in
the current source file of the current
source Line.

LINE_NUM is assumed to have an initial value of 1 while SRC_FILE and
SRC_REC are initially undefined. The one command is:
DEFINECLINE_NUM, SRC_FILE, SRC_REC)

ith the

This command declares that Line number LINE_NUM is associ u
SRC_FILE.

at
source Line at record number SRC_REC in the file specified

ed
by
Given this, the compiler must ouﬁgut a so?uonco of Source File Correla-
tion commands which cause LINE_NUM, SRC_FILE, and SRC_REC to be set up
appropriately and which cause the proper DEF fNE operations to be issued
to allow DEBUG to generate the correct Line number to source record
correlation table. (DEBUG may not actuall¥ generate the full table,
but it must be able to generate onz part of such a table it needs.)

The semantics of each Source File Correlation command is described
below in terms of these state variables and commands.

number to highest Line number, in the Source File Correlation commands
for one module. The source records these Line numbers correlate with
may be in any sider, of course.

It should be clear from wihrat follows that the source for one module may
come from many source files. This can be caused b‘ plus=Lists on the
compiler command (e.g., SFORTRAN/DEBUG A+B+(C) and by INCLUDE statements
in the source. Also, source Lines may come from modules within source
Libraries as well as from independent source files.

Form feeds in source files, or more precisely source file records which
contain nothing but a sing[e form feed (CNTL-L) character, are counted
as individual sources lines in some Languages but are ignored (not as-
signed Lline numbers) in other languages. DEBUG will handle either con-
vention, but DEBUG
ignored in sources files. They are not displayed and they do not count
toward the source file record number of subsequent source records. To
uak: DEBUG count such records, the DSTSK_SRC_FORMFEED command must be
used.

|

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

: Line numbers must be DEFINEd in sequential order, from lowest line
!

i

i

i

i

i

i

i

i

i

[

i

i

: s default behavior is that form feed records are
!
i
i
i
i
i
i
i

Define the location of the first command in the DST record.
FIELD os;g;ounce,rletos =
gggSA_SRC_FlRST_CHD = [2, A_) ! Location of first command in record

! Define the command codes for all the Source File Correlation commands.

—

16=-SEP=1984 16:49:1&.38 Page 111

DSTRECRDS.REQ;1

!

LITERAL
DSTSK_SRC_MIN_CMD = 1, ! Minimum command code for CASi ran
DSTSK_SRC_DECCFILE = 1, ! Declare a source file for this mo ule
DSTSK_SRC_SETFILE = g. ! Set the current source file (word)
DSTSK_SRC_SETREC_L = 3, ! Set source record number (lon word)
DSTSK_SRC_SETREC W = &, ! Set sour?e rocord number (word)
DSTSK_SRC_SETLNUM_L s 5, ! Set | ine number (longword)
DSTSK_SRC_SETLNUM W < 9. ! Set listin linc number (word)
DSYtK —SRC_INCRLNUR_B = 7, ! Increment [isting Line number (byte)

= 8, ! Unused--available for future use
= 9, ! Unused--available for future use

DSTSK SRC_DEFLINES W =10, ! Define N separate linos (word)
DSTSK_SRC_DEFLINES_B = 11, ! Define N separate Lines (byte)
' = 1§. ! Unused--available for future use
i = 13, ! Unused--available for future use
i = 14, ! Unused--available for future use
i = 15, ! Unused--available for future use
DSTtK_ RC_FORMFEED = 16, ! Count Form-Feeds as source records
DSTSK_SRC_MAX_CMD = 16; ! Maximum command code for CASE ranges

! Define the fields of the Source Line Correlation commands. Also define the

; corresponding declaration macros.
FIELD os;g;ac,connAno,fIELos z

g Field common to all Source File Correlation commands.
erss_sac_connauo =[0,8_1,
j The fields of the Declare Source File command.

! Command code

osrsa SRC_DF _LENGTH =L 1. 8. 4. ! Lengtb of this command
DSTSB_SRC_DF _FLAGS = e 8_ 1. : Flag bits=-reserved (MBZ)
DSTSW_SRCTDF_FILEID = o ¥_ 1, - Source file's File ID
DSTSQ_SRC_DF _RMS_CDT = . A_ 1, ! Creation date and time or mod-
. ule insertion date and time
DSTSL_SRC_DF _RMS_EBK s 1;. L. 1. ! End-of=File block number
DSTSW_SRCTDF“RMS_FFB =L17, §_ 1], ! First Free B¥t0 in EOF block
DSTSB_SRC_DF “RMS"RFO =[19,8_1., ! Record and File Organization
DSTSB_SRC_DF_FILENAME = [20, BZ], ! Source file name counted ASCII
QSISA SRCCDF_FILENAME = [21, A], ! (count byte, string addr)
: Fields used to access information in all other commands.
DS!&L SRC_UNSLONG £ B "3 W = ! Unsigned lonauerd parameter
DSTSW_SRCCUNSWORD =L 1, v ! Unsigned word parameter
gg;sa SRCCUNSBYTE =(1.8 i Uns1gnod byte parameter

; Declare trailer field in the Declare Source File command.
FIELD DSTSSRC_DECLFILE_TRLR_FIELDS =

DSTRECRDS.REQ; 16=SEP-1984 16:69:1g.38 Page 112

$8_SRC_DF _L IBMODNAME = E 0. 8_]. : Module name counted ASCII
tA SRC_DF_LI = [1, A_ ! (count byte, string addr)

; Declaration macros for Source File Correlation command and trailer blocks.

