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CHAPTER 1

SYSTEM OVERVIEW

1.1 [INTRODUCTION

The VAX-11/780 is the most powerful computer system in the -11 family
of interactive computers, which includes the LSI-11, the PDP-11, and now
the VAX-11. It consists of the VAX-11/780 processor and the VAX/VMS
virtual memory operating system. It is designed for applications which
require the power and sophistication of a high-performance, virtual mem-
ory computer system—at prices well below computer systems of its
same caliber. 1t can be used as a powerful computational tool for high-
speed, time-critical applications, for timesharing applications, and for a
wide variety of commercial applications.

VAX, or Virtual Address eXtension, is the architecture for the VAX-11/
780. It has been designed and developed by both hardware and software
engineers and, in fact, was carefully documented before any implemen-
tation was begun. The goals of the VAX architecture were to provide a
significant enhancement to the virtual addressing capability of the
PDP-11 series consistent with small code size, easy exploitation by
higher-level languages, and a high degree of compatibility with the
PDP-11 series. While the VAX-11 is not strictly binary compatible with
the PDP-11 binary code, it does implement a Compatibility Mode which
executes most of the PDP-11 instructions (refer to Volumes 2 and 3). A
consequence of this is that most user-level programs can execute in this
Compatibility Mode, with system services and memory management being
provided by the VAX/VMS operating system in Native Mode.

The VAX-11 architecture is characterized by a powerful and complete
instruction set of 244 basic instructions, a wide range of data types, an
elegant set of addressing modes, full demand paging memory manage-
ment, and a very large virtual address space of over 4 billion bytes
(2%*32 bytes). Arithmetic and logical operations can be performed on
byte-integers (a byte is eight bits), word-integers, and 32-bit longword-
integers; plus, some instructions can perform operations on 64-bit quad-
word-integers. Additionally, the Native Mode instruction set includes
floating point operations, character string manipulations, packed decimal
aritimetic, and many instructions which improve the performance and
memory utilization of systems and applications software. Some of these
directly implement frequently used higher-level language constructs, such
as DO loop control and the FORTRAN COMPUTED GO TO statement.
There are also a number of operations which can be performed on vari-
able-length bit fields, a new data type for the -11 family.

The other significant feature of the VAX-11 architecture is that unlike 2
very large class of computer systems, addressing for instructions is very
nearly arbitrary. This means that there are no fixed formats—no restric-

tions as to the location of an operand for a particular instruction or even
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the instruction itself. Thus, operands and instructions can begin on any
byte address—odd or even. It is quite reasonable to express the location
of any operand as being a register or a pair of registers in memory or
by using indirection in memory. The result of this flexibility is that higher-
level language compilers, such as FORTRAN, can generate code that is
very small, very efficient, and easy to manipulate in the compiler's data
structures. This means greater performance and lower memory utiliza-
tion to accomplish the same task than on other computer systems in the
same price class. These are but a few of the key features of the VAX-11/
780’s hardware architecture. The VAX/VMS operating system makes ali
the hardware work together as one unit to provide the VAX-11/780 with
its multi-user, multiprogramming, virtual memory capabilities.

But before discussing the VAX-11/780’s virtual memory capabilities more
closely, a few definitions of some important terms will be valuable. One
of the advantages of a virtual memory system is that an entire program
does not have to be resident in main memory at one time. This means
that portions of a program can be on the system disk and other portions
in main memory. Programs are divided into small pieces called pages
—512 bytes. A process is a collection of pages which runs a program; it
consists of an address space plus both hardware and software context.
That part of a process which is resident in main memory is calied the
process' working set. At any given point in time, there are many pro-
cesses running on the system. The assemblage of processes which are
resident in main memory is called the balance set. The action of bring-
ing pages into and out of main memory is called paging; that of bringing
complete working sets into and out of main memory is called swapping.

In order to control the simultaneous processing of many large programs,
the VAX-11/780 incorporates sophisticated virtual memory management
capabilities. VAX-11 memory management system is a tightly coupled
hardware/software function. The hardware performs the task of trans-
lating from virtual addresses into physical ones. The VAX/VMS operating
system provides the capabilities for paging, swapping, overlaying, pro-
tection, and sharing. Despite the fact that VAX/VMS performs these
functions, the user can exert considerable control over the environment
in which programs operate, i.e., the amount of paging and swapping that
occurs during the execution of a program. Pages can be locked, or fixed,
i.e., not candidates for removal, in a process’ working set; pages can
also be locked in main memory, and an entire working set can be locked
in the balance set. Additionally, a user can specify that not one, but a
number of pages be brought into main memory when a reference is
made to a page which is not currently in main memory. This is called
clustering. All of these tools allow a user to manipulate the environment
in which a program executes to produce predictable performance—to
provide fast, guaranteed response to external conditions.

Protection and sharing were key considerations in the development of
the VAX-11 architecture. Both protection and sharing are at the page
level. In a computer system, security and privacy are achieved by a
combination of operations management and applications design. VAX/
VMS complements this by providing the necessary system level reli-
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ability and protection. Reliability is achieved by taking advantage of the
hardware “‘firewalls.” These “firewalls” include the four memory man-
agement access modes and the process structure.

One of the most important forces at work during the design and devel-
opment of the VAX-11/780 system was an extensive reliability, avail-
ability, maintainability program (RAMP). This program affected all as-
pects of the product—the design of the basic hardware and software
architectures right through to the end result—the VAX-11/780. Some
of the significant RAMP features of the VAX-11 architecture and VAX/
VMS are listed below. [Refer also to Chapter 2 and Volume 2 for details
on the VAX-11/780 processor-specific RAMP features.]

1. Memory Management
e 512 byte pages (protection, sharing, allocation)
o four hierarchical access modes
e read/write access control for each protection mode
* access control violation produces a fault

2. Consistency and Error Checking
e arithmetic traps for over- and underfiow plus division by zero
e limit checking traps to ensure the range referenced by certain in-
structions is valid
e reserved operand trap to detect unacceptable data
o interrupt return checks for detecting system malfunctions
o string length checks

3. Special Instructions
e Cyclic redundancy check (CRC) which provides a consistent method
for performing software check-summing
e CALL/RETurn provides a uniform standard for interfacing between
local subroutines and system services

4, Maintenance Devices
¢ high-resolution programmable real-time clock for scheduling and
for diagnostics
« processor identification register contains the processor’s serial
number and its latest hardware update status
o time-of-year clock in conjunction with VAX/VMS enables unattended
automatic restart in cases of power failure or fatal software error

5. Software

¢ system software consistency checks detect and log operating sys-
tem malfunctions and determine the validity of system control
information

¢ device interrupt timeout on all input/output avoids system hang if
the interrupt is lost

o disk bad block handling protects the integrity of data stored on
disks

o automatic retry on 1/0 errors

¢ redundant recording of critical disk structures helps prevent the
loss of the entire disk

o error logging of hardware and software errors
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¢ automatic restart capabilities
¢ on-line diagnostics for verification of peripherals while the oper-
ating system is performing other tasks

All of these capabilities—uvery large virtual address space, elegant and
powerful instruction set, data types, and addressing modes, arbitrary
byte addressing, full virtual memory paging with user control, integral
protection and sharing, and extensive RAMP—have been combined in
the VAX-11/780 to produce a product which can be applied to a wide
range of demanding high-performance applications.

1.2 VAX-11/780 HANDBOOK SET

The VAX-11/780 handbooks comprise a three-volume set of detailed in-
formation on the system architecture, the VAX-11/780 system compo-
nents, and the VAX-VMS virtual memory operating system. Each hand-
book concludes with an extensive glossary of terms commonly used in
that handbook. This handbook, Volume 1, describes the entire hardware
architecture needed by an assembly language programmer who writes
non-privileged programs, i.e., those which do not directly use memory
management or perform direct /0. It provides information on the ad-
dressing modes, data representations, and the instruction set in suffi-
cient depth to design and write applications and compilers. An overview
of memory management, input/output programming, and an introduc-
tion to the VAX-11/780 processor components is provided.

Volume 2 provides documentation on VAX-11/780 hardware necessary
to write privileged programs—details on memory management, process
switching, input/output, processor registers, and compatibility mode.
The chapters on input/output provide full programming details on the
UNIBUS and MASSBUS adaptors. There is a chapter on the integral
LSI-11 diagnostic console and the console command language. RAMP is
covered in some detail and the peripherals supported by the VAX-11/780
system are described.

Volume 3 provides a uniform, cohesive description of the VAX-11 soft-
ware—the VAX/VMS virtual memory operating system and its supported
products. Primarily, it acts as an introduction to the VAX-11 software.
It contains information on memory management, 1/0 file services, util-
ities and high-level languages, interprocess communication, process
scheduling and context switching, command language, system services,
plus interrupts, handlers, and asynchronous system traps.

1.3 NOTATIONAL CONVENTIONS

This section provides information on notational conventions used
throughout the handbook set. Representations of memory, both physical
and virtual, begin with low memory at the top of the diagram and pro-
gress toward higher addresses:
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55555

78786

Unless otherwise noted, all numerical quantities are shown in decimal
representation; decimal is the default radix of the system. Other repre-
sentations are shown by the radix of the number as a subscript:

56A4C;6

Operations notation uses an ALGOL-like format. For example, the ADWC
instruction (add with carry) is represented as follows:

sum <« sum 4 add + C

This shows the operation of adding the quantities ‘“sum,” “add,” and
“C’ (for carry) and placing the result in “sum.” Full details of this
notation are given in Appendix E.
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CHAPTER 2

VAX-11/780 INTRODUCTION

2.1 HARDWARE ARCHITECTURE

The VAX-11/780 computer system consists of the central processing unit
(with integral floating point, packed decimal, and character string instruc-
tions), the console subsystem, the-main memory subsystem, and the
I/0 subsystem. The 1/0 subsystem includes the Synchronous Backplane
Interconnect (SBl)—an internal connection path which links the CPU
with its subsystems.

These elements are illustrated in Figure 2-1.

2.2 THE SYNCHRONOUS BACKPLANE INTERCONNECT

As Figure 2-1 shows, all major hardware components are connected
through the SBI, an internal synchronous path. This connection path,
along with the VAX-11/780 central processor and the SBI devices (the
adaptors and controllers shown in the figure), operates on clocked
200 nanosecond cycles. Thus, all transactions in the system are synchro-
nized and occur at defined points in time.

The SBI is the primary control and data transfer path in the VAX-11/780
system. The SBI has a physical address space of 1 gigabyte (30 bits
of address).

Physical address space is all possible memory and 1/0O addresses that
a processor can access. In the VAX-11/780 system, half of the physical
address space is for memory addresses and half for 1/0 addresses, as
shown in Figure 2-2.

Of the 512 million bytes of memory which can be addressed, up to 2
million bytes may be connected to a VAX-11/780 system. 1/0 registers
and memory can be addressed by instructions just as on the other
PDP-11 family machines.

The SBI is capable of an aggregate data throughput rate of 13.3 million
bytes/second and it cycles at 200 nanoseconds.

Each SBI device (i.e., CPU, MASSBUS adaptor, UNIBUS adaptor, mem-
ory controller) has a unique priority. When a device wants to transmit
on the SBI, it asserts a unique request line. At the end of the current
200 nanosecond cycle, each SBI device wanting to use the SBI examines
the SBI request lines for higher priority devices. The highest priority
device uses the next cycle, while other devices must wait. Whenever
possible, an SBI device currently in control of the SBI will free the SBI
so that a new transaction may occur on the next cycle. This commu-
nication protocol enables:

e Distributed arbitration. Since each device connected to the SBI de-
termines whether or not it will receive the next cycle (rather than a
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central arbitrator making the decision), signals need travel the length
of the SBI only once with the advantage of increased speed. Addi-
tionally, devices perform a parity check on the control information to
assure that the arbitration is proceeding correctly.

e Single 32-bit and two back-to-back 32-bit transfers. The SBI data
path is 32 bits wide. The protocol allows single (32-bit) and double
(64-bit) data transfers as transactions. (The 1/0 adaptors always try
data in 64-bit quadwords.)

Every transaction on the SBI (i.e., data transfer, address transfer, or
command transfer) is parity checked and confirmed by the receiver. in
addition, substantial protocol checking occurs on every cycle for high
data integrity. This means the SBI preserves the integrity of the data it
receives and transmits. (Data which is transferred from MASSBUS de-
vices also includes parity; data from UNIBUS devices does not.)

Finally, a history of the last 16 SBI cycles is maintained by the CPU.
This is an extremely useful aid in isolating system failures.

2.3 THE VAX-11/780 CENTRAL PROCESSING UNIT

The VAX-11/780 central processor is a high-speed, microprogrammed
32-bit computer that supports many of the features usually found only
in larger systems (for example, support of many data types and vir-
tual memory capabilities). The VAX-11/780 central processor executes
VAX-11 variable length instructions in native mode, and non-privileged
PDP-11 instructions in compatibility mode. The processor can directly
address 4 gigabytes of virtual address space, and provides a complete
and powerful instruction set that includes integral decimal, character
string, and floating point instructions. The VAX-11/780 includes an 8K
byte cache, integral memory management, sixteen 32-bit general regis-
ters, 32 interrupt priority levels, and an intelligent console (LSI-11).

Figure 2-3 illustrates the elements of the central processing unit.

2.4 NATIVE INSTRUCTION SET

The VAX-11 instructions are an extension of the PDP-11 instruction set;
the VAX-11 instruction set provides 32-bit addressing, 32-bit |/O opera-
tion on the SBI, and 32-bit arithmetic. Instructions can be grouped into
related classes based on their function and use:

2-3



1.

CPU WITH

T

i

| FULL
W : FLOATING POINT,
D |  DECIMAL,AND
G
S

CONSOLE
SUBSYSTEM CHARACTER STRING

INSTRUCTIONS

»on
|

CACHE MEMORY

S
B
I

Figure 2-3 VAX-11/780 Central Processor

Instructions to manipulate arithmetic and logical data types—These
include integer and floating point instructions, packed decimal instruc-
tions, character string instructions, and bit and field instructions.

The data type identifies how many bits of storage are to be treated
as a unit and how the unit is to be interpreted. Data types that may
be used are:

Data Type Represented As
Integer byte (8 bits), word (16 bits), longword (32
bits), quadword (64 bits)
Floating point 4-byte floating or 8-byte double floating
Packed decimal string of bytes (up to 31 decimal digits, 2
digits per byte)
Character string string of bytes interpreted as character codes;

a numeric string is a character string of
codes for decimal numbers (up to 64K bytes)

Bits and bit-fields field length is arbitrary and is defined by the
programmer (O to 32 bits in length)

Integer, floating point, packed decimal, and character data may be
stored on an arbitrary byte boundary. Bit and bit-field data does not
necessarily start on a byte boundary; this data type allows a collec-
tion of data structures to be packed together to use less storage
space.

. Instructions to manipulate special kinds of data—These include

queue manipulation instructions (for example, those that insert and
remove queue entries), address manipulation instructions, and user-
programmed general register load and save instructions. These in-
structions are used extensively by the VAX/VMS operating system.

. Instructions to provide basic program flow control—These include

branch, jump, and case instructions, subroutine call instructions, and
procedure call instructions.

. Instructions to quickly perform special operating system functions—

These include process control instructions (such as two special con-
text switching instructions which aliow process context variables to be
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loaded and saved using only one instruction for each operation), and
the Find First instruction which (among other uses) allows the operat-
ing system to locate the highest priority executable process. These
instructions contribute to rapid and efficient rescheduling.

5. Instructions provided specifically for high-level language constructs—
During the design of the VAX-11 architecture, special attention was
given to implementing frequently used, higher-level language con-
structs as single VAX-11 instructions. These instructions contribute
to decreased program size and increased execution speed. Some of
the constructs which have become single instructions on the VAX-
11/780 include:

e the FORTRAN computed GOTO statement (translates into the CASE
instruction)

e the loop construct (for example, add, compare, and branch trans-
lates into the ACB instruction)

¢ an extensive CALL facility (which aligns the stack on a longword
boundary, saves user-specified registers, and cleans up the stack
on return; the CALL facility is used compatibly among all native
mode languages and operating system services).

VAX-11/780 instructions and data are variable length. They need not be
aligned on longword boundaries in physical memory, but may begin at
any byte address (odd or even). Thus, instructions that do not require
argument use only one byte, while other instructions may take two,
three, or up to 30 bytes depending on the number of arguments and
their addressing modes. The advantage of byte alignment is that instruc-
tion streams and data structures can be stored in much less physical
memory.

The VAX-11/780 processor offers nine addressing modes that use the
general registers to identify the operand location:

register

register deferred

autoincrement

autoincrement deferred

autodecrement

displacement ... (same as the PDP-11 index mode)

displacement deferred ... (same as the PDP-11 index deferred mode)

index (uses a second register scaled according to data type to
provide true post-indexing capability)

literal (used for greater efficiency to specify small integer or
floating point constants)

The hardware implements 8-, 16-, and 32-bit displacement for each of
displacement and displacement deferred. This uses the minimal space
for any memory reference. By combining modes, the programmer can
achieve more addressing flexibility.

The instruction set is very consistent and the assembler mnemonics are
25



clear. Programmers who are already familiar with the PDP-11 instruction
set will find the VAX-11 instruction formats similar, as well as the data
formats and the use of addressing modes, general purpose registers, and
stacks. Thus, the amount of programmer retraining that is required is
minimized. Those programmers who are not familiar with the PDP 11
programming style should find that the consistency and power of the
VAX-11 instruction set allows them to be producing efficient executable
code quickly.

Because the instruction set is so flexible, fewer instructions are required
to perform any given function. The result is more compact and efficient
programs, faster program execution, faster context switching, more pre-
cise and faster math functions, and improved compiler-generated code.

2.5 COMPATIBILITY MODE INSTRUCTION SET

In addition to its 32-bit native mode instruction set, the VAX-11/780
processor can concurrently execute a subset of the PDP-11 instruction
set in compatibility mode. This is not done by emulation or simulation;
both instruction sets are built into the microcode and logic of the pro-
cessor.

The PDP-11 instruction set implementation is a subset of the PDP-
11/70’s. Specifically, it contains all instructions except those which per-
form the foliowing functions:

1. Execution of floating-point instructions.
2. Use of both instruction (1) space and data (D) space.
3. Execution of privileged functions such as:

e HALT, RESET and special instructions, such as traps and WAIT,
which are normally reserved for operating system usage

e Direct access to internal processor registers such as the Processor
Status Word and the Console Switch Register

* Direct access to the trap and interrupt vectors which must be ini-
tialized for interrupt servicing

* Execution in any mode other than User mode along with the cor-
responding access to the alternate general register set

2.6 GENERAL REGISTERS AND STACKS

The VAX-11/780 CPU provides sixteen 32-bit general registers which can
be used for temporary storage, as accumulators, index registers, and base
registers. Although all can be used as general-purpose registers, four
have special significance depending on the instruction being executed:
Register 12 (the CALL argument pointer); Register 13 (the CALL frame
pointer); Register 14 (the stack pointer); and Register 15 (the program
counter).

Stacks are associated with the processor’'s execution state. The processor
may be in a process context (in one of four modes, kernel, executive,
supervisor, or user; see the Memory Management section below), or in
the system-wide interrupt service context. A stack pointer is associated
with each of these states. Whenever the processor changes from one
state to another, Register 14 (the stack pointer) is updated accordingly.
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2.7 CACHES
The VAX-11/780 CPU provides three ‘‘cache” systems—the memory
cache, an address translation buffer, and an instruction buffer.

2.7.1 Memory Cache

The memory cache (typically 95% hit rate) provides the central proces-
sor with high-speed access to main memory. The memory cache reduces
main memory read access time to an effective 290 nanoseconds, and
has a cycle time of 200 nanoseconds. The memory cache also provides
32 bits of lookahead. On a cache miss, 64 bits are read from main mem-
ory—32 bits to satisfy the miss and 32 bits of lookahead.

The memory cache stores 8K bytes and is implemented as a two-way set-
associative write-through cache. This cache also watches 1/0 transfers
on the SB! and updates itself appropriately. Thus, no operating system
overhead is needed to synchronize the cache with 1/0 operations, since
the cache resolves all these stale data problems.

For reliability reasons the VAX-11/780's memory cache uses the write-
through technique for updating main memory. With this method, when-
ever a write reference occurs, the data is not only stored in the cache
itself, but is also immediately copied into the backing store (main mem-
ory). This means that main memory always contains a valid copy of all
data in the cache. Normally this would mean that the CPU would have to
suspend processing until main memory has accepted the write data. In
the VAX-11/780, however, the central processor’s interface to the SBI
includes a 32-bit write buffer. Therefore, when a write reference occurs,
the CPU stores the write data in the buffer, initiates a write transfer to
main memory, and continues with the next instruction.

2.7.2 Instruction Buffer

The instruction buffer consists of an 8-byte buffer that enables the CPU
to fetch and decode the next instruction while the current instruction
completes execution. The instruction buffer in combination with the paral-
lel data paths (which can perform integer arithmetic, floating point oper-
ations, and shifting all at the same time) significantly enhances the
VAX-11/780’s performance.

2.7.3 Translation Buffer

The VAX-11/780 provides an address translation buffer that eliminates
extra memory accesses during virtual-to-physical address translations the
majority of the time (typically 97% hit rate). The address translation
buffer contains 128 likely-to-be-used virtual-to-physical address transia-
tions.

Standard Schottky TTL Logic The VAX-11/780 system uses Schottky
TTL logic circuits, proven technology that combines fast switching speed
with moderate power consumption. Emitter-coupled logic circuits and
custom large-scale integrated circuits have been used where appropriate
to optimize system performance and reliability.

Clocks The standard VAX-11/780 CPU includes two clocks—a high-
precision, programmable real-time clock used by system diagnostics and
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by the VAX/VMS operating system for accounting and scheduling, and a
time-of-year clock, which insures the correct time of day and date. The
time-of-year clock additionally includes a battery which provides backup
for over 150 hours. The time-of-year clock is used by the operating sys-
tem to enable unattended automatic restart following any service inter-
ruption, including a power failure.

Writable Diagnostic Control Store (WDCS) 12K bytes (plus parity) of
WDCS are provided to allow the Diagnostic Console Microcomputer to
verify the integrity of crucial parts of the system (for example, the key
parts of the CPU, the intelligent console, the SBI, and the memory con-
troller). In addition, the WDCS can be used to implement updates to the
VAX-11/780's microcode. In this way, DIGITAL can keep customers up-
to-date with corrections.

Memory Management Memory management is the key for the develop-
ment of virtual memory cperating systems. The VAX-11/780 memory
management hardware enables the VAX/VMS operating system to pro-
vide a flexible and efficient virtual memory programming environment.
Hardware memory management, in conjunction with the operating sys-
tem, provides facilities for paging (with user control) and swapping.

In addition, the VAX-11/780 memory management provides four hier-
archial access modes: kernel, executive, supervisor, and user, with
read/write access control for each mode.

The memory management hardware facilitates the sharing of programs
and data, and allows larger program size and better performance.

2.8 HIGH PERFORMANCE FLOATING POINT ACCELERATOR

The VAX-11/780 floating point accelerator option operates in parallel
with the CPU and transparently to programs. It executes the standard
floating point instruction set, add, subtract, multiply, and divide, in both
single- and double-precision formats, plus three additional instructions.
These are extended multiply and integerize (EMOD), polyonomial evalu-
ation (POLY), single- and double-precision formats for both instructions,
and 32-bit integer multiply (MULL). EMOD is used for fast, accurate
range reduction of mathematical function arguments. POLY is used ex-
tensively by the math library in the evaluation of such mathematical
functions as sine, cosine, etc. Subscript calculations can be done fast
and efficiently using the MULL instruction.

An additional 12K bytes (or 1,024 microwords — 96 data bits plus three
parity bits) of writable control store is available for customer applica-
tions. There are, however, no software tools or supporting documentation
for this option.

29 THE MEMORY SUBSYSTEM
The main memory subsystem consists of ECC MOS memory, which is

connected to the SBI via the memory controlier, as illustrated in Figure
2-4,

MOS memory may be added in increments of 128K byte units to a maxi-
mum of 1 million bytes per controller. Two memory controllers may be
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Figure 2-4 VAX-11/780 Memory Subsystem

connected to a VAX-11/780 system, for a total of 2 million bytes of
physical memory. (The minimum memory requirement is 128K bytes.)

The VAX-11/780 physical memory is built using 4K MOS RAM chips. It is
organized in quadwords (64 bits) plus an 8-bit ECC (Error Correcting
Code), which allows the correction of all single-bit errors, and the detec-
tion of all double-bit errors and approximately 70% of greater than
double-bit errors, providing a ten-fold improvement in MTBF.

The memory cycle time is 600 nanoseconds. This is equal to the memory
access time, since MOS memory has non-destructive read-out. Read ac-
cess time at the central processor (including SBI overhead) is 1800
nanoseconds. This is measured from the time the processor transmits a
read request until the processor receives all 64 bits of data. (The central
processor always reads 64 bits from memory.) In spite of the 1800
nanosecond memory access time, the VAX-11/780 processor realizes an
effective average operand access time of 290 nanoseconds, because of
its large optimized memory cache.

The memory controllers allow the writing of data in full 32- and 64-bit
units. Also, upon command from an SBI device, individual bytes (or a
single byte) may be written. Each memory controller buffers up to four
memory access requests. This ‘‘request buffer’” substantially increases
memory throughput and overall system throughput and decreases the
need for interleaving for most configurations. With this buffer, memory
bandwidth essentially matches that of the SBI—13.33 million bytes/
second, including time for refresh cycles. This is because a number of
transactions may occur concurrently. For example, the memory controlier
may accept a WRITE command from a MASSBUS adaptor while it is
reading previously requested data by the processor for increased
throughput. Were it not for the request buffer, there would be about a
509% degradation in memory bandwidth, making interleaving necessary
to approach the SBI bandwidth.

Interleaving is possible with two controllers and equal amounts of mem-
ory on each. Interleaving is enabled/disabled under program control.
It is performed at the quadword level (each 64 bits) because of the
memory organization.
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The integrity of data in the VAX-11/780's ECC MOS memory is retained
upon power interruption in two ways. Firstly, the memory modules are
connected to an unswitched power supply so that when the system is
turned off, refreshing is continued.

Secondly, in the case of a temporary power failure, the contents of MOS
memory may be protected using optional battery backup. Each DIGITAL-
supplied option preserves 1 million bytes of memory for a maximum of
ten minutes. If the system has less than 1 miilion bytes of memory, the
battery supplies longer backup time. In addition, customer-supplied bat-
tery backup may be used with the DIGITAL option to prolong backup
time.

2.10 THE INPUT/OUTPUT SUBSYSTEMS

The VAX-11/780's 1/0 subsystems consist of the UNIBUS and MASSBUS
and their respective adaptors through which 1/0 devices communicate.
As shown in Figure 2-5, each VAX-11/780 system has one UNIBUS
adaptor and can have up to four MASSBUS adaptors.

CENTRAL
PROCESSOR
1.5M BYTES/SECOND
T  UNisus UNIBUS
s ADAPTOR
B
N 2.0M BYTES/SECOND
e ).

T
1
i
b
UP TO 4 TOTAL

Figure 2-5 VAX-11/780 I/0 Subsystem

2.10.1 The UNIBUS

General-purpose and customer-developed devices are connected to the
VAX-11/780 system via the VAX-11/780's UNIBUS. Since the SBI deals
in 30-bit addresses (1 gigabyte), 18-bit UNIBUS addresses must be trans-
lated to 30-bit SBI addresses. This mapping function is performed by the
UNIBUS adaptor, a special interface between the SBI and the UNIBUS,
which translates UNIBUS addresses, data, and interrupt requests to their
SBI equivalents, and vice versa.

The UNIBUS adaptor does priority arbitration among devices on the
UNIBUS, a function handied by logic in the PDP-11 CPUs. The address
translation map permits contiguous disk transfers to and from noncon-
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tiguous pages of physical memory (these are called scatter/gather oper-
ations).

The UNIBUS adaptor allows two kinds of data transfers: program inter-
rupt and direct memory access. To make the most efficient use of the
SBI bandwidth, the UNIBUS adaptor facilitates high-speed DMA transfers
by providing buffered DMA data paths for up to 15 high-speed devices.
Each of these channels has a 64-bit buffer (plus byte parity) for holding
four 16-bit transfers to and from UNIBUS devices. The result is that only
one SBI transfer (64 bits) is required for every four UNIBUS transfers.
The maximum aggregate data transfer rate through the Buffered Data
Paths is 1.5 million bytes/second. In addition, on SBI-to-UNIBUS trans-
fers, the UNIBUS adaptor anticipates upcoming UNIBUS requests by
pre-fetching the next 64-bit quadword from memory as the last 16-bit
word is transferred from the buffer to the UNIBUS. The result is in-
creased performance. By the time the UNIBUS device requests the next
word, the UNIBUS adaptor has it ready to transfer,

Any number of unbuffered DMA transfers are handled by one direct DMA
data path. Every 8- or 16-bit transfer on the UNIBUS requires a 32-bit
transfer on the SBI (although only 16 bits are used). The maximum
transfer rate through the Direct Data Path is 750 thousand bytes/second.

The UNIBUS adaptor permits concurrent program interrupt, unbuffered
and buffered data transfers. The aggregate throughput rate of the Direct
Data Path plus the 15 Buffered Data Paths is 1.5 million bytes/second.

2.10.2 The MASSBUS(es)

High-performance mass storage devices, such as the RP series and RM
moving head disks, are connected to the VAX-11/780 system using a
MASSBUS adaptor. The MASSBUS adaptor is the interface between the
MASSBUS and the SBI and performs all control, arbitration, and buffer-
ing functions. Address mapping is similar to that performed by the UNI-
BUS adaptor.

There may be a total of four MASSBUS adaptors on each VAX-11/780
system. Each adaptor can accommodate data transfers of 128K bytes
maximum to and from noncontiguous pages in physical memory (scat-
ter/gather). The VAX/VMS operating system supports transfers of 65KB
maximum to be consistent with other devices.

Each MASSBUS adaptor uses a 32-byte silo data buffer, which permits
transfers at rates up to 2 million bytes/second to and from physical
memory (8MB/second with all four). As in the UNIBUS adaptor, data is
assembled in 64-bit quadwords (plus byte parity) to make maximum
efficient use of the SBI bandwidth.

On memory-to-MASSBUS transfers, as on memory-to-UNIBUS transfers,
the adaptor anticipates upcoming MASSBUS data transfers by pre-fetch-
ing the next 64 bits of data from memory.

The combination of UNIBUS and MASSBUS transfer rates gives a maxi-
mum throughput of 9.5 million bytes/second to and from the SBI. Thus,
there is ample bandwidth remaining (3.8 million bytes/second) to handle
the central processing unit (which typically uses 1 million bytes/second).
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2.11 THE CONSOLE SUBSYSTEM

The VAX-11/780's integral console consists of an LSI-11 microcomputer
with 16K bytes of read/write memory and 8K bytes of ROM (used to
store the LS! diagnostic, the LS| bootstrap, and fundamental console
routines), a floppy disk (for the storage of basic diagnostic programs and
for software updates), a terminal, and a 20mA serial line interface (for
the console terminai). Remote access by a DIGITAL Diagnostic Center is
available.

CENTRAL
PROCESSOR
4
LSI-11
- M FLOPPY
N\ MICRO
FREmMOTE U | COMPUTER o DISK
DIAGNGCSIS §

CONSOLE
TERMINAL

Figure 2-6 VAX-11/780 Console Subsystem

The console subsystem serves as a VAX/VMS operating system terminal,
the system console, and as a diagnostic console. As a VAX/VMS ter-
minal, it is used by authorized system users for normal system operations.
As the svstem console, it is used for operational control (i.e., bootstrap-
ping, initialization, software update). As a diagnostic console, it can
access the central processor's major buses and key control points
through a special internal diagnostic bus. The console allows operator
diagnostic operations through simple keyboard commands.

A floppy disk is included with every VAX-11/780 system. It is used for
a variety of functions:

* During system installation, it acts as a load device. The LSI-11 ROM
bootstrap reads a file from the floppy which, in turn, is used to load
the operating system.

o It stores the system hard-core diagnostics, namely the hardware veri-
fication programs for the LSI-11 itself, CPU, SBI, a memory controller,
and a memory module.

These diagnostics are run upon command at power-up time to verify
the integrity of the system hard-core. On-line diagnostics, which run
under the VAX/VMS operating system, are then run to verify other sys-
tem components.

¢ The floppy is also used to distribute updates, or modifications, to the
system software. The updates are provided in machine-readable form
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so that with a few simple commands from the system console, the in-
formation on the floppy can be automatically read in and used by
VAX/VMS to update itself.

2.12 RELIABILITY-AVAILABILITY-

MAINTAINABILITY PROGRAM (RAMP)

Major consideration was given to product quality (i.e., reliability, usabil-
ity, serviceability, etc.) throughout the planning and development stages
of the VAX-11/780 project. The system designers early adopted a policy
of quality “insurance” (build the right features into the product) in addi-
tion to quality “assurance’ (check to see that they are there). In particu-
lar, their goal was to build a product that is:

e extremely reliable
¢ highly available (i.e., with minimal down-time)

¢ with improved hardware and software warranty/maintenance proce-
dures

Their method was to design a system with better, more complete, and
easier-to-use diagnostics, documentation, system safeguards, and mainte-
nance procedures than currently exist in any minicomputer competitive
product.

VAX-11/780 RAMP features are summarized below under four major
categories: Hardware Architecture, Improved Packaging, Diagnostic Aids,
and Software Architecture. For greater detail refer to Volume 2.

2.12.1 Hardware Architecture

o Four Hierarchical Access Modes (kernel, executive, supervisor, and
user) protect system information and improve system reliability and
integrity.

e A Diagnostic Console, consisting of an LSI-11 microcomputer, floppy
diskette, and console terminal, provides both local and remote diag-
nosis of system errors and simplifies system bootstrap and software
updates. Simple console commands replace lights and switches. The
diagnostic console provides faster and easier maintenance procedures
and increases availability.

e Automatic Consistency and Error Checking detects abnormal instruc-
tion uses and illegal arithmetic conditions (overflow, underflow, and
divide by zero). Continual checking by the hardware (and uniform ex-
ception handling by the software) increases data reliability.

« Special Instructions, such as CALL and RETURN, provide a standard
program calling interface for increased reliability.
e Integral Fault Detecticn and Maintenance Features, including:

ECC on memory corrects all single-bit errors and detects all double-bit
errors to increase availability and aid in maintenance.

ECC on the RMO3, RP05, RP06, and RKO6 disks detects all erfors up
to 11 bits and corrects errors in a single error burst of 11 bits.

An SBI history silo maintains a history of the sixteen most recent
cycles of bus activity and may be examined to aid in probem isolation.
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Maintenance registers permit forced error conditions for diagnostic
purposes.

A high resolution programmable real-time clock permits testing of
time-dependent functions.

Extensive parity checking is performed on the SBI, MASSBUS, and
UNIBUS adaptors, memory cache, address translation buffer, micro-
code, writable diagnostic control store, and key CPU buses and regis-
ters.

A watchdog timer in the LSI-11 diagnostic console detects hung ma-
chine conditions and allows crash/restart recovery actions.

Clock margining provides diagnostic variation of the clock rate and
aids in problem isolation.

Disabling of the memory management and the cache aids in isolating
hardware problems.

* Fault Tolerance Features, including:

Detection and recording of bad blocks on disk surfaces to increase
the reliability of the medium.

Write-verify checking hardware in peripherals available to verify all in-
put and output disk and tape operations and to ensure data reliability.
Track offset retry hardware to enable programmed software recovery
from disk transfer errors.

2.12.2 Improved Packaging

e The VAX-11/780 System meets Underwriters Laboratory (U.S.A.), Ca-
nadian Standards Association and IEC requirements for data process-
ing equipment. It has been designed for easy access and serviceability.

* Improved Air Flow increases system reliability while permitting easier
on-line access to components needing maintenance. Servicing will not
cause cooling problems.

* Power Loss, Temperature, and Air Flow Sensors detect emergency
conditions and protect the system from damage. Indicators aid in diag-
nosis and maintenance.

* Subassembly Replacement of the power supply, logic subassembly, or
blowers can be done by one person with common tools in less than 20
minutes.

e Cabling is located away from modules and fixed in cable troughs for
greater protection from damage and less interference with cooling.

¢ A Modular Power Supply, with malfunction indicator lights, provides
easier problem isolation.

2.12.3 Improved Diagnostic Aids

* Optional Remote Diagnosis capabilities (performed with the cus-
tomer’s permission) allow the field service engineer to examine the
error log file, and load, run, and control all level diagnostics from a
remote terminai, for reduced maintenance time and costs.

» System Verification Test Packages test device interactions and system
integrity.
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Functional and Fault Isolation Diagnostics perform tests (upon re-
quest) of the ‘“‘crucial” parts of the hardware, run device diagnostics,
and verify the reliability of the hardware, to aid preventative mainte-
nance and repair procedures.

2.12.4 Software Architecture

Operating System Consistency Checks detect and log system maifunc-
tions and determine the validity of system control information for in-
creased system reliability.

Redundant Recording of Critical Information (i.e., the home block and
index file header) for increased volume reliability.

Uniform Exception Handling, performed for both hardware and soft-
ware exceptions, improves system reliability.

On-Line Error Logging monitors hardware and software and notes error
occurrences in a log file which can be examined and used as a main-
tenance aid.

Unattended Automatic Restart Capabilities increase availability by
bringing the system up automatically following a system crash or a
power failure (operator can override).

On-Line Software Update and Maintenance operations can be per-
formed concurrently with other system activities for increased system
availability.
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CHAPTER 3

ARCHITECTURE

3.1 INTRODUCTION

This chapter describes the application programming environment, spe-
cifically that seen by the assembly language programmer. It is intended
to introduce the programmer to those features of the VAX-11 architecture
which directly affect the design of VAX-11 programs.

The VAX-11 architecture is intended to support multiprogramming, which
is the concurrent execution of a number of processes in a single com-
puter system. A process, loosely defined, is a single stream of machine
instructions executed in sequence.

The virtual address space (that is, the memory space as it appears to
a process) is mapped onto the physical address space (that is, the mem-
ory space which actually exists in the hardware) by the memory man-
agement logic in the processor. This logic also supports paging, by which
the system keeps in physical memory only those parts of a process’
virtual memory actively in use.

A VAX-11 process exists in and operates on a memory space of 2%*32
(about 4.3 giga) bytes. Some addresses and data are kept in sixteen 32-
bit general registers. A small number of processor state variables are
kept in a special register called the Processor Status Longword, or PSL.
This set of information (memory, general registers, and PSL) defines a
process. This chapter will cover each in some detail, while subsequent
chapters will describe the instructions and data which make up a VAX-11
process.

3.2 MEMORY

The memory space addressable by any program is 2*%%32 bytes (that
is, virtual addresses are 32 bits long). Of that space, one half (that with
the most significant bit set) is referred to as system space, because it is
the same for all processes in the system. It is used for the operating
system software and system-wide data. System space is shared by all
processes to facilitate interrupt handling and system service routines.

The other half of the virtual address space (that with the most signif-
icant address bit clear) is separately defined for each process; it is
therefore referred to as process space. Process space is further sub-
divided (on the next most significant address bit) into PO space, in
which program images and most of their data reside; and P1 space, in
which the system allocates space for stacks and process-specific data.
Because P1 space is used for stacks, which grow toward lower addresses,
it is unique in that it is allocated from high addresses downward. PO and
P1 space together constitute a process’ working memory. Except for
special cases of sharing, each process has its own PO and P1 spaces,
independent of others in the system. Figure 3-1 illustrates the address
spaces of several processes in a multiprogramming system. Each pro-
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cess space is independent of the others, while the system space is
shared by alli.
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Figure 3-1 Address Spaces in Process Context

The basic addressable unit in VAX-11 is the 8-bit byte. Larger units are
built up by doubling: a word is two bytes; a longword is four bytes; a
quadword is eight bytes. These four sizes are the units in which VAX-11
memory stores data, even though the processor sometimes interprets
operands in other units, such as half bytes, or nibbles, for decimal digits,
or variable-sized bit fields.

In general, the memory system processes only requests for naturally
aligned data. In other words, a byte can be obtained from any address,
but a word can only come from an even address, a longword can only
come from an address which is a multiple of 4, and a quadword can
only come from an address which is a multiple of eight. All VAX-11 pro-
cessors have a provision for converting an unaligned request into a se-
quence of requests that can be accepted by the memory. Users, how-
ever, should be aware that this conversion has a serious impact on per-
formance, and should design their data structures in such a way that
the natural alignment of operands is preserved wherever possible.

The VAX-11 memory management logic serves the following purposes:

e It allows a number of processes to occupy main memory simulta-
neously, all freely using process space addresses, but referring inde-
rendently to their own programs and data.

¢ |t allows the operating system to keep selected parts of a process and
its data in memory, bringing in other parts as needed, without ex-
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plicit intervention by the program. Large programs can be run in re-
duced memory space without recoding or overlays visible to the
programmer.

e It allows the operating system to scatter pieces of programs and data
wherever space is available in memory, without regard to the apparent
contiguity of the program. It is never necessary for the system to
shuffle memory in order to collect contiguous space for another pro-
cess to be brought into memory.

¢ |t allows cooperating processes to share memory in a controlled way.
Two or more processes may communicate through shared memory
in which both have read/write access. One process may be granted
read access to memory being modified by others; or a number of
processes may share a single copy of a read-only area.

e It allows the operating system to limit access to memory according
to a privilege hierarchy. Thus, within any address space, privileged
software can maintain data bases which it can access, but which less
privileged routines cannot.

o |t provides the means for the operating system to grant or inhibit
access to control, status, and data registers in peripheral devices
and their controllers. Since those registers are part of the physical
address space, access to them is achieved by creation of a page table
entry (described below) whose page frame number field selects the
desired device or controller address in the I/0 portion of the physical
address space. References to the registers are then under control of
the access control field of the page table entry. Thus the same
privilege mechanisms which control access to sensitive data in mem-
ory are used to control access to 1/0 devices.

For the purposes of memory management (specifically protection and
translation of virtual to physical addresses) the unit of memory is the
512-byte space. Pages are always naturally aligned (that is, the ad-
dress of the first byte of a page is a multiple of 512).

3 30 29 9 8

o
‘ PAGE TABLE INDEX J l BYTE IN PAGE

N — SELECT PO, P1,OR SYSTEM SPACE

Figure 3-2: Virtual Address Format

Virtual addresses are 32 bits long, and are divided up by the memory
management logic as shown in Figure 3-2. The nine low-order bits select
a byte within a page, and are unchanged by the address translation pro-
cess. The two high-order bits select the PO, P1, or system portion of
the address space. The remaining 21 bits are used to obtain a Page
Table Entry (PTE) from the PO, P1, or system page table as appropriate.
The page table entry contains the following pieces of information:

e protection code, specifying which, if any, access modes are to be per-
mitted read or write access to the page
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e page frame number, identifying the 512-byte page of physical mem-
ory to be used on references to the virtual address

« valid bit, indicating that the page frame number is valid (that is, that
it identifies a page in memory, rather than one in the swapping space
on a disk) :

¢ modification flag, set by the processor whenever a write to the page
occurs

In concept, the process of obtaining a page table entry occurs on every
memory reference. In practice, however, the processor maintains a trans-
lation buffer. The translation buffer is a special-purpose cache of recently
used page table entries. Most of the time, the translation buffer already
contains the page table entries for the virtual addresses used by the
program, and the processor does not need to go to memory to obtain
the PTE (Page Table Entry).

There is one page table entry for each existing page of the virtual ad-
dress space. A length register associated with each region specifies how
many pages exist in that region of the address space. The System Page
Table (SPT), which contains page table entries for addresses greater
than 80000000 (hex), is allocated to contiguous pages in physical mem-
ory. Since the size of system space is relatively constant and can be de-
termined at system startup time, allocating a fixed amount of physical
memory to the SPT poses no problems. Process space page tables, how-
ever, change quite dynamically and can become very large. Because it
would be awkward for the operating system to have to keep the process
page tables in contiguous areas of physical memory, VAX-11 defines the
process space page tables, POPT and PIPT, to be allocated in contiguous
areas of system space—that is, virtual memory. Thus, the mapping for
process space addresses involves two memory references—one to trans-
late the process space address into a physical memory address, and the
second to translate the system virtual address of the table containing
the first translation. However, it is important to notice that even if the
translation buffer does not have the mapping for the process space ad-
dress, it is likely to have that for the page table, and thus can save one
of the references.

3.3 GENERAL REGISTERS

VAX-11 provides sixteen general registers for temporary address and
data storage. Registers are denoted Rn, where n is a decimal number in
the range O through 15. Registers do not have memory addresses, but
are accessed either explicitly by inclusion of the register number n in an
operand specifier, or implicitly by machine operations which make refer-
ence to specific registers. Certain registers have specific uses, and have
special names always used by software:

PC R15 is the Program Counter (PC). The processor updates it
to address the next byte of the program; PC is therefore not
used as a temporary, accumulator, or index register.

SP R14 is the Stack Pointer (SP). Several instructions make im-
plicit references to SP, and most software assumes that SP
points to memory set aside for use as a stack. There is no
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restriction on the explicit use of other registers (except PC)
as stack pointers, though those instructions which make im-
plicit references to the stack always use SP.

FP R13 is the Frame Pointer (FP). The VAX-11 procedure call
convention builds a data structure on the stack called a stack
frame. The CALL instructions load FP with the base address
of the stack frame, and the RETurn instruction depends on
FP containing the address of a stack frame. Further, VAX-11
software depends on maintenance of FP for correct reporting
of certain exceptional conditions.

AP R12 is the Argument Pointer (AP). The VAX-11 procedure call
convention uses a data structure called an argument list,
and uses AP as the base address of the argument list. The
CALL instructions load AP in accordance with that conven-
tion, but there is no hardware or software restriction on the
use of AP for other purposes.

R6—R11 Registers R6 through R11 have no special significance either
to hardware or the operating system. Specific software will
assign specific uses for each register.

RO-R5 Registers RO through R5 are generally available for any use
by software, but are also loaded with specific values by those
instructions whose execution must be interruptable—the
character string, decimal arithmetic, RC, and POLY instruc-
tions. The specific instruction descriptions identify which
registers are used, and what values are loaded into them.

The general philosophy of DIGITAL software governing the allocation of
registers is that high-numbered registers should have the most global sig-
nificance, and low-numbered registers are used for the most temporary,
local purposes. While there is no technical basis for this rule, it is a
matter of convention followed by both hardware and system software.
Thus high-numbered registers are used for pointers needed by all soft-
ware and hardware, and low-numbered registers are used for the working
storage of string-type instructions. Similarly, the VAX-11 procedure call
convention regards RO and R1 as so temporary that they are not even
saved on calls.

3.4 STACKS
Stacks, also called pushdown lists or last-in-first-out queues, are an im-
portant feature of DIGITAL's -11 family architecture. They are used for:

e saving the general registers including PC at entry to a subroutine, for
restoration at exit.

¢ saving PC, PSL, and general registers at the time of interrupts and ex-
ceptions, and during context switches.

e creating storage space for temporary use or for nesting of recursive
routines.

A stack is implemented in VAX-11 by a block of memory and a general
register which addresses the ‘‘top” of the stack—that is, that location in
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Table 3-1 Special Register Usage

Conventional Software

Register Hardware Use Use

RO - Results of POLY,CRC; length Results of functions, status
counter in character & decimal  of services (not saved or
instructicns restored on procedure call)

R1 Result of POLYD; address Result of functions (not
counter in character & decimal  saved or restored on pro-
instructions cedure call)

R2, R4 Length counter in character any
& decimal instructions

R3, R5 Address counter in character any
& decimal instructions

R6-R11 None any

AP (R12) Argument pointer saved & Argument pointer (base
loaded by CALL, restored address of argument list)
by RET

FP(R13) Frame pointer saved & loaded Frame pointer; condition
by CALL, used & restored signalling
by RET

SP (R14)  Stack pointer Stack pointer

PC (R15) Program ccunter Program counter

the block which contains the next candidate for removal. An item is
added to the stack (“pushed on”) by decrementing the register which
serves as the stack pointer, and storing the item at the address in the
updated register. The pointer is decremented by the length of the item
added to the stack, to allow enough room for it. Conversely, the top item
is removed (“‘popped off"') by adding the length of the item to the stack
pointer after the last use of the item. These operations are built into the
basic addressing mechanisms of VAX-11 instructions; thus any instruc-
tion can operate on the stack, and it is seldom necessary to devote sep-
arate instructions to maintenance of the stack pointer. See Chapter 5 for
details of the addressing modes of VAX-11 instructions.

A stack is usually bounded by inaccessable pages, in order to catch the
common programming errors associated with stacks: pushing on more
data than there is space to store; and popping off more than was pushed.
By placing the stack in a block of memory between inaccessible pages,
the programmer can be confident of finding such errors.

Many VAX-11 processor operations make use of the stack implicitly (that
is, without explicit specification of SP in an operand specifier). This oc-
curs in instructions used in calling and returning from subroutines, and
in the processor sequences which initiate and terminate interrupt or
exception service routines. In all such cases, the processor uses the
stack addressed by R14.
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This does not mean that exceptions, interrupts, and system services are
performed on the same stack as is used by user-mode programs. The
processor maintains five internal registers as pointers to separate blocks
of memory to be used as stacks, and uses one or another as SP depend-
ing on the current access mode and interrupt stack bit in the processor
status longword. Whenever the current access mode and/or interrupt
stack bits change, the processor saves the contents of SP into the in-
ternal register selected by the old value of those bits, and loads SP from
the register selected by the new value. There is one interrupt stack for
the entire system, but the kernel, executive, supervisor, and user mode
stacks are different for each process in the system. Figure 3-3 illustrates
the relationships of the five stacks and multiple processes.

PROCESS 1 PROCESS 2 PROCESS 3
USER USER 2
STACK STACK

SUPERVISOR 1 SUPERVISOR 2

GREATER STACK STACK
MODE
{LESSER
PRIVILEGE)
EXEC 1 EXEC 2
STACK STACK
KERNEL 1 KERNEL 2
STACK STACK

INTERRUPT STACK
(ALL PROCESSORS)

Figure 3-3 Stacks by Mode vs. Processes

This multiple-stack mechanism offers a number of advantages over a
single stack:

User mode programs are not subject to sudden and non-reproduceable
changes in the data beyond the end of their stack. While it is bad prac-
tice to depend on such data, it would also be poor design to make it
difficult to debug programs which did depend on such data, either in-
tentionally or through programming error.

The integrity of a privileged mode program cannot be compromised by a
less privileged caller. Even if the caller has completely filled its own
stack, the privileged code is in no danger of running out of space, be-
cause separate blocks of memory are allocated to the stack associated
with each mode.

37



Privileged mode programs are not vulnerable to accidental (or malicious)
destruction of the stack pointer by less privileged programs. Even if the
user program uses SP as a floating point accumulator, privileged code
can still depend on it as a stack pointer, because the processor saves the
floating point value and loads the pointer value when a mode change
occurs.

By allocating separate stacks for each mode, VAX-11 can dynamically
page most stack space, while ensuring the availability of space for in-
terrupt and page fault service. Interrupt service routines and the page
fault handler may be invoked at any time, and must have a small amount
of stack available immediately, without waiting for it to be paged in.
User programs, on the other hand, may need very large stack spaces,
making it desirable to page out those regions which are not in active use.

3.5 PROCESSOR STATUS LONGWORD

There are a number of processor state variables associated with each
process, which VAX-11 groups together into the 32-bit Processor Status
Longword or PSL. Bits 15-0 of the PSL are referred to separately as the
Processor Status Word (PSW). The PSW contains unprivileged informa-
tion, and those bits of the PSW which have defined meaning are freely
controllable by any program. Bits 31-16 of the PSL contain privileged
status, and while any program can perform the REI instruction (which
loads PSL), REl will refuse to load any PSL which would increase the
privilege of a process, or create an undefined state in the processor.

31 3029 28 27 26 25 24 23 22 2

e e et

Figure 3-4 Processor Status Longword

Bits 3-0 of the PSL are termed the condition codes; in general they re-
flect the result status of the most recent instruction which affects them.
Refer to the individual instruction descriptions in chapters 6 to 11 for
details of how each instruction affects the condition codes. The condition
codes are tested by the conditional branch instructions.

N—aBit 3 is the Negative condition code; in general it is set by instruc-
tions in which the result stored is negative, and cleared by instructions
in which the result stored is positive or zero. For those instructions which
affect N according to a stored result, N reflects the actual result, even
if the sign of the result is algebraically incorrect as a result of overflow.

Z—Bit 2 is the Zero condition code; in general it is set by instructions
which store a result that is exactly zero, and cleared if the result is not
zero. Again, this reflects the actual result, even if overflow occurs.

V—Bit 1 is the oVerflow condition code; in general it is set after arith-
metic operations in which the magnitude of the algebraically correct re-
sult is too large to be represented in the available space, and cleared
after operations whose result fits. Instructions in which overflow is im-
possible or meaningless either clear V or leave it unaffected. Note that
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all overflow conditions which set V can also cause traps if the appro-
priate trap enable bits are set.

C—Bit 0 is the Carry condition code; in general it is set after arithmetic
operations in which a carry out of, or boirow into, the most significant
bit occurred. C is cleared after arithmetic operations which had no carry
or borrow, and either cleared or unaffected by other instructions. The C
bit is unique in that it not only determines the operation of conditional
branch instructions, it also serves as an input variable to the ADWC
(Add with Carry) and SBWC (Subtract with Carry) instructions used to
implement mulitiple-precision arithmetic.

Bits 4-7 of the PSL are trap-enable flags, which cause traps to occur
under special circumstances:

T—Bit 4 is the Trace bit; when set, it causes a trace trap to occur after
execution of the next instruction. This facility is used by debugging and
performance analysis software to step through a program one instruction
at a time. If any instruction is traced and causes an arithmetic trap, the
trace trap occurs after the arithmetic trap.

IV—Bit 5 is the Integer oVerflow trap enable; when set, it causes an
integer overflow trap after any instruction which produced an integer re-
sult that could not be correctly represented in the space provided. When
bit 5 is clear, no integer overflow trap occurs. The V condition code is set
independently of the state of IV (bit 5).

FU—BIt 6 is the Floating Underflow trap enable. When set, it causes a
floating underflow trap after the execution of any instruction which pro-
duced a floating result too small in magnitude to be represented. When
FU is clear, no floating underflow trap occurs. The result stored is zero
when floating underflow occurs, regardless of the state of FU.

DV—aBit 7 is the Decimal oVerflow trap enable. When set, it causes a
decimal overflow trap after the execution of any instruction which pro-
duces a decimal result whose absolute value is too large to be repre-
sented in the destination space provided. When DV is clear, no decimal
overflow trap occurs. The result stored consists of the low-order digits
and sign of the algebraically correct result.

NOTE
There are other trap conditions for which there
are no enable flags—division by zero and float-
ing overflow.

Bits 8-15 of the PSL are unused, and reserved.

IPL—Bits 16-20 represent the processor’s Interrupt Priority Level. An
interrupt, in order to be acknowledged by the processor, must be at a
priority higher than the current IPL. Virtually all software runs at IPL O,
so the processor acknowledges and services interrupt requests at any
priority. The interrupt service routine for any request, however, runs at
the IPL of the request, thereby temporarily blocking interrupt requests
of lower or equal priority. Refer to Volume 2 for full details. Briefly, there
are 31 priority levels above zero, numbered in hex 01 through 1F. Inter-
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rupt levels 01 through OF exist entirely for use by software. Levels 10
through 17 are for use by peripheral devices and their controllers, though
present systems support only 14 through 17. Levels 18 to 1F are for use
for urgent conditions, including the interval clock, serious errors, and
power fail.

