
A Historical Look at the VAX: The Economics of 
Microprocessors [Part I] 

By: John Mashey (jmashey@realworldtech.com) 
Updated: 01-24-2006 

 
Editor’s Note: This series of articles first appeared last summer in the comp.arch 
newsgroup, in a series of posts by John Mashey. Since then, it has been updated, edited 
and enriched with additional material and graphs by David Kanter, all with permission 
of the author.  

Introduction 

The VAX was an orthogonal, 32-bit CISC instruction set architecture and an associated 
family of CPUs and systems, produced by the Digital Equipment Corporation. The VAX 
is considered to be the quintessential CISC architecture and VAX systems (often called 
VAXen) typically used an operating system known as VMS and were shipped from 1977 
till 1992, when the line was discontinued in favor the Alpha. In the wake of the death of 
the Alpha architecture, there have been many discussions regarding the feasibility of 
cheap, fast and timely VAXen in the early 1990's. Many have asserted that if DEC had 
continued with the VAX, rather than transitioning to the Alpha that the company and its 
products would be in better shape today. Unfortunately, most of this discussion is filled 
with fantasies about what could have been; the issue is not just what was technically 
feasible, but what was cost-competitive and time-to-market competitive.    

This series of articles will examine the issues confronting DEC and the VAX architecture 
in the early 1990's. The first part covers some of the economics of systems and 
microprocessors. The second part in this series will address the competitive challenges 
that DEC faced around the time of the Alpha. The third and last part will compare the 
instruction set difficulties facing out-of-order VAX, x86 and s/360 microprocessors and 
bring everything together.  

The Design Cost of Microprocessors 

Suppose it costs $50,000,000 to design a chip and get into to production.  The amortized 
cost per chip for engineering versus total unit volume is shown below in Figure 1.  



 
Figure 1 – Hypothetical Development Costs per CPU  

Alternatively, if you can sell 5,000,000 chips, then you could spend $500,000,000 on 
development, and still only have an engineering cost per chip of $100. It is easy to see 
that as a result of these economics, high volume designs achieve high performance with 
relative ease. Additionally, higher production at a fab increases the quality of silicon, 
further improving the performance of a high volume design.  

To put this in perspective, I have included the MicroVAX-II and IBM PC volumes over 
the periods 1985-1987. Under this hypothetical model that assumes equal development 
costs, the difference in per unit R&D costs is roughly two and a half orders of magnitude.  

x86s Are Fast Because They Have Volume 

As a result of the economics outlined above, x86s tend to have a very distinct advantage 
against other MPU families. Anne & Lynn Wheeler recently pointed out in comp.arch 
that VAX unit volumes have traditionally been quite low. The MicroVAX II, a very 
successful product, shipped 65,000 units over 1985-1987; by comparison over 1985-
1987, there was roughly 14,000,000 IBM PCs and clone systems sold. Intel’s large x86 



volumes mean that they can spend more time and effort optimizing their CPUs, and 
probably still have lower average costs.  

If the unit volumes are inherently low, you have to get profit based on *system* value 
that yields unusually high margins, so that the system profit essentially subsidizes the use 
of such chips. This strategy works quite well for a system vendor when the market 
dynamics and customer switching costs allow high margins, i.e., IBM mainframes to this 
day, and VAXen in the 1980s. The first MIPS were designed using 2 VAX 11/780s, plus 
(later) an 8600, plus some Apollos; the VAXen seemed expensive, but they were what we 
needed, so we paid.  

Systems Companies 

Mainframes and minicomputer systems companies thrived when the design style was to 
integrate a large number of lower-density components, with serious value-added in the 
design of CPUs from such components.  For an example of this, look at a VAX 11/780 
set of boards.  

As microprocessors came in, and became competitive, systems companies struggled to 
adapt to the change in economics, and to maintain upward compatibility.  Most systems 
companies had real problems with this.  There were pervasive internal wars, especially in 
multi-division companies. Each faction would espouse one of the following strategies:  

• We can do this ourselves, especially with new ECL (a faster, hotter and more 
expensive circuit design style) or even GaAs (Gallium Arsenide, a faster, more 
expensive and fragile semiconductor material). This view was common among 
those who worked on supercomputers, mainframes and minicomputers chasing 
mainframes.  

• We can build CMOS microprocessors that are almost as fast as ECL, much 
cheaper and with better features, functions, and performance than commodity 
products. IBM, DEC, HP and later Sun would all pursue this strategy.  

• We should put our money in system design and software, and buy 
microprocessors. Apollo, Convergent, Sun, SGI, Sequent, and various divisions of 
older companies tried this approach.  

Of course, later there came:  

• We should buy microprocessors, add value in systems design, and use Microsoft. 
 This lead to IBM’s PC division, Compaq, etc.  

• We should minimize engineering costs and focus on distribution i.e. Dell.  

