
VAX BASIC Reference Manual
Order Number: Al-HY 16A-TE, AD-HY 16A-T 1

July 1988

This manual provides reference material and syntax for VAX BASIC language
elements.

Operating System and Version: VMS Version 5.0 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX BASIC Version 3.3

First Printing, August 1 986
Updated, July 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1986, 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DEC US
DEC writer

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

~urnuo~u™
ZK4773

Contents

PREFACE xv

SUMMARY OF TECHNICAL CHANGES xxi

CHAPTER 1 PROGRAM ELEMENTS AND STRUCTURE 1-1

1.1 COMPONENTS OF PROGRAM LINES 1-1
1.1.1 Line Numbers 1-2

1 . 1 . 1 . 1 Programs With Line Numbers • 1-2
1. 1. 1 .2 Programs Without Line Numbers • 1-2

1.1.2 Labels 1-3
1.1.3 Statements 1-4

1. 1.3.1 Keywords • 1-5
1.1.3.2 Identifying Program Units • 1-6
1.1.3.3 Single-Statement Lines and Continued

Statements • 1-7
1.1.3.4 Multi-Statement Lines • 1-8

1.1.4 Compiler Directives 1-10
1.1.5 Line Terminators 1 -11
1.1.6 Lexical Order 1-11

1.2 VAX BASIC CHARACTER SET 1-11

1.3 VAX BASIC DATA TYPES 1-12
1.3.1 Implicit Data Typing 1-15
1.3.2 Explicit Data Typing 1-16

1.4 VARIABLES 1-17
1.4.1 Variable Names 1-18
1.4.2 Implicitly Declared Variables 1-19
1.4.3 Explicitly Declared Variables 1-20
1.4.4 Subscripted Variables and Arrays 1-21
1.4.5 Initialization of Variables 1-23

July 1988 iii

1.5 CONSTANTS 1-24
1.5.1 Numeric Constants 1-25

1. 5. 1. 1 Floating-Point Constants • 1-25
1.5. 1.2 Integer Constants • 1-27
1.5. 1.3 Packed Decimal Constants • 1-28

1.5.2 String Constants 1-28
1.5.3 Named Constants 1-30

1.5.3. 1 Naming Constants Within a
Program Unit • 1-30

1.5.3.2 Naming Constants External to a
Program Unit • 1-31

1.5.4 Explicit Literal Notation 1-32
1.5.5 Predefined Constants 1-35

1.6 EXPRESSIONS 1-37
1.6.1 Numeric Expressions 1-38

1.6. 1. 1 Floating-Point and Integer Promotion
Rules• 1-40

1.6. 1.2 DECIMAL Promotion Rules • 1-42
1.6.2 String Expressions 1-43
1.6.3 Conditional Expressions 1-44

1.6.3.1 Numeric Relational Expressions • 1-44
1.6.3.2 String Relation~! Expressions • 1-46
1.6.3.3 Logical Expre~ .. sions • 1-48

1.6.4 Evaluating Expressions 1-52

1.7 PROGRAM DOCUMENTATION 1-55
1.7 .1 Comment Fields 1-55
1.7.2 REM Statements 1-57

iv

CHAPTER 2 BASIC ENVIRONMENT COMMANDS 2-1
! your-comment 2-2

$ system-command 2-4

APPEND 2-6

ASSIGN 2-8

COMPILE 2-10

CONTINUE 2-20

DELETE 2-21

EDIT 2-23

EXIT 2-26

HELP 2-27

IDENTIFY 2-29

INQUIRE 2-30

LIST AND LISTNH 2-31

LOAD 2-33

LOCK 2-35

NEW 2-36

OLD 2-38

RENAME 2-39

REPLACE 2-41

RESEQUENCE 2-43

RUN 2-46

SAVE 2-49

SCALE 2-51

SCRATCH 2-53

SEQUENCE 2-54

SET 2-56

SHOW 2-58

UNSAVE 2-60

v

CHAPTER 3 COMPILER DIRECTIVES 3-1

%ABORT 3-2

%CROSS 3-3

%DECLARED 3-4

%1DENT 3-6

%1F-%THEN-%ELSE-%END %IF 3-8

%INCLUDE 3-10

%LET 3-14

%LIST 3-16

%NOCROSS 3-17

%NOLIST 3-19

%PAGE 3-20

%PRINT 3-21

%REPORT 3-22

%SBTTL 3-22.2

%TITLE 3-24

%VARIANT 3-26

CHAPTER 4 STATEMENTS AND FUNCTIONS 4-1

ABS 4-2

ABS% 4-4

ASCII 4-5

ATN 4-6

BUFSIZ 4-8

CALL 4-9

CAUSE ERROR 4-14

CCPOS 4-16

CHAIN 4-18

CHANGE 4-20

CHR$ 4-23

CLOSE 4-24

COMMON 4-26

COMP% 4-31

vi July 1988

CONTINUE 4-33

cos 4-35

CTR LC 4-36

CVTSS 4-38

CVTXX 4-39

DATA 4-42

DATES 4-44

DECIMAL 4-46

DECLARE 4-48

DEF 4-53

DEF* 4-58

DELETE 4-63

DET 4-65

DIFS 4-67

DIMENSION 4-69

ECHO 4-74

EDITS 4-76

END 4-78

ERL 4-82

EANS 4-84

ERR 4-86

EATS 4-88

EXIT 4-90

EXP 4-93

EXTERNAL 4-95

FIELD 4-100

FIND 4-102

FIX 4-109

FNEND 4-111

FNEXIT 4-112

FOR 4-113

FORMATS 4-117

FREE 4-118

vii

FSPS 4-120

FUNCTION 4-122

FUNCTION END 4-125

FUNCTION EXIT 4-126

GET 4-127

GETRFA 4-134

GOSUB 4-136

GOTO 4-138

HANDLER 4-140

IF 4-142

IN KEYS 4-145

INPUT 4-148

INPUT LINE 4-151

INSTR 4-154

INT 4-156

INTEGER 4-158

ITERATE 4-160

KILL 4-162

LBOUND 4-163

LEFTS 4-165

LEN 4-167

LET 4-168

LINPUT 4-170

LOC 4-173

LOG 4-175

LOG10 4-177

LSET 4-179

MAG 4-181

MAGTAPE 4-183

MAP 4-185

MAP DYNAMIC 4-189

MAR 4-192

MARGIN 4-193

viii

MAT 4-195

MAT INPUT 4-200

MAT LINPUT 4-203

MAT PRINT 4-206

MAT READ 4-209

MAX 4-212

MIDS 4-214

MIN 4-217

MOD 4-219

MOVE 4-221

NAME ... AS 4-224

NEXT 4-226

NO ECHO 4-228

NOMARGIN 4-229

NUM 4-231

NUM2 4-233

NUMS 4-235

NUM1$ 4-237

ON ERROR GO BACK 4-239

ON ERROR GOTO 4-241

ON ERROR GOTO 0 4-244

ON ... GOSUB 4-246

ON ... GOTO 4-248

OPEN 4-250

OPTION 4-263

PLACES 4-268

POS 4-271

PRINT 4-273

PRINT USING 4-277

PRODS 4-284

PROGRAM 4-287

PUT 4-289

QUO$ 4-292

ix

RAD$ 4-295

RANDOMIZE 4-297

RCTRLC 4-299

RCTRLO 4-300

READ 4-302

REAL 4-304

RECORD 4-306

RECOUNT 4-311

REM 4-313

REMAP 4-315

RESET 4-320

RESTORE 4-321

RESUME 4-323

RETRY 4-325

RETURN 4-327

RIGHT$ 4-328

RMSSTATUS 4-330

RND 4-333

RSET 4-335

SCRATCH 4-336

SEG$ 4-338

SELECT 4-340

SET PROMPT 4-343

SGN 4-345

SIN 4-346

SLEEP 4-347

SPACE$ 4-348

SQR 4-349

STATUS 4-350

STOP 4-352

STR$ 4-354

STRING$ 4-356

SUB 4-358

x

SUBEND 4-361

SUBEXIT 4-362

SUMS 4-363

SWAP% 4-365

TAB 4-366

TAN 4-368

TIME 4-369

TIMES 4-371

TRMS 4-372

UBOUND 4-373

UNLESS 4-375

UNLOCK 4-376

UNTIL 4-378

UPDATE 4-380

VAL 4-382

VAL% 4-384

VMSSTATUS 4-386

WAIT 4-388

WHEN ERROR 4-390

WHILE 4-395

XLATES 4-397

~PPENDIX A TRANSPORTING PROGRAMS BETWEEN VAX BASIC
AND BASIC-PLUS-2 A-1

A.1 OVERVIEW

A.2 LANGUAGE-SPECIFIC FUNCTIONALITY

A.3 1/0 DIFFERENCES
A.3.1 The MAGTAPE Function
A.3.2 The OPEN Statement
A.3.3 The PUT Statement

A-1

A-2

A-3
A-3
A-4
A-6

xi

A.4 PROCEDURE CALLING
A.4.1 The CALL Statement
A.4.2 The CHAIN Statement
A.4.3 SYS and FIP SYS Calls

A.5 GENERATED ERRORS

A.6 MISCELLANEOUS DIFFERENCES
A.6.1 Data Types
A.6.2 The DEF and DEF* Statements
A.6.3 Default Integer Size
A.6.4 Integer Overflow
A.6.5 Line Numbers and Labels
A.6.6 The MAP and COMMON Statements
A.6.7 The MAP DYNAMIC Statement
A.6.8 The PRINT Statement
A.6.9 The PRINT USING Statement
A.6.10 The REPLACE Command
A.6.11 The SPEC% and PEEK Functions
A.6.12 String Comparisons
A.6.13 Assigning Symbols
A.6.14 The TIME Function
A.6.15 The TIMES Function

APPENDIX B ANSI MINIMAL BASIC

B.1

B.2

B.3

xii

INTRODUCTION

THE /ANSLSTANDARD QUALIFIER

EXTENSIONS TO ANSI MINIMAL BASIC STANDARD
X3.60-1978
B.3.1 Program Format
B. 3. 2 Statements
B.3.3 Delimiters
B.3.4 Variables
B.3.5 Numeric Constants

A-7
A-7
A-7
A-8

A-9

A-10
A-10
A-10
A-11
A-11
A-11
A-11
A-12
A-12
A-13
A-13
A-13
A-13
A-13
A-14
A-14

B-1

B-1

B-2

B-2
B-2
B-3
B-3
B-3
B-4

B.3.6 Data Input B-4
B.3.6.1 Unquoted String Data • B-5
B.3.6.2 Null Input • B-6

B.3.7 User-Defined Functions (the DEF Statement) 8-6
8.3.8 Built-In Functions 8-6
B.3.9 Arrays B-7

B.4 IMPLEMENTATION-DEFINED FEATURES 8-7
B.4.1 Initial Values for Variables 8-8
B.4.2 Retention of Long Strings 8-8
B.4.3 Accuracy of Evaluation of Numeric Expressions 8-8
B.4.4 Machine Infinitesimal 8-8
8.4.5 Machine Infinity 8-8
B.4.6 Precision For Numeric Values 8-9
8.4.7 Exrad-Width For Printing Numeric Representations B-9
8.4.8 Significance-Width For Printing Numeric

Representations 8-9
8.4.9 Print Zone Length 8-9
B.4.10 Margin for Output Line 8-10
B.4.11 Pseudorandom Number Sequence 8-10
B.4.12 Unique Line Numbers 8-10
B.4.13 Input Prompt 8-10
B.4.14 End of Input Reply 8-10
B.4.15 End of Print Line 8-11
B.4.16 Exponentiation Operator B-11

APPENDIX C ASCII CHARACTER CODES C-1

APPENDIX D VAX BASIC KEYWORDS D-1

INDEX

July 1988 xiii

FIGURES
1-1 Truth Tables 1-50

TABLES
1-1 Keyword Space Requirements 1-5

1-2 VAX BASIC Data Types 1-14

1-3 Numbers in E Notation 1-26

1-4 Predefined Constants 1-36

1-5 Arithmetic Operators 1-38

1-6 Result Data Types in VAX BASIC Expressions 1-41

1-7 VAX BASIC Result Data Types 1-41

1-8 Result Data Types for DECIMAL Data 1-43

1-9 Numeric Relational Operators 1-45

1-10 String Relational Operators 1-47

1-11 Logical Operators 1-49

1-12 Numeric Operator Precedence 1-53

4-1 VAX BASIC Parameter-Passing Mechanisms 4-10

4-2 Fl LL Item Formats and Storage Allocations 4-28

4-3 EDITS Values 4-76

4-4 MAGTAPE Functionality in VAX BASIC 4-184

4-5 Rounding and Truncation of 123456.654321 4-269

4-6 VAX BASIC STATUS Bits 4-351

4-7 TIME Function Values 4-370

A-1 MAGTAPE Functionality in VAX BASIC A-4

A-2 RSTS/E Disk MODE Values and Corresponding BASIC
Statements A-6

A-3 VAX BASIC Subset of RSTS/E SYS Calls A-8

A-4 VAX BASIC Subset of RSTS/E FIP SYS Calls A-8

A-5 Fatal Errors in VAX BASIC That Are Warnings in
BASIC-PLUS-2 A-10

A-6 VAX BASIC and BASIC-PLUS-2 TIME Function Differences A-14

C-1 ASCII Codes C-2

xiv

Preface

Intended Audience

This manual describes the language elements and syntax of VAX BASIC.
Readers are presumed to be familiar with VAX BASIC programming tech
niques. This manual provides reference material to be used in conjunction
with the other two manuals in the documentation set.

Associated Documents

This manual is one of three manuals that form the VAX BASIC document
set. The other two manuals are as follows:

VAX BASIC User Manual

Programming with VAX BASIC
Graphics

Provides tutorial material for VAX BASIC
language constructs and information
pertaining to programming with VAX
BASIC on VAX/VMS systems

Provides tutorial and reference material on
VAX BASIC graphics capabilities

You may also be interested in the following supplementary manuals:

• VAX BASIC Syntax Summary

• Introduction to BASIC

• BASIC for Beginners

• More BASIC for Beginners

July 1988 xv

Document Structure

This manual consists of four chapters and four appendixes.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix A

Appendix B

Appendix C

Appendix D

Summarizes VAX BASIC program elements and structure

Describes VAX BASIC environment commands

Describes VAX BASIC compiler directives

Describes VAX BASIC statements and functions

Summarizes transportability issues between BASIC-PLUS-2
and VAX BASIC

Explains how VAX BASIC conforms to the ANSI Minimal
Standard for BASIC

Lists the ASCII codes

Lists VAX BASIC keywords

In Chapters 2, 3, and 4, the VAX BASIC language elements are arranged
in alphabetical order within each part; each language element begins on
a separate page. These chapters provide reference material on each VAX
BASIC language element. The descriptions are arranged in alphabetical
order and include the following sections:

Overview An overview of what the statement or command does.

Format The required syntax for the language element.

Syntax Rules Any rules governing the use of parameters, separators, or other
syntax items, effect of the statement or command on program
execution, and any restrictions governing its use.

Example One or more examples of the statement in a partial program.
Where appropriate, explanatory text and program output are
included.

xvi July 1988

Conventions Used in This Document

This manual uses case of text, symbols, and mnemonics in syntactical
diagrams. This symbology aids in providing more concise and exact
descriptions of syntatic variables, rules, and format.

Convention Meaning

$ BASIC In command-line examples, the user's response to a
system prompt is printed in red; system prompts are
printed in black.

UPPERCASE letters Uppercase letters are used for VAX BASIC keywords and
must be coded exactly as shown.

lowercase letters Lowercase letters are used to indicate user-supplied names
or characters.

[] Brackets enclose an optional portion of a format. Brackets
around vertically stacked items indicate that you can
select one of the enclosed items. You must include all
punctuation as it appears in the brackets.

{} Braces enclose a mandatory portion of a format. Braces
around vertically stacked items indicate that you must
choose one of the enclosed items. You must include all
punctuation as it appears in the braces.

A vertical ellipsis indicates that code which would nor
mally be present is not shown.

An ellipsis indicates that the immediately preceding item
can be repeated. An ellipsis following a format unit
enclosed in brackets or braces means that you can repeat
the entire unit. If repeated items or format units must be
separated by commas, the ellipsis is preceded by a comma
(, ...).

xvii

xviii

The following mnemonics are used in the syntax diagrams:

Mnemonic

angle

array

chnl

com

cond

canst

data-type

def

exp

file-spec

func

int

int-exp

int-var

label

lex

line

line-num

lit

log-exp

map

matrix

name

Meaning

An angle in radians or degrees

An array; syntax rules specify whether the bounds or dimen
sions can be specified

An 1/0 channel associated with a file

Specific to a COMMON block

Conditional expression; indicates that an expression can be
either logical or relational

A constant value

A data type keyword

Specific to a DEF function

An expression

A file specification

Specific to a FUNCTION subprogram

An integer value

An expression that represents an integer value

A variable that contains an integer value

An alphanumeric statement label

Lexical; used to indicate a component of a compiler directive

A statement line; may or may not be numbered

A statement line number

A literal value, in quotation marks

Logical expression

Specific to a MAP statement

A two-dimensional array

A name or identifier; indicates the declaration of a name
or the name of a VAX BASIC structure, such as a SUB
subprogram

Mnemonic

num

pa ram-list

pass-mech

real

rel-exp

str

str-exp

str-var

sub

target

unsubs-var

var

Meaning

A numeric value

A parameter list, such as for a SUB subprogram

A valid VAX BASIC passing mechanism

A floating-point value

Relational expression

A character string

An expression that represents a character string

A variable that contains a character string

Specific to a SUB subprogram

The target point of a branch statement; either a line number
or a label

Unsubscripted variable, as opposed to an array element

A variable

xix

Summary of Technical Changes

Summary of New and Changed Features for Version 3.3

Version 3.3 of VAX BASIC includes support for the CDD/Plus Version
4.0 CDO-format dictionaries while continuing to provide full support for
the DMU-format dictionaries associated with previous versions of the
CDD. Both types of dictionaries can coexist on a system and a program
can access data definitions in both formats. This new functionality is
implemented as follows:

• Addition of the /DEPENDENCY_DATA qualifier to the DCL com
mand, BASIC

• Addition of the lexical directive, %REPORT %DEPENDENCY

• Modification of the lexical directive, %INCLUDE %FROM %CDD

Descending keys are now supported on both primary and alternate
keys. This new functionality is implemented by allowing the choice of
ASCENDING or DESCENDING on key definition clauses in the OPEN
statement.

In addition, this documentation update contains numerous corrections and
clarifications to previous documentation; these documentation changes do
not reflect new features.

July 1988 xxi

Summary of New and Changed Features for Version 3.0

xxii

Version 3.0 of VAX BASIC includes extensive graphics capabilities, struc
tured error handling techniques, enhancements to file 1/0 and other new
features. All of these features are documented in this manual and the VAX
BASIC User Manual except for the graphics features, which are documented
in Programming with VAX BASIC Graphics. This section summarizes all of
the major changes for this release.

Graphics Capabilities

VAX BASIC supports extensive graphics capabilities based on VAX GKS.
The new graphics capabilities are available to you if you have the full or
run-time VAX GKS kit installed on your system (Version 2.0 or later) and
if you use supported graphics hardware. The main features of VAX BASIC
graphics are as follows:

• A short learning period

• Convenient default values for attributes

• Statements consisting of English words in simple constructs

• Window and viewport settings that are easy to alter

• Graphics subprograms that can be invoked with a variety of transfor-
mation functions

• Input statements for interactive graphics programs

• Programs that can run on multiple devices

• Programs that run on any hardware supported by VAX GKS

Structured Error Handling

VAX BASIC supports structured error handling with WHEN ERROR
constructs. When an error occurs during execution of statements in a
protected block of code, the error is handled by the associated attached or
detached handler. The following new statements and functions enhance
error-handling capabilities:

• WHEN ERROR

• RETRY

• CONTINUE

• HANDLER, EXIT HANDLER, and END HANDLER

• OPTION HANDLE

• CAUSE ERROR

• RMSSTATUS and VMSSTATUS

Although the new WHEN ERROR constructs are the preferred method
for error handling, ON ERROR statements are supported for compatibility
with previous versions of BASIC.

Optional Line Numbers

Line numbers are no longer required in VAX BASIC programs. A VAX
BASIC program can have no line numbers at all, or it can use the tradi
tional line numbered statements; both are valid. A program wHh a line
number on the first nonblank line is treated as a line-numbered program
by the compiler. In the BASIC environment, programs with no line num
bers must be created with a text editor or copied into the environment
with the OLD command.

Array Bounds

You can now specify the lower bound for any or all dimensions of non
virtual arrays. Previously, VAX BASIC arrays could only be zero-based.
In addition, two new functions, LBOUND and UBOUND, allow you to
retrieve the lower and upper bounds of array dimensions.

Improvements for Procedure Invocations

This version of VAX BASIC includes additional flexibility for procedure
invocations:

• If an external function is called as a procedure, VAX BASIC performs
parameter validation exactly as if the declared function had been
invoked as a function.

• The new keywords ANY and OPTIONAL ease parameter passing to
non-BASIC routines.

• Additional functionality has been added to the LOC function so that
the address of an external function can be accessed.

PRINT USING Format Strings

Constant PRINT USING format strings are precompiled at compile time.
Significant run-time performance gains can be achieved by recompiling
programs that use constant format strings.

xxiii

xx iv

Single Keystroke Input

The new function INKEY$ allows you to detect a single keystroke typed at
a terminal. Function and keypad keys return a descriptive text string, for
example, "Fl 7'', and control characters return a single ASCII code.

1/0 Enhancements

The following features have been added to enhance I/O capabilities:

• STREAM files are accessible with the OPEN statement.

• A WAIT clause can be added to the GET and FIND statements. This
clause instructs VAX BASIC to wait on locked records rather than
immediately returning the error RECBUCLOC (ERR= 154).

• The new keywords NX (next) and NXEQ (next or equal to) are syn
onyms for GT and GE respectively. These keywords make the GET
and FIND statements more meaningful if' an indexed file is accessed
with descending keys.

Miscellaneous Features

• The new PROGRAM statement allows you to optionally name a main
program unit. This name becomes the module name of the compiled
source.

• You can return a procedure value or the status of an image upon
exiting with the following statements:

END /EXIT PROGRAM

- END/EXIT FUNCTION

- END /EXIT DEF

• By default, VAX BASIC calls VAX EDT from the environment. The
user or the system manager can select callable VAX EDT, the VAX
Text Processing Utility (VAXTPU), or the VAX Language Sensitive
Editor as the default editor. Start-up time for editing files within
the environment is shorter as it is no longer necessary to spawn a
subprocess to access editors that are callable.

• System managers can prevent users escaping to DCL level from the
environment by setting the user's subprocess limit (PRCLM) to zero.
A subprocess limit of 1 was previously required so that a user could
use an editor within the environment.

• New extensions to the OPTION statement include the following:

OPTION ANGLE = degrees-or-radians

OPTION HANDLE = severity-level

- OPTION CONSTANT TYPE = data-type
- OPTION OLD VERSION = CDD

• The MID$ function can now be on the left side of an assignment
statement. This feature allows partial string replacement.

• VAX BASIC statements, compiler directives, labels, and comment lines
can now start in column 1.

• You can include files from a text library with the %INCLUDE direc
tive.

• The suffixes $ (for strings) and % (for integers) are allowed on explic
itly declared variables and constants.

• Extensions to the REMAP and MAP DYNAMIC statements allow you
to redefine the storage allocated to a previously declared static string
variable.

• New functions MAX and MIN are provided for the comparison of a
series of arguments.

• The new MOD function divides one numeric argument by another
and returns the remainder.

• The new compiler directive %PRINT allows you to print a message
during the compilation of a source program without aborting the
compilation.

• The new lexical directive %DECLARED allows you to determine
whether or not a lexical variable has been declared.

xxv

Chapter 1

Program Elements and Structure

The building blocks of a VAX BASIC program are as follows:

• Program lines and their components

• The VAX BASIC character set

• VAX BASIC data types

• Variables and constants

• Expressions

• Program documentation

These building blocks are described in the following sections.

1. 1 Components of Program Lines

A VAX BASIC program is a series of program lines that contain instruc
tions for the VAX BASIC compiler. These instructions are in the form of
statements that contain keywords, operators, and operands.

All VAX BASIC program lines can contain the following:

• Statements

• Line numbers or labels

• Compiler directives

• Comment fields

• A line terminator (carriage return)

Program Elements and Structure 1-1

Only a line terminator is required in a program line. The other elements
are optional.

1.1. 1 Line Numbers

Line numbers are no longer required in VAX BASIC programs; you can
compile, link, and execute a program with or without line numbers. There
are, however, different rules for writing programs with line numbers
and for writing programs without line numbers. These differences are
described in the following sections.

1. 1. 1. 1 Programs With Line Numbers

If you are entering program lines directly into the BASIC environment in
line mode, then only those statements with line numbers are allowed to
start in the first column. Also, any programs entered in line mode must
have an initial line number associated with the first program line.

A VAX BASIC line number must be a unique integer from 1 through
32767, and must be terminated by a space or tab. VAX BASIC ignores
leading spaces, tabs, and zeros in line numbers. Embedded spaces, tabs,
and commas cause VAX BASIC to signal an error.

In line mode, a line number followed by a carriage return does not
constitute a VAX BASIC program line. A program line entered in line
mode must contain a statement or a comment field. (Comment fields
are discussed in Section 1.7.1). A new line number or a carriage return
terminates a VAX BASIC program line.

A program line can contain any number of text lines; however, a text line
cannot exceed 255 characters.

1. 1. 1.2 Programs Without Line Numbers

VAX BASIC searches for a line number on the first line of program text
when you

• Load a program into the BASIC environment with the OLD command

• Edit a program in the BASIC environment

If no line number is found, then the following rules apply:

• No line numbers are allowed in that program module.

1-2 Program Elements and Structure

1. 1.2 Labels

• References to the ERL function and a RESUME statement to a line
number are not allowed.

• A subroutine will signal the same errors as it would if it were compiled
with the /NOLINES qualifier. If an error is resignaled back to the
caller, ERL gives the line number of the calling site, rather than the
line number of the actual error in the subprogram.

• The REM statement is not allowed.

If your program contains multiple units, the point at which VAX BASIC
breaks each program unit is determined by the placement of the statement
that terminates each program unit. Any text that follows the program
terminator becomes associated with the following program unit. A pro
gram terminator can be any END statement, such as an END PROGRAM
statement followed by any valid expression.

You cannot use the APPEND command in the BASIC environment, or a
plus sign (+)at DCL level, to concatenate programs without line numbers.

Note that when you compile a program from DCL, or when you copy a
program into the BASIC environment with the OLD command, program
statements can begin in the first column.

Instead of line numbers, you can use labels to identify and reference
program lines.

A label is a 1- to 31-character name that identifies a statement or block
of statements. The label name must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs
($), underscores (_), or periods (.). If the program is being entered in
line mode, and therefore contains line numbers, then only line numbers
and immediate mode statements can begin in the first character position.

A label name must be separated from the statement it identifies with a
colon (:). For example:

Yes_routine: PRINT "Your answer is YES."

The colon is not part of the label name. It informs VAX BASIC that the
label is being defined rather than referenced. Consequently, the colon is
not allowed when you use a label to reference a statement. For example:

200 GOTO Yes_routine

Program Elements and Structure 1-3

You can reference a label almost anywhere you can reference a line
number. However, there are the following exceptions:

• You cannot compare a label with the value returned by the ERL
function.

• You cannot reference a label in an IF ... THEN ... ELSE statement without
using the keyword GOTO or GO TO. You can use the implied GOTO
form only to reference a line number. In the following example, the
GOTO keyword is not required in statement 100 because the reference
is to a line number. Because statement 200 references labels, the
GOTO keyword is required.

Example

100 IF AY. = BY.
THEN 1000
ELSE 1050

200 IF A$ = "YES"
THEN GOTO Yes
ELSE GOTO No

1.1.3 Statements

A VAX BASIC statement consists of a statement keyword and optional
operators and operands. For example, both of these statements are valid:

LET AY. = 534Y. + (SUMY. - DIFY.)
PRINT AY.

VAX BASIC statements can be either executable or nonexecutable:

• Executable statements perform operations (for example, PRINT,
GOTO, and READ).

• Nonexecutable statements describe the characteristics and arrangement
of data, specify usage information, and serve as comments in the
source program (for example, DATA, DECLARE, and REM).

VAX BASIC can accept and process one statement on a line of text, several
statements on a line of text, multiple statements on multiple lines of text,
and single statements continued over several lines of text. Each line of
program text is associated with the last specified line number, and each
must contain a keyword.

1-4 Program Elements and Structure

1. 1.3. 1 Keywords

Every VAX BASIC statement except LET and empty statements must begin
with a keyword. A keyword is a reserved element of the VAX BASIC
language. Keywords are used to

• Define data and user identifiers

• Perform operations

• Invoke built-in functions

NOTE

Keywords are reserved words and cannot be used as user
identifiers, such as variable names, labels, or names for MAP or
COMMON areas.

Keywords cannot be used in any context other than as VAX BASIC
keywords. The assignment STRING$ = "YES", for example, is invalid
because STRING$ is a reserved VAX BASIC keyword and therefore cannot
be used as a variable. Appendix D in this manual contains a list of the
VAX BASIC keywords.

A VAX BASIC keyword cannot have embedded spaces and cannot be split
across lines of text. There must be a space, tab, or special character such
as a comma between the keyword and any other variable or operator.

Some keywords use two words. In this case, their spacing requirements
vary, as shown in Table 1-1.

Table 1-1: Keyword Space Requirements
Optional
Space Required Space No Space

GO TO BY DESC FNEND

GO SUB BY REF FNEXIT

ON ERROR BY VALUE FUNCTIONEND

END DEF FUNCTIONEXIT

END FUNCTION NOECHO

END GROUP NO MARGIN

END IF SUBEND

END PROGRAM SUB EXIT

Program Elements and Structure 1-5

Table 1-1 (Cont.): Keyword Space Requirements
Optional
Space Required Space No Space

END RECORD

END SELECT

END SUB

EXIT DEF

EXIT FUNCTION

EXIT SUB

INPUT LINE

MAP DYNAMIC

MAT INPUT

MAT LINPUT

MAT PRINT

MAT READ

1. 1.3.2 Identifying Program Units

You can delimit a main program compilation unit with the PROGRAM
and END PROGRAM statements. This allows you to identify a program
with a name other than the file name. The PROGRAM name must not be
the same as that of any SUB, FUNCTION, or PICTURE subprogram.

Example

PROGRAM Sort_out

END PROGRAM

If you include the PROGRAM statement in your program, the name you
specify becomes the module name of the compiled source. This feature is
useful when you use object libraries, because the librarian stores modules
by their module names rather than by their file names. Similarly, module
names are used by the VAX/VMS Debugger and the VAX/VMS Linker.

For more information about program units, see the VAX BASIC User
Manual.

1-6 Program Elements and Structure

1. 1.3.3 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one numbered line,
or one statement continued over two or more text lines. For example:

30 PRINT B * C I 12

This single-statement line has a line number, the keyword (PRINT), the
operators (*, /), and the operands (B, C, 12).

You can have a single statement span several text lines by typing an
ampersand (&) and the RETURN key. Note that only spaces or tabs are
valid between the ampersand and the carriage return. For example:

OPEN "SAMPLE.DAT" AS FILE 2Y., .tlRETI
SEQUENTIAL VARIABLE, .t RET
MAP ABC

The ampersand continuation character may be used but is not required for
continued REM statements. The following example is valid:

REM This is a remark
And this is also a remark

You can continue any VAX BASIC statement, but you cannot continue a
string literal or VAX BASIC keyword. The following example generates
the error message "Unterminated string literal".

PRINT "IF-THEN-ELSE- .t
END-IF"

This example is valid:

PRINT 11 IF- 11
; .t

"THEN-"; .t
"ELSE-"; .t
"END- 11

; .t
"IF"

A more efficient way to continue string literals is to use the string concate
nation operator (+):

PRINT "IF- 11 .t
+ "THEN-" .t
+ "ELSE-" .t
+ "END-" .t
+ "IF"

Program Elements and Structure 1-7

VAX BASIC concatenates the four string literals at compilation and stores
them as one string. When the PRINT statement executes, VAX BASIC
displays the one concatenated string literal rather than four separate
string literals, thereby causing your program to execute faster and more
efficiently.

1. 1.3.4 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text or
multiple statements on separate lines of text. All the statements on a
multi-statement line are associated with a single line of code.

Multiple statements on one line of text must be separated by backslashes
(\). For example:

40 PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to line
number 40 refers to all three statements and execution begins with the
first statement on the line. For example, VAX BASIC cannot execute the
second statement without executing the first statement.

You can also write a multi-statement program line that associates all
statements with a single line number by placing each statement on a
separate line. VAX BASIC assumes that such an unnumbered line of text
is either a new statement or an IF statement clause.

In the following example, each line of text begins with a VAX BASIC
statement and each statement is associated with line number 400.

Example

400 PRINT A
PRINT B
PRINT "FINISHED"

VAX BASIC also recognizes IF statement keywords on a new line of text
and associates such keywords with the preceding IF statement.

1-8 Program Elements and Structure

Example

100 REM Determine if the user's response
was YES or NO.

200 IF (A$ = "YES") OR (A$ = "Y")
THEN PRINT "You typed YES"
ELSE PRINT "You typed NO"
STOP
END IF

The VAX BASIC compiler assigns listing line numbers to the statements as
they occur physically in the program.

Example

1 100 REM Determine if the user's response
2 was YES or NO.
3 200 IF (A$ = "YES") OR (A$ = "Y")
4 THEN PRINT "You typed YES"
5 ELSE PRINT "You typed NO"
6 STOP
7 END IF

You cannot use listing line numbers as targets of branch statements. The
target of a branch statement such as GOTO must be a line number or a
label. See the VAX BASIC User Manual for more information on listing file
formats.

You can use any VAX BASIC statement in a multi-statement line. Since
the VAX BASIC compiler ignores all text following a REM keyword until
it reaches a new line number, a REM statement must be the last statement
on a multi-statement line. REM statements are disallowed in programs
without line numbers.

In the environment, a leading space or tab not followed by a line number
implies a new statement in a multi-statement line, compiler commands
and immediate mode statements cannot be preceded by a space, tab,
or line number. If you enter a compiler command or immediate mode
statement, you cannot add more continuation lines to the last program
line. If you attempt to do so, VAX BASIC signals the error "Unknown
command input."

Program Elements and Structure 1-9

1.1.4 Compiler Directives

Compiler directives are instructions for the VAX BASIC compiler. These
instructions cause the VAX BASIC compiler to perform certain operations
as it compiles the program.

By including compiler directives in a program, you can:

• Place program titles and subtitles in the header that appears on each
page of the listing file

• Place a program version identification string in both the listing file and
object module

• Start or stop the inclusion of listing information for selected parts of a
program

• Start or stop the inclusion of cross reference information for selected
parts of a program

• Include VAX BASIC code from another source file or a text library

• Conditionally compile parts of a program

• Terminate compilation

• Include CDD record definitions in a VAX BASIC program

• Display messages during the compilation

Follow these rules when using compiler directives:

• Compiler directives must begin with a percent sign

• Compiler directives must be the only text on the line (except for
%IF-% THEN-%ELSE-%END-%IF)

• Compiler directives cannot appear within a quoted string

• Compiler directives can be preceded by an optional line number

See the VAX BASIC User Manual and Chapter 3 in this manual for more
information on compiler directives.

1-1 0 Program Elements and Structure

1. 1.5 Line Terminators

In the BASIC environment, a program line ends with a carriage return/line
feed combination (the RETURN key) followed by an optional space or tab
or a new line number. An ampersand followed by a carriage return ends a
line of text, but not the program line. Note that spaces and tabs are valid
between the ampersand and the carriage return; no other characters are
valid. When line numbers are present, all statements between the first
line number and the next line number are associated with the first line
number.

1. 1.6 Lexical Order

Lexical order refers to the order in which the statements in a program
are compiled. In general terms, VAX BASIC compiles program lines in
sequential order: multiple statements on a line of text are processed from
left to right, and lines of text are processed from top to bottom. Note
that certain VAX BASIC statements can alter this flow of compilation, for
example GOSUB and GOTO.

Some VAX BASIC statements, such as comments and MAP declarations,
are nonexecutable. If program control passes to a nonexecutable state
ment, the VAX BASIC compiler executes the first statement that lexically
follows the nonexecutable statement.

1.2 VAX BASIC Character Set

VAX BASIC uses the full ASCII character set. This includes

• The letters A through Z, both upper- and lowercase

• The digits 0 through 9

• Special characters

Appendix C in this manual lists the full ASCII character set and character
values.

The VAX BASIC compiler does not distinguish between upper- and
lowercase letters except in string literals or within a DATA statement. The
VAX BASIC compiler does not process characters in REM statements or
comment fields, nor does it process nonprinting characters unless they are
part of a string literal.

Program Elements and Structure 1-11

In string literals, VAX BASIC processes:

• Lowercase letters as lowercase

• Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot
appear in a string literal. Use the CHR$ function or explicit literal notation
to use these characters and terminators.

You can use nonprinting characters in your program, for example, in string
constants, but to do so you must use one of the following:

• A predefined constant such as ESC or DEL

• The CHR$ function to specify an ASCII value

• Explicit literal notation

See Section 1.5.4 for more information on explicit literal notation.

1.3 VAX BASIC Data Types

Each unit of data in a VAX BASIC program has a specific data type that
determines how that unit of data is to be interpreted and manipulated
by the VAX BASIC compiler. This data type also determines how many
storage bits make up the unit of data.

VAX BASIC recognizes five primary data types:

• Integer

• Floating-point

• Character string

• Packed decimal

• Record's file address

Integer data is stored as binary values in a byte, word, or longword. These
values correspond to the VAX BASIC data type keywords BYTE, WORD,
and LONG; these are all subtypes of the type INTEGER.

Floating-point values are stored using a signed exponent and a binary
fraction. VAX BASIC allows four floating-point formats: single, double,
G_floating, and H_floating. These formats correspond to the VAX BASIC
data type keywords SINGLE, DOUBLE, GFLOAT, AND HFLOAT; these
are all subtypes of the type REAL.

1-12 Program Elements and Structure

VAX BASIC packed decimal data is stored in a string of bytes. Refer to
Chapter 19 of the VAX BASIC User Manual for more information on the
storage of packed decimal data.

Character data consists of strings of bytes containing ASCII code as binary
data. The first character in the string is stored in the first byte, the second
character is stored in the second byte, and so on. VAX BASIC allows up
to 65535 characters for a STRING data element.

In addition to this data type, VAX BASIC also recognizes a special RFA
data type to provide information about a record's file address. An RFA
uniquely specifies a record in a file: you can access RMS files of any
organization by record's file address. By specifying the disk address of
a record, RMS retrieves the record at that address. Accessing records by
RFA is more efficient and faster than other forms of random record access.
The RFA data type can only be used for

• RFA operations (the GETRFA function and the GET and FIND
statements)

• Assignments to other variables of the RFA data type

• Comparisons with other variables of the RFA data type with the equal
to (=) and not equal to (< >) relational operators

• Formal and actual parameters

• DEF and function results

You cannot declare a constant of the RFA data type, nor can you use RFA
variables for any arithmetic operations.

The RFA data type requires 6 bytes of information. See the VAX BASIC
User Manual for more information on Record File Addresses and the RFA
data type.

For the DECIMAL(d,s) data type, you can specify the total number of
digits (d) in the data type and the number of digits to the right of the
decimal point (s). For instance, DECIMAL(l0,3) specifies decimal data
with a total of 10 digits, 3 of which are to the right of the decimal point.

Table 1-2 lists VAX BASIC data type keywords and summarizes
VAX BASIC data types.

July 1988 Program Elements and Structure 1-13

Table 1-2: VAX BASIC Data Types
Precision

Data Type (decimal)
Keyword Size Range (digits)

Integer

BYTE 8 bits -128 to +127 NA

WORD 16 bits -32768 to +32767 NA

LONG 32 bits -2147483648 to NA
+2147483647

Real

SINGLE 32 bits .29 * 10-38 to 6
1.7 * 1038

DOUBLE 64 bits .29 * 10-38 to 16
1.7 * 1038

GFLOAT 64 bits .56 * 10-308 to 15
.90 * 10308

HFLOAT 128 bits .84 * 10-4932 to 33
.59 * 104932

Decimal

DECIMAL(d,s) 0 to 16 1 * 10-31 to 1 * NA
bytes 1031

String

STRING One Max= 65535 NA
character
per byte

RFA

RFA 6 bytes NA NA

In Table 1-2, REAL and INTEGER are generic data type keywords that
specify floating-point and integer storage, respectively. If you use the
REAL or INTEGER keywords to type data, the actual data type (SINGLE,
DOUBLE, GFLOAT, HFLOAT, BYTE, WORD, or LONG) depends on the
current default. If you do not explicitly type one of the appropriate

1-14 Program Elements and Structure

subtypes, VAX BASIC uses the current subtype defaults for REAL and
INTEGER.

You can specify data type defaults in the BASIC environment with the SET
and COMPILE commands, or from DCL level with the DCL command
BASIC. You can also specify whether program values are to be typed
implicitly or explicitly. The following sections discuss data type defaults
and implicit and explicit data typing.

1.3. 1 Implicit Data Typing

You can implicitly assign a data format to program values by adding a
suffix to the variable name or constant value. If you do not specify any
suffix, the variable or constant is assigned the current default data type.
The following rules apply for implicit data typing:

• A dollar sign suffix ($) specifies STRING storage.

• A percent sign suffix (%) specifies INTEGER storage.

• No special suffix character specifies storage of the default type, which
can be INTEGER, REAL, or DECIMAL.

With implicit data typing, the range and precision for program values are
determined by the corresponding default data sizes or subtypes:

• BYTE, WORD, or LONG for INTEGER values

• SINGLE, DOUBLE, GFLOAT, or HFLOAT for REAL values

• The default (d,s) values for DECIMAL values

The default data type is determined by one of the following:

• The system default (REAL)

• The data type set for the BASIC environment with the SET or
COMPILE compiler command

• The data type set for the BASIC environment with the BASIC state
ment OPTION

• The data type set for VAX BASIC with a qualifier for the DCL com
mand BASIC

The VAX BASIC qualifiers for the SET and COMPILE commands are de
scribed in Chapter 2 of this manual. The qualifiers for the DCL command
BASIC are listed in the VAX BASIC User Manual.

Program Elements and Structure 1-15

Note that if you compile your program with the /TYPE_DEFAULT=
EXPLICIT qualifier (on either the DCL command BASIC or VAX BASIC
command COMPILE), you can still add the appropriate suffixes to your
variable names or constant values. The suffixes are useful because they
identify the data type of the variable or constant immediately; the reader
does not have to refer to the declarations at the top of the program to see
which data type applies to a particular program value. However, with
the /TYPE_DEFAULT=EXPLICIT qualifier, you must still explicitly assign
data types to all program values or VAX BASIC signals an error.

It is considered good programming practice to use explicit data typing
because implicit data typing is dependent on compilation defaults. These
defaults may change, thereby affecting the precision of the program
values.

1.3.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to spec
ify the type, range, and precision of your program values. Declarative
statements associate attributes such as data type and value with user
identifiers.

In the following example, the first DECLARE statement associates the
constant value 03060 and the STRING data type with a constant named
zip_code. The second DECLARE statement associates the STRING data
type with emp_name, the DOUBLE data type with with_tax, and the
SINGLE data type with int_rate. No constant values are associated with
identifiers in the second DECLARE statement because they are variable
names.

Example

DECLARE STRING CONSTANT zip_code = 1103060 11

DECLARE STRING emp_name, DOUBLE with_tax, SINGLE int_rate

With explicit data typing, each program variable within a program can
have a different range and precision. You can explicitly assign data
types to variables, constants, arrays, parameters, and functions; therefore,
integer data does not have to take the compilation default types. Explicit
data typing gives you more control over your program.

Using the REAL and INTEGER keywords to explicitly type program
values allows you to write programs that are transportable across systems,
because these data type keywords specify that all floating-point and
integer data take the current defaults for REAL and INTEGER. The data

1-16 Program Elements and Structure

type INTEGER, for example, specifies only that the constant or variable
is an integer. The actual subtype (BYTE, WORD, or LONG) depends on
the default set with the COMPILE or SET command, the DCL command
BASIC, or with the OPTION statement.

You can also specify a particular data type size for values declared
INTEGER or REAL with compilation qualifiers. The /DOUBLE quali
fier, for instance, specifies that all data typed REAL is to be treated as
double-precision data.

The /TYPE_DEFAULT=EXPLICIT qualifier or OPTION TYPE=EXPLICIT
statement allows you to specify that all program data must be explicitly
typed. Compiling a program with /TYPE_DEFAULT= EXPLICIT or
specifying OPTION TYPE=EXPLICIT means that any program value not
explicitly declared causes VAX BASIC to signal an error.

For new applications, DIGITAL recommends using VAX BASIC's ex
plicit data typing features. See the VAX BASIC User Manual for more
information.

1.4 Variables

A variable is a named quantity whose value can change during program
execution. Each variable name refers to a location in the program's storage
area. Each location can hold only one value at a time. Variables of all
data types can have subscripts that indicate their position in an array. You
can declare variables implicitly or explicitly.

Depending on the program operations specified, the value of a variable
can change from statement to statement. VAX BASIC uses the most
recently assigned value when performing calculations. This value remains
in effect until a new value is assigned to the variable.

VAX BASIC accepts these general types of variables:

• Floating-point

• Integer

• String

• RFA

• Packed decimal

• Record

Program Elements and Structure 1-1 7

See the VAX BASIC User Manual for more information on RFA variables
and RECORD data structures.

1.4.1 Variable Names

The name given to a variable depends on whether the variable is internal
or external to the program and whether the variable is implicitly or
explicitly declared.

All variable names must conform to the following rules:

• The name can have from 1 to 31 characters.

• The name has no embedded spaces.

• The first character of the name must be an upper- or lowercase
alphabetic character (A through Z).

• The last character of the name can be either a dollar sign ($) to
indicate a string variable or a percent sign (%) to indicate an integer
variable. If the last character is neither a dollar sign nor a percent
sign, the name indicates a variable of the default type.

• The remaining characters, if present, can be any combination of upper
or lowercase letters (A through Z), numbers (0 through 9), dollar signs
($), underscores (_), or periods (.). The use of underscores in
variable names helps improve readability and is preferred to the use
of periods.

• The name of an external, explicitly declared variable in VAX BASIC
must follow the rules for naming any explicitly declared variable.

Note that a program cannot have external, implicitly declared variables
since all implicitly declared names except SUB subprogram names are
internal to the program.

1-18 Program Elements and Structure

1.4.2 Implicitly Declared Variables

VAX BASIC accepts three types of implicitly declared variables:

• Integer

• String

• Floating-point (or the default data type)

The name of an implicitly declared variable defines its data type. Integer
variables end with a percent sign (%), string variables end with a dollar
sign ($), and variables of the default type (usually floating-point) end
with any allowable character except a percent sign or dollar sign. All
three types of variables must conform to the rules listed in Section 1.4.1
for naming variables. The current data type default (INTEGER, REAL, or
DECIMAL) determines the data type of implicitly declared variables that
do not end in a percent sign or dollar sign.

A floating-point variable is a named location that stores a single floating
point value. The current default size for floating-point numbers (SINGLE,
DOUBLE, GFLOAT or HFLOAT) determines the data type of the floating
point variable. The following are valid floating-point variable names:

c
Ml

F67LJ

L ... 5

BIG47

Z2.

JD_NUMBER

STORAGE_LOCATIQN _FQR_)(X

STRESS_ VALUE

If a numeric value of a different data type is assigned to a floating-point
variable, VAX BASIC converts the value to a floating-point number.

An integer variable is a named location that stores a single integer value.
The current default size for integers (BYTE, WORD, or LONG) determines
the data type of an integer variable. The following are valid integer
variable names:

ABCDEFG% C_8% RECORD_NUMBER%

8% D6E7% THE_ VALUE_LWANT%

If the default data type is INTEGER, the percent suffix (%)is not
necessary.

Program Elements and Structure 1-19

If you assign a floating-point or decimal value to an integer variable, VAX
BASIC truncates the fractional portion of the value. It does not round to
the nearest integer. For example:

100 BY,= -5.7

VAX BASIC assigns the value -5 to the integer variable, not -6.

A string variable is a named location that stores strings. The following are
valid string variable names:

Cl$

L_6$

ABC1$

M$

F34G$

T..$

EMPLOYEE_NAME$

TARGELRECORD$

STORAGE_SHELLIDENTIFIER$

Strings have both value and length. VAX BASIC sets all string variables
to a default length of zero before program execution begins, with the
exception of those variables in a COMMON, MAP, virtual array, or record
definition. See the COMMON statement and the MAP statement in
Chapter 4 of this manual for information on string length in COMMON
and MAP areas. See the VAX BASIC User Manual for information on
default string length in virtual arrays.

During execution, the length of a character string associated with a string
variable can vary from zero (signifying a null or empty string) to 65535
characters.

1.4.3 Explicitly Declared Variables

VAX BASIC lets you explicitly assign a data type to a variable or an array.
For example:

DECLARE DOUBLE Interest_rate

Data type keywords are described in Section 1.1.3.1. For more information
on explicit declaration of variables, see the sections on the COMMON,
DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL, MAP, and SUB
statements in Chapter 4 of this manual. See also the VAX BASIC User
Manual.

1-20 Program Elements and Structure

1.4.4 Subscripted Variables and Arrays

A subscripted variable references part of an array. Arrays can be of any
valid data type. Subscripted variables and arrays follow the same naming
conventions as unsubscripted variables. Subscripts follow the variable
name in parentheses and define the variable's position in the array. When
you create an array, you specify the maximum size of the array (the
bounds) in parentheses following the array name.

In the following example, the DECLARE statement sets the bounds of the
array emp_name to 1000. Therefore, the maximum value for an emp_name
subscript is 1000. The bounds of the array define the maximum value for
a subscript of that array.

Example

DECLARE STRING emp_name(1000)
FOR IY. = 0% TO 1000%

INPUT "Employee name";emp_name(IY.)
NEXT !Y.

Subscripts can be any positive LONG integer value between 0 and
2147483647.

NOTE

By default, VAX BASIC signals an error if a subscript is bigger
than the allowable range. Note, however, that the amount of
storage the system can allocate depends on available memory.
Therefore, very large arrays may cause an internal allocation
error even though the subscript is still within the specified
range.

An array is a set of data ordered in any number of dimensions. A one
dimensional array, like emp_name(lOOO), is called a list or vector. A
two-dimensional array, like payrol1-data(5,5), is called a matrix. An array
of more than two dimensions, like big_array(l5,9,2), is called a tensor.

As a default, VAX BASIC arrays are always zero-based. The number of
elements in any dimension includes element number zero. For example,
the array emp_name contains 1001 elements, since VAX BASIC allocates
element zero. Payrol1-data(5,5) contains 36 elements because VAX BASIC
allocates row and column zero.

Program Elements and Structure 1-21

Often, however, applications call for arrays that are not zero-based. In
VAX BASIC, you can define arrays that are not zero-based by specifying a
lower bound, as well as an upper bound, for the subscripts. In this way,
you can create an array with arbitrary starting and ending points. For
example, you might want to create array birth_rate that holds the annual
birth rate statistics for the years 1950 through 1985:

DECLARE birth_rate(1960 TO 1986)

Lower bounds are not allowed with virtual arrays or arrays used in
MAT statements. However, you can specify lower bounds for any or all
dimensions of a compile-time dimensioned array. If a multi-dimensional
array is declared with lower bounds specified for some dimensions and
not others, zero will be used for those dimensions without lower bounds.

You can use the UBOUND and LBOUND functions to determine the
upper and lower bounds of an array. For a description of these funtions,
see Chapter 4 of this manual.

For all arrays except virtual arrays, the total number of array elements
cannot exceed 2147483647. Note, however, that this is a theoretical value;
the actual maximum size of an array which you can declare depends on
the configuration of your system.

VAX BASIC arrays can have up to 32 dimensions. You can specify the
type of data the array contains with data type keywords. Table 1-2 lists
VAX BASIC data types.

An element in a one-dimensional array has a variable name followed by
one subscript in parentheses. There can be a space between the array
name and the subscripts. For example:

A(6%)

B (6%)

C$ (6%)

A(6%) refers to the seventh item in this list:

A(OY.) A(1%) A(2Y.) A(3%) A(4%) A(6%) A(6Y.)

An element in a two-dimensional array has two subscripts, in parentheses,
following the variable name. The first subscript specifies the row number
and the second subscript specifies the column. Use a comma to separate
the subscripts. You can include a space between the array name and the
subscripts if you like. For example:

A (7%,2%) AY.(4Y.,6Y.) A$ (10%,10%)

1-22 Program Elements and Structure

In the following figure, the arrow points to the element specified by the
subscripted variable A %(4%,6%):

COLUMNS

0123456

RO 0000000
01 0000000
W2 0 0 0 0 0 0 0
S3 0000000

4 0 0 0 0 0 0 0 ..- A%(4%,6%)

ZK-5549-86

An element in an array has as many subscripts as there are dimensions.

Although a program can contain a variable and an array with the same
name, this is poor programming practice. Variable A and the array
A(3%,3%) are separate entities and are stored in completely separate
locations, so it is a good idea to give them different names.

Note that a program cannot contain two arrays with the same name but
a different number of subscripts. For example, the arrays A(3 %) and
A(3%,3%) are invalid in the same program.

VAX BASIC arrays can be redimensioned at run time. See the VAX BASIC
User Manual for more information on arrays.

1.4.5 Initialization of Variables

VAX BASIC sets variables to zero or null values at the start of program
execution. Variables initialized by VAX BASIC include:

• Numeric variables and in-storage array elements (except those in MAP
or COMMON statements).

• String variables (except those in MAP or COMMON statements).

• Variables in subprograms. Subprogram variables are initialized to zero
or the null string each time the subprogram is called.

Program Elements and Structure 1-23

VAX BASIC does not initialize the following:

• Virtual arrays

• Variables in MAP and COMMON areas

1.5 Constants

A constant is a numeric or character literal that does not change during
program execution. A constant can also be named and associated with a
data type. VAX BASIC allows the following types of constants:

• Numeric:

Floating-point

Integer

Packed decimal

• String (ASCII characters enclosed in quotation marks)

A constant of any of the above data types can be named with the
DECLARE CONSTANT statement. You can then refer to the constant
by name in your program. Refer to Section 1.5.3 for information on
naming constants.

You can use the OPTION statement to declare a default data type for all
constants in your program. This statement allows you to specify a data
type for only the constants in your program; you can specify a different
data type for variables. You can also use a special numeric literal notation
to specify the value and data type of a numeric literal. Numeric literal
notation is discussed in Section 1.5.4.

If you do not specify a data type for a numeric constant with the
DECLARE CONSTANT statement or with numeric literal notation,
the type and size of the constant is determined by the default REAL,
INTEGER, or DECIMAL type set with the DCL command BASIC, the VAX
BASIC SET or COMPILE commands, or the OPTION statement.

To simplify the representation of certain ASCII characters and mathemati
cal values, VAX BASIC also supplies some predefined constants.

The following sections discuss numeric and string constants, named
constants, numeric literal notation, and predefined constants.

1-24 Program Elements and Structure

1.5.1 Numeric Constants

A numeric constant is a literal or named constant whose value never
changes. In VAX BASIC, a numeric constant can be a floating-point
number, an integer, or a packed decimal number. The type and size of a
numeric constant is determined by

• The system default values

• The defaults set by the qualifiers for the DCL command BASIC

• The data type qualifiers specified with the COMPILE command

• The defaults set by the SET command

• The data type specified in a DECLARE CONSTANT or OPTION
statement

• Numeric literal notation

If you use a declarative statement to name and declare the data type of
a numeric constant, the constant is of the type and size specified in the
statement. For example:

DECLARE BYTE CONSTANT age = 12

This example associates the numeric literal 12 and the BYTE data type
with the identifier age. To specify a data type for an unnamed numeric
constant, you must use the numeric literal notation format described in
Section 1.5.4.

1.5.1.1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more
decimal digits, either positive or negative, with an optional decimal point
and an optional exponent (E notation). If the default data type is integer,
VAX BASIC will treat the literal as an INTEGER unless it contains a
decimal point or the character E. If the default data type is DECIMAL, an
Eis required or VAX BASIC treats the literal as a packed decimal value.

The following table contains examples of floating-point literals with REAL,
INTEGER, and DECIMAL default data types.

Program Elements and Structure 1-25

REAL

-8.738

239.21£-6

.79

299

INTEGER

-8.738

239.21£-6

.79

299E

DECIMAL

-8.738

239.21£-6

.79E

299E

Very large and very small numbers can be represented in E (exponential)
notation. If a positive number appears in E notation, it can be preceded
by an optional plus sign (+). A negative number in E notation must be
preceded by a minus sign (-). A number can be carried to a maximum
of 6 decimal places for SINGLE precision, 16 decimal places for DOUBLE
precision, 15 decimal places for GFLOAT precision, and 33 places for
HFLOAT precision.

To indicate E notation, a number must be followed by the letter E. It also
must be followed by an exponent sign and an exponent. The exponent
sign indicates if the exponent is either positive or negative and is optional
only if you are specifying a· positive exponent. The exponent is an integer
constant (the power of 10).

Table 1-3 compares numbers in standard and E notation.

Table 1-3: Numbers in E Notation
Standard Notation

.0000001

1,000,000

-10,000,000

100,000,000

1,000,000,000,000

E Notation

.lE-06

.1E+07

-.1E+08

.1E+09

.1E+13

The range and precision of floating-point constants are determined by the
current default data types or the explicit data type used in the DECLARE
CONSTANT statement. However, there are limits to the range allowed
for numeric data types. Table 1-2 lists VAX BASIC data types and ranges.
VAX BASIC signals the fatal error "Floating point error or overflow"
(ERR=48) when your program attempts to specify a constant value outside
of the allowable range for a floating-point data type.

1-26 Program Elements and Structure

1.5.1.2 Integer Constants

An integer constant is a literal or named constant, either positive or
negative, with no fractional digits and an optional trailing percent sign
(%). The percent sign is required for integer literals only if the default
type is not INTEGER.

In the following table, the values are all integer constants. The presence
of the percent sign varies depending on the default data type.

INTEGER

81257

-3477

79

REAL or
DECIMAL

81257%

-3477%

79%

The range of allowable values for integer constants is determined by
either the current default data type or the explicit data type used in the
DECLARE CONSTANT statement. Table 1-2 lists VAX BASIC data
types and ranges. VAX BASIC signals an error for a number outside the
applicable range.

If you want VAX BASIC to treat numeric literals as integer numbers, you
must do one of the following:

• Set the default data type to INTEGER

• Make sure the literal has a percent sign suffix

• Use explicit literal notation

The VAX BASIC compiler must convert numeric literals when assigning
them to integer variables. This means that your program runs somewhat
slower than it would if integer values were explicitly declared. You can
prevent this conversion step by using one of the following:

• Percent signs for integer constants

• Numeric literal notation

• Named integer constants

NOTE

You cannot use percent signs in integer constants that appear in
DATA statements. An attempt to do so causes VAX BASIC to
signal "Data format error" (ERR=SO).

Program Elements and Structure 1-27

1.5. 1.3 Packed Decimal Constants

A packed decimal constant is a number, either positive or negative, that
has a specified number of digits and a specified decimal point position
(scale). You specify the number of digits (d) and the position of the
decimal point (s) when you declare the constant as a DECIMAL(d,s). If
the constant is not declared, the number of digits and the position of the
decimal is determined by the representation of the constant.

For example, when the default data type is DECIMAL, 1.234 is a
DECIMAL(4,3) constant, regardless of the default decimal size. Likewise,
using numeric literal notation, "1.234"P is a DECIMAL(4,3) constant,
regardless of the default data type and default DECIMAL size. Numeric
literal notation is described in Section 1.5.4.

1.5.2 String Constants

String constants are either string literals or named constants. A string
literal is a series of characters enclosed in string delimiters. Valid string
delimiters are:

• Double quotation marks ("text")

• Single quotation marks ('text')

You can embed double quotation marks within single quotation marks
('this is a "text" string') and vice versa ("this is a 'text' string"). Note,
however, that VAX BASIC does not accept incorrectly paired quotation
marks and that only the outer quotation marks must be paired. The
following character strings, for example, are valid:

"The record number does not exist."
"I'm here!"
"The terminating 'condition' is equal to A$. 11

"REPORT 543"

The following strings are not valid:

"Quotation marks that do not match'
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, 8-
bit data characters, or the NUL character (ASCII code 0). If you need a
string constant that contains a NUL, you should use the NUL predefined
constant. See Section 1.5.4 in this manual for information on explicit
literal notation.

1-28 Program Elements and Structure

The VAX BASIC compiler determines the value of the string constant by
scanning all its characters. For example, because of the number of spaces
between the delimiters and the characters, these two string constants are
not the same:

END-OF-FILE REACHED
"END-OF-FILE REACHED"

VAX BASIC stores every character between delimiters exactly as you type
it into the source program, including:

• Lowercase letters (a-z)

• Leading, trailing, and embedded spaces

• Tabs

• Special characters

The delimiting quotation marks are not printed when the program is
executing. The value of the string constant does not include the delimiting
quotation marks.

Example

PRINT "END-OF-FILE REACHED"

END

Output

END-OF-FILE REACHED

Note, however, that VAX BASIC prints double or single quotation marks
when they are enclosed in a second paired set:

Example

PRINT 'FAILURE CONDITION: "RECORD LENGTH"'

END

Output

FAILURE CONDITION: "RECORD LENGTH"

Program Elements and Structure 1-29

1.5.3 Named Constants

VAX BASIC allows you to name constants. You can assign a name to a
constant that is either internal or external to your program and refer to the
constant by name throughout the program. This naming feature is useful
for the following reasons:

• If a commonly used constant must be changed, you need to make only
one change in your program.

• A logically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for
example, to specify the number of elements in an array.

You cannot change the value of an explicitly named constant during
program execution. To change the value of a constant, you must change
the program statement that names the constant and declares its value, and
then recompile the program.

1.5.3.1 Naming Constants Within a Program Unit

You name constants within a program unit with the DECLARE statement.

Example

DECLARE DOUBLE CONSTANT preferred_rate = .147
DECLARE SINGLE CONSTANT normal_rate = .162
DECLARE DOUBLE CONSTANT risky_rate = .175

new_bal = old_bal * (1 + preferred_rate)-years_payment

When interest rates change, only three lines have to be changed rather
than every line that contains an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly
declared variables listed in Section 1.4.1. Note that constant names cannot
have embedded spaces.

The value associated with a named constant can be a compile-time
expression as well as a literal value, as shown in the following example.

1-30 Program Elements and Structure

Example

DECLARE STRING CONSTANT Congrats = t
"+--------------------+" + LF + CR + t
"I Congratulations! I" +CR+ CR+ t
"+--------------------+"

PRINT Congrats

PRINT Congrats

Named constants can save you programming time because you do not
have to retype the value every time you want to display it. Named
constants can save you execution time because the named constant is
known at compilation time.

Valid operators in DECLARE CONSTANT expressions include all valid
arithmetic, relational, and logical operators except exponentiation. You
cannot use built-in functions in DECLARE CONSTANT expressions.

VAX BASIC allows constants of all data types except RFA to be named as
expressions. Because you cannot declare a constant of the RFA data type
you cannot name one as an expression. The following example illustrates
the concept of naming constants as expressions:

DECLARE DOUBLE CONSTANT t
min_value = 0, t
max_value = PI/2

You can specify only one data type in a DECLARE CONSTANT statement.
To declare a constant of a different data type, you must use a second
DECLARE CONSTANT statement.

1.5.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL state
ment.

Program Elements and Structure 1-31

Example

EXTERNAL LONG CONSTANT SS$_NORMAL
EXTERNAL WORD CONSTANT IS_SUCCESS

The first line declares the VAX/VMS status code SS$_NORMAL to be
an external LONG constant. The second line declares IS_SUCCESS, a
success code, to be an external WORD constant. Note that VAX BASIC
allows only external BYTE, WORD, LONG, and SINGLE constants.
The VAX/VMS Linker supplies the values for the constants specified in
EXTERNAL statements.

External constant names cannot exceed 31 characters and must conform to
the rules for naming external variables listed in Section 1.4.1. No external
constant name can have embedded spaces. In VAX BASIC, the named
constant might be a system status code or a global constant declared in a
VAX MACRO or VAX BLISS program.

1.5.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a
special notation called explicit literal notation. The format of this notation
is as follows:

[radix] "num-str-lit" [data-type]

Radix specifies an optional base, which can be any of the following:

D Decimal (base 10)

B Binary (base 2)

0 Octal (base 8)

x Hexadecimal (base 16)

A ASCII

The VAX BASIC default radix is decimal. Binary, octal, and hexadecimal
notation allow you to set or clear individual bits in the representation of
an integer. This feature is useful in forming conditional expressions and in
using logical operations. The ASCII radix causes VAX BASIC to translate
a single ASCII character to its decimal equivalent. This decimal equivalent
is an INTEGER value; you specify whether the INTEGER subtype should
be BYTE, WORD, or LONG.

1-32 Program Elements and Structure

Num-str-lit is a numeric string literal. It can be the digits 0 and 1 when
the radix is binary, the digits 0 through 7 when the radix is octal, the
digits 0 through F when the radix is hexadecimal, and the digits 0 through
9 when the radix is decimal. When the radix is ASCII, num-str-lit can be
any valid ASCII character.

Data-type is an optional single letter that corresponds to a data type
keyword, excluding INTEGER and REAL:

B BYTE

w WORD

L LONG

F SINGLE

D DOUBLE

G GFLOAT

H HFLOAT

p DECIMAL

c CHARACTER

Note that data-type for the ASCII radix is limited to BYTE, WORD, or
LONG. For example:

D"255"L

"4000"F

-"125"B

A"M"L

A"m"B

Specifies a LONG decimal constant with a value of 255

Specifies a SINGLE decimal constant with a value of 4000

Specifies a BYTE decimal constant with a value of -125

Specifies a LONG integer constant with a value of 77

Specifies a BYTE integer constant with a value of 109

A quoted numeric string alone, without a radix and a data type, is a string
literal, not a numeric literal. For example:

"255"W

"255"

Specifies a WORD decimal constant with a value of 255

Is a string literal

Program Elements and Structure 1-33

If you specify a binary, octal, or hexadecimal radix, data-type must be an
integer. If you do not specify a data type, VAX BASIC uses the default
integer data type. For example:

B"llllllll"B

B"l 1111111 "W

B"ll 111111"

B"llllllll"F

X"FF"B

X"FF"W

X"FF"D

0"377"B

0"377"W

0"377"G

Specifies a BYTE binary constant with a value of -1

Specifies a WORD binary constant with a value of 255

Specifies a binary constant of the default data type (BYTE,
WORD, or LONG)

Is illegal because F is not an integer data type

Specifies a BYTE hexadecimal constant with a value of -1

Specifies a WORD hexadecimal constant with a value of 255

Is illegal because D is not an integer data type

Specifies a BYTE octal constant with a value of -1

Specifies a WORD octal constant with a value of 255

Is illegal because G is not an integer data type

When you specify a radix other than decimal, overflow checking is per
formed as if the numeric string were an unsigned integer. However, when
this value is assigned to a variable or used in an expression, the VAX
BASIC compiler treats it as a signed integer.

In the following example, VAX BASIC sets all 8 bits in storage location
A. Because A is a BYTE integer, it has only 8 bits of storage. Because the
8-bit two's complement of 1 is 11111111, its value is -1. If the data type
were W (WORD), VAX BASIC would set the bits to 0000000011111111,
and its value would be 255.

Example

DECLARE BYTE A
A = B"11111111"B
PRINT A

Output

-1

NOTE

In VAX BASIC, a D can appear in both the radix position and
the data type position. D in the radix position specifies that
the numeric string is to be treated as a decimal number (base
10). D in the data type position specifies that the value is to
be treated as a double-precision, floating-point constant. P in

1-34 Program Elements and Structure

the data type position specifies a packed decimal constant. For
example:

"255"0 Specifies a double-precision constant with a value of
255

"255.55"P Specifies a DECIMAL constant with a value of 255.55

You can use explicit literal notation to represent a single-character string
in terms of its 8-bit ASCII value. For example:

[radix] num-str-lit C

The letter C is an abbreviation for CHARACTER. The value of the numeric
string must be from 0 through 255. This feature lets you create your own
compile-time string constants containing nonprinting characters.

The following example declares a string constant named control_g (ASCII
decimal value 7). When VAX BASIC executes the PRINT statement, the
terminal bell sounds.

Example

DECLARE STRING CONSTANT control_g = "7"C
PRINT control_g

1.5.5 Predefined Constants

Predefined constants are symbolic representations of either ASCII charac
ters or mathematical values. They are also called compile-time constants
because their value is known at compilation rather than at run time.

Predefined constants help you

• Format program output to improve readability

• Make source code easier to understand

Table 1-4 lists the predefined constants supplied by VAX BASIC, their
ASCII values, and their functions.

Program Elements and Structure 1-35

Table 1-4: Predefined Constants

Constant

BEL (Bell)

BS (Backspace)

HT (Horizontal Tab)

LF (Line Feed)

VT (Vertical Tab)

FF (Form Feed)

CR (Carriage Return)

SO (Shift Out)

SI (Shift In)

ESC (Escape)

SP (Space)

DEL (Delete)

PI

Decimal
ASCII Value

7

8

9

10

11

12

13

14

15

27

32

127

None

Function

Sounds the terminal bell

Moves the cursor one position to
the left

Moves the cursor to the next
horizontal tab stop

Moves the cursor to the next line

Moves the cursor to the next
vertical tab stop

Moves the cursor to the start of
the next page

Moves the cursor to the begin
ning of the current line

Shifts out for communications
networking, screen formatting,
and alternate graphics

Shifts in for communications
networking, screen formatting,
and alternate graphics

Marks the beginning of an escape
sequence

Inserts one blank space in
program output

Deletes the last character entered

Represents the number PI with
the precision of the default
floating-point data type

You can use predefined constants in many ways. For instance, the fol
lowing example shows how to print and underline a word on a hard copy
terminal.

1-36 Program Elements and Structure

Example

PRINT "NAME:" +BS+ BS+ BS+ BS+ BS+ "-----"
END

Output

NAME:

The following example shows how to print and underline a word on a
VTl 00 video display terminal.

Example

PRINT ESC + "[4mNAME:" + ESC + "[Om"
END

Output

NAME:

Note that the "m" in the above example must be lowercase.

You can also create your own predefined constants with the DECLARE
CONSTANT statement.

In the following example, the first DECLARE statement defines under
lined_name as a string constant. The second DECLARE statement defines
o_pI as a DOUBLE constant equal to the predefined constant PI. If the de
fault REAL data size is SINGLE, the program can use both single-precision
PI and double-precision v_pI.

Example

DECLARE STRING CONSTANT underlined_name = ESC + "[4mNAME:" + ESC + 11 [0m 11

DECLARE DOUBLE CONSTANT D_PI = PI
PRINT underlined_name
PRINT D_PI, , PI

1.6 Expressions

VAX BASIC expressions consist of operands (numbers, strings, constants,
variables, functions, and array elements) separated by arithmetic, string,
relational, and logical operators.

Program Elements and Structure 1-37

Almost all VAX BASIC expressions yield numeric values. The only
exceptions are string concatenation expressions and invocations of string
valued functions. By using different combinations of numeric operators
and operands, and by using the resulting values, you can produce

• Numeric expressions

• String expressions

• Conditional expressions

VAX BASIC evaluates expressions according to operator precedence and
uses the results in program execution. Parentheses can be used to group
operands and operators, thus controlling the order of evaluation.

The following sections explain the types of expressions you can create and
the way VAX BASIC evaluates expressions.

1.6.1 Numeric Expressions

Numeric expressions consist of floating-point, integer, or packed decimal
operands separated by arithmetic operators and optionally grouped by
parentheses. Table 1-5 shows how numeric operators work in numeric
expressions.

Table 1-5: Arithmetic Operators
Operator Example Use

+ A+B Add B to A

A-B Subtract B from A

* A*B Multiply A by B

I A/B Divide A by B

KB Raise A to the power B

** A**B Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the
same expression. Exceptions are the unary plus and unary minus. The
following expressions are valid.

1-38 Program Elements and Structure

A * + B

A * - B

A * (-B)

A * + - + - B

The following expression is not valid:

A - * B

An operation on two numeric operands of the same data type yields a
result of that type. For example:

A% +B%

G3 *MS

Yields an integer value of the default type

Yields a floating-point value if the default type is REAL

If the result of the operation exceeds the range of the data type, VAX
BASIC signals an overflow error message.

The following example causes VAX BASIC to signal the error "Integer
error or overflow" because the sum of A and B (254) exceeds the range of
-128 to +127 for BYTE integers. Similar overflow errors occur for REAL
and DECIMAL data types whenever the result of a numeric operation is
outside the range of the corresponding data type.

Example

DECLARE BYTE A, B
A = 127
B = 127
PRINT A + B
END

It is possible to assign a value of one data type to a variable of a different
data type. When this occurs, the data type of the variable overrides the
data type of the assigned value. The following example assigns the value
32 to the integer variable A% even though the floating-point value of the
expression is 32.13.

Example

AY. = 5.1 * 6.3

Program Elements and Structure 1-39

1.6.1.1 Floating-Point and Integer Promotion Rules

When an expression contains operands with different data types, the data
type of the result is determined by VAX BASIC's data type promotion
rules:

• With one exception, VAX BASIC promotes operands with different
data types to the lowest common data type that can hold the largest
or most precise possible value of either operand's data type. VAX
BASIC then performs the operation using that data type, and yields a
result of that data type.

• The exception is that when an operation involves SINGLE and LONG
data types, VAX BASIC promotes the LONG data type to SINGLE
rather than DOUBLE, performs the operation, and yields a result of
the SINGLE data type.

Note that VAX BASIC does sign extension when converting BYTE and
WORD integers to a higher INTEGER data type (WORD or LONG). The
high order bit (the sign bit) determines how the additional bits are set
when the BYTE or WORD is converted to WORD or LONG. If the high
order bit is zero (positive), all higher-order bits in the converted BYTE or
WORD are set to zero. If the high order bit is 1 (negative), all higher-order
bits in the converted BYTE or WORD are set to 1.

Table 1-6 lists the data type results possible in numeric expressions that
combine BYTE, WORD, LONG, SINGLE, and DOUBLE data. Table 1-7
lists the data type results possible in numeric expressions that combine the
data types GFLOAT and HFLOAT. When the operands are DOUBLE and
GFLOAT, VAX BASIC promotes both values to HFLOAT, and returns an
HFLOAT value. The promotion of DOUBLE and GFLOAT to HFLOAT is
necessary because a DOUBLE value is more precise than a GFLOAT value,
but cannot contain the largest possible GFLOAT value. Consequently,
VAX BASIC promotes these data types to a data type that can hold the
largest and most precise value of either operand.

1-40 Program Elements and Structure

Table 1-6: Result Data Types in VAX BASIC Expressions
BYTE WORD LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE

WORD WORD WORD LONG SINGLE DOUBLE

LONG LONG LONG LONG SINGLE DOUBLE

SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

For example, if one operand is SINGLE and one operand is DOUBLE, VAX
BASIC promotes the SINGLE value to DOUBLE, performs the specified
operation, and returns the result as a DOUBLE value. This promotion
is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible
SINGLE values. If VAX BASIC did not promote the SINGLE value and the
operation yielded a result outside of the SINGLE range, loss of precision
and significance would occur.

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a
simple hierarchy: if all operands in an expression are of these data types,
the result of the expression is the highest data type used in the expression.

Table 1-7: VAX BASIC Result Data Types
GFLOAT HFLOAT

BYTE GFLOAT HFLOAT

WORD GFLOAT HFLOAT

LONG GFLOAT HFLOAT

SINGLE GFLOAT HFLOAT

DOUBLE HFLOAT HFLOAT

GFLOAT GFLOAT HFLOAT

HFLOAT HFLOAT HFLOAT

Program Elements and Structure 1-41

1.6.1.2 DECIMAL Promotion Rules

VAX BASIC allows the DECIMAL(d,s) data type. The number of digits
(d) and the scale or position of the decimal point (s) in the result of
DECIMAL operations depends on the data type of the other operand. If
one operand is DECIMAL and the other is DECIMAL or INTEGER, the d
and s values of the result are determined as follows:

• If both operands are typed DECIMAL, and if both operands have the
same digit (d) and scale (s) values, no conversions occur and the
result of the operation has exactly the same d and s values as the
operands. Note, however, that overflow can occur if the result exceeds
the range specified by the d value.

• If both operands are DECIMAL but have different digit and scale
values, VAX BASIC uses the larger number of specified digits for the
result.

In the following example, variable A allows three digits to the left of
the decimal point and two digits to the right. Variable B allows one
digit to the left of the decimal point and three digits to the right.

Example

DECLARE DECIMAL(6,2) A
DECLARE DECIMAL(4,3) B

The result allows three digits to the left of the decimal point and three
digits to the right.

• If one operand is DECIMAL and one is INTEGER, the INTEGER value
is converted to a DECIMAL(d,s) data type as follows:

BYTE is converted to DECIMAL(3,0).

- WORD is converted to DECIMAL(S,O).

- LONG is converted to DECIMAL(lO,O).

VAX BASIC then determines the d and s values of the result by
evaluating the d ands values of the operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data
type. If one operand is DECIMAL and one is floating-point, the DECIMAL
value is converted to a floating-point value. The total number of digits
(d) in the DECIMAL value determines its new data type, as shown in
Table 1-8.

1-42 Program Elements and Structure

Table 1-8: Result Data Types for DECIMAL Data
Number of Floating-Point Operands
DECIMAL Digits
in Operand SINGLE DOUBLE GFLOAT HFLOAT

1-6 SINGLE DOUBLE GFLOAT HFLOAT

7-15 DOUBLE DOUBLE GFLOAT HFLOAT

16 DOUBLE DOUBLE HFLOAT HFLOAT

17-31 HFLOAT HFLOAT HFLOAT HFLOAT

If the value of dis between 7 and 15, the operand is converted to:

• DOUBLE if the floating-point operand is SINGLE or DOUBLE

• GFLOAT if the floating-point operand is GFLOAT

• HFLOAT if the floating-point operand is HFLOAT

Thus, a DECIMAL(8,5) operand is converted to DOUBLE if the other
operand is SINGLE or DOUBLE, to GFLOAT if the other operand is
GFLOAT, and to HFLOAT if the other operand is HFLOAT. Note also that
exponentiation of a DECIMAL data type returns a REAL value.

See the VAX BASIC User Manual for tutorial information on data type
interactions, conversions, and promotion rules in VAX BASIC numeric
expressions.

1.8.2 String Expressions

String expressions are string entities separated by the plus sign (+). When
used in a string expression, the plus sign concatenates strings.

Example

INPUT "Type two words to be combined";A$, B$
C$ = A$ + B$
PRINT C$
END

Program Elements and Structure 1-43

Output

Type two words to be combined? long
? word

longword

Ready

1.6.3 Conditional Expressions

Conditional expressions can be either relational or logical expressions.
Numeric relational expressions compare numeric operands to determine
whether the expression is true or false. String relational expressions
compare string operands to determine which string expression occurs first
in the ASCII collating sequence.

Logical expressions contain integer operands and logical operators. VAX
BASIC determines whether the specified logical expression is true or false
by testing the numeric result of the expression. Note that in conditional
expressions, as in any numeric expression, when BYTE and WORD
operands are converted to WORD and LONG, the specified operation
is performed in the higher data type, and the result returned is also of
the higher data type. When one of the operands is a negative value, this
conversion will produce accurate but perhaps confusing results, because
VAX BASIC performs a sign extension when converting BYTE and WORD
integers to a higher integer data type. See Section 1.6.1.1 for information
on integer conversion rules.

1.6.3. 1 Numeric Relational Expressions

Operators in numeric relational expressions compare the values of two
operands and returns either a -1 if the relation is true, or a zero if the
relation is false. The data type of the result is the default integer type.

1-44 Program Elements and Structure

Example 1

A = 10
B = 15
X% = (A <> B)
IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE IF X% = 0

THEN PRINT 'Relationship is false'
END IF

END IF

Output 1

Relationship is true

Example 2

A = 10
B = 15
X% = A = B
IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE IF X% = 0

THEN PRINT 'Relationship is false'
END IF

END IF

Output 2

Relationship is false

Table 1-9 shows how numeric operators work in numeric relational
expressions.

Table 1-9: Numeric Relational Operators
Operator Example Meaning

A=B A is equal to B.

< A <B A is less than B.

> A> B A is greater than B.

<=or=< A <= B A is less than or equal to B.

Program Elements and Structure 1-45

Table 1-9 (Cont.): Numeric Relational Operators
Operator

>=or=>

<> or
> <

Example

A>= B

A<> B

Meaning

A is greater than or equal to B.

A is not equal to B.

A== B A and B will PRINT the same if they are equal to
six significant digits. However, if one value prints
in explicit notation and the other value prints in E
format notation, the relation will always be false.

1.6.3.2 String Relational Expressions

Operators in string relational expressions determine how VAX BASIC
compares strings. The VAX BASIC compiler determines the value of each
character in the string by converting it to its ASCII value. ASCII values
are listed in Appendix C in this manual. VAX BASIC compares the strings
character by character, left to right, until it finds a difference in ASCII
value.

In the following example, VAX BASIC compares A$ and B$ character by
character. The strings are identical up to the third character. Because the
ASCII value of Z (90) is greater than the ASCII value of C (67), A$ is less
than B$. VAX BASIC evaluates the expression A$ < B$ as true (-1) and
prints "ABC comes before ABZ".

Example

A$ = 'ABC'
B$ = 'ABZ'
IF A$ < B$
THEN PRINT 'ABC comes before ABZ'
ELSE IF A$ == B$

THEN PRINT 'The strings are identical'
ELSE IF A$ > B$

THEN PRINT 'ABC comes after ABZ'
ELSE PRINT 'Strings are equal but not identical'
END IF

END IF
END IF
END

1-46 Program Elements and Structure July 1988

If two strings of differing lengths are identical up to the last character in
the shorter string, VAX BASIC pads the shorter string with spaces (ASCII
value 32) to generate strings of equal length, unless the operator is the
double equal sign (==). If the operator is the double equal sign, VAX
BASIC does not pad the shorter string.

Program Elements and Structure 1-46.1

In the following program, VAX BASIC compares "ABCDE" to /1 ABC "
to determine which string comes first in the collating sequence. "ABC "
comes before /1 ABCDE" because the ASCII value for space (32) is lower
than the ASCII value of D (68). Then VAX BASIC compares "ABC /1 with
11 ABC" using the double equal sign and determines that the strings do
not match exactly without padding. The third comparison uses the single
equal sign. VAX BASIC pads "ABC" with spaces and determines that the
two strings match with padding.

Example

A$ = 'ABCDE'
B$ = 'ABC'
PRINT 'B$ comes before A$' IF B$ < A$
PRINT 'A$ comes before B$' IF A$ < B$
C$ = 'ABC I

IF B$ == C$
THEN PRINT 'B$ exactly matches C$'
ELSE PRINT 'B$ does not exactly match C$'

END IF
IF B$ = C$

THEN PRINT 'B$ matches C$ with padding'
ELSE PRINT 'B$ does not match C$'

END IF

Output

B$ comes before A$
B$ does not exactly match C$
B$ matches C$ with padding

Table 1-10 shows how numeric operators work in string relational expres
sions.

Table 1-10: String Relational Operators
Operator

<

>
<=or=<

Example

A$= B$

A$ < B$

A$> B$

A$ <= B$

Meaning

Strings A$ and B$ are identical after the shorter
string has been padded with spaces to equal the
length of the longer string.

String A$ occurs before string B$ in ASCII
sequence.

String A$ occurs after string B$ in ASCII sequence.

String A$ is identical to or precedes string B$ in
ASCII sequence.

Program Elements and Structure 1-47

Table 1-10 (Cont.): String Relational Operators
Operator

>=or=>

<> or
> <

Example

A$>= B$

A$ <>
B$

A$== B$

Meaning

String A$ is identical to or follows string B$ in
ASCII sequence.

String A$ is not identical to string B$.

Strings A$ and B$ are identical in composition
and length, without padding.

VAX BASIC treats unquoted strings typed in response to the INPUT
statement differently from quoted strings; it does so by ignoring leading
and trailing spaces and tabs. For example, it evaluates the quoted strings
"ABC" and "ABC " as equal but not identical because the == operator
does not pad the shorter string with spaces. When you input those same
strings as unquoted strings in response to the INPUT prompt, VAX BASIC
evaluates them as equal and identical because it ignores the trailing
spaces. The LINPUT statement, on the other hand, treats unquoted strings
as string literals, so the trailing spaces are part of the string, and VAX
BASIC evaluates the strings as equal, but not identical.

1.6.3.3 Logical Expressions

A logical expression can have one of the following formats:

• A unary logical operator and one integer operand

• Two integer operands separated by a binary logical operator

• One integer operand

Logical expressions are valid only when the operands are integers. If
the expression contains two integer operands of differing data types, the
resulting integer has the same data type as the higher integer operand.
For instance, the result of an expression that contains a BYTE integer and
a WORD integer would be a WORD integer. Table 1-6 shows how integer
data types interact with each other in expressions.

VAX BASIC determines whether the condition is true or false by testing
the result of the logical expression to see whether any bits are set. If
no bits are set, the value of the expression is zero and it is evaluated as
false; if any bits are set, the value of the expression is nonzero, and the
expression is evaluated as true. VAX BASIC generally accepts any nonzero
value in logical expressions as true. However, logical operators can return

1-48 Program Elements and Structure

unanticipated results unless -1 is specified for true values and zero for
false. Table 1-11 lists the logical operators.

NOTE
i"i'~

DIGITAL recommends that you use logical operators on the
results of relational expressions to avoid obtaining unanticipated
results.

Table 1-11: Logical Operators
Operator Example

NOT NOT A%

AND A% AND B%

OR A% ORB%

XOR A% XOR B%

EQV A% EQV B%

IMP A%IMPB%

Meaning

The bit-by-bit complement of A%. If A% is true
(-1), NOT A% is false (0).

The logical product of A% and B%. A% AND
B% is true only if both A% and B% are true.

The logical sum of A% and B%. A% OR B%
is false only if both A% and B% are false;
otherwise, A% OR B% is true.

The logical exclusive OR of A% and B%. A%
XOR B% is true if either A% or B% is true but
not if both are true.

The logical equivalence of A% and B%. A%
EQV B% is true if A% and B% are both true or
both false; otherwise the value is false.

The logical implication of A% and B%. A% IMP
B% is false only if A% is true and B% is false;
otherwise, the value is true.

The truth tables in Figure 1-1 summarize the results of these logical
operations. Zero is false; -1 is true.

Program Elements and Structure 1-49

Figure 1-1: Truth Tables

A% NOTA% A% 8% A% OR 8%

0 -1 0 0 0
-1 0 0 -1 -1

-1 -0 -1
-1 -1 -1

A% 8% A% AND 8% A% 8% A% EQV 8%

0 0 0 0 0 -1
0 -1 0 0 -1 0

-1 0 0 -1 0 0
-1 -1 -1 -1 -1 -1

A% 8% A% XOR 8% A% 8% A%1MP8%

0 0 0 0 0 -1
0 -1 -1 0 -1 -1

-1 0 -1 -1 0 0
-1 -1 0 -1 -1 -1

ZK-5548-86

The operators XOR and EQV are logical complements.

In the following example, the values of A% and B% both test as true
because they are nonzero values. However, the logical AND of these two
variables returns an unanticipated result of false.

1-50 Program Elements and Structure

Example

AY. = 2%
BY. = 4%
IF AY. THEN PRINT 'AY. IS TRUE'
IF BY. THEN PRINT 'BY. IS TRUE'
IF AY. AND BY. THEN PRINT 'AY. AND BY. IS TRUE'

ELSE PRINT 'AY. AND BY. IS FALSE'
END

Output

AY. IS TRUE
BY. IS TRUE
AY. AND BY. IS FALSE

The program returns this seemingly contradictory result because logical
operators work on the individual bits of the operands. The 8-bit binary
representation of 2% is

0 0 0 0 0 0 1 0

The 8-bit binary representation of 4% is

0 0 0 0 0 1 0 0

Each value tests as true because it is nonzero. However, the AND opera
tion on these two values sets a bit in the result only if the corresponding
bit is set in both operands. Therefore, the result of the AND operation on
4% and 2% is

0 0 0 0 0 0 0 0

No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true
(nonzero) because both 6% and 2% have the second bit set. Therefore,
VAX BASIC sets the second bit in the result and the value tests as nonzero
and true.

The 8-bit binary representation of -1 is

1 1 1 1 1 1 1 1

The result of -1 % AND -1 % is -1 % because VAX BASIC sets bits in the
result for each corresponding bit that is set in the operands. The result
tests as true because it is a nonzero value.

Program Elements and Structure 1-51

Example

A'/. = -1'/.
B'I. = -1'/.
IF A'/. THEN PRINT 'A'/. IS TRUE'
IF B'/. THEN PRINT 'BY. IS TRUE'
IF AY. AND BY. THEN PRINT 'AY. AND B'/, IS TRUE'

ELSE PRINT 'AY. AND B'/. IS FALSE'
END

Output

A'/, IS TRUE
B'/. IS TRUE
AY. AND BY. IS TRUE

Your program may also return unanticipated results if you use the NOT
operator with a nonzero operand that is not -1.

In the following example, VAX BASIC evaluates both A% and B% as true
because they are nonzero. NOT A% is evaluated as false (zero) because
the binary complement of -1 is zero. NOT B% is evaluated as true because
the binary complement of 2 has bits set and is therefore a nonzero value.

Example

AY.=-1Y.
BY.=2
IF AY. THEN PRINT 'AY. IS TRUE'

ELSE PRINT 'AY. IS FALSE'
IF BY. THEN PRINT 'BY. IS TRUE'

ELSE PRINT 'BY. IS FALSE'
IF NOT AY. THEN PRINT 'NOT AY. IS TRUE'

ELSE PRINT 'NOT AY. IS FALSE'
IF NOT BY. THEN PRINT 'NOT BY. IS TRUE'

ELSE PRINT 'NOT BY. IS FALSE'
END

Output

AY. IS TRUE
BY. IS TRUE
NOT AY. IS FALSE
NOT BY. IS TRUE

1.8.4 Evaluating Expressions

VAX BASIC evaluates expressions according to operator precedence. Each
arithmetic, relational, and string operator in an expression has a position
in the hierarchy of operators. The operator's position informs VAX BASIC

1-52 Program Elements and Structure

of the order in which to perform the operation. Parentheses can change
the order of precedence.

Table 1-12 lists all operators as VAX BASIC evaluates them. Note that

• Operators with equal precedence are evaluated logically from left to
right.

• VAX BASIC evaluates expressions enclosed in parentheses first, even
when the operator in parentheses has a lower precedence than that
outside the parentheses.

• The addition (+) and multiplication (•) operators are evaluated in
algebraic order.

Table 1-12: Numeric Operator Precedence
Operator Precedence

** or

- (unary minus) or + (unary plus)

*or/

+or -

+ (concatenation)

all relational operators

NOT

AND

OR, XOR

IMP

EQV

1

2

3

4

5

6

7

8

9

10

11

For example, VAX BASIC evaluates the expression A= 15"2 + 12"2 -
(35 • 8) in five steps:

1. 15~2 = 225 Exponentiation (leftmost expression)

2. 1r2 = 144 Exponentiation

3. 225 + 144 = 369 Addition

4. (35 * 8) = 280 Multiplication

5. 369 - 280 = 89 Subtraction

Program Elements and Structure 1-53

There is one exception to this order of precedence: when an operator that
does not require operands on either side of it (such as NOT) immediately
follows an operator that does require operands on both sides (such as the
addition operator (+)), VAX BASIC evaluates the second operator first.
For example:

AY. + NOT BY. + CY.

This expression is evaluated as

(AY. + (NOT BY.)) + CY.

VAX BASIC evaluates the expression NOT B before it evaluates the
expression A + NOT B. When the NOT expression does not follow the
addition (+) expression, the normal order of precedence is followed:

NOT AY. + BY. + CY.

This expression is evaluated as:

NOT ((AY. + BY.) + C %)

VAX BASIC evaluates the two expressions (A%+ B%) and ((A%+ B%)
+ C%) because the+ operator has a higher precedence than the NOT
operator.

VAX BASIC evaluates nested parenthetical expressions from the inside
out.

In the following program, VAX BASIC evaluates the parenthetical expres
sion A quite differently from expression B. For expression A, VAX BASIC
evaluates the innermost parenthetical expression (25 + 5) first, then the
second inner expression (30 / 5), then (6 * 7), and finally (42 + 3). For
expression B, VAX BASIC evaluates (5 / 5) first, then (1 * 7), then (25 + 7
+ 3) to obtain a different value.

Example

A = ((((25 + 5) I 5) * 7) + 3)
PRINT A
B = 25 + 5 I 5 * 7 + 3
PRINT B

Output

45
35

1-54 Program Elements and Structure

1. 7 Program Documentation

Documentation within a program clarifies and explains source program
structure. These explanations, or comments, can be combined with code
to create a more readable program without affecting program execution.
Comments can appear in two forms:

• Comment fields (including empty statements)

• REM statements

1. 7. 1 Comment Fields

A comment field begins with an exclamation point (!) and ends with a
carriage return. You supply text after the exclamation point to document
your program. You can specify comment fields while creating VAX BASIC
programs at DCL level as well as in the BASIC environment. In both
cases, VAX BASIC does not execute text in a comment field.

Example

! FOR loop to initialize list Q
FOR I = 1 TO 10

Q{I) = 0 ! This is a comment
NEXT I
! List now initialized

VAX BASIC executes only the FOR ... NEXT loop. The comment fields,
preceded by exclamation points, are not executed.

Comment fields help make your program more readable and allow you
to format your program into readily visible logical blocks. They can also
serve as target lines for GOTO and GOSUB statements.

Program Elements and Structure 1-55

Example

! Square root program
!
INPUT 'Enter a number';A
PRINT 'SQR of ';A;'is ';SQR(A)
!
! More square roots?
!
INPUT 'Type "Y" to continue, press RETURN to quit' ;ANS$
GOTO 10 IF ANS$ = 11 Y11

END

You can also use an exclamation point to terminate a comment field, but
this practice is not recommended. You should make sure that there are
no exclamation points in the comment field itself; otherwise, VAX BASIC
treats the text remaining on the line as source code.

NOTE

Comment fields in DATA statements are invalid; the VAX
BASIC compiler treats the comments as additional data.

Empty statements consist of a line number and an exclamation point.
Empty statements can make your program more legible by increasing the
amount of "white space" and visually separating logical program segments.
In the following example, lines 100 and 300 are empty statements:

Example

100
! FOR loop to initialize list Q
!

200 FOR I = 1 TO 10

300

Q(I) = 0 ! This is a comment
NEXT I

! List is now initialized

In general, empty statements can be used to make a program more legible
and organized.

1-56 Program Elements and Structure

1. 7 .2 REM Statements

A REM statement begins with the REM keyword and ends when VAX
BASIC encounters a new line number. The text you supply between the
REM keyword and the next line number documents your program. Like
comment fields, REM statements do not affect program execution. VAX
BASIC ignores all characters between the keyword REM and the next
line number. Therefore, the REM statement can be continued without the
ampersand continuation character and should be the only statement on
the line or the last of several statements in a multi-statement line:

Example

REM This is an example
A=5
8=10
REM A equals 6

B equals 10
PRINT A, B

The REM statement is nonexecutable. When you transfer control to a
REM statement, VAX BASIC executes the next executable statement that
lexically follows the referenced statement.

NOTE

Because VAX BASIC treats all text between the REM statement
and the next line number as commentary, REM should be used
very carefully in programs that follow the implied continuation
rules. REM statements are disallowed in programs without line
numbers.

In the following example, the conditional GOTO statement in line 20
transfers program control to line 10. VAX BASIC ignores the REM com
ment on line 10 and continues program execution at line 20.

Example

10 REM ** Square root program
20 INPUT 'Enter a number';A

PRINT 'SQR of ';A;'is ';SQR(A)
INPUT 'Type "Y" to continue, press RETURN to quit';ANS$
GOTO 10 IF ANS$ = "Y"

40 END

Program Elements and Structure 1-5 7

Chapter 2

BASIC Environment Commands

Environment commands are commands that you use in the BASIC envi
ronment. With environment commands, you can display, edit, and merge
VAX BASIC programs, set compiler defaults, move VAX BASIC source
programs to and from storage, and execute programs. This chapter lists
alphabetically all of the compiler commands that can be used within the
BASIC environment. For information on immediate mode and calculator
mode statements, see the VAX BASIC User Manual.

BASIC Environment Commands 2-1

! your-comment

! your-comment

Format

You can enter comments while in the BASIC environment by typing an
exclamation point (!) and the comment.

your-comment

Syntax Rules

1. The exclamation point must be the first character on the line.

2. You cannot continue a comment over more than one line.

Remarks

None.

Examples

Example 1

Ready

! Comments here

2-2 BASIC Environment Commands

Example 2

$ TYPE BUILD_SPECIAL.COM

$ SET VERIFY
$ BASIC
!+
! Set the compilation options by uncommenting
! the appropriate ones.
!-
! SET LIST
SET WORD
SET DEBUG
!+
! Get the source module.
!-
OLD SPECIAL
!+
! Compile it.
! -
COMPILE
!+
! All done.
! -
EXIT

! your-comment

BASIC Environment Commands 2-3

S system-command

S system-command

Format

You can execute a DCL command while in the BASIC environment by
typing a dollar sign ($) before the command. VAX BASIC passes the
command to the operating system for execution. The context of the BASIC
environment and the program currently in memory do not change.

$ system-command

Syntax Rules

Remarks

VAX BASIC passes system-command directly to the VAX/VMS operating
system without checking for validity.

1. The terminal displays any error messages or output that the command
generates.

2. Control returns to the BASIC environment after the command exe
cutes. The context (source file status, loaded modules, and so on) of
the BASIC environment and the program currently in memory do not
change unless the command causes the operating system to abort VAX
BASIC or log you out.

3. The command you specify executes within the context of a subprocess.
Consequently, commands such as the DCL command SET execute
only within the subprocess and do not affect the process running VAX
BASIC.

2-4 BASIC Environment Commands

S system-command

Example

Ready

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED, GROUP=RWED, WORLD=RE

Ready

BASIC Environment Commands 2-5

APPEND

APPEND

Format

The APPEND command merges an existing VAX BASIC source program
with the program currently in memory.

APPEND [file-spec]

Syntax Rules

Remarks

File-spec is the name of the VAX BASIC program you want to merge with
the program currently in memory. The default file type is BAS.

1. You cannot specify the APPEND command on programs that do not
contain line numbers.

2. If you type APPEND without specifying a file name, VAX BASIC
prompts with

Append file name--

You should respond with a file name. If you respond with a car
riage return and no file name, VAX BASIC searches for a file
named NONAME.BAS. If the VAX BASIC compiler cannot find
NONAME.BAS, VAX BASIC signals the error "Can't find file or
account" (ERR=S).

3. You can append the contents of file-spec to a source program that is
either called into memory with the OLD command or created in the
BASIC environment. If there is no program in memory, VAX BASIC
appends the file to an empty program with the default file name
NON AME.

2-6 BASIC Environment Commands

Example

APPEND

4. If file-spec contains a VAX BASIC line with the same line number as a
line of the program in memory, the line in the appended file replaces
the line of the program in memory. Otherwise, VAX BASIC inserts
appended lines into the program in memory in sequential, ascending
line number order.

5. The APPEND command does not change the name of the program in
memory.

6. If you have not saved the appended version of the program, VAX
BASIC signals the warning "Unsaved change has been made, CTRL/Z
or EXIT to exit" the first time you try to leave the BASIC environment.

Ready

New FIRST_TRY.BAS

Ready

10 PRINT "First program"

APPEND NEW_PROG.BAS

Ready

LIST

10 PRINT "First Program"

20 PRINT "This section has been appended"

BASIC Environment Commands 2-7

ASSIGN

ASSIGN

Format

The ASSIGN command equates a logical name to a complete file specifi
cation, a device, or another logical name within the context of the BASIC
environment.

ASSIGN equiv-name[:] log-name[:]

Syntax Rules

Remarks

1. Equiv-name specifies the file specification, device, or logical name to be
assigned a logical name. If you specify a physical device name, you
must terminate it with a colon (:).

2. Log-name is the 1- to 63-character logical name to be associated with
equiv-name. You can specify a logical name for any portion of a file
specification. If the logical name translates to a device name, and will
be used in place of a device name in a file specification, you must
terminate it with a colon (:).

3. If log-name has more than 63 characters, VAX BASIC signals the error
"Invalid logical name".

1. When the logical name assignment supersedes another logical name
previously assigned, VAX BASIC displays the message "Previous
logical name assignment replaced".

2. Logical names assigned with the ASSIGN command are placed in the
process logical name table and remain there until you exit the BASIC
environment.

2-8 BASIC Environment Commands

ASSIGN

Example

ASSIGN [HENRY.BAS] PRO:

BASIC Environment Commands 2-9

COMPILE

COMPILE

The COMPILE command converts a VAX BASIC source program to an
object module and writes the object file to disk.

Format COMPILE [file-spec] [/qualifier]. ..

Command Qualifiers
/[NO]ANSLST ANDARD
/[NO]AUDIT [sep text-entry]
/[NO]BOUNDS_CHECK
/BYTE
/[NO]CROSS_REF [sep [NO]KEYWORDS]
/[NO]DEBUG
/DECIMAL_SIZE sep (d,s)
/DOUBLE
/[NO]FLAG [sep (flag-clause, ...)]
/GFLOAT
/HFLOAT
/[NO]LINES
/[NO]LIST
/LONG
/[NO]MACHINE_CODE
/[NO]OBJECT
/[NO]OVERFLOW [sep (data-type, ...)]
/[NO]ROUND
/[NO]SETUP
/[NO]SHOW [sep (show-item, ...)]
/SINGLE
/[NO]SYNT AX _CHECK
/[NO]TRACEBACK
/TYPE_DEFAUL T sep default-clause
/VARIANT sep int-const
/[NO]W ARNINGS [sep warn-clause]
/WORD

2-10 BASIC Environment Commands

Defaults
/NOANSl_ST ANDARD
/NO AUDIT
/BOUNDS_CHECK
/LONG
/NOCROSS_REF
/NODE BUG
/DECIMAL _SIZE=(15 ,2)
/SINGLE
/NOFLAG
/SINGLE
/SINGLE
/LINES
/NOLIST
/LONG
/NOMA CHINE
/OBJECT
/OVERFLOW=(INTEGER,DECIMAL)
/NOROUND
/SETUP
/SHOW
/SINGLE
/NOSYNT AX_CHECK
/TRACEBACK
/TYPE_DEFAULT=REAL
/VARIANT=O
/WARNINGS
/LONG

COMPILE

Syntax Rules

Remarks

1. File-spec specifies a name for the output file or files. If you do not
provide a file-spec, the VAX BASIC compiler uses the name of the
program currently in memory for the file name, a default file type of
OBJ for the object file, and a default file type of LIS for the listing file,
if a listing file is requested.

2. File-spec can precede or follow any qualifier.

3. /Qualifier specifies a qualifier keyword that sets a VAX BASIC default.

4. You can abbreviate all positive qualifiers to the first three letters of the
qualifier keyword. You can abbreviate a negative qualifier to NO and
the first three letters of the qualifier keyword.

5. In cases of ambiguous or erroneous qualifiers, VAX BASIC signals
"Unknown qualifier", and the program does not compile. When
qualifiers conflict, VAX BASIC compiles the program using the last
specified conflicting qualifier. For example, the following command
line causes VAX BASIC to compile the program currently in memory
but does not cause VAX BASIC to create an OBJ file.

COMPILE/OBJ/NOOBJ

6. There must be a program in memory, or the COMPILE command does
not execute; VAX BASIC does not signal an error or warning.

1. If an object file for the program already exists in your directory, VAX
BASIC creates a new version of the OBJ file.

2. You should not specify both a file name and file type. For example,
if you enter the following command line, VAX BASIC creates two
versions of NEWOBJ.FIL:

COMPILE NEWOBJ.FIL/LIS/OBJ

The first version, NEWOBJ.FIL;l, is the listing file; the second version,
NEWOBJ.FIL;2, is the object file. If you specify only a file name, VAX
BASIC uses the OBJ and LIS file type defaults when creating these
files.

3. Use the COMPILE/NOOBJECT command to check your program for
errors without producing an object file.

BASIC Environment Commands 2-11

COMPILE

4. When you exit from the BASIC environment, all options set with qual
ifiers return to the system default values. Use the SHOW command to
display your system defaults before setting any qualifiers.

Command Qualifiers

/[NO]ANSLSTANDARD
The / ANSI_STANDARD qualifier causes VAX BASIC to compile pro
grams according to the ANSI Minimal BASIC standard and to flag syntax
that does not conform to the standard. The /NOANSI_STANDARD
qualifier causes VAX BASIC not to compile the program according to the
ANSI Minimal BASIC standard. The default is /NOANSI_STANDARD.

See the VAX BASIC User Manual for more information on the ANSI
Minimal BASIC Standard.

/[NO]AUDIT [{ : } { s!r-lit }] = file-spec
The /AUDIT qualifier causes VAX BASIC to include a history list entry in
the COD data base when a COD definition is extracted. Str-lit is a quoted
string. File-spec is a text file. The history entry includes

• The contents of str-lit, or up to the first 64 lines in the file specified by
file-spec

• The name of the program module, process, user name, and user UIC
that accessed the COD

• The time and date of the access

• A note that access was made by the VAX BASIC compiler

• A note that access was an extraction

If you specify /NOAUDIT VAX BASIC does not include a history list
entry. /NOAUDIT is the default.

/[NO]BOUNDS_CHECK
The /BOUNDS_CHECK qualifier causes VAX BASIC to perform range
checks on array subscripts. With bounds checking enabled, VAX BASIC
checks that all subscript references are within the array boundaries set
when the array was declared. If the subscript bounds are not within the
bounds initially declared for the array, VAX BASIC signals an error mes
sage. If you specify /NOBOUNDS_CHECK VAX BASIC does not check
that all subscript references are within the array bounds set. /BOUNDS_
CHECK is the default.

2-12 BASIC Environment Commands

COMPILE

/BYTE
The /BYTE qualifier causes VAX BASIC to allocate 8 bits of storage as the
default for all integer data not explicitly typed in the program. Untyped
integer values are treated as BYTE values and must be in the BYTE range
or VAX BASIC signals the error "Integer error or overflow." Table 1-2 in
this manual lists VAX BASIC data types and ranges. By default, the VAX
BASIC compiler allocates 32 bits of storage.

/[NO]CROSS_REFERENCE [{ ~ } [NO]KEYWORDS]

If you use the /CROSS-REFERENCE qualifier with the /LIST qualifier
when you compile your program, the VAX BASIC compiler includes cross
reference information in the program listing file. If you specify /CROSS_
REFERENCE=KEYWORDS, VAX BASIC also cross-references VAX BASIC
keywords used in the program. If you specify /NOCROSS-REFERENCE,
VAX BASIC does not include a cross reference section in the compiler
listing. The default is /NOCROSS-REFERENCE.

/[NO]DEBUG
The /DEBUG qualifier appends to the object file information on symbolic
references and line numbers. This information is used by the VAX/VMS
Debugger when you debug your program. When you specify the /DEBUG
qualifier on the COMPILE command, you cause the debugger to be
invoked automatically when the program is run at DCL level (unless
you specify RUN/NODEBUG). If you specify COMPILE/NODEBUG,
information on program symbols and line numbers is not included in the
object file. The default is /NODEBUG.

See the VAX BASIC User Manual for more information on using the
VAX/VMS Debugger.

/DECIMAL_S/ZE { ~ } (d,s}

The /DECIMAL _SIZE qualifier allows you to specify the default size and
precision for all DECIMAL data not explicitly assigned size and precision
in the program. You specify the total number of digits (d) and the number
of digits to the right of the decimal point (s). VAX BASIC signals the error
"Decimal error or overflow" (ERR=181) when DECIMAL values are outside
the range specified with this qualifier. See Table 1-2 in this manual for
more information on the storage and range of packed decimal data. The
default is /DECIMAL_SIZE=(lS,2).

BASIC Environment Commands 2-13

COMPILE

/DOUBLE
The /DOUBLE qualifier causes VAX BASIC to allocate 64 bits of storage
in D_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as DOUBLE values and must be in the DOUBLE range or VAX BASIC
signals the error "Floating-point error or overflow." Table 1-2 in this
manual lists VAX BASIC data types and ranges. The default is /SINGLE.

1rNo,1FLAG [{ : } { { [NO]BP2COMPA TIBILITY })]
IL' J = [NOJDECLINING , ...
The /FLAG qualifier causes VAX BASIC to provide compile-time informa
tion about program elements that are not compatible with BASIC-PLUS-2
or that DIGITAL designates as not recommended for new program devel
opment. For more information on source code that is incompatible with
with BASIC-PLUS-2, see Appendix A in this manual.

If you specify the DECLINING clause, VAX BASIC will flag the following
source code as declining:

• CVT$$ (use EDIT$)

• CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

• DEF• functions (use DEF functions)

• FIELD statements (use MAP DYNAMIC and REMAP)

• GOTO line-num % (do not use the integer suffix with a line number)

The default is /NOFLAG.

/GFLOAT
The /GFLOAT qualifier causes VAX BASIC to allocate 64 bits of storage
in G_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as G_floating values and must be in the G_floating range or VAX BASIC
signals "Floating-point error or overflow." Table 1-2 in this manual lists
VAX BASIC data types and ranges. The default is /SINGLE.

/HFLOAT
The /HFLOAT qualifier causes VAX BASIC to allocate 128 bits of storage
in H_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as H_floating values and must be in the H_floating range or VAX BASIC
signals "Floating-point error or overflow." Table 1-2 in this manual lists
VAX BASIC data types and ranges. The default is /SINGLE.

2-14 BASIC Environment Commands

COMPILE

/[NO]LINES
The /LINES qualifier includes line number information in object modules.
If you specify /NOLINES VAX BASIC does not include line number
information in object modules. If you specify /NOLINES in a program
containing a RESUME statement or the run-time ERL function, VAX
BASIC issues a warning that the /NOLINES qualifier has been overridden.
The default is /LINES.

/[NO]LIST
The /LIST qualifier causes VAX BASIC to produce a compiler listing file.
This compiler listing generated by the /LIST qualifier contains a memory
allocation map. By default, the name of the listing file is the same as the
name of the first program module specified, and has a default file type of
LIS. If you specify /NOLIST VAX BASIC does not generate a compiler
listing. /NOLIST is the default.

/LONG
The /LONG qualifier causes VAX BASIC to allocate 32 bits of storage as
the default size for all integer data not explicitly typed in the program.
Untyped integer values are treated as LONG values and must be in the
LONG range or VAX BASIC signals the error "Integer error or overflow."
Table 1-2 in this manual lists VAX BASIC data types and ranges. /LONG
is the default.

/[NO]MACHINE_CODE
When you specify the /MACHINE_CODE qualifier with the /LIST
qualifier in the COMPILE command, VAX BASIC includes the machine
code generated by the compilation in the program listing file. If you
specify /NOMACHINE_CODE, VAX BASIC does not include a machine
code section in the listing file. /NOMACHINE_CODE is the default.

/[NOJOBJECT
The /OBJECT qualifier generates an object module with the same file
name as the program and a default file type of OBJ. The /NOOBJECT
qualifier allows you to check your program for errors without creating an
object file. /OBJECT is the default.

{ : } { INTEGER } /[NOJOVERFLOW [= (DECIMAL , ...)]
The /OVERFLOW qualifier causes VAX BASIC to report arithmetic
overflow for operations on integer or packed decimal data, or both. If
you specify /NOOVERFLOW, VAX BASIC does not report arithmetic
overflows. The default is /OVERFLOW=(INTEGER,DECIMAL).

BASIC Environment Commands 2-15

COMPILE

/[NO]ROUND
The /ROUND qualifier causes VAX BASIC to round rather than truncate
DECIMAL values. If you specify /NOROUND, VAX BASIC truncates
DECIMAL values. The default is /NOROUND.

/[NO]SETUP
The /SETUP qualifier causes VAX BASIC to make calls to the Run-Time
Library to set up the stack for VAX BASIC variables, set up dynamic
string and array descriptors, initialize variables, and enable VAX BASIC
error handling. If you specify the /NOSETUP qualifier, VAX BASIC
will attempt to optimize your program by omitting these calls. If your
program contains any of the following elements, VAX BASIC provides an
informational diagnostic and does not optimize your program:

• CHANGE statements

• DEF or DEF• statements

• Dynamic string variables

• Executable DIM statements

• EXTERNAL string functions

• MAT statements

• MOVE statements for an entire array

• ON ERROR statements

• READ statements

• REMAP statements

• RESUME statements

• WHEN blocks

• All graphics statements

• String concatenation

• Built-in string functions

• Virtual array declarations

Note that program modules compiled with the /NOSETUP qualifier
cannot perform 1/0 and have no error-handling capabilities. If an error
occurs in such a module, the error is resignaled to the calling program.
The default is /SETUP.

2-16 BASIC Environment Commands

COMPILE

I
[NO]CDD_DEFINITIONS l
[NO]ENVIRONMENT

/[NO]SHOW [{ ~ } ([NO]INCLUDE , ...)]
[NO]MAP
[NO]OVERRIDE

The /SHOW qualifier (when used with the /LIST qualifier) tells VAX
BASIC what to include in the compiler listing file. You can specify the
following /SHOW qualifier items:

• CDD_DEFINITIONS causes VAX BASIC to include a section of
translated COD definitions

• ENVIRONMENT causes VAX BASIC to include a list compilation
qualifiers in effect

• INCLUDE causes VAX BASIC to include a section on the contents of
any %INCLUDE files

• MAP causes VAX BASIC to include a storage allocation map section
• OVERRIDE cancels the effect of all %NOLIST directives in the source

program

For example, if you specify the following command, VAX BASIC includes
a storage allocation map section in the compiler listing:

COMPILE/LIST/SHOW=MAP

If you specify a /SHOW qualifier but do not specify any /SHOW items,
VAX BASIC includes all the aforementioned sections in the listing. If you
specify /NOSHOW, VAX BASIC does not add any additional sections to
the compiler listing. The default is /SHOW.

/SINGLE
The /SINGLE qualifier causes VAX BASIC to allocate 32 bits of storage
in F_floating format as the default size for all floating-point data not
explicitly typed in the program. Untyped floating-point values are treated
as SINGLE values and must be in the SINGLE range or VAX BASIC
signals the error "Floating-point error or overflow." Table 1-2 in this
manual lists VAX BASIC data types and ranges. The default is /SINGLE.

/[NO]SYNTAJLCHECK
The /SYNTAX_CHECK qualifier causes VAX BASIC to perform syntax
checking after each program line is typed. If you specify /NOSYNTAX_
CHECK, VAX BASIC does not perform syntax checking after each program
line is typed. The default is /NOSYNTAX_CHECK.

BASIC Environment Commands 2-17

COMPILE

/[NO]TRACEBACK
The /TRACEBACK qualifier causes VAX BASIC to include traceback
information in the object file that allows reporting of the sequence of
calls that transferred control to the statement where an error occurred.
The /NOTRACEBACK qualifier tells VAX BASIC not to include traceback
information in the object file. The default is /TRACEBACK.

/TYPE DEFAULT { : } { :::GER } - = DECIMAL
EXPLICIT

The /TYPE_DEFAULT qualifier sets the default data type (REAL,
INTEGER, or DECIMAL) for all data not explicitly typed in your program
or specifies that all data must be explicitly typed (EXPLICIT).

• REAL specifies that all data not explicitly typed is floating-point data
of the default size (SINGLE, DOUBLE, GFLOAT, or HFLOAT).

• INTEGER specifies that all data not explicitly typed is integer data of
the default size (BYTE, WORD, or LONG).

• DECIMAL specifies that all data not explicitly typed is packed decimal
data of the default size.

• EXPLICIT specifies that all data in a program must be explicitly typed.
Implicitly declared variables cause VAX BASIC to signal an error.

The default is TYPE_DEFAULT=REAL.

/VAR/ANT { ~ } int-canst
The /VARIANT qualifier establishes int-const as a value to be used in
compiler directives. The variant value can be referenced in a lexical
expression with the lexical function, %VARIANT. Int-const always has a
data type of LONG. The default is /VARIANT=O.

{
: } { [NO]WARNINGS }

/[NO]WARNINGS [= [NO]INFORMA TIONALS]

The /WARNINGS qualifier causes VAX BASIC to display warning or
informational messages, or both. If you specify /WARNINGS but do
not specify a warning clause, VAX BASIC displays both warnings and
informational messages. If you specify /NOWARNINGS, VAX BASIC
does not display warning and informational messages. The default is
/WARNINGS.

2-18 BASIC Environment Commands

Example

COMPILE

/WORD
The /WORD qualifier causes VAX BASIC to allocate 16 bits of storage
as the default for all integer data not explicitly typed in the program.
Untyped integer values are treated as WORD values and must be in the
range -32768 to 32767 or VAX BASIC signals the error "Integer error
or overflow." Table 1-2 in this manual lists VAX BASIC data types and
ranges. The default is /LONG.

In the following example, VAX BASIC compiles the program LETSGO and
creates a new version of the object file as well as a listing file. In addition,
VAX BASIC allocates 64 bits of storage in DJLOAT format as the default
for all floating point data not explicitly typed in the program.

COMPILE LETSGO/DOUBLE/LIST

BASIC Environment Commands 2-19

CONTINUE

CONTINUE

Format

CONTINUE

The CONTINUE command continues program execution after VAX BASIC
executes a STOP statement or encounters a CTRL/C.

Syntax Rules

Remarks

Example

None.

1. After a STOP statement or a CTRL/C, you can enter immediate mode
commands and resume program execution with the CONTINUE
command.

2. After a STOP statement or a CTRL/C, you cannot resume program
execution if you have made source code changes or additions.

Y.BAS-I-STO, Stop
-BAS-I-FROLINMOD, from line 25 in module ABC
Ready

CONTINUE

2-20 BASIC Environment Commands

DELETE

Format

DELETE

The DELETE command removes a specified line or range of lines from the
program currently in memory.

. [- line-num] DELETE lme-num ,. ...
,1me-num ...

Syntax Rules

Remarks

None.

1. You cannot specify the DELETE command on programs that do not
contain line numbers.

2. The separator characters (comma or hyphen) allow you to delete
individual lines or a block of lines.

• If you separate line numbers with commas, VAX BASIC deletes
each specified line number.

• If you separate line numbers with a hyphen, VAX BASIC deletes
the inclusive range of lines. The lower line number must be
specified first. If it is not specified first, the DELETE command has
no effect.

3. You can combine individual line numbers and line ranges in a single
DELETE command. Note, however, that a line number range must be
followed by a comma and not another hyphen, or VAX BASIC signals
an error.

4. VAX BASIC signals an error if there are no lines in the specified range
or if you specify an illegal line number.

BASIC Environment Commands 2-21

DELETE

Examples

Example 1

DELETE 50

Example 2

DELETE 70-80, 110, 124

Example 3

DELETE 50,60,90-110

2-22 BASIC Environment Commands

EDIT

Format

EDIT

The EDIT command allows you to edit individual program lines in the
BASIC environment while invoking an editor. EDIT with no arguments
invokes a text editor and reads the current program into the editor's buffer.

EDIT [line-num search-clause [replace-clause]]

search-clause: delim unq-str 1 delim

replace-clause: [unq-str2] [delim [int-const1] [,int-const2]]

Syntax Rules

1. Line-num specifies the line to be edited.

2. Search-clause specifies the text you want to remove or replace. Unq
str1 is the search string you want to remove or replace.

3. Replace-clause specifies the replacement text and the occurrence of the
search string you want to replace.

• Unq-str2 is the replacement string.

• lnt-constl specifies the occurrence of unq-str1 you want to replace.
If you do not specify an occurrence, VAX BASIC replaces the first
occurrence of unq-str1.

• lnt-const2 specifies the line number of a block of program code
where you want VAX BASIC to begin the search.

4. Delim can be any printing character not used in unq-str1 or unq-str2.
The examples for this command use the slash (/)as a delimiter.

BASIC Environment Commands 2-23

EDIT

Remarks

1. The delim characters in search-clause must match, or VAX BASIC
signals an error.

2. If the delimiter you use to signal the end of replace-clause does not
match the delimiter used in search-clause, VAX BASIC does not signal
an error and treats the end delimiter as part of unq-str2.

3. VAX BASIC replaces or removes text in a program line as follows:

• If unq-str1 is found, VAX BASIC replaces it with unq-str2.
• If unq-str1 is not found, VAX BASIC signals an error.

• If unq-str1 is null, VAX BASIC signals "No change made".

• If unq-str2 is null, VAX BASIC deletes unq-str1.
• VAX BASIC matches and replaces strings exactly as you type

them. If unq-str1 is uppercase, VAX BASIC searches for an upper
case string. If it is lowercase, VAX BASIC searches for a lowercase
string.

4. VAX BASIC displays the edited line with changes after the EDIT
command successfully executes.

5. If you specify a line number with no text parameters, VAX BASIC
displays the line.

6. The EDIT command followed by a carriage return causes VAX BASIC
to save your current source file in BASEDITMP.BAS and automatically
invoke VAX EDT as the default text editor.

7. At DCL level, you can override the default text editor. To do this, as
sign the logical name BASIC$EDIT to another editor such as VAXTPU
or Language-Sensitive Editor before entering the BASIC environment.
For instance, in the following example, BASIC$EDIT is defined to be
TPU$EDIT. The EDIT command followed by a carriage return will
then invoke VAXTPU as the default text editor.

$ DEFINE BASIC$EDIT TPU$EDIT

8. If you define BASIC$EDIT to be an editor other than VAX EDT,
VAXTPU, or Language-Sensitive Editor, VAX BASIC spawns a subpro
cess to invoke the editor assigned to BASIC$EDIT.

2-24 BASIC Environment Commands

Example

EDIT

9. When you finish editing your program and exit from the editor, the
edited program is the program currently in memory, and the context of
the BASIC environment is unchanged. Note that VAX BASIC deletes
all versions of BASEDITMP.BAS when you return to VAX BASIC from
the editor.

Ready

LIST 100

100 NEW_STRING$ = LEFT$(STRING$,12)

EDIT 100 /LEFT$/RIGHT$/3,2

LIST 100

100 NEW_STRING$ = RIGHT$(STRING$,12)

BASIC Environment Commands 2-25

EXIT

EXIT

Format

EXIT

The EXIT command or CTRL/Z clears the memory and returns control to
the operating system.

Syntax Rules

Remarks

Example

None.

If you type EXIT after creating a new program or editing an old program
without first typing SAVE or REPLACE, VAX BASIC signals "Unsaved
change has been made, CTRL/Z or EXIT to exit". The message warns
you that the new or revised program will be lost if you do not SAVE or
REPLACE it. If you type EXIT again, VAX BASIC exits from the BASIC
environment whether you have saved your changes or not.

EXIT
Y.BASIC-W-CHANGES, unsaved change has been made, CTRL/Z or EXIT to exit
Ready

SAVE

EXIT

Ready

2-26 BASIC Environment Commands

HELP

Format

HELP

The HELP command displays online documentation for VAX BASIC
commands, keywords, statements, functions, and conventions.

HELP [unq-str] ...

Syntax Rules

Remarks

1. Unq-str is a VAX BASIC topic, keyword, command, statement, func
tion, or convention.

2. The first unq-str must be one of the topics described in the HELP file.
If it is not, VAX BASIC displays a list of topics for you to choose from.

3. You can specify a subtopic after the topic. Separate one unq-str from
another with a space.

4. You can use the asterisk (•) wildcard character in unq-str. VAX BASIC
then matches any portion of the specified topic.

1. If you type HELP with no parameters, VAX BASIC displays a list of
statements, functions, compiler directives, compiler commands and
language topics.

2. If the unq-str you specify is not a unique topic or subtopic, VAX BASIC
displays information on all topics or subtopics beginning with unq-str.

3. An asterisk (•) indicates that you want to display information that
matches any portion of the topic you specify. For example, if you
type HELP GO•, VAX BASIC displays information on the GOSUB
statement and the GOTO statement.

BASIC Environment Commands 2-27

HELP

Example

4. When information on a particular topic or subtopic is not available,
VAX BASIC signals the message "Sorry, no documentation on unq-str"
and provides a list of alternative HELP topics to choose from.

Ready

Help GO*

GO SUB

The GOSUB statement transfers control to a specified line number or
label and stores the location of the GOSUB statement for eventual
return from the subroutine.

Example

200 GOSUB 1100

Additional information available:

Syntax

GOTO

The GOTO statement transfers control to a specified line number or
label.

Example

20 GOTO 200

Additional information available:

Syntax

Topic?

2-28 BASIC Environment Commands

IDENTIFY

Format

IDENTIFY

IDENTIFY

The IDENTIFY command displays an identification header on the control
ling terminal. The header contains the name and version number of VAX
BASIC.

Syntax Rules

Remarks

Example

None.

The message displayed by the IDENTIFY command includes the name of
the VAX BASIC compiler and the version number.

IDENTIFY

VAX BASIC V3.0

BASIC Environment Commands 2-29

INQUIRE

INQUIRE

The INQUIRE command is a synonym for the HELP command. See the
HELP command for more information.

2-30 BASIC Environment Commands

LIST and LISTNH

LIST and LISTNH

Format

LIST[NH]

The LIST command displays the program lines of the program currently in
memory. Line numbers are sequenced in ascending order. The LISTNH
command displays program lines without the program header.

[
. [- line-num]] lme-num l' ... , me-num ...

Syntax Rules

Remarks

A line-num followed by a hyphen (-) and a carriage return displays the
specified line and all remaining lines in the program.

1. The LIST command displays program lines, along with a header
containing the program name, the current time, and the date. To
suppress the program header, type LISTNH.

2. LIST without parameters displays the entire program.

3. The separator characters (comma or hyphen) allow you to display
individual lines or a block of lines.

• If you separate line numbers with commas, VAX BASIC displays
each specified line number.

• If you separate line numbers with hyphens, VAX BASIC displays
the inclusive range of lines. The lower line number must come
first. If it does not, LIST has no effect.

BASIC Environment Commands 2-31

LIST and LISTNH

Example

4. You can combine individual line numbers and line ranges in a single
LIST command. Note, however, that a line number range must be
followed by a comma and not another hyphen, or VAX BASIC signals
an error.

5. A hyphen between the list command and line-num causes VAX BASIC
to signal an error.

6. VAX BASIC displays the source program lines in the order you specify
in the command line. VAX BASIC displays line 100 before line 10 if
you type LIST 100,10.

Example

LIST 200-300

Output

200 Y.IF %VARIANT = 2 Y.THEN %ABORT
300 Y.END Y.IF

2-32 BASIC Environment Commands

LOAD

Format

LOAD

The LOAD command makes a previously created object module or mod
ules available for execution with the RUN command.

LOAD file-spec [+ file-spec] ...

Syntax Rules

Remarks

File-spec must be a VAX BASIC object module or VAX BASIC signals an
error. OBJ is the default file type. If you specify only the file name, VAX
BASIC searches for an OBJ file in the current default directory.

1. Each device and directory specification applies to all following file
specifications until you specify a new directory or device.

2. The LOAD command accepts multiple device, directory, and file
specifications.

3. VAX BASIC does not process the loaded object files until you issue the
RUN command. Consequently, errors in the loaded modules may not
be detected until you execute them.

4. VAX BASIC signals an error in the following cases:

• If the file is not found

• If the file specification is not valid

• If the file is not a VAX BASIC object module

• If run-time memory is exceeded

Errors do not change the program currently in memory.

BASIC Environment Commands 2-33

LOAD

Example

5. The LOAD command clears all previously loaded object modules from
memory.

6. Typing the LOAD command does not change the program currently
in memory.

LOAD PROGA + PROGB + PROGC

2-34 BASIC Environment Commands

LOCK

LOCK

The LOCK command changes default values for COMPILE command
qualifiers. It is a synonym for the SET command. See the SET command
for more information.

BASIC Environment Commands 2-35

NEW

NEW

Format

The NEW command clears VAX BASIC memory and allows you to assign
a name to a new program.

NEW [prog-name]

Syntax Rules

Remarks

Prag-name is the name of the program you want to create. VAX BASIC
allows program names to contain a maximum of 39 characters. You can
use any combination of alphanumeric characters in your program name,
as well as the dollar sign ($), hyphen (-), and underscore (-) characters.

1. VAX BASIC signals an error if prog-name exceeds 39 characters.

2. VAX BASIC signals "error in program name" if you specify a file type.

3. If you do not specify a prog-name, VAX BASIC prompts with:

New file name--

4. The default name is NONAME. If you do not provide a prog-name in
response to the prompt, VAX BASIC assigns the file name NONAME
to your program.

5. When you type the NEW command, the program currently in memory
is cleared. Program modules loaded with the LOAD command remain
unchanged.

2-36 BASIC Environment Commands

NEW

Example

NEW PROG1

BASIC Environment Commands 2-37

OLD

OLD

Format

The OLD command brings a previously created VAX BASIC program into
memory.

OLD [file-spec]

Syntax Rules

Remarks

Example

1. If you do not name a file-spec, VAX BASIC prompts for one. If you do
not enter a file-spec in response to the prompt, VAX BASIC searches
for a file named NONAME.BAS in the current default directory.

2. The default file type is BAS.

1. If the VAX BASIC compiler cannot find the file you specify, VAX
BASIC signals the error "File not found".

2. When the specified file is found, it is placed in memory and any
program currently in memory is erased. If VAX BASIC does not find
the specified file, the program currently in memory does not change.

OLD CHECK
Ready

2-38 BASIC Environment Commands

RENAME

Format

RENAME

The REN AME command allows you to assign a new name to the program
currently in memory. VAX BASIC does not write the renamed program to
a file until you save the program with the REPLACE or SAVE command.

RENAME [prog-name]

Syntax Rules

Remarks

1. Prog-name specifies the new program name. VAX BASIC allows
program names to contain a maximum of 39 characters. You can
use any combination of alphanumeric characters in your program
name, as well as the dollar sign ($), hyphen (-), and underscore (_)
characters.

2. If you specify a file type, VAX BASIC signals the error "Error in
program name."

1. The program you want to rename must be in memory. If you type
RENAME with no program in memory, VAX BASIC renames the
default program, NONAME, to the specified prog-name.

2. If you do not specify a prog-name, VAX BASIC renames the program
currently in memory NONAME.

3. You must type SAVE or REPLACE to write the renamed program to a
file. If you do not type SAVE or REPLACE, VAX BASIC does not save
the renamed program.

4. The RENAME command does not affect the original saved version of
the program.

BASIC Environment Commands 2-39

Example

OLD TEST
Ready

RENAME NEWTEST
Ready

LIST
NEWTEST 29-JUL-1985 13:50
PRINT "This program is a simple test"

Ready

SAVE
Y.BASIC-1-FILEWRITE, NEWTEST written to file:

USER$$DISK: [SMITH.COMS]NEWTEST.BAS;5
Ready

In this example, the OLD command calls the program named TEST into
memory. The RENAME command renames TEST to NEWTEST and
the SAVE command writes NEWTEST.BAS to a file. The original file,
TEST.BAS is not changed and is not deleted from your account.

2-40 BASIC Environment Commands

REPLACE

Format

REPLACE

REPLACE

The REPLACE command writes the current program back to the file
specified by the last OLD command.

Syntax Rules

Remarks

None.

1. If you do not have write access to the directory containing the original
file, VAX BASIC signals an error message.

2. VAX BASIC creates and saves a new version of the file, incrementing
the version number by 1 unless you supplied a specific version
number with the OLD command.

3. A REPLACE command following a NEW command or a SCRATCH
command causes VAX BASIC to write the program in memory to the
current default directory.

4. A REPLACE command following a REN AME command writes the
file to the directory specified in the OLD command with the file name
specified in the RENAME command.

BASIC Environment Commands 2-41

REPLACE

Example

$DIR NODE::USER$$DISK: [BASICUSER]TEST.BAS

Directory USER$$DISK:[BASICUSER]

TEST.BAS;!

Total of 1 file.
$ BASIC

VAX BASIC V3.0

Ready

OLD NODE::USER$$DISK:[BASICUSER]TEST.BAS;

Ready

REPLACE
Y.BASIC-I-FILEWRITE, TEST written to file:
USER$$DISK:[BASICUSER]TEST.BAS;2

Ready

EXIT

$DIR NODE: :USER$$DISK:[BASICUSER]TEST.BAS

Directory USER$$DISK:[BASICUSER]

TEST.BAS;! TEST.BAS;2

Total of 2 files .

•

2-42 BASIC Environment Commands

RESEQUENCE

RESEQUENCE

Format

In a program with line numbers, the RESEQUENCE command allows
you to resequence the line numbers of the program currently in memory.
VAX BASIC also changes all references to the old line numbers so they
reference the new line numbers.

RESEQUENCE [line-num 1 [- line-num2] [line-num3]] [STEP int-canst]

Syntax Rules

1. Line-num1 is the line number in the program currently in memory
where resequencing begins. The default for line-num1 is the first line
of the program module.

2. Line-num2 is the optional end of the range of line numbers to be
resequenced. If you specify a range, VAX BASIC begins resequencing
with line-num1 and resequences through line-num2. If you do not
specify line-num2, VAX BASIC resequences the specified line. If you
do not specify either line-num1 or line-num2, VAX BASIC resequences
the entire program.

3. Line-num3 specifies the new first line number; the default number
for the new first line is 100. You can specify line-num3 only when
resequencing a range of lines.

If line-num3 causes existing lines to be deleted or surrounded, VAX
BASIC signals an error.

4. Int-canst specifies the numbering increment for the resequencing
operation. The default for int-canst is 10.

BASIC Environment Commands 2-43

RESEQUENCE

Remarks

1. You cannot specify the RESEQUENCE command on programs that do
not contain line numbers.

2. VAX BASIC signals an error when you try to resequence a program
that contains a %IF directive. VAX BASIC also signals an error when
you try to resequence a program that has a %INCLUDE directive if
the file to be included contains a reference to a line number.

3. Before the RESEQUENCE command executes, VAX BASIC verifies the
syntax of the program. If the program is not syntactically valid, the
RESEQUENCE command does not execute.

4. VAX BASIC sorts the renumbered program in ascending order when
the RESEQUENCE command executes.

5. If the renumbering creates a line number greater than the maximum
line number of 32767, VAX BASIC signals an error.

6. VAX BASIC signals an error if resequencing causes a change in the
order in which program statements are to execute and does not
resequence the program.

7. VAX BASIC signals the error "Undefined line number" in the case of
undefined line numbers and does not resequence the program.

8. VAX BASIC corrects all line numbers for statements that transfer
control.

9. VAX BASIC does not modify the program currently in memory when
the RESEQUENCE command generates an error.

10. In general, the RESEQUENCE command is not recommended for pro
grams containing error handlers that test the value of ERL. However,
the RESEQUENCE command correctly modifies the program if the
tests that reference ERL are of this form:

ERL relational-operator int-lit

The RESEQUENCE command does not correctly renumber programs
if the test compares ERL with an expression or a variable, or if ERL
follows the relational operator. The following line number references,
for example, would not be correctly renumbered:

IF ERL = 1000 + A% THEN
IF 1000 >ERL THEN ...

2-44 BASIC Environment Commands

Example

10 INPUT "Enter a numeric value 11 ;A%
20 IF A% = 20
30 THEN PRINT "Bye"
40 GOTO done
50 ELSE GOTO 10
60 END IF

Output

15 INPUT "Enter a numeric value 11 ;A%
25 IF A% = 20
35 THEN PRINT "Bye"
45 GOTO done
55 ELSE GOTO 10
65 END IF

RESEQUENCE

In this example, the command RESEQUENCE 10-60 STEP 5 causes VAX
BASIC to resequence lines 10 through 60, incrementing each new line
number by 5.

BASIC Environment Commands 2-45

RUN

RUN

Format

The RUN command allows you to execute a program from the BASIC
environment without first invoking the VAX/VMS Linker to construct an
executable image. In addition, the RUN command allows you to access
user specified and system shareable image libraries for undefined symbols.

RUN[NH] [file-spec]

Syntax Rules

Remarks

None.

1. Executing a Program

• If you specify only the file name, VAX BASIC searches for a file
with a BAS file type in the current default directory.

• If you do not supply a file-spec, VAX BASIC executes the program
currently in memory.

• VAX BASIC signals the warning message "No main program" if
you do not supply a file-spec and do not have a program currently
in memory.

• The RUNNH command is identical to RUN, except that it does
not display the program header, current date, and time.

• When you specify a file-spec with the RUN command, VAX BASIC
brings the program into memory and then executes it. You do not
have to bring a program into memory with the OLD command in
order to run it. The RUN command executes just as if the program
had been brought into memory with the OLD command.

2-46 BASIC Environment Commands

RUN

• If your program calls a subprogram, the subprogram must be
compiled and placed in memory with the LOAD command.
If your program tries to call a subprogram that has not been
compiled and loaded, VAX BASIC signals an error.

• The RUN command does not create an object module file or a list
file.

• When VAX BASIC encounters a STOP statement in the program,
the program stops executing and control passes to the BASIC
environment immediate mode.

• Any VAX BASIC statement that does not require the creation
of new storage can be entered in immediate mode to debug the
program. You cannot create new variables in immediate mode.

• Type the CONTINUE command to resume program execution.

• The RUN command uses whatever qualifiers have been set, with
the exception of those that have no effect on a program running
in the BASIC environment. These qualifiers are as follows:

NOCROSS

NODEBUG

NO LIST

NO MACHINE

NOOBJECT

These qualifiers are always in effect when you run a program in
the environment.

2. Accessing Shareable Images
• To automatically access shareable image libraries, you must make

an assignment to the logical name BASIC$LIBn. For example:

$ ASSIGN DBAO: [BABCOCK]TESTLIB.OLB BASIC$LIBO

• After you enter a command line, VAX BASIC will automatically
access your library to resolve undefined program symbols.

• If you have more than one library for the VAX/VMS Linker to
search, you must assign the first one as BASIC$LIBO, the second
one as BASIC$LIB1, the third as BASIC$LIB2, and so on.

• If you do not number libraries consecutively, the VAX/VMS
Linker does not search past the first missing logical name.

• As long as routines are contained in shareable images in libraries,
they are not required to.be written in VAX BASIC to be accessed
with the RUN command.

BASIC Environment Commands 2-47

RUN

Example

• VAX BASIC provides no default file specification for user-supplied
shareable image libraries; the current default device and the
directory are used.

• After all possible shareable image libraries have been ac
cessed, VAX BASIC will subsequently search the default library
SYS$LIBRARY:.OLB with the logical name IMAGELIB to resolve
any additional undefined program symbols.

RUN PROG1
PROG1 29-JUL-1986 13:52

1
3
6
10

Ready

RUNNH PROG1
1
3
6
10

Ready

2-48 BASIC Environment Commands

SAVE

Format

SAVE

The SAVE command writes the VAX BASIC source program currently in
memory to a file on the default or specified device.

SA VE [file-spec]

Syntax Rules

Remarks

None.

1. If you do not supply a file-spec, VAX BASIC saves the file with the
name of the program currently in memory and the BAS default file
type.

2. If you specify only the file name, VAX BASIC saves the program with
the default file type in the current default directory.

3. When you type the SAVE command, VAX BASIC writes a new version
of the program.

4. VAX BASIC stores the sorted program in ascending line number order.

5. You can store the program on a specified device. For example:

SAVE DUA1:NEWTEST.PRO

VAX BASIC saves the file NEWTEST.PRO on disk DUAl:.

BASIC Environment Commands 2-49

SAVE

Example

SAVE PROG_SAMP.BAS
Y.BASIC-I-FILEWRITE, PROG_SAMP written to file:

USER$$DISK[BASICUSER]PROG_SAMP.BAS;2

2-50 BASIC Environment Commands

SCALE

Format

SCALE

The SCALE command allows you to control accumulated round-off errors
by multiplying numeric values by 10 raised to the scale factor before
storing them.

SCALE int-canst

Syntax Rules

Remarks

Int-const specifies the power of 10 you want to use as the scaling factor.
Int-const must be an integer from 0 through 6 or VAX BASIC signals the
error "Illegal argument for command".

1. SCALE with no argument causes VAX BASIC to signal the error
"Illegal argument for command".

2. SCALE affects only values of the data type DOUBLE.

3. VAX BASIC multiplies values using the scale factor you specify. The
value 2.488888, for example, is rounded as follows:

Scale Value Produced for 2.488888

0 2.48889

1 2.4

2 2.48

3 2.488

4 2.4888

BASIC Environment Commands 2-51

SCALE

Scale Value Produced for 2.488888

5 2.48888

6 2.48889

Example

SCALE 2

2-52 BASIC Environment Commands

SCRATCH

SCRATCH

Format

SCRATCH

The SCRATCH command clears any program currently in memory,
removes any object files loaded with the LOAD command, and resets the
program name to NONAME.

Syntax Rules

None.

Remarks

None.

Example

SCRATCH

BASIC Environment Commands 2-53

SEQUENCE

SEQUENCE

Format

The SEQUENCE command causes VAX BASIC to automatically generate
line numbers for your program text. VAX BASIC supplies line numbers for
your text until you end the procedure or reach the maximum line number
of 32767.

SEQUENCE [line-num] [,int-canst]

Syntax Rules

Remarks

1. Line-num specifies the line number where sequencing begins.

2. Int-const specifies the line number increment for your program. If
you do not specify an increment, VAX BASIC defaults to the int-const
specified in the last SEQUENCE command; if there is no previous
SEQUENCE command, the default is 10.

1. You cannot specify the SEQUENCE command on programs that do
not contain line numbers.

2. If you do not specify a line-num, the VAX BASIC default is the last
line inserted by a SEQUENCE command; if there is no previous
SEQUENCE command, the default is line number 100.

3. If you specify a line-num that already contains a statement, or if the
sequencing operation generates a line number that already contains
a statement, VAX BASIC signals "Attempt to sequence over existing
statement", and returns to normal input mode.

4. Type your program text in response to the line number prompt; the
carriage return ends each line and causes VAX BASIC to generate a
new line number.

2-54 BASIC Environment Commands

Example

SEQUENCE

5. If you press CTRL/Z in response to the line number prompt, VAX
BASIC terminates the sequencing operation and prompts for another
command.

6. When the maximum line number of 32767 is reached, VAX BASIC
terminates the sequencing process and returns to normal input mode.

7. VAX BASIC does not check syntax during the sequencing process.

SEQUENCE 100,10
100 INPUT "Enter a numeric value";A'/,
110 IF A'/. = 20

Here, if you enter the command SEQUENCE 100,10, the SEQUENCE
command causes VAX BASIC to automatically generate line numbers into
the program text, beginning with the line number 100 and incrementing
each line by 10.

BASIC Environment Commands 2-55

SET

SET

Format

The SET command allows you to specify VAX BASIC defaults for all VAX
BASIC qualifiers. Qualifiers control the compilation process and the run
time environment. The defaults you set remain in effect for all subsequent
operations until they are reset or until you exit from the compiler.

SET [/qualifier]. ..

Syntax Rules

Remarks

1. /Qualifier specifies a qualifier keyword that sets a VAX BASIC defaul.t.
See the COMPILE command for a list of all VAX BASIC qualifiers and
their defaults.

2. VAX BASIC signals the error "Unknown qualifier" if you do not
separate multiple qualifiers with commas (,) or slashes (/), or if you
mix commas and slashes on the same command line. The same error
is signaled if you separate qualifiers with a slash but do not prefix the
first qualifier with a slash.

If you do not specify any qualifiers, VAX BASIC resets all defaults to the
defaults specified with the DCL command BASIC.

2-56 BASIC Environment Commands

Examples

SET

Example 1

SET /DOUBLE/BYTE/LIST

Example 2

SET DOUBLE,BYTE,LIST

In both examples, the VAX BASIC compiler is set to allocate 64 bits of
storage for all floating-point data, and to allocate 8 bits of storage for all
integer data. Also, a source listing file is created.

BASIC Environment Commands 2-57

SHOW

SHOW

Format

SHOW

The SHOW command displays the current defaults for the VAX BASIC
compiler on your terminal.

Syntax Rules

Remarks

Example

None.

None.

SHOW
VAX BASIC 3.0 Current Environment Status 30-0CT-1986 10:05:66.67
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:

Data type : REAL
Real size : SINGLE
Integer size : LONG
Decimal size : (16,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:

RS:
Object file
Overflow check integers
Overflow check decimal numbers
Bounds checking

NO List
NO Cross reference

CDD Definitions
Environment

NO Override of Y.NOLIST
NO Machine code

Map

INCLUDE files

FLAGGE
NO Declining features
NO BASIC PLUS 2 subset

2-58 BASIC Environment Commands

NO Syntax checking
Lines

Ready

Variant : 0
Warnings
Informationals
Setup
Object Libraries NONE

SHOW

DEBUG INFORMATION:
Traceback records

NO Debug symbol records

BASIC Environment Commands 2-59

UNSAVE

UNSAVE
The UNSAVE command.deletes a specified file from storage.

Format

UNSAVE [file-spec]

Syntax Rules

Remarks

Example

None.

1. If you do not supply a file-spec, VAX BASIC deletes a file that has the
file name of the program currently in memory and a file type of BAS.

2. If you do not supply a file-spec and do not have a program in memory,
VAX BASIC searches for the default file NONAME.BAS.

3. If you do not specify a complete file name with a file type, VAX BASIC
deletes the file with the specified name and the BAS file type from the
default device and directory. Other file types with the same file name
are not deleted.

UNSAVE DB2:CHECK.DAT

2-60 BASIC Environment Commands

Chapter 3

Compiler Directives

Compiler directives are instructions that cause VAX BASIC to perform cer
tain operations as it translates the source program. This chapter describes
all of the compiler directives supported by VAX BASIC. The directives are
listed and discussed alphabetically.

Compiler Directives 3-1

%ABORT

%ABORT

Format

The %ABORT directive terminates program compilation and displays a
fatal error message that you can supply.

%ABORT [str-lit]

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %ABORT directive.

2. VAX BASIC stops the compilation and terminates the listing file as
soon as it encounters a %ABORT directive. An optional str-lit is
displayed on the terminal screen and in the compilation listing, if a
listing has been requested.

XIF XVARIANT = 2 XTHEN
XABORT "Cannot compile with variant 2"

XEND UF

3-2 Compiler Directives

%CROSS

Format

%CROSS

%CROSS

The %CROSS directive causes VAX BASIC to begin or resume accumulat
ing cross-reference information for the listing file.

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %CROSS directive.

2. The %CROSS directive has no effect unless you request both a listing
file and a cross-reference. For more information on listing file format,
see the VAX BASIC User Manual.

3. When a cross-reference is requested, the VAX BASIC compiler starts or
resumes accumulating cross-reference information immediately after
encountering the %CROSS directive.

XCROSS

Compiler Directives 3-3

%DECLARED

%DECLARED

Format

The %DECLARED directive is a built-in lexical function that allows you
to determine whether a lexical variable has been defined with the %LET
directive. If the lexical variable named in the %DECLARED function is
defined in a previous %LET directive, the %DECLARED function returns
the value -1. If the lexical variable is not defined in a previous %LET
directive, the %DECLARED function returns the value 0.

%DECLARED (lex-var)

Syntax Rules

Remarks

1. The %DECLARED function can appear only in a lexical expression.
2. The lex-var is the name of a lexical variable. Lexical variables are

always LONG integers.

3. Lex-var must be enclosed in parentheses.

None.

3-4 Compiler Directives

Example

+
Use the following code in XINCLUDE files
which reference constants that may be already defined.

! -
Y.IF XJ)ECLARED CY.TRUE_FALSE_DEFINED) = 0
Y.THEN

DECLARE LONG CONSTANT True = -1, False = 0
Y.LET Y.TRUE_FALSE_DEFINED = -1

Y.END UF

%DECLARED

Compiler Directives 3-5

o/olDENT

%1DENT

Format

The %!DENT directive lets you identify the version of a program module.
The identification text is placed in the object module and printed in the
listing header.

%1DENT str-lit

Syntax Rules

Remarks

Str-lit is the identification text. Str-lit can consist of up to 31 ASCII
characters. If it has more than 31 characters, VAX BASIC truncates the
extra characters and signals a warning message.

1. Only a line number or a comment field can appear on the same
physical line as the %!DENT directive.

2. The VAX BASIC compiler inserts the identification text in the first
31 character positions of the second line on each listing page. VAX
BASIC also includes the identification text in the object module, if
the compilation produces one, and in the map file created by the
VAX/VMS Linker.

3. The %IDENT directive should appear at the beginning of your pro
gram if you want the identification text to appear on the first page of
your listing. If the %!DENT directive appears after the first program
statement, the text will appear on the next page of the listing file.

3-6 Compiler Directives

Example

o/olDENT

4. You can use the %IDENT directive only once in a module. If you
specify more than one %IDENT directive in a module, VAX BASIC
signals a warning and uses the identification text specified in the first
directive.

5. No default identification text is provided.

Y.IDENT "Version 10"

Output

TIME$MAIN
Version 10

1 10 Y.IDENT "Version 10"

Compiler Directives 3-7

o/olF-o/o THEN-o/oELSE-o/oEND o/olF

%IF-% THEN-%ELSE-%END %IF

Format

The %IF-% THEN-%ELSE-%END %IF directive lets you conditionally
include source code or execute another compiler directive.

%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules

1. Lex-exp is always a LONG integer.

2. Lex-exp can be:

• A lexical constant named in a %LET directive.

• An integer literal, with or without the percent sign suffix.

• A lexical built-in function.

• Any combination of the above, separated by valid lexical opera
tors. Lexical operators include logical operators, relational opera
tors, and the arithmetic operators for addition (+), subtraction (-),
multiplication (•), and division (/).

3. Code is VAX BASIC program code. It can be any VAX BASIC state
ment or another compiler directive, including another %IF directive.
You can nest %IF directives to eight levels.

3-8 Compiler Directives

lemarks

:xample

%1F-%THEN-%ELSE-%END %IF

1. The %IF directive can appear anywhere in a program where a space is
allowed, except within a quoted string. This means that you can use
the %IF directive to make a whole statement, part of a statement, or a
block of statements conditional.

2. %THEN, %ELSE, and %END %IF do not have to be on the same
physical line as %IF.

3. If lex-exp is true, VAX BASIC processes the %THEN clause. If lex
exp is false, VAX BASIC processes the %ELSE clause. If there is no
%ELSE clause, VAX BASIC processes the %END %IF clause. The
VAX BASIC compiler includes statements in the %THEN or %ELSE
clause in the source program and executes directives in order of
occurrence.

4. You must include the %END %IF clause. Otherwise, VAX BASIC
assumes the remainder of the program is part of the last % THEN
or %ELSE clause and signals the error "MISENDIF, missing END IF
directive" when compilation ends.

%IF (%VARIANT = 2)
%THEN DECLARE SINGLE hourly_pay(100)
%ELSE %IF (%VARIANT = 1)

%THEN DECLARE DOUBLE salary_pay(100)
%ELSE %ABORT "Can't compile with specified variant"
%END %IF

%END %IF

PRINT %IF (%VARIANT = 2)
%THEN 'Hourly Wage Chart'

GOTO Hourly_routine
%ELSE 'Salaried Wage Chart'

GOTO Salary_routine
%END %IF

July 1988 Compiler Directives 3-9

%INCLUDE

%INCLUDE

Format

The %INCLUDE directive lets you include VAX BASIC source text from
another program file in the current program compilation. VAX BASIC also
lets you access record definitions in the VAX Common Data Dictionary
(COD) and access commonly used routines from text libraries.

Including a File

%INCLUDE str-lit

Including a COD Definition

%INCLUDE %FROM %COD str-lit

Including a File from a Text Library

%INCLUDE str-lit %FROM %LIBRARY [str-lit]

Syntax Rules

1. Including a File

Str-lit must be a valid file specification for the file to be included.

2. Including a COD Definition

Str-lit specifies a VAX COD path name enclosed in quotation marks.
The path name can be in either DMU or COO format. This directive
lets you extract a RECORD definition from the dictionary.

3. Including a File from a Text Library

• Str-lit specifies a particular module to be included.

• The optional str-lit identifies a specific text library in which the
included module resides. If the library name is not specified, VAX
BASIC uses the default library name BASIC$LIBRARY.

3-10 Compiler Directives July 1988

Remarks

%INCLUDE

1. Any statement that appears after an END statement inside an included
file causes VAX BASIC to signal an error.

2. Only a line number or a comment field can appear on the same
physical line as the %INCLUDE directive.

3. The VAX BASIC compiler includes the specified source file in the
program compilation at the point of the %INCLUDE directive and
prints the included code in the program listing file if the compilation
produces one.

4. The included file cannot contain line numbers. If it does, VAX BASIC
signals the error "Line number may not app~ar in %INCLUDE file".

5. All statements in the accessed file are associated with the line number
of the program line that contains the %INCLUDE directive. This
means that a %INCLUDE directive cannot appear before the first line
number in a source program if you are using line numbers.

6. A file accessed by %INCLUDE can itself contain a %INCLUDE
directive.

7. All %IF directives in an included file must have a matching %END
%IF directive in the file.

8. You can control whether or not included text appears in the compila
tion listing with the /[NO]SHOW:INCLUDE qualifier to the COMPILE
command. When you specify /SHOW:INCLUDE, the compilation
listing file identifies any text obtained from an included file by placing
a mnemonic in the first character position of the line on which the
text appears. The "n" specifies that the text was either accessed from
a source file or from a text library. The "I" tells you that the text was
accessed with the %INCLUDE directive and n is a number that tells
you the nesting level of the included text. See the VAX BASIC User
Manual for more information on listing mnemonics.

9. Including a File

If you do not specify a complete file specification, VAX BASIC uses the
default device and directory and the file type BAS.

10. Including a COD Definition
• In versions prior to VAX CDD/Plus Version 4.0, there are two

types of CDD path names: full and relative. A full path name be
gins with CDD$TOP and specifies the complete path to the record

July 1988 Compiler Directives 3-11

%INCLUDE

definition. A relative path name begins with any string other than
CDD$TOP and is appended to the current CDD$DEFAULT.

• In VAX CDD/Plus Version 4.0 or higher, the pathnames described
previously are known as DMU pathnames, as distinct from CDO
pathnames. You can specify either a full DMU pathname, a full
CDO pathname, or a relative pathname. A full pathname consists
of a dictionary origin followed by a dictionary path. A full DMU
pathname has CDD$TOP as its origin. A full CDO pathname has
an anchor as its origin. See CDD /Plus documentation for detailed
information on pathnames.

• If the record definition being accessed is in a CDO-format dictio
nary, you can create a dependency relationship in the dictionary
between a dictionary representation of your program and the
record definitions that you include in the program. The dictionary
representation of the program is called a compiled module entity.

• If you specify the /DEPENDENCY_DATA qualifier to the com
piler and your CDD$DEFAULT points to a CDO-format dictio
nary, a compiled module entity is created for each compilation
unit at compile time in CDD$DEFAULT. No compiled module
entity is created if both conditions are not true.

• If a compiled module entity exists for the program, an %INCLUDE
%FROM %CDD directive specifying a record description in
a CDO-format dictionary creates a relationship between the
compiled module entity and the CDO-format record definition.

• If the record description specified in the pathname exists, it is
copied to the program, whether a compiled module entity can be
created or not.

• When you use the %INCLUDE directive to extract a record defini
tion from the CDD, VAX BASIC translates the CDD definition to
the syntax of the VAX BASIC RECORD statement.

• You can use the /SHOW:CDD_DEFINITIONS qualifier to specify
that translated CDD definitions (in RECORD statement syntax) are
included in the compilation listing file. VAX BASIC places a "C"
in column 1 when the translated RECORD statement appears in
the listing file.

• When you specify /SHOW:NOCDD_DEFINITIONS, VAX BASIC
does not include the CDD definition in the listing file. However,
VAX BASIC still includes the names, data types, and offsets of the
CDD record components in the program listing's allocation map.

• See the VAX BASIC User Manual and the CDD/Plus documenta
tion for more information on dictionary data definitions.

3-12 Compiler Directives July 1988

Examples

%INCLUDE

11. Including a File from a Text Library
• The VAX BASIC compiler searches through the specified text

library for the module named and compiles the module upon
encountering the %INCLUDE directive.

• VAX BASIC allows only 16 text libraries to be opened at one
time. Therefore, you cannot have %INCLUDE directives from a
text library nested more than 16 levels deep. If you exceed this
maximum, VAX BASIC signals an error message.

• If you do not specify a directory name and file type, VAX BASIC
uses the default device and directory and the file type TLB.

• VAX BASIC provides the text library BASIC$STARLET.
BASIC$STARLET contains condition codes and other symbols
defined in the system object and shareable image libraries. Using
the definitions from BASIC$STARLET allows you to reference
condition codes and other system-defined symbols as local, rather
than global symbols. To create your own text libraries using the
VAX/VMS Librarian Utility, see the VMS Librarian Utility Manual.

Example 1

!Including a File
%INCLUDE "YESNO"

Example 2

!Including a CDD Definition
%INCLUDE %FROM %COD 11 CDD$TOP.EMPLOYEE 11

Example 3

!Including a COD Definition with a CDO-format pathname
%INCLUDE %FROM %CDD "MYNODE: :MY$DISK: [MY_DIR]PERSONNEL.EMPLOYEE"
!The anchor is MYNODE: :MY$DISK: [MY_DIR]

Example 4

!Including a File from a Text Library
%INCLUDE 11 EOF_CHECK 11 %FROM %LIBRARY 11 SYS$LIBRARY:BASIC_LIB.TLB"

July 1988 Compiler Directives 3-13

%LET

%LET

Format

The %LET directive declares and provides values for lexical variables.
You can use lexical variables only in conditional expressions in the %IF
%THEN-%ELSE directive and in lexical expressions in subsequent %LET
directives.

%LET %/ex-var= /ex-exp

Syntax Rules

1. Lex-var is the name of a lexical variable. Lexical variables are always
LONG integers.

2. Lex-var must be preceded by a percent sign(%) and cannot end with
a dollar sign ($) or percent sign.

3. Lex-exp can be any of the following:

•
•
•
•

3-14 Compiler Directives

A lexical variable named in a previous %LET directive .

An integer literal, with or without the percent sign suffix .

A lexical built-in function .

Any combination of the above, separated by valid lexical opera
tors. Lexical operators can be logical operators, relational opera
tors, and the arithmetic operators for addition (+), subtraction (-),
multiplication (*), and division (/).

Remarks

Example

%LET

1. Only a line number or a comment field can appear on the same
physical line as the %LET directive.

2. You cannot change the value of lex-var within a program unit once it
has been named in a %LET directive. For more information on coding
conventions see the VAX BASIC User Manual.

Y.LET YJ>EBUG_ON = 1Y.

Compiler Directives 3-15

%LIST

%LIST

Format

%LIST

The %LIST directive causes the VAX BASIC compiler to start or resume
accumulating compilation information for the program listing file.

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %LIST directive.

2. The %LIST directive has no effect unless you requested a listing file.
For more information on listing file format, see the VAX BASIC User
Manual.

3. As soon as it encounters the %LIST directive, the VAX BASIC compiler
starts or resumes accumulating information for the program listing file.
Thus, the directive itself appears as the next line in the listing file.

Y.LIST

3-16 Compiler Directives

%NOCROSS

%NOCROSS

Format

%NOCROSS

The %NOCROSS directive causes the VAX BASIC compiler to stop
accumulating cross-reference information for the program listing file.

Syntax Rules

Remarks

None.

1. Only a line number or a comment field can appear on the same
physical line as the %NOCROSS directive.

2. The VAX BASIC compiler stops accumulating cross-reference infor
mation for the program listing file immediately after encountering the
%NOCROSS directive.

3. The %NOCROSS directive has no effect unless you request a listing
file and cross-reference information.

4. DIGITAL recommends that you do not embed a %NOCROSS directive
within a statement. Embedding a %NOCROSS directive within a
statement makes the accumulation of cross-reference information
unpredictable. For more information on listing file format, see the
VAX BASIC User Manual.

Compiler Directives 3-17

%NOCROSS

Example

Y.NOCROSS

3-18 Compiler Directives

%NOLIST

Format

%NOLIST

%NOLIST

The %NOLIST directive causes the VAX BASIC compiler to stop accumu
lating compilation information for the program listing file.

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %NOLIST directive.

2. As soon as it encounters the %NOLIST directive, the VAX BASIC
compiler stops accumulating information for the program listing file.
Thus, the directive itself does not appear in the listing file.

3. The %NOLIST directive has no effect unless you requested a listing
file.

4. In VAX BASIC, you can override all %NOLIST directives in a program
with the /SHOW:OVERRIDE qualifier. For more information on
listing file format, see the VAX BASIC User Manual.

1.NOLIST

Compiler Directives 3-19

%PAGE

%PAGE

Format

%PAGE

The %PAGE directive causes VAX BASIC to begin a new page in the
program listing file immediately after the line that contains the %PAGE
directive.

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %PAGE directive.

2. The %PAGE directive has no effect unless you request a listing file.

Y.PAGE

3-20 Compiler Directives

%PRINT

Format

%PRINT

The %PRINT directive lets you insert a message into your source code
that the VAX BASIC compiler prints during compilation.

%PRINT str-lit

Syntax Rules

Remarks

Example

None.

1. Only a line number or a comment field can appear on the same
physical line as the %PRINT directive.

2. VAX BASIC will print the message specified as soon as it encounters
a %PRINT directive. Str-lit is displayed on the terminal screen and in
the compilation listing.

%IF %DEBUG = 1% %THEN
%PRINT "This is a debug compilation"

Output

%BASIC-S-USERPRINT, This is a debug compilation

Compiler Directives 3-21

%REPORT

%REPORT

format

The %REPORT directive lets you record a dependency relationship
between the compiled module entity for your program and the data
definitions in CDD /Plus dictionaries. The data definitions are not copied
into the program.

%REPORT %DEPENDENCY str-lit [relationship-type]

Syntax Rules

Remarks

1. str-lit specifies a path name in a CDO-format dictionary. It can be
either a DMU-format pathname or a CDO-format pathname, enclosed
in quotation marks. This specifies a dictionary entity, such as a form
definition or an Rdb /VMS database, that the program references.

2. relationship-type specifies a valid CDD /Plus protocol; it must be
enclosed in quotation marks if specified. The default relationship-type
is CDD$COMPILED_DEPENDS_ON.

1. For this directive to be meaningful, you must specify the
/DEPENDENCY_DATA qualifier at compile time. If /DEPENDENCY
is not specified, the compiler· will simply check syntax and otherwise
ignore the %REPORT directive.

2. Your current CDD$DEFAULT and str-lit must refer to CDO-format
dictionaries (not necessarily the same one).

3. If you specify the /DEPENDENCY_DATA qualifier to the compiler,
and if CDD$DEFAUL T points to a CDO-format dictionary, a compiled
module entity is created in CDD$DEFAULT for each compilation unit.
No compiled module entity is created if both conditions are not true.

3-22 Compiler Directives July 1988

Example

%REPORT

4. The %REPORT %DEPENDENCY directive creates a dependency
relationship in the dictionary between the compiled module entity for
the program and the CDO-format dictionary entity to which it refers.

!Establish access to the form PINK_SLIP in a dictionary
!on a specified node, and report the program's dependency
!relationship with the form.
%REPORT %DEPENDENCY "MYNODE: :MY$DISK: [MYDIR]PERSONNEL.FORMS.PINK_SLIP"
!Relationship is CDD$COMPILED_DEPENDS_ON, the default.

July 1988 Compiler Directives 3-22.1

o/oSBTTL

%SBTTL

Format

The %SBTTL directive lets you specify a subtitle for the program listing
file.

%SBTTL str-lit

Syntax Rules

Remarks

Str-lit can contain up to 45 characters.

1. VAX BASIC truncates extra characters from str-lit and does not signal
a warning or error.

2. Only a line number or a comment field can appear on the same
physical line as the %SBTTL directive.

3. The specified subtitle appears underneath the title on the second line
of all pages of source code in the listing file until the VAX BASIC
compiler encounters another %SBTTL or % TITLE directive. VAX
BASIC clears the subtitle field before the allocation map section of the
listing is generated. This way, you only get a subtitle on the listing
pages that contain source code.

4. Because VAX BASIC associates a subtitle with a title, a new % TITLE
directive sets the current subtitle to the null string. In this case, no
subtitle appears in the listing until VAX BASIC encounters another
%SBTTL directive.

5. If you want a subtitle to appear on the first page of your listing, the
%SBTTL directive should appear at the beginning of your program,
immediately after the % TITLE directive. Otherwise, the subtitle will
start to appear only on the second page of the listing.

3-22.2 Compiler Directives

Example

%SBTIL

6. If you want the subtitle to appear on the page of the listing that
contains the %SBTTL directive, the %SBTTL directive should immedi
ately follow a %PAGE directive or a %TITLE directive that follows a
%PAGE directive.

7. The %SBTTL directive has no effect unless you request a listing file.

100 iTITLE "Learning to Program in VAX BASIC"
isBTTL "Using FOR-NEXT Loops"
REM THIS PROGRAM IS A SIMPLE TEST

200 DATA 1, 2, 3, 4

NEXT !Y.
300 END

Output

TEST$MAIN

1
2
3
4

10
11

100

200

300

Learning to Program in VAX BASIC
Using FOR-NEXT Loops

%TITLE "Learning to Program in VAX BASIC"
lSBTTL "Using FOR-NEXT Loops"
REM THIS PROGRAM IS A SIMPLE TEST
DATA 1, 2, 3, 4

NEXT !Y.
END

Compiler Directives 3-23

%TITLE

%TITLE

The % TITLE directive lets you specify a title for the program listing file.

Format

%TITLE str-lit

Syntax Rules

Remarks

Str-lit can contain up to 45 characters.

1. VAX BASIC truncates extra characters from str-lit and does not signal
a warning or error.

2. Only a line number or a comment field can appear on the same
physical line as the %TITLE directive.

3. The specified title appears on the first line of every page of the listing
file until VAX BASIC encounters another % TITLE directive in the
program.

4. The % TITLE directive should appear on the first line of your program,
before the first statement, if you want the specified title to appear on
the first page of your listing.

5. If you want the specified title to appear on the page that contains the
% TITLE directive, the % TITLE directive should immediately follow a
%PAGE directive.

6. Because VAX BASIC associates a subtitle with a title, a new % TITLE
directive sets the current subtitle to the null string.

7. The % TITLE directive has no effect unless you request a listing file.

3-24 Compiler Directives

Example

100 %TITLE "Learning to Program in VAX BASIC"
REM THIS PROGRAM IS A SIMPLE TEST

200 DATA 1, 2, 3, 4

NEXT IX
300 END

Output

TEST$MAIN

1
2
3
4

10
11

100

200

300

Learning to Program in VAX BASIC

Y.TITLE "Learning to Program in VAX BASIC"
Y.SBTTL "Using FOR-NEXT Loops"
REM THIS PROGRAM IS A SIMPLE TEST
DATA 1, 2, 3, 4

NEXT IX
END

%TITLE

Compiler Directives 3-25

%VARIANT

%VARIANT

Format

%VARIANT

The % VARIANT directive is a built-in lexical function that allows you to
conditionally control program compilation. % VARIANT returns an integer
value when you reference it in a lexical expression. You set the variant
value with the /VARIANT qualifier when you compile the program or
with the SET % VARIANT command.

Syntax Rules

Remarks

None.

1. The % VARIANT function can appear only in a lexical expression.

2. The % VARIANT function returns the integer value specified either
with the COMPILE /VARIANT command, the SET /VARIANT
command, or the DCL command BASIC. The returned integer always
has a data type of LONG.

3-26 Compiler Directives

Example

XLET XVAX = 0
XLET USX = 1
XLET XRSTS = 2

XIF XVARIANT = XVAX
X!HEN

XELSE XIF XVARIANT = XRSX OR XVARIANT = XRSTS
XTHEN

XELSE Y.ABORT "Illegal compilation variant"
XEND X!F

XEND X!F

%VARIANT

Compiler Directives 3-27

Chapter 4

Statements and Functions

This chapter provides reference material on all of the VAX BASIC
statements and functions. The statements and functions are listed in
alphabetical order and each description contains the following sections:

Definition

Format

Syntax Rules

Remarks

Example

A description of what the statement does.

The required syntax for the statement.

Any rules governing the use of parameters, separators, or
other syntax items.

Explanatory remarks concerning the effect of the statement on
program execution and any restrictions governing its use.

One or more examples of the statement in a VAX BASIC
program. Where appropriate, sample output is also shown.

Statements and Functions 4-1

ABS

ABS

Format

The ABS function returns a floating-point number that equals the absolute
value of a specified floating-point expression.

real-var= ABS (real-exp)

Syntax Rules

Remarks

None.

1. The argument of the ABS function must be a real expression. When
the argument is a real expression, VAX BASIC returns a value of the
same floating-point size. When the argument is not a real expression,
VAX BASIC converts the argument to the default floating-point size
and returns a value of the default floating-point size.

2. The returned floating-point value is always greater than or equal to
zero. The absolute value of zero is zero. The absolute value of a
positive number equals that number. The absolute value of a negative
number equals that number multiplied by -1.

4-2 Statements and Functions

Example

G = 6.1273
A = ABS(-100 * G)
B = -39
PRINT ABS(B), A

Output

39 612.73

ABS

Statements and Functions 4-3

ABS%

ABSo/o

Format

The ABS% function returns an integer that equals the absolute value of a
specified integer expression.

int-var= ABS% (int-exp)

Syntax Rules

Remarks

Example

None.

1. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default integer size.

2. The returned value is always greater than or equal to zero. The
absolute value of zero is zero. The absolute value of a positive
number equals that number. The absolute value of a negative number
equals that number multiplied by -1.

GY, = 5.1273
A = ABSY.(-100% * GY,)
B = -39
PRINT ABSY.(B), A

Output

39 512

4-4 Statements and Functions

ASCII

Format

ASCII

The ASCII function returns the ASCII value in decimal of a string's first
character.

int-var={ ASC } (str-exp)
ASCII

Syntax Rules

Remarks

Example

None.

1. The ASCII value of a null string is zero.

2. The ASCII function returns an integer value of the default size be
tween 0 and 255.

DECLARE STRING time_out
time_out = "Friday"
PRINT ASCII(time_out)

Output

70

Statements and Functions 4-5

AYN

ATN

Format

The ATN function returns the arctangent (that is, angular value) of a
specified tangent in radians or degrees.

real-var= ATN (real-exp)

Syntax Rules

Remarks

None.

1. ATN returns a value from -PI/2 through PI/2.

2. The returned angle is expressed in radians or degrees, depending on
which angle clause you choose with the OPTION statement.

3. The argument of the ATN function must be a real expression. When
the argument is a real expression, VAX BASIC returns a value of the
same floating-point size. When the argument is not a real expression,
VAX BASIC converts the argument to the default floating-point size
and returns a value of the default floating-point size.

4-6 Statements and Functions July 1988

Example

OPTION ANGLE = RADIANS
DECLARE SINGLE angle_rad, angle_deg, T
INPUT "Tangent value";T
angle_rad = ATN(T)
PRINT "The smallest angle with that tangent is" ;angle_rad; "radians"
angle_deg = angle_rad/(PI/180)
PRINT "and"; angle_deg; "degrees"

Output

Tangent value? 2
The smallest angle with that tangent is 1.10715 radians
and 63.435 degrees

AYN

Statements and Functions 4-7

BUFSIZ

BUFSIZ

Format

The BUFSIZ function returns the record buffer size, in bytes, of a specified
channel.

int-var= BUFSIZ (chnl-exp)

Syntax Rules

Remarks

Example

1. Chnl-exp is a numeric expression that specifies a channel number.

2. The value assigned to int-var is a LONG integer.

1. If the specified channel is closed, BUFSIZ returns a value of zero.

2. BUFSIZ of channel #0 always returns the value 132.

DECLARE LONG buffer_size
buffer_size = BUFSIZ(O)
PRINT "Buffer size equals";buffer_size

Output

Buff er size equals 132

4-8 Statements and Functions

CALL

Format

CALL

The CALL statement transfers control to a subprogram, external function,
or other callable routine. You can pass arguments to the routine and can
optionally specify passing mechanisms. When the called routine finishes
executing, control returns to the calling program.

CALL routine [pass-mech] [(actual-param , ...)]

routine: {
sub-name }
any-callable-routine

pass-mech: {
BY VALUE }
BY REF

actual-param:

Syntax Rules

BY DESC

{
exp }

('J) [pass-mech] array Lr •••

1. Routine is the name of a SUB subprogram or any other callable
procedure, such as a system service or an RTL routine you want to
call. It cannot be a variable name. See the VAX BASIC User Manual
for more information on using system services, RTL routines, and
other procedures.

2. Pass-mech specifies how arguments are passed to the called routine.
If you do not specify a pass-mech, VAX BASIC passes arguments as
indicated in Table 4-1.

• BY VALUE specifies that VAX BASIC passes the argument's 32-bit
value.

Statements and Functions 4-9

CALL

• BY REF specifies that VAX BASIC passes the argument's address.
This is the default for all arguments except strings and entire
arrays.

• BY DESC specifies that VAX BASIC passes the address of a VAX
BASIC descriptor. For information about the format of a VAX
BASIC descriptor for strings and arrays, see Appendix C. For
more information on other types of descriptors, see the VAX
Architecture Handbook.

Table 4-1: VAX BASIC Parameter-Passing Mechanisms
BY

Parameter VALUE BY REF BY DESC

Integer and Real Data

Variables Yes Yes Yes

Constants Yes Local Local
copy I copy

Expressions Yes Local Local
copy1 copy

Elements of a Yes Yes1 Yes
nonvirtual array

Virtual Yes Local Local
array elements copy1 copy

Non virtual No Yes Yes1

en tire array

Virtual No No No
entire array

Packed Decimal Data

Variables No Yes Yes

Constants No Local Local
copy1 copy

Expressions No Local Local
copy1 copy

Non virtual No Yes1 Yes
array elements

1 Specifies the default parameter-passing mechanism.

4-10 Statements and Functions

CALL

Table 4-1 (Cont.): VAX BASIC Parameter-Passing Mechanisms
BY

Parameter VALUE BY REF BY DESC

Packed Decimal Data

Virtual No Local Local
array elements copy1 copy

Non virtual No Yes Yes1

entire arrays

Virtual No No No
entire arrays

String Data

Variables No Yes Yes

Constants No Local Local
copy copy1

Expressions No Local Local
copy copy1

Non virtual No Yes Yes1

array elements

Virtual No Local Local
array elements copy copy1

Non virtual No Yes Yes1

entire arrays

Virtual No No No
entire arrays

Other Parameters

RECORD variables No Yes1 No

RF A variables No Yes1 No

1 Specifies the default parameter-passing mechanism.

3. You should use parameter-passing mechanisms only when calling
non-BASIC routines or when a subprogram expects to receive a string
or entire array by reference.

Statements and Functions 4-11

CALL

Remarks

4. When pass-mech appears before the parameter list, it applies to all
arguments passed to the called routine. You can override this passing
mechanism by specifying a pass-mech for individual arguments in the
actual-param list.

5. Actual-param lists the arguments to be passed to the called routine.

6. You can pass expressions or entire arrays. Optional commas in
parentheses after the array name specify the dimensions of the array.
The number of commas is equal to the number of dimensions -
1. Thus, no comma specifies a one-dimensional array, one comma
specifies a two-dimensional array, two commas specify a three
dimensional array, and so on.

7. You cannot pass entire virtual arrays.

8. The name of the routine can be from 1 to 31 characters and must
conform to the following rules:

• The first character of an unquoted name must be an alphabetic
character (A through Z). The remaining characters, if present, can
be any combination of letters, digits (0 through 9), dollar signs
($), periods (.), or underscores (-).

• A quoted name can consist of any combination of printable ASCII
characters.

9. VAX BASIC allows you to pass up to 255 parameters.

1. You can specify a null argument as an actual-param for non-BASIC
routines by omitting the argument and the pass-mech, but not the com
mas or parentheses. This forces VAX BASIC to pass a null argument
and allows you to access system routines from VAX BASIC.

2. Arguments in the actual-param list must agree in data type and
number with the formal parameters specified in the subprogram.

3. An argument is modifiable when changes to it are evident in the
calling program. Changing a modifiable parameter in a subprogram
means the parameter is changed for the calling program as well.
Variables and entire arrays passed by descriptor or by reference are
modifiable.

4-12 Statements and Functions

Example

CALL

4. An argument is nonmodifiable when changes to it are not evident
in the calling program. Changing a nonmodifiable argument in a
subprogram does not affect the value of that argument in the calling
program. Arguments passed by value, constants, and expressions are
nonmodifiable. Passing an argument as an expression (by placing
it in parentheses) changes it from a modifiable to a nonmodifiable
argument. Virtual array elements passed as parameters are non
modifiable.

5. VAX BASIC will automatically convert numeric actual parameters to
match the declared data type. If the actual parameter is a variable,
VAX BASIC signals the informational message "Mode for parameter
<n> of routine <name> changed to match declaration" and

passes the argument by local copy. This prevents the called routine
from modifying the contents of the variable.

6. For expressions and virtual array elements passed by reference, VAX
BASIC makes a local copy of the value, and passes the address of this
local copy. For dynamic string arrays, VAX BASIC passes a descriptor
of the array of string descriptors. The compiler passes the address
of the argument's actual value for all other arguments passed by
reference.

7. Only BYTE, WORD, LONG, and SINGLE values can be passed by
value. BYTE and WORD values passed by value are converted to
LONG values.

8. If you attempt to call an external function, VAX BASIC treats the
function as if it were invoked normally and validates all parameters.
Note that you cannot call a STRING, HFLOAT, or RFA function. See
the EXTERNAL statement for more information on how to invoke
functions.

EXTERNAL SUB LIB$PUT_OUTPUT (string)
DECLARE STRING msg_str
msg_str = "Successful call to LIB$PUT_OUTPUT!"
CALL LIB$PUT_OUTPUT (msg_str)

Output

Successful call to LIB$PUT_OUTPUT!

Statements and Functions 4-13

CAUSE ERROR

CAUSE ERROR

Format

The CAUSE ERROR statement allows you to artificially generate a VAX
BASIC run-time error and transfer program control to a VAX BASIC error
handler.

CAUSE ERROR err-num

Syntax Rules

Err-num must be a valid VAX BASIC run-time error number.

Remarks

All error numbers are listed in the VAX BASIC User Manual.

Example

WHEN ERROR IN

CAUSE ERROR 11%

USE
SELECT ERR

4-14 Statements and Functions

CASE = 11
PRINT "End of file"
CONTINUE

CASE ELSE
EXIT HANDLER

END SELECT
END WHEN

CAUSE ERROR

Statements and Functions 4-1 5

CCPOS

CCPOS

Format

The CCPOS function returns the current character or cursor position of
the output record on a specified channel.

int-var= CCPOS (chnl-exp)

Syntax Rules

Remarks

Chnl-exp must specify an open file or terminal.

1. If chnl-exp is zero, CCPOS returns the current character position of the
controlling terminal.

2. The int-var returned by the CCPOS function is of the default integer
size.

3. The CCPOS function counts only characters. If you use cursor ad
dressing sequences such as escape sequences, the value returned will
not be the cursor position.

4. The first character position on a line is zero.

4-16 Statements and Functions

Example

DECLARE LONG curs_pos
PRINT "Hello";
curs_pos = CCPOS (0)
PRINT curs_pos

Output

Hello 6

CCPOS

Statements and Functions 4-1 7

CHAIN

CHAIN

Format

The CHAIN statement transfers control from the current program to
another executable image. CHAIN closes all files, then requests that the
new program begin execution. Control does not return to the original
program when the new image finishes executing.

NOTE

The CHAIN statement is not recommended for new program
development. DIGITAL recommends that you use subprograms,
external functions and pictures for program segmentation.

CHAIN str-exp

Syntax Rules

Remarks

Str-exp represents the file specification of the program to which control is
passed. It can be a quoted or unquoted string.

1. Str-exp must refer to an executable image or VAX BASIC signals an
error.

2. If you do not specify a file type, VAX BASIC searches for an EXE file
type.

3. You cannot chain to a program on another node.

4. Execution starts at the beginning of the specified program.

5. Before chaining takes place, all active output buffers are written, all
open files are closed, and all storage is released.

4-18 Statements and Functions

Example

CHAIN

6. Because a CHAIN statement passes control from the executing image,
the values of any program variables are lost. This means that you
can pass parameters to a chained program only by using files or a
system-specific feature such as LIB$GET_COMMON and LIB$PUT_
COMMON.

DECLARE STRING time_out
time_out = "Friday"
PRINT ASCII(time_out)
CHAIN "CCPOS"

Output

70
The current cursor position is 0

In this example, control is passed from the executing image, ASCII.EXE to
the chained program, CCPOS.EXE. The value that results from ASCII.EXE
is 70. The second line of output reflects the value that results from
CCPOS.EXE. ,

Statements and Functions 4-19

CHANGE

CHANGE

Format

The CHANGE statement either converts a string of characters to their
ASCII integer values or converts a list of numbers to a string of ASCII
characters.

String Variable to Array

CHANGE str-exp TO num-array-name

Array to String Variable

CHANGE num-array-name TO str-var

Syntax Rules

Remarks

1. Str-exp is a string expression.

2. Num-array-name should be a one-dimensional array. If you specify a
two-dimensional array, VAX BASIC converts only the first row of that
array. VAX BASIC does not support conversion to or from arrays of
more than two dimensions.

1. VAX BASIC does not support RECORD elements as a destination
string or as a source or destination array for the CHANGE statement.

2. String Variable to Array

• This format converts each character in the string to its ASCII
value.

• VAX BASIC assigns the value of the string's length to the first
element of the array.

4-20 Statements and Functions

CHANGE

• VAX BASIC assigns the ASCII value of the first character in the
string to the second element, (1) or (0, l), of the array, the ASCII
value of the second character to the third element, (2) or (0,2),
and so on.

• If the string is longer than the bounds of the array, VAX BASIC
does not translate the excess characters, and signals the error
"Subscript out of range" (ERR=55). The first element of array still
contains the length of the string.

3. Array to String Variable
• This format converts the elements of the array to a string of

characters.

• The length of the string is determined by the value in the zero
element, (0) or (0,0), of the array. If the value of element zero
is greater than the array bounds, VAX BASIC signals the error
"Subscript out of range" (ERR=55).

• VAX BASIC changes the first element, (1) or (0,1), of array to its
ASCII character equivalent, the second element, (2) or (0,2), to
its ASCII equivalent, and so on. The length of the returned string
is determined by the value in the zero element of the array. For
example, if the array is dimensioned as (10), but the zero element
(0) contains the value 5, VAX BASIC changes only elements (1),
(2), (3), (4), and (5) to string characters.

• VAX BASIC truncates floating-point values to integers before
converting them to characters.

• Values in array elements are treated modulo 256.

Statements and Functions 4-21

CHANGE

Example

DECLARE STRING ABCD, A
DIM INTEGER array_changes(6)
ABCD = "ABCD 11

CHANGE ABCD TO array_changes
FOR IY. = 0 TO 4
PRINT array_changes(IY.)
NEXT IY.
CHANGE array_changes TO A
PRINT A

Output

4
65
66
67
68

ABCD

4-22 Statements and Functions

CHRS

Format

CHRS

The CHR$ function returns a 1-character string that corresponds to the
ASCII value you specify.

str-var = CHR$ (int-exp)

Syntax Rules

Remarks

Example

None.

1. CHR$ returns the character whose ASCII value equals int-exp. If
int-exp is greater than 255, VAX BASIC treats it modulo 256. For
example, CHR$(325) is the same as CHR$(69).

2. All arguments between 0 and 255 are considered unsigned 8-bit
integers. For example, -1 is treated as 255.

3. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

DECLARE INTEGER num_exp
INPUT "Enter the ASCII value you wish to be converted";num_exp
PRINT "The equivalent character is ";CHR$(num_exp)

Output

Enter the ASCII value you wish to be converted? 89
The equivalent character is Y

Statements and Functions 4-23

CLOSE

CLOSE

Format

The CLOSE statement ends I/O processing to a device or file on the
specified channel.

CLOSE [#]chnl-exp, ...

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number as
sociated with a file. It can be preceded by an optional number sign
(#).

1. VAX BASIC writes the contents of any active output buffers to the file
or device before it closes that file or device.

2. Channel #0 (the controlling terminal) cannot be closed. An attempt to
do so has no effect.

3. If you close a magnetic tape file that is open for output, VAX BASIC
writes an end-of-file on the magnetic tape.

4. If you try to close a channel that is not currently open, VAX BASIC
does not signal an error and the CLOSE statement has no effect.

4-24 Statements and Functions

Example

CLOSE

OPEN "COURSE_REC.DAT" FOR INPUT AS #2
INPUT #2, course_nam, course_num, course_desc, course_instr

CLOSE #2

In this example, COURSE_REC.DAT is opened for input. Once the user
inputs all of the required information, the file is closed.

Statements and Functions 4-25

COMMON

COMMON

Format

The COMMON statement defines a named, shared storage area called a
COMMON block or program section (PSECT). VAX BASIC program mod
ules can access the values stored in the COMMON block by specifying a
COMMON block with the same name.

{ COM }
COMMON

[(com-name)] ([data-type] com-item), ...

com-item:

num-unsubs-var
num-array-name ([int-const1 TO] int-const2 , ...)
str-unsubs-var =int-canst
str-array-name ([int-const1 TO] int-const2, ...) [=int-canst]
record-var
FILL [(int-canst)][= int-canst]
FILL% [(int-canst)]
FILL$ [(int-canst)][= int-canst]

Syntax Rules

1. A COMMON block can have the same name as a program variable.

2. A COMMON block and a map in the same program module cannot
have the same name.

3. All COMMON elements must be separated with commas.

4. Com-name is optional. If you specify a com-name, it must be in paren
theses. If you do not specify a com-name, the default is "$BLANK".

5. Com-name can be from 1 through 31 characters. The first character
of the name must be an alphabetic character (A through Z). The
remaining characters, if present, can be any combination of letters,
digits (0 through 9), dollar signs ($), periods (.), or underscores (-).

4-26 Statements and Functions

COMMON

6. Data-type can be any VAX BASIC data type keyword or a data type
defined in the RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

7. When you specify a data type, all following com-items, including FILL
items, are of that data type until you specify a new data type.

8. If you do not specify any data type, com-items take the current default
data type and size.

9. Com-item declares the name and format of the data to be stored.

• Num-unsubs-var and num-array-name specify a numeric variable or
a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a fixed-length string
variable or array. You can specify the number of bytes to be
reserved for the variable with the =int-canst clause. The default
string length is 16.

• When you specify either a numeric or a string array, VAX BASIC
allows you to declare both lower and upper bounds. The upper
bound is required; the lower bound is optional.

Int-const1 specifies the lower bounds of the array.

Int-const2 specifies the upper bounds of the array and, when
accompanied by int-const1, must be preceded by the keyword
TO.

Int-const1 must be less than or equal to int-const2.

If you do not specify int-const1, VAX BASIC uses zero as the
default lower bound.

Int-const1 and int-const2 can be either negative or positive
values.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts
of the record buffer within or between data elements and to
define the format of the storage. Int-const specifies the number
of FILL items to be reserved. The =int-const clause allows you to
specify the number of bytes to be reserved for string FILL items.
Table 4-2 describes FILL item format and storage allocation.

NOTE

In the applicable formats of FILL, (int-const) represents a
repeat count, not an array subscript. FILL (n) represents
n elements, not n + 1.

Statements and Functions 4-27

COMMON

Table 4-2: FILL Item Formats and Storage Allocations
FILL Format Storage Allocation

FILL Allocates storage for one element of
the default data type unless preceded
by a data-type; the number of bytes
allocated depends on the default or
the specified data type.

FILL(int-const) Allocates storage for the number of
floating-point elements specified by
int-canst unless preceded by a data
type; the number of bytes allocated
for each element depends on the
default floating-point data size or the
specified data type.

FILL% Allocates storage for one integer ele
ment; the number of bytes allocated
depends on the default integer size.

FILL %(int-const) Allocates storage for the number of
integer elements specified by int
canst; the number of bytes allocated
for each element depends on the
default integer size.

FILL$ Allocates 16 bytes of storage for a
string element. The dollar sign can
be omitted if the FILL keyword is
preceded by the STRING data type.

FILL$(int-const) Allocates 16 bytes of storage for the
number of string elements specified
by int-canst. The dollar sign can
be omitted if the FILL keyword is
preceded by the STRING data type.

4-28 Statements and Functions

Remarks

COMMON

Table 4-2 (Cont.): FILL Item Formats and Storage Allocations
FILL Format Storage Allocation

FILL$=int-const Allocates the number of bytes of
storage specified by int-canst for a
string element. The dollar sign can
be omitted if the FILL keyword is
preceded by the STRING data type.

FILL$(int-constl)=int-const2 Allocates the number of bytes of
storage specified by int-const2 for the
number of string elements specified
by int-constl. The dollar sign can
be omitted if the FILL keyword is
preceded by the STRING data type.

1. Variables in a common are not initialized by VAX BASIC.

2. A COMMON area and a MAP area with the same name, in different
program modules, specify the same storage area.

3. VAX BASIC does not execute COMMON statements. The COMMON
statement allocates and defines the data storage area at compilation
time.

4. When you link your program, the size of the COMMON area is
the size of the largest COMMON area with that name. VAX BASIC
concatenates COMMON statements with the same com-name within a
single program module into a single PSECT. The total space allocated
is the sum of the space allocated in the concatenated COMMON
statements.

If you specify the same com-name in several program modules, the
size of the PSECT will be determined by the program module that has
the greatest amount of space allocated in the concatenated COMMON
statements.

5. The COMMON statement must lexically precede any reference to
variables declared in it.

6. A COMMON area can be accessed by more than one program module,
as long as you define the com-name in each module that references the
COMMON area.

Statements and Functions 4-29

COMMON

Example

7. Variable names in a COMMON statement in one program module
need not match those in another program module.

8. Variables and arrays declared in a COMMON statement cannot be de
clared elsewhere in the program by any other declarative statements.

9. The data type specified for com-items or the default data type and size
determines the amount of storage reserved in a COMMON block:

• BYTE integers reserve 1 byte.

• WORD integers reserve 2 bytes.

• LONG integers reserve 4 bytes.

• SINGLE floating-point numbers reserve 4 bytes.

• DOUBLE floating-point numbers reserve 8 bytes.

• GFLOAT floating-point numbers reserve 8 bytes.

• HFLOAT floating-point numbers reserve 16 bytes.

• DECIMAL(d,s) packed decimal numbers reserve (d+ 1) /2 bytes.

• STRING reserves 16 bytes (the default) or the number of bytes
you specify with =int-const.

10. For multi-dimensional arrays, values are assigned in row-column
order.

COMMON (sales_rec) DECIMAL net_sales (1966 TO 1976)
STRING row = 2,

report_name = 24
DOUBLE FILL,
LONG part_bins

4-30 Statements and Functions

COMP%

Format

COMP%

The COMP% function compares two numeric strings and returns a -1, 0,
or 1, depending on the results of the comparison.

int-var= COMP% (str-exp1, str-exp2)

Syntax Rules

Remarks

Str-exp1 and str-exp2 are numeric strings. They must have one of the
following formats:

• An optional minus sign (-), ASCII digits, and an optional decimal
point (.)

• An optional minus sign, ASCII digits, an optional decimal point, the
letter E, an optional minus sign, and a 2-digit exponent

1. If str-exp1 is greater than str-exp2, COMP% returns a 1.

2. If the string expressions are equal, COMP% returns a 0.

3. If,str-exp1 is less than str-exp2, COMP% returns a -1.

4. The value returned by the COMP% function is an integer of the
default size.

Statements and Functions 4-31

COMP%

Example

DECLARE STRING num_string, old_num_string, &
INTEGER result

num_string = "-24.5"
old_num_string = "33"
result = COMPY.(num_string, old_num_string)
PRINT "The value is ";result

Output

The value is -1

4-32 Statements and Functions

CONTINUE

CONTINUE

Format

The CONTINUE statement causes VAX BASIC to clear an error condition
and resume execution at the statement following the statement that caused
the error or at the specified target.

CONTINUE [target]

Syntax Rules

Remarks

If you specify a target, it must be a label or line number that appears either
inside the associated protected region, inside a WHEN block protected
region that surrounds the current protected region, or in an unprotected
region of code.

1. CONTINUE with no target causes VAX BASIC to transfer control to
the statement immediately following the statement that caused the
error. The next remark is an exception to this rule.

2. If an error occurs on a FOR, NEXT, WHILE, UNTIL, SELECT or
CASE statement, control is transferred to the statement immediately
following the corresponding NEXT or END SELECT statement. For
example:

July 1988 Statements and Functions 4-33

CONTINUE

Example

10 WHEN ERROR IN
A=10
B=1

20 FOR I=A TO B STEP 2
30 GET #1
40 C=1

NEXT I
50 C=O

USE

CONTINUE
END WHEN

If an error occurs on line 20, the CONTINUE statement transfers
control to line 50. If an error occurs on line 30, program control
resumes at line 40.

3. The CONTINUE statement must be lexically inside of a handler.

4. If you specify a CONTINUE statement within a detached handler, you
cannot specify a target.

WHEN ERROR USE err_handler

END WHEN

HANDLER err_handler
SELECT ERR

CASE = 50
PRINT "Insufficient data"
CONTINUE

CASE ELSE
EXIT HANDLER

END SELECT
END HANDLER

4-34 Statements and Functions July 1988

cos

cos
The COS function returns the cosine of an angle in radians or degrees.

Format

real-var= COS (real-exp)

Syntax Rules

Remarks

Example

None.

1. The returned value is between -1 and 1. This value is expressed in
either radians or degrees depending on which angle clause you choose
with the OPTION statement.

2. VAX BASIC expects the argument of the COS function to be a real
expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

DECLARE SINGLE cos_value
cos_value = 26
PRINT COS(cos_value)

Output

.646919

Statements and Functions 4-35

CTR LC

CTR LC

Format

The CTRLC function enables CTRL/C trapping. When CTRL/C trap
ping is enabled, a CTRL/C typed at the terminal causes control to be
transferred to the error handler currently in effect.

int-var= CTR LC

Syntax Rules

Remarks

None.

1. When VAX BASIC encounters a CTRL/C, control passes to the error
handler currently in effect. If there is no error handler in a program,
the program aborts.

2. In a series of linked subprograms, setting CTRL/C for one subprogram
enables CTRL/C trapping for all subprograms.

3. When you trap a CTRL/C with an error handler, your program may
be in an inconsistent state; therefore, you should handle the CTRL/C
error and exit the program as quickly as possible.

4. CTRL/C trapping is asynchronous; that is, VAX BASIC suspends
execution and signals "Programmable ~c trap" (ERR=28) as soon as
it detects a CTRL/C. Consequently, a statement can be interrupted
while it is executing. A statement so interrupted may be only partially
executed and variables may be left in an undefined state.

5. VAX BASIC can trap more than one CTRL/C error in a program as
long as the error does not occur while the error handler is executing.
If a second CTRL/C is detected while the error handler is processing
the first CTRL/C, the program aborts.

6. The CTRLC function always returns a value of zero.

4-36 Statements and Functions July 1988

CTR LC

7. The function RCTRLC disables CRTL/C trapping. See the description
of the RCTRLC function for further details.

July 1988 Statements and Functions 4-36.1

Example

WHEN ERROR USE repair_work
Y% = CTRLC

END WHEN
HANDLER repair_work
IF (ERR=28) THEN PRINT "Interrupted by CTRLC!"

END HANDLER

CTR LC

Statements and Functions 4-37

CVTSS

CVTSS

Format

The CVT$$ function is a synonym for the EDIT$ function. See the EDIT$
function for more information.

NOTE

DIGITAL recommends that you use the EDIT$ function rather
than the CVT$$ function for new program development.

str-var = CVT$$ (str-exp, int-exp)

4-38 Statements and Functions

CVTxx

Format

CVTxx

The CVT$ % function maps the first two characters of a string into a
16-bit integer. The CVT%$ function translates a 16-bit integer into a 2-
character string. The CVT$F function maps a 4- or 8-character string into
a floating-point variable. The CVTF$ function translates a floating-point
number into a 4- or 8-byte character string. The number of characters
translated depends on whether the floating-point variable is single- or
double-precision.

NOTE

CVT functions are supported only for compatibility with
BASIC-PLUS. DIGITAL recommends that you use VAX BASIC's
dynamic mapping feature or multiple MAP statements for new
program development.

int-var= CVT$% (str-var)

real-var= CVT$F (str-var)

str-var = CVT%$ (int-var)

str-var = CVTF$ (real-var)

Syntax Rules

CVT functions reverse the order of the bytes when moving them to or
from a string. Therefore, you can mix MAP and MOVE statements, but
you cannot use FIELD and CVT functions on a file if you also plan to use
MAP or MOVE statements.

Statements and Functions 4-39

CVTxx

Remarks

1. CVT$%

• If the CVT$% str-var has fewer than two characters, VAX BASIC
pads the string with nulls.

• If the default data type is LONG, only two bytes of data are
extracted from str-var; the high-order byte is sign-extended into a
longword.

• The value returned by the CVT$% function is an integer of the
default size.

2. CVT%$

• Only two bytes of data are inserted into str-var.
• If you specify a floating-point variable for int-var, VAX BASIC

truncates it to an integer of the default size. If the default size is
BYTE and the value of int-var exceeds 127, VAX BASIC signals an
error.

3. CVT$F

• CVT$F maps 4 characters when the program is compiled with
/SINGLE and eight characters when the program is compiled with
/DOUBLE.

• If str-var has fewer than four or eight characters, VAX BASIC pads
the string with nulls.

• The real-var returned by the CVT$F function is the default
floating-point size. If the default size is GFLOAT or HFLOAT,
VAX BASIC signals the error "Floating CVT illegal for GFLOAT or
HFLOAT".

4. CVTF$

• The CVTF$ function maps single-precision numbers to a 4-
character string and double-precision numbers to an 8-character
string.

• VAX BASIC expects the argument of the CVTF$ function to be
a real expression. When the argument is a real expression, VAX
BASIC returns a value of the same floating-point size~ When
the argument is not a real expression, VAX BASIC converts the
argument to the default floating-point size and returns a value of
the default floating-point size. If the default floating-point size is
GFLOAT or HFLOAT, VAX BASIC signals the error "Floating CVT
illegal for GFLOAT or HFLOAT".

4-40 Statements and Functions

Examples

Example 1

DECLARE STRING test_string, another_string
DECLARE LONG first_number, next_number
test_string = "AT"
PRINT CVT$%(test_string)
another_string = "at"
PRINT CVT$%(another_string)
first_number = 16724
PRINT CVT%$(first_number)
next_number = 24948
PRINT CVT%$(next_number)
END

Output 1

16724
24948

AT
at

Example 2

DECLARE STRING test_string, another_string
DECLARE SINGLE first_num, second_num
test_string = "DESK"
first_num = CVT$F(test_string)
PRINT first_num
another_string = "desk"
second_num = CVT$F(another_string)
PRINT second_num
PRINT CVTF$(first_num)
PRINT CVTF$(second_num)
END

Output 2

.218256E+12

.466242E+31
DESK
desk

CVTxx

Statements and Functions 4-41

DATA

DATA
The DATA statement creates a data block for the READ statement.

Format

DATA [
num-lit]
str-lit , ...
unq-str

Syntax Rules

Remarks

1. Num-lit specifies a numeric literal.

2. Str-lit is a character string that starts and ends with double or single
quotation marks. The quotation marks must match.

3. Unq-str is a character sequence that does not start or end with double
quotation marks and does not contain a comma.

4. Commas separate data elements. If a comma is part of a data item,
the entire item must be enclosed in quotation marks.

1. Because VAX BASIC treats comment fields in DATA statements as part
of the DATA sequence, you should not include comments.

2. A DATA statement must be the last or the only statement on a
physical line.

3. DATA statements must end with a line terminator.

4. When a DATA statement is continued with an ampersand (&), VAX
BASIC interprets all characters between the keyword DATA and
the ampersand as part of the data. Any code that appears on a
noncontinued line is considered a new statement.

4-42 Statements and Functions

Example

DATA

5. You cannot use the percent sign suffix for integer constants that appear
in DATA statements. An attempt to do so causes VAX BASIC to signal
the error, "Data format error" (ERR=SO).

6. DATA statements are local to a program module.

7. VAX BASIC does not execute DATA statements. Instead, control is
passed to the next executable statement.

8. A program can have more than one DATA statement. VAX BASIC
assembles data from all DATA statements in a single program unit
into a lexically ordered single data block.

9. VAX BASIC ignores leading and trailing blanks and tabs unless they
are in a string literal.

10. Commas are the only valid data delimiters. You must use a quoted
string literal if a comma is to be part of a string.

11. VAX BASIC ignores DATA statements without an accompanying
READ statement.

12. VAX BASIC signals the error "Data format error" if the DATA item
does not match the data type of the variable specified in the READ
statement or if a data element that is to be read into an integer variable
ends with a percent sign (%). If a string data element ends with a
dollar sign ($), VAX BASIC treats the dollar sign as part of the string.

10 DECLARE INTEGER A,B,C
READ A,B,C
DATA 1,2,3
PRINT A + B + C

Output

6

Statements and Functions 4-43

DATES

DATES

Format

The DATE$ function returns a string containing a day, month, and year in
the form dd-Mmm-yy.

str-var =DATE$ (int-exp)

Syntax Rules

1. Int-exp can have up to six digits in the form yyyddd, where the charac
ters yyy specify the number of years since 1970 and the characters ddd
specify the day of that year.

2. You must fill all three of the d positions with digits or zeros before
you can fill the y positions. For example:

• DATE$(121) returns the date Ol-May-70, day 121 of the year
1970.

• DATE$(1201) returns the date 20-Jul-71, day 201 of the year
1971.

• DATE$(12001) returns the date Ol-Jan-82, day one of the year
1982.

• DATE$(10202) returns the date 21-Jul-80, day 202 of the year
1980.

4-44 Statements and Functions

Remarks

Example

DATES

1. If int-exp equals zero, DATE$ returns the current date.

2. The str-var returned by the DATE$ function consists of nine characters
and expresses the day, month, and year in the form dd-Mmm-yy.

3. If you specify an invalid date, such as day 385, results are unpre
dictable.

4. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

DECLARE STRING todays_date
todays_date = DATE$(0)
PRINT todays_date

Output

26-Aug-86

Statements and Functions 4-45

DECIMAL

DECIMAL

Format

The DECIMAL function converts a numeric expression or numeric string
to the DECIMAL data type.

decimal-var= DECIMAL (exp[, int-const1, int-const2])

Syntax Rules

Remarks

1. Int-const1 specifies the total number of digits (the precision) and int
const2 specifies the number of digits to the right of the decimal point
(the scale). If you do not specify these values, VAX BASIC uses the d
(digits) and s (scale) defaults for the DECIMAL data type.

