
VAX C Run-Time Library
Reference Manual
Order Number: AI-JP84A-TE

March 1987

This document describes the functions and macros in the V AX C Run-time
Library.

Revision/Update Information: This is a new manual.

Operating System and Version: VMS Version 4.6 or higher, or MicroVMS
Version 4.6 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX eVersion 2.3

First Printing, March 1987

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accoldance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc­
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS lAS VAXcluster
DEC net MASSBUS VMS
DECsystem-lO PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~UrnU[l~D DECwriter RSX

ZK3230

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by TEX, the
typesetting system developed by Donald E. Knuth at Stanford University. TEX
is a trademark of the American Mathematical Society.

Contents

PREFACE

NEW AND CHANGED FEATURES

CHAPTER 1 VAX C RUN-TIME LIBRARY INFORMATION

1.1 IMPLEMENTATION OF THE VAX C RUN-TIME LIBRARY
1.1.1 Using the VAX C RTL as a Shareable Image
1.1.2 Macros

1.2 VAX C RTL FUNCTION AND MACRO SYNTAX
1.2.1 DEC/Shell File Specifications

1.3 INPUT AND OUTPUT ON VMS
1.3.1 RMS Record and File Formats
1.3.2 Stream Access to RMS Record Files

1.4 SPECIFIC PORTABILITY CONCERNS

CHAPTER 2 STANDARD I/O FUNCTIONS AND MACROS

2.1 CONVERSION SPECIFICATIONS
2.1.1 Conversion of Input Information
2.1.2 Conversion of Output Information

2.2 OPENING AND CLOSING FILES
2.2.1 fclose
2.2.2 fdopen
2.2.3 fopen
2.2.4 freopen

xvii

xxi

1-1

1-2
1-4
1-5

1-7
1-9

1-11
1-14
1-16

1-19

2-1

2-2
2-3
2-6

2-7
2-8
2-8

2-10
2-11

iii

2.3 READING FROM FILES 2-11
2.3.1 getc, fgetc, getw 2-12
2.3.2 fgets 2-13
2.3.3 fread 2-13
2.3.4 fscanf, sscanf 2-14
2.3.5 ungetc 2-16

2.4 WRITING TO FILES 2-16
2.4.1 fprintf, sprintf 2-16
2.4.2 fputs 2-18
2.4.3 fwrite 2-18
2.4.4 putc, fputc, putw 2-19

2.5 MANEUVERING IN FILES 2-20
2.5.1 fflush 2-20
2.5.2 fseek 2-20
2.5.3 ftell 2-21
2.5.4 rewind 2-22

2.6 ADDITIONAL STANDARD I/O FUNCTIONS AND MACROS 2-22
2.6.1 access 2-22
2.6.2 clearerr 2-23
2.6.3 feof 2-24
2.6.4 ferror 2-24
2.6.5 fgetname 2-25
2.6.6 mktemp 2-25
2.6.7 remove, delete 2-26
2.6.8 rename 2-27
2.6.9 setvbuf, setbuf 2-27
2.6.10 tmpfile 2-29
2.6.11 tmpnam 2-29

2.7 PROGRAM EXAMPLES 2-29

iv

CHAPTER 3 TERMINAL I/O FUNCTIONS

3.1 getchar

3.2 gets

3.3 printf

3.4 putchar

3.5 puts

3.6 scanf

3.7 PROGRAM EXAMPLES

CHAPTER 4 UNIX I/O FUNCTIONS AND MACROS

4.1

4.2

4.3

4.4

OPENING AND CLOSING FILES
4.1.1 close
4.1.2 creat
4.1 .3 dup, dup2
4.1.4 open

READING AND WRITING
4.2.1 read
4.2.2 write

MANEUVERING IN FILES
4.3.1 Iseek

ADDITIONAL UNIX I/O FUNCTIONS AND MACROS
4.4.1 fileno
4.4.2
4.4.3

fstat, stat
getname

3-1

3-2

3-2

3-3

3-4

3-4

3-5

3-6

4-1

4-2
4-2
4-3
4-7
4-8

4-10
4-10
4-11

4-12
4-12

4-13
4-13
4-14
4-17

v

4.5

CHAPTER 5

5.1

5.2

5.3

vi

4.4.4
4.4.5
4.4.6

isapipe
isatty
ttyname

PROGRAM EXAMPLES

CHARACTER-HANDLING FUNCTIONS AND MACROS

CHARACTER CLASSIFICATION MACROS
5.1.1 isalnum
5.1.2 isalpha
5.1.3 isascii
5.1.4 iscntrl
5.1.5 isdigit
5.1.6 isgraph
5.1.7 islower
5.1.8 isprint
5.1.9 ispunct
5.1.10 isspace
5.1.11 isupper
5.1.12 isxdigit

CHARACTER CONVERSION FUNCTIONS AND MACROS
5.2.1 ecvt, fcvt, gcvt
5.2.2 toascii
5.2.3 tolower, _tolower
5.2.4 toupper, _toupper

PROGRAM EXAMPLES

4-17
4-18
4-18

4-19

5-1

5-1
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-8
5-8
5-8
5-9

5-9
5-9

5-10
5-11
5-11

5-12

CHAPTER 6 STRING- AND LIST-HANDLING FUNCTIONS
AND MACROS 6-1

6.1 strcat, strncat 6-1

6.2 strchr, strrchr 6-2

6.3 strcmp, strncmp 6-2

6.4 strcpy, strncpy 6-3

6.5 strcspn, strspn, strpbrk 6-4

6.6 strlen 6-5

6.7 strtod, atof 6-6

6.8 strtok 6-7

6.9 strto, atoi, atol 6-8

6.10 strtoul 6-9

6.11 ACCESSING BINARY DATA 6-10
6.11.1 memchr 6-10
6.11.2 memcmp 6-11
6.11.3 memcpy, memmove 6-12
6.11.4 memset 6-12

6.12 ACCESSING VARIABLE LENGTH ARGUMENT LISTS 6-13
6.12.1 va_arg 6-14
6.12.2 va_count 6-15
6.12.3 va_end 6-15
6.12.4 va_start, va--,start_1 6-16
6.12.5 vprintf, vfprintf, vsprintf 6-17

vii

6.13 PROGRAM EXAMPLES 6-18

CHAPTER 7 MATH FUNCTIONS 7-1

7.1 abs,fabs 7-2

7.2 acos 7-2

7.3 asin 7-3

7.4 atan 7-3

7.5 atan2 7-3

7.6 cabs, hypot 7-4

7.7 ceil 7-4

7.8 cos 7-4

7.9 cosh 7-5

7.10 exp 7-5

7.11 floor 7-5

7.12 fmod 7-6

7.13 frexp 7-6

7.14 Idexp 7-7

7.15 Idiv, div 7-7

viii

7.16 labs 7-8

7.17 log,log10 7-8

7.18 modf 7-9

7.19 pow 7-9

7.20 rand, srand 7-10

7.21 sin 7-11

7.22 sinh 7-11

7.23 sqrt 7-11

7.24 tan 7-12

7.25 tanh 7-12

7.26 PROGRAM EXAMPLES 7-12

CHAPTER 8 ERROR-HANDLING FUNCTIONS 8-1

8.1 abort 8-3

8.2 assert 8-3

8.3 atexit 8-4

8.4 exit,. _exit 8-5

8.5 perror 8-5

ix

8.6 strerror 8-6

8.7 SIGNAL-HANDLING FUNCTIONS 8-6
8.7.1 alarm 8-8
8.7.2 gsignal, raise 8-9
8.7.3 kill 8-11
8.7.4 longjmp, setjmp 8-11
8.7.5 pause 8-13
8.7.6 sigbloek 8-13
8.7.7 signal 8-14
8.7.8 sigpause 8-15
8.7.9 sigsetmask 8-15
8.7.10 sigstaek 8-16
8.7.11 sigvee 8-17
8.7.12 sleep 8-18
8.7.13 ssignal 8-18
8.7.14 VAXC$ESTABLISH 8-19

8.8 PROGRAM EXAMPLES 8-19

CHAPTER 9 MEMORY ALLOCATION FUNCTIONS 9-1

9.1 brk, sbrk 9-2

9.2 ealloe, malloe (MEMORY ALLOCATION) 9-3

9.3 efree, free (MEMORY DEALLOCATION) 9-3

9.4 realloe (MEMORY REALLOCATION) 9-4

9.5 PROGRAM EXAMPLE 9-5

x

CHAPTER 10 SUBPROCESS FUNCTIONS

10.1 THE IMPLEMENTATION OF CHILD PROCESSES IN VAX C
10.1.1 system
10.1.2 vfork

10.2 THE EXEC FUNCTIONS
10.2.1 execl, execle, execlp, execv, execve, execvp

10.2.1.1 Exec Processing • 10-7
10.2.1.2 Exec Error Conditions • 10-8

10.3 SYNCHRONIZING PROCESSES
10.3.1 wait

10.4 READING AND WRITING DATA
10.4.1 pipe

10.5 PROGRAM EXAMPLES

CHAPTER 11 SYSTEM FUNCTIONS

11.1 SEARCHING AND SORTING UTILITIES
11.1.1 bsearch
11.1.2 qsort

11.2 RETRIEVING PROCESS INFORMATION
11.2.1 ctermid
11.2.2 .cuserid
11.2.3 getcwd
11.2.4 getegid, geteuid, getgid, getuid
11.2.5 getenv
11.2.6 getpid
11.2.7 getppid

11.3 CHANGING PROCESS INFORMATION
11.3.1 chdir

10-1

10-1
10-3
10-3

10-5
10-5

10-9
10-9

10-10
10-10

10-14

11-1

11-1
11-1
11-3

11-3
11-4
11-4
11-5
11-6
11-6
11-7
11-7

11-7
11-8

xi

11.3.2 chmod
11.3.3 chown
11.3.4 mkdir
11.3.5 nice
11.3.6 setgid, setuid
11.3.7 umask

11.4 RETRIEVING TIME INFORMATION
11.4.1 asctime
11.4.2 clock
11.4.3 ctime
11.4.4 difftime
11.4.5 ftime
11.4.6 gmtime
11.4.7 localtime
11.4.8 time
11.4.9 times

11.5 V AXC$CRTL_INIT

11.6 PROGRAM EXAMPLES

CHAPTER 12 CURSES SCREEN MANAGEMENT FUNCTIONS
AND MACROS

12.1 CURSES TERMINOLOGY
12.1.1 User-Defined Windows

12.2 GETTING STARTED WITH CURSES

12.3 PREDEFINED VARIABLES AND CONSTANTS

12.4 CURSOR MOVEMENT

12.5 THE CURSES FUNCTIONS AND MACROS
12.5.1 [w]addch
12.5.2 [w]addstr

xii

11-8
11-9

11-10
11-11
11-12
11-12

11-13
11-13
11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-18

11-18

11-19

12-1

12-2
12-3

12-6

12-9

12-11

12-12
12-12
12-13

12.5.3 box 12-14
12.5.4 [w]clear 12-14
12.5.5 clearok 12-14
12.5.6 [w]clrattr 12-15
12.5.7 [w]clrtobot 12-16
12.5.8 [w]clrtoeol 12-16
12.5.9 [no]crmode 12-16
12.5.10 [w]delch 12-17
12.5.11 [w]deleteln 12-17
12.5.12 delwin 12-17
12.5.13 [no]echo 12-18
12.5.14 endwin 12-18
12.5.15 [w]erase 12-19
12.5.16 [w]getch 12-19
12.5.17 [w]getstr 12-20
12.5.18 getyx 12-20
12.5.19 [w]inch 12-21
12.5.20 initscr 12-21
12.5.21 [w]insch 12-21
12.5.22 [w]insertln 12-22
12.5.23 [w]insstr 12-22
12.5.24 longname 12-23
12.5.25 leaveok 12-23
12.5.26 [w]move 12-24
12.5.27 mv[w]addch 12-24
12.5.28 mv[w]addstr 12-25
12.5.29 mvcur 12-25
12.5.30 mv[w]delch 12-25
12.5.31 mv[w]getch 12-26
12.5.32 mv[w]getstr 12-26
12.5.33 mv[w]inch 12-26
12.5.34 mv[w]insch 12-27
12.5.35 mv[w]insstr 12-27
12.5.36 mvwin 12-28
12.5.37 newwin 12-28
12.5.38 [no]nl 12-29
12.5.39 overlay 12-29
12.5.40 overwrite 12-29
12.5.41 [w]printw 12-30
12.5.42 [no]raw 12-30
12.5.43 [w]refresh 12-31

xiii

12.5.44 [w]scanw
12.5.45 scroll
12.5.46 scrollok
12.5.47 [w]setattr
12.5.48 subwin
12.5.49 [w]standend
12.5.50 [w]standout
12.5.51 touchwin
12.5.52 wrapok

12.6 PROGRAM EXAMPLES

APPENDIX A VAX C RTL AND RTLS OF OTHER C
IMPLEMENTATIONS

APPENDIX B VAX C RUN-TIME MODULES AND ENTRY POINTS

APPENDIX C VAX C DEFINITION MODULES

APPENDIX D SYNTAX SUMMARY

INDEX

EXAMPLES

2-1 Using the Standard I/O Functions

3-1 Output of the Conversion Specifications

4-1 I/O Using File Descriptors and Pointers

5-1 Character Conversion Macros

5-2 Converting Double Values to an ASCII String

5-3 Changing Characters to and from Uppercase Letters

6-1 Concatenation of Two Strings

xiv

12-31
' 12-32

12-32
12-32
12-33
12-34
12-34
12-35
12-35

12-35

A-1

8-1

C-1

0-1

2-30

3-7

4-20

5-12

5-13

5-14

6-19

6-2 Four Arguments to the strscpn Function 6-20

6-3 The varargs Functions and Macros 6-21

7-1 Calculating and Verifying a Tangent Value 7-13

8-1 Suspending and Resuming Programs 8-20

9-1 Allocating and Deallocating Memory for Structures 9-6

10-1 Creating the Child Process 10-15

10-2 Passing Arguments to the Child Process 10-17

10-3 Checking the Status of Child Processes 10-19

10-4 Communicating Through a Pipe 10-21

11-1 Accessing the User Name 11-19

11-2 A Second Way to Access the User Name 11-19

11-3 Accessing Terminal Information 11-20

11-4 Manipulating the Default Directory 11-20

11-5 Printing the Date and Time 11-21

12-1 A Curses Program 12-7

12-2 Manipulating Windows 12-8

12-3 Refreshing the Terminal Screen 12-9

12-4 Curses Predefined Variables 12-10

12-5 The Cursor Movement Functions 12-11

12-6 Stdscr and Occluding Windows 12-36

12-7 Subwindows 12-38

FIGURES

1-1 I/O Interface from C Programs 1-12

1-2 Mapping Standard and UNIX I/O to RMS 1-14

10-1 Communications Links Between Parent and Child Processes 10-2

10-2 Implementation of a Pipe 10-12

12-1 Example of the stdscr Window 12-3

12-2 Diplaying Windows and Subwindows 12-5

12-3 Illustration of an Updated Terminal Screen 12-6

12-4 Example of the getch Macro 12-37

12-5 Example of Overwriting Windows 12-39

xv

TABLES
1-1

2-1

2-2
4-1
5-1
8-1

8-2
8-3
12-1

A-1

xvi

B-1

B-2
B-3
C-1

C-2

UNIX and VMS File Specification Delimiters

Conversion Characters for Formatted Input

Conversion Characters for Formatted Output

File Access Block and Record Access Block Keywords

Character Classification Macro Return Values (ASCII Table)

Errno Symbolic Values

VAX C Signals

Signal Types

Curses Predefined Variables and #define Constants

Relationship of VAX C RTl Functions and Macros to Other C
RTl Functions and Macros

VAX C Run-Time Modules

VAX C Run-Time Entry Points

Run-Time library Procedures Called by VAX C

VAX C Definition Modules

Modified Definition Modules

1-10

2-3
2-6

4-5

5-2
8-1
8-7

8-9
12-10

A-1

B-1

B-7

B-19

C-1

C-4

Preface

This manual provides reference information on the VAX C Run-Time
Library (RTL) functions and macros that provide I/O functionality, char­
acter and string manipulation, mathematical functionality, error detection,
subprocess creation, system access, and .windowing capabilities.

Intended Audience

This manual is intended for experienced and novice programmers who
need reference information on the functions and macros contained in the
VAX C Run-Time Library.

Structure of This Document

This manual describes the VAX C Run-Time Library. It provides informa­
tion about portability concerns, between operating systems and categorical
descriptions of the functions and macros. This manual has twelve chapters
and four appendixes. They are as follows:

• Chapter 1, VAX C Run-Time Library Information, provides an
overview of the VAX C Run-Time Library.

• Chapter 2, Standard I/O Functions and Macros, explains the standard
I/O functions and macros.

• Chapter 3, Terminal I/O Functions, discusses the terminal I/O func­
tions.

• Chapter 4, UNIX I/O Functions and Macros, explains the UNIX I/O
functions and macros.1

• Chapter 5, Character-Handling Functions and Macros, describes the
character-handling functions and macros.

• Chapter 6, String- and List-Handling Functions and Macros, describes
the list-handling functions and macros.

• Chapter 7, Math Functions, explains the math functions.

1 UNIX is a registered trademark of American Telephone and Telegraph Company.

xvii

• Chapter 8, Error-Handling Functions, discusses the error-handling
functions.

• Chapter 9, Memory Allocation Functions, explains the memory alloca-
tion functions.

• Chapter 10, Subprocess Functions, describes the subprocess functions.

• Chapter 11, System Functions, explains the system functions.

• Chapter 12, Curses Screen Management Functions and Macros,
describes the Curses screen management functions and macros.

• Appendix A, VAX C RTL and RTLs of Other C Implementations,
provides a comparison of VAX C RTL functions and macros, and
corresponding functions of other C implementations.

• Appendix B, VAX C Run-Time Modules and Entry Points, provides
a description of the VAX C modules and the VAX run-time modules
used in this implementation.

• Appendix C, VAX C Definition Modules, describes VAX C definition
modules.

• Appendix D, Syntax Summary, provides a summary of all the VAX C
Run-Time Library functions and macros.

Associated Documents

xviii

You may find the following documents useful when programming in
VAXC:

• Guide to VAX C - For programmers who need tutorial information on
using VAX C.

• VAX C Installation Guide - For system programmers who install the
VAX C software.

• VMS Master Index - For programmers who need to work with the
VAX machine architecture or the VMS system services.

This index lists manuals which cover the individual topics concerning
access to VMS.

Conventions Used in This Document

Convention

I RETURN I

$ RUN CPROG I RETURN I

float x;

x = 5;

option, ...

[output-source, ...]

sc-specifier :: =

auto
static
extern
register

Meaning

The symbol I RETURN I represents a single stroke
of the RETURN key on a terminal.

The symbol I CTRL/X I, where letter X represents
a terminal control character, is generated by
holding down the CTRL key while pressing the
key of the specified terminal character.

In interactive examples, the user's response to
a prompt is printed in red; system prompts are
printed in black.

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown in
the example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

Square brackets, in function synopses and a few
other contexts, indicate that a syntactic element
is optional. Square brackets are not optional,
however, when used to delimit a directory
name in a VMS file specification or when used
to delimit the dimensions of a multidimensional
array in VAX C source code.

In syntax definitions, items appearing on sepa­
rate lines are mutually exclusive alternatives.

xix

xx

Convention

[alb]

switch statement
£printf function

argl

Meaning

Brackets surrounding two or more items sepa­
rated by a vertical bar (I) indicate a choice; you
must choose one of the two syntactic elements.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

Boldface type identifies language keywords
and the names of VMS and VAX C Run-Time
Library functions.

Italics identifies variable names.

New and Changed Features

VAX C Version 2.3 supports the following new VAX C Run-Time Library
functions:

Functions in both the System V Interface Definition and the
Proposed ANSI C Language Standard

• The asctime function-converts the broken-down time passed in a
predefined structure form into a string.

• The assert function-verifies a program assertion.

• The bsearch function-performs a binary search on a sorted array.

• The clock function-determines the amount of CPU time used.

• The div function-returns the quotient and remainder after the
division of its arguments.

• The gmtime function-converts calendar time into a broken-down
time relative to GMT (Greenwich Mean Time).

• The memchr, memcmp, memcpy, memmove, and memset functions
perform opererations on areas of memory.

• The qsort function-performs a quick sort.

• The setvbuf function-allows you to specify the I/O that is to be
buffered.

• The strtod, strtol, and strtoul functions allow you to manipulate
strings. Specifically, the strtod function allows you to convert a string
to a double-precision number, and the strtol and strtoul functions
allow you to convert a string to an integer or unsigned integer,
respectively.

• The strtok function-extracts a token from a string by using a speci­
fied set of token delimiters.

• The system function-passes a command string to be executed by the
command processor.

• The vprintf, vfprintf, and vsprintf functions-perform formatted
output comparable to the printf, fprintf, and sprintf functions.

xxi

xxii

Functions Defined in the System V Interface Definition

• The execlp and execvp functions-pass the name of an image to be
activated in a child process.

• The getcwd function-returns the current working directory.

• The getppid function-returns the parent process ID of the calling
process.

Functions Defined in the Proposed ANSI C Language
Standard

• The atexit function-establishes an action function to be called at
program termination time.

• The difftime function-computes the difference between two calendar
times.

• The fmod function-computes the floating-point remainder of x/yo

• The remove function-deletes a closed file. This function is equivalent
to the delete function.

• The rename function-renames a closed file.

• The strerror function-returns a C RTL error message string corre­
sponding to a C RTL error code.

Enhancements to Existing Functionality

• The fopen and freopen functions can now be used to open binary files
when the access mode contains a lib" character string. The lib" string
cannot appear in the first character position.

• The printf and scanf functions now perform formatted output and
input respectively with the addition of two new format flags (#, +) and
the following new format specifiers: i, p, and n.

• The ungetc function guarantees one character of push back at all
times. This function is only valid on stream files. Two calls to the
ungetc function with no intervening I/O is no longer supported.

• The V AX C$CR TL _INIT function now allows you to initialize the
VAX C RTL for calling from other VAX languages where C is not the
main program.

Chapter 1

VAX C Run-Time Library Information

Before using the VAX C Run-Time Library (RTL) of functions and macros,
you must be familiar with:

• The linking process

• The macro substitution process

• The difference between function definitions and function calls

• The valid file specifications

• The VMS-specific methods of input and output (I/O)

• The VAX C-specific portability concerns

These topics may seem unrelated, but a knowledge of all these issues is
necessary to using the VAX C RTL. This chapter shows the connections
among these topics and the VAX C RTL, and should be read before any of
the other chapters in this manual.

The primary purpose of the VAX C RTL is to provide a means for C
programs to perform I/O operations; the C language itself has no facilities
for reading and writing information. In addition to I/O support, the VAX­
C RTL also provides a means to perform many other tasks.

Chapters 2 through 12 contain descriptions of all the functions and
macros for the various tasks supported by the VAX C RTL. Each chapter
describes the functions and macros in a particular functional category. The
functional categories and their associated chapters are as follows:

• Standard, Terminal, and UNIX I/O functions and macros (Chapters 2,
3, and 4, respectively)

• Character-handling functions and macros (Chapter 5)

• String- and list-handling functions and macros (Chapter 6)

VAX C Run-Time Library Information 1-1

• Mathematical functions (Chapter 7)

• Signal functions (Chapter 8)

• Memory allocation functions (Chapter 9)

• Subprocess functions (Chapter 10)

• System functions (Chapter 11)

• Curses Screen Management functions and macros (Chapter 12)

1. 1 Implementation of the VAX C Run-Time Library

When working with the VAX C RTL, you must be aware of the specifics of
this implementation.

First, if you plan on using VAX C RTL functions in your programs, make
sure that a function named "main" or a function that uses the "main_
program" option exists in your program. For more information, refer to
the Guide to VAX C.

The VAX C Run-Time Library functions are executed at run time, but
references to these functions are resolved at link time. When you link
your program, the linker resolves all references to VAX C Run-Time
Library functions by searching any object code libraries that you specified
on the LINK command line. If the linker locates the function code, it
places a copy of the code in the program's local program section (psect). If
the linker does not locate the function code, it translates the logical names
LNK$LIBRARY-1l to the name of an object library and then searches that
library for the code.

You must define the logical names LNK$LIBRARY_n as one or more of
the following libraries:

• SYS$LIBRARY:VAXCCURSE.OLB

• SYS$LIBRARY:VAXCRTLG.OLB

• SYS$LIBRARY:VAXCRTL.OLB

Depending on the needs of your program, you may have to access one,
two, or all three of the libraries. The following list relates the needs of
your program with the particular libraries that you must define.

1-2 VAX C Run-Time Library Information

1. If you do not need to use the Curses Screen Management package
of VAX C RTL functions and macros, and you do not use the /G_
FLOAT qualifier on the CC command line, you must define the logical
as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLBIRETURNI

2. If you do plan to use the /G_FLOAT qualifier with the CC command
line, but do not plan on using Curses, you must define the logicals as
follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTLG.OLBIRETURNI
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLBIRETURNI

3. If you do plan to use the Curses Screen Management package, but do
not plan to use the /G_FLOAT qualifier, you must define the logicals
as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLBIRETURNI
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLBIRETURNI

4. Finally, if you do plan to use both Curses and the /G_FLOAT
qualifier, you must define the three logicals as follows:

$ DEFINE
$ DEFINE
$ DEFINE

The order of the specified libraries determines which versions of the VAX
C RTL functions are found first by the linker. If the linker does not find
the function code or if LNK$LIBRARY_n is undefined, it assumes that the
function is not a VAX C RTL function and checks other default libraries
before it assumes that the program is in error. It may be helpful to
place these definitions in your LOGIN.COM file or some other command
procedure so that you do not have to retype these definitions each time
you use the VAX C RTL.

For more information concerning Curses, refer to Chapter 1, Curses
Screen Management Functions and Macros. For more information con­
cerning command procedures or the G-floating representation of double
variables, refer to Guide to VAX C.

VAX C Run-Time Library Information 1-3

1. 1. 1 Using the VAX C HTL as a Shareable Image

Instead of using the object code of the VAX C RTL functions, you can,
as an option, use the VAX C RTL as a shareable image. When you use
the VAX C RTL as a shareable image, you do not receive a copy of the
object code in your program's local psect; control is passed, by means of
pointers, from your program to libraries containing the RTL images where
the designated function executes. After execution, control returns to your
program. This process has a number of advantages. You significantly
reduce the size of a program's executable image, the program's image
takes up less disk space, and the program swaps in and out of memory
faster because of decreased size.

To use the VAX C RTL as a shareable image, check with your system
manager to make sure that the VAX C RTL software was installed so as to
allow access to the shared images. Specifically, make sure that the system
manager answered YES to step 5 listed in the VAX C Installation Guide. If
that has been done, you can create an options file.

If you do not use the IG_FLOAT qualifier on the CC command, create an
options file, OPTIONS_FILE.OPT, containing the following line:

SYS$SHARE:VAXCRTL.EXE/SHARE

If you do use the IG_FLOAT qualifier on the CC command, create an
options file containing the following line:

gYS$SHARE:VAXCRTLG.EXE/SHARE

You must not include the libraries SYS$SHARE:VAXCRTL.EXE and
SYS$SHARE:VAXCRTLG.EXE in the same options file.

After you have created the appropriate options file, named OPTIONS_
FILE.OPT, you can compile and link your program with the following
commands:

$ cc PROGRAM.cIRETURNI
$ LINK PROGRAM.OBJ. OPTIONS_FILE/OPTIRETURNI

Note that the include files are distributed with VAX C. The RTL libraries
are distributed with VMS.

1-4 VAX C Run-Time Library Information

1. 1.2 Macros

You may need to use macros as well as functions from the VAX C RTL.
Macros are resolved at compilation time instead of link time. The compiler
replaces the macro reference with text found in a definition file. Macros
are not the only segments of source code found in the definition files;
these files contain many definitions that are needed for some of the
RTL functions to work properly. Macro definitions differ from the other
definitions by their use of parameters which are delimited by parentheses.

Consequently, you need to learn about VAX C text substitution in order to
use the VAX C RTL wisely.

To understand text substitution, you should know how the Standard I/O
definitions are created. Definitions are comprised of #define preprocessor
directives. Traditionally in the C language, these #define directives are
located in files that have the .H file extension. If during installation of
the VAX C software these files were extracted, you can locate them in
the directory SYS$LIBRARY. For example, you can type the STDIO.H file
(which contains Standard I/O definitions and macros) at your terminal
with the following command:

$ TYPE SYS$LIBRARY:STDIO.HIRETURNI

If you encounter an error, speak to your system manager about extraction
of the .H definition files.

Since it is often more efficient to access these files in a VAX C provided
library, this manual refers to the .H definition files as definition modules.
For more information concerning text libraries and modules, refer to the
Guide to VAX C.

The following identifiers are defined in the stdio definition module:

#define TRUE 1
#define FALSE 0
#define EOF (-1)

You can use these definitions by including the proper definition module;
use the #include preprocessor directive in your source file. At compile
time, the compiler replaces the identifiers, within the source code, with the
defined token string. In the previous code example, all instances of the
identifier TRUE are replaced with the number 1.

VAX C Run-Time library Information 1-5

To include the Standard I/O definitions in your file, use the following
preprocessor directive:

#include stdio

Some VAX C RTL "functions" are implemented as macros using the
#define preprocessor directive. For example, to use the macro _toupper,
use the following line in your source code program:

#include ctype

In the definition module, ctype, you can find the following macro
definition:

#define _toupper(c) «c) >= 'a' && (c) <= 'z' ? (c) & Ox5F : (c»

In your program, you call the macro _toupper with the following source
line:

_toupper(a);

The compiler searches through the source code for calls to _toupper,
replacing each occurrence with the token string found in the macro
definition. In the previous example, the compiler places the argument
specified in the macro call (the letter a) wherever the identifier c appears
in the defined token string. The token string in the previous example is
VAX C source code that translates a lowercase letter to an uppercase letter.
If the specified character is already an uppercase letter or if it is not a letter
at all, the character is returned unaltered.

When calling VAX C RTL macros, use caution in specifying arguments
that cause side effects, such as those that use the increment and decrement
operators. For example, in the case of _toupper, even though you have
access to the source code token string, you cannot determine the order in
which the compiler evaluates each occurrence of (c) in the token string.
The leftmost occurrence of (c) may not be evaluated first by the compiler.
For a discussion of the passing of arguments to macros, refer to the Guide
to VAX C.

Whereas the linker searches object libraries for the VAX C RTL function
code, the compiler searches text libraries or directories for the VAX C RTL
macros. When including text modules in your source code, the compiler
first searches text libraries specified on the compilation command line
for the definition module. If the compiler does not find the module, it

1-6 VAX C Run-Time Library Information

translates the logical name C$LIBRARY; you can define C$LIBRARY to
be a user-defined library. If the compiler cannot locate the module in the
defined library or if there was no translation for C$LIBRARY, the compiler
searches the text library SYS$LIBRARY:VAXCDEF.TLB; this library is
shipped with the VAX C compiler and contains the .H definition files.
If the compiler cannot find the specified module, it generates an error
message.

Depending on the form of the #include line, there are other places
to look for definition files that may contain VAX C RTL macros. For
complete information about library searches, refer to the Guide to VAX C.

1.2 VAX C HTL Function and Macro Syntax

Once you know how to link object modules and include text modules,
you must learn how to reference VAX C functions and macros in your
program. Each of the remaining chapters in this manual provides detailed
descriptions of VAX C RTL functions and macros.

In all chapters, the style of syntax used to describe each function and
macro follows the usual convention for function syntax. A syntax is a
compact representation of the order of a function's or macro's argument
list (if any), the arguments' types, and the type of the value returned by
function or macro. If the return value of the function cannot be easily
represented by a VAX C data type keyword, look for a description of the
return values in the explanatory text. The syntax descriptions provide
insight into the functionality of the function or macro. These descriptions
do not necessarily describe how to call the function or macro in your
source code.

For example, consider the syntax of the feof function:

#include stdio

int feof(fiLe_pointer)

FILE *file_pointer;

The description of feof states that it is implemented as a macro. The
syntax shows the following:

• The macro is defined in a definition module. You must include the
stdio module to use the feof macro.

• The macro returns a value of data type into D() not declare VAX C
RTL macros. This line in the syntax indicates the arguments and the
return value, not the form of a declaration.

VAX C Run-Time Library Information 1-7

• There is one argument, file_pointer, that is a pointer to FILE; FILE is
an external data definition in the stdio module.

To use feof in a program, you need only call the macro and precede the
call at some point by the #inc1ude directive, as in the following example:

#include stdio

maine)
{

FILE *infile;

}

while
{

}

feof (infile))

/* Include Standard I/O

/* Define a file pointer

/* Call the function feof */
/* Until EOF reached */
/* Perform file operations */

Because some library functions take varying numbers of arguments, syntax
descriptions have additional conventions not used in other VAX C function
definitions:

• Optional parameters are enclosed in square brackets ([D.
• An ellipsis (...) is used to show that a given parameter may be

repeated.

• In cases where the type of a parameter may vary, its type is not shown
in the syntax.

Consider the printf syntax description:

#include stdio

int printf (format_specification [. output_source. . ..])

char *format_specification;

The syntax description for printf shows that the argument, output_source,
is optional, may be repeated, and is not always of the same data type. The
remaining information about the arguments of printf is in the description
of the function following the syntax.

1-8 VAX C Run-Time library Information

1.2.1 DEC/Shell File Specifications

The VAX C RTL functions and macros often manipulate files. One of
the major portability problems is the different file specifications used
on various systems. Since many C applications are ported to and from
UNIX systems, it is convenient for all compilers to be able to read and
understand UNIX system file specifications.

Consequently, functions from the DEC/Shell Run-Time Library are
included in the VAX C RTL as a convenience for those interested in
porting C programs from UNIX systems to VMS. The DEC/Shell functions
in the VAX C RTL perform file conversion, file translation, and command
language interpreter (CLI) status reports. For example, the RTL function
SHELL$TO_ VMS converts DEC/Shell file specifications to VMS file
specifications.

The advantage of including the DEC/Shell functions ill the VAX C RTL
is that you do not have to rewrite C programs containing UNIX system
file specifications. VAX C can translate most valid UNIX system file
specifications to VMS file specifications.

NOTE

• VAX C cannot translate UNIX file specifications with more
than one period character (.).

• If the UNIX file specification contains a period, all slash
characters (/) must precede that period.

Although you do not need to be concerned with calling the Shell func­
tions, you must be aware of the differences between the UNIX system and
VMS file specifications, as well as the method used by VAX C to access
files. For example, VAX C will accept a valid VMS specification and most
valid UNIX file specifications, but VAX C cannot accept a combination of
both. Table 1~1 illustrates the differences between UNIX system and VMS
file specification delimiters.

VAX C Run-Time Library Information 1-9

Table 1-1: UNIX and VMS File Specification Delimiters
Description

N ode delimiter

Device delimiter

Directory path delimiter

Subdirectory delimiter

File extension delimiter

File version delimiter

VMS

[]

[.]

UNIX

!j

/
/
/

Not applicable

For example, the formats of two valid specifications and one invalid
specification are as follows:

System

VMS

UNIX

File Specification

BEATLE::DBAO:[MCCARTNEY]SONGS.LIS

beatlel/dbaO/mccartney /songs.lis

BEATLE::DBAO:[MCCARTNEY.C]/songs.lis

Valid/Invalid

VALID

VALID

INVALID

When VAX C translates file specifications, it looks for both VMS and
UNIX system file specifications. Consequently, there may be differences
between the way in which VAX C translates UNIX system file speci­
fications and the way in which the UNIX systems translate the same
UNIX file specification. For example, if the two methods of file spec­
ification are combined, as in the previous list, VAX C could possibly
interpret [MCCARTNEY.C]/songs.lis as either [MCCARTNEY]songs.lis or
[C]songs.lis. Therefore, when VAX C encounters a mixed file specification,
an error occurs.

UNIX systems use the same delimiter for the device name, the directory
names, and the file name. Due to the ambiguity of UNIX file specifica­
tions, VAX C may not translate a valid UNIX system file specification
according to your expectations. For instance, the VMS equivalent of
bin/today can be either [BIN]TODAY or [BIN.TODAY]. VAX C can make
the correct interpretation only from the actual files present. If a file spec­
ification conforms to UNIX system file name syntax for a single file or
directory, it will be converted to the equivalent VMS file name if one of
the following is true.

1-1 0 VAX C Run-Time Library Information

1. If the specification corresponds to an existing VMS directory, it is
converted to that directory name. For example, jdev jdirjsub is
converted to DEV:[DIR.SUB] if DEV:[DIR.SUB] exists.

2. If the specification corresponds to an existing VMS file name, it is
converted to that file name. For example, dev jdirjfile is converted to
DEV:[DIR]FILE if DEV:[DIR]FILE exists.

3. If the specification corresponds to a nonexistent VMS file name, but
the given device and directory exist, it is converted to a file name.
For example, dev /dir/file is converted to DEV:[DIR]FILE if DEV:[DIR]
exists.

In the UNIX system environment, you reference files with a numeric file
descriptor. Some file descriptors reference standard input and output
devices; some descriptors reference actual files. If the file descriptor
belongs to an unopened file, the VAX C RTL opens the file. VAX C
equates file descriptors with the following VMS logical names:

File Descriptor VMS Logical Meaning

0 SYS$INPUT Standard Input

1 SYS$OUTPUT Standard Output

2 SYS$ERROR Standard Error

3_9 SHELL$FILE_n File jPipe opened by the Shell

You can use the DEC/Shell as your command language interpreter instead
of the default interpreter, the DIGITAL Command language (DCl). For
more information concerning the DEC/Shell, refer to the Guide to VAX C.

1.3 Input and Output on VMS

Once you have learned how to specify object libraries, how to specify text
libraries, and how to call VAX C functions and macros, you are ready to
use the RTl for its primary purpose: input and output.

Since every system has different methods of I/O, you should familiarize
yourself with the VMS specific methods of file access. In this way, you
will be equipped to predict possible differences in functionality when
porting your source program from one operating system to another.

VAX C Run-Time Library Information 1-11

As shown in Figure I-I, VAX C makes available four methods of I/O.
The VMS system services "talk" directly to VMS, so they are "closest" to
the operating system. The RMS functions use the system services, which
in turn manipulate the operating system. The VAX C Standard and UNIX
I/O functions and macros use the RMS functions, which in turn use the
system services, which in turn manipulate the operating system. Since the
VAX C Standard and UNIX I/O functions and macros must go through
several layers of function calls before the system is manipulated, they are
"furthest" from the operating system.

Figure 1-1: I/O Interface from C Programs

-
p Standard I/O

r
0 UNIX I/O

9
r VAX-11 RMS
a
m .. System Services

-
ZK-493-81

When the C programming language was developed on the UNIX operating
system, the Standard I/O functions were meant to provide a convenient
method of I/O that would be "powerful" enough so as to be efficient
for most applications, and also to be portable so that the functions could
be used on any system running C language compilers. VAX C adds
functionality to this original specification. Since, as implemented in VAX
C, the Standard I/O functions easily recognize line terminators, the VAX C
Standard I/O functions are particularly useful for text manipulation. Also,
VAX C implements some of the Standard I/O "functions" as preprocessor
defined macros.

In a similar manner, the UNIX I/O functions originally were meant
to provide a more direct access to the UNIX operating systems. These
functions were meant to use a numeric file descriptor to represent a file;
a UNIX system represents all peripheral devices as files, so as to provide
a uniform method of access. Once again, VAX C adds functionality to
the original specification. The UNIX I/O functions, as implemented in
VAX C, are particularly useful for manipulating binary data. Also, VAX
C implements some of the UNIX I/O "functions" as preprocessor defined
macros.

1-12 VAX C Run-Time Library Information

The VAX C RTL includes the Standard I/O functions that were meant
to exist on all C compilers, and also the UNIX I/O functions to main­
tain compatibility with as many other implementations of C as possible.
However, both Standard I/O and UNIX I/O use VAX Record Management
Services (RMS) to access files. So, in order to understand how the
Standard and UNIX I/O functions manipulate RMS formatted files,
you should understand the fundamentals of VAX Record Management
Services. See Section 1.3.1 for more information concerning Standard and
UNIX I/O in relationship to RMS files. For an introduction to RMS, refer
to the Guide to VAX/VMS File Applications.

Before deciding which method is appropriate for you, you must first
ask the question: Are you concerned with UNIX compatibility or with
developing code that will run solely under VMS? If UNIX compatibility is
important, you probably want to use the highest level of I/O-Standard
I/O and UNIX I/O-because that level is largely independent of the
operating system. Also, the highest level is easier to learn quickly, an
important consideration for new programmers.

If UNIX compatibility is not important to you or if you require the sophis­
ticated file processing that the Standard I/O and UNIX I/O methods do
not provide, you will find VAX RMS desirable.

If you are writing system-level software, you may need to access VMS
directly through calls to system services. For example, you may need to
access a user-written device driver directly through Queue I/O Request
System Service ($QIO). To do this, you need to use the VMS level of I/O;
this level is recommended for experienced VMS programmers only. For
examples of programs that call VMS system services, refer to the Guide to
VAX C.

Many programmers may never use the RMS or the system services of
VMS. The Standard and UNIX I/O functions are efficient enough for a
large number of applications. Figure 1-2 illustrates the dependency of
the Standard)/O and the UNIX I/O functions on RMS, and the various
methods of I/O available to the VAX C programmer.

VAX C Run-Time library Information 1-13

Figure 1-2: Mapping Standard and UNIX I/O to RMS

~ VAX C PROGRAM I

I Standard liD I I UNIX liD I
J

I VAX RMS I

I System Services I

ZK-494-81

1.3. 1 RMS Record and File Formats

To understand the capabilities, as well as the restrictions, of the Standard
and UNIX I/O functions and macros, you need to understand VAX Record
Management Services (RMS).

VAX RMS supports three types of file organization:

• Sequential

• Relative

• Indexed

1-14 VAX C Run-Time Library Information

Sequential files have consecutive records with no empty records in be­
tween; relative files have fixed-length cells that mayor may not contain a
record; and indexed files have records that contain data, carriage control
information, and keys that permit various orders of access. The VAX C
RTL functions can only access sequential files. If you wish to use the other
file organizations, you must use the RMS functions. For more information
concerning the RMS functions, refer to the Guide to VAX C.

VAX RMS is not concerned with the actual contents of records, so much
as it is concerned about the record format, which is the way a record
physically appears on the recording surface of the storage medium.

VAX RMS supports different record formats:

• Fixed length

• Variable length

• Variable with fixed-length control (VFC)

• Stream

You can specify a fixed-length record format at the time of file creation.
This means that all records occupy the same space in the file. You cannot
change the record format once you have created the file.

The length of records in variable length, VFC, and stream file formats can
vary up to a maximum size that must be specified when you create the
file. With variable-length record or VFC format files, the size of the record
is held in a header section at the beginning of the data record. With
stream files, RMS terminates the records when it encounters a specific
character, such as a carriage-control or line-feed character. Stream files are
very useful for storing text.

RMS allows you to specify carriage control attributes for records in a
file. Such attributes include the implied carriage-return or the FORTRAN
formatted records. RMS interprets these carriage controls when the file is'
output to a terminal, a line printer, or other device. The carriage control
information is not stored in the data records.

Files created with VAX C programs have, by default, stream format with
a line-feed record separator and implied carriage-return attributes. (In this
manual, this type of file is referred to as a stream file.) Stream files can be
manipulated very easily using the Standard and the UNIX I/O functions
of the VAX C RTL. When using these files, there is no restriction on the
ability to seek to any random byte of the file using the fseek or the lseek
functions. However, if the file has one of the other RMS record formats,
such as variable-length record format, then these functions, due to RMS
restrictions, can seek only to record boundaries. Thus, unless you need to

VAX C Run-Time Library Information 1-15

create or access files to be used with other VAX languages or utilities, it is
recommended that you use the default VAX C stream format.

1.3.2 Stream Access to RMS Record Files

Stream access to record files is done with the record I/O facilities of RMS.
The VAX C RTL emulates a byte stream by translating carriage control
characters during the process of reading and writing records. Random
access is allowed to record files, but positioning (with fseek and lseek)
must be on a record boundary, and writes followed by reads (or reads
followed by writes) do not work as with stream files. Positioning of a
record file causes all buffered input to be discarded and buffered output to
be written to the file.

Stream input from RMS record files is emulated by the VAX C RTL in
two steps. First, the VAX C RTL reads a logical record from the file.
Second, the VAX C RTL expands the record to simulate a stream of bytes
by translating the record's carriage-control information (if any). In RMS
terms, the VAX C RTL translates the information by one of the following
methods:

• If the record attribute is implied carriage control (RAT=CR), then the
VAX C RTL appends a newline to the record.

• If the record attributes are print carriage control (RAT=PRN), then the
VAX C RTL expands and concatenates the prefix and postfix carriage
controls before and after the record.

• If the record attributes are FORTRAN carriage control (RAT=FTN),
then the VAX C RTL removes the initial control byte and appends the
appropriate carriage control characters. The following rules describe
the way the character in the first byte maps onto the prefix and postfix
bytes that appear in the emulated stream. The identifier <record>
denotes the bytes contained in the logical record exclusive of the first
carriage-control byte; (\n) denotes the newline character; (\f) denotes
the form-feed character; (\r) denotes the carriage-return character.
Consider the following list.

1-16 VAX C Run-Time library Information

NUL --+ < record>

a --+ \n\n <record> \r

1 --+ \f <record> \r

+ --+ <record> \r

$ --+ \n <record>

all others --+ \n <record> \r

• If the record attributes are null (RAT=NONE) and the input is coming
from a terminal, then the VAX C RTL appends the terminating char­
acter to the record. If the terminator is a carriage return or CTRL/Z,
then the VAX C translates the character to a newline (\n).

If the input is coming from a nonterminal file, then the VAX C RTL
passes the record unchanged to the user program with no additional
prefix or postfix characters.

• If the record format is variable length with fixed control (RFM=VFC),
and the record attributes are not print carriage control (RAT is not
PRN), then the VAX C RTL concatenates the fixed-control area to the
beginning of the record.

As you read from the file, the VAX C Run-Time Library delivers a stream
of bytes resulting from the translations. Information that is not read from
an expanded record by one function call is delivered on the next input
function call.

Stream output to RMS record files is performed by the VAX C Run-Time
Library in two steps. First, the VAX C RTL forms a logical record from the
bytes specified by the output function (write, for example) by translating
any carriage-control bytes into RMS terms. Then, the VAX C RTL writes
the logical record.

The first part of the stream output emulation is the formation of a logical'
record. As you write bytes to a record file, the emulator examines the
information being written for record boundaries. The handling of informa­
tion in the byte stream depends on the attributes of the destination file or
device, as follows:

• If the record attributes specify no carriage-control information
(RAT=null), then the VAX C RTL assumes that the stream of bytes
presented in an output-function call is a logical record.

VAX C Run-Time library Information 1-17

• If the destination file or device being written to has carriage-control
information (RAT=CR, RAT=FTN, or RAT=PRN), then the emulator
buffers output bytes while it searches for a newline character (\n).
The emulator can buffer as many output bytes as the number of bytes
contained in the maximum record size of the file. If the VAX C RTL
encounters more than the number of bytes in the maximum record
size of the file before it encounters a newline, then the VAX C RTL
writes a record containing the data output thus far and clears the
buffer. Otherwise, when a newline is found, the VAX C RTL forms
the logical record by appending the newline to the buffered bytes.

The second part of stream output emulation is the actual writing of the
logical record formed during the first step. The VAX C RTL executes one
of the following steps to form the output record:

• If the output file record format is variable length with fixed control
(RFM=VFC), and the record attributes do not include print carriage
control (RAT is not PRN), then the VAX C RTL takes the beginning
of the logical record to be the fixed-control header, and reduces the
number of bytes written out by the length of the header. If there are
too few bytes in the logical record, an error is signaled.

• If the record attribute is carriage control (RAT=CR), and if the logical
record ends with a newline character (\n), the VAX C RTL drops the
newline and writes the logical record with implied carriage control.

