nn

o0DDDDDDDDDD CCCCCCCCCCCC LLL
oDDDDDDDDDDD CCCCCCCCCCCC LLL
DDDDDDDDDDDD ccccccccccce Ll
0DD pOD CCC LLL
DDD pOD CCC LLL
0DD 00D CCC LLL
DDD pDD CCC LLL
DDD 00D CCC LLL
DDD 00D CCC LLL
DDD pDD CCC LLL
DDD ooD CCC LLL
DDD oD CCC LLL
0DD ooD CCC LLL
DDD poD CCC LLL
00D poD CCC LLL
0DD poD CCC LLL
DDD pOD CCC LLL
DDD oop CCC LLL
0ODDDDDDDDDD CCCCCCCCCCCC LLLLLLLLLLLLLLL
OODDDDDDDDDD CCCCCCCCCCCC LLLLLLLLLLLLLLL
oODDDODDDDDDD CCCCCCCCCCCC LLLLLLLLLLLLLLL

E 16
+f ILE+[D*+CL1TABDEF

ccccccce LL 111111 TITTITITITY ARRARR B8B88BBBB DDDDDDDD EEEEEEEEEE FFFFFFFFFF
cccccccc LL 111111 TITITITTTY ABAAAN BB8BB8BBBB oDDDDDDD EEEEEEEEEE FFFFFFFFFF
cC LL 11 7 AA AA BB 88 DD DD EE FF
cC LL 11 17T AA AA BB B8 DD DD EE FF
cC LL 11 17 AA AA BB B8 DD 0D EE FF
cC LL 11 17 AA AA BB 88 DD DD EE FF
CC LL 11 1T AA AA BBBBBBBB DD DD EEEEEEEE FFFFFFFF
cC LL 11 17 LE) AA BBBBBBBB DD DD EEEEEEEE FFFFFFFF
cC LL 11 17 AAAAAAAAAA BB B8 DD DD EE FF
cC LL 11 17 AAAAAAAAAA BB B8 0D DD EE FF
cC LL il 17 AR AA BB B8 DD DD EE FF cove
cC LL 1! 17 AA AA BB 88 DD PD Ec FF cone
CCCCCCCC LLLLLLLLLL 11111} 17 AA AA BBBBBEBB ppDDDDDD EEEEEEEEEE FF cece
CCCCCCCC LLuLLLLLLL 11111 T AA AA BBBBBBBB oooDODDDD EEECEEEEEE FF cose
SSSSSSSS DDODDDDD LL
SSSSSSSS DDDDDDDD LL
SS 0D 0D LL
SS DD 0D LL
SS DD Db LL
SS op 0D LL
$SSSSS 0D 0D LL
$SSSSS DD 0D LL
SS DD 0D LL
SS DD DD LL
SS DD 0D LL
SS DD b0 LL
SSSSSSSS oDDDDDDD LLLLLLLLLL
SSSS5S85S$ oDDRPDDDD LLLLLLLLLL

1
CLITABDEF.SDL:1 16=-SEP=-1984 16:40:2&.1? Page 1

MODULE $clitab;
/* IDENT v04=000

AR AR I L I R e I I I I R I s TR R 222 2R R 22222222 222222222

/+ COPYRIGHT (¢) 1978, 1980, 1982, 1984 BY
/* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
/* ALL RIGHTS RESERVED.

/* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
/* ONLY IN ACCORDANCE WITH THE TERMS .OF SUCH LICENSE AND WITH THE
/* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
/* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
;: ?;:nggg:ggﬂ. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY

/* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TC CHANGE W
/* AND SHOULD NGT BE CONSTRUED AS A COMMITMENT BY DIGI
/* CORPORATION.

/* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
/* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

ITHOUT NO
TAL EQUIP

LR B B B B OE I IR B R N IR IR O I O O I N J

/%
;:"t'it"'t..ttttttttt'ttttttt'ttttttitttttttttttttttttt'ttttttitttitttttt'
YAZZS

;' Facility: Command Language Interpreters, CLI Table Definitions

/* Abstract: This file contains the definitions for the data blocks which
/* appear in a CLI table. A CLI table is used by DCL and MCR
/* to parse and execute DCL commands entered b{ the user,

;: A CLI table is created with the Command Definition Utility.

