VAX C Run-Time Library
Reference Manual

Order Number: AlI-JP84A-TE

March 1987

This document describes the functions and macros in the VAX C Run-time
Library.

Revision/Update Information: This is a new manual.

Operating System and Version: VMS Version 4.6 or higher, or MicroVMS
Version 4.6 or higher

Software Version: VAX C Version 2.3

digital equipment corporation
maynard, massachusetts

First Printing, March 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DECwriter RSX Eﬂmuuau

ZK3230

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TgX, the
typesetting system developed by Donald E. Knuth at Stanford University. TgX
is a trademark of the American Mathematical Society.

Contents

PREFACE xvii
NEW AND CHANGED FEATURES xxi
CHAPTER 1 VAX C RUN-TIME LIBRARY INFORMATION 1-1
1.1 IMPLEMENTATION OF THE VAX C RUN-TIME LIBRARY 1-2
1.11 Using the VAX C RTL as a Shareable Image 1-4

1.1.2 Macros - 1-5

1.2 VAX C RTL FUNCTION AND MACRO SYNTAX 1-7
1.21 DEC/Shell File Specifications 1-9

1.3 INPUT AND OUTPUT ON VMS 1-11
‘ 1.3.1 RMS Record and File Formats 1-14
1.3.2 Stream Access to RMS Record Files 1-16

1.4 SPECIFIC PORTABILITY CONCERNS 1-19
CHAPTER 2 STANDARD I/O FUNCTIONS AND MACROS 21
2.1 CONVERSION SPECIFICATIONS 2-2
211 Conversion of Input Information 2-3

2.1.2 Conversion of Output Information 2-6

2.2 OPENING AND CLOSING FILES 2-7
2.21 fclose 2-8

2.2.2 fdopen 2-8

2.2.3 fopen 2-10

2.2.4 freopen 2-11

2.3

24

2.5

2.6

2.7

READING FROM FILES

2.3.1 getc, fgetc, getw

2.3.2 fgets
2.3.3 fread
2.34 fscanf, sscanf

2.3.5 ungetc

WRITING TO FILES

241 fprintf, sprintf
242 fputs

243 fwrite

244 putc, fputc, putw

MANEUVERING IN FILES
2.5.1 fflush

2.5.2 fseek

253 ftell

254 rewind

ADDITIONAL STANDARD I/O FUNCTIONS AND MACROS
2.6.1 access

2.6.2 clearerr

2.6.3 feof

2.6.4 ferror

2.6.5 fgetname

2.6.6 mktemp

2.6.7 remove, delete
2.6.8 rename

2.6.9 setvbuf, setbuf

2.6.10 tmpfile
2.6.11 tmpnam

PROGRAM EXAMPLES

2-11
2-12
2-13
2-13
2-14
2-16

2-16
2-16
2-18
2-18
2-19

2-20
2-20
2-20
2-21
2-22

2-22
2-22
2-23
2-24
2-24
2-25
2-25
2-26
2-27
2-27
2-29
2-29

2-29

CHAPTER 3 TERMINAL I/O FUNCTIONS 3-1
3.1 getchar 3-2
3.2 gets 3-2
3.3 printf 3-3
3.4 putchar 3-4
3.5 puts 3-4
3.6 scanf 3-5
3.7 PROGRAM EXAMPLES 3-6

CHAPTER 4 UNIX I/O FUNCTIONS AND MACROS 4-1
4.1 OPENING AND CLOSING FILES 4-2

4.1.1 close 4-2
4.1.2 creat 4-3
41.3 dup, dup2 4-7
414 open 4-8
4.2 READING AND WRITING 4-10
421 read 4-10
422 write 4-11
43 MANEUVERING IN FILES 4-12
4.3.1 Iseek 4-12
4.4 ADDITIONAL UNIX I/O FUNCTIONS AND MACROS 4-13
4.4.1 fileno 4-13
4.4.2 fstat, stat 4-14
443 getname 4-17

444 isapipe 4-17

445 isatty 4-18

4.4.6 ttyname 4-18

4.5 PROGRAM EXAMPLES 4-19
CHAPTER 5 CHARACTER-HANDLING FUNCTIONS AND MACROS 5-1
5.1 CHARACTER CLASSIFICATION MACROS 5-1
5.1.1 isalnum 5-5

5.1.2 isalpha 5-5

5.1.3 isascii 5-6

514 iscntrl 5-6

5.1.5 isdigit 5-6

5.1.6 isgraph 5-7

5.1.7 islower 5-7

5.1.8 isprint 5-7

5.1.9 ispunct 5-8

5.1.10 isspace 5-8

5.1.11 isupper 5-8

5.1.12 isxdigit 5-9

5.2 CHARACTER CONVERSION FUNCTIONS AND MACROS 5-9
5.2.1 ecvt, fcvt, gevt 5-9

5.2.2 toascii 5-10

5.2.3 tolower, _tolower 5-11

5.2.4 toupper, _toupper 5-11

5.3 PROGRAM EXAMPLES 5-12

vi

CHAPTER 6 STRING- AND LIST-HANDLING FUNCTIONS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

AND MACROS

strcat, strncat

strchr, strrchr

strcmp, strncmp

strcpy, strncpy

strcspn, strspn, strpbrk

strlen

strtod, atof

strtok

strto, atoi, atol

strtoul

ACCESSING BINARY DATA
6.11.1 memchr

6.11.2 memcmp

6.11.3 memcpy, memmove

6.11.4 memset

ACCESSING VARIABLE LENGTH ARGUMENT LISTS
6.12.1 va_arg

6.12.2 va_count

6.12.3 va_end

6.12.4 va_start, va_start_1

6.12.5 vprintf, vfprintf, vsprintf

6-1

6-1

6-2

6-3

6-4

6-5

6-6

6-8

6-9

6-10
6-10
6-11
6-12
6-12

6-13
6-14
6-15
6-15
6-16
6-17

vii

6.13 PROGRAM EXAMPLES 6-18
CHAPTER 7 MATH ‘FUNCTIONS 7-1
71 abs, fabs 7-2
7.2 acos 7-2
7.3 asin 7-3
7.4 atan 7-3
7.5 atan2 7-3
7.6 cabs, hypot 7-4
7.7 ceil 7-4
7.8 cos 7-4
7.9 cosh 7-5
7.10 exp 7-5
7.11 floor 7-5
712 fmod 7-6
7.13 frexp 7-6
7.14 Idexp 7-7
7.15 Idiv, div 7-7

viii

7.16 labs 7-8
7.17 log, log10 7-8
7.18 modf 7-9
7.19 pow 7-9
7.20 rand, srand 7-10
7.21 sin 7-11
722 sinh 7-11
7.23 sqrt 7-11
7.24 tan 7-12
7.25 tanh 7-12
7.26 PROGRAM EXAMPLES 7-12
CHAPTER 8 ERROR-HANDLING FUNCTIONS 8-1
8.1 abort 8-3
8.2 assert 8-3
8.3 atexit 8-4
8.4 exit, _exit 8-5
8.5 perror 8-5

ix

8.6 strerror 8-6

8.7 SIGNAL-HANDLING FUNCTIONS 8-6
8.7.1 alarm 8-8

8.7.2 gsignal, raise 8-9

8.7.3 kill : 8-11

8.7.4 longjmp, setjmp ’ 8-11

8.7.5 pause 8-13

8.7.6 sigblock 8-13

8.7.7 signal 8-14

8.7.8 sigpause 8-15

8.7.9 sigsetmask 8-15

8.7.10 sigstack 8-16

8.7.11 sigvec 8-17

8.7.12 sleep 8-18

8.7.13 ssignal 8-18

8.7.14 VAXCSESTABLISH 8-19

8.8 PROGRAM EXAMPLES 8-19
CHAPTER 9 MEMORY ALLOCATION FUNCTIONS 9-1
9.1 brk, sbrk 9-2
9.2 calloc, malloc (MEMORY ALLOCATION) 9-3
9.3 cfree, free (MIEMORY DEALLOCATION) 9-3
9.4 realloc (MEMORY REALLOCATION) : 9-4

9.5 PROGRAM EXAMPLE 9-5

CHAPTER 10 SUBPROCESS FUNCTIONS 10-1
10.1 THE IMPLEMENTATION OF CHILD PROCESSES IN VAX C 10-1
10.1.1 system 10-3

10.1.2 vfork 10-3

10.2 THE EXEC FUNCTIONS 10-5
10.2.1 execl, execle, execlp, execv, execve, execvp 10-5

10.2.1.1 Exec Processing ® 10-7
10.2.1.2 Exec Error Conditions ® 10-8

10.3 SYNCHRONIZING PROCESSES 10-9
10.3.1 wait 10-9

10.4 READING AND WRITING DATA 10-10
10.4.1 pipe 10-10

10.5 PROGRAM EXAMPLES 10-14
CHAPTER 11 SYSTEM FUNCTIONS 11-1
11.1 SEARCHING AND SORTING UTILITIES 11-1
11.1.1 bsearch 111

11.1.2 gsort 11-3

11.2 RETRIEVING PROCESS INFORMATION 11-3
11.21 ctermid 114

11.2.2 cuserid 114

11.23 getcwd 11-5

11.2.4 getegid, geteuid, getgid, getuid 11-6

11.2.5 getenv 11-6

11.2.6 getpid 11-7

11.2.7 getppid 11-7

11.3 CHANGING PROCESS INFORMATION 11-7
11.3.1 chdir 11-8

Xi

11.3.2 chmod 11-8

11.33 chown 11-9

11.3.4 mkdir 11-10

11.3.5 nice 11-11

11.3.6 setgid, setuid 11-12

11.3.7 umask 11-12

11.4 RETRIEVING TIME INFORMATION 11-13
11.41 asctime 11-13

11.4.2 clock 11-14

11.4.3 ctime 11-14

11.4.4 difftime 11-15

11.4.5 ftime 11-15

11.4.6 gmtime 11-16

11.4.7 localtime 11-16

11.4.8 time 11-17

11.4.9 times 11-18

11.5 VAXCSCRTL_INIT 11-18
11.6 PROGRAM EXAMPLES 11-19

CHAPTER 12 CURSES SCREEN MANAGEMENT FUNCTIONS

AND MACROS 12-1

12.1 CURSES TERMINOLOGY 12-2
12.11 User-Defined Windows 12-3

12.2 GETTING STARTED WITH CURSES 12-6
12.3 PREDEFINED VARIABLES AND CONSTANTS 12-9
12.4 CURSOR MOVEMENT 12-11
12.5 THE CURSES FUNCTIONS AND MACROS 12-12
12.5.1 [w]addch 12-12

12.5.2 [w]laddstr 12-13

xii

12.5.3

12.5.4

12.5.5

12.5.6

12.5.7

12.5.8

12.5.9

12.5.10
12.5.11
12.5.12
12.5.13
12.5.14
12.5.15
12.5.16
12.5.17
12.5.18
12.5.19
12.5.20
12.5.21
12.5.22
12.5.23
12.5.24
12.5.25
12.5.26
12.5.27
12.5.28
12.5.29
12.5.30
12.5.31
12.5.32
12.5.33
12.5.34
12.5.35
12.5.36
12.5.37
12.5.38
12.5.39
12.5.40
12.5.41
12.5.42
12.5.43

box

[wiclear

clearok

[w]clrattr

[w]clrtobot
[w]iclrtoeol

[no]lcrmode
[w]delch

[w]deleteln
delwin

[nolecho

endwin

[w]erase
[wlgetch

[wlgetstr

getyx
[wlinch

initscr

[wlinsch
[wlinsertin

[wlinsstr

longname
leaveok

[wlmove

mv[w]addch
mv[w]addstr
mvcur

mv[wl]delch

mv[wl]getch
mv[wlgetstr
mv[wlinch

mv{wlinsch
mviwl]insstr
mvwin

newwin

[no]nt

overlay

overwrite

[wlprintw

[nolraw

[wlrefresh

12-14
12-14
12-14
12-15
12-16
12-16
12-16
12-17
12-17
12-17
12-18
12-18
12-19
12-19
12-20
12-20
12-21
12-21
12-21
12-22
12-22
12-23
12-23
12-24
12-24
12-25
12-25
12-25
12-26
12-26
12-26
12-27
12-27
12-28
12-28
12-29
12-29
12-29
12-30
12-30
12-31

Xiii

12.5.44 [w]scanw 12-31
12.5.45 scroll " 12-32
12.5.46 scrollok 12-32
12.5.47 [wl]setattr 12-32
12.5.48 subwin 12-33
12.5.49 [w]standend 12-34
12.5.50 [w]standout 12-34
12.5.51 touchwin 12-35
12.5.52 wrapok 12-35
12.6 PROGRAM EXAMPLES 12-35
APPENDIX A VAX C RTL AND RTLS OF OTHER C
IMPLEMENTATIONS A-1
APPENDIX B VAX C RUN-TIME MODULES AND ENTRY POINTS B-1
APPENDIX C VAX C DEFINITION MODULES C-1
APPENDIX D SYNTAX SUMMARY D-1
INDEX
EXAMPLES
2-1 Using the Standard 1/0O Functions 2-30
3-1 Output of the Conversion Specifications 3-7
4-1 1/0 Using File Descriptors and Pointers 4-20
5-1 Character Conversion Macros 5-12
5-2 Converting Double Values to an ASCII String 5-13
5-3 Changing Characters to and from Uppercase Letters 5-14
6-1 Concatenation of Two Strings 6-19

Xiv

6-2 Four Arguments to the strscpn Function 6-20
6-3 The varargs Functions and Macros 6-21
7-1 Calculating and Verifying a Tangent Value 7-13
8-1 Suspending and Resuming Programs 8-20
9-1 Allocating and Deallocating Memory for Structures 9-6
10-1 Creating the Child Process 10-15
10-2 Passing Arguments to the Child Process 10-17
10-3 Checking the Status of Child Processes 10-19
10—-4 Communicating Through a Pipe 10-21
11-1 Accessing the User Name 11-19
11-2 A Second Way to Access the User Name 11-19
11-3 Accessing Terminal Information 11-20
11-4 Manipulating the Default Directory 11-20
11-5 Printing the Date and Time 11-21
12-1 A Curses Program 12-7
12-2 Manipulating Windows 12-8
12-3 Refreshing the Terminal Screen 12-9
12—-4 Curses Predefined Variables 12-10
12-5 The Cursor Movement Functions 12-11
12-6 Stdscr and Occluding Windows 12-36
12-7 Subwindows 12-38
FIGURES
1-1 1/0 Interface from C Programs 1-12
1-2 Mapping Standard and UNIX 1/0 to RMS 1-14
10-1 Communications Links Between Parent and Child Processes 10-2
10-2 Implementation of a Pipe 10-12
12-1 Example of the stdscr Window 12-3
12-2 Diplaying Windows and Subwindows 12-5
12-3 Illlustration of an Updated Terminal Screen 12-6
12—-4 Example of the getch Macro 12-37
12-5 Example of Overwriting Windows 12-39

Xv

TABLES

xvi

1-1
21
2-2
4-1
5-1
8-1
8-2
8-3
121
A-1

B-1

B-3
c-1
c-2

UNIX and VMS File Specification Delimiters 1-10

Conversion Characters for Formatted Input 2-3
Conversion Characters for Formatted Output 2-6
File Access Block and Record Access Block Keywords 4-5
Character Classification Macro Return Values (ASCIl Table} ___ 5-2
Errno Symbolic Values 8-1
VAX C Signals 8-7
Signal Types 8-9
Curses Predefined Variables and #define Constants ______ 12-10
Relationship of VAX C RTL Functions and Macros to Other C

RTL Functions and Macros A-1
VAX C Run-Time Modules B-1
VAX C Run-Time Entry Points B-7
Run-Time Library Procedures Called by VAX C B-19
VAX C Definition Modules C-1

Modified Definition Modules C-4

Preface

This manual provides reference information on the VAX C Run-Time
Library (RTL) functions and macros that provide I/O functionality, char-
acter and string manipulation, mathematical functionality, error detection,
subprocess creation, system access, and windowing capabilities.

Intended Audience

This manual is intended for experienced and novice programmers who
need reference information on the functions and macros contained in the
VAX C Run-Time Library.

Structure of This Document

This manual describes the VAX C Run-Time Library. It provides informa-
tion about portability concerns between operating systems and categorical
descriptions of the functions and macros. This manual has twelve chapters
and four appendixes. They are as follows:

Chapter 1, VAX C Run-Time Library Information, provides an
overview of the VAX C Run-Time Library.

Chapter 2, Standard 1/0 Functions and Macros, explains the standard
I/0 functions and macros.

Chapter 3, Terminal I/O Functions, discusses the terminal I/O func-
tions.

Chapter 4, UNIX I/O Functions and Macros, explains the UNIX I/O
functions and macros.!

Chapter 5, Character-Handling Functions and Macros, describes the
character-handling functions and macros.

Chapter 6, String- and List-Handling Functions and Macros, describes
the list-handling functions and macros.

Chapter 7, Math Functions, explains the math functions.

1 UNIX is a registered trademark of American Telephone and Telegraph Company.

xvii

Chapter 8, Error-Handling Functions, discusses the error-handling
functions.

Chapter 9, Memory Allocation Functions, explains the memory alloca-
tion functions.

Chapter 10, Subprocess Functions, describes the subprocess functions.
Chapter 11, System Functions, explains the system functions.

Chapter 12, Curses Screen Management Functions and Macros,
describes the Curses screen management functions and macros.
Appendix A, VAX C RTL and RTLs of Other C Implementations,
provides a comparison of VAX C RTL functions and macros, and
corresponding functions of other C implementations.

Appendix B, VAX C Run-Time Modules and Entry Points, provides
a description of the VAX C modules and the VAX run-time modules
used in this implementation.

Appendix C, VAX C Definition Modules, describes VAX C definition
modules.

Appendix D, Syntax Summary, provides a summary of all the VAX C
Run-Time Library functions and macros.

Associated Documents

xviii

You may find the following documents useful when programming in
VAX C:

Guide to VAX C — For programmers who need tutorial information on
using VAX C.

VAX C Installation Guide — For system programmers who install the
VAX C software.

VMS Master Index — For programmers who need to work with the
VAX machine architecture or the VMS system services.

This index lists manuals which cover the individual topics concerning
access to VMS.

Conventions Used in This Document

Convention Meaning

RETURN The symbol |RETURN| represents a single stroke
of the RETURN key on a terminal.

The symbol , where letter X represents

$ RUN CPROG

float x;

x =5;

option, . ..

[output-source, . ..]

sc-specifier ::=
auto

static

extern
register

a terminal control character, is generated by
holding down the CTRL key while pressing the
key of the specified terminal character.

In interactive examples, the user’s response to
a prompt is printed in red; system prompts are
printed in black.

A vertical ellipsis indicates that not all of

the text of a program or program output is
illustrated. Only relevant material is shown in
the example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

Square brackets, in function synopses and a few
other contexts, indicate that a syntactic element
is optional. Square brackets are not optional,
however, when used to delimit a directory

. name in a VMS file specification or when used

to delimit the dimensions of a multidimensional
array in VAX C source code.

In syntax definitions, items appearing on sepa-
rate lines are mutually exclusive alternatives.

Xix

XX

Convention

Meaning

[alb]

A

switch statement
fprintf function

argl

Brackets surrounding two or more items sepa-
rated by a vertical bar (1) indicate a choice; you
must choose one of the two syntactic elements.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

Boldface type identifies language keywords
and the names of VMS and VAX C Run-Time
Library functions.

Italics identifies variable names.

New and Changed Features

VAX C Version 2.3 supports the following new VAX C Run-Time Library
functions:

Functions in both the System V Interface Definition and the
Proposed ANSI C Language Standard

The asctime function—converts the broken-down time passed in a
predefined structure form into a string.

The assert function—verifies a program assertion.
The bsearch function—performs a binary search on a sorted array.
The clock function—determines the amount of CPU time used.

The div function—returns the quotient and remainder after the
division of its arguments.

The gmtime function—converts calendar time into a broken-down
time relative to GMT (Greenwich Mean Time).

The memchr, memcmp, memcpy, memmove, and memset functions
perform opererations on areas of memory.

The qsort function—performs a quick sort.

The setvbuf function—allows you to specify the I/O that is to be
buffered.

The strtod, strtol, and strtoul functions allow you to manipulate
strings. Specifically, the strtod function allows you to convert a string
to a double-precision number, and the strtol and strtoul functions
allow you to convert a string to an integer or unsigned integer,
respectively.

The strtok function—extracts a token from a string by using a speci-
fied set of token delimiters.

The system function—passes a command string to be executed by the
command processor.

The vprintf, vfprintf, and vsprintf functions—perform formatted
output comparable to the printf, fprintf, and sprintf functions.

xxi

Functions Defined in the System V Interface Definition

The execlp and execvp functions—pass the name of an image to be
activated in a child process.

The getewd function—returns the current working directory.

The getppid function—returns the parent process ID of the calling
process.

Functions Defined in the Proposed ANSI C Language
Standard

The atexit function—establishes an action function to be called at
program termination time.

The difftime function—computes the difference between two calendar
times.

The fmod function—computes the floating-point remainder of x/y.

The remove function—deletes a closed file. This function is equivalent
to the delete function.

The rename function—renames a closed file.

The strerror function—returns a C RTL error message string corre-
sponding to a C RTL error code.

Enhancements to Existing Functionality

XXii

The fopen and freopen functions can now be used to open binary files
when the access mode contains a “b” character string. The “b” string
cannot appear in the first character position.

The printf and scanf functions now perform formatted output and
input respectively with the addition of two new format flags (#, +) and
the following new format specifiers: i, p, and n.

The ungetc function guarantees one character of push back at all
times. This function is only valid on stream files. Two calls to the
ungetc function with no intervening I/0 is no longer supported.

The VAXC$CRTL _INIT function now allows you to initialize the
VAX C RTL for calling from other VAX languages where C is not the
main program.

Chapter 1

VAX C Run-Time Library Information

Before using the VAX C Run-Time Library (RTL) of functions and macros,
you must be familiar with:

¢ The linking process

* The macro substitution process

* The difference between function definitions and function calls

* The valid file specifications

* The VMS-specific methods of input and output (I/0)

¢ The VAX C-specific portability concerns

These topics may seem unrelated, but a knowledge of all these issues is
necessary to using the VAX C RTL. This chapter shows the connections
among these topics and the VAX C RTL, and should be read before any of
the other chapters in this manual.

The primary purpose of the VAX C RTL is to provide a means for C
programs to perform I/O operations; the C language itself has no facilities
for reading and writing information. In addition to I/O support, the VAX-
C RTL also provides a means to perform many other tasks.

Chapters 2 through 12 contain descriptions of all the functions and
macros for the various tasks supported by the VAX C RTL. Each chapter
describes the functions and macros in a particular functional category. The
functional categories and their associated chapters are as follows:

¢ Standard, Terminal, and UNIX I/O functions and macros (Chapters 2,
3, and 4, respectively)

¢ Character-handling functions and macros (Chapter 5)

* String- and list-handling functions and macros (Chapter 6)

VAX C Run-Time Library Information 1-1

* Mathematical functions (Chapter 7)

* Signal functions (Chapter 8)

* Memory allocation functions (Chapter 9)

* Subprocess functions (Chapter 10)

* System functions (Chapter 11)

* Curses Screen Management functions and macros (Chapter 12)

1.1 Implementation of the VAX C Run-Time Library

When working with the VAX C RTL, you must be aware of the specifics of
this implementation.

First, if you plan on using VAX C RTL functions in your programs, make
sure that a function named “main” or a function that uses the “main_
program” option exists in your program. For more information, refer to
the Guide to VAX C.

The VAX C Run-Time Library functions are executed at run time, but
references to these functions are resolved at link time. When you link
your program, the linker resolves all references to VAX C Run-Time
Library functions by searching any object code libraries that you specified
on the LINK command line. If the linker locates the function code, it
places a copy of the code in the program’s local program section (psect). If
the linker does not locate the function code, it translates the logical names
LNK$LIBRARY_n to the name of an object library and then searches that
library for the code.

You must define the logical names LNK$LIBRARY_n as one or more of
the following libraries:

e SYS$LIBRARY:VAXCCURSE.OLB
* SYS$LIBRARY:VAXCRTLG.OLB
e SYS$LIBRARY:VAXCRTL.OLB

Depending on the needs of your program, you may have to access one,

two, or all three of the libraries. The following list relates the needs of
your program with the particular libraries that you must define.

1-2 VAX C Run-Time Library Information

1. If you do not need to use the Curses Screen Management package
of VAX C RTL functions and macros, and you do not use the /G_—
FLOAT qualifier on the CC command line, you must define the logical
as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLB|RETURN

2. If you do plan to use the /G_FLOAT qualifier with the CC command
line, but do not plan on using Curses, you must define the logicals as
follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTLG.OLB|RETURN
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB[RETURN

3. If you do plan to use the Curses Screen Management package, but do
not plan to use the /G_FLOAT qualifier, you must define the logicals
as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB{RETURN
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB(RETURN

4. Finally, if you do plan to use both Curses and the /G_FLOAT
qualifier, you must define the three logicals as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB (RETURN

$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTLG.OLB |RETURN
$ DEFINE LNK$LIBRARY_2 SYS$LIBRARY:VAXCRTL.OLB|[RETURN

The order of the specified libraries determines which versions of the VAX
C RTL functions are found first by the linker. If the linker does not find
the function code or if LNK$LIBRARY_n is undefined, it assumes that the
function is not a VAX C RTL function and checks other default libraries
before it assumes that the program is in error. It may be helpful to
place these definitions in your LOGIN.COM file or some other command
procedure so that you do not have to retype these definitions each time
you use the VAX C RTL.