Previous Mode—Bits 22-23 are the previous mode field, which contains
the value from the current mode field at the most recent exception which
transferred from a less privileged mode to this one. Previous mode is of
interest only in the PROBE instructions, which enable privileged routines
to determine whether a caller at the previous mode is sufficiently priv-
ileged to reference a given area of memory.

Current Mode—Bits 24-25 are the current mode field, which determines
the privilege level of the currently executing program. The values of
mode are:

O—Kernel; most privileged, including the ability to perform all instruc-
tions

1—Executive

2—Supervisor

3—User; least privileged

Privileged is granted in two ways by the mode field—certain instructions
(HALT, Move To Processor Register, and Move From Processor Register)
and not performed unless the current mode is kernel. The memory man-
agement logic controls access to virtual addresses on the basis of the
program'’s current mode, the type of reference (read or write), and a pro-
tection code assigned to each page of the address space.

IS—Bit 26 is the interrupt Stack flag, which indicates that the processor
is using the special “interrupt stack’’ rather than one of the four stacks
associated with the current mode. When IS is set, the current mode is
always kernel; thus software operating ‘‘on the interrupt stack™ has full
kernel-mode privileges.

FPD—BIt 27 is the First Part Done flag, which the processor uses in cer-
tain instructions which may be interrupted or page faulted in the middle
of their execution.

If FPD is set when the processor returns from an exception or interrupt,
it resumes the interrupted operation where it left off, rather than restart-
ing the instruction.

TP—BIt 30 is the Trace Pending bit, which is used by the processor to
ensure that one, and only one, trace trap occurs for each instruction
performed with the Trace bit (bit 4) set. See Chapter 12 for a full discus-
sion of TP.

CM—Bit 31 is the Compatability Mode bit. When CM is set, the pro-
cessor is in PDP-11 compatability mode, and executes PDP-11 instruc-
tions. When CM is clear, the processor is in native mode, and executes
VAX-11 instructions.
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CHAPTER 4
DATA REPRESENTATION

The VAX-11 instruction set deals directly with several data types. These
can be separated into the integer, floating point, variable length bit field,
character string, and decimal string classes. Most of these types can be
subdivided into data types of differing sizes and formats.

The integer data types are used to represent in a binary format quantities
that have a fixed scaling. These quantities can be treated as either signed
or unsigned. When treated as signed quantities, integers are represented
in twos complement form. This means that a negative number is one
greater than the bit-by-bit complement of its positive counterpart. When
treated as unsigned quantities, integers range from O through 2%*n
where there are n bits in the representation. VAX-11 supports in the in-
struction set integer data types of 8, 16, 32, and 64 bit sizes. These are
termed byte, word, longword, and quadword integers respectively.

The floating point data types are used to represent approximations to
quantities for which the scaling is not specified in the program. Floating
point data is stored in a scientific notation as a power of two times a
fraction in the range .5 (inclusive) to 1.0 (exclusive). The data repre-
sentation consists of three fields, the sign, the power of two exponent,
and the fractional magnitude. VAX-11 supports in the instruction set
floating point data types of 32 and 64 bit sizes. These are termed float-
ing and double floating respectively.

The variable length bit field is a data type used to store small integers
packed together in a larger data structure. This saves memory when
many small integers are part of a larger structure. A specific case of the
variable bit field is that of one bit. This form is used to store and access
individual flags efficiently.

The character string is a data type used to represent strings of charac-
ters such as names, data records, or text. Rather than performing arith-
metic or logical operations on character strings, the important operations
include copying, concatenating, searching, and translating the string.

The decimal string data types are used to represent fixed scaled quan-
tities in a form close to their external representation. For programs that
are input/output intensive rather than computation intensive, this rep-
resentation is frequently more efficient. The decimal string data types
include formats in which each decimal digit occupies one byte (charac-
ter) and a more compact form in which two decimal digits are packed
into one byte. These are termed numeric and packed decimal strings re-
spectively. Because the numeric string form represents many external
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data arrangements exactly, it appears in several representations. The
most significant distinguishing characteristic is whether the sign, if any,
appears before the first digit or whether it is superimposed on the final
digit. These are termed leading separate and trailing numeric strings
respectively.

4.1 BYTE
A byte is 8 contiguous bits starting on an addressable byte boundary.
The bits are numbered from the right O through 7:

7 1]

[ -

A byte is specified by its address A. When interpreted arithmetically, a
byte is a twos complement integer with bits of increasing significance
going O through 6 and bit 7 the sign bit. The value of the integer is in
the range —128 through 127. For the purposes of addition, subtraction,
and comparison, VAX-11 instructions also provide direct support for the
interpretation of a byte as an unsigned integer with bits of increasing
significance going O through 7. The value of the unsigned integer is in
the range O through 255.

4.2 WORD
A word is 2 contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from the right O through 15:

15 0

|+

A word is specified by its address A, the address of the byte containing
bit 0. When interpreted arithmetically, a word is a twos complement in-
teger with bits of increasing significance going 0 through 14 and bit 15
the sign bit. The value of the integer is in the range —32,768 through
32,767. For the purposes of addition, subtraction and comparison,
VAX-11 instructions also provide direct support for the interpretation of
a word as an unsigned integer with bits of increasing significance going
0 through 15. The value of the unsigned integer is in the range O
through 65,535.

4.3 LONGWORD
A longword is 4 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right O through 31:

N 0

C i

A longword is specified by its address A, the address of the byte con-
taining bit 0. When interpreted arithmetically, a longword is a twos com-
plement integer with bits of increasing significance going O through 30
and bit 31 the sign bit. The value of the integer is in the range
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—2,147,483,648 through 2,147,483,647. For the purposes of addition,
subtraction, and comparison, VAX-11 instructions also provide direct
support for the interpretation of a longword as an unsigned integer with
bits of increasing significance going O through 31. The value of the un-
signed integer is in the range O through 4,294,967,295.

Note that the longword format is different from the longword format de-
fined by the PDP-11 FP-11. In that format, bits of increasing significance
go from 16 through 31 and O through 14. Bit 15 is the sign bit. Most
DIGITAL software and in particular PDP-11 FORTRAN uses the VAX-11
longword format.

4.4 QUADWORD
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right O through 63:

kil (]

63 R

A quadword is specified by its address A, the address of the byte con-
taining bit 0. When interpreted arithmetically, a quadword is a twos
complement integer with bits of increasing significance going O through
62 and bit 63 the sign bit. The value of the integer is in the range
—2%*63 to 2%*63-1. The quadword data type is not fully supported by
VAX-11 instructions.

4.5 FLOATING
A floating datum is 4 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right O through 31.

15 M 7 6 ()
s EXP I FRACTION A

FRACTION

A floating datum is specified by its address A, the address of the byte
containing bit 0. The form of a floating datum is sign magnitude with
bit 15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits
6:0 and 31:16 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of in-
creasing significance go from 16 through 31 and O through 6. The 8-bit
exponent field encodes the values O through 255. An exponent value of
0 together with a sign bit of O, is taken to indicate that the floating
agatum has a value of 0. Exponent values of 1 through 255 indicate true
binary exponents of —127 through +4127. An exponent vaiue of O, to-
gether with a sign bit of 1, is taken as reserved. Floating point instruc-
tions processing a reserved operand take a reserved operand fault (See
Chapters 6 and 12). The value of a floating datum is in the approximate
range .29*%10%*_—38 through 1.7%*10%*38. The precision of a floating
datum is approximately one part in 2%%23, i.e., typically 7 decimal digits.
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4.6 DOUBLE FLOATING
A double floating datum is 8 contiguous bytes starting on an arbitrary
byte boundary. The bits are labelled from the right O through 63:

15 14 7 6 0
s [ ExP FRACTION A

FRACTION

FRACTION

FRACTION l

A double floating datum is specified by its address A, the address of the
byte containing bit 0. The form of a double floating datum is identical
to a floating datum except for an additional 32 low significance fraction
bits. Within the fraction, bits of increasing significance go 48 through
63, 32 through 47, 16 through 31, and O through 6. The exponent con-
ventions, and approximate range of values is the same for double float-
ing as floating. The precision of a double floating datum is approximately
one part in 2**55, i.e., typically 16 decimal digits.

4.7 VARIABLE LENGTH BIT FIELD

A variable bit field is O to 32 contiguous bits located arbitrarily with
respect to byte boundaries. A variable bit field is specified by three
attributes: the address A of a byte, a bit position P that is the starting
location of the field with respect to bit 0 of the byte at A, and a size S
of the field. The specification of a bit field is indicated by the following
where the field is the shaded area.

L

P+S  PrS-1 P P-l [

5-1 0

The position is in the range —2%*31 through 2¥%31—1 and is conven-
iently viewed as a signed 29-bit byte offset and a 3-bit bit-within-byte
field:

3 3 2 0
BYTE OFFSET bwb [

The sign extended 29-bit byte offset is added to the address A and the
resulting address specifies the byte in which the field begins. The 3-bit
bit-within-byte field encodes the starting position (0 through 7) of the
field within that byte. The VAX-11 field instructions provide direct sup-
port for the interpretation of a field as a signed or unsigned integer.
When interpreted as a signed integer, it is twos complement with bits
of increasing significance going O through S—2; bit S—1 is the sign bit.
When interpreted as an unsigned integer, bits of increasing significance
go from O to S—1. A field of size O has a value identically equal to 0;
it contains no bits and no memory is referenced; hence, the address
need not be valid.
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A variable bit field may be contained in zero to five bytes. From a mem-
ory management point of view only the minimum number of bytes nec-
essary to contain the field is actually referenced.

4.8 CHARACTER STRING

A character string is a contiguous sequence of bytes in memory. A char-
acter string is specified by two attributes: the address A of the first byte
of the string, and the length L of the string in bytes. Thus the format of
a character string is:

C P

The address of a string specifies the first character of a string. Thus
“XYZ" is represented:

X TA
A Al
z D A*2

The length L of a string is in the range O through 65,535. A string
with length O is termed a null string; it contains no bytes and no memory
is referenced; hence, the address need not be valid.

4.9 TRAILING NUMERIC STRING

A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by two attributes: the address A of the first byte
(most significant digit) of the string, and the length L of the string in
bytes.

All bytes of a trailing numeric string, except the least significant digit
byte, must contain an ASCII decimal digit character (0-9). The represen-
tation for the high order digits is:

digit decimal hex ASCII character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 [
7 55 37 7
8 56 38 8
9 57 39 9
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The highest addressed byte of a trailing numeric string represents an
encoding of both the least significant digit and the sign of the numeric
string. The VAX-11 numeric string instructions support any encoding;
however there are three preferred encodings used by DIGITAL software.
These are (1) unsigned numeric in which there is no sign and the least
significant digit contains an ASCH decimal digit character, (2) zoned
numeric, and (3) overpunched numeric. Because the overpunch format
has been used by compilers of many manufacturers over many years,
and because various card encodings are used, several variations in
overpunch format have evolved. Typically, these alternate forms are
accepted on input. The valid representations of the digit and sign in
each of the later two formats is shown in Table 4-1.

Table 4-1
Representation of Least Significant Digit and Sign
Zoned Numeric Format Overpunch Format
deci- ASCII deci- ASCII char.
digit mal hex char. mal hex norm alt.
0 48 30 0 123 7B { [ ?
1 49 31 1 65 41 A a
2 50 32 2 66 42 B b
3 51 33 3 67 43 C c
4 52 34 4 68 44 D d
5 53 35 5 69 45 E e
6 54 36 6 70 46 F f
7 55 37 7 71 47 G g
8 56 38 8 72 48 H h
9 57 39 9 73 49 1 i
—0 112 70 p 125 7D } IR
-1 113 71 g 74 4A J i
-2 114 72 r 75 4B K k
-3 115 73 s 76 4C L |
—4 116 74 t 77 4D M m
-5 117 75 u 78 4E N n
—6 118 76 v 79 4F 0 o
-7 119 77 w 80 50 P p
-8 120 78 X 81 51 Q q
-9 121 79 y 82 52 R r

The length L of a trailing numeric string must be in the range O to 31
(0 to 31 digits). The value of a O length string is identically O; it con-
tains no bytes and no memory is referenced; hence, the address need
not be valid.

The address A of the string specifies the byte of the string containing
the most significant digit. Digits of decreasing significance are assigned
to increasing addresses. Thus ‘123" is represented:
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ZONED FORMAT OR UNSIGNED OVERPUNCH FORMAT

and *'—123” is represented

ZONED FORMAT OVERPUNCH FORMAT

4 4 3 Q 7 4

3 ) PA 3

3 2 T A 3

7 3 A2 4

4.10 LEADING SEPARATE NUMERIC STRING

A leading separate numeric string is a contiguous sequence of bytes in
memory. A leading separate numeric string is specified by two attri-
butes: the address A of the first byte (containing the sign character),
and a length L that is the length of the string in digits and NOT the
length of the string in bytes. The number of bytes in a leading separate

numeric string is L4-1.

The sign of a separate leading numeric string is stored in a separate

byte. Valid sign bytes are:

sign decimal hex
+ 43 2B
+ 32 20
— 45 2D

ASCII character

+
<blank>

The preferred representation for ‘4" is ASCIl “4”. All subsequent

bytes contain an ASCII digit character:

digit decimal hex
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

ASCI! character

CONOOTGARWNHO

The length L of a leading separate numeric string must be in the range
0 to 31 (0 to 31 digits). The value of a O length string is identically O;

it contains only the sign byte.
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The address A of the string specifl:es the byte of the string containing
the sign. Digits of decreasing significance are assigned to bytes of in-
creasing addresses. Thus “4123" is:

and “—123" is:

4.11 PACKED DECIMAL STRING

A packed decimal string is a contiguous sequence of bytes in memory.
A packed decimal string is specified by two attributes: the address A
of the first byte of the string and a length L that is the number of digits
in the string and NOT the length of the string in bytes. The bytes of a
packed decimal string are divided into two 4-bit fields (nibbles) that
must contain decimal digits except the low nibble (bits 3:0) of the last
(highest addressed) byte which must contain a sign. The representation
for the digits and sign is:

digit or sign decimal hex

| +00ONOUARWNRO
VCONOULRWN-O
WONOURWNRO

10, 12, 14 or 15
1l1or13

E orF
D

w>
o0

- -

The preferred sign representation is 12 for “4’" and 13 for “—"". The
length L is the number of digits in the packed decimal string (not
counting the sign) and must be in the range O through 31. When the
number of digits is odd, the digits and the sign fit in L/2 (integer part
only) + 1 bytes. When the number of digits is even, it is required that
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an extra “0” digit appear in the high nibble (bits 7:4) of the first byte
of the string. Again the length in bytes of the string is L/2 + 1. The
value of a O length packed decimal string is identically O; it contains
only the sign byte which also includes the extra “‘0" digit.

The address A of the string specifies the byte of the string containing
the most significant digit in its high nibble. Digits of decreasing signifi-
cance are assigned to increasing byte addresses and from high nibble
to low nibble within a byte. Thus “4123" has length 3 and is repre-
sented:

and “—12'" has length 2 and is represented:

7 4 3 0
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CHAPTER 5

INSTRUCTION FORMATS and
ADDRESSING MODES

5.1 INTRODUCTION

This chapter describes the addressing modes used in programming the
VAX-11 computer. The addressing modes, together with a set of 16
general-purpose registers, provide a convenient method of accessing
and manipulating data stored in memory. The addressing modes specify
how the selected registers are used to access, manipulate, and store
data and instructions.

5.2 GENERAL REGISTERS
The VAX-11 general-purpose registers can be used with an instruction
in any of the following ways:

e As accumulators. The data to be processed is contained in the register.

e As pointers. The contents of the register are the address of the oper-
and, rather than the operand itself. This form is often referred to as
a base register because it frequently contains the base address of a
data structure.

e As pointers which automatically step through memory locations. Auto-
matically stepping forward through consecutive locations is known as
autoincrement addressing; automatically stepping backwards is known
as autodecrement addressing. These modes are particularly useful for
processing tabular data and manipulating stacks and are described
in subsequent paragraphs in this chapter.

e As index registers. When used as an index register, an offset is gen-
erated and is added to the base operand address to yield the indexed
location. This is described under Index Mode addressing in this chap-
ter.

One of the general-purpose registers is designated a stack pointer and
provides temporary storage for data which is frequently accessed. In
the VAX-11 any register can be used as a stack pointer under pro-
gram control; however, certain instructions associated with subroutine
linkage and interrupt service (both of which require storage of linkage
information) automatically use register R14 as a “hardware stack
pointer.” For this reason, R14 is frequently referred to as the ““SP’. The
stack pointer addresses decrease as items are added to the stack. This
is conveniently done by decrementing the address and “pushes’ data
on the stack. This is referred to as autodecrement addressing. The
stack pointer addresses increase as items are removed from the stack.
This is conveniently done by incrementing the address and ‘‘pops’ data
from the stack. This is referred to as autoincrement addressing. Con-
sequently, the stack pointer always points to the lowest addressed end
of the stack. The hardware stack is used during exception or interrupt
handling to store breakpoint information, allowing the processor to re-
turn to the main program.
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R15 is used by the processor as the program counter (PC) which points
to the next instruction in the program to be executed. Whenever an in-
struction is fetched from memory, the program counter is automatically
incremented by the number of bytes in the instruction.

5.3 INSTRUCTION FORMAT

The VAX-11 instruction set has a variable length instruction format
which may be as short as one byte and as long as needed depending
on the type of instruction. The general instruction format is shown in
Figure 5-1. Each instruction consists of an opcode followed by O to 6
operand specifiers whose number and type depend on the opcode.
Every operand specifier is of the same format—i.e., an address mode
plus additional information. This additional information contains up to
two register designators and addresses, data, or displacements. The
operand usage is determined implicitly from the opcode, and is termed
the operand type. The operand type includes both the access type and
the data type. Figure 5-2 shows several examples of VAX-11 instruction
formats.

OPCODE (1 OR 2 BYTES)
OPERATION CODE

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

N
t

Y
—
s ® o & e

OPERAND SPECIFIER N

Figure 5-1 General VAX-11 Instruction Format

5.3.1 Assembler Notation

The radix of the assembler is in decimal notation. To express a hexa-
decimal number in assembler notation it is required to precede the
number by “X. For example, the assembler interprets the 3456 in
“MOVW #3456, —(SP)"”" as a decimal number. If it is to be expressed
as a hexadecimal number, it would be
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MOVW #°X 3456, —(SP).

Examples of hexadecimal numbers and conversion between hex and
decimal are provided in Appendix A.

A. MOVE LONG INSTRUCTION

MOVL &{R1),R5 ;SIX 1S ADDED TO R, THE RESULT USED AS AN
; ADDRESS AND THE CONTENTS OF THAT ADDRESS
;1S MOVED TO RS

BYTE
1 MOVL OPCODE
2 (RY)
3 3 OPERAND SPECIFIER 1
4 RS OPERAND SPECIFIER 2

B. MOVE WORD INSTRUCTION
MOVW # "X3456,- (SP) ; THE NUMBER 3456 IS PUSHED ON THE
1 STACH

1 STACK
BYTE
1 MOVW OPCODE
2 (PC) + OPERAND SPECIFIER }
3 56 IMMEDIATE DATA {56 STORED IN BYTE 3)
4 34 (34 STORED IN BYTE 4)
5 —(SP) OPERAND SPECIFIER 2

C. ADD LONG INSTRUCTION ({3 OPERAND)
ADDL3 (SP)+, R4, R5 ; NUMBER ON THE STACK IS
; ADDED TO THE CONTENTS OF
; R4 AND RESULT IS STORED

; IN RS
BYTE
1 ADDL 3 OPCODE
2 (sp} + OPERAND SPECIFIER 1
3 R4 OPERAND SPECIFIER 2
4 (R5) OPERAND SPECIFIER 3

Figure 5-2 Examples of Instruction Format

5.3.2 Operation Code (OPCODE)

Each VAX-11 instruction contains an opcode which specifies the desired
operation to be performed. The opcode may be one or two bytes long,
depending on the instruction. The presently available instruction set
only uses a one-byte opcode. Figure 5-3 shows the opcode format.
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1 BYTE OPCODE
7 0
OPCODE

FC-FF
{1111 100 1111 111

2 BYTE OPCODE

Figure 5-3 Opcode Format

5.3.3 Operand Types

The operand types in an instruction specify how the operand asso-
ciated with an instruction is used. An instruction may have no oper-
ands, a single operand or multiple operands. The information derived
from the opcode includes the data type of each operand and how the
operand is accessed. The data types include:

Byte—38-bits

Word—16-bits

Longword—-32-bits

Floating—32-bit single-precision floating point (same as longword for
addressing mode considerations).

Quad word—64-bit

Double—64-bit double-precision floating point (same as quad word
for addressing mode considerations).

An operand may be accessed in one of the following ways:

Read—The specified operand is read only.
Write—The specified operand is written only.

Modify—The specified operand is read, may or may not be modified
and is written.

Address—Address calculation occurs until the actual address of the
operand is obtained. In this mode, the data type indicates the operand
size to be used in the address calculation. The specified operand is
not accessed directly although the instruction may subsequently use
the address to access that operand.

Variable field—If just Rn is specified, the field is in the general reg-
ister R[n] or in registers R[n+4-1] ' R[n] (i.e., registers R[n+1] con-
catenated with R[n]). Otherwise, address calculation occurs until the
actual address of the operand is obtained. This address specified the
base to which the field position (offset) is applied.

Branch—No operand is accessed. The operand specifier itself is a
branch displacement. In this specifier, the data type indicates the size
of the branch displacement.
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5.3.4 Operand Specifier

An operand specifier gives the information needed to locate the operand.
For the literal modes, the operand specifier actually includes the value
of the operand. Every operand specifier (except branch operands) has
the same format and interpretation. The format includes a field that is
the address mode. Depending on the mode, this field is 2, 4, or 8 bits.
Most address modes include additional information. Depending on the
mode up to two register designators are included.

The specifier can also include a displacement address to some location
other than the base-register memory location; or the specifier extension
can contain immediate data or an absolute address.

5.4 ADDRESSING MODES

VAX-11 addressing can be broadly divided into general mode addressing
and branch addressing. The two types of branch addressing are de-
signated byte displacement and word displacement. Section 5.5 describes
the general mode addressing and Section 5.8 describes branch mode
addressing.

Table 5-1 shows the mode specifier for each addressing mode in hex-
adecimal and decimal notation, the assembler notation, the access types
which may be used with the various modes, the effect on the program
and stack pointer, and which modes may be indexed. For example, in
literal mode only a read access may occur. Any other type of access
results in a reserved addressing mode fault. The program counter and
stack pointer are not referenced in this mode and are logically impos-
sible. If indexing is attempted in this mode, a reserved addressing mode
fault will occur.

Following the description of each address mode is an example of how
the mode is implemented. The examples show the opcode and operand
type notation (opcode src.rx, for example). The src designates source.
The r designates that only a read to the source can occur and the x
indicates any one of the available data types according to the instruc-
tion opcode.

5.5 GENERAL MODE ADDRESSING
5.5.1 Register Mode

Assembler
Syntax: Rn

Mode
Specifier: 5

Operand
Specifier
Format:
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Description:

Special
Comments:

EXAMPLE:

Instruction
Format:

R[nh+1] * R[n]. The operand is the contents of Rn for
quad, double floating and certain field operands used in
the variable bit length field instructions.

Operand = Rn if one register, or
R[n4-1]’ R[n] if two registers

With register mode, any of the general registers may be
used as simple accumulators and the operand is con-
tained in the selected register. Since they are hardware
registers within the processor, they provide speed ad-
vantages when used for operating on frequently-accessed
variables.

This mode can be used with operand specifiers using read,
write or modify access but cannot be used with the ad-
dress access type; otherwise, an illegal addressing mode
fault results. The program counter (PC) cannot be used
in this mode. If the PC is read, the value is unpredictable;
if the PC is written, the next instruction executed or the
next operand specified is unpredictable. If PC is used in
a write operand that takes two registers, the contents of
RO is also unpredictable.

The stack pointer (SP) cannot be used in this mode for
an operand which takes two adjacent registers since that
would imply a direct reference to the PC and the results
are unpredictable.

REGISTER MODE, MOVE WORD INSTRUCTION

MOVW R1, R2 Instruction moves a 16-
bit word of data from
R1 to R2.

BEFORE INSTRUCTION EXECUTION

RO Rl

Lelelalofo e fof [efedelofofefe]e]

AFTER INSTRUCTION EXECUTION

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000
00003001
00003002

8O OPCODE FOR MOVE WORD INSTRUCTION
51 OPERAND SPECIFIER, SOURCE; REGISTER MODE 1
52 OPERAND SPECIFIER, DESTINATION; REGISTER MODE 2



This example shows a Move Word instruction using reg-
ister mode. The contents of R1 is the operand and the
Move Word instruction causes the least significant half
of R1 to be transferred to the least significant half of
register R2. The upper half of register R2 is unaffected.

Table 5-1 Summary of Addressing Modes

GENERAL REGISTER ADDRESSING

Dec Name Assémbler

Hex rmwav PC SP Indexable?
0-3 0-3 literal S"# literal y ffff — — f
4 4  indexed i [Rx] yyyyy f y f
5 5 register Rn yyyfy u uqg f
6 6 register deferred (Rn) Yyyyy u y y
7 7 autodecrement —(Rn) Yyyyyy u y ux
8 8 autoincrement (Rn)+ YYYYyYYyYy p y ux
9 9 autoincrement

deferred @ (R)+ Yyyyy p y ux
A 10 byte displacement B"D (Rn) YyYyyyy p y y
B 11 byte displacement

deferred @BDR®R) yyyyy p y y
C 12 word displacement W'D (Rn) YYYYYyY p y y
D 13 word displacement

deferred @WDM®n) yyyyy p y y
E 14 longword displacement LD (Rn) YyYYYYyYy p y y
F 15 longword displacement

deferred @UDRn) yyyyy p oy y

PROGRAM COUNTER ADDRESSING

Hex Dec Name Assembler rmwav PC SP Indexable?
8 8 immediate I"Zconstant y uuyy — — y
9 9 absolute @#address y y y y y — — ¥
A 10 byte relative B address Yyyyy — — y
B 11 byte relative @Baddress y y y y y — — y

deferred
o] 12 word relative W-address yyyyy — — y
D 13 word relative @Waddress yyyyy — — y

deferred
E 14 longword relative L address yyyyy — — y
F 15 longword relative @Laddress y y yyy — — y

deferred

D — displacement
i — any indexabte addressing mode
— — logically impossible
f — reserved addressing mode fauit
p — Program Counter addressing
u — Unpredictable
ug — Unpredictable for quad and double (and field if position - size greater
than 32)
ux — Unpredictable for index register same as base register
y — yes, always valid addressing mode
r — read access
m — modify access
w — write access
a — address access
v — field access
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5.5.2 Register Deferred Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

Special
Comments:

EXAMPLE:

Instruction
Format:

(Rn)

6

The register deferred mode provides one level of indirect
addressing over register mode; that is, the general reg-
ister contains the address of the operand rather than the
operand itself. The deferred modes are useful when deal-
ing with an operand whose address is calculated.

The PC cannot be used in register deferred mode addres-
sing as the resuits will be unpredictable.

REGISTER DEFERRED MODE, CLEAR QUAD INSTRUC-
TION

CLRQ (R4)

BEFORE INSTRUCTION EXECUTION

00001010
00001011
00001012
00001013
00001014
00001015
00001016
00001017

ADDRESS

SPACE R4

AB ofolotol1r|lofl1]o0
co

EF
12
34
56
76
65
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AFTER INSTRUCTION EXECUTION

00001010
00001011
00001012
00001013
00001014
00001015
00001016
00001017

MACHINE CODE:

00003000
00003007
00003002

ADDRESS
SPACE Ra
00 oftofoflo]1v]o]r]|o
00
00
00
00
00
00
00

ASSUME STARTING LOCATION 00003000

7¢C OPCODE FOR CLEAR QUAD INSTRUCTION
64 OPERAND SPECIFIER FOR REGISTER DEFERRED MODE, R4

This example shows a Clear Quad instruction using Reg-
ister Deferred Mode. Register R4 contains the address of
the operand and the instruction specifies that this ad-
dress plus the following seven byte addresses are to be
cleared.

5.5.3 Autoincrement Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

(Rnm)+

8

In autoincrement mode addressing, the contents of Rn
contains the address of the operand. After the operand
address is determined, the size of the operand (which is
determined by the instruction) in bytes (1 for byte, 2 for
word, 4 for longword or floating and 8 for quad word
or double floating) is added to the contents of register
Rn and the contents of Rn is replaced by the result. This
mode provides for automatic stepping of a pointer
through sequential elements of a table of operands. It
assumes the contents of the selected general register to
be the address of the operand. Contents of registers are
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Special

Comments:

EXAMPLE:

Instruction
Format:

incremented to address the next sequential location. The
autoincrement mode is especially useful for array pro-
cessing and stacks. It will access an element of a table
and then step the pointer to address the next operand
in the table., Although most useful for table handling,
this mode is completely general and may be used for a
variety of purposes.

If the PC is used as the general register, this addressing
mode is designated immediate mode and has special
syntax which is described in paragraph 5.7.1.

AUTOINCREMENT MODE, MOVE LONG INSTRUCTION

MOVL (R1)+4, R2 This instruction will
move a longword of
data (32 bits) to R2.

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE

RI R2
ooomovo} [ﬂoooooo |

00001010 00

00001011 B OPERAND

00001012 22

00001013 33

00001014 44

00001015 53 SOURCE OPERAND ADDRESS = 00001010

AFTER INSTRUCTION EXECUTION

ADDRESS
SPACE RI R2
00001010 | 00 [oooomu | [ 33221100 I

00001011 11
00001012 22
00001013 33
00001014 44
00001015 55

MACHINE CODE: ASSUME STARTING LOCATION 3000

00003000 DO OPCODE FOR MOVE LONG WORD INSTRUCTION
00003001 81 AUTOINCREMENT MODE, REGISTER R1
00003002 52 REGISTER MODE , REGISTER R2

00003003

This example shows a Move Long instruction using auto-
increment mode. The contents of register R1 is the effec-
tive address of the source operand. The operand is a
32-bit longword and, therefore, four bytes are transferred
to register R2. R1 is then incremented by 4 since the
instruction specifies a longword data type.
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5.5.4 Autoincrement Deferred Mode

Assembler

Syntax: @ (Rn)+4

Mode

Specifier: 9

Operand

Specifier

Format:

7 4 3 0
9 Rn

Description:  In autoincrement deferred addressing, register Rn con-
tains a longword address which is a pointer to the oper-
and address. After the operand address has been deter-
mined, 4 is added to the contents of register Rn and the
contents of register Rn is replaced with the result. The
quantity 4 is used since there are 4 bytes in an address.

Special

Comments: If the PC is used as the general register, this addressing
mode is designated absolute mode and is described in
paragraph 5.7.2.

EXAMPLE: AUTOINCREMENT DEFERRED MODE, MOVE WORD IN-
STRUCTION

Instruction

Format: MOVW @(R1)+4, R2

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R1 R2
00001010 | o0 00001010 ] | 00000000

00001011 1 OPERAND ADDRESS
00001012 22 33221100

00001013 33
00001014 44
00001015 55

L

33221100 34
33221101 5F
33221102 00
33221103 00

AFTER INSTRUCTION EXECUTION

RI R2
Loooomla I roooos::aa ]
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VMACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 BO OPCODE FOR MOVE WORD INSTRUCTION
00003001 21 AUTOINCREMENT DEFERRED MODE, REGISTER R)
00003002 52 REGISTER MODE, REGISTER R2

This example shows a Move Word instruction using auto-
increment deferred mode. The contents of register R1 is
a pointer to the operand address. Since a word length
instruction is specified, the byte at the effective address
and the byte at the effective address plus 1 are loaded
into the low-order half of register R2 with the upper half
of R2 unspecified. R1 is then incremented by 4 since it
contains a 32-bit address.

5.5.5 Autodecrement Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

Special
Comments:

EXAMPLE:

—(Rn)

7

The contents of Rn are decremented and then used as
the address of the operand.

With autodecrement mode, the size of the operand in
bytes (1 for byte, 2 for word, 4 for longword or floating
and 8 for quad word or double) is subtracted from the
contents of register Rn and the contents of register Rn
are replaced by the result. The updated contents of reg-
ister Rn is the address of the operand. The contents of
the selected general register are decremented and then
used as the address of the operand.

The PC may not be used in autodecrement mode. If it is,
the address of the operand is unpredictable and the next
instruction executed or the next operand specifier is
unpredictable.

AUTODECREMENT MODE, MOVE LONG INSTRUCTION
MOVL —(R3), R4
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BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R3 R4
00001014 | 10 1 | 00001018 | [ 00000000
50001015 32
00001016 54 CES43210
00001017 CE
AFTER INSTRUCTION EXECUTION R3 R4

LOOOO]OM J l CESASZIOJ

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 Do OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3
00003002 54 REGISTER MODE, REGISTER R4

This example shows a Move Long instruction using auto-
decrement mode. The contents of register R3 is decre-
mented according to the data type specified in the op-
code (4 in this example because a longword is used).
The updated contents of register R3 is then used as the
address of the operand. The instruction causes the oper-
and to be fetched and loaded into register R4.

5.5.6 Literal Mode

Assembler
Syntax: S™# literal

Mode
Specifier: 0,1,20r3
(depending on literal value specified)

Operand
Specifier
Format:

0 0 LITERAL

The $” syntax can be used to force literal mode; otherwise,
the assembler will force literal or immediate mode, which-
ever is more appropriate.
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Description:  Literal mode addressing provides an efficient means of
specifying integer constants in the range from 0 to 63
(decimal). This is called short literal. Literal values above
63 can be obtained by immediate mode (autoincrement
mode using the PC). For short literal operands, the for-
mat is:

MODE SPECIFIER
7 -] 5 4 0
0 0

Bits 7 and 6, however, are always set to zero. The follow-
ing examples show some short literals; the literals are 14,
30, 46, and 62.

MODE
SPECIFIER=0
T
FIER =0
o o olo o 1 1 1 o :isAr(\)lE';]ES%F MODE SPECIFIER
1 1 A 1 1 1
Y _/
MODE Min=0
SPECIFIER=] 1070816
0 o olo 1 1 1 1 o lRSAI;IOG_% ]?; MODE SPECIFIER = |
1 1 1 1 1 1
(N J
MODE .
SPECIFIER=2 30y = 1E
0 o ol1 o 1 1 1 o :QSAaNzG_Ea??; MODE SPECIFIER =2
1 1 . 1 IS 1
“ ./
MODE 46,0 = 2E
SPECIFIER= 3 10
2 |0 o1 1 1 1 1 o :QSAT;S-Eé :’OF MODE SPECIFIER= 3
i L : s " N 10
\ J
62 = 3E

Floating point literals as well as short literals can be
expressed. The floating point literals are listed in Table
5-2. For operands of the short floating type, the 6-bit
literal field in the operand specifier is composed of two
3-bit fields where EXP designates exponent and FRAC
designates fraction.
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EXP FRAC

The 3-bit EXP field and 3-bit FRAC field are used to form

a fioating or double-floating operand as follows:

EXP FRAC
———
15 14 13 12 11 10 9 8 7 6 5 4 3 0
o[ fofelele] [T [ F—o—r

63 48

NOTE
Bits 32-63 are not present in single-precision
floating point operands.

Bits 3 through 5 of the EXP field are stored in bits 7
through 9, respectively, of the floating operand. Bits O
through 2 of the FRAC field are stored in bits 4 through
6, respectively, in the floating operand. The actual
decimal values which can be stored are given in Table
5-2.

The EXP field is expressed in ‘“‘excess 128" notation. In
this notation, an offset of 128 is actually added to the
exponent. For example, an exponent of zero is repre-
sented as 128 or 10000000 (binary), while an exponent
of three is represented as 131 or 10000011 (binary).

Assume it is desired to express the floating point literal
of 12. Table 5-2 shows this decimal literal of 12 to be
represented by a fraction of 4 and an exponent of 4.

LITERAL MODE
76543210

ojo|1tfojoj1(o|o

N .
154 B2 1109 8 265 4.3 0

0]1({010{0|0[1]0[0}1]10|0|=—0—=

31 16
o]

FLOATING OPERAND
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Table 5-2 Floating Literals

Exponent FRACTION

0 1 2 3 4 5 6 7
0 L s % s 34 s 78 Yis
1 1 114 11, 134 11, 154 134 17
2 2 24, 2y, 23/, 3 3y, 3y, 33,
3 4 41/, 5 51, 6 6%, 7 7Y,
4 8 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120

EXAMPLE: LITERAL MODE, MOVE LONG INSTRUCTION

MOVL S"# 9, R4

BEFORE INSTRUCTION EXECUTION

R4
00000000

AFTER INSTRUCTION EXECUTION
R4

00000009

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION
00003001 09 LITERAL 9
00003002 54 REGISTER MODE, REGISTER R4

This example shows a Move Long instruction using literal
mode. The literal 9 is transferred to register R4 as a re-
sult of the instruction.

5.5.7 Displacement Mode

Assembler

Syntax: D(Rn)—general displacement syntax
B"D(Rn)—forces byte displacement
W*"D(Rn)—forces word displacement
L*D(Rn)—forces longword displacement

Mode

Specifier: A—(byte displacement)

C—(word displacement)
E—(longword displacement)
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Operand
Specifier
Format:

15 8 7 4 3 0
T I
DISP. I A | Rn BYTE DISPLACEMENT MODE
23 8 7 4 3 0
[ DISP. ‘ C | Ra l WORD DISPLACEMENT MODE
39 8 7 4 3 0
r DISP. | E ] Rn ‘ LONG WORD DiSPLACEMENT MODE

Description:

EXAMPLE:

In displacement mode addressing, the displacement
(after being sign extended to 32 bits if it is a byte or
word) is added to the contents of register Rn and the
result is the operand address. This mode is the equiv-
alent of index mode in the PDP-11 series.

The VAX-11 architecture provides for an 8-bit, 16-bit or
32-bit offset. Since most program references occur with-
in small discrete portions of the address space, a 32-bit
offset is not always necessary and the 8- and 16-bit off-
sets will result in substantial economies of space (that
is, fewer bits are required).

If the PC is used as the general register, this mode is
called relative mode and is described in paragraph 5.7.3.

DISPLACEMENT MODE, MOVE BYTE INSTRUCTION
MOVB B*5(R4), B"3(R3)

BEFORE INSTRUCTION EXECUTION

A?&FESS R4 R3
00001015 00 [Roowlz ] ’oooozo:o
00001016 00
00001017 06 | <— OPERAND
00001018 00 00001012 00002020
00001019 L—— +3 +3
00001017 00002023
 ————
00002021 00

00002022 00
00002023 00

__~



AFTER INSTRUCTION EXECUTION

00001015 00 IOOOOIOI'Z—l L0002020 |
00001016 00
00001017 06
00001018 _’0‘.;___
00001019
00002021 00
00002022 00

00002023 06 | -<— OPERAND
—"\_/")

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 90 OPCODE FOR MOVE BYTE INSTRUCTION
00003001 A4 SIGNED BYTE DISPLACEMENT, REGISTER R4
00003002 05 SPECIFIER EXTENSION (DISPLACEMENT OF 5)
00003003 A3 SIGNED BYTE DISPLACEMENT, REGISTER R3

00003004 03 SPECIFIER EXTENSION (DISPLACEMENT OF 3)
L—

This example shows a Move Byte instruction using dis-
placement mode. A displacement of 5 is added to the
contents of Register R4 to form the address of the byte
operand. The operand is moved to the address formed
by adding the displacement of 3 to the contents of Reg-
ister R3.

5.5.8 Displacement Deferred Mode

Assembler
Syntax: @ R(Rn)

@ B"D(Rn) byte displacement deferred

@ W'D(Rn) word displacement deferred

@ L"D(Rn) long word displacement deferred
Mode

Specifier: B—(byte displacement)
D—(word displacement)
F—(longword displacement)

Operand
Specifier
Format:
15 8 7 4 3 )
SPECIFIER EXTENSION IS
oISk b f BYTE DISPLACEMENT DEFERRED
23 8 7 4 3 0
3 SPECIFIER EXTENSION 15
DISP. o WORD DISPLACEMENT DEFERRED
39 8 7 4 3 0
SPECIFIER EXTENSION IS
DISP. F f LONG WORD DISPLACEMENT DEFERRED




Description:

EXAMPLE:

In displacement deferred mode addressing, the displace-
ment (after being sign-extended to 32 bits if it is a
byte or word) is added to the contents of the selected
general register and the result is a longword address of
the operand address.

If the PC is used as the general register, this mode is
called relative deferred mode and is described in para-
graph 5.7.4. :

DISPLACEMENT DEFERRED MODE, INCREMENT WORD
INSTRUCTION
INCW @W"5(R4)

BEEORE INSTRUMENT EXECUTION

R4

00001017 88 00001012
00001018 42 OPERAND
00001019 24 ADDRESS 00001012
00001020 68 —_*5

L 60001017
68244288 13

R

68244289 57 } OPERAND 5713 OPERAND

P + 1 INCREMENT

AFTER INSTRUCTION EXECUTION

68244288

68244289

5714 NEW OPERAND

R4

00001012

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 B6 OPCODE FOR INCREMENT WORD INSTRUCTION

00003001

D4 SIGNED WORD DISPLACEMENT, REGISTER R4

00003002 05 SPECIFIER EXTENSION REGISTER R4 PLUS SIGN
00003003 00 EXTENDED WORD DISPLACEMENT

5.6 INDEX M

Assembler
Syntax:

Mode

ODE

i[Rx]

Specifier: 4
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Operand
Specifier
Format:

b

Description:

Special
Comments:

PRIMARY OPERAND

_____ 15 8 7 4 3 (1]

BASE OPERAND SPECIFIER 4 I Rx |
L s n

The operand specifier consists of at least two bytes—a
primary operand specifier and a base operand specifier.
The primary operand specifier contained in bits O through
7 includes the index register (Rx) and a mode specifier of
4. The address of the primary operand is determined by
first multiplying the contents of index register Rx by the
size of the primary operand in bytes (1 for byte, 2 for
word, 4 for longword or floating, and 8 for quad word
or double). This value is then added to the address
specified by the base operand specifier (bits 15-8), and
the result is taken as the operand address.

The chief advantage of index mode addressing is to pro-
vide very general and efficient accessing of arrays. The
VAX-11 architecture provides for context indexing where-
by the number in the index register is shifted left by the
context of the data type specified (once for byte, twice
for word, three times for longword, four times for quad-
word). This allows loop control variables to be used in
the address calculation without first shifting them the
appropriate number of times, thus minimizing the num-
ber of instructions required. This feature is used to ad-
vantage in the FORTRAN IV PLUS compiler.

Specifying register, literal, or index mode for the base
operand specifier will result in an illegal addressing mode
fault. If the use of some particular specifier is illegal
(causes a fault or unpredictable behavior), then that
specifier is also illegal as a base operand specifier in
index mode under the same conditions.

The following restrictions are placed on index register Rx:

e The PC cannot be used as an index register. If it is, a
reserved addressing mode fault occurs.

e If the base operand specifier is for an addressing mode
which results in register modification (autoincrement,
autoincrement deferred, or autodecrement), the same
register cannot be the index register. If it is, the pri-
mary operand address is unpredictable.

Table 5-3 lists the various forms of index mode addres-
sing available. The names of the addressing modes re-
sulting from index mode addressing are formed by add-
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ing “indexed” to the addressing mode of the base oper-
and specifier. The general register is designated Rn and
the indexed register is Rx.

Table 5-3
Index Mode Addressing

MODE ASSEMBLER NOTATION
Register deferred index (Rn) [Rx]
Autoincrement indexed (Rn) 4+ [Rx]

Immediate indexed

|# constant [Rx] which is recog-
nized by assembler but is not
generally useful. Operand ad-
dress is independent of value of
constant.

Autoincrement deferred indexed
Absolute indexed

@(Rn) + [Rx]
@#address [Rx]

Autodecrement indexed

—(Rn) [Rx]

Byte, word or longword displace-
ment indexed

B D(Rn) [Rx]
WD(Rn) [Rx]
L*D(Rn) [Rx]

Byte, word or longword displace-
ment deferred indexed

@B"D(Rn) [Rx]
@WD(Rn) [Rx]

@L"D(Rn) [Rx]

EXAMPLE:

It is important to note that the operand address (the
address containing the operand) is first evaluated and
then the index specified by the index register is added
to the operand address to find the indexed address.
To illustrate this, an example of each type of indexed
addressing is shown on the following pages.

REGISTER DEFERRED INDEXED MODE,
WORD INSTRUCTION
INCW (R2) [R5]

INCREMENT

BEFORE INSTRUCTION EXECUTION

00001012 04
00001013 56
00001014 78
00001015 87

00001018 45

OPERAND
00001019 /:LJ}

ADDRESS
SPACE R2 RS

[ 00001012 | | 00000003

314%2 BYTES PER WORD = 6

- —
00001012
+é6

00001018
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AFTER INSTRUCTION EXECUTION

R2 RS
00001018 46 0000]012] L00000003 I
00001019 67

ASSEMBLY CODE: ASSUME STARTING LOCATION 00003000

00003000 B6 OPCODE FOR INCREMENT WORD INSTRUCTION
00003001 45 INDEX MODE, REGISTER RS
0000 3002 62 REGISTER DEFERRED MODE, REGISTER R2

This example shows an Increment Word instruction
using register deferred index addressing. The base oper-
and address is evaluated. This location is indexed by 6
since the value (3) in the index register is multiplied by
the word data size of 2.

EXAMPLE: AUTOINCREMENT INDEXED MODE, CLEAR LONGWORD

INSTRUCTION
CLRL (R4) + [R5]

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R4 RS
00001046 00001012 | [ 00000025 |
00001047
OPERAND
000010A8 INDEX 25,54 BYTES PER
00001049 LONGWORD
= 94y
00001012
000000 94

ADDRESS OF OPERAND 000010A6

AFTER INSTRUCTION EXECUTION
R4 RS
00001046 00 00001016 l [00000025
000010A7 00
000010A8 00
000010 A9 00

MACHINE CODE: ASSUME STARTING LOCATION 00003000

g

00003000 D4 OPCODE FOR CLEAR LONGWORD INSTRUCTION
00003001 45 INDEX MODE, REGISTER RS
00003002 84 AUTOINCREMENT MODE, REGISTER R4
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EXAMPLE:

This example shows a Clear Long instruction using the
autoincrement indexed addressing mode. The base oper-
and address is in register R4. This value is indexed by
the quantity in register R5 multiplied by the data size.
This location, plus the next three, are cleared since a
clear longword instruction is specified.

AUTOINCREMENT DEFERRED INDEX MODE, CLEAR
WORD INSTRUCTION
CLRW @(R4) + [R5]

BEFORE INSTRUCTION EXECUTION

00001012
00001013
00001014
00001015

06082140
0608214€E
0608214F

ADDRESS
SPACE R4 RS
43 [00001012 | | 00000005 |
21
08 | (NoperanD 516 %2 BYTES PER WORD = 0000000 A
06 ADDRESS
06082143
00000004
0608214D
ADDRESS
SPACE
22
33 | JNOPERAND
56
L

AFTER INSTRUCTION EXECUTION

060821 4D
0608214E
060821 4F

MACHINE CODE:

00003000
00003001
00003002

R4 RS
00 [oooo IOiI l?ooooocil

00

Ls-é/_

ASSUME STARTING LOCATION 00003000

84 OPCODE FOR CLEAR WORD INSTRUCTION
45 INDEX MODE, REGISTER RS
94 AUTOINCREMENT DEFERRED MODE, REGISTER R4

Lo~

This example shows a Clear Word instruction using the
autoincrement deferred indexing mode. Register R4 con-
tains the address of the operand address. The index value
of A is obtained by multiplying the contents (5) of the
index register by the context of the data type which is 2.
The calculated word address is cleared.
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EXAMPLE:  AUTODECREMENT INDEXED MODE, CLEAR WORD IN-
STRUCTION
CLRW —(R2) [R4]

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R2 R4

00001014 | 33 00001016 | | 00000003

00001018 | 33

0000101C 33 3]6 x 2 BYTES PER WORD = 6 (INDEX)

0000101D 33

00001016

00000002 DECREMENT BY 2
00001014 OPERAND ADDRESS
00000006 INDEX VALUE

O000101A INDEXED OPERAND ADDRESS

AFTER INSTRUCTION EXECUTION

ADDRESS
SPACE R2 RA
00001014 | 00 Booomu [ Iooooooos

00001018 00
0000101C 33
0000101D 33

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 B4 OPCODE FOR CLEAR WORD INSTRUCTION
00003001 44 INDEX MODE , REGISTER R4

00003002 72 AUTODECREMENT MODE, REGISTER R2

This example shows a Clear Word instruction using auto-
decrement indexed mode. The contents of register R2
are predecremented and the indexed value is calculated
as 6. Since a clear word instruction is specified, two bytes
are cleared.

EXAMPLE:  ABSOLUTE INDEXED MODE, CLEAR LONGWORD IN-
STRUCTION
CLRL @ #°X1012 [R2]

BEFORE INSTRUCTION EXECUTION

R2
1026 a5 00000005
1027 36
1028 81 5167414y,
1029 4
3 00001012
000000 14
AFTER INSTRUCTION EXECUTION 00001026
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EXAMPLE:

1026 00

1027 00 R2
1028 00 00000005
1029 00

This example shows a Clear Longword instruction using
absolute indexed mode. The base of 00001012 is in-
dexed by R2 which contains 5. Since a longword data
type is specified, 5 x 4 = 14,¢ which becomes the index
value. This value is added to 00001012 yielding 0000-
1026. This is the operand address and four bytes are
cleared since a longword data type has been specified.

DISPLACEMENT INDEXED MODE, CLEAR QUADWORD
INSTRUCTION
CLRQ 2(R1) [R3]

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE Rl R3
0000402 | 24 00004000 | [ 00000005
00004028 | 68
0000402C | 13 516 8 BYTES PER QUAD WORD
00004020 57 =284 (INDEX)

0000402E 62
0000402F 43

00004000 CONTENTS OF R}

00004030 34 00000002 BYTE DISPLACEMENT
00004031 L\“]_/ 00004002

EXAMPLE:

00004002 OPERAND ADDRESS
00000028 INDEX
0000402A INDEXED OPERAND ADDRESS

This example shows a Clear Quadword instruction using
displacement index mode. The byte displacement of 2
is added to the contents of register Rl. The index which
is calculated as 28 is added to this address. This location
and the next seven locations (since a quadword instruc-
tion is specified) are cleared.

DISPLACEMENT DEFERRED INDEX MODE, MOVE LONG
INSTRUCTION
MOVL @ "X14 (R1) [R3], RS
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BEFORE INSTRUCTION EXECUTION

00001012
00001013
00001014
00001015

00001026
00001027
00001028
00001029

44332221
44332222
44332223
44332224
44332225

ADDRESS
SPACE

34

0O ZP>omo0

AFTER INSTRUCTION EXECUTION

00001012

00000004

67452301

b E-
Iu. Ia I-‘

Rl

12 00001012

R3

56 00000004

RS

00000000

00001012

00000014

00001026

44332211

00000010

44332221

4)6% 4 BYTES PER LONGWORD
= 105 (INDEX)

CONTENTS OF Rl
DISPLACEMENT
ADDRESS OF OPERAND ADDRESS

OPERAND ADDRESS
INDEX
INDEXED OPERAND ADDRESS

This example shows a Move Long instruction using dis-
placement deferred indexed addressing. The displacement
of 14 is added to the contents of register R1 yielding
00001026. The contents of this location yield the oper-
and address (44332211). This quantity is added to the
index yielding the indexed operand address of 44332221.
The contents of this address are then moved into reg-
ister R5 as shown.

5.7 PROGRAM COUNTER ADDRESSING

Register R15 is used as the program counter. It can also be used as a
register in addressing modes. The processor increments the program
counter as the opcode, operand specifier and immediate data or addresses
(of the instruction) are evaluated. The amount that the PC is incre-
mented is determined by the opcode, number of operand specifiers, etc.

The PC can be used with all of the VAX-11 addressing modes except
register or index mode since the results will be unpredictable. The
following four modes utilize the PC as the general register.
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MODE NAME ASSEMBLER FUNCTION

8 Immediate I"#0perand Constant operand
follows address mode

9 Absolute @#Location Absolute address
foliows address mode

A Byte relative B*G (R) Displacement is added

to current value of
PC to obtain operand

address

C Word relative WG (R)

E Longword relative L°G (R)

B Byte relative deferred @ B"G (R) Displacement is added
to current value of
PC to yield address
of operand address

D Word relative deferred @ WG (R)

F Longword relative @ L"G (R)

deferred

Immediate mode—same as autoincrement mode, except PC is used as
general register.

Absolute mode—same as autoincrement deferred mode, except PC is
used as general register.

Relative mode—same as displacement mode, except PC is used as gen-
eral register.

Relative deferred mode—same as displacement deferred mode except
PC is used as general register.

When a standard program is available for different users, it is often
helpful to be able to load it into different areas of memory and run it
there. The VAX-11/780 can accomplish the relocation of a program very
efficiently through the use of position independent code (PIC). If an in-
struction and its objects are moved in such a way that the relative
distance between them is not altered, the same offset relative to the PC
can be used in all positions in memory.

5.7.1 Immediate Mode

Assembler

Syntax: I"# operand
Mode

Specifier: 8
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Operand
Specifier
Format:

CONSTANT 8 1

SIZE DEPENDS
ON CONTEXT

Description:

EXAMPLE:

The immediate addressing mode is autoincrement mode
when the PC is used as the general register. The contents
of the location following the addressing mode is immedi-
ate data.

IMMEDIATE MODE, MOVE LONG INSTRUCTION
MOVL #6, R4

BEFORE INSTRUCTION EXECUTION

PC

00001012
00001013
00001014
00001015
00001016
00001017
00001018

OPCODE FOR MOVE LONG INSTRUCTION
OPERAND SPECIFIER, AUTOINCREMENT PC (IMMEDIATE)

—>{MMEDIATE DATA Re

REGISTER MODE, REGISTER R4

AFTER INSTRUCTION EXECUTION

00001014
00001015
00001016
00001017

06 IMMEDIATE
00 DATA
00
00
RA

00000006

This example shows a Move Long instruction using imme-
diate mode. The immediate data (00000006) following
the opcode and operand specifier is moved to the con-
tents of R4.

5.7.2 Absolute Mode

Assembler
Syntax:

Mode
Specifier:

@ #location

9
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Operand
Specifier
Format:

39 8 7 43 0
ADDRESS 9 F

Description:  This mode is autoincrement deferred using the PC as the
general register. The contents of the location following
the addressing mode are taken as the operand address.
This is interpreted as an absolute address (an address
that remains constant no matter where in memory the
assembled instruction is executed).