2. Int-const1 and int-const2 must be positive integers from 1 through 31.
Int-const2 cannot exceed the value of int-const1.

3. Exp can be either numeric or numeric string. If a numeric string, it can
contain the ASCII digits 0 through 9, uppercase E, a plus sign (+), a
minus sign (-), and a period (.).

1. If exp is a string, VAX BASIC ignores leading and trailing spaces and
tabs.

2. The DECIMAL function returns a zero when a string argument
contains only spaces and tabs, or when it is null.

4-46 Statements and Functions

Example

DECLARE STRING CONSTANT format_string = "##.###"
DECLARE STRING num_value, DECIMAL(6,3) B
INPUT "Enter a numeric value";num_value
B = DECIMAL(num_value,6,3)
PRINT USING format_string, B

Output

Enter a numeric value? 6
6.000

DECIMAL

Statements and Functions 4-4 7

DECLARE

DECLARE

Format

Variables

The DECLARE statement explicitly assigns a name and a data type to a
variable, an entire array, a function, or a constant.

DECLARE data-type { decl-item [,[data-type] decl-item }), ...

DEF Functions

DECLARE data-type FUNCTION {def-name [([def-param], ...)]), ...

Named Constants

DECLARE data-type CONSTANT {canst-name= canst-exp), ...

decl-item: record-var {

array-name ([int-const1 TO] int-const2, ...) }

unsubs-var

def-param: data-type

Syntax Rules

1. Data-type can be any VAX BASIC data type keyword or a data type
defined by a RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

2. Variables
• Deel-item names an array, a record, or a variable.

• A decl-item named in a DECLARE statement cannot be named
in another DECLARE statement, or in a DEF, EXTERNAL,
FUNCTION, SUB, COMMON, MAP, DIM, HANDLER, or
PICTURE statement.

4-48 Statements and Functions

DECLARE

• Each decl-item is associated with the preceding data type. A data
type is required for the first decl-item.

• Deel-items of data type STRING are dynamic strings.

• When you declare an array, VAX BASIC allows you to specify
both lower and upper bounds for each dimension of the array.
The upper bound is required; the lower bound is optional.

lnt-const1 specifies the lower bounds of the array.

Int-const2 specifies the upper bounds of the array and, when
accompanied by int-const1, must be preceded by the keyword
TO.

Int-constl must be less than or equal to int-const2.
If you do not specify int-const1, VAX BASIC uses zero as the
default lower bound.

Int-const1 and int-const2 can be any combination of negative
or positive values or zero.

3. DEF Functions

• Def-name names the DEF function.

• Data-type specifies the data type of the value the function returns.

• Def-params specify the number and, optionally, the data type of
the DEF parameters. Parameters define the arguments the DEF
expects to receive when invoked.

When you specify a data type, all following parameters are of
that data type until you specify a new data type.

If you do not specify any data type, parameters take the
current default data type and size.

The number of parameters equals the number of commas plus
1. For example, empty parentheses specify one parameter of
the default type and size; one comma inside the parentheses
specifies two parameters of the default type and size; and
so on. One data type inside the parentheses specifies one
parameter of the specified data type; two data types separated
by one comma specifies two parameters of the specified type,
and so on.

Statements and Functions 4-49

DECLARE

Remarks

4. Named Constants
• Const-name is the name you assign to the constant.

• Data-type specifies the data type of the constant. The value of the
canst must be numeric if the data type is numeric and string if the
data type is STRING. If the data type is STRING, canst must be a
quoted string or another string constant.

• Const-exp cannot be of the RFA data type.

• String constants cannot exceed 498 characters.

• VAX BASIC allows canst-exp to be an expression for all data types
except DECIMAL. Expressions are not allowed as values when
you name DECIMAL constants.

• Allowable operators in DECLARE CONSTANT expressions in
clude all valid arithmetic, relational, and logical operators except
exponentiation. Built-in functions cannot be used in DECLARE
CONSTANT expressions. The following examples use valid
expressions as values:

DECLARE DOUBLE CONSTANT max_value = (PI/2)
DECLARE STRING CONSTANT left_arrow = "<-----" + LF + CR

1. The DECLARE statement is not executable.

2. The DECLARE statement must lexically precede any reference to the
variables, functions, or constants named in it.

3. To declare a virtual or run-time array, use the DIMENSION statement.

4. Variables
• Subsequent decl-items are associated with the specified data type

until you specify another data type.

• All variables named in a DECLARE statement are initialized to
zero if numeric or to the null string if string.

5. DEF Functions
• The DECLARE FUNCTION statement allows you to name a

function defined in a DEF or DEF• statement, specify the data type
of the value the function returns, and declare the number and data
type of the DEF parameters.

• Data type keywords must be separated by commas.

4-50 Statements and Functions

DECLARE

• The first specification of a data type for a def-param is the default
for subsequent arguments until you specify another def-param. For
example:

DECLARE DOUBLE FUNCTION interest(DOUBLE,SINGLE,,)

This example declares two parameters of the default type and size,
one DOUBLE parameter, and three SINGLE parameters for the
function named interest.

6. Named Constants

• The DECLARE CONSTANT statement allows you to name a
constant value and assign a data type to that value. Note that
you can specify only one data type in a DECLARE CONSTANT
statement. To declare a constant of another data type, you must
use a second DECLARE CONSTANT statement.

• During program execution, you cannot change the value assigned
to the constant.

• The specified data-type determines the data type of the constant.
For example:

DECLARE LONG CONSTANT True = -1, False = 0
DECLARE REAL CONSTANT ZZZ = 123.0
DECLARE BYTE CONSTANT YYY = '123'L
PRINT True, False, ZZZ, YYY

Output

-1 0 123 123

In this example, VAX BASIC truncates the LONG value assigned
to YYY to a BYTE variable.

NOTE

Data types specified in a DECLARE statement override any
defaults specified in COMPILE command qualifiers or OPTION
statements.

Statements and Functions 4-51

DECLARE

Examples

Example 1

!DEF Functions
DECLARE INTEGER FUNCTION amount(,,DOUBLE,BYTE,,)

Example 2

!Named Constants
DECLARE DOUBLE CONSTANT interest_rate = 15.22

4-52 Statements and Functions

DEF

DEF

The DEF statement lets you define a single- or multi-line function.

Format

Single-line DEF

DEF [data-type] def-name [([data-type] var, ...)] =exp

Multi-Line DEF

DEF [data-type] def-name [([data-type var], ...)] [statement] ...
[statement] ...

{
END DEF }
FNEND

[exp]

Syntax Rules

1. Data-type can be any VAX BASIC data type keyword or a data type
defined in the RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

2. The data type that precedes the def-name specifies the data type of the
value returned by the DEF function.

3. Def-name is the name of the DEF function. The def-name can contain
from 1 to 31 characters.

4. If the def-name also appears in a DECLARE FUNCTION statement,
the following rules apply:

• A function data type is required.

• The first character of the def-name must be an alphabetic character
(A through Z). The remaining characters can be any combination
of letters, digits (0 through 9), dollar signs ($), underscores (-),
or periods (.).

Statements and Functions 4-53

DEF

5. If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF statement appears before the first reference to the de/
name, the following rules apply:

• The function data type is optional.

• The first character of the def-name must be an alphabetic letter (A
through Z). The remaining characters can be any combination of
letters, digits, dollar signs, underscores, or periods.

• If a function data type is not specified, the last character in the
def-name must be a percent sign for an INTEGER function, or a
dollar sign for a STRING function.

6. If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF statement appears after the first reference to the def-name,
the following rules apply:

• The function data type cannot be present.

• The first two characters of the def-name must be FN. The remain
ing characters can be any combination of letters, digits, dollar
signs, underscores, or periods, with one restriction: the last char
acter must be a percent sign for an INTEGER function, or a dollar
sign for a STRING function.

• There must be at least one character between the FN characters
and the ending dollar sign or percent character. FN$ and FN% are
not valid function names.

7. Var specifies optional formal DEF parameters. Because the parameters
are local to the DEF function, any reference to these variables outside
the DEF body creates a different variable.

8. You can specify the data type of DEF parameters with a data type
keyword or with a data type defined in a RECORD statement. If you
do not include a data type, the parameters are of the default type and
size. Parameters that follow a data type keyword are of the specified
type and size until you specify another data type.

9. You can specify up to 255 parameters in a DEF statement.

10. Single-Line DEF

Exp specifies the operations the function performs.

11. Multi-Line DEF

• Statements specifies the operations the function performs.

• The END DEF or FNEND statement is required to end a multi-line
DEF.

4-54 Statements and Functions

Remarks

DEF

• VAX BASIC does not allow you to specify any statements that
indicate the beginning or end of any SUB, FUNCTION, PICTURE,
HANDLER (attached handlers are legal), PROGRAM or DEF in a
function definition.

• Exp specifies the function result. Exp must be compatible with the
DEF data type.

1. When VAX BASIC encounters a DEF statement, control of the program
passes to the next executable statement after the DEF.

2. The function is invoked when you use the function name in an
expression.

3. You cannot specify how parameters are passed. When you invoke
a function, VAX BASIC evaluates parameters from left to right and
passes parameters to the function so that they cannot be modified.
Numeric parameters are passed by value and string parameters are
passed by descriptor, where the descriptor points to a local copy.
DEF functions can reference variables in the main program, but they
cannot reference variables in other DEF or DEF* functions. A DEF
function can, therefore, modify other variables in the program, but not
variables within another DEF function.

4. A DEF function is local to the program, subprogram, function, or
picture that defines it.

5. You can declare a DEF either by defining it, by using the DECLARE
FUNCTION statement, or by implicitly declaring it with a reference to
the function in an expression.

6. If your program invokes a function with a name that does not start
with FN before the DEF statement defines the function, VAX BASIC
signals an error.

7. If the number of parameters, types of parameters, or type of result
declared in the invocation disagree with the number or types of
parameters defined in the DEF statement, VAX BASIC signals an error.

8. DATA statements in a multi-line DEF are not local to the func
tion; they are local to the program module containing the function
definition.

9. The function value is initialized to zero or the null string each time
you invoke the function.

Statements and. Functions 4-55

DEF

Examples

10. You can invoke a DEF function within an attached or detached
handler.

11. DEF definitions cannot appear inside a protected region. However, a
DEF can contain one or more protected regions.

12. In DEF definitions that contain handlers, the following rules apply:

• If the function was invoked from a protected region, the EXIT
HANDLER statement transfers control to the handler specified for
that protected region.

• If the function was not invoked from a protected region, the
EXIT HANDLER statement transfers control to the default error
handler.

13. If an exception is not handled within a DEF function, control is
transferred to the module that invoked the DEF function.

14. ON ERROR statements within a DEF function are local to the function.

15. A CONTINUE, GOTO, GOSUB, ON ERROR GOTO, or RESUME
statement in a multi-line function definition must refer to a line
number or label in the same function definition.

16. You cannot transfer control into a multi-line DEF except by invoking
the function.

17. DEF functions can be recursive.

Example 1

!Single-Line DEF
DEF DOUBLE add (DOUBLE A, B, SINGLE C, D, E) = A + B + C + D + E
INPUT 'Enter five numbers to be added' ;V,W,X,Y,Z
PRINT 'The sum is' ;ADD(V,W,X,Y,Z)

Output 1

Enter five numbers to be added? 1,2,3,4,5
The sum is 15

4-56 Statements and Functions July 1988

Example 2

PROGRAM I_want_a_raise

OPTION TYPE= EXPLICIT,
CONSTANT TYPE = DECIMAL,
SIZE = DECIMAL (6,2)

DECLARE DECIMAL CONSTANT Overtime_factor = 0.60
DECLARE DECIMAL My_hours, My_rate, Overtime
DECLARE DECIMAL FUNCTION Calculate_pay (DECIMAL.DECIMAL)

INPUT "Your hours this week";My_hours
INPUT "Your hourly rate";My_rate

PRINT "My pay this week is"; Calculate_pay (My_hours, My_rate)

DEF DECIMAL Calculate_pay (DECIMAL Hours, Rate)

IF Hours = 0.0
THEN

EXIT DEF 0.0
END IF

Overtime = Hours - 40.0

IF Overtime < 0.0
THEN

Overtime = 0.0
END IF

END DEF (Hours * Rate) + (Overtime * (Overtime_factor * Rate))

END PROGRAM

Output 2
Your hours this week? 45.7
Your pay rate? 20.35
Your pay for the week is 987.96

DEF

Statements and Functions 4-5 7

Format

The DEF• statement lets you define a single- or multi-line function.

NOTE

The DEF• statement is not recommended for new program
development. DIGITAL recommends that you use the DEF
statement for defining single- and multi-line functions.

Single-line DEF*

DEF• [data-type] def-name [([data-type] var, ...)] =exp

Multi-Line DEF*

DEF• [data-type] def-name [([data-type] var, ...)] [statement] ...
[statement]. ..

{ END DEF } [exp]
FNEND

Syntax Rules

1. Data-type can be any VAX BASIC data type keyword or a data type
defined in the RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

2. The data type that precedes the def-name specifies the data type of the
value returned by the DEF• function.

3. Def-name is the name of the DEF• function. The def-name can contain
from 1 to 31 characters.

4. If the def-name also appears in a DECLARE FUNCTION statement,
the following rules apply:

• A function data type is required.

4-58 Statements and Functions

• The first character of the def-name must be an alphabetic character
(A through Z). The remaining characters can be any combination
of letters, digits (0 through 9), dollar signs ($), underscores (-),
or periods (.).

5. If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF• statement appears before the first reference to the
def-name, the following rules apply:

• The function data type is optional.

• The first character of the def-name must be an alphabetic character
(A through Z). The remaining characters can be any combination
of letters, digits, dollar signs, underscores, or periods.

• If a function data type is not specified, the last character in the
def-name must be a percent sign for an INTEGER function, or a
dollar sign for a STRING function.

6. If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF• statement appears after the first reference to the def
name, the following rules apply:

• The function data type cannot be present.

• The first two characters of the def-name must be FN. The remain
ing characters can be any combination of letters, digits, dollar
signs, underscores, or periods, with one restriction: the last char
acter must be a percent sign for an INTEGER function, or a dollar
sign for a STRING function.

• There must be at least one character between the FN characters
and the ending dollar sign or percent character. FN$ and FN% are
not valid function names.

7. Var specifies optional formal function parameters.

8. You can specify the data type of function parameters with a data type
keyword. If you do not specify a data type, parameters are of the
default type and size. Parameters that follow a data type are of the
specified type and size until you specify another data type.

9. You can specify up to 8 parameters in a DEF• statement.

10. Single-Line DEF•

Exp specifies the operations the function performs.

11. Multi-Line DEF•
• Statements specifies the operations the function performs.

• The END DEF or FNEND statement is required to end a multi-line
DEF•.

Statements and Functions 4-59

DEF*

Remarks

• VAX BASIC does not allow you to specify any statements that
indicate the beginning or end of any SUB, FUNCTION, PICTURE,
HANDLER, PROGRAM or DEF in a function definition.

• Exp specifies the function result. Exp must be compatible with the
DEF data type.

1. When VAX BASIC encounters a DEF• statement, control of the
program passes to the next executable statement after the DEF•.

2. A function defined by the DEF• statement is invoked when you use
the function name in an expression.

3. You cannot specify how parameters are passed. When you invoke a
DEF• function, VAX BASIC evaluates parameters from left to right and
passes parameters to the function so that they cannot be modified.
Numeric parameters are passed by value, and string parameters are
passed by descriptor, where the descriptor points to a local copy.
DEF• functions can reference variables in the main program, but they
cannot reference variables in other DEF or DEF• functions. A DEF•
function can, therefore, modify variables in the program, but not
variables within another DEF• function.

4. The following differences exist between DEF• and DEF statements:

• You can use the GOTO, ON GOTO, GOSUB, and ON GOSUB
statements to a branch outside a multi-line DEF•, but they are not
recommended.

• Although other variables used within the body of a DEF• function
are not local to the DEF• function, DEF• formal parameters are.
However, if you change the value of formal parameters within a
DEF• function and then transfer control out of the DEF• function
without executing the END DEF or FNEND statement, variables
outside the DEF• that have the same names as DEF• formal
parameters are also changed.

• You can pass up to 255 parameters to a DEF function. DEF•
functions accept a maximum of 8 parameters.

• A DEF• function value is not initialized when the DEF• function
is invoked. Therefore, if a DEF• function is invoked, and no new
function value is assigned, the DEF• function returns the value of
its previous invocation.

4-60 Statements and Functions

Examples

DEF*

• The error handler of the program module that contains the DEF*
is the default error handler for a DEF* function. Parameters return
to their original values when control passes to the error handler.

5. A DEF* is local to the program or subprogram that defines it.

6. You can declare a DEF* either by defining it, by using the DECLARE
FUNCTION statement, or by implicitly declaring it with a reference to
the function in an expression.

7. If the number of parameters, types of parameters, or type of result
declared in the invocation disagree with the number or types of
parameters defined in the DEF* statement, VAX BASIC signals an
error.

8. DEF* functions can be recursive.

9. DATA statements in a multi-line DEF* are not local to the func
tion; they are local to the program module containing the function
definition.

10. You can invoke a DEF* function within an attached or detached
handler.

11. DEF* definitions cannot appear inside a protected region, but they can
contain one or more protected regions.

12. In DEF* functions that contain handlers, the following rules apply:

• If the function was invoked from a protected region, the EXIT
HANDLER statement transfers control to the handler specified for
that protected region.

• If the function was not invoked from a protected region, the
EXIT HANDLER statement transfers control to the default error
handler.

Example 1

!Single-Line DEF*
DEF* STRING CONCAT(STRING A,B) = A + B
DECLARE STRING word1,word2
INPUT "Enter two words";word1,word2
PRINT CONCAT (word1,word2)

July 1988 Statements and Functions 4-61

DEF*

Output 1

Enter two words? TO
? DAY
TODAY

Example 2

!Multi-Line DEF*
DEF* DOUBLE example(DOUBLE A, B, SINGLE C, D, E)

EXIT DEF IF B = 0
example = (A/B) + C - (D*E)

END DEF
INPUT "Enter 5 numbers";V,W,X,Y,Z
PRINT example(V,W,X,Y,Z)

Output 2

Enter 5 numbers? 2,4,6,8,1
-1. 5

4-62 Statements and Functions

DELETE

DELETE

The DELETE statement removes a record from a relative or indexed file.

Format

DELETE #chnl-exp

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number asso
ciated with a file. It must be immediately preceded by a number sign
(#).

1. The DELETE statement removes the current record from a file. Once
the record is removed, you cannot access it.

2. The file specified by chnl-exp must have been opened with ACCESS
MODIFY or WRITE.

3. You can delete a record only if the last 1/0 statement executed on the
specified channel was a successful GET or FIND operation.

4. The DELETE statement leaves the current record pointer undefined
and the next record pointer unchanged.

5. VAX BASIC signals an error when the 1/0 channel is illegal or not
open, when no current record exists, when access is illegal or illogical,
or when the operation is illegal.

Statements and Functions 4-63

DELETE

Example

DECLARE STRING record_num

OPEN "COS.DAT" FOR INPUT AS #1, RELATIVE FIXED
ACCESS MODIFY, RECORDSIZE 40

INPUT "WHICH RECORD WOULD YOU LIKE TO EXAMINE";record_num
GET #1, RECORD record_num
DELETE #1

Here, CVS.DAT is opened for input with ACCESS MODIFY. Once you en
ter the number of the record you want to retrieve and the GET statement
executes successfully, the current record number is deleted.

4-64 Statements and Functions

DEY

Format

DET

The DET function returns the value of the determinant of the last matrix
inverted with the MAT INV function.

real-var = DET

Syntax Rules

Remarks

None.

1. When a matrix is inverted with the MAT INV statement, VAX BASIC
calculates the determinant as a by-product of the inversion process.
The DET function retrieves this value.

2. If your program does not contain a MAT INV statement, the DET
function returns a value of zero.

3. The value returned by the DET function is a floating-point value of
the default size.

Statements and Functions 4-65

DET

Example

MAT INPUT first_array(3,3)
MAT PRINT first_array;
PRINT
MAT inv_array = INV (first_array)
determinant = DET
MAT PRINT inv_array;
PRINT
PRINT determinant
PRINT
MAT mult_array = first_array * inv_array
MAT PRINT mult_array;

Output

? 1.0.0.0.1.0.0.0.1
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1

1 0 0
0 1 0
0 0 1

4-66 Statements and Functions

DIFS

Format

DIFS

The DIF$ function returns a numeric string whose value is the difference
between two numeric strings.

str-var = DIFS (str-exp 1, str-exp2)

Syntax Rules

Remarks

Each str-exp can contain up to 54 ASCII digits, an optional decimal point,
and an optional leading sign.

1. VAX BASIC subtracts str-exp2 from str-exp1 and stores the result in
str-var.

2. The difference between two integers takes the precision of the larger
integer.

3. The difference between two decimal fractions takes the precision of
the more precise fraction, unless trailing zeros generate that precision.

4. The difference between two floating-point numbers takes precision as
follows:

• The difference of the integer parts takes the precision of the larger
part.

• The difference of the decimal fraction part takes the precision of
the more precise part.

5. VAX BASIC truncates leading and trailing zeros.

Statements and Functions 4-67

DIFS

Example

PRINT DIF$ ("689","-231")

Output

920

4-68 Statements and Functions

DIMENSION

DIMENSION

Format

The DIMENSION statement creates and names a static, dynamic, or
virtual array. The array subscripts determine the dimensions and the size
of the array. You can specify the data type of the array and associate the
array with an I/O channel.

Nonvirtual, Nonexecutable

{ ~:=ENSION } {[data-type] array-name ([int-const1 TO}

int-canst2, ...), ...)

Executable

{ ~:=ENSION } {[data-type] array-name

([int-var1 TO] int-var2, ...)), ...

Virtual

{ ~:=ENSION } #chnl-exp, { [data-type] array-name

(int-canst, ...) [=int-canst]), ...

Syntax Rules

1. An array name in a DIM statement cannot also appear in a
COMMON, MAP, or DECLARE statement.

2. Data-type can be any VAX BASIC data type keyword or a data type
defined in a RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

Statements and Functions 4-69

DIMENSION

3. If you do specify a data type and the array name ends in a percent
sign (%) or dollar sign ($) suffix character, the variable must be a
string or integer data type.

4. If you do not specify a data type, the array name determines the type
of data the array holds. If the array name ends in a percent sign, the
array stores integer data of the default integer size. If the array name
ends in a dollar sign, the array stores string data. Otherwise, the array
stores data of the default type and size.

5. An array can have up to 32 dimensions. Nonvirtual array sizes are
limited by the virtual memory limits of your system.

6. When you declare a nonvirtual array, VAX BASIC allows you to
specify both lower and upper bounds. The upper bound is required;
the lower bound is optional.

• Int-constl or int-varl specifies the lower bounds of the array.

• I nt-const2 or int-var2 specifies the upper bounds of the array and,
when accompanied by int-constl or int-varl, must be preceded by
the keyword TO.

• Int-constl must be less than or equal to int-const2. Int-varl must
be less than or equal to int-var2.

• If you do not specify int-constl or int-varl, VAX BASIC uses zero
as the default lower bound.

• Array dimensions can have either positive or negative values.

7. Nonvirtual, Nonexecutable
• When all the dimension specifications are integer constants, as

in DIM A(lS,10,20), the DIM statement is nonexecutable and the
array size is static. A static array cannot appear in another DIM
statement because VAX BASIC determines storage requirements at
compilation time.

• A nonexecutable DIM statement must lexically precede any
reference to the array it dimensions. That is, you must dimension
a static array before you can reference array elements.

8. Virtual
• The virtual array must be dimensioned and the file must be open

before you can reference the array.

4-70 Statements and Functions

Remarks

DIMENSION

• When the data type is STRING, the =int-canst clause specifies
the length of each array element. The default string length is 16
characters. Virtual string array lengths are rounded to the next
higher power of 2. Therefore, specifying an element length of 12
results in an actual length of 16. For example:

DIM #1, STRING vir_array(100) = 12
OPEN "STATS.BAS" FOR OUTPUT as #1, VIRTUAL

Output

Y.BASIC-W-STRLENINC, virtual array string VIR_ARRAY length increased
from 12 to 16

9. Executable

When any of the dimension specifications are integer variables as
in DIM A(10%,20%,Y%), the DIM statement is executable and the
array is dynamic. A dynamic array can be redimensioned with a DIM
statement any number of times because VAX BASIC allocates storage
at run time when each DIM statement is executed.

1. You can create an array implicitly by referencing an array element
without using a DIM statement. This causes VAX BASIC to create an
array with dimensions of (10), (10, 10), (10, 10, 10), and so on, depend
ing on the number of bounds specifications in the referenced array
element. You cannot create virtual or executable arrays implicitly.

2. VAX BASIC allocates storage for arrays by row, from right to left.

3. Nonvirtual, Nonexecutable
• You can declare arrays with the COMMON, MAP, and DECLARE

statements. Arrays so declared cannot be redimensioned with
the DIM statement. Furthermore, string arrays declared with a
COMMON or MAP statement are always fixed-length.

• If you reference an array element declared in an array whose
subscripts are smaller than the lower bound or larger than the
upper bound specified in the DIM statement, VAX BASIC signals
the error "Subscript out of range" (ERR=55).

Statements and Functions 4-71

DIMENSION

4. Virtual

• For new development, DIGITAL does not recommend virtual
arrays.

• When the rightmost subscript varies faster than the subscripts to
the left, fewer disk accesses are necessary to access array elements
in virtual arrays.

• Using the same DIM statement for multiple virtual arrays allocates
all arrays in a single disk file. The arrays are stored in the order
they were declared.

• Any program or subprogram can access a virtual array by declar
ing it in a virtual DIMENSION statement. For example:

DIM #1, A(10)
DIM #1, B(10)

In this example, array B overlays array A. You must specify the
same channel number, data types, and limits in the same order as
they occur in the DIM statement that created the virtual array.

• VAX BASIC stores a string in a virtual array by padding it with
trailing nulls to the length of the array element. It removes
these nulls when it retrieves the string from the virtual array.
Remember that string array element sizes are always rounded to
the next power of 2.

• The OPEN statement for a virtual array must include the
ORGANIZATION VIRTUAL clause for the channel specified
in the DIMENSION statement.

• VAX BASIC does not initialize virtual arrays and treats them as
statically allocated arrays. You cannot redimension virtual arrays.

• Refer to the VAX BASIC User Manual for more information on
virtual arrays.

5. Executable
• You create an executable, dynamic array by using integer variables

for array bounds, as in DIM A(Y%,X%). This eliminates the need
to dimension an array to its largest possible size. Array bounds
in an executable DIM statement can be constants or variables, but
not expressions. At least one bound must be a variable.

• You cannot reference an array named in an executable DIM
statement until after the DIM statement executes.

4-72 Statements and Functions

Examples

DIMENSION

• You can redimension a dynamic array to make the bounds of
each dimension larger or smaller, but you cannot change the
number of dimensions. For example, you cannot redimension a
four-dimensional array to be a five-dimensional array.

• The executable DIM statement cannot be used to dimension virtual
arrays, arrays received as formal parameters, or arrays declared in
COMMON, MAP, or nonexecutable DIM statements.

• An executable DIM statement always reinitializes the array to zero
(for numeric arrays) or to the null string if string.

• If you reference an array element declared in an executable DIM
statement whose subscripts are not within the bounds specified
in the last execution of the DIM, VAX BASIC signals the error
"Subscript out of range" (ERR=SS).

Example 1

!Nonvirtual, Nonexecutable
DIM STRING name_list(20 TO 100), BYTE age(100)

Example 2

!Virtual
DIM 11%, STRING name_list(500), REAL amount(10,10)

Example 3

!Executable
DIM DOUBLE inventory(base,markup)

DIM DOUBLE inventory (new_base,new_markup)

Statements and Functions 4-7 3

ECHO

ECHO

Format

The ECHO function causes characters to be echoed at a terminal that is
opened on a specified channel.

int-var= ECHO (chnl-exp)

Syntax Rules

Remarks

Example

Chnl-exp must specify a terminal.

1. The ECHO function is the complement of the NOECHO function;
each function disables the effect of the other.

2. The ECHO function has no effect on an unopened channel.

3. The ECHO function always returns a value of zero.

DECLARE INTEGER Y,
STRING pass_word

Y = NOECHO(OY.)
SET NO PROMPT
INPUT "Enter your password: ";pass_word
Y = ECHO (OY.)
IF pass_word = "Darlene"
THEN

PRINT CR+LF+"YOU ARE CORRECT !"
END IF

4-7 4 Statements and Functions

Output

Enter your password?
YOU ARE CORRECT !

ECHO

Statements and Functions 4-7 5

EDITS

EDITS

Format

The EDIT$ function performs one or more string editing functions, de
pending on the value of its integer argument.

str-var =EDIT$ (str-exp, int-exp)

Syntax Rules

Remarks

None.

1. VAX BASIC edits str-exp to produce str-var.
2. The editing that VAX BASIC performs depends on the value of int-exp.

Table 4-3 describes EDIT$ values and functions.

3. All values are additive; for example, you can perform the editing
functions of values 8, 16, and 32 by specifying a value of 56.

4. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

Table 4-3: EDIT$ Values
Value

1

2

4

8

Edit Performed

Discards each character's parity bit (bit 7)

Discards all spaces and tabs

Discards all carriage returns <CR> , line feeds <LF> , form feeds
<FF> , deletes , escapes <ESC> , and nulls <NUL>

Discards leading spaces and tabs

4-76 Statements and Functions

Example

EDITS

Table 4-3 (Cont.): EDIT$ Values
Value

16

32

64

128

256

Edit Performed

Converts multiple spaces and tabs to a single space

Converts lowercase letters to uppercase letters

Converts left bracket ([) to left parenthesis [(] and right bracket (]) to
right parenthesis [)]

Discards trailing spaces and tabs (same as TRM$ function)

Suppresses all editing for characters within quotation marks; if the
string has only one quotation mark, VAX BASIC suppresses all editing
for the characters following the quotation mark

DECLARE STRING old_string, new_string
old_string = "a value of 32 converts lowercase letters to uppercase"
new_string = EDIT$(old_string,32)
PRINT new_string

Output

A VALUE OF 32 CONVERTS LOWERCASE LETTERS TO UPPERCASE

Statements and Functions 4-77

END

END

Format

The END statement marks the physical and logical end of a main program,
a program module, or a block of statements.

END [block]

block:

Syntax Rules

DEF[exp]
FUNCTION[exp]
GROUP
RECORD
VARIANT
IF
HANDLER
PICTURE
PROGRAM[int-exp]
SELECT
WHEN
SUB

None.

4-78 Statements and Functions

Remarks

END

1. The END statement with no block keyword marks the end of a main
program. The END or END PROGRAM statement must be the last
statement on the last lexical line of the main program.

2. The END statement followed by a block keyword marks the end of a
program, a VAX BASIC SUB, FUNCTION, or PICTURE subprogram, a
DEF, an IF, a HANDLER, a PROGRAM, a SELECT statement block or
a WHEN block.

3. END RECORD, END GROUP, and END VARIANT mark the end
of a RECORD statement, or a GROUP component or VARIANT
component of a RECORD statement.

4. END DEF and END FUNCTION

• When VAX BASIC executes an END DEF or an END FUNCTION
statement, it returns the function value to the statement that
invoked the function and releases all storage associated with the
DEF or FUNCTION.

• If you specify an optional expression with the END DEF or END
FUNCTION statement, the expression must be compatible with
the DEF or FUNCTION data type. The expression is the function
result unless an EXIT DEF or EXIT FUNCTION statement is
executed. This expression supersedes all function assignments.

• The END DEF statement restores the error handler in effect when
the DEF was invoked (this is not true of the DEF• statement).

• The END FUNCTION statement does not affect 1/0 operations or
files.

5. END HANDLER

The END HANDLER statement causes VAX BASIC to transfer control
to the statement following the WHEN block with the exception
cleared.

6. END PROGRAM

• The END PROGRAM statement allows you to end a program
module.

• An optional integer expression specifies the exit status of the
program that is reported to DCL. This status is overridden by a
status expression in an EXIT PROGRAM statement.

• You can specify an END PROGRAM statement without a match
ing PROGRAM statement.

Statements and Functions 4-7 9

END

Example

7. END WHEN

• The END WHEN statement ends a WHEN block and transfers
control to the statement following the WHEN block.

• If the END WHEN statement ends an attached handler, control is
transferred to the statement following the WHEN block with the
exception cleared.

8. END SUB

• The END SUB statement does not affect I/O operations or files.

• The END SUB statement releases the storage allocated to local
variables and returns control to the calling program.

• The END SUB statement cannot be executed in an error handler
unless the END SUB is in a subprogram called by the error
handler of another routine.

9. When an END or END PROGRAM statement marking the end of a
main program executes, VAX BASIC closes all files and releases all
program storage.

10. If you use ON ERROR error handling, you must clear any errors with
the RESUME statement before executing an END PROGRAM, END
SUB, END FUNCTION or END PICTURE statement.

11. Except for the END PROGRAM statement, VAX BASIC signals an
error when a program contains an END block statement with no
corresponding and preceding block keyword.

10 INPUT "Guess a number";AY.
IF AY. = 24
THEN

PRINT, "YOU GUESSED IT! "
END IF

4-80 Statements and Functions

IF A'I. < 24
THEN

PRINT, "BIGGER IS BETTER! "
GOTO 10
END IF

IF A'I. > 24
THEN

END IF

PRINT, "SMALLER IS BETTER!"
GOTO 10

END PROGRAM

END

Statements and Functions 4-81

ERL

ERL

Format

int-var= ERL

The ERL function returns the number of the BASIC line where the last
error occurred.

Syntax Rules

Remarks

The value of int-var returned by the ERL function is a LONG integer.

1. If the ERL function is used before an error occurs or after an error is
handled, the results are undefined.

2. The ERL function overrides the /NOLINE qualifier. If a program
compiled with the /NOLINE qualifier in effect contains an ERL
function, VAX BASIC signals the message "ERL overrides NOLINE".

4-82 Statements and Functions

Example

10 DECLARE LONG int_exp
WHEN ERROR USE error_routine

20 INPUT "Enter an integer expression";int_exp
30 PRINT DATE$(int_exp)

END WHEN
HANDLER error_routine
IF ERL = 20
THEN

ELSE

PRINT "Invalid input ... try again 11

RETRY

PRINT "UNEXPECTED ERROR"
EXIT HANDLER

END IF
END HANDLER
END PROGRAM

Output

Enter an integer expression? ABCD
Error occurred on line 20
Enter an integer expression? 3211
30-Jul-73

ERL

Statements and Functions 4-83

ERNS

ERNS

Format

The ERN$ function returns the name of the main program, subprogram,
or DEF function that was executing when the last error occurred.

str-var = ERN$

Syntax Rules

Remarks

Example

None.

1. If the ERN$ function executes before an error occurs or after an error
is handled, ERN$ returns a null string.

2. If you call a subprogram or function compiled with /NOSETUP or
containing an OPTION INACTIVE=SETUP statement, the ERN$
function will not have a valid value if an exception occurs in the called
procedure.

10 DECLARE LONG int_exp
!This module's name is DATE
WHEN ERROR IN
INPUT "Enter an number";int_exp
USE

PRINT "Error in module ";ERN$
RETRY

END WHEN
PRINT Date$(int_exp)
END

4-84 Statements and Functions

Output

Enter a number? ABCD
Error in module DATE
Enter a number? 0
21-May-86

ERNS

Statements and Functions 4-85

ERR

ERR

The ERR function returns the error number of the current run-time error.

Format

int-var= ERR

Syntax Rules

Remarks

Example

The value of int-var returned by the ERR function is always a LONG
integer.

If the ERR function is used before an error occurs or after an error is
handled, the results are undefined.

10 DECLARE LONG int_exp
WHEN ERROR USE error_routine

20 INPUT "Enter an integer expression";int_exp
PRINT DATE$(int_exp)
END WHEN
HANDLER error_routine:

PRINT "Error num.ber";ERR
IF ERR = 50 THEN PRINT "DATA FORMAT ERROR"
ELSE PRINT "UNEXPECTED ERROR"
END IF
RETRY

END HANDLER
END

4-86 Statements and Functions

Output

Enter an integer expression? ABCD
Error number 60
DATA FORMAT ERROR
Enter an integer expression? 0
03-Aug-86

ERR

Statements and Functions 4-87

ERTS

ERTS

Format

The ERT$ function returns explanatory text associated with an error
number.

str-var = ERT$ (int-exp)

Syntax Rules

Remarks

Example

Int-exp is a VAX BASIC error number. The error number must be in the
range 0 through 255.

1. The ERT$ function can be used at any time to return the text associ
ated with a specified error number.

2. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

10 DECLARE LONG int_exp
WHEN ERROR USE error_routine

20 INPUT "Enter an integer expression";int_exp
PRINT DATE$(int_exp)
END WHEN
HANDLER error_routine

PRINT "Error number";ERR
PRINT ERT$(ERR)
RETRY

END HANDLER
END

4-88 Statements and Functions

Output

Enter an integer expression? ABCD
Error number 60
Y.Data format error
Enter an integer expression? 70
03-Feb-70

ERTS

Statements and Functions 4-89

EXIT

EXIT

Format

The EXIT statement lets you exit from a main program, a SUB,
FUNCTION, or PICTURE subprogram, a multi-line DEF, a statement
block, or a handler.

EXIT block

DEF[exp]
FUNCTION[exp]
SUB

block: HANDLER

Syntax Rules

PICTURE
PROGRAM[int-exp]
label

1. The DEF, FUNCTION, SUB, HANDLER, and PROGRAM keywords
specify the type of subprogram, multi-line DEF, or handler from which
VAX BASIC is to exit.

2. If you specify an optional expression with the EXIT DEF statement
or with the EXIT FUNCTION statement, the expression becomes the
function result and supercedes any function assignment. It also over
rides any expression specified on the END DEF or END FUNCTION
statement. Note that the expression must be compatible with the
FUNCTION or DEF data type.

3. Label specifies a statement label for an IF, SELECT, FOR, WHILE, or
UNTIL statement block.

4-90 Statements and Functions

Remarks

EXIT

1. An EXIT SUB, EXIT FUNCTION, EXIT PROGRAM, EXIT DEF, or
EXIT PICTURE statement is equivalent to an unconditional branch to
an equivalent END statement. Control then passes to the statement
that invoked the DEF or to the statement following the statement that
called the subprogram.

2. The EXIT HANDLER statement causes VAX BASIC to transfer control
to a specified area.

• If the current WHEN block is nested, control transfers to the
handler associated with the next outer protected region.

• If an ON ERROR statement is in effect and the current WHEN
block is not nested, control transfers to the target of the ON
ERROR statement.

• If neither of the previous conditions is true, an EXIT HANDLER
statement transfers control to the calling program or DCL. This
action is the equivalent of the ON ERROR GO BACK statement.

3. The EXIT PROGRAM statement causes VAX BASIC to exit from a
main program module.

• An optional integer expression on an EXIT PROGRAM statement
specifies the exit status of the program that is reported to DCL.

• The expression specified by an EXIT PROGRAM statement over
rides any integer expression specified by an END PROGRAM
statement.

• VAX BASIC allows you to specify an EXIT PROGRAM statement
without a matching PROGRAM statement. ·

4. The EXIT label statement is equivalent to an unconditional branch to
the first statement following the end of the IF, SELECT, FOR, WHILE,
or UNTIL statement labeled by the specified label.

5. An EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement cannot
be used within a multi-line DEF function.

6. When the EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement
executes, VAX BASIC releases all storage allocated to local variables
and returns control to the calling program.

Statements and Functions 4-91

EXIT

Example

DEF emp.bonus(A)
IF A > 10
THEN

ELSE

PRINT "OUT OF RANGE"
EXIT DEF 0

emp.bonus =A * 4
END IF
END DEF
INPUT A
PRINT emp.bonus(A)
END

Output

? 11
OUT OF RANGE

0

4-92 Statements and Functions

EXP

Format

EXP

The EXP function returns the value of the mathematical constant e raised
to a specified power.

real-var= EXP (real-exp)

Syntax Rules

Remarks

None.

1. The EXP function returns the value of e raised to the power of real-exp.
2. VAX BASIC expects the argument of the EXP function to be a real

expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

3. When the default REAL size is SINGLE or DOUBLE, EXP allows
arguments between -88 and 88. If the default REAL size is GFLOAT,
EXP allows arguments between -709 and 709. If the default REAL
size is HFLOAT, the arguments can be in the range -11356 to 11355.
When the argument exceeds the upper limit of a range, VAX BASIC
signals an error. When the argument exceeds the lower limit of a
range, the EXP function returns a zero and VAX BASIC does not
signal an error.

Statements and Functions 4-93

EXP

Example

DECLARE SINGLE num_val
num_val = EXP(4.6)
PRINT num_val

Output

99.4843

4-94 Statements and Functions

EXTERNAL

EXTERNAL

The EXTERNAL statement declares constants, variables, functions, and
subroutines external to your program. You can describe parameters for
external functions and subroutines.

Format

External Constants

EXTERNAL data-type CONSTANT const-name, ...

External Variables

EXTERNAL data-type unsubs-var, ...

External Functions

EXTERNAL data-type FUNCTION {tune-name [pass-mech]
[(external-param , ...)]), ...

External Subroutines

EXTERNAL SUB {sub-name [pass-mech] [(external-param , ...)]), ...

pass-mech:
{

BY VALUE }
BY REF
BY DESC

external-param: [OPTIONAL] [param-data-type] [DIM ([,]. ..)]
[=int-canst] [pass-mech]

External Pictures

EXTERNAL PICTURE pie-name [(param-list)]

Statements and Functions 4-95

EXTERNAL

Syntax Rules

1. For external constants, data-type can be BYTE, WORD, LONG,
SINGLE, INTEGER (any size), or REAL (if the default size is SINGLE).

2. For external variables, the data type can be any valid numeric data
type.

3. For external functions and subroutines, the data type can be BYTE,
WORD, LONG, SINGLE, DOUBLE, GFLOAT, HFLOAT, DECIMAL,
STRING, INTEGER, REAL, RFA, or a data type defined with the
RECORD statement. See Table 1-2 in this manual for more informa
tion on data type size, range and precision.

4. The name of an external constant, variable, function, or subroutine
can be from 1 through 31 characters.

5. For all external routine declarations, the name must be a valid
VAX BASIC identifier and must not be the same as any other SUB,
FUNCTION, PICTURE, or PROGRAM name.

6. Param-data-type specifies the data type of a parameter. If you do not
specify a data type, parameters are of the default data type and size.

7. Param-list is identical to external-param except that no OPTIONAL
parameter is allowed.

8. Parameters in the param-list must agree in number and data type
with the parameters in the invocation. Param-data-type includes ANY,
BYTE, WORD, LONG, INTEGER, SINGLE, DOUBLE, GFLOAT,
HFLOAT, READ, a user-defined RECORD type, STRING, or RFA.

For more information on external pictures, see Programming with VAX
BASIC Graphics.

9. External Functions and Subroutines
• The data type that precedes the keyword FUNCTION defines the

data type of the function result.

• Pass-mech specifies how parameters are to be passed to the
function or subroutine.

4-96 Statements and Functions

A pass-mech clause outside the parentheses applies to all
parameters.

A pass-mech clause inside the parentheses overrides the
previous pass-mech and applies only to the specific parameter.

EXTERNAL

• External-param defines the form of the arguments passed to the
external function or subprogram. Empty parentheses indicate
that the subprogram expects zero parameters. Missing paren
theses indicate that the 'EXTERNAL statement does not define
parameters.

10. Using ANY as a VAX BASIC Data Type
• The ANY data type should only be used for calling non-BASIC

procedures. Therefore, the ANY data type is illegal in a PICTURE
declaration.

• If you specify ANY, VAX BASIC does not perform data type
checking or conversions. If no passing mechanism is specified,
VAX BASIC uses the default passing mechanism for the data type
passed in a given invocation.

• When you specify a data type, all following parameters that
are not specifically declared default to the last specified data
type. Similarly, when you specify ANY, all following unspecified
parameters default to the data type ANY until a new declaration is
provided. For example:

EXTERNAL SUB allocate (LONG.ANY,

11. Passing Optional Parameters
• The OPTIONAL keyword should be used only for calling non

BASIC procedures.

• If you specify the keyword OPTIONAL, VAX BASIC treats all
following parameters as optional. In the following example, the
last three parameters are optional.

•

•

•

•

EXTERNAL SUB queue(STRING, OPTIONAL STRING, LONG, ANY)

When a procedure is called, the argument pointer (@AP) contains
the number of actual parameters specified.

VAX BASIC still performs type checking and conversion on
optional parameters.

If you want to omit an optional parameter that appears in the
middle of a parameter list, VAX BASIC requires you to insert a
comma placeholder. However, if you want to omit an optional
parameter that appears at the end of a parameter list, you can
omit that parameter without inserting any placeholder.

You can specify the keyword OPTIONAL only once in any one
parameter list.

Statements and Functions 4-97

EXTERNAL

Remarks

12. Declaring Array Dimensions

The DIM keyword indicates that the parameter is an array. Commas
specify array dimensions. The number of dimensions is equal to the
number of commas plus 1. For example:

EXTERNAL STRING FUNCTION new (DOUBLE, STRING DIM(,), DIM())

This statement declares a function named new that has three param
eters. The first is a double-precision floating-point value, the second
is a two-dimensional string array, and the third is a one-dimensional
string array. The function returns a string result.

1. The EXTERNAL statement must precede any program reference to
the constant, variable, function, subroutine or picture declared in the
statement.

2. The EXTERNAL statement is not executable.

3. A name declared in an EXTERNAL CONSTANT statement can be
used in any nondeclarative statement as if it were a constant.

4. A name declared in an EXTERNAL FUNCTION statement can be used
as a function invocation in an expression. In addition, you can invoke
a function with the CALL statement unless the function data type is
DECIMAL, HFLOAT, or STRING.

5. A name declared in an EXTERNAL SUB statement can be used in a
CALL statement.

6. The optional pass-mech clauses in the EXTERNAL FUNCTION and
EXTERNAL SUB statements tell VAX BASIC how to pass arguments
to a non-BASIC function or subprogram. Table 4-1 describes VAX
BASIC parameter-passing mechanisms.

• BY VALUE specifies that VAX BASIC passes the argument's 32-bit
value.

• BY REF specifies that VAX BASIC passes the argument's address.
This is the default for all arguments except strings and entire
arrays. If you know the size of string parameters and the dimen
sions of array parameters, you can improve run-time performance
by passing strings and arrays by reference.

4-98 Statements and Functions

Examples

EXTERNAL

• BY DESC specifies that VAX BASIC passes the address of a VAX
BASIC descriptor. For information about the format of a VAX
BASIC descriptor for strings and arrays, see Appendix C in this
manual.

7. If you do not specify the data type ANY or declare parameters as
optional, the arguments passed to external functions and subroutines
should match the external parameters declared in the EXTERNAL
FUNCTION or EXTERNAL SUB statement in number, type, and
passing mechanism. VAX BASIC forces arguments to be compatible
with declared parameters. If they are not compatible, VAX BASIC
signals an error.

Example 1

!External Constant
EXTERNAL LONG CONSTANT SS$_NORMAL

Example 2

!External Variable
EXTERNAL WORD SYSNUM

Example 3

!External Function
EXTERNAL DOUBLE FUNCTION USR$2(WORD,LONG,ANY)

Example 4

!External Subroutine
EXTERNAL SUB calc BY DESC (STRING DIM(,). BYTE BY REF)

Statements and Functions 4-99

FIELD

FIELD

Format

The FIELD statement dynamically associates string variables with all or
parts of a record buffer. FIELD statements do not move data. Instead,
they permit direct access through string variables to sections of a specified
record buffer.

NOTE

The FIELD statement is supported only for compatibility with
BASIC-PLUS. Because data defined in the FIELD statement
can be accessed only as string data, you must use the CVTxx
functions to process numeric data; therefore, you must convert
string data to numeric after you move it from the record buffer.
Then, after processing, you must convert numeric data back to
string data before transferring it to the record buffer. DIGITAL
recommends that you use VAX BASIC's dynamic mapping
feature or multiple maps instead of the FIELD statement and
CVTxx functions.

FIELD #chnl-exp, int-exp AS str-var[, int-exp AS str-var] ...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#). A file must be open on the specified channel or VAX BASIC
signals an error.

2. Int-exp specifies the number of characters in str-var. However, a
subsequent int-exp cannot depend on the return string from a previous
int-exp. For example, the following statement is illegal because the
second int-exp depends on the return string A$:

FIELD #1%, 1% AS A$, ASCII(A$) AS B$

4-100 Statements and Functions July 1988

Remarks

Example

FIELD

1. A FIELD statement is executable. You can change a buffer description
at any time by executing another FIELD statement. For example:

FIELD #1%, 40% AS whole_field$
FIELD #1%, 10% AS A$, 10% AS B$, 10% AS C$, 101. AS D$

The first FIELD statement associates the first 40 characters of a buffer
with the variable whole-field$. The second FIELD statement associates
the first 10 characters of the same buffer with A$, the second 10
characters with B$, and so on. Later program statements can refer to
any of the variables named in the FIELD statements to access specific
portions of the buffer.

2. You cannot define virtual array strings as string variables in a FIELD
statement.

3. A variable named in a FIELD statement cannot be used in a
COMMON or MAP statement, as a parameter in a CALL or SUB
statement, or in a MOVE statement.

4. Using the FIELD statement on a virtual file that contains a virtual array
causes VAX BASIC to signal "Illegal or illogical access" (ERR=136).

5. If you name an array in a FIELD statement, you cannot use MAT
statements of the format

MAT array-name1 = array-name2

MAT array-name1 = NUL$

where array-namel is named in the FIELD statement. An attempt to
do so causes VAX BASIC to signal a compile-time error.

FIELD #8%, 2% AS U$, 2% AS CL$, 4% AS X$, 4% AS Y$
LSET U$ = CVT%$(U%)
LSET CL$ = CVTY.$(CL%)
LSET X$ = CVTF$(X)
LSET Y$ = CVTF$(Y)
U"/. = CVT$% (U$)
CU = CVT$% (CL$)
X = CVT$F(X$)
Y = CVT$F(Y$)

Statements and Functions 4-1 01

FIND

FIND

Format

The FIND statement locates a specified record in a disk file and makes
it the current record for a GET, UPDATE, or DELETE operation. FIND
statements are valid on RMS sequential, relative, and indexed files.

FIND #chnl-exp [,position-clause][, lock-clause]

{
RFA rfa-exp }

position-clause: RECORD num-exp
KEY# key-clause

{

ALLOWallow-clause [,WAIT [int-exp 11 }
lock-clause: WAIT [int-exp]

REGARDLESS

allow-clause: { =~:~ }
MODIFY

key-clause: int-exp 1 rel-op key-exp

EQ
GE

rel-op: NXEQ

4-102 Statements and Functions

GT
NX

key-exp: l int-exp2 l
str-exp
decimal-exp
quadword-exp

FIND

Syntax Rules

Remarks

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

2. If you specify a lock-clause, it must follow the position-clause. If the
lock-clause precedes the position-clause, VAX BASIC signals an error.

3. If you specify the REGARDLESS lock-clause, you cannot specify
another lock-clause in the same FIND statement.

1. Position-clause
• Position-clause specifies the position of a record in a file. VAX

BASIC signals an error if you specify a position-clause and the
channel is not associated with a disk file. If you do not specify
a position-clause, FIND locates records sequentially. Sequential
record access is valid on all files.

• The RFA position-clause allows you to randomly locate records by
specifying the record file address (RFA) of a record. You specify
the disk address of a record, and RMS locates the record at that
address. All file organizations can be accessed by RFA.

Rfa-exp in the RFA position-clause is a variable of the RFA data
type that specifies the record's file address. Note that an RFA
expression can only be a variable of the RFA data type or the
GETRFA function. Use the GETRFA function to find the RFA oLa
record.

Statements and Functions 4-103

FIND

• The RECORD position-clause allows you to randomly locate
records in relative and sequential fixed files by specifying the
record number.

Num-exp in the RECORD position-clause specifies the number
of the record you want to locate. It must be between 1 and
the number of the record with the highest number in the file.

When you specify a RECORD clause, chnl-exp must be a
channel associated with an open relative or sequential fixed
file.

• The KEY position-clause allows you to randomly locate records in
indexed files by specifying a key of reference, a relational test, and
a key value.

• An RFA value is valid only for the life of a specific version of
a file. If a new version of a file is created, the RFA values may
change.

• Attempting to access a record with an invalid RFA value results in
a run-time error.

2. Lock-clause

• Lock-clause allows you to control how a record is locked to other
access streams, to override lock checking when accessing shared
files that may contain locked records, or to specify what action to
take in the case of a locked record.

• The type of lock you impose on a record remains in effect until
you explicitly unlock it with a FREE or UNLOCK statement, until
you close the file, or until you perform a GET, FIND, UPDATE
or DELETE on the same channel (unless you specified UNLOCK
EXPLICIT).

• The REGARDLESS lock-clause specifies that the FIND statement
can override lock checking and locate a record locked by another
program.

• When you specify a REGARDLESS lock-clause, VAX BASIC does
not impose a lock on the retrieved record.

• The ALLOW lock-clause lets you control how a record is locked
to other users and access streams. The file associated with the
specified channel must have been opened with the UNLOCK
EXPLICIT clause or VAX BASIC signals the error "Illegal record
locking clause".

4-104 Statements and Functions July 1988

FIND

• The ALLOW allow-clause can be one of the following:

ALLOW NONE denies access to the record. This means that
other access streams cannot retrieve the record unless they
bypass lock checking with the GET REGARDLESS clause.

ALLOW READ provides read access to the record. This means
that other access streams can retrieve the record but cannot
use the DELETE or UPDATE statements on the record.

Statements and Functions 4-104.1

FIND

ALLOW MODIFY provides read and write to the record. This
means that other access streams can use the GET, FIND,
DELETE, and UPDATE statements on the record.

• If you do not open a file with the ACCESS READ clause or specify
an allow-clause, locking is imposed as follows:

If the file associated with the specified channel was opened
with UNLOCK EXPLICIT, VAX BASIC imposes the ALLOW
NONE lock on the retrieved record and the next GET or FIND
operation does not unlock the previously locked record.

If the file associated with the specified channel was not
opened with UNLOCK EXPLICIT, VAX BASIC locks the
retrieved record and unlocks the previously locked record.

• The WAIT lock-clause accepts an optional int-exp. Int-exp repre
sents a timeout value in seconds. Int-exp must be from 0 through
255 or VAX BASIC signals a warning message.

WAIT followed by a timeout value causes RMS to wait for a
locked record for a given period of time.

WAIT followed by no timeout value indicates that RMS should
wait indefinitely for the record to become available.

If you specify a timeout value and the record does not become
available within that period, VAX BASIC signals the the run
time error "Keyboard wait exhausted" (ERR=15). VMSSTATUS
and RMSSTATUS then return RMS$_TMO. For more infor
mation on the RMSSTATUS and VMSSTATUS functions, see
this chapter and the VAX BASIC User Manual.

If you attempt to wait for a record that another user has
locked, and consequently that user attempts to wait for the
record you have locked, a deadlock condition occurs. When a
deadlock condition persists for a period of time (as defined by
the SYSGEN parameter DEADLOCK_WAIT), RMS signals the
error "RMS$_DEADLOCK" and VAX BASIC signals the error
"Detected deadlock error while waiting for GET or FIND"
(ERR=193).

If you specify a WAIT clause followed by a timeout value that
is less than the SYSGEN parameter DEADLOCK_WAIT, VAX
BASIC signals the error "Keyboard wait exhausted" (ERR=15)
even though a deadlock condition may exist.

Statements and Functions 4-105

FIND

3. Key-clause
• In a key-clause, int-exp1 is the target key of reference. It must be

an integer in the range of zero through the highest-numbered key
for the file. The primary key is #0, the first alternate key is #l, the
second alternate key is #2, and so on. Int-exp1 must be preceded
by a number sign (#)or VAX BASIC signals an error.

• When you specify a key-clause, the specified channel must be a
channel associated with an open indexed file.

4. Rel-op
• Rel-op is a relational operator that specifies how key-exp is to be

compared with int-exp1 in the key-clause.
EQ means "equal to"

NXEQ means "next or equal to"

GE means "greater than or next" (a synonym for NXEQ)

NX means "next"

GT means "greater than" (a synonym for NX)

• A successful random FIND operation by key locates the first
record whose key satisfies the key-clause comparison:

With an exact key match (EQ), a successful FIND locates the
first record in the file that equals the key value specified in
key-exp. However, if the characters specified by a str-exp key
expression are less than the key length, characters specified
by str-exp are matched approximately rather than exactly.
For example, if you specify "ABC" and the key length is six
characters, VAX BASIC locates the first record that begins with
ABC. If you specify "ABCABC", VAX BASIC locates only a
record with the key "ABCABC". If no match is possible, VAX
BASIC signals the error "Record not found" (ERR=155).

If you specify a next or equal to record key match (NXEQ),
a successful FIND locates the next record that equals the key
length specified in int-exp or str-exp. If no exact match exists,
VAX BASIC locates the next record in the key sort order. If
the keys are in ascending order, the next record will have a
greater key value. If the keys are in descending order, the
next record will have a lesser key value.

If you specify a greater than or equal to key match (GE),
the behavior is identical to that of next or equal to (NXEQ).
(Likewise, the behavior of GT is identical to NX.) However,
the use of GE in a descending key file may be confusing, since
GE will retrieve the next record in the key sort order but

4-106 Statements and Functions July 1988

FIND

the next record will have a lesser key value. For this reason,
DIGITAL recommends that you use NXEQ in new program
development, especially if you are using descending key files.

If you specify a next key match (NX), a successful FIND
locates the first record that follows the relational operator in
the sort order. If no such record exists, VAX BASIC signals the
error "Record not found" (ERR=155).

5. Key-exp

• Int-exp2 specifies an integer value to be compared with the key
value of a record.

• Str-exp specifies a string value to be compared with the key value
of a record. Str-exp can contain fewer characters than the key of
the record you want to locate, but cannot be a null string.

• Decimal-exp in the key clause specifies a packed decimal value to
be compared with the key value of a record.

• Quadword-exp in the key clause specifies a a record or group
which is exactly 8 bytes long that is to be compared with the key
value of a record.

6. The file on the specified channel must have been opened with
ACCESS MODIFY, ACCESS READ, or SCRATCH before your pro
gram can execute a FIND operation.

7. FIND does not transfer any data to the record buffer. To access the
contents of a record, use the GET statement.

8. A successful sequential FIND operation updates both the current
record pointers and next record pointers.

• For sequential files, a successful FIND operation locates the 'next
sequential record (the record pointed to by the next record pointer)
in the file, changes the current record pointer to the record just
found, and the next record pointer to the next sequential record.
If the current record pointer points to the last record in a file, a
sequential FIND operation causes VAX BASIC to signal "Record
not found" (ERR=155).

• For relative files, a successful FIND operation locates the record
that exists with the next higher record number (or cell number),
makes it the current record, and changes the next record pointer
to the current record pointer plus 1.

• For indexed files, a successful FIND operation locates the next
existing logical record in the current key of reference, makes this
the current record and changes the next record pointer to the
current record pointer plus 1.

Statements and Functions 4-107

FIND

Example

9. A successful random access FIND operation by RFA or by record
changes the current record pointer to the record specified by rf a-exp or
int-exp, but leaves the next record pointer unchanged.

10. A successful random access FIND operation by key changes the
current record pointer to the first record whose key satisfies the
key-clause comparison and leaves the next record pointer unchanged.

11. When a random access FIND operation by RFA, record, or key is
not successful, VAX BASIC signals "Record not found" (ERR=155).
The values of the current record pointer and next record pointer are
undefined.

12. You should not use a FIND statement on a terminal-format or virtual
array file.

DECLARE LONG rec-num
MAP (cusrec) WORD cus_num &

STRING cus_nam=20, cus_add=20, cus_city=10, cus_zip=9
OPEN 11 CUS_ACCT.DAT 11 FOR INPUT AS #1, &

RELATIVE FIXED, &
ACCESS MODIFY &
MAP cusrec

INPUT "Which record number would you like to delete";rec_num
FIND #1, RECORD rec_num, WAIT
DELETE #1
CLOSE #1
END

4-1 08 Statements and Functions July 1988

FIX

Format

FIX

The FIX function truncates a floating-point value at the decimal point and
returns the integer portion represented as a floating-point value.

real-var= FIX (real-exp)

Syntax Rules

Remarks

None.

1. The FIX function returns the integer portion of a floating-point value,
not an integer value.

2. VAX BASIC expects the argument of the FIX function to be a real
expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

3. If real-exp is negative, FIX returns the negative integer portion. For
example, FIX(-5.2) returns -5.

Statements and Functions 4-109

FIX

Example

DECLARE SINGLE result
result = FIX(-3.333)
PRINT FIX(24.666), result

Output

24 -3

4-11 0 Statements and Functions

FNEND

Format

FNEND

The FNEND statement is a synonym for the END DEF statement. See the
END statement for more information.

FNEND [exp]

Statements and Functions 4-111

FNEXIT

FNEXIT

Format

The FNEXIT statement is a synonym for the EXIT DEF statement. See the
EXIT statement for more information.

FN EXIT [exp]

4-112 Statements and Functions

FOR

FOR

The FOR statement repeatedly executes a block of statements, while in
crementing a specified control variable for each execution of the statement
block. FOR loops can be conditional or unconditional, and can modify
other statements.

Format

Unconditional

FOR num-unsubs-var = num-exp1 TO num-exp2 [STEP num-exp3]
[statement]. ..

NEXT num-unsubs-var

Conditional

FOR num-unsubs-var = num-exp1 [STEP num-exp3] { ~~~~~ } cond-exp

[statement]. ..

NEXT num-unsubs-var

Unconditional Statement Modifier

statement FOR num-unsubs-var = num-exp 1 TO num-exp2 [STEP num-exp3]

Conditional Statement Modifier

statement FOR num-unsubs-var = num-exp 1 [STEP num-exp3] { ~~~~~ } cond-exp

Statements and Functions 4-113

FOR

Syntax Rules

Remarks

1. Num-unsubs-var must be a numeric, unsubscripted variable.

2. Num-unsubs-var is the loop variable. It is incremented each time the
loop executes.

3. In unconditional FOR loops, num-expl is the initial value of the loop
variable; num-exp2 is the maximum value.

4. In conditional FOR loops, num-expl is the initial value of the loop
variable, while the cond-exp in the WHILE or UNTIL clause is the
condition that controls loop iteration.

5. Num-exp3 in the STEP clause is the value by which the loop variable
is incremented after each execution of the loop.

1. There is a limit to the number of inner loops you can contain within
a single outer loop. This number varies according to the complexity
of the loops. If you exceed the limit, VAX BASIC signals an error
message.

2. An inner loop must be entirely within an outer loop; the loops cannot
overlap.

3. You cannot use the same loop variable in nested FOR loops. For
example, if the outer loop uses FOR I= 1 TO 10, you cannot use the
variable I as a loop variable in an inner loop.

4. The default for num-exp3 is 1 if there is no STEP clause.

5. You can transfer control into a FOR loop only by returning from a
function invocation, a subprogram call, a subroutine call, or an error
handler that was invoked in the loop.

6. The starting, incrementing, and ending values of the loop do not
change during loop execution.

7. The loop variable can be modified inside the FOR loop.

8. VAX BASIC converts num-expl, num-exp2, and num-exp3 to the data
type of the loop variable before storing them.

9. When an unconditional FOR loop ends, the loop variable contains the
value last used in the loop, not the value that caused loop termination.

4- 114 Statements and Functions

Examples

FOR

10. During each iteration of a conditional loop, VAX BASIC tests the value
of cond-exp before it executes the loop.

• If you specify a WHILE clause and cond-exp is false (value zero),
VAX BASIC exits from the loop. If the cond-exp is true (value
nonzero), the loop executes again.

· • If you specify an UNTIL clause and cond-exp is true (value
nonzero), VAX BASIC exits from the loop. If the exp is false
(value zero), the loop executes again.

11. When FOR is used as a statement modifier, VAX BASIC executes the
statement until the loop variable equals or exceeds num-exp2 or until
the WHILE or UNLESS condition is satisfied.

12. Each FOR statement must have a corresponding NEXT statement or
VAX BASIC signals an error. (This is not the case if the FOR statement
is used as a statement modifier.)

Example 1

!Unconditional
DECLARE LONG course_num, STRING course_nam
FOR I = 3 TO 12 STEP 3
INPUT "Course number";course_num
INPUT "Course name";course_nam
NEXT I

Output 1

Course number? 221
Course name? Botany
Course number? 231
Course name? Organic Chemistry
Course number? 237
Course name? Life Science II
Course number? 244
Course name? Programming in VAX BASIC

Example 2

!Unconditional Statement Modifier
DECLARE INTEGER counter
PRINT "This is an unconditional statement modifier" FOR counter = 1 TO 3
END

Statements and Functions 4-11 5

FOR

Output 2

This is an unconditional statement modifier
This is an unconditional statement modifier
This is an unconditional statement modifier

Example 3

!Conditional Statement Modifier
DECLARE INTEGER counter, &

STRING my_name
INPUT "Try and guess my name";my_name FOR counter
PRINT "You guessed it!"

Output 3

Try and guess my name? VAX PASCAL
Try and guess my name? VAX SCAN
Try and guess my name? VAX BASIC
You guessed it!

4...:116 Statements and Functions

1 UNTIL my_name "VAX BASIC"

FORMATS

FORMATS

The FORMAT$ function converts an expression to a formatted string.

Format

str-var =FORMAT$ (exp, str-exp)

Syntax Rules

Remarks

Example

The rules for building a format string are the same as those for printing
numbers with the PRINT USING statement. See the description of the
PRINT USING statement for more information.

DIGITAL recommends that you use compile-time constant expressions for
string expressions whenever possible. When you do this, the VAX BASIC
compiler compiles the string at compilation time rather than at run time,
thus improving the performance of your code.

DECLARE STRING result, t
INTEGER num_exp

num_exp = 12345
result = FORMAT$(num_exp, 11 ##,### 11)

PRINT result

Output

12,345

Statements and Functions 4-117

FREE

FREE

Format

The FREE statement unlocks all records and buckets associated with a
specified channel.

FREE #chnl-exp

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number asso
ciated with a file. It must be immediately preceded by a number sign
{#).

1. The file specified by chnl-exp must be open.

2. You cannot use the FREE statement with files not on disk.

3. If there are no locked records or buckets on the specified channel,
the FREE statement has no effect and VAX BASIC does not signal an
error.

4. The FREE statement does not change record buffers or pointers.
Moreover, the position of the record pointers is undefined.

5. After a FREE statement has executed, your program must execute a
GET or FIND statement before a PUT, UPDATE, or DELETE statement
can execute successfully.

4- 11 8 Statements and Functions

Example

OPEN "CUST_ACCT.DAT" FOR INPUT AS #3

INPUT "Enter customer record number to retrieve";cust_rec_num
FREE #3
GET #3

FREE

In this example, CUST_ACCT.DAT is opened for input. The FREE state
ment unlocks all records associated with the specified channel contained
in the file. Once the FREE statement successfully executes, the user can
then obtain a record with either a FIND or GET statement.

Statements and Functions 4-119

FSPS

FSPS

Format

The FSP$ function returns a string describing an open file on a specified
channel.

str-var = FSP$ (chnl-exp)

Syntax Rules

Remarks

1. A file must be open on chnl-exp.
2. The FSP$ function must come immediately after the OPEN statement

for the file.

1. Use the FSP$ function with files opened as ORGANIZATION
UNDEFINED. Then use multiple MAP statements to interpret the
returned data.

2. See the VAX BASIC User Manual and the VAX Record Management
Services Reference Manual for more information on FSP$ values.

NOTE

VAX BASIC supports the FSP$ function for compatibility
with BASIC-PLUS-2. DIGITAL recommends that you use a
USEROPEN routine to identify file characteristics.

4-120 Statements and Functions

Example

10 MAP (A) STRING A = 32
MAP (A) BYTE org, rat, WORD mrs, LONG alq, &

WORD bks_bls, num_keys,LONG mrn
OPEN "STUDENT.DAT" FOR INPUT AS #1%, &

ORGANIZATION UNDEFINED, &
RECORDTYPE ANY, ACCESS READ

A = FSP$(1%)
PRINT "RMS organization= ";org
PRINT "RMS record attributes= ";rat
PRINT "RMS maximum record size= ";mrs
PRINT "RMS allocation quantity= ";alq
PRINT "RMS bucket size= ";bks_bls
PRINT "Number of keys= ";num_keys
PRINT "RMS maximum record number= ";mm

Output

RMS organization = 2
RMS record attributes 2
RMS maximum record size 5
RMS allocation quantity 1
RMS bucket size = 0
Number of keys = 0
RMS maximum record number = 0

FSPS

Statements and Functions 4-121

FUNCTION

FUNCTION

Format

The FUNCTION statement marks the beginning of a FUNCTION subpro
gram and defines the subprogram's parameters.

FUNCTION data-type tune-name [pass-mech] [([farmal-param], ...)]
[statement] ...

{
END FUNCTION [exp] }
FUNCTIONEND [exp]

pass-mech: { BY REF }
BY DESC

formal param:
{

unsubs-var
[data-tvne] ([int-canst] , ... ,,., array-name

I

[=int-canst][pass-mech]

Syntax Rules

1. Fune-name names the FUNCTION subprogram.

2. Fune-name can be from 1 through 31 characters. The first character
must be an alphabetic character (A through Z). The remaining charac
ters, if present, can be any combination of letters, digits (0 through 9),
dollar signs ($), periods (.), or underscores (-).

3. Data-type can be any VAX BASIC data type keyword or a data type
defined in the RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

4..,..122 Statements and Functions

Remarks

FUNCTION

4. The data type that precedes the func-name specifies the data type of
the value returned by the function.

5. Formal-param specifies the number and type of parameters for the
arguments the function expects to receive when invoked.

• Empty parentheses indicate that the function has no parameters.

• Data-type specifies the data type of a parameter. If you do not
specify a data type, parameters are of the default data type and
size. When you do specify a data type, all following parameters
are of that data type until you specify a new data type.

If the data type is STRING and the passing mechanism is by
reference (BY REF), the =int-const clause allows you to specify the
length of the string.

• Parameters defined in formal-param must agree in number and
type with the arguments specified in the function invocation.
VAX BASIC allows you to specify from 1 through 255 formal
parameters.

6. Pass-mech specifies the parameter-passing mechanism by which
the FUNCTION subprogram receives arguments when invoked. A
pass-mech clause should be specified only when the FUNCTION
subprogram is being called by a non-BASIC program or when the
FUNCTION receives a string or array by reference.

7. A pass-mech clause outside the parentheses applies by default to
all function parameters. A pass-mech clause in the formal-param list
overrides the specified default and applies only to the immediately
preceding parameter.

8. Exp specifies the function result which supersedes any function assign
ment. Exp must be compatible with the function's data type.

1. The FUNCTION statement must be the first statement in the
FUNCTION subprogram.

2. Every FUNCTION statement must have a corresponding END
FUNCTION or FUNCTIONEND statement.

3. Any VAX BASIC statement except END, PICTURE, END PICTURE,
PROGRAM, END PROGRAM, SUB, SUBEND, END SUB, or SUBEXIT
can appear in a FUNCTION subprogram.

Statements and Functions 4-123

FUNCTION

Example

4. FUNCTION subprograms must be declared with the EXTERNAL
statement before your VAX BASIC program can invoke them.

5. FUNCTION subprograms receive parameters by reference or by
descriptor.

• BY REF specifies that the function receives the argument's address.

• BY DESC specifies that the function receives the address of a VAX
BASIC descriptor. For information about the format of a VAX
BASIC descriptor for strings and arrays, see the VAX BASIC User
Manual; for information on other types of descriptors, see the VAX
Architecture Handbook.

6. By default, FUNCTION subprograms receive numeric unsubscripted
variables by reference, and all other parameters by descriptor. You
can override these defaults with a BY clause:

• If you specify a string length with the =int-const clause, you must
also specify BY REF. If you specify BY REF and do not specify a
string length, VAX BASIC uses the default string length of 16.

• If you specify array bounds, you must also specify BY REF.

7. All variables and data, except virtual arrays, COMMON areas, MAP
areas, and EXTERNAL variables, in a FUNCTION subprogram, are
local to the subprogram.

8. VAX BASIC initializes local numeric variables to zero and local string
variables to the null string each time the FUNCTION subprogram is
invoked.

9. If an exception is not handled within the FUNCTION subprogram,
control is transferred back to the main program that invoked the
function.

FUNCTION REAL sphere_volume (REAL R)
IF R < 0 THEN EXIT FUNCTION
sphere_volume = 4/3 * PI *R **3
END FUNCTION

4-124 Statements and Functions July 1988

FUNCTIONEND

FUNCTIONEND

The FUNCTIONEND statement is a synonym for the END FUNCTION
statement. See the END statement for more information.

Format

FUNCTIONEND [exp]

Statements and Functions 4-12 5

FUNCTION EXIT

FUNCTIONEXIT

Format

The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION
statement. See the EXIT statement for more information.

FUNCTIONEXIT [exp]

4-126 Statements and Functions

GET

GET
The GET statement moves a record from a file to a record buffer and
makes the data available for processing. GET statements are valid on
sequential, relative, and indexed files.

Format

GET #chnl-exp [,position-clause] [, lock-clause]

{
RFA rfa-exp }

position-clause: RECORD num-exp
KEY# key-clause

{

ALLOWallow-clause [,WAIT[int-exp]] }
Jock-clause: WAIT [int-exp]

REGARDLESS

allow-clause: { =~:: }
MODIFY

key-clause: int-exp 1 rel-op key-exp

EQ
GE

rel-op: NXEQ
GT
NX

Statements and Functions 4-127

GET

key-exp l int-exp2 l
str-exp
decimal-exp
quadword-exp

Syntax Rules

Remarks

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign{#).

2. If you specify a lock-clause, it must follow the position-clause. If the
lock-clause precedes the position-clause VAX BASIC signals an error.

3. If you specify the REGARDLESS lock-clause, you cannot specify
another lock-clause in the same GET statement.

1. Position-clause
• Position-clause specifies the position of a record in a file. VAX

BASIC signals an error if you specify a position-clause and chnl
exp is not associated with a disk file. If you do not specify a
position-clause, GET retrieves records sequentially. Sequential
record access is valid on all files.

• The RFA position-clause allows you to randomly retrieve records
by specifying the record file address (RFA); you specify the disk
address of a record, and RMS retrieves the record at that address.
All file organizations can be accessed by RFA.

Rf a-exp in the RFA position-clause is an expression of the RFA data
type that specifies the record's file address. An RFA expression
must be a variable of the RFA data type or the GETRFA function.
Use the GETRFA function to obtain the RFA of a record.

4-128 Statements and Functions

GET

• The RECORD position-clause allows you to randomly retrieve
records in relative and sequential fixed files by specifying the
record number.

Num-exp in the RECORD position-clause specifies the number
of the record you want to retrieve. It must be between 1 and
the number of the record with the highest number in the file.

When you specify a RECORD clause, clml-exp must be a
channel associated with an open relative or sequential fixed
file.

• The KEY position-clause allows you to randomly retrieve records
in indexed files by specifying a key of reference, a relational test,
or a key value.

• An RFA value is valid only for the life of a specific version of
a file. If a new version of a file is created, the RFA values may
change.

• Attempting to access a record with an invalid RFA value results in
a run-time error.

2. Lock-clause

• Lock-clause allows you to control how a record is locked to other
access streams, to override lock checking when accessing shared
files that may contain locked records, or to specify what action to
take in the case of a locked record.

• The type of lock you impose on a record remains in effect until
you explicitly unlock it with a FREE or UNLOCK statement, until
you close the file, or until you perform a GET, FIND, UPDATE
or DELETE on the same channel (unless you specified UNLOCK
EXPLICIT).

• The REGARDLESS lock-clause specifies that the GET statement
can override lock checking and read a record locked by another
program.

• When you specify a REGARDLESS lock-clause, VAX BASIC does
not impose a lock on the retrieved record.

• If you specify an ALLOW lock-clause the file associated with chnl
exp must have been opened with the UNLOCK EXPLICIT clause
or VAX BASIC signals the error "Illegal record locking clause".

• The ALLOW allow-clause can be one of the following:

July 1988

ALLOW NONE denies access to the record. This means that
other access streams cannot retrieve the record unless they
bypass lock checking with the REGARDLESS clause.

Statements and Functions 4-129

GET

ALLOW READ provides read access to the record. This means
that other access streams can retrieve the record, but cannot
DELETE or UPDATE the record.

ALLOW MODIFY provides both read and write access to the
record. This means that other access streams can GET, FIND,
DELETE, or UPDATE the record.

• If you do not open a file with ACCESS READ or specify an
ALLOW lock-clause, locking is imposed as follows:

If the file associated with chnl-exp was opened with UNLOCK
EXPLICIT, VAX BASIC imposes the ALLOW NONE lock on
the retrieved record and the next GET or FIND statement does
not unlock the previously locked record.

If the file associated with chnl-exp was not opened with
UNLOCK EXPLICIT, VAX BASIC locks the retrieved record
and unlocks the previously lockeQ. record.

• The WAIT lock-clause accepts an optional int-exp. Int-exp repre
sents a timeout value in seconds. Int-exp must be from 0 through
255 or VAX BASIC issues a warning message.

WAIT followed by a timeout value causes RMS to wait for a
locked record for a given period of time.

WAIT followed by no timeout value indicates that RMS should
wait indefinitely for the record to become available.

If you specify a timeout value and the record does not become
available within that period, VAX BASIC signals the the run
time error "Keyboard wait exhausted" (ERR=15). VMSSTATUS
and RMSSTATUS then return RMS$_TMO. For more infor
mation on the RMSSTATUS and VMSSTATUS functions, see
this chapter and the VAX BASIC User Manual.

If you attempt to wait for a record that another user has
locked, and consequently that user attempts to wait for the
record you have locked, a deadlock condition occurs. When a
deadlock condition persists for a period of time (as defined by
the SYSGEN parameter DEADLOCK_WAIT), RMS signals the
error "RMS$_DEADLOCK" and VAX BASIC signals the error
"Detected deadlock error while waiting for GET or FIND"
(ERR=193).

If you specify a WAIT clause followed by a timeout value
that is less than the SYSGEN parameter DEADLOCK_WAIT,
then VAX BASIC signals the error "Keyboard wait exhausted"
(ERR=15) even though a deadlock condition may exist.

4-130 Statements and Functions

GET

If you specify a WAIT clause on a GET operation to a unit
device, the timeout value indicates how long to wait for the
input to complete. This is equivalent to the WAIT statement.

Statements and Functions 4-130.1

GET

3. Key-clause
• In a key-clause, int-exp1 is the target key of reference. It must be a

integer value in the range of zero through the highest-numbered
key for the file. The primary key is #0, the first alternate key is
#l, the second alternate key is #2, and so on. Int-exp1 must be
preceded by a number sign (#)or VAX BASIC signals an error.

• When you specify a key clause, chnl-exp must be a channel
associated with an open indexed file.

4. Rel-op
• Rel-op specifies how key-exp is to be compared with int-exp1 in the

key-clause.
EQ means "equal to"

NXEQ means "next or equal to"

GE means "greater than or equal to" (a synonym for NXEQ)

NX means "next"

GT means "greater than" (a synonym for NX)

• With an exact key match (EQ), a successful GET operation re
trieves the first record in the file that equals the key value spec
ified in key-exp. If the key expression is a str-exp whose length
is less than the key length, characters specified by the str-exp are
matched approximately rather than exactly. That is, if you specify
a string expression "ABC" and the key length is six characters,
VAX BASIC matches the first record that begins with ABC. If you
specify "ABCABC", VAX BASIC matches only a record with the
key "ABCABC". If no match is possible, VAX BASIC signals the
error "Record not found" (ERR=155).

• If you specify a next or equal to key match (NXEQ), a successful
GET operation retrieves the first record that equals the key value
specified in key-exp. If no exact match exists, VAX BASIC retrieves
the next record in the key sort order. If the keys are in ascending
order, the next record will have a greater key value. If the keys
are in descending order, the next record will have a lesser key
value.

• If you specify a greater than key match (GT), a successful GET
operation retrieves the first record with a value greater than key
exp. If no such record exists, VAX BASIC signals the error "Record
not found" (ERR=155).

Statements and Functions 4-131

GET

• If you specify a next key match (NX), a successful GET operation
retrieves the first record that follows the key expression in the key
sort order. If no such record exists, VAX BASIC signals the error
"Record not found" (ERR=lSS).

• If you specify a greater than or equal to key match (GE), the
behavior is identical to that of next or equal to (NXEQ). Likewise,
the behavior of GT is identical to NX. However, the use of GE in
a descending key file may be confusing, because GE will retrieve
the next record in the key sort order but the next record will have
a lesser key value. For this reason, DIGITAL recommends that
you use NXEQ in new program development, especially if you are
using descending key files.

5. Key-exp
• Int-exp2 in the key clause specifies an integer value to be com

pared with the key value of a record.

• Str-exp in the key clause specifies a string value to be compared
with the key value of a record. The string expression can contain
fewer characters than the key of the record you want to retrieve
but it cannot be a null string.

• Decimal-exp in the key clause specifies a packed decimal value to
be compared with the key value of a record.

• Quadword-exp in the key clause specifies a RECORD or GROUP
exactly 8 bytes long to be compared with the key value of a
record.

6. The file specified by chnl-exp must be opened with ACCESS READ or
ACCESS MODIFY or SCRATCH before your program can execute a
GET statement. The default ACCESS clause is MODIFY.

7. If the last I/O operation was a successful FIND operation, a sequential
GET operation retrieves the current record located by the FIND
operation and sets the next record pointer to the record logically
succeeding the pointer.

8. If the last I/O operation was not a FIND operation, a sequential
GET operation retrieves the next record and sets the record logically
succeeding the record pointer to the current record.

• For sequential files, a sequential GET operation retrieves the next
record in the file.

• For relative files, a sequential GET operation retrieves the record
with the next higher cell number.

• For indexed files, a sequential GET operation retrieves the next
record in the current key of reference.

4-132 Statements and Functions

Example

GET

9. A successful random GET operation by RFA or by record retrieves the
record specified by rfa-exp or int-exp.

10. A successful random GET operation by key retrieves the first record
whose key satisfies the key-clause comparison.

11. A successful random GET operation by RFA, record, or key sets the
value of the current record pointer to the record just read. The next
record pointer is set to the next logical record.

12. An unsuccessful GET operation leaves the record pointers and the
record buffer in an undefined state.

13. If the retrieved record is smaller than the receiving buffer, VAX BASIC
fills the remaining buffer space with nulls.

14. If the retrieved record is larger than the receiving buffer, VAX BASIC
truncates the record and signals an error.

15. A successful GET operation sets the value of the RECOUNT variable
to the number of bytes transferred from the file to the record buffer.

16. You should not use a GET statement on a terminal-format or virtual
array file.

DECLARE LONG rec-num
MAP (CUSREC) WORD cus_num &

STRING cus_nam = 20, cus_add = 20, cus_city = 10, cus_zip = 9
OPEN "CUS_ACCT.DAT" FOR INPUT AS #1 &

RELATIVE FIXED, ACCESS MODIFY, &
MAP CUSREC

INPUT "Which record number would you like to view";rec_num
GET #1, RECORD REC_NUM, REGARDLESS
PRINT "The customer's number is ";CUS_NUM
PRINT "The customer's name is ";cus_nam
PRINT "The customer's address is ";cus_add
PRINT "The customer's city is ";cus_city
PRINT "The customer's zip code is ";cus_zip
CLOSE #1
END

Statements and Functions 4-133

GETRFA

GETRFA

Format

The GETRFA function returns the record's file address (RFA) of the last
record accessed in an RMS file open on a specified channel.

rfa-var = GETRFA (chnl-exp)

Syntax Rules

Remarks

1. Rfa-var is a variable of the RFA data type.

2. Chnl-exp is the channel number of an open RMS file. You cannot
include a number sign in the channel expression.

3. You must access a record in the file with a GET, FIND, or PUT
statement before using the GETRFA function, or VAX BASIC signals
"No current record" (ERR=131).

1. There must be a file open on the specified chnl-exp or VAX BASIC
signals an error.

2. You can use the GETRFA function with RMS sequential, relative,
indexed, and block I/O files.

3. The RFA value returned by the GETRFA function can be used only
for assignments to and comparisons with other variables of the RFA
data type. Comparisons are limited to equal to(=) and not equal to
(< >) relational operations.

4. RFA values cannot be printed or used for any arithmetic operations.

4-134 Statements and Functions

Example

DECLARE RFA R_ARRAY(1 TO 100)

FOR IY. = 1% TO 100%
PUT #1
R_ARRAY(IY.) = GETRFA{1)

NEXT IY.

GETRFA

Statements and Functions 4-135

GOSUB

GOSUB

Format

The GOSUB statement transfers control to a specified line number or label
and stores the location of the GOSUB statement for eventual return from
the subroutine.

{ GO SUB } target
GOSUB

Syntax Rules

Remarks

1. Target must refer to an existing line number or label in the same
program unit as the GOSUB statement or VAX BASIC signals an error.

2. Target cannot be inside a block structure such as a FOR ... NEXT,
WHILE, or UNTIL loop or a multi-line function definition unless the
GOSUB statement is also within that block or function definition.

1. You can use the GOSUB statement from within protected regions of a
WHEN block. GOSUB statements can also contain protected regions
themselves.

2. If you fail to handle an exception that occurs while a statement
contained in the body of a subroutine is executing, the exception is
handled by the default error handler. The exception is not handled
by any WHEN block surrounding the statement that invoked the
subroutine.

4-136 Statements and Functions

GOSUB

Example

GOSUB subroutine_1

subroutine_1:

RETURN

Statements and Functions 4-137

GOTO

GOTO
The GOTO statement transfers control to a specified line number or label.

Format

{ GO TO } target
GOTO

Syntax Rules

Remarks

1. Target must refer to an existing line number or label in the same
program unit as the GOTO statement or VAX BASIC signals an error.

2. Target cannot be inside a block structure such as a FOR ... NEXT,
WHILE, or UNTIL loop or a multi-line function definition unless the
GOTO statement is also inside that loop or function definition.

1. You can specify the GOTO statement inside a WHEN block if the
target is in the same protected region, an outer level protected region,
or in a nonprotected region.

2. You cannot specify the GOTO statement inside a WHEN block if the
target already resides in another protected region that does not contain
the innermost current protected region.

4-138 Statements and Functions

Example

IF answer = 0
THEN GOTO done

END IF

done:
EXIT PROGRAM

GOTO

Statements and Functions 4-139

HANDLER

HANDLER

The handler statement marks the beginning of a detached handler.

Format

HANDLER handler-name

Syntax Rules

Remarks

Handler-name must be a valid VAX BASIC identifier and must not be the
same as any label, DEF, DEF•, SUB, FUNCTION or PICTURE name.

1. A detached handler must be delimited by a HANDLER statement and
an END HANDLER statement.

2. A detached handler can be used only with VAX BASIC's exception
handling mechanism. If you attempt to branch into a detached
handler for example with the GOTO statement, VAX BASIC signals a
compile-time error.

3. To exit from a detached handler, you must use either END HANDLER,
EXIT HANDLER, RETRY or CONTINUE. See these statements for
more information.

4. Within a handler, VAX BASIC allows you to specify user-defined
function references and procedure invocations as well as VAX BASIC
statements.

5. The following statements are illegal inside a handler:

• EXIT PROGRAM, FUNCTION, SUB, or PICTURE

• GOTO to a target outside the handler

• GOSUB to a target outside the handler

4-140 Statements and Functions

Example

• ON ERROR

• RESUME

WHEN ERROR USE err_handler

END WHEN
HANDLER err_handler

IF ERR = 50 THEN PRINT "Insufficient data"
RETRY
ELSE EXIT HANDLER

END IF
END HANDLER

HANDLER

Statements and Functions 4-141

IF

IF

Format

Conditional

The IF statement evaluates a conditional expression and transfers program
control depending on the resulting value.

IF cond-exp THEN statement ... [ELSE statement ...]
END IF

Statement Modifier

statement IF cond-exp

Syntax Rules

1. Conditional

• Cond-exp can be any valid conditional expression.

• All statements between the THEN keyword and the next ELSE,
line number, or END IF are part of the THEN clause. All state
ments between the keyword ELSE and the next line number or
END IF are part of the ELSE clause.

• VAX BASIC assumes a GOTO statement when the keyword
ELSE is followed by a line number. When the target of a GOTO
statement is a label, the keyword GOTO is required. The use of
this syntax is not recommended for new program development.

• The END IF statement terminates the most recent unterminated IF
statement.

• A new line number terminates all unterminated IF statements.

2. Statement Modifier

• IF can modify any executable statement except a block statement
such as FOR, WHILE, UNTIL, or SELECT.

• Cond-exp can be any valid conditional expression.

4-142 Statements and Functions

Remarks

IF

1. Conditional
• VAX BASIC evaluates the conditional expression for truth or

falsity. If true (nonzero), VAX BASIC executes the THEN clause.
If false (zero), VAX BASIC skips the THEN clause and executes
the ELSE clause, if present.

• The keyword NEXT cannot be in a THEN or ELSE clause unless
the FOR or WHILE statement associated with the keyword NEXT
is also part of the THEN or ELSE clause.

• If a THEN or ELSE clause contains a block statement such as a
FOR, SELECT, UNTIL, or WHILE, then a corresponding block
termination statement such as a NEXT or END, must appear in
the same THEN or ELSE clause.

• IF statements can be nested to 12 levels.

• Any executable statement is valid in the THEN or ELSE clause,
including another IF statement. You can include any number of
statements in either clause.

• Execution continues at the statement following the END IF or
ELSE clause. If the statement does not contain an ELSE clause,
execution continues at the next statement after the THEN clause.

2. Statement Modifier
• VAX BASIC executes the statement only if the conditional expres

sion is true (nonzero).

Statements and Functions 4-143

IF

Example

IF Update_flag = True
THEN

ELSE

Weekly_salary = New_rate * 40.0
UPDATE #1
IF Dept <> New_dept
THEN

END IF

GET #1, KEY #1 EQ New_dept
Dept_employees = Dept_employees + 1
UPDATE #1

PRINT "Update complete"

PRINT "Skipping update for this employee"
END IF

4-144 Statements and Functions

IN KEYS

Format

IN KEYS

The INKEY$ function reads a single keystroke from a terminal opened on
a specified channel and returns the typed character.

string-var= INKEY$ (chnl-exp [,WAIT [int-exp]])

Syntax Rules

Remarks

1. Chnl-exp must be the channel number of a terminal.

2. Int-exp represents the timeout value in seconds and must be from 0
through 255. Values beyond this range cause VAX BASIC to signal a
compile-time or run-time error.

1. Before using the INKEY$ function, specify the DCL command SET
TERMINAL/HOSTSYNC. This command controls whether the system
can synchronize the flow of input from the terminal. If you specify
SET TERMINAL/HOSTSYNC, the system generates a CTRL/S or a
CTRL/Q to enable or disable the reception of input. This prevents the
typeahead buffer from overflowing. If you do not use this command
and the typeahead buffer overflows, VAX BASIC signals the error
"Data overflow" (ERR=289).

2. Before using the INKEY$ function on a VT200-series terminal, set your
terminal to VT200 mode with 7 bit controls.

3. Before using the INKEY$ function, either your termirial or VMS, but
not both, must enable screen wrapping. To enable terminal screen
wrapping, use the Set-Up key on your terminal's keyboard to set
the terminal to Auto Wrap. Then disable VMS screen wrapping by
entering the DCL SET TERMINAL /NOWRAP command. To enable
VMS screen wrapping, enter the DCL SET TERMINAL /WRAP

Statements and Functions 4-145

IN KEYS

command. Then disable terminal screen wrapping by using the
Set-Up key to set the terminal to No Auto Wrap.

4. The INKEY$ function behaves as if the terminal were in
APPLICATION _KEYPAD mode.

5. If the channel is not open, VAX BASIC signals the error "I/O, channel
not open" (ERR=9). If a file or a device other than a terminal is
open on the channel, VAX BASIC signals the error "Illegal operation"
(ERR=141).

6. The optional WAIT clause specifies a timeout interval during which
the command will await terminal input. If you specify WAIT int-exp,
the timeout period will be the specified number of seconds. If you
specify a WAIT clause followed by no timeout value, VAX BASIC
waits indefinitely for terminal input.

7. VAX BASIC always examines the typeahead buffer first and retrieves
the next keystroke in the buffer if the buffer is not empty. If the
typeahead buffer is empty and an optional WAIT clause was specified,
VAX BASIC waits for a keystroke to be typed for the specified timeout
interval (indefinitely if WAIT was specified with no timeout interval).
If the typeahead buffer is empty, and the waiting period is either not
specified or expired, VAX BASIC returns the error message "Keyboard
wait exhausted" (ERR=15).

8. The escape character (ASCII code 27) is not valid as INKEY$ input.
If you enter an escape character, normal program execution resumes
when the INKEY$ times out. Without a specified timeout value, the
program execution cannot resume without error.

9. VAX BASIC returns the error message "Keyboard wait exhausted"
(ERR=15) when any key is pressed after the escape character if no
timeout is specified or if the specified timeout has not yet occurred.

10. INKEY$ turns off all line editing. As a result, control of all line-editing
characters and the arrow keys is passed back to the user.

11. Non-editing characters normally intercepted by the VAX/VMS ter
minal driver are not returned. These include the CTRL/C, CTRL/Y,
CTRL/S, CTRL Y /0 characters (unless CTRL/C trapping is enabled).
They are handled by the device driver just as in normal input.

12. All ASCII characters are returned in a 1-byte string.

13. All keystrokes that result in an escape sequence are translated to
mnemonic strings based on the following key names:

• PF1-PF4

• El-E6

• F7-F20

4-146 Statements and Functions July 1988

IN KEYS

• LEFT

• RIGHT

• UP
• DOWN

Statements and Functions 4-146. 1

Example

• KPO to KP9

• KP-

• KP,

• KP .

• ENTER

PROGRAM Inkey_demo

DECLARE STRING KEYSTROKE
Inkey_Loop:

WHILE 11.
KEYSTROKE = INKEY$(0%,WAIT)

SELECT KEYSTROKE
CASE '26'C

PRINT "CTRL/Z to exit"
EXIT Inkey_Loop

CASE CR,LF,VT,FF,ESC
PRINT "Line terminator"

CASE "PF1" TO "PF4"
PRINT "P function key"

CASE "E1 II TO "E6". "F7" TO "F9". "F10" TO "F20"
PRINT "VT200 function key"

CASE "KPO" TO "KP9"
PRINT "Application keypad key"

CASE < SP
PRINT "Control character"

CASE I 127'C
PRINT ""

CASE ELSE
PRINT 'Character is "' · KEYSTROKE; '"'

END SELECT
NEXT

END PROGRAM

IN KEYS

Statements and Functions 4-14 7

INPUT

INPUT

Format

The INPUT statement assigns values from your terminal or from a
terminal-format file to program variables.

INPUT [#chnl-exp,] [str-const1 { ; }] var1 [{ ; } [str-const2 { ; }] var2] ...

Syntax Rules

1. You must supply an argument to the INPUT statement. Otherwise,
VAX BASIC signals an error message.

2. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign(#).

3. You can include more then one string constant in an INPUT statement.
Str-constl is issued for str-varl, str-const2 for str-var2, and so on.

4. Str-varl and str-var2 cannot be a DEF function names unless the
INPUT statement is inside the multi-line DEF that defines the func
tion.

5. The separator (comma or semicolon) that directly follows str-varl and
str-var2 has no formatting effect. VAX BASIC always advances to a
new line when you terminate input with a carriage return.

6. The separator that directly follows str-constl and str-const2, determines
where the question mark prompt (if requested) is displayed and where
the cursor is positioned for input.

A comma causes VAX BASIC to skip to the next print zone and
display the question mark unless a SET NO PROMPT statement has
been executed. For example:

DECLARE STRING your_name
INPUT "What is your name",your_name

4-148 Statements and Functions

Remarks

INPUT

Output

What is your name ?

A semicolon causes VAX BASIC to display the question mark next to
str-const unless a SET NO PROMPT statement has been executed. For
example:

DECLARE STRING your_name
INPUT "What is your name";your_name

Output

What is your name?

7. VAX BASIC always advances to a new line when you terminate input
with a carriage return.

1. If you do not specify a channel, the default chnl-exp is #0 (the con
trolling terminal). If a chnl-exp is specified, a file must be open on that
channel with ACCESS READ or MODIFY before the INPUT statement
can execute.

2. If input comes from a terminal, VAX BASIC displays the contents
of str-const1, if present. If the terminal is open on channel #0, VAX
BASIC also displays a question mark (?).

3. You can disable the question mark prompt by using the SET NO
PROMPT statement. See the SET PROMPT statement for more
information.

4. When VAX BASIC receives a line terminator or a complete record, it
checks each data element for correct data type and range limits, then
assigns the values to the corresponding variables.

5. If you specify a string variable to receive the input text, and the user
enters an unquoted string in response to the prompt, VAX BASIC
ignores the string's leading and trailing spaces and tabs. An unquoted
string cannot contain any commas.

6. If there is not enough data in the current record or line to satisfy the
variable list, VAX BASIC takes one of the following actions:

• If the input device is a terminal and you have not specified SET
NO PROMPT, VAX BASIC repeats the question mark but not the
str-const, on a new line until sufficient data is entered.

Statements and Functions 4-149

INPUT

Example

• If the input device is not a terminal, VAX BASIC signals "Not
enough data in record" (ERR=59).

7. If there are more data items than variables in the INPUT response,
VAX BASIC ignores the excess.

8. If there is an error while data is being converted or assigned (for
example, string data being assigned to a numeric variable), VAX
BASIC takes one of the following actions:

• If there is no error handler in effect and the input device is a
terminal, VAX BASIC signals a warning, reexecutes the INPUT
statement, and displays str-const and the input prompt.

• If there is an error handler in effect and the input device is not a
terminal, VAX BASIC signals "Illegal number" (ERR=52) or "Data
format error" (ERR=SO).

9. When a RETRY, CONTINUE or RESUME statement transfers control
to an INPUT statement, the INPUT statement retrieves a new record
or line regardless of any data left in the previous record or line.

10. After a successful INPUT statement, the RECOUNT variable contains
the number of characters transferred from the file or terminal to the
record buffer.

11. If you terminate input text with CTRL/Z, VAX BASIC assigns the
value to the variable and signals "End of file on device" (ERR=ll)
when the next terminal input statement executes. If you are in the
BASIC environment and there is no subsequent INPUT, INPUT LINE,
or LINPUT statement in the program, the CTRL/Z is passed to VAX
BASIC as a signal to exit the BASIC environment. VAX BASIC signals
"Unsaved changes have been made, CTRL/Z or EXIT to exit" if you
have made changes to your program or are running a program that
has never been saved. If you have not made changes, VAX BASIC
exits from the BASIC environment and does not signal an error.

DECLARE STRING var_1, &
INTEGER var_2

INPUT "The first variable";var_1, "The second variable";var_2

Output

The first variable? name
The second variable? 4

4-150 Statements and Functions

INPUT LINE

INPUT LINE

Format

The INPUT LINE statement assigns a string value (including the line
terminator in some cases) from a terminal or terminal-format file to a
string variable.

INPUT LINE [#chnl-exp,] [str-const1 { ; }] str-var1

[statement]. .. [{ ; } [str-const2 { ; }] str-var2]. ..

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

2. Str-varl or str-var2 cannot be a DEF function name unless the INPUT
LINE statement is inside the multi-line DEF that defines the function.

3. You can include more than 1 string constant in an INPUT LINE
statement. Str-constl is issued for str-varl, str-const2 for str-var2, and
so on.

4. The separator (comma or semicolon) that directly follows str-varl and
str-var2 has no formatting effect. VAX BASIC always advances to a
new line when you terminate input with a carriage return.

5. The separator that directly follows str-constl and str-const2 determines
where the question mark (if requested) is displayed and where the
cursor is positioned for input. Specifically:

• A comma causes VAX BASIC to skip to the next print zone and
display the question mark unless a SET NO PROMPT statement
has been executed. For example:

DECLARE STRING your_name
INPUT LINE "Name", your_name

July 1988 Statements and Functions 4-151

INPUT LINE

Remarks

Output

Name ?

• A semicolon causes VAX BASIC to display the question mark
next to str-const unless a SET NO PROMPT statement has been
executed. For example:

DECLARE STRING your_name
INPUT LINE "Name";your_name

Output

Name?

6. VAX BASIC always advances to a new line when you terminate input
with a carriage return.

1. The default chnl-exp is #0 (the controlling terminal). If a channel is
specified, a file must be open on that channel with ACCESS READ
before the INPUT LINE statement can execute.

2. VAX BASIC signals an error if the INPUT LINE statement has no
argument.

3. If input comes from a terminal, VAX BASIC displays the contents of
str-const1, if present. If the terminal is open on channel #0,
VAX BASIC also displays a question mark (?).

4. You can disable the question mark prompt by using the SET NO
PROMPT statement. See the SET PROMPT statement for more
information.

5. The INPUT LINE statement assigns all input characters to string
variables. In addition, the INPUT LINE statement places the following
line terminator characters in the assigned string if they are part of the
string value:

4-152 Statements and Functions July 1988

INPUT LINE

Hex code ASCII char Character name

OA LF Line Feed

OB VT Vertical Tab

oc FF Form Feed

OD CR Carriage Return

ODOA CRLF Carriage Return/Line Feed

1B ESC Escape

Any other line terminator, such as CRTL/D and CTRL/F when line
editing is turned off, is not included in the assigned string.

6. When a RETRY, CONTINUE or RESUME statement transfers control
to an INPUT LINE statement, the INPUT LINE statement retrieves a
new record or line regardless of any data left in the previous record or
line.

7. After a successful INPUT LINE statement, the RECOUNT variable
contains the number of characters transferred from the file or terminal
to the record buffer.

July 1988 Statements and Functions 4-152.1

Example

INPUT LINE

8. If you terminate input text with CTRL/Z, VAX BASIC assigns the
value to the variable and signals "End of file on device" (ERR=l 1)
when the next terminal input statement executes. If you are in the
BASIC environment and there is no next INPUT, INPUT LINE, or
LINPUT statement in the program, the CTRL/Z is passed to VAX
BASIC as a signal to exit the BASIC environment. VAX BASIC signals
"Unsaved changes have been made, CTRL/Z or EXIT to exit" if you
have made changes to your program. If you have not made changes,
VAX BASIC exits from the BASIC environment and does not signal an
error.

DECLARE STRING Z,N,record_string
INPUT LINE "Type two words", Z$,'Type your name';N$
INPUT LINE #4%, record_string$

Statements and Functions 4-153

INSTR

INSTR

Format

The INSTR function searches for a substring within a string. It returns the
position of the substring's starting character.

int-var= INSTR (int-exp, str-exp 1, str-exp2)

Syntax Rules

Remarks

1. Int-exp specifies the character position in the main string at which
VAX BASIC starts the search.

2. Str-exp1 specifies the main string.

3. Str-exp2 specifies the substring.

1. The INSTR function searches str-exp1, the main string, for the first
occurrence of a substring, str-exp2, and returns the position of the
substring's first character.

2. INSTR returns the character position in the main string at which VAX
BASIC finds the substring, except in the following situations:

• If only the substring is null, and if int-exp is less than or equal to
zero, INSTR returns a value of 1.

• If only the substring is null, and if int-exp is equal to or greater
than 1 and less than or equal to the length of the main string,
INSTR returns the value of int-exp.

• If only the substring is null, and if int-exp is greater than the
length of the main string, INSTR returns the main string's length
plus 1.

• If the substring is not null, and if int-exp is greater than the length
of the main string, INSTR returns a value of zero.

4-154 Statements and Functions

Example

INSTR

• If only the main string is null, INSTR returns a value of zero.

• If both the main string and the substring are null, INSTR returns a
1.

3. If VAX BASIC cannot find the substring, INSTR returns a value of
zero.

4. If int-exp does not equal 1, VAX BASIC still counts from the beginning
of the main string to calculate the starting position of the substring.
That is, VAX BASIC counts character positions starting at position 1,
regardless of where you specify the start of the search. For example,
if you specify 10 as the start of the search and VAX BASIC finds the
substring at position 15, INSTR returns the value 15.

5. If int-exp is less than l, VAX BASIC assumes a starting position of 1.

6. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

DECLARE STRING alpha, &
INTEGER result

alpha = 11 ABCDEF 11

result = INSTR(1,alpha,"DEF")
PRINT result

Output

4

Statements and Functions 4-155

INT

INT

Format

The INT function returns the floating-point value of the largest whole
number less than or equal to a specified expression.

real-var= INT (real-exp)

Syntax Rules

Remarks

Examples

VAX BASIC expects the argument of the INT function to be a real ex
pression. When the argument is a real expression, VAX BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, VAX BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

If real-exp is negative, VAX BASIC returns the largest whole number less
than or equal to real-exp. For example, INT(-5.3) is -6.

Example 1

DECLARE SINGLE any_num, result
any_num = 6.667
result = INT(any_num)
PRINT result

Output 1

6

4-156 Statements and Functions

Example 2

!This example contrasts the INT and FIX functions
DECLARE SINGLE test_num
test_num = -32.7
PRINT "INT OF -32.7 IS: 11 • INT(test_num)
PRINT "FIX OF -32.7 IS: "; FIX(test_num)

Output 2

INT OF -32.7 IS: -33
FIX OF -32.7 IS: -32

INT

Statements and Functions 4-15 7

INTEGER

INTEGER

Format

The INTEGER function converts a numeric expression or numeric string to
a specified or default INTEGER data type.

int-var= INTEGER (exp , WORD
[

,BYTE]

,LONG

Syntax Rules

Remarks

Exp can be either numeric or string. A string expression can contain the
ASCII digits 0 through 9, a plus sign (+), or a minus sign (-).

1. VAX BASIC evaluates exp, then converts it to the specified INTEGER
size. If you do not specify a size, VAX BASIC uses the default
INTEGER size.

2. If exp is a string, VAX BASIC ignores leading and trailing spaces and
tabs.

3. The INTEGER function returns a value of zero when a string argument
contains only spaces and tabs, or when it is null.

4. The INTEGER function truncates the decimal portion of REAL and
DECIMAL numbers.

4-158 Statements and Functions

Example

INPUT "Enter a floating-point number";F_P
PRINT INTEGER(F_P, WORD)

Output

Enter a floating-point number? 76.99
76

INTEGER

Statements and Functions 4-159

ITERATE

ITERATE

The ITERATE statement allows you to explicitly reexecute a loop.

Format

ITERATE [label]

Syntax Rules

Remarks

1. Label is the label of the first statement of a FOR. .. NEXT, WHILE, or
UNTIL loop.

2. Label must conform to the rules for naming variables.

1. ITERATE is equivalent to an unconditional branch to the current loop's
NEXT statement. If you supply a label, ITERATE transfers control to
the NEXT statement in the specified loop. If you do not supply a
label, ITERATE transfers control to the current loop's NEXT statement.

2. The ITERATE statement can be used only within a FOR. .. NEXT,
WHILE, or UNTIL loop.

4-160 Statements and Functions

Example

WHEN ERROR IN
Date_loop: WHILE 1Y. = 1Y.

USE
NEXT

IF ERR = 11
THEN

GET #1
ITERATE Date_loop IF Day$ <> Today$
ITERATE Date_loop IF Month$ <> This_month$
ITERATE Date_loop IF Year$ <> This_year$
PRINT Item$

CONTINUE DONE
ELSE

END IF
END WHEN
Done: END

EXIT HANDLER

ITERATE

Statements and Functions 4-161

KILL

KILL

Format

The KILL statement deletes a disk file, removes the file's directory entry,
and releases the file's storage space.

KILL file-spec

Syntax Rules

Remarks

Example

File-spec can be a quoted string constant, a string variable, or a string
expression. It cannot be an unquoted string constant.

1. The KILL statement marks a file for deletion but does not delete the
file until all users have closed it.

2. If you do not specify a complete file specification, VAX BASIC uses the
default device and directory. If you do not specify a file version, VAX
BASIC deletes the highest version of the file.

3. The file must exist, or VAX BASIC signals an error.

4. You can delete a file in another directory if you have access to that
directory and privilege to delete the file.

KILL "TEMP.DAT"

4-162 Statements and Functions

LBOUND

Format

LBOUND

The LBOUND function returns the lower bounds of a compile-time or
run-time dimensioned array.

num-var = LBOUND (array-name [, num-exp])

Syntax Rules

Remarks

1. Array-name must specify an array that has been either explicitly or
implicitly declared.

2. Num-exp specifies the number of the dimension for which you have
requested the lower bound.

1. If you do not specify a dimension, VAX BASIC automatically returns
the lower bounds of the first dimension.

2. If you specify a numeric expression that is less than or equal to zero,
VAX BASIC signals an error.

3. If you specify a numeric expression that exceeds the number of
dimensions, VAX BASIC signals an error.

Statements and Functions 4-163

LBOUND

Example

DECLARE INTEGER CONSTANT B = 5
DIM A(B)
account_num = 1
FOR dim_num = LBOUND (A) TO 5

A(dim_num) = account_num
account_num = account_num + 1
PRINT A(dim_num)

NEXT dim_num

Output

1
2
3
4
5
6

4-164 Statements and Functions

LEFTS

Format

LEFTS

The LEFT$ function extracts a specified substring from a string's left side,
leaving the main string unchanged.

str-var =LEFT[$] (str-exp, int-exp)

Syntax Rules

Remarks

1. Int-exp specifies the number of characters to be extracted from the left
side of str-exp.

2. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

1. The LEFT$ function extracts a substring from the left of the specified
str-exp and stores it in str-var.

2. If int-exp is less than l, LEFT$ returns a null string.

3. If int-exp is greater than the length of str-exp, LEFT$ returns the entire
string.

Statements and Functions 4-165

LEFTS

Example

DECLARE STRING sub_string, main_string
main_string = "1234667"
sub_string = LEFT$(main_string, 4)
PRINT sub_string

Output

1234

4-166 Statements and Functions

LEN

Format

LEN

The LEN function returns an integer value equal to the number of charac
ters in a specified string.

int-var= LEN (str-exp)

Syntax Rules

Remarks

Example

None.

1. If str-exp is null, LEN returns a value of zero.

2. The length of str-exp includes leading, trailing, and embedded blanks.
Tabs in str-exp are treated as a single space.

3. The value returned by the LEN function is a LONG integer.

DECLARE STRING alpha, ~
INTEGER length

alpha = "ABCDEFG"
length = LEN(alpha)
PRINT length

Output

7

Statements and Functions 4-167

LET

LET

The LET statement assigns a value to one or more variables.

Format

[LET] var,... = exp

Syntax Rules

Remarks

1. Var cannot be a DEF or FUNCTION name unless the LET statement
occurs inside that DEF block or in that FUNCTION subprogram.

2. The keyword LET is optional.

1. You cannot assign string data to a numeric variable or unquoted
numeric data to a string variable.

2. The value assigned to a numeric variable is converted to the variable's
data type. For example, if you assign a floating-point value to an
integer variable, VAX BASIC truncates the value to an integer.

3. For dynamic strings, the destination string's length equals the source
string's length.

4. When you assign a value to a fixed-length string variable (a variable
declared in a COMMON, MAP, or RECORD statement), the value is
left-justified and padded with spaces or truncated to match the length
of the string variable.

4-168 Statements and Functions

Example

DECLARE STRING alpha, t
INTEGER length

LET alpha = "ABCDEFG"
LET length = LEN(alpha)
PRINT length

Output

7

LET

Statements and Functions 4-169

LINPUT

LIN PUT

Format

The LINPUT statement assigns a string value, without line terminators,
from a terminal or terminal-format file to a string variable.

LINPUT [#chn/-exp, J [str-const1 { ; }] str-var1 [{ ; } [str-const2 { ; }]

str-var2] ...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign(#).

2. Str-varl and str-var2 cannot be DEF function names unless the
LINPUT statement is inside the multi-line DEF that defines the
function.

3. You can include more than one string constant in a LINPUT statement.
Str-constl is issued for str-varl, str-const2 for str-var2, and so on.

4. The separator (comma or semicolon) that directly follows str-varl and
str-var2 has no formatting effect. VAX BASIC always advances to a
new line when you terminate input with a carriage return.

5. The separator character that directly follows str-constl and str-const2
determines where the question mark (if requested) is displayed and
where the cursor is positioned for input.

• A comma causes VAX BASIC to skip to the next print zone to
display the question mark unless a SET NO PROMPT statement
has been executed. For example:

DECLARE STRING your_name
LINPUT "Name",your_name

4-170 Statements and Functions

Remarks

LINPUT

Output

Name ?

• A semicolon causes VAX BASIC to display the question mark
next to str-const unless a SET NO PROMPT statement has been
executed. For example:

DECLARE STRING your_name
LINPUT "What is your name";your_name

Output

What is your name?

6. VAX BASIC always advances to a new line when you terminate input
with a carriage return.

1. The default chnl-exp is #0 (the controlling terminal). If you specify a
channel, the file associated with that channel must have been opened
with ACCESS READ or MODIFY.

2. VAX BASIC signals an error if the LINPUT statement has no argu
ment.

3. If input comes from a terminal, VAX BASIC displays the contents
of str-const1, if present. If the terminal is open on channel #0, VAX
BASIC also displays a question mark (?).

4. You can disable the question mark prompt by using the SET NO
PROMPT statement. See the SET PROMPT statement for more
information.

5. The LINPUT statement assigns all characters, except any line termi
nator's to str-varl and str-var2. Single and double quotation marks,
commas, tabs, leading and trailing spaces, or other special characters
in the string are part of the data.

6. If the RETRY, CONTINUE or RESUME statement transfers control to
a LINPUT statement, the LINPUT statement retrieves a new record
regardless of any data left in the previous record.

7. After a successful LINPUT statement, the RECOUNT variable contains
the number of bytes transferred from the file or terminal to the record
buffer.

Statements and Functions 4-171

LINPUT

Example

8. If you terminate input text with CTRL/Z, VAX BASIC assigns the
value to the variable and signals "End of file on device" (ERR=ll)
when the next terminal input statement executes. If you are in the
BASIC environment and there is no next INPUT, INPUT LINE, or
LINPUT statement in the program, the CTRL/Z is passed to VAX
BASIC as a signal to exit the BASIC environment.

DECLARE STRING last_name
LINPUT "ENTER YOUR LAST NAME";Last_name
LINPUT #21., Last_name

4-172 Statements and Functions

LDC

Format

LDC

The LOC function returns either a longword integer specifying the virtual
address of a simple or subscripted variable, or the address of an external
function or subprogram. For dynamic strings, the LOC function returns
the address of the descriptor rather than the address of the data.

int-var= LDC ({ var . })
ext-routme

Syntax Rules

Remarks

1. Var can be any local or external, simple or subscripted variable.

2. Var cannot be a virtual array element.

3. Ext-routine can be the name of external function or subprogram.

1. The LOC function always returns a LONG value.

2. The LOC function is useful for passing the address of an external
function as a parameter to a procedure. When passing a routine
address as a parameter you should usually pass the address by
value. For example, VAX/VMS system services expect to receive AST
procedure entry masks by reference; therefore, the address of the entry
mask should be in the argument list on the stack.

July 1988 Statements and Functions 4-17 J

LDC

Example

DECLARE INTEGER A, B
A = 12
B = LDC(A)
PRINT B

Output

2146799372

4-174 Statements and Functions

LOG

format

LOG

The LOG function returns the natural logarithm (base e) of a specified
number. The LOG function is the inverse of the EXP function.

real-var= LOG (real-exp)

Syntax Rules

Remarks

None.

1. Real-exp must be greater than zero. An attempt to find the logarithm
of zero or a negative number causes VAX BASIC to signal "Illegal
argument in LOG" (ERR=53).

2. The LOG function uses the mathematical constant e as a base. VAX
BASIC approximates e to be 2.718281828459045 (double precision).

3. The LOG function returns the exponent to which e must be raised to
equal real-exp.

4. VAX BASIC expects the argument of the LOG function to be a real
expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

Statements and Functions 4-17 5

LOG

Example

DECLARE SINGLE exponent
exponent = LOG(98.6)
PRINT exponent

Output

4.59107

4-176 Statements and Functions

LOG10

Format

LOG10

The LOGlO function returns the common logarithm (base 10) of a speci
fied number.

real-var= LOG 10 (real-exp)

Syntax Rules

Remarks

None.

1. Real-exp must be larger than zero. An attempt to find the logarithm
of zero or a negative number causes VAX BASIC to signal "Illegal
argument in LOG" (ERR=53).

2. The LOGlO function returns the exponent to which 10 must be raised
to equal real-exp.

3. VAX BASIC expects the argument of the LOGlO function to be a
real expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

Statements and Functions 4-17 7

LOG10

Example

DECLARE SINGLE exp_base_10
exp_base_10 = LOG10(260)
PRINT exp_base_10

Output

2.39794

4-178 Statements and Functions

LSET

Format

LSET

The LSET statement assigns left-justified data to a string variable. LSET
does not change the length of the destination string variable.

LSET str-var, ... = str-exp

Syntax Rules

Remarks

1. Str-var is the destination string. Str-exp is the string value assigned to
str-var.

2. Str-var cannot be a DEF function or function name unless the LSET
statement is inside the multi-line DEF or function that defines the
function.

1. The LSET statement treats all strings as fixed length. LSET neither
changes the length of the destination string nor creates new storage.
Rather, it overwrites the current storage of str-var.

2. If the destination string is longer than str-exp, LSET left-justifies str
exp and pads it with spaces on the right. If smaller, LSET truncates
characters from the right of str-exp to match the length of str-var.

Statements and Functions 4-179

LSET

Example

DECLARE STRING alpha
alpha = 11 ABCDE 11

LSET alpha = 11 FGHIJKLMN"
PRINT alpha

Output

FGHIJ

4-180 Statements and Functions

MAG

Format

MAG

The MAG function returns the absolute value of a specified expression.
The returned value has the same data type as the expression.

var= MAG (exp)

Syntax Rules

Remarks

None.

1. The returned value is always greater than or equal to zero. The
absolute value of zero is zero. The absolute value of a positive
number equals that number. The absolute value of a negative number
equals that number multiplied by -1.

2. The MAG function is similar to the ABS function in that it returns
the absolute value of a number. The ABS function, however, takes
a floating-point argument and returns a floating-point value. The
MAG function takes an argument of any numeric data type and
returns a value of the same data type as the argument. DIGITAL
recommends the use of the MAG function rather than the ABS and
ABS% functions, because the MAG function returns a value using the
data type of the argument.

Statements and Functions 4-181

MAG

Example

DECLARE SINGLE A
A = -34.6
PRINT MAG(A)

Output

34.6

4-182 Statements and Functions

MAGTAPE

MAGTAPE

Format

The MAGTAPE function permits your program to control unformatted
magnetic tape files.

NOTE

The MAGTAPE function is supported only for compatibility
with BASIC-PLUS-2. DIGITAL recommends that you do not
use the MAGTAPE function for new program development.

int-var1 = MAGTAPE (tune-code, int-var, chnl-exp)

Syntax Rules

1. Fune-code specifies the code for the MAGTAPE function you want
to perform. VAX BASIC supports only function code 3, rewind tape.
Table 4-4 explains how to perform other MAGTAPE functions with
VAX BASIC.

2. Int-var is an integer parameter for function codes 4, 5, and 6.
However, because VAX BASIC supports only function code 3, int-var
is not used and always equals zero.

3. Chnl-exp is a numeric expression that specifies a channel number
associated with the magnetic tape file.

Statements and Functions 4-183

MAGTAPE

Remarks

Example

Table 4-4: MAGT APE Functionality in VAX BASIC
Code Function

2 Write EOF

3 Rewind tape

4 Skip records

5 Backspace

6 Set density or set parity

7 Get status

VAX BASIC Action

Close channel with the CLOSE
statement

Use the RESTORE # statement,
the REWIND clause on an OPEN
statement, or the MAGTAPE
function

Perform GET operations, ignore
data until reaching desired record

Rewind tape, perform GET oper
ations, ignore data until reaching
desired record

Use the DCL commands
MOUNT /DENSITY and
MOUNT /FOREIGN or the
$MOUNT system service

Use the RMSSTATUS function

For more information on the MAGTAPE function, see Appendix A in this
manual.

I = MAGTAPE (3Y.,OY.,2Y.)

4-184 Statements and Functions

MAP

Format

MAP

The MAP statement defines a named area of statically allocated storage
called a PSECT, declares data fields in the record, and associates them
with program variables.

MAP (map-name) { [data-type] map-item}, ...

map-item:

Syntax Rules

num-unsubs-var
num-array-name ([int-const1 TO] int-const2, ...)
record-var
str-unsubs-var [=int-canst]
str-array-name ([int-const1 TO] int-const2, ...) [=int-canst]
FILL [(int-canst)] [=int-canst]
FILL% [(int-canst)]
FILL$ [(int-canst)] [=int-canst]

1. Map-name is global to the program and image. It cannot appear
elsewhere in the program unit as a variable name.

2. Map-name can be from 1 through 31 characters. The first character
of the name must be an alphabetic character (A through Z). The
remaining characters, if present, can be any combination of letters,
digits (0 through 9), dollar signs ($), periods (.), or underscores (-).

3. Data-type can be any VAX BASIC data type keyword or a data type
defined by a RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2.

4. When you specify a data type, all following map-items, including FILL
items, are of that data type until you specify a new data type.

5. If you specify a dollar sign ($) or percent sign (%) suffix character,
the variable must be a string or integer data type.

Statements and Functions 4-185

MAP

6. If you do not specify a data type, a map-item without a suffix character
(% or$) takes the current default data type and size.

7. Map-item declares the name and format of the data to be stored.

• Num-unsubs-var and num-array-name specify a numeric variable or
a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a fixed-length string
variable or array. You can specify the number of bytes to be
reserved for the variable with the =int-const clause. The default
string length is 16.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts
of the record buffer within or between data elements and to
define the format of the storage. Int-const specifies the number
of FILL items to be reserved. The =int-const clause allows you to
specify the number of bytes to be reserved for string FILL items.
Table 4-2 describes FILL item format and storage allocation.

• In the applicable formats of FILL, (int-const) represents a repeat
count, not an array subscript. FILL (n), for example, represents n
elements, not n + 1.

8. Variable names, array names and FILL items following a data type
other than STRING cannot end with a dollar sign. Variable names,
array names and FILL items following a data type other than BYTE,
WORD, LONG or INTEGER, cannot end with a percent sign.

9. Variables and arrays declared in a MAP statement cannot be declared
elsewhere in the program by any other declarative statements.

10. When you declare an array, VAX BASIC allows you to specify both
lower and upper bounds. Upper bounds are required; lower bounds
are optional.

• Int-const2 specifies the upper bounds of the array and, when
accompanied by int-const1, must be preceded by the keyword TO.

• Int-const1 must be less than or equal to int-const2.
• If you do not specify int-constl, VAX BASIC uses zero as the

default lower bound.

• lnt-constl and int-const2 can be any combination of negative and
positive values.

4-186 Statements and Functions

Remarks

MAP

1. VAX BASIC does not execute MAP statements. The MAP statement
allocates static storage and defines data at compilation time.

2. A program can have multiple maps with the same name. The allo
cation for each map overlays the others. Thus, data is accessible in
many ways. The actual size of the data area is the size of the largest
map. When you link your program, the size of the map area is the
size of the largest map with that name.

3. Map-items with the same name can appear in different MAP state
ments with the same map name only if they match exactly in at
tributes such as data type, position, and so forth. If the attributes are
not the same, VAX BASIC signals an error. For example:

MAP (ABC) LONG A, B
MAP (ABC) LONG A, C This MAP statement is valid
MAP (ABC) LONG B, A This MAP statement produces an error
MAP (ABC) WORD A, B This MAP statement produces an error

The third MAP statement causes VAX BASIC to signal the error
"variable <name> not aligned in multiple references in MAP
<name> ", while the fourth MAP statement generates the error

"attributes of overlaid variable <name> don't match".

4. The MAP statement should precede any reference to variables declared
in it.

5. Storage space for map-items is allocated in order of occurrence in the
MAP statement.

6. A MAP area can be accessed by more than one program module, as
long as you define the map-name in each module that references the
MAP.

7. A COMMON area and a MAP area with the same name specify the
same storage area and are not allowed in the same program module.
However, a COMMON in one module can reference the storage
declared by a MAP or COMMON in another module.

8. Variables in a MAP statement are not initialized by VAX BASIC.
9. A map named in an OPEN statement's MAP clause is associated with

that file. The file's records and record fields are defined by that map.
The size of the map determines the record size for file I/O, unless the
OPEN statement includes a RECORDSIZE clause.

Statements and Functions 4-187

MAP

Example

MAP (BUF1) BYTE AGE, STRING emp_name = 20 t
SINGLE emp_num

MAP (BUF1) BYTE FILL, STRING last_name (11) = 12, t
FILL = 8, SINGLE FILL

4-188 Statements and Functions

MAP DYNAMIC

MAP DYNAMIC

Format

The MAP DYNAMIC statement names the variables and arrays whose
size and position in a storage area can change at run time. The MAP
DYNAMIC statement is used in conjunction with the REMAP statement.
The REMAP statement defines or redefines the position in the storage area
of variables named in the MAP DYNAMIC statement.

MAP DYNAMIC (map-dyn-nameJ{[data-type]map-item}, ...

map-dyn-name: {
map-name }
static-str-var

map-item:

Syntax Rules

num-unsubs-var
num-array-name ([int-canst 1 TO] int-const2 , ...)
record-var
str-unsubs-var
str-array-name ([int-canst 1 TO] int-const2 , .. .)

1. Map-dyn-name can either be ~ map name or a static string variable.

• Map-name is the storage area named in a MAP statement.

• If you specify a map name, then a MAP statement with the same
name must precede both the MAP DYNAMIC statement and the
REMAP statement.

• When you specify a static string variable, the string must be
declared before you can specify a MAP DYNAMIC statement or a
REMAP statement.

• Static-str-var must specify a static string variable or a string
parameter variable.

Statements and Functions 4-189

MAP DYNAMIC

• If you specify a static-str-var, the following restrictions apply:

Static-str-var cannot be a string constant.

Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement.

Static-str-var cannot be a subscripted variable.

Static-str-var cannot be a record component.

Static-str-var cannot be a parameter declared in a DEF or DEF*
function.

2. Map-item declares the name and data type of the items to be stored in
the storage area. All variable pointers point to the beginning of the
storage area until the program executes a REMAP statement.

• Num-unsubs-var and num-array-name specify a numeric variable or
a numeric array.

• Record-var specifies a record instance.

• Str-unsubs-var and str-array-name specify a string variable or
array. You cannot specify the number of bytes to be reserved for
the variable in the MAP DYNAMIC statement. All string items
have a fixed length of zero until the program executes a REMAP
statement.

3. When you specify an array name, VAX BASIC allows you to specify
both lower and upper bounds. The upper bound is required; the lower
bound is optional.

• Int-constl specifies the lower bounds of the array.

• Int-const2 specifies the upper bounds of the array and, when
accompanied by int-constl, must be preceded by the keyword TO.

• Int-tonstl must be less than or equal to int-const2.
• If you do not specify int-constl, VAX BASIC uses zero as the

default lower bound.

• Int-constl and int-const2 can be either negative or positive values.

4. Data-type can be any VAX BASIC data type keyword or a data type
defined with a RECORD statement. Data type keywords, size, range,
and precision are listed in Table 1-2 in this manual.

5. When you specify a data type, all following map-items are of that data
type until you specify a new data type.

6. If you do not specify any data type, map-items take the current default
data type and size.

7. Map-items must be separated with commas.

4-190 Statements and Functions July 198E

MAP DYNAMIC

8. If you specify a dollar sign or percent sign suffix, the variable must be
a STRING data type or one of the integer data types.

Statements and Functions 4-190.1

Remarks

Example

MAP DYNAMIC

1. All variables and arrays declared in a MAP DYNAMIC statement
cannot be declared elsewhere in the program by any other declarative
statements.

2. The MAP DYNAMIC statement does not affect the amount of storage
allocated to the map buffer declared in a previous MAP statement or
the storage allocated to a static string. Until your program executes a
REMAP statement, all variable and array element pointers point to the
beginning of the MAP buffer or static string.

3. VAX BASIC does not execute MAP DYNAMIC statements. The MAP
DYNAMIC statement names the variables whose size and position in
the MAP or static string buffer can change and defines their data type.

4. Before you can specify a map name in a MAP DYNAMIC statement,
there must be a MAP statement in the program unit with the same
map name. Otherwise, VAX BASIC signals the error "Insufficient
space for MAP DYNAMIC variables in MAP <name> ". Similarly,
before you can specify a static string variable in the MAP DYNAMIC
statement, the string variable must be declared. Otherwise, VAX
BASIC signals the same error message.

5. A static string variable must be either a variable declared in a MAP or
COMMON statement or a parameter declared in a SUB, FUNCTION,
or PICTURE. It cannot be a parameter declared in a DEF or DEF*
function.

6. If a static string variable is the same as a map name, VAX BASIC uses
the map name if the name appears in a MAP DYNAMIC statement.

7. The MAP DYNAMIC statement must lexically precede the REMAP
statement or VAX BASIC signals the error "MAP variable <name>
referenced before declaration".

100 MAP (MY.BUF) STRING DUMMY= 512
MAP DYNAMIC (MY.BUF) STRING LAST, FIRST, MIDDLE,

BYTE AGE, STRING EMPLOYER,
STRING CHARACTERISTICS

&
&

July 1988 Statements and Functions 4-1 91

MAR

MAR

The MAR function returns the current margin width of a specified channel.

Format

int-var= MAR[%] (chnl-exp)

Syntax Rules

Remarks

Example

The file associated with chnl-exp must be open.

1. If chnl-exp specifies a terminal and you have not set a margin width
with the MARGIN statement, the MAR function returns a value of
zero. If you have set a margin width, the MAR function returns that
number.

2. The value returned by the MAR function is a LONG integer.

DECLARE INTEGER width
MARGIN #0, 80
width = MAR(O)
PRINT width

Output

80

4-192 Statements and Functions

MARGIN

Format

MARGIN

The MARGIN statement specifies the margin width for a terminal or for
records in a terminal-format file.

MARGIN [#chn/-exp,] int-exp

Syntax Rules

Remarks

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

2. Int-exp specifies the margin width.

1. If you do not specify a channel, VAX BASIC sets the margin on the
con trolling terminal.

2. The file associated with chnl-exp must be an open terminal-format file
or terminal.

3. VAX BASIC signals the error "Illegal operation" (ERR=141) if the file
associated with chnl-exp is not a terminal-format file.

4. If chnl-exp does not correspond to a terminal, and if int-exp is
zero, VAX BASIC sets the right margin to the size specified by the
RECORDSIZE clause in the OPEN statement, if the clause is present.
If no RECORDSIZE clause is present, VAX BASIC sets the margin to
72 (or, in the case of channel 0, to the width of SYS$0UTPUT).

5. If chnl-exp is not present or if it corresponds to a terminal, and if
int-exp is zero, VAX BASIC sets the right margin to the size specified
by the RECORDSIZE clause in the OPEN statement, if the clause is
present. If no RECORDSIZE clause is present, VAX BASIC sets the
margin to 72.

July 1988 Statements and Functions 4-193

MARGIN

Example

6. VAX BASIC prints as much of a specified record as the margin setting
allows on one line before going to a new line. Numeric fields are
never split across lines.

7. If you specify a margin larger than the channel's record size, VAX
BASIC signals an error. The default record size for a terminal or
terminal format file is 132.

8. The MARGIN statement applies to the specified channel only while
the channel is open. If you close the channel and then reopen it,
VAX BASIC uses the default margin.

OPEN "EMP.DAT" FOR OUTPUT AS #1
MARGIN #1, 132

4-194 Statements and Functions

MAT

MAT

The MAT statement lets you implicitly create and manipulate one- and
two-dimensional arrays. You can use the MAT statement to assign values
to array elements, or to redimension a previously dimensioned array.
You can also perform matrix arithmetic operations such as multiplication,
addition, and subtraction, and other matrix operations such as transposing
and inverting matrices.

Format

Numeric Initialization

MAT num-array = { ~DONN } [(int-exp1 [, int-exp2])]
ZER

String Initialization

MAT str-array = NUL$ [(int-exp1 [, int-exp2])]

Array Arithmetic

MAT num-array1 = num-array2 [{ : } num-array3 l

MAT num-array1 = num-array2 * num-array3 [* num-array4] , ...

Scalar Multiplication

MAT num-array4 = (num-exp) * num-array5

Inversion and Transposition

MAT num-array6 = { TRN } (num-arrayl)
INV

Statements and Functions 4-1 9 5

MAT

Syntax Rules

Remarks

1. Int-exp1 and int-exp2 define the upper bounds of the array being
implicitly created or the new dimensions of an existing array.

2. If you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

3. If you do not specify bounds, VAX BASIC creates the array and
dimensions it to (0 TO 10) or (10 TO 10, 0 TO 10).

4. If you specify bounds, VAX BASIC creates the array with the specified
bounds. If the bounds exceed (0 TO 10) or (10 TO 10, 0 TO 10), VAX
BASIC signals "Redimensioned array" (ERR=lOS).

5. The lower bounds must be zero.

1. To perform MAT operations on arrays larger than (10,10), create the
input and output arrays with the DIM statement.

2. When the array exists, the following rules apply:

• If you specify upper bounds, VAX BASIC redimensions the array
to the specified size. However, MAT operations cannot increase
the total number of array elements.

• All arrays specified with the MAT statement must have lower
bounds of zero. If you supply a nonzero value, VAX BASIC
signals either a compile-time or a run-time error.

• If you do not specify bounds, VAX BASIC does not redimension
the array.

• An array passed to a subprogram and redimensioned with a MAT
statement remains redimensioned when control returns to the
calling program, with two exceptions:

- When the array is within a record and is passed by descriptor

- When the array is passed by reference

3. You cannot use the MAT statement on arrays of more than two
dimensions.

4. You cannot use the MAT statement on arrays of data type DECIMAL
or on arrays named in a RECORD statement.

4-196 Statements and Functions

MAT

5. Initialization
• CON sets all elements of num-array to 1, except those in row and

column zero.

• IDN creates an identity matrix from num-array. The number of
rows and columns in num-array must be identical. IDN sets all
elements to zero except those on the diagonal from num-array(l,l)
to num-array(n,n), which are set to 1.

• ZER sets all array elements to zero, except those in row and
column zero.

• NUL$ sets all elements of a string array to the null string, except
those in row and column zero.

6. Array Arithmetic
• The equal sign (=) assigns the results of the specified operation to

the elements in num-arrayl.
• If num-array3 is not specified, VAX BASIC assigns the values of

num-array2's elements to the corresponding elements of num
arrayl. Num-arrayl must have at least as many rows and columns
as num-array2.

• Use the plus sign (+) to add the elements of two arrays. Num
array2 and num-array3 must have identical bounds.

• Use the minus sign (-) to subtract the elements of two arrays.
Num-array2 and num-array3 must have identical bounds.

• Use the asterisk (*) to perform matrix multiplication on the
elements of num-array2 and num-array3 and to assign the results
to num-arrayl. This operation gives the dot product of num-array2
and num-array3. All three arrays must be two-dimensional, and
the number of columns in num-array2 must equal the number of
rows in num-array3. VAX BASIC redimensions num-arrayl to have
the same number of rows as num-array2 and the same number of
columns as num-array3.

• With matrix multiplication, you can specify more than two nu
meric arrays. However, each array must be two-dimensional.
Moreover, in each dimension, the lower bound of each array must
be zero and the upper bound must be 4. You can use the graphics
transformation functions, which will automatically create arrays
with these dimensions. See the DRAW statement in Programming
with VAX BASIC Graphics for more information.

7. Scalar Multiplication
• VAX BASIC multiplies each element of num-array5 by num-exp

and stores the results in the corresponding elements of num-array4.

Statements and Functions 4-197

MAT

Examples

8. Inversion and Transposition
• TRN transposes num-array7 and assigns the results to num-array6.

If num-array7 has m rows and n columns, num-array6 will have n
rows and m columns. Both arrays must be two-dimensional.

• You cannot transpose a matrix to itself: MAT A = TRN(A) is
invalid.

• INV inverts num-array7 and assigns the results to num-array6.
Num-array7 must be a two-dimensional array that can be reduced
to the identity matrix with elementary row operations. The row
and column dimensions must be identical.

9. You cannot increase the number of array elements or change the
number of dimensions in an array when you redimension with the
MAT statement. For example, you can redimension an array with
dimensions (5,4) to (4,5) or (3,2), but you cannot redimension that
array to (5,5) or to (10). The total number of array elements includes
those in row and column zero.

10. If an array is named in both a DIM statement and a MAT statement,
the DIM statement must lexically precede the MAT statement.

11. MAT statements do not operate on elements in the zero element (one
dimensional arrays) or in the zero row or column (two-dimensional
arrays). MAT statements use these elements to store results of inter
mediate calculations. Therefore, you should not depend on values in
row and column zero if your program uses MAT statements.

Example 1

!Numeric Initialization
MAT CONVERT = zer(10,10)

Example 2

!Initialization
MAT na_me$ = NUL$(6,6)

4-198 Statements and Functions

Example 3

!Array Arithmetic
MAT new_int = old_int - rslt_int

Example 4

!Scalar Multiplication
MAT Z40 = (4.24) * Z

Example 5

!Inversion and Transposition
MAT QY. = INV (Z)

MAT

Statements and Functions 4-199

MAT INPUT

MAT INPUT

The MAT INPUT statement assigns values from a terminal or terminal
format file to array elements.

Format

MAT INPUT [#chnl-exp,] {array [(int-exp1 [, int-exp2])]), ...

Syntax Rules

1.

2.

3.

4.

Remarks

1.

2.

3.

4.

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

The file associated with chnl-exp must be an open terminal-format file
or terminal. If chnl-exp is not specified, VAX BASIC takes data from
the controlling terminal.

Int-expl and int-exp2 define the upper bounds of the array being
implicitly created or the dimensions of an existing array.

If you are creating an array, int-expl and int-exp2 cannot exceed 10.

You cannot use the MAT INPUT statement on arrays of more than
two dimensions.

You cannot use the MAT INPUT statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

All arrays specified with the MAT INPUT statement must have lower
bounds of zero.

If you do not specify bounds, VAX BASIC creates the array and
dimensions it to (10,10).

4-200 Statements and Functions

MAT INPUT

5. If you do specify upper bounds, VAX BASIC creates the array with the
specified bounds. If the bounds exceed (10) or (10, 10), VAX BASIC
signals "Redimensioned array" (ERR=105).

6. To use the MAT INPUT statement with arrays larger than (10,10),
create the input and output arrays with the DIM statement.

7. When the array exists, the following rules apply:

• If you specify bounds, VAX BASIC redimensions the array to the
specified size. However, MAT INPUT cannot increase the total
number of array elements.

• If you do not specify bounds, VAX BASIC does not redimension
the array.

8. The MAT INPUT statement prompts with a question mark on termi
nals open on channel #0 only unless a SET NO PROMPT statement
has been executed. See the description of the SET PROMPT statement
for more information.

9. Use commas to separate data elements and a line terminator to end
the input of data. Use an ampersand(&) before the line terminator to
continue data over more than one line.

10. The MAT INPUT statement assigns values by row. For example, it
assigns values to all elements in row 1 before beginning row 2.

11. The MAT INPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM.

12. The MAT INPUT statement assigns the column number of the last
data element transferred into the array to the system variable NUM2.

13. If there are fewer elements in the input data than there are array
elements, VAX BASIC does not change the remaining array elements.

14. If there are more data elements in the input stream than there are
array elements, VAX BASIC ignores the excess.

15. Row zero and column zero are not changed.

16. For information about graphics input, see the MAT LOCATE and the
MAT GET statements in Programming with VAX BASIC Graphics.

Statements and Functions 4-201

MAT INPUT

Example

MAT INPUT XYZ(5,5)
MAT PRINT XYZ;

Output

? 1,2,3,4,5
1 2 3 4 5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

4-202 Statements and Functions

MAT LINPUT

MATLINPUT

Format

The MAT LINPUT statement receives string data from a terminal or
terminal-format file and assigns it to string array elements.

MAT LINPUT [#chnl-exp,] { str-array [(int-exp1 [, int-exp2])]), ...

Syntax Rules

1.

2.

3.

4.

Remarks

1.

2.

3.

4.

Chnl-exp is a numeric expression that specifies a channel number
associated with a file or terminal. It must be immediately preceded by
a number sign (#).

The file associated with chnl-exp must be an open terminal-format file
or terminal. If a channel is not specified, VAX BASIC takes data from
the controlling terminal.

Int-expl and int-exp2 define the upper bounds of the array being
implicitly created or the dimensions of an existing array.

If you are creating an array, int-expl and int-exp2 cannot exceed 10.

You cannot use the MAT LINPUT statement on arrays of more than
two dimensions.

You cannot use the MAT LINPUT statement on arrays of data type
other than STRING or on arrays named in a RECORD statement.

If you do not specify bounds, VAX BASIC creates the array and
dimensions it to (10,10).

If you do specify upper bounds, VAX BASIC creates the array with the
specified bounds. If the bounds exceed (10) or (10,10), VAX BASIC
signals "Redimensioned array" (ERR=105).

Statements and Functions 4-203

MAT LINPUT

Example

5. All arrays specified with the MAT LINPUT statement must have lower
bounds of zero.

6. To use MAT LINPUT with arrays larger than (10,10), create the input
and output arrays with the DIM statement.

7. When the array exists, the following rules apply:

• If you specify bounds, VAX BASIC redimensions the array to the
specified size. However, MAT LINPUT cannot increase the total
number of array elements.

• If you do not specify bounds, VAX BASIC does not redimension
the array.

8. For terminals open on channel zero only, the MAT LINPUT statement
prompts with a question mark (unless a SET NO PROMPT statement
has been executed) for each string array element, starting with element
(1,1). VAX BASIC assigns values to all elements of row 1 before
beginning row 2.

9. The MAT LINPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM.

10. The MAT LINPUT statement assigns the column number of the last
data element transferred into the array to the system variable NUM2.

11. Typing only a line terminator in response to the question mark prompt
causes VAX BASIC to assign a null string to that string array element.

12. MAT LINPUT does not change row and column zero.

DIM cus_rec$(3,3)
MAT LINPUT cus_rec$(2,2)
PRINT cus_rec$(1,1)

4-204 Statements and Functions

PRINT cus_rec$(1,2)
PRINT cus_rec$(2,1)
PRINT cus_rec$(2,2)

Output

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani
Lloyd
Kelly

MATLINPUT

Statements and Functions 4-205

MAT PRINT

MAT PRINT

Format

The MAT PRINT statement prints the contents of a one- or two
dimensional array on your terminal or assigns the value of each array
element to a record in a terminal-format file.

MAT PRINT [#chnl-exp,] (array [(int-exp 1 [, int-exp2])] [;] }. ..

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file or terminal. It must be immediately preceded by
a number sign (#).

2. The file associated with chnl-exp must be an open terminal-format file
or terminal. If you do not specify a channel, VAX BASIC takes data
from the controlling terminal.

3. Int-exp1 and int-exp2 define the upper bounds of the array being
implicitly created or the dimensions of an existing array.

4. The separator (comma or semicolon) determines the output format for
the array:

• If you use a comma, VAX BASIC prints each array element in a
new print zone and starts each row on a new line.

• If you use a semicolon, VAX BASIC separates each array element
with a space and starts each row on a new line.

• If you do not use a separator character, VAX BASIC prints each
array element on its own line.

4-206 Statements and Functions

Remarks

MAT PRINT

1. You cannot use the MAT PRINT statement on arrays of more than
two dimensions.

2. You cannot use the MAT PRINT statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

3. When you use the MAT PRINT statement to print more than one
array, each array name except the last must be followed with either
a comma or a semicolon. VAX BASIC prints a blank line between
arrays.

4. If the array does not exist, the following rules apply:

5. All arrays specified with the MAT PRINT statement must have lower
bounds of zero.

• If you do not specify bounds, VAX BASIC creates the array and
dimensions it to (10, 10).

• If you specify upper bounds, VAX BASIC creates the array with
the specified bounds. If the bounds exceed (10) or (10,10), VAX
BASIC prints the elements (10) or (10,10), and signals "Subscript
out of range" (ERR=SS).

6. When the array exists, the following rules apply:

• If the specified bounds are smaller than the maximum bounds of
a dimensioned array, VAX BASIC prints a subset of the array, but
does not redimension the array. For example, if you use the DIM
statement to dimension A(20,20), and then MAT PRINT A(2,2),
VAX BASIC prints elements (l, l), (1,2), (2, l), and (2,2) only;
array A(20,20) does not change.

• If you do not specify bounds, VAX BASIC prints the entire array.

7. The MAT PRINT statement does not print elements in row or column
zero.

8. The MAT PRINT statement cannot redimension an array.

Statements and Functions 4-207

MAT PRINT

Example

DIM cus_rec$(3,3)
MAT LINPUT cus_rec$(2,2)
MAT PRINT cus_rec$(2,2)

Output

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani
Lloyd
Kelly

4-208 Statements and Functions

MAT READ

MAT READ

The MAT READ statement assigns values from DATA statements to array
elements.

Format

MAT READ {array [(int-exp 1 [, int-exp2])]), ...

Syntax Rules

1.

2.

Remarks

1.

2.

3.

4.

5.

Int-expl and int-exp2 define the upper bounds of the array being
implicitly created or the dimensions of an existing array.

If you are creating an array, int-expl and int-exp2 cannot exceed 10.

If you do not specify bounds, VAX BASIC creates the array and
dimensions it to (10) or (10,10).

If you specify bounds, VAX BASIC creates the array with the specified
bounds. If the bounds exceed (10) or (10,10), VAX BASIC signals
"Redimensioned array" (ERR=lOS).

To read arrays larger than (10,10), create the array with the DIM
statement.

All arrays specified with the MAT statement must have lower bounds
of zero.

When the array exists, the following rules apply:

• If you specify upper bounds, VAX BASIC redimensions the array
to the specified size. However, MAT READ cannot increase the
total number of array elements.

• If you do not specify bounds, VAX BASIC does not redimension
the array.

Statements and Functions 4-209

MAT READ

Example

6. All the DATA statements must be in the same program unit as the
MAT READ statement.

7. The MAT READ statement assigns data items by row. For example, it
assigns data items to all elements in row 1 before beginning row 2.

8. The MAT READ statement does not read elements into row or column
zero.

9. The MAT READ statement assigns the row number of the last data
element transferred into the array to the system variable, NUM.

10. The MAT READ statement assigns the column number of the last data
element transferred into the array to the system variable, NUM2.

11. If you use MAT READ for an existing array without specifying bounds,
VAX BASIC does not redimension the array. If you use MAT READ
for an existing array and specify bounds, VAX BASIC redimensions
the array.

12. You cannot use the MAT READ statement on arrays of more than two
dimensions.

13. You cannot use the MAT READ statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

MAT READ A(3,3)
MAT READ B(3,3)
PRINT
PRINT "Matrix A"
PRINT
MAT PRINT A;
PRINT
PRINT "Matrix B"
PRINT
MAT PRINT B;
DATA 1,2,3,4,5,6

4-210 Statements and Functions

Output

Matrix A

1 2 3
4 6 6
0 0 0

Matrix B

0 0 0
0 0 0
0 0 0

MAT READ

Statements and Functions 4-211

MAX

MAX

Format

The MAX function compares the values of two or more numeric expres
sions and returns the highest value.

num-var = MAX (num-exp 1, num-exp2 [, num-exp3 , ...])

Syntax Rules

Remarks

Example

VAX BASIC allows you to specify up to eight numeric expressions.

1. If you specify values with different data types, VAX BASIC performs
data type conversions to maintain precision.

2. VAX BASIC returns a function result whose data type is compatible
with the values you supply.

DECLARE REAL John_grade, t
Bob_grade, t
Joe_grade, t
highest_grade

INPUT "John's grade";John_grade
INPUT "Bob's grade";Bob_grade
INPUT "Joe's grade";Joe_grade
highest_grade = MAX(John_grade, Bob_grade, Joe_grade)
PRINT "The highest grade is";highest_grade

4-212 Statements and Functions

Output

John's grade? 90
Bob's grade? 96
Joe's grade? 79
The highest grade is 96

MAX

Statements and Functions 4-213

MIDS

MIDS

Format

MID$ can be used either as a statement or as a function. The MID$
statement performs substring insertion into a string. The MID$ function
extracts a specified substring from a string expression.

MID$ statement

MID[$] (str-var, int-exp1 [, int-exp2]) = str-exp

MID$ function

str-var =MID[$] (str-exp, int-exp 1, int-exp2)

Syntax Rules

Remarks

1. Int-expl specifies the position of the substring's first character.

2. Int-exp2 specifies the length of the substring.

1. If int-expl is less than l, VAX BASIC assumes a starting character
position of 1.

2. If int-exp2 is less than or equal to zero, VAX BASIC assumes a length
of zero.

3. If you specify a floating-point expression for int-expl or int-exp2, VAX
BASIC truncates it to a LONG integer.

4. MID$ statement

• The MID$ statement replaces a specified portion of str-var with
str-exp.

• If int-expl is greater than the length of str-var, str-var remains
unchanged.

4-214 Statements and Functions

Examples

MIDS

• The length of str-var does not change regardless of the value of
int-exp2.

• If the optional int-exp2 is not specified, VAX BASIC assumes int
exp 2 to be the length of str-exp minimized by the length of str-var
minus int-exp1. For example:

A$ = "ABCDEFG"
MID$ (A$,3) = 11 12345678911

PRINT A$

Output

"AB12345"

• If int-exp2 is less than or equal to zero, str-var remains unchanged.

• If int-exp2 is greater than the length of str-var, VAX BASIC
assumes int-exp2 to be equal to the length of str-var.

• Int-exp2 is always minimized against the length of str-var minus
int-exp1.

5. MID$ function
• The MID$ function extracts a substring from str-exp and stores it

in str-var.
• If int-exp1 is greater than the length of str-exp, MID$ returns a

null string.

• If int-exp2 is greater than the length of str-exp, VAX BASIC returns
the string that begins at int-exp1 and includes all characters
remaining in str-exp.

• If int-exp2 is less than or equal to zero, MID$ returns a null string.

Example 1

!MID$ Function
DECLARE STRING old_string, new_string
old_string = 11 ABCD 11

new_string = MID$(old_string,1,3)
PRINT new_string

Output 1

ABC

Statements and Functions 4-215

MIDS

Example 2

!MID$ Statement
DECLARE STRING old_string, replace_string
old_string = "ABCD"
replace_string = "123"
PRINT old_string
MID$(old_string,1,3) = replace_string
PRINT old_string

Output 2

ABCD
123D

4-216 Statements and Functions

MIN

Format

MIN

The MIN function compares the values of two or more numeric expres
sions and returns the smallest value.

num-var =MIN (num-exp1, num-exp2 [, num-exp3 , ...])

Syntax Rules

Remarks

Example

VAX BASIC allows you to specify up to eight numeric expressions.

1. If you specify values with different data types, VAX BASIC performs
data type conversions to maintain precision.

2. VAX BASIC returns a function result whose data type is compatible
with the values you supply.

DECLARE REAL John_grade, ~
Bob_grade, ~

Joe_grade, ~

lowest_grade

Statements and Functions 4-217

MIN

INPUT "John's grade";John_grade
INPUT "Bob's grade";Bob_grade
INPUT "Joe's grade";Joe_grade
lowest_grade = MIN(John_grade, Bob_grade, Joe_grade)
PRINT "The lowest grade is";lowest_grade

Output

John's grade? 96
Bob's grade? 100
Joe's grade? 84
The lowest grade is 84

4-218 Statements and Functions

MOD

Format

MOD

The MOD function divides a numeric value by another numeric value and
returns the remainder.

num-var =MOD (num-exp1, num-exp2)

Syntax Rules

Remarks

Num-expl is divided by num-exp2.

1. If you specify values with different data types, VAX BASIC performs
data type conversions to maintain precision.

2. VAX BASIC returns a function result whose data type is compatible
with the values you supply.

3. The function result is either a positive or negative value, depending
on the value of the first numeric expression. For example, if the first
numeric expression is negative, then the function result will also be
negative.

Statements and Functions 4-219

MOO

Example

DECLARE REAL A,B
A = 500
B = MOD(A,70)
PRINT "The remainder equals";B

Output

The remainder equals 10

4-220 Statements and Functions

MOVE

Format

MOVE

The MOVE statement transfers data between a record buffer and a list of
variables.

MOVE { TO } #chnl-exp, move-item, ...
FROM

num-var
num-array ([,] ...)
str-var [=int-exp]

move-item: str-array ([,] ...) [=int-exp]

Syntax Rules

[data-type] FILL [(int-exp)] [=int-canst]
FILL% [(int-exp)]
FILL$ [(int-exp)] [=int-exp]

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign{#).

2. Move-item specifies the variable or array to which or from which data
is to be moved.

3. Parentheses indicate the number of dimensions in a numeric array.
The number of dimensions is equal to the number of commas plus
1. Empty parentheses indicate a one-dimensional array, one comma
indicates a two-dimensional array, and so on.

Statements and Functions 4-221

MOVE

Remarks

4. Str-var and str-array specify a fixed length string variable or array.
· Parentheses indicate the number of dimensions in a string array. The
number of dimensions is equal to the number of commas plus 1. You
can specify the number of bytes to be reserved for the variable or
array elements with the =int-exp clause. The default string length for a
MOVE FROM statement is 16. For a MOVE TO statement, the default
is the string's length.

5. The FILL, FILL%, and FILL$ keywords allow you to transfer fill
items of a specific data type. Table 4-2 shows FILL item formats,
representations, and storage requirements.

• If you specify a data type before the FILL keyword, the fill is of
that data type. If you do not specify a data type, the fill is of the
default data type. Data-type can be any VAX BASIC data type
keyword or a data type defined by a RECORD statement. Data
type keywords, size, range, and precision are listed in Table 1-2
in this manual.

• FILL items following a data type other than STRING cannot end
with a dollar sign. FILL items following a data type other than
BYTE, WORD, LONG or INTEGER, cannot end with a percent
sign.

• Int-exp specifies the number of FILL items to be moved.

• FILL% indicates integer fill. FILL$ indicates string fill. The =int
exp clause specifies the number of bytes to be moved for string
FILL items.

• In the applicable formats of FILL, (int-exp) represents a repeat
count, not an array subscript. FILL (n), for example, represents n
elements, not n + 1.

6. You cannot use an expression or function reference as a move-item.

1. Before a MOVE FROM statement can execute, the file associated with
chnl-exp must be open and there must be a record in the record buffer.

2. A MOVE statement neither transfers data to or from external devices,
nor invokes the VAX Record Management Services (RMS). Instead,
it transfers data between user areas. Thus, a record should first be
fetched with the GET statement before you use a MOVE FROM
statement, and a MOVE TO statement should be followed by a PUT
or UPDATE statement that writes the record to a file.

4-222 Statements and Functions

:xample

MOVE

3. MOVE FROM transfers data from the record buffer to the move-item.
4. MOVE TO transfers data from the move-item to the record buffer.

5. The MOVE statement does not affect the record buffer's size. If
a MOVE statement partially fills a buffer, the rest of the buffer is
unchanged. If there is more data in the variable list than in the buffer,
VAX BASIC signals "MOVE overflows buffer" (ERR=161).

6. Each MOVE statement to or from a channel transfers data starting at
the beginning of the buffer. For example:

MOVE FROM #1Y., IY.. AS = IY.

In this example, VAX BASIC assigns the first value in the record buffer
to 1%; the value of 1% is then used to determine the length of A$.

7. If a MOVE statement operates on an entire array, the following
conditions apply:

• VAX BASIC transfers elements of row and column zero (in con
trast to the MAT statements).

• The storage size of the array elements and the size of the array
determine the amount of data moved. A MOVE statement that
transfers data from the buffer to a longword integer array transfers
the first four bytes of data into the first element (for example,
(0,0)), the next four bytes of data into element (0,1), and so on.

8. If the MOVE TO statement specifies an explicit string length, the
following restrictions apply:

• If the string is equal to or longer than the explicit string length,
VAX BASIC moves only the specified number of characters into
the buffer.

• If the string is shorter than the explicit string length, VAX BASIC
moves the entire string and pads it with spaces to the specified
length.

9. VAX BASIC does not check the validity of data during the MOVE
operation.

MOVE FROM #4Y., RUNSY., HITSY., ERRORSY., RBIY.. BAT_AVERAGE

MOVE TO #9Y., FILLS = 10Y., AS = 10Y., BS = 30Y., CS = 2Y.

Statements and Functions 4-223

NAME ... AS

NAME ... AS

The NAME ... AS statement renames the specified file.

Format

NAME file-spec 1 AS file-spec2

Syntax Rules

Remarks

1. File-specl and file-spec2 must be string expressions.

2. There is no default file type in file-specl or file-spec2. If the file to be
renamed has a file type, file-specl must include both the file name and
the file type.

3. If you specify only a file name, VAX BASIC searches for a file with no
file type. If you do not specify a file type for file-spec2, VAX BASIC
names the file, but does not assign a file type.

4. You can include a directory name but not a device name. If you
specify a directory name with file-spec2, the file will be placed in the
specified directory. If you do not specify a directory name the default
is the current directory.

5. File version numbers are optional. VAX BASIC renames the highest
version of file-specl if you do not specify a version number.

1. If the file specified by file-specl does not exist, VAX BASIC signals
"Can't find file or account" (ERR=S).

2. If you use the NAME ... AS statement on an open file, VAX BASIC does
not rename the file until it is closed.

3. You cannot use the NAME ... AS statement to move a file between
devices. You can only change the directory, name, type, or version
number.

4-224 Statements and Functions

:xample

$Directory USER$$DISK:[BASIC_PROG]

Directory USER$$DISK:[BASIC_PROG]

FIRST_PROG.BAS;1

Total of 1 file.
$ BASIC

VAX BASIC V3.0

Ready

NAME 11 FIRST_PROG.BAS 11 AS 11 SECOND_PROG.BAS 11

Ready

EXIT

$Directory USER$$DISK:[BASIC_PROG]

Directory USER$$DISK: [BASIC_PROG]

SECOND_PROG.BAS;1

Total of 1 file.

NAME ... AS

Statements and Functions 4-225

NEXT

NEXT
The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop.

Format

NEXT [num-unsubs-var]

Syntax Rules

Remarks

Example

1. Num-unsubs-var is required in a FOR. .. NEXT loop and must corre
spond to the num-unsubs-var specified in the FOR statement.

2. Num-unsubs-var is not allowed in an UNTIL or WHILE loop.

3. Num-unsubs-var must be a numeric, unsubscripted variable.

Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE
statement or VAX BASIC signals an error.

PROGRAM calculating_pay
DECLARE INTEGER no_hours, &

SINGLE weekly_pay, minimum_wage
minimum_wage = 3.66
no_hours = 40
WHILE no_hours > 0

INPUT "Enter the number of hours you intend to work this week";no_hours
weekly_pay = no_hours * minimum_wage
PRINT "If you worked";no_hours;"hours, your pay would be";weekly_pay

NEXT
END PROGRAM

4-226 Statements and Functions

NEXT

Output

Enter the number of hours you intend to work this week? 35
If you worked 35 hours, your pay would be 127.75
Enter the number of hours you intend to work this week? 23
If you worked 23 hours, your pay would be 83.95
Enter the number of hours you intend to work this week? 0
If you worked 0 hours your pay would be 0

Statements and Functions 4-227

NOE CHO

NO ECHO
The NOECHO function disables echoing of input on a terminal.

Format

int-var= NOECHO (chnl-exp)

Syntax Rules

Remarks

Example

Chnl-exp must specify a terminal.

1. If you specify NOECHO, VAX BASIC accepts characters typed on the
terminal as input, but the characters do not echo on the terminal.

2. The NOECHO function is the complement of the ECHO function;
NOECHO disables the effect of ECHO and vice versa.

3. NOECHO always returns a value of zero.

DECLARE INTEGER Y, k
STRING pass_word

Y = NOECHO(O)
INPUT "Enter your password";pass_word
IF pass_word = "DARLENE" THEN PRINT "Confirmed"
Y = ECHO(O)

Output

Enter your password?
Confirmed

4-228 Statements and Functions

NOMARGIN

~OMARGIN

Format

The NOMARGIN statement removes the right margin limit set with the
MARGIN statement for a terminal or a terminal-format file.

NOMARGIN [#chnl-exp]

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number asso
ciated with a file. It must be immediately preceded by a number sign
{#).

1. When you specify NOMARGIN, the right margin is set to 132.

2. Chnl-exp, if specified, must be an open terminal-format file or a
terminal.

3. If you do not specify a channel, VAX BASIC sets the margin on the
controlling terminal to 132.

4. The NOMARGIN statement applies to the specified channel only
while the channel is open. If you close the channel and then reopen
it, VAX BASIC uses the default margin of 72.

Statements and functions 4-229

NOMARGIN

Example

OPEN "EMF.DAT" FOR OUTPUT AS #1
NOMARGIN #1

4-230 Statements and Functions

NUM

Format

NUM

The NUM function returns the row number of the last data element
transferred into an array by a MAT 1/0 statement.

int-var= NUM

Syntax Rules

Remarks

None.

1. NUM returns a value of zero if it is invoked before VAX BASIC has
executed any MAT 1/0 statements.

2. For a two-dimensional array, NUM returns an integer specifying the
row number of the last data element transferred into the array. For a
one-dimensional array, NUM returns the number of elements entered.

3. The value returned by the NUM function is an integer of the default
size.

Statements and Functions 4-231

NUM

Example

OPEN "STU_ACCT" FOR INPUT AS #2
DIM stu_rec$(3,3)
MAT INPUT #2, stu_rec$
PRINT "Row count =";NUM
PRINT "Column number =";NUM2

Output

Row count = 1
Column number = 1

4-232 Statements and Functions

NUM2

format

NUM2

The NUM2 function returns the column number of the last data element
transferred into an array by a MAT 1/0 statement.

int-var= NUM2

Syntax Rules

Remarks

None.

1. NUM2 returns a value of zero if it is invoked before VAX BASIC
has executed any MAT 1/0 statements or if the last array element
transferred was in a one-dimensional list.

2. The NUM2 function returns an integer specifying the column number
of the last data element transferred into an array.

3. The value returned by the NUM2 function is an integer of the default
size.

Statements and Functions 4-233

NUM2

Example

OPEN 11 STU_ACCT 11 FOR INPUT AS #2
DIM stu_rec$(3,3)
MAT INPUT #2, stu_rec$
PRINT "Row count =11 ;NUM
PRINT "Column number =";NUM2

Output

Row count = 1
Column number = 1

4-234 Statements and Functions

NUMS

Format

NUMS

The NUM$ function evaluates a numeric expression and returns a string
of characters in PRINT statement format, with leading and trailing spaces.

str-var = NUM$ (num-exp)

Syntax Rules

Remarks

None.

1. If num-exp is positive, the first character in the string expression is a
space. If num-exp is negative, the first character is a minus sign (-).

2. The NUM$ function does not include trailing zeros in the returned
string. If all digits to the right of the decimal point are zeros, NUM$
omits the decimal point as well.

3. When num-exp is a floating-point variable and has an integer portion
of six decimal digits or less (for example, 1234.567), VAX BASIC
rounds the number to six digits (1234.57). If num-exp has seven
decimal digits or more, VAX BASIC rounds the number to six digits
and prints it in E format.

4. When num-exp is between 0.1 and 1 and contains more than six digits,
VAX BASIC rounds it to six digits. When num-exp is smaller than 0.1,
VAX BASIC rounds it to six digits and prints it in E format.

5. If num-exp is a longword integer, the returned string can have up to
10 digits.

6. If num-exp is a DECIMAL value, the returned string can have up to 31
digits.

7. The last character in the returned string is a space.

Statements and Functions 4-235

NUMS

Example

DECLARE STRING number
number = NUM$(34.6600/31.8)
PRINT number

Output

1.08648

4-236 Statements and Functions

IUM1S

Format

NUM1S

The NUM1$ function changes a numeric expression to a numeric character
string without leading and trailing spaces and without rounding.

str-var = NUM1$ (num-exp)

Syntax Rules

Remarks

None.

1. The NUM1$ function returns a string consisting of numeric characters
and a decimal point that corresponds to the value of num-exp. Leading
and trailing spaces are not included in the returned string.

2. The NUM1$ function returns a maximum of

• 3 digits for BYTE integers

• 5 digits for SINGLE floating-point numbers and WORD integers

• 10 digits for LONG integers

• 16 digits for DOUBLE floating-point numbers

• 15 digits for GFLOAT floating-point numbers

• 33 digits for HFLOAT floating-point numbers

• 31 digits for DECIMAL numbers

3. The NUM1$ function does not produce E notation.

Statements and Functions 4-237

NUM1$

Example

DECLARE STRING number
number = NUM1$(PI/2)
PRINT number

Output

1.5708

4-238 Statements and Functions

ON ERROR GO BACK

ON ERROR GO BACK

Format

Under certain conditions, an ON ERROR GO BACK statement executed in
a subprogram or DEF function transfers control to the calling program.

NOTE

The ON ERROR GO BACK statement is supported for com
patibility with other DIGITAL BASICs. For new program
development, DIGITAL recommends that you use WHEN
blocks.

{ ONERROR } GO BACK
ON ERROR

Syntax Rules

Remarks

The ON ERROR GO BACK statement is illegal inside a protected region
or within an attached or detached handler. Use the EXIT HANDLER
statement instead.

1. If there is no error outstanding, execution of an ON ERROR GO BACK
statement causes subsequent errors to return control to the calling
program's error handler.

2. If there is an error outstanding, execution of an ON ERROR GO BACK
statement immediately transfers control to the calling program's error
handler.

3. By default, DEF functions and subprograms re-signal errors to the
calling program.

Statements and Functions 4-239

ON ERROR GO BACK

Example

4. The ON ERROR GO BACK statement remains in effect until the
program unit completes execution, until VAX BASIC executes another
ON ERROR statement, or until VAX BASIC enters a protected region.

5. An ON ERROR GO BACK statement executed in the main program is
equivalent to an ON ERROR GOTO 0 statement.

6. If a main program calls a subprogram named SUBl, and SUBl calls
the subprogram named SUB2, an ON ERROR GO BACK statement
executed in SUB2 transfers control to SUBl's error handler when an
error occurs in SUB2. If SUBl also has executed an ON ERROR GO
BACK statement, VAX BASIC transfers control to the main program's
error handling routine.

7. For current program development, see the WHEN ERROR statement.

8. DIGITAL does not recommend that you mix ON ERROR state
ments with protected regions in the same program unit. For more
information, see the VAX BASIC User Manual.

IF ERR = 11
THEN

RESUME err_hand
ELSE

ON ERROR GO BACK
END IF

4-240 Statements and Functions

ON ERROR GOTO

ON ERROR GOTO

Format

The ON ERROR GOTO statement transfers program control to a specified
line or label in the current program unit when an error occurs under
certain conditions.

NOTE

The ON ERROR GOTO statement is supported for compatibility
with other DIGITAL BASICs. For new program development,
DIGITAL recommends that you use WHEN blocks.

{ ONERROR } { GO TO } target
ON ERROR GOTO

Syntax Rules

1. You cannot specify an ON ERROR GOTO statement within a pro
tected region or handler.

2. Target must be a valid VAX BASIC line number or label and must exist
in the same program unit as the ON ERROR GOTO statement.

3. If an ON ERROR GOTO statement is in a DEF function, target must
also be in that function definition.

Statements and Functions 4-241

ON ERROR GOTO

Remarks

Example

1. VAX BASIC transfers program control to a specified line number or
label under two conditions:

• If an error does not occur within the protected region of WHEN
block.

• If an error occurs within the protected region of a WHEN block
and was propagated by the handler associated with the WHEN
block.

2. Execution of an ON ERROR GOTO statement causes subsequent
errors to transfer control to the specified target.

3. The ON ERROR GOTO statement remains in effect until the program
unit completes execution or until VAX BASIC executes another ON
ERROR statement.

4. VAX BASIC does not allow recursive error handling. If a second error
occurs during execution of an error-handling routine, control passes to
the VAX BASIC error handler and the program stops executing.

5. For current program development, see the WHEN ERROR statement.

6. DIGITAL does not recommend that you mix ON ERROR statements
with protected regions within the same program unit. For more
information, see the VAX BASIC User Manual.

SUB LIST (STRING A)
DECLARE STRING B
ON ERROR GOTO err_block
OPEN A FOR INPUT AS FILE #1
Input_loop:

LINPUT #1, B

4-242 Statements and Functions

PRINT B

GOTO Input_loop
err_block:

IF (ERR=11Y.)
THEN

CLOSE #1'X
RESUME done

ELSE
ON ERROR GOTO 0

END IF
done:
END SUB

ON ERROR GOTO

Statements and Functions 4-243

ON ERROR GOTO 0

ON ERROR GOTO 0

Format

The ON ERROR GOTO 0 statement disables ON ERROR error handling
and passes control to the VAX BASIC error handler when an error occurs.

NOTE

The ON ERROR GOTO 0 statement is supported for com
patibility with other DIGITAL BASICs. For new program
development, DIGITAL recommends that you use WHEN
blocks.

{ ON ERROR } { GO TO }
ONERROR GOTO O

Syntax Rules

Remarks

VAX BASIC does not allow you to specify an ON ERROR GOTO 0
statement within an attached or detached handler or within a protected
region.

1. If an error is outstanding, execution of an ON ERROR GOTO 0
statement immediately transfers control to the VAX BASIC error
handler. The VAX BASIC error handler will report the error and exit
the program.

2. If there is no error outstanding, execution of an ON ERROR GOTO
0 statement causes subsequent errors to transfer control to the VAX
BASIC error handler.

4-244 Statements and Functions

Example

ON ERROR GOTO 0

3. When an ON ERROR GOTO 0 statement is executed, control is
transferred to the VAX BASIC error handler if an error did not occur
within the protected region of a WHEN block.

4. If an error occurs within the protected region of a WHEN block and
was propagated by the handler associated with the WHEN block, VAX
BASIC transfers control to the specified line number or label contained
in the subprogram or DEF.

5. For current program development, see the WHEN ERROR statement.

6. DIGITAL does not recommend that you mix ON ERROR statements
with attached or detached handlers within the same program unit. For
more information, see the VAX BASIC User Manual.

ON ERROR GOTO err_routine
FOR I = 1% TO 10%

PRINT "Please type a number"
INPUT A

NEXT I
err_routine:
IF ERR = 50

THEN
RESUME

ELSE
ON ERROR GOTO 0

END IF

Output

Please type a number
? ICTRL/ZI

Y.BAS-F-ILLUSADEV, Illegal usage for device
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT: [TUTTI]SYSINPUT.DAT;

at user PC 00000632
-RMS-F-DEV, error in device name or inappropriate device type for operation
-BAS-I-FROLINMOD, from line 10 in module BADUSER

Statements and Functions 4-245

ON ... GOSUB

ON ... GOSUB

Format

The ON ... GOSUB statement transfers program control to one of several
subroutines, depending on the value of a control expression.

ON int-exp GOSUB target, ... [OTHERWISE target]

Syntax Rules

Remarks

1. Int-exp determines which target VAX BASIC selects as the GOSUB
argument. If int-exp equals 1, VAX BASIC selects the first target. If
int-exp equals 2, VAX BASIC selects the second target, and so on.

2. Target must be a valid VAX BASIC line number or label and must exist
in the current program unit.

1. Control cannot be transferred into a statement block (such as
FOR ... NEXT, UNTIL.NEXT, WHILE ... NEXT, DEF ... END DEF,
SELECT ... END SELECT, WHEN ... END WHEN, or HANDLER. .. END
HANDLER).

2. If there is an OTHERWISE clause, and if int-exp is less than 1 or
greater than the number of targets in the list, VAX BASIC selects the
target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than 1 or
greater than the number of targets in the list, VAX BASIC signals "ON
statement out of range" (ERR=58).

4. If a target specifies a nonexecutable statement, VAX BASIC transfers
control to the first executable statement that lexically follows the
target.

5. You can only use the ON ... GOSUB statement inside a handler if all
the targets are contained within the handler.

4-246 Statements and Functions

Example

ON ... GOSUB

6. If you fail to handle an exception that occurs while an ON ... GOSUB
statement in the body of a subroutine is executing, the exception is
handled by the default error handler. The exception is not handled
by any WHEN block surrounding the ON ... GOSUB statement that
invoked the subroutine.

7. You can specify the ON ... GOSUB statement inside a WHEN block
if the ON ... GOSUB target is in the same protected region, an outer
protected region, or in a non-protected region.

8. You cannot specify an ON ... GOSUB statement inside a WHEN block
if the ON ... GOSUB target already resides in another protected region
that does not contain the most current protected region.

9. The target cannot be more than 32767 bytes away from the
ON ... GOSUB statement.

100 INPUT "Please enter 1, 2 or 3"; A%
ON A% GOSUB 1000, 2000, 3000, OTHERWISE err_routine
GOTO done

1000 PRINT "That was a 1"
RETURN

2000 PRINT "That was a 2"
RETURN

3000 PRINT "That was a 3"
RETURN

err_routine:
PRINT "Out of range:

RETURN

done:
END PROGRAM

July 1988 Statements and Functions 4-24 7

ON ... GOTO

ON ... GOTO

Format

The ON ... GOTO statement transfers program control to one of several
lines or targets, depending on the value of a control expression.

ON int-exp { GO TO } target, ... [OTHERWISE target]
GOTO

Syntax Rules

Remarks

1. Int-exp determines which target VAX BASIC selects as the GOTO
argument. If int-exp equals 1, VAX BASIC selects the first target. If
int-exp equals 2, VAX BASIC selects the second target, and so on.

2. Target must be a valid VAX BASIC line number or a label and must
exist in the current program unit.

1. Control cannot be transferred into a statement block (such as
FOR. .. NEXT, UNTIL.NEXT, WHILE ... NEXT, DEF ... END DEF,
SELECT...END SELECT, WHEN ... END WHEN, or HANDLER ... END
HANDLER).

2. If there is an OTHERWISE clause, and if int-exp is less than one or
greater than the number of targets in the list, VAX BASIC transfers
control to the target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than 1 or
greater than the number of line numbers in the list, VAX BASIC
signals "ON statement out of range" (ERR=58).

4. If a target specifies a nonexecutable statement, VAX BASIC transfers
control to the first executable statement that lexically follows the
target.

4-248 Statements and Functions

Example

ON ... GOTO

5. You can only use the ON ... GOTO statement inside a handler if all the
targets are contained within the handler.

6. You can specify the ON ... GOTO statement inside a WHEN block if the
ON ... GOTO target is in the same protected region, an outer protected
region, or in a non-protected region.

7. You cannot specify an ON ... GOTO statement inside a WHEN block if
the ON ... GOTO target already resides in another protected region that
does not contain the most current protected region.

ON INDEX% GOTO 700,800,900 OTHERWISE finish

finish:
END PROGRAM

Statements and Functions 4-249

OPEN

OPEN

Format

The OPEN statement opens a file for processing. It transfers user-specified
file characteristics to VAX Record Management Services (RMS) and verifies
the results.

OPEN file-spec 1 [FOR INPUT] AS [FILE] [#] chnl-exp
FOR OUTPUT

[, open-clause]. ..

open-clause:

APPEND
READ

ACCESS WRITE
MODIFY
SCRATCH

ALLOW I =~:~ l] WRITE
MODIFY

[BUFFER int-exp4]

[CONTIGUOUS 1

[DEFAULTNAME file-spec2]

[EXTENDSIZE int-exp5]

[FILESIZE int-exp2]

4-250 Statements and Functions

[MAP map-name]

!
INDEXED
RELATIVE

[ORGANIZATION] SEQUENTIAL
UNDEFINED
VIRTUAL

[RECORDSIZE int-exp 1]

[
RECORDTYPE { ~~JTRAN }

NONE
ANY

[TEMPORARY l

[UNLOCK EXPLICIT l

[USEROPEN tune-name l

[WINDOWSIZE int-exp3]

Sequential Files Only

[BLOCKSIZE int-expB]

[NOREWIND l

[NOSPAN l

[SPAN l
Relative and Indexed Files Only

[BUCKETSIZE int-exp9]

July 1988

OPEN

I [STREAM l
VARIABLE
FIXED

Statements and Functions 4-251

OPEN

Indexed Files Only

[

ALTERNATE [KEV] key-clause [DUPLICATES] [CHANGES] l
[ASCENDING]

DESCENDING

[CONNECT chnl-exp2]

[PRIMARY [KEY] key-clause [DUPLICATES] [~~~~~~~~:G]]

key-clause: l
int-unsubs-var l
decimal-unsubs-var
str-unsubs-var
(str-unsubs-var1 , ... str-unsubs-varB)
quad-record-group

Syntax Rules

1. File-specl specifies the file to be opened and associated with chnl-exp.
It can be any valid string expression and must be a valid VMS file
specification. VAX BASIC passes these values to RMS without editing,
alteration, or validity checks.

VAX BASIC does not supply any default file specifications, unless you
include the DEFAULTNAME clause in the OPEN statement.

2. The FOR clause determines how VAX BASIC opens a file.

• If you open a file with FOR INPUT, the file must exist or VAX
BASIC signals an error.

• If you open a file with FOR OUTPUT, VAX BASIC creates the file
if it does not exist. If the file does exist, VAX BASIC creates a new
version of the file.

• If you do not specify either FOR INPUT or FOR OUTPUT, VAX
BASIC tries to open an existing file. If there is no such file, VAX
BASIC creates one.

4-252 Statements and Functions July 1988

OPEN

3. Chnl-exp is a numeric expression that specifies a channel number to
be associated with the file being opened. It can be preceded by an
optional number sign (#) and must be in the range of 1 through 119.
Note that channels 100 through 119 are usually reserved for allocation
by the RTL routines, LIB$GET_LUN and LIB$FREE_LUN.

Statements and Functions 4-252.1

Remarks

OPEN

4. A statement that accesses a file cannot execute until you open that file
and associate it with a channel.

1. The OPEN statement does not retrieve records.

2. Channel #0, the terminal, is always open. If you try to open channel
zero, VAX BASIC signals the error "Illegal I/O channel" (ERR=46).

3. If a program opens a file on a channel already associated with an open
file, VAX BASIC closes the previously opened file and opens the new
one.

4. The ACCESS clause determines how the program can use the file.

• ACCESS READ allows only FIND, GET, or other input statements
on the file. The OPEN statement cannot create a file if the
ACCESS READ clause is specified.

• ACCESS WRITE allows only PUT, UPDATE, or other output
statements on the file.

• ACCESS MODIFY allows any I/O statement except SCRATCH on
the file. ACCESS MODIFY is the default.

• ACCESS SCRATCH allows any I/O statement valid for a sequen
tial or terminal-format file.

• ACCESS APPEND is the same as ACCESS WRITE for sequential
files, except that VAX BASIC positions the file pointer after the last
record when it opens the file. You cannot use ACCESS APPEND
on relative or indexed files.

5. The ALLOW clause can be used in the OPEN statement to specify file
sharing of relative, indexed, sequential, and virtual files.

• ALLOW NONE lets no other users access the file. This is the
default if any access other than READ is specified. Note that you
must have write access to the file in order to specify ALLOW
NONE.

• ALLOW READ lets other users have read access to the file.

• ALLOW WRITE lets other users have write access to the file.

• ALLOW MODIFY lets other users have unlimited access to the
file.

Statements and Functions 4-253

OPEN

6. The BLOCKSIZE clause specifies the physical block size of magnetic
tape files. The BLOCKSIZE clause can be used for magnetic tape files
only.

• The value of int-expB is the number of records in a block.
Therefore, the block size in bytes is the product of the
RECORDSIZE and the BLOCKSIZE value.

• The default blocksize is one record.

7. The BUCKETSIZE clause applies only to relative and indexed files. It
specifies the size of an RMS bucket in terms of the number of records
one bucket should hold.

• The value of int-exp9 is the number of records in a bucket.

• The default is one record.

8. The BUFFER clause can be used with all file organizations except
UNDEFINED.

• For RELATIVE and INDEXED files, int-exp4 specifies the number
of device or file buffers RMS uses for file processing.

• For SEQUENTIAL files, int-exp4 specifies the size of the buffer; for
example, BUFFER 8 for a SEQUENTIAL file sets the buffer size to
eight 512-byte blocks.

• DIGITAL recommends that you accept the system defaults or
change the defaults with the DCL SET RMS_DEFAULT command.

9. The CONTIGUOUS clause causes RMS to try to create the file as
a contiguous-best-try sequence of disk blocks. The CONTIGUOUS
clause does not affect existing files or nondisk files.

The CONTIGUOUS clause does not guarantee that the file will occupy
contiguous disk space. If RMS can locate the file in a contiguous area,
it will do so. However, if there is not enough free contiguous space
for a file, RMS allocates the largest possible contiguous space and does
not signal an error. See the VAX Record Management Services Reference
Manual for more information on contiguous disk allocation.

10. The CONNECT clause permits multiple record streams to be con
nected to the file.

• The CONNECT clause must specify an INDEXED file already
opened on chnl-exp2 with the primary OPEN statement.

• You cannot connect to a connected channel; you can connect only
to the initially opened channel.

4-254 Statements and Functions

OPEN

• You can connect more than one stream to an open channel.

• All clauses of the two files to be connected must be identical
except MAP, CONNECT, and USEROPEN.

• Do not use the CONNECT clause when accessing files over
DECnet or VAX BASIC will signal the error "Cannot open file"
(ERR=l62).

11. The DEFAULTNAME clause lets you supply a default file specifica
tion. If file-spec1 is not a complete file specification, file-spec2 in the
DEFAULTNAME clause supplies the missing parts. For example:

10 INPUT 'FILE NAME' ;fnam$
20 OPEN fnam$ FOR INPUT AS FILE #1%, &

DEFAULTNAME 11 USER$$DISK:. DAT"

If you type "ABC" for the file name, VAX BASIC tries to open
USER$$DISK:[]ABC.DAT.

12. The EXTENDSIZE clause lets you specify the increment by which
RMS extends a file after its initial allocation is filled. The value of
int-exp5 is in 512-byte disk blocks. The EXTENDSIZE clause has no
effect on an existing file.

13. The FILESIZE clause lets you pre-extend a new file to a specified
size.

• The value of int-exp2 is the initial allocation of disk blocks.

• The FILESIZE clause has no effect on an existing file.

14. The MAP clause specifies that a previously declared map is associated
with the file's record buffer. The MAP clause determines the record
buffer's address and length unless overridden by the RECORDSIZE
clause.

• The size of the specified map must be as large or larger than the
longest record length or maximum record size. For files with a
fixed record size, the specified map must match exactly.

• The size of the largest MAP with the same map name in the
current program unit becomes the file's record size if the OPEN
statement does not include a RECORDSIZE clause.

• DIGITAL recommends that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement. However, if you
do use both the MAP and RECORDSIZE clauses in an OPEN
statement, the following rules apply:

July 1988

The RECORDSIZE clause overrides the record size set by the
MAP clause.

Statements and Functions 4-255

OPEN

- The map must be as large or larger than the specified
RECORDSIZE.

• If there is no MAP clause, the record buffer space that VAX BASIC
allocates is not directly accessible. Therefore, MOVE statements
are needed to access data in the record buffer.

• You must have a MAP clause when creating an indexed file; you
cannot use KEY clauses without MAP statements because keys
serve as offsets into the buffer.

• The size of the specified map cannot exceed 32767 bytes.

15. The NOREWIND clause controls tape positioning on magnetic tape
files. The NOREWIND clause can be used for magnetic tape files only.

• If you specify NOREWIND, the OPEN statement does not position
the tape at the beginning. Your program can search for records
from the current position.

• If you do not specify either ACCESS APPEND or NOREWIND,
the OPEN statement positions the tape at its beginning and then
searches for the file.

16. The NOSP AN clause specifies that sequential records cannot cross
block boundaries.

• SP AN specifies that records can cross block boundaries. SP AN is
the default.

• The NOSP AN clause does not affect nondisk files.

17. The ORGANIZATION clause specifies the file organization. When
present, it must precede all other clauses. When you specify an
ORGANIZATION clause, you must also specify one of the fol
lowing organization options: VIRTUAL, UNDEFINED, INDEXED,
SEQUENTIAL or RELATIVE. Specify ORGANIZATION UNDEFINED
if you do not know the actual organization of the file. If you do not
specify an ORGANIZATION clause VAX BASIC opens a terminal
format file by default.

• When you specify ORGANIZATION VIRTUAL, you create a
sequentially fixed file with a record size of 512 (or a multiple of
512). You can then access the file with the FIND, GET, PUT,
or UPDATE statements or through one or more virtual arrays.
VAX BASIC allows you to overwrite existing records in a file
not containing virtual arrays and opened as ORGANIZATION
VIRTUAL by using the PUT statement with a RECORD clause.
All other organizations require the UPDATE statement to change
an existing record. DIGITAL recommends that you also use the

4-256 Statements and Functions July 1988

•

•

OPEN

UPDATE statement to change existing records in VIRTUAL files
that do not contain virtual arrays.

When you do not know the organization of a file, you can open
a file for input and specify ORGANIZATION UNDEFINED.
You can then use the FSP$ function or a USEROPEN routine
to determine the attributes of the file. You will usually want to
specify the RECORDTYPE ANY clause with the ORGANIZATION
UNDEFINED clause. The combination of these two clauses should
allow you to access any file sequentially.

When you specify ORGANIZATION INDEXED, you create an
indexed file whose data records are sorted in ascending or de
scending order according to a primary index key value.

The index keys you specify determine the order in which
records are stored.

Index keys must be variables declared in a MAP statement
associated with the OPEN statement for the file.

VAX BASIC allows you to specify an indexed file as either
variable or fixed length.

• When you specify ORGANIZATION SEQUENTIAL, you create a
file that stores records in the order that they are written.

Sequential files can contain records of any valid VAX BASIC
record format: fixed-length, variable-length, or stream.

If you open an existing file using stream as a record format
option, the file must be one of the following stream record
formats defined by RMS:

• STREAM records can be delimited by any special
character.

• STREAM_LF must be delimited by a line-feed character.

• STREAM_CR must be delimited by a carriage return.

If the file is not one of these stream formats, VAX BASIC sig
nals the error "RECATTNOT, record attributes not matched".

• When you specify ORGANIZATION RELATIVE, you create a file
that contains a series of records that are numbered consecutively.
VAX BASIC allows you to specify either fixed-length or variable
length records.

July 1988 Statements and Functions 4-257

OPEN

• If you omit the ORGANIZATION clause entirely, a terminal-
format file is opened.

Terminal-format files are implemented as RMS sequential
variable files and store ASCII characters in variable-length
records.

Carriage control is performed by the operating system; the
record does not contain carriage returns or line feeds.

You use essentially the same syntax to access terminal-format
files as when reading from or writing to the terminal (INPUT
and PRINT).

18. The PRIMARY KEY clause lets you specify an indexed file's key.
You must specify a primary key when opening an indexed file. The
ALTERNATE KEY clause lets you specify up to 254 alternate keys.
The ALTERNATE KEY clause is optional.

• RMS creates one index list for each primary and alternate key you
specify. These indexes are part of the file and contain pointers to
the records. Each key you specify corresponds to a sorted list of
record pointers.

• You can specify each key as ASCENDING or DESCENDING;
ASCENDING is the default. In an ASCENDING key, lower
key values occur toward the beginning of the index. In a
DESCENDING key, higher key values occur toward the beginning
of the index.

• The keys you specify determine the order in which records in the
file are stored. All keys must be variables declared in the file's
corresponding MAP statement. The position of the key in the
MAP statement determines its position in the record. The data
type and size of the key are as declared in the MAP statement.

• A key can be an unsubscripted string, a WORD, LONG, or packed
decimal variable, or a record or group which is exactly eight bytes
long.

• You can also create a segmented index key for string keys by
separating the string variable names with commas and enclosing
them in parentheses. You can then reference a segment of the
specified key by referencing one of the string variables instead of
the entire key. A string key can have up to eight segments.

• The order of appearance of keys determines key numbers. The
primary key, which must appear first, is key #0. The first alternate
key is #1, and so on.

4-258 Statements and Functions July 1988

OPEN

• DUPLICATES in the PRIMARY and ALTERNATE key clauses
specifies that two or more records can have the same key value. If
you do not specify DUPLICATES, the key value must be unique
in all records.

• CHANGES in the ALTERNATE KEY clause specifies that you can
change the value of an alternate key when updating records. If
you do not specify CHANGES when creating the file, you cannot
change the value of a key. You cannot specify CHANGES with
the PRIMARY KEY clause.

• KEY clauses are optional for existing files. If you do specify a key,
it must match a key in the file.

19. The RECORDTYPE clause specifies the file's record attributes.

• LIST specifies implied carriage control, <CR> . This is the
default for all file organizations except VIRTUAL.

Statements and Functions 4-258.1

OPEN

• FORTRAN specifies a control character in the record's first byte.

• NONE specifies no attributes. This is the default for VIRTUAL
files.

If you open a terminal-format file with RECORDTYPE NONE, you
must explicitly insert carriage control characters into the records
your program writes to the file.

• ANY specifies a match with any file attributes when opening an
existing file. If you create a new file, ANY is treated as LIST for
all organizations except VIRTUAL. For VIRTUAL, it is treated as
NONE.

20. The RECORDSIZE clause specifies the file's record size. Note that
there are restrictions on the maximum record size allowed for various
file and record formats. See the VAX Record Management Services
Reference Manual for more information.

• For fixed-length records, int-exp1 specifies the size of all records.

• For variable-length records, int-exp1 specifies the size of the largest
record.

• DIGITAL recommends that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement. However, if you
do use both the MAP and RECORDSIZE clauses in an OPEN
statement, the following rules apply:

The RECORDSIZE clause overrides the record size set by the
MAP clause.

The map must be as large or larger than the specified
RECORDSIZE.

• If you specify a MAP clause but no RECORDSIZE clause, the
record size is equal to the map size.

• If there is no MAP clause, the RECORDSIZE clause determines
the record size.

• When creating a relative or indexed file, you must specify either a
MAP or RECORDSIZE clause. Otherwise, VAX BASIC signals an
error.

• For fixed files, the record size must match exactly.

• If you do not specify a RECORDSIZE clause when opening an
existing file, VAX BASIC retrieves the record size value from the
file.

Statements and Functions 4-259

OPEN

• When you print to a terminal-format file, you must supply a
record size if the margin is to exceed 72 characters. For example,
if you want to print a 132-character line, specify RECORDSIZE
132 or use the MARGIN and NOMARGIN statements.

• When creating SEQUENTIAL files, VAX BASIC supplies a default
record size of 132.

• The record size is always 512 for VIRTUAL files, unless you
specify a RECORDSIZE.

21. The TEMPORARY clause causes VAX BASIC to delete the output file
as soon as the program closes it.

22. The UNLOCK EXPLICIT clause allows you to retain locks on records
until they are explicitly unlocked.

• The type of lock you impose on a record with a GET or FIND
statement remains in effect until you explicitly unlock the record
or file with a FREE or UNLOCK statement or until you close the
file.

• If you specify UNLOCK EXPLICIT, and do not specify an ALLOW
clause with a GET or FIND statement, VAX BASIC imposes
the ALLOW NONE lock by default and the next GET or FIND
operation does not unlock the previously locked record.

• You must open a file with UNLOCK EXPLICIT before you can
explicitly lock records with the ALLOW clause on GET and FIND
statements. See the sections on GET and FIND in this manual
and the VAX BASIC User Manual for more information on explicit
record locking and unlocking.

23. The USEROPEN clause lets you open a file with your own
FUNCTION subprogram.

• Fune-name must be a separately compiled FUNCTION subprogram
and must conform to FUNCTION statement rules for naming
subprograms.

• You do not need to declare the useropen routine as an external
function.

• VAX BASIC calls the user program after it fills the FAB (File Access
Block), the RAB (Record Access Block), and the XABs (Extended
Attribute Blocks). The subprogram must issue the appropriate
RMS calls, including $OPEN and $CONNECT, and return the
RMS status as the value of the function. See the VAX BASIC User
Manual for more information on the USEROPEN routine.

4-260 Statements and Functions

Examples

OPEN

NOTE

Future releases of the Run-Time Library may alter the
use of some VAX RMS fields. Therefore, you may have
to alter your USEROPEN procedures accordingly.

24. The WINDOWSIZE clause followed by int-exp3 lets you specify the
number of block retrieval pointers you want to maintain in memory
for the file.

Retrieval pointers are associated with the file header and point to
contiguous blocks on disk.

• By keeping retrieval pointers in memory you can reduce the I/O
associated with locating a record, as the operating system does not
have to access the file header for pointers as frequently.

• The number of retrieval pointers in memory at any one time is
determined by the system default or by the WINDOWSIZE clause.

• The default number of retrieval pointers on VAX/VMS systems
is 7.

• A value of zero specifies the default number of retrieval pointers.
A value of -1 means to map the entire file, if possible. Values
from -128 through -2 are reserved.

Example 1

OPEN "FILE.DAT" AS FILE #4

Example 2

OPEN "INPUT.DAT" FOR INPUT AS FILE #4,
ORGANIZATION SEQUENTIAL FIXED,
RECORDSIZE 200,
MAP ABC,
ALLOW MODIFY, ACCESS MODIFY

OPEN Newfile$ FOR OUTPUT AS FILE #3,
INDEXED VARIABLE,

July 1988

MAP Emp_name,
DEFAULTNAME "USER$$DISK:. DAT",
PRIMARY KEY Last$ DUPLICATES,
ALTERNATE KEY First$ CHANGES

&
&
&
&

&
&
&
&
&

Statements and Functions 4-261

OPEN

MAP (SEGKEY) STRING last_name = 15,
MI = 1, first_name = 15

&

OPEN "NAMES.IND" FOR OUTPUT AS FILE #1, &
ORGANIZATION INDEXED, &
PRIMARY KEY (last_name, first_name, MI), &
MAP SEGKEY

Example 3

MAP (OWNERKEYS) STRING owner_id = 6, dog_reg_no = 7, &
last_name = 25, first_name = 20

OPEN "OWNERS. IND" FOR OUTPUT AS FILE #1, &
ORGANIZATION INDEXED, &
PRIMARY KEY (owner_id), &
ALTERNATE KEY (last_name) DUPLICATES CHANGES, &
ALTERNATE (dog_reg_no) DESCENDING, &
MAP OWNERKEYS

The MAP statement describes the three string variables used as index keys
in the file OWNERS.IND. The OPEN statement declares an indexed file
with two alternate keys in addition to the primary key. The alternate key
dog_reg_no is a DESCENDING key; the other keys are ASCENDING by
default.

4-262 Statements and Functions July 1988

OPTION

Format

OPTION

The OPTION statement allows you to set compilation qualifiers such as
default data type, size, and scale factor. You can also set compilation
conditions such as severity of run-time errors to handle, constant type
checking, subscript checking, overflow checking, decimal rounding, and
setup in a source program. The options you set affect only the program
module in which the OPTION statement occurs.

OPTION option-clause, ...

option-clause:

angle-clause:

handle-clause:

ANGLE=angle-clause
HAN DLE=handle-clause
CONSTANT TYPE =canst-type-clause
OLD VERSION = COD
TYPE= type-clause
S IZE=size-clause
SCALE=int-const

{ ACTIVE } = active-clause
INACTIVE

{
DEGREES }
RADIANS

BASIC
SEVERE
ERROR
WARNING
INFORMATIONAL

Statements and Functions 4-263

OPTION

{ REAL } canst-type-clause. INTEGER
DECIMAL

! INTEGER l
type-clause: REAL

EXPLICIT
DECIMAL

size-clause: { size-item }
(size-item, ...)

{ INTEGER int-clause

} size-item: REAL real-clause
DECIMAL(d,s)

{8YTE } int-clause: WORD
LONG

rNGLE l real-clause: DOUBLE
GFLOAT
HFLOAT

active-clause: { active-item }
(active-item, ...)

4-264 Statements and Functions

OPTION

active-item:

INTEGER OVERFLOW
DECIMAL OVERFLOW
SETUP
DECIMAL ROUNDING
SUBSCRIPT CHECKING

Syntax Rules

Remarks

None.

1. Option-clause specifies the compilation qualifiers to be in effect for
the program module.

2. Angle-clause specifies whether angles are to be evaluated in radians
or in degrees. If you do not specify an angle-clause, VAX BASIC uses
radians as the default.

3. Handle-clause specifies the severity level of the errors which are to be
handled by an error handler.

• If you do not specify an OPTION HANDLE statement, VAX
BASIC uses OPTION HANDLE = BASIC as the default. Only
those errors that are trappable and that map onto a VAX BASIC
ERR value will transfer control to the current error handler. See
the VAX BASIC User Manual for a list of VAX BASIC run-time
errors.

• If you specify a severity level, all trappable and non-trappable
errors of the specified severity or less transfer control to the cur
rent error handler. This includes non-BASIC errors. For example,
OPTION HANDLE = ERROR implies ERROR, WARNING, and
INFORMATIONAL errors but not SEVERE errors.

• If you specify OPTION HANDLE= SEVERE, you can handle
fatal errors. However, in most cases, a fatal error indicates that
the program environment is badly corrupted and you should not
continue program execution.

Statements and Functions 4-265

OPTION

4. Const-type-clause specifies the data type for all constants that do not
end in a data type suffix or are not in explicit literal notation with a
data type supplied.

5. Type-clause sets the default data type for variables that have not
been explicitly declared and for constants if no constant type clause is
specified. You can specify only one type-clause in a program module.

6. Size-clause sets the default data subtypes for floating-point, integer,
and packed decimal data. Size-item specifies the data subtype you
want to set. You can specify an INTEGER, REAL or DECIMAL size
item, or an combination. Multiple size-items in an OPTION statement
must be enclosed in parentheses and separated by commas.

7. SCALE controls the scaling of double precision floating-point vari
ables. Int-const specifies the power of 10 you want as the scaling
factor. It must be an integer between 0 and 6 or VAX BASIC signals
an error. See the description of the SCALE command in Chapter 2 of
this manual for more information on scaling.

8. OLD VERSION= CDD is provided for compatibility with previous
versions of BASIC. When bounds are specified in the CDD array, VAX
BASIC changes the lower bound to zero and adjusts the upper bound
of the array. By default, if you do not specify OLD VERSION= CDD,
VAX BASIC compiles the program with the bounds specified in the
CDD data definition.

9. Active-clause specifies the decimal rounding, integer and decimal
overflow checking, setup, and subscript checking conditions you want
in effect for the program module. Active-item specifies the conditions
you want to set. Multiple active-items in an OPTION statement must
be enclosed in parentheses and separated by commas.

10. You can have more than one option in an OPTION statement, or you
can use multiple OPTION statements in a program module. However,
each OPTION statement must lexically precede all other source code
in the program module, with the exception of comment fields, REM,
PICTURE, PROGRAM, SUB, FUNCTION, and OPTION statements.

11. OPTION statement specifications apply only to the program module
in which the statement appears and affect all variables in the module,
including SUB and FUNCTION parameters.

12. VAX BASIC signals an error in the case of conflicting options. For
example, you cannot specify more than one type-clause or SCALE
factor in the same program unit.

13. If you do not specify a type-clause or a subtype-clause, VAX BASIC
uses the current environment default data types.

4-266 Statements and Functions

Example

OPTION

14. If you do not specify a scale factor, VAX BASIC uses the current
environment default scale factor.

15. ACTIVE specifies the conditions that are to be in effect for a particular
program module. INACTIVE specifies the conditions that are not to
be in effect for a particular program module. If a condition does not
appear in an active-clause, VAX BASIC uses the current environment
default for the condition.

See the description of the COMPILE command in Chapter 2 of this
manual and the VAX BASIC User Manual for more information on the
INTEGER_OVERFLOW, DECIMAL_OVERFLOW, SETUP, DECIMAL_
ROUNDING, and SUBSCRIPT_CHECKING compilation qualifiers.
These qualifiers correspond to active-clause conditions (INTEGER
OVERFLOW, DECIMAL OVERFLOW, SETUP, DECIMAL ROUNDING,
and SUBSCRIPT CHECKING).

FUNCTION REAL DOUBLE monthly_payment,
(DOUBLE interest_rate,

LONG no_of_payments,
DOUBLE principle)

OPTION TYPE = REAL,
SIZE= (REAL DOUBLE, INTEGER LONG),
SCALE = 4

Statements and Functions 4-267

PLACES

PLACES

Format

The PLACE$ function explicitly changes the precision of a numeric string.
PLACE$ returns a numeric string, truncated or rounded, according to the
value of an integer argument you supply.

str-var =PLACE$ (str-exp, int-exp)

Syntax Rules

Remarks

1. Str-exp specifies the numeric string you want to process. It can have
one of the following:

• An optional minus sign (-),ASCII digits, and an optional decimal
point (.)

• An optional minus sign, ASCII digits, an optional decimal point,
the letter E, an optional minus sign, and a 2-digit exponent

2. Int-exp specifies the numeric precision of str-exp. Table 4-5 shows
examples of rounding and truncation and the values of int-exp that
produce them.

1. If str-exp has more than 60 characters, VAX BASIC signals the error
"Illegal number" (ERR=52).

2. Str-exp is rounded or truncated, or both, according to the value of
int-exp.

3. If int-exp is between -60 and 60, rounding and truncation occur as
follows:

• For positive integer expressions, rounding occurs to the right of
the decimal place. For example, if int-exp is 1, rounding occurs
one digit to the right of the decimal place (the number is rounded
to the nearest tenth). If int-exp is 2, rounding occurs two digits

4-268 Statements and Functions

PLACES

to the right of the decimal place (the number is rounded to the
nearest hundredth), and so on.

• If int-exp is zero, VAX BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is -1, for example, VAX BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp
is -2, rounding occurs two places to the left of the decimal point;
VAX BASIC moves the decimal point two places to the left, then
rounds to tens.

4. If int-exp is between 9940 and 10,060, truncation occurs as follows:

• If int-exp is 10,000, VAX BASIC truncates the number at the
decimal point.

• If int-exp is greater than 10,000 (10,000 plus n) VAX BASIC
truncates the numeric string n places to the right of the decimal
point. For example, if int-exp is 10,001 (10,000 plus 1), VAX
BASIC truncates the number starting one place to the right of the
decimal point. If int-exp is 10,002 (10,000 plus 2), VAX BASIC
truncates the number starting two places to the right of the
decimal point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VAX BASIC trun
cates the numeric string n places to the left of the decimal point.
For example, if int-exp is 9999 (10,000 minus 1), VAX BASIC
truncates the number starting one place to the left of the decimal
point. If 9998 (10,000 minus 2), VAX BASIC truncates starting two
places to the left of the decimal point, and so on.