For more information concerning Curses, refer to Chapter 1, Curses
Screen Management Functions and Macros. For more information con-
cerning command procedures or the G_floating representation of double
variables, refer to Guide to VAX C.

VAX C Run-Time Library Information 1-3

1.1.1 Using the VAX C RTL as a Shareable Image

Instead of using the object code of the VAX C RTL functions, you can,

as an option, use the VAX C RTL as a shareable image. When you use
the VAX C RTL as a shareable image, you do not receive a copy of the
object code in your program’s local psect; control is passed, by means of
pointers, from your program to libraries containing the RTL images where
the designated function executes. After execution, control returns to your
program. This process has a number of advantages. You significantly
reduce the size of a program'’s executable image, the program’s image
takes up less disk space, and the program swaps in and out of memory
faster because of decreased size.

To use the VAX C RTL as a shareable image, check with your system
manager to make sure that the VAX C RTL software was installed so as to
allow access to the shared images. Specifically, make sure that the system
manager answered YES to step 5 listed in the VAX C Installation Guide. 1f
that has been done, you can create an options file.

If you do not use the /G_FLOAT qualifier on the CC command, create an
options file, OPTIONS_FILE.OPT, containing the following line:

SYS$SHARE : VAXCRTL . EXE/SHARE

If you do use the /G_FLOAT qualifier on the CC command, create an
options file containing the following line:

SYS$SHARE: VAXCRTLG . EXE/SHARE

You must not include the libraries SYS$SHARE:VAXCRTL.EXE and
SYS$SHARE:VAXCRTLG.EXE in the same options file.

After you have created the appropriate options file, named OPTIONS_
FILE.OPT, you can compile and link your program with the following
commands:

$ CC PROGRAM.C{RETURN
$ LINK PROGRAM.OBJ, OPTIONS_FILE/OPT[RETURN

Note that the include files are distributed with VAX C. The RTL libraries
are distributed with VMS.

1-4 VAX C Run-Time Library Information

1.1.2 Macros

You may need to use macros as well as functions from the VAX C RTL.
Macros are resolved at compilation time instead of link time. The compiler
replaces the macro reference with text found in a definition file. Macros
are not the only segments of source code found in the definition files;
these files contain many definitions that are needed for some of the

RTL functions to work properly. Macro definitions differ from the other
definitions by their use of parameters which are delimited by parentheses.

Consequently, you need to learn about VAX C text substitution in order to
use the VAX C RTL wisely.

To understand text substitution, you should know how the Standard I/O
definitions are created. Definitions are comprised of #define preprocessor
directives. Traditionally in the C language, these #define directives are
located in files that have the .H file extension. If during installation of
the VAX C software these files were extracted, you can locate them in
the directory SYS$LIBRARY. For example, you can type the STDIO.H file
(which contains Standard 1/O definitions and macros) at your terminal
with the following command:

$ TYPE SYSSLIBRARY:STDIO.H[RETURN

If you encounter an error, speak to your system manager about extraction
of the .H definition files.

Since it is often more efficient to access these files in a VAX C provided

library, this manual refers to the .H definition files as definition modules.
For more information concerning text libraries and modules, refer to the

Guide to VAX C.

The following identifiers are defined in the stdio definition module:

#define TRUE 1
#define FALSE 0
#define EOF (-1)

You can use these definitions by including the proper definition module;
use the #include preprocessor directive in your source file. At compile
time, the compiler replaces the identifiers, within the source code, with the
defined token string. In the previous code example, all instances of the
identifier TRUE are replaced with the number 1.

VAX C Run-Time Library Information 1-5

To include the Standard I/O definitions in your file, use the following
. preprocessor directive:

#include stdio

Some VAX C RTL “functions” are implemented as macros using the
#define preprocessor directive. For example, to use the macro _toupper,
use the following line in your source code program:

#include ctype

In the definition module, ctype, you can find the following macro
definition:

#define _toupper(c) ((c) >= 'a' && (c) <= 'z' 7 (c) & Ox5F : (c))

In your program, you call the macro —toupper with the following source
line:

_toﬁpper(a);

The compiler searches through the source code for calls to —toupper,
replacing each occurrence with the token string found in the macro
definition. In the previous example, the compiler places the argument
specified in the macro call (the letter a) wherever the identifier ¢ appears
in the defined token string. The token string in the previous example is
VAX C source code that translates a lowercase letter to an uppercase letter.
If the specified character is already an uppercase letter or if it is not a letter
at all, the character is returned unaltered.

When calling VAX C RTL macros, use caution in specifying arguments
that cause side effects, such as those that use the increment and decrement
operators. For example, in the case of _toupper, even though you have
access to the source code token string, you cannot determine the order in
which the compiler evaluates each occurrence of (¢) in the token string.
The leftmost occurrence of (c) may not be evaluated first by the compiler.
For a discussion of the passing of arguments to macros, refer to the Guide
to VAX C.

Whereas the linker searches object libraries for the VAX C RTL function
code, the compiler searches text libraries or directories for the VAX C RTL
macros. When including text modules in your source code, the compiler
first searches text libraries specified on the compilation command line

for the definition module. If the compiler does not find the module, it

1-6 VAX C Run-Time Library Information

translates the logical name C$LIBRARY; you can define CSLIBRARY to
be a user-defined library. If the compiler cannot locate the module in the
defined library or if there was no translation for CSLIBRARY, the compiler
searches the text library SYS$LIBRARY:VAXCDEF.TLB; this library is
shipped with the VAX C compiler and contains the .H definition files.

If the compiler cannot find the specified module, it generates an error
message.

Depending on the form of the #include line, there are other places
to look for definition files that may contain VAX C RTL macros. For
complete information about library searches, refer to the Guide to VAX C.

1.2 VAX C RTL Function and Macro Syntax

Once you know how to link object modules and include text modules,
you must learn how to reference VAX C functions and macros in your
program. Each of the remaining chapters in this manual provides detailed
descriptions of VAX C RTL functions and macros.

In all chapters, the style of syntax used to describe each function and
macro follows the usual convention for function syntax. A syntax is a
compact representation of the order of a function’s or macro’s argument
list (if any), the arguments’ types, and the type of the value returned by
function or macro. If the return value of the function cannot be easily
represented by a VAX C data type keyword, look for a description of the
return values in the explanatory text. The syntax descriptions provide
insight into the functionality of the function or macro. These descriptions
do not necessarily describe how to call the function or macro in your
source code.

For example, consider the syntax of the feof function:

#include stdio
int feof(file_pointer)
FILE *file_pointer;

The description of feof states that it is implemented as a macro. The
syntax shows the following;:

®* The macro is defined in a definition module. You must include the
stdio module to use the feof macro.

* The macro returns a value of data type int. Do not declare VAX C
RTL macros. This line in the syntax indicates the arguments and the
return value, not the form of a declaration.

VAX C Run-Time Library Information 1-7

* There is one argument, file_pointer, that is a pointer to FILE; FILE is
an external data definition in the stdio module.

To use feof in a program, you need only call the macro and precede the
call at some point by the #include directive, as in the following example:

#include stdio /* Include Standard I/0 */
main()
{

FILE *infile; . /* Define a file pointer */

/* Call the function feof %/

while (! feof(infile)) /* Until EOF reached */
{ /* Perform file operations */
}

3

Because some library functions take varying numbers of arguments, syntax
descriptions have additional conventions not used in other VAX C function
definitions:

* Optional parameters are enclosed in square brackets ([]).

* Anellipsis (...) is used to show that a given parameter may be
repeated.

* In cases where the type of a parameter may vary, its type is not shown
in the syntax.

Consider the printf syntax description:

#include stdio

int printf(format_specification [,output_source, . . . 1)

char *format_specification;
The syntax description for printf shows that the argument, output_source,
is optional, may be repeated, and is not always of the same data type. The

remaining information about the arguments of printf is in the description
of the function following the syntax.

1-8 VAX C Run-Time Library Information

1.2.1 DEC/Shell File Specifications

The VAX C RTL functions and macros often manipulate files. One of
the major portability problems is the different file specifications used
on various systems. Since many C applications are ported to and from
UNIX systems, it is convenient for all compilers to be able to read and
understand UNIX system file specifications.

Consequently, functions from the DEC/Shell Run-Time Library are
included in the VAX C RTL as a convenience for those interested in
porting C programs from UNIX systems to VMS. The DEC/Shell functions
in the VAX C RTL perform file conversion, file translation, and command
language interpreter (CLI) status reports. For example, the RTL function
SHELL$TO_VMS converts DEC/Shell file specifications to VMS file
specifications.

The advantage of including the DEC/Shell functions in the VAX C RTL
is that you do not have to rewrite C programs containing UNIX system
file specifications. VAX C can translate most valid UNIX system file
specifications to VMS file specifications.

NOTE

* VAX C cannot translate UNIX file specifications with more
than one period character (.).

e If the UNIX file specification contains a period, all slash
characters (/) must precede that period.

Although you do not need to be concerned with calling the Shell func-
tions, you must be aware of the differences between the UNIX system and
VMS file specifications, as well as the method used by VAX C to access
files. For example, VAX C will accept a valid VMS specification and most
valid UNIX file specifications, but VAX C cannot accept a combination of
both. Table 1-1 illustrates the differences between UNIX system and VMS
file specification delimiters.

VAX C Run-Time Library Information 1-9

Table 1-1: UNIX and VMS File Specification Delimiters

Description VMS UNIX

Node delimiter i 1/

Device delimiter : /

Directory path delimiter [1] /
Subdirectory delimiter [.1] /

File extension delimiter

File version delimiter ; . Not applicable

For example, the formats of two valid specifications and one invalid
specification are as follows:

System File Specification Valid/Invalid
VMS BEATLE::DBAO:{MCCARTNEY]SONGS.LIS ~ VALID
"UNIX beatle!/dba0/mccartney /songs.lis VALID

— BEATLE::DBAO:[IMCCARTNEY.C]/songs.lis INVALID

When VAX C translates file specifications, it looks for both VMS and
UNIX system file specifications. Consequently, there may be differences
between the way in which VAX C translates UNIX system file speci-
fications and the way in which the UNIX systems translate the same
UNIKX file specification. For example, if the two methods of file spec-
ification are combined, as in the previous list, VAX C could possibly
interpret [MCCARTNEY.C]/songs.lis as either MCCARTNEY]songs.lis or
[Clsongs.lis. Therefore, when VAX C encounters a mixed file specification,
an error occurs.

UNIX systems use the same delimiter for the device name, the directory
names, and the file name. Due to the ambiguity of UNIX file specifica-
tions, VAX C may not translate a valid UNIX system file specification
according to your expectations. For instance, the VMS equivalent of
bin/today can be either [BINJTODAY or [BIN.TODAY]. VAX C can make
the correct interpretation only from the actual files present. If a file spec-
ification conforms to UNIX system file name syntax for a single file or
directory, it will be converted to the equivalent VMS file name if one of
the following is true.

1-10 VAX C Run-Time Library Information

1. If the specification corresponds to an existing VMS directory, it is
converted to that directory name. For example, /dev/dir/sub is
converted to DEV:[DIR.SUB] if DEV:[DIR.SUB] exists.

2. If the specification corresponds to an existing VMS file name, it is
converted to that file name. For example, dev/dir/file is converted to
DEV:[DIRJFILE if DEV:[DIR]FILE exists.

3. If the specification corresponds to a nonexistent VMS file name, but
the given device and directory exist, it is converted to a file name.
For example, dev/dir/file is converted to DEV:[DIR]FILE if DEV:[DIR]
exists.

In the UNIX system environment, you reference files with a numeric file
descriptor. Some file descriptors reference standard input and output
devices; some descriptors reference actual files. If the file descriptor
belongs to an unopened file, the VAX C RTL opens the file. VAX C
equates file descriptors with the following VMS logical names:

File Descriptor VMS Logical Meaning

0 SYS$INPUT Standard Input

1 SYS$OUTPUT Standard Output

2 SYS$ERROR Standard Error

3-9 SHELLS$FILE _n File/Pipe opened by the Shell

You can use the DEC/Shell as your command language interpreter instead
of the default interpreter, the DIGITAL Command Language (DCL). For
more information concerning the DEC/Shell, refer to the Guide to VAX C.

1.3 Input and Output on VMS

Once you have learned how to specify object libraries, how to specify text
libraries, and how to call VAX C functions and macros, you are ready to
use the RTL for its primary purpose: input and output.

Since every system has different methods of I/O, you should familiarize
yourself with the VMS specific methods of file access. In this way, you
will be equipped to predict possible differences in functionality when
porting your source program from one operating system to another.

VAX C Run-Time Library Information 1-11

As shown in Figure 1-1, VAX C makes available four methods of I/0.
The VMS system services “talk” directly to VMS, so they are “closest” to
the operating system. The RMS functions use the system services, which
in turn manipulate the operating system. The VAX C Standard and UNIX
I/0O functions and macros use the RMS functions, which in turn use the
system services, which in turn manipulate the operating system. Since the
VAX C Standard and UNIX I/O functions and macros must go through
several layers of function calls before the system is manipulated, they are
“furthest” from the operating system.

Figure 1-1: 1/0 Interface from C Programs

Standard 1/0

P

r

o - UNIX 1/0

g

r - VAX-11 RMS
m

System Services

ZK-493-81

When the C programming language was developed on the UNIX operating
system, the Standard I/O functions were meant to provide a convenient
method of I/O that would be “powerful” enough so as to be efficient

for most applications, and also to be portable so that the functions could
be used on any system running C language compilers. VAX C adds
functionality to this original specification. Since, as implemented in VAX
C, the Standard I/0 functions easily recognize line terminators, the VAX C
Standard 1/O functions are particularly useful for text manipulation. Also,
VAX C implements some of the Standard I/O “functions” as preprocessor
defined macros.

In a similar manner, the UNIX I/O functions originally were meant

to provide a more direct access to the UNIX operating systems. These
functions were meant to use a numeric file descriptor to represent a file;
a UNIX system represents all peripheral devices as files, so as to provide
a uniform method of access. Once again, VAX C adds functionality to
the original specification. The UNIX I/O functions, as implemented in
VAX C, are particularly useful for manipulating binary data. Also, VAX
C implements some of the UNIX I/O “functions” as preprocessor defined
macros.

1-12 VAX C Run-Time Library Information

The VAX C RTL includes the Standard I/O functions that were meant

to exist on all C compilers, and also the UNIX I/O functions to main-
tain compatibility with as many other implementations of C as possible.
However, both Standard I/O and UNIX I/O use VAX Record Management
Services (RMS) to access files. So, in order to understand how the
Standard and UNIX I/O functions manipulate RMS formatted files,

you should understand the fundamentals of VAX Record Management
Services. See Section 1.3.1 for more information concerning Standard and
UNIX I/0 in relationship to RMS files. For an introduction to RMS, refer
to the Guide to VAX/VMS File Applications.

Before deciding which method is appropriate for you, you must first

ask the question: Are you concerned with UNIX compatibility or with
developing code that will run solely under VMS? If UNIX compatibility is
important, you probably want to use the highest level of I/O—Standard
I/O and UNIX I/O—because that level is largely independent of the
operating system. ' Also, the highest level is easier to learn quickly, an
important consideration for new programmers.

If UNIX compatibility is not important to you or if you require the sophis-
ticated file processing that the Standard I/O and UNIX I/O methods do
not provide, you will find VAX RMS desirable.

If you are writing system-level software, you may need to access VMS
directly through calls to system services. For example, you may need to
access a user-written device driver directly through Queue 1/O Request
System Service ($QIO). To do this, you need to use the VMS level of I/0;
this level is recommended for experienced VMS programmers only. For
examples of programs that call VMS system services, refer to the Guide to
VAX C.

Many programmers may never use the RMS or the system services of
VMS. The Standard and UNIX I/O functions are efficient enough for a
large number of applications. Figure 1-2 illustrates the dependency of
the Standard I/O and the UNIX I/O functions on RMS, and the various
methods of I/0O available to the VAX C programmer.

VAX C Run-Time Library Information 1-13

Figure 1-2: Mapping Standard and UNIX 1/0 to RMS

— VAX C PROGRAM
\
Standard 1/0 UNIX 1/0
_ J
N
)
VAX RMS
Y

System Services

ZK-494-81

1.3.1 RMS Record and File Formats

To understand the capabilities, as well as the restrictions, of the Standard
and UNIX I/O functions and macros, you need to understand VAX Record
Management Services (RMS).

VAX RMS supports three types of file organization:

* Sequential
¢ Relative
* Indexed

1-14 VAX C Run-Time Library Information

Sequential files have consecutive records with no empty records in be-
tween; relative files have fixed-length cells that may or may not contain a
record; and indexed files have records that contain data, carriage control
information, and keys that permit various orders of access. The VAX C
RTL functions can only access sequential files. If you wish to use the other
file organizations, you must use the RMS functions. For more information
concerning the RMS functions, refer to the Guide to VAX C.

VAX RMS is not concerned with the actual contents of records, so much
as it is concerned about the record format, which is the way a record
physically appears on the recording surface of the storage medium.

VAX RMS supports different record formats:

* Fixed length

* Variable length

¢ Variable with fixed-length control (VFC)
* Stream

You can specify a fixed-length record format at the time of file creation.
This means that all records occupy the same space in the file. You cannot
change the record format once you have created the file.

The length of records in variable length, VFC, and stream file formats can
vary up to a maximum size that must be specified when you create the
file. With variable-length record or VFC format files, the size of the record
is held in a header section at the beginning of the data record. With
stream files, RMS terminates the records when it encounters a specific
character, such as a carriage-control or line-feed character. Stream files are
very useful for storing text.

RMS allows you to specify carriage control attributes for records in a

file. Such attributes include the implied carriage-return or the FORTRAN
formatted records. RMS interprets these carriage controls when the file is
output to a terminal, a line printer, or other device. The carriage control
information is not stored in the data records.

Files created with VAX C programs have, by default, stream format with
a line-feed record separator and implied carriage-return attributes. (In this
manual, this type of file is referred to as a stream file.) Stream files can be
manipulated very easily using the Standard and the UNIX I/O functions
of the VAX C RTL. When using these files, there is no restriction on the
ability to seek to any random byte of the file using the fseek or the Iseek
functions. However, if the file has one of the other RMS record formats,
such as variable-length record format, then these functions, due to RMS
restrictions, can seek only to record boundaries. Thus, unless you need to

VAX C Run-Time Library Information 1-15

create or access files to be used with other VAX languages or utilities, it is
recommended that you use the default VAX C stream format.

‘1.3.2 Stream Access to RMS Record Files

Stream access to record files is done with the record I/O facilities of RMS.
The VAX C RTL emulates a byte stream by translating carriage control
characters during the process of reading and writing records. Random
access is allowed to record files, but positioning (with fseek and lseek)
must be on a record boundary, and writes followed by reads (or reads
followed by writes) do not work as with stream files. Positioning of a
record file causes all buffered input to be discarded and buffered output to
be written to the file.

Stream input from RMS record files is emulated by the VAX C RTL in
two steps. First, the VAX C RTL reads a logical record from the file.
Second, the VAX C RTL expands the record to simulate a stream of bytes
by translating the record’s carriage-control information (if any). In RMS
terms, the VAX C RTL translates the information by one of the following
methods:

e If the record attribute is implied carriage control (RAT=CR), then the
VAX C RTL appends a newline to the record.-

e If the record attributes are print carriage control (RAT=PRN), then the
VAX C RTL expands and concatenates the prefix and postfix carriage
controls before and after the record.

* If the record attributes are FORTRAN carriage control (RAT=FTN),
then the VAX C RTL removes the initial control byte and appends the
appropriate carriage control characters. The following rules describe
the way the character in the first byte maps onto the prefix and postfix
bytes that appear in the emulated stream. The identifier <record>
denotes the bytes contained in the logical record exclusive of the first
carriage-control byte; (\n) denotes the newline character; (\f) denotes
the form-feed character; (\r) denotes the carriage-return character.
Consider the following list.

1-16 VAX C Run-Time Library Information

NUL — <record>

0 — \n\n <record> \r
1 — \f <record> \r

+ — <record> \r

$ — \n <record>

all others — \n <record> \r

e If the record attributes are null (RAT=NONE) and the input is coming
from a terminal, then the VAX C RTL appends the terminating char-
acter to the record. If the terminator is a carriage return or CTRL/Z,
then the VAX C translates the character to a newline (\n).

If the input is coming from a nonterminal file, then the VAX C RTL
passes the record unchanged to the user program with no additional
prefix or postfix characters.

® If the record format is variable length with fixed control (RFM=VFC),
and the record attributes are not print carriage control (RAT is not
PRN), then the VAX C RTL concatenates the fixed-control area to the
beginning of the record.

As you read from the file, the VAX C Run-Time Library delivers a stream
of bytes resulting from the translations. Information that is not read from
an expanded record by one function call is delivered on the next input
function call.

Stream output to RMS record files is performed by the VAX C Run-Time
Library in two steps. First, the VAX C RTL forms a logical record from the
bytes specified by the output function (write, for example) by translating
any carriage-control bytes into RMS terms. Then, the VAX C RTL writes
the logical record.

The first part of the stream output emulation is the formation of a logical
record. As you write bytes to a record file, the emulator examines the
information being written for record boundaries. The handling of informa-
tion in the byte stream depends on the attributes of the destination file or
device, as follows:

e If the record attributes specify no carriage-control information
(RAT=null), then the VAX C RTL assumes that the stream of bytes
presented in an output-function call is a logical record.

VAX C Run-Time Library Information 1-17

* If the destination file or device being written to has carriage-control
information (RAT=CR, RAT=FTN, or RAT=PRN), then the emulator
buffers output bytes while it searches for a newline character (\n).
The emulator can buffer as many output bytes as the number of bytes
contained in the maximum record size of the file. If the VAX C RTL
encounters more than the number of bytes in the maximum record
size of the file before it encounters a newline, then the VAX C RTL
writes a record containing the data output thus far and clears the
buffer. Otherwise, when a newline is found, the VAX C RTL forms
the logical record by appending the newline to the buffered bytes.

The second part of stream output emulation is the actual writing of the
logical record formed during the first step. The VAX C RTL executes one
of the following steps to form the output record:

¢ If the output file record format is variable length with fixed control
(RFM=VEFC), and the record attributes do not include print carriage
control (RAT is not PRN), then the VAX C RTL takes the beginning
of the logical record to be the fixed-control header, and reduces the
number of bytes written out by the length of the header. If there are
too few bytes in the logical record, an error is signaled.

e If the record attribute is carriage control (RAT=CR), and if the logical
record ends with a newline character (\n), the VAX C RTL drops the
newline and writes the logical record with implied carriage control.

¢ If the record attribute is print carriage control (RAT=PRN), then the
VAX C RTL writes the record with print carriage control. If the logical
record ends with a newline character (\n), the VAX C RTL drops the
newline, precedes the output record with a line feed character (\n),
and follows the record with a carriage-return (\r). This is the reverse
of the translation for stream input files with print carriage control
attributes.

e If the record attributes are FORTRAN carriage control (RAT=FIN),
then the VAX C RTL removes the first byte of the record, and concate-
nates prefix and postfix characters to the record. The following rules
describe the way the character in the first byte maps onto the prefix
and postfix bytes that appear in the emulated stream. The identifier
<record> denotes the bytes contained in the logical record exclusive
of the first carriage-control byte; (\n) denotes the newline character;
(\f) denotes the form-feed character; (\r) denotes the carriage-return
character. Consider the following list.

1-18 VAX C Run-Time Library Information

data NULL <data>

data\r + <data>
\n data\r <space> <data>
\f data\r 1 <data>
\n data $ <data>

e If the record attribute is null (RAT=null), then the VAX C RTL per-
forms a test to determine whether the logical record is to be written
to a terminal device. If so, the VAX C RTL scans the record and
replaces each newline character (\n) that is encountered by a carriage-
return/line-feed pair (\r\n). Then, the VAX C RTL writes out the
record with no carriage control.

1.4 Specific Portabhility Concerns

One of the last tasks in preparing to use the VAX C RTL, if you are going
to port your source programs across systems, is to be aware of specific
differences between the VAX C RTL and the run-time libraries of other
implementations of the C language. This section describes some of the
problems that programmers encounter when porting programs to and
from VMS. Although portability is closely tied to the implementation

of the run-time library, this section also contains information on the
portability of other VAX C constructs.

It is not a goal of VAX C to duplicate all run-time functions that exist on
every implementation of the language. VAX C implements a reasonable
subset of existing C language functions and attempts to maintain complete
portability in functionality whenever possible. Many of the Standard

and UNIX I/O functions and macros contained in the VAX C Run-Time
Library are functionally equivalent to those of other implementations.

However, in some instances functions provided by other implementations
are not provided by VAX C because those functions conflict with the VMS
operating system environment. In some cases, conflicting functions are
replaced by an equivalent, more efficient VAX C function or macro. For
example, the unlink function found on implementations running on UNIX
operating systems has been replaced by the VAX C delete function.

VAX C Run-Time Library Information . 1-19

In other cases, VAX C includes functions or macros that provide no
functionality under VMS but are necessary so that programmers may port
their programs to the VMS environment. For example, the nonl macro
has no functionality in the VMS environment, but if you port a program
from a UNIX system to VMS, the presence of nonl in the source code does
not generate an error.

The RTL function and macro descriptions elaborate on issues presented in
this section and describe concerns not documented here. Also, Appendixes
A, B, and C provide information concerning the porting of C programs.
Appendix A, VAX C RTL and RTLs of Other C Implementations, compares
the functionality of VAX C RTL functions and macros with those of other
implementations. Appendix B, VAX C Run-Time Modules and Entry
Points, describes the run-time modules and entry points used by VAX

C. Appendix C, VAX C Definition Modules, lists the .H definition files that
are included in the compilation process to provide macro definitions and
definitions used by some RTL functions; it may be helpful to review the
definitions contained within these files.

