
VAX-11- PASCAL
User's Guide

Order No. AA-H485B-TE

March 1981

This document describes how to compile, link, execute, and debug VAX-11
PASCAL programs on the VAX/VMS operating system. It also contains infor
mation useful to VAX-11 PASCAL programmers, dealing with input and output,
procedure calling, error processing, and storage allocation.

VAX-11- PASCAL
User's Guide

Order No. AA-H485B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the
VAX-11 PASCAL User's Guide
(Order No. AA-H485A-TE)

SOFTWARE VERSION: VAX-11 PASCAL V1.2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, November 1979
Revised, March 1981

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1979, 1981 by Digital Equipment Corporation.
All Rights Reserved.

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
DIGITAL
PDP
UNIBUS
VAX
DECnet

DECsystem-10
DECSYSTEM-20
DECwriter
DIBOL
Edusystem
IAS
MASSBUS

PDT
RSTS
RSX
VMS
VT

momoomo
ZKA25-81

3111-15

CONTENTS

PREFACE

SUMMARY OF TECHNICAL CHANGES

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
1. 2

2

2.1
2.2
2.2.1

2.2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4

3

3.1
3.2
3. 2. 1
3.2.2
3. 2. 3
3.3
3.3.1
3.3.2

4

4.1
4. 1. 1
4. 1. 2
4.2

5

5.1
5. 1. 1
5.1. 2
5.1. 3
5. 1. 4
5.1.4.1
5.1.4.2

USING VAX-11 PASCAL

CREATING AND EXECUTING A PROGRAM
VAX/VMS FILE SPECIFICATIONS AND DEFAULTS

COMPILING A PROGRAM

THE PASCAL COMMAND
PASCAL COMPILER QUALIFIERS

Specifying Qualifiers with the PASCAL
Command
Specifying Qualifiers in the Source Code

SPECIFYING OUTPUT FILES
COMPILER LISTING FORMAT

Source Code Listing
Cross-Reference Listing
Machine-Code Listing
A Compiler Listing Example

LINKING A PROGRAM

THE LINK COMMAND FORMAT
COMMAND QUALIFIERS

Image-File Qualifiers
Map-File Qualifiers
Debugging and Traceback Qualifiers

FILE QUALIFIERS
/LIBRARY Qualifier
/INCLUDE Qualifier

EXECUTING A PROGRAM

FINDING AND CORRECTING ERRORS
Error-Related Command Qualifiers
Specifying Command Qualifiers

SAMPLE TERMINAL SESSION

DEBUGGING PASCAL PROGRAMS

VAX-11 SYMBOLIC DEBUGGER
Debugger Symbol Table
VAX-11 Symbolic Debugger Command Syntax
Debugger Operations
Specifying Addresses
Specifying Data Addresses
Specifying Current, Previous, and
Next Locations

iii

Page

ix

xiii

1-1

1-1
1-2

2-1

2-1
2-2

2-4
2-6
2-7
2-8
2-9
2-11
2-12
2-15

3-1

3-1
3-2
3-3
3-4
3-4
3-5
3-5
3-5

4-1

4-1
4-1
4-2
4-3

5-1

5-1
5-1
5-2
5-3
5-3
5-4

5-4

CHAPTER

5.1.4.3
5.1. 5
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5·. 2. 2. 4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25
5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38
5.3.39
5.3.40
5.3.41
5.3.42
5.4

6

6.1
6.2
6.2.1

CONTENTS

Specifying Program Addresses
Special Symbols

USING THE DEBUGGER
Debugging a PASCAL Program
General Description of the Debugger
Preparing to Debug a Program
Controlling Program Execution
Examining and Modifying Locations
Specifying Scope

VAX-11 SYMBOLIC DEBUGGER COMMANDS
CANCEL ALL Command
CANCEL BREAK Command
CANCEL EXCEPTION BREAK Command
CANCEL MODE Command
CANCEL MODULE Command
CANCEL SCOPE Command
CANCEL TRACE Command
CANCEL TYPE/OVERRIDE Command
CANCEL WATCH Command
CTRL/Y Command
DEPOSIT Command
EVALUATE Command
EXAMINE Command
EXIT Command
GO Command
HELP Command
SET BREAK Command
SET EXCEPTION BREAK Command
SET LANGUAGE Command
SET LOG Command
SET MODE Command
SET MODULE Command
SET OUTPUT Command
SET SCOPE Command
SET STEP Command
SET TRACE Command
SET TYPE Command
SET WATCH Command
SHOW BREAK Command
SHOW CALLS Command
SHOW LANGUAGE Command
SHOW LOG Command
SHOW MODE Command
SHOW MODULE Command
SHOW OUTPUT Command
SHOW SCOPE Command
SHOW STEP Command
SHOW TRACE Command
SHOW TYPE Command
SHOW WATCH Command
STEP Command
@file-spec Command

A DEBUGGING EXAMPLE

INPUT AND OUTPUT

LOGICAL NAMES
FILE CHARACTERISTICS

File Organization

iv

Commands

Page

5-4
5-5
5-6
5-6
5-9
5-9
5-10
5-12
5-13
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-29
5-31
5-34
5-35
5-36
5-38
5-40
5-41
5-42
5-43
5-45
5-46
5-48
5-50
5-52
5-54
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64
5-65
5-66
5-67
5-68
5-69
5-71
5-72

6-1

6-1
6-2
6-3

I CHAPTER

CHAPTER

CHAPTER

6.2.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6. 4. 3
6.4.4
6.4.5
6.5
6.6

7

7.1
7. 1. 1
7. 1. 2
7.1.2.l
7.1.2.2
7.1.2.3
7. 1. 3

7 .1. 4
7 .1. 5
7.2
7.2.1

7.2.2
7.2.3
7.2.3.l
7.2.3.2
7.2.3.3
7.3
7.4

8

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4

9

9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.4.3

CONTENTS

Page

Record Access 6-3
RECORD FORMATS 6-3

Fixed-Length Records 6-4
Variable-Length Records 6-4

OPEN PROCEDURE PARAMETERS 6-4
File Status or History 6-4
Record Length 6-5
Record-Access Mode 6-5
Record Type 6-5
Carriage Control 6-5

LOCAL INTERPROCESS COMMUNICATION: MAILBOXES 6-6
COMMUNICATING WITH REMOTE COMPUTERS: NETWORKS 6-7

CALLING CONVENTIONS

VAX-11 PROCEDURE CALLING STANDARD
Argument Lists
Parameter Passing Mechanisms
By-Reference Mechanism
By-Immediate-Value Mechanism
By-Descriptor Mechanism
Passing Functions and Procedures
as Parameters
Function Return Values
Passed Arguments to PASCAL Subprograms

CALLING VAX/VMS SYSTEM SERVICES
Calling System Services by Function
Reference
Calling System Service as Procedures
Passing Parameters to System Services
Input and Output By-Reference Parameters
Optional Parameters
Passing Character Parameters

CALLING RUN-TIME LIBRARY PROCEDURES
COMPLETE SYSTEM SERVICE EXAMPLE

ERROR PROCESSING AND CONDITION HANDLERS

RUN-TIME LIBRARY DEFAULT ERROR PROCESSING
OVERVIEW OF VAX-11 CONDITION HANDLING

Condition Signals
Handler Responses

WRITING CONDITION HANDLERS
Establishing and Removing Handlers
Parameters for Condition Handlers
Handler Function Return Values
Condition Values and Symbols
Floating-Point Operation

CONDITION HANDLER EXAMPLE

VAX-11 PASCAL SYSTEM ENVIRONMENT

USE OF PROGRAM SECTIONS
STORAGE OF SCALAR AND POINTER TYPES
STORAGE OF UNPACKED STRUCTURED TYPES
STORAGE OF PACKED STRUCTURED TYPES

Storage of Packed Sets
Storage of Packed Arrays
Storage of Packed Records

v

7-1

7-1
7-1
7-2
7-2
7-3
7-4

7-5
7-6
7-6
7-6

7-7
7-9
7-9
7-9
7-11
7-11
7-12
7-12

8-1

8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-7
8-8
8-9
8-10

9-1

9-1
9-2
9-3
9-4
9-4
9-4
9-6

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

9.5
9.5.1

9.5.2

A

A.l
A.2

B

c

D

1-1
2-1
4-1
5-1
5-2
5-3

5-4

9-1
9-2
9-3

9-4

9-5

B-1

CONTENTS

REPRESENTATION OF FLOATING-POINT DATA
Single-Precision Floating-Point Data
(SINGLE, REAL Types)
Double-Precision Floating-Point Data
(DOUBLE Type)

DIAGNOSTIC MESSAGES

COMPILER DIAGNOSTICS
RUN-TIME ERROR MESSAGES

CONTENTS OF RUN-TIME STACK DURING PROCEDURE
CALLS

VAX-11 SYMBOLIC DEBUGGER COMMAND SUMMARY

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC
MESSAGES

FIGURES

Program Development Process
VAX-11 PASCAL Compiler Listing
Source Program Listing and Traceback List
Sample PASCAL Program
Sample Debugging Session
Source Program for the Program
Flight Reservations
Interactive Debugging Session for the Program
Flight Reservations
Storage of Sample Record
Storage of Sample Record
Storage of Sample Packed Record Containing
Packed Ar ray
Single-Precision Floating-Point Data
Representation
Double-Precision Floating-Point Data
Representation
Contents of Run-Time Stack During Procedure
Calls

vi

Page

9-8

9-8

9-9

A-1

A-1
A-19

B-1

C-1

D-1

Index-1

1-2
2-16
4-3
5-6
5-7

5-72

5-76
9-4
9-7

9-8

9-8

9-9

B-2

TABLE 1-1
2-1
2-2
2-3
3-1
3-2
4-1
5-1
5-2
6-1
6-2
7-1
9-1
9-2
9-3
9-4

CONTENTS

TABLES

File Specification Defaults
PASCAL Compiler Qualifiers
PASCAL Command Qualifiers
Source Code Qualifiers
Command Qualifiers
File Qua 1 if i ers
/DEBUG and /TRACEBACK Qualifiers
Debugger Command Qualifiers
Special Symbols
Predefined System Logical Names
Carriage Control Characters
Suggested Variable Data Types
Program Section Attributes
Program Section Usage and Attributes
Storage of Scalar and Pointer Types
Storage of Packed Array Elements

vii

Page

1-3
2-2
2-5
2-6
3-1
3-2
4-2
5-3
5-5
6-2
6-6
7-10
9-1
9-2
9-3
9-5

PREFACE

MANUAL OBJECTIVES

The VAX-11 PASCAL User's Guide is intended for use in developing and
debugging new PASCAL programs, and in compiling and executing existing
PASCAL programs on VAX/VMS systems. PASCAL language elements
supported on VAX/VMS are described in the VAX-11 PASCAL Language
Reference Manual.

INTENDED AUDIENCE

This manual is designed for programmers who have a working knowledge
of PASCAL. Detailed knowledge of VAX/VMS is helpful but not
essential; familiarity with the VAX/VMS Primer is recommended. Some
sections of this book, however, (condition handling, for instance)
require more extensive understanding of the operating system. In such
sections, you are directed to the appropriate manual(s) for the
required additional information.

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows:

• Chapter 1 provides an overview of the steps you must follow to
create, compile, link, and execute a VAX-11 PASCAL program.

• Chapter 2 describes how to compile your program and explains
the options available at compile time.

• Chapter 3 supplies information on the VAX-11 Linker and its
options, as they apply to PASCAL programs.

• Chapter 4 describes the commands used to run a program.

• Chapter 5 describes how to use the VAX-11 Symbolic Debugger.

~ . Chapter 6 provides information about
including details on the use of
conventions, and record structure.

PASCAL
logical

input/output,
names, file

• Chapter 7 discusses the conventions followed in calling
procedures, especially the conventions for passing parameters.

• Chapter 8 describes error processing, in particular, how to
use the condition handling facility. This chapter is intended
for users with in-depth knowledge of VAX/VMS.

ix

• Chapter 9 describes the relationship between VAX-11 PASCAL and
the VAX/VMS operating system, with particular emphasis on
program section usage, storage allocation, and data
representation.

• Appendix A summarizes diagnostic messages.

• Appendix B illustrates the contents of the run-time stack
during procedure calls.

• Appendix C summarizes in alphabetical order all the debugger
commands.

• Appendix D summarizes in alphabetical order all the debugger
and PASCAL specific error messages.

ASSOCIATED DOCUMENTS

The following documents are relevant to VAX-11 PASCAL programming:

• VAX/VMS Primer

• VAX-11 PASCAL Primer

• VAX-11 PASCAL Language Reference Manual

• VAX/VMS Command Language User's Guide

• VAX-11 Run-Time Library Reference Manual

• VAX-11 Linker Reference Manual

• VAX/VMS System Services Reference Manual

• VAX-11 Architecture Handbook

• VAX-11 PASCAL Installation Guide/Release Notes

For a complete list of VAX-11 software documents, see the VAX-11
Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions.

Convention

{ }
Meaning

Braces enclose lists from which you must choose
one item, for example:

{
expr }
statement

A horizontal ellipsis means that the preceding
item can be repeated as indicated, for example:

filename, •••

x

Convention

[]

[]

items in uppercase
letters and special
symbols

items in lowercase
letters

$ PASCAL
$ File:

Meaning

A vertical ellipsis means that not all of the
statements in a figure or example are shown.

Double brackets in statement format
descriptions enclose
for example:

items that are optional,

[PACKED]

Double brackets in statement
format description enclose
optional, for example:

WRITE ([OUTPUT,] print list)

and declaration
items that are

Square brackets mean that the statement syntax
requires the square bracket characters. This
notation is used with arrays and sets, for
example:

ARRAY [subscriptl]

Uppercase letters and special symbols in
format descriptions indicate PASCAL reserved
words that you must not abbreviate, for
example:

BEGIN
END

Lowercase letters represent elements that you
must replace according to the description in
the text.

In examples of commands you enter and system
responses, all output lines and prompting
characters that the system prints or displays
are shown in black letters. All the lines you
type are shown in red letters.

A symbol with a 1- to 3-character abbreviation
indicates that you press a key on the terminal,
for example, IB@.

xi

SUMMARY OF TECHNICAL CHANGES

This section summarizes the technical changes made to the VAX-11
PASCAL compiler for Version 1.2.

• Debugger records are now generated to allow for full use of
the _VAX-11 Symbolic Debugger.

• An enhanced machine-code listing is now generated.

• Nonabortive run-time errors are signaled when issued.

xiii

CHAPTER 1

USING VAX-11 PASCAL

VAX-11 PASCAL is an extended implementation of the PASCAL language.
The VAX-11 PASCAL compiler executes in native mode under the VAX/VMS
operating system.

This manual describes how you interact with the VAX/VMS operating
system using VAX-11 PASCAL. It contains instructions for compiling,
linking, executing, and debugging a PASCAL program, and provides
information on the following topics:

• Performing input and output operations

• Calling VAX/VMS system services and Run-Time Library routines

• Using the VAX/VMS condition handling facility

• Writing efficient VAX-11 PASCAL programs

This chapter provides an overview of
executing a VAX-11 PASCAL program.
VAX/VMS file specification and defaults.

1.1 CREATING AND EXECUTING A PROGRAM

the steps in creating and
It also describes the standard

Figure 1-1 illustrates the program development process, from inception
to execution. You specify the steps shown in Figure 1-1 by entering
commands strings to the VAX/VMS operating system.

$ EDIT file-spec @.ITl
$ PASCAL file-spec @_ITJ
$ LINK file-spec @.ITl
$ RUN file-spec @_ITJ

With each command, you include information that further defines what
you want the system to do. Of prime importance is the file
specification, indicating the file to be processed. You can also
specify qualifiers that modify the processing performed by the system.
Each ~ommand string is terminated by pressing the RETURN key.

1-1

COMMANDS

$EDIT AVERAGE. PAS
Use the file type of PAS to
indicate that the file contains
a VAX-11 PASCAL program.

$PASCAL AVERAGE
The PASCAL command
assumes that the file type
of an input file is PAS.

(If you use the /LIST
qualifier, the compiler
creates a listing file.)

$LINK AVERAGE
The LINK command assumes
that the file type of an input
file is OBJ.

(If you use the IMAP qualifier,
the linker creates a map file.)

$RUN AVERAGE
The RUN command assumes
that the file type of an image
is EXE.

USING VAX-11 PASCAL

INPUT/OUTPUT Fl LES

LJ Create a AVERAGE.PAS
source program

Compile the
source program

Link the
object module

Run the
executable

image

:::::

-

AVERAGE.OBJ
(AVERAGE. LIS)

Ii braries

AVERAGE.EXE
(AVERAGE.MAP)

ZK-063-80

Figure 1-1 Program Development Process

1.2 VAX/VMS FILE SPECIFICATIONS AND DEFAULTS

A VAX/VMS file specification indicates the input file to be processed
or the output file to be produced. File specifications have the
following form:

node::device: [directory]filename.type;version

The punctuation
required syntax
specification.

marks
that

(colons,
separate

brackets, period, semicolon) are
the various components of the file

node

Specifies a network node name.
systems that support DECnet-VAX.

This is applicable only to

device

Identifies the device on which the file is stored or is to be
written.

1-2

USING VAX-11 PASCAL

directory

Identifies the name of the directory under which
cataloged, on the device specified. You can
directory name with square brackets, as shown, or
brackets {< >) •

the file is
delimit the

with angle

filename

Identifies the file by its name;
alphanumeric characters long.

filename can be up to 9

Describes the kind of data in the file; type can be up to 3
alphanumeric characters long.

version

Specifies which version of the file is desired. Versions are
identified by a decimal number, which is incremented by 1 each
time a new version of a file is created. Either a semicolon or a
period can be used to separate type and version.

You need not explicitly state all elements of a file specification
each time you compile, link, or execute a program. The only part of
the file specification that is usually required is the file name. If
you omit any other part of the file specification, a default value is
used. Table 1-1 summarizes the default values.

Table 1-1
File Specification Defaults

Optional Default
Element Value

node Local network node

device User's current default device

directory User's current default directory

f iletype Depends on usage:

Input to PASCAL compiler PAS
Output from PASCAL com pi 1 er OBJ
Input to linker OBJ
Output from linker EXE
Input to RUN command EXE
Compiler source listing LIS
Linker map listing MAP
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

1-3

USING VAX-11 PASCAL

If you request compilation of a PASCAL program and you specify only a
file name, the compiler can process the source program if it finds a
file with the specified file name that:

• Is stored on the default device

• Is cataloged under the default directory name

• Has a file type of PAS

If more than one file meets these conditions, the compiler chooses the
one with the highest version number.

For example, assume that your default device is DBAO, your default
directory is SMITH, and you supply the following file specification to
the compiler:

$ PASCAL (@.!)
$ File: Circle (@.!)

The compiler will search device DBAO in directory SMITH, seeking the
highest verion of Circle.PAS. If you do not explicitly specify an
object file, the compiler will generate the file Circle.OBJ, store it
on device DBAO in directory SMITH, and assign it a version number 1
higher than any other version of Circle.OBJ currently cataloged in
directory SMITH on DBAO.

1-4

CHAPTER 2

COMPILING A PROGRAM

After creating a VAX-11 PASCAL source program, you compile it. At
compile time, you specify the name of the file(s) containing the
source code and indicate which qualifiers you want to use.

At your option, the compiler produces one or more object files, which
can be input to the linker {see Chapter 3), and one or more listing
files. The listing files contain source and object code listings,
information about compilation errors, and optional items such as
cross-reference listings.

2.1 THE PASCAL COMMAND

To compile a source program, use the PASCAL command in the following
form:

PASCAL [/cornmand-qua·lifier {s)] file-spec-list [/file-qualifier {s)]

/cornmand-qualifier{s)

Indicates special processing is to be performed by the compiler
on all files being compiled {see Section 2.2).

f il e-spec-1 i st

Specifies the source file(s) containing the program or module to
be compiled. You can specify more than one source file. If
source file specifications are separated by commas, the programs
are compiled separately. If source file specifications are
separated by plus signs, the files are concatenated and compiled
as one program.

/file-qualifier(s)

Indicates special processing is to be performed by the compiler
on the file(s) in the file-spec-list.

In interactive mode, you can also enter the file specification on a
separate line by pressing the RETURN key after you type PASCAL. The
system responds with a prompt for the file specification:

$ PASCAL ffi)

$ File:

Type the file specification and any file qualifiers immediately after
the $ File: prompt.

2-1

COMPILING A PROGRAM

2.2 PASCAL COMPILER QUALIFIERS

In many cases, the simplest form of the PASCAL command is sufficient
for compilation. Sometimes, however, you will need to use qualifiers
to specify special processing. Table 2-1 lists the qualifiers you can
use with the VAX-11 PASCAL compiler. You specify the qualifiers on
the command line. Some qualifiers may be specified in source code
comments. This section describes the effect of each qualifier on a
PASCAL program. Section 2.2.1 describes how to specify command line
qualifiers. Section 2.2.2 deals with specifying qualifiers in source
code comments.

Qualifier

CHECK

CROSS REFERENCE

DEBUG

ERROR LIMIT

LIST

MACHINE CODE

OBJECT

STANDARD

WARNINGS

CHECK

Table 2-1
PASCAL Compiler Qualifiers

Purpose

Generates code to perform
run-time checks

Produces a cross-reference
listing of identifiers

Generates records for
VAX-11 Symbolic Debugger

Terminates compilation
after 30 errors

Produces source listing
file

Includes representation of
machine code in the
source listing file

Specifies name of
object file

Prints messages indicating
use of PASCAL extensions

Prints diagnostics for
warning-level errors

Can Be Specified
in Source Code?

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

The CHECK qualifier directs the compiler to generate code to perform
run-time checks. This code checks for invalid assignments to sets and
subranges, and out-of-range array bounds and case labels. The system
issues an error message and normally terminates execution if any of
these conditions occur.

When this qualifier is disabled, the compiler generates nq check code.
By default, CHECK is disabled.

2-2

COMPILING A PROGRAM

CROSS REFERENCE

The CROSS REFERENCE qualifier produces a cross-reference listing of
all identTfiers. The compiler generates separate cross-references for
each procedure and function. To get complete cross-reference listings
for a program, the qualifier must be in effect for all modules of the
program. This qualifier is ignored if no listing file is being
generated.

By default, CROSS REFERENCE is disabled.

You can specify this qualifier in the source code, as described in
Section 2.2.2. Note, however, that the cross-reference listing for a
portion of a procedure or function may be incomplete.

DEBUG

The DEBUG qualifier specifies that the compiler is to generate
information for use by the VAX-11 Symbolic Debugger and the run-time
error traceback mechanism. When you enable the option, the compiler
generates the debugger and Traceback records for each procedure or
1program for which the qualifier is in effect.

When this qualifier is disabled, the compiler generates only Traceback
records. By default, the debugger is disabled.

Refer to Chapter 5 for more information on the debugger.

ERROR LIMIT

The ERROR LIMIT qualifier terminates compilation after 30 errors,
excluding warning-level errors. If this qualifier is disabled,
compilation continues through the entire unit. You cannot specify
this qualifier in the source code.

By default, ERROR_LIMIT is enabled.

Note that after it finds 20 errors (including warning messages) on any
one source line, the compiler generates the error code 255 -- too many
errors on this source line. Compilation of the line continues, but no
further error messages are printed for that line.

LIST

The LIST qualifier produces a source listing file. It has the form:

/LIST [=file-spec]

If you omit the file specification, the listing file defaults to the
name of the first source file, your default directory, and a file type
of LIS.

The compiler does not produce a listing file in interactive mode
unless you specify the LIST qualifier. In batch mode, the compiler
produces a listing file by default. In either case, the listing file
is not automatically printed. You must use the DIGITAL Command
Language (DCL) PRINT command to obtain a line printer copy of the
listing file. A sample listing is explained in Section 2.4.

2-3

COMPILING A PROGRAM

MACHINE CODE

The MACHINE CODE qualifier places in the listing file a representation
of the object code generated by the compiler.

The compiler ignores this q~alifier if ~he LIST qualifier is not
enabled.

By default, MACHINE CODE is disabled.

OBJECT

The OBJECT qualifier can be used when you want to specify the name of
the object file. It has the form:

/OBJECT [=file-spec]

If you omit the file specification, the object file defaults to the
name of the first source file, the default directory, and a file type
of OBJ. You cannot specify this qualifier in the source code.

You can disable this qualifier to suppress object code; for example,
when you only want to test the source program for compilation errors.

By default, OBJECT is enabled.

STANDARD

The STANDARD qualifier tells the compiler to print warning-level
messages wherever the program uses "nonstandard" PASCAL features.

Nonstandard PASCAL features are the extensions to the PASCAL language
that are incorporated in VAX-11 PASCAL. Nonstandard features include
VALUE declarations and the exponentiation operator. Refer to the
VAX-11 PASCAL Language Reference Manual for a list of all the
extensions.

By default, STANDARD is enabled.

WARNINGS

The WARNINGS qualifier directs the compiler to generate diagnostic
messages in response to warning-level (W) errors.

By default, WARNINGS is enabled. A warning diagnostic message
indicates that the compiler has detected acceptable but unorthodox
syntax or has performed some corrective action; in either case,
unexpected results may occur. To suppress warning diagnostic
messages, disable this qualifier. Note that messages generated when
the STANDARD qualifier is enabled appear even if WARNINGS is disabled.

Appendix A lists the compiler diagnostic messages.

2.2.1 Specifying Qualifiers with the PASCAL Command

A PASCAL command qualifier has the form:

/qualifier [=file-spec]

Table 2-2 lists the qualifiers, and their negative form that you can
use on the PASCAL command line. The optional file specification
indicates the name of an output file for the /OBJECT and /LIST

2-4

COMPILING A PROGRAM

qualifiers only. To enable the qualifier, specify its name. To
disable the qualifier, specify the negative form.

You can abbreviate all command line qualifiers by truncating them on
the right. All qualifiers are unique when truncated to their first
four characters, not including the NO of the negative form. You can
truncate further as long as the resulting qualifier is unique. For
example, you can truncate /CROSS REFERENCE to /CR, /CHECK to /CH, and
/DEBUG to /D. -

It is recommended that you use the full qualifier names in command
procedure files, to ensure readability. To guarantee compatibility
with future releases of the system, you should not abbreviate
qualifiers in command procedures to fewer than four characters.

Qualifier

/CHECK

/CROSS_REFERENCE

/DEBUG

/ERROR_LIMIT

/LIST [=file-spec]

/MACHINE_ CODE

/OBJECT [=file-spec]

/STANDARD

/WARNINGS

Examples

1. $ PASCAL Cal c

Table 2-2
PASCAL Command Qualifiers

Negative Form

/NOC HECK

/NOCROSS_REFERENCE

/NODEBUG

/NOERROR_LIMIT

/NOLIST

/NOMACHINE_CODE

/NOOBJECT

/NOSTANDARD

/NOWARNINGS

Default

/NOC HECK

/NOCROSS_REFERENCE

/NODEBUG

/ERROR_LIMIT

/NOLIST (interactive)
/LIST (batch)

/NOMACHINE _CODE

/OBJECT

/STANDARD

/WARNINGS

The source file Cale.PAS is compiled. By default, the /OBJECT,
/STANDARD, /WARNING, and /ERROR_LIMIT qualifiers are enabled.

2. $ PASCAL/CHECK/NOSTANDARD Cale

The source file Cale.PAS is compiled, and check code is
generated. The compiler does not issue warnings for the use of
language extensions.

3. $ PASCAL/LIST/CR Cale

The source file Cale.PAS
Cale.LIS is generated.
cross-reference listing.

is compiled and the
The listing file

2-5

1 isting file
includes a

COMPILING A PROGRAM

2.2.2 Specifying Qualifiers in the Source Code

You can use qualifiers in the source code to enable and disable
special processing during compilation. When specified in the source
code, qualifiers have the form:

(*$qualifier{±} [,qualifier{±}, •••] ;comment*)

The first character after the comment delimiter must be a dollar sign
($); the dollar sign cannot be preceded by a space. Table 2-3 lists
the qualifiers you can specify in your source program. Note that you
can optionally use a 1-character abbreviation for each qualifier. The
abbreviation is simply the first character of the qualifier name,
except for CROSS_REFERENCE, whose abbreviation is X.

Table 2-3
Source Code Qualifiers

Qualifier Abbrev ia ti on

CHECK c

CROSS REFERENCE x -
DEBUG D

LIST L

MACHINE CODE M -

STANDARD s

WARNINGS w

To enable a qualifier, specify a plus sign (+) after its name or
abbreviation. To disable a qualifier, specify a minus sign (-).after
its name or abbreviation. You can specify any number of qualifiers.
You can also include a text comment after the qualifiers, separated
from the list of qualifiers by a semicolon.

When specified in the source code, the LIST qualifier cannot contain a
file specification. The listing file will have the default
specification as described in Section 2.2 above.

For example, to generate check code for only one procedure in a
program, enable the CHECK qualifier before the procedure declaration
and disable it at the end of the procedure, as follows:

(*$C+; enable CHECK for Testl only*)
PROCEDURE Testl;

END;
(*$C-;disable CHECK*)

Command line qualifiers override source code qualifiers.
example, the source code specifies DEBUG+, but
PASCAL/NODEBUG, the DEBUG option will not be in effect.

2-6

If, for
you enter

COMPILING A PROGRAM

2.3 SPECIFYING OUTPUT FILES

The compiler produces object files and listing files. You can control
the production of these files by using the /LIST and /OBJECT
qualifiers with the PASCAL command. Unless you specify otherwise, the
compiler generates an object file. In interactive mode, the compiler,
by default, does not generate a listing file; you must use the /LIST
qualifier to explicitly specify a listing file. In batch mode,
however, the opposite is true: by default, the compiler produces a
listing file. To suppress the listing file, you specify the /NOLIST
qualifier.

During the early stages of program development, you may find it
helpful to suppress the production of object files until your source
program compiles without errors. To do so, specify the NOOBJECT
qualifier on the PASCAL command line. If you do not specify
/NOOBJECT, the compiler generates object files as follows:

• If you specify one source file, one object file is generated.

• If you specify multiple source files, separated by plus signs,
the source files are concatenated and compiled, and one object
file is generated.

• If you specify multiple source files, separated by commas, each
source file is compiled separately, and an object file is
generated for each source file.

• You can use both plus signs and commas in the same command line
to produce different combinations of concatenated and separate
object files (see Example 4 below).

To produce an object file with an explicit file specification, you
must specify /OBJECT on the PASCAL command line (see Section 2.2).
Otherwise, the object file will have the name of its corresponding
source file and a file type of OBJ. By default, the object file
produced from concatenated source files has the name of the first
source file. All other file specification attributes (node, device,
directory, and version) assume the default attributes.

Examples

1. $ PASCAL/LIST A, B, C

Source files A.PAS, B.PAS, and C.PAS are compiled as separate
files, producing object files named A.OBJ, B.OBJ, and C.OBJ; and
listing files named A.LIS, B.LIS, and C.LIS.

2. $ PASCAL X + Y + Z

Source files X.PAS, Y.PAS, and Z.PAS are concatenated and
compiled as one file, producing an object file named X.OBJ. In
batch mode, this command also produces the listing file X.LIS.

3. $ PASCAL/OBJECT=Square <RET>
$ File: Circle

The system issues the $ File: prompt because the PASCAL command
does not specify a source file. The file Circle.PAS is compiled,
producing an object file named Square.OBJ, but no listing file.
{This example applies to interactive mode only.)

2-7

COMPILING A PROGRAM

4. $ PASCAL A + B/LIST,C

Two object files are produced: A.PAS and B.PAS are concatenated
to become A.OBJ and C.PAS becomes C.OBJ. In interactive mode,
this command produces the listing file A.LIS. In batch mode, it
produces two listing files: A.LIS and C.LIS.

5. $ PASCAL A + Circ/NOOBJECT + X

When you include a qualifier in a list of files that are to be
concatenated, the qualifier affects all files in the list. Thus,
the command shown above completely suppresses the object file.
That is, source files A.PAS, Circ.PAS, and X.PAS are concatenated
and compiled, but no object file is produced.

6. $ PASCAL/LIST [DIR)M

The source file M.PAS in directory [DIR] is compiled, producing
an object file named M.OBJ and a listing file named M.LIS. The
compiler places the object and listing files in the default
directory.

2.4 COMPILER LISTING FORMAT

This section explains the format of the compiler listing.

Each section of a compiler listing is shown and described in detail.
A complete compiler listing is illustrated in Section 2.4.4.

The compiler listing contains the following three sections:

• Source code listing -- When you specify the /LIST qualifier,
the source code is listed by default.

• Cross-reference listing -- To generate cross references for
all identifiers used in the program, you must specify the
/CROSS_REFERENCE and /LIST qualifiers.

• Machine code listing -- To generate the machine code listing,
you must specify the /MACHINE_CODE and /LIST qualifiers.

The numbers in the section below are keyed to the circled numbers in
the examples that appear above each discussion and to the complete
listing in Section 2.4.4.

Title line Each page of the compiler listing contains a title line.

0 0 0 0

,

EXAMPLE 15-AUG-1980 13:47:41 VAX-11 PASCAL Vl.2-80 Page 1

The title line consists of four parts:

0 The module name: EXAMPLE

0 The date (day, month, year) and time (hour, minute, second) of
compilation: 15-AUG-1980 13:26:37

0 The PASCAL compiler name and version number: VAX-11 PASCAL Vl.2

0 The page number: Page 1

2-8

COMPILING A PROGRAM

2 •. 4.1 Source Code Listing

Each page of the source code listing contains a line under the title
line.

0 0 • 0
01 SOURCE LISTING 19-JUN-1980 14:10:08 _DBAl: [SMITH]EXAMPLE.PAS;2(1}

0 The Module Identifier: 01

0 The subtitle describing the listing:

SOURCE LISTING or (CROSS REFERENCE or GENERATED CODE)

8 The date (day, month, year) and time (hour, minute, second) of
source file creation: 19-JUNE-1980 14:10:08

(» The VAX/VMS file specification of the source file:

_DBAl: [SMITH]EXAMPLE.PAS;2 (1)

Source Code Listing

LINE LEVEL
NUMBERS PROC STMT STATEMENT. • G) G G
100 1 1 0 PROGRAM EXAMPLE(INPUT, OUTPUT)
200 2 1 0
300 3 1 0 LABEL 10 ;
400 4 1 0
500 5 1 0 VAR
600 6 1 0 A, B, C, REAL
700 7 1 0
800 8 1 0 BEGIN
900 9 1 0

1000 10 1 0 REPEAT
llOO 11 1 2 WRITELN ('Enter triangle sides')
1200 12 1 2 IF EOLN(INPUT} THEN
1300 13 1 2 GOTO 10 ;
1400 14 1 2 READLN(A, B) ;
1500 15 1 2 c := (SQR(A} + SQR(B) }· ** 0.5 ;

The lines of the source code are printed in the source code listing.

0 SOS line numbers -- If you created or edited the source lines in
a PASCAL module with the SOS editor, SOS line numbers appear in
the leftmost column of the source code listing. SOS line numbers
are irrelevant to the PASCAL compiler.

G) Line numbers -- The compiler assigns unique line numbers to the
source lines in a PASCAL module. The symbolic traceback that is
printed if your program encounters an exception at run time
refers to these line numbers. These line numbers are used when
executing a program under the VAX-11 Symbolic Debugger.

G Procedure level -- Each line that contains a declaration lists
the procedure level of that declaration. Procedure level 1
indicates declarations in the outermost block. The procedure
level number increases by one for each nesting level of functions
or procedures.

G Statement level -- The listing specifies a statement level for
each line of source code after the first BEGIN delimiter. The
statement level starts at 0 and increases by 1 for each nesting

2-9

COMPILING A PROGRAM

level of PASCAL structured statements. The statement level of a
comment is the same level as that of the statement that follows
it.

Error and Warnings

2000 20
%PAS-F-DIAGN

2100 21
2200 22

23

ERROR
ERROR

1
1
1

4:
20:

1
1
0

II) II

II II ,

WRITELN (

expected
expected G)

END.

'Done' ;

Jlro *** 20== > 15

.b G)

The source code listing includes information on any errors or warnings
detected by the compiler. A line beneath the source code line in
which the error is detected specifies whether the diagnostic is a
warning or an error.

41) A circumflex (A) that points to the character position in the
line where the error was detected.

4D A numeric code, following the circumflex, that specifies the
particular error.

On the following lines of the source listing, the compiler prints
the text that corresponds to each numeric error code.

49 An asterisk (*) shows where the compiler resumed translation
after the error.

Note that one source program error often causes the PASCAL
compiler to detect more than one error.

The following line numbers are indicated:

CD The line number in which the error was detected

The line number in the last previous line containing an error
diagnostic

You can use these error numbers to trace the error diagnostics
backwards through the source listing.

Summary --

2 Errors 1 Nonstandard feature
Last error (warning) on line

Active options at end of compilation: fD
NODEBUG,STANDARD,LIST,NOCHECK,WARNINGS,CROSS REFERENCE,
MACHINE_CODE,OBJECT,ERROR_LIMIT = 30 -

If your program generated warning or error messages, the compiler
prints a summary of:

f) All the errors

~ The source line number of the last message

fD The compiler then lists the status of all the compilation
options.

2-10

COMPILING A PROGRAM

Compilation Statistics

COMPILATION STATISTICS

Total Space Allocated: 874 bytes, 363 Code+ 511 Data G)
Stack Frame Size Total: 64 bytes fa
Run Time: .50 seconds. (1452 lines/minutes)G)
Page Faults: 990 fl)

The source code listing contains the following statistics for the
current compilation.

G) Total Space Allocated -- The number of bytes of static storage
the program occupies. The total number of bytes is listed first
followed by the amount of space required by the code, and data,
respectively.

Stack Frame Size Total
the stack frames for
is only an estimate of
does not take into
parameters •

-- This number is the total size of all
all procedures and functions. This number
the maximum stack size since the number
account recursion or conformant array

• Run Time -- This time reflects the
compilation •

• Page Faults -- This number reflects
that occurred during com pi 1 ation.

2.4.2 Cross-Reference Listing

A fD
B
c

CPU

the

6
6
6
l

time

number

14
14
15
12 INPUT

OUTPUT fD G)l

GLOBALLY DEFINED IDENTIFIERS:

EOLN
FALSE fD
READLN
REAL
SQR
WRITELN

0
0
0
0
0
0

12
17
14

6
15
11

The cross-reference listing (if requested with the
qualifier) appears before the machine code listing.
sections.

User-specified identifiers -- This
identifiers you declared.

section

used

of

15
15
16

l5
16

during the

page faults

20

/CROSS REFERENCE
lt contains two

lists all the

Globally defined identifiers This section lists the PASCAL
predefined identifiers that the program uses.

Each line of the cross-reference listing contains:

fD An identifier

G) A list of the source line numbers where the identifier is used.

2-11

COMPILING A PROGRAM

The first line number indicates where the identifier is declared.
Predefined identifiers are listed as if they were declared on line O.
The cross-reference listing does not specify pointer type identifiers
that are used before they are declared.

2.4.3 Machine-Code Listing

00000001
00000000
7FFFFFFF
00000000

G
.TITLE EXAMPLE
• !DENT \01 \ • • EXTRN PAS$CLOSEINOUT
.EXTRN OTS$POWRR
.EXTRN PAS$EOLN
.EXTRN PAS$READLN
.EXTRN PAS$READREAL
.EXTRN PAS$WRITEREALE
.EXTRN PAS$WRITELN
.EXTRN PAS$WRITESTR
.EXTRN PAS$0UTPUT
.EXTRN PAS$INPUT

PREDEFINED SYMBOLS
TRUE = 1
FALSE = 0
MAXINT = 2147483647 ED
NIL = 0

The machine-code listing (if requested with the MACHINE CODE and LIST
qualifiers) follows the cross-reference listing. -

G The object module title and ident fields are listed first.