• If the record attribute is print carriage control (RAT=PRN), then the
VAX C RTL writes the record with print carriage control. If the logical
record ends with a newline character (\n), the VAX C RTL drops the
newline, precedes the output record with a line feed character (\n),
and follows the record with a carriage-return (\r). This is the reverse
of the translation for stream input files with print carriage control
attributes.

• If the record attributes are FORTRAN carriage control (RAT=FTN),
then the VAX C RTL removes the first byte of the record, and concate­
nates prefix and postfix characters to the record. The following rules
describe the way the character in the first byte maps onto the prefix
and postfix bytes that appear in the emulated stream. The identifier
<record> denotes the bytes contained in the logical record exclusive
of the first carriage-control byte; (\n) denotes the newline character;
(\f) denotes the form-feed character; (\r) denotes the carriage-return
character. Consider the following list.

1-18 VAX C Run-Time Library Information

data NULL <data>

data\r + <data>

\n data\r <space> <data>

\f data\r 1 <data>

\n data $ <data>

• If the record attribute is null (RAT=null), then the VAX C RTL per­
forms a test to determine whether the logical record is to be written
to a terminal device. If so, the VAX C RTL scans the record and
replaces each newline character (\n) that is encountered by a carriage­
return/line-feed pair (\r\n). Then, the VAX C RTL writes out the
record w~th no carriage control.

1.4 Specific Portability Concerns

One of the last tasks in preparing to use the VAX C RTL, if you are going
to port your source programs across systems, is to be aware of specific
differences between the VAX C R TL and the run -time libraries of other
implementations of the C language. This section describes some of the
problems that programmers encounter when porting programs to and
from VMS. Although portability is closely tied to the implementation
of the run-time library, this section also contains information on the
portability of other VAX C constructs.

It is not a goal of VAX C to duplicate all run-time functions that exist on
every implementation of the language. VAX C implements a reasonable
subset of existing C language functions and attempts to maintain complete
portability in functionality whenever possible. Many of the Standard
and UNIX I/O functions and macros contained in the VAX C Run-Time
Library are functionally equivalent to those of other implementations.

However, in some instances functions provided by other implementations
are not provided by VAX C because those functions conflict with the VMS .
operating system environment. In some cases, conflicting functions are
replaced by an equivalent, more efficient VAX C function or macro. For
example, the unlink function found on implementations running on UNIX
operating systems has been replaced by the VAX C delete function.

VAX C Run-Time Library Information 1-19

In other cases, VAX C includes functions or macros that provide no
functionality under VMS but are necessary so that programmers may port
their programs to the VMS environment. For example, the nonI macro
has no functionality in the VMS environment, but if you port a program
from a UNIX system to VMS, the presence of nonI in the source code does
not generate an error.

The RTL function and macro descriptions elaborate on issues presented in
this section and describe concerns not documented here. Also, Appendixes
A, B, and C provide information concerning the porting of C programs.
Appendix A, VAX C RTL and RTLs of Other C Implementations, compares
the functionality of VAX C RTL functions and macros with those of other
implementations. Appendix B, VAX C Run-Time Modules and Entry
Points, describes the run-time modules and entry points used by VAX
C. Appendix C, VAX C Definition Modules, lists the .H definition files that
are included in the compilation process to provide macro definitions and
definitions used by some RTL functions; it may be helpful to review the
definitions contained within these files.

The following list documents issues of concern for programmers who wish
to port C programs to VMS:

• VAX C does not implement the global symbols end, edata, and etext.

• You should not attempt to substitute your own code for functions
that are already supplied by VAX C. For example, the VAX C version
of strepy expects a return value. If you were to include a version of
strepy which did not return a value, the procedure would not perform
correctly. The following code is an example of this:

strcpy(p. q)
char *p. *q;
{

while(*p++ = *q++);
}

This use of strepy will not work because code inside the VAX C
Run-Time Library expects, and makes use of, a return value.

• There are differences in the way that VMS and UNIX systems layout
virtual memory. In UNIX, the address space between 0 and the break
address are accessible to the user program. In VMS, the first page of
memory is not accessible.

If a program tries to reference location 0 on VMS, a hardware error
(ACCVIO) is returned and the program terminates abnormally. VMS
reserves the first page of address space to catch incorrect pointer
references, such as a reference to a location pointed to by a null

1-20 VAX C Run-Time Library Information

pointer. For this reason, some existing programs that run on UNIX
systems may fail and should be rewritten.

• Some C programmers code all external declarations in #include files.
Then, specific declarations that require initialization are redeclared
in the relevant module. This practice causes the VAX C compiler to
issue a warning message about multiply declared variables in the same
compilation. One way to avoid this warning is to make the redeclared
symbols extern variables in the #include files.

• The asm call is not supported by VAX C.

• Some C programs call the counted string functions strcmpn and
strcpyn. These names are not used by VAX C. Instead, you can
define macros that expand the strcmpn and strcpyn names into the
equivalent names strncmp and strncpy.

• The VAX C compiler does not support the initialization form:

int foo 123;

Programs using this form of initialization will have to be changed.

• The fixed limit to the length of a string that VAX C accepts is 65,535
characters, or bytes. Long strings must be divided, and programs that
use string arrays may need to be changed.

• VAX C defines the compile-time constants vax, vms, vaxl1c, vaxc,
VAX, VMS, VAXIIC, VAXC, and CC$g_float. These constants are
useful for programs that must run compatibly on various machines
and operating systems. For more information, refer to the Guide to
VAX C.

• The C language does not guarantee any memory order for the vari­
ables in a declaration such as

int a, b, c;

• The VMS Linker usually places VAX C extern variables in program
sections (psects) of the same name as the variable. The linker then
links the psects alphabetically by name. If you are porting a C
program from another operating system to VMS, you may find that
the order of items in the program has been allocated differently in
virtual memory. This causes existing programs with hidden bugs to
fail.

• The dollar sign ($) and the underscore (_) are legal characters in
VAX C identifiers.

VAX C Run-Time Library Information 1-21

• The C language does not define any. order for the evaluation of
expressions in function parameter lists or in general expressions. The
way in which different C compilers evaluate an expression is only
important when the expression has "side effects," as in

a[i] = i++;

and

f(p++, p++)

Neither VAX C nor any other C compiler can guarantee that such
expressions evaluate in the same order on all C compilers.

• The size of an integer is 32 bits on VAX C. Programs that were written
for other machines and that assume a different size for a variable of
type int will have to be modified.

• The C language defines structure alignment to be dependent on the
machine for which the compiler is designed. By default, VAX C aligns
structure members on byte boundaries. Other implementations may
align structure members differently.

• References to structure members in VAX C must not be ambiguous.
For more information, refer to the Guide to VAX C.

• Although registers are allocated based upon how frequently a variable
is used, the keyword register gives the compiler a "strong hint" that
the programmer wants to place a particular variable into a register.
Whenever possible, the variable is placed into a register. Any scalar
variable with the storage class auto or register may be allocated
to a register as long as the variable's address is not taken with the
ampersand operator (&) and as long as it is not a member of a
structure or union.

• When moving programs from one operating system to another, the
operations of the different linkers must also be taken into account.
The VMS Linker does not load an object module from an object
library unless the module contains a function definition, a globaldef
definition, or a globalvalue definition that is needed to resolve a
reference in another component of the program. When you refer to an
extern variable from a program, the linker does not load the library
module if the module contains only a compile-time initialization of
the variable. This is a restriction, which can be avoided in one of two
ways.

In the following example, the program PROG.C contains an external
declaration of a variable; the module LABDATA.C initializes the
variable.

1-22 VAX C Run-Time Library Information

PROG.C:

main()
{

extern float lab_data[];

}

LABDATA.C:

float lab_data { 1. 2. 3. 4. 5. 6. 7. 8 };

}

You can link the object code for the program and the module either
by naming the LABDATA object file in the LINK command, or by
explicitly extracting the module from a library (here, it is part of the
MYLIB library), as follows:

$ LINK PROG.LABDATA.SYS$LIBRARY:VAXCRTL/LIBIRETURNI

$ LINK PROG.MYLIB/LIB/INCLUDE=LABDATA.-IRETURNI
_$ SYS$LIBRARY:VAXCRTL/LIBIRETURN/

You can also bundle the initialization in a module that will be loaded,
that is, in a module that contains a function definition, a globaldef
definition, or a globalvalue definition.

VAX C Run-Time Library Information 1-23

Chapter 2

Standard I/O Functions and Macros

In VAX C, and in most other implementations of C, stream files and their
associated functions form the Standard I/O facilities. Stream files are files
treated as streams of bytes. A series of bytes is read from or written to
a stream file directly, with no record structure. (For more information
concerning RMS file organization, refer to the Guide to VAX C. For more
information concerning the VAX C RTL and RMS file organization, refer
to Chapter 1, VAX C Run-Time Library Information.)

Stream files in VAX C correspond to RMS stream files with the line feed
terminator attribute. In performing stream access to stream files, the
VAX C RTL uses the block I/O facilities of RMS. A stream of bytes is
either written to or read from a file with no translation. If the file has
been opened for update, it can be read (fread) and written (fwrite) at the
current byte position in the file. Note that file sharing is not supported for
stream files.

The fopen Standard I/O function creates or opens existing stream files.
You process stream files with conventional Standard I/O functions such
as fseek, ftell, fread, fwrite, and fprintf. An fread followed by an fwrite
places bytes in the file after the last byte of the previous fread. An fwrite
followed by an fread causes reading to begin after the last byte of the
previous fwrite.

A stream file can be positioned to an arbitrary byte at any time (fseek).
If positioned beyond the end-of-file, the file is extended with NUL bytes.
The file may be positioned relative to the beginning-of-file, relative to the
current position, or relative to the end-of-file. The first byte in the file is
byte zero; therefore, specifying zero as the absolute position in an fseek
call positions the file at its first byte. You can also determine the current
byte position of a stream file with the ftell function.

Standard I/O Functions and Macros 2-1

You must open a file for update if the file is going to be written randomly.
For example:

#include stdio

main()
{

FILE *outfile;
outfile = fopen("diskfile.dat". "w+");

}

Here, the stream file DISKFILE.DAT is opened for "write update" access.

The Standard I/O functions access files by file pointer. A file pointer is
defined in the include definition module stdio as follows:

typedef struct _iobuf *FILE;

You can find the definition of the _iobuf identifier in the stdio module.

To declare a file pointer, use the following line:

NOTE

This definition of a file pointer differs from that of other
implementations of the C language. So long as you access files
using the functions and macros provided as part of the VAX
C Run-Time Library, portability with respect to file pointers is
possible.

2. 1 Conversion Specifications

Several of the Standard I/O functions (including the Terminal I/O func­
tions) use conversion characters to specify data formats for input and
output. Consider the following example:

int x = 5.0;
FILE *outfile;

fprintf(outfile. liThe answer is %d.\n". x);

2-2 Standard 110 Functions and Macros

The decimal value of the variable x replaces the conversion specification
%d in the string to be written to the file associated with the identifier
outfile.

Each conversion specification begins with a percent sign (%). This sign is
followed by an optional assignment-suppression character (*), an optional
number giving the maximum field width, and a conversion character.

2.1.1 Conversion of Input Information

A conversion specification for the input of information can include three
kinds of items:

1. White-space characters (spaces, tabs, and newlines), which match
optional white-space characters in the input field.

2. Ordinary characters (not %), which must match the next nonwhite­
space character in the input.

3. Conversion specifications, which govern the conversion of the charac­
ters in an input field and their assignment to an object indicated by a
corresponding input pointer.

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. Conversion
specifications form part of the format specification. The indicated object
is the target that receives the input value. There must be as many input
pointers as there are conversion specifications, and the addressed objects
must match the types of the conversion specifications.

Table 2-1 describes the conversion characters for formatted input.

Table 2-1: Conversion Characters for Formatted Input
Character Meaning

d Expect a decimal integer in the input. The corresponding
argument must point to an int.

o Expect an octal integer in the input (with or without a leading
zero). The corresponding argument must point to an int.

x Expect a hexadecimal integer in the input (without a leading Ox).
The corresponding argument must point to an int.

Standard I/O Functions and Macros 2-3

Table 2-1 (Cont.): Conversion Characters for Formatted
Input

Character

c

s

e, f

ld, 10, Ix

Ie, If

hd, ho, hx

[...]

2-4 Standard 1(0 Functions and Macros

Meaning

Expect a character in the input. The corresponding argument
must point to a char. The usual skipping of white-space charac­
ters can be disabled in this case, so that n white-space characters
can be read with %nc. If a field width is given with c, the given
number of characters is read and the corresponding argument
should point to an array of char.

Expect a string in the input. The corresponding argument must
point to an array of characters that is large enough to contain the
string plus the terminating NUL character (\0). The input field is
terminated by a space, tab, or newline.

Expect a floating-point number in the input. The corresponding
argument must point to a float. The input format for floating­
point numbers is [+I-]nnn[.ddd]][{Ele}[+I-]nn], where the n's
and the d's are decimal digits (as many as indicated by the field
width minus the signs and the letter E).

Expect an integer whose type is determined by the leading input
characters. For example, a leading zero is equated to octal.
The form OX is equated to hexadecimal and all other forms are
equated to decimal. Each corresponding argument must be an
integer pointer.

Same as d, 0, and x, except that a long integer of the specified
radix is expected. (Retained for portability only, since long and
int are the same in VAX C.)

Same as e, and f, except that the corresponding argument is a
double instead of a float. The same effect can be achieved by
using an uppercase E or F.

Same as d, 0, and x, except that a short integer of the specified
radix is expected.

Expect a string that is not delimited by white-space characters.
The brackets enclose a set of characters (not a string). Ordinarily,
this set (or /I character class") is made up of the characters that
comprise the string field. Any character not in the set will
terminate the field. However, if the first (leftmost) character is
an up-arrow, then the set shows the characters that terminate
the field. The corresponding argument must point to an array of
characters.

Remarks

• The delimiters of the input field can be changed with the bracket
([]) conversion specification. Otherwise, an input field is defined
as a string of nonwhite-space characters. It extends either to the next
white-space character or until the field width, if specified, is exhausted.
The function reads across line/record boundaries, since the newline
character is a white-space character.

• A call to one of the input conversion functions resumes searching
immediately after the last character processed by a previous call.

• If the assignment-suppression character (*) appears in the format
specification, no assignment is made. The corresponding input field is
interpreted and then skipped.

• The arguments must be pointers or other address-valued expressions,
since VAX C permits only calls by value. To read a number in decimal
format and assign its value to n, you must use

scanf("%d", 8m)

not

scanf("%d", n)

• White space in a format specification matches optional white space in
the input field. The format specification

field = %x

matches

field = 5218
field=5218
field= 5218
field =5218

but not

fiel d=5218

Standard I/O Functions and Macros 2-5

2.1.2 Conversion of Output Information

The format specification string for the output of information may contain
two kinds of items:

• Ordinary characters, which are simply copied to the output.

• Conversion specifications, each of which causes the conversion of
a corresponding output source to a character string, in a particular
format.

Table 2-2 describes the conversion characters for formatted output.

Table 2-2: Conversion Characters for Formatted Output
Character Meaning

d Convert to decimal format.

o Convert to octal format.

x Convert to unsigned hexadecimal format (without leading Ox).
An uppercase X causes the hexadecimal digits A-F to be printed
in uppercase. A lowercase x causes those digits to be printed in
lowercase.

u Convert to unsigned decimal format (giving a number in the range
zero to 4,294,967,295).

c Output single character (NUL characters are ignored).

s Write characters until NUL is encountered or until number of
characters indicated by the precision specification is exhausted. If
the precision specification is zero or omitted, all characters up to a
NUL are output.

e Convert float or double to the format [-]m.nnnnnnE[+I-]xx, where
the number of n's is specified by the precision (default = 6). If the
precision is explicitly zero, the decimal point appears but no n's
appear. An E is printed if the conversion character is an uppercase
E. An e is printed if the conversion character is a lowercase e.

Convert float or double to the format [-]m .. m.nnnnnn, where the
number of n's is specified by the precision (default - 6). Note that
the precision does not determine the number of significant digits
printed. If the precision is explicitly zero, no decimal point appears
and no n's appear.

2-6 Standard I/O Functions and Macros

Table 2-2 (Cont.): Conversion Characters for Formatted
Output

Character

g

%

Meaning

Convert float or double to d, e, or f format, whichever is shorter
(suppress insignificant zeros).

Write out the percent symbol. No conversion is performed.

The following characters can be used between the percent sign (%) and
the conversion character. They are optional, but if specified, they must
occur in the order listed.

Character

- (hyphen)

width

. (period)

precision

1 (lowercase
letter "L")

* (asterisk)

Meaning

Left justify the converted output source in its field.

Use this integer constant as the minimum field width. If the
converted output source is wider than this minimum, write
it out anyway. If the converted output source is narrower
than the minimum width, pad it to make up the field width.
Padding is with spaces normally, and with zeros if the field
width is specified with a leading zero; this does not mean
that the width is an octal number. Padding is on the left
normally and on the right if a minus sign is used.

Separates field width from precision .

Use this integer constant to designate the maximum number
of characters to print with s format, or the number of
fractional digits with e or f format.

Indicates that a following d, 0, x, or u specification corre­
sponds to a long output source. In VAX C, all int values are
long by default.

Can be used to replace the field width specification and/or
the precision specification. The corresponding width or
precision is given in the output source.

2.2 Opening and Closing Files

The following sections describe the Standard I/O functions that open and
close files.

Standard I/O Functions and Macros 2-7

2.2.1 fclose

2.2.2 fdopen

The fclose function closes a file by flushing any buffers associated with the
file control block and freeing the file control block and buffers previously
associated with the file pointer.

The syntax of the function is as follows:

#include stdio

int fclose (FILE *fiLe_ptr);

Arguments

The file_ptr argument is a pointer to the file to be closed.

Additional Information

When a program terminates normally, fclose is called automatically for all
open files. On success, fclose returns zero. If the buffered data cannot be
written to the file, or if the file control block is not associated with an open
file, fclose returns EOF (a preprocessor constant defined in the #include
module stdio).

The function fdopen associates a file pointer with a file descriptor returned
by an open, creat, dup, dup2, or pipe function.

The syntax of the function is as follows:

#include stdio

FILE *fdopen (int fiLe_desc. char *a_mode);

Arguments

The arguments for the fdopen function are as follows.

2-8 Standard I/O Functions and Macros

file_desc The file descriptor returned by open, creat, dup, dup2, or pipe.

a_mode One of the character strings IIrll, IIWIl
, lIall, IIr+II, IIW+II , IIrb ll , IIr+b ll ,

IIrb+/I, /lwb/l, /lw+b ll , IIwb+II , lIab", lIa+b ll , "ab+", or "a+", for read, write,
append, read update, write update, or append update, respectively.

The access modes have the following effects:

• "r" opens an existing file for reading.

• "w" creates a new file, if necessary, and opens the file for writing.
If the file already exists, it creates a new file with the same name
and a higher version number.

• "a" opens the file for append access. An existing file is positioned
at end-of-file, and data is written there. If the file does not exist,
the VAX C RTL creates it.

The update access modes allow a file to be opened for both reading
and writing. When used with existing files, "r+/I and "a+" differ only
in the initial positioning within the file. The modes are as follows:

• "r+" opens an existing file for read update access. It is opened for
reading, positioned initially at beginning-of-file, but writing is also
allowed.

• "w+" opens a new file for write update access.

• "a+1I opens a file for append update access. The file is positioned
at end-of-file (writing) initially. If the file does not exist, the VAX
C RTL creates it.

• /lb ll means binary access mode. In this case, no conversion of
carriage control information is attempted.

Additional Information

The fdopen function allows you to access a file, originally opened by one
of the UNIX I/O functions, with Standard I/O functions. Ordinarily, a
file can be accessed by either a file descriptor or by a file pointer, but not
both, depending on the way you open it. For more information, refer
to Chapter 1, VAX C Run-Time Library Information.

On success, fdopen returns a nonzero value which is the file pointer. On
error, fdopen returns zero.

See also freopen and fopen in Sections 2.2.4 and 2.2.3.

Standard I/O Functions and Macros 2-9

2.2.3 fopen

The function fopen opens a file by returning the address of a FILE
structure.

The syntax of the function is as follows:

#include stdio

FILE *fopen (const char *fiLe_spec. const char *a_fflode • ...);

Arguments

The arguments for the fopen function are as follows:

file_spec

a_mode

A character string containing a valid file specification.

An access mode indicator. See Section 2.2.2 for a description of
a_mode.

Represents optional file attribute arguments. The file attribute
arguments are the same as those used in the creat function
(see Chapter 4, UNIX System I/O Functions).

Additional Information

On error, this function returns the null pointer value; the constant NULL
is defined in the definition module stdio to be the null pointer value. The
function returns NULL to signal the following errors:

• File protection violations

• Attempts to open a nonexistent file for read access

• Failure to open the specified file

The file control block may be freed with the fclose function, or by default
on normal program termination.

See also fdopen and freopen in Sections 2.2.2 and 2.2.4.

2-10 Standard I/O Functions and Macros

2.2.4 freopen

The freopen function substitutes the file, named by a file specification, for
the open file addressed by a file pointer. The latter file is closed.

The syntax of the function is as follows:

#include stdio

FILE *freopen (const char *fiLe_spec, const char *a_fflode, FILE *fiLe_ptr, ...);

Arguments

The arguments for the freopen function are as follows:

A pointer to a string that contains a valid VMS or DEC/Shell
file specification. After the function call, the given file pointer is
associated with this file.

An access mode indicator. See Section 2.2.2 for a description of
a_mode.

A file pointer.

Represents optional file attribute arguments. The file attribute
arguments are the same as those used in the creat function
(see Chapter 4, UNIX System I/O Functions).

Additional Information

On error, this function returns the null pointer value; the constant NULL
is defined in the definition module stdio to be the null pointer value.

You typically use freopen to associate one of the predefined names
stdin, stdout, or stderr with a file. For more information concerning these
predefined names, refer to Chapter 3, Terminal I/O Functions and Macros.

See also fdopen and fop en in Sections 2.2.2 and 2.2.3.

2.3 Reading from Files

The following sections describe the Standard I/O functions and macros
that read data from files.

Standard I/O Functions and Macros 2-11

2.3.1 getc, fgetc, getw

The fgetc and getw functions and the getc macro return characters from a
specified file.

The syntax descriptions are as follows:

#include stdio

int fgetc (FILE *fiLe_ptr);
int getc (FILE *fiLe_ptr);
int getw (FILE *fiLe_ptr);

Arguments

The argument file_ptr is a pointer to the file to be accessed.

Additional Information

The compiler substitutes the following text for a call to the macro
getc(file_ptr):

fgetc(file_ptr)

The getc macro returns the next character as an int from the specified file.
The file is left positioned after the returned character, and the next getc
call takes the character from that position. The fgetc function and the getc
macro are functionally equivalent.

The getw function returns the next four characters from the specified input
file as an int. No conversion is performed. If end-of-file is encountered
during the retrieval of any of the four characters, then EOF (a preprocessor
constant defined in the #include module stdio) is returned and all four
characters are lost.

The two functions and the macro return EOF on end-of-file or error, but
since EOF is a perfectly good integer, feof and ferror should be used to
check their success.

2-12 Standard I/O Functions and Macros

2.3.2 fgets

2.3.3 fread

The fgets function reads a line from a specified file, up to a specified
maximum number of characters or up to and including the newline
character, whichever comes first; the function stores the string in the str
argument.

The syntax of the function is as follows:

#include stdio

char *fgets (char *str, int maxchar, FILE *JiLe_ptr);

Arguments

The arguments for the fgets function are as follows:

str

nzaxchar

The address where the fetched string will be stored.

Specifies the maximum number of characters to fetch.

A file pointer.

Additional Information

The function terminates the line with a NUL (\0) character. Unlike gets,
fgets places the newline that terminates the input line into the user
buffer if it fits. On end-of-file or error, the function returns NULL (which
is defined in the stdio definition module to be the null pointer value).
Otherwise, it returns the address of the first character in the line.

The fread function reads a specified number of items from the file.

The syntax of the function is as follows:

#include stdio

size_t fread (void *ptr, size_t size_oj_item,
size_t number_items, FILE *JiLe_ptr);

Standard I/O Functions and Macros 2-13

Arguments

The arguments for the fread function are as follows:

ptr A pointer to the location, within memory, in which to place the
information being read. You determine the type of the object
pointed to by the type of the items being read.

size_o/_item The size of the items being read, in bytes.

number _items The number of items to be read.

file_ptr A pointer that indicates the file from which the items are to be
read.

Additional Information

The type size_t is defined in the standard include module stdio. The
reading begins at the current location in the file. The items read are
placed in storage beginning at the location given by the first argument.
The size of an item in bytes must also be specified.

If the file pointed to by file_ptr is a record file, fread will only read the
number of items specified in number_items.

The function returns the number of items actually read. If fread encoun­
ters the end-of-file or an error, it returns zero (not EOF).

2.3.4 fscanf, sscanf

The fscanf function performs formatted input from a specified file, and
the sscanf function performs formatted input from a character string in
memory.

The syntax descriptions of the functions are as follows:

#include stdio

int fscanf (FILE *fiLe_ptr, const char *format_spec, ...);
int sscanf (char *str, const char *format_spec, ...);

2 -14 Standard I/O Functions and Macros

Arguments

The arguments for the fscanf and sscanf functions are as follows:

file_ptr

format _spec

str

A pointer to the file that provides input text for fscanf.

Contains characters to be taken literally from the input or
converted and placed in memory at the specified ... argument.

Optional expressions whose resultant types correspond to
conversion specifications given in the format specification. If
no conversion specifications are given, the input pointers can
be omitted. Otherwise, the function calls must have exactly as
many input pointers as there are conversion specifications, and
the conversion specifications must match the types of the input_
ptrs. Conversion specifications are matched to input sources in
simple left-to-right order.

The address of the character string that provides the input text to
sscanf.

An example of a conversion specification is as follows:

main ()
{

int temp. temp2;
FILE *file_ptr;

fscanf(file_ptr. "%d %d". &temp. &temp2);
printf("The answers are %d. and %d.". temp. temp2);

}

Given a file, designated by the argument file_ptr, with the following
contents

4 17

sample input from the previous example is as follows:

$ RUN EXAMPLEIRETURNI
The answers are 4. and 17.

For a complete description of the format specification and the input
pointers, refer to Section 2.1.1.

Additional Information

The functions return the number of successfully matched and assigned
input items. If end-of-file (or the end of the string) is encountered,
the functions return EOF (a preprocessor constant defined in the stdio
definition module).

Standard I/O Functions and Macros 2-15

2.3.5 ungete

The ungetc function pushes back a character into the input stream and
leaves the stream positioned before the character.

#include stdio

int ungetc (char character, FILE *fiLe_ptr):

Arguments

The arguments for the ungetc function are as follows:

character A value of type char.

A file pointer.

Additional Information

When using the ungetc function, the character is said to be "pushed back"
onto the file, since it will be returned by the next getc call. The function
returns the push-back character or EOF if it cannot push the character
back.

One push-back is guaranteed, even if there has been no previous activity
on the file. The function fseek erases all memory of pushed-back charac­
ters. Note that the pushed back character is not written to the underlying
file.

2.4 Writing to Files

The following sections describe the Standard I/O functions and macros
used to write to files.

2.4.1 fprintf, sprintf

The fprintf function performs formatted output to a specified file, and the
sprintf function performs formatted output to a string in memory.

The syntax descriptions of the functions are as follows:

#include stdio

int fprintf (FILE *fiLe_ptr, const char *format_spec, ...);
int sprintf (char *str, const char *format_spec, ...);

2-16 Standard I/O Functions and Macros

Arguments

The arguments for the fprintf and sprintf functions are as follows:

file_ptr A pointer to the file to which output is to be written.

format _spec Contains characters to be written literally to the output or con­
verted as specified in the argument output_src.

str

Optional expressions whose resultant types correspond to con­
version specifications given in the format specification. If no
conversion specifications are given, the output sources may be
omitted. Otherwise, the function calls must have exactly as many
output sources as there are conversion specifications, and the con­
version specifications must match the types of the output sources.
Conversion specifications are matched to output sources in simple
left-to-right order.

The address of the string that will receive the formatted output.

An example of a conversion specification is as follows:

mainO
{

int temp = 4. temp2 = 17;
FILE *file_ptr;

fprintf(file_ptr. liThe answers are %d. and %d.". temp. temp2);
}

Sample output (to the file designated by file_ptr) from the previous
example is as follows:

The answers are 4. and 17.

For a complete description of the format specification and the output
source, refer to Section 2.1.1.

Additional Information

These functions return the number of successfully matched and assigned
output items.

Standard I/O Functions and Macros 2-17

2.4.2 fputs

2.4.3 fwrite

The £puts function writes a character string to a file without copying the
string's NUL terminator (\0).

The syntax of the function is as follows:

#include stdio

int fputs (const char *str, FILE *fiLe_ptr);

Arguments

The arguments for the £puts function are as follows:

str A pointer to a character string.

A file pointer.

The fwrite function writes a specified number of items to the file.

The syntax of the function is as follows:

#include stdio

size_t fwrite (void *ptr, size_t size_oj_item,
size_t number_items, FILE *fiLe_ptr);

Arguments

The arguments for the fwrite function are as follows:

ptr A pointer to the memory location from which information is
being written.

size_ot_item The size of the items being written, in bytes.

Humber_items The number of items being written;

file_ptr A file pointer and indicates the file to which the items are being
written.

2-18 Standard I/O Functions and Macros

Additional Information

The type size_t is defined in the standard include module stdio.

The function returns the number of items actually written. The number
of records actually written depends upon the maximum record size of the
file.

If the file is a record-mode file, fwrite outputs at least number-items
records, each of length size_of-item.

2.4.4 pute, 'pute, putw

The pute macro and the £pute and putw functions write characters to a
specified file.

The syntax descriptions are as follows:

#include stdio

int putc (char character, FILE *fiLe_ptr);
int fputc (char character, FILE *fiLe_ptr);
int putw (int integer, FILE *fiLe_ptr);

Arguments

The arguments for the pute macro and the £pute and putw functions are
as follows:

character

integer

file_ptr

An object of type char.

An object of type int or long.

A file pointer.

Additional Information

The compiler substitutes the following text for a call to the macro
pute(character, file_ptr):

fputc(character, file_ptr)

The pute macro writes a single character to a file and returns the character.
The file pointer is left positioned after the character. The £pute function is
functionally equivalent to pute. The putw function writes four characters
to the output file as an int. No conversion is performed.

The two functions and the macro return EOF (defined in the stdio defi­
nition module) to designate output errors. Since EOF is itself an integer,
ferror should be used to detect errors encountered by putw.

Standard I/O Functions and Macros 2-19

2.5 Maneuvering in Files

2.5.1 fflush

2.5.2 fseek

The following sections describe the Standard I/O functions used to
position the file pointer.

The fflush function writes out any buffered information for the specified
file.

The syntax of the function is as follows:

#include stdio

int fflush (FILE *fiLe_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

The fflush function returns zero when it is successful. If the buffered data
cannot be written to the file, or if the file control block is not associated
with an output file, fflush returns EOP (a preprocessor constant defined in
the stdio definition module).

Note that output files are normally buffered if, and only if, they are not
directed to a terminal, but stderr is not buffered by default.

The fseek function positions the file to the specified byte offset in the file.

The syntax of the function is as follows:

#include stdio

int fseek (FILE *fiLe_ptr, int offset, int direction);

2-20 Standard I/O Functions and Macros

2.5.3 fie II

Arguments

The arguments for the fseek function are as follows:

A file pointer.

The offset specified in bytes.

file_ptr

offset

direction An integer indicating whether the offset is measured forward from
the current read or write address (1), forward from the beginning of
the file (0), or backwards from the end-of-file (2).

Additional Information

The fseek function returns EOF (a preprocessor constant defined in the
stdio definition module) for improper seeks; zero for successful seeks.

In general, fseek should always be directed to an absolute position
returned by ftell. With stream files, the direction argument can be 0, 1, or
2. With record files, an fseek to a position that was not returned by ftell
causes unpredictable behavior.

See also ftell.

The ftell function returns the current byte offset to the specified stream
file.

#include stdio

int ftell (FILE *fiLe_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

The ftell function measures the offset from the beginning of the file. With
record files, ftell returns the starting position of the current record, not the
current byte offset.

This function is useful only for handing an offset to fseek, to reposition
the file to where it was when ftell was called. The function ftell returns
EOF upon error.

Standard I/O Functions and Macros 2-21

2.5.4 rewind

The rewind function sets the file to its beginning.

The syntax of the function is as follows:

#include stdio

int rewind (FILE *jiLe_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

The rewind function is equivalent to fseek (file-pointer, 0, 0). The
function returns EOF to indicate failure; zero to indicate success. The
rewind function can be used with either record or stream files.

2.6 Additional Standard I/O Functions and Macros

The following sections describe the Standard I/O functions that perform
various tasks.

2.6. 1 access

The access function checks a file to see whether a specified access mode is
allowed.

The syntax of the function is as follows:

#include stdio

int access (char *jiLe_spec. int mode);

2-22 Standard I/O Functions and Macros

Arguments

The arguments for the access function are as follows:

A character string that gives a VMS or DEC/Shell file specification.
The usual defaults and logical name translations are applied to the
file specification.

mode Interpreted as follows:

Mode Argument

o
1

2

4

Access Mode

Tests to see if the file exists.

Execute.

Write (implies delete access).

Read.

Combinations of access modes are indicated by summing the values.
For example,. the integer 7 indicates RWED.

NOTE

The function access does not accept network files as arguments.

Additional Information

The access function returns zero if the access is allowed and EOF if not
allowed.

2.6.2 clearerr

The dearerr macro resets the error and end-of-file indications for a file (so
that ferror and feof will no longer return a nonzero value).

The syntax of the macro is as follows:

#include stdio

void clearerr (FILE *fiLe_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

Note that VAX C implements dearerr as a macro.

Standard I/O Functions and Macros 2-23

2.6.3 feof

2.6.4 ferror

The feof macro tests a file to see if the end-of-file has been reached.

The syntax of the macro is as follows:

#include stdio

int feof (FILE *fiLe_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

If end-of-file has been reached, feof returns a nonzero integer; if not, it
returns O. Note that VAX C implements feof as a macro.

The ferror macro returns a nonzero integer if an error has occurred while
reading or writing a file.

The syntax of the macro is as follows:

#include stdio

int ferror (FILE *fi~e_ptr);

Arguments

The argument file_ptr is a file pointer.

Additional Information

A call to the macro continues to return this indication until the file is
closed or until dearerr is called. Note that VAX C implements ferror as a
macro.

2-24 Standard I/O Functions and Macros

2.6.5 fgetname

The fgetname function returns the file specification associated with a file
pointer.

The syntax of the function is as follows:

#include stdio

char *fgetname (FILE *fiLe_ptr, char * buffer, ...);

Arguments
,-

The arguments for the fgetname function are as follows:

file_ptr

buffer

A file pointer.

A pointer to a character string that is large enough to hold the file
specification.

Represents an optional additional argument that can be either 1 or o.
If you specify 1, the function fgetname returns the file specification
in VMS format. If you specify 0, the function fgetname returns
the file specification in DEC/Shell format. If you do not specify
this argument, this function returns the file name according to
your current command language interpreter. For more information
concerning DEC/Shell file specifications, refer to Chapter 1, VAX C
Run-Time Library Information.

Additional Information

The fgetname function places the file specification at the address given
in buffer and returns the address of buffer. The buffer should be an array
large enough to contain a fully qualified file specification (the maximum
length is 256 characters). When an error occurs, fgetname returns o.

2.6.6 mktemp

The mktemp function creates a unique file name from a template.

The syntax of the function is as follows:

#include stdio

char *mktemp (char *tempLate);

Standard I/O Functions and Macros 2-25

Arguments

The template argument is a pointer to a user-defined template. You supply
the template in the form, "namXXXXXX". The six trailing X's are replaced
by a unique series of characters. You may supply the first three characters.

Additional Information

The mktemp function returns a pointer to the file name it creates. If
a unique file name cannot be created, mktemp returns a pointer to an
empty string (\0).

2.6.7 remove, delete

The remove and delete functions cause a file to be deleted.

The syntax of the remove and delete functions is as follows:

#include stdio

int remove (const char *fiLe_spec);

int delete (const char *fiLe_spec);

Arguments

The argument file-Bpec is a pointer to the string that is a VMS file specifi­
cation or a DEC/Shell file specification.

Additional Information

The remove and delete functions return a nonzero value if the operation
fails.

Note that the remove and delete functions are functionally equivalent in
the VAX C RTL.

2-26 Standard I/O Functions and Macros

2.6.8 rename

The rename function gives a new name to an existing file.

The syntax of the rename function is as follows:

#include stdio

int rename (const char *oLd_fiLe_spec, const char *new_fiLe_spec);

Arguments

The arguments to the rename function are as follows:

A pointer to a string that is the existing name of the file to be
renamed.

A pointer to a string that is the new name to be given to the
file.

Additional Information

The rename function returns a nonzero value if the operation fails.

If you attempt to rename a file that is currently open, the behavior is
undefined. Note that you cannot rename a file from one physical device
to another. Both the old and new file specifications must reside on the
same device.

2.6.9 setvbuf, setbuf

The functions setvbuf and setbuf associate a buffer with an input or
output file.

The syntax of the functions is as follows:

#include stdio

int setvbuf (FILE *fiLe_ptr, char * buffer, int type, size_t size);

int setbuf(FILE *~ile_ptr, char *buffer);

Standard I/O Functions and Macros 2-27

Arguments

The arguments to the setvbuf and setbuf functions are as follows:

file_ptr

buffer

type

A pointer to a file.

A pointer to an array. If either _IOFBF or _IOLBF is specified as a
value for type, input/output operations will be done using the array
pointed to by buffer. The buffer must be large enough to hold an
entire input record.

If buffer is a NULL pointer, input/output operations will be done
using the buffer automatically allocated by the VAX C Run-Time
Library. If _IONBF is specified by type, input/output operations will
be completely unbuffered and the pointer in buffer is ignored.

A value that determines how the file will be buffered.

The following values for type are defined in stdio:

• _IOFBF causes input/output to be fully buffered if possible.

• _IOLBF causes output to be line buffered if possible (the buffer
will be flushed when a new-line character is written, when the
buffer is full, or when input is requested).

• _IONBF causes input/output to be completely unbuffered if
possible. _IONBF causes buffer and size to be ignored.

size The number of bytes in the array pointed to by buffer. The constant
BUFSIZ in stdio is recommended as a good buffer size.

Additional Information

The setvbuf and setbuf functions can be used after a file is opened but
must be used before any input or output operations.

The functions return a nonzero value if an invalid value is given for type
or size; otherwise, they return a zero value.

A common source of error is allocating buffer space as an "automatic"
variable in a code block, and then failing to close the file in the same
block.

A buffer is normally obtained by calling malloc. For more information,
refer to Chapter 9, Memory Allocation Functions.

2-28 Standard I/O Functions and Macros

2.6.10 tmpfile

The tmpfile function creates a temporary file that is opened for update.

The syntax of the function is as follows:

#include stdio

FILE *tmpfile (void);

Additional Information

The file exists only for the duration of the process and is preserved across
forks. The function returns the address of a FILE pointer (defined in the
stdio definition module), or a null pointer value (NULL) if there is an error.

2.6.11 tmpnam

The tmpnam function creates a character string that can be used in place
of the file-name argument in other function calls.

The syntax of the function is as follows:

#include stdio

char *tmpnam (char *name);

Arguments

The name argument is a character string containing a name to be used in
place of file-name arguments in other functions or macros. If the name
argument is the null pointer value NULL, tmpnam returns the address of
an internal storage area. If name is not NULL, then it is taken to be the
address of an area of length L _tmpnam (defined in the stdio definition
module). In this case, tmpnam returns the name argument. Successive
calls to tmpnam with a NULL argument cause the function to overwrite
the current name.

2.7 Program Examples

Example 2-1 illustrates the use of the fopen, ftell, sprintf, £puts, fseek,
fgets, and fclose functions.

Standard I/O Functions and Macros 2-:-29

Example 2-1: Using the Standard I/O Functions

/* This program establishes a file pointer, writes lines from *
* a buffer to the file, moves the file pointer to the second *
* record, copies the record to the buffer, and then prints
* the buffer to the screen. */

#include stdio

main ()
{

}

char buffer [32] ;
int i, pos;
FILE *fptr;

/* Set file pointer
fptr fopen("data.dat" , "w+");
if (fptr <= NULL)

{
perror (II f open II) ;

exit 0; /* Exit if fopen error
}

for (i=l; i<5; i++)
{

if

if

}

if (i == 2) /* Get position of record 2 */
pos = ftell(fptr);

/* Print a line to the buffer */
sprintf(buffer, "test data line %d\n", i);

/* Print buffer to the record */
fputs(buffer, fptr);

/* Go to record number 2
(fseek(fptr, pos, 0) < 0)
{

}

{

}

perror("fseek");
exit 0;

(fgets (buffer, 32,

perror("fgets");
exitO;

/* Exit on fseek error

/* Put record 2 in the buffer
fptr) == NULL)

/* Exit on fgets error

/* Print the buffer
printf("Data in record 2 is: %S", buffer);
fclose(fptr); /* Close the file

2-30 Standard I/O Functions and Macros

Sample output, to the terminal, from the previous example is as follows.

$ RUN EXAMPLEIRETURNI
Data in record 2 is: test data line 2

Sample output, to DATA.DAT, from the previous example is as follows:

test data line 1
test data line 2
test data line 3
test data line 4

Standard I/O Functions and Macros 2-31

Chapter 3

TerminalljO Functions

VAX C defines three file pointers that allow you to perform I/O to and
from the logical devices usually associated with the user's terminal (for in­
teractive jobs) or a batch stream (for batch jobs). Since, in VMS, the three
process permanent files SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
perform the same functions for both interactive and batch jobs, the term
"Terminal I/O" refers to both terminal and batch stream I/O. The file
pointers stdin, stdout, and stderr are defined when you include the stdio
definition module using the #inc1ude preprocessor directive.

The file pointer stdin is associated with the terminal to perform input. This
file is equivalent to SYS$INPUT. The file pointer, stdout, is associated with
the terminal to perform output. This file is equivalent to SYS$OUTPUT.
The file pointer, stderr, is associated with the terminal to report run-time
errors. This file is equivalent to SYS$ERROR.

Also, three file descriptors exist that refer to the terminal. The file de­
scriptor 0 is equivalent to SYS$INPUT, 1 is equivalent to SYS$OUTPUT,
and 2 is equivalent to SYS$ERROR. For more information concerning file
descriptors, refer to Chapter 4, UNIX System I/O Functions.

When performing I/O at the terminal, you can use Standard I/O functions
and macros (specifying the pointers stdin, stdout, or stderr as arguments),
you can use UNIX I/O functions (giving the corresponding file descriptor
as an argument), or you can use the Terminal I/O functions and macros.
There is no functional advantage of using one type of I/O over another;
the Terminal I/O functions may save keystrokes due to the absence of
arguments.

The following sections describe the Terminal I/O functions.

Terminal I/O Functions 3-1

3.1 getchar

3.2 gets

The getchar function reads a single character from the standard input
(stdin).

The syntax of the function is as follows:

#include stdio

int get char (void);

Additional Information

The getchar function returns EOF on end-of-file or error.

The getchar function is identical to fgetc(stdin).

The gets function reads a line from the standard input (stdin).

The syntax of the function is as follows:

#include stdio

char *gets (char *str);

Arguments

The argument str is a pointer to a character string used to hold the
information fetched from stdin.

Additional Information

The newline character (\n) that ends the line is replaced by the function
with an ASCII NUL character (\0). The function returns its argument,
which is a pointer to a character string containing the acquired line.
If an error occurs or if end-of-file is encountered before a newline is
encountered, the function returns NULL, the null pointer value.

3-2 Terminal I/O Functions

3.3 printt

The printf function performs formatted output from the standard output
(stdout).

The syntax of the function is as follows:

#include stdio

int printf (const char *format_spec, ...);

Arguments

The arguments for the printf function are as follows:

format -spec Contains characters to be written literally to the output or
converted as specified in the ... arguments.

Represents optional expressions whose resultant types correspond
to conversion specifications given in the format specification. If
no conversion specifications are given, the output sources may
be omitted. Otherwise, the function call must have exactly as
many output sources as there are conversion specifications, and
the conversion specifications must match the types of the output
sources. Conversion specifications are matched to output sources
in simple left-to-right order.

An example of a conversion specification is as follows:

mainO
{

int temp = 4, temp2 = 17;

printf("The answers are Y.d, and Y.d.", temp, temp2);
}

Sample output from the previous example is as follows:

$ RUN EXAMPLEIRETURNI
The answers are 4, and 17.

Additional Information

The printf function returns the number of characters written.

Terminal I/O Functions 3-3

3.4 putehar

3.5 puts

The putchar function writes a single character to the standard output
(stdout) and returns the character.

The syntax of the function is as follows:

#include stdio

int put char (char character);

Arguments

The argument character is an object of type char.

Additional Information

The function putchar returns EOF to designate output errors.

The function putchar is identical to fputc(character, stdout).

The function puts writes a character string to the standard output (stdout),
followed by a newline.

The syntax of the function is as follows:

#include stdio

int puts (char *str);

Arguments

The argument str is a pointer to a character string to be written to stdout.

Additional Information

The function does not copy the terminating NUL character to the output
stream.

3-4 Terminal I/O Functions

3.6 scanf

The function scanf performs formatted input from the standard input
(stdin).

The syntax of the function is as follows:

#include stdio

int scanf (const char *format_spec • ...);

Arguments

The arguments for the scanf function are as follows:

format-spec Contains characters to be taken literally from the input or
converted and placed in memory at the specified input_sources.

Represents optional expressions that are pointers to objects
whose resultant types correspond to conversion specifications
given in the format specification. If no conversion specifications
are given, these input pointers may be omitted. Otherwise,
the function call must have exactly as many input pointers
as there are conversion specifications, and the conversion
specifications must match the types of the input_pointers.
Conversion specifications are matched to input sources in simple
left-to-right order.

An example of a conversion specification is as follows:

mainO
{

int temp. temp2;

scanf(lIY.d Y.d". &temp. &temp2);
printf("The answers are Y.d. and Y.d.". temp. temp2);

}

Sample input and output from the previous example is as follows:

$ RUN EXAMPLEIRETURNI
4 17 I RETURN I
The answers are 4. and 11.

Additional Information

The function returns the number of successfully matched and assigned
input items. If end-of-file is encountered, the function returns EOF (a
preprocessor constant defined in the stdio definition module).

Terminal I/O Functions 3-5

3.7 Program Examples

Example 3-1 illustrates the printf function.

3-6 Terminal I/O Functions

Example 3-1: Output of the Conversion Specifications

1* This program uses the printf function to print the *
* various conversion specifications and their effect on the *
* output. *1

1* Include proper module *
* in case printf has to *
* return EOF. *1

#include stdio

mainO

{

double val 123.3456e+3;
char c leI ;
int i -1500000000;
char *s "thomasina";

1* Print the specification code. a colon. two tabs. and the *

}

* formatted output value delimited by the angle bracket *
* characters « ». *1

printf("%%9.4f:\t\t<%9.4f>\n". val);
printf("%%9f:\t\t<%9f>\n". val);
printf("%%9.0f:\t\t<%9.0f>\n". val);
printf("%%-9.0f:\t\t<%-9.0f>\n\n". val);

printf("%%11.6e:\t\t<%11.6e>\n". val);
printf("%%lle:\t\t<%lle>\n". val);
printf ("%%11.0e: \t\t<%11.0e>\n" • val);
printf("%%-11.0e:\t\t<%-11.0e>\n\n". val);

printf("%%llg:\t\t<%llg>\n". val);
printf("%%9g:\t\t<%9g>\n\n". val);

printf("%%d:\t\t<%d>\n". c);
printf("%%c:\t\t<%c>\n". c);
printf("%%o:\t\t<%o>\n". c);
printf("YoYox:\t\t<Yox>\n\n". c);

printf("%%d:\t\t<%d>\n". i);
printf {"YoYou: \t\t<You>\n" , i);
printf{"YoYox:\t\t<Y.x>\n\n". i);

printf("YoYos:\t\t<Yos>\n". s);
printf("YoYo-9.6s:\t\t<%-9.6s>\n". s);
printf{"%Yo-*.*s:\t\t<Yo-*.*s>\n". 9. 5. s);
printf("%%6.0s:\t\t<Yo6.0s>\n\n". s);

Terminal I/O Functions 3-7

Sample output from the previous example is as follows:

$ RUN
%9.4f:
%9f:
%9.0f:
%-9.0f:

%11.6e:
%11e:
%11. Oe:

EXAMPLEIRETURNI
<123345.6000>
<123345.600000>
< 123346>
<123346>

<1.233456e+05>
<1.233456e+05>
< 1.e+05>

%-11.0e: <1. e+05 >

%11g: < 123346>
%9g: < 123346>

%d: <67>
Xc: <C>
%0: <103>
Xx: <43>

%d: <-1500000000>
%u: <2794967296>
Xx: <a697d100>

%s: <thomas ina>
%-9.6s: <thomas >
%-*.*s: <thoma >
%6.0s: <thomas ina>
$

3-8 Terminal I/O Functions

Chapter 4

UNIX I/O Functions and Macros

The UNIX I/O functions and macros access files by a file descriptor. A file
descriptor is an integer that identifies the file. A file descriptor is declared
as follows:

In this case, the identifier file_desc is the name of the file descriptor.