The following list documents issues of concern for programmers who wish
to port C programs to VMS:

* VAX C does not implement the global symbols end, edata, and etext.

* You should not attempt to substitute your own code for functions
that are already supplied by VAX C. For example, the VAX C version
of strcpy expects a return value. If you were to include a version of
strepy which did not return a value, the procedure would not perform
correctly. The following code is an example of this:

strepy(p, q)
char *p, *q;

while(#p++ = xqt+);

This use of strcpy will not work because code inside the VAX C
Run-Time Library expects, and makes use of, a return value.

* There are differences in the way that VMS and UNIX systems lay out
virtual memory. In UNIX, the address space between 0 and the break
address are accessible to the user program. In VMS, the first page of
memory is not accessible.

If a program tries to reference location 0 on VMS, a hardware error
(ACCVIO) is returned and the program terminates abnormally. VMS
reserves the first page of address space to catch incorrect pointer
references, such as a reference to a location pointed to by a null

1-20 VAX C Run-Time Library Information

pointer. For this reason, some existing programs that run on UNIX
systems may fail and should be rewritten.

Some C programmers code all external declarations in #include files.
Then, specific declarations that require initialization are redeclared

in the relevant module. This practice causes the VAX C compiler to
issue a warning message about multiply declared variables in the same
compilation. One way to avoid this warning is to make the redeclared
symbols extern variables in the #include files.

The asm call is not supported by VAX C.

Some C programs call the counted string functions strempn and
strcpyn. These names are not used by VAX C. Instead, you can
define macros that expand the strcmpn and strcpyn names into the
equivalent names strncmp and strncpy.

The VAX C compiler does not support the initialization form:
int foo 123; ’

Programs using this form of initialization will have to be changed.

The fixed limit to the length of a string that VAX C accepts is 65,535
characters, or bytes. Long strings must be divided, and programs that
use string arrays may need to be changed.

VAX C defines the compile-time constants vax, vms, vaxllc, vaxc,
VAX, VMS, VAX11C, VAXC, and CC$g_float. These constants are
useful for programs that must run compatibly on various machines
and operating systems. For more information, refer to the Guide to
VAX C.

The C language does not guarantee any memory order for the vari-
ables in a declaration such as

int a, b, c;

The VMS Linker usually places VAX C extern variables in program
sections (psects) of the same name as the variable. The linker then
links the psects alphabetically by name. If you are porting a C
program from another operating system to VMS, you may find that
the order of items in the program has been allocated differently in
virtual memory. This causes existing programs with hidden bugs to
fail.

The dollar sign ($) and the underscore (_) are legal characters in
VAX C identifiers.

VAX C Run-Time Library Information 1-21

¢ The C language does not define any order for the evaluation of
expressions in function parameter lists or in general expressions. The
way in which different C compilers evaluate an expression is only
important when the expression has “side effects,” as in

ali]l = i++;
and
f(p++, p++)

Neither VAX C nor any other C compiler can guarantee that such
expressions evaluate in the same order on all C compilers.

* The size of an integer is 32 bits on VAX C. Programs that were written
for other machines and that assume a different size for a variable of
type int will have to be modified.

* The C language defines structure alignment to be dependent on the
machine for which the compiler is designed. By default, VAX C aligns
structure members on byte boundaries. Other implementations may
align structure members differently.

* References to structure members in VAX C must not be ambiguous.
For more information, refer to the Guide to VAX C.

® Although registers are allocated based upon how frequently a variable
is used, the keyword register gives the compiler a “strong hint” that
the programmer wants to place a particular variable into a register.
Whenever possible, the variable is placed into a register. Any scalar
variable with the storage class auto or register may be allocated
to a register as long as the variable’s address is not taken with the
ampersand operator (&) and as long as it is not a member of a
structure or union,

* When moving programs from one operating system to another, the
operations of the different linkers must also be taken into account.
The VMS Linker does not load an object module from an object
library unless the module contains a function definition, a globaldef
definition, or a globalvalue definition that is needed to resolve a
reference in another component of the program. When you refer to an
extern variable from a program, the linker does not load the library
module if the module contains only a compile-time initialization of
the variable. This is a restriction, which can be avoided in one of two
ways.

In the following example, the program PROG.C contains an external
declaration of a variable; the module LABDATA.C initializes the
variable.

1-22 VAX € Run-Time Library Information

PROG.C:

main()

extern float lab_datall;

}
LABDATA.C:
float lab_data = {1, 2, 3, 4, 5, 6, 7, 8 };

lab_data()
{

}

You can link the object code for the program and the module either
by naming the LABDATA object file in the LINK command, or by
explicitly extracting the module from a library (here, it is part of the
MYLIB library), as follows:

$ LINK PROG,LABDATA,SYS$LIBRARY:VAXCRTL/LIB[RETURN

$ LINK PROG,MYLIB/LIB/INCLUDE=LABDATA,- [RETURN
_$ SYSS$LIBRARY:VAXCRTL/LIB|RETURN

You can also bundle the initialization in a module that will be loaded,
that is, in a module that contains a function definition, a globaldef
definition, or a globalvalue definition.

VAX C Run-Time Library Information 1-23

Chapter 2
Standard 1/0 Functions and Macros

In VAX C, and in most other implementations of C, stream files and their
associated functions form the Standard I/O facilities. Stream files are files
treated as streams of bytes. A series of bytes is read from or written to

a stream file directly, with no record structure. (For more information
concerning RMS file organization, refer to the Guide to VAX C. For more
information concerning the VAX C RTL and RMS file organization, refer
to Chapter 1, VAX C Run-Time Library Information.)

Stream files in VAX C correspond to RMS stream files with the line feed
terminator attribute. In performing stream access to stream files, the
VAX C RTL uses the block I/O facilities of RMS. A stream of bytes is
either written to or read from a file with no translation. If the file has
been opened for update, it can be read (fread) and written (fwrite) at the
current byte position in the file. Note that file sharing is not supported for
stream files.

~ The fopen Standard I/O function creates or opens existing stream files.
You process stream files with conventional Standard I/O functions such
as fseek, ftell, fread, fwrite, and fprintf. An fread followed by an fwrite
places bytes in the file after the last byte of the previous fread. An fwrite
followed by an fread causes reading to begin after the last byte of the
previous fwrite.

A stream file can be positioned to an arbitrary byte at any time (fseek).
If positioned beyond the end-of-file, the file is extended with NUL bytes.
The file may be positioned relative to the beginning-of-file, relative to the
current position, or relative to the end-of-file. The first byte in the file is
byte zero; therefore, specifying zero as the absolute position in an fseek
call positions the file at its first byte. You can also determine the current
byte position of a stream file with the ftell function.

Standard 1/0 Functions and Macros 2-1

You must open a file for update if the file is going to be written randomly.
For example:

#include stdio

main()

{
FILE =*outfile;
outfile = fopen("diskfile.dat", "w+");

}
Here, the stream file DISKFILE.DAT is opened for “write update” access.

The Standard 1/O functions access files by file pointer. A file pointer is
defined in the include definition module stdio as follows:

typedef struct _iobuf *FILE;
You can find the definition of the _iobuf identifier in the stdio module.
To declare a file pointer, use the following line:

FILE x*file_ptr;

NOTE

This definition of a file pointer differs from that of other
implementations of the C language. So long as you access files
using the functions and macros provided as part of the VAX

C Run-Time Library, portability with respect to file pointers is
possible.

2.1 Conversion Specifications

Several of the Standard I/O functions (including the Terminal I/O func-
tions) use conversion characters to specify data formats for input and
output. Consider the following example:

int x = 5.0;
FILE *outfile;

fprintf(outfile, "The answer is %d.\n", x);

2-2 Standard 1/0 Functions and Macros

The decimal value of the variable x replaces the conversion specification
%d in the string to be written to the file associated with the identifier
outfile.

Each conversion specification begins with a percent sign (%). This sign is
followed by an optional assignment-suppression character (*), an optional
number giving the maximum field width, and a conversion character.

2.1.1 Conversion of Input Information

A conversion specification for the input of information can include three
kinds of items:

1. White-space characters (spaces, tabs, and newlines), which match
optional white-space characters in the input field.

2. Ordinary characters (not %), which must match the next nonwhite-
space character in the input.

3. Conversion specifications, which govern the conversion of the charac-
ters in an input field and their assignment to an object indicated by a
corresponding input pointer.

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. Conversion
specifications form part of the format specification. The indicated object
is the target that receives the input value. There must be as many input
pointers as there are conversion specifications, and the addressed objects
must match the types of the conversion specifications.

Table 2-1 describes the conversion characters for formatted input.

Table 2-1: Conversion Characters for Formatted Input
Character Meaning

d Expect a decimal integer in the input. The corresponding
argument must point to an int:

o Expect an octal integer in the input (with or without a leading
zero). The corresponding argument must point to an int.

X Expect a hexadecimal integer in the input (without a leading 0x).
The corresponding argument must point to an int.

Standard 1/0 Functions and Macros 2-3

Table 2-1 (Cont.): Conversion Characters for Formatted

Input

Character

Meaning

C

e, f

1d, lo, Ix

le, If

hd, ho, hx

Expect a character in the input. The corresponding argument
must point to a char. The usual skipping of white-space charac-
ters can be disabled in this case, so that n white-space characters
can be read with %mnc. If a field width is given with ¢, the given
number of characters is read and the corresponding argument
should point to an array of char.

Expect a string in the input. The corresponding argument must
point to an array of characters that is large enough to contain the
string plus the terminating NUL character (\0). The input field is
terminated by a space, tab, or newline.

Expect a floating-point number in the input. The corresponding
argument must point to a float. The input format for floating-
point numbers is [+/-]nnn[.ddd]][{Ele}{+|-]nn], where the n’s
and the d’s are decimal digits (as many as indicated by the field
width minus the signs and the letter E).

Expect an integer whose type is determined by the leading input
characters. For example, a leading zero is equated to octal.

The form 0X is equated to hexadecimal and all other forms are
equated to decimal. Each corresponding argument must be an
integer pointer.

Same as d, o, and x, except that a long integer of the specified
radix is expected. (Retained for portability only, since long and
int are the same in VAX C.)

Same as e, and f, except that the corresponding argument is a
double instead of a float. The same effect can be achieved by
using an uppercase E or F.

Same as d, o, and x, except that a short integer of the specified
radix is expected.

Expect a string that is not delimited by white-space characters.
The brackets enclose a set of characters (not a string). Ordinarily,
this set (or “character class”) is made up of the characters that
comprise the string field. Any character not in the set will
terminate the field. However, if the first (leftmost) character is
an up-arrow, then the set shows the characters that terminate
the field. The corresponding argument must point to an array of
characters.

2-4 Standard 1/0 Functions and Macros

Remarks

The delimiters of the input field can be changed with the bracket

([]) conversion specification. Otherwise, an input field is defined

as a string of nonwhite-space characters. It extends either to the next
white-space character or until the field width, if specified, is exhausted.
The function reads across line/record boundaries, since the newline
character is a white-space character.

A call to one of the input conversion functions resumes searching
immediately after the last character processed by a previous call.

If the assignment-suppression character (*) appears in the format
specification, no assignment is made. The corresponding input field is
interpreted and then skipped.

The arguments must be pointers or other address-valued expressions,
since VAX C permits only calls by value. To read a number in decimal
format and assign its value to n, you must use

scanf ("Yd", &mn)
not
scanf ("%d", n)

White space in a format specification matches optional white space in
the input field. The format specification

field = Yx
matches
field = 5218
field=5218
field= 5218
field =5218
but not

fiel d=5218

Standard 1/0 Functions and Macros 2-5

2.1.2 Conversion of Output Information

The format specification string for the output of information may contain
two kinds of items:

Ordinary characters, which are simply copied to the output.

Conversion specifications, each of which causes the conversion of
a corresponding output source to a character string, in a particular
format.

Table 2-2 describes the conversion characters for formatted output.

Table 2-2: Conversion Characters for Formatted Output

Character Meaning

d
o

X

Convert to decimal format.
Convert to octal format.

Convert to unsigned hexadecimal format (without leading 0x).
An uppercase X causes the hexadecimal digits A-F to be printed
in uppercase. A lowercase x causes those digits to be printed in
lowercase.

Convert to unsigned decimal format (giving a number in the range
zero to 4,294,967,295).

Output single character (NUL characters are ignored).

Write characters until NUL is encountered or until number of
characters indicated by the precision specification is exhausted. If
the precision specification is zero or omitted, all characters up to a
NUL are output.

Convert float or double to the format [-]m.nnnnnnE[+|-]xx, where
the number of n’s is specified by the precision (default = 6). If the
precision is explicitly zero, the decimal point appears but no n’s
appear. An E is printed if the conversion character is an uppercase
E. An e is printed if the conversion character is a lowercase e.

Convert float or double to the format [-Jm..m.nnnnnn, where the
number of n'’s is specified by the precision (default - 6). Note that
the precision does not determine the number of significant digits
printed. If the precision is explicitly zero, no decimal point appears
and no n's appear.

2-6 Standard /0 Functions and Macros

Table 2—-2 (Cont.): Conversion Characters for Formatted

Output

Character

Meaning

8

%

Convert float or double to d, e, or f format, whichever is shorter
(suppress insignificant zeros).

Write out the percent symbol. No conversion is performed.

The following characters can be used between the percent sign (%) and
the conversion character. They are optional, but if specified, they must
occur in the order listed.

Character

Meaning

- (hyphen)
width

. (period)

precision

1 (lowercase
letter "L")

* (asterisk)

Left justify the converted output source in its field.

Use this integer constant as the minimum field width. If the
converted output source is wider than this minimum, write
it out anyway. If the converted output source is narrower
than the minimum width, pad it to make up the field width.
Padding is with spaces normally, and with zeros if the field
width is specified with a leading zero; this does not mean
that the width is an octal number. Padding is on the left
normally and on the right if a minus sign is used.

Separates field width from precision.

Use this integer constant to designate the maximum number
of characters to print with s format, or the number of
fractional digits with e or f format.

Indicates that a following d, o, x, or u specification corre-
sponds to a long output source. In VAX C, all int values are
long by default. :

Can be used to replace the field width specification and/or
the precision specification. The corresponding width or
precision is given in the output source.

2.2 Opening and Closing Files

The following sections describe the Standard 1/0 functions that open and

close files.

Standard I/0 Functions and Macros 2-7

2.2.1 fclose

The fclose function closes a file by flushing any buffers associated with the
file control block and freeing the file control block and buffers previously
associated with the file pointer.

The syntax of the function is as follows:

#include stdio

int fclose (FILE *file_ptr);

Arguments

The file_ptr argument is a pointer to the file to be closed.

Additional Information

When a program terminates normally, fclose is called automatically for all
open files. On success, fclose returns zero. If the buffered data cannot be
written to the file, or if the file control block is not associated with an open
file, fclose returns EOF (a preprocessor constant defined in the #include
module stdio).

22.2 fdopen

The function fdopen associates a file pointer with a file descriptor returned
by an open, creat, dup, dup2, or pipe function.

The syntax of the function is as follows:
#include stdio
FILE *fdopen (int file_desc, char *a_mode);
Arguments

The arguments for the fdopen function are as follows.

2-8 Standard |/0 Functions and Macros

file_desc
a_mode

The file descriptor returned by open, creat, dup, dup2, or pipe.

One of the character strings “r’, "w", “a", “r+", "w+", "tb”, "r+b",

"tb+", "wb", “w+b", "wb+", "ab”, "a+b", "ab+", or "a+", for read, write,
append, read update, write update, or append update, respectively.

The access modes have the following effects:

* "t" opens an existing file for reading.

® “w" creates a new file, if necessary, and opens the file for writing.
If the file already exists, it creates a new file with the same name
and a higher version number.

® "a" opens the file for append access. An existing file is positioned
at end-of-file, and data is written there. If the file does not exist,
the VAX C RTL creates it.

The update access modes allow a file to be opened for both reading
and writing. When used with existing files, "r+" and "a+" differ only
in the initial positioning within the file. The modes are as follows:

* "r+" opens an existing file for read update access. It is opened for
reading, positioned initially at beginning-of-file, but writing is also
allowed.

* "w+" opens a new file for write update access.

* "a+" opens a file for append update access. The file is positioned
at end-of-file (writing) initially. If the file does not exist, the VAX
C RTL creates it.

®* "b" means binary access mode. In this case, no conversion of
carriage control information is attempted.

Additional Information

The fdopen function allows you to access a file, originally opened by one
of the UNIX I/O functions, with Standard I/O functions. Ordinarily, a
file can be accessed by either a file descriptor or by a file pointer, but not
both, depending on the way you open it.. For more information, refer

to Chapter 1, VAX C Run-Time Library Information.

On success, fdopen returns a nonzero value which is the file pointer. On
error, fdopen returns zero.

See also freopen and fopen in Sections 2.2.4 and 2.2.3.

Standard 1/0 Functions and Macros 2-9

2.2.3 fopen

The function fopen opens a file by returning the address of a FILE
structure.

The syntax of the function is as follows:

#include stdio

FILE *fopen (const char *file_spec, const char *a_mode, ...);
Arguments

The arguments for the fopen function are as follows:

file_spec A character string containing a valid file specification.
a_mode An access mode indicator. See Section 2.2.2 for a description of
a_mode.

Represents optional file attribute arguments. The file attribute
arguments are the same as those used in the creat function
(see Chapter 4, UNIX System I/O Functions).

Additional Information

On error, this function returns the null pointer value; the constant NULL
is defined in the definition module stdio to be the null pointer value. The
function returns NULL to signal the following errors:

* File protection violations
* Attempts to open a nonexistent file for read access
* Failure to open the specified file

The file control block may be freed with the fclose function, or by default
on normal program termination.

See also fdopen and freopen in Sections 2.2.2 and 2.2.4.

2-10 Standard I/0 Functions and Macros

2.2.4 freopen

The freopen function substitutes the file, named by a file specification, for
the open file addressed by a file pointer. The latter file is closed.

The syntax of the function is as follows:

#include stdio

FILE #freopen (const char *file_spec, const char *a_mode, FILE xfile_ptr, ..

Arguments
The arguments for the freopen function are as follows:

file_spec A pointer to a string that contains a valid VMS or DEC/Shell
file specification. After the function call, the given file pointer is
associated with this file.

a_mode An access mode indicator. See Section 2.2.2 for a description of
a_mode.

file_ptr A file pointer.

Represents optional file attribute arguments. The file attribute
arguments are the same as those used in the creat function
(see Chapter 4, UNIX System I/O Functions).

Additional Information

On error, this function returns the null pointer value; the constant NULL
is defined in the definition module stdio to be the null pointer value.

You typically use freopen to associate one of the predefined names
stdin, stdout, or stderr with a file. For more information concerning these

predefined names, refer to Chapter 3, Terminal I/O Functions and Macros.

See also fdopen and fopen in Sections 2.2.2 and 2.2.3.

)

2.3 Reading from Files

The following sections describe the Standard 1/O functions and macros
that read data from files.

Standard 1/0 Functions and Macros 2-11

2.3.1 getc, fgetc, getw

The fgetc and getw functions and the getc macro return characters from a
specified file.

The syntax descriptions are as follows:

#include stdio

int fgetc (FILE *file_ptr);
int getc (FILE *file_ptr);
int getw (FILE *file_ptr);

Arguments

The argument file_ptr is a pointer to the file to be accessed.

Additional Information

The compiler substitutes the following text for a call to the macro
getc(file_ptr):

fgetc(file_ptr)

The getc macro returns the next character as an int from the specified file.
The file is left positioned after the returned character, and the next getc
call takes the character from that position. The fgetc function and the getc
macro are functionally equivalent.

The getw function returns the next four characters from the specified input
file as an int. No conversion is performed. If end-of-file is encountered
during the retrieval of any of the four characters, then EOF (a preprocessor
constant defined in the #include module stdio) is returned and all four
characters are lost.

The two functions and the macro return EOF on end-of-file or error, but
since EOF is a perfectly good integer, feof and ferror should be used to
check their success.

2-12 Standard 1/0 Functions and Macros

2.3.2 fgets

The fgets function reads a line from a specified file, up to a specified
maximum number of characters or up to and including the newline
character, whichever comes first; the function stores the string in the str
argument.

The syntax of the function is as follows:

#include stdio

char *fgets (char *str, int mazchar, FILE *file_ptr);
Arguments
The arguments for the fgets function are as follows:

str The address where the fetched string will be stored.
maxchar Specifies the maximum number of characters to fetch.

file_ptr A file pointer.

Additional Information

The function terminates the line with a NUL (\0) character. Unlike gets,
fgets places the newline that terminates the input line into the user
buffer if it fits. On end-of-file or error, the function returns NULL (which
is defined in the stdio definition module to be the null pointer value).
Otherwise, it returns the address of the first character in the line.

2.3.3 fread

The fread function reads a specified number of items from the file.
The syntax of the function is as follows:

#include stdio

size_t fread (void *ptr, size_t size_of_item,
size_t number_items, FILE *file_ptr);

Standard 1/0 Functions and Macros 2-13

Arguments v
The arguments for the fread function are as follows:

ptr A pointer to the location, within memory, in which to place the
information being read. You determine the type of the object
pointed to by the type of the items being read.

size_of_item The size of the items being read, in bytes.
number—items The number of items to be read.

file_ptr A pointer that indicates the file from which the items are to be
read.

Additional Information

The type size_t is defined in the standard include module stdio. The
reading begins at the current location in the file. The items read are
placed in storage beginning at the location given by the first argument.
The size of an item in bytes must also be specified.

If the file pointed to by file_ptr is a record file, fread will only read the
number of items specified in number_items.

The function returns the number of items actually read. If fread encoun-
ters the end-of-file or an error, it returns zero (not EOF).

2.3.4 fscanf, sscanf

The fscanf function performs formatted input from a specified file, and
the sscanf function performs formatted input from a character string in
memory.

The syntax descriptions of the functions are as follows:

#include stdio

int fscanf (FILE *file_ptr, const char xformat_spec, ...);
int sscanf (char *str, const char *format_spec, ...);

Standard 1/0 Functions and Macros

Arguments

The arguments for the fscanf and sscanf functions are as follows:

file_ptr A pointer to the file that provides input text for fscanf.
format_spec Contains characters to be taken literally from the input or
converted and placed in memory at the specified . . . argument.

Optional expressions whose resultant types correspond to
conversion specifications given in the format specification. If
no conversion specifications are given, the input pointers can
be omitted. Otherwise, the function calls must have exactly as
many input pointers as there are conversion specifications, and
the conversion specifications must match the types of the input_
ptrs. Conversion specifications are matched to input sources in
simple left-to-right order.

str The address of the character string that provides the input text to
sscanf.

An example of a conversion specification is as follows:

main ()

{
int temp, temp2;
FILE #*file_ptr;

fscanf (file_ptr, "%d %d", &temp, &temp2);
printf("The answers are %d, and %d.", temp, temp2);

}

Given a file, designated by the argument file_ptr, with the following
contents

417
sample input from the previous example is as follows:
$ RUN EXAMPLE [RETURN

The answers are 4, and 17.

For a complete description of the format specification and the input
pointers, refer to Section 2.1.1.

Additional Information

The functions return the number of successfully matched and assigned
input items. If end-of-file (or the end of the string) is encountered,
the functions return EOF (a preprocessor constant defined in the stdio
definition module).

Standard 1/0 Functions and Macros 2-15

2.3.5 ungetc

The ungetc function pushes back a character into the input stream and
leaves the stream positioned before the character.

#include stdio

int ungetc (char character, FILE *file_ptr):

Arguments
The arguments for the ungetc function are as follows:

character A value of type char.
file_ptr A file pointer.

Additional Information

When using the ungetc function, the character is said to be “pushed back”
onto the file, since it will be returned by the next getc call. The function
returns the push-back character or EOF if it cannot push the character
back.

One push-back is guaranteed, even if there has been no previous activity
on the file. The function fseek erases all memory of pushed-back charac-
ters. Note that the pushed back character is not written to the underlying
file.

2.4 \Writing to Files

The following sections describe the Standard I/O functions and macros
used to write to files.

2.4.1 fprintf, sprintf

The fprintf function performs formatted output to a specified file, and the
sprintf function performs formatted output to a string in memory.

The syntax descriptions of the functions are as follows:

#include stdio

int fprintf (FILE #file_ptr, const char *format_spec, ...);
int sprintf (char *str, const char *format_spec, ...);

2-16 Standard I/0 Functions and Macros

Arguments
The arguments for the fprintf and sprintf functions are as follows:

file_ptr A pointer to the file to which output is to be written.

format_spec Contains characters to be written literally to the output or con-
verted as specified in the argument output_src.

Optional expressions whose resultant types correspond to con-
version specifications given in the format specification. If no
conversion specifications are given, the output sources may be
omitted. Otherwise, the function calls must have exactly as many
output sources as there are conversion specifications, and the con-
version specifications must match the types of the output sources.
Conversion specifications are matched to output sources in simple
left-to-right order.

str The address of the string that will receive the formatted output.

An example of a conversion specification is as follows:
main()
{

int temp = 4, temp2 = 17;
FILE *file_ptr;

fprintf(file_ptr, "The answers are J)d, and %d.", temp, temp2);

Sample output (to the file designated by file_ptr) from the previous
example is as follows:

The answers are 4, and 17.

For a complete description of the format specification and the output
source, refer to Section 2.1.1.