G All external routines called by the program are listed.

f.D Definitions of the PASCAL predeclared constants TRUE, FALSE,
MAXINT, and NIL. The hexadecimal equivalent of each constant
appears on the left side of the listing.

SYMBOLS FOR EXAMPLE
00000100 A 464 0006
00000104 B = 468 0006
00000108 c = 472 ED 0006
00000008 INPUT = 8 e 0001
OOOOOOEC OUTPUT = 236 0001

$ Definitions of user-declared identifiers -- These identifiers are
used in the listing of generated code as either register offsets
or constant values. The hexadecimal equivalent of each name
appears on the left side of the listing.

ED The comment column, on the right side contains the source line
number where each identifier was declared.

2-12

COMPILING A PROGRAM

G
00000 • 6S 64 69 73 20 6S 6C 67 6E 61 69 72 74 20 72 6S 74 6E 4S 00000

73 00013
20 3A 73 69 20 6S 73 7S 6E 6S 74 6F 70 79 48 00014

G The current location counter value appears in the center of the
listing and divides the listing into 2 parts.

The hexadecimal representation of the code appears on
side of the counter and is read right to left.

the 1 eft

00000 • 00000
00013
00014

G)
C.AAA:

C.AAB:

G .PSECT $PDATA, PIC,REL,SHR,NOEXE RD,NOWRT

.ASCII G) \Enter triangle side\
• ASCII \s\
.ASCII \Hypotenuse is: \

0011 G
0016

G The symbolic representation of the code appears on the right side
of the counter and is read left to right.

Each program section in the object module has a corresponding location
counter.

G) The $PDATA program section -- This section contains any constants
longer than 4 bytes.

G) The compiler generates names for literal (anonymous) constants of
the form C.AAA, C.AAB, etc.

Cl) The source line numbers where the constants were first used or
declared appear as comments on the right •

4FAC 00000
00002

• PSECT(D$CODE, PIC,REL,SHR,EXE,RD NOWRT,2

CD . ENTRY EXAMPLE, -
CDAM<R2,R3,RS,R7,R8,R9,Rl0, 11,IV>

CD THE $CODE program section -- This program section contains the
machine instructions generated by the compiler.

Each procedure and function starts with:

CD The entry point

CD The register save mask definition

08 AE 14 DO 00049 CD MOVL #20, 8 (SP)
00000000' EF OS FB 0004D CALLS #S, PAS$WRITESTR

SA OOEC CB 9E OOOS4 MOVAB OUTPUT(Rll), RlO
SA DD OOOS9 PUSHL RlO

00000000' EF 01 FB OOOSB CALLS #1, PAS$WRITELN
SA 08 AB 9E 00062 MOVAB INPUT(Rll), RlO

SA DD 00066 PUSHL RlO
00000000' EF 01 FB 00068 CALLS #1, PAS$EOLN

SA so DO 0006F MOVL RO, RlO
03 SA E9 00072 BLBC RlO, 2$

OOA8 31 0007S BRW .10
00078 2$:

CD The listing formats of the generated machine instructions are
similar to the VAX-11 MACRO listings.

2-13

0012

0013

G
MOVL
CALLS
MOVAB
PUSHL
CALLS
MOVAB

COMPILING A PROGRAM

G
#20, 8 (SP)
#S, PAS$WRITESTR
OUTPUT(Rll), RlO
RlO
#1, PAS$WRITELN
INPUT (Rll), RlO

The right side of the listing contains:

G The symbolic opcode

G A set of symbolic operands

• 0012

A comment section that can follow the symbolic operand and
contains a source line number if the corresponding instruction is
the first one generated for that source line.

9 G CD
08 AE 14 DO 00049

00000000' EF OS FB 0004D

• QQOQOQOQ I

SA OOEC CB 9E OOOS4

EF
SA

SA DD OOOS9
01 FB OOOSB

08 AB 9E 00062

The left side of the listing c!tains the following:

CD The hexadecimal opcode

G) The hexadecimal operands

Each operand consists of:

G A register/mode part

9 An offset or literal value

G) Operands whose values are supplied by the linker are flagged with
a single quote.

so
SA

OOA8

DO 0006F
E9 00072
31 0007S

00078 2$:.

MOVL
BLBC
BRW

RO, RlO
RlO, 2$ C)
.10

Compiler generated labels are designated by a $, and are the
targ~ts of the branch instructions.

C) Branch instructions point to the compiler-generated labels.

2-14

50
SA

OOA8

CB
58
01
00

FFlO

COMPILING A PROGRAM

DO 0006F MOVL
E9 00072 BLBC
31 00075 BRW

00078 2$:

9E OOlOC
DD 00111
FB 00113
E8 OOllA
31 00110

00120

MOVAB
PUSHL
CALLS
BLBS
BRW

.10: •

RO, RlO
RlO, 2$
.10 e

OUTPUT (Rll) , R8
R8
#1, PAS$WRITELN
#FALSE, .+3
1$

Branch instructions generated for GOTO statements use
user-defined labels as targets.

the

9 User-defined labels are represented by a period followed by the
label value • • Routine Size: 363 bytes, Routine Base: $CODE + 00000, 9

Stack Frame Size (exclusive of conformant array) : 64 bytes. CD
A summary line is printed for each procedure and function.
contains:

G) The routine size in bytes

The 1 ine

9 The ro.utine base in terms of an offset from the start of the
$CODE program section.

CD The stack frame size in bytes

The stack frame size includes any saved registers, but does not
include copies of conformant arrays or any transient information such
as parameter values pushed on the stack prior to a CALLS instruction.

CD
.PSECT $GLBL, PIC,OVL,REL,GBL,NO HR,NOEXE,RD,WRT
.BLKB 476

2.4.4

The definition of the $GLBL program section -- This program
section contains the storage for all program level variables.
Conceptually, it is the stack frame for the main program,
exclusive of saved registers. Register 11 always contains the
base address of this program section.

A Compiler Listing Example

Figure 2-1 illustrates a
described in Sections
listing.

complete compiler listing. The examples
2.4.1, 2.4.2, and 2.4.3 are segments of this

2-15

N
I

I-'

°'

0 0
EXAMPLE
019 SOURCE LISTING C)

15-AUG-1980 13:47:41
19-JUN-1980 14:10:08

LINE LEVEL
NUMBERS PROC STMT STATEMENT.

0 G G G
100 1
200 2
300 3
400 4
500 5
600 6
700 7
800 8
900 9

1000 10
1100 11
1200 12
1300 13
1400 14
1500 15

%PAS-W-DIAGN

1600 16
1700 17
1800 18
1900 19
2000 20

%PAS-F-DIAGN

2100 21
2200 22

23

l 0
l 0
1 0
1 0
1 0
l 0
1 0
1 0
1 0
1 0
1 2
1 2
1 2
1 2
1 2

*** WARNING
l 2
l 2
l l
l l
1 1

*** ERROR
*** ERROR

l l
1 l
l 0

PROGRAM EXAMPLE(INPUT, OUTPUT)

LABEL 10

VAR
A, B, C REAL

BEGIN

REPEAT
WRITELN ('Enter triangle sides')
IF EOLN(INPUT) THEN

GOTO 10 ;
READLN(A, B) ;
C : = (S QR (A) + S QR (B)) * * 0 • 5 ;

~4 50
450: Nonstandard Pascal: Exponentiation

WRITELN ('Hypo ten use is: ', C) ;
UNTIL FALSE ;

10:
WRITELN('Done'

4: ")II expected
20: II II expected G) ' 4'1'~4-

END.

2 Errors l Nonstandard feature fl!>
Last error (warning) on line 20. fJ»
Active options at end of compilation:~
NODEBUG,STANDARD,LIST,NOCHECK,WARNINGS,CROSS REFERENCE,
MACHINE_CODE,OBJECT,ERROR_LIMIT = 30 -

COMPILATION STATISTICS

Total Space Allocated:
Stack Frame Size Total:
Run Time:
Page Faults:

874 bytes, 363 Code + 511 Data 6)
64 bytes e
.50 seconds. (1452 lines/minute) f1)
990 G

0
• VAX-11 PASCAL Vl.2-80

DBAl: [SMITH]EXAMPLE.PAS;2 (1)
- 0

*** 15 ==> 0

*** 20 ==> ls CD
G)

Figure 2-1 VAX-11 PASCAL Compiler Listing

0
Page 1

ZK-064-80

(')

~
H
t'of
H z
Gl

::i::

tt:t

~
G1

~

EXAMPLE 15-AUG-1980 13:47:41 VAX-11 PASCAL Vl.2-80 Page 2
01 CROSS REFERENCE 19-JUN-1980 14:10:08 DBAl: [SMITHJ EXAMPLE. PAS; 2 (1) A. -

6 14 15
B 6 14 15
c 6 15 16
INPUT
OUTPUT e 1

G)1
12

GLOBALLY DEFINED IDENTIFIERS:

EOLN fl) 0 12
FALSE 0 17
READLN 0 14
REAL 0 6
SQR 0 15 15
WRITELN 0 11 16 20

EXAMPLE 15-AUG-1980 13:47:41 VAX-11 PASCAL Vl.2-80 Page 3
(')
0

01 GENERATED CODE 19-JUN-1980 14:10:08 DBAl: [SMITH]EXAMPLE.PAS;2 (l) s: - 'U
H

G t""
H

~ .TITLE EXAMPLE z
I (j) ,_. . IDENTe \01 \

:x:.i '1

.EXTRN PAS$C LOSE IN OUT 'U

.EXTRN OTS$POWRR ~

.EXTRN PAS$EOLN 0
(j)

.EXTRN PAS$READLN

~ .EXTRN PASSREADREAL
.EXTRN PAS$WRITEREALE
.EXTRN PAS$WRITELN
.EXTRN PAS$WRITESTR
.EXTRN PASSOUTPUT
.EXTRN PAS$INPUT

; PREDEFINED SYMBOLS
00000001 TRUE: = 1 • 00000000 FALSE = 0
7FFFFFFF MAXINT = 2147483647
00000000 NIL=O

SYMBOLS FOR EXAMPLE
00000100 A = 164 0006
00000104 B = 468 0006
00000108 c = 4 72 e e 0006
00000008 INPUT = 8 0001
OOOOOOEC OUTPUT = 236 0001

Figure 2-1 (Cont.) VAX-11 PASCAL Compiler Listing

• • G
00000

G)
. PSECT $PDATA, PIC,REL,SHR,NOEXE,RD,NOWRT

fD
hS ~4 69 73 20 6S 6C 67 6E 61 69 72 74 20 72 GS 74 6E 4S 00000 C.AAA: • b.SCII \Enter triangle side\ ; 0011 •

73 00013 . ASCII \s\
20 3A 73 69 20 6S 73 7S 6E 6S 74 nF 70 79 48 00014 C.AAB: .b.SCII(D\Hypotenuse is: \ : 0016

00000 • PSECT $CODE, PIC,REL,SHR,EXE,RD,NOWRT,2

4FAC 00000 CD .ENTRY EXAMPLE, -
00002 CD~M<R2,R3,RS,R7,R8,R9,Rl0,Rll,IV>

SB 00000000' EF 9E 00002 MOVAB $GLBL, Rll
00000004' EF SD DO 00009 MOVL FP, $GLBL+4

7E 04 00010 CLRL -(SP)
7E 7C 00012 CLRD -(SP)

08 AB OF 00014 PUS HAL INPUT (Rll)
00000000' EF 01 FB 00017 CALLS 1, PAS$INPUT

08 AB OF OOOlE PUS HAL INPUT (Rll)
OOEC CB OF 00021 PUS HAL OUTPUT (Rll)

00000000' EF 02 FB 0002S CALLS 2, PAS$0UTPUT
F4 AD SE DO 0002C MOVL SP, -12(FP) (')

0
00030 1$: ::s:

SA OOEC CB 9E 00030 MOVAB OUTPUT (Rll), RlO ; OOll ttJ

SE 10 C2 0003S SUBL2 lfi' SP H
t""

SA DD 00038 PUSHL RlO H

N S9 00000000' EF 9E 0003A MOVAB C.AAA, R9 z
I 04 AE S9 DO 00041 MOVL R9, 4 (SP)

Gl
.... oc AE 14 DO 00045 MOVL 20' 12 (SP)):I
CX)

ttJ
:;tj

EXAMPLE lS-AUG-1980 13:47:41 VAX-11 PASCAL Vl.2-S9 Page 4 0
01 GENERATED CODE 19-JUN-1980 14:10:08 DB Al: f SM ITH] EXAMPLE. PAS; 2 (l) Gl

• r---G~ CD CD CD -e ~
08 AE 14 DO 00049 MOVL 20, 8 (SP)

00000000' EF OS FB 00040 CALLS s, PAS$WRITESTR
SA OOEC CB 9E 00054 MOVAB OUTPUT(Rll), RlO

SA DD OOOS9 PUSHL RlO
CD • 00000000 1 EF 01 FB OOOSB CALLS 1, PASSWRITELN

5A 08 AB 9E 00062 MOVAB INPUT (Rll), RlO : 0012
5A DD 00066 PUSHL RlO

00000000' EF 01 FB 00068 CALLS 1, PAS$EOLN
5A 50 DO 0006F MOVL RO, RlO
03 5A E9 00072 BLBC RlO, 2$.

OOA8 31 00075 BRW .10. : 0013 • 00078 2S: CD
5A 08 AB 9E 00078 MOVAB INPUT (Rl l), Rl() : 0014
59 0100 CB 9E 0007C MOVAB A(Rll), R9

59 DD 00081 PUSHL R9
SA DD 00083 PUSHL RlO

00000000' EF 02 FB 00085 CALLS 2, PAS$READREAL
59 0104 CB 9E 0008C MOVAB B(Rll), R9

59 DD 00091 PUSHL R9
SA DD 00093 PUSHL RlO

Figure 2-1 (Cont.) VAX-11 PASCAL Compiler Listing

00000000' EF 02 FB 0009S CALLS 2, PAS$READREAL
SA 08 AB 9E 0009C MOVAB INPUT (Rll), RlO

SA DD OOOAO PUSHL RlO
00000000' EF 01 FB OOOA2 CALLS 1, PAS$READLN

SA OlDO CB SO OOOA9 MOVF A(Rll), RlO ; OOlS
S2 SA SA 4S OOOAE MULF3 RlO, RlO, R2

S3 0104 CB so OOOB2 MOVF B(Rll), R3
S8 S3 S3 4S OOOB7 MULF3 R3, R3, R8

S8 S2 4 0 OOOBB ADDF2 R 2, R8
S7 00 SO OOOBE MOVF ~ FO. 5, R7

S7 DD OOOCl PUSHL R7
S8 DD OOOC3 PUSHL R8

00000000' EF 02 FB OOOC S CALLS 2, OTS$POWRR
S2 so so ooocc MOVF RO, R2

OlD8 CB S2 SO OOOCF MOVF R2, C(Rll)
S8 OOEC CB 9E OOOD4 MOVAB OUTPUT (Rll) , R8 ; 0016
SE 10 C 2 OOOD9 SUBL2 16, SP

S8 DD OOODC PUSHL R8
SS 00000014' EF 9E OOODE MOVAB C.AAB, RS (')

04 AE SS DO OOOES MOVL RS, 4 (SP) 0
oc AE OF DO OOOE9 MOVL l S, 12 (SP) s:
08 AE OF DO OOOED MOVL l S, 8 (SP) "ti

H
00000000' EF OS FB OOOF l CALLS S, PAS$WRITESTR ti

SE 10 C 2 OOOF8 SUBL2 16, SP H
I:\.) S8 DD OOOFB PUSHL R8

z
I

G)

I-' 04 AE S2 DO OOOFD MOVL R2, 4 (SP)
\,0 08 AE 10 DO 00101 MOVL 16, 8 (SP) ~

00000000' EF OS FB OOlOS CALLS S, PAS$WRITEREALE "ti
S8 OOEC CB 9E OOlOC MOVAB OUTPUT (Rll), RB :::ti

SB DD 00111 PUSHL R8 0
G)

00000000' EF 01 FB OOll 3 CALLS 1, PAS$WRITELN

~ 03 00 E8 OOllA BLBS FALSE, .+3 ; 0017
FFlO 31 001 lD BRW 1$

00120 .1o:G

Figure 2-1 (Cont.) VAX-11 PASCAL Compiler Listing

EXAMPLE
01

• Routine Size: 363 bytes,

N
I

N
0

lS-AUG-1980 13:47:41 VAX-11 PASCAL Vl.2-80 Page S
GENERATED CODE 19-JUN-1980 14:10:08 _DBAl: [SMITH]EXAMPLE.PAS;2 (1)

SA OOEC CB 9E 00120 MOVAB OUTPUT(Rll), RlO ; 0020
SE 10 C2 0012S SUBL2 16, SP

SA DD 00128 PUSHL RlO
S9 6S6E6F44 8F DO 0012A MOVL A A\Done\, R9

04 AE S9 DO 00131 MOVL R9, 4 (SP)
oc AE 04 DO 0013S MOVL 4, 12 (SP)
08 AE 04 DO 00139 MOVL 4, 8 (SP)

00000000' EF OS FB 0013D CALLS S, PAS$WRITESTR
SA OOEC CB 9E 00144 MOVAB OUTPUT(Rll), RlO

SA DD 00149 PUSHL RlO
00000000' EF 01 FB 0014B CALLS 1, PAS$WRITELN

08 AB DF 001S2 PUS HAL INPUT (Rll) ; 0022
00000000' EF 01 FB OOlSS CALLS 1, PAS$CLOSEINOUT

OOEC CB DF OOlSC PUS HAL OUTPUT (Rll)
00000000' EF 01 FB 00160 CALLS 1, PAS$CLOSEINOUT

so 01 DO 00167 MOVL SS$_NORMAL, RO
04 0016A RET

Routine Base: $CODE + 00000, CD Stack Frame Size (exclusive of conformant arrays): 64 bytes. G!)

Rll-BASED PROGRAM LEVEL STATIC STORAGE
00000 CD . PSECT $GLBL, PIC,OVL,REL,GBL,NOSHR,NOEXE,RD,WRT

OOOOOlDC 00000 .BLKB 476

OOlDC .END

Figure 2-1 (Cont.) VAX-11 PASCAL Compiler Listing

(')

~
H
t'1
H z
Gl

~

tU
~
0
Gl

~

CHAPTER 3

LINKING A PROGRAM

After a VAX-11 PASCAL program is compiled, you link the object
module(s) to produce an executable image file. Linking resolves all
references in the object code and establishes absolute addresses for
symbolic locations.

3.1 THE LINK COMMAND FORMAT

To link an object module, the LINK command is issued in the following
general form:

LINK/[command-qualifiers(s)] file-spec-list [/file-qualifier(s)]

/command-qualifier(s)

Specify output file options. Table 3-1 lists the command
qualifier options in their positive and negative forms, and the
default options.

f il e-spec-1 ist

Specifies the input object file to be linked.

/file-qualifier(s)

Specify input file options. Table 3-2 lists the file qualifier
options.

Command
Qualifier

/BRIEF

/CROSS REFERENCE -
/DEBUG

/EXECUTABLE [=file-spec]

Table 3-1
Command Qualifiers

Negative Form

None

Default

Not applicable

/NOCROSS REFERENCE /NOCROSS_REFERENCE -
/NODEBUG /NODEBUG

/NOEXECUTABLE /EXECUTABLE

(continued on next page)

3-1

Command
Qualifier

/FULL

/MAP =file-spec

/SHAREABLE [=file-spec]

/TRACEBACK

File
Qualifier

LINKING A PROGRAM

Table 3-1 (cont.)
Command Qualifiers

Negative Form

None

/NOMAP

/NOSHAREABLE

/NOTRACEBACK

Table 3-2
File Qualifiers

Negative Form

/INCLUDE=module-name(s) None

/LIBRARY None

Default

Not applicable

/NOMAP (interactive)
/MAP (batch)

/NOSHAREABLE

/TRACEBACK

Default

Not applicable

Not applicable

In interactive mode, you can
accompanying file specification.

issue the LINK command with no
The system responds with the prompt:

$ File:

The file specification must be typed on the same line as the prompt.
If the file specification does not fit on one line, type a hyphen (-)
as the last character of the line and continue on the next line.

Multiple file specifications are entered separated by commas or plus
signs. When used with the LINK command, the comma has the same effect
as the plus sign: the linker creates a single executable image from
the several input files. If no output file is specified, the linker
produces an executable image with the same name as the first object
module and a file type of EXE.

The following sections describe in detail the LINK command options.

3.2 COMMAND QUALIFIERS

The command qualifiers, in the LINK command, modify the output of the
linker and specify the debugging or traceback facility. Linker output
consists of an image file and, optionally, a map file. The following
qualifiers, control the image file generated by the linker:

/EXECUTABLE [=file-spec]
/NOEXECUTABLE
/SHAREABLE [=file-spec]

3-2

LINKING A PROGRAM

These qualifiers are referred to as image-file qualifiers and are
described in Section 3.2.1.

The following qualifiers control the map file generated by the linker:

/BRIEF
/CROSS REFERENCE
/FULL -
/MAP [=file-spec]

These qualifiers are referred to as map-file qualifiers and are
described in Section 3.2.2.

The following qualifiers specify the debugging or traceback facility.

/DEBUG
/TRACEBACK

These qualifiers are described in Section 3.2.3.

3.2.1 Image-File Qualifiers

The image-file qualifiers are:

/EXECUTABLE and /NOEXECUTABLE
/SHAREABLE

To produce an executable image, you specify the /EXECUTABLE qualifier.
To suppress production of an image file, you specify the /NOEXECUTABLE
qualifier. If no image-file qualifier is specified, the default is
/EXECUTABLE.

For example:

$ LINK/NOEXECUTABLE Circle

The file Circle.OBJ is linked, but no image is generated. The
/NOEXECUTABLE qualifier is useful to verify the results of linking an
object file without actually producing the image.

To designate a file specification for an executable image, use
/EXECUTABLE in the form:

/EXECUTABLE=file-spec

For example:

$ LINK/EXECUTABLE=Test Circle

The file Circle.OBJ is linked, and the executable image generated is
named Test.EXE.

A shareable image is one that can be used in a
applications; as a private image for your
installed for use by all users in the system by
To create a shareable image, specify /SHAREABLE.

$ LINK/SHAREABLE Circle

3-3

number of different
own applications, or

the system manager.
For example:

LINKING A PROGRAM

To include a shareable image as input to the linker, use an options
file and specify the /OPTIONS file qualifier in the LINK command.
Refer to the VAX-11 Linker Reference Manual for details.

If /NOSHAREABLE is specified, the linker generates an executable
image.

3.2.2 Map-File Qualifiers

The map-file qualifiers control the generation of a map file and the
contents of the map file.

The map-file qualifiers are:

/MAP [=file-spec] [/FULL] [/BRIEF] [/CROSS REFERENCE]

Note that the /MAP option must be used if /BRIEF, /FULL, or
/CROSS_REFERENCE is specified.

The linker uses defaults to generate or suppress a
interactive mode, the default is to suppress the map;
the default is to generate the map.

map file. In
in batch mode,

If no file specification is included with /MAP qualifier, the map file
has the name of the first input file and a file type of MAP. The map
file is stored on the default device, in the default directory.

The optional qualifiers /BRIEF and /FULL define the
information included in the map file, as follows:

type of

• /BRIEF produces a summary of the image's characteristics and a
list of contributing modules.

• /FULL produces (1) a summary of the image's characteristics
and a list of contributing modules (as produced by /BRIEF),
(2) listings of global symbols by name and by value, and (3) a
summary of characteristics of image sections in the linked
image.

By default, if neither /BRIEF nor /FULL is specified, the map file
contains a summary of the image's characteristics and a list of
contributing modules (as produced by /BRIEF), plus a list of global
symbols and values, in symbol name order. For a complete description
of the map file's contents, refer to the VAX-11 Linker Reference
Manual.

The /CROSS REFERENCE qualifier can be used with either the default or
/FULL map-qualifier to request cross-reference information for global
symbols. This cross-reference information indicates the object
modules that define and/or refer to global symbols encountered during
linking. The default is /NOCROSS_REFERENCE.

3.2.3 Debugging and Traceback Qualifiers

The /DEBUG qualifier indicates that the VAX-11 Symbolic Debugger is to
be included in the executable image and a symbol table is to be
generated. If /DEBUG is specified at 1ink time, the program executes
under the control of the debugger, unless /NODEBUG is specified with
the RUN command. The default at link time is /NODEBUG.

3-4

LINKING A PROGRAM

The /TRACEBACK qualifier causes error messages accompanied by symbolic
traceback information showing the sequence of calls that transferred
control to the program unit in which the error occurred to be
generated. /NOTRACEBACK specifies that no traceback information is to
be produced. The default is /TRACEBACK. If you specify both /DEBUG
and /NOTRACEBACK, the traceback capability is automatically included,
and /NOTRACEBACK has no effect.

3.3 FILE QUALIFIERS

The file qualifiers /LIBRARY and /INCLUDE are used as modifiers on the
input file specification. Input files can be object files, shareable
images specified in an options file, or library files.

3.3.1 /LIBRARY Qualifier

The /LIBRARY qualifier has the form:

/LIBRARY

The /LIBRARY qualifier specifies that the input file is an
object-module library that the linker must search to resolve undefined
symbols referenced in other input modules. The default file type is
OLB.

3.3.2 /INCLUDE Qualifier

The /INCLUDE qualifier has the form:

/INCLUDE=module-name(s)

The /INCLUDE qualifier specifies that the input file is an
object-module library, and that the modules named are the only modules
in that library that are to be explicitly included as input. At least
one module name is required. To specify more than one, enclose the
module names in parentheses, and separate them with commas. The
/LIBRARY qualifier can be used with the /INCLUDE qualifier to modify a
single input file specification. If /INCLUDE and /LIBRARY are
specified for the same input file, the specified library is also
searched for unresolved references.

3-5

CHAPTER 4

EXECUTING A PROGRAM

After you have compiled and linked your program, the system can
execute it. The RUN command initiates execution. It has the form:

RUN /NODEBUG file-spec

You must specify the file name; default values are
omit optional elements of the file specification.
type is EXE.

applied if you
The d e fa u 1 t f il e

The DEBUG qualifier allows you to use the VAX-11 Symbolic Debugger,
even if you omitted this qualifier from the PASCAL and LINK commands
(see Sections 2.2 and 3.2). If you specify /NODEBUG, the program
executes without debugger intervention. This qualifier allows you to
override a /DEBUG qualifier specified at link time.

4.1 FINDING AND CORRECTING ERRORS

Both the compiler and the Run-Time Library include facilities for
detecting and reporting errors. VAX/VMS also provides the debugger to
help you locate and correct errors. In addition to the debugger, you
can use a traceback facility to track down errors that occur during
program execution.

4.1.1 Error-Related Command Qualifiers

At each step in compiling, linking, and executing your program, you
can specify command qualifiers that affect how errors are reported.
At compile time, you can use the /DEBUG qualifier to ensure that
symbolic information is preserved for use by the debugger. At link
time, you can also specify the /DEBUG qualifier to make the symbolic
information available to the debugger. The same qualifier can be
specified with the RUN command to invoke the debugger at run time.

Table 4-1 summarizes the /DEBUG and /TRACEBACK qualifiers.

If you use qualifiers at any point in the compile-link-execute
sequence, and an execution error occurs, you receive a traceback list
by default.

4-1

EXECUTING A PROGRAM

Table 4-1
/DEBUG and /TRACEBACK Qualifiers

Qualifier Command

/DEBUG PASCAL

/DEBUG LINK

/TRACEBACK LINK

/DEBUG RUN

/NODEBUG RUN

Effect

The PASCAL compiler
creates symbolic data
needed by the debugger.

Symbolic data created by the
compiler is passed to the
debugger. Traceback list is
also produced.

Traceback information is
passed to the debugger.
Traceback list is produced.

Invokes the debugger. The
DBG> prompt is displayed.
Not needed if $ LINK/DEBUG
was specified.

If /DEBUG was specified in
the LINK command, RUN/NODEBUG
suppresses the DBG> prompt.

4.1.2 Specifying Command Qualifiers

Default

/NODEBUG

/NODEBUG

/TRACEBACK

None

None

To perform symbolic debugging, you must specify the /DEBUG qualifier
with both the PASCAL command and the LINK command. It then is
unnecessary to specify /DEBUG with the RUN command. If you omit
/DEBUG from either the PASCAL command or the LINK command, you can use
it with the RUN command to invoke the debugger. However, the
executable image does not contain debugger records or symbol tables
used in debugging. You must express addresses as absolute values,
rather than symbolically.

If you specify LINK/NOTRACEBACK combination, a traceback list is not
produced in event of an error. Figure 4-1 shows an example of a
source program listing and a traceback list.

The traceback list is interpreted as follows.

When the error is detected, you receive the appropriate message,
followed by the traceback information. In this example, a message is
displayed by the system, indicating the nature of the error, the
address at which the error occurred (the Program Counter, PC), and the
contents of the processor status longword (PSL). This message is
followed by the traceback information.

The traceback information is presented in inverse order to the routine
or subprogram calls. Of particular interest are the values listed
under routine name and line, the first of which shows which routine or
subprogram generated the error. The value given for line corresponds
to a compiler-generated line number in the source program listing (not
to be confused with editor-generated line numbers). The line number
indicates the nearest previous line on which a statement begins.
Using this information, you can usually isolate the error in a short
time.

4-2

EXECUTING A PROGRAM

If you specify either LINK/DEBUG or RUN/DEBUG, the debugger assumes
control of execution. If an error occurs, control reverts to the
debugger; the traceback list is not automatically printed. For more
information on using the debugger, refer to Chapter 5.

TRACETEST
01 SOURCE LISTING

20-AUG-1980 13:32:07 VAX-11 PASCAL Vl.2-59
20-AUG-1980 13:31:50 _DBAl: fSMITH]TRACE.PAS;l (l)

LINE
NUMBERS

LEVEL
PROC STMT STATEMENT.

1 0 PROGRAM TRACETEST;
1 0
2 0 PROCEDURE Pl (VAR X
2 0 BEGIN
2 0 x := 1.0/X;
2 1 END;
2 0

REAL);

1
2
3
4
5
6
7
8
9

2 0 PROCEDURE P2 (Y REAL);

10
11
12
13
14
15
16

2
2
2
2
1
1
1
1

0
0
1
0
0
0
1
0

BEGIN
Pl(Y);

END;

BEGIN
P2 (0. 0);

END.

Active options at end of compilation:
NODEBUG,STANDARD,LIST,NOCHECK,WARNINGS,NOCROSS REFERENCE,
NOMACHINE_CODE,OBJECT,ERROR_LIMIT = 30 -

COMPILATION STATISTICS

Total Space Allocated: 140 bytes, 128 Code+ 12 D~ta
Stack Frame Size Total: 144 bytes
Run Time: 0.13 seconds. 451 lines/minute)
Page Faults: 983

%SYSTEM-F-FLIDIV, arithmetic trap, floating/decimal divide by zero at PC=00000429, PSL=03C0002A
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name

TRACETEST
TRACETEST
TRACETEST

routine name

Pl
P2
TRACETEST

line

5
10
14

relative PC

00000029
00000030
0000004E

absolute PC

00000429
0000045D
000004AC

Figure 4-1 Source Program Listing and Traceback List

4.2 SAMPLE TERMINAL SESSION

Page

ZK-065-80

A simple dialog between you and the system might appear as follows:

(BTIJ

Username: SMITH (ffi)
Password: (ffi) (Your password is not displayed)

WELCOME TO VAX/VMS VERSION 1.2

$EDIT CIRCLE.PAS (BTIJ

Input:DBA2: [SMITH]CIRCLE.PAS
00100

(enter source program)
*E (ffi) (terminate edit session and write file to disk)
[DBA2: [SMITH]CIRCLE.PAS;l]
$ PASCAL/LIST Circle
$ LINK Circle
$ RUN Circle

$ ENTER VALUE:

4-3

CHAPTER 5

DEBUGGING PASCAL PROGRAMS

This chapter describes how to debug VAX-11
interactively using the VAX-11 Symbolic Debugger.

PASCAL programs

Section 5.1 describes some features of the VAX-11 Symbolic Debugger.

Section 5.2 describes the debugging of a simple PASCAL program and
gives a functional description of the debugger commands.

Section 5.3 describes in detail each debugger command in alphabetical
order.

Section 5.4 describes the debugging of a complex PASCAL program.

For a detailed description of the debugger, refer to the VAX-11
Symbolic Debugger Reference Manual.

5.1 VAX-11 SYMBOLIC DEBUGGER

The VAX-11 Symbolic Debugger provides the following:

• Access to the symbol table generated by the PASCAL compiler

• A set of debugger commands and qualifiers that allow for
specific control of an executing program

5.1.1 Debugger Symbol Table

The debugger maintains a table of symbols that can be referenced by a
program during a debugging session. The symbol table provides
information on all scalar (real, subrange, integer, character,
Boolean, double, enumerated) and structured (array, record, file, set,
pointer) variables, user-defined types, labels, procedures, functions,
main programs, and modules.

To place the symbols from a program into the symbol table you must
first specify the /DEBUG qualifier in the PASCAL and LINK commands.
This makes the symbols available in the executable program image file.
To copy a module's symbols from the image file to the symbol table you
use a SET MODULE command. The debugger will place the symbols from
the main program into the symbol table at the beginning of a debugging
session. (Refer to Section 5.3.22 for more information on the SET
MODULE command.)

5-1

DEBUGGING PASCAL PROGRAMS

5.1.2 VAX-11 Symbolic Debugger Command Syntax

You control the execution of a program by using VAX-11 Symbolic
Debugger commands.

Section 5.3 describes the debugger commands in detail.
Appendix C contains a list of all debugger
abbreviations and syntax, for quick reference.

In addition,
commands, with

The debugger commands resemble other DIGITAL Command Language (DCL)
commands and observe the same language conventions.

Format

COMMAND [/qualifier(s)] [parameters][DO(cornmand-string; ...)] [!comment]

COMMAND

Specifies the command name.

/qualifier(s)

Modifies some debugging commands.

Qualifiers change the defaults the debugger uses to process
commands. For example, when you deposit a value, the debugger
uses decimal radix by default; you can override the default by
specifying /HEXADECIMAL. Table 5-1 summarizes the command
qualifiers of particular significance in PASCAL debugging.

Refer to the VAX-11 Symbolic Debugger Reference Manual for more
information on qualifiers.

parameter

Specifies the object of the command. The parameter can be an
address, constant, name of a variable, or an expression.

DO (command-string; •••)

Tells the debugger to perform the specified command. (The
command-string can be a series of debugger commands.)

!comment

Contains user remarks about the intent of the command.

Separate the command and parameter fields by one or more spaces.

5-2

DEBUGGING PASCAL PROGRAMS

Table 5-1
Debugger Command Qualifiers

Qualifier Commands Function

/ADDRESS EVALUATE Indicates that an address
value is desired

/HEXADEC !MAL EVALUATE Overrides the default
/OCTAL EXAMINE (decimal)

DEPOSIT

/BYTE EXAMINE Specifies a type
/WORD EVALUATE
/LONG DEPOSIT
/ASCII

5.1.3 Debugger Operations

The EVALUATE.command evaluates expressions and performs operations on
integer, real, double-precision, character, Boolean, enumerated
scalar, record, file, array, and set types. The PASCAL operators used
in your programs that are supported by the debugger are listed below
in decreasing order of precedence:

NOT
**
*,/, DIV, MOD, AND
+,-, OR
=,<>, <, <=, >, >=, IN

The debugger evaluates expressions in the same way as PASCAL. Spaces
are used to separate elements of the debugger commands, and are
significant to the debugger; therefore, variable names and
multicharacter operators must contain no embedded spaces.

The debugger accepts constants in PASCAL syntax, with the following
exception: constructors cannot be deposited into ar~ays or records
nor can they be evaluated. For more information on constructors,
refer to the VAX-11 PASCAL Language Reference Manual.

5.1.4 Specifying Addresses

The debugger allows you to specify addresses as symbolic names in the
debugger commands. For example, to examine a variable you need only
refer to it by its name; you need not know its actual memory
location. This form of symbolic expression applies to data addresses
(such as variables, array elements, or record fields), to program
addresses (such as program line numbers, or labels) and to program
unit names.

When you are debugging more than one program unit, you should be aware
of the concept of scope (see Section 5.2.2.4), since it affects how
the debugger interprets symbols. The following sections describe how
to specify data and program addresses using the debugger commands.

5-3

DEBUGGING PASCAL PROGRAMS

5.1.4.1 Specifying Data Addresses - You can specify data addresses
symbolically as variables names. For example:

DBG> DEPOSIT ISSUE = 100

DBG> EXAMINE PURCH[I,J+l]

The first command deposits the value 100 in the integer identifier
ISSUE, and the second command examines the contents of an element of
the array PURCH.

You can reference array elements with subscripts that are constants or
expressions. If you reference a variable or array element that is not
in the symbol table, or if you attempt to reference an element that is
out of the array bounds, the debugger issues a warning.

5.1.4.2 Specifying Current, Previous, and Next Locations - The
debugger provides a quick method for referencing any of three relative
data addresses, or locations:

• A period (.) references the current
location most recently referenced
command.

location, that is, the
by an EXAMINE or DEPOSIT

• A circumflex {~) references the logical predecessor of the
current location.

• A carriage return {RET) references the logical successor.

For example:

DBG> DEPOSIT .=100

This command puts a value of 100 in the current location. The current
location is the last address used by an EXAMINE or DEPOSIT command.

To specify the previous location, type:

DBG> EXAMINE A

This command displays the the contents of the previous location.

To specify the next location, type:

DBG> EXAMINE IBru

This command displays the contents of the next location.

5.1.4.3 Specifying Program Addresses - You can specify program
addresses by program unit name, routine name, line number, statement
label, or {nonsymbolic) virtual address. To specify a procedure by
name, give the command followed by the name of the procedure. For
example:

DBG> SET BREAK procedl

This command sets a breakpoint at the entry to procedl.

5-4

DEBUGGING PASCAL PROGRAMS

To specify an address using a compiler-generated line number, use the
%LINE prefix, as follows:

DBG> SET BREAK %LINE 6

This command sets a breakpoint at line 6, corresponding to the
compiler-generated line number shown in the source listing.

You can also set a breakpoint at a line number within a particular
program unit. For example, to stop execution at line 11 in the module
MOD2, you could set a breakpoint as follows:

DBG> SET BREAK MOD2\%LINE 11

To specify a GOTO statement label, use the %LABEL prefix. For
example:

DBG> SET BREAK %LABEL 7

This command sets a breakpoint at statement label 7.

To specify a virtual address, issue the command without a modifier
(for example, %LABEL). This causes the address you specify to be
interpreted as the Program Counter (PC) value at which to perform the
debugging function. For example:

DBG> SET BREAK %X700

This command sets a breakpoint at the hexadecimal address 700.

5.1.5 Special Symbols

The debugger accepts the special symbols listed in Table 5-2. These
symbols are used in the debugger commands in place of an address or
value.