5. If int-exp is not between -60 and 60 or 9940 and 10,060, VAX BASIC
returns a value of zero.

6. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

7. Table 4-5 shows examples of rounding and truncation and the values
of int-exp that produce them. The number used is 123456.654321:

Table 4-5: Rounding and Truncation of 123456.654321
Int-exp

-5

-4

-3

Effect

Rounded to 100,000s and truncated

Rounded to 10,000s and truncated

Rounded to 1 OOOs and truncated

Value Returned

1

12

123

Statements and Functions 4-269

PLACES

Table 4-5 (Cont.): Rounding and Truncation of 123456.654321
Int-exp

-2

-1

0

1

2

3

4

5

9,995

9,996

9,997

9,998

9,999

10,000

10,001

10,002

10,003

10,004

10,005

Example

Effect

Rounded to lOOs and truncated

Rounded to 10s and truncated

Rounded to units and truncated

Rounded to tenths and truncated

Rounded to hundredths and truncated

Rounded to thousandths and truncated

Rounded to ten-thousandths and truncated

Rounded to hundred-thousandths and truncated

Truncated to 100,000s

Truncated to 10,000s

Truncated to 1000s

Truncated to lOOs

Truncated to 10s

Truncated to units

Truncated to tenths

Truncated to hundredths

Truncated to thousandths

Truncated to ten-thousandths

Truncated to hundred-thousandths

DECLARE STRING str_exp, str_var
str_exp = "9999.9999"
str_var = PLACE$(str_exp,3)
PRINT str_var

Output

10000

4-270 Statements and Functions

Value Returned

1235

12346

123457

123456.7

123456.65

123456.654

123456.6543

123456.65432

1

12

123

1234

12345

123456

12345.6

123456.65

123456.654

123456.6543

123456.65432

POS

Format

POS

The POS function searches for a substring within a string and returns the
substring's starting character position.

int-var= POS (str-exp 1, str-exp2, int-exp)

Syntax Rules

Remarks

1. Str-exp1 specifies the main string.

2. Str-exp2 specifies the substring.

3. Int-exp specifies the character position in the main string at which
VAX BASIC starts the search.

1. The POS function searches str-exp1, the main string, for the first
occurrence of str-exp2, the substring, and returns the position of the
substring's first character.

2. If int-exp is greater than the length of the main string, POS returns a
value of zero.

3. POS always returns the character position in the main string at which
VAX BASIC finds the substring, with the following exceptions:

• If only the substring is null, and if int-exp is less than or equal to
zero, POS returns a value of 1.

• If only the substring is null, and if int-exp is equal to or greater
than 1 and less than or equal to the length of the main string,
POS returns the value of int-exp.

• If only the substring is null and if int-exp is greater than the length
of the main string, POS returns the main string's length plus 1.

Statements and Functions 4-271

POS

Example

• If only the main string is null, POS returns a value of zero.

• If both the main string and the substring are null, POS returns 1.

4. If VAX BASIC cannot find the substring, POS returns a value of zero.

5. If int-exp is less than 1, VAX BASIC assumes a starting position of 1.

6. If int-exp does not equal l, VAX BASIC still counts from the string's
beginning to calculate the starting position of the substring. That
is, VAX BASIC counts character positions starting at position l,
regardless of where you specify the start of the search. For example,
if you specify 10 as the start of the search and VAX BASIC finds the
substring at position 15, POS returns the value 15.

7. If you know that the substring is not near the beginning of the string,
specifying a starting position greater than 1 speeds program execution
by reducing the number of characters VAX BASIC must search.

8. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

DECLARE STRING main_str, &
sub_str

DECLARE INTEGER f irst_char
main_str = 11 ABCDEFG 11

sub_str = "DEFG"
first_char = POS(main_str, sub_str, 1)
PRINT first_char

Output

4

4-272 Statements and Functions

PRINT

Format

PRINT

The PRINT statement transfers program data to a terminal or a terminal
format file.

PRINT [#chnl-exp,] [output-list]

output-list: [exp] [{ ; } exp]. .. [;]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#). If you do not specify a channel, VAX BASIC prints to the
controlling terminal.

2. Output-list specifies the expressions to be printed and the print format
to be used.

3. Exp can be any valid expression.

4. A separator character (comma or semicolon) must separate each exp.
Separator characters control the print format as follows:

• A comma (,) causes VAX BASIC to skip to the next print zone
before printing the expression.

• A semicolon (;) causes VAX BASIC to print the expression imme
diately after the previous expression.

Statements and Functions 4-273

PRINT

Remarks

1. A terminal or terminal-format file must be open on the specified
channel. (Your current terminal is always open on channel #0.)

2. A PRINT line has an integral number of print zones. Note, however,
that the number of print zones in a line differs from terminal to
terminal.

3. The right margin setting, if set by the MARGIN statement, controls
the width of the PRINT line. The default right margin is 72.

4. The PRINT statement prints string constants and variables exactly as
they appear, with no leading or trailing spaces.

5. VAX BASIC prints quoted string literals exactly as they appear.
Therefore, you can print quotation marks, commas, and other charac
ters by enclosing them in quotation marks.

6. A PRINT statement with no output-list prints a blank line.

7. An expression in the output-list can be followed by more than one
separator character. That is, you can omit an expression and specify
where the next expression is to be printed by the use of multiple
separator characters. For example:

PRINT "Name",,"Address and ";"City"

Output

Name Address and City

In this example, the double commas after "Name" cause VAX BASIC
to skip two print zones before printing "Address and ". The semicolon
causes the next expression, "City", to be printed immediately after the
preceding expression. Multiple semicolons have the same effect as a
single semicolon.

8. When printing numeric fields, VAX BASIC precedes each number with
a space or minus sign (-) and follows it with a space.

9. VAX BASIC does not print trailing zeros to the right of the decimal
point. If all digits to the right of the decimal point are zeros, VAX
BASIC omits the decimal point as well.

10. For REAL numbers (SINGLE, DOUBLE, GFLOAT, and HFLOAT),
VAX BASIC does not print more than six digits in explicit notation.
If a number requires more than six digits, VAX BASIC uses E format
and precedes positive exponents with a plus sign (+). VAX BASIC
rounds a floating-point number with a magnitude between 0.1 and 1.0

4-274 Statements and Functions

PRINT

to six digits. For magnitudes smaller than 0.1, VAX BASIC rounds the
number to six digits and prints it in E format.

11. The PRINT statement can print up to

• 3 digits of precision for BYTE integers

• 5 digits of precision for WORD integers

• 10 digits of precision for LONG integers

• 31 digits of precision for DECIMAL numbers

• The string length for STRING values

VAX BASIC prints both INTEGER and DECIMAL values according to
the previous rules. However, for REAL values, VAX BASIC displays a
maximum of 6 digits.

12. If there is a comma or semicolon following the last item in output-list,
VAX BASIC does the following:

• When printing to a terminal, VAX BASIC does not generate a
line terminator after printing the last item. The next item printed
with a PRINT statement is printed at the position specified by
the separator character following the last item in the first PRINT
statement.

• When printing to a terminal-format file, VAX BASIC does not
write out the record until a PRINT statement without trailing
punctuation executes.

13. If no punctuation follows the last item in the output-list VAX BASIC
does the following:

• When printing to a terminal, VAX BASIC generates a line termina
tor after printing the last item.

• When printing to a terminal-format file, VAX BASIC writes out the
record after printing the last item.

14. If a string field does not fit on the current line VAX BASIC does the
following:

• When printing string elements to a terminal, VAX BASIC prints as
much as will fit on the current line and prints the remainder on
the next line.

• When printing string elements to a terminal-format file, VAX
BASIC prints the entire element on the next line.

Statements and Functions 4-275

PRINT

Example

15. If a numeric field is the first field in a line, and the numeric field spans
more than one line, VAX BASIC prints part of the number on one line
and the remainder on the next. Otherwise, numeric fields are never
split across lines. If the entire field cannot be printed at the end of one
line, the number is printed on the next line.

16. When a number's trailing space does not fit in the last print zone, the
number is printed without the trailing space.

PRINT "name "; "age", "height "; "weight"

Output

name age height weight

4-276 Statements and Functions

PRINT USING

PRINT USING

Format

The PRINT USING statement generates output formatted according to a
format string (either numeric or string) to a terminal or a terminal-format
file.

PRINT [#chnl-exp] USING str-exp { ; } output-list

output-list: [exp] [{ ; } exp] ... [;]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#). If you do not specify a channel, VAX BASIC prints to the
controlling terminal.

2. Str-exp is the format string. It must contain at least one valid format
field and must be followed by a separator (comma or semicolon) and
at least one expression.

NOTE

DIGITAL recommends that you use compile-time constant
expressions for str-exp whenever possible. When you
do this, the VAX BASIC compiler compiles the string at
compilation time rather than at run time, thus improving
the performance of your program.

3. Output-list specifies the expressions to be printed.

• Exp can be any valid expression.

Statements and Functions 4-277

PRINT USING

Remarks

• A comma or semicolon must separate each expression.

• A comma or semicolon is optional after the last expression in the
list.

1. The PRINT USING statement can print up to

• Three digits of precision for BYTE integers

• Five digits of precision for WORD integers

• Six digits of precision for SINGLE floating-point numbers

• Ten digits of precision for LONG integers

• Sixteen digits of precision for DOUBLE floating-point numbers

• Fifteen digits of precision for GFLOAT floating-point numbers

• Thirty-three digits of precision for HFLOAT floating-point num
bers

• Thirty-one digits of precision for DECIMAL numbers

• The string length for STRING values

2. A terminal or terminal-format file must be open on the specified
channel or VAX BASIC signals an error.

3. The separator characters (comma or semicolon) in the PRINT USING
statement do not control the print format as in the PRINT statement.
The print format is controlled by the format string. Therefore, it does
not matter whether you use a comma or semicolon.

4. Formatting Numeric Output
• The number sign (#) reserves space for one sign or digit.

• The comma(,) causes VAX BASIC to insert commas before every
third significant digit to the left of the decimal point. In the format
field, the comma must be to the left of the decimal point, and to
the right of the rightmost dollar sign, asterisk, or number sign. A
comma reserves space for a comma or digit.

• The period (.) inserts a decimal point. The number of reserved
places on either side of the period determines where the decimal
point appears in the output.

4-278 Statements and Functions

•

•

•

•

•

•

•

PRINT USING

The hyphen (-) reserves space for a sign and specifies trailing
minus sign format. If present, it must be the last character in
the format field. It causes VAX BASIC to print negative numbers
with a minus sign after the last digit, and positive numbers with a
trailing space. The hyphen (-) can be used as part of a dollar sign
($$) format field.

The letters CD (Credit/Debit) enclosed in angle brackets
(<CD>) print CR (Credit Record) after negative numbers or zero
and DR (Debit Record) after positive numbers. If present, they
must be the last characters in the format field. The Credit/Debit
format can be used as part of a dollar sign ($$) format field.

Four carets("'"'A) specify E notation for floating-point and
DECIMAL numbers. They reserve four places for SINGLE,
DOUBLE, GFLOAT, and DECIMAL values and five places for
HFLOAT values. If present, they must be the last characters in the
format field.

Two dollar signs ($$) reserve space for a dollar sign and a digit
and cause VAX BASIC to print a dollar sign immediately to the
left of the most significant digit.

Two asterisks (**) reserve space for two digits and cause VAX
BASIC to fill the left side of the numeric field with leading aster
isks.

A zero enclosed in angle brackets (< 0 >) prints leading zeros
instead of leading spaces.

A percent sign enclosed in angle brackets (< % >) prints all
spaces in the field if the value of the print item is zero.

NOTE

You cannot specify the dollar sign ($$), asterisk-fill
(**), and zero-fill (<O>) formats within the same
print field. Similarly, VAX BASIC does not allow you
to specify the zero-fill (<O>) and the blank-if-zero
(< % >) formats within the same print field.

• An underscore (-) forces the next formatting character in the
format string to be interpreted as a literal. It affects only the next
character. If the next character is not a valid formatting character,
the underscore has no effect and will itself be printed as a literal.

5. VAX BASIC interprets any other characters in a numeric format string
as string literals.

Statements and Functions 4-279

PRINT USING

6. Depending on usage, the same format string characters can be com
bined to form one or more print fields within a format string. For
example:

• When a dollar sign ($$) or asterisk-fill (*"') format precedes
a number sign (#) , it modifies the number sign format. The
dollar sign or asterisk-fill format reserves two places, and with the
number signs forms one print field. For example:

$$###

**##

Forms one field and reserves five spaces

Forms one field and reserves four spaces

When these formats are not followed by a number sign or a
blank-if-zero (<%>) format, they reserve two places and form a
separate print field.

• When a zero-fill (<O>) or blank-if-zero format precedes a
number sign, it modifies the number sign format. The < 0 > or
< % > reserves one place, and with the number signs forms one

print field. For example:

<O> ####

<%> ###

Forms one field and reserves five spaces

Forms one field and reserves four spaces

When these formats are not followed by a number sign, they
reserve one space and form a separate print field.

• When a blank-if-zero (<%>)format follows a dollar sign or
asterisk-fill format (**), it modifies the dollar sign ($$) or asterisk
fill (**) format string. The blank-if-zero reserves one space,
and with the dollar signs or asterisks forms one print field. For
example:

$$ < % > ### Forms one field and reserves six spaces

** < % > ## Forms one field and reserves five spaces

When the blank-if-zero precedes the dollar signs or asterisks, it
reserves one space and forms a separate print field.

7. The comma (digit separator), dollar sign (currency symbol), and
decimal point (radix point) are the defaults for U.S. currency. On
VAX/VMS systems, you can change the digit separator, currency
symbol and radix point by assigning the logical names SYS$DIGIT_
SEP, SYS$CURRENCY and SYS$RADIX_pOINT. Once you make
each assignment, the PRINT USING statement accesses these logical
names for these symbols.

4-280 Statements and Functions

PRINT USING

8. For E notation, PRINT USING left-justifies the number in the format
field and adjusts the exponent to compensate, except when printing
zero. When printing zero in E notation, VAX BASIC prints leading
spaces, leading zeros, a decimal point, and zeros in the fractional por
tion if the PRINT USING string contains these formatting characters,
and then the string "E+OO".

9. Zero cannot be negative. If a small negative number rounds to zero, it
is represented as a positive zero.

10. If there are reserved positions to the left of the decimal point, and the
printed number is less than 1, VAX BASIC prints one zero to the left
of the decimal point and pads with spaces to the left of the zero.

11. If there are more reserved positions to the right of the decimal point
than fractional digits, VAX BASIC prints trailing zeros in those posi
tions.

12. If there are fewer reserved positions to the right of the decimal
point than fractional digits, VAX BASIC rounds the number to fit the
reserved positions.

13. If a number does not fit in the specified format field, VAX BASIC
prints a percent sign warning symbol (%), followed by the number in
PRINT format.

14. Formatting String Output
• Format string characters control string output and can be entered

as either uppercase or lowercase characters. All format characters
except the backslash and exclamation point must start with
a single quotation mark ('). A single quote by itself reserves
one character position. A single quote followed by any format
characters marks the beginning of a character format field and
reserves one character position.

• L reserves one character position. The number of Ls plus the
leading single quote determines the field's size. VAX BASIC left
justifies the print expression and pads with spaces if the print
expression is less than or equal to the field's width. If the print
expression is larger than the field, VAX BASIC left-justifies the
expression and truncates its right side to fit the field.

• R reserves one character position. The number of Rs plus the
leading single quote determines the field's size. VAX BASIC right
justifies the print expression and pads with spaces if the print
expression is less than or equal to the field's width. If the print
expression is larger than the field, VAX BASIC truncates the right
side to fit the field.

Statements and Functions 4-281

PRINT USING

• C reserves one character position. The number of Cs plus the
leading single quote determines the field's size. If the string does
not fit in the field, VAX BASIC truncates its right side. Otherwise,
VAX BASIC centers the print expression in this field. If the string
cannot be centered exactly, it is offset one character to the left.

• E reserves one character position. The number of Es plus the
leading single quote determines the field's size. VAX BASIC left
justifies the print expression if it is less than or equal to the field's
width and pads with spaces. Otherwise, VAX BASIC expands the
field to hold the entire print expression.

• Two backslashes (\ \) when separated by n spaces reserve n+2
character positions. PRINT USING left-justifies the string in this
field. VAX BASIC does not allow a leading quotation mark with
this format.

• An exclamation point (!) creates a 1-character field. The excla
mation point both starts and ends the field. VAX BASIC does not
allow a leading quotation mark with this format.

15. VAX BASIC interprets any other characters in the format string as
string literals and prints them exactly as they appear.

16. If a COMMA or semicolon follows the last item in output-list
• When printing to a terminal, VAX BASIC does not generate a

line terminator after printing the last item. The next item printed
with a PRINT statement is printed at the position specified by
the separator character following the last item in the first PRINT
statement.

• When printing to a terminal-format file, VAX BASIC does not
write out the record until a PRINT statement without trailing
punctuation executes.

17. If no punctuation follows the last item in output-list:
• When printing to a terminal, VAX BASIC generates a line termina

tor after printing the last item.

• When printing to a terminal-format file, VAX BASIC writes out the
record after printing the last item.

4-282 Statements and Functions

Examples

Example 1

PRINT USING "###.###",-12.346
PRINT USING 11 ##.### 11 ,12.346

·Output 1

-12.346
12.346

Example 2

INPUT "Your Name";Winner$
Jackpot = 10000.0

PRINT USING

PRINT USING "CONGRATULATIONS, 1 EEEEEEEEE, YOU WON$$#####.##", Winner$, Jackpot
END

Output 2

Your Name? Hortense Corabelle
CONGRATULATIONS, Hortense Corabelle, YOU WON $10000.00

Statements and Functions 4-283

PRODS

PRODS

Format

The PROD$ function returns a numeric string that is the product of two
numeric strings. The precision of the returned numeric string depends on
the value of an integer argument.

str-var =PROD$ (str-exp 1, str-exp2, int-exp)

Syntax Rules

1. Str-expl and str-exp2 specify the numeric strings you want to multiply.
A numeric string can have one of the following formats:

• An optional minus sign (-),ASCII digits, and an optional decimal
point (.)

• An optional minus sign, ASCII digits, an optional decimal point,
the letter E, an optional minus sign, and a 2-digit exponent

2. If str-exp consists of more than 60 characters, VAX BASIC signals the
error "Illegal number" (ERR=52).

3. Int-exp specifies the numeric precision of str-exp. Table 4-5 shows
examples of rounding and truncation and the values of int-exp that
produce them.

4-284 Statements and Functions

Remarks

PRODS

1. Str-exp is rounded or truncated, or both, according to the value of
int-exp.

2. If int-exp is between -60 and 60, rounding and truncation occur as
follows:

• For positive integer expressions, rounding occurs to the right of
the decimal place. For example, if int-exp is 1, rounding occurs
one digit to the right of the decimal place (the number is rounded
to the nearest tenth). If int-exp is 2, rounding occurs two digits
to the right of the decimal place •(the number is rounded to the
nearest hundredth), and so on.

• If int-exp is zero, VAX BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is -1, for example, VAX BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp
is -2, rounding occurs two places to the left of the decimal point;
VAX BASIC moves the decimal point two places to the left, then
rounds to tens.

3. If int-exp is between 9940 and 10,060, truncation occurs as follows:

• If int-exp is 10,000, VAX BASIC truncates the number at the
decimal point.

• If int-exp is greater than 10,000 (10000 plus n) VAX BASIC
truncates the numeric string n places to the right of the decimal
point. For example, if int-exp is 10,001 (10,000 plus 1), VAX
BASIC truncates the number starting one place to the right of the
decimal point. If int-exp is 10,002 (10,000 plus 2), VAX BASIC
truncates the number starting two places to the right of the
decimal point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VAX BASIC trun
cates the numeric string n places to the left of the decimal point.
For example, if int-exp is 9999 (10,000 minus 1), VAX BASIC
truncates the number starting one place to the left of the decimal
point. If 9998 (10,000 minus 2), VAX BASIC truncates starting two
places to the left of the decimal point, and so on.

Statements and Functions 4-285

PRODS

Example

4. If int-exp is not between -60 and 60 or 9940 and 10,060, VAX BASIC
returns a value of zero.

5. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

DECLARE STRING num_exp1, le
num_exp2, le
product

num_exp1 = 11 34.555 11

num_exp2 = 11 297.676"
product = PROD$(num_exp1, num_exp2, 1)
PRINT product

Output

10286.2

4-286 Statements and Functions

PROGRAM

PROGRAM

Format

The PROGRAM statement allows you to identify a main program with a
name other than the file name.

PROGRAM prog-name

Syntax Rules

Remarks

1. Prag-name specifies the module name of the compiled source and
cannot be the same as any SUB, FUNCTION or PICTURE name.

2. Prag-name also defines the global entry point name for the main
program.

3. The first character of a prog-name must be an alphabetic character
(A through Z). The remaining characters, if any, can be any combi
nation of alphabetic characters, digits (0 through 9), dollar signs ($),
periods (.), and underscores (-).

4. Prag-name cannot be a quoted name.

1. The PROGRAM statement must be the first statement in a main
program and can be preceded only by comment fields and lexical
directives.

2. If you insert the program into a text or object library or examine it
using the VAX/VMS Debugger, the program name you specify will be
the module name used.

3. The PROGRAM statement is optional; VAX BASIC allows you to
specify an END PROGRAM statement and an EXIT PROGRAM
statement without a matching PROGRAM statement.

July 1988 Statements and Functions 4-287

PROGRAM

Example

PROGRAM first_test

END PROGRAM

4-288 Statements and Functions

PUT

Format

PUT

The PUT statement transfers data from the record buffer to a file. PUT
statements are valid on RMS sequential, relative, and indexed files. You
cannot use PUT statements on terminal-format files or virtual array files.

PUT #chnl-exp [, RECORD num-exp [, COUNT int-exp]]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

2. The RECORD clause allows you to randomly write records to a rela
tive or sequential fixed file by specifying the record number.
Num-exp must be between 1 and the maximum record number al
lowed for the file. VAX BASIC does not allow you to use the RECORD
clause on sequential variable, sequential stream, or indexed files.

3. Int-exp in the COUNT clause specifies the record's size. If there is
no COUNT clause, the record's size is that defined by the MAP or
RECORDSIZE clause in the OPEN statement. The RECORDSIZE
clause overrides the MAP clause.

• If you write a record to a file with variable-length records, int-exp
must be between zero and the maximum record size specified in
the OPEN statement.

• If you write a record to a file with fixed-length records, the
COUNT clause serves no purpose. If used, int-exp must equal the
record size specified in the OPEN statement.

July 1988 Statements and Functions 4-289

PUT

Remarks

1. For sequential access, the file associated with chnl-exp must be open
with ACCESS WRITE, MODIFY, SCRATCH, or APPEND.

2. To add records to an existing sequential file, open it with ACCESS
APPEND. If you are not at the end of the file when attempting a PUT
to a sequential file, VAX BASIC signals "Not at end of file" (ERR=149).

3. After a PUT statement executes, there is no current record pointer.
The next record pointer is set as follows:

• For sequential files, variable and stream PUT operations set the
next record pointer to the end of the file.

• For relative files, a sequential PUT operation sets the next record
pointer to the next record plus 1.

• For relative and sequential fixed files, a random PUT operation
leaves the next record pointer unchanged.

• For indexed files, a PUT operation leaves the next record pointer
unchanged.

4. When you specify a RECORD clause, VAX BASIC evaluates num-exp
and uses this value as the relative record number of the target cell.

• If the target cell is empty or occupied by a deleted record, VAX
BASIC places the record in that cell.

• If there is a record in the target cell and the file has not been
opened as a VIRTUAL file, the PUT statement fails, and VAX
BASIC signals the error "Record already exists" (ERR=153).

5. A PUT statement with no RECORD clause writes records to the file as
follows:

• For sequential variable and stream files, a PUT operation adds a
record at the end of the file.

• For relative and sequential fixed files, a PUT operation places the
record in the empty cell pointed to by the next record pointer. If
the file is empty, the first PUT operation places a record in cell
number 1, the second in cell number 2, and so on.

• For indexed files, RMS stores records in order of ascending pri
mary key value and updates all indexes so that they point to the
record.

4-290 Statements and Functions

Examples

PUT

6. When you a open file as ORGANIZATION VIRTUAL, the file you
open is a sequential fixed file with a record size that is a multiple of
512 bytes. You can then access the file with the FIND, GET, PUT,
or UPDATE statements or through one or more virtual arrays. VAX
BASIC allows you to overwrite existing records in a file not containing
virtual arrays and opened as ORGANIZATION VIRTUAL by using
the PUT statement with a RECORD clause. All other organizations
require the UPDATE statement to change an existing record. DIGITAL
recommends that you also use the UPDATE statement to change
existing records in VIRTUAL files that do not contain virtual arrays.

7. If an existing record in an indexed file has a record with the same
key value as the one you want to put in the file, VAX BASIC signals
the error "Duplicate key detected" (ERR=134) if you did not specify
DUPLICATES for the key in the OPEN statement. If you specified
DUPLICATES, RMS stores the duplicate records in a first-in/first-out
sequence.

8. The number specified in the COUNT clause determines how many
bytes are transferred from the buffer to a file:

• If you have not completely filled the record buffer before executing
a PUT statement, VAX BASIC pads the record with nulls to equal
the specified value.

• If the specified COUNT value is less than the buffer size, the
record is truncated to equal the specified value.

• The number in the COUNT clause must not exceed the size spec
ified in the MAP or RECORDSIZE clause in the OPEN statement
or VAX BASIC signals "Size of record invalid" (ERR=156).

• For files with fixed length records, the number in the COUNT
clause must match the record size.

Example 1

!Sequential, Relative, Indexed, and Virtual Files
PUT 13, COUNT 66Y.

Example 2

!Relative and Virtual Files Only
PUT 16, RECORD 133, COUNT 16%

Statements and Functions 4-291

QUOS

ouos

Format

The QUO$ function returns a numeric string that is the quotient of two
numeric strings. The precision of the returned numeric string depends on
the value of an integer argument.

str-var =QUO$ (str-exp 1, str-exp2, int-exp)

Syntax Rules

Remarks

1. Str-expl and str-exp2 specify the numeric strings you want to divide.
A numeric string can have one of the following formats:

• An optional minus sign (-), ASCII digits, and an optional decimal
point (.)

• An optional minus sign, ASCII digits, an optional decimal point,
the letter E, an optional minus sign, and a 2-digit exponent

2. Int-exp specifies the numeric precision of str-exp. Table 4-5 shows
examples of rounding and truncation and the values of int-exp that
produce them.

1. If str-exp consists of more than 60 characters, VAX BASIC signals the
error "Illegal number" (ERR=52).

2. Str-exp is rounded or truncated, or both, according to the value of
int-exp.

3. If int-exp is between -60 and 60, rounding and truncation occur as
follows:

• For positive integer expressions, rounding occurs to the right of
the decimal place. For example, if int-exp is 1, rounding occurs
one digit to the right of the decimal place (the number is rounded
to the nearest tenth). If int-exp is 2, rounding occurs two digits

4-292 Statements and Functions

ouos

to the right of the decimal place (the number is rounded to the
nearest hundredth), and so on.

• If int-exp is zero, VAX BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is -1, for example, VAX BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp
is -2, rounding occurs two places to the left of the decimal point;
VAX BASIC moves the decimal point two places to the left, then
rounds to tens.

4. If int-exp is between 9940 and 10,060, truncation occurs as follows:

• If int-exp is 10000, VAX BASIC truncates the number at the
decimal point.

• If int-exp is greater than 10,000 (10,000 plus n) VAX BASIC
truncates the numeric string n places to the right of the decimal
point. For example, if int-exp is 10,001 (10,000 plus 1), VAX
BASIC truncates the number starting one place to the right of the
decimal point. If int-exp is 10,002 (10,000 plus 2), VAX BASIC
truncates the number starting two places to the right of the
decimal point, and so on.

• If int-exp is less than 10,000 (10,000 minus n), VAX BASIC trun
cates the numeric string n places to the left of the decimal point.
For example, if int-exp is 9999 (10,000 minus 1), VAX BASIC
truncates the number starting one place to the left of the decimal
point. If 9998 (10,000 minus 2), VAX BASIC truncates starting two
places to the left of the decimal point, and so on.

5. If int-exp is not between -60 and 60 or 9940 and 10,060, VAX BASIC
returns a value of zero.

6. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to an integer of the default size.

Statements and Functions 4-293

DUOS

Example

DECLARE STRING num_str1, k
num_str2, k
quotient

num_str1 "458996.43"
num_str2 "123222.444"
quotient = QUO$(num_str1, num_str2, 2)
PRINT quotient

Output

3.72

4-294 Statements and Functions

RADS

Format

RADS

The RAD$ function converts a specified integer in Radix-50 format to a
3-character string.

NOTE

The RAD$ function is supported only for compatibility with
BASIC-PLUS-2. DIGITAL recommends that you do not use the
RAD$ function for new program development.

str-var =RAD$ (int-var)

Syntax Rules

Remarks

None.

1. The RAD$ function converts int-var to a 3-character string in Radix-50
format and stores it in str-var. Radix-50 format allows you to store
three characters of data as a 2-byte integer.

2. VAX BASIC supports the RAD$ function, but not its complement, the
FSS$ function.

3. If you specify a floating-point variable for int-var, VAX BASIC trun
cates it to an integer of the default size.

Statements and Functions 4-295

RADS

Example

DECLARE STRING radix
radix = RAD$(999)

4-296 Statements and Functions

RANDOMIZE

RANDOMIZE

Format

The RANDOMIZE statement gives the random number function, RND, a
new starting value.

{
RANDOMIZE }
RANDOM

Syntax Rules

Remarks

Example

None.

1. Without the RANDOMIZE statement, successive runs of the same
program generate the same random number sequence.

2. If you use the RANDOMIZE statement before invoking the RND
function, the starting point changes for each run. Therefore, a different
random number sequence appears each time.

DECLARE REAL random_num
RANDOMIZE

FOR I = 1 TO 2
random_num = RND
PRINT random_num

NEXT I

Statements and Functions 4-297

RANDOMIZE

Output

.379784

.311572

4-298 Statements and Functions

RCTRLC

RCTRLC

The RCTRLC function disables CTRL/C trapping.

Format

int-var= RCTRLC

Syntax Rules

Remarks

Example

None.

1. After VAX BASIC executes the RCTRLC function, a CTRL/C typed
at the terminal returns you to DCL command level or to the BASIC
environment.

2. RCTRLC always returns a value of zero.

Y = RCTRLC

Statements and Functions 4-299

RCTRLO

RCTRLO

Format

The RCTRLO function cancels the effect of a CTRL/O typed on a specified
channel.

int-var= RCTRLO (chnl-exp)

Syntax Rules

Remarks

Example

Chnl-exp must refer to a terminal.

1. If you type a CTRL/O to cancel terminal output, nothing is printed
on the specified terminal until your program executes the RCTRLO
or until you type another CTRL/O, at which time normal terminal
output resumes.

2. The RCTRLO function always returns a value of zero.

3. RCTRLO has no effect if the specified channel is open to a device that
does not use the CTRL/O convention.

PRINT "A" FOR 1% = 1% TO 10%
YY. = RCTRLO(OY.)
PRINT "Normal output is resumed"

4-300 Statements and Functions

Output

A
A
A
A
)CTRL/Ol

Output off

Normal output is resumed

RCTRLO

Statements and Functions 4-301

READ

READ

The READ statement assigns values from a DATA statement to variables.

Format

READ var, ...

Syntax Rules

Remarks

Var cannot be a DEF function name, unless the READ statement is inside
the multi-line DEF body.

1. If your program has a READ statement without DATA statements,
VAX BASIC signals a compile-time error.

2. When VAX BASIC initializes a program unit, it forms a data sequence
of all values in all DATA statements. An internal pointer points to the
first value in the sequence.

3. When VAX BASIC executes a READ statement, it sequentially assigns
values from the data sequence to variables in the READ statement
variable list. As VAX BASIC assigns each value, it advances the
internal pointer to the next value.

4. VAX BASIC signals the error "Out of data" (ERR=57) if there are fewer
data elements than READ statements. Extra data elements are ignored.

5. The data type of the value must agree with the data type of the
variable to which it is assigned or VAX BASIC signals "Data format
error" (ERR=SO).

6. If you read a string variable, and the DATA element is an unquoted
string, VAX BASIC ignores leading and trailing spaces. If the DATA
element contains any commas, they must be inside quotation marks.

4-302 Statements and Functions

Example

READ

7. VAX BASIC evaluates subscript expressions in the variable list after it
assigns a value to the preceding variable, and before it assigns a value
to the subscripted variable. For instance, in the following example,
VAX BASIC assigns the value of 10 to variable A, then assigns the
string, LESTER, to array element A$(A).

READ A, A$(10)

DATA 10, LESTER

The string, LESTER, will be assigned to A$(10).

DECLARE STRING A,B,C
READ A,B,C
DATA "X", "Y", "Z"
PRINT A + B + C

Output

XYZ

Statements and Functions 4-303

REAL

REAL

Format

The REAL function converts a numeric expression or numeric string to a
specified or default floating-point data type.

real-var= REAL (exp ' DOUBLE)
[

,SINGLE l
I GFLOAT
I HFLOAT

Syntax Rules

Remarks

Exp can be either numeric or string. If a string, it can contain the ASCII
digits 0 through 9, uppercase E, a plus sign (+), a minus sign (-), and a
period (.).

1. VAX BASIC evaluates exp, then converts it to the specified REAL size.
If you do not specify a size, VAX BASIC uses the default REAL size.

2. VAX BASIC ignores leading and trailing spaces and tabs if exp is a
string.

3. The REAL function returns a value of zero when a string argument
contains only spaces and tabs, or when the argument is null.

4-304 Statements and Functions

Example

DECLARE STRING any_num
INPUT "Enter a number";any_num
PRINT REAL(any_num, DOUBLE)

Output

Enter a number? 123095959
.123096E+09

REAL

Statements and Functions 4-305

RECORD

RECORD

Format

The RECORD statement lets you name and define data structures in a
VAX BASIC program and provides the VAX BASIC interface to the VAX
Common Data Dictionary (COD). You can use the defined RECORD name
anywhere a VAX BASIC data type keyword is valid if all data types are
valid in that context.

RECORD rec-name
rec-component

END RECORD [rec-name]

{

data-type rec-item [, ...] }
rec-component group-clause

variant-clause

{

unsubs-var [=int-canst] }
rec-item: array ([int-const1 TO] int-const2 , ...) [= int-const]

FILL [(int-canst)] [=int-canst]

group-clause: GROUP group-name ([int-const1 TO] int-const2, ...)]
rec-component

END GROUP [group-name]

4-306 Statements and Functions

RECORD

variant-clause: VARIANT
case-clause

case-clause:

Syntax Rules

END VARIANT

CASE
[rec-component]

1. Each line of text in a RECORD, GROUP, or VARIANT block can have
an optional line number.

2. Data-type can be a VAX BASIC data type keyword or a previously
defined RECORD name. Table 1-2 lists and describes VAX BASIC
data type keywords.

3. If the data type of a rec-item is STRING, the string is fixed-length.
You can supply an optional string length with the= int-const clause. If
you do not specify a string length, the default is 16.

4. When you create an array of components with GROUP or create an
array as a rec-item, VAX BASIC allows you to specify both lower
and upper bounds. The upper bound is required; the lower bound is
optional.

• lnt-const1 specifies the lower bounds of the array.

• lnt-const2 specifies the upper bounds of the array and when
accompanied by int-const1, must be preceded by the keyword TO.

• lnt-const1 must be less than or equal to int-const2.
• If you do not specify int-const1, VAX BASIC uses zero as the

default lower bound.

Statements and Functions 4-307

RECORD

Remarks

1. The total size of a RECORD cannot exceed 65 ,535 bytes.

2. The declarations between the RECORD statement and the END
RECORD statement are called a RECORD block.

3. Variables and arrays in a RECORD definition are also called RECORD
components.

4. The RECORD statement names and defines a data structure called
a RECORD template, but does not allocate any storage. When you
use the RECORD template as a data type in a statement such as
DECLARE, MAP, or COMMON, you declare a RECORD instance.
This declaration of the RECORD instance allocates storage for the
RECORD. For example:

DECLARE EMPLOYEE emp_rec

This statement declares a variable named emp_rec, which is an
instance of the user-defined data type EMPLOYEE.

5. Rec-item
• The rec-name qualifies the group-name and the group-name qualifies

the rec-item. You can access a particular rec-item within a record
by specifying rec-name::group-name::rec-item. This specification
is called a fully qualified reference. The full qualification of a
rec-item is also called a component path name.

• Rec-item must conform to the rules for naming VAX BASIC
variables.

• Whenever you access an elementary record component, that is, a
variable named in a RECORD definition, you do it in the context
of the record instance. Therefore, rec-item names need not be
unique in your program. For example, you can have a variable
called first _name in any number of different RECORD definitions.
However, you cannot use a VAX BASIC reserved keyword as a
rec-item name and you cannot have two variables or arrays with
the same name at the same level in the RECORD or GROUP
definition.

• The group-name is optional in a rec-item specification unless there
is more than one rec-item with the same name or the group-name
has subscripts. For example:

4-308 Statements and Functions

DECLARE EMPLOYEE Emp_rec

RECORD Address
STRING Street, City, State, Zip

END RECORD Address
RECORD Employee

GROUP Emp_name
STRING First = 16
STRING Middle = 1
STRING Last = 15

END GROUP Emp_name
ADDRESS Work
ADDRESS Home

END RECORD Employee

RECORD

You can access the rec-item "Last" by specifying only "Emp_
rec::Last" because only one rec-item is named "Last". However,
if you try to reference "Emp_rec::City", VAX BASIC signals an
error because "City" is an ambiguous field, a component of both
"Work" and "Home". To access "City", you must specify either
"Emp_rec::Work::City" or "Emp_rec::Home::City".

6. Group-clause

• The declarations between the GROUP keyword and the END
GROUP keywords are called a GROUP block. The GROUP
keyword is valid only within a RECORD block.

• A subscripted group is similar to an array within the record. The
group can have both lower and upper bounds for one or more
dimensions. Each group element consists of all the record items
contained within the including other groups.

7. Variant-clause

• The declarations between the VARIANT keyword and the END
VARIANT keywords are called a VARIANT block.

• The amount of space allocated for a VARIANT field in a RECORD
is equal to the space needed for the variant field requiring the
most storage.

• A variant defines the record items that overlay other items,
allowing you to redefine the same storage one or more ways.

8. Case-clause

• Each case in a variant starts at the position in the record where
the variant begins.

• The size of a variant is the size of the longest case in that variant.

Statements and Functions 4-309

RECORD

Example

1000 RECORD Employee
GROUP Emp_name

STRING Last = 16
STRING First = 14
STRING Middle = 1

END GROUP Emp_name
GROUP Emp_address

STRING Street = 16
STRING City = 20
STRING State = 2
DECIMAL(6,0) Zip

END GROUP Emp_address
STRING Wage_class = 2
VARIANT

CASE
GROUP Hourly

DECIMAL(4,2) Hourly_wage
SINGLE Regular_pay_ytd
SINGLE Overtime_pay_ytd

END GROUP Hourly
CASE

GROUP Salaried
DECIMAL(7,2) Yearly_salary
SINGLE Pay_ytd

END GROUP Salaried
CASE

GROUP Executive
DECIMAL(S,2) Yearly_salary
SINGLE Pay_ytd
SINGLE Expenses_ytd

END GROUP Executive
END VARIANT

END RECORD Employee

4-310 Statements and Functions

RECOUNT

RECOUNT

Format

The RECOUNT function returns the number of characters transferred by
the last input operation.

int-var= RECOUNT

Syntax Rules

Remarks

None.

1. The RECOUNT value is reset by every input operation on any chan
nel, including channel #0.

• After an input operation from your terminal, RECOUNT contains
the number of characters (bytes), including line terminators,
transferred.

• After accessing a file record, RECOUNT contains the number of
characters in the record.

2. Because RECOUNT is reset by every input operation on any channel,
you should copy the RECOUNT value to a different storage location
before executing another input operation.

3. If an error occurs during an input operation, the value of RECOUNT
is undefined.

4. RECOUNT is unreliable after a CTRL/C interrupt because the
CTRL/C trap may have occurred before VAX BASIC set the value
for RECOUNT.

5. The RECOUNT function returns a LONG value.

Statements and Functions 4-311

RECOUNT

Example

DECLARE INTEGER character_count
INPUT "Enter a sequence of numeric characters";character_count
character_count = RECOUNT
PRINT character_count;"characters received (including CR and LF)"

Output

Enter a sequence of numeric characters? 12346678
10 characters received (including CR and LF)

4-312 Statements and Functions

REM

REM

The REM statement allows you to document your program.

format

REM [comment]

Syntax Rules

Remarks

1. REM must be the only statement on the line or the last statement on a
multi-statement line.

2. VAX BASIC interprets every character between the keyword REM and
the next line number as part of the comment.

3. VAX BASIC does not allow you to specify the REM statement in
programs that do not contain line numbers.

1. Because the REM statement is not executable, you can place it any
where in a program, except where other statements, such as SUB and
END SUB, must be the first or last statement in a program unit.

2. When the REM statement is the first statement on a line-numbered
line, VAX BASIC treats any reference to that line number as a refer
ence to the next higher-numbered executable statement.

3. The REM statement is similar to the comment field that begins with
an exclamation point, with one exception: the REM statement must be
the last statement on a BASIC line. The exclamation point comment
field can be ended with another exclamation point or a line terminator
and followed by a VAX BASIC statement. See Chapter 1 of this
manual for more information on the comment field.

Statements and Functions 4-31 J

REM

Example

10 REM This is a multi-line comment
All text up to BASIC line 20
is part of this REM statement.
Any BASIC statements on line 10
are ignored. PRINT "This does not
execute".

20 PRINT "This will execute"

Output

This will execute

4-314 Statements and Functions

REMAP

Format

REMAP

The REMAP statement defines or redefines the position in the storage area
of variables named in the MAP DYNAMIC statement.

REMAP (map-dyn-name) remap-item, ...

map-dyn-name: {
map-name }
static-str-var

remap-item:

Syntax Rules

num-var
num-array-name ([int-exp, ...])
str-var [=int-exp]
str-array-name ([int-exp, ...])[=int-exp]
[data-type] FILL [(int-exp)] [=int-exp]
FILL% [(int-exp)]
FILL$ [(int-exp)][= int-exp]

1. Map-dyn-name can be either a map name or a static string variable.

• Map-name is the storage area named in a MAP statement.

• If you specify a map name, then a MAP statement with the same
name must precede both the MAP DYNAMIC statement and the
REMAP statement.

• When you specify a static string variable, the string must be
declared before you can specify a MAP DYNAMIC statement or a
REMAP statement.

• If you specify a static-str-var, the following restrictions apply:

Static-str-var cannot be a string constant.

Statements and Functions 4-315

REMAP

Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement.

If static-str-var is a parameter to the subprogram containing
the REMAP statement, static-str-var cannot be a RECORD
component.

Static-str-var cannot be a subscripted variable.

Static-str-var cannot be a parameter declared in a DEF or DEF*
function.

2. Remap-item names a variable, array, or array element declared in a
preceding MAP DYNAMIC statement:

• Num-var specifies a numeric variable or array element. Num
array-name followed by a set of empty parentheses specifies an
entire numeric array.

• Str-var specifies a string variable or array element. Str-array-name
followed by a set of empty parentheses, specifies an entire fixed
length string array. You can specify the number of bytes to be
reserved for string variables and array elements with the =int-exp
clause. The default string length is 16.

3. Remap-item can also be a FILL item. The FILL, FILL%, and FILL$
keywords let you reserve parts of the record buffer. Int-exp specifies
the number of FILL items to be reserved. The =int-exp clause allows
you to specify the number of bytes to be reserved for string FILL
items. Table 4-2 describes FILL item format and storage allocation.

NOTE

In the FILL clause, (int-exp) represents a repeat count, not
an array subscript. FILL (n), for example, represents n
elements, not n + 1.

4. All remap-items, except FILL items, must have been named in a
previous MAP DYNAMIC statement, or VAX BASIC signals an error.

5. Data-type can be any VAX BASIC data type keyword or a data type
defined in a RECORD statement. Data type keywords and their size,
range, and precision are listed in Table 1-2 in this manual. You can
specify a data type only for FILL items.

• When you specify a data type before a FILL keyword in a REMAP
statement, the FILL item is of that data type. The specified data
type applies only to that one FILL item.

• If you do not specify any data type for a FILL item, the FILL item
takes the current default data type and size.

4-316 Statements and Functions July 198E

REMAP

6. Remap-items must be separated with commas.

Statements and Functions 4-316.1

Remarks

REMAP

1. The REMAP statement does not affect the amount of storage allocated
to the map area.

2. Each time a REMAP statement executes, VAX BASIC sets record
pointers to the named map area for the specified variables from left to
right.

3. The REMAP statement must be preceded by a MAP DYNAMIC state
ment or VAX BASIC signals the error "No such MAP area <name>".
The MAP statement or static string variable creates a named area of
static storage, the MAP DYNAMIC statement specifies the variables
whose positions can change at runtime, and the REMAP statement
specifies the new positions for the variables named in the MAP
DYNAMIC statement.

4. Before you can specify a map name in a REMAP statement, there
must be a MAP statement in the program unit with the same map
name. Otherwise, VAX BASIC signals the error" <Name> is not a
DYNAMIC MAP variable of MAP <name> ". Similarly, before you
can specify a static string variable in a REMAP statement, the string
variable must be declared. Otherwise, VAX BASIC signals the same
error message.

5. If a static string variable is the same as a map name, VAX BASIC
overrides the static string name and uses the map name.

6. Until the REMAP statement executes, all variables named in the MAP
DYNAMIC statement point to the first byte of the MAP area and all
string variables have a length of zero. When the REMAP statement
executes, VAX BASIC sets the internal pointers as specified in the
REMAP statement. For example:

100 MAP (DUMMY) STRING map_buff er = 60
MAP DYNAMIC (DUMMY) LONG A, STRING B, SINGLE C(7)
REMAP (DUMMY) B=14, A, C()

The REMAP statement sets a pointer to byte 1 of DUMMY for string
variable B, a pointer to byte 15 for LONG variable A, and pointers to
bytes 19, 23, 27, 31, 35, 39, 43, and 47 for the elements in SINGLE
array C.

Statements and Functions 4-317

REMAP

Examples

7. You can use the REMAP statement to redefine the pointer for an array
element or variable more than once in a single REMAP statement. For
example:

100 MAP (DUMMY) STRING FILL = 48
MAP DYNAMIC (DUMMY) LONG A, B(10)
REMAP (DUMMY) B(), B(O)

This REMAP statement sets a pointer to byte 1 in DUMMY for array
B. Because array B uses a total of 44 bytes, the pointer for the first
element of array B, B(O) points to byte 45. References to array element
B(O) will be to bytes 45 through 48. Pointers for array elements 1
through 10 are set to bytes 5, 9, 13, 17 and so forth.

8. Because the REMAP statement is local to a program module, it affects
pointers only in the program module in which it executes.

Example 1

DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2
MAP (emp_buffer) LONG badge, &

STRING social_sec_num = 9, &
BYTE name_length, &

address_length, &
FILL (60)

MAP DYNAMIC (emp_buffer) STRING emp_name, &
emp_address

WHILE 1Y.
GET #1
REMAP (emp_buffer) STRING FILL = emp_fixed_info, &

emp_name = name_length, &
emp_address = address_length

4-318 Statements and Functions

NEXT

END

PRINT emp_name
PRINT emp_address
PRINT

Example 2

SUB deblock (STRING input_rec, STRING item())
MAP DYNAMIC (input_rec) STRING A(1 TO 3)
REMAP (input_rec) t

A(1) = 6, t
A(2) = 3, t
A(3) = 4

FOR I = LBOUND(A) TO UBOUND(A)
item(!) = A(I)

NEXT I
END SUB

REMAP

Statements and Functions 4-319

RESET

RESET

Format

The RESET statement is a synonym for the RESTORE statement. See the
RESTORE statement for more information.

RESET [#chnl-exp [, KEY #int-exp 11

4-320 Statements and Functions

RESTORE

Format

RESTORE

The RESTORE statement resets the DATA pointer to the beginning of the
DATA sequence, or sets the record pointer to the first record in a file.

RESTORE [#chnl-exp [, KEY #int-exp 11

Syntax Rules

Remarks

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign(#).

2. Int-exp must be between zero and the number of keys in the file
minus 1. It must be immediately preceded by a number sign (#).

1. If you do not specify a channel, RESTORE resets the DATA pointer to
the beginning of the DATA sequence.

2. RESTORE affects only the current program unit. Thus, executing
a RESTORE statement in a subprogram does not affect the DATA
pointer in the main program.

3. If there is no channel specified, and the program has no DATA
statements, RESTORE has no effect.

4. The file specified by chnl-exp must be open.

5. If chnl-exp specifies a magnetic tape file, VAX BASIC rewinds the tape
to the first record in the file.

6. The KEY clause applies to indexed files only. It sets a new key of
reference equal to int-exp and sets the next record pointer to the first
logical record in that key.

Statements and Functions 4-321

RESTORE

Example

7. For indexed files, the RESTORE statement without a KEY clause sets
the next record pointer to the first logical record specified by the
current key of reference. If there is no current key of reference, the
RESTORE statement sets the next record pointer to the first logical
record of the primary key.

8. If you use the RESTORE statement on any file type other than in
dexed, VAX BASIC sets the next record pointer to the first record in
the file.

9. The RESTORE statement is not allowed on virtual array files or on
files opened on unit record devices.

10. For information on the RESTORE GRAPHICS statement, see
Programming with VAX BASIC Graphics.

RESTORE #7Y,, KEY #4Y,

4-322 Statements and Functions

RESUME

Format

RESUME

The RESUME statement marks an exit point from an ON ERROR error
handling routine. VAX BASIC clears the error condition and returns
program control to a specified line number, label or to the program block
in which the error occurred.

NOTE

The RESUME statement is supported for compatibility with
other DIGITAL BASICs. For new program development,
DIGITAL recommends that you use WHEN blocks.

RESUME [target]

Syntax Rules

Remarks

Target must be a valid VAX BASIC line number or label and must exist in
the same program unit.

1. The following restrictions apply:

• The RESUME statement cannot appear within a protected region,
or within an attached or detached handler.

• The target of a RESUME statement cannot exist within a protected
region or handler.

• The RESUME statement cannot be used in a multi-line DEF unless
the target is also in the DEF function definition.

• The execution of a RESUME with no target is illegal if there is no
error active.

Statements and Functions 4-323

RESUME

Example

• A RESUME statement cannot transfer control out of the current
program unit. Therefore, a RESUME statement with no target
cannot terminate an error handler if the error handler is handling
an error that occurred in a subprogram or an external function,
and the error was passed to the calling program's error handler by
an ON ERROR GO BACK statement or by default.

2. When no target is specified in a RESUME statement, VAX BASIC
transfers control based on where the error occurs. If the error occurs
on a numbered line containing a single statement, VAX BASIC always
transfers control to that statement. When the error occurs within a
multi-statement line under the following conditions, VAX BASIC acts
as follows:

• Within a FOR, WHILE, or UNTIL loop, VAX BASIC transfers
control to the first statement that follows the FOR, WHILE, or
UNTIL statement.

• Within a SELECT block, VAX BASIC transfers control to the start
of the CASE block in which the error occurs.

• After a loop or SELECT block, VAX BASIC transfers control to the
statement that follows the NEXT or END SELECT statement.

• If none of the above conditions occurs, VAX BASIC transfers
control back to the statement that follows the most recent line
number.

3. A RESUME statement with a specified line number transfers control
to the first statement of a multi-statement line, regardless of which
statement caused the error.

4. A RESUME statement with a specified label transfers control to the
block of code indicated by that label.

Error_routine:
IF ERR = 11

THEN
CLOSE #1
RESUME end_of_prog

ELSE
RESUME

END IF
end_of_prog: END

4-324 Statements and Functions

RETRY

Format

RETRY

RETRY

The RETRY statement clears an error condition and reexecutes the state
ment that caused the error inside a protected region of a WHEN block.

Syntax Rules

Remarks

The RETRY statement must appear lexically inside of a handler associated
with a WHEN block.

The following rules apply to errors that occur during execution of loop
control statements (not the statements inside the loop body):

• In FOR. .. NEXT loops, the RETRY statement reexecutes the FOR
statement if the error occurs while VAX BASIC is evaluating the limit
or increment values.

• In FOR. .. NEXT loops, if the error occurs while VAX BASIC is evalu
ating the index variable, the RETRY statement reexecutes the NEXT
statement.

• In a FOR. .. UNTIL or FOR. .. WHILE loop, if an error occurs while VAX
BASIC is evaluating the relational expression, the RETRY statement
reexecutes the NEXT statement.

Statements and Functions 4-325

RETRY

Example

10 DECLARE LONG YOUR_AGE
WHEN ERROR IN

USE
INPUT "Enter your age";your_age

IF ERR = 60
THEN RETRY
ELSE EXIT HANDLER

END IF
END WHEN

4-326 Statements and Functions

RETURN

Format

RETURN

RETURN

The RETURN statement transfers control to the statement immediately
following the most recently executed GOSUB or ON ... GOSUB statement
in the current program unit.

Syntax Rules

Remarks

Example

None.

1. Once the RETURN is executed in a subroutine, no other statements
in the subroutine are executed, even if they appear after the RETURN
statement.

2. Execution of a RETURN statement before the execution of a GOSUB
or ON ... GOSUB causes VAX BASIC to signal "RETURN without
GOSUB" (ERR=72).

GOSUB subroutine_1

subroutine_1:

RETURN

Statements and Functions 4-327

RIGHTS

RIGHTS

Format

The RIGHT$ function extracts a substring from a string's right side,
leaving the string unchanged.

str-var =RIGHT[$] (str-exp, int-exp)

Syntax Rules

Remarks

None.

1. The RIGHT$ function extracts a substring from str-exp and stores the
substring in str-var. The substring begins with the character in the
position specified by int-exp and ends with the rightmost character in
the string.

2. If int-exp is less than or equal to zero, RIGHT$ returns the entire
string.

3. If int-exp is greater than the length of str-exp, RIGHT$ returns a null
string.

4. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to a LONG integer.

4-328 Statements and Functions

Example

DECLARE STRING main_str, &
end_result

main_str = "1234667"
end_result = RIGHT$(main_str, 3)
PRINT end_result

Output

34667

RIGHTS

Statements and Functions 4-329

RMSSTATUS

RMSSTATUS

Format

The RMSSTATUS function returns the RMS status or the status value of
the last I/O operation on a specified open I/O channel.

long-var= RMSSTATUS (chnl-exp ['STATUS])
I VALUE

Syntax Rules

Remarks

1. Chnl-exp must be the number of a channel opened from a VAX BASIC
routine.

2. Chnl-exp cannot be zero.

1. If chnl-exp does not represent an open channel, VAX BASIC signals
the error "I/O channel not open" (ERR=9).

2. If you do not specify either STATUS or VALUE, RMSSTATUS returns
the STATUS value by default.

3. If you specify STATUS, RMSSTATUS returns the FAB$L_STS or
the RAB$L_STS status value. However, if you specify VALUE,
RMSSTATUS returns the FAB$L_STV or the RAB$L_STV status
value.

4. Use the RMSSTATUS function to return the status of the following
operations:

• RESTORE

• GET

• PUT

• UPDATE

4-330 Statements and Functions

Examples

RMSSTATUS

• UNLOCK

• PRINT and PRINT USING

• INPUT, INPUT LINE, and LINPUT

• SCRATCH

• FREE

• Virtual array references

To determine the reason for the failure of an OPEN, CLOSE, KILL, or
NAME ... AS statement, use the VMSSTATUS function within an error
handler.

Example 1

%TITLE "RMSSTATUS Example"
Y.SBTTL "Reference Manual Examples"
Y.IDENT "V1.0"

PROGRAM Demo_RMSSTATUS_function

OPTION CONSTANT TYPE = INTEGER

OPEN "DOES_NOT_EXIST.LIS" FOR OUTPUT AS 1, &
SEQUENTIAL VARIABLE, &
RECORDSIZE 80

WHEN ERROR IN
GET 11

USE
PRINT "GET Operation failed"
PRINT "RMS Status ="; RMSSTATUS(1,STATUS)
PRINT "RMS Status Value ="; RMSSTATUS(1,VALUE)

END WHEN

END PROGRAM

Example 2

OPTION TYPE=EXPLICIT
EXTERNAL LONG CONSTANT RMS$_0K_DUP

MAP (ORDER) LONG ORD_ENTRY, STRING ORD_CUST_NO = 6Y,, &
STRING ORD_REMARK = 60%

Statements and Functions 4-331

RMSSTATUS

OPEN "ORD_DB" FOR INPUT AS FILE 1%,
ORGANIZATION INDEXED FIXED,
MAP ORDER,
PRIMARY ORD_ENTRY NODUPLICATES,
ALTERNATE ORD_CUST_NO DUPLICATES

INPUT "Enter order number";ORD_ENTRY
INPUT "Enter customer number";ORD_CUST_NO
INPUT "Remark";ORD_REMARK

Enter the order in the order database
Check if the customer has other orders

PUT #1%
IF RMSSTATUS(1%, STATUS) = RMS$_0K_DUP
THEN

The customer has other orders; compute the customer's
discount for other orders

END IF

CLOSE 1%
END

4-332 Statements and Functions

RND

Format

RND

The RND function returns a random number greater than or equal to zero
and less than 1.

real-var= RND

Syntax Rules

Remarks

None.

1. If the RND function is preceded by a RANDOMIZE statement, VAX
BASIC generates a different random number or series of numbers each
time a program executes.

2. The RND function returns a pseudorandom number if not preceded
by a RANDOMIZE statement; that is, each time a program runs,
VAX BASIC generates the same random number or series of random
numbers.

3. The RND function returns a floating-point SINGLE value.

4. The RND function returns values over a uniform distribution between
0 and 1. For example, a value between 0 and .1 is as likely as a value
between .5 and .6. Note the difference between this and a bell-curve
distribution where the probability of values in the range .3 to .7 is
higher than the outer ranges.

July 1988 Statements and Functions 4-333

RND

Example

DECLARE REAL random_num
RANDOMIZE
FOR I = 1 TO 3 !FOR loop causes VAX BASIC to print three random numbers

NEXT I

random_num = RND
PRINT random_num

Output

.865243

.477417

.734673

4-334 Statements and Functions

RSET

Format

RSET

The RSET statement assigns right-justified data to a string variable. RSET
does not change a string variable's length.

RSET str-var, ... = str-exp

Syntax Rules

Remarks

Example

Str-var cannot be a DEF function name unless the RSET statement is
inside the DEF function definition.

1. The RSET statement treats strings as fixed-length. It does not change
the length of str-var, nor does it create new storage locations.

2. If str-var is longer than str-exp, RSET right-justifies the data and pads
it with spaces on the left.

3. If str-var is shorter than str-exp, RSET truncates str-exp on the left.

DECLARE STRING test
test = "ABCDE"
RSET test = "123"
PRINT "X" + test

Output

x 123

Statements and Functions 4-335

SCRATCH

SCRATCH

Format

The SCRATCH statement deletes the current record and all following
records in a sequential file.

SCRATCH #chnl-exp

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel associated with a
file. It must be immediately preceded by a number sign (#).

1. Before you execute the SCRATCH statement, the file must be opened
with ACCESS SCRATCH.

2. The SCRATCH statement applies to ORGANIZATION SEQUENTIAL
files only.

3. The SCRATCH statement has no effect on terminals or unit record
devices.

4. For disk files, the SCRATCH statement discards the current record and
all that follows it in the file. The physical length of the file does not
change.

5. For magnetic tape files, the SCRATCH statement overwrites the
current record with two end-of-file marks.

6. Use of the SCRATCH statement on shared sequential files is not
recommended.

4-336 Statements and Functions July 1988

SCRATCH

SCRATCH #4%

Statements and F . unctions 4_337

SEGS

SEGS

Format

The SEG$ function extracts a substring from a main string, leaving the
original string unchanged.

str-var = SEG$ (str-exp, int-exp1, int-exp2)

Syntax Rules

Remarks

None.

1. VAX BASIC extracts the substring from str-exp, the main string, and
stores the substring in str-var. The substring begins with the character
in the position specified by int-expl and ends with the character in the
position specified by int-exp2.

2. If int-expl is less than l, VAX BASIC assumes a value of 1.

3. If int-expl is greater than int-exp2 or the length of str-exp, the SEG$
function returns a null string.

4. If int-expl equals int-exp2, the SEG$ function returns the character at
the position specified by int-expl.

5. Unless int-exp2 is greater than the length of str-exp, the length of the
returned substring equals int-exp2 minus int-expl plus 1. If int-exp2
is greater than the length of str-exp, the SEG$ function returns all
characters from the position specified by int-expl to the end of str-exp.

6. If you specify a floating-point expression for int-expl or int-exp2, VAX
BASIC truncates it to LONG integer.

4-338 Statements and Functions

Example

DECLARE STRING alpha, center
alpha = "ABCDEFGHIJK"
center = SEG$(alpha, 4, 8)
PRINT center

Output

DEFGH

SEGS

Statements and Functions 4-339

SELECT

SELECT

Format

The SELECT statement lets you specify an expression, a number of
possible values the expression may have, and a number of alternative
statement blocks to be executed for each possible case.

SELECT exp1
case-clause

[else-clause]

END SELECT

case-clause: CASEcase-item, ...
[statement]. ..

case-item: {
[rel-op] exp2 }
exp3 TO exp4 [,exp5 TO exp6] , ...

else-clause: CASE ELSE
[statement] ...

4-340 Statements and Functions

SELECT

Syntax Rules

Remarks

1. Exp1 is the expression to be tested against the case-clauses and the
else-clause. It can be numeric or string.

2. Case-clause consists of the CASE keyword followed by a case-item and
statements to be executed when the case-item is true.

3. Else-clause consists of the CASE ELSE keywords followed by state
ments to be executed when no previous case-item has been selected as
true.

4. Case-item is either an expression to be compared with exp1 or a range
of values separated with the keyword TO.

• Rel-op is a relational operator specifying how exp1 is to be com
pared to exp2. If you do not include a rel-op, VAX BASIC assumes
the equals(=) operator. VAX BASIC executes the statements in
the CASE block when the specified relational expression is true.

• Exp3 and exp4 specify a range of numeric or string values sepa
rated by the keyword TO. Multiple ranges must be separated with
commas. VAX BASIC executes the statements in the CASE block
when exp1 falls within any of the specified ranges.

1. A SELECT statement can have only one else-clause. The else-clause
is optional and, when present, must be the last CASE block in the
SELECT block.

2. Each statement in a SELECT block can have its own line number.

3. The SELECT statement begins the SELECT BLOCK and the END
SELECT keywords terminate it. VAX BASIC signals an error if you do
not include the END SELECT keywords.

4. Each CASE keyword establishes a CASE block. The next CASE or
END SELECT keyword ends the CASE block.

5. You can nest SELECT blocks within a CASE or CASE ELSE block.

6. VAX BASIC evaluates exp1 when the SELECT statement is first
encountered; VAX BASIC then compares expl with each case-clause in
order of occurrence until a match is found or until a CASE ELSE block
or END SELECT is encountered.

Statements and Functions 4-341

SELECT

Example

7. The following conditions constitute a match:

• Exp1 satisfies the relationship to exp2 specified by rel-op.
• Exp1 is greater than or equal to exp3, but less than or equal to

exp4, greater than or equal to expS but less than or equal to exp6,
and so on.

8. When a match is found between exp1 and a case-item, VAX BASIC
executes the statements in the CASE block where the match occurred.
If ranges overlap, the first match causes VAX BASIC to execute
the statements in the CASE block. After executing CASE block
statements, control passes to the statement immediately following the
END SELECT keywords.

9. If no CASE match occurs, VAX BASIC executes the statements in
the else-clause, if present, and then passes control to the statement
immediately following the END SELECT keywords.

10. If no CASE match occurs and you do not supply a case-else clause,
control passes to the statement following the END SELECT keywords.

100 SELECT A% + B% + C%
CASE = 100

PRINT 'THE VALUE IS EXACTLY 100'
CASE 1 TO 99

PRINT 'THE VALUE IS BETWEEN 1 AND 99'
CASE > 100

PRINT 'THE VALUE IS GREATER THAN 100'
CASE ELSE

PRINT 'THE VALUE IS LESS THAN 1'
END SELECT

4-342 Statements and Functions

SET PROMPT

SET PROMPT

Format

The SET PROMPT statement enables a question mark prompt to appear
after VAX BASIC executes either an INPUT, LINPUT, INPUT LINE,
MAT INPUT, or MAT LINPUT statement on channel #0. The SET NO
PROMPT statement disables the question mark prompt.

SET [NO] PROMPT

Syntax Rules

Remarks

None.

1. If you do not specify a SET PROMPT statement, the default is SET
PROMPT.

2. SET NO PROMPT disables VAX BASIC from issuing a question mark
prompt for the INPUT, LINPUT, INPUT LINE, MAT INPUT, and
MAT LINPUT statements on channel #0.

3. Prompting is reenabled when either a SET PROMPT statement or
a CHAIN statement is executed, or when a NEW, OLD, RUN or
SCRATCH command is executed in the BASIC environment.

4. The SET NO PROMPT statement does not affect the string constant
you specify as the input prompt with the INPUT statement.

Statements and Functions 4-343

SET PROMPT

Example

DECLARE STRING your_na.me, your_age, your_grade
INPUT "Enter your na.me";your_na.me
SET NO PROMPT
INPUT "Enter your age";your_age
SET PROMPT
INPUT "Enter the last school grade you completed";your_grade

Output

Enter your name? Katherine Kelly
Enter your age 15
Enter the last school grade you completed? 9

4-344 Statements and Functions

SGN

Format

SGN

The SGN function determines whether a numeric expression is positive,
negative, or zero. It returns a 1 if the expression is positive, a -1 if the
expression is negative, and zero if the expression is zero.

int-var= SGN (real-exp)

Syntax Rules

Remarks

Example

None.

1. If real-exp does not equal zero, SGN returns MAG(real-exp)/real-exp.
2. If real-exp equals zero, SGN returns a value of zero.

3. SGN returns a LONG integer.

DECLARE INTEGER sign
sign = SGN(46/23)
PRINT sign

Output

1

Statements and Functions 4-345

SIN

SIN

The SIN function returns the sine of an angle in radians or degrees.

Format

real-var= SIN (real-exp)

Syntax Rules

Remarks

Example

Real-exp is an angle specified in radians or degrees depending upon which
angle clause you choose with the OPTION statement.

1. The returned value is between -1 and 1.

2. VAX BASIC expects the argument of the SIN function to be a real
expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, VAX BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size.

OPTION ANGLE = RADIANS
DECLARE REAL s1_angle
s1_angle = SIN(PI/2)
PRINT s1_angle

Output

1

4-346 Statements and Functions

SLEEP

Format

SLEEP

The SLEEP statement suspends program execution for a specified number
of seconds or until a carriage return is entered from the controlling
terminal.

SLEEP int-exp

Syntax Rules

Remarks

Example

1. Int-exp is the number of seconds VAX BASIC waits before resuming
program execution.

2. Int-exp must be between 0 and 2,147,483,647; if it is greater than
2,147,483,647, VAX BASIC signals the error "Integer error or overflow"
(ERR=Sl).

1. Pressing the RETURN key on the controlling terminal cancels the
effect of the SLEEP statement.

2. All characters typed while SLEEP is in effect, including a RETURN
character entered to terminate the SLEEP statement, will remain in the
typeahead buffer. Therefore, if you type RETURN without preceding
data, an INPUT statement that follows the SLEEP will complete
without data.

SLEEP 120%

July 1988 Statements and Functions 4-34 7

SPACES

SPACES

Format

The SP ACE$ function creates a string containing a specified number of
spaces.

str-var =SPACE$ (int-exp)

Syntax Rules

Remarks

Example

Int-exp specifies the number of spaces in the returned string.

1. VAX BASIC treats an int-exp less than zero as zero.

2. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to a LONG integer.

DECLARE STRING A, B
A = "1234"
B = "5678"
PRINT A + SPACE$(5%) + B

Output

1234 5678

4-348 Statements and Functions

SOR

SOR

The SQR function returns the square root of a positive number.

Format

real-var= { SORT } (real-exp)
SOR

Syntax Rules

Remarks

Example

None.

1. VAX BASIC signals the error "Imaginary square roots" (ERR=54) when
real-exp is negative.

2. VAX BASIC assumes that the argument of the SQR function is a real
expression. When the argument is a real expression, VAX BASIC
returns a value of the same floating-point size. When the argument
is not a real expression, VAX BASIC returns a value of the default
floating-point size.

DECLARE REAL root
root = SQR(20•5)
PRINT root

Output

10

Statements and Functions 4-349

STATUS

STATUS

Format

The STATUS function returns an integer value containing information
about the last opened channel. Your program can test each bit to deter
mine the status of the channel.

NOTE

The STATUS function is supported only for compatibility with
other DIGITAL BASICs. DIGITAL recommends that you use
the RMSSTATUS function for new program development.

int-var= STATUS

Syntax Rules

Remarks

None.

1. The STATUS function returns a LONG integer.

2. The value returned by the STATUS function is undefined until VAX
BASIC executes an OPEN statement.

3. The STATUS value is reset by every input operation on any channel.
Therefore, you should copy the STATUS value to a different storage
location before your program executes another input operation.

4. If an error occurs during an input operation, the value of STATUS
is undefined. When no error occurs, the six low-order bits of the
returned value contain information about the type of device accessed
by the last input operation. Table 4-6 lists STATUS bits set by VAX
BASIC.

4-350 Statements and Functions

Example

Table 4-6: VAX BASIC STATUS Bits
Bit Set

0

Device Type

Record-oriented device

Carriage-control device

Terminal

Directory device

Single directory device

STATUS

2

3

4

5 Sequential block-oriented device (magnetic tape)

150 YY. = STATUS

Statements and Functions 4-351

STOP

STOP

Format

STOP

The STOP statement halts program execution allowing you to optionally
continue execution.

Syntax Rules

Remarks

None.

1. The STOP statement cannot appear before a PROGRAM, SUB or
FUNCTION statement.

2. The STOP statement does not close files.
3. When a STOP statement executes in a program executed with the

RUN command in the BASIC environment, VAX BASIC prints the
line number and module name associated with the STOP statement,
then displays the Ready prompt. In response to the prompt, you can
type immediate mode statements, CONTINUE to resume program
execution, or any valid compiler command. See the VAX BASIC User
Manual for more information on immediate mode.

4. When a STOP statement is in an executable image, the line number,
module name, and a number sign (#) prompt are printed. In response
to the prompt, you can type CONTINUE to continue program execu
tion or EXIT to end the program. If the program module was compiled
with the /NOLINE qualifier, no line number is displayed.

4-352 Statements and Functions

Example

PROGRAM Stopper
PRINT "Type CONTINUE when the program stops"
INPUT "Do you want to stop now"; Quit$

IF Quit$ = "Y"
THEN

STOP
ELSE

PRINT "So what are you waiting for?"
STOP

END IF

PRINT "You told me to continue ... thank you"
END PROGRAM

Output

Do you want to stop now? CONTINUE
So what are you waiting for?

STOP

Statements and Functions 4-353

STRS

STRS

Format

The STR$ function changes a numeric expression to a numeric character
string without leading and trailing spaces.

str-var = STR$ (num-exp)

Syntax Rules

Remarks

None.

1. If num-exp is negative, the first character in the returned string is a
minus sign (-).

2. The STR$ function does not return leading or trailing spaces.

3. When you print a floating-point number that has six decimal digits
or more but the integer portion has six digits or less (for example,
1234.567), VAX BASIC rounds the number to six digits (1234.57). If
a floating-point number's integer part is seven decimal digits or more,
VAX BASIC rounds the number to six digits and prints it in E format.

4. When you print a floating-point number with magnitude between 0.1
and 1, VAX BASIC rounds it to six digits. When you print a number
with magnitude smaller than 0.1, VAX BASIC rounds it to six digits
and prints it in E format.

5. The STR$ function returns up to 10 digits for LONG integers and up
to 31 digits for DECIMAL numbers.

4-354 Statements and Functions

Example

DECLARE STRING new_num
new_num = STR$(1543.659)
PRINT new_num

Output

1543.66

STRS

Statements and Functions 4-355

STRINGS

STRINGS

Format

The STRING$ function creates a string containing a specified number of
identical characters.

str-var =STRING$ (int-exp1, int-exp2)

Syntax Rules

Remarks

1. lnt-expl specifies the character string's length.

2. lnt-exp2 is the decimal ASCII value of the character that makes up the
string. This value is treated modulo 256.

1. VAX BASIC signals the error "String too long" (ERR=227) if int-expl is
greater than 65535.

2. If int-expl is less than or equal to zero, VAX BASIC treats it as zero.

3. VAX BASIC treats int-exp2 as an unsigned 8-bit integer. For example,
-1 is treated as 255.

4. If either int-expl or int-exp2 is a floating-point expression, VAX BASIC
truncates it to a LONG integer.

4-356 Statements and Functions

STRINGS

Example

DECLARE STRING output_str
output_str = STRING$(10%, 60%) !50 is the ASCII value of the
PRINT output_str !character "2"

Output

2222222222

Statements and Functions 4-357

SUB

SUB

The SUB statement marks the beginning of a VAX BASIC subprogram and
specifies the number and data type of its parameters.

Format

SUB sub-name [pass-mech] [([farmal-param], ...)]
[statement] ...

{
END SUB }
SU BEND

pass-mech:

farmal-param:

Syntax Rules

{
BY REF }
BY DESC

{

unsubs-var
[data-tvne] ([int-canst] , ... , ,., array-name

'

[= int-canst J [pass-mech J

1. Sub-name is the name of the separately compiled subprogram.

2. Formal-param specifies the number and type of parameters for the
arguments the SUB subprogram expects to receive when invoked.

• Empty parentheses indicate that the SUB subprogram has no
parameters.

4-358 Statements and Functions

Remarks

SUB

• Data-type specifies the data type of a parameter. If you do not
specify a data type, parameters are of the default data type and
size. When you do specify a data type, all following parameters
are of that data type until you specify a new data type. Data
type keywords and their size, range, and precision are listed in
Table 1-2 in this manual.

3. Sub-name can have from 1 to 31 characters and must conform to the
following rules:

• The first character of an unquoted name must be an alphabetic
character (A through Z). The remaining characters, if present, can
be any combination of letters, digits (0 through 9), dollar signs
($), periods (.), or underscores (-)·

• A quoted name can consist of any combination of printable ASCII
characters.

4. Data-type can be any VAX BASIC data type keyword or a data type
defined by a RECORD statement.

5. Pass-mech specifies the parameter passing mechanism by which the
subprogram receives arguments.

6. A pass-mech clause outside the parentheses applies by default to all
SUB parameters. A pass-mech clause in the formal-param list overrides
the specified default and applies only to the immediately preceding
parameter.

1. The SUB statement must be the first statement in the SUB subprogram.

2. Compiler directives and comment fields created with an exclama
tion point (!), can precede the SUB statement because they are not
VAX BASIC statements. Note that REM is a VAX BASIC statement;
therefore, it cannot precede the SUB statement.

3. Every SUB statement must have a corresponding END SUB statement
or SUBEND statement.

4. If you do not specify a passing mechanism, the SUB program receives
arguments by the default passing mechanisms, as shown in Table 4-1.

5. Parameters defined in formal-param must agree in number, type,
ordinality, and passing mechanism with the arguments specified in the
CALL statement of the calling program.

Statements and Functions 4-359

SUB

Example

6. You can specify up to 255 parameters.

7. Any VAX BASIC statement except those that refer to other program
unit types (FUNCTION, PICTURE or PROGRAM) can appear in a
SUB subprogram.

8. All variables, except those named in MAP and COMMON statements
are local to that subprogram.

9. VAX BASIC initializes local variables to zero or the null string.

10. SUB subprograms receive parameters by reference or by descriptor. A
SUB subprogram cannot receive any parameter BY VALUE. Table 4-1
lists and describes VAX BASIC parameter-passing mechanisms.

• BY REF specifies that the subprogram receives the argument's
address.

• BY DESC specifies that the subprogram receives the address of
a VAX BASIC descriptor. For information about the format of a
VAX BASIC descriptor for strings and arrays, see the VAX BASIC
User Manual. For information on other types of descriptors, see
the VAX Architecture Handbook.

11. By default, VAX BASIC subprograms receive numeric unsubscripted
variables by reference, and all other parameters by descriptor. You
can override these defaults for strings and arrays with a BY clause:

• If you specify a string length with the =int-canst clause, you must
also specify BY REF. If you specify BY REF and do not specify a
string length, VAX BASIC uses the default string length of 16.

• If you specify array bounds, you must also specify BY REF.
12. Subprograms can be called recursively.

SUB SUB3 BY REF (DOUBLE A, B, t
STRING Emp_nam BY DESC, t
wage(20))

END SUB

4-360 Statements and Functions

SU BEND

Format

SU BEND

SU BEND

The SUBEND statement is a synonym for the END SUB statement. See
the END statement for more information.

Statements and Functions 4-361

SUB EXIT

SUB EXIT

Format

SUB EXIT

The SUBEXIT statement is a synonym for the EXIT SUB statement. See
the EXIT statement for more information.

4-362 Statements and Functions

SUMS

Format

SUMS

The SUM$ function returns a string whose value is the sum of two
numeric strings.

str-var =SUM$ (str-exp1, str-exp2)

Syntax Rules

Remarks

None.

1. Each string expression can contain up to 54 ASCII digits and an
optional decimal point and sign.

2. VAX BASIC adds str-exp2 to str-exp1 and stores the result instr-var.
3. If str-exp1 and str-exp2 are integers, str-var takes the precision of the

larger string unless trailing zeros generate that precision.

4. If str-exp1 and str-exp2 are decimal fractions, str-var takes the preci
sion of the more precise fraction, unless trailing zeros generate that
precision.

5. SUM$ omits trailing zeros to the right of the decimal point.

6. The sum of two fractions takes precision as follows:

• The sum of the integer parts takes the precision of the larger part.

• The sum of the decimal fraction part takes the precision of the
more precise part.

7. SUM$ truncates leading and trailing zeros.

Statements and Functions 4-363

SUMS

Example

DECLARE STRING A, 8, total
A = "46"
B = "87"
total = SUM$(A,B)
PRINT total

Output

133

4-364 Statements and Functions

SWAP%

Format

SWAP%

The SWAP% function transposes a WORD integer's bytes.

NOTE

The SWAP% function is supported only for compatibility with
BASIC-PLUS-2. DIGITAL recommends that you do not use the
SWAP% function for new program development.

int-var= SWAP% (int-exp)

Syntax Rules

Remarks

Example

None.

1. SWAP% is a WORD function. VAX BASIC evaluates int-exp and
converts it to the WORD data type, if necessary.

2. VAX BASIC transposes the bytes of int-exp and returns a WORD
integer.

DECLARE INTEGER word_int
word_int = SWAP%(23)
PRINT word_int

Output

5888

Statements and Functions 4-365

TAB

TAB

Format

When used with the PRINT statement, the TAB function moves the cursor
or print mechanism to a specified column.

When used outside the PRINT statement, the TAB function creates a string
containing the specified number of spaces.

str-var =TAB(int-exp)

Syntax Rules

Remarks

1. When used with the PRINT statement, int-exp specifies the column
number of the cursor or print mechanism.

2. When used outside the PRINT statement, int-exp specifies the number
of spaces in the returned string.

1. You cannot tab beyond the current MARGIN restriction.

2. The leftmost column position is zero.

3. If int-exp is less than the current cursor position, the TAB function has
no effect.

4. The TAB function can move the cursor or print mechanism only from
the left to the right.

5. You can use more than one TAB function in the same PRINT state
ment.

6. Use semicolons to separate multiple TAB functions in a single state
ment. If you use commas, VAX BASIC moves to the next print zone
before executing the TAB function.

4-366 Statements and Functions July 1988

TAB

7. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to LONG integer.

Statements and Functions 4-366.1

Example

TAB

PRINT "Number 1"; TAB(16); "Number 211
; TAB(30); "Number 3"

Output

Number 1 Number 2 Number 3

Statements and Functions 4-367

TAN

TAN

The TAN function returns the tangent of an angle in radians or degrees.

Format

real-var =TAN(real-exp)

Syntax Rules

Remarks

Example

Real-exp is an angle specified in radians or degrees, depending on which
angle clause you choose with the OPTION statement.

VAX BASIC expects the argument of the TAN function to be a real
expression. When the argument is a real expression, VAX BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, VAX BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

OPTION ANGLE = DEGREES
DECLARE REAL tangent
tangent = TAN(45.0)
PRINT tangent

Output

1

4-368 Statements and Functions

TIME

Format

TIME

The TIME function returns the time of day (in seconds) as a floating
point number. The TIME function can also return process CPU time and
connect time.

real-var =TIME(int-exp)

Syntax Rules

Remarks

None.

1. The value returned by the TIME function depends on the value of
int-exp.

2. If int-exp equals zero, TIME returns the number of seconds since
midnight.

3. VAX BASIC also accepts values 1 and 2 and returns values as shown
in Table 4-7. All other arguments to the TIME function are undefined
and cause VAX BASIC to signal "Not implemented" (ERR=250).

4. The TIME function returns a SINGLE floating-point value.

5. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to a LONG integer.

Statements and Functions 4-369

TIME

Table 4-7: TIME Function Values

Example

Argument Value:

0

1

2

PRINT TIME(O)

Output

49671

4-370 Statements and Functions

VAX BASIC Returns:

The amount of time elapsed since midnight in seconds

The CPU time of the current process in tenths of a
second

The connect time of the current process in minutes

TIMES

format

TIMES

The TIME$ function returns a string displaying the time of day in the form
hh:mm AM or hh:mm PM.

str-var =11ME$(int-exp)

Syntax Rules

Remarks

Example

Int-exp specifies the number of minutes before midnight.

1. If int-exp equals zero, TIME$ returns the current time of day.

2. The value of int-exp must be between 0 and 1440 or VAX BASIC
signals an error.

3. The TIME$ function uses a 12-hour, AM/PM clock. Before 12:00
noon, TIME$ returns hh:mm AM, and after 12:00 noon, hh:mm PM.

4. If you specify a floating-point expression for int-exp, VAX BASIC
truncates it to a LONG integer.

DECLARE STRING current_time
current_time = TIME$(0)
PRINT current_time

Output

01:51 PM

Statements and Functions 4-371

TRMS

TRMS

Format

The TRM$ function removes all trailing blanks and tabs from a specified
string.

str-var =TRM$(str-exp)

Syntax Rules

Remarks

Example

None.

The returned str-var is identical to str-exp, except that it has all the trailing
blanks and tabs removed.

DECLARE STRING old_string, new_string
old_string = "ABCDEFG "
new_string = TRM$(old_string)
PRINT old_string;"XYZ"
PRINT new_string;"XYZ"

Output

ABCDEFG XYZ
ABCDEFGXYZ

4-372 Statements and Functions

UBOUND

Format

UBOUND

The UBOUND function returns the upper bounds of a compile-time or
run-time dimensioned array.

num-var = UBOUND (array-name [, num-exp])

Syntax Rules

Remarks

1. Array-name must specify an array that has been previously explicitly
or implicitly declared.

2. Num-exp specifies the number of the dimension for which you have
requested the upper bound.

1. If you do not specify a numeric expression, VAX BASIC automatically
returns the upper bound of the first dimension.

2. If you specify a numeric expression that is less than or equal to zero,
VAX BASIC signals an error message.

3. If you specify a numeric expression that exceeds the number of
dimensions, VAX BASIC signals an error message.

Statements and Functions 4-373

UBOUND

Example

DECLARE INTEGER CONSTANT B = 6
DIM A(B)
account_num = 1
FOR dim_num = 0 TO UBOUND(A)

A(dim_num) = account_num
account_num = account_num + 1
PRINT A(dim_num)

NEXT dim_num

Output

1
2
3
4
6
6

4-374 Statements and Functions

UNLESS

Format

UNLESS

The UNLESS qualifier modifies a statement. VAX BASIC executes the
modified statement only if a conditional expression is false.

statement UN LESS cond-exp

Syntax Rules

Remarks

Example

None.

1. The UNLESS statement cannot be used on nonexecutable statements
or on statements such as SELECT, IF, and DEF that establish a
statement block.

2. VAX BASIC executes the statement only if cond-exp is false (value
zero).

PRINT "A DOES NOT EQUAL 3" UNLESS AY. = 3Y.

Statements and Functions 4-375

UNLOCK

UNLOCK

Format

The UNLOCK statement unlocks the current record or bucket locked by
the last FIND or GET statement.

UNLOCK #chnl-exp

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number asso
ciated with a file. It must be immediately preceded by a number sign
(#).

1. A file must be opened on the specified channel before UNLOCK can
execute.

2. The UNLOCK statement only applies to files on disk.

3. If the current record is not locked by a previous GET or FIND state
ment, the UNLOCK statement has no effect and VAX BASIC does not
signal an error.

4. The UNLOCK statement does not affect record buffers.

5. After VAX BASIC executes the UNLOCK statement, you cannot
update or delete the current record.

6. Once the UNLOCK statement executes, the position of the current
record pointer is undefined.

4-376 Statements and Functions

UNLOCK

Example

UNLOCK #101.

Statements and Functions 4-377

UNTIL

UNTIL

Format

Conditional

The UNTIL statement marks the beginning of an UNTIL loop or modifies
the execution of another statement.

UNTIL cond-exp
[statement] ...

NEXT

Statement Modifier

statement UNTIL cond-exp

Syntax Rules

None.

Remarks

1. Conditional

•
•

A NEXT statement must end the UNTIL loop .

VAX BASIC evaluates cond-exp before each loop iteration. If the
expression is false (value zero), VAX BASIC executes the loop. If
the expression is true (value nonzero), control passes to the first
executable statement after the NEXT statement.

4-378 Statements and Functions

Examples

UNTIL

2. Statement Modifier

VAX BASIC executes the statement repeatedly until cond-exp is true.

Example 1

!Conditional
UNTIL A >= 5

NEXT

A = A + .01
TOTAL = TOTAL + 1

Example 2

!Statement Modifier
A = A + 1 UNTIL A >= 200

Statements and Functions 4-379

UPDATE

UPDATE

Format

The UPDATE statement replaces a record in a file with a record in the
record buffer. The UPDATE statement is valid on sequential, relative, and
indexed files.

UPDATE #chnl-exp [,COUNT int-exp]

Syntax Rules

Remarks

1. Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

2. Int-exp specifies the size of the new record.

1. The file associated with chnl-exp must be a disk file opened with
ACCESS MODIFY.

2. Each UPDATE statement must be preceded by a successful GET or
FIND operation or VAX BASIC signals "No current record" (ERR=131).
FIND locates but does not retrieve records. Therefore, you must
specify a COUNT clause when retrieving variable-length records
when the preceding operation was a FIND. Int-exp must exactly match
the size of the old record.

3. If you are updating a variable-length record, and the record that you
want to write out is not the same size as the record you retrieved, you
must use a COUNT clause.

4. After an UPDATE statement executes, there is no current record
pointer. The next record pointer is unchanged.

4-380 Statements and Functions July 1988

Example

UPDATE

5. The length of the new record must be the same as that of the existing
record for all files with fixed-length records and for all sequential files.
If you specify a COUNT clause, the int-exp must match the size of the
existing record.

6. For relative files with variable-length records, the new record can be
larger or smaller than the record it replaces.

• The new record must be smaller than or equal to the maximum
record size set with the MAP or RECORDSIZE clause when the
file was opened.

• You must use the COUNT clause to specify the size of the new
record if it is different from that of the record last accessed by a
GET operation on that channel.

7. For indexed files with variable-length records, the new record can be
larger or smaller than the record it replaces. When the program does
not permit duplicate primary keys, the new record can be no longer
than the size specified by the MAP or RECORDSIZE clause when the
file was opened. The record must include at least the primary key
field.

8. An indexed file alternate key for the new record can differ from that
of the existing record only if the OPEN statement for that file specified
CHANGES for the alternate key.

UPDATE #4%, COUNT 32

July 1988 Statements and Functions 4-381

VAL

VAL

Format

The VAL function converts a numeric string to a floating-point value.

NOTE

DIGITAL recommends that you use the DECIMAL, REAL, and
INTEGER functions to convert numeric strings to numeric data
types.

real-var= VAL (str-exp)

Syntax Rules

Remarks

Str-exp can contain the ASCII digits 0 through 9, uppercase E, a plus sign
(+), a minus sign (-), and a period (.).

1. The VAL function ignores spaces and tabs.

2. If str-exp is null, or contains only spaces and tabs, VAL returns a value
of zero.

3. The value returned by the VAL function is of the default floating-point
size.

4-382 Statements and Functions

Example

DECLARE REAL real_num
real_num = VAL("990.32")
PRINT real_num

Output

990.32

VAL

Statements and Functions 4-383

VAL%

VAL%

Format

The VAL% function converts a numeric string to an integer.

NOTE

DIGITAL recommends that you use the DECIMAL, REAL, and
INTEGER functions to convert numeric strings to numeric data
types.

int-var= VAL% (str-exp)

Syntax Rules

Remarks

Str-exp can contain the ASCII digits 0 through 9, a plus sign (+), or a
minus sign (-).

1. The VAL% function ignores spaces and tabs.

2. If str-exp is null or contains only spaces and tabs, VAL% returns a
value of zero.

3. The value returned by the VAL% function is an integer of the default
size.

4-384 Statements and Functions

Example

DECLARE INTEGER ret_int
ret_int = VAL7.("789")
PRINT ret_int

Output

789

VALo/o

Statements and Functions 4-385

VMSSTATUS

VMSSTATUS

Format

VMSSTATUS returns the underlying VAX/VMS condition code when
control is transferred to a VAX BASIC error handler.

int-var= VMSSTATUS

Syntax Rules

Remarks

None.

1. If ERR contains the value 194, you can specify VMSSTATUS to
examine the actual error that was signaled to VAX BASIC.

2. If an error is raised by an underlying system component such as the
Run-Time Library, you can specify VMSSTATUS to determine the
underlying error.

3. If you are writing a utility routine that may be called from languages
other than VAX BASIC, you can specify VMSSTATUS in a call to
LIB$SIGNAL to signal the underlying error to the caller of the utility
routine.

4. When there is no error pending, VMSSTATUS remains undefined.

4-386 Statements and Functions

Example

PROGRAM
WHEN ERROR USE global_handler

END WHEN

HANDLER global_handler
final_statusY, = VMSSTATUS
END HANDLER
END PROGRAM final_statusY.

VMSSTATUS

Statements and Functions 4-387

WAIT

WAIT

Format

The WAIT statement specifies the number of seconds the program waits
for terminal input before signaling an error.

WAIT int-exp

Syntax Rules

Remarks

Int-exp must be between 0 and 255; if it is greater than 255, VAX BASIC
assumes a value of 255.

1. The WAIT statement mmt precede a GET operation to a terminal or
an INPUT, INPUT LINE, LINPUT, MAT INPUT, or MAT LINPUT
statement. Otherwise, it has no effect.

2. Int-exp is the number of seconds VAX BASIC waits for input before
signaling the error, "Keyboard wait exhausted" (ERR=lS).

3. After VAX BASIC executes a WAIT statement, all input statements
wait the specified amount of time before VAX BASIC signals an error.

4. WAIT 0 disables the WAIT statement.

4-388 Statements and Functions

Example

10 DECLARE STRING your_name
WAIT 60

WAIT

INPUT "You have sixty seconds to type your name";your_name
WAIT 0

Output

You have sixty seconds to type your name?
Y.BAS-F-KEYWAIEXH, Keyboard wait exhausted
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RMS-W-TMO, timeout period expired
-BAS-I-FROLINMOD, from line 10 in module WAIT
Y.TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

00007334 00007334
----- above condition handler called with exception 001A807C:
%BAS-F-KEYWAIEXH, keyboard wait exhausted
-BAS-I-ON_CHAFIL, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RMS-W-TMO, timeout period expired
----- end of exception message

WAIT$MAIN WAIT$MAIN 3

00011618 00011618
OOOOF02F OOOOF02F
OOOOE3F6 OOOOE3F6
0001387A 0001387A
00000044 00000644

Statements and Functions 4-389

WHEN ERROR

WHEN ERROR

Format

The WHEN ERROR statement marks the beginning of a WHEN ERROR
construct. The WHEN ERROR construct contains a protected region and
can include an attached handler or identify a detached handler.

With an Attached Handler

WHEN ERROR IN
protected-staterr1ent
[protected-staterr1ent,...]

USE
handler-staterr1ent
[handler-staterr1ent, ...]

END WHEN

With a Detached Handler

WHEN ERROR USE handler-narr1e

protected-staterr1ent
[protected-staterr1ent, ...]

END WHEN

4-390 Statements and Functions

WHEN ERROR

HANDLER handler-name

handler-statement ...

END HANDLER

Syntax Rules

1. Protected-statement specifies a statement that appears within a pro
tected region. A protected region is a special block of code that is
monitored by VAX BASIC for the occurrence of a run-time error.

2. Handler-statement specifies the statement that appears inside an error
handler.

3. With an Attached Handler
• The keyword USE marks the start of handler statements.

• An attached handler must be delimited by a USE and END WHEN
statement.

4. With a Detached Handler
• The keyword USE names the associated handler for the protected

region.

• Handler-name must be a valid VAX BASIC identifier and cannot be
the same as any label, DEF, DEF•, SUB, FUNCTION or PICTURE
name within the same program unit.

• A detached handler must be delimited by a HANDLER and END
HANDLER statement.

• You can specify the same detached handler with more than one
WHEN ERROR USE statement.

Statements and Functions 4-391

WHEN ERROR

Remarks

1. The WHEN ERROR statement designates the start of a block of
protected statements.

2. If an error occurs inside a protected region, VAX BASIC transfers
control to the error handler associated with the WHEN ERROR
statement.

3. VAX BASIC does not allow you branch into a WHEN block.

4. When VAX BASIC encounters an END WHEN statement for an
attached handler or an END HANDLER statement for a detached
handler, VAX BASIC clears the exception and transfers control to the
following statement.

5. VAX BASIC allows you to nest WHEN blocks. If an exception occurs
within a nested protected region, VAX BASIC transfers control to the
handler associated with the innermost protected region in which the
error occurred.

6. WHEN blocks cannot exist inside a handler.

7. WHEN blocks cannot cross other block structures.

8. You cannot specify a RESUME statement within a WHEN ERROR
construct.

9. You cannot specify an ON ERROR statement within a protected
region.

10. An attached handler must immediately follow the protected region of
a WHEN ERROR IN block.

11. Exit from a handler must occur through a RETRY, CONTINUE, or
EXIT HANDLER statement, or by reaching the end of the handler
delimited by END WHEN or END HANDLER.

12. For more information about detached handlers, see the HANDLER
statement.

4-392 Statements and Functions

Examples

Example 1

!With an attached handler
PROGRAM salary
DECLARE REAL hourly_rate, no_of_hours, weekly_pay
WHEN ERROR IN

INPUT "Enter your hourly rate";hourly_rate

WHEN ERROR

INPUT "Enter the number of hours you worked this week";no_of_hours
weekly_pay = no_of_hours * hourly_rate

USE

PRINT "Your pay for this week is";weekly_pay

SELECT ERR
CASE 50

PRINT "Invalid data"
RETRY

CASE ELSE
EXIT HANDLER

END SELECT
END WHEN
END PROGRAM

Output 1

Enter your hourly rate? 35.00
Enter the number of hours you worked this week? 45
Your pay for this week is 1575

Example 2

!With a detached handler
PROGRAM salary
DECLARE REAL hourly_rate, no_of_hours, weekly_pay
WHEN ERROR USE patch_work

INPUT "Enter your hourly rate";hourly_rate
INPUT "Enter the number of hours you worked this week";no_of_hours
weekly_pay = no_of_hours * hourly_rate
PRINT "Your pay for this week is";weekly_pay

END WHEN

Statements and Functions 4-393

WHEN ERROR

HANDLER patch_work
SELECT ERR

CASE = 60
PRINT "Invalid data"
RETRY

CASE ELSE
EXIT HANDLER

END SELECT
END HANDLER
END PROGRAM

Output 2

Enter your hourly rate? Nineteen dollars and fifty cents
Invalid data
Enter your hourly rate? 19.60
Enter the number of hours you worked this week? 40
Your pay for this week is 780

4-394 Statements and Functions

WHILE

Format

Conditional

WHILE

The WHILE statement marks the beginning of a WHILE loop or modifies
the execution of another statement.

WHILE cond-exp
[statement] ...

NEXT

Statement Modifier

statement WHILE cond-exp

Syntax Rules

Remarks

A NEXT statement must end the WHILE loop.

1. Conditional

VAX BASIC evaluates cond-exp before each loop iteration. If the
expression is true (value nonzero), VAX BASIC executes the loop.
If the expression is false (value zero), control passes to the first
executable statement after the NEXT statement.

Statements and Functions 4-395

WHILE

Examples

2. Statement Modifier

VAX BASIC executes the statement repeatedly as long as cond-exp is
true.

Example 1

!Conditional
WHILE X < 100

X = X + SQR(X)
NEXT

Example 2

!Statement Modifier
XY. = XY. + 1Y. WHILE XY. < 1001.

4-396 Statements and Functions

XLATES

Format

XLATES

The XLATE$ function translates one string to another by referencing a
table string you supply.

str-var = XLATE[$] (str-exp1, str-exp2)

Syntax Rules

Remarks

1. Str-exp1 is the input string.

2. Str-exp2 is the table string.

1. Str-exp2 can contain up to 256 ASCII characters, numbered from 0
to 255; the position of each character in the string corresponds to an
ASCII value. Because 0 is a valid ASCII value (null), the first position
in the table string is position zero.

2. XLATE$ scans str-exp1 character by character, from left to right. It
finds the ASCII value n of the first character in str-exp1 and extracts
the character it finds at position n in str-exp2. XLATE$ then appends
the character from str-exp2 to str-var. XLATE$ continues this process,
character by character, until the end of str-exp1 is reached.

3. The output string may be smaller than the input string for the follow
ing reasons:

• XLATE$ does not translate nulls. If the character at position n
in str-exp2 is a null, XLATE$ does not append that character to
str-var.

• If the ASCII value of the input character is outside the range of
positions in str-exp2, XLATE$ does not append any character to
str-var.

Statements and Functions 4-397

XLATES

Example

DECLARE STRING A, table, source
A = "abcdefghijklmnopqrstuvwxyz"
table = STRING$(65, 0) + A
LINPUT "Type a string of uppercase letters"; source
PRINT XLATE$(source, table)

Output

Type a string of uppercase letters? ABCDEFG
abcdef g

4-398 Statements and Functions

Appendix A

Transporting Programs Between VAX
BASIC and BASIC-PLUS-2

This appendix summarizes transportability issues between BASIC-PLUS-2
and VAX BASIC.

A. 1 Overview

This appendix is for users who want to write BASIC programs that can
be used in both VAX BASIC and PDP-11 BASIC-PLUS-2. It describes
functionality that is particular to one language, as well as statements and
functions that appear the same in both languages, but produce different
results. ·

Note that this appendix does not describe all the differences between
VAX BASIC and BASIC-PLUS-2. To assist you in writing transportable
programs, use the DCL command BASIC/FLAG=BP2COMP ATIBILITY
when you invoke VAX BASIC. This command causes VAX BASIC to signal
an informational message whenever you use functionality that is not
compatible with BASIC-PLUS-2.

This appendix contains the following sections:

• Language-specific functionality

• I/O differences

• Procedure calling

• Generated errors

• Miscellaneous differences

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-1

A.2 Language-Specific Functionality

The following statements, functions, and clauses are available only in
BASIC-PLUS-2:

• Specifying a line number with the CHAIN statement t
• The FSS$ function

• The ONECHR function (see the VAX BASIC INKEY$ function)

• The PEEK function t
• The SPEC% function t
• The CLUSTERSIZE and MODE clauses on the OPEN statement t

VAX BASIC supports the following functionality which is not available in
BASIC-PLUS-2:

• Graphics
• Support for the VAX Language-Sensitive Editor

• Non-zero lower bounds for arrays

• WHEN blocks
• Return values on the END, EXIT DEF, END DEF, EXIT FUNCTION,

and END FUNCTION statements

• Dollar sign ($) and percent sign (%) suffixes in explicitly declared
variables

• User-defined data types with the RECORD statement

• DECIMAL, GFLOAT, and HFLOAT data types

• Hexadecimal, binary, and octal literal notation

The following statements, functions, and commands are available only in
VAX BASIC:

• The %DECLARED directive

• The %INCLUDE %FROM %CDD directive

• The %INCLUDE %FROM %LIBRARY directive

• The %PRINT directive

• All graphics statements

• The CAUSE ERROR statement

t Specific to BASIC-PLUS-2 on RSTS/E systems.

A-2 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

• The FREE statement

• The FIND statement with the ALLOW, REGARDLESS, and WAIT
clauses

• The GET statement with the ALLOW, REGARDLESS, and WAIT
clauses

• The MID$ assignment statement

• The OPTION CONSTANT TYPE, OPTION HANDLE, and OPTION
ANGLE statements

• The PROGRAM, END PROGRAM and EXIT PROGRAM statements

• The RECORD statement

• All WHEN block statements and clauses (WHEN ... END WHEN,
HANDLER ... END HANDLER, CONTINUE, RETRY, and EXIT
HANDLER)

• The DECIMAL function

• The INKEY$ function

• The LBOUND and UBOUND functions

• The LOC function

• The MARGIN and NOMARGIN functions

• The MAX, MIN, and MOD functions

• The VMSSTATUS and RMSSTATUS functions

• The ANY and OPTIONAL keywords in EXTERNAL routine declara
tions

A.3 1/0 Differences

This section discusses some I/O differences between VAX BASIC and
BASIC-PLUS-2.

A.3.1 The MAGTAPE Function

VAX BASIC does not support the MAGTAPE function except for the
rewind tape function (code 3). Table A-1 describes the VAX BASIC
actions you can perform to obtain other MAGTAPE functionality.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-3

Table A-1: MAGTAPE Functionality in VAX BASIC
Code Function

2 Write EOF

3 Rewind tape

4 Skip records

5 Backspace

6 Set density or set parity

7 Get status

VAX BASIC Action

Close channel with the CLOSE statement

Use the RESTORE # statement, the REWIND clause
on an OPEN statement, or the MAGTAPE function

Perform GET operations, ignore data until reaching
desired record

Rewind tape, perform GET operations, ignore data
until reaching desired record

Use the DCL commands MOUNT/DENSITY and
MOUNT /FOREIGN or the $MOUNT system service

Use the RMSSTATUS function

A.3.2 The OPEN Statement

The following differences exist in the OPEN statement when used in VAX
BASIC and BASIC-PLUS-2:

• In VAX BASIC, a map named in an OPEN statement is never initial
ized; in BASIC-PLUS-2, variables in the map are initialized to zero or
to the null string.

• In VAX BASIC, an OPEN error causes the STATUS variable to be
set to zero. In BASIC-PLUS-2, an OPEN error causes the STATUS
variable to be set to the RMS STS field value. Use the VAX BASIC
RMSSTATUS function to return the RMS STS field value.

• Both VAX BASIC and BASIC-PLUS-2 allow you to omit key clauses
when opening an existing indexed fie. However, VAX BASIC requires
that you explicitly specify FOR INPUT; BASIC-PLUS-2 does not.

The following OPEN statement clauses produce different results when
used in VAX BASIC and BASIC-PLUS-2:

• The ALLOW Clause

VAX BASIC requires that you have write access to a file in order to
specify ALLOW NONE in an OPEN statement; BASIC-PLUS-2 does
not.

A-4 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

• The CLUSTERSIZE Clause

The CLUSTERSIZE clause can be used with an OPEN statement on
RSTS/E systems only. In VAX BASIC and BASIC-PLUS-2 on RSX
systems, you can obtain functionality similar to the CLUSTERSIZE
clause by using the EXTENDSIZE and WINDOWSIZE clauses. The
EXTENDSIZE clause specifies the amount of space a file is extended
after the existing space is full. The WINDOWSIZE clause specifies the
number of block retrieval pointers that are kept in memory for the file.

• The CONTIGUOUS Clause

In VAX BASIC, using the CONTIGUOUS clause with an OPEN
statement does not necessarily mean the file will occupy contiguous
disk space. If there is not enough contiguous space available, RMS
allocates the largest possible contiguous space and does not signal
an error. In BASIC-PLUS-2, if there is not enough contiguous space
available, RMS signals an error.

• The MODE Clause

The MODE clause cannot be used with an OPEN statement in VAX
BASIC. In BASIC-PLUS-2 on RSX systems, the MODE clause is
ignored except when used for device-specific 1/0. Table A-2 lists
transportable BASIC statements that correspond to RSTS/E disk
MODE values. You can use these statements in VAX BASIC as well as
in BASIC-PLUS-2 on RSX systems.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-5

Table A-2: RSTS/E Disk MODE Values and Corresponding BASIC
Statements

MODE
Value

0%

1%

2%

5%

16%

32%

64%

4096%

8192%

Function

Normal read/write

Update file

Append to file

Update file

Create contiguous

Create tentative file

Create contiguous file
con di tionall y

Read only regardless

Read Only

Transportable Statement

Use OPEN with ACCESS MODIFY and
ALLOW MODIFY

Use OPEN with ACCESS MODIFY

Use OPEN with ACCESS APPEND

Use OPEN with ACCESS MODIFY and
ALLOW MODIFY

Use OPEN with CONTIGUOUS

Use OPEN with TEMPORARY

Use OPEN with CONTIGUOUS

Use GET or FIND with REGARDLESS1

Use OPEN with ACCESS READ

l The REGARDLESS clause is not available in BASIC-PLUS-2.

• The RECORDSIZE Clause

In all VAX BASIC files and BASIC-PLUS-2 RMS files, the
RECORDSIZE clause specifies the RMS logical record size. In BASIC
PLUS-2 virtual files, the RECORDSIZE clause specifies the size of the
1/0 buffer for the channel.

A.3.3 The PUT Statement

In VAX BASIC, a PUT statement with a count of zero to a variable length
file creates a record with a length of zero; in BASIC-PLUS-2, the size of
the record created is the size specified in the RECORDSIZE clause or, if no
RECORDSIZE clause is specified, the length of the longest map.

A-6 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

A.4 Procedure Calling

This section discusses some differences in procedure calling between VAX
BASIC and BASIC-PLUS-2.

A.4.1 The CALL Statement

The following difference occur in the CALL statement when used in VAX
BASIC and BASIC-PLUS-2:

• In VAX BASIC, you can use the CALL statement to call a procedure
that is written in any language which supports the VAX Procedure
Calling Standard. In BASIC-PLUS-2, you can use the CALL statement
to call only BASIC-PLUS-2 and MACRO subprograms.

• In VAX BASIC, individual array element parameters (except virtual
array elements) are passed by reference and are modifiable. In BASIC
PLUS-2, individual array element parameters are passed by local copy
and are not modifiable.

• VAX BASIC does not allow passing of entire virtual arrays; BASIC
PLUS-2 allows passing of entire virtual arrays.

• In VAX BASIC, you can pass up to 255 parameters in each subpro
gram. In BASIC-PLUS-2, you can pass up to 8 parameters in each
subprogram.

A.4.2 The CHAIN Statement

In VAX BASIC and in BASIC-PLUS-2 on RSX systems, you cannot specify
a line number in a CHAIN statement. In BASIC-PLUS-2 on RSTS/E
systems, line numbers are allowed.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-7

A.4.3 SYS and FIP SYS Calls

VAX BASIC supports a subset of RSTS/E SYS and FIP calls. These are
summarized in Tables A-3 and A-4.

Table A-3: VAX BASIC Subset of RSTS/E SYS Calls
Function
Code

0

2

3

5

6

7

8

9

11

Function

Cancel CTRL/O effect on terminal

Enable echoing on terminal

Disable echoing on terminal

Exit with no prompt message

SYS call to the file processor

Get core common string

Put core common string

Exit and clear program

Cancel all type ahead

Table A-4: VAX BASIC Subset of RSTS/E FIP SYS Calls
Function
Code

-23

-13

-10

-7

9

10

11

12

18

22

Function

Terminate file name string scan

Change priority /run burst/job size

Begin file name string scan

Enable CTRL/C trap

Return error messages

Assign user logical

Deallocate a device or deassign user logical

Deallocate all devices

Obsolete (use function code 22)

Message send/receive

Note that the FIP call for sending or receiving messages (code 22) pro
duces different results when used in VAX BASIC and BASIC-PLUS-2 on

A-8 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

RSTS/E systems. In VAX BASIC, a receiver identification is removed from
the receiver table when the image that declared it exits; in BASIC-PLUS-2
on RSTS /E systems, a receiver identification stays in the receiver table
until it is explicitly removed or the job terminates. This difference causes
incompatible behavior with chained programs, because in VAX BASIC
the receiver identification is valid only for the program that declares it;
whereas in BASIC-PLUS-2 on RSTS/E systems, the chained programs can
share a receiver identification. DIGITAL recommends the use of mailboxes
or DECnet task-to-task communication as a replacement for these FIP calls
in VAX BASIC.

A.5 Generated Errors

In VAX BASIC and BASIC-PLUS-2, the same errors are handled differently
or signal different error messages and numbers:

• If you press CTRL/Z after responding to an INPUT statement, VAX
BASIC makes the assignment and signals the error "End of file on
device" (ERR=l 1) when the next INPUT statement executes; BASIC
PLUS-2 signals the same error, does not make the assignment, and
terminates the current input line.

• When nonnumeric or floating-point data is input to an INPUT or
READ statement expecting numeric or integer data, VAX BASIC
signals the error "Data format error" (ERR=SO); BASIC-PLUS-2 signals
the error "Illegal number" (ERR=52).

• When the integer index of a FOR loop exceeds the default inte
ger size, VAX BASIC signals the error "Integer error or overflow"
(ERR=Sl); BASIC-PLUS-2 signals the error "Integer overflow, FOR
loop" (ERR=60).

• When a program opens channel 0, VAX BASIC signals the error
"Illegal I/O channel" (ERR=46); BASIC-PLUS-2 signals the error "I/O
channel already open at line <line number> " (ERR=7).

• If no error handler is active, the errors in Table A-5 are fatal errors in
VAX BASIC, but warnings in BASIC-PLUS-2.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-9

Table A-5: Fatal Errors in VAX BASIC That Are Warnings in
BASIC-PLUS-2

Error
Number Message

48 Floating point error

51 Integer error

52 Illegal number

53 Illegal argument in LOG

54 Imaginary square roots

61 Division by zero

• When a user has WRITE access to a block in a virtual file and a second
user attempts to access that block, VAX BASIC and BASIC-PLUS-2
on RSX signal the error "Record/bucket locked" (ERR=154); BASIC
PLUS-2 on RSTS/E signals the error "Disk block is interlocked"
(ERR=19).

A.& Miscellaneous Differences

This section discusses some miscellaneous differences between VAX BASIC
and BASIC-PLUS-2.

A.6.1 Data Types

VAX BASIC supports DECIMAL, HFLOAT, GFLOAT and user-defined
data types; BASIC-PLUS-2 does not. In BASIC-PLUS-2, as an alternative
to the DECIMAL data type, use the DOUBLE data type with the OPTION
SCALE statement or the SCALE command to minimize floating-point
inaccuracy.

A.6.2 The DEF and DEF• Statements

In VAX BASIC, you can specify a maximum of 255 parameters in a DEF
statement and a maximum of 8 parameters in a DEF• statement; in BASIC
PLUS-2, you can specify a maximum of 8 parameters in both the DEF and
DEF• statements.

A-10 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

A.6.3 Default Integer Size

If you do not specify a default integer size when invoking VAX BASIC, the
default integer size is LONGWORD; in BASIC-PLUS-2, the default integer
size is WORD. In VAX BASIC, use the OPTION SIZE=INTEGER WORD
statement or the COMPILE/WORD command to make BASIC-PLUS-2
programs transportable to VAX BASIC.

A.6.4 Integer Overflow

When performing integer arithmetic, VAX BASIC signals an error message
if the size of the value returned exceeds the default integer size. BASIC
PLUS-2 does not signal an error message, truncates the result, and returns
a signed integer quantity.

To disable error checking for integer overflow in VAX BASIC, use the
OPTION INACTIVE=INTEGER OVERFLOW statement or the DCL com
mand BASIC/CHECK=NOOVERFLOW.

A.6.5 Line Numbers and Labels

In VAX BASIC, line numbers are optional. In BASIC-PLUS-2, you need at
least one line number in each program.

In a VAX BASIC program, labels, compiler directives, and comments can
begin in column zero. In BASIC-PLUS-2, they cannot.

A.6.6 The MAP and COMMON Statements

The MAP and COMMON statements have different functionality when
used in VAX BASIC and BASIC-PLUS-2. The differences are as follows:

• In VAX BASIC, both COMMON areas and maps can have names
containing a maximum of 31 characters and include underscore (-)
characters. In BASIC-PLUS-2, COMMON areas and maps can have
names containing a maximum of six characters; underscore characters
are not allowed.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-11

• If two strings overlap in a map, VAX BASIC performs string as
signments as if no overlap exists; BASIC-PLUS-2 performs string
assignments one character at a time from left to right. (Note that
RSET assignment is performed from right to left.) For example:

10 MAP (FOO) A$ = 5
MAP (FOO) FILL$ = 2, B$ = 5
A$ = 'ABCDE'
PRINT A$
B$ = A$
PRINT B$, A$

When you run this program in VAX BASIC, the following output is
displayed:

ABCDE
ABCDE ABABC

When you run this program in BASIC-PLUS-2, the following output is
displayed:

ABCDE
ABABA ABABA

A.&. 7 The MAP DYNAMIC Statement

The following differences occur in the MAP DYNAMIC statement when
used in VAX BASIC and BASIC-PLUS-2:

• If the MAP DYNAMIC statement is in an external subprogram or
function, BASIC-PLUS-2 resets all pointers to the first byte each time
the external module is called. VAX BASIC initializes the map area
once when the external module is first called, and does not reset the
variables pointers on subsequent calls.

• VAX BASIC allows you to specify a PSECT name or a static string
variable in a MAP DYNAMIC statement; BASIC-PLUS-2 allows you
to specify only a PSECT name.

A.6.8 The PRINT Statement

In VAX BASIC and RSX BASIC-PLUS-2, when you print to a terminal
format file and the line is to exceed 72 characters, you must either specify
a record size, or a map, or use the VAX BASIC MARGIN function; this is
not the case in BASIC-PLUS-2 on RSTS/E.

A-12 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

A.6.9 The PRINT USING Statement

In VAX BASIC, the PRINT USING string formatting characters (L,R,C,
and E) can be either uppercase or lowercase. In BASIC-PLUS-2, string
formatting characters must be uppercase; otherwise, they are treated as
string literals.

A.6.10 The REPLACE Command

In VAX BASIC, the REPLACE command writes the source program to
the device and directory you specify in the OLD command. In BASIC
PLUS-2, the REPLACE command writes the source program to the current
directory.

A.6.11 The SPEC% and PEEK Functions

You can use the SPEC% and PEEK functions only on RSTS /E systems.
These functions are not transportable.

A.6.12 String Comparisons

When making string comparisons in all relational operations, VAX BASIC
pads the shorter string with a blank space (ASCII value 32). BASIC-PLUS-
2 pads the shorter string with a blank space only on equals (=) and not
equals (< >) relational operations.

A.6.13 Assigning Symbols

In VAX BASIC, you use the logical name SYS$CURRENCY to change the
currency symbol, SYS$RADIX _pQINT to change the radix point symbol,
and SYS$DIGIT_SEP to change the separator symbol. In BASIC-PLUS-2,
you select the symbols for currency, radix point, and separator when
installing the compiler.

Transporting Programs Between VAX BASIC and BASIC-PLUS-2 A-13

A.6.14 The TIME Function

The numeric arguments to the TIME function have different results
when used in VAX BASIC and BASIC-PLUS-2. These differences are
summarized in Table A-6.

Table A-6: VAX BASIC and BASIC-PLUS-2 TIME Function
Differences

TIME
Argument
oi

2

3

4

Result

In both VAX BASIC and BASIC-PLUS-2, TIME returns the
number of seconds that elapsed since midnight.

In VAX BASIC and BASIC-PLUS-2 on RSTS/E systems, TIME
returns the current job's CPU time in tenths of a second.

In VAX BASIC and BASIC-PLUS-2 on RSTS/E systems, TIME
returns the current job's connect time in minutes.

In VAX BASIC, TIME returns zero. In BASIC-PLUS-2 on
RSTS/E systems, TIME returns kilo-core ticks.

In VAX BASIC, TIME returns zero. In BASIC-PLUS-2 on
RSTS/E systems, TIME returns device time in minutes.

1
Zero is the only valid argument for TIME in BASIC-PLUS-2 on RSX systems.

A.6.15 The TIMES Function

In VAX BASIC, the value returned by the TIME$ function is always dis
played in AM/PM format. In BASIC-PLUS-2, the time can be expressed
in either AM/PM format or 24-hour format, depending on the option you
select when installing BASIC-PLUS-2.

A-14 Transporting Programs Between VAX BASIC and BASIC-PLUS-2

Appendix B

ANSI Minimal BASIC

This appendix explains the operation of the VAX BASIC compiler when
used with the/ ANSl_STANDARD qualifier.

B. 1 Introduction

The American National Standard for Minimal BASIC (ANSI X3.60-
1978) describes a nucleus of the BASIC programming language. This
nucleus will be a part of any BASIC implementation that conforms to
this standard. Thus, writing programs that conform to the ANSI Minimal
BASIC standard helps assure that they will run under any standard
implementation of BASIC.

The ANSI Minimal BASIC Standard allows both extensions to the current
standard and features whose behavior is defined by each implementation.
This chapter describes these extensions and implementation-defined
features. Many features of VAX BASIC are allowed as extensions to ANSI
Minimal BASIC. For example, programs with 31-character variable names
will compile correctly; however, VAX BASIC reports an informational
message for each instance of a long variable name. This tells you that
your program does not strictly conform to ANSI Minimal BASIC.

Certain features of VAX BASIC are invalid in ANSI Minimal BASIC
programs. For example, variables ending in a percent sign are invalid
because ANSI Minimal BASIC does not allow integer variables. If you try
to use this VAX feature in ANSI Minimal BASIC, VAX BASIC signals the
error "Integer data type not supported in ANSI."

For a thorough understanding of ANSI Minimal BASIC, read ANSI
X3.60-1978.

ANSI Minimal BASIC B-1

Note that the descriptions and explanations in this chapter apply only
to programs compiled or run with the / ANSI_STANDARD qualifier in
effect.

B.2 The /ANSI-STANDARD Qualifier

/ ANSI_STANDARD is a qualifier to both the DCL command BASIC and
to the SET command in the BASIC environment. When you specify this
qualifier, the following qualifiers are not allowed:

• /SYNTAX_CHECK

• /SCALE

• /TYPE_DEFAULT

• /OPTIMIZE (/NOSETUP in the BASIC environment)

VAX BASIC signals an error if you use any of these qualifiers in addition
to the / ANSI_STANDARD qualifier.

Note that you cannot use compiler directives in programs compiled with
the / ANSI_STANDARD qualifier. In addition, you cannot use immediate
mode statements while the/ ANSI_STANDARD qualifier is in effect.

B.3 Extensions To ANSI Minimal BASIC Standard Xl.60-1978

The following items are extensions to the ANSI Minimal BASIC Standard.
In order to write completely transportable programs, you should avoid
these extensions and use only the capabilities allowed by the standard.
In most cases VAX BASIC reports an informational error if you use any
extensions.

B.3.1 Program Format

The ANSI Minimal BASIC Standard permits comments only with the REM
statement. With the / ANSI_STANDARD qualifier in effect, VAX BASIC
allows comment fields beginning with an exclamation point and ending
with an exclamation point or a carriage return.

VAX BASIC also allows explicit line continuation with ampersands.
However, implicit line continuation is invalid.

B-2 ANSI Minimal BASIC

B.3.2 Statements

The ANSI Minimal BASIC Standard requires that each program have
an END statement. In VAX BASIC the END statement is optional. If
your program does not have an END statement, VAX BASIC reports the
informational message, "ENDSTAREQ, END statement required in ANSI."

Also, the LET keyword is required in ANSI Minimal BASIC. VAX BASIC
signals "LETKEYREQ, LET keyword required in ANSI" when it encounters
an assignment statement without the LET keyword.

B.3.3 Delimiters

The ANSI Minimal BASIC Standard specifies that all keywords must be
preceded by one space and followed by at least one space, if the keyword
is not at the end of a line. With the /ANSI-STANDARD qualifier in
effect, you can delimit keywords with either spaces or tabs.

B.3.4 Variables

The ANSI Minimal BASIC Standard limits variable names in the following
ways:

• String variables and string arrays can be named with only one al
phabetic character, followed by a dollar sign. For example, valid
identifiers for string variables are K$, T$, and Q$(17).

• Numeric arrays can be named with only one alphabetic character,
followed by the subscript reference. For example, valid identifiers for
numeric arrays are M(25), K(n), and A(n/2).

• Simple numeric variables can be named with a maximum of two
characters: one alphabetic character, followed by an optional digit.
For example, valid identifiers for simple numeric variables are RS, Kl,
and T2.

With the / ANSI_STANDARD qualifier in effect, VAX BASIC allows up to
31-character variable and array names. Names ending in a percent sign
(%) are invalid, as are any explicitly declared variables.

Note that VAX BASIC initializes all numeric variables to zero and all
string variables to the null string. To conform to the minimal standard,
you should explicitly initialize all variables in your program.

ANSI Minimal BASIC B-3

All VAX BASIC keywords remain reserved words when the /ANSI_
STANDARD qualifier is in effect; you cannot use these reserved words
as variable names. See Appendix D in this manual for a list of reserved
keywords.

B.3.5 Numeric Constants

The ANSI Minimal BASIC Standard allows numeric constants of the
following form:

sd ... d

sd ... drd ... d

sd ... drd ... dEsd ... d

sd ... dEsd ... d

d
Is a decimal digit.

r
Is a period.

s
Is an optional sign.

E
Is the explicit character E.

Implicit point representation

Explicit point unscaled representation

Explicit point scaled representation

Implicit point scaled representation

In addition to constants of this form, VAX BASIC with the /ANSI_
STANDARD qualifier in effect allows integer constants that end in a
percent sign (%) and explicitly typed numeric constants.

B.3.6 Data Input

VAX BASIC provides several extensions to the ANSI Minimal BASIC
Standard for data input.

B-4 ANSI Minimal BASIC

B.3.6. 1 Unquoted String Data

The ANSI Minimal BASIC Standard limits unquoted strings occurring in
a DATA statment, or in response to the input prompt, to the following
subset of ASCII characters:

• Uppercase letters (A-Z)

• Digits (0-9)

• The period (.)

• The plus sign (+)

• The minus sign (-)

• The space character

In VAX BASIC, an unquoted string in a DATA statement can contain any
ASCII character, with the following exceptions:

• The comma(,)

• The null character

• The form feed character

• An ampersand (&), if it is the last character on the line

As input to the INPUT statement, VAX BASIC allows unquoted strings
to contain any printable ASCII character (that is, all characters with
an ASCII code greater than 31, except character code 127, the delete
character). VAX BASIC also allows the following nonprinting characters in
the INPUT statement:

• The back space character

• The horizontal tab

• The vertical tab

• The form feed character

ANSI Minimal BASIC B-5

8.3.6.2 Null Input

The ANSI Minimal BASIC Standard requires that the DATA statement
consist of numeric constants, string constants, or unquoted strings. VAX
BASIC allows these items, and also allows null items (that is, two succes
sive commas not within a quoted string) as input in a DATA statement.
A null item in a DATA statement results in the assignment of either a
null string or a numeric value of zero to the corresponding variable in the
READ statement.

B.3. 7 User-Defined Functions (the DEF Statement)

The ANSI Minimal BASIC Standard requires that user-defined functions
accept a single parameter. The formal parameter in the DEF function must
be an unsubscripted numeric variable. With the / ANSI_STANDARD
qualifier in effect, VAX BASIC reports a syntax error for DEF functions that
specify more than one parameter.

The ANSI Minimal BASIC Standard makes no mention of DEFs with
string parameters. VAX BASIC in ANSI Standard mode allows string
DEFs but signals the informational error "String DEF not ANSI."

DEF functions can be recursive. However, VAX BASIC does not detect
infinitely recursive DEF functions. If your program invokes an infinitely
recursive DEF function, your program will eventually terminate with a
fatal error (typically, an access violation).

B.3.8 Built-In Functions

B-6

The ANSI Minimal BASIC Standard allows only the following
implementation-supplied (built-in) functions:

• ABS

• ATN

• cos
• EXP

• INT

• LOG

• RND

• SGN

ANSI Minimal BASIC July 1988

• SIN

• SQR

• TAN

With the / ANSl_STANDARD qualifier in effect, if you use any built-in
functions other than these, VAX BASIC reports an informational error
"Language feature not ANSI."

Further, VAX BASIC reports an error if you use any of the following
functions in a program compiled with the/ ANSLSTANDARD qualifier:

• DECIMAL

• INTEGER

ANSI Minimal BASIC B-6.1

B.3.9 Arrays

• REAL

• GETRFA

The ANSI Minimal BASIC Standard requires that array declarations
are valid only for numerics, and allows only one or two dimensions.
With the / ANSLSTANDARD qualifier in effect, VAX BASIC allows
multi-dimensional arrays of all data types, including strings.

All arrays have a lower bound of zero unless an OPTION BASE statement
specifies a lower bound of 1. The format of OPTION BASE is as follows:

OPTION BASE n

n
Is either zero or 1. A value of zero specifies that the lower bound of arrays
is either (0) or (0,0). A value of 1 specifies that the lower bound is either
(1) or (1, 1).

Although you can have arrays of any floating-point data type, you control
this feature with qualifiers to the DCL command BASIC or the SET
command. This means that all floating-point arrays in a single program
are of the same data type.

The ANSI Minimal BASIC Standard requires that all variables and arrays
have unique names. However, VAX BASIC allows a variable and an array
to have the same name.

B.4 Implementation-Defined Features

The ANSI Minimal BASIC Standard leaves the following features to be
defined by the implementation. The behavior of these implementation
defined features in VAX BASIC is as described in the following sections.

ANSI Minimal BASIC 8-7

8.4. 1 Initial Values for Variables

The ANSI Minimal BASIC Standard recommends that all variables are
"detectably undefined in the sense that an exception will result from any
attempt to access the value of a variable before that variable is explicitly
assigned a value." Therefore you should explicitly initialize all variables.
VAX BASIC initializes all numeric variables to zero and all dynamic string
variables to the null string.

B.4.2 Retention of Long Strings

The ANSI Minimal BASIC Standard states that string variables must be
able to contain strings of at least 18 characters. VAX BASIC lets you use
strings of up to 65535 characters.

B.4.3 Accuracy of Evaluation of Numeric Expressions

The ANSI Minimal BASIC Standard does not specify a minimum accuracy,
but recommends at least six significant decimal digits of precision. In VAX
BASIC, the accuracy of numeric expressions is always the same as that of
the operands. This is specified with the /REAL _SIZE qualifier.

B.4.4 Machine Infinitesimal

The ANSI Minimal BASIC Standard recommends that machine infinites
imal be at most lE-38. For programs compiled with /REAL _SIZE of
SINGLE or DOUBLE, machine infinitesimal is approximately 2.9E-39;
with /REAL_SIZE=GFLOAT, machine infinitesimal is approximately
5.6E-308; and with /REAL_SIZE=HFLOAT, machine infinitesimal is
approximately 8.4E-4933.

B.4.5 Machine Infinity

The ANSI Minimal BASIC Standard recommends that machine infinity
be at least 1E38. For programs compiled with /REAL_SIZE of SINGLE
or DOUBLE, machine infinity is approximately l.7E38; with /REAL_
SIZE=GFLOAT, machine infinity is approximately 9.0E309; and with
/REAL _SIZE=HFLOAT, machine infinity is approximately 8.4E4933.

B-8 ANSI Minimal BASIC

B.4.8 Precision For Numeric Values

The ANSI Minimal BASIC Standard recommends at least six significant
decimal digits of precision. This corresponds to the SINGLE argument
of the VAX BASIC REAL_SIZE qualifier. You can also specify DOUBLE
or GFLOAT (up to 15 significant decimal digits of accuracy), or HFLOAT
(up to 33 significant decimal digits of accuracy). See the VAX BASIC User
Manual for more information.

Note that the accuracy of numeric expressions is always the same as the
precision specified with an argument to the REAL_SIZE qualifier.

B.4. 7 Exrad-Width For Printing Numeric Representations

The ANSI Minimal BASIC Standard requires at least two positions for
the representation of the exrad component of a numeric represen
tation. In VAX BASIC for programs compiled with /REAL_SIZE of
SINGLE or DOUBLE, exrad-width is two. For programs compiled with
/REAL_SIZE=GFLOAT, exrad-width is three. For programs compiled
with /REAL _SIZE=HFLOAT, exrad-width is four.

B.4.8 Significance-Width For Printing Numeric Representations

The ANSI Minimal BASIC Standard specifies at least six positions for
controlling the number of significant decimal digits printed in numeric
representations. In VAX BASIC the PRINT statement provides up to six
significant positions for numeric values, regardless of the floating-point
data type in effect.

B.4.9 Print Zone length

VAX BASIC always has five 14-position print zones per print line.

ANSI Minimal BASIC B-9

B.4.10 Margin for Output Line

The ANSI Minimal BASIC Standard makes no recommendation for the
width of the output line. With the /ANSI-STANDARD qualifier in effect,
the margin width for the controlling terminal is 80 characters. Note that
the margin width for the controlling terminal is infinite for programs
compiled with the /NOANSl_STANDARD qualifier.

B.4.11 Pseudorandom Number Sequence

In VAX BASIC the RND function produces a pseudorandom sequence
of numbers until the RANDOMIZE statement is executed. After
RANDOMIZE executes, the RND function produces a random sequence of
numbers.

B.4.12 Unique Line Numbers

VAX BASIC follows the ANSI Minimal BASIC Standard's recommenda
tions for local editing of statement lines. Statement lines can be entered
in any order; VAX BASIC sorts the program into the proper order. If you
enter two lines with the same line number, VAX BASIC keeps the second
line and deletes the first. VAX BASIC deletes any line containing only a
line number; it also deletes any line containing only a line number and
formatting characters (such as spaces or form feeds).

B.4.13 Input Prompt

The ANSI Minimal BASIC Standard recommends that the input prompt
be a question mark followed by a single space. VAX BASIC conforms to
this recommendation. Note that you cannot supply a string constant to be
displayed as an input prompt. If you attempt to supply a string prompt,
VAX BASIC signals "Language feature not ANSI."

B.4.14 End of Input Reply

In VAX BASIC, the end of input reply is a carriage return.

B-10 ANSI Minimal BASIC

B.4. 15 End of Print Line

In VAX BASIC, the end of print line is a carriage return/line feed combi
nation (ASCII code 13 and 10).

B.4.16 Exponentiation Operator

VAX BASIC accepts two asterisk characters (**) as the exponentiation
operator.

July 1988 ANSI Minimal BASIC B-11

Appendix C

ASCII Character Codes

ASCII is a 7-bit character code with an optional parity bit (8) added
for many devices. Programs normally use seven bits internally with the
eighth bit being zero; the extra bit is either stripped (on input) or added
by a device driver (on output) so the program will operate with either
parity- or nonparity-generating devices. The eighth bit is reserved for
future standardization.

The International Reference Version (IRV) of ISO Standard 646 is identical
to the IRV in CCITT Recommendation V.3 (International alphabet No. 5).
The character sets are the same as ASCII except that the ASCII dollar sign
(hexadecimal 24) is the international currency sign, which looks like###.

ISO Standard 646 and CCITT V.3 also specify the structure for national
character sets, of which ASCII is the U.S. national set. Certain specific
characters are reserved for national use. These are the values and symbols:

Hexadecimal Value IRV ASCII

23 # #

24 ### $ (General currency symbol vs. dollar
sign)

40 @ @

SB [[

SC \ \
SD]]

SE

60

ASCII Character Codes C-1

Hexadecimal Value

7B

7C

70

7E

IRV ASCII

(tbs) -- (Overline vs. tilde)

ISO Standard 646 and CCITT Recommendation V.3 (International
Alphabet No. 5) are identical to ASCII except that the number sign
(23) is represented as ## instead of#, and certain characters are reserved
for nation al use.

Table C-1: ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

0 00 NUL Null (tape feed)

1 01 SOH Start of heading (A A)

2 02 STX Start of text (end of address, AB)

3 03 ETX End of text (AC)

4 04 EOT End of transmission (shuts off
the TWX machine AD)

5 05 ENQ Enquiry (WRU, AE)

6 06 ACK Acknowledge (RU, AF)

7 07 BEL Bell (AG)

8 08 BS Backspace (AH)

9 09 HT Horizontal tabulation (AI)

10 OA LF Line feed (AJ)

11 OB VT Vertical tabulation CK)

12 oc FF Form feed (page, AL)

13 OD CR Carriage return (AM)

14 OE so Shift out (AN)

15 OF SI Shift in (Ao)

16 10 OLE Data link escape CP)

C-2 ASCII Character Codes

Table C-1 (Cont.): ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

17 11 DCl Device control 1 (AQ)

18 12 DC2 Device control 2 (AR)

19 13 DC3 Device control 3 (AS)

20 14 DC4 Device control 4 (AT)

21 15 NAK Negative acknowledge (ERR,
AU)

22 16 SYN Synchronous idle (AV)

23 17 ETB End-of-transmission block (AW)

24 18 CAN Cancel (AX)

25 19 EM End of medium (Ay)

26 lA SUB Substitute (AZ)

27 1B ESC Escape (prefix of escape se-
quence)

28 lC FS File separator

29 1D GS Group separator

30 lE RS Record separator

31 lF us Unit separator

32 20 SP Space

33 21 Exclamation point

34 22 Double quotation mark

35 23 # Number sign

36 24 $ Dollar sign

37 25 % Percent sign

38 26 & Ampersand

39 27 Apostrophe

40 28 Left (open) parenthesis

41 29 Right (close) parenthesis

42 2A * Asterisk

ASCII Character Codes C-3

Table C-1 (Cont.): ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

43 2B + Plus sign

44 2C Comma

45 20 Minus sign, hyphen

46 2E Period (decimal point)

47 2F I Slash (slant)

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

57 39 9 Nine

58 3A Colon

59 3B Semicolon

60 3C < Less than(left angle bracket)

61 30 Equal sign

62 3E > Greater than (right angle
bracket)

63 3F ? Question mark

64 40 @ Commercial at

65 41 A Uppercase A

66 42 B Uppercase B

67 43 c Uppercase C

68 44 0 Uppercase 0

69 45 E Uppercase E

C-4 ASCII Character Codes

Table C-1 (Cont.): ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

70 46 F Uppercase F

71 47 G Uppercase G

72 48 H Uppercase H

73 49 Uppercase I

74 4A Uppercase J
7S 4B K Uppercase K

76 4C L Uppercase L

77 4D M Uppercase M

78 4£ N Uppercase N

79 4F 0 Uppercase 0

80 so p Uppercase P

81 Sl Q Uppercase Q

82 S2 R Uppercase R

83 S3 s Uppercase S

84 S4 T Uppercase T

8S SS u Uppercase U

86 S6 v Uppercase V

87 S7 w Uppercase W

88 S8 x Uppercase X

89 S9 y Uppercase Y

90 SA z Uppercase Z

91 SB Left square bracket

92 SC \ Backslash (reverse slant)

93 SD] Right square bracket

94 SE Circumflex (caret)

9S SF Underscore (underline)

96 60 Grave accent

ASCII Character Codes C-5

Table C-1 (Cont.): ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

97 61 a Lowercase a

98 62 b Lowercase b

99 63 c Lowercase c

10 64 d Lowercased

101 65 e Lowercase e

102 66 f Lowercase f

103 67 g Lowercase g

104 68 h Lowercase h

105 69 Lowercase i

106 6A j Lowercase j

107 6B k Lowercase k

108 6C Lowercase 1

109 60 m Lowercase m

110 6E n Lowercase n

111 6F 0 Lowercase o

112 70 p Lowercase p

113 71 q Lowercase q

114 72 r Lowercase r

115 73 s Lowercases

116 74 Lowercase t

117 75 u Lowercase u

118 76 v Lowercase v

C-6 ASCII Character Codes

Table C-1 (Cont.): ASCII Codes
8-Bit

Decimal Hexadecimal
Code Code Character Remarks

119 77 w Lowercase w

120 78 x Lowercase x

121 79 y Lowercase y

122 7A z Lowercase z

123 78 Left brace

124 7C Vertical line

125 7D Right brace

126 7E Tilde

127 7F DEL Delete (rubout)

ASCII Character Codes C-7

Appendix D

VAX BASIC Keywords

The following is a list of the VAX BASIC keywords. Most of the keywords
are reserved. The unreserved keywords are marked with a dagger.

%ABORT
%CDD t
%CROSS
%ELSE
%END
%FROM
%IDENT
%IF
%INCLUDE
%LET
%LIBRARY
%LIST
%NOCROSS
%NOLIST
%PAGE
%PRINT
%SBTTL
%THEN
%TITLE
%VARIANT
ABORT
ABS
ABS%
ACCESS
ACCESS%
ACTIVATE

t Unreserved keyword.

VAX BASIC Keywords D-1

ACTIVE
ALIGNED
ALLOW
ALTERNATE
AND
ANGLE t
ANY
APPEND
AREA t
AS
ASC
ASCENDING
ASCII
ASK
AT t
ATN
ATN2
BACK
BASE
BASIC
BEL
BINARY
BIT
BLOCK
BLOCKSIZE
BS
BUCKETSIZE
BUFFER
BUFSIZ
BY
BYTE
CALL
CASE
CAUSE
CCPOS
CHAIN
CHANGE
CHANGES
CHECKING
CHOICE t
CHR$
CLEAR
CLIP t

t Unreserved keyword.

D-2 VAX BASIC Keywords July 1988

CLK$
CLOSE
CLUSTERSIZE
COLOR t
COM
COMMON
COMP%
CON
CONNECT
CONSTANT
CONTIGUOUS
CONTINUE
cos
COT
COUNT
CR
CTR LC
CVTF$
CVT$F
CVT$$
CVT$%
CVT%$
DAT
DAT$
DATA
DATE$
DEACTIVATE
DECIMAL
DECLARE
DEF
DEFAULTNAME
DEL
DELETE
DESC
DESCENDING
DET
DEVICE
DIF$
DIM
DIMENSION
DOUBLE
DOUBLEBUF
DRAW

t Unreserved keyword.

July 1988 VAX BASIC Keywords D-3

DUPLICATES
DYNAMIC
ECHO
EDIT$
ELSE
END
EQ
EQV
ERL
ERN$
ERR
ERROR
ERT$
ESC
EXIT
EXP
EXPAND t
EXPLICIT
EXTEND
EXTEND SIZE
EXTERNAL
FF
FIELD
FILE
FILE SIZE
FILL
FILL$
FILL%
FIND
FIX
FIXED
FLUSH
FNAME$
FNEND
FNEXIT
FONT t
FOR
FORMAT$
FORTRAN
FREE
FROM
FSP$
FSS$

t Unreserved keyword.

D-4 VAX BASIC Keywords

FUNCTION
FUNCTIONEND

VAX BASIC Keywords D-4.1

FUNCTIONEXIT
GE
GET
GETRFA
GFLOAT
GO
GO BACK
GOSUB
GOTO
GRAPH
GRAPHICS t
GROUP
GT
HANDLE
HANDLER
HEIGHT t
HFLOAT
HT
IDN
IF
I FEND
IFMORE
IMAGE
IMP
IN t
INACTIVE
INDEX t
INDEXED
INFORMATIONAL
INITIAL
INKEY$
INPUT
INSTR
INT
INTEGER
INV
INVALID
ITERATE
JSB
JUSTIFY t
KEY
KILL
LBOUND

t Unreserved keyword.

VAX BASIC Keywords 0-5

LEFT
LEFT$
LEN
LET
LF
LINE
LINES t
LINO
LINPUT
LIST
LOC
LOCKED
LOG
LOGlO
LONG
LSET
MAG
MAG TAPE
MAP
MAR
MAR%
MARGIN
MAT
MAX
METAFILE t
MID
MID$
MIN
MIX t
MOD
MOD%
MODE
MODIFY
MOVE
MULTIPOINT t
NAME
NEXT
NO t
NOCHANGES
NO DATA
NODUPLICATES
NOECHO
NO EXTEND

t Unreserved keyword.

D-6 VAX BASIC Keywords

NO MARGIN
NONE
NOP AGE
NO REWIND
NOSPAN
NOT
NUL$
NUM
NUM$
NUM1$
NUM2
NX
NXEQ
OF
ON
ONECHR
ONERROR
OPEN
OPTION
OPTIONAL
OR
ORGANIZATION
OTHERWISE
OUTPUT
OVERFLOW
PAGE
PATH t
PEEK
PI
PICTURE
PLACE$
PLOT
POINT t
POINTS t
POS
POS%
PPS%
PRIMARY
PRINT
PRIORITY t
PROD$
PROGRAM
PROMPT t

t Unreserved kevword.

VAX BASIC Keywords 0-7

PUT
QUO$
RAD$
RANDOM
RANDOMIZE
RANGEt
RCTRLC
RCTRLO
READ
REAL
RECORD
RECORDSIZE
RECORDTYPE
RECOUNT
REF
REGARDLESS
RELATIVE
REM
REMAP
RESET
RESTORE
RESUME
RETRY
RETURN
RFA
RIGHT
RIGHT$
RMSSTATUS
RND
ROTATE
ROUNDING
RSET
SCALE
SCRATCH
SEG$
SELECT
SEQUENTIAL
SET
SETUP
SEVERE
SGN
SHEAR
SHIFT

t Unreserved kevword.

0-8 VAX BASIC Keywords

SI
SIN
SINGLE
SIZE
SLEEP
so
SP
SPACE t
SPACE$
SPAN
SPEC%
SQR
SQRT
STATUS
STEP
STOP
STR$
STREAM
STRING
STRING$
STYLE t
SUB
SUBEND
SUBEXIT
SUBSCRIPT
SUM$
SWAP%
SYS
TAB
TAN
TEMPORARY
TERMINAL
TEXT t
THEN
TIM
TIME
TIME$
TO
TRAN t
TRANSFORM
TRANSFORMATION t
TRM$
TRN

t Unreserved keyword.

VAX BASIC Keywords D-9

TYP
TYPE
TYPE$
UBOUND
UNALIGNED
UNDEFINED
UNIT t
UNLESS
UNLOCK
UNTIL
UPDATE
USAGE$
USER OPEN
USING
USR$
VAL
VAL%
VALUE
VARIABLE
VARIANT
VFC
VIEWPORT t
VIRTUAL
VPS%
VT
WAIT
WARNING
WHEN
WHILE
WINDOW t
WINDOWSIZE
WITH t
WORD
WRITE
XLATE
XLATE$
XOR
ZER

t Unreserved kevword.

0-10 VAX BASIC Keywords

A
%ABORT directive• 3-2
ABS% function• 4-4
ABS function• 4-2
Absolute value

ABS% function• 4-4
ABS function• 4-2
MAG function • 4-181

ACCESS clause• 4-253, 4-290
ACTIVE clause• 4-267
ALLOW clause• 4-253
Alphanumeric label• 1-3

See also Labels
AL TERNA TE KEY clause• 4-258
Ampersand (&)

as a continuation character• 1-7, 1-8, 1-11
in DAT A statement• 4-42

Angle types
with OPTION statement• 4-265

ANSI standards• B-1 to B-11
APPEND command• 2-6 to 2-7
Arc tangent• 4-6
Arithmetic operators• 1-37, 1-38
Array

assigning values to• 4-197, 4-200, 4-209,
4-302

bounds• 4-70, 4-196, 4-200, 4-203, 4-207,
4-209

converting with CHANGE statement• 4-20
creating with COMMON statement• 4-27
creating with DECLARE statement• 4-48
creating with DIM statement• 4-69
creating with MAP statement• 4-1 86

INDEX

Array (cont'd.)

creating with MAT statement• 4-195, 4-200,
4-203, 4-206, 4-209

data type of• 4-69
dimensions of• 4-69
dynamic• 4-69, 4-71, 4-72
elements • 4-70
element zero•4-71, 4-198, 4-201, 4-204,

4-207, 4-210, 4-223
initialization of• 4-197
initializing• 4-73
inversion of• 4-198
redimensioning with MAT statement• 4-196,

4-198, 4-201, 4-204, 4-209
static• 4-69, 4-70
transposing • 4-198
virtual • 4-50, 4-69, 4-72, 4-101

Arrays• 1-20
array elements• 1-21
definition of• 1-21
dimensions of• 1-22
element zero• 1-21
naming• 1-21, 1-23
size limits• 1-22
virtual• 1-24

ASCII
character codes• C-1
characters• 1-35, 1-46, 4-23, C-1
character set• 1-11
conversion• 4-20, 4-23
converting to • 4-5
radix• 1-32

ASCII function• 4-5
ASSIGN command• 2-8 to 2-9

lndex-1

Asterisk (•)

in PRINT USING statement• 4-279
with HELP command• 2-27

A TN function• 4-6

B
Backslash ()

in continued lines• 1-8
in multi-statement lines• 1-8
in PRINT USING statement• 4-282
statement separator• 1-8

BASIC-PLUS-2
compatibility• A-1 to A-14
transporting programs• A-1 to A-14

Binary radix • 1-32
Blank-if-zero field

in PRINT USING statement• 4-279
Block 1/0 file

finding records in• 4-107
opening• 4-256
retrieving records sequentially in• 4-132
writing records to• 4-290

BLOCKSIZE clause• 4-253
Block statement

ending• 4-78
exiting• 4-91

Bounds• 1-21
default for implicit arrays• 4-71, 4-196, 4-200,

4-203, 4-207, 4-209
lower bounds with COMMON statement• 4-27
lower bounds with DECLARE statement• 4-49
lower bounds with DIM statement• 4-70
lower bounds with MAP DYNAMIC statement•

4-190
lower bounds with records• 4-307
maximum• 1-21
upper bounds with COMMON statement• 4-27
upper bounds with DECLARE statement• 4-49
upper bounds with DIM statement• 4-70
upper bounds with MAP DYNAMIC statement•

4-190
Bucket

creating with BUCKETSIZE clause• 4-254
locking • 4-105, 4-133
unlocking• 4-105, 4-118, 4-133

BUCKETSIZE clause• 4-254

2-lndex

BUFFER clause• 4-254
BUFSIZ function • 4-8
BYTE data type • 1-12
/BYTE qualfier • 2-12

c
CALL statement • 4-9 to 4-13

with SUB subprograms• 4-359
Caret (·) in PRINT USING statement• 4-279
CASE clause • 4-341
CASE ELSE clause• 4-34 1
CAUSE ERROR statement• 4-14 to 4-15
CCPOS function • 4-16
COD

including definitions from• 3-10
COD (Common Data Dictionary)

and RECORD statement• 4-306
including definitions from• 1-10

CD formatting character
in PRINT USING statement• 4-279

Centered field
in PRINT USING statement• 4-281

C formatting character
in PRINT USING statement• 4-281

CHAIN statement• 4-18 to 4-19
CHANGES clause• 4-258
CHANGE statement• 4-20 to 4-22
Character

ASCII• 4-5, 4-23
formatting with PRINT USING statement •

4-278 to 4-283
lowercase• 4-281
uppercase• 4-281

CHARACTER data type• 1-35
Character position

CCPOS function • 4-16
of substring• 4-154, 4-271

Characters
ASCII• 1-35, 1-46
data type suffix • 1-15
lowercase• 2-24
nonprinting • 1-35
processing of• 1-11
uppercase• 2-24
wildcard • 2-27

Character set

translating with XLA TE$ function• 4-397
Character sets

ASCII• 1-11
VAX BASIC • 1-11

CHR$ function• 4-23
Clauses

ACCESS•4-107, 4-132, 4-253, 4-290
ACTIVE• 4-267
ALLOW•4-105, 4-129, 4-253
AL TERNA TE KEY• 4-258
BLOCKSIZE • 4-253
BUCKETSIZE • 4-254
BUFFER• 4-254
BY• 4-9, 4-98, 4-124, 4-360
CASE• 4-341
CASE ELSE• 4-341
CHANGES• 4-258
CONNECT• 4-254
CONTIGUOUS• 4-254
COUNT• 4-289, 4-380
DEFAULTNAME • 4-252, 4-255
DUPLICATES• 4-258, 4-291
ELSE• 4-142
END IF•4-142
EXTENDSIZE • 4-255
FILESIZE • 4-255
FOR •4-252
GROUP• 4-307
KEY•4-104, 4-129, 4-130, 4-321
MAP. 4-187 I 4-255
NOREWIND • 4-256
NOSPAN • 4-256
ORGANIZATION• 4-256
OTHERWISE• 4-246, 4-248
PRIMARY KEY• 4-258
RECORD•4-103, 4-128, 4-289, 4-290
RECORDSIZE • 4-187, 4-259, 4-289
RECORDTYPE • 4-258
REGARDLESS• 4-105, 4-129
RFA • 4-103, 4-128
STEP• 4-114
TEMPORARY• 4-260
UNLOCK EXPLICIT• 4-104, 4-105, 4-129,

4-260
UNTIL•4-115
USEROPEN • 4-260
VARI ANT• 4-307

Clauses (cont'd.)

WAIT•4-130
WHILE• 4-115
WINDOWSIZE • 4-261

CLOSE statement• 4-24
Colon(:)

in labels• 1-3
Comma(,)

in DAT A statement• 4-43
in DELETE command• 2-21
in INPUT LINE statement• 4-151
in INPUT statement • 4-148
in LINPUT statement• 4-170
in LIST command• 2-31
in MAT PRINT statement• 4-206
in PRINT statement• 4-273
in PRINT USING statement• 4-278

$ command•2-5
Command files for environment• 2-2
Command qualifiers• 2-10 to 2-38

VAX BASIC• 2-10 to 2-38
Comment

field• 1-55
in DAT A statement• 1-56, 4-42
in REM statement • 4-313
processing of• 1-11
REM statement • 1-5 7
transferring control to• 1-55

! comment• 2-3
Comment fields

terminating• 1-56
Comments

in environment command files• 2-2
processing of• 1-11

COMMON area
size of• 4-29

COMMON statement• 4-26 to 4-30
with FIELD statement• 4-101

COMP% function• 4-31
Compilation

conditional• 3-8, 3-26
controlling with OPTION statement• 4-265
control of• 1-10, 2-56
control of listing• 3-3, 3-16, 3-17, 3-19, 3-20,

3-21, 3-22, 3-24
including from COD• 1-10, 3-10
including from text library• 3-10
including source code • 1-10, 3-10

lndex-3

Compilation (cont'd.)

listing• 2-10
terminating with %ABORT directive• 3-2

Compilation qualifiers• 2-10 to 2-38
VAX BASIC• 2-10 to 2-38

COMPILE command• 2-10 to 2-19
VAX BASIC qualifiers• 2-10 to 2-38

Compiler directives• 1-10
Concatenation

of COMMON areas• 4-29
string• 1-7, 1-38, 1-43

Conditional branching
IF statement• 4-142
ON ... GOSUB statement• 4-246
ON ... GOTO statement• 4-248
SELECT statement• 4-340

Conditional compilation• 1-10
% VARI ANT directive• 3-26
with %IF directive• 3-8

Conditional expression
FOR statement • 4-114
IF statement• 4-142
UNLESS statement• 4-375
UNTIL statement• 4-378
WHILE statement• 4-395

Conditional expressions• 1-44
definition of• 1-44
in %LET directive• 3-14

Conditional loops•4-114, 4-379, 4-395
CON function• 4-197
CONNECT clause• 4-254
Constant

declaring• 4-50
external• 4-96
with OPTION CONST ANT TYPE• 4-265

Constants• 1-24
declaring • 1-31
default data type• 1-24
definition of• 1-24
floating-point• 1-25
integer• 1-2 7
lexical • 3-8
named• 1-29
naming• 1-25, 1-30
numeric• 1-25
packed decimal• 1-28
string• 1-28
types of• 1-24

4-lndex

CONTIGUOUS clause• 4-254
Continuation characters

ampersand • 1-8
backslash • 1-8

CONTINUE command• 2-20
with RUN command• 2-4 7

CONTINUE statement • 4-33
Control

transferring into DEF functions• 4-246, 4-248
transferring into FOR ... NEXT loops• 4-136,

4-138, 4-246, 4-248
transferring into SELECT blocks• 4-246, 4-248
transferring into UNTIL loops• 4-136, 4-138,

4-246, 4-248
transferring into WHILE loops• 4-136, 4-138,

4-246, 4-248
transferring to a label• 4-136, 4-138
transferring with CALL statement • 4-9
transferring with CHAIN statement• 4-18
transferring with GOSUB statement• 4-136
transferring with GOTO statement• 4-138
transferring with IF statement• 4-142
transferring with ON ... GOSUB statement•

4-246
transferring with ON ... GOTO statement• 4-248
transferring with RESUME statement• 4-152,

4-171, 4-324
transferring with RETURN statement• 4-327

Conversion
array to string variable• 4-21
string variable to array• 4-20

Conversion functions
CVT$% function• 4-39
CVT$F function• 4-39
CVT%$ function• 4-39
CVTF$ function• 4-39
DECIMAL function • 4-46
INTEGER function• 4-158
NUM 1$ function• 4-237
NUM$ function• 4-235
RAD$ function• 4-295
REAL function• 4-304
STR$ function• 4-354
VAL% function• 4-384
VAL function• 4-382
XLA TE$ function• 4-397

Copying VAX BASIC source text• 3-10
COS function• 4-35

Cosine• 4-35
COUNT clause• 4-289

with fixed-length records• 4-380
with variable-length records• 4-380

CPU time• 4-369
Credit-debit field

in PRINT USING statement• 4-279
%CROSS directive• 3-3
Cross-reference table

%CROSS directive• 3-3
%NOCROSS directive• 3-17

CTRL/C function
trapping• 4-299
with RECOUNT function• 4-311

CTRL/C key• 4-36
CTRL/Z function• 2-26

with INPUT LINE statement• 4-152
with INPUT statement• 4-150
with LINPUT statement• 4-171

CTRLC function • 4-36
See also RCTRLC function

Cursor position
CCPOS function• 4-16
TAB function• 4-366

CVT$$ function• 4-38
See also EDIT$ function

CVTxx function• 4-39
with FIELD statement• 4-100

D
Data

transferring with MOVE statement• 4-221
DAT A statement• 4-42 to 4-43

See also READ statement
comment fields in• 1-56
in DEF• function• 4-61
in DEF function• 4-55
in multi-statement lines• 1-9
terminating • 4-42
with MAT READ statement• 4-209
with READ statement• 4-302
with RESTORE statement• 4-321

Data structures
defining • 4-306

Data type defaults• 1-15, 1-16
constants• 1-24

Data type functions
DECIMAL function• 4-46
INTEGER function• 4-158
REAL function• 4-304

Data type keywords • 1-12
Data types• 1-12, 1-13

BYTE• 1-12
CHARACTER• 1-35
DECIMAL• 1-13
decimal overflow checking• 4-266
defining with RECORD statement• 4-306
DOUBLE • 1-12
GFLOAT• 1-12
HFLOAT• 1-12
in LET statement • 4-168
in logical expressions• 1-48
in numeric expressions• 1-40
INTEGER• 1-12
integer overflow checking• 4-266
keywords• 1-12, 1-13
LONG• 1-12
numeric literal notation• 1-33
precision • 1-13
precision in PRINT statement• 4-275
precision in PRINT USING statement• 4-278
promotion rules• 1-40
range• 1-13
REAL• 1-12
results for DECIMAL data• 1-42
results for GFLOA T and HFLOA T • 1-41
results in expressions • 1-40
RFA • 1-13
setting defaults with OPTION statement• 4-266
SINGLE• 1-12
size• 1-13
storage of• 1-12, 1-13
STRING• 1-13
suffix characters• 1-15
WORD• 1-12

Data typing
explicit • 1-16
implicit• 1-15
with declarative statements • 1-16
with suffix characters • 1-15

DA TE$ function• 4-44
Date and time functions

TIME$ function• 4-371
TIME function • 4-369

lndex-5

DCL commands
in environment• 2-4

Debit-credit field
in PRINT USING statement• 4-279

/DEBUG qualifier
with RUN command• 2-4 7

/DECIMAL_SIZE qualifier• 2-13
DECIMAL data type• 1-13

constants• 1-28
format of• 1-13
overflow checking• 4-266
promotion rules • 1-42
rounding• 4-266
storage of • 1-13

DECIMAL function• 4-46
Decimal radix• 1-32
Declarative statements

COMMON statement • 4-30
DECLARE statement• 4-48
EXTERNAL statement• 4-95
MAP statement• 4-186

%DECLARED directive• 3-3 to 3-5
DECLARE statement• 4-48 to 4-52

CONSTANT• 1-31, 1-37
DEF• function

error handling in • 4-61, 4-79
multi-line• 4-59
parameters• 4-59, 4-60
recursion in • 4-61
single-line• 4-59

DEF• statement• 4-58 to 4-62
Default

BUCKETSIZE clause• 4-254
COMMON name• 4-26
data type• 4-266
DEF AUL TNAME clause• 4-255
error handling• 4-240
file name• 4-18, 4-252
overriding with DECLARE statement• 4-48,

4-51
overriding with EXTERNAL statement• 4-95
parameter-passing mechanisms• 4-10 to

4-11, 4-98, 4-124, 4-360
RECORDSIZE clause• 4-260
scale factor• 4-266
setting with OPTION statement• 4-263
WINDOWSIZE clause• 4-261

6-lndex

DEF AUL TNAME clause• 4-252, 4-255
Defaults

COMPILE command• 2-10
constants• 1-24
data type • 1-15, 1-16
displaying• 2-58
EDIT command• 2-23
file name•2-36, 2-38, 2-39, 2-41, 2-46, 2-49,

2-60
floating-point constants• 1-25
implicitly declared variables• 1-19
integer constants• 1-27
listing file• 2-10
LOAD command• 2-33
numeric constants• 1-25
object module name • 2-10
overriding with COMPILE command• 2-10
overriding with RUN command• 2-46
radix• 1-32
RESEQUENCE command• 2-43
SCALE command• 2-51
SEQUENCE command• 2-54
SET command• 2-56
SHOW command• 2-58

DEF function
ending• 4-78
error handling in• 4-55, 4-239, 4-241, 4-323
exiting• 4-90
recursion in• 4-56
transferring control into• 4-56, 4-246, 4-248
with INPUT LINE statement• 4-151
with INPUT statement • 4-148
with LINPUT statement• 4-170
with READ statement • 4-302

DEF statement• 4-53 to 4-57
multi-line • 4-54
parameters• 4-54, 4-55
single-line • 4-54

DELETE command• 2-21 to 2-22
DELETE statement• 4-63

with UNLOCK statement• 4-376
Delimiter

EDIT command• 2-23
in DAT A statement• 4-43
string literal• 1-28

Descriptor• 4-13, 4-98, 4-124, 4-360
Detached handler• 4-391
Determinant• 4-65

DET function• 4-65
DIF$ function• 4-67
Dimension

of arrays • 4-69
Dimensions

of arrays• 1-22
DIMENSION statement• 4-69 to 4-73

See also DIM statement
DIM statement• 4-69 to 4-73

executable• 4-71, 4-72
nonvirtual, nonexecutable • 4-70
virtual• 4-70
with MAT statement• 4-196, 4-198, 4-201,

4-204, 4-207, 4-209
Documentation

program• 1-55
Dollar sign ($)

in DECLARE statement• 4-49
in DEF• statement names• 4-58
in DEF names• 4-53
in PRINT USING statement• 4-279
in variable names• 1-18, 1-19
suffix character• 1-15

DOUBLE data type• 1-12
/DOUBLE qualifier• 1-17, 2-14
DUPLICATES clause• 4-258, 4-291
Dynamic array• 4-69, 4-71, 4-72
Dynamic mapping• 4-100, 4-189, 4-315
Dynamic storage• 4-189, 4-315, 4-317

E
ECHO function• 4-7 4

See also NOECHO function
EDIT$ function• 4-76

values•4-76 to 4-77
EDIT command• 2-23 to 2-25
E formatting character

in PRINT USING statement• 4-282
Elementary record components• 4-308
ELSE clause• 4-142
E mathematical constant• 4-93
END statement• 4-78 to 4-81

SUB subprograms• 4-359
E notation• 1-26

field in PRINT USING statement• 4-279
numbers in• 1-26

E notation (cont'd.)

with PRINT statement• 4-274
with STR$ function• 4-354

Environment
comments in immediate mode• 2-2

Equivalence name• 2-7
ERL function• 4-82

with labels• 1-4
with RESEQUENCE command• 2-44

ERN$ function • 4-84
ERR function • 4-86
Error

severity level• 4-265
Error condition

clearing with CONTINUE statement• 4-33
Error handling

disabling• 4-244
ERL function • 4-82
ERN$ function • 4-84
ERR function • 4-86
ERT$ function• 4-88
in DEF• functions • 4-61
in DEF functions• 4-55, 4-79, 4-239, 4-241
in FOR. .. NEXT loops• 4-324
in subprograms• 4-80, 4-91, 4-124, 4-240
in UNTIL loops• 4-324
in WHILE loops• 4-324
ON ERROR GO BACK statement• 4-239
ON ERROR GOTO 0 statement• 4-244
ON ERROR GOTO statement• 4-241
OPTION HANDLE• 4-265
recursion in• 4-242
RESUME statement• 4-323

Error handling functions
CTRLC function • 4-36
ERL function• 4-82
ERN$ function • 4-84
ERR function • 4-86
ERT$ function• 4-88
RCTRLC function• 4-299

Error number• 4-86
Error text• 4-88
ERT$ function • 4-88
Evaluation

of expressions• 1-52
of logical expressions• 1-50
of numeric relational expressions• 1-44
of operators • 1-52

lndex-7

Evaluation (cont'd.)

of SELECT statement• 4-341
of string relational expressions • 1-46

Exclamation point (!)
in comment fields• 1-55
in PRINT USING statement• 4-282

Executable
statements• 1-4

Execution
continuing• 2-20, 2-4 7
of multi-statement lines • 1-8
of statements • 1-8
of system commands• 2-4
program• 2-46
stopping• 2-20, 2-47, 4-352
suspending• 4-34 7, 4-388

EXIT command• 2-26
EXIT statement• 4-90 to 4-92
EXP function• 4-93
Explicit

creation of arrays • 4-69
data typing• 1-16, 4-263
declaration of variables• 1-20
literal notation• 1-32
loop iteration • 4-160
record locking•4-63, 4-104, 4-105, 4-129,

4-133, 4-260
Exponential notation• 1-26, 4-274

in PRINT USING statement• 4-279
numbers in• 1-26
with PRINT statement• 4-2 7 4

Exponentiation• 4-93
Expressions• 1-37

conditional• 1-44
conditional in %LET directive• 3-14
definition of• 1-37
evaluation of• 1-52
lexical• 3-9, 3-14, 3-26
logical• 1-48
mixed-mode • 1-40
numeric• 1-38
numeric relational• 1-44
operator precedence in• 1-53
parentheses in• 1-53
relational • 1-44
string• 1-43
string relational • 1-46
types of• 1-38

8-lndex

Extended field
in PRINT USING statement• 4-282

EXTENDSIZE clause• 4-255
External

constant• 4-96
function • 4-96
picture • 4-96
subprogram• 4-123
subroutine• 4-96
variable• 4-96

External constants • 1-31
naming • 1-32

EXTERNAL statement• 4-95 to 4-99
CONST ANT• 1-31
parameters • 4-96

External variables
naming• 1-18

F
F AB status • 4-330
Field

asterisk-filled• 4-279
blank-if-zero• 4-279
centered• 4-281
credit or debit• 4-279
exponential• 4-279
extended• 4-282
floating dollar sign• 4-279
GROUP• 4-309
left-justified• 4-281
multiple fields within a format string• 4-279
one-character• 4-282
right-justified• 4-281
trailing minus sign• 4-278
VARIANT• 4-309
zero-filled• 4-279

Fields
comment• 1-55

FIELD statement• 4-100 to 4-101
File attributes

BLOCKSIZE clause• 4-253
CONTIGUOUS clause• 4-254
EXTENDSIZE clause• 4-255
FILESIZE clause• 4-255
magnetic tape• 4-253

File names

CHAIN statement default• 4-18
COMPILE command default• 2-10
LOAD command default• 2-33
NEW command default• 2-36
OLD command default• 2-38
OPEN default• 4-252
RENAME command default• 2-39
REPLACE command default• 2-41
RUN command default• 2-46
SAVE command default• 2-49
UNSAVE command default• 2-60

File organization
indexed• 4-25 7
relative• 4-25 7
sequential• 4-257
undefined• 4-256
virtual• 4-256

File-related functions
BUFSIZ function • 4-8
CCPOS function • 4-16
FSP$ function• 4-120
GETRF A function • 4-134
MAR function• 4-192
RECOUNT function• 4-311
ST A TUS function• 4-350

Files
accessing• 4-127
block l/0•4-107, 4-132, 4-256, 4-290
closing• 4-24
deleting• 2-60, 4-162, 4-260
deleting records in• 4-63, 4-336
finding buffer size• 4-8
%1NCLUDE•3-10, 3-11
%INCLUDE directive• 2-43
indexed•4-63, 4-107, 4-132, 4-254, 4-255,

4-256, 4-290, 4-321, 4-381
locating • 4-101
magnetic tape• 4-183, 4-253, 4-321
opening• 4-250
relative•4-63, 4-107, 4-132, 4-254, 4-256,

4-260, 4-290, 4-380
renaming• 4-224
restoring data• 4-321
sequential• 4-107, 4-132, 4-256, 4-260,

4-273, 4-290, 4-336, 4-380

Files (cont'd.)

terminal-format• 4-148, 4-151, 4-170, 4-193,
4-200, 4-203, 4-206, 4-229, 4-259,
4-273

virtual• 4-260, 4-322
FILESIZE clause• 4-255
FILL• 4-186, 4-222, 4-316
FILL$•4-186, 4-222, 4-316
FILL$ keyword• 4-27
FILL%• 4-186, 4-222, 4-316
FILL% keyword• 4-27
FILL items

formats and storage• 4-27 to 4-29
in COMMON statement• 4-27
in MAP statement• 4-186
in MOVE statement• 4-222
in REMAP statement• 4-316

FILL keyword• 4-27
FIND statement • 4-102 to 4-108

with UNLOCK statement• 4-376
with UPDATE statement• 4-380

FIX function • 4-109
compared with INT function • 4-156

Floating dollar sign field
in PRINT USING statement• 4-279

Floating-point
constants• 1-25
data types • 1-12
promotion rules• 1-40
variables • 1-19

FNEND statement• 4-111
See also END statement

FNEXIT statement• 4-112
See also EXIT statement

FOR. .. NEXT loops• 4-113 to 4-116, 4-226
conditional • 4-114
error handling in • 4-324
explicit iteration of• 4-160
nested• 4-114
transferring control into• 4-114, 4-136, 4-138,

4-246, 4-248
unconditional • 4-114

FOR_NEXT loops
exiting • 4-91

FOR clause• 4-252
Format

characters in PRINT USING statement• 4-278

lndex-9

Format (cont'd.)

combination of characters in PRINT USING
statement• 4-279

defaults for U.S. currency• 4-280
E • 4-274
exponential• 4-274
multiple print fields with PRINT USING

statement• 4-279
of data in DATA statement• 4-43
of FILL items• 4-27 to 4-29
of keywords • 1-5
of labels• 1-3
of line numbers• 1-2
of multi-line REM statement• 4-313
of multi-statement lines• 1-8, 1-9
of program lines• 1-1
of statements• 1-4
Radix-50 • 4-295

FORMAT$ function• 4-117
FOR statement • 4-113 to 4-116
FREE statement• 4-118
FSP$ function• 4-120
Function

declaring• 4-49, 4-53, 4-58
external • 4-96
initialization of• 4-55, 4-61
invocation of•4-55, 4-60
naming• 4-53, 4-58
parameters• 4-54, 4-59
user-defined• 4-53, 4-58

FUNCTION END statement• 4-125
See also END statement

FUNCTIONEXIT statement• 4-126
See also EXIT statement

Functions
lexical• 3-8, 3-14, 3-26

FUNCTION statement• 4-122 to 4-124
FUNCTION subprograms

naming• 4-122
parameters • 4-123

G
GETRF A function • 4-134
GET statement• 4-127 to 4-133

with UNLOCK statement• 4-376
with UPDATE statement• 4-380

10-lndex

GFLOA T data type• 1-12
/GFLOA T qualifier• 2-14
GOSUB statement • 4-136

inside WHEN blocks• 4-136
with RETURN statement• 4-327

GOTO statement• 4-138
inside WHEN blocks• 4-138

GROUP clause• 4-307

H
Handler

attached• 4-391
enter• 4-140
exit• 4-140

HANDLER statement • 4-140 to 4-141
HELP command• 2-27 to 2-28
Hexadecimal radix • 1-32
HFLOA T data type• 1-12
/HFLOA T qualifier• 2-14
Hyphen(-)

1/0

in DELETE command• 2-21
in LIST command• 2-31

characters transferred• 4-311
closing files• 4-24, 4-80
deleting records • 4-63
dynamic mapping• 4-315
finding records• 4-103
locking records• 4-104, 4-105, 4-129, 4-260
matrix• 4-231, 4-233
moving data• 4-221
opening files• 4-250
retrieving records• 4-132
unlocking records• 4-118, 4-260, 4-376
updating records• 4-380
with CHAIN statement• 4-18
writing records• 4-290

%1DENT directive• 3-6 to 3-7
Identifiers

PROGRAM statement• 1-6
IDENTIFY command• 2-29
Identity matrix• 4-197
ION function• 4-197

%1F ... %THEN ... %ELSE ... %END %IF directive
with RESEQUENCE command• 2-43

IF ... THEN ... ELSE statement• 4-142 to 4-144
labels in• 1-4
multi-line format • 1-8

%IF-% THEN-%ELSE-%END %IF directive• 3-8 to
3-9

Immediate mode• 2-20, 2-47
Implicit

continuation of lines• 1-8
creation of arrays• 4-71, 4-196, 4-200, 4-203,

4-207' 4-209
data typing • 1-1 5
declaration of variables• 1-18

% INCLUDE directive• 3-10 to 3-13
with RESEQUENCE command• 2-43

Indexed files• 4-257
AL TERNA TE KEY clause• 4-258
BUCKETSIZE clause• 4-254
CHANGES clause• 4-258
deleting records in • 4-63
DUPLICATES clause• 4-258
finding records in• 4-107
MAP clause• 4-255
opening• 4-256
PRIMARY KEY clause• 4-258
restoring data in• 4-321
retrieving records sequentially in• 4-132
segmented keys in• 4-258
updating• 4-381
writing records to• 4-290

Initialization
in subprograms• 4-124, 4-360
of arrays• 4-197
of DEF• functions • 4-61
of DEF functions• 4-55
of dynamic arrays• 4-73
of variables• 1-23, 4-50
of variables in COMMON statement• 4-30
of virtual arrays• 4-7 2

INKEY$ function• 4-145 to 4-14 7
with WAIT clause• 4-145

INPUT LINE statement• 4-151 to 4-153
INPUT statement• 4-148 to 4-150
INQUIRE command• 2-30

See also HELP command
Instance• 4-309

RECORD • 4-309

INSTR function • 4-154 to 4-155
See also POS function

Integer
constants• 1-27
data types • 1-12
overflow checking• 4-266
promotion rules • 1-40
suffix character• 1-1 5
variables • 1-19

INTEGER data type• 1-12
INTEGER function • 4-158
Internal constants

naming• 1-30
Internal variables

naming• 1-18
INT function• 4-156
INV function• 4-198
ITERATE statement• 4-160
Iteration

K

of FOR loops • 4-114
of loops• 4-160
of UNTIL loops• 4-378
of WHILE loops• 4-395

KEY clause• 4-104, 4-130
FIND statement • 4-105
GET statement • 4-129
RESTORE statement• 4-321
segmented keys• 4-258

Keywords
data type • 1-1 2
definition of• 1-5
function of• 1-5
in RECORD• 4-307
list of• C-7
reserved and unreserved • C-7
restrictions• 1-5
spacing requirements• 1-5

KILL statement• 4-162

L
Labels

defining• 1-3
format of• 1-3

lndex-11

Labels (cont'd.)

function of• 1-3
referencing• 1-3
transferring control to • 4-136, 4-138
with ITERATE statement• 4-160

LBOUND function • 4-163
LEFT$ function• 4-165

See also SEG$ function
Left-justification

PRINT USING statement• 4-281
with LSET statement• 4-179

LEN function• 4-167
Length

of labels • 1-3
of STRING data• 1-13
variable names• 1-18

%LET directive• 3-14 to 3-15
LET statement• 4-168
Letters

lowercase• 1-11, 2-24, 4-281
uppercase• 1-11, 2-24, 4-281

Lexical
constants• 3-8
expressions• 3-9, 3-14, 3-26
functions• 3-8, 3-14, 3-26
operators• 3-4, 3-8, 3-14
order• 1-11
variables• 3-14

Lexical variables
assigning values to• 3-14
naming• 3-14

L formatting character
in PRINT USING statement• 4-281

Libraries
text• 3-12

Line numbers
automatic sequencing• 2-54
in %INCLUDE file• 2-43, 3-10
in RESEQUENCE command• 2-43
range of• 1-2

Lines
continued • 1-8
displaying• 2-31
editing• 2-23
elements of• 1-1
format of• 1-1
length of• 1-2
multi-statement• 1-8

12-lndex

Lines (cont'd.)

order of• 1-11, 2-43
single-statement • 1-7
terminating• 1-2, 1-11, 1-12

Line terminator• 1-2, 1-11, 1-12
with DAT A statement• 4-42
with INPUT LINE statement• 4-152
with INPUT statement• 4-149
with LINPUT statement • 4-1 71

LINPUT statement• 4-170 to 4-172
LIST command• 2-31 to 2-32
%LIST directive• 3-16
Listing file

control of• 1-10, 3-3, 3-16, 3-17, 3-19, 3-20
%CROSS directive• 3-3
defaults•2-10
included code • 3-10
%LIST directive• 3-16
%NOCROSS directive• 3-17
%NOLIST directive• 3-19
%PAGE directive• 3-20
%PRINT directive• 3-21
%SBTTL directive• 3-22
subtitle• 3-22
title• 3-24
% TITLE directive• 3-24
version identification • 3-6

Listing line numbers• 1-9
LISTNH command• 2-31

See also LIST command
Literal

explicit notation • 1-32
numeric• 1-25
string• 1-7, 1-11, 1-28, 1-48, 4-279, 4-282

LOAD command• 2-33 to 2-34
with RUN command• 2-47
with SCRATCH command• 2-53

Local copy • 4-13
LOC function• 4-173
Lock checking

REGARDLESS clause• 4-105, 4-129
WAIT clause • 4-130

LOCK command• 2-35
See also SET command

LOG 10 function • 4-17 7
Logarithms

common• 4-177
natural• 4-175

LOG function • 4-1 7 5
Logical expressions • 1-48

compared with relational• 1-49, 1-50
data types in• 1-48
definition of• 1-44
evaluation of• 1-50
format of• 1-48
logical operators• 1-49
truth tables• 1-49
truth tests • 1-49

Logical name• 2-7
Logical operators• 1-49
LONG data type • 1-12
/LONG qualifier• 2-15
Loops

conditional • 4-114
exiting• 4-90
FOR ... NEXT • 4-113
iteration of•4-114, 4-160, 4-378, 4-395
nested FOR. .. NEXT• 4-114
unconditional• 4-114
UNTIL statement• 4-378
WHILE statement• 4-395

Lowercase letters
in EDIT command• 2-24
in PRINT USING statement• 4-281
processing of• 1-11

LSET statement• 4-179

M
MAG function• 4-181
Magnetic tape files

BLOCKSIZE clause• 4-253
MAGT APE function • 4-183
NOREWIND clause• 4-256
RESTORE statement• 4-321

MAGT APE function• 4-183 to 4-184
performing functions in VAX BASIC• 4-183 to

4-184
MAP

FILL item formats and storage• 4-27 to 4-29
MAP area

naming• 4-185
MAP clause• 4-187, 4-255
MAP DYNAMIC statement• 4-189 to 4-191

with REMAP statement• 4-315, 4-317

MAP statement• 4-185 to 4-188
with FIELD statement• 4-101
with MAP DYNAMIC statement• 4-191
with REMAP statement• 4-315

MAR function• 4-192
Margin

width•4-192, 4-193, 4-229, 4-274
MARGIN statement• 4-193

See also NOMARGIN statement
with PRINT statement• 4-274

MAT
with DET function• 4-65

MAT INPUT statement• 4-200 to 4-202
MAT LINPUT statement• 4-203 to 4-205
MAT PRINT statement• 4-206 to 4-208
MAT READ statement• 4-209 to 4-211
Matrix• 1-21

identity• 4-197
Matrix arithmetic• 4-197
Matrix functions

DET function• 4-65
NUM2 function• 4-233
NUM function• 4-231

Matrix operations
arithmetic• 4-197
assigning values• 4-200, 4-203, 4-209
1/0. 4-231, 4-233
inversion• 4-65, 4-198
printing• 4-206
redimensioning • 4-200, 4-203, 4-206, 4-209
scalar multiplication• 4-197
transposition • 4-198

MAT statement• 4-195 to 4-199
with FIELD statement• 4-101

MAX function• 4-212 to 4-213
Memory

clearing with SCRATCH command• 2-53
MID$ function• 4-214

See also SEG$ function
MIN function• 4-217 to 4-218
Minus sign (-)

in PRINT USING statement• 4-278
Mixed-mode expressions• 1-40
MOD function• 4-219 to 4-220
Modifiable parameters• 4-12
Modifiers

FOR statement• 4-113

lndex-13

Modifiers (cont'd.)

IF statement• 4-142
UNLESS statement• 4-375
UNTIL statement• 4-379
WHILE statement• 4-396

Module names• 1-6
MOVE

FILL item formats and storage• 4-27 to 4-29
MOVE statement• 4-221 to 4-223

with FIELD statement • 4-101
Multi-line

DEF• functions• 4-59
DEF statement• 4-54

Multi-statement lines• 1-8
backslash in• 1-8
branching to• 1-9
execution of• 1-8

N

format of• 1-8, 1-9
implicit continuation• 1-8
transferring control to• 1-8

NAME ... AS statement• 4-224
Named constants• 1-29

changing• 1-30
external• 1-31, 4-96
internal• 1-30, 4-50

NEW command• 2-36 to 2-37
NEXT statement• 4-226

with FOR statement• 4-115
with WHILE statement• 4-395

/[NO]ANSl _STANDARD qualifier• 2-12
/[NO]AUDIT qualifier• 2-12
/[NO]CROSS_REFERENCE qualifier• 2-13
/[NO]DEBUG qualfier • 2-13
/[NO]FLAG qualifier• 2-14
/[NO]LINE qualifier• 1-2, 4-82, 4-352
/[NO]LINES qualifier• 2-14
/[NO]MACHINE_CODE qualifier• 2-15
/[NO]OBJECT qualifier• 2-15
/(NO]OVERFLOW qualifier• 2-15
/(NO]ROUND qualifier• 2-16
/[NO]SETUP qualifier• 2-16
/[NO]SHOW qualifier• 2-17

CDD_DEFINITIONS • 3-11
%INCLUDE directive• 3-11

14-lndex

/[NO]SYNTAX_CHECK qualifier• 2-17
/(NO]TRACEBACK qualifier• 2-18
/[NO]W ARNINGS qualifier• 2-18
%NOCROSS directive• 3-17 to 3-18
NOECHO function • 4-228

See also ECHO function
%NOLIST directive• 3-19
NOMARGIN statement• 4-229

See also MARGIN statement
Nonexecutable DIM statement• 4-70
Nonexecutable statements• 1-4, 1-11

COMMON statement• 4-29
DAT A statement• 4-43
DECLARE statement• 4-50
DIM statement• 4-70
EXTERNAL statement• 4-98
MAP DYNAMIC statement• 4-191
MAP statement• 4-187
REM statement• 4-313
UNLESS statement• 4-375

Nonmodifiable parameters• 4-12
Nonprinting characters

processing of• 1-11
using• 1-11

Nonvirtual DIM statement• 4-70
NOREWIND clause• 4-256
NOSPAN clause• 4-256
Notation

E • 1-26,
explicit literal • 1-32
exponential• 1-26, 4-274

NOT operator
evaluation of• 1-54

NUL$•4-197
NUM 1 $ function• 4-23 7
NUM2 function • 4-233

after MAT INPUT statement• 4-201
after MAT LINPUT statement• 4-204
after MAT READ statement• 4-210

NUM$ function• 4-235
Numbers

random• 4-297, 4-333
sign of• 4-345

Number sign (#)
in PRINT USING statement• 4-278

Numbers in E notation• 1-26
Numeric constants• 1-25
Numeric conversion• 4-21

Numeric expressions• 1-38
format of• 1-38
promotion rules • 1-40
result data types• 1-40
results for DECIMAL data• 1-42
results for GFLOA T and HFLOA T • 1-41

Numeric functions• 4-39
ABS% function• 4-4
ABS function• 4-2
DECIMAL function• 4-46
FIX function• 4-109
INT function• 4-156
LOG 10 function• 4-177
LOG function• 4-175
MAG function• 4-181
RND function• 4-333
SGN function • 4-345
SOR function• 4-349
SW AP% function• 4-365

Numeric literal notation• 1-32
Numeric operator precedence• 1-53
Numeric precision

with PRINT statement• 4-275
with PRINT USING statement• 4-278

Numeric relational expressions
evaluation of• 1-44
operators • 1-45

Numeric string functions
CHR$ function• 4-23
COMP% function• 4-31
DECIMAL function• 4-46
DIF$ function• 4-67
FORMAT$ function• 4-117
INTEGER function• 4-158
NUM 1 $ function• 4-237
NUM$ function• 4-235
PLACE$ function• 4-268
PROD$ function• 4-284
QUO$ function• 4-292
REAL function • 4-304
STR$ function• 4-354
SUM$ function• 4-363
VAL% function• 4-384
VAL function• 4-382

Numeric strings
comparing • 4-31
precision• 4-67, 4-268, 4-285, 4-292, 4-363

Numeric strings (cont'd.)

rounding• 4-268, 4-285, 4-292
rounding and truncation values• 4-269 to

4-270
truncating• 4-268, 4-285, 4-292

NUM function• 4-231

0

after MAT INPUT statement• 4-201
after MAT LINPUT statement• 4-204
after MAT READ statement• 4-210

Object libraries
module names in • 1-6

Object module
creating• 2-10
default name• 2-10
loading• 2-33
version identification • 3-6

Octal radix• 1-32
OLD command• 2-38

with RUN command• 2-46
ON ... GOSUB ... OTHERWISE statement• 4-246

with RETURN statement• 4-327
ON ... GOSUB statement• 4-246 to 4-24 7
ON ... GOTO ... OTHERWISE statement• 4-248
ON ... GOTO statement• 4-248 to 4-249
ON ERROR GO BACK statement• 4-239 to 4-240

with END statement • 4-80
within a handler• 4-240
within protected regions• 4-240

ON ERROR GOTO 0 statement• 4-244 to 4-245
with END statement • 4-80

ON ERROR GOTO statement• 4-241 to 4-243
with END statement • 4-80
within a handler• 4-242, 4-245
within protected regions• 4-242, 4-245
with WHEN blocks• 4-242

Online documentation• 2-27
Opening files

with USEROPEN clause• 4-260
OPEN statement• 4-250 to 4-262

with ST A TUS function• 4-350
Operator precedence• 1-38, 1-52, 1-53
Operators

arithmetic• 1-37, 1-38
evaluation of• 1-52

lndex-15

Operators (cont'd.)

lexical• 3-4, 3-8, 3-14
logical• 1-49
numeric operator precedence• 1-53
numeric relational• 1-45
precedence of• 1-38, 1-52, 1-53
string relational• 1-4 7

OPTIONAL
with EXTERNAL statement• 4-97

OPTION statement• 4-263 to 4-267
ORGANIZATION clause• 4-256
OTHERWISE clause• 4-246, 4-248
Output

formatting with FORMAT$ function • 4-117
formatting with PRINT USING statement•

4-277 to 4-281
Output listing

cross-reference table • 3-3, 3-17
%LIST directive• 3-16
%NOLIST directive• 3-19
%PAGE directive• 3-20
%PRINT directive• 3-21
%SBTTL directive• 3-22
% TITLE directive• 3-24

Overflow checking• 4-266

p

Packed decimal • 1-13
See also DECIMAL data type

%PAGE directive• 3-20
Parameter-passing mechanisms

DEF• functions• 4-60
DEF statement• 4-55
EXTERNAL statement• 4-98
FUNCTION statement• 4-124
SUB statement• 4-360
VAX BASIC• 4-10 to 4-11

Parameters
DEF• functions• 4-59, 4-60
DEF statement• 4-54, 4-55
EXTERNAL statement• 4-96
function • 4-54, 4-59
FUNCTION subprograms• 4-123
modifiable• 4-12
nonmodifiable • 4-12
SUB subprograms• 4-358

16-lndex

Parentheses
in array names• 1-21
in expressions• 1-38, 1-53

Passing mechanisms
with CALL statement• 4-9

Percent sign (%)
in DATA statement• 1-27, 4-42
in DECLARE statement • 4-49
in PRINT USING statement• 4-279
in variable names• 1-18, 1-19
suffix character• 1-15

Period(.)
in PRINT USING statement• 4-278
in variable names• 1-18

PLACE$ function• 4-268 to 4-270
rounding and truncation values• 4-269 to

4-270
Plus sign (+)

in string concatenation• 1-43
POS function• 4-271 to 4-272
Precision

in PRINT statement• 4-275
in PRINT USING statement• 4-278
NUM 1 $ function• 4-237
NUM$ function• 4-235
of data types• 1-13
of numeric strings• 4-67, 4-268, 4-284,

4-292, 4-363
Predefined constants• 1-35
PRIMARY KEY clause• 4-258
%PRINT directive• 3-21
PRINT statement• 4-273 to 4-276

with TAB function• 4-366
PRINT USING statement• 4-277 to 4-283
Print zones

in MAT PRINT statement• 4-206
in PRINT statement• 4-274

PROD$ function• 4-284 to 4-286
rounding and truncation values• 4-269 to

4-270
Program control statements

END statement• 4-78
EXIT statement• 4-90
FOR statement • 4-113
GOSUB statement• 4-136
GOTO statement• 4-138
IF statement • 4-142
ITERATE statement• 4-160

Program control statements (cont'd.)

ON ... GOSUB statement• 4-246
ON ... GOTO statement• 4-248
RESUME statement• 4-323
RETURN statement• 4-327
SELECT statement• 4-340
SLEEP statement• 4-34 7
STOP statement• 4-352
UNTIL statement• 4-378
WAIT statement• 4-388
WHILE statement• 4-395

Program documentation• 1-55
Program elements• 1-1
Program execution

continuing• 2-20, 2-47
initiating with RUN command• 2-46
stopping• 2-20, 2-47, 4-352
suspending• 4-34 7
waiting for input• 4-388

Program input
INPUT LINE statement• 4-151
INPUT statement• 4-148
LINPUT • 4-170
waiting for• 4-388

Program lines
automatic sequencing• 2-54
deleting• 2-21
displaying• 2-31
editing• 2-23
elements of• 1-1
format of• 1-1
length of• 1-2
numbering• 1-2
order of• 1-11, 2-43
resequencing• 2-43
terminating• 1-2, 1-11 , 1-12

Programs
compiling• 2-10
continuing• 2-20, 2-4 7
debugging• 2-4 7
deleting• 2-60
editing• 2-23
ending• 4-78
executing• 2-46
halting• 2-20, 2-4 7
merging• 2-5
naming• 2-36
renaming• 2-39

Programs (cont'd.)

saving• 2-41, 2-49
stopping• 2-20, 2-47, 4-352

PROGRAM statement• 1-6, 4-287 to 4-288
Promotion rules

data type • 1-40
DECIMAL• 1-42
floating-point• 1-40
integer• 1-40

Prompt
after STOP statement• 4-352
INPUT LINE statement• 4-151
INPUT statement• 4-148
LINPUT statement• 4-170
MAT INPUT statement• 4-201
MAT LINPUT statement• 4-204

PSECT • 4-26, 4-185
PUT statement• 4-289 to 4-291

0
Qualifiers• 2-10 to 2-38

/BYTE• 2-12
/DEBUG• 2-47
/DECIMAL_SIZE • 2-13
/DOUBLE• 1-17, 2-14
/GFLOAT • 2-14
/HFLOAT • 2-14
/LONG•2-15
/[NO]ANSl_ST ANDARD • 2-12
/[NO]AUDIT • 2-12
/[NO]CROSS_REFERENCE • 2-13
/[NO]DEBUG • 2-13
/[NO]FLAG • 2-14
/[NO]LINE • 1-2, 4-82, 4-352
/[NO]LINES • 2-14
/[NO]MACHINE_CODE • 2-15
/[NO]OBJECT • 2-15
/[NO]OVERFLOW • 2-15
/[NO]ROUND • 2-16
/[NO]SETUP • 2-16
/[NO]SHOW • 2-17, 3-11
/[NO]SYNTAX_CHECK • 2-17
/[NO]TRACEBACK • 2-18
/[NO]W ARNINGS • 2-18
/SINGLE• 2-17
/TYPE• 1-15

lndex-17

Qualifiers (cont'd.)

/TYPE_DEFAUL T • 2-18
/VARIANT• 2-18, 3-26
VAX BASIC command• 2-10 to 2-38
/WORD• 2-19

QUO$ function• 4-292 to 4-294
rounding and truncation values• 4-269 to

4-270
Quotation marks

in string literals• 1-28

R
RAB status• 4-330
RAD$ function • 4-295 to 4-296
Radix

ASCII• 1-32
binary• 1-32
decimal• 1-32
hexadecimal• 1-32
in explicit literal notation• 1-32
octal• 1-32

Radix-50 • 4-295
RANDOMIZE statement• 4-297 to 4-298

See also RND statement
Random numbers• 4-297, 4-333
Range

of data types • 1-13
of subscripts• 1-21

RCTRLC function• 4-299
See also CTRLC function• 4-299

RCTRLO function • 4-300 to 4-301
READ statement • 4-302 to 4-303

See also DAT A statement
with DAT A statement• 4-42, 4-43

REAL data type• 1-12
REAL function• 4-304 to 4-305
Record attributes

MAP clause• 4-255
RECORDSIZE clause• 4-255, 4-259
RECORD TYPE clause• 4-258

Record buffer
DAT A pointers• 4-321
MAP DYNAMIC pointers• 4-191, 4-317
moving data• 4-221
REMAP pointers• 4-315, 4-317
setting size• 4-254

18-lndex

RECORD clause• 4-103, 4-128, 4-289, 4-290
Record File Address• 1-13, 4-103, 4-128, 4-134
RECORD items

accessing • 4-308
Record Management Services

See RMS
Record pointers

after FIND statement• 4-107, 4-108
after GET statement• 4-132, 4-133
after PUT statement• 4-290
after UPDATE statement• 4-380
REMAP statement • 4-317
RESTORE statement • 4-321
WINDOWSIZE clause• 4-261

Records
deleting with DELETE statement • 4-63
deleting with SCRATCH statement• 4-336
finding RFA of•4-103, 4-129
locating by KEY• 4-107, 4-129, 4-133
locating by RECORD number• 4-128
locating by RFA•4-103, 4-107, 4-129, 4-132
locating randomly• 4-107
locating sequentially• 4-103, 4-107, 4-128,

4-132
locating with FIND statement • 4-102
locating with GET statement • 4-12 7
locking•4-104, 4-105, 4-133, 4-260
locking with GET statement• 4-129
processing• 4-127, 4-254
retrieving by KEY • 4-129, 4-133
retrieving by RECORD number• 4-128
retrieving by RF A • 4-128, 4-132
retrieving randomly• 4-133
retrieving sequentially• 4-128, 4-132
retrieving with GET statement• 4-127
size of• 4-289
stream• 4-257
unlocking•4-63, 4-105, 4-118, 4-133, 4-260
unlocking with UNLOCK statement• 4-376
writing by RECORD number• 4-289
writing sequentially• 4-290
writing with PRINT statement• 4-273
writing with PUT statement• 4-289
writing with UPDATE statement• 4-380

RECORDSIZE clause• 4-187, 4-259, 4-289
RECORD statement • 4-306 to 4-310

RECORD structures

components of• 4-309
declaring• 4-309

RECORDTYPE clause• 4-258
RECOUNT function• 4-311 to 4-312

after GET statement• 4-133
after INPUT LINE statement• 4-152
after INPUT statement• 4-150
after LINPUT statement • 4-1 7 1

Recursion
in DEF• functions• 4-61
in DEF functions• 4-56
in error handlers• 4-242
in subprograms• 4-360

Redimensioning arrays
with executable DIM statement• 4-71

REGARDLESS clause
with FIND statement• 4-105
with GET statement• 4-129

Relational expressions• 1-44
compared with logical • 1-49, 1-50
definition of• 1-44
format of• 1-44
in SELECT statement• 4-34 1, 4-342
numeric• 1-44
string • 1-46
truth tests• 1-44, 1-46

Relational operators
numeric• 1-45
string • 1 -4 7

Relative files• 4-25 7
BUCKETSIZE clause• 4-254
deleting records in• 4-63
finding records in• 4-107
opening• 4-256
record size in• 4-260
retrieving records sequentially in • 4-132
updating• 4-380
writing records to• 4-290

REMAP statement• 4-315 to 4-319
FILL item formats and storage• 4-27 to 4-29
with MAP DYNAMIC statement• 4-191

REM statement• 4-313 to 4-314
in multi-statement lines• 1-9
multi-line format • 1-5 7, 4-313
terminating• 1-5 7, 4-313
transferring control to• 1-5 7

RENAME command• 2-39 to 2-40

REPLACE command• 2-41 to 2-42
with RENAME command• 2-39

RESEQUENCE command• 2-43 to 2-45
Reserved words • 1-5
RESET statement• 4-321

See also RESTORE statement
RESTORE statement• 4-321 to 4-322
Result data types

for DECIMAL data• 1-42
GFLOA T and HFLOA T • 1-41
mixed-mode expressions• 1-40

RESUME statement• 4-323 to 4-324
END statement • 4-80
ERL function • 4-82
ERN$ function • 4-84
ERR function• 4-86
INPUT LINE statement• 4-152
INPUT statement• 4-150
LINPUT statement• 4-171

RETRY statement• 4-325 to 4-326
with FOR. .. NEXT loops• 4-325
with FOR. .. UNTIL loops• 4-325
with FOR. .. WHILE loops• 4-325

RETURN statement• 4-327
RFA clause• 4-103, 4-128
RF A data type

allowable operations• 1-13
storage of• 1-13

R formatting character
in PRINT USING statement• 4-281

RIGHT$ function• 4-328 to 4-329
See also SEG$ function

Right-justification
PRINT USING statement• 4-281
with RSET statement• 4-335

RMS (Record Management Services)
accessing records • 4-12 7
deleting records• 4-63
locating records• 4-101
opening files• 4-250
operations • 4-330
replacing records• 4-380

RMSST A TUS function• 4-330 to 4-332
RND function• 4-333 to 4-334

See also RANDOMIZE statement
RSET statement• 4-335
RUN command• 2-46 to 2-48

lndex-19

RUNNH command• 2-46
See also RUN command

s
SAVE command• 2-49 to 2-50

with RENAME command• 2-39
%SBTTL directive• 3-22 to 3-23
SCALE command• 2-51 to 2-52
Scale factor

setting with OPTION statement• 4-266
setting with SCALE command• 2-51

SCRATCH command• 2-53
SCRATCH statement• 4-336 to 4-337
SEG$ function• 4-338 to 4-339
Segmented keys• 4-258
SELECT

transferring control into• 4-246, 4-248
SELECT statement• 4-340 to 4-342
Semicolon (:)

in INPUT LINE statement• 4-152
in INPUT statement• 4-149
in LINPUT statement• 4-171
in MAT PRINT statement• 4-206
in PRINT statement• 4-273

SEQUENCE command• 2-54 to 2-55
Sequential files• 4-257

deleting records in• 4-336
finding records in• 4-107
fixed-length• 4-25 7
NOSPAN clause• 4-256
opening• 4-256
record size in• 4-260
retrieving records in• 4-132
stream• 4-257
updating • 4-380
variable-length• 4-257
writing records to• 4-273, 4-290

SET command• 2-56 to 2-5 7
VAX BASIC qualifiers• 2-10 to 2-38

SET PROMPT statement• 4-343 to 4-344
SGN function • 4-345
SHOW command• 2-58 to 2-59
Sine• 4-346
SIN function• 4-346
SINGLE data type• 1-12

20-lndex

Single-line

DEF• functions• 4-59
DEF statement • 4-54
loops•4-113, 4-378, 4-395

/SINGLE qualifier• 2-17
Single-statement lines• 1-7
Size

of numeric data • 1-13
of STRING data• 1-13

SLEEP statement• 4-34 7
Source text

copying • 1-10
SPACE$ function• 4-348
SOR function • 4-349
SQRT function • 4-349
Square roots • 4-349
Statement blocks

exiting • 4-90
Statement modifiers

FOR statement • 4-113
IF statement • 4-142
UNLESS statement• 4-375
UNTIL statement• 4-379
WHILE statement• 4-396

Statements
backslash separator• 1-8
block• 4-78, 4-91, 4-114, 4-142, 4-307,

4-341
components of• 1-4
continued• 1-7
data typing • 1-16
declarative• 4-48
empty• 1-56
executable • 1-4
execution of• 1-8
format of• 1-4
labeling of• 1-3
multi-statement lines • 1-8
nonexecutable • 1-4, 1-11, 4-29, 4-43, 4-50,

4-70, 4-98, 4-187, 4-191, 4-313
order of• 1-11, 2-43
processing of• 1-11
single-line• 1-7

Static
arrays• 4-70
mapping • 4-185
storage• 4-27, 4-185, 4-317

STATUS function• 4-350 to 4-351

STATUS function (cont'd.)