/* Environment: No assumptions can be made about the environment.

/* Author: Paul C. Anagnostopoulos

;: Creation: 7 December 1982

;: Modifications:

/* v04-001 PCGOOO1 Peter George 06-Dec~-1983
A Add NEG operator.

/'c-

1
CLITABDEF.SDL ;1 16=SEP-1984 16:40:29.1? Page 2

/* CLI TABLE BLOCKS

I' cSeoeas GSeeoSeeeees eee

/* A CL]I table contains all of the information that DCL and MCR need
/* to parse DCL commands. The tables are composed of a set of blocks,
/* each of which describes one or more command items. This SDL file
/* defines all of the blocks.

/* Each block begins with a2 standard header, which is formatted as follows:

/* T SR —— ‘- +
;' :subtypei type | length '
¥ : e ececscscssscsesese :
/* + TRO count ' flags '
,. o e LY -
/*

/* ALl references to other blocks are made via Table-Relative Offsets (TRO).
/* The TRO count specifies how many such references there are, and the

/* reference longwords always follow the header immediately. The rest of
/* each block contains other information necessary for the definition of

/* the item. Following the fixed portion of the block is a variable

/* portion, which contains any variable-length strings. Each of these

/* strings is referenced from the fixed portion of the block by a

/* word Block-Relative Offset (BRO).

/*
/* The following List defines all of the valid block types.
constant (
vector, /* Vector (root) block.
command, /* Command block.
type, /* Type block.
entity, /* Entity block.
expression, /* Expression block.

~
-

c¢du visited For CDU internal use.

) equals 1 Tncrement 1 prefix block_;

/* The following pages define the various block formats., Many of the field
/* names are wierd, but have been retained for compatibility with previous
/* block formats.

CLITABDEF.SDL;1
/* VECTOR BLOCKS
/* ceccccccces ———-

/* The primary vector block appears at the beginnin
/* and contains references to all other blocks and

1
16-SEP-1984 16:40:2!.1? Page 3

aggregate vector_block structure prefix vec_ fill;

size word unsigned;
tyge byte unsigned;
subtype byte unsi?ned:
constant
del,
mcr,
verb,
command
) equals 1 increment 1;
flags structure word unsigned;
strivl byte unsigned;
constant strivl equals 6;
end flags;
tro_count word unsigned;
constant header_Llength equals .;

verbtbl longword;
comdptr longword;
table_size longword unsigned;

constant ‘‘Length'’ equals .;
end vector_block;

/*
A
.,'

/®
/®
/*
/*

/®

g of a CLI table,
lock Lists.

ALl blocks have a s
héader which is def
up above.

tandard
ined

Primary vector for DCL.
Primary vector for MCR.
Verb name table.
Commara block table.

Format Level of “able.
Current Llevel is 6.

TRO of verb name table.

TRO of command block pointer
table.

Overall size of CLI table.

Length of fixed portion.

/* The verb name table is composed of the standard header, followed by one

/* longword for each verb or Synonym.

The longword

contains the first

/* four characters of the verb name, padded with NULs if necessary.

/* The command block pointer table is composed of the standard header,

/+* followed by one longword

for each entry in the verb table.

This

/+* longword contains the TRO of the corresponding command block.

CLITABDEF.SDL;1
;: COMMAND BLOCK
/®

/*

aggregate command_block structure prefix cmd_ fill;

size word unsigned;
tyge byte unsigned;
subtype byte unsi?ncd;
constant
verb,
syntax
) equals 1 increment 1;
flags structure word unsigned;
abbrev bitfield mask;

nostat bitfield mask;
foreign bitfield mask;
immed bitfield mask;

mcrparse bitfield mask;
parms bitfield mask;
uals bitfield mask;
isallows bitfield mask;
end flags;
tro_count word unsigned;
parms longword;

constant max_parms equals 8;
auals longword;
isallow longword;

handler byte unsi?ned:
constant
none,
cli,
user,
image,

same
) equals 0 increment 1;
parmcnt structure byte unsigned;
minparm bitfield length 4;
maxparm bitfield length &;
end parmcnt;
verbt‘p byte unsigned;
padl byte fill;

name word unsigned;
image word unsigned;

/*
/®
/®

/®
/*

1
16-SEP-1984 16:40:2!.1? Page &

A command block is used to define a verb or a syntax change brought about
/* b‘ a parameter or qualifier. There is one command block for each verb
(but not for its synonyms), and one for each syntax change within a verb.