Additional Information

These functions return the number of successfully matched and assigned
output items.

Standard 1/0 Functions and Macros 2-17

24.2 fputs

The fputs function writes a character string to a file without copying the
string’s NUL terminator (\0).

The syntax of the function is as follows:

#include stdio

int fputs (const char *str, FILE *file_ptr);
Arguments
The arguments for the fputs function are as follows:

str A pointer to a character string.

file_ptr A file pointer.

2.4.3 fwrite

The fwrite function writes a specified number of items to the file.
The syntax of the function is as follows:

#include stdio

size_t fwrite (void #*ptr, size_t size_of_item,
size_t number_items, FILE *file_ptr);

Arguments
The arguments for the fwrite function are as follows:

ptr A pointer to the memory location from which information is
being written.

size_of_item The size of the items being written, in bytes.
number_items The number of items being written:

file_ptr A file pointer and indicates the file to which the items are being
written.

2-18 Standard 1/0 Functions and Macros

Additional Information
The type size_t is defined in the standard include module stdio.

The function returns the number of items actually written. The number
of records actually written depends upon the maximum record size of the
file.

If the file is a record-mode file, fwrite outputs at least number_items
records, each of length size_of _item.

2.4.4 putc, fputc, putw
The putc macro and the fputc and putw functions write characters to a
specified file.
The syntax descriptions are as follows:

#include stdio

int putc (char character, FILE *file_ptr);
int fputc (char character, FILE *file_ptr);
int putw (int 4nteger, FILE *file_ptr);

Arguments

The arguments for the putc macro and the fputc and putw functions are
as follows:

character An object of type char.
integer An object of type int or long.
file_ptr A file pointer.

Additional Information

The compiler substitutes the following text for a call to the macro
putc(character, file_ptr):

fputc(character, file_ptr)

The putc macro writes a single character to a file and returns the character.
The file pointer is left positioned after the character. The fputc function is
functionally equivalent to putc. The putw function writes four characters

to the output file as an int. No conversion is performed.

The two functions and the macro return EOF (defined in the stdio defi-
nition module) to designate output errors. Since EOF is itself an integer,
ferror should be used to detect errors encountered by putw.

Standard |/0 Functions and Macros 2-19

2.5 Maneuvering in Files

The following sections describe the Standard I/O functions used to
position the file pointer.

2.5.1 fflush

The fflush function writes out any buffered information for the specified
file.

The syntax of the function is as follows:
#include stdio
int fflush (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

The fflush function returns zero when it is successful. If the buffered data
cannot be written to the file, or if the file control block is not associated
with an output file, fflush returns EOF (a preprocessor constant defined in
the stdio definition module).

Note that output files are normally buffered if, and only if, they are not
directed to a terminal, but stderr is not buffered by default.

2.5.2 fseek

The fseek function positions the file to the specified byte offset in the file.
The syntax of the function is as follows:

#include stdio

int fseek (FILE *file_ptr, int offset, int direction);

2-20 Standard 1/0 Functions and Macros

Arguments
The arguments for the fseek function are as follows:

file_ptr A file pointer.
offset The offset specified in bytes.

direction An integer indicating whether the offset is measured forward from
the current read or write address (1), forward from the beginning of
the file (0), or backwards from the end-of-file (2).

Additional Information

The fseek function returns EOF (a preprocessor constant defined in the
stdio definition module) for improper seeks; zero for successful seeks.

In general, fseek should always be directed to an absolute position
returned by ftell. With stream files, the direction argument can be 0, 1, or
2. With record files, an fseek to a position that was not returned by ftell
causes unpredictable behavior.

See also ftell.

253 ftell

The ftell function returns the current byte offset to the specified stream
file.

#include stdio
int ftell (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

The ftell function measures the offset from the beginning of the file. With
record files, ftell returns the starting position of the current record, not the
current byte offset.

This function is useful only for handing an offset to fseek, to reposition
the file to where it was when ftell was called. The function ftell returns
EOF upon error.

Standard 1/0 Functions and Macros 2-21

254 rewind

The rewind function sets the file to its beginning.
The syntax of the function is as follows:

#include stdio

int rewind (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

The rewind function is equivalent to fseek (file-pointer, 0, 0). The
function returns EOF to indicate failure; zero to indicate success. The
rewind function can be used with either record or stream files.

2.6 Additional Standard 1/0 Functions and Macros

The following sections describe the Standard I/O functions that perform
various tasks.

2.6.1 access

The access function checks a file to see whether a specified access mode is
allowed.

The syntax of the function is as follows:

#include stdio

int access (char *file_spec, int mode);

2-22 Standard 1/0 Functions and Macros

Arguments
The arguments for the access function are as follows:

file_spec A character string that gives a VMS or DEC/Shell file specification.
The usual defaults and logical name translations are applied to the
file specification.

mode Interpreted as follows:
Mode Argument Access Mode
0 Tests to see if the file exists.
1 Execute.
2 Write (implies delete access).
4 Read.

Combinations of access modes are indicated by summing the values.
For example, the integer 7 indicates RWED.

NOTE
The function access does not accept network files as arguments.

Additional Information

The access function returns zero if the access is allowed and EOF if not
allowed.

2.6.2 clearerr

The clearerr macro resets the error and end-of-file indications for a file (so
that ferror and feof will no longer return a nonzero value).

The syntax of the macro is as follows:
#include stdio
void clearerr (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

Note that VAX C implements clearerr as a macro.

Standard 1/0 Functions and Macros 2-23

2.6.3 feof

The feof macro tests a file to see if the end-of-file has been reached.
The syntax of the macro is as follows:

#include stdio

int feof (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

If end-of-file has been reached, feof returns a nonzero integer; if not, it
returns 0. Note that VAX C implements feof as a macro.

2.6.4 ferror

The ferror macro returns a nonzero integer if an error has occurred while
reading or writing a file.

The syntax of the macro is as follows:
#include stdio
int ferror (FILE *file_ptr);
Arguments

The argument file_ptr is a file pointer.

Additional Information

A call to the macro continues to return this indication until the file is
closed or until clearerr is called. Note that VAX C implements ferror as a
macro.

2-24 Standard |/0 Functions and Macros

2.6.5 fgetname

The fgetname function returns the file specification associated with a file
pointer.

The syntax of the function is as follows:

#include stdio

char *fgetname (FILE *file_ptr, char *buffer, ...);

Arguments

The arguments for the fgetname function are as follows:

file_ptr A file pointef.

buffer A pointer to a character string that is large enough to hold the file
specification.
Represents an optional additional argument that can be either 1 or 0.
If you specify 1, the function fgetname returns the file specification
in VMS format. If you specify 0, the function fgetname returns
the file specification in DEC/Shell format. If you do not specify
this argument, this function returns the file name according to
your current command language interpreter. For more information

concerning DEC/Shell file specifications, refer to Chapter 1, VAX C
Run-Time Library Information.

Additional Information

The fgetname function places the file specification at the address given
in buffer and returns the address of buffer. The buffer should be an array
large enough to contain a fully qualified file specification (the maximum
length is 256 characters). When an error occurs, fgetname returns 0.

2.6.6 mktemp

The mktemp function creates a unique file name from a template.
The syntax of the function is as follows:

#include stdio

char *mktemp (char *template);

Standard 1/0 Functions and Macros 2-25

Arguments

The template argument is a pointer to a user-defined template. You supply
the template in the form, “namXXXXXX". The six trailing X’s are replaced
by a unique series of characters. You may supply the first three characters.

Additional Information

The mktemp function returns a pointer to the file name it creates. If
a unique file name cannot be created, mktemp returns a pointer to an
empty string (\0).

2.6.7 remove, delete

The remove and delete functions cause a file to be deleted.
The syntax of the remove and delete functions is as follows:
#include stdio
int remove (const char *file_spec);
int delete (const char *file_spec);
Arguments

The argument file_spec is a pointer to the string that is a VMS file specifi-
cation or a DEC/Shell file specification.

Additional Information

The remove and delete functions return a nonzero value if the operation
fails.

Note that the remove and delete functions are functionally equivalent in
the VAX C RTL.

2-26 Standard 1/0 Functions and Macros

2.6.83 rename

The rename function gives a new name to an existing file.
The syntax of the rename function is as follows:

#include stdio

int rename (const char *old_file_spec, const char *neuw_file_spec);
Arguments

The arguments to the rename function are as follows:

old_file_spec A pointer to a string that is the existing name of the file to be
renamed.

new_file_spec A pointer to a string that is the new name to be given to the
file.

Additional Information
The rename function returns a nonzero value if the operation fails.

If you attempt to rename a file that is currently open, the behavior is
undefined. Note that you cannot rename a file from one physical device
to another, Both the old and new file specifications must reside on the
same device.

2.6.9 setvbuf, sethuf

The functions setvbuf and setbuf associate a buffer with an input or
output file.

The syntax of the functions is as follows:

#include stdio
int setvbuf (FILE *file_ptr, char *buffer, int type, size_t size);

int setbuf (FILE *file_ptr, char xbuffer);

Standard 1/0 Functions and Macros 2-27

Arguments
The arguments to the setvbuf and setbuf functions are as follows:

file_ptr A pointer to a file.

buffer A pointer to an array. If either _IOFBF or _IOLBF is specified as a
value for type, input/output operations will be done using the array
pointed to by buffer. The buffer must be large enough to hold an
entire input record.

If buffer is a NULL pointer, input/output operations will be done
using the buffer automatically allocated by the VAX C Run-Time
Library. If _IONBF is specified by type, input/output operations will
be completely unbuffered and the pointer in buffer is ignored.

type A value that determines how the file will be buffered.

The following values for type are defined in stdio:

® _IOFBF causes input/output to be fully buffered if possible.

® _IOLBF causes output to be line buffered if possible (the buffer
will be flushed when a new-line character is written, when the
buffer is full, or when input is requested).

* _IONBF causes input/output to be completely unbuffered if
possible. _IONBF causes buffer and size to be ignored.

size The number of bytes in the array pointed to by buffer. The constant
BUFSIZ in stdio is recommended as a good buffer size.

Additional Information

The setvbuf and setbuf functions can be used after a file is opened but
must be used before any input or output operations.

The functions return a nonzero value if an invalid value is given for type
or size; otherwise, they return a zero value.

A common source of error is allocating buffer space as an “automatic”
variable in a code block, and then failing to close the file in the same
block.

A buffer is normally obtained by calling malloc. For more information,
refer to Chapter 9, Memory Allocation Functions.

2-28 Standard I/0 Functions and Macros

2.6.10 tmpfile

The tmpfile function creates a temporary file that is opened for update.
The syntax of the function is as follows:

#include stdio

FILE *tmpfile (void);
Additional Information

The file exists only for the duration of the process and is preserved across
forks. The function returns the address of a FILE pointer (defined in the
stdio definition module), or a null pointer value (NULL) if there is an error.

2.6.11 tmpnam

The tmpnam function creates a character string that can be used in place
of the file-name argument in other function calls.

The syntax of the function is as follows:

#include stdio

char *tmpnam (char *name);

Arguments

The name argument is a character string containing a name to be used in
place of file-name arguments in other functions or macros. If the name
argument is the null pointer value NULL, tmpnam returns the address of
an internal storage area. If name is not NULL, then it is taken to be the
address of an area of length L _tmpnam (defined in the stdio definition
module). In this case, tmpnam returns the name argument. Successive
calls to tmpnam with a NULL argument cause the function to overwrite
the current name.

2.7 Program Examples

Example 2-1 illustrates the use of the fopen, ftell, sprintf, fputs, fseek,
fgets, and fclose functions.

Standard 1/0 Functions and Macros 2-29

Example 2-1: Using the Standard 1/0 Functions

/* This program establishes a file pointer, writes lines from *
* a buffer to the file, moves the file pointer to the second *
* record, copies the record to the buffer, and then prints *
* the buffer to the screen. */

#include stdio

main ()

{
char buffer[32];
int i, pos;
FILE =*fptr;

/* Set file pointer */
fptr = fopen("data.dat", "w+");
it (fptr <= NULL)

{
perror("fopen");
exit (); /* Exit if fopen error */
}
for (i=1; i<B; i++)
{
if (i == 2) /* Get position of record 2 */
pos = ftell(fptr);
/* Print a line to the buffer */
sprintf (buffer, "test data line %d\n", i);
/* Print buffer to the record */
fputs(buffer, fptr);
/* Go to record number 2 */
if (fseek(fptr, pos, 0) < 0)
{
perror("fseek"); /* Exit on fseek error x/
exit ();
}

/* Put record 2 in the buffer */
if (fgets(buffer, 32, fptr) == NULL)

{
perror("fgets"); /* Exit on fgets error */
exit();
}
/* Print the buffer */
printf("Data in record 2 is: ¥%s", buffer);
fclose(fptr); /* Close the file */

2-30 Standard 1/0 Functions and Macros

Sample output, to the terminal, from the previous example is as follows.

$ RUN EXAMPLE [RETURN

Data in record 2 is:

test data line 2

Sample output, to DATA.DAT, from the previous example is as follows:

test data line
test data line
test data line
test data line

W N e

Standard 1/0 Functions and Macros

2-3

Chapter 3
Terminal 1/0 Functions

VAX C defines three file pointers that allow you to perform I/O to and
from the logical devices usually associated with the user’s terminal (for in-
teractive jobs) or a batch stream (for batch jobs). Since, in VMS, the three
process permanent files SYS$INPUT, SYS$SOUTPUT, and SYSSERROR
perform the same functions for both interactive and batch jobs, the term
“Terminal I/O” refers to both terminal and batch stream I/O. The file
pointers stdin, stdout, and stderr are defined when you include the stdio
definition module using the #include preprocessor directive.

The file pointer stdin is associated with the terminal to perform input. This
file is equivalent to SYS$INPUT. The file pointer, stdout, is associated with
the terminal to perform output. This file is equivalent to SYSSOUTPUT.
The file pointer, stderr, is associated with the terminal to report run-time
errors. This file is equivalent to SYS$ERROR.

Also, three file descriptors exist that refer to the terminal. The file de-
scriptor 0 is equivalent to SYS$INPUT, 1 is equivalent to SYSSOUTPUT,
and 2 is equivalent to SYS$ERROR. For more information concerning file
descriptors, refer to Chapter 4, UNIX System I/0O Functions.

When performing I/0O at the terminal, you can use Standard I/O functions
and macros (specifying the pointers stdin, stdout, or stderr as arguments),
you can use UNIX I/O functions (giving the corresponding file descriptor
as an argument), or you can use the Terminal I/O functions and macros.
There is no functional advantage of using one type of I/O over another;
the Terminal I/O functions may save keystrokes due to the absence of
arguments. '

The following sections describe the Terminal I/O functions.

Terminal |/0 Functions 3-1

3.1 getchar

The getchar function reads a single character from the standard input
(stdin).

The syntax of the function is as follows:
#include stdio
int getchar (void);
Additional Information
The getchar function returns EOF on end-of-file or error.

The getchar function is identical to fgete(stdin).

3.2 gets

The gets function reads a line from the standard input (stdin).
The syntax of the function is as follows:

#include stdio

char *gets (char *str);
Arguments

The argument str is a pointer to a character string used to hold the
information fetched from stdin.

Additional Information

The newline character (\n) that ends the line is replaced by the function
with an ASCII NUL character (\0). The function returns its argument,
which is a pointer to a character string containing the acquired line.

If an error occurs or if end-of-file is encountered before a newline is
encountered, the function returns NULL, the null pointer value.

3-2 Terminal I/0 Functions

3.3 printf

The printf function performs formatted output from the standard output
(stdout).

The syntax of the function is as follows:

#include stdio

int printf (const char *format_spec, ...);

Arguments

The arguments for the printf function are as follows:

format_spec Contains characters to be written literally to the output or
converted as specified in the . .. arguments.

Represents optional expressions whose resultant types correspond
to conversion specifications given in the format specification. If
no conversion specifications are given, the output sources may
be omitted. Otherwise, the function call must have exactly as
many output sources as there are conversion specifications, and
the conversion specifications must match the types of the output
sources. Conversion specifications are matched to output sources
in simple left-to-right order.

An example of a conversion specification is as follows:
main()
{

int temp = 4, temp2 = 17;

printf("The answers are %d, and %d.", temp, temp2);

Sample output from the previous example is as follows:
$ RUN EXAMPLE [RETURN]

The answers are 4, and 17.

Additional Information

The printf function returns the number of characters written.

Terminal I/0 Functions 3-3

3.4 putchar

The putchar function writes a single character to the standard output
(stdout) and returns the character.

The syntax of the function is as follows:
#include stdio
int putchar (char character);
Arguments

The argument character is an object of type char.

Additional Information
The function putchar returns EOF to designate output errors.

The function putchar is identical to fputc(character, stdout).

3.5 puts

The function puts writes a character string to the standard output (stdout),
followed by a newline.

The syntax of the function is as follows:
#include stdio
int puts (char *str);

Arguments

The argument str is a pointer to a character string to be written to stdout.

Additional Information

The function does not copy the terminating NUL character to the output
stream.

3-4 Terminal 1/0 Functions

3.6 scanf

The function scanf performs formatted input from the standard input
(stdin).

The syntax of the function is as follows:

k #include stdio

int scanf (const char *format_spec, ...);

Arguments
The arguments for the scanf function are as follows:

format _spec Contains characters to be taken literally from the input or
converted and placed in memory at the specified input_sources.

Represents optional expressions that are pointers to objects
whose resultant types correspond to conversion specifications
given in the format specification. If no conversion specifications
are given, these input pointers may be omitted. Otherwise,

the function call must have exactly as many input pointers

as there are conversion specifications, and the conversion
specifications must match the types of the input_pointers.
Conversion specifications are matched to input sources in simple
left-to-right order.

An example of a conversion specification is as follows:

main()
{
int temp, temp2;

scanf ("%d %d", &temp, &temp2);
printf("The answers are %d, and %d.", temp, temp2);

Sample input and output from the previous example is as follows:

$ RUN EXAMPLE |[RETURN
4 17 [RETURN

The answers are 4, and 17.

Additional Information

The function returns the number of successfully matched and assigned
input items. If end-of-file is encountered, the function returns EOF (a
preprocessor constant defined in the stdio definition module).

Terminal 1/0 Functions 3-5

3.7 Program Examples

Example 3-1 illustrates the printf function.

3-6 Terminalbl/O Functions

Example 3-1: Output of the Conversion Specifications

/* This program uses the printf function to print the *
* various conversion specifications and their effect on the *
* output. */

/* Include proper module *
* in case printf has to *

* return EOF. */

#include stdio
main()
{

double val = 123.3456e+3;

char ¢ ='C';

int i = -1500000000;

char *s = "thomasina";

/* Print the specification code, a colon, two tabs, and the *
formatted output value delimited by the angle bracket *
characters (< >). */

* ¥

printf ("4%9.4£:\t\t<%9.4£>\n", val);
printf ("%%9f: \t\t<%9f>\n", val);

printf ("%%9.0f:\t\t<%9.0f>\n", val);
printf ("%%-9.0f:\t\t<%-9.0f>\n\n", val);

printf ("%%11.6e:\t\t<%11.6e>\n", val);
printf ("%%11e:\t\t<%11e>\n", val);

printf ("%%11.0e:\t\t<%11.0e>\n", val);
printf("%%-11.0e:\t\t<%-11.0e>\n\n", val);

printf ("%%11g: \t\t<%11g>\n", val);
printf ("%%9g: \t\t<%9g>\n\n", val);

printf ("%%d:\t\t<%d>\n", ¢);
printf ("%%c:\t\t<%ec>\n", c);
printf ("%%o:\t\t<%o>\n", ¢);
printf ("%%x: \t\t<¥x>\n\n", c);

printf ("%%d:\t\t<%d>\n", i);
printf (*%%u:\t\t<%u>\n", i);
printf ("%%x:\t\t<%x>\n\n", i);.

printf ("%%s:\t\t<%s>\n", 8);

printf ("%%-9.68:\t\t<%-9.68>\n", s);
printf ("%%-*.*s:\t\t<)-*.*s>\n", 9, 5, 8);
printf ("%%6.0s:\t\t<%6.0s>\n\n", 8);

Terminal |/0 Functions

Sample output from the previous example is as follows:

$ RUN EXAMPLE [RETURN

%9.4f: <123345.6000>
et : <123345.600000>
%9.0f: < 123346>
%-9.0f: <123346>

%11 .8e: <1.233456e+05>
%1le: <1.233456e+05>
%11.0e: < 1.e+056>
%-11.0e: <1.e+05 >
%11g: < 123346>
%9g: < 123346>
%d: <67>

%he: <C>

%ho: <103>

%x: <43>

%a: <-1500000000>
%u: <2794967296>
%x: <aB97d100>

hs: <thomasina>
%-9.8s: <thomas >
%-% . %8: <thoma >
%6.0s: <thomasina>

$

3-8 Terminal 1/0 Functions

Chapter 4

UNIX /0 Functions and Macros

The UNIX I/0O functions and macros access files by a file descriptor. A file
descriptor is an integer that identifies the file. A file descriptor is declared
as follows: ‘

int file_desc;
In this case, the identifier file_desc is the name of the file descriptor.

When you create a file using the UNIX I/O functions and macros, you can
supply values for the following RMS file attributes:

¢ Allocation quantity

¢ Block size

¢ Default file extension

¢ Default file name

* File access context options
* File-processing options

® File sharing options

® Multiblock count

¢ Multibuffer count

®* Maximum record size

* Record attributes

* Record format

® Record processing options

For more information concerning RMS, refer to the Guide to VAX C.

UNIX I/0 Functions and Macros 4-1

UNIX I/0 functions such as creat associate the file descriptor with a file.
Consider the following example:

file_desc = creat("INFILE.DAT", O, "rat=cr", "rfm=var");

This statement creates the file, INFILE.DAT, with mode argument 0,
carriage-return control, variable-length records, and it associates the
argument file_desc with the file. When the file is accessed for other
operations, such as reading or writing, the file descriptor is used to refer to
the file. For example:

write(file_desc, buffer, sizeof (buffer));
This statement writes the contents of the buffer to INFILE.DAT.

There may be circumstances when you should use UNIX I/O functions
and macros instead of the Standard I/O functions and macros. For a de-
tailed discussion of both forms of I/O and how they manipulate the RMS
file formats, refer to Chapter 1, VAX C Run-Time Library Information.

4.1 Opening and Closing Files

The following sections describe the UNIX I/O functions that open and
close files.

4.1.1 close

The close function closes the file associated with a file descriptor.
The syntax of the function is as follows:

#include unixio

int close (int file_desc);
Arguments

The argument file_desc is a file descriptor.

4-2 UNIX 1/0 Functions and Macros

Additional Information

The close function returns 0 if the file is properly closed. It returns -1 if
the file descriptor is undefined or if an error occurs while the file is being
closed (for example, if the buffered data cannot be written out).

NOTE

Upon image exit, all buffered data is written to the file if it was
opened for writing or update, and the file is closed.

4.1.2 creat

The creat function creates a new file,
The syntax of the function is as follows:

#include unixio

int creat (char *file_spec, unsigned int mode, ...);
Arguments

The arguments to the creat function are as follows.

UNIX 1/0 Functions and Macros 4-3

file_spec

mode

4-4 UNIX 1/0 Functions and Macros

A NUL-terminated string containing any valid file specification.

An unsigned value that specifies the file-protection mode; the
compiler performs a bitwise AND operation on the mode and the
complement of the current protection mode.

Modes can be constructed by using the bitwise OR operator (1) to
mode combinations. The modes are as follows:

0400 OWNER:READ
0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ
0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

When you supply a mode argument of zero, creat gives the file
the user’s default file protection.

The system is always given the same privileges as the owner. A
WRITE privilege also implies a DELETE privilege.

Represents an optional argument list of character strings of the
form

"keyword = value", . .. ,"keyword = value"

Keyword is an RMS (Record Management Services) field in the file
access block (FAB) or record access block (RAB), and value is valid
for assignment to that field. Some fields permit you to specify
more than one value. In these cases, the values are separated by
commas.

Table 4-1 lists the set of valid keywords and values.

Table 4-1:

File Access Block and Record Access Block

Keywords
Keyword Value Description
“alq =n” decimal Allocation quantity
“bls = n” decimal Block size
“ctx = bin” decimal No translation of "\n’ to the terminal
“ctx = nocvt” decimal No conversion of FORTRAN carriage
control bytes
“ctx = rec” string Force record mode access
“ctx = str” string Force stream mode access
“deq = n” decimal Default extension quantity
“dna = filespec” string Default filename string
“fop =val, val, ... " File processing options:
ctg Contiguous
cbt Contiguous-best-try
tef Truncate at end-of-file
cif Create if nonexistent
sup Supersede
scf Submit as command file on close
spl Spool to system printer on close
tmd Temporary delete
tmp Temporary (no file directory)
nef Not end-of-file
“fsz =n” decimal Fixed header size
“mbc =n” decimal Multiblock count
“mbf = n” decimal Multibuffer count
“mrs = n” decimal Maximum record size
“rat = val, val ... " Record attributes:
cr Carriage-return control
blk Disallow records to span block
boundaries
ftn FORTRAN print control
prn Print file format

“rfm = val”

Record format:

UNIX 1/0 Functions and Macros

Table 4-1 (Cont.): File Access Block and Record Access
Block Keywords

Keyword Value Description
fix Fixed-length record format
stm RMS-11 stream record format
stmlf Stream format with line-feed terminator
stmcr Stream format with carriage-return
terminator
var Variable-length record format
vfc Variable-length record with fixed control
udf Undefined
“rop = val” Record processing operations:
asy Asynchronous 1/0
tmo Timeout 1/0
“shr = val” File sharing options:
del Allows users to delete
get Allows users to read
mse Allows mainstream access
nil Prohibits file sharing
put Allows users to write
upd Allows users to update
upi Allows one or more writers
“tmo = n” decimal I/0 timeout value

NOTE

You cannot share the default VAX C stream file 1/O. If you
wish to share files, you must specify “ctx=rec” to force record
access mode. You must also specify the appropriate “shr”
options depending upon the type of access you want.