VAX BASIC ST A TUS bits• 4-350 to 4-351
STEP clause • 4-114
STOP statement• 4-352 to 4-353

See also CONTINUE statement
with RUN command• 2-4 7

Storage
allocating for FILL items• 4-316
allocating for FILL items• 4-222
allocating for RECORD structures• 4-309
allocating for VARIANT fields• 4-309
allocating with MAP DYNAMIC statement•

4-189
allocating with MAP statement• 4-186
allocating with REMAP statement• 4-315
COMMON area and MAP area• 4-29, 4-187
dynamic• 4-189, 4-315, 4-317
for arrays• 4-71
for FILL items• 4-27 to 4-29, 4-222
for record structures • 4-309
in COMMON statement• 4-30
in MAP statement• 4-187
of data • 1-13
of DECIMAL data• 1-13
of RF A data • 1-13
of STRING data• 1-13
shared• 4-26, 4-185
static• 4-27, 4-185, 4-317

STR$ function• 4-354 to 4-355
Stream

format• 4-257
record• 4-257

STRING$ function• 4-356 to 4-357
String arithmetic functions

DIF$ function• 4-67
PLACE$ function• 4-268
PROD$ function• 4-284
QUO$ function• 4-292
SUM$ function• 4-363

String constants• 1-28
processing of• 1-29

String data
assigning with LSET statement• 4-179
assigning with RSET statement• 4-335

STRING data type • 1-13
length • 1-13
storage of• 1-13

String expressions• 1-43

String expressions (cont'd.)

relational • 1-46
String functions• 4-39

ASCII function• 4-5
EDIT$ function• 4-76
INSTR function • 4-154
LEFT$ function • 4-165
LEN function• 4-167
MID$ function• 4-214
POS function• 4-271
RIGHT$ function • 4-328
SEG$ function • 4-338
SPACE$ function • 4-348
STRING$ function• 4-356
TRM$ function• 4-372
XLATE$ function• 4-397

String literals• 1-48
continuing • 1-7
delimiter• 1-28
in PRINT USING statement• 4-282
processing of• 1-11
quotation marks in• 1-28

String relational expressions
evaluation of• 1-46
operators • 1-4 7
padding • 1-46

Strings
comparing• 1-46, 4-31
concatenating • 1-7, 1-38, 1-43
converting• 4-20
creating• 4-348, 4-356
editing• 4-76, 4-372
extracting substrings• 4-165, 4-214, 4-328,

4-338
finding length• 4-167
finding substrings• 4-154, 4-271
justifying with FORMAT$ function • 4-117
justifying with LSET statement• 4-179
justifying with PRINT USING statement• 4-281
justifying with RSET statement• 4-335
numeric• 4-31, 4-67, 4-158, 4-268, 4-284,

4-292, 4-304, 4-363, 4-382, 4-384
replacing substrings• 4-214
suffix character• 1-15

String variables• 1-20
formatting storage• 4-179, 4-335
in INPUT LINE statement• 4-152
in INPUT statement• 4-149

lndex-21

String variables (cont'd.)

in LET statement • 4-168
in LINPUT statement• 4-171

SUBEND statement• 4-361
See also END statement

SUBEXIT statement• 4-362
See also EXIT statement

Subprograms
calling• 4-9
declaring• 4-95
ending•4-78, 4-123, 4-359
error handling in• 4-80, 4-91, 4-124, 4-240
exiting• 4-90
FUNCTION statement • 4-122
naming• 4-9, 4-358
recursion in• 4-360
returning from• 4-327
SUB statement• 4-358

Subroutines
external• 4-96
GOSUB statement• 4-136
RETURN statement• 4-327

Subscripted variables• 1-20
format of• 1-22
range checking• 4-266
subscript range• 1-21

Subscripts• 1-21
range of• 1-21

SUB statement• 4-358 to 4-360
parameters• 4-358
VAX BASIC parameter-passing mechanisms•

4-10 to 4-11
Substrings

extracting• 4-214, 4-338
extracting with LEFT$ function• 4-165
extracting with MID$ function• 4-214
extracting with RIGHT$ function• 4-328
extracting with SEG$ function• 4-338
finding• 4-154, 4-271
replacing• 4-214

Suffix characters
integer• 1-15
string• 1-15

SUM$ function • 4-363 to 4-364
SW AP% function• 4-365
SYS$CURRENCY • 4-280
SYS$DIGILSEP • 4-280
SYS$RADIX _POINT• 4-280

22-lndex

System command• 2-4
$ system-command• 2-4

T
TAB function• 4-366 to 4-367
TAN function• 4-368
Tangent• 4-368
TEMPORARY clause• 4-260
Tensor• 1-21
Terminal

printing to• 4-273
Terminal control functions

ECHO function• 4-7 4
NOE CHO function• 4-228
RCTRLO function • 4-300
TAB function • 4-366

Terminal-format files• 4-259
input from• 4-148, 4-151, 4-170, 4-200,

4-203
margin• 4-193, 4-229
writing records to• 4-206, 4-273

Text libraries
accessing • 3-12

TIME$ function• 4-371
TIME function• 4-369 to 4-370

function values• 4-369 to 4-370
% TITLE directive• 3-24 to 3-25
Trailing minus sign field

in PRINT USING statement• 4-278
Trigonometric functions

A TN function • 4-6
COS function• 4-35
SIN function • 4-346
TAN function• 4-368

TAM$ function• 4-372
TAN• 4-198
Truncation

in numeric strings• 4-268, 4-269 to 4-270,
4-285, 4-292

in PRINT USING statement• 4-281
with FIX function • 4-109

Truth tables• 1-49
Truth tests

in logical expressions• 1-49
in relational expressions • 1-44
in string relational expressions • 1-46

/TYPE_DEFAULT qualifier• 2-18
/TYPE qualifier• 1-15

u
UBOUND function• 4-373 to 4-374
Unconditional branching

with GOSUB statement • 4-136
with GOTO statement • 4-138

Unconditional loops• 4-114
Undefined files• 4-256
Underscore (_)

in PRINT USING statement• 4-279
in variable names • 1-18

UNLESS statement• 4-375
UNLOCK EXPLICIT clause•4-104, 4-105, 4-129,

4-260
UNLOCK statement• 4-376 to 4-377
UNSAVE command• 2-60
UNTIL clause• 4-115
UNTIL loops• 4-226

error handling in• 4-324
exiting• 4-91
explicit iteration of• 4-160
transferring control into• 4-136, 4-138, 4-246,

4-248
UNTIL statement• 4-378 to 4-379
UPDATE statement• 4-380 to 4-381

with UNLOCK statement• 4-376
Upper bounds

determining with UBOUND function• 4-373
Uppercase letters

in EDIT command• 2-24
in PRINT USING statement• 4-281
processing of• 1-11

User-defined functions• 4-53, 4-58
USEROPEN clause• 4-260

v
VAL% function• 4-384 to 4-385
VAL function• 4-382 to 4-383
Values

assigning to array elements• 4-197, 4-200,
4-203, 4-209, 4-302

assigning to variables • 4-168
assigning with LET statement• 4-168

Values (cont'd.)

assigning with LINPUT statement• 4-170
assigning with LSET statement• 4-179
assigning with MAT INPUT statement• 4-200
assigning with MAT LINPUT statement• 4-203
assigning with MAT READ statement• 4-209
assigning with READ statement • 4-302
assigning with RSET statement• 4-335
comparing • 4-106

Variable names
in COMMON statement• 4-29
in MAP DYNAMIC statement• 4-191
in MAP statement• 4-186
in REMAP statement• 4-316
rules for• 1-17

Variables• 1-17
assigning values to• 4-148, 4-151, 4-168,

4-170, 4-302
comparing • 4-106
declaring • 4-48
definition of• 1-17
explicitly declared• 1-20
external • 4-96
floating-point • 1-19
implicitly declared • 1-18
initialization of• 1-23, 4-30, 4-50
in MOVE statement• 4-221
in SUB subprograms • 4-360
integer• 1-19
lexical • 3-14
loop• 4-114
naming • 1-17
string• 1-20, 4-149, 4-152, 4-168, 4-171
subscripted• 1-20

VARIANT clause• 4-307
%VARIANT directive• 3-26 to 3-27

in %IF directive• 3-8
in %LET directive• 3-14

/VARIANT qualifier• 2-18, 3-26
VAX BASIC character set• 1-11
VAX BASIC ST A TUS bits• 4-350 to 4-351
Vector• 1-21
Version identification• 3-6
Virtual address

finding• 4-173
Virtual arrays• 4-50, 4-69, 4-72

initialization of• 1-24, 4-72
padding in• 4-72

lndex-23

Virtual arrays (cont'd.)

with FIELD statement• 4-101
Virtual files• 4-256

record size• 4-260
with RESTORE statement• 4-322

VMSST A TUS function• 4-386 to 4-387

w
WAIT clause

with GET statement • 4-130
with INKEY$ function • 4-145

WAIT statement• 4-388 to 4-389
WHEN blocks

with GOSUB statement• 4-136
with GOTO statement • 4-138

WHEN ERROR constructs
with DEF• functions• 4-61
with DEF functions• 4-55

WHEN ERROR statement• 4-390 to 4-394
with a detached handler• 4-391
with an attached handler• 4-391

WHILE clause• 4-115
WHILE loops• 4-226

error handling in• 4-324
exiting • 4-91
explicit iteration of• 4-160
transferring control into• 4-136, 4-138, 4-246,

4-248
WHILE statement• 4-395 to 4-396
Width

margin• 4-192, 4-193, 4-229
WINDOWSIZE clause• 4-261
WORD data type• 1-12
/WORD qualifier• 2-19

x
XLA TE$ function• 4-397 to 4-398

y

! your-comment• 2-2

24-lndex

z
ZER function• 4-197
Zero

array element• 1-21, 4-71, 4-198, 4-201,
4-204, 4-207, 4-210, 4-223

blank-if-zero field• 4-279
in PRINT USING statement• 4-279

Zero-fill field
in PRINT USING statement• 4-279

Reader's Comments VAX BASIC Reference Manual
Al-HY 16A-TE

AD-HY 16A-T 1

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

- Do Not Tear - Fold Here and Tape

--------------ir---~-----------;;~;--
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

- Do Not Tear - Fold Here --

Reader's Comments VAX BASIC Reference Manual
Al-HY 16A-TE

AD-HY 16A-T 1

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank vou for vour assistance. - -

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D 0

Date

)o Not Tear - Fold Here and Tape

--------------ir---------------~~~----
m the

United States

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE Will BE PAID BY ADDRESSEE

DIGIT Al EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

VAX BASIC User Manual
Order Number: Al-HY 15A-TE, AD-HY 15A-T2

July 1988

This manual describes how to develop VAX BASIC programs, describes the
features of the language, and describes how to use VAX/VMS features from
VAX BASIC programs.

Operating System and Version: VMS Version 5.0 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX BASIC Version 3.3

First Printing, August 1986
Updated, April 1 987
Updated, July 1988

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1986, 1987, 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request
the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

. DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

~urnuo~u TM

ZK4772

Contents

PREFACE xxv

SUMMARY OF TECHNICAL CHANGES xx ix

DEVELOPING VAX BASIC PROGRAMS ON VAX/VMS

CHAPTER 1 OVERVIEW OF THE VAX BASIC LANGUAGE 1-1

CHAPTER 2 INTRODUCTION TO THE VAX/VMS OPERATING SYSTEM 2-1

2.1 LOGGING IN AND OUT

2.2 ACCESSING THE HELP FACILITY

2.3 ENTERING AND EDITING DCL COMMANDS

2.4 UNDERSTANDING THE DIRECTORY STRUCTURE

2.5 USING DCL FILE-HANDLING COMMANDS
2.5.1 Displaying Files
2.5.2 Printing and Typing Files
2.5.3 Deleting Files
2.5.4 Purging Files
2.5.5 Renaming and Moving Files
2.5.6 Searching Files
2.5.7 Setting File Protection

July 1988

2-2

2-3

2-4

2-5

2-8
2-9

2-10
2-10
2-11
2-11
2-12
2-12

iii

2.6 USING COMMAND PROCEDURES
2.6.1 Defining DCL Symbols and Logical Names
2.6.2 Creating and Executing Command Procedures
2.6.3 Sample Command Procedure
2.6.4 Login Command Procedures

2.7 DCL COMMANDS FOR PROGRAM DEVELOPMENT

CHAPTER 3 DEVELOPING PROGRAMS IN THE BASIC ENVIRONMENT

3.1 ENTERING THE ENVIRONMENT

3.2 CREATING AND RUNNING PROGRAMS

3.3 IMMEDIATE MODE

3.4 DEBUGGING IN IMMEDIATE MODE

3.5 COMPILER COMMANDS
3.5.1 Entering Comments
3.5.2 Entering DCL Commands
3.5.3 The APPEND Command
3.5.4 The ASSIGN Command
3.5.5 The COMPILE Command
3.5.6 The CONTINUE Command
3.5.7 The DELETE Command
3.5.8 The EDIT Command
3.5.9 The EXIT Command
3.5.10 The HELP Command
3.5.11 The IDENTIFY Command
3.5.12 The LIST and LISTNH Commands
3.5.13 The LOAD Command
3.5.14 The LOCK Command
3.5.15 The NEW Command
3.5.16 The OLD Command
3.5.17 The RENAME Command
3.5.18 The REPLACE Command

iv

2-14
2-14
2-16
2-17
2-19

2-20

3-1

3-1

3-2

3-5

3-8

3-9
3-12
3-13
3-13
3-14
3-14
3-1S
3-1a
3-18
3-20
3-20
3-21
3-2~

3-2~

3-23
3-23
3-24
3-24
3-2!:

3.5.21 The SAVE Command 3-26
3.5.22 The SCALE Command 3-27
3.5.23 The SCRATCH Command 3-27
3.5.24 The SEQUENCE Command 3-27
3.5.25 The SET Command 3-28
3.5.26 The SHOW Command 3-28
3.5.27 The UNSAVE Command 3-30

CHAPTER 4 DEVELOPING VAX BASIC PROGRAMS AT DCL COMMAND
LEVEL 4-1

4.1 CREATING A VAX BASIC PROGRAM
4.1.1 Using VAX EDT
4.1 .2 Using VAXTPU

4.1.2.1 The EVE Interface• 4-3
4.1.2.2 The EDT Keypad Emulator Interface• 4-3

4.2 COMPILING A VAX BASIC PROGRAM
4.2.1 The BASIC Command
4.2.2 BASIC Command Qualifiers
4.2.3 Compiler Listings

4.2.3.1 Source Program Listing • 4-23
4.2.3.2 Cross-Reference Listing • 4-25
4.2.3.3 Allocation Map • 4-27
4.2.3.4 Qualifier Summary • 4-29
4.2.3.5 Machine Code Listing• 4-29

4.3 LINKING A VAX BASIC PROGRAM
4.3.1 The LINK Command
4.3.2 LINK Command Qualifiers
4.3.3 Linker Input Files
4.3.4 Linker Output Files
4.3.5 Using an Object Module Library
4.3.6 Linker Error Messages

4.4 RUNNING A VAX BASIC PROGRAM

4-1
4-1
4-2

4-4
4-4
4-6

4-15

4-32
4-32
4-33
4-35
4-35
4-36
4-37

4-38

v

CHAPTER 5 USING THE VAX/VMS DEBUGGER 5-1

5.1

5.2

5.3

5.4

5.5

vi

OVERVIEW OF THE DEBUGGER

FEATURES OF THE DEBUGGER

GETTING STARTED WITH THE DEBUGGER
5.3.1 Compiling and Linking to Prepare for Debugging
5.3.2 Starting and Terminating a Debugging Session
5.3.3 Issuing Debugger Commands
5.3.4 Viewing Your Source Code

5.3.4. 1 Noscreen Mode• 5-8
5.3.4.2 Screen Mode• 5-8

5-1

5-3

5-4
5-4
5-5
5-6
5-8

5.3.5 Controlling and Monitoring Program Execution 5-10
5.3.5.1 Starting and Resuming Program Execution• 5-10
5.3.5.2 Determining the Current Location of the Program

Counter • 5-12
5.3.5.3 Suspending Program Execution • 5-13
5.3.5.4 Tracing Program Execution • 5-15
5.3.5.5 Monitoring Changes in Variables• 5-16

5.3.6 Examining and Manipulating Data 5-17
5.3.6. 1 Displaying the Values of Variables• 5-18
5.3.6.2 Changing the Values of Variables • 5-19
5.3.6.3 Evaluating Expressions • 5-19
5.3.6.4 Stepping Into VAX BASIC Routines • 5-20

5.3. 7 Controlling Symbol References 5-22
5.3. 7. 1 Module Setting • 5-22
5.3. 7 .2 Resolving Multiply-Defined Symbols • 5-23

A SAMPLE DEBUGGING SESSION 5-24

DEBUGGER COMMAND SUMMARY 5-26

VAX BASIC PROGRAMMING CONCEPTS

CHAPTER 6 GETTING STARTED WITH VAX BASIC 6-1

6.1 LINE NUMBERS 6-1
6.1.1 Programs with Line Numbers 6-1
6.1.2 Programs Without Line Numbers 6-2
6.1.3 Labels 6-4
6.1.4 Continuation of Long Program Statements 6-5

6.2 IDENTIFYING PROGRAM UNITS 6-6

6.3 THE VAX BASIC CHARACTER SET 6-7

6.4 PROGRAM DOCUMENTATION 6-7

6.5 DECLARATIONS AND DATA TYPES 6-9
6.5.1 Implicit Data Typing 6-9
6.5.2 Explicit Data Typing 6-10

6.6 CONSTANTS 6-11

6.7 VARIABLES 6-13
6.7.1 Floating-Point Variables 6-13
6.7.2 Integer Variables 6-14
6.7.3 Packed Decimal Variables 6-14
6.7.4 String Variables 6-14
6.7.5 Subscripted Variables 6-15

6.8 KEYWORDS AND RESERVED WORDS 6-16

6.9 OPERANDS, OPERATORS AND EXPRESSIONS 6-17

6.10 ASSIGNMENT STATEMENTS 6-17

vii

CHAPTER 7 SIMPLE INPUT AND OUTPUT 7-1

7.1 PROGRAM INPUT 7-1

7.2

7.3

7.1.1 Providing Input Interactively 7-1
7. 1 . 1 . 1 The INPUT Statement • 7-2
7.1.1.2 The INPUT LINE and LINPUT Statements• 7-4
7 .1.1.3 Enabling and Disabling the Question Mark Prompt• 7-5

7. 1 .2 Providing Input from the Source Program 7-7
7.1.2.1 The READ and DATA Statements• 7-7
7 .1.2.2 The RESTORE Statement• 7-9

PROGRAM OUTPUT
7 .2.1 Print Zones-the Comma and the Semicolon
7 .2.2 Output Format for Numbers and Strings

TERMINAL-FORMAT FILES
7 .3.1 Opening and Closing a Terminal-Format File
7.3.2 Writing Records to a Terminal-Format File

7-10
7-11
7-14

7-16
7-17
7-17

CHAPTER 8 ARRAYS 8-1

8.1

8.2

8.3

8.4

8.5

viii

INTRODUCTION

CREATING ARRAYS EXPLICITLY
8.2.1 Creating Arrays with the DECLARE Statement
8.2.2 Creating Arrays with the DIM Statement

8.2.3
8.2.4

8.2.2.1 Declarative DIM Statements• 8-5
8.2.2.2 Executable DIM Statements• 8-6
Creating Arrays with the COMMON Statement
Creating Arrays with the MAP Statement

DETERMINING THE BOUNDS OF AN ARRAY

CREATING ARRAYS IMPLICITLY

ASSIGNING AND DISPLAYING ARRAY VALUES
8.5.1 Assigning Values with the LET Statement

8-1

8-3
8-4
8-4

8-7
8-7

8-8

8-8

8-10
8-10

8.5.2 Listing Array Elements with the PRINT Statement

8.6 USING MAT STATEMENTS
8.6.1 The MAT Statement
8.6.2 The MAT READ Statement
8.6.3 The MAT INPUT[#] Statement
8.6.4 The MAT LINPUT [#] Statement
8.6.5 The MAT PRINT[#] Statement
8.6.6 Matrix 1/0 Functions (NUM and NUM2)

8.7 MATRIX OPERATORS
8. 7 .1 Arithmetic Matrix Operations

8. 7. 1. 1 Assignment • 8-22
8. 7. 1.2 Addition and Subtraction • 8-22
8.7.1.3 Multiplication• 8-23

8.7.2 Matrix Functions
8.7.2.1 The TRN Function• 8-24
8. 7 .2.2 The INV Function • 8-25
8. 7 .2.3 The DET Function • 8-26

CHAPTER 9 DATA DEFINITION

9.1 DECLARATIVE STATEMENTS

9.2 DATA TYPES

9.3 SETTING THE DEFAULT DATA TYPE AND SIZE

9.4 DECLARING VARIABLES EXPLICITLY

9.5 DECLARING NAMED CONSTANTS EXPLICITLY
9.5.1 Declaring Constants Within a Program Unit
9.5.2 Declaring Constants External to the Program Unit
9.5.3 Declaring a Default Constant Type

9.6 OPERATIONS WITH MULTIPLE DATA TYPES

8-11

8-11
8-13
8-15
8-16
8-18
8-19
8-21

8-21
8-22

8-24

9-1

9-1

9-2

9-5

9-6

9-7
9-8
9-8
9-9

9-9

ix

9.7 ALLOCATING STATIC STORAGE
9.7.1 The COMMON Statement
9.7.2 The MAP Statement

9.7.2.1 Single Maps • 9-15
9.7.2.2 Multiple Maps • 9-16

9.7.3 FILL Items
9.7.4 Using COMMON and MAP in Subprograms

9.8 DYNAMIC MAPPING

CHAPTER 10 CREATING AND USING DATA STRUCTURES

10.1 THE RECORD STATEMENT
10.1 .1 Grouping RECORD Components
10.1 .2 RECORD Variants
10.1.3 Accessing RECORD Components

CHAPTER 11 PROGRAM CONTROL

11.1 STATEMENT MODIFIERS
11.1.1 The IF Modifier
11.1.2 The UNLESS Modifier
11.1.3 The FOR Modifier
11.1.4 The UNTIL Modifier
11.1.5 The WHILE Modifier
11.1.6 Nesting Modifiers

11.2 LOOPS
11.2.1 FOR ... NEXT Loops
11.2.2 WHILE ... NEXT Loops
11.2.3 UNTIL.NEXT Loops
11.2.4 Nesting Loops

11.3 UNCONDITIONAL BRANCHING (THE GOTO STATEMENT)

11.4 CONDITIONAL BRANCHING

x

9-12
9-13
9-14

9-17
9-19

9-21

10-1

10-1
10-5
10-6
10-9

11-1

11-1
11-2
11-2
11-2
11-2
11-3
11-3

11-4
11-4
11-7
11-8
11-9

11-10

11-10

11.4.1
11.4.2
11.4.3

The ON ... GOTO ... OTHERWISE Statement
The IF ... THEN ... ELSE Statement
The SELECT ... CASE Statement

11.5 THE EXIT AND ITERATE STATEMENTS

11.6 EXECUTING LOCAL SUBROUTINES
11.6.1 The GOSUB and RETURN Statements
11.6.2 The ON ... GOSUB ... OTHERWISE Statement

11.7 SUSPENDING AND HALTING PROGRAM EXECUTION
11. 7 .1 The SLEEP Statement
11 . 7 .2 The WAIT Statement
11.7.3 The STOP Statement
11.7.4 The END Statement

CHAPTER 12 FUNCTIONS

11-11
11-12
11-14

11-16

11-18
11-18
11-20

11-21
11-21
11-22
11-22
11-23

12-1

12.1 BUILT-IN FUNCTIONS 12-1
12.1 .1 Numeric Functions 12-2

12.1.1.1 The ABS Function• 12-2
12. 1. 1.2 The INT and FIX Functions • 12-3
12. 1. 1.3 The SIN, COS, and TAN Functions • 12-3
12. 1. 1.4 The LOG 10 Function • 12-4
12. 1. 1.5 The EXP Function• 12-5
12.1.1.6 The RND Function• 12-6

12.1 .2 Data Conversion Functions 12-7
12. 1.2. 1 The ASCII Function • 12-7
12.1.2.2 The CHA$ Function • 12-8

12.1 .3 String Numeric Functions 12-9
12.1.3.1 The FORMAT$ Function• 12-9
12.1.3.2 The NUM$ and NUM1$ Functions• 12-9
12. 1.3.3 The VAL% and VAL Functions • 12-11

12.1 .4 String Arithmetic Functions 12-11
12.1.4.1 The SUM$ and DIF$ Functions• 12-12
12.1.4.2 The QUO$, PLACE$, and PROD$ Functions• 12-13

xi

12.1 .5 Date and Time Functions
12. 1.5. 1 The DATE$ Function • 12-16
12. 1.5.2 The TIME$ Function • 12-16
12.1.5.3 The TIME Function • 12-17

12.1.6 Terminal Control Functions
12.1.6.1 The CTRLC and RCTRLC Functions• 12-17
12. 1.6.2 The ECHO and NOECHO Functions • 12-18
12.1.6.3 The INKEY$ Function • 12-19

12.2 USER-DEFINED FUNCTIONS
12.2.1 Single-Line DEF Functions
12.2.2 Multi-Line DEF Functions

CHAPTER 13 STRING HANDLING

13.1 INTRODUCTION

13.2 USING DYNAMIC STRINGS

13.3 USING FIXED-LENGTH STRINGS

13.4 USING STRING VIRTUAL ARRAYS

13.5 ASSIGNING STRING DATA
13.5.1 The LET Statement
13.5.2 The LSET Statement
13.5.3 The RSET Statement
13.5.4 The MIDS Assignment Statement

13.6 MANIPULATING STRING DATA WITH STRING FUNCTIONS
13.6.1 The LEN Function
13.6.2 The POS Function
13.6.3 The SEGS Function
13.6.4 The MIDS Function
13.6.5 The STRINGS Function
13.6.6 The SPACES Function
13.6.7 The TRMS Function

xii

12-15

12-17

12-20
12-21
12-22

13-1

13-1

13-2

13-4

13-5

13-6
13-6
13-7
13-8

13-10

13-11
13-11
13-12
13-14
13-16
13-17
13-18
13-18

13.6.8 The EDITS Function

13.7 MANIPULATING STRING DATA WITH MULTIPLE MAPS

CHAPTER 14 PROGRAM SEGMENTATION

14.1 VAX BASIC SUBPROGRAMS
14.1.1 SUB Subprograms
14.1 .2 FUNCTION Subprograms

14.2 DECLARING SUBPROGRAMS AND PARAMETERS

14.3 COMPILING SUBPROGRAMS

14.4 INVOKING SUBPROGRAMS
14.4.1 Invoking SUB Subprograms
14.4.2 Invoking FUNCTION Subprograms

14.5 RETURNING PROGRAM STATUS

CHAPTER 15 FILE INPUT AND OUTPUT

1 5.1 RECORD FORMATS
15.1.1 Fixed-Length Records
15.1.2 Variable-Length Records
15.1 .3 Stream Records

15.2 FILE ORGANIZATIONS
15.2.1 Terminal-Format Files
1 5.2.2 Sequential Files
15.2.3 Relative Files
15.2.4 Indexed Files
15.2.5 Virtual Files

15.3 RECORD ACCESS AND RECORD CONTEXT

13-19

13-20

14-1

14-2
14-3
14-4

14-5

14-8

14-9
14-10
14-10

14-11

15-1

15-1
15-2
15-2
15-2

15-3
15-3
15-3
15-4
15-4
15-5

15-5

xiii

15.4 1/0 AND RECORD BUFFERS 15-6

15.5 ACCESSING THE CONTENTS OF A RECORD 15-7
15.5.1 The MAP Statement 15-7
15.5.2 The MAP DYNAMIC and REMAP Statements 15-8
15.5.3 The MOVE Statement 15-10

15.6 FILE AND RECORD OPERATIONS 15-12
15.6.1 Opening Files 15-12
15.6.2 Creating Virtual Array Files 15-15
15.6.3 Locating Records 15-16
15.6.4 Reading Records 15-18
15.6.5 Writing Records 15-20
15.6.6 Deleting Records 15-22
15.6.7 Updating Records 15-23
15.6.8 Controlling Record Access 15-25
15.6.9 Gaining Access to Locked Records 15-27
15.6.10 Accessing Records by Record File Address 15-29
15.6.11 Transferring Data to Terminal-Format Files 15-31
15.6.12 Resetting the File Position 15-32
15.6.13 Truncating Files 15-32
15.6.14 Renaming Files 15-33
15.6.15 Closing Files and Ending 1/0 15-33
15.6.16 Deleting Files 15-34

15.7 FILE-RELATED FUNCTIONS 15-34
15.7.1 The FSPS Function 15-34
15.7.2 The RECOUNT Function 15-36
15.7.3 The STATUS, VMSSTATUS, and RMSSTATUS

Functions 15-36

15.8 OPEN STATEMENT OPTIONS 15-37
15.8.1 The BUCKETSIZE Clause 15-37
15.8.2 The BUFFER Clause 15-39
15.8.3 The CONNECT Clause 15-39
15.8.4 The CONTIGUOUS Clause 15-40
15.8.5 The DEFAUL TNAME Clause 15-41
15.8.6 The EXTENDSIZE Clause 15-41
15.8.7 The FILESIZE Clause 15-42

xiv

15.8.8 The NOSPAN Clause 15-42
15.8.9 The RECORDTVPE Clause 15-43
15.8.10 The TEMPORARY Clause 15-43
15.8.11 The USEROPEN Clause 15-44
15.8.12 The WINDOWSIZE Clause 15-46

CHAPTER 16 FORMATTING OUTPUT WITH THE PRINT USING
STATEMENT 16-1

16.1 INTRODUCTION 16-1

16.2 USING FORMAT STRINGS 16-2

16.3 PRINTING NUMBERS 16-4
16.3.1 Specifying the Number of Digits 16-4
16.3.2 Specifying Decimal Point Location 16-6
16.3.3 Printing Numbers with Special Symbols 16-7

16.3.3.1 Commas • 16-9
16.3.3.2 Asterisk-Fill Fields • 16-10
16.3.3.3 Currency Symbols • 16-11
16.3.3.4 Negative Fields • 16-12
16.3.3.5 E (Exponential) Format • 16-12
16.3.3.6 Leading Zeros • 16-14
16.3.3.7 Blank-If-Zero Fields • 16-14
16.3.3.8 Debits and Credits • 16-15

16.4 PRINTING STRINGS 16-15
16.4.1 Left-Justified Format 16-17
16.4.2 Right-Justified Format 16-18
16.4.3 Centered Fields 16-18
16.4.4 Extended Fields 16-19

16.5 PRINT USING STATEMENT ERROR CONDITIONS 16-20

xv

CHAPTER 17 HANDLING RUN-TIME ERRORS 17-1

17.1 DEFAULT ERROR HANDLING 17-1

17.2 USER-SUPPLIED ERROR HANDLERS 17-2
17.2.1 Protected Regions 17-3
17.2.2 Handlers 17-4
17.2.3 Exiting from Handlers 17-7

17 .2.3. 1 The RETRY Statement• 17-8

17.2.4
17.2.5

17.2.6
17.2.7
17.2.8

17 .2.3.2 The CONTINUE Statement • 17-9
17.2.3.3 The EXIT HANDLER Statement• 17-10
Selecting the Severity of Errors to Handle
Identifying Errors
17 .2.5. 1 Determining the Error Number (ERR) • 17-13
17 .2.5.2 Determining the Error Line Number (ERL) • 17-14

17-12
17-12

17.2. 5. 3 Determining Where the Error Occurred (ERN$) • 1 7-15
17 .2.5.4 Determining the Error Message Text (ERT$) • 17-15
17.2.5.5 Determining VAX/VMS Error Information• 17-16
17 .2.5.6 Determining RMS Error Information• 17-17
CTRL/C Trapping
Handling Errors in Multiple-Unit Programs
Forcing Errors

17-18
17-20
17-22

17.3 USING THE ON ERROR STATEMENTS 17-23

CHAPTER 18 COMPILER DIRECTIVES 18-1

18.1 INTRODUCTION

18.2 CONTROLLING THE COMPILATION LISTING
18.2.1 The % TITLE and %SBTTL Directives
18.2.2 The %1DENT Directive
18.2.3 The %PAGE Directive
18.2.4 The %LIST and %NOLIST Directives
18.2.5 The %CROSS and %NOCROSS Directives

18.3 ACCESSING EXTERNAL SOURCE FILES

xvi

18-1

18-2
18-3
18-4
18-5
18-5
18-6

18-7

18.4 CONTROLLING COMPILATION
18.4.1 The %LET Directive
18.4.2 The %VARIANT Directive
18.4.3 The %ABORT Directive
18.4.4 The %PRINT Directive
18.4.5 The %1F-%THEN-%ELSE-%END %IF Directive

18.5 RECORD DEPENDENCY RELATIONSHIPS IN THE COD

USING VAX BASIC FEATURES ON VAX/VMS

t:HAPTER 19 DATA REPRESENTATION

19.1

19.2

19.3

19.4

19.5

19.6

INTEGER FORMAT
19.1.1 Byte-Length Integer Format
19.1.2 Word-Length Integer Format
19.1.3 Longword Integer Format

REAL NUMBER FORMAT
19.2.1 SINGLE Floating-Point Number Format (F_floating)
19.2.2 DOUBLE Floating-Point Number Format (D_floating) _
19.2.3 GFLOAT Floating-Point Number Format (G_floating) _
19.2.4 HFLOAT Floating-Point Number Format (H_floating) .

PACKED DECIMAL NUMBER FORMAT

STRING AND ARRAY DESCRIPTOR FORMAT
19.4.1 Fixed-Length String Descriptor Format
19.4.2 Dynamic String Descriptor Format

ARRAY DESCRIPTORS
19.5.1 The Prototype Block
19.5.2 The Multiplier Block
19.5.3 The Bounds Block

DECIMAL SCALAR STRING DESCRIPTOR (PACKED DECIMAL
STRING DESCRIPTOR)

July 1988

18-9
18-10
18-10
18-11
18-11
18-11

18-13

19-1

19-1
19-1
19-2
19-2

19-3
19-3
19-4
19-5
19-6

19-6

19-7
19-8
19-8

19-9
19-10
19-11
19-11

19-12

xvii

CHAPTER 20 ADVANCED FILE INPUT AND OUTPUT

xviii

20.1 INTRODUCTION

20.2 RMS 1/0 TO MAGNETIC TAPE
20.2.1 Allocating and Mounting a Tape
20.2.2 Opening a Tape File for Output
20.2.3 Opening a Tape File for Input
20.2.4 Positioning a Tape
20.2.5 Writing Records to a File
20.2.6 Reading Records from a File
20.2.7 Controlling Tape Output Format
20.2.8 Rewinding a Tape
20.2.9 Closing a File

20.3 DEVICE-SPECIFIC 1/0
20.3.1 Device-Specific 1/0 to Unit Record Devices
20 .• 3.2 Device-Specific 1/0 to Magnetic Tape Devices

20.3.2.1 Allocating and Mounting a Tape• 20-8
20.3.2.2 Opening a Tape File for Output • 20-9
20.3.2.3 Opening a Tape File for Input • 20-9
20.3.2.4 Writing Records to a File• 20-10
20.3.2.5 Reading Records from a File • 20-10
20.3.2.6 Rewinding a Tape • 20-11
20.3.2.7 Closing a Tape• 20-11

20.3.3 Device-Specific 1/0 to Disks
20.3.3.1 Assigning and Mounting a Disk• 20-12
20.3.3.2 Opening a Disk File for Output• 20-12
20.3.3.3 Opening a Disk File for Input• 20-13
20.3.3.4 Writing Records to a Disk File• 20-13
20.3.3.5 Reading Records from a Disk File• 20-14

20.4 1/0 TO MAILBOXES

20.5 NETWORK 1/0
20.5.1 Remote File Access
20.5.2 Task-to-Task Communication
20.5.3 Accessing an Rdb/VMS Database

20-1

20-1

20-2
20-2
20-2
20-3
20-3
20-4
20-5
20-5
20-7
20-7

20-7
20-8
20-8

20-12

20-14

20-16
20-17
20-17
20-19

CHAPTER 21 USING VAX BASIC IN THE COMMON LANGUAGE
ENVIRONMENT

21.1 SPECIFYING PARAMETER-PASSING MECHANISMS
21 .1 .1 Passing Parameters by Reference
21 . 1 .2 Passing Parameters by Descriptor
21.1.3 Passing Parameters by Value
21.1.4 VAX BASIC Default Parameter-Passing Mechanisms
21 .1 . 5 · Creating Local Copies

21.2 CALLING EXTERNAL ROUTINES
21.2.1 Determining the Type of Call
21.2.2 Declaring an External Routine and Its Arguments
21.2.3 Calling the Routine

21.3 CALLING VAX BASIC SUBPROGRAMS FROM OTHER
LANGUAGES

21.4 CALLING SYSTEM ROUTINES
21.4.1 VAX/VMS Run-Time Library Routines
21.4.2 System Service Routines
21.4.3 System Routine Arguments
21 .4.4 Including Symbolic Definitions
21.4.5 Condition Values

21.5 EXAMPLES OF CALLING SYSTEM ROUTINES

21.6 THE VAX PROCEDURE CALLING AND CONDITION HANDLING
STANDARD
21.6.1 The Argument List
21.6.2 The Return of the Function Value
21.6.3 Register and Stack Usage

21.7 ADDITIONAL INFORMATION

21-1

21-2
21-2
21-2
21-3
21-3
21-5

21-6
21-6
21-6
21-8

21-9

21-11
21-11
21-12
21-13
21-19
21-20

21-21

21-24
21-24
21-26
21-27

21-28

xix

CHAPTER 22 LIBRARIES AND SHAREABLE IMAGES 22-1

22.1 INTRODUCTION 22-1

22.2 SYSTEM-SUPPLIED LIBRARIES 22-2

22.3 CREATING USER-SUPPLIED OBJECT MODULE LIBRARIES 22-3
22.3.1 Accessing User-Supplied Object Module Libraries

in the BASIC Environment 22-3
22.3.2 Accessing User-Supplied Object Module Libraries

at DCL Level 22-4

22.4 SHAREABLE IMAGES
22.4.1 Accessing Shareable Images in the BASIC

Environment
22.4.2 Accessing Shareable Images at DCL Level

22-5

22-6
22-7

CHAPTER 23 EXTRACTING RECORD DEFINITIONS FROM THE VAX
COMMON DATA DICTIONARY 23-1

23.1 INTRODUCTION TO THE COD 23-1

23.2 EXTRACTING COD DATA DEFINITIONS IN VAX BASIC 23-2

23.3 COD PATH NAMES 23-5

23.4 SPECIFYING A COD HISTORY LIST ENTRY 23-6

23.5 THE NAME FOR BASIC CLAUSE 23-7

23.6 COD ARRAYS 23-8

23.7 COD VARIANTS 23-9

23.8 COD DATA TYPES 23-11

xx July 1988

23.8.1
23.8.2
23.8.3
23.8.4
23.8.5

Character String Data Types
Integer Data Types
Floating-Point Data Types
Decimal String Data Types
Other Data Types

HAPTER 24 COD/PLUS SUPPORT IN VAX BASIC

24.1 INTRODUCTION TO COD/PLUS

24.2 COD/PLUS CONCEPTS
24.2.1 Dictionary Formats
24.2.2 Dictionary Path Names
24.2.3 Dictionary Entities
24.2.4 Dictionary Relationships

24.3 USING COD/PLUS WITH VAX BASIC
24.3.1 The /DEPENDENCY_DATA Qualifier
24.3.2 Creating Relationships with Included Record

Definitions

24.4 CREATING RELATIONSHIPS FOR REFERENCED DICTIONARY
ENTITIES

24.5 SPECIFYING A COD HISTORY LIST ENTRY

.PPENDIX A COMPILE-TIME ERROR MESSAGES

A.1 COMPILE-TIME ERRORS

.PPENDIX B RUN-TIME ERROR MESSAGES

B.1 VAX BASIC RUN-TIME ERRORS BY MNEMONIC

uly 1988

23-15
23-17
23-20
23-23
23-24

24-1

24-1

24-2
24-3
24-4
24-5
24-6

24-6
24-7

24-7

24-10

24-11

A-1

A-1

B-1

B-1

xxi

B.2 VAX BASIC RUN-TIME ERRORS BY NUMBER B-35

B.3 ERRORS NOT GENERATED BY VAX BASIC B-40

APPENDIX C OPTIONAL PROGRAMMING PRODUCTIVITY TOOLS C-1

C.1 USING LSE WITH VAX BASIC
C.1.1 Entering Source Code Using Tokens and

Placeholders
C.1 .2 Compiling Source Code
C.1 .3 Examples

C. 1.3.1 FIND Statement • C-8
C.1.3.2 FOR Statement• C-9

C-1

C-2
C-4
C-5

C.2 USING THE VAX SOURCE CODE ANALYZER C-10

INDEX

EXAMPLES
4-1

xx ii

C.2.1 Setting Up an SCA Environment C-11
C.2. 1. 1 Creating an SCA Library • C-13
C.2. 1.2 Generating Data Analysis Files • C-13
C.2. 1.3 Selecting an SCA Library • C-13
C.2. 1.4 loading Data Analysis Files into a local library • C-14

C.2.2 Using SCA for Cross-Referencing C-14
C.2.3 Displaying Routine Calls with the VIEW CALL_ TREE

Command C-17
C.2.4 Identifying Routine Call Errors with the CHECK CALLS

Command C-18

VAX BASIC Compiler Listing 4-17

FIGURES

2-1 Complete File Specification 2-5

2-2 A Directory Hierarchy 2-7

2-3 DCL Commands for Developing Programs 2-20

3-1 Running Multiple-Unit Programs 3-4

5-1 Keypad Key Functions Predefined by the Debugger 5-7

9-1 Mixed-Mode Expression Results 9-12

9-2 Multiple Maps 9-17

19-1 Byte-Length Integer Format 19-2

19-2 Word-Length Integer Format 19-2

19-3 Longword Integer Format 19-3

19-4 Single-Precision Real Number Format 19-4

19-5 Double-Precision Real Number Format 19-5

19-6 Fixed-Length String Descriptor Format 19-8

19-7 Dynamic String Descriptor Format 19-9

19-8 Array Descriptor Format 19-10

19-9 Decimal Scalar String Descriptor 19-12

21-1 Structure of a VAX Argument List 21-25

21-2 Example of a VAX Argument List 21-26

C-1 Use of LSE and SCA for Multimodular Development C-12

rABLES
2-1 File Protection User Categories 2-13

2-2 File Access Variations 2-13

3-1 VAX BASIC Compiler Commands 3-10

5-1 Debugger Command Summary 5-27

6-1 Predefined Constants 6-12

8-1 MAT Statements 8-13

8-2 MAT Statement Keywords 8-14

9-1 VAX BASIC Data Types 9-3

xxiii

9-2 Result Data Types in VAX BASIC Expressions 9-10
9-3 FILL Item Formats, Representations, and Default Allocations 9-18
12-1 String Arithmetic Functions 12-12

12-2 Precision of String Arithmetic Functions 12-12

13-1 String Modification 13-2

13-2 EDITS Options 13-19

15-1 Record Context After a FIND Operation 15-17

15-2 Record Context After a GET Operation 15-18

15-3 Record Context After a PUT Operation 15-20

15-4 VAX RMS Control Structures Set for the USEROPEN Clause 15-44

16-1 Format Characters for Numeric Fields 16-8

16-2 Format Characters for String Fields 16-16

21-1 Allowable Parameter-Passing Mechanisms 21-3

21-2 Run-Time Library Facilities 21-12

21-3 System Services 21-13

21-4 VMS Usages 21-14

21-5 VAX Register Usage 21-27

23-1 Supported COD Data Types 23-11

23-2 Unsupported COD Data Types 23-13

xx iv

~reface

Intended Audience

This manual presents tutorial information on VAX BASIC language fea
tures and describes how to develop and use VAX BASIC programs on
VAX/VMS systems. Readers are presumed to have some previous knowl
edge of BASIC or another high-level programming language. This manual
should be used with the other two manuals in the documentation set.

Associated Documents

This manual is one of three manuals that form the VAX BASIC document
set. The other two manuals are:

VAX BASIC Reference Manual

Programming with VAX BASIC
Graphics

Provides reference material and syntax for
all VAX BASIC language elements except
graphics capabilities

Provides tutorial and reference material for
VAX BASIC graphics capabilities

You may also be interested in the following supplementary manuals:

• VAX BASIC Syntax Summary
• Introduction to BASIC
• BASIC for Beginners
• More BASIC for Beginners

xxv

Structure of This Document

xx vi

This manual has 23 chapters and 2 appendixes. The chapters are grouped
into three parts as follows:

Developing VAX BASIC Programs on VAX/VMS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Provides a brief overview of VAX BASIC

Shows you how to get started on VAX/VMS

Describes how to develop programs in the BASIC environ
ment

Describes how to develop programs from DCL command
level and how to generate a compiler listing

Describes how to use the VAX/VMS Symbolic Debugger to
debug VAX BASIC programs

VAX BASIC Programming Concepts

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Explains the elements of VAX BASIC programs

Explains simple input and output procedures

Shows how to use VAX BASIC arrays

Explains data definitions

Explains how to create user-defined data structures with the
RECORD statement

Shows how to control the flow of program execution

Explains how to use VAX BASIC functions

Explains how to handle strings in VAX BASIC

Describes structured VAX BASIC programming techniques

Explains how to manage files

Describes how to format output with the PRINT USING
statement

Explains error handling techniques

Shows how to use compiler directives

Using VAX BASIC Features on VAX/VMS

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Appendixes

Appendix A

Appendix B

Appendix C

Conventions

Convention

$ BASIC progl

UPPERCASE letters

lowercase letters

July 1988

Describes how to represent data on VAX/VMS systems

Describes additional I/O considerations on VAX/VMS
systems

Describes System Services and Run-Time Library routines

Describes the use of user-supplied libraries and shareable
images

Explains how definitions extracted from the VAX Common
Data Dictionary are translated to RECORD statements in VAX
BASIC

Explains how to use the dependency recording feature of
CDD/Plus Version 4.0 in VAX BASIC programs

Lists compile-time error messages

Lists run-time error messages

Describes how to use LSE and SCA with VAX BASIC

Meaning

In command-line examples, the user's
response to a prompt is printed in red;
system prompts are printed in black.

A vertical ellipsis indicates that code
which would normally be present is
not shown.

Uppercase letters are used for VAX
BASIC keywords and must be coded
exactly as shown.

. Lowercase letters are used to indicate
user-supplied names or characters.

xxvii

Summary of Technical Changes

Summary of New and Changed Features for Version 3.3

July 1988

Version 3.3 of VAX BASIC includes support for the COD/Plus Version 4.0
CDO-format dictionaries while continuing to provide full support for the
DMD-format dictionaries used in previous versions of CDD. Both types
of dictionaries can coexist on a system and a program can access data
definitions on both. This new functionality is implemented as follows:

• Addition of the /DEPENDENCY_DATA qualifier to the DCL com
mand, BASIC

• Addition of the lexical directive, %REPORT %DEPENDENCY

• Modification of the lexical directive, %INCLUDE %FROM %CDD

Descending keys are now supported on both primary and alternate
keys. This new functionality is implemented by allowing the choice of
ASCENDING or DESCENDING on key definition clauses in the OPEN
statement.

In addition, this documentation update contains numerous corrections and
clarifications to previous documentation; these documentation changes do
not reflect new features.

xx ix

Summary of New and Changed Features for Version 3. 1

Version 3.1 of VAX BASIC includes support for the VAX Source Code
Analyzer (SCA). SCA is a programming tool that can be used to cross
reference and analyze VAX BASIC source code. See Appendix C of this
manual for a description of how to use SCA with VAX BASIC.

VAX BASIC Version 3.1 also corrects a number of problems and in
compatibilities with previous versions. See the VAX BASIC online
release notes for more information. The release notes are located in
SYS$HELP:BASIC031.RELEASE_NOTES.

Summary of New and Changed Features for Version 3.0

xxx

Version 3.0 of VAX BASIC includes extensive graphics capabilities, struc
tured error handling techniques, enhancements to file IjO and other
new features. All of these features are documented in the VAX BASIC
Reference Manual and this manual except for the graphics features, which
are documented in Programming with VAX BASIC Graphics. This section
summarizes all of the major changes for this release.

Graphics Capabilities

VAX BASIC supports extensive graphics capabilities based on VAX GKS.
The new graphics capabilities are available to you if you have the full or
run-time VAX GKS kit installed on your system (Version 2.0 or later) and
if you use supported graphics hardware. The main features of VAX BASIC
graphics are as follows:

• A short learning period

• Convenient default values for attributes

• Statements consisting of English words in simple constructs

• Window and viewport settings that are easy to alter

• Graphics subprograms that can be invoked with a variety of transfor-
mation functions

• Input statements for interactive graphics programs

• Programs that can run on multiple devices

• Programs that run on any hardware supported by VAX GKS

Structured Error Handling

VAX BASIC supports structured error handling with WHEN ERROR
constructs. When an error occurs during execution of statements in a
protected block of code, the error is handled by the associated attached or
detached handler. The following new statements and functions enhance
error handling capabilities:

• WHEN ERROR

• RETRY

• CONTINUE

• HANDLER, EXIT HANDLER, and END HANDLER

• OPTION HANDLE

• CAUSE ERROR

• RMSSTATUS and VMSSTATUS

Although the new WHEN ERROR constructs are the preferred method
for error handling, ON ERROR statements are supported for compatibility
with previous versions of BASIC.

Optional Line Numbers

Line numbers are no longer required in VAX BASIC programs. A
VAX BASIC program can have no line numbers at all, or it can use the
traditional line numbered statements; both are valid. A program with
a line number on the first nonblank line is treated as a line-numbered
program by the compiler. In the BASIC environment, programs with
no line numbers must be created with a text editor or copied into the
environment with the OLD command.

Array Bounds

You can now specify the lower bound for any or all dimensions of non
virtual arrays. Previously, VAX BASIC arrays could only be zero-based.
In addition, two new functions, LBOUND and UBOUND, allow you to
retrieve the lower and upper bounds of array dimensions.

xxxi

xxxii

Improvements for Procedure Invocations

This version of VAX BASIC includes additional flexibility for procedure
invocations:

• If an external function is called as a procedure, VAX BASIC performs
parameter validation exactly as if the declared function had been
invoked as a function.

• The new keywords ANY and OPTIONAL ease parameter passing to
non-BASIC routines.

• Additional functionality has been added to the LOC function so that
the address of an external function can be accessed.

PRINT USING Format Strings

Constant PRINT USING format strings are precompiled at compile time.
Significant run-time performance gains can be achieved by recompiling
programs that use constant format strings.

Single Keystroke Input

The new function INKEY$ allows you to detect a single keystroke typed at
a terminal. Function and keypad keys return a descriptive text string, for
example, "F17'', and control characters return a single ASCII code.

1/0 Enhancements

The following features have been added to enhance 1/0 capabilities:

• STREAM files are accessible with the OPEN statement.

• A WAIT clause can be added to the GET and FIND statements. This
clause instructs VAX BASIC to wait on locked records rather than
immediately returning the error RECBUCLOC (ERR= 154).

• The new keywords NX (next) and NXEQ (next or equal to) are syn
onyms for GT and GE, respectively. These keywords make the GET
and FIND statements more meaningful if an indexed file is accessed
with descending keys.

Miscellaneous Features

• The new PROGRAM statement allows you to optionally name a main
program unit. This name becomes the module name of the compiled
source.

• You can return a procedure value or the status of an image upon
exiting with the following statements:

END /EXIT PROGRAM

- END/EXIT FUNCTION

- END/EXIT DEF

• By default, VAX BASIC calls VAX EDT from the environment. The
user or the system manager can select callable VAX EDT, the VAX
Text Processing Utility (VAXTPU), or the VAX Language-Sensitive
Editor as the default editor. Start-up time for editing files within
the environment is shorter as it is no longer necessary to spawn a
subprocess to access editors that are callable.

• System managers can prevent users escaping to DCL level from the
environment by setting the user's subprocess limit (PRCLM) to zero.
A subprocess limit of 1 was previously required so that a user could
use an editor within the environment.

• New extensions to the OPTION statement include the following:

OPTION ANGLE = degrees-or-radians
OPTION HANDLE = severity-level
OPTION CONSTANT TYPE = data-type
OPTION OLD VERSION = CDD

• The MID$ function can now be on the left side of an assignment
statement. This feature allows partial string replacement.

• VAX BASIC statements, compiler directives, labels, and comment lines
can now begin in column 1.

• You can include files from a text library with the %INCLUDE
directive.

• The suffixes$ (for strings) and % (for integers) are allowed on explic
itly declared variables and constants.

• Extensions to the REMAP and MAP DYNAMIC statements allow you
to redefine the storage allocated to a previously declared static string
variable.

• New functions MAX and MIN are provided for the comparison of a
series of arguments.

xxxiii

xxxiv

• The new MOD function divides one numeric argument by another
and returns the remainder.

• A new compiler. directive, %PRINT, allows you to print a message
during the compilation of a source program without aborting the
compilation.

• The new lexical directive %DECLARED allows you to determine
whether or not a lexical variable has been declared.

DEVELOPING VAX BASIC PROGRAMS ON VAX/VMS

Chapter 1

Overview of the VAX BASIC Language

This brief overview highlights the features of the VAX implementation of
BASIC. The features listed here are described fully in subsequent chapters
of this manual, as well as in the other two manuals in the documentation
set.

BASIC was originally developed for students with little or no program
ming experience. Since then, BASIC has become one of the most widely
used programming languages and is available on almost every computer
system. The VAX implementation of BASIC has evolved beyond the
original design;. however, VAX BASIC still supports all of the traditional
features of the original language in addition to more recent programming
techniques. It has become much more than a teaching tool, and is used in
a wide variety of sophisticated applications.

VAX BASIC is a powerful structured programming language designed for
novice and application programmers alike. The language provides you
with both a highly interactive programming environment and a high
performance development language. VAX BASIC supports such language
constructs as

• Code without line numbers (traditional line numbers are optional)
• Control structures, such as SELECT CASE

• Explicit variable declarations

• Capabilities for handling dynamic strings
• Adaptable file-handling capabilities for terminal-format files, and the

full range of RMS facilities

• Global and local run-time error handling with WHEN ERROR blocks

• Compile-time directives

Overview of the VAX BASIC Language 1-1

• A variety of data types, including packed-decimal and user-defined
records

• Extensive error checking with meaningful error messages

• Thirty-one-character names for variables, labels, functions and subpro
grams

VAX BASIC uses the VAX/VMS operating system to its full advantage
and is integrated with many other DIGITAL products. In particular, VAX
BASIC supports:

• Interactive graphics 1

• The VAX standard calling procedures
• Record definitions included from the VAX Common Data Dictionary

• Code analysis with the VAX Performance and Coverage Analyzer
(PCA)

• Creation of code with the VAX Language-Sensitive Editor
• Extensive online language help

• Exchange of data with other systems using DECnet

VAX BASIC supports the features of other BASICs, including PDP-11
BASIC-PLUS-2. VAX BASIC is a functional superset of BASIC-PLUS-2.
Compatibility flags for BASIC-PLUS-2 and ANSI Minimal BASIC allow
you to check whether your VAX BASIC programs will run on other
systems.

When you write programs in VAX BASIC, you can choose between two
program development methods: developing programs at DCL command
level, or developing programs from within the BASIC environment. When
you develop programs at DCL level, you write your source program with a
text editor, then compile, link, and run the program with commands to the
VAX/VMS operating system. Alternatively, when you develop programs
within the BASIC environment, you simply type the DCL command
BASIC to enter the environment, enter your program, then execute it with
the VAX BASIC command RUN.

The chapters in Part I of this manual show you how to get started on the
VAX/VMS system and how to develop programs both at DCL command
level and within the BASIC environment.

1 The optional graphics capabilities are discussed in Programming with VAX BASIC Graphics.

1-2 Overview of the VAX BASIC Language

Chapter 2

Introduction to the VAX/VMS Operating
System

When you develop VAX BASIC programs on the VAX/VMS operating
system, you use commands that are part of the DIGITAL Command
Language (DCL). This chapter explains how to use a VAX/VMS system.
More specifically, this chapter discusses how to

• Log in to and out of the VAX/VMS system
• Access the HELP facility

• Use DCL commands
• Create directories and subdirectories

• Use DCL file-handling commands
• Develop command procedures

• Develop VAX BASIC programs

For a complete list of DCL commands, see the VAX/VMS DCL Dictionary.

Introduction to the VAX/VMS Operating System 2-1

2.1 Logging In and Out

Before you can log in to the VAX/VMS operating system, you must have
an account set up in your name. Your system manager is generally the
person responsible for establishing this account and will provide you with
both your user name and password. Both of these are unique to your
session and distinguish you from other users on the system. Once you are
an authorized user, you can regularly access the system.

When you log in, the system prompts you for your user name and pass
word. When you enter your user name, each character is displayed, or
echoed, at the terminal. However, when you enter your password, no
characters are echoed. This enables you to protect your account from
others who may try to access it. For example:

IRETI
Username: SMITH,RETI
Password: RET

•
The system uses the dollar sign ($) as a prompt. When this prompt
is displayed, it indicates that the login procedure was successful and
that you can begin entering commands. If you enter your user name
or password incorrectly, the system displays an error message. To gain
access to the system, you must repeat the login procedure.

To change your password, type the SET PASSWORD command and press
the RETURN key as shown in the following example. The system prompts
you for your current password. The system then prompts you for your
new password, which can have up to 31 characters with any combination
of the letters A through Z, the numbers 0 through 9, a dollar sign ($), and
an underscore (_).

$ SET PASSWORD
Old password:
New password:
Verification:

To verify that you have entered your password correctly, the system
prompts you to enter your new password again. If the two new passwords
do not match, your original password remains in effect.

To end the current session, enter the LOGOUT command:

$ LOGOUT

2-2 Introduction to the VAX/VMS Operating System

The system responds with the following message:

SMITH logged out at DD-MMM-YYY HH:MM

2.2 Accessing the HELP Facility

The VAX/VMS system has an online HELP facility that is useful if docu
mentation on a particular command is not readily available. To gain access
to the HELP facility, you use the DCL command HELP. For example:

• HELP IRETI

The system displays a list of topics for which help is available and prompts
you for a topic. If you want information on a specific command, such as
the DCL command BASIC, type that command after the topic prompt. For
example:

Topic? BASIC IRETI

The system displays a description of the command, and lists all of the
available VAX BASIC qualifiers, parameters and other topics for which
help is available. It then prompts you for a subtopic.

BASIC Subtopic? /SHOW IRETI

If you already know which subtopic you want information on, you can
type the HELP command followed by the BASIC topic and the subtopic
you want help on. For example:

• HELP BASIC/SHOW IRETI

Note that all language HELP is available only from within the BASIC
environment or from within the VAX Language-Sensitive Editor.

To exit from the HELP facility, press CTRL/Z. Once the dollar sign
prompt is displayed, the system is ready to accept a new command.

Introduction to the VAX/VMS Operating System 2-3

2.3 Entering and Editing DCL Commands

Once you have gained access to the system, you can use DCL commands
to perform specific tasks. DCL commands are words, generally verbs,
that describe the action they perform. Following are some of the most
important rules for using DCL commands. Other rules are described in
the VAX/VMS DCL Dictionary.

• You can typically truncate any command name or qualifier name
to four characters. Fewer than four characters is acceptable if the
truncated name is unique to the command that you want.

• You must precede each qualifier name with a single slash character
(/).

• You can type commands in either upper- or lowercase letters.

• If you omit a required parameter (for example, a file specification), the
DCL command interpreter will prompt you for it.

• You can type a command on as many lines as you wish, as long as
you end each line (except the last) with a hyphen (-).

• After you have typed a complete command line, you must press
RETURN to execute the command.

If you enter a command incorrectly (for example, if you misspell a com
mand or qualifier name), the command interpreter issues an error message
and you must either retype the entire command or edit the command and
then reenter it. Command line editing enables you to correct errors in
lengthy command lines and saves you the trouble of retyping the entire
line.

To edit DCL command lines, you can use various control characters as
well as keypad keys. The following list describes some of these editing
functions:

DELETE

Up arrow /(CTRL/B)

Left arrow /(CTRL/D)

2-4 Introduction to the VAX/VMS Operating System

Moves the cursor back one character and erases that
character.

Displays the most recent command line entered.
You can display up to twenty previously entered
command lines by continuing to press CTRL/B or
the up arrow key. To display command lines in the
opposite direction, press the down arrow key.

Moves the cursor one position to the left.

Right arrow /(CTRL/F)

CTRL/U

Moves the cursor one position to the right.

Deletes the current command line and issues a car
riage return so you can reenter the entire command
line.

CTRL/C and CTRL/Y Cancels or interrupts an entire command line.

2.4 Understanding the Directory Structure

A directory is a catalog of files. Each file is distinguished by its name,
file type, and version number. It is not necessary to specify the complete
file specification every time you compile, link, or run a source program.
Under most conditions, it is necessary to specify only the file name.

Figure 2-1 illustrates a complete file specification.

Figure 2-1: Complete File Specification

MYVAX: :USER$$DISK: [SMITH]FIRST_FROG.BAS;3

1--7/~T!\
o node 8 device e directory o file name 0 file type 0version

ZK-5407-86

0 Specifies a computer system that is part of a DECnet network.
8 Identifies the hardware device on which the file is either stored or

written.

C) Specifies the directory in which a file is cataloged.
8 Distinguishes a file from others contained in the same directory. A file

name can have up to 39 characters.

C) Identifies the type of data that a file contains.
0 Specifies the version number of a file. Each time a file is modified, its

version number is incremented by 1.

Introduction to the VAX/VMS Operating System 2-5

When you log in to the VAX/VMS operating system, you enter your de
fault directory which generally has the same name as the account you log
in to. This default directory is also called your main or top-level directory.
The system allows you to create subdirectories from your main directory.
Subdirectories are helpful in organizing files. For instance, if you are a
multilanguage user, it may be helpful for you to keep all of your VAX
BASIC programs separate from your VAX COBOL programs. To create a
subdirectory, you issue the DCL command CREATE/DIRECTORY. In the
following example, the directory BASJC_pROG.DIR is created. You can
then specify the subdirectory name [SMITH.BASJC_pROG] in commands
or programs.

$ CREATE/DIRECTORY [SMITH.BASIC_PROG]

To move from one directory to another, you use the SET DEFAULT
command as shown in the following example:

$ SET DEFAULT [SMITH.COBOL_PROG]

The number of subdirectories you can create is limited only by the amount
of disk space you have available. Figure 2-2 illustrates the concept of
directory hierarchies.

2-6 Introduction to the VAX/VMS Operating System

Figure 2-2: A Directory Hierarchy

$DIRECTORY [000000]

MALCOLM.DIR
301300.DIR
HIGGINS.DIR
301301.DIR

$DIRECTORY [HIGGINS]

PAYROLL.DIR
USER.DOC
MEMO.LIS
LOGIN.COM

A volume's Master File Directory (MFD)
contains entries for the user file
directories (UFOs) on the volume.

Each UFD lists the files belonging
to that directory, and can contain
entries for additional directories,
called subdirectories.

MFD

$DIRECTORY (HIGGINS.PAYROLL]

INFO.COM
SOURCE.DIR
LISTINGS.DIR
DATA.DIR
DIRECT.DOC

A subdirectory can catalog files
and/or additional subdirectories.
The subdirectory file named
(HIGGINS)PAYROLL.DIR
lists additional subdirectory files.

The subdirectory file named (HIGGINS.PAYROLL]DATA.DIR
lists additional subdirectory files.

$DIRECTORY (HIGGINS.PAYROLL.DATA)---------

JANUARY.DIR

FICA.DAT
STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

$DIRECTORY [HIGGINS.PAYROLL.LISTINGS)

FICA.LIS
TAXES.LIS

$DIRECTORY (HIGGINS.PAYROLL.SOURCE)

FICA.BAS
TAXES.MAR
PAYROLL.BAS

~--__ __,, __ $_0_1R_E_C_T_O_R_Y_(H_l-.GGINS.PA YROLL.DAT A.MARCH)

FICA.DAT

FICA.DAT
STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

STATETAX.DAT
FEDTAX.DAT
EMPTTL.DAT

nextlevel.DIR

LEVEL

0

ZK 553686

Introduction to the VAX/VMS Operating System 2-7

Often, you may refer to files that are contained in your directory hierarchy
but that are not contained in your current default directory. Two special
symbols exist to make references easier: the ellipsis (...) and the hyphen
(-). The ellipsis is used to search down a directory hierarchy and the
hyphen is used to search up a directory hierarchy.

For instance, [SMITH ...] refers to the directory [SMITH) and all of the
subdirectories below [SMITH] in the hierarchy. The directory specification,
[... BASIC_pRQG) refers to all subdirectories named BASIC_pRQG below
the current default directory. You can specify the current default directory
with empty brackets ([]), and you can refer to the entire hierarchy under
your current default directory with [...).

Hyphens allow you to search up the hierarchy one directory at a time;
each hyphen stands for one level. For example, if your current default di
rectory is [SMITH.BASIC_pRQG), you can refer to [SMITH) by specifying
[-).

To delete a subdirectory, you must first remove any files that are contained
in it and change the protection on the directory file. You can then delete
the .DIR file.

Note that you can use both square brackets and angle brackets inter
changeably to refer to directories.

For a more detailed discussion of the directory structure, see the
Introduction to VAX/VMS.

2.5 Using DCL File-Handling Commands

DCL file-handling commands allow you to modify and maintain your
source programs. The following sections describe how to use DCL com
mands to perform common file operations such as displaying files, printing
and typing files, deleting files, purging files, renaming and moving files,
searching files, and setting file protection.

For a complete list of qualifiers to each command and for more detailed
information, see the VAX/VMS DCL Dictionary or type HELP at the DCL
prompt followed by the name of the command.

2-8 Introduction to the VAX/VMS Operating System

2.5.1 Displaying Files

To display a list of all of the files that are contained in a directory, you
use the DCL command DIRECTORY. When you enter the DIRECTORY
command with no parameters or qualifiers, the system displays an entire
list of all of the files that are contained in your current directory. For
example:

$ DIRECTORY

Directory USER$$DISK:[SMITH]

PROGL DIA; 22 PROG1.EXE;2 PROG1.0BJ;60 PROG1.BAS;63

If you want to know how many versions of a specific file exist in your
current directory, you enter the DIRECTORY command along with a
specific file name and file type as shown in the following example:

$DIRECTORY PROG1.BAS

Directory USER$$DISK:[SMITH]

PROG1.BAS;53

Total of 1 file.

The system displays a list of all the versions of the file that currently exist.

However, if you wish to view only a selected group of files that contain
a specific file type, you can use an asterisk (*) or a percent sign (%) as
a wildcard character. The asterisk signifies any number of characters,
including zero, whereas the percent sign signifies exactly one character.
Therefore, •.BAS represents all files that end with the file type, BAS
whereas 3%.BAS represents only those files that contain two characters
for a file name, where 3 is the first character. For example:

$DIRECTORY •.OBJ

Directory USER$$DISK:[SMITH]

PROG1.0BJ;63 PROG2.0BJ;64 PROG4.0BJ;66

Total of 3 files.

The system displays only those files that end with the file type OBJ.

Introduction to the VAX/VMS Operating System 2-9

2.5.2 Printing and Typing Files

To examine the contents of a file, you can use either the DCL command
PRINT or the DCL command TYPE. The PRINT command allows you to
output the contents of a file to a line printer whereas the TYPE command
allows you to output the contents of a file to your terminal screen.

In the following example, the PRINT command outputs the file FIRST_
PROG.BAS to a printer:

$ PRINT FIRST_PROG.BAS

By default, the system prints the most current version of FIRST_
PROG.BAS. To print a specific version of FIRST_pRQG.BAS, you must
specify a version number. For instance, in the following example, the
system prints the second version of FIRST_pRQG.BAS:

$ PRINT FIRST_PROG.BAS;2

With the PRINT command, you can specify command qualifiers. For
example, the /AFTER qualifier specifies that the job not be printed until a
specific time of day. For a complete list of all of the command qualifiers
available with the PRINT command, see the VAX/VMS DCL Dictionary.

With the TYPE command, you can display the contents of a file on your
terminal screen. If you specify the /PAGE qualifier, you can display one
screen of text at a time. If you do not specify the /PAGE qualifier, you
can press CTRL/S to interrupt the display for closer examination of a
particular section and then resume the display by pressing CTRL/Q. If
your keyboard has a NOSCROLL or a HOLD SCREEN key, you can use it
to toggle between interrupting and resuming the display.

2.5.3 Deleting Files

To delete a file, you use the DCL command DELETE. With the DELETE
command, you must specify the file name, the file type, and the version
number of the file you want to delete. For instance, in the following
example, the system deletes the first version of FIRST_pRQG.BAS.

$DELETE FIRST_PROG.BAS;1

If you want to delete all versions of a file, you can use an asterisk (•) as a
wildcard character. For example:

$ DELETE FIRST_PROG.BAS;•

2-1 0 Introduction to the VAX/VMS Operating System

Similarly, if you want to delete all files with a particular file type, you can
use the asterisk (•) or the percent sign (%) as a wildcard character. For
instance, in the following example, the system deletes all files that have
the file type LIS:

$DELETE *.LIS;*

You can specify command qualifiers with the DELETE command. For
instance, if you specify /CONFIRM, a request is issued before each
individual DELETE operation so that you can confirm that the operation
should be performed on a particular file.

2.5.4 Purging Files

The DCL command PURGE deletes all but the most recently modified
version of files. Unlike the DELETE command, you can specify the
PURGE command without specifying a file name or file type. The system
deletes all files except the most recent version in your current directory.

$ PURGE

By default, only the most recent version of each file is kept. You can,
however, specify the number of versions that are kept by specifying the
/KEEP qualifier. This command qualifier specifies the maximum number
of versions of a specified file to be kept in your directory. For instance, in
the following example, the system deletes all but the two highest versions
of FIRST_pRQG.BAS.

$ PURGE FIRST_PROG.BAS/KEEP=2

2.5.5 Renaming and Moving Files

To change the identification of one or more files, use the DCL command
RENAME. For instance, in the following example, FIRST_pRQG.BAS is
changed to SECOND_pRQG.BAS.

$ RENAME FIRST_PROG.BAS SECOND_PROG.BAS

Note that because a version number is not specified, the most current
version is renamed by default.

Introduction to the VAX/VMS Operating System 2-11

You can also use the RENAME command to move a file from one directory
to another. For instance, in the following example, the file SECOND_
PROG. BAS is moved from the directory [SMITH] to the subdirectory
[SMITH.BASIC_pROG]:

$ RENAME [SMITH]SECOND_PROG.BAS [SMITH.BASIC_PROG]

To move an entire set of files that have common file name or file type,
you can use the asterisk (*) as a wildcard character. For instance, the
following command line changes the directory name of all files that
contain the file name SECOND_pROG.

$ RENAME [SMITH]SECOND_PROG.*;* [SMITH.BASIC_PROG]*.*;*

2.5.6 Searching Files

To search a file or a group of files for a specified string, use the DCL
command SEARCH. This command allows you to search the contents of
a specified file or group of files for a particular string or strings and lists
all of the lines in which the string or strings appear. In the following
example, the directory [SMITH.BASIC_pROG] is searched for any files
that contain the string "Course_Data":

$SEARCH [SMITH.BASIC_PROG]*.*;* 11 Course_Data11

2.5. 7 Setting File Protection

To prevent others from gaining access to a file, you use the SET
FILE/PROTECTION command. With this command, you specify user
categories with access types. Table 2-1 lists the four user categories and
Table 2-2 lists the four access types.

2-12 Introduction to the VAX/VMS Operating System

Table 2-1:
User Category

OWNER

GROUP

WORLD

SYSTEM

Table 2-2:
Access

READ

WRITE

EXECUTE

DELETE

File Protection User Categories
Description

The user who created the file

All users, including the owner, who have the same
group number in their user identification codes
(UICS) as the owner of the file

All users

All users who have the same system privilege
(SYSPRV), or low group numbers (usually from 1
through 10)

File Access Variations
Description

The ability to examine, print, or copy a file

The ability to modify or write a file

The ability to execute a file that contains executable
program images

The ability to delete a file

When you specify the SET FILE/PROTECTION command, the class
names and access types can be spelled out or abbreviated to the first
letter. For example, you may want to give system users and your project
members complete access to the file TEST.BAS, and give others read
access only. To do this, you would enter the following command:

$SET FILE TEST.BAS/PROTECTION = (S:RWED,O:RWED,G:RWED,W:R)

Introduction to the VAX/VMS Operating System 2-13

2.6 Using Command Procedures

A command procedure is a group of DCL commands in a file that can be
executed by the DCL command interpreter. You can use command proce
dures to generate sequences of command lines that you type frequently.
For example, you could create a command procedure that compiles, links,
and runs your source programs while checking for error status. Moreover,
you could create a command procedure that deletes all files that end with
a particular file type. Instead of typing each command separately, you
would execute the command procedure.

The following sections briefly discuss the rules for defining DCL symbols
and logical names as well as how to create and execute a command
procedure. In addition, this section contains a sample command procedure
and a sample LOGIN.COM file. For more information, see the Guide to
Using DCL and Command Procedures on VAX/VMS.

2.6. 1 Defining DCL Symbols and Logical Names

You define a symbol by placing the equal sign (=) or the double equal
sign (==) between the symbol and the string it represents. If you use the
double equal sign operator, the system inserts the symbol in the global
symbol table; if you use the equal sign operator, the system inserts the
symbol in a local symbol table. When a symbol is local, it is recognized
only within the procedure in which it is contained. However, when a
symbol is global, it is recognized by many other procedures.

For example, the following command defines the global symbol BASIC as
a command to invoke the VAX BASIC compiler, with two added qualifiers:

$ BASIC == "BASIC/DEBUG/LIST"

Briefly, the VAX/VMS system creates a global symbol table for you
when you log in. Then, each time you execute a command procedure,
the system creates a new command level and a local symbol table for
that level. If one command procedure executes another procedure, the
system creates another new-lower-command level and another local
symbol table, and so forth. Every command level can access the symbols
in the global symbol table, as well as symbols in local symbol tables at
higher command levels. In other words, you can define local symbols in
a command procedure that ate available to lower-level procedures. The
VAX/VMS DCL Dictionary describes ~ymbol tables in detail.

2-14 Introduction to the VAX/VMS Operating System

Note that the system discards local symbols and their values when a
procedure exits. A command procedure can create local symbols, but the
symbols are deleted when the procedure ends. However, when you define
local symbols at DCL command level, these symbols remain until you
explicitly remove them or until you log out.

You can pass information to a higher-level command procedure by
defining a global symbol to contain the information. Because there is
only one global symbol table, and it is accessible at all command levels,
the higher-level command procedure can test the value of the symbol.

To allow abbreviations of a symbol, insert an asterisk (*)in the symbol
where you want to end the acceptable abbreviation. For example, if you
wanted to abbreviate the command BASIC to BAS, you could define a
symbol as follows:

$ BAS*IC == "BASIC/DEBUG/LIST"

Once you have defined this symbol, you can type BAS (plus any remain
ing letters in the command) to invoke the VAX BASIC compiler with the
/DEBUG and /LIST qualifiers. Note that the double equal sign in this
symbol definition causes the creation of a global symbol.

You can determine the definition of a symbol by typing SHOW SYMBOL,
followed by the symbol name. For example:

$ SHOW SYMBOL BAS
BAS*IC == "BASIC/DEBUG/LIST"

To delete a symbol, type DELETE/SYMBOL, followed by the symbol
name. If you do not specify a symbol table qualifier, /LOCAL is the de
fault. If the symbol is in the global table, type DELETE/SYMBOL/GLOBAL
followed by the symbol name. For example, you could delete the symbol
BAS*IC that you had previously defined, by typing the following:

$ DELETE/SYMBOL/GLOBAL BASIC

To create a logical name, you use either the DCL command DEFINE or
the DCL command ASSIGN. A logical name is a name that is equated to
an equivalence string, or a list of equivalence strings. For example, the
following command assigns the logical name INFO to the file specification
USER$$DISK:[SMITH]INFO.DAT;12:

$DEFINE INFO USER$$DISK:[SMITH]INFO.DAT;12

Introduction to the VAX/VMS Operating System 2-15

You can determine the definition of a logical name by typing SHOW
LOGICAL, followed by the logical name. For example:

$ SHOW LOGICAL INFO
"INFO"= "USER$$DISK:[SMITH]INFO.DAT;12" (LNM$PROCESS_TABLE)

When you create a logical name, it is maintained in a logical name table.
For more information on logical name tables, see the VAX/VMS DCL
Dictionary.

You can keep a file of symbols and logical names for the system to define
every time you log in, thus creating a set of personal commands for
special purposes. For information on login command procedures, see
Section 2.6.4.

2.6.2 Creating and Executing Command Procedures

To create a command procedure, you can invoke a text editor or you can
use the DCL command CREATE. If you use the default file type COM,
you need not include the file type when you execute the procedure.

Once you have created your command procedure, you can execute it either
interactively or in batch. To execute a command procedure interactively,
type the at sign (@) execute procedure command followed by the name
of the file. In the following example, the procedure SAMPLE.COM is
executed.

$ <DSAMPLE

To execute a command procedure in batch, you use the DCL command
SUBMIT. This command allows you to submit your procedure to a system
batch job queue for execution. Once the job completes, the system prints
a log file indicating the status of the job and then deletes the log file from
your directory. In the following example, SAMPLE.COM is placed in the
system batch job queue. A log file entitled SAMPLE.LOG will be created.

$ SUBMIT SAMPLE

2-16 Introduction to the VAX/VMS Operating System

2.6.3 Sample Command Procedure

The following command procedure is included to help you understand
how command procedures can aid in the programming process. This
command procedure incorporates many of the DCL commands discussed
throughout this chapter. Any text that follows an exclamation point (!) is
interpreted by the DCL command interpreter as a comment and is ignored.

$!The following command procedure tests to see if the file name you
$!input exists. If it does exist, the procedure will automatically
$!compile, link, and run your source program. If the file does not
$!exist, the procedure will ask you if you want to create the file.
$!If you respond YES, the default text editor is invoked so that you
$!can create the source file .

• • $ IF P1 .EQS. "" THEN INQUIRE P1 "FILE NAME"
$ FILETYPE =".BAS"
$ FILESPEC = P1 + FILETYPE tt
$ IF F$SEARCH(FILESPEC) .EQS. 1111 THEN GOTO MESSAGE
$ SHOW SYMBOL FILESPEC
• !
• !
• !
$ ON ERROR THEN GOTO PRINT_ROUTINE
$WRITE SYS$0UTPUT "Compiling ... "
$BASIC/LIST 'P1'
• !
• !
$WRITE SYS$0UTPUT "Linking ... "
$ LINK 'P1'
• !
• !
• WRITE SYS$0UTPUT "Running ... II e
$ SET NOON
$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$RUN 'P1'
$ GOTO END

• • !

Introduction to the VAX/VMS Operating System 2-17

$ PRINT_ROUTINE:
$ WRITE SYS$0UTPUT "Error in program - processing stops"
$ PRINT 'P1'
$ END:
• !
$ PURGE
• !
$ EXIT
• !
$ MESSAGE:
$ WRITE SYS$0UTPUT "Can't find requested file"
$ INQUIRE ANS "Do you want the file created?"
$ IF ANS .EQS. "YES" THEN GOTO EDIT_ROUTINE
$ EXIT
• !
$ EDIT_ROUTINE: f)
$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$ WRITE SYS$0UTPUT "Invoking editor ... "
$ EDIT FILESPEC
$ EXIT

0 Marks the beginning of the command procedure and prompts the user
for a source file name if the user has not supplied one. If the file is
not found, control is transferred to a routine called MESSAGE.

8 Marks the start of the compilation process. The procedure outputs an
informational message and invokes the VAX BASIC compiler.

f) Marks the start of the linking process. Again, the procedure outputs
an information message and invokes the VAX/VMS Linker.

0 Marks the start of the running process. Once again, the procedure
outputs an informational message and runs the program. The input
device is equated to the user's terminal to allow data to be entered.

9 Identifies the actions of the command procedure in the event an
error occurs during execution. When an error does occur, control is
transferred to this routine. The procedure outputs an informational
message and prints the LIS file.

0 Marks the routine that alerts the user that the source file has not been
found. If the user chooses to create the file, control is transferred to
the routine called EDIT-ROUTINE.

8 Marks the start of the edit routine. Again, the input device is equated
to the user's terminal to allow data to be entered. The procedure then
outputs an informational message and creates the supplied source file
by invoking the user's default text editor.

2-18 Introduction to the VAX/VMS Operating System

2.6.4 login Command Procedures

If you are a frequent user of the VAX/VMS system, you may find that you
are typing the same long command lines on a regular basis. To avoid such
repetition, you can create a special command procedure that contains these
commands and statements. This special command procedure is called a
LOGIN.COM file.

When you log in, the system automatically searches your default device
and directory for a file named LOGIN.COM. If the file exists, the system
automatically executes the commands within that file.

A LOGIN.COM file might appear as follows:

$!If the current process is noninteractive then exit
$ IF F$MODE() .NES. "INTERACTIVE" THEN EXIT

• $ '***
$!• Convenient Commands *
$ '***
$!
$ PURGE == "PURGE/KEEP=2/CONFIRM11

$ ST == "SHOW TIME"
$ QUE == "SHOW QUEUE"
$ M*AIL == "MAIL"
$

• '***
$!* Symbols for my directories *
• !***
$!
$HOME== "SET DEFAULT [SMITH)"
$WORK== "SET DEFAULT [SMITH.WORKSP]"
$EXAMPLES== "SET DEFAULT [SMITH.PROG_EXAMPLES]"
$
$ '**
$!• Logical names for the people I frequently send mail to *
$ '**
• !
$DEFINE JEN MYVAX::BROWN
$ DEFINE SUE MYV AX: : KELLY
$DEFINE BOB MYVAX::CONNELL
$ EXIT

For more information on creating a login command file, see the Guide to
Using DCL and Command Procedures on VAX/VMS.

Introduction to the VAX/VMS Operating System 2-19

2.7 DCL Commands for Program Development

VAX BASIC can function as both a standard compiler or as a program
ming evironment. When using VAX BASIC as a standard compiler,
you create programs at DCL command level. This section describes the
DCL commands that are used to create, compile, link and run a VAX
BASIC program on a VAX/VMS system. These commands are illustrated
in Figure 2-3. For a more detailed description of each command, see
Chapter 4. For more information on using VAX BASIC as a programming
environment, see Chapter 3.

Figure 2-3: DCL Commands for Developing Programs

\ COMMANDS ACTION INPUT/OUTPUT FILES

$ EDIT AVERAGE.BAS
Use the file type of BAS to AVERAGE.BAS

indicate the file contains a
VAX BASIC program

$ BASIC AVERAGE
The BASIC command

AVERAGE.OBJ assumes the file type of an
input file is BAS

Compile the (AVERAGE LIS)
source program

(II you use the/LIST libraries

qualifier. the compiler
creates a listing file.)

$ LINK AVERAGE
The LINK command assumes Link the AVERAGE.EXE
ihe file type of an input file object module (AVERAGE MAP)
IS OBJ.

(II you use the IMAP qualifier.
the linker creates a map file.)

$ RUN AVERAGE
The RUN command assumes Run the
the file type of an image 1s executable
EXE image

ZK-5167-86

2-20 Introduction to the VAX/VMS Operating System

The following example shows each of the commands shown in Figure 2-3
executed in sequence.

$ EDIT/EDT FIRST_PROG.BAS
$ BASIC FIRST_PROG
$ LINK FIRST_PROG
$ RUN FIRST_PROG

To create a VAX BASIC source program at DCL level, you must invoke a
text editor. In the example shown above, the VAX EDT editor is invoked
to create the source program FIRST_pROG.BAS. You can, however,
use another editor, such as the VAX Text Processing Utility (VAXTPU)
or the VAX Language-Sensitive Editor. BAS is used as the file type to
indicate that you are creating a VAX BASIC source program. BAS is the
conventional file type for all VAX BASIC source programs.

When you compile your program with the BASIC command, you do not
have to specify the file type; VAX BASIC searches for BAS by default.

If your source program compiles successfully, the VAX BASIC compiler
creates an object file with the file type OBJ. However, if the VAX BASIC
compiler detects errors in your source program, the system displays each
error on your screen and then displays the DCL prompt. You can then
reinvoke your text editor to correct each error.

You can include command qualifiers with the BASIC command.
Command qualifiers cause the VAX BASIC compiler to perform addi
tional actions. For instance, in the following example, the /LIST qualifier
causes the VAX BASIC compiler to produce a listing file.

$ BASIC/LIST FIRST_PROG

For a complete list and explanation of all of the command qualifiers
available with the BASIC command, see Chapter 4.

Once your program has compiled successfully, you invoke the VAX/VMS
Linker to create an executable image file. The VAX/VMS Linker uses the
object file produced by VAX BASIC as input to produce an executable
image file as output.

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Chapter 4.

Once the executable image file has been created, you run your program
with the DCL command RUN.

Introduction to the VAX/VMS Operating System 2-21

Chapter 3

Developing Programs in the BASIC
Environment

The BASIC environment has capabilities and features that make the
process of program development easier for both novice and expert users.
This chapter describes how to work within the BASIC environment.

3.1 Entering the Environment

To enter the BASIC environment, type the DCL command BASIC and
press RETURN. VAX BASIC responds with an identification line and the
Ready prompt.

$ BASICIRETI
VAX BASIC V3.0

Ready

Once you are in the BASIC environment, you interact directly with the
compiler. In this mode of operation, you can enter any of the following:

• VAX BASIC program lines

• Immediate mode statements

• Compiler commands and qualifiers

When you enter program statements, VAX BASIC stores them in ascending
line number sequence as part of the current program in memory. If you
enter a program line with the same line number as an existing program
line, the new line replaces the old one.

Developing Programs in the BASIC Environment 3-1

When you create a program in the environment, the first line of the
program must have a line number. If you enter a subsequent program line
without a line number, you must precede it with a space or a tab. Inside
the environment, only those program lines that begin with line numbers
can start in the first character position on a line.

NOTE

To develop programs in the environment that have no line
numbers at all, you must use an editor or copy your program
into the environment with the OLD command.

If a program line is too long for one text line, you can continue it by
typing an ampersand (&) and pressing RETURN. (Note that only spaces
and tabs are valid between the ampersand and the carriage return.)

See Section 3.3 for more information about immediate mode statements
and Section 3.5 for more information about VAX BASIC compiler
commands.

3.2 Creating and Running Programs

Inside the BASIC environment, there are two ways to type in and edit a
program. You can type in and edit the program directly using line mode,
or you can use the compiler command EDIT to invoke a text editor when
you are in the environment.

The EDIT command invokes the default text editor for your system. After
entering the BASIC environment, you can type the EDIT command, create
your program with a text editor, and then exit from this editor back to
the environment. At this point, the program you created is the current
program in memory, and you can now type RUN or RUNNH to compile,
link, and execute your program. (RUNNH suppresses header information
such as the name of the program and the time of day.)

You also have the option of creating your program with a text editor
accessed from DCL. In this case, once you have created the program, you
can either enter the BASIC environment and use the OLD command to
read your program into memory, or compile your program at DCL level.
Chapter 4 discusses how to compile your programs at DCL level.

The following example shows a simple program being entered and run
in the environment. The program accepts three numbers entered at the
terminal, averages them, and displays the result.

3-2 Developing Programs in the BASIC Environment

Example

$ BASIC

VAX BASIC V3.0

Ready

NEW FIRSTTRY

Ready

10 PRINT "Please enter three numbers"
INPUT A, B, C
PRINT "Their average is"; (A+ B + C) I 3
END

RUN NH

Output

Please enter three numbers
? 5
? 10.3
? 4.7
Their average is 6.66667
Ready

In the preceding example, the DCL command BASIC invokes VAX BASIC
and places you in the BASIC environment. The compiler command NEW
informs VAX BASIC that you want to create a new program and assigns
the program a name. Here the program is named FIRSTTRY.BAS. If
you do not enter a program name with the NEW command, VAX BASIC
assigns the name NONAME by default. BAS is the default file type.

The RUNNH command compiles, links, and executes the program you
create. To save this program, enter the SAVE command at the Ready
prompt.

You can execute multiple-unit programs while in the BASIC environment.
To execute multiple-unit programs, follow these steps:

1. Compile all subprograms to generate object modules

2. Use the OLD command to read the main program into memory

3. Use the LOAD command to read the subprogram object modules into
memory

4. Type the RUN command

Figure 3-1 illustrates how to execute multiple-unit programs.

Developing Programs in the BASIC Environment 3-3

Figure 3-1: Running Multiple-Unit Programs

Source
Program
(Subprogram
One)

Source
Program
(Subprogram
Two)

Object
Module

1--~0~LD~---i r------, COMPILE

OLD

BASIC
COMPILE

BASIC RUN

ZK-5169-86

The following is an example of a program that contains multiple units:

Example

10 REM This program calls SUBPROGRAM S81
20 PRINT "NOW IN MAIN PROGRAM"
30 CALL S81
40 PRINT "BACK IN MAIN PROGRAM"
50 END

10 SUB S81
20 PRINT "NOW IN SUBPROGRAM"
30 SUB END

To execute this program in the BASIC environment, enter the following
commands.

J-4 Developing Programs in the BASIC Environment

OLD SB1
Ready

COMPILE
Ready

OLD MAIN
Ready

LOAD SB1
Ready

RUN

Output

NOW IN MAIN PROGRAM
NOW IN SUBPROGRAM
BACK IN MAIN PROGRAM
Ready

If a STOP statement or CTRL/C is encountered in a module other than
the currently compiled module, VAX BASIC signals "Compiled procedure
is currently not active". At this point, you cannot use immediate mode
statements.

When you run multiple-unit programs in the BASIC environment, only
one module is currently compiled. Nonnally, the currently compiled pro
gram is the one you read into memory with the OLD command. However,
if a source file contains more than one program module, the last one (the
one closest to the end of the source file) is the currently compiled module.
In the previous example, MAIN is the currently compiled module.

For more information on loading multiple object modules, see Section 3.4.

3.3 Immediate Mode

You do not have to write a complete program in order to use VAX BASIC.
Many statements are executable in immediate mode.

Immediate mode statements are BASIC statements that are executed im
mediately after you press the RETURN key. Immediate mode statements
cannot be preceded by a line number, space, or tab and can be used only
if you are working directly in the environment.

Developing Programs in the BASIC Environment J-5

In the following example, VAX BASIC interprets the first line as a com
ment because it begins with an exclamation point (!). VAX BASIC
interprets the second line as part of a larger program because it begins
with a line number. This line will not execute until a RUN command is
specified. The third line does not begin with a line number, a space, or an
exclamation point. Therefore, VAX BASIC treats the line as an immediate
mode statement and immediately displays the specified text.

Example

!In the environment, this is a commentlRETI
10 PRINT 'This is an executable VAX BASIC statement' IRETI
PRINT 'THIS IS AN IMMEDIATE MODE STATEMENT' IRETI

Output

THIS IS AN IMMEDIATE MODE STATEMENT
Ready

The Ready prompt indicates that VAX BASIC is ready to receive compiler
commands, immediate mode statements, or new program lines.

You can precede each executable statement with a backslash(\). You can
also have more than one VAX BASIC statement on a line if you separate
them with a backslash. However, programs with backslashes are often
difficult to read.

Example

Ready

A = (54.37 I 1.25) \ B = (328.15~2) \ PRINT (B I A)
2475.69

Unless the compiler has executed a STOP statement, VAX BASIC compiles
and executes each immediate mode statement as if it were a self-contained
program.

Example

Ready
PRINT PI * 67.3
211.421

Even if the current program has executed a STOP statement, you can still
perform independent calculations. However, you should understand that
after a stop, any immediate mode statement referencing program variables
uses the values assigned in the program. Note that you cannot create new
program variables after a STOP statement has been executed.

3-6 Developing Programs in the BASIC Environment

If the current program has not executed a STOP statement, each immedi
ate mode line exists by itself, and any variables used by the statements on
that line are temporary. For example:

Example

Ready
A = 2~5 \ PRINT A
32

READY

PRINT A
0

The second PRINT statement causes VAX BASIC to display a zero because
the compiler treats A as a new variable, and initializes it to zero.

You can use the IF, WHILE, UNTIL, UNLESS, and FOR statement mod
ifiers in immediate mode statements. The following example shows how
you can generate a table of square roots by using the immediate mode
statement:

Example

Ready

PRINT I, SQR (I) FOR I = 1 TO 10
1 1
2
3
4
5
6
7
8
9
10

Ready

1.41421
1.73205
2
2.23607
2.44949
2.64576
2.82843
3
3.16228

Certain statements are invalid in immediate mode. In general, invalid
statements are statements that require the allocation of new storage, or
statements that make no sense in the context of a single line. If you
try to execute such a statement, VAX BASIC signals the error "Illegal in
immediate mode".

Developing Programs in the BASIC Environment 3-7

3.4 Debugging in Immediate Mode

To debug in immediate mode, you insert STOP statements in your pro
gram at the points where you wish to examine the values of variables.
When VAX BASIC encounters a STOP statement, program execution is
interrupted. At this point, you can use immediate mode statements to
display the values of variables or to assign them new values. After chang
ing or examining data, you can use the CONTINUE command to resume
program execution.

The following restrictions apply when you are debugging in immediate
mode:

• You cannot continue execution if you have changed any program code;
for example, you cannot create new variables after VAX BASIC has
encountered a STOP statement. Neither can you use the CONTINUE
command after you have inserted a STOP statement into your pro
gram in immediate mode. In both cases, you have changed program
code and you must reexecute the program with the RUN command.

• You can debug only one module at a time; VAX BASIC lets you
examine and change variables only in the current module (the most
recently compiled module) of a multiple-unit program.

When you are debugging multiple program units in the environment, you
should follow these guidelines:

• Use the OLD command to read in the source file for the module you
want to debug. This source file becomes the current module, that is,
the one available for immediate mode debugging.

• Use the LOAD command to read in the object files for the remaining
program modules.

An object module is the file that results from compiling a source file; its
format is an intermediate step between a source file and an executable
image. The LOAD command removes any previously loaded object
modules, whether or not the command specifies any object module files.
Therefore, you must use a single LOAD command to specify all the object
files you need. In addition, you must separate multiple object modules
with plus signs.

The object files are not linked with the current program or executed until
you issue the RUN command. Therefore, run-time errors in the loaded
modules are not detected until you execute the program.

3-8 Developing Programs in the BASIC Environment

When you want to run a program, you can load all the object modules for
that program and then execute the program with the RUN command. If
you want to debug a program, you use the OLD command for the module
you want to debug and then load the remaining program modules. The
module to be debugged can be either a main program or a subprogram
because when you enter the RUN command, VAX BASIC transfers control
to the main program, whether it is in object-module format or source
program format.

For information on using the VAX/VMS Debugger, see Chapter 5.

3.5 Compiler Commands

Compiling is the process of translating a source program to an object
module. An object module is an intermediate step between source code
and an executable image. It contains information that the linker uses to
create an image.

You can compile, link, and execute your programs in the environment
simply by typing the RUN command. This greatly reduces the number of
steps you have to go through to develop VAX BASIC programs. When you
are satisfied with a portion of code, you can simply run that program to
examine whether or not it functions as expected. If you use the COMPILE
command instead, you can eliminate all compile-time errors before you
link and execute the program.

VAX BASIC has certain defaults that are in effect each time you enter the
BASIC environment. Unless you explicitly override these defaults, they
remain in effect until you leave the environment. You can see a listing of
these defaults by typing the SHOW command when in the environment.
The following example displays the standard BASIC environment defaults
that are in effect when you enter the environment:

SHOW

Developing Programs in the BASIC Environment 3-9

VAX BASIC V3.0 Current Environment Status 22-JUN-1986 10:12:12.05
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:

Data type : REAL
Real size : SINGLE
Integer size : LONG
Decimal size : (15,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
Object file
Overflow check integers
Overflow check decimal numbers
Bounds checking

NO Syntax checking
Lines

Ready

Variant : 0
Warnings
Informationals
Setup
Object Libraries : NONE

NO Source
NO Cross reference

CDD Definitions
Environment

NO Override of Y.NOLIST
NO Machine code

Map
INCLUDE files

FLAGGERS:
NO Declining features
NO BASIC PLUS 2 subset

DEBUG INFORMATION:
Traceback records

NO Debug symbol records

You can override any of these defaults with qualifiers to the COMPILE or
SET commands, or with the OPTION statement in your program. The fol
lowing section lists and describes all the VAX BASIC compiler commands,
including qualifiers to both the COMPILE and RUN commands. For more
information on the OPTION statement, see the VAX BASIC Reference
Manual.

Table 3-1: VAX BASIC Compiler Commands
Command Description

! comment Identifies a comment.

$ command Starts a subprocess to execute the specified DCL command.

APPEND Merges the specified program with the program currently in
memory.

ASSIGN Assigns a logical name to a complete file specification (the
equivalence name).

COMPILE Generates an object module (file type OBJ) from a VAX BASIC
source program.

CONTINUE Resumes execution after a STOP statement or a CTRL/C.

DELETE Erases the specified line or lines from a VAX BASIC source
program.

3-10 Developing Programs in the BASIC Environment

Table 3-1 (Cont.): VAX BASIC Compiler Commands
Command

EDIT

EXIT

HELP

IDENTIFY

LIST

LISTNH

LOAD

LOCK

NEW

OLD

RENAME

REPLACE

Description

Changes source text or calls a text editor.

Returns to DCL command level.

Displays HELP text.

Causes VAX BASIC to print an identification header on the
terminal.

Displays the current source program on the terminal.

Displays the current source program without header information.

Loads an object module into memory.

Specifies default values for compiler command qualifiers (identi
cal to the SET command).

Clears memory for the creation of a new program and assigns a
new program name.

Reads a specified VAX BASIC source program into memory.

Changes the name of the program currently in memory.

Replaces a stored program with the program currently in
memory.

RESEQUENCE Supplies new line numbers for the program currently in memory.

RUN

RUNNH

SAVE

SCALE

Executes the program currently in memory, or a specified VAX
BASIC source program. The program in memory can be:

• A VAX BASIC source program placed in memory with the
OLD command

• One or more object modules placed in memory with the
LOAD command

• A combination of the first two

Identical to RUN but does not display header information.

Creates a copy of the current source program on a specified
device.

Controls accumulated round-off errors for numeric operations.

Developing Programs in the BASIC Environment 3-11

Table 3-1 (Cont.): VAX BASIC Compiler Commands
Command

SCRATCH

SEQUENCE

SET

SHOW

UNSAVE

Description

Erases the current program and any loaded object modules.

Generates line numbers for input text.

Specifies default values for compiler command qualifiers.

Displays the current default compiler qualifiers.

Deletes a specified file.

The following sections describe these compiler commands. For more
detailed information, see the VAX BASIC Reference Manual.

3 .. 5. 1 Entering Comments

VAX BASIC allows you to enter comments into the BASIC environment
by specifying an exclamation point. Any text that follows the exclamation
point (!) is treated as a comment. For example:

$ TYPE build_special.com
$ SET VERIFY
$ BASIC
!+
! Set the compilation unit options by uncommenting
! the appropriate ones
! -
!SET LIST
SET WORD
SET DEBUG
!+
! Get the source module.
! -
OLD SPECIAL
!+
! Compile it.
! -
COMPILE
!+
! All done.
! -
EXIT

3-12 Developing Programs in the BASIC Environment

3.5.2 Entering DCL Commands

You can enter a DCL command while in the environment by preceding it
with a dollar sign ($). VAX BASIC passes the command to the DCL for
execution. The program currently in memory does not change.

VAX BASIC starts a subprocess to execute the command, and the com
mand executes in the context of that subprocess. This can sometimes
produce unexpected results. For example, a$ SET DEFAULT command
typed in the BASIC environment sets the default for the subprocess but
not for the process in which VAX BASIC executes. The newly set default
exists only until control returns to VAX BASIC.

3.5.3 The APPEND Command

The APPEND command merges a VAX BASIC source program with
the program currently in memory. The program in memory must be a
VAX BASIC source program that has been placed in memory with the
OLD command and entered in the environment. The program must also
contain at least one line number.

If both programs contain a line with the same number, the appended
program line replaces the current program line.

If you type APPEND without specifying a file name, VAX BASIC prompts
with:

Append file name--

You should respond with a file name. If you respond by typing the
RETURN key, VAX BASIC searches for a file called NONAME with the
default file type of BAS. If the compiler cannot find the file, it signals an
error.

The APPEND command does not change the name of the program in
memory.

Developing Programs in the BASIC Environment 3-13

3.5.4 The ASSIGN Command

The ASSIGN command equates a logical name to a complete file specifica
tion, a device, or another logical name.

If the logical name translates to a device name and will be used in place of
a device name in a file specification, terminate the equivalence name with
a colon.

This example uses the ASSIGN command to make the system HELP
library available from within VAX BASIC:

Ready

ASSIGN SYS$HELP:HELPLIB HLP$LIBRARY

The ASSIGN command does not support search lists. To assign a logical
name to a search list from within the environment, use the $ system
command to execute the DCL command ASSIGN with the /JOB qualifier.
For example:

$ASSIGN/JOB DUAO: [MR.X] ,DUAO: [MR.Y] TWO$DIRECTORIES:

3.5.5 The COMPILE Command

When you compile a program in the BASIC environment, there are three
levels at which you can specify options for the compiler:

• You can accept the defaults of the BASIC environment as options

• You can specify options with qualifiers to the COMPILE or SET
command

• You can specify options in the source program with the OPTION
statement

The COMPILE command creates an object module from a source program
in memory. You can control the compilation of your program with the
COMPILE command and its qualifiers. These qualifiers duplicate many of
the qualifiers available to the DCL command BASIC. You can abbreviate
all COMPILE qualifiers to four letters. For example, you can compile a
program currently in memory and specify the creation of a listing file:

COMPILE/LIST

3-14 Developing Programs in the BASIC Environment July 1988

The following two commands both specify that a listing file should be
created. Note that the SET command sets a particular default until you
leave the BASIC environment or until you specify a different default
for that value, whereas the qualifiers to the COMPILE command set the
defaults only for that particular compilation.

SET/LIST

COMPILE/LIST

Developing Programs in the BASIC Environment 3-14. 1

If you do not specify any qualifiers with the SET command, VAX BASIC
resets the defaults to the values that were in effect when you entered the
BASIC environment.

The qualifiers to the COMPILE command are listed below. Note that you
can also use many of these qualifiers with the SET command to establish
these compiler options. The qualifiers are described fully in the VAX
BASIC Reference Manual.

• The /[NO]ANSL-5TANDARD qualifier causes VAX BASIC to
compile the program according to ANSI Minimal BASIC rules and
to flag statements that do not conform to the ANSI Minimal BASIC
standard. The default is /NOANSI_STANDARD.

• The /[NO]AUDIT qualifier causes VAX BASIC to include a history
entry in the Common Data Dictionary (CDD) data base when a CDD
definition is extracted. The default is /NOAUDIT.

• The /[NO]BOUNDS_CHECK qualifier causes VAX BASIC to perform
range checks on array subscripts. That is, it checks that all array
references are to addresses within the array boundaries. The default is
/BOUNDS_CHECK=(BOUNDS, OVERFLOW).

• The /BYTE qualifier specifies that integers not explicitly typed with
a data type keyword use 8 bits of storage, which lets you use integer
values between -128 and 127. The default is
/INTEGER_SIZE=LONG.

• The /[NO]CROSS-REFERENCE[=[NO]KEYWORDS] qualifier
causes VAX BASIC to generate a cross-reference listing. If you specify
KEYWORDS, VAX BASIC provides a cross-reference list of VAX
BASIC keywords. If you specify /CROSS-REFERENCE, the default is
/CROSS-REFERENCE=NOKEYWORDS. The default is
/NOCROSS_REFERENCE.

• The /[NO]DEBUG qualifier provides the debugger with local symbol
definitions for program variables, constants, line numbers, and labels.
The default is /DEBUG=(TRACEBACK, NOSYMBOLS).

• The /DECIMAL _SIZE qualifier specifies the default size and preci
sion for all DECIMAL data not explicitly assigned size and precision
in the program. You specify the total number of digits (d) and the
number of digits to the right of the decimal point (s). VAX BASIC sig
nals the error "Decimal error or overflow" (ERR=l 81) when DECIMAL
values are outside the range specified with this qualifier. The default
is /DECIMAL_SIZE=(l5,2).

Developing Programs in the BASIC Environment 3-15

• The /DOUBLE qualifier specifies that floating point data use 64 bits
of storage in D_float format, which lets you use floating-point values
in the range 2.9 • 10-39 to 1.7 • 1038 and with up to 16 digits of
precision. The default is /REAL_SIZE=SINGLE.

• The /(NO]FLAG(=((NO]BP2COMP A TIBILITY, (NO]DECLINING)]
qualifier causes VAX BASIC to issue informational messages when
your program includes statements that are not compatible with
the functionality you specify. You can specify a flag for BASIC
PLUS-2, and declining VAX BASIC language features. The default is
/NO FLAG.

• The /GFLOA T qualifier specifies that floating-point data use 64 bits
of storage in G_float format, which lets you use floating-point values
in the range 5.6 • 10-308 to 9.0 • 10309 and with up to 15 digits of
precision. The default is /REAL _SIZE=SINGLE.

• The /HFLOAT qualifier specifies that floating-point data use 128 bits
of storage in H_float format, which lets you use floating-point values
in the range 8.4 • 10-4933 to 5.9 • 104933 and with up to 33 digits of
precision. The default is /REAL _SIZE=SINGLE.

• The /(NO)LINES qualifier enables the executing program to report
the line number of statements causing errors and to use the RESUME
statement without specifying a line number. The default is /LINES.

• The /(NO)LIST qualifier creates a program listing with a default file
type of LIS. The default is /NOLIST.

• The /LONG qualifier specifies that untyped integers use 32 bits of
storage, which lets you use integer values between -2147483648 and
2147483647. The default is /INTEGER_SIZE=LONG.

• The /(NO]MACHINE_CODE qualifier includes the compiler
generated assembly code listing. The default is
/NOMACHINE_CODE.

• The /(NO]OBJECT qualifier generates a linkable object module. This
object module has the same file name as the VAX BASIC source
program and a default file type of OBJ. The default is /OBJECT.

• The /(NO)OVERFLOW(=((NO]INTEGER, (NO]DECIMAL)) qualifier
enables the detection of arithmetic overflow on integer or packed
decimal data. If you do not supply a value, OVERFLOW affects both
data types. The default is /OVERFLOW=(INTEGER,DECIMAL).

• The /(NO)ROUND qualifier specifies whether VAX BASIC rounds or
truncates packed decimal numbers. The default is /NOROUND.

3-16 Developing Programs in the BASIC Environment

• The /[NO]SETUP qualifier causes VAX BASIC to optimize the ex
ecutable image by omitting certain calls to the Run-Time Library at
the start and end of each program unit. Note that variables are not
initialized when /NOSETUP is in effect. The default is /SETUP.

• The /[NO]SHOW qualifier allows you to specify what VAX BASIC
should include in the listing file. For a list of items you can include
in the listing file, see the VAX BASIC Reference Manual. The default is
/SHOW.

• The /SINGLE qualifier specifies that floating-point data use 32 bits
of storage, which lets you use floating-point values in the range 2.9 •
10-39 to 1.7 • 1038 and with up to 6 digits of precision. The default is
/REAL _SIZE=SINGLE.

• The /[NO]SYNTAX_CHECK qualifier enables line-by-line syntax
checking. Because VAX BASIC automatically performs syntax checking
when you compile a program, you norm.ally use /SYNTAX_CHECK
with the SET command to enable line-by-line syntax checking while
you are typing program lines. The default is /NOSYNTAX_CHECK.

• The /[NO]TRACEBACK qualifier provides line numbers for the
debugger and error reporter so they can translate virtual addresses
into source program module names and line numbers. The default is
/TRACEBACK.

• The /TYPE-DEFAULT qualifier allows you to specify the default
data type for all data not explicitly typed in your program. See the
VAX BASIC Reference Manual for a list of data types you can include.
The default is /TYPE_DEFAULT=REAL.

• The /V ARIANT=value qualifier provides a value to be tested in
conditional compilations. The default is /VARIANT=O.

• The /[NO]WARNINGS[=[NO]W ARNINGS,
[NO]INFORMA TIONALS] qualifier tells VAX BASIC whether to dis
play warning or informational error messages. /NOWARNINGS
means that VAX BASIC does not display any informational
or warning errors. The default is /WARNINGS=WARNINGS,
INFORMATIONALS.

• The /WORD qualifier specifies that all integer data not explicitly
typed use 16 bits of storage, which lets you use integer values in the
range -32768 to 32767. The default is /INTEGER_SIZE=LONG.

Developing Programs in the BASIC Environment 3-17

If you use these qualifiers with the COMPILE command, the BASIC en
vironment default values remain the same, but your program is compiled
using the specified defaults. When you use these qualifiers with the SET
command, you set the defaults for the period you are within the BASIC
environment. You can also set compiler options from inside the source
program by using the OPTION statement. See the VAX BASIC Reference
Manual for more information on the OPTION statement.

3.5.6 The CONTINUE Command

The CONTINUE command resumes program execution after VAX BASIC
encounters a STOP statement or a CTRL/C. After a STOP statement
or a CTRL/C is encountered in the BASIC environment, you can enter
immediate mode statements to display or change program variables. Then,
type CONTINUE to resume execution with the new values.

3.5. 7 The DELETE Command

The DELETE command removes a specified line or lines from the source
program currently in memory. If you separate line numbers with commas,
VAX BASIC deletes only the specified program lines. If you separate line
numbers with a hyphen (-), VAX BASIC deletes the specified program
lines and all program lines between them. For example:

DELETE 10

DELETE 50, 100

DELETE 50, 100-190

Removes line 10 from the program

Removes lines 50 and 100 from the program

Removes line 50 and lines 100 through 190 from the
program

If you do not specify a line number, the DELETE command is ignored.

3.5.8 The EDIT Command

The EDIT command replaces text in the current program with text you
supply in the command. If you type EDIT with no argument, VAX BASIC
invokes a text editor and reads the current program into the editor's buffer.

3-18 Developing Programs in the BASIC Environment

The following are examples of editing in line mode:

EDIT 100 /LEFT$ /RIGHT$/

EDIT

EDIT 2000

EDIT 30 /LEFT$/RIGHT$/,3

EDIT 300 /LEFT$/ /2

Replaces the first occurrence of LEFT$ with
RIGHT$ on line 100.

Invokes the default editor and reads the current
program into the editor's buffer.

Lists line 2000 (line 2000 becomes the default
EDIT line).

Starts the search on the third text line of
program line 30 and replaces the first occurrence
of LEFT$ with RIGHT$.

Removes the second occurrence of the string
LEFT$ from line 300. Note that you must
specify delimiters around the null replacement
string. Otherwise, the EDIT command would
replace the first occurrence of LEFT$ with 2.

Entering EDIT with no argument causes VAX BASIC to save your program
temporarily in a file called BASEDITMP .BAS. The editor is then invoked
and you can edit the program in the usual manner. Exiting from the editor
causes the changed program to become the new current program. VAX
BASIC then displays the Ready prompt. Note that VAX BASIC deletes all
versions of BASEDITMP.BAS when control returns from the editor.

VAX BASIC supports the following callable text editors:

• VAX EDT

• VAX Text Processing Utility (VAXTPU)

• VAX Language-Sensitive Editor (LSE)

The default editor for VAX BASIC is EDT. In DCL, you or your sys-
tem manager can override this default by defining the logical name
BASIC$EDIT. To find out if a system assignment exists, enter the following
DCL command:

$ SHOW LOGICAL BASIC$EDIT

The name you assign to BASIC$EDIT must be in the form nnn$EDIT,
where the characters nnn represent the acronym for the editor. For
example, you can assign LSE to be the default editor with the following
command:

$ ASSIGN "LSE$EDIT" BASIC$EDIT

Developing Programs in the BASIC Environment 3-19

If the translation of BASIC$EDIT does not conform to nnn$EDIT, VAX
BASIC creates a temporary file containing your source code and spawns
a subprocess. VAX BASIC passes the translation of BASIC$EDIT to the
subprocess.

3.5.9 The EXIT Command

The EXIT command clears memory and returns control to DCL command
level. If you modify a program and issue the EXIT command before you
copy it to disk with the SA VE or REPLACE command, VAX BASIC signals
"Unsaved change has been made, CTRL/Z or EXIT to exit". This message
warns you that any changes will be lost if you do not save the program.
You can then store the program or retype the EXIT command (or press
CTRL/Z) to exit from VAX BASIC.

3.5.10 The HELP Command

The HELP command lets you display the contents of the VAX BASIC
HELP library on the terminal. Entering HELP causes the HELP facility
to display a long list of VAX BASIC commands and language topics for
which there is help available. You are then prompted to name a command
or topic with the following prompt:

Topic?

To obtain help on the environment commands, you can type COMMANDS
at the "Topic?" prompt. A list of commands is displayed on your terminal
followed by the prompt "COMMANDS Subtopic?". When you type a
command name in response to this prompt, the HELP facility displays the
following:

• An explanation of the command's purpose

• An example of its use

• A list of any further subtopics available

You can also display help text for VAX BASIC errors. The help texts
for the VAX BASIC error messages are grouped under two categories:
compile-time errors and run-time errors. A run-time error refers to any
error that occurs during program execution. All other errors are referred
to as compile-time errors. Typing HELP RUN displays a list of the 3-
to 9-character error mnemonics for the VAX BASIC list of run-time

3-20 Developing Programs in the BASIC Environment

errors, and typing HELP COMPILE displays a list of the 3- to 9-character
compile-time error mnemonics.

For example, suppose your program invokes a user-defined DEF function
with a null argument. This causes VAX BASIC to signal "Actual argument
must be specified". The actual error message looks like this:

Y.BASIC-E-ACTARGMUS, actual argument must be specified

You display the help text by typing:

HELP COMPILE ACTARGMUS

The following text is then displayed on your screen.

ACTARGMUS

ERROR - A DEF function reference contains a null argument, for
example FNA(1,,2). Specify all arguments when referencing a DEF
function.

You can access run-time errors with either the mnemonic or the error
number. You specify the error number with the letters "ERR" followed
by the error number. For example, you can display the HELP text for the
end-of-file error by using the mnemonic as shown:

HELP RUN ENDFILDEV

If you know only the error number, type:

HELP RUN ERR11

VAX BASIC displays the appropriate mnemonic for that error.

3.5.11 The IDENTIFY Command

The IDENTIFY command prints a header containing the VAX BASIC
compiler name and version number. For example:

IDENTIFY

VAX BASIC V3.0

Ready

Developing Programs in the BASIC Environment 3-21

3.5.12 The LIST and LISTNH Commands

The LIST and LISTNH commands display a specified line or lines. If
you type LIST or LISTNH without specifying line numbers, VAX BASIC
displays a copy of the source program currently in memory, in ascending
line number order.

The LIST command prints a header displaying the program name and the
current time and date before displaying the specified lines. The LISTNH
command suppresses the header information and prints the specified lines
only. For example:

LIST 10

LISTNH 50, 100

LIST 50, 90, 100-190

3.5.13 The LOAD Command

Displays header information, then displays line 10.

Displays lines 50 and 100.

Displays header information, then displays lines 50, 90,
and 100 through 190.

The LOAD command makes an object module available for execution with
the RUN command. You can load only object files created by VAX BASIC.

The LOAD command accepts multiple device, directory, and file specifi
cations. The LOAD command deletes all previously loaded object files;
therefore, to load several files at the same time, you must separate the
file specifications with plus signs. Multiple file specifications separated
with commas cause each file to be loaded separately, thereby deleting the
previously loaded file.

If you do not specify any file specification, the LOAD command erases
any previously loaded object files.

LOAD OLD1 + OLD2 + OLD3

Ready

RUN

The above example loads the files OLDl.OBJ, OLD2.0BJ, and OLD3.0BJ
for execution. These object files are not linked with the current program
or executed until you issue the RUN command. Therefore, run-time errors
in the loaded modules are not detected until you execute the program.

3-22 Developing Programs in the BASIC Environment

Each device and directory specification applies to all following file specifi
cations until you specify a new directory or device. For example:

LOAD DUA1:[SMITH]PROG3+[JONES]PROG4+DUA2:PROG6

This command loads three object files:

• PROG3 from the directory SMITH on the device DUAl:

• PROG4 from the directory JONES on DUAl:

• PROGS from the directory JONES on DUA2:

3.5.14 The LOCK Command

The LOCK command changes default values for COMPILE command
qualifiers. It is equivalent to the SET command. The following command
specifies that all subsequent compilations use double-precision floating
point numbers as the default. You can use any valid COMPILE command
qualifier as an argument to LOCK.

LOCK /DOUBLE

Ready

3.5.15 The NEW Command

The NEW command clears the memory and assigns a name to a program
to be entered. The following command assigns the name PROGl to the
program. You can then enter program lines.

NEW PROG1

If you do not specify a name, VAX BASIC issues the following prompt:

New file name--

You should respond with a name. If you press the RETURN key in
response to the prompt, VAX BASIC assigns the name NONAME.

Developing Programs in the BASIC Environment 3-23

3.5.16 The OLD Command

The OLD command brings a previously created VAX BASIC source file
into memory. The following command reads PROGl.BAS into memory.

OLD PROG1

If you do not specify a file name, VAX BASIC issues the prompt:

Old file name--

You should respond with a file name. If you do not specify a file type,
VAX BASIC reads a file with the specified file name and the default file
type. If you press the RETURN key in response to the prompt, VAX
BASIC searches for a file with the default file name and default file type:
NONAME.BAS.

3.5.17 The RENAME Command

The RENAME command assigns a new name to the program currently in
memory. For example, the following command sequence brings a program
named PROGl into memory and changes its name and directory:

OLD [KELLY]PROG1

Ready

RENAME [MCKAY.BASIC]PROG2

The name of the program is changed to PROG2. If you perform a
REPLACE operation, PROG2 is copied to the subdirectory [MCKAY.BASIC]
instead of [KELLY]. The remaining portion of the specification is un
changed. If you do not specify a program name, VAX BASIC renames the
current program NONAME.

3-24 Developing Programs in the BASIC Environment

3.5.18 The REPLACE Command

The REPLACE command writes the program in memory to a specified
device. The REPLACE command always writes a copy of the current pro
gram back to disk. It replaces it using the file specification specified in the
last OLD command. Part or all of this file specification can be overwritten
with the RENAME command; whatever parts are not specifically changed
remain the same. RENAME is similar to SAVE except that while SAVE
copies the current program to the default directory, REPLACE copies the
current program to the location specified in the program's current file
specification.

After execution of a REPLACE command, VAX BASIC issues an informa
tional message confirming the file specification.

3.5.19 The RESEQUENCE Command

The RESEQUENCE command allows you to resequence the line numbers
of the program currently in memory. VAX BASIC also changes all refer
ences to the old line numbers so they reference the new line numbers.
You can specify a starting line number and a value by which to increase
each subsequent line number. The following command resequences the
line numbers from 10 to 10000, making the first line number 100 and
increasing each subsequent line number by 20:

RESEQUENCE 10-10000 100 STEP 20

The RESEQUENCE command is not allowed on programs without line
numbers.

3.5.20 The RUN and RUNNH Commands

The RUN command executes a program. This program can be any one of
the following:

• The current program

• One or more object modules placed in memory with the LOAD
command

• A combination of the first two

• A specified VAX BASIC source program

July 1988 Developing Programs in the BASIC Environment 3-25

If you do not supply an alternative file specification, VAX BASIC executes
the program in memory.

Ready

OLD
Old file name--PROG1
Ready

RUN

The RUN command compiles, links, and executes PROGL It prints a
header displaying the program name and the current date and time. To
execute a program without displaying this header, type RUNNH.

The RUN command does not create an object module file or a list file. It
uses whatever qualifiers have been set. The following qualifiers are always
in effect for the RUN and RUNNH commands:

• NOCROSS

• NODEBUG

• NO LIST

• NO MACHINE

• NOOBJECT

• SETUP

The RUN command can invoke only VAX BASIC procedures and other
procedures that reside in shareable image libraries. See Chapter 22 for
more information on creating shareable images.

3.5.21 The SAVE Command

The SAVE command copies a VAX BASIC source program from memory
to a file. You can specify a storage device, a file name, and a file type in
the SA VE file-spec. For example, if you type the following program, a
SAVE command causes VAX BASIC to arrange the program in ascending
line number order and copy it to a file on MTAl:, in the current default
directory with file name TEST and the default file type of BAS.

3-26 Developing Programs in the BASIC Environment

Example

10 REM THIS IS A TEST
30 PRINT "THIS IS A TEST"
SAVE MTA1:TEST.BBB

VAX BASIC saves the program on magnetic tape MTAl: in the current
default directory with a file name of TEST and a file type of BBB. If the
program in memory has no name and you issue the SA VE command with
no argument, VAX BASIC copies the program to a file named NONAME
with the default file type in your current default device and directory.
Note that if you perform a RENAME operation, before you issue the
SAVE command followed by no argument, VAX BASIC still copies the
program to the current default directory.

3.5.22 The SCALE Command

The SCALE command can overcome accumulated round-off errors by
multiplying double-precision floating-point values by 10 raised to the
specified scale factor before storing them.

3.5.23 The SCRATCH Command

The SCRATCH command clears memory by doing one of the following:

• Resetting the program name to NONAME

• Removing any object files previously loaded with the LOAD command

• Removing the source file currently in memory

3.5.24 The SEQUENCE Command

The SEQUENCE command automatically generates line numbers for
input text. After a SEQUENCE command, VAX BASIC prompts with a
line number and prompts again after each source line you enter. If you
press CTRL/Z (either in response to the line number prompt or at the
end of a program line), VAX BASIC stops prompting and you can enter
source text in the normal way. If you specify a starting line number that
already contains a statement, VAX BASIC signals "Attempt to sequence
over existing statement" and returns to normal input mode.

Note that the SEQUENCE command is not allowed on programs without
line numbers.

Developing Programs in the BASIC Environment 3-27

3.5.25 The SET Command

The SET command specifies defaults for compiler command qualifiers. For
example:

SET /SINGLE

Ready

This command makes /SINGLE the default for the COMPILE or RUN
command, thereby making SINGLE the default data type for all untyped
values. Typing SET with no arguments resets the defaults to their state
when you entered into the BASIC environment.

For a full list of options, see the COMPILE command.

3.5.26 The SHOW Command

The SHOW command displays the current default qualifiers and user
libraries.

SHOW

VAX BASIC V3.0 Current Environment Status 22-JUN-1986 10:12:12.06
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:

Data type : REAL
Real size : SINGLE
Integer size : LONG
Decimal size : (16,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
Object file
Overflow check integers

NO Overflow check decimal numbers
Bounds checking

NO Syntax checking
Lines
Variant : 0

NO Warnings
NO Informationals

Setup
Object Libraries NONE

Ready

3-28 Developing Programs in the BASIC Environment

Source
NO Cross reference

CDD Definitions
Environment

NO Override of Y.NOLIST
NO Machine code

Map

INCLUDE files

FLAGGERS:
Declining features

NO BASIC PLUS 2 subset

DEBUG INFORMATION:
Traceback records

NO Debug symbol records

This DEFAULT DATA TYPE INFORMATION display gives you the
following information:

• The default data type is REAL.

• The default size for floating-point numbers is SINGLE, the default size
for integers is LONG, and the default size for packed decimal numbers
is (15,2).

• There is no scale factor in effect.

• Packed decimal numbers are truncated rather than rounded.

The LISTING FILE INFORMATION display tells you which parts of the
program listing are included if you create a compilation listing:

• The source program is listed.

• No cross-reference information is listed.

• COD definitions are displayed as RECORD statements.

• The qualifiers in effect when the program was compiled are listed.
This means that the program listing contains the equivalent of this
SHOW command.

• The %NOLIST compiler directive is not overridden.

• No compiler-generated machine code is listed.

• An allocation map is listed. This contains the sizes and offsets of any
variables.

• Files accessed with the %INCLUDE directive are listed.

The COMPILATION QUALIFIERS IN EFFECT section gives you the
following information:

• An object file is produced.

• Overflow checking for integers is enabled.

• Overflow checking for packed decimal numbers is disabled.

• Bounds checking is enabled.

• Line-by-line syntax checking is disabled.

• Line number information is included in the object file.

• The VARIANT value is zero.

• No warning or informational error messages are displayed.

• VAX BASIC performs normal initialization calls at run time (SETUP).

• No user-supplied object module libraries are searched.

Developing Programs in the BASIC Environment 3-29

The FLAGGERS section gives you the following information:

• Declining features are reported.

• BP2 compatibility issues are not reported.

The DEBUG INFORMATION section gives you the following information:

• Traceback information is included in the object module.

• No debug records are included in the object module. This means you
cannot access program symbols with the VAX/VMS Debugger.

See Chapter 22 for more information about user libraries.

3.5.27 The UNSAVE Command

The UNSA VE command deletes the specified version of a file from disk.
If you do not specify a file, UNSA VE deletes the disk file associated with
the program currently in memory. If you do not specify a version number,
UNSAVE deletes the newest version. For example:

OLD PROG1

Ready

UNSAVE

Ready

The OLD command copies a program named PROGl.BAS from disk to
memory. The UNSAVE command deletes the program from disk.

You can delete a VAX BASIC source program other than the one in
memory by specifying the program name. The following command
deletes the most recent version of the file PROG2.BAS.

UNSAVE PROG2

To delete a file other than a source program, specify the file name and file
type. The following command deletes the newest version of the object
module generated from the compilation of PROG2.

UNSAVE PROG2.0BJ

3-30 Developing Programs in the BASIC Environment

Chapter 4

Developing VAX BASIC Programs at DCL
Command Level

The process of developing a VAX BASIC program involves four steps:
creating, compiling, linking, and running. You accomplish each of these
steps using DCL commands. This chapter describes how to create, com
pile, link, and run a VAX BASIC program.

4.1 Creating a VAX BASIC Program

To create and modify a VAX BASIC program, you must invoke a text
editor. VAX/VMS provides you with two text editors: VAX EDT (EDT)
and the VAX Text Processing Utility (VAXTPU). You may also have other
editors that are supported on your system, such as the VAX Language
Sensitive Editor (LSE). The following sections describe briefly how to use
both VAX EDT and VAXTPU.

4.1.1 Using VAX EDT

EDT is an interactive general-purpose text editor that offers three editing
modes: keypad, nokeypad, and line. Both keypad and nokeypad modes
are screen editors. Keypad mode uses the numeric keypad that appears
to the right of your main keyboard. With nokeypad mode, you enter
commands on a command line, which EDT processes when you press
RETURN. Line mode focuses on the line as the basic unit of text. The
appearance of a line mode asterisk prompt (*) indicates that you can enter
a line mode command. When you begin your editing session, editing in

Developing VAX BASIC Programs at DCL Command Level 4-1

line mode is the default. Unlike line mode, keypad mode and nokeypad
mode continuously display the contents of the file on your screen.

The following command line invokes the EDT editor and creates the file,
PROG_l.BAS.

$ EDIT/EDT PROG_1.BAS

To change from line mode to keypad mode, enter the CHANGE command
at the asterisk prompt. To return to line mode from keypad mode, press
CTRL/Z. To change from line mode to nokeypad mode, enter the SET
NOKEYP AD command and then enter the CHANGE command.

If you are in the middle of an editing session and your system fails, you
can recover your edits by reentering the EDIT command followed by the
/RECOVER qualifier. EDT recreates your last editing session on your
screen up to the point where it was interrupted. It uses the contents of a
journal file that is maintained during the editing session.

EDT provides an online HELP facility that you can access during an
editing session. In line mode, you can enter the HELP command. EDT
displays general information on EDT as well as detailed information on
both line mode editing and nokeypad mode editing. In keypad mode, you
can press the HELP key or the PF2 key. EDT displays a keypad diagram
on your terminal screen, and a list of keypad editing keys. For help on a
specific keypad function, press the key you want help on.

For details on how to use the EDT editor, see the VAX EDT Reference
Manual.

4.1.2 Using V AXTPU

The VAX Text Processing Utility (VAXTPU) is a high-performance, pro
grammable editor. With VAXTPU, you can use one of two editing inter
faces to edit your VAX BASIC programs: the Extensible VAX Editor (EVE)
and the VAXTPU EDT Keypad Emulator. You can also create your own
interfaces. The following sections briefly describe how to use the EVE
interface and the EDT Keypad Emulator interface.

4-2 Developing VAX BASIC Programs at DCL Command Level

4.1.2. 1 The EVE Interface

The EVE editor is efficient and easy to use. You can execute common
editing functions by using the EVE keypad, or execute more advanced
functions by entering commands on the EVE command line. The follow
ing command line invokes the EVE editor and creates the file,
PROG_l.BAS.

$ EDIT/TPU PROG_1.BAS

You can define a global symbol for the EDIT /TPU command by placing
a symbol definition in your LOGIN.COM file. For more information on
defining global symbols, see Chapter 2.

Like EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. It also provides you with a journal
facility. Unlike EDT, VAXTPU provides you with multiple windows. This
feature allows you to view two files on your screen at the same time.
VAXTPU also provides you with other advanced features.

For more information on using the features of EVE, see the User's Guide to
EVE.

4. 1.2.2 The EDT Keypad Emulator Interface

The EDT Keypad Emulator interface provides all of the functions asso
ciated with EDT and uses the same keys to perform each function. To
access the EDT Keypad Emulator, enter the following command line:

$ EDIT/TPU/SECTION=EDTSECINI.GBL

To minimize the number of characters you must enter each time you
invoke the EDT Keypad Emulator, you can define a global symbol for the
command line and place it in your LOGIN.COM file. See Chapter 2 for
more information on defining global symbols. For details on how to use
the EDT Keypad Emulator, see the V AXTPU EDT Keypad Emulator Quick
Reference Guide.

Developing VAX BASIC Programs at DCL Command Level 4-3

4.2 Compiling a VAX BASIC Program

The primary functions of the VAX BASIC compiler are to

• Detect errors in your source program

• Generate any appropriate error messages

• Generate machine language instructions from the source statements

• Group these language instructions into an object module for the linker

To invoke the VAX BASIC compiler, you use the DCL command BASIC.
With the BASIC command, you can specify command qualifiers. The next
two sections discuss in detail the BASIC command as well as all of the
command qualifiers available with the command.

4.2.1 The BASIC Command

When you compile your source program, use the BASIC command, which
has the form

BASIC [/qualifier ...] [file-spec [/qualifier ...]], ...

/qualifier
The name of a qualifier that indicates a specific action to be performed by
the compiler on all files or specific files listed. When a qualifier appears
directly after the BASIC command, it affects all files listed.

file-spec
Indicates the name of the input source file that contains the program or
module to be compiled. You are not required to specify a file extension;
the VAX BASIC compiler assumes the file to be of the default file type,
BAS.

If you enter the BASIC command with no parameters, you will enter the
BASIC environment. For more information on the BASIC environment,
see Chapter 3.

Most of the command qualifiers to the BASIC command affect all files
specified in the command line, no matter where the qualifiers are placed;
these are called global qualifiers. However, the qualifiers /LISTING,
/OBJECT, and /DIAGNOSTICS are positional qualifiers; that is, depending

4-4 Developing VAX BASIC Programs at DCL Command Level

on their position in the command line, they can affect all or only some of
the specified files. The rules for positional qualifiers are as follows:

• If the positional qualifier is located directly following the command
name, it affects all the specified files.

• If the file specifications are separated by commas, then any positional
qualifier directly following a file specification affects only that file.

• If the file specifications are separated by plus signs, then any positional
qualifier directly following a list of file specifications affects only the
resulting appended file.

• The rightmost qualifier overrides any conflicting qualifier previously
specified in the command line.

The placement of these positional qualifiers causes VAX BASIC to produce
or not produce listing files, object files, and diagnostics files. For example:

$ BASIC/LIST/OBJ PROG1/NOOBJ/DIAG,PROG2+PROG3/NOLIST

This command does the following:

• Compiles PROGl and produces a listing file called PROGl.LIS

• Produces no object file for PROGl

• Produces a diagnostics file for PROGl called PROGl.DIA

• Appends PROG2 and PROG3 for compilation, producing a temporary
source file called PROG2

• Compiles the new PROG2 and produces an object file called
PROG2.0BJ

• Produces no listing file for the new PROG2

Because VAX BASIC appends source files that are separated by plus signs,
you should make sure that these files contain line numbers. VAX BASIC
does not allow you to append programs without line numbers. You must
also make sure that these files do not contain duplicate line numbers. If
there are duplicate line numbers, VAX BASIC replaces the first instance of
that numbered line with the second.

You should be careful when using positional qualifiers inside a list of files
separated with plus signs, because a positional qualifier specified for a
single file affects all the files in that list. In the following example, the
/NOOBJ positional qualifier appears to apply only to PROG2. However,
since VAX BASIC appends PROGl, PROG2, and PROG3 to form one file

Developing VAX BASIC Programs at DCL Command Level 4-5

called PROGl, the /NOOBJ qualifier applies to the new PROGl and
VAX BASIC does not produce an object module.

BASIC PROG1+PROG2/NOOBJ+PROG3

4.2.2 BASIC Command Qualifiers

The following list represents all of the command qualifiers and their
defaults available with the DCL command BASIC. The SINGLE, DOUBLE,
WORD, and LONG qualifiers are supported for compatibility with older
versions of VAX BASIC. However, DIGITAL recommends that you use the
/TYPE_DEFAULT, /INTEGER_SIZE, /REAL-SIZE, and
/DECIMAL _SIZE qualifiers to set the default data type and size. A
description of each qualifier follows the list.

Command Qualifier
/[NO]ANAL YSIS_DA TA [= file-spec]
/[NO]ANSl _STANDARD
/[NO]AUDIT [= text-entry]
/[NO]CHECK [= (check-clause, ...)]
/[NO]CROSS_REF [= [NO]KEYWORDS]
/[NO]DEBUG [=(debug-clause, ...)]
/DECIMAL_SIZE = (d,s)
/[NO]DEPENDENCY _DAT A
/[NO]DIAGNOSTICS [= file-spec]
/DOUBLE
/[NO]FLAG [= (flag-clause, ...)]

/INTEGER_SIZE = data-type
/[NO]LINES
/[NO]LISTING [=file-spec]

/LONG
/[NO]MACHINE_CODE
/[NO]OBJECT [= file-spec]
/[NO]OLD_ VERSION=CDD_ARRA YS
/REAL _SIZE = data-type
/[NO]ROUND_DECIMAL

4-6 Developing VAX BASIC Programs at DCL Command Level

Default
/NO ANAL YSIS_DA TA
/NOANSl_ST ANDARD
/NO AUDIT
/CHECK=(BOUNDS,OVERFLOW)
/NOCROSS_REF
/DEBUG=(TRACEBACK,NOSYMBOLS)
/DECIMAL _SIZE=(15 ,2)
/NODEPENDENCY_DATA
/NODIAGNOSTICS

/FLAG = (NODECLINING,
NOBP2COMPA TIBILITY)

/INTEGER_SIZE = LONG
/LINES
/NOLISTING (from terminal)
/LISTING (batch)

/NOMACHINE_CODE
/OBJECT
/NOOLD_ VERSION
/REAL_SIZE = SINGLE
/NOROUND_DECIMAL

July 1988

/SINGLE
/[NO]SYNT AX _CHECK
/TYPE_DEFAUL T =default-clause
/VARIANT = int-const
/[NO]WARNINGS [= (warn-clause, ...)]

/NOSYNT AX_CHECK
/TYPE_DEFAULT =REAL
/VARIANT= 0
/WARNINGS = (INFORMA TIONALS,
WARNINGS)

/WORD

/[NO]ANSLSTANDARD
The/ ANSI_STANDARD qualifier causes VAX BASIC to allow only
statements valid for ANSI Minimal BASIC and to compile programs
according to the ANSI Minimal BASIC rules.

The /NOANSI_STANDARD qualifier causes VAX BASIC to allow exten
sions and implementation-defined features.

The default is /NOANSI_STANDARD. See the VAX BASIC Reference
Manual for more information about ANSI standard BASIC.

/[NO]AUDIT= { str-lit }
file-spec

The /AUDIT qualifier causes VAX BASIC to include a history entry in the
COD when extracting a COD definition. You can specify either a string
literal or a file specification with the /AUDIT qualifier. If you specify a
string literal, VAX BASIC includes it as part of the history entry. If you
specify a file specification, VAX BASIC includes up to the first 64 lines of
the specified file. When you specify/ AUDIT, VAX BASIC also includes
the following information about the COD record extraction in the history
entry:

• The name of the program module making the extraction

• The time and date of the extraction

• A note that access was made by way of a VAX BASIC program

• A note that the access was an extraction

• The usemame and UIC of the process accessing the COD

The /NOAUDIT qualifier causes VAX BASIC not to include a history entry
in the COD when extracting a COD definition.

The default is /NOAUDIT.

Developing VAX BASIC Programs at DCL Command Level 4-7

{

[NO]BOUNDS }
/[NOJCHECK = [NO]OVERFLOW [=(INTEGER, DECIMAL)]

ALL
NONE

The /CHECK qualifier causes VAX BASIC to test for arithmetic overflow
and for array references outside array boundaries when the program
executes. Specifying /CHECK=NOBOUNDS means that your program
is smaller and runs faster. However, no error is signaled for an array
reference outside the bounds of an array. This means that the program
may get a memory management or access violation error at run time.
Therefore, this option should be used only for programs that have been
thoroughly debugged and whose execution time is critical. If you specify
/CHECK=OVERFLOW, overflow checking is enabled for both integers and
packed decimal numbers. Similarly, specifying /CHECK=NOOVERFLOW
disables overflow checking for both types of numbers.

The /NOCHECK qualifier causes VAX BASIC to not test for arithmetic
overflow and for array references outside array boundaries when the
program executes.

/CHECK = ALL is the same as /CHECK = (BOUNDS, OVERFLOW).
/CHECK = NONE is the same as /NOCHECK.

The default is /CHECK= (BOUNDS, OVERFLOW).

/[NO]CROSS_REFERENCE [= [NO]KEYWORDS}
The /CROSS-REFERENCE qualifier causes VAX BASIC to generate a
cross-reference listing. The cross-reference list shows program symbols,
their class, and the program lines in which they are referenced. /CROSS_
REFERENCE=KEYWORDS specifies that the cross-reference listing in
cludes all references to VAX BASIC keywords. If you specify /CROSS_
REFERENCE alone, the default is NOKEYWORDS. See Chapter 18 for
more information on cross-reference listings.

The /NOCROSS_REFERENCE qualifier specifies that no cross-reference
listing be produced.

The default is /NOCROSS-REFERENCE.

{

[NO]SYMBOLS }
/[NO]DEBUG = [NO]TRACEBACK

ALL
NONE

The /DEBUG qualifier causes VAX BASIC to provide information for the
VAX/VMS Debugger and the system run-time error traceback mechanism.

4-8 Developing VAX BASIC Programs at OCL Command Level

The default is /NOCROSS-REFERENCE.

{

[NO]SYMBOLS }
/[NO]DEBUG = [NO]TRACEBACK

ALL
NONE

The /DEBUG qualifier causes VAX BASIC to provide information for the
VAX/VMS Debugger and the system run-time error traceback mechanism.
Neither TRACEBACK nor SYMBOLS affects a program's executable code.
For more information on debugging, see Chapter 5.

The /NODEBUG qualifier causes VAX BASIC to suppress information
for the VAX/VMS Debugger and the system run-time error traceback
mechanism.

/DEBUG = ALL is the same as /DEBUG = (TRACEBACK, SYMBOLS).
/DEBUG =NONE is the same as /NODEBUG.

The default is /DEBUG = (TRACEBACK, NOSYMBOLS).

/DECIMAL_S/ZE = (d,s)
The /DECIMAL _SIZE qualifier lets you specify the default size for packed
decimal data. You specify the total number of digits in the number and
the number of digits to the right of the decimal point.

/DECIMAL-SIZE = (15,2) is the default. This default decimal size applies
to all decimal variables for which the total number of digits and digits
to the right of the decimal point are not explicitly declared. See the
VAX BASIC Reference Manual for more information about packed decimal
numbers.

/[NO]DEPENDENCY _DATA
If you have CDD /Plus Version 4.0 installed on your system, and
if your current CDD$DEFAULT is a COO-format dictionary, the
/DEPENDENCY_DATA qualifier generates a compiled module entity
in the CDD$DEFAULT for each compilation unit.

You must specify this qualifier if you want %INCLUDE %FROM %CDD
and %REPORT %DEPENDENCY directives to establish dependency
relationships.

/NODEPENDENCY_DATA is the default. No compiled module entity is
generated in this case.

July 1988 Developing VAX BASIC Programs at OCL Command Level 4-9

/[NO]DIAGNOSTICS [= file-spec]
If you have the VAX Language-Sensitive Editor (LSE) installed on your
system, you can use the /DIAGNOSTICS qualifier to create a diagnos
tics file containing compiler messages and diagnostic information. The
diagnostics file is used by LSE to display diagnostic error messages and to
position the cursor on the line and column where a source error exists.

If you do not supply a file specification with the /DIAG qualifier, the di
agnostics file has the same name as its corresponding source file and a file
type of DIA. All other file specification attributes depend on the placement
of the qualifier in the command. See the VAX/VMS documentation set for
more information.

The /NODIAGNOSTICS qualifier specifies that no diagnostics file will be
created. The default is /NODIAGNOSTICS.

/[NO]FLAG = [NO]DECLINING
{

[NO]BP2COMPA TIBILITY }

ALL
NONE

The /FLAG qualifier lets you specify whether VAX BASIC warns you
about declining features and compatibility with PDP-11 BASIC-PLUS-2.

The /NOFLAG qualifier causes VAX BASIC to not warn you about
declining features and compatibility with PDP-11 BASIC-PLUS-2.

/FLAG = ALL is the same as
/FLAG= (BP2COMPATIBILITY, DECLINING).
/FLAG = NONE is the same as /NOFLAG.

The default is /FLAG = (NODECLINING, NOBP2COMP ATIBILITY).

/INTEGER_S/ZE = WORD {
BYTE }

LONG
The /INTEGER_SIZE qualifier lets you specify the default size for integer
data.

The default is INTEGER-SIZE = LONG. The default integer size applies
to all integer variables whose data type is not explicitly declared. See
the VAX BASIC Reference Manual for more information about integer data
types.

/[NO]LINES
The /LINES qualifier makes line number information available for the
ERL function, the RESUME statement (with no target) and the VAX BASIC
error reporter. If your program contains a RESUME statement with no

4-10 Developing VAX BASIC Programs at DCL Command Level

target, or a reference to the error-handling function ERL, the compiler
overrides NOLINES and signals "ERL overrides NOLINE" or "RESUME
overrides NOLINE". Note that the VAX BASIC error reporting facility is
separate from that of system traceback.

The /NOLINES qualifier causes line number information to be unavailable
for the ERL function, the RESUME statement (with no target) and the
VAX BASIC error reporter. Specifying /NOLINES makes your program
run faster and reduces program size (this eliminates five bytes of code and
four bytes of data for each program line number). However, specifying
/NOLINES causes the following restrictions to be in effect:

• You cannot use RESUME without a line number

• You cannot use the ERL function

Developing VAX BASIC Programs at DCL Command Level 4-10.1

Therefore, this option should be used only for programs that have been
thoroughly debugged and whose execution time is critical.

The default is /LINES.

/[NO]LIST/NG
The /LISTING qualifier causes VAX BASIC to produce a source listing file.

To produce a listing file with an explicit file specification, you must use
the /LISTING qualifier in the form /LISTING= file-spec. Otherwise, the
listing file has the same name as its corresponding source file and a file
type of LIS. All other file specification attributes depend on the placement
of the qualifier in the command. See the VAX/VMS DCL Concepts Manual
for more information. Note that the /LISTING qualifier only controls
whether or not VAX BASIC produces a listing file. The /SHOW qualifier
controls which parts of the listing are produced.

The /NOLISTING qualifier specifies that no source listing file be
produced.

At a terminat the default is /NOLISTING. In batch mode, the default is
/LISTING.

/[NO]MACH/NE_CODE
The /MACHINE_CODE qualifier specifies that the listing file includes
the compiler-generated object code. If /LISTING is not specified,
/MACHINE_CODE causes VAX BASIC to produce a listing file containing
only the compiler-generated object code.

The /NOMACHINE_CODE qualifier specifies that the listing file not
include compiler-generated object code.

The default is /NOMACHINE_CODE.

/[NO]OBJECT
The /OBJECT qualifier causes VAX BASIC to produce an object module,
and optionally specifies its file name. By default, VAX BASIC generates
object files as follows:

• If you specify one source file, VAX BASIC generates one object file.

• If you specify multiple source files separated by plus signs, VAX
BASIC appends the files and generates one object file.

• If you specify multiple source files separated by commas, VAX BASIC
compiles and generates a separate object file for each source file.

Developing VAX BASIC Programs at OCL Command Level 4-11

• You can use both plus signs and commas in the same command line
to produce different combinations of appended and separated object
files.

To produce an object file with an explicit file specification, you must use
the /OBJECT qualifier in the form /OBJECT = file-spec. Otherwise, the
object file has the same name as its corresponding source file and a file
type of OBJ. All other file specification attributes depend on the placement
of the qualifier in the command. See the VAX/VMS DCL Concepts Manual
for more information.

The /NOOBJECT qualifier suppresses the creation of an object file. During
the early stages of program development, you may find it helpful to
suppress the production of object files until your source program compiles
without errors.

The default is /OBJECT.

/[NO]OLD_ VERSION=CDD_ARRA YS
The /OLD_ VERSION=CDD_ARRAYS qualifier is provided for com
patibility with previous versions of BASIC. When you use the /OLD_
VERSION=CDD_ARRAYS qualifier, VAX BASIC changes the lower bound
to zero and adjusts the upper bound of the array. For example, Array
2:5 in the CDD is translated by VAX BASIC to be an array with a lower
bound of 0 and an upper bound of 3. VAX BASIC issues an informational
message to confirm the array bounds.

The /NOOLD_VERSION=CDD_ARRAYS qualifier causes VAX BASIC
to extract an array from the Common Data Dictionary (CDD) with the
bounds as specified in the data definition. For example, Array 2:5 in the
CDD is translated by VAX BASIC to be an array with a lower bound of 2
and an upper bound of 5. The CDD assumes a default lower bound of 1,
if none is specified. Therefore, if no lower bound is specified, VAX BASIC
translates the CDD array to have a lower bound of 1. For example,
Array 5 in the CDD is translated by VAX BASIC to be an array with a
lower bound of 1 and an upper bound of 5.

The default is /NOOLD_ VERSION=CDD_ARRAYS.

{

SINGLE }
/REAL SIZE= DOUBLE

- GFLOAT
HFLOAT

The /REAL _SIZE qualifier lets you specify the default size for floating
point data.

4-12 Developing VAX BASIC Programs at DCL Command Level

The default is /REAL _SIZE = SINGLE. The default floating-point size
applies to all floating-point variables whose size is not explicitly declared.

See the VAX BASIC Reference Manual for more information on floating
point data types.

/[NO]ROUND_DECIMAL
The /ROUND qualifier specifies that VAX BASIC is to round packed
decimal numbers rather than truncate them.

The /NOROUND qualifier causes VAX BASIC to truncate packed decimal
numbers rather than round them.

The default is /NOROUND.

/SCALE= n
The /SCALE qualifier specifies a scale factor between zero and six,
inclusive. The scale factor affects only double-precision numbers. SCALE
helps to control accumulated round-off errors by multiplying floating-point
values by 10 raised to the scale factor before storing them in variables.
/SCALE is ignored for all but double-precision floating-point numbers.

/SCALE is provided for compatibility with existing programs and with
other implementations of VAX BASIC. DIGITAL recommends that you do
not use this feature for new program development. Accumulated round
off errors can be better controlled with packed decimal numbers. See the
VAX BASIC Reference Manual for more information on packed decimal
numbers.

The default is /SCALE = 0.

[NO]CDD_DEFINITIONS
[NO]ENVIRONMENT
[NO]/NCLUDE

/[NO]SHOW= [NO]MAP
[NO]OVERRIDE
ALL
NONE

The /SHOW qualifier determines which parts of the compilation listing
are created. The /LISTING qualifier must be in effect for /SHOW to have
any effect. The CDD_DEFINITIONS clause controls whether the trans
lation of a CDD record is displayed in the listing. The ENVIRONMENT
clause lets you display all defaults that were in effect when the program
was compiled. This is the compilation listing equivalent of the SHOW
command in the environment. The INCLUDE clause controls whether
files accessed with the %INCLUDE directive are displayed in the listing.

Developing VAX BASIC Programs at DCL Command Level 4-13

The MAP clause determines whether the listing contains an allocation
map. The allocation map lists all program variables, their size and their
data type. The OVERRIDE clause helps you debug code by disabling the
effect of the %NOLIST directive.

The /NOSHOW qualifier causes VAX BASIC to only display the source
listing.

/SHOW = ALL is the same as /SHOW = (CDD_DEFINITIONS,
ENVIRONMENT, INCLUDE, MAP, OVERRIDE). /SHOW= NONE is
the same as /NOSHOW.

The default is /SHOW = (CDD_DEFINITIONS, ENVIRONMENT,
INCLUDE, MAP, NOOVERRIDE).

/{NO]SYNTAX_CHECK
The /SYNTAX_CHECK qualifier causes VAX BASIC to perform line
by-line syntax checking. When syntax checking is enabled, VAX BASIC
immediately checks the syntax of every text line as soon as you type a
carriage return. When syntax checking is disabled, VAX BASIC does not
perform syntax checking until you COMPILE or RUN the program.

The /NOSYNTAX_CHECK qualifier causes VAX BASIC to suppress
line-by-line syntax checking.

The default is /NOSYNTAX_CHECK.

{

INTEGER }
_ REAL

/TYPE_DEFAUL T - DECIMAL

EXPLICIT
The /TYPE_DEFAULT qualifier lets you specify the default data type for
numeric variables.

Specifying EXPLICIT means that all program variables must be explicitly
declared in DECLARE, EXTERNAL, COMMON, MAP or DIM statements.
Specifying INTEGER, REAL, or DECIMAL means only that variables
and data which are not explicitly declared default to integer, real or
packed decimal. To specify the actual size of variables and data, use the
INTEGER_SIZE, REAL_SIZE and DECIMAL_SIZE qualifiers.

The default is /TYPE-DEFAULT= REAL.

/VAR/ANT= int-const
The /VARIANT qualifier lets you specify the value associated with the
lexical function %VARIANT. See Chapter 18 in this manual for more
information about VARIANT and the % VARIANT lexical function.

4-14 Developing VAX BASIC Programs at OCL Command level

If /VARIANT is not specified, the default value is 0. If /VARIANT is
specified without a value, the default is 1.

{

[NO]WARNINGS }
/[NO]WARNINGS = [NO]INFORMA TIONALS

ALL
NONE

The /WARNINGS qualifier lets you specify whether VAX BASIC
displays informational and warning error messages. Specifying
/WARNINGS=NOWARNINGS causes VAX BASIC to display
informational errors but not warning errors. Specifying
/WARNINGS=NOINFORMATIONALS causes VAX BASIC to display
warning errors but not informational errors.

The /NOWARNINGS qualifier causes VAX BASIC to suppress any infor
mational or warning errors.

/WARNINGS = ALL is the same as /WARNINGS= (INFORMATIONAL,
WARNINGS). /WARNINGS = NONE is the same as /NOWARNINGS.

The default is /WARNINGS= (INFORMATIONAL, WARNINGS).

4.2.3 Compiler Listings

A compiler listing provides information that can help you debug your VAX
BASIC program. To generate a listing file, specify the /LISTING qualifier
when you compile your VAX BASIC program interactively. For example:

$ BASIC/LISTING prog-name

If the program is compiled as a batch job, the listing file is created by
default; specify the /NOLISTING qualifier to suppress creation of the
listing file. By default, the name of the listing file is the name of the
source program followed by a file type of LIS. You can include a file
specification with the /LISTING qualifier to override this default.

A compiler listing generated by the /LISTING qualifier has the following
major sections:

• Source Program Listing

The source program section contains the source code and line numbers
generated by the compiler.

Developing VAX BASIC Programs at OCL Command Level 4-15

• Allocation Map

The allocation map section contains summary information on program
sections, variables, and arrays.

• Qualifier Summary

The qualifier summary section lists the qualifiers used with the BASIC
command and the compilation statistics.

Example 4-1 illustrates a compiler listing generated by the following
command:

$ BASIC/LIST/CROSS_REFERENCE/MACHINE_CODE lister

Sections that follow the example describe each major section of the listing
file. The numbered explanations in each section correspond to the callouts
in the example.

4-16 Developing VAX BASIC Programs at DCL Command Level

Example 4-1: VAX BASIC Compiler Listing

0 8 • LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36
0

VAX BASIC V3.0
0

1 Page

V1.5
f)
1
2
3
4
5
6
7
0 G
9 I1

10 I1
11 I1
12 I1
13 I1
14
15
16
17
18
19 0
20 F1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Test

10

19-MAY-1986 11:10:56 MY$$DISK:[SMITH]LISTER.BAS;2

Y.TITLE "Listing Tester"
Y.SBTTL "Test"
Y.IDENT "Vi. 5"

!This program only shows the format of a listing
!file. It does no useful work.

%INCLUDE "MAPS. DEF"
! MAPS definition file
MAP (SHARED) STRING A = 16, &

LONG B, &
DOUBLE C, &
BYTE D

DECLARE INTEGER INDEX
DECLARE LONG CONSTANT TRUE = -1
DECLARE SINGLE Q(6)

Y.IF Y.VARIANT = 2
Y.THEN

DECLARE DOUBLE Z(10)
Y.END Y.!F

First_loop:
FOR INDEX = 0 TO 6

PRINT Q(INDEX)
NEXT INDEX

Second_loop:
WHILE TRUE

INDEX = INDEX + 1
EXIT Second_loop IF INDEX => 6

NEXT

32767 END

(Continued on next page)

Developing VAX BASIC Programs at OCL Command Level 4-17

Example 4-1 (Cont.): VAX BASIC Compiler Listing

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 2
Cross Reference 19-MAY-1986 11:10:56 MY$$DISK: [SMITH]LISTER.BAS;2

G>
User Identifier Cross Reference

Symbol

A

B

c

D

INDEX

QO

TRUE

Datatype Name Type

+--+
! # Defining reference !

G Destructive reference
P Parameter reference
R Redefining reference

+--+

STR=16 MAP
10 #

LONG MAP
11 #

DOUBLE MAP
12 #

BYTE MAP
13 #

LONG
14 # 25 26

SINGLE
16 # 26

LONG CONSTANT
15 # 30

27

SHARED + 0

SHARED + 16

SHARED + 20

SHARED + 28

31 G 32

(Continued on next page)

4-18 Developing VAX BASIC Programs at OCL Command Level

Example 4-1 (Cont.): VAX BASIC Compiler Listing

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 3
Cross Reference Map 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2 • Map Cross Reference

Symbol

SHARED

A

B

c

D

•

10 #

10 '

11 '

12 #

13 #

Label Cross Reference

Symbol

FIRST_LOOP

SECOND_LOOP

24 #

29 '

Reterences

MAP

STR=16 MAP SHARED + 0

LONG MAP SHARED + 16

DOUBLE MAP SHARED + 20

BYTE MAP SHARED + 28

References

32

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 4
ALLOCATION MAP 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

ti)
Allocation information for MAP SHARED

Name

A
B
c
D

Offset

0
16
20
28

Size Type

16 Static string
4 Long
8 Double
1 Byte

(Continued on next page)

Developing VAX BASIC Programs at OCL Command Level 4-19

Example 4-1 (Cont.): VAX BASIC Compiler Listing

41)
Named constants

Name Type Value

TRUE Long -1

e
Allocation information for main program LISTER Off set based on (R11)

Name

INDEX
Q

Offset

111
87

Size

4
24

Type

Long
Single

Dimensions : (0 TO 5)

~
PROGRAM SECTIONS

Name

0 $PDATA
1 $CODE
2 $ARRAY
3 $DESC
4 SHARED

48
EXTERNAL REFERENCES

OTS$LINKAGE
BAS$PRINT

Bytes Attributes

112 PIC CON REL LCL SHR NOEXE
164 PIC CON REL LCL SHR EXE

0 PIC CON REL LCL NOSHR NOEXE
0 PIC CON REL LCL NOSHR NOEXE

29 PIC OVR REL GBL SHR NOEXE

BAS$LINKAGE
BAS$IO_END

BAS$INIT_R8
BAS$0UT_F_V_B

4-20 Developing VAX BASIC Programs at DCL Command Level

RD NOWRT LONG
RD NOWRT LONG
RD WRT LONG
RD WRT LONG
RD WRT LONG

BAS$END_R8

(Continued on next page)

Example 4-1 (Cont.): VAX BASIC Compiler Listing

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 6
G>

Qualifier summary 19-MAY-1986 11:10:66 MY$$DISK: [SMITH]LISTER.BAS;2

DEFAULT DATA TYPE INFORMATION:
Data type : REAL
Real size : SINGLE
Integer size LONG
Decimal size : (16,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
Object file
Overflow check integers
Overflow check decimal numbers
Bounds checking

NO Syntax checking
Line
Variant : 0
Warnings
Informationals
Setup
Object Libraries : NONE

LISTING FILE INFORMATION INCLUDES:
List
Cross reference
CDD Definitions
Environment

NO Override of Y.NOLIST
Machine code
Map
INCLUDE files

FLAGGERS:
NO Declining features
NO BASIC PLUS 2 subset

DEBUG INFORMATION:
Traceback records

NO Debug symbol records

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0
~

Page 6

Generated code 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

0000: .TITLE LISTER$MAIN
0000: .!DENT V1.6
0000: .PSECT $PDATA

0000006F 0000: .LONG 96
0000005C 0004: .LONG 92
1C000103 0008: .LONG 469762307

(Continued on next page)

Developing VAX BASIC Programs at DCL Command Level 4-21

Example 4-1 (Cont.): VAX BASIC Compiler Listing

00000058 OOOC: .LONG 88
00000000 0010: .LONG 0
00000001 0014: .LONG 1
00000000 0018: .LONG 0
00000000 001C: .LONG 0
00000000 0020: .LONG 0
00000000 0024: .LONG 0
00000000 0028: .LONG 0
00000000 002C: .LONG 0
00000018 0030: .LONG 24
00000000 0034: .LONG 0
00000000 0038: .LONG 0
0000005F 003C: .LONG 95
0000005F 0040: .LONG 95
00000000 0044: .LONG 0
0000005F 0048: .LONG 95
0000006C 004C: .LONG 108
00000000 0050: .LONG 0
0000006C 0054: .LONG 108
00000060 0058: .LONG 96

52 45 54 53 49 4C 06 005C: .ASCIC "LISTER"
0063: Decimal constants

oc 0063: .PACKED +O
0064: String constants
0064: ERL table

00000002 0064: .LONG 2
OOOA 0068: .WORD 10
0016 006A: .WORD 22
7FFF 006C: .WORD 32767
008E 006E: .WORD 142

0070:
0000: .PSECT $CODE
0000: LISTER$MAIN : :

CFFC 0000: .WORD -M<R2,R3,R4,R5,R6,.R7 ,R8,R9,R10,R11, IV ,DV>
52 FB AF 9E 0002: MOVAB .-3, R2

50 00000004 OG 9E 0006: MOVAB $PDATA+4, RO
51 50 DO OOOD: MOVL RO, R1

00000000 GG 16 0010: JSB BAS$INIT_R8
0016: $!_0016:

FC AD FD AF 9E 0016: $L_10: MOVAB $L_10, -4(FP) 0025

(Continued on next page)

4-22 Developing VAX BASIC Programs at DCL Command Level

Example 4-1 (Cont.): VAX BASIC Compiler Listing

001B: FIRST_LOOP:
FC AD FD AF 9E 001B: MOVAB .-1, -4(FP)

6F AB 00 DO 0020: MOVL #0, INDEX(R11)
FC AD FD AF 9E 0024: $T_0024:MOVAB .-1, -4(FP)

00 DD 0029: PUSHL #0 ; 0026
00000000 GG 01 FB 002B: CALLS #1, BAS$PRINT

6C 00 01 06 00 6F AB OA 0032: INDEX INDEX(R11), #0, #6, #1, #0, R12
7E 67 AB 4C 60 003A: MOVF Q(R11)[R12], -(SP)

00000000 GG 01 FB 003F: CALLS #1, BAS$0UT_F_V_B
00000000 GG 00 FB 0046: CALLS #0, BAS$IO_END

FC AD FD AF 9E 004D: $T_004D:MOVAB .-1, -4(FP) 0027

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 7
Generated 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

CD 6F AB 06 F3 0062: AOBLEQ #6, INDEX(R11), $T_0024
6F AB D7 0067: DECL INDEX(R11)

FC AD FD AF 9E 006A: $T_006A:MOVAB .-1, -4(FP)
006F: SECOND_LOOP: 0030

FC AD FD AF 9E 006F: MOVAB .-1, -4(FP)
FC AD FD AF 9E 0064: $T_0064:MOVAB .-1, -4(FP)
FFFFFFFF SF D6 0069: TSTL #-1

18 13 006F: BEQL $T_0089
6C 6F AB 4E 0071: CVTLF INDEX(R11), R12 0031

6C 08 40 0075: ADDF2 #8, R12
6F AB 6C 4A 0078: CVTFL R12, INDEX(R11)
5C 6F AB 4E 007C: CVTLF INDEX(R11). R12 0032

1A SC 61 0080: CMPF R12, #26
02 19 0083: BLSS $T_0087
02 11 0086: BRB $T_0089
DB 11 0087: $T_0087:BRB $!_0064 0033

FC AD FD AF 9E 0089: $T_0089:MOVAB .-1, -4(FP)
008E:
008E: $1_32767: 0036

FC AD FD AF 9E 008E: MOVAB $L_32767, -4(FP)
60 00000004 OG 9E 0093: MOVAB $PDATA+4, RO

00000000 GG 16 009A: JSB BAS$END_R8
50 01 DO OOAO: MOVL #1, RO

04 OOA3: RET
OOA4: .END 0036

4.2.3. 1 Source Program Listing

The source program section of the compiler listing contains the source
code plus listing line numbers generated by the compiler.

Developing VAX BASIC Programs at DCL Command level 4-23

0 e
LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0

0 0
Page 1

V1.5
0

1
2
3
4
5
6
7
8 Ci)
9 I1

10 I1
11 I1
12 I1
13 I1
14
15
16
17
18
19 0
20 F1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Test 19-MAY-1986 11:10:56 MY$$DISK:[SMITH]LISTER.BAS;2

10 %TITLE "Listing Tester"
Y.SBTTL "Test"
Y.IDENT "V1.5"

!This program only shows the format of a listing
!file. It does no useful work.

%INCLUDE "MAPS . DEF"
! MAPS definition file
MAP (SHARED) STRING A :: 16, &

LONG B, &
DOUBLE C, &
BYTE D

DECLARE INTEGER INDEX
DECLARE LONG CONSTANT TRUE = -1
DECLARE SINGLE Q(5)

Y.IF %VARIANT = 2
Y.THEN

DECLARE DOUBLE Z(10)
Y.END Y.!F

First_loop:
FOR INDEX = 0 TO 5

PRINT Q(INDEX)
NEXT INDEX

Second_loop:
WHILE TRUE

INDEX = INDEX + 1
EXIT Second_loop IF INDEX => 5

NEXT

32767 END

0 The module name, which corresponds to the name in the program or
module heading.

8 The date (day, month, year) and time (hour, minute, second) of
compilation.

0 The VAX BASIC compiler name and version number.

8 The page number.

0 The date (day, month, year) and time (hour, minute, second) of source
file creation.

4-24 Developing VAX BASIC Programs at DCL Command Level

0 The VAX/VMS file specification of the source file that is being com
piled.

0 The source code listing line numbers.

The compiler assigns unique line numbers to the lines of source
code in a BASIC compilation unit. These line numbers appear in the
leftmost column of the source code listing. The symbolic traceback
that is printed if your program encounters an error at run time refers
to these line numbers; in addition, the VAX/VMS Debugger uses these
line numbers when controlling program execution.

0 The %INCLUDE file information.

The "I" tells you that this code was extracted from a %INCLUDE
file. The number following the "I" tells you the depth of nested
%INCLUDE directives. Because this %INCLUDE directive occurs in
the source program, the number is "1". If the %INCLUDE file itself
contained a %INCLUDE directive, the code extracted from that file
would be numbered "2", and so on.

0 A true-false flag for the %IF ... THEN ... ELSE ... END .. .IF directives.

Lines marked with "T" are compiled. Lines marked with "F" are not
compiled.

4.2.3.2 Cross-Reference Listing

If you specified the /CROSS_REFERENCE qualifier, your listing includes
a section displaying a list of the names of every identifier, both predeclared
and user-declared, and every label to which the source code refers.

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 2
Cross Reference 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

CD
User Identifier Cross Reference

Symbol

A

B

Datatype Name Type

+--+
! # Defining reference !

~ Destructive reference
P Parameter reference
R Redefining reference

+--+

STR=16 MAP
10 #

LONG MAP
11 #

SHARED + 0

SHARED + 16

Developing VAX BASIC Programs at DCL Command Level 4-25

c DOUBLE MAP SHARED + 20
12 #

D BYTE MAP SHARED + 28
13 #

INDEX LONG
14 # 25 26 27 31 ~ 32

Q() SINGLE
16 # 26

TRUE LONG CONSTANT
15 # 30

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 3
Cross Reference Map 19-MAY-1986 11:10:56 MY$$DISK: [SMITH]LISTER.BAS;2

tD
Map Cross Reference

Symbol

SHARED
10 #

A
10 #

B
11 #

c
12 #

D
13 #

48
Label Cross Reference

Symbol

FIRST_LOOP
24 #

SECOND_LOOP
29 #

4D

References

MAP

STR=16 MAP SHARED + 0

LONG MAP SHARED + 16

DOUBLE MAP SHARED + 20

BYTE MAP SHARED + 28

References

32

The cross-reference listing for variables and named constants.

This tells you the variable names, the line number (if any) and
statement at which they are referenced, their data type, the PSECT
containing them (if any), and their offset from the start of the PSECT.

tD The cross-reference listing for mapped variables.

This tells you the variable names, the line number and statement
number at which they are referenced, their data type, and their offset
from the start of the MAP PSECT.

4-26 Developing VAX BASIC Programs at DCL Command level

48 The label cross-reference listing for labels.

This tells you the label names and the line number and statement at
which they are referenced.

4.2.3.3 Allocation Map

The allocation map portion of a compiler listing contains summary in
formation on program sections, variables, and arrays. If you specified
the /CROSS_REFERENCE in addition to the /LISTING qualifier, the
allocation map also contains the following cross reference information:

• Listing lines where symbols are defined and initialized

• Listing lines where the values of symbols are modified

• Listing lines where symbols are actual arguments

• Number of times a symbol occurs in each line

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 4
ALLOCATION MAP 19-MAY-1986 11:10:56 MY$$DISK:[SMITH]LISTER.BAS;2

41)
Allocation information for MAP SHARED

Name

A
B
c
D

..,
Named constants

Name

TRUE

41

Off set

0
16
20
28

Type

Long

Size Type

16 Static string
4 Long
8 Double
1 Byte

Value

-1

Allocation information for main program LISTER Offset based on (R11)

Name

INDEX
Q

Dimensions : (0 TO 5)

4D
PROGRAM SECTIONS

Offset

111
87

Size

4
24

Type

Long
Single

Developing VAX BASIC Programs at DCL Command Level 4-27

Name

0 $PDATA
1 $CODE
2 $ARRAY
3 $DESC
4 SHARED

a>

Bytes Attributes

112 PIC CON REL LCL SHR NOEXE
164 PIC CON REL LCL SHR EXE

0 PIC CON REL LCL NOSHR NOEXE
0 PIC CON REL LCL NOSHR NOEXE

29 PIC OVR REL GBL SHR NOEXE

RD NOWRT LONG
RD NOWRT LONG
RD WRT LONG
RD WRT LONG
RD WRT LONG

EXTERNAL REFERENCES

OTS$LINKAGE
BAS$PRINT

BAS$LINKAGE
BAS$IO_END

BAS$INIT_R8
BAS$0UT_F_V_B

BAS$END_R8

41> The allocation listing for the MAP named SHARED.

This tells you the names of all variables in the MAP, their offset, in
bytes, from the beginning of the MAP, their size in bytes, and their
data type.

4D A list of named constants.

This tells you the names of all explicitly declared constants, their data
type, and the value assigned to them.

49 The allocation listing for dynamic variables.

This part of the listing applies to variables that are neither parameters
nor part of a COMMON or MAP PSECT. This tells you the names of
the variables, their offset from R11, their size in bytes and their data
type.

~ A list of the program sections (PSECTs).

This tells you the names of the PSECTs, their size in bytes and
their attributes. See the VAX/VMS Linker Reference Manual for more
information on PSECT attributes.

a> A list of all external references.

This includes subprograms, external variables, constants, functions,
and routines, and the RTL routines invoked to support VAX BASIC
language elements. See the VAX/VMS Run-Time Library Routines
Reference Manual for more information on these RTL routines.

4-28 Developing VAX BASIC Programs at DCL Command Level

4.2.3.4 Qualifier Summary

The compilation summary lists the qualifiers used with the BASIC com
mand and the compilation statistics.

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0
4D

Page 6

Qualifier summary 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

DEFAULT DATA TYPE INFORMATION:
Data type : REAL
Real size : SINGLE
Integer size : LONG
Decimal size : (16,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
Object file
Overflow check integers
Overflow check decimal numbers
Bounds checking

NO Syntax checking
Line
Variant : 0
Warnings
Informationals
Setup
Object Libraries : NONE

LISTING FILE INFORMATION INCLUDES:
List
Cross reference
COD Definitions
Environment

NO Override of Y.NOLIST
Machine code
Map
INCLUDE files

FLAGGERS:
NO Declining features
NO BASIC PLUS 2 subset

DEBUG INFORMATION:
Traceback records

NO Debug symbol records

4D A list of the compiler defaults in effect when the program was
compiled.

4.2.3.5 Machine Code Listing

If you specified the /MACHINE qualifier, your listing includes a section
displaying compiler-generated object code.

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0
CD

Page 6

Generated code 19-MAY-1986 11:10:66 MY$$DISK:[SMITH]LISTER.BAS;2

0000: .TITLE LISTER$MAIN
0000: .!DENT V1.6
0000: .PSECT $PDATA

0000006F 0000: .LONG 96
0000006C 0004: .LONG 92
1C000103 0008: .LONG 469762307
00000068 OOOC: .LONG 88
00000000 0010: .LONG 0

Developing VAX BASIC Programs at OCL Command Level 4-29

00000001 0014: .LONG 1
00000000 0018: .LONG 0
00000000 001C: .LONG 0
00000000 0020: .LONG 0
00000000 0024: .LONG 0
00000000 0028: .LONG 0
00000000 002C: .LONG 0
00000018 0030: .LONG 24
00000000 0034: .LONG 0
00000000 0038: .LONG 0
0000006F 003C: .LONG 96
0000006F 0040: .LONG 96
00000000 0044: .LONG 0
0000006F 0048: .LONG 96
0000006C 004C: .LONG 108
00000000 0060: .LONG 0
0000006C 0064: .LONG 108
00000060 0068: .LONG 96

62 46 54 63 49 4C 06 006C: .ASCIC "LISTER"
0063: Decimal constants

oc 0063: .PACKED +O
0064: String constants
0064: ERL table

00000002 0064: .LONG 2
OOOA 0068: .WORD 10
0016 006A: .WORD 22
7FFF 006C: .WORD 32767
008E 006E: .WORD 142

0070:
0000: .PSECT $CODE
0000: LISTER$MAIN: :

CFFC 0000: .WORD -M<R2,R3,R4,R6,R6,R7,R8,R9,R10,R11,IV,DV>
62 FB AF 9E 0002: MOVAB .-3, R2

50 00000004 OG 9E 0006: MOVAB $PDATA+4, RO
61 60 DO OOOD: MOVL RO, R1

00000000 GG 16 0010: JSB BAS$INIT_R8
0016: $!_0016:

FC AD FD AF 9E 0016: $L_10: MOVAB $L_10, -4(FP) 0026
0018: FIRST_LOOP:

FC AD FD AF 9E 0018: MOVAB .-1, -4(FP)
6F AB 00 DO 0020: MOVL #0, INDEX(R11)

FC AD FD AF 9E 0024: $T_0024:MOVAB .-1, -4{FP)
00 DD 0029: PUSHL #0 ; 0026

00000000 GG 01 FB 0028: CALLS #1, BAS$PRINT
6C 00 01 06 00 6F AB OA 0032: INDEX INDEX(R11), #0, #6, #1, #0, R12

7E 67 AB 4C 60 003A: MOVF Q(R11)[R12], -(SP)
00000000 GG 01 FB 003F: CALLS #1, BAS$0UT_F_V_B
00000000 GG 00 FB 0046: CALLS #0, BAS$IO_END

FC AD FD AF 9E 004D: $T_004D:MOVAB .-1,. -4{FP) 0027

4-30 Developing VAX BASIC Programs at DCL Command Level

LISTER$MAIN Listing Tester 19-MAY-1986 11:27:36 VAX BASIC V3.0 Page 7
Generated 19-MAY-1986 11:10:56 MY$$DISK:[SMITH]LISTER.BAS;2

CD 6F AB 05 F3 0052: AOBLEQ #5 I INDEX (R11) I $!_0024
6F AB D7 0067: DECL INDEX(R11)

FC AD FD AF 9E 006A: $T_005A:MOVAB .-1, -4(FP)
006F: SECOND_LOOP:

FC AD FD AF 9E 006F: MOVAB .-1, -4(FP)
FC AD FD AF 9E 0064: $T_0064:MOVAB .-1, -4(FP)
FFFFFFFF SF D6 0069: TSTL #-1

18 13 006F: BEQL $T_0089
5C 6F AB 4E 0071: CVTLF INDEX(R11), R12

5C 08 40 0075: ADDF2 #8, R12

6F AB 5C 4A 0078: CVTFL R12, INDEX(R11)
5C 6F AB 4E 007C: CVTLF INDEX(R11), R12

1A 6C 61 0080: CMPF R12, #26
02 19 0083: BLSS $!_0087
02 11 0085: BRB $T_0089
DB 11 0087: $T_0087:BRB $!_0064

FC AD FD AF 9E 0089: $T_0089:MOVAB .-1, -4(FP)
008E:
008E: $L_32767:

FC AD FD AF 9E 008E: MOVAB $L_32767, -4(FP)
50 00000004 OG 9E 0093: MOVAB $PDATA+4, RO

00000000 GG 16 009A: JSB BAS$END_R8
50 01 DO OOAO: MOVL #1, RO

04 OOA3: RET
OOA4: .END

~ A list of the compiler-generated machine code.

0030

0031

0032

0033

0036

0036

For a thorough understanding of this code, you should be an ex
perienced VAX MACRO programmer. The naming scheme for the
compiler-generated labels is explained as follows:

Symbols beginning with $L_n are line-number labels, where n is
the line number.

Symbols beginning with $T_n are compiler-generated labels,
where n is the relative PC of the location.

Note that these labels are used to improve the readability of the listing
and are not accessible from the VAX/VMS Debugger. See the VAX/VMS
Run-Time Library Routines Reference Manual for more information on BAS$
and OTS$ routines.

Developing VAX BASIC Programs at DCL Command Level 4-31

4.3 Linking a VAX BASIC Program

On VAX/VMS systems, the linker simplifies the job of each language
compiler because the logic needed to resolve symbolic references need
not be duplicated. The main advantage to a system that has a linker,
however, is that individual program modules can be separately written
and compiled, and then linked together. This includes object modules
produced by different language compilers.

The VAX/VMS Linker performs the following functions:

• Resolves local and global symbolic references in the object code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

• Produces an executable image

When using the LINK command on development systems, you may want
to use the /DEBUG qualifier when you link your program module. The
/DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules plus information on global
symbols, and forces the image to run under debugger control when it is
executed.

The LINK command produces an executable image by default. However,
you can also use the LINK command to obtain shareable images and
system images. The /SHAREABLE qualifier directs the linker to produce a
shareable image; the /SYSTEM qualifier a system image. See Section 4.3.2
for a complete description of these and other LINK command qualifiers.

For a complete discussion of the VAX/VMS Linker, refer to the VAX/VMS
Linker Reference Manual.

4.3.1 The LINK Co•mand

Once you have compiled your source program or module, you link it
by using the DCL command LINK. The LINK command combines your
object modules into one executable image, which can then be executed by
the VAX/VMS system. A source program or module cannot run on the
VAX/VMS system until it is linked. The format of the LINK command is
as follows:

LINK[/command-qualifier] ... {file-spec[/file-qualifier ...]}, ...

4-32 Developing VAX BASIC Programs at DCL Command Level

/command-qualifier
Specifies one or more output file options.

file-spec
Specifies the input file or files to be linked.

/file-qualifier
Specifies one or more input file options.

If you specify more than one input file, you must separate the input file
specifications with plus signs (+) or commas (,). By default, the linker
creates an output file with the name of the first input file specified and the
file type EXE. When you link more than one file, it is good practice to list
the file containing the main program first. In this way, the name of your
output file will have the same name as that of your main program module.

The following command line links the object files DANCE.DBL
CHACHA.OBJ, and SWING.OBJ to produce one executable image called
DANCE.EXE:

$LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

4.3.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify the linker's output,
as well as to invoke the debugging and traceback facilities. Linker output
consists of an image file and an optional map file. Image file qualifiers,
map file qualifiers, and debugging and traceback qualifiers are described in
this section.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list and description of LINK qualifiers, see the VAX/VMS
Linker Reference Manual.

Command Qualifier
/BRIEF
/[NO]CROSS_REFERENCE
/[NO]DEBUG [= file-spec]
[NO]EXECUT ABLE [= file-spec]

Default
/Default map
/NOCROSS_REFERENCE
/NODE BUG
/EXECUTABLE

Developing VAX BASIC Programs at DCL Command Level 4-33

/FULL
/[NO]MAP [=file-spec]
/[NO]SHAREABLE [= file-spec]
/[NO]TRACEBACK

/BRIEF

/Default map
/NOMAP
/NOSHAREABLE
/TRACEBACK

The /BRIEF qualifier causes the linker to produce a summary of the
image's characteristics and a list of contributing modules.

/[NO]CROSS_REFERENCE
The /CROSS-REFERENCE qualifier causes the linker to produce cross
reference information for global symbols; the /NOCROSS-REFERENCE
qualifier causes the linker to suppress cross-reference information. The
default is /NOCROSS-REFERENCE.

/[NO]DEBUG
The /DEBUG qualifier causes the linker to include the VAX/VMS
Debugger in the executable image and generates a symbol table; the
/NODEBUG qualifier causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

/[NO]EXECUTABLE
The /EXECUTABLE qualifier causes the linker to produce an executable
image; the /NOEXECUTABLE qualifier suppresses production of an image
file. The default is /EXECUTABLE.

/FULL
The /FULL qualifier causes the linker to produce a summary of the
image's characteristics, a list of contributing modules, listings of global
symbols by name and by value, and a summary of characteristics of image
sections in the linked image.

/[NO]MAP
The /MAP qualifier causes the linker to generate a map file; the /NOMAP
qualifier suppresses the map. The default is /MAP in batch mode and
/NOMAP in interactive mode.

/[NOJSHAREABLE
The /SHAREABLE qualifier causes the linker to create a shareable image;
the /NOSHAREABLE qualifier generates an executable image. The default
is /NOSHAREABLE.

4-34 Developing VAX BASIC Programs at OCL Command Level

/[NO]TRACEBACK
The /TRACEBACK qualifier causes the linker to generate symbolic
traceback information when error messages are produced; the
/NOTRACEBACK qualifier suppresses traceback information. The default
is /TRACEBACK.

4.3.3 Linker Input Files

You can specify the object modules to be included in an executable image
in any of the following ways:

• Specify input file specifications for the object modules.

If no file type is specified, the linker assumes that an input file is an
object file with the file type OBJ.

• Specify one or more object module library files.

You can either specify the name of an object module library with the
/LIBRARY qualifier, or specify the names of object modules contained
in an object module library with the /INCLUDE qualifier. The uses of
object module libraries are described in Section 4.3.5.

• Specify an options file.

An options file can contain additional file specifications for the
LINK command as well as special linker options. You must use the
/OPTIONS qualifier to specify an options file. For more information
on options files see the VAX/VMS Linker Reference Manual.

The linker uses the following default file types for input files.

File

Object module

Library

Options file

4.3.4 Linker Output Files

File Type

OBJ

OLB

OPT

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default,

Developing VAX BASIC Programs at DCL Command level 4-35

the resulting image file has the same file name as the first object module
specified, and a file type of EXE.

In a batch job, the linker creates both an executable image file and a
storage map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification
on the /MAP or /EXECUTABLE qualifier. For example:

$ LINK UPDATE/MAP=TEST

4.3.5 Using an Object Module Library

In a large development effort, the object modules for subprograms are
often stored in an object module library. By using an object module
library, you can make program modules contained in the library available
to many other programmers. To link modules contained in a object
module library, use the /INCLUDE qualifier and specify the specific
modules you want to link. For example:

$LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

This example directs the linker to link the subprogram modules
EGGPLANT, TOMATO, BROCCOLI, and ONION with the main program
module GARDEN.

Besides program modules, an object module library can also contain a
symbol table with the names of each global symbol in the library, and
the name of the module in which they are defined. You specify the
name of the object module library containing symbol definitions with
the /LIBRARY qualifier. When you use the /LIBRARY qualifier during a
link operation, the linker searches the specified library for all unresolved
references found in the included modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library, such as LNK$LIBRARY, to be
your default library by using the DCL command DEFINE. The linker
searches default user libraries for unresolved references after it searches
modules and libraries specified in the LINK command. See the VAX/VMS
DCL Dictionary for more information about the DEFINE command.

4-36 Developing VAX BASIC Programs at DCL Command Level

For more information about object module libraries, see the VAX/VMS
Linker Reference Manual.

4.3.6 linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or
fatal error conditions occur, (errors with severities of E or F) the linker
does not produce an image file.

The messages produced by the linker are descriptive, and you do not
usually need additional information to determine the specific error. Some
common errors that occur during linking are as follows:

• An object module has compilation errors.

This error occurs when you attempt to link a module that has warn
ings or errors during compilation. You can usually link compiled
modules for which the compiler generated messages, but you should
verify that the modules will actually produce the output you expect.

• The input file has a file type other than OBJ and no file type was
specified on the command line.

If you do not specify a file type, the linker assumes the file has a file
type of OBJ by default. If the file is not an object file and you do not
identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

• You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on
the command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition
for a specified global symbol reference. For example, a main program
module OCEAN.OBJ calls the subprograms REEF.OBJ, SHELLS.OBJ,
and SEAWEED.OBJ. However, the following LINK command does not
reference SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS

Developing VAX BASIC Programs at DCL Command Level 4-37

This example produces the following error messages:

Y.LINK-W-NUDFSYMS, 1 undefined symbol
Y.LINK-I-UDFSYMS, SEAWEED
Y.LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
Y.LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the· error
by reentering the command string and specifying the correct modules or
libraries.

See the VAX/VMS System Messages and Recovery Procedures Reference
Manual for a complete list of linker messages.

4.4 Running a VAX BASIC Program

Once you have linked your program, you use the DCL command RUN to
execute it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG
The /[NO]DEBUG qualifier is optional. Specify the /DEBUG qualifier to
request the debugger if the image was not linked with it. You cannot use
/DEBUG on images linked with the /NOTRACEBACK qualifier. If the
image was linked with the /DEBUG qualifier and you do not want the
debugger to prompt, use the /NODEBUG qualifier. The default action
depends on whether the file was linked with the /DEBUG qualifier.

file-spec
The name of the file you want to run.

The following example executes the image SAMPLE.EXE without invoking
the debugger:

$ RUN SAMPLE/NODEBUG

See Chapter 5 for more information on debugging programs.

During program execution, an image can generate a fatal error called an
exception condition. When an exception condition occurs, VAX BASIC
displays an error message. Run-time errors can also be issued by other
facilities such as, the VAX/VMS operating system. For more information
on run-time errors, see Appendix B.

4-38 Developing VAX BASIC Programs at OCL Command Level

Chapter 5

Using the VAX/VMS Debugger

This chapter is an introduction to using the VAX/VMS Debugger with
VAX BASIC programs. Included in the chapter are the following:

• An overview of the debugger

• Enough information to get you started using the debugger

• A sample terminal session that demonstrates using the debugger to
find a bug in a VAX BASIC program

• A list of the debugger commands by function

For complete reference information on the VAX/VMS Debugger, see the
VAX/VMS Debugger Reference Manual. Online HELP is available during
debugging sessions.

5.1 Overview of the Debugger

A debugger is a tool to help you locate run-time errors quickly. It is used
with a program that has already been compiled and linked successfully,
with no errors reported, but that does not run correctly. For example,
the outf>ut may be obviously wrong, or the program goes into an infinite
loop or terminates prematurely. The debugger enables you to observe and
manipulate the program's execution interactively, step by step, until you
locate the point at which the program stopped working correctly.

The VAX/VMS Debugger is a symbolic debugger, which means that you
can refer to program locations by the symbols (names) you used for those
locations in your program-the names of variables, routines, labels, and so
on. You do not have to use virtual addresses to refer to memory locations.

Using the VAX/VMS Debugger 5-1

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX BASIC, as well as the following other VAX/VMS
supported languages:

Ada®
BLISS
c
COBOL
DIBOL
FORTRAN
MACR0-32
PASCAL
PL/I
RPG II
SCAN

Therefore, if your program is written in more than one language, you
can change from one language to another in the course of a debugging
session. The current source language determines the format used for
entering and displaying data, as well as other features that have language
specific settings (for example, comment characters, operators and operator
precedence, and case sensitivity or insensitivity).

By issuing debugger commands at your terminal, you can

• Start, stop, and resume the program's execution

• Trace the execution path of the program
• Monitor selected locations, variables, or events

• Examine and modify the contents of variables, or force events to occur

• Test the effect of some program modifications without having to edit,
recompile, and relink the program

Such techniques can enable you to isolate an error in your code much
more quickly than you could without the debugger.

Once you have found the error in the program, you can then edit the
source code and compile, link, and run the corrected version.

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

5-2 Using the VAX/VMS Debugger

5.2 Features of the Debugger

The VAX/VMS Debugger provides various features that help you to debug
your programs:

• Online HELP. Online HELP is always available during a debugging
session; it contains information on all of the debugger commands and
selected topics.

• Source code display. The debugger lets you display lines of source
code during a debugging session.

• Screen mode. In screen mode, you can display and capture various
kinds of information in scrollable windows that can be moved around
the screen and resized. Source, instruction, and register displays are
automatically updated. You can selectively direct debugger input,
output, and diagnostic messages to displays. (Screen mode is best dis
played on VTlOO-series or VT200-series terminals or MicroVAX/VMS
workstations.)

• Keypad mode. When you invoke the debugger, several commonly
used debugger command sequences are assigned by default to the
keys of the numeric keypad (if you have a VTlOO, VT52, or LK201
keypad). Using the keypad can be more efficient than typing com
mands because the keypad keys can save keystrokes. (See Figure 5-1
for a diagram of the keypad key functions.)

• Source editing. As you find errors during a debugging session, you
can use the EDIT command to invoke any editor available on your
system. You specify the editor you want with the SET EDITOR
command.

• Command procedures. You can direct the debugger to execute a
command procedure (a file of debugger commands) to recreate a
debugging session, to continue a previous session, or to avoid typing
the same debugger commands many times during a debugging session.

• Symbol definitions. You can define your own symbols to represent
lengthy commands, address expressions, or values in abbreviated
form.

• Initialization files. You can create an initialization file containing
commands to set your default debugging modes, screen display
definitions, keypad key definitions, symbol definitions, and so on.
In addition, you may want to have special initialization files for
debugging specific programs. When you invoke the debugger, those
commands will be executed automatically.

Using the VAX/VMS Debugger 5-3

• Log files. You can record the commands you enter during a debugging
session and the debugger's responses to those commands in a log
file. You can use log files to keep track of your debugging efforts, or
you can use them as command procedures in subsequent debugging
sessions.

5.3 Getting Started with the Debugger

This section explains how to use the debugger and provides VAX BASIC
examples. The intent is to get you started using the debugger; therefore,
only basic functions are covered. For more detailed information, see the
VAX/VMS Debugger Reference Manual. Remember that online HELP is
immediately available to you during a debugging session when you type
the HELP command at the DBG> prompt.

5.3. 1 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a VAX BASIC
program (consisting of a single compilation unit named INVENTORY) so
that subsequently you will be able to use the debugger.

$ BASIC/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the BASIC command causes the compiler
to write the debug symbol records associated with INVENTORY into
the object module, INVENTORY.OBJ. These records allow you to use
the names of variables and other symbols declared in INVENTORY in
debugger commands. (If your program has several compilation units,
you must compile each unit that you want to debug with the /DEBUG
qualifier).

The /DEBUG qualifier on the LINK command causes the linker to include
all symbol information that is contained in INVENTORY.OBJ in the
executable image. The qualifier also causes the VAX/VMS image activator
to start the debugger at run time. (If your program has several object
modules, you may need to specify other modules in the LINK command).

5-4 Using the VAX/VMS Debugger

5.3.2 Starting and Terminating a Debugging Session

To invoke the debugger, issue the DCL command RUN. The following
message will appear on your screen.

$ RUN INVENTORY

VAX DEBUG Version 4.n

%DEBUG-I-INITIAL, language is BASIC, module set to 1 INVENTORY$MAIN 1

DBG>

The DBG > prompt indicates that you can now type debugger commands.
At this point, if you type the GO command, program execution begins and
continues until it is forced to pause or stop (for example, if the program
prompts you for input, or an error occurs).

The debugger suspends execution before the start of the main program, so
that you can execute initialization code under debugger control. Typing
the GO command will put you at the start of the main program. At that
point, typing the GO command again will start program execution and
continue it until it is forced to stop (for example, if the program prompts
you for input, or an error occurs).

To interrupt a debugging session while a debugging command is in
progress, press CTRL/Y to return to DCL level. For example, if your
program loops or otherwise fails to complete execution, press CTRL/Y to
stop the debugging session and return to DCL level.

After you have used CTRL/Y to interrupt a debugging session, you can
resume the session by using the CONTINUE or DEBUG command at
DCL level. In general, you use the CONTINUE command at DCL level to
return to where you interrupted the debugging session. If you interrupted
the session with CTRL/Y because of an infinite loop, you use the DCL
command DEBUG instead of the CONTINUE command. The DEBUG
command returns you to the debugger prompt so that you can type
another command. For example:

DBG> GO

(infinite loop)
ICTRL/YI
Interrupt

$ DEBUG
DBG>

Using the VAX/VMS Debugger 5-5

The following message indicates that your program has completed
successfully:

%DEBUG-I-EXITSTATUS, is 1 1.SYSTEM-S-NORMAL, normal successful completion'
DBG>

To end a debugging session, type the EXIT command at the DBG>
prompt or press CTRL/Z:

DBG> EXIT

•
5.3.3 Issuing Debugger Commands

You can issue debugger commands any time you see the debugger prompt
(DBG>). To enter a command, type it at the keyboard and press the
RETURN key. You can issue several commands on a line by separating
the command strings with semicolons (;). As with DCL commands, you
can continue a command string on a new line by ending the line with a
hyphen(-).

Alternatively, you can use the numeric keypad. In addition to the STEP,
GO, SHOW CALLS, and EXAMINE commands, several functions that ma
nipulate screen-mode displays are bound to the keys. Figure 5-1 identifies
the predefined key functions. You can also redefine key functions with the
DEFINE/KEY command.

Most keypad keys have three predefined functions-DEFAULT, GOLD,
and BLUE. (The PFl key is commonly known as the GOLD key, and
the PF4 key is commonly known as the BLUE key.) To obtain a key's
DEFAULT function, press the key. To obtain its GOLD function, first
press the PFl (GOLD) key, and then the key. To obtain its BLUE function,
first press the PF4 (BLUE) key, and then the key.

In Figure 5-1, the DEFAULT, GOLD, and BLUE functions are listed
within each key's outline, from top to bottom respectively. For example,
pressing keypad key 0 issues the STEP command (DEFAULT function);
pressing key PFl and then key 0 issues the STEP /INTO command (GOLD
function); pressing key PF4 and then key 0 issues the STEP /OVER
command (BLUE function).

Type the HELP KEYPAD command to get help on the keypad key
definitions.

5-6 Using the VAX/VMS Debugger

Figure 5-1: Keypad Key Functions Predefined by the Debugger

r F17 "" F18

DEFAULT MOVE

(SCROLL)

" ~

/ PF1 PF2

GOLD HELP DEFAULT

GOLD HELP GOLD

GOLD HELP BLUE

7 re
"""

DISP SRC.INST.OUT SCROLL'UP

DISP INST.REG.OUT SCROLL'TOP

SCROLL/UP ...

"' ...)

"4 ~ 5

SCROLL LEFT EX SOU .0\ %PC

SCROLL/LEFT:255 SHOW CALLS

SCROLL/LEFT... SHOW CALLS 3

" ~
1 ,2

""'
EXAMINE SCROLL/DOWN

EXAM-(prev) SCROLL/BOTIOM

SCROLL/DOWN ...

"' ...)

0

STEP

STEP INTO

STEP OVER

\..

LK201 Keyboard:

Press

F17

F18

F19

F20

VT-100 Keyboard:

Type

F19

EXPAND

(EXPAND •I

PF3

SET MODE SCREEN

SET MODE NOSCR

DISP•GENERATE

9

DISPLAY next

l's ~

SCROLL/RIGHT

SCROLL/RIGHT:255

SCROLL/RIGHT ...

"' ~
3

SEL SCROLL next

SEL OUTPUT next

SEL SOURCE next

.
RESET

RESET

RESET

SET KEY /ST A TE=DEF AULT

SET KEY /ST A TE=MOVE

SET KEY /ST A TE=EXPAND

SET KEY /ST A TE=CONTRACT

F20

"""" CONTRACT

!EXPAND -I

PF4 ~

BLUE

BLUE

BLUE

-
DISP next at FS

DISP SRC. OUT

' GO

SEL 'INST next

ENTER

ENTER

Keys 2.4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

"MOVE"

MOVE/LEFT

MOVE/LEFT:999

MOVE/LEFT· 10

"EXPAND"

EXPAND/LEFT

EXPAND/LEFT 999

EXPAND/LEFT 10

"CONTRACT"

EXPAND/LEFT:-1

EXPAND/LEFT -999

EXPAND/LEFT:-10

MOVE/UP

MOVE/UP:999

MOVE/UP:S

MOVE/DOWN

MOVE/DOWN:999

MOVE/DOWN:S

EXPAND/UP

EXPAND/UP:999

EXPAND/UP:5

EXPAND/DOWN

EXPAND/DOWN:999

EXPAND/DOWN:5

EXPAND/UP:-1

EXPAND/UP:·999

EXPAND/UP:-5

EXPAND/DOWN:-1

EXPAND/DOWN:-999

EXPAND/DOWN:-5

MOVE/RIGHT

MOVE/RIGHT:999

MOVE/RIGHT: 10

EXPAND/RIGHT

EXPAND/RIGHT:999

EXPAND/RIGHT:10

EXPAND/AIGHT:-1

EXPAND/RIGHT:-999

EXPAND/RIGHT:-10

ZK-4774-85

Using the VAX/VMS Debugger 5-7

5.3.4 Viewing Your Source Code

The debugger provides two methods for viewing source code: noscreen
mode and screen mode. By default, when you invoke the debugger, you
are in noscreen mode, but you may find that it is easier to view your
source code with screen mode. Both modes are briefly described in the
following sections.

5.3.4. 1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input
and output. To get into noscreen mode from screen mode, type SET
MODE NOSCREEN. See the sample debugging session in Section 5.4 for
a demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or
more source lines. For example, the following command displays line 3 of
the module that is currently executing:

DBG> TYPE 3
3 : EXTERNAL SUB TRIPLE &
DBG>

The display of source lines is independent of program execution. You can
use the TYPE command to display source code from a module other than
the one currently executing. In that case, you need to use a path name to
specify the module. For example, the following command displays lines
16 through 21 of module TEST:

DBG> TYPE TEST\16:21

5.3.4.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, by default
the debugger splits the screen into three displays named SRC, OUT, and
PROMPT.

5-8 Using the VAX/VMS Debugger

--SRC: module SAMPLE$MAIN -scroll-source--------------------------
1: 10 !SAMPLE
2:
3:
4:
5:
6:

EXTERNAL SUB TRIPLE
,PRINT_SUB

-> 7:
8:
9:

WHEN ERROR USE HANDLER_1
CALL TRIPLE
CALL PRINT_SUB

- OUT -output---
stepped to SAMPLE$MAIN\XLINE 7

- PROMPT -error-program-prompt---------------------------
DBG> STEP
DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) that is currently executing. An arrow in the left
column points to the next line to be executed, which corresponds to the
current location of the program counter (PC). The line numbers, which are
assigned by the compiler, match those in a listing file.

NOTE

Note that VAX BASIC line numbers are treated as text by the
debugger. In this chapter, line numbers refer to the sequential
line numbers generated by the compiler. When a program
includes or appends code from another file, the included lines
of code are also numbered in sequence by the compiler. These
line numbers are on the extreme left of a listing file. An
explanation of the listing file format can be found in Chapter 4.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG >), your input, debugger diagnostic messages, and program
output. In the illustration, it shows the two debugger commands that have
been issued.

The OUT display, in the center of the screen, captures the debugger's
output in response to the commands that you issue.

The SRC and OUT displays are scrollable so that you can see whatever
information may scroll beyond the display window's edge. Use keypad
key 8 to scroll up and keypad key 2 to scroll down. Use keypad key 3 to
change the display to be scrolled (by default, the SRC display is scrolled).
Scrolling a display does not affect program execution.

Using the VAX/VMS Debugger 5-9

If the debugger cannot locate source lines for the currently executing
module, it tries to display source lines in the next module down on the
call stack for which source lines are available and issues the following
message:

Y.DEBUG-I-SOURCESCOPE, Source lines not available for .O\Y.PC.
Displaying source in a caller of the current routine.

Source lines may not be available for the following reasons:

• The PC is within a system routine, or a shareable image routine for
which no source code is available.

• The PC is within a routine that was compiled without the /DEBUG
compiler command qualifier (or with /NODEBUG).

• The source file was moved to a different directory after it was com
piled (the location of source files is embedded in the object modules).

5.3.5 Controlling and Monitoring Program Execution

This section covers the following topics:

• Starting and resuming program execution with the GO command
• Stepping through the program's code with the STEP command

• Determining the current location of the program counter (PC) with the
SHOW CALLS command

• Suspending program execution with breakpoints
• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

5.3.5.1 Starting and Resuming Program Execution

There are two commands for starting or resuming program execution: GO
and STEP. The GO command starts execution. The STEP command lets
you execute a specified number of source lines or instructions.

5-10 Using the VAX/VMS Debugger

The GO Command

The GO command starts program execution, which continues until forced
to stop. You will probably use the GO command most often in con
junction with breakpoints, tracepoints, and watchpoints. If you set a
breakpoint in the path of execution and then type the GO command (or
press the comma key on the keypad, which executes the GO command),
execution will be suspended when the program reaches that breakpoint. If
you set a tracepoint, the path of execution through that tracepoint will be
monitored. If you set a watchpoint, execution will be suspended when the
value of the watched variable changes.

You can also use the GO command to test for an exception condition or
an infinite loop. If an exception condition that is not handled by your pro
gram occurs, the debugger will take over and display the DBG > prompt
so that you can issue commands. If you are using screen mode, the
pointer in the source display will indicate where execution stopped. You
can then use the SHOW CALLS command (explained in Section 5.3.5.2)
to identify the currently active routine calls (the call stack).

In the case of an infinite loop, the program will not terminate, so the
debugger prompt will not reappear. To obtain the prompt, interrupt the
program by pressing CTRL/Y and then issue the DCL command DEBUG.
You can then look at the source display and a SHOW CALLS display to
locate the PC.

The STEP Command

The STEP command (which you can use either by typing STEP or by
pressing the keypad 0 key) allows you to execute a specified number
of source lines or instructions, or to execute the program to the next
instruction of a particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In
the following example, the STEP command executes one line, reports the
action ("stepped to ... "), and displays the line number (27) and source
code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNTER\Y.LINE 27

27: x = x + 1
DBG>

Using the VAX/VMS Debugger 5-11

The PC is now at the first machine code instruction for line 27 of the
module TEST; line 27 is in COUNTER, a routine within the module TEST.
"TEST\ COUNTER\ %LINE 27" is a path name. The debugger uses path
names to refer to symbols. (However, you do not need to use a path
name in referring to a symbol, unless the symbol is not unique; in that
case, the debugger will issue an error message. See Section 5.3.7.2 for
more information on resolving multiply-defined symbols.)

You can specify a number of lines for the STEP command to execute. In
the following example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were gener
ated by the compiler are recognized as executable lines by the debugger.
The debugger skips over any other lines-for example, comment lines.

Also, if a line has more than one statement on it, the debugger will
execute all the statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). To resume to the default
behavior, issue the SET STEP LINE command. Also, by default, the
debugger steps over called routines-execution is not suspended within a
called routine, although the routine is executed. By issuing the SET STEP
INTO command, you tell the debugger to suspend execution within called
routines as well as within the currently executing module. To resume the
default behavior, issue the SET STEP OVER command.

5.3.5.2 Determining the Current Location of the Program Counter

The SHOW CALLS command lets you determine the current location of
the program counter (PC) (for example, after returning to the debugger
following a CTRL/Y interrupt). The command shows a traceback that
lists the sequence of calls leading to the currently executing routine. For
example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

•TEST PRODUCT 18 00000009 0000063C
•TEST COUNTER 47 00000009 00000647
•MY_PROG MY_PROG 21 00000000 00000663
DBG>

5-12 Using the VAX/VMS Debugger

For each routine (beginning with the currently executing routine), the
debugger displays the following information:

• The name of the module that contains the routine

• The name of the routine

• The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• The corresponding PC addresses (the relative PC address from the
start of the routine and the absolute PC address of the program)

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNTER (in module TEST), which was called from line 21 of routine
MY_pROG (in module MY_pROG).

5.3.5.3 Suspending Program Execution

The SET BREAK command lets you select breakpoints, which are locations
at which the program will stop running. When you reach a breakpoint,
you can issue commands to check the call stack, examine the current
values of variables, and so on.

A typical use of the SET BREAK command is illustrated in the following
example:

DBG> SET BREAK COUNTER
DBG> GO

break at TEST\COUNTER
34: SUB COUNTER(LONG X,Y)

DBG>

In this example, the SET BREAK command sets a breakpoint on the
subprogram COUNTER; the GO command starts execution. When the
subprogram COUNTER is encountered, execution is suspended, the de
bugger announces that the breakpoint at COUNTER has been reached
("break at ... "), displays the source line (34) where execution is sus
pended, and prompts you for another command. At this breakpoint, you
could step through the subprogram COUNTER, using the STEP command,
and use the EXAMINE command (discussed in Section 5.3.6.1) to check
on the current values of X and Y.

Using the VAX/VMS Debugger 5-13

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses, byte offsets). With
high-level languages, you typically use routine names, labels, or line
numbers, possibly with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source
code. Line numbers may be derived from either a source code display
or a listing file. When specifying a line number, use the prefix %LINE.
(Otherwise, the debugger will interpret the line number as a memory
location.) For example, the next command sets a breakpoint at line 41
of the currently executing module; the debugger will suspend execution
when the PC is at the start of line 41.

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine
code instructions. The debugger warns you if you try to do otherwise
(for example, on a comment line). If you want to pick a line number in
a module other than the one currently executing, you need to specify the
module's name in a path name. For example:

DBG> SET BREAK SCREEN_IO\%LINE 68

You do not always have to specify a particular program location, such as
line 58 or COUNTER, to set a breakpoint. You can set breakpoints on
events, such as exceptions. You can use the SET BREAK command with
a qualifier, but no parameter, to break on every line, or on every CALL
instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause on the
debugger command). For example, the next command sets a breakpoint on
the label LOOP3. The DO (EXAMINE TEMP) clause causes the value of
the variable TEMP to be displayed whenever the breakpoint is triggered.

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\LOOP3
37: LOOP3: FOR I = 1 TO 10

COUNTER\TEMP: 284.19
DBG>

5-14 Using the VAX/VMS Debugger

To display the currently active breakpoints, type the SHOW BREAK
command:

DBG> SHOW BREAK
breakpoint at SCREEN_IO\%LINE 58
breakpoint at COUNTER\LOOP3

do (EXAMINE TEMP)

DBG>

To cancel a breakpoint, type the CANCEL BREAK command, specifying
the program location exactly as you did when setting the breakpoint. The
CANCEL BREAK/ ALL command cancels all breakpoints.

5.3.5.4 Tracing Program Execution

The SET TRACE command lets you select tracepoints, which are locations
for tracing the execution of your program without stopping its execution.
After setting a tracepoint, you can start execution with the GO command
and then monitor the PC's path, checking for unexpected behavior. By
setting a tracepoint on a routine, you can also monitor the number of
times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. It can also display other
information that you have specified (as shown in the last example in this
section, in which the value of a specified variable is displayed). However,
at tracepoints, unlike breakpoints, the program continues executing, and
the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNTER
DBG> GO

trace at TEST\COUNTER
34: SUB COUNTER(LONG X,Y)

When using the SET TRACE command, you specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

Using the VAX/VMS Debugger 5-15

The /LINE qualifier causes the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default,
lines are traced within all called routines as well as the currently execut
ing routine. If you do not want to trace system routines or routines in
shareable images, use the /NOSYSTEM or /NOSHARE qualifiers. For
example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and source code
display. This is useful when you want to use the SET TRACE command
to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE\SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_!O\CLEAR\STATUS: 'OFF'

5.3.5.5 Monitoring Changes in Variables

The SET WATCH command lets you set watchpoints that will be moni
tored continuously as your program executes.

If the program modifies the value of a watched variable, the debugger
suspends execution and displays the old and new values.

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered. The debugger monitors watchpoints continuously
during program execution.

The next example shows what happens when your program modifies the
contents of a watched variable.

5-16 Using the VAX/VMS Debugger July 1988

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL\%LINE 13
13: TOTAL = TOTAL + 1

old value: 16
new value: 17

break at SCREEN_IO.%LINE 14
14: CALL Pop_rtn(TOTAL)

DBG>

In this example, a watchpoint is set on the variable TOTAL and the GO
command starts execution. When the value of TOTAL changes, execution
is suspended. The debugger announces the event ("watch of ... "),
identifying where TOTAL changed (line 13) and the associated source
line. The debugger then displays the old and new values and announces
that execution has been suspended at the start of the next line (14). (The
debugger reports "break at ... ", but this is not a breakpoint; it is still
the effect of the watchpoint.) Finally, the debugger prompts for another
command.

When a change in a variable occurs at a point other than the start of a
source line, the debugger gives the line number plus the byte offset from
the start of the line.

5.3.6 Examining and Manipulating Data

This section explains how to use the EXAMINE, DEPOSIT, and
EVALUATE commands to display and modify the contents of variables,
and evaluate expressions in VAX BASIC programs.

July 1988 Usmg the VAX/VMS Debugger 5-17

5.3.6.1 Displaying the Values of Variables

To display the current value of a variable, use the EXAMINE command as
follows:

DBG>EXAMINE variable_name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers (three per dimension):

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY

(0,0): 27
(0,1): 31
(0,2): 12
(1,0): 15
(1, 1): 22
(1, 2): 18

DBG>

Examine element 4 of a one-dimensional string array:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'm'
DBG>

Note that the EXAMINE command can be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations
if you want the data to be interpreted and displayed in some other data
format. The debugger supports the data types and operators of VAX
BASIC including RECORDs and RFAs.

5-18 Using the VAX/VMS Debugger

See Section 5.3.6.3 for an explanation of how the EXAMINE and the
EVALUATE commands differ.