When you create a file using the UNIX I/O functions and macros, you can
supply values for the following RMS file attributes:

• Allocation quantity

• Block size

• Default file extension

• Default file name

• File access context options

• File-processing options

• File sharing options

• Multiblock count

• Multibuffer count

• Maximum record size

• Record attributes

• Record format

• Record processing options

For more information concerning RMS, refer to the Guide to VAX C.

UNIX I/O Functions and Macros 4-1

UNIX I/O functions such as creat associate the file descriptor with a file.
Consider the following example:

file_desc = creat(IINFILE.DAT", 0, "rat=cr", "rfm=var");

This statement creates the file, INFILE.DAT, with mode argument 0,
carriage-return control, variable-length records, and it associates the
argument file_desc with the file. When the file is accessed for other
operations, such as reading or writing, the file descriptor is used to refer to
the file. For example:

write(file_desc, buffer, sizeof(buffer»;

This statement writes the contents of the buffer to INFILE.DAT.

There may be circumstances when you should use UNIX I/O functions
and macros instead of the Standard I/O functions and macros. For a de­
tailed discussion of both forms of I/O and how they manipulate the RMS
file formats, refer to Chapter 1, VAX C Run-Time Library Information.

4. 1 Opening and Closing Files

4.1.1 close

The following sections describe the UNIX I/O functions that open and
close files.

The close function closes the file associated with a file descriptor.

The syntax of the function is as follows:

#include unixio

int close (int fiLe_desc);

Arguments

The argument file_desc is a file descriptor.

4-2 UNIX I/O Functions and Macros

4.1.2 creat

Additional Information

The close function returns 0 if the file is properly closed. It returns -1 if
the file descriptor is undefined or if an error occurs while the file is being
closed (for example, if the buffered data cannot be written out).

NOTE

Upon image exit, all buffered data is written to the file if it was
opened for writing or update, and the file is closed.

The creat function creates a new file.

The syntax of the function is as follows:

#include unixio

int creat (char *fiLe_spec, unsigned int mode, ...);

Arguments

The arguments to the creat function are as follows.

UNIX I/O Functions and Macros 4-3

file-spec

mode

4-4 UNIX I/O Functions and Macros

A NUL-terminated string containing any valid file specification.

An unsigned value that specifies the file-protection mode; the
compiler performs a bitwise AND operation on the mode and the
complement of the current protection mode.

Modes can be constructed by using the bitwise OR operator (I) to
mode combinations. The modes are as follows:

0400 OWNER:READ

0200 OWNER:WRITE

0100 OWNER:EXECUTE

0040 GROUP:READ

0020 GROUP:WRITE

0010 GROUP:EXECUTE

0004 WORLD:READ

0002 WORLD:WRITE

0001 WORLD:EXECUTE

When you supply a mode argument of zero, creat gives the file
the user's default file protection.

The system is always given the same privileges as the owner. A
WRITE privilege also implies a DELETE privilege.

Represents an optional argument list of character strings of the
form

IIkeyword = value II , ,lIkeyword = value ll

Keyword is an RMS (Record Management Services) field in the file
access block (FAB) or record access block (RAB), and value is valid
for assignment to that field. Some fields permit you to specify
more than one value. In these cases, the values are separated by
commas.

Table 4-1 lists the set of valid keywords and values.

Table 4-1: File Access Block and Record Access Block
Keywords

Keyword

"alq = n"

"bls = n"

"ctx = bin"

"ctx = nocvt"

"ctx = rec"

"ctx = str"

"deq = n"

"dna = filespec"

"fop = val, val, . . . "

"fsz = n"

"mbc = n"

"mbf = n"

"mrs = n"

"rat = val, val ... "

"rfm = val"

Value

decimal

decimal

decimal

decimal

string

string

decimal

string

ctg
cbt
tef

Description

Allocation quantity

Block size

No translation of '\n' to the terminal

No conversion of FORTRAN carriage
control bytes

Force record mode access

Force stream mode access

Default extension quantity

Default filename string

File processing options:

Contiguous
Contiguous-best-try
Truncate at end-of-file

cif Create if nonexistent
sup Supersede
scf Submit as command file on close
spl Spool to system printer on close
tmd Temporary delete
tmp Temporary (no file directory)
nef Not end-of-file

decimal

decimal

decimal

decimal

cr
blk

ftn
prn

Fixed header size

Multiblock count

Multibuffer count

Maximum record size

Record attributes:

Carriage-return control
Disallow records to span block
boundaries
FORTRAN print control
Print file format

Record format:

UNIX I/O Functions and Macros 4-5

Table 4-1 (Cont.): File Access Block and Record Access
Block Keywords

Keyword Value Description

fix Fixed-length record format
stm RMS-ll stream record format
stmlf Stream format with line-feed terminator
stmcr Stream format with carriage-return

terminator
var Variable-length record format
vfc Variable-length record with fixed control
udf Undefined

"rop = val" Record processing operations:

asy Asynchronous I/O
tmo Timeout I/O

"shr = val" File sharing options:

del Allows users to delete
get Allows users to read
mse Allows mainstream access
nil Prohibits file sharing
put Allows users to write
upd Allows users to update
upi Allows one or more writers

"tmo = n" decimal I/O timeout value

NOTE

You cannot share the default VAX C stream file I/O. If you
wish to share files, you must specify "ctx=rec" to force record
access mode. You must also specify the appropriate "shr"
options depending upon the type of access you want.

Additional Information

If the file already exists, a version number one greater than any existing
version is assigned to the file.

If the file did not previously exist, it is given the file protection that
results from performing a bitwise AND on the mode argument and the
complement of the current protection mask. The VAX C RTL opens the
new file for reading and writing, and it returns the corresponding file

4-6 UNIX I/O Functions and Macros

descriptor. For more information concerning umask and chmod, refer
to Chapter 11, System Functions.

The creat function returns an integer file descriptor. It returns -1 to
indicate errors including protection violations, undefined directories, and
conflicting file attributes.

See also open, close, read, write, and lseek in this chapter.

4. 1.3 dup, dup2

The dup and dup2 functions allocate a new descriptor that refers to a
file specified by a file descriptor returned by open, creat, or pipe (refer
to Chapter 10, Subprocess Functions).

The syntax of the functions is as follows:

#include unixio

int dup (int fiLe_desc1);
int dup2 (int fiLe_desc1, int fiLe_desc2);

Arguments

The arguments for the dup and dup2 functions are as follows:

file_descl The file descriptor being duplicated.

file_desc2 The new descriptor to be assigned to the file designated by
file_descl.

Additional Information

Both functions return the new file descriptor. The dup2 function causes its
second argument to refer to the same file as its first argument.

Both functions return -1 if their arguments are invalid. The argument
file_descl is invalid if it does not describe an open file; file_desc2 is invalid
if the new descriptor cannot be allocated. If file_desc2 is connected to an
open file, that file is closed.

UNIX I/O Functions and Macros 4-7

4.1.4 open

The open function positions the file at its beginning (byte 0).

The syntax of the function is as follows:

#include unixio
#include file

int open (char *fiLe_spec, int fLags, unsigned int mode, ...);

Arguments

The arguments for the open function are as follows:

file-spec

flags

A NUL-terminated character string containing a valid file specifi­
cation.

Values defined in the file definition module and have the
following meanings:
O_RDONLY Open for reading only.

O_WRONLY

O_RDWR

O_NDELAY

O-APPEND

O_CREAT

O_TRUNC

Open for writing only.

Open for reading and writing.

Open for asynchronous input.

Append on each write.

Create a file if it does not exist.

Create a new version of this file.

O_EXECL Error if attempting to create existing file.

These flags are set using the bitwise OR operator (I) to separate
specified flags. Opening a file with the O-APPEND causes
each write on the file to be appended to the end. If O_TRUNC
is specified and the file exists, open creates a new file by
incrementing the version number by one, leaving the old version
in existence. If O_CREAT is set and the named file does not
exist, the VAX C RTL creates it with any attributes specified in
the fourth and subsequent arguments (...). If O_EXECL is
set with O_CREAT, then if the file already exists, the attempted
open returns an error.

4-8 UNIX I/O Functions and Macros

mode Sets the file protection. Modes can be constructed by using the
bitwise OR operator (I) to separate specified modes. The modes
are as follows:

0400 OWNER:READ

0200 OWNER:WRITE

0100 OWNER:EXECUTE

0040 GROUP:READ

0020 GROUP:WRITE

0010 GROUP:EXECUTE

0004 WORLD:READ

0002 WORLD:WRITE

0001 WORLD:EXECUTE

When you supply a mode argument of zero, open gives the file
the user's default file protection.

The system is always given the same privileges as the owner. A
WRITE privilege also implies a DELETE privilege.

Represents an optional argument list of character strings of the
following form:

"keyword = value,

Keyword is an RMS (Record Management Services) field in the
file access block (FAB) or record access block (RAB), and value
is valid for assignment to that field. Some fields permit you
to specify more than one value. In these cases, the values are
separated by commas.

Table 4-1 lists the set of valid keywords and values.

Additional Information

The open function returns -1 if the file does not exist, if it is protected
against reading or writing, or if the file, for any other reason, cannot be
opened.

NOTE

If you intend to do random writing to a file, the file must be
opened for update by specifying a flags value of O_RDWR.

See also creat, read, write, close, dup, dup2, and Iseek in this chapter.

UNIX I/O Functions and Macros 4-9

4.2 Reading and Writing

4.2.1 read

The following sections describe the UNIX I/O functions that read from
and write to files.

The read function reads bytes from a file and places them in a buffer.

The syntax of the read function is as follows:

#include unixio

int read (int fiLe_desc, void * buffer, size_t nbytes);

Arguments

The arguments to the read function are as follows:

buffer

nbytes

A file descriptor. The specified file descriptor must refer to a file
currently opened for reading.

The address of contiguous storage in which the input data is
placed.

The maximum number of bytes involved in the read operation.

Additional Information

The read function returns the number of bytes actually read. The return
value does not necessarily equal nbytes. For example, if the input is from
a terminal, at most one line of characters is read.

NOTE

In general, the read function will not span record boundaries in
a record file. A separate read must be done for each record.

A return value of 0 means that end-of-file was encountered. A return
value of -1 indicates any sort of read error, including physical input errors,
illegal buffer addresses, protection violations, undefined file descriptors,
and so forth.

4-10 UNIX I/O Functions and Macros

4.2.2 write

The write function writes a specified number of bytes from a buffer to a
file.

The syntax of the write function is as follows:

#include unixio

int write (int fiLe_desc, void * buffer, size_t nbytes);

Arguments

The arguments for the write function are as follows:

buffer

A file descriptor. The specified file descriptor must refer to a file
currently opened for writing or update.

The address of contiguous storage from which the output data is
taken.

nbytes The maximum number of bytes involved in the write operation.

Additional Information

The write function returns the number of bytes actually written. It returns
-1 for errors, including undefined file descriptors, illegal buffer addresses,
and physical I/O errors.

NOTE

• If the write is to an RMS record file and the buffer contains
embedded newline characters, more than one record may
be written to the file. Even if there are no embedded
newline characters, if nbytes is greater than the maximum
record size for the file, more than one record may be
written to the file.

• If the write is to a mailbox and the third argument, nbytes,
specifies a length of zero, an end-of-file message is written
to the mailbox. For more information, refer to Chapter 10,
Subprocess Functions.

UNIX I/O Functions and Macros 4-11

4.3 Maneuvering in Files

4.3.1 Iseek

The following sections describe the UNIX I/O functions that position the
pointer within the file.

The lseek function positions a file to an arbitrary byte position and returns
the new position as an int.

The syntax of the lseek function is as follows:

#include unixio

int lseek (int fiLe_desc, int offset, int direction);

Arguments

The arguments for the Iseek function are as follows:

file_desc

offset

direction

An integer returned by open, creat, dup, or dup2.

Measured in bytes.

Tells the function where to begin the offset; the new position is
relative either to the beginning of the file (direction=SEEK_ABS),
the current position (direction=SEEK_CUR), or the end of the file
(direction=SEEK_END).

Additional Information

The lseek function can position a stream file on any byte offset but can
position a record file only on record boundaries. The available Standard
I/O functions always position a record file at its first byte, at the end-of­
file, or on a record boundary. Therefore, the arguments given to lseek
must specify either the beginning or end of the file, a zero offset from the
current position (an arbitrary record boundary), or the position returned
by a previous, valid lseek call.

The following call obtains the position of the current record in an RMS
record file (which has the descriptor, filel):

/* RELATIVE TO CURRENT POSITION */

pos = lseek(file1, 0, 1)

4-12 UNIX I/O Functions and Macros

The return value in pos can then be used later in the program (perhaps
after the file has been repositioned by write or read) to return to this
position, as in the following example:

/* POSITION RELATIVE TO BEGINNING */

newpos = lseek(file1, pos, 0);

CAUTION

If, while accessing a stream file, you seek beyond the end-of-file
and then write to the file, the lseek function creates a "hole" by
filling the skipped bytes with zeros.

In general, for record files, lseek should only be directed to an
absolute position that was returned by a previous valid call to
lseek or to the beginning or end of a file. If a call to lseek does
not satisfy these conditions, the results are unpredictable.

The lseek function returns -1 if the file descriptor is undefined or if you
attempt to seek before the beginning of the file.

See also open, creat, dup, and dup2 in this chapter; for fseek, refer
to Chapter 2, Standard I/O Functions and Macros.

4.4 Additional UNIX I/O Functions and Macros

4.4.1 fileno

The following sections describe the UNIX I/O functions and macros used
to perform various tasks.

The macro fileno returns an integer file descriptor that identifies the
specified file.

The syntax of the macro fileno is as follows:

#include stdio

int fileno(FILE *fiLe_ptr);

Arguments

The argument file_ptr is a file pointer. For more information concerning
file pointers, refer to Chapter 2, Standard I/O Functions and Macros.

UNIX I/O Functions and Macros 4-13

Additional Information

VAX C implements fileno as a macro.

4.4.2 Istat, stat

The fstat and stat functions access information about the file descriptor or
the file specification.

The syntax of the functions is as follows:

#include unixio
#include stat

void fstat (int fiLe_desc. stat_t *buffer);

void stat (char *fiLe_spec. stat_t *buffer);

Arguments

The arguments for the fstat and stat functions are as follows:

file_desc
file-spec

buffer

4-14 UNIX I/O Functions and Macros

A file descriptor (file_des c) or a valid VMS or DEC/Shell file
specification (file_spec). Read, write, or execute permission of
the named file is not required, but all directories listed in the
file specification leading to the file must be reachable. For more
information concerning the DEC/Shell, refer to Chapter 1, VAX
C Run-Time Library Information.

A pointer to a structure of type stat_t which is defined in the
stat definition module. The argument receives information about
the particular file. The members of the structure pointed to by
buffer are as follows:

Member Type Definition

st_dev unsigned Pointer to physical device
name

st~no[3] unsigned short Three words to receive file id

st_mode unsigned short File "mode" (prot, dir, ...)

st_nlink int For UNIX system compatibil-
ityonly

st_uid unsigned Owner user id

st_gid unsigned short Group member: from st_uid

st-Idev char* UNIX system compatibility-
always zero

st_size unsigned File size in bytes

st_atime unsigned File access time; always same
as st_mtime

st_mtime unsigned Last modification time

st_ctime unsigned File creation time

st_fab-Ifm char Record format

st_fab-Iat char Record attributes

st_fab_fsz char Fixed header size

st_fab_mrs unsigned Record size

UNIX I/O Functions and Macros 4-15

The structure member, st_mode, is the status information mode
and is defined in the stat definition module. The st_mode bits
are as follows:

Bits Constant Definition

0170000 S_IFMT Type of file

0040000 S_IFDIR Directory

0020000 S_IFCHR Character special

0060000 S_IFBLK Block special

0100000 S_IFREG Regular

0030000 S_IFMPC Multiplexed char special

0070000 S_IFMPB Multiplexed block special

0004000 S_ISUID Set user id on execution

0002000 S_ISGID Set group id on execution

0001000 S_ISVTX Save swapped text even
after use

0000400 S_IREAD Read permission, owner

0000200 S_IWRITE Write permission, owner

0000100 S_IEXEC Execu te / search permission,
owner

Addition~1 Information

. Upon successful completion, these functions return zero; otherwise, they
return -1.

The fstat and stat functions do not work on remote network files.

4-16 UNIX I/O Functions and Macros

4.4.3 getoame

The getname function returns the file specification associated with a file
descriptor.

The syntax of the getname function is as follows:

#include unixio

char *getname (int fiLe_desc. char * buffer);

Arguments

The arguments for the getname function are as follows:

file_desc

buffer

A file descriptor.

A pointer to a character string that is large enough to hold the file
specification.

Represents an optional argument that can be either 1 or O. If you
specify I, the getname function returns the file specification in
VMS format. If you specify 0, the getname function returns the
file specification in DEC/Shell format. If you do not specify this
argument, the getname function returns the file name according to
your current command language interpreter. For more information
concerning DEC/Shell file specifications, refer to Chapter I, VAX C
Run-Time Library Information.

Additional Information

The getname function places the file specification in a buffer and returns
the buffer's address. The buffer should be an array large enough to
contain a fully qualified file specification (the maximum length is 256
characters). When an error occurs, getname returns O.

4.4.4 isapipe

The isapipe function returns 1 if the specified file descriptor is associated
with a mailbox, and 0 if it is not. For more information concerning
mailboxes, refer to Chapter 10, Subprocess Functions.

The syntax of the isapipe function is as follows:

#include unixio

int isapipe (int fiLe_desc);

UNIX I/O Functions and Macros 4-17

4.4.5 isatty

Arguments

The argument file_desc is a file descriptor.

Additional Information

The isapipe function returns a value of -1 to indicate an error (for exam­
ple, if the file descriptor is not associated with an open file).

The isatty function returns 1 if the specified file descriptor is associated
with a terminal, and zero if it is not.

The syntax of the isatty function is as follows:

#include unixio

int isatty (int fiLe_desc);

Arguments

The argument file_desc is a file descriptor.

Additional Information

The isatty function returns value of -1 to indicate an error (for example, if
the file descriptor is not associated with an open file).

4.4.6 ttyname

The ttyname function returns a pointer to the NUL-terminated name of
the terminal device associated with file descriptor zero, the default input
device (stdin).

The syntax of the function is as follows:

#include unixio

char *ttyname (void);

Additional Information

The ttyname function is provided only for UNIX compatibility and has
limited functionality in the VMS environment.

4-18 UNIX I/O Functions and Macros

4.5 Program Examples

Example 4-1 illustrates the use of both a file pointer and a file descriptor
to access a single file.

UNIX I/O Functions and Macros 4-19

Example 4-1: I/O Using File Descriptors and Pointers

/* The following example creates a file with variable-length *
* records (rfm = var) and the carriage-return attribute *
* (rat = cr). *

* *
* The program uses creat to create and open the file, and *
* fdopen to associate the file descriptor with a file *
* pointer. After using the fdopen function, the file *
* must be referenced using the Standard I/O functions. */

#include stdio
#include unixio
#define ERROR 0
#define ERRORl -1
#define BUFFSIZE 132

mainO
{

}

char buffer[BUFFSIZE];
int fildes;
FILE *fp;

if «fildes creat (lldata. dat",O, "rat=cr" ,
"rfm=var"» == ERROR1)

{

}

perror("FILE3: creatO failed\n");
exit(2);

if «fp = fdopen (fildes, "W"» == NULL)
{

}

perror("FILE3: fdopenO failed\n");
exit(2);

while(fgets(buffer,BUFFSIZE,stdin) != NULL)
if (fwrite(buffer,strlen(buffer),l,fp) == ERROR)

{

}

perror("FILE3: fwrite() failed\n");
exit(2);

if (fclose(fp) == EOF)
{

}

perror("FILE3: fclose() failed\n");
exit(2);

4-20 UNIX I/O Functions and Macros

Chapter 5

Character-Handling Functions and
Macros

The functions and macros in this chapter fall into two categories: character
classification and character conversion. The following sections describe
each of these types of functions and macros.

5.1 Character Classification Macros

VAX C implements all character classification "functions" as preprocessor
defined macros. Do not pass arguments to those macros which may
cause side effects, such as arguments with the increment and decrement
operators. For more information concerning macros, refer to Guide to
VAXC.

The character classification macros take a single argument on which they
perform a logical operation. The argument can have any value; that is,
it does not have to be an ASCII character. However, the value of the
argument is reduced to modulo 128 to give a 7-bit ASCII character. This
value is used as the value of the argument. In the case of the macro
isascii, the function determines if the argument is an ASCII character (0
through 177 octal). The other macros determine whether the argument is
a particular type of ASCII character, such as a graphic character or digit.

For all macros, a positive return value indicates true. A return value of
zero indicates false. The following tables show, for each ASCII character,
which functions return true.

Character-Handling Functions and Macros 5-1

The following list assigns a number to each of the character classification
macros:

Macro Macro
Number Macro Number Macro

1 isalnum 7 islower

2 isalpha 8 isprint

3 is ascii 9 ispunct

4 iscntrl 10 isspace

5 isdigit 11 isupper

6 isgraph 12 isxdigit

Table 5-1 lists the numbers of the macros (as assigned in the previous
list) that return the value true for each of the given ASCII characters. The
numeric code represents the octal value of each of the ASCII characters.

Table 5-1: Character Classification Macro Return Values
(ASCII Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers

NUL 00 3,4 @ 100 3,6,8,9

SOH 01 3,4 A 101 1,2,3,6,8,11,12

STX 02 3,4 B 102 1,2,3,6,8,11,12

ETX 03 3,4 C 103 1,2,3,6,8,11,12

EOT 04 3,4 D 104 1,2,3,6,8,11,12

ENQ 05 3,4 E 105 1,2,3,6,8,11,12

ACK 06 3,4 F 106 1,2,3,6,8,11,12

BEL 07 3,4 G 107 1,2,3,6,8,11

BS 10 3,4 H 110 1,2,3,6,8,11

HT 11 3,4,10 I 111 1,2,3,6,8,11

LF 12 3,4,10 J 112 1,2,3,6,8,11

VT 13 3,4,10 K 113 1,2,3,6,8,11

FF 14 3,4,10 L 114 1,2,3,6,8,11

5-2 Character-Handling Functions and Macros

Table 5-1 (Cont.): Character Classification Macro Return
Values (ASCII Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers

CR 15 3,4,10 M 115 1,2,3,6,8,11

SO 16 3,4 N 116 1,2,3,6,8,11

51 17 3,4 o 117 1,2,3,6,8,11

DLE 20 3,4 P 120 1,2,3,6,8,11

DC121 3,4 Q 121 1,2,3,6,8,11

DC222 3,4 R 122 1,2,3,6,8,11

DC323 3,4 5 123 1,2,3,6,8,11

DC424 3,4 T 124 1,2,3,6,8,11

NAK 25 3,4 U 125 1,2,3,6,8,11

SYN 26 3,4 V 126 1,2,3,6,8,11

ETB 27 3,4 W 127 1,2,3,6,8,11

CAN 30 3,4 X 130 1,2,3,6,8,11

EM 31 3,4 Y 131 1,2,3,6,8,11

SUB 32 3,4 Z 132 1,2,3,6,8,11

ESC 33 3,4 [133 3,6,8,9

FS 34· 3,4 \ 134 3,6,8,9

GS 35 3,4] 135 3,6,8,9

RS 36 3,4 ~ 136 3,6,8,9

US 37 3,4 - 137 3,6,8,9

SP 40 3,8,10 l' 140 3,6,8,9

! 41 3,6,8,9 a 141 1,2,3,6,7,8,12

/I 42 3,6,8,9 b 142 1,2,3,6,7,8,12

43 3,6,8,9 c 143 1,2,3,6,7,8,12

$ 44 3,6,8,9 d 144 1,2,3,6,7,8,12

Character-Handling Functions and Macros 5-3

Table 5...;1 (Cont.): Character Classification Macro Return
Values (ASCII Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers

% 45 3,6,8,9 e 145 1,2,3,6,7,8,12

& 46 3,6,8,9 f 146 1,2,3,6,7,8,12

'47 3,6,8,9 g 147 1,2,3,6,7,8

(50 3,6,8,9 h 150 1,2,3,6,7,8

) 51 3,6,8,9 i 151 1,2,3,6,7,8

* 52 3,6,8,9 j 152 1,2,3,6,7,8

+ 53 3,6,8,9 k 153 1,2,3,6,7,8
, 54 3,6,8,9 1 154 1,2,3,6,7,8

- 55 3,6,8,9 m 155 1,2,3,6,7,8

? 56 3,6,8,9 n 156 1,2,3,6,7,8

/ 57 3,6,8,9 o 157 1,2,3,6,7,8

o 60 1,3,5,6,8,12 P 160 1,2,3,6,7,8

1 61 1,3,5,6,8,12 q 161 1,2,3,6,7,8

2 62 1,3,5,6,8,12 r 162 1,2,3,6,7,8

3 63 1,3,5,6,8,12 s 163 1,2,3,6,7,8

4 64 1,3,5,6,8,12 t 164 1,2,3,6,7,8

5 65 1,3,5,6,8,12 u 165 1,2,3,6,7,8

666 1,3,5,6,8,12 v 166 1,2,3,6,7,8

767 1,3,5,6,8,12 w 167 1,2,3,6,7,8

5-4 Character-Handling Functions and Macros

Table 5-1 (Cont.): Character Classification Macro Return
Values (ASCII Table)

ASCII Macro ASCII Macro
Values Numbers Values Numbers

8 70 1,3,5,6,8,12 x 170 1,2,3,5,6,8

9 71 1,3,5,6,8,12 Y 171 1,2,3,5,6,8

: 72 3,6,8,9 z 172 1,2,3,5,6,8

; 73 3,6,8,9 { 173 3,6,8,9

< 74 3,6,8,9 I 174 3,6,8,9

= 75 3,6,8,9 } 175 3,6,8,9

> 76 3,6,8,9 ?-- 176 3,6,8,9

? 77 3,6,8,9 DEL 177 3,4

The following sections describe the character classification macros. All of
these macros have a single argument that is an object of type char.

5.1.1 isalnum

The isalnum macro returns a nonzero integer if its argument is one of the
alphanumeric ASCII characters. Otherwise, it returns zero.

The syntax of the macro is as follows:

5. 1.2 isalpha

#include stdlib
#include ctype

int isalnum (char character);

The is alpha macro returns a nonzero integer if its argument is an alpha­
betic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isalpha (char character);

Character-Handling Functions and Macros 5-5

5.1.3 isascii

5. 1.4 iscntrl

5. 1.5 isdigit

The isascii macro returns a nonzero integer if its argument is any ASCII
character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isascii (char character)

The iscntrl macro returns a nonzero integer if its argument is an ASCII
DEL character (177 octal) or any nonprinting ASCII character (code less
than 40 octal). Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int iscntrl (char character);

The isdigit macro returns a nonzero integer if its argument is a decimal
digit character (0-9). Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isdigit (char character);

5-6 Character-Handling Functions and Macros

5.1.6 isgraph

The isgrapb macro returns a nonzero integer if its argument is a graphic
ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isgraph (char character);

Additional Information

Graphic ASCII characters are those with octal codes greater than or
equal to 41 (!) and less than or equal to 176 (?--). In other words, they
comprise the set of printable characters minus the space.

5.1.7 islower

5.1.8 isprint

The islower macro returns a nonzero integer if its argument is a lowercase
alphabetic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int islower (char character);

The isprint macro returns a nonzero integer if its argument is any ASCII
printing character (ASCII codes from 40 octal to 176 octal). Otherwise, it
returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isprint (char character);

Character-Handling Functions and Macros 5-7

5. 1.9 ispunct

The ispunct macro returns a nonzero integer if its argument is an ASCII
punctuation character; that is, if it is nonalphanumeric and greater than 40
octal. Otherwise, it returns zero.

The syntax of the macro is as follows:

5. 1.1 0 isspace

#include stdlib
#include ctype

int ispunct (char character);

The isspace macro returns a nonzero integer if its argument is white space;
that is, if it is an ASCII space, tab (horizontal or vertical), carriage-return,
form-feed, or newline character. Otherwise, it returns zero.

The syntax of the macro is as follows:

5. 1.11 isupper

#include stdlib
#include ctype

int isspace (char character);

The isupper macro returns a nonzero integer if its argument is an upper­
case alphabetic ASCII character. Otherwise, it returns zero.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isupper (char character);

5-8 Character-Handling Functions and Macros

5. 1. 12 isxdigit

The isxdigit macro returns a nonzero integer if its argument is a hexadeci­
mal digit (0-9, A-F, or a-f).

The syntax of the macro is as follows:

#include stdlib
#include ctype

int isxdigit (char character);

5.2 Character Conversion Functions and Macros

The character conversion functions and macros convert one type of
character to another type. The following sections describe the character
conversion functions.

5.2. 1 eevt, fevt, gevt

Each of the ecvt, fcvt, and gcvt functions converts its argument to a NUL­
terminated string of ASCII digits and returns the address of the string.
The strings are stored in a memory location created by the functions.

The syntax descriptions of the functions are as follows:

#include stdlib

char *ecvt (double vaLue, int ndigit, int *decpt, int *sign);
char *fcvt (double vaLue, int ndigit, int *decpt, int *sign);
char *gcvt (double vaLue, int ndigit, char *bu!!er);

Arguments

The arguments for the ecvt, fcvt, and gcvt functions are as follows.

Character-Handling Functions and Macros 5-9

5.2.2 toascii

value

ndigit

decpt

sign

buffer

An object of type double that is converted to a NUL-terminated
string of ASCII digits.

The number of ASCII digits to be used in the converted string.

Contains the position of the decimal point relative to the first
character in the returned string. A negative int value means that the
decimal point is decpt number of spaces to the left of the returned
digits, spaces being filled with zeros; a zero value means that the
decimal point is immediately to the left of the first digit in the
returned string.

Contains an integral value that indicates whether the argument value
is positive or negative. If the value is negative, the functions place a
nonzero value at the address specified by argument sign. Otherwise,
the functions assign zero to the address specified by argument sign.

A storage location to hold the converted string.

Additional Information

The functions ecvt and fcvt return, by means of the argument decpt, the
position of the decimal point relative to the first character in the returned
string.

The function gcvt places the converted string in a buffer and returns
its address buffer. If possible, gcvt produces ndigit significant digits in
FORTRAN-F format, or if not possible, in E-format. Trailing zeros may be
suppressed.

"
Repeated calls to these functions overwrite any existing string.

The toascii macro converts its argument, an 8-bit ASCII character, to a
7 -bit ASCII character.

The syntax of the macro is as follows:

#include stdlib
#include ctype

int toascii(char character)

Arguments

The argument character is an object of type char.

5-10 Character-Handling Functions and Macros

5.2.3 tolower, _tolower

The tolower function and _tolower macro convert their argument, an
ASCII character, to lowercase. If the argument is not an uppercase
character, it is returned unchanged.

The syntax descriptions of the function and macro are as follows:

#include stdlib
#include ctype

int tolower (char character);
int _tolower (char character);

Arguments

The argument character is an object of type char.

Additional Information

VAX C implements tolower as a function and _tolower as a macro.
You only have to include the ctype definition module if you are using
_tolower.

5.2.4 toupper, _toupper

The toupper function and _toupper macro convert their argument,
an ASCII character, to uppercase. If the argument is not a lowercase
character, it is returned unchanged.

The syntax descriptions of the function and macro are as follows:

#include stdlib
#include ctype

int toupper (char character);
int _toupper (char character);

Arguments

The argument character is an object of type char.

Additional Information

VAX C implements toupper as a function and _toupper as a macro.
You only have to include the ctype definition module if you are using
_toupper.

Character-Handling Functions and Macros 5-11

5.3 Program Examples

Example 5-1 illustrates the use of character classification macros.

Example 5-1: Character Conversion Macros

1* The following program uses the isalpha, isdigit, and *
* isspace macros to count the number of occurrences of *
* letters, digits and white space characters entered through *
* the standard input (stdin). *1

#include ctype
#include stdio
#include stdlib

mainO
{

}

char c;
int i = 0, j = 0, k = 0;

while «c = getchar(» != EOF)
{

}

if (isalpha(c»
i++;

if (isdigit(c»
j++;

if (isspace(c»
k++;

printf("Number of letters: Y.d\n", i)
printf("Number of digits: Y.d\n", j)
printf (II Number of spaces: y'd\n ", k)

Sample input and output from this program are as follows:

$ RUN EXAMPLEllRETURNI
I saw 35 men with mustaches on Christopher Street. IRETURNI
ICTRL/zi
Number of letters: 39
Number of digits: 2
Number of spaces: 9
$

Example 5-2 illustrates the use of the ecvt function.

5-12 Character-Handling Functions and Macros

Example 5-2: Converting Double Values to an ASCII String

/* This program uses the ecvt function to convert a double *
* value to a string. The program then prints the string. */

#include stdio
#include stdlib

mainO

{

}

double val; /* Value to be converted */

/* Variables for sign and *
* decimal place */

int sign, point;

/* Array for converted *
* string */

static char string[20];

val = -3. 1297830e-10;

printf("original value: l.e\n", val);
strcpy(string,ecvt(val, 5, &point, &sign»;
printf("converted string: Y.s\n", string);
if (sign)

printf("value is negative\n");
else printf("value is positive\n");
printf("decimal point at Y.d\n", point);

The output from this program is as follows:

$ RUN EXAMPLE21RETURNI
original value: -3.129783e-10
converted string: 31298
value is negative
decimal point at -9
$

Example 5-3 illustrates the use of functions toupper and tolower.

Character-Handling Functions and Macros 5-13

Example 5-3: Changing Characters to and from Uppercase
Letters

1* This program uses the functions toupper and tolower to *
* convert uppercase to lowercase and lowercase to uppercase *
* using input from the standard input (stdin). *1

#include ctype
#include stdio
#include stdlib

1* To use EOF identifier *1

main()
{

}

char c, ch;

while «c = getchar(» != EOF)
{

}

if (c >= 'A' && c <= 'Z')
ch = tolower(c);

else
ch = toupper(c);

putchar(ch);

Sample input and output from this program are as follows:

$ RUN EXAMPLE31RETURNI
LET'S GO TO THE stonewall INN. ICTRL/zi
let's go to the STONEWALL inn.
$

5-14 Character-Handling Functions and Macros

Chapter 6

String- and List-Handling Functions and
Macros

This chapter discusses functions that manipulate strings. Some of these
functions concatenate strings; others search a string for specific characters
or perform some other comparison, such as determining the equality of
two strings.

6.1 strcat, strncat

The strcat and strncat functions concatenate str_2 to the end of str_l.

The syntax descriptions of the functions are as follows:

#include string

char *strcat (char *str_1, const char *str_2);
char *strncat (char *str_1, const char *str_2, size_t maxchar);

Arguments

The arguments to the strcat and strncat functions are as follows:

str_l Must be NUL-terminated character strings.
str_2

maxchar Specifies the maximum number of characters to concatenate from
str_2, unless the strncat first encounters a NUL terminator in str_2.
If maxchar is zero or negative, no characters are copied from str_2.

String- and list -Handling Functions and Macros 6-1

Additional Information

Both strcat and strncat return the address of the first argument, str_1,
which is assumed to be large enough to hold the concatenated result.

If strncat reaches the specified maximum, it sets the next byte in str _1 to
NULL.

6.2 strchr, strrchr

The strchr and strrchr functions return, respectively, the address of the
first or last occurrence of a given character in a NUL-terminated string.

The syntax descriptions of the functions are as follows:

#include string

char *strchr (const char *str, int character);
char *strrchr (const char *str, int character);

Arguments

The arguments to the strchr and strrchr functions are as follows:

str

character

A pointer to a NUL-terminated character string.

An object of type char.

Additional Information

The strchr and strrchr functions return zero if the character does not occur
in the string, otherwise they return the address of the first (strchr) or last
(strrchr) occurrence of the specified character.

6.3 strcmp, strncmp

The strcmp and strncmp functions compare two ASCII character strings
and return a negative, zero, or positive integer, indicating that the ASCII
values of the individual characters in the first string are less than, equal to,
or greater than the values in the second string.

6-2 String- and list-Handling Functions and Macros

The syntax descriptions of the functions are as follows:

#include string

int strcmp (const char *str_1, const char *str_2);
int strncmp (const char *str_1, const char *str_2, size_t maxchar);

Arguments

The arguments to the strcmp and strncmp functions are as follows:

str_l Pointers to character strings.
str_2

maxchar Specifies a maximum number of characters (beginning with the first)
to search in both str_l and str_2.

If maxchar is zero or negative, no comparison is performed and zero is
returned (the strings are considered equal).

Additional Information

The returned value is obtained by subtracting the characters at the first
position where the two strings disagree.

With either function, the comparison is terminated when a NULL is
encountered in one of the strings.

6.4 strepy, strnepy

These functions copy all or part of str _2 into str _1.

The syntax descriptions of the functions are as follows:

#include string

char *strcpy (char *str_1, const char *str_2);
char *strncpy (char *str_1, const char *str_2, size_t maxchar);

String- and list-Handling Fu~ctions and Macros 6-3

Arguments

The arguments to the strepy and strnepy functions are as follows:

str _1 Pointers to character strings.
str_2

nzaxchar Specifies the maximum number of characters to copy from str _2 to
str_l, up to but not including the NUL terminator or str_2.

Additional Information

The strepy function copies str_2 into str_l, stopping after copying str_2's
NUL character.

The function strnepy copies no more than maxchar characters from str_2
to str_l, up to but not including the null terminator of str_2. If str_2
contains less than maxchar characters, str _1 is padded with null characters.
If str_2 contains greater than or equal to maxchar characters, as many
characters as possible are copied to str _1.

Both functions return the address of str _1.

NOTE

The argument str_l is not necessarily terminated by a null
character.

6.5 strcspn, strspn, strpbrk

The strespn function searches a string for a character in a specified set of
characters. The strpbrk function searches a string for the occurrence of
one of a specified set of characters. The strspn function searches a string
for the occurrence of a character that is not in a specified set of characters.

The syntax of the functions is as follows:

#include string

char *strcspn (const char *str. const char *charset);

char *strpbrk (const char *str. const char *charset);

char *strspn (const char *str. const char *charset);

6-4 String- and List-Handling Functions and Macros

6.6 strlen

Arguments

The arguments to these functions are as follows:

str A pointer to a character string. If the argument string is a null
string, zero is returned.

charset A pointer to a character string containing the characters for which
the function mayor may not search.

Additional Information

These functions scan the characters in the string, stop when they en­
counter a character found in charset, and return the length of the string's
segment formed by characters found or not found in charset.

If all or no characters match in the character strings pointed to by str
and charset, strcspn and strspn return the length of string. The strphrk
function returns the address of the first character in the string that is in the
set, or NULL if no character is in the set.

The stden function returns the length of a string of ASCII characters. The
returned length does not include the terminating NUL character (\0).

The syntax of the function is as follows:

#include string

int strlen (const char *str);

Arguments

The argument str is a pointer to the character string.

String- and List-Handling Functions and Macros 6-5

6.7 strtod, ataf

The strtod and atof functions convert a given string to a double-precision
number.

These functions recognize an optional sequence of "white-space" characters
(as defined by isspace in ctype), then an optional plus or minus sign, then
a sequence of digits optionally containing a single decimal point, then an
optional letter (e or E) followed by an optionally signed integer. The first
unrecognized character ends the conversion.

The string is interpreted by the same rules that are used to interpret
floating constants.

The syntax of the strtod and atof functions is as follows:

#include stdlib

double strtod (const char *nptr. char **endptr);

double atof (const char *nptr);

Arguments

The arguments to the strtod and atof functions are as follows:

nptr A pointer to the character string to be converted to a double-precision
number.

endptr The address of an object into which will be stored the address of the
first unrecognized character that terminates the scan. If endptr is a NULL
pointer, the address of the first unrecognized character is not retained.

Additional Information

The strtod and atof functions return the converted value. For atof,
overflows resulting from the conversion are not accounted for. For strtod,
overflows are accounted for:

• If the correct value would cause overflow, HUGE_VAL (with a plus
or minus sign according to the sign of the value) is returned and int
errno is set to ERANGE.

• If the correct value would cause underflow, zero is returned and errno
is set to ERANGE.

If the string starts with an unrecognized character, *endptr is set to nptr,
and a zero value is returned.

6-6 String- and List -Handling Functions and Macros

6.8 strtok

The function call atof(str) is equivalent to strtod(str,(char **)0), arithmetic
exceptions not withstanding.

The strtok function locates text tokens in a given string. The text tokens
are delimited by one or more characters from a separator string that you
specify. The function keeps track of its position in the string between
calls and, as successive calls are made, the function will work through
the string, identifying the text token following the one identified by the
previous call.

The syntax of the strtok function is as follows:

#include string

char *strstr (char *s1, const char *s2);

The first call to the strtok function returns a pointer to the initial character
in the first token and writes a NUL character into sl immediately following
the returned token. Each subsequent call (with the value of the first
argument remaining NULL) returns a pointer to a subsequent token in the
string originally pointed to by sl. When no tokens remain in the string,
the strtok function returns a NULL pointer.

Arguments

The arguments to the strtok function are as follows:

51 A pointer to a string containing zero or more text tokens.

52 A pointer to a separator string consisting of one or more characters. The
separator string may differ from call to call.

Additional Information

Tokens in sl are delimited by NUL characters inserted into sl by the
strtok function. Therefore, sl cannot be a const object. The strtok
function is non-reentrant since a static global variable must be used to
maintain the starting address within sl of subsequent calls to strtok with a
NULL first argument.

String- and List -Handling Functions and Macros 6-7

6.9 strta, atai, atal

These functions convert strings of ASCII characters to the appropriate
numeric values.

The syntax descriptions of the functions are as follows:

#include stdlib

int atoi (const char *nptr);

long int atol (const char *nptr);

long int strtol (const char *nptr, char **endptr, int base);

Arguments

The arguments to the functions are as follows:

nptr

endptr

base

A pointer to the character string to be converted to a long.

The address of an object into which will be stored a pointer to a pointer
to the first unrecognized character encountered in the conversion pro­
cess (that is, the character that follows the last character in the string
being converted). If endptr is a NUL pointer, the address of the first
unrecognized character is not retained.

The value, 2 through 36, to be used as the base for the conversion.
Leading zeros after the optional sign are ignored, and Ox or OX is ignored
if the base is 16.

If the base is 0, the sequence of characters is interpreted by the same
rules used to interpret an integer constant: after the optional sign, a
leading zero indicates octal conversion, a leading Ox or OX indicates
hexadecimal conversion, and any other combination of leading characters
indicates decimal conversion.

Additional Information

The functions recognize strings in various formats, depending on the value
of the base, as follows:

• The strtol function ignores any leading white-space characters (as
defined by isspace in ctype) in the given string. It recognizes an
optional plus or minus sign, then a sequence of digits or letters that
may represent an integer constant according to the value of the base.
The first unrecognized character ends the conversion.

[white-spaces] [+I-]digits

6-8 String- and List-Handling Functions and Macros

• The functions atoi and atol are functionally equivalent in VAX C.

• The atoi and atol functions do not account for overflows resulting
from the conversion.

• The strtol function returns the converted value. If the correct value
would cause overflow, LONG_MAX or LONG_MIN (according to
the sign of the value) is returned and errno is set to ERANGE. If the
string starts with an unrecognized character, *endptr is set to nptr, and
a zero value is returned.

• Truncation from long to int can take place upon assignment or by an
explicit cast (arithmetic exceptions not withstanding). The function
call atol (str) is equivalent to strtol (str, (char**)O, 10). Similarly, the
function call atoi (str) is equivalent to (int) strtol (str, (char**)O, 10).

6.10 strtoul

The strtoul function converts the initial portion of the string pointed to by
nptr to an unsigned long integer.

The syntax of the function strtoul is as follows:

#include stdlib

unsigned long int strtoul(const char *nptr, char **endptr, int base);

Arguments

The arguments to the strtoul function are as follows:

String- and List -Handling Functions and Macros 6-9

nptr

endptr

base

A pointer to the character string to be converted to a long.

The address of an object into which will be stored a pointer to
a pointer to the first unrecognized character encountered in the
conversion process (that is, the character that follows the last character
in the string being converted). If endptr is a NULL pointer, the
address of the first unrecognized character is not retained.

The value, 2 through 36, to be used as the base for the conversion.
Leading zeros after the optional sign are ignored, and Ox or OX is
ignored if the base is 16.

If the base is a, the sequence of characters is interpreted by the
same rules used to interpret an integer constant: after the optional
sign, a leading zero indicates octal conversion, a leading Ox or OX
indicates hexadecimal conversion, and any other combination of
leading characters indicates decimal conversion.

Additional Information

The strtoul function returns the converted value, if any. If no conversion
is performed, zero is the returned value. If overflow occurs, errno is set to
erange and the return value is ULONG_MAX as defined in the standard
include module stdlib.

6. 11 Accessing Binary Data

The functions discussed in the following sections allow you to copy buffers
containing binary data.

6.11.1 memchr

The memchr function locates the first occurrence of the specified byte
within the initial size bytes of a given object. It returns a pointer to the
first occurrence of the character. If the character does not occur in the
identified character string, the memchr function returns a NUL pointer.

The syntax of the memchr function is as follows:

#include string

int memchr (const void *sl. int c. size_t size);

6-10 String- and List-Handling Functions and Macros

Arguments

Arguments to the memehr function are as follows:

s A pointer to the object to be searched.

c The byte value to be located.

size The length of the object to be searched.

Additional Information

Unlike strehr, memehr does not stop when a NUL character is
encountered.

6.11.2 memcmp

The mememp function compares two objects byte by byte. The compare
operation starts with the first byte in each object. It returns an integer less
than, equal to, or greater than 0, depending on whether the lexical value
of the first object is less than, equal to, or greater than that of the second
object.

The syntax of the mememp function is as follows:

#include string

int memcmp (const void *sl, const void *s2, size_t size);

Arguments

Arguments to the mememp function are as follows:

s1 A pointer to the first object.

s2 A pointer to the second object.

size The length of the objects to be compared.

Additional Information

The mememp function uses native character comparison. The sign of
the value returned is determined by the sign of the difference between
the values of the first pair of unlike bytes in the objects being compared.
Unlike the stremp function, the mememp function does not stop when a
NUL character is encountered.

String- and list-Handling Functions and Macros 6-11

6.11.3 memepy, memmove

The memcpy and memmove functions copy a specified number of bytes
from one object to another.

The syntax of the functions is as follows:

#include string

void *memcpy (void *s1, const void *s2, size_t size);

void *memmove (void *s1, const void *s2, size_t size);

Arguments

Arguments to the functions are as follows:

51 A pointer to the first object.

52 A pointer to the second object.

size The length of the object to be copied.

Additional Information

The memcpy function copies size bytes from object 2 to object 1; it does
not check for the overflow of the receiving memory area (object 1). It
returns the value of sl, which is a pointer. Unlike the strcpy function, the
memcpy function does not stop when a NUL character is encountered.

The memmove function is functionally equivalent to the memcpy function
in VAX C.

