oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBES uuu uuu 199999999944
oODDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBEB uuu uuu GGGGGGG6GLG6
DDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBE uuu uuu [dddddddddddd
oDD | DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUU GGG

oDD DDD EEE 888 BBB UUU UUU GGG

0DD DDD EEE 888 BBB UUU UUWU GGG

00D DOD EESEEEEEEEEE 888888888888 Yy UUU GGG

oDD ODD EEEEEEEEEEEE 888888888888 uuu UUU GGG

oDD DDD EEEEEEEEEEEE 888888888888 uuu UUU GGG

oDD DDD EEE 888 BBB UUU UW G666 GGGGGGGGG
DDD DDD EEE 888 BBB UUU UUW GGG GGGGGGGGG
0DD DDD EEE 888 BBB UUU UUW GGG GGGGGGGGE
DDD DDD EEE 888 B8BB UUU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG GGG
00D DDD EEE 888 BBB UUU UUU GGG GGG
o0DDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBAB UuuuuUuuUuUUL GGGGGGGEG
oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBBEB VUV RVVVVVVVVVVY GGGGGGGG6
oDDDDDDDDDDD EEEEEEEEEEEEEEE BBBBBBBBBBEB VUV VTV VVVVVVTITY GGGGGGGG6

FILE1D**DBGEXT

oDDDDDDD
ODDDDDDD
DD 0D
0D DD
DD 0D
DD 0D
DD 0D
0D 0D
0D DD
DD 0D
DD 0D
DD ()
oODDDODD
oDDDDDDD
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RRRRRRRR
RRRRRRRR
RR RR

RR RR

RR RR
RR RR
RR RR
RR RR

mmmmmmmmmmmmmm
mmmmmmmmmmmmmm

GGGGGGGE
66666666

GG GGGGGG
GG 666622

G
GGGGG6
GGGGG6

W13

——
——
—
-

) e e) e)) = = =) =
) g g = — =

1
DBGEXT.REQ;1 16=-SEP-1984 16:45:45.53 Page 1

; DBGEXTY.REQ
g Version: *v04-000"

!'..'.'".."".".."'.."'t"...tt'l.i'..'ttt'i.t'ttt""'"fi"""t"'ttt

Iw *
'* COPYRIGHT (c¢) 1978, 1980, 1982, 1984 BY "
'* DIGITAL EQUIPMENT fORPOR‘TION. MAYNARD, MASSACHUSETTS. *
E: ALL RIGHTS RESERVED. :
i* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED +
'* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE »
'* INCLUSION OF THE ABOVE COPYRIGMT NOTICE. THIS SOFTWARE OR ANY OTHER »
'* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY «
'* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THME SOFTWARE IS HEREBY +
E: TRANSFERRED. :
is THE INFORMATION IN THIS SOF TWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
= AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;' CORPORATION. *
i w
'* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS «
E: SOF TWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
' *
|

i:t".'t'itt'ttt"'t.t'tttttl!'tttt"t't'tttttl".tttlt'!t't'!tt!t't!!'tt!i':
1

WRITTEN BY

Rich Title October 1983
MODIF IED BY

Robert Conti November 2, 1983
Edward Freedman December 12, 1983

i
i
i
i
i
a
i
i
{ MODULE FUNCTION
i
i
i
i
i
i
i
i

This module contains the definitions for the control blocks

that are used in communications between DEBUG and the ¢

ADA multi-tasking run-time system. These same definitions will be
extended for use in communication with the PPA multi-tasking
system and other run-time systems, at a future time.

DBGEXT.REQ;1

EXTERNAL CONTROL BLOCK

An "External Control Block' is a data structure that can be used
when DEBUG needs to call a routine that is not Linked in as
part of the DEBUG image.

For example, DEBUG will have commands to support ADA uulti-taskin?.
However, DEBUG has no knowledge of the workings of the ADA mutli-tasking
S!St.l and the data structures that describe tasks. Instead, DEBUG

will call a routine in the ADA multitasking system in the course

of processing SHOW TASK, SET TASK, or any other command that requires
knowledge about tasks.

There will be a single ontrl Boint ADASDBGEXT, in the ADA nultitaskin?
system which is called by DEBUG., fhe External Control Block is the only
parameter. Similarly, other multitasking run-time systems will have a
sin?lo entry point, of the form <facility>SDBGEXT, with the entry point
taking an External Control Block as its single parameter. In general,
the External Control Block can be used as a means of communication with
run-time systems that are not part of DEBUG. For example, in debugging
the lLanguage SCAN we may want to allow the user to set breakpoints on
events such as a SCAN pattern-match. The External Control Block will

be :ho data structure that we use to communicate with the SCAN run-time
system.

The DBGEXTSV_FACILITY_ID field identifies which run-time system is being
called. The VAX/VMS Tacility code is used. Thus, it is assumed that
there will be at most one DBGEXT entry point in the run-time code of any
facili:‘. Currently, legal values are the facility codes for ADA, PPA,
and SCAN. This field may not actualll be lLooked at (if desired, the
run-time system may do a sanity check for the right value).

Since there are several functions we want each run-time system
to perform for us, there is a DBGEXTSW_FUNCTION_CODE field
which specifies which function is to be performed.

ALL functions return a status code in the DBGEXTSL_STATUS field.
For all functions, there is a DBGEXTSL_FLAGS field which can be used
:: o'bit::ctor of flags. The exact use of these flags depends on

e function.

The use of the remaining fields of the data structure QQfends upon
the “FACILITY_ID' field and upon the “‘FUNCTION_CODE'' field.