5.3.6.2 Changing the Values of Variables

To change the value of a variable, use the DEPOSIT command as follows:

DBG>DEPOSIT variable_name = value

The DEPOSIT command is like an assignment statement in VAX BASIC.

In the following examples, the DEPOSIT command assigns new values
to different variables. The debugger checks that the value assigned,
which may be a language expression, is consistent with the data type and
dimensional constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or
apostrophes):

DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) = 1K1

You can specify any kind of address expression, not just a variable name,
with the DEPOSIT command (as with the EXAMINE command). You can
override the defaults for typed and untyped locations if you want the data
to be interpreted in some other data format.

5.3.6.3 Evaluating Expressions

To evaluate a language expression, use the EVALUATE command as
follows:

DBG> EVALUATE lang_exp

The debugger recognizes the operators and expression syntax of the
currently set language. In the following example, the value 45 is assigned
to the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

Using the VAX/VMS Debugger 5-19

DBG> DEPOSIT WIDTH = 46
DBG> EVALUATE WIDTH + 7
62
DBG>

Following is an example of how the EVALUATE and the EXAMINE
commands are similar. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command:

DBG> DEPOSIT WIDTH = 46
DBG> EVALUATE WIDTH
46
DBG> EXAMINE WIDTH
SIZE\WIDTH: 46

Following is an example of how the EVALUATE and EXAMINE com
mands are different:

DBG> EVALUATE WIDTH + 7
62
DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131684

With the EVALUATE command, WIDTH+ 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE com
mand, WIDTH+ 7 is interpreted as an address expression: 7 bytes are
added to the address of WIDTH, and whatever value is in the resulting
address is reported (in this instance, 131584).

5.3.6.4 Stepping Into VAX BASIC Routines

This section provides details of the STEP /INTO command that are specific
to VAX BASIC.

In the following example, the debugger is waiting to proceed at source line
2. If you issue a STEP command at this point, the debugger will proceed
to source line 3 without stopping during the execution of the function call.
To examine the source code in the EXTERNAL FUNCTION extfun, you
must use the STEP /INTO command. A STEP /INTO command entered
while the debugger has stopped at source line 2, will cause the debugger
to display the source code for extfun and stop execution at source code
line 63.

5-20 Using the VAX/VMS Debugger

1 10 EXTERNAL REAL FUNCTION extfun (real)
->2 a = extfun (8)

3 PRINT a

63 100 FUNCTION REAL extfun (a)
extfun = a * 3
END FUNCTION

The STEP /INTO command is useful for examining external functions.
However, if you use this command to stop execution at an internal
subroutine or a DEF, the debugger steps into Run-Time Library (RTL)
routines, providing you with no useful information. For example, in the
following partial program, the debugger has suspended execution at source
line 8. If you now enter a STEP /INTO command, the debugger steps into
the relevant RTL code and informs you that no source lines are available.

1 10 RANDOMIZE

->8 GOSUB Print_routine
9 STOP

20 Print_routine:
21 IF Competition = Done
22 THEN PRINT "The winning ticket is #";Winning_ticket
23 ELSE PRINT "The game goes on. 11

24 END IF
25 RETURN

As in the previous example, a STEP command alone will cause the
debugger to proceed directly to source line 9. To examine the source
code of subroutines or DEF functions, you should use the SET BREAK
command. The SET BREAK command is described in Section 5.3.5.3. In
this case, a breakpoint set at the label Print_routine allows you to examine
the subroutine beginning at source line 20.

Using the VAX/VMS Debugger 5-21

5.3. 7 Controlling Symbol References

In most cases, the way the debugger handles symbols is transparent to
you. However, the following areas may require action on your part:

• Module setting

• Multiply-defined symbols

5.3. 7 .1 Module Setting

To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
execution. The loading process is called module setting, because all of the
symbol records of a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer ad
dress is set. As your program executes, whenever the debugger interrupts
execution it sets the module surrounding the current PC location. This
lets you reference the symbols that should be visible at the current PC
location.

If you try to reference a symbol in a module that has not been set, the
debugger will warn you that the symbol is not in the RST. For example:

DBG> EXAMINE K
Y.DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

You must then use the SET MODULE command to set the module
containing that symbol manually:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules have been set.

5-22 Using the VAX/VMS Debugger

A successful FIND or GET operation must precede the DELETE operation.
These operations make the target record available for deletion. In the
following example, the FIND statement locates record 67 in a relative file
and the DELETE statement removes this record from the file. Because the
cell itself is not deleted, you can use the PUT statement to write a record
into that cell after deleting its contents.

FIND #1%, RECORD 67%
DELETE #1%

NOTE

There is no current record after a deletion. The next record
pointer is unchanged.

15.6. 7 Updating Records

UPDATE writes a new record at the location indicated by the current
record pointer. UPDATE is valid on RMS sequential, relative, and indexed
files.

The UPDATE statement operates on the current record, provided that you
have write access to that record. In order to successfully update a variable
length record, you must know the exact size of the record you want to
update. VAX BASIC has access to this information after a successful GET
operation. If you have not performed a successful GET operation on the
variable-length record, then you must specify a COUNT clause in the
UPDATE statement that contains the record size information.

If you are updating a variable length record, and the record that you want
to write out is of different size than the record you retrieved, you must use
a COUNT clause.

An UPDATE will fail with the exception "No current record" (ERR= 131)
if you have not previously established a current record with a successful
GET or FIND. Therefore, when updating records you should include
error trapping in your program to make sure all GET operations execute
successfully.

An UPDATE operation on a sequential file is valid only when:

• The file containing the record is on disk

• The new record is the same size as the one it is replacing

July 1988 File Input and Output 15-23

• You have established a current record via a GET or FIND operation.
Note that COUNT defaults to the size of the current record if a GET
was performed. If a FIND operation was used to locate the current
record, then you must supply a COUNT value.

The following program searches to find a record in which the L _name
field matches the specified Search_name$. Once this record is found and
retrieved, the Rm_num field of that record is updated; the program then
prompts for another Search_name$. If a match is not found, VAX BASIC
prints the message 11No such record 11 and prompts the user for another
Search_name$. The program ends when the user enters a null string for
the Search_name$ value.

Example

20 MAP (AAA) STRING L_name = 60%, F_name = 20%, Rm_num = 8%
30 OPEN 11 STU.DAT 11 FOR INPUT AS FILE #Q%, &

ORGANIZATION SEQUENTIAL FIXED, MAP AAA
50 INPUT "Last name";Search_name$
55 Search_name$ = EDIT$(Search_name$, -1%)
60 IF Search_name$ = 1111

THEN GOTO 32010
END IF

65 RESTORE #9%
70 WHEN ERROR IN
75 GET #9% WHILE Search_name$ <> L_name

USE
IF ERR=11

THEN
PRINT "No such record"
CONTINUE 50

ELSE
EXIT HANDLER

END IF
END WHEN

80 INPUT "Room number";Rm_num
90 UPDATE #9%
100 GOTO 50
32010 CLOSE #9%
32030 PRINT "Update complete"
32767 END

NOTE

An UPDATE operation invalidates the value of the current
record pointer. The next record pointer is unchanged.

15-24 File Input and Output

When you update a record in a relative variable file, the new record can
be larger or smaller than the record it replaces, provided that it is smaller
than the maximum record size set for the file. When you update a record
in an indexed variable file, the new record can also be larger or smaller
than the record it replaces. The updated record:

• Can be no longer than the maximum record size, if specified

• Must include at least the primary key field

File Input and Output 15-24.1

$ BASIC/LIST/DEBUG SAMPLE 0
$ LINK/DEBUG SAMPLE f)
$ RUN SAMPLE

VAX DEBUG Version 4.n

%DEBUG-I-INITIAL, language is BASIC module set to 1 SAMPLE$MAIN' C)
DBG> (STEP 2) 8
NUMBER SQUARE SQUARE ROOT
stepped to SAMPLE$MAIN\Y.line 7

7: FOR Number = 10 TO 1 STEP -1 0
DBG> STEP 4 ca
10 100 3.16228
stepped to SAMPLE$MAIN\Y.LINE 7

7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number f)
SAMPLE$MAIN\NUMBER: 10 0
DBG> STEP 4 CD
10 100 3.16228
stepped to SAMPLE$MAIN\Y.LINE 7

7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number ~
SAMPLE$MAIN\NUMBER: 10 4J>
DBG> DEPOSIT Number = 9 48
DBG> STEP 4 41)
9 81 3
stepped to SAMPLE$MAIN\Y.LINE 7

7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number CD
SAMPLE$MAIN\NUMBER: 9 G)
DBG> STEP e
9 81 3
stepped to SAMPLE$MAIN\Y.LINE 8

8: PRINT Number, NumberA2, SQR(Number) ~
DBG> STEP ~
stepped to SAMPLE$MAIN\Y.LINE 9

9: Number = Number + 1 4D
DBG> EXIT G)

0 Compile SAMPLE.BAS with the /LIST and /DEBUG qualifiers. The
listing file may be useful while you are in the debugging session.

f) Link SAMPLE.BAS with the /DEBUG qualifier.

C) The debugger identifies itself and displays the debugger prompt after
you invoke the debugger with the RUN command.

G Step through 2 executable statements to the FOR statement.

0 The headers print successfully and the program reaches the FOR
statement.

ca Step through one iteration of the loop.

f) Request the contents of the variable Number.
0 The debugger shows the contents of the loop index to be 10.

Using the VAX/VMS Debugger 5-25

C> Step through another iteration of the loop.

GD Examine the value of the loop index again.

41 The debugger shows that the loop index is still 10. The loop index has
not changed from its initial setting in the FOR statement.

• Deposit the correct value into Number.
48 Step through another iteration of the loop.

4D Examine the contents of Number again.

49 Observe that the number has not been changed yet.

48 Step through just one statement to discover what is interferring with
the value of Number during execution of the loop.

4D Observe that this statement does not affect the value of Number.
4D Step through another statement in the loop.

~ Observe that this statement counteracts the change in the loop index.

9 Exit from the debugger. You can now edit the program to delete line
9 and reprocess the program. Alternatively, you could use the EDIT
command while in the debugger environment.

This debugging session shows that the FOR ... NEXT loop index (Number)
is not being changed correctly. An examination of the statements in the
loop shows that the variable Number is being decreased by one during
each execution of the FOR statement, but incremented by one with each
execution of the loop statements. From this you can determine that the
loop index will not change at all and the program will loop indefinitely.
To correct the problem, you must delete the incorrect statement and
recompile the source program.

5.5 Debugger Command Summary

Table 5-1 lists all of the debugger commands and any related DCL
commands in functional groupings, along with brief descriptions.

During a debugging session, you can get online HELP on any command
and its qualifiers by typing the HELP command followed by the name of
the command in question, in this format:

HELP command

5-26 Using the VAX/VMS Debugger

Table 5-1: Debugger Command Summary
Command Description

Starting and Terminating a Debugging Session

($) RUN 1 Invokes the debugger if LINK/DEBUG was
used

($) RUN/[NO]DEBUG1

CTRL/Z or EXIT

QUIT

CTRL/Y

CTRL/C

($) CONTINUE1

($) DEBUG1

ATTACH

SPAWN

Controls whether the debugger is invoked
when the program is executed

Ends a debugging session, executing all exit
handlers

Ends a debugging session without executing
any exit handlers declared in the program

Interrupts a debugging session, returning you
to DCL level

Has the same effect as CTRL/Y, unless the
program has a CTRL/C service routine

Resumes a debugging session after a CTRL/Y
interruption

Resumes a debugging session after a CTRL/Y
interruption but returns you to the debugger
prompt

Passes control of your terminal from the
current process to another process (similar to
the DCL command ATTACH)

Creates a subprocess; lets you issue DCL
commands without interrupting your debug
ging context (similar to the DCL command
SPAWN)

1
This is a DCL command, not a debugger command.

Using the VAX/VMS Debugger 5-27

Table 5-1 (Cont.): Debugger Command Summary
Command Description

Controlling and Monitoring Program Execution

GO

STEP

{SET
SHOW

} STEP

{ SET
} BREAK SHOW

CANCEL

{ SET
} TRACE SHOW

CANCEL

{ SET
} WATCH SHOW

CANCEL

{ SET } EXCEPTION
CANCEL BREAK

SHOW CALLS

SHOW STACK

CALL

Starts or resumes program execution

Executes the program up to the next line,
instruction, or specified instruction

Establishes or displays the default qualifiers
for the STEP command

Sets, displays, or cancels breakpoints

Sets, displays, or cancels tracepoints

Sets, displays, or cancels watchpoints

Sets or cancels exception breakpoints

Identifies the currently active routine calls

Gives additional information about the
currently active routine calls

Calls a routine

Examining and Manipulating Data

EXAMINE

DEPOSIT

EVALUATE

5-28 Using the VAX/VMS Debugger

Displays the value of a variable or the con
tents of a program location

Changes the value of a variable or the
contents of a program location

Evaluates a language or address expression

Table 5-1 (Cont.): Debugger Command Summary
Command Description

Controlling Type Selection and Symbolization

{

SET
SHOW
CANCEL

}

Establishes the radix for data entry and
RADIX display, displays the radix, or restores the

radix

{

SET
SHOW
CANCEL

} TYPE

SET MODE [NO]G_FLOAT

SET MODE [NO]LINE

SET MODE [NO]SYMBOLIC

SYMBOLIZE

Establishes the type to be associated with
untyped program locations, displays the type,
or restores the type

Controls whether double-precision floating
point constants are interpreted as G_fLOAT
or D_FLOAT

Controls whether code locations are displayed
in terms of line numbers or routine-name+
byte offset

Controls whether code locations are displayed
symbolically or in terms of numeric addresses

