000DDDDDOODD EEEEEEEEEEEEEEE BBBBBBBBBBABA uuu uuu 6G66G6666G6GE
o0DDDODDDDDD EEEEEEEEEEEEEEE BBBBBBBABAABE iy yuu GGGGGGGGGGGH
000ODDODODDDD EEEEEEEEEEEEEEE BBBBBBBBBABBS Uuu Iy deddddddddds
00D DDD EEE 888 888 UUU UUU GGG

00D DDD EEE 888 BBB UUU UUU GGG

00D DDD EEE 888 888 UUU UUU GGG

00D DDD EEE 888 8BB ULUU UUU GGG

00D DOD EEE 888 888 ULUU UUU GGG

00D DDD EEE 888 888 ULV UUU GGG

00D DOD EEEEEEEEEEEE 888888888888 Uuu UUU GGG

00D DOD EEEEEEEEEEEE 888888888888 VY UUU GGG

00D DOD EEEEEEEEEEEE 888888888888 Uuy UUU GGG

00D DDD EEE 888 BB8 UUU UUW G6GG GGGGGGGG6
00D DDD EEE 888 888 UUU UUWU GGG GGGGGGGGE
00D DDD EEE 888 BBB UUU UUWU GGG GGGGGGGG6
00D DDD EEE 888 BB8 UuU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG 666
o0ODDDDODDDDD EEEEEEEEEEEEEEE BBBBBBBBBBAAB VVUVVTVNVVVVVVIE GGGGGGG6GE
0DDDDDDODDDODD EEEEEEEEEEEEEEE BBBBBBBBBAES UUuUUUUUYUULYU GGGGGGOG6
ooDDDDDDDODD tECEEEEEEEEEEEE BBBBBBBBBBBA VYTV GGGGGG6G6

H13
eef [LEe«[De*DSTRECRDS

bDDOODDOD SSSSSSSS TTITTITITITT RRRRRRRR EEEEEEEEEE LCCCCCCC RRRRRRRR pODODDDD
00DODDDD SSSSSSSS TTTTITTITTT RRRRRRRR EEEEEEEEEE CCCCCCCC RRRRRRRR 0ODODDOD
0O DO SS 17 RR RR EE cC RR RR DD

0D DD S$ 17 RR RR EE cC RR RR DD

0o DO S$ 17 RR RR EE cC RR RR DD

) DD SS 17 RR RR EE €C RR RR DD

00 DD $SSSSS 17 RRRRRRRR EEEEEEEE cC RRRRRRRR 0D

0O 0D $SS5SS 17 RRRRRRRR EEEEEEEE cC RRRRRRRR DD

DO DD $S 17 RR RR EE cC RR RR DD

0O DO $$ 17 RR RR 133 t¢C RR RR DD

0D 0D SS 17 RR RR 131 c¢C RR RR Pl

00 0D $S 17 RR RR EE cC RR RR DD
ooDDDDDD $S5SSSSS 17 RR RR EEEEEEEEEE CCCCCCCC RR RR DDDDDDDD
o00DOODD $555S8SSS 1T RR RR EEEEEEEEEE CCCCCCCC RR RR DDDDDDDD
RRRRRRRR EEEEEEEEEE Q0QQQQ

RRRRRRRR EEEEEEEEEE acaoQQaQ

RR RR EE QQ QQ

RR RR EE QQ Qa

RR RR EE QQ QQ

RR RR EE Qa QQ

RRRRRRRR EEEEEEEE Qa QQ

RRRRRRRR EEEEEEEE QQ QQ

RR RR EE Q@ Q0 0a

RR RR EE Q0 Q@ Q0

RR RR EE Q0 Qa

RR RR EE Qa Qa

RR RR EEEEEEEEEE Q0QQa Qa

RR RR EEEEEEEEEE Qdaea 0@

* *

1
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1&.3

; version: 'v04-=000"'

f'o't-tt-'t-"ttt""tﬁcttn'tnttttttttttttttttttttttttttt'tt"'t'tt-'t't"ttt
e *
‘v« COPYRIGHY (c¢) 1978, 1980, 1982, 1984 BY *
‘s DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
E' ALL RIGHTS RESERVED. *
. ® "
'e THIS SOFTWARE IS FURNJSHED UNDER A LICENSE AND MAY BE USED AND COPIED *
t* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
t* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
‘v COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
'* OQTHER PERSON., NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
E' TRANSFERRED. *
. *
'* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
'* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;' CORPORATION. *
R J *
'* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
s' SOF TWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
. v *
'

f:"ttautttcctt'c-tatt'ttnttntn'tntttttttttt.ttttttttttttttttttttt'ttttttttt:
]

WRITTEN BY
Bruce Olsen August, 1980.
Bert Beander August, 1981,
Bert Beander November, 1983,

i

i

i

[}

! MODULE FUNCTION

! This REQUIRE tile describes the structure of the Debug Symbol Table
! ?enerated by the VAX compilers and interpreted b{'the VAX Debugger.
! t includes definitions for all field names and literals used in

; building or interpreting the Debug Symbol Table (DST),

: DISCLAIMER

! This interface is not supported by Digital. While the Debug Symbol
! Table interface is believed to be correctly described here, Digital
! does not guarantee that all descriptions in this definition file are
! correct and coaftete. Also, while this interface is expected to be
! reasonably stable across releases, Digital cannot guarantee that it
! will not change in future releases cf VAX DEBUG, VAX VMS, the VAX

! compilers, or other software, Upuord-cqneatiblo additions to this

! interface are more likely than incompatible changes, but individuals
' and organizations who use this interface stand some risk that their
! work will be partially or wholly invalidated by future releases of

! VAX DEBUG or other Digital software. Digital reserves the (1ght to
! make future incompatible changes to the Debug Symbol Table intertface.

13
DSTRECRDS.REQ;1 16=-SEP-1984 16:‘9:1&.30 Page 2

TABLE OF CONTENTS

[}

!

;

|

; Purpose of the Debug Symbol Table ¢ .+ ¢ . S
i General Structure of the DST 4t ¢ ¢ ¢ o o o o o » 6
! Generation of the DST ., . ¢ o e o s e o o o & o o o o 6
' Location of the DST within the Image File 8
! Overall Structure of the DST e e e s s e e s e e . o 10
! Nesting within the DST e e e e . . . 10
E Data Representation in the DST T 1A
g Field ACCESS MBCTOS & « & v o o o o o o o o o o » S I
g The DST Record Header Format e o o s s s s e s e e e e e 17
i Supported Values for DSTSB_TYPE & ¢ ¢ v ¢ & « & . 18
! VAX Standard Tlpe Codes . O -
! Internal Type (odes for DEBUG . = v v v s e et T19
E Other DST Type Codes e s e e e e o s . 20
] Module DSY Records . e o o s o 8 6 o s e s e s s 28
! The Module Begin DST Record . . . o o v o o v o w vt 23
; The Module €End DST Record & & v ¢ ¢« « «]
i Routine DST Records . . « v ¢ &« « o o o & . e e s s e « o o . 27
! The Routine Begin DST Record Gt s s s e s e s s e s s . . 28
; The Routine End DST Record . . . & & ¢ ¢ ¢ ¢ o o o « & . 29
i Lexical Block DST Records . e o e s e e e s e s e e e e 30
! The Block Begin DST Record B)
E The Block End DST Record . . . & & & ¢ ¢ o o o & o « o o 32
i Data Symbol DST Records . . . e e e s s e e s .« « » « 33
! The Standard Data DST Record e o s s o o+ 35
! The Descriptor Format DST Record 38
! The Trailing Value Specification DST Record 40
; The Separate Type Specification DST Record 42
i DST Value Specifications . . . & & &« v @ v v v v v v v v v 43
! Standard Value Specifications 43
! Descriptor Value Specifications 46
! Trailing Value Spec vValue Specifications 47
! VS-Follows Value Specifications 48
! Calls on Compiler-Generated Thunks 49
! The DST Stack Machine ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o & 50

—

K 1
DSTRECRDS.REQ:; 1 16-SEP=-1984 16:49:15.38 Page 3
: Type Specification DST Records S
' DST Type Specifications ¢ ¢ ¢ v v v v v v v v o W 56
' Atomic Type Specifications ¢ v ¢ ¢ ¢ o o o . 59
! Descriptor Type Specifications o 99
! Indirect Type Specifications c ¢ o o o s o s o s e o @ . 60
' Typed Pointer Type Specifications . . ¢« ¢« ¢ ¢ ¢ o « o o o 61
' Pointer Type Specifications 61
! Picture Type Specifications ¢ ¢ ¢ ¢ ¢ o « o « o« o 62
! Arra¥ Type Specifications . . . ¢ & ¢ ¢ ¢ ¢ ¢ o ¢« ¢« o o o 64
! Set Type Specifications ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o @ 69
! Subronge T§pe Specifications c e e s s e e e s s e b
! File Type Spect cat ons © s 6 e s o 6 s s o s s o s e« B8
! Ares Type Specifications . . & ¢ & ¢ ¢ o ¢ ¢ o o o o o o ?9
! Offset ype Specifications ¢ ¢« ¢ ¢ o o o e o« 10
! Novel Length {pe Specifications e o e o 0o e 0o s e N
! Self-Relative Label Type Speclf1cations e o o o o s s e« 12
: Task Type Specifications . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o 2 ¢ o o T2
! Enumerotion Type DST Records . e o e s o e o o s o I3
! he Enumeration Type Begin OST Record . . . + + + + + o . T4
! The Enumeration Type Element OST Record « « « . 15
: The Enumeration Type End DST Record « ¢« ¢« « « o 15
! Record Structure DST Records ¢ ¢ v v v oo .. 16
{ The Record BeQin DST Record v ¢ ¢ ¢ o o o o o » « 18
! The Record ENd DST Record+ o 79
! The Variant Set Begin DST Record ¢ ¢ ¢ ¢ o o 80
! The Variant Value DST Record s s s e s e s e s e s e . B
! Tag Value Range Specifications 82
: The Variant Set End DST Record . . . & & &« ¢ ¢« o & o & . 84
J BLISS Data DST Records . T -
! The BLISS Special Cases DST Record e s s s e s e s e . . 86
: The BLISS Field DST Record . . . & & ¢ & ¢ ¢ ¢ o o« o o &« 91
. L‘bel Ds' Records L] [] * L] L] L] L] [] . L] [] [] L 3 L] . [] [] L] [] [] [] 92
! The Label DST Record e s s s s s s s s s o s 92
: The Label-or-Literal DST Record ¢« ¢ ¢ ¢ ¢ o o @ 93
: The Entry Point DST Record e e s s s & o s o e 8 s o o o .« . 96
: The PSECT DST Record . & & & & & &t v & o o o o s o o o o o 95
: Line Number PC-Correlation DST Records e s s s & o o & . v e
[}

97
Line Number P(C-Correlation Commands « . . . 98
PC=-Correlation Command Semantics . . ¢ + « « o o « o « = 100

L}
]
1
|
1
|
1
1
1
1
1
1
[}
1
L}
L}
'
i
|
|
[}
1
!
!
J
I
]
]
[}
1
1
[}
1
1

e .

DSTRECRDS.REQ;1

Source File Correlation DST Records

16-SEP-1984 16:49:1%.%3

The
The
The
The
The
The

Declare Source File
Set Source File o o
Set Source Record Number Lon .
Set Source Record Number Wor .
Set Line Number Lon e s e o o
Set Line Number Wor e s s s s e
Increment Line Number Byte . .
Count Form-Feeds as Source Records

Define N Lines Word« . . . c e o

Define N Lines Byte
Definition Line Number DST Record
Static Link DST Record
Prolog DST Record
Version Number DST Record
COBOL Global Attribute DST Record
Overloaded Symbol DST Record . .

Continuation DST Records e e o o o & o o o & o o o o o o . e
Obsolete DST Records . .« .

DST

The Global-Is-Next DST Record . .

The External-Is-Next DST Record v o v v o v .
The Threaded-Code P(-Correlation DST

The COBOL Hack DST Record

The value Specification DST Record

Record Declaration Macro e o e o o o o 8 o o o s o s s a

Page &

- b el e e i el ol)) e
B P P IV S Y,

Q0 ~NNOMAAS S Ll —

-
N -
o 0

|
.
[}
.
|
.
[}
.
i
.
|
.
1
.
|
.
[}
.
]
.
|
.
]
.
|
.
'
.
1
.
)
.
\
.
]
.
1
.
]
.
[}
*
'
.
'
.
'
.
)
d
{
.
|
.
|
N
[}
.
]
.
]
M
1
.
[}
-
]
.
|
.
]
.
[}
.
[}
.

e ————

M1
DSTRECRDS.REQ:1 16-SEP-1984 16:49:15.33 Page 5

PURPOSE OF THE DEBUG SYMBOL TABLE

The Debug Symbol Table (DST) is the symbol table that the VAX compilers
roduce to pass s¥mpol table information to the VAX Debugger and to the
VAX Traceback facility. The DST is a language-independen symbol table
in the sense that all VAX compilers output symbol information in the
same format, regardless of source language. This symbol information is
emitted into the object modules produced bg the compiler. It is then
passed through the linkar into the executable image file that the Linker
enerates. DEBUG or TRACEBACK can then retrieve the symbol information
rom the image file.

The.fqrpose of the Debug Symbol Table is thus to permit the Traceback
facility to.glve a symbolic stack dump on abnormal program termination
and tn permit DEBUG to supBort.fully s;mbollc debugging. Other Digital
software may also use the DST information for various purposes.

To support these purposes, the Debug Symbol Table represents all major
aspects of program structure and data representation. It can represent
modules, routines, lexical blocks, labels, and data symbols and it can
represent all nesting relationships between such symbols. It can also
describe Line number and source line information. It can descrioe all
data types supported by DEBUG, 1nclud1na complex types such as record
structures and enumeration types. In addition, it can describe arbi-
trarily complex value and address computations.

The Debug Symbol Table is solely intended to support compiled Languages,
not interpreted languages. The DST representation assumes that source
Lines have been compiled into VAX instructions and that those instruc-
tions are actuall¥ executed, not interpreted. Such DEBUG facilities as
breakpoints and single-stepping will not work if this assumption is
violated. Similarly, it is assumed that data objects have addresses
that can be accessed directly when these objects are examined or depo-
sited into. DST information is thus generated by all compilers that
XS{ DEBgSHggpports. but not by the interpreters for languages such as

or .

1
DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:12.33 Page 6

S S AR AL TN GRS G RS AR NS AR GRS RN P GRS P ER P I S W P MR ¢ M Y N A R P I T PR I ER I ER I IR P N IR S U C AN P AN G UP P P WD A P AP A DS AR L RS EE s P R WRO AR Emg g

GENERAL STRUCTURE OF THE DST

This section describes the general structure of the Debug Symbol Table.
It explains how the DST is generated by the various VAX gomp1lers, how
it is passed along to the executable image file by the Linker, and how
it is accesses in the image file by DEBUG or TRACEBACK. This section
also describes in general terms how the DST is structured internally:
how it is subdivided into modules, routines, lexical blocks, and indi-
vidual symb s, how nesting relat%onships are represented, and how data
symbols, incL,d1ng their values and data t;pes. are represented. The
exact formats of the varjous Debug Symbol Table records and other fine-

rained detail are described lLater in this definition file, not here,
ut the coarse structure of the DST and how that structure is accessed
are outlined in this section.

GENERATION OF THE DST

The Debug Symbol Table (DST) is generated Q{ the compilers for all VAX
langua?es supgorted by DEBUG. Durina compilation, the compiler outputs
the DST for the module being compiled into the corresponding object
file. When the Linker is invoked, it does relocation and global-symbol
resolution on the DST text and then outputs it into the executable image
file. Beyond knowing what must be relocated, the Linker has no specia
knowledge of the format or contents of the DST, Finally, the Debuager
reads the DST information from the executable image file during a debug-
ing session, or Traceback reads it when giving a traceback in response
o an unhand{ed severe exception during image executioun.

A compiler outputs DST information in the form of two kinds of object
records, TBT records and DBT records. (See the Linker manual for a
full description of the VAX object Language accepted by the Linker.)
ALL '‘traceback'’ information goes into the TBT records and all '‘symbol
information goes into the DBT records. When the user lLater Links using
the plain LINK command, only the DST information in the TBT records are
copied to the executable image file. These records contain enough in-
formation for Traceback to give a call-stack traceback. If the user
Links with the LINK/DEBUG command, all information in both the TBT and
the DBT records are copied to the executable iaa?e tfile, These records
together give all DST information needed for ful s¥lbolic debugg1n?.
The user can also Link with LINK/NOTRACEBACK, in which case no DST in-
formation at all is copied to the executable image file.

It is not possible to have the Linker copy the DBY records without also
copying the TBT records. the information in the TBT records is required
for the information in the DBV records to make sense.

The "‘traceback’’ information in the TBT records includes all Module Begin
and End DST records, all Routine Beqin and End DST records, all Lexical
Block Begin and End DST records, and altL Line Number PC-Correlation DST
records. It naz also include Version Number DST records. ALl other DST
records should be included in DBT records.

14
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:1?.30 Page 7

L Y e

LR R R AR R R AR R R R R N R e R R T N L I L I I I T

Most VAX compilers have a /DEBUG auaiifier which in its most general
form has two subqualifiers: /DEBUG=((NOJTRACEBACK,(NOJSYMBOLS)., The
unadorned /DEBUG qualifier is equivalent to /DEBUG=(TRACEBACK,SYMBOLS);
it causes all DST information to be output. /DEBUG=TRACEBACK causes
only the traceback information (the TBT records) to be output by the
compiler. /DEBUG=(NOTRACE NOSYMBOL) causes no DST information to be
output at all. Finally, /DEBUG=(NOTRACE,SYMBOLS) causes all DST infor-
mation except Line Number PC-Correlation DST records to be output (this
combination is Largely pointless although it saves some DST space).
Note that the module, routine, and lexical block information, which
counts as traceback {qfornation. must be output if any symbo{ informa-
tiondi$.ou§put since it defines the scopes within which other symbols
are defined.

When the linker outputs the Debug Symbol Table to the executable image
tile, it may also output two more image sections: the Global Symbol
Table (GST) and the Debug Module Table (DMT)., These two tables are
enerated if the LINK/DEBUG command is used, not otherwise. The Global
>ymbol Table contains records for all globa[symbols known to the linker
in the current user program. DEBUG uses the GST as a symbol table of
Last resort when DST information is not available, either because the
module gontalnln? some global symbol was compiled without DST informa-
tion being output or because the module is not set (with SET MODULE) in
the current debugging session, The GST information is not as complete
as the DST intormation for the same symbols because the GST has no type
description (the Linker does not need to know about data types).

The Debug Module Table (DMT) is an indexing structure for the DST. [t
contains one record for each module in the DST. This record contains

3 pointer to the start of the DST for the corresponding module, the size
of the DST for that module, the number of PSECTs in that module, and the
address ran?es of atl those PSECTs. The DMT allows DEBUG to initialize
its Module Table and its Static Address Table without actually havtng to
read through the entire DST; because the DMT is very small compared %o
the DST, it can be scanned much more efficiently,

The details of how the DST, the GST, and the DMT are accessed in the
executable image file are explained in the next section.

[PR e e L .

16
DSTRECRDS.REQ;1 16-SEP=1784 16:49:1&.%0 Page 8
LOCATION OF THE DST WITHIN THE IMAGE FILE

The Debug Symbol Table is accessed through poirter information found in
the executable image file header block. This header block contains a
go1nter in a fixed location (IHDSW_SYMDBGOFF) which points to a small

lock Later in the header which gives the size and location of the
Debu? S¥mbol Table (DST), the Global Symbol Table (GST), and the Debug
Module Table (DMT). The first part of the executable image file header
Llooks as follows:

e et T . +
long | '
tecccccccncccccccscsesnccncecana tmcccccccccccrcccnccnccccccccccna +
long ! ! IHDSW_SYMDBGOFF :
T L L L T T 2 teccccccncccccescrsccaanssnsccassa +
long E E
¢omeemmmmcmecmecmcmcecccmacasereesseseesmesseseasesssesasacancn +

Here IHDSW_SYMDBGOFF contains the byte offset relative to the start of
the header of an Image Header Symbol Tabte Descriftoq. The Image Header
Symbol Table Descriptor (IHS) in turn has the following format:

ong T Thssiostven T '
ong | T hssestven T '
tong T INSRUGSTREES i IAsw0sTeLs
long IHSSL _DMTVBN '
ong 4 wwsipmeyies

Here [HSSW_DSTBLKS and JHSSL_DSTVBN give the size (in blocks) and loca-
tion (Virtual Block Number) of the Debua Sgnbol Table (DST) within the
executable image file. The fields IHSSU GSTRECS and IHSSL _GSTVBN give
the size (in GST records) and start location (virtual Block Number) of
the Global Symbol Table (G3T). Finally, the fields IHSSL_DMTBYTES and
IHSSL_DMTVBN give the size (in bytes) and start location TVirtual Block
Number) of the Debug Module Table (DMT). The DMT is descrtbeg below.
These field names are declared by macros in SYSSLIBRARY:LIB 5 2. The
symbol IHDSW_SYMDBGOFF is atso defined in SYSSLIBRARY:LIB.L3Z.

Pointers to the Image Header and the Image Header Symbol Table Descrip-
tor are declared as follows:

€ S dn S RS S EE S AR O MPS NS ARG EEO R RS NG WD O GRS Gl GRS ERS AR G UNE AR O RS EE ST NNV AP S AL ERG EE O DS NG WD R RS S e S A P AR am R SRS GRS WE 4 s R e E S e e M e e

-—

14
DSTRECRDS.REQ;1 16-SEP=-1984 16:49:1%.30 Page 9

IHDPTR: REF BLOCKE BYTE]
IHSPTR: REF BLOCKLfHSSK_LENGTH,BYTE]

The Image File Header in an executable jmage file points to _the Ima?e
Header lmbol Table descriptor as described above. If bit 5 ot field
IHDSL _LNKFLAGS in the 1ma2¢ header is set, this is a 'new’ 1ma?e i.e.
one Eroduced by the VMS V4.0 or later Linker, and the IHSSL_DM véN,and
IHSSL _DMTBYTES fields exist in the Image Header Symbol Table descriptor.
(1t bYt 5 is not set, this is an ''old'' " image and those fields do not
exist.) If non-zero, IHSSL_DMTVBN gives the virtual Block Number in
the image file of the Debug Module Table (the DMT). [IHSSL_DMTBYTES

then gives the size of the DMT in bytes. The DMT is onl‘ Built if the
user did a LINK/DEBUG; if he did not, IHSSL_DMTVBN and JHSSL_DM 3YTES
are zero.

The Debug Module Tabl
Symbol Table (the DST

s ams e W, g

e contains one entry per module in the Debug
). This is the format of each such DMT entry:

L L L e e bt L LT T T PE A P PR - +
long | DST address of Module Begin DST Record '

e e T e e e e L L T LT T P Ry +

long ! Size in bytes gf module's DST :

LT L L L ettt L L L L LT P S PP PP +

long ! Unused--Must Be Zero i Number of PSECTs for module |

Y L L L L L T TP demnccnccccccscsccocncccccccccne- +

long ! Start address of first PSECT in module :

L L e T Py +

long ! Length of first PSECT in module in bytes :

torcconnncccccrsccscrrcecrecrecr et c e r e e e c e re s e Ter e es e s e n e - +

.o § (Two longwords per PSECT) §

s e ; ... ;
long Start address of last PSECT in module '

D e e e T L T T T +

long ! Length of Last PSECT in module in bytes i
P E R P P P T P P RO TG DS ST e e w e - - ...

Longword 0 gives the address relative to the start of the DST of the
Module Begin DST Record for this module. Longword 1 gives the size
of the DST in bytes for the same module. Longword 2 gives the number
of PSECTs in the module (i.e,, the number of statically allocated
program sections), and this is followed by that number of two-longword
Ba1rs which give the start address and length (in bltes) of each such
SECT. Since the number of PSECTs cannot exceed 65K, the uoper two
bytes of longword 2 are available for future expansion.

The DMT is used durin? DEBUG initialization to initialize DEBUG's Run-
Time Symbol Table (RST) and Program Static Address Table (Program SAT).
Using the DMT is much faster than the alternative procedure, namely

reading through the entire DST to pick up the needed information. The

* e ER O f AP EN S MR AR DO RS A ERO ws® WS RO GO NS G WE S WO AR MRS R AP S RS ARG RS ED S RS DO DS DO RS ED S AR AR R G S e S WR G L s s M Eme g ame s s

14
DSTRECRDS.REQ:1 16-SEP-1984 16:49:1§.30 Page 10

[P I e R L R R R L R R Ll T I L T T T T L Ty O ey

information in the DMT entry is enough to build a Module RST Entry for
each module in the DST and the PSECT information is used to build the
Program SAT. The amount of RST symbol table space needed per module is
not computable from the DMT information, but is estimated by multiplying
the DST size of each module by an appropriate scale factor.

OVERALL STRUCTURE OF THE DST

The Debug Symbol Table consists of a contiguous sequence of DST records.
Each DST record contains a two-byte header which gives the lLength of the
record in bytes and the type of the record. The structure of the rest
of the record (it anz) is determined by the record type. The lLength of
the DST in 512-byte blocks is given in the image file header; it the DST
does not fill the Last block, that block is zero-padded to the end.

The Largest structural unit within the DST is the module. Each module
represents the symbol table information of a segaratety compiled object
module. The DST for a module always begins with a Module Begin DST rec~
ord and ends with a Module End DST record. The Module Begin DST record
gives the name of the module and the source Language in which it was
written. The Module End DST record simply marks the end of the module
and contains no other information. As noted above, if present, the
Debu? Module Table (DMT) points to the Module Beatn DST record of each
module represented in the DST. DEBUG uses the DAT (if present) to lo-
cate all modules in the DST.

The DST as » whole thus always begins with the Module Begin DST record
for the first module in the DST. It is followed b! the symbol informa-
tion for that module. Then comes the Module End DST record for that
module. Immediately after that Module End DST record comes the Module
Be?wn OST record for the next module, and so on to the end of the whole
DST, where the Module End DST record for the Last module is found. The
rest of that image file block is zero-filled to the next block boundary.
Note that there is no break between modules in the DST,

NESTING WITHIN THE DST

For most Languages, the symbol table must represent a varietg of nesting
relationships. Routines sre nested within modules, data symbols are
declared within routines, and even routines are nested within routines.
Certain data constructs, in particular record structures, contain addi-
tional nesting relationships. In the Debug Symbol Table, such nesting
relationships are represented by Begin-End pairs of DST records. Ve
have already seen above that the largest subunit of the DST, namely the
module, is represented b; 8 Module Begin DST record and a Module End DST
record bracketting the DST information for the module.

This principle extends to other nesting relationships. The DST informa-
tion for a routine is thus represented bg 8 Routine Begin DST record and
d Routine End DST record enclosing the D3ST information for all symbols

F 14
DSTRECRDS.REQ:1 16=-SEP=1984 16:49:15.30 Page 11

local to or nested within that routine, Similarly, lexical blocks (such
as BEGIN-END blocks or their equivalents in various languages) are re-
Bresented by Block Begin and Block End DST records enclosing the symbol
ST records local to that lexical block. The nesting of routines and
blocks within one another to an, depth (within reason) is represented by
the proper nesting of the corresponding Begin and €nd DST records.

An example ma¥‘hegp_clarify this notion. The following example shows a
progr;n in a tictitious Language along the corresponding sequence of DST
records:

\

!

a

;

;

;

!

;

;

!

:

i

E Program Structure DST Record Sequence

; L X X X X ¥ X]

! MODULE M = Module Begin M

i BEGIN

| VAR SYM_M1: INTEGER; Data SYM_M1 (DTYPE_L)
! VAR SYM_M2: REAL: Data SYM M2 (DTYPE_F)
i ROUTINE R1 = Routine Begin R1

e BEGIN

| VAR SYM_R11: BOOLEAN; Data SYM_R11 (BOOLEAN)
! VAR SYM_R12: INTEGER; Data SYM“R12 (DTYPE L)
! END; Routine End (for R1Y

i ROUTINE R2 = Routine Begin R2

| BEGIN

| VAR SYM_R21: DOUBLE; Data SYM_R21 (DTYPE_D)
| VAR SYM“R22: INTEGER; Data SYM“R2?2 (DTYPE_L)
! ROUTégEI:ZA = Routine Begin R2A

{ VAR SYM_R2A: BYTE; Data SYM_R2A (DTYPE_B)
' BEGIN Block Begin (no name)
; VAR BLK_V1: WORD; Data BLK V1 (DTYPE W)
! nourégglzzaLxR = Routine Begin R2BLRR

| FOO:BEGIN Block Begin FOO

| VAR FOO_V:REAL; Data FOO_V (DTYPE F)

; END; Block End (for FO0)

i VAR R2BLK_V2:REAL; Data R2BLK_V2 (DTYPE F)
! END; Routine End (for R2BLKR)
i VAR BLK_V2: DOUBLE; Data BLK_V2 (DTYPE_D)
; END; Block End (for no name)
g END; Routine End (for R2A)
i VAR SYM_R23: REAL; Data SYM_R23 (DTYPE F)
; END; Routine End (for R2Y

g END; Module End

!

E

Here module (compilation unit) M contains two module-level data items,

r—

14
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.30 Page 12

SYM_M1 and SYM M2, and two routines, R1_and R2. Routine R2 in_turn con-
tains several tosal data symbols (SYM_R21, SYM_R22, and SYM R23) and a
nested routine RZA. R2A in turn contains an anon¥nous BEGIR-END block,
that blocks contains two local data symbols BLK_V1 and BLK_V2 and a
local routine RZBLKR, local routine RIBLKR contains a data symbol and a
Labelled BEGIN-END block FOO, and block FOO contains one Local symbol,
FOO_V. ALL this nesting is represented by Begin and End DST records 1in
the Debug Symbol Table as illustrated on the right.

Additional nesting must be represented for data. A record (called a
structure in some Languages) is a composite data object containing some
number of record components of various data types. A record component
may itself be a récord. In addition, some lLanguages allow records to
have ‘variants' (as in PASCAL), which imposes additional structure that
must be represented in the DST,

A record type is represented by a Record Begin and Record End DST record
pair brackett1ng the DST records for the record components. This notion
) 4

is illustrated this program segment and the corresponding DST:
Program Structure DST Record Sequence
TYPE RECTYP = Record Begin (RECTYP)
RECORD OF
COMP2: REAL; Data COMP2 (DTYPE_F}
COMP3: DOUBLE; Data COMP3 (DTYPE D)
END; Record End (for RECTYP)
Here RECTYP is a record type. Each object of this t¥gg is a record con-
taining three components, COMP1, COMP2, and COMP3. 1$ structure is
represented in the DST by a Record Begin DST record followed by Data DST
records for the components followed by a Record End DST record. The
addresses specified in the component DST records are bit or byte offsets
from the start of the RECTYP record as a whole.

In this example, the Reccrd Begin DST record for RECTYP may in fact re-
resent either a record type or a record object. A field in the Record
egin DST record indicates which. However let us assume that RECTYP

detines » record type. How do we then declare objects of that type?