Symbol

%X

%0

%B

\

.
"

ffiJ

Table 5-2
Special Symbols

Definition

A hexadecimal number

An octal number

A binary number

The last value displayed
by EXAM !NE or EVALUATE

Current location

Logical predecessor

Logical successor

5-5

Example

DEPOSIT TOT = %XFF

EVALUATE %077

DEPOSIT TOT = %Bl01

EXAMINE \

EVALUATE .
EXAMINE "

EXAMINE ffiJ

(continued on next page)

DEBUGGING PASCAL PROGRAMS

Table 5-2 (Cont.)
Special Symbols

Symbol Definition Example

%RO-%Rll General registers 0-11 EXAMINE %RS

%AP Argument Pointer EXAMINE %AP

%FP Frame Po inter EXAMINE %FP

%SP Stack Po inter EXAMINE %SP

%PC Program Counter EXAMINE %PC

%PSL Processor Status Longword EXAMINE %PSL

5.2 USING THE DEBUGGER

The following sections illustrate how to debug a simple PASCAL program
and describe in general terms the use of the debugger.

5.2.1 Debugging a PASCAL Program

Figure 5-1 is a program that requires debugging. The program was
compiled and linked without diagnostic messages from either the
compiler or the linker. However, the program produces erroneous
results because of the missing asterisk in the exponentiation operator
(Radius*2 should be Radius**2).

1 PROGRAM Circle(INPUT,OUTPUT);
2 CONST Pi = 3.1415927;
3 VAR Radius, Area : REAL;
4 LABELl;
5 BEGIN
6 WRITE ('ENTER T.HE RADIUS VALUE: ');
7 WHILE NOT EOF
8 DO
9 BEGIN
10 WHILE NOT EOLN
11 DO
12 BEGIN
13 READLN (Radius);
14 1: Area := Pi * Radius * 2;
15 WRITELN ('AREA OF CIRCLE EQUALS ',Area : 4);
16 WRITELN ('ENTER RADIUS VALUE OR CTRL/Z : ');
17 END;
18 END
19 END.

Figure 5-1 Sample PASCAL Program

5-6

DEBUGGING PASCAL PROGRAMS

The key to debugging is to find out what happens at critical points in
your program. To do this, you need a way to stop execution at these
points and look at the contents of program variables to determine
whether they contain the correct values. Points at which execution is
stopped are called breakpoints. The SET BREAK command lets you
specify where you want to stop the program.

To look at the contents of a location, use the EXAMINE command. To
resume execution, use either the GO or STEP command.

The debugger commands relevant to PASCAL are described in Section 5.3.

Figure 5-2 is an example of a simple terminal dialog for a debugging
session. The circled numbers are keyed to notes that follow the
figure and explain the dialog.

$ PASCAL/LIST/DEBUG CIRCLE ta
$ LINK/DEBUG CIRCLE 0
$ RUN CIRCLE C)

VAX-11 DEBUG VERSION 2.3

%DEBUG-I-INITIAL, language is PASCAL, module set to 'CIRCLE'

DBG> SET BREAK %LINE 14 (»

DBG> GO C)
routine start at CIRCLE
ENTER RADIUS VALUE : 24
break at CIRCLE\CIRCLE\%LINE 14 C.
DBG> STEP 8
start at CIRCLE\%LINE 14
stepped to CIRCLE\%LINE 15

DBG> EXAMINE Area 0
CIRCLE\CIRCLE\AREA: l.507964478E+02

DBG> EXAMINE Radius 0
CIRCLE\CIRCLE\RADIUS: 2.400000000E+Ol

DBG> GO CD
start at CIRCLE\%LINE 15
AREA OF CIRCLE EQUALS 1. 4E+02 G
ENTER RADIUS VALUE OR CTRL/Z :

.... z
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion' 49
DBG> EXIT G
$

Figure 5-2 Sample Debugging Session

5-7

DEBUGGING PASCAL PROGRAMS

t» Invoke the PASCAL compiler, specifying the /LIST and /DEBUG
qualifiers.

f» Link the program using the /DEBUG qualifier to include a symbol
table for the debugger.

e

0

Issue the RUN command. In response, the debugger displays its
identification, indicating that your program will be executed
under the debugger's control. Following the identification
message, the debugger displays an initial message, identifying
the language and module settings it has assumed. ·The debugger
derives these settings from the first main program specified in
the LINK command.

Set a breakpoint at an appropriate point in the program. This
point should be one at which you are able to examine key
variables. Note: Breakpoints suspend execution just before the
point specified.

C) Begin program execution. The debugger displays the point at
which execution starts.

The program request for input for the
displayed. The debugger displays that
suspended at the specified breakpoint.

variable Radius is
program execution was

f» The STEP command causes the equation to be executed.

(» Examine the variable Area. The debugger displays the value of
Area.

C) Examine the variable Radius.

4D Resume execution. The debugger displays a message indicating the
point at which program execution resumed.

~ The Area is calculated and displayed. A request for input is
displayed, and a CTRL/Z is entered to end the program.

4D Successful completion of the program is indicated by this
message. However, as you can see, the result is incorrect.

G) Exit from the debugger.

By examining the variables Radius and Area as the program is
executing, you can determine that the values being entered or
calculated are being stored correctly. It follows, then, that the
error is probably in the expression of the formula for computing the
area. To correct the problem, you must edit, recompile, and relink
the source program, with the exponentiation operator properly
specified in the formula expression.

5-8

DEBUGGING PASCAL PROGRAMS

5.2.2 General Description of the Debugger Commands

The debugger's commands can be broken down into four areas of
function:

• The commands that allow you to control the environment (the
language, where the output is to go) in which the debugger is
to operate

• The commands that allow you to control the execution of your
program

• The commands that allow you to examine and modify locations in
your program

• The commands that allow you to specify scope

Each of these areas and the commands that perform these functions are
discussed in the following sections.

5.2.2.l Preparing to Debug a Program - The commands used to establish
the proper environment for debugging PASCAL programs are:

SET LANGUAGE
SHOW LANGUAGE

SET LOG
SHOW LOG

SET MODE
SHOW MODE
CANCEL MODE

SET MODULE
SHOW MODULE
CANCEL MODULE

SET OUTPUT
SHOW OUTPUT

SET TYPE
SHOW TYPE
CANCEL TYPE/OVERRIDE

The LANGUAGE commands let you establish or determine the programming
language.

• SET LANGUAGE indicates to the debugger that the debugging
session should be conducted according to the conventions of
the specified language.

• SHOW LANGUAGE displays the current language.

The LOG commands let you establish or determine the log file's name
and whether it is being written to.

• SET LOG specifies the name of the log file.

• SHOW LOG displays the log file name and whether the log file
is active.

5-9

DEBUGGING PASCAL PROGRAMS

The MODE commands let you establish, display, and cancel default entry
and display modes.

• SET MODE establishes entry and display modes.

• SHOW MODE displays the current entry and display modes.

• CANCEL MODE cancels all modes and sets them to the default
values for the current language.

The MODULE commands let you control the contents of the symbol table
when the program you want to debug consists of multiple program units
(a program and module(s}}.

• SET MODULE places the symbols defined in the specified program
unit or units in the debugger's internal symbol table.

• SHOW MODULE displays the names of all program units whose
symbols are available to the debugger.

• CANCEL MODULE removes the specified program unit's symbols
from the symbol table.

The OUTPUT commands control where the output from the debugger is
written.

• SET OUTPUT specifies whether the debugger output is to be
written to the terminal or to the log file.

• SHOW OUTPUT displays the output configuration.

The TYPE commands let you establish or determine the default data
types for the DEPOSIT and EXAMINE commands.

e SET TYPE specifies the default data type as ASCII, BYTE,
INSTRUCTION, LONG, or WORD.

• SHOW TYPE displays the current default data type.

• CANCEL TYPE/OVERRIDE cancels the current default data type.

5.2.2.2 Controlling Program Execution - To control the execution of
your program, you must be able to suspend and resume execution at
specific points. The following commands are available for these
purposes:

SET BREAK
SET EXCEPTION BREAK
SHOW BREAK
CANCEL BREAK
CANCEL EXCEPTION BREAK

SET TRACE
SHOW TRACE
CANCEL TRACE

SET WATCH
SHOW WATCH
CANCEL WATCH

5-10

DEBUGGING PASCAL PROGRAMS

SHOW CALLS

GO

SET STEP
SHOW STEP
STEP

EXIT

The BREAK commands let you select
suspension, so you can examine
variables in the program.

specified locations for program
and/or modify structured or scalar

• SET BREAK defines a procedure's line number, statement label,
or address at which to suspend execution.

• SET EXCEPTION BREAK defines exceptions (conditions that
interrupt execution of your program) as breakpoints.

• SHOW BREAK displays all breakpoints currently set in the
program.

• CANCEL BREAK removes selected breakpoints.

• CANCEL EXCEPTION BREAK removes the exception breakpoint.

The TRACE commands let you set, examine, and remove tracepoints in
your program. A tracepoint is similar to a breakpoint in that it
suspends program execution and displays the address at the point of
suspension. However, in the case of a tracepoint, program execution
resumes immediately after a message is displayed. Thus, tracepoints
let you follow the sequence of program execution to ensure that
execution is carried out in the proper order.

Note that if you set a tracepoint at the same location as a current
breakpoint, the breakpoint is canceled, and vice versa.

The TRACE commands perform the following functions:

• SET TRACE establishes points within the program at which
execution is momentarily suspended.

• SHOW TRACE displays the locations in the program at which
tracepoints are currently set.

• CANCEL TRACE removes one or more tracepoints currently set in
the program.

The WATCH commands let you monitor specified locations to determine
when attempts are made to modify their contents, so you can take the
appropriate action. These locations are called watchpoints. When an
attempt is made to change the value of a watchpoint, the debugger
suspends program execution, displays the old and new contents of the
location, and prompts for a command. Watchpoints are monitored
continuously. Thus, you can determine whether locations are being
modified inadvertently during program execution.

5-11

DEBUGGING PASCAL PROGRAMS

The WATCH commands perform the following functions:

• SET WATCH defines the location(s) to be monitored.

• SHOW WATCH displays the location(s) currently being monitored.

• CANCEL WATCH disables monitoring of the specified locations.

The SHOW CALLS command is used to produce a traceback of procedure and
function calls, and is particularly useful when you have returned
control to the debugger following a CTRL/Y command.

The GO command lets you resume program execution.

• GO initiates execution at the current location and continues
to the conclusion of the program or to the next breakpoint or
watchpoint.

The STEP commands give you specific control over how much of a program
is to be executed at one time. A program can, for example, be
executed line by line or instruction by instruction.

The STEP commands perform the following functions:

• SET STEP establishes the current step conditions (LINE,
INSTRUCTION, and so on).

• SHOW STEP displays the current step conditions.

• STEP initiates execution from the current location and
continues for a specified number of lines.

The CTRL/Y command returns control to DCL command level but does not
terminate the debugging session.

The EXIT command lets you exit from the debugger by terminating the
debugging session.

5.2.2.3 Examining and Modifying Locations - Once you set breakpoints
and begin program execution, the next step is to determine whether
correct values are assigned to the identifiers and, possibly, to
change the contents of locations as execution proceeds. You may also
want to calculate the value of an expression that appears in your
program. You can use the following commands:

DEPOSIT

EVALUATE

EXAMINE

The DEPOSIT command lets you place a new value into a variable during
the debugging session.

5-12

DEBUGGING PASCAL PROGRAMS

The EVALUATE command lets you determine the value of an expression.

The EXAMINE command lets you display the current contents of a
specific location.

Refer to Section 5.1.5 for information on special symbols that can be
used with these commands.

5.2.2.4 Specifying Scope - If the program you are debugging consists
of more than one program unit, your symbolic references should be
unambiguous. Usually you can let the debugger specify scope, that is,
the module in which a symbol is unique. Sometimes, however, you must
tell the debugger how to resolve symbolic references. For example,
suppose you are debugging two program units and both units use the
variable I, and both variables are defined in the symbol table.
Unless you explicitly specify scope, the debugger may not be able to
determine which variable I you want to use. You can make a symbol
unique by specifying scope in one of three ways:

• By using the debugger default scope

• By explicitly specifying the desired scope and the symbolic
name in the command

• By explicitly specifying the desired scope in the SET SCOPE
command (once scope has been set, it is in effect for all
subsequent commands until you issue another SET SCOPE command)

When you begin a debugging session, the debugger automatically defines
the main program unit as the default scope. However, this default
scope is dynamic; that is, as you debug your program, the default
scope is always the routine you are currently executing. The
debugger's default scope rules are:

• If the specified symbol name is unique within the debugger
symbol table, the debugger uses that name.

• If the specified symbol is ambiguous (not unique within the
symbol table), but one of its declarations is within the
current scope, the debugger uses that particular declaration.

• If the specified symbol is not defined in the symbol table, or
if it is ambiguous with no declarations defined within the
current scope, the debugger issues an error message.

You can specify scope explicitly by providing the name of the symbol
and the name of the routine in which it is accessible, separated by a
backslash (\) character, as shown in these examples:

DBG> SET WATCH MOD1\ARRMN[l2]

DBG> SET BREAK MODl\%LINE10

In addition, if you want to make a number of symbolic references
within the same program unit, you can eliminate the need to specify
scope with each symbolic address by using the SET SCOPE command.

5-13

DEBUGGING PASCAL PROGRAMS

You specify the scope of a name explicitly by providing both the
symbol name and the names of the module and routine in which it is
located, separated by a backslash (\) character. This type of
specification is called a pathname, because it consists of a path of
names for several nested routines. For example:

PROGRAM Main(INPUT, OUTPUT);

PROCEDURE Check Table (X,Y
VAR Z-: CHAR;

INTEGER);

PROCEDURE Put Table (R : REAL);
VAR-Z : CHAR;

To change the value of Z, which is the variable defined in the
procedure Put_Table, the following debugger command is given:

DBG> DEPOSIT MAIN \Check_Table \Put_Table \Z = 'a'

By specifying· this pathname you change only the value of Z in the
procedure Put Table. The variable Z in the procedure Check Table
remains unchanged.

Another way of altering the variable z in the routine Put Table
follows:

DBG> SET SCOPE Put Table
DBG> DEPOSIT Z 'a'

This method does not use a pathname, but defines the scope as
Put_Table and then deposits a value directly into the variable z.

You can also use a pathname to specify an address reference that is in
a routine not under the current scope setting. This is done by giving
the address a pathname qualifier:

DBG> SET BREAK MOD1\%LINE 7

This command sets a breakpoint at line 7 of the module MODl.

The following commands can be used to specify scope:

SET SCOPE
SHOW SCOPE
CANCEL SCOPE

5-14

DEBUGGING PASCAL PROGRAMS

These commands let you explicitly control how the debugger resolves
symbolic references.

• SET SCOPE explicitly establishes the specified unit or units
as the scope to be used fo.r the translation of symbols.

• SHOW SCOPE displays the current setting of scope.

• CANCEL SCOPE revokes the program unit previously established
in a SET SCOPE command and establishes as the default scope
the currently active program unit.

5.3 VAX-11 SYMBOLIC DEBUGGER COMMANDS

The following sections describe the VAX-11 Symbolic Debugger commands
that can be used to debug a PASCAL program. The commands are listed
in alphabetical order for ease of reference.

5-15

DEBUGGING PASCAL PROGRAMS

CANCEL ALL

5.3.1 CANCEL ALL Command

The CANCEL ALL command cancels all breakpoints, tracepoints,
watchpoints, and restores scope and user-set entry/display modes to
their default values.

CANCEL ALL does not affect the modules included in the debugger symbol
table or the current language.

Format

CANCEL ALL

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> CANCEL ALL

All breakpoints, tracepoints, watchpoints, are canceled.
and modes are set to their default values.

5-16

Scope

DEBUGGING PASCAL PROGRAMS

CANCEL BREAK

5.3.2 CANCEL BREAK Command

The CANCEL BREAK command cancels a specific breakpoint or all
breakpoints.

Format

CANCEL BREAK [/qualifier] [address-expression]

Command Qualifiers

/ALL

Command Parameters

address-expression

Specifies the address at which a breakpoint is to be canceled.

Command Qualifiers

/ALL

Cancels all breakpoints in the program.

Examples

DBG> CANCEL BREAK %LINE 110

The break located at line 110 is canceled.

5-17

DEBUGGING PASCAL PROGRAMS

CANCEL EXCEPTION BREAK

5.3.3 CANCEL EXCEPTION BREAK Command

The CANCEL EXCEPTION BREAK command cancels the exception breakpoint.

Format

CANCEL EXCEPTION BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> CANCEL EXCEPTION BREAK

All exception breakpoints are canceled.

5-18

DEBUGGING PASCAL PROGRAMS

CANCEL MODE

5.3.4 CANCEL MODE Command

The CANCEL MODE command cancels all modes and types and sets them to
the default values.

The CANCEL MODE command sets the default address display mode to the
PASCAL default of symbolic and the radix mode to the default radix of
decimal.

Format

CANCEL MODE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> CANCEL MODE

The current modes are canceled and are reset to the PASCAL
default values.

5-19

DEBUGGING PASCAL PROGRAMS

CANCEL MODULE

5.3.5 CANCEL MODULE Command

The CANCEL MODULE command removes the specified program unit's symbols
from the debugger's internal symbol table.

Format

CANCEL MODULE [/qualifier] [module [,module •••]]

Command Qualifiers

/ALL

Command Parameters

module

Specifies the name of the program unit for which symbols are to
be removed from the active symbol table.

Command Qualifiers

/ALL

Specifies that all information is to be deleted fro~ the active
symbol table.

Examples

1. DBG> CANCEL MODULE MODl

The symbols from the program unit MODl are removed from the
active symbol table.

2. DBG> CANCEL MODULE/ALL

All the symbols in the active symbol table are removed.

5-20

DEBUGGING PASCAL PROGRAMS

CANCEL SCOPE

5.3.6 CANCEL SCOPE Command

The CANCEL SCOPE command cancels all previous settings for scope and
resets the scope to the current scope, the scope of the program unit
within which the PC is currently located.

The current scope changes as different sections of the program are
executed. CANCEL SCOPE is the same as setting the scope equal to O
{refer to Section 5.3.24).

Format

CANCEL SCOPE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> CANCEL SCOPE

The scope{s) currently set are canceled.

5-21

DEBUGGING PASCAL PROGRAMS

CANCEL TRACE

5.3.7 CANCEL TRACE Command

The CANCEL TRACE command specifies an address at which the tracepoint
is to be removed.

Format

CANCEL TRACE [/qualifier] [address]

Command Qualifiers

/ALL

Command Parameters

address

Specifies the address from which a tracepoint is to be removed.

Command Qualifiers

/ALL

Removes all tracepoints in the program.

Examples

1. DBG> CANCEL TRACE %LABEL 140

The tracepoint at label 140 is canceled.

2. DBG> CANCEL TRACE/ALL

All existing tracepoints are canceled.

5-22

DEBUGGING PASCAL PROGRAMS

CANCEL TYPE/OVERRIDE

5.3.8 CANCEL TYPE/OVERRIDE Command

The CANCEL TYPE/OVERRIDE command cancels the current override type and
resets the override type to none.

Format

CANCEL TYPE/OVERRIDE

Command Parameters

None.

Command Qualifiers

/OVERRIDE

The /OVERRIDE qualifier must be specified.

Examples

DBG> CANCEL TYPE/OVERRIDE

The current override type is canceled and the override type is
reset to none.

5-23

DEBUGGING PASCAL PROGRAMS

CANCEL WATCH

5.3.9 CANCEL WATCH Command

The CANCEL WATCH command cancels a watchpoint during a debugging
session.

Format

CANCEL WATCH [/qualifier] [var]

Command Qualifiers

/ALL

Command Parameters

var

Specifies the location at which monitoring is to be disabled.

Command Qualifiers

/ALL

Removes all watchpoints from the program.

Examples

1. DBG> CANCEL WATCH AREA

This example cancels the monitoring of location AREA.

2. DBG> CANCEL WATCH/ALL

All existing watchpoint$ are canceled.

5-24

DEBUGGING PASCAL PROGRAMS

CTRL/Y

5.3.10 CTRL/Y Command

You can use the CTRL/Y command at any time to return to the system
command level. To issue this command, press the Y key while holding
down the CTRL key. The dollar sign ($) prompt is displayed on the
terminal. To return control to the debugger, type DEBUG. This brings
you back to the debugger in your old program with the same set of
command defaults. You can use the CTRL/Y command if your program
loops or otherwise fails to stop at a breakpoint. To determine the
point at which CTRL/Y was executed, use the SHOW CALLS command
(Section 5.3.30) after you return to the debugger.

Format

Command Parameters

None.

Command Qualfiers

None.

Examples

DBG > G 0 (CTRL/Y)

"y

$DEBUG

VAX-11 DEBUG VERSION 2.3

DBG>

5-25

DEBUGGING PASCAL PROGRAMS

DEPOSIT

5.3.11 DEPOSIT Command

The DEPOSIT command places the contents of the value field into the
specified variable:

• If the value is the same size as the specified variable, the
value is deposited in the variable with no conversion.

• If the value is larger than the specified variable, the value
is truncated on the left and deposited in the variable.

• If the value is smaller than the specified variable, the value
is zero-filled on the left and deposited in the variable.

If you assign a value to a variable that does not conform to the rules
of assignment compatibility, an informational message is displayed.
(For more information on assignment compatibility, refer to the VAX-11
PASCAL Language Reference Manual.)

Format

DEPOSIT [/qualifier] address-expression

Command Qualifiers

/ASCII: 1 eng th
/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/OCTAL
/WORD

value

Command Parameters

address-expression

value

Specifies the variable reference into which the value is to be
deposited.

Specifies the value to be deposited.

Command Qualifiers

/ASCII: 1 ength

Specifies that the data value is to be interpreted as an ASCII
string. The length specifies the number of bytes of ASCII data
to be deposited for each data item. It is interpreted in the
radix specified by a command qualifier that precedes the /ASCII
qualifier or in the current radix mode. If length is omitted,
the debugger assumes a length of 4.

5-26

DEBUGGING PASCAL PROGRAMS

/BYTE

Specifies that
integer. For
byte of data.
specified by
Any value that
unsigned) is
dropped) •

the data value is to be interpreted as a byte
each data item specified, the debugger deposits 1

The data is interpreted in the radix mode
a command qualifier or in the current radix mode.
cannot be stored in a byte (greater than 255,
left-truncated (that is, the high-order bits are

/DECIMAL

Specifies that all numbers following the qualifier in the command
are to be interpreted in decimal radix.

/HEXADEC !MAL

Specifies that all numbers following the qualifier in the command
are to be interpreted in hexadecimal radix.

/INSTRUCTION

/LONG

Specifies that the data is instructions enclosed in quotation
marks or apostrophes. The debugger deposits the binary opcode
and operands. The length of the instruction deposited depends on
the opcode and the addressing modes used.

the data value is to be interpreted as a longword
each data item specified, the debugger deposits 4

The data is interpreted in the radix mode
command qualifier or in the current radix mode.
cannot be stored in a longword will be

Specifies that
integer. For
bytes of data.
specified by a
Any value that
1 eft-truncated.

/OCTAL

/WORD

Specifies that all numbers following the qualifier in the command
are interpreted in octal radix.

Specifies that the data value is to be interpreted as a word
integer. For each data item specified, the debugger deposits 2
bytes of data. The data is interpreted in the radix mode
specified by a command qualifier or in the current radix mode.
Any value that cannot be stored in a word (greater than 65,535,
unsigned) is left-truncated.

5-27

DEBUGGING PASCAL PROGRAMS

Examples

1. DBG> DEPOSIT Hair Color = Brown

DBG> DEPOSIT Married = True

These examples place the values Brown and True into the variables
Hair Color and Married.

2. DBG> DEPOSIT AA.Name= 'SMITH'

The name 'SMITH' is deposited into the name field of the record
A.

5-28

DEBUGGING PASCAL PROGRAMS

EVALUATE

5.3.12 EVALUATE Command

The EVALUATE command functions as a calculator to determine the value
of an expression.

Format

EVALUATE [/qualifier] expression

Command Qualifiers

/ADDRESS
/DECIMAL
/HEXADECIMAL
/OCTAL

Command Parameters

expression

Specifies the expression whose value is to be determined. A
backslash (\) can also be used in an expression to reference the
last expression evaluated. A function reference is the only
PASCAL expression that cannot be evaluated. An expression must
contain only variables or constants in the active symbol table to
be evaluated.

Command Qualifiers

/ADDRESS

Indicates that an address value is desired.

/DECIMAL

Specifies that decimal is the default radix for numbers entered
in the command and for the display of values.

/HEXADECIMAL

Specifies that hexadecimal is the default radix for numbers
entered in the command and for the display of values.

/OCTAL

Specifies that octal is the default radix for numbers entered in
the command and for the display of values.

5-29

DEBUGGING PASCAL PROGRAMS

Examples

1. DBG> EVALUATE Pi*Radius
6.28

The value of the expression Pi*Radius is displayed.

2. DBG> EVALUATE/ADDRESS /HEX I
007F3AA4

This command calculates and displays the hexadecimal address of
the variable I.

3. DBG> EVALUATE/ADDRESS A[J]
1600

This command calculates the decimal address of the Jth element o~
array A and displays it.

4. You can also use EVALUATE to perform address arithmetic, such as
computing an offset or array element address, as in this
following example.

DBG> EVALUATE/ADDRESS I+4
3000

This command calculates the decimal address of the data stored at
a location 4 bytes after the address of I.

5. DBG> EVALUATE \
3000

The last scalar value resulting from an EVALUATE or DEPOSIT
command is displayed.

5-30

DEBUGGING PASCAL PROGRAMS

EXAMINE

5.3.13 EXAMINE Command

The EXAMINE command displays the contents of specified locations.

Note you cannot examine variables of an array, record, or file type,
except when the variable is a packed or unpacked array [l •• n] of CHAR,
where n is less than 65535.

The following predefined locations can be examined:

• %RO - %Rll General registers 0-11

• \ Last value

• Current location

• Logical predecessor

• IBm Logical successor

• %AP Argument Po inter

• %FP Frame Po inter

• %SP Stack Po inter

• %PC Program Counter

• %PSL Processor Status Longword

Format

EXAMINE [/qualifier] [address-expression]

Command Qualifiers

/ASCII: 1 ength
/BYTE
/DECIMAL
/HEXADEC !MAL
/INSTRUCTION
/LONG
/NOSYMBOLIC
/OCTAL
/SYMBOLIC
/WORD

Command Parameters

address-expression

Specifies the address whose contents are to be examined. The
address is usually given symbolically as a scalar variable name
or component of a structured variable type. You can examine
array elements or record fields but not whole arrays or records;
except for variables of the type PACKED ARRAY [l •• n] OF CHAR,
which are displayed as ASCII strings.

5-31

DEBUGGING PASCAL PROGRAMS

Command Qualifiers

/ASCII:length

/BYTE

Specifies that the data value is to be interpreted as an ASCII
string. The length specifies the number of bytes of memory to be
examined and the number of characters to be displayed. It is
interpreted in the radix specified by a command qualifier that
precedes the /ASCII qualifier or in the current radix. If length
is omitted, the debugger assumes a length of 4. The number of
characters actually displayed is limited by the maximum size of
the debugger's output line, 132 characters.

Specifies that the data value is to be interpreted as a byte
integer. The contents of each byte of the value examined is
displayed in the radix mode specified by a command qualifier or
in the current radix mode.

/DECIMAL

Specifies that the radix is decimal. The debugger displays all
numbers and interprets all numbers in the command in decimal
radix.

/HEXADECIMAL

Specifies that the radix is hexadecimal. The debugger displays
all numbers and interprets all numbers in the command in
hexadecimal radix.

/INSTRUCTION

/LONG

Specifies that the contents of memory should be displayed as
VAX-11 MACRO instructions. The debugger attempts to decode the
address specified as an instruction. If the debugger can decode
the instruction, it displays the instruction. If the debugger
cannot decode the instruction, it displays a warning message.
The length of the instruction displayed varies depending on the
opcode and addressing modes.

Specifies that the data value is to be interpreted as a longword
integer. The contents of each longword (4 bytes) of the value
examined is displayed in the radix mode specified by a command
qualifier or in the current radix mode.

/NOSYMBOLIC

Specifies that addresses should be displayed as absolute virtual
addresses. The debugger displays the addresses being examined
and any addresses in decoded instructions as absolute virtual
addresses.

/OCTAL

Specifies that the radix is octal. The debugger displays all
numbers and interprets all numbers in the command in octal radix.

5-32

DEBUGGING PASCAL PROGRAMS

/SYMBOLIC

/WORD

Specifies that addresses should be displayed as symbols or
offsets from symbols. The debugger displays the addresses being
examined and any addresses in decoded instructions as symbols or
offsets from symbols.

Specifies that the data value is to be interpreted as a word
integer. The contents of each word (2 bytes) of the value
examined is displayed in the radix mode specified in a command
qualifier or in the current radix mode.

Examples

1. DBG> EXAMINE Flight Number
FLIGHT\FLIGHT FLIGHT_NUMBER:lO

The contents of variable Flight_Number are displayed.

2. DBG> EXAMINE Entered Flight
FLIGHT\FLIGHT Entered_Flight:O

The contents of Entered_Flight are displayed.

3. DBG> EXAMINE Flights[l].Reservations~.Name
FLIGHT\FLIGHT FLIGHTS[l].Reservation ~.Name : Jones

The contents of the field Reservation~.Name in the record
specified by the first element of the array Flights are examined.

4. DBG> EXAMINE 600
600: 1

The contents of the nonsymbolic virtual address 600 (decimal) are
examined.

5. DBG> EXAMINE
ARRVAR[2]:2.5

The contents of the logical successor (the next array element
here} of the current location are displayed.

5-33

DEBUGGING PASCAL PROGRAMS

EXIT

5.3.14 EXIT Command

The EXIT command lets you exit from the debugger when you are ready to
terminate a debugging session. You must use this command to return to
DCL command level.

Format

EXIT

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> GO
%DEBUG-I-EXITSTATUS is %SYSTEM-S-NORMAL, normal successful completion
DBG> EXIT

The debugging session is terminated by the EXIT command at the
end of normal program execution.

5-34

DEBUGGING PASCAL PROGRAMS

GO

5.3.15 GO Command

The GO command starts the execution of a program for a debugging
session.

Format

GO [address-expression]

Command Parameters

address-expression

Specifies the address at which execution is to begin; if no
address is specified, execution begins at the current location.

Command Qualifiers

None.

Examples

DBG> GO

NOTE

You must not restart a program from the
beginning unless you first exit from the
debugger. Otherwise, unpredictable
results may occur.

routine start at MAIN\MAIN
break at MOD1\MOD1\%LINE 3

The debugger responds to the GO command by indicating that
execution started at the routine MAIN\MAIN and that a breakpoint
has been reached in module MODl\MODl .at line 3.

5-35

DEBUGGING PASCAL PROGRAMS

HELP

5.3.16 HELP Command

The HELP command displays a description of the command specified. You
can also get descriptions of command parameters and qualifiers.

The HELP command displays a description of debugger commands, their
format, and the parameters and qualifiers you can use with them. You
can find out the topics that have help descriptions by entering the
HELP ~ommand with no topics.

Format

HELP topic [subtopic •••]

Command Parameters

topic

Specifies the command that you want information about.

subtopic

Specifies the command keyword, qualifier, or parameter that you
want information about. If you want information about a specific
qualifier, specify the qualifier (including the initial slash) as
the subtopic. If you want information about all qualifiers or
all parameters, specify QUALIFIER or PARAMETER, respectively. If
you want all the information about a command, specify an asterisk
(*) as the subtopic.

Command Qualifiers

None.

5-36

Examples

DBG> HELP GO
GO

DEBUGGING PASCAL PROGRAMS

Starts or continues program execution.

If the GO command is specified without an address-expression as a
parameter, execution resumes at the point of suspension or, in
the case of debugger start-up, at the transfer address.

If the GO command is specified with an address-expression as a
parameter, execution resumes at the location denoted by the
address-expression. Note that using an address-expression as a
parameter in the GO command can produce unpredictable results if
the state of your program required to commence execution at the
location specified by the address-expression is not identical to
the state of your program at the time the GO command is issued.

Format:

GO [[address-expression]]

Additional information available:

Parameters

5-37

DEBUGGING PASCAL PROGRAMS

SET BREAK

5.3.17 SET BREAK Command

The SET BREAK command specifies a label, line number, or address at
which program execution is to be suspended. This location is called a
breakpoint. The DO command-string specifies one or more of the
debugger commands that are to be performed when the breakpoint is
reached.

Note that you cannot set breakpoints, tracepoints, or watchpoints at
the same location. The most recently issued command overrides any
other.

Format

SET BREAK [/qualifier] address-expression [DO(command-string [;command-string] •••)]

Command Qualifiers

/AFTER: count

.Command Parameters

address-expression

Specifies the address at which
suspended. Note that execution
specified address. Section 5.1.4
specified.

DO{command-string)

the program execution is
is suspended just before the

describes how addresses are

Tells the debugger to perform the specified debugger command{s)
specified by the command-string when the breakpoint is reached.

Command Qualifiers

/AFTER:count

Specifies that the debugger should not stop execution until the
breakpoint is reached the number of times specified by count.

Examples

1. DBG> SET BREAK %LINE 100 DO(EXAMINE Total; EXAMINE Area)

In this example, the values of the variables Total and Area are
displayed when the breakpoint at line 100 is reached. The line
number is located on the source and machine-code listings.

5-38

DEBUGGING PASCAL PROGRAMS

2. DBG> SET BREAK/AFTER:3 %LINE 20

You can use the /AFTER qualifier to control when a breakpoint
takes effect. For instance, if you set a breakpoint on a line
that is in the body of a WHILE loop, and you want the breakpoint
to occur the third time through the loop, specify the /AFTER
qualifier with a value of 3, as shown in this example.

Note that if you use the /AFTER qualifier, the breakpoint is
reported not only the nth time it is encountered, but also every
time it is encountered thereafter.

5-39

DEBUGGING PASCAL PROGRAMS

SET EXCEPTION BREAK

5.3.18 SET EXCEPTION BREAK Command

The SET EXCEPTION BREAK command specifies exceptions (conditions that
interrupt execution of your program) as breakpoints. For more
information on exceptions, refer to the VAX/VMS System Services
Reference Manual and the VAX-11 Run-Time Library Reference Manual.

Format

SET EXCEPTION BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SET EXCEPTION BREAK

A breakpoint will occur when an exception occurs during program
execution.

5-40

DEBUGGING PASCAL PROGRAMS

SET LANGUAGE

5.3.19 SET LANGUAGE Command

The SET LANGUAGE command tells the debugger to conduct the dialog
according to the conventions of the specified language. The default
language is the language of the main program.

Format

SET LANGUAGE language-name

Command Parameters

language-name

Specifies the language to be used.

Command Qualifiers

None.

Examples

DBG> SET LANGUAGE PASCAL

The current language is set to PASCAL.

5-41

DEBUGGING PASCAL PROGRAMS

SET LOG

5.3.20 SET LOG Command

The SET LOG command specifies the name of the log file
debugger uses when the output is directed to the log file.
contains a copy of all the user's commands and the debugger
during a debugging session.

that the
A log file

responses

The SET LOG command controls only the name of the log file; it does
not control whether a log file is being written. The SET OUTPUT
command (5.3.23) does this. By default, the debugger uses the file
name DEBUG and the file type LOG. If the debugger is currently
creating a log file and you enter SET LOG, the debugger closes the
existing log file. A new file is opened using the newly specified
file name and all subsequent debugger commands are recorded in the new
log file.

Format

SET LOG file-spec

Command Parameters

file-spec

Specifies the name of the log file. You must enclose the file
specification in quotation marks or apostrophes only if the file
specification begins with a special symbol (such as a square
bracket) •

Command Qualifiers

None.

Examples

DBG> SET LOG CALC.DBG

DBG> SET LOG "[CODEPROJ]FEB29.TMP"

Log files are created
"[CODEPROJ]FEB29.TMP."

with

5-42

the names CALC. DBG and

DEBUGGING PASCAL PROGRAMS

SET MODE

5.3.21 SET MODE Command

The SET MODE command sets the default entry and display modes. The
entry and display modes control the current radix and whether
addresses and instruction operands are displayed symbolically or as
absolute virtual addresses. The default radix controls how the
debugger interprets numbers· that you enter and how it displays
numbers.

You can override the current radix mode by using a radix mode
qualifier in a DEPOSIT, EVALUATE, or EXAMINE command or by specifying
a radix control operator (%X, %0, %B).

In SYMBOLIC mode, addresses are displayed as symbols, virtual
addresses or offsets from symbolic locations. The debugger first
looks for an exact match with a local symbol or a global symbol. If
no exact match can be found, the debugger searches for the sym_bol
whose value is less than the address and closest to it. If it cannot
find any symbolic definition, it displays the address as a virtual
address in the current radix mode. Probable causes of the debugger
displaying a virtual address are that-the module's symbols are not
included in the the debugger symbol table or that the address is
outside the program's address space.

In NOSYMBOLIC mode, addresses are displayed as virtual addresses in
the current radix mode. Note that you can always enter symbolic
addresses even when the mode is NOSYMBOLIC.

Format

SET MODE mode-keyword [,mode-keyword]

Command Parameters

mode-keyword

Specifies the entry and display mode. Mode-keyword can be:

• DECIMAL -- Sets the current radix to decimal

• HEXADECIMAL -- Sets the current radix to hexadecimal

• OCTAL -- Sets the current radix to octal

• NOSYMBOLIC -- Specifies that addresses should be displayed as
absolute virtual addresses

• SYMBOLIC -- Specifies that addresses should be displayed as
offsets from symbolic locations

Command Qualifiers

None.

5-43

DEBUGGING PASCAL PROGRAMS

Examples

DBG> SET MODE DEC,NOSYM

The modes decimal and nosymbolic are set as the current entry and
display modes.

5-44

DEBUGGING PASCAL PROGRAMS

SET MODULE

5.3.22 SET MODULE Command

The SET MODULE command places the symbols defined in the specified
program unit or units in the symbol table. By default, the debugger
initializes the symbol table to include all global symbols and local
symbols of the main program unit which contains the entry point or the
point at which execution begins.

Format

SET MODULE [/qualifier] ['module-name [,module-name •••]]

Command Qualifiers

/ALL

Command Parameters

module-name

Specifies the name of the module whose symbols are to be included
in the symbol table. A PASCAL module-name is either a program or
a module.

Command Qualifiers

/ALL

Tells the debugger to use the symbols of all known (linked)
modules. If there is insufficient space, the debugger displays
an error message.

Examples

1. DBG> SET MODULE MAIN, MODI

The symbols from the program units MAIN and MODI are added to the
active symbol table.

2. DBG> SET MODULE/ALL

All the symbols from the programs and modules are included in the
active symbol table.

5-45

DEBUGGING PASCAL PROGRAMS

SET OUTPUT

5.3.23 SET OUTPUT Command

The SET OUTPUT command controls whether the debugger displays output
on the terminal or writes it to a log file and controls whether the
debugger echoes commands in command procedures.

When the debugger is initiated, all responses are displayed on the
terminal, no log file is created, and command procedures and DO
command-string sequences are not echoed on the terminal.

The log file contains all the commands that you enter at a
and all the responses of the debugger. The log file does not
the DBG> prompt. The debugger's responses are preceded
exclamation mark. To reproduce a debugging session, you can
log file as a command procedure.

Format

SET OUTPUT option [,option •••]

Command Parameters

option

terminal
contain

by an
use the

Specifies the mode of output. Option can be LOG, TERMINAL, or
VERIFY, or the negative form of each.

• LOG -- starts writing output to the log file. The log file
contains all the commands that you enter at the terminal and
all debugger responses. The debugger responses are preceded
by an exclamation mark (comment indicator) to allow you to use
the log file as a command procedure. The default setting,
NOLOG, inhibits output to the log file.