Converts a virtual address to a symbolic
address

Controlling Symbol Lookup

SHOW SYMBOL

{
SET } SHOW MODULE
CANCEL

{
SET }
~~~~EL IMAGE 

SET MODE [NO]DYNAMIC 

ALLOCATE 

{
SET } 
SHOW SCOPE 
CANCEL 

Displays symbols in your program 

Sets a module by loading its symbol records 
into the debugger's symbol table, identifies a 
set module, or cancels a set module 

Sets a shareable image by loading data 
structures into the debugger's symbol table, 
identifies a set image, or cancels a set image 

Controls whether or not modules are set 
automatically when the debugger interrupts 
execution 

Expands the debugger's memory pool to let 
you set more modules 

Establishes, displays, or restores the scope for 
symbol lookup 

Using the VAX/VMS Debugger 5-29 



Table 5-1 (Cont.): Debugger Command Summary 
Command 

TYPE 

EXAMINE/SOURCE 

{
SET } SHOW SOURCE 
CANCEL 

SEARCH 

{ SET } SEARCH 
SHOW 

Description 

Displaying Source Code 

Displays lines of source code 

Displays the source code at the location 
specified by the address expression 

Creates, displays, or cancels a source directory 
search list 

Searches the source code for the specified 
string 

Establishes or displays the default qualifiers 
for the SEARCH command 

{ 
SET } MAX_SOURCE_ 
SHOW FILES 

Establishes or displays the maximum number 
of source files that may be kept open at one 
time 

{ SET } MARGINS 
SHOW 

SET MODE [NO]SCREEN 

SET MODE [NO]SCROLL 

DISPLAY 

{ 

SET 
SHOW 
CANCEL 

{ 

SET 
SHOW 
CANCEL 

SELECT 

} DISPLAY 

} WINDOW 

SHOW SELECT 

SCROLL 

5-30 Using the VAX/VMS Debugger 

Establishes or displays the left and right 
margin settings for displaying source code 

Using Screen Mode 

Enables or disables screen mode 

Controls whether an output display is updated 
line by line or once per command 

Modifies an existing display 

Creates, identifies, or deletes a display 

Creates, identifies, or deletes a window 
definition 

Selects a display for a display attribute 

Identifies the displays selected for each of the 
display attributes 

Scrolls a display 



Table 5-1 (Cont.): Debugger Command Summary 
Command Description 

SAVE 

EXTRACT 

EXPAND 

MOVE 

{ SET } TERMINAL 
SHOW 

Using Screen Mode 

Saves the current contents of a display into 
another display 

Saves a display or the current screen state into 
a file 

Expands or contracts a display 

Moves a display across the screen 

Establishes or displays the height and width 
of the screen 

CTRL/W or DISPLAY /REFRESH Refreshes the screen 

EDIT 

{ SET } EDITOR 
SHOW 

DEFINE 

DELETE or UNDEFINE 

{ SET } DEFINE 
SHOW 

SHOW SYMBOL/DEFINED 

SET MODE [NO]KEYP AD 

Editing Source Code 

Invokes an editor during a debugging session 

Establishes or identifies the editor invoked by 
the EDIT command 

Defining Symbols 

Defines a symbol as an address, command, or 
value 

Deletes symbol definitions 

Establishes or displays the default qualifier for 
the DEFINE command 

Identifies symbols that have been defined 

Using Keypad Mode 

Enables or disables keypad mode 

DEFINE/KEY Creates key definitions 

DELETE/KEY or UNDEFINE/KEY Deletes key definitions 

{ SET } KEY 
SHOW 

Establishes the key definition state or displays 
key definitions 

Using the VAX/VMS Debugger 5-31 



Table 5-1 (Cont.): Debugger Command Summary 
Command Description 

Using Command Procedures and Log Files 

DECLARE 

{ SET } LOG 
SHOW 

SET OUTPUT [NO]LOG 

SET OUTPUT [NO]SCREEN _ 
LOG 

SET OUTPUT [NO]VERIFY 

SHOW OUTPUT 

{ SET } ATSIGN 
SHOW 

@file-spec 

Defines parameters to be passed to command 
procedures 

Specifies or identifies the debugger log file 

Controls whether a debugging session is 
logged 

Controls whether, in screen mode, the screen 
contents are logged as the screen is updated 

Controls whether debugger commands are 
displayed as a command procedure is executed 

Displays the current output options estab
lished by the SET OUTPUT command 

Establishes or displays the default file speci
fication that the debugger uses to search for 
command procedures 

Executes a command procedure 

Using Control Structures 

IF 

FOR 

REPEAT 

WHILE 

EXITLOOP 

Executes a list of commands conditionally 

Executes a list of commands repetitively 

Executes a list of commands repetitively 

Executes a list of commands conditionally 

Exits an enclosing WHILE, REPEAT, or FOR 
loop 

Miscellaneous Commands 

SET OUTPUT [NO]TERMINAL Controls whether debugger output is displayed 
or suppressed, except for diagnostic messages 

{ SET } LANGUAGE 
SHOW 

{
SET } EVENL 
SHOW FACILITY 

5-32 Using the VAX/VMS Debugger 

Establishes or displays the current language 

Establishes or identifies the current run-time 
facility for language-specific events 



Table 5-1 (Cont.): Debugger Command Summary 
Command Description 

SHOW EXIT_HANDLERS 

{ SET } TASK 
SHOW 

{ 

DISABLE } 
ENABLE AST 
SHOW 

Miscellaneous Commands 

Identifies the exit handlers declared in the 
program 

Modifies the tasking environment or displays 
task information 

Disables the delivery of ASTs in the program, 
enables the delivery of ASTs, or identifies 
whether delivery is enabled or disabled 

Using the VAX/VMS Debugger 5-33 





VAX BASIC PROGRAMMING CONCEPTS 





Chapter 6 

Getting Started with VAX BASIC 

A VAX BASIC program is a series of instructions for the VAX BASIC 
compiler. These instructions, no matter how varied, are all built using the 
same fundamental elements of VAX BASIC. This chapter describes the 
elements or building blocks of VAX BASIC. 

6.1 Line Numbers 

Traditionally, BASIC programs consisted of statements preceded by unique 
line numbers. However, VAX BASIC gives you the option of developing 
programs with traditional line numbers or programs with no line numbers 
at all. 

6.1.1 Programs with Line Numbers 

If you use line numbers in your programs, you must follow these rules: 

• A line number must be a unique integer between 1 and 32767 (If your 
program has duplicate line numbers, the last line with that number 
replaces the previous one). 

• A line number must begin in the first character position on the line. 
• A line number can contain leading zeros; however, embedded spaces, 

tabs, and commas are invalid in line numbers. 

• There must be a line number on the first line of the program 

• If a source file contains subprograms, then each subprogram must 
begin on a numbered line. 

Getting Started with VAX BASIC 6-1 



• The line number of a subprogram must be greater than that of any 
preceding subprogram line number. 

• Text following an END, END SUB, or END FUNCTION statement 
must begin on a numbered line. 

Note that in a multiple-unit program with line numbers, any comments 
following an END, END SUB, or END FUNCTION statement become a 
part of the previous subprogram during compilation unless they begin on 
a numbered line. This is not the case in multiple-unit programs without 
line numbers. 

Although line numbers are not required, you may want to use them on 
every line that can cause a run-time error, depending on the type of error 
handling you use. See Chapter 17 for more information about handling 
run-time errors. 

6.1.2 Programs Without Line Numbers 

If you do not use line numbers in your programs, you must follow these 
rules: 

• Use a text editor to enter and edit the program; you cannot enter 
programs without line numbers directly in the environment. 

• No line numbers are allowed anywhere in the program module. 
• The ERL function is not allowed. 

• Do not use the RESUME statement with a line number as a target. 

• REM statements are not allowed. 

• If a source file contains subprograms, any text following an END, END 
SUB, or END FUNCTION statement must begin on a new physical 
line. 

• Other files cannot be appended, because appended files must contain 
at least one line number. 

Note that in a multiple-unit program without line numbers, any comments 
following an END, END SUB, or END FUNCTION statement become a 
part of the next subprogram during compilation (unless there is no next 
subprogram). This is not the case in multiple-unit programs with line 
numbers. 

6-2 Getting Started with VAX BASIC 



Note that you can avoid all of these restrictions by placing a line number 
on the first line of your program; no additional line numbers are required. 
The line number on the first program line causes the VAX BASIC compiler 
to compile your program as a program with line numbers. 

When you enter a program with or without line numbers, you can begin 
your program statements in the first character position on a line. While 
these statements would be considered immediate mode statements if 
entered in the BASIC environment, they are valid in a program that is 
created with a text editor. 

For example, you can enter the following program directly into the 
environment: 

Example 

10 !This is a short program that you can enter 
!and run in the BASIC environment 

PRINT "This program will convert pound weight to kilograms" 
INPUT "How many pounds";A 
!Here is the conversion step 
B = A * 2.2 
PRINT "For ";A;" pounds, the kilogram weight is ";B 
END 

Output 

This program will convert pound weight to kilograms 
How many pounds? 10 
For 10 pounds, the kilogram weight is 22 

In order to develop the following program, you have to use a text editor, 
and you must observe the restrictions listed above. 

Getting Started with VAX BASIC 6-3 



6.1.3 Labels 

Example 

!This is a short program that does not contain any 
!VAX BASIC line numbers. 
!This program must be entered using a text editor; 
!it cannot be entered directly into the environment. 
! 
PRINT "This program converts kilogram weight to pounds" 
INPUT "How many kilograms";A 
!This is the conversion factor 
B = A I 2.2 
PRINT "For ";A;" kilograms, the pound weight is ";B 
END 

Output 

This program converts kilogram weight to pounds 
How many kilograms? 11 
For 11 kilograms, the pound weight is 6 

Note that you can use exclamation comment fields instead of REM state
ments to insert comments into programs without line numbers. An 
exclamation mark in column 1 in the environment causes the VAX BASIC 
compiler to ignore the rest of the line. You can also identify program 
statements in programs without line numbers by using labels. 

A label is a 1- to 31-character identifier that you use to identify a block 
of statements. All label names must begin with a letter; the remaining 
characters, if any, can be any combination of letters, digits, dollar signs 
( $ }, underscores ( _) or periods ( . ). 

Labels have two advantages over line numbers: 

• Meaningful label names provide documentation. 

• You can use labels in programs with or without line numbers. 

When you use a label to mark a program location, you must end the 
label with a colon ( : ). The colon is used to show that the label name is 
being defined instead of referenced. When you reference the label, do not 
include the colon. In the following example, the label names end with 
colons when they mark a location, but the colons are not present when 
the labels are referenced. 

6-4 Getting Started with VAX BASIC 



Example 

OPTION TYPE = EXPLICIT 
DECLARE INTEGER A 

! Require declarations 

Outer_decision: 

IF A <> B 
THEN 

Inner_decision: 
IF B = C 

THEN 
A = A + 1 
GOTO Outer_loop 

ELSE 
B = B + 1 
GOTO Inner_loop 

END IF 
END IF 

Labels have no effect on the order in which program lines are executed; 
they are used to identify a statement or block of statements. 

8.1.4 Continuation of long Program Statements 

If a program line is too long for one line of text, you can continue the 
program line by typing an ampersand ( & ) and pressing the RETURN key 
at the end of the line. Note that only spaces and tabs are valid between 
the ampersand and the carriage return. 

A single statement that spans several text lines requires an ampersand at 
the end of each continued line. For example: 

OPEN "SAMPLE.DAT" AS FILE 12i, t 
SEQUENTIAL VARIABLE, t 
RECORDSIZE soi 

In an IF ... THEN ... ELSE construction, statement separators are not neces
sary. If a continuation line begins with THEN or ELSE, then no statement 
separator is necessary. Similarly, in a line following a THEN or ELSE, 
there is no statement separator. 

Getting Started with VAX BASIC 6-5 



Example 

IF (A$ = 8$) 
THEN 

PRINT "The two values are equal" 
ELSE 

PRINT "The two values are different" 
END IF 

Several statements can be associated with a single program line. If there 
are several statements on one line, they must be separated by backslashes 
( \ ). For example: 

PRINT A \ PRINT V \ PRINT G 

Because all statements are on the same program line, any reference to this 
program line refers to all three statements. In the preceding example, VAX 
BASIC cannot execute just one of the statements without executing the 
other two. 

6.2 Identifying Program Units 

You can delimit a main program compilation unit with the PROGRAM 
and END PROGRAM statements. This allows you to identify a program 
with a name other than the file name. The program name must not 
duplicate the name of a SUB, FUNCTION, or PICTURE subprogram. 

PROGRAM Sort_out 

END PROGRAM 

If you include the PROGRAM statement in your program, the name you 
specify becomes the module name of the compiled source. This feature is 
useful when you use object libraries because the librarian stores modules 
by their module name rather than the file name. Similarly, module names 
are used by the VAX/VMS Debugger and the VAX/VMS Linker. 

For more information about PROGRAM units, see Chapter 14. 

6-6 Getting Started with VAX BASIC 



6.3 The VAX BASIC Character Set 

VAX BASIC uses the full ASCII character set, which includes the 
following: 

• The letters A through Z, both upper- and lowercase 
• The digits 0 through 9 

• Special characters 

See the VAX BASIC Reference Manual for a complete list of the ASCII 
character set and character values. 

The VAX BASIC compiler does not distinguish between upper- and 
lowercase letters, except letters inside quotation marks (called string 
literals) or letters in a DATA statement. The compiler also does not 
process characters in a REM statement or comment field. 

You can use nonprinting characters in your program, for example, in string 
literals and constants, but to do so you must do one of the following: 

• Use a predefined constant such as ESC or DEL 
• Use the CHR$ function to specify an ASCII value 

See Section 6.6 for more information on predefined constants. See 
Chapter 13 for more information on the CHR$ function. 

6.4 Program Documentation 

Documenting a program is the process of mixing text (comments) and code 
in a way that helps make the program more understandable. Program 
documentation does not affect the way a program executes. 

You can sprinkle comments liberally throughout a program; however, 
programs that are neatly structured need fewer comments. You can clarify 
your code by 

• Using meaningful variable names 
• Including sufficient white space 

• Indenting your program lines according to the structure of your code 

Getting Started with VAX BASIC 6-7 



In VAX BASIC, a comment field starts with an exclamation point ( ! ) 
and ends with a carriage return. The following example contains both 
comments and program statements. VAX BASIC ignores any text that 
follows an exclamation point. 

Example 

PROGRAM sample 
!+ 
! Require that all variables be declared 
!-
OPTION TYPE = EXPLICIT 
!+ 
! Set up error handler 
!-

WHEN ERROR USE Error_routine 
!+ 
! Declarations 
!-

END PROGRAM 

You can also mix comments and code on the same line. 

Example 

DECLARE 
INTEGER 
Print_page, 
Print_line, 
Print_column 

Current page number 
Current line number 
Current column number 

In this case, VAX BASIC ignores all text between the exclamation point 
and the carriage return, with one exception: VAX BASIC still recognizes 
the ampersand. This is a continuation character that specifies that a single 
statement is being continued on the next line. Only spaces and tabs are 
valid between the ampersand and the carriage return. 

NOTE 

You can also terminate a comment field with an exclamation 
point. However, because VAX BASIC treats any text that 
follows the second exclamation point as part of your program 
code, this practice is not recommended. 

6-8 Getting Started with VAX BASIC 



6.5 Declarations and Data Types 

VAX BASIC offers two different methods for creating variables and 
specifying their data types: 

• Implicit data typing 
• Explicit data typing 

With implicit data typing, VAX BASIC creates and specifies a data type for 
a variable the first time you reference it in your program. With explicit 
data typing, you must use one of four declarative statements to name and 
type your program values. 

VAX BASIC has five data types: 

• Integer (INTEGER) 
• Floating-point (REAL) 

• String (STRING) 

• Packed Decimal (DECIMAL) 

• Record File Address (RF A) 

Within the INTEGER and REAL data types there are further subdivisions: 
BYTE, WORD, or LONG for INTEGER and SINGLE, DOUBLE, GFLOAT, 
or HFLOAT for REAL. Choosing one of these subtypes lets you control two 
things: 

• The amount of storage required for the value; its "container size" 

• The range and precision that the value can accept 

For more information about data types, see Chapter 9. 

8.5.1 Implicit Data Typing 

With implicit data typing, VAX BASIC creates and specifies a data type for 
a variable the first time you reference it. You specify the data type of the 
variable by a suffix on the variable name: 

• A percent sign suffix (%)specifies the INTEGER data type. 

• A dollar sign suffix ($)specifies the STRING data type. 
• Any other ending character specifies a variable of the default data 

type. 

Getting Started with VAX BASIC 6-9 



The VAX BASIC default data type is SINGLE; however, you can specify 
your own default at DCL command level, inside the BASIC environment, 
or with the OPTION statement in your program. For more information 
on establishing default data types, see Chapters 3 and 4 and the OPTION 
statement in the VAX BASIC Reference Manual. 

The first time VAX BASIC references one of these variables, it creates 
a variable with that name and data type and allocates storage for that 
variable. 

In the following example, VAX BASIC creates two INTEGER variables, A% 
and B%. Even though the values assigned to these variables are REAL, 
VAX BASIC converts these values to INTEGER to match the data type 
specified for the variables. The sum of these two values is therefore 30, 
not 30.6 as it would be if the variables were named simply A and B. 

Example 

AY. = 10.1 
BY. = 20.5 
PRINT AY. + BY. 

Output 

30 

With explicit data typing, you use a declarative statement to name and 
specify a data type for your program values. 

8.5.2 Explicit Data Typing 

VAX BASIC has four declarative statements. These statements create 
variables and allocate storage. The statements are 

• DECLARE 

• DIMENSION 

• COMMON 

• MAP 

6-10 Getting Started with VAX BASIC 



The statement you choose depends on the way in which you will use the 
variables: 

• DECLARE and DIMENSION allocate dynamic storage for variables; 
storage is allocated when the program executes. 

• COMMON and MAP statements allocate storage for variables stati
cally; storage is allocated when the program is compiled. 

The difference between these types of storage is most apparent in the case 
of strings; string variables created with DECLARE can change their length 
during program execution, while those created with MAP and COMMON 
remain fixed in length. All four declarative statements associate a data 
type with a variable. For more information, see Chapter 9. 

6.6 Constants 

A constant is a value that does not change during program execution. 
Constants can be either literals or named constants, and can be of any 
data type except RFA. You can use the DECLARE CONSTANT statement 
to create named constants. Constants can be of the following types: 

• Integer 

• Floating-point 

• String 

In addition, VAX BASIC provides predefined constants that are useful for: 

• Formatting program output to improve clarity 

• Making source code easier to understand 

• Using nonprinting characters without having to look up their ASCII 
values 

Table 6-1 lists all of the VAX BASIC predefined constants. 

Getting Started with VAX BASIC 6-11 



Table 6-1: Predefined Constants 
Decimal 
ASCII 

Constant Value Purpose 

BEL (Bell) 7 Sounds the terminal bell 

BS (Backspace) 8 Moves cursor one position to the left 

HT (Horizontal Tab) 9 Moves cursor to the next horizontal tab stop 

LF (Line Feed) 10 Moves cursor to the next line 

VT (Vertical Tab) 11 Moves cursor to the next vertical tab stop 

FF (Form Feed) 12 Moves cursor to the start of the next page 

CR (Carriage Return) 13 Moves cursor to the beginning of the current 
line 

SO (Shift Out) 14 Shifts out for communications networking, 
screen formatting, and alternate graphics 

SI (Shift In) 15 Shifts in for communications networking, 
screen formatting, and alternate graphics 

ESC (Escape) 27 Marks the beginning of an escape sequence 

SP (Space) 32 Inserts one blank space in program output 

DEL (Delete) 127 Deletes the last character entered 

PI None Represents the number PI with the precision 
of the default floating-point data type 

These predefined constants simplify the task of using nonprinting charac
ters in your programs. For example, the following statement causes a bell 
to sound on your terminal: 

PRINT BEL 

The following statement prints and underlines a word on a hard copy 
terminal: 

PRINT "NAME:" +BS+ BS+ BS+ BS+ BS+ "-----" 

To print and underline the same word on a VTlOO series video display 
terminal, use the following statement. Note that the "m" in the following 
example must be lowercase: 

PRINT ESC + "[4mNAME:" + ESC + "[Om" 

6-12 Getting Started with VAX BASIC 



You can also create your own predefined constants with the DECLARE 
CONSTANT statement. The following statements define and print a 
constant that prints and underlines the string "NAME:": 

DECLARE STRING CONSTANT Underlined_word = ESC + "[4mNAME:" + ESC + "[Om" 
PRINT Underlined_word 

For more information on constants, see Chapter 9 and the VAX BASIC 
Reference Manual. 

6.7 Variables 

A variable is a unique storage location that is referred to by a variable 
name. The most important property of variables is that their values can 
change during program execution. Each named location can hold only one 
value at a time. 

A variable name can have up to 31 characters. The name must begin with 
a letter; the remaining characters, if any, can be any combination of letters, 
digits, dollar signs ( $ ), underscores ( _ ), and periods ( . ). 

Variables can be grouped in an orderly series under a single name. These 
groups are called arrays. You refer to a single variable in an array by using 
one or more subscripts that specify the variable's position in the array. 

&. 7. 1 Floating-Point Variables 

A floating-point variable is a named location that stores a single floating
point value. The storage space required to hold the value depends on 
the variable's REAL subtype. For example, each SINGLE floating-point 
variable requires 32 bits (4 bytes) of storage, while each DOUBLE floating
point variable requires 64 bits (8 bytes) of storage. 

Note that if any integer value is assigned to a floating-point variable, VAX 
BASIC converts the value to a floating-point number. 

Getting Started with VAX BASIC 6-13 



8. 7 .2 Integer Variables 

An integer variable is a named location that stores a whole number. 
The storage space required to hold the value depends on the variable's 
INTEGER subtype. For example, each BYTE integer variable requires 8 
bits (1 byte) of storage, while each LONG integer variable requires 32 bits 
(4 bytes) of storage. 

If you assign a floating-point value to an integer variable, VAX BASIC 
truncates the fractional portion of the value; it does not round to the 
nearest integer. In the following example, VAX BASIC assign the value -5 
to the integer variable, not -6. 

BX= -5.7 

8.7 .3 Packed Decimal Variables 

A packed decimal (DECIMAL data type) variable is made up of several 
storage locations, the number of which depends on the declared size of 
the variable. However, a packed decimal variable is still referred to by a 
single variable name. 

When you declare a packed decimal variable, you specify the total number 
of digits and the number of digits to the right of the decimal place that 
you want. 

The following statement creates a packed decimal variable named 
My_decimal, which can contain up to eight digits: six digits to the left of 
the decimal point, and two digits to the right of the decimal point. 

OPTION TYPE = EXPLICIT 

DECLARE DECIMAL (8,2) My_decimal 

Packed decimal numbers are most useful for dollars-and-cents calculations. 

8. 7 .4 String Variables 

Unlike some of the numeric variables described so far, a string variable 
does not correspond to a single location in memory because a string 
variable is more likely to exceed a single location in memory. Therefore, 
the value of a string variable may be contained in any number of memory 
locations. However, a string variable is still referred to by a single name: 

DECLARE STRING Employee_name 

6-14 Getting Started with VAX BASIC 



&. 7 .5 Subscripted Variables 

A subscripted variable is a floating-point, integer, packed decimal, RFA, or 
string variable that is part of an array. Chapter 8 describes arrays in detail. 

An array is a set of data organized in one or more dimensions. A one
dimensional array is called a list or vector. A two-dimensional array is 
called a matrix. VAX BASIC arrays can have up to 32 dimensions. 

When you create an array, its size is determined by the number of di
mensions and the maximum size, called the bound, of ea~h dimension. 
Subscripts begin by default with 0, not 1. That is, when calculating the 
number of elements in a dimension, you count from zero to the bound 
specified. 

The following DECLARE statement creates an 11 by 11 array of integers 
(11 by 11 rather than 10 by 10, because VAX BASIC arrays are zero-based 
by default). Therefore the array contains a total of 121 array elements. 

DECLARE INTEGER My_array (10, 10) 

There are many applications where you need to reference data for a 
particular range of values. In order to do this, VAX BASIC lets you specify 
a lower bound other than zero for your arrays. The following example 
declares an array containing the birth rates for the years between 1945 
and 1985: 

OPTION TYPE = EXPLICIT, t 
SIZE = REAL SINGLE 

DECLARE REAL Birth_rates(1946 TO 1986) 

Subscripts define the position of an element in an array; the expression 
Birth_rates(l 970) refers to the 26th value (represented by 1970) of the 
array Birth_rates. For more information on arrays, see Chapter 8. 

NOTE 

By default, the compiler signals an error if a subscript is larger 
than the allowable range. Also, the amount of storage that the 
system can allocate depends on available memory. Therefore, 
very large arrays may cause an internal allocation error. 

VAX BASIC sets variables to zero or null values at the start of program 
execution; that is, it initializes them. Variables initialized by VAX BASIC 
include the following. 

Getting Started with VAX BASIC 6-15 



• Numeric variables and array elements (except those in MAP or 
COMMON statements). 

• String variables and array elements (except those in MAP or 
COMMON statements). 

• Variables in subprograms. Subprogram variables (except those in 
MAP or COMMON statements) are initialized to zero or the null 
string each time the subprogram is called. 

• Arrays created with an executable DIMENSION statement. VAX 
BASIC reinitializes the array each time the array is redimensioned. 

6.8 Keywords and Reserved Words 

Keywords are elements of the VAX BASIC language. Keywords that are 
not reserved can be used as user identifiers such as labels, variable or 
constant names, or names of MAP or COMMON areas. Depending upon 
the location of the keyword in your program statement, the compiler will 
treat it as either a keyword or a user identifier. Your VAX BASIC programs 
use keywords and reserved words to 

• Define data 
• Perform operations 

• Invoke functions 

See the VAX BASIC Reference Manual for a list of VAX BASIC keywords 
and reserved words. 

Keywords determine whether the statement is executable or nonex
ecutable. Executable statements such as PRINT, GOTO, and READ 
perform operations. Nonexecutable statements such as DATA, DECLARE, 
and REM, describe the characteristics and arrangement of data, usage 
information, and comments. 

Every statement except LET and empty statements (lines that start with an 
exclamation point) must begin with a keyword. A VAX BASIC keyword 
cannot have embedded spaces or be split across lines of text. There 
must be a space or tab between the keyword and any other variables or 
operators. 

There are also phrases of keywords. In this case, the spacing requirements 
vary. 

6-16 Getting Started with VAX BASIC 



6.9 Operands, Operators and Expressions 

An operand is anything that contains a value. An operand can be a 
scalar, a subscripted variable, a named constant, a literal, and so on. An 
operator specifies a procedure to be carried out one or more operands. An 
expression consists of operands separated by operators. 

VAX BASIC has four types of operators: 

• Arithmetic 

• String 

• Relational 

• Logical 

When combined with operands, these operators can produce 

• Numeric expressions 

• String expressions 

• Conditional expressions 

For more information about operands, operators, and expressions, see the 
VAX BASIC Reference Manual. 

6.10 Assignment Statements 

VAX BASIC has four statements that assign values to variables: 

• LET 
• INPUT 

• LINPUT 

• INPUT LINE 

LET and INPUT statements allow you to assign values to any type of 
variable, while LINPUT and INPUT LINE allow you to assign values to 
string variables. For example: 

LET A = 1.25 

Getting Started with VAX BASIC 6-17 



LET is an optional keyword. You can assign a value to more than one 
variable at a time, although this is not recommended. Instead, you should 
use a separate assignment statement each time you assign a value to a 
variable. 

Whenever you assign a value to a numeric variable, VAX BASIC converts 
the value to the data type of the variable. If you assign a floating-point 
value to an integer variable, VAX BASIC truncates the value at the decimal 
point. If you assign an integer value to a floating-point variable, VAX 
BASIC converts the value to floating-point format. 

You can also assign values to variables with the DATA and READ state
ments; however, this method requires that you know all input data values 
while you are coding your program. 

The INPUT, LINPUT, and INPUT LINE statements all assign values in 
the context of data being read into the program. These statements are 
discussed in Chapter 7. 

6-18 Getting Started with VAX BASIC 



Chapter 1 

Simple Input and Output 

This chapter explains how to use the VAX BASIC statements that move 
data to and from your program. 

7 .1 Program Input 

VAX BASIC programs receive data in three ways: 

• You can enter data interactively while the program runs. You do this 
with the INPUT, INPUT LINE, and LINPUT statements. 

• If you know all the information your program will require, you can 
enter it as you write the program. You do this with the READ, DATA, 
and RESTORE statements, or you can name constants with the known 
values. 

• You can read data from files outside the program. You do this with 
the INPUT#, INPUT LINE#, and LINPUT #statements. 

The following sections describe how to use these statements in detail. 

7 .1.1 Providing Input Interactively 

The INPUT, INPUT LINE, and LINPUT statements prompt a user for data 
while the program runs. 

Simple Input and Output 7-1 



7. 1. 1.1 The INPUT Statement 

The INPUT statement interactively prompts the user for data. You can 
use the optional prompt string to clarify the input request by specifying 
the type and number of data elements required by the program. This is 
especially useful when the program contains many variables, or when 
someone else is running your program. 

Example 

INPUT PLEASE TYPE 3 INTEGERS" ;BY. ,CY. ,DY. 
AY. = BY. + CY. + DY. 
PRINT "THEIR SUM IS"; AY. 
END 

Output 

PLEASE TYPE 3 INTEGERS? 26,60,76IRETI 
THEIR SUM IS 160 

When your program runs, VAX BASIC stops at each INPUT, LINPUT, 
or INPUT LINE statement, prints a string prompt, if specified, and an 
optional question mark ( ? ) followed by a space; it then waits for your 
input. By using either a comma or semicolon, you can affect the format of 
your string prompt. 

• If you have a semicolon separating the input prompt string from the 
variable, VAX BASIC prints the question mark and space immediately 
after the input prompt string. 

• If you have a comma separating the input prompt string from the 
variable, VAX BASIC prints the input prompt string, skips to the next 
print zone, and then prints the question mark and space. 

See Section 7.2.1 for more information about print zones. For more 
information on formatting string prompts, see Section 7.1.1.3. 

You must provide one value for each variable in the INPUT request. If 
you do not provide enough values, VAX BASIC prompts you again. 

7-2 Simple Input and Output 



Example 

INPUT A,B 
END 

Output 

? 51RETI 
? 6 RET 

VAX BASIC interprets a carriage return (null input) as a zero value for 
numeric variables and as a null string for string variables. For example: 

? j!REjl 
? RET 

These responses assign the value 5 to variable A and zero to variable B. In 
contrast, if you provide more values than there are variables, VAX BASIC 
ignores the excess. 

In the following example, VAX BASIC ignores the extra value (8). Note 
that you can type multiple values if you separate them with commas. 
Because commas separate variables in the PRINT statement, VAX BASIC 
prints each variable at the start of a print zone. 

Example 

INPUT A,B,C 
PRINT A,B,C 
END 

Output 

? 5,6,7,SIRETI 

5 6 7 

If you name a numeric variable in an INPUT statement, you must supply 
numeric data. If you supply string data to a numeric variable, VAX BASIC 
signals "Illegal number" (ERR=52). If you supply a floating-point number 
for an integer variable, VAX BASIC signals "Data format error" (ERR=SO). 

If you name a string variable in an INPUT statement, you can supply 
either numbers or letters, but VAX BASIC treats the data you supply as 
a string. Because digits and a decimal point are valid text characters, 
numbers can be interpreted as strings. 

Simple Input and Output 7-3 



Example 

INPUT "Please type a number"; A$ 
PRINT A$ 

Output 

Please type a number? 25.5 
25.5 

VAX BASIC interprets the response as a four-character string instead of as 
a numeric value. 

You can type strings with or without quotation marks. However, if you 
want to input a string containing a comma, you should enclose the string 
in quotation marks or use the INPUT LINE or LINPUT statement. If you 
do not, VAX BASIC treats the comma as a delimiter and assigns only part 
of the string to the variable. If you use quotation marks, be sure to type 
both beginning and ending marks. If you leave out the end quotation 
mark, VAX BASIC signals "Data format error" (ERR=SO). 

7 .1.1.2 The INPUT LINE and LINPUT Statements 

The INPUT LINE and LINPUT statements prompt you for string data 
while your program runs. You can respond with strings that contain 
commas, semicolons, and quotation marks, which are characters that the 
INPUT statement interprets as delimiters. 

The INPUT LINE statement accepts and stores all characters, including 
quotation marks, semicolons, and commas, up to and including the line 
terminator or terminators. LINPUT accepts all characters up to, but not 
including, the line terminator or terminators. 

In the following example, because both INPUT LINE and LINPUT treat 
your input as a string literal, VAX BASIC interprets quotation marks, 
commas, and semicolons as characters, not as string delimiters. When 
A$ is input with the INPUT LINE statement, the carriage return line 
terminator is stored as part of the string. The first PRINT statement tells 
VAX BASIC to print all three variables on one line, starting each one in 
a new print zone. However, when VAX BASIC prints the three strings, it 
prints the carriage return character at the end of string A$; this terminates 
the current line and causes 8$ to begin on a new line. 

7-4 Simple Input and Output 



Example 

INPUT LINE A$ 
LINPUT B$ 
LINPUT C$ 
PRINT A$, B$, C$ 
PRINT "DONE" 
END 

Output 

? SINGLE, DOUBLEIRETI 
? "GFLOAT"lRETI 
? HFLOAT; REAL Data TypeslRETI 

SINGLE, DOUBLE 
"GFLOAT" HFLOAT; REAL Data Types 
DONE 

The INPUT, INPUT LINE, and LINPUT statements can accept data from a 
terminal or a terminal-format file. See Section 7.3 for information on I/O 
to terminal-format files. 

7. 1. 1.3 Enabling and Disabling the Question Mark Prompt 

With the SET PROMPT statement, VAX BASIC allows you to enable and 
disable the question mark prompt. 

By default, VAX BASIC displays the question mark prompt. For instance, 
the following example displays the default prompt string: 

Example 

INPUT "Please input 3 integer values";AY., BY., CY. 

Output 

Please input 3 integer values? 

You can, however, disable the question mark prompt by specifying the 
SET NO PROMPT statement. 

Simple Input and Output 7-5 



Example 

SET NO PROMPT 
INPUT "Please input 3 integer values";AY., BY., CY. 

Output 

Please input 3 integer values 

When you disable the question mark prompt, you can specify your own 
prompt at the end of each prompt string. The following example inserts a 
colon at the end of the prompt string. 

Example 

SET NO PROMPT 
INPUT "Please enter your name: ";Employee_name$ 

Output 
Please enter your name: 

Now, if the SET PROMPT statement is specified, VAX BASIC displays 
both the colon and a question mark: 

Example 

SET PROMPT 
INPUT "Please enter your name: ";Employee_name$ 

Output 
Please enter your name: ? 

The SET [NO) PROMPT statement is valid for INPUT, LINPUT, INPUT 
LINE, and MAT INPUT statements. If the prompt is disabled, any one of 
the following commands re-enables it: 

• The SET PROMPT statement 

• The CHAIN statement 

• The NEW, OLD, RUN, or SCRATCH compiler command 

7-6 Simple Input and Output 



7 .1.2 Providing Input from the Source Program 

The following sections describe the READ, DATA, and RESTORE state
ments. To use READ and DATA statements, you must know what data 
is required when writing the program. These statements do not stop to 
request data while the program runs. Therefore, your program runs faster 
than with the INPUT statements. 

The RESTORE statement lets you use the same data items more than 
once. 

7. 1.2.1 The READ and DAT A Statements 

The READ statement reads values from a data block. A data pointer keeps 
track of the data read. Each time the READ statement requests data, VAX 
BASIC retrieves the next available constant from a DATA statement. The 
DATA statement contains the values that the READ statement reads. In 
a DATA statement, integer constants are whole numbers; they cannot be 
followed by a percent sign. In the following example, VAX BASIC signals 
an error because the integer constants in the DATA statement contain 
percent signs. 

Example 

10 WHEN ERROR USE catch_it 
DATA 1%. 2Y., 3Y. 

20 READ AY., BY., CY. 
END WHEN 

400 HANDLER catch_it 
PRINT "ERROR NUMBER IS "; ERR 
PRINT "ERROR AT LINE "; ERL 
PRINT "ERROR MESSAGE IS "; ERT$(ERR) 

END HANDLER 
500 END 

Output 

ERROR NUMBER IS 50 
ERROR AT LINE 20 
ERROR MESSAGE IS Y.Data format error 

A READ statement is not valid without at least one DATA statement. If 
your program contains a READ statement but no DATA statement, VAX 
BASIC signals the compile-time error "READ without DATA11

• 

READ statements can appear either before or after their corresponding 
DATA statements. The only restriction is that the DATA statements must 
be in the same order as their corresponding READ statements. 

Simple Input and Output 7-7 



You can have more than one DATA statement in a program. DATA 
statements are ignored without at least one READ statement. You can use 
an ampersand to continue a DATA statement. For example: 

10 DATA "ABRAMS", BAKER, CHRISTENSON, & 
DOBSON, "EISENSTADT", FOLEY 

Note that comment fields are not allowed in DATA statements. For 
example, the following statements cause A$ to contain the string 
II ABC!COMMENT". 

READ A$ 
DATA ABC !COMMENT 

When you compile a program, VAX BASIC creates one data block for 
each program unit. Each data block is local to the program or subprogram 
containing it; this means that you cannot share DATA statements between 
program modules. 

The data block contains the values in all DATA statements in that program 
unit. These values are stored in line number order. Each time VAX BASIC 
executes a READ statement, it retrieves the next value in the data block. 

VAX BASIC signals an error if you do one of the following: 

• Assign alphabetic characters to a numeric variable. VAX BASIC signals 
"Data format error" (ERR=SO). 

• Have more variables in the READ statements than there are values in 
the DATA statements. VAX BASIC signals "Out of data" (ERR=57). 

VAX BASIC ignores excess data in DATA statements. 

The following example of READ and DATA mixes string and floating
point data types. The first READ statement reads the first data item in 
the program: "The diameter is". The second READ statement reads the 
second data item: 40.5. 

7-8 Simple Input and Output 



Example 

DATA "The diameter is" 
DATA 40.6 
READ text$ 
READ radius 
DIAMETER = PI * radius * 2 
PRINT text$; DIAMETER 
END 

Output 

The diameter is 264.469 

7 .1.2.2 The RESTORE Statement 

The RESTORE statement lets you read the same data more than once. It 
has no effect without READ and DATA statements. 

RESTORE resets the data pointer to tl\e beginning of the first DATA 
statement in the program unit. You can then read data values again. 
Consider the following program. 

Example 

10 READ B,C,D 
20 RESTORE 
30 READ E,F,G 
40 DATA 6,3,4,7,9,2 
60 END 

The READ statement in line 10 reads the first three values in the DATA 
statement: 

B=6 
C=3 
D=4 

The RESTORE statement resets the pointer to the beginning of line 40. 
During the second READ statement (line 30), the first three values are 
read again: 

E=6 
F=3 
G=4 

Simple Input and Output 7-9 



Without the RESTORE statement, line 30 would assign the following 
values: 

E=7 
F=9 
G=2 

7 .2 Program Output 

The PRINT statement displays data on your terminal during program 
execution. VAX BASIC evaluates expressions before displaying results. 
Note that you can also print and format data with the PRINT USING 
statement. For information about the PRINT USING statement, see 
Chapter 16. 

When you use the PRINT statement, VAX BASIC does the following: 

• Precedes positive numbers with a space and negative numbers with a 
minus sign 

• Prints a space after every number 

• Prints strings without leading or trailing spaces 

When an element in a list is not a simple variable or constant, VAX BASIC 
evaluates the expression before printing the value. 

Example 

A = 45 
B = 55 
PRINT A + B 
END 

Output 

100 

However, VAX BASIC interprets text inside quotation marks as a string 
literal. 

7-10 Simple Input and Output 



Example 

A = 46 
B = 66 
PRINT "A + B" 
END 

Output 

A + B 

The PRINT statement without an expression prints a blank line. 

Example 

PRINT "This example leaves a blank line" 
PRINT 
PRINT "between two lines." 
END 

Output 

This example leaves a blank line 

between two lines. 

7 .2.1 Print Zones-the Comma and the Semicolon 

A terminal line contains zones that are 14 character positions wide. The 
number of zones in a line depends on the width of your terminal: a 72-
character line contains 5 zones, which start in columns l, 15, 29, 43, and 
57. A 132-character line has additional print zones starting at columns 71, 
85, 99, and 113. 

The PRINT statement formats program output into these zones in different 
ways, depending on the character that separates the elements to be 
printed. If a comma precedes the PRINT item, VAX BASIC prints the item 
at the beginning of the next print zone. If the last print zone on a line is 
filled, VAX BASIC continues output at the first print zone on the next line. 

Simple Input and Output 7-11 



Example 

INPUT A ,B ,C ,D ,E ,F 
PRINT A ,B ,C ,D ,E ,F 
END 

Output 

? 6,10,16,20,25,30IRETI 
6 10 
30 

16 20 26 

VAX BASIC skips one print zone for each extra comma between list 
elements. For example, the following program prints the value of A in the 
first zone and the value of B in the third zone. 

Example 

A = 5 
B = 10 
PRINT "first zone",,"third zone" 
PRINT A, ,B 
END 

Output 

first zone 
6 

third zone 
10 

If you separate print elements with a semicolon, VAX BASIC does not 
move to the next print zone. In the following example, the first PRINT 
statement prints two numbers. (Printed numbers are preceded by a space 
or a minus sign and followed by one space.) The second PRINT statement 
prints two strings. 

Example 

PRINT 10; 20 
PRINT "ABC"; "XYZ" 
END 

Output 

10 20 
ABCXYZ 

Whether you use a comma or a semicolon at the end of the PRINT 
statement, the cursor remains at its current position until VAX BASIC 
encounters another PRINT or INPUT statement. In the following example, 
VAX BASIC prints the current values of X, Y, and Z on one line because a 
comma follows the last item in the line PRINT X, Y. 

7-12 Simple Input and Output 



Example 

INPUT X,Y,Z 
PRINT X,Y, 
PRINT Z 
END 

Output 

? 5, 10, 15 IRETI 
5 10 15 

The following example shows PRINT statements using a comma, a 
semicolon, and no formatting character after the last print item. 

Example 

!No comma after IY.. so each element 
!Prints on its own line 

PRINT IY. FOR IY. = 11. TO 101. 
PRINT 

!A comma follows JY., so each 
!element prints in a separate zone 
! 
PRINT JY., FOR JY. = 11. TO 10Y. 
PRINT 

! 
!A semicolon follows KY., so print 
!elements are packed together 
! 
PRINT KY.; FOR KY. = 11. TO 101. 
END 

Output 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
6 

2 
7 

3 
8 

1 2 3 4 6 6 7 8 9 10 

4 
9 

6 
10 

Simple Input and Output 7-13 



Commas and semicolons also let you control the placement of string 
output: 

Example 

PRINT ":first zone",,"third zone",,":fi:fth zone" 
END 

Output 

:first zone third zone fi:f th zone 

The extra comma between strings causes VAX BASIC to skip another print 
zone. In the following example, the first string is longer than the print 
zone. When the two strings are printed, the second string begins in the 
third print zone because that is the next available print zone after the first 
string is printed. 

Example 

PRINT "abcde:fghijklmnopqrstuvwxyz".":foo" 
PRINT ":first zone","second zone","third zone" 

Output 

abcde:fghijklmnopqrstuvwxyz :foo 
:first zone second zone third zone 

7 .2.2 Output Format for Numbers and Strings 

VAX BASIC prints strings exactly as you type them, with no leading or 
trailing spaces. It does not print quotation marks unless they are delimited 
by another matching pair. 

Example 

PRINT 'PRINTING "QUOTATION" MARKS' 
END 

Output 

PRINTING "QUOTATION" MARKS 

VAX BASIC follows these rules for printing numbers: 

• When you print numeric fields, VAX BASIC precedes each number 
with a space or a minus sign and follows it with a space. 

7 -14 Simple Input and Output 



• VAX BASIC does not print trailing zeros to the right of the decimal 
point. If all digits to the right of the decimal point are zeros, VAX 
BASIC omits the decimal point as well. 

• When you print LONG integers, VAX BASIC prints up to 10 significant 
digits. 

• When you print DECIMAL values, VAX BASIC prints up to 31 digits. 

VAX BASIC follows these rules for printing floating-point numbers: 

• If a floating-point number can be represented exactly by six decimal 
digits (or fewer) and, optionally, a decimal point, VAX BASIC prints it 
that way. 

• When you print a floating-point number whose integer portion is six 
decimal digits or less (for example, 1234.567), VAX BASIC rounds the 
number to six digits (1234.57). If the integer portion of the number is 
seven decimal digits or larger, VAX BASIC rounds the number to six 
digits and prints it in E format. See the VAX BASIC Reference Manual 
for more information about E format. 

• When you print a floating-point number with magnitude between 0.1 
and l, VAX BASIC rounds it to six digits. When you print a floating
point number with more than six digits, and with magnitude smaller 
than 0.1, VAX BASIC rounds it to six digits and prints it in E format. 

The PRINT statement displays only up to six digits of precision for 
floating-point numbers. This corresponds to the precision of the SINGLE 
data type. To display the extra digits in DOUBLE, GFLOAT and HFLOAT 
numbers, you must use the PRINT USING statement. See Chapter 16 for 
more information on PRINT USING. 

The following example shows how VAX BASIC prints various numbers 
with single precision: 

Example 

FOR I = 1 TO 20 
PRINT 2·(-I),I,2·1 

NEXT I 
END 

Output 

.6 1 

.26 2 

.126 3 

.0625 4 

.03125 5 

2 
4 
8 
16 
32 

Simple Input and Output 7-15 



7.3 

.015625 6 64 

.78125E-02 7 128 

.390625E-02 8 266 

.195313E-02 9 512 

.976563E-03 10 1024 

.488281E-03 11 2048 

.244141E-03 12 4096 

.12207E-03 13 8192 

.610352E-04 14 16384 

.305176E-04 15 32768 

.152688E-04 16 66536 

.767939E-05 17 131072 

.38147E-05 18 262144 

.190735E-05 19 524288 

.953674E-06 20 .104858E+07 

Terminal-Format Files 

Terminal-format files let you perform simple 1/0 to disk files. The records 
in a terminal-format file must be accessed sequentially. That is, you must 
access the records in the file one by one, from the first to the last. You can 
add new records only at the end of the file. 

Just as the INPUT, LINPUT, and INPUT LINE statements receive in
formation from a terminal, the INPUT#, LINPUT #,and INPUT LINE 
# statements receive information from a terminal-format file. And, as 
the PRINT statement sends information to the terminal, the PRINT# 
statement sends information to a terminal-format file. 

Terminal-format files are very useful for creating files to be printed on a 
line printer, or for supplying a program with moderate amounts of input. 
However, if you want to use the same file for both input and output, you 
should not use terminal-format files. Instead, use sequential, relative, or 
indexed files. For more information, see Chapter 15. 

Note that you do not have to use a program to create a terminal-format 
file. You can use a text editor to create a file and insert data, then use a 
VAX BASIC program to open the file and retrieve the data. 

7-16 Simple Input and Output 



7.3.1 Opening and Closing a Terminal-Format File 

You use the OPEN statement to create a file, or to gain access to an 
existing file. If you do not specify either FOR INPUT or FOR OUTPUT in 
the OPEN statement, VAX BASIC tries to open an existing file. If the file 
does not exist, VAX BASIC creates a new one. 

The channel specification lets you associate a number with the file for as 
long as the file is open. All 1/0 operations to or from the file use this 
number. 

When you are finished accessing a file, you close it with the CLOSE 
statement. 

7 .3.2 Writing Records to a Terminal-Format File 

The following example receives information from a terminal, then writes 
the information to a terminal-format file as a report: 

Example 

PRINT "This program creates a daily sales report tile named SALES.DAT" 
OPEN "SALES.DAT" FOR OUTPUT AS FILE #41. 
PRINT #4Y., "Salesperson","Sales Area","Items Sold" 
PRINT #41. 
INPUT "How many salespersons tor today's report"; salee_personsY. 
FOR IY. = 11. TO sales_pereoneY. 

INPUT "Salesperson's name"; e_name$ 
INPUT "Salee area"; area$ 
INPUT "Number ot items sold"; items_soldY. 
PRINT #41., s_name$, area$, items_soldY. 

NEXT lY. 
CLOSE HY. 
END 

Output 

This program creates a daily sales report tile named SALES.DAT 
How many salespersons tor today's report? 3 
Salesperson's name? JONES 
Sales area? NJ 
Items sold? 6 

Simple Input and Output 7-17 



Salesperson's name? SMITH 
Sales area? NH 
Items sold? 6 
Salesperson's name? BAINES 
Sales area? VT 
Items sold? 8 

This program first prints a header explaining its purpose, then opens a 
terminal-format file on channel 4. After this file is opened, the two PRINT 
# statements place an explanatory header followed by a blank line into 
the file. 

The program then prompts you for the number of salespersons for which 
data is to be entered. The FOR ... NEXT loop prompts for the name, sales 
area, and items sold for each salesperson. Note that the FOR ... NEXT loop 
executes only as many times as there are salespersons. See Chapter 11 for 
more information about FOR ... NEXT loops. 

After the data has been entered for each salesperson, the program writes 
this information to the terminal-format file. Because the response to the 
first question was 3, the FOR ... NEXT loop executes three times. 

After the last item has been printed to the file, the program closes the file 
and ends. When you display the file with the DCL command TYPE, you 
see that the information is printed under the proper headers. You can also 
print the file on a line printer. Note that the PRINT # statement formats 
the output in print zones as the PRINT statement does. 

Example 

$TYPE SALES.DAT 

Salesman 

JONES 
SMITH 
BAINES 

7-18 Simple Input and Output 

Sales Area 

NJ 
NH 
VT 

Items Sold 

6 
6 
8 



Chapter 8 

Arrays 

An array is a set of data that is ordered in any number of dimensions. 
This chapter describes how to create and use VAX BASIC arrays. 

8.1 Introduction 

A one-dimensional array is called a list or vector. A two-dimensional array 
is called a matrix. VAX BASIC arrays can have up to 32 dimensions, and 
a specific type of VAX BASIC arrays can be redimensioned at run time. In 
addition, you can specify the data type of the values in an array by using 
data type keywords or suffixes. 

The subscript of an element in an array defines that element's position in 
the array. When you create an array, you specify: 

• The number of dimensions that the array contains 

• The range of values for the subscripts in each dimension of the array 

VAX BASIC arrays are zero-based by default; that is, when calculating the 
number of elements in a dimension, you count from zero to the number of 
elements specified. For example, an array with an upper bound of 10 and 
no specified lower bound, has 11 elements: 0 through 10, inclusive. The 
array My_array(3,3) has 16 elements: 0 through 3 in each dimension, or 
42. 

Arrays 8-1 



8-2 Arrays 

VAX BASIC also lets you specify a lower bound for any or all dimensions 
in an array unless the array is a virtual array. By specifying lower and 
upper bounds for arrays, you can make your array subscripts meaningful. 
For example, the following array contains sales information for the years 
1980 to 1985: 

DECLARE REAL Sales_data(1980 TO 1986) 

To refer to an element in the array Sales_data, you need only specify the 
year you are interested in. For example, to print the information for the 
year 1982, you would type: 

PRINT Sales_data(1982) 

You can create arrays either implicitly or explicitly. You implicitly create 
arrays having any number of dimensions by referencing an element of the 
array. If you implicitly create an array, VAX BASIC sets the upper bound 
to 10 and the lower bound to zero. Therefore, any array that you create 
implicitly contains 11 elements in each dimension. 

The following example refers to the array Student _grades. If the array has 
not been previously declared, VAX BASIC will create a one-dimensional 
array with that name. The array will contain 11 elements. 

Student_grades(S) = "B" 

You create arrays explicitly by declaring them in a DIM, DECLARE, 
COMMON, or MAP statement, or record declaration. Note that if you 
want to specify lower bounds for your array subscripts, you must declare 
the array explicitly. 

When you declare an array explicitly, the value that you give for the upper 
bound determines the maximum subscript value in that dimension. If you 
specify a lower bound, then that is the minimum subscript value in that 
dimension. If you do not specify a lower bound, VAX BASIC sets the 
lower bound in that dimension to zero. You can specify bounds as either 
positive or negative values. However, the lower bound of each dimension 
must always be less than or equal to the upper bound for that dimension. 

You can use MAT statements to create and manipulate arrays. However, 
MAT statements are valid only on arrays of one or two dimensions. In 
addition, the lower bounds of all dimensions in an array referenced in a 
MAT statement must be zero. 



8.2 Creating Arrays Explicitly 

You can create arrays explicitly with four VAX BASIC statements: 
DECLARE, DIMENSION, COMMON, and MAP. 

In addition, you can declare arrays as components of a record data type. 
See Chapter 10 for more information on records. 

Normally, you use the DECLARE statement to create arrays. However, in 
certain cases, you may want to create the array with another VAX BASIC 
statement: 

• You use the DIM statement to create virtual arrays and arrays that can 
be redimensioned at run time. 

• You use the COMMON statement to create arrays that can l;>e shared 
among program modules or to create arrays of fixed-length strings. 

• You use the MAP statement to create an array and associate it with a 
record buffer, or to overlay the storage for an array, thus accessing the 
same storage in different ways. 

When you create an array, the bounds you specify determine the ar
ray's size. The maximum value allowed for a bound can be as large as 
2147483467; however, this number is actually limited by the amount of 
virtual storage available to you. Very large arrays and arrays with many 
dimensions can cause fatal errors at both compile time and run time. 

The following restrictions apply to arrays: 

• When referencing an array, you must use the same number of sub
scripts as was specified in the DIM statement. 

• You can use identical names for a simple variable and an array; for 
example, A% and A%(5,5). However, this is not a recommended 
programming practice. If you use identical names for arrays with a 
different number of subscripts, for example, A(S), and A(l0,10), VAX 
BASIC prints the error "Inconsistent subscript usage" at compile time. 

• If subscript checking is enabled, VAX BASIC signals the error 
"Subscript out of range" (ERR=SS) if you reference an array element 
whose subscripts are one of the following: 

Greater than the current upper bound of the array 

Less than the current lower bound of the array 

Less than zero where no lower bound was specified 

Arrays 8-3 



8.2.1 Creating Arrays with the DECLARE Statement 

The DECLARE statement creates and names variables and arrays. All 
elements of arrays created with the DECLARE statement are initialized to 
zero or the null string. The following statement creates a longword integer 
array with 11 elements. 

DECLARE LONG FIRST_.ARRAY(1970 TO 1980) 

Note that the STRING data type with the DECLARE statement causes the 
creation of an array of dynamic strings. To create an array of fixed-length 
strings, declare the array in a COMMON or MAP statement or as part of a 
RECORD structure. 

8.2.2 Creating Arrays with the DIM Statement 

8-4 Arrays 

The DIM statement creates and names one or more arrays. You should 
use the DIM statement to create an array only when you want to 

• Redimension the array at run time 

• Create a virtual array 

When creating arrays with DIM, you specify the data type of the array 
elements with a data type keyword, a special suffix on the array name, 
or both. The array name can be any valid variable name. If you do not 
supply a data type keyword, the data type is determined by the suffix of 
the array name: 

• If the array name ends in a dollar sign, the array stores string data. 

• If the array name ends in a percent sign, the array stores integer data. 

• If the array name does not end in either a percent sign or a dollar 
sign, the array stores data of the default type. The default type is 
single-precision floating-point unless you change the default. See 
Chapter 6 for more information on default data types. 

Even if the DIM statement contains a data type keyword, the array name 
can still end in the appropriate data type suffix. This makes the data type 
of the array immediately obvious. 

The DIM statement can be either executable or declarative. If the specified 
bounds are constants, the DIM statement is declarative. This means that 
the storage is allocated at compile time, and the array cannot appear in 
any other DIM statement. 



However, if any of the specified bounds are variables (simple or sub
scripted), the DIM statement is executable. This means that the storage 
for the array is allocated at run time, and the array can be redimensioned 
with a DIM statement any number of times. 

NOTE 

In the DIM statement, bounds can be either constants or 
variables (simple or subscripted), but not expressions. 

When an array is redimensioned with the executable DIM statement, the 
array can become larger or smaller than it was. However, redimensioning 
an array in this way causes it to be reinitialized, and all data in the array 
is lost. 

In contrast, MAT statements let you redimension an array to be the same 
size or smaller than it was. However, MAT statements redimension arrays 
only when assigning values or performing matrix 1/0; therefore, the fact 
that MAT reinitializes the array does not matter. See Section 8.6 for more 
information on MAT statements. 

8.2.2.1 Declarative DIM Statements 

Declarative DIM statements are those with integer constants as bounds. 
The percent sign is optional for bounds; however, VAX BASIC signals 
the error "Integer constant required" if a constant bound contains a 
decimal point. The following statement creates a 101-element virtual 
array containing string data. The elements of this array can each have a 
maximum length of 256 characters. 

DIM 111.. STRING VIRT_ARRAY(100) = 2561. 

The following restrictions apply to the use of declarative DIM statements: 

• A declarative DIM statement must lexically precede any reference to 
the array it dimensions. 

• The lower bounds of all virtual array dimensions must be zero. 

• You must open a VIRTUAL file on the specified channel before you 
can access elements of the virtual array. 

Arrays 8-5 



8.2.2.2 Executable DIM Statements 

8-6 Arrays 

Executable DIM statements are those with at least one variable bound. 
Bounds can be constants or simple variables, but at least one bound 
must be a variable. Executable DIM statements let you redimension an 
array at run time. The bounds of the array can become larger or smaller, 
but the number of dimensions cannot change. For example, you cannot 
redimension a four-dimensional array to be five-dimensional. 

The executable DIM statement cannot be used on arrays in COMMON, 
MAP, DECLARE or declarative DIM statements, nor on virtual arrays or 
arrays received as formal parameters. 

Whenever an executable DIM statement executes, it reinitializes the array. 
If you change the values of an executable DIM statement, the initial values 
are reset each time the DIM statement is executed. 

In the following example, the second DIM statement reinitializes the 
array real_array; therefore, real_array(1) equals zero in the second PRINT 
statement. 

Example 

xx = 1ox 
YX = 20X 
DIM real_array(XX) 
real_array(1X) = 100 
PRINT real_array(1X) 
DIM real_array(YX) 
PRINT real_array(1X) 
END 

Output 

100 
0 

You cannot reference an array named in an executable DIM statement 
until after the DIM statement executes. If you reference an array element 
declared in an executable DIM statement whose subscripts are larger than 
the bounds specified in the last execution of the DIM statement, VAX 
BASIC signals the run-time error "Subscript out of range" (ERR = 55), 
provided subscript checking is enabled. 



8.2.3 Creating Arrays with the COMMON Statement 

You should create arrays with the COMMON statement when you 
need an array of fixed-length strings, or when you want to share an 
array among program modules. Program modules can share arrays in 
COMMON statements by defining a common block with the same name. 

The COMMON statements in the following programs create a 100-element 
array of fixed-length strings, each element 10 characters long. Because the 
main program and subprograms use the same common name, the storage 
for these arrays is overlaid when the programs are linked. Therefore, both 
programs can read and write data to the array. 

Example 

!Main Program 
COMMON (ABC) STRING access_list(1 TO 100) = 10 

!Subprogram 
SUB SUB1 
COMMON (ABC) STRING new_list(1 TO 100) = 10 

8.2.4 Creating Arrays with the MAP Statement 

You should create arrays with the MAP statement only when you want 
the array to be part of a record buffer, or when you want to overlay the 
storage containing the array. Note that string arrays in maps are always 
fixed-length. 

You associate the array with a record buffer by naming the map in the 
MAP clause of the OPEN statement. 

In the following example, the MAP statement creates two arrays: an 
11-element fixed-length string array named team and a 33-element array 
of WORD integers named bowling_scores. Because the OPEN statement 
specifies MAP ABC, the storage for these arrays is used as the record 
buffer for the open file. 

Example 

MAP (ABC) STRING team(10) = 20, WORD bowling_scores(O TO 32) 
OPEN "BOWLING.DAT" AS FILE liY., SEQUENTIAL VARIABLE, MAP ABC 

Arrays 8-7 



8.3 Determining the Bounds of an Array 

VAX BASIC provides two built-in functions, LBOUND and UBOUND, that 
allow you to determine the lower and upper bounds, respectively, for any 
dimension in an array. 

The following example sets up four variables that contain the lower and 
upper bounds of both dimensions of the array Sales_data. These variables 
represent the years and months for which there is sales data available. 
The two FOR ... NEXT loops print all the sales information in the array, 
starting with the first year and month, and ending with the last year and 
month. 

Example 

DECLARE Sales_data(1900 TO 1986, 1 TO 12) 

Month_startY. = LBOUND (Sales_data, 2) 
Year_startY. = LBOUND (Sales_data, 1) 
Month_endY. = UBOUND (Sales_data, 2) 
Year_endY. = UBOUND (Sales_data, 1) 
FOR YearY. = Year_startY. TO Year_endY. 

FOR Month% = Month_startY. TO Month_endY. 
PRINT Sales_data(YearY., Month%) 

NEXT MonthY. 

NEXT YearY. 

Note that you cannot implicitly declare arrays with the LBOUND and 
UBOUND functions. These functions can be used only with arrays that 
have been previously declared. 

8.4 Creating Arrays Implicitly 

8-8 Arrays 

There are two ways to create arrays implicitly: 

• By referencing an element of an array that has not been explicitly 
declared 

• By using MAT statements 

When VAX BASIC first creates an implicit array, the lower bound is zero 
and the upper bound is 10. An array created by referencing an element 
can have up to 32 dimensions in VAX BASIC. An array created with a 
MAT statement can have only one or two dimensions. 



NOTE 

The ability to create arrays implicitly exists for compatibility 
with previous implementations of VAX BASIC. However, it 
is better programming practice to declare all arrays explicitly 
before using them. 

If you reference an element of an array that has not been explicitly 
declared, VAX BASIC creates a new array with the name you specify. 
Arrays created by reference have default subscripts of (0 TO 10), (0 TO 
10, 0 TO 10), (0 TO 10, 0 TO 10, 0 TO 10) and so on, depending on the 
number of dimensions specified in the array reference. For example, the 
following program implicitly creates three arrays and assigns a value to 
one element of each. 

Example 

LET A(6,6,6) = 3.14169-
LET B%(3) = 33 
LET C$(2,2) = "Russell Scott" 
END 

The first LET statement creates an 11 by 11 by 11 array that stores 
floating-point numbers and assigns the value 3.14159 to element (5,5,5). 
The second LET statement creates an 11-element list that stores integers 
and assigns the value 33 to element (3) and the third LET statement 
creates an 11 by 11 string array and assigns the value "Russell Scott" to 
element (2,2). 

When you create an implicit numeric array by referring to an element, 
VAX BASIC initializes all elements (except the one assigned a value) to 
zero. For implicit string arrays, VAX BASIC initializes all elements (except 
the one assigned a value) to a null string. When you implicitly create an 
array, you cannot specify a subscript greater than 10. An attempt to do so 
causes VAX BASIC to signal "Subscript out of range" (ERR = 55), provided 
that subscript checking is enabled. 

Note that you cannot create an array implicitly, then redimension the 
array with an executable DIM statement. The DIM statement must execute 
before any reference to the array. 

An array name cannot appear in a declarative statement after the array 
has been implicitly declared by a reference. The following DECLARE 
statement is therefore illegal and causes VAX BASIC to signal the compile
time error "illegal multiple definition of name NEW_ARRAY". 

new_array (6,6,6) = 1 
DECLARE LONG new_array (16,10,6) 

Arrays 8-9 



8.5 Assigning and Displaying Array Values 

You can assign values to array elements from within your program, from 
an external source, such as terminal input or from files, or with MAT 
statements. 

You can write data from an array with the following statements: 

• LET 
• PRINT 

The following sections tell you how to perform input and output opera
tions on VAX BASIC arrays. 

8.5.1 Assigning Values with the LET Statement 

8-10 Arrays 

The LET statement assigns values to individual array elements. 

Example 

DIM voucher_numY.(100) 

LET voucher_numY.(20) = 3263% 

END 

You can also assign values to a portion of an array with the LET statement 
and a FOR ... NEXT loop. In the following example, the FOR ... NEXT loop 
assigns zero to array elements (1,5) through (1,10), (2,5) through (2,10), 
and (3,5) through (3,10). 



Example 

DIM po_numberY.(100,100) 

FOR IY. = 1Y. TO 3Y. 
FOR JY. = 6Y. TO 101. 

LET po_numberY.CIY.,JY.) = OY. 
NEXT JY. 

NEXT !Y. 

END 

8.5.2 Listing Array Elements with the PRINT Statement 

You print individual array elements by naming those elements in the 
PRINT statement. For example: 

PRINT parts_list$(36Y.) 

With a FOR. .. NEXT loop, you can print all or part of an array: 

Example 

DIM capture_ratio(10,10) 

FOR YY. = 7Y. TO 10Y. 
FOR XY. = 7Y. TO 10Y. 

PRINT capture_ratio(XY.,YY.) 
NEXT XY. 

NEXT YY. 

8.6 Using MAT Statements 

MAT statements let you assign values to or display entire arrays with a 
single statement. They also: 

• Implicitly create arrays 

• Assign names to arrays 

• Specify array dimensions 
• Redimension existing arrays (to equal or smaller sizes) 

Arrays 8-11 



8-12 Arrays 

• Assign element values 
• Print the contents of arrays 

• Perform matrix arithmetic 

MAT statements are valid only on arrays of one or two dimensions. 
When MAT statements execute, they use row and column zero to store 
intermediate calculations. This means that MAT statements can overwrite 
data stored in row and column zero of your arrays, and you should not 
depend on data in these elements if your program uses MAT statements. 

NOTE 

MAT statements cannot be used with arrays that have lower 
bounds other than zero. An attempt to specify a lower bound 
other than zero for an array in a MAT statement results in a 
compile-time error. 

Note that the MAT statements discussed in this section are not related to 
the MAT GRAPH and MAT PLOT graphics statements. For more informa
tion on these statements, see Programming with VAX BASIC Graphics. 

The default subscripts for arrays created implicitly with MAT statements 
are (10) or (10,10). The default is two dimensions. This means that if you 
create an array with a MAT statement and do not specify any subscripts, 
VAX BASIC creates a two-dimensional, 11 by 11 array. If you specify 
a single subscript, VAX BASIC creates a one-dimensional array with 11 
elements. 

Table 8-1 lists MAT statements and explains their functions. 



Table 8-1: MAT Statements 
Statement Function 

MAT Assigns values of zero, l, or a null string to array 
elements. Also copies the values of one array to another 
and performs matrix arithmetic. 

MAT INPUT (#) Assigns values to array elements from your terminal or 
a terminal-format file. 

MAT LINPUT (#) 

MAT PRINT(#) 

MAT READ 

Assigns string values to string array elements from your 
terminal or from a terminal-format file. 

Displays the contents of an array on your terminal, or 
writes array element values to a terminal-format file. 

Assigns DATA statement values to array elements. 

In the following example, the first MAT statement creates the string array 
z_array$ with eight rows and eight columns and assigns a null string to 
all elements. The second MAT statement redimensions the array to six 
rows and six columns. The third MAT statement adds the values in each 
corresponding element of arrays B and C and stores the values in the 
corresponding elements of array A. 

Example 

MAT z_array$ = NUL$(7,7) 
MAT z_array$ = NUL$(6,6) 
MAT A = B + C 
END 

8.8.1 The MAT Statement 

The MAT statement can create an array and optionally assign values to all 
elements in that array. By specifying one of the MAT statement keywords, 
you can initialize arrays in one of four ways. Table 8-2 lists the MAT 
statement keywords and their functions. 

Arrays 8-13 



8-14 Arrays 

Table 8-2: 
MAT Keyword 

ZER 

CON 

IDN 

NUL$ 

MAT Statement Keywords 
Function 

Sets the value of all elements in a numeric array to zero. 

Sets the value of all elements in a numeric array to l, 
except those in row and column zero. 

Sets the array to the identity matrix, that is, it sets the 
value of all elements in real or integer arrays to zero, 
except for those elements on the diagonal from element 
(1,1) to element (n,n), where n is the largest subscript 
in the array. The elements on the diagonal are set to 1. 
IDN applies to square arrays only. 

Sets the value of all elements in a string array to the 
null string, except those in row and column zero. 

The array name can specify an existing array. MAT statements do not 
assign values to row and column zero. 

Note that the MAT statement does not require subscripts. In the case of 
existing arrays: 

• If you do not specify subscripts, VAX BASIC does not change the 
current subscripts. 

• If you specify subscripts, VAX BASIC redimensions the array to the 
specified subscripts. When redimensioning arrays with MAT, you 
cannot increase the total number of array elements (including those in 
row and column zero). 

When you are creating arrays with MAT: 

• If you do not supply subscripts, VAX BASIC assigns two subscripts, 
each with a value of 10. 

• If you specify subscripts, they define the dimensions of the array being 
implicitly created. Subscript values cannot exceed 10. 



Example 

DIM A(10,10), B(15), C(20,20) 
MAT A = ZER !Sets all elements of A to 0 
MAT B = CON(10) !Sets elements of B to 1; redimensions B 
MAT C = IDN(10,10) !Redimensions C to 10x10 identity matrix 

PRINT "ARRAY A:" 
MAT PRINT A; 
PRINT 
PRINT "ARRAY B:" 
MAT PRINT B; 
PRINT 
PRINT "ARRAY C:" 
MAT PRINT C; 

Output 

ARRAY A: 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

ARRAY B: 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

ARRAY C: 
1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 

8.8.2 The MAT READ Statement 

The MAT READ statement assigns values from DATA statements to array 
elements. Subscripts define either the dimensions of the array being 
created or the new dimensions of an existing array; subscripts are optional 
in MAT READ statements. 

Arrays 8-15 



If you do not provide enough data in DATA statements to fill the specified 
array, VAX BASIC leaves the remaining array elements unchanged. If 
you provide more data values than there are array elements, VAX BASIC 
assigns enough values to fill the array and leaves the DATA pointer at the 
next value. 

In the following example, VAX BASIC fills matrix B with the first four 
DATA items, fills matrix C with the next four DATA values, and leaves the 
DATA pointer at the ninth value in the DATA list. 

Example 

MAT READ B(2,2) 
MAT READ C(2,2) 
PRINT 
PRINT "MATRIX 8" 
PRINT 
PRINT 
MAT PRINT B; 

PRINT 
PRINT "MATRIX C" 
PRINT 
PRINT 
MAT PRINT C; 
DATA 1,2,3,4,6,6,7,8,9,10 
END 

Output 

MATRIX B 

1 2 
3 4 

MATRIX C 

6 6 
7 8 

8.8.3 The MAT INPUT [#] Statement 

8-16 Arrays 

The MAT INPUT statement assigns values from your terminal to array 
elements. The MAT INPUT # statement reads data from a terminal-format 
file and writes it to an array. The optional subscripts in a MAT INPUT 
statement define either the dimensions of the array being created implicitly 
or the new dimensions of an existing array. If you are implicitly creating 
the array, the value of a subscript cannot exceed 10. 



The MAT INPUT statement requests data from your terminal, as does 
the INPUT statement; it prints a question mark (?)prompt that you can 
disable with the SET NO PROMPT statement and then enable with the 
SET PROMPT statement. However, you cannot include a string prompt 
with the MAT INPUT statement. 

When you enter a series of values separated by commas, VAX BASIC 
enters the values you supply into successive array elements by row, 
starting with element (1,1) and filling row 1 before starting row 2. If you 
provide fewer data items than there are elements, the remaining elements 
are unchanged. If you provide more items than there are elements, VAX 
BASIC ignores the excess. 

The MAT INPUT# statement takes values from an open file and assigns 
them to the matrix elements by rows, starting with element (1,1). It fills 
the elements in row 1 before starting row 2. The file can have one or 
more values in each record; however, multiple values must be separated 
with commas. 

In the following example, the open file on channel 3 contains the fol
lowing data: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. The MAT INPUT # 
statement reads this data and uses it to fill the array A, filling in row 1 
before beginning row 2. The MAT INPUT B(2,2) statement dimensions 
array B to 9 elements (0 to 2 in each dimension) and provides values for 
all the elements except those in row and column zero. 

Example 

MAT INPUT #3, A 
PRINT 
MAT PRINT A; 
MAT INPUT B(2,2) 
PRINT 
MAT PRINT B; 

Output 

1 2 3 4 6 6 7 8 g 10 
11 12 13 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

Arrays 8-17 



? 1,2,3,4IRETI 

1 2 
3 4 

Note that the MAT PRINT statement does not print row and column zero. 
For more information on the MAT PRINT statement, see Section 8.6.5. 

The MAT INPUT statement can also redimension an existing array. 

Example 

DIM new_arrayY.(6,6) 
MAT INPUT new_arrayY.(2,4) 
MAT PRINT new_arrayY.; 
END 

Output 

? 1,2,3,4,6,6,7,SIRETI 

1 2 3 4 
6 6 7 8 

When entering values in response to MAT INPUT, you can enter an 
ampersand as the last character on the line and continue on the next line. 

8.6.4 The MAT LINPUT [#] Statement 

8-18 Arrays 

The MAT LINPUT statement assigns string values to string array elements. 
The MAT LINPUT # statement reads string values from a terminal-format 
file and writes them to a string array. 

The MAT LINPUT statement prompts for individual array elements. It 
fills the array by rows, starting with element (1,1). It assigns the line 
you supply (including commas, semicolons, and quotation marks, but 
excluding the line terminator) to an array element. 



Example 

DIM emp_nam$(6,6) 
MAT LINPUT emp_nam$(2,2) 
PRINT emp_nam$(1,1) 
PRINT emp_nam$(1,2) 
PRINT emp_nam$(2,1) 
PRINT emp_nam$(2,2) 
END 

Output 

By specifying the subscripts (2,2), MAT LINPUT redimensions the array 
to four elements and overwrites the old values. VAX BASIC then prompts 
for these elements. 

MAT LINPUT #also excludes line terminators when assigning values to 
string array elements. MAT LINPUT # places the values from the open 
file into the specified array, filling the array by rows, starting with element 
(1,1). If there are more values in the file than there are array elements, 
VAX BASIC ignores the excess. If there are fewer, VAX BASIC assigns a 
null string to the remaining elements. 

The following program reads 50 records from the open disk file and 
assigns them to the array named part_name$. If there are more than 50 
records in the file, VAX BASIC ignores the excess. If there are fewer than 
50 records, then VAX BASIC fills the remaining elements of the array with 
the null string. 

Example 

DIM part_name$(60) 
MAT LINPUT #1Y., part_name$ 

8.6.5 The MAT PRINT[#] Statement 

The MAT PRINT statement prints some or all of an array's elements, 
excluding row and column zero. The MAT PRINT# statement takes 

Arrays 8-19 



8-20 Arrays 

values from an array by row, starting with element (1,1), and writes each 
element to a sequential record in the terminal-format file. 

Subscripts are optional in MAT PRINT statements. If you do not specify 
subscripts, MAT PRINT displays the entire array, excluding row and 
column zero. If you specify subscripts, MAT PRINT displays the specified 
subset of the array. In the case of the MAT PRINT# statement, the 
subscripts determine how many array elements are written to the file. The 
MAT PRINT[#] statement does not redimension an existing array. 

If the last character in the MAT PRINT[#] array list is a semicolon, VAX 
BASIC begins each array row on a separate line. Data values on each 
line are packed together with no intermediate spaces. However, if the last 
character in the MAT PRINT[#] arrays list is a comma, VAX BASIC begins 
each array row on a separate line and each data value in a separate print 
zone. 

If there is neither a comma nor a semicolon after the array name, VAX 
BASIC prints each array element on a separate line. In the following 
example, the first MAT PRINT statement does not end in a comma or 
semicolon, so each element is printed on a separate line. The second MAT 
PRINT statement prints the elements twice, the first time starting each 
element in a new print zone, and the second time leaving a space before 
and after each value. The MAT PRINT# statement sends the last two 
lines of output to a terminal-format file. 

Example 

MAT INPUT A(5) 
PRINT 
MAT PRINT A 
PRINT 
MAT PRINT A, A; 
MAT PRINT #3, A, A; 
END 

Output 
? 5IRETI 

5 
0 
0 
0 
0 

5 0 

5 0 0 0 0 

0 0 0 



8.8.8 Matrix 1/0 Functions (NUM and NUM2) 

MAT statements do not signal error messages when there are more data 
items than array elements to contain them or when there are fewer data 
items than array elements to contain them. 

VAX BASIC provides two functions that let you determine how much data 
the MAT statements transfer: NUM and NUM2. 

For two-dimensional arrays, the NUM function returns an integer value 
specifying the row number of the last data item transferred, whereas the 
NUM2 function returns an integer value specifying the column number 
of the last data item transferred. For one-dimensional arrays, the NUM 
function returns the number of items entered, whereas the NUM2 function 
returns a zero. 

With these functions, you can determine the number of items transferred 
from a terminal-format file. Note, however, that you cannot use the NUM 
and NUM2 functions to implicitly declare an array. In the following 
example, the terminal-format file EMP.DAT contains the values 1 through 
17, inclusive. When these values are read using the MAT INPUT# 
statement, NUM and NUM2 represent the row and column number, 
respectively, of the last value read: 

Example 

OPEN "EMP.DAT" FOR INPUT AS FILE #3% 
DIM emp_name$(6,6) 
MAT INPUT #3%, emp_name$ 
PRINT NUM, NUM2 
END 

Output 

4 2 

8. 7 Matrix Operators 

VAX BASIC provides a special set of MAT statements for array com
putations. These statements enable you to add, subtract, and multiply 
matrices, and to assign values to elements. Note that if you specify 
an array without subscripts (for example, MAT A), the default is two 
dimensions. 

Arrays 8-21 



VAX BASIC also provides matrix functions to transpose and invert matri
ces, and to find the determinant of a matrix you invert. 

NOTE 

MAT operators do not operate on elements in row or column 
zero. 

8. 7 .1 Arithmetic Matrix Operations 

MAT operators perform matrix assignment, addition, subtraction, and 
multiplication. 

All of these operations use the keyword MAT, followed by an expression. 
If the array has not been previously dimensioned, these operations create 
an array. The created output array's dimensions depend on the operation 
performed, but must be (10,10) or smaller. 

NOTE 

You can use the MAT operators on arrays larger than (10,10) if 
the input and output arrays are explicitly created or received as 
a formal parameter. 

8. 7. 1. 1 Assignment 

You can assign all values in one array to another array with the MAT 
statement. In the following example, each element of new_array is set to 
the corresponding element in old_array. The dimensions of new_array are 
also redimensioned to the dimensions of old_array. 

MAT new_array = old_array 

8. 7. 1.2 Addition and Subtraction 

8-22 Arrays 

You can add the elements of two arrays. In the following statement, 
the two input lists, first_list% and second_list%, must have identical 
dimensions. The elements of the new list, sum_list%, equal the sum of 
the corresponding elements in the input lists. 

MAT sum_listY. = first_listY. + second_listY. 

You can also subtract the elements of two arrays. The following program 
subtracts one array from another. 



Example 

DIM first_array(30,30) 
DIM second_array(30,30) 
DIM difference_array(30,30) 

MAT diff erence_array = f irst_array - second_array 

Each element of difference_array is the arithmetic difference of the corre
sponding elements of the input arrays. 

8. 7. 1.3 Multiplication 

You can multiply the elements of two arrays, provided that the number of 
columns in the first array equals the number of rows in the second array. 
The resulting array contains the dot product of the two input arrays. 

Example 

DIM A(2,2), B(2,2), C(2,2) 
A(1,1) = 1 
A(1,2) = 2 
A(2,1) = 3 
A(2,2) = 4 
B(1,1) = 6 
B(1,2) = 6 
B(2,1) = 7 
B(2,2) = 8 
MAT C = A * B 
MAT PRINT C 

Output 

19 
22 
43 
60 

You can also multiply a matrix by a scalar quantity. VAX BASIC multiplies 
each element of the input array by the scalar quantity you supply. The 
output array has the same dimensions as the input array. Enclose the 
scalar quantity in parentheses. The following example multiplies the 
elements of inch_array by the inch-to-centimeter conversion factor and 
places these values in cm_array. 

Arrays 8-23 



Example 

DIM inch_array(6), cm_array(6) 
MAT READ inch_array 
DATA 1,12,36,100,39.37 
MAT cm_array = (2.64) * inch_array 
MAT PRINT cm_array, 
END 

Output 

2.64 30.48 91.44 264 99.9998 

8. 7 .2 Matrix Functions 

VAX BASIC provides three matrix functions: 

• TRN 

• INV 

• DET 

With these functions, you can transpose and invert matrices, and find the 
determinant of an inverted matrix. 

8.7 .2.1 The TRN Function 

8-24 Arrays 

The TRN function transposes a matrix. When you transpose a matrix, 
VAX BASIC interchanges the array's dimensions. For example, a matrix 
with n rows and m columns is transposed to a matrix with m rows and 
n columns. The elements in the first row of the input matrix become the 
elements in the first column of the output matrix. You cannot transpose a 
matrix to itself; MAT A = TRN(A) is invalid. 

This example creates a 3 by 5 matrix, transposes it, and prints the results. 



Example 

DIM 8(3,6) 
MAT READ B 
MAT A = TRN(B) 
DATA 1,2,3,4,6 
DATA 6,7,8,9,10 
DATA 11,12,13,14,16 
MAT PRINT B; 
MAT PRINT A; 
END 

Output 

1 2 3 4 6 
6 7 8 9 10 
11 12 13 14 16 

1 6 11 
2 7 12 
3 8 13 
4 9 14 
6 10 16 

8. 7 .2.2 The INV Function 

The INV function inverts a matrix. VAX BASIC can invert a matrix only 
if its subscripts are identical and it can be reduced to the identity matrix 
by elementary row operations. The input matrix multiplied by the output 
matrix (its inverse) always gives the identity matrix as a result. 

Example 

MAT INPUT first_array(3,3) 
MAT PRINT first_array; 
PRINT 
MAT inv_array = INV (first_array) 
MAT PRINT inv_array; 
PRINT 
MAT mult_array = first_array * inv_array 
MAT PRINT mult_array; 

Arrays 8-25 



Output 

? 4,0,0,0.0.2.o.a.o!RETI 
4 0 0 
0 0 2 
0 8 0 

.26 0 0 
0 0 .126 
0 .6 0 

1 0 0 
0 1 0 
0 0 1 

8.7.2.3 The DET Function 

8-26 Arrays 

The DET function returns the determinant of a matrix. The DET function 
returns a floating-point number that is the determinant of the last matrix 
inverted. If you use the DET function before inverting a matrix, the value 
of DET is zero. 



Chapter 9 

Data Definition 

This chapter describes how to define program objects, explicitly assign 
data types to program variables, and allocate and use data storage. 

9. 1 Declarative Statements 

You use declarative statements to define objects in a VAX BASIC program. 
Objects can be variables, arrays, constants, and user-defined functions 
within a program module. They can also be routines, variables, and 
constants external to the program module. Declarative statements always 
assign names to the objects declared and usually assign other attributes, 
such as a data type, to them. Declarative statements can also be used to 
define user-defined data types (RECORD statements). See Chapter 10 in 
this manual for more information on the RECORD statement. 

You use declarative statements to assign data types to: 

• Variables 
• Arrays 

• Named constants 
• Values returned by functions 

By declaring the objects used in your program, you make the program 
much easier to understand, modify, and debug. 

Data Definition 9-1 



9.2 Data Types 

9-2 Data Definition 

At its most fundamental level, a data type is a format for information 
storage. All information is stored in the computer as bit patterns (groups 
of ones and zeros). Data types specify how the computer should interpret 
these patterns. 

VAX BASIC programs allow four general data types: integer, floating
point, string, and packed decimal. Each data type is suited for a particular 
type of task. For example, integers are useful for numeric computations 
involving whole numbers, strings provide a way to manipulate alphanu
meric characters, and packed decimal data is useful for manipulating 
numeric values that require precise representation. 

Within integer and floating-point data types there are further subdivisions. 
For example, integers can be classed as BYTE, WORD, and LONG. 
Choosing one of these integer subdivisions lets you control two things: 

• The amount of storage required for the integer 

• The range of values that the integer can accept 

See Table 9-1 for more information on the range and storage requirements 
of these integer subtypes. 

Similarly, floating-point data can be classed as SINGLE, DOUBLE, 
GFLOAT, and HFLOAT. See Table 9-1 for more information on the 
range and storage requirements of these floating-point subtypes. 

In addition to numeric and string data types, VAX BASIC also provides 
a unique data type called RFA. Variables of the RFA data type require 
six bytes of storage and can contain only a Record File Address. RFA 
variables are used with RMS file I/O; the operations that can be performed 
on them are strictly limited. See the VAX BASIC Reference Manual for 
more information on the RFA data type. Finally, VAX BASIC allows you 
to construct your own forms of data representation using records. 

Traditionally, VAX BASIC programs have had just three data types: 
integer, string, and floating-point. A data type was assigned to a variable 
with a suffix on the variable names; a dollar sign ( $ ) denoted a string 
variable, a percent sign ( % ) denoted an integer variable, and variable 
names without suffixes denoted floating-point variables. By referencing a 
variable in your program, you would implicitly declare the variable with 
the data type indicated by the suffix character. 



VAX BASIC now lets you explicitly assign data types to variables, param
eters, and functions. This feature gives you more control over the storage 
and precision used by your program. You can, however, still use implicit 
data typing in your programs. You can ensure that all program variables 
are explicitly declared by specifying OPTION TYPE= EXPLICIT or by 
using the /TYPE=EXPLICIT qualifier when you compile your programs. 
See Section 9 .3 for more information on the OPTION statement. 

Table 9-1 lists the keywords you use to assign data types along with their 
size, range, and precision. 

Table 9-1: VAX BASIC Data Types 

Data Type 
Keyword 

INTEGER 

BYTE 

WORD 

LONG 

REAL 

SINGLE 

DOUBLE 

GFLOAT 

HFLOAT 

DECIMAL 

DECIMAL(d,s) 

Size 

8 bits 

16 bits 

32 bits 

32 bits 

64 bits 

64 bits 

128 bits 

0 to 16 
bytes 

Range 

-128 to +127 

-32768 to +32767 

-2147483648 to 
+2147483647 

.29 * 10-38 to 
1.7 * 1038 

.29 * 10-38 to 
1.7 * 1038 

.56 * 10-308 to 

.90 * 10308 

.84 * 10-4932 to 

.59 * 104932 

1 * 10-31 to 1 * 
1031 

Precision 
(decimal) 
(digits) 

NA 

NA 

NA 

6 

16 

15 

33 

NA 

Data Definition 9-3 



9-4 Data Definition 

Table 9-1 (Cont.): VAX BASIC Data Types 
Precision 

Data Type (decimal) 
Keyword Size Range (digits) 

STRING 

STRING One Max= 65535 NA 
character 
per byte 

RFA 

RFA 6 bytes NA NA 

As shown in the table, there are four data type keywords that specify 
integer data. The data type INTEGER is a general data type because it 
specifies only that a variable contains integer data. The subtypes BYTE, 
WORD, and LONG specify exactly how much storage is allocated to an 
integer variable. If you specify the INTEGER data type, the subtype of 
integer variables depends on the default integer data type in effect when 
the program is compiled. This default is determined by one of two things: 

• The program's OPTION statement, if present. See Section 9.3 for 
more information on the OPTION statement. 

• The /INTEGER-SIZE qualifier you use to compile the program. 

Similarly, there are five data type keywords that specify floating-point 
data. The data type REAL is a general data type because it specifies 
only that a variable contains floating-point data. The subtypes SINGLE, 
DOUBLE, GFLOAT, and HFLOAT specify exactly how much storage is 
allocated to a floating-point variable. If you specify the data type REAL, 
the subtype of floating-point variables depends on the default floating
point subtype in effect when the program is compiled. This default is 
determined by one of two things: 

• The OPTION statement, if present 

• The /REAL _SIZE qualifier you use to compile the program 

Choosing a numeric subtype always involves a tradeoff between storage 
requirements and range or precision. You can reduce the size of an 
executable image by choosing the smallest numeric subtype that is large 
enough to meet your needs. 



9.3 Setting the Default Data Type and Size 

There are two ways to set the default data type and size for your program: 

• With the OPTION statement 

• With qualifiers: 
/TYPE_DEFAULT 

/INTEGER-SIZE 
/REAL_SIZE 
/DECIMAL _SIZE 

The OPTION statement can override the defaults set with qualifiers. 
For example, the following statement sets the default integer type to be 
LONG. 

OPTION SIZE = INTEGER LONG 

You can have more than one OPTION statement in a program mod
ule; however OPTION statements can be preceded only by a SUB, 
FUNCTION, REM, or another OPTION statement. 

Note that the OPTION statement can also specify the following: 

• Integer and packed decimal overflow checking 

• Program optimization 
• Rounding or truncation of packed decimal numbers 

• Subscript checking 

See the VAX BASIC Reference Manual for more information about the 
OPTION statement. 

The OPTION statement in the following example specifies that all program 
variables must be explicitly typed and that all implicitly typed constants 
are INTEGER. In addition, any variable typed as INTEGER is a LONG 
integer and any variable typed as REAL is a DOUBLE floating-point 
number. 

OPTION TYPE= EXPLICIT, ! Variables must be declared & 
CONSTANT TYPE = INTEGER, ! All implicit constants be integers & 
SIZE = INTEGER LONG, ! 32-bit integers by default & 
SIZE = REAL DOUBLE ! 64-bit floating-point 

! numbers by default 

Data Definition 9-5 



You can create variables of other data types by explicitly declaring them 
with the DECLARE, COMMON, or MAP statement. 

9.4 Declaring Variables Explicitly 

9-6 Data Definition 

The DECLARE statement explicitly assigns a data type or subtype to a 
variable, function, or constant. 

The subtype you specify overrides any defaults specified in the OPTION 
statement, in the BASIC environment or with the /INTEGER_SIZE, 
/REAL _SIZE, and /DECIMAL _SIZE qualifiers. For example, if you 
compile your program with the /INTEGER_SIZE=WORD qualifier and 
declare an integer variable to be LONG, the variable is LONG rather than 
WORD. In this format of the DECLARE statement, the data type STRING 
specifies a dynamic string variable. 

You can define a variable only once in a program. For example, if a 
variable name appears in a DECLARE statement, it cannot also appear in 
a COMMON or MAP statement. 

You should use unique variable names to avoid confusion and make 
program documentation easier. For example, if you declare variable B 
to be LONG, there cannot also be a floating-point variable B in your 
program. It is possible to have both an INTEGER variable B% and 
an INTEGER variable B in the same program; however, this is poor 
programming practice. 

When you explicitly declare an array, VAX BASIC allows you to specify 
both upper and lower bound values. The value you supply as the upper 
bound determines the maximum subscript value for a given dimension, 
and the value you supply for the lower bound determines the minimum 
subscript value for a given dimension. 

For more information on specifying bounds with the DECLARE statement, 
see the VAX BASIC Reference Manual and Chapter 8 in this manual. 

You can also use the DECLARE statement to assign a data type and value 
to DEF functions and constants. See Section 9.5 for an explanation of 
declaring named constants. 

The following statement declares the DEF function circumference and 
declares a SINGLE parameter for the function: 

DECLARE LONG FUNCTION circumference(SINGLE) 



DECLARE FUNCTION lets you assign a data type to parameters and to 
the value a function returns. DECLARE FUNCTION also lets you name 
the function without using the usual convention (beginning the function 
name with FN and ending the function name with a percent or dollar sign 
suffix). For example: 

Example 

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function 

new_string$ = concat(A$, B$) 
DEF concat (STRINGY, STRING Z) 
concat = Y + Z 
END DEF 

END 

!Invoke the function 
!Define the function 

This format allows only one data type in a single statement. Declaring 
more than one type of function requires a DECLARE statement for each 
type. 

These data typing features give you control over storage allocation. 
Compiling a program with OPTION TYPE= EXPLICIT is particularly 
useful because it causes VAX BASIC to signal an error when an implicit 
variable is encountered. This prevents a typing mistake from being 
interpreted as a new variable. DIGITAL supports implicit variables for 
compatibility with other BASICs and also because they are useful for 
beginning programmers. However, DIGITAL recommends that you use 
explicit declarations for new program development. 

9.5 Declaring Named Constants Explicitly 

Constants are values that do not change during program execution. You 
can declare named constants within a program unit with the DECLARE 
statement. You can also refer to constants outside the program unit with 
the EXTERNAL statement. In addition, VAX BASIC provides notation for 
binary, octal, decimal, and hexadecimal constants. 

Data Definition 9-7 



Named constants are useful for the following reasons: 

• If a commonly-used constant must be changed, you can make the 
change in a single place. 

• They make the program easier to understand. 

9.5.1 Declaring Constants Within a Program Unit 

The value assigned to a named constant need not be in the allowable 
range of the default data type; however, it must be in the valid range 
of the data type being declared. The following statement declares a 
LONG constant named XYZ and assigns it a value of 1000. In DECLARE 
CONSTANT statements, VAX BASIC signals an overflow error only if the 
value is outside the range of the data type being declared. 

DECLARE LONG CONSTANT XYZ = 1000 

The following example declares a double-precision constant: 

Example 

DECLARE DOUBLE CONSTANT plancks = 6.6237E-27 
INPUT "FREQUENCY"; freq 
PRINT "ENERGY EQUALS"; plancks I freq 
END 

A DECLARE CONSTANT statement allows only one data type. To declare 
constants of different data types, you must use additional DECLARE 
CONSTANT statements. 

9.5.2 Declaring Constants External to the Program Unit 

9-8 Data Definition 

To declare constants external to the program unit, use the EXTERNAL 
statement. For example: 

EXTERNAL LONG CONSTANT SS$_NORMAL 

The VAX/VMS Linker automatically supplies the values for constants 
specified in EXTERNAL statements. For more information on using the 
EXTERNAL statement, see the VAX BASIC Reference Manual. 



9.5.3 Declaring a Default Constant Type 

To declare a default constant type, specify a CONSTANT TYPE clause 
with the OPTION statement. This CONSTANT TYPE clause specifies the 
data type for all constants that do not end in a data type suffix or are not 
in explicit literal notation with a data type supplied. For instance, the 
following OPTION statement specifies that all implicitly typed constants 
will be INTEGER. 

OPTION CONSTANT TYPE = INTEGER 

9.6 Operations with Multiple Data Types 

When an expression contains operands of different data types, it is called a 
mixed-mode expression. Before a mixed-mode expression can be evaluated, 
the operands must be converted, or promoted, to a common data type. The 
result of the evaluation may also be converted depending on the data type 
of the variable to which it is assigned. 

When evaluating mixed-mode expressions, VAX BASIC performs promo
tions such that no operand loses any range or precision. When assigning 
values to variables, VAX BASIC converts the result of the expression to 
the data type of the variable. If the value of the expression is outside the 
allowable range of the variable's data type, VAX BASIC signals "Integer 
error or overflow", "Floating-point error or overflow", or "DECIMAL error 
or overflow". 

In general, VAX BASIC promotes operands with different data types to the 
lowest data type that can hold the largest and most precise possible value 
of either operand's data type. VAX BASIC then performs the operation 
in that data type, and yields a result of that data type. If the result of the 
expression is assigned to a variable, VAX BASIC converts the result to the 
data type of the variable. Table 9-2 lists the resulting data type for all 
combinations except those involving DECIMAL data types. 

Data Definition 9-9 



Table 9-2: Result Data Types in VAX BASIC Expressions 

BYTE 

WORD 

LONG 

SINGLE 

DOUBLE 

GFLOAT 

HFLOAT 

BYTE WORD LONG SINGLE DOUBLE GFLOAT HFLOAT 

BYTE WORD LONG SINGLE DOUBLE GFLOAT HFLOAT 

WORD WORD LONG SINGLE DOUBLE GFLOAT HFLOAT 

LONG LONG LONG SINGLE DOUBLE GFLOAT HFLOAT 

SINGLE SINGLE SINGLE SINGLE DOUBLE GFLOAT HFLOAT 

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE HFLOAT HFLOAT 

GFLOAT GFLOAT GFLOAT GFLOAT HFLOAT GFLOAT HFLOAT 

HFLOAT HFLOAT HFLOAT HFLOAT HFLOAT HFLOAT HFLOAT 

For example, if one operand is SINGLE and one operand is DOUBLE, VAX 
BASIC promotes the SINGLE value to DOUBLE, performs the specified 
operation, and returns the result as a DOUBLE value. This promotion 
is necessary because the SINGLE data type has less precision than the 
DOUBLE value, whereas the DOUBLE data type can hold the largest and 
most precise possible SINGLE value. If VAX BASIC did not promote the 
SINGLE value and the operation yielded a more precise result than was 
represented in SINGLE, the value would lose precision. 

With one exception, the resulting data type is the same as that of the 
operand with the higher data type. The exception is when the operands 
are DOUBLE and GFLOAT. When an expression contains a DOUBLE and 
a GFLOAT operand, VAX BASIC promotes both values to HFLOAT, and 
returns an HFLOAT value. This is necessary because a DOUBLE value 
is more precise than a GFLOAT value, but cannot contain the largest 
possible GFLOAT value. Consequently, VAX BASIC promotes these data 
types to a data type that can hold the largest and most precise value of 
either operand. 

VAX BASIC also allows the DECIMAL(d,s) data type. DECIMAL values 
are converted to REAL before exponentiation. For all other operations 
involving a DECIMAL value, the number of digits ( d) and the scale 
or position of the decimal point ( s) in the result depend on the data 
type of the other operand. If one operand is DECIMAL and the other is 
DECIMAL or INTEGER, the d and s values of the result are determined as 
follows: 

• If both operands are typed DECIMAL, and if both operands have the 
same digit ( d) and scale ( s) values, no conversions occur and the 
result of the operation has exactly the same d and s values as the 
operands. Note, however, that overflow can occur if the result exceeds 
the range specified by the d value. 

9-10 Data Definition 



• If both operands are DECIMAL, but have different digit and scale 
values, VAX BASIC always uses the larger number of specified digits 
for the result. 

In the following statements, variable A allows three digits to the left of the 
decimal point and two digits to the right. Variable B allows one digit to 
the left of the decimal point and three digits to the right. 

DECLARE DECIMAL(5,2) A 
DECLARE DECIMAL(4,3) B 

Therefore, the result allows three digits to the left of the decimal point and 
three digits to the right. 

If one operand is typed DECIMAL and one is typed INTEGER, the 
INTEGER value is converted to a DECIMAL(d,s) data type as follows: 

• BYTE is converted to DECIMAL(3,0). 

• WORD is converted to DECIMAL(S ,O). 

• LONG is converted to DECIMAL(lO,O). 

VAX BASIC then determines the d and s values of the result by evaluating 
the d ands values of the operands as described above. Note that only 
INTEGER data types are converted to the DECIMAL data type. If one 
operand is DECIMAL and one is floating-point, the DECIMAL value is 
converted to a floating-point value. The total number of digits ( d) in the 
DECIMAL value determines its new data type: 

Range of d 

<=1 through <= 6 

<= 7 through <= 15 

= 16 

<= 17 through <= 31 

Converted to: 

SINGLE 

DOUBLE 

GFLOAT 

HFLOAT 

DOUBLE 

HFLOAT 

If the value of dis between 7 and 15, the operand is converted to 
DOUBLE if the floating-point operand is DOUBLE, to GFLOAT if the 
floating-point operand is GFLOAT, and to HFLOAT if the floating-point 
operand is HFLOAT. Thus, a DECIMAL(8,5) operand is converted to 
DOUBLE if the other operand is SINGLE or DOUBLE, to GFLOAT if 
the other operand is GFLOAT, and to HFLOAT if the other operand is 
HFLOAT. 

Data Definition 9-11 



Figure 9-1 shows a mixed-mode expression, and the data types of the 
intermediate and final results. 

Figure 9-1 : Mixed-Mode Expression Results 

WORD • LONG I DECIMAL(6,2) + ( DOUBLE • GFLOAT v v 
LONG HFLOAT 

~ 

HFLOAT 

ZK-5182-86 

Note that the LONG integer is first converted to DECIMAL(lO,O). When 
VAX BASIC performs the division, both operands are converted to 
DECIMAL(l2,2). 

You can convert any numeric variable or expression to a specified data 
type with the REAL, INTEGER, and DECIMAL functions. See the VAX 
BASIC Reference Manual for more information on these functions. 

9. 7 Allocating Static Storage 

VAX BASIC programs allocate both static and dynamic storage. The size 
of static storage does not change during program execution. Variables 
and arrays appearing in MAP or COMMON statements use static storage. 
Because this storage is static, all string variables appearing in MAP or 
COMMON statements are fixed-length strings. 

9-12 Data Definition 



Dynamic storage is allocated when the program executes. Variables and 
arrays declared in the following statements use dynamic storage: 

• DECLARE statements 

• DIMENSION statements 
• Implicitly declared variables 

Normally, string variables and arrays declared in this way are dynamic 
strings, and their length can change during program execution. However, 
if you declare or dimension an array of a user-defined data type (a 
RECORD name), then all string variables and arrays are fixed-length 
strings. See Chapter 10 in this manual for more information about the 
RECORD statement. 

MAP and COMMON statements create a named storage area called a 
program section, or PSECT. MAP statements require a map name, but in 
COMMON statements the name is optional. The PSECT name is the same 
as the map or common name. If you do not specify a common name, VAX 
BASIC supplies a default PSECT name of $BLANK. The following sections 
explain how to use static storage. 

9. 7 .1 The COMMON Statement 

The COMMON statement defines a named area of storage (called a 
PSECT). Any VAX BASIC subprogram can access the values in a common 
by specifying a common with the same name. An item in a COMMON 
statement can be any one of the following: 

• A numeric variable 

• A numeric array 
• A fixed-length string variable 
• An array of fixed-length strings 

• A RECORD instance 

• A FILL item 

The amount of storage reserved for a variable depends on its data type. 
You can specify a length for string variables and string array elements 
that appear in a COMMON statement. If you do not specify a length, the 
default is 16. The following statement specifies 2 bytes for emp.code, 3 
bytes for wage.code, and 22 bytes for dep.code. 

COMMON (code) STRING emp.code=2, wage.code=3, dep.code=22 

Data Definition 9-13 



In a single program module, multiple common areas with the same 
name allocate storage end-to-end in a single PSECT. That is, VAX BASIC 
concatenates all common areas with the same name in the same program 
module, in the order they appear. For example, the following statements 
allocate storage for five LONG integers in a single PSECT named into. 

COMMON (into) LONG call_count, sub1_count, sub2_count 
COMMON (into) LONG sub3_count, sub4_count 

When you explicitly declare an array, VAX BASIC allows you to spec-
ify both upper and lower bound values. The value you supply as the 
upper bound determines the maximum subscript value for a given dimen
sion, whereas the value you supply for the lower bound determines the 
minimum subscript value for a given dimension. 

For more information on specifying bounds with the COMMON state
ment, see the VAX BASIC Reference Manual and Chapter 8 in this manual. 

9. 7 .2 The MAP Statement 

The MAP statement, like the COMMON statement, creates a named area 
of static storage. However, if a program module contains multiple maps 
with the same name, the maps are overlaid on the same area of storage, 
rather than being concatenated. 

When used with the MAP clause of the OPEN statement, the storage 
allocated by the MAP statement becomes the record buffer for that file. 
Variables in the MAP statement correspond to fields in the file's records. 

A map item can be one of the following: 

• A numeric variable 

• A numeric array 

• A fixed-length string variable 

• An array of fixed-length strings 

• A RECORD instance 

• A FILL item 

When you explicitly declare an array, VAX BASIC allows you to spec-
ify both upper and lower bound values. The value you supply as the 
upper bound determines the maximum subscript value for a given dimen
sion, whereas the value you supply for the lower bound determines the 
minimum subscript value for a given dimension. 

9-14 Data Definition 



For more information on specifying bounds with the MAP statement, see 
the VAX BASIC Reference Manual, and Chapter 8 in this manual. 

9. 7 .2. 1 Single Maps 

You associate a map with a record buffer by referencing the map in the 
OPEN statement. 

The MAP statement must appear before any reference to map variables. 
For example, the following program uses map variables to access fields 
in payroll records. Changes to map variables do not change the actual 
records in the file. To transfer the changed variables to the file, you 
must use the PUT or UPDATE statement. For more information, see 
Chapter 15. 

Example 

WHEN ERROR USE eof_handler 
DECLARE INTEGER CONSTANT EOF = 11 

MAP (PAYROL) STRING emp_name, LONG wage_class, & 
STRING sal_rev_date, SINGLE tax_ytd 

OPEN "payroll.dat" FOR INPUT AS FILE #4Y. & 
,ORGANIZATION SEQUENTIAL & 
,ACCESS READ & 
,MAP PAYROL 

OPEN "payrol. new" FOR OUTPUT AS FILE #6Y. & 
,ORGANIZATION SEQUENTIAL & 
,ACCESS WRITE & 
,MAP payrol 

PRINT "PAYROLL VERIFICATION" 

get_loop: 
WHILE 1Y. = 1Y. 

GET #4 
PRINT emp_name, wage_class, sal_rev_date, tax_ytd 
PRINT "YOU CAN CHANGE:" 
PRINT "1. EMPLOYEE NAME" 
PRINT 11 2. WAGE CLASS" 
PRINT "3. REVIEW DATE" 
PRINT "4. TAX YEAR-TO-DATE" 
PRINT "5. DONE" 

read_loop: 
WHILE 1Y. = 1Y. 

Data Definition 9-1 5 



INPUT "CHANGES? ANSWER WITH YES OR NO" chng$ 
IF chng$ = "NO" THEN ITERATE get_loop 

ELSE INPUT "NUMBER" ;numberY. 

END IF 

SELECT numberY, 
CASE 1 

INPUT "EMPLOYEE NAME"; emp_name 
CASE 2 

INPUT "WAGE CLASS"; wage_class 
CASE 3 

INPUT "REVIEW DATE";sal_rev_date 
CASE 4 

INPUT "TAX YEAR-TO-DATE"; tax_ytd 
CASE 5 

EXIT read_loop 
CASE ELSE 

PRINT "Invalid response -- please try again" 
END SELECT 

NEXT 
PUT #5 

NEXT 
END WHEN 

HANDLER eof_handler 
IF ERR = EOF 

THEN 

ELSE 

END IF 
END HANDLER 
END 

PRINT "End of file" 

EXIT HANDLER 

9.7.2.2 Multiple Maps 

When a program contains more than one map with the same name, 
the storage allocated by these MAP statements is overlaid, as shown in 
Figure 9-2. This technique is useful for manipulating strings. 

When you use more than one map to access a record buffer, VAX BASIC 
uses the size of the largest map to determine the size of the record. 
(The RECORDSIZE clause of the OPEN statement can override this 
map-defined record size. For more information, see Chapter 15.) 

9-16 Data Definition 



Figure 9-2: Multiple Maps 

NA.ME$= 40 BYTES ADDRESS$= 44 BYTES 

.....,., ~ ( ~ ~ 

FIRST.NAMES$ LAST.NAMES$ STREET. STREET$ CITY$ 

15 BYTES 
NUMBER$ 

25 BYTES 16 BYTES 23 BYTES 
5 BYTES 

ZK-5183-86 

You can also use multiple maps to interpret numeric data in more than 
one way. The following example creates a map area named barray. The 
first MAP statement allocates 26 bytes of storage in the form of an integer 
BYTE array. The second MAP statement defines this same storage as a 
26-byte string named ABC. When the FOR ... NEXT loop executes, it assigns 
values corresponding to the ASCII values for the uppercase letters A 
through Z. 

Example 

MAP (barray) BYTE alphabet(26) 
MAP (barray) STRING ABC = 26 
FOR IY. = OY. TO 26% 

alphabet(IY.) = IY. + 66Y. 
NEXT !Y. 
PRINT ABC 
END 

Output 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

9. 7 .3 FILL Items 

FILL items reserve space in map and common blocks and in record buffers 
accessed by MOVE or REMAP statements. Thus, FILL items mask parts 
of the record buffer and let you skip over fields and reserve space in or 
between data elements. 

Data Definition 9-17 



FILL formats are available for all data types. Table 9-3 summarizes the 
FILL formats and their default allocations if no data type is specified. 

Table 9-3: FILL Item Formats, Representations, and Default 
Allocations 

FILL Format 

FILL 

FILL(n) 

FILL% 

FILL%(n) 

FILL$ 

FILL$(n) 

FILL$= m 

FILL$(n) = m 

Representation 

Floating-point 

n floating-point elements 

Integer (BYTE, WORD, or LONG) 

n integer elements 

String 

n string elements 

String 

n string elements, m bytes each 

NOTE 

Bytes Used 

4, 8, or 16 

4n, 8n, or 
16n 

1, 2, or 4 

ln, 2n, or 
4n 

16 

16n 

m 

In the applicable formats of FILL, n represents a repeat count, 
not an array subscript. FILL(n), for example, represents n real 
elements, not n+l. 

You can also use data type keywords with FILL and optionally data type 
suffixes. The data type and storage requirements are those of the last data 
type specified. For example: 

MAP (QED) STRING A, FILL$=24, LONG SSN, FILLY., REAL SAL, FILL(5) 

This MAP statement uses data type keywords to reserve space for 

• A 16-character string variable A. 

• Twenty-four bytes of padding. 

• One LONG variable, SSN. 

• Four bytes of padding. 

• One REAL variable, SAL. 

• Space for five floating-point numbers. This requires 10, 20, or 80 bytes 
of padding, depending on the default size for floating-point numbers. 

9-18 Data Definition 



You can specify user-defined data types (RECORD names) for FILL items. 
For instance, in the following example, the first line defines a RECORD of 
data type X. The MAP statement contains a fill item of this data type, thus 
reserving space in the buffer for one RECORD of type X. 

RECORD X 
REAL Y1, Y2(10) 

END RECORD X 
MAP (QED) X FILL 

See Chapter 10 for more information on the RECORD statement. 

9. 7 .4 Using COMMON and MAP in Subprograms 

The COMMON and MAP statements create a block of storage called a 
PSECT. This common or map storage block is accessible to any subpro
gram. A VAX BASIC main program and a subprogram can share such an 
area by referencing the same common or map name. 

For instance, the following example contains common blocks that define 

• A 16-character string field called A by the main program and X by the 
subprogram 

• A 10-character string field called B by the main program and Z by the 
subprogram 

• A 4-byte integer field called C by the main program and Y by the 
subprogram 

!In a main program 
COMMON (A1) STRING A, B = 10, LONG C 

!In a subprogram 
COMMON (A1) STRING X, Z = 10, LONG Y 

If a subprogram defines a common or map area with the same name as 
a common or map area in the main program, it overlays the common or 
map defined in the main program. 

Multiple COMMON statements with the same name behave differently 
depending on whether these statements are in the same program mod
ule. If they are in the same program module, then the storage for each 
common area is concatenated. However, if they are in different program 
units, then the common areas overlay the same storage. The following 
COMMON statements are in the same program module; therefore, they 

Data Definition 9-19 



are concatenated in a single PSECT. The PSECT contains two 32-byte 
strings. 

COMMON (XYZ) STRING A = 32 
COMMON (XYZ) STRING B = 32 

In contrast, the following COMMON statements are in different program 
modules, and thus overlay the same storage. Therefore, the PSECT 
contains one 32-byte string, called A in the main program and Bin the 
subprogram. 

!In the main program 
COMMON (XYZ) STRING A = 32 

!In the subprogram 
COMMON (XYZ) STRING B = 32 

Although you can redefine the storage in a common section when you 
access it from a subprogram, you should generally not do so. Common 
areas should contain exactly the same variables in all program modules. 
To make sure of this, you should use the %INCLUDE directive, as shown 
in the following example: 

Example 

COMMON (SHARE) WORD emp_num, It 
DECIMAL (8,0) salary, It 
STRING wage_class = 2 

!In the main program 
%INCLUDE "COMMON.BAS" 

!In the subprogram 
%INCLUDE "COMMON.BAS" 

If you use the %INCLUDE directive, you can lessen the chance of a 
typographical error appearing in your program. For more information on 
using the %INCLUDE directive, see Chapter 18. 

If you must redefine the variables in a PSECT, you should use the MAP 
statement or a record with variants for each overlay. When you use the 
MAP statement, use the %INCLUDE directive to create identical maps 
before redefining them, as shown in the following example. The map 
defined in MAP.BAS is included in both program modules as a 40-byte 

9-20 Data Definition 



string. This map is redefined in the subprogram, allowing the subprogram 
to access parts of this string. 

Example 

MAP (REDEF) STRING f ull_name = 40 

!In the main program 
%INCLUDE "MAP.BAS" 

!In the subprogram 
%INCLUDE "MAP.BAS" 
MAP (REDEF) STRING first_name=15, MI=1, last_name=24 

9.8 Dynamic Mapping 

Dynamic mapping lets you redefine the position of variables in a static 
storage area. This storage area can be either a map name or a previously 
declared static string variable. Dynamic mapping requires three VAX 
BASIC statements: 

• A declarative statement, such as a MAP statement, allocating a fixed
length storage area 

• A MAP DYNAMIC statement, naming the variables whose positions 
can change at run time 

• A REMAP statement, specifying the new positions of the variables 
named in the MAP DYNAMIC statement 

The MAP DYNAMIC statement does not affect the amount of storage 
allocated. The MAP DYNAMIC statement causes VAX BASIC to create 
internal pointers to the variables and array elements. Until your program 
executes the REMAP statement, the storage for each variable and each 
array element named in the MAP DYNAMIC statement starts at the 
beginning of the map storage area. 

The MAP DYNAMIC statement is nonexecutable. With this statement, 
you cannot specify a string length. All string items have a length of zero 
until the program executes a REMAP statement. 

Data Definition 9-21 



The REMAP statement specifies the new positions of variables named 
in the MAP DYNAMIC statement. That is, it causes VAX BASIC to 
change the internal pointers to the data. Because the REMAP statement is 
executable, it can redefine the pointer for a variable or array element each 
time the REMAP statement is executed. 

With the MAP DYNAMIC statement, you can specify either a map name 
or a previously declared static string variable. When you specify a map 
name, a MAP statement with the same map name must lexically precede 
the MAP DYNAMIC statement. 

In the following example, the MAP statement creates a storage area and 
names it emp_buffer. The MAP DYNAMIC statement specifies that the 
positions of variables emp_name and emp_address within the map area, 
can be dynamically defined with the REMAP statement. 

Example 

DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2 
MAP (emp_buffer) LONG badge, & 

STRING social_sec_num = 9, & 
BYTE name_length, & 

address_length, & 
FILL (60) 

MAP DYNAMIC (emp_buffer) STRING emp_name, & 

WHILE 1% 
GET #1 

emp_address 

REMAP (emp_buffer) STRING FILL = emp_fixed_info, & 
emp_name = name_length, & 
emp_address = address_length 

NEXT 

At the start of program execution, the storage for badge is the first 4 bytes 
of emp_buffer, the storage for social _sec_num is equal to 9 bytes and 
together name_f ength and address_length are equal to 2 bytes. The FILL 
keyword reserves 60 additional bytes of storage. The MAP DYNAMIC 
statement defines the variables emp_name and emp_address whose posi
tions and lengths will change at run time. When executed, the REMAP 
statement defines the FILL area to be equal to emp-fixed_info and defines 
the positions and lengths of emp_name and emp_address. 

When you specify a static string variable, it must be either a variable 
declared in a MAP or COMMON statement or a parameter declared in a 
SUB, FUNCTION, PICTURE or DEF. The actual parameter passed to the 
procedure must be a static string variable defined in a COMMON, MAP, 
or RECORD statement. 

9-22 Data Definition 



The following example shows the use of a static string variable as a 
parameter declared in a SUB. The MAP DYNAMIC statement specifies 
the input parameter, input_rec, as the string to be dynamically defined 
with the REMAP statement. In addition, the MAP DYNAMIC statement 
specifies a string array A whose elements will point to positions in input_ 
rec after the REMAP statement is executed. The REMAP statement 
defines the length and position of each element contained in array A. The 
FOR. .. NEXT loop then assigns each element contained in array A into 
array item, the target array. 

Example 

SUB deblock (STRING input_rec, STRING item()) 
MAP DYNAMIC (input_rec) STRING A(1 TO 3) 
REMAP (input_rec) & 

A(1) = 5, & 
A(2) = 3, & 
A(3) = 4 

FOR I = LBOUND{A) TO UBOUND(A) 
item(!) = A(I) 

NEXT I 
END SUB 

Note that dynamic map variables are local to the program module in 
which they reside. Therefore, REMAP only affects how that module views 
the buffer. 

For more information on using the MAP DYNAMIC and REMAP state
ments, see the VAX BASIC Reference Manual. 

Data Definition 9-23 





Chapter 10 

Creating and Using Data Structures 

A data structure is a collection of data items that can contain elements or 
components of different data types. 

The RECORD statement lets you create your own data structures. You use 
the RECORD statement to create a pattern of a data structure, called the 
RECORD template. Once you have created a template, you use it to declare 
an instance of the RECORD, that is, a RECORD variable. You declare a 
record variable just as you declare a variable of any other type: with 
the DECLARE statement or another declarative statement. A RECORD 
instance is a variable whose structure matches that of the RECORD 
template. 

Remember that the RECORD statement does not create any variables. It 
merely creates a template, or user-defined data type, that you can then use 
to create variables. 

This chapter describes how to create and use data structures. 

10. 1 The RECORD Statement 

The RECORD statement names and defines a data structure. Once a 
data structure (or RECORD) has been named and defined, you can use 
that RECORD name anywhere that you can use a VAX BASIC data type 
keyword. You build the data structure using: 

• Variables of any valid VAX BASIC data type 

• RECORD variables of previously defined RECORD data types 
• Any combination of the two 

Creating and Using Data Structures 1 0-1 



The following example creates a RECORD template called Employee. 
Employee is a data structure that contains one LONG integer, one 
10-character string, one 20-character string, and one 11-character string. 

Example 

RECORD Employee 
LONG Emp_number 
STRING First_name = 10 
STRING Last_name = 20 
STRING Soc_sec_number = 11 

END RECORD Employee 

To create instances of this data structure, you use declarative statements. 
For instance, in the following example, the first DECLARE statement 
creates a variable named Emp_rec of data type Employee. The second 
DECLARE statement creates a one-dimensional array, named Emp_array, 
that contains 1001 instances of the Employee data type. 

Example 

DECLARE Employee Emp_rec 
DECLARE Employee Emp_array (1000) 

Any reference to a RECORD component must contain the name of the 
RECORD instance (that is, the name of the declared variable) and the 
name of the elementary RECORD component you are accessing, separated 
by two colons ( :: ). For example, the following program assigns values to 
an instance of the Employee RECORD template: 

Example 

! Record Template 

RECORD Employee 

LONG Emp_number 
STRING First_name = 10 
STRING Last_name = 10 
STRING Soc_sec_number = 11 

END RECORD Employee 

! Declarations 

DECLARE Employee Emp_rec 

DECLARE STRING Social_security 

! Program logic starts here. 

10-2 Creating and Using Data Structures 



INPUT 'Employee number'; Emp_rec::Emp_number 
INPUT 'First name'; Emp_rec::First_name 
INPUT 'Last name'; Emp_rec::Last_name 
INPUT 'Social security'; Social_security 
IF Social_security <> "" 
THEN 

Emp_rec::Soc_sec_number = Social_security 
END IF 

PRINT 
PRINT "Employee number is: 
PRINT "First name is: "; 
PRINT "Last name is: "; 
PRINT "Social security is: 

"; Emp_rec::Emp_number 
Emp_rec::First_name 
Emp_rec::Last_name 

"; Emp_rec::Soc_sec_number 
END 

When you access an array of RECORD instances, the array subscript 
should immediately follow the name of the RECORD variable. The 
following example shows an array of RECORD instances. 

Example 

! Record Template 

RECORD Employee 

LONG Emp_number 
STRING First_name = 10 
STRING Last_name = 10 
STRING Soc_sec_number = 11 

END RECORD 

! Declarations 

DECLARE Employee Emp_array ( 10 ) 

DECLARE INTEGER Index 

DECLARE STRING Social_security 

! Program logic starts here. 

FOR Index = 0 TO 10 

PRINT 
INPUT 'Employee number'; Emp_array(Index)::Emp_number 
INPUT 'First name'; Emp_array(lndex)::First_name 
INPUT 'Last name'; Emp_array(Index)::Last_name 
INPUT 'Social security'; Social_security 
IF Social_security <> "" 
THEN 

Emp_array(Index)::Soc_sec_number = Social_security 
END IF 

NEXT Index 

FOR Index = 0 TO 10 

Creating and Using Data Structures 10-3 



PRINT 
PRINT "Employee number is: 
PRINT "First name is: "; 
PRINT "Last name is: "; 
PRINT "Social security is: 

NEXT Index 

END 

"; Emp_array(Index)::Emp_number 
Emp_array(Index)::First_name 
Emp_array(Index)::Last_name 

"; Emp_array(Index)::Soc_sec_number 

You can have a RECORD that contains an array. When you declare 
arrays, VAX BASIC allows you to specify both lower and upper bounds. 

Example 

RECORD Grade_record 

STRING 
INTEGER 

END RECORD 

Student_name = 30 
Quiz_scores (1 TO 10) 

! Declarations 

Array to hold ten quiz grades. 

DECLARE Grade_record Student_grades ( 5 ) 

!The Student_grades array holds information on six students 
!(O through 5), each of whom has ten quiz grades (1through10). 

DECLARE INTEGER I,J 

!Program logic starts here. 

FOR I = 0 TO 5 

PRINT 

!This loop executes once for each student. 

INPUT 'Student name'; Student_grades(I)::Student_name 

FOR J = 1 TO 10 !This loop executes ten times for each student. 

PRINT 'Score for quiz number'; J 
INPUT Student_grades(I)::Quiz_scores(J) 

NEXT J 
NEXT I 

FOR I = 0 TO 5 

PRINT 
PRINT 'Student name: '; Student_grades(I)::Student_name 

FOR J = 1 TO 10 

PRINT 'Score for quiz number'; J; ": "; 
PRINT Student_grades(I)::Quiz_scores(J) 

1 0-4 Creating and Using Data Structures 



NEXT J 

NEXT I 

END 

Because any reference to a component of a RECORD instance must 
begin with the name of the RECORD instance, RECORD component 
names need not be unique in your program. For example, you can have 
a RECORD component called First_name in any number of different 
RECORD statements. References to this component are unambiguous 
because every RECORD component reference must specify the record 
instance in which it resides. 

10.1.1 Grouping RECORD Components 

A RECORD component can consist of a named group of instances, iden
tified with the keyword GROUP. You use GROUP to refer to a collection 
of RECORD components, or to create an array of components that have 
different data types. The GROUP name can be followed by a list of upper 
and lower bounds, which define an array of the GROUP components. 
GROUP is valid only within a RECORD block. 

The declarations between the GROUP statement and the END GROUP 
statement are called a GROUP block. 

For instance, the following example declares a RECORD template of 
data type Yacht. Yacht is made up of two groups: Type_of_yacht and 
Specifications. Each of these groups is composed of elementary RECORD 
components. VAX BASIC also allows groups within other groups. 

Example 

RECORD Yacht 

GROUP Type_of _yacht 
STRING Manufacturer = 10 
STRING Model = 10 

END GROUP Type_of _yacht 

GROUP Specifications 
STRING Rig = 6 
STRING Length_over_all = 3 
DECIMAL(6,0) Displacement 
DECIMAL(2,0) Beam 
DECIMAL(7,2) Price 

END GROUP Specifications 

END RECORD Yacht 

Creating and Using Data Structures 1 0-5 



10.1.2 RECORD Variants 

In some cases, it is useful to have different record components overlay the 
same record field, in much the same way that multiple maps can overlay 
the same storage. Such an overlay is called a RECORD variant. You use 
the keywords VARIANT and CASE to set up RECORD variants. 

The following example creates a RECORD template for any of three kinds 
of boats. 

Example 

RECORD Boat 

STRING Make = 10 
STRING Model = 10 
STRING Type_of_boat = 1 

VARIANT 

CASE ! Sailboats 

STRING Rig = 20 

CASE ! Powerboats 

WORD Horsepower 

CASE ! Canoes 

WORD Length 
WORD Weight 

END VARIANT 

END RECORD 

This field contains the value S, P, or C. 
Value S causes the record instance to be 
interpreted as describing a sailboat, value 
P as describing a powerboat, and value C as 
describing a canoe. 

The SELECT ... CASE statement makes it easy to access one of several 
possible RECORD variants in a particular RECORD instance. A RECORD 
component outside the overlaid fields usually determines which RECORD 
variant is being used in a particular reference; in this case the determining 
RECORD component is Type_of_boat. You can use this component in the 
SELECT expression. 

10-6 Creating and Using Data Structures 



Example 

! Declarations 

DECLARE Boat My_boat 

Main program logic starts here 

Input_boat_information: 

INPUT 'Make of boat'; My_boat::Make 
INPUT 'Model'; My_boat::Model 
PRINT 'Type of boat (S =Sailboat, P =Powerboat, C =Canoe)'; 
INPUT My_boat::Type_of_boat 

SELECT My_boat::Type_of_boat 

CASE "S" 

INPUT ' Sail rig' ; My _boat : : Rig 

CASE "P" 

INPUT 'Horsepower'; My_boat::Horsepower 

CASE "C" 

INPUT 'Length'; My_boat::Length 
INPUT 'Weight'; My_boat::Weight 

CASE ELSE 

PRINT "Invalid type of boat, please try again." 

END SELECT 

The value of the Type_of_boat component determines the format of the 
variant part of the record. 

The following example is a slightly more complex version of the same 
type of procedure. This program prompts for the RECORD instance 
components in each variant. When the user responds to the "Wage Class" 
prompt, the program branches to one of three case blocks depending on 
the value of Wage_class. 

Creating and Using Data Structures 1 0-7 



Example 

!Record templates 

RECORD Emp_wage_class 

STRING Emp_name = 30 

STRING Street = 16 
STRING City = 20 
STRING State = 2 
DECIMAL(6,0) Zip 

Employee name string. 

These components make up the 
employee address field. 

STRING Wage_class 

VARIANT 

CASE 

GROUP Hourly 

1 

DECIMAL(4,2) Hourly_wage 
SINGLE Regular_pay_ytd 
SINGLE Overtime_pay_ytd 

END GROUP Hourly 

CASE 

GROUP Salaried 

DECIMAL(7,2) Yearly_salary 
SINGLE Pay_ytd 

END GROUP Salaried 

CASE 

GROUP Executive 

DECIMAL(8,2) Yearly_salary 
SINGLE Pay_ytd 
SINGLE Expenses_ytd 

END GROUP Executive 

END VARIANT 

END RECORD 

Declarations: 

DECLARE Emp_wage_class Emp 

Main Program logic starts here. 

LINPUT "Name"; Emp: :Emp_name 
LINPUT "Street"; Emp::Street 

LINPUT "State"; Emp::State 
INPUT "Zip Code"; Emp::Zip 
LINPUT "Wage Class"; Emp::Wage_class 

10-8 Creating and Using Data Structures 

Hourly workers. 

Hourly wage rate. 
Regular pay year-to-date. 
Overtime pay year-to-date. 

Salaried workers. 

Yearly salary. 
Pay year-to-date. 

Executives. 

Yearly salary. 
Pay year-to-date. 
Expenses year-to-date. 

Use LINPUT statements for 
string fields so the entire 
string is assigned to the 
variable. 



SELECT Emp::Wage_class 

CASE "A" 
INPUT 'Rate';Emp::Hourly_wage 
INPUT 'Regular pay';Emp::Regular_pay_ytd 
INPUT 'Overtime pay';Emp::Overtime_pay_ytd 

CASE "B" 
INPUT 'Salary';Emp::Salaried::yearly_salary 
INPUT 'Pay YTD';Emp::Salaried::pay_ytd 

CASE "C" 
INPUT 'Salary';Emp: :Executive::yearly_salary 
INPUT 'Pay YTD';Emp::Executive::pay_ytd 
INPUT 'Expenses';Emp::Expenses_ytd 

END SELECT 

Variant fields can appear anywhere within the RECORD. When you use 
RECORD variants, you imply that any RECORD instance can contain any 
one of the listed variants. Therefore, if each variant requires a different 
amount of space, VAX BASIC uses the case that requires the most storage 
to determine the space allocated for each RECORD instance. 

10.1.3 Accessing RECORD Components 

To access a particular elementary component within a RECORD that 
contains other groups, you use the name of the declared RECORD in
stance, the group name (or group names, if groups are nested), and the 
elementary component name, each separated by double colons ( :: ). 

In the following example, the PRINT statement displays the Rig com
ponent in the Specifications group in the variable named My_yacht. The 
RECORD instance name qualifies the group name and the group name 
qualifies the elementary RECORD component. The elementary component 
name, qualified by all intermediate group names, and by the RECORD 
instance name, is called a fully qualified component. The full qualification 
of a component is called a component path name. 

Example 

DECLARE Yacht My_yacht 

PRINT My_yacht::Specifications::Rig 

Creating and Using Data Structures 10-9 



Because it is cumbersome to specify the entire component path name, 
VAX BASIC allows elliptical references to RECORD components. GROUP 
names are optional in the component path name unless: 

• A RECORD contains more than one component with the same name 

• The GROUP is an array 

The rules for using elliptical references are as follows: 

• You must always specify the RECORD instance, that is, the name of 
the declared variable. 

• You must always specify any dimensioned group. 
• You may omit any other intermediate component names. 

• You must specify the final component name. 

The following example shows that using the complete component path 
name is valid but not required. The assignment statement uses the 
fully-qualified component name; the PRINT statement uses an elliptical 
reference to the same component, omitting Extended-family and Nuclear_ 
family GROUP names. Note that the Children GROUP name is required 
because the GROUP is an array; the elliptical reference to this compon~rtt 
must include the desired array element, in this case the second element of 
the Children array. 

Example 

! RECORD templates: 

RECORD Family 

GROUP Extended_family 

STRING Grandfather(1) = 30 
STRING Grandmother(1) = 30 

GROUP Nuclear_family 

STRING Father = 30 
STRING Mother = 30 

GROUP Children (10) 

STRING Kid = 10 
STRING Gender = 1 

END GROUP Children 

END GROUP Nuclear_family 

END GROUP Extended_f amily 

10-10 Creating and Using Data Structures 

Two-element fixed-length string 
arrays for the names of maternal 
and paternal grandparents. 

Fixed-length strings for the names 
of parents. 

An 11-element array for the names and 
gender of children. 



END RECORD 

! Declarations 

DECLARE Family My_family 

! Program logic starts here. 

My_family: :Extended_family: :Nuclear_family: :Children(!): :Kid = "Johnny" 

PRINT My_family: :Children(1)::Kid 

END 

Output 

Johnny 

Example 

! RECORD Templates. 

RECORD Test 

INTEGER Test_integers(2) 

GROUP Group_! 

REAL My_number 
STRING Group_1_string 

END GROUP 

GROUP Group_2(6) 

INTEGER My_number 
DECIMAL Group_2_decimal 

END GROUP 

END RECORD 

! Declarations 

DECLARE Test Array_of_test(10) 
DECLARE Test Single_test 

3-element array of integers. 

Single GROUP containing: 

a real number and 
a 16-character (default) string 

A 6-element GROUP, each element containing: 

an integer and 
a DECIMAL number. 

Create an 11-element array of type Test ... 
... and a separate single instance of type 
Test. 

The minimal reference to the string Group_L. . ..string in RECORD instance 
Array_of _test is as follows: 

Array_of_test(i)::Group_1_string 

In this case, i is the subscript for array Array_of _test. Because the 
RECORD instance is itself an array, the reference must include a specific 
array element. 

Creating and Using Data Structures 10-11 



Because Single_test is not an array, the minimal reference to string 
Group_1_string in RECORD instance Single_test is as follows: 

Single_test::Group_1_string 

The minimal reference for the REAL variable My_number in GROUP 
Group_1 in RECORD instance Array_of _test is as follows: 

Array_of_test(i}::Group_1::My_nwnber 

Here, i is the subscript for array Array_of _test. The minimal reference 
to the REAL variable My_number in RECORD instance Single_test is as 
follows: 

Single_test::Group_1::My_nwnber 

Because there is a variable named My_number in groups Group_1 and 
Group_2, you must specify either Group_1::My_number or Group_2(i)::My_ 
number. In this case, extra component names are required to resolve an 
otherwise ambiguous reference. 

The minimal reference to the DECIMAL variable Group_2_decimal in 
RECORD instances Array_of _test and Single_test are the fully qualified 
references. In the following examples, i is the subscript for array 
Array_of _test and j is an index into the group array Group_2. Even 
though Group_2_decimal is a unique component name within RECORD 
instance Single_test, the element of array Group_2 must be specified. In 
this case the extra components must be specified because each element of 
group Group_2 contains a component named Group_2_decimal. 

Array_of_test(i): :Group_2(j)::Group_2_decimal 

Single_test::Group_2(j)::Group_2_decimal 

You can assign all the values from one RECORD instance to another 
RECORD instance, as long as the RECORD instances are identical except 
for names. 

In the following example, RECORD instances First_test1, Second_test1, 
and the individual elements of array Array_of-test1 have the same form: 
an array of four groups, each of which contains a 10-byte string variable, 
followed by a REAL variable, followed by an INTEGER variable. Any of 
these RECORD instances can be assigned to one another. 

1 0-12 Creating and Using Data Structures 



Example 

!RECORD Templates 

RECORD Test1 

GROUP Group_1(4) 

STRING My_string_1 10 
REAL My_real_1 
INTEGER My_integer_1 

END GROUP 

END RECORD 

RECORD Test2 

GROUP Group_2 

STRING My_string_2 10 
REAL My_real_2 
INTEGER My_integer_2 

END GROUP 

END RECORD 

RECORD Test3 

STRING My_string_3 = 10 
REAL My_real_3 
INTEGER My_integer_3 

END RECORD 

!Declarations 

DECLARE Test1 First_test1, t 
Second_test1, t 
Array_of_test1(3) 

DECLARE Test2 First_test2 

DECLARE Test3 First_test3, t 
Array_of_test3(10) 

!Program logic starts here 

! A single RECORD instance is assigned to another single instance 

First_test1 = Second_test1 

! An array element is assigned to a single instance 

Second_test1 = Array_of_test1(2) 

! And vice versa 

Creating and Using Data Structures 1 0-13 



Array_of_test1(2) = Second_test1 

Further, you can assign values from single RECORD instances to groups 
contained in other instances. 

In the following example, Array_of_test1 and First_test1 do not have 
the same form because Array_of _test1 is an array of RECORD Test1 and 
First_test1 is a single instance of RECORD Test1. Therefore, First_test1 
and Array_of_test1 cannot be assigned to one another. 

Example 

! A single instance is assigned to one group 

Array_of_test1(3)::Group_1(2) = First_test3 

! An array element is assigned a value from 
! a group contained in another array instance 

Array_of_test3(5) = Array_of_test1(3)::Group_1(3) 

The examples shown in this chapter explain the mechanics of using 
data structures. See Chapter 14 for more information about using data 
structures as parameters. See Chapter 15 for more information about 
using data structures for file input and output. 

10-14 Creating and Using Data Structures 



Chapter 11 

Program Control 

VAX BASIC normally executes statements sequentially. Control statements 
let you change this sequence of execution. VAX BASIC control statements 
can alter the sequence of program execution at several levels: 

• Statement modifiers control the execution of a single statement. 

• Loops or decision blocks control the execution of a block of statements. 

• Branching statements such as GOTO and ON GOTO pass control to 
statements or local subroutines. 

• The EXIT and ITERATE statements explicitly control loops or decision 
blocks. 

• The SLEEP, WAIT, STOP and END control statements suspend or halt 
the execution of your entire program. 

This chapter describes all of the VAX BASIC control statements. 

11. 1 Statement Modifiers 

Statement modifiers are control structures that operate on a single state
ment. Statement modifiers let you execute a statement conditionally or 
create an implied loop. VAX BASIC has five statement modifiers: IF, 
UNLESS, FOR, UNTIL, and WHILE. 

A statement modifier affects only the statement immediately preceding it. 
You can modify only executable statements; declarative statements are not 
modifiable. 

Program Control 11-1 



11. 1. 1 The IF Modifier 

The IF modifier tests a conditional expression. If the conditional expres
sion is true, VAX BASIC executes the statement. If it is false, VAX BASIC 
does not execute the modified statement but continues execution at the 
next program statement. The following is an example of a statement using 
the IF modifier: 

PRINT A IF (A < 6) 

11.1.2 The UNLESS Modifier 

The UNLESS modifier tests a conditional expression. VAX BASIC executes 
the modified statement only if the conditional expression is false. Like the 
IF modifier, the UNLESS modifier operates on a single statement: 

PRINT A UNLESS (A < 6) 

This is equivalent to 

PRINT A IF A >= 6 

11.1.3 The FOR Modifier 

The FOR modifier creates a loop on a single line. The following is an 
example of an implied loop created by a FOR modifier: 

A = A + 1 FOR IY. = 11. TO 101. 

11.1.4 The UNTIL Modifier 

The UNTIL modifier, like the FOR modifier, creates a single-line loop. 
However, instead of using a formal loop variable, you specify the termi
nating condition with a conditional expression. The modified statement 
executes repeatedly as long as the condition is false. For example: 

B = B + 1 UNTIL (A - B) < 0.0001 

Because of precision limitations, you should not use real number calcula
tions in UNTIL loops. For example: 

Z = Z + 1 UNTIL Z/6 = 100 

11-2 Program Control 



Because Z/5 may never exactly equal 100, the loop could execute 
indefinitely. 

11.1.5 The WHILE Modifier 

The WHILE modifier repeats a statement as long as a conditional ex
pression is true. Like the UNTIL and FOR modifiers, it lets you create 
single-line loops. In the following example, VAX BASIC replaces the value 
of A with A/2 as long as the absolute value of A is greater than 1/10. 
Note that you can inadvertently create an infinite loop if the terminating 
condition is never reached. 

A= A I 2 WHILE ABS(A) > 0.1 

11.1.6 Nesting Modifiers 

You can append more than one modifier to a statement. This is called 
nesting modifiers. VAX BASIC evaluates nested modifiers from right to 
left. If the test of the rightmost modifier fails, control passes to the next 
statement, not to the preceding modifier on the same line. 

In the following example, VAX BASIC first tests the rightmost modifier 
of the first PRINT statement. Because this condition is false, VAX BASIC 
executes the following PRINT statement and tests the rightmost modifier. 
Because this condition is met, VAX BASIC tests the leftmost modifier 
of the same PRINT statement. This condition, however, is not met. 
Therefore, VAX BASIC executes the following PRINT statement. Because 
both conditions are met in the third PRINT statement, VAX BASIC prints 
the value of C. 

Example 

A = 5 
B = 10 
c = 15 

PRINT "A =" A IF A = 5 UNLESS C = 15 
PRINT "B =" B UNLESS C = 16 IF B = 10 
PRINT "C =" C IF B = 10 UNLESS C = 5 
END 

Output 

c = 16 

Program Control 11-3 



11.2 Loops 

Loops allow you to repeat the execution of a set of statements. This set 
of statements is called a loop block. There are three types of VAX BASIC 
program loops: 

• FOR. .. NEXT 
• WHILE ... NEXT 

• UNTIL.NEXT 

If you know how many times you want a loop to execute, that is, the 
number of iterations, you can use a FOR ... NEXT loop. If you do not know 
the exact number of iterations when the loop begins execution, you can 
use either a WHILE ... NEXT or an UNTIL.NEXT loop. 

Note that all of these types of loops can be nested, that is, lexically located 
one inside another. 

11.2.1 FOR ... NEXT Loops 

In a FOR. .. NEXT loop, you specify a loop control variable (the loop index) 
that determines the number of loop iterations. This number must be a 
scalar (unsubscripted) variable. When VAX BASIC begins execution of 
a FOR. .. NEXT loop, the starting and ending values of the loop control 
variable are known. 

The FOR statement assigns the control variable a starting value and a 
terminating value. You can use the optional STEP clause to specify the 
amount to be added to the loop control variable after each loop iteration. 

When a FOR loop block executes, the VAX BASIC compiler does the 
following: 

1. Evaluates the starting value and assigns it to the control variable. 

2. Evaluates the ending value and the step value and assigns these 
results to temporary storage locations. 

3. Tests whether the ending value has been exceeded. If the ending 
value has already been exceeded, VAX BASIC executes the statement 
following the NEXT statement. If the ending value has not been 
exceeded, VAX BASIC executes the statements in the loop. 

11-4 Program Control 



4. Adds the step value to the control variable and transfers control 
to the FOR statement, which tests whether the ending value has 
been exceeded. Steps 3 and 4 are repeated until the ending value is 
exceeded. 

Note that VAX BASIC performs the test before the loop executes. When 
the control variable exceeds the ending value, VAX BASIC exits the loop, 
and then subtracts the step value from the control variable. This means 
that after loop execution, the value of the control variable is the value 
last used in the loop, not the value that caused loop termination. If the 
starting value is greater than the ending value, and the step value is 
positive, the loop will not execute. 

Example 1 assigns the values 1 through 10 to consecutive array elements 
1 through 10 of New_array, whereas Example 2 assigns consecutive 
multiples of 2 to the odd-numbered elements of New_array. 

Example 1 

FOR IY. = 11. TO 101. 
New_array(IY.) = IY. 

NEXT IY. 

Example 2 

FOR IY. = 11. TO 101. STEP 2 
New_array(IY.) = IY. + 1Y. 

NEXT lY. 

Note that the starting, ending, and step values can be run-time expressions. 
You can have VAX BASIC calculate these values when the program runs, 
as opposed to using a constant value. For instance, the following example 
assigns sales information to array Sales_data. The number of iterations 
depends on the value of the variable Days_in_month, which represents 
the number of days in that particular month. 

Example 

FOR IY. = 11. TO Days_in_month 
Sales_data(IY.) = Quantity_sold 

NEXT lY. 

Because the starting, ending, and step values can be numeric expressions, 
they are not evaluated until the program runs. This means that you can 
have a FOR ... NEXT loop that does not execute. The following example 
prompts the user for the starting, ending, and step values for a loop, and 
then tries to execute that loop. The loop executes zero times because it is 
impossible to go from 0 to 5 using a step value of -1. 

Program Control 11-5 



Example 

counted = OX 

INPUT "Start"; startX 
INPUT "Finish"; finishX 
INPUT "Step value"; step_valX 

FOR IY. = startY. TO finishX STEP step_valY. 
counterX = counterY. + 1Y. 

NEXT IX 

PRINT "This loop executed"; counter%; "times." 

Output 

Start? O 
Finish? 6 
Step value? -1 
This loop executed 0 times. 

Whenever possible, you should use integer variables to control the execu
tion of FOR. .. NEXT loops because some decimal fractions cannot be repre
sented exactly in a binary computer, and the calculation of floating-point 
control variables is subject to this inherent imprecision. 

In the following example, the first loop uses an integer control variable 
while the second uses a floating-point control variable. The first loop 
executes 100 times and the second 99 times. After the ninety-ninth 
iteration of the second loop, the internal representation of the value 
of Floating_point_variable exceeds 10 and VAX BASIC exits the loop. 
Because the first loop uses integer values to control execution, VAX BASIC 
does not exit the loop until Integer_variable equals 100. 

Example 

Loop_count_1 = OY. 
Loop_count_2 = OY. 

FOR Integer_variable = 1Y. to 1001. STEP 1Y. 
Loop_count_1 = Loop_count_1 + 1Y. 

NEXT Integer_variable 

FOR Floating_point_variable = 0.1 to 10 STEP 0.1 
Loop_count_2 = Loop_count_2 + 1Y. 

NEXT Floating_point_variable 

11-6 Program Control 



PRINT "Integer loop count:"; Loop_count_1 
PRINT "Integer loop end :"; Integer_variable 
PRINT "Real loop count: "; Loop_count_2 
PRINT "Real loop end: "· Floating_point_variable 

Output 

Integer loop count: 100 
Integer loop end: 100 
Real loop count: 99 
Real loop end: 9.9 

If you need to use floating-point values in a loop, you should initialize a 
floating-point variable and increment it within the loop. 

Example 

Real_counter = 0.1 
Count_loop: 
FOR Integer_variable = 11. TO 1000001. 

Real_counter = Real_counter + .1 
NEXT Integer_variable 

Although it is not recommended programming practice, you can assign 
a value to a FOR ... NEXT loop's control variable while in the loop. This 
affects the number of times a loop executes. For example, assigning 
a value that exceeds the ending value of a loop will cause the loop's 
execution to end as soon as VAX BASIC performs the termination test in 
the FOR statement. Assigning values to ending or step variables, however, 
has no effect at all on the loop's execution. 

11.2.2 WHILE ... NEXT Loops 

A WHILE ... NEXT statement uses a conditional expression to control loop 
execution; the loop is executed as long as a given condition is true. A 
WHILE ... NEXT loop is useful when you do not know how many loop 
iterations are required. 

In the following example, the first statement tells the user to input data 
and then type DONE when he is finished. After the user enters the 
first piece of input, VAX BASIC executes the WHILE ... NEXT loop. If 
the first input value is not "DONE", the loop executes and prompts the 
user for another input value. Once the user enters this input value, the 
WHILE ... NEXT loop once again checks to see if this value corresponds to 
"DONE". The loop will continue executing until the user types "DONE" in 
response to the prompt. 

Program Control 11-7 



Example 

INPUT 'Type "DONE" when finished'; Answer 

WHILE (Answer <> "DONE") 

INPUT "More data"; Answer 
NEXT 

Note that the NEXT statement in the WHILE ... NEXT and UNTIL.NEXT 
loops does not increment a control variable; your program must change a 
variable in the conditional expression or the loop will execute indefinitely. 

The evaluation of the conditional expression determines whether the loop 
executes. The test is performed (that is, the conditional expression is 
evaluated) before the first iteration; if the value is false (0), the loop does 
not execute. 

It can be useful to intentionally create an infinite loop by coding a 
WHILE ... NEXT loop whose conditional expression is always true. Of 
course, when doing this, you must still take care to provide a way out of 
the loop. You can do this with an EXIT statement or by trapping a run
time error. See Chapter 17 for more information about trapping run-time 
errors. 

11.2.3 UNTIL...NEXT Loops 

The UNTIL.NEXT loop behaves exactly like a WHILE ... NEXT loop, 
except that the logical sense of the conditional expression is reversed; that 
is, the UNTIL.NEXT loop executes until a given condition is true. 

An UNTIL.NEXT loop executes repeatedly for as long as the conditional 
expression is false. Note that in UNTIL.NEXT and WHILE ... NEXT loops, 
the NEXT statement does not increment a control variable. You must 
explicitly change a variable in the conditional expression or the loop will 
execute indefinitely. 

It is possible to code the example in Section 11.2.2 as an UNTIL.. .NEXT 
loop as shown in the following example. These loops are equivalent 
except for the logical sense of the termination test (WHILE Answer < > 
"DONE" as opposed to UNTIL Answer = "DONE"). 

11-8 Program Control 



Example 

INPUT 'Type "DONE" when finished.'; Answer 

UNTIL (Answer = "DONE") 

INPUT "More data"; Answer 
NEXT 

UNTIL and FOR loops differ because VAX BASIC exits UNTIL loops as 
soon as the test for the terminating condition is met. This test occurs 
after VAX BASIC executes the NEXT statement and before it executes the 
UNTIL statement. For example, the following loop executes 10 times. 
When VAX BASIC exits the FOR loop,]% equals 10. 

Example 

FOR JX = 1X to 101. 
A = A + 1 
PRINT A 

NEXT JX 

The following UNTIL loop executes only nine times. After the ninth 
iteration, the conditional expression is true; control then passes out of the 
loop. 

Example 

JX = 11. 
UNTIL JX = 10X 

PRINT JX 
JX = J1. + 1X 

NEXT 

11.2.4 Nesting Loops 

When a loop block is entirely contained in another loop block, it is called 
a nested loop. 

The following example declares a two-dimensional array and uses nested 
FOR. .. NEXT loops to fill the array elements with sales information. The 
inner loop executes 16 times for each iteration of the outer loop. This 
example assigns a value to each of the 256 elements of the array. 

Program Control 11-9 



Example 

DECLARE 
INTEGER 

Column_number, 
Row_number 

REAL 
Sales_info, 
Two_dim_array (161., 161.) 

FOR Row_number = OY. TO 161. 
FOR Column_number = OY. to 161. 

INPUT "Please enter the sales information";saies_info 
Two_dim_array (Row_number, Column_number) = Sales_info 

NEXT Column_number 
NEXT Row_number 

Note that in nested loops the inner loop is entirely contained in the outer 
loop: nested loops cannot overlap. 

11.3 Unconditional Branching (the GOTO Statement) 

The GOTO statement specifies which program line the VAX BASIC com
piler is to execute next, regardless of that line's position in the program. 
If the statement at the target line number or label is nonexecutable (such 
as a REM statement), VAX BASIC transfers control to the next executable 
statement following the target line number. 

You can use a GOTO statement to exit from a loop; however, it is better 
programming practice to use the EXIT statement. 

11.4 Conditional Branching 

Conditional branching is the transfer of program control only when 
specified conditions are met. There are three VAX BASIC statements 
that let you conditionally transfer control to a target statement in your 
program: 

• The ON ... GOTO ... OTHERWISE statement 
• The IF ... THEN ... ELSE statement 

• The SELECT ... CASE statement 

11-1 0 Program Control 



11.4.1 The ON ... GOTO ... OTHERWISE Statement 

In the ON ... GOTO ... OTHERWISE statement, VAX BASIC tests the value 
specified after the ON keyword. If the value is l, VAX BASIC transfers 
control to the first target in the list; if the value is 2, control passes to the 
second target, and so on. If the value is less than l, or greater than the 
number of targets in the list, VAX BASIC transfers control to the target 
specified in the OTHERWISE clause. 

Example 

Menu: 
PRINT "Would you like to change:" 
PRINT "1. First name" 
PRINT "2. Last name" 

INPUT CHOICEY. 

ON CHOICEY. GOTO First_name, Last_name OTHERWISE Other_choice 

First_name: 
INPUT "First name"; firstname$ 
GOTO Done 

Last_name: 
INPUT "Last name"; lastname$ 
GOTO Done 

Other_choice: 
PRINT "Invalid choice" 
PRINT "Let's try again" 
GOTO Menu 

Done: 
END 

Note that if you do not supply an OTHERWISE clause and the control 
variable is less than 1 or greater than the number of targets, VAX BASIC 
signals "ON statement out of range (ERR= 58)". 

Program Control 11-11 



11.4.2 The IF ... THEN ... ELSE Statement 

The IF ... THEN ... ELSE statement evaluates a conditional expression and 
uses the result to determine which block of statements to execute next. 
If the conditional expression is true, VAX BASIC executes the statements 
in the THEN clause. If the conditional expression is false, VAX BASIC 
executes the statements in the ELSE clause, if one is present. If the 
conditional expression is false and there is no ELSE clause, VAX BASIC 
executes the statement immediately following the END IF statement. 

In the following example, VAX BASIC evaluates the conditional expression 
number < 0. If the input value of number is less than zero, the conditional 
expression is true. VAX BASIC then executes the four statements in the 
THEN clause and skips the statement in the ELSE clause. VAX BASIC 
transfers control to the statement following the END IF. If the value of 
number is greater than or equal to zero, the conditional expression is false. 
VAX BASIC then skips the statements in the THEN clause and executes 
the statement in the ELSE clause. 

Example 

INPUT "Input number"; number 

IF (number < O) 
THEN 

number = number * (-1) 
PRINT "That square root is imaginary" 
PRINT "The square root of its absolute value is"; 
PRINT SQR(number) 

ELSE 
PRINT "The square root is"; SQR(number) 

END IF 
END 

Output 

Input number? -9 
That square root is imaginary 
The square root of its absolute value is 3 

One of the most common programming errors is neglecting to terminate 
an IF ... THEN ... ELSE statement. After an IF block is executed, control is 
transferred to the statement immediately following the END IF. If there is 
no END IF, VAX BASIC transfers control to the next line number. When 
this happens, any code between the keyword ELSE and the next line 
number becomes part of the ELSE clause. If there are no line numbers, 

11-12 Program Control 



the VAX BASIC compiler ignores the remaining program code from the 
keyword ELSE to the end of the program. Therefore it is very important 
that you always use END IF to terminate IF statements. 

In the following example, the first IF ... THEN ... ELSE statement is ter
minated by END IF, and therefore works as expected. Because the 
second IF ... THEN ... ELSE statement is not terminated by END IF, the 
VAX BASIC compiler assumes that the last PRINT statement in the pro
gram is part of the second ELSE clause. When you run this program, the 
first IF ... THEN ... ELSE statement will always execute correctly. However, 
the final PRINT statement will execute only when the value of On_off _val 
is l, because the compiler considers this PRINT statement to be part of the 
second ELSE clause. 

Example 

10 DECLARE INTEGER light_bulb 
DECLARE INTEGER circuit_switch 
DECLARE INTEGER CONSTANT Opened = 0 
DECLARE INTEGER CONSTANT Closed = 1 

PRINT "Please enter zero or one, corresponding to the circuit" 
PRINT "switch being open or closed" 
INPUT On_ott_val 

IF On_ott_val = Opened 
THEN 

PRINT "The light bulb is ott. 11 

ELSE 
PRINT "The light bulb is on." 

END IF 

IF On_ott_val = Closed 
THEN 

PRINT "The light bulb is on." 
ELSE 

20 END 

PRINT "The light bulb is ott." 
PRINT "That's all for now." 

Program Control 11-13 



Output 1 

Please enter zero or one, corresponding to the circuit 
switch being open or closed 
? 0 
The light bulb is off. 
The light bulb is off. 
That's all for now. 

Output 2 

Please enter zero or one, corresponding to the circuit 
switch being open or closed 
? 1 
The light bulb is on. 
The light bulb is on. 

Note that a statement in a THEN or ELSE clause can be followed by a 
modifier. In this case, the modifying IF applies only to the statement that 
immediately precedes it: 

Example 

IF A = B 
THEN 

PRINT A IF A = 3 
ELSE 

PRINT B IF B > 0 
END IF 

11.4.3 The SELECT ... CASE Statement 

The SELECT ... CASE statement lets you specify an expression (the SELECT 
expression), any number of possible values (cases) for the SELECT expres
sion, and a list of statements (a CASE block) for each case. The SELECT 
expression can be a numeric or string value. CASE values can be single 
or multiple values, one or more ranges of values, or relationships. When 
a match is found between the SELECT expression and a CASE value, the 
statements in the following CASE block are executed. Control is then 
transferred to the statement following the END SELECT statement. 

In the following example, the CASE values appear to overlap; that is, the 
CASE value that tests for values greater than or equal to 0.5 also includes 
the values greater than or equal to 1.0. However, VAX BASIC executes 
the statements associated with the first matching CASE statement and 
then transfers control to the statement following END SELECT. In this 
program, each range of values is tested before it overlaps in the next range. 

11-14 Program Control 



Because the compiler executes the first matching CASE statement, the 
overlapping values do not matter. 

Example 

DECLARE REAL Stock_change 

INPUT "Please enter stock price change";Stock_change 

SELECT Stock_change 

CASE <= 0.6 
PRINT "Don't sell yet." 

CASE <= 1.0 
PRINT "Sell today." 

CASE ELSE 
PRINT "Sell NOW!" 

END SELECT 
END 

Output 

Please enter stock price change? 2.1 
Sell NOW! 

If no match is found for any of the specified cases and there is no CASE 
ELSE block, VAX BASIC transfers control to the statement following END 
SELECT without executing any of the statements in the SELECT block. 

SELECT ... CASE is powerful because it lets you use run-time expressions 
for both SELECT expressions and CASE values. The following example 
uses VAX BASIC built-in string functions to examine command input. 

Example 

This program is a skeleton command processor. 
It recognizes three VAX BASIC environment commands: 

SAVE 
SCRATCH 
OLD 

DECLARE INTEGER CONSTANT True = -1 
DECLARE INTEGER CONSTANT False = 0 

DECLARE STRING CONSTANT Null_input = "" !This is the null string. 

DECLARE STRING Command 

Program Control 11-15 



! Main program logic starts here. 

Command_loop: 

WHILE True This loop executes until the user types only a 
carriage return in response to the prompt. 

PRINT 
PRINT "Please enter a command (uppercase only)." 
PRINT "Type a carriage return when finished." 
INPUT Command 
PRINT 

SELECT Command 

CASE Null_input 

GOTO Done 

If user types RETURN, 
exit from the loop 
and end the program. 

The next three cases use the SEG$ and LEN string functions. 
LEN returns the length of the typed string, and SEG$ searches 
the string literals ("SAVE", "SCRATCH", and "OLD") for a 
match up to that length. Note that if the user types an "S", 
it is interpreted as a SAVE command only because SAVE is the 
first case tested. 

CASE SEG$ ( "SAVE". 1x. LEN (Command) ) 
PRINT "That was a SAVE command." 

CASE SEG$ ( "SCRATCH", 11., LEN (Command) 
PRINT "That was a SCRATCH command." 

CASE SEG$( "OLD", 1Y.. LEN (Command) 
PRINT "That was an OLD command." 

CASE ELSE 
PRINT "Invalid command, please try again." 

END SELECT 
NEXT 

Done: 
END 

11.5 The EXIT and ITERATE Statements 

This section describes the EXIT and ITERATE statements and shows their 
use with nested control structures. 

The ITERATE and EXIT statements let you explicitly control loop execu
tion. These statements can be used to transfer control to the top or bottom 
of a control structure. 

11-16 Program Control 



You can use EXIT to transfer control out of any of these structures: 

• FOR. .. NEXT loops 

• WHILE ... NEXT loops 

• UNTIL.NEXT loops 
• IF ... THEN ... ELSE blocks 
• SELECT ... CASE blocks 

• SUB, FUNCTION and PICTURE subprograms 

• DEF functions, and programs 

In the case of control structures, EXIT passes control to the first statement 
following the end of the control structure. 

You can use ITERATE to explicitly reexecute a FOR. .. NEXT, WHILE ... NEXT, 
or UNTIL.NEXT loop. EXIT and ITERATE statements can appear only 
within the code blocks you wish to leave or reexecute. 

Executing the ITERATE statement is equivalent to transferring control to 
the loop's NEXT statement. The termination test is still performed when 
the NEXT statement transfers control to the top of the loop. In addition, 
transferring control to the NEXT statement means that a FOR loop's 
control variable is incremented. 

Supplying a label for every loop lets you state explicitly which loop 
to leave or reexecute. If you do not supply a label for the ITERATE 
statement, VAX BASIC reexecutes the innermost active loop. For example, 
if an ITERATE statement (that does not specify a label) is executed in the 
innermost of three nested loops, only the innermost loop is reexecuted. 

In contrast, labeling each loop and supplying a label argument to the 
ITERATE statement lets you reexecute any of the loops. A label name also 
helps document your code. Because you must use a label with EXIT and 
it is sometimes necessary to use a label with ITERATE, you should always 
label the structures you want to control with these statements. 

The following example shows the use of both the EXIT and ITERATE 
statements. This program explicitly exits the loop if you type a carriage 
return in response to the prompt. If you type a string, the program prints 
the length of the string and explicitly reexecutes the loop. 

Program Control 11-17 



Example 

DECLARE STRING User_string 

Read_loop: 
WHILE 1Y. = 1Y. 

NEXT 
END 

LINPUT "Please type a string"; User_string 

IF User_string == "" 
THEN 

EXIT Read_loop 
ELSE 

PRINT "Length is ";LEN(User_string) 
ITERATE Read_loop 

END IF 

11.6 Executing Local Subroutines 

In VAX BASIC, a subroutine is a block of code accessed by a GOSUB 
or ON GOSUB statement. It must be in the same program unit as the 
statement that calls it. The RETURN statement in the subroutine returns 
control to the statement immediately following the GOSUB. 

The first line of a subroutine can be any valid VAX BASIC statement, 
including a REM statement. You do not have to transfer control to the 
first line of the subroutine. Instead, you can include several entry points 
into the same subroutine. You can also reference subroutines by using a 
GOSUB or ON GOSUB statement to another subroutine. 

Variables and data in a subroutine are global to the program unit in which 
the subroutine resides. 

11.6.1 The GOSUB and RETURN Statements 

The GOSUB statement unconditionally transfers control to a line in a 
subroutine. The last statement in a subroutine is a RETURN statement, 
which returns control to the first statement after the calling GOSUB. A 
subroutine can contain more than one RETURN statement so you can 
return control conditionally, depending on a specified condition. 

11-18 Program Control 



The following example first assigns a value of 5 to the variable A, then 
transfers control to the subroutine labeled Times_two. This subroutine 
replaces the value of A with A multiplied by 2. The subroutine's RETURN 
statement transfers control to the first PRINT statement, which displays 
the changed value. The program calls the subroutine two more times, 
with different values for A. Each time, the RETURN transfers control to 
the statement immediately following the corresponding GOSUB. 

Example 

A = 6 
GOSUB Times_two 
PRINT A 

A = 16 
GOSUB Times_two 
PRINT A 

A = 26 
GOSUB Times_two 
PRINT A 

GOTO Done 

Times_two: 
!This is the subroutine entry point 
A = A * 2 
RETURN 

Done: 
END 

Output 

10 
30 
60 

Note that VAX BASIC signals "RETURN without GOSUB" if it encounters 
a RETURN statement without first having encountered a GOSUB or ON 
GOSUB statement. 

Program Control 11-19 



11.8.2 The ON ... GOSUB ... OTHERWISE Statement 

The ON ... GOSUB ... OTHERWISE statement transfers control to one of 
several target subroutines depending on the value of a numeric expression. 
A RETURN statement returns control to the first statement after the calling 
ON GOSUB. A subroutine can contain more than one RETURN statement 
so that you can return control conditionally, depending on a specified 
condition. 

VAX BASIC tests the value of the integer expression. If the value is l, 
control transfers to the first line number or label in the list; if the value 
is 2, control passes to the second line number or label, and so on. If 
the control variable's value is less than 1 or greater than the number 
of targets in the list, VAX BASIC transfers control to the line number 
of label specified in the OTHERWISE clause. If you do not supply an 
OTHERWISE clause and the control variable's value is less than 1 or 
greater than the number of targets, VAX BASIC signals "ON statement out 
of range (ERR= 58)". 

Example 

INPUT "Please enter first integer value"; First_valueY. 
INPUT "Please enter second integer value"; Second_valueY. 

Choice: 
PRINT "Do you want to perform:" 
PRINT "1. Multiplication" 
PRINT "2. Division" 
PRINT "3. Exponentiation" 

INPUT SelectionY. 

ON SelectionY. GOSUB Mult. Div, Expon OTHERWISE Wrong 
GOTO Done 

Mult: 

Div: 

ResultY. = First_valueY. * Second_valueY. 
PRINT Result% 
RETURN 

ResultY. = First_value I Second_valueY. 
PRINT ResultX 
RETURN 

Expon: 

11-20 Program Control 

ResultY. = First_valueY. ** Second_valueY. 
PRINT ResultY. 
RETURN 



Wrong: 
PRINT "Invalid selection" 
RETURN 

Done: 
END 

11. 7 Suspending and Halting Program Execution 

There are two VAX BASIC statements that you can use to suspend pro
gram execution: 

• SLEEP 

• WAIT 

These statements cause VAX BASIC either to suspend program execution 
for a specified time or to wait a certain period of time for user input. 

After execution of the last statement, a VAX BASIC program automatically 
halts and closes all files. However, you can explicitly halt program 
execution by using one of the following statements: 

• STOP 

• END 

The STOP statement does not close files. It can appear anywhere in a 
program. The END statement closes files and must be the last statement in 
a main program. For more information on the STOP and END statements, 
see Section 11.7.3 and Section 11.7.4. 

11. 7 .1 The SLEEP Statement 

The SLEEP statement suspends program execution for a specified number 
of seconds. The following program waits two minutes (120 seconds) after 
receiving the input string, and then prints it. 

Program Control 11-21 



Example 

INPUT "Type a string of characters"; C$ 
SLEEP 1201. 
PRINT C$ 
END 

The SLEEP statement is useful if you have a program that depends on 
another program for data. Instead of constantly checking for a condition, 
the SLEEP statement lets you check the condition at specified intervals. 

11. 7 .2 The WAIT Statement 

You use the WAIT statement only with terminal input statements such 
as INPUT, INPUT LINE, and LINPUT. For example, the following pro
gram prompts for input, then waits 30 seconds for your response. If the 
program does not receive input in the specified time, VAX BASIC signals 
"Keyboard wait exhausted (ERR= 15)" and exits the program. 

Example 

WAIT 30Y. 
INPUT "You have 30 seconds to type your password"; PSW$ 
END 

The WAIT statement affects all subsequent INPUT, INPUT LINE, LINPUT, 
MAT INPUT, and MAT LINPUT statements. To disable a previously 
specified WAIT statement, use WAIT 0%. 

In the following example, the first WAIT statement causes the first INPUT 
statement to wait 30 seconds for a response. The WAIT 0% statement 
disables this 30-second requirement for all subsequent INPUT statements. 

Example 

WAIT 30% 
INPUT "You have 30 seconds to type your password"; PSW$ 
WAIT 0% 
INPUT "What directory do you want to go to"; DIR$ 

11. 7 .3 The STOP Statement 

The STOP statement is a debugging tool that lets you check the flow of 
program logic. STOP suspends program execution but does not close files. 

11-22 Program Control 



When VAX BASIC executes a STOP statement, it signals "STOP at line 
<line-num> ". If the program executes in the BASIC environment, VAX 

BASIC then prompts with the DCL command level prompt. In response, 
you can type: 

• Immediate mode statements (to examine or change program values) 

• The CONTINUE statement (to continue program execution) 

You use the STOP statement when debugging in immediate mode in 
the BASIC environment. For more information on immediate mode 
statements, see Chapter 3 in this manual. 

If you compile, link, and execute a program containing a STOP statement 
at DCL command level, VAX BASIC displays a number sign ( #) prompt 
when the STOP statement is encountered. At this point, you can type: 

• CONTINUE (to continue program execution) 
• EXIT (to return to DCL command level) 

11. 7 .4 The END Statement 

The END statement marks the end of a main program. When VAX BASIC 
executes an END statement it closes all files and halts program execution. 

The END statement is optional in VAX BASIC programs. However, you 
should include it for good programming practice. The END statement 
must be the last statement in the main program. 

If you run your program in the BASIC environment, the END statement 
returns you to VAX BASIC command level. If you execute the program 
outside the BASIC environment, the END statement returns you to DCL 
command level. 

Program Control 11-23 





Chapter 12 

Functions 

A function is a single statement or group of statements that perform 
operations on operands and return the result to your program. VAX 
BASIC has built-in functions that perform numeric and string operations, 
conversions, and date and time operations. This chapter describes only a 
selected group of built-in functions. For a complete description of all VAX 
BASIC built-in functions, see the VAX BASIC Reference Manual. 

This chapter also describes user-defined functions. VAX BASIC lets you 
define your own functions in two ways: 

• With the DEF statement 

• As separately compiled subprograms (external functions) 

DEF function definitions are local to a program module, while external 
functions can be accessed by any program module. You create local 
functions with the DEF statement and optionally declare them with the 
DECLARE statement. You create external functions with the FUNCTION 
statement and declare them with the EXTERNAL statement. For more 
information on creating external functions with the FUNCTION statement, 
see Chapter 14. 

Once you have created and declared a function, you can invoke it just as 
you would a built-in function. 

12. 1 Built-In Functions 

The functions described in this section let you perform sophisticated 
manipulations of string and numeric data. VAX BASIC also provides 
algebraic, exponential, trigonometric, and randomizing mathematical 
functions. 

Functions 12-1 



12.1.1 Numeric Functions 

Numeric functions generally return a result of the same data type as the 
function's parameter. For example, if you pass a DOUBLE argument to 
any of the trigonometric functions, they return a DOUBLE result. 

If the format of a VAX BASIC function specifies an argument of a partic
ular data type, VAX BASIC converts the actual argument supplied to the 
specified data type. For instance, if you supply an integer argument to a 
function that expects a floating-point number, VAX BASIC converts the 
argument to floating-point. Floating-point arguments that are passed to 
integer functions are truncated, not rounded. 

The following are some examples of VAX BASIC built-in numeric 
functions. 

12. 1. 1. 1 The ABS Function 

12-2 Functions 

The ABS function returns a floating-point number that equals the absolute 
value of a specified numeric expression. The following is an example of 
the ABS function: 

Example 

READ A,B 
DATA 10,-35.3 
NEW_A = ABS(A) 
PRINT NEW_A; ABS(B) 
END 

Output 

10 35.3 

ABS always returns a number of the default floating-point data type. 



12. 1.1.2 The INT and FIX Functions 

The INT function returns the floating-point value of the largest integer less 
than or equal to a specified expression. INT always returns a number of 
the default floating-point type. 

The FIX function truncates the value of a floating-point number at the 
decimal point. FIX always returns a number of the default floating-point 
type. 

The following example points out the differences between the INT and 
FIX functions. Note that the value returned by FIX(-45.3) differs from the 
value returned by INT(-45.3). 

Example 

PRINT INT(23.663); FIX(23.563) 
PRINT INT(3.1); FIX(3.1) 
PRINT INT(-46.3); FIX(-46.3) 
PRINT INT(-11); FIX(-11) 
END 

Output 

23 23 
3 3 

-46 -45 
-11 -11 

12.1.1.3 The SIN, COS, and TAN Functions 

The SIN, COS, and TAN functions return the sine, cosine, and tangents 
of an angle in radians or degrees, depending on which angle clause 
you choose with the OPTION statement. If you supply a floating-point 
argument to the SIN, COS, and TAN functions, they return a number of 
the same floating-point type. If you supply an integer argument, they 
convert the argument to the default floating-point data type and return a 
floating-point number of that type. 

The following program accepts an angle in degrees, converts the angle to 
radians, and prints the angle's sine, cosine, and tangent. 

Functions 12-3 



Example 

!CONVERT ANGLE (X) TO RADIANS, AND 
!FIND SIN, COS AND TAN 
PRINT "DEGREES", "RADIANS", "SINE", "COSINE","TANGENT" 
FOR IY. = 01. TO 61. 

READ X 
LET Y = X * 2 * PI I 360 
PRINT 
PRINT X ,Y ,SIN(Y) ,COS(Y) ,TAN(Y) 

NEXT !Y. 

DATA 0,10,20,30,360,46 
END 

Output 

DEGREES RADIANS SINE 

0 0 0 

10 .174633 .173648 

20 .349066 .34202 

30 .623699 .6 

360 6.28319 .174846E-06 

46 .786398 .707107 

COSINE 

1 

.984808 

.939693 

.866026 

1 

.707107 

NOTE 

TANGENT 

0 

.176327 

.36397 

.67736 

.174846E-06 

1 

As an angle approaches 90 degrees (PI/2 radians}, 270 degrees 
(3•Pl/2 radians), 450 degrees (S•PI/2 radians) and so on, the 
tangent of that angle approaches infinity. If your program 
tries to find the tangent of such an angle, VAX BASIC signals 
"Division by O" (ERR=61 ). 

2. 1. 1.4 The LOG 10 Function 

12-4 Functions 

A logarithm is the exponent of some number (called a base). Common 
logarithms use the base 10. The common logarithm of a number n, for 
example, is the power to which 10 must be raised to equal n. For example, 
the common logarithm of 100 is 2, because 10 raised to the power 2 equals 
100. 

The LOGlO function returns a number's common logarithm. The follow
ing example calculates the common logarithms of all multiples of 10 from 
10 to 100 inclusive: 



Example 

FOR Il = 10l TO 100l STEP 10l 
PRINT LOG10(IU 

NEXT !% 
END 

Output 

1 
1.30103 
1.47712 
1.60206 
1.69897 
1.77816 
1.8461 
1.90309 
1.96424 
2 

If you supply a floating-point argument to LOGlO, the function returns 
a floating-point number of the same data type. If you supply an integer 
argument, LOG 10 converts it to the default floating-point data type and 
returns a value of that type. 

12. 1. 1.5 The EXP Function 

The EXP function returns the value of e raised to a specified power. The 
following example prints the value of e and e raised to the second power: 

Example 

READ A,B 
DATA 1,2 
PRINT 1 e RAISED TO THE POWER 1 

; A; " EQUALS" ; EXP (A) 
PRINT 'e RAISED TO THE POWER'; B; "EQUALS"; EXP(B) 
END 

Output 

e RAISED TO THE POWER 1 EQUALS 2.71828 
e RAISED TO THE POWER 2 EQUALS 7.38906 

If you supply a floating-point argument to EXP, the function returns a 
floating-point number of the same data type. If you supply an integer 
argument, EXP converts it to the default floating-point data type and 
returns a value of that type. 

Functions 12-5 



12. 1. 1.6 The RND Function 

12-6 Functions 

The RND function returns a number greater than or equal to zero and less 
than 1. The RND function always returns a floating-point number of the 
default floating-point data type. The RND function generates seemingly 
unrelated numbers. However, given the same starting conditions, a 
computer always gives the same results. Each time you execute a program 
with the RND function, you receive the same results. 

Example 

PRINT RND,RND,RND,RND 
END 

Output 1 

.76308 

Output 2 

.76308 

.179978 

.179978 

.902878 .88984 

.902878 .88984 

With the RANDOMIZE statement, you can change the RND function's 
starting condition and generate truly random numbers. To do this, place a 
RANDOMIZE statement before the line invoking the RND function. Note 
that the RANDOMIZE statement should be used only once in a program. 
With the RANDOMIZE statement, each invocation of RND returns a new 
and unpredictable number. 

Example 

RANDOMIZE 
PRINT RND,RND,RND,RND 
END 

Output 1 

.403732 

Output 2 

.404165 

.34971 

.272398 

.15302 .92462 

.261667 .10209 

The RND function can generate a series of random numbers over any 
open range. To produce random numbers in the open range A to B, use 
the following formula: 

(B-A)•RND + A 



The following program produces 10 numbers in the open range 4 to 6: 

Example 

FOR IY. = 11. TO 101. 
PRINT (61.-41.) * RND + 4 

NEXT IY. 
END 

Output 

6.62616 
4.36996 
6.80676 
6.77068 
4.77402 
4.96189 
6.76439 
4.37166 
6.2776 
4.63843 

12. 1.2 Data Conversion Functions 

VAX BASIC provides built-in functions that can: 

• Convert a 1-character string to the character's ASCII value and vice 
versa 

• Translate strings from one data format to another, for example, 
EBCDIC to ASCII 

The following sections describe some of these functions. 

12.1.2. 1 The ASCII Function 

The ASCII function returns the numeric ASCII value of a string's first 
character. The ASCII function returns an integer value between 0 and 255, 
inclusive. For instance, in the following example, the PRINT statement 
prints the integer value 66 because this is the ASCII value equivalent of 
an uppercase B, the first character in the string. 

Functions 12-7 



Example 

test_string$ = "BAT" 
PRINT ASCII(test_string$) 
END 

Output 

66 

Note that the ASCII value of a null string is zero. 

12.1.2.2 The CHR$ Function 

12-8 Functions 

The CHR$ function returns the character whose ASCII value you supply. 
If the ASCII integer expression that you supply is less than zero or greater 
than 255, VAX BASIC treats it as a modulo 256 value. In other words, 
VAX BASIC treats the integer expression as the remainder of the actual 
supplied integer divided by 256. Therefore, CHR$(325) is equivalent to 
CHR$(69) and CHR$(-1) is equivalent to CHR$(255). 

The following program outputs the character whose ASCII value corre
sponds to the input value modulo 256: 

Example 

PRINT "THIS PROGRAM FINDS THE CHARACTER WHOSE" 
PRINT "VALUE (MODULO 266) YOU TYPE" 
INPUT valueY. 
PRINT CHR$(valueY.) 
END 

Output 1 

THIS PROGRAM FINDS THE CHARACTER WHOSE 
VALUE (MODULO 266) YOU TYPE 

? 69 
E 

Output 2 

THIS PROGRAM FINDS THE CHARACTER WHOSE 
VALUE (MODULO 266) YOU TYPE 

? 1093 
E 



12.1.3 String Numeric Functions 

Numeric strings are numbers represented by ASCII characters. A numeric 
string consists of an optional sign, a string of digits, and an optional 
decimal point. You can use E notation in a numeric string for floating
point constants. 

The following sections describe some of the VAX BASIC numeric string 
functions. 

12. 1.3. 1 The FORMAT$ Function 

The FORMAT$ function converts a numeric value to a string. The output 
string is formatted according to a string you provide. The expression 
you give this function can be any string or numeric expression. The 
format string must contain at least one PRINT USING format field. The 
formatting rules are the same as those for printing numbers with PRINT 
USING. See Chapter 16 in this manual for more information on the 
PRINT USING statement and formatting rules. 

Example 

A = 6 
B$ = "##.##" 
Z$ = FORMAT$(A, B$) 
PRINT Z$ 
END 

Output 

6.00 

12.1.3.2 The NUM$ and NUM1$ Functions 

The NUM$ function evaluates a numeric expression and returns a string 
of characters formatted as the PRINT statement would format it. The 
returned numeric string is preceded by one space for positive numbers 
and by a minus sign for negative numbers. The numeric string is always 
followed by a space, as shown in the following example. 

Functions 12-9 



12-1 0 Functions 

Example 

PRINT NUM$(7465097802134) 
PRINT NUM$(-60) 
END 

Output 

.74661E+13 
-60 

The NUM1$ function translates a number into a string of numeric charac
ters. NUM1$ does not return leading or trailing spaces or E format. The 
following example illustrates the use of the NUM1$ function: 

Example 

PRINT NUM1$ (PI) 
PRINT NUM1$(97.6 * 30466.23 + 30386.1) 
PRINT NUM1$(1E-38) 
END 

Output 

3.14169 
2ggga10 
.00000000000000000000000000000001 

NUM1$ returns up to 6 digits of accuracy for single-precision real num
bers, up to 16 digits of accuracy for double-precision numbers, and up to 
10 digits of accuracy for LONG integers. NUM1$ returns up to 15 digits 
of accuracy for GFLOAT numbers and up to 33 digits of accuracy for 
HFLOAT numbers. 

The following example shows the difference between NUM$ and NUM1$: 

Example 

A$ = NUM$(1000000) 
B$ = NUM1$(1000000) 
PRINT LEN(A$); "/";A$; "/" 
PRINT LEN(B$); "/"; B$; "/" 
END 

Output 

8 I .1E+07 I 
7 /1000000/ 

Note that A$ has a leading and trailing space. 



12.1.3.3 The VAL% and VAL Functions 

The VAL% function returns the integer value of a numeric string. This 
numeric string expression must be the string representation of an integer. 
It can contain the ASCII characters 0 through 9, a plus sign ( + ), and a 
minus sign ( - ). 

The VAL function returns the floating-point value of a numeric string. 
The numeric string expression must be the string representation of some 
number. It can contain the ASCII characters 0 through 9, a plus sign ( + ), 
a minus sign ( - ), and an uppercase E. 

VAL returns a number of the default floating-point data type. VAX BASIC 
signals "Illegal number" (ERR= 52) if the argument is outside the range of 
the default floating-point data type. 

The following is an example of VAL and VAL%: 

Example 

A = VAL("922") 
B$ = "100" 
CY. = VALY.(B$) 
PRINT A 
PRINT CY. 
END 

Output 

922 
100 

12.1.4 String Arithmetic Functions 

String arithmetic functions process numeric strings as arithmetic operands. 
This lets you add (SUM$), subtract (DIF$), multiply (PROD$) and divide 
(QUO$) numeric strings, and express them at a specified level of precision 
(PLACE$). 

String arithmetic offers greater precision than floating-point arithmetic or 
longword integers, and it eliminates the need for scaling. However, string 
arithmetic executes much more slowly than the corresponding integer or 
floating-point operations. 

Functions 12-11 



The operands for the functions can be numeric strings representing any 
integer or floating-point value (E notation is not valid). Table 12-1 
shows the string arithmetic functions and their formats, and gives brief 
descriptions of what they do. 

Table 12-1: String Arithmetic. Functions 
Function Format Description 

SUM$ SUM$(A$,B$) B$ is added to A$. 

DIF$ DIF$(A$,B$) B$ is subtracted from A$. 

PROD$ PROD$(A$,B$,P%) A$ is multiplied by B$. The product is 
expressed with precision P%. 

QUO$ QUO$(A$,B$,P%) A$ is divided by B$. The quotient is ex-
pressed with precision P%. 

PLACE$ PLACE$(A$ ,P%) A$ is expressed with precision P%. 

String arithmetic computations permit 56 significant digits. The functions 
QUO$, PLACE$, and PROD$, however, permit up to 60 significant digits. 
Table 12-2 shows how VAX BASIC determines the precision permitted by 
each function and if that precision is implicit or explicit. 

Table 12-2: Precision of String Arithmetic Functions 
Function 

SUM$ 

DIF$ 

PROD$ 

QUO$ 

PLACE$ 

How Determined 

Precision of argument 

Precision of argument 

Value of argument 

Value of argument 

Value of argument 

How Stated 

Implicitly 

Implicitly 

Explicitly 

Explicitly 

Explicitly 

12. 1.4. 1 The SUM$ and DIF$ Functions 

12-12 Functions 

SUM$ and DIF$ take the precision of the more precise argument in the 
function unless padded zeros generate that precision. SUM$ and DIF$ 
omit trailing zeros to the right of the decimal point. 



The size and precision of results returned by the SUM$ and DIF$ functions 
depend on the size and precision of the arguments involved: 

• The sum or difference of two integers takes the precision of the larger 
integer. 

• The sum or difference of two decimal fractions takes the precision of 
the more precise fraction. 

• The sum or difference of two real numbers takes precision as follows: 

The sum or difference of the integer parts takes the precision of 
the larger part. 
The sum or difference of the decimal fraction parts takes the 
precision of the more precise part. 

• VAX BASIC truncates trailing zeros. 

12. 1.4.2 The QUO$, PLACE$, and PROD$ Functions 

In the PLACE$, PROD$, and QUO$ functions, the value of the integer 
expression argument explicitly determines numeric precision. That is, the 
integer expression parameter determines the point at which the number is 
rounded or truncated. 

If the integer expression is between -5000 and 5000, rounding occurs 
according to the following rules: 

• For positive integer expressions, rounding occurs to the right of the 
decimal place. For example, if the integer expression is 1, rounding 
occurs one digit to the right of the decimal place (the number is 
rounded to the nearest tenth). If 2, rounding occurs two digits to 
the right of the decimal place (the number is rounded to the nearest 
hundredth), and 
so on. 

• For zero, VAX BASIC rounds to the nearest unit. 
• For negative integer expressions, rounding occurs to the left of the 

decimal place. For example, if the integer expression is -1, rounding 
occurs one place to the left of the decimal point. In this case, VAX 
BASIC moves the decimal point one place to the left, then rounds to 
units. If the integer expression is -2, rounding occurs two places to the 
left of the decimal point; VAX BASIC moves the decimal point two 
places to the left, then rounds to units. 

Note that when rounding numeric strings, VAX BASIC returns only part 
of the number. 

Functions 12-13 



12-14 Functions 

If the integer expression is between 5001 and 15000, the following rules 
apply: 

• If the integer expression is 10000, VAX BASIC truncates the number at 
the decimal point. 

• If the integer expression is greater than 10000 (10000 plus n) VAX 
BASIC truncates the numeric string n places to the right of the decimal 
point. For example, if the integer expression is 10001 (10000 plus 1), 
VAX BASIC truncates the number starting one place to the right of 
the decimal point. If 10002 (10000 plus 2), VAX BASIC truncates the 
number starting two places to the right of the decimal point, and 
so on. 

• If the integer expression is less than 10000 (10000 minus n) VAX 
BASIC truncates the numeric string n places to the left of the decimal 
point. For example, if the integer expression is 9999 (10000 minus 1), 
VAX BASIC truncates the number starting one place to the left of the 
decimal point. If 9998 (10000 minus 2), VAX BASIC truncates starting 
two places to the left of the decimal point, and so on. 

The PLACE$ function returns a numeric string, truncated or rounded 
according to an integer argument you supply. 

The following example displays the use of the PLACE$ function with 
several different integer expression arguments: 

Example 

number$ = "123466.654321" 
FOR IY. = -6Y. TO 6% 

PRINT PLACE$(number$, IY.) 
NEXT lY. 
PRINT 
FOR I% = 9996 TO 10006 

PRINT PLACE$(number$, I%) 
NEXT !% 

Output 

1 
12 
123 
1235 
12346 
123467 
123466.7 
123466.65 
123466.654 
123466.6543 
123466.66432 



1 
12 
123 
1234 
12346 
123466 
123466.6 
123466.66 
123466.664 
123466.6643 
123466.66432 

The PROD$ function returns the product of two numeric strings. The 
returned string's precision depends on the value you specify for the 
integer precision expression. (See Section 12.1.4 for allowable values of 
the integer precision expression). 

Example 

A$ = "-4.333" 
8$ = "7.23326" 
s_product$ = PROD$(A$, 8$, 100061.) 
PRINT s_product$ 
END 

Output 

-31.34171 

12.1.5 Date and Time Functions 

VAX BASIC supplies functions to return the date and time in numeric or 
string format. The following sections discuss these functions. 

Note that you can also use certain system services and Run-Time 
Library routines for more sophisticated date and time functions. See the 
VAX/VMS System Services Reference Manual and the VAX/VMS Run-Time 
Library Routines Reference Manual for more information. 

Functions 12-15 



12. 1.5. 1 The DATE$ Function 

The DATE$ function returns a string containing a day, month, and year in 
the form dd-Mmm-yy. The date integer argument to the DATE$ function 
can have up to six digits in the form yyyddd, where yyy specifies the 
number of years since 1970 and ddd specifies the day of that year. If the 
numeric expression is zero, DATE$ returns the current date. 

Example 

PRINT DATE$(0) 
PRINT DATE$(126) 
PRINT DATE$(6168) 
END 

Output 

15-Jun-85 
06-May-70 
16-Jun-76 

If you supply an invalid date (for example, day 370 of 1973), the results 
are undefined. 

12.1.5.2 The TIME$ Function 

12-16 Functions 

The TIME$ function returns a string displaying the time of day in the form 
hh:mm AM or hh:mm PM. TIME$ returns the time of day at a specified 
number of minutes before midnight. If you specify zero in the numeric 
expression, TIME$ returns the current time of day. 

Example 

PRINT TIME$(0) 
PRINT TIME$(1) 
PRINT TIME$(1440) 
PRINT TIME$(721) 
END 

Output 

03:53 PM 
11:69 PM 
12:00 AM 
11:59 AM 



12.1.5.3 The TIME Function 

The TIME function requests time and usage information from the operat
ing system and returns it to your program. The information returned by 
the TIME function depends on the value of the argument passed to it. The 
values and the information they return are listed below: 

0 Returns the number of seconds elapsed since midnight 

1 Returns the current job's CPU time in tenths of a second 

2 Returns the current job's connect time in seconds 

3 Returns zero 

4 Returns zero 

All other arguments to TIME are undefined and cause VAX BASIC to 
signal "Not implemented" (ERR=250). 

12. 1.8 Terminal Control Functions 

VAX BASIC provides several terminal control functions. These functions 
let you: 

• Enable and disable CTRL/C trapping 
• Enable and disable terminal echoing 

• Read a single keystroke from a terminal 

12. 1.6. 1 The CTRLC and RCTRLC Functions 

The CTRLC function enables CTRL/C trapping, and the RCTRLC function 
disables CTRL/C trapping. When CTRL/C trapping is enabled, control is 
transferred to the program's error handler when a CTRL/C is detected at 
the controlling terminal. 

CTRL/C trapping is asynchronous. The trap can occur in the middle of an 
executing statement, and a statement so interrupted leaves variables in an 
undefined state. For example, the statement A$ = "ABC", if interrupted by 
CTRL/C, could leave the variable A$ partially set to "ABC" and partially 
left with its old contents. 

For example, if you type a CTRL/C to the following program when 
CTRL/C trapping is enabled, an "ABORT" message prints to the file open 
on channel #1. This lets you know that the program did not end correctly. 

Functions 12-17 



Example 

WHEN ERROR USE error_handler 
YY. = CTRLC 

END WHEN 
HANDLER error_handler 

IF ERR = 28 THEN PRINT 111., "Abort" 

END HANDLER 

NOTE 

When you trap a CTRL/C with an error handler, your program 
may be in an inconsistent state; therefore, you should handle 
the CTRL/C error and exit the program as quickly as possible. 

12. 1.6.2 The ECHO and NOECHO Functions 

12-18 Functions 

The NOECHO function disables echoing on a specified channel. Echoing 
is the process by which characters typed at the terminal keyboard appear 
on the screen. 

If you specify channel #0 (your terminal) as the argument, the characters 
typed on the keyboard are still accepted as input; however, they do not 
appear on the screen. 

The ECHO function enables echoing on a specified channel and cancels 
the effect of the NOECHO function on that channel. 

If you do not use these functions, ECHO is the default. This program 
shows a password routine in which the password does not echo: 

Example 

YY. = NOECHO(OY.) 
INPUT "PASSWORD"; pword$ 
IF pword$=="PLUGH" THEN PRINT "THAT IS CORRECT" 
END IF 
YY. = ECHO (OU 
END 

Note that the Y% = ECHO(O%) statement is necessary to tum the echo 
back on. If this statement were not included, then all subsequent user 
inputs would not echo to the terminal screen. 



12.1.6.3 The INKEY$ Function 

The INKEY$ function reads a single keystroke from a terminal opened on 
a specified channel and returns the typed character. 

If you specify a channel that is not open, VAX BASIC signals the error 
"I/O channel not open" (ERR=9). If a file or a device other than a terminal 
is open on the channel, VAX BASIC signals the error "Illegal operation" 
(ERR=141). 

Once you have specified a channel, VAX BASIC allows you to specify an 
optional WAIT clause. A WAIT clause followed by no value tells VAX 
BASIC to wait indefinitely for input to become available. A WAIT clause 
followed by a value from 1 through 255 tells VAX BASIC to wait the 
specified number of seconds for input. 

Example 

DECLARE STRING KEYSTROKE 
Inkey_Loop: 
WHILE 1Y. 

NEXT 

KEYSTROKE = INKEY$(1Y.,WAIT) 

SELECT KEYSTROKE 
CASE '26'C 

PRINT "CTRL/Z to exit" 
EXIT Inkey_Loop 

CASE CR,LF,VT,FF,ESC 
PRINT "Line terminator" 

CASE "PF1" TO "PF4" 
PRINT "P key" 

CASE "E1" TO "E6" 
PRINT "VT200 Function key" 

CASE "KPO" TO "KP9" 
PRINT "Application keypad key" 

CASE < SP 
PRINT "Control character" 

CASE '127'C 
PRINT "<DEL>" 

CASE ELSE 
PRINT "Character is "; KEYSTROKE 

END SELECT 

Functions 12-19 



12.2 User-Defined Functions 

12-20 Functions 

The DEF statement lets you create your own single-line or multi-line 
functions. 

In the traditional VAX BASIC usage, a function name consists of the 
following: 

• The letters FN 

• From 1 to 28 letters, digits, underscores, or periods 

• An optional percent sign or dollar sign 

Integer function names must end with a percent sign and string function 
names must end with a dollar sign. Therefore, the function name can 
have up to 31 characters. If the function name ends with neither a percent 
sign nor a dollar sign, the function returns a real number. 

You can create user-defined functions using these function naming rules. 
However, DIGITAL recommends that you use explicit data typing when 
defining functions for new program development. Refer to Chapter 14 
for an example of an explicitly declared function. Note that the function 
name must start with FN only if the function is not explicitly declared and 
a function reference lexically precedes the function definition. 

DEF functions can be either single-line or multi-line. Whether you use 
the single-line or multi-line format for function definitions depends on 
the complexity of the function you create. In general, multi-line DEF 
functions perform more complex functions than single-line DEF functions. 
However, the important distinction between single- and multi-line DEF 
functions is that multi-line DEF functions can be invoked recursively, 
whereas single-line DEF functions cannot. 

If you want to pass values to a function, the function definition requires a 
formal parameter list. These formal parameters are the variables used to 
calculate the value returned by the function. When you invoke a function, 
you supply an actual parameter list; the values in the actual parameter list 
are copied into the formal parameter at this time. DEF functions allow up 
to eight formal parameters. You can specify variables, constants, or array 
elements as formal parameters, but you cannot specify an entire array as a 
parameter to a DEF function. 



12.2.1 Single-line DEF Functions 

In a single-line DEF, the function name, the formal parameter list, and the 
defining expression all appear on the same line. The defining expression 
specifies the calculations that the function performs. You can pass up to 
eight arguments to this function through the formal parameter list. These 
parameters are variables local to the function definition, and each formal 
parameter can be preceded by a data type keyword. 

The following example creates a function named fnratio. This function has 
two formal parameters: numer and denomin, whose ratio is returned as a 
REAL value. 

When the function is invoked, VAX BASIC does the following: 

• Copies the values 5.6 and 7.8 into the formal parameters numer and 
denomin 

• Evaluates the expression to the right of the equal sign 

• Returns the value to the statement that invoked the function (the 
PRINT statement) 

The PRINT statement then prints the returned value. 

Example 

DEF REAL fnratio (numer, denomin) = numer I denomin 
PRINT fnratio(5.6, 7.8) 
END 

Output 

.717949 

Note that the actual parameters you supply must agree in number and 
data type with those in the formal parameter list; you must supply 
numeric values for numeric variables, and string values for string variables. 

The defining expression for a single-line function definition can contain 
any constant, variable, VAX BASIC built-in function, or any user-defined 

Functions 12-21 



function except the function being defined. The following are valid 
function definitions: 

Example 

DEF FN_A(X) = XA2 + 3 * x + 4 
DEF FN_B(X) = FN_A(X) / 2 + FN_A(X) 
DEF FN_C(X) = SQR(X+4) + 1 
DEF CUBE(X) = x A 3 

Note that the name of the last function defined does not begin with FN. 
This is valid as long as no reference to the function lexically precedes the 
function definition. 

You can also define a function that has no formal parameters. For in
stance, the following function definition uses three VAX BASIC built-in 
functions to return an integer corresponding to the day of the month. 
DATE$(0) returns a date string in the form dd-Mmm-yy. The SEG$ func
tion strips out of this value the characters starting at character position 
1 up to and including the character at position 2 (the day number). The 
VAL% function converts this resulting numeric string to an integer. In this 
way, fnday_number returns the day of the month as an integer. 

DEF INTEGER fnday_number = VALY. (SEG$(DATE$(0Y.), 1Y., 21.)) 

12.2.2 Multi-Line DEF Functions 

12-22 Functions 

The DEF statement can also define multi-line functions. Multi-line DEF 
functions are useful for expressing complicated functions. Note that multi
line DEF functions do not have the equal sign and defining expression 
on the first line. Instead, this expression appears in the function block, 
assigned to the function name. 

NOTE 

If a multi-line DEF function contains DATA statements, they are 
global to the program. 

Multi-line function definitions can contain any constant, variable, VAX 
BASIC built-in function, or user-defined function. In VAX BASIC, the 
function definition can contain a reference to the function you are defining. 
Therefore, a multi-line DEF function can be recursive, or invoke itself. 

You can use either the END DEF or EXIT DEF statements to exit from 
a user-defined function. The EXIT DEF statement is equivalent to an 
unconditional transfer to the END DEF statement. 



The following example shows a multi-line DEF function that uses both the 
EXIT and END DEF statements. The defining expression of the function 
is in the ELSE clause. This assigns a value to the function if A is less 
than 10. The second set of output shows what happens when A is greater 
than 10; VAX BASIC prints "OUT OF RANGE" and executes the EXIT 
DEF statement. The function returns zero because control is transferred 
to the END DEF statement before a value was assigned. In this way, this 
example tests the arguments before the function is evaluated. 

Example 

DEF fn_discount(A) 
IF A > 10 
THEN 

PRINT "OUT OF RANGE" 
EXIT DEF 

ELSE 
fn_discount = AAA 

END IF 
END DEF 

INPUT Z 
PRINT fn_discount(Z) 
END 

Output 1 

? 4 
266 

Output 2 

? 12 
OUT OF RANGE 

0 

If you do not explicitly declare the function with the DECLARE statement, 
the restrictions for naming a multi-line DEF function are the same as those 
for the single-line DEF function. However, explicitly declaring a DEF 
function can make a program easier to read and understand. For instance, 
Example 1 concatenates two strings and Example 2 returns a number in a 
specified modulus. 

Functions 12-23 



12-24 Functions 

Example 1 

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function 

DEF STRING concat (STRINGY, STRING Z) 
concat = Y + Z !Define the function 
FNEND 

new_string$ concat(A$, B$) !Invoke the function 

END 

Example 2 

DECLARE REAL FUNCTION mdlo (REAL, INTEGER) 
DEF mdlo( REAL argument, INTEGER modulus ) 

!Check for argument equal to zero 

EXIT DEF IF argument = 0 

!Check for modulus equal to zero, modulus equal to absolute 
!value of argument, and modulus greater than absolute 
!value of argument. 

SELECT modulus 
CASE = 01. 

EXIT DEF 
CASE > ABS( argument 

EXIT DEF 
CASE = ABS( argument 

mdlo = argument 
EXIT DEF 

END SELECT 

!If argument is negative, set flag negative% and set argument 
!to its absolute value. 

IF argument < 0 
THEN argument = ABS( argument ) 

negative% = -11. 
END IF 



UNTIL argument < modulus 

argument = argument - modulus 

!If this calculation ever results in zero, mdlo returns zero 

NEXT 

IF argument = modulus 
THEN mdlo = 0 
EXIT DEF 

END IF 

!Argument now contains the right number, but the sign may be wrong. 
!If the negative argument flag was set, make the result negative. 

IF negativeY. 
THEN mdlo = - argument 
ELSE mdlo = argument 

END IF 

END DEF 

INPUT "PLEASE INPUT THE VALUE AND THE MODULUS"; X,Y 
PRINT mdlo(X,Y) 
END 

Output 

PLEASE INPUT THE VALUE AND THE MODULUS? 7, 5 
2 

Because these functions are declared in DECLARE statements, the function 
names do not have to conform to the traditional VAX BASIC rules for 
naming functions. 

Recursion occurs when a function calls itself. The following example 
defines a recursive function that returns a number's factorial value. 

Functions 12-25 



12-26 Functions 

Example 

DECLARE INTEGER FUNCTION factor ( INTEGER ) 
DEF INTEGER factor ( INTEGER F ) 

IF F <= OY. 
THEN factor = 1Y. 
ELSE factor = factor(F - 1Y.) * F 

END IF 
END DEF 
INPUT "INPUT N TO FIND N FACTORIAL"; NY. 
PRINT "N! IS"; factor(NY.) 
END 

Output 

INPUT N TO FIND N FACTORIAL? 6 
N! IS 120 

Any variable accessed or declared in the DEF function and not in the 
formal parameter list is global to the program unit. When VAX BASIC 
evaluates the user-defined function, these global variables contain the 
values last assigned to them in the surrounding program module. 

To prevent confusion, variables declared in the formal parameter list 
should not appear elsewhere in the program. Note that if your function 
definition actually uses global variables, these variables cannot appear in 
the formal parameter list. 

You cannot transfer control into a multi-line DEF function except by 
invoking it. You should not transfer control out of a DEF function except 
by way of an EXIT DEF or END DEF statement. This means that: 

• If the DEF function contains an ON ERROR GOTO, GOTO, ON 
GOTO, GOSUB, ON GOSUB, or RESUME statement, that statement's 
target line number must also be in that DEF function. 

• An ON ERROR GO BACK statement can transfer control out of a DEF 
function; however, a RESUME statement in an error handler outside 
the DEF function cannot transfer control back into the DEF function. 

• If the DEF function contains a handler, and was invoked from a 
protected region, an EXIT HANDLER statement causes control to 
be transferred to the specified handler for that protected region. 
However, if the DEF function contains a handler but was not invoked 
from a protected region, an EXIT HANDLER statement causes control 
to be transferred to the default error handler. 

• A subroutine cannot be shared by more than one DEF function. 
However, if you rewrite the subroutine as a DEF function with no 
parameters, other function definitions can share it. 



A DEF function never changes the value of a parameter passed to it. Also, 
because formal parameters are local to the function definition, you cannot 
access the values of these variables from outside the DEF statement. These 
variable names are known only inside the DEF statement. 

In the following example, the variable first is declared only in the function 
fn__sum. When VAX BASIC sees the second PRINT statement, it assumes 
that first is a new variable that is not declared in the main program. If you 
try to run this example, VAX BASIC signals the error "explicit declaration 
of first required". If you do not specify the OPTION TYPE= EXPLICIT 
statement, VAX BASIC assumes that first is a new variable and initializes 
it to zero. 

Example 

OPTION TYPE = EXPLICIT 
DECLARE INTEGER A, B 
DEF fn_sum(INTEGER first, INTEGER second) = first + second 
A = 60 
B = 26 
PRINT fn_sum(A, B) 
PRINT first 
END 

Functions 12-27 





Chapter 13 

String Handling 

This chapter defines dynamic and fixed-length strings and string virtual 
arrays, explains which you should choose for your application, and shows 
you how to use them. 

13.1 Introduction 

A string is a sequence of ASCII characters. VAX BASIC allows you to use 
three types of strings: 

• 
• 
• 

Dynamic strings 

Fixed-length strings 

String virtual arrays 

Dynamic strings are strings whose length can change during program 
execution. The length of a dynamic string variable may or may not 
change, depending on the statement used to modify it. 

Fixed-length strings are strings whose length never changes. In other 
words, their length remains static. String constants are always fixed
length. String variables can be either fixed-length or dynamic. A string 
variable is fixed-length if it is named in a COMMON, MAP, or RECORD 
statement. If a string variable is not part of a map or common block, 
RECORD, or virtual array, it is a dynamic string. When a string variable 
is fixed-length, its length does not change, regardless of the statement 
you use to modify it. See Table 13-1 for more information on string 
modification. 

String Handling 13-1 



Strings in virtual arrays have both fixed-length and dynamic attributes. 
String virtual arrays have a specified maximum length between 0 and 
512 characters. During program execution, the length of an element in a 
string virtual array can change; however, the length is always between 0 
and the maximum string size specified when the array was created. See 
Section 13.4 and Chapter 15 for more information about virtual arrays. 

Table 13-1: String Modification 
Changes made to Changes made to 

Statement Fixed-Length Strings Dynamic Strings 

LET Value Value and length 

LSET Value Value 

RSET Value Value 

Terminal I/ 0 Value Value and length 
Statements1 

1 Terminal I/O statements include INPUT, INPUT LINE, LINPUT, MAT INPUT, and so on. 

13.2 Using Dynamic Strings 

Although dynamic strings are less efficient than fixed-length strings, they 
are often more flexible. For example, to concatenate strings, you can just 
use the LET statement to assign the concatenated value to a dynamic string 
variable, without having to be concerned about VAX BASIC truncating the 
string or adding trailing spaces to it. However, if the destination variable 
is fixed-length, you must make sure that it is long enough to receive the 
concatenated string, or VAX BASIC truncates the new value to fit the 
destination string. Similarly, if you use LSET or RSET to concatenate 
strings, you must ensure that the destination variable is long enough to 
receive the data. 

The LET, LSET and RSET statements all operate on dynamic strings as 
well as fixed-length strings. The LET statement can change the length 
of a dynamic string; LSET and RSET do not. LSET and RSET are more 
efficient than LET when changing the value of a dynamic string. For more 
information on LSET and RSET, see Sections 13.5.2 and 13.5.3. 

13-2 String Handling 



In the following example, the first line assigns the value 11 ABC" to A$, the 
second line assigns 11XYZ" to B$, and the third line assigns six spaces to 
C$. These variables are dynamic strings. In the fourth line, LSET assigns 
A$ the value of A$ concatenated with B$. Because the LSET statement 
does not change the length of the destination string variable, only the first 
three characters of the expression A$ + B$ are assigned to A$. The fifth 
line uses LSET to assign C$ the value of A$ concatenated with B$. Because 
C$ already has a length of 6, this statement assigns the value 11 ABCXYZ" 
to it. 

Example 

LET At = "ABC" 
LET Bt = "XYZ" 
LET Ct = " 
LSET At = At + Bt 
LSET C$ = A$ + Bt 
PRINT A$ 
PRINT C$ 
END 

Output 

ABC 
ABCXYZ 

Like the LET statement, the INPUT, INPUT LINE, and LINPUT statements 
can change the length of a dynamic string, but they cannot change the 
length of a fixed-length string. 

In this example, the first line assigns the null string to variable A$. The 
second line uses the LEN function to show that the null string has a length 
of zero. The third line uses the INPUT statement to assign a new value to 
A$, and the fourth and fifth lines print the new value and its length. 

String Handling 13-3 



Example 

!Declare a dynamic string 
LET A$ = "" 
PRINT LEN(A$) 
INPUT A$ 
PRINT A$ 
PRINT LEN(A$) 
END 

Output 

0 
? THIS IS A TEST 
THIS IS A TEST 

14 

You should not confuse the null string with a null character. A null 
character is one whose ASCII numeric code is zero. The null string is a 
string whose length is zero. 

13.3 Using Fixed-Length Strings 

It is generally more efficient to manipulate a fixed-length string than a 
dynamic string. Creating or modifying a dynamic string often causes 
VAX BASIC to create new storage, and this increases processor overhead. 
Modifying fixed-length strings involves less overhead because VAX BASIC 
manipulates existing storage using VAX character instructions. 

If a string variable is part of a map or common block, or virtual array, a 
LET, INPUT, LINPUT, or INPUT LINE statement changes its value, but 
not its length. In the following example, the MAP statement in the first 
line explicitly assigns a length to each string variable. Because the LINPUT 
statements cannot change this length, VAX BASIC truncates values to fit 
the address and city_state variables. Because the zip variable is longer than 
the assigned value, VAX BASIC left-justifies the assigned value and pads it 
with spaces. The sixth line uses the compile-time constant HT (horizontal 
tab) to separate fields in the employee record. 

13-4 String Handling 



Example 

MAP (FIELDS) STRING full_name = 10, 
address = 10, 
city_state = 10, 
zip = 10 

LINPUT "NAME"; full_name 
LINPUT "ADDRESS"; address 
LINPUT "CITY AND STATE"; city_state 
LINPUT "ZIP CODE"; zip 
EMPLOYEE_RECORD$ = full_name + HT + address + HT t 

+ city_state + HT + zip 
PRINT EMPLOYEE_RECORD$ 
END 

Output 

NAME'? JOE SMITH 
ADDRESS'? 66 GRANT AVENUE 
CITY AND STATE'? NEW YORK NY 
ZIP'? 01001 

JOE SMITH 66 GRANT A NEW YORK N 01001 

13.4 Using String Virtual Arrays 

Virtual arrays are stored on disk. You create a virtual array by opening a 
disk file and then using the DIM # statement to dimension the array on 
the open channel. This section describes only string virtual arrays. See 
Chapter 15 for more information on virtual arrays. 

Elements of string virtual arrays behave much like dynamic strings, with 
two exceptions: 

• When you create the virtual string array, you specify a maximum 
length for the array's elements. The length of an array element can 
never exceed this maximum. If you do not supply a length, the default 
is 16 characters. 

• A string virtual array element cannot contain trailing nulls. 

When you assign a value to a string virtual array element, VAX BASIC 
pads the value with nulls, if necessary, to fit the length of the virtual array 
element. However, when you retrieve the virtual array element, VAX 
BASIC strips all trailing nulls from the string. Therefore, when you access 
an element in a string virtual array, the string never has trailing nulls. 

String Handling 13-5 



In the following example, The first two lines dimension a string virtual 
array and open a file on channel #1. The third line assigns a IO-character 
string to the first element of this string array, and to the variable A$. This 
IO-character string consists of "ABCDE" plus five null characters. The 
PRINT statements show that the length of A$ is 10, while the length of 
test(l) is only 5 because VAX BASIC strips trailing nulls from string array 
elements. 

Example 

DIM #1%, STRING test(5) 
OPEN "TEST" AS FILE #1%, ORGANIZATION VIRTUAL 
A$, test(1Y.) = "ABCDE" + STRING$(51., OY.) 
PRINT "LENGTH OF A$ IS: "; LEN(A$) 
PRINT "LENGTH OF TEST(1) IS: "; LEN(test(1%)) 
END 

Output 

LENGTH OF A$ IS: 10 
LENGTH OF TEST(1) IS: 5 

Although the storage for string virtual array elements is fixed, the length 
of a string array element can change because VAX BASIC strips the trailing 
nulls whenever it retrieves a value from the array. 

13.5 Assigning String Data 

To assign string data, you use the LET, LSET, RSET, and MID$ statements. 
The following sections describe how to use these statements. 

13.5. 1 The LET Statement 

The LET statement assigns string data to a string variable. The keyword 
LET is optional. Again, LSET is more efficient than LET when changing 
a dynamic string variable. In the following example, B is a string variable 
and "ret_status" is a quoted string expression. 

LET B = "ret_status" 

13-6 String Handling 



The LET statement changes the length of dynamic strings but does not 
change the length of fixed-length strings. For instance, the following 
example, first creates a fixed-length string named ABC by declaring the 
string in a MAP statement. The program then creates a dynamic string 
named XYZ by declaring it in a DECLARE statement. The third line 
assigns a 3-character value to both variable ABC and XYZ, then prints 
the value and the length of the string variables. Variable ABC continues 
to have a length of 10: the three characters assigned, plus seven spaces 
for padding. The length of the dynamic variable changes with the values 
assigned to it. 

Example 

MAP (TEST) STRING ABC = 10 
DECLARE STRING XYZ 
ABC = "ABC" 
XYZ = "XYZ" 
PRINT ABC, LEN(ABC) 
PRINT XYZ, LEN(XYZ) 
ABC = "A" 
XYZ = "X" 
PRINT ABC, LEN(ABC) 
PRINT XYZ, LEN(XYZ) 

Output 

ABC 10 
XYZ 3 
A 10 
x 1 

13.5.2 The LSET Statement 

The LSET statement left-justifies data and assigns it to a string variable, 
without changing the variable's length. In the following example, ABC is 
a string variable and "ABC" is a string constant. 

LSET ABC = "ABC" 

If the string expression's value is shorter than the string variable's current 
length, LSET left-justifies the expression and pads the string variable 
with spaces. In the following example, the LET statement creates the 
5-character string variable test$. The LSET statement in the second line 
assigns the string XYZ to the variable test$ but does not change the 
length of test$. Because test$ has a length of 5, the LSET statement pads 
the string XYZ with two spaces when assigning the value. The PRINT 
statement shows that test$ includes these two spaces. 

String Handling 13-7 



Example 

LET test$ = "ABCDE" 
LSET test$ = "XYZ" 
PRINT "'"; test$; "'" 
END 

Output 

'XYZ I 

LSET left-justifies a string expression longer than the string variable and 
truncates it on the right as shown in the following example: 

Example 

LET test$ = "ABCDE" 
LSET test$ = "12346678" 
PRINT test$ 
END 

Output 

12346 

The LET statement creates the 5-character string variable test$. The 
LSET statement in the second line assigns the characters "12345" to test$. 
Because LSET does not change the string variable's length, it truncates the 
last three characters (678). 

13.5.3 The RSET Statement 

The RSET statement right-justifies data and assigns it to a string variable 
without changing the variable's length. In the following example, C_R is 
a string variable and "cust_rec" is a string constant. 

RSET C_R = "cust_rec" 

RSET right-justifies a string expression shorter than the string variable 
and pads it with spaces on the left. In the following example, the LET 
statement creates the 5-character string variable test$. The RSET statement 
in the second line assigns the string XYZ to test$ but does not change 
the length of test$. Because test$ is five characters long, the RSET state
ment pads XYZ with two spaces when assigning the value. The PRINT 
statement shows that test$ includes these two spaces. 

13-8 String Handling 



Example 

LET test$ = "ABCDE" 
RSET test$ = "XYZ" 
PRINT "'" ; test$; "'" 
END 

Output 

I XYZ' 

If the string expression's value is longer than the string variable, RSET 
right-justifies the string expression and truncates characters on the left to 
fit the string variable as shown in the following example: 

Example 

LET test$ = "ABCDE" 
RSET test$ = "987664321" 
PRINT test$ 
END 

Output 

64321 

The LET statement creates a 5-character string variable, test$. The RSET 
statement assigns "54321" to test$. RSET, which does not change the vari
able's length, truncates "9876" from the left side of the string expression. 

Note that, when using LSET and RSET, padding can become part of the 
data: 

Example 

LET A$ = '12346' 
LSET A$ = 'ABC' 
LET 8$ = '12346678' 
RSET 8$ = A$ 
PRINT " 1 

" ; 8$; " 1 
" 

Output 
ABC I 

String Handling 13-9 



13.5.4 The MIDS Assignment Statement 

You can replace a portion of a string with another string using the MID$ 
assignment statement. You specify a starting character position that indi
cates where to begin the substitution. If you specify a starting character 
position that is less than 1, VAX BASIC assumes a starting character posi
tion of 1. In addition, you can optionally specify the number of characters 
to substitute from the source string expression. If you do not specify the 
number of characters to substitute, VAX BASIC attempts to insert the 
entire source expression. However, the MID$ statement never changes the 
length of the target string variable; therefore, the entire source expression 
may not fit into the available space. 

The following example illustrates the use of MID$ as an assignment 
statement. In this example, "ABCD" is the input string, the starting 
character position is 1, and the length of the segment to be replaced is 3 
characters. Note that when you use MID$ as an assignment statement, the 
length of the input string does not change. Therefore, the length of the 
result ("123D"), is equal to the length of the input string. 

Example 

DECLARE STRING old_string, replace_string 
old_string = "ABCD" 
replace_string = "123" 
PRINT old_string 
MID$(old_string,1,3) = replace_string 
PRINT old_string 

Output 

ABCD 
123D 

Keep these considerations in mind when you use the MID$ assignment 
statement: 

• The length argument is optional. If not specified, the number of char
acters replaced will be the minimum of the length of the replacement 
string and the length of the input string minus the starting position 
value. 

• If the length of the segment is less than or equal to zero, VAX BASIC 
assumes a length of zero. 

• The length of the input string does not change regardless of the value 
of the length of the segment. 

13-10 String Handling 



13.6 Manipulating String Data with String Functions 

When used with the LET statement, VAX BASIC string functions let you 
manipulate and modify strings. These functions let you: 

• Determine the length of a string (LEN) 
• Search for the position of a set of characters in a string (POS) 

• Extract segments from a string (SEG$, MID$) 

• Create a string of any length, made up of any single character 
(STRING$) 

• Create a string of spaces (SP ACE$) 
• Remove trailing spaces and tabs from a string (TRM$) 

• Edit a string (EDIT$) 

These functions are discussed in the following sections. See the VAX 
BASIC Reference Manual for more information about each string function. 

13.6.1 The LEN Function 

The LEN function returns the number of characters in a string as an 
integer value. For example: 

LEN(spec) 

Spec is a string expression. The length of the string expression includes 
leading and trailing blanks. In the following example, the variable Z$ is 
set equal to "ABC XYZ", which has a length of eight. 

Example 

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
PRINT LEN(alpha$) 
Z$ = "ABC" + " " + ""XYZ" 
PRINT LEN(Z$) 
END 

Output 

26 
8 

String Handling 13-11 



13.8.2 The POS Function 

POS searches a string for a group of characters (a substring). In the 
following example, spec is the string to be searched, test is the substring 
for which you are searching and 15 is the character position where VAX 
BASIC starts the search. 

POS(spec,test,15) 

The position returned by POS is relative to the beginning of the string, not 
the starting position of the search. For example, if you search the string 
"ABCDE" for the substring "E", it does not matter whether you specify a 
starting position of 1, 2, 3, 4, or 5, VAX BASIC still returns the value 5 as 
the position where the substring was found. 

If the function finds the substring, it returns the position of the substring's 
first character. Otherwise, it returns zero as in the following example: 

Example 

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
Z$ = "DEFG" 
XX = POS(ALPHA$,Z$,1%) 
PRINT XX 
Q$ = "TEST" 
YX = POS(ALPHA$, Q$, 1%) 
PRINT YY. 
END 

Output 

4 
0 

If you specify a starting position other than 1, VAX BASIC still returns the 
position of the substring relative to the beginning of the string as shown 
in the following example: 

Example 

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
Z$ = "HIJ" 
PRINT POS(ALPHA$, Z$, 71.) 
END 

Output 

8 

13-12 String Handling 



If you know that the substring is not near the string's beginning, spec
ifying a starting position greater than one speeds program execution by 
reducing the number of characters VAX BASIC must search. 

You can use the POS function to associate a character string with an 
integer that you can then use in calculations. This technique is called a 
table lookup. For instance, the following example prompts for a 
3-character string, changes the string to uppercase letters and searches 
the table string to find a match. The WHILE loop executes indefinitely 
until a carriage return is typed in response to the prompt. 

Example 

DECLARE STRING CONSTANT table = t 
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC" 

DECLARE STRING month, UPPER_CASE_MONTH, message 
DECLARE INTEGER month_length 
DECLARE REAL month_pos 

PRINT "Please type the first three letters of a month" 
PRINT "To end the program, type only RETURN);" 
Loop_1: 

WHILE 1Y. = 1Y. 
INPUT month 
UPPER_CASE_MONTH = EDIT$(month, 32%) 
month_length = LEN(UPPER_CASE_MONTH) 
EXIT Loop_1 IF month_length = OX 
IF month_length = 31. 

THEN month_pos = (POS(table, UPPER_CASE_MONTH, 1) + 2) / 3 
IF (month_pos = 01.) OR (month_pos <> FIX(month_pos)) 

THEN MESSAGE = " Invalid abbreviation, try again" 
ELSE MESSAGE = " is month number" + NUM$(MONTH_POS) 

END IF 
ELSE MESSAGE = 11 Abbreviation not three characters, try again" 

END IF 

END 

PRINT month; message 
NEXT 

Output 

Please type the first three letters of a month 
To end the program, type only RETURN? Nov 
Nov is month number 11 

Keep these considerations in mind when you use POS: 

• If you specify a starting position less than l, POS assumes a starting 
position of one. 

• If you specify a starting position greater than the searched string's 
length, POS returns a zero (unless the substring is null). 

String Handling 13-13 



• When searching for a null string: 
If you specify a starting position greater than the string's length, 
POS returns the string's length plus one. 

If the string to be searched is also null, POS returns a value of 
one. 
If the specified starting position is less than or equal to l, POS 
returns a value of one. 
If the specified starting position is greater than one and less than 
or equal to the string's length plus l, POS returns the specified 
starting position. 

Note that searching for a null string is not the same as searching for the 
null character. A null string has a length of zero, while the null character 
has a length of one. The null character is an ASCII character whose value 
is zero. 

13.6.3 The SEGS Function 

The SEG$ function extracts a segment (substring) from a string. The 
original string remains unchanged. In the following example, time is the 
input string, 13 is the position of the first character extracted and 16 is the 
position of the last character extracted. 

SEG$(time,13,16) 

SEG$ extracts from the input string the substring that starts at the first 
character position, up to and including the last character position. It 
returns the extracted segment. 

Example 

PRINT SEG$("ABCDEFG 11
, 31., 61.) 

END 

Output 

CDE 

If you specify character positions that exist in the string, the length of the 
returned substring always equals (int-exp2 - int-expl + 1). 

13-14 String Handling 



Keep these considerations in mind when you use SEG$: 

• If the starting character position is less than l, VAX BASIC assumes a 
value of 1. 

• If the starting character position is greater than the ending character 
position, or the length of the string, SEG$ returns a null string. 

• If the ending character position is greater than the length of the string, 
SEG$ returns all characters from the starting character position to the 
end of the string. 

• If the starting character position is equal to the ending character 
position, SEG$ returns the character at the starting position. 

You can replace part of a string by using the SEG$ function with the string 
concatenation operator ( + ). In the following example, when VAX BASIC 
creates C$, it concatenates the first two characters of A$, the 3-letter string 
XYZ, and the last two characters of A$. The original contents of A$ do not 
change. 

Example 

A$ = "ABCDEFG 11 

C$ = SEG$(A$, 1Y., 2Y.) + 11 XYZ" + SEG$(A$, 6Y., 7Y.) 
PRINT C$ 
PRINT A$ 
END 

Output 

ABXYZFG 

AB CD EFG 

You can use similar string expressions to replace characters in any string. 
If you do not change the length of the target string, use the MID$ as
signment statement to perform string replacement. A general formula to 
replace characters in positions n through m of string A$ with characters in 
B$ is: 

C$ = SEG$(A$,l %,n-1) + B$ + SEG$(A$,m+l,LEN(A$)) 

The following example replaces the sixth through ninth characters of the 
string "ABCDEFGHIJK" with "123456". 

String Handling 13-15 



Example 

A$ = "ABCDEFGHIJK" 
8$ = "123456" 
C$ = SEG$(A$,1Y.,5Y.) + 8$ + SEG$(A$,10Y.,LEN(A$)) 
PRINT C$ 
PRINT A$ 
PRINT 8$ 
END 

Output 

ABCDE123456JK 
ABCDEFGHIJK 
123456 

The following formulas are more specific applications of the general 
formula. 

• To replace the first n characters of A$ with B$ use 

C$ = B$ + SEG$(A$,n+l,LEN(A$)) 

• To replace all but the first n characters of A$ with B$ use 

C$ = SEG$(A$,l,n) + B$ 

• To replace all but the last n characters of A$ with B$ use 

C$ = B$ + SEG$(A$,(LEN(A$)-n) + l,LEN(A$)) 

• To replace the last n characters of A$ with B$ use 

C$ = SEG$(A$,l,LEN(A$)-n) + B$ 

• To insert B$ in A$ after the nth character in A$ use 

C$ = SEG$(A$,1,n) + B$ + SEG$(A$,n+l,LEN(A$)) 

13.6.4 The MIDS Function 

The MID$ function extracts a specified substring, beginning at a specified 
character position and ending at a specified length. If you specify a 
starting character position that is less than l, VAX BASIC automatically 
assumes a starting character position of 1. 

In the following example, the MID$ function uses the input string 
"ABCD", and extracts a segment consisting of 3 characters. Because 
VAX BASIC automatically assumes a starting character position of 1 when 
the specified starting character position is less than 1, the string that is 
extracted begins with the first character of the input string. 

13-16 String Handling 



Example 

DECLARE STRING old_string, new_string 
old_string = "ABCD" 
new_string = MID$(old_string, 0, 3) 
PRINT new_string 

Output 

ABC 

Keep these considerations in mind when you use the MID$ function: 

• If the position of the segment's first character is greater than the input 
string, MID$ returns a null string. 

• If the length of the segment is greater than the length of the input 
string, VAX BASIC returns the string that begins at the specified 
starting character position and includes all characters remaining in the 
string. 

• If the length of the segment is less than or equal to zero, MID$ returns 
a null string. 

• If you specify a floating-point expression for the position of the 
segment's first character or for the length of the segment, VAX BASIC 
truncates it to a long integer. 

13.8.5 The STRINGS Function 

The STRING$ function creates a character string containing multiple 
occurrences of a single character. In the following example, 23 is the 
length of the returned string and 30 is the ASCII value of the character 
that makes up the string. This value is treated modulo 256. 

STRING$(23,30) 

The following example creates a 10-character string containing uppercase 
As, which have ASCII value 65. 

String Handling 13-17 



Example 

out$ = STRING$(10Y., 66Y.) 
PRINT out$ 
END 

Output 

AAAAAAAAAA 

Keep these considerations in mind when you use the STRING$ function: 

• If the length of the returned string is less than or equal to zero, 
STRING$ returns a null string. 

• If the length of the returned string is greater than 65535, VAX BASIC 
signals an error. 

13.8.8 The SPACES Function 

The SP ACE$ function creates a character string containing spaces. In this 
example, 5 is the number of spaces in the string. 

SPACE$(6) 

The following example creates a 9-character string which contains 3 
spaces. 

Example 

A$ = "ABC" 
B$ = "XYZ" 
PRINT A$ + SPACE$(3Y.) + B$ 
END 

Output 

ABC XYZ 

13.8. 7 The TRMS Function 

The TRM$ function removes trailing blanks and tabs from a string. The 
input string remains unchanged. In the following example, all trailing 
blanks that appear in the string expression, "ABCDE " are removed once 
the TRM$ function is invoked. 

13-18 String Handling 



Example 

AS = "ABCDE 
BS = "XYZ" 
first$ = AS + BS 
second$ = TRM${A$) + BS 
PRINT first$ 
PRINT second$ 
END 

Output 

ABCDE XU 
ABCDEXYZ 

The TRM$ function is especially useful for extracting the nonblank char
acters from a fixed-length string (for example, a COMMON or MAP, or a 
parameter passed from a program written in another language). 

13.6.8 The EDITS Function 

The EDIT$ function performs one or more string editing functions, de
pending on the value of an argument you supply. The input string 
remains unchanged. In the following example, stu_rec is a string expres
sion and 32 determines the editing function performed. 

EDIT${stu_rec,32) 

Table 13-2 shows the action VAX BASIC takes for a given value of the 
integer expression. 

Table 13-2: EDIT$ Options 
Value of 
Expression 

2 

4 

8 

16 

Effect 

Discards each character's parity bit (bit 7). Note that you should 
not use this value for characters in the DEC Multinational 
Character Set. 

Discards all spaces and tabs. 

Discards all carriage returns, line feeds, form feeds, deletes, 
escapes, and nulls. 

Discards leading spaces and tabs. 

Converts multiple spaces and tabs to a single space. 

String Handling 13-19 



Table 13-2 (Cont.): EDIT$ Options 
Value of 
Expression 

32 

64 

128 

256 

Effect 

Converts lowercase letters to uppercase. 

Converts left brackets ( [) to left parentheses [(], and right 
brackets (]) to right parentheses [)]. 

Discards trailing spaces and tabs. (Same as TRM$ function.) 

Suppresses all editing for characters within quotation marks. If 
the string has only one quotation mark, VAX BASIC suppresses 
all editing for the characters following the quotation mark. 

All values are additive; for example, by specifying 168, you can: 

• Discard leading spaces and tabs (value 8) 

• Convert lowercase letters to uppercase (value 32) 

• Discard trailing spaces and tabs (value 128) 

The following program requests an input string, discards all spaces and 
tabs, converts lowercase letters to uppercase, and converts brackets to 
parentheses: 

Example 

LINPUT "PLEASE TYPE A STRING";input_string$ 
new_string$ = EDIT$(input_string$, 2Y. + 32Y. + 64Y.) 
PRINT new_string$ 
END 

Output 

PLEASE TYPE A STRING? 88 abc[TAB][5,5] 
88ABC(5,5) 

13. 7 Manipulating String Data with Multiple Maps 

Mapping a string storage area in more than one way lets you extract a 
substring from a string or concatenate strings. In the following example, 
the three MAP statements reference the same 108 bytes of data. 

13-20 String Handling 



Example 

MAP (emprec) first_name$ = 10, 
last_name$ = 20, 
street_number$ = 6, 
street$ = 16, 
city$ = 20, 
state$ = 2, 
zip$ = 6, 
wage_claSB$ = 2, 
date_of_review$ = 8, 
salary_ytd$ = 10, 
tax_ytd$ = 10 

MAP (emprec) full_namet = 30, 
addreBB$ = 48, 
salary_info$ = 30 

MAP (emprec) employee_record$ = 108 

You can move data into a map in different ways. For instance, you can 
use terminal input, arrays, and files. In the following example, the READ 
and DATA statements are used to move data into a map. 

Example 

READ EMPLOYEE_RECORD$ 
DATA "WILLIAM DAVIDSON 2241 MADISON BLVD " & 
"SCRANTON PA14226A912/10/78$13,326.77$926.31" 

Because all the MAP statements in the example shown above reference 
the same storage area (emprec), you can access parts of this area through 
the mapped variables as shown in Example 1 and Example 2. 

Example 1 

PRINT full_name$ 
PRINT wage_class$ 
PRINT salary_ytd$ 

Output 1 

WILLIAM DAVIDSON 
A9 
$13,326.77 

String Handling 13-21 



Example 2 

PRINT last_name$ 
PRINT tax_ytd$ 

Output 2 

DAVIDSON 
$926.31 

You can assign a new value to any of the mapped variables. For instance, 
the following example prompts the user for changed information by 
displaying a menu of topics. The user can then choose which topics need 
to be changed and then separately assign new values to each variable. 

Example 

Loop_1: 
WHILE 1Y. = 1Y. 

13-22 String Handling 

INPUT "Changes? (please type YES or NO)"; CH$ 
EXIT Loop_1 IF CH$ = "NO" 
PRINT "1. FIRST NAME" 
PRINT "2. LAST NAME" 
PRINT "3. STREET NUMBER" 
PRINT "4. STREET" 
PRINT "6. CITY" 
PRINT 11 6. STATE" 
PRINT "7. ZIP" 
PRINT "8. WAGE CLASS" 
PRINT "9. DATE OF REVIEW" 
PRINT "10. SALARY YTD" 
PRINT "11. TAX YTD" 
INPUT "CHANGE NUMBER"; NUMBERY. 



NEXT 
END 

SELECT NUMBER% 
CASE 1% 

INPUT "FIRST NAME"; first_name$ 
CASE 2% 

INPUT "LAST NAME"; last_name$ 
CASE 3% 

INPUT "STREET NUMBER"; street_number$ 
CASE 4% 

INPUT "STREET"; street$ 
CASE 5Y. 

INPUT "CITY"; city$ 
CASE 6Y. 

INPUT "STATE"; state$ 
CASE 7% 

INPUT "ZIP CODE"; zip$ 
CASE SY. 

INPUT "WAGE CLASS"; wage_class$ 
CASE 9Y. 

INPUT "DATE OF REVIEW"; date_of_review$ 
CASE 10% 

INPUT "SALARY YTD"; salary_ytd$ 
CASE 11% 

INPUT "TAX YTD"; tax_ytd$ 
CASE ELSE 

PRINT "Invalid choice" 
END SELECT 

Output 

Changes? (please type YES or NO)? YES 
1 . FIRST NAME 
2. LAST NAME 
3. STREET NUMBER 
4. STREET 
5. CITY 
6. STATE 
7. ZIP 
8 . WAGE CLASS 
9. DATE OF REVIEW 
10. SALARY YTD 
11. TAX YTD 

CHANGE NUMBER? 10 
SALARY YTD7 14,277.08 
Changes? (please type YES or NO)? YES 
CHANGE NUMBER? 11 
TAX YTD7 998.32 
Changes? (please type YES or NO)? NO 

See Chapter 9 and the VAX BASIC Reference Manual for more information 
on the MAP statement. 

String Handling 13-23 





Chapter 14 

Program Segmentation 

Program segmentation is the process of dividing a program into small, 
manageable routines and modules. In a segmented or modular program, 
each routine or module usually performs only one logical function. You 
can therefore design and implement a modular program faster than a 
nonsegmented program. Program modularity also simplifies debugging 
and testing, as well as program maintenance and transportability. 

This chapter describes how to 

• Declare VAX BASIC subprograms 
• Write VAX BASIC subprograms 

• Share data among program units 

Subprograms processed by the VAX BASIC compiler conform to the VAX 
Procedure Calling Standard. This standard prescribes how arguments 
are passed, how values are returned, and how procedures receive and 
return control. Because VAX BASIC conforms to the VAX Procedure 
Calling Standard, a VAX BASIC subprogram or main program can call or 
be called by any procedure written in a language that also conforms to 
this standard. For information about calling non-BASIC procedures, see 
Chapter 21. 

Program Segmentation 14-1 



14.1 VAX BASIC Subprograms 

VAX BASIC has SUB, FUNCTION, and PICTURE subprograms. Each of 
these subprograms receives parameters and can modify parameters passed 
by reference or by descriptor. The differences between SUB, FUNCTION, 
and PICTURE subprograms are as follows: 

• FUNCTION subprograms must be declared with an EXTERNAL 
statement in the calling program. Declaring SUB and PICTURE 
subprograms is optional. 

• FUNCTION subprograms return a value; SUB and PICTURE subpro
grams do not. 

• PICTURE subprograms must be invoked with the DRAW statement 
and are reserved for use with VAX BASIC graphics. For more infor
mation on PICTURE subprograms, see Programming with VAX BASIC 
Graphics. 

All subprograms invoked by a VAX BASIC program must have unique 
names. A VAX BASIC program cannot have different subprograms with 
the same identifiers. 

Subprograms can return a value to the calling program by way of param
eters. You can use subprograms to separate routines that you commonly 
use. For example, you can use subprograms to perform file I/O opera
tions, to sort data, or for table lookups. 

You can also use subprograms to separate very large programs into 
smaller, more manageable routines, or you can separate modules that are 
modified often. If all references to system-specific features are isolated, it 
is easier to transport the program to a different system. VAX/VMS System 
Services and VAX Run-Time Library routines are specific to VAX/VMS 
systems; therefore, you should consider isolating references to them in 
subprograms. Chapter 21 describes how to access Run-Time Library 
routines and system services from VAX BASIC. 

You should also consider isolating complex processing algorithms that are 
used commonly. If complex processing routines are isolated, they can be 
shared by many programs while the complexity remains hidden from the 
main program logic. However, they can share data only if the data is 

• Passed as a parameter from the CALL statement or function invocation 
to the subprogram-see Section 14.2 

• Part of a MAP or COMMON block-see Chapter 8 for information 
about using MAP and COMMON statements 

14-2 Program Segmentation 



• In a file-see Chapter 15 for more information about accessing data 
from a file 

All DATA statements are local to a subprogram. Each time you call a 
subprogram, VAX BASIC positions the data pointer at the beginning of the 
subprogram's data. 

The data pointer in the main program is not affected by READ or 
RESTORE statements in the subprogram (in contrast with the RESTORE 
# statement, which resets record pointers to the first record in the file no 
matter where it is executed). Chapter 7 contains more information on the 
READ and RESTORE statements. For more information on the RESTORE 
#statement, see Chapter 15. 

14.1.1 SUB Subprograms 

A SUB subprogram is a program module that can be separately compiled 
and that cannot return a value. A SUB subprogram is delimited by the 
SUB and END SUB statements. You may use the EXTERNAL statement to 
explicitly declare the SUB subprogram. 

The END SUB statement does the following: 

• Marks the end of the SUB subprogram 

• Does not affect 1/0 operations or files 
• Releases the storage allocated to local variables 

• Returns control to the calling program 

The EXIT SUB statement transfers control to the statement lexically 
following the statement that invoked the subprogram. It is equivalent to 
an unconditional branch to an END SUB statement. 

The following SUB subprogram sorts two integers. If this SUB is invoked 
with actual parameter values that are already in sorted order, the EXIT 
SUB statement is executed and control returns to the calling program. 

Program Segmentation 14-3 



SUB sort_0t1t (INTEGER X, INTEGER Y) 
DECLARE INTEGER temp 

IF X > Y 
THEN 

temp = X 
x = y 
Y = temp 

ELSE 
EXIT SUB 

END IF 
END SUB 

14.1.2 FUNCTION Subprograms 

A FUNCTION subprogram is a program module that returns a value and 
can be separately compiled. It must be delimited by the FUNCTION and 
END FUNCTION statements. You use the EXTERNAL statement to name 
and explicitly declare the data type of an external function. 

The END FUNCTION statement does the following: 

• Marks the end of a function subprogram 

• Does not affect I/O operations or files 
• Releases the storage allocated to local variables 

• Optionally specifies a return value for the function 

• Returns control to the calling program 

The EXIT FUNCTION statement immediately returns program control 
to the statement that invoked the function and optionally returns the 
function's return value. It is equivalent to an unconditional transfer to the 
END FUNCTION statement. 

You can specify an expression with both the END FUNCTION and EXIT 
FUNCTION statements, which is another way of returning a function 
value. This expression must match the function data type, and it super
sedes any function assignment. For more information, see the VAX BASIC 
Reference Manual. 

The following function returns the volume of a sphere of radius R. If this 
function is invoked with an actual parameter value less than or equal to 
zero, the function returns zero. 

14-4 Program Segmentation 



Example 

FUNCTION REAL Sphere_volume (REAL R) 
IF R <= 0 

THEN 
Sphere_volume = 0.0 

ELSE 
Sphere_volume = 4/3 * PI * R ** 3 

END IF 
END FUNCTION 

The following example declares the FUNCTION subprogram and 
invokes it: 

Example 

PROGRAM call_sphere 
EXTERNAL REAL FUNCTION SPHERE_VOLUME(REAL) 
PRINT SPHERE_VOLUME(6.926) 

END PROGRAM 

Note that this module is compiled separately from the FUNCTION 
subprogram. You can link these modules together to run the program 
from DCL level. To run the program in the BASIC environment, you 
follow these steps: 

1. Compile the function subprogram 

2. Load the resulting object module with the LOAD command 
3. Read in the main program with the OLD command 

4. Type RUN 

See Chapter 3 for more information about the LOAD command and 
linking and running multiple-unit programs. 

14.2 Declaring Subprograms and Parameters 

You declare a subprogram by naming it in an EXTERNAL statement in the 
calling program. You may also declare the data type of each parameter. 
If the subprogram is a function, the EXTERNAL statement also lets you 
specify the data type of the returned value. 

Program Segmentation 14-5 



The following statements are sample subprogram declarations using the 
EXTERNAL statement: 

EXTERNAL SUB my_sub (LONG, STRING) 
EXTERNAL GFLOAT FUNCTION my_func (GFLOAT, LONG, GFLOAT) 
EXTERNAL REAL FUNCTION determinant (LONG DIM(,)) 

Note that the parameter lists contain only data type and dimension 
information; they cannot contain any format or actual parameters. When 
the external procedure is invoked, VAX BASIC ensures that the actual 
parameter data type matches the data type specified in the EXTERNAL 
declaration. However, VAX BASIC does not check to make sure that 
the parameters declared in the EXTERNAL statement match those in the 
external routine. You must ensure that these parameters match. 

You can pass data of any VAX BASIC data type to a VAX BASIC subpro
gram, including RFAs and RECORDs. VAX BASIC allows you to pass up 
to 255 parameters, separated by commas. The data can be any one of the 
following: 

• Constants 

• Variables 
• Expressions 
• Functions 

• Array elements 
• Entire arrays (but not virtual arrays) 

For passing constants, variables, functions and array elements, you simply 
name them in the argument list. For example: 

CALL SUB01(var1, var2) 

CALL SUB02(Po_numY., Vouch, 66.67, Cust_list(6), FNA(BY.)) 

However, when passing an entire array, you must use a special format. 
You specify the array name followed by commas enclosed in parentheses. 
The number of commas must be the number of array dimensions minus 
one. For example, array_name() is a one-dimensional array, array_name(,) 
is a two-dimensional array, array_name(,,) signifies a three-dimensional 
array, and so on. 

The following example creates a three-dimensional array, loads the array 
with values, and passes the array to a subprogram as a parameter. The 
subprogram can access and change values in array elements, and these 
changes remain in effect when control returns to the main program. 

14-6 Program Segmentation 



Example 

PROGRAM fill_array 
OPTION TYPE = EXPLICIT 
DECLARE LONG I,J,K, three_d(10,10,10) 
EXTERNAL SUB example_sub (LONG DIM(,,)) 
FOR I = 0 TO 10 

FOR J = 0 TO 10 
FOR K = 0 TO 10 

three_d(I,J,K) =I + J + K 
NEXT K 

NEXT J 
NEXT I 

CALL example_sub( three_d(,,)) 
END PROGRAM 

SUB example_sub( LONG X( , , )) 

END SUB 

If you do not specify data types for parameters, the default data type is 
determined by 

• The last specified parameter data type 
• An OPTION statement 

• A VAX BASIC compilation qualifier (for example, 
/REAL _SIZE=DOUBLE) 

• The system default 

The last specified parameter data type overrides all the other default 
data types, the defaults specified in the OPTION statement override any 
compilation qualifiers and system defaults, and so on. See Chapter 3 for 
more information on the OPTION statement and establishing data type 
defaults. 

When you know the length of a string or the dimensions of an array at 
compile time, you can achieve optimum performance, by passing them 
BY REF. When you call programs written in other languages, the practice 
of declaring subprograms and specifying the data types of parameters 
becomes more important because other languages may not use the VAX 
BASIC default parameter-passing mechanisms. For more information on 
calling subprograms written in other languages, see Chapter 21. 

Program Segmentation 14-7 



14.3 Compiling Subprograms 

A VAX BASIC source file can contain multiple program units. When you 
compile such a file, VAX BASIC produces a single object file containing 
the code from all the program units. You can then link this object file to 
create an executable image. 

If the main program and subprograms are in separate source files, you can 
compile them separately from DCL level. For example, the following com
mand causes VAX BASIC to create MAIN.OBJ, SUBl.OBJ, and SUB2.0BJ 
by separating the file names with commas: 

$ BASIC main,sub1,sub2 

To link these programs, you must specify all object files as input to the 
VAX/VMS Linker. 

Alternatively, you can compile multiple modules into a single object file at 
DCL command level by separating the file names with plus signs: 

$ BASIC main+sub1+sub2 

The plus signs used to separate the file names cause VAX BASIC to create 
a single object file named MAIN.OBJ from the three source modules. To 
link this program, you specify only one input file to the linker. Note that 
you cannot concatenate source files that do not contain line numbers. 

In the BASIC environment, you can compile multiple program units with 
a resulting single object file by using the APPEND command followed 
by the COMPILE command. For more information on the APPEND and 
COMPILE commands, see Chapter 3. 

When creating a multiple-unit program, follow these rules: 

• If the source file contains line numbers, then the line numbers for each 
subprogram must be numerically greater than the highest line number 
of all preceding subprograms. 

• Line numbers must be unique and no greater than 32767. 

• Each subprogram must end with an END SUB or END FUNCTION 
statement before the next subprogram begins. 

• If the source file contains line numbers, then text following an END 
SUB or END FUNCTION statement must begin on a numbered line. 

14-8 Program Segmentation 



• If the source file does not contain line numbers, then text following 
an END SUB or END FUNCTION statement must begin on a new 
physical line. 

Note that in a multiple-unit program that contains line numbers, any com
ments or statements following an END, END SUB, or END FUNCTION 
statement become part of the preceding subprogram unless they begin on 
a numbered line. In a multiple-unit program that does not contain line 
numbers, however, any comments following an END, END SUB, or END 
FUNCTION statement become part of the following subprogram if one 
exists. 

In the following example, the function Strip changes all brackets to 
parentheses in the string A$ or alpha, and strips all trailing spaces and 
tabs: 

Example 

PROGRAM scan 
EXTERNAL STRING FUNCTION Strip (STRING) 
A$= "USER$DISK:[BASIC.TRYOUTS] 
B$ = Strip( A$ ) 
PRINT 8$ 

END PROGRAM 

FUNCTION STRING Strip( STRING alpha ) 
IF (POS( alpha, "[", 11.)) > OY. 

THEN Strip = EDIT$(alpha, 1281. +641.) 
ELSE Strip = EDIT$(alpha, 1281.) 

END IF 
END FUNCTION 

14.4 Invoking Subprograms 

The following sections describe how to 

• Invoke subprograms 

• Pass parameters to subprograms 
• Share data among program modules 

Program Segmentation 14-9 



14.4.1 Invoking SUB Subprograms 

The CALL statement transfers control to a subprogram, and optionally 
passes arguments to it. The parameters in the CALL statement specify 
variables, constants, expressions, array elements, or entire arrays to 
be passed to the subprogram. You can also specify a function in the 
argument list; when you do this, VAX BASIC passes the value returned 
by the function to the subprogram. If possible, VAX BASIC converts the 
actual arguments to the data type specified in the EXTERNAL statement. 
VAX BASIC signals an error when the conversion is not possible. 

The following example shows a VAX BASIC main program calling a 
VAX BASIC subprogram. The main program prompts for three integers: 
A, B, and C. It then passes these variables as parameters to the SUB 
subprogram. The subprogram prints the sum of these variables and 
returns control to the calling program. 

Example 

PROGRAM get_input 
OPTION TYPE = EXPLICIT 
EXTERNAL SUB SUB01(LONG, LONG, LONG) 
DECLARE LONG A, 8, C 
INPUT "Please type three integers"; A, 8, C 
CALL SUB01 (A, 8, C) 

END PROGRAM 

SUB SUB01 (LONG X, LONG Y, LONG Z) 
PRINT "The sum is"; X + Y + Z 

END SUB 

14.4.2 Invoking FUNCTION Subprograms 

The following example performs the same task as the example shown in 
Section 14.4.1; however, this example uses a FUNCTION subprogram that 
returns the value to the main program and the main program prints the 
result. 

14-1 0 Program Segmentation 



Example 

PROGRAM invoke_funct 
EXTERNAL LONG FUNCTION FUN01(LONG, LONG, LONG) 
DECLARE LONG A, B, C 
INPUT "Please type three integers"; A, B, C 
PRINT "The sum is"; FUN01(A, B, C) 

END PROGRAM 

FUNCTION LONG FUN01 (LONG X, LONG Y, LONG Z) 
FUN01 = X + Y + Z 

END FUNCTION 

If you do not assign a value to the function name and you do not specify 
a return value on an EXIT FUNCTION or END FUNCTION statement, the 
function returns zero or the null string. 

Note that when writing FUNCTION subprograms, you must specify a data 
type for the function in both the main program EXTERNAL statement and 
the subprogram FUNCTION statement. This data type keyword specifies 
the data type of the value returned by the function subprogram. You 
should ensure that the data type specified in an EXTERNAL FUNCTION 
statement matches the data type specified in the FUNCTION statement. 

If you declare a FUNCTION subprogram with an EXTERNAL statement 
and use the CALL statement to invoke the function, it executes correctly 
but the function value is not available. Note that VAX BASIC still per
forms parameter validation when you invoke a function with the CALL 
statement. 

Note that you cannot use the CALL statement to invoke a string or packed 
decimal function. 

14.5 Returning Program Status 

A PROGRAM unit lets you return a status from a VAX BASIC image. To 
do this, you can optionally include an integer expression with the END 
PROGRAM and EXIT PROGRAM statements. After executing a program, 
you can examine this status by checking the DCL symbol $STATUS. By 
default, VAX BASIC returns a status of 1, indicating success. Success is 
signaled with an odd numbered status value, while an error is signaled 
with an even numbered value. $STATUS contains the same value as the 
integer expression for the exit status in the EXIT and END PROGRAM 
statements. Note that if a program is terminated with an EXIT PROGRAM 
statement, the expression on the EXIT PROGRAM statement overrides any 
expression on the END PROGRAM statement. 

Program Segmentation 14-11 



In the following example, exit_status contains the status value returned 
by the program. After program execution, $STATUS has the value of 
exit_status. You can examine the value of $STATUS and display the 
corresponding message text with the lexical function F$MESSAGE at DCL 
level, as shown following this example: 

Example 

PROGRAM Venture 
DECLARE INTEGER exit_status, t 

REAL capital 
EXTERNAL LONG CONSTANT SS$_BADPARAM 
EXTERNAL SUB play_safe(INTEGER), t 

minor_risk(INTEGER),major_risk(INTEGER) 
Exit_status = 1% 
SET NO PROMPT 

How_much: 
INPUT "Enter the amount of your free capital $";capital 
SELECT capital 

CASE = 0 
exit_status = SS$_BADPARAM 
EXIT PROGRAM exit_status 

CASE < 6000 
CALL play_safe(capital) 

CASE < 16000 
CALL minor_risk(capital) 

CASE < 60000 
CALL major_risk(capital) 

CASE ELSE 
PRINT "I can't cope with that amount, try again." 

END SELECT 
GOTO How_much 

END PROGRAM exit_status 

After program execution, you can examine the status of the program at 
DCL level: 

$ SHOW SYMBOL $STATUS 
$STATUS = "Y.X10" 

$ error_text = F$MESSAGE(%X10) 
$ SHOW SYMBOL error_text 

ERROR_TEXT = "SYSTEM-W-BADPARAM, bad parameter value" 

The PROGRAM statement is always optional; EXIT PROGRAM and END 
PROGRAM are legal without a matching PROGRAM statement. Without 
a PROGRAM statement, these statements still exit the main compilation 
unit. The EXIT PROGRAM and END PROGRAM statements are not valid 
within SUB, FUNCTION, or PICTURE subprograms. 

14-12 Program Segmentation 



Chapter 15 

File Input and Output 

This chapter explains the VAX BASIC file organizations and record oper
ations that are implemented through VAX Record Management Services 
(VAX RMS). For a more thorough understanding of file organization 
and file and record operations, see the VAX Record Management Services 
Reference Manual. 

RMS stores data in physical blocks. A block is the smallest number of 
bytes VAX BASIC transfers in a read or write operation. On disk, a block 
is 512 bytes. On magnetic tape, it is between 18 and 8192 bytes. 

RMS stores one or more data records in each block. A data record can also 
be divided into smaller units, called fields. A data record can be smaller 
than, equal to, or larger than a disk block. 

15.1 Record Formats 

The format of a record determines how RMS stores the record in a block. 
You specify the record format in an OPEN statement. The following are 
valid VAX BASIC record formats: 

• Fixed-length records 

• Variable-length records 

• Stream records 

File Input and Output 15-1 



15.1. 1 Fixed-Length Records 

Fixed-length records are all the same length. RMS stores fixed-length 
records as they appear in the record buffer, including any spaces or null 
characters following the data; this process is called padding. Processing 
these records involves less overhead than other record formats; however, 
this format can use disk storage space less efficiently than variable-length 
or stream records. 

15.1.2 Variable-Length Records 

Variable-length records can have different lengths, but no record can 
exceed a maximum size set for the file. When the record is written to 
a file, RMS adds a record length header that contains the length of the 
record (excluding the header) in bytes. When your program retrieves a 
record, this header is not included in the record buffer. While variable
length records usually make more efficient use of storage space than 
fixed-length records, manipulation of the record length headers generates 
processor overhead. 

15. 1.3 Stream Records 

VAX BASIC interprets stream records as a continuous sequence, or stream, 
of bytes. Unlike the fixed- and variable-length formats, stream records do 
not contain control information such as record counts, segment flags, or 
other system-supplied boundaries. Stream records are delimited by special 
characters or character sequences called terminators. Note that stream 
record formats are valid only in sequential files. 

RMS defines three types of stream record format: 

• STREAM records can be delimited by any special character (usually a 
carriage return/line-feed pair). 

• STREAM_LF records must be delimited by a line-feed character. 

• STREAM_CR records must be delimited by a carriage return. 

While you can access existing files of any one of these stream record for
mats, VAX BASIC creates new stream files only in the STREAM format; 
you can create files of the other two stream record formats by modify
ing the RMS FAB control structure in a USEROPEN routine. For more 
information on USEROPEN routines, see Section 15.8.11. 

15-2 File Input and Output 



15.2 File Organizations 

VAX BASIC provides several types of file organization: sequential, rela
tive, indexed, and virtual. If you do not specify a file organization when 
creating a file, the default is a terminal-format file (a sequential file with 
variable-length records). The following sections describe each type of file 
organization. 

15.2. 1 Terminal-Format Files 

A terminal-format file is a sequential file of variable-length records. 
Terminal-format files are the default; that is, you create a terminal-format 
file when you do not specify a file organization when you open a file. You 
can then use the PRINT, INPUT, INPUT LINE, and LINPUT statements to 
access a terminal-format file. See Chapters 7 and 8 for more information 
about terminal-format files. 

15.2.2 Sequential Files 

A sequential file contains records that are stored in the order they are 
written. Sequential files can contain records of any valid VAX BASIC 
record format: fixed-length, variable-length, or stream. You usually read 
a sequential file from the beginning; therefore, a sequential file is most 
useful when you access the data sequentially each time you use it. You 
can also access sequential fixed-length records randomly by specifying a 
record number if the file resides on disk. In either case, sequential files 
can reside on both disk and magnetic tape devices, and those stored on 
disk support shared access. 

File Input and Output 15-3 



15.2.3 Relative Files 

A relative file contains a series of "cells" that are numbered consecutively 
from 1 ton, where n represents the relative record number. Each cell can 
contain only a single record. For fixed-length records, the length of each 
cell equals the record length plus 1 byte. For variable-length records, the 
length of the cell equals the maximum record size plus 3 bytes. 

You can access records in a relative file either sequentially or randomly. 
The relative record number is the key value in random access mode; that 
is, to access a record in a relative file in random access mode, you must 
know the relative record number of that record. You can add records to a 
relative file either at the end of the file or into any empty cell. 

Relative files are most useful when randomly accessed and when the 
record can be identified by its cell number (for example, when inventory 
numbers correspond to cell numbers). Relative files support shared access. 
You can delete records from relative files, but not sequential files. 

15.2.4 Indexed Files 

An indexed file contains data records that are sorted in ascending or 
descending order according to a primary index key value. The index key 
is a record field (or set of fields) that determines the order in which the 
records are logically accessed. Keys must be variables declared in a MAP 
statement. Keys can be any one of the following: 

• Strings 
• WORD integers 

• LONG integers 
• Quadword integers 

• Packed decimal numbers 

String keys can also be segmented; the key can be composed of up to 
eight string variables in a map. Quadword keys must be referenced using 
a record or group exactly 8 bytes long. 

Along with the primary index key value, you can also specify up to 254 
alternate keys; RMS creates one index for each key you specify. For each 
of these keys you can also specify either an ascending or descending 
collating sequence. Each index is stored as part of the file, and each 

15-4 File Input and Output 



entry in the index contains a pointer to a record. Therefore, each key you 
specify corresponds to a sorted list of record pointers. 

An indexed file of library books, for example, might be ordered by book 
title; that is, the title of the book is the primary key for the file. The keys 
for alternate indexes might include the author's name and the book's 
Library of Congress number. Neither of these alternate indexes contains 
the actual records; instead, they contain sorted pointers to the appropriate 
records. 

Indexed files are most useful when randomly accessed or when you want 
to access the records in more than one way. 

15.2.5 Virtual Files 

A virtual file is a random access file that stores one or more data records or 
virtual array elements in each physical 512-byte disk block. You create a 
virtual file by specifying ORGANIZATION VIRTUAL as part of the OPEN 
statement. Apart from virtual arrays and compatibility with BASIC-PLUS 
and BASIC-PLUS-2, you should use sequential fixed-length instead of 
virtual files, as they provide the same capabilities. See Section 15.5 for 
more information on accessing the individual records in a disk block. 

15.3 Record Access and Record Context 

Record access modes determine the order in which your program retrieves 
or stores records in a file. They determine the record context: the current 
record and the next record to be processed. When your program success
fully executes any record operation, the current record and next record 
pointers can change. If a record operation is unsuccessful, these pointers 
do not change. 

The four record access modes valid for RMS are as follows: 

• Sequential access-valid on any file organization 

• Random-by-record number access-valid on sequential fixed and all 
relative files 

• Random-by-key access-valid on indexed files 

• Random-by-RFA (Record File Address) access-valid on any RMS file 
located on disk 

File Input and Output 15-5 



With sequential access, the next record is the next logical record in the 
file. In the case of relative files, the next logical record is the next existing 
record (deleted or never-written records are skipped). In the case of 
indexed files, the next logical record is the record with the next ascending 
or descending value in the current key of reference depending on that 
key's collating sequence. You can therefore access relative or indexed files 
sequentially by not specifying a relative record number or key value. 

You can also access sequential fixed-length and relative files randomly by 
record number; that is, you can specify the record number of the record to 
be retrieved. For relative files, this record number corresponds to the cell 
number of the desired record. 

You can access indexed files randomly by key. The key specification 
includes a primary or alternate key and its value. VAX BASIC retrieves 
the record corresponding to that value in the particular key chosen. 

You can access disk files of any organization by Record File Address 
(RFA); this means that you specify an RFA variable whose value uniquely 
identifies a particular record. The RFA requires six bytes of information. 
For more information about RFAs, see Section 15.6.10. 

15.4 1/0 and Record Buffers 

An 1/0 buffer is a storage area in your program that RMS uses to store 
data for 1/0 operations. You do not have direct access to 1/0 buffers; 
they are controlled entirely by RMS. The 1/0 buffer holds blocks of data 
transferred from the device, and its size is always greater than or equal 
to that of the record buffer. For more information about the amount of 
storage allocated for 1/0 buffers, see the VAX Record Management Services 
Reference Manual. 

A record buffer is another storage area in your program. You have direct 
access to and control of the record buffer. When your program reads 
a record from a file, the information is transferred from the file to the 
1/0 buffer in one large chunk of data, and then the requested record is 
transferred to the record buffer. When your program writes a record, data 
is transferred from the record buffer to the 1/0 buffer, and then to the file 
either when the 1/0 buffer is full or when other blocks need to be read in. 

You can use MAP statements to create static record buffers and associate 
program variables with areas (fields) of the buffer. Static record buffers are 
buffers whose size does not change during program execution and whose 
program variables are always associated with the same fields in the buffer. 

15-6 File Input and Output 



You can create dynamic record buffers with either a MAP DYNAMIC or a 
REMAP statement. These statements, when used after a MAP statement, 
associate or reassociate a particular program variable with a different area 
(field) of the record buffer. However, the total size of a record buffer does 
not change during program execution. 

NOTE 

If you do not specify a map, you must use MOVE TO and 
MOVE FROM statements to transfer data back and forth from 
the record buffer to program variables. However, MOVE 
statements do not transfer data to or from a file. 

15.5 Accessing the Contents of a Record 

VAX BASIC provides several different methods for accessing the contents 
of a record: 

• MAP statement 

• MAP DYNAMIC, and REMAP statements (dynamic mapping) 

• MOVE statements 

• FIELD statements 

The FIELD statement is a declining feature and is not recommended for 
new program development. DIGITAL recommends that you use either 
MAP statements, dynamic mapping or MOVE statements to access record 
contents. 

15.5. 1 The MAP Statement 

Normally, a record is divided into predetermined fields, the sizes of which 
are known at compile time. The MAP statement creates the storage area 
for this record and determines its total size. 

File Input and Output 15-7 



Example 1 

RECORD name_addr 
STRING last_name = 15, k 

street_name = 30, k 
INTEGER house_num 

END RECORD 
MAP (student_buffer) name_addr student_info 

Example 2 

MAP (Emp_rec) 
STRING Emp_name = 26, 
LONG Badge, 
STRING Address • 25, 