EXAMPLE:  ABSOLUTE MODE, CLEAR LONG INSTRUCTION
CLRL @#°674533

BEFORE INSTRUCTION EXECUTION

S

00001012 D4 OPCODE FOR CLEAR LONG INSTRUCTION

00001013 9F OPERAND SPECIFIER, AUTOINCREMENT DEFERRED PC (ABSOLUTE)
00001014 33
00001015 45
00001016 67
00001017 00

00001018 55
P

OPERAND ADDRESS

00674533 23
00674534 45
00674535 72
00674536 83

AFTER INSTRUCTION EXECUTION

00674533 00
00674534 00
00674535 00
00674536 00

e e

This example shows a Clear Longword instruction using
the absolute addressing mode. This instruction causes
the location(s) following the addressing mode to be taken
as the address of the operand, and is 00674533, in this
case. The longword operand associated with this address
is cleared.
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5.7.3 Relative Mode

SPECIFIER EXTENSION 15
BYTE DISPLACEMENT

SPECIFIER EXTENSION 1S
WORD DISPLACEMENT

SPECIFIER EXTENSION IS
LONG WORD DISPLACEMENT

added to the PC and the sum becomes

Assembler

Syntax: B"D—Byte displacement
W D—Word displacement
L"D—Longword displacement

Mode

Specifier: A (Byte), C (Word), E (Longword)

Operand

Specifier

Format:

15 8 7 4 3 0
| DISP. ’ A ‘ F J
23 8 7 4 3 [4]
| DISP. l c I F
39 8 7 4 3 0
I DISP. I E l F ]

Description:  This mode is the displacement mode the PC used as the
general register. The displacement, which follows the op-
erand specifier, is
the address of the operand. This mode is useful for writ-
ing position independent code since the location refer-
enced is always fixed relative to the PC.

EXAMPLE: RELATIVE MODE,

MOVL "X2016, R4

BEFORE INSTRUCTION EXECUTION

ADDRESS
PC~\\\\\‘ SPACE
00001012 DO
00001013 CF
00001014 00 }/,
00001015 10
00001016 sa
b~
00002016 77
00002017 00
00002018 86
00002019 00
R

AFTER INSTRUCTION EXECTION

MOVE LONGWORD INSTRUCTION

R4

00000000

OPCODE FOR MOVE LONG
DISPLACEMENT MODE WITH PC
DISPLACEMENT = 1000

REGISTER MODE, REGISTER R4

00001016
1000
00002016,
00002016,
LONG WORD
OPERAND
R4
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This example shows a Move Long instruction using rela-
tive mode. The word following the address mode is added
to the PC to obtain the address of the operand.

In this example, the PC is pointing to location 00001016
after the first operand specifier is evaluated. The word
following the opcode and first operand specifier is 0000-
1000, and is added to the PC yielding 00002016. This
value represents the address of the longword operand
(00860077). This operand is then moved to register R4.
The PC contains 00001017 after instruction execution.

5.7.4 Relative Deferred Mode

Assembler
Syntax: @ B"D—Byte displacement deferred
@ WD—Word displacement deferred
@ L"D—Longword displacement deferred
Mode
Specifier: A (byte deferred), C (word deferred), E (longword de-
ferred)
Operand
Specifier
Format:
15 8 7 4 3 0
I .
23 8 7 4 3 0
| I ST SN e
39 8 7 4 3 0

| SPECIFIER EXTENSION 1S

} DISP. ‘ £ I F LONG WORD DISPLACEMENT DEFERRED

Description:  This mode is similar to relative mode, except that the
displacement, which follows the addressing mode, is
added to the PC and the sum is a longword address of
the address of the operand. This addressing mode is
useful when processing tables of addresses.

EXAMPLE: RELATIVE DEFERRED MODE, MOVE LONG INSTRUCTION
MOVL @°X2050, R2
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BEFORE INSTRUCTION EXECUTION

PC\ g2
00002000 DO MOVE LONG OPCODE 00000000
00002001 BF BYTE DISPLACEMENT FROM PC
00002002 4D | AMOUNT OF DISPLACEMENT
00002003 52 REGISTER MODE, REGISTER 2
L
DISPLACEMENT
ALCULATION
00002050 00 OPERAND 00002003
00002051 60 | \aporess 40
00002052 00 00002050
00002053 00
e
"""
00006000 67
00006001 45 OPERAND
00006002 23
00006003 01
L

AFTER INSTRUCTION EXECUTION )
R

01234567

This example shows a Move Long instruction where
00002050 represents the address of the operand. A byte
displacement would be selected by the assembler since
the displacement is within 128 (decimal) addressable
bytes. When the displacement is evaluated, the program
counter is pointing to 00002003. The displacement of 4D
is added to the current value of the PC yielding the ad-
dress of 00002050. The contents of this address are then
used as the effective operand address of 00006000, and
the operand of 1234567 is moved to R2.

5.8 BRANCH ADDRESSING

Assembler

Syntax:
Mode

Specifier:

Operand
Specifier
Format:

A

None

DISPLACEMENT

OR

" DISPLACEMENT
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Description:

EXAMPLE:

CMPB C, #'0
BLSSU NOT

CMPB C, #'9
BGTRU NOT

EXAMPLE:
BBS #2,B,X

BBSC #2,B,X

BLBS B,X

In branch displacement addressing, the byte or word dis-
placement is sign extended to 32 bits and added to the
updated contents of the PC. The updated contents of the
PC is the address of the first byte beyond the operand
specifier.

The assembler notation for byte and word branch dis-
placement addressing is A where A is the branch address.
Note that the branch address and not the displacement
is used.

Branch instructions are most frequently used after in-
structions like compare (CMP) and are used to cause
different actions depending on the results of that com-
pare.

UNSIGNED BRANCH

This example causes a branch to location NOT if C is
not a digit (i.e.,, C is treated as an unsigned number
outside the range O through 9).

;Compare C and ASCIl representation of digit O

;Branch to location NOT if less
than an unsigned O.

;Compare C and ASCI! representation of digit 9.
;Branch to location NOT if greater

than an unsigned 9.

BRANCH ON BIT

;branches to X if the bit #2in B
iisset (=1)

;branches to X if the

;bit #2in Bis set (= 1) and
;bit is then cleared

;branches to X if bit

i0of Bisset (= 1)
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CHAPTER 6

INTEGER AND FLOATING
POINT INSTRUCTIONS

6.1. INSTRUCTION SET OVERVIEW

A major goal of the VAX-11 architecture is to provide an instruction set
that is symmetrical with respect to data types. For example, the ADD
instruction occurs for each of the five integer and floating point data
types. These instructions are available symmetricaily for each of the
three integer data types (byte, word, and longword) and the two floating
point data types (floating and double). The symimetric operations include
data movement, data conversion, data testing and computation. Thus
both assembly language programmers and compilers can choose the
instruction to use independently of the data type.

To simplify the understanding of the instruction set, the instruction
mnemonics are formed by combining an operation prefix with a data
type suffix. The convert instructions are formed by adding suffixes for
both the source and destination data types. The computation instruc-
tions include a further suffix to indicate the choice between two-operand
and three-operand instructions. The special instruction mnemonics have
been chosen for similarity. Figures 6-1 and 6-2 show the instruction
mnemonics. For example, a move word instruction has the mnemonic
MOVW while a move floating instruction has the mnemonic MOVF.

INSTRUCTION DATA TYPE NO. OF OPERANDS
MOVe Byte

ClearR Word

Move NEGative Longword 2 operand
CoMPare Floating

TeST Double

Move Complement Evy:%
Bit Test

Longword
(Byte Byte
Word Word
ConVerT Longword Longword < 2 operand
Floating Floating
LDouble Double

except BB, WW, LL, FF, DD

hY ’Bytg hY I
ADD Word
SUBtract 2 operand
MULti Longword
tiply Floating 3 operand
Divide Double



Bit Set Byte 2 operand
Blt Clear Word 3 operand
eXclusive OR Longword P

Extended MODulous Floating
POLYnomial } {Double {2 operand

Figure 6-1 Integer & Floating Instructions

INSTRUCTION DATA TYPE
PUSH Longword

INCrement l \I'Bv)gtfd
DECrement J Longword
MOVe

CLeaR Quadword

Byte to Longword

Byte to Word
MOVe Zero-extend } {
Word to Longword

Floatin
ConVerT Round {Doubleg }to longword
ADd Aligned Word
under memory Interlock

ADd With Carry
SuBtract With Carry
Extended MULtiply
Extended DlVide

. . . Longword
Arithmetic SHift Quadword

ROTate Longword

Figure 6-2 Optimizations and Special Operations

The move operations are simple move, clear (move zero), arithmetic
negate, and logical complement. Move and clear are also available for
the quadword data type. The logical complement operations are avail-
able only for the three integer data types because these are the logical
types. Both negate and complement include a move, rather than being
restricted to altering an operand in place. VAX-11 includes a complete
set of converts from each of the five data types to each of the other
types. In addition, special converts exist to round floating data to integer,
and to extend unsigned integers to larger integers. The data comparison
and testing instructions are comparison, test against zero, and multiple
bit testing.
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VAX-11 computation instructions for all five data types are add, sub-
tract, multiply, and divide. The logic computation instructions are for
the three integer data types and are bit set (inclusive or), bit clear
(complement and), and exclusive or. The arithmetic and logical compu-
tation instructions are available in both two and three operand forms
for each applicable data type. The two operand form takes as input the
value of each operand and stores the result as a modification to the
second operand. The three operand form takes as input the values of
the first two operands and stores the result in the third operand.

The integer optimizations include an instruction to push a longword
onto the stack. Each integer data type includes operations for increment
and decrement by one. VAX-11 includes special instructions to imple-
ment multiple precision integer arithmetic add, subtract, multiply, and
divide. A special variant of integer add is an operation that adds a word
under a memory interlock (for operating system counters in a multi-
processor system). VAX-11 includes special floating point instructions
for modules (range reduction) and polynomial calculation to aid in
the implementation of mathematical functions. VAX-11 also includes
shift and rotate instructions.

6.2 FLOATING POINT INSTRUCTIONS

In order to be consistent with the floating point instruction set which
faults on reserved operands (see Chapter 4), software implemented
floating point functions (e.g., the absolute function) should verify that
the input operand(s) is (are) not reserved. An easy way to do this is a
floating or double fioating move or test of the input operand(s).

In order to facilitate high speed implementations of the floating point
instruction set, certain restrictions are placed on the addressing mode
combinations usable within a single floating point instruction. These
combinations involve the logically inconsistent use of a value as both
a floating point operand and an address.

Specifically: if within the same instruction the contents of register Rn
is used as both a floating point operand or either part of a double float-
ing input operand (i.e., a .rf, .rd, .mf, or .md operand) and as an address
in an addressing mode which modifies Rn (i.e., autoincrement, auto-
decrement, or autoincrement deferred), the value of the floating point
operand is unpredictable.

6.2.1 Introduction
Mathematically, a floating point number may be defined as having the
form

(+ or —) (2**K)*f,

where K is an integer and f is a non-negative fraction. For a non-vanish-
ing number, K and f are uniquely determined by imposing the condition

1

/2 =

™~

FQfISS 1.
hd

The fractional factor, f, of the number is then said to be binary normal-
ized. For the number zero, f must be assigned the value O, and the
value of K is indeterminate.
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The VAX-11 floating point data formats are derived from this mathe-
matical representation for floating point numbers. Two types of float-
ing point data are provided. Single precision, or floating, data is 32 bits
long. Double precision, or double, data is 64 bits long. Sign magnitude
notation is used, as follows:

1. Non-zero floating point numbers:

The most significant bit of the floating point data is the sign bit: O
for positive, and 1 for negative.

The fractional factor f is assumed normalized, so that its most
significant bit must be 1. This 1 is the “hidden” bit: it is not stored
in the data word, but the hardware restores it before carrying out
arithmetic operations. The floating and double data types use 23
and 55 bits, respectively, for f, which with the hidden bit, imply
effective significance of 24 bits and 56 bits for arithemtic oper-
ations.

Eight bits are reserved for the storage of the exponent K in excess
128 notation. Thus exponents from —128 to +127 could be repre-
sented, in biased form, by 0 to 255. For reasons given below, a
biased EXP of O (true exponent of —128), is reserved for floating
point zero. Thus VAX-11 exponents are restricted to the range —127
to 4127 inclusive, or in excess 128 notation, 1 to 255.

2. Floating point zero:

Because of the hidden bit, the fractional factor is not available to
distinguish between zero and non-zero numbers whose fractional
factor is exactly 1%. Therefore VAX-11 reserves a sign-exponent field
of O for this purpose. Any positive floating point number with biased
exponent of O is treated as if it were an exact O by the floating
point instruction set. In particular, a floating point operand, whose
bits are all O's, is treated as zero, and this is the format generated
by all floating point instructions for which the result is zero.

3. The reserved operands:

A reserved operand is defined to be any bit pattern with a sign
bit of one and a biased exponent of zero. On VAX-11, all floating
point instructions generate a fault if a reserved operand is en-
countered. Since a reserved operand has a biased exponent of zero,
it can be (internally) generated only if either overflow or underflow
occurs.

6.2.2 Accuracy

General comments on the accuracy of the VAX-11 floating point intruc-
tion set are presented here. The descriptions of some individual in-
structions include additional details on the accuracy at which they
operate.

An instruction is defined to be exact if its result, extended on the right
by an infinite sequence of zeros, is identical to that of an infinite pre-
cision calculation involving the same operands. The a priori accuracy of
the operands is thus ignored. For all arithmetic operations, except DIV,
a zero operand implies that the instruction is exact. The same state-
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ment holds for DIV if the zero operand is the dividend. But if it is the
divisor, division is undefined and the instruction traps.

For non-zero floating point operands, the fractional factor is binary nor-
malized with 24 or 56 bits for single or double precision, respectively.
We show below that for ADD, SUB, MUL and DIV, an overflow bit, on the
left, and two guard bits, on the right, are necessary and sufficient to
guarantee return of a rounded result identical to the corresponding in-
finite precision operation rounded to the specified word length. Thus,
with two guard bits, a rounded result has an error bound of 14, LSB
(least significant bit).

Note that an arithmetic result is exact if no non-zero bits are lost in
chopping the infinite precision result to the data length to be stored.
Chopping is defined to mean that the 24 or 56 high order bits of the
normalized fractional factor of a result are stored; the rest of the bits
are discarded. The first bit lost in chopping is referred to as the “‘round-
ing” bit. The value of a rounded result is related to the chopped result
as follows:

1. If the rounding bit is one, the rounded result is the chopped result
incremented by an LSB (least significant bit).

2. If the rounding bit is zero, the rounded and chopped results are
identical.

Rounding may be implemented by adding a 1 to the rounding bit, and
propagating the carry, if it occurs. Note that a renormalization may be
required after rounding takes place; if this happens, the new rounding
bit will be zero, so it can happen only once. The following statements
summarize the relations among chopped, rounded and true (infinite
precision) results:

1. [f a stored result is exact
rounded value — chopped value = true value.
2. If a stored result is not exact, it's magnitude
* is always less than that of the true result for chopping.

e is always less than that of the true result for rounding if the
rounding bit is zero.

e is greater than that of the true result for rounding if the round-
ing bit is one.

It will now be shown that an overflow bit and two guard bits are ade-
quate to guarantee accuracy of rounded ADD, SUB, MUL, or DIV, pro-
vided, of course, that the algorithms are properly chosen. Note, first,
that ADD or SUB may result in propagation of a carry, and hence the
overflow bit is necessary. Second, if in ADD or SUB there is a one bit
loss of significance in conjunction with an alignment shift of two or more
bits, the first guard bit is needed for the LSB of the normalized result,
and the second is then the rounding bit. So the three bits are necessary.
A number of constraints must be observed in selection of the algorithms
for the basic operations in order for these three bits to be sufficient
to guarantee an error bound of (15) LSB:
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ADD or SUB:

If the alignment shift does not exceed 2 there are no constraints,
because no bits can be lost.

If the alignment shift exceeds 2 (or however many guard bits
are used, say g GEQ 2), no negations may be made after the
alignment shift takes place.

If the above constraint is observed, the error bound for a rounded
result is (145) LSB. If, however, a negation follows the alignment
shift, the error bound will be
(Y2) * (1 4- 2¥%(—g+2) ) LSB
because a “borrow” will be lost on an implicit subtraction, if
non-zero bits were lost in the alignment shift. Note that the
error bound is 1 LSB if the constraint is ignored and there are
only two guard bits (g = 2).

The constraint on no negations after the alignment shift may be
replaced by keeping track of non-zero bits lost during the align-
ment shift, and then negating by one’s complement if any “‘ones”
were lost, and by two's complement if none were lost. If this is
done, the error bound will be (14) LSB.

MUL:

The product of two normalized binary fractions can be as small
as 14 and must be less than one. The overflow bit is not needed
for MUL, but the first guard bit will be necessary for normaliza-
tion if the product is less than 15, and, in this case, the second
guard bit is the rounding bit.

The first constraint on MUL is that the product be generated
from the least to the most significant bit. Low order bits, in posi-
tions to the right of the second guard bit, may be discarded, but
ONLY AFTER they have made their contribution to carries which
could propagate into the guard bits or beyond.

For the same reasons as for ADD or SUB, if low order bits of
the product have been discarded, no negations can be made
after generating the product.

Div:

For standard algorithms it is necessary that the remainder be
generated exactly at each step; the overflow and two guard bits
are adequate for this purpose. The register receiving the quotient
must have a guard bit for the rounding bit, and the quotient must
be developed to include the rounding bit.

The Newton-Raphson quadratic convergence algorithms, which
might make good use of high speed mulitiplication logic, require
a number of guard bits equal to twice the number of bits desired
in the result if the correctness of the rounding bit is to be guar-
anteed.

VAX-11 observes all constraints and generates floating point results
with an error bound of (14) LSB for all floating point instructions except
EMOD and POLY (see EMOD and POLY descriptions.)

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.
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MOVE
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

MoV

move a scalar quantity

opcode src.rx, dst.wx

dst < src;

N <« dst LSS 0;

Z < dst EQL O;

V<0

C«C

None (integer); Reserved operand (floating point)
90 MOVB Move Byte
BO MOVW Move Word
DO MOVL Move Long
7D MOVQ Move Quad
50 MOVF Move Floating
70 MOVD Move Double

The destination operand is replaced by the source oper-
and. The source operand is unaffected.

On a floating reserved operand fault, the destination
operand is unaffected and the condition codes are un-
predictable.
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PUSHL

PUSH LONG
Purpose: push source operand onto stack
Format: opcode src.rl
Operation: —(SP) «src;
Condition N < src LSS 0O;
Codes: Z < src EQL O;
V<0
C<«C
Exceptions: None
Opcodes: DD PUSHL Push Long
Description:  The long word source operand is pushed on the stack.
Notes: PUSHL is equivalent to MOVL src, —(SP), but is one byte
shorter.
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CLEAR
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

clear a scalar quantity

opcode dst.wx

dst « O;

N «<O:
Z<«1;
V «0;
C<«C

None

94
B4
D4
7C
D4
7C

CLRB
CLRW
CLRL
CLRQ
CLRF
CLRD

Clear
Clear
Clear
Clear
Clear
Clear

CLR

Byte
Word
Long
Quad
Floating
Double

The destination operand is replaced by O.

CLRx dst is equivalent to MOVx™0, dst, but is shorter.
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MNEG

MOVE NEGATED

Purpose:
Operation:
Format:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

Initial
Conditions:

After
Instruction
Execution:

move the arithmetic negation of a scalar quantity
dst « —src;
opcode src.rx, dst.wx

N <« dst LSS 0;

Z « dst EQL O;

V <« overflow (integer);

V « 0 (floating);

C <« dst NEQ O (integer);
C <« 0 (floating)

Integer overflow; reserved operand (floating)

8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long
52 MNEGF Move Negated Floating
72 MNEGD Move Negated Double

The destination operand is replaced by the negative of
the source operand.

1. integer overflow occurs if the source operand is the
largest negative integer (which has no positive counter-
part). On overflow, the destination operand is re-
placed by the source operand.

2. On floating reserved operand fault, the destination
operand is unaffected and the condition codes are un-
predictable.

MOVE NEGATED FLOATING

MNEGF RO, R7 ;Replace R7 with negative
;of contents of RO

RO = 00004410
R7 = 00000000

RO = 00004410
R7 = 0000C410 (Change Sign Bit)

NOTE

If source is positive zero, result is positive zero.
If source is reserved operand (minus zero), a
reserved operand fault occurs. For all other
floating point source values, bit 15 (sign bit) is
complemented.
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MCOM

MOVE COMPLEMENTED

Purpose: move logical complement of an integer
Format: opcode src.rx, dst.wx

Operation: dst « NOT src;

Condition N «dst LSS 0;

Codes: Z «dst EQL O;
V<0
C<«C

Exceptions: None

Opcodes: 92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 : MCOML Move Complemented Long

Description:  The destination operand is replaced by the ones comple-
ment of the source operand.



CVT

CONVERT

Purpose: convert a signed quantity to a different signed data type

Format: opcode src.rx, dst.wy

Operation: dst <« conversion of src;

Condition N « dst LSS O;

Codes: Z < dst EQL O;
V < {src cannot be represented in dst};
C <0

Exceptions: Integer overfiow
Floating overflow
Reserved operand

Opcodes: 99 CVTiBW Convert Byte to Word
98 CVTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
F6 CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word
4C CVTBF Convert Byte to Floating
6C CvTBD Convert Byte to Double
4D CVTWF Convert Word to Floating
6D CVTWD Convert Word to Double
4E CVTLF Convert Long to Floating
6E CVTLD Convert Long to Double
48 CVTFB Convert Floating to Byte
68 CVvTDB Convert Double to Byte
49 CVTFW Convert Floating to Word
69 CVTDW Convert Double to Word
4A CVTFL Convert Floating to Long
4B CVTRFL Convert Rounded Floating to Long
6A CVTDL Convert Double to Long
6B CVTRDL Convert Rounded Double to Long
56 CVTFD Convert Floating to Double
76 CVTDF Convert Double to Floating

Description:  The source operand is converted to the data type of the
destination operand and the destination operand is re-
placed by the result. For integer format, conversion of a
shorter data type to a longer is done by sign extension;
conversion of longer to a shorter is done by truncation
of the higher numbered (most significant) bits. For
floating format, the form of the conversion is as follows:
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Notes:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

CVTBF exact CVTFW truncated

CVTBD exact CVTDW truncated
CVTWF exact CVTFL truncated
CVTWD exact CVTRFL rounded
CVTLF rounded CVTDL truncated
CVTLD exact CVTRDL rounded

CVTFB truncated CVTFD exact
CVTDB truncated CVTDF rounded

1.

Integer overflow occurs if any truncated bits of the
source operand are not equal to the sign bit of the
destination operand.

Only converts with an integer destination operand can
result in integer overflow. On integer overflow, the
destination operand is replaced by the low order bits
of the true result.

. Only CVTDF can result in floating overflow. On float-

ing overflow, the destination operand is replaced by
an operand of all O bits except for a sign bit of 1 (a
reserved operand). N « 1; Z «<0; V<« 1; and C «O.

. Only converts with a floating point source operand

can result in a reserved operand fault. On a reserved
operand fault, the destination operand is unaffected
and the condition codes are unpredictable.

CONVERT FLOATING TO WORD

CVTFW work, RO ;Convert contents of R2

;floating to long, rounding
;store in R3

Work = 00004410 (floating point 144.)
RO = 00000000

Work = 00004410
RO = 00000090 (hex) (integer 144)

CONVERT ROUNDED FLOATING TO LONG

CVTRFL R2,R3 ;Convert contents of work

;floating to word;
;store in RO

R2 = 00004332 (floating point 44.5)
R3 = 0000

0000

R2 = 00004332
R3 = 0000002D (integer 45; note the rounding)
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Movz

MOVE ZERO-EXTENDED

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

convert an unsigned integer to a wider unsigned integer
opcode src.rx, dst.wy
dst « ZEXT (src);

N «0O;

Z «dst EQL O;

V «0;

C«C

None

9B MOVZBW Move Zero-Extended Byte to Word
9A MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long

For MOVZBW, bits 7:0 of the destination operand are
replaced by the source operand; bits 15:8 are replaced
by zero. For MOVZBL, bits 7:0 of the destination operand
are replaced by the source operand; bits 31:8 are re-
placed by 0. For MOVZWL, bits 15:0 of the destination
operand are replaced by the source operand; bits 31:16
are replaced by 0.
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COMPARE
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

CMP

arithmetic comparison between two scalar quantities
opcode srcl.rx, src2.rx
srcl — sre2;

N < srcl LSS src2;

Z «<srcl EQL src2;

V «0;

C < srcl LSSU src2 (integer);
C < 0 (floating)

None (integer); reserved operand (floating point)

91 CMPB Compare Byte
Bl CMPW Compare Word
D1 CMPL Compare Long
51 CMPF Compare Floating
71 CMPD Compare Double

The source 1 operand is compared with the source 2
operand. The only action is to affect the condition codes.

On a floating reserved operand fault, the condition codes
are unpredictable.

6-15



INC

INCREMENT

Purpose: add 1 to an integer
Format: opcode sum.mx
Operation: sum < sum + 1;
Condition N < sum LSS 0;
Codes: Z «sum EQL O;

V <« {integer overflow};
C « {carry from most significant bit}

Exceptions: Integer overflow

Opcodes: 96 INCB Increment Byte
B6 INCW Increment Word
D6 INCL Increment Long

Description:  One is added to the sum operand and the sum operand
is replaced by the resuit.

Notes: 1. Arithmetic overflow occurs if the largest positive in-
teger in incremented. On overflow, the sum operand
is replaced by the largest negative integer.

2. INCx sum is equivalent to ADDx #1, sum, but is one
byte shorter.
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TEST
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

TST

arithmetic compare of a scalar to 0.

opcode src.rx

src — 0;

N < src LSS 0;

Z < src EQL O;

V «0;

C«0

None (integer); Reserved operand (floating point)
95 TSTB Test Byte

B5 TSTW Test Word
D5 TSTL Test Long
53 TSTF Test Floating
73 TSTD Test Double

The condition codes are affected according to the value
of the source operand.

1. TSTx src is equivalent to CMPx src, ~#0, but is
shorter.

2. On a floating reserved operand, the condition codes
are unpredictable.
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ADD
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

ADD

perform arithmetic addition

opcode add.rx, sum.mx 2 operand
opcode addl.rx, add2.rx, sum.wx 3 operand
sum < sum + add; 2 operand
sum < addl + add2; 3 operand

N «<sum LSS 0O;

Z «sum EQL O;

V <« overfiow;

C « carry from most significant bit (integer);
C < 0 (floating)

Integer overflow
Floating overflow
Floating underflow
Reserved operand

80
81
A0
Al
co
C1
40
41
60
61

In

ADDB2 Add Byte 2 Operand
ADDB3 Add Byte 3 Operand
ADDW2 Add Word 2 Operand
ADDW3 Add Word 3 Operand
ADDL2 Add Long 2 Operand
ADDL3 Add Long 3 Operand
ADDF2 Add Floating 2 Operand
ADDF3 Add Floating 3 Operand
ADDD2 Add Double 2 Operand
ADDD3 Add Double 3 Operand

2 operand format, the addend operand is added to

the sum operand and the sum operand is replaced by the
result. In 3 operand format, the addend 1 operand is
added to the addend 2 operand and the sum operand is
replaced by the result. In floating point format, the result
is rounded.

1.

Integer overflow occurs if the input operands to the
add have the same sign and the result has the
opposite sign. On overflow, the sum operand is re-
placed by the low order bits of the true result.

. On a floating reserved operand fault, the sum oper-

and is unaffected and the condition codes are un-
predictable.

. On floating underflow, the sum operand is replaced

by 0.

. On floating overflow, the sum operand is replaced by

an operand of all bits O except for a sign bit of 1 (a
reserved operand). N « 1, Z «<0; V « 1; and C « 0.
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EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

ADD FLOATING 2 OPERAND

ADDF2 #144., work ;Add 144 floating point
;format to work

Work = 00000000

Work = 00004410
ADD FLOATING 3 OPERAND

ADDF3 #144., Work, Workl ;Add 144 Floating
;point format to contents
;of Work; store result
;in Workl

Work = 00004410 (hex); (144 floating)
Workl = 00000000

Work = 00004410
Workl = 00004490 (hex); (288 floating)
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ADWC

ADD WITH CARRY

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

perform extended-precision addition
opcode add.rl, sum.ml
sum < sum + add 4+ C

N < sum LSS 0;

Z «sum EQL O;

V « {integer overflow};

C < {carry from most significant bit}

Integer overflow
D8 ADWC Add with Carry

The contents of the condition code C bit and the addend
operand are added to the sum operand and the sum
operand is replaced by the resuit.

1. On overflow, the sum operand is replaced by the low
order bits of the true result.

2. The 2 additions in the operation are performed simul-
taneously.

ADD WITH CARRY

To add two quadword integers:

ADDL A, B ;add low half

ADWC A+4-4, B+4 ;add high half including carry
Additional ADWC can be appended for greater precision.
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ADAWI

ADD ALIGNED WORD INTERLOCKED

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

maintain operating system resource usage counts
opcode add.rx, sum.mx

{set interlock?;
sum < sum -4 add;
{release interlock}

N < sum LSS 0;

Z «<sum EQL O;

V « {integer overflow};

C < {carry from most significant bit}

reserved operand fault
integer overflow

58 ADAWI Add Aligned Word Interlocked

The addend operand is added to the sum operand and
the sum operand is replaced by the result. The operation
is interlocked against similar operations on other pro-
cessors in a multiprocessor system. The destination must
be aligned on a word boundary. If it is not, a reserved
operand fault is taken.

Integer overflow occurs if the input operands to the add
have the same sign and the result has the opposite sign.
On overflow, the sum operand is replaced by the low
order bits of the true result.
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SUBTRACT
Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

SuB

perform arithmetic subtraction

opcode sub.rx, dif.mx 2 operand
opcode sub.rx, min.rx, dis.wx 3 operand
dif « dif — sub; 2 operand
dif « min — sub; 3 operand
N <« dif LSS O;
Z «dif EQL O;

V <« overflow;
C « {borrow from most significant bit} (integer);
C <« 0 (floating)

Integer overflow
Floating overflow
Floating underflow
Reserved operand

82 SuUBB2 Subtract Byte 2 Operand

83 SUBB3 Subtract Byte 3 Operand

A2 SUBwW2 Subtract Word 2 Operand
A3 SUBW3 Subtract Word 3 Operand
c2 SUBL2 Subtract Long 2 Operand

C3 SUBL3 Subtract Long 3 Operand

42 SUBF2 Subtract Floating 2 Operand
43 SUBF3 Subtract Floating 3 Operand
62 SUBD2 Subtract Double 2 Operand
63 SUBD3 Subtract Double 3 Operand

In 2 operand format, the subtrahend operand is sub-
tracted from the difference operand and the difference
operand is replaced by the result. In 3 operand format,
the subtrahend operand is subtracted from the minuend
operand and the difference operand is replaced by the
result. In floating format, the result is rounded.

1. Integer overflow occurs if the input operands to the
subtract are of different signs and the sign of the
result is the sign of the subtrahend. On overflow, the
difference operand is replaced by the low order bits
of the true resuit.

2. On a floating reserved operand fault, the difference
operand is unaffected and the condition codes are
unpredictable.

3. On floating underfiow, the difference operand is re-
placed by O.

4. On floating overflow, the difference operand is re-
placed by an operand of all O bits except for a sign
bit of 1 (a reserved operand). N « 1; Z «0;V « 1; and
C «0.
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EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

SUBTRACT FLOATING 2 OPERAND

SUBF2 #100, Work ;Subtract 100 floating point
;format from contents of
;location work

Work = 00004410

Work = 00004330
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DEC

DECREMENT
Purpose: subtract 1 from an integer
Format: opcode dif.mx
Operation: dif « dif — 1;
Condition N < dif LSS 0;
Codes: Z « dif EQL 0;
V « {integer overflow’;
C <« {borrow into most significant bit}
Exceptions: Integer overflow
Opcodes: 97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long
Description:  One is subtracted from the difference operand and the
difference operand is replaced by the resuit.
Notes: 1. Integer overflow occurs if the largest negative integer

is decremented. On overflow, the difference operand
is replaced by the largest positive integer.

2. DECx dif is equivalent to SUBx #1, dif, but is one
byte shorter.
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SBWC

SUBTRACT WITH CARRY

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

perform extended-precision subtraction
opcode sub.rl, dif.ml
dif «dif —sub—C

N <« dif LSS 0;

Z <« dif EQL 0;

V <« {integer overflow};

C <« {borrow from most significant bit}

Integer overflow
D9 SBWC Subtract with Carry

The subtrahend operand and the contents of the condi-
tion code C bit are subtracted from the difference oper-
and and the difference operand is replaced by the result.

1. On overflow, the difference operand is replaced by
the low order bits of the true result.

2. The 2 subtractions in the operation are performed
simultaneously.

SUBTRACT WITH CARRY

To subtract two quadword integers:

SUBL A, B ;subtract low half
SBWC A+4, B+4 ;subtract high half including
;borrow

Additional SBWC can be appended for greater precision.
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MULTIPLY
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

MUL

perform arithmetic multiplication

opcode mulr.rx, prod.mx 2 operand
opcode mulr.rx, muld.rx, prod.wx 3 operand
prod < prod * mulr; 2 operand
prod < muld * mulr; 3 operand

N < prod LSS 0;
Z < prod EQL O;
V < overflow;
C«0

Integer overflow
Floating overflow
Floating underflow
Reserved operand

84 MULB2 Multiply Byte 2 Operand
85 MULB3 Multiply Byte 3 Operand
A4 MuLw2 Multiply Word 2 Operand
A5 MULW3 Multiply Word 3 Operand
c4 MULL2 Muitiply Long 2 Operand
C5 MULL3 Muitiply Long 3 Operand
44 MULF2 Multiply Floating 2 Operand
45 MULF3 Muitiply Floating 3 Operand
64 MULD2 Multiply Double 2 Operand
65 MULD3 Multiply Double 3 Operand

In 2 operand format, the product operand is multiplied
by the muitiplier operand and the product operand is
replaced by the result. In 3 operand format, the multi-
plicand operand is multiplied by the multiplier operand
and the product operand is replaced by the result. In
floating format, the product operand result is rounded
for both 2 and 3 operand format.

1. Integer overflow occurs if the high half of the double
length result is not equal to the sign extension of the
low haif. On integer overflow, the product operand is
replaced by the iow order bits of the true resuit.

2. On a floating reserved operand abort, the product
operand is unaffected and the condition codes are
unpredictable.

3. On fioating underflow, the product operand is re-
placed by 0.

4. On floating overflow, the product operand is replaced
by an operand of all bits O except for a sign bit of 1
(a reserved operand). N « 1; Z < 0;V < 1; and C <O
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EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

MULTIPLY FLOATING 2 OPERAND

MULF2 R8, R7 ;Multiply floating contents
;of R8 by contents
;of R7; store
;result in R7

R8 = 00004220
R7 = 00004410

R8 = 00004220

R7 = 000045B4

MULTIPLY FLOATING 3 OPERAND

MULF R8, R7, RO ;Multiply floating contents
;of R8 by contents
;of R7; store result
;in RO

R8 = 00004220

R7 = 000045B4

RO = 00004410

R8 = 00004220

R7 = 000045B4

RO = 00004761
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EMUL
EXTENDED MULTIPLY

Purpose: perform extended-precision multiplication
Format: opcode mulr.rl, muld.rl, add.rl, prod.wg
Operation: prod <« {muld * mulr} 4+ SEXT(add)

Condition N <« prod LSS 0;
Codes: Z < prod EQL O;
V «0;
C<«0

Exceptions: None
Opcodes: 7A EMUL Extended Multiply

Description:  The multiplicand operand is multiplied by the multiplier
operand giving a double length result. The addend oper-
and is sign-extended to double length and added to the
result. The product operand is replaced by the final result.

EXAMPLE: EXTENDED MULTIPLY

To multiply two quadwords, producing a quadword;

EMULA, B, C ;multiply low half
MULL3 A+4, B, RO ;high half = A [high] *
MULL3 A, B+4, R1; B [low]
i+ A [low] * B
; [high]
ADDL R1, RO ;(combine)
TSTL A ;if A [low] < O, need to
BGEQ10$ ;compensate for unsigned
ADDL B, RO ;bias of 2#%¥32
10$:TSTL B ;if B [low] 20, need to
BGEQ 20 $ ;compensate for unsigned
;bias of 2%*32
ADDL A, RO
20%:ADDL RO, C+4 ;combine with high half of

;A [low] * B [low]
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EMOD

EXTENDED MULTIPLY AND INTEGERIZE

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

perform accurate range reduction of math function argu-
ments

opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx

int « integer part of muld * {mulr, mulrx};
frac « fractioiial part of muld * {mulr mulrx};

N « fract LSS O;

Z <« fract EQL O;

V <« {integer overflow};
C<«0

Integer overflow
Floating underflow
Reserved operand

54 EMODF Extended Multiply and Integerize
Floating

74 EMODD Extended Multiply and Integerize
Double

The floating point multiplier extension operand (second
operand) is concatenated with the floating point mutiplier
(first operand) to gain 8 additional low order fraction
bits. The multiplicand operand is multiplied by the ex-
tended multiplier operand. After multiplication, the
integer portion is extracted and a 32-bit (EMODF) or
64-bit (EMODD) floating point number is formed from
the fractional part of the product by truncating extra bits.
The multiplication is such that the result is equivalent
to the exact product truncated to a fraction field of 32
bits in floating and 64 bits in double. Regarding the re-
sult as the sum of an integer and fraction of the same
sign, the integer operand is replaced by the integer part
of the result and the fraction operand is replaced by the
rounded fractional part of the result.

1. On a reserved operand fault, the integer operand and
the fraction operand are unaffected. The condition
codes are unpredictable.

2. On floating underflow, the integer and fraction oper-
ands are replaced by zero.

3. On integer overflow, the integer operand is replaced
by the low order bits of the true result.

4. Floating overflow is indicated by integer overfiow;

=
however, integer overflow is possible in the absence
of floating overflow.
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DIVIDE
Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

perform arithmetic division

opcode divr.rx, quo.mx 2 operand
opcode divr.rx, divd.rx, quo.wx 3 operand
quo <« quo / divr; 2 operand
quo « divd / divr; 3 operand
N <« quo LSS 0;
Z < quo EQL 0;

V <« {overflow} OR {divr EQL 0};
C<«0

DIV

Integer overflow
Divide by zero
Floating overflow
Floating underflow
Reserved operand

86 DIvB2
87 DIvB3
A6 Divw2
A7 DIVW3
cé DIVL2
c7 DIVL3
46 DIVF2
47 DIVF3
66 DIVD2
67 DIvD3

Divide Byte 2 Operand
Divide Byte 3 Operand
Divide Word 2 Operand
Divide Word 3 Operand
Divide Long 2 Operand
Divide Long 3 Operand
Divide Floating 2 Operand
Divide Floating 3 Operand
Divide Double 2 Operand
Divide Double 3 Operand

In 2 operand format, the quotient operand is divided by
the divisor operand and the quotient operand is replaced
by the result. In 3 operand format, the dividend operand
is divided by the divisor operand and the quotient oper-
and is replaced by the result. In floating format, the quo-
tient operand result is rounded for both 2 and 3 operand
format.

1.

Integer division is performed such that the remainder
(unless it is zero) has the same sign as the dividend;
i.e., the resuit is truncated towards 0.

Integer overflow occurs if and only if the largest nega-
tive integer is divided by —1. On overflow, operands
are affected as in 3 below.

If the integer divisor operand is O, then in 2 operand
integer format, the quotient operand is not affected;
in 3 operand format the quotient operand is replaced
by the dividend operand.



EXAMPLE:

Initial

Conditions:

After
Instruction

Executions:

4. On a floating reserved operand fault, the quotient
operand is unaffected and the condition codes are
unpredictable.

5. On floating underflow, the quotient operand is re-
placed by O.

6. On floating divide by zero or on floating overflow the
quotient operand is replaced by an operand of all bits
0 except for a sign bit of 1 (a reserved operand).

N<«1;Z«0;V«1l;andC «0.
DIVIDE FLOATING 2 OPERAND
DIVF2 R4, R2 ;Divide

R4 = 00004100
R2 = 00004330

R4 = 00004100
R2 = 000042B0
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EDIV

EXTENDED DIVIDE

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

perform extened-precision division
opcode divr.rl, divd.rq, quo.wl, rem.wl

quo <« divd/divr;
rem < REM({divd, divr}

N < quo LSS O;

Z < quo EQL O;

V « linteger overflow} OR divr EQL 0};
C«0

Integer overflow
Divide by zero

78 EDIV Extended Divide

The dividend operand is divided by the divisor operand;
the quotient operand is replaced by the quotient and
the remainder operand is replaced by the remainder.

1. The division is performed such that the remainder
operand (unless it is 0) has the same sign as the
dividend operand.

2. On overflow, the operands are affected as in 3 below.

3. If the divisor operand is O, then the quotient operand
is replaced by bits 31:0 of the dividend operand, and
the remainder operand is replaced by O.
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BIT TEST
Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

perform arithmetic compare of one quantity to O
opcode mask.rx, src.rx

temp < src AND mask;

N «tmp LSS O;

Z «tmp EQL 0O;

V «0:

C«C

None

93 BITB Bit Test Byte
B3 BITW Bit Test Word
D3 BITL Bit Test Long

BIT

The mask operand is ANDed with the source operand.
Both operands are unaffected. The only action is to affect

condition codes.
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BIT SET
Purpose:

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

BIS

perform logical inclusive OR of two integers

opcode mask.rx, dst.mx 2 operand
opcode mask.rx, srec.rx, dst. wx 3 operand
dst < dst OR mask; 2 operand
dst < src OR mask; 3 operand

N «dst LSS O;

Z < dst EQL O;

V<0

C<«C

None

88 BISB2 Bit Set Byte 2 Operand
89 BISB3 Bit Set Byte 3 Operand
A8 BISW2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
c8 BISL2 Bit Set Long 2 Operand
Cc9 BISL3 Bit Set Long 3 Operand

In 2 operand format, the mask operand is ORed with
the destination operand and the destination operand is
replaced by the result. In 3 operand format, the mask
operand is ORed with the source operand and the desti-
nation operand is replaced by the result.
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BIT CLEAR
Purpose:

Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

perform compiemented AND of two integers

opcode mask.rx, dst.mx
opcode mask.rx, src.rx, dst.wx

dst <« dst AND {NOT mask};
dst < src AND {NOT mask};

N <« dst LSS 0;

Z «dst EQL O;

V «0;

C<«C

None

8A BICB2
8B BICB3
AA BICW2
AB BICW3
CA BICL2
CB BICL3

2 operand
3 operand
2 operand
3 operand
Bit Clear Byte 2
Bit Clear Byte 3
Bit Clear Word 2
Bit Clear Word 3
Bit Clear Long 2
Bit Clear Long 3

BIC

operand
operand
operand
operand
operand
operand

In 2 operand format, the destination operand is ANDed
with the ones complement of the mask operand and the
destination operand is replaced by the result. In 3 oper-
and format, the source operand is ANDed with the ones
complement of the mask operand and the destination
operand is replaced by the result.
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XOR

EXCLUSIVE OR

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

perform logical exclusive OR of two integers

opcode mask.rx, dst.mx 2 operand

opcode mask.rx, src.rx, dst.wx 3 operand

dst < dst XOR mask; 2 operand

dst < src XOR mask; 3 operand

N «dst LSS 0;

Z «dst EQL O;

V «<0;

C<«C

None

8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR Byte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORW3 Exclusive OR Word 3 Operand
cC XORL2 Exclusive OR Long 2 Operand
CcD XORL3 Exclusive OR Long 3 Operand

In 2 operand format, the mask operand is XORed with
the destination operand and the destination operand is
replaced by the result. In 3 operand format, the mask
operand is XORed with the source operand and the desti-
nation operand is replaced by the resuit.
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ASH

ARITHMETIC SHIFT

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

shift of integer
opcode cnt.rb, src.rx, dst.wx
dst < src shifted cnt bits;

N <« dst LSS 0O;

Z <« dst EQL O;

V <« {integer overflow};
C <0

Integer overflow

78 ASHL Arithmetic Shift Long
79 ASHQ Arithmetic Shift Quad

The source operand is arithmetically shifted by the num-
ber of bits specified by the count operand and the desti-
nation operand is replaced by the result. The source
operand is unaffected. A positive count operand shifts
to the left bringing Os into the least significant bit. A
negative count operand shifts to the right bringing in
copies of the most significant (sign) bit into the most
significant bit position. A O count operand replaces the
destination operand with the unshifted source operand.

1. Integer overflow occurs on a left shift if any bit shifted
into the sign bit position differs from the sign bit of
the source operand. On overflow, the destination oper-
and is replaced by the low order bits of the true result.

2. If cnt GTR 32 (ASHL) or cnt GRR 64 (ASHQ); the des-
tination operand is replaced by 0.

3. If ecnt LEQ —31 (ASHL) or cnt LEQ —63 (ASHQ); all
the bits of the destination operand are copies of the
sign bit of the source operand.
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ROTL

ROTATE LONG

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

rotate of integer
opcode cnt.rb, src.rl, dst.wl

dst <« src rotated cnt bits;

N <« dst LSS 0;

Z «dst EQL O;

V «0;

C<«C

None

acC ROTL Rotate Long

The source operand is rotated logically by the number of
bits specified by the count operand and the destination
operand is replaced by the result. The source operand is
unaffected. A positive count operand rotates to the left.
A negative count operand rotates to the right. A O count
operand replaces the destination operand with the source
operand.
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POLYNOMIAL EVALUATION

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

allows fast calculation of math functions

opcode arg.rx, degree.rx, tbladdr.ab

C degree < tbladdr

C
Co

result « C degree;

For degree times, loop

result < arg * result;
!Perform multiply, and retain an
lextended floating fraction of
131 bits (POLYF) or 63 bits (POLYD)
luse this resutlt in the following step

result < result 4+ next coefficient;
'normalize, round, and check for
lover/underflow only after the
!combined multiply/add sequence

if overflow then trap;

if underflow then clear result, remember
underflow and continue looping;

N < RO LSS 0;

Z «< RO EQL 0O;

V <« {floating overflow};
C<«0

Floating overflow
Floating underflow
Reserved operand

POLY

55 POLYF Polynomial Evaluation Floating
75 POLYD Polynomial Evaluation Double

The table address operand points to a table of poly-
nomial coefficients. The coefficient of the highest order
term of the polynomial is pointed to by the table address
operand. The table is specified with lower order coeffi-
cients stored at increasing addresses. The data type of
the coefficients is the same as the data type of the argu-

ment operand.

The evaluation is carried out by Horner's method and
the contents of RO (R1'RO for POLYD) are replaced by

the result. The result computed is:

if d = degree
and x — arg

result = C[0] 4 x*(C[1] + x*(C[2] + . .. x*C[d]) )
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Notes:

The unsigned word degree operand specifies the highest
numbered coefficient to participate in the evaluation.

1. After execution:

POLYF

RO = resuit

R1=0

R2=0

R3 = table address + degree*4 4 4
POLYD

RO = high order part of result
R1 = low order part of result

R2=0
R3 = table address 4 degree*8 + 8
R4=0
R5 =0

. The multiplication is performed such that the preci-

sion of the product is equivalent to a floating point
datum having a 31 bit (63 bit for POLYD) fraction.

. If the unsigned word degree operand is O, the result

is CO.

. If the unsigned word degree operand is greater than

31, a reserved operand exception occurs.

. On a reserved operand exception:

1. if PSL<FPD> = 0O, the reserved operand is either
the degree operand (greater than 31), or the argu-
ment operand, or some coefficient.

2. if PSL<FPD> = 1, the reserved operand is a co-
efficient, and R3 is pointing at the value which
caused the exception.

3. The state of the saved condition codes and the
other registers is unpredictable. If the reserved
operand is changed and the contents of the condi-
tion codes and all registers are preserved, the
fault is continuable.

. On floating underflow after the rounding operation,

the temporary result (tmp3) is replaced by zero, and
the operation continues. A floating underflow trap oc-
curs at the end of the instruction if underflow oc-
curred during any iteration of the computation loop.
Note that the final result may be non zero if under-

flow occurred before the last iteration.

. On floating overflow after the rounding operation at

any iteration of the computation loop, the instruction
terminates and causes a trap. On overflow the con-
tents of R2 and R3 (R2 through RS for POLYD) are
unpredictable. RO contains the reserved operand
(minus 0) and R1 = 0.
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EXAMPLE:

8. POLY can have both overflow and underflow in the
same instruction. If both occur, overflow trap is taken;
underflow is lost.

9. If the argument is zero and one of the coefficients in
the table is the reserved operand, whether a re-
served operand fault occurs is unpredictable.

To compute P(x) = CO + Cl¥x 4 C2*x*%2
where C0 = 1.0, C1 = .5, and C2 = .25

POLYF X, #2,PTABLE

PTABLE:
.FLOAT 0.25 ;C2
.FLOAT 0.5 ;C1
.FLOAT 1.0 ;CO

6-41



CHAPTER 7

SPECIAL INSTRUCTIONS

This chapter describes instructions for manipulating the multiple reg-
isters, the processor status longword, addresses, indices, queues, and
variable length bit fields. Most of these instructions represent optimiza-
tions of frequently occurring sequences of code.

Refer to Appendix E for a definition of the symbolic notation associated
with the instruction descriptions.

7.1 MULTIPLE REGISTER INSTRUCTIONS

The multiple register instructions allow the saving and restoring of
multiple registers in one operation. In both cases, the save area is on
the stack. The PUSHR instruction saves multiple registers by pushing
them onto the stack. The POPR instruction restores multiple registers
by popping them from the stack. The list of registers is specified by a
16-bit mask operand with bit n representing register Rn. The mask
operand is a normal read operand, so it can be calculated or can be
an in-line literal. When only registers in the range RO through R5 are
being saved or restored, the mask can be expressed as a short literal.
The software conventions for calling and signalling require that registers
be saved in the call frame (see Appendix C and Chapter 8). Thus, any
registers manipulated by PUSHR or POPR except R4 and R1 must
appear in the procedure entry mask.
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLES:

PUSHR

PUSH REGISTERS
save multiple registers or stack

opcode mask.rw

<«— SP AFTER
SAVED

REGISTERS

IN ORDER

RO.......R14

<«— SP BEFORE

N <« N;
Z «1Z;
V<V,
C«C
None
BB PUSHR Push Registers

The contents of registers whose number corresponds to
set bits in the mask operand are pushed on the stack as
longwords. R[n] is pushed if mask<n> is set. The mask
is scanned from bit 14 to bit 0. Bit 15 is ignored.

The order of pushing is specified so that the contents of
higher numbered registers are stored at higher memory
addresses. This results in a double floating datum stored
in adjacent registers being stored by PUSHR in memory
in the correct order.

PUSHR #"M<RO. R1, R2, R3> ;saves RO
through R3

PUSHR #"M<RI1, R6, R7> ;saves R1,
R6, and R7
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

POPR

POP REGISTERS
restore multiple registers from stack

opcode mask.rw

<— SP BEFORE
SAVED
REGISTERS
IN ORDER
RO......RI4
<«— SP AFTER
N < N;
Z <27
V<V,
C<C
None
BA POPR Pop Registers

The contents of registers whose number corresponds to
set bits in the mask operand are replaced by longwords
popped from the stack. R[n] is replaced if mask<n> is
set. The mask is scanned from bit O to bit 14. Bit 15 is
ignored.
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7.2 PROCESSOR STATUS LONGWORD MANIPULATION

Purpose:
Format:
Operation:

Condition
Codes:

Opcodes:

Description:

MOVPSL

MOVE FROM PSL
obtain processor status
opcode dst.wl
dst < PSL

N «N;
Z «7Z
V<V,
C<«C

DC MOVPSL Move from PSL

The destination operand is replaced by the processor
status longword (see Chapter 12).
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

BISPSW
BICPSW

BiT SET PSW
BIT CLEAR PSW
set or clear trap enables

opcode mask.rw

PSW <« PSW or mask IBISPSW
PSW < PSW AND {NOT maski; !BICPSW
N < N OR mask <3>; IBISPSW

Z «Z OR mask <2>;

V <V OR mask <1>;

C « C OR mask <0>;

N « N AND {NOT maski<3>; IBICPSW
Z <« Z AND {NOT mask}<2>;

V <V AND {NOT mask}<<1>;

C « C AND {NOT maski<0>

Reserved Operand

B8 BISPSW Bit set PSW
B9 BICPSW Bit clear PSW

On BISPSW, the processor status longword is ORed with
the 16-bit mask operand and the PSW is replaced by the
result. On BICPSW, the processor status longword is
ANDed with the ones complement of the 16-bit mask
operand and the PSW is replaced by the result.

A reserved operand fault occurs if mask <15:8> is not
zero. On a reserved operand fault, the PSW is not affec-
ted.

BISPSW #"M<FU> ;enables floating
underflow traps
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7.3 ADDRESS INSTRUCTIONS

MOVA
PUSHA
PUSH ADDRESS
MOVE ADDRESS

Purpose: calculate address of quantity

Format: opcode src.ax, dst.wl IMOVA
opcode src.ax 'PUSHA

Operation: dst < src; IMOVA
—(SP) <« src; IPUSHA

Condition N <« result LSS 0;

Codes: Z < result EQL O;
V «0;
CeC

Exceptions: None

Opcodes: 9E MOVAB Move Address Byte
3E MOVAW Move Address Word
DE MOVAL Move Address Long
DE MOVAF Move Address Floating
7E MOVAQ Move Address Quad
7E MOVAD Move Address Double
SF PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL Push Address Long
DF PUSHAF Push Address Floating
7F PUSHAQ Push Address Quad
7F PUSHAD Push Address Double

Description:  For MOVA, the destination operand is replaced by the
source operand which is an address. For PUSHA, the
source operand is pushed on the stack. The context in
which the source operand is evaluated is given by the
data type of the instruction. The operand whose address
replaces the destination operand is not referenced.

Notes: 1. The source operand is of address access type which
causes the address of the specified operand to be
moved.

2. PUSHAXx is equivalent to MOVAx src, —(SP), but is
shorter.

EXAMPLE: PUSHA XYZ ;pushes the address of XYZ
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7.4 INDEX INSTRUCTION

The Index instruction (INDEX) calculates an index for an array of fixed
length data types (integer and floating) and for arrays of bit fields,
character strings, and decimal strings. It accepts as arguments: a sub-
script, lower and upper subscript bounds, an array element size, a
given index, and a destination for the calculated index. It incorporates
range checking within the calculation for high-level languages using
subscript bounds, and it allows index calculation optimization by re-
moving invariant expressions.
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Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLES:

INDEX

COMPUTE INDEX

index calculation of arrays of fixed length data, bit fields,
and strings

opcode subscript.rl, low.rl, high.rl,

size.rl, indexin.rl, indexout.wl

indexout <« {indexin + subscript} *size;
if {subscript LSS low?} or {subscript GTR high}
then {subscript range trap};

N <« indexout LSS 0;
Z <« indexout EQL O;
V<0
C<0

subscript range

OA

INDEX index

The indexin operand is added to the subscript operand
and the sum multiplied by the size operand. The indexout
operand is replaced by the result. If the subscript oper-
and is less than the low operand or greater than the
high operand, a subscript range trap is taken.

1.

No arithmetic exception other than subscript range
can result from this instruction. Thus no indication
is given if overflow occurs in either the add or multiply
steps. If overflow occurs on the add step the sum is
the low order 32 bits of the true result. If overflow
occurs on the multiply step the indexout operand is
replaced by the low order 32 bits of the true product
of the sum and the subscript operand. In the normal
use of this instruction, overflow cannot occur without
a subscript range trap occurring.

. The index instruction is useful in index calculations

for arrays of the fixed length data types (integer and
floating) and for index calculations for arrays of bit
fields, character strings, and decimal strings. The in-
dexin operand permits cascading INDEX instructions
for multidimensional arrays. For one-dimensional bit
field arrays it also permits introduction of the con-
stant portion of an index calculation which is not
readily absorbed by address arithmetic.

The COBOL statements:

01
01

A-ARRAY.