1
i
;
i
i
i
:
i
i
:
i
i
;
:
:
:
!
i
:
;
:
:
;
i
:
i
: COMP1: INTEGER; Data COMP1 (DTYPE_L)
i
i
i
i
]
[
'
i
]
i
]
i
i
i
i
! The following example illustrates how:
i
i
i
'
i
[
i
i
[
i
i

Program Structure DST Record Sequence
Data RECI gSepTEQSeec)
TYPE RECTYP = Record Begin (RECTYP)
RECORD OF
COMP1: INTEGER; Data COMPY (DTYPE_L)
COMP2: REAL:; Data COMP2 (DTYPE_F)
COMP3: DOUBLE: Data COMPS (DTYPE D)
END; Record End (for RECTYP)

H 14
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.30 Page 13

Sl L T o e S S

ECTYP;
ECTYP; Data REC2 (SepTypSpec?
Type Spec DST record
(Indirect Type Spec
pointing to RECTYP)

Here the same record type RECTYP is defined. Two objects of that tyge
are also defined, REC1 and REC2. Both data objects are represented by
Separate T¥pe Specification DST records. Such a DST record must be im=-
mediately tollowed by a DST record that defines the symbol's data type.
The RECY Seearote Type Specitication DST record is immedistely followed
by the RECTYP Record Begin DST record; hence REC1 is of the RECTYP data
tyfe. The REC2 Separate Type Specification DST record is immediately
followed by a Type Specification DST record. This record contains an
Indirect Tyge Seecification that points back to the Record Begin DST
record for RECTYP, Hence REC2 is also of that record type.

Records may be nested in the sense that a record component may itself be
an object of some record type. A record component of a record type is
regresented the same way as an‘ other object of a record type, namely by
3 Separate I‘pe Specitication DST record. This record must be followed
by 8 Record Begin DST record or by a T{ge Specification DST record that
points to a Record Begin DST record. e record component can also be
represented b{ 8 Record Begin DST record directly if this record is
marked as defining an object rather than a type.

Record variants, as found in PASCAL, introduce additional structure. A
detailed description of how variants are represented in the DST is found
in the section on ''Record Structure DST Records’ later in this defini-
tion file. Here we will only give an example that illustrates the gene-
ral scheme that is used:

Program Structure DST Record Sequence

Data REC1 (Sep;zg?eec)

TYPE RECTYP = Record Begin (P)
RECORD OF
COMP1: INTEGER; Data COMP1 (DTYPE L)
CASE TAG: BOOLEAN OF Data TAG (BOOLEANY

Variant Set Begin
(tag variable = TAG)

FALSE: (variant Value for FALSE
COMP2: REAL: Data COMP2 (DTYPE_F)
COMP3: DOUBLE); Data COMP3 (DTYPE_D)

TRUE: (variant vValue for TRUE
COMP4&: INTEGER); Data COMP4 (DTYPE_L)

END CASE; Variant Set End

END; Record End (for RECTYP)

S
14
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1;.30 Page 14

VAR REC1: RECTYP;

Nesting is also used to describe enumeration types as found in PASCAL
and some other lLanguages. An enumeration type is described by an Enum=-
eration Type Begin DST record followed by Enumeration T Ye Element DST
records for all the enumeration Literals of the type fo{ owed by an
Enumeration Type End DST record. Any actual object of the enumeration
tng must be described by a Separate Type Specitication DST record.
This example illustrates what the DST for an enumeration type looks

like:
Program Structure DST Record Seguence
Data HUE (Sep!ypSBec)

TYPE COLOR = (Enum Type Begin COLOR
RED, Enum Type Element RED
GREEN, Enum Type Element GREEN
BLUE Enum Type Element BLUE
). Enum Type End (COLOR)

VAR HUE: COLOR;

VAR PAINT: COLOR; Data PAINT (SepTypSpec)

Type Spec DST record
(Indirect Type Spec
pointing to COLOR)

A more detailed description is found in the section entitled '‘Enumera-
tion Type DST Records’'® Later in this definition file.

for some DST record types, DEBUG ignores all nesting relationships below
the module level. Line Number PC-lorrelation DST records, for example,
may be scattered throughout the DST for a module. DEBUG treats all such
DST records as defining the Line number information for the module as a
whole, regardless of how they may be scattered within or outside the
routines and blocks of the module. Slm1larlg. Source File Correlation
OST records may be scattered throughout the DST for a module. Records
such as these can be generated wherever the compiler finds it most con-
ienient to generate them,

DATA REPRESENTATION IN THE DST

Data Symbols are described in the DST by a variety of representations,
Fundamentally, all such representations g\ve three pieces of information
about each data symbol: its name, its address or value, and its data
type. DEBUG needs additional information about a data symbol, in parti-
cular its scope of declaration, but that information is implicit in the

nesting structure of the DST as described above.

[Y Yy ypapgunpeaepearar § X TR TR R R R N L X R R R R e I T L LT T

The name is given by a Counted ASCI] string in the data symbol's DST

—

14
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1%.30 Page 15

record. The value or address can be given by a five-byte encodin? con=
taining one byte of control information and a longword address, offset,
or value. However, if this five~byte encoding is not adequate to de-
scribe the address or value, escapes to a more complex value specifica-
tion Later in the DST record are available. The data type maz be repre-
sented by » one-byte type code, but if that is not adequate there are
several escapes to a more comp[ex type description elsewhere in the DST.

The standard tive-byte value specification can specify any 32-bit or
smaller literal value, an‘ static byte address, any register address,
and any address that can be formed one indexing operation off a reg-
ister or one indirection or both, It a VAX Standard Descriptor exists
for the symbol in user memory, the five-byte encodtng can describe the
descriptor address by any of the above means; the actual data address is
then retrieved from the descriptor,

The standard five-b‘te vuolue specitication is adequate for the bulk of
all data symbols, However, there are cases when it is inadequate. It
cannot describe Literal values longer than 32 bits, it cannot describe
very complex address computations, and it cannot describe bit addresses
unless an appropriate descriptor is available in user memory. Ffor these
cases, the first byte of the five-byte encoding must have one of several
special escape values. The remaining Longword then contains (in most
cases) a pointer to a more complex value specification Later in the same
DST record. That more complex value scecification may consist of a VAX
Standard Descriptor or » 'VS-Follows'' Value Specification. A VS-Follows
Value Specification can, in the most complex case, contain a routine to
be executed by DEBUG to compute the desired value or address. This rou-
tine may even call compiler-generated thunks when the complexity of the
address computation so requires.

The details of these more complex value specifications are given in the
section entitled 'DST Value Specifications'' later in this definition
file. The point being made here is simply that the DST provides a
simple and compact value specification mechanism that is adequate for
all simple cases, but it also provides several escapes to arbitrarily
complex DST Value Specifications. These complex value specifications
are capable of describing all known address and value computations
required by the languages supported by DEBUG.

Data type specifications are done in a similar uaz. For all simple,
atomic data types, a single type byte describes the data type of a data
symbol. However, there are several escape mechanisms for more conelex
data types. One mechanism is to take the type information from a VAX
Standard Descriptor found either in user memory or in the DST. Another
is to use a Separate Type Specification DST record for the data symbol.
The data type is then described by a second DST record which immediately
follows the Separate TyBe Specification DST record. This second record
must be a Record Begin DST record (describing a record t{pe) an Enume-
ration Type Begin 05T record (descr1b1n?.an enumeration ypeS. or a Ilpe
Specification DST record. A Yage Specitication DST record can describe
any data type supported by DEBUG. It contains a DST Type Specification
for the data type in question. This lyBe Specification may be an Indi-
rect Type Specification, pointing to a DST record elsewhere in the DST
that defines the data type. Alternatively, it may describe the desired
data type directly and may be as complex as the data type requires.

P L X T T T N R g o S g

OSTRECRDS.REQ;1

[T TR T TR P

14
16=-SEP-1984 16:&9:1§.30 Page 16

DST Type Spgcifications are_described in a separation section elsewhere
in this definition file. The poin} being made here is simply that the
simple one-byte type specification is available for simple data types,
but several escag

. es to arbitrarily complex DST type specifications are
available when the simple type specification is inadequate.

DSTRECRDS.REQ; 1

- R IR I MBI @RIt BRI BRI BRI I G I B I @I IS RO AW SR Er S G ER e s wn f T W S NS O AR RS AR EE AR UG R, AR W RS SR IR DD UR G Al SRy am g e

-~

14
16-SEP-1984 16:49:1%.30 Page 17

FIELD ACCESS MACROS

The following macros are used in defining BLISS field names for all data
e

structures in the Debug Symbol Table. Thes
size, and sign-extension values when used in FlELD dec

se macros qupty the position,
arations for

BLOCK and BLUOCKVECTOR data structures. They are used instead of their

numeric equivalents because the
various generic forms (as speci

t

are clearer and less error-prone. The
ed by the letters in the names) are as

follows:
A Materialized address
L Longword
W lero-extended word
8 lero-extended byte
v lero-extended bit field
Sw Sign-extended word
S8 Sign-extended byte
SV Sign-extended bit field

The ‘A’ form should be used whenever the field being defined is such
that only the address of the field may be materialized in a structure
reference; that is, fetch and store operations on the field are not ’
valid. An example of such a field is an ASCI] string.

Each of the 'V'' and "'SV'' forms take one or two parameters. The first
parameter is the bit position within the lonauord or byte and the

second is the field size in bit
if omitted, it defaults to 1.

ositions are counted from the low-order (least s

Yonguord. starting at zero.

The second parameter is optional;

Thus V_(5) means bit 5 while V_(5,3)
means the $-bit field starting at bit S and endin? at bit 7. 'Bit
g

nificant) end of the

This follouing.field access macros are used in DSTRECRDS.REQ. Their
1

actual defini
the convenience of the reader.

MACRO
A- = 00 00 0 xo
Lo = 0, 32. 02X,
N = 0. 16. 0%,
B = 0, 8, 01X,
VI(P,S) = P, XIF INULL(
SW_ = 0,16, 1%,
S8 = 0, 8, 11,
SV(P,S)= P, XIF INULLI

S)

S)

ons are found in STRUCDEF.REQ, but are shown here for

! Address of a field
! Longword

! Yord, 2ero-extended
! Bgte 2ero-extended

XTHEN | X LSé

0

i
1

]

S XFI, 0 X, ! Unsigned
bit field
Word, sign-extended
the s12n-extended)
XTHEN 1 SELSE S $F1, 1 X, ! Signed

bit field

Bring in the field access macro definitions from STRUCDEF.L32.

IBRARY ‘'L IBS:STRUCDEF.L32';

" 14
DSTRECRDS.REQ; 1 16-SEP=1984 16:49:15.30 Page 18

THE DST KRECORD HEADER FORMAT

ALL DST records have the same general format, consisting of a tixed
two-byte header followed by zero or more.fig[ds whose format is
detergwned by the DST record's type. This is the format of all DST
records:

byte | DST$B_LENGTH

bdovsacsevan cesssecssascan L L Ly e =y

byte ! DST$B_TYPE

[]
1
'
0
i
i
i
i
1
i
i
1
i
i
i
! var
]
i
i
i
i
i
'
i
i
1
1
i
i
F

‘
+
| DSTSA_NEXT E
E lero or more additional fields depending on i
; the value of the DSTSB_TYPE tield §
temmeeemeeeeeemeeseseseceeeesesseseesseeessssecemc—scsssssemamae +
These fields appear in all DST records.
IELD DS@%?EADER_FIELDS =z
DSTS$B_LENGTH =C00,8_1, ! The length of this DST record, not
! 1nclud1ng.th1s length byte
DSTSB_TYPE =(C1,8_1, ! The type ot this DST record)
DSTSA_NEXT =01, A_) 3 The next DST record starts at this

location plus DSTSB_LENGTH
TES;

N
5.

14
DSTRECRDS.REQ;1 16=-SEP-1984 16:49:15.30 Page 19

SUPPORTED VALUES FOR DSTSB_TVYPE

ALl supported values of the DST record type field (DSTSB _TYPE) are
Listed here. 1f the value is in the range of DSCSK_DTYPE_LOWEST to
DSCSK_DTYPE_HIGHEST, it is a VAX Standard Type Code”and gTves the
data fype of the object being defined. In this case, the record is

a Standard Data DST Record or one of its variants. Otherwise, the
type value must be in the range DSTSK_LOWEST to DSTSK_HIGHEST or it
may be DSTSK_BLI. In these cases, the type code denotes the type of
the DST record and the format of the record is determined by type
value. ALl other tyﬁe codes are unsupforted by DEBUG. The type codes
between DSCSK_DTYPE_HIGHEST and DSTSK_LOWEST are reserved for future
use by Digital. The type codes in the range 192 - 255 are potentially
reserved tor use b‘ customers, although DEBUG does not support any
sugh type codes. DEBUG ignores all records with unsupported type
codes.

VAX STANDARD TYPE CODES

As mentioned above, VAX Standard Type Codes can be used as DST record
type codes for data symbols. The type code then gives the data tlpe
of the symbol in addition to indicating that the DST record has the
Standard Data DST record format or a variant thereof.

ALL VAX Standard Type (odes are Listed here for convenience. They are
commented out since they are actually declared in STARLET.REQ.

1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
]
i
'
i
i
i
]
i
i
i
i
i
i
i
i
i
i
1
i
L

ITERAL
! DSCSK_DTYPE_2 =0, ! Unspecified (May not appear in DST).
! DSCSK_DTYPE_V =1, ! Bit. i
! DSCSK_DTYPE_BU = 2, ! Byte logical.
! DSCSK_DTYPE_WU = 3, ! Word logical.
! DSCSK_DTYPE_LU = 4, ! Longword logical.
! DSCSK_DTYPE_QU =9, ! Quadword logical.
! DSCSK_DTYPE_B = 6, ! Byte integer,
! DSCSK_DTYPE_W =7, ! Word integer.
! DSCSK_DTYPE_L = 8, ! Longword integer.
! DSCSK_DTYPE_Q =9 ! Quadword integer.
! DSCSK_DTYPE_F = 10, ! S1ngle-precis on floating.
! DSCSK_DTYPE_D =11, ! Double-precision floating.
! DSCSK_DTYPE_F(=12, ! Comglex.
! DSCSK_DTYPE_DC =13, ! Double=-precision Complex.
! DSCSK_DTYPE_T = 14, ! ASCI] text string.
! DSCSK_DTYPE_NU =15, ! Numeric string, unsigned.)
! DSCSK_DTVYPE_NL = 16, ! Numeric string, left separate sign.
! DSCSK_DTYPE_NLO = 17, ! Numeric string, left overpunched sign.
! DSCSK_DYYPE_NR = 18, ! Numeric strirng, right separate sign,
! DSCSK_DTYPE_NRO =19, ! Numeric string, right overpunched sign
! DSCSK_DTYPE_NZ = 20, ! Numeric string, zoned sign.

15
DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.30 Page 20

The next two values are used for range checking of the type values
in DST entries. They are used mainly in CASE statements.

DSCSK_DTYPE_LOWEST
DSCSK-DTYPE “HIGHEST

! DSCSK_DIYPE_P = 21, ! Packed decimal string.

! DSCSK_DIYPE_2] = 5. ! Sequence of instructions.

! DSCSK_DTYPE_ZEM = ¢3, ! Procedure entry mask.

! DSCSK_DTYPE_DSC = 24, ! Descriptor, used for arrays of

! ! dynamic strings

' DSCSK_DTYPE_OU = 25, ! Octaword logical

! DSCSK_DIYPE_O = 26, ! Octaword integer _ '

! DSCSK_DTYPE_G = 27, ! Double frec1s1qn.6 floating, 64 bit
! DSCSK_DTYPE_H = 28, ! Quadruple precision floating, 128 bit
! DSCSK_DTYPE_GC s 29, ! Double precision complex, G floatvn?.
| DSCSKZDTYPE ZH(= 30, | Quadruple precision complex, H floating
! DSCSK_DYYPE_CIT = 31, ! (OBOL intermediate temporary

' DSCSK_DTYPE _BPV = 3%. ! Bound Procedure Value

! DSCSK_DTYPE_BLV = 35, ! Bound Label Value

! DSCSK_DTYPE_vu = 34, ! Bit Unaligned

i DSCSK_DTYPE_ADT = 35, i Absolute Date-Time

! = 36, ! Unused (not supported by DEBUG)

; DSCSK_DTYPE_VT = 37, ! Varying Text

:

!

!

!

1 ! Lowest OTYPE data type we support
37. ! Highest DTYPE data type we support

INTERNAL TYPE CODES FOR DEBUG

The following detinitions are used internally in DEBUG, but are not
supported in the DST. They should be deleted here if they are made
into standarc¢ VAX type codes declared in STARLET.REQ. These numbers
may change from one release of DEBUG to the next because they must
always be Larger than DSCSK_DTYPE_HIGHEST.

Define DEBUG-internal type codes.

M emtmtmrimcmtims st @imemems =

Fixed binar; used for A
and FIXED BINARY in PL/I. This
code is used the t;pe conversion
tables in DBGEVALOP.

ITERAL
DSCSK_DTYPE _AC = 38, ! ASCIC Text
DSCSK_DTYPE_AZ = 39, ! ASCIZ Text L.
DSCSK_DTYPE_TF = 40, ! Boolean True/False (length in bits)
DSCSK_DTYPE_SV = 41, ! Signed bit-field (aligned)
DSCSK_DTYPE_SVU = 42, ! Sigred bit-field (una 1?ned))
DSCSK_DTYPE_FIXED =463, IXED in ADA
|
1

! The following literals are used as CASE statement bounds internally
; in DEBL. for the range of DTYPE codes used.

r

15
DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.30 Page 21

LITERAL

L R I R L L

' BLISS
; other

LITERAL

DBGSK_MINIMUM DTYPE
DBGSK “MAX IMUM™DTYPE

0 ! Lowest internal DEBUG dtype value
«3; ! Highest internal DEBUG dtype value

The following definition is only used internally in DEBUG. [t is

a DTYPE code that is temporarily put into a Value Descriptor to
tell the address expression interpreter that the value Descriptor
came from a Literal constant. It does not have to be in the above
ranje because it is only used during the parsing of address expres-
sions. After the address expression has been parsed, if the DTYPE
is LITERAL, it is then changed to DSCSK_DTYPE_L.

P e T

DSCSK_DTYPE _LITERAL = 191; ! Value is from a Literal constant

OTHER DST TYPE CODES

The follouing_literals are the DST ty?e codes other than VAX Standard
Type Codes which can appear in DST$B_TYPE. Each indicates the format
of the record which contains it and most indicate the kind of object
being described by that record. When new DST records are defined, the
type code is assigned by nak1ng DSTSK_LOWEST one smaller and using that
value. The type codes above DSTSK_HIGHEST (191) are reserved, the idea
being that the DTYPEs 192 - 255 are architecturally reserved to users.
DEBUG ignores all DST records whose tgge codes are not DST$K_BLI, in
the range from DSCSK _DTYPE_LOWEST to DSCSK_DTYPE_HIGMEST, or in the

range DSTSK_LOWEST TO DSTSR_HIGHEST.

i pefine all Additional Debug Symbol Table record type codes. Note that the

Special Cases record has code zero (for historical reasons). All
type codes are in the range DSTSK_LOWEST to DSTSK_HIGHEST.

QSTSK_BLI = 0, BLISS Special Cases Record

DSTSK_LOWEST = 153, Lowest numbered DST record in this
range--used for range checking

DSTSK_VERSION = 153, Version Number Record

DST$K_COBOLGBL = 154, COBOL Global Attribute Record

DSTSK_SOURCE = 155, Source File Correlation Record

DSTSK_STATLINK = 156, Static Link Record

DSTSK_VARVAL = 157, Variant Value Record

DST$K_BOOL = 158,

Atomic object of tyge BOOLEAN,
Allocated one b: te.
low order bit = 1 it TRUE
low order bit = 0 if FALSE.

I I I I T T N R T Y R R R Y

DSTSK_EXTRNXT = 159, External-]s-Next Record (Obsolete)
DSTSK_GLOBNXT = 160, Global-]s-Next record (Obsolete)
DSCSK_DTYPE_UBS = 161, DEBUG internal use onl[(unaligned

bit string) (Obsolete)
DSTSK_PROLOG = 162, Prolog Record

r—

15
16-SEP-1984 16:49:12.30 Page 22

DSTRECRDS.REQ;1
DSTSK_SEPTYP : Separate Type Specification Record
DSTOSK_ENUMELT ! Enumerated Type Element Record
DSTSK_ENUMBEG ! Enumerated Type Begin Record
DSTSK_ENUMEND : Enumerated Type End Record
DST$K _VARBEG ! Variant Set Beqin Record
DSTSK_VAREND ! variant Set End Record
DSTSK_OVERLOAD ! Overloaded Symbol record
DSTSK_DEF _LNUM ! Definition Line Number Record
DSTSK_RECBEG Record Begin Record
DSTSK_RECEND Record End Record
DSTSK_CONTIN Continuation Record
DSTSK_VALSPEC Value Specification Record
DSTSK_TYPSPEC T{pe Specification Record
DSTSK_BLKBEG Block Begin Record
DSTSK_BLKEND B8lock End Record
QSTSK_COB_HACK COBOL Hack Record (Obsolete)

DST$K ENTRY

DSTSK_LINE_NUM_

DSTSK_BLIFLD

Reserved to DEBUG

Reserved to DEBUG

Entry Point Record .

Threaded Code P(=-Correlation
Record (Obsolete)

BLISS Field Record

DSTSK_PSECT PSECT Record)
DSTSK_LINE_NUM Line Number P(C-Correlation Record
DSTSK_LBLORLIT Label-or-Literal Record
DSTSK_LABEL Label Record

DSTSK_MODBEG Module Begin Record

DSTSK_MODEND Module End Record

DSTSK_RTNBEG Routine Beqin Record

DST$K "RTNEND
DSTSK HIGHEST

L LI L O LTI (T T T O L O 0 g o O I I O T O O O T O T T O T T I (I T O T A I T I [|

— b d) e D D i i D ll] D D e b e e o e e e e o o e e e e cd
OO0 0008000000 000000 20 OO N NN NNNNNNYNOOOOOOO~
- =2 OO 00 NONN SN =2 = O D Q0 ~NON N SN =2 OO 00 O N SN

®Ssrn & - L] ® % @ - . o ey @ ® - - @ . ° - - e - - @ . % ® » -

L L R T R e el I I I ' "

Routine End Record]
Highest numbered DST record in this
range--used for range checking

NOTE TO DEVELOPERS:

New DST Records should not be added at this end of the DST record number
range. VAX Standard Type Codes 192 - 255 are reserved to users. Hence
DEBUG does not use type codes in that range, even though DEBUG does not
support user-defined tlge codes, 3
by decrementing DSTSK_LOWESI and using that number for the new DST record.

New DST record numbers should be allocated

—

1%
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.30 Page 23

P R N R I IR et e

MODULE DST RECORDS

The Debug Symbol Table for each separately compiled module must be
enclosed within a Hodule-Begsn/Hodule-End pair of DST records. The
Module Begin DST record must thus be the very first DST record for

any segaratety compiled module (i.e., any object file) and the Module
End OST record must be the very Last OST record for the module. Only
one Module-Begin/Module-End pair is allowed in what the Linker sees
as 3 single object module, (If aultigle Module-Begin/Module-End pairs
are included in one object module, DEBUG wiLl only see the first such
pair and ignore the rest because the Linker will only tell DEBUG about
the location of the first Module Begin record.)

The Hodule-Begin/HoduLe-End pair defines a.s‘@bolic scope which con-
tains all symbols defined by DST records within that pair. The module
has the name given in the Module Begin DST record. The lLanguage of the
object module is also encoded in the Module Begin record.

-~

F 15
DSTRECRDS .REQ;1 16-SEP-1984 16:49:15.30 Page 24
THE MODULE BEGIN DST RECORD

The Module Begin DST Record marks the beginning of the DST for a module.
This DST record also gives the name of the module and the source Lan-
gua?e in which the module was written. The Module Begin DST Record

must be the the first DST record of everg compilation unit ('‘module’’)
and it must be matched by a Module End DST Record that ends the DST for
that module. Only one Module Begin DST Record is allowed to appear in
the DST for a separately compiled object module.

This is the format of the Module Begin DST Record:

byte 1 T DSTSB_LENGTH :
byte § DSTSB_TYPE (= DSTSK_MODBEG) '
byte DSTSB_MODBEG_UNUSED :
long DSTS$L _MODBEG_LANGUAGE '
e 4 osTe e
var ; The Module Name in ASCII ;

§ (The name's length is given by DST$B_MODBEG_NAME) E

bommmemeeemeemssseseectomomon oo cmmncmmeammeammemenm e emneaan ;

Define the fields and size of the Module Begin DST Record.
IELD DSTSMOOBEG_F IELDS =
SET

|
]
]
!
i
]
)
i
i
i
'
i
i
I.
i
;
i
i
i
5
! boccocvcossacoccssssassasa esecscsssaas LI I I TR T DL Y Y Ty ¥ +
L}
i
]
i
i
]
i
i
i
i
i
i
i
i
'
i
F

DST$8_MODBEG_UNUSED =(2,8_1. ! Unused--Must Be Zero)
DSTYSL_MODBEG_LANGUAGE = [3, L_], ! Languaag code of language in
! which module was written
DST$B_MODBEG_NAME =(7,8_1 ! Count byte in name counted
! ASCII1 string
TES.
LITERAL o
DSY$K_MODBEG_SIZE = 8; ! Size in bytes of the fixed part of

! the Module Begin DST record

! Detine all the Language codes that may aﬁpear in the DSTSL_MODBEG_I.ANGUAGE
! tield of the Module Begin DST record. (Note that DEBUG may not actually
; support all lLanguages that have language codes.)

LITERAL

—

15
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1?.30 Page 25

it eI B IR BmI MGG I @@ Im i m e @om e bl s

DSTSK_MIN LANGUAGE = 0, ! Smallest Language code
DSTSK MACRO = 0, ! Macro

DSTSK_FORTRAN = 1, ! Fortran

DSTSK_BLISS = g. ' Bliss

DSTSK_COBOL = J, ! Cobol

DSTSK_BASIC = 4, ! Basic

DSTSK PLI =S, i PL/I

DSTSK_PASCAL = 6, ! Pascal

DSTSK_C =7, ' C

DSTSKRPG = 8, i RPG

DSTSK “ADA =9 i Ada

DSTSK_UNKNOWN = 10, ! Language Unknown
DSTSK_MAX_LANGUAGE = 10; ! Largest language code

Here also we define all the same lanauage codes using names with the DBGS
prefix. This prefix is used in DEBUG for historical reasons. These names

E may eventually be discarded.
LITERAL

DBGSK_MIN_LANGUAGE = DSTSK_MIN_LANGUAGE, ! Smallest language code

DBGSK_MACRO = DSTSK_MACRO,” ! Macro

DBGSK_FORTRAN = DSTSK_FORTRAN,! Fortran
DBGSK_BLISS = DSTSK_BLISS, ! Bliss-32
DBGSK_COBOL = D.I$K_C080L, ! Cobol
DBGSK_BASIC = OSTSK_BASIC, ! Basic

DBGSK_PLI = DSTSK_PLI, ' PL/I

DBGSK _PASCAL = DSTSK_PASCAL, ! Pascal

DBGSK_(= DSTS$K_C, ' C

DBGSK_RPG = DSTSK_RPG, ! RPG

DBGSK “ADA = DSTSK_ADA, ' Ada
DBGSK_UNKNOWN = DSTSK_UNKNOWN,! Language Unknown
DBGSK_MAX_LANGUAGE = DSTSK_MAX_LANGUAGE; ' Largest lLanguage code

Language UNKNOWN requires some special explanation. DEBUG supports '‘unknown'’
Languages with a standard set of DEBUG functionality. This standard set in-
cludes all lLanguage-independent functionality plus "'vanilla-flavored'' language
expressions. Jdentifiers are assumed to allow A -2, 0-9, 8, and _. Symbol
references may include subsqr1ptin? (using round () or square (3 parentheses)
and record component selection (using dot=notation as in A.B.(). Most simple
operators are allowed in language expressions.

vhile not officially supported, language UNKNOWN is intended as an escape for
compiiers which do not yet have true DEBUG suggort. By specifying Language
code DSTSK_UNKNOWN in the DSTSL_MODBEG LANGUAGE field, such languages can
take advantage of whatever support DEBOG provides for unknown languages. It
and when true DEBUG support is provided, a8 new languaie code for the new
Language can be allocated by incrementing DSTSK_MAX_LANGUAGE by one and as-
signing that language code to the new language.

DEBUG treats any out-of-range lanauage code in the Module Begin DST record as
being equivalent to Language UNKNOWN. Use of the DSTSK_JNKNOWN lan?ug e code
or any ou--of-range lan?uage code is intended for interral use by Digital
only. DEBUG'S unknown- anguage sugport is not offticiailty supported and is

subject to possibly incompatible changes in future releases of DEBUG.

—

H 15
DSTRECRDS.REQ; 16-SEP=-1984 16:49:15.30 Page 26

] Internally, DEBUG §reqts the language code as a byte value, Hence any lan-
' guage code above 255 is truncate

to its low-order eight bits.

15
DSTRECRDS.REQ; 1 16-SEP=-1984 16:49:1;.30 Page 27

]
i
i
i
i
i
]
i
]
i
i
i
i
i
i
]
i
i
i
i
L

THE MODULE END DST RECORD

The Module End DST Record must be the Last DST record in the DST for a
compilation unit, Its sole purpose is to mark the end of the DST for
a separately compiled object module., There can be only one Module End
0ST record per module, matching the previous Module Begin DST record.
This is its format:

[~ 4
w
-
| o
@
[
-
m
=
(1]
-—
p <
”~
"
w—t
~

DST$B_TYPE (= DSTSK_MODEND) '

boccscsvossncsscovcsccaa Soeoscscsssaaan LY T T I ¥ ¥ ¥ ¥ ecoescecocoscccccerenee ¢

Define the size in bytes of the Module End DST Record.

ITERAL

DSTSK_MODEND_SIZE = 2; ! Size of Module End record in bytes

15
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1&.30 Page 28

R I I B @I IO IMIE I MBI D aEns GF o w0 s G wn? 5o wns Sl s s ars DD EN) M RS DS TS EE . ML MM ey g g ad SO AR, g a

ROUTINE ODST RECORDS

A routine is represented in the Debug Symbol Table by a pair of DST
records, ngmell a Routine Begin DST record which is matched with a
Later Routine End DST record. ALl DST records between the Routine
Begin and the Routine End DST records represent the symbols that are
declared in that routine or in nested routines or blocks. Nested rou-
tines are represented in the DST b‘ nested Routine-Begin/Routine-End
pairs. Lexical blocks (BEGIN-END blocks or the Like, depending on

the Language) may also be nested freely outside or inside routines,
provided all blocks and routines are properly nested.

Consider the following example of nested blocks and routines. 1If
routine R1 contains a nested routine R2 and_a lexical block B1 and
it block Bl contains routine R3 and Block B2, the DST would have the
following sequence of DST records:

Module Begin for whole module
...module-level data OST records...
Routine Begin for R1

...Local data DST records for R1...
Routine Begin for R2
...local data DST records for RZ...
Routine End for R2
Block Begin for B1
...local data 0ST records for B1...
Routine Begin for R3
...local data DST records for R3...
Routine End for R3
Block Begin for B2
...Local data DST records for B82...
Block End for B2
Block End for B1
Routine End for R1
Module End for whole module

In addition to defining a symbol scope, the Routine-Begin/Routine-End
air defines the name and address range of the corresponding routine.
he name and start address is found in the Routine Begin DST record

and the byte length of the routire is found in the Routine End DST

record. t is assumed that the start address is also the entry point
to the routine. The Routine Begin record also indicates whether the
routine uses a CALLS/CALLG Linkage or a JSB/BSB linkage.