MACRO
DSTSSRC_COMMAND = BLOCK[,BYTE m D(DSTSSRC_COMMAND FIELDS) X,
DSTSSRCZCMDTRLR = BLOCKL,BYTE] FIELD(DSTSSRC-DECLFILE_TRLR_FIELDS) X;

DSTRECRDS.REQ;1 16=-SEP=1984 16:49:1%.38 Page 113

e P R T P R e e

byte
byte
byte
word
Quad
long
word
byte
var

var

DECLARE SOURCE FILE (DSTSK_SRC_DECLFILE)

This command declares a source file which contributes source Lines to
the current module., It declares the name of the file, its creation
date and time, and various other attributes. The command also assigns
a one-word ''file ID" to this source file. This is the format of the
Declare Source File command:

+ coeoee ER LT T X
'
'

DBGSB_SRC_COMMAND (= DSTSK_SRC_DECLF ILE) :

.......... - e o --eee --------------.-..‘-.---*

DSTSB_SRC_DF _LENGTH :

cTeee oo oo - oSS oS - ----------’

DST$B_SRC_DF _FLAGS i

- - - ——--------------------------.--..-.-----‘

DSTSW_SRC_DF _FILEID :

R R R R R R e e i e e e +

DST$Q_SRC_DF _RMS_CDT :

DSTSL_SRC_DF_RMS_EBK :
DST$W_SRC_DF_RMS_FFB :

- @G- EEEE -GS EE S oSS oS ------------------------’

DSTSB_SRC_DF _RMS_RFO :

e ee e eTTOTTTE0EEEDGE DSOS e - oo oo e ’

_DST$B_SRC_DF _F ILENAME :

L Rl R R R R R R R R R R .

DST$B_SRC_DF _L IBMODNAME i

- - e ndbdedi i K R R R R R R R RN R ’

PecPpocPpocPocPocaPonPocdhonhand

The fields in this command are the following:

DSTSB_SRC_DF _LENGTH = The Length of this command, i.e. the number of
bytes remaining in the command after this field.

DSTSB_SRC_DF_FLAGS - Bit flags. This field is reserved for future use.
At present this field Must Be Zero.

DSTSW_SRC_DF_FILEID = The one-word '‘File ID' of this source file. This
FileID, which can Later be used in the Set File command, is
simply a unique number which the compiler assigns to each source
file which contributes source Lines to the current module. Each
source file thus has a number (the File ID) and is identified by
that number in the Set File (DSTSK_SRC_SETFILE) command.

DSTSQ_SRC_DF_RMS_CDT - The creation date and time of this source file.
This“quadword quantity should be retrieved with a SXABDAT
extended attribute block from RMS via the SOPEN or SDISPLAY
system service. The creation date and time should be taken
from the XAB$Q_CDT field of the XAB.

If the source file is a module in a source Library, this field
should contain the module's Insertion Date and Time in the Lib-

4
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.38 Page 114

e e e G R R R e

rary. This value _should be retrieved with the LBRSSET_MODULE
Librarian call. The Llibrary file's creation date is not used.

DSTSL_SRC_DF _RMS sax = The End-of-File block number for this source
file, This longuord quantity should be retrieved with a
SXABFHC extended attibute block from RMS via the SOPEN or
$DISPLAY system service. The End-of-File block number should
be taken from the XABSL_EBK field of the XAB.

This field should be zero for modules in source Libraries.

DSTSW_SRC_DF_RMS_FFB - The first free byte of the End-of=File block
for this source file. This word quantit¥ should be retrieved
with a8 SXABFHC extended attribute block from RMS via the SOPEN
or SDISPLAY system service. The first free byte value should
be taken from the XABSW_FFB field of the XAB.

This field should be zero for modules in source Libraries.

DSTSB_SRC_DF_RMS_RFO - The file organization and record format of this
source file. This byte value should be retrieved with a
SXABFHC extended attribute block from RMS via the SOPEN or
SDISPLAY system service. The file organization and record
format should be taken from the XABSB_RFO field of the XAB.

This field should be zero for modules in source Libraries.