Additional Information

If the file already exists, a version number one greater than any existing

version is assigned to the file.

If the file did not previously exist, it is given the file protection that
results from performing a bitwise AND on the mode argument and the
complement of the current protection mask. The VAX C RTL opens the
new file for reading and writing, and it returns the corresponding file

4-6 UNIX 1/0 Functions and Macros

descriptor. For more information concerning umask and chmod refer
to Chapter 11, System Functions.

The creat function returns an integer file descriptor. It returns -1 to
indicate errors including protection violations, undefined directories, and
conflicting file attributes.

See also open, close, read, write, and 1Iseek in this chapter.

4.1.3 dup, dup2

The dup and dup2 functions allocate a new descriptor that refers to a
file specified by a file descriptor returned by open, creat, or pipe (refer
to Chapter 10, Subprocess Functions).

The syntax of the functions is as follows:

#include unixio

int dup (int file_descl);
int dup2 (int file_descl, int file_desc?);

Arguments
The arguments for the dup and dup2 functions are as follows:

file_desc1 The file descriptor being duplicated.

file_desc2 The new descriptor to be assigned to the file designated by
file_desc1.

Additional Information

Both functions return the new file descriptor. The dup2 function causes its
second argument to refer to the same file as its first argument.

Both functions return -1 if their arguments are invalid. The argument
file_desc1 is invalid if it does not describe an open file; file_desc2 is invalid
if the new descriptor cannot be allocated. If file_desc2 is connected to an
open file, that file is closed.

UNIX I/0 Functions and Macros 4-7

4.1.4 open

The open function positions the file at its beginning (byte 0).

The syntax of the function is as follows:

#include unixio

#include file

int open (char *file_spec, int flags, unsigned int mode, ...);

Arguments

The arguments for the open function are as follows:

file_spec

flags

4-8 UNIX 1/0 Functions and Macros

A NUL-terminated character string containing a valid file specifi-
cation.

Values defined in the file definition module and have the
following meanings:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.
O_NDELAY Open for asynchronous input.
O_APPEND Append on each write.

O_CREAT Create a file if it does not exist.
O_TRUNC Create a new version of this file.
O_EXECL Error if attempting to create existing file.

These flags are set using the bitwise OR operator (1) to separate
specified flags. Opening a file with the O_APPEND causes
each write on the file to be appended to the end. If O_TRUNC
is specified and the file exists, open creates a new file by
incrementing the version number by one, leaving the old version
in existence. If O_CREAT is set and the named file does not
exist, the VAX C RTL creates it with any attributes specified in
the fourth and subsequent arguments (...). If O_EXECL is
set with O_CREAT, then if the file already exists, the attempted
open returns an error.

mode

Sets the file protection. Modes can be constructed by using the
bitwise OR operator (|) to separate specified modes. The modes
are as follows:

0400 OWNER:READ
0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ
0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

When you supply a mode argument of zero, open gives the file
the user’s default file protection.

The system is always given the same privileges as the owner. A
WRITE privilege also implies a DELETE privilege.

Represents an optional argument list of character strings of the
following form:

"keyword = value, . .. "

Keyword is an RMS (Record Management Services) field in the
file access block (FAB) or record access block (RAB), and value
is valid for assignment to that field. Some fields permit you
to specify more than one value. In these cases, the values are
separated by commas.

Table 4-1 lists the set of valid keywords and values.

Additional Information

The open function returns -1 if the file does not exist, if it is protected
against reading or writing, or if the file, for any other reason, cannot be

opened.

NOTE

If you intend to do random writing to a file, the file must be
opened for update by specifying a flags value of O_RDWR.

See also creat, read, write, close, dup, dup2, and Iseek in this chapter.

UNIX I/0 Functions and Macros 4-9

4.2 Reading and Writing

The following sections describe the UNIX I/ O functions that read from
and write to files.

421 read

The read function reads bytes from a file and places them in a buffer.
The syntax of the read function is as follows:

#include unixio

int read (int file_desc, void *buffer, size_t nbytes);
Arguments

The arguments to the read function are as follows:

file_desc A file descriptor. The specified file descriptor must refer to a file
currently opened for reading.

buffer The address of contiguous storage in which the input data is
placed.

nbytes The maximum number of bytes involved in the read operation.

Additional Information

The read function returns the number of bytes actually read. The return
value does not necessarily equal nbytes. For example, if the input is from
a terminal, at most one line of characters is read.

NOTE

In general, the read function will not span record boundaries in
a record file. A separate read must be done for each record.

A return value of 0 means that end-of-file was encountered. A return
value of -1 indicates any sort of read error, including physical input errors,
illegal buffer addresses, protection violations, undefined file descriptors,
and so forth.

4-10 UNIX I/0 Functions and Macros

4.2.2 write

The write function writes a specified number of bytes from a buffer to a
file.

The syntax of the write function is as follows:
#include unixio
int write (int file_desc, void *buffer, size_t nbytes);
Arguments

The arguments for the write function are as follows:

file__desc A file descriptor. The specified file descriptor must refer to a file
currently opened for writing or update. ’

buffer The address of contiguous storage from which the output data is
taken.

nbytes The maximum number of bytes involved in the write operation.

Additional Information

The write function returns the number of bytes actually written. It returns
-1 for errors, including undefined file descriptors, illegal buffer addresses,
and physical I/O errors.

NOTE

e If the write is to an RMS record file and the buffer contains
embedded newline characters, more than one record may
be written to the file. Even if there are no embedded
newline characters, if nbytes is greater than the maximum
record size for the file, more than one record may be
written to the file.

* If the write is to a mailbox and the third argument, nbytes,
specifies a length of zero, an end-of-file message is written
to the mailbox. For more information, refer to Chapter 10,
Subprocess Functions.

UNIX I/0 Functions and Macros 4-11

4.3 Maneuvering in Files

The following sections describe the UNIX I/O functions that position the
pointer within the file.

4.3.1 lIseek

The Iseek function positions a file to an arbitrary byte position and returns
the new position as an int.

The syntax of the 1seek function is as follows:

#include unixio

int lseek (int file_desc, int offset, int direction);

Arguments
The arguments for the Iseek function are as follows:

file_desc An integer returned by open, creat, dup, or dup2.
offset Measured in bytes.

direction Tells the function where to begin the offset; the new position is
relative either to the beginning of the file (direction=SEEK_ABS),
the current position (direction=SEEK_CUR), or the end of the file
(direction=SEEK_END).

Additional Information

The Iseek function can position a stream file on any byte offset but can
position a record file only on record boundaries. The available Standard
I/0 functions always position a record file at its first byte, at the end-of-
file, or on a record boundary. Therefore, the arguments given to lseek
must specify either the beginning or end of the file, a zero offset from the
current position (an arbitrary record boundary), or the position returned
by a previous, valid 1seek call.

The following call obtains the position of the current record in an RMS
record file (which has the descriptor, filel):

- /% RELATIVE TO CURRENT POSITION */
pos = lseek(filel, 0, 1)

4-12 UNIX 1/0 Functions and Macros

The return value in pos can then be used later in the program (perhaps
after the file has been repositioned by write or read) to return to this
position, as in the following example:

/* POSITION RELATIVE TO BEGINNING */
newpos = lseek(filel, pos, 0);

CAUTION

If, while accessing a stream file, you seek beyond the end-of-file
and then write to the file, the 1seek function creates a “hole” by
filling the skipped bytes with zeros.

In general, for record files, Iseek should only be directed to an
absolute position that was returned by a previous valid call to
Iseek or to the beginning or end of a file. If a call to Iseek does
not satisfy these conditions, the results are unpredictable.

The 1seek function returns -1 if the file descriptor is undefined or if you
attempt to seek before the beginning of the file.

See also open, creat, dup, and dup? in this chapter; for fseek, refer
to Chapter 2, Standard I/0O Functions and Macros.

4.4 Additional UNIX 1/0 Functions and Macros

The following sections describe the UNIX I/O functions and macros used
to perform various tasks.

4.4.1 fileno

The macro fileno returns an integer file descriptor that identifies the
specified file.

The syntax of the macro fileno is as follows:

#include stdio

int fileno(FILE *file_pt7);

Arguments

The argument file_ptr is a file pointer. For more information concerning
file pointers, refer to Chapter 2, Standard I/O Functions and Macros.

UNIX I/0 Functions and Macros 4-13

Additional Information

VAX C implements fileno as a macro.

4.4.2 fstat, stat

The fstat and stat functions access information about the file descriptor or
the file specification.

The syntax of the functions is as follows:

#include unixio
#include stat

void fstat (int file_desc, stat_t *buffer);

void stat (char *file_spec, stat_t *buffer);

Arguments
The arguments for the fstat and stat functions are as follows:

file_desc A file descriptor (file_desc) or a valid VMS or DEC/Shell file

file_spec specification (file_spec). Read, write, or execute permission of
the named file is not required, but all directories listed in the
file specification leading to the file must be reachable. For more
information concerning the DEC/Shell, refer to Chapter 1, VAX
C Run-Time Library Information.

buffer A pointer to a structure of type stat_t which is defined in the
stat definition module. The argument receives information about
the particular file. The members of the structure pointed to by
buffer are as follows:

4-14 UNIX 1/0 Functions and Macros

Member Type Definition

st_dev unsigned Pointer to physical device
name

st_ino(3] unsigned short Three words to receive file id

st_mode unsigned short File “mode” (prot; dir, ...)

st_nlink int For UNIX system compatibil-
ity only

st_uid unsigned Owner user id

st_gid unsigned short Group member: from st_uid

st_rdev char* UNIX system compatibility—
always zero

st_size unsigned File size in bytes

st_atime unsigned File access time; always same
as st_mtime

st_mtime unsigned Last modification time

st_ctime unsigned File creation time

st_fab_rfm char Record format

st_fab_rat char Record attributes

st_fab_fsz char Fixed header size

st_fab_mrs unsigned Record size

UNIX 1/0 Functions and Macros 4-15

The structure member, st_mode, is the status information mode
and is defined in the stat definition module. The st_mode bits
are as follows:

Bits Constant Definition

0170000 S_IFMT Type of file

0040000 S_IFDIR Directory

0020000 S_IFCHR Character special

0060000 S_IFBLK Block special

0100000 S_IFREG Regular

0030000 S_IFMPC Multiplexed char special

0070000 S_IFMPB Multiplexed block special

0004000 S_ISUID Set user id on execution

0002000 S_ISGID Set group id on execution

0001000 S_ISVTX Save swapped text even
after use

0000400 S_IREAD Read permission, owner

0000200 S_IWRITE Write permission, owner

0000100 S_IEXEC Execute/search permission,
owner

Additional Information

-Upon successful completion, these functions return zero; otherwise, they
return -1.

The fstat and stat functions do not work on remote network files.

4-16 UNIX 1/0 Functions and Macros

4.4.3 getname

The getname function returns the file specification associated with a file
descriptor.

The syntax of the getname function is as follows:

#include unixio

char *getname (int file_desc, char *buffer, ...);

Arguments
The arguments for the getname function are as follows:

file_desc A file descriptor.

buffer A pointer to a character string that is large enough to hold the file
specification. :
Represents an optional argument that can be either 1 or 0. If you
specify 1, the getname function returns the file specification in
VMS format. If you specify 0, the getname function returns the
file specification in DEC/Shell format. If you do not specify this
argument, the getname function returns the file name according to
your current command language interpreter. For more information
concerning DEC/Shell file specifications, refer to Chapter 1, VAX C
Run-Time Library Information.

Additional Information

The getname function places the file specification in a buffer and returns
the buffer’s address. The buffer should be an array large enough to
contain a fully qualified file specification (the maximum length is 256
characters). When an error occurs, getname returns 0.

4.4.4 isapipe

The isapipe function returns 1 if the specified file descriptor is associated
with a mailbox, and 0 if it is not. For more information concerning
mailboxes, refer to Chapter 10, Subprocess Functions.

The syntax of the isapipe function is as follows:

#include unixio

int isapipe (int file_desc);

UNIX 1/0 Functions and Macros 4-17

Arguments

The argument file_desc is a file descriptor.

Additional Information

The isapipe function returns a value of -1 to indicate an error (for exam-
ple, if the file descriptor is not associated with an open file).

445 isatty

The isatty function returns 1 if the specified file descriptor is associated
with a terminal, and zero if it is not.

The syntax of the isatty function is as follows:
#include unixio
int isatty (int file_desc);

Arguments

The argument file_desc is a file descriptor.

Additional Information

The isatty function returns value of -1 to indicate an error (for example, if
the file descriptor is not associated with an open file).

4.4.6 ttyname

The ttyname function returns a pointer to the NUL-terminated name of
the terminal device associated with file descriptor zero, the default input
device (stdin). »

The syntax of the function is as follows:
#include unixio
char *ttyname (void);

Additional Information

The ttyname function is provided only for UNIX compatibility and has
limited functionality in the VMS environment.

4-18 UNIX 1/0 Functions and Macros

4.5 Program Examples

Example 4-1 illustrates the use of both a file pointer and a file descriptor
to access a single file.

UNIX 1/0 Functions and Macros 4-19

Example 4-1: 1/0 Using File Descriptors and Pointers

/* The following example creates a file with variable-length
records (rfm = var) and the carriage-return attribute
(rat = cr).

The program uses creat to create and open the file, and
fdopen to associate the file descriptor with a file
pointer. 'After using the fdopen function, the file
must be referenced using the Standard I/0 functions. */

LK R N N R
¥ OH ¥ K X K ¥

#include stdio
#include unixio
#define ERROR O
#define ERROR1 -1
#define BUFFSIZE 132

main()

{
char buffer [BUFFSIZE];
int fildes;
FILE *fp;

if ((fildes = creat("data.dat",0,"rat=cr",
"rfm=var")) == ERROR1)
{
perror("FILE3: creat() failed\n");
exit(2);
}

if ((fp = fdopen(fildes,"w")) == NULL)
{

perror("FILE3: fdopen() failed\n");
exit(2);
}
while(fgets(buffer,BUFFSIZE,stdin) != NULL)
if (fwrite(buffer,strlen(buffer),1,fp) == ERROR)
{
perror ("FILE3: fwrite() failed\n");
exit(2);
}

if (fclose(fp) == EOF)
{
perror("FILE3: fclose() failed\n");
exit(2);
}

4-20 UNIX I/0 Functions and Macros

Chapter 5

Character-Handling Functions and
Macros

The functions and macros in this chapter fall into two categories: character
classification and character conversion. The following sections describe
each of these types of functions and macros.

5.1 Character Classification Macros

VAX C implements all character classification “functions” as preprocessor
defined macros. Do not pass arguments to those macros which may
cause side effects, such as arguments with the increment and decrement
operators. For more information concerning macros, refer to Guide to
VAX C.

The character classification macros take a single argument on which they
perform a logical operation. The argument can have any value; that is,
it does not have to be an ASCII character. However, the value of the
argument is reduced to modulo 128 to give a 7-bit ASCII character. This
value is used as the value of the argument. In the case of the macro
isascii, the function determines if the argument is an ASCII character (0
through 177 octal). The other macros determine whether the argument is
a particular type of ASCII character, such as a graphic character or digit.

For all macros, a positive return value indicates true. A return value of
zero indicates false. The following tables show, for each ASCII character,
which functions return true.

Character-Handling Functions and Macros 5-1

The following list assigns a number to each of the character classification

macros:

Macro Macro

Number Macro Number Macro

1 isalnum 7 islower
2 isalpha 8 isprint
3 isascii 9 ispunct
4 iscntrl 10 isspace
5 isdigit 11 isupper
6 isgraph 12 isxdigit

Table 5-1 lists the numbers of the macros (as assigned in the previous
list) that return the value true for each of the given ASCII characters. The
numeric code represents the octal value of each of the ASCII characters.

Table 5-1: Character Classification Macro Return Values
(ASCII Table)

ASCIT Macro ASCII Macro

Values Numbers Values Numbers
NUL 00 3,4 @ 100 3,6,8,9

SOH 01 3,4 A 101 1,2,3,6,8,11,12
STX 02 34 B 102 1,2,3,6,8,11,12
ETX 03 3,4 C 103 1,2,3,6,8,11,12
EOT 04 3.4 D 104 1,2,3,6,8,11,12
ENQ 05 3,4 E 105 1,2,3,6,8,11,12
ACK 06 3,4 F 106 1,2,3,6,8,11,12
BEL 07 3,4 G 107 1,2,3,6,8,11
BS 10 3,4 H 110 1,2,3,6,8,11
HT 11 3,4,10 111 1,2,3,6,8,11
LF 12 3,4,10 J 112 1,2,3,6,8,11
VT 13 3,4,10 K113 1,2,3,6,8,11
FF 14 3,410 L 114 1,2,3,6,8,11

5-2 Character-Handling Functions and Macros

Table 5-1 (Cont.):

Character Classification Macro Return
Values (ASCII Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers
CR 15 3,4,10 M 115 1,2,3,6,8,11
SO 16 34 N 116 1,2,3,6,8,11
Sl 17 34 0O 117 1,2,3,6,8,11
DLE 20 3,4 P 120 1,2,3,6,8,11
DC1 21 3,4 Q 121 1,2,3,6,8,11
DC2 22 3,4 R 122 1,2,3,6,8,11
DC3 23 3,4 S 123 1,2,3,6,8,11
DC4 24 34 T 124 1,2,3,6,8,11
NAK 25 34 U 125 1,2,3,6,8,11
SYN 26 3,4 V 126 1,2,3,6,8,11
ETB 27 3,4 W 127 1,2,3,6,8,11
CAN 30 3,4 X 130 1,2,3,6,8,11
EM 31 3,4 Y 131 1,2,3,6,8,11
SUB 32 3,4 Z 132 1,2,3,6,8,11
ESC 33 3,4 [133 3,6,8,9

FS 34~ 34 \ 134 3,6,8,9

GS 35 3,4] 135 3,6,89

RS 36 3,4 " 136 3,6,8,9

Us 37 34 - 137 3,6,8,9

SP 40 3,8,10 7" 140 3,6,8,9

! 41 3,6,8,9 a 141 1,2,3,6,7,8,12
" 42 3,6,89 b 142 1,2,3,6,7,8,12
43 3,6,8,9 c 143 1,2,3,6,7,8,12
$ 44 3,6,8,9 d 144 1,2,3,6,7,8,12

Character-Handling Functions and Macros

5-3

Table 5-1 (Cont.): Character Classification Macro Return
Values (ASCII Table)

ASCII Macro . ASCII Macro
Values Numbers Values Numbers
% 45 3,689 e 145 1,2,3,6,7,8,12
& 46 3,6,8,9 f 146 1,2,3,6,7,8,12
"47 3,6,8,9 g 147 1,2,3,6,7,8
(50 3,6,8,9 h 150 1,2,3,6,7,8
) 51 3,6,8,9 i151 1,2,3,6,7,8
* 52 3,689 j 152 1,2,3,6,7,8
+53 3,689 k 153 1,2,3,6,7,8
' 54 3,6,8,9 1154 1,2,3,6,7,8
- 55 3,6,8,9 m 155 1,2,3,6,7,8
?. 56 3,6,8,9 n 156 1,2,3,6,7,8
/ 57 3,6,8,9 o 157 - 1,236,7,8
0 60 1,3,5,6,8,12 p 160 1,2,3,6,7,8
161 1,3,5,6,8,12 q 161 1,2,3,6,7,8
262 1,3,5,6,8,12 r 162 1,2,3,6,7,8
363 1,3,5,6,8,12 s 163 1,2,3,6,7,8
4 64 1,3,5,6,8,12 t 164 1,2,3,6,7,8
5 65 1,3,5,6,8,12 u 165 1,2,3,6,7,8
6 66 1,3,5,6,8,12 v 166 1,2,3,6,7,8
7 67 1,3,5,6,8,12 w 167 1,2,3,6,7,8

5-4 Character-Handling Functions and Macros

Table 5-1 (Co

nt.):

Character Classification Macro Return
Values (ASCIl Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers
870 1,3,5,6,8,12 x 170 1,2,3,5,6,8
971 1,3,5,6,8,12 y 171 1,2,3,5,6,8
172 3,6,89 z 172 1,2,3,5,6,8
;73 3,6,8,9 {173 3,6,8,9
<74 3,6,8,9 1174 3,6,8,9
=75 3,6,89 } 175 3,6,8,9

> 76 3,6,8,9 ?~ 176 3,6,8,9

? 77 3,6,8,9 DEL 177 3,4

The following sections describe the character classification macros. All of
these macros have a single argument that is an object of type char.

5.1.1

The isalnum macro returns a nonzero integer if its argument is one of the
alphanumeric ASCII characters. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isalnum (char character);

5.1.2

isalpha

The isalpha macro returns a nonzero integer if its argument is an alpha-

betic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isalpha (char character);

Character-Handling Functions and Macros

5-5

5.1.3 isascii

The isascii macro returns a nonzero integer if its argument is any ASCII
character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isascii (char character)

5.1.4 iscntrl

The iscntrl macro returns a nonzero integer if its argument is an ASCII
DEL character (177 octal) or any nonprinting ASCII character (code less
than 40 octal). Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int iscntrl (char character);

5.1.5 isdigit

The isdigit macro returns a nonzero integer if its argument is a decimal
digit character (0-9). Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isdigit (char character);

5-6 Character-Handling Functions and Macros

5.1.6 isgraph

The isgraph macro returns a nonzero integer if its argument is a graphic
ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isgraph (char character);

Additional Information

Graphic ASCII characters are those with octal codes greater than or
equal to 41 (!) and less than or equal to 176 (?~). In other words, they
comprise the set of printable characters minus the space.

5.1.7 islower

The islower macro returns a nonzero integer if its argument is a lowercase
alphabetic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int islower (char character);

5.1.8 isprint

The isprint macro returns a nonzero integer if its argument is any ASCII
printing character (ASCII codes from 40 octal to 176 octal). Otherwise, it
returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isprint (char character);

Character-Handling Functions and Macros 5-7

5.1.9 ispunct

The ispunct macro returns a nonzero integer if its argument is an ASCII
punctuation character; that is, if it is nonalphanumeric and greater than 40
octal. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int ispunct (char character);

5.1.10 isspace

The isspace macro returns a nonzero integer if its argument is white space;
that is, if it is an ASCII space, tab (horizontal or vertical), carriage-return,
form-feed, or newline character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isspace (char character);

5.1.11 isupper

The isupper macro returns a nonzero integer if its argument is an upper-
case alphabetic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isupper (char character);

5-8 Character-Handling Functions and Macros

5.1.12 isxdigit

The isxdigit macro returns a nonzero integer if its argument is a hexadeci-
mal digit (0-9, A-F, or a-f).
The syntax of the macro is as follows:

#include stdlib
#include ctype

int isxdigit (char character);

5.2 Character Conversion Functions ahd Macros

The character conversion functions and macros convert one type of
character to another type. The following sections describe the character
conversion functions.

5.2.1 ecvt, fevt, gevt

Each of the ecvt, fevt, and gevt functions converts its argument to a NUL-
terminated string of ASCII digits and returns the address of the string.
The strings are stored in a memory location created by the functions.

The syntax descriptions of the functions are as follows:

#include stdlib

char *ecvt (double walue, int ndigit, int *decpt, int *sign) ;
char *fcvt (double walue, int ndigit, int *decpt, int *sign);
char *gcvt (double walue, int ndigit, char *buffer);

Arguments

The arguments for the ecvt, fcvt, and gevt functions are as follows.

Character-Handling Functions and Macros 5-9

value

ndigit
decpt

sign

buffer

An object of type double that is converted to a NUL-terminated
string of ASCII digits.

The number of ASCII digits to be used in the converted string.

Contains the position of the decimal point relative to the first:
character in the returned string. A negative int value means that the
decimal point is decpt number of spaces to the left of the returned
digits, spaces being filled with zeros; a zero value means that the
decimal point is immediately to the left of the first digit in the
returned string.

Contains an integral value that indicates whether the argument value
is positive or negative. If the value is negative, the functions place a
nonzero value at the address specified by argument sign. Otherwise,
the functions assign zero to the address specified by argument sign.

A storage location to hold the converted string.

Additional Information

The functions ecvt and fcvt return, by means of the argument decpt, the
position of the decimal point relative to the first character in the returned

string.

The function gevt places the converted string in a buffer and returns
its address buffer. If possible, gevt produces ndigit significant digits in
FORTRAN-F format, or if not possible, in E-format. Trailing zeros may be

suppressed.

Repeated calls to these functions overwrite any existing string,.

5.2.2 toascii

The toascii macro converts its argument, an 8-bit ASCII character, to a
7-bit ASCII character. '

The syntax of the macro is as follows:

#include stdlib
#include ctype

int toascii(char character)

Arguments

The argument character is an object of type char.

Character-Handling Functions and Macros

5.2.3 tolower, —tolower

The tolower function and —tolower macro convert their argument, an
ASCII character, to lowercase. If the argument is not an uppercase
character, it is returned unchanged.

The syntax descriptions of the function and macro are as follows:

#include stdlib
#include ctype

int tolower (char character);
int _tolower (char character);

Arguments

The argument character is an object of type char.

Additional Information

VAX C implements tolower as a function and _tolower as a macro.
You only have to include the ctype definition module if you are using
—tolower.