K 1%
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.30 Page 29

THE ROUTINE BEGIN DST RECORD

The Routine Begin OST record marks the beﬁinnin ,0f a routine and the
associated scope. This record contains the routine's name and start
address and indicates whether the routine is a CALLS/CALLG routine

or & JSB/BSB routine. It must be matched by a Routine End DST record
Later in the DST, except if the Language of the current module is
MACRO. (Since MACRO routines have entry points but no well defined
end points, the Routine End record can and must be omitted for this
Language. This exception applies to no other language.)

This is the format of the Routine Begin DST record:

]

'

i

i

i

i

'

i

i

1

i

]

'

i

i

! frocosvvcanssssecccaa ooeeceseeaan eoseseceesseanw cceonesecescweccecsseae ¢
E byte i DSTSB_LENGTH i
g byte ! DSTSB_TYPE (= DSTSK_RTNBEG) , !
' fococsvcacsarsarnsreasrrrereTTecTTAaTOSSae easececscsesaed Ssesceocoecdocccaen ¢
E byte ! DSTSV_RTNBEG_UNUSED iNO_CALL:
J dommmecccccccccccccccoccrcccrccncecccccccccancscccncaaa crterococs +
E long i DSTSL_RTNBEG_ADDRESS '
¢ Yeescccsccacosssssssssse LI L L L L XL DL P Y2y L Y ¥y oeoesecocossecew L 4
E byte | DSTSB_RTNBEG_NAME '
! trcccncccccccccccocccceccrcccccccaccerrcccccccceccccrccccaccscen -
! var ' i
5 | The Routine Name in ASCII |
g : (The name's length is given by DSTSB_RTNBEG_NAME) §
i : E
| LI T T IS L P L L D DL P P L L L Y L UL L P P +
1

i

i

: Define the fields and size of the Routine Begin DST record.

F

IELD DSTSRTNBEG_FIELDS =
SET

DSTSV_RTNBEG_UNUSED = [2, v_(0, 7)], ! Unused=-Must Be lero _
DSTSV_RTNBEG_NO_CALL = [2, v_(7, 1) 1, ! This bit is set if this rou-

! tine is invoked with a

! JSB or BSB rather a CALLS

! or CALLG instruction
DSTSL_RTNBEG_ADDRESS = [3, L_ 1, ! The routine's start address

! and entry point address
DSTSB_RTNBEG_NAME =07,8_1 ! The count byte of the rou-

! tine's Counted ASC!] name
TES.;

LITERAL

DSTSK_RTNBEG_SIZE = 8. ! Byte size of the fixed part of the
! Routine Begin DST record

15
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1%.30 Page 30
THE ROUTINE END DST RECORD

The Routine End DST Record marks the end of a routine's scope in the
0ST. It also contains the byte length of the routine's code. (Note
that Routine End DST records must be omitted for Language MACRO but
are mandatorgsfor all other Languages.) This is the format of the

]

i

]

i

i

i

g

; Routine E€nd DST record:

i

! LTI R P L L T L L T T T L T cocssssccans +
E byte i DSTSB_LENGTH (= 6) i
g byte ! DSTSB_TYPE (= DSTSK_RTNEND) !
! et D e e e D ST L T L EL L LR L L P L L LR +
5 byte | Unused (Must Be Zero) i
! boccccanvrmcccscsscan LL L LY L X Y ¥ ¥} CL T L LY T Y Y 1 ¥ ¥ ¥ cecaceeteechteosneeeeewe
E long | DSTSL_RTNEND_SI11ZE '
i L e T T A Sy +
]

i

: Define the tields of the Routine End DST record.

f

1ELD DS;:?TNEND_FIELDS =
DSTSL_RTNEND_SIZE
TES.

L 3.L_]! The length of the routine in bytes

DSTRECRDS.REQ; 1 16-SEP=-1984 16:49:1

I M IE BRI IR M IR IR I I I P P R R L R L I IS Y s M S SR P SR GRS G s ER e ER g ER O S g Wy W g wm @

Mm15
5.30 Page 3

LEXTCAL BLOCK DST RECORDS

A “Lexical Block’'' is any programming language construct other than a
routine that defines a scoee within which symbols can be declared.
What distinguishes a ''block’’ from a '‘routine’’, from DEBUG'S point of
view, is that a block is always entered by jumping to it or simply
falling into it while a routine is always entered by a call instruc-
tion of some sort. A routine has a entry point that can be called;

8 block does not. Hence BEGIN-END blocks in BLISS and PL/] are blocks
and so are Paragraphs and Sections in (0BOL. Subroutines, functions,
and procedures, on the other hand, are ‘'routines’''.

Blocks and routines do have one thing in common, however. Both define
syntactic units within which other symbols can be defined. The pur-
pose of representing blocks in the DST is to define the scopes they
e?cloge and to give the address ranges of the corresponding bodies

of code.

A lexical block is represented in the Debug Symbol Table by a pair_

of DST records, namely a Block Begin DST record which is matched with
a (ater Block End DST record. ALY DST records between the Block Begin
and the Block End DST record represent the symbols that are declare

in that Llexical block or in nested routines or blocks. Nested blocks
are represented in the DST by properly nested Block-Begin/Block~End
pairs. Routines and blocks may freely be nested within one another,
us1n8 the appropriate proper nesting of the corresponding Begin and
End DST records.

The start address of a block's code is given in the Block Begin DST
record and the byte Length of that code’is given in the Block End

DST record. The name of the block is given in the Block-Begin record.
It 8 block has no name (which is common for BEGIN-END blocks), the
null name is ?3ven (the name of length zero). Blocks with nq[l.names
cannot be explicitly referenced in DEBUG, but (ine numbers within such
blocks can be used to specify breakpoint Locations or symbol scopes.

N 15
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.30 Page 32

THE BLOCK BEGIN DST RECORD

The Block Begin DST Record marks the beginning of a lLexical block and
the associated scope. This record contains the block's name and start
address. It must be matched by a Block End DST record later in the
DST. This is the format of the Block Begin DST record:

]

i

i

i

i

;

i

i

i

! LT T T Y T eocessecaesa s s 5 D D D D D D G P D D D D D D D L P D D D R D R P R D D S 4+
! byte i DSTSB_LENGTH i
g byte i DSTSB_TYPE (= DST$K_BLKBEG) i
g byte ! DST$B_BLKBEG_UNUSED ;
g long } DSTSL_BLKBEG_ADDRESS :
g byte ! DST$B_BLKBEG_NAME i
! doccssovsscocssssssssacncecssesssans L L X X Y ey Yy Y T Y YT YT Iy YSy

! var ' '
s 5 The Block's Name in ASCII E
g § (The name's length is given by DSTSB_BLKBEG_NAME) §
S e
i bosoccoesacsscccasca LI Y Y I T Y T I IS - - - A R D D D D G R R M D D TR D S D D D D G S A +
] .

i

i

. Define the fields of the Block Begin DST record.

f

JIELD DSTSBLKBEG_FIELDS =
SET

DSTSB_BLKBEG_UNUSED =(2,8_1, ! Unused=--Must Be lero
DSTSL_BLKBEG_ADDRESS =3, L_1. ! The block's start address
DST$B_BLKBEG_NAME =[07,8_1 ; The count byte of the block's

Counted ASCII name
TES;

-

1
'DS‘RECRDS.REG;1 16-SEP-1984 16:49:12.38 Page 33
THE BLOCK END DST RECORD

The Block End DST Record marks the end of a lexical block s scope in
the DST. It also contains the bgte length of the block's code. This

\

[}

1

]

[]

: is the format of the Block End DST record:

]

! temcccccnccsccnncccccctctctcsbettnccccccccccnas s sccacccccccacce +

E byte | DSTSB_LENGTH (= 6) :

! frccccnccccccrccsccrcnnccccccececcecccrcsnceccaaaa srecscscscscnanane +

; byte ! DSTSB_TYPE (= DSTSK _BLKEND) :

! D e e T T e Y T T +

; byte | Unused (Hust Be Zero) :

J e et D L el +

E long DSTSL_BLKEND_SIZE :
P r e e E Cr S e C C CCCCC R R RN BT DT ST T DS i D e - . e

i +

[}

!

; Define the fields of the Block End DST record.

FIELD DSTSBLKEND _FIELDS =

SET
DSTSL_BLKEND_SIZE
TES;

[3.L_.]! The tyte length of the lexical block

1
DSTRECRDS .REQ;1 16~SEP-168¢4 16:49:1%.38 Page 34

e e R R I T L T iy U Uy S Py

DATA SYMBOL DST RECORDS

Data symbols are represented in the Debug S{mbol Table by data DST
recoras which come in severa. varieties. ALl such DST records give
three pieces of information about each symhnl: the data type of the
symgot. the value or address or the symbol, and the name of the

sym o L]

The Standard Data DST record is the simplest form of data DST symbol
record and is used for most ordlnarx atomic data objects. It repre-
sents the data type by a one-byte VAX Standard Type Code. It repre-.
sents the value or address of the s{mbol by a simple five-byte encoding
capable of specifying 32-bit Literal values, absolute addresses, reg-
ister locations, and addresses computed as offsets from a register,
possibly including indirection., It is also possible to specify that
the computed address is the address of a VAX Standard Descriptor for
the data symbol. Finally, the name is represented as a Counted ASCII
character string.

There are several reasons why a Standard Data DOST record may not be
adequate to represent a data symbol. First, the symbol's data type
may be too complicated to re?resent by a one-byte type code. In this
case, one of several available escape mechanisms must be used so that
expanded type information can be included in the symbol's DST informa-
tion. Second, if the symbol is a literal (a named constant), its
value may be too lLarge to fit in one longword. In this case, an ex-
panded value specification must be used. And third, if the symbol is
a variable, its address may be specified by a more com?l1cated compu-
tation than can be represented in the Standard Data DSV record. In
gh1s c:se, an escape to a more complicated value specification must

e used.

Expanded type specifications come in three main forms: Descriptor
format DST records, Se?arate Type Specification DST records, and
various specialized DST records that handle various special kinds
of data types such as record structures, enumeration types, and
BLISS structures.

Descriptor Format DST records are used when the data object must be
described by a VAX Standard Descriptor and has a static address. A
packed dzcimal deta cbject, for example must be described by a
descripcor that specifies the object's length and scale factor. 1If

8 desc’ iptor exists in user memory at run-time, the Standard Data

DST record can be used, but otherwise it is necessary to include the
descrnstor directly in the DST within a Descriptor format DST record.
These DST records are used for all static arrays and other data objects
that can be described by VAX Standard Descriptors.

for data types that can be described by neither one-byte type codes
nor VAX Standard Descriptors, a Separate Type Specification DST record
m.st be used. In this case the DSV record's tlge tfield indicates that
the type sgecification is found is a separate DST record which imme-
diately follows the present DST record. The DST record that follows
must be a Type Specification, Record Begin, or Enumeration lype Begin

1
DSTRECRDS.REQ;1 16~SEP-1984 16:49:12.38 Page 35

® En P D g Em g e U TR L EE s W e AR NRG ERE A TR MR, am s amg e W AR W g e

DST record. These records can describe all data types supported by
DEBUG in full detail.

As mentioned above, the third data type ‘‘escape’’ mechanism is to use
one of 8 number of specialized DST -ecords that describe data symbols
of special kinds. BLISS structures and fields, for example, are de-
scribed by special DST records, as are enumeration type elements.
These DST records will not be_iurthgr.dgscrmped in this section; they
are described elsewhere in this definition file.

Expanded '‘Value Specifications’’ must be used for data symbols whose
values or addresses are too long or too complicated to be described
by the Standard Data DST record. A D-Floating constant, for example,
has too large a value (B bytes) to fit in a Standard Data DST record.
A "‘based variable' in PL/] may require a complicated computation or
even a call on a comp1uer-generated thunk to compute the variable's
address. for these and other cases, a Trailing Value Specification
DST record must be used. Such a record includes a Value Specifica-
tion which may be arbitrarily complex,

Trailing vValue Specification DST records are sometimes used to speci-
fy both type and address information. An array with dynamic array
bounds, for instance, must be described in the DST if no descriptor
exists in user memory at run-time. A Tflllln? Value Specification
can be used to compute the entire descriptor for such an array at
DEBUG-time. The descriptor then gives both the array address and
type information such as the element type and the array bounds.

1
DSTRECRDS .REQ;1 16-SEP~1984 16:69:1§.38 Page

b R e i i I T R TP I gy P R S

byte
byte
byte
long
byte

var

THE STANDARD DATA DST RECORD

The Standard Data DST record is used to describe most simple scalar
dats objects such as integers, floating-point numbers, and complex
numbers. The dats t ge 1s represented by the one-byte VAX Standard
Type Code in the DST TYPE fieid. The value DSTSK_BOOL is also
accepted; it denotes that the data symbol is a Boolean variable or

value which is TRUE if the low=urder bit is set and FALSE otherwise.

The value specification in the Standard Data DST record indicates

the symbol's value ¢r address or how %0 compute the symbol's address.

The details are found below.
This is the format of the Standard Data DST record:

[LT Y T P LY T Ry N T T T T T T T I I T T I Y TYYYYS ceesaesd

' DST$B_LENGTH i
: DSTSB:TYPE '

LT TP ¥ ¥ T Y Py Y Y yy ¥ry ¥y ¥ i ysrry S s

+
' DSTSV_REGNUM « DISP i INDIR | DSTSV_VALKIND !
+

fossacscsseviedecoencenacssescovas LX T T T TR T oo cacacaves $

: DSTSL_VALUE :

§ The Symbol Name in ASCII
§ (The name's length is given by DSTSB_NAME)

Define the fields of the Standard Data DST record. These fields are also
vsed in many other DST records of similar formats.

IELD DSTSSTD_FIELDS =
SET

a counted ASCII string

36

DST$B_VFLAGS = [2.8_1, ! Value-Fgags (access information)
DSTSV_VALKIND = [2, v_(0,2)),! How to interpret the specified value
DSTSV_INDIRECT = ([2, v_(2)], ! Set it address of address is produced
! by indicated computation (do an
! .indirection to compute address)
DSTSV_DISP =2, v_(3)], ! Set if content of DSTSL_VALUE is used
! as a displacement off a register
! specified in DSTSV_REGNUM
DSTSV_REGNUM = (2, Vv_(4,4)),! Number of register used in displace-
: ment mode adoressin
DSTSL_VALUE =(3, L.], ! value, address, or bit offset
DSTS$B_NAME =[7.8_] ; Count byte of the symbol name field,

F 1
OSTRECRDS .REQ; 1 16-SEP-1984 16:49:15.38 Page 37

TES;

: Define all special values that may appear in the DST$B_VFLAGS field. 1If one
. of these values apgears in that field, the DSTSL_VALUE field has some special
: meaning indicated by the special value. In such cases, the DSTS$B_VFLAGS sub-
! fields have no meaning. Not all of these sgec1al values may appear in a
: Standard Data DST record (see the comments below), but they are all listed
! here for completeness. Note that these values (with one exception) all have
! the top four bits set--hence they cannot be normal VFLAGS values since the
} REGNUM field cannot contain 15 (indicating the PC) in a normal VFLAGS value.
LITERAL

DSTSK_VFLAGS _NOVAL

128, ! A tlag which indicates that no value

' is specified, i.e. the object

! being described is a type. This
! value may only appear in a Record
! . Begin DST record.

! This value is DST$B_VFLAGS signals a

! data item that was never

! allocated (and hence has no

: address). For example, PASCAL

! does not allocate variables

; that are not referenced.
i

i

i

i

i

i

i

i

DSTSK_VFLAGS _UNALLOC 249,

250,
251,
253,
255;

DSTSK_VFLAGS_DSC
DST$K_VFLAGS_TVS
DST$K_VS_FOLLOWS
DSTSK_VFLAGS_BITOFFS

This value in DST$B_VFLAGS signals a
. Descriptor Format DST record
This value in DST$B_VFLAGS signals a

Trallin? Value Spec DST record
Value Specification Follows (allowed
only in a Trailing Value Spec)
A flag indgcat1ng.that DSTSL _VALUE
contains a bit offset (used
only for record components)

! Provided the DBGSB_VFLAGS field does not have one of the above special values,
! the DBGSV_VALKIND Ytield indicates what kind of value or address is computed
; by the value computation. The possible values of this field are defined here.

LITERAL

DSTSK_VALKIND_LITERAL = 0, ! DSTSL_VALUE contains a literal value

DSTSK_VALKIND_ADDR =1, ! Computation produces the address of
b the data object

DSTSK_VALKIND_DESC = 2, ! Computation produces the address of a
' VAX Standard Descriptor for the
! data object .

DSTSK_VALKIND_REG = 3 ; Value is contained in the register

whose number is in DSTSL_VALUE

[f the DSTSK_VFLAGS field does not contain one of the special values Listed
above, then the computation that produces the value or address of the data
object proceeds as follows:

1. It the VALKIND field contains DSTSK_VALKIND LITERAL, the symbol is a
constant whose value is given by the DSTSL_VALUE field. Such constants

—

1
DSTRECRDS.REQ; 1 16-SEP-198¢4 16:49:1?.38 Page 38

SIS MR AR NI IR M IR R PN I IRt IR IR P B R MR ER T I PRI U S W AR P U W L AR U g R S WL w g W

can be up to 32 bits Llong.

2. 1f the VALKIND field contains DSTSK_VALKIND REG, the symbol is a vari-
able bound to a register. The regiSter number of that register is
given by the DSTSL_VALUE field.

3. Otherwise, the symbol is a variable with a non-register address. To
compute that address, the DSTSL_VALUE field is picked up.
the

4. 1t the DSTSV_DISP bit is set, contents of the register whose reg-
ister number is glven by the DSTSV_REGNUM field is added to the value
picked up from the DSTSL_VALUE field.

5. 1f the DSTSV_INDIRECT bit is set, the address computed so far is treated
as the address of a pointer that points to the actual data object. In
other words, an indirection is done.

6. 1f the value of the VALKIND field is DSTSK_VALKIND_ADDR, the address
computed so far is treated as the address of thz data object.

7. 1t the value ot the VALKIND field is DST3K_VALKIND_DESC, the address
computed so far is treated as the addre;s of a VAX Standard Descriptor
for the data object. The actual addres: of the object, along with 1ts
other attributes such as type and size, must therefore be retrieved
from that descriptor.

3
h

As this description indicates, moderately complicated address congutations
can be specified in the Standard Data DST record. For example, the address
of the second formal garameter to a routine, passed b; reference, can be
described by making DSTSV_REGNUM = 12 (for register AP), DSTSL_VALUE = 8
(to indicate an offset of 8 bytes from AP to get at the second longword in
the arqument vector), DSTSV_DISP = 1 (to indicate that DSTSL_VALUE is to be
treated as a displacement off AP), and DSTSV_INDIRECT = 1 (td indicate an
indirection since the ar?unent is passed by reference). DSTSV_VALKIND =
DSTSK_VALKIND_ADDR in this case. If the parameter were passed by descrip-
tor, however, DSTSV_VALKIND should be DST3K_VALKINKD DESC, with all other
tfields having the same values as in the passed-by-reference case.

—
H 1
DSTRECRDS.REQ; 16-SEP-1984 16:49:15.38 Page 39

THE DESCRIPTOR FORMAT DST RECORD

—wma i,

The Descriptor Format DST record is used when a VAX Standard
Descriptor must be included in the DST for a static symbol. It
includes the descriptor directly in the DST record right after
the name field. This record is essentiallg identical to the
Standard Data DST record except that the DST$B_VFLAGS field has
the special value DST$K_VFLAGS DSC and the DSTSL_VALUE field is
a relative b¥te offset to the VAX descriptor Later in the record.

Define the fields of the Descriptor Format DST record.

;
;
:
:
i
E This is the format:
i
! L T T S s
; byte | DSTSB_LENGTH '
M bosacsaa - - D D D R R T D S T P D R D D D TP D D D D A D D D D WD D D S ¢
; byte | DSTSB_TYPE !
! LD T T Y T Y T L T I I Y Y Y. ¢+
E byte i DSTSB_VFLAGS (= DSTSK_VFLAGS_DSC) '
M Sdutatednd e L L DL L B L D L D L DL DL I L LI L L D L I L P L P e L Y +
; long ! DSTSL_DSC_OFFS | o=t
| L T T Y e g g g L L, ¢+ !
; byte DSTSB_NAME (also OSTSA_DSC_BASE) ! '
! b I DI LD e DL ST e DL L L ST P it + :
! var H H H
E ; The Symbol Name in ASCI] E i
é § (The name's length is given by DSTSB_NAME) E i
I L
i ¢occcccccaccsses toccccccssccscvcan trccccrsrsernrresnorasrensenseswennen r's !
; tong | DSCSB_CLASS i DSC$SB_DTYPE | DSCSW_LENGTH i<--4
. fommswscvconvescebsoescoscscvsacaccaas dosoccvavcoconccsscasssscsvcovcana -
t long | DSCSA_POINTER i
. ’ ...
! var ' '
; ; Other VAX Standard Descriptor Fields 5
g § depending on the descriptor class E
H ' '
E L T T Y T T T T T T SR ¢
]
:
:
i
:
FIELD DSE:?SC_FIELDS = ’

DSTSL_DSC_OFFS =C 3, L_ 1, ! Offset in b;tes to descriptor

! from DSTSA_DSC_BASE
DSTSA_DSC_BASE =C 7, A_] ! Descriptor starfs at this loc-

ation ¢ DSTSL_DSC_OFFS
TES;

————

DSTRECRDS .REQ; 1 16=-SEP-16584 16:49:1;.%8 Page 40

E Note that the address of the descriptor is computed as follows:
' DST_RECORDLOSTSA_DSC_BASE] + .DST_RECORDIDSTSL_DSC_OFFS)

—

1
DSTRECRDS.REQ; 1 16-SEP-1984 16:&9:1%.38 Page 41
THE TRAILING VALUE SPECIFICATION DST RECORD

The Troiliq?_v;lqe Specification DST record is used when an expanded
value specitication is needed to compute a data symbol's value or
address. It includes a Vaiue Specification directly in the DST rec-
ord right after the name field. This record is essentially identical
to the Standard Data DST record except that the DSTSB_VFLAGS field has
the special value DSTSK_VFLAGS_TVS and the DSTSL_VALUE field is a
relative byte offset to the value Specification Tater in the record.
This is the format:

+

................................... LI LT LY L LY Y Y Y Y LYy Yy ¥ ey
byte ! DSTSB_LENGTH '
fooscacsan cosssenaaas - AN S - - D D D D W D R G D R D @ -oaoeeee L
byte | DSTSB_TYPE '
boccavcosssssssssvssssvsosccccsana ceocvececesean esesecssessscnaswesssaas +
byte i DSTSB_VFLAGS (= DSTSK_VWFLAGS_TVS) '
... +
long ! DSTSL_TVS_OFFSET i---+
teccccccs rsccccccccncnrcnerncccane cecscencrscsssssasasssssccsbennnae H
byte i DSTSB_NAME (also DSTSA_TvS_BASE) i E
var H ' E
E The Symbol Name in ASCII] 5 5
§ (The name's length is given by DSTSB_NAME) § E
$emmemecceeeeccemcmeeeemesecesseseemmemsemmesmesecceemcmcemeemne N
var : 1 <==4%
; DST value Specification E
$emecemecoammemeecemcmeemeemssemscesccmccmcmcmccemceeemee-= ;

Define the fields of the Trailing Value Specification DST record.

Meimrtmemrrsramimimimimomeanys mouns

IELD Dsg:}VS_FlELDS =
DSTSL_TVS_OFFSET = [3, L_ J, ! Offset in bytes to trailing Value Spec
i from DSTSA_TVS_BASE ,
DSTSA_TVS_BASE =L 7, A_ 1 ! Trailing Value Spec starts a. this
TES ! Llocation + .DSTSL_TVS_OFFSET

! ?o{t that the address of the trailing Value Specification is computed as
! follows:

]
g DST_RECORDIDSTSA_TVS_BASE] + .DST_RECORDLDSTSL_TVS_OFFSET]
i

1
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1§.38 Page &2

! Also note that value Specifications are described in a separate section
: Later in this definition file,

1
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1&.38 Page 43
THE SEPARATE TYPE SPECIFICATION DST RECORD

The Separate sze Specification DST record is used when the data type
of the symbol cing described is too complex to be described by a

a one-byte type code or a VAX Standard Descriptor, This DST record
must be immediately followed by a Type Specification, Record Begin,

or Enumeration Type Beain DST record which describes the data type

of the data symbol. (Unly Continuation DST records may intervene.)
The format of the Separate Tgpe Specification DST record is essenttial-
Ly_identical to that of the Standard Data DST record, It may contain
a Trailing value Specification if necessarK to describe the symbol's
value or address. This is the format of the record:

A Trailing Value Specification or nothing,
depending on the value of DSTSB_VFLAGS field

L e e e e L T PP covrocescecanan +
byte ! DSTSB_LENGTH '
$teccsssscsans coscosscsane sscsescesaane esecescsessscraenessceccaacanenow +
byte i DSTSB_TYPE (= DSTSK_SEPTYP) i
byte ! DST$B_VFLAGS '
$ocenscscsssssnsnsssscsssacsnas essscsecca Shececosesssssserreseeoee +
long | DSTSL_VALUE i
D Y Y Y Py, csseconcecsen
byie | DSTSB_NAME '
tecccnccncssssrrrenrerencscccccana cascccscccccccn cecccococccccnnn +
var ' :
5 The Symbol Name in ASCII] E
§ (The name's Llength is given by DST$B_NAME) E
temmeccemmcmccesssescecmemecmmemcesememeeemseseeessseccmcmmmmm—= +
var E
‘

SR AR N AR NP DY AR RS ED S D RS RS NG W RS R G RS S S RS D N an P ED S NG R A P W RN EE AR G WD En g a

M1
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.38 Page 44

T N T X X R R TR R T R R R il R et e e E X o X iy e AU S

DST VALUE SPECIFICATIONS

A DST Value Specification specifies the value or address of some symbol.
Value Specification can occur in a number of places in the Debug Symbol
Table. The simplest forms of Value Specifications occur in the Standard
Data DST record. A somewhat more complicated form occurs in Descriptor
Format DST records where a VAX Standard Descriptor is included in the
DST record to give more complete address information (and type informa-
tion). The Trailing value Specification DST record has a simple five-
byte Value Specification at the beginning of the record which points to
a more complex Value Specification at the end of the record. That more
complex Value Specification can be any kind of Value Specification, in-
cluding the most general forms.

In addition, Value Specifications may occur in a number of Type Speci-
fications. In these cases, they typically generate values (as opposed
to addresses), such as subrange bounds for a subrange data type, or they

generate full VAX Standard Descriptors in order to specify some sort of
ata type, such as a dynamic array.

ALL value Specifications start with one byte, the DST$B _VS_VFLAGS field.
In Standard Data DST records, this field and the DST$B_UFLAGS field are
synonymous, If this field has one of the special valués DSTSK_VFLAGS_xx
described in the Standard Data DST Record section above, the format of
the Value Specification depends on that value. Otherwise the VILAGS
field is interpreted as a set of subfields, namely DSTSV_VS_REGNUM
DSTSV_VS_DISP, DSTSV_VS_INDIRECT, and DST$K_VS_VALKIND. "This is also

described in detail Tn the Standard Data DST Record section above.

STANDARD VALUE SPECIFICATIONS

As indicated above, if the DST$B_VS_VFLAGS field does not have a special
value, the Value Specification is a Standard Value Specification and has
the following structure:

iy
: DSTSV_VS_REGNUM

dosscsnevcenwmoscsscvvancaceerneeeesee

............... +
$V_VS_VALKIND !

o
[
wn
v

+--e
o
P 4
o
[
)

+--e

: DSTSL_VS_

N ==

Detine the fields of the various kinds of Value Specifications. Also define
the declaration macro.

FIELD DSTSVS_HDR_FIELDS =
SET

DST$B_VS_VFLAGS z

- 0,8_1, ! value-flags (access info)
DSTSV_VS_VALKIND v

~(0,2)], ! How to Iinterpret the value

DSTRECRDS.REQ;1

TSV_VS_i

TSVoVSTD
1SV_VS_REGNUM

TSL VS VAL UE
DSTSL_VS_DSC_OFFS
DSTSA_VS_DSC_BASE
DSTSL_VS_TVS_OFFSET
DSTSA_VS_TVS_BASE

DSTSW_VS_LENGTH

05
DS
DS
DS

DSTSB_VS_ALLOC
DSTSA-VS “MATSPEC

TES:

MACRO

wannwuwn
« & s s @
[I I B]
~ o~ o~
L I
I~
~t babland
. s

'
-

"
.
[}
-

MY Y Y CWWWEWY
—_ N s N OO0
-

£ » M » M
d d e e BN LNND

]
-

' Length of Value Spec inrfltes

e
o~
-

w
.
[

>» D

[1 .]

1
16-SEP=-1984 16:49:1?.30 Page 45

. Set to get indirection
! Set for register displacement

J, ! Register number for indexing
. Value, address, or bit offset
. Otfset in bytes to descriptor

from DSTSA_VS_DSC_BASE

i Descriptor starfs at this Loca-

tion ¢ DSTSL_VS_DSC_OFFS

' Otfset in bytes to Value Spec

from DSTSA_VS_TVS BASE

| value Spec starfs at tRis loca-

tion + DSTSA_VS_TVS OFFSET

not counting the V 6S

ang VS_LENGTH fields

: Allocation indicator
! Location of Materialization

Specificaticn

DSTSVAL_SPEC = BLOCKL,BYTE) FIELD(DSTSVS_HDR_FIELDS) X;

E The tollowing Literal values may appear in the DST$B_VS_ALLOC field.

LITERAL
DSTSK_VS_ALLOC_STAT
DSTSK VS ZALLOCTDYN

: Value is static
! Value is dynamic

. Detine the fields of the Materialization Specification. Also define the

! declaration macro.

L]

FIELD DSTSMS_FIELDS =
SET

DSTSB_MS_KIND
DSTSBMS MECH
PSTSB MS FLAGBITS
DSTSV MS NOEVAL
DSTSV_MS”DUMARG
DSTSAZMS MECH_SPEC
DSTSL_MS_MECH_RTNADDR

TES;

MACRO

eI N Y

WAV = O

NS

r‘><<w.mm
N~

= O

" a8
. .

The kind of value produced

The mechanism whereby produced

Flag bits L

Purpose of this bit not clear

Include dunn‘ argument on catl

Location of Mechanism Spec

Routine address for call on
compiler-generated thunk

DSTSMATER_SPEC = BLOCK(,BYTE]) FIELD(DSTSMS_FIELDS) X;

: The following values may appear

LITERAL
DST$K _MS_BYTADDR
DSTSK-MS”BITADDR

in the DSTSB_MS_KIND field.

he value is a byte address
he value is a bit address (a Longword
byte address plus a longword bit

e 4 T R

DSTRECRDS.REQ;1

DSTSK_MS_BITOFFS

DSTSK_MS_RVAL
DSTSK M RES

DSTSK_MS_DSC

E The following values may appear

LITERAL
DSTSK_MS MECH_MIN
DSTSK MS_MECH_RTNCALL

DSTSK_MS_MECH_STK
DSTSK “MS”ME CH_RTN_NOF P
DSTSK TMS “ME CH™MAX

1
16-SEr 1984 16:49:1%.30 Page 46

offset from the byte address)

The value is a bit offset (normally a
bit offset from the start of a
record--used for record components)

The value is a literal value (constant)

The value is a3 register number (the

_ address is 3 register address)

The value is a VAX standard descriptor

L R A R

in the DST$B_MS_MECH field.