6.11.4 memset

The memset function sets a specified number of bytes in a given object to
a given value.

The syntax of the memset function is as follows:

#include string

void *memset (void *s, char vaLue, size_t size);

6-12 String- and List-Handling Functions and Macros

Arguments

Arguments to the memset function are as follows:

s Array pointer.

value The value to be placed in s.

size The number of bytes to be placed in s.

Additional Information

The memset function returns s. It does not check for the overflow of the
receiving memory area pointed to by s.

6. 12 Accessing Variable Length Argument Lists

The set of functions and macros defined and declared in the varargs and
the stdarg definition module provides a portable method of accessing
variable length argument lists. For example, VAX C functions such
as printf and execl use variable length argument lists. User-defined
functions with variable length argument lists that do not use varargs are
not portable due to the different argument passing conventions of various
machines.

The argument va_alist, the definition va_dcl, and the type va_list, are
used to declare the argument list and the variable that is used to traverse
the list The identifier va_alist is a parameter in the function definition;
va_dcl declares the parameter va_alist, a declaration which is not termi­
nated with a semicolon (;); and the type va-list is used in the declaration
of the variable used to traverse the list. You must declare at least one
variable of type va-list when using varargs. The syntax of these names
and declarations is as follows:

function_name (va_aList)
va_del
{

In order to use the varargs functions and macros, you must include the
varargs definition module with the following preprocessor directive:

#include varargs

The following sections describe the varargs functions and macros.

String- and List-Handling Functions and Macros 6-13

6.12.1 va_arg

The v~arg macro is used to return the next item in the argument list.

The syntax of the macro is as follows:

#include stdarg or #include varargs

type va_arg (va_list ap. type);

Arguments

The arguments to the v~arg macro are as follows:

ap Must always be declared and used as shown in the syntax description.

type A data type that is used to determine the size of the next item in
the list. An urgument list can contain items of varying sizes, but the
calling routine must determine what type of argument is expected
since it cannot be determined at run time.

NOTE

In VMS, all items in an argument list are aligned on the long­
word boundary. If you attempt to access an item in an argu­
ment list by using the sizeof operator, and that item is smaller
than a longword (types short and char, for instance), you will
be positioned in the middle of the longword increment and
the return value will be incorrect. VAX C correctly aligns the
argument pointer on the next longword before reading the next
argument. This macro is responsible for proper incrementation
involving elements of types short and char.

Also, when accessing argument lists, especially those passed
to a subroutine (written in VAX C) by a program written in
another programming language, consider the implications of the
VAX Calling Standard. For more information concerning the
VAX Calling Standard refer to the Guide to V AX C.

Additional Information

The vCLarg macro will always interpret the object at the address spec­
ified by the list-incrementor according to the type type. If there is no
corresponding actual argument, the behavior is undefined.

6-14 String- and List-Handling Functions and Macros

6. 12.2 va_count

The VL-count macro returns the number of longwords· in the argument
list.

The syntax of the macro is as follows:

#include varargs

void va_count(int count);

Arguments

The argument count is mandatory. The VL-count macro places the
number of longwords in the argument list into count.

Additional Information

The value returned in count is the number of longwords in the function
argument block not counting the count field itself.

If the argument list contains items whose storage requirements are a
longword of memory or less, the number in the argument count is also
the number of arguments. However, if the argument list contains items
of type double or data structures, count must be interpreted to obtain the
number of arguments in the list.

This macro is VAX C specific and is not portable.

6.12.3 va_end

The macro vel-end finishes the varargs session.

The syntax of the macro vL-end is as follows:

#include stdarg or #include varargs

void va_end (va_list ap);

Arguments

The argument ap is the object that was used to traverse the argument list
length. You must always declare and use the argument ap as shown in
the syntax description.

String- and list-Handling Functions and Macros 6-15

Additional Information

You can execute multiple traversals of the argument list, each delimited by
Vel-start ... vel-end. This macro will set ap equal to NULL.

6.12.4 va_start, va_start_1

The Vel-start and VCl-start_l functions are used to initialize a variable to
the beginning of the argument list.

The syntax descriptions of the functions using varargs are as follows:

#include varargs

void va_start (va_list ap);

void va_start_l(va_list ap. int offset);

Arguments

The arguments to the Vel-start and VeL-start_l functions are as follows:

ap An object pointer. You must always declare and use the argument
ap as shown in the syntax description.

offset Represents the number of bytes by which ap is to be incremented so
that it points to a subsequent argument within the list (that is, not to
the start of the argument list). Using a nonzero offset can initialize
ap to the address of the first of the optional arguments that follow a
number of fixed arguments.

Additional Information

The Vel-start function is called to initialize the variable ap to the beginning
of the argument list.

The VeL-start_l function is called to initialize ap to the address of an
argument that is preceded by a known number of defined arguments.
For example, a VAX C RTL function which contains a variable-length
argument list offset from the beginning of the entire argument list is
printf. The variable-length argument list is offset by the address of the
formatting string.

Arguments of types char and short use a fulliongword of memory
when they are present in argument lists; arguments of type float use two
longwords because they are converted to type double.

6-16 String- and List-Handling Functions and Macros

NOTE

When accessing argument lists, especially those passed to a
subroutine (written in VAX C) by a program written in another
programming language, consider the implications of the VAX
Calling Standard. For more information concerning the VAX
Calling Standard refer to the Guide to VAX C.

The function veL-start_l is VAX C specific and is not portable.

The syntax descriptions of the VeL-start function using stdargs, as defined
in the draft proposed ANSI standard, are as follows:

#include stdargs

void va_start(va_list apt pa~

Arguments

ap An object pointer. You must always declare and use the argument
ap as shown in the syntax description.

parmN The name of the last of the known fixed arguments.

Additional Information

The pointer ap is initialized to point to the first of the optional arguments
that follow parmN in the argument list. This version of Vel-start should
always be used in conjunction with functions that are declared and defined
with function prototypes.

6.12.5 vprintf, vfprintf, vsprintf

The vprintf, vfprintf, and vsprintf functions print formatted output based
on an argument list.

These functions are the same as the printf, fprintf, and the sprintf
functions, respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list that has been
initialized by the macro VeL-start (and possibly subsequent va_arg calls).

String- and List-Handling Functions and Macros 6-17

The syntax of the vprintf, vfprintf and vsprintf functions is as follows:

#include stdio
#include stdarg

int vprintf (const char *format. va_list arg);
int vfprintf (FILE *fi~e_ptr. const char *format. va_list arg);
int vsprintf (char *8. const char *format. va_list arg);

Arguments

The arguments to the vfprintf and vsprintf functions are as follows:

file_ptr

format

arg

str

A pointer to a file.

A format specification.

A list of expressions whose resultant types correspond to the
conversion specifications given in the format specifications.

A pointer to a string.

Additional Information

The vprintf, vfprintf, and vsprintf functions return the number of
characters transmitted or a negative value if an output error occurs.

6.13 Program Examples

Example 6-1 illustrates the use of strcat and strncat.

6-18 String- and List -Handling Functions and Macros

Example 6-1: Concatenation of Two Strings

/* This example uses strcat and strncat to concatenate two *
* strings.' */

#include stdio

maine)
{

static char stringl[]
static char string2[]
static char string3[]

"Concatenates ";
"two strings ";
"up to a maximum number of \

characters.";

}

static char string4 [] = "imum number of characters.";

printf("strcat:\tY.s\n". strcat(stringl. string2»;
printf("strncat (-1):\tY.s\n". strncat(stringl. string3. -1»;
printf("strncat (11):\tY.s\n". strncat(stringl. string3. 11»;
printf("strncat (40):\tY.s\n". strncat(stringl. string4. 40»;

Sample output from this program is as follows:

$ RUN EXAMPLEllRETURNI
strcat: Concatenates two strings
strncat (-1): Concatenates two strings
strncat (11): Concatenates two strings up to a max
strncat (40): Concatenates two strings up to a maximum number of characters.
$

String- and list-Handling Functions and Macros 6-19

Example 6-2 illustrates the use of strcspn.

Example 6-2: Four Arguments to the strscpn Function

1* The next example shows how strcspn interprets four
* different kinds of arguments.

#include stdio

maine)
{

}

FILE *outfile;
outfile = fopen("strcspn.out". "w");

fprintf(outfile. "strcspn with null string: %d\n".
strc spn (" abcdef". .11.));

fprintf(outfile. "strcspn with null string: %d\n".
strcspn("". "abcdef"));

fprintf(outfile. "strcspn(\"xabc\". \"abc\"): %d\n".
strcspn("xabc". "abc"));

fprintf(outfile. "strcspn(\"abc\". \"def\"): %d\n".
strcspn("abc". "def"));

Sample output, to the file strcspn.out, is as follows:

$ RUN EXAMPLE2 IRETURNI

strcspn with null charset: 6
strcspn with null string: 0
strcspn(xabc.abc): 1
strcspn(abc.def): 3

6-20 String- and list-Handling Functions and Macros

Example 6-3 illustrates the use of the varargs definition module.

Example 6-3: The varargs Functions and Macros

/* This program uses the varargs functions, macros, and *
* definitions to implement the VAX C Run-Time Library *
* function execl. */

#include varargs

execl(va_alist)
va_del

/* Include proper module

/* Use the identifier */
/* Declare the parameter */

{

}

va_list
char
char
int

incrmtr;
*file;

*args[100] ;
noargs = 0;

/* NOTE: No (;) with va_del */

/* Declare list increment or */
/* Declare a file */
/* Array to store arguments */
/* Define "last argument" */

va_start(incrmtr); /* Begin the session */
file = va_arg(incrmtr, char*); /* First arg placed in file */

/* Place args in array */
while(args[noargs++] = va_arg(incrmtr, char*)) /* User provided argument

list must terminate with
a zero */

va_end(incrmtr);
return execv(file, args);

/* End varargs session
/* Return proper values

String- and List-Handling Functions and Macros 6-21

Chapter 7

Math Functions

This chapter describes the mathematical functions that are included in
the VAX C Run-Time Library. To help you detect run-time errors, the
errno definition module defines the following two symbolic values that are
returned by many (but not all) of the mathematical functions:

• ED OM indicates that an argument is inappropriate; that is, the argu­
ment is not within the function's domain.

• ERANGE indicates that a result is out of range; that is, the argument
is too large to be represented by the machine.

When using the math functions, you can check the external variable errno
for either or both of these values and take the appropriate action if an
error has occurred.

The following program example checks the variable errno for the value
EDOM, which would indicate that a negative number was specified as
input to the function sqrt:

#include errno
#include math
#include stdio

mainO
{

double input. square_root;

printf(lIEnter a number: II);
scanf(lI%le ll

, &input);
errno = 0;
square_root = sqrt(input);

Math Functions 7 -1

}

if (errno == EDOM)
perror("Input was negative ll

);

else
printf(IISquare root of %e = %e\n",

input, square_root);

If you did not check errno for this symbolic value, the sqrt function would
return zero when a negative number was entered. For more information
concerning the errna definition module, refer to Chapter 8, Error-Handling
Functions.

The following sections describe the math functions.

7. 1 abs, labs

7.2 aeDS

7 -2 Math Functions

The abs function returns the absolute value of an integer. The fabs
function returns the absolute value of a floating-point value.

The syntax descriptions of the functions are as follows:

#include math

int abs (int integer);
double fabs (double x);

The acos function returns a value in the range zero to pi, which is the arc
cosine of its radian argument.

The syntax of the function is as follows:

#include math

double acos (double x);

Additional Information

When Ixl > 1, the value of acos(x) is zero and the acos function sets
errno to EDOM.

7.3 asin

7.4 atan

7.5 atan2

The asin function returns a value in the range -pif2 to pif2, which is the
arc sine of its radian argument.

The syntax of the function is as follows:

#include math

double asin (double x);

Additional Information

When Ixl > I, the value of asin(x) is zero and the asin function sets
errno to ED OM

The atan function returns a value in the range -pif2 to pif2, which is the
arc tangent of its radian argument.

The syntax of the function is as follows:

#include math

double atan (double x);

The atan2 function returns a value in the range -pi to pi. The returned
value is the arc tangent of y lx, where y and x are the two arguments.

The syntax of the function is as follows:

#include math

double atan2 (double y. double x);

Math Functions 7-3

7.6 cabs, hypot

7.7 ceil

7.8 cos

The cabs and hypot functions return:

sqrt(x*x + y*y)

The syntax descriptions of the functions are as follows:

#include math

double cabs (cabs_t z);
double hypot (double x, double y);

Additional Information

The type cabs_t is defined in the standard include module math.h as
follows:

typedef struct {double x,y;} cabs_t;

The ceil function returns (as a double) the smallest integer that is greater
than or equal to its argument.

The syntax of the function is as follows:

#include math

double ceil (double x);

The cos function returns the cosine of its radian argument.

The syntax of the function is as follows:

#include math

double cos (double x);

7 -4 Math Functions

7.9 cosh

7.10 exp

7.11 floor

The cosh function returns the hyperbolic cosine of its argument.

The syntax of the function is as follows:

#include math

double cosh (double x);

The exp function returns the base e raised to the power of the argument.

The syntax of the function is as follows:

#include math

double exp (double x);

Additional Information

If an overflow occurs, exp returns the largest possible floating-point value
and sets errno to ERANGE. The constant HUGE in the math definition file
is defined to be the largest possible floating-point value.

The floor function returns (as a double) the largest integer that is less than
or equal to its argument.

The syntax of the function is as follows:

#include math

double floor (double x);

Math Functions 7-5

7.12 fmod

7.13 frexp

7 -6 Math Functions

The fmod function computes the floating-point remainder of the first
argument to fmod divided by the second. If the quotient cannot be
represented, the behavior is undefined.

The syntax of the fmod function is as follows:

#include math

double fmod (double x, double y);

Additional Information

The fmod function returns x if y is zero. Otherwise, it returns the value f,
which has the same sign as x, such that x ==i * Y + f for some integer i,
where the magnitude of f is less than the magnitude of y.

The frexp function returns the mantissa of a double value.

The syntax of the function is as follows:

#include math

double frexp (double vaLue, int *eptr);

Arguments

The arguments to the frexp function are as follows:

value An object of type double.

eptr A pointer to an int, to which frexp returns the e::<ponent.

7.14 Idexp

The Idexp function returns its first argument multiplied by 2 raised to the
power of its second argument; that is, x(2e).

The syntax of the function is as follows:

#include math

double ldexp (double x, int e);

Arguments

x A base value, of type double, that is to be multiplied by 2e•

e The integral exponent value to which 2 is raised.

Additional Information

If underflow occurs, Idexp returns zero, and if overflow occurs, it returns
the largest possible value of the appropriate sign. In both cases, the
function sets errno to ERANGE. The constant HUGE is defined in the
math definition module to be the largest possible value of the appropriate
sign.

7.15 Idiv, div

The Idiv and div functions return the quotient and the remainder after the
division of their arguments.

#include stdlib

ldiv_t ldiv(long int numer, long int denom);

div_t div(int numer, int denom);

Arguments

numer

denominator

A numerator of type long int or int.

A denominator of type long int or into

Math Functions 7-7

7.16 labs

Additional Information

The types div_t and ldiv_t are defined in the standard include module
stdlib as follows:

int quot. rem;
};

typedef struct DIV_T div_t;

struct LDIV_T
{

long quot. rem;
};

typedef struct LDIV_T ldiv_t;

The functions Idiv and div are functionally equivalent in VAX C.

The labs function returns the absolute value of an integer as a long into

The syntax of the function labs is as follows:

#include stdlib
long int labs(long int j);

7.17 log,log10

The log and log10 functions return the logarithm of their arguments.

The syntax descriptions of the functions are as follows:

#include math

7 -8 Math Functions

double log (double x);
double log10 (double x);

7.18 modf

7.19 pow

Additional Information

The log function returns the natural (base e) logarithm of the argu­
ment, which must be of type double; the returned value is also double.
The loglO function returns the double base 10 logarithm of its double
argument.

If the argument is zero or negative, the functions return zero and set errno
to EDOM.

The modf function returns the positive fractional part of its first argument
and assigns the integral part, expressed as a double, to the object whose
address is specified by the second argument.

The· syntax of the function is as follows:

#include math

double modf (double vaLue, double *iptr);

Arguments

The arguments to the modf function are as follows:

value Must be an object of type double.

iptr A pointer to an object of type double.

The pow function returns the first argument raised to the power of the
second argument.

The syntax of the function is as follows:

#include math

double pow (double base, double exp);

Math Functions 7-9

Arguments

base A value of type double that is to be raised to a power.

exp The exponent to which the power base is to be raised.

Additional Information

Both arguments must be double and the returned value is double. If the
result overflows, pow returns the largest possible floating-point value and
sets errno to ERANGE. It returns zero and sets errno to EDOM under the
following conditions:

• If both arguments are zero.

• If exp is negative and nonintegral.

• If base is negative and exp is nonintegral.

The constant HUGE is defined in the math definition module to be the
largest possible value.

7.20 rand, srand

The rand and srand functions return pseudorandom numbers in the range
zero to 231 _l.

The syntax descriptions of the functions are as follows:

#include math

int rand(void);

int srand (int seed);

Additional Information

The rand function uses a multiplicative congruential random number gen­
erator with a repeat factor (period) of 232 • The random number generator
is reinitialized by calling srand with the argument 1, or it can be set to a
specific point by calling srand with any other number.

7 -10 Math Functions

7.21 sin

7.22 sinh

7.23 sqrt

The sin function returns the sine of its radian argument.

The syntax of the function is as follows:

#include math

double sin (double x);

Additional Information

Both the argument and the sine value must be an object of type double.

The sinh function returns the hyperbolic sine of its argument.

The syntax of the function is as follows:

#include math

double sinh (double x);

Additional Information

Both the argument and the returned hyperbolic sine value must be an
object of type double.

The value of sinh(x), if it causes an overflow, is a double value with the
largest possible magnitude and the appropriate sign.

The sqrt function returns the square root of its argument.

The syntax of the function is as follows:

#include math

double sqrt (double x);

Additional Information

The argument and the returned value are both objects of type double.

Math Functions 7 -11

7.24 tan

7.25 tanh

Additional Information

If x is negative, the sqrt function returns zero and sets errno to EDOM.

The tan function returns a double value that is the tangent of its radian
argument.

The syntax of the function is as follows:

#include math

double tan (double x);

Additional Information

The value of tan (x) at its "singular points" (... -3pi/2,-pi/2,pi/2 ...) is
the largest possible double value HUGE, and the tan function sets errno
to ERANGE.

The tanh function returns a double value that is the hyperbolic tangent of
its double argument.

The syntax of the function is as follows:

#include math

double tanh (double x);

7.26 Program Examples

Example 7-1 illustrates the functionality of the tan, sin, and cos functions.

7 -12 Math Functions

Example 7-1: Calculating and Verifying a Tangent Value

/* This example uses two functions --- my tan and main *
* to calculate the tangent value of a number, and to check *
* the calculation using the sin and cos functions. */

#include math
#include stdio

/* Include modules

/* This function is used to calculate the tangent using the *
* sin and cos functions. */

double my tan (x)
double x;
{

double y, y1,

y1 = sin (x);
y2 = cos

if (y2
y 0;

else
y y1

return y;
}

main()
{

(x);

0)

/ y2;

double x;

y2;

for (x=O.O; x<1.5; x += 0.1)
/* Print values: compare */

printf(lItan of %4.1f = %6.2f\t%6.2f\nll, x, mytan(x), tan(x»;
}

Math Functions 7 -13

Sample output from the previous example is as follows:

RUN EXAMPLE I RETURN I
tan of 0.0 = 0.00 0.00
tan of 0.1 = 0.10 0.10
tan of 0.2 = 0.20 0.20
tan of 0.3 = 0.31 0.31
tan of 0.4 = 0.42 0.42
tan of 0.5 = 0.55 0.55
tan of 0.6 = 0.68 0.68
tan of - 0.7 = 0.84 0.84
tan of 0.8 = 1.03 1.03
tan of 0.9 = 1.26 1.26
tan of 1.0 = 1.56 1.56
tan of 1.1 = 1.96 1.96
tan of 1.2= 2.57 2.57
tan of 1.3= 3.60 3.60
tan of 1.4 = 5.80 5.80
$

7 -14 Math Functions

Chapter 8

Error-Handling Functions

When an error occurs during a call to any of the VAX C Run-Time Library
functions, the function returns an unsuccessful status and sets the external
variable, errno, to a value which indicates the reason for the failure. In
this way, variable errno is useful in determining the cause of a run-time
error.

The errno definition module declares the errno variable and symbolically
defines the possible errno values. By including the errno definition module
in your program, you can check for specific values after a function call.
Table 8-1 lists the symbolic values that can be assigned to errno.

Table 8-1: Errno Symbolic Values
Symbolic Constant Description

EPERM Not owner

ENOENT No such file or directory

ESRCH No such process

EINTR Interrupted system call

EIO I/O error

ENXIO No such device or address

E2BIG Argument list too long

ENOEXEC Exec format error

EBADF Bad file number

ECHILD No child processes

Error-Handling Functions 8-1

Table 8-1 (Cont.):
Symbolic Constant

EAGAIN

ENOMEM

EACCESS

EFAULT

ENOTBLK

EBUSY

EEXIST

EXDEV

ENODEV

ENOTDIR

EISDIR

EINVAL

ENFILE

EMFIL

ENOTTY

ETXTBSY

EFBIG

ENOSPC

ESPIPE

EROFS

EMLINK

EPIPE

EDOM

ERANGE

EWOULDBLOCK

EVMSERR

Errno Symbolic Values
Description

No more processes

Not enough memory

Permission denied

Bad address

Block device required

Mount devices busy

File exists

Cross-device link

No such device

Not a directory

Is a directory

Invalid argument

File table overflow

Too many open files

Not a typewriter

Text file busy

File too big

No space left on device

Illegal seek

Read-only file system

Too many links

Broken pipe

Math argument

Result too large

File I/O buffers are empty

VMS-specific error code non translatable error

The errno values can also be translated to a message, similar to that found
in UNIX systems, by the perror function. If perror cannot translate the
errno value, it prints the following message, followed by the VMS error
message associated with the value.

8-2 Error-Handling Functions

8.1 abort

8.2 assert

%s:non-translatable vms error code: xxxxxx vms message:

In the template, %s is the string you supply to perror; xxxxxx-is the VMS
message number.

The VMS error code is available in the vaxc$errno variable and can be
examined in user programs. The vaxc$errno variable is declared in the
errno definition module.

The following sections describe the Error-Handling functions.

The abort function executes an illegal instruction that terminates the
process.

The syntax of the function is as follows:

#include stdlib

void abort (void);

The assert macro puts diagnostics into programs.

The syntax of the assert macro is as follows:

#include assert

void assert (int expression);

Arguments

The argument expression is an expression that has an int value.

Additional Information

When the assert macro is executed, if expression is false (that is, evaluates
to zero), the assert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file,
and the source line number-the latter are respectively the values of the
preprocessing macros __ FILE __ and __ LINE __) on the standard error
file in an implementation-defined format. Then, it calls the abort function.

Error-Handling Functions 8-3

B.3 atexit

The message written by the assert macro has the following form:

Assertion failed: expression, file aaa, line nnn

If expression is true (that is, evaluates to nonzero) or if the signal SIGABRT
is being ignored, the assert macro returns no value.

Compiling with the CC command qualifier jDEFINE=NDEBUG or with
the preprocessor directive #define NDEBUG ahead of the #include assert
statement causes the assert macro to have no effect.

The assert function is implemented as a macro, not as a real function. If
#undef is used to remove the macro definition and obtain access to a real
function, the behavior is undefined.

The atexit function registers a function that will be called without argu­
ments at program termination.

The. syntax of the atexit function is as follows:

#include stdlib

void atexit (void (*func) (void»;

Arguments

The argument tunc is a pointer to the function to be registered.

Additional Information

The at exit function returns a value that is not equal to zero if the registra­
tion succeeds. Up to 32 functions can be registered. However, you should
not register a function more than once.

8-4 Error-Handling Functions

8.4 exit, _exit

8.5 perror

The exit and _exit functions terminate the process from which they are
called.

The syntax descriptions of the functions are as follows:

#include stdlib

void exit (int status);
void _exit (int status);

Arguments

The argument status corresponds with an errno value. The errno values
are defined in the errno definition module.

Additional Information

The exit and _exit functions return the specified status to the parent
process, if any. If the program is invoked by the DIGITAL Command
Language, the status is interpreted by DCL and a message is displayed.
The two functions are identical; _exit is retained for reasons of compati­
bility with previous versions of VAX C.

The perror function writes a short error message to stderr describing the
last error encountered during a call to the VAX C Run-Time Library from
a C program.

The syntax of the function is as follows:

#include stdio

int perror (const char *str);

Arguments

The argument str typically contains the name of the program that incurred
the error.

The perror function writes out its argument (a user-supplied prefix to
the error message), followed by a colon, followed by the message itself,
followed by a newline.

Error-Handling Functions 8-5

8.6 strerror

The strerror function maps the error number in errnum to an error mes­
sage string.

The syntax of the function strerror is as follows:

#include string

char *strerror(int errnum);

Additional Information

The return value is a pointer to a buffer that contains the appropriate
error message. This buffer should not be modified by user programs.
Moreover, calls to the strerror function may overwrite this buffer with a
new message.

If the argument errnum does not correspond to a known RTL error code,
the strerror function returns the null pointer value NULL.

8.7 Signal-Handling Functions

Signals are raised by a variety of events, including any of the following:

• A user typing CTRLjC at a terminal (thus raising the signal SIGINT)

• Certain programming errors

• A gsignal call

Signals are given the mnemonics (as in SIGINT) found in the signal
definition module. Normally, all signals cause the termination of the
receiving process. However, the signal function allows you to ignore most
of them or to interrupt to a specific location for handling.

The syntax for a signal handler is as follows:

handler (sigint, code, scp);

int sigint, code;
struct sigcontext *scp;

8-6 Error-Handling Functions

The argument sigint is the designated signal number, and the argument,
code, designates the type of signal if more than one exists. The argument
scp is a pointer to the structure, sigcontext (defined in the signal definition
module), which contains information used to restore the context of the
process as it was before the signal occurred. Once a signal handler is
installed, it remains in effect until the program calls sigvec again to
handle it.

The handler specified by the argument sv is established as the handler to
be called when the signal specified by sigint is raised. .

Table 8-2 shows the signals defined in the signal definition module, ways
to generate the signals on VMS, and the attributes of the signal, such as
whether or not the signal can be ignored. Unless noted otherwise, each
signal can be reset and it can be caught or ignored.

Table 8-2: VAX C Signals
Name Description

SIGHUP Hang up

SIGINT Interrupt

SIGQUIT Quit

SIGILLI Illegal
instruction

SIGTRApI Trace trap

SIGIOT lOT instruction

SIGEMT EMT instruction

SIGFPE Floating-point
exception

SIGKILL2 Kill

SIGBUS Bus error

1 Not reset when caught.

2Cannot be caught or ignored.

Generated by

Data set hang up

VMS CTRLjC interrupt

CTRLjC if the action for SIGINT is
SIG_DFL (default)

Illegal instruction, reserved operand,
or reserved address mode

TBIT trace trap or breakpoint fault
instruction

Not implemented

Compatibility mode trap or op code
reserved to customer

Floating-point overflow

External signal only

Access violation or change mode
user

Error-Handling Functions 8-7

8.7.1 alarm

Table 8-2 (Cont.): VAX C Signals
Name Description

SIGSEGV Segment
violation

SIGSYS System Call
error

SIGPIPE Broken pipe

SIGALRM Alarm clock

SIGTERM Software
terminate

Generated by

Length violation or change mode
supervisor

Bad argument to system call

Not implemented

Timer AST

External signal only

The following sections describe the signal-handling functions that you can
use to recover from programming errors without aborting your program.

The alarm function sends the signal SIGALRM (defined in the signal
definition module) to the invoking process after the number of seconds
indicated by its argument has elapsed.

The syntax of the function is as follows:

#include signal

int alarm (unsigned int seconds);

Arguments

The argument seconds has a maximum limit of 4,294,967,295 seconds.
Calling alarm with a zero argument cancels any pending alarms.

Additional Information

The alarm function returns the number of seconds remaining from a
previous alarm request.

Unless it is caught or ignored, the signal generated by alarm terminates
the process. Successive alarm calls reinitialize the alarm clock. Alarms are
not stacked.

Because the clock has a 1-second resolution, the signal may occur up to 1
second early. If the SIGALRM signal is caught, resumption of execution
may be delayed by an arbitrary amount because of scheduling delays.

8-8 Error-Handling Functions

8.7.2 gsignal, raise

The gsignal and raise functions generate a specified software signal.
Generating a signal causes the action established by the ssignal function
to be taken.

The syntax of the functions is as follows:

#include signal
int gsignal (int sig • ...);

#include signal
int raise (int sig);

Arguments

The arguments to the gsignal and raise functions are as follows:

sig Identifies the signal to be generated.

Represents an optional signal type. For example, signal SIGFPE-the
arithmetic trap signal-has 10 different codes, each representing a
different type of arithmetic trap. Table 8-3 presents the various codes.

Table 8-3: Signal Types
Hardware Condition Signal Code

Arithmetic Traps:

Integer overflow SIGFPE FPE_INTOVF_ TRAP

Integer division by zero SIGFPE FPE_INTDIV_TRAP

Floating overflow trap SIGFPE FPE_FLTOVF_TRAP

Floating/ decimal division by zero SIGFPE FPE_FL TDIV_ TRAP

Floating underflow trap SIGFPE FPE_FL TUND_TRAP

Decimal overflow trap SIGFPE FPE_DECOVF_ TRAP

Subscript-range SIGFPE FPE_SUBRNG_TRAP

Floating overflow fault SIGFPE FPE_FLTOVF_FAULT

Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT

Error-Handling Functions 8-9

Table 8-3 (Cont.): Signal Types
Hardware Condition Signal Code

Floating underflow fault SIGFPE FPE_FLTUND_FAULT

Reserved instruction SIGILL ILL _PRIVIN _F AUL T

Reserved operand SIGILL ILL_RESOP_FAULT

Reserved addressing SIGILL ILL_RESAD_FAULT

Compatibility mode SIGILL Hardware supplied

Length access control SIGSEGV

Chme SIGSEGV

Chms SIGSEGV

Chmu SIGSEGV

Trace pending SIGTRAP

Bpt instruction SIGTRAP

Protection violation SIGBUS

Customer-reserved code SIGEMT

The signal codes can be represented by mnemonics or numbers. The
arithmetic trap codes are represented by the numbers 1-10, whereas the
SIGILL codes are represented by the numbers 0-2. The code values are
defined in the signal definition module.

Additional Information

The result of a gsignal or raise call is one of the following:

• If gsignal or raise specifies a sig argument that is outside the range
defined in the signal module, then the specified function returns zero,
and the variable errno is set to EINVAL. See Table 8-1 for more
information.

• If ssignal establishes SIG_DFL (default action) for the signal, then the
functions do not return. The image is exited with the VMS error code
that corresponds to the signal.

• If ssignal establishes SIG_IGN (ignore signal) as the action for the
signal, then gsignal or raise returns its argument, sig.

• Otherwise, ssignal must have established an action function for the
signal. That function is called, and that function's return value is
returned by gsignal or raise.

8-10 Error-Handling Functions

8.7.3 kill

The gsignal and raise functions are VAX C specific and are not portable.

The kill function sends a signal to the process specified by a process ID.

The syntax of the function is as follows:

#include signal

int kill (int pid. int sig);

Additional Information

Unless you have system privileges, the sending and receiving processes
must have the same UIC. The kill function returns zero if the kill was
successfully queued. It returns -1 to indicate errors, including:

• The receiving process has a different UIC and the user is not a
SYSTEM user.

• The receiving process does not exist.

If pid is the process id of the invoking process, then the kill function acts
as though the raise function had been called.

If kill is successful, the receiving process is always terminated. The
termination status of the receiving process is the VMS error code that
corresponds to the value of the signal that was sent.

8.7.4 longjmp, setjmp

The setjmp and longjmp functions provide a way to transfer control
from a nested series of function invocations back to a predefined point
without returning normally; that is, not by a series of return statements.
The setjmp function saves the context of the calling function in an en­
vironment buffer. The longjmp function restores the context of the
environment buffer.

The syntax descriptions of the functions are as follows:

#include setjmp

int setjmp (jmp_buf env):
void longjmp (jmp_buf env. int vaL);

Error-Handling Functions 8-11

Arguments

The arguments to the setjmp and longjmp functions are as follows:

env Represents the environment buffer and must be an array of integers
long enough to hold the register context of the calling function. The
type jmp_buf is defined by a typede£ found in the setjmp definition
module. The contents of the general-purpose registers, including the
program counter (PC), are stored in the buffer.

value Passed from longjmp to setjmp, and then becomes the second return
value of the setjmp call. If value is passed as zero, it will be converted
to 1.

Additional Information

When setjmp is first called, it returns the value zero. If longjmp is then
called, naming the same environment as the call to setjmp, control is
returned to the setjmp call as if it had returned normally a second time.
The return value of setjmp in this second return is the value supplied
by the user in the longjmp call. To preserve the true value of setjmp,
the function calling setjmp must not be called again until the associated
longjmp is called.

The setjmp and longjmp functions rely on the VMS condition-handling
facility to effect a nonlocal goto with a signal handler. The longjmp
function is implemented by generating a VAX C RTL specified signal and
allowing VMS to unwind back to the desired destination. Thus, the VAX
C RTL must be in control of signal handling for any VAX C image. In
order for VAX C to be in control of signal handling, you must establish
all exception handlers through a call to the V AXC$EST ABLISH function.
See Section 8.7.14 for more information.

CAUTION

The longjmp function may be invoked from a signal handler
that has been established for any signal supported by the VAX
C RTL, subject to the following nesting restrictions:

1. The longjmp function will not work if invoked from nested
signal handlers. The result of the longjmp function, when
invoked from a signal handler that has been entered as a
result of an exception generated in another signal handler,
is undefined.

2. The setjmp function should not be invoked from a signal
handler unless the associated longjmp is to be issued before
the handling of that signal is completed.

8-12 Error-Handling Functions

B.7.5 pause

The pause function causes its calling process to stop (hibernate) until the
process receives a signal.

The syntax of the function is as follows:

#include signal

int pause (void);

Additional Informati,on

Control is not returned to the process that called pause, except after a
SYS$WAKE system service call. The process may be reawakened by kill
or alarm.

B. 7.6 sigblock

The sighlock function causes the signals in mask to be added to the
current set of signals being blocked from delivery.

The syntax of the function is as follows:

#include signal

int sigblock (int mask);

Arguments

Signal i is blocked if the i-I bit in mask is a 1. For example, to add the
protection-violation signal to the set of blocked signals, use the following:

sigblock(1 « (SIGBUS - 1));

You can express signals in mnemonics (such as SIGBUS for a protection
violation) or numbers as defined in the signal definition module, and you
can express combinations of signals using the bitwise OR operator (I).

Additional Information

The sighlock function returns the previous set of masked signals.

Error-Handling Functions 8-13

8.7.7 signal

The signal function allows you either to catch or to ignore a signal.

The syntax of,the function is as follows:

#include signal

void (*signal (int sig, void (*func) (int, ...))) (int, ...);

Arguments

The arguments to the signal function are as follows:

sig The number or mnemonic associated with a signal. Customarily, the
sig argument is one of the mnemonics defined in the signal definition
module.

tunc Either the action to be taken when the signal is raised, or the address
of a function needed to handle the signal.

If tunc is the constant SIG_DFL, the action for the given signal is
reset to the default action which is the termination of the receiving
process. If the argument is SIG_IGN, the signal is ignored. Not all
signals can be ignored.

If tunc is neither SIG_DFL nor SIG_IGN, it specifies the address of
a Signal-Handling function. When the signal is raised, the addressed
function is called with sig as its argument. When the addressed
function returns, the interrupted process continues at the point of
interruption. (This is called "catching a signal.") Except as indicated in
Table 8-2, signals are reset to SIG_DFL after they have been caught.

Additional Information

You must call signal each time you want to catch a signal.

The signal function returns the address of the function previously (or
initially) established to handle the signal. If the sig argument is out of
range, signal returns -1 and sets the variable errno to EINVAL. See
Table 8-1 for more information.

8-14 Error-Handling Functions

8.7.8 sigpause

The sigpause function assigns mask to the current set of masked signals
and then waits for a signal.

The syntax of the function is as follows:

#include signal

void sigpause (int mask);

Arguments

See sigblock in Section 8.7.6 for information concerning the argument
mask.

Additional Information

When control returns to sigpause, the function restores the previous set of
masked signals and then returns EINTR, for "interrupt." The value EINTR
is defined in the errno definition module.

Usually, a signal is blocked using sigblock which examines variables
modified on the occurrence of the signal, determining if there is further
work to be done. The process pauses using sigpause with the mask
returned by sigblock as its argument.

8.7.9 sigsetmask

The sigsetmask function establishes those signals which are blocked from
delivery.

The syntax of the function is as follows:

#include signal

int sigsetmask (int mask);

Arguments

See sigblock in Section 8.7.6 for information concerning the argument
mask.

You can express signals in mnemonics (such as SIGBUS for a protection
violation) or numbers as defined in the signal definition module, and you
can express combinations of signals using the bitwise OR operator (I).
The sigsetmask function returns the previous set of masked signals.

Error-Handling Functions 8-15

8.7.10 sigstack

The sigstack function defines an alternate stack on which to process
signals. This allows the processing of signals in a separate environment
from that of the current process.

The syntax of the function is as follows:

#include signal

int sigstack (struct sigstack *88, struct sigstack *088);

The structure sigstack is defined in the standard include module signal as
follows:

struct sigstack
{

char *ss_sp;
int ss_onstack;

};

Arguments

The arguments to the sigstack function are as follows:

ss If the argument ss is nonzero, it specifies the address of a structure that
holds a pointer to a designated section of memory as a signal stack on
which to deliver signals.

ass If the argument oss is nonzero, it specifies the address of a structure
which will be stored to the current state of the signal stack.

Additional Information

If the sigvec function specifies that the signal handler execute on the
signal stack,. the system checks to see if the process is executing currently
on that stack. If the process is not executing on the signal stack, the
system arranges a switch to the signal stack for the duration of the signal
handler's execution. If the argument oss is nonzero, the current state of
the signal stack is returned.

Signal stacks must be allocated an adequate amount of storage; they do
not "expand" like the run-time stack. If the stack overflows, an error
occurs.

The structure sigstack is defined in the signal definition module.

Upon successful completion, the function returns O. Otherwise, the
function returns -1.

8-16 Error-Handling Functions

8.7.11 sigvec

The sigvec function assigns a handler for a specific signal.

The syntax of the function is as follows:

#include signal

int sigvec (int sigint. struct sigvec *sv. struct sigvec *osv);

The structure sigvec is defined in the standard include module signal as
follows:

struct sigvec
{

};

int (*handler)();
int mask;
int onstack;

Arguments

The arguments to the sigvec function are as follows:

sv If sv is nonzero, it specifies the address of a structure containing a
pointer to a handler routine and mask to be used when delivering
the specified signal and a flag indicating whether the signal is to be
delivered to an alternative stack. If the argument sv.onstack has a
value of I, the system delivers the signal to the process on a signal
stack specified with sigstack.

osv If osv is nonzero, the previous handling information for the signal is
returned to the user.

Additional Information

The sigvec function returns 0 if the call succeeded and returns -1 if
an error occurred. Upon error, the variable errno contains the value
explaining the error. See Table 8-1 for more information.

Error-Handling Functions 8-17

8.7.12 sleep

The sleep function suspends the execution of the current process for at
least the number of seconds indicated by its argument.

The syntax of the function is as follows:

#include signal

int sleep (unsigned seconds);

Additional Information

On success, sleep returns the number of seconds that the process slept.
On error, sleep returns -1.

8.7. 13 ssignal

The ssignal function allows you to specify the action to be taken when a
particular signal is raised.

The syntax of the function is as follows:

#include signal

void (*ssignal (int sig. void (*!unc) (int •... ») (int •...);

Arguments

The arguments to the ssignal function are as follows:

sig A number or mnemonic associated with a signal. The symbolic con­
stants for signal values are defined in the signal definition module (see
Table 8-2).

tunc Represents the action to be taken when the signal is raised, or the
address of a function that is executed when the signal is raised.

Additional Information

The ssignal function returns the address of the function previously
established as the action for the signal. Note that the address may contain
the value SIG_DFL (0) or SIG_IGN (1).

8-18 Error-Handling Functions

The ssignal function calls signal with the same arguments; the only
difference between the two is in their return value on detecting an error
(usually an invalid signal argument). The function ssignal returns zero to
indicate errors. For this reason, there is no way to know whether a return
status of zero indicates failure or whether it indicates that a previous
action was SIG_DFL (0). The signal function returns -1 on error.

The ssignal function is VAX C specific and is not portable.

See also sigvec in this section.

8.7.14 VAXC$ESTABLISH

If you want to establish a VMS exception handler, it must be done through
a call to the VAX C RTL function V AXC$EST ABLISH. This function
establishes a special VAX C RTL exception handler that catches all RTL
related exceptions and passes on all others to your handler.

The syntax of the function is as follows:

#include signal

void VAXC$ESTABLISH (int (*exception_handLer) (void *mecharr. void *sigarr»;

Arguments

The argument exception_handler is the name of the function that is to
be established as a VMS condition handler. You pass the address of a
function as an argument to V AXC$EST ABLISH.

Additional Information

The VAXC$ESTABLISH function can only be invoked from a VAX C
function, as it relies on the allocation of data space on the run-time
stack by the VAX C compiler. Calling the VMS system library routine
LIB$ESTABLISH directly from a VAX C function will result in undefined
results by the setjmp and longjmp functions.

8.8 Program Examples

Example 8-1 illustrates the functionality of signal, alarm, and pause.

Error-Handling Functions 8-19

Example 8-1: Suspending and Resuming Programs

/* This program shows how to alternately suspend and resume *
* a program using the signal, alarm, and pause functions. */

#define SECONDS 5

#include stdio
#include signal

main()
{

int alarm_action();

signal (SIGALRM, alarm_action);

alarm(SECONDS);

pause();
}

alarm_action 0
{

/* Set alarm counter */

/* Pass signal and *
* function to SIGNAL */

/* Set alarm clock for 5 *
* seconds */

/* Suspend the process *
* until the signal is *
* received */

/* Print the value of *
* alarm counter

printf("\t<%d\007>", number_of_alarms);

}

signal (SIGALRM, alarm_action);

alarm(SECONDS);

if (--number_of_alarms)
pause();

8-20 Error-Handling Functions

/* Pass signal and the *
* function to SIGNAL */

/* Set alarm clock */

/* Decrement alarm counter */

Sample output from the previous example is as follows:

$ RUN EXAMPLEIRETURNI
<5> <4> <3> <2> <1>

YoSYSTEM-W-ASTFLT. AST fault. SP=FFFFFFFE. param=00001665. PC=03COOOOO.
PSL=7FF2C10C. target PC=OOOOOOOO. PSL=OOOOOOOO

YoTRACE-W-TRACEBACK. symbolic stack dump follows
module name routine name line
C$SIGNAL gsignal 1728

C$SETJMP LONGJMP

TEMP main 146

reI PC
000000C2
00001307
8000254D
00001699
0000002A

abs PC
00001665
00001307
80009E5E
00001699
0000122A

Error-Handling Functions 8-21

Chapter 9

Memory Allocation Functions

All of the VAX C Run-Time Library functions that require additional
storage from the heap get that storage using the VAX C memory allocation
functions malloc, calloc, realloc, free, and cfree. These functions use
the LIB$GET_ VM and LIB$FREE_ VM routines to acquire the additional
virtual memory. The routines LIB$GET_ VM and LIB$FREE_ VM take
a fair amount of time to supply the virtual memory and, thus, the VAX
C Run-Time Library attempts to reduce the number of calls to these
functions, in the following manner.

The VAX C Run-Time Library maintains a pointer to the memory block
that was most recently freed by either free or cfree. The last freed block
is not returned to VMS by LIB$FREE_ VM. Instead, the VAX C Run-Time
Library attempts to satisfy the next request with this saved block.

If the saved block is large enough to satisfy the request, it is used. Any
unused portion of this block is retained for future allocation requests,
provided that it is larger than the predefined minimum size. The size
constraint prevents over-fragmentation of memory. If the saved block is
too small to satisfy a request, it is retained and the requested memory is
allocated by LIB$GET_ VM.

The freeing of a second block causes the saved block, if any, to be returned
to VMS through LIB$FREE_ VM. The new block is then saved to be used,
if possible, for the next request.

Since the VAX C Run-Time Library saves the last freed block of storage,
there is not a one-to-one correspondence between calls to malloc or calloc
and LIB$GET_ VM, or between calls to free or cfree and LIB$FREE_ VM.
VAX C RTL functions use LIB$GET_ VM and LIB$FREE_ VM to acquire
and return dynamic memory. However, the address given to the VAX C
RTL routines by LIB$GET_ VM is not the same as the address given to
the user by the VAX C RTL routines. Therefore, any memory allocated

Memory Allocation Functions 9-1

by a VAX C RTL routine must be deallocated by a VAX C RTL routine.
Similarly, any memory allocated by LIB$GET_ VM must be deallocated by
LIB$FREE_ VM.

The brk and sbrk functions assume memory can be allocated contiguously
from the top of the user's address space. However, the malloc function
and RMS may allocate space from this same address space. Therefore, it is
not recommended that you use the brk and sbrk functions in conjunction
with RMS and VAX C Run-Time Library routines that use malloc.

The following sections describe the memory allocation functions.

9.1 brk, sbrk

The brk and sbrk functions determine the lowest virtual address that is
not used with the program.

The syntax descriptions of the functions are as follows:

#include stdlib

void *brk (unsigned long int addr);
void *sbrk (unsigned long int incr);

Arguments

The arguments to the brk and sbrk functions are as follows:

addr Specifies the lowest address to the brk function, which the function
rounds up to the next 512-byte multiple. This rounded address is called
the break address.

incr Specifies, to the sbrk function, the number of bytes to add to the
current break address.

Additional Information

The brk function returns the break address (the address of an object of
type char). An address that is greater than or equal to the break address
and less than the stack pointer is considered to be outside the program's
address space. Attempts to reference it will cause access violations.

The sbrk function adds the number of bytes specified by its argument to
the current break address and returns the old break address.

When a program is executed, the break address is set to the highest
location defined by the program and data storage areas. Consequently,
brk and sbrk are needed only by programs that have growing data areas.

9-2 Memory Allocation Functions

The brk and sbrk functions return -1 if the program requests too much
memory.

9.2 ealloe, malloe (Memory Allocation)

The calloc and malloc functions allocate an area of memory.

The syntax descriptions of the functions are as follows:

#include stdlib

void *calloc (size_t number, size_t size);
void *malloc (size_t size);

Arguments

The arguments to the calloc and malloc functions are as follows:

number

size

Specifies the number of items to be allocated.

The size of each item.

Additional Information

The calloc function initializes the items to zero. If unable to allocate the
space, calloc returns zero.

The malloc function allocates a contiguous area of memory whose size in
bytes is supplied as an argument. It returns zero if it is unable to allocate
enough memory.

Both functions return the address of the first byte, which is aligned on an
octaword boundary.

9.3 efree, free (Memory Dealloeation)

The free and cfree functions make available for reallocation the area
allocated by a previous calloc, malloc, or realloc call.

The syntax of the functions is as follows:

#include stdlib

int cfree (void *ptr);
int free (void *ptr);

Memory Allocation Functions 9-3

Arguments

The argument ptr is the address returned by a previous call to malIoc,
calIoc, or realloc.

Additional Information

The contents of the deallocated area are unchanged. The functions return
zero if the area is successfully freed, -1 if an error occurs.

In VAX C, free and cfree are the same function. However, for compati­
bility with other C implementations, you should use free with malloc or
realIoc, and cfree with calloc.

9.4 realloc (Memory Reallocation)

The realloc function changes the size of the area pointed to by the first
argument to the number of bytes given by the second argument.