NOTE: DEBUG makes these calls with ASTs disabled, It is required
that the run-time code not reenable ASTs during its execution.

16-SEP-1984 16:4!:4‘.;3 Page 2

DBGEXT.REQ;1 16=-SEP-1984 16:68:45.;3 Page 3

The f?lloui illustrates the

the hea of an Extorn’l Control Block.
The fields of an External Eon};?l

der
Blost are then illustrated
D™ 1s TADA".

for the case where the ‘'FACIL 10

The following header is common to all External Control Blocks:

&

eceee$

tunused ! V_FACILITY_ID ! DBGEXTSW_FUNCTION_CODE !

ooe$

DBGEXTSL_STATUS :

oeed

(some flags unused) DBGEXTSL_FLAGS :
reserved for future use H

W N = O
PO a—

g e R e e

DBGEXT.REQ;1

1
16-SEP-1984 16:43:45.53 Page &

! The follouingnillustratos the control block when the FACILITY_ID

' fiel
i for most functions

is control block is used
(some functions, e.g. GET_REGISTERS and SET_REGISTERS

! use a longer control block, displayed [ater)?

l

E 0 Eunuscd V_FACILITY_ID | DBGEXTSM,_ FUNCHO'_J:EEJEE:E
§ 1 i DBGEXTSL_STATUS =------i
5 2 i(sonc flags unused) DBGEXTSL _FLAGS i __-.-.-i
3 3 i reserved for future use i
g “ i DBGEXTSL _TASK_VALUE i
g 5 i DBGEXTSL _ TASK_NUMBER i
; 6 igﬂgzed {V_HOLD! V_STATE | DEEE!I!U SPECIFIEE_:E&EEi
E 7 i DBGEXTSV PRIORIT!__ L= i
Ba T DBGEXTSL_PRINT_ROUTINE :
Sl e D . e .
]

DBGEXT.REQ;1

e L k. L I T R e L L L L L T T I L T T T e T

The follouing fiold
“ADA"' and the funct

for all other Tunctions, the smaller block (without the register fields)

DBGEXTSK _GET
DBGEXTSK_SET
DBGEXTSK_SET

is passed in,

O 0 N 00 " & W N = O

N N N b b cd b b b b b b -
N = © ¥ 00 N O nn & W vV = O

+

M 13
16=SEP=1984 16:48:48.58 Page §

‘ are proscnt when the "FACILITY_ID' field is
on code is

JREGISTERS,

“REGISTERS,

“ACTIVE.

B E

iunused | V_FACILITY_ID | DBGEKTSU FUNCTION_CODE !
- -—-------- - ¢

DBGEXTSL_STATUS]

coeed

(some flags unused) DBGEXTSL_FLAGS '
x reserved for future use - ---?
DBGEXTSL_TASK_VALUE '

- DBGEXTSL_TASK_NUMBER ':::E

unused (V_HOLD: V_STATE ! DBGEXTSU SPECIFIED FLAGS!

_______ ——-d

oaeexrsL_no

DBGEXTSL_R1

DBGEXTSL_R2

DBGEXTSL R3

DBGEXTSL_Ré4

DBGEXTSL RS

DBGE!TSL_R?

DBGEXTSL_R8

DBGEXTSL_R9

GrePpenPponpochpochochochprahochoanhproaPpochochocdochochocdacdoedocdhondosd

DBGEXTSL_AP

16-SEP-1984 16:48:43.13 Page 6

DBGEXT.REQ; 1

E 23 i = _DBGEXTSL_FP_ Ll
E 2 : DBGEXTSL_SP ______i
% 25 i b ST JENNRE
{ % < _DBGEXTSL_PSL ok A !
1

|

DBGEXT.REQ;1

‘e
'

FlELgegﬂGEXTSHEADER_FlELDS =

14
16=SEP=1984 16:48:43.58 Page 7

CONTROL BLOCK FIELDS

DBGEXTSW_FUNCTION_CODE

DBGEXTSVCFACILITYZID
! reserved
DBGEXTSL_STATUS
DBGEXTSL _FLAGS
DBGE!T‘V-ALL
DBGEXTSV_FULL

DBGEXTSV_PSEUDO_GO
! Pseudo-go is set b
! indicate that DEBUG must do a

! reserved
! reserved
TES;

FIELD DBGEXTSADA_FIELDS =
SET

DBGEXTSL_TASK_VALUE
DBGEXTSL ~TASK NUMBER
DBGEXTSW SPECTFIED_FL

DBGEXTSV_STATE_SP
qacextsv_anoartv

! reserved
DBGEXTSV _STATE

A
DBGERTSV_HOLD SPEg

DBGERTSV_STATE_RUNNING
DBGEXTSV_STATE_READY
DBGEXTSV_STATE - SUSPENDED

: [2. s. 1‘ OJ
f headers on a SHOW_TASK, SHOW_STATISTICS,

L0,

C

IED

DBGEXTSV-STATE_TERMINATED

DBGEXTSV_HOLD
! reserved

DBGEXTS

- <€ € <€ <€ € € € €<

OCOO0O0O0O0O0O000
VNN W —=O

4

C
the run-

0
it
0
?

'
time

4,
0.

18: §1
32, 03,
32. 03
L 8]
1, 01,

"X«
% 1t

WHAT WILL ALL DD?=-tbs))X
explain FULL =tbs))X%

system on return to DEBUG to

$3: 93

SNNNNNSNNNSNNNOo-ooOrOrOOO OOV
T % % 5 5T T T T T T T W T T T LTSS
PON) b b d e ek
WONOWS NN = OO0 =0 VONOOMAN—=OO000
T 5T 5 5 5T 5T T T T T T T T YL

N —
— e e e o e e e e o [e i e e el i S AN D e et DA NIND

T % % % % 8 S ' % s S S s S % S S OS OSOS OSSOSO

— (NN

seudo-G0 to accomplish the function
! Used only for function SET_ACTIVE (see discussion under SET_ACTIVE).