ALl blocks have a standard
header which is def®ned
up above.

Verb definition.
Syntax change definition.

Verb may be abbreviated
non-uniquely.

Command does not return a
status, so don't check it.
Command requests unparsed
command Line.

Immediate command, uses
internal parsing routines.
MCR style (output=input).
Parameter info is relevent.
Qualifier info is relevent.
Disallow info is relevent.

TRO of first parameter
entity block.

Maximum parameters.

TRO of first qualifier.
TRO of top-level disallow
boolean expression block.

How does CLI handle command?

It doesn't.

Calls a CLI routine.
Calls a user routine.
Invokes an image.

For s¥nta: ehango. same
handling as verb.

Minimum required parameters.
Maximum allowed parameters.

Verb t{pe code for use with
old CLI interface.

BRO of verb or syntax name.
BRO of routine or image
reference.

1
CLITABDEF.SDL:1 16-SEP-1984 16:40:2*.1? Page 5

outputs word unsigned; /* BRO of outputs list.
“prefix’’ word unsigned; /* BRO of prefix string.
constant '‘length’’ equals .; /* Length of fixed portion.
variable character length 0_tag 2; /+* Beginning of variable part.
constant max_name equals 1+31; /* Maximum sizes of variable
constant max_image equals 64; /* portions.

constant max_outputs equals 1+7;

constant max frofix equals 1+31;
end command_block;

/* Following the fixed gortion. the verb name(s) are stored as a sequence
/* of ASCIC strings within an overall ASCIC string. Or, the syntax name is
/* stored as a single ASCIC string.

/= The routine or image reference is stored as follows:
/* CLI routine Routine name as ASCIC string.
/* user routine Longword routine address, then name as ASCIC string.
;' image Image specification as ASCIC string.
L

/* The outputs List consists of a courted sequence of bytes. Each byte
;' congains either the negative of the parameter number, or the qualifier
* number.

/* The prefix string is stored as an ASCIC string.

1
CLITABDEF.SDL ;1 16-SEP-1984 16:40:25.1? Page 6

/* TYPE BLOCK
I' - - -

/* A type block is used as the header of a chain of entity blocks that
/* describe type keywords. There is one type block for each user-specified
/* type definition.

aggregate type_block structure prefix type_ fill;

size word unsigned; /* ALL blocks have a standard
tyge byte unsigned; /* header which is defined
subtype byte unsi?ned: /* up above.

constant

t‘po , /* Only one kind of type block.
) equals 1 increment 1;

flags word unsigned;

tro_count word unsigned;

keywords lLongword; /* TRO of first keyword
/* entity block.

name word unsigned; /* BRO of type name.
‘“prefix'’ word unsigned; /* BRO of prefix string.
constant ‘‘length’’ equals .; /* Length of fixed portion.
variable character length 0 tag 2z; /* Beginning of variable gart.
constant max_name equals 1+31; /* Maximum sizes of variable

+51; /* portions.

constant nax_Brefix equals 1
end type_block;

/* Folouing the fixed portion, the type name is stored as an ASCIC string.
/* So is the prefix string.

CLITABDEF.SDL;1
/* ENTITY BLOCK
,. e esesene=es

b8
16-SEP-1984 16:40:25.11 Page 7

/* An entity block is used to define each parameter, qualifier, and data

/*

/* {Kpo keyword. These blocks are Linked off
@

of th
verb, in the case of parameters and qualifiers, or off of a type
/* block, in the case of type keywords.

aggregate entity_block structure prefix ent_ fill;

size word unsigned;
tyge byte unsigned;
subtype byte unsigned;
constant
parameter,
qualifier,
keyword

) equals 1 increment 1;

flags structure word unsigned;
val bitfield mask;
neg bitfield mask;

deftrue bitfield mask;
batdef bitfield mask;
valreq bitfield mask;
list bitfield mask;
concat bitfield mask;
impcat bitfield mask;
verb bitfield mask;
parm bitfield mask;

mcroptdelim bitfield mask;
mcrignore bitfield mask;

end flags;
tro_count word unsigned;
next longword;

syntax longword;
user_type longword;

number byte unsigned;

valtype byte unsi?ned:
constant

user _defined,
infile,
out'ileo
number,
privilege,
datetime,
protection,
process,
inlog,
outlog,

/®
/=
/®

/*
/*
/*

e command block for

ALL blocks have a standard
header which is defined
up above.