The syntax of the function is as follows:

#include stdlib

void *realloc (void *ptr. size_t size);

Arguments

The arguments to the realloc function are as follows:

ptr May point to an allocated area or, unless other allocations have been
made, to the area most recently freed by free or cfree.

size Specifies the new size of the allocated area.

Additional Information

If ptr is the null pointer constant (NULL), the behavior of the realloc
function is equivalent to that of the malloc function.

The realloc function returns the address of the area, since the area may
have to be moved to a new address in order to reallocate enough space. If
the area was moved, the space previously occupied is freed. If realloc is
unable to reallocate the space (for example, if there is not enough room),
it returns zero.

The contents of the area are unchanged up to the lesser of the old and
new sizes. New space in the reallocated area is initialized with zero.

9-4 Memory Allocation Functions

9.5 Program Example

Example 9-1 illustrates the use of the malloc,calloc, free, and cfree
functions.

Memory Allocation Functions 9-5

Example 9-1: Allocating and Deallocating Memory for
Structures

/* This example takes lines of input from the terminal until *
* it encounters a CTRL/Z. It places the strings into an *
* allocated buffer. copies the strings to memory allocated *
* for structures. prints the lines back to the screen. and *
* then deallocates all memory used for the structures. */

#include
#define

stdio
MAX_LINE_LENGTH 80

struct line_rac
{

};

struct line_rec *next;
char *data;

main ()
{

char *buffer;

/* Declare the structure */

/* Pointer to next line */
/* A line from terminal */

/* Define pointers to *
* structure (input lines) */

struct line_rec *first_Iine. *next_Iine. *last_Iine = NULL;

/* buffer points to memory */
buffer = malloc(MAX_LINE_LENGTH);

if (buffer == 0)
{

}

perror(lImalloc ll) ;

exitO;

while (gets(buffer) != NULL)
{

/* If error ...

/* While not CTRL/Z ...

/* Allocate for input line */
next_line = calloc(l. sizeof (struct line_rec»;

if (next_line == NULL)
{

}

9-6 Memory Allocation Functions

perror("calloc ll);

exitO;

(Continued on next page)

Example 9-1 (Cont.): Allocating and Deallocating Memory
for Structures

}

1* Put line in data area *1
next_line-> data = buffer;

if (last_line == NULL) 1* Reset pointers
first_line = next_line;

else
last_line-> next = next_line;

1* Allocate space for the *
* next input line *1

buffer = malloc{MAX_LINE_LENGTH);

if (buffer == 0)
{

}

perror("malloc");
exit 0 ;

free(buffer); 1* Last buffer always unused *1
1* Pointer to beginning *1 next_line = first_line;

do
{

puts{next_line -> data); 1* Write line to screen *1
free(next_line -> data); 1* Deallocate a line *1
last_line = next_line;
next_line = next_line-> next;
cfree(last_line);

}
while (next_line != NULL);

}

Sample input and output from the previous example is as follows:

$ RUN EXAMPLEIRETURNI
line one
line two
I CTRL/Z I

EXIT
line one
line two
$

Memory Allocation Functions 9-7

Chapter 10

Subprocess Functions

The VAX C Run-Time Library provides functions that allow the program­
mer to create subprocesses from a VAX C program. The creating process
is called the "parent" and the created subprocess is called the "child."

The creation of a child process is done within the parent process with
the exec functions (exec1, exec1e, execv, execve, exec1p, and execvp)
and the vfork function. Other functions are available to allow the parent
and child to read and write data across processes (pipe) and to allow for
synchronization of the two processes (wait). This chapter describes the
implementation and use of these functions.

The parent process can execute VAX C programs in its children, either
synchronously or asynchronously. The number of children that can run
simultaneously is determined by the /PRCLM user authorization quota
that has been established for each user on your system. Other quotas that
may affect the use of subprocesses are /ENQLM (Queue Entry Limit),
/ ASTLM (AST Waits Limit), and /FILLM (Open File Limit).

10. 1 The Implementation of Child Processes in VAX C

Child processes are created by VAX C functions with the VMS
LIB$SPAWN Run-Time Library routine. (See the VAX/VMS Run-Time
Library Routines Reference Manual for information on LIB$SPAWN.) The
use of LIB$SP AWN allows you to create multiple levels of child processes;
that is, the parent's children can also spawn children, and so on, up to the
limits allowed by the user authorization quotas previously noted.

Subprocess Functions 10-1

Child processes are restricted in that they can execute only other VAX
C programs. Other native-mode VMS languages do not share VAX C's
ability to communicate between processes, or, if they do, they do not use
the same mechanisms. In addition, the parent process must be run under
a DIGITAL-supported command language interpreter (CLI), such as the
DIGITAL Command Language (DCL) or the DEC/Shell. The parent may
not be run as a detached process or under control of a user-supplied CLI.

Parent and child processes communicate through a mailbox as shown in
Figure 10-1. This mailbox transfers the context in which the child will
run. The context mailbox, as it is called, passes to the child the informa­
tion it inherits from the parent, such as the names and file descriptors of
all the files that have been opened by the parent and the current location
within those files. The mailbox is deleted by the parent when the child
image exits.

Figure 10-1: Communications Links Between Parent and
Child Processes

Parent
context

Mailbox
context ...

Child

ZK-4002-85

NOTE

The mailbox created by the vfork and exec functions is tempo­
rary. The logical name of this mailbox is VAXC$EXECMBX and
is reserved for the use of the VAX C Run-Time Library (RTL).

The mailbox is created with a maximum message size and a buffer quota
of 512 bytes each. You need the TMPMBX privilege to create a mailbox
with these VAX C RTL functions. Since TMPMBX is the privilege required
by the PRINT and SUBMIT DCL commands, most users on a system have
this privilege. If you are not sure, type SHOW PROCESS/PRIVILEGES; it
will show which system privileges you have.

You cannot change the characteristics of these mailboxes. For more
information on mailboxes, see the VAX/VMS I/O Reference Volume.

10-2 Subprocess Functions

VMS does not permit two processes to use the same physical terminal for
input, and the VAX C Run-Time Library does not support file sharing or
the default C stream file type. Therefore, if stdir is connected to a terminal
or if stdout or stderr is connected to stream files, these standard streams
will be redirected to the NUL device _NLAO:.

10.1.1 system

10. 1.2 vfork

The system function passes a given string to the host environment to be
executed by a command processor.

The syntax of the system function is as follows:

#include processes

int system (const char *string);

Arguments

The argument string is a pointer to the string to be executed.

Additional Information

If the argument is a NUL pointer, the system function returns a nonzero
value to indicate that the system function is supported. The system
function spawns a subprocess and ex~cutes the command specified by
string in that subprocess. The system function will wait for the subprocess
to complete before returning the subprocess status as the return value of
the function.

The vfork function creates an independent child process.

The syntax of the function is as follows:

#include processes

int vfork (void);

Subprocess Functions 10-3

Additional Information

The vfork function provided by VAX C differs from the fork function
provided by other C implementations. The two major differences are as
follows:

The vfork Function

Used with the exec functions.

Creates an independent child
process that shares some of
the parent's characteristics.

The fork Function

Can be used without exec for asyn­
chronous processing.

Creates an exact duplicate of the parent
process that branches at the point
where vfork is called, as if the parent
and the child are the same process at
different stages of execution.

The vfork function provides the setup necessary for a subsequent call
to an exec function. Although no process is actually created by vfork, it
performs the following steps:

• It saves the return address (the address of the vfork call) to be used
later as the return address for the call to an exec function.

• It duplicates the parent's stack frame.

• It returns the integer 0 the first time it is called; that is, before the
call to an exec function has been made. After the corresponding exec
function call has been made, the exec function returns control to the
parent process, at the point of the vfork call, and it returns the process
id of the child as the return value. Thus, unless the exec function fails,
control will seem to return twice from vfork even though one call was
made to vfork and one call was made to the exec function.

The behavior of the vfork function is similar to the behavior of the setjmp
function. Both vfork and setjmp establish a return address for later use,
both return the integer 0 when they are first called to set up this address,
and both pass back the second return value as though it were returned by
them rather than by their corresponding exec or longjmp function calls.

1 0-4 Subprocess Functions

10.2 The exec Functions

There are six exec functions that can be called to execute a VAX C image
in the child process. These functions expect that vfork has been called
to set up a return address. However, the exec functions call vfork if the
parent process did not.

When vfork is called by the parent, exec returns to the parent process.
When vfork has been called by an exec function, the exec returns to itself,
waits for the child to exit, and then exits the parent process. Thus, exec
does not return to the parent process unless the parent calls vfork to save
the return address.

Unlike UNIX based systems, the exec functions in the VAX C Run-Time
Library cannot determine if the specified program image exists. Therefore,
the exec functions will appear to succeed even though the image does not
exist. The status of the child process, returned to the parent process, will
indicate that this error occurred. You can retrieve this error code by using
the wait function.

10.2.1 execl, execle, execlp, execv, execve, execvp

The exec functions pass the name of an image to be activated in a child
process.

The syntax descriptions of the functions are as follows:

#include processes

int execl(char *fiLe_spec, char *argn, .. .);

int execle(char *fiLe_spec, char *argn, . .. ,
char *envp[]);

int execlp(char *fiLe_name, char *argn, .. .);

int execv(char *fiLe_spec, char *argv[]);

int execve(char *fiLe_spec, char *argv[] ,
char *envp[]);

int execvp(char *fiLe_name, char *argv[]);

Subprocess Functions 10-5

Arguments

The arguments to the exec functions are as follows:

argn

envp

The file specification (full) of a new image to be activated in the
child process.

The file name of a new image to be activated in the child process.
The device and directory specification for the file is obtained by a
search of the environment name VAXC$P ATH.

Represents a sequence of pointers to null-terminated character
strings. By convention, at least one argument must be present and
must point to a string that is the same as the new process file name
(or its last component).

An array of strings that specifies the program's environment. Each
string in argument envp has the form:

name = value

The name can be one of the names listed in the following table and
the value is a NUL-terminated string to be associated with the name.

• HOME-The user's login directory

• TERM-The type of terminal being used

• P ATH-The default device and directory

• USER-The name of the user who initiated the process

The last element in envp must be the null pointer NULL.

When the operating system executes the program, it places a copy
of the current environment vector (envp) in the external variable
environ.

argv An array of pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By
convention, argv[O] must point to a string that is the same as the
new process file name (or its last component). Argv is terminated by
a null pointer.

1 0-6 Subprocess Functions

Represents a sequence of pointers to strings. At least one pointer
must exist to terminate the list. This pointer may be the NULL
pointer.

Additional Information

In order to understand how the exec functions operate, consider how VMS
calls any VAX C program as shown in the following syntax:

int main (int argc, char *argv [J, char *envp [J) ;

The identifier argc is the argument count; argv is an array of argument
strings. The first member of the array (argv[O]) always contains the name
of the image. The actual arguments are placed in subsequent elements of
the array. The last element of the array is always the null pointer.

An exec function calls a child process in the same way that the Run-Time
system calls any other VAX C program. The exec functions pass the
name of the image to be activated in the child; this value is placed in
argv[O]. However, the functions differ in the way they pass arguments and
environment information to the child:

• Arguments can be passed in separate character strings (execl, execle,
and execlp) or in an array of character strings (execv and execve).

• The environment can be explicitly passed in an array (execle, execve)
or taken from the parent's environment variable (execl and execv).

10.2.1. 1 Exec Processing

The exec functions use the LIB$SP AWN routine to create the subprocess
and activate the child image within the subprocess. This child process
inherits the parent's environment, including all defined logical names and
command line interpreter symbols. The exec functions use the logical
name VAXC$EXECMBX to communicate between parent and child; this
logical name must not exist outside the context of the parent image.

The exec functions pass the following information to the child:

•

•

The parent's umask value, which specifies whether any access is
to be disallowed when a new file is created. For more information
concerning the umask function, refer to Chapter 11, System Functions.

The file name string associated with each file descriptor and the
current position within each file. The child opens the file and calls
lseek to position the file to the same location as the parent. Note
that if the file is a record file, the child is positioned on a record
boundary, regardless of the parent's position within the record. For
more information concerning file descriptors and the lseek function,
refer to Chapter 2, Standard I/O Functions and Macros.

Subprocess Functions 1 0-7

This information is sent to the child for all descriptors known to the
parent including all descriptors for open files, null descriptors, and
duplicate descriptors.

File pointers are not transferred to the child. For files opened by a
file pointer in the parent, only their corresponding file descriptors are
passed to the child. Therefore, the fdopen function must be called to
associate a file pointer with the file descriptor if the child will access
the file by file pointer. For more information concerning the fdopen
function, refer to Chapter 2, Standard· I/O Functions and Macros.

Process permanent input files are not inherited by the child process.
Rather, they are replaced with the null device NLAO. See Section 10.1
for restrictions on the use of the parent's process permanent files by
the child process.

• The signal data base. Only SIG_IGN (ignore) actions are inherited.
Actions specified as routines are changed to SIG_DFL (default)
because the parent's signal-handling routines are inaccessible to the
child.

• The environment and argument vectors.

When everything has been transmitted to the child, exec processing is
complete. Control in the parent process then returns to the address saved
by vfork and the child's process id is returned to the parent.

10.2.1.2 Exec Error Conditions

The exec functions can only fail if LIB$SPAWN is unable to create the
subprocess. Conditions that can cause a failure include exceeding the
subprocess quota or finding the communications by the context mailbox
between the parent and child to be broken. Exceeding some quotas will
not cause LIB$SP AWN to fail, but rather to be put into a wait state that
can cause the parent process to "hang." An example of such a quota is the
Open File Limit quota.

You will need an Open File Limit quota of at least 20 files, with an average
of three times the number of concurrent processes that your program will
run. If you use more than one open pipe at a time, or perform I/O on
several files at one time, this quota may need to be even higher. See your
system manager if this quota needs to be increased.

1 0-8 Subprocess Functions

When an exec fails, a value of -1 is returned. After such a failure, the
parent is expected to call either the exit or _exit function. Both functions
then return to the parent's vfork call, returning the child's process id.
In this case, the child process id returned by exec is less than zero.
For more information concerning the exit function, refer to Chapter 8,
Error-Handling Functions.

10.3 Synchronizing Processes

10.3.1 wait

A child process is terminated when the parent process terminates.
Therefore, the parent process must check the status of its child processes
before exiting. This is done with the VAX C RTL function wait.

The syntax of the function is as follows:

#include processes

int wait (int *status);

Arguments

The argument status is the address of a location to receive the final status
of the terminated child. Thus, the child can set the status with the exit
function and the parent can retrieve this value by specifying status.

Additional Information

The wait function suspends the parent process until a value is returned
from the child. This value is the final status of the child.

The return value from wait is the process id of the terminated child. If
more than one child process was created, wait will return the process id
of the terminated child that was most recently created. ~Subsequent calls
to wait will return the process id of the next most recently created, but
terminated, child.

Subprocess Functions 10-9

10.4 Reading and Writing Data

10.4.1 pipe

You must use a mailbox for reading and writing data between .the parent
and child. The channels through which the processes communicate are
called a pipe. You use the pipe function to create a temporary mailbox.

The syntax of the function is as follows:

#include processes

int pipe (int array_fdscptr[2] • ...);

Arguments

The arguments to the pipe function are as follows:

array_fdscptr An array of file descriptors. A pipe is implemented as an
array of file descriptors associated with a mailbox. The file
descriptors are allocated as follows:

• The first available file descriptor is assigned to writing,
and the next available file descriptor is assigned to
reading.

• The file descriptors are then placed in the array in reverse
order; element 0 contains the file descriptor for reading,
and element 1 contains the file descriptor for writing, as
shown in Figure 10-2.

Represents two optional addtional arguments as follows:

10-10 Subprocess Functions

flags

bufsize

An optional argument and is identical to the same argument
in the function open. The values for the argument are
defined in the file definition module and have the following
meanings:
O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_APPEND

O_CREAT

O_TRUNC

Open for reading only.

Open for writing only.

Open for reading and writing.

Ignored; not supported by VAX C.

Append on each write.

Create a file if it does not exist.

Create a new version of this file.

O_EXECL Error if attempting to create existing file.

These flags are set using the bitwise OR operator (I) to
separate specified flags. Opening a file with O-APPEND
causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, open creates a
new file by incrementing the version number by one, leaving
the old version in existence. If O_CREAT is set and the
named file does not exist, the VAX C RTL creates it with any
attributes specified in the fourth and subsequent arguments,
file_attribute. If O_EXECL is set with O_CREAT, then if the
file already exists, the attempted open returns an error.

O_CREAT, O_EXECL, and O_TRUNC should not be used
with pipes. O-APPEND is ignored with pipes.

Optional and specifies the size of the mailbox in bytes. If you
do not specify this argument, VAX C creates a mailbox with a
default size of 512 bytes.

Subprocess Functions 10-11

Figure 10-2: Implementation of a Pipe

Parent Child

o 0 read read -
Mailbox

write ~ write

ZK-4003-85

Additional Information

The mailbox that is used for the pipe is a temporary mailbox. The mailbox
is not deleted until all processes that have open channels to that mailbox
close those channels. Each process that closes a previously active channel
to the mailbox writes a message to the mailbox, indicating end-of-file.

The mailbox is created with the $CREMBX system service, specifying the
following characteristics:

• Maximum message length of 512 characters

• Buffer quota of 512 characters

• A protection mask granting all privileges to USER and GROUP and
no privileges to SYSTEM or WORLD

The buffer quota of 512 characters implies that no more than 512 charac­
ters can be written to the mailbox before all or part of the mailbox is read.
Since a mailbox record is slightly larger than the data part of the message
that it contains, not all of the 512 characters can be used for message data.
The size of the buffer can be increased by specifying an alternative size
using the optional third argument to the pipe function. A mailbox under
VMS -is a record oriented file with no carriage control attributes. It is fully
buffered by default in the VAX C Run-Time Library.

The pipe is created by the parent process before vfork and exec are called.
By calling pipe first, the child inherits the open file descriptors for the
pipe. The getname function can then be used to return the name of
the mailbox associated with the pipe, if this information is desired. The
mailbox name returned by getname always has the format _MBAnnnn:,
where nnnn is a unique number.

1 0-12 Subprocess Functions

Both the parent and the child need to know in advance which file descrip­
tors will be allocated for the pipe. This information cannot be retrieved
at run time. Therefore, it is important to understand how file descriptors
are used in any VAX C program. For more information concerning file
descriptors, refer to Chapter 4, UNIX System I/O Functions.

File descriptors 0, I, and 2 are always open in a VAX C program for
stdin (SYS$INPUT), stdout (SYS$OUTPUT), and stderr (SYS$ERROR),
respectively. Therefore, if no other files have been opened when pipe is
called, pipe assigns file descriptor 3 for writing and file descriptor 4 for
reading. In the array returned by pipe, 4 is placed in element 0 and 3 is
placed in element 1.

If other files have been opened, pipe assigns the first available file descrip­
tor for writing and the next available file descriptor for reading. Note that
in this case, the pipe does not necessarily use adjacent file descriptors. For
example, assume two files have been opened and assigned to file descrip­
tors 3 and 4 and the first file is then closed. If pipe is called at this point,
file descriptor 3 will be assigned for writing and file descriptor 5 will be
assigned for reading. Element 0 of the array will contain 5 and element 1
will contain 3.

In large applications that do large amounts of I/O, it gets increasingly
more difficult to predict which file descriptors are going to be assigned to
a pipe; and, unless the child knows which file descriptors are being used,
it will not be able to read and write successfully from and to the pipe.

One way to be sure that the correct file descriptors are being used is to use
the following procedure:

1. Choose two descriptor numbers that will be known in both the parent
and the child. The numbers should be high enough to account for any
I/O that may be done before the pipe is created.

2. Call pipe in the parent at some point before calling exec.

3. In the parent, use dup2 to assign the file descriptors returned by
pipe to the file descriptors you chose. This now reserves those file
descriptors for the pipe; any subsequent I/O will not interfere with
the pipe.

Reading and writing through the pipe can be done with the UNIX I/O
functions read and write, specifying the appropriate file descriptors. As
an alternative, you can issue fdopen calls to associate file pointers with
these file descriptors so that you can use the standard I/O functions (fread
and fwrite).

Subprocess Functions 1 0-13

NOTE

If you use the UNIX I/O function write to write to a mailbox,
and the third argument specifies a length of zero, then an
end-of-file message is written to the mailbox.

Although two separate file descriptors are used for reading from and
writing to the pipe, only one mailbox channel is used. Thus, some I/O
synchronization is required. For example, assume that the parent writes
a message to the pipe. If the parent is the first process to read from the
pipe, then it will read its own message back. In the final example in
Section 10.5, the required synchronization is achieved by means of a wait
function call, whereby the parent waits until the child terminates before
reading from the pipe. This form of synchronization is limited in its scope,
and other alternative methods should be investigated.

10.5 Program Examples

Example 10-1 shows the basic procedures for executing an image in a
child process. Since the first program is crucial to understanding the
implementation of subprocesses in VAX C, important lines of source code
are explained in the list that follows the example.

The child process in this first example prints a message 10 times.

1 0-14 Subprocess Functions

Example 10-1: Creating the Child Process

1* This example creates the child process. The only *
* functionality given to the child is the ability to *
* print a message 10 times. *
*
* PARENT:

#include climsgdef
#include stdio
#include perror
#include processes

maine)
{

int status, cstatus;

1* CLI status values

Ct if «status vfork(»!= 0)
{

t) if (status < 0)
printf("Parent - Child process failed\n");

else
{

printf("Parent - Waiting for Child\n");

*

~ if «status = wait(&cstatus» -1)
perror(IIParent - Wait failed");

else

~ if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not \

exist\n");

else
printf("Parent - Child final \

status: %d\n", cstatus);

}

{

}
}

}

8 else

printf("Parent - Starting Child\n");
if «status = execl("child", 0» == -1)

{

}

perror(IIParent - Execl failed");
_exit 0 ;

(Continued on next page)

Subprocess Functions 1 0-15

Example 10-1 (Cont.): Creating the Child Process

1* This is a program separate from the parent process. *
* * * CHILD: *
* *1

main()
{

}

int i;

for (i=O; i < 10; i++)
printf("Child - executing\n");

The following numbers correspond to the numbers in the previous
example:

o The vfork function is called to set up the return address for the exec
call.

Typically, vfork is used in the expression of an if statement. This
construct allows you to take advantage of the double return aspect of
vfork, since one return value is zero and the other nonzero.

8 A zero return value is returned the first time vfork is called and the
parent executes the else clause associated with the vfork call, which
calls execl.

• A negative child process id is returned when an exec function fails.
Therefore, the return value is checked for these conditions.

G The wait function is used to synchronize the parent and child pro­
cesses.

o Since the exec functions can indicate success up to this point even if
the image to be activated in child does not exist, the parent checks the
child's return status for the predefined status, CLI$_IMAGEFNF (file
not found).

In Example 10-2, the parent passes arguments to the child process.

1 0-16 Subprocess Functions

Example 10-2: Passing Arguments to the Child Process

/* In this example, the arguments are placed in an array, *
* gargv, but they could also be passed to the child *
* explicitly as a zero-terminated series of character *
* strings. The child program in this example simply writes *
* to stdout the arguments that have been passed to it. *
*
*
*

PARENT:
*
*
*/

#include climsgdef
#include stdio
#include perror
#include processes

mainO
{

}

int status, cstatus;
char *gargv[] = { "Child", "ARGC1", "ARGC2" , II Parent II , 0 };

if ({status = vfork{» != 0)
{

}

else
{

}

if (status < -1)
printf (IIParent - Child process failed\n");

else
{

printf{"Parent - waiting for Child\n");
if ({status = wait{&cstatus» == -1)

perror{IIParent - Wait failed");
else

if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not exist\n");

else
printf("Parent - Child final status: %x\nlt,

cstatus) ;
}

printf{ItParent - Starting Child\nlt);
if «status = execv{IChild", gargv» -1)

{

}

perror{ltparent - Exec failed");
_exit 0 ;

(Continued on next page)

Subprocess Functions 1 0-17

Example 10-2 (Cont.): Passing Arguments to the Child
Process

1* This is a program separate from the parent process. *

* * * CHILD: *
* *1

main (argc, argv)
int argc;
char *argv[];
{

}

int i;

printf("Program name: %s\n", argv[OJ);

for (i = 1; i < argc; i++)
printf(IIArgument %d: %s\n", i, argv[i]);

Example 10-3 shows how the wait function can be used to check the final
status of multiple children being run simultaneously.

1 0-18 Subprocess Functions

Example 10-3: Checking the Status of Child Processes

1* In this example, the wait function is placed in a separate *
* for loop so that it is called once for each child. If *
* wait were called within the first for loop. the parent *
* would wait for one child to terminate before executing the *
* next child. If there were only one wait request. any *
* child still running when the parent exits would terminate *
* prematurely. *
* *
*
*

PARENT:

#include climsgdef
#include stdio
#include perror
#include processes

mainO
{

}

int status. cstatus. mode. i;

for (i = 0; i < 5; i++)
{

}

if ({status = vfork{» == 0)
{

}

else

printf{"Parent - Starting Child %d\n". i);
if ({status = execl{"child", 0» == -1)

{

}

perror{IIParent - Exec failed");
_exit 0 ;

if (status < -1)
printf{"Parent - Child process failed\n");

printf{"Parent - Waiting for children\n");

for (i = 0; i < 5; i++)
{

}

if {(status = wait{&cstatus» == -1)
perror{IIParent - Wait failed");

else
if (cstatus == CLI$_IMAGEFNF)

printf("Parent - Child does not exist\n");
else

printf{"Parent - Child %X final status: %d\n",
status, cstatus);

(Continued on next page)

Subprocess Functions 1 0-19

Example 10-3 (Cont.): Checking the Status of Child
Processes

/* This is a program separate from the parent process. *
* * * CHILD: *
* */

maine)
{

}

int pid, i;

printf("Child %01: working ... \n", (pid = getpidO»;
sleep(5);
printf("Child %01: Finished\n",pid);

Example 10-4 shows the use of pipe and dup2 to communicate between
a parent and child process through specific file descriptors. The #define
preprocessor directive defines the preprocessor constants in pipe and
outpipe as the names of file descriptors 11 and 12.

Since there is only one child being executed from the parent, the status
value of the exec call is tested in a switch statement. Case 0 is executed
the first time vfork is called. Case -1 is executed if either the exed call
or the child process fails. A switch statement could not be used where
more than one child is being executed, since the process ids for children
that fail are assigned in decreasing order, beginning with -1. The default
case is executed when the child is successfully executed and exed has
returned a normal child process id. Note that the default case checks for
the file-not-found condition, since an exec call cannot detect this condition.

1 0-20 Subprocess Functions

Example 10-4: Communicating Through a Pipe

/* In this example, the parent writes a string to the pipe *
* for the child to read. The child then writes the string *
* back to the pipe for the parent to read. The wait *
* function is called before the parent reads the string that *
* the child has passed back through the pipe. Otherwise, *
* the reads and writes would not be synchronized. *

*
*

PARENT:

#include perror
#include climsgdef
#include stdio
#define inpipe 11
#define out pipe 12
#include processes

maine)
{

int pipes [2] ;
int mode, status, cstatus, len;
char *outbuf, *inbuf;

if «outbuf = malloc(512») 0)
{

}

printf (IiParent - Outbuf allocation failed\nll);
exit 0;

if «inbuf = malloc(512» 0)
{

}

printf(IIParent - Inbuf allocation failed\nll);
exit 0 ;

if (pipe(pipes) == -1)
{

}

printf(IIParent - Pipe allocation failed\nll);
exitO;

dup2(pipes[0] , inpipe);
dup2(pipes[1] , outpipe);
strcpy(outbuf, IIThis is a test of two-way pipes.\nll);

status = vfork();

*
*
*/

(Continued on next page)

Subprocess Functions 10-21

Example 10-4 (Cont.): Communicating Through a Pipe

switch (status)
{

10-22 Subprocess Functions

case 0:
printf("Parent - Starting child\n");
if «status = execl("child", 0» == -1)

{

}

break;

case -1:

printf("Parent - Exec failed");
_exit 0 ;

printf("Parent - Child process failed\n");
break;

default:
printf("Parent - Writing to child\n");
if (write(outpipe, outbuf, strlen(outbuf)+1»

== -1)
{

}

else
{

perror(IIParent - Write failed");
exit 0 ;

if «status = wait(&cstatus» == -1)
perror(IIParent - Wait failed");

if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not exist\n");

else
{

printf("Parent - Reading from child\n");
if «len = read (inpipe, inbuf, 512»

{

}

else
{

<= 0)

perror(IIParent - Read failed");
exit 0 ;

(Continued on next page)

Example 10-4 (Cont.): Communicating Through a Pipe

status: %d\n ll , cstatus);

}
}

}

break;

}
}

printf(lIParent: %s\nll, inbuf);
printf(lIParent - Child final \

/* This is a program separate from the parent process. *

* * CHILD:

*
#define inpipe 11
#define outpipe 12

main()
{

char *buffer;
int len;

if «buffer = malloc(512» == 0)
{

}

perror(lIChild - Buffer allocation failed\nll);
exitO;

printf(lIChild - Reading from parent\nll);
if «len = read (inpipe, buffer, 512» <=0)

{

}

else
{

perror(lIChild - Read failed ll);
exitO;

printf(lIChild: %s\n", buffer);
printf(lIChild - Writing to parent\n");

*
*
*/

if (write (outpipe, buffer, strlen(buffer)+1) -1)
{

}
}

}

perror(lIChild - Write failed ll);
exitO;

Subprocess Functions 10-23

Chapter 11

System Functions

The C programming language is a good choice for programmers who wish
to write operating systems. For example, much of the UNIX operating
system is written in C. When writing system programs, it is sometimes
necessary to retrieve or modify the environment in which the program is
running. This chapter describes VAX C RTL functions that accomplish this
task as well as other miscellaneous functions.

11. 1 Searching and Sorting Utilities

The following functions provide a method of searching and sorting array
elements.

11.1.1 bsearch

The bsearch function performs a binary search. It searches an array of
sorted objects for a specified object.

The syntax of the bsearch function is as follows:

#include stdlib
void *bsearch (const void *key.

const void *base.
size_t nmemb.
size_ t size.
int (*compar) (const void *. const void *»;

System Functions 11-1

Arguments

The arguments for the bsearch function are as follows:

key A pointer to the object to be sought in the array.

base A pointer to the initial member of the array.

nmemb The number of objects in the array.

size The size of an object in bytes.

compar A pointer to the comparison function.

The pointers to the key and the member at the base of the array should be
of type pointer-to-object and cast to type pointer-to-character.

Additional Information

The bsearch function returns a pointer to the matching member of the
array or a NUL pointer if no match is found. The array must be previously
sorted in increasing order according to the specified comparison function
pointed to by compar.

Two arguments are passed to the comparison function pointed to by com­
par. The two arguments point to the objects being compared. Depending
on whether the first argument is less than, equal to, or greater than the
second argument, the comparison function returns an integer less than,
equal to, or greater than zero.

If the key cannot be found in the array, a NUL pointer is returned.

It is not necessary for the comparison function (compar) to compare
every byte in the array. Accordingly, the objects in the array can contain
arbitrary data in addition to the data being compared.

Because it is declared as type "pointer-to-void", the value r~turned must
be cast into type pointer-to-object.

11-2 System Functions

11.1.2 qsort

The qsort function sorts an array of objects in place. It implements the
"quicker-sort" algorithm. The syntax of the qsort function is as follows:

#include stdlib

void qsort

Arguments

(void *base,
size_t nmemb,
size_t size,
int (*compar) const void *, const void *»;

The arguments to the qsort function are as follows:

base A pointer to the initial member of the array. The pointer should be of
type pointer-to-element and cast to type pointer-to-character.

nmemb The number of objects in the array.

size The size of an object in bytes.

campar A pointer to the comparison function.

Additional Information

Two arguments are passed to the comparison function pointed to by cam­
par. The two arguments point to the objects being compared. Depending
on whether the first argument is less than, equal to, or greater than the
second argument, the comparison function returns an integer less than,
equal to, or greater than zero.

The comparison function (campar) need not compare every byte, so
arbitrary data may be contained in the objects in addition to the values
being compared.

The order in the output of two objects that compare as equal is unpre­
dictable.

11.2 Retrieving Process Information

The following sections describe the system functions that return process
information.

System Functions 11-3

11.2.1 ctermid

The ctermid function returns a character string giving the equivalence
string of SYS$COMMAND. This is the name of the controlling terminal.

The syntax of the function is as follows:

#include stdlib

char *ctermid (char *str);

Arguments

The argument str must be a pointer to an array of characters. If this argu­
ment is NULL, the file name is stored internally and may be overwritten
by the next ctermid call. Otherwise, the file name is stored beginning at
the location indicated by the argument. The argument must point to a
storage area of length L_ctermid (defined by the stdio definition module).

11.2.2 cuserid

The cuserid function returns a pointer to a character string containing the
name of the user who initiated the current process.

The syntax of the function is as follows:

#include stdlib

char *cuserid (char *str);

Arguments

If the argument str is NULL, the user name is stored internally. If the
argument is not NULL, it points to a storage area of length L _cuserid
(defined by the stdio definition module), and the name is written into that
storage. If the user name is NULL, the function returns a pointer to a
NULL string.

11-4 System Functions

11.2.3 getcwd

The getcwd function returns a pointer to the file specification for the
current working directory. .

The syntax of the getcwd function is as follows:

char *getcwd (char * buffer, unsigned int size, ...);

Arguments

The arguments to the getcwd function are as follows:

buffer

size

A pointer to a character string that is large enough to hold the directory
specification.

If buffer is a NUL pointer, getcwd will obtain size bytes of space using
malloc. In this case, the pointer returned by getcwd can be used as the
argument in a subsequent call to free.

The length of the directory specification to be returned.

An optional argument that can be either 1 or O. If you specify 1, the
function getcwd returns the directory specification in VMS format. If
you specify 0, the function getcwd returns the directory specification
(pathname) in DEC/Shell format. If you do not specify this argument,
this function returns the file name according to your current command
language interpreter. For more information concerning DEC/Shell
directory specifications, refer to Chapter 1, VAX C Run-Time Library
Information.

Additional Information

If an error occurs, the getcwd function returns NULL with errno set to:

• ERAN GE if size is not large enough.

• EINVAL if size is zero.

• ENOMEM if space for the returned string is not available for
allocation.

System Functions 11-5

11.2.4 getegid, geteuid, getgid, getuid

The get functions return, in VMS terms, group and member numbers from
the user identification code (VIC). For example, if the VIC is [313,031],
313 is the group number, and 031 is the member number.

The syntax descriptions of the functions are as follows:

#include stdlib
unsigned int getgid (void);
unsigned int getegid (void);
unsigned int getuid (void);
unsigned int geteuid (void);

Additional Information

In VAX C, there is no difference between getgid and getegid. Both return
the group number from the current VIC. Similarly, getuid and geteuid
both return the member number from the current VIC.

11.2.5 getenv

The getenv function searches the environment array for the current
process and returns the value associated with a specified environment
name.

The syntax of the function is as follows:

#include stdlib

char *getenv (const char *name);

Arguments

The argument name can be one of the following:

• HOME-The user's login directory

• TERM -The type of terminal being used

• P ATH-The default device and directory

• VSER-The name of the user who initiated the process

11-6 System Functions

In certain situations, getenv will attempt to perform a logical name trans­
lation on the user-specified argument. If the argument to getenv does not
match any of the environment strings present in the user's environment
array, then getenv will attempt to translate the user's argument as if it
were a logical name. All four logical name tables are searched in the stan­
dard order. If no logical names exist, this function will attempt to translate
the argument string as a command language interpreter (CLI) symbol; if
it succeeds, it will return the translated symbol text. If it fails, the return
value is NULL.

If your CLI is the DEC/Shell, the function does not attempt a logical
name translation since Shell environment symbols are implemented as
DCL symbols.

11.2.6 getpid

The getpid function returns the process ID of the current process.

The syntax of the function is as follows:

#include stdlib

int getpid(void);

11.2.7 getppid

The getppid function returns the parent process ID of the calling process.

The syntax of the getppid function is as follows:

int getppid (void);

Additional Information

If the calling process does not have a parent process, the function returns
zero.

11.3 Changing Process Information

The following sections describe the system functions that change informa­
tion about your current process.

System Functions 11-7

11.3.1 chdir

The chdir function changes the default directory.

The syntax of the function is as follows:

#include stdlib

int chdir (char *dir_spec);

Arguments

The argument dir-spec is a NUL-terminated character string naming a
directory in either a VMS or DEC/Shell specification.

Additional Information

The chdir function returns zero if the directory is successfully changed to
the given name, and -1 if the change fails.

If chdir is called in USER mode, the default directory change is only
temporary. On image exit, the default is set to whatever it was before the
execution of the image. If you want the change to be effective across
images, you should call chdir from SUPERVISOR, EXECUTIVE, or
KERNEL mode.

11.3.2 chmod

The chmod function changes the file protection of a file.

The syntax of the function is as follows:

#include stdlib

int chmod (char *fiLe_spec, unsigned int mode);

11-8 System Functions

Arguments

The arguments to the chmod function are as follows:

file-spec

mode

The name of a VMS or DEC/Shell file specification.

A file protection. Modes are constructed by performing a bitwise OR
on any of the following values:

Value Privilege

0400 OWNER:READ

0200 OWNER:WRITE

0100 OWNER:EXECUTE

0040 GROUP:READ

0020 GROUP:WRITE

0010 GROUP:EXECUTE

0004 WORLD:READ

0002 WORLD:WRITE

0001 WORLD:EXECUTE

When you supply a mode argument of zero, chmod gives the file
the user's default file protection.

The system is always given the same privileges as the owner. A
WRITE privilege also implies a DELETE privilege.

Additional Information

You must have a WRITE privilege for the file specified to change the
mode. The function returns zero if the change was successful and -1 if
unsuccessful.

11.3.3 chown

The chown function changes the owner VIC (user identification code) of
the file; it returns zero on success and -1 on failure.

The syntax of the function is as follows:

#include stdlib

int chown (char *fiLe_spec, unsigned int owner, unsigned int group);

System Functions 11-9

Arguments

The arguments to the chown function are as follows:

file--Spec

owner

group

11.3.4 mkdir

The address of an ASCII file name.

The owner name.

The group names.

The mkdir function creates a directory.

The syntax of the function is as follows:

#include stdlib

int mkdir (char *dir_spec, unsigned mode, ...);

Arguments

The arguments to the mkdir function are as follows:

dir--Spec

mode

11-1 0 System Functions

A valid VMS or DEC/Shell directory specification that may
contain a device name, as in the following:

DBAO: [BAY.WINDOWS]
/dbaO/bay/windows

/* VMS

/* DEC/Shell

This specification cannot contain a node name, file name, file
extension, file version, or a wildcard character. The same
restriction applies to the DEC/Shell directory specifications. For
more information concerning the restrictions on the DEC/Shell
specifications, refer to Chapter I, VAX C Run-Time Library
Information.

A file protection. See chmod in Section 11.3.2 for information
concerning the specific file protections. All parent-directory
defaults are applied to the new directory unless you override
them.

Represents optional additional arguments as follows:

11.3.5 nice

uic The user identification code that identifies the owner of the
created directory. If this argument is zero, VAX C gives the
created directory the UIC of the parent directory. This optional
argument is VAX C specific and is not portable.

max_versions The maximum number of file versions to be retained in the
created directory. The system automatically purges the directory
keeping, at most, max_versions number of every file. If this
argument is zero, VAX C does not place a limit on the maximum
number of file versions. This optional argument is VAX C specific
and is not portable.

r_v_number Specifies on which volume (device) to place the created directory
if the device is part of a volume set. If this argument is zero,
VAX C arbitrarily places the created directory within the volume
set. This optional argument is VAX C specific and is not portable.

Additional Information

This function returns zero to indicate success and a value of -1 to indicate
failure.

If dir --spec specifies a path that includes directories, which do not exist,
intermediate directories are also created. This differs from the behavior of
the UNIX system wherein these intermediate directories must already exist
and will not be created.

VAX C implements this function using the VMS Run-Time routine
LIB$CREATE_DIR. For more information, refer to the V AX/VMS Run­
Time Library Routines Reference Manual.

The nice function increases or decreases process priority relative to the
process base priority by the amount of the argument.

The syntax of the function is as follows:

#include stdlib

int nice (int increment);

Arguments

A positive argument (increment) decreases priority, and a negative argu­
ment increases priority. The resulting priority cannot be less than one or
greater than the process's base priority.

System Functions 11-11

Additional Information

The nice function returns zero on success and -Ion failure.

When a process calls vfork, the resulting child inherits the parent's
priority.

11.3.6 setgid, setuid

The set functions are implemented for program portability and have no
functionality. They always return zero (to indicate success).

The syntax descriptions of the functions are as follows:

11.3.1 umask

#include stdlib

int setgid (unsigned int group_number);
int setuid (unsigned int member_number);

The umask function creates a file protection mask that is used whenever a
new file is created, and returns the old mask value.

The syntax of the function is as follows:

#include stdlib

int umask (unsigned int mode_compLement);

Arguments

The argument mode_complement shows which bits to turn off when a new
file is created.

Additional Information

The actual file protection of a newly created file is the bitwise AND of the
mode with the complement of the umask argument. The mode is supplied
when the file is opened. Initially, the mask is set from the current process
default file protection.

See also Section 11.3.2.

11-12 System Functions

11.4 Retrieving Time Information

The following sections describe system functions that return various time
values.

11.4. 1 asctime

The asctime function converts a broken-down time (see Section 11.4.7)
into a 26-character string in the following form:

Sun Sep 16 01:03:52 1984\n\0

All of the fields have constant width.

The syntax of the asctime function is as follows:

#include time

char *asctime (const tm_t *timeptr);

Arguments

The argument timeptr is a pointer to the structure tm, which contains
the broken-down time. The type tm_t is defined in the standard include
module time.h, as follows:

typedef struct tm
{

short tm_sec, tm_min, tm_hour;
short tm_mday, tm_mon, tm_year;
short tm_wday, tm_yday, tm_isdst;

hm_t;

Additional Information

The asctime function converts the contents of tm into a 26-character
string, as shown in the preceding example, and returns a pointer to the
string. Subsequent calls to asctime or ctime may point to the same static
string, which is overwritten by each call.

See Section 11.4.7 for a list of the members in tm.

System Functions 11-13

11.4.2 clock

11.4.3 ctime

The clock function determines the CPU time (in microseconds) used since
the beginning of the program execution. The time reported is the sum of
the user and system times of the calling process and any terminated child
processes for which the calling process has executed wait or system.

The syntax of the clock function is as follows:

#include time

clock_t clock (void);

Additional Information

The value returned by the clock function must be divided by the value of
the macro CLK_ TCK, as defined in the standard include module time.h,
to obtain the time in seconds. The value (clock_t)-1 is returned if the
processor time used is not available.

The ctime function converts a time in seconds, since 00:00:00 January I,
1970, to an ASCII string to the form generated by the asctime function.

The syntax of the function is as follows:

#include time

char *ctime (const time_t *bintim);

Arguments

The argument bintim is a pointer to the time value to be converted.

Additional Information

The ctime function returns a pointer to the 26-character ASCII string.
Successive calls to ctime overwrite any previous time values. The type
time_t is defined in the standard include module time.h as follows:

typedef long int time_t

11-14 System Functions

11.4.4 diHtime

11.4.5 ftime

The difftime function computes the difference in seconds between the two
times specified by its arguments; that is, time2-timel.

The syntax of the difftime function is as follows:

#include time

double difftime (time_t time1, time_t time2);

Arguments

Both time2 and timel are of type time_t, which is defined in the standard
include module time.h.

Additional Information

The difftime function returns the difference in seconds expressed as a
double.

The ftime function returns the elapsed time since 00:00:00, January 1,
1970, in the structure timeb.

The syntax of the function is as follows:

#include time

void ftime (timeb_t *timeptr);

Arguments

The structure timeb_t is defined in the standard include module time.h as
follows:

typedef struct timeb
{

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

}timeb_t;

The member time_t gives the time in seconds; the member millitm gives
the fractional time in milliseconds; the members timezone and dstflag
(daylight savings time flag) are always zero.

System Functions 11-15

11.4.8 gmtime

The gmtime function converts a given calendar time into a broken-down
time, expressed as Greenwich Mean Time (GMT).

The syntax of the gmtime function is as follows:

#include time

struct tm *gmtime (const time_t *timer);

Arguments

The argument timer is a pointer to an object of type time_t, which con­
tains the calendar time.

Additional Information

The gmtime function returns a null pointer because GMT is not available
under VMS.

This function is provided for reasons of conformance to the draft proposed
ANSI standard for the C language.

11.4.7 localtime

The localtime function converts a time (expressed as the number of
seconds elapsed since 00:00:00 January I, 1970) into hours, minutes,
seconds, and so on.

#include time

struct tm *localtime (const time_t *bintim);

Arguments

The argument bintim is a pointer to the time in seconds relative to 00:00:00
January I, 1970. This time can be generated by the time function or
supplied by the user.

11-16 System Functions

11.4.8 time

Additional Information

The converted time value is placed in a time structure defined in the time
definition module with the tag tm. The following member names are
offsets into the structure:

tm_sec

tm_min

tm_hour

tm_mday

tm_mon

tm_year

tm_wday

tm_yday

tm~sdst

time in seconds

minutes

hours (24)

day of the month (1-31)

month (0-11)

year (last two digits)

day of the week (0-6)

day of the year (0-365)

daylight savings time (always 0)

The member names are integers.

The localtime function returns a pointer to the time structure. Successive
calls to localtime overwrite the structure.

The time function returns the time elapsed since 00:00:00, January 1,
1970, in seconds.

The syntax of the function is as follows:

#include time

Arguments

The argument time_location is either null or a pointer to the place where
the returned time is also stored.

System Functions 11-17

11.4.9 times

The times function returns the accumulated times of the current process
and of its terminated child processes.

The syntax of the function is as follows:

#include time

void times (tbuffer_t *buffer);

Arguments

The type tbuffer_t is defined in the standard include module time.h as
follows:

typedef struct tbuffer
{

int proc_user_time;
int proc_system_time;
int child_user_time;
int child_systeM_time;

}tbuffer_t;

Additional Information

For both process and children times, the structure breaks down the time
by· user and system time. Since VMS does not differentiate between
system and user time, all system times are returned as zero. Accumulated
CPU times are returned in lO-millisecond units.

11.5 VAXC$CRTL_INIT

The VAXC$CRTL_INIT function allows you to call the VAX C RTL from
other languages. It initializes the run-time environment and establishes
both an exit and condition handler.

The following example shows a Pascal program that calls the VAX C RTL
using the V AXC$CRTL _INIT function:

PROGRAM TESTC (input,output);
PROCEDURE VAXC$CRTL_INIT; extern;
BEGIN

VAXC$CRTL_INIT;
END.

11-18 System Functions

11.6 Program Examples

Example 11-1 and Example 11-2 illustrate the use of the cuserid function.

Example 11-1: Accessing the User Name

/* Using cuserid. this program returns the user name. */

#include stdio
#include perror

main()
{

}

static char string[L_cuserid] = 1111.

cuserid(string);
printf("Initiating user: %s\n". string);

Given that a user named TOLLIVER is running the program, the output to
stdout.is as follows:

$ RUN EXAMPLEllRETURNI
Initiating user: TOLLIVER

Example 11-2 produces the same output.

Example 11-2: A Second Way to Access the User Name

/* Using cuserid. this program returns the user name. */

#include stdio

mainO
{

/* Zero: a null argument. */
printf(IIInitiating user: %s\n ll

• cuserid(O»;
}

Example 11-3 illustrates the getenv function.

System Functions 11-19

Example 11-3: Accessing Terminal Information

dunc()
{

printf("Terminal type: Yos\n". getenv(IITERMII»;
}

Given that the terminal in use is a DIGITAL VT100 in 132-column mode,
sample output from the previous program is as follows:

$ RUN EXAMPLE31RETURNI
Terminal type: vt100-132

Example 11-4 illustrates how to use getenv to find the user's default login
directory and chdir to change to that directory.