• TERMINAL -- starts writing output to the terminal. The
default setting, TERMINAL, causes all the debugger responses
to be displayed on the terminal. The NOTERMINAL parameter
causes the debugger to stop displaying all responses except
error messages on the terminal. The NOTERMINAL parameter is
useful when you want to write output only to a log file. If
you specify SET OUTPUT NOLOG, NOTERMINAL, the debugger
displays a warning message telling you that output is being
lost.

• VERIFY -- causes the debugger to echo commands executed from
command procedures and DO command-string sequence of SET BREAK
commands. The commands are displayed on the terminal and
written to the log file depending on the other options
specified for the SET OUTPUT command. The default setting,
NOVERIFr, causes the debugger to not echo commands as they are
executed in a command procedure or DO command-string sequence.

Command Qualifiers

None.

5-46

DEBUGGING PASCAL PROGRAMS

Examples

1. DBG> SET OUTPUT NOLOG ,TERMINAL ,VERIFY

The output is displayed on the terminal, commands, procedures,
and DO command-string sequence of SET BREAK commands are echoed,
and a log file is not produced.

2. DBG> SET OUTPUT LOG

The log file is to be created.

5-47

DEBUGGING PASCAL PROGRAMS

SET SCOPE

5.3.24 SET SCOPE Command

The SET SCOPE command specifies scopes to be searched to find a
symbol. By default, the debugger searches for symbols (specified
without pathnames) in the current scope (the scope that contains the
current PC). If the debugger does not find the symbol, it searches
its symbol table for a unique symbol. When you enter SET SCOPE, the
debugger modifies its search rules: it searches the scopes in the
order you specify. If it does not find the symbol in these scopes, it
then searches for a unique symbol.

SET SCOPE command allows you to modify the default symbol search. You
can specify the default scope (scope 0) in any position in the scope
list. You can also specify that global symbols be searched in any
position in the scope list by using the backslash (\) character.

If the debugger cannot find a symbol in the scopes specified with the
SET SCOPE command, it searches all the modules in the active symbol
table for a unique symbol. There is no way to suppress the search for
a unique symbol.

Format

SET SCOPE scope-element [,scope-element •••]

Command Parameters

scope-element

Specifies the name of a scope, the digit O, a backslash (\), or
the number of a scope. These scope elements have the following
meanings:

• Name of scope -- in general, consists of a module name and
block or routine names separated by backslashes. The simplest
case is a scope consisting of a module name. When you specify
a name of scope, the debugger adds the symbols for the module
specified to the symbol table if they are not already
included.

• 0 -- specifies the current scope, the scope that contains the
current PC. The current scope is used as the default scope if
you enter the CANCEL SCOPE command. The current scope changes
as different sections of your program are executed.

• \ -- specifies the scope consisting of all the global symbols
defined in your image.

• Number of scope -- specifies scope by the level of active
calls. The number 0 represents the scope currently being
executed; the number 1 represents the scope that contained
the call to the current scope; the number 2 represents the
scope that contained the call before that.

Command Qualifiers

None.

5-48

DEBUGGING PASCAL PROGRAMS

Examples

1. DBG> SET SCOPE MOD3

This command sets the scope to MOD3

2. You can also define a scope list to specify the order in which
the debugger should search for symbols.

DBG> SET SCOPE MOD1\MAR,MOD2\JAN,MOD2\FEB

The command above instructs the debugger to search for symbols
first in the context of routine MAR. If the debugger cannot find
a specified symbol in MAR, the debugger continues the search in
JAN and, if necessary, FEB.

The scope defined in a SET SCOPE command becomes the default
scope for all symbolic addresses until you explicitly change or
cancel the scope.

Note that when you explicitly use SET SCOPE to set the scope to a
program unit name, the debugger implicitly performs a SET MODULE
command. Therefore, symbols for the program unit specified in
your SET SCOPE command are placed in the symbol table. However,
if you use the debugger's default scope, you must also use the
SET MODULE command (Section 5.3.22) to place symbols for the
program unit other than the main program in the symbol table.

5-49

DEBUGGING PASCAL PROGRAMS

SET STEP

5.3.25 SET STEP Command

The SET STEP command specifies the current default step conditions.
The SET STEP command controls how the unit of the program is to be
executed (INSTRUCTION or LINE), whether a called procedure or a
subroutine is treated as a series of instructions or as a single
instruction (INTO or OVER). You can override the current default step
condition by specifying a mode qualifier in the STEP command.

Format

SET STEP [qualifier(s)]

Command Qualifiers

INSTRUCTION
INTO
LINE
[NO] SYSTEM
OVER

Command Parameters

None.

Command Qualifiers

INSTRUCTION

INTO

LINE

Tells the debugger to step through the program VAX-11 MACRO
instruction by instruction.

Tells the debugger to step through routines when one is called;
that is, it is to step into the subprogram.

Tells the debugger to step through the program line by line.
This is the default for VAX-11 PASCAL.

[NO] SYSTEM

OVER

Tells· the debugger to count steps wherever they occur, including
system address space. The default is NOSYSTEM.

Tells the debugger to
through the program.

ignore calls to routines as it
That is, it is to step over the call.

5-50

steps

DEBUGGING PASCAL PROGRAMS

Examples

DBG> SET STEP INTO

The debugger is to step into routines when it encounters routine
calls.

5-51

DEBUGGING PASCAL PROGRAMS

SET TRACE

5.3.26 SET TRACE Command

The SET TRACE command specifies the location at which the debugger is
to suspend program execution, display that the tracepoint has been
reached, and resume execution.

Note that you cannot set tracepoints, watchpoints or breakpoints at
the same location. The most recently issued command overrides any
other.

Format

SET TRACE [/qualifier]

Command Qualifiers

/BRANCH
/CALL

Command Parameters

address-expression

[address-expression]

Specifies the location at which the tracepoint is located.

Command Qualifiers

/BRANCH

Traces all branch, jump, and case instructions in the image.

/CALL

Traces all instructions that call routines in the image.

5-52

DEBUGGING PASCAL PROGRAMS

Examples

DBG> SET TRACE %LABEL 10

DBG> GO
routine start at MAIN\MAIN
trace at %label 10

The tracepoint is established at label 10. In response to the GO
command, the debugger displays the routine it is in and the
starting point of the trace.

DBG> SET TRACE CIRCLE

DBG> SET TRACE/BRANCH
DBG> SET TRACE/CALL
DBG> SHOW TRACE
tracepoint at CIRCLE\CIRCLE

tracing

tracing

/CALL instructions: CALLS, CALLG, BSBW, BSBB, JSB, RSB
and RET
/BRANCH instructions: BNEQ, BEQL, BGTR, BLEQ, BGEQ,
BLSS, BGTRU, BLEQU, BVC, BVS, BGEQU, BLSSU, BRB, BRW,
JMP, BBS, BBC, BBSS, BBCS, BBSC, BBCC, BBSSI, BBCCI,
BLBS, BLBC, ACBB~ ACBW, ACBL, ACBF, ACBD, AOBLEQ,
AOBLSS, SOBGEQ, SOBGTR, CASEB, CASEW and CASEL

5-53

DEBUGGING PASCAL PROGRAMS

SET TYPE

5.3.27 SET TYPE Command

The SET TYPE command sets the
EXAMINE commands. The SET
there is no assigned data
TYPE/OVERRIDE command sets
DEPOSIT and EXAMINE commands.

default types for the DEPOSIT and
TYPE command sets the default type when

type in the symbol table. The SET
the default type for all data items in

Format

SET TYPE [/qualifier] type-keyword

Command Qualifiers

/OVERRIDE

Command Parameters

type-keyword

Specifies the default data type. Type-keyword can be
ASCII:length, BYTE, INSTRUCTION, LONG, or WORD.

• ASCII:length -- Specifies that the default data type is an
ASCII string. The number of characters in the string is
specified by length. If you do not specify length, the
debugger assumes a length of 4.

• BYTE -- Specifies that the default data type is byte integer.

• INSTRUCTION -- Specifies that the default data
instruction.

type is

• LONG -- Specifies that the default data type is longword
integer.

• WORD -- Specifies that the default data type is word integer.

Command Qualifiers

/OVERRIDE

Specifies that the specified data type should be used even when a
symbol has an assigned data type in the symbol table. The CANCEL
TYPE/OVERRIDE command cancels the effects of SET TYPE/OVERRIDE
and specifies that the debugger should use the symbol's assigned
default data type.

5-54

DEBUGGING PASCAL PROGRAMS

Examples

1. DBG> SET TYPE ASCII:8

The type is set ASCII with a string length of 8 characters.

2. DBG> SET TYPE/OVERRIDE LONG

The type LONG is to be used even if the symbol has an assigned
data type.

5-55

DEBUGGING PASCAL PROGRAMS

SET WATCH

5.3.28 SET WATCH Command

The SET WATCH command allows you to monitor a specific location to
determine ·when that location's value is changed.

Note that you cannot set watchpoints, tracepoints, and breakpoints at
the same location. The most recently issued command overrides any
other.

Format

SET WATCH var

Command Parameters

var

Specifies the location to be monitored. You cannot monitor
variables declared in a procedure or function because these
variables are allocated on the stack. However, variables
declared at the program or module level or variables dynamically
allocated by the NEW procedure can be monitored because these
variables are allocated in static storage. If a variable is
located on the same memory page as a PASCAL file variable, a file
system error can occur when the file variable is accessed.

If the value of the location being monitored
debugger stops program execution and displays
statement, the location's old value, and its new
debugger then prompts for another command.

changes, the
the modifying
value. The

Command Qualifiers

None.

Examples

DBG> SET WATCH Area
DBG> GO
write to MAIN\AREA

old value
new value =

DBG>

at PC=000002C4
12
16

A watchpoint is set for the location Area in module MAIN. During
execution of the program, the value of Area changed from 12 to
16.

5-56

DEBUGGING PASCAL PROGRAMS

SHOW BREAK

5.3.29 SHOW BREAK Command

The SHOW BREAK command displays the location of all breakpoints
currently set in the program.

Format

SHOW BREAK

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW BREAK

breakpoint at MOD1\MOD1\%LINE 3

The breakpoint is at LINE 3 of module MODl.

5-57

DEBUGGING PASCAL PROGRAMS

SHOW CALLS

5.3.30 SHOW CALLS Command

The SHOW CALLS command displays a traceback list of procedures and
function calls. This traceback list shows you the sequence of calls
leading to the current subprogram from the most recent call to the
first call.

Format

SHOW CALLS [integer]

Command Parameters

integer

Specifies the number of most recent calls to be displayed. If a
call count is not specified, all the calls are displayed.

Command Qualifiers

None.

Examples

D8G> SHOW CALLS

module name routine name line relative PC absolute PC

MAIN MOD2 20 00000002 00000880

MAIN MODl 10 0000006C 00000863

The first line in the report refers to the current call level.
One call, at line 10, preceded this level.

5-58

DEBUGGING PASCAL PROGRAMS

SHOW LANGUAGE

5.3.31 SHOW LANGUAGE Command

The SHOW LANGUAGE command displays the current language the debugger
is currently interpreting.

Format

SHOW LANGUAGE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW LANGUAGE
language: PASCAL

The debugger displays the current language as PASCAL.

5-59

DEBUGGING PASCAL PROGRAMS

SHOW LOG

5.3.32 SHOW LOG Command

The SHOW LOG command displays the log file name and whether the
debugger is writing to the log file.

Format

SHOW LOG

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW LOG
logging to FEB29.TMP

The log file being used is FEB29.TMP.

5-60

DEBUGGING PASCAL PROGRAMS

SHOW MODE

5.3.33 SHOW MODE Command

The SHOW MODE command displays the current radix mode and the current
symbolic or nonsymbolic mode.

The current modes are those last established by the SET MODE command
or the default modes associated with the current language.

Format

SHOW MODE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW MODE
modes: symbolic, hexadecimal

The debugger displays that the mode is symbolic, hexadecimal.

5-61

DEBUGGING PASCAL PROGRAMS

SHOW MODULE

5.3.34 SHOW MODULE Command

The SHOW MODULE command displays the names of all program units whose
symbols are potentially available to the symbol table.

The SHOW MODULE command displays the following information about each
program or module in the image compiled with the /DEBUG qualifier.

• The module's name

• The symbols that are or are not in the active symbol table
(yes/no)

• The language the module is written in

• The size of the module's active symbol table in bytes

• The total number of modules

• The amount of memory that can still be allocated for the
symbol table

Format

SHOW MODULE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SET MODULE Main, Modl
DBG> SHOW MODULE

Module Name Symbols

MAIN yes

MODI yes

MOD2 no

Language

PASCAL

PASCAL

PASCAL

Size

204

164

184

total modules: 3. remaining size: 61568.

In this example, there are three PASCAL modules. Modules Main
and Modl have symbols in the active symbol table: Mod2 symbols
are not included in the symbol table. The run-time symbol table
has 61568 bytes of remaining space allocated.

5-62

DEBUGGING PASCAL PROGRAMS

SHOW OUTPUT

5.3.35 SHOW OUTPUT Command

The SHOW OUTPUT command displays the output configurations and reports
whether the debugger is displaying output on the terminal, writing
output to a log file, or verifying command procedures or DO
command-string sequences.

Format

SHOW OUTPUT

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW OUTPUT

output: no verify, terminal, not logging into DEBUG.LOG

The debugger is not verifying command procedures or DO
command-string sequences, the log file is not in use, and output
is to a terminal.

5-63

DEBUGGING PASCAL PROGRAMS

SHOW SCOPE

5.3.36 SHOW SCOPE Command

The SHOW SCOPE command displays the routines that are currently set as
scope.

Format

SHOW SCOPE

Command Parameters

None.

Command Qualifiers

None.

Examples

1. DBG> SHOW SCOPE
scope: MOD2,MOD1

The message the debugger returns shows that the current scope is
set first to MOD2, then to MODI. The debugger checks for a
symbol in the module MOD2 first.

2. DBG> SHOW SCOPE
scope: 0 [= MOD2\MULT]

The symbol 0 shows that the current scope is the default scope;
the default scope is routine MULT in program unit MOD2.

5-64

DEBUGGING PASCAL PROGRAMS

SHOW STEP

5.3.37 SHOW STEP Command

The SHOW STEP command displays the current default step conditions.

Format

SHOW STEP

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW STEP
step type: no system, by instruction, over routine calls

The debugger is skipping address reserved for the system, is
stepping through the program by instruction, and is skipping over
routines calls.

5-65

DEBUGGING PASCAL PROGRAMS

SHOW TRACE

5.3.38 SHOW TRACE Command

The SHOW TRACE command displays either the location (as a line number,
label, or hexadecimal address) of all active tracepoints or a message
indicating there are no active tracepoints.

Format

SHOW TRACE

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW TRACE

tracepoint at %LINE 20
tracepoint at %LINE 25

The tracepoints are located at lines 20 and 25.

5-66

DEBUGGING PASCAL PROGRAMS

SHOW TYPE

5.3.39 SHOW TYPE Command

The SHOW TYPE command displays the current default data type. If you
specify the /OVERRIDE qualifier, the debugger displays the current
default override data type.

If the data type is /ASCII:length, the debugger displays length as a
decimal number even if the current radix is not decimal.

Format

SHOW TYPE [/qualifier]

Command Qualifiers

/OVERRIDE

Command Parameters

None.

Command Qualifiers

/OVERRIDE

Displays the current override default data type.

Examples

DBG> SHOW TYPE
type: long integer

The data type now being used is long integer.

5-67

DEBUGGING PASCAL PROGRAMS

SHOW WATCH

5.3.40 SHOW WATCH Command

The SHOW WATCH command displays all the watch points that are active
and the size of each watchpoint in number of bytes. A watchpoint
remains active until a CANCEL WATCH command is issued, or a SET BREAK
or SET TRACE command is given for the same location, or the debugging
session ends.

Format

SHOW WATCH

Command Parameters

None.

Command Qualifiers

None.

Examples

DBG> SHOW WATCH

Watchpoint at MOD\ROUT\AREA for 4 bytes

A watchpoint has been established for AREA in the routine ROUT in
the module MOD. AREA is 4 bytes long.

5-68

DEBUGGING PASCAL PROGRAMS

STEP

5.3.41 STEP Command

The STEP command allows you to execute a predetermined number of
statements.

You can specify the qualifiers each time you issue a STEP command, or
you can use one SET STEP command to set the conditions for a series of
STEP commands. Refer to Section 5.3.25 for the SET STEP command.

Format

STEP [qualifier(s)]

Command Qualifiers

INSTRUCTION
INTO
LINE
[NO]SYSTEM
OVER

[integer]

Command Parameters

integer

Specifies the number of statements to be executed. If you
specify 0 or omit the integer, a default of 1 is assumed. Note,
however, that if you issue a STEP command while your program is
stopped in a module whose symbols are not in the active symbol
table, VAX-11 MACRO instructions (not PASCAL statements) are
executed.

Command Qualifiers

INSTRUCTION

INTO

LINE

Tells the debugger to step through the program instruction by
instruction.

Tells the debugger to step through routines when one is called.
That is, it is to step into the subprogram.

Tells the debugger to step through the program line by line.
This is the default for VAX-11 PASCAL.

[NO] SYSTEM

Tells the debugger to count steps wherever they occur, including
system address space. The default is NOSYSTEM.

5-69

OVER

DEBUGGING PASCAL PROGRAMS

Tells the debugger to
through the program.

ignore calls to routines as it
That is, it is to step over the call.

steps

Examples

1. DBG> SET STEP INSTRUCTION, INTO, SYSTEM

In this example, the debugger overrides the defaults applicable
to PASCAL programs. When you subsequently issue a STEP command
without qualifiers, these qualifiers (INSTRUCTION, INTO, and
SYSTEM) are in effect. You can, however, supersede them
individually by including a qualifier in a STEP command.

2. DBG> STEP/LINE 10

This example tells the debugger to execute 10 lines, regardless
of the SET STEP command.

Sometimes it is advisable to use STEP to execute only a few
instructions at a time. To execute many instructions and stop,
use a SET BREAK command to set a breakpoint, and then issue a GO
command to execute all statements up to the breakpoint.

5-70

DEBUGGING PASCAL PROGRAMS

@file-spec

5.3.42 @file-spec Command

The @file-spec command directs the debugger to begin taking commands
from a specified command procedure.

Format

@file-spec

Command Parameters

file-spec

Specifies the name of a VAX/VMS file containing the debugger
commands. The default file type is COM.

Command Qualifiers

None.

Examples

The command procedure DBGPROG.COM contains the following debugger
commands:

SET BREAK %LINE 10
GO
EXAMINE A" .NAME
EXAMINE A"'.ADDRESS
EXAMINE A"'.SSNUMBER
GO

During a debugging session to execute the commands in this file,
you would enter:

DBG> @DBGPROG.COM

The commands from this file are executed as if you had entered
each of the commands yourself.

5-71

DEBUGGING PASCAL PROGRAMS

5.4 A DEBUGGING EXAMPLE

This section presents a debugging example using the program
Flight Reservation to track reservations for 10 different flights.
The program prompts for input of a flight number, passenger name, and
class of reservation desired. When 0 is entered for the flight
number, the program should terminate. A bug has been included in this
program for the purpose of demonstrating how to use the VAX-11
Symbolic Debugger to find a logic error in a program.

Figure 5-3 is the source listing for Flight Reservation and Figure 5-4
is an actual interactive debugging session. The circled numbers
correspond to the text that follows the figures and gives a detailed
description of the debugging session.

PROGRAM Flight Reservations
CONST -

(INPUT, OUTPUT);

TYPE

VAR

Alfa Length
Max Flights
Max-Reservations 100;

3 O;
= 10;

Maximum length of a name }
10 different flights possible }

Maximum number of reservations per flight

Alfa =PACKED ARRAY[l •• Alfa_Length] OF CHAR;
Flight Class = (Standby,Coach,Business,First);
Reservation Pointer = AReservation Record;
Reservation-Record = RECORD -

END;

Flight_Description = RECORD

END;

Name : Alfa;
Class : Flight Class;
Next_Reservation: Reservation_Pointer;

Flight Number
Number-Of Reservations
Reservations

INTEGER;
INTEGER;
Reservation_Pointer;

Flight Range
Flight=List

1. • Max Flights;
ARRAY[Flight_Range] OF Flight_Description;

Current Reservation
Entered-Flight
Accepting Reservations
Flights -

Reservation Pointer;
INTEGER; -{ Requested flight number }
BOOLEAN; { True = Still accepting reservations
Flight_List;

PROCEDURE Initialize Flights;
{ PURPOSE:

Initialize the flight reservation array}

VAR
Flight : Flight_Range;

BEGIN { Initialize_Flights }

FOR Flight := 1 TO Max Flights DO
WITH Flights[Flight] DO

BEGIN
Flight Number
{The array index is the
Number Of Reservations
Reservations

END;

END; { Initialize_Flights }

{ Current flight record }

:= Flight;
flight number }

:= O;
:= Nil;

Figure 5-3 Source Program for the Program Flight_Reservations

5-72

DEBUGGING PASCAL PROGRAMS

FUNCTION Flight Available (Flight To Check : INTEGER) : BOOLEAN;
{ PURPOSE: . - -

Check whether or not a particular flight is open
PARAMETERS:

Flight_To_Check - Flight number to check for }

LABEL l;

VAR
Flight : INTEGER; { Index into Flights array }

BEGIN { Flight_Available

1:

Fl ight_Available : = False; { Assume the flight won't be available }

FOR Flight := 1 TO Max Flights DO
WITH Flights[Flight] DO

IF Flight To Check = Flight Number
THEN - - -

IF (Number Of Reservations + 1) <= Max Reservations
THEN - -

BEGIN
Flight Available := True;
GOTO lT { Exit

.END;

END; { Flight_Available }

FUNCTION Reservations Available : BOOLEAN;

PURPOSE:
Check whether or not all flights are full

FUNCTION VALUE:
True There are still open flights
False = There are no more open flights}

LABEL l;

VAR
Flight : INTEGER; . { Index in Flights array }

BEGIN { Reservations_Available

1:

Reservations_Available := False;

FOR Flight := 1 TO Max Flights DO
WITH Flights[Flight] DO

{ Assume no more open flights }

IF Number Of Reservations < Max_Reservations
THEN - -

BEGIN
Reservations Available := True;
GOTO 1; - { Exit }

END;

END; Reservations Available

Figure 5-3(Cont.) Source Program for the Program Flight_Reservations

5-73

DEBUGGING PASCAL PROGRAMS

FUNCTION Read Reservation (VAR Reservation : Reservation_Pointer)
{ PURPOSE:

Read reservation information from the terminal.
PARAMETERS:

BOOLEAN;

Reservation - Pointer to a reservation record (output parameter)
FUNCTION VALUE:

True = The reservation can be made
False = The reservation cannot be made }

BEGIN { Read_Reservation

Allocate space for the reservation }

NEW(Reservation);

WITH ReservationA DO
BEGIN

Next Reservation := Nil;

{ Prompt for and read reservation information }

WRITELN;
WRITE ('Enter Flight Number:');
READ (Entered Flight);
IF Entered FlTght = 0 THEN

Read Reservation := False
ELSE IF NOT Flight Available(Entered Flight)
THEN - -

ELSE

BEGIN
WRITELN(' Flight•, Entered Flight: 1, I is full.');
Read Reservation := False; -

END -

{ Read the rest of the reservation information }

BEGIN
WRITELN;
WRITE (' Name: ') ;
READ (Name);
WRITE(' Class:');
READ(Class);
Read Reservation := True;

END; -

END; { WITH Current_ReservationA

END; { Read_Reservation }

Figure 5-3(Cont.) Source Program for the Program Flight_Reservations

5-74

DEBUGGING PASCAL PROGRAMS

PROCEDURE Enter Reservation (Reservation : Reservation Pointer);
- { PURPOSE: -

Enters a reservation in the reservation data base
PARAMETERS:

Reservation - Pointer to the reservation to enter }

LABEL l;

VAR
Flight : INTEGER; { Index into Flights array }

BEGIN { Enter_Reservation

1:

FOR Flight := 1 TO Max Flights DO
WITH Flights[Flight) DO

IF Flight Number = Entered_Flight
THEN -

BEGIN
Number Of Reservations := Number Of Reservations + l;
ReservationA.Next Reservation :=Reservations;
Reservations - := Reservation;
GOTO l;

END;
{ Exit }

END; { Enter_Reservation }

BEGIN { Flight_Reservations

Initialize_Flights;

Accepting Reservations := True;
WHILE Accepting Reservations DO

BEGIN -
IF Read Reservation(Current Reservation)

END;

THEN - -
Enter Reservation(Current Reservation);

IF Accepting Reservations -
THEN -

Accepting_Reservations := Reservations_Available;

END. { Flight_Reservations }

Figure 5 - 3 (Cont •) Source Program for the Program Flight_Reservations

5-75

DEBUGGING PASCAL PROGRAMS

$RUN FLIGHT

VAX-11 DEBUG VERSION 2.3

%DEBUG-I-INITIAL, language is PASCAL, module set to 'FLIGHT_RESERVATIONS' «»
DBG> GO

ENTER Flight Number : 1
- Name Smith

Class : First

ENTER Flight Number : 0
ENTER Flight=Number :~z

0

%PAS-F-ERRACCFIL, error in accessing file PAS$INPUT
%RMS-F-EOF, end of file detected

DBG> EXIT .,

$RUN FLIGHT

VAX-11 DEBUG VERSION 2.3

%DEBUG-I-INITIAL, language is PASCAL, module set to 'FLIGHT RESERVATIONS'

DBG> SET BREAK Read Reservation 0
DBG> SET BREAK Enter Reservation

DBG> SET BREAK Reservations Available

DBG> GO 0
routine start at FLIGHT RESERVATIONS
routine break at FLIGHT=RESERVATIONS\FLIGHT_RESERVATIONS\READ RESERVATION

DBG> STEP 7
routine start at FLIGHT RESERVATIONS\READ RESERVATION ct

ENTER Flight Number: 1 -
stepped to FLIGHT_RESERVATIONS\READ_RESERVATION %LINE 140

DBG> STEP
start at FLIGHT RESERVATIONS\READ RESERVATION %LINE 140
stepped to FLIGHT_RESERVATIONS\READ_RESERVATION %LINE 142

DBG> EXAMINE Entered Flight
FLIGHT_RESERVATIONS\~LIGHT_RESERVATIONS\ENTERED_FLIGHT: 1

DBG> STEP 16
start at FLIGHT RESERVATIONS\READ RESERVATION %LINE 142

-Name: Smith -
Class: First

•
routine break at FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\ENTER_RESERVATION

Figure 5-4 Interactive Debugging Session for the

Program Flight_Reservations

5-76

0

0

•
0

0

DEBUGGING PASCAL PROGRAMS

The program Flight Reservations is compiled and linked using the
/DEBUG qualifier.- The debugger is entered by using the command
RUN FLIGHT.

The debugger responds with its version number, the date, a
message that the initial programming language is PASCAL and the
main module is Flight_Reservations.

The debugger now has control of the program, and the prompt DBG>
replaces the dollar sign ($) prompt on the screen.

In this first session, the program Flight Reservations is
executed using only the debugger command GO. This allows you to
observe the functioning of the program without interruption.
After receiving the GO command, the debugger gives control to the
program which executes as it would normally. The program prompts
for input (the flight number, name, class). On the next request
for a flight number, a 0 is entered which should signal the
program to stop requesting input and to terminate execution.
However, the program fails to act as expected because another
prompt for input occurs. The CTRL/Z command is issued to exit
from the program and return control to the debugger •

To reenter the program, first exit from the debugger using the
EXIT command and then, reissue the RUN command.

To debug the program, the next step is to set breakpoints at
places where results need to be verified, such as functions and
procedures. In this session, the breakpoints are set at
Read_Reservation, Enter_Reservation, and Reservations_Available.

Once the breakpoints have been established, the command GO is
issued. The debugger responds with the starting point address
and execution of the program stops when a breakpoint is reached.
The address of the first breakpoint is then displayed.

The debugger halts at the breakpoint and prompts for a command.
The command STEP 7 is issued. This command instructs the
debugger to continue program execution. The next seven lines of
code from the routine Read Reservation are processed. Program
execution starts at the BEGIN instruction of the function
Read Reservation.

The debugger displays the starting address in the
Read Reservation module. The program requests input for the
variable Entered Flight. The value assigned to the variable
Entered Flight Ts verified using the EXAMINE command. The
debugger responds with the value 1.

fa The command STEP 16 continues execution of the program until the
16th line of executable code from the current address is reached.
The debugger responds with the starting address in the module and
the program prompts for a name and class.

5-77

DEBUGGING PASCAL PROGRAMS

DBG> STEP 0
routine start at FLIGHT RESERVATIONS\ENTER RESERVATION
stepped to FLIGHT_RESERVATIONS\ENTER_RESERVATION %LINE 178

DBG> EXAMINE ReservationA.Name
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\ENTER_RESERVATION\RESERVATIONA.NAME: 'Smith' C)
DBG> EXAMINE ReservationA.Class
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\ENTER_RESERVATION\RESERVATIONA.CLASS: FIRST

DBG> SET BREAK Enter_Reservation\%LABEL 1

DBG> GO
start at FLIGHT RESERVATIONS\ENTER RESERVATION %LINE 178
break at FLIGHT=RESERVATIONS\FLIGHT_RESERVATIONS\ENTER_RESERVATION\%LABEL 1

DBG> EXAMINE Flights[l].Number Of Reservations
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\FLIGHTS[l].NUMBER_OF_RESERVATIONS: 1

DBG> EXAMINE Flights[l].ReservationsA.Name
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\FLIGHTS(l].RESERVATIONSA.NAME: ' Smith'~

DBG> EXAMINE
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\FLIGHTS[l].RESERVATIONSA.CLASS: FIRST

DBG> GO
start at FLIGHT RESERVATIONS\ENTER RESERVATION %LINE 189
routine break at FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE

DBG> STEP 6 A
routine start at FLIGHT RESERVATIONS\RESERVATIONS AVAILABLE "'
stepped to FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE %LINE 108

DBG> EXAMINE Reservations Available
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE: TRUE

DBG> GO
start at FLIGHT RESERVATIONS\RESERVATIONS AVAILABLE %LINE 108
routine break at FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\READ_RESERVATION

DBG> STEP 7
routine start at FLIGHT RESERVATIONS\READ RESERVATION

ENTER Flight Number : 0
stepped to FLIGHT_RESERVATIONS\READ_RESERVATION %LINE 140

DBG> STEP
start at FLIGHT_RESERVATIONS\READ_RESERVATION %LINE 140 C)
stepped to FLIGHT_RESERVATIONS\READ_RESERVATION %LINE 141

DBG> EXAMINE Entered Flight
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\ENTERED_FLIGHT: 0

DBG> GO
start at FLIGHT RESERVATIONS\READ RESERVATION %LINE 141
routine break at FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE

Figure 5-4 (Cont.) Interactive Debugging Session for the
Program Flight_Reservations

5-78

DEBUGGING PASCAL PROGRAMS

C) The STEP command is given.

C» The fields ReservationA.Name and ReservationA.Class are examined.

G) A new breakpoint is set at LABEL 1 in the module
Enter Reservation and the GO command continues execution of the
procedure Enter Reservation. The contents of the array Flights
are verified by-the EXAMINE command when LABEL 1 is reached.

C» The contents of the array Flights are displayed by the use of
EXAMINE commands. In each case, the debugger responds with the
pathname, array element name, and the value contained in that
element.

The field ReservationsA.Class is examined by simply entering
EXAMINE followed by a return. The debugger displays the contents
of the next logical successor, which is ReservationA.Class.

Program execution is resumed with the GO command and continues
until the debugger encounters the next breakpoint. The debugger
responds with the starting point address and the address of the
breakpoint reached in Reservation_Available.

The function Reservations Available is executed when the command
STEP 6 is given. The command EXAMINE displays the contents of
the field Reservations Available as TRUE.

Program execution is
breakpoint at the
encountered.

resumed with the GO command until the
beginning of the routine Read Reservation is

The command STEP 7 is given to step through seven lines of
executable code of the routine Read Reservations to the point
where the prompt for input is displayed~ The program requests
the input for Flight Number. A 0 is entered indicating that the
last reservation has been entered. The debugger displays the
current address after executing six lines in the routine
Read Reservation.

G) The STEP command is given and the contents of Entered_Flight are
examined. Entered_Flight contains a O.

49 The GO command causes program execution to resume until the
breakpoint Reservations Available is encountered.

5-79

DEBUGGING PASCAL PROGRAMS

DBG> EXAMINE Accepting_Reservations 41»
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\ACCEPTING_RESERVATIONS: TRUE

DBG> SET BREAK Reservations_Available\%LABEL 1 Cl!)
DBG> GO G
routine start at FLIGHT RESERVATIONS\RESERVATIONS AVAILABLE
break at FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE\%LABEL 1

DBG> EXAMINE Reservations_Available
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE\RESERVATIONS_AVAILABLE: TRUE

DBG> DEPOSIT Reservations_Available = FALSE ~

DBG> EXAMINE Reservations Available
FLIGHT_RESERVATIONS\FLIGHT_RESERVATIONS\RESERVATIONS_AVAILABLE\RESERVATIONS_AVAILABLE: FALSE

DBG> CANCEL BREAK/ALL ~

DBG> GO •
start at FLIGHT RESERVATIONS\RESERVATIONS AVAILABLE %LINE 111
%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL~ normal successful completion'

DBG> EXIT fD
$

Fig u r e 5 - 4 (Cont •) Interactive Debugging Session for the
Program Flight_Reservations

5-80

DEBUGGING PASCAL PROGRAMS

The contents of the field Accepting Reservations are examined.
The debugger displays the contents-of Accepting Reservations as
TRUE. The bug has been found because this field should have been
set to FALSE when the flight number 0 was entered in the module
Read Reservation.

To verify that this is the bug,
Reservations Available are changed
completion as described below.

the contents of the field
and the program is run to

Cl) A breakpoint at LABEL 1 is established in the module
Reservations Available. The module and label names are used as
the address Tn a SET BREAK command.

G) Program execution is started with the GO command. The contents
of Reservations Available are displayed as being TRUE.

The DEPOSIT command
Reservations Available.
command.

places the value FALSE into
The change is verified by the EXAMINE

6) The CANCEL BREAK/ALL command terminates all breakpoints, to allow
the program to run to completion without halting.

The program must be edited, recompiled, and relinked to test
whether this error was in fact the only incorrect logic in the
program.

fl To verify, the program execution is started with the GO command.
At completion of the run, the debugger responds with the message
that normal and successful completion of the program has
occurred.

G) The EXIT command is given to end the debugger session.

5-81

CHAPTER 6

INPUT AND OUTPUT

This chapter describes input and output (I/O) for VAX-11 PASCAL. In
particular, it provides information about PASCAL I/O in relation to
VAX-11 Record Management Services (VAX-11 RMS). The topics covered
include:

• Logical names

• PASCAL file characteristics

• PASCAL record formats

• OPEN procedure parameters

• Local interprocess communication by means of mailboxes

• Remote communication by means of DECnet-VAX

6.1 LOGICAL NAMES

The VAX/VMS operating system provides the logical name mechanism as a
way of making programs device and file independent. If you use
logical names, your program need not specify the particular device on
which a file resides or the particular file that contains data.
Specific devices and files can be defined at run time.

A logical name is an alphanumeric string, .up to 63 characters long,
that you specify in place of a file specification. The operating
system provides a number of predefined logical names, already
associated with file specifications. Table 6-1 lists the logical
names of special interest to PASCAL users.

Logical names provide great flexibility because they can be associated
not only with a complete file specification, but also with a device, a
device and a directory, or even another logical name.

6-1

INPUT AND OUTPUT

Table 6-1
Predefined System Logical Names

Name Meaning Default

SYS$DISK Current default device As specified by the
user

SYS$ERROR Default error message file User's terminal
(interactive); batch
log file (batch)

SYS$COMMAND Default command input stream User's terminal
(interactive); batch
command file (batch)

SYS$INPUT Default input file User's terminal
(interactive); batch
command file (batch)

SYS$0UTPUT Default output file User's terminal
(interactive); batch
log file (batch)

You can create a logical name and associate it with a file
specification by means of the ASSIGN command. Thus, before program
execution, you can associate the logical names in your program with
the file specifications appropriate to your needs. For example:

$ ASSIGN DBAO: [SMITH]Test.DAT;2 Data

This command creates the logical name Data and associates it with the
file specification DBAO: [SMITH]Test.DAT;2. The system uses this file
specification when it encounters the logical name Data during program
execution. For example:

OPEN (Indata, 'Data' ,HISTORY:= OLD);

In executing this PASCAL statement, the system uses the file
specification DBAO: [SMITH]Test.DAT;2 for the logical name Data. To
specify a different file when you execute the program again, issue
another ASSIGN command. For example:

$ ASSIGN DBA2: [JONES]Real.DAT;7 Data

This command associates the logical name Data with a different
specification and replaces the previous logical name assignment.
OPEN statement above will now refer to the
DBA2: [JONES]Real.DAT;7.

file
The

file

You can also assign logical names with the MOUNT and DEFINE commands
(see the VAX/VMS Command Language User's Guide).

6.2 FILE CHARACTERISTICS

A clear distinction must be made between the way files are organized
and the way records are accessed.

6-2

INPUT AND OUTPUT

The term "file organization" applies to the way records are physically
arranged on a storage device. The term "record access" refers to the
method used to read records from or write records to a file,
regardless of the file's organization. A file's organization is
specified when the file is created and cannot be changed. Record
access is specified each time the file is opened and can vary.

6.2.1 File Organization

VAX-11 PASCAL supports sequential file organization. Sequential files
consist of records arranged in the order in which they are written to
the file (the first record written is the first record in the file,
the second record written is the second record in the file, and so
on). Records can only be added at the end of a new file, with a
HISTORY equal to NEW.

6.2.2 Record Access

You specify record access mode as a parameter to the OPEN procedure.
VAX-11 PASCAL provides two ways of accessing records:

• Sequential

• Direct

If you select sequential access mode, records are written to or read
from the file, starting at the beginning and continuing through the
file one record after another.

Sequential access to a file means that you can read a
record only after reading all the records preceding it.
can be written only at the end of a file that is open for
access.

particular
New records
sequential

If you select direct access mode, you can specify the order in which
records are accessed; Each FIND procedure call must include the
relative record number indicating the record to be read. You can
directly access a file only if it contains fixed-length records,
resides on disk, and is open for input (reading).

6.3 RECORD FORMATS

Records are stored in one of two formats:

o Fixed length

o Variable length

You can access fixed-length records in
mode. Variable-length records can
mode.

6-3

either sequential or direct
be accessed only in sequential

INPUT AND OUTPUT

6.3.1 Fixed-Length Records

When you specify fixed-length records (see Section 6.4.4), you are
specifying that all records in the file contain the same number of
bytes. A file opened for direct access must contain fixed-length
records, to allow the record location to be computed correctly.

6.3.2 Variable-Length Records

Variable-length records can contain any number of bytes, up to the
buffer size specified when the file was opened. Variable-length
records are prefixed by a count field, indicating the number of bytes
in the record. The count field comprises 2 binary bytes on a disk
d.evice and 4 decimal digits on magnetic tape. The value stored in the
count field indicates the number of data bytes in the record.

6.4 OPEN PROCEDURE PARAMETERS

This section supplements the description of the OPEN procedure that
appears in the VAX-11 PASCAL Language Reference Manual. In
particular, it describes how the VAX-11 Record Management Services
(VAX-11 RMS) affect VAX-11 PASCAL. For more information, refer to the
VAX-11 Record Management Services Reference Manual.