DBGEXTSV_NO_MEADER
! Suppresses output o
! or SHOW_DEADLOCKS.

o

A e I LI I L L L J L

T % 8 % % 8 % S ST | T % T % % S OS OSOS S OSOS OSSN

[elelelelelelnlelelelelelelelelelelelel ==l =l

14

16-SEP=1934 16:48:4&.58 Page 8

DBGEXT.REQ;1

S % % % 8 S % A S A S eSS e s s3e e s
WYY WY TN N T WYYV Y Y Y Y YT ™
(elele s lelelelelelelelelelalelelelelelelelelele]

S 8 & 8 & & 8 & & % & & & % 8 8 8 W . & & 8 & &

[l el el el el el el el el el el ol el ol el ol d el el o ¥ (oY)
Loal gl

NN R E R R R R R EEEEE T
O MNIMITWNOMNOOO—NIMITWMONDODONO—O00
e e e e e e o= NN IO OO N

T % 8% % % % & 8 8% % 8% & % % % S S S S %NS NS &

Ll o o o O O o o o o o o o o L O o - e
L [N (W [W [N TN | W [N [W[WS [N [(S [NS [N | W [W [S]] S AL R [W TR |
NN

O NMITWVNONDOOO—NIM TN OMNOOO ™

UL I I I I I .
222> > >l
AAAAARARAAAAARAAARAAARAAAANAX >
lslisislisivisisisisisisisisicicicicicictietet 1
PPN) |
L) i L e L) i b A L i S R b L L L e e
OOV VVVOVVVLVOVLLVLVOOLVLVLVOVVOVOAN
GBBBBB”BBBBBBBBSBBGBGBTT

OO
@
oo

TES;

L T T S S T S N T N S S S N Y
U Lo Lo L L L D Lo Lo e Lo Lo Lo Lo L, L Lo}
(elelelelelelelelelelelelelelelele)

S & % &8 % % % % % % S 8 % 8 8 8 &
NI OO
Lalalalalal al al gl al al al alalal alal gl

T % % 8 % % 8% 8 % S S S S S S SN

[=lelelelelelelelelelelelelele el

B EEEEEEEE N
O MNMITWNOMNOOO ™~ NIM WO
= = e e v v v = NN
e e e e D N I LI I

w
(=
-
w
Sy
.r.
o O e
w Ot WMITWNONOO A 0wV
X gxaocascacaaaxaaxa<<wvoao
“ L.L.L.L.L-L.L.L. .L.L.L.L-L-L.L.L.
» SS&SSSS&&SSQ‘SSSS
W b e e e e e P e P e B e B e P e e
- i ririririntrtrimietrindntrdietete
BB REEEEEEEE80888S
WSDWDDWDDDwameM”D
w
—
[V,

TES;
LITERAL

gs)

gs)

Size of block for ADA (without re
Size of block for ADA (with re

Size of header in longwords
Max of above sizes

. sr*n
SONMN N
0NN

A
A
A

_HEAD
-AD
-AD
“MAX

DBGE X T$K

DBGEXT$K
DBGE X T$K
MACRO

DBGEXTSK

= BL
FIELD (DBGEXTSH

DBGEXTSCONTROL _BLOCK E OCk _CDBGEXT

DBGEXT.REQ;1

DBGEXTSADA
DBGEXTSREG

_Fl
“Fl

4
16=-SEP-1984 16:48:&%.;8 Page 9

LDS,
LDS) %;

DBGEXT.REQ;1

*

%ITERAL
i

14
16-SEP-1984 16:48:45.58 Page 10

Generally, multiple priorities and states are valid as ‘nput when calling

the ADA run time system but are not valid

as output values on return from

the call. Therefore, the following constants are Brovidod for convenience

in setting and testin

DBGEXTSV _PRIORITY.
fields when multiple

Constants for DBGEXTS

DBGEXTSK_MIN_STATE
DBGEXTSK MAX_STATE

DBGEXTSS_STATE

DBGEXTSK_STATE _RUNNING

DBGEXTSK"STATE "READY

DBGEXTSK_STATE _SUSPENDED
DBGEXTSK_STATE_TERMINATED

DBGEXTSS_HOLD
DBGEXT$K "HOLD

DBGEXTSS_PRI
DBGEXTSK PR
DBGEXTSK P
DBGEXTSK P
DBGEXT$K

00

U
(==l
WN=O

DBGEXTSK ™
DBGEXTSK

DBGEXTSK
DBGEXTSK

DBGEXTSK ™
DBGEXTSK™

g
®
%

g
&
%

BB BD DD DB DD DB DD DD

BBBHD
f'!"ll‘!’sgl“
3¢ 2 ¢ 3¢ >
=t —
RRRRR
UL H
et Dot et Bt ot G ot By G B Beed Bt) Bt B G Bt (ot Gt Pt 0 Bt Bt b S0 Bl Pod P ot Bt Bt

g
-
%

DBGEXT

%

&

>
g = = =4 =

N l."?."l .00
P PDBRBBBBR

RRRRRRRRRRRRR

€ <€ <€ € € €~ € <€ € <€ <€ <€ <€ <€ < <
(R R R RN
elelelelelele]

b
PONI NI N = b b b o b o o b b

BRSNS N NN N
WILNNLNONONI NN

3
P e e RS R e Ress

-t OO0 N AWM = OV NO VSN AN = OV ~NO WS

S . .. G- G S g g e

(U I O O (O (IO (L (O T (L LTI I I DL LI L L L LI LI LI I LI [[[}

B R e o e I I R I I I I I e Y] —_— —_—— s~ -

-

~n

P2 22222 P PP P PP PEPEPPIPIPIID PP IPP I

ANLAMPONONONININONININD N =2 b b b b B b b b b

W= O
" v s

o
-

= OOV NO WS AN = OV NO SN NN = OV NS LN = O

the contents of the fields
define the only possible values of the respective
orities and states are not allowed.