02 A PIC x(10) occurs 15 times
B PIC x(10).
MOVE A(l) to B.
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are equivalent to:
INDEX I, #1, #15, #10, #0, RO
MOVC3 #10, A-10[RO], B.

The PL/1 statements:
DCL A(—3:10) BIT (5);
A = 1;
are equivalent to:
INDEX I, #—3, #10, #5, #3, RO
INSV #1, RO, #5, A; assumes A byte aligned

The FORTRAN statements:
INTEGER#4 A(L1:U1, L2:U2), |, J
ALY =1
are equivalent to:
INDEX J, #12, #U2, #M1, #0, RO;
M1=Ul-—-11+1
INDEX I, #L11, #U1, #1, RO, RO;
MOVL #1, A-a[R0O]; a = {{L2*M1} + L1} *4

7.5 QUEUE INSTRUCTIONS

A queue is a circular, doubly linked list. Each queue entry is linked to
the next via a pair of longwords. The first (lowest addressed) longword
is the forward link: the address of the succeeding queue entry. The sec-
ond (highest addressed) longword is the backward link: the address of
the preceding queue entry. A queue is specified by a queue header
which is identical to a pair of queue linkage longwords. The forward
link of the header is the address of the entry termed the head of the
queue. The backward link of the header is the address of the entry
termed the tail of the queue. The forward link of the tail points to the
header.

Two general operations can be performed on queues: insertion of entries
and removal of entries. Generally entries can be inserted or removed
only at the head or tail of a queue. (Under certain restrictions they can
be inserted or removed elsewhere; this is discussed later.)

The following contains examples of queue operations. An empty queue
is specified by its header at address H:

Kl 0

31 0

Insertion into an empty queue (at either the head or tail) of an entry
at address B gives:
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3 [¢)

B *H

B T H+4
3 0
3 0

H 8

H 1 B+4
31 0

Inseriion at the head of an entry at address A gives:

—* FORWARD LINKS

______ * BACKWARD LINKS

Finally insertion at the tail of entry at address C gives:

—————= FORWARD LINKS
————— > BACKWARD LINKS

a HEAD o
[ A -~




Following the above steps in reverse order gives the effect of removal
at the tail and removal at the head.

If more than 1 process can perform operations on a queue simulta-
neously, insertions and removals should only be done at the head or
tail of the queue. If only 1 process (or 1 process at a time) can per-
form operations on a queue, insertions and removals can be made at
other than the head or tail of the queue. In the example above with
the queue containing entries A, B, and C, the entry at address B can
be removed giving:

— ~ ———— FORWARD LINK

] Hea ~ —————% BACKWARD LINK

The reason for the above restriction is that operations at the head or
tail are always valid because the queue header is always present; oper-
ations elsewhere in the queue depend on specific entries being present
and may become invalid if another process is simultaneously perform-
ing operations on the queue.



Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

INSQUE

INSERT ENTRY IN QUEUE
add entry to head or tail of queue
opcode entry.ab, pred.ab

If {all memory accesses can be completed} then

begin

{interrupts off per notes 1 and 23;

(entry4-4) <« pred; Iforward link of entry

(pred+4-4) < entry; !backward link of entry

(pred) < entry; !backward link of
successor

(pred) <— entry; forward link of
predecessor

{interrupts on};

end;

N <« (entry) LSS (entry+4);

Z < (entry) EQL (entry+4); lfirst entry in queue

V «0;

C < (entry) LSSU (entry+-4);

reserved operand

OE INSQUE Insert Entry in Queue

The entry specified by the entry operand is inserted into
the queue following the entry specified by the predeces-
sor operand. If the entry inserted was the first one in
the queue, the condition code Z-bit is set; otherwise it is
cleared. The insertion is a non-interruptible interlocked.
operation. Before performing any part of the operation,
the processor validates that the entire operation can be
completed. This ensures that if a memory management
exception occurs the queue is left in a consistent state.

1. Because the insertion is non-interruptible, processes
running in kernel mode can share queues with inter-
rupt service routines.

2. The INSQUE and REMQUE instructions are imple-
mented such that cooperating software processes
may access a shared list without additional synchroni-
zation.

3. During access validation, any access which cannot be
completed resuits in a memory management excep-
tion even though the queue insertion is not started.

4. A reserved operand fault occurs if any of entry, pred,
or (pred) is an address that is not longword aligred
(i.e.,, for which <1:.0> NEQU 0). In this case, the
queue is not altered.
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EXAMPLES: 1. Insert at head

INSQUE entry,h ;h is queue head
2. Insert at tail
INSQUE entry,@h-+4 ;h is queue head

(Note “@" in this case only)
3. Insert after arbitrary predecessor
INSQUE entry,p ;p is predecessor

To set a software interlock realized with a queue, the
following can be used:

INSQUE . .. ;was queue empty?
BEQL 1% ;yes
CALL WAIT (.. .) ;no, wait
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:
Opcodes:
Description:

Notes:

REMQUE

REMOVE ENTRY FROM QUEUE
remove entry from head or tail of queue
opcode entry.ab, addr.wi

if {all memory accesses can be completed} then

begin

{interrupts off per notes 1 and 23;

( (entry+4) ) < (entry); !forward link of predecessor

( (entry)+4) < (entry +4); !backward link of successor
addr < entry;

{interrupts on!;

end;

N « (entry) LSS (entry+4);

Z < (entry) EQL (entry+4); Iremoved last entry
V < entry EQL (entry-+4); 'no entry to remove

C <« (entry) LSSU (entry+4);
reserved operand
OF REMQUE Remove Entry from Queue

The queue entry specified by the entry operand is re-
moved from the queue. The address operand is replaced
by the address of the entry removed. If there was no
entry in the queue to be removed, the condition code
V bit is set; otherwise it is cleared. If the entry removed
was the last entry in the queue, the condition code Z-bit
is set; otherwise it is cleared. The removal is a non-in-
terruptible operation. Before performing any part of the
operation, the processor validates that the entire opera-
tion can be completed. This ensures that if a memory
management exception occurs the queue is left in a con-
sistent state.

1. Because the removal is non-interruptible, processes
running in kernel mode can share queues with inter-
rupt service routines.

2. The INSQUE and REMQUE instructions are imple-
mented such that cooperating software processes
may access a shared list without additional syn-
chronization if insertions and removals are only at the
head or tail of the queue.

3. During access validation, any access which cannot
be completed results in a memory management ex-
ception even though the queue removal is not started.

4. A reserved operand fault occurs if any of entry (en-
try), or (entry4-4) is an address that is not longword
aligned (i.e., for which <1:0> NEQU 0). In this case,
the queue is not altered.
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EXAMPLES: 1. Remove at head

REMQUE @h,addr ;h is queue header

2. Remove at tail
REMQUE @h-+4, add2 ;h is queue header

3. Remove arbitrary entry
REMQUE entry, addr ;

To release a software interlock realized with a queue,
the following can be used:

REMQUE. .. ;queue empty?
BEQL 1% ;yes
CALL ACTIVATE (...) ;Activate other waiters
1%
To remove entries until the queue is empty, the fol-
lowing can be used:
1$ REMQUE... ;anything removed?
BVS EMPTY ;no
BR 1% ;

7.6 VARIABLE LENGTH BIT FIELD INSTRUCTIONS

The variable length bit field instructions are useful when dealing with
data not in 8-bit increments (for example, 13 bits of data not starting
on a byte boundary). This data could also be handled without this group
of instructions but it would require additional shift and mask operations
to get the bits in the proper form and to eliminate the non-required bits.

A variable bit field is 0 to 32 contiguous bits that may be contained in
1 to 5 bytes and is arbitrarily located with respect to byte boundaries.

The variable length bit field instructions have four operand specifiers;
three of these specifiers determine how to find the variable length field
and the fourth designates where it is to be stored. The specifiers are:

1.

Position operand—a signed longword operand that designates the
number of bits away from the base address operand.

If the variable length field is contained in a register, the position
operand must have a value in the range O through 31 or a reserved
operand fault occurs.

Size Operand—a byte operand which specifies the length of the
field. This operand must be in the range 1 through 32 or a reserved
operand fault occurs. The size operand will normally be a short
literal if the field is fixed.

Base Address—an address relative to the position used to locate the
bit field. The base address is obtained from an ‘‘address access’’ type
operand. Unlike other ‘‘address access’” type operands, register
mode may be designated in the specifier. In this case, the field is
contained in register n designated by the operand specifier (or reg-
ister n4+1 concatenated with register n).
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FF

FIND FIRST

Purpose: locate first bit in bit field

Format: opcode startpos.rl, size.rb, base.ab, findpos.wi
Operation:

¥

SIZE =|L-—START PQOS —=

% %

-—
SEARCH FOR 0 OR 1

RESULT IS FIND POSITIVE

Condition N «0;

Codes: Z <« {bit not found’;
V0
C<«0

Exceptions: Reserved operand

Opcodes: EB FFC Find First Clear
EA FFS Find First Set

Description: A field specified by the start position, size, and base oper-
ands is extracted. The field is tested for a bit in the
state indicated by the instruction starting at bit 0 and
extending to the highest bit in the field. If a bit in the
indicated state is found, the find position operand is re-
placed by the position of the bit and the Z condition code
bit is cleared. If a bit in the indicated state is found, the
find position operand is replaced by the position (relative
to the base) of a bit one position to the left of the spe-
cified field, and the Z condition code bit is set. If the size
operand is O, the find position operand is replaced by the
start position operand and the Z condition code bit is set.

The Find First instruction is useful when it is desired to
search for the first 1 or the first 0 in a string of bits.
For example, the operating system might contain a table
where each bit represents a block of data on a disk, If the
bit is a 1, it indicates that block of data is in use and
if the bit is a 0, it indicates the block is free. Consequent-
ly, if it is desired to find the first free block, the user
would issue a Find First Clear instruction which searches
for the first O bit in the table.

Note: If start position + size is GEQU 2##31, then find position
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might be set to a negative value that would not be usable
in a subsequent field or BBxx instruction.

EXAMPLE: FIND FIRST SET

FFS #5, #10, Work, R3 ;Find first bit
;set in work
Initial Work = ~ X 00040000 (Bit 18 set)
Conditions: R3 = 00000000
After Work = ~ X 00040000
Instruction R3 = 00000012hex (18 decimal)
Execution:
EXAMPLE: FIND FIRST CLEAR
FFC #5, #10, Work 1, R2 ;Find first clear bit
;in Work1l
Initial Workl = ~ XFO
Conditions: R2 = 00000000
After Workl = "~ XFO
Instruction R2 = 00000008
Execution:



EXT

EXTRACT FIELD

Purpose: moves bit field to integer
Format: opcode pos.rl, size.rb, base.vb, dst.wl
Operation:
EXTV
le . le
[ SIZE . POSITION —
V SIGN A
s / a
Sion| !
3‘ J 1 0
EXTZV
L SIZE —L POSITION —»
77, 1%/
i
3l 0
Condition N «dst LSS O;
Codes: Z « dst EQL O;
V<0
C <0
Exceptions: Reserved operand
Opcodes: EE EXTV Extract Field
EF EXTZV Extract Zero-Extended Field
Description:  For EXTV, the destination operand is replaced by the

sign extended field specified by the position, size, and
base operands. For EXTZV, the destination operand is
replaced by the zero extended field specified by the posi-
tion, size and base operands. If the size operand is O,
the only action is to replace the destination operand
with O and affect the condition codes.
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Notes:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

EXAMPLE:

Initial

Conditions:

After
Instruction
Execution:

An example of this instruction is to extract the four pro-
tection bits (bits 27 through 30) from the memory man-
agement unit page table entry. The base address is the
address of a longword operand containing these bits, the
position operand could be the number of bits from
the base address to the protection code and the size
operand would be 4 since the protection code is 4 bits
long. The destination operand would specify where the
protection bits are to be stored.

Since the protection code is not an arithmetic operand
and does not need to be sign extended, the Extract Zero-
Extended Field instruction should be specified as opposed
to the extract Field instruction.

1. A reserved operand fault occurs if:
a. size GTRU 32
b. pos GTRU 31 and the field is contained in the reg-
isters.

2. On a reserved operand fault, the destination operand

is unaffected and the condition codes are unpredict-
able.

EXTRACT FIELD
EXTV #5, #10, Workl,RO ;put bits 5 thru 14
;from Work1 into RO

Workl = 00004F04
RO = 00000000

Workl = 00004F04
RO = FFFFFC78

EXTRACT FIELD, ZERO EXTENDED

EXTZV #5, #10, Workl, R1 ;put bits 5 thru 15
;from Workl into R1
;and clear bits 11 thru 31

Workl = 00004F04
R1 = 00000000

Workl = 00004F04
R1 = 00000478
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CMP

COMPARE FIELD

Purpose: compare bit field to integer
Format: opcode pos.rl, size.rb, base.ab, src.rl
Operation:
CMPV ||= SIZE -Jr POSITION—
% ? )
1
. J/
COMPARE ‘}COMPARE
i T
i i
31 0

CMPZV ‘————SIZE————’I“—POSIHON—’

o\ C J
COMPARE %MPARE
e\
|
1
3 )
Codition N <« field LSS src;
Codes: Z <« field EQL src;
V «0;

C < field LSSU src
Exceptions: Reserved operand

Opcodes: EC CMPV Compare Field
ED CMPZV Compare Zero-Extended Field

Description:  The field specified by the position, size and base oper-
ands is compared with the source operand. For CMPV,
the source operand is compared with the sign extended
field. For CMPZV, the source operand is compared with
the zero extended field. The only action is to affect the
condition codes.
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Notes: 1. A reserved operand fault occurs if:
a. size GTRU 32
b. pos GTRU 31 and the field is contained in the reg-
isters.

2. On a reserved operand fauit, the condition codes are
unpredictable.

3. The comparison is with the entire source operand
longword, not just the size field.
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INSV

INSERT FIELD

Purpose:
Format:

Operation:

move integer to bit field

opcode src.rl, pos.rl, size.rb, base.ab

IGNORED

kil

0,

7

28 %,

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

EXAMPLE:

Initial
Conditions:
After

Instruction
Execution:

!‘* SIZE —|I= POSITION——»

N «0;
Z «0;
V «0;
C<«0

Reserved operand
FO INSV Insert Field

The field specified by the position, size, and base oper-
ands is replaced by bits size-1:0 of the source operand. If
the size operand is O, the only action is to affect the con-
tion codes.

1. A reserved operand fault occurs if:
a. size GTRU 32
b. pos GTRU 31 and the field is contained in the reg-
isters.

2. On a reserved operand fault, the field is unaffected
and the condition codes are unpredictable.

INSERT FIELD

INSV RO, #16, #10, Work ;put bits O thru 9
;of RO into bits 16 thru
;25 of work

Work = FFFFFFFF
RO = 00000078

Work = FC78FFFF
RO = 00000078
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CHAPTER 8

CONTROL INSTRUCTIONS

This chapter describes the branch, ioop, control, subroutine, case, and
call classes of instructions. In most implementations of the VAV-11 archi-
tecture, improved execution speed will result if the target of a control
instruction is on an aligned longword boundary.

Refer to Appendix E for a definition of the symbolic notation associated
with the instruction descriptions.

8.1. BRANCH AND JUMP INSTRUCTIONS

The twc basic types of control transfer instructions are branch and
jump instructions. Both branch and jump load new addresses in the
Program Counter. With branch instructions, you supply a displacement
(offset) which is added to the current contents of the Program Counter
to obtain the new address. With jump instructions, you supply the
address you want loaded, using one of the normal addressing modes.

Because most transfers are to locations relatively close to the current
instruction, and branch instructions are more efficient than jump in-
structions, the processor offers a variety of branch instructions to
choose from. There are two unconditional branch instructions (branch
and jump) and many conditional branch instructions.

The unconditional branch instructions allow you to specify a byte-size
(BRB) or word-size displacement (BRW), which means you can branch
to locations as far away from the current location as 32,767 bytes in
either direction. For control transfers to locations farther away, you
must use the Jump instruction (JMP).

Two special types of branch and jump instruction are provided for call-
ing subroutines: the Branch to Subroutine (BSB) and Jump to Sub-
routine (JSB) instructions. Both BSB and JSB instructions save the
contents of the Program Counter on the stack before loading the Pro-
gram Counter with the new address. With Branch to Subroutine, you
can supply either a byte (BSBB) or word (BSBW) displacement.

This short-cut to subroutine calling is complemented by the Return
from Subroutine (RSB) instruction. RSB pops the first longword off the
stack and loads it into the Program Counter. Since the Branch to Sub-
routine instruction is either two or three bytes long, and the Return
from Subroutine instruction is one byte long, it is possible to write ex-
tremely efficient programs using subroutines.
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BRANCH ON (CONDITION)

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

test condition code
opcode displ.bb
if condition then PC « PC + SEXT (displ);

N «<N;
Z <7
V<V,
C<«C
none
CONDITION
12 ZEQLO BNEQ, Branch on Not Equal
(signed)
BNEQU  Branch on Not Equal
Unsigned
13 ZEQL1 BEQL, Branch on Equal
(signed)
BEQLU  Branch on Equal
Unsigned

14 {(NORZ})EQLO BGTR Branch on Greater
Than (signed)

15 (NORZ}EQL1 BLEQ Branch on Less Than
or Equal (signed)

18 NEQLO BGEQ Branch on Greater
Than or Equal (signed)

19 NEQL1 BLSS Branch on Less
Than(signed)

1A {CORZJEQLO BGTRU Branch on Greater Than
Unsigned

1B {CORZ})EQL1 BLEQU Branch Less Than or
Equal Unsigned

1C VEQLO BVC Branch on Overflow
Clear
1D VEQL1 BVS Branch on Overflow Set
1E CEQLO BGEQU, Branch on Greater
Than or Equal Unsigned
BCC Branch on Carry Clear
1IF CEQL1 BLSSU, Branch on Less Than
Unsigned
BCS Branch on Carry Set

The condition codes are tested and if the condition in-
dicated by the instruction is met, the sign-extended
branch displacement is added to the PC and PC is re-
placed by the resuit.

The VAX-11 conditional branch instructions permit con-
siderable flexibility in branching but require care in choos-
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B

ing the correct branch instruction. The conditional
branch instructions are divided into 3 overlapping groups:

1. Overflow and Carry Group

BVS VEQL 1
BvVC VEQLO
BCS CEQL1
BCC C EQLO

These instructions are typically used to check for
overflow (when overflow traps are not enabled), for
multiprecision arithmetic, and for other special pur-
poses.

2. Unsigned Group
BLSSU CEQL1
BLEQU {CORZ}EQL1
BEQLU ZEQL1
BNEQU ZEQLO
BGEQU CEQLO
BGTRU {CORZ'EQLO

These instructions typically follow integer and field in-
structions where the operands are treated as unsigned
integers, address instructions, and character string

instructions.
3. Signed Group
BLSS N EQL1
BLEQ {NORZ}EQL1
BEQL ZEQL1
BNEQ ZEQLO
BGEQ N EQL O
BGTR {NORZ EQLO

These instructions typically follow integer and field in-
structions where the operands are being treated as
signed integers, floating point instructions, and deci-
mal string instructions.
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BR
JMP

BRANCH, JUMP

Purpose:

Format:

Operation:

Condition
Codes:

Exception:
Opcodes:

Description:

transfer control

opcode displ.bx IBranch
opcode dst.ab Jump

PC « PC +SEXT (displ); IBranch
PC <« dst; Uump

N < N;
Z «2Z
VeV,
C<C

none

11 BRB Branch With Byte Displacement
31 BRW Branch With Word Displacement
17  JMP Jump

For branch, the sign-extended branch displacement is
added to PC and PC is replaced by the result. For Jump,
the PC is replaced by the destination operand.

84



BB

BRANCH ON BIT

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

test selected bit
opcode pos.rl, base.ab, displ.bb

teststate = if {BBS} then 1 else 0;
if FIELD {pos, 1, base) EQL teststate then
PC « PC 4 SEXT (displ);

N < N;
Z < Z;
V <«V;
C<«C

reserved operand

EO BBS Branch on Bit Set
El BBC Branch on Bit Clear

The single bit field specified by the position and base
operands is tested. If it is in the test state indicated by
the instruction, the sign-extended branch displacement
is added to PC and PC is replaced by the result.

1. A reserved operand fault occurs if pos GTRU 31 and
the bit is contained in a register.

2. On a reserved operand fault, the condition codes are
unpredictable.
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BRANCH ON BIT (AND
MODIFY WITHOUT INTERLOCK)

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

test and modify selected bit
opcode pos.rl, base.ab, displ.bb

teststate — if {BBSS or BBSC! then 1 else 0;
newstate — if {(BBSS or BBCS! then 1 else O;
temp < FIELD (pos, 1, base);

FIELD (pos, 1, base) « newstate;

if tmp EQL teststate then

PC « PC + SEXT (displ);

N «< N;
Z «1Z;
V<V,
C<«C

reserved operand

E2 BBSS Branch on Bit Set and Set

E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
E5 BBCC Branch on Bit Clear and Clear

The single bit field specified by the position and base
operands is tested. If it is in the test state indicated by
the instruction, the sign-extended branch displacement
is added to PC and PC is replaced by the result. Regard-
less of whether the branch is taken or not, the tested
bit is put in the new state as indicated by the instruction.

1. A reserved operand fault occurs if pos GTRU 31 and

the bit is contained in a register.

2. On a reserved operand fault, the field is unaffected

and the condition codes are unpredictable.

3. The modification of the bit is not an interlocked oper-
ation. See BBSSI| and BBCCI for interlocking instruc-

tions.
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BB

BRANCH ON BIT INTERLOCKED

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

test and modify selected bit under memory interlock
opcode pos.rl, base.ab, displ.bb

teststate — if {BBSSI} then 1 else O;
newstate — teststate;

{set interlock};

tmp <« FIELD (pos, 1, base);

FIELD (pos, 1, base) < newstate;
{release interlock};

if temp EQL teststate then

PC <« PC 4 SEXT (displ);

N «N;
Z <127
V<V,
C<«C

reserved operand

E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked

The single bit field specified by the position and base
operands is tested. If it is in the test state indicated by
the instruction, the sign-extended branch displacement
is added to the PC and PC is replaced by the result. Re-
gardless of whether the branch is effected or not, the
tested bit is put in the new state as indicated by the
instruction. If the bit is contained in memory, the read-
ing of the state of the bit and the setting of it to the new
state is an interlocked operation. No other processor or
1/0 device can do an interlocked access on the bit dur-
ing the interlocked operation.

1. A reserved operand fault occurs if pos GTRU 31 and
the bit is contained in registers.

2. On a reserved operand fault, the field is unaffected
and the condition codes are unpredictable.

3. Except for memory interlocking BBSSI is equivalent to
BBSS and BBCCI is equivalent to BBCC.

This instruction is designed to modify interlocks with
other processors or devices. For example, to implement
“busy waiting’":

1$: BBSSI bit,base,1$
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BLB

BRANCH ON LOW BIT

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Note:

test bit
opcode src.rl, displ.bb

teststate — if {BLS} then 1 else 0;
if src<<0> EQL teststate then
PC « PC 4 SEXT (displ);

N « N;
Z<«Z;
V<«y;
Ce«C

none

E8 BLBS Branch on Low Bit Set
ES BLBC Branch on Low Bit Clear

The fow bit (bit 0) of the source operand is tested and
if it is equal to the test state indicated by the instruction,
the sign-extended branch displacement is added to PC
and PC is replaced by the result.

The source operand is taken with longword context al-
though only one bit is tested.
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8.2 LOOP CONTROL INSTRUCTIONS
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ACB

ADD COMPARE AND BRANCH

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

maintain loop count and loop
opcode limit.rx, add.rx, index.mx, displ.bw

index <« index -+ add;

if { {add GEQ 0} and {index LEQ limit} } OR
t{add LSS 0} AND {index GEQ limit} } then
PC < PC 4 SEXT (displ);

N «index LSS 0;

Z < index EQL O;

V <« {integer or floating overflow};
C«C

integer overflow
floating overflow
floating underflow
reserved operand

9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1 ACBL Add Compare and Branch Long
4F ACBF  Add Compare and Branch Floating
6F ACBD Add Compare and Branch Double

The addend operand is added to the index operand and
the index operand is replaced by the result. The index
operand is compared with the limit operand. If the add-
end operand is positive (or 0) and the comparison is less
than or equal or if the addend is negative and the com-
parison is greater than or equal, the sign-extended branch
displacement is added to PC and PC is replaced by the
result.

1. ACB efficiently implements the general FOR or DO
loops in high-level languages since the sense of the
comparison between index and limit is dependent on
the sign of the addend.

2. On integer overflow, the index operand is replaced by
the low order bits of the true result. Comparison and
branch determination proceed normally on the up-
dated index operand.

3. On floating underflow, the index operand is replaced
by 0. Comparison and branch determination proceed
normally.

4. On floating overflow, the index operand is replaced by
an operand of all bits O except for a sign bit of 1 (a
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[4)}

reserved operand). N < 1; Z « 0; V < 1. The branch is
not taken.

On a reserved operand fault, the index operand is
unaffected and the condition codes are unpredictable.

. Except for 5. above, the C-bit is unaffecied.
. On a trap, the branch condition will be tested and the

PC potentially updated before the exception is taken.
Thus, the PC might point to the start of the loop and
not the next consecutive instruction.



AOBLSS
AOBLEQ

ADD ONE AND BRANCH

Purpose:
Format:

Operation:

Condition
Codes:

Exception:
Opcodes:

Description:

Notes:

increment integer loop count and loop
opcode limit.rl, index.ml, displ.bb

index < index +41; IAOBLSS
if index LSS limit

then PC <« PC + SEXT (displ);

if index LEQ limit IAOBLEQ
then PC 4 SEXT (displ);

N <« index LSS O;

Z <« index EQL O;

V <« {integer overflow};
C<«C

integer overflow

F2 AOBLSS Add One and Branch Less Than
F3 AOBLEQ Add One and Branch Less Than
or Equal

One is added to the index operand and the index operand
is replaced by the result. The index operand is compared
with the limit operand. On AOBLSS, if it is less than, the
branch is taken. On AOBLEQ, if it is less than or equal,
the branch is taken. If the branch is taken, the sign ex-
tended branch displacement is added to the PC and the
PC is replaced by the result.

1. Integer overflow occurs if the index operand before
addition is the largest positive integer. On overflow,
the index operand is replaced by the largest negative
integer, and thus (unless the limit operand is the
largest negative integer) the branch is taken.

2. The C-bit is unaffected.



SOBGEQ
SOBGTR

SUBTRACT ONE AND BRANCH

Purpose:
Format:

Operation:

Condition
Codes:

Exception:

Opcodes:

Description:

Notes:

decrement integer loop count and loop
opcode index.ml, displ.bb

index < index —1; ISOBGEQ
if index GEQ O then PC «

PC + SEXT (displ);

If index GTR O then PC « ISOBGTR
PC + SEXT (displ);

N <« index LSS O;

Z < index EQL O;

V <« {integer overflow};
C<«C

integer overflow

F4 SOBGEQ  Subtract One and Branch Greater
Than or Equal

F5 SOBGTR  Subtract One and Branch Greater
Than

One is subtracted from the index operand and the index
operand is replaced by the result. On SOBGEQ, if the
index operand is greater than or equal to O, the branch
is taken. On SOBGTR, if the index operand is greater
than O, the branch is taken. If the branch is taken, the
sign-extended branch displacement is added to the PC
and the PC is replaced by the result.

1. Integer overflow occurs if the index operand before
subtraction is the largest negative integer. On over-
flow, the index operand is replaced by the largest
positive integer, and thus the branch is taken.

2. The C-bit is unaffected.
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CASE

8.3 CASE INSTRUCTIONS

CASE

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EXAMPLE:

perform multi-way branching depending on arithmetic
input

opcode selector.rx, base.rx, limit.rx, displ[0].bw, .. .,
displ[limit].bw

tmp <« selector—base;
PC « PC + if temp LEQU limit then
SEXT (displ [tmp]) else {2 + 2 * ZEXT (limit)};

N < temp LSS limit;
Z < temp EQL limit;
V «0;

C < tmp LSSU limit

none
8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long

The base operand is subtracted from the selector operand
and a temporary is replaced by the result. The temporary
is compared with the limit operand and if it is less than
or equal unsigned, a branch displacement selected by the
temporary value is added to PC and PC is replaced by
the result. Otherwise, 2 times the sum of the limit oper-
and 1 is added to PC and PC is replaced by the re-
sult. This causes PC to be moved past the array of
branch displacements. Regardless of the branch taken,
the condition codes are affected by the comparison of
the temporary operand with the limit operand.

1. After operand evaluation, PC is pointing at displ [0],
not the next instruction. The branch displacements
are reiative to the address of displ [0].

2. The selector and base operands can both be consid-
ered either as signed or unsigned integers.

This instruction implements higher-level language com-
puted GO TO statements: the CASE instruction. You sup-
ply a list of displacements that generate different branch
addresses depending on the value you obtain as a se-
lector. The branch falls through if the selector does not
generate any of the displacements on the list.
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The FORTRAN STATEMENT
GO TO (10, 20, 30), |
is equivalent to

CASEL |, #1, #3 ;only values 1,2,3 are valid
1$ .WORD 10.—1% if 1

.WORD 20.—1% ;if 2

WORD 30.—1% if 3

;fall through if out of range
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BSB

JSB
8.4 SUBROUTINE INSTRUCTIONS
JUMP, BRANCH TO SUBROUTINE
Purpose: transfer control to subroutine
Format: opcode displ.bx Ibranch to subroutine
opcode dst.ab ljump to subroutine
Operation: —(SP) « PC;
PC « PC 4 SEXT (displ); Ibranch to subroutine
PC « dst ljump to subroutine
Condition N «N;
Codes: Z <7
V<V,
C<«C
Exceptions: none

Opcodes:

Description:

Notes:

10 BSBB Branch to Subroutine with Byte
Displacement

30 BSBW Branch to Subroutine With Word
Displacement

16 JSB Jump to Subroutine

PC is pushed on the stack as a longword. For branch,
the sign-extended branch displacement is added to PC
and PC is replaced by the result. For jump, PC is re-
placed by the destination operand.

Since the operand specifier conventions cause the eval-
uation of the destination operand before saving PC,
JSB can be used for coroutine calls with the stack used
for linkage. The form of such a call is JSB @ (SP) +.



RSB

RETURN FROM SUBROUTINE

Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

return contro! from subroutine
opcode
PC < (SP) +;

N < N;
Z <«Z;
VeV,
C<«C

none
05 RSB Return From Subroutine
PC is replaced by a longword popped from the stack.

1. RSB is used to return from subroutines called by the
BSBB, BSBW and JSB instructions.

2. RSB is equivalent to JMP @ (SP) +, but is 1 byte
shorter.
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8.5 PROCEDURE CALL INSTRUCTIONS

Procedures are general purpose routines that use argument lists passed
automatically by the processor and use only local variables for data
storage. The Procedure Call instructions provide several services. They:

e save all the registers that the procedure uses, and only those reg-
isters, before entering the procedure

e pass an argument list to a procedure
* maintain the Stack, Frame, and Argument Pointer registers
e set the arithmetic trap enables to a specific state

Three instructions are used to implement a standard procedure calling
interface. Two instructions implement the CALL to the procedure; the
third implements the matching RETURN. Refer to Appendix C for the
procedure calling standard. The CALLG instruction calls a procedure
with the argument list actuals in an arbitrary location. The CALLS in-
struction calls a procedure with the argument list actuals on the stack.
Upon return after a CALLS this list is automatically removed from the
stack. Both call instructions specify the address of the entry point of the
procedure being called. The entry point is assumed to consist of a word
termed the entry mask followed by the procedure's instructions. The
procedure terminates by executing a RET instruction.

The entry mask specifies the subprocedure’s register use and overflow
enables:

15 113 12 1 0

ov l v I MBZ ’ REGISTERS ]
L s s ) 1 s L L L L L L

On CALL the stack is aligned to a longword boundary and the trap
enables in the PSW are set to a known state to ensure consistent be-
havior of the called procedure. Integer overflow enable and numeric
overflow enable are affected according to bits 14 and 15 of the entry
mask respectively. Floating underflow enable is cleared.

The registers R11 through RO specified by bits 11 through O respectively
are saved on the stack and are restored by the RET instruction. The
procedure calling standard requires that all registers in the range R2
through R11 used in the procedure must appear in the mask. In addi-
tion, the CALL instructions always preserve PC, SP, FP, and AP. Thus,
a procedure can be considered as equivalent to a complex instruction
which stores a value into RO and R1, affects memory, and clears the
condition codes. If the procedure has no function value, the contents
of RO and R1 can be considered as unpredictable.
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In order to preserve the state, the CALL instructions form a structure
on the stack termed a call frame or stack frame. This contains the saved
registers, the saved PSW, the register save mask, and several control
bits. The frame also includes a longword which the CALL instructions
clear; this is used to implement the condition handling facility. Refer
to Appendix C. At the end of execution of the CALL instruction, FP con-
tains the address of the stack frame. The RET instruction uses the con-
tents of FP to find the stack frame and restore state. The condition
handling facility assumes that FP always points to the stack frame. The
stack frame has the following format:

CONDITION HANDLER { INITIALLY 0} :(FP)

SPA I S ] 0 ‘ MASK PSW ]

SAVED AP

SAVED FP

SAVED PC

SAVED RO(-- - -}

SAVED RI1{- - -)

(0 TO 3 BYTES SPECIFIED BY SPA)
S=SET IF CALLS; CLEAR IF CALLG.

Note that the saved condition codes are cleared. The contents of the
frame PSW<3:0>> at the time RET is executed will become the condi-
tion codes resulting from the execution of the procedure. Similarly, the
saved trace enable (PSW<T>) is cleared.

The software defines symbolic names for the fixed fields in the call
frame as follows:

Mnemonic Value Meaning
SRM$A_HANDLER 0 condition handler
SRM$W_SAVE_PSW 4 saved PSW
SRM$W_SAVE__MASK 6 SPA'S ‘0’ mask
SRM$L_SAVE_AP 8 saved AP
SRM$L_SAVE_FP 12 saved FP (backward link)
SRM$L_SAVE_PC 16 saved PC
SRM$L_SAVE_REGS 20 start of saved RO....R11
The save mask fields have symbolic names as follows:

Mnemonic Value Meaning
SRM$V_REGMASK 0 position of register mask
SRM$__REGMASK 12 size of register mask
SRM$V_CALLS 13 CALLS flag
SRM$V_STACKOFFS 14 position of stack alignment
SRM$$_STACKOFFS 2 size of stack alignment



CALLG

CALL PROCEDURE WITH
GENERAL ARGUMENT LIST

Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

invoke a procedure with actual arguments from anywhere
in memory

opcode arglist.ab, dst.ab

{align stack’;

{create stack frame};

{set arithmetic trap enables};
{set new values of AP, FP, PC}

N «0O;
Z <«0;
V «0;
C«0

reserved operand

FA  CALLG Call Procedure with General Argument
List

SP is saved in a temporary and then bits 1:0 are replaced
by O so that the stack is longword aligned. The pro-
cedure entry mask is scanned from bit 11 to O and the
contents of registers whose number corresponds to set
bits in the mask are pushed on the stack as longwords.
PC, FP, and AP are pushed on the stack as longwords.
The condition codes are cleared. A longword containing
the saved two low bits of SP in bits 31:30, a O in bit 29
and bit 28, the low 12 bits of the procedure entry mask
in bits 27:16, and the PSW in bits 15:0 with T cleared is
pushed on the stack. A longword O is pushed on the
stack. FP is replaced by SP. AP is replaced by the arglist
operand. The trap enables in the PSW are set to a known
state. Integer overflow, and decimal overflow are affected
according to bits 14 and 15 of the entry mask respectively;
floating underflow is cleared. T-bit is unaffected. PC
is replaced by the sum of destination operand plus 2 which
transfers control to the called procedure at the byte be-
yond the entry mask.

:(SP)
STACK :{FP)

FRAME

(0 TO 3 BYTES SPECIFIED BY SPA}
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Notes:

1.

2.

3.

If bits 13:12 of the entry mask are not 0, a reserved
operand fault occurs.

On a reserved operand fault, condition codes are un-
predictable.

The procedure calling standard and the condition
handling facility require the following register saving
conventions. RO and R1 are always available for func-
tion return values and are never saved in the entry
mask. All registers R2 through R11 which are modi-
fied in the called procedure must be preserved in the
mask. Refer to Appendix C.
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CALLS

CALL PROCEDURE WITH
STACK ARGUMENT LIST

Purpose: invoke a procedure with actual arguments or addresses
on the stack

Format: opcode numarg.ri, dst.ab
Operation: {push arg count};
{align stack’;

icreate stack framel;
{set arithmetic trap enables};
{set new values of AP, FP, PC}

Condition N «0;
Codes: Z «0;
V «0;
C<«0

Exceptions: reserved operand

Opcodes: FB  CALLS Call Procedure With Stack Argument
List

Description:  The number of arguments operand is pushed on the
stack as a longword. SP is saved in a temporary and then
bits 1:0 of SP are replaced by O so that the stack is
longword aligned. The procedure entry mask is scanned
from bit 11 to bit O and the contents of registers whose
number corresponds to set bits in the mask are pushed
on the stack. PC, FP, and AP are pushed on the stack
as longwords. The condition codes are cleared. A long-
word containing the saved two low bits of SP in bits
31:30, a 1 in bit 29, a O in bit 28, the low 12 bits of
the procedure entry mask in bits 27:16, and the PSW in
bits 15:0 with T cleared is pushed on the stack. A long-
word O is pushed on the stack. FP is replaced by SP.
AP is set to the saved SP (the value of the stack pointer
after the number of arguments operand was pushed on
the stack). The trap enables in the PSW are set to a
known state. Integer overflow, and decimal overflow, are
affected according to bits 14 and 15 of the entry mask,
respectively; floating underflow is cleared. T-bit is un-
affected. AP is replaced by the saved SP. PC is replaced
by the sum of destination operand plus 2 which transfers
control to the called procedure at the byte beyond the
entry mask. The appearance of the stack after CALLS is
executed is:
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:(SP)
STACK <(FP)

FRAME

{0 TO 3 BYTES SPECIFIED BY SPA]

N J :(AP)

N LONGWORDS OF ARGUMENT LIST

Notes:

. If bits 13:12 of the entry mask are not O, a reserved

operand fault occurs.

. On a reserved operand fault, the condition codes are

unpredictable.

. Normal use is to push the arglist onto the stack in re-

verse order prior to the CALLS. On return, the arglist
is removed from the stack automatically.

. The procedure calling standard and the condition

handling facility require the following register saving
conventions. RO and R1 are always available for func-
tion return values and are never saved in the entry
mask. All registers R2 through R11 which are modi-
fied in the called procedure must be preserved in the
entry mask. Refer to Appendix C.
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RET

RETURN FROM PROCEDURE

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

transfer control from a procedure back to calling program
opcode

{restores SP from FP};
{restore registers};

{drop stack alignment};
{restore PSW};

tf CALLS$, remove arglist}

N « restored PSW<3>;
Z « restored PSW<2>;
V < restored PSW<1>;
C <« restored PSW<0>

reserved operand
04 RET Return from Procedure

SP is replaced by FP plus 4. A longword containing stack
alignment bits in bits 31:30, a CALLS/CALLG flag in bit
29, the low 12 bits of the procedure entry mask in bits
27:16, and a saved PSW in bits 15:0 is popped from the
stack and saved in a temporary. PC, CF, and AP are re-
placed by longwords popped from the stack. A register
restore mask is formed from bits 27:16 of the temporary.
Scanning from bit O to bit 11 of the restore mask, the
contents of registers whose number is indicated by set
bits in the mask are replaced by longwords popped from
the stack. SP is replaced by the sum of SP and bits 31:30
of the temporary. PSW is replaced by bits 15:0 of the
temporary. If bit 29 in the temporary is 1 (indicating
that the procedure was called by CALLS), a longword
containing the number of arguments is popped from the
stack. Four times the unsigned value of the low byte of
this longword is added to SP and SP is replaced by the
result.

1. A reserved operand fault occurs if tmpl<15:8> NEQ
0.

2. On a reserved operand fault, the condition codes are
unpredictable. The value of tmpl<28> is ignored.

3. The procedure calling standard and condition handling
facility assume that procedures which return a function
value or a status code do so in RO or RO and R1. See
Appendix C.
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CHAPTER 9

CHARACTER STRING
INSTRUCTIONS

This chapter describes the character string instructions and the CRC
(Cyclic Redundancy Check) instruction.

9.1 CHARACTER STRING INSTRUCTIONS
A character string is specified by 2 operands:

1. An unsigned word operand which specifies the length of the char-
acter string in bytes.

2. The address of the lowest addressed byte of the character string.
This is specified by a byte operand of address access type.

Each of the character string instructions uses general registers RO
through R1, RO through R3, or RO through R5 to contain a control
block which maintains updated addresses and state during the execu-
tion of the instruction. At completion, these registers are available to
software to use as string specification operands for a subsequent in-
struction on a contiguous character string. During the execution of the
instructions, pending interrupt conditions are tested and if any is
found, the control block is updated, a first part done bit is set in the
PSL, and the instruction interrupted (see Chapter 12), After the inter-
ruption, the instruction resumes transparently. The format of the con-
trol block is:

! LENGTH 1 1RO
ADDRESS 1 R
[ LENGTH 2 iR2
ADDRESS 2 :R3
g LENGTH 3 R4
ADDRESS 3 iRS

The fields LENGTH 1, LENGTH 2 (if required) and LENGTH 3 (if re-
quired) contain the number of bytes remaining to be processed in the
first, second and third string operands respectively. The fields ADDRESS
1, ADDRESS 2 (if required) and ADDRESS 3 (if required) contain the
address of the next byte to be processed in the first, second, and third
string operands respectively.

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.
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MOVE CHARACTER

Purpose: to move character string or block of memory

Format: opcode len.rw, 3 operand

srcaddr.ab, dstadr.ab

opcode srclen.rw, 5 operand

srcaddr.ab, fill.rb,
dstlen.rw, distaddr.ab

MOVC3,
MOVCS5 If src len =dst len

src_adr

an

MOVCS If sic len > dst len

L)

""""""" +

src_odr

MOVCS If src len < dst ien

src_adr
src len fil
Condition N < srclen LSS dstlen;
Codes: Z < srclen EQL dstlen;
V <0

C <« srclen LSSU dstlen
Exceptions: None
9-2

dst_adr

C

dst_adr

MOVC

len

<0,2:1

dst len

|

C=0,1=0

dst adr

dst len

4

C=1,2=0



Opcodes:

Description:

Notes:

28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand

In 3 operand format, the destination string specified by
the length and destination address operands is replaced
by the source string specified by the length and source
address operands. In 5 operand format, the destination
string specified by the destination length and destination
address operands is replaced by the source string spe-
cified by the source length and source address operands.
If the destination string is longer than the source string,
the highest addressed bytes of the destination are re-
placed by the fill operand. If the destination string is
shorter than the source string, the highest addressed
bytes of the source string are not moved. The operation
of the instruction is_such that overlap of the source and
destination strings does not affect the result.

1. After execution of MOVC3;
RO=0
R1 = address of one byte beyond the source string
R2 =0

R3 = address of one byte beyond the destination
string

R4 =0
R5 =0

2. After execution of MOVCS5:

RO = number of unmoved bytes remaining in source
string. RO is non-zero only if source string is longer
than destination string

R1 = address of one byte beyond the last byte in
source string that was moved

R2=0

R3 = address of one byte beyond the destination
string

R4 =0
R5 =0

3. MOVC3 is the preferred way to copy one block of
memory to another.

4. MOVC5 with a O source length operand is the pre-
ferred way to fill a block of memory with the fill char-
acter.
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MOVTC

MOVE TRANSLATED CHARACTERS

Purpose:
Format:

Operation:

to move and translate character string

opcode srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab, dstien.rw,
dstaddr.ab

MOVTC src len<dst len

tbl adr

NOTE:

Condition
Codes:

Exceptions:
Opcodes:

Description:

256

each| l
stc

character

THE CASE OF src len = dst len AND src ien>dst len
SIMILAR TO THAT SHOWN IN THE MOVCS INSTRUCTION

N < srclen LSS dstlen;

Z <« srclen EQL dstlen;

V «0;

C < srclen LSSU dstlen

None
2E MOVTC Move Translated Characters

The source string specified by the source length and
source address operands is translated and replaces the
destination string specified by the destination length
and destination address operands. Translation is accom-
plished by using each byte of the source string as an
index into a 256 byte table whose zeroth entry address
is specified by the table address operand. The byte se-
lected replaces the byte of the destination string. If the
destination string is longer than the source string, the
highest addressed bytes of the destination string are
replaced by the fill operand. If the destination string is
shorter than the source string, the highest addressed
bytes of the source string are not translated and moved.
The operation of the instruction is such that overlap of
the source and destination strings does not affect the
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result. If the destination string overlaps the translation
table, the destination string is unpredictable.

Notes: After execution:
RO = number of translated bytes remaining in source
string; RO is non-zero only if source string is longer
than destination string.

R1 — address of one byte beyond the last byte in
source string that was translated.

R2=0

R3 = address of the translation table.

R4=0

R5 = address of one byte beyond the destination
string
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MOVTUC

MOVE TRANSLATED UNTIL CHARACTER

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

to move and translate character string, handling escape
codes

opcode srclen.rw, srcaddr.ab, esc.rb, thladdr.ab, dstlen.rw,
dstaddr.ab

MOVTUC

tbl adr

STOP IF OUTPUT= esc  NO
NO FILL CHARACTERS

N

V SET IF esc
Z SET IF SAME SIZE
C SET IF src len<dst

N < srclen LSS dstlen;

Z < srclen EQL dstlen;

V « {terminated by escapel;
C < srclen LSSU dstlen

None
2F MOVTUC Move Translated Until Character

The source string specified by the source length and
source address operands is translated and replaces the
destination string specified by the destination length and
destination address operands. Translation is accom-
plished by using each byte of the source string as index
into a 256 byte table whose zeroth entry address is spe-
cified by the table address operand. The byte selected
replaces the byte of the destination string. Translation
continues until a translated byte is equal to the escape
byte or until the source string or destination string is
exhausted. If translation is terminated because of escape,
the condition code V-bit is set; otherwise, it is cleared.
If the destination string overlaps the source string or the
table, the destination string is unpredictable.

After execution:
RO = number of bytes remaining in source string (in-
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cluding the byte which caused the escape). RO is zero
only if the entire source string was translated and
moved without escape.

R1 = address of the byte which resulted in destination
string exhaustion or escape; or if no exhaustion or
escape, R1 = address of one byte beyond the source
string.

R2=0

R3 = address of the table.

R4 = number of bytes remaining in the destination
string.

R5 = address of the byte in the destination string
which would have received the translated byte that
caused the escape or would have received a trans-
lated byte if the source string were not exhausted; or

if no exhaustion or escape, R1 = address of one byte
beyond the destination string.
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COMPARE CHARACTERS

Purpose: to compare two character strings

Format: opcode len.rw, 3 operand
srcladdr.ab, src2addr.ab
opcode srcllen.rw, 5 operand

srcladdr.ab, fill.rb,
src2len.rw, src2addr.ab

Operation:

CMPC3
CMPCS

COMPARE BYTES %7

IN ORDER FROM

FILL IF

1

1
src 1 len !
1
|

NOTE: CONDITION CODES SET ON LAST COMPARE DONE

START OF STRING | FILL IF
i sic llen
' >
'
I
]

CMPC

Condition N « {string 1 terminal byte} LSS {string 2 terminal byte};
Codes: Z < {string 1 terminal byte} EQL (string 2 terminal byte};

Istrings are equal
V «0;

C < {string 1 terminal byte} LSSU {string 2 terminal byte}

Exceptions: None

Opcodes: 29 CMPC3 Compare Characters 3 Operand
2D CMPC5 Compare Characters 5 Operand

Description:  In 3 operand format, the bytes of string 1 specified by
the length and address 1 operands are compared with
the bytes of string 2 specified by the length and address
2 operands. Comparison proceeds until inequality is de-
tected or all the bytes of the strings have been examined.
Condition codes are affected by the result of the last
byte comparison. In 5 operand format, the bytes of the
string 1 specified by the fength 1 and address 1 oper-
ands are compared with the bytes of string 2 specified
by the length 2 and address 2 operands. If one string is
longer than the other, the shorter string is conceptually
extended to the length of the longer by appending (at
higher addresses) bytes equal to the fill operand. Com-
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Notes:

parison proceeds until inequality is detected or all the
bytes of the strings have been examined. Condition codes
are affected by the result of the last byte comparison.

1. After execution of CMPC3:
RO = number of bytes remaining in string 1 (including
byte which terminated comparison); RO is zero only
if strings are equal.

R1 = address of the byte in string 1 which terminated
comparison; if strings are equal, R1 = address of one
byte beyond string 1.

R2 = RO

R3 = address of the byte in string 2 which terminated
comparison: if strings are equal, R3 — address of one
byte beyond string 2.

2. After execution of CMPC5:
RO = number of bytes remaining in string 1 (including
byte which terminated comparison); RO is zero only
if string 1 and string 2 are of equal length and equal
or string 1 was exhausted before comparison termin-
ated.

R1 = adress of the byte in string 1 which terminated
comparison; if comparison did not terminate before
string 1 exhausted, R1 = address of one byte beyond
string 1.

R2 = number of bytes remaining in string 2 (including
byte which terminated comparison); RO is zero only if
string 2 and string 1 are of equal length or string 2
was exhausted before comparison terminated.

R3 = address of the byte in string 2 which terminated
comparison; if comparison did not terminate before
string 2 was exhausted, R3 = address of one byte be-
yond string 2.
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SCANC
SPANC

SCAN CHARACTERS, SPAN CHARACTERS

Purpose:
Format:

Operation:
adr

to find or skip a set of characters in character string

opcode len.rw, addr.ab, tbladdr.ab, mas.rb

SCANC
SPANC

———_ MASK TEST EACH tbl adr
len ~—" CHARACTER UNTIL
ZERO [SPANC) OR

Z SET IF CONDITION NOT SATISIFIED

Condition
Code:

Exceptions:
Opcodes:

Description:

Notes:

NOTZERO(SCANC) \> EAcH
CHARACTER

F—5—

N «0;
Z <« RO EQL O;
V <« 0;
C<«0

None

2A SCANC Scan Characters
2B SPANC Span Characters

The bytes of the string specified by the length and ad-
dress operands are successively used to index into a 256
byte table whose zeroth entry address is specified by
the table address operand. The byte selected from the
table is ANDed with the mask operand. The operation
continues until the result of the AND is non-zero for the
SCANC instruction or zero for the SPANC instruction, or
until all the bytes of the string have been exhausted. If
a non-zero AND result for the SCANC or a zero result for
the SPANC is detected, the condition code Z-bit is cleared;
otherwise, the Z-bit is set.
After execution:

RO = number of bytes remaining in the string (includ-

ing the byte which produced the non-zero AND result

for SCANC or zero result for SPANC)

RO is zero only if there was a zero AND result for
SCANC or a non-zero result for SPANC.

R1 = address of the byte which produced non-zero
AND result for SCANC or a zero AND result for SPANC;
or, if zero result, R1 = address of one byte beyond the
string

R2=0
R3 = address of the table
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LOCC
SKP

LOCATE CHARACTER, SKIP CHARACTER
Purpose: to find or skip character in character string
Format: opcode char.rb, len.rw, addr.ab
Operation:

LOCC,
SKPC

\CQMPARE EACH CHARACTER
UNTIL EQUAL {LOCC) OR

I NOT EQUAL [SKPC) §>

Z SET IF CONDITION NOT SATISIFIED

Condition N «0;

Codes: Z «< RO EQL O;
V «<0;
C<«0

Exceptions: None

Opcodes: 3A LOCC Locate Character
3B SKP Skip Character

Description:  The character operand is compared with the bytes of the
string specified by the length and address operands.
Comparison continues until equality is detected for the
Locate Character instruction or inequality for the Skip
Character instruction or until all bytes of the string have
been compared. If equality is detected for the Locate
Character instruction, the condition code Z-bit is cleared;
otherwise the Z-bit is set. If inequality is detected for the
Skip Character instruction, the condition code Z bit is
cleared; otherwise the Z bit is set.

Notes: After execution:
RO = number of bytes remaining in the string (includ-
ing located one) if byte located; otherwise RO = O.

R1 = address of the byte located if byte located;
otherwise R1 = address of one byte beyond the string.
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MATCHC
MATCH CHARACTERS

Purpose: to find substring in character string
Format: opcode lenl.rw, addrl.ab, len2.rw, addr2.ab
Operation:
adr 1
MATCHC len 1
adr2 FULL
T
len 2/
Condition N «0;
Codes: Z « RO EQL O;
V <0
C<«0
Exceptions: None
Opcodes: 39 MATCHC Match Characters

Description:  The string specified by the length 1 and address 1 oper-
ands is searched for a substring which matches the string
specified by the length 2 and address 2 operands. If the
substring is found, the condition code Z-bit is cleared;
otherwise, it is set.

Notes: After execution:

RO = number of bytes remaining in string 1 including
bytes of the matched substring. RO is O only if no
match occurred.

R1 — address of the first byte of the substring if sub-
string match occurred; otherwise, address of one byte
beyond string 1.

R2 = number of bytes in string 2.

R3 = address of the first byte of string 2.
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9.2 CYCLIC REDUNDANCY CHECK INSTRUCTION

This instruction is designed to implement the calculation and checking
of a cyclic redundancy check for any CRC polynomial up to 32 bits.
Cyclic Redundancy Checking is an error detection method involving a
division of the data stream by a CRC polynomial. The data stream is
represented as a standard VAX-11 string in memory. Error detection is
accomplished by computing the CRC at the source and again at the des-
tination, comparing the CRC computed at each end. The choice of the
polynomial is such as to minimize the number of undetected block
errors of specific lengths. The choice of a CRC polynomial is not given
here; see, for example, the article “Cylic Codes for Error Detection’ by
W. Peterson and D. Brown in the Proceedings of the IRE (January, 1961).

The operands to the CRC instruction are a string descriptor, a 16-long-
word table, and an initial CRC. The string descriptor is a standard VAX-11
operand pair of the length of the string in bytes (up to 65,535) and
the starting address of the string. The contents of the table are a func-
tion of the CRC polynomial to be used. It can be calculated from the
polynomial by the algorithm in the notes. Several common CRC poly-
nomials are also included in the notes. The initial CRC is used to start
the polynomial correctly. Typically, it has the value 0 or —1, but would
be different if the data stream is represented by a sequence of non-
contiguous strings.

The CRC instruction operates by scanning the string, and for each byte
of the data stream, including it in the CRC being calculated. The byte
is included by XORing it to the right 8 bits of the CRC. Then the CRC
is shifted right 1 bit, inserting zero on the left. The right most bit of the
CRC (lost by the shift) is used to control the XORing of the CRC poly-
nomial with the resultant CRC. If the bit is set, the polynomial is XORed
with the CRC. Then the CRC is again shifted right and the polynomial
is conditionally XORed with the result a total of eight times. The actual
algorithm used can shift by one, two, or four bits at a time using the
appropriate entries in a specially constructed table. The instruction pro-
duces a 32-bit CRC. For shorter polynomials, the result must be ex-
tracted from the 32-bit field. The data stream must be a multiple of
eight bits in length. If it is not, the stream must be right adjusted in
the string with leading O bits.
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CRC

CALCULATE CYCLIC REDUNDANCY CHECK

Format:

Operation:

STREAM

strien

Condition
Codes:

Exceptions:
Opcodes:

Description:

Notes:

opcode tbi.ab, inicre.rl, strlen.rw, stream.ab, dst.wl

INICRC

\

STREAM + BY th!