The OPEN procedure has the following formats:

1.

2.

OPEN (file-variable, 'VAX/VMS-file-spec',
file-status,
record-length,
record-access-mode,
record-type,
carriage-control);

OPEN (FILE VARIABLE := file-variable
[,FILE NAME := file-name]
[,HISTORY := file-status]
[,RECORD LENGTH :=record-length]
[,RECORD-ACCESS MODE := record-access-mode]
[,RECORD=TYPE :~record-type]
[,CARRIAGE_CONTROL := carriage-control]

File status, record length, record-access mode, record type, and
carriage control are VAX-11 RMS-dependent attributes described in this
section.

6.4.1 File Status or History

The file-status or history parameter indicates whether the
file exists or must be created. The possible values
parameter are:

NEW
OLD

specified
for this

A file status of NEW indicates that a new file must be created with
the specified characteristics. NEW is the default value.

6-4

INPUT AND OUTPUT

A file status of OLD indicates that an existing file is to be opened.
An error occurs if the file cannot be found. A type of OLD is illegal
for internal files, which are newly created each time the declaring
program unit is executed.

6.4.2 Record Length

The record length parameter is an integer that specifies the maximum
record size in bytes for a text file. The default for a VAX-11 PASCAL
text file is 133 bytes. For a nontext file this parameter has no
meaning.

6.4.3 Record-Access Mode

The record-access mode parameter specifies the mode of access to
records in the file. The possible values for this parameter are:

SEQUENTIAL
DIRECT

The default record access mode is SEQUENTIAL. In SEQUENTIAL mode, you
can access files that have fixed- or variable-length records.

DIRECT mode allows you to use the FIND procedure to read files with
fixed-length records. You cannot access a file with variable-length
records in DIRECT mode.

6.4.4 Record Type

The record-type parameter specifies the structure of records in a
file. The possible values for this parameter are:

FIXED
VARIABLE

A value of FIXED indicates that all records in the file have the same
length. A value of VARIABLE indicates that the records within the
file can vary in length. VARIABLE is the default for a new file. For
an existing file, the default is the record type associated with the
file at its creation.

6.4.5 Carriage Control

The carriage-control parameter specifies the type of carriage control
in effect for an output text file. The possible values for this
parameter are:

LIST
CARRIAGE
FORTRAN
NOCARRIAGE
NONE

6-5

INPUT AND Otrl'PUT

A value of LIST indicates that each record is preceded by a line feed
and followed by a carriage return when the file is output to a
terminal or line printer. LIST is equivalent to the VAX-11 RMS record
attribute CR. LIST is the default for all text files.

The values of CARRIAGE or FORTRAN indicate that the first byte of each
record contains a carriage control character. CARRIAGE or FORTRAN is
equivalent to the VAX-11 RMS record attribute FTN. Table 6-2 lists
the carriage-control characters.

Table 6-2
Carriage Control Characters

Character Meaning

'+' Overprinting: starts output at the beg inning of the
current line

space Single spacing: starts output at the beginning of
the next line

'0' Double spacing: skips a line before starting output

'1' Paging: starts output at the top of a new page

'$' Prompting: starts output at the beg inning of the
next line, and suppresses carriage return at the end
of the line

Characters other than those in Table 6-2 are ignored.

The values of NOCARRIAGE or NONE indicate that the record contains no
carriage control information. NOCARRIAGE or NONE is equivalent to the
VAX-11 RMS record attribute PRN with all bits equal to zero.

6.5 LOCAL INTERPROCESS COMMUNICATION: MAILBOXES

The exchange of data between processes is often useful; for example,
to synchronize execution or to send messages.

A mailbox is a record-oriented, pseudo-I/O device that allows data to
be passed from one process to another. Mailboxes are created by the
Create Mailbox (SYS$CREMBX) system service (see Section 7.2.1 for an
example using SYS$CREMBX). This section describes how to send and
receive data using mailboxes.

Data transmission by means of mailboxes is synchronous; that is, a
PASCAL program that writes a message to a mailbox must wait until that
message is read, and a program that reads a message from a mailbox
must wait until a message is written. When the writing program closes
the mailbox, an end-of-file condition is returned to the reading
program. VAX-11 RMS ensures that the message transmission is complete
before it returns control to the user program.

6-6

INPUT AND OUTPUT

For example:

PROGRAM Mail (MBX, OUTPUT);

VAR MBX : TEXT;

BEGIN
OPEN (MBX, 'Mailbox', HISTORY:= OLD, ACCESS METHOD:= SEQUENTIAL);
RESET (MBX);
WHILE NOT EOF (MBX) DO
BEGIN

WHILE NOT EOLN (MBX) DO
BEGIN

WRITE (MBXA);
GET (MBX)

END;
WRITELN;
GET (MBX)

END;
CLOSE (MBX)

END.

This program reads messages from a mailbox known by the logical name
Mailbox. The messages are lines of text, which are then printed at
the user's terminal.

6.6 COMMUNICATING WITH REMOTE COMPUTERS:NETWORKS

If your computer is one of the nodes in a DECnet network, you can use
VAX-11 PASCAL I/O procedures to communicate with other nodes in the
network. These procedures allow you to exchange data with a program
at the remote computer (task-to-task communication) and to access
files at the remote computer (resource sharing).

Both task-to-task communication and resource sharing between systems
are transparent. That is, these intersystem exchanges do ·not appear
to be different from local interprocess and file-access exchanges.

To communicate across the network, specify a node name as the first
element of a file specification. For example:

Boston::DBAO: [SMITH]Test.DAT;2

Remote task-to-task communication requires a special form of file
specification. You must use the notation TASK= in place of the device
name and supply the task name, as in the following example:

Boston::"TASK=UNA"

The example specifies the task named UNA on the BOSTON node of the
network.

The following program fragment shows how messages can be received from
a remote program by means of VAX-11 PASCAL I/O procedures.

OPEN (FILE VARIABLE:=Netjob,
FILE NAME:;'Boston::"TASK=UNA"' ,HISTORY:=OLD);
RESET (Netjob);
Rdat := NetjobA;
NET Proc (Rdat,Wrtdat);
CLOSE (Netjob);

6-7

INPUT AND OUTPUT

The effect of these statements is to establish a link with a job
(TASK) named UNA at the node BOSTON and to receive a component from
the file variable associated with the remote program. The variable
RDAT contains the data. Then the procedure Net Proc is called to
process the data and the link is broken. -

The next example shows how you can write a remote file using VAX-11
PASCAL I/O procedures.

PROGRAM UPDATE (Newdat, Branch);

VAR Newdat
Branch

FILE OF INTEGER;
FILE OF INTEGER;

BEGIN

OPEN (Newdat,'NEWDAT.DAT',HISTORY:=OLD);
RESET (Newdat);
OPEN (Branch,'Nashua"PLUGH XYZZY"::Master.Dat',HISTORY:=NEW);
REWRITE (Branch);
WHILE NOT EOF(Newdat) DO

BEGIN
BranchA:=NewdatA;
GET (Newdat);
PUT (Branch)

END;

CLOSE (Branch);
CLOSE (Newdat)

END.

The sample program writes records in a remote file at the node Nashua.
It reads data from a local file known by the logical name Newdat and
writes the data across the network to the remote file Master.DAT in
the directory [PLUGH] with password XYZZY.

If you use logical names in·your program, you can equate the logical
names with either local or remote files. Thus, if your program
normally accesses a remote file, and the remote node becomes
unavailable, you can bring the volume set containing the file to the
local site. You can then mount the volume set and assign the
appropriate logical name. For example:

Remote Access

$ASSIGN REM::APPLIC SET:file-name LOGIC

Local Access

$ MOUNT device-name APPLIC SET
$ ASSIGN APPLIC SET:file-name LOGIC

The MOUNT and ASSIGN commands are described in detail in the VAX/VMS
Command Language User's Guide.

DECnet capabilities are described in the DECnet-VAX Reference Manual.

6-8

CHAPTER 7

CALLING CONVENTIONS

In the context of the VAX/VMS operating system, a procedure is a
routine entered by a CALL instruction. In a PASCAL program, such a
routine can be a function or procedure written in PASCAL, a function
or procedure written in some other language, a VAX/VMS system service,
or a VAX-11 Run-Time Library procedure. In many cases, procedures
perform calculations that are used widely and repeatedly in many
applications. In PASCAL, you can write each procedure once and call
it from many other programs.

This chapter describes how to call procedures that are not written in
PASCAL and provides information on calling VAX/VMS system services and
VAX-11 Run-Time Library procedures. See the VAX-11 PASCAL Language
Reference Manual for information on defining and invoking PASCAL
functions and procedures.

The material presented here assumes some knowledge of procedure
calling and argument passing mechanisms. You should be familiar with
these subjects before you attempt to use the features described in
this chapter. Refer to the VAX-11 Run-Time Library Reference Manual
and the VAX-11 Architecture Handbook for more information.

7.1 VAX-11 PROCEDURE CALLING STANDARD

Programs compiled by the VAX-11 PASCAL compiler conform to the
standard defined for VAX-11 procedure calls (see Appendix C of the
VAX-11 Architecture Handbook). This standard prescribes how arguments
are passed, how function values are returned, and how procedures
receive and return control. VAX-11 PASCAL also provides features that
allow programs to call system services and procedures written in other
native-mode languages supported by VAX/VMS.

VAX-11 PASCAL uses the VAX-11 CALLS instruction to call procedures.
Appendix B illustrates the events that occur during a procedure call
and show the structure of the run-time stack after each event.

7.1.1 Argument Lists

Each time you call a procedure, VAX-11 PASCAL constructs an argument
1 ist. The VAX-11 procedure calling standard defines an' argument 1 ist
as a sequence of longword (4-byte) entries. The first byte of the
first entry in the list is an argument count, which indicates how many
arguments follow in the list.

7-1

CALLING CONVENTIONS

The arguments in the list are based on the passing mechanisms
specified in the formal parameter list and the values in the actual
parameter list. The argument list contains the arguments actually
passed to the procedure.

7.1.2 Parameter Passing Mechanisms

Non-PASCAL procedures require arguments as addresses, immediate
values, or descriptors. The VAX-11 procedure calling standard defines
three mechanisms by which arguments are passed to procedures:

1. By-reference -- The argument list entry is the address of the
value.

2. By-immediate-value -- The argument list entry is the value.

3. By-descriptor -- The argument list entry is the address of a
descriptor of the value.

The following sections describe what you must specify in your VAX-11
PASCAL program to correctly pass arguments to non-PASCAL subprograms
using each of these mechanisms. Note that this information pertains
only to subprograms written in languages other than PASCAL. For
information about passing arguments to PASCAL subprograms from
non-PASCAL programs, see Section 7.1.5. Refer to the VAX-11 PASCAL
Language Reference Manual for a description of parameter passing
between PASCAL subprograms.

7.1.2.l By-Reference Mechanism - The by-reference mechanism passes
the address of the actual parameter. By default, PASCAL uses this
mechanism to pass all parameters except dynamic array parameters. You
can invoke the by-reference mechanism in two ways:

1. By omitting the mechanism specifier from the formal parameter
list. This syntax implies PASCAL by-value semantics.

2. By using the VAR specifier in the formal parameter list.
This syntax implies PASCAL by-reference semantics.

If you omit the mechanism specifier, PASCAL passes the address of the
actual parameter. PASCAL expects the called procedure to copy the
value from the specified address to local storage. You should use
this method only if the called procedure does not change the value of
the corresponding actual parameter. When you omit the mechanism
specifier, the actual parameter can be an expression.

For example, the following function declaration and corresponding
function call use this method:

FUNCTION MTH$TANH (Angle : REAL):REAL; EXTERN;

Tanh := MTH$TANH (Radians);

This example declares the VAX-11 Run-Time Library function MTH$TANH as
an external subprogram. The MTH$TANH function returns, as a real
value, the hyperbolic tangent of its argument. The input parameter to
this function is the size of the angle (in radians), and it must be
passed by-reference. Because the function MTH$TANH does not change
the value of the angle, you can omit the mechanism specifier when you
declare the function. The returned value is assigned to the variable

7-2

CALLING CONVENTIONS

Tanh by the assignment statement shown. (See Section 7.3 for more
information on calling Run-Time Library procedures.)

Use the VAR specifier to pass an actual parameter that can be changed
by the execution of the procedure. You must use VAR when passing a
file variable as a parameter. The VAR specifier is also useful to
prevent the copying of large parameters. Specify VAR in the following
format:

VAR formal-parm-list : type;

The formal parameter list specifies one or more formal parameters of
the indicated type. Each of these parameters will be passed using the
by-reference mechanism and with by-reference semantics.

When you call the procedure, the argument list contains the address of
the value to be passed. The actual parameter must be a variable or a
component of an unpacked, structured variable; constants,
expressions, procedure names, and function names are not allowed.

The following declarations and corresponding function call show how to
pass an address to an external routine.

TYPE Bit64 =PACKED ARRAY [1 •• 2] OF INTEGER;

VAR Systime : Bit64;

FUNCTION SYS$GETTIM (VAR Bintim

STATUS := SYS$GETTIM (Systime);

Bit64) INTEGER; EXTERN;

This example declares the Get Time (SYS$GETTIM) system service, which
returns the system time. The actual parameter Systime is a 64-bit
variable into which the system service writes the time.

7.1.2.2 By-Immediate-Value Mechanism - VAX/VMS system services and
Run-Time Library procedures sometimes require that the calling program
pass an immediate value, that is, the value itself. To direct PASCAL
to pass a value instead of an address, use the %IMMED mechanism
specifier, as follows:

%IMMED formal-parm-list : type;

The formal parameter list specifies one or more formal parameters of
the indicated type. Variables that require more than 32 bits of
storage, including all file variables, cannot be passed as immediate
values. %IMMED can be used for value parameter only. You can use
%IMMED only when declaring external non-PASCAL routines.

When you call the routine, the actual parameter list contains the
value of each parameter for which you specified %IMMED. The actual
parameter can be a constant, a variable, or an expression. Note that
%IMMED can also modify procedure and function formal names, as
described in Section 7.1.3.

7-3

CALLING CONVENTIONS

The following declarations and cerresponding function call show how to
pass an immediate value to a system service procedure.

VAR Event_Flag : INTEGER;

FUNCTION SYS$WAITFR (%IMMED EFN : INTEGER) INTEGER; EXTERN;

STATUS := SYS$WAITFR (Event_Flag);

This example declares the wait for Single Event Flag (SYS$WAITFR)
system service, which waits for a single event flag. SYS$WAITFR
requires one value parameter, the number of the event flag for which
to wait. This number is passed as an immediate value, copied from the
integer variable Event_Flag.

7.1.2.3 By-Descriptor Mechanism - The by-descriptor mechanism passes
the address of a string, array, or scalar descriptor, as described in
Appendix C of the VAX-11 Architecture Handbook. VAX-11 PASCAL
includes the %STDESCR mechanism specifier for passing string
descriptors and the %DESCR mechanism specifier for passing array and
scalar descriptors. You cannot pass a component of a packed structure
using either of these specifiers. You can use these specifiers only
with non-PASCAL subprograms. Note that, by default, PASCAL passes an
array descriptor to a formal dynamic array parameter.

To pass a string descriptor, specify %STDESCR as follows:

%STDESCR formal-parm-list : type;

The formal parameter list specifies one or more parameters of the
indicated type. Only string constants, packed character arrays with
subscripts from 1 to n, and packed dynamic character arrays with
subscripts of an integer or integer subscript type can be passed by
string descriptor.

When you call the procedure, the argument list contains the address of
each string descriptor. For example, the Broadcast {SYS$BRDCST)
system service requires two string descriptors as parameters:

TYPE Msgtype
Dev type

=PACKED ARRAY[l •• 80] OF CHAR;
PACKED ARRAY[l •• 6] OF CHAR;

VAR Message : Msgtype;
Terminal : Devtype;

FUNCTION SYS$BRDCST {%STDESCR MSG MSGTYPE;
%STDESCR DEV DEVTYPE):
INTEGER; EXTERN;

STATUS := SYS$BRDCST (Message, Terminal);

The %STDESCR specifier indicates that both parameters must be passed
by string descriptor. The actual parameters Message and Terminal are
packed arrays of 80 and 6 characters, respectively.

Routines written in other high-level languages may require array or
scalar descriptors. To pass an array or scalar descriptor, use %DESCR
in the following format:

%DESCR formal-parm-list type;

7-4

CALLING CONVENTIONS

The formal parameter list specifies one or more parameters of the
indicated scalar or array type. The type can be any predefined scalar
type or an unpacked array (fixed or dynamic) of a predefined scalar
type. The argument list contains the address of the descriptor of an
array or scalar variable.

The following example shows how an array descriptor might be passed to
a FORTRAN subroutine.

TYPE Foray= ARRAY [1 •• 10,1 •• 10] OF CHAR;

PROCEDURE Formatrix (%DESCR ARRDES : Foray); FORTRAN;

The FORTRAN subroutine Formatrix expects the array to be passed
by-descriptor. A call to Formatrix might be the following:

Formatrix (Chararr);

The actual parameter Chararr specifies a character array, and the
argument list contains the address of a descriptor for this array.
(Note that VAX-11 FORTRAN treats character parameters as CHARACTER*l
variables.)

7.1.3 Passing Functions and Procedures as Parameters

You can pass procedure and function names as immediate values to
routines written in other languages, using the following format:

%IMMED PROCEDURE procedure-name-list;

%IMMED FUNCTION function-name-list : type;

The procedure name list specifies the name of one or more formal
procedure parameters. The function name list specifies the name of
one or more formal function parameters of the indicated type. The
corresponding actual parameter lists specify the names of the actual
procedures and functions to be passed as parameters.

For example:

PROCEDURE Forcaller (%IMMED PROCEDURE Utility); FORTRAN;

The FORTRAN subroutine Forcaller calls a PASCAL procedure and requires
that the name of the procedure be passed as an immediate value. The
argument list contains the address of the PASCAL procedure's entry
mask. A call to the FORTRAN procedure might be:

Forcaller (Printer);

Any subprogram passed with %IMMED should access only its own variables
and those declared at program level.

For information on passing procedure and function names between PASCAL
subprograms, see the VAX-11 PASCAL Language Reference Manual.

7-5

CALLING CONVENTIONS

7.1.4 Function Return Values

A function returns a value to the calling program by assigning that
value to the function's name. The value must be a scalar, subrange,
or pointer type; structured types are not allowed. The method by
which a value is returned depends on its type, as listed below.

Type

Integer, real,
single, character,
Boolean, pointer,
user-defined scalar

Double

Return Method

General Register RO

RO: Low-order result
Rl: High-order result

7.1.5 Passed Arguments to PASCAL Subprograms

When calling a PASCAL subprogram from a non-PASCAL subprogram, you
must ensure that the arguments are in the correct form. By default,
VAX-11 PASCAL expects most parameters to be passed by-reference.

For a PASCAL value parameter (declared without a mechanism specifier),
the argument list must contain the address of the value. The PASCAL
subprogram will copy the value from the passed address upon entry.

For a VAR parameter, the argument list must contain the address of the
variable. The subprogram does not copy the value, but instead uses
the address to access the actual parameter variable. Actual parameter
variables that can change in value as a result of subprogram execution
must be passed in this manner. In addition, all files must be passed
as PASCAL VAR parameters.

For a formal procedure or function parameter (indicated by the
PROCEDURE or FUNCTION specifier), the argument list must specify the
address of the bound procedure value, which consists of two longwords.
The first longword contains the address of the entry mask for the
subprogram; the second longword contains the environment pointer.
(This process implements the VAX-11 by-reference mechanism for a
procedure or function.)

For a formal dynamic array parameter, the argument list must contain
the address of an array descriptor.

7.2 CALLING VAX/VMS SYSTEM SERVICES

You can declare any VAX/VMS system service as an external function or
procedure and then call it from your PASCAL program. When declaring a
system service, specify an identifier in the following form:

SYS$service-name

For example, the name of the $FAQ system service is SYS$FAO.

7-6

CALLING CONVENTIONS

You pass parameters to the system service according to its particular
requirements: a value, an address, or the address of a descriptor may
be needed, as described in Section 7.1.2. To invoke the system
service, use a function or procedure call in your PASCAL program. See
the VAX/VMS System Services Reference Manual for a full description of
each system service.

The system provides three files containing condition symbol
definitions. When you declare a system service or Run-Time Library
procedure, you should specify the appropriate file in the CONST
section to define the condition values in your PASCAL program. Use
the %INCLUDE directive to specify the file name, as described in the
VAX-11 PASCAL Language Reference Manual.

The ·three files are SYS$LIBRARY:LIBDEF.PAS, SYS$LIBRARY:MTHDEF.PAS,
and SYS$LIBRARY:SIGDEF.PAS, as described below.

SYS$LIBRARY:LIBDEF.PAS

This file contains definitions for all condition symbols from the
general utility Run-Time Library procedures. These symbols have the
form:

LIB$_xyz

For example:

LIB$ NOTFOU

SYS$LIBRARY:MTHDEF.PAS

This file contains definitions for
mathematical procedures library.

MTH$_xyz

For example:

MTH$_SQUROONEG

SYS$LIBRARY:SIGDEF.PAS

all condition symbols from
These symbols have the form:

the

This file contains miscellaneous symbol definitions used in condition
handlers. These symbols have the form:

SS$_xyz

For example:

SS$ FLTOVF

7.2.1 Calling System Services by Function Reference

In most cases, you will want to declare a system service as a function
so that you can check its return status. Each system service returns
a VAX-11 condition value indicating whether completion was successful.
These condition values can be interpreted as integer codes that
correspond to symbolic names such as SS$ ACCVIO. Odd numbered codes
indicate successful completion and even numbered codes indicate
failure.

7-7

CALLING CONVENTIONS

For example, the following procedure defines and calls the Create
Mailbox (SYS$CREMBX) system service.

PROCEDURE Create_Mailpox;

CONST %INCLUDE 'SYS$LIBRARY:SIGDEF.PAS'

TYPE Status = (Int Stat, Bool_Stat);
Word= 0 •• 65535;
Sub63 = 1 •• 63;
Chan Stat = (Int Chan,Dummy_Chan);
Chan-Type = PACKED RECORD

-CASE Chan Stat OF

END;

Int Chan : (Chan No : INTEGER);
Dummy_Chan (Bot_Chan : Word)

VAR Mbx Rec : RECORD
CASE Status OF

END;

Int Stat : (Mbx Int : INTEGER);
BooT Stat : (Mbx_Bool : BOOLEAN)

Chan_Rec : Chan_Type;

FUNCTION SYS$CREMBX (%IMMED PRMFLG : INTEGER;
Var Chan : Chan Type;

BEGIN

%IMMED Maxmsg, Bufquo, Promsk, Acmode : INTEGER;
%STDESCR Lognam : PACKED ARRAY [Sub63] OF CHAR):
INTEGER; EXTERN;

WITH Mbx Rec DO BEGIN

END;

Mbx-Int := SYS$CREMBX(O,Chan Rec,O,O,O,O,'Mailbox');
IF NOT Mbx Bool THEN BEGIN -

END

WRITELN ('Error when trying to create mailbox');
HALT
END

The function reference allows a return status to be stored in the
record Mbx Rec. If the function's return status is false (represented
by any even integer), indicating failure, an error occurs and error
processing can be undertaken. You can also check for a particular
return status, such as lack of privileges, by comparing the return
status to one of the status codes defined by the system. For example:

IF Mbx Rec.Mbx Int = SS$ NOPRIV THEN
WRITELN (1 No privilege to create mailbox');

Refer to the VAX/VMS System Services Reference Manual for information
about return status codes. The relevant return status codes are
described with each system service.

7-8

CALLING CONVENTIONS

7.2.2 Calling System Service as Procedures

If you do not need to check the return status, you can declare a
system service as an external procedure rather than as an external
function. Procedure calls to system services are made in the same way
that calls are made to any other procedure. For example, to use the
Create Mailbox system service, define and call the procedure
SYS$CREMBX, as follows:

PROCEDURE SYS$CREMBX (%IMMED PRMFLG : INTEGER;
VAR Chan : Chan Type;
%IMMED MAXMSG, Bufquo, Promsk, Acmode : INTEGER;
%STDESCR Lognam : ARRAY [Sub63] OF CHAR);
EXTERN;

SYS$CREMBX (0,Chan_Rec,O,O,O,O,'Mailbox');

You should declare Chan Rec and Chan_Type as in the previous section.

This procedure call corresponds to the function reference, but does
not a~low you to test the status code returned by the system service.

7.2.3 Passing Parameters to System Services

Most system services require input parameters to be passed as
immediate values. When declaring these parameters, you must use the
%IMMED mechanism specifier. Some system services, however, require
input parameters to be passed by-reference. For input parameters
passed by-reference, you should use the default (that is, omit the
mechanism specifier) so that the actual parameters can be expressions.

In addition, most system services require output parameters to be
passed by-reference. For these parameters, you must use the VAR
mechanism specifier to ensure that PASCAL correctly interprets the
output data. The VAX/VMS System Services Reference Manual lists the
mechanism by which each parameter to a system service must be passed.

7.2.3.l Input and Output By-Reference Parameters - You may need to
tell the system service where to find input values and where to store
output values. Thus, you must ascertain the hardware data type of the
parameter: byte, word, longword, or quadword.

For input parameters that refer to byte, word, or longword values, you
can specify either constants or variables. If you specify a variable,
it must be of a type that is allocated an equal or greater amount of
storage than is allocated to the hardware data type required.

For output parameters, you must declare a variable of exactly the
length required, to avoid including extraneous data. For example, if
the system returns a byte value in a word-length variable, the
leftmost 8 bits of the variable will not be overwritten on output and
the variable will not contain the data you expect. Table 7-1 lists
the suggested input and output variable types.

7-9

CALLING CONVENTIONS

Table 7-1
Suggested Variable Data Types

VAX/VMS Hardware Input Parameter Output Parameter
Type Required Declaration Declaration

Byte INTEGER, CHAR CHAR

Word INTEGER Appropriate packed
record

Longword INTEGER INTEGER

Quadword Properly dimensioned Properly dimensioned
array array

To store the output produced by a system service, you must allocate
sufficient space to contain the output. You can do so by declaring
variables of the proper size. For example, the Create Mailbox
(SYS$CREMBX) system service returns a 2-byte value. Thus, you can set
up storage space as follows:

TYPE Word= 0 •• 65535;
Sub63 = 1. .63;
Chan Type PACKED RECORD

- Bot Chan : WORD
END;

VAR Chan Rec Chan_Type;

VALUE Chan Rec := (0);
FUNCTION SYS$CREMBX (%IMMED PRMFLG : INTEGER;

VAR Chan : Chan Type;
%IMMED Maxmsg, Bufquo, Promsk, Acmode : INTEGER;
%STDESCR Lognam : PACKED ARRAY [Sub63] OF CHAR):
INTEGER; EXTERN;

Mbx Rec.Mbx Int := SYS$CREMBX (0,Chan_Rec, O, O, O, O,'Mailbox');

If the output is a quadword value, you must declare an array or record
of the proper size. For example, the Get Time (SYS$GETTIM) system
service returns the time as a quadword binary value. Thus, you would
need to specify the following:

TYPE Quad= ARRAY [1 •• 2] OF INTEGER;

VAR Systim : Quad;
!stat : INTEGER;

FUNCTION SYS$GETTIM (VAR F_Systim

ISTAT := SYS$GETTIM (Systim);

7-10

Quad) : INTEGER; EXTERN:

CALLING CONVENTIONS

7.2.3.2 Optional Parameters - VAX-11 PASCAL does not allow you to
omit parameters from proc~dure or function calls. If you choose not
to supply an optional parameter, you should pass the value zero using
the immediate value (%IMMED) mechanism. For example, the Translate
Logical Name (SYS$TRNLOG) system service has three optional
parameters. If you do not specify values for these parameters, you
must include zeros in their places, as follows:

!stat := SYS$TRNLOG ('Cygnus', Namlen,Namdes, 0,0,0);

7.2.3.3 Passing Character Parameters - Some VAX/VMS system services
require character parameters for either input or output. For example,
the Translate Logical Name (SYS$TRNLOG) system service accepts a
logical name as input and returns the associated logical name or file
specification, if any, as output.

VAX/VMS system services usually require strings to be passed by string
descriptor. Specify %STDESCR in the function or procedure declaration
to pass the required string parameters by string descriptor. On
input, a character constant or packed array of characters must be
passed to the system service by descriptor. On output, two parameters
are required: (1) a packed array of characters to hold the output
string and (2) an INTEGER variable, which is set to the actual length
of the output string. For example:

TYPE Word= 0 •• 65535;
Sub63 = 1 •• 63;
string_Buf =PACKED ARRAY [1 •• 128] OF CHAR;

VAR Icode : INTEGER;
Namlen WORD;
Namdes : String_Buf;

PROCEDURE Error;

FUNCTION SYS$TRNLOG (%STDESCR Cygnus : PACKED ARRAY [Sub63] OF CHAR;
VAR Rsllen : Word;

BEGIN

stdescr rslbuf : String Buf;
%IMMED Table, Acmode, Dsbmsk : INTEGER) : INTEGER; EXTERN;

Icode := SYS$TRNLOG ('Cygnus', Namlen,Namdes,0,0,4);
IF NOT ODD (Icode) THEN Error;

The logical name Cygnus is translated to its associated name or file
specification, and the output values (length and associated name or
file specification) are stored in the locations you specified
Namlen and Namdes, respectively. The last parameter, with the value
4, causes the system to disable its search of the process logical name
table; only the system and group tables are searched.

Section 7.4 presents another, complete system service example.

7-11

CALLING CONVENTIONS

7.3 CALLING RUN-TIME LIBRARY PROCEDURES

The VAX-11 Run-Time Library provides mathematical procedures that you
can call from PASCAL programs. These procedures are described in the
VAX-11 Run-Time Library Reference Manual.

You can invoke a Run-Time Library procedure from a PASCAL program by
defining it as an external function and including the appropriate
function reference. For example:

VAR Seed Val : INTEGER;
Rand=Rslt : REAL;

FUNCTION MTH$RANDOM (Seed : INTEGER)

Rand Rslt := MTH$RANDOM(SEED_VAL);

REAL; EXTERN;

This example· uses the
(MTH$RANDOM) •

uniform pseudo random number generator

When defining a function for a Run-Time Library procedure, you should
note the following:

• The mechanism by which each parameter is
(by-immediate-value, by-reference, or by-descriptor)

I

• The types appropriate for the parameters and the result

passed

In the pseudorandom number generator, the seed parameter is passed by
reference and the result is a real number, as shown.

7.4 COMPLETE SYSTEM SERVICE EXAMPLE

This section presents a sample PASCAL procedure that declares and
calls the Get Job/Process Information (SYS$GETJPI) system service.
The procedure declares SYS$GETJPI as an INTEGER function, so that upon
return, it can check for successful completion.

SYS$GETJPI is used here to get the process identification and name of
the current process. When used for this purpose, SYS$GETJPI requires
information in only the fourth of seven parameters. The first,
second, third, fifth, sixth, and seventh parameters must be null. The
fourth parameter contains the address of a list of descriptors that
describe the specific information requested and point to buffers to
receive the information. In this example, the list is constructed as
a record. It contains fields corresponding to each required item as
noted in the description of SYS$GETJPI in the VAX/VMS System Services
Reference Manual.

PROCEDURE Getjpinfo (VAR Name: Prcnam; VAR ID: INTEGER);

(*This procedure calls the SYS$GETJPI system service to
get the process ID and process name, which are
used as formal parameters. It uses these types
and variables:

Word -- 16 bits to contain buffer length and request code
Ptr Pid -- Address of process ID
Ptr-Pidlen -- Address of process ID length
Ptr-Prcnarn -- Address of process name string
Ptr-Prcnarnlen -- Address of length of process name string
Jpirec -- Record containing item list parameter
!code -- Status returned by SYS$GETJPI function

7-12

CALLING CONVENTIONS

The following type is declared in the main program:
PRCNAM =PACKED ARRAY [1 •• 15] OF CHAR*)

CONST Null = O;

TYPE Word= 0 •• 65535;
Recj = RECORD

END;

Pidinfo PACKED RECORD
Pidlen, Jpi$ Pid Word
END;

Ptr Pid : AINTEGER;
Ptr-Pidlen A INTEGER;
Prcnaminfo : PACKED RECORD

Prcnamlen, Jpi$ Prcnam
END;

Ptr Prcnam : APrcnam;
Ptr-Prcnamlen : AINTEGER;
Endlist : INTEGER

WORD

VAR !code : INTEGER;
Jpirec : Recj;

FUNCTION SYS$GETJPI (%IMMED A,B,C : INTEGER; VAR Itmlst : Recj;
%IMMED X,Y,Z : INTEGER) : INTEGER; EXTERN;

(*A,B,C and X,Y,Z are null parameters*)

BEGIN

(*Set up record parameter*)

WITH Jpirec DO

END;

BEGIN
Pidinfo.Pidlen := 4; (*length of ID buffer*)
Pidinfo.Jpi$ Pid := %x319; (*Hex of JP!$ PID*)
NEW (Ptr Pidf; (*Get address-of ID*)
Ptr PidA-:= O; (*Zero ID variable*)
NEW-(Ptr Pidlen); (*Get address of length*)
Ptr PidlenA := O; (*Zero ID length variable*)
Prcnaminfo.Prcnamlen := 15; (*Length of name buffer*)
Prcnaminfo.Jpi$_Prcnam := %x31C;

(*Hex of JP!$ PRCNAM*)
NEW (Ptr Prcnam); (*Get address-of name*)
Ptr PrcnamA := • •;

(*Blank-fill name string*)
NEW (Ptr Prcnamlen); (*Get address of length*)
Ptr PrcnamlenA := O; (*Zero name length variable*)
ENDLIST := 0 (*List must end with 0*)

(*Call function and return status in STATUS variable*)

END;

!code := SYS$GETJPI (Null, Null, Null, Jpirec, Null, Null, Null);
IF NOT ODD(Icode'jTHEN (*If error, *)

BEGIN I

WRITELN ('Error in GETJPI process'); (*print error message*)
HALT (*and halt*)

END
ELSE

BEGIN
NAME := Jpirec.Ptr PrcnamA;
ID := Jpirec.Ptr PTdA
END -

7-13

(*If successful,*)
(*assign name to Name param*)
(*and assign id to ID param*)

CHAPTER 8

ERROR PROCESSING AND CONDITION HANDLERS

During the execution of a VAX-11 PASCAL program, various conditions,
including errors or exceptions can occur. These conditions result
from errors during I/O operations, invalid input data, incorrect calls
to library routines, errors in arithmetic, or system-detected errors.
VAX-11 PASCAL provides two methods of error control and recovery:

• Run-Time Library default error-processing procedures

• VAX-.11 Condition Handling Facility (including user-written
condition handlers)

These error-processing methods are complementary and can be used in
the same program.

The Run-Time Library can provide all condition handling needed by an
application program. The Run-Time Library provides default error
processing by generating error messages for all error or exception
conditions that occur during the execution of a PASCAL program.
Section 8.1 describes error processing by the Run-Time Library as
applied to VAX-11 PASCAL. Appendix A describes the error messages
that can be generated for a PASCAL program. ·

The VAX-11 Condition Handling Facility provides, at the lowest level,
all condition handling for the Run-Time Library and can provide
routines (user-written condition handlers) for processing conditions
that occur during your program's execution. The use of condition
handlers requires considerable programming experience and should not
be undertaken by novice users. You should understand the condition
handling descriptions in the VAX/VMS System Services Reference Manual,
the VAX-11 Run-Time Library Reference Manual, or the VAX-11
Architecture Handbook before attempting to write a condition handler.·

The following terms are used in this chapter:

• Condition handler -- A function that has been specified by a
particular routine as the handler to be called when an
exception condition is signaled.

• Condition value -- An INTEGER value
particular condition.

that identifies a

• Establish -- The process of placing the address of a condition
handler in the stack frame of the current routine activation.
A condition handler established for a routine activation is
automatically called when a condition occurs. In PASCAL,
condition handlers are established by means of the
LIB$ESTABLISH routine.

8-1

ERROR PROCESSING AND CONDITION HANDLERS

• Routine activation -- The environment in which a routine
executes. This environment includes a unique stack frame on
the run-time stack; the stack frame contains the address of a
condition handler for the routine activation. A new current
routine activation is created every time a routine is called;
the routine activation is deleted when the routine returns.

• Program Exit Status -- The program completion status at
program completion.

• Resignal -- The means by which a condition handler indicates
that the signaling facility is to continue searching for a
condition handler to process a previously signaled error. To
resignal, a condition handler returns the SS$ RESIGNAL value.

• Signal -- The means by which the occurrence of an exception
condition is made known. Signals are generated by the
operating system in response to I/O events and hardware
errors, by the system supplied library routines and by user
routines. All signals are initiated by calling the signaling
facility. There are two entry points to the signaling
facility.

- LIB$SIGNAL -- Used to signal a condition and, possibly,
to continue program execution

- LIB$STOP -- Used to signal a severe error and discontinue
program execution, unless a condition handler performs an
unwind operation

• Stack frame -- A standard data structure built on the stack
during a procedure call, starting from the location addressed
by .the FP to lower addresses and popped off during a return
from procedure.

• Unwind -- To return control to a particular routine
activation, bypassing any intermediate procedure activations.
For example, if X calls Y and Y calls Z and Z detects an
error, a condition handler associated with X or Y can unwind
to x, bypassing Y. Control returns to X immediately following
the point at which X called Y.

8.1 RUN-TIME LIBRARY DEFAULT ERROR PROCESSING

The Run-Time Library, by default, prints a message and terminates
PASCAL program execution when a run-time error occurs. These default
actions occur unless your program includes a condition handler.

Run-time errors are reported by default in the following format:

%PAS-F-code, text

The code is an abbreviation of the error message text. VAX-11 PASCAL
run-time errors and recovery procedures are described in Appendix A.
Most Run-Time Library routines provide their own error messages, as
described in the VAX-11 Run-Time Library Reference Manual.

8-2

ERROR PROCESSING AND CONDITION HANDLERS

8.2 OVERVIEW OF VAX-11 CONDITION HANDLING

When the VAX/VMS system creates a user process, a system-defined
condition handler is established in the absence of any user-written
condition handler. The system-defined handler processes errors that
occur during execution of the user image when no user-defined handlers
are present. Thus, by default, a run-time error causes the
system-defined condition handler to print one of the standard error
messages and to terminate or continue execution of the image,
depending on the severity code associated with the error.

When a condition is signaled, the system searches for condition
handlers to process the condition. The system conducts the search for
condition handlers by proceding down the stack, frame by frame, (see
Section 8.2.1 for definition) until a condition handler is found that
does not resignal. The default handler calls the system's message
output routine to send the appropriate message to the user. Messages
are sent to the SYS$0UTPUT file and to the SYS$ERROR file, if both
files are present. If the condition is not a severe error, program
execution continues. If the condition is a severe error the default
handler forces program termination and the condition value becomes the
program exit status.

You can create and establish your own condition handlers according to
the needs of your applications. For example, your condition handler
could create and display messages that. specifically describe
conditions encountered during execution of an application program,
instead of relying on the standard system error messages.