DSTSB_SRC_DF_FILENAME - The full filename of the source file. This is
the Tully specified filename, complete with device name and
version number, in which all wild cards and logical names have
been resolved. This string should be retrieved with a SNAM
block from RMS via the SOPEN or $SEARCH system service. The
desired string is the 'Resultant String'' specified by the
NAMSL _RSA $B_RSS, and NAMSB_RSL fields of the SNAM block.
Here The file name is representéd as a Counted ASCII string (a
one-byte character count followed by the name string).

DSTSB_SRC_DF_LIBMODNAME - The source librar¥ module name (if applicable)
of the null string. If the source file is actually a module in
a source Library, the DSTSB_SRC_DF_FILENAME field gives the
filename of the source Library and the DST$B_SRC_DF_L IBMODNAME
field gives the name of the source module within"that library.
If the source file does not come from a source library, this
field (DST$B_SRC_DF_LIBMODNAME) contains the nulks fero-longth)

h
(
string. This field is represented as a Counted ASCI] string.

DSTRECRDS.REQ;1 16-SEP-1984 16:69:1&.38 Page 115

byte
word

byte
long

SET SOURCE FILE (DSTSK_SRC_SETFILE)

This command sets the current source file to the file denoted by the
one-word file ID given in the command. The set file is then the file
from which further source Lines are taken when the corresponding list=
ing Lines are defined. This is the format of the command:

coccccossnccnnseanw §

DBGSB_SRC_COMMAND (= DSTSK_SRC_SETFILE) :

_____ - ceeccccaeccccsccceoe e ¢

DSTSW_SRC_UNSWORD: The File ID of the desired source file !

----‘---.--------------’

$enpand

The semantics of this command is:
SRC_FILE := file ID from command

SRC_REC := set to current source record for this
source file

SET SOURCE RECORD NUMBER LONG (DSTSK_SRC_SETREC_L)

This command sets the current source file record number to the longword
value specified in the command. Its format is:

- -----------------------------‘

DBGSB_SRC_COMMAND (= DSTSK_SRC_SETREC_L) :
DSTSL_SRC_UNSLONG: The desired new source record number '

----------------------.-----------’

FUSEE TR

The semantics of this command is:
SRC_REC := longword value from command

H
DSTRECRDS.REQ; 16=-SEP=-1984 16:69:15.38 Page 116
SET SOURCE RECORD NUMBER WORD (DSTSK_SRC_SETREC_W)

This command set the current source file record number to the word
value specified in the command. It is thus a more compact form of
the DSTSK_SRC_SETREC_L command. Its format is:

The semantics of this command is:

1

i

\

i

i

i

i

]

i - - cecccccersecenceccee e 4
E byte | DBGSB_SRC_COMMAND (= DSTSK_SRC_SETREC_W) '
4 + - cessscscccsccssscee$
5 word i____DSTsU-SRC_UNSUORD: The dogirgd new source record number :
i E T R T X +
]

; The semantics of this command is:

g SRC_REC := word value from command

i

i

; SET LINE NUMBER LONG (DSTSK_SRC_SETLNUM_L)

i

- This command set the current listing Line number to a longword value
; specified in the command. Its format is:

i

E * B R +
5 byte i DBGSB_SRC_COMMAND (= DSTSK_SRC_SETLNUM_L) i
g long } DSTSL_SRC_UNSLONG: The desired Listing Line number :
;

i

i

i

LINE_NUM := longword value in commmand

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.30 Page 117
SET LINE NUMBER WORD (DSTSK_SRC_SETLNUM_W)

This command sets the current listing Line number to a one-word value
specified in the command., [ts forma :

Tooee -o- -—- ¢

The semantics of this command is:
LINE_NUM := LINE_NUM + byte value in command

i

\

i

i

i

i

i

! .

3 byte i DBGSB_SRC COHHAND (= DSTSK_SRC SEILNUH W) i
g word | DSTSW_SRC_UNSWORD: The desirod listing_lino number '
i 4 cee cesccssccccceed
]

g The semantics of this command is:

g LINE_NUM := word value in command

i

i

; INCREMENT LINE NUMBER BYTE (DSTSK_SRC_INCRLNUM_B)

i

i This command increments the current Listing Line number by a one=byte
5 value specified in the command. Its format is:

i

5 byte i DBGSB_SRC_COMMAND (= DSTSK_SRC_INCRLNUM_B) i
é byte i DSYSB SRC UNSBVTE The desired Listing Line number increment i
:

H

i

i

DSTRECRDS.REQ;1 16-SEP=-1984 16:69:1%.38 Page 118

byte

COUNT FORM-FEEDS AS SOURCE RECORDS (DSTSK_SRC_FORMFEED)

This command sp¢${fios that DEBUG should count source records which
consists of nothing but a Form-Feed character (CNTL-L) as being
distinct, numbered source records. In some lLanguages, such records
are not considered to be source Lines; instead they are regarded as
control information. The compiler then does not assign Line numbers
to them and DEBUG ignores them completely=--they are not displayed
as ar} of the source and they do not contribu ; to the source record
r n? of 1ourco files. However, if the DSTSK_SRC_FORMFEED command
is specified in the Source File Correlation DST Record for a module,
then such records count as normal records; they can be displayed and
they are assigned source file record numbers.