HOLD are provided for completeness.

S & % &% 8 8 8 8 8 8 T T S T % % % % % S S S S S SRS ST RS OB

BGEXTSV_STATE and

X((superfluous? -tbs))X%

! size of DBGEXTSV_STATE
! values for DBGEXTSV_STATE

! size of DBGEXTSV_MWOLD
! values for DBGEXTSV_HOLD

! size of DBGEXTSV _PRIORITY
! values for DBGEXTSV_PRIORITY

DBGEXT.REQ;1

16=SEP=-1984 16:68:&‘.1‘ Page 11

14
DBGEXT.REQ;1 16-SEP-1984 16:48:63.58 Page 12

FACILITY CODES

The following are the possible values of the DBGEXTSV_FACILITY_ID field.
These corrospon? to the different run-time system we are
communicating with,

ADAS_FACILITY
PPAS FACILITY
SCNS_FACILITY

'*QUES* X((=-tbs))X v
! Do PPA and SCAN have facility mnemonics and codes? Are the
! above guesses correct?

H 14
DBGEXT.REQ;1 16=SEP=1984 16:48:48.58 Page 13

>

FUNCTION CODES

tho following are the Rossiblo values of the DBGEXTSW FUNCTION CODE field
when the contents of the FACILITY_ID field is ADASFACTLITY. TRese
cor;:::ond to the functions that the ADA run-time system will be asked to
per .

Summary of the defined Function codes
DBGEXTSK_MIN_FUNCT s 1, ! For CASE bounds
These are used to obtain and convert task values

DBGEXTSK_CVT_VALUE _NUM .
DBGEXTSK_CVT_NUM_VALUE = ;.

DBGEXTSK_NEXT_TASK s

These are used to ask ADA to display task information
DBGEXTSK_SHOW_TASK 6,
DBGEXTSK_SHOW_STATISTICS =5,
DBGEXTSK™ SHOW DEADLOCK = 6,

These ?rokus:dtto get and set various attributes of one or more tasks
as ate
DBGEXTSK_GET_STATE
DBGEXTSK_GET_ACTIVE
DBGEXTSK_SET_ACTIVE
DBGEXTSK” ERHINATE
DBGEXTSK

nuwnnn
— b D00~
- v »

RITY
RITY
PRIORITY

o
@
(1]
m
=
e]

':"
:l"l":‘ . ‘f“l‘
nmun
b b b

NN
. s 8

DBGEXTS$K

TERS
TERS

These are usod to control defina
DBGEXTSK_ENABLE _EVENT
DBGEXTSK_DISABLE_EVENT

DBGEXTSK_MAX_FUNCT

S s ()
wwn
] nn
- ek O b
..

S
6
le events
7
8

L

18; ! For CASE bounds

CE IR A T e I e e L LT L T T T

Th
DBGEXT.REQ;1 16=-SEP=1984 16:48:4&.58 Page 14

LITERAL
; A minimum task code is defined for CASE statement bounds.
DBGEXTSK_MIN_FUNCT =1,
; CVTI_VALUE_NUM takes a task value and converts it to a task number.
; INPUT = The task value is placed in the DBGEXTSL_TASK_VALUE field.
: OUTPUT = The task number is returned in the DBGEXTSL_TASK_NUMBER field.
: (If the task does not exist, this function returns
: status STSSK_SEVERE).X((TASK DOES NOT EXIST CODE? =tbs))%
: XC(VALUE IS ROT LEGAL OR ACCVIO? =tbs))%
DBGEXTSK_CVT_VALUE _NUM =1,

CVTI_NUM_VALUE takes a task number and converts it to a task value.
INPUT = The task number is placed in the DBGEXTSL_TASK_NUMBER field.
OUTPUT = The task value is returned in the DBGEXTSL_TASK_VALUE field.

(If the task does not exist, this function returns
status STSSK_SEVERE).X((TASK DOES NOT EXIST CODE? -tbs))¥%

DBGEXTSK_CVT_NUM_VALUE = 2,

L R P

: _NEXT_TASK gives a task value and asks ADA to specify the "next'' task.
: The ordering of tasks is up to the ADA run-time system. The only

: requirement on order is that if we start with any task, and repeatedly
! ask for the “‘next’ without giving the user program control in between,
! then we will cycle throu?h all the tasks and return to the task we

! started with, If selection criteria are imposed, then we will cycle

! through all tasks which match that criteria.

i INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

1

]

]

]

]

]

|}

)

1

]

- If the TASK_VALUE field is zero (implying the NULL task) the
: next task will be the main task of the progranm.
)
]
]
[}
]
]
]
]
]
]

The ALL flag is ignored, ADA will consider it on by default.