Example 11-4: Manipulating the Default Directory

1* This program performs the equivalent to the DCL command *
* SET DEFAULT SYS$LOGIN. Once the program exits. however. *
* the directory is reset to the directory from which the *
* program was run. * I

#include stdio

mainO
{

}

char *dir;
int i;

dir = getenv("HOME");
if «i = chdir(dir» != 0)

{

}

perror("Cannot set directoryll);
exit 0 ;

printf("Current directory: Yos\n". dir);

Sample output from the previous program is as follows:

$ RUN EXAMPLE41RETURNI
Current directory: dbaO: [tolliver]
$

11-20 System Functions

Example 11-5 illustrates how to use the time and localtime functions to
print the correct date and time at the terminal.

Example 11-5: Printing the Date and Time

/* The time function returns the time in seconds; the *
* localtime function converts the time to hours, minutes, *
* and so on. */

#include time

mainO
{

struct tm *time_structure;
int time_val, i;

static char *weekday [7] {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday"};

static char *month[12] {"January" ,"February" ,"March",
"April", "May", "June", "July",
"August" ,"September",
"October" ,"November" ,"December"};

static char *hour[2] = {"AM" ,"PM"};

time(&time_val);
time_structure = localtime(&time_val);

/* Print the date
printf("Today is Yes, Yes Yed, 19Yed\n" ,

weekday [time_structure->tm_wday],
month [time_structure->tm_mon] ,
time_structure->tm_mday,
time_structure->tm_year);

/* Time conversion and print using 12 hour clock

if(time_structure->tm_hour > 12)

}

{

time_structure->tm_hour = (time_structure->tm_hour)-12;
i = 1;

}

else
i = 0;

printf("The time is Yed:Ye02d Yes\n",
time_structure->tm_hour,
time_structure->tm_min,
hour[i]);

System Functions 11-21

Sample output from the previous example is as follows:

$ RUN EXAMPLE51RETURNI
Today is Thursday, February 7, 1985
The time is 10:18 AM
$

11-22 System Functions

Chapter 12

Curses Screen Management Functions
and Macros

Curses, the VAX C Screen Management Package, is composed of VAX
C RTL functions and macros that create and modify defined sections of
the terminal screen and optimize cursor movement. Using the screen
management package, you can develop a user interface that is both
visually attractive and user-friendly. Curses is terminal-independent
and provides simplified terminal screen formatting and efficient cursor
movement.

Curses is implemented using the terminal-independent Screen
Management Software, which is a part of the VMS Run-Time Library. For
portability purposes, most functions and macros are designed to perform
in much the same way as those in other C implementations. However,
VAX C Curses depends upon VMS and its Screen Management Software,
so performance of some functions and macros may differ slightly from
those of other implementations. Some functions and macros available
on other systems are not available with VAX C Curses. The functions
and macros [w]clrattr, [w]insstr, mv[w]insstr, and [w]setattr are VAX C
specific and are not portable.

Curses Screen Management Functions and Macros 12-1

12. 1 Curses Terminology

The purpose of this section is to explain some of the Curses terminology
and to show you how Curses looks on the terminal screen.

You can imagine a Curses application as being a series of overlapping
windows. Window overlapping is. called occlusion. To. distinguish the
boundaries of these occluding windows, you can outline the rectangular
windows with specified characters, or you can turn on the reverse video
option (make the window a light background with dark writing).

Initially, there are two windows the size of the terminal screen that are
predefined by Curses. These windows are called stdscr and curser. The
stdscr window is specifically defined for your use. Many Curses macros
default to this window. For example, if you draw a box around stdscr,
move the cursor to the left-corner area of the screen, write a string to
stdscr, and then display stdscr on the terminal screen, your display would
look like that in Figure 12-1.

12-2 Curses Screen Management Functions and Macros

Figure 12-1: Example of the stdscr Window

(f---~
Welcome to Curses_

"l::--- -----------------~
. ZK·5752·86

The second predefined window, curser, is designed for internal Curses
work; it is an image of what is currently displayed on the terminal screen.
The only VAX C Curses function that will accept this window as an
argument is clearok. Do not write to or read from curser. Use stdscr and
user-defined windows for all of your Curses applications.

12.1.1 User-Defined Windows

You may choose to occlude stdscr with your own windows. The size
and location of each window is given in terms of the number of lines,
the number of columns, and the starting position. The lines and columns
of the terminal screen form a coordinate system, or grid, on which the
windows are formed. You specify the starting position of a window with
the (y, x) coordinates on the terminal screen where the upper left corner
of the window is located. The coordinates (0, 0) on the terminal screen,
for example, are the upper left corner of the screen. The entire area of the
window must be within the terminal screen borders, windows being as

Curses Screen Management Functions and Macros 12-3

small as a single character or as large as the entire terminal screen. You
may create as many windows as memory allows.

When writing to or deleting from windows, changes do not appear on the
terminal screen until the window is refreshed. When refreshing a window,
you place the updated window onto the terminal screen, leaving the rest
of the screen unaltered.

All user-defined windows, by default, occlude stdscr. You can create two
or more windows that occlude each other as well as stdscr. When writing
data to one occluding window, the data is not written to the underlying
window.

You can create overlapping windows (called subwindows); a declared
window must contain the entire area of its subwindow. When writing
data to a subwindow or to the portion of the window overlapped by the
subwindow, both windows contain the new data. For instance, if you
write data to a subwindow and then delete that subwindow, the data is
still present on the underlying window.

If creating both a window that occludes stdscr and a subwindow of stdscr,
your terminal screen will look similar to Figure 12-2.

12-4 Curses Screen Management Functions and Macros

Figure 12-2: Diplaying Windows and Subwindows

~---~

window 5ubwindow_

~---~
ZK-5754-86

If you delete both the user-defined window and the subwindow, and then
update the terminal screen with the new image, the screen would appear
like that in Figure 12-3.

Curses Screen Management Functions and Macros 12-5

Figure 12-3: Illustration of an Updated Terminal Screen

~---~
I
I
I
I
I
I
I
I
I 5ubwindow_
I
I
I
I
I
I
I

"1::--~
ZK·5753·86

Notice that the string written on the window is deleted, but the string
written on the subwindow remains on stdscr.

12.2 Getting Started with Curses

There are commands which you must use to initialize and restore the
terminal screen when using Curses Screen Management functions and
macros. Also, there are predefined variables and constants on which
Curses depends. Example 12-1 shows how to set up a program using
Curses.

12-6 Curses Screen Management Functions and Macros

Example 12-1: A Curses Program

Ct #include curses

~ WINDOW *winl. *win2. *win3;

main 0
{

e) initscr();

endwin();
}

The following numbers correspond to the numbers in the previous
example:

Ct The preprocessor directive includes the curses definition module which
defines the data structures and variables used to implement Curses.
The module curses includes the module stdio, so it is not necessary to
duplicate this action by including stdio again in the program source
code. You must include curses to use any of the Curses functions or
macros.

~ In the example, WINDOW is a data structure defined in curses. You
must declare each user-specified window in this manner. In the
previous example, the three defined windows are win1, win2, and
win3.

e) The initscr and end win functions begin and end the window editing
session. The initscr function clears the terminal screen and allocates
space for the windows stdscr and curser. The endwin function deletes
all windows and clears the terminal screen.

Most Curses users wish to define and modify windows. Example 12-2
shows you how to define and write to a single window.

Curses Screen Management Functions and Macros 12-7

Example 12-2: Manipulating Windows

#include curses

WINDOW *winl, *win2, *win3;

mainO
{

initscrO;

Ct winl = newwin(24 , 80, 0, 0);
• mvwaddstr(winl, 2, 2, "HELLO");

endwin();
}

The following numbers correspond to the numbers in the previous
example:

Ct The newwin function defines a window 24 rows high, 80 columns
wide, and a starting position at coordinates (0, 0), the upper left corner
of the terminal screen. The program assigns these attributes to winl.
Note that the coordinates are specified as follows: (lines, columns) or
(y, x).

• The mvaddstr macro performs the same task as a call to the separate
macros move and addstr. The mvaddstr macro moves the cursor to
the specified coordinates and writes a string onto stdscr.

Most Curses macros update stdscr by default. Curses functions that
update other windows have the same name as the macros but with the
added prefix "W". For example, the addstr macro adds a given string
to stdscr at the current cursor position. So, the waddstr function adds
a given string to a specified window at the current cursor position.

When updating a window, specify the cursor position relative to the
origin of the window, not the origin of the terminal screen. For example,
if a window has a starting position of (10, 10) and you wanted to add a
character to the window at its starting position, you specify the coordinates
(0, 0), not (10, 10).

12-8 Curses Screen Management Functions and Macros

The string HELLO in the preceding example does not appear on the
terminal screen until you refresh the screen. You accomplish this by
using the wrefresh function. Example 12-3 illustrates how to display the
contents of win1 on the terminal screen:

Example 12-3: Refreshing the Terminal Screen

#include curses

WINDOW *winl, *win2, *win3;

main()
{

}

initscrO;

winl = newwin(22 , 60, 0, 0);
mvwaddstr(winl, 2, 2, "HELLO");
wrefresh(winl);

endwinO;

The wrefresh function updates just the region of the specified window
on the terminal screen. When the program is executed, the string HELLO
appears on the terminal screen until the program executes the endwin
function. The wrefresh function only refreshes the part of the window
on the terminal screen that is not overlapped by another window. If win1
was overlapped by another window and you wanted all of win 1 to be
displayed on the terminal screen, you call the touch win function.

12.3 Predefined Variables and Constants

There is a group of variables, defined in the curses definition module,
that will be useful when using Curses. Also, there is a group of constants
defined in curses, using the #define preprocessor directive, that will be
useful. Table 12-1 describes the variables and constants defined in the
curses definition module.

Curses Screen Management Functions and Macros 12-9

Table 12-1: Curses Predefined Variables and #define
Constants

N arne Type Description

curser

stdscr

LINES

COLS

ERR

OK

TRUE

FALSE

_BLINK

_BOLD

_1~.EVERSE

_UNDERLINE

WINDOW *

WINDOW *
int

int

VAR: Window of current screen

VAR: Default window

VAR: Number of lines on terminal screen

VAR: Number of columns on terminal screen

CON: Flag (0) for failed routines

CON: Flag (1) for successful routines

CON: Boolean true flag (1)

CON: Boolean false flag (0)

CON: Parameter for setattr and elrattr

CON: Parameter for setattr and elrattr

CON: Parameter for setattr and elrattr

CON: Parameter for setattr and elrattr

For example, you can use the predefined variable ERR to test the success
or failure of a Curses function. Example 12-4 shows how to perform such
a test.

Example 12-4: Curses Predefined Variables

#include curses

WINDOW *winl, *win2, *win3;

maine)
{

}

initscrO;
winl = newwin(10, 10, 1, 5);

if (mvwin(winl, 1, 10) == ERR)
addstr("The MVWIN function failed.");

endwin();

12-10 Curses Screen Management Functions and Macros

In the example, if the mvwin function fails, then the program adds a
string to stdscr explaining the outcome. The Curses function mvwin
moves the starting position of a window.

12.4 Cursor Movement

In the UNIX system environment, you can use Curses functions to move
the cursor across the terminal screen. With other implementations, you
can either allow Curses to move the cursor using the move function, or
you can specify the origin and the destination of the cursor to the mvcur
function, so as to move the cursor in a more efficient fashion.

In VAX C, the two functions are functionally equivalent and move the
cursor with the same efficiency.

Example 12-5 illustrates the use of the move and mvcur functions:

Example 12-5: The Cursor Movement Functions

#include curses

maine)
{

initscrO;

o clearO;
~ move(10, 10);
C) move (LINES/2, COLS/2);
G) mvcur(O, COLS-1, LINES-1, 0);

endwin();
}

The following numbers correspond to the numbers in the previous
example:

o The clear macro erases stdscr and then positions the cursor at coordi­
nates (0,0).

~ The first occurrence of move moves the cursor to coordinates (10, 10).

Curses Screen Management Functions and Macros 12-11

• The second occurrence of move uses the predefined variables LINES
and COLS to calculate the center of the screen (by calculating the
value of half the number of LINES and COLS on the screen).

e The occurrence of mvcur forces absolute addressing. The function
mvcur can absolutely address the lower left corner of the screen by
claiming that the cursor is presently in the upper right corner. You
may use this method when unsure of the current position of the
cursor, although move is just as applicable.

12.5 The Curses Functions and Macros

Most Curses functions and macros are listed in pairs where the first is
a macro and the second is a function beginning with the prefix "w," for
"window." These prefixes are delimited by brackets ([D. For example,
[w]addstr designates the addstr macro and the waddstr function. The
macros default to the window stdscr; the functions accept as an argument
a specified window. When working with macros, take care in specifying
arguments that may cause side effects, such as those that use the incre­
ment and decrement operators. For an explanation of passing arguments
to macros, refer to the Guide to VAX C.

All argument names given in the following syntax descriptions show their
order and their type. Argument names are only suggestions.

12.5.1 [w]addch

The addch macro and the waddch function add the character ch to the
window at the current position of the cursor.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

addch(ch)
int waddch (WINDOW *win. char ch);

12-12 Curses Screen Management Functions and Macros

Arguments

The argument ch is an object of type char. If the character is a newline
(\n), the macro and function clear the line to the end, and move the
current (y, x) coordinates to the next line at the same x coordinate. A
return (\r) moves the character to the beginning of the line on the window.
Tabs (\t) expand into spaces in the normal tabs top positions of every eight
characters.

Additional Information

When waddch is used on a subwindow, it writes the character onto the
underlying window as well. The waddch function returns ERR if it would
cause the screen to scroll illegally (see Section 12.5.46).

12.5.2 [w]addstr

The addstr macro and the waddstr function add the string pOinted to by
str to the window at the current position of the cursor.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

addstr(str)
int waddstr (WINDOW *win, char *str);

Arguments

The argument str is a pointer to a character string.

Additional Information

When waddstr is used on a subwindow, the string is written onto the
underlying window as well. The waddstr function returns ERR if it would
cause the screen to scroll illegally (see Section 12.5.46), but it places as
much of the string onto the window as possible.

Curses Screen Management Functions and Macros 12-13

12.5.3 box

The box function draws a box around the window using the character vert
as the character for drawing the vertical lines of the rectangle, and hor for
drawing the horizontal lines of the rectangle.

The syntax of the function is as follows:

#include curses
#define bool int

int box (WINDOW *win, char vert, char hOT);

Additional Information

The box function copies boxes drawn on subwindows onto the under­
lying window. Use caution when using functions such as overlay and
overwrite with boxed subwindows. Such functions copy the box onto the
underlying window.

12.5.4 [w]clear

The clear macro and the wclear function erase the contents of the speci­
fied window and reset the cursor to coordinates (0, 0).

The syntax descriptions of the macro and function are as follows:

12.5.5 clearok

#include curses
#define bool int

clearO
int wclear (WINDOW *win);

The clearok macro sets the clear flag for the window win.

The syntax of the macro is as follows:

#include curses
#define bool int

clearok (WINDOW *win, bool booLj);

12-14 Curses Screen Management Functions and Macros

Arguments

The arguments to the dearok macro are as follows:

win The entire size of the terminal screen. You can use the windows
stdscr and curser with clearok.

boolf A Boolean value of TRUE or FALSE. If the argument, booH, is TRUE,
this forces a clearscreen to be printed on the next call to refresh, or
stops the screen from being cleared if boolf is FALSE. The constant
booH is defined in the curses definition module.

Additional Information

Unlike dear, this macro does not alter the contents of the window. If the
argument, win, is curser, the next call to refresh causes a clearscreen, even
if the window passed to refresh is not a window the size of the entire
terminal screen.

12.5.6 [w]clrattr

The drattr macro and the wdrattr function deactivate the video display
attribute attr within the window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

clrattr(attr)
int wclrattr (WINDOW *win. int attr);

Arguments

The video display attributes, specified by the argument attr, are blinking,
boldface, reverse video, and underlining, and are represented by the
defined constants _BLINK, _BOLD, _REVERSE, and _UNDERLINE.
You can clear multiple attributes by separating them with a bitwise OR
operator (I) as follows:

clrattrLBLINK I _UNDERLINE);

Additional Information

The drattr macro and the wdrattr function are VAX C specific and are
not portable.

Curses Screen Management Functions and Macros 12-15

12.5.7 [w]clrtobot

The clrtobot macro and the wclrtobot function erase the contents of
the window from the current position of the cursor to the bottom of the
window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

clrtobotO
int wclrtobot (WINDOW *win);

12.5.8 [w]clrtoeol

The clrtoeol macro and the wclrtoeol function erase the contents of the
window from the current cursor position to the end of the line on the
specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

clrtoeolO
int wclrtoeol (WINDOW *win);

12.5.9 [no]crmode

In the UNIX system environment, the crmode and nocrmode macros set
and unset the terminal from cbreak mode; they are provided only for
UNIX software compatibility and they have no functionality in the VMS
environmen t.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

crmode()
nocrmode()

12-16 Curses Screen Management Functions and Macros

12.5.10 [w]delch

The delch macro and the wdelch function delete the character on the
specified window at the current position of the cursor.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

delchO
int wdelch (WINDOW *win);

Additional Information

Each of the following characters on the same line shifts to the left, and
Curses appends a blank character to the end of the line.

12.5. 11 [w]deleteln

The delete In macro and the wdeleteln function delete the line at the
current position of the cursor.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

deletelnO
int wdeleteln (WINDOW *win);

Additional Information

Every line below the deleted line moves up, and the bottom line becomes
blank. The current (y, x) coordinates of the cursor remain unchanged.

12.5. 12 delwin

The del win function deletes the specified window from memory.

The syntax of the function is as follows:

#include curses
#define bool int

int delwin (WINDOW *win);

Curses Screen Management Functions and Macros 12-17

Additional Information

If the window being deleted contains a subwindow, the subwindow is
invalidated. You should delete subwindows before deleting the underlying
window. The delwin function refreshes all covered windows of the
deleted window.

12.5.13 [no]echo

The echo and no echo macros set the terminal so that characters mayor
may not be echoed on the terminal screen.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

echo()
noecho()

Additional Information

The noecho macro may be helpful when accepting input from the terminal
screen with wgetch and wgetstr; it prevents the input characters from
being written onto the specified window.

12.5. 14 endwin

The endwin function clears the terlllinal screen and frees any virtual
memory allocated to Curses data structures.

The syntax of the function is as follows:

#include curses
#define bool int

void endwin (void);

Additional Information

You must call this function before exiting in order to restore the previous
environment of the terminal screen.

12 -18 Curses Screen Management Functions and Macros

12.5. 15 [w]erase

The erase macro and the werase function erase the window by "painting"
it with blanks.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

erase()
int werase (WINDOW *win);

Additional Information

Both erase and werase leave the cursor at the current position on the
terminal screen after completion; they do not return the cursor to the
home coordinates of (0, 0).

12.5.16 [w]getch

The getch macro and the wgetch function get a character from the
terminal screen and echo it on the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

getchO
char wgetch (WINDOW *win);

Additional Information

The getch macro and the wgetch function return ERR if the screen scrolls
illegally (see Section 12.5.46); otherwise, they return the character. The
macro and function getch and wgetch refresh the specified window before
fetching a character.

Curses Screen Management Functions and Macros 12 -1 9

12.5.17 [w]getstr

The getstr macro and the wgetstr function get a string from the terminal
screen, store it in the variable str, and echo it on the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

getstr(str)
int wgetstr (WINDOW *win. char *str);

Arguments

The argument str must be large enough to hold the character string fetched
from the window.

Additional Information

The getstr macro and the wgetstr function refresh the specified win­
dow before fetching a string. The newline terminator is stripped from
the fetched string. They return ERR if the screen scrolls illegally (see
Section 12.5.46).

12.5.18 getyx

The getyx macro puts the (y, x) coordinates of the current cursor position
on win in the variables y and x.

The syntax of the macro is as follows:

#include curses
#define bool int

getyx (WINDOW *win. int y. int x);

Arguments

The arguments y and x must be valid VAX C lvalues. For more informa­
tion concerning Ivalues, refer to the Guide to VAX C.

12-20 Curses Screen Management Functions and Macros

12.5.19 [w]inch

The inch macro and the winch function return the character at the current
cursor position on the specified window without making changes to the
window.

The syntax descriptions of the macro and function are as follows:

12.5.20 initscr

#include curses
#define bool int

inch()
char winch (WINDOW *win);

The initscr function initializes the terminal-type data and all screen
functions. You must call initscr before using any of the screen functions
or macros.

The syntax of the function is as follows:

#include curses
#define bool int

void initscr (void);

12.5.21 [w]insch

The insch macro and the winsch function insert the character ch at the
current cursor position in the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

insch(ch)
int winsch (WINDOW *win. char ch);

Additional Information

After the character is inserted, each character on the line shifts to the right,
and Curses deletes the last character in the line. The macro and function
return ERR if the screen scrolls illegally (see Section 12.5.46).

Curses Screen Management Functions and Macros 12-21

12.5.22 [w]insertln

The insertln macro and the winsertln function insert a line above the line
containing the current cursor position.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

insertlnO
int winsertln (WINDOW *win);

Additional Information

Every line below the current line shifts down, and the bottom line disap­
pears. The inserted line is blank and the current (y, x) coordinates remain
the same. The macro and function return ERR if the screen scrolls illegally
(see Section 12.5.46).

12.5.23 [w]insstr

The insstr macro and the winsstr function insert a string at the current
cursor position on the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

insstr(str)
int winsstr (WINDOW *win, char *str);

Additional Information

Each character after the string shifts to the right, and the last character
disappears. The macro and function return ERR if the screen scrolls
.illegally (see Section 12.5.46). The macro and function are VAX C specific
and are not portable.

12-22 Curses Screen Management Functions and Macros

12.5.24 long name

The longname function assigns the full terminal name to name which
must be large enough to hold the character string.

The syntax of the function is as follows:

#include curses
#define bool int

void longname (char *termbuf, char *name);

Arguments

The argument name is a character string buffer with a minimum length of
64 characters.

Additional Information

The terminal name is in a readable format so that you can double-check
to be sure that Curses has correctly identified your terminal. The dummy
argument termbuf is required for UNIX software compatibility and has
no functionality in the VMS environment. If portability is a concern, you
must write a set of dummy routines to perform the functionality provided
by the database termcap provided in the UNIX system environment.

12.5.25 leaveok

The leaveok macro signals Curses to leave the cursor at the current
coordinates after an update to the window.

The syntax of the macro is as follows:

#include curses
#define bool int

leaveok (WINDOW *win, bool booLf);

Arguments

The argument bool! is a Boolean TRUE or FALSE value. If bool! is TRUE,
the cursor remains in place after the last update and the coordinate setting
on win changes accordingly. If bool! is FALSE, then the cursor moves
to the currently specified (y, x) coordinates of win. Values for bool! are
defined in the curses definition mode.

Curses Screen Management Functions and Macros 12-23

Additional Information

The leaveok macro defaults to moving the cursor to the current coordi­
nates of win.

12.5.26 [w]move

The move macro and the wmove function change the current cursor
position on the specified window to the coordinates (y, x).

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

move(y. x)
int wmove (WINDOW *win. into y. into x);

Additional Information

The macro and function return ERR if the screen scrolls illegally (see
Section 12.5.46).

12.5.27 mv[w]addch

The mvaddch and mvwaddch macros move the cursor to (y , x) and add
the character ch to the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvaddch (int y. int x. char ch);
mvwaddch (WINDOW *win. int y. int x. char ch);

Arguments

If the argument ch is a newline (\n), the macro and function clear the line
to the end, and move the specified (y, x) coordinates to the next line at
the same x coordinate. A return (\r) moves the character to the beginning
of the specified line. Tabs (\t) are expanded into spaces in the normal
tabs top positions of every eight characters.

12-24 Curses Screen Management Functions and Macros

12.5.28 mv[w]addstr

The mvaddstr and mvwaddstr macros move the cursor to (y, x) and add
the specified string, to which str points, to the specified window.

The syntax descriptions of the macros are as follows:

12.5.29 mvcur

#include curses
#define bool int

mvaddstr (int y, int x, char *str);
mvwaddstr (WINDOW *win, int y, int x, char *str);

The mvcur function moves the terminal's cursor from (lasty, lastx) to
(newy, newx).

The syntax of the function is as follows:

#include curses
#define bool int

int mvcur (int Lasty, int Lastx, int newy, int newx);

Additional Information

This function is functionally equivalent to move.

12.5.30 mv[w]delch

The mvdelch and mvwdelch macros move the cursor to (y, x) and delete
the character on the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvdelch (int y, int x);
mvwdelch (WINDOW *win, int y, int x);

Additional Information

Each of the following characters on the same line shifts to the left, and the
last character becomes blank.

Curses Screen Management Functions and Macros 12-25

12.5.31 mv[w]getch

The mvgetch and mvwgetch macros move the cursor to (y, x), get a
character from the terminal screen, and echo it on the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvgetch (int y. int x);
mvwgetch (WINDOW *Win. int y. int x);

12.5.32 mv[w]getstr

The mvgetstr and mvwgetstr macros move the cursor to (y, x), get a
string from the terminal screen, store it in the variable str which must be
large enough to contain the string, and echo it on the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvgetstr (int y. int x. char *str);
mvwgetstr (WINDOW *win. int y. int x. char *str);

Additional Information

The macros strip the newline terminator (\n) from the string.

12.5.33 mv[w]inch

The mvinch and mvwinch macros move the cursor to (y, x) and return
the character on the specified window without making changes to the
window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvinch (int y. int x);
mvwinch (WINDOW *win. int y. int x);

12-26 Curses Screen Management Functions and Macros

12.5.34 mv[w]insch

The mvinsch and mvwinsch macros move the cursor to (y, x) and insert
the character ch in the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool i~t

mvinsch (char ch, int y, int x);
mvwinsch (WINDOW *win, int y, int x, char ch);

Additional Information

After the character is inserted, each character on the line shifts to the right,
and the last character disappears.

12.5.35 mv[w]insstr

The mvinsstr and mvwinsstr macros move the cursor to (y, x) and insert
a string in the specified window.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

mvinsstr (int y, int x, char *str);
mvwinsstr (WINDOW *Win, int y, int x, char *str);

Additional Information

Each character after the string shifts to the right, and the last character
disappears. The macro and function are VAX C specific and are not
portable.

Curses Screen Management Functions and Macros 12-27

12.5.36 mvwin

The mvwin function moves the starting position of the window to the
specified (y, x) coordinates.

The syntax of the function is as follows:

#include curses
#define bool int

mvwin (WINDOW *win, int y, int x);

Additional Information

If moving the window puts part or all of the window off the edge of the
terminal screen, the mvwin function returns ERR and the terminal screen
remains unaltered. When moving subwindows, the function does not
rewrite the contents of the subwindow on the underlying window at the
new position. If anything is written to the subwindow after the move, the
function also writes to the underlying window.

12.5.31 newwin

The new win function creates a new window with numlines lines and
numcols columns starting at the coordinates (begin_y, begin---x) on the
terminal screen.

The syntax of the function is as follows:

#include curses
#define bool int

WINDOW *newwin (int numLines, int numcoLs, int begin_y, int begin_x);

Arguments

If either numlines or numcols is zero, then the function sets that dimension
to (LINES-begin_y) or (COLS - begin---x) respectively. Thus, to get a
new window of dimensions LINES by COLS, use newwin (0, 0, 0, 0).

12-28 Curses Screen Management Functions and Macros

12.5.38 [00]01

The ni and noni macros are provided only for UNIX software compatibil­
ity and have no functionality in the VMS environment.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

nlO
nonl()

12.5.39 overlay

The overlay function nondestructively superimposes winl on win2. The
function writes the contents of winl, insofar as they fit, on win2 beginning
at the starting coordinates of both windows. Blanks on winl leave the
contents of the corresponding space on win2 unaltered. The function
overlay copies as much of a window's box as possible.

The syntax of the function is as follows:

#include curses
#define bool int

int overlay (WINDOW *win1, WINDOW *win2);

12.5.40 overwrite

The overwrite function destructively writes the contents of winl on win2.
The function writes the contents of winl, insofar as they fit, on win2,
beginning at the starting coordinates of both windows. Blanks on winl are
written on win2 as blanks. The function overwrite copies as much of a
window's box as possible.

The syntax of the function is as follows:

#include curses
#define bool int

int overwrite (WINDOW *win1, WINDOW *win2);

Curses Screen Management Functions and Macros 12-29

12.5.41 [w]printw

The printw and wprintw functions perform a printf (see Chapter 2,
Standard I/O Functions and Macros) on the window starting at the
current :position of the cursor.

The syntax descriptions of the functions are as follows:

#include curses
#define bool int

printw (format_spec [,output_STC, ...])
int wprintw (WINDOW *win, char *format_spec, ...);

Arguments

The formatting specification (jmt-spec) and the other arguments are
identical to those used with the function printf.

Additional Information

The printw and wprintw functions format and then print the resultant
string to the window using addstr. The functions return ERR if the screen
scrolls illegally (see Section 12.5.46).

12.5.42 [no]raw

The raw and noraw macros are provided only for UNIX software compat­
ibility and have no functionality in the VMS environment.

The syntax descriptions of the macros are as follows:

#include curses
#define bool int

rawO
norawO

12-30 Curses Screen Management Functions and Macros

12.5.43 [w]refresh

The refresh macro and the wrefresh function repaint the specified win­
dow on the terminal screen.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

refresh 0
int wrefresh (WINDOW *win);

Additional Information

The result of this process is that the portion of the window which is
not occluded by subwindows or other windows appears on the terminal
screen. To see the entire occluded window on the terminal screen, call the
touchwin function instead of refresh or wrefresh.

12.5.44 [w]scanw

The scanw and wscanw functions perform a scanf (see Chapter 2,
Standard I/O Functions and Macros) on the window.

The syntax descriptions of the functions are as follows:

#include curses
#define bool int

scanw (format_spec [, inpuLsrc, ...])
int wscanw (WINDOW *win, char *format_spec, ...);

Arguments

The formatting specification (format-spec) and the other arguments are
identical to those used with the function scanf.

Additional Information

The scanw macro and wscanw function accept, format, and return a line
of text from the terminal screen. They return ERR if the screen scrolls
illegally (see Section 12.5.46).

Curses Screen Management Functions and Macros 12-31

12.5.45 scroll

The scroll function moves all of the lines on the window up one line. The
top line scrolls off the window and the bottom line becomes blank.

The syntax of the function is as follows:

#include curses
#define bool int

int scroll (WINDOW *win);

12.5.46 scrollok

The scrollok macro sets the scroll flag for the specified window.

The syntax of the macro is as follows:

#include curses
#define bool int

scrollok (WINDOW *win. bool booLj);

Arguments

The argument bool! is a Boolean TRUE or FALSE value. If bool! is FALSE,
scrolling is not allowed. This is the default setting. The argument bool! is
defined in the curses definition module. -

12.5.47 [w]setattr

The setattr macro and the wsetattr function activate the video display
attribute attr within the window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

setattr (attr)
int wsetattr (WINDOW *win. int attr);

12-32 Curses Screen Management Functions and Macros

Arguments

The' argument attr is one of a set of video display attributes, which are
blinking, boldface, reverse video, and underlining, and are represented by
the defined constants _BLINK, _BOLD, _REVERSE, and _UNDERLINE.
You can set multiple attributes by separating them with a bitwise OR
operator (I) as follows:

setattr{_BLINK I _UNDERLINE);

Additional Information

The macro and the function are VAX C specific and are not portable.

12.5.48 subwin

The subwin function creates a new subwindow with numlines lines and
numcols columns starting at the coordinates (begin_y, begin---x) on the
terminal screen.

The syntax of the function is as follows:

#include curses
#define bool int

WINDOW *subwin (WINDOW *win. int numLines. int numcoLs.
int begin_yo int begin_x);

Additional Information

When creating the subwindow, begin_y and begin---x are relative to the
entire terminal screen. If either numlines or numcols is zero, then the
function sets that dimension to (LINES - begin_y) or (COLS-begin-x)
respectively.

A declared window must contain the entire area of the subwindow. Any
changes made to either window within the coordinates of the subwindow
appear on both windows.

Curses Screen Management Functions and Macros 12-33

12.5.49 [w]standend

The standend macro and the wstandend function deactivate the boldface
attribute for the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

standendO
int wstandend (WINDOW *win);

Additional Information

They are equivalent to clrattr and wclrattr called with the attribute
_BOLD.

12.5.50 [w]standout

The standout macro and the wstandout function activate the boldface
attribute of the specified window.

The syntax descriptions of the macro and function are as follows:

#include curses
#define bool int

standout 0
int wstandout (WINDOW *win);

Additional Information

They are equivalent to setattr and wsetattr called with the attribute
_BOLD.

12-34 Curses Screen Management Functions and Macros

12.5.51 touchwin

The touchwin function places the most recently edited version of the
specified window on the terminal screen.

The syntax of the function is as follows:

#include curses
#define bool int

int touchwin (WINDOW *win);

Additional Information

The touchwin function usually is only needed to refresh overlapping
windows.

12.5.52 wrapok

The wrapok macro, in the UNIX system environment, allows the wrap­
ping of a word from the right border of the window to the beginning of
the next line. This macro is provided only for UNIX software compatibility
and has no functionality in the VMS environment.

The syntax of the macro is as follows:

#include curses
#define bool int

wrapok (WINDOW *win. bool booLj);

12.6 Program Examples

The following program examples show the effects of many of the Curses
macros and functions. The wgetch and wgetstr functions appear through­
out the programs so that the terminal screen may be viewed while the
program waits for input. You can find explanations of the individual lines
of code, if not self-explanatory, in the comments to the right of the par­
ticular line. Detailed discussions of the functions follow the source code
listing.

Example 12-6 illustrates the definition and manipulation of one user­
defined window and stdscr.

Curses Screen Management Functions and Macros 12-35

Example 12-6: Stdscr and Occluding Windows

o

/* The following program defines one window: WIN1. *
* WINl is located towards the center of the default *
* window stdscr. When writing to an occluding window *
* (WIN1) that is later erased, the writing is *
* erased as well.

#include curses /* Include module

WINDOW *winl;

mainO

/* Define'windows

{

}

char str[80];

initscrO;
noecho();

winl = newwin(10, 20, 10,

box(stdscr, 'I', '-');
box (winl, 'I', '-');

refreshO;
wrefresh(winl);

getstr(str);

mvaddstr(22 , 1, str);
getchO;

/* Variable declaration */

/* Set up Curses */
/* Turn off echo */
/* Create window */

10);

/* Draw a box around STDSCR */
/* Draw a box around WINl */

/* Display STDSCR on screen */
/* Display WINl on screen */

/* Pause. Type a few words! */

/* Add string to WINl */
mvwaddstr(winl, 5, 5, "Hello");
wrefresh(winl); /* Add WINl to terminal scr */
getch(); /* Pause. Press RETURN */

delwin(winl);
touchwin(stdscr);

getchO;
endwin();

/* Delete WINl
/* Refresh all of STDSCR

/* Pause. Press RETURN
/* Ends session.

The following numbers correspond to the numbers in the previous
example:

o The program waits for input. Since the echo has been disabled using
the noecho macro, the words that you type do not appear on stdscr.
However, the macro stores the words in the variable str for use
elsewhere in the program.

12-36 Curses Screen Management Functions and Macros

@ The getch macro causes the program to pause. When you are finished
viewing the screen, press the RETURN key so the program can
resume. The getch macro refreshes stdscr on the terminal screen
without calling refresh. The screen appears like Figure 12-4.

Figure 12-4: Example of the getch Macro

~---~
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 \l:.: The 5 t r 1 n 9 e n t ere d fro m the key boa rd.})
~: ___ -------------- ____ --:1

ZK-5751-86

8 The touchwin function refreshes the screen so that all of stdscr is
visible and the deleted occluding window no longer appears on the
screen.

Example 12-7 illustrates overlay.

Curses Screen Management Functions and Macros 12-37

Example 12-7: Subwindows

/* The following program creates subwindows --- WIN1 *
* and WIN2 --- and shows the effects of OVERLAY. */

#include curses 1* Include module

WINDOW *win1. *win2;

mainO

/* Define windows

{

initscrO;
noecho();

/* Set up Curses
1* Turn off echo

/* Create subwindows *1
win1 = subwin(stdscr. 10. 20. 10. 10);
win2 = subwin(stdscr. 10. 20. 10. 30);

box(stdscr. 'I '. '_I);
box(win1. 'I'. '_I);

box(win2. 'I '.'-');

1* Draw a box round STDSCR */
/* Draw box round WIN1 */
/* Draw a box round WIN2 */

mvwaddstr(win1. 5. 5. " LL II);
o mvwaddstr(win2. 5. 5. "HE 0");

overlay(win2. win1); 1* Lay WIN2 on WIN1 */
wrefresh(win2); /* Display WIN2 on screen */

delwin(win2);
refreshO; /* Refresh STDSCR */
wrefresh(win1); /* Refresh WIN1 */

f) getch();

endwin(); 1* Ends session. */
}

The following numbers correspond to the numbers in the previous
example:

o Strings are added to the two subwindows. Anything written to the
subwindows is also written to stdscr. These strings are added to the
two subwindows at the same coordinates, (5, 5).

f) The program pauses. When win2 overlays win1, the word HELLO
is formed. If win2 were to overwrite win1, then the string HE 0
would appear instead of HELLO, the blanks overwriting the letters.
The screen appears like that in Figure 12-5.

12-38 Curses Screen Management Functions and Macros

Figure 12-5: Example of Overwriting Windows

~--~

HELLO HE 0

~---~
ZK-5750-86

Curses Screen Management Functions and Macros 12-39

Appendix A

VAX C RTL and RTLs of Other C
Implementations

Most implementations of the C programming language provide, in one
form or another, the run-time functions and macros listed in this ap­
pendix. Some of these functions are VAX C specific. Table A-I describes
possible differences between the VAX C RTL function or macro and other
implementations of the functions or macros.

Table A-1: Relationship of VAX C RTL Functions and Macros
to Other C RTL Functions and Macros

V AX C Section
Function

abort

abs

access

acct

acos

[w]addch

Reference

8.1

7.1

2.6.1

7.2

12.5.1

Compared to Others

Not equivalent.

VMS does not generate a core dump.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided in the VAX C Run-Time Library.
The DCL command SET can be used to
turn accounting on and off; the VMS system
service, SYS$SNDACC, can be used to send
messages to an accounting file.

Equivalent functionality.

Equivalent functionality.

VAX C RTL and RTLs of Other C Implementations A-1

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Mac.ros to Other C RTL Functions and
Macros

VAX C Section
Function Reference

[w]addstr 12.5.2

alarm 8.7.1

asctime 11.4.1

asin 7.3

assert 8.2

atan 7.4

atan2 7.5

at exit 8.3

atof 6.7

atoi 6.9

atol 6.9

box 12.5.3

brk 9.1

cabs 7.6

calloc 9.2

ceil 7.7

cfree 9.3

chdir 11.3.1

A-2 VAX C RTL and RTLs of Other C Implementations

Compared to Others

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Defined in the ANSI C standard.

Not equivalent.

With VAX C, the string may contain any of
the white-space characters (space, horizontal
or vertical tab, carriage return, form feed, or
newline).

See atof.

See atof.

Equivalent functionality.

See sbrk.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

The VAX C version changes the default
directory for the user's program only. The user
at a terminal will still have the same default
directory as before the call. On VMS, use the
DeL SET DEFAULT command.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

chmod

chown

circle

[w]c1ear

clearerr

clearok

clock

close

closepl

[w]clrattr

[w]clrtobot

[w]clrtoeol

cont

cos

cosh

creat

[no]crmode

crypt

ctermid

ctime

Section
Reference

11.3.2

11.3.3

12.5.4

2.6.2

12.5.5

11.4.2

4.1.1

12.5.6

12.5.7

12.5.8

7.8

7.9

4.1.2

12.5.9

11.2.1

11.4.3

Compared to Others

Not equivalent.

VMS has no equivalent to the "set user id",
"set group id" or "save text" file attributes.
You can specify group and system read, write,
and execute protection individually. chmod to
1000 ("save text") is done on VMS using the
INSTALL utility.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

VAX C adds optional file attributes to allow
the creation of files with RMS formats other
than stream.

Provided without functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

VAX C RTl and RTls of Other C Implementations A-3

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

cuserid

dbm

[w]delch

delete

[w]deleteln

delwin

difftime

div

dup

dup2

[no]echo

ecvt

endfsent

endgrent

endpwent

endwin

[w]erase

exec

execl

execlp

execle

execv

Section
Reference

11.2.2

12.5.10

2.6.7

12.5.11

12.5.12

11.4.4

7.15

4.1.3

4.1.3

12.5.13

5.2.1

12.5.14

12.5.15

10.2.1

10.2.1

10.2.1

10.2.1

10.2.1

A-4 VAX C RTl and RTls of Other C Implementations

Compared to Others

Equivalent functionality.

Not provided.

Equivalent functionality.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

Defined in the ANSI C standard.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

See execve.

See execve.

See execve.

See execve.

See execve.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

execve

execvp

exit

exp

fabs

fclose

fcvt

fdopen

feof

ferror

£flush

fgetc

fgetname

fgets

fileno

floor

fmod

Section
Reference

10.2.1

10.2.1

8.4

7.10

7.1

2.2.1

5.2.1

2.2.2

2.6.3

2.6.4

2.5.1

2.3.1

2.6.5

2.3.2

4.4.1

7.11

7.12

Compared to Others

Not equivalent.

The principle· of process overlaying is not used
in VMS. On VAX C, you can exec programs
only. When specifying the environment array,
use the DCL syntax. The functions execl and
execle contain separate character strings; the
functions execv and execve contain arrays of
character strings.

See execve.

Not equivalent.

If the process was invoked by the DCL
command interpreter, then VMS interprets the
return value and prints a DCL message.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

VAX C returns either the VMS file specification
or the DEC/Shell file specification.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

VAX C RIl and RTLs of Other C Implementations A-5

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAXC
Function

fopen

fork

fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

fstat

ftell

ftime

fwrite

gamma

Section
Reference

2.2.3

10.1.2

2.4.1

2.4.4

2.4.2

2.3.3

9.3

2.2.4

7.13

2.3.4

2.5.2

4.4.2

2.5.3

11.4.5

2.4.3

A-6 VAX C RTl and RTls of Other C Implementations

Compared to Others

Not equivalent.

VAX C adds optional file attributes to allow
the creation of files with RMS formats other
than stream.

Not provided (see vfork).

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

VAX C adds optional file attributes to allow
the creation of files with RMS formats other
than stream.

Equivalent functionality.

Not equiyalent.

VAX C provides the following conversion
characters: hd, ho, hx, ld, 10, lx, Ie, If, i, n, and
p.

Not equivalent.

When using record files, input from ftell is
required for VAX C.

Equivalent functionality.

Not equivalent.

When using record files, VAX C returns the
position of the current record.

Equivalent functionality.

Equivalent functionality.

Not provided.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

gcvt

getc

[w]getch

getchar

getcwd.

getegid

getenv

geteuid

getfsent

getfsfile

getfsspec

getgid

getgrent

getgrgid

getgrnam

getlogin

getname

getpass

getpgrp

getpid

getppid

getpw

getpwent

getpwnam

getpwuid

Section
Reference

5.2.1

2.3.1

12.5.16

3.1

11.2.3

11.2.4

11.2.5

11.2.4

11.2.4

4.4.3

11.2.6

11.2.7

Compared to Others

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

See getuid.

Equivalent functionality.

See getuid.

Not provided.

Not provided.

Not provided.

See getuid.

Not provided.

Not provided.

Not provided.

Not provided.

Not equivalent.

VAX C returns either the VMS file specification
or the DEC/Shell file specification.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not provided.

VAX C RTL and RTls of Other C Implementations A-7

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C Section
Function Reference

getrgid

gets 3.2

[w]getstr 12.5.17

getuid 11.2.4

getw 2.3.1

getyx 12.5.18

gmtime 11.4.6

gsignal 8.7.2

hypot 7.6

[w]inch 12.5.19

index

initscr 12.5.20

[w]insch 12.5.21

[w]insertln 12.5.22

[w]insstr 12.5.23

ioctl

isalnum 5.1.1

isalpha 5.1.2

isapipe 4.4.4

isascii 5.1.3

isatty 4.4.5

iscntrl 5.1.4

isdigit 5.1.5

isgraph 5.1.6

A-a VAX C RTl and RTls· of Other C Implementations

Compared to Others

Not provided.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

VAX C returns the group and member codes
from the VIC; VMS does not distinguish
between real and effective user IDs.

Equivalent functionality.

Equivalent functionality.

Provided with no functionality.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

VAX C specific.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

islower

isprint

ispunct

isspace

isupper

isxdigit

jO,jl,jn

kill

killpg

13tol

label

ldexp

ldiv

leaveok

link

line

linemod

localtime

log,loglO

longjmp

Section
Reference

5.1.7

5.1.8

5.1.9

5.1.10

5.1.11

5.1.12

8.7.3

7.14

7.15

12.5.25

11.4.7

7.17

8.7.4.

Compared to Others

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not equivalent.

VMS requires system privileges if the sending
and receiving processes have different DICs.
The receiving process ALWAYS terminates.

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not equivalent.

On VAX C, daylight savings time always
equals zero.

Equivalent functionality.

Equivalent functionality.

VAX C RTL and RTLs of Other C Implementations A-9

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

longname

lseek

ltol3

malloc

memchr

memcmp

memcpy

memmove

memset

mkdir

mknod

mktemp

modf

monitor

mount,umount

[w]move

mpx

mv[w]addch

Section
Reference

12.5.24

4.3.1

9.2

6.11.1

6.11.2

6.11.3

6.11.3

6.11.4

11.3.4

2.6.6

7.18

12.5.26

12.5.27

A-10 VAX C RTL and RTls of Other C Implementations

Compared to Others

Not equivalent.

VAX C returns the terminal name, but to
maintain portability, you must write a set
of dummy routines to perform the same
functionality as the database termcap.

Not equivalent.

The VAX C function positions on record
boundaries for RMS record files.

Not provided.

Not equivalent.

VAX C aligns the area returned on an octa­
word boundary.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

VAX C includes VMS specific optional argu­
ments to specify VIC, maximum file version
number, and the relative volume number.

Not provided.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Equivalent functionality.

Not provided.

Equivalent functionality.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

mv[w]addstr

mvcur

mv[w]delch

mv[w]getch

mv[w]getstr

mv[w]inch

mv[w]insch

mv[w]insstr

mvwin

newwin

nice

[no]nl

nlist

open

openpl

overlay

overwrite

pause

pclose

perror

Section
Reference

12.5.28

12.5.29

12.5.30

12.5.31

12.5.32

12.5.33

12.5.33

12.5.35

12.5.36

12.5.37

11.3.5

12.5.38

4.1.4

12.5.39

12.5.40

8.7.5

8.5

Compared to Others

Equivalent functionality.

Equivalent to the function move.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equi valen t functionality.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

On VMS, the resulting priority cannot be
greater than the process base priority.

Provided without functionality.

Not provided.

This information c.an be obtained from the
linker load map.

Not equivalent.

VAX C requires mode = 2 when randomly
writing to files.

Not provided.

Equivalent functionality.

Equivalent functionality.

Not equivalent.

On VMS, processes can also be awakened with
the SYS$WAKE system service.

Not provided.

Equivalent functionality.

VAX C RTL and RTLs of Other C Implementations A-11

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

pipe

point

popen

pow

printf

[w]printw

profil

ptrace

putc

putchar

puts

putw

qsort

raise

rand

[no]raw

read

realloc

reboot

[w]refresh

Section
Reference

10.4.1

7.19

3.3

12.5.41

2.4.4

3.4

3.5

2.4.4

11.1.2

8.7.2

7.20

12.5.42

4.2.1

9.4

3

A-12 VAX C RTL and RTLs of Other C Implementations

Compared to Others

Not equivalent.

VAX C specifies optional arguments for buffer
size and asynchronous read operations.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Defined in the ANSI C standard (equivalent to
the gsignal function).

Equivalent functionality.

Provided without functionality.

Equivalent functionality.

Not equivalent.

On VAX C you can reallocate only the last
freed area. For example, if you were to make
two calls to free, only the second area could
be reallocated.

Not provided.