1t used, this command must appear before any commands that actually
define source Lines. Making it the first command in the first
Source File Correlation Record for the module is a good choice.

o= cecscsccscccscccascee coee$

: DBGSB_SRC_COMMAND (= DST$K_SRC_FORMFEED) :

. SO TS EEEE ... A A X L X X X X X X X X J .---.----‘

The semantics of this command is to set a mode fla? which says to
count Form-Feed records as normal records. The default behavior
is to ignore Form-fFeed records.

DSTRECRDS.REQ;1 16=SEP=1984 16:49:1%.38 Page 119

B N el R T I T T ™

byte
word

byte
byte

DEFINE N LINES WORD (DSTSK_SRC_DEFLINES_W)

This command defines the source file and source record numbers for
a specified number of Listing Line numbers. The specified num cr is
given by a one-word count in the command. The command format

-nee - e _—_-=-------.------.-‘

DBGSB_SRC COHHAND (8 DSTSK_SRC_DEFLINES U) '

- coccccs LY

DSTSW_SRC_UNSWORD: The number of Lines to dofinc '

-COeTeOe eSO eOTSOBa®S ..------.

PocPpocd

The semantics of this command is:
DO the number of times specified in the command:
BEGIN

DEF INE (L INE_NUM snc FILE SRC_REC) ;
LINE_ NUM :="LINE N
gnc REC := SRC a!c A 1

DEFINE N LINES BYTE (DSTSK_SRC_DEFLINES_B)

This command defines the source file and source record number for
spocificd number of Llisting Line numbers. The specified number is
’ ven by a one-byte count in the command. This is thus a more compact

orm of the DSTSK_SRC_DEFLINES_W command. Its format is:

The semantics of this command is:

DO the ngzbo; of times specified in the command:

DEFINE(LINE _NUM sac -FILE, SRC_REC):
LINE NUM :="LINE NUM~+ 1;

snc_lec := SRC nEc +1;

END;

i END OF SOURCE FILE CORRELATION DST RECORD DESCRIPTION.

DSTRECRDS.REQ;

L)
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
f

byte
byte
byte
long

16=5EP-1984 16:49:1%.38 Page 120

THE DEFINITION LINE NUMBER
DPST RECORD

NOTE: THIS DST RECORD IS NOT SUPPORTED BY DEBUG v4.0.

The Definition Line Number DST record specifies the Listing Line number

at which a data symbol or other object is defined or declared. The

intent is to make use of this information in future DEBUG commands so

that a user can see the declaration source Line for a specified symbol.

The Definition Line Number DST record must immediately follow the data

??Tdrecord of the data object whose Line of definition is being speci-
ed.

This is the format of the Definition Line Number DST record:

DSTSB_LENGTH (= 6) i

- - - - e o e e @ S ae w e— LA X X X X X X X T X X X ¥ & X ¥ J ’
DSTSB_TYPE = (DSTSK_DEF_LNUM) !
Unused (Must Be Zero) :

DSTSL_DEF_LNUM_L INE :

L I S T 3

Define the fields of the Definition Line Number DST record. The unused byte

in the DST record is reserved for future use.

IELD DST‘?EF_LNUH_FIELDS B

SE
?E§SL-DEF_LNUH_LINE =[3,L_)"! The definition Line number

DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1?.38 Page 121

THE STATIC LINK DST RECORD

The Static Link DST record specifies the ''Static Link'' for a routine.
The Static Link is a gointcr to th’ VAX cl%l frame for the prop’r up-
scope invocation of the outer routine within which the present invoca-
tion of the present routine is nested. The Static Link is thus used
when DEDgG does up-level addressing in response to user commands. A
Static Link DST Record is always associated with the inner-most routine
within whose Routine-Begin and Routine-End records it is nested. The
Static Link DST Record is optional=-it need not be ¥sod ?y Languages
or for routines which do not keep track of static Links in their run-
time environments. In fact, the Static Link DST record only makes a
difference for recursive routines that pass routines as parameters, a
fairly obscure situation.