STRING Department = 4 

15.5.2 The MAP DYNAMIC and REMAP Statements 

There are situations where predetermined fields are not applicable or 
possible. In these situations, you must perform record defielding in your 
program at run time. Using the MAP DYNAMIC statement, you can 
specify the variables in the map whose positions can change at run time. 
The REMAP statement then specifies the new positions of the variables 
named in the MAP DYNAMIC statement. 

The following example shows how you can use MAP, MAP DYNAMIC, 
and REMAP to deblock your record fields. The MAP statement allocates 
a storage area of 2048 bytes and names it Emp_rec. The MAP DYNAMIC 
statement specifies that the variables Emp_name, Badge, Address, and 
Department are all located in Emp_rec, and that their positions can be 
changed at run time with the REMAP statement. The REMAP statement 
then redefines these variables to their appropriate sizes. 

Example 

MAP (Emp_rec) FILL$ = 2048 

MAP DYNAMIC (Emp_rec) 
STRING Emp_name, 
LONG Badge, 
STRING Address, 
STRING Department 

15-8 File Input and Output 



REMAP (Emp_rec) FILL$ = Record_offset, 
Emp_name = 25, 
Badge, 
Address = 25, 
Department = 4 

Note that when accessing virtual or sequential files, you can specify a 
RECORD clause for the GET statement. The following program opens a 
virtual file with each block containing 512 bytes. However, each block 
contains 4 logical records that are 128 bytes long. Each of these logical 
records consists of a 20-character first name field, a 44-character last name 
field, and a 64-character company name field. 

Example 

DECLARE WORD Record_number 
MAP (Virt) STRING FILL = 512 
MAP DYNAMIC (Virt) STRING First_name, & 

Last_name, & 
Company 

OPEN "VIRT.DAT" FOR INPUT AS FILE #5, & 
VIRTUAL, MAP Virt 

Record_number = 1Y. 

WHEN ERROR IN 
WHILE -1Y. 

GET #5, RECORD Record_number 
FOR IY. = OY. TO 3Y. 

REMAP (Virt) STRING FILL= (IY. * 1281.), & 
First_name = 20, & 
Last_name = 44, & 
Company = 64 

PRINT First_name, Last_name, Company 
NEXT IY. 
Record_number = Record_number + 1Y. 

NEXT 

USE 
IF ERR = 11Y. 

END WHEN 
END 

THEN 
PRINT "Finished" 
CONTINUE 32767 

ELSE EXIT HANDLER 
END IF 

After the first 512-byte block is brought into memory, the FOR. .. NEXT 
loop deblocks the data into 128-byte logical records. At each iteration 
of the FOR. .. NEXT loop, the REMAP statement uses the loop variable to 
mask off 128-byte sections of the block. 

File Input and Output 15-9 



For more information on the MAP DYNAMIC and REMAP statements, 
see Chapter 9 and the VAX BASIC Reference Manual. 

15.5.3 The MOVE Statement 

The MOVE statement defines data fields and moves them to and from the 
record buffer created by VAX BASIC. For example: 

MOVE FROM #9Y., A$, Cost, Name$ = 30Y., ID_numY. 

This statement moves a record with four data fields from the record buffer 
to the variables in the list: 

• A string field A$ with a default length of 16 characters 

• A number field Cost of the default data type 

• A second 30-character string field Name$ 

• An integer field JD_num% 

Valid variables in the MOVE list are as follows: 

• Scalar variables 

• Arrays 

• Array elements 

• FILL items 

Because VAX BASIC dynamically assigns space for string variables, the 
default string length during a MOVE TO operation is the length of the 
string. The default for MOVE FROM is 16 characters. An entire array 
specified in a MOVE statement must include the array name, followed by 
n-l commas, where n is the number of dimensions in the array. Note 
that these commas must be enclosed in parentheses. You specify a single 
array element by naming the array and the subscripts of that element. 
The following statement moves three arrays from the program to the 
record buffer. A$ specifies a one-dimensional string array, C specifies a 
two-dimensional array of the default data type, and D% specifies a three
dimensional integer array. B(3,2) specifies the element of array B that 
appears in row 3, column 2. 

MOVE TO #6Y., A$(), C(,), DY.(,,), 8(3,2) 

15-10 File Input and Output 



Successive MOVE statements to or from the buffer start at the beginning 
of the record buffer. If a MOVE TO operation only partially fills the 
buffer, the rest of the buffer is unchanged. You use the GET statement 
to read a record from a file, and then you move the data from the buffer 
to variables and reference the variables in your program. A MOVE TO 
operation moves data from the variables into the buffer created by VAX 
BASIC. A PUT or UPDATE statement then moves the data from the buffer 
to the file. 

The following program opens file MOV.DAT, reads the first record into 
the buffer, and moves the data from the buffer into the variables specified 
in the MOVE FROM statement. 

Example 

DECLARE STRING Emp_name, Address, Department 
DECLARE LONG Badge 

OPEN "MDV.DAT" AS FILE #1Y,, ll 
RELATIVE VARIABLE, ll 
ACCESS MODIFY, ALLOW NONE, ll 
RECORDSIZE 612% 

GET #1% 

MOVE FROM #iY., 
Emp_name = 26, 
Badge, 
Address = 26, 
Department = 4 

· MOVE TO #1Y., 
Emp_name = 26, 
Badge, 
Address = 26, 
Department = 4 

UPDATE #iY. 
CLOSE #iY. 
END 

The MOVE TO statement moves the data from the named variables 
into the buffer. The UPDATE statement writes the record back into file 
MOV.DAT. The CLOSE statement closes the file. 

File Input and Output 1 5-11 



15.6 File and Record Operations 

You can perform a variety of operations on files and on the records within 
a file. The following is a list of all the file and record operations supported 
by VAX BASIC: 

• Open a file for processing with the OPEN statement 

• Locate a record in a file with the FIND statement 

• Read a record from a file with the GET statement 

• Write a record to a file with the PUT statement 

• Delete a record from a file with the DELETE statement 

• Change the contents of a record field with the UPDATE statement 

• Unlock the last record accessed with the UNLOCK statement 

• Unlock all previously locked records with the FREE statement 

• Write data to a terminal-format file with the PRINT # statement 

• Reset the current record pointer to the beginning of a file with the 
RESTORE/RESET # statements 

• Delete all the records after a certain point; that is, truncate the records, 
with the SCRATCH statement 

• Rename a file with the NAME AS statement 

• Close an open file with the CLOSE statement 

• Delete an entire file with the KILL statement 

Note that before you can perform any operations on the records in a file, 
you must first open the file for processing. 

15.6. 1 Opening Files 

The OPEN statement opens a file for processing, specifies the charac
teristics of the file to RMS, and verifies the result. Opening a file with 
the specification FOR INPUT specifies that you want to use an existing 
file. Opening a file with the specification FOR OUTPUT indicates that 
you want to create a new file. If you do not specify FOR INPUT or FOR 
OUTPUT, VAX BASIC tries to open an existing file. If no such file exists, 
VAX BASIC then creates a new file. 

15-12 File Input and Output 



Clauses to the OPEN statement allow you to specify the characteristics 
of a file. All OPEN statement clauses concerning file or record format 
are optional when you open an existing file; those attributes that are not 
specified default to the attributes of the existing file. When you open 
an existing file, you must specify the file name, channel number, and 
unless the file is a terminal-format file, an organization clause. If you 
do not know the organization of the file you want to open, you can 
specify ORGANIZATION UNDEFINED. If you specify ORGANIZATION 
UNDEFINED, also specify RECORDTYPE ANY. 

If you do not specify a map in the OPEN statement, the size of your pro
gram's record buffer is determined by the OPEN statement RECORDSIZE 
clause, or by the record size associated with the file. If you specify both 
a MAP clause and a RECORDSIZE clause in the OPEN statement, the 
specified record size overrides the size specified by the MAP clause. 

The following statement opens a new sequential file of stream format 
records: 

OPEN "TEST.DAT" FOR OUTPUT AS FILE #1Y., t 
SEQUENTIAL STREAM 

The following example creates a relative file and associates it with a static 
record buffer. The MAP statement defines the record buffer's total size 
and the data types of its variables. When the program is compiled, VAX 
BASIC allocates space in the record buffer for one integer, one 16-byte 
string, and one double-precision floating-point number. The record size is 
the total of these fields, or 28 bytes. All subsequent record operations use 
this static buffer for I/O to the file. 

Example 

MAP (Inv_item) LONG Part_number, t 
STRING Inv_name = 16, t 
DOUBLE Unit_price 

OPEN "INVENTORY.DAT" FOR OUTPUT AS FILE 11Y. t 
,ORGANIZATION RELATIVE FIXED, ACCESS MODIFY t 
,ALLOW READ, MAP Inv_item 

The following OPEN statement opens a sequential file for reading only 
(ACCESS READ). Because the OPEN statement does not contain a MAP 
clause, VAX BASIC creates a record buffer. This record buffer is 100 bytes 
long. 

OPEN "CASE.DAT" AS FILE #1Y. t 
,ORGANIZATION SEQUENTIAL VARIABLE t 
, ACCESS READ t 
,RECORDSIZE 100Y. 

F~e Input and Output 15-13 



When you do not specify a MAP statement, your program must use 
MOVE TO and MOVE FROM statements to move data between the record 
buffer and a list of variables. 

The OPEN statement for indexed files must have a MAP clause. 
Moreover, if you are creating an indexed file, a PRIMARY KEY clause 
is required. You can create a segmented index key containing more than 
one string variable by separating the variables with commas and enclosing 
them in parentheses. All the string variables must be part of the associ
ated map. In the following example, the primary key is made up of three 
string variables. This key causes the records to be sorted in alphabetical 
order according to the person's last name, first name, and middle initial. 

MAP (Segkey) STRING First_name = 15, MI = 1, Last_name = 15 
OPEN "NAMES.IND" FOR OUTPUT AS FILE #11,, & 

ORGANIZATION INDEXED, & 
PRIMARY KEY (Last_name, First_name, MI), & 
MAP Segkey 

Note that there are restrictions on the maximum record size allowed for 
various file and record formats. See the VAX Record Management Services 
Reference Manual for more information. 

You can use logical names to assign a mnemonic name to all or part of 
a complete file specification, including node, device and directory. The 
advantage in using logical names is that programs do not depend on literal 
file specifications. You can define logical names: 

• From DCL command level with the ASSIGN or DEFINE command 

• From within a program with the SYS$CRELMN system service 

• From within the BASIC environment with the VAX BASIC command 
ASSIGN 

VAX BASIC supports any valid logical name as part of a file specification. 

A logical name specifies a 1- through 255-character name to be associated 
with the specified device or file specification. If the logical name specifies 
a device, you must end the logical name with a colon. The following 
example defines a logical name for a file specification: 

$ ASSIGN DUA1: [SENDER]PAYROL.DAT PAYROLL_DATA 

This example defines a logical name for a physical device: 

$ ASSIGN DUA2: DISK2: 

Once you define the logical name! you can reference that name in your 
program. 

15-14 File Input and Output 



Example 

OPEN "PAYROLL_DATA" FOR INPUT AS FILE #11., & 
ORGANIZATION SEQUENTIAL 

OPEN "DISK2:[SORT_DATA] SORT.LIS" FOR OUTPUT AS FILE #21,, & 
SEQUENTIAL VARIABLE 

These OPEN statements do not depend on the availability of DUAl: 
or DUA2: in order to work. If these devices are not available, you can 
simply redefine the logical names so that they specify other disk drives 
before running the program. In addition, you can redirect the entire 
file specification for PAYROLL_DATA to point to the test or production 
version of the data. 

For more information on logical names, see the Introduction to VAX/VMS. 

15.6.2 Creating Virtual Array Files 

VAX BASIC virtual arrays let you define arrays that reside on disk. You 
use them just as you would an ordinary array. You create a virtual array 
by dimensioning an array with the DIM# statement, then opening a 
VIRTUAL file on that channel. You access virtual arrays just as you do 
normal arrays. The following DIM# statement dimensions a virtual array 
on channel #1. The OPEN statement opens a virtual file that contains the 
array. The last program line assigns a value to one array element. 

Example 

DIM #11., LONG Int_array(10,10,10) 

OPEN "VIRT.DAT" FOR OUTPUT AS FILE #11., VIRTUAL 

Int_array(6,6,6) = 1001. 

Note that you cannot redimension virtual arrays with an executable DIM 
statement. See Chapter 8 for more information on virtual arrays. 

File Input and Output 15-15 



15.6.3 Locating Records 

The FIND statement locates a specified record and makes it the current 
record. Using the FIND statement to locate records can be faster than 
using a GET statement because the FIND statement does not transfer 
any data to the record buffer; therefore, it executes faster than a GET 
statement. However, if you are interested in the contents of a record, you 
must retrieve it with a GET operation. 

The FIND statement sets the current record pointer to the record just 
found, making it the target for a GET, UPDATE, or DELETE statement. 
(Note that you must have write access to a record before issuing a PUT, 
UPDATE, or DELETE operation.) A sequential FIND operation searches 
records in the following order: 

• Sequential files from beginning to end 

• Relative files in ascending relative record or cell number order 
• Indexed files in ascending or descending order, based on the current 

key of reference and the key's collating sequence 

For sequential fixed-length and relative files, you can find a particular 
record by specifying a RECORD clause. This is called a random access 
FIND. You can also perform a random access FIND for indexed files by 
specifying a key of reference, a relational test, and a key value. In the 
following example, the first FIND statement finds the first record whose 
key value either equals or follows SMITH in the key's collating sequence. 
The second FIND statement finds the first record whose key value follows 
JONES in the key's collating sequence. Each record found by the FIND 
statement becomes the current record. (Note that you can only have one 
current record at a time.) 

Example 

MAP (Emp) STRING Emp_name, LONG Emp_number, SSN 
OPEN "EMP.DAT" AS FILE #1%, INDEXED, & 

ACCESS READ, & 
MAP Emp, & 
PRIMARY KEY Emp_name 

FIND #1%, KEY #0% NXEQ "SMITH" 
FIND #1%, KEY #0% NX "JONES" 

The string expression can contain fewer characters than the key of the 
record you want to find. However, if you want to locate a record whose 
string key field exactly matches the string expression you provide, you 

15-16 File Input and Output 



must pad the string expression with spaces to the exact length of the key 
of reference. For example: 

FIND #6Y., KEY #01. EQ "TOM 
FIND #6Y., KEY #OY. EQ "TOM" 

The first FIND statement locates a record whose primary key field equals 
"TOM ". The second FIND statement locates the first record whose 
primary key field begins with "TOM". 

Table 15-1 displays the status of the current record and next record 
pointers after both a sequential and a random access FIND. 

Table 15-1: Record Context After a FIND Operation 
Record Access 
Mode 

Sequential FIND 

File 
Type 

Sequential 

Relative 

Indexed 

Current 
Record Next Record 

Record found Current record + 1 

Record found Next existing record 

Record found Next record in current key order 

Random access FIND All Record found Unchanged 

Note that a random access FIND operation locates the specified record and 
makes it the current record, but the next record pointer does not change. 

You can specify an ALLOW clause to the FIND statement if you have 
opened the file with ACCESS MODIFY or ACCESS WRITE and have 
specified UNLOCK EXPLICIT. The ALLOW clause lets you control the 
type of lock that RMS puts on the records you access. ALLOW NONE 
specifies that no other users can access this record (this is the default). 
ALLOW READ lets other users read the record; however, they cannot 
perform UPDATE or DELETE operations to this record. ALLOW MODIFY 
specifies that other users can both read and write to this record. This 
means that other access streams can perform GET, DELETE, or UPDATE 
operations to the specified record. 

You can also specify a WAIT clause to the FIND statement; this clause 
allows you to wait for a record to become available in the event that it 
is currently locked by another process. In addition, you can specify a 
REGARDLESS clause; this clause allows you to read a locked record. 
For more information on the WAIT and REGARDLESS clauses, see 
Section 15.6.9. 

File Input and Output 15-17 



15.6.4 Reading Records 

The GET statement moves a record from a file to a record buffer and 
makes the data available for processing. GET statements are valid on 
sequential, relative, and indexed files. You should not use GET statements 
on terminal-format files, or virtual array files. 

For sequential files, a sequential GET retrieves the next record in the 
file. For relative files, a sequential GET retrieves the next existing record. 
For indexed files, a sequential GET retrieves the record with the next 
ascending or descending value in the current key of reference, depending 
on that key's collating sequence. 

Table 15-2 shows the current record and next record pointers after a 
GET operation. Note that the values of these pointers vary depending on 
whether or not the previous operation was a FIND. 

Table 15-2: Record Context After a GET Operation 
Record Access 
Mode 

Sequential GET 
with FIND 

Sequential GET 
without FIND 

Random GET 

File Current 
Type Record Next Record 

Sequential Record found Current record + 1 

Relative Record found Next existing record 

Indexed Record found Next record in current key 

Sequential Next record Next record + 1 

Relative Next existing Next existing record + 1 
record 

Indexed Next record in Record following next record in current 
current key key 

All Record specified Next record in succession 

If you precede a sequential GET operation with a FIND operation, the 
current record is the one located by FIND. If you do not perform a FIND 
operation before a sequential GET operation, the current record is the next 
sequential record. 

The following example illustrates the use of the GET operation to sequen
tially access records in an indexed file. The example opens an indexed file 
and displays the first 25 records with serial numbers greater than AB2721 
in ascending primary key value order. 

15-18 File Input and Output 



Example 

MAP (Bee) STRING Owner = 30Y., LONG Vehicle_number, k 
STRING Serial_number = 22Y. 

OPEN "VEH.IDN" FOR INPUT AS FILE #2Y., k 
ORGANIZATION INDEXED, PRIMARY KEY Serial_number, k 
MAP Bee, ACCESS READ 

GET #2Y., KEY #OY. EQ "AB2721" 
FOR IY. = 11. TO 261. 

GET #2Y. 
PRINT "Vehicle Number= ";Vehicle_number 
PRINT "Owner is: ";Owner 
PRINT 

NEXT !Y. 

The following example performs random GET operations by specifying a 
record number: 

Example 

MAP (Bee) STRING Owner = 30Y., LONG Vehicle_number, t 
STRING Serial_number = 221. 

OPEN "VEH.IDN" FOR INPUT AS FILE #21., t 
ORGANIZATION SEQUENTIAL FIXED, t 
MAP Bee, ACCESS READ 

INPUT "Which record do you want";AY. 

WHILE (AY. <> OY.) 
GET #21., RECORD AY. 
PRINT "The vehicle number is", Vehicle_number 
PRINT "The serial number is", Serial_number 
PRINT "The owner of vehicle";Vehicle_number; "is", Owner 
INPUT "Next Record";AY. 

NEXT 
CLOSE #21. 
END 

You can specify an ALLOW clause in a GET statement if you have 
opened the file with ACCESS MODIFY or ACCESS WRITE and UNLOCK 
EXPLICIT. The ALLOW clause lets you control the type of lock RMS 
places on the retrieved record. ALLOW NONE specifies that no other 
users can access this record (this is the default). ALLOW READ lets 
other access streams have read access to the record. That is, other users 
can retrieve the record, but cannot perform DELETE, PUT, or UPDATE 
operations on it. ALLOW MODIFY lets other access streams perform GET, 
DELETE, or UPDATE operations on the record. 

File Input and Output 15-19 



If you are trying to access a locked record, VAX BASIC signals 
"Record/bucket locked" (ERR= 154). However, if you only need to 
read this record, you can override the lock with the REGARDLESS clause. 
The REGARDLESS clause allows you to read a locked record. Use caution 
when using the REGARDLESS clause because a record accessed in this 
way may be in the process of being changed by another program. 

Alternatively, you can also specify the WAIT clause on a GET statement; 
the WAIT clause allows you to handle record locked conditions by waiting 
for the record to become available. Note that if a WAIT clause is specified 
on a GET operation to a unit-record device such as a terminal, the integer 
expression indicates how long to wait for the I/Oto complete, rather than 
how long to wait on a record locked condition. For more information, see 
Section 15.6.9. 

15.8.5 Writing Records 

For a file opened with ACCESS WRITE or ACCESS MODIFY, the PUT 
statement moves data from the record buffer to a file using the IjO buffer. 
PUT statements are valid on RMS sequential, relative, and indexed files. 
You cannot use PUT statements on terminal-format files, or virtual array 
files. 

Sequential access is valid on RMS sequential, relative, and indexed files. 
For sequential, variable and stream files, a sequential PUT operation adds 
a record at the end of the file. For sequential fixed and relative files, PUT 
writes records sequentially or randomly depending on the presence of a 
RECORD clause. For indexed files, RMS stores records in order of the 
primary key's collating sequence. Therefore, you do not need to specify a 
random or sequential PUT. The following table shows the record context 
after both random and sequential PUT operations. 

Table 15-3: Record Context After a PUT Operation 
Record Access File Current 
Mode Type Record Next Record 

Sequential PUT Sequential None End of file 

Sequential PUT Relative None Next record 

Sequential PUT Indexed None Undefined 

Random PUT Relative None Unchanged 

15-20 File Input and Output 



After a PUT operation, the current record pointer has no value. However, 
the value of the next record pointer changes depending on the file type 
and the record access mode used with the PUT operation. In a sequential, 
stream, or variable file, records can only be added at the end of the file; 
therefore, the next record after PUT is the end of the file. In a relative, 
sequential, or fixed file, the next record after a PUT operation is the next 
logical record. 

The following example opens a sequential file with ACCESS APPEND 
specified. For sequential files, this is almost identical to ACCESS WRITE. 
The only difference is that, with ACCESS APPEND, VAX BASIC positions 
the file pointer after the last record in the file when it opens the file for 
processing. All subsequent PUT operations append the new record to the 
end of the existing file. 

Example 

MAP (Buff) STRING Code = 4%, Exp_date = 9%, Type_desig = 32% 
OPEN "INV.DAT"FOR INPUT AS FILE #2%, k 

ORGANIZATION SEQUENTIAL FIXED, ACCESS APPEND, k 
MAP Buff 

WHILE -1% 

NEXT 

INPUT "What is the specification code";Code 
INPUT "What is the expiration date";Exp_date 
INPUT "What is the designator";Type_desig 
PUT #2% 

If the current record pointer is not at the end of the file when you attempt 
a sequential PUT operation to a sequential file, VAX BASIC signals "Not at 
end of file" (ERR= 149). 

In the following example, the PUT statement writes records to an existing 
indexed file. In this case, the error message "Duplicate key detected" (ERR 
= 134) indicates that a record with a matching key field already exists, and 
you did not allow duplicates on that key. 

File Input and Output 15-21 



Example 

10 MAP (Purchase_rec) STRING R_num = 6, 
Dept_name = 10, 
Pur_dat = 9 

20 OPEN "INFO.DAT"FOR OUTPUT AS FILE #2, 
ORGANIZATION INDEXED FIXED, ACCESS WRITE, 
PRIMARY KEY R_num, MAP Purchase_rec 

30 WHILE -1% 
INPUT "Requisition number";R_num 
INPUT "Department name";Dept_name 
INPUT "Date of purchase";Pur_dat 
PRINT 
PUT #2Y. 

NEXT 

Output 

Requisition number? 2622A 
Department name? COSMETICS 
Date of purchase? 16-JUNE-1986 

Requisition number? 2678D 
Department name? AUTOMOTIVE 
Date of purchase? 16-JUNE-1986 

Requisition number? 4167C 
Department name? AUTOMOTIVE 
Date of purchase? 6-JANUARY-1986 

Requisition number? 2622A 
Department name? SPORTING GOODS 
Date of purchase? 26-FEBRUARY-1986 

Y.BAS-F-DUPKEYDET, Duplicate key detected 

" " 
" " 

-BAS-I-ON_CHAFIL, on channel 2 for file USER$$DISK:[MAGNUS]INFO.DAT;8 at 
user PC 0017E693 
-BAS-0-FROLINMOD, from line 30 in module DUPLICATES 
-RMS-F-DUP, duplicate key detected (DUP not set) 

15.8.8 Deleting Records 

The DELETE statement removes a record from a file that was opened with 
ACCESS MODIFY. After you have deleted a record you cannot retrieve it. 
DELETE works with relative and indexed files only. 

15-22 File Input and Output 



A successful FIND or GET operation must precede the DELETE operation. 
These operations make the target record available for deletion. In the 
following example, the FIND statement locates record 67 in a relative file 
and the DELETE statement removes this record from the file. Because the 
cell itself is not deleted, you can use the PUT statement to write a record 
into that cell after deleting its contents. 

FIND 11%, RECORD 67% 
DELETE #1% 

NOTE 

There is no current record after a deletion. The next record 
pointer is unchanged. 

15.6. 7 Updating Records 

UPDATE writes a new record at the location indicated by the current 
record pointer. UPDATE is valid on RMS sequential, relative, and indexed 
files. 

The UPDATE statement operates on the current record, provided that you 
have write access to that record. In order to successfully update a variable
length record, you must know the exact size of the record you want to 
update. VAX BASIC has access to this information after a successful GET 
operation. If you have not performed a successful GET operation on the 
variable-length record, then you must specify a COUNT clause in the 
UPDATE statement that contains the record size information. 

An UPDATE will fail with the exception "No current record" (ERR= 131) 
if you have not previously established a current record with a successful 
GET or FIND. Therefore, when updating records you should include 
error trapping in your program to make sure all GET operations execute 
successfully. 

An UPDATE operation on a sequential file is valid only when: 

• 
• 
• 

The file containing the record is on disk 

The new record is the same size as the one it is replacing 

You have established a current record via a GET or FIND operation . 
Note that COUNT defaults to the size of the current record if a GET 
was performed. If a FIND operation was used to locate the current 
record, then you must supply a COUNT value. 

File Input and Output 15-23 



The following program searches to find a record in which the L _name 
field matches the specified Search_name$. Once this record is found and 
retrieved, the Rm_num field of that record is updated; the program then 
prompts for another Search_name$. If a match is not found, VAX BASIC 
prints the message "No such record" and prompts the user for another 
Search_name$. The program ends when the user enters a null string for 
the Search_name$ value. 

Example 

20 MAP (AAA) STRING L_name = 60Y., F_name = 20Y., Rm_num = SY. 
30 OPEN "STU .DAT"FOR INPUT AS FILE #9Y., & 

ORGANIZATION SEQUENTIAL FIXED, MAP AAA 
50 INPUT "Last name";Search_name$ 
55 Search_name$ = EDIT$(Search_name$, -1Y.) 
60 IF Search_name$ = "" 

THEN GOTO 32010 
END IF 

65 RESTORE #9Y. 
70 WHEN ERROR IN 
75 GET #9Y. WHILE Search_name$ <> L_name 

USE 
IF ERR=11 

THEN 
PRINT "No such record" 
CONTINUE 50 

ELSE 
EXIT HANDLER 

END IF 
END WHEN 

80 INPUT "Room number";Rm_num 
90 UPDATE #9Y. 
100 GOTO 50 
32010 CLOSE #9Y. 
32030 PRINT "Update complete" 
32767 END 

NOTE 

An UPDATE operation invalidates the value of the current 
record pointer. The next record pointer is unchanged. 

When you update a record in a relative variable file, the new record can 
be larger or smaller than the record it replaces, provided that it is smaller 
than the maximum record size set for the file. When you update a record 
in an indexed variable file, the new record can also be larger or smaller 
than the record it replaces. The updated record: 

• Can be no longer than the maximum record size, if specified 
• Must include at least the primary key field 

15-24 File Input and Output 



The following program updates a specified record on an indexed file: 

Example 

MAP (UPD) STRING Enrdat = SY., LONG Part_num, Sh_num, REAL Cost 
OPEN "REC.ING"FOR INPUT AS FILE #SY., IE 

INDEXED, MAP UPD, PRIMARY KEY Part_num 
INPUT "Part number to update";AY. 

Loop1: 
WHILE -11. 

GET #SY., KEY #01., EQ AY. 
INPUT "Revised Cost is";Cost 
UPDATE #SY. 
INPUT "Next Record";AY. 
IF AY. = 01. 
THEN 

EXIT Loop1 
END IF 

NEXT 
CLOSE #SY. 
END 

If the new record either omits one of the old record's alternate key fields 
or changes one of them, the OPEN statement must specify a CHANGES 
clause for that key field when the file is created. Otherwise, VAX BASIC 
signals the error "Key not changeable" (ERR= 130). 

15.6.8 Controlling Record Access 

When you open a file, VAX BASIC allows you to specify how you will 
access the file and what types of access you will allow other running 
programs while you have the file open. 

If you open a file for read access only (ACCESS READ), VAX BASIC 
by default allows other programs to have unrestricted access to the file. 
You can restrict access with an ALLOW clause only if the file's security 
constraints allow you write access to the file. 

VAX BASIC by default prevents access by other programs to any file you 
open with ACCESS WRITE, ACCESS MODIFY, or ACCESS SCRATCH 
(sequential files only). This default action is equivalent to specifying the 
OPEN statement ALLOW NONE clause. To allow less restrictive access to 
the open file, specify ALLOW READ or ALLOW MODIFY. 

File Input and Output 15-25 



When a file is open for read access only and you have not restricted access 
to other programs with ALLOW NONE, VAX BASIC allows other pro
grams to read any record in the file including records that your program 
is concurrently accessing. However, when you retrieve a record with the 
GET statement from a file you have opened with the intent to modify, 
VAX BASIC normally restricts other programs from accessing that record. 
This restriction is called locking. 

To allow other programs to access a record you have locked, you must 
release the lock on the record in one of the following ways: 

• Retrieve another record on the same channel. Unless you have 
opened the file with the UNLOCK EXPLICIT clause discussed below, 
this action will unlock the previous record. 

• Explicitly unlock the record with the UNLOCK or FREE statement. 
The UNLOCK statement releases the current record. The FREE 
statement releases all records locked on a given channel. 

• Perform an UPDATE operation on the record. An UPDATE statement 
causes the current record to be unlocked. 

• Close the file. 

In addition to the capability of restricting access via the OPEN statement 
ALLOW clause, VAX BASIC allows programs to explicitly control record 
locking on each record that is retrieved. To use explicit record locking on 
a file, the OPEN statement must include an UNLOCK EXPLICIT clause. 
You may then optionally specify an ALLOW clause on the GET and FIND 
statements. The ALLOW clause on a GET or FIND statement specifies 
the type of access allowed by other programs to the record while you 
are accessing it. For instance, the following statement specifies that other 
programs may read but not modify the records you have locked. 

GET #1, ALLOW READ 

If you specify UNLOCK EXPLICIT when opening a file, all records that 
you retrieve remain locked until you explicitly unlock them with a FREE, 
UNLOCK, or CLOSE statement. 

15-26 File Input and Output 



15.6.9 Gaining Access to Locked Records 

If you are trying to access a record that is currently locked, one possible 
solution is to use the REGARDLESS clause on the GET or FIND statement. 
The REGARDLESS clause is useful when you are interested in having 
only read access to the specified record. Be aware, however, that using 
the REGARDLESS clause to read a locked record can lead to unexpected 
results because the record you read can be in the process of being changed 
by another program. 

Another solution is to include a WAIT clause on the GET or FIND state
ment. Note that you cannot specify a WAIT clause and a REGARDLESS 
clause on the same statement line. By specifying the WAIT clause, you 
can tell RMS to wait for a locked record to become available. You can 
optionally specify an integer expression from 0 through 255 with the 
WAIT clause. This integer expression indicates the number of seconds 
RMS should wait for a locked record to become available. If the record 
does not become available within the specified number of seconds, RMS 
signals the error "Keyboard wait exhausted" (ERR=15). 

If you do not specify an integer expression with the WAIT clause, RMS 
waits indefinitely for the record to become available. Once the record 
becomes available, RMS delivers the record to the program. 

Note that a deadlock condition can occur when you cause RMS to wait 
indefinitely for a locked record. A deadlock condition occurs when 
two users simultaneously try to access locked records in each other's 
possession. When a deadlock occurs, RMS signals the error, "RMS$_ 
DEADLOCK". In turn, VAX BASIC signals the error, "Detected deadlock 
error while waiting for GET or FIND" (ERR=193). To handle this error, 
you can either stop trying to access the particular record, or, if you must 
access the record, free all locked records (regardless of the channel) and 
then attempt the GET or FIND again. You need to unlock all records 
because you cannot know which record the other process wants. 

NOTE 

If the timeout value specified in the WAIT clause is less than 
the SYSGEN parameter DEADLOCK_WAIT, then a "keyboard 
wait exhausted" (ERR=15) message can indicate that either the 
record did not become available during the specified time, or 
there is an actual deadlock situation. However, if the timeout 
value is greater than the SYSGEN parameter DEADLOCK_ 
WAIT, the system correctly specifies that a deadlock situation 
has occurred. 

File Input and Output 15-27 



The following example uses the WAIT clause to overcome a record locked 
condition and traps the resulting error condition: 

Example 

MAP (worker) STRING first_name = 10, & 
last_name = 20, & 
badge_number = 6, & 

LONG dept_number 

MAP (departments) STRING dept_name = 10, & 
LONG dept_code 

OPEN "Employee_data.dat" FOR INPUT AS FILE #1Y., & 
INDEXED FIXED, MAP worker, ACCESS MODIFY, & 
PRIMARY badge_number 

OPEN "departments.dat" FOR INPUT AS FILE #2, & 
INDEXED FIXED, MAP departments, ACCESS MODIFY, & 
PRIMARY dept_code 

WHEN ERROR IN 
WHILE -1Y. 

USE 

GET #1, WAIT 
WHEN ERROR USE time_expired_handler 

GET #2Y., KEY #0 EQ dept_number, & 
WAIT 10Y. 

END WHEN 
PRINT badge_number, dept_name 

NEXT 

SELECT ERR 
CASE = 11Y. 

PRINT "End of file reached" 
CLOSE 11,, 2Y. 

CASE = 1931, 
PRINT "Deadlock detected" 
UNLOCK #21, 
RETRY 

CASE ELSE 
EXIT HANDLER 

END SELECT 
END WHEN 

15-28 File Input and Output 



HANDLER time_expired_handler 
IF ERR = 16% OR ERR = 193% 

THEN 
PRINT "Department info not available for:" 
PRINT "Employee ";badge_number 
PRINT "Going on to next record." 
CONTINUE 

ELSE 
EXIT HANDLER 

END IF 
END HANDLER 
END PROGRAM 

The first WHEN ERROR block traps any deadlock conditions. The WHEN 
ERROR handler unlocks the current record on channel #2 in case another 
program is trying to access it and then retries the operation. The detached 
handler for the second WHEN ERROR block traps timeout errors and 
deadlock errors. If the desired information does not become available 
in the specified amount of time, or a deadlock condition occurs, the 
employee's badge number is printed out with an appropriate message, and 
the GET statement tries to retrieve the next record in the sequence. 

15.8.10 Accessing Records by Record File Address 

A Record File Address (RFA) uniquely specifies a record in a file. 
Accessing records by RF A is therefore more efficient and faster than 
other forms of random record access. 

Because an RFA requires six bytes of storage, VAX BASIC has a special 
data type, RFA that denotes variables that contain RFA information. 
Variables of data type RFA can be used only with the 1/0 statements and 
functions that use RFA information, and in comparison and assignment 
statements. You cannot print these variables or use them in any arithmetic 
operation. However, you can compare RFA variables using the equal to 
( =) and not equal to < > relational operators. 

You cannot create named constants of the RFA data type. However, you 
can assign values from one RFA variable to another, and you can use RFA 
variables as parameters. 

Accessing a record by RF A requires three steps: 

1. Explicitly declare the variable or array of data type RFA to hold the 
address. 

File Input and Output 15-29 



2. Assign the address to the variable or array element. You can do 
this either with the GETRFA function, or by reading a file of RFAs 
generated by previous GETRFA functions or by the VAX/VMS Sort 
Utility. 

3. Specify the variable in the RFA clause of a GET or FIND statement. 

The GETRFA function returns the RFA of the last record accessed on 
a channel. Therefore, you must access a record in the file with a GET, 
FIND, or PUT statement before using the GETRFA function. Otherwise, 
GETRFA returns a zero, which is an invalid RFA. The following example 
declares an array of type RFA containing 100 elements. After each PUT 
operation, the RFA of the record is assigned to an element of the array. 
Once the RFA information is assigned to a program variable or array 
element, you can use the RFA clause on a GET or FIND statement to 
retrieve the record. 

Example 

DECLARE RFA R_array(1 TO 100) 
DECLARE LONG I 
MAP (XYZ) STRING A = 80 
OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, k 

SEQUENTIAL, MAP XYZ 
FOR I = 11. TO 1001. 

PUT #1 
R_array(I) = GETRFA(1%) 

NEXT I 

You can use the RFA clause on GET statements for any file organization; 
the only restriction is that the file must reside on a disk that is accessible to 
the node that is executing the program. The following example continues 
the previous one. It randomly retrieves the records in a sequential file by 
using RF As stored in the array. 

15-30 File Input and Output 



Example 

DECLARE RFA R_array(1Y. TO 100%) 
DECLARE LONG I 
MAP (XYZ) STRING A = 80 
OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, & 

SEQUENTIAL, MAP XYZ 
FOR I = 1% TO 100% 

PUT #1 
R_array(I) = GETRFA(1Y.) 

NEXT I 

WHILE -1Y. 

NEXT 

PRINT "Which record would you like to see"; 
INPUT "(type a carriage return to exit)";Rec_numY. 
EXIT PROGRAM IF Rec_numY. = OY. 
GET #1, RFA R_array(Rec_numY.) 
PRINT A 

15.8.11 Transferring Data to Terminal-Format Files 

The PRINT# statement transfers program data to a terminal-format file. 
In the following example, the INPUT statements prompt the user for three 
values: S_name$, Area$, and Quantity%. Once these values are entered, 
the PRINT# statement writes these values to a terminal-format file that is 
open on channel #·4. 

Example 

FOR IY. = 1% TO 10% 
INPUT "Name of salesperson":S_name$ 
INPUT "Sales district";Area$ 
INPUT "Quantity sold";QuantityY. 
PRINT #4%, S_name$, Area$, Quantity% 

NEXT !Y. 

If you do not specify an output list in the PRINT# statement, a blank 
line is written to the terminal-format file. A PRINT statement without a 
channel number transfers program data to a terminal. See Chapter 7 for 
more. information. 

File Input and Output 15-31 



15.8. 12 Resetting the File Position 

The RESTORE# statement resets the current record pointer to the begin
ning of the file; it does not change the file. RESET # is a synonym for 
RESTORE. For example: 

RESTORE #3Y., KEY #2Y. 
RESET #3Y. 

The RESTORE# statement restores the file in terms of the second alter
nate key. The RESET # statement restores the file in terms of the primary 
key. 

The RESTORE # statement can be used by all RMS file organizations. 
RESTORE without a channel number resets the data pointer for READ 
and DATA statements but does not affect any files. 

15.8.13 Truncating Files 

The SCRATCH statement is valid only on sequential files. Although you 
cannot delete individual records from a sequential file, you can delete all 
records starting with the current record through to the end of the file. In 
order to do this, you must first specify ACCESS SCRATCH when you 
open the file. 

To truncate the file, locate the first record to be deleted. Once the current 
record pointer points to this record, execute the SCRATCH statement. The 
following program locates the thirty-third record and truncates the file 
beginning with that record. 

Example 

OPEN "MMM.DAT" AS FILE #2Y., IE 
SEQUENTIAL FIXED, ACCESS SCRATCH 

first_bad_record = 33Y. 

FIND #2Y., RECORD first_bad_record 
SCRATCH #2Y. 
CLOSE #2Y. 
END 

SCRATCH does not change the physical size of the file; it reduces the 
amount of information contained in the file. (You can use the DCL 
command SET FILE/TRUNCATE to truncate the excess file space.) 
Therefore, you can write records with the PUT statement immediately 
after a SCRATCH operation. 

15-32 File Input and Output 



15.6.14 Renaming Files 

If the security constraints permit, you can change the name or directory of 
a file with the NAME ... AS statement. For example: 

NAME "MONEY.DAT" AS "ACCOUNTS.DAT" 

This statement changes the name of the file MONEY.DAT to 
ACCOUNTS.DAT. 

NOTE 

The NAME ... AS statement can change only the name and 
directory of a file; it cannot be used to change the device name. 

You must always include an output file type because there is no default. 
If you use the NAME ... AS statement on an open file, the new name does 
not take effect until you close the file. 

15.6.15 Closing Files and Ending 1/0 

All programs should close files before the program terminates. However, 
VAX BASIC automatically closes files in the following situations: 

• At an END, END PROGRAM, or EXIT PROGRAM statement 

• When it completes the last statement in the program if no END 
statement exists 

• While executing a CHAIN statement 

VAX BASIC does not close files after executing a STOP, END SUB, END 
FUNCTION, or END PICTURE statement. 

The CLOSE statement closes files and disassociates these files and their 
buffers from the channel numbers. If the file is a magnetic tape device 
and the data is written to a tape, CLOSE writes trailer labels at the end of 
the file. The following is an example of the CLOSE statement: 

Example 

CLOSE #1% 
B% = 4% 
CLOSE #2%, B%, 7% 
CLOSE I% FOR I% = 1% TO 20% 

File Input and Output 15-33 



15.6.16 Deleting Files 

If the security constraints permit, you can delete a file with the KILL 
statement. 

KILL "TEST.DAT" 

This statement deletes the file named TEST.DAT. Note that this statement 
deletes only the most current version of the file. Do not omit the file type, 
because there is no default. You can delete only one file at a time; to 
delete all versions of a file matching a file specification, use the Run-Time 
Library routine LIB$DELETEJILE. 

You can delete a file that is currently being accessed by other users; 
however, the file is not deleted until all users have closed it. You cannot 
open or access a file once you have deleted it. 

15. 7 File-Related Functions 

VAX BASIC provides built-in functions for finding 

• The characteristics of the last file opened (FSP$) 

• The number of bytes moved in the last 1/0 operation (RECOUNT) 

• The file status (STATUS, VMSSTATUS, and RMSSTATUS) 

These functions are discussed in the following sections. 

15. 7 .1 The FSPS Function 

If you do not know the organization of a file, you can find out by open
ing the file for input with the ORGANIZATION UNDEFINED and 
RECORDTYPE ANY clauses. Your program can then use the FSP$ 
function to determine the characteristics of that file. Your program must 
execute FSP$ immediately after the OPEN FOR INPUT statement. 

15-34 File Input and Output 



Example 

RECORD FSP_data 
VARIANT 
CASE 

BYTE Rat 
BYTE Org 
WORD Max_record_size 
LONG File_size 
WORD Bucketsize_blocksize 
WORD Num_keys 
LONG Max_record_number 

CASE 
Ret_string = 16 

END RECORD 

DECLARE FSP_data File_chars 

OPEN "FIL.DAT" FOR INPUT AS FILE #11., 
ORGANIZATION UNDEFINED, 
RECORDTYPE ANY, ACCESS READ 

File_chars::Ret_string = FSP$(11.) 

• Rat returns the low byte that is the RMS record attributes (RAT) field. 

• Org returns the high byte that is the RMS organization (ORG) field. 

• Max_record_size returns the RMS maximum record size (MRS) field. 

• File_size returns the RMS allocation quantity (ALQ) field. 

• Bucketsize_blocksize returns the RMS bucket size (BKS) field for disk 
files or the RMS block size (BLS) field for magnetic tape files. 

• Num_keys returns the number of keys. 

• Max_record_number returns the RMS maximum record number (MRN) 
field if the file is a relative file. 

Note that FSP$ returns zeros in bytes 9 through 12. For more information, 
see the VAX Record Management Services Reference Manual. 

File Input and Output 15-35 



15. 7 .2 The RECOUNT Function 

Read operations can transfer varying amounts of data. The system variable 
RECOUNT contains the number of characters (bytes) read after each read 
operation. 

After a read operation from your terminal, RECOUNT contains the 
number of characters transferred, including the line terminator. After 
accessing a record, RECOUNT contains the number of characters in the 
record. 

RECOUNT is reset by every read operation on any channel, including 
the controlling terminal. Therefore, if you need to use the value of 
RECOUNT, copy it to another variable before executing another read 
operation. RECOUNT is undefined if an error occurs during a read 
operation. 

RECOUNT is often used as the argument to the COUNT clause in the 
UPDATE or PUT statement for variable-length files. The following se
quence of statements ensures that the output record on channel #5 is the 
same length as the input record on channel #4. 

Example 

GET #4% 
bytes_readY. = RECOUNT 

PUT #5%, COUNT bytes_readY. 

15.7.3 The STATUS, VMSSTATUS, and RMSSTATUS Functions 

The STATUS function accesses the status longword that contains char
acteristics of the last opened file. If an error occurs during an input 
operation, the value of STATUS is undefined. If an error does not occur, 
the six low-order bits of the returned value contain information about the 
type of device accessed by the last input operation. These bits correspond 
to the following devices: 

• If bit 0 is set, the device type is a record-oriented device. 

• If bit 1 is set, the device type is a carriage control device. 

• If bit 2 is set, the device type is a terminal. 

• If bit 3 is set, the device type is a directory oriented device. 

15-36 File Input and Output 



• If bit 4 is set, the device type is a single directory device. 

• If bit 5 is set, the device type is a sequential block-oriented device 
(magnetic tape or TKSO). 

Both the VMSSTATUS and RMSSTATUS functions are used to deter
mine which non-BASIC error caused a resulting VAX BASIC error. In 
particular, VMSSTATUS can be used for any non-BASIC errors, while 
RMSSTATUS is used specifically for RMS errors. For more information on 
these functions, see Chapter 17 and the VAX BASIC Reference Manual. 

15.8 OPEN Statement Options 

This section explains the OPEN statement keywords that enable you to 
control how a file is created or opened. These keywords are as follows: 

BUCKETSIZE 
BUFFER 
CONNECT 
CONTIGUOUS 
DEFAULTNAME 
EXTENDSIZE 
FILE SIZE 
NOSPAN 
RECORDTYPE 
TEMPORARY 
USEROPEN 
WINDOW SIZE 

15.8.1 The BUCKETSIZE Clause 

The BUCKETSIZE clause applies only to relative and indexed files. A 
bucket is a logical storage structure that RMS uses to build and maintain 
relative and indexed files on disk devices. A bucket consists of 1 or more 
disk blocks. The default bucket size is the recordsize rounded up to a 
block boundary. Although RMS defines the bucket size in terms of disk 
blocks, the BUCKETSIZE clause specifies the number of records a bucket 
contains. For example: 

OPEN 11 STOCK_DATA.DAT 11 FOR OUTPUT AS FILE #1%, & 
ORGANIZATION RELATIVE FIXED, BUCKETSIZE 12% 

File Input and Output 15-37 



This example specifies a bucket containing approximately 12 records. RMS 
reads in entire buckets into the 1/0 buffer at once, and a GET statement 
transfers one record from the I/O buffer to your program's record buffer. 

When you open an existing relative or indexed file and specify a bucket 
size other than that originally assigned to the file, VAX BASIC signals "File 
attributes not matched" (ERR= 160). 

Records cannot span bucket boundaries. Therefore, when you specify a 
bucket size in your program, you must consider the size of the largest 
record in the file. Note that a bucket must contain at least one record. 
Buckets in both relative and indexed files contain information in ad
dition to the records stored in the bucket. You should take this into 
consideration. 

There are two ways to establish the number of blocks in a bucket. The 
first is to use the VAX BASIC default. The second is to specify the ap
proximate number of records you want in each bucket. VAX BASIC then 
calculates a bucket size based on that number. 

The default bucket size assigned to relative and indexed files is as small as 
possible. A small bucket size, however, is rarely desirable. 

VAX BASIC selects a default bucket size depending on 

• The record length 

• The file organization (relative or indexed) 

• The record format 

If you do not define the BUCKETSIZE clause in the OPEN statement, VAX 
BASIC does the following: 

• Assumes that there is a minimum of one record in the bucket 

• Calculates a size 

• Assigns the appropriate number of blocks 

Note that when you specify a bucket size for files in your program, you 
must keep in mind the space versus speed trade-offs. A large bucket 
size increases file processing speed because a greater amount of data is 
available in memory at one time. However, it also increases the memory 
space needed for buffer allocation and the processing time required to 
search the bucket. Conversely, a small bucket size minimizes buffer 
requirements, but increases the number of accesses to the storage device, 
thereby decreasing the speed of operations. 

15-38 File Input and Output 



DIGITAL recommends that you use the DCL command EDIT /FOL to 
design files used in production applications where performance is a 
concern. 

15.8.2 The BUFFER Clause 

The BUFFER keyword applies to disk files of any organization. In the case 
of sequential files, the BUFFER clause sets the number of blocks read in 
on each disk access. For relative and indexed files, the BUFFER clause 
determines the number of I/O buffers that are allocated. In general, the 
VAX/VMS operating system supplies adequate defaults for all file types; 
therefore the BUFFER clause is rarely necessary. 

You can specify up to 127 buffers as either a positive or a negative 
number: 

• If (0 < BUFFER < 127), RMS allocates enough space for the speci
fied number of buckets. 

• If (-128 < BUFFER < 0), VAX BASIC allocates the absolute value of 
the specified number of buffers. 

• If (BUFFER = 0), VAX BASIC allocates the process default for the 
particular file organization and device-this value is usually adequate. 

15.8.3 The CONNECT Clause 

The CONNECT clause can be used only on indexed files. CONNECT lets 
you process different groups of records on different indexed keys or on 
the same key without incurring all of the RMS overhead of opening the 
same file more than once. For example, a program can read records in 
an indexed file sequentially by one key and randomly by another. Each 
stream is an independent, active series of record operations. 

Example 

MAP (Indmap) WORD Emp_num, k 
STRING Emp_last_name = 20, k 
SINGLE Salary, k 
STRING Wage_code = 2 

OPEN "IND.DAT" FOR INPUT AS FILE #1Y,, k 
ORGANIZATION INDEXED, k 
MAP Indmap, k 
PRIMARY KEY Emp_num, k 
ALTERNATE KEY Emp_last_name 

File Input and Output 15-39 



OPEN "IND.DAT" FOR INPUT AS FILE #2% 
ORGANIZATION INDEXED, 
MAP Ind.map, 
CONNECT 1 

OPEN "IND.DAT" FOR INPUT AS FILE #3% 
ORGANIZATION INDEXED, 
MAP Ind.map, 
PRIMARY KEY Emp_num, 
ALTERNATE KEY Wage_code, 
CONNECT 1 

The channel on which you open the file for the first time is called the 
parent. The CONNECT clause specifies another channel on which you 
access the same file; connected channels are called children. More than 
one OPEN statement can connect to the parent channel; however, you 
cannot connect to a channel that has already been connected to another 
channel. 

15.8.4 The CONTIGUOUS Clause 

A contiguous file with physically adjoining blocks minimizes disk search
ing and decreases file access time. Once the system knows where a 
contiguous file starts on the disk, it does not need to use as many retrieval 
pointers to locate the pieces of that file. Rather, it can access data by cal
culating the distance from the beginning of the file to the desired data. If 
there is not enough contiguous disk space, VAX BASIC allocates as much 
contiguous space as possible. (For truly contiguous records, you must use 
the USEROPEN clause and set the CTG bit in the FAB FOP field-see the 
VAX Record Management Services Reference Manual. 

Opening a file with both the FILESIZE and CONTIGUOUS clauses 
preextends the file contiguously or in as few disk extents as possible. 

15-40 File Input and Output 



15.8.5 The DEFAULTNAME Clause 

The DEF AUL TNAME clause in the OPEN statement lets you specify a 
default file specification for the file to be opened. It is valid with all file 
organizations. VAX BASIC uses the DEFAULTNAME clause for any part 
of the file specification that is not explicitly supplied. 

Example 

LINPUT "Next data file";Fil$ 
OPEN Fil$ FOR INPUT AS FILE #6%, & 

ORGANIZATION SEQUENTIAL, & 
DEFAULTNAME "USER$DEVICE:.DAT" 

The DEFAULTNAME clause supplies default values for the device, di
rectory, and file type portions of the file specification. Typing ABC in 
response to the "Next data file?" prompt causes VAX BASIC to try to open 
USER$DEVICE:ABC.DAT. 

VAX BASIC uses the DEFAULTNAME values only if you do not supply 
those parts of the file specification appearing in the DEFAULTNAME 
clause. For example, if you type SYS$DEVICE:ABC in response to the 
prompt, VAX BASIC tries to open SYS$DEVICE:ABC.DAT. In this case, 
SYS$DEVICE: overrides the device default in the DEFAULTNAME clause. 
Any part of the file specification still missing is filled in from the current 
default device and directory of the process. 

15.8.6 The EXTENDSIZE Clause 

The EXTENDSIZE attribute determines how many disk blocks RMS adds 
to the file when the current allocation is exhausted. The EXTENDSIZE 
clause only has an effect when creating a file. You specify EXTENDSIZE 
as a number of blocks. For example: 

OPEN "TSK.ORN" FOR OUTPUT AS FILE #2%, & 
ORGANIZATION RELATIVE, EXTENDSIZE 128% 

The EXTENDSIZE clause causes RMS to add 128 disk blocks whenever 
the current space allocation is exhausted and the file must be extended. 

The value you specify must conform to the following requirements: 

• It must be specified when you create the file 

• It cannot exceed 65 ,535 disk blocks 

File Input and Output 15-41 



If you specify zero, the extension size equals the RMS default value. The 
EXTENDSIZE value can be overridden for single OPEN operations. 

15.8. 7 The FILESIZE Clause 

With the FILESIZE attribute, you can allocate disk space for a file when 
you create it. The following statement allocates 50 blocks of disk space for 
the file "VALUES.DAT": 

OPEN "VALUES.DAT" FOR OUTPUT AS FILE #3Y., FILESIZE 50Y. 

Preextending a file has several advantages: 

• The system can create a complete directory structure for the file, 
instead of allocating and mapping additional disk blocks when needed. 

• You reserve the needed disk space for your application. This ensures 
that you do not run out of space when the program is running. 

• Preextension can make some of the file's disk blocks contiguous, 
especially when used with the CONTIGUOUS keyword. 

Note that preextension can be a disadvantage if it allocates disk space 
needed by other users. The FILESIZE clause is ignored when VAX BASIC 
opens an existing file. 

15.8.8 The NOSPAN Clause 

By default, sequential files allow records to cross or span block boundaries. 
If records cross block boundaries, RMS packs records into the file end
to-end throughout the file, leaving space for control information and 
padding. 

The NOSPAN clause overrides this default, forcing records to fit into indi
vidual blocks (with space provided for control information and padding). 
When block boundaries restrict records, fixed-length records must be less 
than 512 bytes, and variable-length records less than 510 bytes. This 
can waste extra bytes at the end of each block. However, when records 
span block boundaries, RMS writes records end-to-end without regard 
for block boundaries. For example, if you specify NOSPAN, only four 
120-byte records fit into a disk block. If you do not specify NOSP AN, 
VAX BASIC begins writing the fifth record in the block, and continues 
writing that record in the next block. This minimizes wasted disk space 
and improves the file's capacity, at the minimal expense of increased 
processing overhead. 

15-42 File Input and Output 



15.8.9 The RECORDTYPE Clause 

The RECORDTYPE clause lets you specify record formats that are com
patible with files created by other language processors. You can choose 
one of four qualifiers: LIST, FORTRAN, ANY, and NONE. The default 
for VAX BASIC is LIST, which specifies carriage return format. This is 
standard for ASCII text files and means that carriage control is performed 
by RMS when writing the file to a unit-record device. 

If your program accesses a file created with a FORTRAN language proces
sor, use the FORTRAN qualifier. In the following example, the FORTRAN 
qualifier sets the FORTRAN carriage control attribute in the RAT field 
in the F AB. For more information on the FAB control structure, see 
Section 15.8.11. The first byte of the record is assumed to be the carriage 
control information. 

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, IE 
ORGANIZATION SEQUENTIAL, RECORDTYPE FORTRAN 

If your program accesses a file created by an unknown language processor 
or by DCL, use the ANY qualifier; this qualifier causes VAX BASIC 
to handle any record attribute type. If you create a file with the ANY 
qualifier, VAX BASIC uses the default of LIST. 

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, IE 
ORGANIZATION INDEXED, RECORDTYPE ANY 

15.8.10 The TEMPORARY Clause 

If you specify the TEMPORARY clause in the OPEN statement, VAX 
BASIC deletes that file in any one of the following cases: 

• When you close the file 

• When the program aborts or exits 

• When your process terminates 

No entry for this file is made in any directory. 

File Input and Output 15-43 



15.8.11 The USEROPEN Clause 

The USEROPEN clause specifies an external long function that VAX 
BASIC executes when you open or create a file. (You do not need to de
clare the USEROPEN routine with an EXTERNAL FUNCTION statement.) 
This procedure can then specify additional OPEN parameters for the file. 
For example: 

OPEN "FILE.DAT" FOR INPUT AS FILE #2%, & 
ORGANIZATION INDEXED, USEROPEN Myopen, MAP ABC 

The code in Myopen determines how the file FILE.DAT is opened. The 
Run-Time Library sets up six RMS control structures before calling the 
USEROPEN procedure. Table 15-4 defines these structures and their 
meanings. 

Table 15-4: VAX RMS Control Structures Set for the 
USEROPEN Clause 

F AB File Access Block 

RAB Record Access Block 

NAM Name Block 

XAB FHC Extended Attributes Block 

ESA Expanded Name String 

RSA Resultant Name String 

A USEROPEN procedure should not alter the allocation of these struc
tures, although it can modify the contents of many of the fields. You 
should not modify fields set by other OPEN statement keywords. For 
example, you should use the RECORDSIZE clause, not a USEROPEN 
routine, to set the record length. 

The allocation of the RMS control structures (except for the RAB) lasts only 
for the duration of the OPEN statement. Therefore, your USEROPEN can 
retain only the RAB address for use after the OPEN operation is complete. 
Note that any additional structures that you allocate and link into the 
RMS structures must be unlinked before exiting the USER OPEN. 

NOTE 

Future releases of the Run-Time Library may alter the use of 
some VAX RMS fields. Therefore, you may have to alter your 
USEROPEN procedures accordingly. 

15-44 File Input and Output 



The following steps describe the execution of the USEROPEN routine: 

1. VAX BASIC performs normal OPEN statement processing up to the 
point where it would call the RMS OPEN/CREATE and CONNECT 
routines. VAX BASIC then passes control to the USEROPEN routine. 

2. VAX BASIC passes the address of the FAB as the first parameter, the 
address of the RAB as the second parameter, and the address of the 
user-specified channel number as the third parameter to the routine. 

3. The USEROPEN routine can modify the contents of the RMS control 
structures, and it must call the RMS OPEN or RMS CREATE routine 
and the RMS CONNECT routine and return the status in RO. 

The following program creates a USEROPEN routine to obtain a RAB 
address. 

Example 

%TITLE "Example USEROPEN" 
Y.SBTTL "Useropen Routine to obtain RAB address" 
Y.IDENT "Version 1.0" 

FUNCTION LONG Get_rab_address ( Fabdef User_fab, Rabdef User_rab, LONG Channel ) 
!++ 
! FUNCTIONAL DESCRIPTION: 

Save the address of the RMS Record Access Block allocated by the caller 
in a global symbol. Open the file and return the status from RMS. 

FORMAL PARAMETERS (Standard for all BASIC USEROPEN procedures) 

User_fab Address of RMS File Access Block 
User_rab Address of RMS Record Access Block 
Channel Logical Unit assigned to file by caller. 

RETURN VALUE: RMS Status value 

GLOBAL COMMON USAGE 

RAB_ptr Single longword PSECT used to pass RAB address to caller. 

OPTION INACTIVE = SETUP, & 
CONSTANT TYPE = INTEGER, & 
TYPE = EXPLICIT 

Y.NOLIST 
%INCLUDE 11 $FABDEF 11 %FROM %LIBRARY 11 SYS$LIBRARY:BASIC$STARLET 11 

%INCLUDE 11 $RABDEF 11 %FROM %LIBRARY 11 SYS$LIBRARY:BASIC$STARLET11 

%INCLUDE 11 $RMSDEF 11 %FROM %LIBRARY 11 SYS$LIBRARY:BASIC$STARLET11 

%INCLUDE "STARLET" %FROM %LIBRARY 11 SYS$LIBRARY:BASIC$STARLET11 

%LIST 

File Input and Output 15-45 



!+ 
! Common area used to pass RAB address to caller. 
! -
COMMON (RAB_ptr) LONG rab_address 

DECLARE LONG Rms_status 
!+ 
! Save RAB address in global symbol known to caller. 

Perform standard RMS open sequence 
!-
Rab_address = LOC(User_rab::rab$b_bid) 

Rms_status = Sys$open( User_fab ) 

IF Rms_status AND Rms$_normal 
THEN 

Rms_status = Sys$connect( User_rab ) 
END IF 

END FUNCTION Rms_status 

NOTE 

You cannot use a USEROPEN routine to fill the RBF, UBF, 
BKS, or CTX fields in the RAB. These fields are filled in after 
the USEROPEN routine returns; any values placed there by 
the USEROPEN routine are overwritten. Also, you must not 
set RMS Locate mode when using a USEROPEN routine on 
sequential files. 

15.8.12 The WINDOWSIZE Clause 

The WINDOWSIZE clause specifies the number of block retrieval pointers 
in memory for the file. WINDOWSIZE is not a file attribute, and therefore 
can be changed any time you open a file. 

Retrieval pointers are associated with the file header and point to con
tiguous blocks on disk. By keeping retrieval pointers in memory, you can 
reduce the 1/0 associated with locating a record because the operating 
system does not have to access the file header for pointers as frequently. 
The number of retrieval pointers in memory at any one time is determined 
by the system default or by the value you supply in the WINDOWSIZE 
clause. The usual default number of retrieval pointers is 7. 

A value of zero specifies the default number of retrieval pointers. A value 
of 255 specifies mapping the entire file, if possible. Values between 128 
and 254 inclusive are reserved. 

15-46 File Input and Output 



Chapter 16 

Formatting Output with the PRINT USING 
Statement 

The PRINT USING statement controls the appearance and location of data 
on a line of output. With it, you can create formatted lists, tables, reports, 
and forms. This chapter describes how to format data with the PRINT 
USING statement. 

16.1 Introduction 

The ability to format data with the PRINT USING statement is useful 
because the way in which VAX BASIC displays data with the PRINT 
statement is often limited. For example, a program may use floating-point 
numbers to represent dollars and cents. The PRINT statement displays 
floating-point numbers with up to six digits of accuracy, and places the 
decimal point anywhere in that 6-digit field. In contrast, PRINT USING 
lets you display floating-point numbers in the following ways: 

• Rounded to two decimal places 

• Vertically aligned on the decimal point 

• Preceded by a dollar sign 

• With commas every third digit to the left of the decimal point 

Formatting monetary values in this way provides a much more readable 
report. Another use for formatted numeric values might be to print checks 
on a line printer. PRINT USING lets you print numbers with a dollar sign 
and an asterisk-filled field preceding the first digit. 

Formatting Output with the PRINT USING Statement 16-1 



PRINT USING also formats string data. With it you can left- and right
justify string expressions, or center a string expression over a specified 
column position. Further, the PRINT USING statement can contain string 
literals. These are strings that do not control the format of a print item, 
but instead are printed exactly as they appear in the format string. 

DIGITAL recommends that you declare all format expressions as string 
constants. When you do this the VAX BASIC compiler causes the Run
Time Library to compile the string at compile time rather than at run time, 
thus improving the performance of your code. 

16.2 Using Format Strings 

Format strings determine the way in which items are to be printed in the 
output file. Format strings can be any of the following: 

• String variables 

• String literals 

• Named string constants 

• A combination of the above 

The PRINT USING statement must contain one or more format strings. 
Each format string is made up of one format field. Each format field con
trols the output of one print item and can contain only certain characters, 
as described throughout the chapter. 

The PRINT USING statement must also contain a list of items you want 
printed. To format print items, you must separate them with commas or 
semicolons. Separators between print items do not affect output format as 
they do with the PRINT statement. However, if a comma or semicolon 
follows the last print item, VAX BASIC does not return the cursor or print 
head to the beginning of the next line after it prints the last item in the 
list. 

When VAX BASIC encounters an invalid character within the current 
format field, it automatically ends the format field. Therefore, you do not 
need to delimit format fields. The character that terminates the previous 
field can be either a new format field or a string literal. 

In the following example, the first three characters in the format string 
(###)make up a valid numeric format field. The fourth character (A) 
is invalid in a numeric format field; therefore, VAX BASIC ends the first 
format field after the third character. VAX BASIC continues to scan the 
format string, searching for a character that begins a format field. The 

16-2 Formatting Output with the PRINT USING Statement 



first such character is the number sign at character position 7. Therefore, 
the characters at positions 4, 5, and 6 are treated as a string literal. The 
characters at positions 7, 8, and 9 make up a second valid numeric format 
field. 

Example 

PRINT USING "###ABC###", 123, 346 

Output 

123ABC346 

When the statement executes, VAX BASIC prints the first number in the 
list using the first format field, then prints the string literal ABC, and 
finally prints the second number in the list using the second format field. 
If you were to supply a third number in the list, VAX BASIC would reuse 
the first format string. This is called reversion. 

Example 

PRINT USING "###ABC###", 123, 346, 
664 

Output 

123ABC346 
664ABC 

Because any character not part of a format field is printed just as it appears 
in the format field, you can use a space or multiple spaces to separate 
format fields in the format string as shown in the following example. 

Example 

DECLARE STRING CONSTANT format_string = "###.## ###.##" 
DECLARE SINGLE A,B 
A = 2.666 
B = 100.360 
PRINT USING format_string, A, B, A, B 

Output 

2.67 100.35 
2.67 100.36 

Formatting Output with the PRINT USING Statement 16-3 



When the VAX BASIC compiler encounters the PRINT USING statement, 
VAX BASIC prints the value of A (rounded according to PRINT USING 
rules), three spaces, then the value of B. VAX BASIC prints the three 
spaces because they are treated as a string literal in the format string. 
Notice that when VAX BASIC reuses a format string, it begins on a new 
line. 

16.3 Printing Numbers 

With the PRINT USING statement, you can specify: 

• The number of digits to print, thus rounding the number to a given 
place 

• The decimal point location, thus vertically aligning numbers at the 
decimal point 

• Special symbols, including trailing minus signs, asterisk-filled number 
fields, floating currency symbols, embedded commas, and E notation 

• Debits and credits 

• Leading zeros or leading spaces 

• Blank-if-zero fields 

• A special character that is to be printed as a literal 

Unlike the PRINT statement, PRINT USING does not automatically print 
a space before and after a number. Unless you reserve enough digit 
positions to contain the integer portion of the number (and a minus sign, 
if necessary), VAX BASIC prints a percent sign (%)to signal this condition 
and displays the number in PRINT format. 

18.3.1 Specifying the Number of Digits 

You reserve places for digits by including a number sign ( #) for each digit 
position. If you print negative numbers, you must also reserve a place for 
the minus sign. 

16-4 Formatting Output with the PRINT USING Statement 



Example 

PRINT USING "###",123 
PRINT USING "#####",12345 
PRINT USING "####",-678 
END 

Three places reserved 
Five places reserved 
Four places reserved 

Output 

123 
12345 
-678 

If there are not enough digits to fill the field, VAX BASIC prints spaces 
before the first digit. 

Example 

format_string$ = 11 ##### 11 

PRINT USING format_string$, 1 
PRINT USING format_string$, 10 
PRINT USING format_string$, -1709 
PRINT USING format_string$, 12345 
END 

Output 

1 
10 

-1709 
12345 

If you have not reserved enough digits to print the fractional part of a 
number, VAX BASIC rounds the number to fit the field. 

Example 

PRINT USING "### 11 ,126.7 
PRINT USING "#",5.9 
PRINT USING "#",5.4 
END 

Output 

127 
6 
5 

If you have not reserved enough places to print a number's integer 
portion, VAX BASIC prints a percent sign as a warning followed by the 
number in PRINT statement format. After VAX BASIC prints the number, 
it completes the rest of the list in PRINT USING format. 

Formatting Output with the PRINT USING Statement 16-5 



In the following example, PRINT USING displays the first number. 
Because there are not enough places to the left of the decimal point to 
display a 3-digit number, VAX BASIC prints the second number in PRINT 
statement format, with a space before and after, but includes a percent 
sign warning. 

Example 

PRINT USING 11 ### 11 , 266 
PRINT USING 11 ## 11 , 266 
END 

Output 

266 
1. 256 

16.3.2 Specifying Decimal Point Location 

The decimal point's position in the format string determines the number 
of reserved places on either side of it. If the print item's fractional part 
does not use all of the reserved places to the right of the decimal point, 
VAX BASIC fills the remaining spaces with zeros. 

Example 

DECLARE STRING CONSTANT FM = "##.###" 
PRINT USING FM, 16.72 
PRINT USING FM, 39.3758 
PRINT USING FM, 26 

Output 

16.720 
39.376 
26.000 

If there are more fractional digits than reserved places to the right of the 
decimal point, VAX BASIC rounds the number to fit the reserved places. 
Note that there must be enough places reserved to the left of the decimal 
point for the integer portion of the number. Otherwise, VAX BASIC prints 
the number in PRINT format preceded by a percent sign. The following 
example shows how PRINT USING rounds numbers when you specify 
decimal point location. 

16-6 Formatting Output with the PRINT USING Statement 



Example 

PRINT USING"##.##", 25.789 
PRINT USING "##.###", 100.2 
PRINT USING "#.##",.999 
END 

Output 

26.79 
Y. 100.2 
1.00 

VAX BASIC fills all reserved spaces to the left of the decimal point with 
specified digits, spaces, or the minus sign. 

Example 

PRINT USING"##.##", 6.26 
PRINT USING 11 ##.## 11

, -6.26 
PRINT USING "###.##,-6.26 
END 

Output 

6.26 
-6.26 
-6.26 

16.3.3 Printing Numbers with Special Symbols 

Special symbols let you print numbers with trailing minus signs, asterisk
fill fields, floating currency symbols, commas, or E notation. You can also 
specify debits, credits, leading zeros, leading blanks, and blank-if-zero 
fields. Table 16-1 summarizes these special characters. 

Formatting Output with the PRINT USING Statement 16-7 



Table 16-1: Format Characters for Numeric Fields 
Character Effect on Format 

Number sign ( #) Reserves a place for one digit. 

Decimal point (period) ( . ) 

Comma(,) 

Two asterisks ( ** ) 

Two dollar signs ( $$) 

Four carets ( AAAA ) 

Minus sign ( - ) 

Zero in angle brackets ( < 0 > ) 

16-8 Formatting Output with the PRINT USING Statement 

Determines decimal point location 
and reserves a place for the radix 
point. 

Prints a comma before every third 
digit to the left of the decimal point 
and reserves a place for one digit or 
digit separator. 

Print leading asterisks before the 
first digit and reserve places for two 
digits. 

Print a currency symbol before 
the first digit. They also reserve 
places for the currency symbol 
and one digit. By default, the 
currency symbol is a dollar sign. To 
change the currency symbol, see 
Section 16.3.3.3. 

Print a number in E (exponential) 
format and reserve four places for E 
notation. 

Prints a trailing minus sign for 
negative numbers. Printing a 
negative number in an asterisk-fill 
or a currency field requires that the 
field also have a trailing minus sign 
or credit/debit character. 

Prints leading zeros instead of 
leading spaces. 



Table 16-1 (Cont.): Format Characters for Numeric Fields 
Character Effect on Format 

Percent sign in angle brackets ( < % > ) Prints all spaces in the field if 

CD in angle brackets ( <CD> ) 

Underscore (-) 

16.3.3. 1 Commas 

the value of the print item, when 
rounded to fit the numeric field, is 
zero. 

Prints credit and debit characters 
immediately following the number. 
VAX BASIC prints CR for negative 
numbers and zero, and DR for 
positive numbers. 

Specifies that the next character is a 
literal, not a formatting character. 

You can place a comma anywhere in a number field to the left of the 
decimal point or to the right of the field's first character. A comma cannot 
start a format field. VAX BASIC prints a comma to the left of every third 
digit from the decimal point. If there are fewer than four digits to the left 
of the decimal point, VAX BASIC omits the comma. 

Example 

PRINT USING "##,###",10000 
PRINT USING "##,###",759 
PRINT USING "$$#,###.##",25694.3 
PRINT USING "**#,###",7259 
PRINT USING "####,#.##",25239 
END 

Output 

10,000 
759 

$25,694.30 
••7,259 
25,239.00 

Formatting Output with the PRINT USING Statement 16-9 



16.3.3.2 Asterisk-Fill Fields 

To print asterisks (•)before the first digit of a number, you must start the 
field with two asterisks. 

Example 

DECLARE STRING CONSTANT FM = "**##.##" 
PRINT USING FM, 1.2 
PRINT USING FM, 27.96 
PRINT USING FM, 107 
PRINT USING FM, 1007.6 
END 

Output 

***1.20 
••27.96 
•107.00 
1007.60 

Note that the asterisks reserve two places as well as cause asterisk fill. 

To specify a negative number in an asterisk-fill field, you must place a 
trailing minus sign in the field. The trailing minus sign must be the last 
character in the format string. 

Example 

DECLARE STRING CONSTANT FM = "**##.##-" 
PRINT USING FM, 27.96 
PRINT USING FM, -107 
PRINT USING FM, -1007.6 
END 

Output 

••27.96 
*107.00-
1007.60-

If you try to print a negative number in an asterisk-fill field that does not 
include a trailing minus sign, VAX BASIC signals "PRINT USING format 
error" (ERR= 116). 

You cannot specify both asterisk-fill and zero-fill for the same numeric 
field. 

16-10 Formatting Output with the PRINT USING Statement 



16.3.3.3 Currency Symbols 

To print a currency symbol before the first digit of a number, you must 
start the field with two dollar signs. If the data contains both positive and 
negative numbers, you must include a trailing minus sign. 

Example 

DECLARE STRING CONSTANT FM = "$$##.##-" 
PRINT USING FM, 77.44 
PRINT USING FM, 304.66 
PRINT USING FM, 2211.42 
PRINT USING FM, -126.6 
PRINT USING FM, 127.82 
END 

Output 

$77.44 
$304.66 
Y. 2211.42 
$126.60-
$127 .82 

Note that the dollar signs reserve places for the currency symbol and only 
one digit; the dollar sign is always printed. (Hence the warning indicator 
( % ) when the third PRINT USING statement executes.) Contrast this 
with the asterisk-fill field, where VAX BASIC prints asterisks only when 
there are leading spaces. 

By default, the currency symbol is a dollar sign. On VAX/VMS systems, 
you can change the currency symbol, radix point, and digit separator by 
assigning the characters you want to the logical names SYS$CURRENCY, 
SYS$RADIX_pQINT, and SYS$ DIGIT_SEP, respectively. 

If you try to print a negative number in a dollar sign field that does not 
include either a trailing minus sign or the CR/DR formatting character, 
VAX BASIC signals "PRINT USING Format error" (ERR= 116). 

Formatting Output with the PRINT USING Statement 16-11 



16.3.3.4 Negative Fields 

To allow for a field containing negative values, you must place a trailing 
minus sign in the format field. A negative format field causes the value to 
be printed with a trailing minus sign. You can also denote negative fields 
with CR and DR. See Section 16.3.3.8 for more information. 

You must use a trailing minus or the CR/DR formatting character to 
indicate a negative number in an asterisk-fill or floating dollar sign field. 

For fields with trailing minus signs, VAX BASIC prints a minus sign after 
negative numbers as shown in Example 1, and a space after positive 
numbers as shown in Example 2: 

Example 1 

!Standard field 
PRINT USING "###.##",-10.64 
PRINT USING 11 ###.## 11 ,10.64 
END 

Output 1 

-10.64 
10.64 

Example 2 

!Fields with Trailing Minus Signs 
PRINT USING "##.##-",-10.64 
PRINT USING "##.##-",10.64 
END 

Output 2 

10.64-
10.64 

16.3.3.5 E (Exponential) Format 

To print a number in E format, you must place four carets ( """'") at the end 
of the field. The carets reserve space for: 

• The capital letter E 

• A plus or minus sign (which indicates a positive or negative exponent) 

• An exponent (the exponent is 2 digits for single and double, 3 digits 
for G _floating and 4 digits for H_floating) 

16-12 Formatting Output with the PRINT USING Statement 



In exponential format, VAX BASIC does not pad the digits to the left 
of the decimal point. Instead, the most significant digit shifts to the 
leftmost place of the format field, and the exponent compensates for this 
adjustment. 

Example 

PRINT USING "###.#t····n,5 
PRINT USING "###.tt•···n,1000 
PRINT USING ".tt····n,5 
END 

Output 

600.00E-02 
100.00E+01 

.60E+01 

If you use fewer than four carets, the number does not print in E format; 
the carets print as literal characters. If you use more than four carets, VAX 
BASIC prints the number in E format and includes the extra carets as a 
string literal. 

Example 

PRINT USING "###.#1···n,5 
PRINT USING "###.##····· 11 ,6 
END 

Output 

5.oo··· 
600.00E-02· 

You must reserve a place for a minus sign to the left of the decimal point 
to display negative numbers in exponential format. If you do not, VAX 
BASIC prints a percent sign (%)as a warning. 

You cannot use exponential format with asterisk-fill, floating dollar sign, 
or trailing minus formats. 

Formatting Output with the PRINT USING Statement 16-1 J 



16.3.3.6 Leading Zeros 

To print leading zeros in a numeric field, you must start the format field 
with a zero enclosed in angle brackets ( <O> ). These characters also 
reserve one place for a digit. 

Example 

DECLARE STRING CONSTANT FM = "<0>####.## 11 

PRINT USING FM, 1.23, 12.34, 123.46, 1234.66, 12346.67 

Output 

00001.23 
00012.34 
00123.46 
01234.66 
12346.67 

When you specify zero-fill, you cannot specify asterisk-fill or floating
dollar sign format for the same field. 

16.3.3. 7 Blank-If-Zero Fields 

To make VAX BASIC print a blank field for values which round to zero, 
you must start the numeric field with a percent sign (%)enclosed in angle 
brackets ( <%> ). 

In the following example, PRINT USING displays spaces in each reserved 
position for the second and third items in the list. The value of the second 
item is zero, while the value of the third item becomes zero when rounded 
to fit the numeric field. 

Example 

DECLARE STRING CONSTANT FM = 11 <Y.>####.## 11 

PRINT USING FM, 1000, 0, .001, -6000 

Output 

1000.00 

-6000 

16-14 Formatting Output with the PRINT USING Statement 



16.3.3.8 Debits and Credits 

You can have VAX BASIC use credit and debit notation to differentiate 
positive and negative numbers. To do this, you place the characters 
<CD> (Credit/Debit) at the end of the numeric format string. This 

causes VAX BASIC to print CR (Credit Record) after negative numbers, 
and DR (Debit Record) after positive numbers and zero. 

Example 

DECLARE STRING CONSTANT FM = "$$####.##<cd>" 
PRINT USING FM, -552.35, 200, -5 

Output 

$552.35CR 
$200.00DR 

$5.00CR 

You cannot use a trailing minus sign and Credit/Debit formatting in the 
same numeric field. Using the Credit/Debit formatting character causes 
the value to be printed with a leading space. 

16.4 Printing Strings 

With the PRINT USING statement, you can specify the following aspects 
of string format: 

• The number of characters 

• Left-justified format 

• Right-justified format 

• Centered format 

• Extended field format 

Table 16-2 summarizes the format characters and their effects. 

July 1988 Formatting Output with the PRINT USING Statement 16-15 



Table 16-2: Format Characters for String Fields 
Character Effect on Format 

Single quotation mark ( ') 

L (upper- or lowercase) 

R (upper- or lowercase) 

C (upper- or lowercase) 

E (upper- or lowercase) 

Two backslashes ( \ \) 

Exclamation point ( ! ) 

Starts the string field and reserves a place for 
one character. 

Left-justifies the string and reserves a place for 
one character. 

Right-justifies the string and reserves a place for 
one character. 

Centers the string in the field and reserves a 
place for one character. 

Left-justifies the string; expands the field, 
as necessary, to print the entire string; and 
reserves a place for one character. 

Reserves n+2 character positions, where n is the 
number of spaces between the two backslashes. 
PRINT USING left-justifies the string in this 
field. This formatting character is included 
for compatibility with BASIC-PLUS. DIGITAL 
recommends that you do not use this type of 
field for new program development. 

Creates a one-character field. The exclamation 
point both starts and ends the field. This 
formatting character is included for compatibility 
with BASIC-PLUS. DIGITAL recommends that 
you do not use this type of field for new 
program development. Instead, use a single 
quotation mark to create a one-character field. 

You must start string format fields with a single quotation mark (') that 
reserves a space in the print field, followed by: 

• A contiguous series of upper- or lowercase Ls for left-justified output 

• A contiguous series of upper- or lowercase Rs for right-justified output 

• A contiguous series of upper- or lowercase Cs for centered output 

• A contiguous series of upper- or lowercase Es for extended field output 

16-16 Formatting Output with the PRINT USING Statement 



VAX BASIC ignores the overflow of strings larger than the string format 
field except for extended fields. For extended fields, VAX BASIC extends 
the field to print the entire string. If a string to be printed is shorter than 
the format field, VAX BASIC pads the string field with spaces. For more 
information on extended fields, see Section 16.4.4. 

A string field containing only a single quotation mark is a one-character 
string field. VAX BASIC prints the first character of the string expression 
corresponding to a one-character string field and ignores all following 
characters. 

Example 

PRINT USING "'","ABCDE" 
END 

Output 

A 

See Section 16.4.4 for an example of many different types of fields used 
together. 

18.4. 1 Left-Justified Format 

VAX BASIC prints strings in a left-justified field starting with the left-most 
character. VAX BASIC pads shorter strings with spaces and truncates 
longer strings on the right to fit the field. 

A left-justified field contains a single quotation mark followed by a series 
of Ls. 

Example 

PRINT USING "' LLLLLL", "ABCDE" 
PRINT USING "'LLLL","ABC" 
PRINT USING "'LLLLL","12346678" 
END 

Output 

ABCDE 
ABC 
123466 

Formatting Output with the PRINT USING Statement 16-17 



18.4.2 Right-Justified Format 

VAX BASIC prints strings in a right-justified field starting with the right
most character. VAX BASIC pads the left side of shorter strings with 
spaces. If a string is longer than the field, VAX BASIC left-justifies and 
truncates the right side of the string. 

A right-justified field contains a single quotation mark (') followed by a 
series of Rs. 

Example 

DECLARE STRING CONSTANT right_justify = "'RRRRR" 
PRINT USING right_justify,"ABCD" 
PRINT USING right_justify,"A" 
PRINT USING right_justify,"STUVWXYZ" 
END 

Output 

ABCD 
A 

STUVWX 

18.4.3 Centered Fields 

VAX BASIC prints strings in a centered field by aligning the center of the 
string with the center of the field. If VAX BASIC cannot exactly center 
the string-as is the case for a 2-character string in a 5-character field, for 
example-VAX BASIC prints the string one character off center to the left. 

A centered field contains a single quotation mark followed by a series 
of Cs. 

16-18 Formatting Output with the PRINT USING Statement 



Example 

DECLARE STRING CONSTANT center= "'CCCC" 
PRINT USING center, "A" 
PRINT USING center, "AB" 
PRINT USING center, "ABC" 
PRINT USING center, "ABCD" 
PRINT USING center, "ABCDE" 
END 

Output 

A 
AB 
ABC 

ABCD 
ABCDE 

If there are more characters than places in the field, VAX BASIC left
justifies and truncates the string on the right. 

16.4.4 Extended Fields 

An extended field contains a single quotation mark followed by one or 
more Es. The extended field is the only field that automatically prints the 
entire string. In addition: 

• If the string is smaller than the format field, VAX BASIC left-justifies 
the string as in a left-justified field. 

• If the string is longer than the format field, VAX BASIC extends the 
field and prints the entire string. 

Example 

PRINT USING "'E", "THE QUICK BROWN" 
PRINT USING "'EEEEEEE', "FOX" 
END 

Output 

THE QUICK BROWN 
FOX 

The following example uses left-justified, right-justified, centered, and 
extended fields. 

Formatting Output with the PRINT USING Statement 16-19 



Example 

PRINT USING "'LLLLLLLLL", 11 THIS TEXT" 
PRINT USING "'LLLLLLLLLLLLLL","SHOULD PRINT" 
PRINT USING " 1LLLLLLLLLLLLLL 11

,
1AT LEFT MARGIN' 

PRINT USING "'RRRR","1,2,3,4" 
PRINT USING "'RRRR", 1 1,2,3 1 

PRINT USING "'RRRR',"1,2" 
PRINT USING "'RRRR"."1" 
PRINT USING " 1 CCCCCCCCC 11 ,"A" 
PRINT USING " 1 CCCCCCCCC","ABC 11 

PRINT USING "'CCCCCCCCC","ABCDE" 
PRINT USING " 1 CCCCCCCCC", 11ABCDEFG 11 

PRINT USING " 1 CCCCCCCCC", 11 ABCDEFGHI" 
PRINT USING " 1 LLLLLLLLLLLLLLLLL 1

,
11 YOU ONLY SEE PART OF THIS 11 

PRINT USING "'E","YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED" 
END 

Output 

THIS TEXT 
SHOULD PRINT 
AT LEFT MARGIN 
1,2,3 
1,2,3 

1,2 
1 
A 

ABC 
ABCDE 

AB CD EFG 
ABCDEFGHI 
YOU ONLY SEE PART 
YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED 

16.5 PRINT USING Statement Error Conditions 

There are two types of PRINT USING error conditions: fatal and warning. 
VAX BASIC signals a fatal error if 

• The format string is not a valid string expression 

• There are no valid fields in the format string 

• You specify a string for a numeric field 

• You specify a number for a string field 

• You separate the items to be printed with characters other than 
commas or semicolons 

16-20 Formatting Output with the PRINT USING Statement 



• A format field contains an invalid combination of characters 

• You print a negative number in a floating dollar sign or asterisk-fill 
field without a trailing minus sign 

VAX BASIC issues a warning if a number does not fit in the field. If a 
number is larger than the field allows, VAX BASIC prints a percent sign 
(%)followed by the number in the standard PRINT format and continues 
execution. 

If a string is larger than any field other than an extended field, VAX BASIC 
truncates the string and does not print the excess characters. 

If a field contains an invalid combination of characters, VAX BASIC does 
not recognize the first invalid character or any character to its right as 
part of the field. These characters may form another valid field or be 
considered text. If the invalid characters form a new valid field, a fatal 
error condition may arise if the item to be printed does not match the 
field. 

The following examples demonstrate invalid character combinations in 
numeric fields. 

Example 1 

PRINT USING "$$••##.##",6.41,16.30 

The dollar signs form a complete field and the rest forms a second valid 
field. The first number (5.41) is formatted by the first valid field ($$). It 
prints as "$5". The second number (16.30) is formatted by the second field 
(**##.##} and prints as "**16.30". 

Output 1 

$6**16.30 

Example 2 

PRINT USING "##.r-- 11 ,6.43E09 

Because the field has only three carets instead of four, VAX BASIC prints 
a percent sign and the number, followed by three carets. 

Output 2 

Y. .643E+10---

Formatting Output with the PRINT USING Statement 16-21 



Example 3 

PRINT USING " 1 LLEEE11 ,"VWXYZ 11 

You cannot combine two letters in one field. VAX BASIC interprets EEE 
as a string literal. 

Output 3 

VWXEEE. 

16-22 Formatting Output with the PRINT USING Statement 



Chapter 17 

Handling Run-Time Errors 

The process of detecting and correcting errors that occur when your 
program is running is called error handling. This chapter describes default 
error handling and how to handle VAX BASIC run-time errors with your 
own error handlers. 

Throughout this chapter, the term error is used to imply any VAX/VMS 
exception, not only an exception of ERROR severity. 

17 .1 Default Error Handling 

VAX BASIC provides default run-time error handling for all programs. If 
you do not provide your own error handlers, the default error handling 
procedures remain in effect throughout program execution time. 

When an error occurs in your program, VAX BASIC diagnoses the error 
and displays a message telling you the nature and severity of the error. 
There are four severity levels of VAX BASIC errors: SEVERE, ERROR, 
WARNING, and INFORMATIONAL. The severity of an error determines 
whether or not the program aborts if the error occurs when default error 
handling is in effect. When default error handling is in effect, ERROR 
and SEVERE errors always terminate program execution, but program 
execution continues when WARNING and INFORMATIONAL errors 
occur. 

To override the default error handling procedures, you can provide your 
own error handlers, as described in the following sections. (Note that you 
should not call LIB$ESTABLISH from a VAX BASIC program as this RTL 
routine overrides the default error handling procedures and may adversely 
affect program behavior.) 

Handling Run-Time Errors 17-1 



Only one error can be handled at a time. If an error has occurred but has 
not yet been handled completely, that error is said to be pending. When 
an error is pending and a second error occurs, program execution always 
terminates immediately. Therefore, one of the most important functions of 
an error handler is to clear the error so that subsequent errors can also be 
handled. 

If you do not supply your own error handler, program control passes 
to the VAX BASIC error handler when an error occurs. For instance, 
when VAX BASIC default error handling is in effect, a program will abort 
when division by zero is attempted because division by zero is an error of 
SEVERE severity. With an error handler, you can include an alternative 
set of instructions for the program to follow; if the zero was input at a 
terminal, a user-written error handler could display a "Try again" message 
and reexecute the program lines requesting input. 

17 .2 User-Supplied Error Handlers 

It is good programming practice to anticipate certain errors and provide 
your own error handlers for them. User-written error handlers allow you 
to handle errors for a specified block of program statements as well as 
complete program units. Any program module can contain one or more 
error handlers. These error handlers test the error condition and include 
statements to be executed if an error occurs. 

To provide your own error handlers, you use WHEN ERROR constructs. 
A WHEN ERROR construct consists of two blocks of code: a protected 
region and a handler. A protected region is a block of code that is mon
itored by the compiler for the occurrence of an error. A handler is the 
block of code that receives program control when an error occurs during 
the execution of the statements in the protected region. 

There are two forms of WHEN ERROR constructs; in both cases the 
protected region begins immediately after a WHEN ERROR statement. 
The following partial programs illustrate each form. In Example l, the 
handler is attached to the protected region, while in Example 2, the 
handler catch-1tandler is detached and must be provided elsewhere in the 
program unit. 

17-2 Handling Run-Time Errors 



Example 1 

WHEN ERROR IN 
protected_statement_1 
protected_statement_2 

USE 
handler_statement_1 
handler_statement_2 

END WHEN 

Example 2 

WHEN ERROR USE catch_handler 
protected_statement_1 
protected_statement_2 

END WHEN 

HANDLER catch_handler 
handler_statement_1 
handler_statement_2 

END HANDLER 

The following sections further explain the concepts of protected regions 
and handlers. 

17.2.1 Protected Regions 

A protected region is a block of code that is monitored by the compiler 
for the occurrence of an error. The bounds of this region are determined 
by the actual ordering of the source code. Statements that are lexically 
between a WHEN ERROR statement and a USE or END WHEN statement 
are in the protected region. 

If an error occurs inside the protected region, control passes to the error 
handler associated with the WHEN ERROR statement. When an error 
occurs beyond the limits of a protected region, default error handling is 
in effect unless other error handlers are provided. For more details about 
handler priorities, see Sections 17.2.3 and 17.3. 

Handling Run-Time Errors 17-3 



The WHEN ERROR statement signals the start of a block of protected 
statements. The WHEN ERROR statement also specifies the handler to be 
used for any errors that occur inside the protected region. The keyword 
USE either explicitly names the associated handler for the protected 
region, or marks the start of the actual handler statements. The statements 
in the actual error handler receive control only if an error occurs in the 
protected region. 

The following example prompts the user for two integer values and 
displays their sum. The WHEN ERROR block traps any invalid input 
values, displays a message telling the user that the input was invalid, and 
reprompts the user for input. 

Example 

DECLARE INTEGER value_1, value_2 

WHEN ERROR IN 
INPUT "PLEASE INPUT 2 INTEGERS"; value_1, value_2 !protected statement 

USE 
PRINT "INVALID INPUT - PLEASE TRY AGAIN" !handler statement 
RETRY !handler statement 

END WHEN 
PRINT "THEIR SUM IS"; value_1 + value_2 

Protected regions can be nested; a protected region can be within the 
bounds of another protected region. However, WHEN ERROR statements 
cannot appear inside an error handler, and protected regions cannot cross 
over into other block structures. If you are using a WHEN ERROR block 
with a detached handler, that handler cannot exist within a protected 
region. 

17 .2.2 Handlers 

A handler is the block of code containing instructions to be executed only 
when an error occurs during the execution of statements in the protected 
region. When an error occurs during the execution of a protected region, 
VAX BASIC branches to the handler you have supplied. In tum, the 
handler processes the error. An error handler typically performs the 
following functions: 

• Determines which error occurred 

• Takes appropriate action based on the nature of the error 

• Clears the error condition with a RETRY, CONTINUE, END WHEN, 
or END HANDLER statement 

17-4 Handling Run-Time Errors 



• Continues program execution when possible 

• Possibly identifies which program unit or statement caused the error 

• Resignals errors with EXIT HANDLER (when an error cannot be 
handled for some reason) 

Handlers can be attached to, or detached from, the statements in the 
WHEN ERROR protected region. 

An attached handler is delimited by a USE and an END WHEN statement. 
The attached handler immediately follows the protected region of a 
WHEN ERROR IN block. The following example illustrates an attached 
handler that traps errors on I/O statements, division by zero and illegal 
numbers. 

Example 

PROGRAM accident_prone 
DECLARE REAL age, accidents, rating 
WHEN ERROR IN 
Get_age: 

INPUT "Enter your age";age 
INPUT "How many serious accidents have you had";accidents 
rating = accidents/age 

USE 

PRINT "That's ";rating;" serious accidents per year!" 

SELECT ERR 
!Trap division by zero 
CASE = 61 

PRINT "Please enter an age greater than 0" 
CONTINUE Get_age 

!Trap illegal number 
CASE = 52 

PRINT "Please enter a positive number" 
RETRY 

CASE ELSE 
!Revert to default error handling 
EXIT HANDLER 

END SELECT 
END WHEN 

END PROGRAM 

A detached handler is defined separately in your program unit. It re
quires an identifier and must be delimited by a HANDLER and an END 
HANDLER statement. Handler names must be valid VAX BASIC identi
fiers and cannot be the same as the identifier for any label, PROGRAM 
name, DEF or DEF• function, SUB, FUNCTION, or PICTURE subprogram. 

Handling Run-Time Errors 17-5 



The main advantage of using a detached handler is that it can be refer
enced by more than one WHEN ERROR USE statement. The following 
example illustrates a simple detached handler: 

Example 

WHEN ERROR USE catcher 

KILL "INPUT.DAT" 

END WHEN 

HANDLER catcher 
!Catch if file does not exist 
IF ERR = 5 

THEN CONTINUE 
END IF 

END HANDLER 

The statements within a handler are never executed if an error does not 
occur or if no protected region exists for the statement that caused the 
exception. 

When your program generates an error, control transfers to the specified 
handler. If the code in an error handler generates a second error, control 
returns to the VAX BASIC error handler and program execution ends, 
usually with the first error only partly processed. To avoid the possibility 
of your error handler causing a second error, you should keep handlers as 
simple as possible and keep operations that might cause errors outside the 
handler. 

Your handler can include conditional expressions to test the error and 
branch accordingly, as shown in the following example: 

Example 

PROGRAM Check_records 
WHEN ERROR USE Global_handler 

END WHEN 
HANDLER Global_handler 

SELECT ERR 
!Trap buffer overflow 
CASE = 161 

17-6 Handling Run-Time Errors 

PRINT "Record too long" 
CONTINUE 



!Trap end of file on device 
CASE = 11 

PRINT "End of file" 
CONTINUE Over 

CASE ELSE 
EXIT HANDLER 

END SELECT 
END HANDLER 
Over: 

CLOSE #11, 
END PROGRAM 

Note that ON ERROR statements are not allowed within protected regions 
or handlers. For compatibility issues related to ON ERROR statements, 
see Section 17.3. 

17 .2.3 Exiting from Handlers 

After processing an error, a handler typically clears the error so that 
program execution can continue. VAX BASIC provides statements that 
clear the error condition and exit from the handler: 

• RETRY 

• CONTINUE 

• END HANDLER 

• END WHEN 

These statements differ from each other in that they revert control of 
program execution to different points in the program. Examples of these 
statements are included in the following sections. 

An additional statement, EXIT HANDLER, is provided to allow you to exit 
from a handler with the error still pending. 

The END HANDLER statement identifies the end of the block of state
ments in the handler. The END WHEN statement marks the end of the 
protected region when a detached handler is used; it marks the end of the 
handler when an attached handler is used. If the handler does not process 
an error with an EXIT HANDLER, RETRY, or CONTINUE statement, 
the error is cleared by the END HANDLER or END WHEN statement; 
however, processing continues with the statement immediately after the 
protected region (and the attached handler, if one exists) where the error 
occurred. These statements do not return control to the protected region. 
This is known as "falling out the bottom of a handler". Be careful not to 
fall out of the bottom of a handler unintentionally. 

Handling Run-Time Errors 17-7 



Note that you cannot exit from a handler with the following statements: 

• EXIT PROGRAM 

• EXIT FUNCTION 

• EXIT SUB 

• EXIT DEF 
• GOSUB (with a target outside the handler) 

• GOTO (with a target outside the handler) 

Also, you cannot exit from a handler with a RESUME statement. The 
RESUME statement is valid only in blocks of code referred to by ON 
ERROR statements. Section 17.3 describes the ON ERROR statements. 

17 .2.3. 1 The RETRY Statement 

You use the RETRY statement to clear the error and reexecute the state
ment that caused the error. Be sure to take corrective action before trying 
the protected statement again. 

Example 

DECLARE REAL radius 

WHEN ERROR USE fix_it 
INPUT "Please supply the radius of the circle"; radius 

END WHEN 
HANDLER fix_it 

!trap overflow error 
IF ERR = 48 
PRINT "Please supply a smaller radius" 
RETRY 

END HANDLER 
PRINT "The circumference of the circle is "; 2•PI•radius 

In FOR. .. NEXT loops, if the error occurs while VAX BASIC is evaluating 
the limit or increment values, RETRY reexecutes the FOR statement; if the 
error occurs while VAX BASIC is evaluating the index variable, RETRY 
reexecutes the NEXT statement. In UNTIL.NEXT and WHILE ... NEXT 
loops, if the error occurs while VAX BASIC is evaluating the relational 
expression, RETRY reexecutes the NEXT statement. 

1 7-8 Handling Run-Time Errors 



17.2.3.2 The CONTINUE Statement 

You can use the CONTINUE statement to clear the error and cause exe
cution to continue at the statement immediately following the propagated 
error. 

When the CONTINUE statement is within an attached handler, you can 
specify a target. The target can be a line number or label within the 
bounds of the associated protected region, in a surrounding protected 
region, or within an unprotected region. However, you must specify a 
target within the current program module. You cannot specify a target for 
the CONTINUE statement when it is in a detached handler. 

Example 

DIM LONG her_attributes(10),his_attributes(10) 
DECLARE INTEGER counter 
WHEN ERROR USE fix_it 

DATA 12,2,36,21,26.6,32,32,30,16,4 
FOR counter = 0 TO 12 

READ her_attributes(counter) 
NEXT counter 
MAT his_attributes = her_attributes 

END WHEN 

HANDLER fix_it 
!Trap out of data 
IF ERR = 67 

THEN RESTORE 
CONTINUE 

ELSE EXIT HANDLER 
END IF 

END HANDLER 

When a DEF function is invoked from a protected region and an error 
occurs that has not been handled, a CONTINUE statement with no 
target causes execution to resume at the statement following the one that 
invoked the function. 

Note that if an error occurs in a loop control statement or SELECT or 
CASE statement, the CONTINUE statement causes VAX BASIC to resume 
execution at the statement following the end of the loop structure (the 
NEXT, END CASE, or END SELECT statements). 

NOTE 

When you use the RETRY or the CONTINUE statement without 
a target, the compiler builds read only tables in the generated 

Handling Run-Time Errors 17-9 



object file with information about statements in the associated 
protected regions. Therefore, when space is extremely critical, 
do not protect large regions with handlers containing RETRY or 
CONTINUE without a specified target. 

17 .2.3.3 The EXIT HANDLER Statement 

Unlike RETRY and CONTINUE, the EXIT HANDLER statement does not 
clear the error; rather, it allows you to exit from the handler with the 
error pending. This allows you to pass an error to the handler associated 
with the next outer protected region, or back to VAX BASIC default error 
handling, or to the calling procedure. 

When an error occurs within a nested protected region, control passes 
to the handler associated with the innermost protected region in which 
the error occurred. If the innermost handler does not handle the error, 
the error is passed to the next outer handler with the EXIT HANDLER 
statement. All handlers for any outer WHEN ERROR blocks are pro
cessed before reverting to default error handling or resignaling the calling 
procedure. 

The following example shows two nested protected regions. Neither 
handler traps division by zero. If division by zero occurs, the handler 
associated with the innermost protected region, inner _handler, does not 
clear the error; therefore, the error is passed to the handler associated with 
the next outer protected region. Outer _handler does not clear this error 
either, and so the error is passed to the default error handler. As this error 
is fatal, the program aborts. 

Example 

PROGRAM nesting 
OPTION TYPE = EXPLICIT 
DECLARE LONG divisor 
DECLARE REAL dividend, quotient 

WHEN ERROR USE outer_handler 
INPUT "Enter divisor";Divisor 
INPUT "Enter dividend";Dividend 

WHEN ERROR USE inner_handler 
Quotient = Dividend/Divisor 
PRINT "The quotient is ";Quotient 

END WHEN 

END WHEN 

17-10 Handling Run-Time Errors 



HANDLER outer_handler 
!Trap data format error 
IF ERR = 50 

THEN 
PRINT "Illegal input ... try again" 
RETRY 
ELSE PRINT "In outer_handler" 

PRINT "Reverting to default handling now" 
EXIT HANDLER 

END IF 
END HANDLER 

HANDLER inner_handler 
!Trap overflow/decimal error 
IF ERR = 181 

THEN CONTINUE 
ELSE PRINT "Inside inner_handler" 

PRINT "Reverting to outer handler now" 
EXIT HANDLER 

END IF 
END HANDLER 

END PROGRAM 

Output 

Enter divisor? 0 
Enter dividend? 53 
Inside inner_handler 
Reverting to outer handler now 
Inside outer_handler 
Reverting to default handling now 

Y.BAS-F-DIVBY_ZER, Division by 0 
-BAS-USEPC_PSL, at user PC=001C18B3, PSL=03COOOA4 
-SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide by zero at 
PC=001C18B3, PSL=03COOOA4 
-BAS-I-FROLINMOD, in module ERROR_7 

For more information about exiting program units while an error is 
pending, see Section 17.2.6. 

Handling Run-Time Errors 17-11 



17 .2.4 Selecting the Severity of Errors to Handle 

The OPTION HANDLE statement lets you specify the severity level 
of errors that are to be handled by an error handler in addition to the 
BASIC errors that can normally be handled or trapped. You can specify 
any one of the following error severity levels: BASIC, SEVERE, ERROR, 
WARNING, or INFORMATIONAL. 

OPTION HANDLE = BASIC is the default, which is in effect if you do not 
specify an alternative in the OPTION HANDLE statement. Only trappable 
VAX BASIC errors transfer control to the current error handler when this 
option is in effect. Refer to Appendix B to determine which BASIC errors 
are not trappable. 

When you specify an error severity level other than BASIC in the OPTION 
HANDLE statement, the following errors will transfer control to the error 
handler: 

• All trappable BASIC errors of this or lesser severity 

• All non-BASIC errors of this or lesser severity 

• BASIC errors of this or lesser severity that are not normally trappable 

For example, if you specify OPTION HANDLE = ERROR, you can handle 
all BASIC and non-BASIC errors of ERROR severity (both trappable and 
non-trappable), and all WARNING and INFORMATIONAL errors, but no 
SEVERE errors. 

17 .2.5 Identifying Errors 

VAX BASIC provides several built-in functions that return information 
about an error. You can use these functions inside your error handlers to 
determine details about the error and conditionally handle these errors. 
These functions include 

• ERR 

• ERL 

• ERN$ 

• ERT$ 

• VMSSTATUS 

• RMSSTATUS 

17-12 Handling Run-Time Errors 



Note that if an error occurs in your program that is not a VAX BASIC error 
or does not map onto a VAX BASIC error, it is signaled as NOTBASIC 
("Not a BASIC error") (ERR = 194). In this case, you can use the built-in 
function VMSSTATUS to determine what caused the error. VMSSTATUS 
is discussed in Section 17.2.5.5. 

17 .2.5. 1 Determining the Error Number (ERR) 

You use the ERR function to return the number of the last error that 
occurred. Appendix B in this manual lists the number of each VAX BASIC 
run-time error. For instance, ERR 153 is "RECALREXI, Record already 
exists". The following example shows a handler that traps this error: 

Example 

OPTION HANDLE = ERROR 
WHEN ERROR USE find_error 

END WHEN 

HANDLER find_error 
SELECT ERR 

!Record already exists 
CASE = 163 

PRINT "Choose new record" 
CONTINUE 

CASE ELSE 

END SELECT 

END HANDLER 

EXIT HANDLER 

The results of ERR remain undefined until an error occurs. Although ERR 
remains defined as the number of the last error after control leaves the 
error handler, it is poor programming practice to refer to this variable 
outside the scope of an error handler. 

Handling Run-Time Errors 17-13 



17 .2.5.2 Determining the Error Line Number (ERL) 

After your program generates an error, the ERL function returns the 
BASIC line number of the signaled error. This function is valid only in 
line-numbered programs. The ERL function, like ERR, lets you set up 
branching to one of several paths in the code. 

The following handler continues execution at different points in the 
program, depending on the value of ERL. 

Example 

10 DECLARE INTEGER CONSTANT TRUE = -1 

20 WHEN ERROR USE err_handler 

900 END WHEN 
1000 HANDLER err_handler 

SELECT TRUE 
CASE (ERR = 11) AND (ERL = 790) 

!Is error end of file at line 790? 
PRINT "Completed" 
CONTINUE 

CASE (ERR = 149) AND (ERL = 80) 
!Is error not at end of file on line 80? 
PRINT "CHECK ACCESS MODE" 
CONTINUE 

CASE ELSE 
!Let VAX BASIC handle any other errors 
EXIT HANDLER 

1500 END SELECT 
2000 END HANDLER 
32000 CLOSE #5 
32767 END 

The results of ERL are undefined until an error occurs, or if the error 
occurs in a subprogram not written in VAX BASIC. Although ERL remains 
defined as the line number of the last error even after control leaves the 
error handler, it is poor programming practice to refer to this variable 
outside the scope of an error handler. 

If you reference ERL in a compilation unit with line numbers, code and 
data are included in your program to allow VAX BASIC to determine 
ERL when an exception occurs. If you do not need to reference ERL, 
you can save program size and reduce execution time by compiling 
your program with the /NOLINE qualifier. Note that if your program 
references ERL and you compile the program with the /NOLINE switch, 
VAX BASIC signals the message "ERL overrides /NOLINE" and the 

17-14 Handling Run-Time Errors 



program is compiled with the /LINE qualifier. Even if you do not use 
any line numbers, you can reduce execution time by compiling with the 
/NOLINE qualifier. 

If an error occurs in a subprogram containing line numbers, VAX BASIC 
sets the ERL variable to the subprogram line number where the error was 
detected. If the subprogram also executes an EXIT HANDLER statement, 
control passes back to the outer procedure's handler. The error is assumed 
to occur on the statement where the call or invocation occurs. 

17 .2.5.3 Determining Where the Error Occurred (ERN$) 

You use the ERN$ function to return the name of the program unit in 
which the error was detected. ERN$ returns the name of a main program, 
SUB, FUNCTION, or PICTURE subprogram, or DEF function. If the 
PROGRAM statement is used with a user-supplied identifier, the ERN$ 
value is the specified identifier for the main program. The results of ERN$ 
are undefined until the program generates an error. 

In the following example, control passes to the main program for error 
handling if the error occurs in the module SUBARC. 

Example 

HANDLER locat_ern 
IF ERN$ = "SUBARC" 

THEN PRINT "ERROR IS ";ERR 
PRINT "RETURNING TO MAIN PROGRAM FOR ERROR HANDLING" 
EXIT HANDLER 

ELSE PRINT "PROGRAM MODULE GENERATING ERROR IS ";ERN$ 
END IF 

END HANDLER 

Note that ERN$ is invalid when an error occurs in a subprogram compiled 
with the /NOSETUP qualifier. 

17 .2.5.4 Determining the Error Message Text (ERT$) 

You use the ERT$ function to access the message text associated with 
a specified error number. Use of the ERT$ function is not limited to 
the scope of the error handler; you can access ERT$ at any time. The 
following detached handler tests whether the error occurred in a DEF 
module named TSLFE, and if so, prints the text of the signaled error and 
resumes execution. 

Handling Run-Time Errors 17-15 



Example 

HANDLER catch_it 
IF ERN$ = "TSLFE" 

THEN PRINT ERT$(ERR) 
CONTINUE 
ELSE EXIT HANDLER 

END IF 
END HANDLER 

17 .2.5.5 Determining VAX/VMS Error Information 

VAX BASIC provides a built-in function, VMSSTATUS, that returns the 
originally signaled error before it is translated to a BASIC error. For 
instance, for the BASIC error "End of file on device" (ERR= 11), the 
VMSSTATUS function returns "RMS$--EOF" (RMS end of file). This 
function is useful when the error is NOTBASIC (ERR= 194). 

When there is no error pending, VMSSTATUS is undefined. The value 
returned by this function is the actual signaled error value. If non-BASIC 
errors are being handled, the VMSSTATUS function may be the only way 
to find out which error caused the exception. 

The following example shows a program that performs file I/O. The first 
WHEN ERROR block traps any errors that occur while the program is 
opening the file or requesting user input. The detached handler for this 
block checks the value of VMSSTATUS to determine the exception that 
occurred. The inner error handler handles two special errors, BAS$K_ 
RECNOTFOU and BAS$K-RECBUCLOC, separately. If the error signaled 
does not correspond to one of these, the inner error handler passes control 
to the outer handler with the EXIT HANDLER statement. The outer 
handler sets the program status to VMSSTATUS. When the program exits; 
the operating system displays any status that is of warning severity or 
greater. 

Example 

PROGRAM Tester 

OPTION HANDLE = ERROR 
EXTERNAL LONG CONSTANT BAS$K_RECNOTFOU, BAS$K_RECBUCLOC 
DECLARE LONG Final_status 
MAP (Rec_buffer) & 

STRING Rec_key = 6, & 
STRING Rest_of_record = 20 

Final_status = 1 

17-16 Handling Run-Time Errors 



WHEN ERROR USE Global_handler 
OPEN "My_database" FOR INPUT AS FILE #1 t 

, INDEXED FIXED t 
,ACCESS READ t 
,MAP Rec_buffer t 
,PRIMARY Rec_key 

Get_key: 
INPUT "Record to retrieve"; Rec_key 

WHEN ERROR IN 

USE 

GET #1%, KEY #0 EQ Rec_key 
PRINT Rest_of_record 

SELECT ERR 
CASE = BAS$K_RECNOTFOU 

PRINT "Record not found" 
CONTINUE Get_key 

CASE = BAS$K_RECBUCLOC 
SLEEP 2% 
RETRY 

CASE ELSE 
EXIT HANDLER 

END SELECT 
END WHEN 

END WHEN 

HANDLER Global_handler 
Final_status = VMSSTATUS 

END HANDLER 

END PROGRAM Final_status 

17.2.5.6 Determining RMS Error Information 

The RMSSTATUS function lets you determine which RMS error caused 
a resulting VAX BASIC error. You must specify an open channel as the 
first parameter to RMSSTATUS. If this channel is not open, the error 
"1/0 channel not open" (ERR= 9) is signaled. The second parameter to 
the function lets you specify either STATUS or VALUE; this parameter 
is optional. If you do not specify the second parameter, RMSSTATUS 
returns the STATUS value by default. STATUS represents the RMS "STS" 
field and VALUE corresponds to the RMS "STV" field. 

The following example shows an error handler that prints both the status 
and the value of any RMS error. 

Handling Run-Time Errors 17-17 



Example 

WHEN ERROR IN 

USE 

OPEN "file.txt" FOR OUTPUT AS FILE 1Y. 
PRINT #11., TIME$(0Y.) 

!Error 12 is fatal system I/0 failure 
IF ERR = 12 

THEN 
PRINT "An unexpected RMS error has occurred:" 
PRINT "Status= "; RMSSTATUS(11.) 
PRINT "Value = "; RMSSTATUS(1Y., VALUE) 
EXIT HANDLER 

END IF 
END WHEN 

CLOSE #1Y. 
GOTO done 

done: 
END 

If you want to find an RMS status without knowing which particular 
channel to check, you can use VMSSTATUS to get the STATUS value 
(STS) if an error has occurred. 

17 .2.6 CTRL/C Trapping 

Error handling procedures are commonly used to trap user CTRL/C 
responses. With CTRL/C trapping enabled, control is transferred to an 
error handler if a user presses CTRL/C during program execution. You 
enable CTRL/C trapping in your program by invoking the built-in CTRLC 
function. For example: 

YY. = CTRLC 

After you invoke the CTRLC function, a CTRL/C entered at the terminal 
transfers control to the error handler. Once the CTRL/C is trapped, 
you can include routines to interact with the program, as shown in the 
following example. 

17-18 Handling Run-Time Errors 



Example 

WHEN ERROR IN 
YY. = CTRLC 
OPEN 1 FIL_DAT 1 FOR INPUT AS FILE 111. 
INPUT "HOW MANY RECORDS"; Rec_read1. 
FOR IY. = 11. TO Rec_readY. 

GET 111. 
PRINT Name$, Address$, Emp_codeY. 
PRINT 

NEXT I1. 

USE 
!Trap ·c 
IF (ERR = 281.) 

THEN PRINT "CURRENT RECORD IS 11
; I1. 

ELSE EXIT HANDLER 
END IF 
CONTINUE Clean_up 

END WHEN 

Clean_up: 
CLOSE #11. 
PRINT "END OF PROCESSING" 

END 

Output 

SMITH, DEXTER 231 COLUMBUS ST 

TRAVIS, JOHN PO BOX 80 

·c 
THE CURRENT RECORD IS 3 

END PROCESSING 

09341 

64119 

Note that the error condition is still pending until the error handler 
executes the CONTINUE statement. Therefore, if you press CTRL/C a 
second time while the error handler is executing, control returns to the 
VAX BASIC error handler, which terminates the program. 

To disable CTRL/C trapping, use the RCTRLC function. The RCTRLC 
function disables only CTRL/C trapping, not the CTRL/C interrupts 
themselves. Alternatively, to prevent both CTRL/C and CTRL/Y from 
interrupting a program, use the DCL command SET NO CONTROL, 
or the RTL routine LIB$DISESTABLISH. See the VAX BASIC Reference 
Manual for more details about the CTRLC and RCTRLC functions. 

Handling Run-Time Errms 17-19 



17 .2. 7 Handling Errors in Multiple-Unit Programs 

You can use WHEN ERROR constructs anywhere in your main program 
or program modules. Procedure and function invocations, such as invo
cations of DEF and DEF• functions and SUB, FUNCTION, and PICTURE 
subroutines, as well as non-BASIC programs, are valid within protected re
gions. GOTO and GOSUB statements are valid within handlers provided 
that the target is within the handler, an outer handler, or an unprotected 
region. Note, however, that a detached handler cannot appear within DEF 
or DEF• functions without the associated protected region. 

When an error occurs within nested handlers, VAX BASIC maintains 
the same priorities for handler use; control always passes to the han
dler associated with the innermost protected region in which the error 
occurred. When an exception occurs, all handlers for any outer WHEN 
ERROR blocks are processed before the program reverts to default error 
handling. Outer handlers are invoked when an inner handler executes an 
EXIT HANDLER statement. When there are no more outer handlers, and 
the outermost handler executes an EXIT HANDLER statement, program 
control reverts to the handler associated with the calling routine. 

Example 

SUB LIST(A$) 
WHEN ERROR USE sub_handler 

OPEN A$ FOR INPUT AS FILE #12% 

Get_data: 
LINPUT #12%, B$ 
PRINT B$ 
GOTO Get_data 

END WHEN 

HANDLER sub_handler 
!Trap end of file 
IF ERR <> 11% 

THEN EXIT HANDLER 
END IF 

END HANDLER 
CLose_up: 

CLOSE #12% 
END SUB 

You can call a subprogram while an error is pending; however, if you do, 
the subprogram cannot re-signal an error back to the calling program. If 
the subprogram tries to re-signal an error, VAX BASIC signals "Improper 
error handling" and program execution terminates. 

17-20 Handling Run-Time Errors 



The following rules apply to error handling in function definitions: 

• DEF and DEF• function definitions cannot appear within a protected 
region. However, protected regions can be contained within the 
function definitions. 

• To trap errors while a DEF function is active, include protected regions 
inside the DEF function. If you do this, the associated handler remains 
in effect until your program leaves the protected region, or the DEF 
function. 

Example 

WHEN ERROR IN 

Invoke_def: 
AY. = FNIN_PUTY.( 11 PROMPT 11 ) 

USE 
PRINT "ERROR"; ERT$(ERRY.); 
IF ERN$ = "FNIN_PUT" 

THEN PRINT "IN FUNCTION" 
CONTINUE 

ELSE PRINT "IN MAIN" 
CONTINUE Invoke_def 

END IF 
END WHEN 

Main_code: 
DEF FNIN_PUTY.(P$) 

WHEN ERROR IN 
PRINT P$ 

USE 

INPUT LINE_IN$ 
FNIN_PUTY. = INTEGER(LINE_IN$) 

IF ERR = 50 
THEN RETRY 
ELSE EXIT HANDLER 

END IF 
END WHEN 
END DEF 

Handling Run-Time Errors 17-21 



NOTE 

A pending error is passed to VAX BASIC default error handling 
procedures under the following conditions: 

• If you use a GOSUB statement and the invoked procedure 
is not lexically contained within any protected region 

• If you invoke a DEF• function and the DEF• function is not 
lexically contained within any protected region 

Under these circumstances, a pending error is passed to the 
VAX BASIC default error handling even when the invoking 
statement is contained within a protected region. A handler 
associated with the invoking statement will not be used. 

17 .2.8 Forcing Errors 

The CAUSE ERROR statement allows a program to artificially generate an 
error when the program would not otherwise do so. You can force any 
VAX BASIC run-time error. You must specify the number of the error the 
compiler should force; the error numbers are listed in Appendix B of this 
manual. The following statement forces an end-of-file error (ERR= 11) to 
occur. 

CAUSE ERROR 111. 

You can use this feature to debug an error handler during program 
development, as shown in the following example: 

Example 

WHEN ERROR IN 

CAUSE ERROR 111. 

1 7-22 Handling Run-Time Errors 



USE 
SELECT ERR 

END WHEN 

CASE = 11% 
PRINT "Trapped an end of file on device" 
CONTINUE 

CASE ELSE 
EXIT HANDLER 

17.3 Using the ON ERROR Statements 

VAX BASIC supports ON ERROR statements as an alternative to WHEN 
blocks primarily for compatibility with existing programs. WHEN ERROR 
blocks are similar to declarative statements in that they do not depend 
on run-time flow of control. The ON ERROR statements, however, affect 
error handling only if the statements execute at run time. For example, if 
a GOTO statement precedes an ON ERROR statement, the ON ERROR 
statement will not have any effect because it does not execute. 

WHEN ERROR blocks let you handle errors that occur in a specific range 
of statements. ON ERROR statements let you specify a general error 
handler that is in effect until you specify another ON ERROR statement or 
until you pass control to the VAX BASIC error handler. 

NOTE 

For all current program development, DIGITAL recommends 
that you use WHEN ERROR constructs for user-written error 
handlers. Mixing WHEN ERROR constructs and ON ERROR 
statements within the same program is not recommended. The 
ON ERROR statements are supported for compatibility with 
other versions of DIGITAL BASICs. It is important to note that 
all of these statements are illegal within a protected region, or 
an attached or detached handler. 

The ON ERROR statements are fully documented in the VAX BASIC 
Reference Manual. This section merely illustrates the main features of the 
ON ERROR statements. 

The ON ERROR statements can be used to transfer control to a labeled 
block of error handling code. If you have executed an ON ERROR 
statement and an error occurs, the ON ERROR statement immediately 
transfers control to the label or line number that starts the error handling 
code. Otherwise, the ON ERROR statement specifies the branch to be 
taken in the event of an error. 

Handling Run-Time Errors 17-23 



There are three forms of the ON ERROR statement: 

• ON ERROR GOTO 0 

The ON ERROR GOTO 0 statement reverts control to VAX BASIC 
default error handling in one of two ways: 

If an error is pending, execution of the ON ERROR GOTO 0 state
ment returns control to the VAX BASIC error handler immediately. 

If no error is pending, an ON ERROR GOTO 0 statement disables 
your current error handler. The VAX BASIC error handler handles 
all subsequent errors until another ON ERROR statement is 
executed, unless an error occurs in a WHEN ERROR protected 
region. 

• ON ERROR GO TO target 

The ON ERROR GOTO target statement reverts control to the target 
when subsequent errors occur that are not handled by WHEN block 
handlers. 

• ON ERROR GO BACK 

The ON ERROR GO BACK statement transfers control to the calling 
program's error handler if an error occurs in the subprogram or DEF 
function. If you use ON ERROR GO BACK in a PROGRAM unit 
(outside of a DEF function) and no other outer protected region exists, 
it is equivalent to ON ERROR GOTO 0 and VAX BASIC default error 
handling is in effect. With ON ERROR GO BACK, if an error occurs in 
the execution of a function or subprogram, the error is passed to either 
the error handler of the surrounding program module (in the case of 
a DEF function definition) or the error handler of the calling program 
(in the case of a separately compiled subprogram). 

An error handler in the DEF function does not permanently override 
an error handler in the main program. VAX BASIC saves the error 
handler in the main program when you transfer into a DEF, and 
restores it when you return. 

Traditionally, the ON ERROR GOTO statement is placed before any other 
executable statements. The following example clears end-of-file errors 
and passes all other errors back to the VAX BASIC default error handling 
procedures. 

17-24 Handling Run-Time Errors 



Example 

5 ON ERROR GOTO Error_handler 

Error_handler: 
!Trap end of file on device 
IF ERR = 11 

THEN 
RESUME 1000 

ELSE 
ON ERROR GO BACK 

END IF 

The ON ERROR GOTO statement remains in effect after your program 
successfully handles an error. When the system signals another error, 
control once again transfers to the specified error handler. 

Every ON ERROR error handler must end with one of the following 
statements: 

• RESUME [target] 
• ON ERROR GOTO 0 

• ON ERROR GO BACK 

If none of these statements is present, the VAX BASIC error handler aborts 
your program with the fatal error "Error trap needs RESUME" as soon as 
an END, END SUB, END DEF, END FUNCTION, END PROGRAM, or 
END PICTURE statement is encountered. The RESUME statement, like 
the RETRY and CONTINUE statements, clears the error condition. 

You can resume execution at any line number or label that is in the same 
module as the RESUME statement, unless that line or target is inside 
a DEF function, a WHEN ERROR protected region, or a handler. In 
general, RESUME without a target transfers control to the beginning of 
the program block where the error occurred. 

• If you resume execution at a multi-statement line, execution begins at 
the first statement after the line number or label-not necessarily at 
the statement that generated the error. 

• If an entire loop block is associated with a single line number or label 
and an error occurs within the loop, RESUME with no target transfers 
control to the statement immediately after the FOR, WHILE, or UNTIL 
statement, not to the line number or label. 

For more details on the RESUME statement, see the VAX BASIC Reference 
Manual. 

Handling Run-Time Errors 17-25 



DIGITAL does not recommend using both ON ERROR statements and 
WHEN ERROR constructs in the same program. However, when this is 
the case, the order of handler priorities is as follows: 

1. Control passes to the handler associated with the innermost WHEN 
ERROR block. 

2. If protected regions are nested, the pending error is handled by the 
handler associated with the next outer WHEN ERROR block. 

3. When no outer protected regions can handle the error, and if an ON 
ERROR statement is in effect, control transfers to the target of the next 
outer ON ERROR statement (if one is present). 

4. If no outer handler is available or can handle the error, the error is 
passed to VAX BASIC default error handling. Default error handling 
is equivalent to ON ERROR GOTO 0. 

For information on specific run-time errors, refer to Appendix Bin this 
manual. 

17-26 HandJing Run-Time Errors 



Chapter 18 

Compiler Directives 

Compiler directives are instructions that tell VAX BASIC to perform certain 
operations as it translates a source program. This chapter describes how 
to control program compilation using compiler directives. 

18.1 Introduction 

With compiler directives, you can do the following: 

• Place program titles and subtitles in the header that appears on each 
page of the listing file 

• Place a program version identification string in both the listing file and 
the object module 

• Start or stop the inclusion of listing information for selected parts of a 
program 

• Start or stop the inclusion of cross-reference information for selected 
parts of a program 

• Include VAX BASIC code from another source file or a text library 

• Include CDD record definitions in a VAX BASIC program 

• Record dependency relationships in the CDD 

• Display a message at compile time 

• Conditionally compile parts of a program 

• Terminate compilation 

When using compiler directives follow these rules: 

• Directives must begin with a percent sign. 

July 1988 Compiler Directives 18-1 



• Directives can be preceded by an optional line number. 

• Directives must be the only text on the line (except for %IF-%THEN
%ELSE-%END %IF). 

• Directives cannot appear within a quoted string. 

• Directives cannot follow an END, END SUB, or END FUNCTION 
statement. 

18.2 Controlling the Compilation Listing 

Listing directives let you control the content and appearance of the 
compilation listing. There are eight compiler listing directives: 

• % TITLE places a title string on the first line of the listing header. 

• %SBTTL places a subtitle string on the second line of the listing 
header. 

• %IDENT places an identification string on the second line of the 
listing header and within the object module. 

• %PAGE causes VAX BASIC to skip to top-of-form in the output 
listing. 

• %NOLIST causes VAX BASIC to stop accumulating information for 
the output listing. 

• %LIST causes VAX BASIC to resume accumulating information for the 
output listing. 

• %NOCROSS causes VAX BASIC to stop accumulating cross-reference 
information for the output listing. 

• %CROSS causes VAX BASIC to resume accumulating cross-reference 
information for the output listing. 

These directives are described in the following sections. 

The listing control directives have no effect if no source program listing is 
being produced. Similarly, the %CROSS and %NOCROSS directives have 
no effect if no cross-reference listing is being produced. However, the 
%IDENT directive places the specified text in the object module whether 
or not a listing is produced. For more information on how these directives 
affect your source code, see Chapter 4. 

18-2 Compiler Directives 



18.2.1 The % TITLE and %SBTTL Directives 

The % TITLE directive lets you specify a line of text that appears on the 
first line of every page in the compilation listing. This text line is a quoted 
string of up to 45 characters and normally contains the source program 
title and other information. 

If the % TITLE directive is the first source text in a module, then the quoted 
string appears in the first line of every page of the compilation listing. 

·Otherwise, the quoted string appears in the first line of every subsequent 
page in the compilation listing. That is, if VAX BASIC encounters a 
% TITLE directive after it has begun creating a page in the output listing, 
the title information will not appear on that page. Rather, it appears on all 
of the following pages until it encounters another % TITLE directive. 

The quoted string appears in character positions 33 to 81 in the first line 
of the listing header. % TITLE must appear on its own line. For example: 

Y.TITLE "File OPEN Subprogram -- Author Hugh Ristics" 
SUB FILSUB (STRING F_NAME) 

The %SBTTL directive lets you specify a line of text that appears on the 
second line of every page in the compilation listing (beneath the title). If 
VAX BASIC encounters a %SBTTL directive after it has begun creating a 
page in the output listing, the subtitle information will not appear on that 
page. Rather, it appears on all following pages until it encounters another 
%SBTTL or % TITLE directive. If you want the subtitle to appear on the 
first page, the %SBTTL directive must appear directly after the % TITLE 
directive. 

Any number of %SBTTL directives can appear in a source file; thus, 
you can use subtitle text to identify parts of the source program. As 
in % TITLE, the text you use in %SBTTL must be a quoted string not 
exceeding 45 characters. The quoted string appears in the second line of 
the listing header, in character positions 33 to 81. Note, however, that 
subtitle information only appears on listing pages that contain the actual 
source code. 

The following example shows the use of both % TITLE and %SBTTL 
directives. The first line of the listing's first page contains "Payroll 
Program" and the second line contains "Constant Declarations." When 
VAX BASIC encounters the %SBTTL directive, the second line on each 
subsequent page becomes "Subroutines". When VAX BASIC encounters 
the %SBTTL directive, the second line on each subsequent page becomes 
"Error Handler". 

Compiler Directives 18-3 



Example 

Y.TITLE "Payroll Program" 
Y.SBTTL "Constant Declarations" 

Y.SBTTL "Subroutines" 

Y.SBTTL "Error Handler" 

You can use multiple %TITLE directives in a single source file; however, 
whenever VAX BASIC encounters a % TITLE directive, the %SBTTL 
information is set to the null string. Therefore, if you want to display 
subtitle information, each new % TITLE directive should be accompanied 
by a new %SBTTL directive. 

18.2.2 The %1DENT Directive 

The %IDENT directive identifies the version of a program module. The 
identification text must be a quoted string of up to 31 characters. The 
information contained within the identification text appears in the listing 
file and the object module. Thus, the map file created by the VAX/VMS 
Linker also contains this information. 

The identification text appears in the first 31 character positions of the 
second line on each subsequent listing page. For instance, in the following 
example, the %IDENT information appears as the first entry on the second 
line of the listing. The information is also included in the object module 
if the compilation produces one. If the linker generates a map listing, this 
information also appears there. 

Example 

Y.IDENT "V6.3" 
SUB PAY 

If your source module contains multiple %IDENT directives, VAX BASIC 
signals a warning and uses the version specified in the first %IDENT 
directive. 

18-4 Compiler Directives 



18.2.3 The %PAGE Directive 

The %PAGE directive causes VAX BASIC to begin a new page in the 
listing file. In the following example, the %PAGE directives cause VAX 
BASIC to skip to a new page in the listing file just before each new 
subtitle. Note that, in order to have title and subtitle information appear 
in the heading of each page, you cannot place a line number between the 
%PAGE, % TITLE, and %SBTTL directives. 

Example 

%TITLE "Payroll Program" 
Y.SBTTL "Constant Declarations" 

%PAGE 
Y.SBTTL "Subroutines" 

%PAGE 
Y.SBTTL "Error Handler" 

18.2.4 The %LIST and %NOLIST Directives 

%LIST and %NOLIST are complementary directives. The %LIST directive 
causes VAX BASIC to resume adding information to the listing file, while 
the %NOLIST directive causes VAX BASIC to stop adding information 
to the listing file. Therefore, you can control which parts of the source 
program are to be listed. 

In the following example, as soon as VAX BASIC encounters the %LIST 
directive, it resumes adding new information to the listing file. 

Compiler Directives 18-5 



Example 

Y.TITLE "Payroll Program" 
Y.SBTTL "Constant Declarations" 

Y.NOLIST 

Y.LIST 

Y.PAGE 
Y.SBTTL "Subroutines" 

Y.PAGE 
Y.SBTTL "Error Handler" 

If you have not requested the creation of a compilation listing, the %LIST 
and %NOLIST directives have no effect. 

If a program line contains a syntax error, VAX BASIC overrides the 
%NOLIST directive for that line and produces the normal error diagnostics 
in the listing file. 

18.2.5 The %CROSS and %NOCROSS Directives 

The %CROSS and %NOCROSS directives are complementary. The 
%CROSS directive causes VAX BASIC to resume adding cross-reference 
information, while the %NOCROSS directive causes VAX BASIC to 
stop adding cross-reference information to the listing file. Therefore, 
you can specify that only certain parts of the source program are to be 
cross-referenced. 

In the following example, as soon as VAX BASIC encounters the %CROSS 
directive, it resumes adding new cross-reference information to the listing 
file. 

18-6 Compiler Directives 



Example 

%TITLE "Payroll Program" 
Y.SBTTL "Constant Declarations" 

Y.NOCROSS 

%CROSS 

%PAGE 
Y.SBTTL "Subroutines" 

%PAGE 
Y.SBTTL "Error Handler" 

If you have not requested the creation of a cross-reference listing, the 
%CROSS and %NOCROSS directives have no effect. 

18.3 Accessing External Source Files 

The %INCLUDE directive lets you access VAX BASIC source text from 
a file into the source program. The %INCLUDE directive also lets you 
access record definitions in the VAX Common Data Dictionary (COD) 
as well as access source text from a text library. The line on which a 
%INCLUDE directive resides can be continued, but cannot contain any 
other directives or statements. 

If you are including a source text file, you must supply a file specification. 
If you do not provide a file type, VAX BASIC uses the default type BAS. 
For example: 

%INCLUDE "KEN.BAS" 

If you are including a COD definition, you must supply a valid VAX COD 
path specification to extract a RECORD definition from the COD. For 
example: 

%INCLUDE %FROM Y.CDD 11 CDD$TOP.EMPLOYEE11 

Compiler Directives 18-7 



See Chapter 23, the VAX BASIC Reference Manual and the VAX Common 
Data Dictionary Utilities Reference Manual for more information. 

If you are including source text from a text library, you must supply the 
name of the text module you wish to include as well as the name of the 
library where the module resides. If you do not specify a library name, 
VAX BASIC uses the default library, BASIC$LIBRARY. Moreover, if you 
do not specify a directory name or file type, VAX BASIC uses the default 
device and the file type TLB. 

In the following example, when VAX BASIC encounters the %INCLUDE 
directive, the compiler searches through the library SYS$LIBRARY:BASIC_ 
LIB.TLB for the specified module DMB_TEST and compiles the text as if it 
were placed in the position of the %INCLUDE directive. 

Y.!NCLUDE "DMB_TEST" %FROM %LIBRARY 11 SYS$LIBRARY:BASIC_LIB.TLB" 

VAX BASIC supplies the text library BASIC$STARLET located in 
SYS$LIBRARY. This text library contains condition codes and other sym
bols defined in the system object and shareable image libraries. Using the 
definitions from BASIC$STARLET allows you to reference condition codes 
and other system-defined symbols as local, rather than global symbols. 

To create your own text libraries using the VAX/VMS Librarian Utility, 
see the VAX/VMS Librarian Reference Manual. 

All file specifications, CDD path specifications, text modules and library 
specifications must be string literals enclosed in quotes. 

The source files accessed with %INCLUDE cannot contain line numbers. 
This requirement means that all statements in the accessed file are asso
ciated with the VAX BASIC line containing the %INCLUDE directive if 
line numbers are being used. Therefore, if you are using line numbers, 
a %INCLUDE directive cannot appear before the first line number in 
a source program. A file accessed by %INCLUDE can itself contain a 
%INCLUDE directive. 

When a program is compiled, VAX BASIC inserts the included text at the 
point at which it encounters the %INCLUDE directive. The compilation 
listing identifies any text obtained from an included file by placing a 
mnemonic in the first character position of the line in which the text 
appears. "In" specifies text that was either accessed from a source file or 
from a text library, and "Cn" specifies a record definition that was accessed 
from the CDD. Both the I and the C tell you that the text was accessed 
with the %INCLUDE directive, and n tells you the nesting level of the 
included text. 

18-8 Compiler Directives 



The %INCLUDE directive is useful when you want to share code among 
multiple program modules. To do this, you must first create a file that 
contains the shareable code, then include that file in all the modules that 
require it. Thus, you reduce the chance of a typographical error. 

You can prevent the %INCLUDE file code from appearing in the compila
tion listing by using the BASIC command qualifier /SHOW=NOINCLUDE 
or /SHOW=NOCDD_DEFINITIONS. For text files and text library mod
ules, use the qualifier /SHOW=NOINCLUDE. For COD definitions, use 
the qualifier /SHOW=NOCDD_DEFINITIONS. 

18.4 Controlling Compilation 

VAX BASIC lets you control the compilation of a program by creating and 
testing lexical constants. You create and assign values to lexical constants 
with the %LET directive. These constants are always LONG integers. 

You control the compilation by using the %IF-%THEN-%ELSE-%END 
%IF directive to test these lexical constants. Thus, you can conditionally: 

• Supply different values for program variables and constants 

• Skip over part of a program 

• Abort a compilation 

• Include VAX BASIC source code from another file 

• Display informational messages during the compilation 

VAX BASIC also supplies the lexical built-in function % VARIANT that can 
be used to conditionally control compilation. 

%IF-% THEN-%ELSE-%END %IF uses lexical expressions to determine 
whether to execute directives in the %THEN clause or the %ELSE clause. 
The following sections describe the use of: 

• Lexical constants and expressions (%LET Directive) 

• %VARIANT 

• %ABORT 

• %PRINT 

• %IF-% THEN-%ELSE-%END %IF 

Compiler Directives 18-9 



18.4.1 The %LET Directive 

The %LET directive creates and assigns values to lexical constants. Lexical 
constants are always LONG integers. These constants control the execu
tion of the %IF-% THEN-%ELSE-%END %IF directive. 

All lexical constants must be created with %LET before they can be used 
in a %IF-% THEN-%ELSE-%END %IF, and each lexical constant must be 
created with a separate %LET directive. All lexical constant names must 
also be preceded by a percent sign and cannot end with a dollar sign or 
percent sign. 

A lexical expression can be: 

• A lexical constant 

• An integer literal 

• A lexical built-in function (%VARIANT) 

• Any combination of these, separated by logical, relational, or arith
metic operators 

The %LET directive lets you create constants that control conditional 
compilation. For example: 

%LET %debug_on = 0% 

See Section 18.4.5 for an example of using %LET with %IF-%THEN
%ELSE. 

18.4.2 The %VARIANT Directive 

The % VARIANT directive is a built-in lexical function that returns an 
integer. The value of this returned integer is determined by: 

• The SET VARIANT command when a program is compiled in the 
BASIC environment. 

• The /VARIANT qualifier when a program is compiled from the system 
command level or from within the BASIC environment. 

The % VARIANT function returns the variant value set with either of these 
methods. 

The default value for the % VARIANT function is zero. See Section 18.4.5 
for an example of controlling compilation with %VARIANT. 

18-10 Compiler Directives 



18.4.3 The %ABORT Directive 

The %ABORT directive terminates the compilation and displays a message 
you provide. 

The text must be a quoted string literal. This information is displayed to 
SYS$ERROR and in the compilation listing if one is being created. VAX 
BASIC stops the compilation and terminates the listing file as soon as it 
encounters a %ABORT directive, and so VAX BASIC does not perform 
syntax checking on the remainder of the program. See Section 18.4.5 for 
an example of using %ABORT. 

18.4.4 The %PRINT Directive 

The %PRINT directive allows you to insert a message into your source 
code that the VAX BASIC compiler displays at compile time. 

The text must be a quoted string literal. This information is displayed to 
SYS$ERROR and in the compilation listing if one is being created. VAX 
BASIC prints the message specified as soon as it encounters a %PRINT 
directive. See Section 18.4.5 for an example of using %PRINT. 

18.4.5 The %IF-% THEN-%ELSE-%END %IF Directive 

The %IF-% THEN-%ELSE-%END %IF directive lets you do the following 
things conditionally: 

• Compile source text 

• Execute another compiler directive 

This directive differs from all others in that it can appear anywhere in a 
program where a space is allowed, except within a quoted string. 

You must include %END %IF. Otherwise, the rest of the source program 
becomes part of the %THEN or %ELSE clause. You must also include a 
lexical expression and some VAX BASIC source code. 

The truth or falsity of the lexical expression determines whether VAX 
BASIC compiles the source code in the %THEN clause or the %ELSE 
clause. If the lexical expression is true, VAX BASIC neither compiles 
nor checks the syntax of source code in the %ELSE clause. If the lexical 
expression is false, VAX BASIC neither compiles nor checks the syntax of 
source code in the %THEN clause. 

Compiler Directives 18-11 



The following example also uses the % VARIANT directive, which returns 
the value set by the SET VARIANT command or /VARIANT qualifier: 

Example 

Y.IF CY.VARIANT = 21.) 
Y.THEN DECLARE LONG int_array(100) 
Y.ELSE DECLARE WORD int_array(100) 
Y.END Y.IF 

This directive allows for two possibilities. If you compile this program 
with a /VARIANT=2 qualifier, then VAX BASIC creates an array of 
longword integers. If you compile this program with any other variant 
value, VAX BASIC creates an array of word integers. 

Because %IF can appear within a program line, you can express the same 
directive this way: 

DECLARE 1.IF (Y.VARIANT=2%) Y.THEN LONG %ELSE WORD 1.END Y.IF int_array(100) 

A %THEN or %ELSE clause can also contain other compiler directives. 
For example, the following program creates the lexical constant %my_ 
constant and assigns it a value of 8. The %IF directive evaluates the 
conditional expression ((%my_constant + % VARIANT) > = 10%). If this 
expression is true, VAX BASIC executes the %THEN clause, aborting 
the compilation and issuing an error message. If the expression is false, 
VAX BASIC prints the specified message and continues to compile your 
program without aborting the compilation. 

Example 

Y.LET Y.my_constant = 81. 
Y.IF ( CY.my_constant + Y.VARIANT) >= 10% )%THEN 

Y.ABORT "Cannot compile with VARIANT >= 211 

ELSE Y.PRINT "Successful Compilation" 
Y.END Y.!F 

The compilation listing shows you which clause was actually compiled. 

18-12 Compiler Directives 



Example 

%LET %my_constant = 8% 
%IF ( (%my_constant + %VARIANT) >= 10% )%THEN 

%ABORT "Cannot compile with VARIANT >= 2" 
ELSE %PRINT "Successful Compilation" 

%END %IF 

The compilation listing shows you which clause was actually compiled. 

18.5 Record Dependency Relationships in the COD 

By using the %INCLUDE %FROM %CDD or the %REPORT 
%DEPENDENCY directives in conjunction with the 
/DEPENDENCY_DATA qualifier in the BASIC command, you can record 
dependency relationships in a CDO dictionary between a compiled 
module entity and included records or other referenced dictionary entities. 
This functionality is available only if you have CDD /Plus Version 4.0 or 
later installed on your system. 

See Chapter 24 for detailed information. 

July 1988 Compiler Directives 18-13 





USING VAX BASIC FEATURES ON VAX/VMS 





Chapter 19 

Data Representation 

This chapter describes how to represent data using VAX BASIC on the 
VAX/VMS operating system. 

19. 1 Integer Format 

There are three ways in which integer data can be represented: byte, 
word, and longword. Note that negative integer values are stored in 
two's complement format. The following sections describe each of these 
formats. 

19. 1.1 Byte-Length Integer Format 

Byte-length integers are in the range -127 to 128 and are stored as a single 
byte (8 bits), starting on an arbitrary byte boundary. Bits are labeled from 
the right, 0 through 7. See Figure 19-1. 

Data Representation 19-1 



Figure 19-1: Byte-Length Integer Format 

word: 

7 

s 
I 

G 
N 

BINARY NUMBER 

0 

ZK-5173-86 

19.1.2 Word-Length Integer Format 

Word-length integers are in the range -32768 to 32767 and are stored 
as two contiguous bytes, starting on an arbitrary byte boundary. Bits are 
labeled from the right, 0 through 15. See Figure 19-2. 

Figure 19-2: Word-Length Integer Format 

15 0 

s 
I 
G BINARY NUMBER 

N 

ZK-5174-86 

19.1.3 Longword Integer Format 

Longword integers are stored as four contiguous bytes, starting on an arbi
trary byte boundary. Values are in the range -2147483647 to 2147483647. 
See Figure 19~3. 

19-2 Data Representation 



Figure 19-3: Longword Integer Format 

31 

s 
I 

G 
N 

19.2 Real Number Format 

BINARY NUMBER 

0 

ZK-5175-86 

Real numbers, like integers, can be represented in varying formats. These 
formats include SINGLE floating-point, DOUBLE floating-point, GFLOAT 
floating-point, HFLOAT floating-point, and packed DECIMAL format. The 
following sections describe each of these formats. 

19.2. 1 SINGLE Floating-Point Nu111ber For111at (f _floating) 

F_floating (single-precision) floating-point numbers are stored as four 
contiguous bytes, starting on an arbitrary byte boundary. Bits are labeled 
from the right, 0 through 31. 

The format for single-precision is sign magnitude, with bit 15 the sign 
bit, bits 14 to 7 an excess-128 binary exponent, and bits 6 through 0 
and 31 through 16 a normalized 24-bit fraction with the redundant 
most significant fraction bit not represented. See Figure 19-4. The 8-bit 
exponent field encodes the values between 0 and 255, inclusive. 

An exponent value of 0 together with a sign bit of 0 indicates that the 
F_floating number has a value of 0. Exponent values between 1 and 255 
indicate true binary exponents of -127 through 127. An exponent value 
of 0, together with a sign bit of l, is taken as reserved. (Floating-point 
instructions processing a reserved operand take a reserved operand fault.) 
The magf!itude of an F_floating number is in the approximate range 
.29 * 10-38 through* 1038 • The precision of an F_floating number is 
approximately one part in 223 (approximately 7 decimal digits). 

Data Representation 19-3 



Figure 19-4: Single-Precision Real Number Format 

15 14 76 0 

s 
I 

G EXPONENT FRACTION 

N 

FRACTION 

31 16 

ZK-5176-86 

19.2.2 DOUBLE Floating-Point Number format (D-floating) 

Double-precision real number format consists of eight contiguous bytes, 
starting on an arbitrary byte boundary. Bits are labeled from the right, 0 
through 63. See Figure 19-5. The form of a D_floating number is iden
tical to the F_floating form, except for an additional 32 low-significance 
fraction bits. Within the fraction, bits increase in significance from 48 
to 63, 32 through 47, 16 through 31, and 0 through 6. The exponent 
conventions and approximate range of values is the same for both D_ 
floating and F_floating numbers. The precision of a D_floating number is 
approximately one part in 255 (approximately 16 decimal digits). 

19-4 Data Representation 



Figure 19-5: Double-Precision Real Number Format 

15 14 76 0 

s 
I 

FRACTION G EXPONENT 

N 

FRACTION 

FRACTION 

FRACTION 

63 48 

ZK-5177-86 

19.2.3 GFLOAT Floating-Point Number Format (G-floating) 

The G_floating floating-point number format is eight contiguous bytes, 
starting on an arbitrary byte boundary. Bits are labeled from the right, 0 
through 63. The form of a G_floating number is sign magnitude with bit 
15 the sign bit, bits 14 through 4 an excess-1024 binary exponent, and 
bits 3 through 0 and 63 through 16 a normalized 53-bit fraction with the 
redundant most significant fraction bit not represented. 

Within the fraction, bits of increasing significance go 48 through 63, 32 
through 47, 16 through 31, and 0 through 3. The 11-bit exponent field 
encodes the values 0 through 204 7. 

An exponent value of 0 together with a sign bit of 0 indicates that the 
G_floating number's value is 0. Exponent values between 1 and 2047 
indicate true binary exponents between -1023 and 1023. The value of 
a G _floating number is in the approximate range .56 • 10 - 308 to 
.9 • 10308; the precision is approximately one part in 252 (approximately 
15 decimal digits). Note that both double and G_floating formats require 
8 bytes. G_floating format provides a greater range, but less precision 
than double. 

Data Representation 19-5 



19.2.4 HFLOAT Floating-Point Number Format (H-floating) 

An H_floating floating-point number is 16 contiguous bytes, starting on 
an arbitrary byte boundary. H_floating format combines a large range 
with extensive precision, but requires twice the amount of storage of 
double and G_floating. The bits are labeled from the right 0 through 127. 
The form of an H_floating number is sign magnitude with bit 15 the sign 
bit, bits 14 to 0 an excess -16384 binary exponent, and bits 127 to 16 a 
normalized 113-bit fraction with the redundant most significant fraction 
bit not represented. 

Within the fraction, bits of increasing significance go 112 through 127, 96 
through 111, 80 through 95, 64 through 79, 48 through 63, 32 through 
47, and 16 through 31. The 15-bit exponent field encodes the values 0 
through 32767. 

An exponent value of 0 together with a sign bit of 0 indicates the 
H_floating number has a value of 0. Exponent values between 1 and 
32767 indicate true binary exponents between -16383 and 16383. The 
value of an H_floating number is in the approximate range .84 • 104932 

through .59 * 104932
• The precision of an H_floating number is approxi~ 

mately one part in 2112 (approximately 33 decimal digits). 

19.3 Packed Decimal Number Format 

The DECIMAL data type is useful for storing numbers with a fixed decimal 
point. DECIMAL numbers are stored as a precise representation of the 
value stored within the constraints of the specified number of fractional 
digits. A packed decimal string is a contiguous sequence of bytes in 
memory. The address A and length L are sufficient to specify a packed 
decimal string, but note that Lis the number of digits, not bytes, in the 
string. Every byte of a packed decimal string is divided into two 4-bit 
fields (nibbles), each of which must contain decimal digits, except the low 
nibble of the last byte, which must contain a sign. The representation for 
the digits and sign is as follows: 

19-6 Data Representation 



Digit or Sign Decimal Hexadecimal 

0 0 0 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 

9 9 9 

+ 10,12,14 or 15 A,C,E or F 

11 or 13 B or D 

Despite the options, the preferred sign representation is 12 for positive 
and 13 for negative. The length L is the number of digits in the packed 
decimal string (not counting the sign) and must be in the range 1 through 
31. If the number of digits is odd, the digits and the sign fit into 
((L/2) + 1) bytes; when the number of digits is even, an extra "O" digit 
must appear in the high nibble (bits 7 to 4) of the first byte. 

The address A of the string specifies the byte of the string containing the 
most significant digit in its high nibble. Digits of decreasing significance 
are assigned to increasing byte addresses and from high nibble to low 
nibble within a byte. 

Note that the decimal point is specified by the descriptor for the packed 
decimal string. See Section 19.6. 

19.4 String and Array Descriptor Format 

A descriptor is a VAX/VMS data structure that describes the parameter 
being passed. The following sections describe the formats for both string 
and array descriptors. 

Data Representation 19-7 



19.4.1 Fixed-Length String Descriptor Format 

A fixed-length string descriptor consists of two longwords. The first word 
of the first longword contains a value equal to the string's length. The 
third byte contains a 14 (OE hexadecimal; the VAX/VMS code describing 
an ASCII character string). The fourth byte contains a 1. The second 
longword is a pointer containing the address of the string's first byte. 
See Figure 19-6. For more information, see the Introduction to VAX/VMS 
System Routines for the VAX Procedure Calling and Condition Handling 
Standard. 

Figure 19-6: Fixed-Length String Descriptor Format 

OE l LENGTH 

POINTER 

ZK-5178·86 

19.4.2 Dynamic String Descriptor Format 

A dynamic string descriptor consists of two longwords. The first word 
of the first longword contains a value equal to the string's length. The 
third byte contains a 14 (OE hexadecimal; the VAX/VMS code describing 
an ASCII character string). The fourth byte contains a 2. The second 
longword is a pointer containing the address of the string's first character. 
See Figure 19-7. 

19-8 Data Representation 



Figure 19-7: Dynamic String Descriptor Format 

OE l LENGTH 

POINTER 

ZK-5179-86 

19.5 Array Descriptors 

VAX BASIC creates class A array descriptors (DSC$K_CLASS_A) for 
all arrays except virtual arrays. Virtual array descriptors differ in format 
and can be manipulated only with VAX BASIC Run-Time Library support 
routines. Most array descriptors created by VAX BASIC describe the actual 
data in an array. Some arrays, however, have elements that differ in 
length from one another. VAX BASIC arrays of this type include both 
dynamic string arrays and arrays of any datatype which have appeared 
in MAP DYNAMIC and REMAP statements. An array descriptor for an 
array of this type describes an array of element descriptors. One element 
descriptor exists for each array element and points to the actual data. 

As shown in Figure 19-8, VAX BASIC array descriptors consist of three 
blocks of information. The first block, the prototype block, is always four 
longwords in length. The second and third blocks, the multiplier and 
bounds blocks, vary in length depending on the number of dimensions for 
the array being described. The sections following the figure describe each 
block. 

Data Representation 19-9 



Figure 19-8: Array Descriptor Format 

4 l DTYPE l LENGTH 

POINTER 

DIMCT1 DO l DIGITS l SCALE 
PROTOTYPE BLOCK 

ARSIZE 

AO 

M1 

M2 MULTIPLIER BLOCK 

Mn 

L1 

U1 

BOUNDS BLOCK 

Ln 

Un 

ZK-5535-86 

19.5. 1 The Prototype Block 

In the prototype block, if the data type is not aligned bit string or packed 
decimal string, the first word of the first longword contains a value 
denoting the number of bytes in each array element. 

The length of an aligned bit string array element is specified in bits. The 
length of a packed decimal string array element is the number of 4-bit 
digits, not including the sign. 

19-1 0 Data Representation July 1981 



For arrays requiring a descriptor for each element, the value in this field 
is the length of the descriptor for the element. Dynamic string arrays 
and most remapped arrays require 8 bytes for the element descrip-
tor. Remapped packed decimal arrays require 12 bytes for the element 
descriptor. 

Data Representation 19-10.1 





The third byte of the first longword contains a code indicating the 
VAX/VMS data type of the array described by the descriptor. For ar
rays requiring element descriptors, the value is 24 (the VAX/VMS literal 
DSC$K_DTYPE_DSC and the value 18 hexadecimal). For other arrays, 
the value reflects the actual data type of the array. The fourth byte de
notes the class of the array descriptor and will always have the value 4 
(DSC$K_CLASS-A). 

The second longword is a pointer containing the address of the first 
element of the array or the first element descriptor. The first byte of the 
third longword contains a scale factor for packed decimal arrays and for 
DOUBLE arrays in programs compiled with a scale factor. The second 
byte specifies the number of digits in each packed decimal array element; 
for array types other than packed decimal, this byte is zero. The third 
byte contains array flags indicating that the multiplier and bounds blocks 
are present (Hexadecimal DO). The fourth byte contains a value equal to 
the number of dimensions in the array. The fourth longword contains the 
total size of the array in bytes. 

19.5.2 The Multiplier Block 

For arrays where all dimensions have a lower bound of zero, the first 
longword (AO) of the multiplier block has the same value as the second 
longword of the prototype block (the pointer). For arrays with dimensions 
that possess nonzero lower bounds, the value of AO is the address of the 
first array element adjusted to account for the non-zero lower bounds in 
all dimensions. You can use this field in the descriptor to access arrays 
without consideration of the lower bounds of the array dimensions when 
computing the element address. 

The multiplier block contains an additional longword for each dimension 
of the array. Each longword contains the number of elements in the 
corresponding dimension (the upper bound minus the lower bound 
plus 1). 

19.5.3 The Bounds Block 

The third block, the bounds block, consists of one longword pair for each 
dimension of the array. The first longword of each pair specifies the lower 
bound of the corresponding dimension and the second longword specifies 
the upper bound of that dimension. 

Data Representation 19-11 



19.6 Decimal Scalar String Descriptor (Packed Decimal String 
Descriptor) 

A single descriptor form gives decimal size and scaling information for 
both scalar data and simple strings. See Figure 19-9. 

Figure 19-9: Decimal Scalar String Descriptor 

9 21 LENGTH 

POINTER 

RESERVED DIGITS SCALE 

ZK-5181-86 

For packed decimal strings, the length field contains the number of 4-bit 
digits (not including the sign). The pointer field contains the address 
of the first byte in the packed decimal string. The scale field contains a 
signed power-of-ten multiplier to convert the internal form to the external 
form. For example, if the internal number is 123 and the scale field is 
+l, then the external number is 1230. The digits field is 0; the number of 
digits is computed from the length field. The reserved field must be zero. 

19-12 Oata Representation 



Chapter 20 

Advanced File Input and Output 

This chapter describes some of the more advanced I/O features available 
in VAX BASIC. For more information on I/O to RMS disk files, see 
Chapter 15 in this manual. 

20. 1 Introduction 

This chapter discusses the following topics: 

• RMS I/Oto ANSI magnetic tapes 

• Device-specific I/O to magnetic tapes (including TKSO devices), disks, 
and unit record devices 

• I/Oto mailboxes 

• Network I/O 

When you do not specify a file name in the OPEN statement, the I/O 
you perform is said to be device-specific. This means that read and write 
operations (GET and PUT statements) are performed directly to or from 
the device. For example: 

OPEN "MTA2:" FOR OUTPUT AS FILE #1 
OPEN "MTA1:PARTS.DAT" FOR INPUT AS FILE #2, SEQUENTIAL 

Because the file specification in the first line does not contain a file name, 
the OPEN statement opens the tape drive for device-specific I/O. The 
second line opens an ANSI-format tape file using RMS because a file 
name is part of the file specification. 

The following sections describe both I/Oto ANSI-format magnetic tapes 
and device-specific I/O to magnetic tape, unit record, and disks devices. 

Advanced File Input and Output 20-1 



20.2 RMS 1/0 to Magnetic Tape 

VAX BASIC supports I/Oto ANSI-formatted magnetic tapes. When 
performing I/Oto ANSI-formatted magnetic tapes, you can read or write 
to only one file to a magnetic tape at a time, and the files are not available 
to other users. ANSI tape files are RMS sequential files. 

20.2.1 Allocating and Mounting a Tape 

You should allocate the tape unit to your process before starting file 
operations. For example: 

$ ALLOCATE MT1: 

This command assigns tape drive MTl: to your process. You must also 
set the tape density and label with the MOUNT command. Optionally, 
you can specify a logical name to assign to the device, in this case, TAPE. 

$ MOUNT/DENSITY=1600 MT1: VOL001 TAPE 

When mounting a TKSO, you cannot specify a density. 

If the records do not specify the size of the block (no value in HDR 2), 
specify the BLOCKSIZE as part of the MOUNT command. For example: 

$ MOUNT/DENSITY=1600/BLOCKSIZE=128 MT1: VOL020 TAPE 

Alternatively, you can use the $MOUNT system service to mount tapes. 

20.2.2 Opening a Tape File for Output 

To create and open a magnetic tape file for output, you use the 
OPEN statement. For instance, the following statement opens the file 
PARTS.DAT and writes 256 byte records that are blocked four to a 
physical tape block of 1024 bytes. 

OPEN "MT1:PARTS.DAT" FOR OUTPUT AS FILE #21., SEQUENTIAL FIXED, & 
RECORDSIZE 2661., BLOCKSIZE 4% 

Specifying FIXED record format creates ANSI F format records. Specifying 
VARIABLE creates ANSI D format records. If you do not specify a record 
format, the default is VARIABLE. 

20-2 Advanced File Input and Output 



NOTE 

Every record in an ANSI D formatted file is prefixed by a 4-byte 
header giving the record length in decimal ASCII digits. The 
length includes the 4-byte header. VAX BASIC adds the 4-byte 
header to the record size when calculating block size. The 
header is transparent to your program. 

If you do not specify a block size, VAX BASIC defaults to one record per 
block. For small records, this can be inefficient; the tape will contain many 
inter-record gaps. 

20.2.3 Opening a Tape File for Input 

To open an existing magnetic tape file, you also use the OPEN statement. 
For example, the following statement opens the file PAYROLL.DAT. If you 
do not specify a record size or a block size, VAX BASIC defaults to the 
values in the header block. If you do not specify a record format, VAX 
BASIC defaults to the format present in the header block (ANSI F or ANSI 
D). You must specify ACCESS READ if the tape is not write-enabled. For 
example: 

100 OPEN "TAPE:PAYROLL.DAT" FOR INPUT AS FILE #4% 
,ACCESS READ 

20.2.4 Positioning a Tape 

NOREWIND positions the tape for reading and writing as follows: 

• Specifying NOREWIND when you create a file positions the tape at 
the logical end-of-tape and leaves the unit open for writing. If you 
omit NO REWIND, you start writing at the beginning of the tape 
(BOT), logically deleting all subsequent files. 

• Specifying NOREWIND when you open an existing file starts a search 
for the file at the current position. The search continues to the logical 
end-of-tape. If the record is not found, VAX BASIC rewinds and 
continues the search until reaching the logical end-of-tape again. 
Omitting NOREWIND tells VAX BASIC to rewind the tape and search 
for the file name until reaching the end-of-tape. In either case, you 
receive an error message if the file does not exist. 

Advanced File Input and Output 20-3 



For example, the following statement opens PAYROL.DAT after advancing 
the tape to the logical end-of-tape. If you omit NOREWIND, the file 
opens at the beginning of the tape, logically deleting all subsequent files. 

OPEN "MT1:PAYROL.DAT" FOR OUTPUT AS FILE #11. & 
,ORGANIZATION SEQUENTIAL, NOREWIND 

Note that you cannot specify REWIND; to avoid rewinding the tape, omit 
the NOREWIND keyword. 

20.2.5 Writing Records to a File 

The PUT statement writes sequential records to the file. The following 
program writes a record to the file. Successive PUT operations write 
successive records. 

Example 

OPEN "MTO:TEST.DAT" FOR OUTPUT AS FILE #2, & 
SEQUENTIAL FIXED, RECORDSIZE 201. 

8$ = "" 
WHILE 8$ <> "NO" 

LINPUT "Name"; A$ 
MOVE TO #2, A$ = 20 
PUT #2 
LINPUT "Write another record"; 8$ 

NEXT 
CLOSE #2 
END 

Each PUT writes one record to the file. If your OPEN statement specifies 
a RECORDSIZE clause, the record buffer length equals RECORDSIZE or 
the map size. For example: 

RECORDSIZE 601. 

This clause specifies a record length and a record buffer size of 60 bytes. 
You can specify a record length between 18 and 8192 bytes. The default 
is 132 bytes. 

If you specify a MAP clause and no RECORDSIZE clause, then the record 
size is the size of the map. 

If you also specify BLOCKSIZE, the size of the buffer equals the value in 
BLOCKSIZE multiplied by the record size. For example: 

RECORDSIZE 601., 8LOCKSIZE 4Y. 

20-4 Advanced File Input and Output 



These clauses specify a logical record length of 60 bytes and a physical 
tape record size of 240 bytes (60 * 4). You specify BLOCKSIZE as an 
integer number of records. RMS rounds the resulting value to the next 
multiple of four. The total 1/0 buffer length cannot exceed 8192 bytes. 
The default is a buffer (tape block) containing one record. 

To write true variable-length records, use the COUNT clause with the 
PUT statement to specify the number of bytes of data written to the 
file. Without COUNT, all records equal the length specified by the 
RECORDSIZE clause when you opened the file. 

20w2.6 Reading Records from a File 

The GET statement reads one logical record into the buffer. For example, 
in the following program, the first GET reads a group of four records 
(a total of 80 bytes) from the file on channel #5 and transfers the first 
20 bytes to the record buffers. Successive GET operations read 20 byte 
records to the record buffer performing an 1/0 to the tape every 4 records. 

Example 

OPEN 11 MTO:TEST.DAT 11 FOR INPUT AS FILE #5%, & 
ORGANIZATION SEQUENTIAL FIXED, RECORDSIZE 20%, & 
BLDCKSIZE 4%, ACCESS READ 

B$ = "" 
WHILE B$ <> "ND" 

GET #5 

NEXT 

MOVE FROM #5, A$ = 20 
PRINT A$ 
LINPUT "Do you want another record"; B$ 

CLOSE #5 
END 

20.2. 7 Controlling Tape Output Format 

Magnetic tape physical records range from 18 to 8192 bytes. With RMS 
tapes, you can optionally specify this size in the BLOCKSIZE clause as a 
positive integer indicating the number of records in each block. 
VAX BASIC then calculates the actual size in bytes. Thus, a fixed-length 
file on tape with 126 byte records can have a block size between 1 and 64, 
inclusive. The default is 126 bytes (one record per block). 

Advanced File Input and Output 20-5 



For instance, in the following example of an OPEN statement, the 
RECORDSIZE clause defines the size of the records in the file as 90 
bytes, and BLOCKSIZE defines the size of a block as 12 records (1080 
bytes). Thus, your program contains an 1/0 buffer of 1080 bytes. Each 
physical read or write operation moves 1080 bytes of data between the 
tape and this buffer. Every twelfth GET or PUT operation causes a phys
ical read or write. The next eleven GET or PUT operations only move 
data into or out of the 1/0 buffer. Specifying a block size larger than the 
default can reduce overhead by eliminating some physical reading and 
writing to the tape. In addition, specifying a large block size conserves 
space on the tape by reducing the number of inter-record gaps (IRGs). In 
the example, a block size of 12 saves time by accessing the tape only after 
every twelfth record operation. 

OPEN "MTO: [SMITH] TEST.SEQ" FOR OUTPUT AS FILE #12% & 
,ORGANIZATION SEQUENTIAL FIXED, RECORDSIZE 90% & 
,BLOCKSIZE 12% 

Through RMS, VAX BASIC controls the blocking and deblocking of 
records. RMS checks each PUT operation to see if the specified record 
fits in the tape block. If it does not, RMS fills the rest of the block with 
circumflexes (blanks) and starts the record in a new block. Records cannot 
span blocks in magnetic tape files. 

When you read blocks of records, your program can issue successive GET 
statements until it locates the fields of the record you want. For example, 
the following program finds and displays a record on the terminal. You 
can invoke the RECOUNT function to determine how many bytes were 
read in the GET operation. 

Example 

MAP (XXX) NA.ME$ = 5%, address$ = 20% 

OPEN "MTO:FILE.DAT" FOR INPUT AS FILE #4%, & 
SEQUENTIAL FIXED, MAP XXX, ACCESS READ 

NA.ME$ = "" 
GET #4 UNTIL NA.ME$ = "JONES" 
PRINT NA.ME$; "LIVES AT"; address$ 

CLOSE #4 

END 

20-6 Advanced File Input and Output July 1988 



20.2.8 Rewinding a Tape 

With the RESTORE# statement, you can rewind the tape to the start of 
the currently open file. 

Example 

OPEN "MTO:FTF.DAT" FOR INPUT AS FILE #2Y., ACCESS READ 
GET #2Y. 

RESTORE #2Y. 
GET #2Y. 

You cannot rewind past the beginning of the currently open file. 

20.2.9 Closing a File 

The CLOSE statement ends I/O to the file. For example, the following 
statement ends input and output to the file open on channel #6. 

CLOSE #6Y. 

If you opened the file with ACCESS READ, CLOSE has no further effect. 
If you opened the file without specifying ACCESS READ and the tape is 
not write-locked (that is, if the plastic write ring is in place), VAX BASIC 
does the following: 

• Writes file trailer labels and two end-of-file marks following the last 
record 

• Backspaces over the last end-of-file mark 

VAX BASIC does not rewind the tape. 

20.3 Device-Specific 1/0 

Device-specific I/O lets you perform I/O directly to a device. The follow
ing sections describe device-specific I/O to unit record devices, tapes, and 
disks. 

Advanced File Input and Output 20-7 



20.3.1 Device-Specific 1/0 to Unit Record Devices 

You perform device-specific I/Oto unit record devices by using only the 
device name in the OPEN statement file specification. You should allocate 
the device at DCL command level before reading or writing to the device. 
For example, this command allocates a card reader: 

$ ALLOCATE CR1: 

Once the device is allocated, you can read records from it: 

Example 

MAP (DNG) AY. = SOY. 
OPEN "CR1:" FOR INPUT AS FILE #11., ACCESS READ, MAP DNG 
GET #11. 

VAX BASIC treats the device as a file, and data is read from the card 
reader as a series of fixed-length records. 

20.3.2 Device-Specific 1/0 to Magnetic Tape Devices 

When performing device-specific I/O to a tape drive, you open the 
physical device and transfer data between the tape and your program. 
GET and PUT statements perform read and write operations. UPDATE 
and DELETE statements are invalid when you perform device-specific 
I/O. 

20.3.2. 1 Allocating and Mounting a Tape 

You must allocate the tape unit to your process before starting file opera
tions. For example, the following command line assigns tape drive MTl: 
to your process. 

$ ALLOCATE MT1: 

Use the DCL command MOUNT and the /FOREIGN qualifier to mount 
the tape. For example: 

$MOUNT/FOREIGN MT1: 

If your program needs a blocksize other than 512 bytes, or a particular 
tape density, specify these characteristics with the MOUNT command as 
well. For example: 

$ MOUNT/FOREIGN/BLOCKSIZE=1024/DENSITY=1600 MT1: 

20-8 Advanced File Input and Output 



When reading a foreign tape, you must make sure the /BLOCKSIZE 
qualifier has a value at least as large as the largest record on the tape. 

20.3.2.2 Opening a Tape File for Output 

To create and open the magnetic tape file for output, you use the OPEN 
statement. For example, the following statement opens tape drive MTl: 
for writing. It is important to use the SEQUENTIAL VARIABLE clause 
unless the records are fixed. In contrast to ANSI tape processing, RMS 
does not write record length headers or variable-length records to foreign 
tapes. If you specify SEQUENTIAL VARIABLE, you should have some 
way to determine where records begin and end. 

OPEN "MT1:" FOR OUTPUT AS FILE #11., t 
ORGANIZATION SEQUENTIAL VARIABLE 

20.3.2.3 Opening a Tape File for Input 

To access a tape with existing data, you also use the OPEN statement. For 
example, the following statement opens the tape unit MT2:. 

OPEN "MT2:" AS FILE #21. 

Depending on how you access records, there are two ways to open a 
foreign magnetic tape. If your program uses dynamic buffering and MOVE 
statements, open the file with no RECORDSIZE clause. RMS will provide 
the correct buffer size for VAX BASIC. Do not specify a BLOCKSIZE value 
or ORGANIZATION clause with the OPEN statement. 

If your program uses MAP and REMAP statements, but you do not know 
how long the records are, specify a MAP that is as large as the value you 
specified for the /BLOCKSIZE qualifier when mounting the tape. Do not 
specify a BLOCKSIZE value or ORGANIZATION clause with the OPEN 
statement. 

When processing records, each GET operation will read one physical 
record whose size is returned in RECOUNT. If you are using a map only, 
the first n bytes (where n is the value returned in RECOUNT) are valid. 

Advanced File Input and Output 20-9 



20.3.2.4 Writing Records to a File 

The PUT statement writes records to the file in sequential order. 

Example 

OPEN "MTO:" FOR OUTPUT AS FILE #9%, lz 
SEQUENTIAL VARIABLE 

INPUT "NAME";NA.ME$ 
MOVE TO #9%, NA.ME$ 
PUT #9% 

The last line writes the contents of the record buffer to the device. 
Successive PUT operations write successive records. 

The default record length (and therefore, the size of the buffer) is 132 
bytes. The RECORDSIZE attribute causes VAX BASIC to read or write 
records of a specified length. For instance, the following statement opens 
tape unit MTO: and specifies records of 900 characters. You must specify 
an even integer larger than or equal to 18. If you specify a buffer length 
less than 18, VAX BASIC signals an error. If you try to write a record 
longer than the buffer, VAX BASIC signals the error "Size of record 
invalid" (ERR = 156). 

OPEN "MTO:" FOR INPUT AS FILE #1%, RECORDSIZE 900% 

To write records shorter than the buffer, include the COUNT clause with 
the PUT statement. For example, the following statement writes a 
56-character record to the file open on channel #6. If you do not specify 
COUNT, VAX BASIC writes a full buffer. You can specify a minimum 
count of 18, and a maximum count equal to the buffer size. When writing 
records to a foreign magnetic tape, neither VAX BASIC nor RMS prefixes 
the records with any count bytes. 

PUT #6%, COUNT 56% 

20.3.2.5 Reading Records from a File 

The GET statement reads records into the buffer. For instance, the fol
lowing program reads a record into the buffer, prints a string field, and 
rewinds the file before closing. Successive GET operations read successive 
records. VAX BASIC signals the error "End of file on device" (ERR= 11) 
if you encounter a tape mark during a GET operation. If you trap this 
error and continue, you can skip over any tape mark(s). The system vari
able RECOUNT is set to the number of bytes transferred after each GET 
operation. 

20-10 Advanced File Input and Output 



Example 

OPEN "MT1:" FOR INPUT AS FILE 111., ACCESS READ 
GET 111. 
MOVE FROM 111., A$ = RECOUNT 
PRINT A$ 
RESTORE 111. 
CLOSE 111. 

20.3.2.6 Rewinding a Tape 

When you mount a magnetic tape, the system will position the tape at 
the load point (BOT). Your program can rewind the tape during program 
execution with the RESTORE statement. 

Example 

OPEN "MT1:" FOR OUTPUT AS FILE 121., ACCESS READ 

PUT 121. 
RESTORE 121. 
INPUT "NEXT RECORD"; NXTRECBBY. 

If you rewind a tape opened without ACCESS READ before closing it, you 
erase all data written before the RESTORE operation. 

20.3.2. 7 Closing a Tape 

The CLOSE statement ends 1/0 to the tape. For example, the following 
statement ends input and output to the tape open on channel #12. 

CLOSE 1121. 

If you opened the file with ACCESS READ, CLOSE has no further effect. 
If you opened the file without specifying ACCESS READ and the tape is 
not write-locked (that is, if the plastic write ring is in place), VAX BASIC 
does the following: 

• Writes file trailer labels and two end-of-file marks following the last 
record 

• Backspaces over the last end-of-file mark 

The tape is not rewound unless you specified RESTORE in your program. 

Advanced File Input and Output 20-11 



20.3.3 Device-Specific 1/0 to Disks 

When performing device-specific 1/0 to disks, you write and read data 
with PUT and GET statements. The data must fit in 512-byte blocks, and 
you must do your own blocking and deblocking with MAP /REMAP or 
MOVE statements. Note that, when accessing disks with device-specific 
1/0 operations, you are performing logical 1/0. Because of this, you 
should be careful not to overwrite block number zero, which is often the 
disk's boot block. You must have LOG_IO privileges to perform these 
operations. 

The following sections describe device-specific 1/0 to disks. 

20.3.3. 1 Assigning and Mounting a Disk 

You must allocate a disk unit to your process before starting operations. 
For example, the following command line assigns disk DUA3: to your 
process. 

$ ALLOCATE DUA3: 

When you perform 1/0 directly to a disk, you must mount the disk with 
the MOUNT command before accessing it. For example: 

$ MOUNT/FOREIGN DUA3: 

You can then open the disk for input or output. 

20.3.3.2 Opening a Disk File for Output 

To create and open the disk file, you use the OPEN statement. For 
example: 

OPEN "DUA3:" FOR OUTPUT AS FILE #21., SEQUENTIAL FIXED, t 
RECORDSIZE=512 

You can then write data to the disk. 

The record size determined by the MAP or RECORDSIZE clause must be 
an integer multiple of 512 bytes. 

20-12 Advanced File Input and Output 



20.3.3.3 Opening a Disk File for Input 

To open an existing disk file, you also use the OPEN statement. For 
example: 

OPEN "DUA1:" FOR INPUT AS FILE #4Y., SEQUENTIAL FIXED, k 
RECORDSIZE=612 

You can then read data from the disk. 

The recordsize determined by the MAP or RECORDSIZE clause must be 
an integer multiple of 512 bytes. The default is 512. 

Specify ACCESS READ in the OPEN statement if you only plan to read 
from the disk. 

20.3.3.4 Writing Records to a Disk File 

You write data by defining a record buffer and writing the data to the file 
with PUT statements. For example, the following program writes eight 64 
byte records into each 512-byte block on the disk. When your program 
fills one block, writing continues in the next. The FILL field in the MOVE 
statement positions the data in the block. 

Example 

INPUT "HOW MANY RECORDS TO WRITE"; JY. 
OPEN "DBB2: FOR OUTPUT AS FILE #2Y., SEQUENTIAL FIXED, k 

RECORDSIZE=512 
FOR KY. = 1Y. TO JY. 

FOR IY. = OY. TO 7Y. 
INPUT "NAME OF BOOK"; BOOK_NAME$ 
INPUT "RETRIEVAL NUMBER"; RET_NUMY. 
INPUT "SUBJECT AREA"; SUBJ$ 
MOVE TO #2Y., FILL$ = IY. * 64Y., BOOK_NAME$, RET_NUMY., SUBJ$ 

NEXT IY. 
PUT #2Y. 
NEXT KY. 
CLOSE #2 

When you write records, VAX BASIC does not prefix the records with any 
count bytes. 

Advanced File Input and Output 20-13 



20.3.3.5 Reading Records from a Disk File 

You read data by defining a record buffer and reading the data from the 
device with GET statements. After the data has been retrieved with a GET 
statement you can deblock the data with MOVE or REMAP statements. 

In the following example, each disk block contains twelve 40-byte records. 
Each record contains a 32-byte string, a 4-byte SINGLE number, and a 
4-byte LONG integer. After each GET operation, the FOR ... NEXT loop 
uses the REMAP statement to redefine the position of the variables in the 
record. At the end of the file, the program closes the file. See Chapter 9 
and the VAX BASIC Reference Manual for more information on the MAP, 
MAP DYNAMIC and REMAP statements. 

Example 

MAP (SAM) FILL$ = 512 
MAP DYNAMIC (SAM) STRING PRT_ID, SINGLE MAFLD, LONG ADIR_OLDN 
OPEN "DUA1:" FOR INPUT AS FILE #21,, SEQUENTIAL FIXED, & 

ACCESS READ, MAP SAM 
WHEN ERROR USE err_hand 
WHILE 1Y. = 1Y. 

NEXT 

GET #2Y. 
FOR IY. = OY. TO 11Y. 

REMAP (SAM) STRING FILL(IY. * 40Y.), PRT_ID = 32, MAFLD, ADIR_OLDN 
PRINT PRT_ID, MAFLD, ADIR_OLDN 

NEXT IY. 

END WHEN 
HANDLER err_hand 

IF ERR <> 11Y. 
THEN 

EXIT HANDLER 
END IF 

END HANDLER 
CLOSE #2Y. 
END 

20.4 1/0 to Mailboxes 

A mailbox is a record ljO device that passes data from one process to 
another. You can use a valid mailbox name as a file name, and treat that 
mailbox as a normal record file. You must have TMPMBX or PRMMBX 
privilege to create mailboxes. Mailboxes are created and deleted by system 
services. For more information on using system services in VAX BASIC 
programs, see Chapter 21 in this manual. 

20-14 Advanced File Input and Output 



Use the EXTERNAL statement to define the SYS$CREMBX system service 
that creates the mailbox. In VAX BASIC programs, you create mail
boxes by invoking SYS$CREMBX as a function passing either a channel 
argument and a string literal or a logical name for the mailbox. For 
example: 

EXTERNAL INTEGER FUNCTION SYS$CREMBX 
SYS$STATUSY. = SYS$CREMBX(.CHANY.,,,,, "CONFIRMATION_MBX") 

If you supply a logical name for the mailbox, be sure that it is in uppercase 
letters. Once you create the mailbox, you can use it as a logical file name. 

The following two examples, when executed on two separate processes, 
allow you to send and receive data from one process to another. 

Example 1 

DECLARE STRING passenger_name, Confirm_msg 
OPEN "CONFIRMATION_MBX" AS FILE #1Y. 
INPUT "WHAT IS THE PASSENGER NAME"; passenger_name 
PRINT t1Y., passenger_name 
LINPUT #1Y., confirm_msg 
PRINT confirm_msg 
END 

Example 2 

MAP (res) STRING passenger_name = 32Y. 
DECLARE WORD mbx_chan, LONG sys_status 
EXTERNAL LONG FUNCTION sys$crembx (LONG, WORD, LONG, LONG, t 

LONG, LONG, STRING) 
WHEN ERROR USE err_trap 
sys_status = sys$crembx ( ,mbx_chan,,,,, "CONFIRMATION_MBX") 
OPEN "CONFIRMATION_MBX" FOR INPUT AS FILE #1Y. 
LINPUT #1Y., passenger_name 
OPEN "RESER.LST" FOR INPUT AS FILE #2Y., t 

ORGANIZATION INDEXED, MAP RES, ACCESS READ t 
PRIMARY passenger_name 

FIND #2Y., KEY #OY. EQ passenger_name 
RECEIVING.MSG$ = "Passenger reservation confirmed" 
PRINT #1Y., RECEIVING.MSG$ 
END WHEN 
HANDLER err_trap 

IF (ERR = 166) 
THEN 
RECEIVING.MSG$ = "Reservation does not exist" 
ELSE 
EXIT HANDLER 

END IF 
END HANDLER 
CLOSE t2Y., #1Y. 
END PROGRAM 

Advanced File Input and Output 20-15 



Example 1 requests a passenger name and sends it to the mailbox. 
Example 2 looks up the name in an indexed file. If the passenger name 
exists, Example 2 writes the confirmation message to the mailbox. If 
the passenger name does not exist, the error handler writes an alternate 
message. Example 1 then reads the mailbox and returns the result. 

VAX BASIC treats the mailbox as a sequential file. You write to the file 
with the PRINT # or PUT statement, and read it with the INPUT #, 
LINPUT #, or GET statement. 

When either program closes the mailbox, the other program receives an 
end-of-file error message when it attempts to read the mailbox. 

NOTE 

All mailbox operations are synchronous. Control does not pass 
back from a mailbox operation, such as a PUT, to your program 
until the other program completes the corresponding operation, 
such as a GET. 

20.5 Network 1/0 

If your system supports DECnet-VAX facilities, and your computer is one 
of the nodes in a DECnet-VAX network, you can communicate with other 
nodes in the network with VAX BASIC program statements. VAX BASIC 
lets you do the following: 

• Read and write files on a remote node as you do files on your own 
system (remote file access) 

• Exchange data with a process executing at a remote location (task-to
task communication) 

20-16 Advanced File Input and Output 



20.5.1 Remote File Access 

To write or read files at a remote site, include the node name as part of 
the file specification. For example: 

OPEN "WESTON::DUA1: [HOLT]TEST.DAT;2" FOR INPUT AS FILE #21. 

You can also assign a logical name to the file specification, and use that 
logical name in all file lfO. 

NOTE 

You need NETMBX privileges to access files at a remote node. 

If the account at the remote site requires a usemame and password, 
include this access string in the file specification. You do this by enclosing 
the access string in quotation marks and placing it between the node 
name and the double colon. For example, the following file specification 
accesses the account [HOLT.IMP] on node WESTON by giving the 
usemame HOLT and the password PASWRD. After accessing the file, 
your VAX BASIC program can read and write records as if the file were in 
your account. 

OPEN 'WESTON"HOLT PASWRD": :DUAO:[HOLT.TMP]INDEXU.DAT;4' & 
FOR INPUT AS FILE #11., INDEXED, PRIMARY TEXT$ 

20.5.2 Task-to-Task Communication 

VAX BASIC supports task-to-task communication if your account has 
NETMBX privileges. 

Follow these steps for task-to-task communication: 

1. Establish a command file at the remote site to execute the program you 
want. The program must be in executable image format. For example, 
you can create the file MARG.COM at the remote site. MARG.COM 
contains a line to run an image (in this case, COPYT.EXE): 

$ RUN COPYT 

The OPEN statements in the programs at both nodes must specify the 
same file attributes. 

Advanced File Input and Output 20-17 



2. Start task-to-task communication by accessing the command file at the 
remote site. For example, a program at the local node could contain 
the following line: 

OPEN 'WESTON::"TASK =MARG"' AS FILE #1%, SEQUENTIAL 

3. The system then assigns the logical name SYS$NET to the program at 
the local node. At the remote node, the program (COPYT.EXE) must 
use this logical for all operations. For example: 

OPEN 'SYS$NET' FOR INPUT AS FILE #1Y,, SEQUENTIAL 

4. The two programs can then exchange messages. The programs must 
have a complementary series of send/receive statements. 

Example 

!Local Program 
MAP (SJK) MSG$ = 32% 
OPEN 1WESTON 11DAVIS PSWRD": :"TASK =MARG"' & 

FOR OUTPUT AS FILE #1%, SEQUENTIAL, MAP SJK 
LINPUT "WHAT IS THE CUSTOMER NAME"; MSG$ 
PUT #1% 
GET #1% 
PRINT MSG$ 
CLOSE #1% 
END 

!Remote Node Program 

10 MAP (SJK) MSG$ = 321. 
MAP (FIL) NAME$ = 32%, RESERVATION$ = 64% 
OPEN 'SYS$NET' FOR INPUT AS FILE #1%, SEQUENTIAL, & 

MAP SJK 
OPEN 1 RESER.DAT 1 FOR INPUT AS FILE #2%, & 

INDEXED FIXED, PRIMARY NAME$, MAP FIL 
GET #1Y, 
MSG$ = "NAME CONFIRMED" 
WHEN ERROR IN 

100 FIND #2%. KEY OY. EQ MSG$ 
USE 

IF ERR = 163 
THEN 

MSG$ = "ERROR IN NAME" 
ELSE 

EXIT HANDLER 
END IF 

END WHEN 

20-18 Advanced File Input and Output 



PUT 11% 

CLOSE 12%, 1% 
END 

The task-to-task communication ends when the files are closed. 

See the VAX/VMS Networking Manual and the VAX/VMS System Manager's 
Reference Manual for more information. 

Advanced File Input and Output 20-19 





Chapter 21 

Using VAX BASIC in the Common 
Language Environment 

The VAX BASIC compiler lets you call external routines from a VAX 
BASIC program. This chapter shows you how to call the following from 
VAX BASIC: 

• External routines written in other VAX languages 

• VAX/VMS Run-Time Library routines 

• VAX/VMS system services 

The terms routine, procedure, and function are used throughout this 
chapter. A routine is a closed, ordered set of instructions that performs 
one or more specific tasks. Every routine has an entry point (the routine 
name), and may or may not have an argument list. Procedures and 
functions are specific types of routines: a procedure is a routine that does 
not return a value, while a function is a routine that returns a value by 
assigning that value to the function's identifier. 

System routines are prewritten VAX/VMS routines that perform common 
tasks such as finding the square root of a number or allocating virtual 
memory. You can call any system routine from VAX BASIC provided that 
the data structures necessary for that routine are supported. The system 
routines used most often are VAX/VMS Run-Time Library routines and 
system services. System routines, which are discussed later in this chapter, 
are documented in detail in the VAX/VMS Run-Time Library Routines 
Reference Manual and the VAX/VMS System Services Reference Manual. 

Using VAX BASIC in the Common Language Environment 21-1 



21.1 Specifying Parameter-Passing Mechanisms 

When you pass data between routines that are not written in the same 
VAX language, you have to specify how you want that data to be rep
resented and interpreted. You do this by specifying a parameter-passing 
mechanism. The three general parameter-passing mechanisms and their 
keywords in VAX BASIC are as follows: 

• By reference-BY REF 

• By descriptor-BY DESC 

• By value-BY VALUE 

The following sections outline each of these parameter-passing mecha
nisms in more detail. 

21.1.1 Passing Parameters by Reference 

When you pass a parameter by reference, VAX BASIC passes the address 
at which the actual parameter value is stored. In other words, your 
routine has access to the parameter's storage address; therefore, you can 
manipulate and change the value of this parameter. Any changes that you 
make to the value of the parameter in your routine are reflected in the 
calling routine as well. 

21.1.2 Passing Parameters by Descriptor 

A descriptor is a data structure that contains the address of a parameter, 
along with other information such as the parameter's data type and size. 
When you pass a parameter by descriptor, the VAX BASIC compiler 
passes the address of a descriptor to the called routine. You usually use 
descriptors to pass parameters that have unknown lengths, such as the 
following: 

• Character strings 

• Arrays 

• Compound data structures 

Like parameters passed by reference, any change made to the value of a 
parameter passed by descriptor is reflected in the calling routine. 

21-2 Using VAX BASIC in the Common Language Environment 



21.1.3 Passing Parameters by Value 

When you pass a parameter by value, you pass a copy of the parameter 
value to the routine instead of passing its address. Because the actual 
value of the parameter is passed, the routine does not have access to 
the storage location of the parameter; therefore, any changes that you 
make to the parameter value in the routine do not affect the value of that 
parameter in the calling routine. 

21. 1.4 VAX BASIC Default Parameter-Passing Mechanisms 

There are default parameter-passing mechanisms established for every 
data type you can use with VAX BASIC. Table 21-1 shows which VAX 
BASIC data types you can use with each parameter-passing mechanism. 

Table 21-1: Allowable Parameter-Passing Mechanisms 
Parameter BY VALUE BY REF BY DESC 

Integer and Real Data 

Variables Yes Yes Yes 

Constants Yes Local Local 
copy1 copy 

Expressions Yes Local Local 
copy1 copy 

Elements of a Yes Yes1 Yes 
nonvirtual array 

Virtual Yes Local Local 
array elements copy1 copy 

Non virtual No Yes Yes1 

entire array 

Virtual No No No 
entire array 

1 
Specifies the default parameter-passing mechanism. 

Using VAX BASIC in the Common Language Environment 21-3 



Table 21-1 (Cont.): Allowable Parameter-Passing Mechanisms 
Parameter BY VALUE BY REF BY DESC 

Packed Decimal Data 

Variables No Yes1 Yes 

Constants No Local Local 
copy1 copy 

Expressions No Local Local 
copy1 copy 

Non virtual No Yes1 Yes 
array elements 

Virtual No Local Local 
array elements copyl copy 

Non virtual No Yes Yes1 

entire arrays 

Virtual No No No 
entire arrays 

String Data 

Variables No Yes Yes 

Constants No Local Local 
copy copy1 

Expressions No Local Local 
copy copy1 

Non virtual No Yes Yes1 

array elements 

Virtual No Local Local 
array elements copy copy1 

Non virtual No Yes Yes1 

entire arrays 

Virtual No No No 
entire arrays 

Other Parameters 

RECORD variables No Yes1 No 

RF A variables No Yes1 No 

1 Specifies the default parameter-passing mechanism. 

21-4 Using VAX BASIC in the Common Language Environment 



21.1.5 Creating Local Copies 

If a parameter is an expression, function, or virtual array element, then it 
is not possible to pass the parameter's address. In these cases, VAX BASIC 
makes a local copy of the parameter's value and passes this local copy by 
reference. 

You can force VAX BASIC to make a local copy of any parameter by 
enclosing the parameter in parentheses. Forcing VAX BASIC to make a 
local copy is a useful technique because you make it impossible for the 
subprogram to modify the actual parameter. In the following example, 
when variable A is printed in the main program, the value is zero because 
the variable A is not modifiable by the subprogram. 

Example 

DECLARE LONG A 
CALL SUB1 ((A)) 
PRINT A 
END 

SUB SUB1 (LONG 8) 
8 = 3 
END SUB 

Output 

0 

By removing the extra parentheses from A, you allow the subprogram to 
modify the parameter. 

Using VAX BASIC in the Common Language Environment 21-5 



Example 

DECLARE LONG A 
CALL SUB1 (A) 
PRINT A 
END 

SUB SUB1 (LONG B) 
B = 3 
END SUB 

Output 

3 

21.2 Calling External Routines 

Most of the steps of calling external routines are the same whether you 
are calling an external routine written in VAX BASIC, an external routine 
written in some other VAX language, a system service, or a VAX/VMS 
Run-Time Library routine. The following sections outline the procedure 
for calling non-BASIC external routines. For information on calling BASIC 
routines, see Chapter 14. 

21.2.1 Determining the Type of Call 

Before you call an external routine, you must determine whether the call 
to the routine should be a function call or a procedure call. You should 
call a routine as a function if it returns any type of value. If the routine 
does not return a value, you should call it as a procedure. 

21.2.2 Declaring an External Routine and Its Arguments 

To call an external routine or system routine you need to declare it as an 
external procedure or function and to declare the names, data types, and 
passing mechanisms for the arguments. Arguments can be either required 
or optional. 

You should include the following information in a routine declaration: 

• The name of the external routine 
• The data types of all the routine parameters 

21-6 Using VAX BASIC in the Common Language Environment 



• The passing mechanisms for all the routine parameters, provided that 
the routine is not written in VAX BASIC 

When you declare an external routine, use the EXTERNAL statement. This 
allows you to specify the data types and parameter-passing mechanisms 
only once. 

In the following example, the EXTERNAL statement declares cobsub as an 
external subprogram with two parameters: a LONG integer and a string 
both passed by reference. 

EXTERNAL SUB cobsub (LONG BY REF, STRING BY REF) 

With the EXTERNAL statement, VAX BASIC allows you to specify that 
particular parameters do not have to conform to specific data types and 
that all parameters past a certain point are optional. A parameter declared 
as ANY indicates that any data type can appear in the parameter position. 
In the following example, the EXTERNAL statement declares a SUB 
subprogram named allocate. This subprogram has three parameters: one 
LONG integer, and two that can be of any VAX BASIC data type. 

EXTERNAL SUB allocate(LONG, ANY,) 

A parameter declared as OPTIONAL indicates that all following param
eters are optional. You can have both required and optional parameters. 
The required parameters, however, must appear before the OPTIONAL 
keyword because all parameters following it are considered optional. 

In the following example, the EXTERNAL statement declares the Run
Time Library routine LIB$LOOKUP_KEY. The keyword OPTIONAL is 
specified to indicate that the last three parameters can be optional. 

EXTERNAL LONG FUNCTION LIB$LOOKUP_KEY(STRING, LONG, OPTIONAL LONG, t 
STRING, INTEGER) 

For more information on using the EXTERNAL statement, see the VAX 
BASIC Reference Manual. 

Using VAX BASIC in the Common Language Environment 21-7 



21.2.3 Calling the Routine 

Once you have declared an external routine, you can invoke it. To invoke 
a procedure, you use the CALL statement. To invoke a function, you use 
the function name in an expression. You must specify the name of the 
routine being invoked and all parameters required for that routine. Make 
sure the data types and passing mechanisms for the actual parameters you 
are passing match those you declared earlier, and those declared in the 
routine. 

If you do not want to specify a value for a required parameter, you 
can pass a null argument by inserting a comma as a placeholder in the 
argument list. If you are passing a parameter using a mechanism other 
than the default passing mechanism for that data type, you must specify 
the passing mechanism in the CALL statement or the function invocation. 

The following example shows you how to call the external subprogram 
allocate declared in Section 21.2.2. When allocate is called, it is called as a 
procedure. The first parameter must always be a valid LONG INTEGER 
value; the second and third parameters can be of any valid VAX BASIC 
data type. 

EXTERNAL SUB allocate(LONG, ANY,) 

CALL allocate (entityY., a$, 11.) 

This next example shows you how to call the Run-Time Library rou
tine LIB$LOOKUP_KEY declared in Section 21.2.2. When the routine 
LIB$LOOKUP_KEY is called, it is invoked as a function. The first two 
parameters are required; all remaining parameters are optional. 

EXTERNAL LONG FUNCTION LIB$LOOKUP_KEY(STRING, LONG, OPTIONAL LONG, t 
STRING, INTEGER) 

ret_statusY. = LIB$LOOKUP_KEY(value$, pointY.) 

Note that if the actual parameter's data type in the CALL statement does 
not match that specified in the EXTERNAL statement, VAX BASIC reports 
the compile-time informational message "Mode for parameter of routine 
changed to match declaration". This tells you that VAX BASIC has made 
a local copy of the value of the parameter, and that this local copy has the 
data type specified in the EXTERNAL declaration. VAX BASIC warns you 
of this because the change means that the parameter can no longer 

21-8 Using VAX BASIC in the Common Language Environment 



be modified by the subprogram. If VAX BASIC cannot convert the data 
type, VAX BASIC signals the error "Mode for parameter of routine not as 
declared". 

The routine being called receives control, executes, and then returns con
trol to the calling routine at the next statement after the CALL statement 
or function invocation. 

VAX BASIC provides the built-in function LOC to allow you to access the 
address of a named external function. This is especially useful when pass
ing the address of a callback or AST routine to an external subprogram. 
In the following example, the address of the function compare is passed to 
the subprogram come_back_now using the LOC function. 

EXTERNAL LONG FUNCTION compare (LONG, LONG) 
EXTERNAL SUB come_back_now (LONG BY VALUE) 
CALL come_back_now (LOC(compare) BY VALUE) 

21.3 Calling VAX BASIC Subprograms from Other Languages 

When you call a VAX BASIC subprogram from another language, there are 
some additional considerations that you should be aware of. For instance, 
although VAX BASIC conforms to the VAX Procedure Calling Standard, 
you should specify explicit passing mechanisms when calling a routine 
written in another language. VAX BASIC's default passing mechanisms 
may not match what the procedure expects. 

VAX FORTRAN passes and receives numeric data by reference; only the 
default parameter-passing mechanisms are required for passing numeric 
data back and forth between VAX FORTRAN and VAX BASIC programs. 

Both VAX BASIC and VAX FORTRAN pass strings by descriptor. 
However, VAX FORTRAN subprograms cannot change the length of 
strings passed to them. Therefore, if you pass a string to a VAX FORTRAN 
subprogram, you must make sure that the string is long enough to receive 
the result. You do this in one of two ways: 

• Pre-extend the string. Set the string variable equal to SP ACE$(n), 
where n is large enough to receive the result. 

• Define the string as fixed-length. Name the string in a COMMON or 
MAP statement. 

Because the length of the returned string does not change, it is either 
padded with spaces or truncated. 

Using VAX BASIC in the Common Language Environment 21-9 



To pass an array to a VAX FORTRAN subprogram, you must specify 
BY REF. 

Note that VAX FORTRAN arrays are one-based, while VAX BASIC arrays 
are zero-based by default. For example, in VAX FORTRAN the array 
Two_D(S,3) represents a 5 by 3 matrix, while in VAX BASIC the array 
Two_d(S,3) represents a 6 by 4 matrix. You can adjust your array bounds 
in VAX BASIC by using the keyword TO when defining the array bounds. 
For more information on array bounds, see Chapter 8. 

When passing two-dimensional arrays as parameters, keep in mind that 
VAX FORTRAN addresses array elements in column major order, while 
VAX BASIC refers to array elements in row major order. That is, VAX 
FORTRAN arrays are of the form Fortran_array(column,row}, while VAX 
BASIC array elements are addressed as Basic_array(row,column). The 
VAX FORTRAN array Grid(x,y) is therefore referred to as GRID(y,x) in 
VAX BASIC. You should reverse references to array elements when pass
ing arrays between VAX BASIC and VAX FORTRAN program modules. 
You can do this in one of two ways: 

• Reverse array bounds in parameter lists 

• Switch row and column variables within loops in your program 
module 

The following example shows a VAX BASIC program that passes a 
two-dimensional array to a VAX FORTRAN subprogram. 

Example 

VAX BASIC Main Program: 

PROGRAM call_f ortran 
! The VAX BASIC main program prints the array before 

calling the subroutine 
EXTERNAL SUB forsub (WORD DIM(,) BY REF) 
DIM WORD array_x(1 TO 10, 1 TO 6) 
FOR column = 1 TO 6 

FOR row = 1 TO 10 
array_x(row,column)=(10•row + column) 
PRINT array_x(row,column); 

NEXT row 
PRINT 

NEXT column 
PRINT 

CALL forsub(array_x(,) BY REF) 

END PROGRAM 

21-10 Using VAX BASIC in the Common Language Environment 



FORTRAN Subprogram: 

C The FORTRAN subprogram receives 
C and then prints the same array 

SUBROUTINE forsub(f_array) 
INTEGER*2 f_array(5,10) 
DO 20 row= 1,5 

TYPE*· (f_array(row,column), column= 1,10) 
20 CONTINUE 

RETURN 
END 

You can pass only the data types that VAX BASIC and VAX FORTRAN 
have in common. You cannot pass a complex number from a VAX 
FORTRAN program to a VAX BASIC program, because VAX BASIC 
does not support complex numbers. However, you can pass a complex 
number as two floating-point numbers and treat them independently in 
the VAX BASIC program. 

21.4 Calling System Routines 

The steps for calling system routines are the same as those for calling 
any external routine. However, when calling system routines, you need 
to provide additional information, which is discussed in the following 
sections. 

21.4.1 VAX/VMS Run-Time Library Routines 

The VAX/VMS Run-Time Library routines are grouped according to the 
types of tasks they perform. The routines in each group have a prefix that 
identifies them as members of a particular VAX/VMS Run-Time Library 
facility. Table 21-2 lists all the language-independent Run-Time Library 
facility prefixes and the types of tasks each facility performs. 

Using VAX BASIC in the Common Language Environment 21-11 



Table 21-2: 
Facility Prefix 

DTK$ 

LIB$ 

MTH$ 

OTS$ 

PPL$ 

SMG$ 

STR$ 

Run-Time Library Facilities 
Types of Tasks Performed 

DECtalk routines that are used to control DIGITAL's DECtalk 
device 

General purpose routines that obtain records from devices, 
manipulate strings, convert data types for 1/0, allocate 
resources, obtain system information, signal exceptions, 
establish condition handlers, enable detection of hardware 
exceptions, and process cross-reference data 

Mathematics routines that perform arithmetic, algebraic, and 
trigonometric calculations 

Language-independent support routines that perform tasks 
such as data type conversions as part of a compiler's gener
ated code 

Parallel processing routines that help you implement concur
rent programs on single-CPU and multiprocessor systems 

Screen management routines that are used in designing, 
composing, and keeping track of complex images on a video 
screen 

String manipulation routines that perform such tasks as 
searching for substrings, concatenating strings, and prefixing 
and appending strings 

21.4.2 System Service Routines 

System services are system routines that perform a variety of tasks such as 
controlling processes, communicating among processes, and coordinating 
I/O. 

Unlike the VAX/VMS Run-Time Library routines, which are divided into 
groups by facility, all system services share the same facility prefix (SYS$). 
However, these services are logically divided into groups that perform 
similar tasks. Table 21-3 describes these groups. 

21-12 Using VAX BASIC in the Common Language Environment July 1988 



Table 21-3: System Services 
Group Types of Tasks Performed 

AST Allows processes to control the handling of ASTs 

Change Mode Changes the access mode of particular routines 

Condition Handling 

Event Flag 

Information 

Input/Output 

Lock Management 

Logical Na mes 

Memory Management 

Process Control 

Security 

Time and Timing 

Designates condition handlers for special purposes 

Clears, sets, reads, and waits for event flags, and 
associates with event flag clusters 

Returns information about the system, queues, jobs, 
processes, locks, and devices 

Performs IjO directly, without going through VAX RMS 

Enables processes to coordinate access to shareable 
system resources 

Provides methods of accessing and maintaining pairs of 
character string logical names and equivalence names 

Increases or decreases available virtual memory, controls 
paging and swapping, and creates and accesses shareable 
files of code or data 

Creates, deletes, and controls execution of processes 

Enhances the security of VAX/VMS systems 

Schedules events, and obtains and formats binary time 
values 

21.4.3 System Routine Arguments 

All of the system routine arguments are described in terms of the following 
information: 

• VMS usage 

• Data type 
• Type of access allowed 
• Passing mechanism 

Using VAX BASIC in the Common Language Environment 21-13 



VMS usages are data structures that are layered on the standard VMS /VMS 
data types. For example, the VMS usage mask_longword signifies an 
unsigned longword integer that is used as a bit mask, and the VMS 
usage floating_point represents any VAX/VMS floating-point data type. 
Table 21-4 lists all the VMS usages and the VAX BASIC statements you 
need to implement them. 

Table 21-4: VMS Usages 
VMS Usage VAX BASIC Implementation 

access_bit_names Not applicable (NA) 

access_mode BYTE (signed) 

address LONG 

address_range LONG address_range (1) 
or 

arg-1ist 

ast_procedure 

boolean 

byte_signed 

byte_unsigned 

channel 

char_string 

complex_number 

cond_value 

context 

RECORD Address_range 
LONG beginning_address 
LONG ending_address 

END RECORD 

NA 

EXTERNAL LONG FUNCTION asLproc 1 

LONG 

BYTE 

BYTE 2 

WORD 

STRING 

RECORD complex 
REAL reaLpart 
REAL imaginary-part 

END RECORD 

LONG 

LONG 

1 Use the LOC function to pass the address of an AST routine to a system service. Specify BY 
VALUE for the passing mechanism. 

2 Although unsigned data structures are not directly supported in VAX BASIC, you can substitute the 
signed equivalent provided you do not exceed the range of the signed data structure. 

21-14 Using VAX BASIC in the Common Language Environment 



Table 21-4 (Cont.): VMS Usages 
VMS Usage VAX BASIC Implementation 

date_time BASIC$QUADWORD 3 

device_name STRING 

eLcluster_name STRING 

eLnumber LONG 

exiLhandler_block RECORD EHCB 

fab 

file_protection 

floating_point 

function_code 

identifier 

io_status_block 

LONG flink 
LONG handler_addr 
BYTE arg_count 
BYTE FILL(3) 
LONG status_value_addr 

END RECORD 

NA 

LONG 

SINGLE 
DOUBLE 
GFLOAT 
HFLOAT 

RECORD function-code 
WORD major-function 
WORD subfunction 

END RECORD 

LONG 

RECORD iosb 
WORD iosb_field(l to 4) 

END RECORD 

3The definition of the RECORD structures are included in the VAX BASIC system definitions text 
library. See Section 21.4.4 for more information. 

Using VAX BASIC in the Common Language Environment 21-15 



Table 21-4 (Cont.): VMS Usages 
VMS Usage 

item-1isL2 

item-1isL3 

item-1.ist_pair 

21- 16 Using VAX BASIC in the Common Language Environment 

VAX BASIC Implementation 

RECORD item-1.isLtwo 
GROUP item(lS) 

VARIANT 
CASE 

WORD comp-1.ength 
WORD code 
LONG comp_address 

CASE 
LONG terminator 

END VARIANT 
END GROUP 

END RECORD 

RECORD item-1.isL3 
GROUP item (15) 

VARIANT 
CASE 

WORD buf-1.en 
WORD code 
LONG buffer-address 
LONG length_address 

CASE 
LONG terminator 

END VARIANT 
END GROUP 

END RECORD 

RECORD item-1.isLpair 
GROUP item(lS) 

VARIANT 
CASE 

LONG code 
LONG item_value 

CASE 
LONG terminator 

END VARIANT 
END GROUP 

END RECORD item-1.isLpair 



Table 21-4 (Cont.): VMS Usages 
VMS Usage VAX BASIC Implementation 

item_quota-1ist RECORD item_quota-1ist 

locLJ.d 

lock_status_block 

lock_ value_block 

logical _name 

longworcLsigned 

longword_unsigned 

mask_byte 

mask-1ongword 

mask_quadword 

mask_word 

nulLarg 

octaword_signed 

octaword_unsigned 

page_protection 

procedure 

process_id 

process_name 

GROUP quota(n) 
VARIANT 
CASE 

BYTE quota_name 
LONG item_value 

CASE 
BYTE lisLend 

END VARIANT 
END GROUP 

END RECORD 

LONG 

NA 

NA 

STRING 

LONG 

LONG 2 

BYTE 

LONG 

BASIC$QUADWORD 3 

WORD 

A null argument is indicated by a comma 
used as a placekeeper in the argument list. 

BASIC$0CTAWORD 

BASIC$0CTAWORD 

LONG 

EXTERNAL LONG FUNCTION proc 

LONG 

STRING 

2 Although unsigned data structures are not directly supported in VAX BASIC, you can substitute the 
signed equivalent provided you do not exceed the range of the signed data structure. 

3The definition of the RECORD structures are included in the VAX BASIC system definitions text 
library. See Section 21.4.4 for more information. 

Using VAX BASIC in the Common Language Environment 21-17 



Table 21-4 (Cont.): VMS Usages 
VMS Usage 

quad worcLsigned 

quadword_unsigned 

rights_holder 

rights_id 

rah 

section_id 

section_name 

system_access_id 

time_name 

uic 

user_arg 

varying_arg 

vector_byte_signed 

vector_byte_unsigned 

vector-1ongword_signed 

vector-1ongword_unsigned 

vector_quadworcLsigned 

vector_quad word_unsigned 

vector_ worcLsigned 

vector_ word_unsigned 

worcLsigned 

word_unsigned 

VAX BASIC Implementation 

BASIC$QUADWORD 3 

BASIC$QUADWORD 3 

BASIC$QUADWORD 3 

LONG 

NA 

BASIC$QUADWORD 3 

STRING 

BASIC$QUADWORD 3 

STRING 

LONG 

LONG 

Dependent upon application. 

BYTE array(n) 

BYTE array(n) 2 

LONG array(n) 

LONG array(n) 2 

NA 

NA 

WORD array(n) 

WORD array(n) 2 

WORD 

WORD 2 

2 Although unsigned data structures are not directly supported in VAX BASIC, you can substitute the 
signed equivalent provided you do not exceed the range of the signed data structure. 

3The definition of the RECORD structures are included in the VAX BASIC system definitions text 
library. See Section 21.4.4 for more information. 

21-18 Using VAX BASIC in the Common Language Environment 



If a system routine argument is optional, it will be indicated in the format 
section of the routine description in one of two ways: 

[,optional-argument] 
,[optional-argument] 

If the comma appears outside the brackets, you must either pass a zero 
by value or use a comma in the argument list as a placeholder to indicate 
the place of the omitted argument. If this is the last argument in the list, 
you must still include the comma as a placeholder. If the comma appears 
inside the brackets, you can omit the argument altogether as long as it is 
the last argument in the list. 

21.4.4 Including Symbolic Definitions 

To enhance program development, VAX BASIC allows you to use sym
bolic definitions. Symbolic definitions are names or symbols associated 
with values. These symbols are used in many ways; the value associated 
with a symbol can be a status code, a mask, or an offset into a data struc
ture. Many system routines depend on values that are defined in separate 
symbol definition files. For example, the status code for successful com
pletion has a value of one. However, this code for successful completion 
is defined in the system library (STARLET) as the symbol SS$_NORMAL. 

A program might compare the status code returned by a system service to 
either the symbolic constant SS$_NORMAL or the integer value 1. The 
program would execute the same way in either case. In the first case, the 
value for SS$_NORMAL is supplied at link time by the VAX/VMS Linker. 
In the second case, the value one is included in the program as a literal 
constant. The advantages of using symbolic definitions are as follows: 

• Because symbolic definition names are mnemonic, the program is 
easier to read and understand. 

• It is easier to write the symbolic definition and let the VAX/VMS 
Linker fill in the value, than to look up the value associated with the 
symbol and include that value in the program. 

• Should the value associated with a symbol ever change, you must 
relink the program. To change a hard-coded definition, you must edit 
the source file, then recompile and relink. 

Symbolic definitions used by system services are located in the default 
system library, STARLET.OLB. 

Using VAX BASIC in the Common Language Environment 21-19 



For Run-Time Library routines, the only time that you need to include 
symbolic definitions is when you are calling an SMG$ routine, or when 
you are calling a routine that is a jacket to a system service. (A jacket 
routine in the Run-Time Library is a routine that provides a simpler, more 
easily used interface to a system service.) If you call a routine in the 
SMG$ facility, you must include the definition file SMGDEF. All system 
services, however, require that you include SSDEF to check status. Many 
other system services require other symbol definitions as well. 

To determine whether or not you need to include other symbolic defini
tions for the system service you want to reference, refer to the documen
tation for that service. If the documentation states that values are defined 
in the specified macro, you must include those symbolic definitions in 
your program. VAX BASIC provides a text library that contains symbolic 
definitions that can be accessed using the %INCLUDE directive. In the 
following example, the definition file, SMGDEF is included from the text 
library SYS$LIBRARY:BASIC$STARLET.TLB: 

Y.INCLUDE "SMGDEF" Y.FROM Y.LIBRARY "SYS$LIBRARY:BASIC$STARLET.TLB" 

For more information on including text libraries, see Chapter 18. 

21.4.5 Condition Values 

Many system routines return a condition value that indicates success or 
failure. If a condition value is returned, you should check this value after 
you call a system routine and control returns to your program. 

Condition values indicating success always appear first in the list of 
condition values for a particular routine, and success codes always have 
odd values. A success code that is common to many system routines 
is the condition value SS$_NORMAL, which indicates that the routine 
completed normally and successfully. You can test for this condition value 
as follows: 

ret_status = SMG$CREATE_PASTEBOARD(pb_id) 
IF (ret_status <> SS$_NORMAL) THEN 

CALL LIB$STOP(ret_status BY VALUE) 
END IF 

Because all success codes have odd values, you can check a return status 
for any success code. For example, you can cause execution to continue 
only if a success code is returned by including the following statements in 
your program. 

21-20 Using VAX BASIC in the Common language Environment 



ret_status = SMG$CREATE_PASTEBOARD(pb_id) 
IF (ret_status AND 1%) = 01. THEN 

CALL LIB$STOP(ret_status BY VALUE) 
END IF 

In general, you can check for a particular success or failure code or you 
can test the condition value returned against all success codes or all failure 
codes. 

21.5 Examples of Calling System Routines 

This section provides complete examples of calling system routines from 
VAX BASIC. In addition to the examples provided here, the VAX/VMS 
Run-Time Library Routines Reference Manual and the VAX/VMS System 
Services Reference Manual also provide examples for selected routines. 
Refer to these manuals for help on the use of a specific system routine. 

The following example uses a function that invokes the SYS$TRNLNM 
system service. SYS$TRNLNM translates a logical name to an equivalence 
name. It places the equivalence name string into a string variable you 
supply in the parameter list. 

System services never change a string variable's length. Therefore, if you 
use a system service that returns a string, be sure that the receiving string 
variable is long enough for the returned data. You can make sure of this 
in one of two ways: 

• Define the string variable's length in a MAP, COMMON or RECORD 
definition. 

• Assign a long string to the variable (for example, A$ = SP ACE$(80)). 
This pre-extends the variable so that it is long enough to receive all of 
the returned data. 

Example 

10 !This function attempts to translate a logical name while searching 
!through all of the tables defined in LNM$DCL_LOGICAL. If the translation 
!is successful, $TRNLNM returns the equivalence name string. 

FUNCTION STRING Translate(STRING Logical_name) 
EXTERNAL LONG FUNCTION SYS$TRNLNM (LONG, STRING, STRING, LONG, ITEM_LIST) 
EXTERNAL LONG CONSTANT LNM$M_CASE_BLIND, LNM$_STRING, SS$_NORMAL 

!Declare the parameters 

DECLARE LONG attributes, & 
trans_status 

DECLARE WORD equiv_len 

Using VAX BASIC in the Common Language Environment 21-21 



!Declare the value returned by the function. 

DECLARE LONG CONSTANT Buffer_length = 266 

RECORD item_list 
GROUP item (1) 

VARIANT 
CASE 

WORD Buf_len 
WORD Code 
LONG Buffer_address 
LONG Length_address 

CASE 
LONG Terminator 

END VARIANT 
END GROUP item 
END RECORD item_list 

!Declare an instance of the record 

DECLARE ITEM_LIST TRNLNM_ITEMS 

!Define a common area for Translation_buffer 

COMMON (Trans_buffer) & 
STRING Translation_buffer = Buffer_length 

!Setting TRN$LNM to not distinguish between uppercase and lowercase 
!letters in the logical name to be translated 

Attributes = LNM$M_CASE_BLIND 

!Assign values to each record item 

TRNLNM_ITEMS::item(O)::Buf_len = Buffer_length 
TRNLNM_ITEMS::item(O)::Code = LNM$_STRING 
TRNLNM_ITEMS::item(O)::Buffer_address = LOC(Translation_buffer) 
TRNLNM_ITEMS::item(O)::Length_address = LOC(Equiv_len) 
TRNLNM_ITEMS::item(1)::Terminator = OY. 

!Invoke the function 

TRANS_STATUS = SYS$TRNLNM(attributes, 11 LNM$DCL_LOGICAL 11 , logical_name, & 
,trnlnm_items) 

!Check the condition value 

IF trans_status AND SS$_NORMAL 
THEN 

Translate = LEFT(Translation_buffer, Equiv_len) 
ELSE 

Translate = 1111 

END IF 
END FUNCTION 

This next example is a complete program that demonstrates the use 
of the system service $QIOW. Unlike SYS$QIO, SYS$QIOW performs 
synchronously; SYS$QIOW returns a condition value to the caller after 
IJO operation is complete. 

21-22 Using VAX BASIC in the Common Language Environment 



Example 

10 !Declare SYS$QIOW as an EXTERNAL FUNCTION 

EXTERNAL LONG FUNCTION SYS$QIOW(,WORD BY VALUE.LONG BY VALUE.WORD DIM() & 
BY REF,,,STRING BY REF.LONG BY VALUE,, & 
LONG BY VALUE, , ) 

!Declare SYS$ASSIGN as an EXTERNAL FUNCTION 

EXTERNAL LONG FUNCTION SYS$ASSIGN(STRING,WORD,,) 

EXTERNAL LONG CONSTANT IO$_WRITEVBLK 

!Declare the parameters 

DECLARE STRING my_term, out_str, & 
WORD term_chan, counter, stat_block(3),& 
LONG ret_status, msg_len, car_cntrl 

out_str = "Successful $QIOW output!" 
my_term = "SYS$COMMAND" 
msg_len = LEN(out_str) 
car_cntrl = 32% 

!Assign a channel to the terminal 

ret_status = SYS$ASSIGN(my_term, term_chan, ,) 
CALL LIB$STOP(ret_status BY VALUE) IF (ret_status AND 1%) = 0% 

!Output the message four times 

FOR counter = 1% to 4% 

ret_status = SYS$QIOW(,term_chan BY VALUE, IO$_WRITEVBLK BY VALUE, & 
stat_block() BY REF,, ,out_str BY REF, & 
msg_len BY VALUE,,car_cntrl BY VALUE,,) 

CALL LIB$STOP(ret_status BY VALUE) IF (ret_status AND 1%) = 0% 
CALL LIB$STOP(stat_block(O%) BY VALUE) & 

IF (stat_block(O%) and 1%) = oi 
NEXT counter 

END 

Output 

Successful $QIOW output! 
Successful $QIOW output! 
Successful $QIOW output! 
Successful $QIOW output! 

In addition to invoking the function SYS$QIOW, the previous example 
also invokes the function SYS$ASSIGN. This function provides a process 
with an 1/0 channel so that input and output operations can be performed 
on a logical device name (my_term). As soon as SYS$ASSIGN is invoked 
and a path is established to the device, a counter is set up to invoke 
the $QIOW function four times. Once all I\ 0 operations are complete, 
$QIOW returns to the caller. 

Using VAX BASIC in the Common Language Environment 21-23 



21.6 The VAX Procedure Calling and Condition Handling Standard 

The primary purpose of the VAX Procedure Calling and Condition 
Handling Standard is to define the concepts for invoking routines and 
passing data between them. Some of the interface attributes that the 
VAX Procedure Calling and Condition Handling Standard specifies are as 
follows: 

• The argument list 

• The return of the function value 
• Register usage 

• Stack usage 

These attributes are examined in more detail in the following sections. 
The VAX Procedure Calling and Condition Handling Standard also defines 
such interfaces as the calling sequence, the argument data types and 
descriptor formats, condition handling, and stack unwinding. These 
attributes are discussed in detail in the Introduction to VAX/VMS System 
Routines. 

21.8.1 The Argument List 

One of the module interfaces defined by the VAX Procedure Calling and 
Condition Handling Standard is the argument list. You use an argument 
list to pass information to a routine and receive results. An argument list 
is a collection of longwords in memory that represents a routine parameter 
list and possibly includes a function value. Figure 21-1 shows a typical 
argument list. 

21-24 Using VAX BASIC in the Common Language Environment 



Figure 21-1 : Structure of a VAX Argument List 

0 l n 

arg1 

arg2 

. 
argn 

ZK-5503-86 

The VAX/VMS operating system requires that the first longword be 
present. This longword stores the number of arguments (the argument 
count: n) as an unsigned integer value in the low byte of the longword. 
The remaining 24 bits of the first longword are reserved for DIGITAL use 
and should be zero. The longwords labeled arg1 through argn are the 
actual parameters, which can be any of the following: 

• An uninterpreted 32-bit value (passed by value) 

• An address (passed by reference) 
• An address of a descriptor (passed by descriptor) 

The forms of the arguments in the argument list depend on the passing 
mechanisms specified. The argument list contains the parameters that are 
passed to the routine. If, for example, you pass three arguments, the first 
one by value, the second by reference, and the third by descriptor, the 
argument list would contain the value of the first argument, the address 
of the second, and the address of the descriptor of the third. Figure 21-2 
illustrates this argument list. 

Using VAX BASIC in the Common language Environment 21-25 



Figure 21-2: Example of a VAX Argument List 

0 l 3 

copy of the first parameter 

address of the second parameter 

address of descriptor of the third parameter 

ZK-5504-86 

21.6.2 The Return of the Function Value 

A function is a routine that returns a single value to the calling routine. 
The function value represents the return value that is assigned to the func
tion's identifier during execution. According to the VAX Procedure Calling 
and Condition Handling Standard, a function value can be returned as 
either an actual value or a condition value that indicates success or failure. 

21.6.3 Register and Stack Usage 

The VAX Procedure Calling and Condition Handling Standard defines 
several registers. These registers and their defined uses are listed in 
Table 21-5. 

21-26 Using VAX BASIC in the Common Language Environment 



Table 21-5: VAX Register Usage 
Register 

PC 

SP 

FP 

AP 

Rl 

RO, Rl 

Use 

Program counter 

Stack pointer 

Current stack frame pointer 

Argument pointer 

Environment value (when necessary) 

Function value return registers 

The called routine can use registers R2 through Rll for computation and 
the AP register as a temporary register. 

The stack is a Last-In/First-Out (LIFO) temporary storage area allocated by 
the system for each user process. On the call stack, the system maintains 
information about each routine call in the current image. Each time a 
routine is called by a program, the hardware creates a structure on the 
call stack known as the call frame. The call frame for each active routine 
contains the following: 

• A pointer to the call frame of the previous routine call. This pointer 
corresponds to the frame pointer (FP). 

• The argument pointer (AP) of the previous routine call. 

• The storage address of the point at which the routine was called; 
that is, the address of the instruction following the call to the current 
routine. This address is called the program counter (PC). 

• The contents of other general registers. Based on a mask specified 
in the control information, the system restores the saved contents of 
these registers to the calling routine when control returns to it. 

When execution of a routine ceases, the system uses the frame pointer in 
the call frame of the current routine to locate the frame of the previous 
routine. The system then removes the call frame of the current routine 
from the stack. 

Using VAX BASIC in the Common Language Environment 21-27 



21. 7 Additional Information 

The information provided on system routines in this chapter is general to 
all system services and VAX/VMS Run-Time Library routines. For specific 
information on these routines, refer to the VAX/VMS Run-Time Library 
Routines Reference Manual and the VAX/VMS System Services Reference 
Manual. 

For more information on the VAX Procedure Calling and Condition 
Handling Standard, see the Introduction to VAX/VMS System Routines. For 
information on programming considerations with external routines, refer 
to the Introduction to VAX/VMS System Routines and the Guide to Creating 
Modular Procedures on VAX/VMS. 

21-28 Using VAX BASIC in the Common Language Environment 



Chapter 22 

Libraries and Shareable Images 

Libraries and shareable images allow you to access program symbols and 
incorporate commonly used routines into your source code. This chapter 
describes how to create and access libraries and shareable images in 
VAX BASIC. 

22.1 Introduction 

Libraries are files that can contain object modules, text modules and 
shareable images. There are two types of libraries: system-supplied and 
user-supplied. System-supplied libraries are provided by the VAX/VMS 
system, whereas user-supplied libraries are libraries that you create. 

Shareable images are similar to libraries; they contain code that can be 
shared by other programs. However, shareable images contain executable 
code rather than object code. 

If you have routines that are used in many programs, placing the routines 
in object module libraries or shareable images lets you access them at link 
time. You do not need to include the routines in the source code, thus 
shortening compilation time and conserving disk space. 

If you have routines that are used simultaneously by many different 
programs, placing the routines in installed shareable images can improve 
performance at run time, conserve main physical memory, and reduce 
paging I/O because one copy of the executable code is shared by all users. 

Libraries and Shareable Images 22-1 



Object module libraries, shareable image libraries and shareable images 
can be accessed in the BASIC environment as well as at DCL command 
level. When you link programs at DCL command level, these libraries 
can contain object code created by any VAX native mode compiler or 
asse/mbler. 

When you run a program in the BASIC environment, you can access: 

• Object libraries containing only VAX BASIC object code (object code 
from SUB, FUNCTION and PICTURE subprograms) 

• Sharable image libraries that contain BASIC or non-BASIC object code 
(such as a transfer vector written in VAX MACRO) 

Only BASIC subprograms can be loaded into the environment with the 
LOAD command. 

For a more thorough understanding of libraries and shareable images, refer 
to the VMS Linker Utility Manual and the Guide to Creating Modular Library 
Procedures. See the VMS Install Utility Manual for more information 
on installing shareable images. For information on text libraries, see 
Chapter 18 in this manual. 

22.2 System-Supplied Libraries 

If symbols are unresolved after the VAX/VMS Linker searches all user
supplied libraries, the linker goes on to search the files in the default 
system library. VAX/VMS supplies the following system libraries: 

22-2 Libraries and Shareable Images July 1981 



System Library 

IMAGELIB.OLB 

STARLET.OLB 

Purpose 

This library contains the symbol tables for the parts 
of the VAX Common Run-Time Library (RTL) that 
are in shareable images. If either the VAX/VMS 
Linker or the VAX BASIC compiler needs to search 
the default system library, it searches the shareable 
image symbol table library (IMAGELIB.OLB) first. 

This library is an object module library containing 
the object files used to create the shareable image 
version of the RTL, as well as other less frequently 
used procedures. This object library also contains 
modules for interfacing to VAX/VMS System 
Services. If program symbols remain unresolved af
ter the VAX/VMS Linker searches IMAGELIB.OLB, 
the linker then searches this library. 

The linker searches modules in the following order: 

1. Modules and libraries specified in the LINK command line, in the 
order given 

2. User-supplied libraries (logicals of the form LNK$LIBRARY and 
LNK$LIBRARY_l through LNK$LIBRARY_999) 

Libraries and Shareable Images 22-2.1 





3. Images contained in IMAGELIB.OLB 

4. Modules contained in STARLET.OLB 

If the linker finds no needed routines in the RTL shareable images, it does 
not include any shareable images in the image being created. You can use 
the /NOSYSSHR qualifier to the LINK command to suppress the linker's 
search of RTL shareable images. Similarly, you can use the /NOSYSLIB 
qualifier to suppress the linker's search of both RTL shareable images and 
STARLET.OLB. 

Note that the VAX/VMS Linker searches user-supplied libraries before 
searching the default system library. This means that, if one of your 
modules has the same name (program symbol) as a VAX/VMS System 
Service or an RTL routine, the VAX/VMS Linker will include your module 
in the resulting image rather than the system service or RTL routine. 

22.3 Creating User-Supplied Object Module Libraries 

You create a user-supplied object module library with the DCL command 
LIBRARY. To do this, you must specify a library file specification as well 
as a list of the program modules you want to insert into the library. For 
example: 

$ BASIC MODULE1,MODULE2 
$LIBRARY/CREATE TESTLIB1.0LB MODULE1.0BJ,MODULE2.0BJ 

The BASIC command creates object files from MODULEl.BAS and 
MODULE2.BAS. The LIBRARY command creates an object module library 
named TESTLIBl.OLB and inserts MODULEl.OBJ and MODULE2.0BJ 
into it. See the VAX/VMS DCL Dictionary for more information on the 
LIBRARY command. 

22.3.1 Accessing User-Supplied Object Module Libraries in the BASIC 
Environment 

Within the BASIC environment, VAX BASIC allows you to automatically 
access user-supplied object module libraries containing object files created 
by VAX BASIC. To do this, you must assign the logical name BASIC$LIBn 
to each library you wish to access, where n represents a number from 0 
to 9. For example: 

$ASSIGN USER$$DEV:[SMITH]TESTLIB.OLB BASIC$LIBO 

Libraries and Shareable Images 22-3 



After you enter this command, a program executing in the BASIC envi
ronment automatically accesses USER$$DEV:[SMITH]TESTLIB.OLB to 
resolve program symbols. Note that this command assigns BASIC$LIBO 
as a process-wide logical name. A privileged user can also assign a VAX 
BASIC library as a group- or system-wide logical name. 

22.3.2 Accessing User-Supplied Object Module Libraries at DCL Level 

To access user-supplied object module libraries at DCL level, you must 
specify the /LIBRARY qualifier to the DCL command LINK. For example: 

$ LINK MAIN,TESTLIB/LIBRARY 

This command causes the linker to search TESTLIB.OLB if there are 
unresolved symbols in the VAX BASIC object module MAIN.OBJ. You 
can also explicitly include a module from a library with the /INCLUDE 
qualifier: 

$ LINK MAIN,TESTLIB/LIBRARY/INCLUDE = (module1,module2) 

This command causes the VAX/VMS Linker to include module1 and 
module2 from TESTLIB.OLB, whether or not it needs these modules to 
resolve symbols. 

As in the BASIC environment, BASIC at DCL level allows you to access 
user-supplied object module libraries automatically. However, a program 
executing at DCL level does not automatically search libraries that are 
assigned to the logical name BASIC$LIBO. Instead, the linker searches 
libraries that are assigned to the logical name LNK$LIBRARY. If you have 
more than one library for the linker to search, you must number these 
libraries consecutively otherwise the linker does not search past the first 
missing logical name. The linker allows you to number libraries from 1 
through 999. 

For example: 

$ASSIGN USER$$DEV:[KELLY]TESTLIB.OLB LNK$LIBRARY 
$ASSIGN USER$$DEV:[KELLY]TESTLIB1.0LB LNK$LIBRARY_1 
$ASSIGN USER$$DEV:[KELLY]TESTLIB2.0LB LNK$LIBRARY_2 

After you issue these commands, a program executing at DCL 
level automatically accesses USER$$DEV:[KELLY]TESTLIB.OLB, 
USER$$DEV:[KELLY]TESTLIB1.0LB and USER$$DEV:[KELLY] 
TESTLIB2.0LB to resolve program symbols. 

22-4 Libraries and Shareable Images 



On MicroVAX/VMS systems, LNK$LIBRARY_l is already used 
by the system; therefore, you should begin your assignments with 
LNK$LIBRARY_2 and number any additional libraries consecutively. 
On other VAX/VMS systems, number the first library as LNK$LIBRARY, 
the second as LNK$LIBRARY_l, the third as LNK$LIBRARY_2, 
and so on. 

22.4 Shareable Images 

Shareable images are not directly executable. They contain executable 
code that can be shared by other images and are intended to be included 
by the VAX/VMS Linker in other images. You can access shareable 
images both in the BASIC environment and at DCL level, as described in 
the next two sections. 

The benefits of using shareable images include 

• Conserving disk storage space 

• Conserving main physical memory 

• Reducing paging If O 
• Allowing shared memory-resident data bases 

• Eliminating the need to relink programs that access a new version of a 
shared routine 

Note that some of these benefits can only be realized if the shareable 
image is installed with the VAX/VMS Install Utility (INSTALL). 

To create a shareable image, use the /SHAREABLE qualifier to the DCL 
command LINK. In addition, you must specify at least one object module. 
For example: 

$ LINK/SHAREABLE prog1 

This command creates an image that can be linked to other programs. 
You cannot execute a shareable image with the DCL command RUN. 

When a program is linked with a shareable image, the required shareable 
image code is not included in the created executable image on disk. This 
code is included by the image activator at run time. Therefore, many 
programs can reside on disk and be bound with a particular shareable 
image, and only one physical copy of that shareable image file needs to 
exist on disk. 

Libraries and Shareable Images 22-5 



If a shareable image has been installed, you conserve physical memory 
and potentially reduce paging I/O. In this case, many processes can 
include the physical memory pages of an installed shareable image in their 
address space. This reduces the requirements for physical memory. 

Paging occurs when a process attempts to access a virtual address that is 
not in the process working set. When this page fault occurs, the page is 
either in a disk file, in which case paging I/O is required, or is already 
in physical memory. If a page fault occurs for a shared page, the shared 
page may already be resident in memory and in this case, no paging I/O 
is required. 

22.4.1 Accessing Shareable Images in the BASIC Environment 

Within the BASIC environment, you can access only shareable images 
contained in shareable image libraries when you issue the DCL command 
RUN. VAX BASIC always searches the system shareable image library, 
SYS$LIBRARY:IMAGELIB.OLB. To cause VAX BASIC to search an addi
tional shareable image library, you must first create the shareable image 
library and then assign it to the logical name BASIC$LIB. To create a 
shareable image library, you must use the /CREATE and /SHARE quali
fiers to the DCL command LIBRARY. You must also specify the name of 
the library as well as the names of the shareable images that you wish to 
insert. For example: 

$ LIBRARY/CREATE/SHARE library_name prog1 

Once you have created the library, you must assign it to the logical name 
BASIC$LIBn where n represents a number from 0 to 9. For example: 

$ ASSIGN DEV$$DISK: [BOB.LIBRARIES]library_name BASIC$LIBO 

After you issue this command, a program executing in the BASIC environ
ment automatically accesses library_name as a shareable image. 

22-6 Libraries and Shareable Images 



22.4.2 Accessing Shareable Images at DCL Level 

To access a shareable image at DCL level, you must follow these steps: 

1. Write and compile a program unit that is to be inserted into a share
able image. 

2. Create an options file required for the link operation. 

3. Link the program with the qualifier /SHAREABLE and specify the 
options file with the /OPTION qualifier. 

4. Write a main program that accesses the routine in the shareable image. 
5. Compile the main program and link it with the shareable image. 

The following example is an illustration of how to access a shareable 
image at DCL level using these five steps. 

Step 1: Write and compile a program unit that is to be inserted into a 
shareable image. 

!Program name - ADD.BAS 
FUNCTION REAL ADD (LONG A, LONG B) 
ADD = A + B 
FUNCTIONEND 

Step 2: Create an options file required for the link operation. 

!Program name - ADDSUB.OPT 
UNIVERSAL = ADD 

Step 3: Link the program with the qualifiers /SHAREABLE and 
/OPTION. 

$ LINK/SHAREABLE ADD, ADDSUB/OPTION 

Copy the shareable image to SYS$SHARE:, or assign a logical name to the 
full image file specification. 

Step 4: Write a main program that accesses the routine in the shareable 
image. 

!Program name - CALLADD.BAS 
EXTERNAL REAL FUNCTION ADD (LONG, LONG) 
DECLARE LONG X,Y 
x = 1 
y = 2 
PRINT ADD(X,Y) 
END 

Libraries and Shareable Images 22-7 



Step 5: Compile the main program and link it with the shareable image. 

$ LINK CALLADD,ADDMAIN/OPTION 

In order to link CALLADO with the shareable image ADD, you must have 
a VAX/VMS Linker options file specifying that ADD is a shareable image: 

!Options file - ADDMAIN.OPT 
ADD/SHAREABLE 

Now you are ready to execute the program. When you do this, the 
image activator attempts to locate the shareable image in the directory 
SYS$SHARE:. If you want the image activator to access a shareable image 
outside SYS$SHARE:, you must assign a logical name to the shareable 
image before you execute the program. That is, you must assign the full 
file specification of the shareable image to the name of the shareable 
image, as follows: 

$ DEFINE MYSHR DISK$WORKDISK: [MYDIR]MYSHR 

This is a very simple example of using shareable images. For a thorough 
understanding of shareable images, see the VAX/VMS Linker Reference 
Manual. 

22-8 Libraries and Shareable Images 



Chapter 23 

Extracting Record Definitions from the 
VAX Common Data Dictionary 

This chapter describes how to extract record definitions from the 
VAX Common Data Dictionary (CDD). 

!3. 1 Introduction to the COD 

The VAX Common Data Dictionary (CDD) is a tool that supports sharing 
of data definitions by VAX/VMS programming languages and VAX 
Information Architecture products. Each language or product translates 
the generic definitions stored in the CDD into language- or product
specific definitions that it can use. Because CDD data definitions can be 
used by several different products, programmers do not have to write 
special programs to allow different products to work together or store 
redundant copies of data files. Also, because CDD data definitions are 
centrally located, you can change several programs by modifying a single 
data definition. 

There are two types of dictionaries: DMU-format and CDO-format. DMU
format dictionaries are the only type used prior to CDD /Plus Version 4.0. 
CDO-format dictionaries are introduced in CDD /Plus Version 4.0; they 
have the capability of recording dependency information, as described in 
Chapter 24. The two types of dictionaries can coexist on a system. 

Refer to Chapter 24 and the CDD /Plus documention for more information 
on CDD/Plus. 

July 1988 Extracting Record Definitions from the VAX Common Data Dictionary 23-1 



23.2 Extracting COD Data Definitions in VAX BASIC 

A data definition is one type of CDD object. In VAX BASIC, you can 
extract only data definition objects into your program. 

To extract a CDD data definition in VAX BASIC, specify the %INCLUDE 
%FROM %CDD compiler directive and a CDD path name. You can use 
this to extract a data definition from either a DMU-format or CDO-format 
dictionary. For example: 

%INCLUDE %FROM %CDD "CDD$TOP.BASIC.BASICDEF" 

The %INCLUDE %FROM %CDD directive extracts the CDD data def
inition you specify, and translates it into VAX BASIC syntax. In VAX 
BASIC, the syntax for data definitions or data structures is defined by the 
RECORD statement. 

Once a CDD data definition is translated into RECORD statement syntax, 
you can reference the name of the RECORD statement in your VAX 
BASIC programs. After compilation, the translated RECORD statement is 
included as a part of your program's listing. 

The following is an example of a CDD -data definition and the translated 
VAX BASIC RECORD statement. In general, the examples in this chapter 
are of DMU-format CDD data definitions that were written in the VAX 
Common Data Definition Language (CDDL). Chapter 24 contains ad
ditional information about using the CDO utility to create CDO-format 
definitions for use with CDD/Plus. In all examples, the CDDL 
data definition is displayed in lowercase letters and the translated 
RECORD statement is displayed in uppercase letters. 

COOL Definition 

define record cdd$top.basic.basicdef 
description is 

/* This is an example record containing 
only data types supported by VAX BASIC */. 

employee structure. 
street 

city 

state 

datatype is text 
size is 30 characters. 
datatype is text 
size is 30 characters. 
datatype is text 
size is 2 characters. 

23-2 Extracting Record Definitions from the VAX Common Data Dictionary July 1981 



zip_code structure. 
new datatype is packed decimal 

size is 4 digits. 
old datatype is packed decimal 

size is 5 digits. 
end zip_code structure. 
emp_number datatype is signed word. 
wage_class datatype is text 

size is 2 characters. 
salary_ytd datatype is d_floating. 

end employee structure. 
end basicdef. 

Translated RECORD Statement 

Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 

%INCLUDE %FROM %CDD "CDD$TDP.BASIC.BASICDEF" 
This is an example record containing 
only data types supported by VAX BASIC 

RECORD EMPLOYEE UNSPECIFIED 
STRING STREET = 30 TEXT 
STRING CITY = 30 
STRING STATE = 2 
GROUP ZIP_CODE 

DECIMAL(4 ,0 ) NEW 
DECIMAL(5 ,0 ) OLD 

END GROUP 
WORD EMP_NUMBER 
STRING WAGE_CLASS = 2 
DOUBLE SALARY_YTD 

END RECORD 

TEXT 
TEXT 
UNSPECIFIED 
PACKED DECIMAL 
PACKED DECIMAL 

SIGNED WORD 
TEXT 
D_FLOATING 

When VAX BASIC translates a CDD data definition, it does the following: 

• For DMU-format definitions, it takes the field name specified in the 
first CDDL STRUCTURE statement and assigns that name to the VAX 
BASIC RECORD. For CDO-format definitions, it takes the record name 
from the CDO DEFINE RECORD statement and assigns that name to 
the VAX BASIC record. In the preceding example, for instance, the 
first CDDL structure statement is employee structure. When VAX 
BASIC translates this line of the CDD data definition, it names the 
RECORD EMPLOYEE. If this first structure is unnamed, VAX BASIC 
signals the error "Record from CDD does not have a record name". 

• Translates the field name in any subsequent CDDL STRUCTURE 
statement to be the name of a group. For instance, in the preceding 
example, the second STRUCTURE statement, zip_code structure, is 
translated to GROUP ZJP_CODE. 

July 1988 Extracting Record Definitions from the VAX Common Data Dictionary 23-3 



• Translates subordinate field names in CDDL STRUCTURE statements 
to elementary components in the RECORD statement. In the pre
ceding example, for instance, the subordinate field name street is 
translated to STRING STREET. 

If you specify the /LIST qualifier, when VAX BASIC translates a CDD 
data definition, it does the following: 

• Begins each line of the RECORD statement with the letter "C" fol
lowed by a number. The "C" tells you that the RECORD statement 
was translated from a CDD data definition. The number tells you the 
nesting level of the %INCLUDE %FROM %CDD directive within the 
source program. For example, if your source program directly extracts 
a CDD record definition, then each line is preceded by a "Cl". If the 
CDD extraction came from a file included in the source program, then 
each line of the record definition is preceded by a "C2", and so on. 

• Includes the explanatory text in the CDDL DESCRIPTION clause as 
comment fields. 

• Translates the data type text in the subordinate field to a comment 
field that tells you the data type of each elementary RECORD com
ponent. For example, the comment! TEXT tells you that STRING 
STREET is a text data type. 

VAX BASIC requires that a CDD data definition include a minimum of 
one structure to be translated into a RECORD statement. If a CDD data 
definition contains only a single subordinate field (without a structure), 
VAX BASIC signals an error message because it cannot give a name to the 
RECORD statement. For this reason, you cannot include a CDO FIELD 
definition in a VAX BASIC program. You can, however, include CDO 
RECORD definitions that contain that field. See Chapter 24 for more 
information. 

For more information on how VAX BASIC translates CDD data types, see 
Section 23. 8. 

23-4 Extracting Record Definitions from the VAX Common Data Dictionary July 1988 



23.3 CDD Path Names 

When you extract a COD record definition with the VAX BASIC 
%INCLUDE %FROM %COD directive, you specify a path name. The 
path name tells COD where to locate a particular data definition in its 
directory. A COD path name consists of a string of names separated by 
periods and enclosed in quotation marks. 

The origin is the top, or root, of a dictionary directory. This directory 
contains other dictionary directories and objects. For example: 

%INCLUDE %FROM %CDD 11 CDD$TOP.BASIC.EMPLOYEE_DATA 11 

In this example, the path name CDD$TOP.BASIC.EMPLOYEE_DATA 
points to the root dictionary directory, CDD$TOP, which contains the dic
tionary directory BASIC, which in turn contains the object EMPLOYEE_ 
DATA. EMPLOYEE_DATA is a data definition. 

VAX BASIC allows three types of valid path name parameters when 
referring to CDD dictionary definitions. They differ in the method of 
specifying the dictionary origin. 

• Dictionary anchor path name 

An anchor path name begins with an anchor, which is a VMS 
directory specification, as the dictionary origin. The anchor spec
ifies the VMS directory that contains the COO dictionary. This is 
known as the CDO naming convention. In the following example, 
MYNODE::DISK$2:[MYDIRECTORY] is the anchor: 

MYNODE: :DISK$2: [MYDIRECTORY]PERSONNEL.EMPLOYEES_REC 

• CDD$TOP path name 

You use this to refer to either DMU-format dictionary definitions or 
COO-format dictionary definitions in a compatibility dictionary. The 
path origin is always CDD$TOP. This is known as the DMU naming 
convention. For example: 

CDD$TOP.PERSONNEL.EMPLOYEES_REC 

• Relative path name 

You can omit the origin of a path name and specify a relative path 
name. To do this, you must first assign the name of a dictionary 
directory to the logical name CDD$DEFAULT. For example: 

$DEFINE CDD$DEFAULT CDD$TOP.BASIC 

July 1988 Extracting Record Definitions from the VAX Common Data Dictionary 23-5 



Using this command defines the dictionary directory CDD$TOP.BASIC 
as the default start of your directory. You can override the defined 
default by specifying either CDD$TOP or an anchor in a path name 
(thereby specifying a full path name as described previously). 

Any path name that does not begin with either CDD$TOP or an 
anchor is automatically appended to the current CDD$DEFAULT. For 
example, you can specify: 

PERSONNEL.EMPLOYEES_REC 

If CDD$DEFAULT is MYNODE::MY$DISK:[MYDIR], the relative path 
name is the same as: 

MYNODE: :MY$DISK: [MYDIR]PERSONNEL.EMPLOYEES_REC. 

Similarly, if CDD$DEFAULT is CDD$TOP.MYDIR, the relative path 
name is the same as: 

CDD$TOP.MYDIR.PERSONNEL.EMPLOYEES_REC. 

23.4 Specifying a COD History List Entry 

When you extract a record from the CDD, you have the option of entering 
a history list entry in the CDD data base. The history list entry provides a 
history of users that access the CDD. 

You enter a history list entry by specifying either the DCL command 
BASIC/ AUDIT or the BASIC environment command SET/ AUDIT or 
COM/ AUDIT. For example: 

$ BASIC/LIST/SHOW=CDD/AUDIT="Copied for Yearly Employee Analysis" 

Note that instead of typing the text directly on the command line, you can 
also specify a file specification that contains the history entry. 

When you specify a history list entry with AUDIT, the following informa
tion is included in the history log: 

• Your user name, UIC, and process name 

• The entry text you specify 

• That the access was by way of a VAX BASIC program 

23-6 Extracting Record Definitions from the VAX Common Data Dictionary July 1988 



• That the access was an extraction (marked in the history log as 
COMPILE) 

• The name of the program module that requested the extraction and 
the time and date of the request 

A history list entry is included even if errors are signaled during compi
lation. Therefore, you should debug your program before you specify a 
history list entry. The default is /NOAUDIT. 

23.5 The NAME FOR BASIC Clause 

VAX BASIC supports the CDDL field attribute clause NAME FOR BASIC. 

The CDDL field attribute clause NAME FOR BASIC declares a facility
specific name for a field. For example: 

name for basic is 11 subject_name$ 11 

When you assign a name using the NAME FOR BASIC clause in a CDDL 
data definition, VAX BASIC recognizes only this name when you refer 
to the field. Note that when you use the NAME FOR BASIC clause, you 
can place dollar sign ( $ ) and percent sign ( % ) suffixes in your RECORD 
statement field names. 

The following example is a CDDL data definition containing the NAME 
FOR BASIC clause, and the corresponding VAX BASIC RECORD 
statement. 

CDDL Definition 

define record city_study 
description is 

/* This example formats data resulting from a 
study on the relationship between place of birth 
and earning potential*/. 

info structure. 
subject_name 

birth_city 

salary 

end info structure. 
end city_study. 

datatype text size 10 
name for basic is 11 subject_name$ 11

• 

datatype text size 10 
name for basic is "city_of_birth$". 
datatype signed byte 
name for basic is "salary%". 

Extracting Record Definitions from the VAX Common Data Dictionary 23-7 



Translated RECORD Statement 

%INCLUDE %FROM %CDD 11 CDD$TOP.BASIC.CITY_STUDY 11 

This example formats data resulting from a C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

study on the relationship between place of bir1 
and earning potential 

RECORD INFO UNSPECIFIED 
STRING SUBJECT_NAME$ = 10 TEXT 
STRING CITY_OF_BIRTH$ = 10 TEXT 
BYTE SALARY% SIGNED BYTE 

END RECORD 

Be careful when you use the NAME FOR BASIC clause because it enables 
you to assign completely different names to the same field. 

For more information about the CDDL NAME FOR BASIC field attribute 
clause, see the CDD documentation. 

23.6 COD Arrays 

The CDD supports three types of arrays: 

• Multidimensional arrays (the ARRAY clause) 

• One-dimensional, fixed length arrays (the OCCURS clause or ARRAY 
clause) 

• One-dimensional, variable length arrays (the OCCURS DEPENDING 
ON clause-note that VAX BASIC does not support this clause) 

Arrays are valid for any CDD field. VAX BASIC does not support dimen
sions on a RECORD statement. You cannot, therefore, declare an entire 
RECORD statement as an array. However, you can dimension an instance 
of the record. 

The following is an example of a CDD data definition containing arrays 
and the corresponding VAX BASIC RECORD statement. 

COOL Definition 

define record cdd$top.basic.array1 
description is 

/*test arrays*/. 

23-8 Extracting Record Definitions from the VAX Common Data Dictionary July 1988 



array_l structure. 
my_byte array 0:2 
my_string array 0:10 
my_s_real array 0:2 0:4 

data type 
data type 
data type 
data type 
data type 
datatype 

my_d_real array 1:3 
my_g_real occurs 4 times 
my_h_real occurs 4 times 

end array_l structure. 
end arrayl. 

Translated RECORD Statement 

%INCLUDE %FROM %CDD 11 CDD$TOP.BASIC.ARRAY1 11 

Cl test arrays 
Cl RECORD ARRAY_l 
Cl BYTE MY_BYTE(O TO 2) 
Cl STRING MY_STRING(O TD 10) = 10 
Cl SINGLE MY_S_REAL(O TO 2,0 TO 4) 
Cl DOUBLE MY_D_REAL(l TO 3) 
Cl GFLOAT MY_G_REAL(l TO 4) 
Cl HFLDAT MY_H_REAL(l TO 4) 
Cl END RECORD 

signed byte. 
text size 10. 
f_floating. 
d_floating. 
g_floating. 
h_floating. 

UNSPECIFIED 
SIGNED BYTE 
TEXT 
F_FLOATING 
D_FLOATING 
G_FLOATING 
H_FLOATING 

By default, arrays in the CDD are row-major. This means that when 
storage is allocated for the array, the rightmost subscript varies fastest. All 
VAX BASIC arrays are row-major. VAX BASIC does not support column
major arrays. If a CDD definition containing a column-major array is 
extracted, VAX BASIC signals the error" <array-name> from CDD is a 
column major array". 

By default, VAX BASIC extracts an array field from the CDD with the 
bounds specified in the data definition. However, if you use the qualifier 
/OLD_ VERSION=CDD_ARRAYS when you extract a data definition, 
VAX BASIC translates the data definition with lower bounds as zero and 
adjusts the upper bounds. This means that an array with dimensions of 
(2,5) in the CDD is translated by VAX BASIC to be an array with a lower 
bound of 0 and an upper bound of 3. VAX BASIC issues an informational 
message to confirm the array bounds when you use this qualifier. 

The following CDD data definition and corresponding RECORD statement 
were extracted with the /OLD_ VERSION=CDD_ARRAYS qualifier. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-8.1 





CDDL Definition 

define record cdd$top.basic.array2 
description is 

I• test arrays with /old_version=cdd_arrays qualifier•/. 

array_2 structure. 
my_byte 
my_string 
my_s_real 
my_d_real 
my_g_real 
dep_item 
my_h_real 

array 0:2 
array O:iO 
array 0:2 0:4 
array i :3 
occurs 4 times 

occurs 4 times 

end array_2 structure. 
end array2. 

Translated RECORD Statement 

data type 
data type 
data type 
data type 
data type 
data type 

data type 

i %INCLUDE Y.FROM Y.CDD "CDD$TOP.BASIC.ARRAY2" 

signed byte. 
text size iO. 
f_floating. 
d_floating. 
g_floating. 
signed longword. 

h_floating. 

Ci test arrays with /old_version=cdd_arrays qualifier 
Ci RECORD ARRAY_2 UNSPECIFIED 
Ci BYTE MY_BYTE(O TO 2) SIGNED BYTE 
Ci STRING MY_STRING(O TO iO) = iO TEXT 
Ci SINGLE MY_S_REAL(O TO 2,0 TO 4) F_FLOATING 
Ci DOUBLE MY_D_REAL(O TO 2) D_FLOATING 
Ci GFLOAT MY_G_REAL(O TO 3) G_FLOATING 
Ci LONG DEP_ITEM SIGNED LONGWORD 
Ci HFLOAT MY_H_REAL(O TO 3) H_FLOATING 
Ci END RECORD 

23. 7 COO Variants 

A variant comprises two or more fields of a record that provide alternative 
descriptions for the same portion of a record. 

The following is an example of a CDD data definition containing variant 
fields and the corresponding VAX BASIC RECORD statement. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-9 



CDDL Definition 

define record cdd$top.basic.variant_example 
description is 

/• test simple variant •/. 

variant_example structure. 
my_string datatype text size 9. 
variants. 

variant. 
my_s_real 
my_d_real 

end variant. 

variant. 
my_g_real 
my_h_real 

end variant. 
end variants. 

datatype 
data type 

datatype 
data type 

my_byte datatype 
end variant_example structure. 

end variant_example. 

Translated RECORD Statement 

f_floating. 
d_floating. 

g_floating. 
h_floating. 

signed byte. 

1 Y.!NCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.VARIANT_EXAMPLE11 

C1 test simple variant 
C1 RECORD VARIANT_EXAMPLE UNSPECIFIED 
C1 STRING MY_STRING = g TEXT 
C1 VARIANT 
C1 CASE 
C1 SINGLE MY_S_REAL F_FLOATING 
C1 DOUBLE MY_D_REAL D_FLOATING 
C1 CASE 
C1 GFLOAT MY_G_REAL G_FLOATING 
C1 HFLOAT MY_H_REAL H_FLOATING 
C1 END VARIANT 
C1 BYTE MY_BYTE SIGNED BYTE 
C1 END RECORD 

CDD data definitions sometimes contain VARIANTS OF field description 
statements as well as simple variants. A CDD VARIANTS OF state
ment names a tag variable whose value at run time determines which 
of the variant fields is the current variant. VAX BASIC does not support 
the VARIANTS OF statement. If a CDD data definition containing a 
VARIANTS OF statement is extracted, VAX BASIC signals the informa
tional message, "%BASIC-I-CDDTAGIGN, <number> tag value from 
CDD ignored" and treats the VARIANTS OF as an ordinary variant and 
ignores the tag value. 

23-10 Extracting Record Definitions from the VAX Common Data Dictionary 



23.8 COD Data Types 

VAX BASIC supports only a subset of COD data types. They are described 
in Table 23-1. 

Table 23-1: Supported CDD Data Types 
COD Data Type VAX BASIC Translation 

TEXT STRING 

SIGNED BYTE BYTE 

SIGNED WORD WORD 

SIGNED LONGWORD LONG 

LFLOATING SINGLE 

D_FLOATING DOUBLE 

G_FLOATING GFLOAT 

H_FLOATING HFLOAT 

PACKED DECIMAL DECIMAL 

If a COD data definition containing an unsupported data type is extracted, 
VAX BASIC signals the informational message "CDDSUBGRO, datatype 
in COD not supported, substituted group for: <field-name> " and 
translates the data type by creating a group to contain the data type field. 
The group name is the name of the unsupported data type followed by 
the text "_VALUE". This allows you to access the field name within the 
group. 

An example of how VAX BASIC translates unsupported COD data types 
is shown in the following COD data definition and corresponding VAX 
BASIC RECORD statement. 

CDDL Definition 

define record cdd$top.basic.stock 
description is 

/* this is an example data definition that contains 
data types not supported by VAX BASIC •/. 

stock structure. 
product_no datatype is text 

size is 8 characters. 
date_ordered datatype is date. 
status_code datatype is unsigned byte. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-11 



quantity 

location 

unit_price 
end stock structure. 

end stock. 

datatype is unsigned longword 
aligned on longword. 
array 1:4 
datatype is text 
size is 30 characters. 
datatype is longword. 

Translated RECORD Statement 

1 %INCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.STOCK 11 

C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

This is an example data definition that contains 
data types not supported by VAX BASIC 

RECORD STOCK ! UNSPECIFIED 
STRING PRODUCT_NO = 8 
GROUP DATE_ORDERED 

STRING STRING_VALUE 
END GROUP 
GROUP STATUS_CODE 

BYTE BYTE_ VALUE 
END GROUP 
STRING FILL = 3 
GROUP QUANTITY 

LONG LONG_ VALUE 
END GROUP 
STRING LOCATION(1 TO 4) 
GROUP UNIT_PRICE 

LONG LONG_ VALUE 
END GROUP 

END RECORD 

= 8 

= 30 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: STOCK::DATE_ORDERED. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: STOCK: :STATUS_CODE. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: STOCK::QUANTITY. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: STOCK: :UNIT_PRICE. 

TEXT 
DATE 

UNSIGNED BYTE 

UNSIGNED LONGWORD 

TEXT 
UNSIGNED LONGWORD 

Table 23-2 describes the CDD data types not supported by VAX BASIC 
and their translation. 

23-12 Extracting Record Definitions from the VAX Common Data Dictionary 



Table 23-2: Unsupported CDD Data Types 
CDD Data Type 

UNSIGNED BYTE 

UNSIGNED WORD 

UNSIGNED LONGWORD 

SIGNED QUADWORD 

UNSIGNED QUADWORD 

SIGNED OCTAWORD 

UNSIGNED OCTAWORD 

LFLOA TING COMPLEX 

D_FLOATING COMPLEX 

G_FLOATING COMPLEX 

VAX BASIC Translation 

GROUP cdd-field-name 
BYTE BYTE_VALUE 

END GROUP 

GROUP cdd-field-name 
WORD WORD_VALUE 

END GROUP 

GROUP cdd-field-name 
LONG LONG_VALUE 

END GROUP 

GROUP cdd-field-name 
STRING STRING_VALUE = 8 

END GROUP 

GROUP cdd-field-name 
STRING STRING_VALUE = 8 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= 16 

END GROUP 

GROUP cdd-field-name 
STRING STRING_VALUE = 16 

END GROUP 

GROUP cdd-field-name 
SINGLE SINGLE_R_VALUE 
SINGLE SINGLE_LVALUE 

END GROUP 

GROUP cdd-field-name 
DOUBLE DOUBLE_R_ VALUE 
DOUBLE DOUBLE_L VALUE 

END GROUP 

GROUP cdd-field-name 
GFLOAT GFLOALR_VALUE 
GFLOAT GFLOALLVALUE 

END GROUP 

Extracting Record Definitions from the VAX Common Data Dictionary 23-13 



Table 23-2 (Cont.): Unsupported CDD Data Types 
COD Data Type 

H_FLOATINC COMPLEX 

ZONED NUMERIC 

UNSIGNED NUMERIC 

LEFT SEPARATE NUMERIC 

LEFT OVERPUNCHED 
NUMERIC 

RIGHT SEPARATE NUMERIC 

RIGHT OVERPUNCHED 
NUMERIC 

VARYING STRING 

BIT1 

DATE 

VAX BASIC Translation 

GROUP cdd-field-name 
HFLOAT HFLOAT_R_VALUE 
HFLOAT HFLOAT-1_ VALUE 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length+ 1 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE = length 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length+ 1 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length 

END GROUP 

GROUP cdd-field-name 
WORD WORD_ VALUE 
STRING STRING_ VALUE= length 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length /8 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= 8 

END GROUP 

1 CDD specifies bit field length in bits; VAX BASIC specifies string length in bytes. If the length in bits does not divide 
evenly Jnto bytes, VAX BASIC signals the error 11%BASIC-E-CDDBITFLD, field <fieldname> from CDD has bit offset or 
length. 

23-14 Extracting Record Definitions from the VAX Common Data Dictionary 



Table 23-2 (Cont.): Unsupported COD Data Types 
COD Data Type 

POINTER 

UNSPECIFIED 

VIRTUAL FIELD 

VAX BASIC Translation 

GROUP cdd-field-name 
LONG LONG_VALUE 

END GROUP 

GROUP cdd-field-name 
STRING STRING_ VALUE= length 

END GROUP 

Ignored 

The following sections describe how VAX BASIC translates CDD data 
types in greater detail. 

23.8.1 Character String Data Types 

There are two CDD character string data types, TEXT and VARYING 
STRING. The TEXT data type translates directly into the VAX BASIC 
STRING data type. VARYING STRING is not a supported VAX BASIC 
data type; therefore, VAX BASIC creates a group to contain the field. 

The following example is a CDDL definition that contains both the 
TEXT and VARYING STRING data types and the translated VAX BASIC 
RECORD statement. 

CDDL Definition 

define record cdd$top.basic.strings 
description is 

I• test •/. 

basicstrings structure. 
abc datatype is text size is 10. 
xyz datatype is varying string size is 16. 

end basicstrings structure. 
end strings. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-15 



Translated RECORD Statement 

1 %INCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.STRINGS 11 

Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 

................ i 

test 
RECORD BASICSTRINGS 

STRING ABC = iO 
GROUP XYZ 

WORD WORD_ VALUE 
STRING STRING_VALUE = i6 

END GROUP 
END RECORD 

Y.BASIC-I-CDDSUBGRO, i: data type in CDD not supported, 
substituted group for: BASICSTRINGS: :XYZ. 

UNSPECIFIED 
TEXT 
VARYING STRING 

In the VARYING STRING data type, the actual character string is preceded 
by a 16-bit count field. Therefore, VAX BASIC creates a WORD variable 
to hold the specified string length. 

NOTE 

The count field preceding the VARYING STRING is actually an 
UNSIGNED WORD. Therefore, the count field of a VARYING 
STRING whose length is greater than 32767 is interpreted by 
VAX BASIC as a negative number. 

In the preceding example, the group name (XYZ) is the same name as 
the CDD field. Therefore, VAX BASIC supplies an additional name for 
the RECORD components. The supplied names are WORD_ VALUE and 
STRING_ VALUE. For example, the following program statement creates 
an instance of the record BASICSTRINGS, called MY_REC: 

iOO MAP (TEST) BASICSTRINGS MY_REC 

The names you use to reference these components in VAX BASIC are 
MY_REC::XYZ::WORD_ VALUE and MY_REC::XYZ::STRING_ VALUE. 

23-16 Extracting Record Definitions from the VAX Common Data Dictionary 



23.8.2 Integer Data Types 

The CDD refers to integer data types as fixed-point data types. The CDD 
supports BYTE, WORD, LONGWORD, QUADWORD, and OCTAWORD 
integer data types. Each of these data types can have the following 
additional attributes: 

• SIGNED 

• UNSIGNED 

• SIZE 

• DIGITS 

• FRACTION 

• BASE 

• SCALE 

In CDDL, if integer data types are not specified as being signed or un
signed, the default is unsigned. VAX BASIC supports only signed BYTE, 
signed WORD, and signed LONGWORD integers. If a CDDL data defi
nition containing an unsigned BYTE, WORD, or LONGWORD integer is 
extracted, VAX BASIC signals the informational message "CDDSUBGRO, 
datatype in CDD not supported, substituted group for: <field-name> ", 
and creates a group to contain the field. Because the group name is the 
same as the CDD field name, VAX BASIC assigns a new name to the field. 
This is shown in the following CDD data definition and corresponding 
VAX BASIC RECORD statement. 

CDDL Definition 

define record cdd$top.basic.integers 
description is 

/•Test of selected integer data types•/. 

basicint structure. 
my_byte datatype is signed byte. 
my_ubyte datatype is byte. 
my_word datatype is signed word. 
my_uword datatype is unsigned word. 
my_long datatype is signed longword. 
my_ulong datatype is unsigned longword. 

end basicint structure. 
end integers. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-17 



Translated RECORD Statement 

1 Y.!NCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.INTEGERS" 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

! Test of selected integer data types 
RECORD BASICINT 

BYTE MY_BYTE 
GROUP MY_UBYTE 

BYTE BYTE_ VALUE 
END GROUP 
WORD MY_WORD 
GROUP MY_UWORD 

WORD WORD_VALUE 
END GROUP 
LONG MY_LONG 
GROUP MY_ULONG 

LONG LONG_ VALUE 
END GROUP 

END RECORD 
................ 1 

Y.BASIC-I-CDDSUBGRO, 1: data type in CDD not supported, 
substituted group for: BASICINT::MY_UBYTE. 

Y.BASIC-I-CDDSUBGRO, 1: data type in CDD not supported, 
substituted group for: BASICINT::MY_UWORD. 

Y.BASIC-I-CDDSUBGRO, 1: data type in CDD not supported, 
substituted group for: BASICINT::MY_ULONG. 

UNSPECIFIED 
SIGNED BYTE 
UNSIGNED BYTE 

SIGNED WORD 
UNSIGNED WORD 

SIGNED LONGWORJ;> 
UNSIGNED LONGWORD 

When the preceding data definition is extracted from the COD, VAX 
BASIC signals an informational message for each of the unsigned data 
types, and names the COD unsigned byte field BYTE_ VALUE, the CDD 
unsigned word field WORD_ VALUE, and the COD unsigned longword 
field LONG_VALUE. 

VAX BASIC does not support QUADWORD or OCTAWORD integers. If 
a CDD definition contains a QUADWORD or OCTAWORD integer, VAX 
BASIC signals the informational message "CDDSUBGRO, datatype in 
CDD not supported, substituted group for: <field-name> "and creates a 
group to contain the field and a string component within the group. The 
string component is 8 bytes for QUADWORD integers and 16 bytes for 
OCTAWORD integers. For example: 

23-18 Extracting Record Definitions from the VAX Common Data Dictionary 