Parameter definition.
Qualifier definition.
Keyword definition.

Can take a value,
Can be negated with ''NO''.
Present by default.

Present by default if batch.

A value is required.

Can be a List of vaiues.
Can be concatenated list.
lnflicit concantenated list
(old CLI interface only).
Global placement.

Local placement.

Both means positional.

MCR SET VUIC kludge.

MCR ignores this entity,

TRO of next entity block
in chain.

TRO of s‘ntax change
command block,

TRO of t{po block for
user-defined type.

Entity number. CLI should
only use for parameters.
Value type.

Defined by user.
Input file spec.
Output file spec.
Decimal integer.
Privilege keyword.
Date/time.
Protection spec.
Process name.

Input logical name.
Output Llogical name.

1
CLITABDEF.SDL ;1 16=-SEP=-1984 16:40:29.1? Page 8

insym, /* Input symbol name.

outsym, /* Qutput symbol name.

node, /* DECnet node spec.

device, /* Node/device spec.

dir, /* Node/device/director, spec.

uic, /* UIC spec.

restofline, /* Rest of command Line.

parenvalue, /* Parenthesized va.ue.

deltatime /* Delta time onl{.

?uotodstr¥ng. I Strin? and retain quotes.
ile, /* Any f1le spec.

expression, /* General DCL expression.

testl, /* Three hooks for testing

test?, /* new data types before

tests3, /* adding them officially.

aal /* ACL spec.
) equals increment 1 counter #max,
max_valtype equals #max;

name word unsigned; /* BRO of entity name.

Llabel word unsigned; /* BRO of Label used to

/* retrieve entity.
prompt word unsigned; /* BRO of parameter prompt.
defval word unsigned; /* BRO of default value(s).
constant '‘length'’ equals .; /* Length of fixed portion.
variable character length 0 tag 2; /* Beginning of variable part.
constant max_name equals 1+31; /* Maximum sizes of variable
constant max_label equals 1+3i: /* portions.

constant max_prompt equals 1+31;
constant max_defval equals 1+95;
end entity_block;

/* The entity name, label, prompt, and default values appear after the fixed
/* portion of the entity block. fhey are stored as ASCIC strings. The

/+ default values are stored as a sequence of ASCIC strings within the

/* overall ASCIC string.

P —

\
{
i

CLITABDEF.SDL;1

1
16-SEP=-1984 16:40:2&.11 Page 9

/* An expression block is used to represent, within a boolean expression,
/* one operator and its operands. The operands are themselves ox?ression

/* blocks, either subexpressions or paths.

Paths represent the h

erarchical

/* path to an entity whose presence is to be determined.

aggregate expression_block structure prefix exp_ fill;

size word unsigned;
tyge byte unsigned;
subtype byte unsigned;
constant

path,

not

.ﬂ,éo
and,
or,
xor,

neg

) equals 1 increment 1;
flags word unsigned;
tro_count word unsigned;
constant '‘Length'’ equals .;
operand_List character length 0 tag L;
constant max_path_entities equals 8;
end expression_block;

END_MODULE ;

/*
/®
/*

/®
/*
/*
/*
/*
/®
I/

/®

/®
/*

/*

ALL blocks have a standard
header which is defined
up above.

Entity path.

Boolean NOT operator.
Boolean ANY2 function.
Boolean AND operator.
Boolean OR operator.
Boolean XOR operator.
Boolean NEG operator.

Length of tixed portion.

A TRO for each of the
operands or path entities.
Maximum number of entities
in a path.

ITAL EQUIPMENT CO

DIG
CONFIDENTIAL -AND PRO

“SE

AH-BT13A
VAX/UME VA 0

0068

EQUIPMENT CORPORATION
NTIAL AND PROPRIETARY

AH-BT13A-SE
VAX/VMS V4.0