This is the format of the Static Link DST record:

B R - coowe coceces$

DSTSB_LENGTH :
byte DSTSB_TYPE (=DSTSK_STATLINK)
var DSTSA_SL_VALSPEC

A DST vValue Specification Giving the Value of the
Static Link, i.e. the FP Value of the Routine Invocation
Statically Up-Scope from this Scope

@ rrrrcnncrcc s cn s e o P ee

B L T p—-S—

Define the fields of the Static Link DST record.
IELD os;:§7ATLlnx_flELDS =

DSTSA_SL_VALSPEC =02, A] ! Location of Value Spec giving
TES ! the up-scope FP value

]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
; byte
i
i
i
i
i
i
i
i
i
i
i
H
i
i
i
i
i
i

DSTRECRDS.REQ;1 16=-SEP-1984 16:49:12.38 Page 122

)
i
1
.
L)
i
;
i
-
1
i
i
-
)
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:

byte
byte
Llong

THE PROLOG DST RECORD

The Prolog DST record tells DEBUG where to put routine breakpoints.
It is used for routines that have prolog code that must be executed
before data objects can be freely examined or otherwise accessed
from DEBUG. Such prolog code typically sets up stack Locations and
descriptors for formal parameters or other data objects. By putting
routine breakpoints on the first instruction after the prolo? code
as specified in the Prolog DST record, DEBUG ensures that all Local
storage and formal parameters are accessible to the user.

Prolog DST records are optional. If omitted for some routine, DEBUG
simply uses the routine start address for routine breakpoints or
tracepoints requested b{ the user. If specified, the Prolo? DST
record is counted as belonging with the nearest Routine Begin or Entry
Point DST record before it, not counting nested routines. Placing

the Prolog DST record immediately after the Routine Begin or cntry
Point DST record with which it is associated is good practice.

This is the format of the Prolog DST record:

- -----------------------..-.----’

DSTSB_LENGTH (=5) !

- T OCTeT T TV T DD EDHEWE D@D D W - o oo ’

"DSTSB_TYPE (= DST$K_PROLOG) :

........ - - e ---------..---------------’

DSTSL_PROLOG_BKPT_ADDR i

SO ST eSO OeS OO RO NEEE S ’

+
‘
'
+
'
+
+
'
'
+

Define the fields of the Prolog DST record.
IELD DS;::ROLOG_FIELDS =

gE;SL_PROLOG_BKPI_ADDR =02,L.1] ! The routine breakpoint address

DSTRECRDS.REQ;1

)
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
P

THE VERSION NUMBER DST RECORD

The Version Number DST record gives the version number of the compiler
that compiled the current module. The Version Number DST Record must
be nested within the Module Begin and Module End DST Records for the
module in question. DEBUG 1?noros this record except in spesial cases
when it is necessary to distinguish between old and new versio
compiler that generated a given object module.

This is the format of the Version Number DST record:

.--------------------.----.-------------.-‘- o@meooaaoaooos -, oS .

: DSTSB_LENGTH (= 3) !

.-- - e e ---------.--------------.--------.--’

' DSTSB_TYPE (= DSTSK_VERSION) i

’---'----. .-.---------’

: DSTSB_VERSION_MAJOR :

e e = - - o L T +

: ~ DSTSB_VERSION_MINOR :

’ - S --’

Define the fields of the version Number DST record.
1ELD DS}E¥ERSIO~_FIELDS =

DSTSB_VERSION_MAJOR
DSTSBZVERS ION_MINOR

E g. - ! The major version number
w53 ! The minor version number

7
16=-SEP=-1984 16:69:1!.30 Page 123

ns of the

(7.

7
DSTRECRDS.REQ;1 15-5EP=1984 16:49:1&.30 Page 124

B S S -

byte
byte

THE (COBOL GLOBAL ATTRIBUTE
DST RECORD

The COBOL Global Attribute DST record indicates that the symbol whose
DST record innodintol‘ follows has the COBOL ‘‘global'' attribute. This
attribute specifies that the symbol is visible in nested COBOL scopes
(routines) within the scope (routine) in which the symbol is declared.
Without this attribute, a symbol is only visible in its scoBe of decla-
ration but not within any nested scopes. In this rogar?. COBOL differs
from most other lan?uages. DEBUG thus needs to know this attribute in
order to implement the COBOL scope rules correctly.

The COBOL Global Attribute DST record is only generated by the COBOL
compiler. If it precedes the DST record for some symbol, that symbol
is deemed to have the (OBOL global attribute; if it omitted, the sym-
bol is deemed not to have the global attribute. DEBUG ignores this
attribute for all other Languages.

This is the format of the COBOL Global Attribute DST record:

L - LT T T +

: "DSTSB_LENGTH (= 1) :

* R R R R R R R R R R R R R R R KR R R R ‘

: DSTSB_TYPE (= DST$K_COBOLGBL) :

DSTRECRDS.REQ;1

S g e e

byte
byte
byte

var

word

var

THE OVERLOADED SYMBOL DST RECORD

NOTE: THMIS DST RECORD IS NOT SUPPORTED BY DEBUG v&4.0.
The Overloaded Symbol DST record is used to indicate that a given

16-SEP-1984 16:69:1?.35 Page 125

L name is overloaded. The record indicates which other symbols

s
in the DST are possible resolutions to the overloading. It is used
by the ADA compiler,

n ADA, it is possible to have more than one routinod?f the same name
sa

n the same scope. If the routine name is R, DEBUG

mbiguates the

ft
individual instances gf the overloaded routine name with the invented

names R__1, R__2, R__
generate normal DST Fecords for these routines, using the invented

and so on. DEBUG requires the ADA compiler to

name.., DEBUG also requires the ADA compiler to generate the Overloaded

Symbol DST record with the original overloaded name 'R'' in order to
inform DEBUG of the overloading.