CDDL Definition 

define record cdd$top.basic.bigintegers 
description is 

/•Test of quadword and octaword integer data types•/. 

basicint structure. 
my_quad datatype is signed quadword. 
my_octa datatype is signed octaword. 

end basicint structure. 
end bigintegers. 

Translated RECORD Statement 

1 %INCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.BIGINTEGERS 11 

C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

! Test of quadword and octaword integer data types 
RECORD BASICINT 

GROUP MY_QUAD 
STRING STRING_VALUE = 8 

END GROUP 
GROUP MY_OCTA 

STRING STRING_VALUE = 16 
END GROUP 

END RECORD 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: BASICINT::MY_QUAD. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: BASICINT::MY_OCTA. 

UNSPECIFIED 
SIGNED QUADWORD 

SIGNED OCTAWORD 

The COD supports the SCALE keyword to specify an implied exponent in 
integer data types, and the BASE keyword to specify that the scale for a 
fixed-point field is to be interpreted in a numeric base other than 10. VAX 
BASIC does not support these integer attributes. Therefore, VAX BASIC 
signals the informational message "CDDATTSCA, COD specifies SCALE 
for <name> . Not supported", for fixed-point fields containing a SCALE 
specification and the error message, "CDDATTBAS, COD attributes for 
<name> are other than base 10", for fixed-point fields specifying a base 

other than 10. For example: 

CDDL Definition 

define record cdd$top.basic.funnyintegers 
description is 

/•Test of quadword and octaword integer data types •/. 

basicint structure. 
my_byte datatype is signed byte scale 2. 
my_long datatype is signed longword base 8. 

end basicint structure. 
end funnyintegers. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-1 9 



Translated RECORD Statement 

1 Y.!NCLUDE Y.FROM 1.CDD "CDD$TOP.BASIC.FUNNYINTEGERS" 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

Test of quadword and octaword integer data types 
RECORD BASICINT 

GROUP MY_BYTE 
BYTE BYTE_ VALUE 

END GROUP 
LONG MY_LONG 

END RECORD 

UNSPECIFIED 
SIGNED BYTE 

SIGNED LONGWORD 

Y.BASIC-I-CDDATTSCA, CDD specifies SCALE for BASICINT::MY_BYTE. Not supported 
1.BASIC-E-CDDATTBAS, CDD attributes for BASICINT::MY_LONG are other than base 10 

At compilation time, VAX BASIC also signals these warning errors for 
each reference to fields that are not base 10 or that have a SCALE. 

23.8.3 Floating-Point Data Types 

The CDD supports F_floating, D_floating, G_floating, and H_floating 
data types. These correspond to the BASIC SINGLE, DOUBLE, GFLOAT, 
and HFLOAT data types, respectively. As with fixed-point data types, 
the CDD also allows the specification of scale and base for floating-point 
data types. If a CDD data definition contains a floating-point field that 
specifies a SCALE or BASE, VAX BASIC signals the informational message 
"CDDATTSCA, CDD specifies SCALE for <name>. Not supported" or 
the error message "CDDATTBAS, CDD attributes for <name> are other 
than base 1 O". For example: 

CDDL Definition 

define record floats 
description is 

/*Test of floating-point data types*/. 

basicfloat structure. 
my_single datatype is f_floating scale 3. 
my_double datatype is d_floating base 16. 
my_gfloat datatype is g_floating. 
my_hfloat datatype is h_floating. 

end basicfloat structure. 
end floats. 

23-20 Extracting Record Definitions from the VAX Common Data Dictionary 



Translated RECORD Statement 

%INCLUDE Y.FROM Y.CDD 11 CDD$TOP.BASIC.FLOATS 11 

C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 
C1 

................ 1 

! Test of floating-point data types 
RECORD BASICFLOAT ! UNSPECIFIED 

GROUP MY_SINGLE F_FLOATING 
SINGLE SINGLE_VALUE 

END GROUP 
DOUBLE MY_DOUBLE 
GFLOAT MY_GFLOAT 
HFLOAT MY_HFLOAT 

END RECORD 

D_FLOATING 
G_FLOATING 
H_FLOATING 

Y.BASIC-I-CDDATTSCA, 1: CDD specifies SCALE for BASICFLOAT::MY_SINGLE. 
Not supported 

Y.BASIC-E-CDDATTBAS, 1: CDD attributes for BASICFLOAT::MY_DOUBLE are 
other than base 10 

In addition, the COD supports complex floating-point numbers, whereas 
VAX BASIC does not support them. Complex floating-point numbers 
consist of a real and an imaginary part. Each part requires the same 
amount of storage as a simple floating-point number. Therefore, each 
complex floating-point number requires twice as much storage as a simple 
floating-point number. 

If a COD data definition containing complex numbers is extracted, VAX 
BASIC signals the informational message, "CDDSUBGRO, datatype in 
COD not supported, substituted group for <field-name> ", and creates 
a group to contain the field. As before, VAX BASIC uses the data type 
and _ v ALUE to create the group name, but because each complex number 
contains both a real and an imaginary part, VAX BASIC adds an "_R" to 
the name of the real part and an "-1" to the name of the imaginary part. 
This is illustrated in the following COD data definition and corresponding 
VAX BASIC RECORD statement. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-21 



CDDL Definition 

define record cdd$top.basic.complex 
description is 

/*test complex data types */. 

complex structure. 
my_s_complex_i datatype 

my_d_complex_i datatype 
my_g_complex_i datatype 
my_h_complex_i datatype 

f_floating_complex. 

d_floating_complex. 
g_floating_complex. 
h_floating_complex. 

end complex structure. 
end complex. 

Translated RECORD Statement 

i 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Ci 
Cl 
Ci 
Ci 
Ci 

Y.!NCLUDE Y.FROM 1.CDD 11 CDD$TOP.BASIC.COMPLEX11 

test complex data types 
RECORD COMPLEX 

GROUP MY_S_COMPLEX_i 
SINGLE SINGLE_R_VALUE 
SINGLE SINGLE_I_VALUE 

END GROUP 
GROUP MY_D_COMPLEX_i 

DOUBLE DOUBLE_R_VALUE 
DOUBLE DOUBLE_I_VALUE 

END GROUP 
GROUP MY_G_COMPLEX_i 

GFLOAT GFLOAT_R_VALUE 
GFLOAT GFLOAT_I_VALUE 

END GROUP 
GROUP MY_H_COMPLEX_i 

HFLOAT HFLOAT_R_VALUE 
HFLOAT HFLOAT_I_VALUE 

END GROUP 
END RECORD 

UNSPECIFIED 
F_FLOATING_COMPLEX 

D_FLOATING_COMPLEX 

G_FLOATING_COMPLEX 

H_FLOATING_COMPLEX 

................ 1 

1.BASIC-I-CDDSUBGRO, i: data type in CDD not supported, 
substituted group for: COMPLEX::MY_S_COMPLEX_l. 

1.BASIC-I-CDDSUBGRO, i: data type in CDD not supported, 
substituted group for: COMPLEX::MY_D_COMPLEX_l. 

1.BASIC-I-CDDSUBGRO, i: data type in CDD not supported, 
substituted group for: COMPLEX::MY_G_COMPLEX_i. 

1.BASIC-I-CDDSUBGRO, i: data type in CDD not supported, 
substituted group for: COMPLEX::MY_H_COMPLEX_l. 

23-22 Extracting Record Definitions from the VAX Common Data Dictionary 



23.8.4 Decimal String Data Types 

The CDD supports the following forms of decimal string data types: 

• LEFT OVERPUNCHED NUMERIC 

• LEFT SEPARATE NUMERIC 

• RIGHT OVERPUNCHED NUMERIC 

• RIGHT SEPARATE NUMERIC 

• PACKED DECIMAL 

• UNSIGNED NUMERIC 

• ZONED NUMERIC 

VAX BASIC supports only the PACKED DECIMAL decimal string data 
type, which corresponds to the VAX BASIC DECIMAL data type. For all 
other decimal string data types, VAX BASIC creates a group with the same 
name as the CDD subordinate field, and creates a string record component 
to contain the field. For example: 

CDDL Definition 

define record cdd$top.basic.decimalstring 
description is 

/*test decimal string data types•/. 

decimalstring structure. 
my_packed_decimal 

my_zoned_numeric 

my_unsigned_numeric 

my_lef_sep_numeric 

my_left_ovpnch_numeric 

my_right_sep_numeric 

my_right_ovpnch_numeric 

end decimalstring structure. 
end decimalstring. 

datatype is packed decimal 
size is 6 digits 2 fractions. 

datatype is zoned numeric 
size is 6 digits 2 fractions. 

datatype is unsigned numeric 
size is 8 digits 4 fractions. 

datatype is left separate numeric 
size is 10 digits 3 fractions. 

datatype is left overpunched numeric 
size is 6 digits 2 fractions. 

datatype is right separate numeric 
size is 3 digits 1 fractions. 

datatype is right overpunched numeric 
size is 4 digits 2 fractions. 

Extracting Record Definitions from the VAX Common Data Dictionary 23-23 



Translated RECORD Statement 

1 %INCLUDE Y.FROM Y.CDD "CDD$TOP.BASIC.DECIMALSTRING" 
C1 ! test decimal string data types 
C1 RECORD DECIMALSTRING UNSPECIFIED 
C1 DECIMAL(5 ,2 ) MY_PACKED_DECIMAL PACKED DECIMAL 
C1 GROUP MY_ZONED_NUMERIC ZONED NUMERIC ! 
C1 STRING STRING_ VALUE = 6 
C1 END GROUP 
C1 GROUP MY_UNSIGNED_NUMERIC UNSIGNED NUMERIC 
C1 STRING STRING_ VALUE = 8 
C1 END GROUP 
C1 GROUP MY_LEF_SEP_NUMERIC NUMERIC LEFT 

SEPARATE 
C1 STRING STRING_ VALUE = 11 
C1 END GROUP 
C1 GROUP MY_LEFT_OVPNCH_NUMERIC NUMERIC LEFT 

OVERPUNCHED 
C1 STRING STRING_ VALUE = 5 
C1 END GROUP 
C1 GROUP MY_RIGHT_SEP_NUMERIC NUMERIC RIGHT 

SEPARATE 
C1 STRING STRING_ VALUE = 4 
C1 END GROUP 
C1 GROUP MY_RIGHT_OVPNCH_NUMERIC NUMERIC RIGHT 

OVERPUNCHED 
C1 STRING STRING_ VALUE = 4 
C1 END GROUP 
C1 END RECORD 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_ZONED_NUMERIC. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_UNSIGNED_NUMERIC. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_LEF_SEP_NUMERIC. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_LEFT_OVPNCH_NUMERIC. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_RIGHT_SEP_NUMERIC. 

Y.BASIC-I-CDDSUBGRO, data type in CDD not supported, 
substituted group for: DECIMALSTRING::MY_RIGHT_OVPNCH_NUMERIC. 

23.8.5 Other Data Types 

The CDD supports the following additional data types: 

• BIT 

• DATE 

• POINTER 

23-24 Extracting Record Definitions from the VAX Common Data Dictionary 



• UNSPECIFIED 

• VIRTUAL 

VAX BASIC does not support these data types. VAX BASIC translates 
these data types by signaling the informational message "CDDSUBGRO, 
data type in CDD not supported, substituted group for: <field name> ", 
and creates a group to contain the field. See Table 23-2 for a description 
of how VAX BASIC translates these data types. 

If you extract a CDD definition that contains a BIT field, the field must be 
a multiple of 8 bits (1 byte). This means that the following field must be 
aligned on a byte boundary. If the following field is not aligned on a byte 
boundary, VAX BASIC signals the error "CDDBITFLD, field <name> 
from CDD has bit offset or length". 

Extracting Record Definitions from the VAX Common Data Dictionary 23-25 





Chapter 24 

COD/Plus Support in VAX BASIC 

This chapter explains the capabilities of CDD /Plus and how a VAX BASIC 
user can take advantage of them. This chapter only applies to you if you 
have CDD /Plus Version 4.0 or later installed on your system. 

24. 1 Introduction to COD /Plus 

VAX BASIC Version 3.3 and higher supports CDD/Plus Version 4.0 
features. In addition to supporting features available in VAX CDD (see 
Chapter 23), VAX BASIC supports dependency recording. Dependency 
recording allows you to record (or track) what programs use a CDD /Plus 
data definition. It helps you evaluate the effort needed to change a record 
definition by identifying the modules that need to be modified and/or 
recompiled. 

To support dependency recording, CDD /Plus uses a dictionary structure 
known as CDO-format. (The type of dictionary used in CDD versions 
prior to Version 4.0 is known as DMU-format.) You can have many CDO
format dictionaries in use on a VMS system (but only one DMU-format 
dictionary). The two types of dictionaries can coexist on a system and a 
program can refer to data definitions in both types. 

When dependency recording is in effect, the VAX BASIC compiler updates 
the CDO-format dictionary to show what dictionary entities the program 
uses. A dictionary entity is any object stored in a CDD dictionary, such as 
as a data definition or form definition. 

July 1988 CDD /Plus Support in VAX BASIC 24-1 



In addition to supporting the functionality of the DMU-format dictionary, 
a COO-format dictionary allows many additional capabilities that are 
useful to VAX BASIC applications. Using COD/Plus gives BASIC users 
the following capabilities: 

• Defining and managing data definitions using the COO utility 

• 
• 

• 

• 

• 
• 

Reading existing DMU-format dictionaries from COO 

Referring to COO-format dictionaries distributed over multiple nodes 
in the network 

Creating, accessing, and controlling data definitions at the field defini
tion level 

Forming relationships between COO dictionary definitions, possibly 
connecting definitions from multiple nodes in the network 

Tracking the use of dictionary-defined information 

Querying CDD /Plus to learn what relationships exist 

When you compile a program that contains references to data definitions 
in a DMU-format dictionary, the data definitions are included in your 
program, but the DMU-format dictionary cannot be updated to show that 
the program uses those data definitions and depends on their continued 
integrity. COO-format dictionaries offer the additional capability of 
recording dependency relationships between programs and the dictionary 
entities that they use. 

24.2 COD/Plus Concepts 

This section introduces background concepts that distinguish COD /Plus 
Version 4.0 from previous versions of the COD. 

24-2 COO/Plus Support in VAX BASIC July 1988 



24.2.1 Dictionary Formats 

COD /Plus allows two types of dictionaries: 

• The DMU-format dictionary 

You create and manipulate a DMU-format dictionary using the DMU, 
CDDL, and CDDV utilities. This type of dictionary was the only 
format available prior to Version 4.0 of the Common Data Dictionary. 

• The COO-format dictionary 

You create and manipulate a COO-format dictionary using the COO 
utility and the COD /Plus Call Interface. Some of the advantages of 
COO-format dictionaries have been mentioned previously and will be 
clarified in later sections. 

These two types of dictionaries can co-exist on a system to form one 
logical directory structure. COD /Plus uses a special dictionary, known 
as the compatibility dictionary, that allows an application to refer to 
dictionary definitions without concern about which type of dictionary 
format the definitions are stored in. 

The compatibility dictionary is a COO-format dictionary whose directory 
hierarchy matches that of the DMU-format dictionary (if any) on the 
system. 

NOTE 

The compatibility dictionary is an installation option for COD 
/Plus. Even if you do not have a compatibility dictionary, 
an application program can refer to both types of dictionary. 
In this case, the user must be careful to refer to COO-format 
dictionaries with an anchor origin path name, and to the DMU
format dictionary with a CDD$TOP path name. Anchor origin 
path names are described in the next section. 

Refer to COD /Plus documentation for detailed information on the COO 
utility and the compatibility dictionary. 

July 1988 COD/Plus Support in VAX BASIC 24-3 



24.2.2 Dictionary Path Names 

To access dictionary definitions, you must specify a path name in the 
%INCLUDE %FROM %CDD or %REPORT %DEPENDENCY directive. 
The path name tells CDD where to locate a particular data definition in its 
directory. A CDD path name consists of a string of names separated by 
periods and enclosed in quotation marks. 

The origin is the top, or root, of a dictionary directory. This directory 
contains other dictionary directories, subdictionary directories and objects. 
For example: 

%INCLUDE %FROM %CDD 11 CDD$TOP.BASIC.EMPLDYEE_DATA 11 

In this example, the path name CDD$TOP.BASIC.EMPLOYEE_DATA 
points to the root dictionary directory, CDD$TOP. The root directory 
CDD$TOP contains the dictionary directory BASIC, which in turn contains 
the object EMPLOYEE_DATA, a data definition. 

VAX BASIC allows three types of valid path name parameters w11en 
referring to CDO dictionary definitions. They differ in the method of 
specifying the dictionary origin. 

• Dictionary anchor path name 

An anchor path name begins with an anchor, which is a VMS 
directory specification, as the dictionary origin. The anchor spec
ifies the VMS directory that contains the CDO dictionary. This is 
known as the CDO naming convention; In the following example, 
MYNODE::DISK$2:[MYDIRECTORY] is the anchor: 

MYNODE: :DISK$2: [MYDIRECTORY]PERSONNEL.EMPLOYEES_REC 

• CDD$TOP path name 

You use this to refer to either DMU-format dictionary definitions or 
CDO-format dictionary definitions in a compatibility dictionary. The 
path origin is always CDD$TOP. This is known as the DMU naming 
convention. For example: 

CDD$TOP.PERSONNEL.EMPLOYEES_REC 

• Relative path name 

CDD always begins its search at CDD$TOP (or at the anchor you 
specify) unless you define another directory or object to be the start of 
your directory. You can do this by assigning the name of a dictionary 
directory to the logical name CDD$DEFAULT. For example: 

24-4 COD/Plus Support in VAX BASIC July 198E 



$DEFINE CDD$DEFAULT CDD$TOP.BASIC 

Using this command defines the dictionary directory CDD$TOP.BASIC 
as the default start of your directory. You can override the defined 
default by specifying CDD$TOP in a path name. 

You can omit the origin of a path name and specify a relative path 
name. Any path name that does not begin with either CDD$TOP or 
an anchor is automatically appended to the current CDD$DEFAULT. 
For example, you can specify: 

PERSONNEL.EMPLOYEES_REC 

If CDD$DEFAULT is MYNODE::MY$DISK:[MYDIR], the relative path 
name is the same as: 

MYNODE: :MY$DISK: [MYDIR]PERSONNEL.EMPLOYEES_REC. 

Similarly, if CDD$DEFAULT is CDD$TOP.MYDIR, the relative path 
name is the same as: 

CDD$TOP.MYDIR.PERSONNEL.EMPLOYEES_REC. 

24.2.3 Dictionary Entities 

Several types of entities can exist in a dictionary. DMU-format and CDO
format dictionaries each contain record entities, database entities, and form 
entities, for example. 

When you compile a program with CDD /Plus support enabled, the 
compiler creates a construct known as a compiled module entity in 
the CDO-format dictionary. Only CDO-format dictionaries can contain 
compiled module entities. 

A compiled module entity is created for the main program and each 
SUB, PICTURE subprogram, and FUNCTION. Each compiled module 
entity points to a file entity that contains the fully qualifieq VMS file 
specification of the .OBJ file. Several compiled module entities can point 
to the same file entity. Compiled module entities are put in the current 
CDD$DEFAULT directory. 

The VAX BASIC compiler creates a compiled module entity (and relation
ships in CDD /Plus dictionaries that depend on compiled module entities) 
only if the compilation generates an object file. Therefore, compiled mod
ule entities are not generated if you specify the /NOOBJECT qualifier on 
the command line or if the program has compilation errors. 

July 1988 COD/Plus Support in VAX BASIC 24-5 



24.2.4 Dictionary Relationships 

Relationships occur in a CDO-format dictionary when two or more CDO 
entity definitions are connected in any of several possible ways. For 
example, you can relate a set of field definitions to a record definition by 
including the field names in the record definition. Consider the following 
sequence of CDO commands: 

COO> DEFINE FIELD REG_DOG_NAME DATATYPE IS TEXT SIZE IS 25 CHARACTERS. 
CDO> DEFINE FIELD BREED DATATYPE IS TEXT SIZE IS 20 CHARACTERS. 
CDO> DEFINE FIELD CALL_NAME DATATYPE IS TEXT SIZE IS 20 CHARACTERS. 
CDO> DEFINE FIELD OWNER_NUMBER DATATYPE IS TEXT SIZE IS 5. 

CDO> DEFINE RECORD DOG_REC. 
cont>REG_DOG_NAME. 
cont>BREED. 
cont>CALL_NAME. 
cont>OWNER_NUMBER. 
cont>END RECORD. 

This sequence defines four field entities initially, and then defines a record 
entity containing those four fields. Thus, CDD /Plus creates a relationship 
between the record DOG_REC and each field that DOG_REC uses. 

You can create other types of relationships from a VAX BASIC program 
by using %INCLUDE and %REPORT directives in conjunction with the 
compilation qualifier /DEPENDENCY_DATA. Later sections will show 
you how to do that. 

See CDD /Plus documentation for detailed information about relationships 
in a CDO-format dictionary. 

24.3 Using COD/Plus with VAX BASIC 

When dependency recording is in effect, the compiler updates the CDO
format dictionary to show what dictionary data entities are used by 
the program (in other words, the data dependencies created by the 
compilation). 

To take advantage of dependency recording, the VAX BASIC user must do 
the following: 

• Use either or both of two VAX BASIC lexical directives in the 
source program, %INCLUDE %FROM %CDD and %REPORT 
%DEPENDENCY, to define the dependency relationships you want to 

24-6 COD/Plus Support in VAX BASIC July 1988 



create between your program and definitions in the the CDO-format 
dictionary. These directives will be described further in later sections. 

• Establish a CDO-format dictionary as CDD$DEFAULT. 

• Include the /DEPENDENCY_DATA qualifier in the BASIC command 
that compiles the module. 

24.3.1 The /DEPENDENCV_DATA Qualifier 

When you compile a program that references CDO-format data definitions, 
you can include the /DEPENDENCY_DATA qualifier in the BASIC 
command line. That qualifier tells the compiler to create dependency 
relationships (as defined in the program by %INCLUDE and %REPORT 
directives) and update the dictionary to show those relationships. 

To prevent update of the dictionary, specify /NODEPENDENCY_DATA 
(the default). In this case, the compiler can extract record definitions from 
the dictionary (as specified by %INCLUDE %FROM %CDD directives 
in the program), but will not update the dictionary. In other words, the 
compilation will not add compiled module entities and file entities to the 
dictionary, nor create dependency relationships in the dictionary, unless 
you specify the /DEPENDENCY_DATA qualifier. 

24.3.2 Creating Relationships with Included Record Definitions 

In Section 24.2.4, an example defined a record description as a set of fields 
(thus establishing a simple relationship in the CDD between the record 
and its fields). With that record description defined, you can include it in 
a VAX BASIC program. 

With either a DMU-format or CDO-format dictionary, the compiler can 
extract a record description into a program. To accomplish this, you must 
use the %INCLUDE lexical directive in the source program. The format is 
as follows: 

%INCLUDE %FROM %CDD "pathname" 

July 1988 COD/Plus Support in VAX BASIC 24-7 



For example, the following BASIC source code extracts a record description 
named ADDRESS_REC from the CDD: 

PROGRAM EXAMPLE! 
%INCLUDE %FROM %CDD "CDD$TOP.SMITH.ADDRESS_REC" 
DECLARE ADDRESS_REC TEST_RECORD 
INPUT "First name";TEST_RECORD: :FIRST_NAME 
INPUT "Last name";TEST_RECORD: :LAST_NAME 
INP~T "Address";TEST_RECORD: :ADDRESS 
INPUT "City" ; TEST _RECORD: : CITY 
INPUT "State"; TEST_RECORD:: STATE 
INPUT "Zip code";TEST_RECORD: :ZIP_CODE 

PRINT TEST_RECORD: :FIRST_NAME; TEST_RECORD: :LAST_NAME 
PRINT TEST_RECORD: :ADDRESS 
PRINT TEST_RECORD: :CITY; TEST_RECORD: :STATE; TEST_RECORD: :ZIP_CODE 

The listing shows the physical content of the record, as in the following 
listing excerpt: 

1 
2 

Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

PROGRAM EXAMPLE! 
%INCLUDE %FROM %CDD "CDD$TOP.SMITH.ADDRESS_REC" 

RECORD ADDRESS_REC UNSPECIFIED 
STRING FIRST_NAME = 20 TEXT 
STRING LAST_NAME = 30 TEXT 
STRING ADDRESS = 40 TEXT 
STRING CITY = 20 TEXT 
STRING STATE = 2 TEXT 
DECIMAL(5 ,0 ) ZIP_CODE PACKED DECIMAL 

END RECORD 
DECLARE ADDRESS_REC TEST_RECORD 
INPUT "First name"; TEST_RECORD: : FIRST_NAME 
INPUT "Last name";TEST_RECORD: :LAST_NAME 
INPUT "Address";TEST_RECDRD: :ADDRESS 
INPUT "City";TEST_RECORD: :CITY 
INPUT "State"; TEST_RECORD:: STATE 
INPUT "Zip code";TEST_RECORD: :ZIP_CODE 

PRINT TEST_RECORD: :FIRST_NAME; TEST_RECORD: :LAST_NAME 
PRINT TEST_RECORD: :ADDRESS 
PRINT TEST_RECORD: :CITY; TEST_RECORD: :STATE; TEST_RECORD: :ZIP. 

In the case of a CDO-format dictionary, you can also cause the dictionary 
to create and maintain a formal relationship between the record descrip
tion and the compiled module entity that represents your program in the 
dictionary. 

This is known as a CDD$COMPILED_DEPENDS_ON relationship. To 
accomplish this relationship, you must specify the /DEPENDENCY_ 
DATA qualifier when you compile the program. 

$ BASIC/DEPENDENCY_DATA EX1.BAS 

24-8 COD/Plus Support in VAX BASIC July 1988 



If you specify the /DEPENDENCY_DATA qualifier to the VAX BASIC 
compiler, the compiled module entity is created and updated to reflect the 
fact that your program uses that record. If someone wants to change the 
data definition at a later date, CDO allows that person to find out what 
programs depend on it before doing so. For example: 

CDO> DIRECTORY 
Directory SYS$COMMON: [CDDPLUS]SMITH 

ADDRESS;! 
ADDRESS_REC;1 
CITY; 1 
EXAMPLE1;1 
FIRST_NAME;1 
LAST_NAME;1 
STATE;1 
ZIP_CODE;1 

FIELD 
RECORD 
FIELD 
CDD$COMPILED_MODULE 
FIELD 
FIELD 
FIELD 
FIELD 

You can use the CDO SHOW USES command to find out what programs 
use a dictionary definition. For example: 

CDO> SHOW USES ADDRESS_REC 
Owners of SYS$COMMON: [CDDPLUS]SMITH.ADDRESS_REC;1 
I SYS$COMMON: [CDDPLUS]SMITH.EXAMPLE1;1 (Type : CDD$COMPILED_MODULE) 
I I via CDD$COMPILED_DEPENDS_ON 

You can also use CDO to find out what dictionary definitions a program 
uses. For example: 

CDO> SHOW USED_BY EXAMPLE! 
Members of SYS$COMMON: [CDDPLUS]SMITH.EXAMPLE1;1 
I EX1 (Type : CDD$FILE) 
I I via CDD$IN_FILE 
I SYS$COMMON: [CDDPLUS]SMITH.ADDRESS_REC;1 (Type : RECORD) 
I I via CDD$COMPILED_DEPENDS_ON 

July 1988 COD/Plus Support in VAX BASIC 24-9 



24.4 Creating Relationships for Referenced Dictionary Entities 

The compiler can create a relationship between a compiled module entity 
and any dictionary entity that a program references (such as an Rdb/VMS 
database or a form definition). The referenced dictionary entity is not 
copied to the program. Instead, the compiled program simply references 
the dictionary entity at run time, or with the help of a preprocessor. 

To create such relationships in a BASIC program, you must use a 
%REPORT %DEPENDENCY lexical directive in the source program 
and specify the /DEPENDENCY_DATA qualifier when you compile the 
program. The format is as follows: 

%REPORT %DEPENDENCY "pathname" ["relationship-type"] 

The "pathname" parameter identifies the dictionary item that the compiled 
object module references. The path name can specify a CDO-format 
dictionary item (with an anchor as the first element), or it can specify a 
CDO-format item in the compatibility dictionary (which can be specified 
either as a CDD$TOP path name or as an anchor path name). See 
Section 24.2.2 for a full description of the path name options. 

The optional "relationship-type" parameter determines the type of re
lationship by specifying a CDD /Plus protocol. There are many valid 
values; refer to CDD /Plus documentation for full information. The most 
commonly-used type of relationship for VAX BASIC users is: 

CDD$COMPILED_DEPENDS_ON 

This specifies a relationship that links a compiled object module to the 
element that goes into the compilation. This is the default. 

The %REPORT %DEPENDENCY directive is meaningful only when the 
following three conditions are true: 

• /DEPENDENCY_DATA qualifier is specified in the BASIC command 
line. (If it is not specified, the compiler checks syntax but does not 
update the dictionary to reflect this usage of the item.) 

• Your current CDD$DEFAULT points to a directory in a CDO 
dictionary. 

• The dictionary item specified by pathname is in a CDO-format dictio
nary. (No relationship can be created in a DMU-format dictionary.) 

24-10 COD/Plus Support in VAX BASIC July 1988 



Suppose the VAX BASIC program DOG_REPORT.BAS contains the 
following directive: 

'l,REPORT %DEPENDENCY "DISK1$: [CDDPLUS. BASIC] SMITH. DOG_DATABASE" 

Use the /DEPENDENCY_DATA qualifier when you compile the program: 

$ BASIC/DEPENDECY_DATA DOG_REPORT 

After the compilation, the dictionary contains the following: 

CDO> DIR 

Directory DISK1$: [CDDPLUS.BASIC]SMITH 

BREED;1 
CALL_NAME;1 
DOG_REPORT$MAIN;1 
DOG_DATABASE;1 
DOG_INFORMATION;1 
DOG_REC;1 
OWNER_NUMBER;1 
REG_DOG_NAME;1 

CDO> SHOW USES DOG_DATABASE 

FIELD 
FIELD 
CDD$COMPILED_MODULE 
CDD$DATABASE 
CDD$RMS_DATABASE 
RECORD 
FIELD 
FIELD 

Owners of DISK1$: [CDDPLUS.BASIC]SMITH.DOG_DATABASE;1 
I DISK1$: [CDDPLUS.BASIC]SMITH.DOG_REPORT$MAIN;1 (Type CDD$COMPILED_MODULE) 
I I via CDD$COMPILED_DEPENDS_ON 

CDO> SHOW USED_BY DOG_REPORT$MAIN 
Members of DISK1$: [CDDPLUS.BASIC]SMITH.DOG_REPORT$MAIN;1 
I DOG_REPORT (Type : CDD$FILE) 
I I via CDD$IN_FILE 
I DISK1$: [CDDPLUS.BASIC]SMITH.DOG_DATABASE;1 (Type : CDD$DATABASE) 
I I via CDD$COMPILED_DEPENDS_ON 

l4.5 Specifying a COD History List Entry 

When your VAX BASIC program accesses the CDD, you have the option 
of entering a history list entry in the CDD data base. The history list entry 
provides a history of users that access the CDD. 

You enter a history list entry by specifying the DCL command qualifier 
/AUDIT. For example: 

$ BASIC/DEPENDENCY_DATA/AUDIT="History text goes here" EX1.BAS 

Note that instead of typing the text directly on the command line, you can 
also specify a file specification that contains the history entry. 

July 1988 COD/Plus Support in VAX BASIC 24-11 



When you specify/ AUDIT, a history list entry is created for each com
piled module entity that the compilation creates. In addition, the compila
tion will add a history list entry to each data definition that your program 
extracts with the %INCLUDE %FROM %CDD directive. 

You can display history list information using the CDO utility. For 
example: 

CDO> SHOW GENERIC CDD$COMPILED_MDDULE EXAMPLE! /AUDIT 
Definition of EXAMPLE! (Type : CDD$COMPILED_MODULE) 

History entered by SMITH ([SMITH]) 
using VAX BASIC V3.3 
to CREATE definition on 25-APR-1988 13:04:01.48 
Explanation: 

"History text goes here" 

24-12 COD/Plus Support in VAX BASIC July 198 



Appendix A 

Compile-Time Error Messages 

This appendix describes compile-time and compiler command errors, their 
causes, and the user action required to correct them. 

A. 1 Compile-Time Errors 

VAX BASIC diagnoses compile-time errors and: 

• Indicates the program line that generated the error or errors 

• Displays this program line 

• Shows you the location of the error or errors and assigns a number to 
each location for future reference 

• Displays the mnemonic, statement number within the line, the loca
tion number as previously displayed, and the message text. This is 
repeated for each error in the line. 

VAX BASIC repeats this procedure for each error diagnosed during compi
lation. The error message format for compile-time errors is: 

Y.BASIC-<l>-<mnemonic>, <n>: <message> 

<I> 
Is a letter indicating the severity of the error. The severity indicator can be 
one of the following: 

• I, indicating information 

• W, indicating a warning 

Compile-Time Error Messages A-1 



• E, indicating an error 

• F, indicating a severe error 

<mnemonic> 
Is a 3- to 9-character string that identifies the error. Error messages in this 
appendix are alphabetized by this mnemonic. 

<n>: 
Is the nth error within the line's "picture". 

<message> 
Is the text of the error message. 

For example: 

Diagnostic on source line 1, listing line 1, BASIC line 10 

10 DECLARE REAL BYTE A, A 
........................ 1 ....... 2 

Y.BASIC-E-CONDATSPC, 1: conflicting data type specifications 
Y.BASIC-E-ILLMULDEF, 2: illegal multiple definition of name A 

This display tells you that two errors were detected on line 10; VAX BASIC 
displays the line containing the error, then prints a "picture" showing you 
where the errors were detected. In the example, the picture shows a 
"1" under the keyword BYTE and a "2" under the second occurrence of 
variable A. The following line shows you: 

• The error mnemonic CONDATSPC 

• Which error in the line's "picture" is referred to by the mnemonic 

• The message associated with that error 

In this case, the error message tells you that there are two contradictory 
data-type keywords in the statement. The next line shows you the same 
type of information for the second error; in this case, the compiler detected 
multiple declarations of variable A. 

If a compilation causes an error of severity I or W, the compilation 
continues and produces an object module. If a compilation causes an 
error of severity E, the compilation continues but produces no object 
module. If a compilation causes an error of severity F, the compilation 
aborts immediately. 

A-2 Compile-Time Error Messages 



The following is an alphabetized list of compilation error messages: 

ACTARGMUS, actual argument must be specified 

Explanation: ERROR - A DEF function reference contains a null 
argument, for example, FNA(l,,2). 

User Action: Specify all arguments when referencing a DEF 
function. 

ALLOCSML, allocated area may be too small for section 

Explanation: WARNING - A MAP or COMMON with the same 
name exists in more than one program module, and the first one 
encountered by the compiler is smaller than the subsequent ones. 

User Action: VAX BASIC first allocates MAP and COMMON 
areas in the main program, then MAP and COMMON areas in 
subprograms, in the order in which they were loaded. Thus, you 
can avoid this error by loading modules with the largest MAP 
or COMMON first. However, it is better practice to make MAP 
and COMMON areas equal in size. 

AMBRECCOM, ambiguous RECORD component 

Explanation: ERROR - The program contains an ambiguous 
RECORD component reference, for example, A::D when both 
A::B::D and A::C::D exist. 

User Action: Remove the ambiguity by fully specifying the 
record component. 

AMPCONILL, & continuation is illegal after %INCLUDE directive 

Explanation: ERROR - A program contains an %INCLUDE 
directive followed by an ampersand continuation to another 
statement. For example, the following is illegal: 

July 1988 

2300 %INCLUDE %FROM %CDD 11 CDD$TOP.PERSONNEL.EMPLOYEE 11 & 
GOTO 3000 

Ampersand continuation of the %INCLUDE directive is legal, 
however. 

User Action: Recode to eliminate the line continuation or use 
backslash continuation. 

Compile-Time Error Messages A-3 



AMPCONREP, & continuation is illegal after %REPORT directive 

Explanation: ERROR - A program contains a %REPORT di
rective followed by an ampersand continuation to another 
statement. For example, the following is illegal: 

2300 %REPORT %DEPENDENCY 11 CDD$TOP.PERSONNEL.EMPLOYEE.COURSE_FORM 11 & 
GOTO 3000 

Ampersand continuation of the %REPORT directive itself is 
legal, however. 

User Action: Recode to eliminate the line continuation or use 
backslash continuation. 

ANSDEFMUS, ANSI DEF must be defined before reference 

Explanation: ERROR - A program compiled with the / ANSL 
STANDARD qualifier contains a reference to a DEF function 
before the function definition. 

User Action: Renumber the line containing the function def
inition so that the definition precedes all references to the 
function. 

ANSILNREQ, a line number is required on first line for ANSI 

Explanation: ERROR - When you specify the /ANSI qualifier, a 
program must have a line number on the first line for the ANSI 
qualifier. 

User Action: Supply a line number on the first line. 

ANSKEYSPC, keywords must be delimited by spaces in /ANSI 

Explanation: ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains a line where two elements (two 
keywords, a keyword and a line number, or a keyword and a 
string constant) are not separated by at least one space. For 
example, PRINT"Hello". 

User Action: Delimit all keywords, line numbers, and string 
constants with at least one space. 

A-4 Compile-Time Error Messages July 1988 



ANSLINDIG, ANSI line number may not exceed 4 digits 

Explanation: ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains a line number with more than 4 
digits, that is, a number greater than 9999. 

User Action: Renumber the program lines so that no line 
number exceeds 9999. 

ANSLINNUM, ANSI line numbers must begin in column 1 

Explanation: ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains a line number preceded by one or 
more spaces or tabs. 

User Action: Remove any spaces and tabs that precede the line 
number. 

ANSREQREA, ANSI requires REAL default type 

Explanation: ERROR - The / ANSLSTANDARD qualifier 
conflicts with the /TYPE_DEFAULT qualifier. 

User Action: Do not specify a default data type other than 
REAL. REAL is the default. 

Compile-Time Error Messages A-4.1 





ANSREQSCA, ANSI requires SCALE 0 

Explanation. ERROR - The / ANSI_STANDARD qualifier 
conflicts with the /SCALE qualifier. 

User Action. Do not specify a scale factor. 

ANSREQSET, ANSI requires SETUP 

Explanation. ERROR - The /ANSI-STANDARD qualifier 
conflicts with the /NOSETUP qualifier. 

User Action. Do not specify /NOSETUP. 

ANYDIMNOT, dimension checking not allowed on ANY 

Explanation. ERROR - Both a datatype of ANY and a DIM 
clause were specified in an EXTERNAL statement. 

User Action. Remove the DIM clause from the EXTERNAL 
statement. ANY implies either scalar or array. 

ANYNOTALL, ANY not allowed on EXTERNAL PICTURE 

Explanation. ERROR - An attempt was made to specify the 
ANY keyword on an EXTERNAL PICTURE declaration. This 
is not allowed because the ANY data type should be used for 
calling non-BASIC procedures only. 

User Action. Remove the ANY keyword from the EXTERNAL 
PICTURE declaration. 

APPMISNUM, append file missing line number on first line 

Explanation. ERROR - An attempt was made to append a source 
file that does not contain a line number on the first line. 

User Action. Put a line number on the first line of the appended 
file. 

APPNOTALL, append not allowed on programs without line numbers 

Explanation. ERROR - The APPEND command cannot be used 
on a program without line numbers. 

User Action. Use an include file. 

Compile-Time Error Messages A-5 



ARESTYMUS, area style must be "HOLLOW", "SOLID", "PATTERN" or 
"HATCH" 

Explanation. ERROR - You specified an invalid value in the SET 
AREA STYLE statement. 

User Action. Specify one of the values listed in the message. 

AREREQTHR, AREA output requires at least 3 X, Y points 

Explanation. ERROR - An AREA graphic output statement 
specifies less than 3 points. 

User Action. Specify at least 3 points in the AREA graphic 
output statement. 

ARGERR, illegal argument for command 

Explanation. ERROR - An argument was entered for a command 
that does not take an argument, or an invalid argument was 
entered for a command, for example, SCALE A or LIST A. 

User Action. Reenter the command with the proper arguments. 

ARRMUSHAV, array must have 1 dimension 

Explanation. ERROR - An array with multiple dimensions is 
specified where a 1 dimensional array is required. 

User Action. Specify an array that has 1 dimension. 

ARRMUSELE, array must have at least 4 elements 

Explanation. ERROR - You specified an array with less than 
four elements. This statement requires an array with at least four 
elements in it. 

User Action. Supply an array declared as having at least 4 
elements. 

ARRNAMREQ, array names only allowed 

Explanation. ERROR - The type of variable name required must 
be an array name. 

User Action. Change the variable name to an array name. 

A-6 Compile-Time Error Messages 



ARRNOTALL, array <name> not allowed in DEF declaration 

Explanation. ERROR - The parameter list for a DEF function 
definition contained an entire array. 

User Action. Remove the array specification. Passing an entire 
array as a parameter to a DEF function is not allowed. 

ARRTOOBIG, named array <array-name> is too large 

Explanation. ERROR - An array requires less than (2"29 - 1) 
bytes of storage. 

User Action. Reduce the size of the array. 

ATROVRVAR, attributes of overlaid variable <name> don't match 

Explanation. ERROR - A variable name appears in more than 
one overlaid MAP; however, the attributes specified for the 
variable are inconsistent. 

User Action. If the same variable name appears in multiple 
overlaid MAPs, the attributes (for example, data type) must be 
identical. 

ATRPRIREF, attributes of prior reference to <name> don't match 

Explanation. WARNING - A variable or array is referenced 
before the MAP that declares it. The attributes of the referenced 
variable do not match those of the declaration. 

User Action. Make sure that the variable or array has the same 
attributes in both the reference and the declaration. 

ATTGTRZER, graphics attribute value must be greater than zero 

Explanation. ERROR - You specified a negative value when a 
positive value is required. 

User Action. Supply a value greater than zero. 

BADFMTSTR, invalid PRINT USING format string 

Explanation. ERROR - The PRINT USING format string speci
fied is not valid. 

User Action. Supply a valid PRINT USING format string. 

Compile-Time Error Messages A-7 



BADLOGIC, internal logic error detected 

Explanation. ERROR - An internal logic error was detected. 

User Action. This error should never occur. Please submit a 
Software Performance Report with a machine-readable copy of 
the source program. 

BADNO, qualifier <name> does not accept 'NO' 

Explanation. ERROR - A qualifier that does not allow a 'NO' 
prefix was entered. For example, NODOUBLE. 

User Action. Select the proper qualifier. In the example, the 
complementary form of DOUBLE is SINGLE. 

BADPROGNM, error in program name 

Explanation. ERROR - The program name is longer than 39 
characters or contains invalid characters. 

User Action. Change the program name to be less than or equal 
to 39 characters and make sure that it contains only letters, 
digits, dollar signs, and underscores. 

BADVALUE, <text> is an invalid keyword value 

Explanation. FATAL - The command supplied an invalid value 
for a keyword. 

User Action. Supply a valid value. 

BASICHLB, BASIC's HELP library is not installed on this system 

Explanation. INFORMATION - A HELP command was entered 
and the VAX BASIC BASIC HELP library was not available. 

User Action. See your system manager. 

BIFREQNUM, built in function requires numeric expression 

Explanation. ERROR - A reference to a VAX BASIC built-in 
function contains a string instead of a numeric expression. 

User Action. Supply a numeric expression. 

A-8 Compile-Time Error Messages 



BIFREQSTR, built in function requires string expression 

Explanation. ERROR - The program specifies a numeric expres
sion for a built-in function that requires a string argument. 

User Action. Supply a string expression for the built-in function. 

BLTFUNNOT, built in function not supported 

Explanation. ERROR - The program contains a reference to a 
built-in function not supported by this version of VAX BASIC. 

User Action. Remove the function reference. 

BOTBOUSPE, bottom boundary must be less than the top boundary 

Explanation. ERROR - In a statement that specifies a viewport 
or windowsize, you specified a bottom boundary that is greater 
than or equal to the corresponding top boundary. 

User Action. Correct the bottom boundary so that it is less than 
the top boundary. 

BOUCANNOT, bound cannot be specified for array 

Explanation. ERROR - An EXTERNAL statement declaring a 
SUB or FUNCTION subprogram specifies bounds in an array 
parameter, for example: 

EXTERNAL SUB XYZ (LONG DIM(1,2,3)) 

User Action. Remove the array parameter's bound specifications. 
When declaring an external subprogram, you can specify only 
the number of dimensions for an array parameter. For example: 

EXTERNAL SUB XYZ (LONG DIM(,,)) 

BOUMUSTBE, bounds must be specified for array 

Explanation. ERROR - The program contains an array declara
tion that does not specify the bounds (maximum subscript value), 
for example: 

DECLARE LONG A(,) 

User Action. Supply bounds for the declared array, for example: 

DECLARE LONG A(50,50) 

Compile-Time Error Messages A-9 



CANCON, can't continue 

Explanation. FATAL - A CONTINUE command was typed after 
changes had been made to the source code. 

User Action. After changes have been made to the source code, 
you can run the program, but you cannot continue it. 

CAUNOTALL, CAUSE statement not allowed in error handler 

Explanation. ERROR - A CAUSE statement is specified within 
an error handler. 

User Action. Remove the CAUSE statement from the error 
handler. 

CDDACCERR, CDD access error 

Explanation. ERROR - The CDD detected an error on an at
tempted CDD record extraction. VAX BASIC displays the CDD 
error. 

User Action. Take action based on the associated CDD error. 

CDDACCITE, CDD error while accessing item <field-name> of record 

Explanation. ERROR - The CDD reported an error when access
ing the field. The CDD record definition is corrupt, or there is an 
internal error in either VAX BASIC or the CDD. 

User Action. If the problem is not in the CDD definition, please 
submit an SPR with the source code of a small program that 
produces this error. 

CDDACCREC, CDD error while accessing record 

Explanation. ERROR - The CDD reported an error when access
ing the record. The CDD record definition is corrupt or there is 
an internal error in either VAX BASIC or the CDD. 

User Action. If the problem is not in the CDD definition, please 
submit an SPR with the source code of a small program that 
produces this error. 

A-10 Compile-Time Error Messages 



CDDADJBOU, adjusted bounds for dimension <number> of <array> 
to be zero based 

Explanation. INFORMATION - The CDD contains an array field 
with a lower bound that is not zero. VAX BASIC adjusts the 
bound so that the array is zero based. 

User Action. None. 

CDDALCOFF, please submit an SPR-CDD inconsistent with allocated 
offset for <field-name> 

Explanation. FATAL - The offset of a field within a VAX BASIC 
RECORD differs from the offset specified by the CDD for that 
record. 

User Action. Please submit an SPR with the source code of a 
small program that produces this error. 

CDDALCSIZ, please submit an SPR-CDD inconsistent with allocated 
size for <field-name> 

Explanation. FATAL - The amount of storage allocated for a 
field in a VAX BASIC RECORD differs from the amount specified 
by the CDD for that record. 

User Action. Please submit an SPR with the source code of a 
small program that produces this error. 

CDDALCSPN, please submit an SPR-CDD inconsistent with allocated 
span for <field-name> 

Explanation. FATAL - The amount of storage allocated by a VAX 
BASIC RECORD for an array differs from the amount specified 
by the CDD for that record. 

User Action. Please submit an SPR with the source code of a 
small program this error. 

CDDAMBFLD, ambiguous field name <name> for <RECORD-name> 

Explanation. ERROR - More than one CDDL structure share the 
same level and the same name. 

User Action. Change the CDD definition so that the structures 
have different names. 

Compile-Time Error Messages A-11 



CDDATTBAS, CDD attributes for <name> are other than base 10 

Explanation. ERROR - A field in a CDD definition uses the 
BASE keyword. This warns you that the numeric field is not 
interpreted as a base 10 number. 

User Action. Remove the BASE attribute in the CDD or avoid 
using the field. 

CDDATTDAT, CDD data type attribute not permitted for GROUP 

Explanation. ERROR - A CDD definition specified a data type 
after the CDD STRUCTURE keyword. VAX BASIC translates 
STRUCTURE to a VAX BASIC RECORD or GROUP statement. 
These VAX BASIC statements do not allow data type attributes. 

User Action. Change the CDD definition. 

CDDATTDIG, DIGITS attribute of <field-name> not supported for 
data type 

Explanation. INFORMATION - The field contains a CDD fixed
point data-type that specifies the number of allowed digits. This 
warning tells you that VAX BASIC interprets the field as BYTE, 
WORD, or LONG and does not support the DIGITS attribute for 
this data type. 

User Action. None. 

CDDATTSCA, CDD specifies SCALE for <RECORD-component>. Not 
supported. 

Explanation. INFORMATION - A field in a CDD definition 
uses the SCALE keyword. This warns you that the field has an 
implied exponent. 

User Action. Remove the SCALE attribute in the CDD, or avoid 
using the field. 

CDDATTTXT, CDD TEXT attribute for group <group-name> ignored 

Explanation. INFORMATION - A CDD record definition speci
fies a data type of TEXT for the entire record. 

User Action. None. VAX BASIC ignores the TEXT attribute and 
substitutes the UNSPECIFIED attribute. 

A-12 Compile-Time Error Messages 



CDDBASNAM, COD specified BASIC name <name> has illegal form 

Explanation. ERROR - The VAX BASIC name specified in the 
COD record definition is a reserved keyword or contains an 
illegal character. 

User Action. Change the invalid field name. 

CDDBITFLD, field <field-name> from COD has bit offset or length 

Explanation. ERROR - A COD field does not start on a byte 
boundary. 

User Action. Change the bit field in the COD to have a length 
that is a multiple of 8 bits. 

CDDCOLMAJ, <array-name> from COD is a column major array 

Explanation. ERROR - An array specified in a COD definition 
is column-major rather than row-major. Thus it is incompatible 
with VAX BASIC arrays. 

User Action. Change the COD definition to be a row-major 
array. 

CDDDIGERR, decimal digits of <value> in COD out of range for 
<field-name> 

Explanation. ERROR - A packed numeric COD specifies more 
than 31 digits. 

User Action. Reduce the number of digits specified in the COD 
definition. 

CDDDIMNOT, RECORD cannot be dimensioned 

Explanation. ERROR - A COD definition is itself an array. This 
is incompatible with VAX BASIC RECORDs, which can contain 
arrays but cannot be arrays. 

User Action. None. You cannot access COD definitions that are 
arrays. 

Compile-Time Error Messages A-13 



CDDDUPREC, RECORD <name> from COD has duplicate name 

Explanation. ERROR - The COD record name conflicts with a 
previous RECORD name. The previous RECORD name may be 
a standard VAX BASIC RECORD or another COD record. 

User Action. Remove one of the duplicate definitions. 

CDDFLDNAM, field name missing 

Explanation. ERROR - The COD definition contains a field that 
is not named. 

User Action. Supply a field name for the COD definition. 

CDDINTONLY, % not allowed on <name> with non-integer datatype 

Explanation. ERROR - The % suffix is allowed only on numeric 
data types. 

User Action. Remove the % suffix from the variable name or 
change the datatype keyword. 

CDDLOWBOU, lower bound omitted for dimension <number> of 
<array-name> 

Explanation. ERROR - An array in a COD definition does not 
specify a lower bound. 

User Action. Check to make sure the omission is not a mistake. 
VAX BASIC supplies a lower bound of zero and continues after 
issuing this warning. 

CDDMAXDIM, <array-name> exceeds maximum dimensions 

Explanation. ERROR - An array in a COD definition specifies 
more than 32 dimensions. 

User Action. Reduce the number of dimensions in the CDD 
definition. 

CDDNAMKEY, <name> is a BASIC keyword 

Explanation. ERROR - A CDD definition contains a field name 
that is a reserved word in VAX BASIC. 

User Action. Change the name in the COD definition or supply 
a VAX BASIC name clause. 

A-14 Compile-Time Error Messages 



CDDOCCIGN, OCCURS DEPENDING ON clause for <array-name> from 
CDD ignored 

Explanation: INFORMATION - The CDD contains an array field 
with a variable number of elements. VAX BASIC creates an array 
large enough for the maximum value. 

User Action: If you modify the array field, be sure also to 
change the field that contains the number of array elements. 

CDDOFFERR, CDD offset error, field <field-name> offsets out of order 

Explanation: ERROR - The CDD definition has been corrupted 
or there is an internal error in either VAX BASIC or the CDD. 

User Action: If the problem is not in the CDD definition, please 
submit an SPR with the source code of a small program that 
produces this error. 

CDDPLUSERR, CDD /Plus access error 

Explanation: ERROR - CDD /Plus detected an error while 
attempting to record dependency data. VAX BASIC displays the 
CDD/Plus error. 

User Action: Take action based on the associated CDD /Plus 
error. 

CDDPREERR, decimal precision of <VALUE> in CDD out of range for 
<field-name> 

Explanation: ERROR - The number of fractional digits for a 
packed decimal field is greater than the total number of digits 
specified for that field. 

User Action: Change the number of fractional digits in the CDD 
to be less than or equal to the total number of digits. 

CDDRECFOR, CDD record format is not fixed 

July 1988 

Explanation: ERROR - The CDD supports both variable and 
fixed-length records. VAX BASIC supports only fixed-length 
records. 

User Action: Change the CDD record definition to specify 
fixed-length. 

Compile-Time Error Messages A-15 



CDDRECNAM, record from CDD does not have a record name 

Explanation: ERROR - VAX BASIC uses the field name of the 
outermost structure to name the record, and therefore cannot 
include a CDD record that does not provide a record name. 

User Action: Change the CDD record definition to provide a 
field name for the outermost structure of the record. 

CDDSCAERR, decimal scale of <scale-factor> is out of range for <field> 
from CDD 

Explanation: ERROR - The scale factor for a packed decimal 
CDD field is greater than the number of digits in the field or less 
than zero. 

User Action: Change the scale factor in the CDD definition. 

CDDSCAZER, scale 0 specified for CDD field <field-name> 

Explanation: INFORMATION - A CDD field specifies no scale 
factor for a D_floating field, but the VAX BASIC program 
specifies a non-zero scale factor. 

User Action: Use a scale factor of zero in the VAX BASIC 
program. 

CDDSTRONLY, $ not allowed on <name> with non-string datatype 

Explanation: ERROR - The $ suffix is only allowed on string 
data types. 

User Action: Remove the$ suffix from the variable name or 
change the datatype keyword. 

CDDSUBGRO, substituted GROUP for <field-name> . Data type in CDD not 
supported. 

Explanation: INFORMATION - The CDD definition specifies a 
data type that is not native to VAX BASIC. VAX BASIC creates 
a GROUP with the same name as the CDD field and creates 
variable names for the GROUP components. 

User Action: None. 

A-16 Compile-Time Error Messages 



CDDTAGIGN, tag value ignored for <field-name> from CDD 

Explanation: INFORMATION - The CDD record definition 
contains a VARIANTS OF. 

User Action: None. VAX BASIC translates the VARIANTS OF 
as if it were a regular variant; however, the tag value is ignored. 

Compile-Time Error Messages A-16.1 





CDDUNSDAT, data type specified in CDD for <field-name> not 
supported 

Explanation. ERROR - The data type specified for a field is not 
supported by VAX BASIC. 

User Action. Change the data type in the CDD record definition. 

CDDUPPBOU, upper bound omitted for dimension <number> of 
<array-name> 

Explanation. ERROR - An array in a COD definition does not 
specify an upper bound. 

User Action. Specify an upper bound in the CDD definition. 

CDDVARFLD, field <name> from CDD has variable offset or length 

Explanation. ERROR - A CDD field can be either variable or 
fixed-length. VAX BASIC supports only fixed-length fields. 

User Action. Change the COD definition. 

CHAEXPMUS, channel expression must be numeric 

Explanation. ERROR - The program contains a nonnumeric 
channel expression, for example, PUT #A$ 

User Action. Change the channel expression to be numeric. 

CHALINCLA, CHAIN does not support line number clause 

Explanation. ERROR - A CHAIN statement contains a LINE 
keyword and a line number argument. 

User Action. Remove the LINE keyword and the line number 
argument. 

CHANGES, unsaved change has been made, CTRL/Z or EXIT to exit 

Explanation. WARNING - A VAX BASIC source program in 
memory has been modified, and an EXIT command or CTRL/Z 
has been typed. VAX BASIC signals the error notifying you that 
if you exit from the compiler, the program modifications will be 
lost. 

User Action. If you want to SAVE the program, type SAVE. If 
you do not want to save the program, type EXIT or CTRL/Z. 

Compile-Time Error Messages A-17 



CHANOTALL, CHANGES not allowed on primary key 

Explanation. ERROR - The PRIMARY KEY clause in an OPEN 
statement specifies CHANGES. 

User Action. Remove the CHANGES keyword; you cannot 
change the value of a primary key. 

CHASTAAMB, CHANGE statement is ambiguous 

Explanation. ERROR - A string variable and a numeric array 
have the same name in a CHANGE statement. 

User Action. Change the name of the string variable or the 
numeric array. 

CLIPMUSBE, clipping must be set to "ON" or "OFF" 

Explanation. ERROR - You specified an invalid value in the SET 
CLIP statement. 

User Action. Specify one of the values listed in the message. 

CLOSEIN, error closing <file-name> as input 

Explanation. ERROR - An error was detected while closing an 
input file. 

User Action. Take corrective action based on the associated 
message. 

CLOSEOUT, error closing <file-name> as output 

Explanation. ERROR - An error was detected while closing an 
output file. 

User Action. Take corrective action based on the associated 
message. 

CMDNOTALL, command not allowed on programs without line numbers 

Explanation. ERROR - A command that cannot be used on a 
program without line numbers has been used on a program 
without line numbers. 

User Action. Do not use this command on programs without 
line numbers. 

A-18 Compile-Time Error Messages 



CODLENEST, internal code length estimate error. Submit an SPR 

Explanation. FATAL - VAX BASIC has incorrectly estimated the 
size of the generated code for your program. 

User Action. Submit an SPR with the program that caused the 
error. (You can often work around this error by making a simple 
change to your code.) 

COLOUTRAN, color intensities must be in the range 0.0 to 1.0 

Explanation. ERROR - The value specified for color intensity is 
either less than 0.0 or greater than 1.0. 

User Action. Supply a value between 0.0 and 1.0. 

COMMAPALI, variable <name> not aligned in COMMON/MAP 
<name> 

Explanation. INFORMATION - In a COMMON or MAP, the 
total storage preceding a REAL, WORD, or LONG numeric 
variable is an odd number of bytes. 

User Action. None. In VAX BASIC, numeric data can start on 
any byte boundary. 

COMMAPNEQ, COMMON/MAP area sizes are not equal for section 

Explanation. WARNING - A MAP or COMMON with the same 
name exists in more than one program module, but the size of 
the areas differs. 

User Action. Make the size of the COMMON or MAP areas 
equal in size in all modules. 

COMMAPOVF, COM/MAP <name> is too large 

Explanation. ERROR - The program contains a MAP or 
COMMON longer than (2"31 - 1) longwords. 

User Action. Reduce the length of the COMMON or MAP. 

Compile-Time Error Messages A-19 



CONCOMSYN, conditional compilation cannot be used with /SYNTAX 

Explanation. FATAL - The /SYNTAX_CHECKING qualifier 
is in effect when a program line containing the %IF, %THEN, 
%ELSE, or %END %IF lexical directive was entered. 

User Action. Turn off syntax checking before entering a program 
line containing the %IF, % THEN, %ELSE, or %END %IF lexical 
directive. 

CONDATSPC, conflicting data type specifications 

Explanation. ERROR - The program contains a declarative 
statement containing two or more consecutive and contradictory 
data type keywords, for example, DECLARE REAL BYTE. 

User Action. Remove one of the data type keywords or make 
sure that the keywords refer to the same generic data type. For 
example, DECLARE REAL SINGLE is valid. 

CONEXPREQ, constant expression required 

Explanation. ERROR - A statement specifies a variable, built-in 
function reference or exponentiation where a constant is required. 

User Action. Supply an expression containing only literals or 
declared constants or remove the exponentiation operation. 

CONTARNOT, CONTINUE target not legal in detached error handlers 

Explanation. ERROR - A CONTINUE statement within a 
detached WHEN block error handler contains a target. 

User Action. Remove the target line number or label from the 
CONTINUE statement or use an attached error handler. 

CONIS-1NC, constant is inconsistent with the type of <name> 

Explanation. ERROR - A DECLARE CONSTANT statement 
specifies a value that is inconsistent with the data type of 
the constant, for example, a BYTE value specified for a REAL 
constant. 

User Action. Change the declaration so that the data type of the 
value matches that of the constant. 

A-20 Compile-Time Error Messages 



CONIS_NEE, <item> requires conditional expression 

Explanation. ERROR - A CASE or IF keyword is immediately 
followed by a floating-point or string expression. 

User Action. Supply a conditional expression (relational, logical, 
or integer). 

CONLFTSID, constant <name> not allowed on left side of assignment 

Explanation. ERROR - The program tries to assign a value to a 
user-defined constant. 

User Action. Remove the assignment statement; once you have 
assigned a value to a declared constant, you cannot change it. 

CONNOTALL, constant <name> not allowed in assignment context 

Explanation. ERROR - The program tries to assign a value to a 
user-defined constant. 

User Action. Remove the assignment statement; once you have 
assigned a value to a declared constant, you cannot change it. 

COOMUSBE, coordinates must be within NOC space (0.0 to 1.0) 

Explanation. ERROR - The value of a coordinate is either less 
than 0.0 or greater than 1.0. 

User Action. Supply a value between 0.0 and 1.0. 

CORSTAFRA, corrupted stack frame 

Explanation. ERROR - An immediate mode statement was 
entered after a STOP statement was executed in the BASIC 
environment and something corrupted the stack. 

User Action. Check program logic to make sure that all array 
references are within array bounds. This error can also be 
caused by loading non-BASIC object modules in the BASIC 
environment. 

Compile-Time Error Messages A-21 



COUONLALO, COUNT clause only allowed with array LIST clause 

Explanation. ERROR - A COUNT clause was found on a SET 
INITIAL CHOICE statement that contains a LIST clause that 
does not contain a string array. 

User Action. Remove the COUNT clause or use the array form 
of the LIST clause. 

COUVALCAN, COUNT value cannot be greater than array size 

Explanation. ERROR - In the COUNT clause, you specified a 
count that is larger than the size of the array that you supplied. 

User Action. Change either the COUNT value or the size of 
the array so that COUNT is less than or equal to the number of 
elements in the array. 

DATTYPEXP, data type required for variable <name> with /EXPLICIT 

Explanation. ERROR - A program compiled with the 
/TYPE=EXPLICIT qualifier declares a variable without specifying 
a data type. 

User Action. Supply a data type keyword for the variable or 
compile the program without the /TYPE=EXPLICIT qualifier. 

DATTYPNOT, data type keyword not allowed in SUB statement 

Explanation. ERROR - A SUB statement contains a data type 
keyword between the subprogram name and the parameter list. 

User Action. Remove the data type keyword. In a SUB state
ment, data type keywords can appear only within the parameter 
list. 

DATTYPREQ, data type required in EXTERNAL CONSTANT declaration 

Explanation. ERROR - An EXTERNAL CONSTANT statement 
has no data type keyword. 

User Action. Supply a data type keyword to specify the data 
type of the external constant. 

A-22 Compile-Time Error Messages 



DECIMERR, DECIMAL overflow 

Explanation. WARNING - The program contains a DECIMAL 
expression whose value is outside the valid range. 

User Action. Reduce the value of the DECIMAL expression. 

DECLEXSYN, DECLARED lexical function syntax error 

Explanation. ERROR - The syntax of the %DECLARED lexical 
function is specified incorrectly. 

User Action. Supply the correct syntax. 

DECPREOUT, DECIMAL precision specification out of range 

Explanation. ERROR - In the declaration for a packed decimal 
variable or constant, the number of digits to the right of the 
decimal point is greater than the total number of digits specified, 
or greater than 31. 

User Action. Change the declaration so that the total number 
of digits specified is less than 31, and the number of digits to 
the right of the decimal point is less than or equal to the total 
number of digits. 

DECSIZOUT, DECIMAL size specification out of range 

Explanation. ERROR - The declaration for a packed decimal 
variable or variable specifies more than 31 digits. 

User Action. Change the declaration to specify 31 or fewer 
digits. 

DEFINVNOT, DEF invocation not allowed in assignment context 

Explanation. ERROR - A DEF function invocation (including 
a parameter list) appears on the left side of an assignment 
statement. 

User Action. Remove the assignment statement. You cannot 
assign values to a function invocation. 

Compile-Time Error Messages A-23 



DEFMODNOT, DEF <name> mode not as declared 

Explanation. ERROR - The specified data type in a function 
declaration disagrees with the data type specified in the function 
definition. 

User Action. Make the data type specifications match in both 
the function declaration and the function definition. 

DEFNOTDEF, DEF <name> not defined 

Explanation. ERROR - The program contains a reference to a 
nonexistent user-defined function. 

User Action. Define the function in a DEF statement. 

DEFNOTWHE, DEF not allowed in WHEN block or handler 

Explanation. ERROR - A DEF function definition is not allowed 
in a WHEN block or its associated handler. 

User Action. Remove the DEF function definition from within 
the WHEN block or handler. 

DEFRESREF, DEF <name> result reference illegal in this context 

Explanation. ERROR - The program attempts to assign a value 
to a DEF name outside the DEF block. 

User Action. Remove the assignment statement. You cannot 
assign a value to a DEF outside of the DEF block. 

DEFSIZNOT, DEF <name> decimal size not as declared 

Explanation. ERROR - The DECIMAL(d,s) size specified in the 
DEF statement does not match the DECIMAL(d,s) used in the 
associated DECLARE DEF statement. 

User Action. Make the DECIMAL size specification agree in 
both the DECLARE DEF and DEF statements. 

A-24 Compile-Time Error Messages 



DEFSTAPAR, DEF* formal <formal-name> inconsistent with usage outside 
DEF* 

Explanation: ERROR - A DEF* formal parameter has the same 
name as a program variable, but different attributes. 

User Action: You should not use the same names for DEF* 
parameters or program variables. If you do, you must ensure 
that they have the same data type and size. 

DEFSTRPAR, DEF string parameter is illegal in MAP DYNAMIC or REMAP 

Explanation: ERROR - You cannot use a static string that is a 
parameter declared in a DEF or DEF* function as the storage area 
in a MAP DYNAMIC or REMAP statement. 

User Action: Change the storage area specification in the MAP 
DYNAMIC or REMAP statement to use either a MAP name or a 
static string variable that is not a parameter to the DEF or DEF* 
function. 

DELETE, ignoring <item> 

Explanation: ERROR - The program contains a syntax error. 
The compiler tries to recover from the error by ignoring an 
operator or separator in the source line. For example, 
DIM A(3, ) is a syntax error, but VAX BASIC continues the 
compilation by ignoring the comma. The compilation continues 
only in order to discover other errors; no object module is 
produced. 

User Action: Correct the syntax error in the displayed line. 

DEPNOTANS, /DEPENDENCY_DATA qualifier not allowed with /ANSI 

Explanation: ERROR - The /DEPENDENCY_DATA qualifier 
conflicts with the/ ANSLSTANDARD qualifier. 

July 1988 

User Action: Specify either the /DEPENDENCY_DATA qualifier 
or the / ANSI_STANDARD qualifier, but not both. 

Compile-Time Error Messages A-25 



DESOUTRAN, destination out of range 

Explanation: FATAL - The branch destination in an ON GOSUB 
statement is greater than 32767 bytes away from the statement. 

User Action: Reduce the distance between the destination and 
the statement. 

DIMOUTRAN, dimension is out of range 

Explanation: ERROR - The program contains the declaration of 
an array that specifies a negative number as a dimension. 

User Action: Change the dimension to a positive number. 

DIMLSSZERO, dimension must be greater than zero 

Explanation: ERROR - The number specified for a dimension 
must be greater than zero. 

User Action: Change the number to be greater than zero. 

DIMTOOBIG, dimension for array <name> must be between 1 and 
<number> 

Explanation: ERROR - The number of the dimension specified is 
greater than the number of dimensions in the array. 

User Action: Change the dimension number to be less than or 
equal to the number of dimensions in the array. 

DIRMUSTBE, directive must be only item on line 

Explanation: ERROR - The program contains a compiler direc
tive that is not the only item on the line. 

User Action: Place the directive on its own line. 

DIRNOTIMM, directive not valid in immediate mode 

Explanation: ERROR - A compiler directive was typed in the 
BASIC environment. 

User Action: None. Compiler directives are invalid in immedi
ate mode. 

A-26 Compile-Time Error Messages July 1988 



DIVBY_ZER, division by zero 

Explanation: WARNING - The value of a number divided by 
zero is indeterminate. 

User Action: Change the expression so that no expression is 
divided by the constant zero. 

DRAWITREQ, DRAW WITH clause requires 4X4 matrix 

Explanation: ERROR - A user matrix is specified in a DRAW 
statement WITH clause where a 2 dimensional matrix with lower 
bounds 0 and upper bounds 4 in both dimensions is required. 

User Action: Declare the matrix to be a 2 dimensional matrix 
with lower bounds 0 and upper bounds 4 in both dimensions. 

DUPCLASPE, duplicate clause specified 

Explanation: ERROR - A duplicate clause was found on a SET 
INITIAL statement or a graphics input statement. 

User Action: Remove the duplicate clause. 

Compile-Time Error Messages A-26.1 





DUPLINNOT, duplicate line numbers not ANSI 

Explanation. ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier from the DCL command level, or called 
into the BASIC environment with the OLD command while the 
/ ANSl_STANDARD qualifier is in effect, contains two identical 
line numbers. 

User Action. Remove one instance of the duplicate line num
ber. Even if you compile the program without the/ ANSI_ 
STANDARD, VAX BASIC will ignore all statements connected 
with the first instance of the duplicate line number before 
compiling the program. 

DUPLNFND, duplicate line number <number> found 

Explanation. INFORMATION or WARNING 

Explanation. INFORMATION - A line number in an include file 
is the same as a line number in the main source file. 

Explanation. WARNING - There are two lines in the main 
source file with the same line number. VAX BASIC keeps the 
second occurrence of the line number. 

User Action. Correct the source by changing one of the line 
numbers to an unused number. 

DYNATTONL, DYNAMIC attribute only valid for MAP areas 

Explanation. ERROR - A COMMON keyword is followed by 
the DYNAMIC keyword. 

User Action. Remove the DYNAMIC keyword. The DYNAMIC 
attribute is valid only for MAP areas. 

DYNSTRINH, dynamic string variable <name> inhibits optimization 

Explanation. INFORMATION - This error is reported only when 
the /NOSETUP qualifier is in effect. The program contains 
a dynamic string variable. This prevents optimization of the 
compiler-generated code. 

User Action. Place the string variable in a COMMON or MAP. 

Compile-Time Error Messages A-27 



ELSIMPCON, ELSE appears in improper context, ignored 

Explanation. ERROR - The program contains an ELSE clause 
that either is not preceded by an IF statement or that appears 
after an IF has been terminated with a line number or END IF. 

User Action. Remove either the ELSE clause or the terminating 
line number or END IF. 

ENDIMPCON, END IF appears in improper context, ignored 

Explanation. ERROR - The program contains an END IF state
ment that either is not preceded by an IF statement or occurs 
after an IF has been terminated by a line number. 

User Action. Supply an IF statement or remove the terminating 
line number. 

ENDSTAREQ, END statement required in ANSI 

Explanation. INFORMATION - A program compiled with 
the / ANSLSTANDARD qualifier does not contain an END 
statement. 

User Action. Include an END statement as the last statement in 
the program. ANSI Minimal BASIC requires an END statement. 

ENTARRFIE, entire array field of virtual record cannot be passed 

Explanation. ERROR - The program attempts to pass an entire 
array as a parameter to a subprogram when: 1 the array is an 
item in a record and 2) the record is itself dimensioned as a 
virtual array. 

User Action. Assign the values of the array to another array that 
is of the same data type and dimension but that is not a field of a 
virtual array record, and pass the second array as the parameter. 

ENTARRNOT, entire array not allowed in this context 

Explanation. ERROR - The program specifies an entire array 
in a context that permits only array elements, for example, in a 
PRINT statement. 

User Action. Remove the reference to the entire array. 

A-28 Compile-Time Error Messages 



ENTGRONOT, entire GROUP or RECORD not allowed in this context 

Explanation. ERROR - The program specifies an entire GROUP 
or RECORD in a context that permits only GROUP or RECORD 
components, for example, PRINT ABC::XYZ where XYZ is a 
GROUP. 

User Action. Remove the reference to the entire GROUP or 
RECORD. 

ENTVIRARR, entire virtual array cannot be a parameter 

Explanation. ERROR - The program attempts to pass an entire 
virtual array as a parameter. 

User Action. None. You cannot pass an entire virtual array as a 
parameter. 

EOLNOTTER, End of line does not terminate IFs due to active blocks 

Explanation. ERROR - A THEN or ELSE clause contains a loop 
block, and a line number terminates the IF-THEN-ELSE before 
the end of the loop block. 

User Action. Make sure that any loop is entirely contained in 
the THEN or ELSE clause. 

ERLNOTALL, ERL statement not allowed in programs without line 
numbers 

Explanation. ERROR - An ERL statement has been found in a 
program without line numbers. 

User Action. Remove the ERL statement. 

ERRACCLIB, error accessing module <mod-name> in text library 
<text-lib-name> 

Explanation. ERROR - VAX BASIC found an unexpected 
LIBRARIAN error while trying to %INCLUDE a text library 
module. This error message is followed by a specific LIBRARIAN 
(LBR) message. 

User Action. Take appropriate action based on the associated 
LBR message. 

Compile-Time Error Messages A-29 



ERRCLOLIB, error closing text library <text-lib-name> 

Explanation. ERROR - The text library specified in an 
%INCLUDE directive could not be closed. This error message is 
followed by the specific LIBRARIAN (LBR) error. 

User Action. Take appropriate action based on the associated 
LBR message. 

ERROPEFIL, error opening file 

Explanation. ERROR - The file specified in a %INCLUDE 
directive could not be opened. This error message is followed by 
the specific RMS error. 

User Action. Take appropriate action based on the associated 
RMS error. 

ERROPELIB, error opening text library <text-lib-name> 

Explanation. ERROR - The text library specified in an 
%INCLUDE directive could not be opened. This error message 
is followed by the specific LIBRARIAN (LBR) error. 

User Action. Take appropriate action based on the associated 
LBR message. 

ERRRECCOM, erroneous RECORD component 

Explanation. ERROR - The program contains an erroneous 
record component, for example, specifying A::B when RECORD 
A has no component named B. 

User Action. Remove the erroneous reference. 

EXEDIMILL, executable DIMENSION illegal for static array 

Explanation. ERROR - A DIMENSION statement names an 
array already declared with a DECLARE, COMMON, MAP, 
or RECORD statement, or one that was declared statically in a 
previous DIMENSION statement. 

User Action. Remove the executable DIMENSION statement 
or originally declare the array as executable in a DIMENSION 
statement. 

A-30 Compile-Time Error Messages 



EXPDECREQ, explicit declaration of <name> required 

Explanation: ERROR - The program is compiled with the 
/TYPE:EXPLICIT qualifier in effect, and the program refer~nces 
a variable, constant, function, or subprogram name that is not 
explicitly declared. 

User Action: Explicitly declare the variable, constant, function, 
or subprogram. 

EXPIFDIR, expecting IF directive 

Explanation: ERROR - The program contains a %END that is 
not immediately followed by a %IF. 

User Action: Supply a %IF immediately following the %END. 

EXPNOTALL, expression not allowed in this context 

Explanation: ERROR - The program contains an expression in 
a context that allows only simple variables, array elements or 
entire arrays, for example, in FIELD and MOVE statements. 

User Action: Remove the expression. 

EXPTOOCOM, expression too complicated 

Explanation: ERROR - The program contains an expression or 
statement too complicated to compile. This message can occur 
whenever VAX BASIC is unable to allocate sufficient registers. 

User Action: Recode as required; for example, rewrite the 
statement as two or more less complicated statements. 

EXPUNAOPE, expecting unary operator or legal lexical operand 

Explanation: ERROR - A compiler directive contains an invalid 
lexical expression, for example, %IF *3% %THEN. 

User Action: Correct the lexical expression. 

EXTELSFOU, extra ELSE directive found 

July 1988 

Explanation:· ERROR - The program contains a %ELSE directive 
that is not matched with a %IF directive. 

User Action: Make sure that each %ELSE is preceded by a %IF, 
and that each %IF contains no more than one %ELSE clause. 

Compile-Time Error Messages A-31 



EXTENDIF, extra END IF directive found 

Explanation: ERROR - A program unit contains a %END %IF 
without a preceding %IF directive. 

User Action: Supply a %IF for the %END %IF. 

EXTLEFPAR, extra left parenthesis in expression 

Explanation: ERROR - A compiler directive contains a lexical 
expression with an extra left parenthesis. 

User Action: Remove the extra parenthesis. 

EXTNAMTOO, EXTERNAL name too long, truncating to <new-name> 

Explanation: WARNING - An EXTERNAL statement names a 
symbol longer than 31 characters. 

User Action: Shorten the symbol name to 31 characters or less. 

EXTRIGPAR, extra right parenthesis in expression. 

Explanation: ERROR - A compiler directive contains a lexical 
expression with an extra right parenthesis. 

User Action: Remove the extra parenthesis. 

EXTSTRVAR, EXTERNAL STRING variables not supported 

Explanation: ERROR - The program contains an EXTERNAL 
statement that specifies an external string variable. 

User Action: Remove or change the EXTERNAL statement. 
VAX BASIC does not support external string variables. 

FEANOTANS, language feature not ANSI 

Explanation: INFORMATION - A program compiled with the 
/ ANSI_STANDARD qualifier contains a VAX BASIC feature 
(such as a long variable name or a string array) that does not 
conform to the ANSI Minimal BASIC Standard. (See Chapter 7 
for more information on the ANSI Minimal Standard.) 

User Action: Although VAX BASIC allows you to run programs 
with non-ANSI language features, you must remove these 
features if you want your program to be transportable to other 
ANSI Minimal BASIC compilers. 

A-32 Compile-Time Error Messages 



FIEVALONL, FIELD valid only for dynamic string variables 

Explanation. ERROR - A FIELD statement contains a numeric or 
fixed-length string variable. 

User Action. Remove the numeric or fixed-length string variable. 
Only dynamic string variables are valid in FIELD statements. 

FILACCERR, file access error for INCLUDE directive <file-name> 

Explanation. ERROR - The file named in the %INCLUDE 
directive was correctly opened but could not be read for some 
reason, for example, the disk drive was switched off line. 

User Action. Take action based on the associated RMS error 
messages. 

FILEWRITE, <prog-name> written to file: <file-name> 

Explanation. INFORMATION - The specified program name has 
been saved in file-name. 

User Action. None. 

FILNOTALL, FILL not allowed in MAP DYNAMIC 

Explanation. ERROR - A MAP DYNAMIC statement contains a 
FILL item. 

User Action. Remove the FILL item. 

FILNOTDEL, error deleting <file-name> 

Explanation. ERROR - An error was detected in attempting to 
delete a file. 

User Action. Supply a valid file specification, or take corrective 
action based on the associated message. 

FILTOOBIG, FILL number <n> in overlay <m> of MAP <name> 
too big 

Explanation. ERROR - A FILL string length or repeat count 
caused the compiler to try to allocate more than 2"31 longwords 
of storage. 

User Action. Check the specified MAP statement and change 
the FILL string length or repeat count. 

Compile-Time Error Messages A-33 



FLOCVTILL, floating CVT valid only for SINGLE and DOUBLE 

Explanation. ERROR - A CVTF$ or CVT$F function names a 
GFLOAT or HFLOAT value as an argument. 

User Action. Use a SINGLE or DOUBLE argument rather than 
GFLOAT or HFLOAT. 

FLOPOIERR, floating point error or overflow 

Explanation. WARNING - The program contains a numeric 
expression whose value is outside the valid range for the default 
floating-point data type. 

User Action. Modify the expression so that its value is within 
the allowable range or select as the default REAL size a floating
point data type that has a greater range. 

FNEWHINOT, exit from DEF while not in DEF 

Explanation. ERROR - An FNEXIT or EXIT DEF statement has 
no preceding DEF statement. 

User Action. Define the function before inserting an FNEXIT or 
EXIT DEF statement. 

FNEWITDEF, end of DEF seen while not in DEF 

Explanation. ERROR - An FNEND or END DEF statement has 
no preceding DEF statement. 

User Action. Define the function before inserting an FNEND 
statement or delete the FNEND statement. 

FORFEEMUS, FORM FEED must appear at end of line 

Explanation. INFORMATION - A form feed character is fol
lowed by other characters in the same line. 

User Action. Remove the characters following the form feed. A 
form feed must be the last or only character on a line. 

FORPARMUS, formal parameter must be supplied for <name> 

Explanation. ERROR - The declaration of a DEF, SUB, or 
FUNCTION routine contains the parentheses for a parameter list 
but no parameters. 

User Action. Supply a parameter list or remove the parentheses. 

A-34 Compile-Time Error Messages 



FORSTRP AR, formal string parameters may not be FIELDed 

Explanation. ERROR - A variable name appears both in a 
subprogram formal parameter list and a FIELD statement in the 
subprogram. 

User Action. Remove the variable from FIELD statement or the 
parameter list. 

FOUENDWIT, found end of <block> without matching <item> 

Explanation. ERROR - The program contains an END SELECT, 
END DEF, END FUNCTION, FUNCTIONEND, SUBEND, 
END SUB, or END IF without a matching SELECT, DEF, SUB, 
FUNCTION or IF. 

User Action. Supply a SELECT, DEF, FUNCTION, SUB, or IF to 
match the END <block> statement, or remove the erroneous 
END statement. 

FOUND, found <item> when expecting <item> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC displays the item where the error was detected, then 
displays one or more items that make more sense in that context. 
The compilation continues so that other errors may be detected. 
The actual program line remains unchanged and no object file is 
produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

FOUNXTWIT, found NEXT without matching WHILE or UNTIL 

Explanation. ERROR - The program contains a NEXT statement 
without a corresponding WHILE or UNTIL statement. 

User Action. Supply a WHILE or UNTIL statement or remove 
the erroneous NEXT statement. 

FOUWITMAT, found NEXT without matching FOR 

Explanation. ERROR - The program contains a NEXT <control
variable> statement without a matching FOR <control
variable > statement. 

User Action. Supply a FOR statement or remove the erroneous 
NEXT statement. 

Compile-Time Error Messages A-35 



FUNINVNOT, function invocation not allowed in assignment context 

Explanation. ERROR - An external function invocation (includ
ing a parameter list) appears on the left side of an assignment 
statement. 

User Action. Remove the assignment statement. You cannot 
assign values to a function invocation. 

FUNNESTOO, function nested too deep 

Explanation. ERROR - The program contains too many levels of 
function definitions within function definitions. 

User Action. Reduce the number of nested functions. 

FUNWHINOT, exit from FUNCTION while not in FUNCTION 

Explanation. ERROR - An EXIT FUNCTION or FUNCTIONEXIT 
statement was found in a module that is not a FUNCTION 
subprogram. 

User Action. Remove the EXIT FUNCTION or FUNCTIONEXIT 
statement. 

GRAARRMUS, graphics array must be integer or real 

Explanation. ERROR - The specified array has a data type other 
than an integer or real data type. 

User Action. Declare the array with an integer or real data type. 

HANNOTDEF, HANDLER not allowed in DEF 

Explanation. ERROR - A HANDLER definition has been found 
within a DEF function definition. 

User Action. Remove the HANDLER definition from inside the 
DEF function definition. 

HANNOTFOU, error handler <name> not found 

Explanation. ERROR - You did not define the HANDLER you 
referenced in a WHEN statement. 

User Action. Define the HANDLER you reference in the WHEN 
statement. 

A-36 Compile-Time Error Messages 



HANNOTWHE, HANDLER not allowed in a WHEN block or handler 

Explanation: ERROR - A detached HANDLER definition was 
found in a WHEN block protected region or associated handler. 

User Action: Remove the HANDLER definition from within all 
WHEN block protected regions and associated handlers. 

HANWHINOT, exit from HANDLER while not in HANDLER 

Explanation: ERROR - An EXIT HANDLER statement was 
found while not in a HANDLER block. 

User Action: Remove the EXIT HANDLER statement. 

HORJUSMUS, horizontal justification must be "LEFT", "CENTER", "RIGHT" or 
"NORMAL" 

Explanation: ERROR - You specified an invalid value for the 
horizontal component of the SET TEXT JUSTIFY statement. 

User Action: Specify one of the values listed in the message. 

IDEMAYAPP, IDENT directive may appear only once per module 

Explanation: WARNING - The program contains more than one 
%IDENT compiler directive. 

User Action: Remove all but one %IDENT directive. 

IDENAMTOO, IDENT directive name is too long 

Explanation: WARNING - The quoted string in a %IDENT 
directive is too long. 

User Action: Reduce the length of the string. The maximum 
length is 31 characters. 

IF_EXPMUS, IF directive expression must be terminated by THEN directive 

Explanation: ERROR - A %IF directive contains a %ELSE clause 
with no intervening % THEN clause. 

User Action: Insert a %THEN clause. 

Compile-Time Error Messages A-37 



IF_IN _INC, IF directive in INCLUDE directive needs END IF directive in same 
file 

Explanation: ERROR - A %INCLUDE file contains a %IF but no 
%END %IF. 

User Action: Supply a %END %IF for the %INCLUDE file. 

IF_NOTTER, IF statement not terminated 

Explanation: ERROR - The program contains an IF-THEN-ELSE 
statement within a block (for example, a FOR-NEXT, SELECT
CASE, or WHILE block) and the end of the block was reached 
before the IF-THEN-ELSE statement was terminated. 

User Action: Check program logic to be sure IF-THEN-ELSE 
statements are terminated with a line number or an END IF 
statement before the end of the block is reached. 

ILLALLCLA, illegal ALLOW clause <clause> 

Explanation: ERROR - The program contains an ALLOW clause 
on a GET statement, and the file was not opened with the 
UNLOCK EXPLICIT clause. 

User Action: Either remove the ALLOW clause from the GET 
statement or use the UNLOCK EXPLICIT clause in the OPEN 
statement. 

ILLARGBP2, illegal argument count for BP2 

Explanation: INFORMATION - The program contains a 
SUB, DEF or EXTERNAL FUNCTION reference with more 
than 32 parameters. This error is reported only when the 
/FLAG:BP2COMP ATIBILITY qualifier is in effect. 

User Action: If the program must run under both VAX BASIC 
and PDP-11 BASIC-PLUS-2, the function must have 32 or fewer 
parameters. 

ILLAR GP AS, illegal argument passing mechanism 

Explanation: ERROR - The program specifies an invalid 
argument-passing mechanism. For example, passing strings 
or arrays BY VALUE, or passing an entire virtual array. 

User Action: Check all elements for proper parameter-passing 
mechanism. 

A-38 Compile-Time Error Messages July 1988 



ILLCALFUN, illegal CALL of a DECIMAL, HFLOAT or STRING function 

Explanation. ERROR - You attempted to use the CALL state
ment to invoke either a DECIMAL, HFLOAT, or STRING 
function. 

User Action. Invoke the function not using the CALL statement. 

ILL CHA, illegal character <ASCII code> 

Explanation. WARNING - The program contains illegal or 
incorrect characters. 

User Action. Examine the program for correct usage of the VAX 
BASIC character set and possibly delete the character. 

ILLCHAEXT, illegal character <ASCII code> in external name 

Explanation. ERROR - The external symbol in an EXTERNAL 
FUNCTION or CONSTANT declaration contains an invalid 
character. 

User Action. Remove the invalid character. External names can 
use only printable ASCII characters: ASCII values in the range 
32 to 126, inclusive. 

ILLCHAIDE, illegal character <ASCII value> in ID ENT directive 

Explanation. WARNING - A %IDENT directive contains an 
illegal character with the reported ASCII value. 

User Action. Remove the illegal character. 

ILLCONTYP, illegal constant type 

Explanation. ERROR - The program contains an invalid declara
tion, for example, DECLARE RFA CONSTANT. 

User Action. Remove the invalid data type. You cannot declare 
constants of the RFA data type. 

Compile-Time Error Messages A-39 



ILLEXTPDP, <name> is illegal as a PDP-11 external name 

Explanation. INFORMATION - This error is reported only 
when the /FLAG:BP2COMPATIBILITY qualifier is in effect. 
The external name is longer than six characters or contains a 
non-RADSO character. 

User Action. Reduce the length of the name or remove the 
non-RADSO character. 

ILLFRMNAM, illegally formed name 

Explanation. ERROR - The program contains an invalid user 
identifier (such as a variable, constant or function name). 

User Action. Change the name to comply with the rules for 
naming user identifiers. See the VAX BASIC Reference Manual for 
more information. 

ILLFRMNUM, illegally formed numeric constant 

Explanation. ERROR - The program contains either: 1) an 
invalid E-format expression or 2) a numeric constant with a 
digit that is invalid in the specified radix, for example, a decimal 
constant containing a hexadecimal digit. 

User Action. Supply a valid E-format expression or a constant 
that is valid in the specified radix. 

ILLGOTO, can't GOTO outside current procedure 

Explanation. WARNING - The target line number of an imme
diate mode GOTO statement is outside of the currently compiled 
procedure. 

User Action. None. If you RUN a source file containing more 
than one program unit, the currently compiled program is the last 
program unit in the source file. If you use the OLD command 
to read a program into memory and load one or more object 
modules, then type RUN, the currently compiled procedure is 
the program you read into memory with OLD. 

A-40 Compile-Time Error Messages 



ILLIDEPDP, illegal %IDENT string for PDP-11 

Explanation. INFORMATION - A %IDENT compiler directive 
contains a string that is invalid for PDP-11 systems. This error is 
issued only when the BP2 compatibility flagger is enabled. 

User Action. Change the %IDENT string. The string must be 
between 1 and 6 characters, and must contain only RAD-50 
characters. 

ILLIO_CHA, illegal 1/0 channel 

Explanation. ERROR - A constant channel expression is greater 
than 99, or a variable channel expression is greater than 119. 

User Action. If the channel expression is a constant, change to 
be less than or equal to 99. A variable channel expression can 
be less than or equal to 119; however, channels in the range 100 
through 119 are reserved for programs using LIB$GET_LUN. 

ILLLINNUM, illegal line number in CHAIN 

Explanation. ERROR - A CHAIN with LINE statement specifies 
an invalid line number. Either the number is outside the valid 
range, or a string expression follows the LINE keyword. 

User Action. Supply an integer line number between 1 and 
32767, inclusive. 

ILLLOCARG, illegal LOC argument 

Explanation. ERROR - An argument to the LOC function is a 
constant, virtual array element, or expression. 

User Action. Change the argument to the LOC function. 

ILLLOONES, illegal loop nesting, expecting NEXT <variable> 

Explanation. ERROR - The program contains overlapping loops. 

User Action. Examine the program logic to make sure that the 
FOR and NEXT statements for the inside loop lie entirely within 
the outside loop. 

Compile-Time Error Messages A-41 



ILLMATOPE, illegal matrix operation 

Explanation. ERROR - The program attempts matrix division. 
The operation is treated as a MAT multiply, and the compilation 
continues. 

User Action. Remove the attempted matrix division. VAX 
BASIC does not support this operation. 

ILLMCHPDP, illegal passing mechanism on PDP-lls 

Explanation. INFORMATION - This error is reported only 
when the /FLAG:BP2COMPATIBILITY qualifier is in effect. A 
parameter list contains a BY clause that is invalid in PDP-11 
BASIC-PLUS-2, for example, specifying BY DESC for parameters 
that are not entire arrays or strings. 

User Action. See the VAX BASIC Reference Manual for allowable 
BASIC-PLUS-2 parameter-passing mechanisms. 

ILLMIDLEN, illegal MID assignment length 

Explanation. ERROR - The value of the length in the MID 
statement is either greater than the length of the string or less 
than or equal to zero. 

User Action. Correct the length to be between 1 and the length 
of the string. 

ILLMIDSTRT, illegal MID starting value 

Explanation. ERROR - The starting value in the MID statement 
is less than or equal to zero. 

User Action. Correct the starting value to be greater than or 
equal to one. 

ILLMODMIX, illegal mode mixing 

Explanation. ERROR - The program contains string and numeric 
operands in the same operation. 

User Action. Change the expression so that it contains either 
string or numeric operands, but not both. 

A-42 Compile-Time Error Messages 



ILLMULDEF, illegal multiple definition of name <name> 

Explanation. ERROR - The program uses the same name for: 

• More than one variable 

• A variable and a MAP 

• A variable and a COMMON 

• A MAP and COMMON 

User Action. Use unique names for variables, COMMONs and 
MAPs. 

ILLMULOPT, OPTIONAL cannot be specified more than once 

Explanation. ERROR - The OPTIONAL clause was specified 
more than once in the EXTERNAL statement for a single SUB 
or FUNCTION. This is not allowed because OPTIONAL implies 
that all parameters following it are optional. 

User Action. Fix the EXTERNAL statement so that it has at most 
1 OPTIONAL clause per SUB or FUNCTION. 

ILLNESDEF, illegally nested DEFs 

Explanation. ERROR - The program contains a DEF function 
block within another DEF function block. 

User Action. Remove the inner DEF block. A DEF cannot 
contain another DEF. 

ILLOPEARG, illegal operation for argument 

Explanation. ERROR - The program performs an operation that 
is inconsistent with the data type of the arguments, for example, 
an arithmetic operation on variables of the RFA data type. 

User Action. Remove the operation or change the data type of 
the arguments. 

ILLOPTBAS, illegal OPTION BASE value 

Explanation. INFORMATION - A program compiled with 
the / ANSl_STANDARD qualifier contains an OPTION BASE 
statement that specifies a value other than 0 or 1. 

User Action. Change the OPTION BASE statement to specify 
either 0 or 1. 

Compile-Time Error Messages A-43 



ILLQUACOM, illegal qualifier combination 

Explanation. ERROR - In the BASIC environment, you 
specified an illegal combination of qualifiers, such as 
COMPILE/NOSHOW=CDD. 

User Action. Issue the command again, using a valid combina
tion of qualifiers. 

ILLSTROPE, illegal string operator 

Explanation. ERROR - The program specifies an invalid string 
operation; for example, A$ = B$ - C$. 

User Action. Replace the invalid operator. 

ILLUSAFIE, illegal usage of FIELDed variable 

Explanation. A MAT statement operates on an element of a 
string array that appears in a FIELD statement. 

User Action. Remove the array from the MAT statement. 

ILLUSEUNA, illegal use of unary operator 

Explanation. ERROR - A compiler directive contains an invalid 
lexical expression, for example, %IF 1 NOT 2. 

User Action. Correct the invalid lexical expression. 

ILLWAIVAL, WAIT value must be in the range 0 to 255 inclusive 

Explanation. ERROR - An integer expression was specified on a 
WAIT clause that is less than 0 or greater than 255. 

User Action. Specify an integer expression from 0 through 255. 

IMMMODOPE, immediate mode operation requires storage allocation 

Explanation. ERROR - An immediate mode statement attempted 
to allocate storage, for example, to create a new variable. 

User Action. None. You cannot create new storage in immediate 
mode. 

A-44 Compile-Time Error Messages 



IMMNOTANS, immediate mode not valid when ANSI 

Explanation. ERROR - An immediate mode statement was typed 
when in ANSI mode. 

User Action. None. 

IMPCNTNOT, implied continuation not allowed 

Explanation. ERROR - The program contains an implied con
tinuation line after a statement that does not allow implicit 
continuation, for example, a DATA statement. 

User Action. Use an ampersand ( & ) to continue the statement. 

IMPDECILL, implicit declaration of <name> illegal in immediate mode 

Explanation. ERROR - A new variable was named in an imme
diate mode statement after a STOP, for example, PRINT B after a 
STOP in a program that has no variable named B. 

User Action. None. You cannot create new variables in immedi
ate mode after a STOP statement. 

IMPDECNOT implied declaration not allowed for <name> with 
/EXPLICIT 

Explanation. ERROR - A program compiled with the 
/TYPE=EXPLICIT qualifier contains an implicitly declared 
variable. 

User Action. Declare the variable explicitly or compile the 
program without the /TYPE=EXPLICIT qualifier. 

INACODFOL, inaccessible code follows line <n> statement <m> 

Explanation. WARNING - The program contains one or more 
statements that cannot be accessed, for example, a multi
statement line whose first statement is a GOTO, EXIT, ITERATE, 
RESUME, or RETURN. 

User Action. Make sure that these statements are the only 
statements on the line, or the last statement on a multi-statement 
line. 

Compile-Time Error Messages A-45 



INCDIRSYN, INCLUDE directive syntax error 

Explanation. ERROR - A %INCLUDE directive either is not 
followed by a quoted string or incorrectly uses the %FROM 
%COD or %FROM %LIBRARY clause. 

User Action. Supply either a quoted string or the correct syntax 
for the %FROM %COD or %FROM %LIBRARY clause. 

INCFUNUSA, inconsistent function usage for function <name> 

Explanation. ERROR - The parameter list in a DEF function 
invocation contains a string where the function expected a 
number, or vice versa. This message is issued only when the 
invocation occurs before the DEF statement in the program. 

User Action. Supply a correct parameter in the function invoca
tion or correct the parameter list in the DEF. 

INCRMSERR, INCLUDE directive RMS error number <number> 

Explanation. ERROR - A %INCLUDE directive caused an RMS 
error when accessing the specified file. 

User Action. Take action based on the reported RMS error 
number. 

INCSUBUSE, inconsistent subscript use for <array-name> 

Explanation. ERROR - The number of subscripts in an array 
reference does not match the number of subscripts specified 
when the array was created. 

User Action. Specify the same number of subscripts. 

INIOUTRAN, initial value must be within the specified range 

Explanation. ERROR - The specified initial value is not within 
the range specified in the RANGE clause. 

User Action. Change either the initial value or the range values 
so that the initial value falls within the range. 

A-46 Compile-Time Error Messages 



INPPROMUS, input prompt must be a string constant 

Explanation. ERROR - An INPUT, LINPUT, or INPUT LINE 
statement list contains a numeric constant immediately following 
the statement. 

User Action. Remove the numeric constant. You can specify 
only a string constant immediately after an INPUT, LINPUT, or 
INPUT LINE statement. 

INSERTS, assuming <keyword> before <keyword> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC assumes a keyword is missing and continues com
pilation under that assumption so that other errors may be 
detected. The actual program line remains unchanged and no 
object file is produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

INSERTM, assuming <keyword> to match <keyword> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC assumes a keyword is misspelled and continues 
compilation under that assumption so that other errors may be 
detected. The actual program line remains unchanged and no 
object file is produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

INSSP ADYN, insufficient space for MAP DYNAMIC variable in MAP 
<name> 

Explanation. ERROR - A variable named in a MAP DYNAMIC 
statement is larger than the MAP. For example, an HFLOAT 
variable in a MAP that is only four bytes long. 

User Action. Increase the size of the MAP so that it is large 
enough to hold the largest member. 

Compile-Time Error Messages A-4 7 



INTCODERR, an internal coding error has been detected. Submit an SPR. 

Explanation. ERROR - An error has been detected in the VAX 
BASIC compiler. 

User Action. Please submit an SPR with the source code of a 
small program that produces this error. 

INTCONEXC, integer constant exceeds machine integer size 

Explanation. ERROR - The value specified in a DECLARE 
CONSTANT statement exceeds the largest allowable value for an 
integer. The maximum is 2147483647. 

User Action. Supply a value in the valid range. 

INTCONREQ, integer constant required 

Explanation. ERROR - The program contains a noninteger 
named constant in a context that requires an integer. For 
example: 

DIM A ('123'D) 

User Action. Supply an integer constant. 

INTDATTYP, integer data type not supported in ANSI 

Explanation. ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains an integer variable or array. 

User Action. Remove the integer variable or array. 

INTERR, integer error or overflow 

Explanation. WARNING - The program contains an integer 
expression whose value is outside the valid range. 

User Action. Modify the expression so that its value is within 
the allowable range or use an integer data type that can contain 
all possible values for the expression. 

INVCHNNUM, invalid channel number, must be greater than zero 

Explanation. ERROR - A channel number less than or equal to 
zero was specified. 

User Action. Change the channel number to be greater than 
zero. 

A-48 Compile-Time Error Messages 



INVCONREQ, invalid conversion requested 

Explanation. ERROR - The program contains a reference to the 
REAL or INTEGER functions and the argument is an entire array, 
GROUP, RECORD, or RFA expression. 

User Action. Remove the invalid argument. The argument to 
these functions must be a numeric expression. 

INVINTTYP, invalid integer type 

Explanation. ERROR - A reference to the INTEGER function 
contains an invalid data type keyword, for example, 
A = INTEGER(A, SINGLE). 

User Action. Change the invalid data type keyword. The 
INTEGER function returns only BYTE, WORD, or LONG values. 

INVLOGNAM, invalid logical name 

Explanation. ERROR - The argument to the ASSIGN compiler 
command specified a logical name length of less than 1 or greater 
than 63. 

User Action. Supply a valid logical name. 

INVPRISPE, invalid priority specification, expecting < or > 
Explanation. ERROR - On the SET INPUT PRIORITY statement, 
you specified a character other than < or > to indicate the 
relative priorities of the two transformation numbers. 

User Action. Specify the priority relationship with less than < 
(lower priority) or greater than > (higher priority). 

INVREATYP, invalid real type 

Explanation. ERROR - A reference to the REAL function con
tains an invalid data type keyword, for example, A = REAL(A, 
LONG). 

User Action. Change the invalid data type keyword. The REAL 
function returns only SINGLE, DOUBLE, GFLOAT, or HFLOAT 
values. 

Compile-Time· Error Messages A-49 



INVSUBTYP, <data-type> is not a subtype of <data-type> 

Explanation. ERROR - The program contains an invalid decla
ration containing contradictory type declarations, for example, 
DECLARE REAL BYTE. 

User Action. Supply a valid declaration. Use only valid integer 
subtypes for INTEGER and only valid floating-point subtypes for 
REAL. 

IS_NOTDYN, <name> is not a DYNAMIC MAP variable of MAP 
<name> 

Explanation. ERROR - A REMAP statement names a variable 
that was not named in the MAP DYNAMIC statement for that 
MAP. 

User Action. Remove the variable from the REMAP statement 
or name the variable in the MAP DYNAMIC statement for that 
map. 

ITEMUSAPP, ITERATE must appear within a loop 

Explanation. ERROR - The program contains an ITERATE 
statement that is not within a FOR-NEXT, WHILE, or UNTIL 
loop. 

User Action. Remove the ITERATE statement, or surround it 
with a loop. 

JMPBADBLO, jump to line number <line number> is into a controlled 
block 

Explanation. ERROR - The program attempts to transfer control 
to a WHEN block or associated handler. 

User Action. Change the program logic so that it does not 
transfer control to a WHEN block or associated handler. 

JMPBADLAB, jump to label: <label> is into a block 

Explanation. ERROR - The program attempted to transfer 
control into a FOR-NEXT, WHILE, UNTIL, IF or SELECT-CASE 
block. 

User Action. Change the program logic so that it does not 
transfer control into a block. 

A-50 Compile-Time Error Messages 



JMPBADLIN, jump to line number <number> is into a block 

Explanation. INFORMATION - The program transfers control 
to a line number within a FOR-NEXT, WHILE, UNTIL, IF or 
SELECT-CASE block. 

User Action. This is an informational message. However, it is 
bad programming practice to transfer control into a block. 

JMPINTDEF, jump into DEF 

Explanation. ERROR - The program attempts to transfer control 
into a DEF block. 

User Action. Change the control statement; you cannot transfer 
control into a DEF block except by invoking the function. 

JMPOUTDEF, jump out of DEF 

Explanation. ERROR - The program attempts to transfer control 
out of a DEF block. 

User Action. Change the control statement. Use an EXIT DEF, 
FNEXIT, FNEND, or END DEF statement to transfer control out 
of a DEF block. 

JMPOUTHAN, jump out of HANDLER 

Explanation. ERROR - The program attempts to transfer control 
out of an error handler. 

User Action. Change the control statement. Use an EXIT 
HANDLER, RETRY, or CONTINUE statement to transfer control 
out of an error handler. 

JMPOUTPRO, jump out of program unit 

Explanation. ERROR - In a source file containing more than one 
program module, a statement attempts to transfer control from 
one module into another. 

User Action. Change the statement that attempts to transfer 
control; you cannot transfer control into a different program 
module. 

Compile-Time Error Messages A-51 



JMPUNRLIN, jump to unreferenceable line number <number> 

Explanation. ERROR - A RESUME, GOSUB, or GOTO state
ment attempts to transfer control to a CASE statement. 

User Action. Label or number the SELECT statement and 
transfer control to the beginning of the SELECT-CASE block. 

KEYCANNOT, key <name> in MAP <map-name> cannot be a 
dynamic variable 

Explanation. ERROR - A KEY clause in an OPEN statement 
specifies a variable declared as dynamic in a MAP DYNAMIC 
statement. 

User Action. Specify a static variable in the KEY clause; that is, 
declare the variable in a MAP statement, not a MAP DYNAMIC 
statement. 

KEYIS_NEE, key is needed for indexed files 

Explanation. ERROR - The program attempts to open an in
dexed file for output, and the PRIMARY KEY clause is missing. 

User Action. Supply a PRIMARY KEY clause. 

KEYMUSBE, key must be either word, longword, string, decimal, record 
or group 

Explanation. ERROR - A FIND or GET statement on an in
dexed file contains a key specification that is not a WORD, 
LONG, STRING, DECIMAL, or an 8-byte RECORD or GROUP 
expression. 

User Action. Change the key specification to be a WORD, 
LONG, STRING, DECIMAL, or an 8-byte RECORD or GROUP 
expression. 

KEYMUSTBE, key, <vbl-name> in map <map-name> must be either 
word, longword, string, decimal, record or group 

Explanation. ERROR - An OPEN statement contains a key spec
ification that is not an unsubscripted WORD, LONG, STRING, 
DECIMAL, or an 8-byte RECORD or GROUP variable. 

User Action. Change the key specification to be an unsub
scripted WORD, LONG, STRING, DECIMAL, or an 8-byte 
RECORD or GROUP variable. 

A-52 Compile-Time Error Messages 



KEYNOTMAP, KEY <vbl-name> is not an unsubscripted variable in 
MAP <name> 

Explanation. ERROR - An indexed file OPEN statement specifies 
a KEY variable that does not appear in a MAP statement. 

User Action. Place the KEY variable in the MAP referenced by 
the OPEN statement's MAP clause. 

KEYREQMAP, KEY clauses require a MAP clause 

Explanation. ERROR - An OPEN statement specifies KEY 
clauses without specifying a MAP clause. 

User Action. Supply a MAP clause to define the position of the 
keys in the record buffer. 

KEYSEGMUS, key segment <name> in map <map-name> must be a 
string key 

Explanation. ERROR - An OPEN statement specifies a seg
mented key containing a numeric variable. For example: 

OPEN "INDEX.DAT" AS FILE #1, ORGANIZATION INDEXED, I& 
PRIMARY KEY (A$, B$, CY.), MAP ABC 

User Action. Specify only string variables in segmented keys. 

KEYSINC, <keyword> keyword inconsistent with <keyword> 

Explanation. ERROR - An OPEN statement contains contradic
tory record format specifications, for example, both FIXED and 
VARIABLE. 

User Action. Specify only one record format. 

KEYTOOLON, KEY <name> in MAP <name> is too long (max is 
255) 

Explanation. ERROR - A KEY variable is longer than 255 
characters. 

User Action. Reduce the length of the KEY variable. The 
maximum key length is 255 characters. 

Compile-Time Error Messages A-53 



KEYWORINC, keyword inconsistent with <OPEN clause> clause 

Explanation. ERROR - An OPEN statement contains an 
ALLOW, ACCESS, or RECORDTYPE clause whose keyword 
argument is invalid, for example, ACCESS FORTRAN. 

User Action. Change the clause argument to a valid keyword 
for that clause. 

LABNOTDEF, label <label> not defined 

Explanation. ERROR - The program tries to transfer control to a 
nonexistent label. 

User Action. Define the label before transferring control to it. 

LABNOTLAB, label <name> does not label an active block statement 

Explanation. ERROR - An EXIT statement in a loop, IF-THEN
ELSE or SELECT-CASE block specifies a label that does not refer 
to that block. 

User Action. Change the program so that the label actually 
refers to the block in which the EXIT statement occurs. 

LABNOTLOO, label <name> does not label an active loop statement 

Explanation. ERROR - In a loop, an EXIT or ITERATE statement 
specifies a label that does not refer to that loop. 

User Action. Change the program so that the label actually 
refers to the loop in which the EXIT or ITERATE statement 
occurs. 

LANFEADEC, language feature is declining 

Explanation. INFORMATION - The program contains a lan
guage feature that is not recommended for new program devel
opment, for example, the FIELD statement. This error is reported 
only when the /FLAG:DECLINING qualifier is in effect. 

User Action. Use: 1) MAP, MAP DYNAMIC and REMAP 
statements instead of FIELD, 2) EDIT$ rather than CVT$$, 3) and 
overlaid MAPs rather than CVTxx functions. 

A-54 Compile-Time Error Messages 



LANFEAINC, language feature incompatible with BASIC-PLUS-2 

Explanation: INFORMATION - The program contains syntax 
that results in different behavior under VAX BASIC and PDP-11 
BASIC-PLUS-2, for example, opening a terminal-format file. This 
error is reported only when the /FLAG:BP2COMPATIBILITY 
qualifier is in effect. 

User Action: None. 

LANFEAINH, language feature inhibits optimization 

Explanation: INFORMATION - A program compiled with the 
/NOSETUP qualifier contains a language feature that requires 
/SETUP, for example, the RESUME statement. The compilation 
continues with /SETUP in effect. 

User Action: None. The program must be compiled with 
/SETUP in effect for the language feature to work. 

LANFEANOT, language feature not available in BASIC-PLUS-2 

Explanation: INFORMATION - The program contains a lan
guage element that is not supported in BASIC-PLUS-2, for 
example, RECORD statements. This error is reported only when 
the /FLAG:BP2COMPATIBILITY qualifier is in effect. 

User Action: If the program must run under both VAX BASIC 
and PDP-11 BASIC-PLUS-2, you must remove the incompatible 
language feature. 

LANFEAOPE, language feature not available in VAX BASIC 

Explanation: ERROR - The program contains a PRINT statement 
with a RECORD clause. VAX BASIC does not support the 
RECORD clause. 

User Action: Remove the RECORD clause. 

LEFBOUSPE, left boundary must be less than the right boundary 

Explanation: ERROR - In a statement that specifies a viewport 
or windowsize, you specified a left boundary that is greater than 
or equal to the corresponding right boundary. 

User Action: Correct the left boundary so that it is less than the 
right boundary. 

Compile-Time Error Messages A-55 



LENDYNSTR, string length not allowed on dynamic string <name> 

Explanation: ERROR - The program contains a dynamic string 
variable declaration that specifies a string length. 

User Action: Length specifications are allowed only for fixed
length strings; remove the length specification from the dynamic 
string, or allocate the string in a MAP or COMMON. 

LENNUMFIL, string length not allowed on numeric FILL 

Explanation: ERROR - The program contains a numeric FILL 
item that specifies a length. 

User Action: Remove the length specification from the numeric 
FILL item. 

LETDIRSYN, LET directive syntax error 

Explanation: ERROR - A %LET directive contains a syntax error, 
for example, an invalid lexical identifier. 

User Action: Use the correct syntax for the %LET directive. 

LETKEYREQ, LET keyword required in ANSI 

Explanation: INFORMATION - A program compiled with the 
/ ANSI_STANDARD qualifier contains an assignment statement 
that omits the LET keyword. 

User Action: Supply a LET keyword. 

LEXDIRSYN, lexical directive syntax error 

Explanation: ERROR - A syntax error was detected in a lexical 
directive. 

User Action: Correct the syntax of the lexical directive. 

LEXIDEMUS, lexical identifier must be declared before reference 

Explanation: ERROR - You reference a lexical identifier before 
you declare it. 

User Action: Declare the lexicial identifier before you reference 
it. 

A-56 Compile-Time Error Messages July 1988 



LINNOTALL, line numbers not allowed, use the EDIT command 

Explanation: ERROR - An EDIT command with a line number 
has been found in a program without line numbers. 

User Action: Use the EDIT command without specifying a line 
number to invoke a text editor. 

Compile-Time Error Messages A-56.1 





LINNUMERR, illegal line number 

Explanation. ERROR - The program contains a line number that 
is outside the valid range or is not a valid integer (note that the 
per cent sign ( % ) suffix is not valid for line numbers). 

User Action. Specify only integer line numbers in the range 1 to 
32767, inclusive. 

LINNUMINC, line number may not appear in INCLUDE directive file 

Explanation. ERROR - The file specified in a %INCLUDE 
compiler directive contains a line number. 

User Action. Remove the line number from the file. 

LINNUMUND, line number <n> undefined due to conditional 
compilation 

Explanation. ERROR - The program references a line number 
that does not appear in the object code as a result of the branch 
taken in a %IF-%THEN-%ELSE-%END-%IF directive. 

User Action. Change the %IF-%THEN-%ELSE-%END-%IF 
directive or remove the line number reference. 

LINREQTWO, LINES output requires at least 2 X,Y points 

Explanation. ERROR - A LINE graphic output statement speci
fies less than 2 points. 

User Action. Specify a minimum of 2 points in the LINE graphic 
output statement. 

LNPNOTBP2, programs without line numbers are not allowed in BASIC
PLUS-2 

Explanation. INFORMATIONAL - BASIC-PLUS-2 does not 
support programs without line numbers. 

User Action. Add a line number to the first line of the program. 

LOGOPENON, logical operation on non-integer quantity 

Explanation. ERROR - The program contains a logical operation 
performed on strings or real numbers. 

User Action. Change the logical operands to integers. 

Compile-Time Error Messages A-57 



LOOINDMUS, loop control variable must be a numeric variable 

Explanation. ERROR - A FOR statement specifies a string 
variable as the loop control variable. 

User Action. Specify a numeric variable. You can use only 
numeric variables as loop control variables. 

LOOINIMUS, loop initial value must be a numeric expression 

Explanation. ERROR - A FOR statement attempts to assign a 
string expression as the loop control variable's initial value. 

User Action. Remove the string expression. You can assign only 
numeric values as the loop's initial value. 

LOOLIMMUS, loop limit must be numeric 

Explanation. ERROR - A FOR statement attempts to assign a 
string expression as the loop control variable's limiting value. 

User Action. Remove the string expression. You can assign only 
numeric values as the loop control variable's limiting value. 

LOOWILNEV, loop will never execute 

Explanation. WARNING - The program contains a FOR/NEXT 
loop that is not executable; for example, FOR 1% = 1 % TO 0%. 
Compilation continues, but the loop is ignored. 

User Action. Change the loop parameters or insert an appropri
ate STEP clause. 

LOWLSSUP, lower bound must be less than upper bound 

Explanation. ERROR - The lower bound specified in the array is 
greater than the upper bound. 

User Action. Correct the bounds. 

LOWNOTVIR, lower bound not permitted with virtual arrays 

Explanation. ERROR - Lower bounds of virtual arrays must be 
zero. 

User Action. Correct the lower bounds to be zero. 

A-58 Compile-Time Error Messages 



LOWNOTZERO, lower bound must be zero 

Explanation. ERROR - The lower bound of the array must be 
zero. 

User Action. Correct the lower bound to be zero. 

LOWRANV AL, range lower value must be less than upper value 

Explanation. ERROR - In the RANGE clause, the first value is 
greater than the second value. 

User Action. Change the range clause so that the first value is 
less than the second value. 

LRSETNOT, <keyword> is not allowed with MID 

Explanation. ERROR - The LSET and RSET keywords are not 
allowed with MID. 

User Action. Change the LSET or RSET keyword to LET. 

MAPDYNNOT, MAP DYNAMIC <map-name> may not be larger than 
32767 bytes 

Explanation. ERROR - A MAP DYNAMIC statement references 
a map that is greater than 32767 bytes in size. 

User Action. Reduce the size of the map, as defined in the MAP 
statement(s), to 32767 bytes or less. 

MAPDYNREQ, MAP DYNAMIC <name> requires corresponding static 
MAP 

Explanation. ERROR - The program contains a MAP DYNAMIC 
statement whose MAP name does not appear in a MAP state
ment. 

User Action. Provide a MAP with the same name as the MAP 
DYNAMIC name. 

MAPNOTDEF, MAP <name> used in OPEN not defined 

Explanation. ERROR - An OPEN statement's MAP clause 
references a nonexistent MAP. 

User Action. Define the MAP referenced by the MAP clause, or 
remove the MAP clause. 

Compile-Time Error Messages A-59 



MAPTOOLAR, MAP too large in OPEN 

Explanation. FATAL - The size of the MAP referenced in an 
OPEN statement is greater than 32767 bytes. 

User Action. Reduce the size of the MAP. 

MAPVARALI, variable <name> not aligned in multiple references in 
MAP <name> 

Explanation. ERROR - More than one overlaid MAP contains 
the same variable, but the variable's position differs in the MAPs. 

User Action. The same variable can appear in multiple overlaid 
MAPs, but the variable must occupy the same position in the 
PSECT; make sure that the variable appears in the same position 
in the MAPs. 

MAPVARREF, MAP variable <name> referenced before declaration 

Explanation. INFORMATION - A reference to a MAP variable 
occurs before the MAP statement. 

User Action. Make sure that the MAP statement precedes any 
references to variables in the MAP. 

MATDIMERR, matrix dimension error 

Explanation. ERROR - The program either: 

• Contains a MAT ION, MAT TRN, or MAT INV performed on 
a one-dimensional array 

• Performs a matrix operation that requires identical sub
scripts in the operand arrays and those arrays have different 
subscripts 

User Action. Dimension the arrays to the proper number of 
subscripts. 

MATLOWBOU, matrix must have lower bound 0 and upper bound 4 

Explanation. ERROR - The specified transformation matrix 
either has a lower bound other than 0 or an upper bound other 
than 4. 

User Action. Declare the matrix such that both dimensions have 
a lower bound of 0 and an upper bound of 4. 

A-60 Compile-Time Error Messages 



MATMUL20P, MAT multiply of 2 4X4 matrices required 

Explanation. ERROR - You specified the wrong dimensions in a 
matrix in the MAT multiply statement or a WITH clause on the 
DRAW statement. A 2-dimensional matrix with lower bounds 0 
and upper bounds 4 in both dimensions is required. 

User Action. Declare the matrix to be a 2-dimensional matrix 
with lower bounds 0 and upper bounds 4 in both dimensions. 

MATONEOR2, MAT statements require one or two dimensions 

Explanation. ERROR - A MAT statement references an array of 
more than two dimensions. 

User Action. Remove the array reference. MAT statements are 
valid only on arrays of one or two dimensions. 

MAXCONCOM, maximum conditional compilation depth exceeded 

Explanation. FATAL - Too many nested %IF-%THEN-%ELSE
%END-%IF directives are contained in the program. 

User Action. Reduce the number of nested %IF-%THEN
%ELSE-%END-%IF directives. You can nest up to eight such 
constructs. 

MAXDIMEXC, maximum number of dimensions exceeded. Maximum 
is 32 

Explanation. ERROR - An array declaration specifies more than 
the allowed number of dimensions. 

User Action. Reduce the number of dimensions to 32 or less. 

MAXKEYSEG, maximum of 8 key segments exceeded 

Explanation. ERROR - An OPEN statement specifies a seg
mented key with more than eight segments. 

User Action. Reduce the number of segments in the key clause 
to eight or less. 

Compile-Time Error Messages A-61 



MAXP AREXC, maximum parameters exceeded for <name> . Maximum 
is <number> 

Explanation. ERROR - The program attempts to declare a DEF 
with more than eight parameters or a subprogram with more 
than 255 
parameters. 

User Action. Reduce the number of parameters; DEFs allow up 
to eight parameters and subprograms allow up to 255 
parameters. 

MAXPAREXP, no more than <number> parameter(s) expected for 
< sub-func-name > 

Explanation. ERROR - An external SUB or FUNCTION 
was called with more parameters than were specified in the 
EXTERNAL statement, including both OPTIONAL and non
OPTIONAL parameters. 

User Action. Reduce the number of parameters in the call. 

MERGE, merged <item> and <item> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC assumes that there is an incorrect space, for example, 
PR INT. Compilation continues so that other errors may be 
detected. The actual program line remains unchanged and no 
object file is produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

MINPAREXP, at least <number> parameter(s) expected for 
< sub-func-name > 

Explanation. ERROR - An external SUB or FUNCTION was 
called with fewer parameters than were specified as non
OPTIONAL parameters in the EXTERNAL statement. 

User Action. Increase the number of parameters in the call so 
that the number of parameters is equal to or greater than the 
number of non-OPTIONAL parameters. 

A-62 Compile-Time Error Messages 



MISENDIF, missing END IF directive before end of program unit 

Explanation. ERROR - A %IF directive crosses a program 
module boundary. 

User Action. Terminate the %IF with a %END %IF before 
beginning a new source module. 

MISENDFOR, missing END <block> for <block> at line <n> 
statement <m> 

Explanation. ERROR - The program contains a SELECT, IF, or 
DEF without a matching END statement. 

User Action. Supply a matching END statement. 

MISMATEND, mismatched END, expected <block> 

Explanation. ERROR - The program contains an incorrect END 
statement, for example, an END RECORD statement instead of 
an END GROUP statement. 

User Action. Supply the correct type of END statement. 

MISMATFOR missing NEXT for <item> at line <n> statement 
<m> 

Explanation. ERROR - The program contains a FOR, WHILE, or 
UNTIL without a matching NEXT. 

User Action. Supply the matching NEXT statement. 

MODNOTFND, module <mod-name> not found in text library 
<text-lib-name> 

Explanation. ERROR - The module name you specified in an 
%INCLUDE directive was not found in the text library you 
specified. 

User Action. Place the module name in the specified text library. 

MULCHRARR multiple character array name not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSl_STANDARD qualifier contains an array whose name 
contains more than one character. 

User Action. Reduce the length of the name to a single 
character. 

Compile-Time Error Messages A-63 



MULCHRDEF, multiple character DEF name not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSl_STANDARD qualifier contains a DEF whose name 
contains more than one character. 

User Action. Reduce the length of the name to a single 
character. 

MULDEFLEX, multiple definition of lexical identifier is illegal 

Explanation. ERROR - A lexical constant is named in more than 
one %LET directive. 

User Action. Declare the lexical constant only once with %LET. 

MULHANSPE, multiple handlers specified for WHEN block 

Explanation. ERROR - A WHEN block specifies both an at
tached and detached error handler. 

User Action. Change the WHEN block to specify either an 
attached or detached error handler. 

MULNOTBP2, multiple program units per module not BASIC-PLUS-2 
compatible 

Explanation. INFORMATION - A program compiled with the 
/FLAG:BP2COMPATIBILITY qualifier contains more than one 
program unit. BASIC-PLUS-2 does not allow more than one 
program unit in a single file. 

User Action. Separate the program into individual program 
units and compile the units separately. 

MULOPTBAS, multiple OPTION BASE statements not ANSI 

Explanation. ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains more than one OPTION BASE 
statement. 

User Action. Specify the OPTION BASE statement only once 
per program. 

A-64 Compile-Time Error Messages 



MULPRONOT, multiple program units per module not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSl_STANDARD qualifier contains more than one program 
unit. 

User Action. Rewrite the program converting the subprograms 
to subroutines. 

MULSTAPER, multiple statements per line not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSl_STANDARD qualifier contains more than one statement 
on a line. 

User Action. Change the program so that each statement has its 
own line number. 

MULTDEF, multiple definition of <name> 

Explanation. WARNING - A variable is declared in more than 
one declarative statement. 

User Action. Make sure that the variable is declared only once. 

NAMNOTREC, name <name> is not of a RECORD component 

Explanation. ERROR - A RECORD component reference uses an 
invalid record name, for example, A::B when A is not a RECORD 
name. 

User Action. Change the erroneous reference. 

NAMTOOLON, name is too long, changed to <name> 

Explanation. WARNING - A variable or array name is longer 
than 31 characters. VAX BASIC truncates the name to 31 char
acters and continues compilation so that other errors may be 
detected. The actual program line remains unchanged and no 
object file is produced. 

User Action. Reduce the length of the variable name to 31 or 
fewer characters. 

Compile-Time Error Messages A-65 



NEGFILSTR, negative FILL or string length 

Explanation. ERROR - The program contains a negative FILL 
specification or string length. 

User Action. Change the FILL specification or string length to a 
positive number. 

NESFORLOO, nested FOR loops with same control variable <name> 

Explanation. ERROR - The program contains nested FOR/NEXT 
loops that use the same index variable. 

User Action. Change the index variable for all but one of the 
loops. 

NOBASFRAM, no BASIC frame on stack 

Explanation. ERROR - VAX BASIC could not find a valid 
stack frame. This could be caused by running a program with 
/CHECK=NOBOUNDS or by a non-BASIC subprogram. 

User Action. Debug the program before running with 
/CHECK=NOBOUNDS or check the logic of the non-BASIC 
subprogram. 

NODESCALL, no descriptor allocated for array <name> 

Explanation. ERROR - An immediate mode statement re
quired an array descriptor, but it was not available. VAX BASIC 
allocates array descriptors only if the program code requires it. 

User Action. None. 

NODIAGFILE, unsaved changes, no diagnostics file produced 

Explanation. WARNING - The program in memory contains 
changes that have not been saved. Therefore, no diagnostics file 
will be produced from this compilation. 

User Action. SAVE or REPLACE the file. 

NOEDIT, no change made 

Explanation. WARNING - The search string in an EDIT com
mand was not located in the text. 

User Action. Enter valid search string. 

A-66 Compile-Time Error Messages 



NOFILEALL, a file specification is not allowed with the REPLACE 
command 

Explanation. ERROR - The REPLACE command does not allow 
the use of a file specification. 

User Action. Use either the SAVE command with a file specifi
cation or the REPLACE command without one. 

NOFRAME, compiled procedure is currently not active 

Explanation. WARNING - A STOP statement or CTRL/C was 
encountered, and neither the executing procedure nor any of its 
callers was the source compiled as a result of the RUN command. 

User Action. None; you cannot examine or modify a variable in 
immediate mode unless the currently compiled program unit is 
active. If you run a source file containing more than one program 
unit, the currently compiled program is the last program unit in 
the source file. If you use the OLD command to read a program 
into memory and load one or more object modules, then type 
RUN, the currently compiled procedure is the program you read 
into memory with OLD. 

NOHANSPE, no handler specified for WHEN block 

Explanation. ERROR - A WHEN block has been found that does 
not specify an error handler. 

User Action. Specify an error handler for the WHEN block. 

NOLINENUM, missing line number on first line 

Explanation. WARNING - There is no line number on the first 
line of the program. 

User Action. Add a line number to the first line of the program 
or remove all line numbers from the program. 

NOLNROOM, out of memory for line numbers 

Explanation. ERROR - The program contains more line
numbered statements than VAX BASIC allows. 

User Action. Change the program so that it uses multi-statement 
lines instead of having each statement on its own line or split the 
program into one or more program units in separate files. 

Compile-Time Error Messages A-67 



NOMAPNAME, MAP statement requires map name 

Explanation. ERROR - A MAP statement does not specify a map 
name. 

User Action. Specify a name for the MAP. 

NOSRCLINE, unsaved changes, no source line debugging available 

Explanation. WARNING - The program in memory contains 
changes that have not been saved. Therefore, no source line 
debugging will be available from this compilation. 

User Action. SAVE or REPLACE the file. 

NOSUCHMAP, no such MAP area <name> 

Explanation. ERROR - A REMAP statement names a nonexistent 
MAP area. 

User Action. Supply a MAP before executing the REMAP 
statement. 

NOTIMP, not implemented in this version 

Explanation. ERROR - The program attempted to use a feature 
that does not exist in this version of VAX BASIC. 

User Action. Examine your program and remove the non
implemented feature. 

NOTPASSBY, <item> may not be passed BY <mechanism> 

Explanation. ERROR - The program specifies an incorrect 
passing mechanism for a parameter's data type, or an invalid 
parameter. For example, you cannot pass an entire array BY 
VALUE, nor can you pass a label as a parameter. 

User Action. Specify a valid parameter or passing mechanism. 

NOTRANS, no main program 

Explanation. WARNING - When a RUN command was typed, 
only subroutines or functions were available. VAX BASIC 
requires a main program to receive the transfer of control. 

User Action. Supply a main program. 

A-68 Compile-Time Error Messages 



NOTRECVBY, <item> may not be received by <mechanism> 

Explanation. ERROR - A subprogram specifies an invalid pa
rameter or an incorrect passing mechanism for a parameter's 
data type. For example, you cannot receive an entire array BY 
VALUE. 

User Action. Specify a valid parameter or passing mechanism. 

NOTXTROOM, out of memory for statement text 

Explanation. ERROR - The program contains more text than 
VAX BASIC allows. 

User Action. Split the program into one or more program units. 

NOVALUE, <text> keyword requires a value 

Explanation. ERROR - A keyword command was typed without 
a value. 

User Action. Supply a valid keyword value. 

NUMARREXP, numeric array expected 

Explanation. ERROR - A CHANGE statement does not specify a 
numeric array. 

User Action. Supply a numeric array in the CHANGE statement. 

NUMCONREQ, numeric constant required 

Explanation. ERROR - The program contains a string in a 
context that requires a numeric constant. For example: 

DECLARE INTEGER CONTANT A = 11 ABC 11 

User Action. Supply a numeric constant. 

NUMIS_NEE, numeric expression is required 

Explanation. ERROR - The program contains a string expression 
in a context that requires a numeric expression, for example, 
WHILE A$. 

User Action. Supply a numeric expression. 

Compile-Time Error Messages A-69 



NUMV ARREQ, numeric variable required 

Explanation. ERROR - A nonnumeric variable was found with a 
numeric datatype. 

User Action. Specify a numeric variable. 

OBJFAIL, failure in loading object file 

Explanation. FATAL - Either an attempt was made to load 
a non-BASIC object module, or the compiler could not find 
the object file referenced by a CALL statement or EXTERNAL 
FUNCTION reference. 

User Action. If the object file resides in the VAX Common 
Run-Time Library, you must link the program at DCL level. If 
the object file is in a user-supplied library, use the LIBRARY 
command to install the missing object module. You can load 
only VAX ~ASIC object modules. 

ONENOTWHE, ON ERROR not allowed in WHEN block or handler 

Explanation. ERROR - An ON ERROR statement has been 
found in a WHEN block or an associated error handler. 

User Action. Remove the ON ERROR statement from the 
WHEN block or associated error handler. 

OPEEXPNOT, operator expected, not found 

Explanation. ERROR - A compiler directive contains an invalid 
lexical expression that has a right parenthesis immediately 
followed by a lexical identifier. 

User Action. Correct the lexical expression. 

OPEMUSFOL, operator must follow right parenthesis 

Explanation. ERROR - The program contains an incorrect lexical 
expression. 

User Action. Correct the lexical expression. 

OPENIN, error opening <file-name> as input 

Explanation. ERROR - An error was detected in attempting to 
open a file for input. 

User Action. Make sure the file specification is correct. 

A-70 Compile-Time Error Messages 



OPENOUT, error opening <file-name> as output 

Explanation. ERROR - An error was detected in attempting to 
open a file for output. 

User Action. Supply a valid file specification, or take corrective 
action based on the associated message. 

OPNCLAVAL, OPEN clause <clause> value greater than <number> 

Explanation. ERROR - An OPEN statement contains a 
RECORDSIZE, FILESIZE, EXTENDSIZE, WINDOWSIZE, 
BLOCKSIZE, BUCKETSIZE, or BUFFER clause whose argument 
is too large. 

User Action. Supply a smaller value for the argument. 

OPNDUPCLA, duplicate OPEN clause 

Explanation. WARNING - An OPEN statement contains more 
than one clause of the same type. 

User Action. Remove one of the clauses. 

OPNILLCLA, <clause> is an unsupported OPEN clause 

Explanation. ERROR - An OPEN statement specifies invalid 
attributes for the file, for example, CLUSTERSIZE on VAX/VMS 
systems, or uses the keyword COMMON in an 1/0 clause. 

User Action. Substitute valid attributes for the file or remove the 
COMMON keyword. 

OPNINCCLA, <keyword> keyword is inconsistent with file 
organization 

Explanation. ERROR - An OPEN statement contains a clause 
that is not appropriate for the specified file organization, for 
example, opening a relative file with the ACCESS APPEND 
clause. 

User Action. Remove the inconsistent clause. 

Compile-Time Error Messages A-71 



OPTBASMUS, OPTION BASE must be before array declarations 

Explanation. ERROR - A program compiled with the /ANSI_ 
STANDARD qualifier contains an OPTION BASE statement that 
lexically follows an array declaration. 

User Action. Move the OPTION BASE statement so that it 
lexically precedes the array declaration. 

OPTCLACON, OPTION clause contradicts prior clause 

Explanation. ERROR - The OPTION statement contains contra
dictory clauses, for example, specifying the default integer size as 
both BYTE and LONG. 

User Action. Remove one of the clauses. 

OPTNOTALL, OPTIONAL not allowed on EXTERNAL PICTURE 

Explanation. ERROR - An attempt was made to specify the 
OPTIONAL keyword on an EXTERNAL PICTURE declaration. 
This is not allowed because OPTIONAL parameters should be 
used for calling non-BASIC procedures only. 

User Action. Remove the OPTIONAL keyword from the 
EXTERNAL PICTURE declaration. 

OPTOUTSEQ, OPTION statement out of sequence 

Explanation. ERROR - The OPTION statement is either: 1) not 
the first statement in a main program or 2) not the first statement 
following the SUB or FUNCTION statement. 

User Action. Move the OPTION statement so that it is either 
the first statement in the main program or the first statement 
following the SUB or FUNCTION statement in the subprogram. 

ORGUNDREQ, ORGANIZATION UNDEFINED requires FOR INPUT 
clause 

Explanation. ERROR - The program opens a file with 
ORGANIZATION UNDEFINED, but does not specify FOR 
INPUT. 

User Action. Specify FOR INPUT in the OPEN statement. You 
cannot create a file with an undefined file organization. 

A-72 Compile-Time Error Messages 



OVFCHKSUP, OVERFLOW checking supported only for INTEGER and 
DECIMAL 

Explanation. ERROR - Overflow checking was specified for a 
floating-point data type in: 1) a compiler command, 2) a qualifier 
to the DCL BASIC command, or 3) an OPTION statement. 

User Action. Specify overflow checking only for INTEGER 
and/ or DECIMAL data types. 

OVRNOLINE, <keyword> overrides NOLINE 

Explanation. WARNING - The program: 1) was compiled 
/NOLINES and 2) uses a keyword that requires line number 
information. For example, ERL and RESUME with line number 
both require that the program be compiled /LINES. 

User Action. None. If you use a keyword that requires line 
number information, VAX BASIC automatically overrides the 
/NOLINE qualifier. 

PAREXPFOR, <n> parameters expected for <routine> 

Explanation. ERROR - The CALL or invocation of a routine 
specifies a different number of parameters than the number 
specified when the routine was declared. 

User Action. Change the number of parameters to match the 
number declared. 

PARINCPRE, parameter <name> inconsistent with previous declaration 
or reference 

Explanation. ERROR - An external subprogram or DEF function 
declaration specifies a data type for one of the parameters that 
is different than the data type the SUB, FUNCTION, or DEF 
statement specifies. 

User Action. Change the specified data type in either the 
declaration or the SUB, FUNCTION, or DEF statement so that 
the data types agree. 

Compile-Time Error Messages A-73 



PARMODCHA, mode for parameter <n> of routine <name> changed 
to match declaration 

Explanation. INFORMATION - The data type specified in a 
routine invocation does not match that of the routine declaration. 
VAX BASIC issues this message only if the data type conversion 
results in a parameter that cannot be modified by the routine that 
was invoked. 

User Action. Make the data type specifications in the declaration 
and the invocation match. 

PARMODNOT, mode for parameter <n> of routine <name> not as 
declared 

Explanation. ERROR - The CALL or invocation of a routine 
specifies a string argument for a parameter that was specified as 
a numeric when the routine was declared, or vice versa. 

User Action. Change the string parameter to numeric, or vice 
versa. 

PARNOTENT, parenthesis illegal, entire array required context 

Explanation. ERROR - Parenthesis are used to specify an entire 
array in a context where an entire array is always required. 

User Action. Remove the empty parenthesis from the entire 
array reference. 

PARSTRNOT, parameter <n> of <type> structure not as declared 

Explanation. ERROR - The actual parameter list in subprogram 
CALL or an invocation specifies an entire array where the 
subprogram declaration specified a simple variable or vice versa. 

User Action. Change the actual parameter list to match the 
declared parameter list or vice versa. 

P ARTYPREQ, parameter type specification required with /EXPLICIT 

Explanation. ERROR - In a program compiled with 
/TYPE=EXPLICIT, no data type keyword is specified for a 
parameter. 

User Action. Supply a data type keyword for the parameter. 
There are no default data types when you compile a program 
with /TYPE=EXPLICIT. 

A-74 Compile-Time Error Messages 



PASMECDEF, passing mechanism not allowed for DEF 

Explanation. ERROR - A DEF function declaration specifies a 
passing mechanism for a parameter. 

User Action. Remove the passing mechanism clause. 

P ASMECDIS, passing mechanism disagrees with declaration 

Explanation. ERROR - The CALL or invocation of a routine 
specifies a different passing mechanism for a parameter than that 
specified when the routine was declared. 

User Action. Remove the BY clause specified in the CALL or 
invocation; VAX BASIC automatically passes parameters with the 
passing mechanism specified when the routine was declared. 

PASMECNOT, passing mechanism not allowed for <item> 

Explanation. ERROR - A program specifies a passing mechanism 
in a context other than the invocation or declaration of an 
external subprogram. 

User Action. Remove the passing mechanism clause. 

PASWITNO, <name> has a passing mechanism specified with no 
parameter list 

Explanation. WARNING - A CALL statement, external function 
reference, or EXTERNAL statement specifies a BY clause but does 
not specify a formal parameter list. 

User Action. Remove the BY clause or supply a parameter list. 

PATNOTREC, path name does not specify a CDD record 

Explanation. ERROR - The %INCLUDE directive contains an 
invalid path name for a record definition. 

User Action. Supply a valid path name for a record definition. 

PICWHINOT, exit from PICTURE while not in PICTURE 

Explanation. ERROR - An EXIT PICTURE statement was found 
in a module that is not a PICTURE subprogram. 

User Action. Remove the EXIT PICTURE statement. 

Compile-Time Error Messages A-75 



POIREQONE, POINTS output requires at least 1 X, Y point 

Explanation. ERROR - You do not specify a point in the POINT 
graphic output statement. 

User Action. Specify a minimum of 1 point in the POINT 
graphic output statement. 

POSGTRTAR, starting position greater than target length 

Explanation. ERROR - The starting value in the MID statement 
is greater than the length of the string. 

User Action. Correct the value to be less than or equal to the 
length of the string. 

PRELOGNAM, previous logical name assignment replaced 

Explanation. INFORMATION - The specified logical name 
already existed. The new equivalence name replaces the old one. 

User Action. None. 

PRICDDERR, prior severe COD error 

Explanation. ERROR - There have been one or more severe 
COD errors, and this may be the reason for the following errors. 

User Action. Recompile the program after correcting the first 
COD-related errors. 

PRIUSICLA, PRINT USING clause must be a string expression 

Explanation. ERROR - A PRINT USING statement specifies a 
numeric format string. 

User Action. Supply a valid format string. 

PRIUSICON, PRINT USING conflicts with RECORD clause 

Explanation. ERROR - A PRINT USING statement contains a 
RECORD clause. 

User Action. Remove the RECORD clause or use the PRINT 
statement instead of PRINT USING. 

A-76 Compile-Time Error Messages 



PROSTRNES, program structures nested too deeply 

Explanation. FATAL - The program contains too many nested 
block constructs, for example, DEF function definitions. 

User Action. Reduce the number of nested block constructs. 

PROTOOBIG, program too big to compile 

Explanation. FATAL - The program is too big. 

User Action. Recode the program as two or more modules. 

PROWHINOT, exit from PROGRAM while not in a main program 

Explanation. ERROR - An EXIT PROGRAM statement was 
found in a program unit that is not a main program. 

User Action. Use the type of EXIT appropriate to the program 
unit. 

QUALERR, unknown qualifier <name> 

Explanation. ERROR - An attempt was made to enter an invalid 
qualifier to a SET, LOCK, or COMPILE command. 

User Action. Enter the SET, LOCK, or COMPILE command with 
the correct qualifier. 

RADNOTSUP, radix not supported 

Explanation. ERROR - A literal constant specifies a radix. For 
example, in the following DECLARE statement, H is an invalid 
radix specifier: 

10 DECLARE LONG CONST.ANT A = H"111" 

User Action. Specify a valid radix. See the VAX BASIC Reference 
Manual for a list of the radices VAX BASIC allows. 

Compile-Time Error Messages A-77 



REAACCINC, READ access inconsistent with FOR OUTPUT 

Explanation. ERROR - An OPEN statement specifies FOR 
OUTPUT and ACCESS READ. 

User Action. FOR OUTPUT specifies that a new file is created; 
ACCESS READ specifies that the program can only read the 
file. If you want to create a new file, remove the ACCESS 
READ clause; if you want read-only access to a file, specify FOR 
INPUT. 

READERR, error reading <file-name> 

Explanation. ERROR - An error was detected in attempting to 
read a file. 

User Action. Supply a valid file specification or take corrective 
action based on the associated message. 

REAWITDAT, READ without DATA statement 

Explanation. ERROR - The program contains a READ statement 
and there are no DATA statements. 

User Action. Supply a DATA statement or remove the READ 
statement. 

RECENTARR, RECORD entire array must not have subfields specified 

Explanation. ERROR - A RECORD component reference speci
fies an array before the end of the component path, for example, 
A::B(,)::C. 

User Action. Remove the erroneous reference. 

RECFILTOO, <field-name> from CDD has FILL too large 

Explanation. ERROR - The total size of a CDD record is greater 
than 65535 bytes. 

User Action. Reduce the size of the record. 

A-78 Compile-Time Error Messages 



RECKEYQAD, entire RECORD or GROUP must be 8 bytes in length 

Explanation. ERROR - The user attempts to specify an entire 
RECORD or GROUP name in a key value field on a GET or 
FIND statement and the size of the structure does not match the 
size of the QUADWORD. 

User Action. When specifying a quadword key, use an 8 byte 
RECORD or GROUP. Otherwise, specify the name of an elemen
tary item in the RECORD or GROUP. 

RECNOTBY, record may not be passed BY <mechanism> 

Explanation. ERROR - The program attempts to pass a record 
to a subprogram using either the BY VALUE or BY DESC 
parameter-passing mechanism. 

User Action. Remove the passing mechanism, or specify BY 
REF. VAX BASIC programs can pass records only by reference. 

RECNOTDEF, record type <name> not defined 

Explanation. ERROR - The program declares an instance of a 
user data type, but this type was not defined in the program 
module. 

User Action. Define the data type with a RECORD statement. 

RECOVEMAP, RECORDSIZE overflows MAP 

Explanation. ERROR - An OPEN statement contains both a 
RECORDSIZE clause and a MAP clause, and the RECORDSIZE 
clause is larger than the MAP. 

User Action. Make the RECORDSIZE the same as the MAP size. 

RECRECDEF, recursive RECORD definition of type <name> 

Explanation. ERROR - The program contains two or more 
RECORD statements that reference each other. 

User Action. Change the program so that the RECORD state
ments do not point at each other. 

Compile-Time Error Messages A-7 9 



RECTOBIGL, record too big from module <mod-name> in text library 
<text-lib-name> 

Explanation. ERROR - the text library module specified in an 
%INCLUDE directive contains a record longer than 255 bytes. 

User Action. Extract the module from the text library, edit it 
to remove any records longer than 255 bytes, and replace the 
module in the text library. 

RECTOOBIG, record too big from INCLUDE directive file 

Explanation. ERROR - The file specified in an %INCLUDE 
directive contains a record longer than 255 bytes. 

User Action. Edit the file to remove any records longer than 255 
bytes. 

RECTOOLAR, RECORD <name> too large. Limit is 65535 bytes. 

Explanation. ERROR - The components of a RECORD definition 
add up to more than 65535 bytes. 

User Action. Reduce the size of the RECORD. 

REMARRREF, entire REMAPPED array <name> cannot be passed BY 
REF 

Explanation. ERROR - The program attempts to pass an ar
ray declared in a MAP DYNAMIC statement to an external 
subprogram by reference. 

User Action. Entire remapped arrays must be passed by de
scriptor. Specify the BY DESC passing mechanism either in the 
EXTERNAL declaration or the subprogram invocation. 

REMNOTALL, REM statement not allowed in programs without line 
numbers 

Explanation. ERROR - A REM statement has been found in a 
program without line numbers. 

User Action. Remove the REM statement. 

A-80 Compile-Time Error Messages 



REPLACE, assuming <operator(s)> replaced by <operator> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC found incorrect or multiple operators where another 
single operator makes more sense, for example, 10 A== B. 
Compilation continues so that other errors may be detected. 
The actual program line remains unchanged and no object file is 
produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

REQNUMEXP, <item> requires a numeric expression 

Explanation. ERROR - The program contains a string expression 
in a context requiring a numeric expression. 

User Action. Supply a numeric expression. 

REQSTREXP, <item> requires string expression 

Explanation. ERROR - The program contains a numeric ex
pression in a context requiring a string expression, for example, 
the file specification in an OPEN statement or the default file 
specification in a DEFAULTNAME clause. 

User Action. Supply a string expression. 

RESABOCON, RESEQUENCE aborted due to conditional compilation 

Explanation. ERROR - A resequenced program contains a 
%IF-% THEN-%ELSE-%END-%IF directive. 

User Action. Remove the %IF-% THEN-%ELSE-%END-%IF 
directive. 

RESABOSYN, RESEQUENCE aborted due to syntax error 

Explanation. ERROR - A RESEQUENCE operation was termi
nated because the program was not syntactically correct. 

User Action. Correct the syntax error and retry the 
RESEQUENCE operation. 

Compile-Time Error Messages A-81 



RESATTINC, result attributes inconsistent with prior declaration 

Explanation. ERROR - An external or DEF function declaration 
specifies a data type for the function's result, which is different 
than the data type the DEF or FUNCTION statement specifies. 

User Action. Change the specified data type in either the 
declaration or the DEF or FUNCTION statement so that the data 
types agree. 

RESINCLIN, RESEQUENCE cannot be used if INCLUDE files reference 
line numbers 

Explanation. ERROR - The current program references an 
include file that contains line number references, for example, 
GOTO. 

User Action. Remove the %INCLUDE directive. VAX BASIC 
cannot resequence lines in an INCLUDE file. 

RESLINGTR, RESEQUENCE cannot generate line numbers greater than 
32767 

Explanation. ERROR - The RESEQUENCE command specified 
an interval or starting point that would have created a line 
number greater than 32767. 

User Action. Reduce the interval or the starting point. 

RESNOTWHE, RESUME not allowed in WHEN block or handler 

Explanation. ERROR - A RESUME statement has been found in 
a WHEN block or an associated error handler. 

User Action. Remove the RESUME statement from the WHEN 
block or associated error handler. 

RESORDLIN, RESEQUENCE cannot change the order of or delete lines 

Explanation. ERROR - The RESEQUENCE command specifies 
invalid source program changes. 

User Action. Supply a valid RESEQUENCE command. 

A-82 Compile-Time Error Messages 



RETCONMUS, RETRY and CONTINUE must appear in error handlers 

Explanation. ERROR - A RETRY or CONTINUE statement is 
not in an error handler associated with a WHEN block protected 
region. 

User Action. Remove the RETRY or CONTINUE statement. 

RFAEXPREQ, RFA expression required 

Explanation. ERROR - A GET BY RFA statement contains an 
expression that is not of the RFA data type. 

User Action. Supply a valid RFA expression. 

RFANOTALL, RFA not allowed in this context 

Explanation. ERROR - The program attempts to use an RFA 
expression in an arithmetic expression or other invalid context. 

User Action. Remove the RFA expression. You can use the RFA 
data type only in file IjO, in an assignment statement, or in a 
comparison. 

ROUSUPDEC, ROUNDing supported only for DECIMAL 

Explanation. ERROR - Rounding was specified for a non
DECIMAL data type in: 1) a compiler command, 2) a qualifier to 
the BASIC DCL command, or 3) an OPTION statement. 

User Action. Specify rounding only for the DECIMAL data type. 

RPTCOUMUS, repeat count must be positive numeric 

Explanation. ERROR - A FILL item specifies a nonnumeric or 
negative repeat count, for example, FILL(A$) or FILL(-3). 

User Action. Supply a valid repeat count. 

SCAFACINH, SCALE factor inhibits optimization 

Explanation. INFORMATION - This error is reported only 
when the /SETUP qualifier is in effect. Specifying a scale factor 
prevents optimization of the compiler-generated code. 

User Action. Compile the program without specifying a scale 
factor. 

Compile-Time Error Messages A-83 



SCA LEO, scale factor used is 0 for single precision 

Explanation. WARNING - An attempt was made to set the 
SCALE factor while in single precision. 

User Action. Set the precision to /DOUBLE. You cannot use 
scaling when in single precision. 

SCAOUTRAN, SCALE is out of range. Valid is 0 to 6. 

Explanation. ERROR - The OPTION statement specifies a scale 
factor that is not between zero and six, inclusive. 

User Action. Supply a valid scale factor. 

SEQERR, attempt to sequence over existing statement 

Explanation. ERROR - A SEQUENCE command specifies a 
starting line number that already exists in the VAX BASIC source 
program in memory. 

User Action. Specify a starting line number higher than any 
existing line or delete the old statement before using the 
SEQUENCE command. 

SEVINTERR, severe internal error has been detected. Submit an SPR. 

Explanation. FATAL - An error has been detected in the VAX 
BASIC compiler. 

User Action. Please submit an SPR with the source code of a 
small program that produces this error. 

SPANOSPA, SPAN is inconsistent with NOSPAN 

Explanation. WARNING - An OPEN statement specifies both 
SPAN and NOSPAN. 

User Action. Remove one of the clauses. 

A-84 Compile-Time Error Messages 



SEVERRSCA, please submit an SPR-internal error in SCA support 

Explanation: FATAL - A severe error has been detected in the 
SCA support in the VAX BASIC compiler. If you recompile your 
program without the / ANALYSIS_DATA qualifier, this error 
should no longer occur. 

User Action: Please submit an SPR with the source code of a 
small program that produces the error. 

SEVINTERR, severe internal error has been detected. Submit an SPR. 

Explanation: FATAL - An error has been detected in the 
VAX BASIC compiler. 

User Action: Please submit an SPR with the source code of a 
small program that produces this error. 

SHRNOTAVL, Unable to access the shareable image <name> 

Explanation: ERROR - The shareable image is not available on 
your system. 

User Action: Install the correct version of the required shareable 
image. 

SP ANOSP A, SP AN is inconsistent with NOSP AN 

July 1988 

Explanation: WARNING - An OPEN statement specifies both 
SPAN and NOSPAN. 

User Action: Remove one of the clauses. 

Compile-Time Error Messages A-84.1 





SPELL, assuming <item> intended to be the keyword: <keyword> 

Explanation. ERROR - The program contains a syntax error. 
VAX BASIC assumes that a keyword has been misspelled, and 
compilation continues so that other errors may be detected. The 
actual program line remains unchanged and no object file is 
produced. 

User Action. Examine the line carefully to discover the error. 
Change the program line to correct the syntax error. 

SPENUMEXC, specified numeric exceeds valid character code 

Explanation. ERROR - A quoted literal of type character (C) 
contains a value outside the valid range, for example, '300'C. 

User Action. Use a valid ASCII value. 

STACKOVF, stack frame overflow for variables 

Explanation. ERROR - The program requires too much space for 
dynamic variables. 

User Action. Reduce the number of dynamic variables or place 
some of the variables in a MAP or COMMON. 

STANOTALL, statement not allowed within a PICTURE definition 

Explanation. ERROR - The statement you specified is not 
allowed in a PICTURE definition. 

User Action. Remove the statement from the PICTURE 
definition. 

STARISNEE, star(*) is needed in DEF, not"/" 

Explanation. ERROR - The program contains a statement that 
starts with DEF/. 

User Action. Change the DEF/ to DEF•. 

STRARRNOT, string array not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSl_STANDARD qualifier contains a string array. 

User Action. Remove the string array. 

Compile-Time Error Messages A-85 



STRCONEXP, string constant expression is too long 

Explanation. ERROR - The program contains a DECLARE 
STRING CONSTANT statement where the value assigned to the 
constant exceeds the maximum number of characters allowed 
for string constant expressions. The maximum length of a string 
constant expression at compile-time is 498 characters. 

User Action. Change the string constant to a string variable and 
assign the string expression to the variable at run-time. 

STRCONREQ, string constant required 

Explanation. ERROR - The program contains a numeric expres
sion in a context that requires a string expression, for example: 

DECLARE STRING CONSTANT ABC = 123 

User Action. Supply a string literal or a named string constant. 

STRDEFNOT, string DEF not ANSI 

Explanation. INFORMATION - A program compiled with the 
/ ANSI_STANDARD qualifier contains a string DEF. 

User Action. Remove the string DEF. 

STRLENANY, string length not allowed on ANY 

Explanation. ERROR - An ANY parameter specifies a string 
length in an EXTERNAL statement. This is not allowed because 
ANY implies that you can use any data type, not specifically a 
string data type. 

User Action. Remove the string length specification from the 
ANY clause. 

STRIS_NEE, string expression is required 

Explanation. ERROR - The program contains a numeric expres
sion where a string expression is needed, for example, NAME 
1% AS "ABC.DAT". 

User Action. Supply a string expression. 

A-86 Compile-Time Error Messages 



STRLENDYN, string length not allowed on MAP DYNAMIC variable 

Explanation. ERROR - A string variable in a MAP DYNAMIC 
statement specifies a string length. 

User Action. Remove the string length. All string variables 
named in a MAP DYNAMIC statement have a length of zero 
until a REMAP statement executes. 

STRLENINC, virtual array string <name> length increased from <n> 
to <m> 

Explanation. WARNING - In a string virtual array DIM state
ment, the specified string length is not a power of two. 

User Action. None. VAX BASIC increases the string length to 
the next higher power of two. 

STRLENMUS, string length specification for <name> must be numeric 

Explanation. ERROR - The length specification for a fixed-length 
string is nonnumeric, for example, COMMON A$ = "ABC". 

User Action. Supply a numeric length specification. 

STRLENNOT, string length not allowed on numeric variable <name> 

Explanation. ERROR - The declaration for a numeric variable 
contains a string length specification. 

User Action. Remove the string length specification. 

STRLENTRU, virtual array string <name> length truncated from <n> 
to <m> 

Explanation. WARNING - A string virtual array specifies a 
string length greater than 512. VAX BASIC truncates the length 
specification to 512. 

User Action. None. The maximum string length for virtual 
arrays is 512. 

STRLITREQ, string literal required for compiler directive 

Explanation. ERROR - A quoted string is missing in a compiler 
directive that requires one, for example, %IDENT. 

User Action. Supply a string literal for the compiler directive. 

Compile-Time Error Messages A-87 



STROUTRAN, string is too large 

Explanation. ERROR - A string exceeds the maximum allowable 
length. The maximum length is 65535 characters. 

User Action. Reduce the length of the string. 

STRRECFIE, string record element may not be FIELDed 

Explanation. ERROR - A FIELD statement contains a string 
record element as the fielded variable. 

User Action. Replace the string record element with a dynamic 
string. Fielded variables must be dynamic. 

STRRECFOR, stream format must have sequential organization 

Explanation. ERROR - A file was opened using STREAM 
as a record format, but the specified organization was not 
SEQUENTIAL. 

User Action. Change the OPEN statement so that it specifies 
ORGANIZATION SEQUENTIAL. 

STRVAREXP, string variable expected 

Explanation. ERROR - A CHANGE statement specifies a nu
meric variable. 

User Action. Supply a string variable; the CHANGE statement 
changes a string variable to a numeric array and vice versa. 

STRV ARREQ, string variable required 

Explanation. ERROR - A statement references a numeric vari
able instead of a string variable, for example, LINPUT A%. 

User Action. Supply a string variable instead of a numeric 
variable. 

SUBMAYNOT, subscript may not be specified for entire array 

Explanation. ERROR - A CALL statement or external function 
reference passes an entire array as a parameter and contains a 
subscript expression, for example, A(,,3). 

User Action. Remove the subscript expression. You cannot spec
ify any subscripts when passing an entire array as a parameter. 

A-88 Compile-Time Error Messages 



SUBOUTRAN, subscript out of range for <array-name> 

Explanation. ERROR - The program references an array element 
with constant subscript(s) outside the bounds of the array. 

User Action. Check program logic to make sure all subscripts 
are within the bounds of the array. 

SUBRECCOM, subscripting error in RECORD component 

Explanation. ERROR - The program contains a RECORD 
component reference with invalid subscripts, for example, 
A::B(l,2)::C where B has only one subscript, or A::B where A 
requires a subscript. 

User Action. Change the erroneous reference. You must specify 
as many subscripts as were defined in the RECORD. 

SUBWHINOT, exit from SUB seen while not in SUB 

Explanation. ERROR - A program contains an EXIT SUB or 
SUBEXIT statement with no preceding SUB statement. 

User Action. If the program is a subprogram, supply a SUB 
statement; otherwise, remove the EXIT SUB or SUBEXIT 
statement. 

SUFFILNOT, suffix not allowed on FILL after datatype keyword 

Explanation. ERROR - A FILL item defined with an explicit data 
type ends in a percent or dollar sign. 

User Action. Remove the FILL item's percent or dollar sign. 

SUFINTONLY, % only allowed with BYTE, WORD, LONG, or INTEGER 
keywords 

Explanation. ERROR - The % suffix is only allowed on integer 
data types. 

User Action. Remove the % suffix from the variable name or 
change the data type keyword. 

Compile-Time Error Messages A-89 



SUFNOTALL, suffix not allowed on variable <name> 

Explanation. ERROR - A name, which cannot end in a percent 
sign or dollar sign, such as a label name, ends with either a 
percent sign or dollar sign. 

User Action. Remove the variable's percent or dollar sign. 

SUFNOTHAN, suffix not allowed on HANDLER <name> 

Explanation. ERROR - A HANDLER name ends in a percent or 
dollar sign. 

User Action. Remove the percent or dollar sign from the 
HANDLER name. 

SUFNOTREC, suffix not allowed for record type 

Explanation. ERROR - A record definition specifies a user
defined record type that ends in a percent or dollar sign. 

User Action. Remove the record type's percent or dollar sign. 

SUFSTRONLY, $ is only allowed with STRING keyword 

Explanation. ERROR - The $ suffix is only allowed on string 
data types. 

User Action. Remove the $ suffix from the variable name or 
change the data type keyword. 

SYNNOTANS, syntax check mode not allowed when ANSI 

Explanation. ERROR - A SET /SYNTAX-CHECK command 
was entered when the / ANSLSTANDARD qualifier was in 
effect. 

User Action. None; syntax checking is not supported in ANSI 
mode. 

SYSERROR, system service error 

Explanation. ERROR - An error was detected while executing a 
system service. 

User Action. Take corrective action based on the associated 
message. 

A-90 Compile-Time Error Messages 



TEXFOLEND, text following end of program unit must be on new 
<type of line> line 

Explanation: ERROR - The compiler detected text following an 
END, END SUB, or END FUNCTION statement. 

User Action: Remove the text. In a multi-module source file 
with line numbers, any text following an END, END SUB, or 
END FUNCTION statement must begin on a numbered line. 
In a multi-module source file without line numbers, any text 
following an END, END SUB, or END FUNCTION statement 
must begin on a new physical line. 

TEXLINMSG, text line exceeded 255 characters 

Explanation: INFORMATION - An input line contains more 
than 255 characters. VAX BASIC saves the first 255 input 
characters into the line buffer and ignores the rest of the input. 

User Action: Supply no more than 255 characters per input line 
to avoid truncation of input. 

TEXPATMUS, text path must be "RIGHT", "LEFT", "UP" or "DOWN" 

Explanation: ERROR - You specified an invalid value for the 
path specification of the SET TEXT PATH statement. 

User Action: Specify one of the values listed in the message. 

TEXPREMUS, text precision must be "STROKE","CHAR" or "STRING" 

Explanation: ERROR - You specified an invalid value for the 
text precision of the SET TEXT FONT statement. 

User Action: Specify one of the values listed in the message. 

THEMUSFOL, THEN directive must follow a lexical expression 

July 1988 

Explanation: ERROR - A %IF directive contains a lexical expres
sion that is not immediately followed by a %THEN. 

User Action: Supply a % THEN clause. % THEN, %ELSE, and 
%END %IF are required in a %IF directive. 

Compile-Time Error Messages A-91 



TOMCHINFO, extra information on command line has been ignored 

Explanation: INFORMATION - You supplied an argument to a 
CONTINUE, EXIT, IDENTIFY, or SCRATCH command. These 
commands do not accept arguments. VAX BASIC ignores the 
extra data and executes the command. 

User Action: Remove the argument from the command. 

TOOFEWARG, too few arguments 

Explanation: ERROR - The invocation of a VAX BASIC built-in 
function contains too few arguments. 

User Action: Supply the correct number of arguments to the 
function. 

TOOMANARG, too many arguments 

Explanation: ERROR - The invocation of a VAX BASIC built-in 
function contains too many arguments. 

User Action: Supply the correct number of arguments to the 
function. 

TOOMANIND, too many array indices active 

Explanation: ERROR - A subscript expression contains more 
than 100 array indices between the open parenthesis and the 
close parenthesis. 

User Action: Reduce the number of active array indices. 

TOOMANKEY, too many keys - limit is 255 

Explanation: ERROR - An OPEN statement specifies more than 
255 index keys. 

User Action: Reduce the number of index keys. The maximum 
is 255. 

TOOMANP AR, too many function parameters active 

Explanation: ERROR - An external function invocation contains 
too many expressions in the actual parameter list. 

User Action: Reduce the number of expressions in the actual 
parameter by assigning the expressions to temporary variables. 

A-92 Compile-Time Error Messages 



TRAFUNONL, Transformation functions only permitted with multiplication 

Explanation: ERROR - A graphics transformation function is 
used in a MAT statement other than matrix multiplication. 

User Action: Remove the transformation function from the MAT 
statement. 

TRAOUTRAN, transformation number must be in the range 1 - 255 

Explanation: ERROR - You specified a transformation number 
that is less than 1 or greater than 255. 

User Action: Change the transformation number to be within 
the range 1 to 255. 

Compile-Time Error Messages A-92.1 





TYPDEFSTR, TYPE default of STRING is not allowed. 

Explanation: ERROR - STRING was specified as the default data 
type in: 1) a compiler command, 2) a qualifier to the DCL BASIC 
command, or 3) an OPTION statement. 

User Action: Specify a numeric data type as the default. 

UNDEFINED, unresolved/undefined symbols 

Explanation: ERROR - A program executed in the BASIC 
environment calls or invokes a subprogram or routine that has 
not been loaded. 

User Action: Load the subprogram or routine before running the 
program in the BASIC environment. 

UNDLINNUM, undefined line number 

Explanation: ERROR - A statement tries to transfer control to a 
nonexistent line. Or, in a numberless program, a line number is 
referenced. 

User Action: Replace the nonexistent line number with the 
correct destination line number or label. 

UNELEXDIR, unexpected lexical directive encountered 

Explanation: ERROR - The specified lexical directive is not legal 
in this statement. 

User Action: Use a supported lexical directive. 

UNEXPEOF, unexpected end of file 

Explanation: ERROR - An end-of-file was specified immediately 
after an ampersand continuation character. 

User Action: Remove the ampersand continuation character or 
continue the line. 

UNKCOMINP, unknown command input 

July 1988 

Explanation: ERROR - An attempt was made to enter an invalid 
or unknown command. 

User Action: Enter the VAX BASIC command correctly. 

Compile-Time Error Messages A-93 



UNLINCREA, UNLOCK EXPLICIT clause inconsistent with ACCESS READ 

Explanation: ERROR - An OPEN statement contains both an 
ACCESS READ and an UNLOCK EXPLICIT clause. This is 
inconsistent because ACCESS READ specifies no record locking 
while UNLOCK EXPLICIT specifies that all accessed records 
remain locked until explicitly unlocked. 

User Action: Either remove the UNLOCK EXPLICIT clause or 
change the ACCESS clause. 

UNSCDDLEV, unsupported CDD level <number> . Supported level is 
<number> 

Explanation: ERROR - The current CDD version is incompatible 
with VAX BASIC. 

User Action: Use a supported version of the CDD. 

UNTSTRLIT, unterminated string literal 

Explanation: ERROR - The program contains an improperly 
terminated string literal; for example, "ABC , "ABC', and 'ABC" 
are all improperly terminated. 

User Action: Use the same type of quotation mark (either single 
or double) for both beginning and ending string delimiters. 

USEONLALO, USE only allowed inside WHEN blocks 

Explanation: ERROR - A USE statement is not within a WHEN 
block. 

User Action: Remove the USE statement. 

USERABORT, user ABORT directive <text> 

Explanation: FATAL - The compilation was terminated as the 
result of a %ABORT directive. The compiler prints the text 
following the %ABORT. 

User Action: None. 

A-94 Compile-Time Error Messages 



USERPRINT, <text> 

Explanation. SUCCESS - The compilation found a %PRINT 
directive and printed the specified message to the terminal and 
listing file. 

User Action. None. 

USEVARNOT, user variable <name> not allowed in declaration 

Explanation. ERROR - The parameter list in an external subpro
gram declaration contains a user variable name. 

User Action. Remove the variable from the parameter list. 
When declaring a routine, the parameter list can contain only 
data type and parameter-passing mechanism specifications. 

VAL TOOLAR, value too large for constant 

Explanation. WARNING - The value of an EXTERNAL 
CONSTANT is larger than the specified data type allows. 

User Action. Make sure the data type specified in the 
EXTERNAL CONSTANT statement matches that of the actual 
constant. 

VALUEREQ, PRINT USING requires a value 

Explanation. ERROR - A PRINT USING statement must have at 
least one expression or value. 

User Action. Supply an expression or value at the end of the 
PRINT USING statement. 

VARCONREQ, variable or constant required 

Explanation. ERROR - The program contains an executable DIM 
statement that contains an expression in the bounds list. 

User Action. Remove the expression from the bounds list. 
Executable DIM statements can have only constants or variables 
(simple or subscripted) as bounds. 

Compile-Time Error Messages A-95 



VERJUSMUS, vertical justification must be "TOP", "CAP","HALF","BASE", 
"BOTTOM" or "NORMAL" 

Explanation. ERROR - You specified an invalid value for the 
vertical component of the SET TEXT JUSTIFY statement. 

User Action. Specify one of the values listed in the message. 

VIRARROVF, virtual array space exceeded at array <name> 

Explanation. ERROR - The storage for virtual arrays on a single 
channel exceeds 2147483647 bytes. 

User Action. If there is only one virtual array on the channel, 
you must reduce the amount of storage used by the array. 
However, if there is more than one virtual array on the channel, 
you can put each array on a separate channel. 

VIRNOTALL, virtual array not allowed in graphics statements 

Explanation. ERROR - You specified an entire virtual array on a 
statement that does not allow them. 

User Action. Specify a non-virtual array in place of the virtual 
array. 

VIRRECTOO, virtual RECORD <name> is too large. Limit is 512 bytes 

Explanation. ERROR - The elements of a virtual array are of 
type <name> and the total storage requirement for each 
element is greater than 512 bytes. 

User Action. Reduce the size of the RECORD. 

WRITEERR, error writing <file-name> 

Explanation. ERROR - An error was detected in attempting to 
write to a file. 

User Action. Supply a valid file specification or take corrective 
action based on the associated message. 

WROTYPLIB, library <lib-name> is not an OBJECT or IMAGE library 

Explanation. WARNING - The logical BASIC$LIBn translates to 
a library that is not an object library or a shareable image library. 

User Action. Change the logical BASIC$L1Bn to translate to an 
object library or a shareable image library. 

A-96 Compile-Time Error Messages 



XYPOIREQ, X, Y point required between semicolons 

Explanation. ERROR - In a list of points in a statement such as 
PLOT LINES, you specified two semicolons in a row without an 
X,Y point specification between them. 

User Action. Either supply another point or remove the extra 
semicolon. 

Compile-Time Error Messages A-97 





Appendix B 

Run-Time Error Messages 

VAX BASIC returns run-time error messages if an error occurs while a 
program is executing. The error is diagnosed and for programs without 
line numbers, VAX BASIC indicates the program line that generated the 
error. Warning error messages indicate that an error has occurred, but 
program execution continues. In some cases, VAX BASIC reprompts for 
more information or correct data; in other cases, VAX BASIC performs 
the specified operation, but the results are not as expected. Fatal error 
messages indicate that the program has aborted. You can recover from 
most fatal errors by including error-handling routines in your program 
and by specifying OPTION HANDLE= FATAL. Certain errors, however, 
are not recoverable even when error-handlers are used. In the description 
of these errors they are designated as not trappable. You do not need 
error-handling routines to trap errors that generate warning messages. 

Section B. l of this appendix lists VAX BASIC run-time errors, alphabetized 
by mnemonic code. Section B.2 is a cross reference numerical listing of 
run-time errors generated by VAX BASIC; Section B.3 lists error messages 
which VAX BASIC does not generate, but which can be displayed with 
the ERT$ function. See the VAX BASIC Reference Manual for information 
about RMSSTATUS and VMSSTATUS. 

B. 1 VAX BASIC Run-Time Errors by Mnemonic 

The VAX BASIC error message format is: 

XBAS-<l>-<mnemonic>, <message> 
-BAS-I-FROLINMOD, from Line x in module y 

Run-Time Error Messages B-1 



<I> 
Is a letter indicating the severity of the error. The severity indicator 
can be one of the following: 

• I, indicating information 

• W, indicating a warning 
• E, indicating an error 

• F, indicating a severe error 

<mnemonic> 
Is a 3- to 9-character string that identifies the error. 

<x> 
Is the line number where the error occurred. 

<y> 
Is the name of the module where the error occurred. 

Warning error messages indicate that an error has occurred, but program 
execution continues. In some cases, VAX BASIC reprompts for more 
information or correct data; in other cases, VAX BASIC performs the spec
ified operation, but the results are not as expected. Fatal error messages 
indicate that the program has aborted. 

ARGDONMAT, Arguments don't match (ERR=88) 

Explanation. The proper array descriptor was not specified for a 
matrix operation. 

User Action. Use VAX BASIC to create the array. 

ARGTOOLAR, Argument too large in EXP (ERR=49) 

Explanation. The program contains: 

8-2 Run-Time Error Messages 

• An argument to the EXP function larger than 88 

• An exponentiation operation that results in a number greater 
than 1E38 

User Action. Change the EXP argument to be in the valid range, 
or reduce the size of the exponent. 



ARRMUSSAM, Arrays must be same dimension (ERR=238) 

Explanation. The program attempts to perform matrix addition 
or subtraction on input arrays with a different dimensions. 

User Action. Use arrays that have identical dimensions. 

ARRMUSSQU, Arrays must be square (ERR=239) 

Explanation. The program attempts matrix inversion (MAT INV) 
on an array that is not inversible. 

User Action. Use only square arrays when performing a matrix 
inversion. 

ARRTOOSMA, Array too small (ERR=l 97) 

Explanation. The array you referenced with a graphics statement 
is too small. Check the description of the graphics statement to 
get the minimum size requirement for the array. 

User Action. Increase the size of the array. 

BADDIRDEV, Bad directory for device (ERR=l) 

Explanation. The device directory does not exist or is 
unreadable. 

User Action. Supply a valid directory. 

BADRECIDE, Bad record identifier (ERR=143) 

Explanation. The program attempted a record access that 
specified: 

• A zero or negative record number on a RELATIVE file 

• A null key value on an INDEXED file 

User Action. Change the record number or key specification to a 
valid value. 

BADRECVAL, Bad RECORDSIZE value on OPEN (ERR=148) 

Explanation. The value in the RECORDSIZE clause in the 
OPEN statement either (1) is zero or greater than 65535 or (2) 
does not match the recordsize of an existing file. 

User Action. Change the value in the RECORDSIZE clause. 

Run-Time Error Messages B-3 



CANCHAARR, Cannot change array dimensions (ERR=240) 

Explanation. The program attempts to redimension an array to 
a different number of dimensions. 

User Action. Change the arrays dimensions in the DIM or MAT 
statement. 

CANFINFIL, Can't find file or account (ERR=S) 

Explanation. The specified file or directory is not present on the 
device. 

User Action. Supply a valid file specification. 

CANINVMAT, Can't invert matrix (ERR=56) 

Explanation. The program attempts to invert a single-dimension 
matrix. 

User Action. Supply a matrix of the proper form for inversion. 

CANOPEFIL, Cannot open file (ERR=162) 

Explanation. The program attempts to open a file that cannot be 
opened. 

User Action. Use VMSSTATUS to determine the RMS failure 
that caused the error. 

CLIPONOFF, Clipping must be set to ON or OFF (ERR=259) 

Explanation. Valid strings for the SET CLIP statement are "ON" 
and "OFF". 

User Action. Change the string to either "ON" or "OFF". 

COLNOTCON, Color indices are not contiguous (ERR=261) 

Explanation. The color indices on the device you are using are 
not contiguous. 

B-4 Run-Time Error Messages 

User Action. Unlike most devices, all color indices between zero 
and the number returned by the ASK MAX COLOR statement, 
are not available on this device. 



COONOTNDC, Coordinates are not within NDC space (ERR=273) 

Explanation. The boundaries of NDC space are O,l,0,1; coordi
nates must be within this range. 

User Action. Supply coordinates with values between 0 
and 1. Make sure that the minimum value of x is less than the 
maximum value of x and that the minimum value of y is less 
than the maximum value of y. 

CORFILSTR, Corrupted file structure (ERR=29) 

Explanation. RMS has detected an invalid file structure on disk. 

User Action. See your system manager. 

DATFORERR, Data format error (ERR=SO) 

Explanation. The program specifies a data type in a statement 
that does not agree with the value supplied or invalid data was 
used in string arithmetic. 

User Action. Change the statement or supply data of the correct 
type. 

DATOVERF, data overflow (ERR= 289) 

Explanation. The keystroke retrieved by the INKEY$ func
tion caused the type-ahead buffer to overflow or the terminal 
attempted to send a valid ANSI escape sequence that did not 
correspond to a keystroke. 

User Action. Specify the DCL command SET 
TERMINAL/HOSTSYNC, before using the INKEY$ function. 
This command will prevent the type-ahead buffer from 
overflowing. 

DATTYPERR, Data type error (ERR=lOl) 

Explanation. The program attempts to access a parameter passed 
BY DESC (by descriptor), and the descriptor contains an incorrect 
data type. This error cannot be trapped with a VAX BASIC 
error handler unless the program contains OPTION HANDLE= 
FATAL. 

User Action. Check the program code that created the passed 
parameter and make sure it creates a parameter of correct data 
type. 

Run-Time Error Messages B-5 



DEADLOCK, Detected deadlock while waiting for GET or FIND 
(ERR=193) 

Explanation. The record your program is trying to access is 
currently locked on another channel or by another process. 
Simultaneously, your program has locked a record that the other 
user cannot access. The deadlock cannot be resolved. 

User Action. Possible solutions include: 

• Use the FREE statement to unlock all locked records 

• Use GEL.REGARDLESS if read access is sufficient 

DECERR, DECIMAL error or overflow (ERR=l 81) 

Explanation. The result of a DECIMAL expression is greater 
than or requires more precision than can be contained in the 
variable. 

User Action. Reduce the magnitude of the expression or increase 
the allowed digits in the DECIMAL variable. 

User Action. Check program logic or trap the error in an error 
handler. 

DEVHUNWRI, Device hung or write locked (ERR=14) 

Explanation. The program attempted an operation to a hardware 
device that is not functioning properly or is protected against 
writing. 

User Action. Check the device on which the operation is per
formed. 

DEVINMET, Device is an input metafile (ERR=270) 

Explanation. The operation cannot be performed on an input 
metafile (device type 3). 

User Action. Specify the device id for a device other than an 
input metafile. 

DEVNOTOPE, Device is not open (ERR=268) 

B-6 Run-Time Error Messages 

Explanation. The device has not been identified in an OPEN ... 
FOR GRAPHICS statement. 

User Action. Specify the device id number in an OPEN ... FOR 
GRAPHICS statement. 



DEVOPEINC, Device and operation are incompatible (ERR=272) 

Explanation. The operation you requested cannot be performed 
on the specified device. For example, output cannot be displayed 
on a device that is for input only. 

User Action. Specify the device id for a device with the appro
priate compatibility. Device types are listed in Programming with 
VAX BASIC Graphics. 

DEVOUTMET, Device is an output metafile (ERR=269) 

Explanation. The specified device is an output metafile (device 
type 2). 

User Action. Specify the device id for a device other than an 
output metafile. 

DEVTYPNOT, Device type is not supported (ERR=267) 

Explanation. The specified device type is not supported by VAX 
GKS. 

User Action. Specify an alternative device type. Standard 
supported device types are listed in Programming with VAX 
BASIC Graphics and in the VAX GKS documentation. Verify with 
your system manager that support for the specified device has 
been installed. Also, verify that the VAX GKS startup command 
procedure has properly executed. 

DIFUSELON, Differing use of LONG/WORD or SINGLE/DOUBLE 
qualifiers (ERR=229) 

Explanation. The main and subprograms were compiled with 
different LONG/WORD modes. This error cannot be trapped 
with a VAX BASIC error handler unless the program contains 
OPTION HANDLE= FATAL. 

User Action. Recompile one of the programs with the same 
qualifier as the other. 

Run-Time Error Messages 8-7 



DIMOUTRAN, Dimension number out of range (ERR=195) 

Explanation. The upper or lower bound of the specified dimen
sion cannot be returned because the array has fewer dimensions 
than the one requested. 

User Action. Change the dimensions specified with the 
LBOUND or UBOUND function. 

DIRERR, Directive error (ERR=253) 

Explanation. A system service call resulted in an error. 

User Action. See the VAX/VMS 1/0 Reference Volume or the 
VAX Record Management Services Reference Manual. 

DIVBY-2ER, Division by 0 (ERR=61) 

Explanation. The program attempts to divide a value by zero. 

User Action. Check program logic and change the attempted 
division or trap the error in an error handler. 

DUPKEYDET, Duplicate key detected (ERR=134) 

Explanation. In a PUT operation to an indexed file, a duplicate 
key was specified, and DUPLICATES was not specified when the 
file was created. 

User Action. Change the duplicate key, or re-create the file 
specifying DUPLICATES for that key. 

ECHTYPNOT, Prompt/echo type not supported (ERR=256) 

Explanation. The specified prompt or echo type is invalid. VAX 
BASIC supports only the default prompt and echo types. 

User Action. Do not change the prompt or echo type. If you do 
so, you should continue to use direct calls to VAX GKS routines 
rather than use VAX BASIC input statements. 

ENDFILDEV, End of file on device (ERR=ll) 

B-8 Run-Time Error Messages 

Explanation. The program attempted to read data beyond the 
end of the file. 

User Action. None. The program can trap this error in an error 
handler. 



ENTPOINOT, Entered points not within a transformation (ERR=285) 

Explanation. Input points are not within the viewport of a 
defined transformation. 

User Action. Issue a warning to the user to input points within 
the defined area. Alternatively, you can change at least one 
transformation to include the viewport area not defined. At the 
start of program execution, transformation 1 includes all of NDC 
space. Optionally, you can define one transformation to cover 
the default viewport. 

ERRFILCOR, Error on OPEN - file corrupted (ERR=l 78) 

Explanation. The program attempted to open an invalid struc
ture on disk. 

User Action. See your system manager. 

ERRTRANEE, ERROR trap needs RESUME (ERR=246) 

Explanation. An error handler attempts to execute an END, 
END SUB, END FUNCTION, SUBEND, FUNCTIONEND, or 
FNEND statement without first executing a RESUME statement. 
This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE= FATAL. 

User Action. Change the program logic so that the error han
dler executes a RESUME statement before executing an END, 
END SUB, END DEF, SUBEND, FUNCTIONEND, or FNEND 
statement. 

FATSYSIO_, Fatal system I/O failure (ERR=12) 

Explanation. An I/O error has occurred in: (1) the system or 
(2) Record Management Services. The last operation will not be 
completed. 

User Action. See the VAX/VMS System Messages and Recovery 
Procedures Reference Manual for RMS errors or retry the opera
tion. Use VMSSTATUS to return the VAX/VMS condition code 
that caused the error. 

Run-Time Error Messages 8-9 



FIEOVEBUF, FIELD overflows buffer (ERR=63) 

Explanation. A FIELD statement attempts to access more data 
than exists in the specified buffer. 

User Action. Change the FIELD statement to match the buffer's 
size, or increase the buffer's size. 

FILACPFAI, FILE ACP failure (ERR=252) 

Explanation. The operating system's file handler reported an 
error to RMS. 

User Action. See the VAX/VMS I/O Reference Volume or the 
VAX Record Management Services Reference Manual. 

FILATTNOT, File attributes not matched (ERR=160) 

Explanation. The following attributes in the OPEN statement do 
not match the corresponding attributes of the target file: 

• ORGANIZATION 

• BUCKETSIZE 

• BLOCKSIZE 

• Key number, size, position, or attributes (CHANGES and 
DUPLICATES) 

• Record format 

User Action. Change the OPEN statement attributes to match 
those of the file or remove the clause. 

FILEXPDAT, File expiration date not yet reached (ERR=174) 

Explanation. The program attempted to delete a file before the 
file's expiration date was reached. 

User Action. Change the file's expiration date. 

FILIS_LOC, File is locked (ERR=138) 

8-1 0 Run-Time Error Messages 

Explanation. The program does not allow shared access, and 
attempts to access a file that has been locked by another user or 
by the system. 

User Action. Change the OPEN statement to allow shared 
access or wait until the file is released by other users. 



FLOPOIERR, Floating point error or overflow (ERR=48) 

Explanation. A program operation resulted in a floating-point 
number with absolute value outside the allowable range for that 
data type. 

User Action. Check program logic or trap the error in an error 
handler. 

FNEWITFUN, FNEND without function call (ERR=73) 

Explanation. The program executes an END DEF or FNEND 
statement before executing a function call. This error cannot be 
trapped with a VAX BASIC error handler unless the program 
contains OPTION HANDLE= FATAL. 

User Action. Check program logic to make sure that END DEF 
or FNEND statements are executed only in multi-line DEFs or 
remove the END DEF or FNEND statement. 

GKSNOTINS, VAX GKS is not installed (ERR=226) 

Explanation. Graphics statements are not operational when VAX 
GKS is not installed. 

User Action. See your system manager. 

ILLALLCLA, Illegal ALLOW clause (ERR=168) 

Explanation. The value specified for the ALLOW clause 
(sharing) on the OPEN statement is illegal for the type of file 
organization. 

User Action. Change the ALLOW clause argument. 

ILLARGLOG, Illegal argument in LOG (ERR=53) 

Explanation. The program contains a negative or zero argument 
to the LOG or LOGlO function. 

User Action. Supply an argument in the valid range. 

Run-Time Error Messages B-11 



ILLARESTY, Illegal area style (ERR=262) 

Explanation. Area style must be one of the following: 

• SOLID (the default) 

• HOLLOW 

• HATCH 
• PATTERN 

User Action. Specify a valid area style for the device. 

ILLBYTCOU, Illegal byte count for 1/0 (ERR=31) 

Explanation. A PRINT or INPUT list invoked a function that 
closed an 1/0 channel. 

User Action. Change the function so that it does not close the 
I/ 0 channel. 

ILLCNTCLA, Illegal count clause (ERR=290) 

Explanation. In a graphics statement, you specified a COUNT 
clause with a numeric value which exceeds the size of the array. 

User Action. Specify a numeric value which is less than or equal 
to the size of the array. 

ILLCOLIND, Illegal color index (ERR=280) 

Explanation. The index you specified is not supported by the 
device. 

User Action. Specify a valid color index. The valid range of 
indices for the device is from 0 to the value retrieved by the ASK 
MAX COLOR statement. 

ILLCOLMIX, Illegal color mix (ERR-291) 

B-12 Run-Time Error Messages 

Explanation. The color mix value specified on the SET COLOR 
MIX statement is outside the range of 0 to 1. 

User Action. Specify a value between 0 and 1. 



ILLDEVID, Illegal device identification number (ERR=266) 

Explanation: The device identification number is beyond the 
valid range of 0 through 255. 

User Action: Specify a device identification number between 0 
and 255. 

ILLDEVNAM, Illegal device name in OPEN (ERR=292) 

Explanation: An explicit or implicit OPEN ... FOR GRAPHICS 
statement contains an illegal device name for the device type 
being used. Possible causes include: 

• Specifying a device that does not exist on the system 

• Specifying a logical name that is not defined 

• Specifying a file name that does not exist when the device 
type is for an input metafile 

• Specifying a file name for a device type that requires a VMS 
physical device name 

User Action: Specify an appropriate device name. 

ILLECHARE, Illegal echo area (ERR=283) 

Explanation: The specified echo area boundaries are invalid. 

User Action: Specify echo area boundaries within the device 
viewport. 

ILLEXIDEF, Illegal exit from DEF* (ERR=245) 

Explanation: A multi-line DEF* contains a branch to an END, 
END SUB, END DEF, SUBEND, or FUNCTIONEND statement. 
This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE= FATAL. 

User Action: Change the program logic so that the program 
executes the multi-line function's END DEF or FNEND statement 
before executing the END, END SUB, END DEF, SUBEND, or 
FUNCTIONEND statement. 

Run-Time Error Messages 8-13 



ILLFIEV AR, Illegal FIELD variable (ERR=l 22) 

Explanation: A FIELDed variable· is referenced after a non
BASIC subprogram closed the file associated with that variable. 
This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE = SEVERE. 

User Action: Check program logic; do not reference the variable 
after the file has been closed. 

ILLFILNAM, Illegal file name (ERR=2) 

Explanation: A file name is: (1) too long, (2) incorrectly format
ted, or (3) contains embedded blanks or invalid characters. 

User Action: Supply a valid file specification. 

ILLILLACC, Illegal or illogical access (ERR=136) 

Explanation: The requested access is impossible because: 

• The attempted record operation and the ACCESS clause in 
the OPEN statement are incompatible. 

• The ACCESS clause is inconsistent with the file organization. 

• ACCESS READ or APPEND was specified when the file was 
created. 

User Action: Change the ACCESS clause. 

ILLINIVAL, Illegal initial value (ERR=284) 

Explanation: The current initial value specified on the SET 
INITIAL VALUE or LOCATE VALUE statement is beyond the 
range of possible values. 

User Action: Specify an initial value within the default range 
(0 through 1) or within the alternative range you optionally 
specified, or change the range limits. 

ILLIO_CHA, Illegal I/O channel (ERR=46) 

B-14 Run-Time Error Messages 

Explanation: The program specified an I/O channel outside the 
legal range. 

User Action: Specify I/O channels in the range 1 to 99, inclusive 
or one returned from LIB$GET_LUN. 

July 1988 



ILLKEYATT, Illegal key attributes (ERR=137) 

Explanation. The program specified CHANGES for the primary 
key. 

User Action. Remove the CHANGES specification from the 
primary key. You can specify CHANGES only for alternate keys. 

ILLLINSIZ, Illegal line size (ERR=275) 

Explanation. The specified line size is less than or equal to zero. 

User Action. Specify a line size value greater than zero. 

ILLLINSTY, Illegal line style number (ERR=274) 

Explanation. The specified line style number is less than or 
equal to zero. 

User Action. Specify a valid line style value greater than zero. 

ILLNETOPE, Illegal network operation (ERR=l 90) 

Explanation. The program tries to mix GET and PUT operations, 
or PRINT and INPUT operations, on a remote terminal-format 
file. 

User Action. Change the file organization when opening the file 
to be sequential variable. 

ILLNUM, Illegal number (ERR=52) 

Explanation. A value supplied to a numeric variable is incorrect, 
for example "ABC" and "1..2" are illegal numbers. 

User Action. Supply numeric values of the correct form. 

Run-Time Error Messages B-15 



ILLOPE, Illegal operation (ERR=l 41) 

Explanation. The program attempts to: 

• DELETE a record in a sequential file 

• UPDATE a record on a magtape file 
• Rewind a process-permanent file 
• DELETE a record in a read-only file 

• Assign a value to a virtual array element in a read-only file 

• Perform a MARGIN operation on VIRTUAL file 
• Transpose a matrix, or perform a matrix multiplication, with 

the same array as source and destination 
• Perform an invalid operation on a VIRTUAL file, for exam

ple, using GET and PUT on a VIRTUAL file, then attempting 
to reference a virtual array dimensioned on that file 

User Action. Change the illegal operation. 

ILLPICOPE, Illegal picture operation (ERR=258) 

B-16 Run-Time Error Messages 

Explanation. The program attempts to change a transformation 
within a picture definition. The following statements are invalid 
within pictures and within routines that are called by pictures: 

• SET WINDOW 

• SET VIEWPORT 

• SET DEVICE WINDOW 

• SET DEVICE VIEWPORT 

• SET TRANSFORMATION 

• SET INPUT PRIORITY 

• SET CLIP 

User Action. Remove any invalid statements from the picture 
definition. Set the boundaries for windows and viewports before 
a picture is invoked. 



ILLPOISTY, Illegal point style number (ERR=276) 

Explanation. The specified point style is less than or equal to 
zero. 

User Action. Specify a valid point style greater than or equal to 
zero. 

ILLRECACC, Illogical record accessing (ERR=152) 

Explanation. The program attempts to perform an operation that 
is invalid for the specified file type, for example, a random access 
on a sequential file. 

User Action. Supply a valid operation for that file type or 
change the file type. 

ILLRECFIL, Illegal record on file (ERR=142) 

Explanation. A record contains an invalid byte count field. 

User Action. Use the DCL command DUMP to check the file for 
possible bad data. 

ILLRECLOC, Illegal record locking (ERR=187) 

Explanation. The program contains an ALLOW clause on a 
GET statement and the file was not opened with the UNLOCK 
EXPLICIT clause. This error cannot be trapped with a VAX 
BASIC error handler unless the program contains OPTION 
HANDLE = FATAL. 

User Action. Either remove the ALLOW clause from the GET 
statement or use the EXPLICIT UNLOCK clause in the OPEN 
statement. 

ILLRESSUB, Illegal RESUME to subroutine (ERR=247) 

Explanation. While in an error handler activated by an ON 
ERROR GO BACK, the error handler attempts to RESUME 
without a line number. This error cannot be trapped with a 
VAX BASIC error handler unless the program contains OPTION 
HANDLE = FATAL. 

User Action. None; you cannot specify the RESUME statement 
without a line number in any program module except in the 
program module containing the error handler. 

Run-Time Error Messages B-17 



ILLSTYIND, Illegal area style index (ERR=279) 

Explanation. The specified area style index is less than or equal 
to zero. 

User Action. Specify a valid area style index greater than zero. 

ILLSWIUSA, Illegal switch usage (ERR=67) 

Explanation. The program attempts an illegal SYS call. 

User Action. See the appropriate RSTS/E SYS call 
documentation. 

ILLSYSUSA, Illegal SYS usage() (ERR=18) 

Explanation. The program attempted an illegal SYS call. 

User Action. See the appropriate RSTS/E SYS call 
documentation. 

ILL TEXHEI, Illegal text height (ERR=2 78) 

Explanation. The text height is less than or equal to zero. 

User Action. Specify a text height greater than zero. 

ILL TEXJUS, Illegal text justification (ERR=263) 

Explanation. The specified text justification factor is invalid. 

User Action. See Programming with VAX BASIC Graphics for 
valid justification values. Specify valid values. 

ILL TEXP AT, Illegal text path (ERR=265) 

B-18 Run-Time Error Messages 

Explanation. The specified text path is invalid. 

User Action. Specify a valid text path. Valid text path values 
are: 

• RIGHT (the default) 

• LEFT 

• UP 

• DOWN 



ILL TEXPRE, Illegal text precision (ERR=264) 

Explanation. The specified precision string is invalid. 

User Action. Valid precision values are: "STROI<En for software 
fonts, "STRINGn and "CHARn for hardware fonts. Specify a 
valid string for the precision value. 

ILLTEXRAT, Illegal text width-to-height ratio (ERR=276) 

Explanation. The specified width-to-height ratio is less than or 
equal to zero. 

User Action. Specify a width-to-height ratio greater than zero. 

ILLTFFOPE, Illegal terminal-format file operation (ERR=191) 

Explanation. The program specifies a GETRFA function on a 
terminal-format file. 

User Action. Change the file organization when opening the file 
to be sequential variable. 

ILLTRANUM, Illegal transformation number (ERR=257) 

Explanation. The specified tranformation number is less than 1 
or greater than 255. 

User Action. Specify a transformation number between 1 and 
255. 

ILLUSADEV, Illegal usage for device (ERR=133) 

Explanation. The requested operation cannot be performed 
because: 

• The device specification contains illegal syntax 

• The specified device does not exist on your system 

• The specified device is inappropriate for the requested 
operation (for example, an indexed file access on magnetic 
tape) 

User Action. Supply the correct device type. 

Run-Time Error Messages B-19 



ILLWAIVAL, Illegal wait value (ERR=192) 

Explanation. The specified integer expression on the WAIT 
clause is less than zero or greater than 255. 

User Action. Specify an integer expression whose value is 0 
through 255. 

IMASQUROO, Imaginary square roots (ERR=54) 

Explanation. An argument to the SQR function is negative. 

User Action. Supply arguments to the SQR function that are 
greater than or equal to zero. 

IMPERRHAN, improper error handling (ERR=186) 

Explanation. After an error has occurred, a program's error 
handler calls another program unit, and the called program unit 
executes an ON ERROR GO BACK statement before clearing the 
error with a RESUME statement. This error cannot be trapped 
with a VAX BASIC error handler unless the program contains 
OPTION HANDLE = FATAL. 

User Action. Change the program logic so that the called 
program clears the error condition before executing the ON 
ERROR GO BACK statement. 

INDNOTFUL, Index not fully optimized (ERR=l 70) 

Explanation. A record was successfully written to an INDEXED 
file; however, the alternate key path was not optimized. This 
slows record access. 

User Action. Delete the record and rewrite it. 

INTERR, Integer error (ERR=51) 

B-20 Run-Time Error Messages 

Explanation. The program contains an integer whose absolute 
value is greater than 255 in BYTE mode, 32767 in WORD mode, 
or 2147483647 in LONG mode. 

User Action. Use an integer in the valid range for specified data 
type. 



INVCHASTR, Invalid character in string (ERR= 287) 

Explanation. The program attempts to output a string that 
contains an invalid character. 

User Action. Remove the invalid character from the string. 

INVFILOPT, Invalid file options (ERR=139) 

Explanation. The program has specified invalid file options in 
the OPEN statement. 

User Action. Change the invalid file options. 

INVKEYREF, Invalid key of reference (ERR=144) 

Explanation. The program attempts to perform a GET, FIND, 
or RESTORE on an INDEXED file using an invalid KEY, for 
example, an alternate KEY that does not exist for the file that 
was opened. 

User Action. Use a valid KEY in the GET, FIND, or RESTORE 
statement. 

INVRFAFIE, Invalid RFA field (ERR=173) 

Explanation. During a FIND or GET by RFA, an invalid record's 
file address was specified. 

User Action. Supply a correct RFA field. 

IO_CHAALR, 1/0 channel already open (ERR=7) 

Explanation. The program attempted to open a channel that had 
already been opened and the implicit close failed. 

User Action. Submit an SPR. 

IO_CHANOT, 1/0 channel not open (ERR=9) 

Explanation. The program attempted to perform an 1/0 opera
tion before opening the channel. 

User Action. Open the channel before attempting an 1/0 
operation to it. 

Run-Time Error Messages B-21 



KEYFIEBEY, Key field beyond end ofrecord (ERR=151) 

Explanation. The position given for the key field exceeds the 
maximum size of the record. 

User Action. Specify a key field within the record. 

KEYLARTHA, Key larger than record (ERR=159) 

Explanation. The key specification exceeds the maximum record 
size. 

User Action. Reduce the size of the key specification. 

KEYNOTCHA, Key not changeable (ERR=130) 

Explanation. An UPDATE statement attempted to change a 
key field that did not have CHANGES specified in the OPEN 
statement. 

User Action. Remove the changed key field in the UPDATE 
statement or specify CHANGES for that key field in the OPEN 
statement. Note that the primary key cannot be changed and 
that you cannot specify CHANGES when you open an existing 
file if the OPEN statement that created the file did not specify 
CHANGES. 

KEYSIZTOO, Key size too large (ERR=145) 

Explanation. The key length on a GET or FIND is either zero or 
larger than the key length defined for the target record. 

User Action. Change the key specification in the GET or FIND 
statement. 

KEYWAIEXH, Keyboard wait exhausted (ERR=lS) 

8-22 Run-Time Error Messages 

Explanation. No input was received during the execution of an 
INPUT, LINPUT, or INPUT LINE statement that was preceded 
by a WAIT statement or INKEY$ timeout value. 

User Action. None; you must supply input within the specified 
time. 



MATDIMERR, Matrix dimension error (ERR=124) 

Explanation. The program: 

• Attempts to assign more than two dimensions to an array 

• Attempts to reference an array with fewer or more subscripts 
than there are dimensions in the array 

• Attempts to redimension an array that cannot be redimen
sioned 

This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE= FATAL. 

User Action. Change the number of array subscripts. Reference 
the array using the correct number of dimensions, or change the 
array so that it can be redimensioned. 

MAXMEMEXC, Maximum memory exceeded (ERR=126) 

Explanation. The program has insufficient string and I/O buffer 
space because: (1) its allowable memory size has been exceeded, 
or (2) the system's maximum memory capacity has been reached. 
This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE= FATAL. 

User Action. Reduce the amount of string or I/O buffer space, 
or split the program into two or more programs. 

MEMMANVIO, Memory management violation (ERR=35) 

Explanation. The program attempted to read or write to a 
memory location to which it was not allowed access. This error 
cannot be trapped with a VAX BASIC error handler unless the 
program contains OPTION HANDLE =FATAL. 

User Action. If the program was compiled with /NOCHECK, 
it may be exceeding an array bound; recompile with /CHECK. 
Otherwise, check program logic. 

MISSPEFEA, Missing special feature (ERR=66) 

Explanation. The program attempts to use an unavailable SYS 
call. 

User Action. See the appropriate RSTS/E SYS call 
documentation. 

Run-Time Error Messages B-23 



MOVOVEBUF, Move overflows buffer (ERR=161) 

Explanation. In a MOVE statement, the combined length of 
elements in the I/O list exceeds the size of the record just read 
or the size of the buffer. 

User Action. Reduce the size of the I/O list or increase the file's 
RECORDSIZE. 

NEGFILSTR, Negative fill or string length (ERR=166) 

Explanation. A MOVE statement I/O list contains a FILL item 
or string length with a negative value. 

User Action. Change the FILL item or string length value to be 
greater than or equal to zero. 

NEGZERTAB, negative or zero TAB (ERR=l 76) 

Explanation. The program attempted a zero or negative TAB. 
This error is signaled only for programs compiled with the 
/ ANSI_STANDARD qualifier. 

User Action. Change the argument to the TAB statement. 

NETOPERR, network operation error (ERR=l 82) 

Explanation. The program attempts to perform an invalid 
network operation, or the network software failed during a 
network operation. 

User Action. Take action based on the associated error 
messages. 

NODNAMERR, Node name error (ERR=l 75) 

Explanation. A file specification's node name contains a syntax 
error. 

User Action. Supply a valid node name. 

NOTBASIC, Not a BASIC error (ERR=l 94) 

B-24 Run-Time Error Messages 

Explanation. The error is not a VAX BASIC error and is not 
mapped to an alternative VAX BASIC error message. 

User Action. Use RMSSTATUS or VMSSTATUS to access the 
text of the error message. 



NOTENDFIL, Not at end of file (ERR=149) 

Explanation. The program attempted a PUT operation: (1) on 
a sequential or relative file before the last record, or (2) without 
opening the file for WRITE access. 

User Action. OPEN a sequential or relative file with ACCESS 
APPEND or OPEN the file with ACCESS WRITE. 

NOTENODAT, Not enough data in record (ERR=59) 

Explanation. An INPUT statement did not find enough data in 
one line to satisfy all the specified variables. 

User Action. Supply enough data in the record or reduce the 
number of specified variables. 

NOTIMP, Not implemented (ERR=250) 

Explanation. The program attempted to use a feature that does 
not exist in this version of VAX BASIC for example, TIME(4%). 

User Action. Do not use the feature. 

NOTRANACC, Not a random access device (ERR=64) 

Explanation. The program attempts a random access on a device 
that does not allow such access; for example, a PUT with a 
record number to a magtape file. 

User Action. Make the access sequential instead of random or 
use a suitable 1/0 device. 

NO_CURREC, No current record (ERR=131) 

Explanation. The program attempts a DELETE or UPDATE 
when the previous GET or FIND failed, or no previous GET or 
FIND was done. 

User Action. Correct the cause of failure for the previous GET 
or FIND, or make sure a GET or FIND was done, then retry the 
operation. 

NQ_pRIKEY, No primary key specified (ERR=150) 

Explanation. The program attempts to create an INDEXED file 
without specifying a PRIMARY KEY value. 

User Action. Specify a PRIMARY KEY. 

Run-Time Error Messages B-25 



NO_ROOUSE, No room for user on device (ERR=4) 

Explanation. No user storage space exists on the specified 
device. 

User Action. Delete files that are no longer needed. 

NUMCOOINS, Number of coordinates insufficient (ERR=281) 

Explanation. Insufficient coordinates are provided. A GRAPH 
POINTS statement requires the coordinates for at least one point. 
A GRAPH LINES statement requires a minimum of two points. 
A GRAPH AREA statement requires a minimum of three points. 

User Action. Supply an adequate number of points. 

ONEOR_TWO, One or two dimensions only (ERR=102) 

Explanation. The program contains a MAT statement that 
attempts to assign more than two dimensions to an array. This 
error cannot be trapped with a VAX BASIC error handler unless 
the program contains OPTION HANDLE =FATAL. 

User Action. Change the number of dimensions in the MAT 
statement to one or two. 

ON _STAOUT, ON statement out of range (ERR=58) 

Explanation. The index value in an ON GOTO or ON GOSUB 
statement is less than one or greater than the number of line 
numbers in the list. 

User Action. Check program logic to make sure that the index 
value is greater than or equal to one, and less than or equal to 
the number of line numbers in the ON GOTO or ON GOSUB 
statement. 

OUTOF_DAT, Out of data (ERR=57) 

B-26 Run-Time Error Messages 

Explanation. A READ statement requested additional data from 
an exhausted DATA list. 

User Action. Remove the READ statement, reduce the number 
of variables in the READ statement, or supply more DATA items. 



PRIKEYOUT, Primary key out of sequence (ERR=158) 

Explanation: RMS has detected an error in a sequential PUT to 
an INDEXED file. 

User Action: Change the PUT statement. If this does not work, 
the file is corrupted and you cannot do anything. 

PRIUSIFOR, PRINT-USING format error (ERR=116) 

Explanation: The program contains a PRINT USING statement 
with an invalid format string. 

User Action: Change the PRINT USING format string. 

PRQC_ TRA, Programmable ~c trap (ERR=28) 

Explanation: A CTRL/C was typed at the controlling terminal. 

User Action: None; however, you can trap this error with an 
error handler. 

PROLOSSOR, Internal error in VAX BASIC Run-Time Library. Please submit 
an SPR. (ERR=103) 

Explanation: A consistency check in the VAX BASIC run-time 
support failed. Program execution is aborted. This error cannot 
be trapped with a VAX BASIC error handler unless the program 
contains OPTION HANDLE = FATAL. 

User Action: This error should never occur. Submit a Software 
Performance Report. 

PROVIO, Protection violation (ERR=lO) 

Explanation: The program attempted to read or write to a file 
whose protection code did not allow the operation. 

User Action: Use a different file or change the file's protection 
code or the attempted operation. 

RECALREXI, Record already exists (ERR=153) 

July 1988 

Explanation: An attempted random access PUT on a relative file 
has encountered a pre-existing record. 

User Action: Specify a different record number for the PUT or 
delete the record. 

Run-Time Error Messages B-27 



RECATTNOT, Record attributes not matched (ERR=228) 

Explanation: A RECORDTYPE clause specifies record attributes 
that do not match those of the file. 

User Action: Change the RECORDTYPE attribute to match that 
of the file. 

RECBUCLOC, Record/bucket locked (ERR=154) 

Explanation: The program attempts to access a record or bucket 
that has been locked by another program. 

User Action: Retry the operation. 

RECFILTOO, Record on file too big (ERR=157) 

Explanation: The specified record is longer than the input buffer. 

User Action: Increase the input buffer's size. 

RECHASBEE, Record has been deleted (ERR=132) 

Explanation: A record previously located by its Record File 
Address (RFA) has been deleted. 

User Action: None. 

RECNOTFOU, Record not found (ERR=lSS) 

Explanation: A random access GET or FIND was attempted on 
a deleted or nonexistent record. 

User Action: None. 

RECNUMEXC, RECORD number exceeds maximum (ERR=147) 

B-28 Run-Time Error Messages 

Explanation: The specified record number exceeds the maximum 
specified for this file. 

User Action: Reduce the specified record number. The max
imum record number cannot be specified in VAX BASIC; it is 
either a default, or it was specified by a non-BASIC program 
when the file was created. 



RECOVEMAP, RECORDSIZE overflows MAP buffer (ERR=185) 

Explanation: The OPEN statement specifies a RECORDSIZE 
value larger than the size of the MAP specified in the MAP 
clause. This error cannot be trapped with a VAX BASIC error 
handler unless the program contains OPTION HANDLE= 
FATAL. 

User Action: Increase the size of the MAP to match the 
RECORDSIZE value. 

REDARR, Redimensioned array (ERR=lOS) 

Explanation: A MAT statement attempts to redimension an 
array to have more elements than were originally dimensioned. 

User Action: Change the statement that attempts the redimen
sion or increase the original number elements. 

REMOVEBUF, REMAP overflows buffer (ERR=183) 

Explanation: A REMAP statement causes the variables in the 
dynamic MAP to be associated with nonexistent storage. 

User Action: Change the REMAP statement so that all variables 
are associated with the storage in the MAP. 

REMSTRNOT, REMAP string is not static (ERR=l 96) 

Explanation: The program referenced a string with a REMAP 
statement that was not declared in COMMON or MAP. 

User Action: Declare the string in the COMMON or MAP 
statement. 

RESNO_ERR, RESUME and no error (ERR=104) 

Explanation: The program executes a RESUME statement 
without a line number outside of the error handling routine. 
This error cannot be trapped with a VAX BASIC error handler 
unless the program contains OPTION HANDLE = FATAL. 

User Action: Check program logic to make sure that the 
RESUME statement is executed only in the error handler. 

Run-Time Error Messages B-29 



RETWITGOS, RETURN without GOSUB (ERR=72) 

Explanation: The program executes a RETURN statement before 
a GOSUB. This error cannot be trapped with a VAX BASIC 
error handler unless the program contains OPTION HANDLE= 
FATAL. 

User Action: Check program logic to make sure that RETURN 
statements are executed only in subroutines or remove the 
RETURN statement. 

RRVNOTFUL, RRV not fully updated, (ERR=l 71) 

Explanation: RMS wrote a record successfully, but did not 
update one or more Record Retrieval Vectors. Therefore, you 
cannot retrieve any records associated with those vectors. 

User Action: Delete the record and rewrite it. 

SCAFACINT, SCALE factor interlock (ERR=127) 

Explanation: A subprogram was compiled with a different 
SCALE factor than that of the calling program. This error cannot 
be trapped with a VAX BASIC error handler unless the program 
contains OPTION HANDLE= FATAL. 

User Action: Recompile one of the programs with a scale factor 
that matches the other. 

SIZRECINV, Size of record invalid (ERR=156) 

Explanation: The program contains a COUNT or RECORDSIZE 
specification that is invalid because: 

• COUNT equals zero 

• COUNT exceeds the maximum size of the record 

• COUNT conflicts with the actual size of the current record 
during a sequential file UPDATE on disk 

• COUNT does not equal the recordsize for fixed format 
records 

• You specified a record size in the OPEN statement that was 
unequal to the actual record size established when the file 
was created. 

B-30 Run-Time Error Messages July 1988 



July 1988 

User Action: Supply a valid COUNT value in the PUT or 
UPDATE statement, or a valid RECORDSIZE in the OPEN 
statement, whichever is applicable. 

Run-Time Error Messages B-30.1 





STO, Stop (ERR=123) 

Explanation. The program executed a STOP statement. This 
error cannot be trapped with a VAX BASIC error handler unless 
the program contains OPTION HANDLE= INFO or a greater 
severity. 

User Action. Continue execution by typing CONTINUE or 
terminate execution by typing EXIT. 

STRLENZER, string length is zero (ERR = 288) 

Explanation. A graphics statement references a null string where 
a null string is illegal. 

User Action. Adjust the string length so that it is greater than 
zero. 

STRTOOLON, String too long (ERR=227) 

Explanation. The program attempts to create a string longer 
than 65535 bytes. 

User Action. Reduce the length of the string. 

SUBOUTRAN, Subscript out of range (ERR=55) 

Explanation. The program attempts to reference an array ele
ment outside of the array's dimensioned bounds. 

User Action. Check program logic to make sure that all array 
references are to elements within the array boundaries. 

TAPBOTDET, Tape BOT detected (ERR=129) 

Explanation. The program attempts a rewind or backspace 
operation on a magnetic tape that is already at the beginning of 
the file. 

User Action. Trap the error or check program logic; do not 
rewind or backspace if the magnetic tape is at the beginning of 
the file. 

Run-Time Error Messages 8-31 



TAPNOTANS, Tape not ANSI labeled (ERR=146) 

Explanation. The program attempts to access a file-structured 
magnetic tape that does not have an ANSI label. 

User Action. Determine the magnetic tape's format by mounting 
it with the /FOREIGN qualifier and using the DCL DUMP com
mand. You can then access it as a non-file-structured magnetic 
tape. 

TAPRECNOT, Tape records not ANSI (ERR=128) 

Explanation. The records in the magtape you accessed are 
neither ANSI D nor ANSI F format. 

User Action. Determine the magtape's format by mounting 
it with the /FOREIGN qualifier and using the DCL DUMP 
command. 

TERFORFIL, Terminal format file required (ERR=164) 

Explanation. The program attempted to use PRINT#, INPUT#, 
LINPUT #,MAT INPUT#, MAT PRINT#, or PRINT USING# 
to access a RELATIVE, INDEXED, or VIRTUAL file. 

User Action. Supply a terminal-format file. 

TOOFEWARG, Too few arguments (ERR=97) 

Explanation. A function invocation, CALL, or DRAW statement 
passed fewer arguments than were defined in the function, 
picture, DEF, DEF•, or subprogram. This error cannot be trapped 
with a VAX BASIC error handler unless the program contains 
OPTION HANDLE= FATAL. 

User Action. Change the number of arguments to match the 
number defined in the function or subprogram. 

TOOLITDAT, too little data in record (ERR= 189) 

B-32 Run-Time Error Messages 

Explanation. An INPUT statement did not find enough data in 
one line to satisfy all the specified variables. This error is sig
naled only for programs compiled with the / ANSI_STANDARD 
qualifier. 

User Action. Supply enough data in the record, or reduce the 
number of specified variables. 



TOOMANARG, Too many arguments (ERR=89) 

Explanation: A function invocation, CALL, or DRAW statement 
passed more arguments than were expected. This error cannot 
be trapped with a VAX BASIC error handler unless the program 
contains OPTION HANDLE= FATAL. 

User Action: Reduce the number of arguments. A SUB or 
FUNCTION subprogram can pass a maximum of 255 arguments; 
a DEF function call can pass a maximum of eight arguments. 

TOOMUCDAT, too much data in record (ERR=177) 

Explanation: The user has given too many items in response 
to the INPUT statement. This error is only signalled for ANSI 
INPUT. 

User Action: Supply the correct number of items to the INPUT 
statement or change the INPUT statement. 

TRANOTDIF, Transformation numbers are not different (ERR=260) 

Explanation: The same transformation number is used twice in 
the SET INPUT PRIORITY statement. 

User Action: Specify two different transformations in the SET 
INPUT PRIORITY statement. 

UNEFILDAT, unexpired file date (ERR=179) 

Explanation: The program attempts to delete a file whose 
expiration date has not yet passed. 

User Action: None. 

UNINUMNOT, Unit number is not defined for the device (ERR=282) 

Explanation: The specified unit is a method that is not sup
ported by the device. (The default unit is 1.) 

User Action: Verify the supported units for the device and 
specify a valid unit. 

Run-Time Error Messages 8-33 



UNKGKSERR, Unknown GKS error (ERR=286) 

Explanation: A graphics error has ocurred that is not mapped to 
a VAX BASIC error message. 

User Action: Use VMSSTATUS to access the text of the 
VAX GKS error message. 

USEABOINP, User aborted input, locate point cancelled (ERR=293) 

Explanation: ERROR - The middle mouse button was pressed 
during the execution of a graphics input statement that uses a 
mouse to enter points (e.g. LOCATE POINT). The pressing of 
the middle mouse button aborts the graphics input statement in 
progress and the data in the variables used for the graphics input 
statement is unchanged. 

The pressing of the middle mouse button during a graphics input 
statement is analogous to typing CTRL/Z at a regular INPUT 
statement. 

User Action: None. The program can trap this error in an error 
handler and attempt the input statement agam if so desired. 

VIRARRDIS, Virtual array not on disk (ERR=43) 

Explanation: The program attempted to reference a virtual 
array on a nondisk device, or the virtual array is not opened as 
ORGANIZATION VIRTUAL. 

User Action: Virtual arrays must be on disk; change the file 
specification in the OPEN statement for this array. Open the file 
with ORGANIZATION VIRTUAL. 

VIRARROPE, Virtual array not yet open (ERR=45) 

Explanation: The program attempted to reference a virtual array 
before opening the associated disk file. 

User Action: Open the disk file containing the virtual array 
before referencing the array. 

VIRBUFTOO, Virtual buffer too large (ERR=42) 

B-34 Run-Time Error Messages 

Explanation: The program attempted to access a VIRTUAL file 
and the buffer size was not 512 bytes. 

User Action: Change the I/O buffer to be a multiple of 512 
bytes. 

July 1988 



B.2 VAX BASIC Run-time Errors By Number 

1 BADDIRDEV, Bad directory for device 

2 ILLFILNAM, Illegal file name 

4 NQ_ROOUSE, No room for user on device 

5 CANFINFIL, Can't find file or account 

7 IO_CHAALR, 1/0 channel already open 

9 IO_CHANOT, 1/0 channel not open 

10 PROVIO, Protection violation 

11 ENDFILDEV, End of file on device 

12 FATSYSIO_, Fatal system 1/0 failure 

14 DEVHUNWRI, Device hung or write locked 

15 KEYWAIEXH, Keyboard wait exhausted 

18 ILLSYSUSA, Illegal SYS( ) usage 

28 PROC __ TRA, Programmable AC trap 

29 CORFILSTR, Corrupted file structure 

31 ILLBYTCOU, Illegal byte count for 1/0 

35 MEMMANVIO, Memory management violation 

42 VIRBUFTOO, Virtual buffer too large 

43 VIRARRDIS, Virtual array not on disk 

45 VIRARROPE, Virtual array not yet open 

46 ILLIO_CHA, Illegal 1/0 channel 

48 FLOPOIERR, Floating point error or overflow 

49 ARGTOOLAR, Argument too large in EXP 

50 DATFORERR, Data format error 

51 INTERR, Integer error 

52 ILLNUM, Illegal number 

53 ILLARGLOG, Illegal argument in LOG 

54 IMASQUROO, Imaginary square roots 

55 SUBOUTRAN, Subscript out of range 

Run-Time Error Messages 8-35 



56 CANINVMAT, Can't invert matrix 

57 OUTOLDAT, Out of data 

58 ON _STAOUT, ON statement out of range 

59 NOTENODAT, Not enough data in record 

61 DIVBY_ZER, Division by 0 

63 FIEOVEBUF, FIELD overflows buffer 

64 NOTRANACC, Not a random access device 

66 MISSPEFEA, Missing special feature 

67 ILLSWIUSA, Illegal switch usage 

72 RETWITGOS, RETURN without GOSUB 

73 FNEWITFUN, FNEND without function call 

88 ARGDONMAT, Arguments don't match 

89 TOOMANARG, Too many arguments 

97 TOOFEWARG, Too few arguments 

101 DATTYPERR, Data type error 

102 ONEOR_TWO, One or two dimensions only 

103 PROLOSSOR, Internal error in VAX Run-Time Library. 
Please submit an SPR. 

104 RESNO_ERR, RESUME and no error 

105 REDARR, Redimensioned array 

116 PRIUSIFOR, PRINT-USING format error 

122 ILLFIEVAR, Illegal FIELD variable 

123 STO, Stop 

124 MATDIMERR, Matrix dimension error 

126 MAXMEMEXC, Maximum memory exceeded 

127 SCAFACINT, SCALE factor interlock 

128 TAPRECNOT, Tape records not ANSI 

129 TAPBOTDET, Tape BOT detected 

130 KEYNOTCHA, Key not changeable 

131 NO_CURREC, No current record 

132 RECHASBEE, Record has been deleted 

133 ILLUSADEV, Illegal usage for device 

8-36 Run-Time Error Messages July 1988 



134 DUPKEYDET, Duplicate key detected 

136 ILLILLACC, Illegal or illogical access 

137 ILLKEYATT, Illegal key attributes 

138 FILIS_LOC, File is locked 

139 INVFILOPT, Invalid file options 

141 ILLOPE, Illegal operation 

142 ILLRECFIL, Illegal record on file 

143 BADRECIDE, Bad record identifier 

144 INVKEYREF, Invalid key of reference 

145 KEYSIZTOO, Key size too large 

146 TAPNOTANS, Tape not ANSI labeled 

147 RECNUMEXC, RECORD number exceeds maximum 

148 BADRECVAL, Bad RECORDSIZE value on OPEN 

149 NOTENDFIL, Not at end of file 

150 NO_PRIKEY, No primary key specified 

151 KEYFIEBEY, Key field beyond end of record 

152 ILLRECACC, Illogical record accessing 

153 RECALREXI, Record already exists 

154 RECBUCLOC, Record/bucket locked 

155 RECNOTFOU, Record not found 

156 SIZRECINV, Size of record invalid 

157 RECFILTOO, Record on file too big 

158 PRIKEYOUT, Primary key out of sequence 

159 KEYLARTHA, Key larger than record 

160 FILATTNOT, File attributes not matched 

161 MOVOVEBUF, Move overflows buffer 

162 CANNOT OPEN FILE 

164 TERFORFIL, Terminal format file required 

166 NEGFILSTR, Negative fill or string length 

168 ILLALLCLA, Illegal ALLOW clause 

170 INDNOTFUL, Index not fully optimized 

Run-Time Error Messages B-37 



171 RRVNOTFUL, RRV not fully updated, 

173 INVRFAFIE, Invalid RFA field 

174 FILEXPDAT, File expiration date not yet reached 

175 NODNAMERR, Node name error 

176 NEGTABNOT, Negative TAB not allowed 

177 TOOMUCDAT, Too much data in record 

178 ERRFILCOR, Error on OPEN - file corrupted 

179 UNEFILDAT, Unexpired file date 

181 DECERR, Decimal error or overflow 

182 NETOPERR, Network operation error 

183 REMOVEBUF, REMAP overflows buffer 

185 RECOVEMAP, RECORDSIZE overflows MAP buffer 

186 IMPERRHAN, Improper error handling 

187 ILLRECLOC, Illegal record locking 

189 TOOLITDAT, Too little data in record 

190 ILLNETOPE, Illegal network operation 

191 ILLTFFOPE, Illegal terminal-format file operation 

192 ILLWAIVAL, Illegal wait value 

193 DEADLOCK, Detected deadlock while waiting for GET or FIND 

194 NOTBASIC, Not a BASIC error 

195 DIMOUTRAN, Dimension number out of range 

196 REMSTRNOT, REMAP string is not static 

197 ARRTOOSMA, Array too small 

226 GKSNOTINS, VAX GKS is not installed 

227 STRTOOLON, String too long 

228 RECATTNOT, Record attributes not matched 

229 DIFUSELON, Differing use of LONG/WORD qualifiers 

238 ARRMUSSAM, Arrays must be same dimension 

239 ARRMUSSQU, Arrays must be square 

240 CANCHAARR, Cannot change array dimensions 

245 ILLEXIDEF, Illegal exit from DEF• 

B-38 Run-Time Error Messages 



246 ERRTRANEE, ERROR trap needs RESUME 

247 ILLRESSUB, Illegal RESUME to subroutine 

250 NOTIMP, Not implemented 

252 FILACPFAI, FILE ACP failure 

253 DIRERR, Directive error 

256 ECHTYPNOT, Prompt/echo type not supported 

257 ILLTRANUM, Illegal transformation number 

258 ILLPICOPE, Illegal picture operation 

259 CLIPONOFF, Clipping must be ON or OFF 

260 TRANOTDIF, Transformation numbers are not different 

261 COLNOTCON, Color indices are not contiguous 

262 ILLARESTY, Illegal area style 

263 ILL TEXJUS, Illegal text justification 

264 ILL TEXPRE, Illegal text precision 

265 ILLTEXPAT, Illegal text path 

266 ILLDEVID, Illegal device identification number 

267 DEVTYPNOT, Device type is not supported 

268 DEVNOTOPE, Device is not open 

269 DEVOUTMET, Device is an output metafile 

270 DEVINMET, Device is an input metafile 

272 DEVOPEING, Device and operation are incompatible 

273 COONOTNDC, Coordinates are not within NDC space 

274 ILLLINSTY, Illegal line style number 

275 ILLLINSIZ, Illegal line size 

276 ILLPOISTY, Illegal point style number 

277 ILLTEXRAT, Illegal text width-to-height ratio 

278 ILLTEXHEI, Illegal text height 

Run-Time Error Messages B-39 



279 ILLSTYIND, Illegal area style index 

280 ILLCOLIND, Illegal color index 

281 NUMCOOINS, Number of coordinates is insufficient 

282 UNINUMNOT, Unit number is not defined for the device 

283 ILLECHARE, Illegal echo area 

284 ILLINIVAL, Illegal initial value 

285 ENTPOINOT, Entered points not within a transformation 

286 UNKGKSERR, Unknown GKS error 

287 INVCHASTR, Invalid character in string 

288 STRLENZER, String length is zero 

289 DATOVERF, Data overflow 

290 ILLCNTCLA, Illegal count clause 

291 ILLCOLMIX, Illegal color mix 

292 ILLDEVNAM, Illegal device name in OPEN 

293 USEABOINP, User aborted input, locate point cancelled 

B.3 Errors Not Generated By VAX BASIC 

B-40 

The following errors cannot be generated in VAX BASIC. However, 
they can be displayed with the ERT$ function and are included for 
completeness. 

Number Text 

3 ? Account or device in use 

6 ?Not a valid device 

8 ?Device not available 

13 ?User data error on device 

16 ?Name or account now exists 

17 ?Too many open files on unit 

19 ?Disk block is interlocked 

20 ?Pack ids don't match 

21 ?Disk pack is not mounted 

22 ?Disk pack is locked out 

Run-Time Error Messages July 1988 



Number Text 

23 ?Illegal cluster size 

24 ?Disk pack is private 

25 ?Disk pack needs 'cleaning' 

26 ?Fatal disk pack mount error 

27 ?1/0 to detached keyboard 

30 ?Device not file-structured 

32 ?No buffer space available 

33 ?Odd address trap 

34 ?Reserved instruction trap 

36 ?SP stack overflow 

37 ?Disk error during swap 

38 ?Memory parity (or ECC) failure 

39 ?Magtape select error 

40 ?Magtape record length error 

41 ?Non-res run-time system 

44 ?Matrix or array too big 

47 ?Line too long 

60 ?Integer overflow, FOR loop 

62 ?No run-time system 

65 ?Illegal MAGTAPE( ) usage 

68-70 unused 

71 ?Statement not found 

74 ?Undefined function called 

75 ?Illegal symbol 

76 ?Illegal verb 

77 ?Illegal expression 

78 ?Illegal mode mixing 

79 ?Illegal IF statement 

80 ?Illegal conditional clause 

81 ?Illegal function name 

Run-Time Error Messages B-41 



Number Text 

82 ?Illegal dummy variable 

83 ?Illegal FN redefinition 

84 ?Illegal line number(s) 

85 ?Modifier error 

86 ?Can't compile statement 

87 ?Expression too complicated 

90 %Inconsistent function usage 

91 ?Illegal DEF nesting 

92 ?FOR without NEXT 

93 ?NEXT without FOR 

94 ?DEF without FNEND 

95 ?FNEND without DEF 

96 ?Literal string needed 

98 ?Syntax error 

99 ?String is needed 

100 ?Number is needed 

106 %Inconsistent subscript use 

107 ?ON statement needs GOTO 

108 ?End of statement not seen 

109 ?What? 

110 ?Bad line number pair 

111 ?Not enough available memory 

112 ?Execute only file 

113 ?Please use the run command 

114 ?Can't CONTinue 

115 ?File exists-REN AME /REPLACE 

117 ?Matrix or array without DIM 

118 ?Bad number in PRINT USING 

119 ?Illegal in immediate mode 

120 ?PRINT-USING buffer overflow 

8-42 Run-Time Error Messages 



Number 

121 

125 

135 

140 

163 

165 

167 

169 

172 

180 

182 

184 

188 

198-225 

230 

231 

232 

233 

234 

235 

236 

237 

241 

242 

243 

244 

248 

249 

251 

254-255 

294-300 

July 1988 

Text 

?Illegal statement 

?Wrong math package 

?Illegal usage 

?Index not initialized 

?No file name 

?Cannot position to EOF 

?Illegal record format 

unused 

?Record lock failed 

?No support for operation in task 

?Network operation rejected 

?Unaligned REMAP variable 

?UNLOCK EXPLICIT requires RECORDSIZE 512 

unused 

?No fields in image 

?Illegal string image 

?Null image 

?Illegal numeric image 

?Numeric image for string 

?String image for numeric 

?TIME limit exceeded 

?First arg to SEG$ greater than second 

?Floating overflow 

?Floating underflow 

?CHAIN to nonexistent line number 

?Exponentiation error 

?Illegal return from subroutine 

? Argument out of bounds 

?Recursive subroutine call 

unused 

unused 

Run-Time Error Messages B-43 





A 
%ABORT directive• 18-11 
ABS function• 12-2 
Addition of matrices• 8-22 
Address expression 

with DEPOSIT debugger command • 5-19 
with EXAMINE debugger command• 5-18 
with SET BREAK debugger command• 5-14 
with SET TRACE debugger command• 5-15 

Allocation map• 4-27 
Ampersand (&) 

in comment field• 6-8 
Ampersand (&) continuation character• 3-2 
ANSl-D formatted file• 20-3 
ANSI tape files 

accessing• 20-4 
APPEND command• 3-13 
Arrays• 6-13, 6-15, 8-1 to 8-26 

as part of a record buffer• 8-7 
bounds• 8-8 
bounds of 

CDD•4-12 
coo• 23-7 
creating explicitly • 8-3 to 8-7 
creating implicitly• 8-8 to 8-9 
creating virtual array files • 15-15 
descriptors of• 19-9 
FORTRAN • 2 1-10 
input• 8-10 to 8-22 
matrix• 8-1 
of fixed-length strings• 8-7 
of RECORD instances• 10-3 
output• 8-10 to 8-22 

July 1988 

INDEX 

Arrays (cont'd.) 

redimensioning with DIM statement• 8-6 
referencing • 8-3, 8-9 
sharing among program modules• 8-7 
subscripts• 8-1 to 8-2 
vector• 8-1 
within a RECORD• 10-4 
zero-based • 8-1 

ASCII character set• 6-7 
ASCII function• 12-7 
ASSIGN command• 3-14 
Assignment of matrices• 8-22 
Asterisk (*) 

with PRINT USING statement• 16-10 

B 
BASIC 

/ANAL YSIS_DA TA• 4-7 
/ANSI _ST ANDA RD• 4-7 
ANSI Minimal BASIC• 4-7 
/AUDIT• 4-7, 23-5 
COD• 23-1 to 23-25 
/CHECK •4-8 
/CROSS_REFERENCE • 4-8 
cross-reference listing• 4-8 
/DEBUG •4-8 
/DECIMAL_SIZE • 4-9 
/DEPENDENcv_oA TA. 4-9 
/DIAGNOSTICS• 4-10 
/FLAG• 4-10 
/INTEGER_SIZE • 4-10 
line numbers• 5-9 
/LINES• 4-10 
/LISTING• 4-10 
/MACHINE_CODE • 4-11 

lndex-1 



BASIC (cont'd.) 

/OBJECT• 4-11 
/OLD_ VERSION=CDD_ARRA VS• 23-8 
producing source listing file• 4-11 
REAL _SIZE• 4-12 
/ROUND_DECIMAL • 4-13 
/SCALE • 4-13 
/SHOW•4-13 
/SHOW=CDD • 23-5 
/SYNTAX _CHECK• 4-14 
/TYPE_DEFAUL T • 4-14 
/VARI ANT• 4-14 
/WARNINGS • 4-15 

BASIC/CROSS_REFERENCE • 4-16, 4-25, 4-27 
BASIC/LISTING• 4-15 
BASIC character set• 6-7 
BASIC command• 2-21, 4-4 
BASIC command qualifiers 

list of• 4-6 
BASIC compiler 

functions of• 4-4 
Block 

loop• 11-4 
BLOCKSIZE 

with the MOUNT command• 20-2 
Block size 

specifying • 20-3 
Bounds 

array• 6-15 
COD arrays• 4-12 

Bounds block • 19-11 
Breakpoint• 5-13 
Bucketsize • 15-37 

default value• 15-38 
Buffers 

l/0• 15-6 
record • 1 5-6 

Built-in lexical functions 
% VARIANT directive• 18-10 

BY DESC•21-2 
BY REF• 21-2 
BYTE data type• 6-9 

subtypes• 6-9 
BY VALUE• 21-3 

2-lndex 

c 
Call stack • 5-12 
CALL statement• 14-10, 21-8 

implicit declarations in • 14-10 
parameters in• 14-10 
using for FUNCTION subprograms • 14-10 

CANCEL MODULE debugger command • 5-23 
CANCEL SCOPE debugger command • 5-24 
CASE 

in RECORD variants • 10-6 
CASE block• 11-14 
CAUSE ERROR statement• 1 7-22 
COD 

array bounds• 4-12 
COD (Common Data Dictionary) • 23-1 to 24-12 

arrays • 23-7 
CDD$TOP • 23-4 
CDDL•23-2 

NAME clause• 23-6 
STRUCTURE statement• 23-3 
subordinate field • 23-3 
VARIANTS OF statement• 23-9 

data definition • 23-3 
extracting• 23-2 
translating • 23-3 

data types• 23-3, 23-11 to 23-25 
character string • 23-15 
complex• 23-21 
decimal string• 23-23 
fixed-point • 23-1 7 
floating-point• 23-20 
integer• 23-17 
other• 23-24 

definition • 23-1 
dictionary directory• 23-4 
history list entry • 23-5 
%INCLUDE %FROM %COD directive• 23-2 
object• 23-4 
/OLD_ VERSION=CDD_ARRA VS• 23-8 
path name • 23-4 to 23-5, 24-4 to 24-5 

full• 23-5 
relative • 23-5 

variant• 23-9 
with the RECORD statement• 23-2 

CDD$TOP • 23-4, 24-4 

July 198E 



CDD definitions 

including • 18-7, 24-4 
CDDL 

NAME clause • 23-6 
Centered fields 

with PRINT USING statement • 16-18 
CHANGE command• 4-2 
Channels 

specifying with RMSST A TUS function • 17-17 
Characters 

nonprinting • 6-7 
Character set 

ASCll•6-7 
BASIC•6-7 

CHA$ function• 12-8 
CLOSE statement 

ending file 1/0 • 20-7 
ending 1/0 to a tape• 20-11 

Comma 
using with PRINT statement• 7-11 

::ommand 
See also Debugger command 

Command procedures• 2-14 
creating and executing• 2-16 
example of• 2-17 
executing in batch• 2-16 
executing interactively• 2-16 
login•2-19 

Command qualifiers 
with the BASIC command• 2-21 , 4-4 
with the DELETE command• 2-11 
with the LINK command• 2-21 
with the PRINT command• 2-10 
with the PURGE command• 2-11 

:om mas 
with PRINT USING statement• 16-9 

:omment fields• 6-8 
:omments 

entering into the BASIC environment• 3-12 
in environment • 3-5 

:ommon area 
defining • 9-19 

:ommon block • 8-7 
:ommon Data Dictionary 

See CDD 
:OM MON statement• 8-7, 9-13 

sharing arrays with • 8-7 

July 1988 

COMMON statement (cont'd.) 

with subprograms • 9-19 
Communication 

task-to-task• 20-17 
Compilation 

controlling with %LET directive• 18-9 
terminating with %ABORT directive• 18-11 

Compilation listing 
with /SHOW • 4-13 
with %INCLUDE • 18-8 

COMPILE command • 3-9, 3-14 
in environment• 3-9 

Compiler 
commands• 3-9 to 3-30 
listing • 4-15 
specifying options for• 3-14 to 3-30 

Compiler directives • 18-1 
benefits of • 18-1 
conventions of• 18-1 
listing • 18-2 

Compiling 
/DEBUG• 5-4 

Component 
of a RECORD• 10-1 

Concatenation • 9-1 9 
Conditional expressions 

in IF ... THEN ... ELSE statement• 11-12 
in WHILE ... NEXT loops• 11-8 

Condition values • 21-20 
Constants 

declaring • 9-7, 9-8 
declaring externally• 9-8 
definition of• 9-7 
string • 13-1 

Continuation lines 
DCL commands • 2-4 

CONTINUE command• 3-8, 3-18 
after CTRL/C • 3-18 
after STOP statement • 3-18 

CONTINUE statement• 17-9 
Control structures • 11-1 to 11-18 
Control variable 

loop• 11-4 
COS function • 12-3 
CREA TE command• 2-16 
/CROSS_REFERENCE • 4-16, 4-27 
CROSS_REFERENCE • 4-25 
%CROSS directive• 18-6 

lndex-3 



Cross-reference listing• 4-25 
CTRL/C 

trapping• 12-17 
CTRL/C trapping• 17-18 to 17-19 
CTRL/Y 

interrupting debugger• 5-6 
CTRL/Z 

exiting debugger• 5-6 
CTRLC function• 12-17, 17-18 
Currency symbol 

with PRINT USING statement• 16-11 
Current record pointer 

D 

resetting with RESTORE statement• 15-32 
setting with FIND statement• 15-16 

Data 
formatting with PRINT USING statement• 16-1 
passing between VAX BASIC and VAX 

FORTRAN• 21-9 
rereading with RESTORE statement• 7-9 
sharing between modules• 7-8 

Data blocks• 15-1 
Data records • 15-1 

accessing by RFA • 15-6, 15-29 to 15-31 
access modes for• 15-5 to 15-6 
deleting with DELETE statement• 15-22 
determining the number transferred • 15-36 
fields in• 15-1 
fixed-length • 15-2 
handling locked conditions• 15-20, 15-27 
locating • 15-16 
moving with MOVE statement• 15-1 O 
next record pointer • 15-6 
random access by key • 15-6 
random access by record number• 15-6 
reading with GET statement• 15-18 
record context of• 15-5 to 15-6 
sequential access • 15-6 
stream format• 15-2 
variable-length• 15-2 
writing with PUT statement• 15-20 

DATA statement• 7-7 to 7-9 
comment fields in• 7-8 
continuing with ampersand• 7-8 

Data structures• 10-1 to 10-14 

4-lndex 

Data type and size 
setting the default • 9-5 
setting the default with qualifiers• 9-5 
setting the default with the OPTION statement• 

9-5 
Data type keywords 

with FILL• 9-18 
Data type promotions 

with expressions • 9-9 to 9-12 
Data types • 6-9 

BYTE• 6-9 
DECIMAL• 6-9 
definition of• 9-2 
Floating-point• 9-2 
INTEGER• 6-9, 9-2 
list of• 9-2 
LONG• 6-9 
packed decimal • 6-9 
REAL• 6-9 
RFA • 6-9, 9-2 
STRING• 6-9 
subtypes• 6-9 
table of• 9-3 
user-defined• 10-1 
WORD•6-9 

DATE$ function• 12-16 
DCL $STATUS• 14-11 
DCL commands 

continuation indicator• 2-4 
file-handling• 2-8 
for program development• 2-20 
rules and options• 2-4 to 2-14 

DCL symbols 
defining• 2-14 

Deadlock• 15-27 
Debit and credit notation 

with PRINT USING statement• 16-15 
DEBUG command• 5-5 
Debugger• 5-1 
Debugger command 

summary• 5-26 
Debugging • 5-1 
/DEBUG qualifier• 5-4 
DECIMAL 

variables• 6-14 
DECIMAL data type• 6-9 
Decimal point location 

with PRINT USING statement• 16-6 



Decision blocks 

controlling • 11 -1 to 11-18 
Decision structures• 11-11 to 11-16 

comparison of• 11-11 
Declarative statements • 6-10, 9-1 

purpose of• 9-1 
DECLARE statement• 8-4, 9-6 
DEF• 12-20 to 12-27 

formal parameter list• 12-20 
multi-line• 12-22 

recursion in• 12-22, 12-25 
transferring control into• 12-26 
transferring control out of• 12-26 

parameters• 12-27 
single-line• 12-21 

DEF• 
handling errors in• 17-21 

Default values 
changing with LOCK command• 3-23 
examining with SHOW command• 3-28 
in the environment• 3-9 
specifying with /TYPE _DEFAULT• 4-14 
specifying with SET command• 3-28 

DEF functions 
declaring • 9-6 

DELETE command • 2-10, 3-18 
with comma (,) • 3-18 
with hyphen (-) • 3-18 

DELETE statement• 15-22 to 15-23 
current and next record pointers after• 15-23 

DEPOSIT debugger command• 5-19 
Descriptors 

array• 19-9 
decimal scalar string• 19-12 
dynamic string• 19-8 
fixed-length string • 19-8 
packed decimal string • 19-12 

DET function• 8-26 
Device-specific 1/0 

performing to a tape drive• 20-8 
performing to unit record devices• 20-8 
to disks • 20-1 2 

DIF$ function 
precision of• 12-13 

DIMENSION statement• 8-4 to 8-6 
declarative • 8-5 
executable• 8-6 

Directories 

referencing• 2-8 
setting the default• 2-6 

DIRECTORY command• 2-8 
Directory hierarchies 

illustration of• 2-6 
Directory structure• 2-5 
Disks 

accessing • 20-12 
creating • 20-12 
opening • 20-12 
opening an existing disk file• 20-13 

Disk unit 
allocating • 20-12 

Display 
source code• 5-8 

Division by zero• 17-2 
Dynamic mapping • 9-21, 15-8 to 15-10 
Dynamic module setting• 5-23 
Dynamic storage• 6-11 

allocating• 9-13 
Dynamic string descriptors • 19-8 
Dynamic strings 

E 

concatenating• 13-2 
modifying• 13-4 
using• 13-2 

ECHO function• 12-18 
EDIT$ function 

string function • 13-19 
EDIT command• 3-2, 3-18 

in line mode• 3-18 
with text editor• 3-19 

EDT editor 
invoking• 4-2 
using• 4-1 

EDT Keypad Emulator Interface • 4-3 
EDT text editor• 3-2 
Elliptical references • 10-9 
ELSE clause • 11-12 
END FUNCTION statement • 14-4 

specifying expression with • 14-4 
END HANDLER statement • 17-7 
END IF statement• 11-12 
END SUB statement • 14-3 

lndex-5 



END WHEN statement • 17-7 
Environment• 3-1 to 3-30 

compiling in• 3-9 
continuing program lines in• 3-2 
creating programs in• 3-2 to 3-5 
editing programs in• 3-2 to 3-5 
entering comments into• 3-12 
entering DCL commands in• 3-13 
entering program statements in • 3-1 
invoking• 3-1 
running multiple program units in• 3-3 
running programs in• 3-2 to 3-5 

ERL function• 17-14, 17-15 
ERN$ function • 17-15 
ERR function • 17-13 
Error conditions 

with PRINT USING statement• 16-20 
Error handlers 

debugging• 1 7-22 
user-written• 17-2 to 17-23 

Error handling• 17-1 to 17-26 
default• 17-1 to 17-2 

Error messages 
compile-time• A-1 
run-time• B-1 

Errors 
forcing• 17-22 
handling in DEF•s • 17-21 
handling in functions• 17-21 
handling in subprograms• 17-20 to 17-22 
handling RMS • 17-17 
handling VMS • 17-16 
in a function• 17-24 
NOTBASIC• 17-12 
OPTION HANDLE statement• 17-12 
pending• 17-2, 17-19 
run-time• 17-1 
severity levels • 17-12 
severity of • 1 7-1 
trapping• 17-1 to 17-26 
types of• 17-1 

Error trapping• 17-1 to 17-26 
ERT$ function • 1 7-15 
EVALUATE debugger command• 5-19 
EVE interface • 4-3 
EXAMINE debugger command• 5-18 
Exception handling• 17-1 to 17-26 

6-lndex 

Exclamation point (!) • 6-8 
Execution 

start/resume in debugging• 5-11 
EXIT command• 3-20 
EXIT debugger command • 5-6 
EXIT FUNCTION statement• 14-4 

specifying expression with• 14-4 
EXIT HANDLER statement• 17-10 
EXIT PROGRAM statement• 14-12 
EXIT statement• 11-16 to 11-18 
EXIT SUB statement • 14-3 
EXP function• 12-5 
Explicit data typing • 9-3 
Exponential format 

with asterisk-fill• 16-13 
with PRINT USING statement • 16-12 

Expression 
See also Address expression 
See also Language expression 

Expressions • 6-1 7 
mixed-mode • 9-9 

Extended fields 
with PRINT USING statement• 16-19 

Extensible VAX Editor(EVE) • 4-3 
External routines 

calling • 2 1-6, 2 1-8 
declaring• 21-6 

EXTERNAL statement • 9-8, 14-4, 14-5, 21-7 
specifying data type of parameters • 14-5 
specifying data type of return value• 14-4, 

14-5 

F 

specifying parameter-passing mechanism in • 
14-5 

type checking with • 14-6 

File name 
specifying in the OPEN statement• 20-1 

File operations • 15-12 
File organization • 15-3 

indexed • 15-4 
relative • 15-4 
sequential • 15-3 
terminal-format• 15-3 
virtual • 15-5 



:ile organization (cont'd.) 

virtual• 15-5 
iles 

appending• 4-5 
closing• 15-33 
deleting• 2-10 
deleting with KILL statement• 15-34 
displaying• 2-8 
file-related functions• 15-34 to 15-37 
including• 18-7 
opening with OPEN statement• 15-12 
printing• 2-10 
purging• 2-11 
renaming and moving• 2-11 
renaming with NAME ... AS statement• 15-33 
restoring• 15-32 
searching• 2-12 
setting protection• 2-12 
transferring data to • 1 5-3 1 
truncating with SCRATCH statement• 15-32 
typing• 2-10 

ile specification 
example of• 2-5 

ILL formats• 9-18 
ILL items• 9-17 
IND statement• 15-16 to 15-17 

random access• 15-16 
sequential• 15-16 

ixed-length strings• 13-1 
changing• 13-4 
using• 13-4 

IXED record formats 
specifying• 20-2 

IX function• 12-3 
loating-point 

variables• 6-13 
loating-point data• 9-4 
loating-point numbers 

displaying with PRINT USING statement• 16-1 
OR. .. NEXT loops• 11-4 to 11-7 
ORMA T$ function• 12-9 
ormat characters 

with PRINT USING statement• 16-7 
ormat fields 

with PRINT USING statement• 16-2 
ormat strings 

with PRINT USING statement• 16-2 

Formatting characters 

with PRINT statement• 7-11 
FOR modifier• 11-1 
FOR statement 

in immediate mode statements• 3-7 
FORTRAN 

arrays • 2 1-10 
FREE statement• 15-26 
FSP$ function • 1 5-34 
FUNCTION• 14-4 to 14-5 
Function call• 21-6 
Functions• 12-1 to 12-27 

built-in• 12-1 
date and time• 12-15 to 12-17 
string arithmetic• 12-11 to 12-15 
terminal control• 12-17 

creating with DEF• 12-20 to 12-27 
data conversion• 12-7 
declaring• 12-23 
external• 14-4 
file-related• 15-34 to 15-37 
naming. 12-20, 12-22, 12-23 
numeric string• 12-9 
parameter data types• 12-2 
recursion in• 12-25 
resultant data type• 12-2 
string arithmetic• 12-12 

precision of• 12-12 
FUNCTION subprograms• 14-2 

running in the environment• 14-5 
specifying a data type for• 14-11 

G 
GETRFA function• 15-30 
GET statement• 15-18 to 15-20, 20-5 

current and next record pointers after• 15-18 
reading data• 20-14 
reading records with• 20-10 
sequential • 15-18 
with REGARDLESS clause• 15-27 
with WAIT clause• 15-20 

Global symbols 
assignment operations• 2-14 to 2-16 

GO debugger command• 5-11 
GROUP clause• 10-5 to 10-9 

lndex-7 



H 
Handler 

attached • 17-5 
detached • 1 7-5 
exiting from • 1 7-7 

Handler priorities• 17-10, 17-20, 17-26 
Header information 

IDENTIFY command • 3-21 
omitting with RUNNH command• 3-25 

Help 
online• 5-3 

HELP command• 2-3, 3-20 
HELP debugger command• 5-3, 5-4 
HELP facility 

I 

1/0 

accessing• 2-3 

device-specific • 20-7 
performing to ANSI-formatted magnetic tapes • 

20-2 
to mailboxes• 20-14 

1/0 buffer• 15-6 
%1DENT directive• 18-4 
IDENTIFY command• 3-21 
IF ... THEN ... ELSE statement• 11-12 to 11-13 
%IF-% THEN-%ELSE-%END %IF directive• 18-9, 

18-11 
IF modifier• 11-1 
IF statement 

in immediate mode statements• 3-7 
Immediate mode• 3-5 to 3-9 

debugging in• 3-8 to 3-9 
debugging multiple program units• 3-8 
debugging restrictions• 3-8 
examining variables in• 3-5 
FOR statement in • 3-7 
IF statement in• 3-7 
invalid statements • 3-7 
UNLESS statement in• 3-7 
UNTIL statement in• 3-7 
WHILE statement in• 3-7 

Implicit data typing• 9-3 
%INCLUDE %FROM %COD directive• 23-2, 24-7 

8-lndex 

%INCLUDE directive• 9-20, 18-7 
accessing record definitions • 18-7 
accessing text libraries• 18-7 
benefits of• 18-9 
from a file• 18-7 

Indexed files• 15-4 
alternate index keys • 15-4 
index key values • 15-4 

Informational errors • 17-1 
Initialization 

debugger• 5-5 
Initialization of variables• 6-15 
INKEY$ function• 12-19 
Input• 7-1 to 7-10 

from source program • 7-7 to 7-10 
from terminal• 7-5 
from terminal-format files• 7-5, 7-16 to 7-18 
interactive • 7-1 
methods for receiving • 7-1 
strings• 7-4 to 7-5 

INPUT LINE statement• 7-4 to 7-5, 7-16 
disabling the prompt • 7-5 to 7-6 
with strings • 13-3 

INPUT statement• 7-2 to 7-4, 7-16 
disabling the prompt• 7-5 to 7-6 
with strings • 13-3 

Instance 
RECORD • 10-1 

Integer 
variables • 6-14 

INTEGER data type• 6-9, 9-4 
Integer format 

byte-length • 19-1 
longword• 19-2 
word-length• 19-2 

Interrupt 
debugging session • 5-6 

INT function• 12-3 
INV function• 8-25 
Invoking 

debugger• 5-5 
ITERATE statement• 11-16 to 11-18 

K 
Keypad mode • 4-1 

July 198 



L 
Labels• 6-4 
Language expression 

EVALUATE debugger command• 5-19 
with DEPOSIT debugger command • 5-19 

LBOUND function• 8-8 
Leading zeros 

with PRINT USING statement• 16-14 
Left-justified format 

with PRINT USING statement• 16-17 
LEN function 

string function• 13-11 
%LET directive• 18-9, 18-10 
LET statement • 8-9, 8-10 

with dynamic strings• 13-2 
with string data• 13-6 

Lexical constants 
creating• 18-10 

Lexical expressions 
variations of• 18-10 

Libraries 
object module• 22-1 
shareable image• 22-1 
system-supplied• 22-1, 22-2 
user-supplied• 22-1, 22-3 

Line mode• 3-2, 3-5, 4-1 
line numbers in• 3-5 

Line number 
debugger source display• 5-10 
SET BREAK debugger command • 5-14 
SET TRACE debugger command• 5-16 

Line numbers• 6-1 
generating• 3-27 
programs without• 6-1 
with %INCLUDE directive• 18-8 
with SEQUENCE command• 3-27 

/LINE qualifier• 5-16 
Lines 

displaying with LIST command Ill 3-22 
displaying with LISTNH command• 3-22 

Line terminator 
accepting as input• 7-4 

LINK command• 4-32 
qualifiers of• 4-33 

Linker 
error messages• 4-37 

Linker (cont'd.) 

input files• 4-35 
output files• 4-35 

Linking 
/DEBUG• 5-4 

LINPUT statement • 7-4 to 7-5, 7-16 
disabling the prompt• 7-5 to 7-6 
with strings• 13-3 

List• 8-1 
LIST command• 3-22 
%LIST directive• 18-5 
/LISTING • 4-15 
Listing 

compilation • 4-15 
cross-reference• 4-25 
source program• 4-23 
storage map• 4-27 

LISTNH command• 3-22 
LOAD command• 3-8, 3-22 
Local symbols 

assignment operations• 2-14 
LOC function• 21-9 
LOCK command• 3-23 
LOG 10 function • 12-4 
Logarithms 

common• 12-4 
Logging in• 2-1, 2-2 
Logical names 

assigning with ASSIGN command• 3-14 
defining• 2-15, 15-14 
example of• 15-14 
using• 15-14 

LOGIN.COM file 
example of• 2-19 

LOGOUT command• 2-2 
LONG data type • 6-9 

subtypes • 6-9 
Loop blocks • 11-4 
Loop control variable • 11-4 
Loop index • 11-4 
Loops • 11-4 to 11-10 

FOR ... NEXT• 11-4 to 11-7 
UNTIL. .. NEXT• 11-8 
WHILE ... NEXT• 11-7 to 11-8 

Lower bounds 
with COMMON statement • 9-14 
with DECLARE statement• 9-6 
with MAP statement• 9-14 

lndex-9 



Lower bounds (cont'd.) 

with the RECORD statement• 10-4 
LSET statement 

M 

concatenating strings• 13-2 
with dynamic strings• 13-2 
with string data • 13-7 

Magnetic tape blocksizes • 20-5 
Magnetic tape file 

creating for output• 20-9 
Magnetic tape files 

creating• 20-2 
existing• 20-3 
opening• 20-2, 20-9 

Mailboxes 
creating• 20-15 
passing data between processes• 20-14 

Map area 
defining• 9-19 

MAP DYNAMIC statement• 9-21 
Maps 

multiple• 9-16 
single• 9-15 

MAP statement• 8-7, 9-14 
overlaying array storage with• 8-7 
with subprograms • 9-19 

MAT INPUT statement• 8-16 
continuing input line with ampersand• 8-18 
filling array elements with• 8-17 
from a terminal• 8-16 
from a terminal-format file• 8-16 
prompt character• 8-17 
subscripts in • 8-16 

MAT LINPUT statement• 8-18 
filling array elements with • 8-18 
redimensioning arrays with• 8-19 

MAT PRINT statement• 8-19 
with comma (,) • 8-20 
with semicolon (;) • 8-20 

MAT READ statement• 8-15 
subscripts in • 8-15 
with DAT A statement• 8-16 

Matrix• 8-1 
arithmetic• 8-22 
functions• 8-24 to 8-26 

10-lndex 

MAT statement• 8-5, 8-13 
adding elements of arrays• 8-22 
assigning array values from other arrays• 8-22 
assigning values with• 8-11 
creating arrays with • 8-14 
displaying values with • 8-11 
for array computations• 8-21 to 8-26 
keywords • 8-13 
multiplying elements of arrays• 8-23 
redimensioning with • 8-14 
subscripts in • 8-14 
subtracting elements of arrays• 8-22 
use of row and column zero• 8-12 
with implicitly created arrays• 8-12 

MAT statements• 8-11 to 8-20 
Memory 

clearing with NEW command• 3-23 
clearing with SCRATCH command• 3-27 

Merge 
APPEND command• 3-10 

MID$ 
assignment statement • 13-10 

MID$ function 
string function • 13-16 

Mixed-mode expressions • 9-9 
Mode 

immediate• 3-5 
line• 3-2, 3-5 

Modifiers 
statement • 11-1 to 11-3 

Module 
setting• 5-22 

Module names• 6-6, 14-11 
MOVE statement • 15-7, 15-10 to 15- 11 

default string lengths • 15-10 
valid variables in • 15-10 

Multiplication of matrices• 8-23 
Multiplier block • 19-11 

N 
NAME clause (COOL) • 23-6 
Names 

variables • 6-13 
Negative format fields 

with PRINT USING statement• 16-1 2 
Network 1/0 • 20-16 



~gative format fields 
with PRINT USING statement• 16-12 

~twork 1/0 • 20-16 
:_w command• 3-3, 3-23 
~xt record pointer • 15-6 
NOCROSS directive• 18-6 
)ECHO function• 12-18 
>keypad mode • 4-1 
IOLINE 
with ERL function• 17-14 

NOLIST directive• 18-5 
mprinting characters• 6-7 
)REWIND 
positioning tape• 20-3 

HBASIC errors• 17-16 to 17-18 
111 

character• 13-4 
string• 13-4 

JM1$ function• 12-10 
JM$ function• 12-9 
1mbers 
printing with PRINT USING statement• 16-4 

1meric data 
interpreting with multiple maps • 9-17 

JM function• 8-21 

1ject module libraries 
at DCL level• 22-4 
creating• 22-3 
module names in• 6-6 
within the BASIC environment• 22-3 

1ject module library 
using• 4-36 

1ject modules • 3-9 
loading with LOAD command• 3-22 
producing with /OBJECT• 4-11 
LD_ VERSION=CDD_ARRA YS • 4-12 
D command• 3-2, 3-8, 3-24 
I ERROR GO BACK statement• 17-24 
I ERROR GOTO statement• 17-24 
passing to default error handler• 17-24 

I ERROR statement• 17-23, 17-23 to 17-26 
EN statement• 7-17, 15-12 
BUCKETSIZE • 15-37 
clauses for optimizing 1/0 • 15-37 to 15-46 

OPEN statement (cont'd.) 

control structures set by USEROPEN keyword • 
15-44 

EXTENDSIZE clause• 15-41 
FOR INPUT• 15-12 
FOR OUTPUT • 15-12 
opening indexed files • 15-14 
ORGANIZATION UNDEFINED• 15-34 
RECORDSIZE • 15-13 
RECORDTYPE ANY• 15-34 
specifying file characteristics with • 15-13 
UNLOCK EXPLICIT• 15-26 
with BUFFER clause• 15-39 
with CONNECT clause• 15-39 
with CONTIGUOUS clause• 15-40 
with DEF AUL TNAME clause• 15-41 
with FILESIZE clause• 15-42 
with MAP clause• 15-13 
with NOSP AN clause • 15-42 
with RECORDTYPE clause• 15-43 
with TEMPORARY clause• 15-43 
with USEROPEN keyword • 15-44 
with WINDOWSIZE attribute• 15-46 

Operand • 6-1 7 
Operator• 6-1 7 
Optimization 

with handlers• 17-9 
OPTION HANDLE statement• 17-12 
OPTION statement • 3-14 
Output • 7-11 to 7-16 

p 

displaying with PRINT statement• 7-1 O 
format for numbers • 7-14 
format for strings • 7-14 to 7-16 
to terminal-format files• 7-16 to 7-18 

Packed decimal 
data type • 6-9 
variables• 6-14 

Packed decimal format• 19-6 
Packed Decimal string descriptors• 19-12 
%PAGE directive• 18-5 
Parameter-passing mechanisms• 21-2 to 21-5 

declaring in EXTERNAL statement• 14-5 
default • 21-3 

lndex-11 



Parameters 

creating local copies of• 21-5 to 21-6 
default data types for• 14-7 
null• 21-8 
passing BY DESC • 21-2 
passing BY REF• 21-2 
passing BY VALUE• 21-3 

Password 
changing• 2-2 

Path Name• 24-4 

PC 
in debugging• 5-8, 5-12, 5-14, 5-23 

and SHOW CALLS debugger display• 5-12 
and source display• 5-9 
and STEP debugger command• 5-12 
breakpoint• 5-14 

PICTURE subprograms• 14-2 
PLACE$ function• 12-14 

precision of• 12-13 
significant digits• 12-12 

Placeholders 
reserving with PRINT USING statement• 16-4 

POS function 
string function• 13-12 

Positional qualifiers 
rules for precedence• 4-5 

Predefined constants 
BEL• 6-12 
BS• 6-12 
CR• 6-12 
DEL• 6-12 
ESC • 6-12 
FF• 6-12 
HT• 6-12 
LF • 6-12 
Pl• 6-12 
SI• 6-12 
SO• 6-12 
SP• 6-12 
VT• 6-12 

PRINT command• 2-10 
%PRINT directive• 18-11 
PRINT statement•7-10, 7-16 

expression values • 7-10 
for array elements• 8-11 
string literals• 7-10 
with comma• 7-11 
with semicolon • 7-12 

12-lndex 

PRINT USING statement• 16-1 
Print zones • 7-11 to 7-14 
Priorities of handlers• 17-20 
Procedure call• 21-6 
PROD$ function• 12-15 

precision of• 12-13 
significant digits• 12-12 

Program control• 11-1 to 11-18 
Program execution 

resuming with CONTINUE command• 3-18 
Programs 

comments• 6-8 
controlling• 11-1 to 11-18 
documenting• 6-7 
naming• 6-6 
renaming with RENAME command• 3-24 
renumbering with RESEQUENCE command• 

3-25 
PROGRAM statement• 6-5, 14-11 to 14-12 

identifiers• 6-6, 14-11 
Prompt 

debugger (DBG> ) • 5-5 
enabling and disabling • 7-5 

Protected regions• 17-2, 17-3 
nested • 17-10 to 17-11 

Prototype block • 19-10 
PURGE command• 2-11 
PUT statement• 15-20 to 15-22, 20-4 

current and next record pointers after• 15-20 
sequential• 15-20 
writing data• 20-13 
writing records with • 20-10 

n 
qualifier 

/VARIANT• 18-10 
QUO$ function 

R 

precision of• 12-13 
significant digits• 12-12 

RANDOMIZE statement• 12-6 
Random number generator• 12-6 

selecting range• 12-6 

July 19 



NEW command• 3-3, 3-23 
Next record pointer• 15-6 
%NOCROSS directive• 18-6 
NOECHO function• 12-18 
Nokeypad mode • 4-1 
/NOLINE 

with ERL function• 17-14 
%NOLIST directive• 18-5 
Non printing characters• 6-7 
NORE WIND 

positioning tape• 20-3 
NOTBASIC errors• 17-16 to 17-18 
Null 

character• 13-4 
string• 13-4 

NUM 1 $ function• 12-10 
NUM$ function• 12-9 
Numbers 

printing with PRINT USING statement• 16-4 
Numeric data 

interpreting with multiple maps• 9-17 
NUM function• 8-21 

0 
Object module libraries 

at DCL level• 22-4 
creating• 22-3 
module names in• 6-6 
within the BASIC environment• 22-3 

Object module library 
using• 4-36 

Object modules• 3-9 
loading with LOAD command• 3-22 
producing with /OBJECT• 4-11 

/OLD_ VERSION=CDD_ARRA YS • 4-1 2 
OLD command• 3-2, 3-8, 3-24 
ON ERROR GO BACK statement• 17-24 
ON ERROR GOTO statement• 17-24 

passing to default error handler• 17-24 
ON ERROR statement• 17-23, 17-23 to 17-26 
OPEN statement• 7-17, 15-12 

BUCKETSIZE • 15-37 
clauses for optimizing 1/0 • 15-37 to 15-46 
control structures set by USEROPEN keyword• 

15-44 
EXTENDSIZE clause • 15-41 

OPEN statement (cont'd.) 

FOR INPUT• 15-12 
FOR OUTPUT • 15-12 
opening indexed files• 15-14 
ORGANIZATION UNDEFINED• 15-34 
RECORDSIZE • 15-13 
RECORDTYPE ANY• 15-34 
specifying file characteristics with• 15-13 
UNLOCK EXPLICIT• 15-26 
with BUFFER clause• 15-39 
with CONNECT clause• 15-39 
with CONTIGUOUS clause • 15-40 
with DEFAULTNAME clause• 15-41 
with FILESIZE clause• 15-42 
with MAP clause• 15-13 
with NOSP AN clause • 15-42 
with RECORDTYPE clause• 15-43 
with TEMPORARY clause• 15-43 
with USEROPEN keyword • 15-44 
with WINDOWSIZE attribute• 15-46 

Operand • 6-17 
Operator • 6-1 7 
Optimization 

with handlers• 17-9 
OPTION HANDLE statement• 17-12 
OPTION statement • 3-14 
Output • 7-10 to 7-16 

p 

displaying with PRINT statement• 7-1 O 
format for numbers • 7-14 
format for strings • 7-14 to 7-16 
to terminal-format files• 7-16 to 7-18 

Packed decimal 
data type • 6-9 
variables• 6-14 

Packed decimal format• 19-6 
Packed Decimal string descriptors• 19-12 
%PAGE directive• 18-5 
Parameter-passing mechanisms• 21-2 to 21-5 

declaring in EXTERNAL statement• 14-5 
default• 21-3 

Parameters 
creating local copies of• 21-5 to 21-6 
default data types for• 14-7 
null• 21-8 

lndex-11 



Parameters (cont'd.) 

passing BY DESC • 21-2 
passing BY REF• 21-2 
passing BY VALUE• 21-3 

Password 
changing• 2-2 

Path name 

PC 
in debugging• 5-8, 5-12, 5-14, 5-23 

and SHOW CALLS debugger display• 5-12 
and source display• 5-9 
and STEP debugger command• 5-12 
breakpoint• 5-14 

PICTURE subprograms• 14-2 
PLACE$ function• 12-14 

precision of• 12-13 
significant digits• 12-12 

Placeholders 
reserving with PRINT USING statement• 16-4 

POS function 
string function • 13-12 

Positional qualifiers 
rules for precedence• 4-5 

Predefined constants 
BEL• 6-12 
BS• 6-12 
CR• 6-12 
DEL• 6-12 
ESC • 6-12 
FF• 6-12 
HT• 6-12 
LF • 6-12 
Pl• 6-12 
SI• 6-12 
so. 6-12 
SP• 6-12 
VT• 6-12 

PRINT command• 2-10 
%PRINT directive• 18-11 
PRINT statement• 7-10, 7-16 

expression values• 7-10 
for array elements • 8-11 
string literals• 7-10 
with comma• 7-11 
with semicolon• 7-12 

PRINT USING statement• 16-1 
Print zones• 7-11 to 7-14 
Priorities of handlers• 17-20 

12-lndex 

Procedure call • 21-6 
PROD$ function• 12-15 

precision of• 12-13 
significant digits• 12-12 

Program control• 11-1 to 11-18 
Program execution 

resuming with CONTINUE command• 3-18 
Programs 

comments • 6-8 
controlling • 11-1 to 11-18 
documenting• 6-7 
naming• 6-6 
renaming with RENAME command• 3-24 
renumbering with RESEQUENCE command • 

3-25 
PROGRAM statement • 6-5, 14-11 to 14-12 

identifiers • 6-6, 14-11 
Prompt 

debugger (DBG > ) • 5-5 
enabling and disabling• 7-5 

Protected regions• 17-2, 17-3 
nested • 17-10 to 17-11 

Prototype block • 19-10 
PURGE command• 2-11 
PUT statement• 15-20 to 15-22, 20-4 

Q 

current and next record pointers after• 15-20 
sequential• 15-20 
writing data • 20-13 
writing records with • 20-10 

qualifier 
/VARIANT• 18-10 

QUO$ function 

R 

precision of• 12-13 
significant digits• 12-12 

RANDOMIZE statement• 12-6 
Random number generator• 12-6 

selecting range• 12-6 
Random number generators 

changing seed• 12-6 
RCTRLC function• 12-17, 17-19 
READ statement• 7-7. to 7-9 



REAL data type• 6-9 
Real number format 

DOUBLE floating-point• 19-4 
GFLOA T floating-point• 19-5 
HFLOA T floating-point• 19-6 
SINGLE floating-point• 19-3 

Record buffer• 15-6 
Record buffers 

accessing with multiple maps • 9-16 
dynamic• 15-7 
static • 15-6 

RECORD components• 10-1 
accessing • 10-9 to 10-14 
fully qualified• 10-9 
grouping• 10-5 
referencing• 10-2, 10-9 

Record File Address• 15-29 
Record formats• 15-1 to 15-2 
RECORD instances• 10-1 

arrays of• 10-3 
Record operations • 15-12 
Records 

blocking and deblocking of• 20-6 
writing to a terminal-format file• 7-17 
writing with PUT and GET statements• 20-4 

RECORD statement • 10-1 to 10-14 
RECORD templates• 10-1 
RECORD variants• 10-6 to 10-9 
RECOUNT function• 15-36 
Relative files• 15-4 
REMAP statement• 9-22 
Remote files 

accessing • 20-1 7 
RENAME command• 2-11, 3-24 
REPLACE command• 3-25 
RESEQUENCE command• 3-25 
RESTORE statement • 7-9 

rewinding tape with• 20-7 
with magnetic tapes• 20-11 

RESUME statement• 17-8, 17-25 to 17-26 
to a label• 17-25 
to a line number• 17-25 

Retrieval pointers• 15-46 
RETRY statement • 1 7-8 
RF A data type • 6-9 
Right justification 

RSET statement • 13-8 

Right-justified format 
with PRINT USING statement• 16-18 

RMSST A TUS function• 15-36 to 15-37, 17-17 
AND function• 12-6 
Round-off errors 

overcoming with SCALE command• 3-27 
RSET statement 

concatenating strings• 13-2 
with dynamic strings• 13-2 
with string data • 13-8 

AST (run-time symbol table)• 5-22 
RUN command• 3-2, 3-3, 3-9, 3-25, 4-38, 5-5 
RUNNH command• 3-2, 3-3, 3-25 
Run-time errors• 17-1 to 17-26 
Run-Time Library routines• 21-11 

s 
SAVE command• 3-3, 3-26 
%SBTTL directive• 18-3 
SCALE command• 3-27 
Scope 

debugging• 5-23 
SCRATCH command• 3-27 
Screen mode • 5-8 
SEARCH command• 2-12 
SEG$ function 

string function • 13-14 
SELECT ... CASE statement • 11-14 to 11-16 

with RECORD variants• 10-6 
Semicolons 

using with PRINT statement• 7-12 
SEQUENCE command• 3-27 
Sequential files • 15-3 
SET [NO] PROMPT statement• 7-5 to 7-6, 8-17 
SET BREAK debugger command• 5-13 
SET command• 3-28 
SET DEFAULT command• 2-6 
SET MODE [NO]DYNAMIC debugger command• 

5-23 
SET MODE SCREEN debugger command • 5-8 
SET MODULE debugger command• 5-22 
SET NO PROMPT statement 

disabling the prompt• 7-6 
SET PASSWORD command• 2-2 
SET PROTECTION command • 2-12 
SET SCOPE debugger command• 5-24 

lndex-13 



SET TRACE debugger command• 5-15 
SET VARI ANT command• 18-10 
Severe errors • 17-1 
Shareable images• 22-5 

accessing• 22-5 
accessing at DCL level• 22-7 
benefits of• 22-5 
contents of• 22-1 
creating• 22-5 
installed• 22-1 
within the BASIC environment• 22-6 

/SHARE qualifier• 5-16 
SHOW CALLS debugger command• 5-12 
SHOW command• 3-28 
SHOW MODULE debugger command • 5-22 
SHOW SCOPE debugger command• 5-24 
SHOW SYMBOL debugger command• 5-23 
/SILENT qualifier• 5-16 
SIN function• 12-3 
Single tape file 

example of creating• 15-45 
Source display• 5-8, 5-9 

not available• 5-10 
TYPE debugger command• 5-8 

Source program listing• 4-23 
Source programs 

compiling• 2-21 
creating• 2-21 
linking• 2-21 

SPACE$ function 
string function• 13-18 

Statement modifiers• 11-1 to 11-3 
FOR• 11-1 
IF• 11-1 
UNLESS • 11-1 
UNTIL• 11-1 
WHILE• 11-1 

Static storage • 6-11 
allocating • 9-12 
dynamic mapping• 9-21 

$STATUS• 14-11 
Status 

on exit • 14-11 
ST A TUS function• 15-36 to 15-37 
STEP clause • 11-4 
STEP debugger command • 5-11 
STOP statement• 3-5, 3-8 

14-lndex 

STOP statement (cont'd.) 

resuming program execution after• 3-8 
Storage 

dynamic • 6-11 
redefining• 9-20 
static • 6-11 

Stream record format• 15-2 
String 

dynamic • 13-1 
fixed-length• 13-1 
manipulating with multiple maps • 9-16 
numeric• 12-9 
variable • 6-14 
virtual array• 13-1 

STRING$ function 
string function • 13-17 

String data 
assigning and justifying • 13-6 
formatting with PRINT USING statement• 16-2 
manipulating with MAP statements• 13-20 
manipulating with string functions• 13-11 

STRING data type• 6-9 
String format fields • 16-16 
String function 

EDIT$ function • 13-19 
LEN function • 13-11 
MID$ function • 13-16 
POS function • 13-12 
purposes • 13-11 
SEG$ function• 13-14 
SPACE$ function• 13-18 
STRING$ function • 13-17 
TRM$ function • 13-18 
with the LET statement • 13-11 

Strings 
printing with PRINT USING statement• 16-15 

String variables 
fixed-length• 13-1 

String virtual arrays 
assigning values• 13-5 
creating • 13-5 

Subdirectories 
creating• 2-6 
deleting• 2-8 

Subprograms• 14-2 
calling from other languages• 21-9 
compiling • 14-8 to 14-9 
compiling from a single source file• 14-8 



Subprograms (cont'd.) 

compiling from multiple source files• 14-8 
creating a single object file • 14-8 
DAT A statements in• 14-3 
handling errors in• 17-20 to 17-22 
invoking• 14-10 to 14-11 
passing data to • 14-6 
READ statements in • 14-3 
RESTORE statements in• 14-3 

Subscripted variables • 6-13, 6-15 
SUB subprograms• 14-2 to 14-4 
Subtraction of matrices• 8-22 
Subtypes 

numeric • 9-4 
SUM$ function 

precision of• 12-13 
Symbol 

record• 5-4 
Symbolic debugger 

see Debugger 
Symbolic definitions • 2 1-19 

accessing with %INCLUDE directive• 21-20 
location of• 21-19 

Symbols 
assignment operations• 2-14 

/SYSTEM qualifier• 5-16 
System routines 

arguments of• 21-13 
calling• 21-11 
calling as a procedure• 21-7 
examples of calling• 21-21 

System Service routines • 21-12 
System services 

example of calling• 21-21 

T 
TAN function• 12-3 
Tapes 

allocating• 20-2 
setting the density• 20-2 

Tape unit 
allocating for device-specific 1/0 • 20-8 

Template 
RECORD• 10-1 

Terminal-format files• 15-3 
channel specification for• 7-17 

Terminal-format files (cont'd.) 

closing• 7-17 
input and output• 7-16 to 7-18 
opening• 7-17 
transferring data to • 15-31 
writing records to • 7-17 

Text libraries 
accessing • 18-8 
creating • 18-8 
system-supplied • 18-8 

THEN clause • 11-12 
TIME$ function• 12-16 
TIME function• 12-17 
% TITLE directive• 18-3 
Traceback 

SHOW CALLS debugger command • 5-12 
Tracepoint• 5-15 
TRM$ function 

string function• 13-18 
TRN function• 8-24 
TYPE command• 2-10 
TYPE debugger command • 5-8 

u 
UBOUND function • 8-8 
UNLESS modifier• 11-1 
UNLESS statement 

in immediate mode statements• 3-7 
UNLOCK EXPLICIT clause• 15-26 
UNLOCK statement• 15-26 
UNSA VE command • 3-30 
UNTIL. .. NEXT loops• 11-8 
UNTIL modifier• 11-1 
UNTIL statement 

in immediate mode statements• 3-7 
UPDATE statement• 15-23 to 15-25 

current and next record pointers after• 15-24 
in an indexed file• 15-24 
in a relative file• 15-24 
in a sequential file• 15-23 

Upper bounds 
with COMMON statement• 9-14 
with DECLARE statement• 9-6 
with MAP statement• 9-14 
with the RECORD statement • 10-4 

lndex-15 



v 
VAL% function• 12-11 
VAL function• 12-11 
Variable name 

DEPOSIT debugger command• 5-19 
EVALUATE debugger command• 5-19 
EXAMINE debugger command• 5-18 

VARI ABLE record formats 
specifying• 20-2 

Variables• 6-13 
arrays of• 6-13, 6-15 
declaring• 6-9 
floating-point• 6-13 
initialization of• 3-7, 6-15 
integer• 6-14 
names• 6-13 
packed decimal • 6-14 
redefining• 9-20 
string• 6-14, 13-1 
subscripted• 6-13, 6-15 

VARI ANT• 10-6 to 10-9 
Variant 

COD• 23-9 
% VARI ANT directive• 18-9, 18-10 
VAX/VMS Debugger 

see Debugger 
VAX/VMS Symbolic Debugger 

see Debugger 
VAX Procedure Calling Standard• 21-9 
VAXTPU 

using• 4-2 
Vector• 8-1 
Virtual array files• 15-15 
Virtual files• 15-5 
VMS data structures 

table of • 2 1- 14 
VMSSTATUS function• 15-36 to 15-37, 17-16 

w 
WAIT clause• 15-27 
Warning errors• 17-1 
WHEN ERROR constructs• 17-2 to 17-23 

attached handler• 17-2 
CONTINUE to target • 1 7-9 

16-lndex 

WHEN ERROR constructs (cont'd.) 

exiting handler• 17-7 
nested • 17-10 to 17-11 
protected region• 17-2 
with CONTINUE statement• 17-9 
with EXIT HANDLER statement• 17-10 
with RETRY statement • 17-8 

WHILE ... NEXT loops• 11-7 to 11-8 
WHILE modifier• 11-1 
WHILE statement 

in immediate mode statements • 3-7 
Wildcard characters• 2-9, 2-10 
WORD data type • 6-9 

subtypes • 6-9 

z 
Zero-fill 

with asterisk-fill• 16-14 



How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modern. If you need assistance using the Electronic Store, 
call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal 1 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local DIGITAL subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local DIGIT AL subsidiary or 
approved distributor 

SOC Order Processing - WMO/ElS 
or 
Software Distribution Center 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments VAX BASIC User Manual 
Al-HY 15A-TE 

AD-HY 15A-T2 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: 

Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Excellent 

D 
D 
D 
D 
D 
D 
D 
D 

Additional comments or suggestions to improve this manual: 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Dept. 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



-- Do Not Tear - Fold Here and Tape 

--------------ir---~-----------;~:;~· 
1f Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ..... 11.11 .... 11 .... 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1 

-- Do Not Tear - Fold Here -----------------------------------------



Reader's Comments VAX BASIC User Manual 
Al-HY 15A-TE 

AD-HY 15A-T2 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: 

Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Excellent 

D 
D 
D 
D 
D 
D 
D 
D 

Additional comments or suggestions to improve this manual: 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

I am using Version ___ of the software this manual describes. 

Name/Title 

Company 

Mailing Address 

Dept. 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



- Do Not Tear - Fold Here and Tape 

--------------1r---~-----------~;~-
1f Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

111 ••••• 11.11 •••• 11 •••• 1.11.1 •• 1.1 •• 1 •• 1.1 ••• 1.11 •• 1 

-- Do Not Tear - Fold Here -----------------------------------------