= T

16
CRC POLYNOMIAL || o\GWORDS

l CRC ACCUMULATION J >RO

|

N < RO LSS 0;
Z < RO EQL O;
V <0
C<«<C

none
0B CRC Calculate Cyclic Redundancy Check

The CRC of the data stream described by the string
descriptor is calculated. The initial CRC is given by inicrc
and is normally O or —1 unless the CRC is calculated in
several steps. RO is replaced by the result. If the poly-
nomial is less than order —32, the result must be ex-
tracted from RO. The CRC polynomial is expressed by
the contents of the 16-longword table. See the notes
for calculation of the table.

1. If the data stream is not a muitiple of 8-bits long, it
must be right adjusted with leading zero fill.

2. 1f the CRC polynomial is less than order 32, the result
must be extracted from the low order bits of RO.

3. The following algorithm can be used to calculate the
CRC table given a polynomial expressed as follows:

poly<n> < {coefficient of x**{order —1—N}}

This routine is available as system library routine
LIB$CRC_TABLE (poly.rl, table.ab). The table is the
location of a 64-byte (16-longword) table into which
the result will be written.

SUBROUTINE LIB$CRC_TABLE (POLY, TABLE)
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INTEGER#4 POLY, TABLE(0:15), TMP, X
DO 190 INDEX =0, 15

TMP = INDEX
DO1501I=1,4
X=TMP .AND. 1
TMP = ISHFT (TMP, —1) Ylogical shift right one bit
IF (X .EQ. 1) TMP = TMP .XOR. POLY
150 CONTINUE
TABLE(INDEX) = TMP
190 CONTINUE
RETURN
END

. The foltowing are descriptions of some commonly used
CRC polynomials.

CRC-16 (used in DDCMP and Bisync)
polynomial: x"16 4+ x"15 4+ x"2 + 1

poly: 120001 (octal)
initialize: 0
resuit: RO «15:0>

CCITT (used in ADCCP, HDLC, SDLC)
polynomial: x716 + x"12 4+ x"5 4 1

poly: 102010 (octal)
initialize: —1<15:0>
result: complement of RO<15:0>
AUTODIN-11
polynomial: x"324-x"26-+4x"23+x"22-+
x"16+4x"12

+x"114+x"104+-X"8+X"7 4
X54x"44x"2+x+1 '

poly: EDB88320 (hex)
initialize: —1<31:0>
result: complement of RO<31:0>

. This instruction produces an unpredictable result un-
less the table is well formed, such as produced in
note 3. Note that for any well formed table, entry [O]
is always O and entry [8] is always the polynomiai
expressed as in note 3. The operation can be imple-
mented using shifts of one, two, or four bits at a time
as follows:

table
incre- use table
shift loop test ment entries
1 8 tmp3<0> 8 [01=0, [8]
2 4  tmp3<1:0> 4 [0] =0, [4],
(81, [12]
4 2  tmp3<3:0> 1 all
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6. If the stream has zero length, the destination receives
the initial CRC.

7. After execution:
RO = resultant CRC

R1 = address of one byte beyond the stream
R2=0
R3=0

9-16



CHAPTER 10

DECIMAL STRING
INSTRUCTIONS

Decimal string instructions operate on packed decimal strings. Convert
instructions are provided between Packed Decimal and Trailing Numeric
String (Overpunched and Zoned) and Leading Separate Numeric string
formats. Where necessary, a specific data type is identified. Where the
phrase ‘“‘decimal string” is used, it means any of the three data types.

A decimai string is specified by 2 operands:

1. For all decimal strings the length is the number of digits in the string.
The number of bytes in the string is a function of the length and
the type of decimal string referenced.

2. The address of the lowest addressed byte of the string. This byte
contains the most significant digit for Trailing Numeric and packed
decimal strings. This byte contains a sign for Left Separate Numeric
strings. The address is specified by a byte operand of address access

type.

Each of the decimal string instructions uses general registers RO through
R3 or RO through R5 to contain a control block which maintains up-
dated addresses and state during the execution of the instruction. At
completion, the registers containing addresses are available to the soft-
ware to use as string specification operands for a subsequent instruc-
tion on the same decimal strings.

During the execution of the instructions, pending interrupt conditions
are tested and if any is found, the control block is updated. First Part
Done is set in the PSL, and the instruction interrupted. After the inter-
ruption, the instruction resumes transparently. The format of the con-
trol block at completion is:

3 ]
o} ‘RO
ADDRESS 1 :R1
0 iR2
ADDRESS 2 ‘R3
0o R4
ADDRESS 3 RS

The fields ADDRESS 1, ADDRESS 2 and ADDRESS 3 (if required) con-
tain the address of the byte containing the lowest addressed byte in
the first, second and third (if required) string operands respectively.

The decimai string instructions treat decimal strings as integers with
the decimal point assumed immediately beyond the least significant

digit of the string. If a string in which a result is to be stored is longer
than the result, its most significant digits are filled with zeros.
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10.1 DECIMAL OVERFLOW

Decimal overflow occurs if the destination string is too short to contain
all the non-zero digits of the result. On overflow, the destination string
is replaced by the correctly signed least significant digits of the result
(even if the result is —0). Note that neither the high nibble of an even
length packed decimal string, nor the sign byte of a Leading Separate
Numeric string is used to store result digits.

10.2 ZERO NUMBERS

A zero result has a positive sign for all operations that complete with-
out decimal overflow. However, when digits are lost because of over-
flow, a zero result receives the sign (positive or negative) of the correct
result.

A decimal string with value —O is treated as identical to a decimal string
with value 0. Thus for example +0 compares equal to —0. When con-
dition codes are affected on a —O result they are affected as if the re-
sult were }-0: i.e., N is cleared and Z is set.

10.3 RESERVED OPERAND EXCEPTION

A reserved operand fault occurs if the length of a decimal string operand
is outside the range O through 31, or if an invalid sign or digit is en-
countered in CVTSP and CVTTP.

10.4 UNPREDICTABLE RESULTS

The result of any operation is unpredictable if any source decimal string
operand contains invalid data. Except for CVTSP and CVTTP, the decimal
string instructions do not verify the validity of source operand data.

If the destination operands overlap any source operands, the result of
an operation will, in general, be unpredictable. The destination strings,
registers used by the instruction, and condition codes will, in general,
be unpredictable when a reserved operand fault occurs.

10.5 PACKED DECIMAL OPERATIONS

Packed decimal strings generated by the decimal string instructions
always have the preferred sign representation: 12 for ‘““+" and 13 for
‘“—"_ An even length packed decimal string is always generated with a
‘0" digit in the high nibble of the first byte of the string.

A packed decimal string contains an invalid nibble if:
1. A digit occurs in the sign position.
2. A sign occurs in a digit position.

3. For an even length string, a non-zero nibble occurs in the high order
nibble of the lowest addressed byte.

10.6 ZERO LENGTH DECIMAL STRINGS

The length of a packed decimal string can be O. In this case, the value
is zero (plus or minus) and one byte of storage is occupied. This byte
must contain a ‘0" digit in the high nibble and the sign in the low nibble.

The length of a trailing numeric string can be 0. In this case no storage
is occupied by the string. If a destination operand is a zero length trail-
ing numeric string, the sign of the operation is lost. Memory access
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faults will not occur when a zero length trailing numeric operand is
specified because no memory reference occurs.

The length of a Leading Separate Numeric string can be 0. In this case
one byte of storage is occupied by the sign. Memory is accessed when
a zero length operand is specified, and a reserved operand fault will
occur if an invalid sign is detected. The value of a zero length decimal
string is identically O.

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.
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MOvVP

MOVE PACKED

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode len.rw, srcaddr.ab, dstaddr.ab
{dst} « {src string}

N <« {dst string} LSS O;
Z <« {dst string} EQL 0;
V<0
Ce<«C

reserved operand
34 MOVP Move Packed

The destination string specified by the length and desti-
nation address operands is replaced by the source string
specified by the length and source address operands.

1. After execution:
RO=0
R1 = address of the byte containing the most signif-
icant digit of the source string
R2=0
R3 = address of the byte containing the most signif-
icant digit of the destination string.

2. The destination string, RO through R3, and the con-
dition codes are unpredictable if the destination
string overlaps the source string, the source string
contain an invalid nibble, or a reserved operand fault
occurs.

3. If the source is —0, the result is 4+0, N is cleared and
Z is set.
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COMPARE

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

COMP

PACKED
opcode len.rw, srcladdr.ab, src2addr.ab 3 operand
opcode srcllen.rw, srcladdr.ab, src2len.rw, 4 operand
rsc2addr.ab
{src1 string} — {src2 string};
N <« {srcl string} LSS {src2 string};
N <« {srcl string! EQL {src2 string};
V «<0;
C <0
reserved operand
35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand

In 3 operand format, the source 1 string specified by the
length and source 1 address operands is compared to
the source 2 string specified by the length and source 2
address operands. The only action is to affect the con-
dition codes.

In 4 operand format, the source 1 string specified by the
source 1 length and source 1 address operands is com-
pared to the source 2 string specified by the source 2
length and source 2 address operands. The only action
is to affect the condition codes.

1. After execution of CMPP3 or CMPP4:
RO=0
R1 — address of the byte containing the most signif-
icant digit of string 1.
R2=0
R3 = address of the byte containing the most signif-
icant digit of string 2.

2. RO through R3 and tHe condition codes are unpredic-
table if the source strings overlap, if either string

contains an invalid nibble, or if a reserved operand
fault occurs.
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ADDP

ADD PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode addlen.rw, addaddr.ab, sumlen.rw, sumaddr.ab

opcode addllen.rw, addladdr.ab, add2len.rw,
add2addr.ab, sumlen.rw, sumaddr.ab

{sum string} < {sum string} + {add string}; !4 operand
{sum string} <« {add 1 string} 4 {add2 string}; 6 operand

N « {sum string! LSS O;
Z « {sum string} EQL O;
V « {decimal overflow};
C<«0

reserved operand
decimal overflow

20 ADDP4 Add Packed 4 Operand
21 ADDP6 Add Packed 6 Operand

In 4 operand format, the addend string specified by the
addend length and addend address operands is added to
the sum string specified by the sum length and sum
address operands and the sum string is replaced by the
result.

In 6 operand format, the addend 1 string specified by the
addend 1 length and addend 1 address operands is
aded to the addend 2 string specified by the addend 2
length and addend 2 address operands. The sum string
specified by the sum length and sum address operands
is replaced by the resuit.

1. After execution of ADDP4:
R=0
R1 = address of the byte containing the most signif-
icant digit of the addend string
R2=0

R3 = address of the byte containing the most signif-
icant digit of the sum string

2. After execution of ADDP6:
RO=0

R1 = address of the byte containing the most signif-
icant digit of the addend1 string

R2=0
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R3 == address of the byte containing the most signif-
icant digit of the addend2 string

R4 =0

R5 — address of the byte containing the most signif-
icant digit of the sum string

. The sum string, RO through R3 (or RO through R5 for
ADDG6), and the condition codes are unpredictable if
the sum string overlaps the addend, addendl, or
addend2 strings; the addend, addendl, addend2 or
sum (4 operand only) strings contain an invalid nibhle;
or a reserved operand fault occurs.

. If all destination digits are zero, Z is set and N is
cleared. This is true even if the result overflows.
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SuBP

SUBTRACT PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode sublen.rw, subaddr.ab, diflen.rw, 4 operand
difaddr.ab

opcode sublen.rw, subaddr.ab, minlen.rw, 6 operand
minaddr.ab, diflen.rw, difaddr.ab

{dif string! <« {dif string} — {sub string}; 14 operand
{dif string} « {min string! — {sub string}; 16 operand

N <« {dif string!? LSS 0;
Z <« {dif string} EQL O;
V « {decimal overflow};
C«0

reserved operand
decimal overflow

22 SUBP4 Subtract Packed 4 Operand
23 SUBP6 Subtract Packed 6 Operand

In 4 operand format, the subtrahend string specified by
subtrahend length and subtrahend address operands is
subtracted from the difference string specified by the
difference length and difference address operands and the
difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by
the subtrahend length and subtrahend address operands
is subtracted from the minuend string specified by the
minuend length and minuend address operands. The
difference string specified by the difference length and
difference address operands is replaced by the result.

1. After execution of SUBP4:
RO=0

R1 = address of the byte containing the most signif-
icant digit of the subtrahend string

R2=0

R3 = address of the byte containing the most signif-
icant digit of the difference string

2. After execution of SUBP6:
RO=0

R1 = address of the byte containing the most signif-
icant digit of the subtrahend string

R2=0
R3 = address of the byte containing the most signif-
icant digit of the minuend string
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R4=0

R5 = address of the byte containing the most signif-
icant digit of the difference string

. The difference string, RO through R3 (RO through R5
for SUBP6), and the condition codes are unpredictabie
if the difference string overlaps the subtrahend or
minuend strings; the subtrahend, minuend, or differ-
ence (4 operand only) strings contain an invalid nibble;
or a reserved operand fault occurs.

. If all destination digits are zero, Z is set and N is
cleared. This is true even if the result overflows.
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MULP

MULTIPLY PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode mulrlen.rw, mulraddr.ab, muldien.rw,
muladdr.ab, prodlen.rw, prodaddr.ab

{prod string} « {muld string} * {mulr string};

N <« {prod string LSS 0;
Z < {prod string! EQL O;
V <« {decimal overflow;
C«0

reserved operand
decimal overflow

25 MULP Multiply Packed

The multiplicand string specified by the multipiicand
length and multiplicand address operands is multiplied
by the mulitiplier string specified by the multiplier length
and multiplier address operands. The product string spe-
cified by the product length and product address oper-
ands is replaced by the result.

1. After execution:
RO=0
R1 = address of the byte containing the most signif-
icant digit of the multiplier string
R2=0
R3 = address of the byte containing the most signif-
icant digit of the multiplicand string
R4 =0

R5 = address of the byte containing the most signif-
icant digit of the product string

2. The product string, RO through R5, and the condition
codes are unpredictable if the product string overlaps
the multiplier or multiplicand strings, the multiplier
or multiplicand strings contain an invalid nibble, or
a reserved operand fault occurs.

3. If all destination digits are zero, Z is set and N is
cleared. This is true even if the result overflows.
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DIVP

DIVIDE PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode divrien.rw, divraddr.ab, divdien.rw,
divdaddr.ab, quolen.rw, quoaddr.ab

{quo string} « {divd string} / {divr string};

N <« {quo string} LSS O;
Z « {quo string} EQL O;
V « {decimal overflow};
C<«0

reserved operand
decimal overflow
divide by zero

27 DivP Divide Packed

The dividend string specified by the dividend length and
dividend address operands is divided by the divisor string
specified by the divisor length and divisor address oper-
ands. The quotient string specified by the quotient length
and quotient address operands is replaced by the result.

1. This instruction may allocate a 16 byte workspace on
the stack. After execution SP is restored to its original
contents and the contents of {(SP) —16} : {(SP) —1}
are unpredictable.

2. The division is performed such that:

1. The absolute value of the remainder (which is lost)
is less than the absolute value of the divisor.

2. The product of the absolute value of the quotient
times the absolute value of the divisor is less than
or equal to the absolute value of the dividend.

3. The sign of the quotient is determined by the rules
of algebra from the signs of the dividend and the
divisor. If the value of the quotient is zero, the
sign is always positive.

3. After execution:

RO=0

R1 = address of the byte containing the most signif-

icant digit of the divisor string

R2=0

R3 = address of the byte containing the most signif-

icant digit of the dividend string

R4=0

R5 — address of the byte containing the most signif-

icant digit of the quotient string.
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4. The quotient string, RO through R5, and the condition
codes are unpredictable if the quotient string overlaps
the divisor or dividend strings, the divisor or dividend
string contains an invalid nibble, the divisor is O or a
reserved operand fault occurs.

5. If all destination digits are zero, Z is set and N is
cleared. This is true even if the result overflows.
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CVTLP

CONVERT LONG TO PACKED

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode src.rl, dstlen.rw, dstaddr.ab
{dst string} < conversion of src;

N < {dst string} LSS O;
Z <« {dst string! EQL O;
V <« {decimal overflow};
C<«0

reserved operand
decimal overflow

F9  CVTLP Convert Long to Packed

The source operand is converted to a packed decimal
string and the destination string operand specified by
the destination length and destination address operands
is replaced by the result.

1. After execution:

RO=0
R1=0
R2=0

R3 = address of the byte containing the most signif-
icant digit of the destination string

2. The destination string, RO through R3, and the con-
dition codes are unpredictable on a reserved oper-
and fault.

3. If the destination digits are zero, Z is set and N is
cleared. This is true even if the result overflows.

4. Overlapping operands produce correct results.
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CVTPL

CONVERT PACKED TO LONG

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode srclen.rw, srcaddr.ab, dst.wl

dst < conversion of {src string}

N <« dst LSS 0;

Z «dst EQL O;

V <« {integer overflow};
C«0

reserved operand
integer overflow

36

CVTPL Convert Packed to Long

The source string specified by the source length and
source address operands is converted to a longword and
the destination operand is replaced by the result.

1.

After execution:

RO=0

R1 = address of the byte containing the most signif-
icant digit of the source string

R2=0

R3=0

The destination operand, RO through R3, and the con-

dition codes are unpredictable on a reserved operand
fault or if the string contains an invalid nibble.

. The destination operand is stored after the registers

are updated as specified in 1 above. Thus RO through
R3 may be used as the destination operand.

. If the source string has a value outside the range

—2,147,483,648 through 2,147,483,647, integer over-
flow occurs and the destination operand is replaced
by the low order 32 bits of the correctly signed in-
finite precision conversion. Thus, on overflow the sign
of the destination may be different from the sign of
the source,

Overlapping operands produce correct results.
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CVIPT

CONVERT PACKED TO TRAILING NUMERIC

Format:

Operation:

< andition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab

{dst string} < conversion of {src string};

N < {src string} LSS O;
Z « {src string} EQL O;
V « {decimal overflow};
C<«0

reserved operand
decimal overflow

24 CVTPT Convert Packed to Trailing Numeric

The source packed decimal string specified by the source
length and source address operands is converted to a
trailing numeric string. The destination string specified
by the destination length and destination address oper-
ands is replaced by the result. The condition code N and
Z bits are affected by the value of the source packed
decimal string.

Conversion is effected by using the highest addressed
byte of the source string (i.e., the byte containing the
sign and the least significant digit) as an unsigned index
into a 256 byte table whose zeroth entry address is spe-
cified by the table address operand. The byte read out
of the table replaces the least significant byte of the
destination string. The remaining bytes of the destina-
tion string are replaced by the ASCli representations of
the values of the corresponding packed decimal digits
of the source string.

1. After execution:
RO=0
R1 — address of the byte containing the most signif-
icant digit of the source string
R2=0
R3 = address of the most significant digit of the
destination string

2. The destination string, RO through R3, and the con-
dition codes are unpredictable if the destination string
overlaps the source string or the table, the source
string or the table contains an invalid nibble, or a
reserved operand fault occurs.

3. The condition codes are computed on the value of
the source string even if overflow results. In particular,
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condition code N is set if and only if the source is
non-zero and contains a minus sign.

. By appropriate specification of the table, conversion
to any form of trailing numeric string may be realized.
See Chapter 4 for the preferred form of trailing over-
punch, zoned, and unsigned data. In addition, the table
may be set up for absolute value, negative absolute
value or negated conversions.

. If decimal overflow occurs, the value stored in the
destination may be different from the value indicated
by the condition codes (Z and N bits).
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CVTTP
CONVERT TRAILING NUMERIC TO PACKED

Format: opcode srclen.rw, srcaddr.ab, tbladdr.ab,
dstlen.rw, dstaddr.ab

Operation: {dst string} < conversion of {src string};
Condition N < {dst string} LSS O;
Codes: Z <« {dst string} EQL O;

V <« {decimal overflow};

C<«0

Exceptions: reserved operand
decimal overflow

Opcodes: 26 CVTTP Convert Trailing Numeric to Packed

Description:  The source trailing numeric string specified by the source
length and source address operands is converted to a
packed decimal string and the destination packed decimal
string specified by the destination address and destina-
tion length operands is replaced by the result.

Conversion is effected by using the highest addressed
(trailing) byte of the source string as an unsigned index
into a 256 byte table whose zeroth entry is specified by
the table address operand. The byte read out of the table
replaces the highest addressed byte of the destination
string (i.e., the byte containing the sign and the least
significant digit). The remaining packed digits of the des-
tination string are replaced by the low order 4 bits of the
corresponding bytes in the source string.

Notes: 1. A reserved operand fault occurs if:
1. The length of the source trailing numeric string is
outside the range O through 31.
2. The length of the destination packed decimal string
is outside the range O through 31.

3. The source string contains an invalid byte. An in-
valid byte is any value other than ASCII “0”
through “9" in any high order byte (i.e., any byte
except the least significant byte).

4. The translation of the least significant digit pro-
duces an invalid packed decimal digit or sign nib-
ble.

2. After execution:
RO=0
R1 = address of the most significant digit of the
source string

R2=0
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R3 = address of the byte containing the most signif-
icant digit of the destination string.

. The destination string, RO through R3, and the con-
dition codes are unpredictable if the destination string
overlaps the source string or the table, or a reserved
operand fault occurs.

. If the convert instruction produces a —0 without over-
flow, the destination packed decimal string is changed
to a +0 representation, condition code N is cleared
and Z is set.

. If the length of the source string is 0, the destination
packed decimal string is set identically equal to O,
and the translation table is not referenced.

. By appropriate specification of the table, conversion
from any form of trailing numeric string may be real-
ized. See Chapter 4 for the preferred form of trailing
overpunch, zoned, and unsigned data. In addition, the
table may be set up for absolute value, negative abso-
lute value or negated conversions.

. If the table translation produces a sign nibble con-
taining any valid sign, the preferred sign representa-
tion is stored in the destination packed decimal string.
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CVTPS

CONVERT PACKED TO LEADING SEPARATE NUMERIC

Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab
{dst string} <« conversion of {src string};

N < {src string} LSS 0;
Z <« {src string} EQL O;
V <« {decimal overflow};
C<«0

reserved operand
decimal overflow

08 CVTPS Convert Packed to Leading Separate
Numeric

The source packed decimal string specified by the source
length and source address operands is converted to a
leading separate numeric string. The destination string
specified by the destination length and destination ad-
dress operands is replaced by the result.

Conversion is effected by replacing the lowest addressed
byte of the destination string with the ASCIl character
“+" or “—"", determined by the sign of the source string.
The remaining bytes of the destination string are re-
placed by the ASCII representations of the values of the
corresponding packed decimal digits of the source string.

1. After execution:
RO=0

R1 = address of the byte containing the most signif-
icant digit of the source string

R2=0
R3 = address of the sign byte of the destination string

2. The destination string, RO through R3, and the con-

dition codes are unpredictable if the destination string
overlaps the source string, the source string contains
an invalid nibble, or a reserved operand fault occurs.

3. This instruction produces an ASCII *4-" or “—" in the

sign byte of the destination string.
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4. If decimal overflow occurs, the value stored in the
destination may be different from the value indicated
by the condition codes (Z and N bits).

5. If the conversion produces a —0 without overflow, the
destination leading separate numeric string is changed
to a +0 representation.
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CVTSP

CONVERT LEADING SEPARATE NUMERIC TO PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode srclen.rw, srcaddr.ab, dstien.rw, dstaddr.ab

{dst string} <« conversion of {src string};

N < {dst string} LSS 0;
Z <« idst string} EQL O;
V <« {decimal overflow};
Ce<«0

reserved operand
decimal overflow

09 CVTSP Convert Leading Separate Numeric
to Packed

The source numeric specified by the source length and
source address operands is converted to a packed
decimal string and the destination string specified by the
destination address and destination length operands is
replaced by the result.

1. A reserved operand fault occurs if:

1. The iength of the source Leading Separate numeric
string is outside the range O through 31.

2. The length of the destination packed decimal string
is outside the range O through 31.

3. The source string contains an invalid byte. An
invalid byte is any character other than an ASCII
“0’" through “9” in a digit byte or an ASCII “+",
“<space>", or “—" in the sign byte.

2. After execution:
RO=0
R1 = address of the sign byte of the source string
R2=0

R3 = address of the byte containing the most signif-
icant digit of the destination string.

3. The destination string, RO through R3, and the con.
dition codes are unpredictable if the destination string

overlaps the source string, or a reserved operand fault
occurs.
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ARITHMETIC SHIFT AND ROUND PACKED

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

opcode cnt.rb, srcien.rw, srcaddr.ab, round.rb,
dstlen.rw, dstaddr.ab

{dst string} <« {src string}

+ (round <3:0> * (10 ** (—cnt—1)))

* (10 ** cnt);

N <« {dst string} LSS O;
Z < {dst string} EQL O;
V « {decimal overflow};
C<«0

reserved operand
decimal overflow

ASHP

F8 ASHP Arithmetic Shift and Round Packed

The source string specified by the source length and
source address operands is scaled by a power of 10 spe-
cified by the count operand. The destination string spe-
cified by the destination length and destination address

operands is replaced by the result.

A positive count operand effectively multiplies; a negative
count effectively divides; and a zero count just moves
and affects condition codes. When a negative count is
specified, the result is rounded using the round oper-

and.

1. After execution:
RO=0

R1 = address of the byte containing the most signif-

icant digit of the source string
R2=0

R3 = address of the byte containing the most signif-
icant digit of the destination string

. The destination string, RO through R3, and the con-

dition codes are unpredictable if the destination string
overlaps the source string, the source string contains
an invalid nibble, or a reserved operand fault occurs.

. When the count operand is negative, the result is

rounded by decimally adding bits 3:0 of the round
operand to the most significant low order digit dis-
carded and propagating the carry, if any, to higher
order digits. Both the source operand and the round
operand are considered to be quantities of the same
sign for the purpose of this addition.
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4. 1If bits 7:4 of the round operand are non-zero, or if
bits 3:0 of the round operand contain an invalid
packed decimal digit the result is unpredictable.

5. When the count operand is zero or positive, the round
operand has no effect on the result except as specified
in note 4.

6. The round operand is normally 5. Truncation may
be accomplished by using a zero round operand.
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CHAPTER 11
EDIT INSTRUCTION

This instruction is designed to implement the common editing functions
which occur in handling fixed format output. It operates by converting
a packed decimal string to a character string. This operation is exempli-
fied by a MOVE to a numeric edited (PICTURE )item in COBOL or PL/I,
but the instruction can be used for other applications as well. The oper-
ation consists of converting an input packed decimal number to an out-
put character string, generating characters for the output. When convert-
ing digits, options include leading zero fiil, leading zero protection, in-
sertion of floating sign, insertion of floating currency symbol, insertion
of special sign representations, and blanking an entire field when it is
zero.

The operands to the EDITPC instruction are an input packed decimal
string descriptor, a pattern specification, and the starting address of
the output string. The packed decimal descriptor is a standard VAX-11
operand pair of the length of the decimal string in digits (up to 31) and
the starting address of the string. The pattern specification is the start-
ing address of a pattern operation editing sequence which is interpreted
much the way that the normal instructions are. The output string is
described by only its starting address because the pattern defines the
length unambiguously.

While the EDITPC instruction is operating, it manipulates two character
registers and the four condition codes. One character register contains
the fill character. This is normally an ASCII blank, but would be changed
to asterisk for check protection. The other character register contains
the sign character. Initially this contains either an ASCIl blank or a minus
sign depending upon the sign of the input. This can be changed to
allow other sign representations such as plus/minus or plus/blank and
can be manipulated in order to output special notations such as CR
or DB. The sign register can also be changed to the currency sign in
order to implement a floating currency sign. After execution, the con-
dition codes contain the sign of the input (N), the presence of a non-
zero source (Z), an overflow condition (V), and the presence of signif-
icant digits (C). Condition code N is determined at the start of the in-
struction and is not changed thereafter (except for correcting a —0 in-
put). The other condition codes are computed and updated as the in-
struction proceeds. When the EDITPC instruction terminates, registers
RO-R5 contain the conventional values after a decimal instruction.

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.



EDITPC

EDIT PACKED TO CHARACTER STRING

Purpose:
Format:

Operation:

EDITPC

src_adr

opcode srclen.rw, scraddr.ab, pattern.ab, dstaddr.ab

dst _adr

determined

by pattern
VAN

PATTERN

_.‘

src len
digits

k-

Condition
Codes:

Exceptions:

Opcodes:

Description:

Notes:

EOSEND

N <« {src string! LSS 0; IN <0 if srcis —0
Z <« {src string} EQL O;

V <« {decimal overflow:; 'non-zero digits lost
C « {significance}

reserved operand
decimal overflow

38 EDITPC Edit Packed to Character String

The destination string specified by the pattern and desti-
nation address operands is replaced by the edited ver-
sion of the source string specified by the source length
and source address operands. The editing is performed
according to the pattern string starting at the address
pattern and extending until a pattern end (EO$END) pat-
tern operator is encountered. The pattern string consists
of one byte pattern operators. Some pattern operators
take no operands. Some take a repeat count which is
contained in the rightmost nibble of the pattern operator
itself. The rest take a one byte operand which follows the
pattern operator immediately. This operand is either an
unsigned integer length or a byte character.. The individ-
ual pattern operators are described on the following
pages.

1. A reserved operand fault occurs with FPD cleared if
srclen GTRU 31. See Chapter 6 for a description of
reserved operand faults and FPD.
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10.

The destination string is unpredictable if the source
string contains an invalid nibble, if the EO$ADJUST__
INPUT operand is outside the range 1 through 31, if
the source and destination strings overlap, or if the
pattern and destination strings overlap.

. After execution:

RO = length of source string

R1 = address of the byte containing the most signif-
icant digit of the source string

R2=0

R3 — address of the byte containing the EO$END pat-
tern operator

R4 =0
R5 = address of one byte beyond the last byte of the
destination string

If the destination string is unpredictable, RO through
R5 and the condition codes are unpredictable.

. If V is set at the end and DV is enabled, numeric

overflow trap occurs unless the conditions in note 9
are satisfied.

. The destination length is specified exactly by the pat-

tern operators in the pattern string. If the pattern is
incorrectly formed or if it is modified during the ex-
ecution of the instruction, the length of the destina-
tion string is unpredictable.

If the source is —O0, the result may be —0 unless a
fixup pattern operator is included (EO$BLANK_ZERO
of EO$REPLACE_SIGN).

The contents of the destination string and the mem-
ory preceding it are unpredictable if the length covered
by EO$BLANK_ZERO or EO$REPLACE_SIGN is O or is
outside the destination string.

. If more input digits are requested by the pattern than

are specified, then a reserved operand abort is taken
with RO = —1 and R3 = location of pattern operator
which requested the extra digit. The condition codes
and other registers are as specified in note 11. This
abort is not continuable.

If fewer input digits are requested by the pattern than
are specified, then a reserved operand abort is taken
with R3 — location of EO$END pattern operator. The
condition codes and other registers are as specified
in note 11. This abort is not continuabie.

On an unimplemented or reserved pattern operator, a
reserved operand fault is taken with R3 = location of
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Insert:

Move:

Fixup:

Load:

Control:

the faulting pattern operator. The condition codes and
other registers are as specified in note 11. This fault
is continuable as long as the defined register state is
manipulated according to the pattern operator descrip-
tion and the other state specified is preserved.

On a reserved operand exception as specified in notes
8 through 10, FPD is set and the condition codes and
registers are as follows:

N = {src has minus sign}

Z = all source digits 0 so far

V = non-zero digits lost

C = significance

R0<15:0> = srolen

R1<«<31:16> = — number of zeros to supply
R1 = current source location

R2<7:0> = fill character

R2<15:8> = sign character

R2<31:16> = unpredictable

R3 = address of edit pattern operator causing excep-
tion

R4 = unpredictable

R5 = location of next destination byte

SUMMARY OF EDIT PATTERN OPERATORS

11.

Name Operand  Summary
EOS$INSERT ch insert character, fill if
insignificant
EO$STORE_SIGN — insert sign
EOS$FILL r insert fill
EO$MOVE r move digits, filling
insignificant
EO$FLOAT r move digits, floating sign
EO$END_FLOAT — end floating sign
EO$BLANK_ZERO len fill backward when zero
EO$REPLACE_SIGN len replace with fill if —0
EO$LOAD_FILL ch load fill character
EO$LOAD_SIGN ch load sign character
EO$LOAD_PLUS ch load sign character if
positive
EO$LOAD_MINUS ch load sign character if
negative
EO$SET_SIGNIF —_ set significance flag
EO$CLEAR_SIGNIF —_— clear significance flag
EO$ADJUST_INPUT len adjust source length

EO$END

end edit



where: ch — one character
r — repeat count in the range 1 through 15
len = length in the range 1 through 255

EDIT PATTERN OPERATOR ENCODING

(hex)

00 EO$END

01 EO$END_FLOAT
02 EO$CLEAR_SIGNIF
03 EO$SET_SIGNIF
04 EO$STORE_SIGN

05..1F Reserved to DEC
20..3F Reserved for all time

40 EO$LOAD_FILL

41 EO$LOAD_SIGN

42 EO$LOAD_PLUS character is in next byte

43 EO$LOAD_MINUS

44 EO$INSERT

45 EO$BLANK_ZERO

46 EO$REPLACE_SIGN }unsigned length is in next byte
47 EO$ADJUST_INPUT

48 ..5F Reserved to DEC
60..7F Reserved to CSS, customers

80,90, A0 Reserved to DEC
81..8F EO$FILL
91..9F EO$MOVE }repeat count is <3:0>
Al..AF EO$FLOAT

BO..FE Reserved to DEC
FF Reserved for all time

The following pages define each pattern operator in a format similar to
that of the normal instruction descriptions. In each case, if there is an
operand it is either a repeat count (r) from 1 through 15, an unsigned
byte length (len), or a character byte (ch). In the formal descriptions,
the following two routines are invoked:
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READ: function value O through 9

if RO LEQ O

then
begin
if RO EQL O then freserved operand};
READ <« 0;
R0O<«31:16> « R0O<31:16> + 1;
Isee EO$ADJUST_INPUT
end;

else
begin
READ « (R1)<3+4*R0O<0>:4*RO<0>>;
lget next nibble
talternating high then low
RQ « RO — 1;
if ROKO> EQL 1 then R1 « R1 4 1;
end;

return;

STORE (char): (R5) « char;
R5 «R5 4+ 1;
return;

Also the following definitions are used: fill = R2<7:0>
sign = R2<15:8>
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EOSINSERT

INSERT CHARACTER

Purpose:

Format:
Operation:

Pattern
Operators:

Description:

Note:

insert a fixed character, substituting the fiil character if
not significant

pattern ch
if PSW<C> EQL 1 then STORE (ch) else STORE (fill);
44  EOS$INSERT Insert Character

The pattern operator is followed by a character. If signifi-
cance is set, then the character is placed into the desti-
nation. If significance is not set, then the contents of
the fill register is placed into the destination.

This pattern operator is used for blankable inserts (e.g.,
comma) and fixed inserts (e.g., slash). Fixed inserts re-
quire that significance be set (by EO$SET_SIGNIF or
EO$END_FLOAT).



EO$STORE_SIGN

STORE SIGN

Purpose: Insert the sign character

Format: pattern

Operation: STORE (sign);

Pattern 04 EO$STORE_SIGN  Store Sign

Operators:

Description:  The contents of the sign register is placed into the desti-
nation.

Note: This pattern operator is used for any non-floating arith-

metic sign. It should be preceded by a EO$LOAD_PLUS
and/or EO$LOAD_MINUS if the default sign convention
is not desired.



EOSFILL

STORE FILL
Purpose: Insert the fill character
Format: pattern r

Operation: repeat r do STORE (fill);
Pattern 8x  EOS$FILL Store Fill
Operators:

Description:  The right nibble of the pattern operator is the repeat
count. The contents of the fill register is placed into the
destination repeat times.

Note: This pattern operator is used for fill (blank) insertion.



EO$MOVE
MOVE DIGITS

Purpose: Move digits, filling for insignificant digits (leading zeros)
Format: pattern r

Operation: repeat r do

begin

tmp < READ;

if tmp NEQU O then
begin
PSW<Z> « 0;
PSW<C> « 1; !set significance
end;

if PSW<C> EQL O then STORE (fill)
else STORE (0" + tmp);

end;

Pattern 9x EO$MOVE Move Digits
Operators:

Description:  The right nibble of the pattern operator is the repeat
count. For repeat times, the following algorithm is ex-
ecuted. The next digit is moved from the source to the
destination. If the digit is non-zero, significance is set
and zero is cleared. If the digit is not significant (i.e., is
a leading zero) it is replaced by the contents of the fill
register in the destination.

Notes: 1. If r is greater than the number of digits remaining in
the source string, a reserved operand abort is taken.

2. This pattern operator is used to move digits without
a floating sign. If leading zero suppression is desired,
significance must be clear. If leading zeros should be
explicit, significance must be set. A string of
EO$MOVEs intermixed with EO$INSERTs and EO$-
FILLs will handle suppression correctly.

3. If check protection (*) is desired, EO$LOAD_FILL must
precede the EO$MOVE.
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EO$FLOAT

FLOAT SIGN
Purpose: Move digits, floating the sign across insignificant digits
Format: pattern r

Operation: repeat r do

begin

tmp <« READ;

if tmp NEQU O then
begin
if PSW<C> EQL O then STORE (sign);
PSW<Z> «0;
PSW<C> « 1; Iset significance
end;

if PSW<C> EQL 0 then STORE (fill)
else STORE (0" 4+ tmp);

end;

Pattern AX EO$FLOAT Float Sign
Operators:

Description:  The right nibble of the pattern operator is the repeat
count. For repeat times, the following algorithm is ex-
ecuted. The next digit from the source is examined. If it
is non-zero and significance is not yet set, then the con-
tents of the sign register is stored in the destination,
significance is set, and zero is cleared. If the digit is
significant, it is stored in the destination, otherwise the
contents of the fill register is stored in the destination.

Notes: 1. If r is greater than the number of digits remaining in
the source string, a reserved operand abort is taken.

2. This pattern operator is used to move digits with a
floating arithmetic sign. The sign must already be set-
up as for EO$STORE_SIGN. A sequence of one or
more EO$FLOATs can include intermixed EO$INSERTs
and EOS$FILLs. Significance must be clear before the
first pattern operator of the sequence. The sequence
must be terminated by one EO$END_FLOAT.

3. This pattern operator is used to move digits with a
floating currency sign. The sign must already be setup
with a EO$LOAD_SIGN. A sequence of one or more
EO$FLOATs can include intermixed EO$INSERTs and
EO$FILLs. Significance must be clear before the first
pattern operator of the sequence. The sequence must
be terminated by one EO$END_FLOAT.

11-11



EOSEND_FLOAT

END FLOATING SIGN

Purpose:
Format:

Operation:

Pattern
Operators:

Description:

Note:

End a floating sign operation
pattern

if PSW<C> EQL O then
begin
STORE (sign);
PSW<C> « 1; Iset significance
end;

01 EOSEND_FLOAT End Floating Sign

If the floating sign has not yet been placed in the desti-
nation (i.e., if significance is not set), the contents of the
sign register is stored in the destination and significance
is set.

This pattern operator is used after a sequence of one or
more EO$FLOAT pattern operators which start with sig-
nificance clear. The EO$FLOAT sequence can include in-
termixed EO$INSERTs and EOS$FILLs.
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EO$BLANK_ZERO

BLANK BACKWARDS WHEN ZERO

Purpose:
Format:

Operation:

Pattern
fOperators:

Description:

Notes:

Fixup the destination to be blank when the value is zero
pattern len

if len EQLU O then {unpredictable};
if PSW<Z> EQL 1 then

begin

R5 < R5 — len;

repeat len do STORE (fill);
end;

45 EO$BLANK_ZERO Blank Backwards When Zero

The pattern operator is followed by an unsigned byte in-
teger length. If the value of the source string is zero,
then the contents of the fill register is stored into the
last length bytes of the destination string.

1. The length must be non-zero and within the destina-
tion string already produced. If it is not, the contents
of the destination string and the memory preceding
it are unpredictable.

2. This pattern operator is used to blank out any char-
acters stored in the destination under a forced signif-
icance, such as a sign or the digits following the radix
point.
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EO$REPLACE_SIGN

REPLACE SIGN WHEN MINUS ZERO

Purpose:
Format:

Operation:

Pattern
Operators:

Description:

Notes:

Fixup the destination sign when the value is minus ero
pattern len

if len EQLU O then {unpredictable};
if PSW<Z> EQL 1 and PSW<N> EQL 1 then
(R5 — len) <« fill;

46  EO$REPLACE_SIGN Replace Sign When Minus Zero

The pattern operator is followed by an unsigned byte in-
teger length. If the value of the source string is minus
zero (i.e., if both N and Z are set), then the contents of
fill register is stored into the byte of the destination
string length before the current position.

1. The iength must be non-zero and within the destina-
tion string already produced. If it is not, the contents
of the destination string and the memory preceding
it are inpredictable.

2. This pattern operator is used to correct a stored sign
(EO$END FLOAT or EO$STORE_ SIGN) if a minus was
stored and the source value turned out to be zero.
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EO$LOAD

LOAD REGISTER

Purpose:
Format:

Operation:

Pattern
Operators:

Description:

Notes:

Change the contents of the fill or sign register

pattern ch

Iselect one depending on pattern operator
fill « ch; IEO$LOAD_FILL
sign < ch; 'EO$LOAD_SIGN

if PSW<N> EQL O then sign < ch; !'EO$LOAD_PLUS
if PSW<N> EQL 1 then sign «<ch; !'EO$LOAD_MINUS

40 EO$LOAD_FILL Load Fill Register

41 EO$LOAD_SIGN Load Sign Register

42 EO$LOAD_PLUS Load Sign Register If Plus
43 EO$LOAD_MINUS Load Sign Register If Minus

The pattern operator is followed by a character. For
EO$LOAD_FILL this character is placed into the fill reg-
ister. For EO$LOAD_SIGN this character is placed into
the sign register. For EO$LOAD_PLUS this character is
placed into the sign register if the source string has a
positive sign. For EO$LOAD_MINUS this character is
placed into the sign register if the source string has a
negative sign.

1. EO$LOAD_FILL is used to setup check protection
(* instead of space).

2. EO$LOAD_SIGN is used to setup a floating currency
sign.

3. EO$LOAD_PLUS is used to setup a non-blank plus
sign.

4. EO$LOAD_MINUS is used to setup a non-minus minus
sign (such as CR, DB, or the PL/I +).
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EO$_SIGNIF

SIGNIFICANCE
Purpose: Control the significance (leading zero) indicator
Format: pattern
Operation: PSW<C> «0; 'EO$CLEAR_SIGNIF
PSW<C> <« 1; IEC$SET_SIGNIF
Pattern 02 EO$CLEAR_SIGNIF Clear Significance
Operators: 03  EOS$SET_SIGNIF Set Significance
Description:  The significance indicator is set or cleared. This controls
the treatment of leading zeros (leading zeros are zero
digits for which the significance indicator is clear).
Netes: 1. EO$CLEAR_SIGNIF is used to initialize leading zero

suppression (EO$MOVE) or floating sign (EO$FLOAT)
following a fixed insert (EO$INSERT with significance
set).

2. EO$SET_SIGNIF is used to avoid leading zero suppres-
sion (before EOJMOVE) or to force a fixed insert (be-
fore EO$INSERT).
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EO$ADJUST_INPUT

ADJUST INPUT LENGTH

Purpose:

Format:

Operation:

Pattern
Operators:

Description:

Note:

Handle source strings with lengths different from the out-
put

pattern len

if len EQLU O or len GTRU 31 then {unpredictables;
if R0O<15:0> GTRU len
then
begin
RO<31:16> <0
repeat R0O<15:0> — len do
if READ NEQU O then
begin
PSW<Z> «0;
PSW<V> « 1;
end;
end;
else R0O<31:16> « R0O<15:0> — len;
Inegative of number to fill

47 EO$ADJUST_INPUT Adjust Input Length

The pattern operator is followed by an unsigned byte in-
teger length in the range 1 through 31. If the source
string has more digits than this length, the excess digits
are read and discarded. If any discarded digits are non-
zero then overflow is set, significance is set, and zero is
cleared. If the source string has fewer digits than this
length, a counter is set to the number of leading zeros
to supply. This counter is stored as a negative number in
RO<31:16>.

If length is not in the range 1 through 31 the destination
string, condition codes, and RO through R5 are unpredic-
table.
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END EDIT
Purpose:
Format:

Operation:

Pattern
Operators:

Description:

Notes:

EOSEND

End the edit operation
pattern

if RO NEQ O then {reserved operand}
if PSW<Z> EQL 1 then PSW<N> « 0;
{end instruction’;

00 EO$END End Edit

The edit operation is terminated.

1. If there are still input digits, a reserved operand abort
is taken.

2. If the source value is —0, the N condition code is
cleared.
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CHAPTER 12

EXCEPTIONS

12.1 INTRODUCTION

At certain times during the operation of a system, events within the sys-
tem require the execution of particular pieces of software outside the
explicit flow of control. The processor transfers control by forcing a
change in the flow of control from that explicitly indicated in the cur-
rently executing process.

Some of the events are relevant primarily to the currently executing pro-
cess, and normally invoke software in the context of the current process.
The notification of such events is termed an exception.

Other events are primarily relevant to other processes, or to the system
as a whole, and are therefore serviced in a system-wide context. The
notification process for these events is termed an interrupt, and the
system-wide context is described as “executing on the interrupt stack”
(1S). Further, some interrupts are of such urgency that they require high-
priority service, while others must be synchronized with independent
events. To meet these needs, the processor has priority logic that grants
interrupt service to the highest priority event at any point in time. The
priority associated with an interrupt is termed its interrupt priority level
(IPL). Interrupts are discussed in Volume 2.

Exceptions are handled by the operating system. Usually, they are re-
flected to the originating mode as a signal; see Appendix C. In general,
the signal is described via a vector that is a counted list of longwords.
The first longword contains the count of other longwords in the vector.
The second longword identifies which exception occurred. The remaining
longwords are the stack parameters, the PC, and the PSL, as described
in this chapter.

A trap is an exception condition that occurs at the end of the instruction
that caused the exception. Therefore the PC saved on the stack is the
address of the next instruction that would normally have been executed.
Any software can enable and disable some of the trap conditions with a
single instruction; see the BISPSW and BICPSW instructions described in
Chapter 7.

A fault is an exception condition that occurs during an instruction, and
that leaves the registers and memory in a consistent state such that
elimination of the fault condition and restarting the instruction will give
correct results. Note that faults do not always leave everything as it was
prior to the faulted instruction, they only restore enough to allow re-
starting. Thus, the state of a process that faults may not be the same as
that of a process that was interrupted at the same point.

An abort is an exception condition that occurs during an instruction, and
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potentially leaves the registers and memory indeterminate, such that the
instruction cannot necessarily be correctly restarted, completed, simu-
lated, or undone.

12.2 PROCESSOR STATUS

When an exception or in interrupt is serviced, the processor status must
be preserved so that the interrupted process may continue normally.
Basically, this is done by automatically saving the Program Counter (PC)
and the Processor Status Longword (PSL). These are later restored with
the Return from Exception or Interrupt instruction (REI). Any other status
required to correctly resume an interruptable instruction is stored in the
general registers. Process context such as the mapping information is
not saved or restored on each interrupt or exception. Instead, it is saved
and restored only when process context switching is performed. Refer to
the LDPCTX and SVPCTX instructions in Chapter 13. Other processor
status is changed even less frequently; refer to the processor internal
register descriptions in Chapter 13.

The Processor Status Longword (PSL) is a longword consisting of a word
of privileged processor status concatenated with the Processor Status
Word (PSW). Refer to Chapter 3 for a description of the PSW. The PSL
is automatically saved on the stack when an exception or interrupt oc-
curs and is saved in the Process Control -Block on a process context
switch. The PSL can also be stored by the MOVPSL instruction; refer to
Chapter 7. (The terms current PSL and saved PSL are used to distinguish
between this status information when it is in the processor and when
copies of it are materialized in memory.)

Bits <31:21> of the current PSL can be changed explicitly only by ex-
ecuting a return from exception or interrupt instruction (REI!). REI con-
siders the current access mode when restoring the PSL, and faults if a
program attempts to increase its privilege by this means. Thus REI! is
available to all software including user exception-handling routines.

31 3029 28 27 2 25 24 23 22 1 20 16 15 8 7 6 5 4 3 2 1 0
ITE PREVIOUS.

Cm|TP| MBZ FDIISF;“RME‘I mPJeZ{ IPL ' MBZ IDVIFU[IV[TIN,ZIV’C]

— psw /

Processor Status Longword

At bootstrap time, PSL is cleared except for IPL and IS.
BITS DESCRIPTION
3:0 Condition Codes: N, Z, V, C (See Chapter 3)

4 Trace enable (T). When set at the beginning of an instruction,
causes TP to be set. When TP is set between instructions (be-
fore examining T), a trace fault is taken. The effect is that set-
ting bit 4 forces a trace trap before the execution of each sub-
sequent instruction. When clear, no trace exception occurs.
Most programs should treat T as unpredictable because it is
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15:8
20:16

21
22:23

25:24

26

27

set by debuggers and trace programs for tracing and for pro-
ceeding from a breakpoint.

integer Overflow trap enable (IV). When set, forces an integer
overflow trap after execution of an instruction that produced an
integer result that overflowed or had a conversion error. When
IV is clear, no integer overflow trap occurs. (However, the con-
dition code V bit is still set.) )

Floating Underflow trap enable (FU). When set, forces a floating
underflow trap after execution of an instruction that produced
an underflowed result (i.e., a result exponent, after normaliza-
tion and rounding, less than —127). When FU is clear, no trap
occurs.

Decimal Overflow trap enable (DV). When set, forces a decimal
overflow trap after execution of an instruction that produced an
overflowed decimal (numeric string or packed decimal) result
(i.e., no room to store a non-zero digit) or had a conversion
error. When DV is clear, no trap occurs. (However, the condition
code V bit is still set.)

Reserved to DIGITAL, must be zero.

Interrupt Priority Level (IPL). The current processor priority, in
the range O to 31 (1F, hex). The processor will accept interrupts
only on levels greater than the current level. At bootstrap time,
IPL is initialized to 31 (1F, hex).

Reserved to DIGITAL, must be zero.

Previous Access Mode (PRVMOD). Loaded from current access
mode by exceptions and CHMX instructions, cleared by inter-
rupts, and restored by REI.

Current Access Mode (CURMOD). The access mode of the cur-
rently executing process, as follows:

O0—KERNEL
1—EXECUTIVE
2—SUPERVISOR
3—USER

Interrupt Stack (IS). When set, the processor is executing on the
interrupt stack. Any mechanism that sets IS also clears current
access mode and raises IPL above 0. If an REI attempts to re-
store a PSL with IS = 1 and non-zero current access mode or
zero IPL, a reserved operand fault is taken. When clear, the
processor is executing on the stack specified by the current ac-
cess mode. At bootstrap time, IS is set.

First Part Done (FPD). When set, the instruction addressed by
PC cannot simply be restarted, and must be resumed at some
other, implementation-specified, point in its operation. If FPD is
set and the exception or interrupt service routine modifies FPD,
the general registers, or the saved PSL (except for T or TP), the
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results of the interrupted instruction's execution are unpre-
dictable. If a routine sets FPD, the results are also unpredic-

table.
29:28 Reservea to DIGITAL, must be zero.
30 - Trace Pending (TP). Forces a trace fault when set at the be-

ginning of any instruction. Set by the processor if T is set at
the beginning of an instruction. Any exception or interrupt ser-
vice routine clearing TP must also clear T or the tracing of the
interrupted instruction, if any, is unpredictabie.

31 Compatibility Mode (CM). When set the processor is in PDP-11
compatibility mode, see Volume 2. When CM is clear, the pro-
cessor is in native mode.

The software mnemonics for the PSL fields are:

MNEMONIC VALUE MEANING
PSL$V_TBIT 4 position of trace enable
PSL$M_TBIT 1@4 mask for trace enable
PSL$V_IV 5 position of IV enable
PSL$M_IV 1@5 mask for IV enable
PSL$V_FU 6 position of FU enable
PSL$M_FU 1@6 mask for FU enable
PSL$V_DV 7 position of DV enable
PSL$M_DV 1@7 mask for DV enable
PSL$V_IPL 16 position of IPL
PSL$S_IPL 5 size of IPL
PSL$V_PRVMOD 22 position of PRVMOD
PSL$S_PRVMOD 2 size of PRVYMOD
PSL$V_CURMOD 24 position of CURMOD
PSL$S_CURMOD 2 size of CURMOD
PSL$V_IS 26 position of IS bit
PSL$M_IS 1@26 mask for IS bit
PSL$V_FPD 27 position of FPD bit
PSL$M_FPD 1@27 mask for FPD bit
PSL$V_TP 30 position of TP bit
PSL$M_TP 1@ 30 mask for TP bit
PSL$V_CM 31 position of CM bit
PSL$M_CM 1@31 mask for CM bit
PSL$K_KERNEL 0 kernel mode
PSL$K_EXEC 1 executive mode
PSL$K_SUPER 2 supervisor mode
PSL$K_USER 3 user mode

12.3 ARITHMETIC TRAPS

This section contains the descriptions of the exceptions that occur as
the result of performing an arithmetic or conversion operation. They
are mutually exclusive and all are assigned the same vector in the Sys-
tem Control Block, and hence the same signal “reason’ code. Each of
them indicates that an exception had occurred during the last instruc-
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tion and that the instruction has been completed. The appropriate dis-
tinguishing code is pushed on the stack as a longword:

TypE CO2E

PC OF NEXT INSTRUCTION TO EXECUTE

PSL

TYPE CODE TRAP TYPE SOFTWARE MNEMONIC
1 integer overflow SRM$K_INT_OVF_T
2 integer divide by zero SRM$K_INT_DIV_T
3 floating overflow SRM$K_FLT_OVF_T
4 floating/decimal divide by zero SRM$K_FLT_DIV_T
5 floating underflow SRM$K_FLT_UND_T
6 decimal overflow SRM$K_DEC_OVF_T
7 subscript range SRM$K_SUB_RNG_T

12.3.1 Integer Overflow Trap

An integer overflow trap is an exception that indicates that the last in-
struction executed had an integer overflow setting the V condition code
and that integer overflow was enabled (IV set). The result stored is the
low-order part of the true result. N and Z are set according to the
stored result. The type code pushed on the stack is 1 (SRM$K _INT_
OVF_T). Note that the instructions RET, REl, REMQUE, MOVTUC, and
BISPSW do not cause overflow even if they set V. Also note that the
EMODx floating point instructions can cause integer overflow.

12.3.2 Integer Divide By Zero Trap

An integer divide by zero trap is an exception that indicates that the last
instruction executed had an integer zero divisor. The result stored is
equal to the dividend and condition code V is set. The type code pushed
on the stack is 2 (SRM$K_INT_DIV_T).

12.3.3 Floating Overflow Trap

A floating overflow trap is an exception that indicates that the last
instruction executed resulted in an exponent greater than 127 (unbiased)
after normalization and rounding. The result stored contains a one in
the sign and zeros in the exponent and fraction fields. This is a reserved
operand, and will cause a reserved operand fault if used in a subse-
quent floating point instruction. The N and V condition code bits are
set and Z and C are cleared. The type code pushed on the stack is 3
(SRM$K_FLT_OVF_T). ’

12.3.4 Divide By Zero Trap — Floating or Decimal String

A floating divide by zero trap is an exception that indicates that the
last instruction executed had a floating zero divisor. The result stored
is the reserved operand, as described above for floating overflow trap,
and the condition codes are set as in floating overflow.