8.2.1 Condition Signals

A condition signal consists of a call to one of
facility entry points, LIB$SIGNAL and LIB$STOP.
must be declared external, for example:

the two signaling
These entry points

PROCEDURE LIB$SIGNAL (%IMMED Condition : INTEGER); EXTERN;

PROCEDURE LIB$STOP (%IMMED Condition : INTEGER); EXTERN;

If a condition occurs in a routine that cannot handle it, notification
is passed to other active routines by issuing a signal. If the
current routine can continue after the signal is propagated,
LIB$SIGNAL is called. A higher-level routine can then determine
whether program execution is to continue. If the nature of the
condition does not allow the current routine to continue, LIB$STOP is
called.

Condition values are usually expressed as condition symbols, for
example:

LIB$SIGNAL (MTH$_FLOOVEMAT);

Additional parameters can be included to provide
information about the error.

supplementary

When called, the signaling facility searches for condition handlers by
exam1n1ng the preceding stack frames until it activates a condition
handler that does not resignal.

8-3

ERROR PROCESSING AND CONDITION HANDLERS

8.2.2 Handler Responses

A conditioD handler responds to an exception condition by taking
action in three major areas:

• Condition correction

• Condition reporting

• Condition control

First, the handler determines whether the condition is
If possible, the handler takes the appropriate action,
continues. If the handler cannot correct the condition,
may be resignaled. That is, the handler requests
condition handler be located to process the condition.

correctable.
and execution
the condition
that another

Condition reporting performed by handlers can involve one or more of
the following actions:

• Maintaining a count of exceptions encountered during program
execution

• Resignaling the same condition to send the appropriate message
to your terminal or log file

• Changing the severity field of the condition value and
resignaling the condition

• Signaling a different condition, for example, to produce a
message oriented to a specific application

Execution can be affected in a numb~r of w~ys:

• Continuing from the signal. If the signal was issued through
a call to LIB$STOP, the program exits.

• Unwinding to the establisher at the point of the call that
resulted in the exception. The handler can determine the
function value returned by the called routine.

• Unwinding to the establisher's caller (the routine that called
the routine that established the handler). The handler can
determine the function value returned by the called routine.

8.3 WRITING CONDITION HANDLERS

The following sections describe how to code and establish condition
handlers and provide some simple examples. See the VAX-11
Architecture Handbook, the V_A~X_-_l_l~R_u_n_-_T~im~e~L_i_b_r_a_r_y __ ~R_e_f_e_r_e_n_c_e~~M_a_n_u_a_l,
and the VAX/VMS System Services Reference Manual for more details on
condition handlers.

8-4

ERROR PROCESSING AND CONDITION HANDLERS

8.3.1 Establishing and Removing Handlers

When a routine is called, a condition handler is not initially
established. To use a condition handler, first define both the
Run-Time Library procedure LIB$ESTABLISH and the condition handler as
follows:

FUNCTION HANDLER : INTEGER; EXTERN;
PROCEDURE LIB$ESTABLISH (%IMMED FUNCTION Handler

EXTERN;

LIB$ESTABLISH (ERR_HANDLER)

INTEGER);

To establish the handler, call LIB$ESTABLISH. To remove an
established handler, define the Run-Time Library procedure LIB$REVERT,
and call as follows:

PROCEDURE LIB$REVERT; EXTERN;

LIB$REVERT

As a result of this call, the condition handler established in the
current stack frame is removed. When a routine returns, any condition
handler established during that activation is automatically removed.

Note that condition handlers written in PASCAL can access only their
own local data and data declared at program or module level.

8.3.2 Parameters for Condition Handlers

A PASCAL condition handler is an INTEGER function that is called when
a condition is signaled. Two formal VAR parameters must be defined
for a condition handler:

1. An integer array to refer to the parameter list from the call
to the signal routine (the signal parameters); that i'S(, the
1 ist of parameters included in calls to LIB$SIGNAL----0-r-
LIB$STOP (see Section 8.2.1).

2. An integer array to refer to information concerning the
routine activation that established the condition handler
(the mechanism array).

For example, a condition handler may be defined as follows:

TYPE Mecharr = ARRAY[0 •• 4] OF INTEGER;
Sigarr =ARRAY [0 •• 9] OF INTEGER;

FUNCTION HANDLER (VAR Sigargs
VAR Mechargs

BEGIN

END;

8-5

Sigarr;
Mecharr) INTEGER;

ERROR PROCESSING AND CONDITION HANDLERS

PROCEDURE LIB$ESTABLISH (%IMMED FUNCTION Handler INTEGER); EXTERN;

BEGIN

LIB$ESTABLISH (HANDLER);

END.

The array Sigargs receives the values listed below from the signal
procedure.

Value

Sigargs[O]

Sigargs[l]

Meaning

Indicates how many parameters are being passed
in this array (parameter count).

Indicates the condition being signaled
(condition value). See Section 8.3.4 for a
discussion of condition values.

Sigargs[2 to n] Indicates optional parameters supplied in the
call to LIB$SIGNAL or LIB$STOP; note that the
dimension bounds for the Sigargs array should
specify as many entries as necessary to refer to
the optional parameters.

The array Mechargs receives information about the procedure activation
status of the routine that established the condition handler. The
values from this routine are listed below.

Value

Mecha rg s [0]

Mechargs[l]

Mechargs[2]

Mechargs[3]

Mechargs[4]

Meaning

Specifies the number of parameters in this array
(4) •

Contains the address of the stack frame that
established the handler.

Contains the number of calls that have been .made
(that is, the stack frame depth) from the
routine activation, up to the point at which the
condition was signaled.

Contains the value of register RO at the time of
the signal.

Contains the value of register Rl at the time of
the signal.

8-6

ERROR PROCESSING AND CONDITION HANDLERS

8.3.3 Handler Function Return Values

Condition handlers specify
subsequent execution. The
are listed below.

function return values to control
function return values and their effects

Value Effect

SS$ CONTINUE Continues execution from
signal was issued by
program exits.

the signal. If the
a call to LIB$STOP, the

SS$ RESIGNAL Resignals to continue the search for a condition
handler to process the condition.

In addition, a condition handler can request a stack unwind by calling
SYS$UNWIND before returning. Declare SYS$UNWIND as follows:

FUNCTION SYS$UNWIND (Depth : INTEGER; %IMMED Newpc : INTEGER):
INTEGER; EXTERN;

When SYS$UNWIND is called, the function return value is ignored. The
handler modifies the saved registers RO and Rl in the mechanism
parameters to specify the called procedure's function value.

A stack unwind can be made to one of two places:

• Unwind to the establisher, at the point of the call that
resulted in the exception. Specify:

Status := SYS$UNWIND (Mechargs[2],0);

• Unwind to the routine that called the establisher. Specify:

Status := SYS$UNWIND (Mechargs[2]+1,0);

8-7

ERROR PROCESSING AND CONDITION HANDLERS

8.3.4 Condition Values and Symbols

VAX-11 uses condition values to indicate that a called routine has
either executed successfully or failed, and to report exception
conditions. Condition values are 32-bit packed records (usually
interpreted as integers), consisting of fields that indicate which
system component generated the value, the reason the value was
generated, and the severity of the condition. The definition of a
condition value has the form:

TYPE Condition Value=PACKED RECORD

(* Field Bits

Severity:0 •• 7; (*2:0

Message:0 •• 8191; (*15:3

Facility:0 •• 4095; (*27:16

Control:0 •• 15 (*31:28

END;

Meaning*)

Specifies a severity code
follows:

0 - warning
1 - success
2 - error
3 - information
4 - severe error

5,6,7 - reserved *)

as

Describes the condition that
occurred. Bit 15 = 1 indicates
that the message is specific to a
single facility. Bit 15 = O
indicates a system-wide
message.*)

Identifies the software component
that generated the condition
value. Bit 27 = 1 indicates a
customer facility. Bit 27 = O
indicates a DIGITAL facility.*)

Control bits.*)

A warning severity code (0) indicates that output was produced, but
the results may be unpredictable. An error severity code (2)
indicates that output was produced even though an error was detected.
Execution can continue, but the results may not be correct. A severe
error code (4) indicates that the error was of such severity that
output was not produced. An even-numbered error code is a warning. A
condition handler can alter the severity code of a condition value to
allow execution to continue or to force an exit, depending on the
circumstances.

In the example in Section 8.3.2 the condition value is passed as the
second element of the array Sigargs. Occasionally, a condition
handler may require a particular condition be identified by an exact
match. That is, each bit of the condition value (31:0) must match the
specified condition. For example, you may want to process a floating
overflow condition only if the severity code is still 4 (that is, if
no previous congition handler has changed the severity code). As
noted above; a typical condition handler response is to change the
severity code and resignal.

8-8

ERROR PROCESSING AND CONDITION HANDLERS

In many cases, however, response to a condition, regardless of the
value of the severity code is desired. To ignore the severity and
control fields of a condition value, declare and call the
LIB$MATCH_COND function, as follows:

FUNCTION LIB$MATCH COND (Condval,Compval
BOOLEAN;EXTERN;

INTEGER):

IF LIB$MATCH COND (Sigargs [1], PAS$ Erraccfil)
THEN... -

8.3.5 Floating-Point Operation

Some conditions involving floating-point operations require special
action to continue execution. Operations that involve, for example,
floating overflow, dividing by O, or computing the square root of a
negative number, storing a unique result known as a floating reserved
operand. If a subsequent floating-point operation accesses this
result, a hardware reserved operand fault is generated and signaled.
This can continue indefinitely if the condition handler does not
change the reserved operand, because the operand is accessed each time
the computation is retried.

To allow computation to
defining and calling
follows:

continue, change the reserved operand by
the Run-Time Library routine LIB$FIXUP_FLT, as

FUNCTION LIB$FIXUP FLT (VAR Sigadr : Sigvector;
VAR Mechadr : Mechvector; VAR Op : DOUBLE):
INTEGER; EXTERN;

Status:= LIB$FIXUP_FLT(Sigargs,Mechargs,Newoperand);

The types Sigvector and Mechvector in this example refer to the types
of the signal and mechanism argument vectors, which are assumed to be
defined in the calling procedure. The third parameter is specified as
a double-precision variable to ensure that the reserved operand is
changed correctly regardless of precision. Specify O.ODO if there is
no special value for this parameter. For more information on
LIB$FIXUP_FLT, see the VAX-11 Run-Time Library Reference Manual.

8-9

ERROR PROCESSING AND CONDITION HANDLERS

8.4 CONDITION HANDLER EXAMPLE

The following example illustrates how to declare and use a condition
handler with a typical PASCAL procedure. A condition handler is
established, that is called when an error occurs in a file opening
procedure. If the error is the general "Error opening/creating the
file," signified by the PAS$ ERROPECRE code, an unwind operation is
performed. Any other error Ts resignaled.

PROCEDURE Openhand;

(*This procedure shows how to establish and call a condition handler
from a PASCAL program. It uses these types:

Datarec -- a record type for the accounting file
Datafile -- a file type with components of type Datarec
Sigarr -- an array type for signal parameters
Mecharr -- an array type for mechanism parameters

It declares these global variables:

BEGIN

Flag -- a Boolean variable set to TRUE when an error occurs
New Accounts -- a file variable of type Datafile
Status -- an all-purpose function return status variable *)

CONST %INCLUDE 'SYS$LIBRARY:SIGDEF.PAS'

(*This file contains the PASCAL declarations of the condition
signals*)

TYPE Datarec = RECORD
Name : PACKED ARRAY [l •• 30)
Amount : REAL;
Cost REAL;
Date : PACKED ARRAY [l. .11)
END;

Datafile = FILE OF Datarec;
Sigarr =ARRAY [0 •• 9] OF INTEGER;
Mecharr =ARRAY [0 •• 4) OF INTEGER;

VAR Flag : BOOLEAN;
New Accounts : DATAFILE;
Status : INTEGER;

OF CHAR;

OF CHAR

PROCEDURE LIB$ESTABLISH (%IMMED FUNCTION Fixer : INTEGER); EXTERN;

(*The Run-Time Library procedure LIB$ESTABLISH will be called to
establish the condition handler*)

PROCEDURE Opener (VAR Accounts : Datafile);

(*This procedure will be called to open the file and write new
records in it. It also performs data entry and cleanup. Only
the OPEN processing is shown here for simplicity*)

(*Local variable declarations*)

FUNCTION HANDLER (VAR Sigargs : Sigarr; VAR Mechargs : Mecharr):

BEGIN

INTEGER;

(*This function will be called to handle a file opening error during
the OPENER procedure. It uses only globally declared variables,
except for the SYS$UNWIND and LIB$MATCH_COND functions.*)

FUNCTION SYS$UNWIND (Depth : INTEGER; %IMMED Newpc : INTEGER):
INTEGER; EXTERN;

FUNCTION LIBSMATCH COND (Condval, Compval : INTEGER):
BOOLEAN; EXTERN;

BEGIN
IF (LIBSMATCH COND (Sigargs{l), PasS_Erropecre)) THEN (*If error opening file,*)

BEGIN-

END;

Flag := True;
Status := SYS$UNWIND(Mechargs[21+1, 0)
END;

HANDLER :=SS$ RESIGNAL
(*end HANDLER*)

LIB$ESTABLISH (HANDLER); (*establish condition handler*)
OPEN (Accounts, '[DATA)Accounts.DAT',OLD, SEQUENTIAL);

(*Data entry, storage, and cleanup*)

(*set file error flag*)
(*and unwind*)

(*If some other error, resignal*)

END; (*End OPENER*)

(*This is the start of the outermost procedure*)

Flag :=FALSE; (*initialize Flag to FALSE for test below*)
OPENER (New Accounts); (*open the file*)
IF Flag THEN WRITELN ('Error in opening file')

(*Print message if error handler was called*)
END; (*End Openhand*)

8-10

CHAPTER 9

VAX-11 PASCAL SYSTEM ENVIRONMENT

This chapter describes the relationship between the VAX/VMS operating
system and the VAX-11 PASCAL compiler. It covers the following
topics:

• Use of program sections

• Storage of scalar and pointer types

• Storage of unpacked structured types

• Storage of packed structured types

• Representation of floating-point data

9.1 USE OF PROGRAM SECTIONS

The VAX-11 PASCAL compiler uses contiguous areas of memory, called
program sections, to store information about the program. The VAX-11
Linker controls memory allocation and sharing according to the
attributes of each program section. Table 9-1 lists the possible
program section attributes.

Attribute

PIC/NOPIC

CON/OVR

REL/ABS

GBL/LCL

SHR/NOSHR

EXE/NO EXE

RD/NORD

WRT/NOWRT

Table 9-1
Program Section Attributes

Meaning

Position independent or position dependent

Concatenated or overlaid

Relocatable or absolute

Global or local scope

Shareable or nonshareable

Executable or nonexecutable

Readable or nonreadable

Writeable or nonwriteable

9 1

VAX-11 PASCAL SYSTEM ENVIRONMENT

VAX-11 PASCAL implicitly declares three program sections: $GLBL,
$CODE, and $PDATA. Table 9-2 summarizes the usage and attributes of
these program sections.

Table 9-2
Program Section Usage and Attributes

Program
Section
Name Usage Attributes

$GLBL Read/write static data PIC, OVR, REL, GBL,
declared at module or NOSHR, NOEXE, RD, WRT
program level

$CODE Read-only generated PIC, CON, REL, LCL,
executable code SHR, EXE, RD, NOW RT

$PDATA Read-only constants PIC, CON, REL, LCL,
that need storage SHR, NOEXE, RD, NOW RT

Each module in your PASCAL program is named according to the
identifier specified in the program or module header. You can use the
module name to qualify the program section name in LINK commands. For
more information, refer to the VAX-11 Linker Reference Manual.

When the linker constructs an executable image, it divides the
executable image into sections. Each image section contains program
sections that have the same attributes. The linker controls memory
allocation by arranging image sections according to program section
attributes.

The linker allows you to use special options to change program section
attributes and to influence the memory allocation in the image. You
include these options in an options file, which is input to the
linker. The options and the file are described in the VAX-11 Linker
Reference Manual.

9.2 STORAGE OF SCALAR AND POINTER TYPES

When not part of a packed structure, the scalar types in PASCAL are
allocated storage space as summarized in Table 9-3.

Variables of scalar types, with the exception of DOUBLE variables, are
aligned on a boundary corresponding to their sizes. DOUBLE variables
are aligned on longword boundaries rather than on quadword boundaries.

Variables of subrange types are allocated and aligned in the same way
as variables of the associated scalar types. For example, an integer
subrange variable is allocated 1 longword and is aligned on a longword
boundary. A subrange of an enumerated type Days Of Week (with values
Sunday, Monday, Tuesday, and so on) is stored in T byte and aligned on
a byte boundary.

A pointer is simply a longword containing an address.

9-2

VAX-11 PASCAL SYSTEM ENVIRONMENT

Table 9-3
Storage of Scalar and Pointer Types

Type Storage Allocation

Character 8 bits (1 byte)

Boolean 8 bits (1 byte)

Integer, single, real 32 bits (1 longword)

Double 64 bits (1 quadword)

Enumerated 8 bits (1 byte) if
type contains 256
elements or less;
16 bits (1 word) if
type contains more
than 256 elements

Pointer 32 bits (1 longword)

9.3 STORAGE OF UNPACKED STRUCTURED TYPES

Alignment Boundary

Byte

Byte

Longword

Longword

Byte if type contains
256 elements or less;
word if type contains
more than 256 elements

Longword

The unpacked structured types (sets, arrays, and records) are stored
and aligned as described below. Note that this description applies
only to data items that are not part of another structure.

A set consists of 32 bytes (8 longwords) aligned on a longword
boundary.

An array is stored and aligned according to the type of its elements.
For example, each element of an array of integers is stored in 1
longword and aligned on a longword boundary. Similarly, each element
of a character array is stored in 1 byte and aligned on a byte
boundary.

Records are stored field by field according to the type of each field.
The type of the first field in the record establishes the alignment of
the entire record. Subsequent fields in the record are always aligned
on byte boundaries, regardless of the type of the first field. For
example:

VAR A RECORD
X INTEGER
Y : BOOLEAN
Z : INTEGER
END;

Record A is aligned on a longword boundary because its first field, X,
contains an integer value, which is stored in a longword. Figure 9-1
shows how this record is stored.

Bytes O through 3 (bits 0 through 31) contain the first field, X,
which is an integer longword value. Byte 4 (bits 32 through 39)
contains the Boolean value of Y, and bytes 5 through 8 (bits 40
through 71) contain the other integer longword value, Z.

9-3

VAX-11 PASCAL SYSTEM ENVIRONMENT

31 0

X(INTEGER) :A

Z(INTEGER) Y(BOOLEAN)

Z(INTEGER)

64

ZK-066-80

Figure 9-1 Storage of Sample Record

9.4 STORAGE OF PACKED STRUCTURED TYPES

Although you can pack any structured type, packing saves storage space
only for sets, arrays, and records. Packing files has no effect on
their storage.

In general, storage space for packed types is allocated according to
the "32-bit rule," as followi:

• Any data item that is 32 bits or less in length is packed into
as few bits as possible.

• Any data item over 32 bits long is allocated the smallest
possible number of bytes and is aligned on a byte boundary.

The sections below describe exactly how storage is allocated to each
packed type and note any exceptions to the general 32-bit rule. The
descriptions apply only to data items that are not part of another
structure.

9.4.1 Storage of Packed Sets

A packed set that is not a component of another packed structure is
byte-aligned. Each packed set is allocated space according to the
32-bit rule, based on the ordinal value of its largest element:

• If the ordinal value is less than or equal to 31, the set is
allocated the number of bits equal to the ordinal value plus
1. For example, a packed set of 2 •• 19 is allocated 20 bits.

• If the ordinal value is greater than 31, the set is allocated
the number of bits equal to the ordinal value plus 1, rounded
up to the nearest byte boundary. For example, a packed set of
subrange type 100 •• 101 is allocated 13 bytes (101+1 bits
rounded up to a byte boundary).

Since the size of a set is
values from 0 to 255,
longwords) of memory.

limited to 256 elements, with ordinal
a packed set can occupy at most 32 bytes (8

9.4.2 Storage of Packed Arrays

A packed array that is not a component of another packed structure is
aligned on a byte boundary. The elements of the array are packed to
the nearest bit. Table 9-4 lists the space requirements for elements
of packed arrays.

9-4

VAX-11 PASCAL SYSTEM ENVIRONMENT

Table 9-4
Storage of Packed Array Elements

Type

Boolean

Character

Integer, real, single

Double

Subrange of integer,
character, or
enumerated type

Enumerated types

Po inters

All structured types

1 bit

Storage
Allocation

8 bits (1 byte)

32 bits (1 longword)

64 bits (1 quadword)

Minimum number of bits in which the
largest and smallest possible values
can be expressed

Number of bits required for largest
ordinal value

32 bits (1 longword)

Same as structured types not in
packed array. However, if the total
size of the structu-r-ed type is
greater than 32 bits, the array
element is allocated a m1n1mum
number of bytes, that is, the 32-bit
rule applies. Structured types
requiring 32 bits or less space are
bit-aligned.

Note that integer subranges are packed
space needed to hold the largest or
more space. For example, each element
-128 •• 127 is allocated 8 bits. Each
OF 0 •• 7 is allocated 3 bits.

into the minimum amount of
smallest value, whichever needs
of PACKED ARRAY [1 •• 10] OF

element of PACKED ARRAY [1 •• 64]

Enumerated types are packed into the number of bits required to hold
the largest ordinal value. For example, an enumerated type with 16
values is allocated 4 bits, because its ordinal values are 0 through
15.

A packed array of an unpacked structured type saves no storage space.
The only effect of such a specification is to byte-align the array.
Instead, specify a packed array of a packed structured type. The
following two examples illustrate this difference.

Examples

1. TYPE Int Set= SET OF 0 •• 14;
VAR Int Arr PACKED ARRAY [1 •• 5] OF Int_Set;

An unpacked set of type Int Set is stored as 8 longwords.
Consequently, each element of Int Arr requires 8 longwords, for a
total of 40 longwords (640 bits) of space.

9-5

VAX-11 PASCAL SYSTEM ENVIRONMENT

2. TYPE Int Set= PACKED SET OF 0 •• 14;
VAR Int Arr : PACKED ARRAY [1 .• 5] OF Int_Set;

A packed set of type Int Set is allocated 15 bits. Each element
of Int Arr therefore requires 15 bits, for a total of 75 bits for
the entire array.

Storage for packed arrays of records and arrays of packed records is
allocated similarly.

Multidimensional arrays can also be packed. As for the other
structured types, you must specify packing at the innermost level to
gain any significant space advantage. For a 2-dimensional array, an
array of a packed array generally takes less space than a packed array
of an array, as in the following examples.

Examples

1. TYPE Internal Arr= Array [1 •• 5] of 0 •• 6;
VAR Sampl_Arr-: PACKED ARRAY [1 •• 5] OF Internal_Arr;

stored in a
requires 5

of type
occupies 25

Each element of an array of type Internal Arr is
longword. Each element of Sampl Arr, in turn,
longwords -- enough storage space -for 5 elements
Internal Arr. The entire array Sampl Arr therefore
longwords (800 bits).

2. VAR Sampl Arr PACKED ARRAY [1 •• 5,1 •• 5] OF 0 •• 6;
VAR Sampl=Arr : ARRAY [1 •• 5] OF PACKED ARRAY [1 •• 5] OF 0 •• 6;

Specifying PACKED for an array with multiple subscripts results
in packing only at the innermost level. Therefore, the two array
declarations in this example are equivalent. Each PACKED
ARRAY[l •• 5] of 0 •• 6 requires 15 bits. Because the packed arrays
are elements of an unpacked array, their size is rounded up to an
even 16 bits. The total size of each SAMPl ARR is therefore 80
bits. Example 3 shows a slightly more -efficient way of
allocating this array.

3. TYPE Internal Arr= PACKED ARRAY [1 •• 5] OF 0 •• 6;
VAR Samp2_Arr-: PACKED ARRAY [1 •• 5] OF Internal_Arr;

In this example, each element of Internal Arr requires only 3
bits because the array is packed. Each element of Samp2 Arr can
be stored in 15 bits, and the entire array occupies 75 bits.

4. TYPE Internal Arr= PACKED ARRAY [1 •• 5] OF 0 •• 6;
Samp3 Arr= PACKED ARRAY [1 •• 5] OF Internal Arr;

VAR Sample-: PACKED ARRAY [1 •• 5] OF Samp3_Arr; -

This example shows how you can maximize space savings for arrays
of more than two dimensions by specifying PACKED at every level.
As in Example 3, each element of Internal Arr requires 3 bits,
and each element of Samp3 Arr requires 15-bits. The entire array
Sample, then, requires 375 bits.

9.4.3 Storage of Packed Records

A packed record that is not a component of another packed structure is
aligned on a byte boundary. The fields within the record are
allocated space depending on their sizes and types.

9-6

VAX-11 PASCAL SYSTEM ENVIRONMENT

Fields of scalar types, if less than or equal to 32 bits long, are
packed to the nearest bit. A field that requires more than 32 bits is
aligned on a byte boundary and is allocated space as for a field of an
unpacked record.

Except for its alignment, a field that contains an unpacked array,
set, or record occupies the same amount of space in a packed or
unpacked record. To pack such a field, you must explicitly declare
the type of the field to be packed. For example:

VAR Sample! : PACKED RECORD
A -128 •• 127;
B : BOOLEAN;
C : ARRAY [1 •• 5] OF 0 •• 30
END;

This record is byte-aligned and is allocated storage as follows:

Field

A
B
c

Storage Allocation

8 bits
1 bit

160 bits

Field A, an integer subrange, is stored in the smallest possible
amount of space, 7 data bits plus a sign bit. Field B, a Boolean,
takes up 1 bit, leaving 7 bits unused. Field C is an unpacked array,
which is allocated storage as for integers, 32 bits (1 longword) for
each of 5 elements.

Figure 9-2 shows how this record is stored.

31 15 8 7 0

Cl 1] unused I BI A

C[2) C[1]

C[3) C[2]

C[4] C[3]

C(5] C[4]

C[5]

175 167

ZK-067-80

Figure 9-2 Storage of Sample Record

This record requires a total of 176 bits (11 words) of storage.

Compare the preceding example with the next one, which specifies a
packed array.

VAR Sample2 PACKED RECORD
A -128 •• 127;
B : BOOLEAN;
C : PACKED ARRAY [1 •• 5] OF 0 •• 30
END;

9-7

VAX-11 PASCAL SYSTEM ENVIRONMENT

This record is byte-aligned and is allocated storage as follows:

Field

A
B
c

Storage Allocation

8 bits
1 bit

25 bits

Fields A and B are allocated the same amount of space in both sample
records. Field c, however, requires much less space in SAMPLE2
because it is packed. Each element of the packed array C occupies
only 5 bits. Figure 9-3 shows how this record is stored.

31 29 24 19 14 9 8 7 0

C[5) C[4) C[3) C[2) C[l] B A

C[5)

......._
33 32

ZK-068-80

Figure 9-3 Storage of Sample Packed Record Containing Packed Array

This record requires a total of 34 bits of storage.

9.5 REPRESENTATION OF FLOATING-POINT DATA

The following sections summarize the internal representation of
single-precision (REAL and SINGLE types) and double-precision (DOUBLE
type) floating-point numbers. For more detailed information, see the
VAX-11 Architecture Handbook.

9.5.1 Single-Precision Floating-Point Data (SINGLE, REAL Types)

A single-precision floating-point value is represented by four
contiguous bytes. The bits are numbered from the right O through 31,
as shown in Figure 9-4.

15 14 76 0

s I EXPONENT l FRACTION :A

FRACTION

31 16

ZK-069-80

Figure 9-4 Single-Precision Floating-Point Data Representation

9-8

VAX-11 PASCAL SYSTEM ENVIRONMENT

A single-precision floating-point value is specified by its address A,
the address of the byte containing bit O. The form of the value is
sign magnitude with bit 15 the sign bit, bits 14 through 7 an excess
128 binary exponent, and bits 6 through 0 and 31 through 16 a
normalized 24-bit fraction with the redundant most significant
fraction bit not represented. Within the fraction, bits of increasing
significance go from 16 through 31 and 0 through 6.

The 8-bit exponent field encodes the values 0 through 255. An
exponent value of O, with a sign bit of O, indicates that the
floating-point value has a value of O. Exponent values of 1 through
255 indicate binary exponents of -127 through +127. An exponent value
of O, with a sign bit of 1, is taken as a reserved operand.
Floating-point instructions processing a reserved operand take a
reserved operand fault.

The value of a floating-point number is in the approximate range of
.29*(10**-38) through l.7*(10**38). The precision of a
s~ngle-precision value is approximately one part in 2**23, or 7
decimal digits.

9.5.2 Double-Precision Floating-Point Data (DOUBLE Type)

A double-precision floating-point value is represented by 8 contiguous
bytes. The bits are numbered from the right 0 through 63, as shown in
Figure 9-5.

15 14 76 0

sI EXPONENT I FRACTION :A

FRACTION

FRACTION

FRACTION

63 48
ZK-070-80

Figure 9-5 Double-Precision Floating-Point Data Representation

A double-precision floating-point value is specified by its address A,
the address of the byte containing bit O. The form of a
double-precision floating-point value is identical to a
single-precision floating-point .value except for an additional 32
low-significance fraction bits. Within the fraction, bits of
increasing significance are numbered 48 through 63, 32 through 47, 16
through 31, and 0 through 6.

The exponent conventions and approximate range of values are the same
for double-precision floating-point values as for single-precision
floating-point values. The prec1s1on of a double-precision
floating-point value is approximately one part in 2**55, or 16 decimal
digits.

9-9

APPENDIX A

DIAGNOSTIC MESSAGES

This appendix summarizes the error messages that can be generated by a
PASCAL program at compile time and at run time.

A.l COMPILER DIAGNOSTICS

VAX-11 PASCAL reports compile-time diagnostics in the source listing
(if one is created) and summarizes them on the terminal (in
interactive mode) or in the batch log file (in batch mode).
Compile-time diagnostics are preceded by the following:

w
%PAS { } DIAGN

F

A level of W indicates a warning-level error which will not prevent
your program from linking or executing. A level of F indicates a
fatal error which you must correct for your program to link and
execute properly.

The diagnostic messages that the PASCAL compiler can print are listed
below. All messages are printed with both number and text. Messages
with numbers less than 400 indicate serious syntax errors that you
must correct for proper compilation. Messages with numbers greater
than 400 indicate the use of VAX-11 PASCAL extensions and illegal
compiler options.

1 Error in simple type

The declaration for a base type of a set or the index type of an
array contains a syntax error.

2 Identifier expected

The statement syntax requires an identifier, but none can be
found.

3 PROGRAM or MODULE expected

The statement syntax requires the reserved word PROGRAM or
MODULE.

A-1

DIAGNOSTIC MESSAGES

4 ')' expected

The statement syntax requires the right-parenthesis character.

5 ':' expected

The statement syntax requires a colon character.

6 Illegal symbol

The statement contains an illegal symbol, such as a misspelled
reserved word or illegal character.

7 Error in parameter list

The parameter list contains a syntax error, such as a missing
comma, colon, or semicolon character.

8 OF expected

The statement syntax requires the reserved word OF.

9 '(' expected

10

11

12

13

14

The statement syntax requires the left-parenthesis character.

Error in type

The statement
is present.

' ['
The

' 1 '

The

END

The
of a

' .. ,

expected

statement

expected

statement

expected

compiler
compound

expected

syntax requires a data type, but no type identifier

syntax requires the left square bracket character.

syntax requires the right square bracket character.

cannot find the delimiter END, which marks the end
statement, subprogram, or program.

The statement syntax requires the semicolon character.

15 Integer expected

The statement syntax requires an integer, for example, as a
statement label.

A-2

DIAGNOSTIC MESSAGES

16 '=' expected

The statement syntax requires the equal sign to separate a
constant identifier from a constant value or to separate a type
identifier from a type definition.

17 BEGIN expected

The compiler cannot find the delimiter BEGIN, which marks the
beginning of an executable section.

18 • •• • expected

The compiler cannot find the range symbol (••),which is required
between the endpoints of the subrange.

19 Error in field-list

20

The field list in a record declaration contains a syntax error.

I I

' expected

The statement syntax requires a comma character.

21 Empty parameter (successive ',') not allowed

The parameter list attempts to specify
parameter, or contains an extra comma.
omit optional parameters.

22 Illegal (nonprintable) ASCII character

a null or missing
In PASCAL, you cannot

The program contains a character that is not a printable ASCII
character.

50 Error in constant

A constant contains an illegal character or is improperly formed.

51 ':=' expected

The statement syntax requires the assignment operator.

52 THEN expected

The compiler cannot find the reserved word THEN to complete the
IF-THEN statement.

53 UNTIL expected

The compiler cannot find the reserved word UNTIL to complete the
REPEAT statement.

A-3

DIAGNOSTIC MESSAGES

54 DO expected

The compiler cannot find the reserved word DO to complete the FOR
statement or the WHILE statement.

55 TO/DOWNTO expected

The compiler cannot find the reserved word TO or DOWNTO in the
FOR statement.

58 Invalid expression

The statement syntax requires an expression, but the first symbol
the compiler finds is not valid in an expression.

59 Error in variable

A reference to an array element or record field contains a syntax
error.

60 ARRAY expected

The compiler cannot find the reserved word ARRAY in the type
definition.

97 Strings in excess of 65535 characters not allowed in comparisons

Relational operators. cannot be applied to strings longer than
65535 bytes.

98 Parameter count exceeds 255

99

The number of parameters to a procedure or function cannot exceed
255.

End of input encountered before end of program.
aborted.

Compilation

The end of the input file was encountered before an entire
program had been parsed.

100 Array size too large

A declared array is larger than 2,147,483,647
2,147,483,647 bits for a packed array.

bytes or

101 Identifier declared twice

An identifier is declared twice
You can redeclare identifiers
sections.

A-4

within
only

a
in

declaration section.
different declaration

DIAGNOSTIC MESSAGES

102 Lowbound exceeds highbound

The lower limit of a subrange is greater than the upper limit of
the subrange, based on their ordinal values in their base type.

103 Identifier is not of appropriate class

The identifier names the wrong class of data. For example, it
names a constant where the syntax of the statement requires a
procedure.

104 Identifier not declared

The program uses an identifier that has not been declared.

105 Sign not allowed

A plus or minus sign has occurred before an expression of
nonnumeric type.

107 Incompatible subrange types

The subrange types are not compatible according to the rules of
type compatibility.

108 File not allowed in variant part

A file type cannot appear in the variant part of a record.

109 Type must not be REAL or DOUBLE

You cannot specify a real value here. Real values cannot be used
as array subscripts, control values for FOR loops, tag fields of
variant records, elements of set expressions, or boundaries of
subrange types.

110 Tagf ield type must be scalar or subrange

The tag field for a variant record must be a scalar or subrange
type.

111 Incompatible with tagfield type

The case label and the tag
These two items must be
compatibility rules.

field are
compatible

112 Index type must not be REAL or DOUBLE

of incompatible types.
according to the general

Array subscripts cannot be real values; if numeric, they must be
integer or integer subrange values.

A-5

DIAGNOSTIC MESSAGES

113 Index type must be scalar or subrange

Array subscripts must be scalar or subrange values, and cannot be
of a structured type.

114 Base type must not be REAL or DOUBLE

The base type of this set or subrange cannot be one of the real
types.

115 Base type must be scalar or subrange

The base type of this set or subrange must be scalar or subrange
values, and cannot be of a structured type.

116 Actual parameter must be a set of correct size

The actual parameter must be of correct size when passed as a VAR
parameter.

117 Undefined forward reference in type declaration: <name>

The base type of a pointer was not defined in the TYPE section.

118 VALUE initialization must be in main program

A VALUE initialization statement can appear only in the main
program block; you cannot initialize variables in subprograms.

119 Forward declared; repetition of parameter list not allowed

You cannot repeat the parameter list
declaration of a subprogram.

after the

120 Function result type must be scalar, subrange, or pointer

forward

The function specifies a result that is not a scalar, subrange,
or pointer type. Function results cannot be structured types.

121 File value parameter not allowed

A file cannot be passed as a value parameter.

122 Forward declared function; repetition of result type not allowed

The result of the function appears in both the forward
declaration and in the later complete declaration. The result
can appear only in the forward declaration.

123 Missing result type in function declaration

The function heading does not declare the type of the result of
the function.

A-6

DIAGNOSTIC MESSAGES

124 F-format for REAL and DOUBLE only

You can specify two integers in the field width (such as R:3:2)
for real, single, and double values only.

125 Error in type of predeclared function parameter

A parameter passed to a predeclared function is not of the
correct type.

126 Number of parameters does not agree with declaration

The number of actual parameters passed to the subprogram is
different from the number of formal parameters declared for that
subprogram. You cannot add or omit parameters.

127 Parameter cannot be element of a packed structure

You cannot
subprogram;
use it.

pass
you

one element of a packed structure to a
must pass the entire structure if you want to

128 Result type of actual function parameter does not agree with
declaration

The result of an actual function parameter is not of the type
specified in the formal parameter list.

129 Operands are of incompatible types

Two or more of the operands in an expression are of incompatible
types. For example, the program attempted to compare a numeric
and a character variable.

130 Expression is not of set type

The operators you specified are valid only for set expressions.

131 Type of variable is not set

The statement syntax requires a set variable.

132 Strict inclusion not allowed

You must use the <= and >= operators to test set inclusion.
PASCAL does not allow you to use the less than (<) and greater
than (>) signs.

133 File comparison not allowed

Relational operators cannot be applied to file variables.

A-7

DIAGNOSTIC MESSAGES

134 Illegal type of operand(s)

You cannot perform the specified operation on data items of the
specified types.

135 Type of operand must be Boolean

This operation requires a Boolean operand.

136 Set element must be scalar or subrange

The elements of a set must be scalar or subrange types.
cannot have elements of structured types.

137 Set element types not compatible

The elements of this set are not all of the same type.

138 Type of variable is not array

Sets

A variable that is not of an array type is followed by a left
square bracket or a comma inside square brackets.

139 Index type is not compatible with declaration

The specified array subscript is not compatible with the type
specified in the array declaration.

140 Type of variable is not record

A period appears following a variable that is not a record type.

141 Type of variable must be £ile or pointer

A circumflex character appears after the name of a variable that
is not a file or pointer.

142 Illegal parameter substitution

The type of an actual parameter is not compatible with the type
of the corresponding formal parameter.

143 Loop control variable must be an unstructured, non-floating point
scalar

The control variable in a FOR loop must be
subrange, or user-defined scalar type;
variable.

144 Illegal type of expression

an integer, integer
it cannot be a real

The specified expression evaluates to a type that is incompatible
in this position.

A-8

DIAGNOSTIC MESSAGES

145 Type conflict between control variable and loop bounds

The type of the control variable in a FOR loop is incompatible
with the type of the bounds you specified.

146 Assignment of files not allowed

You cannot assign one file to another. Output procedures must be
used to give values to files.

147 Label types incompatible with selecting expression

The type of a case label is incompatible with the type to which
the selecting expression evaluates. Case labels and selecting
expressions must be of compatible types.

148 Subrange bounds must be scalar

You can specify subranges of scalar types only.
specify a real or string subrange.

149 Index type must not be integer

You cannot

The index type of a nondynamic array cannot be integer, although
it can be an integer subrange.

150 Assignment to this function is not allowed

You cannot assign a value to an external or predeclared function
identifier.

151 Assignment to formal function parameter is not allowed

You cannot assign a value to the name of a formal function
parameter.

152 No such field in this record

You attempted to access a record by an incorrect or nonexistent
field name.

153 Error count exceeds error limit. Compilation aborted

The number of errors exceeds 30, the limit set by the ERROR LIMIT
option.

154 Type of parameter must be integer

The actual parameter passed to this function or procedure must be
an integer.