5.2.4 toupper, _toupper

The toupper function and _toupper macro convert their argument,
an ASCII character, to uppercase. If the argument is not a lowercase
character, it is returned unchanged.

The syntax descriptions of the function and macro are as follows:

#include stdlib
#include ctype

int toupper (char character);
int _toupper (char character);

Arguments

The argument character is an object of type char.

Additional Information

VAX C implementsvtoupper as a function and _toupper as a macro.
You only have to include the ctype definition module if you are using
—toupper.

Character-Handling Functions and Macros 5-11

5.3 Program Examples

Example 5-1 illustrates the use of character classification macros.

Example 5--1: Character Conversion Macros

/* The following program uses the isalpha, isdigit, and *
* isspace macros to count the number of occurrences of *
* letters, digits and white space characters entered through *
* the standard input (stdin). */

#include ctype
#include stdio
#include stdlib

main()
{
char c;
int 1 =0, j =0, k=0;

while ((c = getchar()) != EOF)
{

if (isalpha(c))
i++;

if (isdigit(c))
jH+,

it (isspace(c))
k++;

}

printf ("Number of letters: %d\n", i);
printf("Number of digits: J%d\n", j);
printf ("Number of spaces: J%d\n", k);

Sample input and output from this program are as follows:

$ RUN EXAMPLE1 ‘

I saw 35 men with mustaches on Christopher Street.
Number of letters: 39

Number of digits: 2

Number of spaces: 9

$

Example 5-2 illustrates the use of the ecvt function.

5-12 Character-Handling Functions and Macros

Example 5-2: Converting Double Values to an ASCII String

/* This program uses the ecvt function to convert a double *
* value to a string. The program then prints the string. */

#include stdio
#include stdlib

main()
{

double val;

int sign, point;

static char string[20];

val = -3.1297830e-10;

printf("original value: J%e\n", val);

/*

/*

*

Value to be converted */

Variables for sign and *

decimal place */
Array for converted *
string */

- strepy(string,ecvt(val, 5, &point, &sign));
printf("converted string: %s\n", string);

if (sign)

printf("value is negative\n");

else printf("value is positive\n");

printf("decimal point at %d\n", point);

The output from this program is as follows:

$ RUN EXAMPLEZ [RETURN]
original value: -3.120783e-10
converted string: 31298

value is negative

decimal point at -9

$

Example 5-3 illustrates the use of functions toupper and tolower.

Character-Handling Functions and Macros

5-13

Example 5-3: Changing Characters to and from Uppercase

Letters
/* This program uses the functions toupper and tolower to *
* convert uppercase to lowercase and lowercase to uppercase *
* using input from the standard input (stdin). */

#include ctype
#include stdio /* To use EOF identifier */
#include stdlib

main()
{

char ¢, ch;

while ({c = getchar()) != EOF)
{
if (¢ >= 'A' & c <= 'Z')
ch = tolower(c);
else
ch = toupper(c);
putchar(ch);

Sample input and output from this program are as follows:

$ RUN EXAMPLE3 [RETURN

LET'S GO TO THE stonewall INN.[CTRL/Z
let's go to the STONEWALL inn.

$

5-14 Character-Handling Functions and Macros

Chapter 6

String- and List-Handling Functions and
Macros

This chapter discusses functions that manipulate strings. Some of these
functions concatenate strings; others search a string for specific characters
or perform some other comparison, such as determining the equality of
two strings.

6.1 strcat, strncat

The strcat and strncat functions concatenate str—2 to the end of str_1.
The syntax descriptions of the functions are as follows:

#include string

char *strcat (char *str_1, const char *str_2);
char *strncat (char *str_1, const char *str_2, size_t mazchar);

Arguments

The arguments to the strcat and strncat functions are as follows:

str_1 Must be NUL-terminated character strings.
str_2
maxchar Specifies the maximum number of characters to concatenate from

str_2, unless the strncat first encounters a NUL terminator in str_2.
If maxchar is zero or negative, no characters are copied from str_2.

String- and List-Handling Functions and Macros 6-1

Additional Information

Both strcat and strncat return the address of the first argument, str_1,
which is assumed to be large enough to hold the concatenated result.

If strncat reaches the specified maximum, it sets the next byte in str_1 to
NULL.

6.2 strchr, strrchr
The strchr and strrchr functions return, respectively, the address of the
first or last occurrence of a given character in a NUL-terminated string.
The syntax descriptions of the functions are as follows:

#include string

char *strchr (const char *str, int character);
char *strrchr (const char *str, int character);

Arguments

The arguments to the strchr and strrchr functions are as follows:
str A pointer to a NUL-terminated character string.
character An object of type char.

Additional Information

The strchr and strrchr functions return zero if the character does not occur
in the string, otherwise they return the address of the first (strchr) or last
(strrchr) occurrence of the specified character.

6.3 strcmp, strncmp

The stremp and strnecmp functions compare two ASCII character strings
and return a negative, zero, or positive integer, indicating that the ASCII
values of the individual characters in the first string are less than, equal to,
or greater than the values in the second string.

6-2 String- and List-Handling Functions and Macros

The syntax descriptions of the functions are as follows:

#include string

int strcmp (const char *str_1, const char *str_2);
int strncmp (const char *str_1, const char *str_2, size_t mazxchar);

Arguments

The arguments to the stremp and strncmp functions are as follows:

str_1 Pointers to character strings.
str_2
maxchar Specifies a maximum number of characters (beginning with the first)

to search in both str_1 and str_.2,

If maxchar is zero or negative, no comparison is performed and zero is
returned (the strings are considered equal).

Additional Information

The returned value is obtained by subtracting the characters at the first
position where the two strings disagree.

With either function, the comparison is terminated when a NULL is
encountered in one of the strings.

6.4 strcpy, strncpy

These functions copy all or part of str_2 into str_1.
The syntax descriptions of the functions are as follows:

#include string

char *strcpy (char *str_1, const char *str_2);
char *strncpy (char *str_1. const char *str_2, size_t maxzchar);

String- and List-Handling Functions and Macros 6-3

Arguments

The arguments to the strepy and strncpy functions are as follows:

str_1 Pointers to character strings.
str_2
maxchar Specifies the maximum number of characters to copy from str_2 to

str_1, up to but not including the NUL terminator or str_2.

Additional Information

The strcpy function copies str_2 into str_1, stopping after copying str_2’s
NUL character.

The function strncpy copies no more than maxchar characters from str_2
to str_1, up to but not including the null terminator of str_2. If str_2
contains less than maxchar characters, str_1 is padded with null characters.
If str_2 contains greater than or equal to maxchar characters, as many
characters as possible are copied to str_1I.

Both functions return the address of str_1.

NOTE

The argument str_1 is not necessarily terminated by a null
character.

6.5 strcspn, strspn, strpbrk

The strespn function searches a string for a character in a specified set of
characters. The strpbrk function searches a string for the occurrence of
one of a specified set of characters. The strspn function searches a string
for the occurrence of a character that is not in a specified set of characters.

The syntax of the functions is as follows:

#include string
char *strcspn (const char *str, const char *charset);
char *strpbrk (const char *str, const char *charset);

char *strspn (const char *str, const char *charset);

6-4 String- and List-Handling Functions and Macros

Arguments
The arguments to these functions are as foliows:

str A pointer to a character string. If the argument string is a null
string, zero is returned.

charset A pointer to a character string containing the characters for which
the function may or may not search.

Additional Information

These functions scan the characters in the string, stop when they en-
counter a character found in charset, and return the length of the string’s
segment formed by characters found or not found in charset.

If all or no characters match in the character strings pointed to by str

and charset, strespn and strspn return the length of string. The strpbrk
function returns the address of the first character in the string that is in the
set, or NULL if no character is in the set.

6.6 strlen

The strlen function returns the length of a string of ASCII characters. The
returned length does not include the terminating NUL character (\0).

The syntax of the function is as follows:

#include string

int strlen (const char *str);

Arguments

The argument str is a pointer to the character string.

String- and List-Handling Functions and Macros 6-5

6.7 strtod, atof

6-6

The strtod and atof functions convert a given string to a double-precision
number.

These functions recognize an optional sequence of “white-space” characters
(as defined by isspace in ctype), then an optional plus or minus sign, then
a sequence of digits optionally containing a single decimal point, then an
optional letter (e or E) followed by an optionally signed integer. The first
unrecognized character ends the conversion.

The string is interpreted by the same rules that are used to interpret
floating constants.

The syntax of the strtod and atof functions is as follows:

#include stdlib
double strtod (const char *mptr, char *xendptr);

double atof (const char *nptr);

Arguments
The arguments to the strtod and atof functions are as follows:

nptr A pointer to the character string to be converted to a double-precision
number.

endptr The address of an object into which will be stored the address of the
first unrecognized character that terminates the scan. If endptr is a NULL
pointer, the address of the first unrecognized character is not retained.

Additional Information

The strtod and atof functions return the converted value. For atof,
overflows resulting from the conversion are not accounted for. For strtod,
overflows are accounted for:

* If the correct value would cause overflow, HUGE_VAL (with a plus
or minus sign according to the sign of the value) is returned and int
errno is set to ERANGE.

e If the correct value would cause underflow, zero is returned and errno
is set to ERANGE.

If the string starts with an unrecognized character, *endptr is set to nptr,
and a zero value is returned.

String- and List-Handling Functions and Macros

The function call atof(str) is equivalent to strtod(str,(char *##)0), arithmetic
exceptions not withstanding.

6.8 strtok

The strtok function locates text tokens in a given string. The text tokens
are delimited by one or more characters from a separator string that you
specify. The function keeps track of its position in the string between
calls and, as successive calls are made, the function will work through
the string, identifying the text token following the one identified by the
previous call.

The syntax of the strtok function is as follows:

#include string

char *strstr (char *sl, const char *s2);

The first call to the strtok function returns a pointer to the initial character
in the first token and writes a NUL character into sI1 immediately following
the returned token. Each subsequent call (with the value of the first
argument remaining NULL) returns a pointer to a subsequent token in the
string originally pointed to by sI. When no tokens remain in the string,
the strtok function returns a NULL pointer.

Arguments
The arguments to the strtok function are as follows:

s1 A pointer to a string containing zero or more text tokens.

s2 A pointer to a separator string consisting of one or more characters. The
separator string may differ from call to call.

Additional Information

Tokens in s1 are delimited by NUL characters inserted into s1 by the
strtok function. Therefore, sI1 cannot be a const object. The strtok
function is non-reentrant since a static global variable must be used to
maintain the starting address within s1 of subsequent calls to strtok with a
NULL first argument.

String- and List-Handling Functions and Macros 6-7

6.9 strto, atoi, atol

These functions convert strings of ASCII characters to the appropriate
numeric values.

The syntax descriptions of the functions are as follows:

#include stdlib

int atoi (const char *nptr);

long int atol (const char *nptr);

long int strtol (const char *mptr, char xxemdptr, int base);

Arguments

The arguments to the functions are as follows:

nptr
endptr

base

A pointer to the character string to be converted to a long.

The address of an object into which will be stored a pointer to a pointer
to the first unrecognized character encountered in the conversion pro-
cess (that is, the character that follows the last character in the string
being converted). If endptr is a NUL pointer, the address of the first
unrecognized character is not retained.

The value, 2 through 36, to be used as the base for the conversion.
Leading zeros after the optional sign are ignored, and Ox or 0X is ignored
if the base is 16. '

If the base is 0, the sequence of characters is interpreted by the same
rules used to interpret an integer constant: after the optional sign, a
leading zero indicates octal conversion, a leading Ox or 0X indicates
hexadecimal conversion, and any other combination of leading characters
indicates decimal conversion.

Additional Information

The functions recognize strings in various formats, depending on the value
of the base, as follows:

¢ The strtol function ignores any leading white-space characters (as
defined by isspace in ctype) in the given string. It recognizes an
optional plus or minus sign, then a sequence of digits or letters that
may represent an integer constant according to the value of the base.
The first unrecognized character ends the conversion.

[white-spaces] [+]|-]digits

6-8 String- and List-Handling Functions and Macros

¢ The functions atoi and atol are functionally equivalent in VAX C.

* The atoi and atol functions do not account for overflows resulting
from the conversion.

* The strtol function returns the converted value. If the correct value
would cause overflow, LONG_MAX or LONG_MIN (according to
the sign of the value) is returned and errno is set to ERANGE. If the
string starts with an unrecognized character, *endptr is set to nptr, and
a zero value is returned.

¢ Truncation from long to int can take place upon assignment or by an
explicit cast (arithmetic exceptions not withstanding). The function
call atol (str) is equivalent to strtol (str, (char**)0, 10). Similarly, the
function call atoi (str) is equivalent to (int) strtol (str, (char*#)0, 10).

6.10 strtoul

The strtoul function converts the initial portion of the string pointed to by
nptr to an unsigned long integer.
The syntax of the function strtoul is as follows:

#include stdlib

unsigned long int strtoul(const char *nptr, char **endptr, int base);
Arguments

The arguments to the strtoul function are as follows:

String- and List-Handling Functions and Macros 6-9

nptr A pointer to the character string to be converted to a long.

endptr The address of an object into which will be stored a pointer to
a pointer to the first unrecognized character encountered in the
conversion process (that is, the character that follows the last character
in the string being converted). If endptr is a NULL pointer, the
address of the first unrecognized character is not retained.

base The value, 2 through 36, to be used as the base for the conversion.
Leading zeros after the optional sign are ignored, and Ox or 0X is
ignored if the base is 16.

If the base is 0, the sequence of characters is interpreted by the
same rules used to interpret an integer constant: after the optional
sign, a leading zero indicates octal conversion, a leading 0Ox or 0X
indicates hexadecimal conversion, and any other combination of
leading characters indicates decimal conversion.

Additional Information

The strtoul function returns the converted value, if any. If no conversion
is performed, zero is the returned value. If overflow occurs, errno is set to
erange and the return value is ULONG_MAX as defined in the standard

- include module stdlib.

6.11 Accessing Binary Data

The functions discussed in the following sections allow you to copy buffers
containing binary data.

6.11.1 memchr

The memchr function locates the first occurrence of the specified byte
within the initial size bytes of a given object. It returns a pointer to the
first occurrence of the character. If the character does not occur in the
identified character string, the memchr function returns a NUL pointer.

The syntax of the memchr function is as follows:

#include string

int memchr (const void *s1, int c, size_t size);

6-10 String- and List-Handling Functions and Macros

Arguments
Arguments to the memchr function are as follows:

s A pointer to the object to be searched.
c The byte value to be located.
size The length of the object to be searched.

Additional Information

Unlike strchr, memchr does not stop when a NUL character is
encountered.

6.11.2 memcmp

The memcemp function compares two objects byte by byte. The compare
operation starts with the first byte in each object. It returns an integer less
than, equal to, or greater than 0, depending on whether the lexical value
of the first object is less than, equal to, or greater than that of the second
object.

The syntax of the memcemp function is as follows:
#include string
int memcmp (const void *s1, const void *s2, size_t size);
Arguments
Arguments to the mememp function are as follows:

s1 A pointer to the first object.
s2 A pointer to the second object.

size The length of the objects to be compared.

Additional Information

The memcmp function uses native character comparison. The sign of
the value returned is determined by the sign of the difference between
the values of the first pair of unlike bytes in the objects being compared.
Unlike the stremp function, the mememp function does not stop when a
NUL character is encountered.

String- and List-Handling Functions and Macros 6-11

6.11.3 memcpy, memmove

The memcpy and memmove functions copy a specified number of bytes
from one object to another.

The syntax of the functions is as follows:

#include string
void *memcpy (void *sI, const void *s2, size_t size);

void *memmove (void *sl1, const void *s2, size_t size);
Arguments

Arguments to the functions are as follows:

s1 A pointer to the first object.
s2 A pointer to the second object.

size The length of the object to be copied.

Additional Information

The memcpy function copies size bytes from object 2 to object 1; it does
not check for the overflow of the receiving memory area (object 1). It
returns the value of s1, which is a pointer. Unlike the strcpy function, the
memcpy function does not stop when a NUL character is encountered.

The memmove function is functionally equivalent to the memcpy function
in VAX C.

6.11.4 memset

6-12

The memset function sets a specified number of bytes in a given object to
a given value.

The syntax of the memset function is as follows:

#include string

void *memset (void *s, char walue, size_t size);

String- and List-Handling Functions and Macros

Arguments

Arguments to the memset function are as follows:

s Array pointer.
value The value to be placed in s.
size The number of bytes to be placed in s.

Additional Information

The memset function returns s. It does not check for the overflow of the
receiving memory area pointed to by s.

6.12 Accessing Variable Length Argument Lists

The set of functions and macros defined and declared in the varargs and
the stdarg definition module provides a portable method of accessing
variable length argument lists. For example, VAX C functions such

as printf and execl use variable length argument lists. User-defined
functions with variable length argument lists that do not use varargs are
not portable due to the different argument passing conventions of various
machines.

The argument va_ualist, the definition va_dcl, and the type va_list, are
used to declare the argument list and the variable that is used to traverse
the list. The identifier va_alist is a parameter in the function definition;
va—dcl declares the parameter va_alist, a declaration which is not termi-
nated with a semicolon (;); and the type va_list is used in the declaration
of the variable used to traverse the list. You must declare at least one
variable of type va_list when using varargs. The syntax of these names
and declarations is as follows:

function_name (va_alist)

va_dcl

{

va_list ap;

In order to use the varargs functions and macros, you must include the
varargs definition module with the following preprocessor directive:

#include varargs

The following sections describe the varargs functions and macros.

String- and List-Handling Functions and Macros 6-13

6.12.1 va_arg

The va_arg macro is used to return the next item in the argument list.
The syntax of the macro is as follows:

#include stdarg or #include varargs

type va_arg (va_list ap, type);

Arguments
The arguments to the va_arg macro are as follows:

ap Must always be declared and used as shown in the syntax description.

type A data type that is used to determine the size of the next item in
the list. An argument list can contain items of varying sizes, but the
calling routine must determine what type of argument is expected
since it cannot be determined at run time.

NOTE

In VMS, all items in an argument list are aligned on the long-
word boundary. If you attempt to access an item in an argu-
ment list by using the sizeof operator, and that item is smaller
than a longword (types short and char, for instance), you will
be positioned in the middle of the longword increment and
the return value will be incorrect. VAX C correctly aligns the
argument pointer on the next longword before reading the next
argument. This macro is responsible for proper incrementation
involving elements of types short and char.

Also, when accessing argument lists, especially those passed

to a subroutine (written in VAX C) by a program written in
another programming language, consider the implications of the
VAX Calling Standard. For more information concerning the
VAX Calling Standard refer to the Guide to VAX C.

Additional Information

The va_.arg macro will always interpret the object at the address spec-
ified by the list-incrementor according to the type type. If there is no
corresponding actual argument, the behavior is undefined.

6-14 String- and List-Handling Functions and Macros

6.12.2 va_count

The va_count macro returns the number of longwords-in the argument
list.

The syntax of the macro is as follows:
#include varargs
void va_count(int count);
Arguments

The argument count is mandatory. The va_count macro places the
number of longwords in the argument list into count.

Additional Information

The value returned in count is the number of longwords in the function
argument block not counting the count field itself.

If the argument list contains items whose storage requirements are a
longword of memory or less, the number in the argument count is also
the number of arguments. However, if the argument list contains items
of type double or data structures, count must be interpreted to obtain the
number of arguments in the list.

This macro is VAX C specific and is not portable.

6.12.3 va_end

The macro va_end finishes the varargs session.
The syntax of the macro va_end is as follows:
#include stdarg or #include varargs
void va_end (va_list ap);
Arguments

The argument ap is the object that was used to traverse the argument list
length. You must always declare and use the argument ap as shown in
the syntax description.

String- and List-Handling Functions and Macros 6-15

Additional Information

You can execute multiple traversals of the argument list, each delimited by
va_start . .. va_end. This macro will set ap equal to NULL.

6.12.4 va_start, va_start_1

The va_start and va_start_1 functions are used to initialize a variable to
the beginning of the argument list.

The syntax descriptions of the functions using varargs are as follows:

#include varargs
void va_start (va_list ap);

void va_start_1(va_list ap, int offset);

Arguments
The arguments to the va_start and va_start_1 functions are as follows:

ap An object pointer. You must always declare and use the argument
ap as shown in the syntax description.

offset Represents the number of bytes by which ap is to be incremented so
that it points to a subsequent argument within the list (that is, not to
the start of the argument list). Using a nonzero offset can initialize
ap to the address of the first of the optional arguments that follow a
number of fixed arguments.

Additional Information

- The va_start function is called to initialize the variable ap to the beginning
of the argument list.

The va_start_1 function is called to initialize ap to the address of an
argument that is preceded by a known number of defined arguments.
For example, a VAX C RTL function which contains a variable-length
argument list offset from the beginning of the entire argument list is
printf. The variable-length argument list is offset by the address of the
formatting string.

Arguments of types char and short use a full longword of memory
when they are present in argument lists; arguments of type float use two
longwords because they are converted to type double.

6-16 String- and List-Handling Functions and Macros

NOTE

When accessing argument lists, especially those passed to a
subroutine (written in VAX C) by a program written in another
programming language, consider the implications of the VAX
Calling Standard. For more information concerning the VAX
Calling Standard refer to the Guide to VAX C.

The function va_start_1 is VAX C specific and is not portable.

The syntax descriptions of the va_start function using stdargs, as defined
in the draft proposed ANSI standard, are as follows:
#include stdargs

void va_start(va_list ap, parml)

Arguments

ap An object pointer. You must always declare and use the argument
ap as shown in the syntax description.

parmN The name of the last of the known fixed arguments.

Additional Information

The pointer ap is initialized to point to the first of the optional arguments
that follow parmN in the argument list. This version of va_start should
always be used in conjunction with functions that are declared and defined
with function prototypes.

6.12.5 vprintf, vfprintf, vsprintf

The vprintf, vfprintf, and vsprintf functions print formatted output based
on an argument list.

These functions are the same as the printf, fprintf, and the sprintf
functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list that has been
initialized by the macro va_start (and possibly subsequent va_arg calls).

String- and List-Handling Functions and Macros 6-17

The syntax of the vprintf, vfprintf and vsprintf functions is as follows:

#include stdio
#include stdarg

int vprintf (const char *format, va_list arg);
int vfprintf (FILE *file_ptr, const char *format, va_list arg);
int vsprintf (char *s, const char *format, va_list arg):

Arguments

The arguments to the vfprintf and vsprintf functions are as follows:

file_ptr A pointer to a file.
format A format specification.
arg A list of expressions whose resultant types correspond to the

conversion specifications given in the format specifications.
str A pointer to a string.
Additional Information

The vprintf, viprintf, and vsprintf functions return the number of
characters transmitted or a negative value if an output error occurs.

6.13 Program Examples

Example 6-1 illustrates the use of strcat and strncat.

6-18 String- and List-Handling Functions and Macros

Example 6-1: Concatenation of Two Strings

/* This example uses strcat and strncat to concatenate two *
* strings. */

#include stdio

main()

{

"Concatenates ";

"two strings ";

"up to a maximum number of \

static char stringi[]

static char string2[]

static char string3[]
characters.";

static char string4[] = "imum number of characters.";

printf("strcat:\t%s\n", strcat(stringl, string2));

printf("strncat (-1):\t%s\n", strncat(stringl, string3, -1));
printf("strncat (11):\t%s\n", strncat(stringl, string3, 11));
printf("strncat (40):\t%s\n", strncat(stringi, string4, 40));

Sample output from this program is as follows:
$ RUN EXAMPLE1

strcat: Concatenates two strings

strncat (-1): Concatenates two strings

strncat (11): Concatenates two strings up to a max

strncat (40): Concatenates two strings up to a maximum number of characters.

$

String- and List-Handling Functions and Macros 6-19

Example 6-2 illustrates the use of strespn.

Example 6-2: Four Arguments to the strscpn Function

/* The next example shows how strcspn interprets four *
* different kinds of arguments. */

#include stdio

main()
{
FILE *outfile;
outfile = fopen("strcspn.out", "w");

fprintf (outfile, "strcspn with null string: %d\n",
strcspn("abcdef", ""));

fprintf (outfile, "strcspn with null string: %d\n",
strespn("", "abedef"));

fprintf (outfile, "strcspn(\"xabc\", \"abc\"): %d\n",
strcspn(“xabe", "abc"));

fprintf (outfile, "strcspn(\"abc\", \"def\"): %d\n",
strcspn("abc", "def"));

Sample output, to the file strcspn.out, is as follows:
$ RUN EXAMPLE2

strcspn with null charset: 6
strcspn with null string: O
strcspn(xabc,abc): 1
strcspn(abc,def): 3

6-20 String- and List-Handling Functions and Macros

Example 6-3 illustrates the use of the varargs definition module.

Example 6-3: The varargs Functions and Macros

S

/* This program uses the varargs functions, macros, and *
* definitions to implement the VAX C Run-Time Library *
* function execl. */

#include varargs /* Include proper module */

execl(va_alist) /* Use the identifier */

va_dcl /* Declare the parameter */
/% NOTE: No (;) with va_dcl */

{
va_list incrmtr; /* Declare list incrementor */
char *file; /* Declare a file */
char *args[100]; /* Array to store arguments */
int noargs = 0; /* Define "last argument" */
va_start (incrmtr); /* Begin the session */
file = va_arg(incrmtr, charx); /* First arg placed in file */
/* Place args in array */

while(args[noargs++] = va_arg(incrmtr, charx)) /* User provided argument

va_end(incrmtr) ;
return execv(file, args);

/*
/*

list must terminate with

a zero */
End varargs session x/
Return proper values */

String- and List-Handling Functions and Macros 6-21

Chapter 7
Math Functions

This chapter describes the mathematical functions that are included in
the VAX C Run-Time Library. To help you detect run-time errors, the
errno definition module defines the following two symbolic values that are
returned by many (but not all) of the mathematical functions:

* EDOM indicates that an argument is inappropriate; that is, the argu-
ment is not within the function’s domain.