After the longth and t¥p¢ fields
string with the name o

of overloaded instances of the name in this scope. Next there is a

this record contains a Counted ASCII
the overl(oaded symbol. Following the Counted
ASCII string, there is a word field containing a count of the number

vector of pointers, one for each instanco[pointing to the DST records

for the instances of the overloaded symbo
of byte offsets relative to the start of the whole DST.

This is the format of the Overloaded Symbol DST record:

£
+
[}
'
i
[}
(]
'
1
]

- B e e e e] 4+

“DST$B_LENGTH :

------------------’

DSTSB_TYPE (= DST$K_OVERLOAD) :

eSS eSS eSS eSS e e OOV OTNWEE S DS ’

DST$B_OL _NAME '

........ - ’

The Overloaded Symbol Name in ASCII
(The name's length is given by DSTSB_OL_NAME)

DSTSW_OL_COUNT

)
'
'
'
)
v
B
'
'
t
'
*

+
B
'

Eeemomecooe = e o - oeoee e e e +
'
'
'
'
)
]
'
'
)
'
'
'
)
]
)
]
)
L]

DSTSA_OL_VECTOR
A Vector of Longword Pointers to the DST Record:
of the Symbols with Invented Names that Constitute
the Instances of this Overloading

e S S L T T A A

These DST pointers consist

7
DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:1&.30 Page 126

’-- - EEEE S oS-SS -----.---------.-----..-..-.----’

]

i

i

]

g Define the fields of the Overloaded Symbol DST record.

FIELD DS;:?VERLOAD_FIELD!
DSTSB_OL _NAME DE 8 0L 3
DSTSA_OL_TRAILER= [3, A_)
TES;

! Count byte of the overloaded symbol
! name Counted ASCII string
! The trailer fields start at this

! location + .DST$B_OL_NAME

! Define the fields of the Overloaded Symbol DST record trailer portion. Also
; define the corresponding declaration macro.

FIELD DS;:?VERLOAD_IRLR_FIELDS =

DSTSW_OL_COUNT = £ 0, vw_ 1, ! Number of instances in this scope
DSTSA_OL_VECTOR = [2, A] ! Vector of DST pointers to instances
@t : of overloaded symbol

(£

MACRO
ODSTSOVERLOAD_TRLR = BLOCKL[,BYTE] FIELD(DSTSOVERLOAD_TRLR_FIELDS) X;

This is a short BLISS example of how the trailer fields are accessed:

LOCAL
DSTPTR: REF DSTSRECORD,
OVERLOAD_COUNT

Pointer to DST record
The number of overloadings
Pointer to DST record trailer

)

i

i

i

i

;

i OVERLOAD TRAILER:

: REF DSTSOVERLOAD_TRLR,
: OVERLOAD _VECTOR: Vector of DST-record pointers to the
; instances of this overloading

i

i

1

i

[

|

REF VECTORLC,LONG);

; Here we assume that DSTPTR points to the Overloaded Symbol DST record.
OVERLOAD TRAILER = DSTPTRCDSTSA OL TRALER] + DSTPTRCDSTSB_OL _NAME];

OVERLOAD_COUNT = .OVERLOAD_TRAI[EREDSTSB OL_COUNT];:

OVERLOAD_VECTCR = OVERLOAD_TRAILERCDST$A-OL-VECTOR;

£ .7
DSTRECRDS.REQ;1 16=SEP=-1984 16:49:15.30 Page 127

CONTINUATION DST RECORDS

When the text of a Debug Symbol Table record is lLonger than 255 bytes,
it is no longer possible to hold that text in a singlo S T record since
the DSTSB_LENGTH field cannot hold a value Larger than 255. In this
case it is necessary to generate the original DST record followed by

as non¥ Continuation DST records as necessary to hold the ful& text.

The or ginal DST record then holds at least 100 and at most 255 bztes of
text. Each Continuation DST record consists of the standard two-byte
header followed by the continued text of the original DST record.

This is the format of the Continuation DST record:

+ = -
byte } DSTSB_LENGTH :
- - ceccscsccescscsssccscssse$
byte i DSTSB_TYPE (= DSTSK_CONTIN) '
- - cececcscceccsccscseccececes +
var i E
§ The Continued Text of the Previous DST Record §
. et :

DEBUG reconstitutes a continued DST record by concatenatin? the text

of the first DST record with the text portions of its Continuation DST
records. In effect, the first two bytes of each Continuation DST record
are stripped out. Any further interpretation of the DST text is then
done on the concatenated copy.