A-9

DIAGNOSTIC MESSAGES

155 Recursive %INCLUDE not allowed. Compilation aborted

The %INCLUDE directive cannot include the file in which the
directive appears.

156 Multidefined case label

The same case label refers to more than one statement. Each case
label can be used only once within the CASE statement.

157 Case label range exceeds 1000

The range of ordinal values between the largest and smallest case
labels must not exceed 1000.

158 Missing corresponding variant declaration

In a call to NEW or DISPOSE, more tagfield constants were
specified than the number of nested variants in the record type
to which the pointer refers.

159 Double, real or string tagfields not allowed

Tag fields cannot be real or string variables, but must be
scalar.

160 Previous declaration was not forward

The reiteration of a procedure or function that was not forward
declared is illegal.

161 Procedure/function has already been forward declared

The subprogram has already been forward declared.

162 Undeclared procedure or function: <name>

A procedure or function was forward-declared but its block was
never declared.

163 Type of parameter must be real or integer

The subprogram requires a real or integer expression as a
parameter.

164 This procedure/function cannot be an actual parameter

The specified predeclared procedure or function cannot be an
actual parameter. If you must use it in the subprogram, call it
directly.

A-10

DIAGNOSTIC MESSAGES

165 Multidefined label

A label appears in front of more than one statement in a single
executable section.

166 Multideclared label

The program declares the same label more than once.

167 Undeclared label

The program contains a label that has not been declared.

168 Undefined label: <label>

The program defines a label, but does not use the label in the
executable section.

169 Set element value must not exceed 255

The ordinal value of an element of a set must be between O and
255.

170 Value parameter expected

A subprogram that is passed as an actual parameter can have only
value parameters.

171 Type of variable must be textfile (FILE OF CHAR)

The specified operation or subprogram requires a text file
variable as an operand or param~ter.

172 Undeclared external file

The program heading specifies an external file that has not been
declared at program or module level.

173 Negative set elements not allowed

The value of an integer set element must be between 0 and 255.

174 Type of parameter must be file

The specified subprogram requires a file as a parameter.

175 INPUT not declared as an external file

The program makes an implicit reference to the file variable
INPUT, but INPUT is either not declared or has been redeclared at
an inner level.

A-11

DIAGNOSTIC MESSAGES

176 OUTPUT not declared as an external file

The program makes an implicit reference to the file variable
OUTPUT, but OUTPUT is either not declared or has been redeclared
at an inner level.

177 Assignment to function identifier not allowed here

Assignment to a function identifier is allowed only within the
function block.

178 Multidefined record variant

A constant tag field value appears more than once in the
definition of a record variant.

179 File of file type not allowed

You cannot declare a file that has components of a file type.

181 Array bounds too large

The bounds of an array are too large to allow the elements of the
array to be accessed correctly.

182 Expression must be scalar

The expression must specify a scalar value; structured variables
a re not 1 eg a 1 •

183 %IMMED, %DESCR, %STDESCR
procedure/function

allowed only in

These extended parameter specifiers are allowed
procedures and functions which are declared EXTERN.

184 External procedure has same name as main program

Program and procedure names must be unique.

185 Formal procedures may have at most 20 parameters

external

only for

A procedure name that is defined as a formal parameter can have
at most 20 value parameters.

186 Formal procedures may not have dynamic array parameters

You cannot pass a dynamic array as a parameter to a procedure
that is itself passed as a parameter.

187 Illegal dynamic array assignment

The program attempts to perform an illegal assignment involving
dynamic arrays.

A-12

DIAGNOSTIC MESSAGES

188 Parameter must be scalar and not real or double

The parameters to the predeclared functions SUCC and PRED must be
scalar types, and cannot be one of the real types.

189 Actual parameter must be a variable

When you use VAR ~ith a formal parameter, the corresponding
actual parameter must be a variable and not a general expression.

190 READLN/WRITELN/PAGE are defined only for textfiles

The predeclared procedures READLN, WRITELN, and PAGE operate only
on text files.

191 READ/WRITE require input/output parameter list

The READ and WRITE procedures require at least one parameter;
you cannot omit the parameter list.

192 Illegal type of input/output parameter

Arrays, sets, records, and pointers cannot be parameters to the
READ and WRITE procedures.

193 Field width parameter must be of type INTEGER

The field width you specify must be an integer.

194 Variable must be of type PACKED ARRAY[l •• 11] OF CHAR

The DATE and TIME procedures require a parameter of this type.

195 Type of variable must be pointer

The statement syntax requires a variable of pointer type.

196 Type of variable does not agree with tagfield type

The type of a variable in a tag value list is incompatible with
the tag field type.

197 Type of parameter must be REAL or DOUBLE

The statement syntax
double-precision) value.

requires

198 Type of parameter must be DOUBLE

a real (single-

The statement syntax requires a double-precision value.

A-13

or

DIAGNOSTIC MESSAGES

199 Parameter must be of numeric type

The ~rocedure or function requires an integer or real number
value.

200 Parameter must be scalar or pointer and not real

The procedure or function requires an integer, user-defined
scalar, Boolean, integer subrange, user-defined scalar subrange,
or pointer parameter.

201 Error in real constant: digit expected

A real constant contains a nonnumeric character where a numeral
is required.

202 String constant must not exceed source line

The end of the line occurs before the apostrophe that closes a
string. Make sure that the second apostrophe has not been left
out.

203 Integer constant exceeds range

An integer constant is outside the permitted range of integers
(that is, -2**31 to 2**31-1).

204 Actual parameter is not of correct type

The actual parameter is not compatible in type with the
corresponding formal parameter.

205 Zero length string not allowed

You cannot specify a string that has no characters.

206 Illegal digit in octal or hexadecimal constant

An octal or hexadecimal constant contains an illegal digit.

207 Real or double constant out of range

A single- or double-precision
permitted range -- 0.29*10**(-38)
numbers and -0.29*10**(-38) to
numbers.

208 Data type cannot be initialized

real number is outside the
to l.7*(10**38) for positive

-1.7*(10**38) for negative

This variable contains a type that cannot be initialized, such as
a file.

A-14

DIAGNOSTIC MESSAGES

209 Variable has been previously initialized

You can specify only one VALUE declaration for a variable.

210 variable is not array or record type

The VALUE initialization for a variable that is not a record or
an array contains a constructor.

211 Incorrect number of values for this variable

The VALUE declaration contains too many or too few values for the
variable being initialized.

212 Repetition factor must be positive integer constant

The repetition factor in an array initialization must be a
positive integer constant.

213 Type identifier does not match type of variable

The optional type identifier must be compatible with the type of
variable to be initialized.

214 Incorrect type of value element

A constant appearing in a VALUE initialization has a type other
than that of the variable, record field, or array element to be
initialized.

215 RMS record size is out of range

The record size specified in the OPEN procedure call exceeds the
maximum.

216 Type OLD is not allowed for this file

You cannot specify OLD for an internal file.

217 %DESCR, %STDESCR not allowed for procedure or function parameters

The only extended mechanism specifier that can be applied to
PROCEDURE and FUNCTION parameters is %IMMED.

218 Array must be unpacked

An array parameter to PACK or UNPACK is not unpacked correctly.

219 Array must be packed

An array parameter to PACK or UNPACK is not packed correctly.

A-15

DIAGNOSTIC MESSAGES

220 Packed bounds must not exceed unpacked bounds

The bounds of the packed array exceed the unpacked bounds.

221 %STDESCR not allowed for this type

This mechanism specifier can be applied only to strings and to
packed dynamic arrays of CHAR indexed by integer.

222 %DESCR not allowed for this type

This mechanism specifier can be applied only to the predefined
scalar types and to unpacked arrays of these types.

223 %IMMED not allowed for this type

This mechanism specifier can be applied only to types that occupy
4 bytes or less, or to PROCEDURE or FUNCTION parameters.

224 %DESCR, %IMMED, %STDESCR not allowed for VAR parameters

You cannot combine the %DESCR, %STDESCR, and %IMMED mechanism
specifiers with the VAR specifier.

225 Illegal file attribute specification

You specified an attribute in the OPEN statement that is not
recognized by the compiler.

250 Too many nested scopes of identifiers

You can have only 20 levels of nesting. A new nesting level
occurs with each block or WITH statement.

251 Too many nested procedures and/or functions

Subprograms can be nested no more than 20 levels deep.

252 Assignment to function not allowed here.
conflict

Probable name/scope

This error is generated when a function is nested inside a
function with the same name.

255 Too many errors on this source line

The PASCAL compiler diagnoses only the first 20 errors on each
source line.

259 Expression too complicated

The expression is too deeply nested. To correct this error, you
should separately evaluate some parts of the expression.

A-16

DIAGNOSTIC MESSAGES

260 Too many nonlocal labels

The subprogram contains more than 1000 labels that are declared
at a higher level, that is, not locally declared.

261 Declarations out of order or repeated declaration sections

The declarations must be in the following order:
constants, types, variables, values, and subprograms.
main program can contain value declarations.

labels,
Only the

263 Program segment too large:
bytes

branch displacement exceeds 32767

A statement is too large to allow
instruction to span the statement.
the program into smaller units.

the generation of a branch
Use subprogram calls to break

300 Division by zero·

The program attempts to divide by zero.

302 Index expression out of bounds

The value of the expression is outside the range of the
subscripts of this array.

303 Value to be assigned is out of bounds

The value to the right of the assignment operator is out of range
for the variable to which it is being assigned.

304 Element expression out of range

The value of the expression is out of range for the array element
to which you are assigning it.

305 Dimension specification out of range

The second
dimension
argument.

argument to
greater than

UPPER or
the number

LOWER specifies an array
of dimensions of the first

306 Index type of dynamic array parameter
declaration

exceeds range of

The index type of the actual dynamic array parameter extends
beyond the range declared in the formal parameter list.

401 Warning: Identifier exceeds nn characters

Identifiers can be any length, but PASCAL scans only the first 15
characters for uniqueness.

A-17

DIAGNOSTIC MESSAGES

402 Warning: Error in option specification

A compiler option is incorrectly specified in the source code.

403 Warning: Source input after •END.• ignored

The compiler ignores any characters after the END that terminates
the program.

404 Warning: Duplicate external procedure name

Two external procedures or functions have been declared with the
same name. They refer to the same externally compiled
subprogram.

405 Warning: LABEL Declaration in module ignored

The compiler ignores label declarations at the outermost level in
a module.

450 Nonstandard Pascal: Exponentiation

451 Nonstandard Pascal: Value declaration

452 Nonstandard Pascal: OTHERWISE clause

453 Nonstandard Pascal: %INCLUDE directive

454 Nonstandard Pascal: MODULE declaration

456 Nonstandard Pascal: '$' OR ' ' in identifier(s)

457 Nonstandard Pascal: Dynamic arrays

458 Nonstandard Pascal: %IMMED, %DESCR, or %STDESCR parameter

459 Nonstandard Pascal: Octal or hexadecimal constant

460 Nonstandard Pascal: Double precision constant

461 Nonstandard Pascal: External procedure declaration

462 Nonstandard Pascal: Octal or hexadecimal data output

463 Nonstandard Pascal: Output of user-defined scalar

A-18

DIAGNOSTIC MESSAGES

464 Nonstandard Pascal: Input of string or user-defined scalar

465 Nonstandard Pascal: Input/output of double precision data

466 Nonstandard Pascal: Implementation-defined type, function, or
procedure

A.2 RUN-TIME ERROR MESSAGES

When an error occurs at run-time, VAX-11 PASCAL issues an error
message and aborts execution. The run-time error messages appear in
the format:

code

Text

%PAS-F-code, Text

An abbreviation of the message text. Messages are alphabetized
by this code.

The explanation of the error.

Some conditions, particularly I/O errors, may cause several messages
to be printed. The first message is a general diagnostic specifying
the file being accessed (if any) when the error occurred. Then a more
specific PASCAL message may be issued to clarify the nature of the
error. Finally, a VAX-11 RMS error message may be printed. In most
cases, you should be able to understand .the error by looking up the
first two messages in the list below. If not, refer to the VAX/VMS
System Messages and Recovery Procedures Manual for an explanation of
the VAX-11 RMS error message.

ATTDISINV Attempt to dispose invalid pointer value xxx at user PC xxx

The DISPOSE procedure was called with an illegal parameter value,
probably because of an uninitialized pointer. You should use the
NEW procedure to correctly allocate the pointer.

CASSELBOU CASE selector out of bounds at user PC xxx

In a CASE statement, the case selector expression does not
correspond to one of the case label values, and no OTHERWISE
clause is specified. This message occurs only when the CHECK
option is in effect.

ERRACCFIL Error in accessing file nnnnnn

This message identifies the file being accessed when an I/O error
occurred.

A-19

DIAGNOSTIC MESSAGES

ERRCLOFIL Error closing file

An error occurred while a file was being closed. This
internal PASCAL error and should be reported to DIGITAL.
submit a Software Performance Report (SPR), including an
program if possible.

ERROPECRE Error opening/creating file

is an
Please

example

An error occurred when the system attempted to open or create the
file. The parameters specified in the OPEN procedure (or the
defaults, if the OPEN procedure was not used) are probably
incorrect for this file.

ERRRESFIL Error resetting file

An error occurred during execution of the RESET procedure. This
is an internal PASCAL error and should be reported to DIGITAL.
Please submit a Software Performance Report (SPR), including an
example program if possible.

ERRREWFIL Error rewriting file

An error occurred during execution of the REWRITE procedure.
This is an internal PASCAL error and should be reported to
DIGITAL. Please submit a Software Performance Report (SPR),
including an example program if possible.

FILBUFNOT File buffer not. allocated

The system could not find enough
buffer. This means that too
pointers are in use.

space to allocate the file
many files are open or too many

FILNOTCLO Files INPUT and OUTPUT cannot be closed by user

You cannot call CLOSE for the predeclared file variables INPUT
and OUTPUT.

FILOUTINV File OUTPUT opened with invalid parameters

You can specify only a carriage control option when you open the
predeclared file variable OUTPUT.

FILTYPNOT File type not appropriate

You tried to open for direct access (DIRECT) a file of type TEXT,
or a file with variable-length records.

INPCONERR Input conversion error

The system found erroneous input when reading a text file.

A-20

DIAGNOSTIC MESSAGES

INVASGINC Invalid assignment of incompatible dynamic arrays at user pc
xxx

The program tried to assign incompatible dynamic arrays to one
another. For the assignment to be legal, the arrays must have
the same element type and the same upper and lower bounds for
each dimension. This message appears only if CHECK is enabled.

LINLENEXC Line length exceeded, line length = xxx

The length of an output line was greater than the maximum allowed
by the record size for this file. Check to be sure that you did
not omit a call to the WRITELN procedure. If you must write
lines of this length, increase the record size in the OPEN
statement.

LINLIMEXC LINELIMIT exceeded, LINELIMIT = xxx

The number of lines output to the specified file exceeds the
limit. Make sure that the excessive output was not caused by an
infinite loop and increase the line limit if necessary.

OUTCONERR Output conversion error

The program tried to write data of an incorrect type to a text
file. Make sure that all output values are properly defined.

PROEXCHEA Process exceeds heap maximum size at user PC xxx

The system could not find enough space to allocate storage for a
pointer variable. This error is probably caused by an infinite
loop that calls the NEW procedure, thus attempting to allocate an
infinite amount of heap storage. If the program does not include
an infinite loop, your process may actually require more heap
storage than the maximum process size allows. In this case, try
to make your program smaller; if you cannot, ask your system
manager about increasing the maximum process size.

PROEXCSTA Process exceeds stack maximum size at user PC xxx

The system could not expand the stack to make room for the last
procedure or function called. This error is probably caused by
infinite recursion, where a number of procedures and functions
call each other without returning. Make sure that the program
does not include this type of logic error. If the program logic
is sound, the process may actually require more space than the
maximum process size allows. In this case, try to make your
program smaller; if you cannot, ask your system manager about
increasing the maximum process size.

RESREQACC RESET required before accessing file

You can use the FIND procedure only on files that are open for
input.

A-21

DIAGNOSTIC MESSAGES

RESREQREA RESET required before reading the file

The program did not call the RESET procedure before trying to
read the file.

REWREQWRI REWRITE required before writing to file

The program did not call the REWRITE procedure before trying to
write to the file.

SETASGBOU Set assignment out of bounds at user PC xxx

The program tried to assign an illegal value to a set variable.
Make sure that all set assignments specify values that are within
the bounds of the set. This message appears only if CHECK is
enabled.

SUBASGBOU Subrange assignment out of bounds at user PC xxx

The program tried to assign an illegal value to a subrange
variabls. Make sure that all subrange assignments specify values
that are within the bounds of the subrange. This message appears
only if CHECK is enabled.

A-22

APPENDIX B

CONTENTS OF RUN-TIME STACK DURING PROCEDURE CALLS

The illustrations in this appendix outline the events that occur
during a procedure call, and show the contents of the run-time stack
after each event.

B-1

CONTENTS OF RUN-TIME STACK DURING PROCEDURE CALLS

0 Before procedure call:

lower addresses

Stack grows t
toward lower
addresses

higher addresses

SP = Stack Pointer
FP = Frame Pointer

calling
procedure local

data area

@ The calling procedure's actions:

called
procedure
parameters

calling
procedure
local data

area

:SP

:FP

First:
Decrements SP by 4 times
number of parameters &
stores actual parameters
on stack.

parameter 1

parameter n

:FP Second:
Calculates "static link"
to allow the called procedure
to find the stack frame
of its declaring procedure.

Stores static link in R1.

Finally:
Issues CALLS instruction.

ZK-071-80

Figure B-1 Contents of Run-Time Stack During Procedure Calls

8-2

CONTENTS OF RUN-TIME STACK DURING PROCEDURE CALLS

6) The CALLS instruction's actions:

First:
Pushes parameter count & :FP
fills with zero-bytes to a
longword size.

called

l 0 l n h procedure --stack -
frame

Second:
Sets new argument pointer ...

parameter count
(AP) equal to current SP. '--~ and zeros

called

Third:
procedure
parameters

Adjusts stack to a
longword boundary. calling

procedure
data area
~

G) The called procedure's actions:

First:
Loads base register R11 with the
address of the program-level
variables.

Second:
Pushes static link (R1) and
local AP on stack.

___ 1_o_c:-'1_A_P ___ I-{

called
procedure
stack frame

local
data

SP

local AP

static link

·condition handler

mask I PSW

old AP

FP

PC

R2-R11
as needed

parameter count
and zeros

calling procedure
parameters

calling procedure
data area -- -

--

~
:FP

:AP

....

Finally:
Creates and pushes
stack frame.

Condition handler

mask 1 PSW

old AP

FP

PC

R2-R11 saved
as needed

Third·
Allocates space for
local data and
copies value parameters.

value parameters
& local data

Finally:
Saves SP at -12(FP).

Figure B-1 (Cont.) Contents of Run-Time Stack During Procedure Calls

B-3

APPENDIX C

VAX-11 SYMBOLIC DEBUGGER COMMAND SUMMARY

This appendix lists in alphabetical order each debugger command with a
format description, a list of qualifiers, a list of parameters, and a
brief description of the command's function. The boldface letters
indicate the minimum abbreviation that you must type for the debugger
to recognize the command name, qualifier, or parameter.

C-1

VAX-11 SYMBOLIC DEBUGGER COMMAND SUMMARY

Format

CANCEL BREAK[/ALL]
[address-expression]

CANCEL EXCEPTION BREAK

CANCEL MODE

CANCEL MODULE [/ALL] [module [,module ...]]

CANCEL SCOPE

CANCEL TRACE [/qualifier]
[address-expression]

/ALL
/BRANCH
/CALL

CANCEL TYPE/OVERRIDE

CANCEL WATCH [/ALL]
[variable-reference]

<CTRL/Y>

DEPOSIT [lqualifier] ... variable-reference =data
/ASCll:length
/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/OCTAL
/WORD

EVALUATE[/ qualifier] ... expression
/ADDRESS /LONG
/DECIMAL /BYTE
/HEXADECIMAL /WORD
/OCTAL /ASCII

EXAMINE [/qualifier] ... addr-expr
/ASCll:length

EXIT

/BYTE
/DECIMAL
/HEXADECIMAL
/INSTRUCTION
/LONG
/NOSYMBOLIC
/OCTAL
/SYMBOLIC
/WORD

GO [address-expression]

HELP topic [subtopic ...]

SET BREAK[/AFTER:count] address-expression
[DO (cmd[;cmd ...])]

SET EXCEPTION BREAK

SET LANGUAGE language-name

SET LOG file-specification

SET MODE mode-keyword [,mode-keyword]

Function

Cancels specified breakpoint or all breakpoints.

Cancels effects of SET EXCEPTION BREAK.

Sets all modes and types to their default values for the current
language.

Cancels specified modules or all modules.

Sets scope to its default value (PC scoping).

Cancels the specified tracepoint or the specified opcode trac
ing or all tracepoints and opcode tracing.

Sets the override type to none.

Cancels the specified watchpoint or all watchpoints.

Interrupts execution of the program.

Stores the specified value(s) at the specified location.

Evaluates expressions or bit ranges, and displays value.

Displays the contents of the specified addresses and range of
addresses.

Ends a debugging session or specifies the end of a command
procedure.

Starts or continues program execution.

Displays a description of the specified command.

Establishes a breakpoint at the specified address.

Requests that the debugger treat external exception conditions
as breakpoints.

Sets the current language.

Sets the file specification of the log file.

Sets the entry/display modes. Mode-keyword can be:
DECIMAL, HEXADECIMAL, OCTAL, NOSYMBOLIC, or
SYMBOLIC.

(continued on next page)

C-2

VAX-11 SYMBOLIC DEBUGGER COMMAND SUMMARY

Format Function

SET MODULE [/ALL] [module-name Adds the symbols in the specified modules or all modules to
[,module-name] ...] the debugger symbol table.

SET OUTPUT option [,option ...] Controls the debugger's output configuration. Option can be
LOG, NOLOG, TERMINAL, NOTERMINAL, VERIFY, or
NOVERIFY.

SET SCOPE scope [,scope ...] Specifies scopes to be searched to find a symbol.

SET STEP condition [,condition ...] Specifies the step conditions. Condition can be INSTRUC-
TION, LINE, INTO, OVER, SYSTEM, or NOSYSTEM.

SET TRACE [/qualifier] [address-expression] Establishes a tracepoint at the specified address or establishes
/BRANCH the specified opcode tracing.
/CALL

SET TYPE [/OVERRIDE] type-keyword Sets the default data type for the DEPOSIT and EXAMINE
commands. Type-keyword can be ASCII:length, BYTE, IN-
STRUCTION, LONG, or WORD.

SET WATCH variable-reference Establishes a watchpoint at the specified address.

SHOW BREAK Displays current breakpoints.

SHOW CALLS [integer] Displays current location and previous calls.

SHOW LANGUAGE Displays current language.

SHOW LOG Displays the name of the log file.

SHOW MODE Displays current entry/display modes.

SHOW MODULE Lists the modules in the image and shows which are currently
included in the debugger symbol table.

SHOW OUTPUT Displays the debugger's output configuration.

SHOW SCOPE Displays the current scope search list.

SHOW STEP Displays current STEP conditions

SHOW TRACE Displays current tracepoints and opcode tracing.

SHOW TYPE Displays current default type or override type.

SHOW WATCH Displays current watchpoints.

STEP [/qualifier] [integer] Executes one or a specified number of instructions or lines.
/LINE
/INTO
/OVER
/NOSYSTEM
/SYSTEM
/INSTRUCTION

@file-spec Accepts commands from specified command procedure.

C-3

APPENDIX D

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

If the debugger encounters an error, it displays a message on the
terminal. The general format of a debugger message is:

1

code

text

%DEBUG-l-code, text

A severity level indicator. It has a value
informational messages, W for warning messages,
messages, and F for fatal messages.

of I for
E for error

An abbreviation of the message text; the message descriptions in
this appendix are alphabetized by this code.

The explanation of the message.

For example:

%DEBUG-W-DIVBYZERO, attempted to divide by zero

Listed below are the messages displayed by the debugger. Each message
is accompanied by an explanation of the cause of the error and the
recommended user action to correct the error.

BADOPCODE, opcode xxx is unknown

Explanation: The opcode xxx specified in the DEPOSIT command is
unknown to the debugger. If the opcode is a valid VAX-11 MACRO
opcode, it is an opcode that has a synonomous opcode. These
opcodes, such as MOVAF and MOVAL, generate the same instruction.
The debugger only recognizes one of them. Severity is warning.

User Action: Specify a valid opcode or specify the opcode's
synonym that the debugger accepts.

BADSCOPE, invalid pathname xxx, SCOPE not changed

Explanation: The scope xxx specified in the SET SCOPE command
contained a pathname that does not exist. Severity is warning.

User Action: Specify a valid scope.

D-1

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

BADSTARTPC, cannot access start PC = xxx

Explanation: Location xxx is not an accessible address and
therefore cannot be executed. This is often caused when a GO
command with no address specification is entered after the
program has terminated. The debugger tries to execute an
instruction at location O, which is not accessible. Severity is
warning.

User Action: Specify a different address specification in the GO
command or, if the program has terminated, you can exit from the
debugger and initiate the program with the DCL RUN command.

BADTARGET, target location protected, cannot perform deposit

Explanation: The target specified as the location of a
is protected. The deposit operation is not performed.
is warning.

User Action: Check the target location specified.

BADWATCH, cannot watch protected address xxx

deposit
Severity

Explanation: A SET WATCH command specified a protected address.
Note that you cannot set a watchpoint for a dynamically allocated
variable because these variables are stored on the stack. In
PASCAL, argument lists for functions and procedures are
dynamically allocated on the stack. Severity is warning.

User Action: Do not set a watchpoint for this address.

BITRANGE, bi~ range out of limits

Explanation: The EVALUATE command specified a bit field that is
too wide. Severity is warning.

User Action:
limit is 31;

The low limit of the bit field is 0 and
the maximum range is <0:31>.

BRTOOFAR, destination xxx is too far for branch operand

the high

Explanation: The DEPOSIT command specified a branch instruction
with a destination, xxx, too far from the current PC. Severity
is warning.

User Action: Change a BRB instruction to BRW or a BRW to JMP or
specify a closer address.

DBGBUG, internal DEBUG coding error, please report no. nnn

Explanation: An internal debugger error has been encountered.
Severity is informational.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) to DIGITAL and, if possible, enclose
both a copy of the program being debugged and a logged debugging
session that reproduces the error.

D-2

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

DBGERR, internal DEBUG coding error

Explanation: An internal debugger error has been encountered.
Severity is error.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) to DIGITAL and, if possible, enclose
both a copy of the program being debugged and a logged debugging
session that reproduces the error.

DEBUGBUG, internal DEBUG coding error, please report no. nnn

Explanation: An internal debugger error has been encountered.
Severity is error.

User Action: If the error is reproducible, submit a Software
Performance Report (SPR) to DIGITAL and, if possible, enclose
both a copy of the program being debugged and a logged debugging
session that reproduces the error.

DIVBYZERO, attempted to divide by zero

Explanation: An expression contained a division by O.
is warning.

Severity

User Action: Reformulate the expression.

EXARANGE, invalid range of addresses

Explanation: The range of addresses specified was in the wrong
order. The higher address preceded the lower address. Severity
is warning.

User Action: Reenter the command with a valid address range.

EXITSTATUS, is xxx

Explanation: The program has exited with the status xxx. See
the VAX/VMS System Services Reference Manual for more information
about the VAX/VMS exit status codes. Severity is informational.

User Action: None.

EXPSTKOVR, expression exceeds maximum nesting level

Explanation: The expression is too complex.
warning.

Severity is

User Action: Reduce the nesting of parentheses and simplify the
expression.

EXPTDOPR, expected operator but found operand xxx

Explanation: An operator was expected but the value xxx was
found instead. Severity is warning.

User Action: Reenter the command with a correct operator.

D-3

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

FILEASGN, assignment of files not allowed

Explanation: A file cannot appear as the target in a DEPOSIT
command. Severity is warning.

User Action: None.

FILEVERS, unsupported file version

Explanation: The file version number generated by the compiler
is not supported by the debugger. Severity is warning.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL.

FLTOVER, floating overflow at or near xxx

Explanation:
location xxx.

A floating-point overflow occurred at or
Severity is warning.

near the

User Action: Correct the calculations that caused the overflow
to occur.

FLTUNDER, floating underflow at or near xxx

Explantion: A floating-point underflow occurred at or
location xxx. Severity is warning.

near the

User Action: Correct the calculation that caused the underflow.

PRERANGE, storage package range error

Explanation: Data used to control internal storage allocation is
corrupt. Severity is error.

User Action: If DEPOSIT commands or your program
modified the debugger's storage area, submit a
Performance Report (SPR) to DIGITAL.

FRESIZE, storage package size error

has not
Software

Explanation: Data used to control internal storage allocation is
corrupt. Severity is error.

User Action: If DEPOSIT commands or the user program
modified the debugger's storage area, submit a
Performance Report (SPR) to DIGITAL.

ILLINDTYPE, index type must be scalar or subrange

has not
Software

Explanation:
constant, or
warning.

An index for an array must be a scalar variable,
variable of a scalar subrange type. Severity is

User Action: Change the index to a scalar variable or a scalar
subrange.

D-4

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

ILLINSET, expression preceding 'IN' incompatible with set base type

Explanation: The expression specified before the IN operator is
not compatible with the set base type. Severity is warning.

User Action: Specify an expression compatible with the base
type.

ILLOPER, xxx is an illegal operator

Explantion: The operator xxx is an illegal one.
warning.

User Action: Specify a legal operator.

ILLPATH, illegal pathname element xxx

Explanation: The pathname element xxx is illegal.
warning.

User Action: Correct the pathname.

ILLREF, xxx is not a legal reference

Severity is

Severity is

Explanation: The reference xxx is not understood in the context
stated. Severity is warning.

User Action: Make sure the symbols for the module being debugged
are present in the active symbol table and that they are
correctly spelled when referenced.

ILLSCALAR, scalar variable xxx has an out of range value of yyy (hex
ZZZ)

Explanation: The scalar variable xxx has a value that is out of
range. The variable has the value yyy or in hexadecimal zzz.
Severity is warning.

User Action: Correct the value assigned to the variable.

ILLSETELEM, set element type must be scalar or subrange

Explanation:
subrange type.

A set element must
Severity is warning.

be of a scalar or scalar

User Action: Correct the type of the set element to scalar or
scalar subrange.

ILLTAGVAL, tag field aaa has an illegal or uninitialized value of hex
xxx, decimal xxx

Explanation: The tag field aaa has an illegal or uninitialized
value xxx. Severity is informational.

User Action: Check the state of the object you are referencing.

D-5

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

ILLTYPE, illegal type of operand(s)

Explanation: The type of the operand is illegal for the operator
specified. Severity is warning.

User Action: Change the operand.

IMPTERMNO, improperly terminated numeric string nnn

Explanation: Numeric string nnn with radix control did not have
a terminating apostrophe or was followed by a nonnumeric
character. Severity is warning.

User Action: Terminate the string with an apostrophe.

INCDSTNES, incorrect DST nesting in module xxx, compiler error

Explanation:
incorrectly.

The compiler is generating debugger information
Severity is error.

User Action: Check that your PASCAL source program is correctly
written. Submit a Software Performance Report (SPR) to DIGITAL,
enclosing your source program.

INDNOTCOMP, index type not compatible with declaration

Explanation: The index type used to subscript an array is not
compatible with its declaration. Severity is warning.

User Action: Change the index type.

INITIAL, language is xxx, module set to yyy

Explanation: This message is displayed when the debugger is
invoked by the image activator. The language is set to xxx and
the module to yyy. Module yyy is the first module linked
containing an entry point and language xxx is the language used
in that module. Severity is informational.

User Action: None.

INTEGER, this operation only valid on integers

Explanation: The command specified an
that did not have integer values
required. Severity is warning.

operation with operands
when integer values are

User Action: Use only operands that have integer values in
specified operation.

INTMEMMER, internal memory-pool error at location xxx

Explanation: An error occurred in memory at the location xxx.
Severity is fatal.

User Action: Submit a Software Performance Report to DIGITAL,
enclosing your source program.

D-6

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

INTOVER, integer overflow at or near xxx

Explanation:
location xxx.

An integer calculation overflowed at
Severity is warning.

or near the

User Action: Correct any calculations in the program that may
cause an integer overflow.

INVCHAR, invalid character

Explanation: The command contained a character that is invalid
in the command's context. Severity is warning.

User Action: Reenter the command.

INVDIM, subscript error, was declared dimension (string)

Explanation: A reference to an array contained either an
incorrect number of subscripts or the value of the subscripts is
outside of the bounds of the array. The dimension of the array
was specified by string. Severity is warning.

User Action: Specify the correct number of subscripts with
values in the correct range.

INVDSTREC, invalid DST record

Explanation:
encountered.

An invalid debugger
Severity is error.

symbol table record was

User Action: If DEPOSIT commands or your program
modified the debugger's storage area, submit a
Performance Report (SPR) to Digital.

INVEXPR, invalid expression detected at or near xxx

Explanation:
location xxx.

An invalid expression
Severity is warning.

User Action: Correct the expression.

was detected

INVFLOAT, variable has invalid floating point format

at

has not
Software

or near

Explanation: A floating-point number has an invalid bit pattern.
This error can be caused by depositing a value with a type
qualifier into an address associated with a floating-point type
variable. Severity is informational.

User Action: Examine the value of the symbol with a type
qualifier to override the floating-point format.

INVNUMBER, invalid numeric string 'nnn'

Explanation: The numeric string 'nnn' is invalid in the current
language. Severity is warning.

User Action: Specify the value in another numeric format or set
the language to one that accepts this type of numeric string.

D-7

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

INVOPR, unrecognized operator in expression

Explanation: An expression
debugger does not recognize.

contained a character
Severity is warning.

that

User Action: Reenter the command with a valid expression.

INVPATH, improperly terminated pathname beginning with xxx

the

Explanation: The pathname beginning with xxx is not a valid
pathname. Severity is warning.

User Action: Check the pathname for errors and reenter the
command.

LABNOTFND, search for %label xxx using scope failed

Explanation: The label
specified pathname or
warning.

xxx could not be found
the current default scope.

using the
Severity is

User Action: Reenter the command with the correct pathname.

LASTCHANCE, stack exception handlers lost, re-initializing stack

Explanation: Error in user program caused the exception handling
mechanism to fail. Can be caused when the stack is overwritten
by the user program or by DEPOSIT commands. Severity is warning.

User Action: Identify and correct the error in your program.

LINNOTFND, search for %line nnn using scope failed

Explanation: The line nnn specified does not exist in the
default scope{s). Note that the debugger does not search for a
unique line number but only searches the current default scope
list. Severity is warning.

User Action: Specify the scope of the line or the correct line
number.

LONGDST, too many modules, some ignored

Explanation: There are too many modules in the image for the
debugger to keep track of. The excess modules are ignored. You
cannot set the module to any of the ignored modules.

User Action: Use the SHOW MODULE command to determine which
modules are included. If crucial modules were omitted, relink
the image, specifying first the modules needed for debugging.

MAXDIMSN, maximum number of subscripts is nnn

Explanation:
subscripts.

An array reference specified too few or too many
The array has nnn subscripts. Severity is warning.

User Action: Reenter the command with
subscripts.

D-8

correct number of

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

MISMODBEG, missing Module-Begin record in DST, compiler error

Explanation: The compiler has incorrectly generated information
for the debugger.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL, enclosing your source program.

MISMODEND, missing Module-End in DST for xxx, compiler error

Explanation: The compiler has incorrectly generated information
for the debugger.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL, enclosing your source program.

MODNOTADD, no space to add module yyy

Explanation: There was no room to add the modules
the SET MODULE command to the symbol table.

'y informational.

specified
Severity

in
is

User Action: Use the SHOW MODULE command to show the modules
currently in the symbol table and the remaining space, and then
use the CANCEL MODULE command to free the needed space.

MULTOPR, multiple successive operators in expression

Explanation: There were two adjacent operators in expressions.
Severity is warning.

User Action: Use angle brackets or parentheses (depending on the
current language) to separate the operators or enter a valid
expression.

NEEDMORE, unexpected end of command line

Explanation: The command entered was not complete. A required
part of a command was omitted. Severity is warning.

User Action: Reenter the complete command.

NEEDOPR, expected operator but found operand: xxx

Explanation: The operand xxx was found instead of an operator.
Severity is warning.

User Action: Supply an operator.

NILDEREF, attempt to dereference a nil or null pointer value

Explanation: An attempt to dereference a NIL or null pointer
value was made. Severity is warning.

User Action: A nil or null pointer cannot be dereferenced,
correct the value of the pointer.

D-9

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NILREF, NIL or an untyped pointer referenced at or near xxx

Explanation: The NIL pointer or untyped pointer was referenced
at or near the point xxx. Severity is warning.

User Action: Expressions containing NILA cannot be used. Also
do not attempt to dereference untyped pointers defined by other
languages.

NOACCESSR, no read access to virtual address nnn

Explanation: The debugger does not have read access to the
address specified. This error can be caused when an EXAMINE
command with no address specification is entered at the beginning
of a debugging session. Severity is warning.

User Action: Specify an address that is within the image.

NOACCESSW, no write access to virtual address nnn

Explanation: A DEPOSIT, SET BREAK, or SET TRACE command
specified the address nnn, but the debugger does not have write
access to the page. The debugger requires write access for
setting up breakpoints and tracepoints. Severity is warning.

User Action: You cannot perform the requested operation.

NOANGLE, unmatched angle brackets in expression

Explanation: An expression did not have a closing right angle
bracket. Severity is warning.

User Action: Reenter the command with a ?omplete expression.

NOBRANCH, instruction requires branch-type operand

Explanation: A DEPOSIT command specified a branch
using an invalid addressing mode as the operand.
warning.

instruction
Severity is

User Action: Reenter the command using a valid branch operand in
the destination field.

NOBREAKS, no breakpoints are set

Explanation: The SHOW BREAK command was entered
breakpoints were set. Severity is informational.

User Action: None.

NOCALLS, no active call frames

and no

Explanation: The SHOW CALLS command was entered and there were
no active calls. There are no active calls after your program
has terminated. Severity is warning.

User Action: None.

D-10

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOCNVT, incompatible types, no conversion

Explanation: A DEPOSIT command specified incompatible data for
the variable type. Severity is warning.

User Action: Reenter the command and either specify the correct
data type or use a type qualifier.

NOCURLOC, current location not defined

Explanation: The current location (the last location addressed
by a SET BREAK, SET TRACE, SET WATCH, EXAMINE, or DEPOSIT
command) is not defined. Severity is warning.

User Action: Check that the current location is
defined by using one of the above commands.

1
NODECODE, cannot decode instruction

I

correctly

Explanation: The address specified in the EXAMINE command is not
the beginning of a valid VAX-11 instruction. This can be caused
by specifying an address that is in the middle of an instruction
or is in a data area. Severity is warning.

User Action: Specify an
instruction.

address that contains

NODELIMTR, missing or invalid instruction operand delimiter

a valid

Explanation: A DEPOSIT command specified an invalid instruction
operand format. Severity is warning.

User Action: Reenter the command with valid operands.

NODEPOSIT, cannot deposit value

Explanation: The value following the equal sign (=) in a DEPOSIT
command cannot be deposited. Severity is warning.

User Action: Change the value to be deposited.

NOEND, string beginning with xxx is missing end delimiter y

Explanation: A DEPOSIT command specified an ASCII or INSTRUCTION
string beginning with characters xxx that did not have a
terminating apostrophe. Severity is warning.

User Action: Reenter the command with a terminating apostrophe.