! Minimum code X

! Routine call on a compiler-
; enerated thunk
i
|

-l

- -

DST Stack Qachine routine _
Same as '"1'' but no FP passed ir
Maximum code

[V [V], 8
LN SN)

1
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.30 Page 47

L R R R R A kR R R N W AP R NP I I I e L LS

byte
long

var

var

DESCRIPYOR VALUE SPECIFICATIONS

1f the DSTSB_VS _VFLAGS field has the special value DSTSK_VILAGS_DSC,
this is a Descriptor Value Specification., Such a Value Specification
contains an offset relative to the end of the Value Specification that
points to a VAX Standard Descriptor later in the same DST record. That
descriptor then contains the actual address that the value Specifica-
tion seeks to specify. This is thus the format:

DSTSB_VS_VFLAGS (= DSTSK_VFLAGS_DSC) |

¢oosessasvcessscaan LA L X T T T T T T T T X Y Ry Ty L3

DST$L_VS_DSC_OFFS -

toocsvcevecsos csoesae SeeoTeeeee L L DL L X L ¥ L T ¥ X LR Y Y N Ry R Y L) '

DSTSA_VS_DSC_BASE
Other Fields in DST Record

'
'

1

'

'

'

'

)

'
.................. '
'

+

@ crccccrea @ rrraneann
]
'
L
'
'
'
'
¢
t
|
L]
L]
]
]
]
]
'
'
]
'
'
'
]
]
]
¢
)
]
[}
)
]
]
L]
'
]
!
]
]
|
]
]
'
]
§
v

]
'
]
'
]
]
[]
]
+
' <--
'
]
[}
]
]
]
]
]
... L)

The address of the VAX Standard Descriptor is computed as follows:
DSC_PTR = VS_PTRLDSTSA_VS_DSC_BASE] + .VS_PTRIDSTSL_VS_DSC_OFFS];

1
DSTRECRDS.REQ; Y 16-SEP=-1984 16:49:1&.30 Page 48
TRAILING VALUE SPEC VALUE SPECIFICATIONS

' 1t the DST$B_VS_VFLAGS field has the special value DSTSK_VFLAGS_TVS,

' this is a !rowlwn? Velue Spec Value Specification. Such a Value

' Specitication contains a pointer relative to DSTSA_VS_TVS BASE that
oints to another Value Specification Later in the same DST record.

his second Value Specification is normally of the most general and
powertful form of value Sgecifigation. namely the VS-follows Value Spec-
itication. In effect, the Tra1lin¥ Value Spec format is a five-byte
Value Specification (small enough to fit in a Data DST Record) which
?oynts to a larger vValue Specification elsewhere in the same DST record.
This Larger Value Specification can be arbitrarily lar%e.and complex

n order to do whatever computation is necessary to obtain the desired
value, address, or descriptor.

This is the format of the Trailing Value Spec Value Specification:

Al LU L DL Ll Ll L L L L R L L L L L L L D Y L Y L L ey L T +
byte . DST$B_VS_VFLAGS (= DSTSK_VFLAGS_TVS) :
AL L AL L LI I L L L T L L L DY Y T P P Y L A R Y L T P T T Y +
long ! DSTSL_VS_TVS_OFFSET i---f
4vocovasvesornoecsaescacaass L 1Y T Y T ¥y Y ¥ Yy ¥ L T X 2 0 % ¥ ¥ ¥ ¥ ¥ ¥y Yy ooeceeoeeose '
var . DSTSA_VS_TVS_BASE 5 5
§ Other Fields in DST Record .
_ teeccsetctocamcmccccccecccmccmeccseneamemaneneacsceesceseaanaan= b
' var E(--+
' ' The Trailing Value Specification §
‘ 3 (Normaliy a DSTSK_VS_FOLLOWS Value Specification) §
temmcecesecemccmamceseccecececseeseesmemeemmemmesscssessesamemen +

The address of the Trailing Value Specification is computed as follows:
TVS_PTR = VS_PTRIDSTSA_VS_TVS_BASE] ¢ .VS_PTR(DSTSL_VS_TVS_OFFSET];

et m s mamemr -

F 1
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.30 Page 49
VS-FOLLOWS VALUE SPECIFICATIONS

1 the DSTSB_VS_VFLAGS field has the special value DSTSK_VS_FOLLOWS,
this is & VS<Follows Value Specification. This is the most general
and gouerfgl form of Value Specification. The specification itself
cen be arbitrarily long, but it can also do an arbitrarily complex
computation in order to compute the desired value, address, or de-
scriptor. This is the format of the VS-Follows Value Specification:

A Materialization Specification

, temmecccceccnccccccccccccan cececcccocaan ceecccverccceccennacaaas +
. byte | DSTSB_VS_VFLAGS (=DSTSK_VS_FOLLOWS) i
! bocccsccsscas L L L LT L T Y Tyt et T ¥ X Tt T Ry e e T T Ty
L word DSTSW_VS_LENGTH :
! tosncocssereccscssassans cossesesesrsscocssses T eeesea +
| byte DS™$B_VS_ALLOC :
. tocccapesrrare - W S 0 S . o SO ENGENEESE GG ddd s s o 5SS oo e e
L var DSTSA_VS_MATSPEC ;
+

A V5-Follows Value Specification contains a Materialization Specifica-
tion which indicates how the value is materialized. This specifica-
tion indicates what kind of value is being produced, by what mechanism
it is froduged. and in detail how it is produced. It also contains
some flag bits.

The kind of value beina produced can be a 32-bit byte address, a 64-bit
bit address (a byte address followed by a 32-bit bit offset), a bit
offset (relative to the start of a record--used only for record compon-
ents), a literal value (a constant or 'R-value'’), a register address,
or an actual VAX Standard Descriptor. VAX Standard Descriptors are
mainly produced by Value Specification within Type Specifications where
3 descriptor must be built to describe a data type such as an array
type with run-time subscript bounds.

values can be produced by two mechanisms, One is a routine call on a
compiler-generated thunk. In this case, the compiler generates a rou-
tine in the object code which when called produces the desired value.
The address of the routine is specified in the Mechanism Specification,
The other mechanism is a DST Stack Machine routine. The D37 Stack
Machine is a virtual machine which DEBUG emulates. To use it, the com-

iler generates code for this virtual machine which, when executed at
EBUG-time, produces the desired value. The DST Stack Machine form of
Mechanism Specification constitutes the most general and powerful form
of value specification supported by DEBUG.

{
]
'
L}
1
]
]
[}
1
]
L]
1
t
[}
1
L}
1
1
1
[}
1
]
]
]
'
i
'
]
'
1
L}
|
1
]
1
U
1
'
]
[
1
|
[}
]
[}
!
t
]
]
]

1
DSTRECRDS.REQ; 1 16-SEP=-1984 16:49:1?.30 Page 50

P R L R

P . T T A A R R el Lk L TR R W Ty A TR P Uy A i T R Ty

byte
word
byte
byte
byte
brte
long

CALLS ON COMPILER-GENERATED THUNKS

The Routine Call Mechanism Specification specifies the address of a
compiler-generated routine (a thunk) which DEBUG can call to perform
the desired value computation. This form of Mechanism Specification
must be used for PL/] "BASED'' variables since the address of such a
variable can degend on the value returned by a user-defined function,
In this case, the Mechanism Specification consists of a single Longword
giving the address of the ccmpiler-generated thunk to call.

This is the format of the whole Value Specification when the Routine
Call Mechanism Specificatinn is used:

' DST$B_VS_VFLAGS (=DSTSK_VS_FOLLOWS) :

docnsvavecccsccana cSeosceceeoveew XY Y Y Y Y Y YT T cosssseceRsrerteaenaeeee ¢

: DSTSW_VS_LENGTH (= 8) !

e S3TaB VS ALLOC (= DSTRRL VS ALLOL o T ?
e ST M kI :
e SSTRB RS PECR (- DSTIK_AS METH ATNERL) ?
e DTS NS FLAGITS :
oo DSTSL S RECH RO

The called routine is passed the address of a vector of register values
as its one argument. This vector contains alt register value for the
scope (call frame) in which the symbol having this value Sgec1f1cat1on
is declared. The vector contains the values of registers RO - R11, AP,
FP, SP, PC, and PSL in that order. The routine is allowed to use all
such values in its computations, but is not allowed to change the con-
tents of the register vector. In addition, the routine is passed the
value of FP (the Frame Pointer) in register R1.

The value of the routine should be returned to DEBUG in register RO.

The DSTSV_MS_DUMARG bit should be set in the DSTSB_MS_FLAGBITS field it
the called routine expects to return a value longer than one longword.
It DST$V_MS_DUMARG is set, the address of an octaword (four-longword)
pifter is passed as the first argument to the called routine with the
expectation that the routine’'s value will be returned to this buffer,
The address of the register vector is then the second argument.

H 1
DSTRECRDS.REQ: 1 16=-SEP-1984 16:49:15.30 Page 51

THE DST STACK MACHINE

The DST Stack Machine is a virtual machine emulated by DEBUG. This
machine can push and pop values on a stack and can perform a variety
of arithmetic and logwcal operations. It can also call compiler-
generated thu.ks. The DST Stack Machine is used when a value must be
computed at DEBUG-time and the Standard Format Value Specification is
not adequate and a compiler-generated thunk to dc the whole computation
seems undesirable. In such cases, the compiler can generate a Mecha-
nism Specification which consists of code for the Stack Machine. At
DEBUG-time, when the value in question is needed, DEBUG will interpret
this code until the STOP instruction is encountered. The value that
remains on the top of the Stack Machine stack is then taken to be the
desired value.

The format of the whole Value Specification when a DST Stack Machine
Mechanism Specification is used is as follows:

(X T T X X T Y ¥ ¥ ¥ ¥ YTy DL DD DD LT L L LY LY LY TP Y ey Yy Yy Yy vy yyyyyHS L3

byte DST$8_VS_VFLAGS (=DST$K_VS_FOLLOWS) :
vord + T T DSTSW_VS_LENGTH Tt I
byte 1 DST$8_VS ALLOC '
byte ¢ 0STSB_MS KIND '
byte DSTSB_NS_MECH (= DSTSK WS MECH STK) '
byee i osteams i
var DSTSA_MS_MECH_SPEC 5

: OST Stack Machine Routine §

tomemmemmmem——e————— cmeeeeeeeeeceeeecesseaan~ cemmcee—eeeaan- ;

Here the DST$B_VS_ALLOC field should have the value DSTS$K_VS_ALLOC_DYN
it any kind of address is computed and DSTSK_VS _ALLOC_STAT i¥ a Literal
value (a constant) is computed. The need for this field is not clear
since DEBUG ignores 1t at present.

P TR ML LM EN I EES @I W WYL MRS AP L MR MRS AR W e M N Es P ER S N, am UL M e R s e Aok Mg SR R W oae, u

The stack ugon which the DST Stack Machine operates consists of 256
locations where each location is a longword. The stack grows toward
smaller addresses and shrinks toward larger addresses; in this regard
it is Like the VAX call stack. A DST Stack Machine Routine consists

of a sequence of Stack Machine instructions end1ng in 8 STOP instruc-
tion (DSTSK_STK_STOP). When the machine stops, the top location or
locations on the stack constitute the value of the routine. The length
of the value is determined by the DST$B_MS_KIND field.

s m et Ms e s ame et @ m

DSTRECRDS.REQ; 16-SEP-1984 16:&9:1&.36 Page 52

X The DST Stack Machine supports the instructions tabulated in the re-

: mainder of this sect.on., Each instruction consists of a one-byte op-
code followed by zero or more operand bytes, depend1ng on the op-code.
In this description, the ''top'’ stack cell refers to the most recently
pushed cell still on the stack and the ''second'’ cell refers to the next
most recently pushed cell still on the stack. Each cell contains a
longword value.

¢

! Define the Push Register instructions. These instructions push the indicated
+ register value on the Stack Machine stack. The register values are taken from
E the scope (call frame) of the symbol for which the value is being computed.

L

1TERAL

DSTSK_STK_LOW =0, ! Lower bound for range checking
DSTSK_STK_PUSHRO =0, ! Push the value of register RO
DSTSK_STX_PUSHRI =1, ! Push the value of i1egister R
DSTSK_STK_PUSHR?2 = 2, i Push the value of register R
DSTSK_STK_PUSHR3 = 3, ! Push the value of register R
DSTSK_STK_PUSHRG = 4, ! Push the value of register R4
DSTSK_STK_PUSHRS =5, ! Push the value of register RS
DSTSK_STK_PUSHRéG = 6, ! Push the value of register Ré
DSTEK_STK_PUSHR? =7, ! Push the value of register R7
DSTSK_STK_PUSHRS = 8, ! Push the value of register R8
DSTSK_STK_PUSHR9 =9 ! Push the value of register R9
DSTSK"STK PUSHR10 =10, | Push the value of register R10
DSTSK_STK_PUSHR11 =11, ! Push the value of register R11
DSTSK_STK_PUSHRAP = 12, ! Push the value of the AP
DSTSK_STK_PUSHRFP = 15, ! Push the value of the FP
DSTSK_STK_PUSHRSP = 14, ! Push the value of the SP
DSTSK_STK_PUSHRP(= 15; ! Push the value of the P(

Define the Push Immediate instructions. These instructions are used to push
constant values on the Stack Machine stack. The constant value to push -omes

[}

! immediately after the instruction op-code. For the signed and unsigned in-

! structions, the value to push is zero-extended or sign-extended to 32 bits

! as appropriate. In the case of the Push Immediate Variable instruction, the

: b‘te atter the op-code gives the b{te Llength of the constant value to push.

! The constant value to push then follc/s immediately after that length byte.

! The constant value is zero-extended to the nearest longword boundary on the

E high-address end and the resulting block is pushed onto the stack.

LITERAL _
DSTSK_STK_PUSHIMB = 16, ! Push [mmediate Byte (signed)
DSTSK_STK_PUSHIMW = 17, ! Push Immediate Word (signed)
DSTSK_STK_PUSHIML = 18, ! Push Immediate Longword (signed)
DSTSK_STK_PUSHIM VAR = 24, ! Push |mmediate Variable
DEYSK™STKTPUSHIMBU = %S. ! Push Immediate Byte Unsigned
DSTSK_STK_PUSHIMWU = 26; ! Puch Immediate Word Unsigned

! Detine the Push Indirect instructions. For these instructions, the top stack
' cell is poYoed and the one, two, gr four bytes at the address given by the
' popped cell are sign extended to 32 bit and pushed on the stack. Ffor the

1
DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.30 Page 53

! unsigred instructions, the value is instead zero-extended to 32 bits and
' pushed on the stack.

L}

LITERAL
DSTSK_STK_PUSHINB = 20, ! Push Indirect Byte (signed)
DSTSK_STK_PUSHINW = 51. ! Push Indirect Word (signed)
DSTSKTSTKPUSHINL = ;. ! Push Indirect Longword (signed)
DSTSK_STK_PUSHINBU = 27, ! "ush [ndirect Byte Unsigneg
DSTSK_STK_PUSHINWU = 28; ! Pusn Indirect Word Unsigned

: Define the arithmetic and logical instructions, These instruction pop the
: top two cells on the stack, perform the indicated operation on these operands,
3 and push the result back onto the stack.

LITERAL
DSTSK_STK_ADD

19. Add--The top two cells on the stack
are popped from the stack and
added together. The resulting
sum is pushed onto the stack.

Subtract--The second cell on the stack
is subtracted from the top cell.
Both are popped from the stack.
The result1ng difference is then
_pushel onto the stack.

Multiply--The top two stack cells are
popped from the stack and multi-
plied. The resulting product is

. . then pushed onto the stack,

Divide--The top stack cell is divided
by the second stack cell. Both,
are popped from the stack. Their
quot;ent is then pushed onto the
stack.,

Logical Shift--Shift the second stack
cell by the number of bits given
by the top stack cetl; gqp oth
operands and push the shitted
second cell on the stack

Rotate--Rotate the second stack cell
b‘ the number of bits given by
the top stack cell; pop both
operands and push the rotated
second cell on the stack

DST$K_STK_SUB 29,

DSTSK_STK_MULT 30,

DSTSK_STK_DIV 31,

DSTSK_STK_LSH 32,

DSTSK_STK_ROT

33.

P G S AR P AR AN ERG YRS W P AP En e mf em) WP RS R EE G GRS NS GRS eEt EEO e S EE s e

! Detine the Copy and Exchange instructions, These instructions make a copy
; of the top stack cell or exchange the top two cells on the stack.

L1 TERAL
DSTSK_STK_COP = 34, ! Copy==A cop‘ of the top stack cell
! is pushed onto the stack
DSTSK_STK_EXCH = 35; ; Exchange--The top two stack cells are

interchanged

K 1
DSTRECRDS.REQ; 16-SEP=-1984 16:49:15.30 Page 54

! Detine the Store instructions. Following the op-code, these instructions

! contain a byte which is interpreted as a signed offset into the stack. The
: low-order byte, word, or Longword of the top stack cell is stored into the
: bKto._uord. or longword given by the current stack pointer plus four plus

: the signed offset into the stack. (In short, the offset is an offset from
. the second stack cell.) After that, the top stack cell is popped. These

! instryuctions permit values to be stored into stack locations other than the
; top or second stack cell.

L

ITERAL

NSTSK_STK_ST0_8B = 36, ! Store Byte into Stack
DSTSK_STK STO W = 37, ! Store Word into Stack
DSTSK_STK_S10_L = 38, ! Store Longword into Stack

! Define t~- Pop instruction. This instruction simply pops the top stack cell,
; meaning that the top stack cell is removed from the stack and discarded.

LITERAL
DSTSK_STK_POP = 39, ! Pop Top Stack Cell

. Detine the Stop instruction., This instruction stops the DST Stack Machine and

! is required at the end of every DST Stack Machine routine. Whatever value is

' left at the t 1 of the stack when the Stop instruction is executed is taken to

! be the value .t the Stack Machine routine. This value may be a Longword (a

' byte address, for example), two longwords (byte address and bit offset), any
size literal value (an ﬂ-F[oatwng Lyteral, for instance), or a full VAX Stan-

' dard Descriptor, depending on the value of the DST$B_MS_KIND field.

LITERAL .
DSTSK_STK_STOP = 23; ! Stop the Stack Machine

Detine the Routine Call instructions. These instructions call a compiler-
enerated routire (a thunk) whose address is given by the top stack cell.
efore the call actually occurs, the top stack cell is popEed. The value

that is returned by the thunk is then pushed onto the stack.

The Routine Call instruction works as follows. The address of the thunk to
to be called is taken from the top stack cell. The top cell is then popped.
The thunk, which is called with a CALL instruction, gets twu arguments. The
first argument is the address of a vector of register values for the scope
(call fra.e) ot the symbol to which this Value 3pecification belongs, This
vectn: contains the values of registers RO - R11, AP, FP, SP, PC, and PSL in
that order; the called thunk is Tree to read any value it wants from this
vector but na; not store into it. The second parameter is a pointer to the
tog of the DST Stack Machine stack after the thunk address has been popped,
A Stack Mechine rourine can thus conEute arguments to the thunk and push them
on the stack before pushing the thunk address and calling the thunk. In
addition, the value of FP in the symbol's scope is passed to the thunk in
register R1, The routine's value 1s expected to be returned in register RO.
This value is pushed onto the stack.

The Routine Call With Alternate Return instruction works this same way except
that the address of an octaword buffer (& longwords) is passed to the thunk

P R R T T e R R R R A U

t

1
DSIRECRDS.REQ; 16-SEP-1984 16:49:1%.30 Page 55

as the first argument, with the register vector being the second arqument and
the stack address being the third argument. In this case, the routine value
is expected to be returned to the octaword buffer, not in register 0. The
whole octaword buffer is then pushed onto the stack.

[}
]
i
i
i
L

ITERAL
DSTSK_STK_RINCALL = 40, ! Routine Call (value returned in RQ)
DSTSK_STK_RINCALL _ALT = 41, ! Routine Call With Alternate Return
DSTSK_STK_RTN_NOFP = 44; ! Routine Call - no fP passed in

. Detine the Push Record Address instructions. These instructions push the
. addr ss ot the outer-most or inner-most record structure for which the cur~
! rent symbol is 8 record component. They are used for constructing VAX Stan-
! Jerd Descriptors on the Stack Machine stack when some part of the descriptor
! depends on some other component of the same record. In PL/]l, for instance,
! the subscript bounds of an array component of a record may depend on another
: component of that record. In such cases, the only way to get the address of
. that other component in the current record is to use cre of the Push Record
' Adaress instructions. The Push Outer Record Address inutruction pushes the
. address of the outer-most record of which the current symbol is a component
! while the Push Inner Record Address instruction pushes the address of the
: inner-most record of which the current symbol is a comuonent.
LITERAL

DSTSK_STK_PUSH_OUTER

ST _ - 42, ! Push Outer Record Address
dSTSK-STK PUSH INNER 43

REC
_REC : ! Push Inner Record Address

! Detine the highest op-code value accepted by the DST Stack Machine. This
E value is used for op-code range checking.

LITERAL

DSTSK_STK_MHIGH = 46; ! Upper bound for range checking

! END OF VALUE SPECIFICATION DESCRIPTION.

m 1
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.30 Page 56

THe TyYyPt SPECIFICATION DST RECORD

The Type Specification DST record gives the most general data t‘pe
description available in the Debug Symbol Table. "It contains the
name of the data type being described and a DST Type Specification
that describes the type. The type name is used in Languages where
data types can be named, such as PASCAL. If no type name exists,
the null name (the name of zero length) is specified in this record.
DST Type Specifications are described in detail in the next section
of this detinition file.

Tyge Specitication DST records either immediately follow Separate
Type Specification DST records or are pointed to by Indirect Type
SgQC\flcat\ons or Novel Length Type Specifications elsewhere in
the DST for the current module.

This is the format of the Type Specification DST record:

syve DSTSB_LENGTH T T :
byte ¢ DSTSB_TYPE (= DSTSK_TYPSPEC) :
e st Twseecwme
ver ; The Type Name in ASCI] ;
§ (The name's length is given by DSTSB_TYPSPEC_NAME) §
eceeeceemeemeneemeeneee S 1
var | DSTSA_TYPSPEC_TS_ADDR 5
é The DST Type Snhecification for the é
; Data Type being defined §
meemememesmemcmcceceeeeceeemeemeasesmecmmmmeenemmnmmnees ;

Define the fields of the Type Specification DST record.

IELD Dsg;}VPSPEC_FIFLDS =
D.$B_TYPSPE(_NAME = (2,8_1.
DSTSA_TYPSPEC_TS_ADDR = [3, A_)
TES;

]
.
|
.
i
.
)
N
L}
.
\
.
'
.
\
.
[
.
'
.
!
]
.
]
.
[}
.
]
.
]
N
]
.
L]
.
[]
.
]
.
[}
.
[}
[}
.
L]
.
]
.
[}
.
]
.
[}
.
]
.
]
.
]
.
]
.
[}
.
]
.
'
.
]
.
]
.
]
.
'
'
.
[}
.
'
.
]
.
]
.
1
.
'
.
'
.
]
.

The count b¥te for the Counted
ASCl] Type Name

The location of the DST Type
Specification

N1
DSTRECRDS.REQ; 16=-SEP=1984 16:49:15.30 Page >7

Pt @ et et e Lt et s el MRS DL ML NS e SR NG DS Ry eSO EC E S ARG NG Em e e e Rt TR R ekt ARG ey e s AR e W e M v s s e S W o am

-t mr e e

word
byte

var

DST TYPE SFECIFICATIONS

A DST Type Specitication specifies the data type of sime data symbol.
DST Type Specifications constitute the most generol form of data type
description available in the Debu? Symbol Table. They are found in
only one kind of DST record, namely the Type Specification DST record.
However, some Type Specifications contain nested Type Specifications,
which permits quite complex type dgscr1gt1ons. for exangle..tbe parent
type for a Subrange data type is given by a nested Type Specification
within the Subrange Type Specification.

This is the general format of all DST Type Specifications:

tecccccnccccccnsscocacocnanncna cecccencncccccccccnsseneccccncane +
: DSTSW_TS_LENGTH :
toccccnrccrccrrcccccccccccscccresasssccsecacane ccccccscccccacans +
: DST$A_TS_KIND :
Veccoccccnccnncnccncccrcccencnctcatanccccnccccrsssssnenaceccancasn +
: Zero or More Other Fields Depending on DST$SB_TS_KIND §
tmeeccccemmcccccscsessscscccscmmmsccecmcccceecerecesmeemasaeeans +

A vata symbol whose data type must be described by a DST Type Specifi-
cation is described by a Separate Tgpe S?ec1f1cat]oq DST record. This
DST record is immediately followed by a Type Specification DST record
which contains the DST Type Specification for the symbol's data type.

To conserve DST space when several symbols have the same data tyBe. the
Type Specitication that follows the Separate Ty?e Specification DST
record may be an Indirect T{pe Specification. The Indirect Type Speci-
tication then contains a DST pointer to the actual Type Specitication
DST record for the symbol's type. Onl{ a single copy of this actual
Type Specification is then needed. Multiple symbols of the same Record
or Enumeration tyge must also use Separate Type Specification DST
records followed by Ty?e Sggctf1cot1on DST records containing Indirect
Type Specifications. In this case, the Indirect Type Specifications
point to the Record Be?un or Enumeration Type Begin DST record for the
record or enumeration type being specified.

In tact, the only Type Specification that can refer to a record or enum-
eration type is the Indirect Type Specification. (The Novel Length Type
Specification can too but is not nornall; used this.ua¥,) This Type
Specification is thus used within other lpe Specifications when record
or enumeration types must be specified. For example, when the element
type of an array is a record or enumeration type, it is specified by an
Indirect Type Specification within the Array Type Specif cation, Simi-
Larly, it the tar?et of a typed pointer is & record or enumeration type
obiect, the target type is specified by an Indirect Type Specification

—

DSTRECRDS,.REQ;1

16-SEP-1984 16:49:1?.38 Page 58

within the Typed Pointer Type Specification.

[}
FIELD osgs}vps_spec-FIELos =

MACRO

E
DSTSW_TS_LENGTH =
DST$B_TS_KIND = [
DSTSB TSTATOM TYP = [
DSTSATS_DSC_VSPEC_ADDR = [
DSTSL TSTIND PR = [
DSTSAZTSTPTR_TSPEC_ADDR= [
DST$B_TS_PIC_DLENG =
DST$B_TS_PIC_LANG = [
DST$B_TS_PI1C_PLENG = [
DSTSA_TS_PIC_ADDR = [

DSTSB_TS_ARRAY_DIM =
DSTSA_TS”ARRAY FLAGS_ADDR=

{
e
DSTSL_TS_SET_LENG = [
DSTSA_TS_SET_PAR_TSPEC_ADDR

DSTSL_TS_SUBR_LENG = [

DSTSA_TS_SUBR_PAR_TSPEC_ADDR= [7, A_

DSTSB_TS_FILE_LANG

DSTSA_TS_FILE_RCRD_TYP
DSTSA_TS_AREA BYTE LEN
DSTSA_TS_OFFSET_VALSPEC
DSTSL_TS_NOV_LENG

DSTSL_TS_NOV_LENG_PAR_TSPE
DSTSL_TS_SELF_LENG z

TES:

C
(
C
L
¢
(

o
L=
|)
[

“ s s 8 s
[I I |
L N

.
-

(S [] [] (- [-} —J (W] S0V | W | | -
-

2 adV BN« BV B RV IRV VvV ,N
A J
>»® » ©® ® ©® >r>o0

H
-~
~
.
>

3, L_ 1,

B R I L T T T T e,

o S g U R S S T L Ll Ly i oy A,

Detine all the fields that can appear in the various Type Specifications.
! Also define the declaration macro.

The bgte Length of the Type
specification not includ-
ing this length field

The Type Specification kind

The Atomic data type code

The VAX descriptor Value Spec

Indirect Type Spec D31 pointer

Typed Pointer parent type Type
Specification location

The byte length of data objects
of this picture type

The DST Language code for this
picture data type

The Length of the picture
string in this Type Spec

The Llocation where the picture
is encoded in Type Spec

The number of array dimensions

The Location of the arra; flags
that indicate Type Specs
for the subscript types

The Llength in bits of data
objects of this Set type

The Location of the Set's
parent.tygg Type Spec

The Llength in bits of objects
of this subrange type

Location of the parent type
Ter Specification within
the Subrange Type Spec

Language code for file type

Location of Type Spec ?1v1ng
element type for tile .

Length in bytes of PL/I '‘area’

Location of Value Spec ?1v1ng
base address ot PL/1 area

The "‘novel’’ Length in bits of
objects of this data type

DST pointer to Yarent type tfor
this ‘‘novel length™ type

Table length for this array of
PL/1 Selt-Relative Labels

DSTSTYPE_SPEC = BLOCKL.BYTEJ FIELD(DSTSTYPE_SPEC_FIELDS) X;

P A R e I e i T L T’ e e e

—

DSTRECRDS,.REQ;1

16-SEP-1984 16:49:15.38 Page 59

E The following are the values that may appear in the DSTSB_TS_KIND field.

LITERAL
DSTSK T

K
PE_HIGHEST
! The following set of literals

LITERAL
DSTSK_TS_ATOM_LENG
DSTSK_TS_IND_CENG
DSTSK_TS_PTRTLENG
DSTSK_TS_FILE_LENG
DSTSK_TS_AREATLENG
DSTSK_TS_OFFSET_LENG
DSTSK_TS_NOV_LERG_LENG
DSTSK_TS_TASK_LENG

TN

— e e e d o d i i D OD ~J O L ANND) b =D

oo ~NYO- VAL NANRA) =2 &= % &5 & & & & & @

Ssre 9 »

® % & & & o

-=-Lowest Tyge Spec kind

Atomic Type Spec

VAX Standard Desciptor Type Spec

Indirect Type Spec

Typed Pointer Type Spec

Pointer Type Spec

Pictured Type Spec

Arra¥ Type Spec

Set Type Spec

Subrange Type Spec

Unused--available for future use

File Type Spec

Area Ty?e Spec (PL/D)

Offset Type Spec (PL/I)

Novel Length Type Spec _

DEBUG_internally generatad pointer
Type Spec (cannot appear in D

Self-Relative Label Type Spec (PL/

Record File Address Type Spec (BAS

Task_Ter Spec (ADA)

--=Highest Type Spec kind

to
ST
1)
10)

give the Lengths in bytes of those Type

AN =2 G BN B

whbh @ & & & o

|
i
i
i
i
i
i
i

E Specifications which have a fixed length,.

Atomic Type Spec length
Indirect Type Spec lLength
Pointer Type Spec length

File Type Spec length

Area Ty?e Spec length

Offset Type S?ec length

Novel Length yYe Spec length
Task Type Spec length

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.38 Page 60

ATOMIC TYPE SPECIFICATIONS

The Atomic T¥Re S?ec1f1c|t1on is used to describe an atomic VAX standard
data type. Ye Spec1f1cat1on consists of the standard Type Speci-
fication header followed by a single byte conta1n1ng the VAX standard
data type code (one of the DSCSK_DTYPE_x codes) e Atomic Type Speci-
fication has the following format:

' L e DL L e e D +

word | DSTSW_TS_LENGTH (= 2) '
! g g g P +
! byte | DST‘B TS_KIND (= DSTSK_TS_ATOM) '
' tecercccccccecrcccrrce s ceccrccccc s e ccnenrertceccccn s e aeecaaeee +
| byte ! DSTSB_TS_ATOM_TYP !
! L L Yy N e o e Y ¢

DESCRIPTOR TYPE SPECIFICATIONS

The Descriptor Type Specification is used for VAX Standard Data Types

that can be described by VAX Standard Descriptors but cannot be de-

scribed by an atomic tlpe code. Packed decimal, which requires a

digit length and a scale factor, and ASCI] text, which requires a

str1n? length, are examples of such data types. The Descriptor Type
i

Speci catton contains a Value Specification which must produce a
VAX Standard Descrvptor. This is the format:
! temcccccccccccncrcncrcrecrecccecesccccccrccscccececsccncncne connet
! word ! DSTSW_TS_LENGTH :
¢oscsccsnnaw LI DL L DL L LD I L T L DT P A Y e L T P T Y Y)

| byte DSTSB_ Is _KIND (= DST$K_TS_DSC) !