Certain kinds of DST records are not allowed to be continued with Con-
tinuation DST records. These records are Module Begin, Routine Begin,
Block Begin, Label, Label-or-Literal, Entry Point, PSE(T, Line Number
PC-Correlation, and Source File Correlation DST records. In addition,
DST records with fixed sizes, such as Module End and Ruuiine End DST
records, are not allowed to be continued. Line Number PC-Correlation
and Source File Correlation DST records cannot be continued with Con-
tinuation DST records, but one can have multiple such records in one
module; they can thus be continued, but through a different mechanism.
The records that really need to be continued, such as Standard Data
DST records and their variants (Descriptor Format and Trailing Value
Specification Format records), Separate t{fe Specification DST records,
and Type Specification DST records, can all be continued using the
Continuation DST record mechanism.

R S G RS S T RS R S g e e

Define the fields of the Continuation DST record.

DSTRECRDS .REQ;1

FIELD DSTSSON!IN_FIELDS =
SE

DSTSA_CONTIN
TES:

(2,A]

16-SEP-1984 16:49:1;.38 Page 128

! Address of continuation text

H.7
DSTRECRDS.REQ;1 16-SEP=1984 16:49:15.30 Page 129

R e R S T R D R e e R e e e e R R e e R e

OBSOLETE DODST RECORDS

There are several obsolete DST records. These are records that were

at one time generated b{ compilers, but are no longer used by any cur-
rent version of any Digital congilcr. Some of these records were not
?roporly thought out and were abandoned when it was realized that their
ntended uses could not be implemented. Others were at one time used
and useful, but were generated by now-obsolete compilers. Such records
are not generated by current compiler versions, and the capabilities
they srovidod are now provided by more general mechanisms in other DST
records.

None of the obsolete DST records should be ?enorated by any future
compilers, and their use will not necessarily be supported by DEBUG.

THE GLOBAL-IS=NEXT DST RECORD

The Global-is-Next DST record is now obsolete. It consisted of just the
DSTSB_LENGTH byte and the DSTSB_TYPE byte. DSTSK_GLOBNXT was the type
code. The purpose of this record was never properly thought out and

no support for it was ever implemented. It should not be generated by
any future compilers or compiler versions.

THE EXTERNAL=-IS=NEXT DST RECORD

The External-is=-Next DST record is now obsolete. It consisted of just
the DSTSB_LENGTH byte and the DSTSB_TYPE byte. DSTSK_EXTRNXT was the
type code. The purpose of this record was never properly thought out
and no support for it was ever implemented. It should not be generated
by any future compilers or compiler versions.

THE THREADED-CODE PC-CORRELATION DST RECORD

This DST record is identical in format to the Line Number PC-Correlation
DST record except that the record type code is DSTSK_LINE_NUM_REL_R11.
It was used by an obsolete COBOL compiler according to Legend” (thé memo-
ries are a bi haz¥ by now). The idea was that the threaded code gene-
rated by this gonp ler consisted of a voc%or of longwords where each
lon?uord contained the address ?f ? run-time support routine to call.
RC? ster R11 pointed to the beginning of this vector. The code aene-
rated for a source Line thus consisted of some number of Longwords

with addresses to call (or perhaps jump to--the exact details are lost
in the mists of time). The lLine number PC-correlation information
passed to DEBUG consisted of Line numbers correlated with byte-offsets
relative to R11 (i.e., to the start of the threaded code). Breakpoints

DSTRECRDS.REQ;1 16=-SEP=-1984 16:69:1;.35 Page 130

e L R e b b e R —

were placed on a specified Line by Looking up th, corres 1ng offset
relative to R11 and then ttoring an address within DEBUG into that
location. When the location was reached, DEBUG was entered. DEBUG
could then convert the ‘PC'’, i.e. the threaded-code location, back to

a Line number to announce the breakpoint. It is not clear how, or even

whether, tracing, stepping, and watchpoints were implemented.

The Threaded-Code PC-Correlation DST record is no Longer supported by
DEBUG and should not be generated by any current or future compilers.

THE COBOL HACK DST RECORD

The COBOL Hack DST record was at one time used to support formal argu-
ments to COBOL procedures. It has now been superceded by the more
general Value Specification mechanism, and is thus obsolete. It is

no | r generated by the COBOL compiler, and it should not be gene-
rated by any current or future compilers. Future versions of DEBUG
may not support fit.