A decimal string divide by zero trap is an exception that indicates that
the last instruction executed had a decimal string zero divisor. The des-
tination and condition codes are unpredictable. The zero divisor can
be either 40 or —O0.
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The type code pushed on the stack for both types of divide by zero is
4 (SRM$K_FLT_DIV_T).

12.3.5 Floating Underflow Trap

A floating underflow trap is an exception that indicates that the last in-
struction executed resulted in an exponent less than —127 (unbiased)
after normalization and rounding and that floating underflow was enabled
(FU set). The result stored is zero. Except for POLYx, the N, V, and C
condition codes are cleared and Z is set. In POLYx, the trap occurs on
completion of the instruction, which may be many operations after the
underflow. The condition codes are set on the final result in POLYx. The
type code pushed on the stack is 5 (SRM$K_FLT_UND_T).

12.3.6 Decimal String Overflow Trap

A decimal string overflow trap is an exception that indicates that the
last instruction executed had a decimal string result too large for the
destination string provided and that decimal overflow was enabled (bv
set). The V condition code is always set. Refer to the individual instruc-
tion descriptions for the value of the result and of the condition codes.
The type code pushed on the stack is 6 (SRM$K_DEC_OVF_T).

12.3.7 Subscript Range Trap

A subscript range trap is an exception that indicates that the last in-
struction was an INDEX instruction with a subscript operand that failed
the range check. The value of the subscript operand is lower than the
low operand or greater than the high operand. The result is stored in
indexout, and the condition codes are set as if the subscript were within
range. The type code pushed on the stack is 7 (SRM$K_SUB_RNG_T).

12.4 EXCEPTIONS DETECTED DURING OPERAND

12.4.1 Access Control Violation Fault

An access control violation fault is an exception indicating that the pro-
cess attempted a reference not allowed at the access mode at which
the process was operating. See Volume 2 for a description of the in-
formation pushed on the stack as parameters. Software may restart the
process after changing the address translation information.

12.4.2 Translation Not Valid Fault

A translation not valid fault is an exception indicating that the process
attempted a reference to a page for which the valid bit in the page
table was not set. See Volume 2 for a description of the information
pushed on the stack as parameters. Note that if a process attempts
to reference a page for which the page table entry specifies both not
valid and access violation, an access control violation fault occurs.

12.4.3 Reserved Addressing Mode Fault

A reserved addressing mode fault is an exception indicating that an
operand specifier attempted to use an addressing mode that is not
allowed in the situation in which it occurred. No parameters are pushed.

The situations in which each specifier type is reserved are:

SPECIFIER RESERVED SITUATION

Short Literal Modify, destination, address
Register source, or within index mode.

Index Mode Address source or within index mode.

Within index mode, or with PC as index.
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See Chapter 5 for combinations of addressing modes and registers that
cause unpredictable results. The VAX-11/780 processor also faults on
PC, @PC, and —(PC).

12.4.4 Reserved Operand Exception

A reserved operand exception is an exception indicating that an operand
accessed has a format reserved for future use by DIGITAL. No para-
meters are pushed. This exception always backs up the PC to point to
the opcode. The exception service routine may determine the type of
operand by examining the opcode using the stored PC. Note that only
the changes made by instruction fetch and because of operand specifier
evaluation may be restored. Therefore, some instructions are not re-
startable. These excéptions are labelled as ABORTs rather than FAULTs.
The PC is always restored properly unless the instruction attempted to
modify it in @ manner that results in unpredictable results. The PSL
other than FPD and TP is not changed except for the condition codes,
which are unpredictable.

The reserved operand exceptions are caused by:
1. A floating point number that has the sign bit set and the exponent

zero except in the POLY table (FAULT)

2. A floating point number that has the sign bit set and the exponent
zero in the POLY table (ABORT, see chapter 6 for restartability)

POLY degree too large (FAULT)
Bit field too wide (FAULT)
Invalid CALLx entry mask (FAULT)

Invalid combination of bits in PSW/MASK longword during RET
(FAULT)

Invalid combination of bits in BISPSW/BICPSW (FAULT)

8. Unaligned operand in ADAWI (FAULT)

9. Unaligned queue entry or header in INSQUE or REMQUE (FAULT)
10. Decimal string too long (FAULT)
11. Invalid digit in CVTTP, CVTSP (FAULT)

12. Reserved pattern operator in EDITPC (ABORT, see Chapter 11 for
restartability)

13. Incorrect source string length at completion of EDITPC (ABORT)

14. Invalid combination of bits in PSL restored by REI (FAULT)

15. Invalid register number in MFPR or MTPR (FAULT)

16. Invalid register contents in some MTPR (FAULT)

17. Invalid combinations in Process Control Block loaded by LDPCTX
(ABORT)

12,5 EXCEPTIONS OCCURRING AS THE CONSEQUENCE OF AN IN-

PO Ty

STRUCTION

12.5.1 Opcode Reserved To DIGITAL Fault
An opcode reserved to DIGITAL fault occurs when the processor en-
counters an opcode that is not specifically defined, or that requires
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higher privileges than the current access mode. No parameters are
pushed. Opcode FFFF (hex) will always fault.

12.5.2 Opcode Reserved To Customers (and CSS) Fault

An opcode reserved to customers fault is an exception that occurs when
an opcode reserved to the customers or DIGITAL's Computer Special
Systems group is executed. The operation is identical to the opcode
reserved to DIGITAL fault except that the event is caused by a different
set of opcodes, and faults through a different vector. All opcodes re-
served to customers (and CSS) start with FC (hex) which is the XFC
instruction. If the special instruction needs to generate a unique excep-
tion, one of the reserved to CSS/customer vectors in the System Con-
trol Block should be used. An example might be that the particular
second byte of the instruction opcode is not recognized or implemented
by the hardware.

12.5.3 Compatibility Mode Exception
A compatibility mode exception is an exception that occurs when the
processor is in compatibility mode. See Volume 2 for details.

12.5.4 Breakpoint Fault
A breakpoint fault is an exception that occurs when the breakpoint in-
struction (BPT) is executed. No parameters are pushed.

To proceed from a breakpoint, a debugger or tracing program typically
restores the original contents of the location containing the BPT, sets
T in the PSL saved by the BPT fault, and resumes. When the breakpoint
instruction completes, a trace execption will occur; see section 12.6. At
this point, the tracing program can again re-insert the BPT instruction,
restore T to its original state (usually clear), and resume. Note that if
both tracing and breakpointing are in progress (i.e., if PSL<T> was set
at the time of the BPT), then on the trace exception both the BPT
restoration and a normal trace exception should be processed by the
trace handler.

12.6 TRACING

A trace is an exception that occurs between instructions when trace is
enabled. Tracing is used for tracing programs, for performance evalua-
tion, or debugging purposes. It is designed so that one and only one
trace exception occurs before the execution of each traced instruction
(except that a service routine invoked by CHMx and terminated by REI
is considered a single instruction). The saved PC on a trace is the ad-
dress of the next instruction that would normally be executed.

In order to ensure that exactly one trace occurs per instruction despite
other traps and faults, the PSL contains two bits, trace enable (T) and
trace pending (TP); see section 12.2. If only one bit were used then the
occurrence of an interrupt at end of instruction would either produce
zero or two traces, depending on the design. Instead, the PSL<T> bit
is defined to produce a trap after any other traps or aborts. The trap
effect is implemented by copying PSL<T> to a second bit (PSLLTP>)
that is actually used to generate the exception. PSL<TP> generates
a fault before any other processing at the start of the next instruction.
See Volume 2 for detailed flows.
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The rules of operation for trace are:

1. At the beginning of an instruction, if T is set, then TP is set.

2. |f the instruction faults or an interrupt is serviced, the pushed
PSL<TP>> is cleared. The pushed PC is set to the start of the fault-
ing or interrupted instruction.

3. If the instruction aborts or takes an arithmetic trap, the pushed
PSL<TP>> is set or cleared as the resuit of step 1.

4. If an interrupt is serviced after instruction completion and arithmetic
traps, but before tracing is checked for at the start of the next in-
struction, then the pushed PSL<TP> is set or cleared as the result
of step 1.

5. At the beginning of an instruction, if TP is set, then a trace pending
fault is taken.

The routine entered by a CHMx is not traced because CHMx clears T
and TP in the new PSL. However, if T was set at the beginning of
CHMx, the saved PSL will have both T and TP set. RE! will trap either
if T was set when the REI was executed or if TP in the saved PSL is set.
Because of this, the instruction sequence CHMx ... REl acts as a single
instruction. Note that the trace exception occurring after an REl that
had TP set before being executed will be taken with the new PSL.
Thus, special care must be taken if exception or interrupt routines are
traced.

In addition, the CALLx instructions save a clear T, although T in the
PSL is unchanged. This is done so that a debugger or trace program
proceeding from a BPT fault does not get a spurious trace from the
RET that matches the CALL; see 12.5.4.

The detection of interrupts and other exceptions occurs before the de-
tection of a trace excepticn. However, this causes no difficulties since
the entire PSL (including T and TP) is automatically saved on interrupt
or exception initiation and is restored at the end with an REL This makes
interrupts and benign exceptions totally transparent to the executing
program.

12.6.1 Trace Instruction Summary

The following table shows all of the cases of T enabled at the begin-
ning of the instruction, enabled at the end of the instruction, and TP set
in the popped PSW or PSL for ordinary instructions (XXX), CHMx. ..
REIl, interrupt or exception ... REl, CALLx, RETURN, CHMx, REI, BIS-
PSW, and BICPSW:

TRACE EXCEPTION

enabled enabled TP bit
at beg at end at end
m M (TP}
XXX N N N
Y Y Y
CHMx ... REIl N N N
Y Y Y
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interrupt or N N N
exception . .. REI Y Y Y
CALLXx N N N
Y Y Y (pushed PSW<T>
clear)
RET N N* N
N Y* N (trap after next
Y N* Y instruction)
Y Y# Y
CHMx N N N (pushed PSL<TP>
clear)
Y N N (pushed PSLLTP>
set)
REI N N=* N
(if PSL<KTP>=0 N Y* N
on stack) Y N# Y
Y Y* Y
REI N N* Y
(if PSL<KTP>=1 N Y* Y
on stack) Y ® Y
Y Y* Y (only one trap)
BISPSW N Y N
Y Y Y
BICPSW N N N
Y N Y
interrupt or N N N (pushed PSL<TP>
exception clear)
Y N N (pushed PSL<TP>

depends on above
description)

* = depends on PSW<T> popped from stack

12.6.2 Using Trace
Routines using the trace facility are termed trace handlers. They should
observe the following conventions and restrictions:

1.

When the trace handler performs its REI back to the traced program,
it should always force the T bit on in the PSL that will be restored.
This defends against programs clearing T via RET, REI, or BICPSW.
The trace handler should never examine or alter the TP bit when
continuing tracing. The hardware flows ensure that this bit is main-
tained correctly to continue tracing.

When tracing is to be ended, both T and TP should be cleared. This
ensures that no further traces will occur.

Tracing a service routine that completes with an REI will give a trace
in the restored mode after the REI. If the program being restored
to was also being traced, only one trace exception is generated.
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5. If a routine entered by a CALLx instruction is executed at full speed
by turning off T, then trace control can be regained by setting T in
the PSW in its call frame. Tracing will resume after the instruction
following the RET.

6. Tracing is disabled for routines entered by a CHMx instruction or
any exception. Thus, if a CHMx or exception service routine is to
be traced, a breakpoint instruction must be placed at its entry point.
If such a routine is recursive, breakpointing will catch each recur-
sion only if the breakpoint is not on the CHMx or the instruction
with the exception.

7. If it is desired to allow multiple trace handlers, all handlers should
preserve T when turning on and off trace. They also would have to
simulate traced code that alters or reads T.

12.7 SERIOUS SYSTEM FAILURES
Refer to Volume 2 for details on the following failures.

12.7.1 Kernel Stack Not Valid Abort

Kernel stack not valid abort is an exception that indicates that the kernel
stack was not valid while the processor was pushing information onto
the kernel stack during the initiation of an exception or interrupt.

12.7.2 Interrupt Stack Not Valid Halt

An interrupt stack not valid halt is an exception that indicates that the
interrupt stack was not valid or that a memory error occurred while
the processor.was pushing information onto the interrupt stack during
the initiation of an exception or interrupt.

12.7.3 Machine Check Exception
A machine check exception indicates that the processor detected an
internal error in itself.

12.8 STACKS

At any time, the processor is either in a process context (IS = 0) in one
of four modes (kernel, exec, super, user), or in the system-wide inter-
rupt service context (IS = i) that operates with kernel privileges. There
is a stack pointer associated with each of these five states, and any
time the processor changes from one of these states to another, SP
(R14) is stored in the process context stack pointer for the old state
and loaded from that for the new state. The process context stack
pointers (KSP = kernel, ESP — exec, SSP = super, USP == user) are allo-
cated in the Process Control Block; see Volume 2; although some hard-
ware implementations may keep them in internal registers. The interrupt
stack pointer (ISP) is in an internal register.

12.8.1 Stack Residency

The user, super, and exec stacks do not need to be resident. The
kernel can bring in or allocate process stack pages as address transia-
tion not valid faults occur. However, the kernel stack for the current
process, and the interrupt stack (which is process-independent) must
be resident and accessible. Translation not valid and access control
violation faults occurring on references to either of these stacks are
regarded as serious system failures, from which recovery is not possible.
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If either of these faults occurs on a reference to the kernel stack, the
processor aborts the current sequence and initiates kernel stack not
valid abort on hardware level 31 (1F, hex). If either of these faults oc-
curs on a reference to the interrupt stack, the processor halts. Note
that this does not mean that every possible reference is checked, but
rather that the processor will not loop on these conditions.

It is not necessary that the kernel stack for processes other than the cur-
rent one be resident, but it must be resident before a process is selected
to run by the software’'s process dispatcher. Further, any mechanism
that uses translation not valid or access control violation faults to
gather process statistics, for instance, must exercise care not to in-
validate kernel stack pages.

12.8.2 Stack Alignment

Except on CALLx instructions, the hardware makes no attempt to align
the stacks. For best performance on all processors, the software should
align the stack on a longword boundary and allocate the stack in long-
word increments. The convert byte to long (CVTBL and MOVZBL), con-
vert word to long (CVTWL and MOVZWL), convert long to byte (CVTLB),
and convert long to word (CVTLW) instructions are recommended for
pushing bytes and words on the stack and popping them off in order
to keep the stack longword aligned.

12.8.3 Stack Status Bits

The interrupt stack bit (IS) and current access mode bits in the priv-
ileged Processor Status Longword (PSL) specify which of the five stack
pointers is currently in use as follows:

IS MODE REGISTER
1 0 ISP

0 0 KSP

0 1 ESP

0 2 SSP

0 3 usp

The processor does not allow current access mode to be non-zero when
IS = 1. This is achieved by clearing the access mode bits when taking
an interrupt or exception, and by causing reserved operand fault if RE|
attempts to load a PSL in which IS and access mode are non-zero.

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.

12-12



REI

REI RETURN FROM EXCEPTION OR INTERRUPT
12.9 RELATED INSTRUCTIONS

Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

exit from an execption or interrupt service routine
Opcode

tmpl <« (SP) +; !Pick up saved PC
tmp2 <« (SP) +; land PSL

if {tmp2<cutreiit_modé> LSSU<current_mode>} or
{tmp2<1S> EQLU 1 and PSL<IS> EQLU 0} or
{tmp2<1S> EQLU 1 and
tmp2<current_mode> NEQU O} or
{tmp2<1S> EQLU 1 and tmp2<IPI> EQLU 0} or
{tmp2<IPL> GTRU O and
tmp2<current_mode> NEQU O} or
{tmp2< previous_mode> LSSU
temp2<current_mode>} or
{tmp2<IPL> GTRU PSL<IPL> } or
{tmp2<PSL_MBZ> NEQU 0} then
{reserved operand fault;

if {tmp2<CM> EQLU 1} and
{tmp2<FPD,IS,DV,FU,IV> NEQU 03 or
{tmp2<current_mode> NEQU 3} } then {reserved

operand fault);

{disallow interrupts};
if PSL<IS> EQLU 1 then ISP « SP
!save old stack pointer
else PSL<current_mode>_SP <« SP;
if PSL<TP> EQLU 1 then tmp2<TP> « 1;
'TP « TP or stack TP
PC «tmpl;
PSL <« tmp2;
if PSL<IS> EQLU O then
begin
SP « PSL<current_mode>_SP; Iswitch stack
if PSL<current_mode> GEQU ASTLVL
Icheck for AST delivery
then {request interrupt at IPL 2};
end;
{allow interrupts};

N <« saved PSL<3>;
Z « saved PSL<2>;
V «saved PSL<1>;
C <« saved PSL<0>;

reserved operand
02 REIl Return from Exception or Interrupt
1213



Description:

Notes:

REI

A longword is popped from the current stack and held in
a temporary PC. A second longword is popped from the
current stack and held in a temporary PSL. Validity of
the popped PSL is checked. The current stack pointer is
saved and a new stack pointer is selected according to
the new PSL current_mode and IS fields, see 12.8.3. The
level of the highest privilege AST is checked against the
current access mode to see whether a pending AST can
be delivered; refer to Volume 2. Execution resumes with
the instruction being executed at the time of the excep-
tion or interrupt. Any instruction lookahead in the pro-
cessor is reinitialized.

1. The exception or interrupt service routine is re-
sponsible for restoring any registers saved and re-
moving any parameters from the stack.

2. As usual for faults, any access violation or transla-
tion not valid conditions on the stack pops restore
the stack pointer and faulit.

3. The non-interrupt stack pointers may be fetched and
stored by hardware either in internal registers or in
their allocated slots in the Process Control Block.
Only LDPCTX and SVPCTX always fetch and store in
the process Control Block; see Chapter 13. MFPR and
MTPR always fetch and store the pointers whether in
registers or the Process Control Block.
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BPT

BPT BREAKPOINT FAULT

Puropse:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

stop for debugging
Opcode

PSLSTP> «0;
{breakpoint fault};

N «0;
Z <0
V «0;
C «0;

none
03 BPT Breakpoint Fault

This instruction is used, together with the T-bit, to imple-
ment debugging facilities.
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HALT
Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Note:

HALT

stop processor operation
Opcode

If PSL<current_mode> NEQU kernel then
{reserved to DIGITAL opcode fault}
else
{halt the processor};

N «0; Uf reserved to DIGITAL opcode fault
Z <0
V «0;
C«0;

N <« N; !f processor halt
Z «Z:
V&V
C «C;

reserved to DIGITAL opcode
00 HALT Halt

If the process is running in kernel mode, the processor
is halted. Otherwise, a reserved to DIGITAL opcode fault
occurs.

This opcode is O to trap many branches to data.
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CHAPTER 13

PRIVILEGE INSTRUCTIONS

The privilege instructions allow access to privileged operations within
the VAX-11 system. The change mode instructions provide a controlled
mechanism for unprivileged software to request services of more priv-
ileged software. In particular, the change mode instructions are the only
normal way for code executing at executive, supervisor, or user access
modes to change to a more privileged mode. In all cases, the change
mode results in transferring control to a fixed location depending upon
contents of the System Control Block. See Chapter 12 for a discussion
of change mode exception handling.

The probe instructions allow software executing in response to a change
mode to probe the accessibility of specified virtual locations by the
program that changed mode. Thus, privileged software can verify that
the arguments passed to it represent locations that could be accessed
by its caller.

The extended function instruction provides a controlled mechanism for
software to request services of non-standard microcode in the writeable
control store or simulator software running in kernel mode. The re-
quest is controlled by the contents of the System Control Block.

The move to and from processor register instructions provides software
executing in kernel mode access to the internal control registers of the
processor. This allows such operations as control of the memory man-
agement system and selection of the address of the Process Control
Block of the next process to execute. The load and save process con-
text instructions allow kernel mode software to save and restore the
general register and memory management status of a process when
switching between processes. The processor register and process con-
text instructions are described more fully in volume 2 of the Processor
Handbook.

Refer to Appendix E for a description of the symbolic notation associated
with the instruction descriptions.
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

CHM

CHANGE MODE
request services of more privileged software
opcode code.rw

if (PSL<IS> EQLU 1} then HALT; lillegal from
‘ Interrupt stack
{switch stack pointer from current-mode to MINU (op-
code-mode, PSL<current-mode>) };
—(SP) <« PSL; linitiate CHMx

—(SP) <« PC; exception

—(SP) <« SEXT (code);

PSL<CM, TP, FPD, DV, FU, IV, T, N, Z, V, C> <« O;
Iclean out PSL

PSL<previous-mode> <« PSL<current-mode>;

PSL<current-mode> <« MINU (opcode-mode, PSL<cur-
rent-mode>); Imaximize

privilege
PC <— {SCB vector for opcode-mode};

Z <0
N < 0;
V «0;
C «0;

halt

BC CHMK Change Mode to Kernel

BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Change Mode instructions allow processes to change their
access mode in a controlled manner. The instruction only
increases privilege (i.e., decreases the access mode).

A change in mode also results in a change of stack
pointers; the old pointer is saved, the new pointer is
loaded. The PSL, PC, and code passed by the instruction
are pushed onto the stack of the new mode. The saved
PC addresses the instruction following the CHMx instruc-
tion. The code is sign extended. After execution, the new
stack’s appearance is:

sign extended code : (SP)

PC of next instruction
old PSL
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Note:

Examples:

CHM

The destination mode selected by the opcode is used to
select a location from the System Control Block. This
location addresses the CHMx dispatcher for the specified
mode.

By software convention, negative codes are reserved to
CSS and customers.

CHMK #7 ;request the kernel mode service
;specified by code 7

CHME #4 ;request the executive mode service
;specified by code 4

CHMS #-—2 ;request the supervisor mode service
;specified by customer code —2
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Purpose:
Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

Examples:

PROBE

PROBE ACCESSIBILITY
verify that arguments can be accessed
Opcode mode.rb, len.rw, base.ab

probe-mode < MAXU(mode<1:0>, PSL<previous-
mode>);

condition codes < {{accessibility of (base) } and {ac-
cessibility of (base -+ ZEXT(len)-1)} using probe-
model;

N <« 0;
Z < if both accessible then O; eise 1;
V<0
C «0;

translation not valid

ocC PROBER Probe Read Accessibility
oD PROBEW Probe Write Accessibility

The PROBE instruction checks the read or write acces-
sibility of the first and last byte specified by the base
address and the zero extended length. Note that the bytes
in between are not checked. System software must check
all pages between the two end bytes if they are to be
accessed.

The protection is checked against the mode: specified in
bits <1:0> of the mode operand that is restricted (by
maximization) from being more privileged than the pre-
vious access mode field of the PSL. Note that probing
with a mode operand of O is equivalent to probing the
mode specified in PSL<previous-mode>.

Probing an address only returns the accessibility of the
page(s) and has no affect on their residency. However,
probing a process address may cause a page fault in the
system address space on the per-process page tables.

MOVL 4(AP),RO ;copy address of first arg so
;that it can't be changed
PROBER #0,#4,R0 ;verify that the longword pointed
;to by the first argument could be
;read by the previous access
mode
;Note that the argument list
itself
;must already have been probed
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PROBE

;copy length and address

;of buffer arguments so that

;they can’t change

;verify that the buffer described

;by the second and third argu-
ments

;could be written by the previous

;access mode

;Note that the argument list must

;already have been probed and
that

;the second argument must be
known

;to be less than 514



Purpose:
Format:
Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

XFC

EXTENDED FUNCTION CALL
provide for customer extensions to the instruction set
opcode
{XFC fault};

N < 0O;
Z <0
V0
C <0

opcode reserved to customer
customer reserved exception

FC XFC Extended Function Call

This instruction requests services of non-standard micro-
code or software. If no special microcode is loaded then
an exception is generated to a kernel mode software
simulator (see Chapter 12). Typically, the next byte would
specify which of several extended functions are requested.
Parameters would be passed either as normal operands,
or more likely in fixed registers.
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Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcode:

Description:

Notes:

MTPR
MFPR

MOVE TO PROCESSOR REGISTER
MOVE FROM PROCESSOR REGISTER

provide access to the internal processor registers

opcode src.rl, regnumber.rl MTPR
opcode regnumber.rl, dst.wl MFPR

if PSL<current-mode> NEQU kernel then {reserved in-
struction fault’;

PRS [regnumber] <« src; IMTPR

dst <« PRS [regnumber]; IMFPR

N « dst LSS 0;
Z «dst EQL O;
V «0;
C «gc;

reserved operand
reserved instruction

DA MTPR Move To Processor Register
DB MFPR Move From Processor Register

The specified register is loaded or stored. The regnumber
operand is a longword that contains the processor reg-
ister number. Execution may have register-specific side
effects.

1. A reserved operand fault occurs if the processor in-
ternal register does not exist or is read only for MTPR
or write only for MFPR. It also occurs on some invalid
operands to some registers.

2. A reserved instruction fault occurs if instruction ex-
ecution is attempted in other than kernel mode.

The following table is a summary of the registers accessible in the pro-
cessor register space. For information on the processor registers, refer

to Volume 2.

The “type’ column indicates read only (R), read/write (R/W), or write-
only (W) characteristics.

““Scope” indicates whether a register is per-CPU or per-process. The
implication is that, in general, registers labeled ‘“CPU” are manipulated
only through software via the MTPR and MFPR instructions. Per-pro-
cess registers, on the other hand, are manipulated implicitly by context
switch instructions. The “init” column indicates that the register is
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MTPR
MFPR

(“‘yes’’) or is not (“‘no’’) set to some pre-defined value (note: not neces-
sarily cleared) by a processor initialization command. A “~"" indicates
initialization is optional.

The number of a register, once assigned, will not change across imple-
mentations or within an implementation. Implementation dependent
registers are assigned distinct addresses for each implementation. Thus,
any processor register present on more than one implementation will
perform the same function whenever implemented. All unassigned posi-
tive numbers are reserved to DIGITAL; all negative numbers (i.e., with
bit 31 set) are reserved to CSS and customers.

VAX-11 Series Registers

Mne- Num-

Register Name monic ber Type Scope Init?
Kernel Stack Pointer KSP 0 R/W PROC —
Executive Stack Pointer ESP 1 R/W PROC —
Supervisor Stack Pointer SSP 2 R/W PROC —
User Stack Pointer USP 3 R/W PROC —
Interrupt Stack Pointer ISP 4 R/W  CPU —
PO Base Register POBR 8 R/W PROC —
PO Length Register POLR 9 R/W PROC —
P1 Base Register P1BR 10 R/W PROC —
P1 Length Register P1LR 11 R/W PROC —
System Base Register SBR 12 R/W CPU —_
System Limit Register SLR 13 R/W CPU —
Process Control Block Base PCBB 16 R/W PROC —
System Control Block Base SCBB 17 R/W CPU —
Interrupt Priority Level IPL 18 R/W CPU yes
AST Level ASTLVL 19 R/W PROC yes
Software Interrupt Request SIRR 20 W CPU —_
Software Interrupt Summary SISR 21 R/W CPU yes
Interval Clock Control ICCS 24 R/W CPU yes
Next Interval Count NICR 25 W CPU —_
Interval Count ICR 26 R CPU —_—
Time of Year (optional) TODR 27 R/W CPU no
Console Receiver C/S RXCS 32 R/W CPU yes
Console Receiver D/B RXDB 33 R CPU —_
Console Transmit C/S TXCS 34 R/W CPU yes
Console Transmit D/B TXDB 35 W CPU —
Memory Management Enable MAPEN 56 R/W CPU yes
Trans. Buf. Invalidate All TBIA 57 W CPU —
Trans. Buf. Invalidate Single TBIS 58 w CPU —
Performance Monitor Enable PMR 61 R/W PROC yes
System Identification SID 62 R CPU no
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VAX-11/780 Specific Registers

Register Name

Accelerator Control/
Status

Accelerator Maintenance

WCS address

WCS data

SBI Fault/Status

SBI Silo

SBI Silo Comparator

SBI Maintenance

SBI Error Register

SBI Timeout Address

SBI Quadword Clear

Micro Program Breakpoint

Mne-
monic

ACCS

ACCR
WCSA
WCSD
SBIFS
SBIS
SBISC
SBIMT
SBIER
SBITA
SBIQC
MBRK

13-9

Num-
ber

40

41
44
45
48
49
50
51
52
53
54
60

Type
R/W

R/W
R/W
R/W
R/W
R

R/W
R/W
R/W
R

w

R/W

Scope
CPU

CPU
CPU
CPU
CPU
CpPU
CPU
CPU
CPU
CPU
CPU
CPU

MTPR
MFPR

Init?
yes

no

no
ves
yes

no
yes
yes
yes

no



Purpose:

Format:

Operation:

Condition
Codes:

Exceptions:

Opcodes:

Description:

LDPCTX
SVPCTX

LOAD PROCESS CONTEXT
SAVE PROCESS CONTEXT

save and restore register and memory management con-
text

opcode

if PSL<current-mode> NEQU O
then {opcode reserved to DIGITAL fault};

{invalidate per-process translation buffer entries};
ILDPCT}

{load process general registers from Process Control
Blocki;

{load process map, ASTLVL, and PME from PCB};

{save PSL and PC on stack for subsequent REL;

{save process general registers into Process Control
Block!;

{remove PSL and PC from stack and save in PSB};

{switch to Interrupt Stack};

N < N;
<7
V <V,
C «C;

reserved operand
reserved instruction

06 LDPCTX Load Process Context
07 SVPCTX Save Process Context

The Process Control Block is specified by the internal pro-
cessor register Process Control Block Base. The general
registers are loaded from or saved to the PCB. In the
case of LDPCTX, the memory management registers de-
scribing the process address space are also loaded and
the process entries in the translation buffer are cleared.
If SVPCTX is executed while running on the kernel stack,
execution is switched to the interrupt stack. When LDPTX
is executed, execution is switched to the kernel stack.
The PC and PSL are moved between the PCB and the
stack, suitable for use by a subsequent REI instruction.
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APPENDIX A

DATA TABLES

A.1 INTRODUCTION
This appendix contains the following information:

Hexadecimal-to decimal conversion
Decimal-to-hexadecimal conversion
Hexadecimal addition

Hexadecimal multiplication

ASCIi* character set
Hexadecimal-ASCII conversion
Powers of 2

Powers of 16

*American Standard Code for Information Interchange.

A.2 HEXADECIMAL TO DECIMAL CONVERSION

For each integer position of the hexadecimal value, locate the corresponding
column integer in Table A-1 and record its decimal equivalent in the conversion
table. Add the decimal equivalents to obtain the decimal value.

Example:
D0500ADO0(16) = ?(10)
D0000000 = 3,489,660,928
500000 = 5,242,880
A00 = 2,560
DO = 208
DO500ADO = 3,494,904,576

A.3 DECIMAL TO HEXADECIMAL CONVERSION

1.

Locate in the conversion table (Table A-1) the largest decimal value that
does not exceed the decimal number to converted.

Record the hexadecimal equivalent followed by the number of zeros (0) that
corresponds to the integer column minus one.

Subtract the table decimal value from the decimal number to be converted.

Repeat steps 1-3 until the subtraction balance equals zero (0). Add the
hexadecimal equivalents to obtain the hexadecimal value.
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Example:

22,466(10) = ?(16)
20,480 = 5000 22,466
1,792 = 700 -20,480
192 = Co
2 = 2 1,986
= -1,792
22,466 = 57C2
194
-192
2
-2
0

A.4 HEXADECIMAL ADDITION

Table A-2 is a hexadecimal addition table for values from 0 through F. To add
two hex numbers locate one number in the left-hand column outside the body
of the table and the other number in the topmost row obove the body of the
table. The intersection of these two numbers is the sum of the numbers. For
example, to add A plus B, find A in the left column and B along the top row. The
intersection of the two is 15 hex.

A.5 HEXADECIMAL MULTIPLICATION

Table A-3 is a hexadecimal multiplication table. To multiply two numbers, lo-
cate one in the left hand column outside the body of the table and the other in
the topmost row outside the body of the table. The intersection of the two is the
product of the two numbers. For example, to muitiply 4 x A, loctae 4 in the left-
hand column and A in the topmost row. The intersection of the two is Z8 hex
which is the product of the two numbers.
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Table A-1 HEXADECIMAL INTEGER COLUMNS

8 7 6 5 4 3 1
HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 ) 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,897,048,192 7 117,440,512 7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 2,147,483,643 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2816 B 176 8 M
C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 o} 49,152 C 3,072 C 192 Cc 12
D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,684 E 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15
“ U\ J . AR
A Y Y
BYTE BYTE BYTE BYTE
\ . 2 —
N N
WORD WORD

LONGWORD



MTMOODMPOONONHWN = O

MTMOOD>»POCONODNHEWN 2O

00

00
00
00
00
00
00
00
00
00
00
00
00

00

00
01

02
03
04
05
06
07
08
09
0A
oB
0C
oD

OF

Table A-2 HEXADECIMAL ADDITION

2 3 4

02
03
04
05
06
07
08
09
0A
0B
0oC
oD
OE
OF
10
11

03
04
05
06
07
08
09
0A
oB
0C
oD
0E
oF
10
1

12

04
05
06
07
08
09
0A
0B
0oC
0D
0E
oF
10
11

12
13

5

05
06
07
08
09
0A
0B
oC
0D

6

06
07
08
09
0A
0B
oC
oD
OE
OF
10
11
12
13
14
15

7 8 9 A B C D E F

07
08
09
0A
oB
0C
oD
OE
OF
10
1

08
09
0A

09
0A
0B
ocC
oD
OE
OF
10
11

12
13

0A
0B

0B
oC
0D
OE
OF
10
1

12

oc
oD
OE
OF
10
11
12
13
14
15

oD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C

Table A-3 HEXADECIMAL MULTIPLICATION

2
00

3

00
03
06
09
oC
OF
12
15
18
1B
1E
21

24
27
2A
2D

4

5

00
05
0A
OF
14
19
1E
23
28
2D
32
37
3C
41

46
4B

6

00
06
0C
12
18
1E
24
2A
30
36
3C
42
48
4E
54
5A

7 8 9 A B C D

00
07
OE
15

1C
23
2A
31

38
3F
46

4D
54
5B
52
69

A-4

00
08
10
18
20
28
30
38
40
48
50
58
60
68
70
78

00
09
12
1B
24
2D
36
3F
48
51

5A
63
6C
75
7E
87

00
0B

00
oC
18
24
30
3C
48
54
60
6C
78
84
90
9C
A8
B4

00
oD
1A
27

34
41

4E
58
68
75

82
8F
9C
A9
B6
C3

OE
OF
10
1

OoF
10
1

12
13
14
15
16
17
18
19

1A
1B
1iC
iD
1E

00
OF
1E
2D
3C
4B
5A
69
78
87
96
A5
B4
C3
D2
E1



A.6 ASCII CHARACTER SET AND HEX-ASCIl CONVERSION
Table A-4 is a table representing the ASCII character set.

MMOOWPOONONAEWN=O

Table A-4 ASCII CHARACTER SET

0 1 2
NUL DLE SP
SOH DC1 !
STX DC2 "
ETX DC3 #
EOT DC4 $
ENQ NAK %
ACK SYN &
BEL ETB
BS CAN (
HT EM )
LF suB *
VT ESC +
FF FS ,
CR GS -
SO RS .
Si us /
Null

Start of Heading

Start of Text

End of Text

End of Transmission
Enquiry

Acknowledge

Bell

Backspace

Horizontal Tabulation
Line Feed

Vertical Tabulation
Form Feed

Carriage Return

Shift Out

ShiftIn

Space

OCONODARWN2O

NV AT

OZZrX——IMMMOUOD>»E +

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC
FS
GS
RS
us
DEL

A-5

5 6 7
P ) p
Q a q
R b r
S c s
T d t
U e u
\ f v
W g w
X h X
Y i y
¥4 j z
[ k {
\ | |

] m }
“ n ~
— o DEL

Data Link Escape

Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle

End of Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator

Unit Separator

Delete



A.7 POWERS OF 2 AND POWERS OF 16
For quick reference, the most commonly used powers of 2 and powers of 16
are shown below.

Powers of 2
2**n n
256 8
512 9
1024 10
2048 1
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20
2097152 21
4194304 22
8388608 23
16777216 24

Powers of 16

16**n

1
16

256

4096

65536

1048576

16777216

268435456
4294967296
68719476736
1099511627776 10
17592186044416 11
281474976710656 12
4503599627370496 13
72057594037927936 14
1152921504606846976 15

CO~NOGOPWN~=0O >



APPENDIX B

INSTRUCTION INDEX

B.1. MNEMONIC LISTING

MNEMONIC
ACBB

ACBD

ACBF

ACBL
ACBW
ADAWI
ADDB2
ADDB3

ADDD2
ADDD3
ADDF2
ADDF3
ADDL2
ADDL3
ADDP4
ADDP6

ADDW?2
ADDW3
ADWC
AOBLEQ
AOBLSS
ASHL
ASHP
ASHQ

BBC
BBCC
BBCCI
BBCS
BBS
BBSC
BBSS
BBSSI

BCC
BCS
BEQL
BEQLU
BGEQ
BGEQU

INSTRUCTION

Add compare and branch byte
Add compare and branch double
Add compare and branch floating
Add compare and branch long
Add compare and branch word
Add aligned word interlocked
Add byte 2 operand

Add byte 3 operand

Add double 2 operand
Add double 3 operand
Add floating 2 operand
Add floating 3 operand
Add long 2 operand

Add long 3 operand

Add packed 4 operand
Add packed 6 operand

Add word 2 operand

Add word 3 operand

Add with carry

Add one and branch on less or equal
Add one and branch on less
Arithmetic shift long

Arithmetic shift and round packed
Arithmetic shift quad

Branch on bit clear

Branch on bit clear and clear

Branch on bit clear and clear interlocked
Branch on bit clear and set

Branch on bit set

Branch on bit set and clear

Branch on bit set and set

Branch on bit set and set interlocked

Branch on carry clear

Branch on carry set

Branch on equal

Branch on equal unsigned

Branch on greater or equal

Branch on greater or equal unsigned

B-1

9D
6F
4F
F1
3D
58
80
81

60
61
40
41
co
Cl
20
21

AO
Al
D8
F3
F2
78
F8
79

OPCODE PAGE

8-10
8-10
8-10
8-10
8-10
6-21
6-18
6-18

6-18
6-18
6-18
6-18
6-18
6-18
10-6
10-6

6-18
6-18
6-20
8-12
8-12
6-37
10-22
6-37

85
8-6
8-7
8-6
85
8-6
8-6
87

8-2
8-2
8-2
8-2
8-2
8-2



MNEMONIC

BGTR
BGTRU

BICB2
BICB3
BICL2
BICL3
BICPSW
BICW2
BICW3
BISB2

BISB3
BISL2
BISL3
BISPSW
BISW2
BISW3
BITB
BITL

BITW
BLBC
BLBS
BLEQ
BLEQU
BLSS
BLSSU
BNEQ

BNEQU
BPT
BRB
BRW
BSBB

BSBW

BVC
BVS

CALLG
CALLS
CASEB
CASEL
CASEW
CHME
CHMK
CHMS

CHMU
CLRB
CLRD

INSTRUCTION

Branch on greater
Branch on greater unsigned

Bit clear byte 2 operand

Bit clear byte 3 operand

Bit clear long 2 operand

Bit clear long 3 operand

Bit clear program status word
Bit clear word 2 operand

Bit clear word 3 operand

Bit set byte 2 operand

Bit set byte 3 operand

Bit set long 2 operand

Bit set long 3 operand

Bit set program status word
Bit set word 2 operand

Bit set word 3 operand

Bit test byte

Bit test long

Bit test word

Branch on low bit clear
Branch on low bit set
Branch on less or equal

Branch on less or equal unsigned

Branch on less
Branch on less unsigned
Branch on not equal

Branch on not equal unsigned

Break point fault

Branch with byte displacement

Branch with word displacement

Branch to subroutine with byte
displacement

Branch to subroutine with word
displacement

Branch on overflow clear

Branch on overflow set

Call with general argument list
Call with stack

Case byte

Case long

Case word

Change mode to executive
Change mode to kernel
Change mode to supervisor

Change mode to user
Clear byte
Clear double

OPCODE PAGE
14 8-2
1A 8-2
8A 6-35

8B 6-35
CA 6-35
cB 6-35
B9 7-5
AA 6-35
AB 6-35
88 6-34
89 6-34
c8 6-34
Cco 6-34
B8 7-5
A8 6-34
A9 6-34
93 6-33
D3 6-33
B3 6-33
E9 8-8
E8 8-8
15 8-2
1B 8-2
19 8-2
1F 8-2
12 8-2
12 8-2
03 12-15
11 8-4
31 8-4
10 8-16
30 8-16
1c 8-2
1D 8-2
FA 8-20
FB 8-22
8F 8-14
CF 8-14
AF 8-14
BD 13-2
BC 13-2
BE 13-2
BF 13-2
94 6-9
7C 6-9



MNEMONIC

CLRF
CLRL
CLRQ
CLRW
CMPB

CMPC3
CMPC5
CMPD
CMPF
CMPL
CMPP3
CMPP4
CMPV

CMPW
CMPZV
CRC
CVvTBD
CVTBF
CVTBL
CVTBW
CviDB

CVTDF
CVIDL
CVTDW
CVTFB
CVTFD
CVTFL
CVTFW
CVTLB

CVTLD
CVTLF
CVTLP
CVTLW
CVTPL
CVTTP
CVTPT
CVTPS

CVTRDL
CVTRFL
CVTSP
CVTWB
CVTWD
CVIWF

AT
wvivL

DECB
DECL
DECW

INSTRUCTION

Clear float
Clear long
Clear quad
Clear word
Compare byte

Compare character 3 operand
Compare character 5 operand
Compare double

Compare floating

Compare long

Compare packed 3 operand
Compare packed 4 operand
Compare field

Compare word

Compare zero-extended field
Calculate cyclic redundancy check
Convert byte to double

Convert byte to float

Convert byte to long

Convert byte to word

Convert double to byte

Convert double to float
Convert double to long
Convert double to word
Convert float to byte
Convert float to double
Convert float t5 long
Convert float to word
Convert long to byte

Convert long to double

Convert long to float

Convert long to packed

Convert long to word

Convert packed to long

Convert trailing numeric to packed
Convert packed to trailing numeric

OPCODE PAGE

D4
D4
7C
B4
91

29
2D
71
51
D1
35
37
EC

B1
ED
oB
6C
4c
98
99
68

76
6A
69
48
56
4A
49
F6

6E
4E
F9
F7
36
26
24

Convert packed to leading separate numeric 08

Convert rounded double to long
Convert rounded float to long

6B
4B

Convert leading separate numeric to packed 09

Convert word to byte
Convert word to double
Convert word to float
Convert word to long

Decrement byte
Decrement long
Decrement word

33
6D
4D
32

97
D7
B7

6-9
6-9
6-9
6-9
6-15

9-8
9-8
6-15
6-15
6-15
10-5
10-5
7-20

6-15
7-20
9-14
6-12
6-12
6-12
6-12
6-12

6-12
6-12



MNEMONIC

DivB2
DIVB3
DIVD2
DIVD3
DIVF2

DIVF3
DIVL2
DIVL3
DIVP
Divw2
DIVW3

EDITPC
EDIV
EMODD
EMODF
EMUL
EXTV
EXTZV

FFC
FFS

HALT

INCB
INCL
INCW
INDEX
INSQUE
INSV

JMP
JsB

LDPCTX
LOCC

MATCHC
MCOMB
MCOML
MCOMW
MFPR
MNEGB
MNEGD
MNEGF

MNEGL
MNEGW
MQOVAB
MOVAD
MOVAF
MOVAL

INSTRUCTION

Divide byte 2 operand
Divide byte 3 operand
Divide double 2 operand
Divide double 3 operand
Divide floating 2 operand

Divide floating 3 operand
Divide long 2 operand
Divide long 3 operand
Divide packed

Divide word 2 operand
Divide word 3 operand

Edit packed to character
Extended divide

Extended modulus double
Extended modulus floating
Extended multiply

Extract field

Extract zero-extended field

Find first clear bit
Find first set bit

Halt

Increment byte
Increment long
Increment word
Compute index
Insert into queue
Insert field

Jump
Jump to subroutine

Load process context
Locate character

Match characters

Move complemented byte
Move complemented long
Move complemented word

Move from processor register

Move negated byte
Move negated double
Move negated floating

Move negated long
Move negated word
Move address of byte
Move address of double
Move address of float
Move address of long

B-4

OPCODE PAGE
86 6-30
87 6-30
66 6-30
67 6-30
46 6-30
47 6-30
Cé6 6-30
c7 6-30
27 10-11
A6 6-30
A7 6-30
38
7B 6-32
74 6-29
54 6-29
7A 6-28
EE 7-18
EF 7-18
EB 7-16
EA 7-16
00 12-16
96 6-16
D6 6-16
B6 6-16
0A 7-8
OE 7-12
FO 7-22
17 8-4
16 8-16
16 13-10
3A 9-11
39 9-12
92 6-11
D2 6-11
B2 6-11
DB 13-7
8E 6-10
72 6-10
52 6-10
CE 6-10
AE 6-10
9E 7-6
7E 7-6
DE 7-6
DE 7-6



MNEMONIC

MOVAQ
MOVAW

MOVB
MOVC3
MOVC5
MOVD
MOVF
MOVL
MOVP
MOVPSL

MOVQ
MOVTC
MOVTUC
MOvVW
MOVZBL
MOVZBW
MOVZWL
MTPR

MuLB2
MULB3
MULD2
MULD3
MULF2
MULF3
MULL2
MULL3

MULP
MULW2
MULW3

NOP

POLYD
POLYF
POPR
PROBER
PROBEW
PUSHAB
PUSHAD
PUSHAF

PUSHAL
PUSHAQ
PUSHAW
PUSHL
PUSHR

REI
REMQUE

INSTRUCTION

Move address of quad
Move address of word

Move byte

Move character 3 operand

Move character 5 operand
Move double

Move float

Move long

Move packed

Move processor status longword

Move quad

Move translated characters
Move transiated until character
Move word

Move zero-extended byte to long
Move zero-extended byte to word
Move zero-extended word to long
Move to processor register

Multiply byte 2 operand
Multiply byte 3 operand
Multiply double 2 operand
Multiply double 3 operand
Multiply floating 2 operand
Multiply floating 3 operand
Multiply long 2 operand
Muitiply long 3 operand

Multiply packed
Multiply word 2 operand
Multiply word 3 operand

No operation

Evaluate polynomial double
Evaluate polynomial floating
Pop registers

Probe read access

Probe write access

Push address of byte

Push address of double
Push address of float

Push address of long
Push address of quad
Push address of word
Push long

Push registers

Return from exception or interrupt
Remove from queue

B-5

OPCODE PAGE

7E
3E

90
28
2C
70
50
DO
34
DC

7D
2E
2F
BO
9A
9B
3C
DA

84
85
64
65
44
45
C4
C5

25
Ad
A5

01

7-6
7-6

6-7
9-2
9-2
6-7
6-7
6-7
10-4
7-4

6-7
9-4
9-6
6-7
6-14
6-14
6-14
13-7

6-39

13-4
13-4

7-6
7-6

7-6
7-6
7-6
6-8
7-2

12-13
7-14



MNEMONIC

RET
ROTL
RSB
SBWC
SCANC
SKPC

SOBGEQ
SOBGTR
SPANC
SUBB2
SuBB3
sSuBD2
sSuBD3
SUBF2

SUBF3
SUBL2
SUBL3
SUBP4
SUBP6
SUBW2
SUBW3
SVPCTX

TSTB
TSTD
TSTF
TSTL
TSTW

XFC
XORB2
XORB3
XORL2
XORL3
XORW2
XORW3

ESCD
ESCE
ESCF

INSTRUCTION

Return from called procedure

Rotate long

Return from subroutine
Subtract with carry
Scan for character

Skip character

Subtract one and branch on greater or equal
Subtract one and branch on greater

Span characters

Subtract byte 2 operand
Subtract byte 3 operand
Subtract double 2 operand
Subtract double 3 operand
Subtract floating 2 operand

Subtract floating 3 operand
Subtract long 2 operand
Subtract long 3 operand
Subtract packed 4 operand
Subtract packed 6 operand
Subtract word 2 operand
Subtract word 3 operand
Save process context

Test byte
Test double
Test float
Test long
Test word

Extended function call

Exclusive OR byte 2 operand
Exclusive OR byte 3 operand
Exclusive OR long 2 operand
Exclusive OR long 3 operand
Exclusive OR word 2 operand
Exclusive OR word 3 operand

*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*
¥*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*

*Reserved to DEC*
*Reserved to DEC*
*Reserved to DEC*

B-6

04
aC
05
D9
2A

OPCODE PAGE

8-24
6-38
8-17
6-25
9-10
9-11

8-13
8-13
9-10
6-22
6-22
6-22
6-22
6-22

6-22
6-22
6-22
10-8
10-8
6-22
6-22
13-10

6-17
6-17
6-17
6-17
6-17

13-6
6-36
6-36
6-36
6-36
6-36
6-36



B.2. OPCODE LISTING

OPCODE

00
01
02
03
04
05
06
07

08
09

OA
OB
ocC
oD
OE
OF

10

1
12

13

14
15
16
17

18
19
1A
1B
1C
1D
1E

1F

20
21
22
23
24

25

MNEMONIC

HALT
NOP
REI
BPT
RET
RSB
LDPCTX
SVPCTX

CVTPS
CvTsP

INDEX
CRC
PROBER
PROBEW
INSQUE
REMQUE

BSBB

BRB
BNEQ, BNEQU

BEQL, BEQLU

BGTR
BLEQ
JSB
JMP

BGEQ

BLSS
BGTRU
BLEQU

BVC

BVS

BGEQU, BCC

BLSSU, BCS

ADDP4
ADDP6
SUBP4
SUBP6
CVTPT
MULP

INSTRUCTION

Halt

No operation

Return from exception or interrupt
Break point fault

Return from called procedure
Return from subroutine

Load process context

Save process context

Convert packed to leading separate
numeric

Convert leading separate numeric to
packed

Compute index

Calculate cyclic redundancy check
Probe read access

Probe write access

Insert into queue

Remove from queue

Branch to subroutine with byte dis-
placement

Branch with byte displacement
Branch on not equal unsigned, Branch
on not equal

Branch on equal, Branch on equal un-
signed

Branch on greater

Branch on less or equal

Jump to subroutine

Jump

Branch on greater or equal

Branch on less

Branch on greater unsigned

Branch on less or equal unsigned
Branch on overflow clear

Branch on overflow set

Branch on greater or equal unsigned,
Branch on carry clear

Branch on less unsigned, Branch on
carry set

Add packed 4 operand

Add packed 6 operand

Subtract packed 4 operand
Subtract packed 6 operand
Convert packed to trailing numeric

Multiply packed
B-7



OPCODE  MNEMONIC INSTRUCTION

26 CVTTP Convert trailing numeric to packed

27 DivP Divide packed

28 MOVC3 Move character 3 operand

29 CMPC3 Compare character 3 operand

2A SCANC Scan for character

2B SPANC Span characters

2C MOVC5 Move character 5 operand

2D CMPC5 Compare character 5 operand

2E MOVTC Move translated characters

2F MOVTUC Move translated until character

30 BSBW Branch to subroutine with word dis-
placement

31 BRW Branch with word displacement

32 CVTWL Convert word to long

33 CVTWB Convert word to byte

34 MOVP Move packed

35 CMPP3 Compare packed 3 operand

36 CVTPL Convert packed to long

37 CMPP4 Compare packed 4 operand

38 EDITPC Edit packed to character

39 MATCHC Match characters

3A LOCC Locate character

3B SKPC Skip character

3C MOVZWL Move zero-extended word to long

3D ACBW Add compare and branch word

3E MOVAW Move address of word

3F PUSHAW Push address of word

40 ADDF2 Add floating 2 operand

41 ADDF3 Add floating 3 operand

42 SUBF2 Subtract floating 2 operand

43 SUBF3 Subtract floating 3 operand

44 MULF2 Multiply floating 2 operand

45 MULF3 Multiply floating 3 operand

46 DIVF2 Divide floating 2 operand

47 DIVF3 Divide floating 3 operand

48 CVTFB Convert float to byte

49 CVTFW Convert float to word

4A CVTFL Convert float to long

4B CVTRFL Convert rounded float to fong

4C CVTBF Convert byte to float

4D CVTWF Convert word to float

4E CVTLF Convert long to float

4F ACBF Add compare and branch floating

50 MOVF Move float

51 CMPF Compare floating

52 MNEGF Move negated floating
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MNEMONIC

TSTF
EMODF
POLYF
CVTFD

ADAWI

ADDD2
ADDD3
SuBD2
SUBD3
MuLD2
MULD3
DIVD2

DIVD3

CcviDB
CVTDW
CvTDL
CVTRDL
CVTBD
CVTWD
CVTLD
ACBD

MOvVD
CMPD
MNEGD
TSTD
EMODD
POLYD
CVTDF

ASHL
ASHQ
EMUL
EDIV
CLRQ, CLRD
MOVQ

MOVAQ, MOVAD

PUSHAQ, PUSHAD

INSTRUCTION

Test float

Extended modulus floating
Evaiuate polynomiai fioating
Convert float to double
RESERVED to DEC

Add aligned word interlocked
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC
RESERVED to DEC

Add double 2 operand

Add double 3 operand
Subtract double 2 operand
Subtract double 3 operand
Multiply double 2 operand
Multiply double 3 operand
Divide double 2 operand
Divide double 3 operand

Convert double to byte
Convert double to word
Convert double to long
Convert rounded double to long
Convert byte to double
Convert word to double
Convert long to double
Add compare and branch double

Move double

Compare double

Move negated double

Test double

Extended modulus double
Evaluate polynomial double
Convert double to float
RESERVED to DEC

Arithmetic shift long
Arithmetic shift quad
Extended multiply
Extended divide

Clear quad, Clear double
Move quad

Move address of quad, Move address of

double

Push address of quad, Push address of

double
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OPCODE

80
81
82
83

85
87

89
8A
8B
8C
8D
8E
8F

90
91
92
93

95
96
97

98
99
9A
9B
9C
9D
9E
9F

AO

A2
A3
A4
A5
A6
A7

A8

AA
AB
AC
AD

MNEMONIC

ADDB2
ADDB3
SUBB2
SUBB3
MULB2
MULB3
DIvB2

DIVB3

BISB2
BISB3
BICB2
BICB3
XORB2
XORB3
MNEGB
CASEB

MOvB
CMPB
MCOMB
BITB
CLRB
TSTB
INCB
DECB

CVTBL
CVTBW
MOVZBL
MOvZBwW
ROTL
ACBB
MOVAB
PUSHAB

ADDW2
ADDW3
SuBw2
SUBW3
MULW2
MULW3
Divw2

DIvw3

BISw2
BISW3
BICW2
BICW3
XORW2
XORW3

INSTRUCTION

Add byte 2 operand

Add byte 3 operand
Subtract byte 2 operand
Subtract byte 3 operand
Multiply byte 2 operand
Multiply byte 3 operand
Divide byte 2 operand
Divide byte 3 operand

Bit set byte 2 operand

Bit set byte 3 operand

Bit clear byte 2 operand

Bit clear byte 3 operand
Exclusive OR byte 2 operand
Exclusive OR byte 3 operand
Move negated byte

Case byte

Move byte

Compare byte

Move complemented byte
Bit test byte

Clear byte

Test byte

Increment byte
Decrement byte

Convert byte to long

Convert byte to word

Move zero-extended byte to long
Move zero-extended byte to word
Rotate long

Add compare and branch byte
Move address of byte

Push address of byte

Add word 2 operand
Add word 3 operand
Subtract word 2 operand
Subtract word 3 operand
Muitiply word 2 operand
Multiply word 3 operand
Divide word 2 operand
Divide word 3 operand

Bit set word 2 operand

Bit set word 3 operand

Bit clear word 2 operand

Bit clear word 3 operand
Exclusive OR word 2 operand
Exclusive OR word 3 operand
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MNEMONIC

MNEGW
CASEW

Movw
CMPW
MCOMW
BITW
CLRW
TSTW
INCW
DECW

BISPSW
BICPSW
POPR
PUSHR
CHMK
CHME
CHMS
CHMU

ADDL2
ADDL3
SUBL2
SUBL3
MuLL2
MULL3
DiIvL2

DIVL3

BISL2
BISL3
BICL2
BICL3
XORL2
XORL3
MNEGL
CASEL

MOVL
CMPL
MCOML
BITL

CLRL, CLRF
TSTL

INCL

DECL

AW
nwYYe

SBWC
MTPR
MFPR

INSTRUCTION

Move negated word
Case word

Move word

Compare word

Move complemented word
Bit test word

Clear word

Test word

Increment word
Decrement word

Bit set processor status word
Bit clear processor status word
Pop registers

Push register

Change mode to kernel
Change mode to executive
Change mode to supervisor
Change mode to user

Add long 2 operand
Add long 3 operand
Subtract long 2 operand
Subtract long 3 operand
Multiply long 2 operand
Multiply long 3 operand
Divide long 2 operand
Divide long 3 operand

Bit set long 2 operand

Bit set long 3 operand

Bit clear long 2 operand

Bit clear long 3 operand
Exclusive OR long 2 operand
Exclusive OR long 3 operand
Move negated long

Case long

Move long

Compare long

Move complemented long
Bit test long

Clear long, Clear float
Test long

Increment long
Decrement long

Add with carry

Subtract with carry
Move to processor register
Move from processor register
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OPCODE
DC

DE

MNEMONIC

MOVPSL
PUSHL
MOVAL, MOVAF

PUSHAL, PUSHAF

BBS
BBC
BBSS
BBCS
BBSC
BBCC
BBSSI
BBCCI

BLBS
BLBC
FFS
FFC
CMPV
CMPZV
EXTV
EXTZV

INSV
ACBL
AOBLSS
AOBLEQ
SOBGEQ

SOBGTR
CVTLB
CVTLW

ASHP

CVTLP
CALLG
CALLS

XFC

ESCD to DEC
ESCE to DEC
ESCF to DEC

INSTRUCTION

Move processor status longword

Push long

Move address of long, Move address of
float

Push address of long, Push address of
float

Branch on bit set

Branch on bit clear

Branch on bit set and set

Branch on bit clear and set

Branch on bit set and clear

Branch on bit clear and clear

Branch on bit set and set interlocked
Branch on bit clear and clear interlocked

Branch on low bit set
Branch on low bit clear

Find first set bit

Find first clear bit

Compare field

Compare zero-extended field
Extract field

Extract zero-extended field

Insert field

Add compare and branch long

Add one and branch on less

Add one and branch on less or equal
Subtract one and branch on greater or
equal

Subtract one and branch on greater
Convert long to byte

Convert long to word

Arithmetic shift and round packed
Convert long to packed

Call with general argument list
Call with stack

Extended function call
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APPENDIX C

PROCEDURE CALLING AND
CONDITION HANDLING

C.1 INTRODUCTION

This appendix specifies the software standard for use with the VAX-11
hardware procedure CALL mechanism. This standard is applicable to all
externally CALLable interfaces in DIGITAL-supported standard system
software. This standard is also applicable to inter-module CALLs to
major VAX-11 components.