DSTSA_TS_DSC_VSPEC_ADDR

Value Specification Yielding a VAX Standard Descriptor §

1
1
]
]
1
]
[}
]
]
]
\
]
]
[}
]
]
]
]
]
]
{
|
]
[}
h
'
]
)
|
]
)
1
]
]
]
]
]
|
!
! var
]
]
]
|}
]

“ s e mms s s em st em e amd e s e ms wn .- -

—_—

DSTRECRDS.REQ; 1 16~SEP-1984 16:69:1§.38 Page 61

INDIRECT TYPE SPECIFICATIONS

The Indirect Type Specification is used when the actual Type Specifica-
tion desired is found in another DST record. This T;pe Specification
contains a DST pointer which points to that other DST record. The DST
pointer contains the byte offset relative to the start of the whole DST
of the DST record that gives the actual type information. TYhe pointed-
to DST record must be one of three kinds of DST records: a Type Speci-
fication DST record, a Record Begin DST record, or an Enumeration Type
Begin DST record. fhe Indirect Type Specificatior is the only Type
Specification that can refer to a record or enumeration type; those
tzges_are too complex (gotent1ally) to be referred to any other way.
This is the format of the Indirect Type Specification:

temcrcccccccccccccccccccccecccr e e resrer e e ccErece e eEacncanasne +
' DSTSW_TS_LENGTH (= §5) :
tccccccccncnnccccstrcs s ac e s r e r e rec e e cceccc st crcnancsccccecae +
: DSTSB_TS_KIND (= DSTSK_TS_IND) :
temmcccccccccccccccccccca e crccccscrs et e s ccacanesscscaccana +
: DSTSL_TS_IND_PTR :

f
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.38 Page 62

TYPED POINTER TYPE SPECIFICATIONS

The Typed Pointer Type Specification describes a typed pointer data
type, meaning a pointer to a specific other data type. Pointer-to-
integer, as tound in PASCAL and other languages, is an example of a
typed pointer type. In this example, integer is the '‘parent type''.
This Type Specitication contains an embedded Type Specification which
specities the ?arent type for the typed pointer type. This is the
format of the Type Pointer Type Specification:

toccccnancsssssnvcasssrsnocccssccacncssescsacana ssessscsssssensccesssaased

1

|

|

L}

[}

L}

i

|

[}

1

]

\

|

!

t word ! DSTSW_TS_LENGTH :

! ¢mccccccccccana e D ceccccccccacas +

; byte | DSTS$B_TS_KIND (= DSTSK_TS_TPTR) '

! e et D et L L L LT LT cecccccccccaa cceccccccncccad
Povar DSTSA_TS_TPTR_TSPEC_ADDR E

: § Type Specificatior. for Parent Type that E

; i Objects of Typed Pointer Type Point to §

: s s

! tecrccccccccrrcrerreccccccccccnascnacacacaana crcoceveccccccnaa ot

}

[}

t

¥

! POINTER TYPE SPECIFICATIONS

|

|

! The Pointer Type Specification is used for pointer types which are not
' typed, meaning that the type of object that the pointer points to is
! not known at compile-time. PL/] EOInters are examples of this kind of
' pointer type. Since there is no known parent type, none is specified
! in this Type Specification. The Pointer Type Specification thus has
: the simplest possib format:

[]

! LAl it L et e DL D DD L L D LR L L D L L e e L DL L +

. word ! DSTSW_TS_LENGTH (= 1) :

' ¢terrrrcrroncne et I LTI T D et EE L LS L L PP T +

. byte . DSTSB_TS_KIND (= DSTSK_TS_PTR) :

—

DSTRECRDS.REQ; 16-SEP-1984 16:49:1?.38 Page 63

PICTURE TYPE SPECIFICATIONS

The Picture the Specification is used for picture data types as found
in (OBOL and PL/]1. Because the exact semantics of picture data types
vary between llnguages._thls Type Specification contains the language
code associated with this sgec1t1c picture type. It also contains the
byte length of objects of the picture type, an encod1n? of the picture,
and a language-specific picture encoding (usually the EDITPC pattern
string). The actual data objects of the picture data type are assumed
to be represented as ASCII] character strings.

This is the format of the Picture Type Specification:

word LT TDSTSW_TS_LENGTH T :
byte & DSTSB_TS_KIND (= DSTSK_TS_PIC) :
byte DSTSB_TS_PIC_OLENG :
byte DSTSB_TS_PIC_LANG :
byte L " osTsB_TS_PIC_PLENG :
CoTTTTTTTT DSTSA_TS_PIC_ADDR :
é Picture String Encoding §
oeeemeomememmememmemeemet ettt m et ettt e 1
var ; Value Specification Yielding a ;
§ Language-Specific Encoding of Picture Semantics §
fommmmeeeseeeeeneenan e ta e m oo e ;

The DST$B_TS_PIC_DLENG field contains the length in bytes of each data
object ot"this picture type. DEBUG assumes that picture objects are
represented internally as ASCII character strings.

The language code in the 0ST$B_TS_PIC_LANG field is the same as that
used in the Module Begin DST record.

The DST$B_TS _PIC PLENG field gives the byte length of the picture
encoding Tn the DSTSA_TS_PIC_ADOR field. The picture encoding in the
DSTSA_TS PIC_ADDR field tonsists of a sequence of words. The high-
order byte of each word contains an unsigned repetition factor and
the low-order byte contains the ASCI! rsgresentat\on of the repeated

]
0
)
i
)
1
'
i
t
i
0
\
i
]
1
i
i
1
)
i
i
]
i
{
i
i
i
! var
4
i
'
i
i
]
)
]
]
i
1
)
i
i
!
i
¥
i
i
!
[
i
i
\
1
i
i
! picture character. Hence the picture $999.99 is represented by this

g

DSTRECRDS.REQ; 1 16~SEP-1984 16:49:1?.38 Page 64

sequence of byte values: *'S"', 1, "9, 3, '".'', 1, '9', 2. (The same
pigture can bz aritten as T5t3)9. (20

The optional Value Specification at the end of the Picture Type Speci-
fication yields the address of the EDITP(pattern string that performs
the encoding associated with this picture type. DEBUG uses this pattern
string with the EDITPC instruction when doing DEPOSITS into objects of
this picture type. If the value Specification is omitted, DEBUG can
only deposit character strings into such objects since it does not know
how to encode numeric values.

—

DSTRECRDS.REQ: 16=-SEP=-1984 16:49:1%.38 Page 65

|
!
i
|
|
|
|
|
\
1
|
L}
t
L}
|
'
¥
'
]
|
|
|
|
L
|
1
L}
|
|
'
i
[}
|
]
'
1
[}
]
1
{
|
'
]
1
'
]
]
{
'
'
!
1
|
i
[
1

' word
: byte
| byte

. var

. var

. var

. var

. var

ARRAY TYPE SPECIFICATIONS

The Array Type Specification sgecifies.an Array data type. This speci-
fication can be quite complex because it not only specifties the shape of
each array of this type, but also specities the correspondxng element
data type and all subscript data types. The element type and the types
of the subscripts are given by additional Type Specifications nested
within the Array Type Specification,

This is the format of the Array Type Specification:

: DSTSW_TS_LENGTH !

ftoanssvoevcoecceccessscsvcecn LT Y Y L ¥ ¥ LY ¥ T T T 1 T ¥ T ¥ ¥ ¥ Py ¥ ¥ P P Y P P e L 3

DST$B_TS_KIND (= DSTSK_TS_ARRAY) :

...................... -------------------------------‘---------’

DSTSB_TS_ARRAY_DIM '

""" T DS TSALTS_ARRAY_FLAGS_ADDR

Bit vector of Flags Indicating What Type
Specifications are Given Below

(The vector's bit length is given by DSTSB_TS_ARRAY_DIM)

Value Specification Producing an Array Descriptor

Optional Type Specification for Array Element Data Type

Optional Type Specification for First Subscript Data Type

@ mrrcccce P rmmmcrce P Cm e p emmr s s e -

More Optional Type Specifications for Subscript Data Types

@ cecvcocmacace pracace=e @ recocrrio fp rr st P e rerrrcaccnccnar e P om ‘ -

'
'
'
1
'
'
'
'
1
'
1
'
¢

Here the DST$B_TS_ARRAY_DIM field gives the number of dimensions of this

DSTRECRDS.REQ;1 16=-SEP 1984 16:69:1%.38 Page 66

array type, Next, DSTSA_TS_ARRAY_fLAGS_ADDR gives the location of a
bit-vector which Indicates what nested Ty?e Specifications are found
Later in this Array Type Specification. If bit 0 is set, a nested Type
Specitication is included for the arra; element t¥pe (the cell type),
Atter that, it bit n is set, a nested Type Specification for the n-th
subscript type is included {n this Array Type Specification. It a bit
in the bit-vector is zero (not set), the_cqrre;pond1n? T‘pe Specifica-
tion is omitted trom the Array Type Specification. It the element type
specification is omitted, the element type is assumed to be given by the
array descriptor's DTYPE field. If a su scr1ft type specification is
omitted, the subscript type is assumed to be longword integer (DTYPE_L).
(Subscript Type Specifications are mainly needed for enumeration type
subscripts as allowed in PASCAL.)

The number of bits in the bit-vector is DST$SB_TS_ARRAY _DIM plus one more
for the elem-nt type. The whole DSTSA_TS_ARRAY_FLAGS_KODR field is of
course rounoed up to the nearest byte Boundary.

The array descriptor Value Specification that follows the bit-vector
field produces a VAX Standard Descrlftor for the arral. (The descr1?tqr
class must be DSCSK_CLASS_A, DSCSK_CLASS_NCA, or DSCSK_CLASS_UBA.) This
array descriptor gives the strides (or multipliers) and the Tower and
upper bounds for all of the array dimensions. It also gives the element
data type, 1nclud1ng its scale factor, digit count, or other type infor-
mation as appropriate. However, the descriptor's element type can be
overridden az an element T‘pe Specification as noted above; in this case
the DSCSB_NTYPE field of the descriptor should be zero.

The Array Type Specification is normally only used in two situations.
First, it is used if the array type does not have a compile-time-con-
stant descriptor (for example, it it has variable array bounds) and no
run=time descriptor exists in the user's address space, Second, it is
used if the arra‘ tyfe cannot be described a VAX Standard Descriptor,
either because the element type cannot be described by a VAX Standard
Descriptor or because the subscript types are not integers. (Element
types such as records, enumeration types, and gyged pointers cannot be
described h‘ VAX Standard Descriptors.) If neither of these situations
pertains, there are simpler ways of describing array types in the DST
using Standard Data or Descriptor Format DST records.

CEN P NI M IR M ST AR AN D AR P PO R D P NP EE S DS DO RO RS R G ED) M S SRR YR g RS e RS AR b e dP G e e s e ey e

K
DSTRECRDS.REQ; 16-SEP=-1984 16:49:15.38 Page 67

SET TYPE SPECIFICATIONS

The Set Type Specification specifies a Set data type as in PASCAL. A
Set type always has a parent data type. For the set-of-integers type,
for example, integer is the parent type. The parent type must be either
integer, some enumeration type, or 3 subrqn?e of those types. DEBUG
assumes that the Set type is represented internally as a bit-string
where a given bit is set it and only it the corres?ond1ng integer or
enume; ation type element is 3 member of the set. The n-th bit of the
bit-string (starting at bit 0) is assumed to correspond to the n-th
element OF the parent type. The length of the bit-string is part of

the Set type and is specified in the Set Type Specification.

This is the format of the Set Type Specification:

word 1T DSTSW_TS_LENGTH :
! byte ! DST$B_TS_KIND (= DSTSK_TS_SET) ?
i long 1T DSTSL_TS_SET_LENG :
var T DSTSA_TS_SET_PAR_TSPEC_ADDR
§ Type Specification Specifying the Set's Parent Type §
domemmemesesessssesentanetm e oo conmmnnmmnmeenmanemeaeesaeeas ;

Here the DSTSL_TS_SET _LENG field gives the bit length of an object of
the Set data t{pe. DSTSA_TS_SET_PAR_TSPEC_ADDR marks the location of
an embedded DST Type Specification for the parent type of the Set type.
Typically this is an Atomic Type Specification for type integer, an
Indirect Type Specification that points to an Enumeration Type Begin

[}
[}
[}
[}
[}
]
]
[}
[}
1
[}
|
]
]
[}
[}
]
L]
[}
[}
| L T T T
i
]
]
]
]
{
[}
[}
]
]
t
i
]
]
1
]
[]
]
! DST record, or a Subrange Type Specification,

—
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1%.38 Page 68

SUBRANGE TYPE SPECIFICATIONS

The Subrange Type Specification describes a Subrange data type, meaning
a subrange of some ordinal type such as integer or an enumeration type.
This Type SRQC\f\Cltion specifies the parent t‘pe (the original ordinal
type) and the lower and upger bounds of the subrange. |t also gives the
bit length of objects of the Subrange type. This is the tormat of the
Subrange Type Specification:

word | DSTSW_TS_LENGTH '
doosnnswa bl L DL L P L I L L L L LT Y LY T YL L L Y Yy ¥y ecocoeseesss ¢
byte | DST$B_TS_KIND (= DSTSK_TS_SUBRANGE) '
bocncecns cosssaaa eesossecesewesaass - ceeseecsencecenenecereses +
long i DSTSL_TS_SUBR_LENG '
... ¢
var 5 DSTSA_TS_SUBR_PAR_TSPEC_ADDR 5
E Type Specification Specifying the Subrange's Parent Type E
tomemcemccecescescsemceecescccsseesamsesessssescemsmasasaanaan N
var ' '
i Value Specification Giving the Lower Bound of the Subrange 5
$emmemcceececseccccesececeeseeeesmeessesseesee-eeseesesecssecoas .
var : '
5 Value Specification Giving the Upper Bound of the Subrange 5
tooeeoanan meeececcecammmmmmemscececemeesmmeeeessceesceseeeemessan .

Here the DSTSL_TS_SUBR_LENG field ?ives the length in bits of objects

ot the Subrange data tyge. DSTSA_TS_SUBR_PAR_TSPEC_ADDR marks the

location ot a DST Type Specification for the parent type of the sub-

range. Typically this is an Atomic Type Specification for type integer

ggton lndérect Type Specitication pointing to an Enumeration Type Begin
record.

The two Value Specifications in this Type Specification specify the
lower and upper bounds of the subrange. These bounds values must be

l
]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
|
i
i
i
i
i
i
i
i
i
i
i
!
i
i
i
|
i
i
i
i
|
i
!
i
! values of the parent type.

M
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.36 Page 69

FILE TYPE SPECIFICAT]ONS

The File the Specification specifies a File data t{pe as found in
PASCAL or PL/1, for example. Since the interpretation of File types
varies from langugge to language, the Language code for this File

type is included in the Type Specification, Optionally, a file record
T‘pe Specification can be included specifying the type of a record in
this tile type. _A PASCAL File-of=-Reals, for instance, would have Real
(F-Floating) as its file record type.

This is the format of the File Type Specification:

word + T DSTSW_TS_LENGTH :
byte & DSTSB_TS_KIND (= DSTSK_TS_FILE) :
byte & DSTSB_TS_FILE_LANG :
ar 3T DSTSA_TS_FILE_RCRD_TYP T :
E Type Specification Giving the File Record Type ?
oo e cmemeemmememmnemmms e menemmemmnemmnaae ‘

Here the DSTSB_TS_FILE_LANG field contains the Language code for this
file. The same Language codes are used as in the Module Begin DST
record. DSTSA_TS_FILE _RCRD_TYP is the Location of a DST Type Specifi-
cation for the record Type,”if applicable. This Type Specification is
optional; if omitted, file-of-characters is assumed.

'
.
|
.
L
.
|
.
|
.
|
.
|
.
t
.
]
.
'
.
¢
.
|
.
1
.
|
.
]
.
\
'
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
|
.
i
»
|
.
[}
.
i
.
|
*
1
.
!
.
L]
.
1
.

N
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.38 Page 70

AREA TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v4.0.

The Area Type Specification describes a PL/] '‘area'’ type. PL/! areas
are regions of memory whose base addresses are determined at run-time,
Areas are always used in conjunction with PL/1 Offsets (see below).
This i the format of the Area Type Specification:

boccaa Tessesssscssessssascscas LU LI LI I I I L L I I I L S L AL DL e P L Y 2 +

' DSTSW_TS_LENGTH '

oyte 1 DSTSB_TS_KIND (= DSTSK_TS_AREA) :
var 3T DSTSA_TS_AREA BYTE_LEN :
§ value Specification Giving the Area Byte Length ;

et mmmemmecmmmemmeeemmemeemeemmecmnmnemammmemnmane :

Here the DSTSA TS _AREA_BYTE_LEN value Specification specifies the byte
Length of the PL/T Area.

'
i
i
i
i
i
]
i
i
i
i
i
i
. word
i
t
i
i
i
i
i
i
i
i
i
i

DSTRECRDS.REQ; 1

L}
.
]
.
|
.
'
.
[]
.
\
.
[}
.
t
.
]
N
t
.
1
.
[}
.
\
.
]
.
|
.
]
.
!
.
|
.
!
.
]
N
]
.
[}
.
[}
N
1
.
]
.
{
.
]
.
|
.
]
.
t
.
[}
.
[}
.
}

.

|

.

|

.

[}
.
]

word
byte

var

var

OFFSEY TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v4.0.

16=SEP-1984 16:49:1?.33 Page 71

The Oftfset Type Specitication describes a PL/] ‘‘offset’’ type. PL/I

offsets are offsets relative to the start of a PL/] "'area

(see above),

a dynamically allocated region of memory. The Offset Type Specifica-

tion specifies the base ad L
offset value of this offset type. This is the format:

dossossuvascaan LA L L L L X L L L L T LY YT T Y X Y Y R Y Ty [
' DSTSW_TS_LENGTH '
T L L e L T L 1 T T T A i e, +
H DSTSB_TS_KIND (= DSTSK_TS_OFFSET) '
X T YT Y T YT YTy TNy eoseseosesesseasaesaa eoeoescseeecerlateceoananan®Se +
3 DSTSA_TS_OFFSET_VALSPEC 5
§ value Specification Giving the Base Address §
E of the Area Associated with this Offset E
;- - D D D D D R D R D D R D R D D D D S T D - ;
§ Value Specification Giving the Byte Offset Value §
$emecmceccccmcemccsesmccessesescanccmsemcmeemecccesececeeseeenns .

Here the DSTSA_TS_OFFSET_VALSPEC Value Specification produces the
address of the asSociated area and the second Value Specification
the byte offset value into the area.

ress of the associated area and the byte

base
gives

TN o o f TS e S G S e Er G WO AP S WG WS EES W MRS AP P WS4 AR S Y NS WG RO MRS EE T SR VNG MR EE) e e e RS wm s et TR MR O M wm g e e e g amy st T AR e

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.38 Page 72

NOVEL LENGTH TYPE SPECIFICATIONS

The Novel Length Type Specification is used to specify any data type
that is identical to a parent data type except that the objects of this
new tgpe have a different length (a "novel'' or atypical length). This
Tng pecification is used for the components of PACKED records in
PASCAL, for example. A boolean component of a packed record consists
ot a single bit (the novel length} while all other booieans consist of
a byte (the normal length). To describe the packed boolean type, a
Novel Lenath Tyge Sgec1f1cagloo is used which specifies the novel length
and point, to the DST description ot the parent type, namely the normal
boolean type. DEBUG accessed objects of a Novel-Length type by expand-
ing them to the normal length for that type.

This is the format of the Novel Length Type Specification:

oo SR e PP EE OO T O T CTUNTRTNT NN R DS EEEEDDGG GGG S ®®ee S $

DSTSW_TS_LENGTH (= 9) !

: DSTSL_TS_NOV_LENG :

oo rsosscossoscasssssvcacscesveaaan seowmeoccoecerosccooanasaneeeae

! DSTSL_TS_NOV_LENG_PAR_TSPEC !

¢osvsosssssssaaa LI L LT L LD R L P LT L ¥ ¥ ¥ L ¥ ¥ P ey Py Yy e yyyys ¢

Here the DSTSL_TS _NOV_LENG field contains the ‘‘novel’’ length of this
data type. The DSTSL_TS_NOV_LENG_PAR_TSPEC field is a DST pointer which
contains the byte offset relative to the start of the whole DST of the
DST record that specifies the garent type. The pointed-to DST record
must be a Type Specification DST record, a Record Begin DST record, or
an Enumeration Type Begin DST record, (Typically it is a Type Specifi-
cation DST record containing an Atomic Type Specification for type inte-
ger or bnolean or an Enumeration Type Begin DST record.)

DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.38 Page 73

|
|
|
1
]
|
|
|
|
|
|
|
[
|
1
L}
|
|
\
|
|
1
\
L
|
]
i
]
!
I
1
1
1
[}
i
1
[}
]
L]
|
'
|
[}
1
]
]

: word

: byte

' word

j byte

SEL"~RELATIVE LABEL TYPE SPECIFICATIONS

The Self-Relative Label Type Specification specifies the type of a PL/!

self-relative’’ Label. Such a label is actually a Label array, meaning

that it must be indexed by an integer value to yield a specific lLabel
value. The internal representation consists of an array of longwords
where each array element contains a lLabel value relative to the start of
the array. Hak1n? the element values relative to the start of the array
ensures that the label array is Position=-Independent (PI().

This is the format of the Self-Relative Label Type Specification:

LR L L T T T T T T T T Y T T R Y P LT Y T Y ¥ Y3

! DSTSW_TS_LENGTH (= 1) :

dovceevesssvwrssswsssssascssassas LT T Y YT Y% ¥ (2T DT TP T Y Y Y Py Yy Yy Yy Y> L 3

: OSTSB_TS_KIND (= DST$K_TS_SELF_REL_LABEL) !

L e Y P gy eoseooseocrssss ¢

TASK TYPE SPECIFICATIONS

NOTE: THIS TYPE SPECIFICATION IS NOT SUPPORTED BY DEBUG v4.0.

The Task Type Specification specifies the data type of task objects
as found in ADA. Objects of the Task data type are assumed to have
longword values understood by the ADA multi-tasking kernel. Since
no additional information is associated with the Task data type, the
Task Type Specification has the minimal format:

‘ END OF TYPE SPECIFICATION DESCRIPTION.

DSTRECRDS.REQ;1 16=-SEP~1984 16:69:1&.33 Page 74

R R EE R R N R el E ek el el R e R P SR P I S

ENUMERATION TYPE DST RECORDS

Enumeration tlpes. as found in PASCAL and (., are represented in the
DST by three kinds of DST records. The Enumeration Tyge Begin DST
record describes the type itself, giving the bit length of objects

of that type and the name of the type (e.g., COLOR). This record

is followed by some number of Enumeration Type Element DST records,
one for each element, or Literal, in the type (e.g., RED, BLUE, and
GREEN). Each Enumeration T{pe Element DST record gives the name and
numeric value of one Literal of the enumeration type. The whole type
description is then terminated by an Enumeration Type End DST record.

The Enumeration Type Begin and Enumeration Tyﬁe End DST records thus
bracket the List of elements of the type, much Like other Begin-End
pairs in the DST. The Enumeration Type Element DST records within
those brackets do not have to be in numeric order of their values,
although it is desirable if they are. For Languages Like ADA, where
the numeric values of the elements need not go up sequentially with
the Logical element positions, the Enymeration Type DST Elements do
have to be order of their Logical positions, however. No other kinds
of DST records (except Continuation DST records) may appear between
the Enumeration Type Begin and the Enumeration Type End DST records.

F
DSTRECRDS .REQ; 1 16-SEP-1984 16:49:15.38 Page 75
THE ENUMERATION TYPE BEGIN DST RECORD

The Enumeration Type Begin DST record specifies the name of an
enumeration type and the bit length of objects of that type.
It also serves as the opening bracket for a List of Enumeration
Type Element DST -ecords, and must be matched by a closing
Enumeration Type End DST record. This is record's format:

]

1

]

i

i

g

]

i

' tecccceccccccccccccccccccccncccccccccctcececcccccccescreanacascnnses +

; byte ! DSTSB_LENGTH '

' L T T L T e L L T T Ty Ry +

! byte | DSTSB_TYPE (= DSTSK_ENUMBEG) '

' L e L Y L T L L L T Y L L L Y L T T T +

' byte DSTSB_ENUMBEG_LENG :

' LI LRI L LR R LT L L e L L L Y Y Lt +

' byte ! DST$B_ENUMBEG_NAME !

' $omecmccccccccccccccccccnncnclecccccalacccecccccccccaccnrcacccnan +

! var ' "

5 5 The Name of the Enumeration Type in ASCII 5

g § (The name's Length is given by DSTSB_ENUMBEG_NAME) :

i : :

' tececmcnnccccccccccccccccc s crcccccccarrsasesec s nanccatasace +

[}

:

S

; Define the fields of the Enumeration Type Begin DST record.

FIELD DS;§$NUHBEG_FIELDS =
DSTSB_ENUMBEG_LENG =0¢2,8_1, ! Bit length of data objects of

! this enumeration type

DSTSB_ENUMBE G_NAME =[3,8_1 ; Count byte for the Counted

ASCI1 Type Name
TES;

DSTRECRDS.REQ; 1 16-SEP=-198¢4 16:49:12.33 Page 76
THE ENUMERATION TYPE ELEMENT DST RECORD

The Enumeration Type Element DST record specifies the name and value
of one element (one literal) of an enumeration type. It may only
ag?ear between an Enumeration Type Begin and an Enumeration Type End

DST record. The underlying representation of enumeration types is
assumed to be unsigned integer, The DSTSB_VFLAGS field in this record
has its normal interpretation (see the Standard Data DST record for
the details). Hence the DSTSV_VALKIND field will have the value
DSTSK_VALKIND_LITERAL and the DSTSL_VALUE field will have the appro-
priate integer value in this case.

This is the format of the Enumeration Type Element DST record:

\

]

]

[}

[}

]

]

]

]

]

[}

]

§

]

]

! dovacccssccssnssensssssscssssnccssscenesaaa cossessrssscsssnascscancaw ¢
E byte i DSTSB_LENGTH ;
! 4eccsccccccccccsccccccccccecccccecscsccccarercracaccccaccccnnana ¢
E byte ! DSTSB_TYPE (= DSTSK_ENUMELT) :
' D et e e e T LT R P +
; byte . DSTSB_VFLAGS :
' L L L = e L L L T T T e +
E long i DSTSL_VALUE i
| byte ! DSTSB_NAME !
! LDl DL L L Lt et L L D D D R e e L DL L L bttt L L L T +
! ovar ' "
: 5 The Name of the Enumeration Literalt in ASCII 5
: § (The name's Llength is given by DSTSB_NAME) §
- s ;
! L L L L e L LT T T T P P e +
]

]

]

: THE ENUMERATION TYPE END DST RECORD

1

! The Enumeration Type End DST record terminates the description of an
: enumeration type. This is the record's format:

]

! L T T Ty T Y ¢
; byte | DSTSB_LENGTH '
' L L T L T T Y Y Y L LT LY T Y T P P e +
z byte | DSTSB_TYPE (= DSTSK_ENUMEND) '

-—

H
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.38 Page 77

RECORD STRUCTURE DOST RECORDS

Record structures, or simply records, refer to the aggregates of non-
homogeneous components found in many Languages. In some languages,
such constructs are called "‘records’’ (in PASCAL and COBOL, for example)
and in others they are called ''structures’’ (in PL/I, for example).
Here we will call them "‘records’’. What all records have in common is
that they consist ot a set of named components, each corresponding to
some field in the record structure. The components can in general be
of any data types supported by the language.

In the Debu? S(mbol Table, a record is represented by a Record Begin
DST record toliowed by some number of data object DST records, one for
each record component, followed by a Record End DST record. Any data
object DST record within & Record-Begin/Record-End pair is taken to
denote a component of that enclosing record specification. Other DST
records may also appear between the Record-Begin/Record-End pair, such
as Tlpe Specification and other DST records that specify the data types
of the components. However, only data DST records denote record com-
ponents.

Nested records are defined by record components which are themselves
records. The t‘pe of a8 record component which is itself a record is
detined by another Record-Begin/Record-End pair of DST records. This
additional record definition may appear inside the original record
definition, but does not have to do so--an Indirect Type Specification
pointing to a record definition outside the original reccrd definition
is also legal. Conversely, 8 record definition inside another record
definition does not define a nested record unless some component of
the outer record actually references the inner record definition. In
short, the OST can only describe one level of record components at a
time, but any component can be of any arbitrary data type including
another record type.

The Record Begin DST record is unusual in that it can define both a
data tlge and a data object. If the DST$B_VFLAGS field has the special
value DSTSK_VFLAGS_NOVAL, then the Record Begin DST record defines an
abstract data type. Any object of this data type must be represented
by a Separate Type Specification DST record which immediately precedes
either the Record Begin DST record or a Type Specification DSV record
that contains an Indirect Type Specitication that points to the Record
Begin DST record. In this case, the name in the Record Begin record is
taken to be the name of the data type, not of any object of that type.

However, it the DST$B_VFLAGS field does not contain DSTSK_VFLAGS_NOVAL,
then the Record Begin DST record defines both a data type and a data
object of that type. This form can be used for Languages such as COBOL
which do not have named data types. In this case, the DST$B_VFLAGS and
DSTSL_VALUE fields specify the address of the record object in the same
way 85 in_the Standard Data DST record. It is still legal to have
Indirect Type Specifications pointing to this Record Begin DST record,
using it strictly as a type definition.

T T e R R Y el E e N R T ey iy YR APy A G T T T ey

Some languages, such as PASCAL, allow record variants. (In ADA, the

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1;.33 Page 78

o am b am ® D S ML B L ARG MRS S EMS GRS ARG NS ERe SRS NS MRS RS WY MRS RO MR L NG MM WS ARy g ams R ERe me s we) NS R am s M L s 4 e S G A4 M Em S M NN, R e s A ke e o

same concept is called ‘'discriminated’’ records.) An object of a record
t¥pe with variants contains some set of components found in all objects
ot that type plus some set of components that vary from one record
variant to the next. Which of the varying components are actually
present in a given record may be determined by the value of a "'tag
variable'' which is a tixed component of the record. Variants may also
be nested so that variants have variants.

In the DST, record variants are described by Variant Set Begin DST
records, Variant Value DST records, and Variant Set End DST records.
The variant Set Begin DST record marks the beginning of a set of record
variants, where each variant consists of some set of record components.
The Variant Set Begin DST record indicates which record component con-
stitutes the.tog variable that discriminates between the variants in
the set. This tag variable must be a component of the same record and
must precede the Variant Begin DST record in the DST. The Variant
Begin DST record also gives the bit size of the variant, if known at
compile-time.