* ERANGE indicates that a result is out of range; that is, the argument
is too large to be represented by the machine.

When using the math functions, you can check the external variable errno
for either or both of these values and take the appropriate action if an
error has occurred.

The following program example checks the variable errno for the value
EDOM, which would indicate that a negative number was specified as
input to the function sqrt:

#include errno
#include math
#include stdio

main()
{

double input, square_root;

printf("Enter a number: ");
scanf ("%le", &input);

errno = 0;

square_root = sqrt(input);

Math Functions 7-1

if (errno == EDOM)
perror("Input was negative");
else ’
printf("Square root of %e = %e\n",
input, square_root);

}

If you did not check errno for this symbolic value, the sqrt function would
return zero when a negative number was entered. For more information
concerning the errno definition module, refer to Chapter 8, Error-Handling
Functions.

The following sections describe the math functions.

7.1 abs, fabs

The abs function returns the absolute value of an integer. The fabs
function returns the absolute value of a floating-point value.

The syntax descriptions of the functions are as follows:

#include math

int abs (int integer);
double fabs (double z);

1.2 acos
The acos function returns a value in the range zero to pi, which is the arc
cosine of its radian argument.
The syntax of the function is as follows:
#include math
double acos (double z);
Additional Information

When Ix| > 1, the value of acos(x) is zero and the acos function sets
errno to EDOM.

7-2 Math Functions

7.3 asin
The asin function returns a value in the range -pi/2 to pi/2, which is the
arc sine of its radian argument.
The syntax of the function is as follows:
#include math
double asin (double z);
Additional Information

When Ix| > 1, the value of asin(x) is zero and the asin function sets
errno to EDOM

7.4 atan
The atan function returns a value in the range -pi/2 to pi/2, which is the
arc tangent of its radian argument.
The syntax of the function is as follows:
#include math
double atan (double z);
1.5 atan2

The atan2 function returns a value in the range ~pi to pi. The returned
value is the arc tangent of y/x, where y and x are the two arguments.

The syntax of the function is as follows:

#include math

double atan2 (double y, double z);

Math Functions 7-3

1.6 cabs, hypot

The cabs and hypot functions return:
sqrt(x*x + y*y)
The syntax descriptions of the functions are as follows:

#include math

double cabs (cabs_t 2);
double hypot (double z, double ¥);

Additional Information

The type cabs_t is defined in the standard include module math.h as
follows:

typedef struct {double x,y;} cabs_t;

1.7 ceil
The ceil function returns (as a double) the smallest integer that is greater
than or equal to its argument.
The syntax of the function is as follows:
#include math
double ceil (double);
1.8 cos

The cos function returns the cosine of its radian argument.
The syntax of the function is as follows:

#include math

double cos (double z);

7-4 Math Functions

7.9 cosh

The cosh function returns the hyperbolic cosine of its argument.
The syntax of the function is as follows:

#include math

double cosh (double z);

7.10 exp

The exp function returns the base e raised to the power of the argument.
The syntax of the function is as follows:

#include math

double exp (double z);
Additional Information

If an overflow occurs, exp returns the largest possible floating-point value
and sets errno to ERANGE. The constant HUGE in the math definition file
is defined to be the largest possible floating-point value.

7.11 floor

The floor function returns (as a double) the largest integer that is less than
or equal to its argument. '

The syntax of the function is as follows:

#include math

double floor (double z);

Math Functions 7-5

7.12 fmed

The fmod function computes the floating-point remainder of the first
argument to fmod divided by the second. If the quotient cannot be
represented, the behavior is undefined.

The syntax of the fmod function is as follows:
#include math
double fmod (double z, double %) ;
Additional Information

The fmod function returns x if y is zero. Otherwise, it returns the value f,
which has the same sign as x, such that x ==i * y + { for some integer i,
where the magnitude of f is less than the magnitude of y.

71.13 frexp

7-6 Math Functions

The frexp function returns the mantissa of a double value.
The syntax of the function is as follows:
#include math
double frexp (double value, int *eptr);
Arguments
The arguments to the frexp function are as follows:

value An object of type double.

eptr A pointer to an int, to which frexp returns the exponent.

7.14 ldexp

The 1dexp function returns its first argument multiplied by 2 raised to the
power of its second argument; that is, z(2¢).

The syntax of the function is as follows:

#include math

double ldexp (double z, int e);

Arguments
x A base value, of type double, that is to be multiplied by 2°.
e The integral exponent value to which 2 is raised.

Additional Information

If underflow occurs, ldexp returns zero, and if overflow occurs, it returns
the largest possible value of the appropriate sign. In both cases, the
function sets errno to ERANGE. The constant HUGE is defined in the
math definition module to be the largest possible value of the appropriate
sign.

71.15 ldiv, div

The 1div and div functions return the quotient and the remainder after the
division of their arguments.

#include stdlib
ldiv_t 1div(long int numer, long int denom);

div_t div(int numer, int denom);

Arguments
numer A numerator of type long int or int.
denominator A denominator of type long int or int.

Math Functions 7-7

Additional Information

The types div_t and 1div_t are defined in the standard include module
stdlib as follows:

struct DIV_T
{
int quot, rem;
};
typedef struct DIV_T div_t;
struct LDIV_T
{
long quot, rem;

typedef struct LDIV_T ldiv_t;

The functions 1div and div are functionally equivalent in VAX C.

71.16 labs

The labs function returns the absolute value of an integer as a long int.
The syntax of the function labs is as follows:

#include stdlib
long int labs(long int j);

7.17 log, log10

The log and log10 functions return the logarithm of their arguments.
The syntax descriptions of the functions are as follows:

#include math

double log (double x);
double logiO (double x);

7-8 Math Functions

Additional Information

The log function returns the natural (base e) logarithm of the argu-
ment, which must be of type double; the returned value is also double,
The 1og10 function returns the double base 10 logarithm of its double
argument.

If the argument is zero or negative, the functions return zero and set errno
to EDOM.

7.18 modf

The modf function returns the positive fractional part of its first argument
and assigns the integral part, expressed as a double, to the object whose
address is specified by the second argument.

The syntax of the function is as follows:

#include math

double modf (double walue, double *iptr);
Arguments
The arguments to the modf function are as follows:

value Must be an object of type double.
iptr A pointer to an object of type double.

7.19 pow
The pow function returns the first argument raised to the power of the
second argument.
The syntax of the function is as follows:

#include math

double pow (double base, double exp);

Math Functions 7-9

Arguments

base A value of type double that is to be raised to a power.

exp The exponent to which the power base is to be raised.

Additional Information

Both arguments must be double and the returned value is double. If the
result overflows, pow returns the largest possible floating-point value and
sets errno to ERANGE. It returns zero and sets errno to EDOM under the
following conditions:

¢ If both arguments are zero.

e If exp is negative and nonintegral.

» If base is negative and exp is nonintegral.

The constant HUGE is defined in the math definition module to be the
largest possible value.

7.20 rand,

srand

The rand and srand functions return pseudorandom numbers in the range
zero to 2311,

The syntax descriptions of the functions are as follows:
#include math

int rand(void);

int srand (int seed);

Additional Information

The rand function uses a multiplicative congruential random number gen-
erator with a repeat factor (period) of 232, The random number generator
is reinitialized by calling srand with the argument 1, or it can be set to a
specific point by calling srand with any other number.

7-10 Math Functions

7.21 sin

The sin function returns the sine of its radian argument.
The syntax of the function is as follows:

#include math

double sin (double z);
Additional Information

Both the argument and the sine value must be an object of type double.

1.22 sinh

The sinh function returns the hyperbolic sine of its argument.
The syntax of the function is as follows:

#include math

double sinh (double z);
Additional Information

Both the argument and the returned hyperbolic sine value must be an
object of type double.

The value of sinh(x), if it causes an overflow, is'a double value with the
largest possible magnitude and the appropriate sign.

1.23 sqrt

The sqrt function returns the square root of its argument.
The syntax of the function is as follows:

#include math

double sqrt (double z);
Additional Information

The argument and the returned value are both objects of type double.

Math Functions 7-11

Additional Information

If x is negative, the sqrt function returns zero and sets errno to EDOM.

7.24 tan

The tan function returns a double value that is the tangent of its radian
argument.

The syntax of the function is as follows:
#include math
double tan (double I);

Additional Information

The value of tan(x) at its “singular points” (... -3pi/2,-pi/2,pi/2 ...) is
the largest possible double value HUGE, and the tan function sets errno
to ERANGE.

7.25 tanh

The tanh function returns a double value that is the hyperbolic tangent of
its double argument.

The syntax of the function is as follows:

#include math

double tanh (double z);

7.26 Program Examples

Example 7-1 illustrates the functionality of the tan, sin, and cos functions.

7-12 Math Functions

Example 7-1: Calculating and Verifying a Tangent Value

/* This example uses two functions --- mytan and main ---
* to calculate the tangent value of a number, and to check
% the calculation using the sin and cos functions.

#include math /* Include modules
#include stdio

/* This function is used to calculate the tangent using the
* gin and cos functions.

double mytan(x)

double x;
{
double vy, yi, y2;
yt = sin (x);
y2 = cos (x);
if (y2 == 0)
y=0;
else
y =yl / y2;
return y;
}
main()
{
double x;

/* Print values: compare
for (x=0.0; x<1.5; x += 0.1)

*
*

*/

*/

*/

*/

printf("tan of %4.1f = %6.2£\t%6.2f\n", x, mytan(x), tan(x));

Math Functions 7-13

Sample output from the previous example is as follows:
RUN EXAMPLE [RETURN]

tan of 0.0 = 0.00 0.00
tan of 0.1 = 0.10 0.10
tan of 0.2 = 0.20 0.20
tan of 0.3 = 0.31 0.31
tan of 0.4 = 0.42 0.42
tan of 0.5 = 0.586 0.55
tan of 0.6 = 0.68 0.68
tan of . 0.7 = 0.84 0.84
tan of 0.8 = 1.03 1.03
tan of 0.9 = 1.28 1.26
tan of 1.0 = 1.56 1.66
tan of 1.1 = 1.96 1.96
tan of 1.2 = 2.57 2.57
tan of 1.3 = 3.680 3.60
tan of 1.4 = 5.80 5.80
$

7-14 Math Functions

Chapter 8
Error-Handling Functions

When an error occurs during a call to any of the VAX C Run-Time Library
functions, the function returns an unsuccessful status and sets the external
variable, errno, to a value which indicates the reason for the failure. In
this way, variable errno is useful in determining the cause of a run-time
error.

The errno definition module declares the errno variable and symbolically
defines the possible errno values. By including the errno definition module
in your program, you can check for specific values after a function call.
Table 8-1 lists the symbolic values that can be assigned to errno.

Table 8-1: Errno Symbolic Values

Symbolic Constant Description

EPERM Not owner

ENOENT No such file or directory
ESRCH No such process

EINTR Interrupted system call
EIO 1/0 error

ENXIO ‘ No such device or address
E2BIG Argument list too long
ENOEXEC Exec format error
EBADF Bad file number
ECHILD No child processes

Error-Handling Functions 8-1

Table 8-1 (Cont.): Errno Symbolic Values

Symbolic Constant Description

EAGAIN No more processes
ENOMEM Not enough memory
EACCESS Permission denied
EFAULT Bad address

ENOTBLK Block device required
EBUSY Mount devices busy
EEXIST File exists

EXDEV Cross-device link
ENODEV No such device
ENOTDIR Not a directory

EISDIR Is a directory

EINVAL Invalid argument
ENFILE File table overflow
EMFIL Too many open files
ENOTTY Not a typewriter
ETXTBSY Text file busy

EFBIG File too big

ENOSPC , No space left on device
ESPIPE . Illegal seek

EROFS Read-only file system
EMLINK Too many links

EPIPE Broken pipe

EDOM Math argument
ERANGE Result too large
EWOULDBLOCK File I/O buffers are empty
EVMSERR VMS-specific error code nontranslatable error

The errno values can also be translated to a message, similar to that found
in UNIX systems, by the perror function. If perror cannot translate the
errno value, it prints the following message, followed by the VMS error
message associated with the value.

8-2 Error-Handling Functions

%s:non-translatable vms error code: XXXXXX Vms message:

In the template, %s is the string you supply to perror; xxxxxx is the VMS
message number.

The VMS error code is available in the vaxc$errno variable and can be
examined in user programs. The vaxc$errno variable is declared in the
errno definition module.

The following sections describe the Error-Handling functions.

8.1 abort
The abort function executes an illegal instruction that terminates the
process.
The syntax of the function is as follows:
#include stdlib
void abort (void);
8.2 assert

The assert macro puts diagnostics into programs.
The syntax of the assert macro is as follows:

#include assert

void assert (int expression);

Arguments

The argument expression is an expression that has an int value.

Additional Information

When the assert macro is executed, if expression is false (that is, evaluates
to zero), the assert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file,
and the source line number—the latter are respectively the values of the
preprocessing macros —_FILE___ and __LINE__) on the standard error
file in an implementation-defined format. Then, it calls the abort function.

Error-Handling Functions 8-3

The message written by the assert macro has the following form:

Assertion failed: expression, file aaa, line nnn

If expression is true (that is, evaluates to nonzero) or if the signal SIGABRT
is being ignored, the assert macro returns no value.

Compiling with the CC command qualifier /DEFINE=NDEBUG or with
the preprocessor directive #define NDEBUG ahead of the #include assert
statement causes the assert macro to have no effect.

The assert function is implemented as a macro, not as a real function. If
#undef is used to remove the macro definition and obtain access to a real
function, the behavior is undefined.

8.3 atexit

The atexit function registers a function that will be called without argu-
ments at program termination.

The syntax of the atexit function is as follows:
#include stdlib
void atexit (void (*fumc) (void));
Arguments

The argument func is a pointer to the function to be registered.

Additional Information

The atexit function returns a value that is not equal to zero if the registra-
tion succeeds. Up to 32 functions can be registered. However, you should
not register a function more than once.

8-4 Error-Handling Functions

8.4 exit, _exit

The exit and _exit functions terminate the process from which they are
called.

The syntax descriptions of the functions are as follows:

#include stdlib

void exit (int status);
void _exit (int status);

Arguments

The argument status corresponds with an errno value. The errno values
are defined in the errno definition module.

Additional Information

The exit and _exit functions return the specified status to the parent
process, if any. If the program is invoked by the DIGITAL Command
Language, the status is interpreted by DCL and a message is displayed.
The two functions are identical; _exit is retained for reasons of compati-
bility with previous versions of VAX C.

8.5 perror

The perror function writes a short error message to stderr describing the
last error encountered during a call to the VAX C Run-Time Library from
a C program.

The syntax of the function is as follows:

#include stdio

int perror (const char *str);

Arguments

The argument str typically contains the name of the program that incurred
the error.

The perror function writes out its argument (a user-supplied prefix to
the error message), followed by a colon, followed by the message itself,
followed by a newline.

Error-Handling Functions 8-5

8.6 strerror
The strerror function maps the error number in errnum to an error mes-
sage string.
The syntax of the function strerror is as follows:

#include string

char *strerror(int errnum);

Additional Information

The return value is a pointer to a buffer that contains the appropriate
error message. This buffer should not be modified by user programs.
Moreover, calls to the strerror function may overwrite this buffer with a
new message.

If the argument errnum does not correspond to a known RTL error code,
the strerror function returns the null pointer value NULL.

8.7 Signal-Handling Functions

Signals are raised by a variety of events, including any of the following:

* A user typing CTRL/C at a terminal (thus raising the signal SIGINT)
¢ Certain programming errors
s A gsignal call

Signals are given the mnemonics (as in SIGINT) found in the signal
definition module. Normally, all signals cause the termination of the
receiving process. However, the signal function allows you to ignore most
of them or to interrupt to a specific location for handling.

The syntax for a signal handler is as follows:

handler (sigint, code, scp);

int sigint, code;
struct sigcontext *scp;

8-6 Error-Handling Functions

The argument sigint is the designated signal number, and the argument,
code, designates the type of signal if more than one exists. The argument
scp is a pointer to the structure, sigcontext (defined in the signal definition
module), which contains information used to restore the context of the
process as it was before the signal occurred. Once a signal handler is
installed, it remains in effect until the program calls sigvec again to
handle it.

The handler specified by the argument sv is established as the handler to
be called when the signal specified by sigint is raised.

Table 8-2 shows the signals defined in the signal definition module, ways
to generate the signals on VMS, and the attributes of the signal, such as
whether or not the signal can be ignored. Unless noted otherwise, each
signal can be reset and it can be caught or ignored.

Table 8-2: VAX C Signals

Name Description Generated by
SIGHUP Hang up Data set hang up
SIGINT Interrupt VMS CTRL/C interrupt
SIGQUIT Quit CTRL/C if the action for SIGINT is
SIG_DEFL (default)
SIGILL! Illegal Illegal instruction, reserved operand,
instruction or reserved address mode
SIGTRAP! Trace trap TBIT trace trap or breakpoint fault
instruction
SIGIOT IOT instruction Not implemented
SIGEMT EMT instruction Compeatibility mode trap or op code
reserved to customer
SIGFPE Floating-point Floating-point overflow
exception
SIGKILL? Kill External signal only
SIGBUS Bus error Access violation or change mode

user

Not reset when caught.

2Cannot be caught or ignored.

Error-Handling Functions 8-7

Table 8-2 (Cont.): VAX C Signals

Name Description Generated by

SIGSEGV Segment Length violation or change mode
violation supervisor

SIGSYS System Call Bad argument to system call
error

SIGPIPE Broken pipe Not implemented

SIGALRM Alarm clock Timer AST

SIGTERM Software External signal only
terminate

The following sections describe the signal-handling functions that you can
use to recover from programming errors without aborting your program.

8.7.1 alarm

The alarm function sends the signal SIGALRM (defined in the signal
definition module) to the invoking process after the number of seconds
indicated by its argument has elapsed.

The syntax of the function is as follows:
#include signal
int alarm (unsigned int seconds);
Arguments

The argument seconds has a maximum limit of 4,294,967,295 seconds.
Calling alarm with a zero argument cancels any pending alarms.

Additional Information

The alarm function returns the number of seconds remaining from a
previous alarm request.

Unless it is caught or ignored, the signal generated by alarm terminates
the process. Successive alarm calls reinitialize the alarm clock. Alarms are
not stacked.

Because the clock has a 1-second resolution, the signal may occur up to 1
second early. If the SIGALRM signal is caught, resumption of execution
may be delayed by an arbitrary amount because of scheduling delays.

8-8 Error-Handling Functions

8.17.2 gsignal, raise

The gsignal and raise functions generate a specified software signal.
Generating a signal causes the action established by the ssignal function
to be taken.

The syntax of the functions is as follows:

#include signal
int gsignal (int sig, ...);

#include signal
int raise (int sig, ...);

Arguments
The arguments to the gsignal and raise functions are as follows:

sig Identifies the signal to be generated.

Represents an optional signal type. For example, signal SIGFPE—the
arithmetic trap signal—has 10 different codes, each representing a
different type of arithmetic trap. Table 8-3 presents the various codes.

Table 8-3: Signal Types
Hardware Condition Signal Code

Arithmetic Traps:

Integer overflow SIGFPE FPE_INTOVE_TRAP
Integer division by zero SIGFPE FPE_INTDIV_TRAP
Floating overflow trap SIGFPE FPE_FLTOVE_TRAP
Floating/decimal division by zero = SIGFPE FPE_FLTDIV_TRAP
Floating underflow trap SIGFPE FPE_FLTUND_TRAP
Decimal overflow trap SIGFPE FPE_DECOVE_TRAP
Subscript-range SIGFPE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE_FLTOVE_FAULT
Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT

Error-Handling Functions 8-9

Table 8-3 (Cont.): Signal Types

Hardware Condition Signal Code

Floating underflow fault SIGFPE FPE_FLTUND_FAULT
Reserved instruction SIGILL ILL _PRIVIN_FAULT
Reserved operand SIGILL ILL_RESOP_FAULT
Reserved addressing SIGILL ILL _RESAD_FAULT
Compatibility mode SIGILL Hardware supplied
Length access control SIGSEGV —

Chme SIGSEGV —

Chms SIGSEGV —

Chmu SIGSEGV —

Trace pending SIGTRAP —

Bpt instruction SIGTRAP —

Protection violation SIGBUS —
Customer-reserved code SIGEMT —

The signal codes can be represented by mnemonics or numbers. The
arithmetic trap codes are represented by the numbers 1-10, whereas the
SIGILL codes are represented by the numbers 0-2. The code values are
defined in the signal definition module.

Additional Information
The result of a gsignal or raise call is one of the following:

¢ If gsignal or raise specifies a sig argument that is outside the range
defined in the signal module, then the specified function returns zero,
and the variable errno is set to EINVAL. See Table 8-1 for more
information.

* If ssignal establishes SIG_DFL (default action) for the signal, then the
functions do not return. The image is exited with the VMS error code
that corresponds to the signal.

* If ssignal establishes SIG_IGN (ignore signal) as the action for the
signal, then gsignal or raise returns its argument, sig.

* Otherwise, ssignal must have established an action function for the
signal. That function is called, and that function’s return value is
returned by gsignal or raise.

8-10 Error-Handling. Functions

The gsignal and raise functions are VAX C specific and are not portable.

8.7.3 Kkill

The kill function sends a signal to the process specified by a process ID.
The syntax of the function is as follows:

#include signal

int kill (int pid, int sig);
Additional Information

Unless you have system privileges, the sending and receiving processes
must have the same UIC. The kill function returns zero if the kill was
successfully queued. It returns -1 to indicate errors, including:

* The receiving process has a different UIC and the user is not a
SYSTEM user.

* The receiving process does not exist.

If pid is the process id of the invoking process, then the kill function acts
as though the raise function had been called.

If kill is successful, the receiving process is always terminated. The
termination status of the receiving process is the VMS error code that
corresponds to the value of the signal that was sent.

8.7.4 longjmp, setjmp

The setjmp and longjmp functions provide a way to transfer control
from a nested series of function invocations back to a predefined point
without returning normally; that is, not by a series of return statements.
The setjmp function saves the context of the calling function in an en-
vironment buffer. The longjmp function restores the context of the
environment buffer.

The syntax descriptions of the functions are as follows:

#include setjmp

int setjmp (jmp_buf env):
void longjmp (jmp_buf env, int wal);

Error-Handling Functions 8-11

Arguments
The arguments to the setjmp and longjmp functions are as follows:

env Represents the environment buffer and must be an array of integers
long enough to hold the register context of the calling function. The
type jmp_buf is defined by a typedef found in the setjmp definition
module. The contents of the general-purpose registers, including the
program counter (PC), are stored in the buffer.

value Passed from longjmp to setjmp, and then becomes the second return
value of the setjmp call. If value is passed as zero, it will be converted
to 1.

Additional Information

When setjmp is first called, it returns the value zero. If longjmp is then
called, naming the same environment as the call to setjmp, control is
returned to the setjmp call as if it had returned normally a second time.
The return value of setjmp in this second return is the value supplied
by the user in the longjmp call. To preserve the true value of setjmp,
the function calling setjmp must not be called again until the associated
longjmp is called.

The setjmp and longjmp functions rely on the VMS condition-handling
facility to effect a nonlocal goto with a signal handler. The longjmp
function is implemented by generating a VAX C RTL specified signal and
allowing VMS to unwind back to the desired destination. Thus, the VAX
C RTL must be in control of signal handling for any VAX C image. In
order for VAX C to be in control of signal handling, you must establish
all exception handlers through a call to the VAXC$ESTABLISH function.
See Section 8.7.14 for more information.

CAUTION

The longjmp function may be invoked from a signal handler
that has been established for any signal supported by the VAX
C RTL, subject to the following nesting restrictions:

1. The longjmp function will not work if invoked from nested
signal handlers. The result of the longjmp function, when
invoked from a signal handler that has been entered as a
result of an exception generated in another signal handler,
is undefined.

2. The setjmp function should not be invoked from a signal
handler unless the associated longjmp is to be issued before
the handling of that signal is completed.

8-12 Error-Handling Functions

8.7.5 pause

The pause function causes its calling process to stop (hibernate) until the
process receives a signal.

The syntax of the function is as follows:
#include signal
int pause (void);

Additional Information

Control is not returned to the process that called pause, except after a
SYS$WAKE system service call. The process may be reawakened by kill
or alarm.

8.7.6 sigblock

The sigblock function causes the signals in mask to be added to the
current set of signals being blocked from delivery.

The syntax of the function is as follows:
#include signal
int sigblock (int mask);

Arguments

Signal i is blocked if the i-1 bit in mask is a 1. For exafnple, to add the
protection-violation signal to the set of blocked signals, use the following:

sigblock(1l << (SIGBUS - 1));

You can express signals in mnemonics (such as SIGBUS for a protection
violation) or numbers as defined in the signal definition module, and you
can express combinations of signals using the bitwise OR operator (|).

Additional Information

The sigblock function returns the previous set of masked signals.

Error-Handling Functions 8-13

8.7.7 signal

The signal function allows you either to catch or to ignore a signal.
The syntax of,the function is as follows:

#include signal

void (*signal (int sig, void (xfunc) (int, ...))) (int, ...);
Arguments

The arguments to the signal function are as follows:

sig The number or mnemonic associated with a signal. Customarily, the
sig argument is one of the mnemonics defined in the signal definition
module.

func Either the action to be taken when the signal is raised, or the address

of a function needed to handle the signal.