This standard does not apply to calls to internal (or local) routines.
Within a single module, the language processor or programmer may use
a variety of other linkage and argument-passing techniques.

This standard specifies the following attributes of the interfaces between
modules:

o calling sequence—the instructions at the call site and at the entry
point.

e argument list—the structure of the list describing the actual argu-
ments to the called procedure.

e function value return—the form and conventions on the use of the
function value.

» register usage—which registers are preserved and who is responsible
for preserving them.

e stack usage—rules governing the use of the stack.

e data types of arguments—the types of all arguments that can be
passed.

e argument descriptor formats—how descriptors are passed for the
more complex arguments.

« condition handling—how exceptional conditions are signalled and how
they can be handled in @ modular fashion.

e stack unwinding—how the current thread of execution can be aborted
cleanly.

C.2 GOALS
Goals for the VAX-11 procedure CALLing standard are:

1. The standard must be applicable to all of the inter-module CALLabie
interfaces in the VAX-11 software system. Specifically, the standard
considers the requirements of BASIC, COBOL, FORTRAN, BLISS,
assembler, and CALLs to the operating system. The needs of other
languages that DIGITAL may support in the future must be noted. The
standard should not include capabilities for lower-level components
(e.g., BLISS, assembler, operating system) that cannot be invoked
from the higher-level languages.
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2. The calling program and called procedure can be written in different
languages, including any of the above.

3. The procedure mechanism must be sufficiently economical in both
space and time to be used and usable as the only calling mechanism
within VAX-11.

4. The standard should contribute to the writing of error-free, modular,
and maintainable software. Effective sharing and re-use of VAX-11
software modules is a significant goal.

5. The standard must allow the called procedure a variety of techniques
for argument handling. The called procedure may (i) reference argu-
ments indirectly through the argument list, (2) copy scalars and
array addresses, (3) copy addresses of scalars and arrays.

6. Provide the programmer with some control over fixing, reporting,
and flow of control on exceptions.

7. Provide subsystem and application writers with the ability to override
system messages in order to give a more suitable application-ori-
ented interface.

8. Add no space or time overhead to procedure calls and returns that
do not establish handlers. Minimize time overhead for establish-
ing handlers at the cost of increased time overhead when excep-
tions occur.

C.3 CALLING SEQUENCE
At the option of the calling program, it invokes the called procedure
using either the CALLG or CALLS instruction:

CALLG Arglist.ab, Proc.ab
or

CALLS Argent.rl, Pric.ab

CALLS pushes the argument count Argent.rl onto the stack as a longword
and sets AP to the top of the stack. The complete sequence using CALLS
is thus:

Push Argn
P'u.sh Argl
CALLS #n,Proc

If the called procedure returns control to the calling procedure, control
must return to the instruction immediately following the CALLG or
CALLS instruction. Skip returns and GOTO returns are prohibited except
during UNWIND.

The called procedure returng control to the calling procedure by ex-
ecuting the return instruction, RET.
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C.4 ARGUMENT LISTS

C.4.1 Argument List Format
The format of the argument list is a sequence of longwords:

o n ZARGLIST

ARG 1

ARG 2

ARG n

The argument count n is an unsigned byte contained in the first byte
of the list. The high order 24 bits of the first longword are reserved
to DIGITAL for future use and must be zero (MBZ). To access the argu-
ment count, the called procedure must ignore the reserved bits and
pick up the count with the equivalent of a MOVZBL instruction.

Each Arg entry in the argument list is a 32-bit longword value. These
32-bit values may be:

1. An uninterpreted 32-bit value.

2. An address; typically a pointer to a scalar data item, an array, or a
procedure.

3. An address of a descriptor; descriptors are discussed below.

The standard thus permits simple call-by-value, call-by-reference, call-
by-descriptor, or combinations of these. Interpretation of each argument
list entry depends upon agreement between the calling and called pro-
cedures.

A procedure having no arguments is CALLed with a list consisting of a
0 argument count longword. This is efficiently accompilshed by

CALLS #0, Proc

A missing or null argument, for example CALL SUB (A, ,B), is repre-
sented on VAX-11 by an Arglist entry consisting of a longword 0. Some
procedures allow trailing null arguments to be omitted, others require all
arguments; refer to the procedure's specification for details.

The argument list must be treated as read-only data by the called pro-
cedure.

C.4.2 Argument Lists And Higher-level Languages

Higher-level language functional notations for procedure CALLs are

mapped into VAX-11 argument lists according to the following rules:

1. Actual arguments are mapped left-to-right to increasing argument
list offsets. The left-most (first) actual argument corresponds to
Arglist+4, the next to Arglist48, etc.

2. Each actual argument position corresponds to a single VAX-11 argu-
ment list entry.
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C.4.2.1 Order Of Actual Argument Evaluation

Since most higher-leve!l languages do not specify the order of evaluation
(with respect to side effects) of actual arguments, those language pro-
cessors may evaluate actual arguments in any convenient order.

In constructing an argument list on the stack, a language processor
may evaluate arguments right-to-left and push their values on the stack.
If call-by-reference is used, actual argument expressions can be eval-
uated left-to-right, with pointers to the expression values being pushed
right-to-left.

The choice of argument evaluation order and code generation strategy
is constrained only by the definition of the particular language. Pro-
grams should not be written that depend on the order of evaluation
of actual arguments.

C.4.2.2 Language Extensions For Argument Transmission

The VAX-11 procedure standard permits arguments to be transmitted
by value, by reference, or by descriptor. Each language processor has a
default set of argument mechanisms. Thus FORTRAN will pass scalars,
arrays, and functions by reference, and will pass strings (CHARACTER)
by descriptor. BASIC, however, will transmit both strings and arrays by
descriptor.

A set of language extensions is defined to reconcile the different argu-
ment transmission techniques. Each language is extended to provide
the user explicit control of argument transmission in the calling pro-
cedure.

Each language is augmented to provide the following compile-time in-
trinsic functions:

% VAL (arg) — Corresponding argument list entry is the actual
32-bit value of the argument arg, as defined
in the language.

%REF (arg) — Corresponding argument list entry is a pointer
to the value of the argument arg, as defined
in the language.

9, DESCR (arg) — Corresponding argument list entry is a pointer
to a VAX-11 descriptor of the argument, as de-
fined in this appendix and the language.

These intrinsic functions can be used in the syntax of a procedure
CALL to control generation of the actual argument list. For example:

CALL SUBI1 (%VAL (123), %REF (X), %DESCR (A) )

The intrinsic functions are a necssary escape mechanism in permitting
any procedure to be called by programs written in any higher-level
language. Careful design of procedure packages will minimize the actual
need to use these escape mechanisms.

C.5 FUNCTION VALUE RETURN

A function value is returned in register RO if representable in 32 bits, and
registers RO and R1 if representable in 64 bits. Two separate 32-bit
entities cannot be returned in RO and R1 because higher-level languages
could not deal with them. If the function value cannot be represented
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in 64 bits, the source language list of arguments and formals is shifted
by one and the first formal in the argument list is reserved for the func-
tion value. One of the following mechanisms is used to return the func-
tion value:

1. If the maximum length of the function value is known, the calling
procedure can allocate the required storage and pass a pointer to
the function value storage as the first argument.

2. The calling procedure can allocate a dynamic string descriptor. The
called procedure then allocates storage for the function value and
updates the contents of the dynamic string descriptor. This method
requires a heap (non-stack) storage management mechanism.

Some procedures, such as operating system CALLs, return a success/
fail value as a longword function value in RO. The value is used to en-
code the status refer to the next section.

C.6 CONDITION VALUE

VAX-11 uses a standard means to report the success or failure of a called
procedure and to describe an exception condition; see section C.11;
when it occurs. This means is also used to identify system messages and
to report program success or failure for command language testing. A
condition value is a longword that includes fields to describe the software
component generating the value, the reason the value was generated and
the error severity status. The format of the condition value is:

3 32 0
! CONDITION IDENTIFICATION | J

\ /NS

——— e e~

31 16 15 3
r FACILITY NUMBER MESSAGE NUMBER

condition identification identifies the condition uniquely on a system-
wide basis.

facility identifies the software component generating the condition
value. Bit 31 is ser for customer facilities and clear for DIGITAL
facilities.

message number is a status identification; it is a description of the
hardware exception that occurred or a software defined value. Mes-
sage numbers with bit 15 set are specific to a single facility. Mes-
sage numbers with bit 15 clear are system wide status codes.

seveiity is the severity code as Tollows:
severity <<0>> is set for success (logical true)
severity <2:1> distinguishes degrees of success or failure.
Thus, the field <2:0> can be considered as a number
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STS$K_WARNING 0 = warning
STS$K_SUCCESS 1 = success

STS$K_ERROR 2 — error
3 = reserved to DIGITAL
STS$K__SEVERE 4 — severe_error

5, 6, 7 reserved to DIGITAL

Software symbols are defined for these fields as follows:

MNEMONIC VALUE MEANING FIELD
STS$V_COND_ID 3 position of 31:3 .
STS$S_COND_ID 29 size of 31:3 } Fd°”d'.tf'.°” .
STS$M_COND_ID  mask  mask for 31:3 Identification
STS$W_FAC_NO 2 word for 31:16 facility number
STS$V_CUST_DEF 31 position for 31

STS$S_CUST_DEF 1 size for 31 customer facility

STS$M_CUST_DEF 1 @31 mask for 31
STS$V_MSG_NO 3 position of 15:3

STS$S_MSG_NO 13 size of 15:3 } message number
STS$M_MSG_NO mask mask for 15:3

STS$V_FAC_SP 15 position of 15

STS$S_FAC_SP 1 size for 15 } facility specific
STS$M_FTC_SP 1@ 15 mask for 15

STS$V_CODE 3 position of 14:3

STS$S_CODE 12 size of 14:3 } message code
STS$M_CODE mask mask for 14:3 ;
STS$V_SEVERITY 0 position of 2:0

STS$S_SEVERITY 3 size of 2:0 severity
STS$M__SEVERITY 7 mask for 2:0 /
STS$V_SUCCESS 0 position of 0 1
STS$S_SUCCESS 1 size of O ( success
STS$M_SUCCESS 1 mask for O J

C.6.1 Interpretation of Severity Codes
A severity code of 1 indicates that the procedure generating the condi-
tion value was completed successfully, i.e., as expected.

A severity code of O indicates a warning. This code is used whenever a
procedure produces output but the result might not be what the user
expected, e.g., a compiler has modified a source program.

A severity code of 2 indicates that an error has occurred but that the
procedure did produce output. Execution can continue, but the results
produced by the component generating the condition value are not all
correct.

A severity code of 4 indicates that a severe error has occurred and the
component generating the condition value was unable to produce output.

When designing a procedure the choice of severity code for its condition
values should be based on the following default interpretations. The call-
ing routine typically performs a low bit test, so it treats warnings, errors,
and severity_errors as failures. If the condition value is signalled (see
section C.11), the default handler treats severe errors as reason to
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terminate and all the others as the basis for attempting to continue.
When the program image exists, the command interpreter by default
treats errors and severe_errors as the basis for stopping the job, and
warnings and successes as the basis for continuing.

Thus, the following table summarizes the default interpretation of con-
dition values:

DEFAULT AT
SEVERITY ROUTINE SIGNAL PROGRAM EXIT
success normal continue continue
warning failure continue continue
error failure continue stop job
severe_error failure exit stop job

Unless there is a good basis for another choice, a routine should use
either success or severe_error as its severity for each condition value.

C.6.2 Use of Condition Values

Software components produced by DIGITAL for VAX-11 return condition
values when they complete execution. When a severity code of warning,
error, or severe_error has been generated, the status code describes the
nature of the problem. This value may be tested to change the flow of
control of a procedure and/or be used to generate a message. User
procedures may also generate condition values to be examined by other
procedures and by the command language interpreter. User-generated
values should set bit 31 and bit 15 so that these condition values will
not conflict with values generated by DIGITAL.

C.7 REGISTER USAGE
The following registers have defined uses:

PC —program counter

SP —stack pointer

FP —current stack frame pointer. Must always point at current frame;
no modification permitted within a procedure body.

AP —At the instant of CALL, AP must point to a valid argument list.

A parameterless procedure points to an argument list consist-
ing of a single longword containing the value 0.

RO, R: —Function value return registers. These registers are not pre-
served by any called procedure. They are avaiilable as “‘free
temporaries’’ to any called procedure.

All other registers (R2, R3,..., R10, R11, and AP, FP, SP, PC) are pre-
served across procedure calls. The called procedure may use any of these
provided that it saves and restores them using the procedure entry mask
mechanism. The entry mask mechanism must be used so that any stack
unwinding done by the condition handling mechanism will correctly re-
store all registers. If JSB routines are used, they must not save any reg-
isters not already saved by the entry mask mechanism of the calling
program.
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C.8 STACK USAGE
The stack frame created by the CALLG/CALLS instructions for the called
procedure is:

condition handler (0) :(SP):(FP)

mask'PSW

AP

FP

PC

R2 (optional)

RI1  (optional)

FP always points at the condition handler longword of the stack frame,
see section C.11. Any other use of FP at any time within a procedure is
prohibited.

The content of the stack located at higher addresses than the mask/
PSW longword belongs to the calling program; it should not be read or
written by the called procedure, except as specified in the argument list.
The content of the stack located at lower addresses than (SP) belongs
to interrupt and exception routines; it must be assumed to be continually
and unpredictably modified.

Local storage is allocated by the called procedure by subtracting the
required number of bytes from the SP provided on entry. This local stor-
age is automatically freed by the RET instruction.

Bit 28 of the mask/PSW longword is reserved to DIGITAL for future
extensions to the stack frame.

C.9 ARGUMENT DATA TYPES
The following encoding is used for atomic data elements:

MNEMONIC CODE DESCRIPTION

DSC$K_DTYPE_Z 0 Unspecified. The calling program has
specified no data type; the called pro-
cedure should assume the argument is of
the correct type.

DSC$K_DTYPE_V 1 Bit. Ordinarily a bit string; see discussion
of descriptors.

DSC$K_DTYPE_BU 2 Byte Logical. 8-bit unsigned quantity.
DSC$K_DTYPE_WU 3 Word Logical. 16-bit unsigned quantity.
DSC$K_DTYPE_LU 4 Longword Logical. 32-bit unsigned quan-

tity.

DSC$K_DTYPE_QU 5 Quadword Logical. 64-bit unsigned quan-
tity.

DSC$K_DTYPE_B 6 Byte Integer. 8-bit signed 2's-complement
integer.

DSC$K_DTYPE_W 7  Word Integer. 16-bit signed 2's-comple-

ment integer.
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DSC$K_DTYPE_L

DSC$K_DTYPE_Q

DSC$K_DTYPE_F

DSC$K_DTYPE_D

DSC$K_DTYPE_FC

DSC$K_DTYPE_DC

10

11

12

13

Longword Integer. 32-bit signed 2's-com-
plement integer.

Quadword Integer. 64-bit signed 2’s-com-
plement integer.

Single-precision Floating. 32-bit VAX-11
floating point.

Double-precision Floating. 64-bit VAX-11
floating point.

Complex. Ordered pair of single-precision
floating quantities, representing a complex
number. The lower addressed quantity
represents the real part, the higher ad-
dressed represents the imaginary part.

Double-precision Complex. Ordered pair of
double-precision floating point quantities,
representing a complex number. The lower
addressed quantity represents the real
part, the higher addressed represents the
imaginary part.

The following string types are ordinarily described by a string descriptor.
The data type codes below occur in those descriptors:

MNEMONIC

DSC$K_DTYPE_T

DSC$K_DTYPE_NU
DSC$K_DTYPE_NL
DSC$K_DTYPE_NLO
DSC$K_DTYPE_NR
DSC$K_DTYPE_NRO
DSC$K_DTYPE_NZ
DSC$K_DTYPE_P
DSC$K_DTYPE_ZI
DSC$K_DTYPE_ZEM

CODE

14

23

DESCRIPTION

ASCIl text string. A sequence of 8-bit
ACSII characters.

Numeric string, unsigned.

Numeric string, left separate sign.
Numeric string, left overpunched sign.
Numeric string, right separate sign.
Numeric string, right overpunched sign.
Numeric string, zoned sign.

Packed decimal string.

Sequence of instructions.

Procedure entry mask.

The following type codes are reserved for future use:

24-191 reserved to DIGITAL
192-255 reserved to CSS and customers

C.10 ARGUMENT DESCRIPTORS
A uniform descriptor mechanism is defined for use by all procedures that
conform to this standard. Descriptors are uniformly typed and the mech-
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anism is extensible. Each class of descriptor consists of at least 2 long-
words in the following format:

CLASS l DTYPE l LENGTH :DESCRIPTOR

POINTER

DSC$W_LENGTH A one-word field specific to the descriptor class;

<0, 15:0> typically a 16-bit (unsigned) length.
DSC$B_DTYPE A one-byte atomic data type code (see C.9).

<0, 23:16>

DSC$B_CLASS A one-byte descriptor class code (see below).

<0, 31:24>

DSC$T_POINTER A longword pointing to the first byte of the data
<1, 31.0> element described.

Note that the descriptor can be placed in a pair of registers with a MOVQ
instruction and then the length and address used directly. This gives a
word length, so the class and type are placed as bytes in the rest of
that longword. Class O is unspecified and hence no more than the above
information can be assumed.

C.10.1 Scalar, String Descriptor (DSC$K_CLASS_S)
A single descriptor form is used for scalar data and simple strings.

1 l DTYPE ] LENGTH

POINTER

DSC$W_LENGTH Length of data item in bytes, unless DTYPE EQLU
1 (Bit) or 21 (Packed Decimal). Length of data
item is in bits for bit string. Length of data item
is in digits (nibbles-1) for packed string.

DSC$B_DTYPE

DSC$B_CLASS 1 = DSC$K_CLASS_S

DSC$A_POINTER Address of first byte of data storage

C.10.2 Dynamic String Descriptor (DSC$K_CLASS_D)
Reserved to DIGITAL.

C.10.3 Varying String Descriptor (DSC$K_CLASS_V)
Reserved to DIGITAL.

C.10.4 Array Descriptor (DSC$K_CLASS_A)

An array descriptor consists of three contiguous blocks. The first block
contains the descriptor prototype information and is part of every array
descriptor. The second and third blocks are optional. If the third block
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is present then so is the second. A complete array descriptor has the

form:

P
1

DTYPE !

LENGTH : DESCRIPTOR

POINTER
BLOCK 1-PROTOTYPE

DMICT

I AFLAGS |

RESERVED

ARSIZE

AQ

M1

BLOCK 2 - MULTIPLIERS

M(n-1)

Mn

L

ul

BLOCK 3- BOUNDS

Ln

Un

DSC$W__LENGTH

DSC$B_DTYPE
DSC$B_CLASS
DSC$A_POINTER
Reserved

<2, 15:0>
DSC$B_AFLAGS
<2, 23:16>
Reserved

<2, 20:16>
DSC$V_FL_COLUMN
<2, 21>

DSC$V_FL_COEFF
<2, 22>

DSC$V_FL_BOUNDS
<2,23>

DSC$B DIMCT
<2,31:24>
DSC$L_ARSIZE
<3, 31:.0>

Data element size (in bytes unless DTYPE EQLU
1 or 21)

4 — DSC$K_CLASS_A
Address of first actual byte of data storage.

Reserved for future use (MBZ).
Array flag bits.
MBZ

If set, the elements of the array are stored by
columns (FORTRAN). Otherwise the elements
are stored by rows.

If set, the multiplicative coefficients in Block 2
are present. Must be set if DSC$V_FL_BOUNDS
is set.

If set, the bounds information in Block 3 is
present. Requires that DSC$V_FL_COEFF be
set.

Number of dimensions

Total size of array
(in bytes unless DTYPE EQLU 1 or 21).
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DSC$A_AQ Address of element A(Q, O, . . ., 0). This need

<4, 31:.0> not be within the actual array; it is the same as
DSC$A_POINTER for O-origin arrays.

DSC$L_ Mi Addressing coefficients

<4-i, 31:0> (Mi = Ui—Li+1)

DSC$L_Li Lower bound of i'th dimension.

<34n42%, 31:0>

DSC$L_Ui Upper bound of i'th dimension.

<44-n+2%i, 31:0>

C.10.5 Procedure Descriptor (DSC$K_CLASS_P)
The descriptor for a procedure specifies its entry address and function
value data type, if any.

5 ] DTYPE I LENGTH

POINTER

DSC$W_LENGTH Length associated with the function value.
DSC$B_DTYPE Function value data type.

DSC$B__CLASS 5 — DSK$K_CLASS_P

DSC$A_POINTER Address of entry mask to routine.

Procedures return values in RO or RO and R1 as follows:

1. If a scalar, then the value is in RO or RO and R1. The type and
length are specified as DSC$B_DTYPE and DSC$W_LENGTH in the
procedure descriptor.

2. If not a scalar (i.e., if an array, a string, a procedure, etc.), then no
function value may be returned. Instead, the argument expressed as
a function value is instead passed as the first argument and the
other arguments are shifted down by one.

C.10.6 Procedure Incarnation Descriptor (DSC$K_CLASS_PI)

The descriptor for a procedure incarnation is the same as a procedure
descriptor with the addition of its call frame address. This is used to
refer to a specific incarnation of a procedure.

6 DTYPE LENGTH

POINTER

FRAME ADDRESS

DSC$W_LENGTH Length associated with the function value
DSC$B_DTYPE Function value data type.

DSC$B_CLASS 6 — DSC$K_CLASS_PI

DSC$A_POINTER Address of entry mask to routine.
DSC$A_FRAME Address of frame of this incarnation.

<2, 31:0>
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C.10.7 Label Descriptor (DSC$K_CLASS_J)

7 | DTYPE ] LENGTH

POINTER

DSC$W_LENGTH Not used; MBZ.
DSC$B_DTYPE Not used; MBZ.
DSC$B_CLASS 7 = DSC$K_CLASS_J
DSC$A_POINTER Address of label to jump to.

C.10.8 Label Incarnation Descriptor (DSC$K_CLASS_JI)

The descriptor for a label incarnation is the same as a label descriptor
with the addition of its procedure incarnation’s call frame address. This
is used to refer to a label within a specific incarnation of a procedure.

8 DTYPE I LENGTH

POINTER

FRAME ADDRESS

DSC$W_LENGTH Not used; MBZ.

DSC$B_DTYPE Not used; MBZ.

DSC$B_CLASS 8 — DSC$K_CLASS_JI.
DSC$A_POINTER Address of label to jump to.
DSC$A_FRAME Address of frame of this incarnation.
<2,31:.0>

€.10.9 Reserved Descriptors
Descriptor classes 9-191 are reserved to DIGITAL. Classes 192 through

255 are reserved to CSS and customers.

C.11 VAX-11 CONDITIONS

A condition is a hardware generated synchronous exception or the oc-
currence of a software event that the program wishes to process in a
manner analogous to a hardware exception. Floating overflow trap, mem-
ory access violation exception, and the reserved operation exception are
examples of hardware generated conditions. The occurrence of an output
conversion error, an end-of-file or the filling of an output buffer are ex-
amples of software detected events that might be treated as conditions.

Depending on the condition and on the program, there are four types of
actions that might be taken when a condition occurs.

1. lgnore the condition. For example, if an underflow occurs in a VAX-11
floating point operation, continuing from the point of the exception
with a zero result may be satisfactory.

2. Take some special action and then continue from the point where the
condition occurred. For example, the end of a buffer is reached while
writing a series of data items. The special action is to start a new
buffer.
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3. Terminate the operation and branch from the sequential flow of con-
trol. For example, the end of an input file is reached. The branch
exits from a loop that is processing the input data.

4. Treat the condition as an unrecoverable error. For example, the float-
ing divide by zero exception condition occurs. The program exits,
possibly after writing an appropriate error message.

When an unusual event or error occurs in a called procedure, the pro-
cedure can return a condition value to the caller which indicates what
has happened, see section C.6. The caller then tests the condition value
and takes the appropriate action.

When an exception is generated by the hardware a branch out of the
program'’s flow of control occurs automatically. In this case, and in the
case of certain software generated events, it is more convenient to
handle the condition as soon as it is detected rather than to program
explicit tests.

C.11.1 Condition Handlers

For the primary purpose of handling hardware-detected exceptions, the
VAX/VMS system supplies a mechanism for the programmer to specify a
condition handler function to be called when an exception condition oc-
curs. This mechanism may also be used for software detected exceptions.

An active procedure may establish a condition handler to be associated
with it. The presence of a condition handler is indicated by a non-zero
address in a longword of the procedure’s stack frame. When an event
occurs that is to be treated using the condition handling facility, the
procedure detecting the event signals the event by calling the facility
and passing a condition value describing the condition that occurred.
This condition value has the same format and interpretation as that
returned as a function value, see Section C.6. All hardware exceptions
are signalled.

When a condition is signalled the condition handling facility looks for
a condition handler in the current procedure’s stack frame. If a handler
is found it is entered. If no handler is associated with the current pro-
cedure, the immediately preceding stack frame is examined. Again, if
a handler is found it is entered; if a handler is not found the search of
previous stack frames continues until the default condition handler es-
tablished by the system is reached or the stack runs out.

As an example, consider a procedure that wishes to keep track of the
occurrence of the floating underflow exception. The procedure can es-
tablish a condition handier to examine the cendition value passed when
the handler is invoked and, when the condition is underflow, log the ex-
ception. When the floating underflow exception occurs, the condition
handler will be entered. After logging the condition, the handler can re-
turn to the instruction immediately following the instruction causing the
underflow.

If floating point operations occur in many procedures of a program, the
condition handler might be associated with the program’s main proced-
ure. When the condition is signalled, successive stack frames will be
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searched until the stack frame for the main procedure is found and then
the handler will be entered. If a user program has not associated a con-
dition handler with any of the procedures that are active at the time of
the signal, successive stack frames will be searched until the frame for
the system program invoking the user program is reached. A default
condition handler that prints an error message will then be entered.

C.11.2 Condition Handler Options

Each procedure activation potentially has a single condition handler
associated with it. This condition handler will be entered whenever any
condition is signalled within that procedure. (It can also be entered as a
result of signals within active procedures called by the procedure.) Each
signal includes a condition value, see Section C.6, which describes the
condition causing the signal. When the condition handler is entered, the
condition value should be examined to determine the cause of the signal.
After the handler has processed the condition or chosen to ignore it, it
may:

1. Return to the instruction immediately following the signal. Note that
it is not always possible to make such a return.

2. Resignal the condition or a modified condition value. The search for
another condition handler will then begin with the immediately pre-
ceeding stack frame.

3. Signal a different condition. Refer to section C.14, Multiple Active
Signals.

4. Unwind the stack. Refer to Section C.13.4, Request to Unwind.

C.12 OPERATIONS INVOLVING CONDITION HANDLERS
The VAX-11 system provides facilities to support the condition handling
mechanism. The functions provided are:

1. Establish a condition handler. A condition handler is associated with
the current procedure by placing the handler’s address in the current
procedure activation’s stack frome.

2. Revert to the caller's handling. If a condition handler has been es-
tablished, it can be removed by clearing its address in the current
procedure activation’s stack frame.

3. Enable or disable certain arithmetic exceptions. The exceptions float-
ing underflow, integer overflow, and decimal overflow may be enabled
or disabled by the software. No signal occurs when the exception is
disabled; see Chapter 12.

4. Signal a condition. Signalling a condition initiates the search for an
established condition handler.

5. Unwind the stack. Upon exit from a condition handler it is possible
to remove one or more pre-signal frames from the stack. During the
unwinding operation the stack is scanned, and if a condition handier
is associated with a frame, that handler is entered before the frame
is removed; see section C.13.4. Unwind allows a procedure to per-
form application-specific cleanup operations before exiting.
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C.12.1 Establish A Condition Handler

Each procedure activation has a condition handler potentially attached
to it via a longword in its stack frame. Initially, the longword contains
0. indicating no handler. A handler is established by moving the address
of the handler's procedure entry point mask to the establisher's stack
frame.

In addition, the VAX/VMS operating system provides two exception vec-
tors at each access mode. These vectors are available to declare condi-
tion handlers that take precedence over any handlers declared at the
procedure level. These are used, for example, to aliow a debugger to
monitor all exceptions, whether or not handled. Since these handlers
do not obey the procedure nesting rules, they should not be used by
modular code. Instead the stack based declaration should be used.

The code to establish a condition handler is:
MOVAL handler__entry_ point, O(FP)

C.12.2 Revert Condition Handler

The revert handler operation deletes the condition handler associated
with the procedure activation. This is done by clearing the handler ad-
dress in the stack frame.

The code to revert a handler is:
CLRL O(FP)

C.12.3 Signal a Condition

The signal operation is the method used for indicating that an exception
condition has occurred. When a program wishes to issue a message and
potentially continue execution after handling the condition, it calls the
standard procedure:

CALL LIB$SIGNAL (condition_value, arg_list . ..)

When a program wishes to issue a message and never continue, it calls
the standard procedure:

CALL LIB$STOP (condition_value, arg_list . ..)

where in both cases condition_value indicates the condition that is being
signalled; see section C.6. The arguments arg_list describe the details
of the exception. These are the same arguments used to issue a system
message. Note that unlike most CALLs, LIB$SIGNAL preserves RO and
R1 as well as the other registers. This allows a debugger to display the
entire state of the process at the time of the exception. It also allows
signals to be placed in assembly language code without changing the
register usage. This is useful for debugging checks and statistical gath-
ering. Hardware and system service exceptions behave as though they
were a call to LIB$SIGNAL.

The signal procedure examines the two exception vectors and then up to
64K previous stack frames. The current and previous stack frames are
found by using FP and chaining back through the stack frames using the
saved FP in each frame. The exception vectors are a pair of address
locations per access mode.

C-16



A frame before the call by the system command interpreter to the main
program establishes a default condition handler that issues system mes-
sages. The default condition handler uses condition_value to get the
message and then uses the arg_list to format and output the message.
if the condition_value <2:0> is not severe_error (i.e., 4) the default
condition handler returns with SSS__CONTINUE; if the severity is severe_
error the default handler exits the program image with the condition
value as the final image status.

The stack search terminates when the old FP is O or is not accessible
or 64K frames have been examined. If no condition handler is found,
or all handlers returned with the SS$_RESIGNAL, then SIGNAL issues a
message thai no handler was found and then issues the SIGNALed mes-
sage and exits.

If a handler returns SS$_CONTINUE, and LIB$STOP was not called, then
control returns to the signaler. Otherwise LIB$STOP issues a message
that there was an attempt to continue from a non-continuable exception
and exits with the condition value as the final image status.

All combinations of interaction between condition handler actions, the
default condition handler, the type of signal, and the call to signal or
stop are detailed in the following table.

signaled default handler handler no handler
condition handler specifies specifies is found
<2:0> gets control continue UNWIND  (stack bad)
‘‘no handler
condition found”’
call to: <4 message RET UNWIND  condition
RET message
EXIT
SIGNAL
‘‘no handler
condition found”
=4 message RET UNWIND  condition
EXIT message
EXIT
condition ‘‘no handler
message “‘can’t found”
<4 ‘‘can't continue”’ UNWIND  condition
continue” EXIT message
EXIT EXIT
STOP
‘‘no handler
condition “can’t found”’
=4 message continue”’ UNWIND condition
EXIT EXIT message
EXIT

condition message is the standard message for the condition value
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“no handler found’ is a standard message that indicates that no con-
dition handler was found (i.e., that the stack is bad). The message dis-
tinguishes between no handier (old FP = O or too many frames) and
access violation (old FP = junk).

‘‘can't continue’ is a standard message that indicates an attempt to
continue from a call to LIB$STOP.

C.13 PROPERTIES OF CONDITION HANDLERS
C.13.1 Condition Handler Parameters and Invocation

If a condition handler is found on a software detected exception, the
handler is called with an argument list consisting of:

continue = handler (signal_args, mechanism_args)

where each argument is a reference to a longword vector. The first long-
word of each vector is the number of remaining longwords in the vector.
The symbols CHF$L_SIGARGLST (=4) and CHF$L_MCHARGLST (=8)
can be used to reference the condition handler arguments relative to AP.

Signal_args is the condition argument list from the call to LIBESIGNAL
or LIB$STOP expanded to include the PC and PSL of the next instruction
to execute on a continue. In particular, the second longword is the con-
dition_value being signaled. Since bits 2:0 of the condition_value indi-
cate severity and do not indicate which condition is being signalled, the
handler should examine only the condition identification ,i.e., condition__
value <31:3>. The setting of bits <2:0>> varies depending upon the
environment. In fact, some handlers may simply change the severity of a
condition and resignal. The symbols CHF$L_SIG_ARGS (=0) and
CHF$L_SIG_NAME (=4) can be used to reference the elements of the
signal vectors.

Mechanism_args is a vector of five longwords

4 CHF$L_ MCH_ ARGS
FRAME CHF$L_ MCH_ FRAME
DEPTH CHF$L_ MCH_ DEPTH

RO CHF$L_ MCH_SAVRO

Rl CHF$L_MCH_SAVR!

CHF$L_MCH_ARGS

CHF$L_MCH_FRAME
CHF$L_MCH_DEPTH
CHF$L_MCH_SAVRO
CHF$L_MCH_SAVR1

Frame is the contents of FP in the establisher’'s context. This can be
used as a base to reference the local storage of the establishers if the
restrictions in section C.13.2 are met. Depth is a positive counter of the
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number of procedure activation stack frames above the signal that the
condition handler was established. Depth has the value O for an excep-
tion handed by the activation invoking the exception (i.e., containing the
instruction causing the hardware exception or calling LIB$SIGNAL).
Depth has positive values for procedure invocations calling the one hav-
ing the execution (1 for the immediate caller, etc.). If a system service
gives an exception, the immediate caller of the service gets notified at
depth = 1. Depth has value -2 when the condition handler is estab-
lished by the primary exception vector and -1 when it is established by
the secondary vector. RO and R1 are the values of these registers at the
time of the call to LIB$SIGNAL.

For hardware detected exceptions, the condition_value indicates which
exception vector was taken and the next O or several longwords are the
additional parameters as specified in Chapter 12, The remaining two
longwords are the PC and PSL:

n CHF$L_SIG . ARGS
CONDITION CHF$L_SIG . NAME
NONE OR SOME
ADDITIONAL
ARGUMENTS n

PC
PSL

C.13.2 Use Of Memory

In order not to impact compiler optimization, a handler and anything
it calls is restricted to referencing only explicitly passed arguments.
They cannot reference COMMON or other external storage and they can-
not reference local storage in the procedure that established the handler.
Compilers relaxing this rule must ensure that any variables referenced
by the handler are always kept in memory (VOLATILE) and have a full
lifetime.

C.13.3 Returning From a Condition Handler

Condition handlers are invoked by the standard system procedure that
processes signals, therefore the return from the condition handler is to
this procedure.

If the hand'er wishes execution to continue from the instruction following
the signal, it must return with the function value SS$_CONTINUE
(“true,” i.e., with bit O set). If, however, the condition was signalled
with a call to LIB$STOP, the image will exit. If it wishes the condition
to be resignalled, the condition handler returns with the function value
SS$_RESIGNAL (‘‘false,” i.e., with bit O clear3. If the handler wants to
alter the severity of the signal, it modifies the low three bits of condi-
tion_value and resignals. If the handler wants to unwind, it calls SYS$-
UNWIND and then returns; see Section C.13.4.In this case the handler
function value is ignored.
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C.13.4 Request To Unwind
If the handler decides to unwind, the handler or any procedure it calls
performs:

success — SYS$UNWIND
([dept = {handler depth} + 1],
[new_PC = {return PC}])

The argument depth specifies how many pre-signal frames to remove. If
depth is LEQ O then nothing is to be unwound. The default is to return
from the establisher of the handler. To unwind to the establisher, the
depth from the call to the handler should be specified. When the handler
is found at depth 0, the equivalent of UNWIND is to alter the PC in the
handler mechanism_args.

The argument new_PC specifies the location to receive control when
the unwind is complete. The function value is a standard success code
(SS$_NORMAL), or indicates the failure *‘no signal active’” (SS$NO-
SIGNAL), “already unwinding” (SS$_UNDINDING), or “insufficient
frames for depth” (SS$_INSFRAME).

The unwind will happen when the handler returns to the condition
handling facility. Unwinding is done by scanning back through the stack
and calling each handler that has been associated with a frame. The
handler is called with exception SS$_UNWIND to perform any applica-
tion-specific cleanup. In particular, if the depth specified includes un-
winding the establisher's frame, then the current handler will be re-
called with this unwind exception.

The call to the handler is of the same form as described above with the
following values:

signal_args
1
condition_value = SS$_UNWIND

mechanism_args

4

frame establisher’'s frame

depth 0 (i.e., unwinding self)

RO RO that unwind will restore
R1 R1 that unwind will restore

After each handler has been called, the stack is cut back to the previous
frame.

Note that the exception vectors are not checked because they are not
being removed. Any function value from the handler is ignored. If the
handler wants to specify the value of the top level ‘“‘function’” being
unwound, it should modify RO and R1 in the mechanism vector be-
cause they will be restored from the mechanism argument vector at the
end of the unwind.

Depending on the arguments to SYSSUNWIND, the unwinding operation
will be terminated as follows:
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1. SYSSUNWIND (0, 0)—unwind to the establisher’s caller with estab-
lisher function vaiue from RO and R1 in the mechanism vector.

2. SYSSUNWIND (depth, 0)—unwind to the establisher at the point of
the call that resulted in the exception. The callee’'s function value
is taken from RO and R1 in the mechanism vector.

3. SYS$UNWIND (depth, location)—unwind to a specified activation
and transfer to a specified location with RO and R1 from the mechan-
ism vector.

C.13.5 Signaller's Registers

Because the handler is called, and may in turn call routines, the actual
values of the registers that were in use at the time of the signal or ex-
ception can be scattered on the stack. In order to find the registers R2
through FP, a scan up the stack frames must be performed. During the
scan, the last frame found to save a register contains that register’'s
contents. If no frame back to the call to the handler saved the register,
then the register is still active in the current procedure. The frame of the
call to the handler can be identified by the return address of SYS$CALL__
HANDL-+4. Thus the registers are:

RO, R1: In mechanism_args

R2..R11: Last frame saving it

AP: old AP of SYS$CALL_HANDL--4 frame
FP: old FP of SYS$CALL_HANDL--4 frame
8P: equal to end of signal_args

PC, PSL: at end of signal_args

C.14 MULTIPLE ACTIVE SIGNALS

A signal is said to be active until the signaler gets control again or is
unwound. It is possible for a signal to occur while a condition handler
or a procedure it has called is executing. Consider the following example.
For each procedure (A, B, C, .. .) let the condition handler it establishes
be (Ah, Bh, Ch, . . .). If A calls B calls C which signals “S” and Ch
resignals, then Bh gets control. If Bh calls X calls Y which signals “T’’
the stack is:

<signal T>
Y

X
Bh

<signal S>
Cc

B
A

which was programmed:

<signal S> Y
<signal T>
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The desired order to search for handlers is Yh, Vh, <Bh>h. Ah. Note
that Ch should not be called because it is a structural descendant of
B. Bh should not be called again because that would require it to be
recursive. If it were recursive, then handiers could not be coded in non-
recursive languages such as FORTRAN. Instead Bh can establish itself
or another procedure as its handler (Bhh).

To implement this, the following algorithm is used. As usual, the primary
and secondary exception vectors are checked. Then, however, the
search backward in the process stack is modified. In effect the stack
frames traversed in the first search are skipped over in the second
search. Thus the stack frame preceding the first condition handler up
to and including the frame of the procedure that has established the
handler is skipped. Despite this skipping, depth is not incremented. The
stack frames traversed in the first and second search are skipped over in
a third search, etc. Note that if a condition handler SIGNALS, it will
not automatically be invoked recursively. However, if a handler itself
establishes a handler this second handler will be invoked. Thus, a re-
cursive condition handler should start by establishing itself. Any pro-
cedures invoked by the handler are treated in the normal way; that is,
exception signaling follows the stack up to the condition handler.

For proper hierarchical operation, an exception occurring during execu-
tion of a condition handler established in an exception vector should
be handled by that handler rather than propagating up the activation
stack. This is the vectored condition handler's responsibility. It is most
easily accomplished by the vectored handler establishing a catch-all
handler.
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APPENDIX D

PROGRAMMING EXAMPLES

D.1 PURPOSE

The purpose of the programming examples is to illustrate VAX-11 capa-
bilities which are not present in the PDP-11. It is not intended to be
tutorial on programming; a familiarity with PDP-11 assembly language
programming is assumed.

D.2 SORT ALGORITHM
The following subroutine written in FORTRAN is an algorithm for sorting
an array of values into ascending order.

SUBROUTINE SORT (N, A)
<data type x> A (N), TEMP
INTEGER*4 N, |, J
PpO10I=1,N—-1
DO10J=I1+1,N
IF (A (1) .LE.A(J)) GO TO 10
TEMP = A (1)
AD=A)
A (J) =TEMP

10 CONTINUE
RETURN
END

The following is VAX-11 code to implement this algorithm. There is no
suggestion that any given FORTRAN compiler would generate this code;
the algorithm was expressed in FORTRAN only for convenience.

The subroutine is assumed to be called by the VAX-11 standard calling
convention; hence, 4 (AP) points to the address of N and 8 (AP) points
to the address of A (O origin assumed).

SORT: :

1. .WORD “X400C ;Entry mask to save
;R3, R2
;and enable integer
;overflow

2. MOVAL @8 (AP), RO ;Get A base

3. MOVL @4 (AP), R12 ;Get N (size)

4. MOVL #1, R1 ;Initialize |

5. 1%: ADDL3 #1, R1, R2 ;JInitialize Jto | + 1

6. 2%: CMPx (RO) [R1], (RO) [R2] ;Correct order?

7. BLEQ 10% ;Yes

8. MOVXx (RO) [R1], R3 ;Save A (1)

9. MOVX (RO) [R2], (RO) [R1] ;Replace A (I) with
A )
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10. MOVx R3, (RO) [R2] ;Replace A (J) with

;saved A (1)
11. 10%: AOBLEQ R12, R2, 2% ;Continue
12. AOBLSS R12, R1, 1% ;Continue
13. RET ;Return and restore

;registers R2 and R3

Linel contains an entry mask so that registers R2 and R3 will be
saved by the CALL instruction which calls the subroutine. By conveniton,
RO and R1 are not saved. Integer overflow is enabled.

Line 2 gets the base of the A array. The move address instruction is
used in conjunction with argument mode addressing. This instruction
saves memory accesses inside the loop.

Line 3 gets the array size. The move long instruction is used in conjunc-
tion with argument mode addressing. This instruction saves memory ac-
cesses inside the loop.

Line 4 initializes | to 1. Literal mode addressing is used.

Line 5 initializes J with 1 4- 1. A three operand add is used.

Line 6 compares A (l) to A (J). Register post-indexed mode addressing
is used.

Line 7 branches past the exchange if the array elements are in the right
order.

Lines 8 through 10 exchange the array elements if they are in the wrong
order. Register post-indexed mode addressing is used.

Lines 11 and 12 carry out the loop end operations. Argument mode ad-
dressing is used.
Lines 13 returns and restores registers R2 and R3.

Note, that because of logical indexing in Lines 5, 7, 8, and 9 and the
orthogonality of operator and data type, the subroutine works for byte,
word, longword, floating, or double data types of array A simply by
substituting B, W, L, F, or D respectively for x. Note that if double, then
R4 would have to be saved also in the entry mask.

The size of each instruction is:

1. 2 bytes
2. 4

3. 4

4. 3

5. 4

6. 5

7. 2

8. 4

9. 5
10. 4
11. 4
12. 4
13. 1
Total 46 bytes
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D.3 SIN FUNCTION

This example shows how the initial argument handling might be done
in the math library to handle argument range reduction followed by
CASEing to the algorithm for each octant.

- X = SIN (Y)
PIHI = xxx ;high 4 bytes (8 if double)
PILO = xxx ;low byte of 4/PI
SIN:: .
.WORD “X400C ;save R2-R3 for POLYF, —R7 for
POLYD
;enable integer overflow
MOVAL HANDLER, O (FP) ;enable integer overflow

;condition handler to catch
;loss of significance on
;a huge argument
EMODx #PIHI, #PILO, @4 (AP), R2, RO
;get octant in R2
;reduced argument in RO

BGEQ 1% ;if positive, ok

ADDx #°Fl. O, RO ;if negative, get

DECL R2 ;positive reduction
1$: BICB2 #°C7, R2 ;mask to 8 octants

CASEB R2, #1, #6 ;branch to each octant
2%: .WORD OCT_1-2%

.WORD OCT_2-2%

WORD OCT_3-2%

WORD OCT_4-2%

.WORD OCT_5-2%

WORD OCT_6-2%

\WORD OCT_7-2%

;fall out of CASE on octant O

'; octant O with fully precise reduced argument in RO

OCT_O: POLYx RO, 2§, 1% ;evaluate polynomial
RET ;return value in RO
1$: .FLOAT
.FLOAT
2% =. —-1% —1
HANDLER: ;condition handler

.WORD
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D.4 FIXED FORMAT FLOATING OUTPUT
This example shows how to output a floating point number in the FOR-
TRAN format F9.3.

! string = FOUT (X)

’

STRING: .BLKB 10 ;room for output
PATTERN; ;EDITPC pattern’ string
EO$FLOAT 4 ;float sign, move 4 digits
EO$END_FLOAT ;end floating sign
EO$MOVE 1 ;move one digit
EO$INSERT “A/l./ ;insert period
EO$MOVE 3 ;move three fractional digits
EO$END ;end of pattern
FOUT: :
.WORD “XC03C ;save R2-R5, enable overflows
SUBL2 #8, SP ;make room on stack
MULF3 #°F1000.0,@4 (AP), RO
;normalize for the .3
CVTRFL RO, RO ;round digits
CVTLP RO, #8, (SP) ;convert to digits on stack
EDITPC #8, (SP), PATTERN, STRING
;edit to output
MOVQ #<LONGY, STRING 4+ 1>, RO

;function value is a
;string descriptor

RET ;return restoring R2-R5
;and the stack

D.5 COBOL OUTPUT EDITING
In all of these examples, A is a COMP-3 datum of length A_LEN. The
operation is

MOVE A TO B.
The generated code is
EDITPC #A_LEN,@A,MICRO, @B

In the patterns, the EO$ADJUST_INPUT can be omitted if A is the same
size as B, and the EO$REPLACE_SIGN (and its EO$LOAD_FILL) can be
omitted if A cannot contain a —O0.

1. PICTURE $$,$$9.99CR

MICRO: EO$ADJUST _INPUT 6
EO$LOAD_SIGN !
EO$FLOAT 1
EOS$INSERT !
EO$FLOAT 2
EO$END_FLOAT
EO$MOVE 1
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2.

)

PICTURE
MICRO:

PICTURE
MICRO:

PICTURE
MICRO:

PICTURE

MICRO:

EO$INSERT
EO$MOVE
EO$LOAD_PLUS
EO$LOAD_MINUS
EQ$STORE_SIGN
EO$LOAD_MINUS
EO$STORE_SIGN
EO$REPLACE_SIGN
EO$REPLACE_SIGN
EO$END

+$99,999.99

EO$ADJUST _INPUT
EO$LOAD_PLUS
EO$STORE_SIGN
EO$SET_SIGNIF
EOS$INSERT
EO$MOVE
EOS$INSERT
EO$MOVE
EO$INSERT
EO$MOVE
EOS$LOAD_FILL
EO$REPLACE_SIGN
EO$END

72,777.77

EO$ADJUST_INPUT
EO$MOVE

EO$INSERT

EO$MOVE
EO$SET_SIGNIF
EO$INSERT
EO$MOVE
EO$BLANK_ZERO
EO$END

- sp
a O -

~

NN

w

~

wN

99,999.99 BLANK WHEN ZERO

EO$ADJUST_INPUT
EO$SET_SIGNIF
EO$MOVE
EO$INSERT
EO$MOVE
EO$INSERT

EO# MOVE
EO$BLANK_ZERO
EO$END

EO$ADJUST_INPUT
EO$FLOAT
EO$END_FLOAT
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6. PICTURE
MICRO:

7. PICTURE
MICRO:

8. PICTURE
MICRO:

EO$MOVE
EO$INSERT
EO$MOVE
EO$REPLACE_SIGN
EO$END

++ + + +9.99

EO$ADJUST_INPUT
EO$LOAD_PLUS
EO$FLOAT
EO$END_FLOAT
EO$MOVE
EO$INSERT
EO$MOVE
EO$LOAD_FILL

EO$REPLACE_SIGN

EO$END

EO$ADJUST_INPUT
EOSLOAD_FILL
EQ$MOVE
EO$INSERT
EO$MOVE
EO$SET_SIGNIF
EOSINSERT
EO$MOVE
EO$BLANK_ZERO
EO$SEND

BBBZZBZ77Z.Z2ZB

EO$ADJUST_INPUT
EOS$FILL
EO$MOVE
EO$FILL
EO$MOVE
EO$SET_SIGNIF
EOS$INSERT
EO$MOVE
EO$BLANK_ZERO
EOS$FILL

EO$END

an

S BN VU P N N

wWw_ "N SN

NN

W—HNWN

HWN
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D.6 FORTRAN STATEMENT EVALUATION

FORTRAN

Assembly

Code: J=A¥*K 4+ B

MOVL I, R1  ;Move | to R1

CVTLF K, RO ;Convert integer K to floating

point
MULF2 A, RO ;Multiply A*K and store in RO
ADDF2 B ;Add B indexed by R1 to RO

[R1], RO

CVTFL RO, J ;Convert result in RO to integer
and store in J

This program evaluates the FORTRAN statement listed
above. | is a subscript which is moved to register R1.
The next step of the program converts the integer K to
a floating point number. Next A is multiplied by K and
the result is stored in register RO. The value |, which
is stored in register R1, indexes B and the calculated
result is added to RO which currently contains A*K. The
last step of the program converts the floating point re-
sult back to integer format, and stores the integer in
location J.

D.7 VARIABLE LENGTH FIELD

PL1

Assembly

Code: DECLARE A (1:10) BIT (5) ;Vector A, elements 1-10,
;5 bit field

A=A +1 ;Increment 1th element of
;A and store in A

Machine

Code:

INDEX |, #1, #10, #5, ;Calculate index

#-—5, RO

EXTV RO, #5, A, R1 :Extract 5 bits and store
;in R1

INCL R1 ;increment R1

INSV R1, RO, #5, A ;Store 5 bits into A
;offset by RO



This example shows the use of the variable length field
instructions using the PL1 Programming Language. Its
purpose is to add 1 to a particular field within a vector
of fields. In the assembler code, the DECLARE statement
informs the compiler that A is a vector, its elements are
numbered 1 through 10, and each element is a field five
bits wide. The A(l) statement increments the Ith element
of A and stores the result back in A.

In the machine code, the INDEX statement consists of
a lower limit of 1, an upper limit of 10, a field size of
5, an offset of —5, and a temporary (RO) to store the
result of the index calculation. The offset of —5 is re-
quired since the subscript starts at 1 but all indexing
starts at O.

The INDEX statement in this example checks | in the
range from 1 through 10. If I is in this range it is mul-
tiplied by the field size of 5, the offset of —5 is added,
and the result is stored in RO. Thus, RO will contain the
position offset of the field A(l) from the start of A. If |
is outside the range 1 through 10, a subscript range trap
occurs and typically results in an error message.

D.8 LOOPS

FORTRAN:

INTEGER *2 L ;Use L as a word for a

DO1L=3, 10 2 ;loop counter—L is
,an integer of 2 bytes
;and loop is incremented
;by 2 for each pass
;through loop

1 CONTINUE

Assembly

Code: MOVW #1, L

START: ACBW #10, #2, L, START
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D.9 LGOPS

FORTRAN:

INTEGER LL ;Use LL as a word for a

DO1LL=1,10 ;ioop counter. Loop is
;incremented by one for
;each pass through loop.