The set of tasks to cycle through can be restricted b
inposina a selection criteria. The PRIORITY, and/or STATE,
and/or HOLD fields can contain values which a task must match
to be part of the set (e.g. SHOW TASK/PRI=3/HOLD/STATE=READY)
When such a restriction is desired, the DBGEXTSV_xxx SP?CIF!E
bits must be set accordingly. If no restriction is desired,
the _SPECIFIED bits must De zero. A task wust match all the
criteria which are specified to be part of the set.

D

14
DBGEXT.REG;1 16-SEP=1984 16:48:&‘.58 Page 15

;l((lultiple PRI and STATE can be given as these are bit fields -tbs))%

g OUTPUT = The "next’’ task value is returned in DBGEXTSL_TASK_VALUE.
DBGEXTSK_NEXT_TASK =3,

! SHOW_TASK is used to request that ADA display information about a

: specified task.

| INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

i The 2ddross of a print routine that ADA is to gall to displa
i the information, is ﬂllcod in the field DBGEXTSL_PRINT_ROUTIN
: (see DBGSPRINT_ROUTINE below).

5

]

i

i

If the DBGEXTSV_FULL bit is set, more detailed information
is displayed.

OUTPUT = none.
DBGEXT$K _SHOW_TASK =4,

! SHOW_STATISTICS requests that the ADA run-time system display
! statistics about the overall state of the multitasking system.

i INPUTS = The address of a print routine is given in the field
DBGEXTSL_PRINT_ROUTINE.

It the DBGEXT$V_FULL bit is set, more detailed information
is displayed.

i QUTPUT - none.

DBGEXTSK_SHOW_STAT s L

SHOW_DEADLOCK requests that the ADA run-time system display information
about deadlocks within the multitasking system.

INPUTS = The address of a print routine is given in the field
DBGEXTSL _PRINT_ROUTINE.

If the DBGEXTSV_FULL bit is set, more detailed information
is displayed.

OUTPUT = none.

DBGEXT$K_SHOW_DEADLOCK = 6,
! GET_STATE inquires about the ''state'’ and HOLD condition of a task. The
! “'state’’ can be one of RUNNING, READY, SUSPENDED, TERMINATED.

; The state codes are defined below.

1
DBGEXT.REQ;1 16-SEP-1984 16:‘8:45.58 Page 16

INPUT = The task value is placed in the DBGEXTSL_TASK_VALUE field.

]

i

| QUTPUTS = A code representing the state is returned in thex 3((V_STATE =tbs))¥
; DBGEXTSU_STATE field. .

g The DBGEXTSV_HOLD field is also set if the task is on HOLD.
DBGEXTSK_GET_STATE =7,

GET_ACTIVE obtains the task value of the active task.
(The active task is that task in whose context (stack and register set)

]

i

! DEBUG s executing. This is contrasted with the ''visible task'' ==
! the task whose register set is tonﬂoraril in use by DEBUG

; as a default for the purposes of SHOW CALLS, EXAMINE, etc.).

g INPUTS = none

i OUTPUT = The task value of the active task is returned

5 in DBGEXTSL _TASK_VALUE.

é %((Can the active task be the null task? =tbs))%
DBGEXTSK_GET_ACTIVE = 8,

: SEV_ACTIVE requests the run-time system to switch the active

! task to that given in DBGEXTSL_TASK_VALUE. The ‘‘long form' DBG

! control block is used. The ro?1stcrs provided b¥ DEBUG in the control
! block are those of the (currently) active task. The run-time

! system uses these to save the registers of the active task. It

! may also modify this register set, (currently onl; the PC and PSL).

! When this call returns, DEBUG should use the poss bl;-nodified

! register values as the active register set. If the PSEUDO_GO bit

! is set, DEBUG should then perform the actions of a normal GO,

! except that ASTs are left disabled. This '‘pseudo=-GO’

! will enter special run-time code that will switch-out the

! currently active task, switch-in the requested active task, and

: reinvoke DEBUG in that task. (A special event code is assigned

! to this '‘reinvoke DEBUG event''. The reinvokation event signifies

! to DEBUG that certain components of its state are to be

! gotten from values saved from DEBUG'sS prior incarnation, not those

: at the rcinvokation"ovont. One such saved state component is

! the ''AST enablement'' status - whether ASTs were enabled when

! DEBUG was invoked.)

! Despite these xlrations. to the user tyging

! DBG> SET TASK/ACTIVE T1, it appears he has entered a simple command

3 immediately followed by a DBG> prompt.

]
]
]
|}
]
)
]

i INPUTS = The task value of the to-become-active task is set
in DBGEXTSL_TASK_VALUE.

The registers of the (currentlg) active task are stored in
fields DBGEXTSL_RO through DBGEXTSL_PSL.

i QUTPUTS = The register set of the new active task, as

14
DBGEXT.REQ;1 16=SEP-1984 16:4!:45.58 Page 17

: modified bl th; run=time system, in DBGEXTSL_RO

: through DBGEXTSL_PSL.

i The DBGEXTSV_PSEUDO_GO flag may be set, in which case,
; DEBUG should perform a "‘pseudo go'' operation.
DBGEXTSK_SET_ACTIVE =9,

SET_TERMINATE is used to cause ADA to terminate a task. It is used
to implement the command SET TASK/TERMINATE.

INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

If the TASK_VALUE field is zero and the ALL flag
is set, then the function is done for all tasks.

OUTPUT = none
BGEXTSK_SET_TERMINATE = 10,

! SET_HOLD 1is used to put a task on hold or to release a task that was
' grov?ouslaotut on hold. It is used to implement the command

! SET TASK/HOLD which Leaves the state of a task as-is, except that each
2 task is marked HOLD.

INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

If the TASK_VALUE field is zero and the ALL flag
is set, then the function is done for all tasks.

X((Will the /ALL selection criteria be used for thr: SET_xxx codes? =-tbs))%

The desired status of HOLD is placed into the
DBGEXTSV_HOLD field. (1 => HOLD, 0 => RELEASE)

gt((ls the request 1=>1 or 0=>0 legal? =-tbs))X
g OUTPUT = none
DBGEXT$K_SET_HOLD =11,

; GET_PRIORITY inquires about the priority of a specified task.

; INPUT = The task value is placed in the DBGEXTSL_TASK_VALUE field.
; OUTPUT = The priority is returned in the DBGEXTSW_PRIORITY field.
DBGEXTSK_GET_PRIORITY = 12,

; SET_PRIORITY is used to set the priority of a specified task.
i INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

M 14
DBGEXT.REQ; 1 16-SEP=-1984 16:48:48.58 Page 18

f the TASK_VALUE field is zero and the ALL flag
s set, then the function is done for all tasks.

The desired priority is placed in the DBGEXTSW_PRIORITY field.
OUTPUT = none.
DBGEXTSK_SET_PRIORITY = 13, A

RESTORE_PRIORITY is used to restore the priority of a task back
! to its normal value (as it would be without DEBUG intervention).

i INPUTS = The task value is placed in the DBGEXTSL_TASK_VALUE field.

]
[}
]
]
]
- If the TASK_VALUE field is 2ero and the ALL flag
E is set, then the function is done for all tasks.
1
1

i QUTPUT - none.

DBGEXTSK_RESTORE_PRIORITY = 14,

GET_REGISTERS is used to obtain the register set of a task.
i INPUT - The task value is placed in the DBGEXTSL_TASK_VALUE field.

[

)

)

|}

! OUTPUTS = The rogister values are returned in the DBGEXTSL_RO
; through DBGEXTSL_PSL fields.

:
)
]

er set of the active task
or the active task.

i NOTE: Only DEBUG knows the reg .
i VERE is returned.

ist
hence, this call is invalid
A return status of STSSK_SE

DBGEXTSK_GET_REGISTERS = 15,

SET_REGISTERS is used to change the register values of a task.
his may be needed, for example, in SET TASK T;DEPOSIT RS = 0;G0

INPUTS - The task value is placed in the DBGEXTSL_TASK_VALUE field.

The register values are placed in the DBGEXTSL_RO
through DBGEXTSL_PSL fields.

OU“’UY = none.

NOTE: Only DEBUG knows the reg

ist et of the active task
hence, this call is invalgg

rs
for the active task.
ERE is returned.

e
A return status of STS$SK_SEV

BGEXTSK_SET_REGISTERS = 16,

o st IRttt - -

! ENABLE_EVENT is used during processing of a ''SET BREAK/EVENT=" or

N 14
DBGEXT.REQ;1 16=-SEP-1984 16:40:48.;8 Page 19

! "'SET TRACE/EVENT='' command to enable reporting of a given kind of event.

INPUTS = The DBGEXTSL_EVENT_ID field contains a code identifying
the event being enabled. The possible values of this
code are defined below.

The DBG?XTSL TASK_VALUE field contains a task value further
valifying tRe evént being enabled. This may be zero
f the "ALL" flag is Llit.

for example, S

f we are enabling ''task termination'' and we suppl¥ A
task value, then we only want to break on termination of
that task. If we enable '‘task termination'' events and
set the ALL flag, we want to be notified of any
task termination.

OUTPUT - none
DBGEXTSK_ENABLE _EVENT =17,

<o

ISABLE_EVENT is used during processin? of a ''CANCEL BREAK/EVENT='' or
‘TAN%EL TRACE/EVENT="' command to disable reporting of a given kind of
event.

]

i

i

[}

! INPUTS = The DBGEXTSL_EVENT_ID field contains a code identifying
! the event being diSabled. The possible values of this

3 code are defined below.

i The DBGEXTSL _TASK_VALUE field contains a task value further
! ?ualifyin the evéent being disabled. This may be zero

E f the '""ALL" flag is lit.

g OUTPUT = none

DBGEXTSK_DISABLE_EVENT = 18,

; A maximum task code is defined for CASE statement bounds.
DBGE XT$K_MAX_FUNCT = 18;

1
DBGEXT.REQ;1 16-SEP-1984 16:48:4’.53 Page 20

- R e e

*

COMPLETION STATUS

The run time s;ston has two means of providing a conElo
return value of the function and the contents of DBGEXT

Function Return Value =--

The run time s;steo should, as its first act

ion, attempt to read and verify
the field DBGEXTSV _FACILITY_ID in DBGEXTSCONI??
y

(_BLOCK. Optionall¥. it may
ty. If the FACILITY_ID is
return:

also PROBE the confrol block for read/writab
correct, the run time system should eventuall

STSSK_SUCCESS - service successfully completed
Otherwise, the run time system should immediately return:

STSSK_SEVERE - service failed
This helps to insure that an incorrect External Control Block will be
detected before it is written to.
Contents of DBGEXTSL_STATUS =--
ALL other status and error conditions will be placed in the STATUS field of
the control binck. The possible values of the STATUS field are a composite
of soverit¥ level and nessage number. Only two severity values are used.
They are given by STSSV_SEVERITY:

STS$K_SUCCESS - service successfully completed
In this case the message number (STSSV_MSG_NO) is zero.