The variant Value DST record marks the beginning of a single record
variant. It also specifies all tag variable values or value ranges
that indicate the presence of this variant in a given record object.
AlLL record components (indicated by data DST records) after this Vari-
ant Value DST record and before the next variant Value or Variant Set
End DST record are taken to be components in this variant.

The variant Set End DST record marks the end of some set of variants
within a record specification. It also terminates the last variant
within the set.

A record type with variants is thus specified as follows. First a
Record Begin DST record marks the beginning of the record specifica-
tion. After that come data DST records that denote all fixed compo-
nents of the record type. Then comes a Variant Set Begin DST record
that marks the beginning of a set of variant definitions and identi-
fies the tag variable (1t any) for that variant set. Immediatel
thereafter comes the first variant Value DST record. It marks the
start of the tirst variant and identifies the values or value ranges
of the tag variable that correspond to this specific variant.

After the first variant Value DST record come the data DST records

for the record components in this particular variant. Next comes the
variant vValue DST record for the next variant, along with its component
DST records, and so on for each variant in the variant set. After the
Last component DST record for the last variant in the set comes a
variant Set End DST record. It is followed by the DST records for any
additional record components, Rossrhl‘ including additional variant

set definitions. Then comes the the Record End DST record.

variant sets na¥ be nested inside variant sets. Such nesting is indi-
cated in the DS bg the corresponding proper nesting of Variant Set
B8egn and Variant Jet End DST records.

DSTRECRDS.REQ;1 16-SEP-1984 16:69:1%.38 Page 79
THE RECORD BEGIN DST RECORD

The Record Begin DST record marks the beginning of a record type
definition in the DST. It must be followed by the DST records for

the components of that record and by a matching Record E€nd DST record.
The Record Begin DST record has essentially the same format as the
Standard Data DST record, but with two exceptions. First, an extra
lonauord ives the bit length of the record tyge and second, the
DBG3B_VFLAGS field may have the special value DST$SK_VFLAGS_NOVAL to
indicate that this is strictly a type definition, not also the defini-
tion of a record object. If a normal value specification is used, a
record object is being declared as well as a record type. In this
case, 3 Trailing Value Specification may be included at the end of the
DST record if necessary to describe the record's address.

The bit size of objects of this record type is also given in the DST
record. This size should be included if the size is known at compile=
time. If it is not known at compile-time, it should be specified as
zero,

This is the format of the Record Begin DST record:

byte | DSTSB_LENGTH i
T g S U S
byte ' DST$B_TYPE (=DSTSK_REGBEG) H
bPoosvcvoveavesrrresvessnes LT T 1y ¥ 2 X ¥ ¥y) LT LY T X Y Y ¥y Yy ¥y ¥y Soeeoeeoecace +
tommcnccsscocnncracnrsccane L L = T e e +
long ! DSTSL_VALUE i
’ X 3 X X X X ¥ 1 X ¥ Y J L X 7 2 1 X @ X I 1 X 3 X ¥ I X § Y} L B B X 2 X ¥ ¢ X X 3 ¥ ¥ 7 X X ¥ ¥ ¥ ¥ J J
byte DST$B_NAME i
L T Y T Py
var H '
5 The Name of the Record or Record Type in ASCII 5
§ (The name’s length is given by DSTSB_NAME) §
; Ladd d L L Ll D DL L L L L L L L L L L L L 2 L L 1 2 J ;
long DSTSL_RECBEG_SIZE i
oo L T T T T T I I I I T I s I I T T T YyYYTYYTYYYYOTs
Define the fields of the Record B8e3in DST record. Also declare the macro
that defines the trailer part of the DST record.

Ll
]
i
i
a
'
)
i
i
i
i
i
i
;
;
]
i
i
i
i
.'
i
i
]
;
i
:
1
i
[byte ! DST$B_VFLAGS !
i
i
i
)
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
f

IELD DS;:?ECBEG_YRAILER_FIELDS

DSTSL_RECBEG_SIZE = [0 , L_) ! The bit size of data objects of this
TES ! record type (or 0 1f unknown)

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1%.38 Page 80

MACRO
DSTSRECBEG_TRLR = BLOCK(,BYTE) FIELD(DSTSRECBEG_TRAILER_FIELDS) ¥%;
; THE RECORD END DST RECORD
]
; The Record End OST record marks the end of a record type definition in
' the DLT. In effect, it terminates the scope set up by the matching
E Record Begin DST record. This is the record's format:
|
' tomocccna ceeccccsccccccas ceecescccoctncncncccccccncnnccscccacaan +
' byte | DSTSB_LENGTH (= 1) :
' L il e e T T T +
P byte . DST$B_TYPE (= DSTSX_RECEND) :

s
DSTRECRDS.REQ;1 16-SEP-1984 16:&9:1&.38 Page 81

THE VARIANT SET BEGIN DST RECORD

Tne Variant Set Begin DST record marks the beginning of the DST
description of a set of record variants. This DST record also
identifies the tag variable that discriminates between the variants
in the variant set. The tag variable is identified by a pointer

to the DST record for the tag variable. This DST pointer consists
of a b;te address relative to the start of the DST, The size in
bits ot this variant set, meaning the size of the largest variant

in the set, is also included. IT this size is not known at compile-
time, it should be set to zero.

This is the format of the Variant Set Begin DST record:

boecccacsvoscscsonsrsessccsoseneas cSesoeseossesen cesecessesabee eossescces L 3
byte DSTSB_LENGTH '
tevcncncnnccccccccccccnnccrrcecrc e ercrecre e enceccececcccacaas -t
byte | DSTSB_TYPE (= DSTSK_VARBEG) '
boocccvcocnacacewerssssssranes LI LT L LY T Y YT Y yyyyyyyy Py cossecsccee +
byte ! DSTSB_VFLAGS '
temcccccccnccccccccccnccccccccceccrrrccccccccer e ccecsccceceaane +
long ! DSTSL_VALUE :
¢msscscassscsnssssssesvasen LI T L T L T ¥y ¥ YTy Coeeeecccecscsssencaceseee $
byte | DSTSB_NAME :
AL LD L LI I I LI LD LI I I L Y P LI P e Y P Y Y TP YL s +
var ' 1
5 The Name of the Variant Set in ASCII E
§ (The name's length is given by DSTSB_NAME) §
§ (This name is normally null) §
temmmmmcmmeceseccsemmcmmeemcessccmeemmseseemecacscsceeemmmmmenoe +
long i DSTSL_VARBEG_SIZE i
tong DSTSL_VARBEG_TAG_PTR '
LTI DL P LT L T L L L e L L P P P Y Y L Y LY Py L 4

Define the fields of the variant Set Begin DST record. Also define the

\
'
0
\
\
i
1
'
i
i
h
i
h
i
i
i
i
i
i
'
i
i
i
'
i
i
i
'
i
h
i
'
i
i
'
i
i
i
i
i
1
i
i
i
; declaiation macro for the trailer part of the record.
f

1ELD DS;?¥ARBEG_TRAILER_FIELDS =
DSTSL_VARBEG_SIZE =[0,L_), ! Size in bits of variant part
: of record (or zero)
DSTSL_VARBEG_TAG_PTR = [4 L_] ! Pointer to TAG field DST
! record relative to the
T€S ! start of the DST

MACRO

r

M
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.33 Page 82

DSTSVARBEG_TRAILER = BLOCKL,BYTE] FIELD(DSTSVARBEG_TRAILER_FIELDS) X;

N
DSTRECRDS.REQ; 1 16=-SEP-1984 16:49:15.38 Page 83
THE VARIANT VALUE DST RECORD

The Variant Value DST record marks the beginning of a new record
variant within a variant set. It also marks the end of the previous
variant (if an;). It is _atways found between a vVariant Set Begin
and 8 Variant Set End DST record. Since the variant Set Begin DST
record has already specified the tag variable, the variant Value

DST record only specifies the tag value or va(ue; that correspond

to the present variant. It also specifies the size in bits of this
variant it known at compile-time (otherwise zero is specified). The
variant Value DST record is followed by the data DST records (includ-
ina nested variants if appropriate) which constitute the components
of this specific variant.

A variant may have many tag values or tag value ranges. This DST
record thus specifies a set of tag value ranges. The way these
ranges are specified is described in detail on the following page.

This is the format of the Variant Value DPST record:

]
'
i
]
[
i
i
i
]
i
i
i
i
]
i
i
!
i
i
i
i
i
! ¢vcscsosvsssnssssssscsssasnaa - P P P D S S S S DS ee e ¢
[
i
i
i
]
i
'
'
i
i
(
i
i
]
i
]
'
i
i
i
;
f

byte | DSTSB_LENGTH '
byte | DSTSB_TYPE (= DSTSK_VARVAL) T :
tong & T osTsL_vARvALSIZE :
word | DSTSW_VARVAL_COUNT :
var 4T " DSTSA_VARVAL_RNGSPEC ¢
é lero or More Tag Value Range Specifications E
§ (The number of Range Specs is given by DSTSW_VARVAL_COUNT) §
L emecemecemeememe e eme ettt ettt eem e 1
Detine the fields of the Variant Value DST record.
1ELD DS;?¥ARVAL_FIELDS =
DSTSL_VARVAL_SIZE =[2,L_1]. ' Bit size of this variant part
DSTSW_VARVAL _COUNT =[(6, W 1, ! The number of tag value ranges
DSTSA_VARVAL _RNGSPEC = [8, A_) § Locat?g;c:hggglg:e tag value

range specs star
TES;

&
DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.30 Page 84
TAG VALUE RANGE SPECIFICATIONS

tach Tag Value Range Specitication in a variant vValue DST record
consists of a byte spec1f{1ng the kind of the range specification
followed by one or two Value Specifications. |f one Value Speci-
fication is given, that gives the tag value--the range consists of
that one value. ff.tuo alue Specifications are given, thel speci-
ty the Llowest and highest values in the tag value range. The illu-
strations below show the two possible formats of Tag Value Range
Specifications:

!

1
;
:
:
;
:
;
i
;
:
:
:
|
' ¢ecnanscscsesccccsncss cosscsswectcenerreertcccrceT et cceTtoseTeeseee +
E byte | DSTSB_VARVAL _RNGKIND (= DSTSK_VARVAL_SINGLE) :
' temmercccccccccanccrceccccnccccc e cccccccccccac s errraaTsssereen +
tovar DSTSA_VARVAL _RNGADDR 5
é g A DST value Specification Giving a Variant Tag value ;
i : :
! ALl e LD L D e DL L e D DL DL L L L L ittt +
1
1
i
! ‘ecencnnccccrscrcccacaccaacna eececscsccsccsncccccccccrccncscnnceccan +
5 byte | DSTSB_VARVAL _RNGKIND (= DST$K_VARVAL _RANGE) '
| D it bt L e Y e L L T +
} var ; DSTSA_VARVAL _RNGADDR 5
2 § A DST value Specification Giving the Lower Bound E
é § tor a Range of vVariant Tag Values §
5 : :
' ¢tecccccccccncncrcccccccccccancncncanccsrcraasmccrcrsnrscrcacannann +
Covar L o i
% : A DST value Specification Giving the Upper Bound 5
g E tfor a Range of variant Tag Values §
5 : :
! {ommccsvsscscncnccocsrsannse [T YL T LYY LTS Y T LYY Y Y Y Y Y +
!
;
; Define the tields of the Tag value Range Specification.
FIELD DS;:¥ARVAL_RNG_FIELDS =

DSTSB_VARVAL _RNGKIND = [0, B_], ! Tag Value Range Spec kind

DSTSA_VALVAL _RNGADDR = [1, A_] t Location of first value

Specification
TES;

4
DSTRECRDS.REQ;1 16=-SEP-1984 16:69:1&.30 Page 85

! Detine the possible values of the DST$B_VARVAL_RNGKIND field.

LITERAL
DSTSK_VARVAL _SINGLE

- 1, i The range consists of a single value
DSTSK " VARVAL “RANGE

2; ! The range is given by a lower and an
! upper bound (two value specs).

4
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.30 Page 86
THE VARIANT SET END DST RECORD

The variant Set End DST record marks the end of record variant set;
it terminates & set of variants which have the same tag variable.
This is the format of the vVariant Set End DST record:

J
;
:
i
i
i
i
;
i
;
;
i
i

eoacsaas BRSNS SESS0ene LD T T L T X T Y Y % ¥ R X T R ey ey ¢
byte ! DSTSB_LENGTH (= 1) !
doonvcesosvosvcoccnssssscscnsnaa ceoacseeee cToceesesceesaeeaae sesesessssass L]
byte ! DST$B_TYPE (= DSTSK_VAREND) :

4
DSTRECRDS.REQ; 1 16-SEP-1984 16:69:?§.30 Page 87

BLISS ODATA DST RECORDS

BLISS data objects are represented by several different kinds of DST
records. Ordinary scalar objects, such as simple integers, are repre-
sented by the Standard Data DST record or its variants. However, 6 the
more specialized BLISS data types such as Vectors, Bitvectors Blocks,
and Blockvectors, are represented by a special pst record called the
BLISS Special Cases DST record. Pointers to such objects (e.g., REF
VECTOR) are also represented by this OST record. In addition, BLISS
field names are represented by their own kind of DST record, the BLISS
Field DST record. Both of these record kinds are described in this
section.

The BLISS Special Cases DST record and the BLISS Field DST record are
supported for BLISS only. They should not be generated by compilers
tor any other language.

LR R R et e T R RN R T

F 4
DSTRECRDS.REQ;1 16=SEP=1984 16:49:15.30 Page 88
THE BLISS SPECIAL CASES DST RECORD

The BLISS Special Cases DST record is used to describe a number of
deta objects whose data types are specific to the BLISS lLanguage only.
This includes such objects as BLISS vectors, Bitvectors, Blocks, and
Blockvectors and pointers to these objects (REF VECTOR, REF BLOCK,

and so on). This DST record should not be generated for any language
other than BLISS.

This DST records cons

is ur parts: The DST header fields, the
fields in the set DSTSg

0o

5 D, a variable-length set of fields, and
the fields 1n the set TRAIL FIELDS. The variable-length set

of fields can be empty t of the fields in DSTSBLI VEC _FIELDS,

the fields in DSTSBL] B IELDS, the fields in DST$BLI_BLOCK_FIELDS,
or the fields in DSTSBLI_BLKVEC_FIELDS. Which set of tields appears

in the variable-length part depends on the value of BLISV_BLI_STRUC,
which indicates which type of symbol is being defined.

This is thus the format of the BLISS Special Cases DST record:

ts of f
LI _FIEL
ST!BL!_
consis
ITVEC F

¢osnssssssssas ocssesesacas OB EDDDDEED DS DD E DN DD SE GRS G SoSes +

A S it
o N oSt TveE G bstaen
byte | i DSTSBBLILNG e
byte ! ~ LSTSB_BLI_FORMAL o
o S— -
ote {BUIREFI Unused:Aust e fero i oSTRBLLSNC |
var ! DSTSA_BLI_SYM_ATTR 5

§ Variable-Length Portion of DST Record §

deemcmmmememcmecceeeeseeeeeeees memeeeeeeeseceeseesssenmees ;
i ST B VAL e ;
et N bt SN ;
er The BLISS Symbol Name in ASCII ;

§ (The name's length is given by DSTSB_BLI_NAME) §

Femmemmmmemeememeememememeeeeemeeeeeeseememnns emmmeeeman ;
i DS L S e e ;

o S o E R P EE T AR P AR S A s am s e d ar e mmd B b e h MR MRS ELG MRS MRS EE S NP S WG R S AR MRS MO MRSl M4 MRS Am S am S UE S R, am S MR ARy mhg g ey an g g S SRS M, amy e e ey M A g e

~——

&
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:13.30 Page 89

The varisble-length portion of the DST record can have several forms
8% discussed above. One ossnb1l1t is that it is absent altogether,
This occurs if the DSTSV_BLI STRUC ield contains DSTSK_BLI_NOSTRUC.

However, if DSTSV_BLI_STRUC has the value DSTSK _BLI_VEC, the variable-
length portion of the DST record has the following Yormat:

tonesscsscann R i e P R R D T P R D R R R P D T D D D R S e ¢

long ! DSTSL_BLI_VEC_UNITS :
byte | DSTSV_BLI_VEC_SIGN_EXT

It DSTSV_BLI_STRUC has the value DSTSK_BLI _BITVEC, the variable-length
portion of the DST record has the following format:

long ! DSTSL_BLI_BITVEC_SIZE '

It DSTSV_BLI_STRUC has the value DSTSK_BLI_BLOCK, the variable-length
portion of the DST record has the following format:

LA I Y TP PP T T Y S PP LY T Ty Y Y P Y Yy Y Y T T YT Y +
long ! DSTSL_BL! BLOCK _UNITS i
L Ty R P L g —
byte ! Unused ' DSTSV_BLI_BLOCK_UNIT_SIZE !
¢oovocvovsrrerssvevocsscensecees ¢ososcvvococscccncronecascanocweew

It DSTSV_BLI_STRUC has the value DSTSK_BLI_BLKVEC, the variable~length
portion ot the DST record has the following format:

(LI L DL LD D PP Y TP T P P T T P P P Y P P P P T P Ty 1) []
long ! DSTSL_BLI_BLKVEC_BLOCKS i
bocvovcrsrssscscsveaa (I T T X T Y YL Y T Y Yy Yy Y Yy Sy Yy I Y r e Yy Y Y Y Y Y Y ¥ Y Y ¥
long ! DSTSL_BLI_BLKVEC_UNITS :
P S P e e e e e e e TS e ST oSS DS S S - - - .-
byte ! DST$B_BLI_BLKVEC_UNIT_SIZE :
¢teccovecnccsene - = P P T . .-

gef\ns the fields in the header portion of the BLISS Special Cases DST
ecord.

B e GRS A G Tt G NS AR En UR AN S AP t @ ! TN G MRS R P ED O GRS R C MR NP TP N O En g an P EE P ARG MR ke WG R SRS D e e s NN MR Sy ko mks BRS ER O A S WEg Mg S P amy e anl ED g, a

H &
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.30 Page 90

FIELD DSTSBLI_FIELDS =
SET

attribute segment in
this DST record

DSTSB_BLI_LNG = (2, 8_1, ! Length in bytes of the set of

! tields between this one

! and _TRAIL_FIELDS

' between 3 and T2
DSTSA_BLI_TRLRI =03, A_ 1], ! The first trailer is at this

! location + DST$B_BL]_LNG
DST$B_BLI_FORMAL = (3, 8_1. ! Flag set if this symbol iS a

' routine formal parameter
DSTSB_BLI_VFLAGS = [4, B_ 1, ! Value access information
DSTSB_BLI_SYM_TYPE =[05,8_1. ! The type of the BLISS symbol

' as described by the fol-

! lowing sub-fields:
DSTSV_BLI_STRUC =[5, v_(0,3)], ! The structure of this symbol
' Unused = [5. v2(3.4)). i This field Must Be Zero
DSTSV_BLI_REF =[5, v_(7,1)], ! Fla set 1f this is a REF

' 1 0 = no REF)
DSTSA_BLI_SYM_ATTR =06, A_ 1] E Address of var1able Length

J

TES;

: These are the possible values of the DSTSB_BLI_STRUC fieid.

LITERAL

DSTSK_BLI_NOSTRUC = 0, ! Not a BLISS structure
DSTSK_BLI_VEC =1, : BLISS vector

DSTSK BLI_BITVEC = 2, ! BLISS Bitvector
DSTSK_BLI_BLOCK =3, ' BLISS Block
DSTSK_BLI_BLKVEC = &4; ' BLISS Blockvector

. Define the fields in the variable-length part of the BLISS Special Cases

! DST record when the value of the BLISV_BLI_STRUC field is DSTSK_BLI_VEC.

: This field describes a BLISS Vector.

FIELD os;:QLx_vec_rstos z
DSTSL _BLI_VEC_UNITS

DSTSV_BLI_VEC_UNIT_SIZE

{ 6, L_)., ! Number of elements allocated
| in the vector
C 10, v_(0,4) 1, ! The vector element unit
! size: 1 = byte e =
! word, and & = [onguord
[10, v_(&, 4)] ! Sign extension ftag:
1 sign extension
! 0 = no sign extension

DSTSV_BLI_VEC_SIGN_EXT

TES;

! Define the fields in the variable-length part of the BLISS Special (ases
! DST record when the value of the BLISV_BLI_STRUC field is DSTSK_BLI_BITVEC.
; This field describes a BLISS Bitvector.

FIELD DSTSBLI_BITVEC_FIELDS =

—

4
DSTRECRDS.REQ; 1 16-SEP=-1984 16:69:1&.30 Page 91

Ll d7,]

1
EESL-bLl_Bl1VEC_SIZE = [6, L_)"! The number of bits in the bitvector

: Detine the tields in the variable-length part of the BLISS S?ecial Cases

. DST record when the value of the BLISV_BL]_STRUC field is DSTSK_BLI_BLOCK.
; T ese fields describe a BLISS Block.

fFIELD osg:ng_aLocx,rIELos =

DSTSL_BLI_BLOCK_UNITS

(6.1

J, ! The number of units allocated
! in the block

{ 10, v_(0,4)] ! The unit size of the
! block: 1 = byte, 2 =
! word, and & = longword

DSTSV_BLI_BLOCK _UNIT_SIZE

TES;

! Define the fields in the variable-length ?art of the BLISS Special Cases

¢ DST record when the value of the BLISV_BLI_STRUC field is DSTSK_BLI_BLKVEC.

! These tields describe a BLISS B'ockvector.

FIELD DS;%?L!_BLKVEC_FIELDS z
DSTSL_BLI_BLKVEC_BLOCKS

DSTSL_BLI_BLKVEC_UNITS
DST$B-BLI BLKVEC UNIT_SIZE

TES.;

C 6, L_1J, ! The number of blocks in the
' blockvector
{ 10, L_ J.! The number of units per block
C 14, B_ 1 "' The block unit size: 1 = byte,
] 2 = word, 4 = longword

: Define the tields in the first trailer portion of the BLISS Special Cases
E DST record. Also define the declaration macro.

FIELD osgz?Lx_rnAxL1_rxeLos =
DSTSL_BLI_VALUE = C 0, L_ J,

"

! Value longword, interpreted
' according to contents of
! DST$B_BLI_VFLAGS

(&, 8_1), ! Count byte of The symbol name
i
i

DSTSB_BLI_NAME = _

Counted ASCII string _
DSTSA_BLI_TRLR2 = [5, A_] The second trailer starts at this
TES location ¢+ DSTSB_BLI_NAME

MACRO
DSTSBLI_TRAILER1 = BLOCK[,BYTE] FIELD(DSTSBLI_TRAIL1_FIELDS) X;

! Define the fields in the second trailer portion of the BLISS Special Cases
E DST record. Also define the declaration macro.

FIELD DSTSBLI_TRAIL2_FIELDS =

-

4
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:14.30 Page 92

-4 O A

(3
EgSL-BLl,SIZE =00, L] ! Size of the Bliss data item in bytes

MACRO
DST$BLI_TRAILER2 = BLOCK(,BYTE] FIELD(DSTSBLI_TRAIL2_FIELDS) X:

K &
DSTRECRDS.REQ;1 16-SEP=-1984 16:49:15.30 Page 93
THE BLISS FIELD DST RECORD

The BLISS Field DST record describes a BLISS field name. BLISS field
names are declared in FIELD declarations in BLISS. Each BLISS field
name is bound to an n-tuple of numbers. Usually the n-tuple is a four-
tuple and the numbers represent a byte or Longword offset, the bit
offset within that byte or longword, the bit length of the field being
described, and » s1§n-extens1on flag. DEBUG supports references to
such ftields in BLISS Blocks and Blockvectors. However, a BLISS field
can be any n-tuple. If n is not &, the field name can only be used in
EXAMINT commands, but not in Block or Blockvector references.

The BLISS Field DST record should not be generated for any language
other than BLISS. This is the format of the record:

'
!
'
E
)
i
'
i
i
]
E
i
|
' LI T L I L e L L e L e L L L L L LY T ¢
t byte | DSTSB_LENGTH '
! teccncccncttncncccrccrcecccrcccrcasscccccc e e rcrrccccccccccccaan +
! byte ! DSTSB_TYPE (= DST$K_BLIFLD) ;
' L Ll e e L LS P LT TP L PR PP +
} byte ! DSTSB_BLIFLD_UNUSED i
! tecccnscccccnatcttcnntcnnccnnccc s s e s recscrcecescrcceracaacsssscce
; long ! DSTSL_BLIFLD_COMPS i
: boccconccsccssvsssrscssesresscscanescs LA AL DL L P XTI L LY LY L Y Y Yy ¥yy X2
E byte ! DSTSB_BL IFLD_NAME i
' I LT LI TR LT LY L Lt DL e L L T T
Povar . V
; 5 The Name of the BLISS Field in ASCII E
g § (The name's length is given by DST$B_BLIFLD_NAME) é
i : ;
i temmeocamcccccccserrsm e memeemeeeseeemecasasamseasasascecssee ‘
! var . '
z E A Vector of Longwords (ontaining the Integer 5
g i Values of the Components of the BLISS Field Definition !
é § (The number of values is given by DSTSB_BLIFLD_COMPS) g
i | ;
i Fememememmeeeememeemememeesesemsseeeeseeemeemeessseseseseeenes :
[}
0
i
; Define the fields of the BLISS Field DST record.
FIELD os;szlfLo_rleuos =
DSTSB_BLIFLD_UNUSED = . 8_1, ! Unused--Must Be lero
DSTSL_BLIFLD_COMPS = e Lo 4o ! The number of components
DSTS8_BLIFLD_NAME s . B : The count byte of the field

name (ounted ASCI] string
TES.

—

4
DSTRECRDS.REQ; 1 16-SEP=1984 16:&9:1&.30 Page 9¢

LABEL DST RECORDS

Labels are represented by two different DST records. A Label, in the
sense used here, is a symbol bound to an instruction address. Labels
do not include routine, lexical block, and entr¥ point symbols, however,
A Label can be represented by either a Label DST record or a Label-or-
Literal DST record. The Label-or-Literal DST record is intended only
tor Language MACRO, it appears. (The histor‘ on the origin and intent
of this record is unclear, however.) ALl other Languages should use

the Label DST record for (abels.

THE LABEL DST RECORD

The Label DST record specifies the name and address of a Laoel in the
the current module. A label in this sense is always bound to an in-
struction address, not a data add-ess. This is the DST record normatly
used for Labels in high-level Languages. The DSTSL_VALUE field of this
record contains the code address to which the Label is bound.

This is the format of the Label DST record:

byte ! DST$B_LENGTH :
byte -+ DSTSB_TYPE (= DSTSK_LABEL) :
byte ¢+ “Unused--Must Be Zero '
L 7

DSTSB_NAME :

var
The Label Name in ASC]]

(The name's Llength is given by DSTSB_NAME) ;

S S s MRS S NN EE SRS ARG ENCERC GRS N ERO NN GRS A AR RS D g MRS L s e e s ks e P ER S MDA NN EE. g ar s ary Ery Ay s am gt . Ey e

+
'
[4
+
byte |
+
.

L
DSTRECRDS.REQ; 16=-SEP=-1984 16:49:15.30 Page 95
THE LABEL~OR-LITERAL DST RECORD

The Label-or-Literal DST record specities the name and address of a
Label (meaning a code location) or the name and value of an 1nteger
Literal (a named constant). It is not entirely clear why this DST
record exists since Labels can be described by Label DST records and
integer Literals can be described with Standard Data DST records.

Most Likely this DST record was intended for lan?uage MACRO where
there is Little distinction between Labels and Literals; one is relo-
catable and the other is not, but that is about all. If DSTSV_VALKIND
has the value DSTSK_VALKIND _ADDR, the symbol is a Label and if it has
the value DSTSK_VALRIND_LITERAL, the symbol is a Literal. The address
of the Label or the value ot the Literal is found in the DSTSL_VALUE
tfield. It is recommended that high-level languages avoid this DST
qecorddand use the Label DST record or the Standard Data OST record
instead.

byte + DSTSB_LENGTH :
byte ¢ DSTSB_TYPE (= DSTSK_LBLORLIT) :
byte Unused--Must Be Zero :DSTSV_VALKIND |
tong + TDSTSL_VALUE T
byte ¢ DSTSBNAME
var

The Label or Literal Name in ASCIlI

]

'

'

i

i

i

i

i

i

i

i

i

i

i

i

i

i

;

; This is the format of the Label-or-Literal DST record:
i

i

]

i

i

i

'

i

i

i

]

i

i

i

g

! (The name's Llength is given by DST$B_NAME)
!
E

[] [}
[} 1
+ +
’ !
' [}
+ +
] '
L])
¢oomnconesssvcana L L 1 X 1 Y) LA L L L L L L L L L Ll L LT D LY T Y L2
: :
]]
¢ !
[} '
]]
[}]
[} ‘
]]
‘]
]]
1] '
+ ¢

-

N &
DSTRECRDS.REQ; 1 16-SEP=1984 16:49:15,30 Page 96

B S AR RS . m s am s e am e R A M Gy Ut NS ey AR ARy R MG U UR e G ANe W ED Y TG WS . ar e A

byte
byte
byte
Long
byte

var

THE ENTRY POINT DST RECORD

The Entry Point DST record describes an ENTRY name in the FORTRAN or
PL/1l sense. In other words, it describes a secondary entry point to
the routine within which this OST record is nested. This record should
never be generated for the main entry point to a routine since that
entry point is already described by the Routine Begin DST record. An
entry point described by the Entry Point DST record is always assumed
to be called through the CALLS/CALLG instructions (not JSB/BSB). The
DSTSL_VALUE field contains the address of the entry point.

This is the format of the Entry Point DST record:

D i e e e e Sy +
; DSTSB_LENGTH :
T DSTSB_TYPE (= DSTSK_ENTRY) :
o UnusedAstBe zero
: DSTSL_VALUE '
X
; The Entry Point Name in ASCII §
§ (The name's Llength is given by DSTSB_NAME) §
bomemmemmssseassecmsemeceomeommmmemmcmemenmmnmmeceeemmcceessas ;

DSTRECRDS.REQ:? 16-SEP-1984 16:49:1%.38 Page 97

THE PSECT DST RECORD

The PSECT DST record specifies the name, address, and length of

d PSECT, where a PSECT is a Program Section in the (inker sense.
PSECT DST records are only used for language MACRO where it is
possible to generate code or data at the beg1nnin8 of a PSECT
without having any other Label on that code. DEBUG ignores PSECT
DST records for all other lan?uages since high-level languages
have other code and data labels that are more appropriate.

This is the format of the PSECT DST record:

byte L DSTSB_LENGTH :
byre © DSTSB_TYPE (= DSTSK_PSEF) :
brte 1 DSTSK_PSECT_UNUSED :
long + T DSTSL_PSECT_VALUE :
byte + DST$B_PSECT_NAME (also DSKSB_PSECT_TRLR OFFS) :
var 4T DSTSA_PSECT_TRLR_BASE :

§ The Name of the PSECT in ASCII §

§ (The name's length is given by DSTSB_PSECT_NAME) §

e ee e eem e eee e eee e meeemeeeeee z
O e St A L :

Detine the fields of the PSECT DST record.
JIELD DSTSPSECT_FJELDS =
SET

\
i
i
i
;
i
i
i
;
i
;
;
i
i
i
;
i
i
i
i
i
i
i
;
]
i
:
i
;
;
;
i
;
i
:
i
i
i
i
i
i
f

DSTSB_PSECT_UNUSED = (g. B_ 1. ! Unused--Must Be lero
DSTSL_PSECT_VALUE =(35.L_ 1. ! Start address of the PSECT
DSTSB_PSECT_NAME =07,8_1. ! The coutn byte in the PSE(CT

! name COunted ASC]] string
DST$B_PSECT_TRLR_OFFS =(7, B_ J, | Byte offset to the PSECT DST

! record trailer fields
DSTSA_PSECT_TRLR BASE = [8, A_) ! Base address for offset to
1ES ! DST record trailer fields

; Detine the PSECY DST record trailer fields. Also define the declaration
' macro.