If func is the constant SIG_DFL, the action for the given signal is
reset to the default action which is the termination of the receiving
process. If the argument is SIG_IGN, the signal is ignored. Not all
signals can be ignored.

If func is neither SIG_DFL nor SIG_IGN, it specifies the address of
a Signal-Handling function. When the signal is raised, the addressed
function is called with sig as its argument. When the addressed
function returns, the interrupted process continues at the point of
interruption. (This is called “catching a signal.”) Except as indicated in
Table 8-2, signals are reset to SIG_DFL after they have been caught.

Additional Information
You must call signal each time you want to catch a signal.

The signal function returns the address of the function previously (or
initially) established to handle the signal. If the sig argument is out of
range, signal returns —1 and sets the variable errno to EINVAL. See
Table 8-1 for more information.

8-14 Error-Handling Functions

8.7.8 sigpause

The sigpause function assigns mask to the current set of masked signals
and then waits for a signal.

The syntax of the function is as follows:
#include signal
void sigpause (int mask);
Arguments

See sigblock in Section 8.7.6 for information concerning the argument
mask.

Additional Information

When control returns to sigpause, the function restores the previous set of
masked signals and then returns EINTR, for “interrupt.” The value EINTR
is defined in the errno definition module.

Usually, a signal is blocked using sigblock which examines variables
modified on the occurrence of the signal, determining if there is further
work to be done. The process pauses using sigpause with the mask
returned by sigblock as its argument.

8.7.9 sigsetmask

The sigsetmask function establishes those signals which are blocked from
delivery.

The syntax of the function is as follows:

#include signal

int sigsetmask (int mask);

Arguments

See sigblock in Section 8.7.6 for information concerning the argument
mask.

You can express signals in mnemonics (such as SIGBUS for a protection
violation) or numbers as defined in the signal definition module, and you
can express combinations of signals using the bitwise OR operator ().
The sigsetmask function returns the previous set of masked signals.

Error-Handling Functions 8-15

8.7.10 sigstack

The sigstack function defines an alternate stack on which to process
signals. This allows the processing of signals in a separate environment
from that of the current process.

The syntax of the function is as follows:

#include signal

int sigstack (struct sigstack *ss, struct sigstack *o0ss);

The structure sigstack is defined in the standard include module signal as
follows: :

struct sigstack
{
char *88_8P;
int ss_onstack;

};

Arguments
The arguments to the sigstack function are as follows:

ss If the argument ss is nonzero, it specifies the address of a structure that
holds a pointer to a designated section of memory as a signal stack on
which to deliver signals.

0ss If the argument oss is nonzero, it specifies the address of a structure
which will be stored to the current state of the signal stack.

Additional Information

If the sigvec function specifies that the signal handler execute on the
signal stack, the system checks to see if the process is executing currently
on that stack. If the process is not executing on the signal stack, the
system arranges a switch to the signal stack for the duration of the signal
handler’s execution. If the argument oss is nonzero, the current state of
the signal stack is returned.

Signal stacks must be allocated an adequate amount of storage; they do
not “expand” like the run-time stack. If the stack overflows, an error
occurs.

The structure sigstack is defined in the signal definition module.

Upon successful completion, the function returns 0. Otherwise, the
function returns -1.

8-16 Error-Handling Functions

8.7.11 sigvec

The sigvec function assigns a handler for a specific signal.
The syntax of the function is as follows:

#include signal

int sigvec (int sigint, struct sigvec *sv, struct sigvec *osv);

The structure sigvec is defined in the standard include module signal as
follows:

struct sigvec

{
int (*handler)();
int mask;
int onstack;

};

Arguments
The arguments to the sigvec function are as follows:

sV If sv is nonzero, it specifies the address of a structure containing a
pointer to a handler routine and mask to be used when delivering
the specified signal and a flag indicating whether the signal is to be
delivered to an alternative stack. If the argument sv.onstack has a
value of 1, the system delivers the signal to the process on a signal
stack specified with sigstack.

0sv " If osv is nonzero, the previous handling information for the signal is
returned to the user.

Additional Information

The sigvec function returns 0 if the call succeeded and returns -1 if
an error occurred. Upon error, the variable errno contains the value
explaining the error. See Table 8-1 for more information.

Error-Handling Functions 8-17

8.7.12 sleep

The sleep function suspends the execution of the current process for at
least the number of seconds indicated by its argument.

The syntax of the function is as follows:
#include signal
int sleep (unsigned seconds);
Additional Information

On success, sleep returns the number of seconds that the process slept.
On error, sleep returns -1.

8.7.13 ssignal

The ssignal function allows you to specify the action to be taken when a
particular signal is raised.

The syntax of the function is as follows:

#include signal

void (*ssignal (int sig, void (*func) (int, ...))) (imt, ...);
Arguments

The arguments to the ssignal function are as follows:

sig A number or mnemonic associated with a signal. The symbolic con-
stants for signal values are defined in the signal definition module (see
Table 8-2).

func Represents the action to be taken when the signal is raised, or the

address of a function that is executed when the signal is raised.

Additional Information

The ssignal function returns the address of the function previously
established as the action for the signal. Note that the address may contain
the value SIG_DFL (0) or SIG_IGN (1).

8-18 Error-Handling Functions

The ssignal function calls signal with the same arguments; the only
difference between the two is in their return value on detecting an error
(usually an invalid signal argument). The function ssignal returns zero to
indicate errors. For this reason, there is no way to know whether a return
status of zero indicates failure or whether it indicates that a previous
action was SIG_DFL (0). The signal function returns -1 on error.

The ssignal function is VAX C specific and is not portable.

See also sigvec in this section.

8.7.14 VAXCSESTABLISH

If you want to establish a VMS exception handler, it must be done through
a call to the VAX C RTL function VAXC$ESTABLISH. This function
establishes a special VAX C RTL exception handler that catches all RTL
related exceptions and passes on all others to your handler.

The syntax of the function is as follows:

#include signal

void VAXC$ESTABLISH (int (xexzception_handler)(void *mecharr, void *sigarr));

Arguments

The argument exception__handler is the name of the function that is to
be established as a VMS condition handler. You pass the address of a
function as an argument to VAXC$ESTABLISH.

Additional Information

The VAXCSESTABLISH function can only be invoked from a VAX C
function, as it relies on the allocation of data space on the run-time
stack by the VAX C compiler. Calling the VMS system library routine
LIBSESTABLISH directly from a VAX C function will result in undefined
results by the setjmp and longjmp functions.

8.8 Program Examples

Example 8-1 illustrates the functionality of signal, alarm, and pause.

Error-Handling Functions 8-19

Example 8-1: Suspending and Resuming Programs

/* This program shows how to alternately suspend and resume *
* a program using the signal, alarm, and pause functions. */

#define SECONDS 5

#include stdio
#include signal

int number_of_alarms = 5; . /% Set alarm counter */

main()
{
int alarm_action();
/* Pass signal and *
* function to SIGNAL */
signal (SIGALRM, alarm_action);

/* Set alarm clock for 5 *

* seconds */
alarm(SECONDS) ;
/* Suspend the process *
* until the signal is *
* received */
pause();
alarm_action()
{
/* Print the value of *
* alarm counter */

printf ("\t<%d\007>", number_of_alarms);

/* Pass signal and the *
* function to SIGNAL */
signal (SIGALRM, alarm_action);

alarm (SECONDS) ; /* Set alarm clock x/
if (--number_of_alarms) /* Decrement alarm counter */
pause();

8-20 Error-Handling Functions

Sample output from the previous example is as follows:
$ RUN EXAMPLE [RETURN]

<6> <4> <3> <2> <1>

%SYSTEM-W-ASTFLT, AST fault, SP=FFFFFFFE, param=00001665, PC=03C00000,
PSL=7FF2C10C, target PC=00000000, PSL=00000000

%TRACE-W-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
C$SIGNAL gsignal 1728 000000C2 00001665
00001307 00001307
C$SETIMP LONGJIMP 8000254D 800OO9ESE
00001699 00001699
TEMP main 146 00000024 0000122A

Error-Handling Functions 8-21

Chapter 9
Memory Allocation Functions

All of the VAX C Run-Time Library functions that require additional
storage from the heap get that storage using the VAX C memory allocation
functions malloc, calloc, realloc, free, and cfree. These functions use
the LIBSGET_VM and LIBSFREE_VM routines to acquire the additional
virtual memory. The routines LIBSGET_VM and LIB$FREE_VM take

a fair amount of time to supply the virtual memory and, thus, the VAX

C Run-Time Library attempts to reduce the number of calls to these
functions, in the following manner.

The VAX C Run-Time Library maintains a pointer to the memory block
that was most recently freed by either free or cfree. The last freed block
is not returned to VMS by LIB$FREE_VM. Instead, the VAX C Run-Time
Library attempts to satisfy the next request with this saved block.

If the saved block is large enough to satisfy the request, it is used. Any
unused portion of this block is retained for future allocation requests,
provided that it is larger than the predefined minimum size. The size
constraint prevents over-fragmentation of memory. If the saved block is
too small to satisfy a request, it is retained and the requested memory is
allocated by LIBEGET_VM.

The freeing of a second block causes the saved block, if any, to be returned
to VMS through LIBSFREE_VM. The new block is then saved to be used,
if possible, for the next request.

Since the VAX C Run-Time Library saves the last freed block of storage,
there is not a one-to-one correspondence between calls to malloc or calloc
and LIBSGET_VM, or between calls to free or cfree and LIBSFREE_VM.
VAX C RTL functions use LIBSGET_VM and LIB$FREE_VM to acquire
and return dynamic memory. However, the address given to the VAX C
RTL routines by LIB$GET_VM is not the same as the address given to
the user by the VAX C RTL routines. Therefore, any memory allocated

Memory Allocation Functions 9-1

by a VAX C RTL routine must be deallocated by a VAX C RTL routine.
Similarly, any memory allocated by LIBSGET_VM must be deallocated by
LIB$FREE_VM.

The brk and sbrk functions assume memory can be allocated contiguously
from the top of the user’s address space. However, the malloc function
and RMS may allocate space from this same address space. Therefore, it is
not recommended that you use the brk and sbrk functions in conjunction
with RMS and VAX C Run-Time Library routines that use malloc.

The following sections describe the memory allocation functions.

9.1 hrk, shrk

The brk and sbrk functions determine the lowest virtual address that is
not used with the program.

The syntax descriptions of the functions are as follows:

#include stdlib
void *brk (unsigned long int addr);

void *sbrk (unsigned long int incr);

Arguments
The arguments to the brk and sbrk functions are as follows:

addr Specifies the lowest address to the brk function, which the function
rounds up to the next 512-byte multiple. This rounded address is called
the break address.

incr Specifies, to the sbrk function, the number of bytes to add to the
current break address.

Additional Information

The brk function returns the break address (the address of an object of
type char). An address that is greater than or equal to the break address
and less than the stack pointer is considered to be outside the program’s
address space. Attempts to reference it will cause access violations.

The sbrk function adds the number of bytes specified by its argument to
the current break address and returns the old break address.

When a program is executed, the break address is set to the highest
location defined by the program and data storage areas. Consequently,
brk and sbrk are needed only by programs that have growing data areas.

9-2 Memory Allocation Functions

The brk and sbrk functions return -1 if the program requests too much

memory.

9.2 calloc, malloc (Memory Allocation)

The calloc and malloc functions allocate an area of memory.
The syntax descriptions of the functions are as follows:

#include stdlib

void *calloc (size_t number, size_t size);
void *malloc (size_t size);

Arguments
The arguments to the calloc and malloc functions are as follows:
number Specifies the number of items to be allocated.

size The size of each item.

Additional Information

The calloc function initializes the items to zero. If unable to allocate the

space, calloc returns zero.

The malloc function allocates a contiguous area of memory whose size in
bytes is supplied as an argument. It returns zero if it is unable to allocate

enough memory.

Both functions return the address of the first byte, which is aligned on an

octaword boundary.

9.3 cfree, free (Mlemory Deallocation)

The free and cfree functions make available for reallocation the area

allocated by a previous calloc, malloc, or realloc call.
The syntax of the functions is as follows:

#include stdlib

int cfree (void *ptr);
int free (void *pt7);

Memory Allocation Functions

9-3

Arguments

The argument ptr is the address returned by a previous call to malloc,
calloc, or realloc.

Additional Information

The contents of the deallocated area are unchanged. The functions return
zero if the area is successfully freed, -1 if an error occurs.

In VAX C, free and cfree are the same function. However, for compati-
bility with other C implementations, you should use free with malloc or
realloc, and cfree with calloc.

9.4 realloc (Memory Reallocation)
The realloc function changes the size of the area pointed to by the first
argument to the number of bytes given by the second argument.
The syntax of the function is as follows:
#include stdlib
void *realloc (void *ptr, size_t size);
Arguments
The arguments to the realloc function are as follows:

ptr May point to an allocated area or, unless other allocations have been
made, to the area most recently freed by free or cfree.

size Specifies the new size of the allocated area.

Additional Information

If ptr is the null pointer constant (NULL), the behavior of the realloc
function is equivalent to that of the malloc function.

The realloc function returns the address of the area, since the area may
have to be moved to a new address in order to reallocate enough space. If
the area was moved, the space previously occupied is freed. If realloc is
unable to reallocate the space (for example, if there is not enough room),
it returns zero.

The contents of the area are unchanged up to the lesser of the old and
new sizes. New space in the reallocated area is initialized with zero.

9-4 Memory Allocation Functions

9.5 Program Example

Example 9-1 illustrates the use of the malloc, calloc, free, and cfree
functions.

Memory Allocation Functions 9-5

Example 9-1: Allocating and Deallocating Memory for
Structures

/* This example takes lines of input from the terminal until =*
it encounters a CTRL/Z. It places the strings into an *
allocated buffer, copies the strings to memory allocated *
for structures, prints the lines back to the screen, and *
then deallocates all memory used for the structures. */

* X K K

#include stdio
#define MAX_LINE_LENGTH 80

struct line_rec /* Declare the structure */
{
struct line_rec *next; /* Pointer to next line */
char *data; /* A line from terminal */
3
main ()
{

char *buffer;
/* Define pointers to *
* structure (input lines) */
struct line_rec *first_line, *next_line, *last_line = NULL;

/* buffer points to memory */
buffer = malloc(MAX._LINE_LENGTH);

if (buffer == 0) /* 1f error ... */
{
perror("malloc");
exit();
}
while (gets(buffer) != NULL) /* While not CTRL/Z ... */
{

/% Allocate for input line */
next_line = calloc(l, sizeof (struct line_rec));

if (next_line == NULL)
{
perror("calloc");
exit();
}

(Continued on next page)

9-6 Memory Allocation Functions

Example 9-1 (Cont.):

Allocating and Deallocating Memory
for Structures

next_line-> data =

if (last_line == NULL)

/* Put line in data area */

buffer;

/* Reset pointers */

first_line = next_line;

else

last_line-> next = next_line;

last_line = next_line;

/* Allocate space for the *
* next input line */

buffer = malloc(MAX_LINE_LENGTH);

if (buffer == 0)

{
perror("malloc");
exit();
}
}
free(buffer); /% Last buffer always unused */
next_line = first_line; /* Pointer to beginning */
do
{
puts(next_line -> data); /* Write line to screen */
free(next_line -> data); /# Deallocate a line */
last_line = next_line;
next_line = next_line-> next;
cfree(last_line);
}

while (next_line != NULL);

Sample input and output from the previous example is as follows:

$ RUN EXAMPLE [RETURN]
line one

line two

EXIT

line one

line two

$

Memory Allocation Functions 9-7

Chapter 10
Subprocess Functions

The VAX C Run-Time Library provides functions that allow the program-
mer to create subprocesses from a VAX C program. The creating process
is called the “parent” and the created subprocess is called the “child.”

The creation of a child process is done within the parent process with
the exec functions (execl, execle, execv, execve, execlp, and execvp)
and the vfork function. Other functions are available to allow the parent
and child to read and write data across processes (pipe) and to allow for
synchronization of the two processes (wait). This chapter describes the
implementation and use of these functions.

The parent process can execute VAX C programs in its children, either
‘synchronously or asynchronously. The number of children that can run
simultaneously is determined by the /PRCLM user authorization quota
that has been established for each user on your system. Other quotas that
may affect the use of subprocesses are /ENQLM (Queue Entry Limit),
/ASTLM (AST Waits Limit), and /FILLM (Open File Limit).

10.1 The Implementation of Child Processes in VAX C

Child processes are created by VAX C functions with the VMS
LIB$SPAWN Run-Time Library routine. (See the VAX/VMS Run-Time
Library Routines Reference Manual for information on LIBSSPAWN.) The
use of LIBSPAWN allows you to create multiple levels of child processes;
that is, the parent’s children can also spawn children, and so on, up to the
limits allowed by the user authorization quotas previously noted.

Subprocess Functions 10-1

Child processes are restricted in that they can execute only other VAX

C programs. Other native-mode VMS languages do not share VAX C’s
ability to communicate between processes, or, if they do, they do not use
the same mechanisms. In addition, the parent process must be run under
a DIGITAL-supported command language interpreter (CLI), such as the
DIGITAL Command Language (DCL) or the DEC/Shell. The parent may
not be run as a detached process or under control of a user-supplied CLI.

Parent and child processes communicate through a mailbox as shown in
Figure 10-1. This mailbox transfers the context in which the child will
run. The context mailbox, as it is called, passes to the child the informa-
tion it inherits from the parent, such as the names and file descriptors of
all the files that have been opened by the parent and the current location
within those files. The mailbox is deleted by the parent when the child
image exits.

Figure 10-1: Communications Links Between Parent and
Child Processes

context .
Parent context > Mailbox > Child

ZK-4002-85

NOTE

The mailbox created by the vfork and exec functions is tempo-
rary. The logical name of this mailbox is VAXC$EXECMBX and
is reserved for the use of the VAX C Run-Time Library (RTL).

The mailbox is created with a maximum message size and a buffer quota
of 512 bytes each. You need the TMPMBX privilege to create a mailbox
with these VAX C RTL functions. Since TMPMBX is the privilege required
by the PRINT and SUBMIT DCL commands, most users on a system have
this privilege. If you are not sure, type SHOW PROCESS /PRIVILEGES; it
will show which system privileges you have.

You cannot change the characteristics of these mailboxes. For more
information on mailboxes, see the VAX/VMS I/0O Reference Volume.

10-2 Subprocess Functions

VMS does not permit two processes to use the same physical terminal for
input, and the VAX C Run-Time Library does not support file sharing or
the default C stream file type. Therefore, if stdir is connected to a terminal
or if stdout or stderr is connected to stream files, these standard streams
will be redirected to the NUL device _NLAO:.

10.1.1 system

The system function passes a given string to the host environment to be
executed by a command processor.

The syntax of the system function is as follows:
#include processes
int system (const char *string);

Arguments

The argument string is a pointer to the string to be executed.

Additional Information

If the argument is a NUL pointer, the system function returns a nonzero
value to indicate that the system function is supported. The system
function spawns a subprocess and executes the command specified by
string in that subprocess. The system function will wait for the subprocess
to complete before returning the subprocess status as the return value of
the function.

10.1.2 vfork

The vfork function creates an independent child process.
The syntax of the function is as follows:

#include processes

int vfork (void);

Subprocess Functions 10-3

Additional Information

The vfork function provided by VAX C differs from the fork function
provided by other C implementations. The two major differences are as

follows:

The vfork Function The fork Function

Used with the exec functions. Can be used without exec for asyn-
chronous processing.

Creates an independent child Creates an exact duplicate of the parent

process that shares some of process that branches at the point

the parent’s characteristics. where vfork is called, as if the parent

and the child are the same process at
different stages of execution.

The vfork function provides the setup necessary for a subsequent call
to an exec function. Although no process is actually created by vfork, it
performs the following steps:

® It saves the return address (the address of the vfork call) to be used
later as the return address for the call to an exec function.

* It duplicates the parent’s stack frame.

* It returns the integer 0 the first time it is called; that is, before the
call to an exec function has been made. After the corresponding exec
function call has been made, the exec function returns control to the
parent process, at the point of the vfork call, and it returns the process
id of the child as the return value. Thus, unless the exec function fails,
control will seem to return twice from vfork even though one call was
made to vfork and one call was made to the exec function.

The behavior of the vfork function is similar to the behavior of the setjmp
function. Both vfork and setjmp establish a return address for later use,
both return the integer 0 when they are first called to set up this address,
and both pass back the second return value as though it were returned by
them rather than by their corresponding exec or longjmp function calls.

10-4 Subprocess Functions

10.2 The exec Functions

There are six exec functions that can be called to execute a VAX C image
in the child process. These functions expect that vfork has been called
to set up a return address. However, the exec functions call vfork if the
parent process did not.

When vfork is called by the parent, exec returns to the parent process.
When vfork has been called by an exec function, the exec returns to itself,
waits for the child to exit, and then exits the parent process. Thus, exec
does not return to the parent process unless the parent calls vfork to save
the return address.

Unlike UNIX based systems, the exec functions in the VAX C Run-Time
Library cannot determine if the specified program image exists. Therefore,
the exec functions will appear to succeed even though the image does not
exist. The status of the child process, returned to the parent process, will
indicate that this error occurred. You can retrieve this error code by using
the wait function.

10.2.1 execl, execle, execlp, execv, execve, execvp

The exec functions pass the name of an image to be activated in a child
process.

The syntax descriptions of the functions are as follows:

#include processes
int execl(char *file_spec, char *argn,...);

int execle(char *file_spec, char *argnm,...,
char *envp[]);

int execlp(char *file_name, char *argn,...);
int execv(char *file_spec, char *argv[]);

int execve(char *file_spec, char *argul[],
char *enuvp[]);

int execvp(char *file_name, char *argv[]);

Subprocess Functions 10-5

Arguments

The arguments to the exec functions are as follows:

file_spec

file_name

argn

envp

argv

10-6 Subprocess Functions

The file specification (full) of a new image to be activated in the
child process.

The file name of a new image to be activated in the child process.
The device and directory specification for the file is obtained by a
search of the environment name VAXC$PATH.

Represents a sequence of pointers to null-terminated character
strings. By convention, at least one argument must be present and
must point to a string that is the same as the new process file name
(or its last component).

An array of strings that specifies the program’s environment. Each
string in argument envp has the form:

name = value

The name can be one of the names listed in the following table and
the value is a NUL-terminated string to be associated with the name.

¢ HOME—The user’s login directory
® TERM—The type of terminal being used
® PATH—The default device and directory

® USER—The name of the user who initiated the process

The last element in envp must be the null pointer NULL.

When the operating system executes the program, it places a copy
of the current environment vector (envp) in the external variable
environ.

An array of pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By
convention, argu[0] must point to a string that is the same as the
new process file name (or its last component). Argv is terminated by
a null pointer.

Represents a sequence of pointers to strings. At least one pointer
must exist to terminate the list. This pointer may be the NULL
pointer.

Additional Information

In order to understand how the exec functions operate, consider how VMS
calls any VAX C program as shown in the following syntax:

int main (int arge, char #*arguv[], char *emvp(]);

The identifier argc is the argument count; argv is an array of argument
strings. The first member of the array (argv[0]) always contains the name
of the image. The actual arguments are placed in subsequent elements of
the array. The last element of the array is always the null pointer.

An exec function calls a child process in the same way that the Run-Time
system calls any other VAX C program. The exec functions pass the
name of the image to be activated in the child; this value is placed in
argv[0]. However, the functions differ in the way they pass arguments and
environment information to the child:

* Arguments can be passed in separate character strings (execl, execle,
and execlp) or in an array of character strings (execv and execve).

* The environment can be explicitly passed in an array (execle, execve)
or taken from the parent’s environment variable (execl and execv).

10.2.1.1 Exec Processing

The exec functions use the LIBSSPAWN routine to create the subprocess
and activate the child image within the subprocess. This child process
inherits the parent’s environment, including all defined logical names and
command line interpreter symbols. The exec functions use the logical
name VAXC$EXECMBX to communicate between parent and child; this
logical name must not exist outside the context of the parent image.

The exec functions pass the following information to the child:

* The parent’s umask value, which specifies whether any access is
to be disallowed when a new file is created. For more information
concerning the umask function, refer to Chapter 11, System Functions.

* The file name string associated with each file descriptor and the
current position within each file. The child opens the file and calls
Iseek to position the file to the same location as the parent. Note
that if the file is a record file, the child is positioned on a record
boundary, regardless of the parent’s position within the record. For
more information concerning file descriptors and the lseek function,
refer to Chapter 2, Standard I/O Functions and Macros.

Subprocess Functions 10-7

This information is sent to the child for all descriptors known to the
parent including all descriptors for open files, null descriptors, and
duplicate descriptors.

File pointers are not transferred to the child. For files opened by a
file pointer in the parent, only their corresponding file descriptors are
passed to the child. Therefore, the fdopen function must be called to
associate a file pointer with the file descriptor if the child will access
the file by file pointer. For more information concerning the fdopen
function, refer to Chapter 2, Standard 1/O Functions and Macros.

Process permanent input files are not inherited by the child process.
Rather, they are replaced with the null device NLAQ. See Section 10.1
for restrictions on the use of the parent’s process permanent files by
the child process.

® The signal data base. Only SIG_IGN (ignore) actions are inherited.
Actions specified as routines are changed to SIG_DFL (default)
because the parent’s signal-handling routines are inaccessible to the
child.

* The environment and argument vectors.
When everything has been transmitted to the child, exec processing is

complete. Control in the parent process then returns to the address saved
by vfork and the child’s