STSSK_ERROR - service failed

In this case the message number (STSSV_MSG_NO) is one of the following:

LITERAL

?BGEXT!K,PUNCTlON_NOt_lHP =0,

g The function requested is not implemented by the facility.
Qaeexrsx_tasx,not_exxst =1,

i Task number cannot be translated to a task value because the task does
! not exist. Or task value does not point to a currently existing task
! (this cannot always be detected).

?lGElTSK_!ASK_lS_ACT!VE =2,

| Returned on a SET_REGISTER or GET_REGISTER function for the active task.
! The run time system cannot access the registers of teh active task.

DBGEXTSK_TASK_IS_NULL = 3;

DBGEXT.REQ;1 16-SEP-1984 16:48:48.13 Page 21

| Returned on a SET_ACTIVE function for the null task.

1
DBGEXT.REQ;1 16-SEP-1984 16:48:6%.53 Page 22

*

PRINT ROUTINE INTERFACE

tho follouin? defines how to use the DEBUG print routine whose address
is given in the DBGEXTSL_PRINT_ROUTINE field.

D
DBGSPRINT _ROUTINE = .control_block [DBGSL_PRINT_ROUTINE J;

DBGSPRINT _ROUTINE (NEW_LINE
STRING _TO _PRINT,
FAO_ARG_1.

FAO_ARG nS'E'NOVALus
NEW_L INE = this can have one of two values:

0~ Place the given string in the output buffer.
1 = If the given string is non-zero, first place it in the
buffer. In all cases, output the buffer to the screen.

STRING_TO_PRINT
- this is a pointer to a ccunted ascii string
g, ?.. UPLIT (XASCIC 'Output this text')
s may be zero if the ACTION_CODE is 'NEWLINE''.

There may be FAD arguments follouing the string.
The str1n9 thus ma contaln embedded FAO commands
such as "'AC '*'SL', and so on.

iXC(FIXUP = THIS EXTENSION IS NOT GOOD!! -tbs))%¥

In addition, there will be a DEBUG-specific extension

to FAD which can be used for s;nbo 21 pg addresses.

There will be a new command for mbolize address''.

This indicates that the corresponding FA argument

:: antaddress. It's symbolization is to be embedded into
e string.

FAO_ARG1 through FAO_ARGn - optional parameters for FAO arguments.
Example: suppose FOO\L is located at address 200. Then:

DBGSPRINT_ROUT INE (DBGEXTSK NEWL INE,
T (XKSCIC ‘Task switch at location !'SA'),

This would output:
**Task switch at Location FOO\L"

2
S P e e e e g e e e

DBGEXT.REQ;1 16=-SEP-1984 16:48:45.l2 Page 23

EVENT ID

The following define the possible values of the DBGEXTSL_EVENT_ID field.

l
l
l
: These are the predefined events that we can break or trace on.
L

LITERA
DBGEXTSK_HIN_EVENT_CODE =0,
DBGEXTSK_INVOKE _DEBUG =0, ! Unconditional DEBUG invokation
DBGEXTSK_TASK_ACTIVATION =1, ! First transition of a task to RUNNING
DBGEXTSK_TASK_SUSPENSION = §. ! Transition from RUNNING to SUSPENDED
DBGEXTSK_TASK_SWITCH_FROM = 3, ! Transition from RUNNING to some state
DBGEXTSK TASK_SWITCHTTO = 4, ! Transition from some state to RUNNING
DBGEXTSK_TASK_TERMINATION = §, ! Any kind of termination
' Ada specific tasking codes:
DBGE!ISK JASK_ABORT_TERM = 6, ! Termination by abort
DBGEXTSK_TASK_EXCEP_TERM = ¥ ! Ternination by unhandled exception
DBGEXTSK_TASK_EXCEP_REND = 8, ! Exception propaglting out of rendezvous
DBGEXTSK_TASKTENTRYZCALL =9 ! Executing an entry cal
DBGEXTSK_TASK_ACCEPY =10, | Executing an accept
DBGEXTSK_TASK SELECT =11, ! Executing a select
DBGEXTSK_MAX_EVENT_CODE = 11;

F1
DBGEXT.REQ;1 16-SEP-1984 16:68:48.53 Page 24

EVENT CONTROL BLOCK

The Event Control Block is the data structure that the ADA (or other)
facility passes to DEBUG when it signals that a given event has occured.

For example, if you do a SET BREAK/ADAEVENT=TASK_SWITCH_TO, then
when a task switch occurs, the ADA run-time system will si?nol the special
signal DBGS_EVENT. A pointer to an "Event Control Block™ is passed
as the "FAQO argument'' of DBGS EVENT. (E.E.
LIBSSIGNAL (DBGS_EVENT, 1, .EVENT_CONTROL BLOCK). (Note that this
condition cannot properly be an S5$ condifion because they are not
allowed to have FAD arguments osher than PC and PS#

(except for the hardware conditions). Hence, the facility DBG was chosen.
This condition is a DEBUG-defined condition that anyone can
signal. The FAD count of 1 is required so that the message conforms
to a lo?al format for a message vector.) Throuah proper use of the
SEVERITY field and the NOMESSAGE bit in the condition, the
signaller can be assured that events will be

reflected'’ by Traceback should DEBUG not be naffod

into the image (for some reason). So there rea are no
restrictions on when this condition can be signalled.

that has originated the event and another code to indicate what event
ggs occu:rod. It also contains message text to be output announcing
e event.