1 CONTINUE

Assembly

Code: MOVL #1, LL

START: AOBLEQ #10, LL START

D.10 CHARACTER STRING

Translation Portion

Character String A

1 67 97 26 27. ..
ASCH CTRL/A c a CTRL/Z ESC
Resuiting string B

1 67 65 26
ASCIlI CTRL/A Cc A CTRL/Z

Look up value in table plus number in string A; store
resuit in string B.

When output is 27, instruction stops and condition code
Vis set.

The instruction can terminate by:

1. Input string running out

2. Output string running out, or

3. Encountering escape sequence.

If input is longer than output, no C bit is generated. If

output is longer than input, C bit is set (normal termina-
tion).
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APPENDIX E

OPERAND SPECIFIER
NOTATION

E.1 OPERAND SPECIFIERS

Operand specifiers are described in the following way:
<name>><access type><data type>

where:

1. Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.
2. Access type is a letter denoting the operand specifier access type:

a Calculate the effective address of the specified operand. Ad-
dress is returned in a longword which is the actual instruc-
tion operand. Context of address calculation is given by <data

type>.
b No operand reference. Operand specifier is a branch displace-
ment. Size of branch displacement is given by <data type>.
m Operand is read, potentially modified and written. Note that

this is NOT an indivisible memory operation. Also note that if
the operand is not actually modified, it may not be written
back. However, modify type operands are always checked for
both read and write accessibility.

r Operand is read only.

v Calculate the effective address of the specified operand. If
the effective address is in memory the address is returned
in a longword which is the actual instruction operand. Con-
text of address calculation is given by <data type>.

If the effective address is Rn, then the operand actually ap-
pears in R[n], orin R[n + 11" R[n].

w Operand is written only.

3. Data type is a letter denoting the data type of the operand:
b byte

double floating

floating

longword

quadword

word

first data type specified by instruction

second data type specified by instruction

E.2 OPERATION DESCRIPTION NOTATION

The operation of each instruction is given as a sequence of control and

assignment statements in an ALGOL-like syntax. No attempt is made to
define the syntax formally; it is assumed to be familiar to the reader.

E-1

- -

< % £ 0



+ addition

—  subtraction, unary minus

multiplication

division (quotient only)
exponentiation

concatenation

<« is replaced by

= is defined as

Rn or R[n] contents of register Rn

PC, SP, CF, or AP  the contents of register R15, R14, R13, or R12 re-
spectively

PSW  the contents of the processor status word
PSL  the contents of the processor status long word
(x) contents of memory location whose address is x

x) + contents of memory location whose address is x; x incremented
by the size of operand referenced at x

— (x) x decremented by size of operand to be referenced at x; con-
tents of memory location whose address is x

<X:> a modifier which delimits an extent from bit position x to bit
position y inclusive

<x1,x2,...,xn> a modifier which enumerates bits x1,x2, ... ,xn

{3 — arithmetic parentheses used to indicate precedence

AND logical AND

OR logical OR

XOR logical XOR

NOT logical (ones) compliement

LSS less than signed

LSSU less than unsigned

LEQ less than or equal signed

LEQU less than or equal unsigned

EQL  equal signed

EQLU equal unsigned

NEQ not equal signed

NEQU not equal unsigned

GEQ  greater than or equal signed

GEQU greater than or equal unsigned

GTR greater than signed

GTRU greater than unsigned

SEXT (x) C xis sign extended to size of operand needed

ZEXT (x) X is zero extended to size of operand needed

REM (x, y) remainder of x divided by y

MINU (x, y) minimum unsigned of x and y
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The following conventions are used:

1.

Other than that caused by ( ) +, or — ( ), and the advancement
of PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

No operator precedence is assumed, other than that replacement
( <) has the lowest precedence. Precedence is indicated explicitly
by { L.

All arithmetic, logical, and relational operators are defined in the
context of their operands. For example ‘“+’’ applied to floating oper-
ands means a floating add while “4+"” applied to byte operands is an
integer byte add. Similarly, ““LSS” is a floating comparison when
applied to fioating operands while “LSS" is an integer byte compari-
son when applied to byte operands.

Instruction operands are evaluated according to the operand specifier
conventions. The order in which operands appear in the instruction
description has no effect on the order of evaluation.

Condition codes are in general affected on the value of actual stored
results, not on ‘“‘true” results (which might be generated internally
to greater precision). Thus, for example, 2 positive integers can be
added together and the sum stored, because of overflow, as a
negative value. The condition codes will indicate a negative value
even though the ““true’ result is clearly positive.
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GLOSSARY

abort An exception that occurs in the middle of an instruction and potentially
leaves the registers and memory in an indeterminate state, such that the in-
struction can not necessarily be restarted.

absolute indexed mode An indexed addressing mode in which the base
operand specifier is addressed in absolute mode.

absolute mode In absolute mode addressing, the PC is used as the register
in autoincrement deferred mode. The PC contains the address of the location
containing the actual operand.

access mode 1. Any of the four processor access modes in which software
executes. Processor access modes are, in order from most to least privileged
and protected: kernel (mode 0), executive (mode 1), supervisor (mode 2), and
user (mode 3). When the processor is in kernel mode, the executing software
has complete control of, and responsibility for, the system. When the processor
is in any other mode, the processor is inhibited from executing privileged
instructions. The Processor Status Longword contains the current access
mode field. The operating system uses access modes to define protection
levels for software executing in the context of a process. For example, the
executive runs in kernel and executive mode and is most protected. The com-
mand interpreter is less protected and runs in supervisor mode. The debugger
runs in user mode and is not more protected than normal user programs. 2.
See record access mode.

access type 1. The way in which the processor accesses instruction oper-
ands. Access types are: read, write, modify, address, and branch. 2. The way in
which a procedure accesses its arguments.

access violation An attempt to reference an address that is not mapped into
virtual memory or an attempt to reference an address that is not accessible by
the current access mode.

address A number used by the operating system and user software to identi-
fy a storage location. See also virtual address and physical address.

address access type The specified operand of an instruction is not directly
accessed by the instruction. The address of the specified operand is the actual
instruction operand. The context of the address calculation is given by the data
type of the operand.

addressing mode The way in which an operand is specified; for example, the
way in which the effective address of an instruction operand is calculated using
the general registers. The basic general register addressing modes are called:
register, register deferred, autoincrement, autoincrement deferred, autodecre-
ment, displacement, and displacement deferred. In addition, there are six in-
dexed addressing modes using two general registers, and literal mode
addressing. The PC addressing modes are called: immediate (for register de-
ferred mode using the PC), absolute (for autoincrement deferred mode using
the PC), and branch.

address space The set of all possible addresses available to a process.
Virtual address space refers to the set of all possible virtual addresses. Physi-
cal address space refers io the set of all possible physical addresses sent out
on the SBI.

alphanumeric character An upper or lower case letter (A-Z, a-z), a dollar
sign ($), an underscore (_), or a decimal digit (0-9).
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American Standard Code for Information Interchange (ASCIl) A set of 8-bit
binary numbers representing the alphabet, punctuation, numerals, and other
special symbols used in text representation and communications protocol.

Argument Pointer General register 12 (R12). By convention, AP contains the
address of the base of the argument list for procedures initiated using the
CALL instructions.

autodecrement indexed mode An indexed addressing mode in which the
base operand specifier uses autodecrement mode addressing.

autodecrement mode In autodecrement mode addressing, the contents of
the selected register are decremented, and the result is used as the address of
the actual operand for the instruction. The contents of the register are decre-
mented according to the data type context of the register: 1 for byte, 2 for word,
4 for longword and floating, 8 for quadword and double floating.

autoincrement deferred indexed mode An indexed addressing mode in
which the base operand specifier uses autoincrement deferred mode address-
ing.

autoincrement deferred mode In autoincrement deferred mode addressing,
the specified register contains the address of a longword which contains the
address of the actual operand. The contents of the register are incremented by
4 (the number of bytes in a longword). If the PC is used as the register, this
mode is called absolute mode.

autoincrement indexed mode An indexed addressing.mode in which the
base operand specifier uses autoincrement mode addressing.

autoincrement mode In autoincrement mode addressing, the contents of the
specified register are used as the address of the operand, then the contents of
the register are incremented by the size of the operand.

base operand address The address of the base of a table or array refer-
enced by index mode addressing.

base operand specifier The register used to calculate the base operand
address of a table or array referenced by index mode addressing.

base register A general register used to contain the address of the first entry
in alist, table, array, or other data structure.

bit string See variable-length bit field.

block 1. The smallest addressable unit of data that the specified device can
transfer in an 1/0 operation (512 contiguous bytes for most disk devices). 2. An
arbitrary number of contiguous bytes used to store logically related status,
control, or other processing information.

branch access type An instruction attribute which indicates that the proces-
sor does not reference an operand address, but that the operand is a branch
displacement. The size of the branch displacement is given by the data type of
the operand.

branch mode In branch addressing mode, the instruction operand specifier
is a signed byte or word displacement. The displacement is added to the
contents of the updated PC (which is the address of the first byte beyond the
displacement), and the result is the branch address.

byte A byte is eight contiguous bits starting on an addressable byte bound-
ary. Bits are numbered from the right, 0 through 7, with bit 0 the low-order bit.
When interpreted arithmetically, a byte is a two’s complement integer with
significance increasing from bits 0 through 6. Bit 7 is the sign bit. The value of

G-2



the signed integer is in the range -128 to 127 decimal. When interpreted as an
unsigned integer, significance increases from bits 0 through 7 and the value of
the unsigned integer is in the range 0 to 255 decimal. A byte can be used to
store one ASCI| character.

cache memory A small, high-speed memory placed between slower main
memory and the processor. A cache increases effective memory transfer rates
and processor speed. It contains copies of data recently used by the processor,
and fetches several bytes of data from memory in anticipation that the proces-
sor will access the next sequential series of bytes.

callframe See stack frame.

call instructions The processor instructions CALLG (Call Procedure with
General Argument List) and CALLS (Call Procedure with Stack Argument List).

call stack The stack, and conventional stack structure, used during a pro-
cedure call. Each access mode of each process context has one call stack, and
interrupt service context has one call stack.

character A symbol represented by an ASCII code. See also alphanumeric
character.

character string A contiguous set of bytes. A character string is identified by
two attributes: an address and a length. Its address is the address of the byte
containing the first character of the string. Subsequent characters are stored in
bytes of increasing addresses. The length is the number of characters in the
string.

character string descriptor A quadword data structure used for passing
character data (strings). The first word of the quadword contains the length of
the character string. The second word can contain type information. The re-
maining longword contains the address of the string.

command An instruction, generally an English word, typed by the user at a
terminal or included in a command file which requests the software monitoring
a terminal or reading a command file to perform some well-defined activity. For
example, typing the COPY command requests the system to copy the contents
of one file into another fite.

compatibility mode A mode of execution that enables the central processor
to execute non-privileged PDP-11 instructions. The operating system supports
compatibility mode execution by providing an RSX-11M programming environ-
ment for an RSX-11M task image. The operating system compatibility mode
procedures reside in the control region of the process executing a compatibility
mode image. The procedures intercept calls to the RSX-11M executive and
convert them to the appropriate operating system functions.

condition An exception condition detected and declared by software. For
example, see failure exception mode.

condition codes Four bits in the Processor Status Word that indicate the
results of previously executed instructions.

condition handler A procedure that a process wants the system to execute
when an exception condition occurs. When an exception condition occurs, the
operating system searches for a condition handler and, if found, initiates the
handler immediately. The condition handler may perform some action to
change the situation that caused the exception condition and continue execu-
tion for the process that incurred the exception condition. Condition handlers
execute in the context of the process at the access mode of the code that

incurred the exception condition.
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condition value A 32-bit quantity that uniquely identifies an exception condi-
tion.

context indexing The ability to index through a data structure automatically
because the size of the data type is known and used to determine the offset
factor.

context switching Interrupting the activity in progress and switching to
another activity. Context switching occurs as one process after another is
scheduled for execution. The operating system saves the interrupted process’
hardware context in its hardware process control block (PCB) using the Save
Process Context instruction, loads another process’ hardware PCB into the
hardware context using the Load Process Context instruction, scheduling that
process for execution.

console The manual control unit integrated into the central processor. The
console includes an LSI-11 microprocessor and a serial line interface
connected to a hard copy terminal. It enables the operator to start and stop the
system, monitor system operation, and run diagnostics.

console terminal The hard copy terminal connected to the central processor
console.

control region The highest-addressed half of per-process space (the P1 re-
gion). Control region virtual addresses refer to the process-related information
used by the system to control the process, such as: the kernel, executive, and
supervisor stacks, the permanent I/0 channels, exception vectors, and dy-
namically used system procedures (such as the command interpreter and
RSX-11M programming environment compatibility mode procedures). The
user stack is also normally found in the control region, although it can be
relocated elsewhere.

Control Region Base Register (P1BR) The processor register, or its equi-
valent in a hardware process control block, that contains the base virtual ad-
dress of a process control region page table.

Control Region Length Register (P1LR) The processor register, or its equi-
valent in a hardware process control block, that contains the number of non-
existent page table entries for virtual pages in a process control region.

counted string A data structure consisting of a byte-sized length followed by
the string. Although a counted string is not used as a procedure argument, it is
a convenient representation in memory.

current access mode The processor access mode of the currently executing
software. The Current Mode field of the Processor Status Longword indicates
the access mode of the currently executing software.

cylinder The tracks at the same radius on all recording surfaces of a disk.

data structure Any table, list, array, queue, or tree whose format and access
conventions are well-defined for reference by one or more images.

data type In general, the way in which bits are grouped and interpreted. In
reference to the processor instructions, the data type of an operand identifies
the size of the operand and the significance of the bits in the operand. Operand
data types include: byte, word, longword, and quadword integer, floating and
double floating, character string, packed decimal string, and variable-length bit
field.

descriptor A data structure used in calling sequences for passing argument
types, addresses and other optional information. See character string descrip-
tor.
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device interrupt An interrupt received on interrupt priority level 16 through
23, Device interrupts can be requested only by devices, controllers, and memo-
ries.

device name The field in a file specification that identifies the device unit on
which a file is stored. Device names also include the mnemonics that identify an
I70 peripheral device in a data transfer request. A device name consists of a
mnemonic followed by a controller identification letter (if applicable), followed
by a unit number (if applicable). A colon (:) separates it from following fields.

device register A location in device controller logic used to request device
functions (such as /O transfers) and/or report status.

device unit One drive, and its controlling logic, of a mass storage device
system. A mass storage system can have several drives connected to it.

diagnostic A program that tests logic and reports any faults it detects.

direct mapping cache A cache organization in which only one address
comparision is needed to locate any data in the cache because any biock of
main memory data can be placed in only one possible position in the cache.
Contrast with fully associative cache.

displacement deferred indexed mode An indexed addressing mode in
which the base operand specifier uses displacement deferred mode address-
ing.

displacement deferred mode In displacement deferred mode addressing,
the specifier extension is a byte, word, or longword displacement. The dis-
placement is sign extended to 32 bits and added to a base address obtained
from the specified register. The result is the address of a longword which
contains the address of the actual operand. If the PC is used as the register, the
updated contents of the PC are used as the base address. The base address is
the address of the first byte beyond the specifier extension.

displacement indexed mode An indexed addressing mode in which the
base operand specifier uses displacement mode addressing.

displacement mode In displacement mode addressing, the specifier exten-
sion is a byte, word, or longword dispiacement. The displacement is sign ex-
tended to 32 bits and added to a base address obtained from the specified
register. The result is the address of the actual operand. If the PC is used as the
register, the updated contents of the PC are used as the base address. The
base address is the address of the first byte beyond the specifier extension.

double floating datum Eight contiguous bytes (64 bits), starting on an ad-
dressable byte boundary, which are interpreted as containing a floating point
number. The bits are labeled from right to left, 0 to 63. A four-word floating
point number is identified by the address of the byte containing bit 0. Bit 15
contains the sign of the number. Bits 14 through 7 contain the excess 128
binary exponent. Bits 63 through 16 and 6 through 0 contain a normalized 56-
bit fraction with the redundant most significant fraction bit not represented.
Within the fraction, bits of decreasing significance go from 6 through 0, 31
through 16, 47 through 32, then 63 through 48. Exponent values of 1 through
255 in the 8-bit exponent field represent true binary exponents of ~128 to 127.
An exponent value of 0 together with a sign bit of 0 represent a floating value of
0. An expanent value of 0 with a sign bit of 1 is a reserved representation;
floating point instructions processing this value return a reserved operand
fault. The value of a floating datum is in the approximate range (+ or —) 0.29 X
107 to 1.7 X 10%. The precision is approximately one part in 2°° or sixteen
decimal digits.
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drive The electro-mechanical unit of a mass storage device system on which
a recording medium (disk cartridge, disk pack, or magnetic tape reel) is
mounted.

effective address The address obtained after indirect or indexing modifica-
tions are calculated.

entry mask A word whose bits represent the registers to be saved or re-
stored on a subroutine or procedure call using the call and return instructions.

entry point A location that can be specified as the object of a call. It contains
an entry mask and exception enables known as the entry point mask.

escape sequence An escape is a transition from the normal mode of opera-
tion to a mode outside the normal mode. An escape character is the code that
indicates the transition from normal to escape mode. An escape sequence
refers to the set of character combinations starting with an escape character
that the terminal transmits without interpretation to the software set up to han-
dle escape sequences.

event A change in process status or an indication of the occurrence of some
activity that concerns an individual process or cooperating processes. An in-
cident reported to the scheduler that affects a process’ ability to execute.
Events can be synchronous with the process’ execution (a wait request), or they
can be asynchronous (I/0 completion). Some other events include: swapping;
wake request; page fault.

event flag A bit in an event flag cluster that can be set or cleared to indicate
the occurrence of the event associated with that flag. Event flags are used to
synchronize activities in a process or among many processes.

exception An event detected by the hardware (other than an interrupt or
jump, branch, case, or call instruction) that changes the normal flow of instruc-
tion execution. An exception is always caused by the execution of an instruction
or set of instructions (whereas an interrupt is caused by an activity in the
system independent of the current instruction). There are three types of hard-
ware exceptions: traps, faults, and aborts. Examples are: attempts to execute a
privileged or reserved instruction, trace traps, compatibility mode faults,
breakpoint instruction execution, and arithmetic traps such as overflow, under-
flow, and divide by zero.

exception condition A hardware- or software-detected event other than an
interrupt or jump, branch, case, or call instruction that changes the normal flow
of instruction execution.

exception enables See trap enables.
exception vector See vector.

executive mode The second most privileged processor access mode (mode
1). The record management services (RMS) and many of the operating sys-
tem’s programmed service procedures execute in executive mode.

fault A hardware exception condition that occurs in the middle of an instruc-
tion and that leaves the registers and memory in a consistent state, such that
elimination of the fault and restarting the instruction will give correct resulits.

field 1. See variable-length bit field. 2. A set of contiguous bytes in a logical
record.

floating (point) datum Four contiguous bytes (32 bits) starting on an ad-
dressable byte boundary. The bits are labeled from right to left from 0 to 31. A
two-word floating point number is identified by the address of the byte
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containing bit 0. Bit 15 contains the sign of the number. Bits 14 through 7
contain the excess 128 binary exponent. Bits 31 through 16 and 6 through 0
contain a normalized 24-bit fraction with the redundant most significant frac-
tion bit not represented. Within the fraction, bits of decreasing significance go
from bit 6 through 0, then 31 through 16. Exponent values of 1 through 255 in
the 8-bit exponent field represent true binary exponents of —128 to 127. An
exponent value of 0 together with a sign bit of 0 represent a floating vaiue of 0.
An exponent value of 0 with a sign bit of 1 is a reserved representation; floating
point instructions processing this value return a reserved operand fault. The
value of a floatlng datum is in the approximate range (+ or —)0.29 X 107°

1.7 X 10%. The precision is approximately one part in 2% or seven demmal
digits.

frame pointer General register 13 (R13). By convention, FP contains the base
address of the most recent call frame on the stack.

fully associative cache A cache organization in which any block of data from
main memory can be placed anywhere in the cache. Address comparision
must take place against each block in the cache to find any particular block.
Constrast with direct mapping cache.

general register Any of the sixteen 32-bit registers used as the primary oper-
ands of the native mode instructions. The general registers include 12 general
purpose registers which can be used as accumulators, as counters, and as
pointers to locations in main memory, and the Frame Pointer (FP), Argument
Pointer (AP), Stack Pointer (SP), and Program Counter (PC) registers.

giga Metricterm used to represent the number 1 followed by nine zeros.

hardware context The values contained in the following registers while a
process is executing: the Program Counter (PC); the Processor Status Long-
word (PSL); the 14 general registers (RO through R13); the four processor
registers (POBR, POLR, P1BR and P1LR) that describe the process virtual ad-
dress space; the Stack Pointer (SP) for the current access mode in which the
processor is executing; plus the contents to be loaded in the Stack Pointer for
every access mode other than the current access mode. While a process is
executing, its hardware context is continually being updated by the processor.
While a process is not executing its hardware context is stored in its hardware
PCB.

hardware process control block (PCB) A data structure known to the proc-
essor that contains the hardware context when a process is not executing. A
process’ hardware PCB resides in its process header.

immediate mode In immediate mode addressing, the PC is used as the
register in autoincrement mode addressing.

indexed addressing mode In indexed mode addressing, two registers are
used to determine the actual instruction operand: an index register and a base
operand specifier. The contents of the index register are used as an index
(offset) into a table or array. The base operand specifier supplies the base
address of the array (the base operand address or BOA). The address of the
actual operand is calculated by multiplying the contents of the index register by
the size (in bytes) of the actual operand and adding the result to the base
operand address. The addressing modes resulting from index mode address-
ing are formed by adding the suffix “indexed” to the addressing mode of the
base operand specifier: register deferred indexed, autoincrement indexed, au-
toincrement deferred indexed (or absolute indexed), autodecrement indexed,
displacement indexed, and displacement deferred indexed.
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index register A register used to contain an address offset.

input stream The source of commands and data. One of: the user’s terminal,
the batch stream, or an indirect command file.

instruction buffer An 8-byte buffer in the processor used to contain bytes of
the instruction currently being decoded and to pre-fetch instructions in the
instruction stream. The control logic continously fetches data from memory to
keep the 8-byte buffer full.

interleaving Assigning consecutive physical memory addresses alternately
between two memory controllers.

interrecord gap A blank space deliberately placed between data records on
the recording surface of a magnetic tape.

interrupt  An event other than an exception or branch, jump, case, or call
instruction that changes the normal flow of instruction execution. Interrupts are
generally external to the process executing when the interrupt occurs. See also
device interrupt, software interrupt, and urgent interrupt.

interrupt priority level (IPL) The interrupt level at which the processor exe-
cutes when an interrupt is generated. There are 31 possible interrupt priority
levels. IPL 1 is lowest, 31 highest. The levels arbitrate contention for processor
service. For example, a device cannot interrupt the processor if the processor
is currently executing at an interrupt priority level greater than the interrupt
priority level of the device's interrupt service routine.

interrupt service routine The routine executed when a device interrupt oc-
curs.

interrupt stack The system-wide stack used when executing in interrupt ser-
vice context. At any time, the processor is either in a process context executing
in user, supervisor, executive or kernel mode, or in system-wide interrupt
service context operating with kernel privileges, as indicated by the interrupt
stack and current mode bits in the PSL. The interrupt stack is not context
switched.

interrupt stack pointer The stack pointer for the interrupt stack. Unlike the
stack pointers for process context stacks, which are stored in the hardware
PCB, the interrupt stack pointer is stored in an internal register.

interrupt vector See vector.

kernel mode The most privileged processor access mode (mode 0). The
operating system’s most privileged services, such as /0 drivers and the pager,
run in kernel mode.

literal mode In literal mode addressing, the instruction operand is a constant
whose value is expressed in a 6-bit field of the instruction. If the operand data
type is byte, word, longword, or quadword, the operand is zero extended and
can express values in the range 0 through 63 (decimal). If the operand data
type is floating or double floating, the 6-bit field is composed of two 3-bit fields,
one for the exponent and the other for the fraction. The operand is extended to
floating or double floating format.

longword Four contiguous bytes (32 bits) starting on an addressable byte
boundary. Bits are numbered from right to left with 0 through 31. The address
of the longword is the address of the byte containing bit 0. When interpreted
arithmeticaily, a longword is a two’'s complement integer with significance in-
creasing from bit 0 to bit 30. When interpreted as a signed integer, bit 31 is the
sign bit. The value of the signed integer is in the range -2,147,483,648 to
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2,147,483,647. When interpreted as an unsigned integer, significance in-
creases from bit 0 to bit 31. The value of the unsigned integer is in the range 0
through 4,294,967,295.

main memory See physical memory.

mass storage device A device capable of reading and writing data on mass
storage media such as a disk pack or a magnetic tape reel.

memory management The system functions that include the hardware’s
page mapping and protection and the operating system’s image activator and
pager.

Memory Mapping Enable (MME) A bit in a processor register that governs
address translation.

modify access type The specified operand of an instruction or procedure is
read, and is potentially modified and written, during that instruction’s or pro-
cedure's execution.

native mode The processor's primary execution mode in which the pro-
grammed instructions are interpreted as byte-aligned, variable-length instruc-
tions that operate on byte, word, longword, and quadword integer, floating and
double floating, character string, packed decimal, and variable-length bit field
data. The instruction execution mode other than compatibility mode.

nibble The low-order or high-order four bits of a byte.

numeric string A contiguous sequence of bytes representing up to 31 deci-
mal digits (one per byte) and possibly a sign. The numeric string is specified by
its lowest addressed location, its length, and its sign representation.

offset A fixed displacement from the beginning of a data structure. System
offsets for items within a data structure normally have an associated symbolic
name used instead of the numeric displacement. Where symbols are defined,
programmers always reference the symbolic names for items in a data struc-
ture instead of using the numeric displacement.

opcode The pattern of bits within an instruction that specify the operation to
be performed.

operand specifier The pattern of bits in an instruction that indicate the
addressing mode, a register and/or displacement, which, taken together, iden-
tify an instruction operand.

operand specifier type The access type and data type of an instruction’s
operand(s). For example, the test instructions are of read access type, since
they only read the value of the operand. The operand can be of byte, word, or
longword data type, depending on whether the opcode is for the TSTB (test
byte), TSTW (test word), or TSTL (test longword) instruction.

packed decimal A method of representing a decimal number by storing a
pair of decimal digits in one byte, taking advantage of the fact that oniy four bits
are required to represent the numbers zero through nine.

packed decimal string A contiguous sequence of up to 16 bytes interpreted
as a string of nibbles. Each nibble represents a digit except the low-order
nibble of the highest addressed byte, which represents the sign. The packed
decimal string is specified by its lowest addressed location and the number of
digits.

page 1. A set of 512 contiguous byte locations used as the unit of memory
mapping and protection. 2. The data between the beginning of file and a page
marker, between two markers, or between a marker and the end of a file.
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page fault An exception generated by a reference to a page which is not
mapped into a working set.

page fault cluster size The number of pages read inon a page fault.

page frame number (PFN) The address of the first byte of a page in physical
memory. The high-order 21 bits of the physical address of the base of a page.

page table entry (PTE) The data structure that identifies the location and
status of a page of virtual address space. When a virtual page is in memory, the
PTE contains the page frame number needed to map the virtual page to a
physical page. When it is not in memory, the page table entry contains the
information needed to locate the page on secondary storage (disk).

paging The action of bringing pages of an executing process into physical
memory when referenced. When a process executes, all of its pages are said to
reside in virtual memory. Only the actively used pages, however, need to reside
in physical memory. The remaining pages can reside on disk until they are
needed in physical memory. In this system, a process is paged only when it
references more pages than it is allowed to have in its working set. When the
process refers to a page not in its working set, a page fault occurs. This causes
the operating system’s pager to read in the referenced page if itis on disk (and,
optionally, other related pages depending on a cluster factor), replacing the
least recently faulted pages as needed. A process pages only against itself.

physical address The address used by hardware to identify a location in
physical memory or on directly-addressable secondary storage devices such
as a disk. A physical memory address consists of a page frame number and the
number of a byte within the page. A physical disk block address consists of a
cylinder or track and sector number.

physical address space The set of all possitle 3-bit physical addesses that
can be used to refer to locations in memory (memory space) or device registers
(I/0 space).

physical memory The memory modules connected to the SBI that are used
to store: 1) instructions that the processor can directly fetch and execute, and
2) any other data that a processor is instructed to manipulate. Also called main
memory.

position dependent code Code that can execute properly only in the loca-
tions in virtual address space that are assigned to it by the linker.

position independent code Code that can execute properly without modifi-
cation wherever it is located in virtual address space, even if its location is
changed after it has been linked. Generally, this code uses addresssing modes
that form an effective address relative to the PC.

privileged instructions In general, any instructions intended for use by the
operating system or privileged system programs. In particular, instructions that
the processor will not execute unless the current access mode is kernel mode
(e.g., HALT, SVPCTX, LDPCTX, MTPR, and MFPR).

procedure 1. A routine entered via a call instruction. 2. See command pro-
cedure,

process The basic entity scheduled by the system software that provides the
context in which an image executes. A process consists of an address space
and both hardware and software context.

process address space See process space.
process context The hardware and software contexts of a process.
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process control block (PCB) A data structure used to contain process con-
text. The hardware PCB contains the hardware context. The software PCB
contains the software context, which includes a pointer to the hardware PCB.

processor register A part of the processor used by the operating system
software to control the execution states of the computer system. They include
the system base and length registers, the program and control region base and
length registers, the system control block base register, the software interrupt
request register, and many more.

Processor Status Longword (PSL) A system programmed processor regis-
ter consisting of a word of privileged processor status and the PSW. The privi-
leged processor status information includes: the current IPL (interrupt priority
level), the previous access mode, the current access mode, the interrupt stack
bit, the trace trap pending bit, and the compatibility mode bit. )

Processor Status Word (PSW) The low-order word of the Processor Status
Longword. Processor status information includes: the condition codes (carry,
overflow, zero, negative), the arithmetic trap enable bits (integer overflow, deci-
mal overflow, floating underflow), and the trace enable bit.

process page tables The page tables used to describe process virtual mem-
ory.

process space The lowest-addressed half of virtual address space, where
per-process instructions and data reside. Process space is divided into a
program region and a control region.

Program Counter (PC) General register 15 (R15). At the beginning of an
instruction’s execution, the PC normally contains the address of a location in
memory from which the processor will fetch the next instruction it will execute.

program locality A characteristic of a program that indicates how close or far
apart the references to locations in virtual memory are over time. A program
with a high degree of locality does not refer to many widely scattered virtual
addresses in a short period of time.

program region The lowest-addressed half of process address space (PO
space). The program region contains the image currently being executed by
the process and other user code called by the image.

Program region Base Register (POBR) The processor register, or its equi-
valent in a hardware process control block, that contains the base virtual ad-
dress of the page table entry for virtual page number 0 in a process program
region.

Program region Length Register (POLR) The processor register, or its equi-
valent in a hardware process control block, that contains the number of entries
in the page table for a process program region.

quadword Eight contiguous bytes (64 bits) starting on an addressable byte
boundary. Bits are numbered from right to left, 0 to 63. A quadword is identified
by the address of the byte containing the low-order bit (bit 0). When interpreted
arithmetically, a quadword is a two’s complement integer with significance
increasing from bit 0 to bit 62. Bit 63 is used as the sign bit. The value of the
integer is in the range -2°° to 2%*-1.

queue 1. n. A circular, doubly-linked list. See system queues. v. To make an
entry in a list or tabie, perhaps using the iNSQUE instruciion. 2. See job queue.
read access type An instruction or procedure operand attribute indicating
that the specified operand is only read during instruction or procedure execu-
tion.
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register A storage location in hardware logic other than main memory. See
also general register, processor register, and device register.

register deferred indexed mode An indexed addressing mode in which the
base operand specifier uses register deferred mode addressing.

register deferred mode In register deferred mode addressing, the contents
of the specified register are used as the address of the actual instruction oper-
and.

register mode In register mode addressing, the contents of the specified
register are used as the actual instruction operand.

scatter/gather The ability to transfer in one |/0 operation data from discon-
tiguous pages in memory to contiguous blocks on disk, or data from contigu-
ous blocks on disk to discontiguous pages in memory.

secondary storage Random access mass storage.

signal 1. An electrical impulse conveying information. 2. The software me-
chanism used to indicate that an exception condition was detected.

software interrupt An interrupt generated on interrupt priority level 1
through 15, which can be requested only by software.

stack An area of memory set aside for temporary storage, or for procedure
and interrupt service linkages. A stack uses the last-in, first-out concept. As
items are added to (“pushed on”) the stack, the stack pointer decrements. As
items are retrieved from (“popped off") the stack, the stack pointer increments.

stack frame A standard data structure built on the stack during a procedure
call, starting from the location addressed by the FP to lower addresses, and
popped off during a return from procedure. Aiso called call frame.

Stack Pointer General register 14 (R14). SP contains the address of the top
(lowest address) of the processor-defined stack. Reference to SP will access
one of the five possible stack pointers, kernel, executive, supervisor, user, or
interrupt, depending on the value in the current mode and interrupt stack bits
in the Processor Status Longword (PSL).

status code A longword value that indicates the success or failure of a spe-
cific function. For example, system services always return a status code in RO
upon completion.

store through See write through.

supervisor mode The third most privileged processor access mode {mode
2). The operating system’s command interpreter runs in supervisor mode.

Synchronous Backplane Interconnect (SBI) The part of the hardware that
interconnects the processor, memory controliers, MASSBUS adaptors, the
UNIBUS adaptor.

system In the context “system, owner, group, world,” the system refers to the
group numbers that are used by operating system and its controlling users, the
system operators and system manager.

system address space See system space and system region.

System Base Register (SBR) A processor register containing the physical
address of the base of the system page table.

System Control Block (SCB) The data structure in system space that con-
tains all the interrupt and exception vectors known to the system.

System Control Block Base register (SCBB) A processor register contain-
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ing the base address of the system control block.

System Identification Register A processor register which contains the pro-
cessor type and serial number.

System Length Register (SLR) A processor register containing the length of
the system page tabie in iongwords, ihat is, the number of page tabie entries in
the system region page table.

System Page Table (SPT) The data structure that maps the system region
virtual addresses, including the addresses used to refer to the process page
tables. The system page table (SPT) contains one page table entry (PTE) for
each page of system region virtual memory. The physical base address of the
SPT is contained in a register called the SBR.

system region The third quarter of virtual address space. The lowest-ad-
dressed half of system space. Virtual addresses in the system region are shara-
ble between processes. Some of the data structures mapped by system region
virtual addresses are: system entry vectors, the system control block (SCB), the
system page table (SPT), and process page tables.

system space The highest-addressed half of virtual address space. See also
system region. :

system virtual address A virtual address identifying a location mapped by
an address in system space.

system virtual space See system space.

terminal The general name for those peripheral devices that have keyboards
and video screens or printers. Under program control, a terminal enables
people to type commands and data on the keyboard and receive messages on
the video screen or printer. Examples of terminals are the LA36 DECwriter
hard-copy terminal and VT52 video display terminal.

translation buffer An internal processor cache containing transiations for
recently used virtual addresses.

trap An exception condition that occurs at the end of the instruction that
caused the exception. The PC saved on the stack is the address of the next
instruction that would normally have been executed. All software can enable
and disable some of the trap conditon with a single instruction.

trap enables Three bits in the Processor Status Word that control the proc-
essor’s action on certain arithmetic exceptions.

two’s complement A binary representation for integers in which a negative
number is one greater than the bit complement of the positive number.

two-way associative cache A cache organization which has two groups of
directly mapped blocks. Each group contains several blocks for each index
position in the cache. A block of data from main memory can go into any group
at its proper index position. A two-way associative cache is a compromise
between the extremes of fully associative and direct mapping cache organiza-
tions that takes advantage of the features of both.

unit record device A device such as a card reader or line printer.

unwind the call stack To remove call frames from the stack by tracing back
through nested procedure calls using the current contents of the FP register
and the FP register contents stored on the stack for each call frame.

urgent interrupt An interrupt received on interrupt priority levels 24 through
31. These can be generated only by the processor for the intervai clock, serious
errors, and power fail.
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user mode The least privileged processor access mode (mode 3). User
processes and the Run Time Library procedures run in user mode.

user privileges The privileges granted a user by the system manager. See
process privileges.

value return registers The general registers R0 and R1 used by convention
to return function values. These registers are not preserved by any called
procedures. They are available as temporary registers to any called procedure.
All other registers (R2, R3,..., R11, AP, FP, SP, PC) are preserved across pro-
cedure calls.

variable-length bit field A set of zero to 32 contiguous bits located arbitrarily
with respect to byte boundaries. A variable bit field is specified by four attrib-
utes: 1) the address A of a byte, 2) the bit position P of the starting location of
the bit field with respect to bit 0 of the byte at address A, 3) the size, in bits, of
the bit field, and 4) whether the field is signed or unsigned.

vector 1. A interrupt or exception vector is a storage location known to the
system that contains the starting address of a procedure to be executed when a
given interrupt or exception occurs. The system defines separate vectors for
each interrupting device controller and for classes of exceptions. Each system
vector is a longword. 2. For the purposes of exception handling, users can
declare up to two software exception vectors (primary and secondary) for each
of the four access modes. Each vector contains the address of a condition
handiler. 3. A one-dimensional array.

virtual address A 32-bit integer identifying a byte “location” in virtual ad-
dress space. The memory management hardware translates a virtual address
to a physical address. The term virtual address may also refer to the address
used to identify a virtual block on a mass storage device.

virtual address space The set of all possible virtual addresses that an image
executing in the context of a process can use to identify the location of an
instruction or data. The virtual address space seen by the programmer is a
linear array of 4,294,967,296 (2*°) byte addresses.

virtual memory The set of storage locations in physical memory and on disk
that are referred to by virtual addresses. From the programmer’s viewpoint, the
secondary storage locations appear to be locations in physical memory. The
size of virtual memory in any system depends on the amount of physical mem-
ory available and the amount of disk storage used for non-resident virtual
memory.

virtual page number The virtual address of a page of virtual memory.

word Two contiguous bytes (16 bits) starting on an addressable byte bound-
ary. Bits are numbered from the right, 0 through 15. A word is identified by the
address of the byte containing bit 0. When interpreted arithmetically, a word is
a two’s complement integer with significance increasing from bit 0 to bit 14. If
interpreted as a signed integer, bit 15 is the sign bit. The value of the integer is
in the range -32768 to 32767. When interpreted as an unsigned integer,
significance increases from bit 0 through bit 15 and the value of the unsigned
integer is in the range 0 through 65535.

write access type The specified operand of an instruction or procedure is
only written during that instruction’s or procedure’s execution.

write allocate A cache management technique in which cache is allocated on
a write miss as well as on the usual read miss.
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write back A cache management technique in which data from a write opera-
tion to cache is copied into main memory only when the data in cache must be
overwritten. This results in temporary inconsistencies between cache and main
memory. Contrast with write through.

write through A cache management technique in which data from a write
operation is copied in both cache and main memory. Cache and main memory
data are always consistent. Contrast with write back.
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Abort, 12-1,12

Absolute indexed mode, 5-24

Absolute mode, 5-28

Access control violation fault, 12-6

Access mode, 1-3,12-3

Access mode memory, 12-3

Access time, 2-7

Adaptors, 2-11

Add atigned word interlocked instruction, 6-21
Add compare and branch instruction, 8-10
Add instruction, 6-18

Add one and branch instruction, 8-10

Add packed instruction, 10-6

Add with carry instruction, 6-20

Address translation buffer, 2-7

Addressing modes, 2-5

Adjust input length,edit instruction, 11-17
Alignment,stack, 12-12

AP-Argument pointer register in CALL standard, C-7
Argument count in CALL standard, C-2
Argument data types in CALL standard, C-8
Argument descriptor, C-9

Argument list in CALL standard, C-3
Argument missing in CALL standard, C-3
Argument pointer, 3-5

Array descriptor, C-10

Architecture, 1-1

Arithmetic shift and round packed instruction, 10-22
Arithmetic shift instruction, 6-37

Arithmetic traps, 12-4

ASCII string data type, C-9

Autodecrement mode, 5-12

Autoincrement deferred addressing, 5-11
Autoincrement deferred indexing, 5-23
Autoincrement mode addressing, 5-9
Availability, 1-3

AST-Asynchronous system trap, 12-14
ASTLVL-Asynchronous system trap level, 12-13

Bad block, 1-3, 2-14

Balance set, 1-2

Base operand specifier, 5-20
Bit clear instruction, 6-35

Bit clear PSW instruction, 7-5
Bit data type, C-8
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Bit field, 2-4
Bit set instruction, 6-34
Bit set PSW instruction, 7-5
Bit test instruction, 6-33
Blank backwards when zero, edit instruction, 11-13
Boolean values, C-5
Branch-addressing, 5-32
Branch instruction, 8-1
Branch less than or equal unsigned instruction, 8-2
Branch on bit and modify without interlock instruction, 8-6
Branch on bit interlocked instruction, 8-7
Branch on bit instruction, 8-5
Branch on carry clear instruction, 8-2
Branch on carry set instruction, 8-2
Branch on (condition) instruction, 8-2
Branch on equal signed instruction, 8-2
Branch on equal unsigned instruction, 8-2
Branch on greater than or equal signed instruction, 8-2
Branch on greater than or equal unsigned instruction, 8-2
Branch on greater than unsigned instruction, 8-2
Branch on greater than signed instruction, 8-2
Branch on less than or equal signed instruction, 8-2
Branch on less than signed instruction, 8-2
Branch on less than unsigned instruction, 8-2
Branch on low bit instruction, 8-8
Branch on not equal signed instruction, 8-2
Branch on not equal unsigned instruction, 8-2
Branch on overflow clear instruction, 8-2
Branch on overflow set instruction, 8-2
Branch to subroutine instruction, 8-16
BPT-break point fault, 12-15
Breakpoint fault, 12-8
Buffered data paths, 2-11
Byte, 3-2, 4-2
Byte integer data type, C-8
Byte logical data type, C-8
Byte or word displacement, 5-5
Cache, 2-3
CALL, 1-3,2-1,C-1
CALL standard
Argument data types, C-8
Local storage, C-8
Preserved registers, C-7
Temporary registers, C-7
Call procedure instruction, general argument list, 8-20
Call procedure instruction, stack argument list, 8-22
CALLG-Call procedure with stack argument list
in CALL standard, C-2

Index-2



Calling sequence standard, C-2
CALLS-Call procedure with stack argument list
in CALL standard, C-2
Carry condition code, 12-2
Case instruction, 8-14
Change mode instruction, 13-2
Change mode to kernel, 13-2
Change mode to supervisor, 13-2
Change mode to user, 13-2
Character, 4-7
Character string data type, 4-5
Clear instruction, 6-9
Clocks, 2-7
Clustering, 1-2
Compare characters instruction, 9-8
Compare field instruction, 7-20
Compare instruction, 6-15
Compare packed instruction, 10-5
Compatibility mode, 1-1, 2-3,12-4
Compatibility mode exception, 12-8
Compatibility (PDP-11), longword data format, 4-3
Complex data type, C-9
C-condition code, 3-9,12-2
Condition code, 3-8,12-3
Condition value in CALL standard, C-5
Condition vector, C-16
Console, 1-4
Console subsystem, 2-12
Context process, 12-1,2,11
Context switching, 2-4
Context system wide, 12-1,11
Convert leading separate numeric to packed instruction, 10-21
Convert long to packed instruction, 10-13
Convert packed to leading separate numeric instruction, 10-19
Convert packed to long instruction, 10-14
Convert packed to trailing numeric instruction, 10-15
Convert trailing numeric to packed instuction, 10-17
CRC, 1-3
Current access mode, 12-4
Current mode, 3-10
Cyclic redunancy check instruction, 9-13

Data type
Character string, 4-5
Floating, 4-3
Integer, 4-2,4
Leading separate string, 4-7
Numeric string, 4-8
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Packed decimal string, 4-8
String, 4-7,8
Trailing numeric string, 4-5
Variable length bit field, 4-4
Data types, 4-1
Data types in CALL standard, C-8
Decimal overflow, 12-3
Decimal overflow enable, 12-3
Decimal string data type
Leading separate numeric, 4-7
packed, 4-8
trailing numeric, 4-5
Decimal string divide by zero trap, 12-5
Decimal string overflow trap, 12-6
Decrement instruction, 6-24
%DESCR-CALL by descriptor intrinsic function, C-4
Descriptor in CALL standard, C-9
Descriptor prototype, C-10
Diagnostic console, 2-14
Direct data path, 2-11
Directive call, C-1
Dispatch, 13-3
Displacement deferred indexed addressing, 5-26
Displacement deferred mode addressing, 5-19
Displacement index mode, 5-25
Displacement mode addressing, 5-17
Distributed arbitration, 2-1
Divide by zero trap, 12-5
Divide instruction, 6-30
Divide packed instruction, 10-8
Double data type, C-9
Double floating, 4-4
Double precision Complex data type, C-9
Double precision Floating data type, C-9
DV, 3-9
Dynamic string descriptor, C-10

ECC(error correcting code), 2-9

ECC MOS Memory, 2-9

Edit packed to character string instruction, 11-2
EMOD, 2-8

End edit, edit instruction, 11-18

End floating sign, edit instruction, 11-12
Error checking, 1-3

Error log file, 2-15

Error logging, 1-3

Error severity code, C-6

Establish a handler, C-16
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Exception, 12-1

Exception condition, 12-1

Exceptions detected during operand reference, 12-6
Exceptions detected during the operation, 12-4
Exceptions occuring as the consequence of an instruction, 12-7
Exception vector, C-16

“Excess 128" notation, 5-15

Exclusive or instruction, 6-36

EXP field, 5-14,15

Extended divide instruction, 6-32

Extended multiply instruction, 6-28

Extended multiply and integerize instruction, 6-29
External call standard, C-1

Extract field instruction, 7-18

Fail return in CALL standard, C-5
FALSE Boolean value, C-4

Fault, 12-1,2

Field, 4-4

Field position (offset), 5-4

Find first instruction, 7-16

First part done, 12-3

Fixed string descriptor, C-10

Float sign, edit instruction, 11-11
Floating, 4-3

Floating data type, 4-3, C-9

Floating divide by zero trap, 12-5
Floating overflow trap, 12-5

Floating point accelerator, 2-8

Floating point accuaracy, 6-4

Floating point literals, 5-14

Floating underflow, 12-3

Floating underflow enable, 12-3

Floating underflow trap, 12-5
FP-Current frame pointer register in CALL standard, C-7
FP-Frame pointer, 3-5

FPD, 3-10

FRAC field, 5-15

Function value in CALL standard, C-4,12
Functions intrinsic in CALL standard, C-4
FU, 3-9

General mode addressing, 5-5

General registers, 2-6, 3-3
General registers in CALL standard, C-7
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HALT-Halt, 12-16

Halt Processor, 12-11,12,16, 13-8
Hard-core diagnostics, 2-12
Hierarchical access modes, 1-3, 2-8
High-level language constructs, 2-5

Immediate mode, 5-27

Incarnation descriptor, C-12,13
Increment instruction, 6-16

Index instruction, 7-7

Index mode addressing, 5-20
Indexed register, 5-20

Input/Output subsystems, 2-10
Insert character, edit instruction, 11-7
Insert entry in queue instruction, 7-12
Insert field instruction, 7-22
Instruction buffer, 2-7

Instruction set, 1-1

Integer data type, 4-2,4

Integer divide by zero trap, 12-5
Integer overflow, 12-3

Integer overflow enable, 12-3

Integer overflow trap, 12-5
Interleaving, 2-9

Internal register summary table, 13-8
Interrupt, 12-1

Interrupt priority level, 12-3

Interrupt stack, 12-3

Interrupt stack not valid halt, 12-11
Interrupt priority level, 12-3

Interrupt stack in use, 12-3,12
Intrinsic functions in CALL standard, C-4
IPL, 3-9 12-3

IS,3-1012-3

v, 3-912-3

Jump instruction, 8-4
Jump to subroutine instruction, 8-16

Kernel stack not valid abort, 12-11

Label descriptor, C-13

Label incarnation descriptor, C-13
Leading separate numeric string, 4-7
LDPCTX-Load process context, 13-10
Literal mode addressing, 5-13

Load register, edit instruction, 11-15
Local storage in CALL standard, C-8
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Locate character instruction, 9-11
Locked, 1-2

Longword, 3-2

Longword, PDP-11 compatibility, 4-2
Longword integer data type, C-9
Longword logical data type, C-8
Lookahead, 2-7

LSI-11, 1-1,5, 2-3,14

Machine check exception, 12-11
Maintainability, 1-3

Massbus, 1-4

Massbus adaptor, 2-1,11

Match character instruction, 9-12
Memory, 3-1

Memory access mode, 12-3

Memory battery backup, 2-10

Memory cache, 2-7

Memory controlier, 2-9

Memory management, 1-2, 2-7, 3-2,
MFPR-Move from processor register, 13-7
Missing argument in CALL standard, C-3
Mode changing instructions, 13-2

Move address instruction, 7-6

Move character instruction, 9-2

Move complemented instruction, 6-11
Move from PSL instruction, 7-4

Move instruction, 6-7

Move negated instruction, 6-10

Move packed instruction, 10-3

Move translated characters instruction, 9-4
Move translated until character instruction, 9-6
Move zero extended instruction, 6-14
MTPR-Move to processor register, 13-7
Multiply active signals, C-21

Multiply instruction, 6-26

Multiply packed instruction, 10-7

N-condition code, 12-2

N-negative condition code, 3-8,12-2
Naturally aligned, 3-2

Native mode, 1-1, 2-3

Nibble, 4-9

Numeric string data type, C-9

On-line diagnostics, 1-4,14

On-line error logging, 2-15
Opcode reserved to customers fault, 12-8

Index-7



Opcode reserved to DIGITAL fault, 12-7
Operand specifier, 5-5

Operand type, 5-4

Overflow, 12-3,5,6

Packaging, 2-14

Packed decimal, 2-4

Packed decimal string, 4-8

Packed decimal string data type, C-9
Page, 3-3

Pages, 1-2

Page Table Entry (PTE), 3-3

Paging, 1-2, 2-8

Parity, 2-3

Parity checking, 2-14

Part done, 12-3

PC-Program counter, 3-4

PC-Program counter register in CALL standard, C-7
PDP-11, 1-1

PDP-11 compatibility longword data format, 4-3
physical address, 3-1

PIPT, 3-4

POLY, 2-8

Polynomial evaluation instruction, 6-39
Pop registers instruction, 7-3

POPT, 3-4

Push address instruction, 7-6

Push registers instruction, 7-2
Pre-fetching, 2-11,12

Preserved registers in CALL standard, C-7
Previous access mode, 12-3

Priority level, 12-3

Probe accessability, 13-4

PROBER-Probe Read Accessibility, 13-4
PROBEW-Probe Write Accessibility, 13-4
Procedure CALL, C-1

Procedure descriptor, C-12

Procedure incarnation descriptor, C-12
Process, 1-2

Process space, 3-1

Processor internal register summary table, 13-8
Processor status longword (PSL), 3-1,8, 12-2
Processor status word, 3-8,12-2,7
Programmabile real-time clock, 1-3,7
Previcus access mode, 12-3

Previous mode, 3-10

Protection, 1-3

Protocol checking, 2-3

Index-8



Push long instruction, 6-8
PO space, 3-1
P1 space, 3-1

Quadword, 3-2,4-3

Quadword integer data type, C-9
Quadword logical data type, C-8

Queue, insert entry instruction, 7-12
Queue manipulation, 2-4

Queue, remove entry from instruction, 7-14

RAMP, 1-3,4,

%REF-CALL by reference intrinsic function, C-4
Register deferred index addressing, 5-8

Register deferred mode, 5-8

Register mode, 5-5

Register summary table, 13-8

Register usage, C-7

Registers, signaller’s, C-21

Relative deferred mode, 5-31

Relative mode, 5-30

Reliability, 1-3

Remote diagnosis, 2-14

REI-Return from exception or interrupt, 12-13
Remove entry from queue instruction, 7-14
Replace sign when minus zero, edit instruction, 11-14
Reserved addressing mode fault, 12-6

Reserved operand exception, 12-7

Restart, 1-4, 2-8

Return from procedure instruction, 8-24

Return from subroutine instruction, 8-17

Request buffer, 2-9

Revert condition handler, C-16

RO-Function value register in CALL standard, C-7
R1-Function value register in CALL standard, C-7
Rotate long instruction, 6-38

Saved PC, 12-1,2,5,7,8,9

Saved PSL, 12-2,5,8,9,10
Saved TP, 12-8,9,10

SBI, 2-11,15

SBI physical address space, 2-1
Scalar descriptor, C-10

Scan characters instruction, 9-10
Scatter/gather, 2-11
Severe-error severity code, C-6
Severity code, C-6

Sharing, 1-3,
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Short literals, 5-14
Signal routine, C-16
Signaller’s registers, C-21
Single-precision floating data type, C-9
Significance, edit instruction, 11-16
Silo data buffer, 2-11
Skip character instruction, 9-11
SP-Stack pointer, 3-4
SP-Stack pointer register in CALL standard, C-7
Span characters instruction, 9-10
Stack, alignment, 12-12
Stack, residency, 12-11
Stack, switch, 12-11,13
Stack unwinding, C-7
Stack usage in CALL standard, C-8
Stacks, 2-6, 3-5
Status return value in CALL standard, C-6
Stop routine, C-16
Store fill, edit instruction, 11-9
Store sign, edit instruction, 11-8
String data type

character, 4-5

leading separate, 4-7

packed decimal, 4-8

trailing numeric, 4-5
String descriptor, C-10
Subscript range trap, 12-6
Subtract instruction, 6-22
Subtract one and branch instruction, 8-13
Subtract packed instruction, 10-6
Subtract with carry instruction, 6-25
Success return in CALL standard, C-5
Success severity code, C-7
SVPCTX-Save process contest, 13-10
Swapping, 1-2, 2-8
Synchronous, 2-1
Synchronous backplane interconnect (SBI), 2-1
System page table (SPT), 3-4
System space, 3-1

Temporary registers in CALL standard, C-7
Test instruction, 6-17

Time-of-year clock, 1-3, 2-8

T-,3-9

T-Trace enable, 12-2

TP-, 3-10

TP-Trace pending, 12-4

Trace, 12-2,8
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Trace pending, 12-4

Trailing numeric string, 4-5
Translation buffer, 3-4
Translation not valid fault, 12-6
Trap, i2-1

Trap enable flags, 3-9

Traps, arithmetic, 12-4

True Boolean vaiue, C-5

UNIBUS, 1-5, 2-11
UNIBUS adaptor, 2-1,11
Unsigned integer, 4-4
Unwind routine, C-20

%VAL-CALL by value intrinsic function, C-4
Variable field, 5-4

Variable length, 2-5

Variable length bit fields, 1-1, 4-4
Varying string descriptor, C-10
VAX, 1-1

VAX-11, 1-1

VAX/VMS, 2-8,12

VAX/VMS virtual memory, 1-1,4
V-condition code, 3-8, 12-2
V-overflow condition code, 12-2
Vector, 12-8

Vector, condition, C-16

Virtual address space, 1-1, 3-4
Virtual memory, 2-8

Warning severity code, C-7

Word,3-2, 4-2

Word integer data type, C-8

Word logical data type, C-8

Working set, 1-2

Writable diagnostic control store (WDSC), 2-8
Write buffer, 2-7

Write through, 2-7

Write verify checking, 2-14

XFC-Extended function call, 13-6
Z-condition code, 12-2

Z-Zero condition code, 3-8,12-2
Zoned numeric string data tvpe, C-9
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VAX-11/780 ARCHITECTURE HANDBOOK READER'S COMMENTS
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