DSTRECRDS.REQ; 1 16-SEP-1984 16:69:12.38 Page 98
!
FIELD DSé:?SECT-TRAlLER_FlELDS =

QEESL-PSECT_SIZE =00, L] ! Number of bytes in the PSECT

MACRO
DSTSPSECT_TRAILER = BLOCK{ ,BYTE] FIELD(DSTSPSECT_TRAILER_FIELDS) X;

; Note that the address of the PSECT DST record tailer is computed as follows:
i DST_RECORDCOSTSA_PSECT_TRLR_BASE] ¢ .DST_RECORD[DSTSB_PSECT_TRLR_OFFS]

DSTRECRDS.REQ;1 16-SEP-1984 16:49:12.38 Page 99

S T Lk I R R L R L T T o e R e L T Y Y

byte
byte

va

LINE NUMBER P(C-CORRELATION
DST RECORDS

The Line Number P(-Correlation DST record specifies the correlation

between Listing lLine numbers, as assigned by the compiler, and P(

addresses. It thus the means whereby the compiler tells DEBUG where

the generated object code for each source Line starts and how lon

6%1‘5 in gytes. This is the tormat of the Line Number P(-Correlation
record:

After the two-byte header, each Line Number P(-Correlation DST record
vontains a sequence of Line Number P(-Correlation commands. Each such
command sets or manipulates one or more state variables used.bz DEBUG
in the interpretation of these commands. The main state variables are
the current lLine number and the current P(address, but there are seve-
ral others as well. The exact semantics of the various commands are
described in the sections that follow.

Line Number P(-Correlation DST records are associated with the module
within which they appear. The must thus agpear between the Module
Begin and the Module End DST records for the current module. There are
no further restrictions on where they may appear, however. In particu-
tar, they need not be nested within the routines or lexical blocks that
they describe. It is thus legal to generate all Line Number PC-Corre-
Lation DST records for a module after the Last Routine End DST record,
for instance. These records can also be interspersed between Routine
and Block Begin and End records in anb way convenient for the compiler
implementer. However it is done, DEBUG treats them as belonging to the
module as » whole.

The Line Number PC-Correlation information na(be spread over as many
DST records as necessary. No Line Number PC-lorrelation command may be
broken across record boundaries, but otherwise the Line Number P(-(Corre-
lation DST records within a module are considered to constitute a single
command stream. The (ontinuation DST record may not be used to continue
Line Number P(-Correlation DST records.

DSTRECRDS.REQ:1 16-SEP-1984 16:49:1§.33 Page 100

; Define the fields of the Line Number P(-Correlation DST record.
FLELD DS;?%INE_NUH_FIELDS =
2§§SA_LINE_NUH_DATA = {2, A_ J ! Start address ot P(-correlation data

LINE NUMBER PC=CORRELATION COMMANDS

Each P(-Correlation command consists of a command byte possibly fol~
lowed by 3 parameter byte, word, or longword. The presence, size, and
meaning of the parameter field 1s determined by the command byte. This
illustration summarizes the structure of one command:

' terccsrscesrnananana cccccccenccccccccrcscccswcncncccccccsnscccnans +
| byte ! COMMAND _BYTE

' var
lero or One Parameter field

(Byte, Word, or Longword)

'
[]
¢+
'
'
'
'
'
‘
'
'
'
'
'
'
+

(T A T P L P P P R P P P Y Y P LY P T PP YA LYY Y Y Y Y Y Y T LT T X T X 2L Yy ¥yyH

negative, this is a Delta-PC command. A Delta-PC command specifies
by how many bytes to increment the P(to get to the start of the

next line (see detailed description betow). This hyce count is en-
coded directly in the command byte: If the command code is negative,
its negative 1s the PC increment. The Delta-P(command has no param-
eter field. [f the command code is positive, it specifies some other
command as described below. In this case, there may be a parameter
field, depending on the command code.

! Detine the command codes allowed in Line Number P(-Correlation commands.
+ It the command code is zero or negative, the command is a one-byte Delta-P(
! command. Here we define the command-code range for the Delta-P(command.
ITERAL
DSTSK_DELTA_PC_LOW
DSTSK_DELTA_PC_HIGH

1
]
i
]
]
]
]
]
]
]
]
i
[]
[}
]
3
]
]
1
[}
]
!
g The command byte contains a command code. If this command code is
[}
[}
[}
]
[}
t
]
]
4
]
]
]
]
]
L

fnn

=128, ! The lower bound on Delta-P(commands
: ! The upper bound on Delta-P(commands

* Detine the P(-correlation command codes other than the Delta-PC command.
; These command codes are always positive,

LITERAL

DSTRECRDS.REQ:1

P K Ry 3 A i T L L R I I I A L N I

byte

byte
byte

byte

word

byte

long

DSTSK TERM_W
DSTSK_TERM_L

DST$K_PCCOR_LOW
DST$K_PCCOR_HIGH

The parameter field, if

word, or longword value.

thus look as follows:

nHunnuwuwnwuoonnaoannwnnnnu

N s b2 s 2 s PNINO — S OO O N S S N — —
- SBNSrONN—SOOC OWe » « » « OO

N) = & & & & & &

.«
-

~N
—
..

F
16=-SEP-1984 16:49:15.38 Page 101

Delta=-P(Word command

Delta-P(Longword command

Increment Line Number Byte command

Increment Line Number Word command

Increment Line Number Longword command

Set Line Number [ncrement Byte command

Set Line Number Increment Word command

Reset Line Number Increment command

Begin Statement Mode command

End Statement Mode command

Set Statement Number Byte command

Set Line Number Byte command

Set Line Number Word command

Set Line Number Longword command

Set Relative PC Byte command

Set Relative PC Word command

Set Relative PC Longword command

Set Absolute PC Longword command

Terminate Line Byte command

Terminate Line Word command

Terminate Line Longword command

Smallest value allowed in the first
byte of a PC-correlation command

Largest value allowed in the first
byte of a PC-correlation command

present, contains an unsigned byte, unsigned
The possible PC-Correlation command formats

teccoccscssrcrrerecnccecrrcsrrece e rercrccccccccarsrc s srsecsecaenee +
' COMMAND _BYTE '
L e T Y L L Ll Lt TP +
(AL LD L LI L I L LI L L DI DL e T Y I T I T T L P R L Y +
: COMMAND _BYTE g
Ll L L L L L L Ll L L LI L T I I DI L L L D I L S L DL P P DL DY L L +
i NEXT_UNS_BYTE (Unsigned Byte Value) '

... +
(A LI AT I I I T 2 LIS D L L T T T 2 L P P YL P Y T e L T +
' COMMAND _BYTE '
e L T L L T T T T T T T PP +
i NEXT_UNS_WORD (Unsigned Word value) :

........................... T T T Y Ry Y N Ty Y Y Y YT Y L X

' NEXT_UNS_LONG (Longword Value) '

b}
DSTRECRDS.REQ; 16=-SEP-1984 16:49:1?.30 Page 102

o e Em T EE P WS RS AR S am e e o ? N O RO RS AL NG MRS M s AR O EN D ED S R EL S GO G RS WD O MRS AR MRS S MRS AR e wr e s e ol e e S SE g MR e AR EE P e g g g g g e @ s s s ey ey -

L e e Y Sy, oocossaa esceoesees $

PC~-CORRELATION COMMAND SEMANTICS

The individual commands are described separately below. To clarify what
these commands actuall{'do. each is followed by a formal semantic de-
scription using BLISS-like pseudo-code. This description show what the
command does to a number of state variables used b‘ EBUG when inter-
preting these commands. The state variables are the following:

CURRENT_LINE == The current Line number.

CURRENT _STMT == The current statement number.

CURRENT_INCR == The current Line number increment.

CURRENT_STMT_MODE =-- The statement mode flag; set to TRUE when
statement mode is set, set to FALSE otherwise;

START_PC == The start address of the lowest-address routine
in the current module;

CURRENT _PC == The current PC value (code address).

CURRENT_MARK == The Line-open/line-closed flag; set to LINE_OPEN
when Line numbers are being defined and set to
LINE_CLOSED when a routine has been terminated
and new Lines are not being defined.

The initial values of these state variables when the PC-Corretation
commands for a given module are interpreted are as follows:

CURRENT_LINE =

CURRENT_STMT = 1;

CURRENT _INCR = 1;

CURRENT_STMT_MODE = FALSE;

START_PU = Start address of the lowest-address
routine in the current module;

CURRENT_PC = START_P(;

CURRENT_MARK = LINE_CLOSED;

The sections below describe the format and semantics of each of the
individual PC-Correlation commands.

THE DELTA-PC COMMAND

This command defines a correlation between a Line number and a PC value.
The current Line number is incremented by the current increment value
(normally 1) and the current P(value is incremented by the negative of
the command byte. The resulting Line number then has the resulting PC
value. [n other words, both the Line number and the PC value are incre-
mented before the correlation is established, The PC increment value
(the negative of the command code) thus specifies how many bytes to go
forward to get to the start of the Line being defined. These are the
formal semantics of the command:

H §
DSTRECRDS.REQ:;1 16-SEP-1984 16:49:15.30 Page 103

If CURRENT_STMT_MODE
CURRENT_STMT = CURRENT_STMT + 1
ECURRENT_LINE = CURRENT_LINE + CURRENT_IN(CR;
CURRENT_PC = CURRENT PC - PC_COMMANDCCOMMAND BYTE];
CURRENT MARK = LINE_OPEN; i}

The value of CURRENT_PC now contains the start address of the Listing
Line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_W COMMAND

This command is Like the normal Delta-P(command except that the PC
increment value is given in an unsigned word following the command
code. These are the semantics:

S MR G A N AR L ER S MR EN S AR Er o art W e MR W E N SR aE S SR ae e g W ey e

CURRENT_STMT_MODE
Ecunnsut_srnr CURRENT_STMT + 1
CURRENT_LINE = CURRENT_LINE + CURRENT_INCR;

CURRENT_MARK = LINE_OPEN;
CURRENTZPC = CURRENT_PC + PC_COMMANDINEXT_UNS_WORDJ;

1]

IF
THE
L

The value of CURRENT_PC now contains the start address of the listing
line specified by the values of CURRENT_LINE and CURRENT_STMT. Note
that Line-open mode is now set.

THE DSTSK_DELTA_PC_L COMMAND

This command is Like the normal Delta-P(C command except that the P(
increment value is given in an unsigned longword following the command
code. These are the semantics:
IF CURRENT_STMT_MODE
THEN
CURRENT _STMT = CURRENT_STMT + 1
CURRENT _LINE = CURRENT_LINE + CURRENT_INCR;

CURRENT _MARK = LINE_OPEN;

I P L T Lk TR R R R PR I e

OSTRECRDS.REQ:1 16-SEP-1984 16:49:1;.33 Page 104

[N L T T I T N X R R N e el I T L I T P I L L I T T T Y T U s e ey

CURRENT_PC = CURRENT_PC + PC_COMMANDINEXT_UNS_LONG];

The value of CURRENT_PC now contains the start address
Line specified by the values of CURRENT_LINE and CURREN
that Line-open mode is now set.

of the Listing
T_STMT. Note

THE DSTSK_INCR_LINUM COMMAND

This command increments the current Line number by the value given in
the unsigned byte following the command code. [f statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT LINE ¢ PC_COMMANDINEXT _UNS_BYTEJ];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DSTSK_INCR_LINUM_W COMMAND

This command increments the current line number by the value given in
the unsigned word following the command code. |f statement mode is set,
the current statement is reset to 1 as well. These are the formal
semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDINEXT_UNS_WORD];
IF CURRENT_STMT_MODE TREN CURRENY_STMT = 1;

THE DSTSK_INCR_LINUM_L COMMAND

This command increments the current (ine number by the value given in_

the unsigned longword following the command code. If statement mode is set,
the current statement is reset to 1 as well. These are the formal

semantics of the command:

CURRENT LINE = CURRENT LINE + PC_COMMANDLNEXT_UNS_LONG];
IF CURRENT_STMT_MODE TREN CURRENT_STMT = 1;

THE DST$K_SET_LINUM_INCR COMMAND

This command set the current line number increment value to the value
specified in the unsigned byte following the command code. [f state-

DSTRECRDS.REQ; 16-SEP-1984 16:49:1%.38 Page 105

S am e am S s At 4 e b mm e am S WA M s am e e e L T EE S WSS Mm S el MRS an s SO M UG AR am e e S WS AR S MRS R Ry am oy am $ AR AR g gy g e e g am e Mg ey g A e ey . s

ment mode 15 set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT INCR = PC_COMMANDCNEXT UNS BYTEJ;
IF CURRENT_STMT_MODE THEN CURRENT_STMT = 1;

THE DSTSK_SET_LINUM_INCR_W COMMAND

This commana set the current Line number increment value to the value
specified in the unsigned word following the command code. If state-
ment mode is set, the current statement number is set to 1. These are
the formal semantics of the command:

CURRENT_INCR = PC_COMMANDCNEXT UNS WORD);
IF CURRENT_STMT_MDDE THEN CURRENT_STMT ='1;

THE DSTSK_RESET_LINUM_INCR COMMAND

This command resets the current line number increment value to 1. If
statement mode is set, the current statement number is set to 1 as well.
These are the semantics:

CURRENT INCR = 1;
IF CURRENT_STMT_MODE THMEN CURRENT_STMT = 1;

THE DSTSK_BEG_STMT_MODE COMMAND

This command sets statement mode, meaning that subsequent Delta-PC com-
mands will increment the current statement number within the current
Line and not the current Line itself. This command is only allowed in
the Line-open state. Statement mode can optionally be used by Languages
that have multiple statements per Line. This command also set the cur-
rent statement number to 1. These are the semantics:

IF CURRENT MARK NEQ LINE_OPEN THEN SIGNAL{Invalid DST Record):
CURRENT_STAT_MODE = TRUE:
CURRENT _STMT = 1;

THE DSTSK_END_STMT_MODE COMMAND

K
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:15.33 Page 106

Bt BT Bt I BRI B IE I @I BB I @Mt WIWMIE I DI I @ I@ I T W A E IR S AN G ur o an P TR S TP EE O W AP AR RS NG AR L AR EE G AR L ARG I EE S AR WS MRS WR RS R, am a e g A

This command clears statement mode so that that subsequent Delta-PC com-
mands will again increment the current Line number, not the statement
number. The command also set the current statement number to 1, These
are the semantics:

CURRENT_STMT_MODE = FALSE;
CURRENTZSTMT = 1;

THE DSTSK_SET_LINUM_B COMMAND

This command sets the current line number to the value specified in the
unsigned byte that follows the command code. These are the semantics:

CURRENT _LINE = PC_COMMANDINEXT_UNS_BYTEJ;

THE DST$K_SET_LINUM COMMAND

This command sets the current Line number to the value specified in the
unsigned word that follows the command code. These are the semantics:

CURRENT_LINE = PC_CJIMMANDINEXT_UNS_WORD]:

THE DSTSK_SET_LINUM_L COMMAND

This command sets the current line number to the value specified in the
longword that follows the command code. These are the semantics:

CURRENT_LINE = PC_COMMANDINEXT_UNS_LONG];

THE DSTSK_SET_STMTNUM COMMAND

This command sets the current statement number to the value specitied
in the unsigned word that fcllows the command code. The command should
only be used when statement mode is set. These are the semantics:

CURRENT_STMT = PC_COMMANDCNEXT_UNS_WORD];

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1%.38 Page 107

t
.
1
.
[}
.
]
.
]
.
[}
.
[]
.
[}
.
'
.
|
.
\
.
[}
.
|
.
|
.
|
.
|
.
|
.
L]
.
I
.
]
.
]
[}
.
|
.
]
*
]
.
]
.
L}
.
]
.
1
.
|
.
]
.
]
.
1
.
L]
»
|
.
L]
.
1
.
!
N
]
N
'
.
]
.
L}
N
|
.
L]
.
L
.
]
.
[}
.
]
.
]
.
]
.
1
[}
M
1
.
]
.
]
.
[}
N

THE DSTSK_SET_PC COMMAND

This command sets the current P(value to be the value specified in the
unsigned byte follou1n? the command code added to the start address of
the (owest-address routine in the cucrent module. This command is only
sllowed in the line=closed state. These are the formal semantics:

J1F CURRENT_MARK NEQ LINE _CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT _PC™= START_PC + PC_COMMAND[NEXT_UNS_BYTE];

THE DSTSK_SET_PC_W COMMAND

This command sets the current P(value to be the value specified in the
unsigned word following the command code added to the start address of
the [owest-address routine 1n the current module. This command is only
allowed in the Line-closed state. These are the formal semantics:

IF _CURRENT_MARK NEQ LINE_CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT_PC”= START_PC + PC_COMMANDCNEXT_UNS_WORD]:

THE DSTSK_SET_PC_L COMMAND

This command sets the current P(value to be the value specified in the
longword following the command code added to the start address of the
lowest-address routine in the current module. This command is only
asllowed in the Line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ LINE _CLOSED THEN SIGNAL(Invalid DST Record);
CURRENT_P(™= START_PC + PC_COMMANDINEXT_UNS_LONG];

THE DSTSK_SET_ABS_PC COMMAND

This command sets the current P(value to be the absolute address speci-
tied in the lon?qord following the command code. This command is only
allowed in the line-closed state. These are the formal semantics:

IF CURRENT_MARK NEQ LXNE

. LOSED THEN SIGNAL(Invalid DST Record);
CURRENT_PC"= P(_(OMMAND

C
REXT_UNS_LONG];

THE DSTSK_TERM COMMAND

L
DSTRECRDS.REQ; 16=-SEP=-1984 16:469:15.30 Page 108

R N L LR X F Lk X e R R R R R R e el ek R R T o R I I i P T T

This command terminates the P(~Correlation command sequence for the
current routine or other program unit and specifies the number of bytes
in the Last Lline SRQC\fi!d by a Delta-P(command. Since the Delta=-P(
command specifies how many bytes precede the Lline bewn? defined, the
Terminate command is needed to say how manl bytes are in that Lline
(i.e., how many bytes will increment the Pl to the first byte past the
current program unit). The number of bytes in the Last Line is speci-
tied bz the unsigned byte following the command code. This command also
sets the lLine-closed state. These are the semantics of the command:

CURRENT _PC = CURRENT_PC + PC_COMMANDCNEXT_UNS_BYTE];
CURRENT_MARK = LINE_TLOSED;

THE DSTSK_TERM_W COMMAND

This command terminates the P(-(orrelation command sequence for the cur-
rent routine or other program unit and specifies the number of bytes in

the Last Line of that program unit. It is a variant of the DSTSK_TERM

command described above. The number of bytes in the Last Lline is speci-
tied bK the unsigned word following the command code. This command also
sets the Line-closed state. These are the semantics of the command:

CURRENT_PC = CURRENT _PC ¢ PC_COMMANDCNEXT_UNS_WORDJ;
CURRENT_MARK = LINE_CLOSED;

THE DSTSK_TERM_L COMMAND

This command terminates the P(-Correlation command sequence for the cur-
rent routine or other nrogram unit and specifies the number of bytes in

the Last Line of that program unit. It is a variant of the DSTSK_TERM

command described above. The number of bytes in the Last Line is speci-
fied by the longword following the command code. This command also sets
the Line-closed state. Thes- are the semantics of the command:

CURRENT_PC = CURRENT PC ¢ PC_COMMANDLNEXT_UNS_LONG);
CURRENT_MARK = LINE_CLOSED;

END OF LINE NUMBER PC-CORRELATION DST RECORD DESCRIPTION.

N
DSTRECRDS.REQ;1 16-SEP-1984 16:49:15.38 Page 109

S L T T T N T N N N W I Ll L O R P

byte
byte

var

SOURCE FILE CORRELATION
DST RECORDS

The Source File Correlation DST record is used to specify the correla-
tion between listing Line numbers on the one hand and source files and
source file record numbers on the other. These records enable DEBUG
to display source lLines during the debugging session.

The Source File Correlation DST record has the following format:

o
w
e
[ad
L)
[]
—t
<) O
Yrnm
m g —4
[l
~ t
n
—
oIm
nIi 2
- O
@ —
XX
]
w
o
c
P
9
m
A4

A variable number of

Source file Correlation commands

N L LT YT

After the Length and DST type bytes, the record consists of a sequence
of Source File Correlation commands. These commands specify what source
files contributed source Lines to this module and how the module's lList-
1qg Line numbers are lined u? with the source files and record numbers
within those source files. The available commands are described indi-
vidually below.

It the Source File Correlation commands needed to fully describe the
current module will not fit in 8 single Source Line Correlation DST
record, the{ can be spread over any number of such DST records. These
records will be processed sequentially, in the order that they appear,
until there are no more such records for the current module.

The purpose of the Source File (orrelation commands is to allow DEBUG
to construct a table of correlations between Line numbers and source
records. A '‘line number'' in this context means the Listing line num-
ber. This is the Line number which is printed in the programs list1n?
and is output to the P(-Correlation DST records by the coagiler. (pC-
Correlation DST records correlate Listing Line numbers with Program
Counter values.) A corresponding source Line is identified b;_ wo
things: a source file and a record number within that source ftile.

The semantics of the Source File (Correlation commands can be understood
in terms of manipulating three state variables and issuing one command.
The three state variables are:

LINE_NUM =~ The current Listing Line number.

DSTRECRDS .REQ;1 16=-SEP=-1984 16:69:12.38 Page 110

SRC_FILE == The File ID of the current source file,
f.e. & small integer uniquely defining

the source file.)

SRC_REC == The record number (in the RMS sense) in
the current source file of the current
source (ine,

LINE _NUM is assumed to have an initial value of 1 while SRC_FILE and
SRC_REC are initially undefined. The one command is:

-4
L

DEF INE(LINE_NUM, SRC_FILE, SRC_REC)

This commana declares that Line number LINE_NUM is associated with the
source Line at record number SRC_REC in the file specified by SRC_FILE.

1

i

i

i

i

i

i

i

]

i

]

i

i

i

|

! Given this, the compiler must outﬁut 8 sequence of Source File Correla-
! tion commands which cause LINE_NUM, SRC_FILE, and SRC_REC to be set up
! approgr1atel and which cause the proper.DEFfNE operations to be issued
' to allow DEBUG to generate the correct line number to source record

' correlation table. (DEBUG may not actually generate the full table,
' but it must be able to generate an(part of such a table it needs.)

' The semantics of each Source File (orrelation command is described

: below in terms of these state variables and commands.

' Line numbers must be DEFINEd in sequential order, from lowest line

! number to highest Line number, in the Source File (orrelation commands
! for one module. The source records these Line numbers correlate with
3 may be in any sider, of course.

]

[

i

i

]

]

]

[

i

i

i

i

'

'

i

'

i

i

i

i

F

It should be clear from witat follows that the source for one module may
come from many source files. This can be caused b‘ plus=Lists on the
compiler command (e.g., $SFORTRAN/DEBUG A+B+() and by INCLUDE statements
in the source. Also, source Lines may come from modules within source
Libraries as well as from independent source files.

Form feeds in source files, or more precisely source file records which
contain nothing but » sqng[e.form teed (CNTL-L) character, are counted
as individual sources lines in some languages but are ignored (not as-
signed Line numbers) in other languages. DEBUG will handle either con-
vention, but DEBUG's default behavior is that form feed records are
ignored in sources files. They are not displayed and they do not count
toward the source file record number of subsequent source records. To
aak; DEBUG count such records, the DSTSK_SRC_FORMFEED command must be
used.

Define the location of the first command in the DST record.
1ELD DSé%%OURCE_'IELDS =
?EQSA_SRC_FIRSY_CHD = [2, A_) ! Location ot first command in record

! Define the command codes for all the Source File Correlation commands.

DSTRECRDS.REQ;1

|

L1TERAL
DSTSK_SRC_MIN_CMD
DSTSK_SRCTDECCFILE
DSTSK_SRC-SETFILE
DSTSK SRCTSETREC L
DSTSK_SRC_SETREC W
DSTSK_SRC_SETLNUM_L
DSTSK_SRC_SETLNUM"W
DSTsx “SRCCINCRLNUR B
I
DSTSK_SRC_DEFLINES W
gsvsx SRC_DEFLINES B

DST$K _SRC_FORMFEED
DSTSK_SRC_MAX_CMD

[L I T [O T I T T O T [B T R I]

! Define the fields of the Source

: corresponding declaration macros,
FIELD DSé%?RC_COHHAND_FIELDS =

16-SEP-1984 16:49:18.38 Page 111

Minimum command code for CASE ranges
Declare a source file for this module
Set the current source file (word)
Set source record number (longword)
Set source record number (word)

Set Listing Line number (longword)
Set l1st1n? Line number (word)
Increment listing Line number (byte)
Unused--lvallable for future use
Unused--available for future use
Define N separate Lines (word)
Define N separate Lines (byte)
Unused--available for future use
Unused--available for future use
Unused--available for future use
Unused--available for future use
Count Form-Feeds as source records
Maximum command code for CASE ranges

Ssa B B & & W B T B S & T B &
P R R L L L T T T T

OO NN = OO 00 O NN B R -3 —

— il il el ol = b

Line Correlation commands. Also define the

! Field common to all Source File Correlation commands.

DST$B_SRC_COMMAND

f The fields of the Declare

DSTSB SRC_DF _LENGTH
DSTSB_SRC_DF _FLAGS

DSTSW_SRCDF_FILEID
DSTSQ_SRC_DF _RMS_(DT

DSTSL_SRC_DF _RMS_EBK
DSTSW_SRC_DF “RMS"FFB
DST$B_SRC_DF _RMS"RFO
DSTSB_SRC_DF_FILENAME
DSTSA SRCTDF “F ILENAME

: Fields used to access

DSTSL SRC_UNSLONG
DSTSW_SRC_UNSWORD
?é;‘ﬂ SRCUNSBYTE

[A T TR T}

€ 0. B_ 1. ! Command code

Source file command.

! Lengt: of this command

i Flag b ts--reserved (M82)

i Source file's File 10

i Creatio: date and time or mod-
! ule asertion date and time
{ End-ot=File block number
G
l
l

el b b d

First Free Byte in EOF block

Record and File Organization

Source file name counted ASCII
(count byte, string addr)

=S COPW NN & v & &
LI T S T
eddladladtd & = o

- - L] - -

VY EY r-areem
POND b b b NN —

information in all other commands.

L1, L_13J. ! Unsigned longuord parameter
1. i Unsigned word parameter
| Unsigned byte parameter

; Declare trailer tield in the Declare Source File command.
FIELD DSTSSRC_DECLFILE_TRLR_FIELDS =

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:12.38 Page 112

$8_SRC_DF _L IBMODNAME
SAZSRC_DF _L IBMODNAME

nn
=

. B_ a. ! Module name counted ASCI!
. A ! (count byte, string addr)

—OO W
mwuwvpuym

T
1
T
S:

; Declaration macros for Source File (orrelation command and trailer blocks.

MACRO
DSTSSRC _COMMAND

BLOCKE.BVTE] Fl
DS1SSRC _CMDTRLR

BLOCK(.BYTE

OMMAND FIELDS) X,
ECLFILE_TRLR_FIELDS) X;

DSTRECRDS.REQ;1 16-SEP-1984 16:49:1§.38 Page 113
DECLARE SOURCE FILE (DSTSK_SRC_DECLFILE)

This command declares a source file which contributes source Lines to
the current module, It declares the name of the file, its creation
date and time, and various other attributes. The command also assigns
a one-word ‘‘file ID' to this source file. This is the formst of the
Declare Source File command:

O XT3 XTI T T,
byte i DSTSB_SRC_DF _LENGT :
byte i o DSTSB_SRC_DF FLAGS !
word DSTSW_SRC_DF _fILEID !
aud oSSR oR M OT
long i ___________ . ESTSL_SRC_EE_RHS_EBK i
word | DSTSW_SRC_DF_RMS_FFB :
bte I osisashcormmsmo
var | DST$B_SRC_DF _F ILENAME :
O DSTSB_SRC_DF LIBHODNARE |

The fields in thys command are the following:

DSTSB_SRC_DF _LENGTH - The lLength of this command, i.e. the number of
bytes remaining in the command after this field.

DST$B_SRC_DF_FLAGS - Bit flags., This field is reserved for future use.
At pfesent this field Must Be Zero.

DSTSW_SRC_DF_FILEID - The one-word '‘File [D'' of this source file. This
FileTID, which can later be used in the Set fFile command, is
simply 8 unique number which the compiler assigns to each source
tile which contributes source Lines to the current module. Each
source file thus has a number (the File ID) and is identified by
that number in the Set File (DSTSK_SRC_SETFILE) command.

DST$SQ_SRC_DF _RMS_C(DTV - The creation date and time of this source file.
This quadword quantity should be retrieved with a SXABDAT
extended attribute block from RMS via the SOPEN or $DISPLAY
system service. The creation date and time should be taken
trom the XAB$Q_(DT field of the XAB.

If the source file is a module in a source Library, this tield
should contain the module's Insertion Date and Time in the lib-

1
i
i
]
i
i
i
i
'
]
i
1
]
i
]
i
i
i
'
i
i
i
i
'
i
i
]
i
! btocccocrcssvososnssesscscccersavaaas cToccocecaeameeecaeaeErTTesesEeS +
[}
i
i
i
'
)
i
i
i
i
[
i
'
[
i
i
i
i
]
'
[
]
'
i
'
i
i

F
DSTRECRDS .REQ; 1 16-SEP=-1984 16:&9:15.38 Page 114

Pttt W I Em It M i m sl E T E B T AR YR MR P T LRI W P A B IS AR P T I A AR PN P Ut AR D AR G U TR R MR P E L M WR S W A W

rary. This value should be retrieved with the LBRSSET_MODULE
Librarian call. The Llibrary file's -reation date is not used.

DSTSL_SRC_OF _RMS EBK - The End-of-File block number for this source
file, This longuord,Quant1ty should be retrieved with a
$XABFHC extended attibute block from RMS via the SOPEN or
SDISPLAY system service. The End-of-File block number should
be taken from the XABSL_EBK field of the XAB.

This field should be zero for modules in source Libraries.

DSTSW_SRC_DF _RMS_FFB - The first free byte of the End-of-File block
for this source tile. This word 0uantit¥ should be retrieved
with 8 SXABFH(extended attribute block frum RMS via the SOPEN
or SDISPLAY system service. The first ¢ree byte value shouid
be taken from the XABSW_FFB field of the XAB.

This field should be zero for modules in source Libraries.

DSTSB_SRC_DF _RMS _RFQO - The file organization and record format of this
source file. This byte value should be retrieved with a
$XABFHC extended attribute block from RMS via the $OPEN or
SDISPLAY system service, The file organization and record
format should be taken from the XABSB_RFO field of the XAB.

This field should be zero for modules in source Libraries.