The fields of this record consist of the fields of the Standard Data
DST record followed by a type field that specifies the data type and
then a sequence of commands for the DEBUG stack machine. (See the sec~-
tion on Value Specifications for details on the DEBUG stack machine.)
The result of interpreting the stack machine routine is the address of
the object described by this record. The DST$B_VFLAGS and DSTSL VALUE
fields are zero unless the object has a descripfor. In this Latter
case they specify the location of the descriptor. The result of the
stack machine routine is placed in the DSCSA_POINTER field of the
descriptor before it is used. In addition, 7f it is an array descrip=
tor, the DSCSA_AD field is added to the result of the stack machine
routine and the result is placed in the DSCSA_AQ field before the
descriptor is used.

The type field following the name field contains the VAX Standard Type
Code of the object boin? described here. If the object also has a
descriptor, its DSCSB_DTYPE field must agree with this code.

The stack machine commands used in this context are those described
in the section entitled '‘The DEBUG Stack Machine'' in the chapter on
DST value Specifications.

This is the format of the COBOL Hack DST record:

16=SEP=-1984 16:&9:1‘.38 Page 131

- P meeccmccccen

Define the fields of the Cobol Hack DST record.
macro for the trailer fields.

Instruction Sequence for the DEBUG Stack Machine

'
'
'
'
i
'
'
'
'
'
'
'
+

Also define the declaration

DSTRECRDS.REQ;1

! L 3 - cescssssscssccscascssccas$
i byte ! DSTSB_LENGTH

' . - - B)
i byte | DSTSB_TYPE (=DSTSK_COB_HACK) :
g byte ! DSTSB_VFLAGS

1 - - -—-d
{ long ! 4 DSTSL_VALUE :
§ byte ! DSTSB_NAME

4 + - csseccssssssceccces
! var :

E 5 The Name of the Data Symbol in ASCII

g 5 (The name's length is given by DSTSB_NAME)

; i SEEEEE e "o eoo oo eooaooeeos
| byte ! DST$B_CH_TYPE

! + -2 - B
E var | DSTSA_CH_STKRTN_ADDR

]

i :

i :

B

'

i

i

i

i

i

F

F

IELD DS;%%OB_HACK_fIELDS =

DSTSA_COBHACK_TRLR
TES;

IELD DSTSCH_TRLR_FIELDS =
SET

DST$B_CH_TYPE
gg;sa_ca_sr:atu_uoon

(8, A] !

un
~r-

MACRO

Location of trailer fields

! VAX standard data type
! Start of stack routine code

DSTSCH_TRLR = BLOCKL,BYTE) FIELD(DSTSCH_TRLR_FIELDS) %;

DSTRECRDS.REQ;1 16=-SEP=1984 16:69:1&.35 Page 132
VALUE SPECIFICATION DST RECORDS

Tho v. ue ipocificltion 051 record contains nothing but a DST value
fication. However, ; ere appears to be no use for this record
s ncc oll DST value Specifications that are actually used appear in
othcr DST records. This record was probably designed with some use
in mind bu was then abandoned uhon better uays of addressing the
?rig'na(were dovisod. DEBUG 1 ?nores this DST record, and it
s believed that no compilers actual gcnorato 1t. This 6ST record
should not be generated by any futuro compilers.

This is the format of the Value Specification DST record:

DSTSB_LENGTH '

byte ENG :
byte DSTSB_TYPE (= DSI!E VALSPEC)
i var

L T T I
|

+
A DST Value Specification E
+

i Define the fields of the Value Specification DST record.
F IELD DS;:¥ALSPEC-FIELDS =

DSTSA_VS_VALSPEC_ADDR = [2, A_] ! The start location of the
TES : Value Specification

)
!
|
)
'
1
)
1
)
)
L)
!
1
)
)
]
i
i
1
1
1
H
i
'
|
1
)
'
1
)
)
F

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1&.35 Page 133

DST RECORD DECLARATION MACRDO

This nagao allows BLISS symbols which are declared DSTSRECORD ?r
REF DSTSRECORD to be qualified by all the fi’ld names present in
the various DST record formats. It is anticipated that usorg will
declare separate symbols for field sets which describe trail ng
ields in DST records; a fointor to the PSECT DST record trailer,
or example, would be declared to be a REF DSTSPSECT _TRAILER.
Separate macros are supplied above for all such trailer fields.

Define the declaration macro for all DST records.
MACRO

K [256,BYTE] FIELD(
ELDS,

S

S

S

Mes MM~ r-rr-r™<s s «

MEFEFroMOMOMArF-OMes=TT OMroooov

DS,

CNe=Me= WVIFOoWVVIUKM
MEMO s OWs &« 8 o o

s
.

t
DSTSVALSPEC_
DSTSCH_TRLR
DSTSOVERLOAD

! END OF DSTRECRDS.REQ.

DIGITAL EQUIPMENT CORPORf
_CONFIDENTIAL AND PROP

R0077 07 ins"vato

MENT CORPORATION
AND PROPRIETARY