Many companies pursued one strategy too many. Most of the minicomputer vendors went 
out of business. IBM, DEC, and HP were among the few that actually had the expertise to 
do CMOS microprocessor technology, albeit not without internal wars.  I was involved in 
dozens of these wars. One of the most amusing was when IBM friends asked me to come 
and participate in a mostly IBM-internal conference at T.J. Watson, circa 1992. What 



they really wanted, it turned out, was for somebody outside IBM politics (i.e., "safe") to 
wave a red flag in front of the ECL mainframe folks, by showing a working 100Mhz 64-
bit R4000.  

Semiconductors, Systems and Fabs 

In the 1980s, if you were a semiconductor company, you owned one or more fabs, which 
were expensive at the time, but nothing like they are now. You designed chips that either 
had huge volumes, high ASPs (Average Selling Prices), or ideally, both.  

Volume production provides your fab engineers with process experience and improves 
the yields of chips per wafer. Volume also amortizes both the fab cost and the design 
cost.  Unfortunately, systems vendors with only one fab to produce chips face a nasty 
problem. If the fab is not full, you have a lot of capital tied up that is not being optimally 
used and this will make management upset. To illustrate this point, Bob Colwell, the 
Chief Architect of the Pentium Pro, said in a lecture:  

"At some point, they [process people] are ready to start running production silicon 
through their new process. At that very day, you had better have a chip for them to start 
cranking through their fab, because otherwise, Craig Barrett himself will call you on the 
phone and express his unhappiness with you and his predictions for your career at that 
point. It's really really expensive if the process is ready and the chip is not."  

On the other hand, if the fab is full, you are capacity constrained and unable to fully 
satisfy your potential customers, which will cause the same problems, except that the 
sales people will be upset too.  

When you build a fab, first you run high-value wafers. Once the fab has aged, and is no 
longer state-of-the-art, you can run parts that do not need the most advanced technology. 
For example, Intel has many older 200mm plants that once produced cutting edge MPUs, 
they are now used to create chipsets for MPUs made in newer fabs.  

In the 1980s, if you wanted to have access to leading-edge VLSI technology for your own 
designs, either:  

• You were a semiconductor company, i.e., the era of "Only real men have fabs”. 
Motorola, Intel and AMD all fell into this category.  

• You were a systems company big enough to afford the fab treadmill. For 
example, IBM always had great process technology.  DEC usually had 1-2 CMOS 
fabs (more on that later) and HP had at least 1, but sometimes there was conflict 
between the  priorities for high-speed CPU design and high-volume lower-cost 
parts. Fujitsu, NEC, etc. were also chip and systems companies. In any case, you 
must carefully amortize the fab costs.  

• You were a fabless systems company that could convince a chip company to 
partner with you, where your designs were built in their fabs, and either you had 
enough volume alone, or (better) they could sell the chips to a large audience of 



others. For example, Sun and TI have had an arrangement like this, which still 
exists.  

• You were a small systems/chip company (MIPS) that was convincing various 
other systems companies and embedded designers to use your chips. A few chip 
partners would make long-term deals to produce the chips, sell most of them to 
other companies, and as desired, have licenses to make their own variations of the 
designs.  The motivation was that a chip salesperson could get in the door with 
CPUs, and be able to sell many other parts, like SRAMs (this worked for IDT 
with MIPS and Cypress with SPARC), or be able to do ASIC versions (this 
worked for LSI Logic).  

In MIPS case, the first few years, the accessible partners were small to medium chip 
vendors, and it was only in 1988 that we were able to (almost) do a deal with Motorola 
and were able to do ones with NEC and Toshiba, i.e., high-volume vendors with multiple 
fabs.  

Why wouldn't a company like Sun just go to a foundry with its designs, or in MIPS case, 
why wouldn't it just be a normal fabless semiconductor vendor? The answer is that 
accessible foundries, geared to producing outside designs, with state-of-the-art fabs didn't 
really exist. TSMC was founded in 1987, and it took a long time for it to become a truly 
attractive offering.  

To Fab or Not To Fab 

If you own the process, you can alter it somewhat to fit what you are building. If your 
engineers are close with the fab process people, and you have clever circuit designers, 
you can do all sorts of things to get higher clock rates.  Otherwise, you use the factory 
design rules or maybe you can negotiate a little with them. In any case, there is a tradeoff 
between committing the capital to own a fab and achieving higher clock rates, or 
preserving your capital, not owning the fab, and losing the ability to produce highly tuned 
designs. To give a rough notion of the trade-offs, in the same process size, the speed of a 
process (measured in FO4 latency) can vary by a factor of 3, between the best processes 
at foundries like TSMC or UMC, and fabbed manufacturers like Intel or IBM.  

An Overview of Systems Companies 

There are two major approaches to system and CPU design, the proprietary approach:  

• We're designing these chips for our systems, running our OSes and compilers. We 
might sell chips to a few close partners for strategic reasons.  

and the merchant approach:  

• We expect to use these chips in our systems, but we expect that large numbers 
will be used in other systems, with other software. We will include features that 
will never be used in our own systems. We will invest in design documentation, 



appropriate technical support, sampling support, debugging support, software 
licensing, etc. to enable others to be successful.  