The following illustrates the Event Control Block:

]
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
5 The control block contains a code indicating the facility
:
:
:
:
;
:
:
:
:
:
:
:
:
:
:
:
:
:
:
i
F

> L +
0 DBGEXTSL _EVNT_FACILITY_ID :
i & DBGEXTSL_EVNT_EVENT_ID :
b1 DBGEXTSL_EVNT_FLAGS :
5.} DBGEXTSL_EVNT_MESSAGE_TXT '
1 | DBGEXTSL_EVNT_ARG_COUNT :
5 DBGEXTSA_EVNT_ARG_VECT g
; s b i T ;
IELD DBGEXTSEVNT_F IELDS =
DBGEXTSL_EVNT_FACILITY_ID = [0, 0, 32, 01.
DBGEXTSL _EVNT_EVENT_ID = (1, 0, 32, 0],
DBGEXTSL EVNT FLAGS = (2. 0. 32, 0],
DBGEXTSV EVNT MORE TEXT = (2. 0. "1, 03, ' Flag bit 0
DBGEXTSV EVNT-REENTRY = (2. 1, 1, 0], | Flag bit 1
DBGEXTSL_EVNT_MESSAGE IxT = [3, 0. 32, 01.
DBGEXTSL_EVNT_ARG_COURT = g. 9. 5. 91°

gacexrsa:evut:AaGZVECt

DBGEXT.REQ;1 16-SEP-1984 16:43:4%.%2 Page 25

LITERAL
DBGEXTSK _EVNT _BASE_SIZE = 5;

MACRO
DBGEXTSEVENT CONTROL BLO
BLOCK [DBGEXTSK BASE
FIELD (DBGEXTSEUNT_F

C
I

NUM ARGS)

K(
SIZE ¥ NUH_A GS ,LONG]
ELDS)X;

Explanation of fields:

FACILITY_ID field: The code for the facilit‘ si?naling the
event. If the CUST_DEF bit is set the
event is a ''user event''. Otherwise, the
only supported codes are ADA, PPA, and
scan,

EVENT_ID field: This field contains the event code.
Event codes are numbered from 1 within
each facility. Event code 0 is
reserved in all facilities. It represents
the unconditional event, that is,
unconditional DEBUG entry. If the
EVENT_ID field is zero, the REENTRY bit
is checked.

MESSAGE_TXT field: This is a pointer to a counted ascii string
The string represents a IQSSC? to be printed
when the event occurs and is Tomatted as an
‘a0 control stri n? The string may take FAO
arguments. The str na may also contain the
DEBUG extension to FAD, "!S in order to
symbolize an address. fhis extension is
described above. NOTE: if this field is 0,

t indicates that there is no message.

ARG_COUNT field: Count of the number of FAD arguments that go
with the text.

ARG_VECT field: A vector of FAD arguments.

MORE_TEXT flag: I1f this flag is IRUE it indicates that DEBUG

is to return gontro at the point of the signal
oftor displa; ng the nossagc. This is to be used
for output of multi=Line messages. (l.e.. the
run=time s¥stoa should then resignal the event with
;helsext Line of message text in the MESSAGE_TXT

e

REENTRY flag: If this flag is IRUE. then this event is a
DEGUG-rootnr‘ event that has occurred after a
PSEUDO_GO. DEBUG is thereby instructed
to restore cortain components of its state
from the val ues thcx had at DEBUG's last
incarnation (e.g. AST enablement).

[——————————————— e R R L

DBGEXT.REQ;1

For this fla
EVENT _ID fie

unconditional entry to DE

1o

5.3 |
16-SEP-1984 16:48:48. Page 26

to be checked b{ DEBUG, the
MUST BE EROa hus indicating

DBGEXT.REQ;1 16-SEP=1984 16:68:4&.;3 Page 27

S S S RS R s T S S —— . — W ——— -

REGISTERING EVENTS WITH DEBUG

DEBUG's event handling feature is available to user programs as
well as Digital software. DEBUG maintains an event table
for each facility that chooses to register its events with DEBUG.

Registering an event with DgBUG is very simple. The facility
need only signal the following signal after DEBUG has
been invoked in an image:

LIBSSIGNAL (DBGS_REGISTER_EVENTS,
tfirst_event_condition,
s:cona_ovonf_COndition.
etc.

A List of event conditions is chained below a master condition
of DBGS_REGISTER_EVENTS. This signal may be raised as many
times as desired to add more events to DEBUG's event table.
Since DEBUG derives the facility number from the event
condition, events for different facilities may be

registered with the same signal.

The event conditions appearing in the message vector must
be defined in the facilities message file. The string
defined in the message file is the string that DEBUG

will use to name the event.

For example, suppose we wish to add an event of PLIS_TASK_SWITCH.
The following would do it:

1. Add to PLI's message file:
PLIS_FACILITY = xxx
TASK_SWIT “'TASK_SWITCH"

(H
2. Register the event with DEBUG
LIBSSIGNAL (DBGS_REGISTER_EVENTS, PLIS_TASK_SWITCH)
at
/€

After the registration any user can then type
SET BREAK/EVENT=PLIS_TASK_SWITCH

A command SET EVENT/FACILITY="PLIS ' can be used so the facility
?rofix can be omitted, e.g. SET BREAK/EVENT=TASK_SWITCH

his will then not be confused with an Ada task switch.

SET EVENT/NOFACILITY will eliminate the automatic prfixing of
event names.

To simplify the registration of events b‘ facilities, any
facility should grovido ar entr{ point that users can
call from the DEBUGGER to (oad the events of that facility.
To Lload PLI's events, then, a user would merely type

DBG> CALL PLIS_LOAD_EVENTS

*+ Obviously, Ada's events should be registered with this same

general mechanism

'EQUIPMENT CORPORATION
NTIAL AND PROPRIETARY

AH-BT13A-SE
VAX/VMS V4.0