DSTSB_SRC_DF FILENAME - The full filename of the source file. This is
the Tully sgec1fged tfilename, complete with device name and
version number, in which all wild cards and logical names have
been resolved. This strnng should be retrieved with a SNAM
block from RMS via the SOPEN or $SEARCH system service. The
desired str12a is the 'Resultant String'' specified 5y the
NAMSL RSA, NAASB_RSS, and NAMSB_RSL fields of the SNAM block,
Here the file name is represented as a Counted ASCII string (a
one-byte character count followed by the name string).

DST$B_SRC_DF_LIBMODNAME - The source library module name (if applicable)
of the null string. If the source file is actually a module in
a source library, the DSTSB_SRC_DF_FILENAME field gives the
filename of the source Library and the DST$B_SRC_DF _L IBMODNAME
field gives the name of the source module within that Library.
It the source file does not come from a source Library, this
tield (DST$B_SRC_DF_LIBMODNAME) contains the null (zero-length)
string. This field is represented as a Counted ASC]] string.

DSTRECRDS.REQ; 1 16-SEP-1986 16:49:15.38 Page 115
SET SOURCE FILE (DSTSK_SRC_SETFILE)

This command sets the current source file to the file denoted by the
one-word file ID given in the command. The set file is then the file
from which further source Lines are taken when the corresponding list-
ing Lines are defined. This is the format of the command:

D N el e R X

bovssccvncccccssssssscsesasassas coecececssescesen LI I T Y LY Y Y P Yy Y Yy Yy +
: byte ! DBGSB_SRC_COMMAND (= DSTSK_SRC_SETFILE) '
' {¢osssssssssssensavsssssaesrtoane L LT T T T YT Y Y Y LT ¢
! word . ODSTSW_SRC_UNSWORD: The File ID of the desired source file i

XL L P L LAY I Y YL Y Y Y Yy Y Yy Y N Y L L

The semantics of this command is:

SRC_FILE :

- tile ID from command
SRC_REC

set to current source record for this
source file

SET SOURCE RECORD NUMBER LONG (DSTSK_SRC_SETREC_L)

This command sets the current source file record number to the longword
value specitied in the command. Its format is:

L L o Y g, +
byte DBGSB_SRC_COMMAND (= DSTSK_SRC_SETREC_L) :
L T L T Y Y L LT T T T TP e +
long | DSTSL_SRC_UNSLONG: The desired new source record number '
AL T LT TP L Y T Ty Ty Y Y Y Y Y N Yy T YT T T +

The semantics of this command is:

ML s s R ML e e mm b de s AE S RO ARG L M an A e e s SRR kg g e e g g g ame W

SRC_REC := longword value from command

H
DSTRECRDS .REQ; 1 16-SEP-1984 16:49:15.38 Page 116
SEY SOURCE RECORD NUMBER WORD (DSTSK_SRC_SETREC_W)

This command set the current source file record number to the word
value specified in the command.]t is thus a more compact form of
the DSTIK_SRC_SETREC_L command. Its format is:

' et L et Dl L L L e L e L e L L e D T e e DL L L +
' byte ! DBGSB_SRC_COMMAND (= DSTSK_SRC_SETRE(_W) .
¢ deccccocccncncccccccccncnccccccccc e e creccsca e cancsanssena. cacad
' word i DSTSW_SRC_UNSWORD: The desired new source record number :
! 4eccsccccccscecccccccccccccccccccncccnccccccccccccanaccccccsancaas +

The semantics of this command is:

SRC_REC := word value from command

SET LINE NUMBER LONG (DSTSK_SRC_SETLNUM_L)

This command set the current Listing line number to a longword value
specified in the command. Its format is:

. L L Yy L ey Y T R L T I I T T T T I T Y T Y YT +
! byte | DBGSB_SRC_COMMAND (= DSTSK_SRC_SETLNUM_L) '
! T e e 1 T WIS - P Ry +
! long ! DSTSL_SRC_UNSLONG: The desired Listing Line number :

LD DL T T e L e Ry L L T T Y ¢

The semantics of this command is:

'
'
i
'
i
i
i
'
i
b
¢
i
i
i
1
L]
|
i
t
]
]
i
'
i
]
]
i
)
)
]
]
'
]
i
i
'
i
i

LINE_NUM := longword value in commmand

DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1b.30 Page 117
SET LINE NUMBER WORD (DSTSK_SRC_SETLNUM_W)

This command sets the current listing Line number to a one-word value
specified in the command. Its format is:

' LA L LU L Y Ty A T T I L I TS +
! byte | DBGSB_SRC_COMMAND (= DST$K_SRC_SETLNUM_W) :
. LT LT XYL L P Y T Ty Y Py e I s +
' word | DSTSW_SRC_UNSWORD: The desired Listing Line number :
! focccassecsrressssssas LA T T2 T T I T T A P 2 P T P LR L Y P Y L Y Yy ¥y yy +

The semantics of this command is:

LINE_NUM := word value in command

INCREMENT LINE NUMBER BYTE (DSTSK_SRC_INCRLNUM_B)

This command increments the current Listing line number by a one-byte
value specitied in the command. Its format is:

. L T T T Y Y Y N O N L L L Y T Ty T Ty e, +
! byte i DBGSB_SRC_COMMAND (= DSTSK_SRC_INCRLNUM_B) '
! éeccccccssccscccccccccscccscccccncsccnccccccccccrrrececccccescacssa +
! byte | DSTSB_SRC_UNSBYTE: The desired Listing Line number increment |

LT e L ey Yy g R Yy +

The semantics of this command is:
LINE_NUM := LINE_NUM + byte value in command

]
|
|
L
]
|
|
1
i
¢
|
'
'
]
L}
1
|
|
]
]
]
1
1
|
L]
]
|
|
L}
]
]
{
|
'
'
[}
]

OSTRECRDS.REQ: 1 16-SEP-1984 16:49:1%.38 Page 118
COUNT FORM-FEEDS AS SOURCE RECORDS (DSTSK_SRC_FORMFEED)

This command specifies that DEBUG should count source records which
consists of nothing but a fForm-Feed character ((NTL-L) as being
distinct, numbered source records. In some Languages, such records
are not considered to be source Lines. instead they are regarded as
control information. The compiler then does not assign Line numbers
to them and DEBUG ignores them completely--they are not displayed

as garg of the source and they do not contribute to the source record
num ertq?.of source files. However, if the DSTSK_SRC_FORMFEED command
is specified in the Source File Correlation DST Record for a module,
then such records count as normal records; they can be displayed and
they are assigned source file record numbers.

1t used, this command must appear before any commands that actually
define source lines. Making it the first command in the first
Source File Correlation Record for the module is a good choice.

byte ! DBGSB_SRC_COMMAND (= DST$K_SRC_FORMFEED) !

oo ssscscsa LA I X L L DY T Y L LY LYY Y Yy ey Yy Y ¥y Yy ¥ yyy ey Py ysyeys L]

The semantics of this command is to set a mode fla? which says to
count fForm-feed records as normal records. The detault behavior
is to ignore form-Feed records.

LR R R . I I T I e Y. L . Ty

K
DSTRECRDS .REQ; 1 16-SEP-1984 16:49:15. 33 Page 119
DEFINE N LINES WORD (DSTSK_SRC_DEFLINES_W)

This command defines the source file and source record numbers for
a specified number , Listing Line numbers. The specified number is
given by 8 one-wora count in the command. The command format is:

tvoccacsvcossssvonvcoscescescssaan L L L T L L P L T T L T 4 ¥ Y X X Y A PP ¥ P e L 2
byte ! DBGSB_SRC_COMMAND (= DSTSK_SR(DEFLINES M) !
L e e +
word | DSTSW _SRC _UNSWORD: The number of Lines to define '
D e e T +

The semantics of this command is:

DO the nggg?a of times specified in the command:
DEF INE (LINE_NUM, SR(FlLE SRC_REC);
LINE NUM := LINE NUM 1;
ézg REC := SRC_REC + 1

DEFINE N LINES BYTE (DST$K_SRC_DEFLINES_B)

8 specified number of Listing line numbers. The specified number is
?1ven by a one-byte count in the command. This is thus a more compact
orm of the DSTSK_SRC_DEFLINES_W command. [ts format is:

The semantics of this command is:

DO the ng?g?z of times specified in the command:
DEF INE (LINE_NUM, SRC_FILE, SRC_REC);
LINE NUM := LINE NUM™+ 1:
SRC_REC := SRC_REC + 1;

]
[]
[}
[}
[]
]
]
t
]
1
]
]
[}
]
]
]
[]
]
]
]
]
]
]
]
[]
]
]
]
!
% This command defines the source file and source record number for
i
]
]
]
[]
[]
[]
]
]
[}
]
[}
]
[]
]
[]
[]
]
)
! END;
[]
1
]
]

' END OF SOURCE FILE CORRELATION DST RECORD DESCRIPTION.

DSTRECRDS.REQ:1 16=-5EP-1984 16:49:1%.38 Page 120

'
.
]
.
1
.
t
.
L]
.
L}
.
L]
.
[
.
L}
.
[}
.
]
.
'
.
'
.
'
M
'
.
\
.
]
.
L]
.
]
.
]
L)
{
.
\
.
L}
.
]
.
]
.
1
M
L}
.
L}
.
[}
.
]
.
[}
.
J
L)
]
.
]

byte
byte
byte
long

THE DEFINITION LINE NUMBER
DST RECORD

NOTE: THIS DST RECORD IS NOT SUPPORTED BY DEBUG v&4.0.

The Definition Line Number DST record specifies the Listing Line number

at which a data symbol or other object is defined or declared. The

intent is to make use of this information in future DEBUG commands so

that 8 user can see the declaration source Line for a speciftied symbol.

The Definition Line Number DST record must immediately follow the data

??Tdrecord of the data object whose Line of definition is being speci-
ed.

This is the format of the Definition Line Number DST record:

LL L D 2 2 L Ly Ty o L)

: DSTSB_LENGTH (= 6) :

¢cccccccccccnrccrcccccccccnntescsssssse s e s rss sttt e +
! DSTSB_TYPE = (DSTSK_DEF _LNUM) !
doacscan C Yy ey Y T L ey e T Y YT Y T T T T ¢
: Unused (Must Be lero) i
bosmcvcoscoscscaan Sesoeseeeeceawew LI I Y T Y P YT LT LY Y Y Yy ey
! DSTSL_DEF_LNUM_LINE :
(AL LD DL DI IS I I LI I I I I P P L L P R P LA L R L P e P L L L +

Define the fields of the Definition Line Number DST record. The unused byte

in the DST record is reserved for future use.

IELD DS;:?EF_LNUH_FIELDS z

?E;SL-DEF_LNUH_L]NE =[3, L_)"! The definition Line number

-

M
DSTRECRDS.REQ: 1 16-SEP-1984 16:49:15.38 Page 121

THE STATIC LINK DST RECORD

The Static Link DST record specifies the "'Static Link'' for a routine.
The Static Link is a pointer to the VAX call frame for the proper up-
scope invocation of the outer routine within which the present invoca-
tion of the present routine is nested. The Static Link is thus used
when DEBUG does up-level addressing in response to user commands. A
Static Link DST Record is always associated with the inner-most routine
within whose Routine-ae?1n and Routine-End records it is nested. The
Static Link DST Record is optional=--it need not be used by Languages
or for routines which do not keep track of static links in their run-
time environments. In fact, the Static Link DST record only makes a
ditference for recursive routines that pass routines as parameters, a
fairly obscure situation.

This is the format of the Static Link DST record:

byte t T DSTSB_LENGTH :
byte 1 DSTSB_TYPE (=DSTSK_STATLING) '
war 4T T TosTsaLsL_vaLseec :
§ A DST Value Specification Giving the Value of the ;
§ Static Link, i.e. the FP Value of the Routine Invocation E
E Statically Up-Scope from this Scope §
fomeemem oo mem e mecemecmeecemmemmeememneeeeseneenns ;

Define the fields of the Static Link DST record.
IELD DS;:?IAYLINK_FIELDS =

DSTSA_SL_VALSPEC = [2, A_] ! Location of Value Spec giving
1S ! the up=-scope FP value

[}
i
]
.
]
.
[}
.
[}
.
]
.
]
»
1
[}
*
]
.
\
.
]
.
]
.
'
H
]
L]
]
.
]
.
\
N
]
.
]
.
]
.
]
.
L}
.
[}
.
]
H
|
.
1
.
[}
.
]
.
!
.
]
.
‘
.
'
.
]
.
'
.
!
.
L
.
]
.
[}
.
1

—

'
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
;
i
;

byte
byte
long

N
DSTRECRDS.REQ;1 16-SEP=-1984 16:49:15.38 Page 122

THE PROLOG DST RECORD

The Prolog DST record tells DEBUG where to put routine breakpoints.
1t is used for routines that have prolog code that must be executed
before data objects can be freely examinei or otherwise accessed
trom DEBUG. Such prolog code typically sets up stack lLocations and
descriptors for formal parameters or other data objects. 8y putting
routine breakpoints on the first instruction after the prolog code
as specified in the Prolo? DST record, DEBUG ensures that all Local
storage and formal parameters are accessible to the user.

Prolog DSY records are optional. If omitted for some routine, DEBUG
simply uses the routine start address for routine breakpoints or
tracepoints requested b{ the user, |f specified, the Proto? DST
record is counted as belonging with the nearest Routine Begin or Entry
Point DST record betore it, not counting nested routines. Placing

the Prolog DST record immediately after the Routine Begin or cntry
Point DST record with which it is associated is good practice.

This is the format of the Prolog DST record:

Detine the fields of the Prolog DST record.
IELD DS%:?ROLOG_FIELDS =

?Egst_PROLOG_BKPI_ADDR =02,L_] ! The routine breakpoint address

7
DSTRECRDS.REQ;1 16=-SEP=-1984 16:49:12.30 Page 123

THE VERSION NUMBER DST RECORD

|

i

]

E

: The Version Number DST record gives the version number of the compiler
: that compiled the current module. The Version Number DST Record must

' be nested within the Module Begin and Module End DST Records for the

! module in question. DEBUG ignores this record except in special cases
' when it is necessary to distinguish between old and new versions of the
; compiler that generated a given object module.
i
'
|
i
[
)
i

This is the format of the Version Number DST record:

byte DSTSB_LENGTH (= 3) '
e . bsTmIRE Goosiacvinsion
Tt SO bt oo R :
e b St ;

[}
]
]
!
; Define the fields of the Version Number DST record.
FIELD os;z¥ER510n_r15Los =
DSTSB _VERSION _MAJOR

DSTSB_VERSION_MINOR =
TES,

(2, 8_1. ! The major version number
(3.8_1 ! The minor version number

7, W

7
DSTRECRDS.REQ;1 1a-SEP=-1984 16:69'1&.30 Page 124

! THE COBOL GLOBAL ATTRIBUTE
! DST RECORD

The COBOL Global Attribute DST record indicates that the symbol whose
DST record 1mmgd1atel‘ follows has the (OBOL '‘global’’ attribute. This
attribute specifies that the symbol is visible in nested COBOL scopes
(routines) within the scope (routine) in which the symbol is declared.
Without this attribute, a symbol is only visible in 1ts scoge of decla-
ration but not within any nested scopes. In this regard, COBOL differs
from most otner Languages. DEBUG thus needs to know this attribute in
order to implement the (OBOL scope rules correctly.

The COBOL Global Attribute DST record is only generated by the COBOL
compiler. If it precedes the DST record for some symbol, that symbol
is deemed to have the (0BOL global attribute; if it omitted, the sym-
bol is deemed not to have the global attribute. DEBUG ignores this
attribute for all other lLanguages.

This 1s the format of the (0BOL Global Attribute DST record:

L T T L L T T L L L L T T T A A A, +
byte ! DSTSB_LENGTH (= 1) ;
byte | DST$B_TYPE (= DSTSK_COBOLGBL)

L R A R R T TR N Yo g e

7
DSTRECRDS.REQ; 1 16-SEP-1984 16:69:1g.30 Page 125

THE OVERLOADED SYMBOL DST RECORD

NOTE: THIS DST RECORD IS NOT SUPPORTED BY DEBUG v4.0.

The Overloaded Symbol DST record is used to indicate that a given
symbol name is overloaded. The record indicates which other symbols
in the DST are possible resolutions to the overloading. It is used
by the ADA compiler.

In ADA, it is possible to have more than one routine of the same name
in the same scope. If the routine name is R, DEBUG disambiguates the
individual instances of the overloaded routine name with the invented
names R__1, R__2, R__3, and so on. DEBUG requires the ADA compiler to
generaté normal DST records for these routines, using the invented

nar . UEBUG also requires the ADA compiler to generate the Overloaded
Symbol DST record with the original overloaded name '‘R'’ in order to
inform DEBUG of the overloading.

After the length and type fields, this record contains a Counted ASCII
string with the name of the oveq(oaded symbol. Follou\n? the Counted
ASCII string, there is a word field containing a8 count of the number

of overloaded instances of the name in this scope. Next there is a
vector of pointers, one for each instance, pointing to the DST records
for the instances of the overloaded symbol. These DST pointers consist
of byte offsets relative to the start of the whole DST.

This is the format of the Overloaded Symbol DST record:

A Vector of Longword Pointers to the DST Record:
of the Symbols with [nvented Names that (onstitute
the Instances of this Overloading

o s R ® e S S NS GRS NG WO P ER O WS R Y RS S o e am S sl b baln S MG S Am O DO MR AL S WL mm g am g A am g am g mm T S e s em o W E W MR W e S P g e g e am S e Emr e sy e

byte 1 DSTSB_LENGTH :
byte 1 DSTSB_TYPE (= DSTSK_OVERLOAD) :
oyte st T
ver % The Overloaded Symbol Name in ASCII ;

§ (The name's length is given by DSTSB_OL_NAME) §

. S— ‘
vord ! DSTSW_OL_COUNT !
P DSTSA_OL_VECTOR :

7
DSTRECRDS.REQ;1 16-SEP=-1984 16:49:1&.30 Page 126

foccavcassssssceonscccsccssssccacsaasas LI T I LYY Y Y Y Y Y Y Y Y Y Y YT YTy NS

]
1
]
]
; Define the ftields of the Overloaded Symbol 0ST record.
F1ELD DS;:?VERLOAD_FIELD'
DSTSB_OL_NAME = [2, 8_],

! Count byte of the overloaded symbol

' name Counted ASCII str1ng.
DSTSA_OL_TRAILER= [3, A_] ! The trailer fields start at this

! location ¢+ .DST$B_OL _NAME

TES:

! Detine the fields of the Overloaded Symbol DST record trailer portion. Also

; define the corresponding declaration macro.

FIELD DS;??VERLOAD_TRLR_FIELDS z

DST$W_OL_COUNT
DSTSAZOL_VECTOR

.ES;

"«

€0, w_ 1. ! Number of instances in this scope
(2. A_] ! Vector of DST pointers to instances
! of overloaded symbol

MACRO

OSTSOVERLOAD _TRLR = BLOCK[,BYTE) FIELD(DSTSOVERLOAD_TRLR_FIELDS) X;

This is a short BLISS example of how the trailer fields are accessed:

LOCAL
DSTPTR: REF DSTSRECORD,
OVERLOAD_COUNT,
OVERLOAD TRAILER:
REF DSTSOVERLOAD_TRLR,
OVERLOAD _VECTOR:
REF VECTOR(L,LONG];

Pointer to DST record
The number of overloadings
Pointer to DST record trailer

Vector of DST-record pointers to the
instances of this overloading

; Here we assume that DSTPTR points to the Overloaded Symbol DST record.

OVERLOAD_TRAILER = DSTPTRCDSTSA OL_TRALER) + .DSTPTRLDSTSB_OL_NAME];
OVERLOAD_COUNT = .OVERLOAD_TRAICERTDSTSB_OL_COUNT):
OVERLOAD_VECTCR = OVERLOAD_TRAILERCDSTSAZOL _VECTOR];

F 7
DSTRECRDS.REQ;1 16-SEP~1984 16:49:15.30 Page 127

: CONTINUATION DST RECORDS

When the text of a Debug Symbol Table record is longer than 255 bytes,
it 1s no longer possible to hold that text in a single DST record since
the DSTSB_LENGTH tield cannot hold a value Larger than 255. In this
case it is necessary to generate the original DST record followed by

as many Continuation DST records as necessar¥ to hold the full text.

The original DST record then holds at least 100 and at most 255 bgtes of
text. tach Continuation DST record consists of the standard two-byte
header followed by the continued text of the original DST record.

This is the format of the Continuation DST record:
.---- L 2 1 X X 3 I X 1 X ¥ 1 J3 L X 3 T 3 X 1 X ¥ ¥ ¥ 1 ¥ ¥ ¥ ¥ ¥ 3 ¥y ¥y Yy yry yyyeyyYyy ¥y
byte | DSTSB_LENGTH

S [———
byte DSTSB_TYPE (= DSTSK_CONTIN)
var

The Continued Text of the Previous DST Record

$ erccccccccen § .=

@ rrcccccccr s e o= P

DEBUG reconstitutes a continued DST record by concatenating the text

ot the first DST record with the text portions of its (ontinuation DST
records. In effect, the first two bytes of each Continuation 0ST record
are stripped out. Any further interpretation of the DST text is then
done on the concatenated copy.

Certain kinds of DST records are not allowed to be continued with Con-
tinuation DST records. These records are Module Bealn. Routine Begin,
Block Begin, Label, Label-or-Literal, Entry Point, PSECT, Line Number
PC=Corre at*oq. and Source File Correlation DST records. In addition,
0ST records with fixed sizes, such as Module End and Ruuiine End DSTY
records, are not allowed to be continued. Line Number PC-Correlation
and Source File Correlation DST records canrnot be continued with Con-
tinuation DST records, but one can have multiple such records in one
module; they can thus be continued, but through a different mechanisnm.
The records that really need to be continued, such as Standard Data
OST records and their variants (Descriptor Format and Trailing Value
Specitication Format records), Separate T{fe Specification DST records,
and Type Speciftication DST records, can all be continued using the
Continuation DST record mechanism,

Detine the fields of the (ontinuation DST record.

P e e T T T T

-—

7
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1?.30 Page 128

FIELD DSTSCONTIN_FIELDS
DSTSA_CONTIN
TES;

L

{2, A ! Address of continyation text

H .7
DSTRECRDS.REQ; 16-SEP=-1984 16:469:15.30 Page 129

M T am oA s M e WP IO @ S) W Er e EE D D s Em g En T NN AR S U RO EN D AR DS NS WG AN s R W By R emsWEs gme ERE s Wm. g a

et s m s Mt G A E T @S W W

OBSOLETE ODST RECORDS

There are several obsolete DST records. These are records that were

at one time generated by compilers, but are no longer used by any cur~
rent version of any Digital compiler. Some of these records were not
properly thought out and were abandoned when it was realized that their
intended uses could not be implemented. Others were at one time used
and useful, but were generated by now-obsolete compilers. Such records
are not generated by Current compiler versions, and the capabilities
they grovided are now provided by more general mechanisms in other DST
records.

None of the obsolete DST records should be_?enerated by any future
compilers, and their use will not necessarily be supported by DEBUG.

THE GLOBAL=IS=NEXT DST RECORD

The Global=-is-Next DST record is now obsolete. It consisted of just the
DSTSB_LENGTH byte and the DST$B_TYPE byte. DSTSK_GLOBNXT was the type
code, The purpose of this record was never properly thought out and

no support for it was ever implemented. It should not be generated by
any future compilers or compiler versions.

THE EXTERNAL-1S=NEXT DST RECORD

The External-is-Next DST record is now obsolete. It consisted of just
the DSTSB_LENGTH byte and the DST$B_TYPE byte. DSTSK_EXTRNXT was the
type code. The purpose of this record was never properly thought out
and no support for it was ever implemented. It shouid not be generated
by any future compilers or compiler versions,

THE THREADED-CODE PC-CORRELATION DST RECORD

This DST record is identical in format to the Line Number PC-Correlation
DST record except that the record type code is DSTSK_LINE_NUM_REL_R11.
It was used by an obsolete COBOL compiler according fo legend (the memo-
ries are 3 bit hazy by now), The idea was that the threaded code gene-
rated by this compiler consisted of a vector of longwords where each
longword contained the address of a run-time support routine to call.
Register R11 pointed to the beginning of this vector. The code gene-
rated for a source Line thus consisted of some number of longwords

with addresses to call (or perhaps j)ump to=--the exact details are lost
in the mists of time). The Line number P(-correlation information
passed to DEBUG consisted of Line numbers correlated with byte-offsets
relative to R11 (i,e., to the start of the threaded code). Breakpoints

7
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:1;.30 Page 130

ey AR S e MY TR AR G oam o e LS Mg e s AR E S ER S R MR ER Y RS Y D g ARG WE S Ry MR U ES s wm e Wh gy AE s MRy mm e Wy EE e mme R MR EN e W W

were placed on a specified Line by looking up the corresponding offset
relative to R11 and then storing an address within DEBUG into that
location. When the location was reached, DEBUG was entered. DEBUG
could then convert the 'PC'’', i.e, the threaded-code location, back to

a Line number to announce the breakpoint. [t is not clear how, or even
whether, tracing, stepping, and watchpoints were implemented.

The Threaded-Code P(-(Correlation DST record is no longer supported by
DEBUG and should not be generated by any current or future compilers.

THE COBOL HWACK DST RECORD

The COBOL Hack DST record was at one time used to support formal argu-
ments to (OBOL procedures. It has now been superceded by the more
general Value Specification mechanism, and is thus obsolete. It is

no longer generated by the (OBOL compiler, and it should not be gene-
rated by any current or future compilers. Ffuture versions of DEBUG
may not support it.

The fields of this record consist of the fields of the Standard Data
DST record followed by a type field that specifies the data type and
then a sequence of commands for the DEBUG stack machine. (See the sec-
tion on Value Specifications for details on the DEBUG stack machine.)
The result of 1nterpret1ng the stack machine routine is the address of
the object described by this record. The DST$B_VFLAGS and DSTSL_VALUE
fields are zero unless the object has a descripfor. In this latter
case they specify the location of the descriptor. The result of the
stack machine routine is placed in the DSCSA_POINTER field of the
descriptor before it is used. In addition, 7f it is an array descrip-
tor, the DSCSA_AQ field is added to the result of the stack machine
routine and the result is placed in the DSCSA_AQ field before the
descriptor is used.

The type field following the name field contains the VAX Standard Type
Code of the object being described here. [f the object also has a
descriptor, its DSC38_DTYPE field must agree with this code.

The stack machine commands used in this context are those described
in the section entitled "'The DEBUG Stack Machine'' in the chapter on
DST Value Specitications,

This is the format of the (0BOL Hack DST record:

7
DSTRECRDS.REQ; 1 16-SEP-1984 16:49:13.30 Page 131

! ‘ ---------------------------------------.--.’
' byte i DSTSB_LENGTH '
17 teeccscccce= cccsccccccccscssccctaccncccccaccccsccccccnccercccane +
; byte . DSTSB_TYPE (=DSTS$K_COB_MA(CK) '
. L 1 1 1 I 1 I 3 3 2 X X X J ---------------.---’
! byte ! DST$B_VFLAGS :
! ¢osvsoscessassscscaanaa LD L DL L T 2 YL LYY Y Y Yy Y P eI Py Y Y Y Y Yy ¥y 4
! long ! DSTSL_V: LUE '
! oo ssnscassscanssscsscocscaane L L L L YT 1 71 ¥ cTeovessooen LT Y Y Y Y ¥ ¥
E byte | DST$B_NAME H
! 4ooscoccsvsesnassssscaaa cosscoooesane LI LY LY P 2T L TP Y LY Py e ryy vy +
' var ' :
; 5 The Name of the Data Symbol in ASCI! |
g § (The name's Length is given by DSTSB_NAME) E
i teemcccceccecmsmmcscssscsmmsssesmeeesesseaeaeecemmeemeeeeeaneann +
E byte DSTSB_CH_TYPE :
! (2L LD DI PR IS T I L L P YL LY Y P LY Y Y T Y LYY +
; var 5 DSTSA_CH_STKRTN_ADDR 5
g g Instruction Sequence for the DEBUG Stack Machine §
i ‘ :
i e s
' temconrcrcrrsrersnasaccaccncrortttrre e e e e c e e e e eeaea +
1

]

i Define the fields of the (obol Hack DST record. Also define the declaration
: macro for the trailer fields.

FIELD osrsgoa,uAcx_rstos =

SE

gSTSA_COBHACK_TRLR = (8, A_] ! Location of trailer fields
FIELD DS;:%n_!RLR_FIELDS =

DST$8_CH_TYPE =[{ 0, 8_1. ! VAX standard data type

DSTSA_CH_STKRTN_ADDR =01, A_) ! Start of stack routine code

TES.

MACRO
DSTSCH_TRLR = BLOCKL ,BYTE] FIELD(DSTSCH_TRLR_FIELDS) X;

K .7
DSTRECRDS.REQ; 16-SEP=-1984 16:49:15 30 Page 132
VALUE SPECIFICATION DST RECORDS

'
i
E
! The value Specitication DST record contains nothing but a DST value
! Specification. However, there appears to be no use for this record
' since all DST value Sggcificat1ons that are actually used appear in
' other DST records. This record was probably designed with some use
! in mind, but was then abandoned when better ways of addressing the

! ori 1ng(need were devised. DEBUG ignores this DST record, and it

! is believed that no compilers actually generate it. This DST record
5 should not be generated by any future compilers.

i

i

i

i

i

;

This is the format of the Value Specification DST record:

decccccncanocscccnna coccccrccrsssnaeccenccrscccac s cnceasssssesavees ¢
| byte ! DSTSB_LENGTH :
' éocconcccssscnccrcennnnccscs e occcrecscaeccocccccaanRrcar e csnGeRan
5 byte . DSTSB_TYPE (= DSTSK_VALSPEC) i
. éoscsccnsaa LT XY L T Y F Y Y e T T Y YT T Y T I s
! var . '
E A DST Value Specification E
; L DL DL DL L L L T X X L ¥ 3 LA L L L X T 2 T] ;

i Define the fields of the value Specification DST record.
F1ELD DSTSVALSPEC_FIELDS =
SET

DSTSA_VS_VALSPEC_ADDR = [2, A_] ! The start location of the
TES : Value Specification

i
i
i
i
]
i
'
i
i

f

7
DSTRECRDS.REQ:;1 16-SEP-1984 16:49:1%.30 Page 133

DST RECORD DECLARATION MACRD

1

L]

[}

[}

! This macro allows BLISS symbols which are declared DSTSRECORD or

! REF DSTSRECORD to be gual1f1ed by all the field names present in

: the various DST record formats. It is anticipated that users will
: declare separate symbols for tield sets which describe trailing

! fields in DST records; a pointer to the PSECT DST record trailer,
! for example, would be declared to be a REF DSTSPSECT_TRAILER,

: Separate macros are supplied above for all such trailer fields.
[}

'

]

"

DSTSRECORD = B
DSTSHEADER
DSTSSTD_F1
DSTSDSCTF]
DSTSTVSTFI
DSTSMODBEG
DSTSRTNBEG

osrsntneng

)
0
1
G
1
3

DST$BLKBE
DSTSBLKEN
DSTSVERS]
DSTSSTATL
DSTSPROLO

DSTSBLITBIT
DSTSBLIBLO
DST$8L 1 BLK
DSTSVARDAL
DS TSENUMBE
DSTSPSECT

COWNe=MeeO NEOVVNNW

We MM o OWis & = &

! END OF DSTRECRDS.REQ.

DIGITAL EQUIPMENT CORPORf
_CONFIDENTIAL AND PROP

R0077 07 ins"vato

MENT CORPORATION
AND PROPRIETARY