NOEXAM, value cannot be examined

Explanation: The value in an identifier cannot be referenced by
the EXAMINE command. Severity is warning.

User Action Check that the symbols
contained in the symbol table.

D-11

being referenced are

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOFIELD, xxx is not a field in this record

Explanation: An attempt was made to reference a field that is
not defined in the record. Severity is warning.

User Action: Check the field specified.

NOFREE, no free storage available

Explanation: No free storage is available for the debugger to
execute the command. Severity is error.

User Action: Free storage by using the CANCEL MODULE command and
then reenter the command.

NOGLOBALS, some or all global symbols not accessible

Explanation: The image was linked with
and there are no global symbols in
message can also be caused if the image
symbols. Severity is informational.

the /NODEBUG qualifier
the symbol table. This

has too many global

User Action: Relink the image with the /DEBUG qualifier or, if
the message was caused by an overflow condition, remove some of
the global symbol definitions from the image (if possible).

NOINSTRAN, cannot translate opcode at location xxx

Explanation: The address specified in the EXAMINE command is not
the beginning of a v.alid VAX-11 instruction. This can be caused
by specifying an address that is in the middle of an instruction
or is in a data area. Severity is warning.

User Action: Specify an
instruction.

address that

NOINSTPRED, no valid predecessor to an instruction

contains a valid

Explanation: An attempt was made to reference the precedessor of
an instruction, where no such predecessor is defined. Severity
is warning.

User Action: None.

NOLABEL, routine xxx has no %label nnn

Explanation: The label nnn does not exist in the scope xxx that
is specified in the pathname. Severity is warning.

User Action: Specify a valid pathname -- either change the label
or the scope.

D-12

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOLASTVAL, last value not defined

Explanation: The request for information about the last value
(\) cannot be supplied because the last value is not defined.
Severity is warning.

User Action: None.

NOLINE, routine xxx has no %line nnn

Explanation: The line nnn does not exist in the scope xxx that
is specified in the pathname. This can be caused by a source
line number that does not exist or that does not contain
executable code in the source program. Severity is warning.

User Action: Specify a valid pathname -- either change the line
number or the scope.

NOLITERAL, no literal translation exists for xxx

Explanation: The command attempted to find a literal translation
for a value. The debugger does not support this operation.
Severity is warning.

User Action: None.

NOLOCALS, image does not contain local symbols

Explanation: All of the modules in the image were compiled or
assembled without traceback information. There is no local
symbol information in the image. Severity is informational.

User Action: Recompile or reassemble the modules and then relink
them.

NONEWCUR, cannot retain new address. '·' lost

Explanation: The current address has been lost, the new address
cannot be determined. Severity is informational.

User Action: None.

NONEWVAL, cannot retain new value, '\' lost

Explanation: The current value has been lost so
value referenced by a backslash character
determined. Severity is informational.

User Action: None.

NOOPRND, missing operand in expression

that
(\)

Explanation: One or more operands
expression. Severity is warning.

are missing

the last
cannot be

from an

User Action: Reenter the command with a complete expression.

D-13

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOOPRTR, missing operator in expression

Explanation: The expression specified does not contain an
operator. Severity is warning.

User Action: Add an operator to the expression.

NOPERMSYM, permanent symbol xxx is not defined

Explanation: The permanent symbol xxx is not defined.
is warning.

Severity

User Action: None.

NOPRED, logical predecessor not defined

Explanation: The logical predecessor of the identifier or
instruction referenced is not defined. Severity is warning.

User Action: None.

NORSTBLD, cannot build symbol table

Explanation:
because of
error.

The debugger is unable to build a symbol table
errors in the format of the image file. Severity is

User Action: Relink the image and, if the error is reproducible,
submit a Software Performance Report (SPR) to DIGITAL, explaining
how the image file was created.

NOSTMT, routine xxx has no statement sss

Explanation:
statement sss.

The routine xxx does
Severity is warning.

not contain the specified

User Action: Check the routine or the statement specified.

NOSUCHBPT, no such breakpoint

Explanation: The CANCEL BREAK command specified an address that
is not the address of a breakpoint. Severity is informational.

User Action: Use the SHOW BREAK command to find the location of
the current breakpoints and then cancel any of these breakpoints.

NOSUCC, logical successor not defined

Explanation: The logical successor
identifier referenced is not defined.

User Action: None.

D-14

of the instruction
Severity is warning.

or

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOSUCHLAB, no scope exists to look up %label xxx

Explanation: The label xxx is not listed in the current symbol
table. Severity is warning.

User Action: Specify the routine that contains this label as the
current setting of scope.

NOSUCHLAN, language xxx is unknown

Explanation: The debugger does not recognize the language
specified. This message can be caused by mistyping a language
that the debugger supports or by entering a language that the
debugger does not currently support. Severity is warning.

User Action: Specify a valid language in the SET LANGUAGE
command.

NOSUCHLIN, no scope exists to look up %line xxx

Explanation: The line xxx is not listed in the current symbol
table. Severity is warning.

User Action: Specify the routine that contains this line as the
current setting of scope.

NOSUCHMODU, module xxx is not in module chain

Explanation: The module xxx, specified in the SET MODULE
command, does not exist in the image. This message can be caused
when a module name has been entered incorrectly or when the image
had too many modules for the debugger to handle. Severity is
warning.

User Action: Specify a module that is in the image.

NOSUCHTPT, no such tracepoint

Explanation: The CANCEL TRACE command specified an address that
was not the address of a tracepoint. Severity is informational.

User Action: Use the SHOW TRACE command to display the current
tracepoints and then cancel any of these tracepoints.

NOSUCHWPT, no such watchpoint

Explanation: The CANCEL WATCH command specified an address that
was not the address of a watchpoint. Severity is informational.

User Action: Use the SHOW WATCH command to display the current
watchpoints and then cancel any that you want to cancel.

D-15

VAX-11 SYMBOLIC DEBUGGER AND .PASCAL-SPECIFIC MESSAGES

NOSYMBOL, symbol xxx is not in the symbol table

Explanation: The symbol xxx cannot be located in the debugger
symbol table. This can be caused when the module that defines
the symbol has not been added to the debugger symbol table or
when a symbol name that is not in the image has been entered.
Severity is warning.

User Action:
table with
name.

Add the required module to the debugger symbol
the SET MODULE command or specify the correct symbol

NOTALLSYM, cannot initialize symbols for default module

Explanation: The debugger could not put the symbol table
information for the first module specified in the LINK command
into the symbol table. Severity is informational.

User Action: Use the SET MODULE command to add modules to the
symbol table.

NOTARRAY, type of variable is not array

Explanation: The variable being treated as an array has not been
defined as one. Severity is warning.

User Action: Check that the correct variable reference is being
made.

NOTASTRUCT, xxx was not declared as a structure

Explanation:
symbol xxx
warning.

A VAX-11 BLISS-32 structure reference
that was not declared a structure.

specified a
Severity is

User Action: Reenter the command with a valid symbol reference.

NOTCMP, incompatible types, no conversion on assignment

Explanation: The types of the data and address expression in a
DEPOSIT command are incompatible, so the bit pattern of the data
was directly assigned to the address expression. Severity is
informational.

User Action: None.

NOTCMPEXT, incompatible types, value zero-extended on assignment

Explanation: The types of data and address expressions specified
in a DEPOSIT command are incompatible. The bit pattern of the
data was too small; the bit pattern was zero-extended on the
left before assignment. Severity is informational.

User Action: None.

D-16

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOTCMPTRNC, incompatible types, high order
assignment

bits truncated on

Explanation: The types of data and address expressions specified
in a DEPOSIT command are incompatible. The bit pattern of the
data was too large; the bit pattern was left-truncated before
assignment. Severity is informational.

User Action: None.

NOTCOMMA, ',' expected instead of xxx

Explanation: A comma (,) was expected but the value xxx was
found. Severity is warning.

User Action: Change the expression to include a comma (,).

NOTCOMPAT, operands are of incompatible types

Explanation: The operands specified in the debugger
do not conform to PASCAL's rules of compatibility.
warning.

User Action: None.

NOTCONTIG, value of xxx is not contiguous

instruction
Severity is

Explanation: An attempt was made to reference an identifier
whose value is stored in noncontiguous storage.

User Action: Reference only contiguously stored values in this
particular context.

NOTDONE, xxx not yet a supported feature

Explanation:
literal that
warning.

A DEPOSIT command specified an instruction with a
the debugger does not yet support. Severity is

User Action: None.

NOTDOTDOT, ' •• ' expected instead of xxx

Explanation: A subrange (••) was expected but the value xxx was
found instead. Severity is warning.

User Action: Change the expression to contain a subrange.

NOTIDENT, identifier expected instead of xxx

Explanation: An identifier was expected but the value xxx was
found instead. Severity is warning.

User Action: Change the expression to contain an identifier.

D-17

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOTIMPLAN, xxx is not implemented at command level

Explanation:
the debugger
warning.

The SET LANGUAGE command specified a language that
recognizes but does not yet support. Severity is

User Action: Specify a language that the debugger supports.

NOTINTID, integer or identifier expected instead of xxx

Explanation: An integer or identifier was expected, the value
xxx was found instead. Severity is warning.

User Action: Add an integer or identifier in place of or before
xxx.

NOTLABEL, 'xxx' is not a label

Explanation: The value xxx is being treated as a label.
value is not a label in the program. Severity is warning.

This

User Action: Check the value being specified and specify the
correct label value.

NOTLINBND, program is not at a line boundary

Explanation: The GO command specified an address that contains
threaded code data. The debugger cannot execute starting from
this address. Severity is warning.

User Action: Specify an address
instructions.

NOTLINE, 'xxx' is not a line

that contains executable

Explanation: The value xxx is being treated as a line number.
This value is not a line in the program. Severity is warning.

User Action: Check the value being specified and specify the
correct line number.

NOTPNTR, variable is not of pointer type

Explanation: The variable being used as a pointer is not defined
as one. Severity is warning.

User Action: Change the variable to one of pointer type.

NOTPTR, variable must be of pointer or file type

Explanation: The variable should be a pointer or file type.
Severity is warning.

User.Action: Specify a variable of pointer or file type.

D-18

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOTRACES, no tracepoints are set, no opcode tracing

Explanation: There are no tracepoints or opcode tracing set.
Severity is informational.

User Action: None.

NOTRBRACK, ']' expected instead of xxx

Explanation: A right bracket (]) was expected;
was found instead. Severity is warning.

the value xxx

User Action: Include a right bracket (]) in the expression.

NOTRPAREN, ')' expected instead of xxx

Explanation: A right parenthesis ())was expected;
xxx was found instead. Severity is warning.

the value

User Action: Include a right parenthesis ()) in the expression.

NOUNIQUE, SYMBOL xxx IS NOT UNIQUE

Explanation: The symbol specified was not in a default scope and
was defined in more than one scope. Severity is warning.

User Action: Specify the scope of the symbol in a pathname or
change the default scope.

NOVALUE, reference does not have a value

Explanation:
have a value.

The reference specified in
Severity is warning.

User Action: Change the reference.

NOWATCHES, no watchpoints are set

the command does not

Explanation: No watchpoints are set. Severity is informational.

User Action: None.

NOWBPT, cannot insert breakpoint

Explanation: This is an internal debugger error.
fatal.

Severity is

User Action: Submit
DIGITAL, enclosing
debugging session.

a Software
your source

D-19

Performance
program and

Report
a log

(SPR) to
of your

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

NOWOPCO, cannot replace breakpoint with opcode

Explanation: This is an internal debugger error.
fatal.

Severity is

User Action: Submit
DIGITAL, enclosing
debugging session.

a Software
your source

NOWPROT, cannot set protection

Performance
program and

Report
a log

(SPR) to
of your

Explanation: This is an internal debugger error.
fatal.

Severity is

User Action: Submit
DIGITAL, enclosing
debugging session.

a Software
your source

Performance
program and

NULLSTRNG, null string not allowed in expression

Explanation: A null string value cannot be
expression. Severity is warning.

Report
a log

used

User Action: Do not use a null string in an expression.

NUMOPRNDS, xxx instructions must have nnn operands

(SPR) to
of your

in an

Explanation: A DEPOSIT command xxx instruction with an incorrect
number of operands. This instruction requires nnn operands.
Severity is warning.

User Action: Reenter the command using the correct number of
operands with the instruction.

NUMTRUNC, number truncated

Explanation: The debugger truncated the numeric data because it
exceeded the length of the data type. Severity is informational.

User Action: None.

OPSYNTAX, instruction operand syntax error

Explanation: The DEPOSIT command contained an instruction with
an operand syntax error. Severity is warning.

User Action: Reenter the command with a valid instruction.

OUTPUTLOST, output being lost, both NOTERMINAL and NOLOG are in effect

Explanation: The SET OUTPUT command has set the output
conditions to NOTERMINAL and NOLOG; consequently, the output is
not displayed on the terminal or written to a log file. The
output normally displayed by the debugger will not be available.
Severity is informational.

User Action: Use the SET OUTPUT command to send output to the
terminal or to a log file.

D-20

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

OUT_LMT, illegal value for parameter, maximum is xxx given value was
zzz

Explanation: The value specified was too large to be deposited
in the specified address. Severity is fatal.

User Action: Change the size of the value zzz to less than the
maximum xxx.

PARSEERR, internal parsing error

Explanation: This is an internal debugger error.
warning.

Severity is

User Action: Submit
DIGITAL, enclosing
debugging session.

a Software
your source

Performance
program and

PARSTKOVR, parse stack overflow, simplify expression

Report
a log

(SPR) to
of your

Explanation: The expression was too complex for the debugger to
evaluate. Severity is warning.

User Action: Simplify the expression.

PATHLABEL, %LABEL must precede pathname when language is set

Explanation: %LABEL must be used in front of a
Severity is warning.

Using Action: Place the word %LABEL in front of the
rather than in the pathname.

PATHTLONG, too many qualifiers on name

Explanation: There were too many elements in a
Severity is warning.

to xxx

pathname.

pathname

pathname.

User Action: Reduce the number of elements in the pathname.

PCNOTINSCP, PC is not within the scope of the routine declaring symbol

Explanation: A dynamically allocated variable was referenced and
the variable was not defined in the scope that contains the
current PC. The value of the variable is undefined when you are
not currently executing the scope in which it is defined. The
debugger uses a value for the variable that may have no relation
to the symbol's current value. Severity is informational.

User Action: Reference only a dynamically allocated variable
when you are currently executing the scope in which it is
defined.

D-21

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

REDEFREG, register name already defined

Explanation: The DEFINE command attempted to redefine a register
name. The command is ignored because you cannot redefine
register names. Severity is warning.

User Action: None.

RESOPCODE, opcode xxx is reserved

Explanation: Opcode xxx is reserved for use
Severity is warning.

User Action: None.

ROPRAND, reserved operand fault at or near xxx

Explanation:
location xxx.

A reserved operand fault occurred at
Severity is warning.

by DIGITAL.

or near the

User Action:
and do not
program.

Do not use a reserved operand in your expression
deposit such a value into a variable used by your

RPARNFOUND, unmatched right parenthesis found

Explanation: A right parenthesis ()) was found but the left
parenthesis (() is missing. Severity is warning.

User Action: Include the left parenthesis (().

RSTERR, error in symbol table

Explanation: There is a format error in the symbol table.
Severity is error.

User Action: If this is not caused by a user program error or a
DEPOSIT command, submit a Software Performance Report (SPR) to
DIGITAL enclosing your source program.

SETNOTCOMP, set element types not compatible

Explanation: A value was specified that is incompatible with the
type of elements contained in the specified set. Severity is
warning.

User Action: Change the value to one that is compatible.

STEPINTO, cannot step over PC = xxx

Explanation:
and executed
informational.

The debugger was unable to step over
a step into the routine instead.

User Action: None.

D-22

the routine
Severity is

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

STGTRUNC, string truncated

Explanation: The debugger truncated an ASCII string
exceeded the size of the ASCII data type.
informational.

User Action: None.

STRNGVAL, type of string character value must be integer

because
Severity

it
is

Explanation: The value specified inside the parentheses in the
extended string syntax must be of type INTEGER. Severity is
warning.

User Action: Change the type of the value to INTEGER.

STRVALRNG, string character value must be between 0 and 255

Explanation: The value inside the parentheses in the extended
string syntax must be between 0 and 255. Severity is warning.

User Action: Change the value to one between 0 and 255.

SUBOUTBNDS, subscript value zzz out of bounds at or near xxx

Explanation:
location xxx.

Subscript value zzz was out of bounds
Severity is warning.

at or near

User Action: Check the subscripts in your expression at the
location specified by xxx.

SUBOUTVAL, value xxx of subscript yyy out of bounds

Explanation: An attempt to subscript out of the bounds of an
array was made. Severity is warning.

User Action: Change the value of the subscript.

SYMNOTACT, symbol xxx not active or not in active scope

Explanation: The symbol xxx is not an active call frame.
Severity is warning.

User Action: Check the symbol specified and, if correct, check
that you have defined the scope correctly.

SYNTAX, command syntax error at or near xxx

Explanation: The debugger encountered a command syntax error
near element xxx. Severity is warning.

User Action: Reenter the command.

D-23

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

UNCOMP, feature not yet supported

Explanation: This feature is not supported at this
Severity is warning.

User Action: None.

UNDEXP, undefined exponentiation at or near xxx

time.

Explanation: An attempt was made to perform an exponentiation
operation at or near location xxx. The exponentiation operation
is undefined for the operand specified. Severity is warning.

User Action: Redefine
different operands.

the exponentiation operation using

UNKNOWNTYP, type of xxx unknown to language zzz

Explanation: Type xxx is not used in the current language.
Severity is warning.

User Action: Change to the type to one supported by the current
language.

UNMTCHPARN, unmatched left parenthesis found

Explanation: A left parenthesis (() was found, but the matching
right parenthesis ()) is missing. Severity is warning.

User Action: Include the right parenthesis ()).

VALOUTBNDS, value assigned is out of bounds

Explanation: The value assigned to a variable of a subrange type
is out of bounds. Severity is informational.

User Action: None.

VERIFYICF, xxx indirect command file yyy

Explanation: The debugger is verifying an indirect command file.
This message is displayed before the command file is executed and
after all the commands have been displayed. Severity is
informational.

User Action: None.

WRONGLANG, language is not xxx

Explanation:
or variable
warning.

The language used to evaluate the last
reference is not the current language.

expression
Severity is

User Action: Do not change languages between the definitions of
last value (\), logical predecessor (A), current location (.),
logical successor (RET), and their use.

D-24

VAX-11 SYMBOLIC DEBUGGER AND PASCAL-SPECIFIC MESSAGES

WRONGVAR, field xxx is not in current variant yyy associated with tag
field xxx

Explanation: Field xxx is not in the current variant.

User Action: Check your program to verify the expected results.

D-25

INDEX

A
Access,

direct (random), 6-3, 6-4
remote, 6-7
sequential, 6-3, 6-5

Actual parameter list, 7-2, 7-3
Addresses, debugger, 5-3

data location, 5-4
symbolic, 5-3
program, 5-5

Address parameters--see By-refer-
ence mechanism

Argument count, 7-1
Argument list, 7-1, 7-6
Arguments to PASCAL subprograms,

7-6
Array descriptor, 7-4, 7-6
Assigning logical names, 6-2
Attributes, program section, 9-1
@file-spec command, debugger, 5-71

B
Binary numbers, debugger, 5-5
Bound procedure value, 7-6
Bounds checking, 2-2
BRIEF qualifier, 3-1, 3-3
By-descriptor mechanism, 7-2,

7-4
By-immediate-value mechanism,

7-2' 7-9
By-reference mechanism, 7-2, 7-6,

7-9
By-reference semantics, 7-2, 7-3
By-value semantics, 7-2

c
CALL instruction, 7-1
Calling conventions, PASCAL, 7-1
Calling Run-Time Library proce-

dures, 7-12
Calling standard, procedure, 7-1
Calling system services, 7-6
Calls, procedure, 7-1
CALLS instruction, 7-1, B-2
CANCEL ALL command, debugger, 5-16
CANCEL BREAK command, debugger,

5-11, 5-1 7
CANCEL EXCEPTION BREAK command,

debugger, 5-11, 5-18
CANCEL MODE command, debugger,

5-10, 5-19

CANCEL MODULE command, debugger,
5-10, 5-20

CANCEL SCOPE command, debugger,
5-13, 5-21

CANCEL TRACE command, debugger,
5-11, 5-22

CANCEL TYPE/OVERRIDE command,
debugger, 5-10, 5-23

CANCEL WATCH command, debugger,
5-11, 5-24

CARRIAGE attribute, 6-6
Carriage control, 6-5
Character parameters, passing, 7-11
CHECK qualifier, 2-2, 2-6
Checking, bounds, 2-2
Commands,

ASSIGN, 6-2
EDIT, 1-1, 4-4
LINK, 1-1, 3-1
PASCAL, 1-1, 2-1
RUN, 1-1, 4-1
Debugger - see Debugger Commands

Command line qualifiers, 2-4
Communication,

DECnet, 6-8
interprocess, 6-6
network, 6-7
task-to-task, 6-7

Compiler error messages, A-1
Compiler listing, 2-3, 2-8, 2-15
Compiler qualifiers, 2-1
Compiling a program, 2-1
Concatenating source files, 2-7
Condition handler, 8-1

data accessible to, 8-4
default, 8-2
establishing, 8-5
example of, 8-10
function return values, 8-7
parameters for, 8-5
removing, 8-5
request of stack unwind by, 8-7
responses, 8-4
system-defined, 8-2
user written, 8-2, 8-3

Condition handling, 8-1
Condition signal, 8-3
Condition symbol, 8-3, 8-8
Condition symbol definition

files, 7-6
Condition value, 7-7, 8-2

format, 8-8
Creating and executing a program,

1-1
Cross-reference listing, 2-3,

2-11, 2-1 7

Index-!

INDEX

CROSS REFERENCE qualifier
(compiler) , 2-2, 2-3, 2-6,

2-11, 2-17
CROSS REFERENCE qualifier

(linker), 3-2, 3-3
CTRL/Y Command, debugger, 5-12,

5-25

D
Data representation,

floating-point, 9-8
DEBUG qualifier (compiler), 2-2,

2-3' 2-6
DEBUG qualifier (execution), 4-1
DEBUG qualifier (linker), 3-1,

3-4' 4-1, 4-2
Debugger, 2-3, 3-4, 4-1, 4-2,

4-3, 5-1 to 5-6
Debugger Commands,

@file-spec, 5-71
CANCEL ALL, 5-lo
CANCEL BREAK, 5-11, 5-17
CANCEL EXCEPTION BREAK, 5-11,

5-18
CANCEL MODE, 5-10, 5-20
CANCEL MODULE, 5-10, 5-20
CANCEL SCOPE, 5-13, 5-21
CANCEL TRACE, 5-11, 5-22
CANCEL TYPE/OVERRIDE, 5-10,

5-23
CANCEL WATCH, 5-11, 5-24
CTRLY/Y, 5-12, 5-25
DEPOSIT, 5-12, 5-26
EVALUATE, 5-12, 5-29
EXAMINE, 5-3, 5-12, 5-31
EXIT, 5-12, 5-34
Format, 5-2
GO, 5-12, 5-35
HELP, 5-36
SET BREAK, 5-11, 5-38
SET EXCEPTION BREAK, 5-11, 5-40
SET LANGUAGE, 5-9, 5-41
SET LOG, 5-9, 5-42
SET MODE, 5-10, 5-43
SET MODULE, 5-10, 5-45
SET OUTPUT, 5-10, 5-46
SET SCOPE, 5-14, 5-48
SET STEP, 5-12, 5-50
SET TRACE, 5-11, 5-52
SET TYPE, 5-10, 5-54
SET WATCH, 5-12, 5-56
SHOW BREAK, 5-11, 5-57
SHOW CALLS, 5-12, 5-58
SHOW LANGUAGE, 5-9, 5-59
SHOW LOG, 5-9, 5-60
SHOW MODE, 5-10, 5-61
SHOW MODULE, 5-10, 5-62
SHOW OUTPUT, 5-10, 5-63
SHOW SCOPE, 5-14, 5-64

Debugger Commands, (Cont.),
SHOW STEP, 5-12, 5-65
SHOW TRACE, 5-11, 5-66
SHOW TYPE, 5-10, 5-67
SHOW WATCH, 5-11, 5-68
STEP, 5-14, 5-65

Declaring Run-Time Library proce
dures, 7-12

Declaring system services, 7-6,
7-7, 7-9

DECnet communications, 6-8
DEPOSIT command, debugger, 5-12,

5-26
Descriptor, 7-2, 7-4, 7-6
Device, 1-2
Diagnostic messages,

compiler, A-1 to A-19
format of compiler, A-1
format of run-time, A-19
run time, A-19 to A-22

Direct access, 6-3, 6-5
DIRECT attribute, 6-4, 6-5
Directory, 1-3
Divide by zero, 8-9
Double-precision format, 9-9

E
EDIT command, 1-1
Entry mask, 7-6
Environment, PASCAL system, 9-1
Environment pointer, 7-6
Error,

compiler, A-1
correction, 4-1
default processing, 8-2
messages, A-1 through A-22
numbers, A-1
processing, 8-2, A-1
run time, 8-2, A-19
severity code, 8-8

ERROR LIMIT qualifier, 2-2, 2-3
Establish a condition handler,

8-5
EVALUATE command, debugger, 5-12,

5-29
EXAMINE command, debugger, 5-12,

5-31
Examining locations, debugger,

5-12, 5-29, 5-31
Example,

listing format, 2-16 to 2-20
debugger, 5-6, 5-72 to 5-81

Executable image, 3-2, 3-3
EXECUTABLE qualifier, 3-2, 3-3
Executing a program, l~l, 4-1
EXIT command, debugger, 5-12, 5-34
Extensions to standard PASCAL,

2-4
External subprograms, 7-2

Index-2

INDEX

F
Fault, reserved operand, 8-9, 9-9
File,

attributes, 6-4
characteristics, 6-2
image, 3-3
LIBDEF.PAS, 7-7
library, 3-5
listing, 2-2, 2-8
map, 3-4
MTHDEF.PAS, 7-7
object, 2-2, 2-4, 2-5
organization, 6-3
parameter, 7-3, 7-6
sequential, 6-3
SIGDEF.PAS, 7-7
specification, 1-2
status, 6-4

File specification defaults, 1-3
Filename, 1-3
Files,

concatenating source, 2-7
condition symbol definition,

7-6, 7-7
Fi 1 etype, 1-3
FIND procedure, 6-3, 6-5
FIXED attribute, 6-5
Fixed-length records, 6-3, 6-5
Floating-point data,

errors involving, 9-7, 9-8
representation of, 9-8

Floating-point operation, 8-9
Formal parameter,

function, 7-5, 7-6
list, 7-2, 7-3
procedure, 7-5, 7-6

Format,
carriage control, 6-4
compiler listing, 2-8
condition value, 8-8
double-precision data, 9-9
file specification, 1-2
floating point, 9-8
listing file, 2-8
OPEN procedure, 6-4
record, 6-3, 6-4
single-precision data, 9-8

FORTRAN attribute, 6-5
FULL qualifier, 3-2, 3-3
Function,

arguments to, 7-6
as parameters, 7-5
declaring system service as,

7-7
external, 7-2
MTH$RANDOM, 7-12
MTH$TANH, 7-2
return status, 7-8
return values, 7-5
Run-Time Library, 7-1, 7-12

G
GO command, debugger, 5-12, 5-35

H
HELP command, debugger, 5-36
HISTORY attribute, 6-3, 6-4

Image,
executable, 1-2, 3-3
shareable, 3-3

%IMMED FUNCTION specifier, 7-5
%IMMED mechanism specifier, 7-3,

7-9
%IMMED PROCEDURE specifier, 7-5
Immediate value, 7-2, 7-3, 7-9
· procedure and function names,

7-5
%INCLUDE directive, 7-7
INCLUDE qualifier, 3-2, 3-5
Input by-reference parameters,

7-9
Input/output, 6-1
Interprocess communication, 6-6

L
LIB$ESTABLISH, 8-2, 8-5
LIB $REVERT I 8-5
LIB$SIGNAL, 8-2, 8-3
LIB$STOP, 8-2, 8-3, 8-4
LIBDEF.PAS file, 7-7
Library files, 3-5
LIBRARY qualifier, 3-2, 3-5
Library, object-module, 3-5
Line length, maximum (record

length), 6-4, 6-5
LINK command, 1-1, 3-1, 9-2
LINK command qualifiers, 3-2, 4-2
Linker input file qualifiers, 3-5
Linking the object modules, 3-1
List, argument, 7-1
LIST carriage control format, 6-5
LIST qualifier, 2-2, 2-3

command line, 2-5
file specification for, 2-3, 2-6
files produced by, 2-3, 2-6
specified in source code, 2-6

Li sting,
cross reference, 2-3, 2-11, 2-17
machine code, 2-12 to 2-15,

2-18 to 2-20
source code, 2-9, 2-10, 2-11,

2-16
traceback, 4-1

Index-3

INDEX

Listing file, 2-2
format of, 2-8, 2-9, 2-10, 2-11
when produced, 2-3, 2-6, 2-7

Locations, debugger
Examining, 5-12, 5-29, 5-31
Modifying, 5-12, 5-26

Logical names, 6-1, 6-2

M
Machine code listing, 2-12 to

2-15, 2-18 to 2-20
MACHINE CODE qualifier, 2-2,

2-3; 2-6, 2-12
Mailbox, 6-6
Map f il e , 3-4
MAP qualifier, 3-2, 3-3, 3-4
Mechanism arrays, 8-5
Mechanism specifier,

default, 7-2
%DESCR, 7-4
%IMMED, 7-3
%IMMED FUNCTION, 7-5
%IMMED PROCEDURE, 7-5
%STDESCR, 7-4
VAR, 7-2

Messages,
compiler, A-1
run-time, A-19

Modifying locations, debugger,
5-12, 5-26

MTHDEF.PAS file, 7-7

N
Names,

logical, 6-1, 6-2
program section, 9-2

Network communications, 6-7
Node, 1-2
NEW file attribute, 6-4
NOCARRIAGE attribute, 6-5
NONE attribute, 6-5
Nonstandard features, 2-4

0
Object code, 2-4
Object code listing, 2-12 to 2-15,

2-18 to 2-20
Object file, 2-2, 2-4, 2-6
OBJECT qualifier, 2-2, 2-4, 2-6
Octal numbers, debugger, 5-5
OLD file attribute, 6-5
OPEN procedure parameters, 6-4
Optional parameters, 7-11
Options--see qualifiers
Output by-reference parameters, 7-9
Overflow, floating, 8-9

p
Parameter lists, 7-2, 7-3
Parameters,

character, 7-11
condition handler, 8-5, 8-6
formal function, 7-5, 7-6
formal procedure, 7-5, 7-6
input and output by-reference,

7-9
OPEN procedure, 6-4
optional, 7-11
PASCAL subprogram, 7-5, 7-6
passing mechanisms, 7-2
signal, 8-6, 8-7
VAR, 7-2, 7-6, 8-5

PAS$INPUT, 6-1
PAS$0UTPUT, 6-1
PASCAL command, 1-1, 2-1
PASCAL command qualifiers, 2-2
PASCAL subprograms,

arguments passed to, 7-6
Passing mechanisms,

by-descriptor, 7-2, 7-4
by-immediate-value, 7-2, 7-3
by-reference, 7-2, 7-9
default, 7-2

Passing parameters,
by default mechanism, 7-2
by-descriptor, 7-2, 7-4
by-immediate value, 7-2, 7-3
by-reference, 7-2, 7-9
to PASCAL subprograms, 7-5
to Run-Time Library procedures,

7-12
to system services, 7-9

Pathnames, debugger, 5-14
Procedure calling standard, 7-1
Procedure calls,

contents of run-time stack,
B-1, B-2

Procedures, 7-1
arguments to, 7-6
as parameters, 7-5
declaring system service, 7-9
external, 7-2
Run-Time Library, 7-1, 7-12
system service, 7-1, 7-9

Program development process, 1-1,
1-2

Program sections, 9-1
attributes, 9-1
names, 9-2

Q
Qualifiers, compiler, 2-1

CHECK, 2-2, 2-6
CROSS REFERENCE, 2-2, 2-3, 2-6
DEBUG7 2-2, 2-3, 2-6
ERROR_LIMIT, 2-2, 2-3

Index-4

Qualifiers, compiler, (Cont.),
LIST, 2-2, 2-3, 2-6
MACHINE CODE, 2-2, 2-3, 2-6
OBJECT, 2-2,2-4
STANDARD, 2-2, 2-4, 2-6
WARNINGS, 2-2, 2-4, 2-6

Qualifiers, debugger, 5-2
/ADDRESS, 5-3
/ASCII I 5-3
/BYTE, 5-3
/HEXADECIMAL, 5-3
/LONG, 5-3
/OCTAL, 5-3
/WORD, 5-3

Qualifiers, linker, 3-1
BRIEF, 3-1, 3-3, 3-4
CROSS REFERENCE, 3-1, 3-3
DEBUG7 3-1, 3-4, 4-1
EXECUTABLE, 3-1, 3-3
FULL, 3-2, 3-3, 3-4
INCLUDE, 3-2, 3-5
LIBRARY, 3-2, 3-5
MAP, 3-2, 3-3
SHAREABLE, 3-2, 3-3
TRACEBACK, 3-2, 3-5, 4-1

INDEX

s
Scope, debugger, 5-13, 5-21, 5-48,

5-64
Default, 5-13
Defining, 5-14
Setting, 5-14, 5-48

Sequential access, 6-3, 6-5
SEQUENTIAL attribute, 6-5
Sequential files, 6-3
SET BREAK command, debugger, 5-11,

5-38
SET EXCEPTION BREAK command,

debugger, 5-11, 5-40
SET LANGUAGE command, debugger,

5-9, 5-41
SET LOG command, debugger, 5-9,

5-42
SET MODE command, debugger, 5-10,

5-43
SET MODULE command, debugger, 5-10,

5-45
SET OUTPUT command, debugger, 5-10,

5-46

Qualifiers, PASCAL command, 2-4, 2-5
Qualifiers, source code, 2-6

SET SCOPE command, debugger, 5-14,
5-48

SET STEP command, debugger, 5-12,
5-50

R
Random (direct) access, 6-3, 6-4
Record access mode, 6-3, 6-4
Record formats, 6-3, 6-4
Record length, 6-4, 6-5
Record Management Services, 6-4,

6-6
Record size, maximum, 6-5
Record type, 6-4, 6-5
Records,

fixed-length, 6-4, 6-5
variable-length, 6-4, 6-5

Reference, pass by, 7-2, 7-6,
7-9

Remote access, 6-6, 6-7
Remove a condition handler, 8-5
Reserved operand fault, 8-9, 9-9
Resignal, 8-2, 8-4
RMS, 6-4, 6-6
Routines, 7-1
RUN command, 1-1, 4-1
Run-time error messages, A-19

through A-22
Run-Time Library procedure, 7-1

declaring, 7-12
LIB$ESTABLISH, 8-2, 8-5
LIB$FIXUP FLT, 8-9
LIB$REVERT, 8-5
MTH$RANDOM, 7-12
MTH$TANH, 7-2
optional parameters, 7-11

SET TRACE command, debugger,5-11,
5-52

SET TYPE command, debugger, 5-10,
5-54

SET WATCH command, debugger, 5-12,
5-56

Shareable image, 3-3
SHAREABLE qualifier, 3-2, 3-3
SHOW BREAK command, debugger, 5-11,

5-57
SHOW CALLS command, debugger, 5-12,

5-58
SHOW LANGUAGE command, debugger,

5-9, 5-59
SHOW LOG command, debugger, 5-9,

5-60
SHOW MODE command, debugger, 5-10,

5-61
SHOW MODULE command, debugger,

5-10, 5-62
SHOW OUTPUT command, debugger,

5-10, 5-63
SHOW SCOPE command, debugger, 5-14,

5-64
SHOW STEP command, debugger, 5-12,

5-65
SHOW TRACE command, debugger,

5-11, 5-66
SHOW TYPE command, debugger, 5-10,

5-67
SHOW WATCH command, debugger, 5-11,

5-68
SIGDEF.PAS file, 7-7
Signal parameters, 7-4, 7-5

Index-5

INDEX

Signal procedure,
LIB$SIGNAL, 8-2, 8-3, 8-5
LIB$STOP, 8-2, 8-3, 8-5

Signals,
condition, 8-2

Single-precision data represen
tation, 9-8, 9-9

Source code listing, 2-9 to 2-11,
2-16

Source code qualifiers, 2-6
Source files, concatenating, 2-7
STANDARD qualifier, 2-2, 2-4,

2-5,2-6
STEP Command, debugger, 5-14, 5-65
Storage allocation,

packed arrays, 9-4
packed sets, 9-4
packed records, 9-4, 9-6
pointer types, 9-2
scalar types, 9-2
unpacked arrays, 9-3
unpacked records, 9-3
unpacked sets, 9-3

String descriptor, 7-4
Subprograms, 7-1

arguments to, 7-6
external, 7-2

Subprograms as parameters, 7-5
Symbol, condition, 8-3, 8-8
Symbol, special, debugger, 5-5
Symbolic names, debugger, 5-3
Symbolic references, debugger,

5-13
System services,

Broadcast (SYS$BRDCST), 7-4
Create Mailbox (SYS$CREMBX),

6-6, 7-7, 7-9, 7-10
declaring as functions, 7-7
declaring as procedures, 7-9
Get Job/Process Information

(SYS$GETJPI), 7-13
Get Time (SYS$GETTIM), 7-3,

7-11
naming, 7-6
optional parameters, 7-11
output from, 7-10
parameters to, 7-9
Translate Logical Name

(SYS$TRNLOG), 7-11
unwind (SYS$UNWIND), 8-2, 8-4,

8-7

System services, (Cont.)
Wait for Single Event Flag

(SYS$WAITFR), 7-3

T
Task-to-task communication, 6-7
Terminal session, 4-4
Text file,

carriage control, 6-5
maximum line length, 6-5

Traceback information, 3-4, 4-1
Traceback list, 4-2, 4-3
TRACEBACK qualifier, 3-2, 3-5,

4-1

u
Unwind, 8-2, 8-4, 8-7
User-written condition handler,

7-2, 7-3

v
Value semantics, 7-2
Values,

condition, 8-8
function return, 7-5
signal procedure, 8-8

VAR parameters, 7-2, 7-3, 7-6,
8-5

VARIABLE attribute, 6-5
Variable-length records, 6-3,

6-4, 6-5
Version, 1-3

w
Warning messages, 2-2, 2-4, A-1,

A-17
WARNINGS qualifier, 2-2, 2-4,

2-6
Writing a condition handler, 8-4

z
Zero divide, 8-9

Index-6

.
Cl>
c:

C> c:
0
c
.....
:::>
u
Cl> .,,
c
Cl>

a:

READER'S COMMENTS

VAX-11 PASCAL
User's Guide

AA-H485B-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement .

Did you find errors in this manual? If so, specify the error and the
page number .

~lease indicate the type of reader that you most nearly represent.

[] Assembly language programmer

D Highe·r-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

[] Student prograrruner

[] Other (please specify>~~~~~~~~~~~~~~~~~~--

Ci tY-------------- State------- Zip Code _______ _
or

Country

Do Not Tear- ~old Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J3-5
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - Do Not Tear - Fold Here -

.5

...:l
"'O .s -0
Q
0.(

= 0

< -= u

II

I .. '

'111''4'''' ,,,f
'I,,

,~rDJ.lYI,i'A\' .. "··· , .F