Equivalent functionality.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

remove

rename

rewind

re_comp

re_exec

rindex

sbrk

scanf

[w]scanw

scroll

scrollok

[w]setattr

setbuf

setgid

setgrent

setjmp

setpgrp

setpwent

setsfent

setuid

setvbuf

sigblock

Section
Reference

2.6.7

2.6.8

2.5.4

9.1

3.6

12.5.44

12.5.45

12.5.46

12.5.47

2.6.9

11.3.6

8.7.4

11.3.6

2.6.9

8.7.6

Compared to Others

Defined in the ANSI C standard (equivalent to
the delete function).

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not equivalent.

The VAX C version rounds the break address
to the next higher multiple of 512 bytes.

Not equivalent.

VAX C provides the following conversion
characters: hd, ho, hx, ld, 10, lx, Ie, If, i, n, and
p.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

VAX C specific.

Defined by ANSI C standard.

Provided without functionality.

Not provided.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Provided without functionality.

Not equivalent.

Equivalent functionality.

VAX C RTl and RTls of Other C Implementations A-13

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAXC
Function

sighold

sigignore

signal

sigpause

sigsetmask

sigstack

sigvec

sigrelse

sigset

sigsys

sin

sinh

sleep

space

sprintf

sqrt

Section
Reference

8.7.7

8.7.8

8.7.9

8.7.10

8.7.11

7.21

7.22

8.7.12

2.4.1

7.23

A-14 VAX C RTl and RTls of Other C Implementations

Compared to Others

Not provided.

See VAX C ssignal, gsignal functions
in Chapter 8, Error-Handling Functions.

Not provided.

See VAX C ssignal, gsignal functions
in Chapter 8, Error-Handling Functions.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

See VAX C ssignal, gsignal functions
in Chapter 8, Error-Handling Functions.

Not provided.

See VAX C ssignal, gsignal functions
in Chapter 8, Error-Handling Functions.

Not provided.

See VAX C ssignal, gsignal functions
in Chapter 8, Error-Handling Functions.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Equivalent functionality.

VAX C also provides the conversion characters
nand p. See the fprintf and printf functions
for more information.

Equivalent functionality.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

srand

sscanf

ssignal

[w]standend

[w]standout

stat

stime

strcat

strchr

strcmp

strcpy

strcspn

strerror

strlen

strncat

strncmp

strncpy

strpbrk

strrchr

strspn

strtod

strtok

strtol

strtoul

subwin

Section
Reference

7.20

2.3.4

8.7.13

12.5.49

12.5.50

4.4.2

6.1

6.2

6.3

6.4

6.5

8.6

6.6

6.1

6.3

6.4

6.5

6.2

6.5

6.7

6.8

6.9

6.10

12.5.48

Compared to Others

Equivalent functionality.

Not equivalent.

VAX C provides the following conversion
characters: h, ho, hx, ld, 10, lx, Ie, and If.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

VAX C RTl and RTls of Other C Implementations A-15

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

swab

sync

syscall .

system

tan

tanh

tgetent

tgetflag

tgetnum

tgetstr

tgoto

time

times

timezone

tmpfile

tmpnam

to ascii

tolower

touchwin

toupper

tputs

Section
Reference

10.1.1

7.24

7.25

11.4.8

11.4.9

2.6.10

2.6.11

5.2.2

5.2.3

12.5.51

5.2.4

A-16 VAX C RTL and RTLs of Other C Implementations

Compared to Others

Not provided.

Not provided.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Not provided.

Not provided.

Not provided.

Not provided.

Not equivalent.

VAX C does not return timezone or daylight
fields.

Not equivalent.

VMS does not distinguish between system
and user times. VAX C returns the time in
10-millisecond units.

Not provided.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Equivalent functionality.

Not provided.

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

ttyname

umask

umount

ungetc

unlink

vadvise

valloc

vel-arg

Vel-count

vel-end

Vel-start

vel-start_l

vfprintf

vfork

vhangup

vlimit

vprintf

vread

Section
Reference

4.4.6

11.3.7

2.3.5

6.12.1

6.12.2

6.12.3

6.12.4

6.12.4

6.12.5

10.1.2

6.12.5

Compared to Others

Not equivalent.

VAX C returns a pointer to the null-terminated
path name of the terminal device associated
with file descriptor zero (standard input, stdin).

Not equivalent.

The default values of the umask function are
set from RMS default file protection.

Not provided.

Equivalent functionality.

Not provided.

This functionality is not provided in VMS.
Temporary files can be created using the
RMS extensions to creat. (See the delete and
remove functions in 2.6.7.)

Not provided.

Not provided.

Equivalent functionality.

VAX C specific.

Equivalent functionality.

Equivalent functionality.

VAX C specific.

Equivalent functionality.

VAX C specific.

This function is equivalent to the fork function
in other implementations of the C language.

Not provided.

Not provided.

Equivalent functionality.

Not provided.

VAX C RTl and RTls of Other C Implementations A-17

Table A-1 (Cont.): Relationship of VAX C RTL Functions and
Macros to Other C RTL Functions and
Macros

VAX C
Function

vsprintf

vswapon

vwrite

wait

wait3

wrapok

write

Section
Reference

6.12.5

10.3.1

12.5.52

4.2.2

A-18 VAX C RTL and RTLs of Other C Implementations

Compared to Others

Equivalent functionality.

Not provided.

Not provided.

Equivalent functionality.

Not provided.

Provided without functionality.

Equivalent functionality.

Appendix B

VAX C Run-Time Modules and Entry
Points

This appendix summarizes the modules and entry points in the VAX C
run-time system. Table B-1 lists the modules in the library and describes
their function. For an additional method of reference, Table B-2 lists
the entry points defined in each module and describes their function.
Table B-3 lists the modules from the VMS Run-Time Procedure Library
that are called by VAX C run-time modules.

Table B-1: VAX C Run-Time Modules
Module

C$$DOPRINT

C$$MAIN

C$$MATH_HAND

C$$TRANSLATE

C$ABORT

C$ABS

C$ACOS

C$ADDSTR

C$ALARM

C$ASIN

C$ASSERT

C$ATAN

Description

Character-string print and scan routines.

Main start-off routine for C programs.

Math routine condition handler.

Translate VMS codes to UNIX codes.

Abort the current process.

Integer absolute value math function.

Arc cosine math function.

Curses add string function.

Set alarm function.

Arc sine math function.

Run-time assertion function.

Arc tangent math function.

VAX C Run-Time Modules and Entry Points 8-1

Table B-1 (Cont.):
Module

C$ATAN2

C$ATEXIT

C$ATOF

C$ATOL

C$BOX

C$BREAK

C$BSEARCH

C$CEIL

C$COS

C$COSH

C$CTERMID

C$CTYPE

C$CUSERID

C$DATA

C$DELWIN

C$DIVIDE

C$ECVT

C$ENDWIN

C$ERRNO

C$EXP

C$FABS

C$FLOOR

C$FMOD

C$FREXP

C$FSTAT

C$GCVT

C$GETCWD

C$GETENV

C$GETGID

8-2 VAX C Run-Time Mqdules and Entry Points

VAX C Run-Time Modules
Description

Arc tangent math function.

Declare exit handlers.

ASCII to floating-point binary conversion.

ASCII to integer binary conversion.

Curses create box function.

Memory allocation routines.

Binary chop search routine.

Ceiling math function.

Cosine math function.

Hyperbolic cosine math function.

Controlling terminal identification.

Character type data definitions.

User-name identification.

Data definitions of standard file structures.

Curses delete window function.

div and ldiv math functions.

Double float to ASCII string conversion.

Terminate Curses session.

Run-time library error message definitions.

Base e exponentiation math function.

Floating-point double absolute math function.

Floor math library function.

Floating-point remainder math function.

Extract fraction and exponent math function.

Curses file status function.

Double value to ASCII string conversion.

Get current working directory.

Get environment value.

Get group identification.

Table 8-1 (Cont.):
Module

C$GETPID

C$GETPPID

C$GETSTR

C$GETUID

C$HYPOT

C$INISIG

C$INITSCR

C$INSSTR

C$KILL

C$LDEXP

C$LOG

C$LOG10

C$LONGNAME

C$MAIN

C$MALLOC

C$MEMFUNC

C$MODF

C$MVWIN

C$NEWWIN

C$NICE

C$OVERLAY

C$OVERWRITE

C$PAUSE

C$PERROR

C$POW

C$PRINTW

C$QSORT

C$RAND

VAX C Run-Time Modules
Description

Get the process identification.

Get the parent process identification.

Curses get string function.

Get user identification.

Euclidean distance math library function.

Initialize C RTL signal handler.

Begin Curses session.

Curses insert string function.

Terminate process.

Power of 2 math library function.

Logarithm base e math library function.

Logarithm base 10 math library function.

Retrieve terminal name.

C main routines.

Memory allocation/ deallocation.

memchr, memcmp, memcpy, memmove, and
memset functions.

Extract fraction and integer math function.

Curses move window function.

Curses create window function.

Set process priority.

Curses window overlay function.

Curses window overwrite function.

Suspend the process until a signal is received.

Print an error message.

Power math library function.

Curses printf for window.

Rapid sort function.

Random number generator.

VAX C Run-Time Modules and Entry Points 8-3

Table 8-1 (Cont.):
Module

C$RMS_PROTOTYPES

C$SCANW

C$SCROLL

C$SETGID

C$SET]MP

C$SETUID

C$SIGNAL

C$SIGVEC

C$SIN

C$SINH

C$SLEEP

C$SQRT

C$STAT

C$STRCHR

C$STRCMP

C$STRERROR

C$STRFUNC

C$STRINGS

C$STRNCMP

C$STRTOD

C$STRTOK

C$STRTOL

C$STRRCHR

C$SUBWIN

C$TAN

C$TANH

C$TIME

C$TIMEF

C$TMPFILE

8-4 VAX C Run-Time Modules and Entry Points

VAX C Run-Time Modules
Description

Definition of RMS data structures.

Curses scanf for window.

Curses scroll window function.

Set group identification.

Non-local goto functions (setjmpjlongjmp).

, Set user identification.

Manipulate signal database.

Signal functionality.

Sine math function.

Hyperbolic sine math function.

Suspend the process for a number of seconds.

Square root math function.

Get file status function.

Search for a character in a string.

Compare two strings.

Get RTL error message string.

String manipulation functions.

Perform string manipulation.

Compare two strings.

Convert string to a double.

Search for tokens in a string.

Convert string to a long or unsigned integer.

Search for a character in a string.

Curses create subwindow function.

Tangent math library function.

Hyperbolic tangent math function.

Get real-time values.

Manipulate/convert real-time values.

Create a temporary file.

Table 8-1 (Cont.):
Module

C$TMPNAM

C$TOLOWER

C$TOUCHWIN

C$TOUPPER

C$TTYNAME

C$UNIX

C$VAXCIO

C$WADDCH

C$WADDSTR

C$WCLEAR

C$WCLRATTR

C$WCLRTOBOT

C$WCLRTOEOL

C$WDELCH

C$WDELETELN

C$WERASE

C$WGETCH

C$WGETSTR

C$WINCH

C$WINSCH

C$WINSERTLN

C$WINSSTR

C$WMOVE

C$WPRINTW

VAX C Run-Time Modules
Description

Generate a name for a temporary file.

Uppercase to lowercase conversion.

Curses refresh window function.

Lowercase to uppercase conversion.

Get terminal name function.

UNIX emulation routines.

All I/O related functions.

Curses add character function.

Curses add string function.

Curses erase window function.

Curses stop attribute function.

Curses erase window to bottom function.

Curses erase window to the end of line function.

Curses delete character function.

Curses delete line function.

Curses erase window function.

Curses get character function.

Curses get stime function.

Curses insert character function.

Curses insert character function.

Curses insert line function.

Curses insert string function.

Curses move cursor function.

Curses printf for window.

VAX C Run-Time Modules and Entry Points 8-5

Table 8-1 (Cont.): VAX C Run-Time Modules
Module

C$WREFRESH

C$WSCANW

C$WSETATTR

C$WSTANDEND

C$WSTANDOUT

SHELL$CLINT

SHELL$CLI_NAME

SHELL$FIX_TIME

SHELL$FROM_ VMS

SHELL$TO_ VMS

SHELL$MATCH_WILD

VAXC$ESTABLISH

VAXC$STACK_SWITCH

VAXC$VARARGS

8-6 VAX C Run-Time Modules and Entry Points

Description

Curses refresh window function.

Curses scanf for window.

Curses set attribute function.

Curses end bold function.

Curses start bold function.

Interface shell argument lists.

Determine user's CLI.

UNIX system time formatting.

DEC/Shell file translation.

DEC/Shell file translation.

Expand file name wild cards.

Establish condition handler function.

Switch to alternate signal stack.

Variable argument list support.

Table B-2: VAX C Run-Time Entry Points
Entry Point Module Description

abort C$ABORT Abort the current process.

abs C$ABS Integer absolute value math
library function.

access C$VAXCIO Check the accessibility of a
file.

acos C$ACOS Arc cosine math library
function.

addstr C$ADDSTR Add a string to stdcr.

alarm C$ALARM Set alarm library function.

asctime C$TIMEF Convert broken-down time
into a character string.

asin C$ASIN Arc sine math library func-
tion.

assert C$ASSERT Provide diagnostic informa-
tion.

atan C$ATAN Arc tangent math library
function.

atan2 C$ATAN2 Arc tangent math library
function.

at exit C$ATEXIT Register function(s) to be
called without arguments at
program termination.

atof C$ATOF Convert ASCII to floating-
point binary.

atoi C$ATOL Convert ASCII to integer
binary.

atol C$ATOL Convert long ASCII to binary.

box C$BOX Create a box surrounding a
window.

brk C$BREAK. Determine the low virtual
address for program data
area.

bsearch C$BSEARCH Binary chop search routine.

VAX C Run-Time Modules and Entry Points 8-7

Table B-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

c$$concLhand C$$MAIN Image condition handler.

c$$ctrlc_hand C$$MAIN Control/C ast handler.

c$$doprint C$$DOPRINT Internal output formatting
routine.

c$$doscan C$$DOSCAN Internal input formatting
routine.

c$$environ C$UNIX Establish vfork environment.

c$$exhandler C$UNIX Emulator exit handler.

c$$main C$$MAIN Main start-up routine.

c$$math_hand C$$MATH_HAND Math condition handler.

c$$translate C$$TRANSLATE Translate VMS error codes to
UNIX error codes.

c$main C$MAIN Start up main program with
no arguments.

c$main_args C$MAIN Start up main program with
arguments.

cabs C$HYPOT Euclidean distance math
library function.

calloe C$MALLOC Allocate and clear storage.

cc$rms_fab C$RMS_PROTOTYPES File access block prototype.

cc$rms_nam C$RMS_PROTOTYPES Name block prototype.

cc$rms-I"ab C$RMS_PROTOTYPES Record access block proto-
type.

cc$rms-,<aball C$RMS_PROTOTYPES Allocation control extended
attribute block prototype.

cc$rms-'<abdat C$RMS_PROTOTYPES Date and time extended
attribute block prototype.

cc$rms-'<abfhc C$RMS_PROTOTYPES File header characteristics
extended attribute block
prototype.

cc$rms-'<abkey C$RMS_PROTOTYPES Indexed file key extended
attribute block prototype.

8-8 VAX C Run-Time Modules and Entry Points

Table B-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

cc$rms-xabpro C$RMS_PROTOTYPES File protection extended
attribute block.

cc$rms-xabrdt C$RMS_PROTOTYPES Revision date and time
extended attribute block
prototype.

cc$rms-xabsum C$RMS_PROTOTYPES Summary extended attribute
block prototype.

cc$rms-xabtrm C$RMS_PROTOTYPES Terminal characteristics
extended attribute block.

ceil C$CEIL Ceiling math library function.

cfree C$MALLOC Deallocate storage.

chdir C$VAXCIO Change the default directory.

chmod C$VAXCIO Change a file's access mode.

chown C$VAXCIO Change a file's owner.

clock C$UNIX Determine CPU time.

close C$VAXCIO Close a file.

cos C$COS Cosine math library function.

cosh C$COSH Hyperbolic cosine math
library function.

creat C$VAXCIO Create a file.

ctermid C$TERMID Identify the controlling
terminal.

ctime C$TIMEF Convert time to an ASCII
string.

cuserid C$CUSERID Identify the user name.

delete C$VAXCIO Delete a file by file name.

delwin C$DELWIN Delete a window.

difftime C$TIMEF Compute the difference
between two times.

div C$DIVIDE Compute quotient and re-
mainder.

VAX C Run-Time Modules and Entry Points 8-9

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

dup C$VAXCIO Create a duplicate file de-
scriptor.

dup2 C$VAXCIO Create a duplicate file de-
scriptor.

ecvt C$ECVT Convert a double value to
ASCII.

endwin C$ENDWIN End Curses session.

exed C$UNIX Execute a program image.

exede C$UNIX Execu te a program image.

exedp C$UNIX Execute a program image.

execv C$UNIX Execute a program image.

execve C$UNIX Execute a program image.

execvp C$UNIX Execute a program image.

exit C$UNIX Close files and exit.

_exit C$UNIX Exit image.

exp C$EXP Base e exponentiation math
function.

fabs C$FABS double absolute math func-
tion.

fdose C$VAXCIO Close a file.

fcvt C$ECVT Convert a double value to
ASCII.

fdopen C$VAXCIO Open a file by file descriptor.

£flush C$VAXCIO Flush a file buffer.

fgetc C$VAXCIO Get a character from a file.

fgetname C$VAXCIO Get a file-name string.

fgets C$VAXCIO Get a string from a file.

floor C$FLOOR Floor math library function.

fmod C$FMOD Compute the floating-point
remainder of X/Yo

fopen C$VAXCIO Open a file by file pointer.

8-1 0 VAX C Run-Time Modules and Entry Points

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

fprintf C$VAXCIO Format a string to a file.

fpute C$VAXCIO Write a character to a file.

fputs C$VAXCIO Write a string to a file.

fread C$VAXCIO Read from a file.

free C$MALLOC Deallocate storage.

freopen C$VAXCIO Close and reopen a file.

frexp C$FREXP Extract fraction exponent
math function.

fscanf C$VAXCIO Scan input from a file.

fseek C$VAXCIO Position to an offset in a file.

fstat C$FSTAT Get file status function.

ftell C$VAXCIO Return current offset in a file.

ftime C$TIME Get the time.

fwrite C$VAXCIO Write to a file.

gcvt C$GCVT Convert a double value to
ASCII.

getehar C$VAXCIO Get a character from standard
input.

getcwd C$GETCWD Get the specification for the
current working directory.

getegid C$GETGID Get the effective group
identification.

getenv C$GETENV Get an environment value.

geteuid C$GETUID Get the effective user identifi-
cation.

getgid C$GETGID Get the group identification.

getname C$VAXCIO Get a file-name string.

getpid C$GETPID Get the process identification.

getppid C$GETPPID Get the parent process id of
the calling process.

VAX C Run-Time Modules and Entry Points 8-11

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

gets C$VAXCIO Get a string from standard
input.

getstr C$GETSTR Get a string from stdscr.

getuid C$GETUID Get the user identification.

getw C$VAXCIO Get a longword from an input
file.

gmtime C$TIMEF Convert calendar time into
broken-down time.

gsignal C$SIGNAL Generate a signal.

hypot C$HYPOT Euclidean distance math
library function.

initscr C$INITSCR Begin Curses session.

isatty C$VAXCIO Check for a terminal file.

isapipe C$VAXCIO Check for a mailbox.

insstr C$INSSTR Insert a string on stdscr.

kill C$KILL Send a signal to a process.

Idexp C$LDEXP Power of 2 math library
function.

ldiv C$DIVIDE Compute long int quotient
and remainder.

localtime C$TIMEF Place time in a time structure.

log C$LOG Logarithm base e math library
function.

loglO C$LOG10 Logarithm base 10 math
library function.

longjmp C$SET]MP Return to setjmp's entry
point.

longname C$LONGNAME Retrieve terminal name.

lseek C$VAXCIO Seek to a position in a file.

malloc C$MALLOC Allocate memory.

memchr C$MEMFUNC Locate first occurrence of a
character.

8-12 VAX C Run-Time Modules and Entry Points

Table B-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

memcmp C$MEMFUNC Compare lexical values of two
arrays.

memcpy C$MEMFUNC Copy characters from one
array to another.

memmove C$MEMFUNC Copy characters from one
array to another.

memset C$MEMFUNC Put a given character in n
bytes of an array.

mkdir C$VAXCIO Create a new directory.

mktemp C$TMPNAM Make a temporary file-name
string.

modf C$MODF Extract fraction and integer
math function.

mvwin C$MVWIN Move a window.

newwin C$NEWWIN Define a new window.

nice C$NICE Set process priority.

open C$VAXCIO Open a file by file descriptor.

overlay C$OVERLAY Place one window over
another.

overwrite C$OVERWRITE Write one window onto
another.

pause C$PAUSE Suspend the process.

perror C$PERROR Print an error message.

pipe C$UNIX Allow two processes to
exchange data.

pow C$POW Power math library function.

printf C$VAXCIO Format a string to standard
output.

printw C$PRINTW A printf to stdscr.

putchar C$VAXCIO Write a character to standard
output.

VAX C Run-Time Modules and Entry Points 8-13

Table B-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

puts C$VAXCIO Write a string to standard
output.

putw C$VAXCIO Write a longword to a file.

qsort C$QSORT Sort an array of data objects.

raise C$SIGNAL Generate a signal.

rand C$RAND Corr~pute a random number.

read C$VAXCIO Read a file.

realloc C$MALLOC Change the size of an area of
storage.

remove C$VAXCIO Delete a file.

rename C$VAXCIO Rename a file.

rewind C$VAXCIO Return to the beginning of
the file.

sbrk C$BREAK Add bytes to the program's
low virtual address.

scanf C$VAXCIO Format input from the stan-
dard input.

scanw C$SCANW A scanf to stdscr.

scroll C$SCROLL Scroll a window.

setbuf C$VAXCIO Associate a buffer with a file.

setgid C$SETGID Set group identification.

setjmp C$SETJMP Set up a return site for
longjmp.

setuid C$SETUID Set user identification.

setvbuf C$VAXCIO Establish I/O buffering for a
file.

shell$cli_name SHELL$CLI_NAME Determine user's command
language interpretor.

shell$fix_time SHELL$FIX_ TIME Translate time to a UNIX
format.

8-14 VAX C Run-Time Modules and Entry Points

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

shell$from_ vms SHELL$FROM_ VMS Translate VMS file spec-
ifications to DEC/Shell
specs.

shell$get_argv SHELL$CLINT Interface to argument lists
under the shell.

shell$is_shell SHELL$CLI_NAME Determine CLI name.

shell$match_ wild SHELL$MATCH_ Wildcard expansion to infinite
WILD names.

shell$to_ vms SHELL$TO_ VMS Translate DEC/Shell file
specifications to VMS specs.

shell$translate_ vms SHELL$ TO_ VMS Translate DEC/Shell file
specifications to DEC/Shell
specs.

sigblock C$SIGVEC Block signals from delivery.

sigpause C$SIGVEC Pause and wait for a signal.

sigsetmask C$SIGVEC Block signals from delivery.

sigstack C$SIGVEC Define alternate signal stack.

siguec C$SIGVEC Assign a handler function for
a specific signal.

signal C$SIGNAL Set a signal.

sin C$SIN Sine math library function.

sinh C$SINH Hyperbolic sine math library
function.

sleep C$SLEEP Suspend the process.

sprintf C$VAXCIO Format a string to a memory
buffer.

sqrt C$SQRT Square root math library
function.

srand C$RAND Reinitialize the random
number generator.

sscanf C$VAXCIO Format input from memory.

ssignal C$SIGNAL Set a signal.

VAX C Run-Time Modules and Entry Points 8-15

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

stat C$STAT Get file status function.

strcat C$STRINGS Concatenate two strings.

strchr C$STRCHR Search for a character in a
string.

strcmp C$STRCMP Compare two strings.

strcpy C$STRINGS Copy a string to another
string.

strcspn C$STRINGS Search string for a character.

strerror C$PERROR Translate an error message
code.

strlen C$STRINGS Determine the length of a
string.

strncat C$STRINGS Concatenate two strings.

strncmp C$STRNCMP Compare two strings.

strncpy C$STRINGS Copy from one string to
another.

strpbrk C$STRINGS Search a string for a
character.

strrchr C$STRRCHR Search a string for a
character.

strspn C$STRSPN Search a string for a
character.

strtod C$ATOF Convert a string to a double
precision number.

strtok C$STRTOK Locate text tokens in a given
string.

strtol C$STRTOL Convert a character string
into a long integer value.

strtoul C$STRTOL Convert a character string
into an unsigned value.

subwin C$SUBWIN Create a subwindow.

8-16 VAX C Run-Time Modules and Entry Points

Table B-2 (Cont.): VAX C Run-Time Entrv Points
Entry Point Module Description

system C$UNIX Pass a string to a command
processor for execution.

tan C$TAN Tangent math library
function.

tanh C$TANH Hyperbolic tangent math
library function.

time C$TIME Get the epoch time.

times C$UNIX Get the process and CPU
times.

tmpfile C$TMPFILE Create a temporary file.

tmpnam C$TMPNAM Generate a temporary file
name.

tolower C$TOLOWER Convert uppercase to lower-
case.

touchwin C$TOUCHWIN View occluded window.

toupper C$TOUPPER Convert lowercase to upper-
case.

ttyname C$TTYNAME Set a pointer to a device
associated with a file.

umask C$VAXCIO Set a file's protection mask.

ungetc C$VAXCIO Push a character back into
the stream.

utime C$VAXCIO Set the access and modifica-
tion times for a file.

v~arg VAXC$VARARGS Returns the next argument.

v~count VAXC$VARARGS Count the number of argu-
ments.

v~end VAXC$VARARGS Terminates the processing of
variable argument lists.

v~start VAXC$VARARGS Initialize to the beginning of
an argument list.

v~start_l VAXC$VARARGS Initialize to the beginning of
an argument list.

VAX C Run-Time Modules and Entry Points 8-17

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

vaxc$crtl_init C$$MAIN Initialize C RTL signal
handlers for non-C programs.

vaxc$establish VAXC$ESTABLISH Establish a condition handler
function.

vaxc$stack_swi tch VAXC$STACK_ Switch the stack for sigstack
SWITCH function.

vfork C$UNIX Spawn a process.

vfprintf C$VAXCIO Print formatted output.

vprintf C$VAXCIO Print formatted output.

vsprintf C$VAXCIO Print formatted output.

waddch C$WADDCH Add· a character to a window.

waddstr C$WADDSTR Add a string to a window.

wait C$VAXCIO Suspend a process.

wclear C$WCLEAR Erase window.

wclrattr C$WCLRATTR Turn off a screen attribute.

wclrtobot C$CLRTOBOT Erase window to the bottom.

wclrtoeol C$CWCLRTOEOL Erase window to the end of
current line.

wdelch C$WDELCH Delete a character from a
window.

wdeleteln C$DELETELN Delete a line from a window.

werase C$WERASE Erase a window.

wgetch C$WGETCH Get a character from standard
input; echo it on a window.

wgetstr C$WGETSTR Get a string from standard
input; echo it on a window.

winch C$WINCH Return the character from
a window at the cursor
position.

winsch C$WINSCH Insert a character on a
window.

8-18 VAX C Run-Time Modules and Entry Points

Table 8-2 (Cont.): VAX C Run-Time Entry Points
Entry Point Module Description

winsertln C$WINSERTLN Insert a blank line on a
window.

winsstr C$WINSSTR Insert a string on a window.

wmove C$WMOVE Move the cursor position.

wprintw C$WPRINTW Perform a printf on a speci-
fied window.

wrefresh C$WREFRESH View edits made to. a
window.

write C$VAXCIO Write a file.

wscanw C$WSCANW Perform a scanf on a speci-
fied window.

wsetattr C$WSETATTR Turn on a screen attribute.

wstandend C$WSTANDEND Turn off boldface attribute.

wstandout C$WSTANDOUT Turn on boldface attribute.

Table 8-3: Run-Time Library Procedures Called by VAX C
Procedure

lib$get_foreign

lib$free_vm

lib$get_vm

lib$signal

lib$stop

lib$spawn

lib$establish

lib$getsymbol

Description

Get DCL command line.

Virtual memory deallocation.

Virtual memory allocation.

Condition signaling.

Stop condition signal.

Spawn a subprocess.

Establish an error handler.

Translate DCL symbol.

VAX C Run-Time Modules and Entry Points 8-19

The VAX C mathematical functions are performed by the VMS run-time
procedures in the following list:

mth$dacos-1"7 mth$dasin-1"7 m th$da tan-1"7

mth$datan2 mth$dcos_r7 mth$dcosh

mth$dexp-1"6 m th$dsqrt-1"5 mth$dlog-1"8

m th$dlog 1 0-1"8 mth$dsin_r7 mth$dsinh

mth$dsqrt-1"5 mth$dtan-1"7 mth$dtanh

mth$gacos_r7 mth$gasin -1"7 mth$gatan_r7

mth$gatan2 mth$gcos-1"7 mth$gcosh

mth$gexp-1"6 mth$gsqrt_r5 mth$glog-1"8

mth$glog 10-1"8 mth$gsin-1"7 mth$gsinh

mth$gsqrt_r5 mth$gtan_r7 mth$gtanh

VAX C also calls run-time library modules that perform data conversion.
The following list presents these modules:

ots$cvt_t_g
ots$cvt_t_d
ots$cvt_tLl
ots$cvt _to-I
ots$cvt_tz-I
ots$$cvt_d_t--1"8
ots$$cvt _g_t--1"8
ots$powdd
ots$powgg

The following formatting routines are called by VAX C:

for$cvt_cLtg
for$cvt_cLte
for$cvt_cLtf
for$cvt_g_tg
for$cvt_g_te
for$cvt_g_tf

8-20 VAX C Run-Time Modules and Entry Points

Appendix C

VAX C Definition Modules

This appendix lists the library definition modules contained in the text
library named SYS$LIBRARY:VAXCDEF.TLB.

The contents of these modules can be examined in the appropriate def­
inition file. All definition files have the file extension .H and they are
contained in the directory SYS$LIBRARY. You can print or type individual
files, or you can issue the following command to print all the files with
their file names appearing at the top of each page:

$ PRINT SYS$LIBRARY:*.H/HEADER

Table C-l describes each of the definition modules:

Table C-1: VAX C Definition Modules
Module

accdef

atrdef

chfdef

climsgdef

ctype

curses

dcdef

descrip

devdef

Description

Accounting file record definitions

File attribute definitions

Structure definitions for condition handlers

Command language interpreter error code definitions

Character type and macro definitions for character classifica­
tion functions

Curses Screen Management related definitions

Device class and type code definitions

Descriptor structure and constant definitions

Device characteristics definitions

VAX C Definition Modules C-1

Table C-1 (Cont.): VAX C Definition Modules
Module

dvidef

errno

errnodef

fab

fehdef

fibdef

file

float l

iodef

jpidef

lekdef

lkidel

libdel

limits l

lnmdel

math

msgdef

nam

nfbdef

opedef

perror

pqldef

predel

prdef

prvdef

psldef

Description

$GETDVI system service request code definitions

Error number definitions

VAX C error message constants

File access block definitions

File characteristics definitions

File information block definitions

Symbol definitions for open function

Macro definitions which provide implementation-specific
floating-point restrictions

I/O function code definitions

$GETJPI system service request code definitions

Lock manager definitions

Lock information data identifier information.

Definitions of LIB$ return codes

Macro definitions which provide implementation-specific
constraints

Logical name flag definitions

Math function definitions

System mailbox message type definitions

Name block definitions

DECNET file access definitions

OPCOM request code definitions

PERROR function related definitions

Process quota code definitions

Create process (SYS$CREPRC) system service status flags

Processor register definitions

Privilege mask bit definitions

Processor status longword definitions

1 New definition modules.

C-2 VAX C Definition Modules

Table C-1 (Cont.): VAX C Definition Modules
Module

rab

rms

rmsdef

secdef

setjmp

sfdef

signal

smgdef

ssdef

stat

stdio

stsdef

syidefl

time

timeb

ttdef

tt2def

types

varargs

xab

xwdel

Description

Record access block definitions

All RMS structures and return status value definitions

RMS return status value definitions

Image section flag bit and match constant definitions

State buffer definition for the setjmp and longjmp functions

Stack call frame definitions

Signal value definitions

Curses Screen Management interface definitions

System service return status value definitions

STAT and FSTAT function related definitions

Standard I/O definitions

System service status code format definitions

Definitions for Get System-wide Information (SYS$GETSYI)
system service

Definitions for the function localtime

Definitions for the function ftime

Terminal definitions

Terminal definitions

Type definitions

Variable argument list access definitions

Extended attribute block definitions

System definitions for DECnet DDCMP

1 New definition modules.

VAX C Definition Modules C-3

Table C-2 lists each of the modified definition modules and gives a
description of the modification:

Table C-2:
Modules

atrdef

dcdef

dvidef

fab

fchdef

fibdef

iodef

jpidef

lckdef

msgdef

nam

opcdef

prvdef

rmsdef

smgdef

ttdef

C-4 VAX C Definition Modules

Modified Definition Modules
Description of Modification

Constant identifier is in uppercase; structure tag is changed
from ATTRIB to atrdef.

Update incomplete symbol definitions.

Update incomplete symbol definitions; constant identifier is in
uppercase; structure tag is in lowercase.

Update incomplete symbol definitions.

Constant identifiers are in uppercase.

Constant identifiers are in uppercase; update obso­
lete/incomplete symbol defintions.

Update obsolete/incomplete symbol definitions.

Update incomplete symbol definitions.

Update obsolete symbol definitions.

Update incomplete symbol definitions.

Update obsolete symbol definitions.

Update incomplete symbol definitions.

Update incomplete symbol definitions.

Update obsolete/incomplete symbol defintions.

Update incomplete symbol definitions.

Update incomplete symbol definitions.

Appendix D

Syntax Summary

This appendix describes the syntax of the VAX C Run-Time Library
functions and macros.

abort Function

void abort(void)

Return Values:

None.

abs Function

#include math

int abs (int x);
double fabs(double x);

Return Values:

Absolute value of x.

access Function

#include stdio

int access(char fiLe_specification. int mode);

Return Values:

o if the access (privilege) is allowed; -1 if not.

Syntax Summary 0-1

acos Function

#include math

double acos(double x);

Return Values:

Arc cosine of x in the range 0 to pi.

addch Macro and waddch Function

#include curses

addch(char ch);
waddch(WINDOW *Win, char ch);

Return Values:

OK on success; ERR if illegal scrolling occurs.

addstr Macro and waddstr Function

#include curses

addstr(char *str);
waddstr(WINDOW *win. char *str);

Return Values:

OK on success; ERR if illegal scrolling occurs.

alarm Function

int alarm(unsigned seconds);

Return Values:

The number of seconds remaining from a previous alarm request.

asctime Function

#include time

char *asctime (const time_t *timeptr);

Return Values:

Converts the contents of tm into a 26-character string.

0-2 Syntax Summary

asin Function

#include math

double asin(double x);

Return Values:

Arc sine of x in the range -pi/2 to pi/2. When Ixl > 1, this function returns
o and sets the variable, errno, to EDOM.

assert Macro

#include assert

void assert (int expression);

Return Values:

If expression is false, the assert macro displays information about the call that
failed. If expression is true, the assert macro has no value.

atan Function

#include math

double atan(double x);

Return Values:

Arc tangent of x in the range -pi/2 to pi/2.

atan2 Function

#include math

double atan2(double x, double y);

Return Values:

Arc tangent of xjy in the range -pi to pi.

atexit Function

#include stdlib

int atexit (void (*!unc) (void»;

Return Values:

A value that is not equal to zero if the registration succeeds.

Syntax Summary 0-3

atof, atoi, and atol Functions

#include math

double atof(char *nptr);
int atoi(char *nptr);
long atol(char *nptr);

Return Values:

Numeric value of the string as a double (atof), as an int (atoi), and as a
long int (atol).

box Function

#include curses

box (WINDOW *win. char vert. char her);

Return Values:

OK on success; ERR on failure.

brk and sbrk Functions

char *brk(unsigned addr);
char *sbrk(unsigned incr);

Return Values:

Lowest virtual address not used by the program (brk) and the old break
address if the new break address is successfully set (sbrk). If the program
requests too much memory, both return -1.

bsearch Function

0-4 Syntax Summary

#include stdlib
void *bsearch (const void *key.

const void *base.
size_ t nmemb.
size_t size.
int (*compar (const void *. const void *»;

Return Values:

A pointer to the matching member of the array or a NUL pointer if no match
is found.

cabs and hypot Functions

#include math

double cabs(cabs_t z);
double hypot(double x, double y);

Return Values:

Square root of the sum of their two squared arguments.

calloe and malloc Functions

char *calloc(unsigned number, unsigned size);
char *malloc(unsigned size);

Return Values:

Pointer to the first byte of the allocated space; 0 if the memory cannot be
allocated.

ceil Function

#include math

double ceil(double x);

Return Values:

Smallest integer that is greater than or equal to x.

cfree and free Functions

int cfree(void *pointer);
int free(void *pointer);

Return Values:

o if the area previously allocated by calloc, malloc, or realloc is successfully
freed; -1 if not.

chdir Function

int chdir(char *name);

Return Values:

o if the directory is successfully changed; -1 if not.

Syntax Summary 0-5

chmod Function

int chmod(char *name, unsigned mode);

Return Values:

o if the change is successful; -1 if not.

chown Function

int chown(char *name, unsigned owner, unsigned group);

Return Values:

o if the owner UIC of the file is changed; -1 if not.

clear Macro and wclear Function

#include curses

clearO
wclear(WINDOW *win);

Return Values:

OK on success; ERR on failure.

clearerr Macro

#include stdio

clearerr(FILE *fiLe_ptr);

Return Values:

None.

clearok Macro

#include curses

clearok(WINDOW *Win, boo 1 booLj);

Return Values:

OK on success; ERR on failure.

0-6 Syntax Summary

clock Function

#include time

clock_t clock (void);

Return Values:

The sum of the user and system times of the calling process and any
terminated child processes for which the calling process has executed wait or
system.

close Function

int close(int fiLe_dese);

Return Values:

o if the file is successfully closed; -1 if the file descriptor is undefined or if
an error occurs while the file is being closed.

clrattr Macro and wclrattr Function

#include curses

clrattr(int attr);
wclrattr(WINDOW *win. int attr);

Return Values:

OK on success; ERR on failure.

clrtobot Macro and wclrtobot Function

#include curses

clrtobotO
wclrtobot(WINDOW *win);

Return Values:

OK on success; ERR on failure.

clrtoeol Macro and wclrtoeol Function

#include curses

clrtoeol()
wclrtoeol(WINDOW *Win);

Return Values:

OK on success; ERR on failure.

Syntax Summary 0-7

cos Function

#include math

double cos(double x);

Return Values:

Cosine of x.

cosh Function

#include math

double cosh(double x);

Return Values:

Hyperbolic cosine of x.

creat Function

int creat(char *fiLe_spec. unsigned mode Lchar *fiLe_atts. . ..])

Return Values:

Integer file descriptor, if the file is successfully created; -1, if an error occurs.

[no]crmode Macros

0-8 Syntax Summary

#include curses

crmodeO
nocrmode()

Return Values:

None.

Notes:

VAX C provides these macros only for portability; they have no functionality.

ctermid Function

#include stdio

char *ctermid([char *string]);

Return Values:

Name of the controlling terminal is returned to string. If no argument is
given, the function returns the address of an internal storage area containing
the string.

ctime Function

#include time

char *ctime(int bintim);

Return Values:

Pointer to the time in the format: wkd mmm dd hh:mm:ss 19yy\n\O.

cuserid Function

#include stdio

char *cuserid(char *string);

Return Values:

The name of the user who initiated the current process is returned to string.
If no argument is given, the function returns the address of the name.

delch Macro and wdelch Function

#include curses

delchO
wdelch(WINDOW *win);

Return Values:

OK on success; ERR on failure.

delete Function

#include stdio

int delete(char *fiLe_spec);

Return Values:

o if the file is deleted; -1 if not.

Syntax Summary 0-9

deleteln Macro and wdeleteln Function

#include curses

deleteln()
wdeleteln(WINDOW *win);

Return Values:

OK on success; ERR on failure.

delwin Function

#include curses

delwin(WINDOW *win);

Return Values:

OK on success; ERR on failure.

div and Idiv Functions

ldiv_t ldiv (long int 'numer, long int denom);
div_t div (int numer, int denom);

Return Values:

The quotient and remainder after the division of their arguments.

difftime Function

#include time

double difftime (time_t time1, time_t time2);

Return Valu'es:

The difference in seconds expressed as a double.

dup and dup2 Functions

0-10 Syntax Summary

int dup(int fiLe_desc_1);
int dup2(int fiLe_desc_1, int fiLe_desc_2);

Return Values:

A new file descriptor (dup) and a new descriptor pointing to the same file as
file_desc_l (dup2); -1, if file_desc_l does not point to an open file or if the
new file descriptor cannot be allocated.

[no]echo Macros

#include curses

echo 0
noechoO

Return Values:

None.

ecvt, fcvt, and gcvt Functions

char *ecvt(double vaLue, int ndigit, int decpt, int sign);
char *fcvt(double vaLue, int ndigit, int decpt, int sign);
char *gcvt(double vaLue, int ndigit, char *buffer);

Return Values:

ecvt and fcvt

The position of the decimal point relative to the first character in the string
is returned by the decpt argument. A nonzero integer is returned to the sign
argument if the input value is negative; otherwise, 0 is returned.

gcvt

The converted string is placed in the but argument and the address of but is
returned.

endwin Function

#include curses

int endwin(void);

Return Values:

OK on success; ERR on failure.

erase Macro and werase Function

#include curses

erase 0
werase(WINDOW *win);

Return Values:

OK on success; ERR on failure.

Syntax Summary 0-11

execl, execle, execlp, execv, execve, and execvp Functions

int execl(char */il.e-spec.

int execle(char */il.e-spec.

int execlp(char */il.e-name.

int execv(char */il.e-spec.

int execve(char */il.e-spec.

int execvp(char */il.e_name.

Return Values:

-1 on failure.

char *argn, ...);

char *argn, ...);

char *argn, ...);

char argv [J) ;

char *argv[J • char *envp[J) ;

char *argv[J) ;

exit and _exit Functions

exit[int status];
_exit[int status];

Return Values:

The process status is returned to the parent process, if any, or to the
command language interpreter.

exp Function

#include math

double exp(double x);

Return Values:

Base e raised to the power of the argument. If an overflow occurs, the
function returns the largest possible floating-point value and sets the variable
errno to ERANGE.

fclose Function

#include stdio

int fclose(FILE */il.e_ptr);

Return Values:

o if the file is successfully closed; -1 if not.

D-12 Syntax Summary

fdopen Function

#include stdio
#include file

FILE *fdopen(int fiLe_desc, char *a_mode);

feof Macro

#include stdio

int feof(FILE *fiLe_ptr);

Return Values:

Nonzero integer on end-of-file; 0 otherwise.

ferror Macro

#include stdio

int ferror(FILE fiLe_ptr);

Return Values:

A nonzero integer if an error occurs. Subsequent calls to ferror continue to
return this value until the file is closed or until dearerr is called.

fflush Function

#include stdio

int fflush(FILE *fiLe_ptr);

Return Values:

o if the file is successfully flushed; EOF if not.

fgetc and getw Functions, and getc Macro

#include stdio

int fgetc(FILE fiLe_ptr);
int getw(FILE fiLe_ptr);
int getc(FILE fiLe_ptr);

Return Values:

The next character in the file (fgetc and getc) and the next four characters
from the file (getw); EOF on error.

Syntax Summary 0-13

fgetname Function

#include stdio

char *fgetname(FILE *fi~e_ptr, char *buffer [,int sty~e]);

Return Values:

Address of the buffer containing the file specification on success; 0 on error.

fgets Function

#include stdio

char *fgets(char *str, int maxchar, FILE fi~e_ptr);

Return Values:

NULL on end-of-file; otherwise, the address of the first character in string.

fileno Macro

#include stdio

int fileno(FILE fi~e_ptr);

Return Values:

Integer file descriptor that identifies the file.

floor Function

#include math

double floor(double x);

Return Values:

Largest integer that is less than or equal to x.

fmod Function

#include math

double fmod (double x, double y);

Return Values:

x if y is zero. Otherwise, it returns the value i, which has the same sign as x.

0-14 Syntax Summary

fopen Function

#include stdio

FILE *fopen(const char *fiLe_spec. const char *a_mode •...);

Return Values:

A file pointer for the named file, if the file was successfully opened; NULL
on error.

fprintf and sprintf Functions

#include stdio

int fprintf(FILE *fiLe_ptr. char *format_spec [.output_Brc.]);
int sprintf (char *str. char *format_spec [. output_Brc. . ..]) ;

Return Values:

The number of characters written to the file (£print£) or to the string (sprint£);
-Ion error.

fputc and putw Functions, and putc Macro

#include stdio

int fputc(char character. FILE *fiLe_ptr);
int putw(int integer. FILE *fiLe_ptr);
int putc(char character. FILE *fiLe_ptr);

Return Values:

The argument character in the file (£pute and put e), and the four characters
in integer (getw); EOF on error.

fputs Function

#include stdio

int fputs(char *str. FILE *fiLe_ptr);

Return Values:

Last character written; EOF on error.

Syntax Summary 0-15

fread Function

#include stdio

int fread(void *pointer, int size_of_item, int number_items, FILE *fiLe_ptr);

Return Values:

The number of items read; 0 on end-of-file or error.

freopen Function

#include stdio

FILE *freopen(char *fiLe_spec, char *a_mode,
FILE *fiLe_ptr [,fiLe_atts, . ..]);

Return Values:

File pointer that points to the newly opened file; NULL on error.

frexp Function

#include math

double frexp(double vaLue, int *eptr);

Return Values:

The mantissa of value with a magnitude less than 1. The exponent is
returned to *eptr.

fscanf and sscanf Functions

#include stdio

fscanf(FILE *fiLe_ptr, char *format_spec [,input_ptr, .])
sscanf (char *str, char *format_spec [, input_ptr . ..])

Return Values:

The number of successfully matched and assigned input items; EOF on error
or end-of-file.

fseek Function

#include stdio

int fseek(FILE *fiLe_ptr, int offset, int direction);

Return Values:

o for successful seeks; EOF on error.

0-16 Syntax Summary

fstat and stat Functions

#include stat

fstat(int fiLe_desc, struct stat *buffer);
stat(char *fiLe_spec, struct stat *buffer);

Return Values:

o on success; -Ion error.

ftell Function

#include stdio

int ftell(FILE *fiLe_ptr);

Return Values:

Byte offset from the beginning of the file to the current location within the
file; -Ion error.

ftime Function

#include timeb

ftime (struct timeb *time_pointer);

Return Values:

The number of seconds that have elapsed on the system since 00:00:00
January I, 1970 is returned to the structure, timeb.

fwrite Function

#include stdio

int fwrite(void *ptr, int size_of_item, int number_items, FILE *fiLe_ptr);

Return Values:

The number of items written; 0 on error.

getch Macro and wgetch Function

#include curses

getchO
wgetch(WINDOW *win);

Return Values:

The character from the window; ERR if the screen scrolls illegally.

Syntax Summary 0-17

getchar Function

int getchar(void)

Return Values:

The next character from the standard input device (stdin, the terminal); EOF
on error.

getegid, geteuid, getgid, and getuid Functions

unsigned getegid(void)
unsigned geteuid(void)
unsigned getgid(void)
unsigned getuid(void)

Return Values:

The group number from the UIC (getgid and getegid), or the member
number from the UIC (getuid and geteuid).

getcwd Function

char *getcwd(char *buffer, unsigned int size, .. .);

Return Values:

A pointer to the file specification for the current working directory.

getenv Function

0-18 Syntax Summary

char *getenv(char *name);

Return Values:

The function returns one of the following values depending on the value of
the argument, name, specified in the function call:

Argument

HOME

TERM

PATH

USER

Return Value

The user's login directory

The terminal type

The default device and directory

The name of the user initiating the process

getname Function

char *getname(int fiLe_desc. char *buffer [.int styLe])

Return Values:

The address of the buffer containing the file specification; -1 on error.

getpid Function

int getpid(void)

Return Values:

The current process ID.

getppid Function

int getppid (void);

Return Values:

The parent process ID of the calling process.

gets Function

#include stdio

char *gets(char *str);

Return Values:

A pointer to the character string containing the line; NULL if end-of-file is
reached before the newline is encountered or on error.

getstr Macro and wgetstr Function

#include curses

getstr(char *str);
wgetstr(WINDOW *win. char *str);

Return Values:

OK on success; ERR if the screen scrolls illegally.

Syntax Summary 0-19

getyx Macro

#include curses

getyx(WINDOW *Win, int y, int x);

Return Values:

OK on success; ERR on failure.

gsignal Function

#include signal

int gsignal(int sig [,code]);

Return Values:

If gsignal specifies a sig argument that is outside the range defined in the
signal module, then gsignal returns zero, and the variable, errno, is set to
EINVAL. .

If ssignal establishes SIG_DFL (default action) for the signal, then gsig­
nal does not return. The image is exited with the VMS error code that
corresponds to the signal.

If ssignal establishes SIG_IGN (ignore signal) as the action for the signal,
then gsignal returns its sig.

Otherwise, ssignal must have established an action function for the signal.
That function is called, and that function's return value is returned by
gsignal.

gmtime Function

#include time

struct tm *gmtime (const time_t *timer);

Return Values:

A NULL pointer because GMT is not available under VMS.

inch Macro and winch Function

D-20 Syntax Summary

#include curses

inchO
winch(WINDOW *win);

Return Values:

OK on success; ERR on failure.

initscr Function

#include curses

void initscr(void)

Return Values:

OK on success; ERR on failure.

insch Macro and winsch Function

#include curses

insch(ch)
winsch(WINDDW *Win. char ch);

Return Values:

OK on success; ERR if the screen scrolls illegally.

insertln Macro and winsertln Function

#include curses

insertlnO
winsertln(WINDDW *Win);

Return Values:

OK on success; ERR if the screen scrolls illegally.

insstr Macro and winsstr Function

#include curses

insstr(char ~str);
winsstr(WINDDW *Win. char *str);

Return Values:

OK on success; ERR if the screen scrolls illegally.

Notes:

This function and macro are VAX C specific.

Syntax Summary 0-21

isalnum Macro

#include ctype

int isalnum(char character);

Return Values:

A nonzero integer, if the character is alphanumeric; 0 if it is not.

isalpha Macro

#include ctype

int isalpha(char character);

Return Values:

A nonzero integer, if the character is alphabetic; 0 if it is not.

isapipe Function

int isapipe(int fiLe_desc);

Return Values:

1 if the specified file descriptor is associated with a mailbox; 0 if it is not; -1
on error.

isascii Macro

#include ctype

int isascii(char character);

Return Values:

A nonzero integer, if the character is ASCII; 0 if it is not.

isatty Function

int isatty(int fiLe_desc);

Return Values:

1 if the file is a terminal; 0 if the file is not.

0-22 Syntax Summary

iscntrl Macro

#include ctype

int iscntrl(char character);

Return Values:

A nonzero integer, if the character is a control character; 0 if not.

isdigit Macro

#includectype

int isdigit(char character);

Return Values:

A nonzero integer, if the character is a digit; 0 if it is not.

isgraph Macro

#include ctype

int isgraph(char character);

Return Values:

A nonzero integer, if the character is an ASCII graphic character; 0 if it is
not.

islower Macro

#include ctype

int islower(char character);

Return Values:

A nonzero integer, if the character is lowercase; 0 if it is not.

isprint Macro

#include ctype

int isprint(char character);

Return Values:

A nonzero integer, if the character is an ASCII printing character; 0 if it is
not.

Syntax Summary 0-23

ispunct Macro

#include ctype

int ispunct(char character);

Return Values:

A nonzero integer, if the character is a punctuation character; 0 if it is not.

isspace Macro

#include ctype

int isspace(char character);

Return Values:

A nonzero integer, if the character is one of the whitespace characters; 0 if it
is not.

isupper Macro

#include ctype

int isupper(char character);

Return Values:

A nonzero integer, if the character is uppercase; 0 if it is not.

isxdigit Macro

#include ctype

int isxdigit(char character);

Return Values:

A nonzero integer, if the character is a hexadecimal digit; 0 if it is not.

kill Function

int kill(int pid. int sig);

Return Values:

o if the signal is successfully queued; -1 if an error occurs.

0-24 Syntax Summary

Idexp Function

#include math

double ldexp(double x. double e);

Return Values:

The first argument times 2 to the power of its second argument (x(2e)). If
underflow occurs, this function returns O. If overflow occurs, it returns the
largest possible value of the appropriate sign.

leaveok Macro

#include curses

leaveok(WINDOW *win. bool bootj);

Return Values:

OK on success; ERR on failure.

localtime Function

#include time

struct tm *localtime(int bintim);

Return Values:

A pointer to the structure with the tag tm.

log and log10 Function

#include math

double log (double x);
double log10(double x);

Return Values:

The natural base-e (log) and the base-IO (log10) logarithm of its argument. If
the argument, x, is 0 or negative, the function returns 0 and sets the variable
errno to EDOM.

Syntax Summary 0-25

longjmp and setjmp Functions

#include setjmp

setjmp(jmp_buf env);
longjmp(jmp_buf env, int vaL);

Return Values:

The function longjmp returns val to the setjmp function with which it is
associated.

When the function setjmp is first called, it returns O. After longjmp is called
with the same env argument as the first setjmp call, setjmp returns the value
of the longjmp call's val argument.

longname Function

longname(char *termbuf, char *name);

Return Values:

The full terminal name is placed in the argument name.

Iseek Function

int lseek(int fiLe_desc, int offset, int direction);

Return Values:

The new position in the file. If the file descriptor is undefined or if you try
to seek before the beginning of the file, the function returns -1.

memchr Function

0-26 Syntax Summary

#include string

int memchr (const void *sl, int C, size_t size);

Return Values:

A pointer to the first occurrence of the character. If the character does not
occur, the memchr function returns a NUL pointer.

memcmp Function

#include string

int memcmp (const void *s1, const void *s2, size_t size);

Return Values:

An integer less than, equal to, or greater than 0 depending on whether the
lexical value of the first array is less than, equal to, or greater than that of
the second array.

memcpy Function

#include string

void *memcpy (void *s1, const void *s2, size_t size);

Return Values:

Value of 51.

memset Function

#include string

void *memset (void *s, char character, size_t size);

Return Values:

Value of 5.

mkdir Function

int mkdir(char *dir_spec, unsigned mode [,unsigned uic,
[unsigned max_versions[,unsigned r_v_num]]]);

Return Values:

o on success; -1 on error.

mktemp Function

#include stdio

char *mktemp(char *tempLate);

Return Values:

A pointer to a temporary file name created from a template of the form
"[nam]XXXXXX". If a unique file name cannot be created, mktemp returns a
pointer to an empty string.

Syntax Summary 0-27

modf Function

#include math

double modf(double vaLue, double *iptr);

Return Values:

The positive fractional part of value and the address of the integral part is
assigned to iptr.

move Macro and wmove Function

#include curses

move(int y. int x);
wmove(WINDOW *win, int y, int x);

Return Values:

OK on success; ERR if the screen scrolls illegally.

mv[w]addch Macros

#include curses

mvaddch(int y, int x, char ch);
mvwaddch(WINDOW *win, int y, int x, char ch);

Return Values:

OK on success; ERR if the screen scrolls illegally.

mv[w]addstr Macros

#include curses

mvaddstr(int y, int x, char *str);
mvwaddstr(WINDOW *win, int y, int x, char *str);

Return Values:

OK on success; ERR if the screen scrolls illegally.

mvcur Function

#include curses

mvcur(int Lasty, int Lastx, int newy, int newx);

Return Values:

OK on success; ERR on failure.

0-28 Syntax Summary

mv[w]delch Macros

#include curses

mvdelch(int y, int x);
mvwdelch(WINDOW *win, int y, int x);

Return Values:

OK on success; ERR if the screen scrolls illegally.

mv[w]getch Macros

#include curses

mvgetch(int y, int x);
mvwgetch(WINDOW *Win, int y, int x);

Return Values:

OK on success; ERR on failure.

mv[w]getstr Macros

#include curses

mvgetstr(int y, int x, char *str);
mvwgetstr(WINDOW *win, int y, int x, char *str);

Return Values:

OK on success; ERR on failure.

mv[w]inch Macros

#include curses

mvinch(int y, int x);
mvwinch(WINDOW *Win, int y, int x);

Return Values:

OK on success; ERR on failure.

mv[w]insch Macros

#include curses

mvinsch(int y, int x, char ch);
mvwinsch(WINDOW *Win, int y, int x, char ch);

Return Values:

OK on success; ERR if the screen scrolls illegally.

Syntax Summary 0-29

mv[w]insstr Macros

#include curses

mvinsstr(int y. int x. char *str);
mvwinsstr(WINDOW *win. int y. int x. char *str);

Return Values:

OK on success; ERR if the screen scrolls illegally.

mvwin Function

#include curses

mvwin(WINDOW *win. int y. int x);

Return Values:

OK on success; ERR, if moving the window puts all or part of the window
off of the terminal screen. On error, this function does not attempt to move
the window and the screen remains unaltered.

newwin Function

#include curses

newwin(int numLines. int numcoLs. int begin_yo int begin_x);

Return Values:

A pointer to a newly created window; ERR on failure.

nice Function

int nice(int increment);

Return Values:

a if the process priority is successfully lowered; -1 if it is not.

[no]nl Macros

0-30 Syntax Summary

#include curses

nlO
nonlO

Return Values:

None.

open Function

#include file

int open(char *fiLe_spec, int fLags, int mode [,fiLe_attribute, . ..]);

Return Values:

An integer file descriptor if the file is successfully opened; -1 if it is not.

overlay Function

#include curses

overlay(WINDOW *winl, WINDOW *win2);

Return Values:

OK on success; ERR on failure.

overwrite Function

#include curses

overwrite(WINDOW *Winl, WINDOW *win2);

Return Values:

OK on success; ERR on failure.

pause Function

void pause(void)

Return Values:

None.

perror Function

#include perror

int perror(char *string);

Return Values:

A message to stdout (the terminal) of the form: string: message\n

Syntax Summary 0-31

pipe Function

#include file

int pipe(int arraY_fdscpt [, int fLags[, int bufsize]]);

Return Values:

o if the pipe is successfully created; -1 if not.

pow Function

#include math

double pow (double x, double y);

Return Values:

The argument x to the power of y.

If the result overflows, the function returns the largest possible floating-point
value and sets the variable errno to ERANGE.

If Y is negative or nonintegral, or if both arguments are 0, the function
returns O.

printf Function

#include stdio

int printf (char *format_spec L output_src . ..]);

Return Values:

The number of characters written; -Ion error.

[w]printw Functions

#include curses

printw(format_spec L output_src, ...])
wprintw(WINDOW *Win, format_spec L output_src, ...]);

Return Values:

OK on success; ERR if the screen scrolls illegally.

putchar Function

int putchar(char character);

Return Values:

The character written; EOF on failure.

0-32 Syntax Summary

puts Function

#include stdio

int puts(char *str);

Return Values:

o if the string was written to stdout (the terminal); EOF on failure.

qsort Function

#include stdlib

void qsort (void *base.
size_t mnemb,
size_t size,
int (*compar) (const void *. const void *»;

Return Values:

An integer less than, equal to, or greater than zero.

rand and srand Functions

int rand (void)
int srand(int seed);

Return Values:

Pseudorandom numbers in the range 0 to 231 - 1.

[no]raw Macros

#include curses

raw()
norawO

Return Values:

None .

. read Function

int read(int fiLe_desc. char *buffer. int nbytes);

Return Values:

The number of bytes read; 0 if end-of-file is reached; -Ion error.

Syntax Summary 0-33

realloc Function

char *realloc(char *pointer, unsigned size);

Return Values:

The address of the area; 0 on error.

refresh Macro and wrefresh Function

#include curses

refreshO
wrefresh(WINDOW *Win);

Return Values:

OK on success; ERR on failure.

remove Function

#include stdio

int remove (const char *fiLe_spec);

Return Values:

A nonzero value if the operation fails.

rename Function

#include stdio

int rename (const char *oLd_fiLe_spec, const char *new_fiLe_spec);

Return Values:

A nonzero value if the operation fails.

rewind Function

#include stdio

int rewind(FILE *fiLe_ptr);

Return Values:

o if the file is successfully rewound; -1 if an error occurs.

0-34 Syntax Summary

scanf Function

#include stdio

int scanf (char *format_spec [. input_ptr . ..]) ;

Return Values:

The number of successfully scanned items; EOF on end-of-file.

Notes:

For information concerning input_pty, see fscanf.

scanw Macro and wscanw Function

#include curses

scanw{fmt_S'Pec [. input_ptr. ...])
wscanww (WINDOW *win. fmt_spec [. input_ptr. ...]) ;

Return Values:

OK on success; ERR if the screen scrolls illegally.

scroll Function

#include curses

scroll{WINDOW *Win);

Return Values:

OK on success; ERR on failure.

scrollok Macro

#include curses

scrollok{WINDOW *win. bool booLj);

Return Values:

OK on success; ERR on failure.

Syntax Summary 0-35

setattr Macro and wsetattr Function

#include curses

setattr(int attr)
wsetattr(WINDDW *Win, int attr);

Return Values:

OK on success; ERR on failure.

setbuf and setvbuf Functions

#include stdio

void setbuf(FILE *fite_ptr, char *buffer);

int setvbuf(FILE *fite_ptr, char *buffer, int type, size_t size);

Return Values:

None.

setgid and setuid Functions

int setgid(unsigned group_number);
int setuid(unsigned member_number)';

Return Values:

None.

sigblock Function

int sigblock(int mask);

Return Values:

The previous set of masked signals; -1 on error.

signal Function

0-36 Syntax Summary

#include signal

int (*signal(int sig, void (*func) (int, ... ») (int, ...);

Return Values:

The address of the function previously (or initially) established to handle the
signal. If the argument sig is out of range, this function returns -1 and the
variable errno is set to EINVAL.

sigpause Function

int sigpause(int mask);

Return Values:

After restoring the previous set of masked signals, this function returns
EINTR which causes an interrupt; -1 on error.

sigsetmask Function

int·sigsetmask(int mask);

Return Values:

The previous set of masked signals; -1 on error.

sigstack Function

#include signal

int sigstack(struct sigstack *ss, struct sigstack *oss);

Return Values:

o on success; -1 on failure.

sigvec Function

#include signal

int sigvec(int sigint, struct sigvec *sv, struct sigvec *osv);

Return Values:

o if the call to the signal handler is successful; -1 on error.

sin Function

#include math

double sin (double x);

Return Values:

The sine of x.

Syntax Summary 0-37

sinh Function

#include math

double sinh(double x);

Return Values:

The hyperbolic sine of its argument. Both x and its sine must be of type
double. On overflow error, this function returns a double value with the
largest possible magnitude and appropriate sign.

sleep Function

int sleep(unsigned seconds);

Return Values:

The number of seconds that the process slept; -Ion error.

sqrt Function

#include math

double sqrt(double x);

Return Values:

The square root of x; 0 if x is negative.

ssignal Function

#include signal

int (*ssignal(int sig. void (*junc)(int)

Return Values:

The address of the function previously (or initially) established as the action
for the signal; 0 if the previous action was SIG_DFL.

standend Macro and wstandend Function

0-38 Syntax Summary

#include curses

standendO
wstandend(WINDOW *win);

Return Values:

OK on success; ERR on failure.

standout Function

#include curses

standout 0
wstandout(WINDOW *win);

Return Values:

OK on success; ERR on failure.

strcat and strncat Function

char *strcat(char *str_l. char *str_2);
char *strncat(char *str_l. char *str_2. int maxchar);

Return Values:

The address of str_l.

strchr and strrchr Functions

char *strchr(char *str. char character);
char *strrchr(char *str. char character);

Return Values:

The address of the first occurrence (strchr) or the last occurrence (strrchr) of
character in the string; 0 if the character was not found.

strcmp and strncmp Functions

int strcmp(char *str_l. char *str_2);
int strncmp(char *str_l. char *str_2. int maxchar);

Return Values:

A negative, 0, or positive integer indicating whether str_l is composed of
more, equal, or less characters than str _2.

strcpy and strncpy Functions

char *strcpy(char *str_l. char *str_2);
char *strncpy(char *str_l. char *str_2. int maxchar);

Return Values:

The address of str_l.

Syntax Summary 0-39

strcspn Function

int strcspn(char *str. char *charset);

Return Values:

The number of characters preceding the first character in str that is also in
charset. If no match is found, the function returns the length of str. This
function returns 0 if str is NULL.

strerror Function

#include string

char *strerror(int errnum);

Return Values:

A pointer to a buffer that contains the appropriate error message.

strlen Function

int strlen(char *str);

Return Values:

The length of str.

strpbrk Function

char *strpbrk(char *str. char *charset);

Return Values:

The address of the first character in str that is also in charset; NULL if no
match is found.

strspn Function

0-40 Syntax Summary

int strspn(char *str. char *charset);

Return Values:

The number of characters that precede the first character in str that is not
also in charset. If charset is a NULL string, the function returns O. If all the
characters in str are also in charset, the function returns the length of str.

strtod Function

#include stdlib

double strtod (const char *nptr, char *endptr);

Return Values:

A double-precision value.

strtok Function

#include string

char *strtok (char *sl, const char *s2);

Return Values:

A pointer to the initial character in the first token. Subsequent calls return a
pointer to a subsequent token.

strtol Function

#stdlib

long int strtol (const char *nptr, char *endptr, int base);

Return Values:

The converted value. If no conversion is performed, a is the returned value.

strtoul Function

#include stdlib

unsigned long int strtoul(const char *nptr, char *endptr, int base);

Return Values:

The converted value. If no conversion is performed, a is the returned value.

subwin Function

#include curses

WINDOW *subwin(WINDOW *win, int numLines, int numcoLs, int begin_y,
int begin_x);

Return Values:

A pointer to a newly created subwindow; ERR on failure.

Syntax Summary 0-41

system Function

#include processes

int system (const char *string);

Return Values:

If the argument is a NUL pointer, the system function returns a nonzero
value to indicate that the system function is supported.

tan Function

#include math

double tan(double x);

Return Values:

The tangent of x. At its singular points (... , -3pi/2, -pi/2, pi/2, ...),
the return value is the largest possible double value, and the variable errno
is set to ERANGE

tanh Function

#include math

double tanh(double x);

Return Values:

The hyperbolic tangent of x.

time Function

0-42 Syntax Summary

long time(long *time_Location);

Return Values:

The elapsed system time since 00:00:00 January I, 1970. If the argument,
time~ocation, is specified, it points to the location of the returned time.

times Function

void times(struct tbuffer *buffer);

Return Values:

The accumulated times of the current process and of its terminated child
process. The times are placed in the user-defined structure with the tag
tbuffer. The structure should have the following members of type int: proc_
user_time, proc-system_time, child_user_time, and child-system_time. All
system times are returned as O. Accumulated CPU times are returned in
IO-millisecond units.

tmpfile Function

#include stdio

FILE *tmpfile(void)

Return Values:

A file pointer to the temporary file; a NUL pointer on error.

tmpnam Function

#include stdio

char *tmpnam(char *name);

Return Values:

If name is specified, the function returns the file name string to name, or,
if no argument is given, it returns the address of an internal storage area
containing the string.

toascii Function

#include ctype

int toascii(char character);

Return Values:

The character converted to 7-bit ASCII.

Syntax Summary 0-43

tolower Function and _tolower Macro

#include ctype

char tolower(char character);
char _tolower(char character);

Return Values:

The character converted to lowercase. Lowercase input characters are
returned unchanged.

touchwin Function

#include curses

int touchwin(WINDOW *win);

Return Values:

OK on success; ERR on failure.

ttyname Function

#include curses

int *ttyname()

Return Values:

A pointer to the NUL-terminated pathname of the terminal device associated
with the file descriptor 0, stdin (the terminal).

toupper Function and _toupper Macro

#include ctype

char toupper(char character);
char _toupper(char character);

Return Values:

The character converted to uppercase. Uppercase input characters are
returned unchanged.

umask Function

0-44 Syntax Summary

int umask(unsigned mode_compLement);

Return Values:

The chmod argument mode corresponds to the argument mask except that
mask has the effect of denying the specified privileges.

ungetc Function

#include stdio

int ungetc(char character, FILE *fiLe_ptr);

Return Values:

The next character to be read (by getc); EOF on error.

#include varargs
va_arg(va_list List_incrementor, item_type);

Return Values:

The next argument in the argument list.

va_count Macro

#include varargs
va_count(int count);

Return Values:

The number of longwords in the argument list, in the argument count.

#include varargs
va_end(va_list List_incrementor);

Return Values:

None.

#include varargs
va_start(va_list LisCincrementor);
va_start_l(va_list List_incrementor, int offset);

function_name (va_aList)
va_dcl
{

Syntax Summary 0-45

Return Values:

These macros initialize the argument, list-incrementor, to the first argument
in the list.

VAXC$ESTABLISH Function

void VAXC$ESTABLISH (exception_handLer)

int (*exception_handLer)();

Return Values:

Establishes the exception_handler as a legitimate one. Only condition
handlers declared in this way should be used in VAX C programs. In this
way V AXC$EST ABLISH catches all RTL-related exceptions and passes on
all others to the declared handler.

vfork Function

int vfork(void)

Return Values:

o to the child process and the child process ID to the parent process.

vprintf, vfprintf, and vsprintf Functions

#include stdio
#include stdarg

int vprintf (const char *format. va_list arg);
int vfprintf (FILE *fiLe_ptr. const char *format. va_list arg);
int vsprintf (char *s. const char *format. va_list arg);

Return Values:

The number of characters transmitted or a negative value if an output error
occurs.

wait Function

0-46 Syntax Summary

int wait[int *status];

Return Values:

The process ID of the terminated child process; -1 if there are no child
processes.

wrapok Macro

#include curses

wrapok(WINDOW *win. bool booLj);

Return Values:

None.

write Function

int write(int fiLe_desc. char *buffer. char nbytes);

Return Values:

The number of bytes written; -1 on error.

Syntax Summary D-47

A
abort function· 8-3, 0-1
abs function· 7-2, 0-1
access function • 2-22, 0-1
acos function· 7-2, 0-1
addch function • 0-2
addch macro and function • 12-12
addstr function· 0-2
addstr macro and function· 12-13
alarm function • 8-8, 0-2
Arguments

variable length lists. 6-13
ASCII

table of values • 5-2
asctime function· 11-13, 0-2
asin function· 7-3, 0-2
assert function • 8-3
assert macro· 0-3
atan function • 7 -3, 0-3
atan2 function • 7 -3, 0-3
atexit function· 8-4, 0-3
atof function· 6-6, 0-3
atoi function· 6-8, 0-3
atol function· 6-8, 0-3

B
box function· 12-14, 0-4
brk function· 9-2, 0-4
bsearch function • 11-1 , 0-4

c
C$LlBRARY logical name· 1-6
cabs function· 7-4, 0-4
calloc function· 9-3, 0-5
Carriage control

FORTRAN • 1-16
translation

by VAX C· 1-16 to 1-19
ceil function· 7-4, 0-5
cfree function • 9-3, 0-5

INDEX

Character classification functions • 5-1 to 5-9
isalnum • 5-5
isalpha • 5-5
isascii • 5-6
iscntrl • 5-6
isdigit • 5-6
isgraph • 5-7
islower • 5-7
isprint • 5-7
ispunct • 5-8
isspace • 5-8
isupper • 5-8
isxdigit • 5-9
program examples. 5-12

Character conversion functions· 5-9 to 5-14
_tolower • 5-11
_toupper • 5-11
ecvt· 5-9
fcvt· 5-9
gcvt· 5-9
strtoul· 6-9
toascii • 5-10
tolower • 5-11

Index-1

Character conversion functions (cont'd.)

toupper • 5-11
program examples· 5-12

chdir function· 11-8, 0-5
Child process· 10-1 to 10-23

creating with vfork· 10-3
executing image

with exec functions· 10-5
implementation of· 10-1
introduction to· 10-1
program examples· 10-14
sharing data with pipe· 10-10
synchronization with wait· 10-9

chmod function • 11-8, 0-5
chown function· 11-9, 0-6
C language

comparison of run-time libraries· A-1 to A-18
I/O background • 1-12

clear macro· 0-6
clear macro and function· 12-14
clearerr macro· 2-23, 0-6
clearok macro· 12-14, 0-6
clock function· 11-14, 0-6
close function • 4-2, 0-7
clrattr macro· 0-7
clrattr macro and function • 12-15
clrtobot macro· 0-7
clrtobot macro and function • 12-16
clrtoeol macro· 0-7
clrtoeol macro and function· 12-16
Command language interpreters· 1-9

OEC/Shell. 1-9
Conversion specifications

for I/O functions· 2-2 to 2-7
input

table of characters· 2-3
output

table of characters· 2-6
cos function· 7-4, 0-7
cosh function • 7 -5, 0-8
create 4-3
creat function • 0-8
[no]crmode macro· 0-8
crmode macros· 12-16
ctermid function· 11-4, 0-8
ctime function· 11-14, 0-9
ctype

definition module· 1-6

2-lndex

Curses. 12-1 to 12-39
cursor movement· 12-11
functions. 12-12 to 12-35

[no]crmode· 12-16
[no]echo. 12-18
[no]nl. 12-29
[no]raw· 12-30
[w]addch·12-12
[w]addstr· 12-13
[w]clear. 12-14
[w]clrattr. 12-15
[w]clrtobot. 12-16
[w]clrtoeol. 12-16
[w]delch. 12-17
[w]deleteln·12-17
[w]erase· 12-19
[w]getch. 12-19
[w]getstr. 12-20
[w]inch· 12-21
[w]insch· 12-21
[w]insertln· 12-22
[w]insstr. 12-22
[w]move. 12-24
[w]printw. 12-30
[w]refresh· 12-31
[w]scanw· 12-31
[w]setattr· 12-32
[w]standend· 12-34
[w]standout· 12-34
box. 12-14
clearok· 12-14
delwin·12-17
endwin·12-18
getyx. 12-20
initscr. 12-21
leaveok. 12-23
longname. 12-23
mv[w]addch·12-24
mv[w]addstr. 12-25
mv[w]delch· 12-25
mv[w]getch· 12-26
mv[w]getstr· 12-26
mv[w]inch • 12-26
mv[w]insch. 12-27
mv[w]insstr·12-27
mvcur· 12-25
mvwin • 12-28
newwin· 12-28

Curses
functions (cont'd.)

overlay· 12-29
overwrite· 12-29
scroll· 12-32
scrollok· 12-32
subwin· 12-33
touchwin. 12-35
wrapok· 12-35
syntax of· 12-12

getting started • 12-6 to 12-9
introduction to· 12-1
program examples· 12-35
terminology· 12-2 to 12-6

curser· 12-3
stdscr· 12-2
windows· 12-3

using predefined variables· 12-9
cuserid function· 11-4, 0-9

o
DEC/Shell· 1-9

file specifications of· 1-9
compared to VMS· 1-9

Run-Time Library· 1-9
use with VAX C RTL· 1-9 to 1-11

Definition modules
descriptions of· C-1 to C-4

Definitions
.H files· 1-6

See also, Standard I/O functions

See also, Substitution
modules· 1-6

See also, #include
See also, Libraries

delch macro· 0-9
delch macro and function· 12-17
#define

preprocessor directive· 1-5
delete function· 2-26, 0-9
deleteln macro· 0-9
deleteln macro and function • 12-17
delwin function • 12-17, 0-10
difftime function· 11-15, 0-10
div function • 0-10
dup function • 4-7, 0-10

dup2 function • 4-7
dup2 function • 0-10

E
[no]echo function. 0-10
echo function • 0-10
echo macros· 12-18
ecvt function • 5-9, 0-11
endwin function· 12-18, 0-11
Entry points

to VAX C Run-Time Library· 8-1 to 8-20
erase macro • 0-11
erase macro and function • 12-19
ermo

definition module· 8-1
errno

external variable. 8-1
Error-Handling functions • 8-1 to 8-6

_exit· 8-5
abort· 8-3
exit· 8-5
perror· 8-5
strerror • 8-6
errno values • 8-1

exec functions· 10-5
error conditions· 10-8
processing • 10-7

execl function· 10-5, 0-11
execle function • 10-5, 0-11
execlp function· 10-5, 0-11
execv function • 10-5, 0-11
execve function· 10-5, 0-11
execvp function· 10-5, 0-11
_exit function • 8-5, 0-12
exit function • 8-5, 0-12
exp function • 7-5, 0-12

F
fabs function • 7-2
fclose function· 2-8, D-12
fcvt function • 5-9, 0-11
fdopen function • 2-8, 0-12
feof macro • 2 -24~ 0-13
ferror macro • 2-24, 0-13
fflush function • 2-20, D-13

Index-3

fgetc function· 2-12, 0-13
fgetname function. 2-25, 0-13
fgets function· 2-13,0-14
File descriptor· 3-1, 4-1

V AX C defaults
for VMS logical names· 1-11

fileno macro· 4-13, 0-14
floor function • 7 -5, 0-14
fmod function· 7-6,0-14
fopen function· 2-10,0-14
fork function· 10-3
fprintf function· 2-16, 0-15
fputc function· 2-19, 0-15
fputs function· 2-18, 0-15
fread function • 2-13, 0-15
free function • 9-3, 0-5
freopen function· 2-11, 0-16
frexp function • 7 -6, 0-16
fscanf function. 2-14, 0-16
fseek function· 2-20, 0-16
fstat function· 4-14, 0-16
ftell function· 2-21, 0-17
ftime function· 11-15, 0-17
Functions

character classification • 5-1
character conversion • 5-1, 5-9
Curses • 12-1
entry points of· 8-1
Error-Handling • 8-1
list-handling • 6-13
Signal-Handling • 8-6
Standard I/O· 2-1
string-handling • 6-1
V AX C RTL compared to other RTLs· A-1 to

A-18
fwrite function· 2-18, 0-17

G

gcvt function • 5-9, 0-11
getc function· 2-12
getc macro· 0-13
getch macro· 0-17
getch macro and function· 12-19
getchar function • 3-2, 0-17
getcwd function. 11-5, 0-18
getegid function. 11-6, 0-18

4-lndex

getenv function· 11-6, 0-18
geteuid function • 11-6, 0-18
getgid function • 11-6, 0-18
getname function • 4-17, 0-18
getpid function· 11-7, 0-19
getppid function • 11-7, 0-19
gets function • 3-2, 0-19
getstr macro • 0-19
getstr macro and function • 12-20
getuid function • 11-6, 0-18
getw function • 2-12, 0-13
getyx macro· 12-20, 0-19
gmtime function· 11-16, 0-20
gsignal function· 8-9, 0-20
raise function • 8-9

H
hypot function· 7-4, 0-4

inch macro· 0-20
inch macro and function· 12-21
#include

preprocessor directive· 1-5
initscr function· 12-21, 0-20
Input and output (I/O) • 1-11 to 1-19

conversion specifications· 2-2 to 2-7
Record Management Services • 1-12
Standard· 1-12
stream access

in VAX C· 1-16
UNIX· 1-12
VMS system services. 1-12

insch macro and function • 12-21
insch mcaro· 0-21
insertln macro • 0-21
insertln macro and ·function· 12-22
insstr macro • 0-21
insstr macro and function • 12-22
isalnum macro. 5-5, 0-21
isalpha macro· 5-5, 0-22
isapipe function • 4-17, 0-22
isascii macro· 5-6, 0-22
isatty function • 4-18, 0-22
iscntrl macro· 5-6, 0-22

isdigit macro· 5-6, 0-23
isgraph macro· 5-7, 0-23
islower macro • 5-7, 0-23
isprint macro • 5-7, 0-23
ispunct macro. 5-8, 0-23
isspace macro· 5-8, 0-24
isupper macro· 5-8, 0-24
isxdigit macro· 5-9, 0-24

K
kill function • 8-11, 0-24

L
labs function • 7-8
Idexp function • 7 -7, 0-24
div function • 7-7
Idiv function • 7 -7, 0-10
leaveok macro· 12-23, 0-25
Linker

search libraries· 1-2
List-handling functions· 6-13 to 6-21

va_arg • 6-14
va_count • 6-15
va_end • 6-15
va_start_1 • 6-16
va_start • 6-16

LNK$LlBRARY logical name· 1-2
localtime function· 11-16, 0-25
log function· 7-8, 0-25
log10 function· 7-8, 0-25
longjmp function • 8-11, 0-25
longname function· 12-23, 0-26
Iseek function • 4-12, 0-26

M
Macro definitions· 1-5
Main function· 1-2

main_program option· 1-2
malloc function· 9-3, 0-5
Math functions • 7 -1 to 7-14

abs· 7-2
acos· 7-2
asin· 7-3

Math functions (cont'd.)

atan2· 7-3
atan· 7-3
cabs·]-4
ceil· 7-4
cos· 7-4
cosh· 7-5
div·7-7
exp· 7-5
fabs· 7-2
floor· 7-5
frexp· 7-6
hypot· 7-4
labs· 7-8
Idexp· 7-7
Idiv·7-7
log10· 7-8
log· 7-8
modf· 7-9
pow· 7-9
rand· 7-10
sin·7-11
sinh·7-11
sqrt·7-11
srand· 7-10
tan· 7-12
tanh. 7-12
errno values • 7-1

memchr function· 6-10, 0-26
memcmp function • 6-11, 0-26
memcpy function • 6-12, 0-27
memmove function • 6-12
Memory allocation

functions • 9-2 to 9-7
brk· 9-2
calloc· 9-3
cfree· 9-3
free· 9-3
malloc·9-3
realloc· 9-4
sbrk· 9-2
program examples • 9-5

introduction to· 9-1
memset function • 6-12, 0-27
mkdir function· 11-10, 0-27
mktemp function· 2-25, 0-27
modf function· 7-9, D-27
move macro· 0-28

Index-5

move macro and function· 12-24
mv[w]addch macros· 0-28
mv[w]addstr macros· 0-28
mv[w]delch macros· 0-28
mv[w]getch macros· 0-29
mv[w]getstr macros· 0-29
mv[w]inch macros. 0-29
mv[w]insch macros. 0-29
mv[w]insstr macros· 0-29
mvaddch macros· 12-24
mvaddstr macros· 12-25
mvcur function· 12-25, 0-28
mvdelch macros· 12-25
mvgetch macros· 12-26
mvgetstr macros· 12-26
mvinch macros· 12-26
mvinsch macros· 12-27
mvinsstr macros· 12-27
mvwaddch macros· 12-24
mvwaddstr macros· 12-25
mvwdelch macros· 12-25
mvwgetch macros· 12-26
mvwgetstr macros· 12-26
mvwin function· 12-28, 0-30
mvwinch macros· 12-26
mvwinsch macros· 12-27
mvwinsstr macros· 12-27

N

newwin function • 12-28, 0-30
nice function· 11-11, 0-30
[no]nl macros· 0-30
nl·12-29
nocrmode macros· 12-16
noecho macros. 12-18
nonl· 12-29
noraw· 12-30

o
open function· 4-8, 0-30
overlay function· 12-29, 0-31
overwrite function· 12-29, 0-31

6-lndex

p

pause function • 8-13, 0-31
perror function • 8-5, 0-31
pipe function· 10-10, 0-31
Portability concerns. 1-13

arguments to mkdir· 11-10
[no]crmode macros. 12-16
[no]nl macros. 12-29
[no]raw macros· 12-30
[w]clrattr macro and function • 12-15
[w]insstr macro and function • 12-22
[w]setattr macro and function. 12-33
_exit· 8-5
gsignal function • 8-11
long name function • 12-23
mv[w]insstr macros· 12-27
mvcur function • 12-11
raise function • 8-11
setgid, setuid· 11-12
ssignal function • 8-19
ttyname • 4-18
va_start_1 • 6-16
vfork vs. fork· 10-4
memory deallocation • 9-4
radix conversion characters. 2-4
specific

list of· 1-19 to 1-23
UNIX file specifications· 1-9

ambiguity of. 1-10
variable length argument lists· 6-13
V AX C RTL compared to other RTLs· A-1 to

A-18
pow function • 7 -9, 0-32
printf function· 3-3, 0-32
[w]printw function· 0-32
printw functions· 12-30
putc function • 2-19
putc macro • 0-15
putchar function • 3-4, 0-32
puts function· 3-4, 0-32
putw function· 2-19, 0-15, 0-33

o
qsort function· 11-3, 0-33

R
rand function • 7 -10, 0-33
[no]raw macros· 0-33
raw· 12-30
read function • 4-10, 0-33
realloc function • 9-4, 0-33
Record attributes

RMS
VAX C handling of· 1-17

Record Management Services (RMS)
file organization. 1-14
in VAX C programs. 1-12
overview of·1-14 to 1-19
record formats· 1-1 5
stream access

in VAX C· 1-16
refresh macro. 0-34
refresh macro and function· 12-31
remove function· 2-26, 0-34
rename function. 2-27, 0-34
rewind function • 2-22, 0-34

s
sbrk function • 9-2
scanf function • 3-5, 0-34
scanw functions. 12-31
scanw macro· 0-35
Screen management

Curses
See Curses

scroll function • 12-32, 0-35
scrollok macro· 12-32, 0-35
setattr macro • 0-35
setattr macro and function· 12-32
setbuf function· 2-27, 0-36
setgid function • 11-12, 0-36
setjmp function • 8-11, 0-25
setuid function· 11-12, 0-36
setvbuf function· 2-27, 0-36
Shared Image

VAX C RTL·1-4
sigblock function • 8-13, 0-36
signal function· 8-14, 0-36
Signal-Handling functions • 8-6 to 8-21

alarm· 8-8

Signal-Handling functions (cont'd.)

gsignal· 8-9
kill·8-11
longjmp • 8-11
pause· 8-13
raise· 8-9
setjmp • 8-11
sigblock • 8-13
signal • 8-14
sigpause • 8-15
sigsetmask • 8-15
sigstack • 8-16
sigvec • 8-1 7
sleep· 8-18
ssignal· 8-18
VAXC$ESTABLISH • 8-19
program examples· 8-19

sigpause function • 8-15, 0-36
sigsetmask function· 8-15, 0-37
sigstack function • 8-16, 0-37
sigvec function • 8-17, 0-37
sin function • 7 -11, 0-37
sinh function· 7-11, 0-37
sleep function • 8-18, 0-38
sprintf function· 2-16, 0-15
sqrt function • 7 -11, D-38
srand function· 7-10,0-33
sscanf function· 2-14, 0-16
ssignal function • 8-18, 0-38
Standard I/O. 1-12

functions· 2-1 to 2-31
access· 2-22
clearerr· 2-23
delete. 2-26
fclose· 2-8
fdopen· 2-8
feof· 2-24
ferror. 2-24
fflush • 2-20
fgetc· 2-12
fgetname· 2-25
fgets· 2-13
fopen· 2-10
fprintf· 2-16
fputc· 2-19
fputs. 2-18
fread· 2-13
freopen· 2-11

Index-7

Standard I/O
functions (cont'd.)

fscanf. 2-14
fseek·2-20
ftell· 2-21
fwrite. 2-18
getc. 2-12
getw· 2-12
mktemp· 2-25
putc. 2-19
putw· 2-19
rewind • 2-22
setbuf·2-27
sprintf· 2-16
sscanf· 2-14
tmpfile • 2-29
tmpnam· 2-29
ungetc • 2-16
maneuvering in files· 2-20 to 2-22
opening and closing files· 2-7 to 2-10
program example· 2-29
reading from files • 2-11 to 2-16
writing to files • 2-16 to 2-19

introduction to· 2-1
stand end macro. 0-38
standend macro and function· 12-34
standout function • 0-38
standout macro and function· 12-34
stat function. 4-14, 0-16
stderr· 3-1
stdin· 3-1
stdio

definition module· 1-6, 3-1
stdout· 3-1
strcat function • 6-1, 0-39
strchr function • 6-2, 0-39
strcmp function • 6-2, 0-39
strcpy function· 6-3, 0-39
strcspn function· 6-4, 0-39
Stream

access by VAX C· 1-16
Files· 2-1
I/O

VAX C handling of·1-17
strerror function· 8-6, 0-40
String-Handling functions

memchr • 6-10
memcmp • 6-11

8-lndex

String-handling functions. 6-1 to 6-4
atof· 6-6
atoi. 6-8
atol·6-8
memcpy • 6-12
memmove· 6-12
strcat· 6-1
strchr· 6-2
strcmp· 6-2
strcpy· 6-3
strcspn • 6-4
strlen· 6-5
strncat • 6-1
strncmp· 6-2
strncpy • 6-3
strpbrk • 6-4
strrchr· 6-2
strspn· 6-4
strtol· 6-8
program examples· 6-18

strlen function· 6-5, 0-40
strncat function. 6-1, 0-39
strncmp function • 6-2, 0-39
strncpy function· 6-3, 0-39
strpbrk function • 6-4, 0-40
strrchr function· 6-2, 0-39
strspn function. 6-4, 0-40
strtod function· 6-6, 0-40
strtok function • 6-7, 0-41
strtol function· 6-8, 0-41
strtoul function • 6-9, 0-41
Subprocess • 10-1 to 10-23

executing image
with exec functions· 10-5

functions. 10-3 to 10-23
exec'· 10-5
execle· 10-5
execv·10-5
execve· 10-5
vfork· 10-3
wait· 10-9

implementation of· 10-1
introduction to. 10-1
program examples· 10-14
sharing data with pipe· 10-10
synchronization with wait· 10-9

Subprocess functions

pipe· 10-10
Substitution

macro· 1-5
subwin function· 12-33, 0-41
Syntax

of VAX C RTL functions. 1-7
Syntax summary. C-4 to 0-47
SYS$ERROR • 3-1
SYS$INPUT • 3-1
SYS$OUTPUT • 3-1
system function· 10-3, 0-41
System functions. 11-1 to 11-22

asctime· 11-13
assert· 8-3
atexit· 8-4
bsearch· 11-1
chdir· 11-8
chmod· 11-8
chown. 11-9
clock. 11-14
ctermid. 11-4
ctime· 11-14
cuserid. 11-4
difftime. 11-15
fmod· 7-6
ftime· 11-15
getcwd. 11-5
getegid. 11-6
getenv· 11-6
geteuid· 11-6
getgid • 11-6
getpid • 11-7
getppid· 11-7
getuid. 11-6
gmtime· 11-16
localtime· 11-16
memset • 6-12
mkdir· 11-10
nice· 11-11
qsort. 11-3
remove. 2-26
rename· 2-27
setgid·11-12
setuid·11-12
setvbuf· 2-27
strtod· 6-6
strtok· 6-7

System functions (cont'd.)

system· 10-3
time· 11-17
times· 11-18
umask. 11-12
vfprintf. 6-17
vprintf • 6-17
vsprintf • 6-17
changing process information • 11-7 to 11-12
introduction to· 11-1
program examples· 11-19
retrieving process information· 11-3 to 11-7
retrieving time information • 11-13 to 11-18

T
tan function • 7 -12, 0-42
tanh function· 7-12, D-42
Terminal I/O

See also, Standard I/O
functions • 3-1 to 3-8

getchar· 3-2
gets· 3-2
printf· 3-3
putchar· 3-4
puts· 3-4
scanf· 3-5

program example· 3-6
Text substitution • 1-5

See also, Substitution
time function • 11-17, 0-42
times function • 11-18, 0-42
tmpfile function. 2-29, 0-43
tmpnam function· 2-29, 0-43
toascii function • 0-43
toascii macro· 5-10
_tolower macro • 0-43
tolower function· 0-43
_tolower macro • 5-11
tolower function • 5-11
touchwin function· 12-35, 0-44
_toupper function • 5-11
_toupper macro • 0-44
toupper function • 5-11, 0-44
ttyname function • 4-18, 0-44

Index-9

u
umask function • 11-12, 0-44
ungetc function. 2-16, 0-44
UNIX 1/0·1-12

v

file descriptors. 4-1
functions • 4-1 to 4-20

close. 4-2
create 4-3
dup2·4-7
dup·4-7
fileno· 4-13
fstat. 4-14
getname • 4-17
isapipe· 4-17
isatty • 4-18
Iseek· 4-12
open· 4-8
read· 4-10
stat· 4-14
ttyname • 4-18
write·4-11
maneuvering in files • 4-12 to 4-13
opening and closing files. 4-2 to 4-9
program example· 4-19
reading and writing files • 4-10 to 4-11

va_arg macro· 6-14, 0-45
va_count macro· 6-15, 0-45
va_end macro· 6-15, 0-45
va_start function • 6-16
va_start macro • 0-45
va_start_1 • 6-16
va_start_1 macro· 0-45
varargs

definition module· 6-13
Variable length argument lists· 6-13
VAXC$CRTL_INIT function· 11-18
VAXC$ESTABLISH function • 0-46
VAXC$ESTABLISH function • 8-19
V AXCOEF. TL8 system library· 1-6
VAX C language

system programming. 11-1

10-lndex

V AX C Run-Time Library (RTL)

as shared images· 1-4
compared to other RTLs. A-1 to A-18
Curses functions and macros. 12-1
definition modules· 1-7, C-1
1/0·1-11 to 1-19

VAX C handling of· 1-16 to 1-19
interpreting syntax. 1-7
introduction to· 1-1 to 1-23
main function· 1-2
modules and entry points· 8-1 to 8-20
portability concerns· 1-13
preprocessor directive· 1-7
specific portability concerns· 1-19 to 1-23
stream 1/0·1-16

vfork function· 10-3, 0-46
vfprintf function • 6-17, 0-46
VMS system services

in VAX C programs. 1-12
vprintf function • 6-17, 0-46
vsprintf function • 6-17, 0-46

w
waddch function· 0-2
waddch macro and function • 12-12
waddstr function • 0-2
waddstr macro and function • 12-13
wait function· 10-9,0-46
wclear function • 0-6
wclear macro and function· 12-14
wclrattr function • 0-7
wclrattr macro and function • 12-15
wclrtobot function • 0-7
wclrtobot macro and function· 12-16
wclrtoeol function". 0-7
wclrtoeol macro and function· 12-16
wdelch function • 0-9
wdelch macro and function· 12-17
wdeleteln function • 0-9
wdeleteln macro and function· 12-17
werase macro· 0-11
werase macro and function· 12-19
wgetch function • 0-17
wgetch macro and function. 12-19
wgetstr macro • 0-19
wgetstr macro and function • 12-20

winch function • 0-20
winch macro and function. 12-21
winsch function· 0-21
winsch macro and function. 12-21
winsertln function • 0-21
winsertln macro and function. 12-22
winsstr function • 0-21
winsstr macro and function· 12-22
wmove function • 0-28
wmove macro and function. 12-24
wprintw functions· 12-30
wrapok macro· 12-35, 0-46
wrefresh function • 0-34
wrefresh macro and function. 12-31
write function • 4-11, 0-47
wscanw function • 0-35
wscanw functions· 12-31
wsetattr function • 0-35
wsetattr macro and function. 12-32
wstandend function • 0-38
wstandend macro and function· 12-34
wstandout macro and function • 12-34

Index-11

Vax C Run-Time Library
Reference Manual

AI-JP84A-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user jreader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _________________ Date __________ _

Organization ___________________________ _

Street _____________________________ ___

City _______________ State ______ Zip Code ___ _

or Country

Do Not Tear - Fold'Here and Tape - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

111,,,"11.11 11,".1.11.1"1.1 .. 1.1 •• 11 1.11

No Postage
Necessary

if Mailed in the
United States

I
- DoNotTear-FoldHere -I

I
I
I
I
I
I
I

I~
I~

o

I~ = o

I~
1

8

Vax C Run-Time Library
Reference Manual

AI-JP84A-TE

READER'S
COMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make
suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user jreader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Name _________________ Date __________ _

Organization ___________________________ _

Street __________________________________ ___

City _________________ State ______ Zip Code ___ _

or Country

- - Do Not Tear - Fold Here and Tape -

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

• - - - - - Do Not Tear- Fold Here - - -

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1.1 •• 11 ••••• 1.11

1

- -I

No Postage I
Necessary

if Mailed in the
United States

1

- - - - - - - -I
I
I
I
I
I
I
I