IBM still has fabs, but of course IBM Microelectronics does foundry work for others to 
amortize the fab cost.  POWER was really geared to RS/6000; PPC made various 
changes to allow wider external use, and IBM really pushed to achieve high volumes.  

Sun never had a fab and did a lot of industry campaigning to spread SPARC. However, 
outside of a few close partners, most of the sales of SPARC chips went to Sun.  

HP has sold PA-RISC chips to a few close partners, but in general, never was set up in 
the business of selling microprocessors.  

MIPS started to do chips, but had enough work to do on systems that it needed to build 
systems. Going back to the volume issues addressed earlier, MIPS needed systems 
revenue, since there was not enough volume to make money on chips alone.  This is a 
classic example of how a systems business can work at low volumes, whereas the chip 
business does not.  

DEC was somewhat naturally positioned as a systems vendor, based on its original 
business (modules). DEC never really had a merchant chip mindset, although the Alpha, 
of course, was forced to try to do that to achieve sustainable volume. Somebody 
suggested they should have been selling VAX chips, and that may be so; however it is 
really hard to make that sort of thing happen. It requires serious investment to enable 
other customers to be successful, it requires the right mindset, and it is really hard to 
make that work in a big systems company.  

As a hypothetical example to illustrate the stark difference between the two business 
models, suppose I am DEC and I sell VAX chips to a third party. What OS will they run? 
VMS; OK we will license that.  What sort of systems do they want to build? Lower-cost 
minicomputers to sell to the VAX/VMS installed base…actually, it looks like we're out 
of VAX chips this quarter, sorry.  

Just in case you don’t think this a realistic example, consider this example from the real 
world. At one point, Sun convinced Solbourne to use SPARC, and Solbourne designed 
their own CPUs and built SMPs. If a Sun account wanted an SMP and somebody like 
SGI was knocking at the door, Sun would point at Solbourne to keep SPARC in place. 
But if Solbourne was infringing on a Sun sale, it was not so friendly – I once got a copy 
of a Sun memo to the sales force about how to clobber Solbourne.  

It is very difficult for big systems vendors to sell their proprietary CPUs. The only option 
that makes business sense is to find other, non-competitive or complementary vendors 
that would be interested in using such CPUs for their own systems. The most successful 
example of this sort of partnership is Apple’s usage of IBM’s PPC architecture. Probably 
the most interesting case for the Alpha was its use in the Cray T3 systems, fine 
supercomputers, but not exactly high-volume.  



Chip Design and Economics 

Most people probably know the old project management adage: "features, cost, schedule: 
you pick two, I'll tell you the other."  

In CPU design, there are currently several alternatives, arranged in order from cheapest to 
most expensive to design they are:  

• FPGA  
• Structured ASIC  
• ASIC, full synthesized logic  
• Custom, with some synthesized and some custom logic or layout design and 

maybe with some special circuit design.  

Better tools help, but they are expensive, especially because people pushing the cutting 
edge tend to need to build some of their own. An FPGA will be big, use more power, and 
run at lower clock rate than the alternatives. The more customized a chip is, the faster it 
can go, but it either takes more people, or longer to design, and usually both.  

Larger companies, like Intel, sometimes have one design team produce an original device 
using a lot of synthesized logic, and then another team comes right behind them. The 
second team will use the same logic, but tunes the critical paths for higher clock rates, 
shrinks the die using more custom design, works to get higher yields, etc. Put another 
way, if you have enough volume, and good ASPs, you can afford to spend a lot of 
engineering effort to tune designs, enough to overcome ISA problems.  

Acknowledgements 

We would like to take this opportunity to thank several people who have been kind 
enough to provide us with input on this series of articles:  

• Bob Colwell  
• Andy Glew  
• Andy Goldstein  
• Dileep Bhandarkar  
• Sue Skonetski  

We appreciate your input and expertise in your respective areas.  
  

 
  Copyright © 1996-2001, Real World Technologies - All Rights Reserved 



A Historical Look at the VAX: DEC, NVAX, Alpha and 
Competitors [Part II] 

By: John Mashey (jmashey@realworldtech.com) 
Updated: 06-20-2006 

 

A Historical Look at the VAX: DEC, NVAX, Alpha and the Competition 
[Part II] 

Editor’s Note and Introduction:  

This series of articles first appeared last summer in the comp.arch newsgroup, in a series 
of posts by John Mashey. Since then, it has been updated, edited and enriched with 
additional material and graphs by David Kanter, all with permission of the author. John 
Mashey is a well respected operating system developer and computer architect; he has 
worked at Bell Labs, Convergent, MIPS and retired from SGI as VP and Chief Scientist.  

The first article in this series largely dealt with the economics of microprocessors and 
computer systems. In particular, the trade-offs between a fabbed and fabless model were 
discussed, and the incredible benefits of volume for a semiconductor company. This 
second article looks at the competitive position of the VAX during the rise of RISC 
architectures, in the late 1980's and early 1990's.  

DEC (at least some people) understood the importance of VLSI CMOS and that good 
silicon design can have excellent results. DEC had excellent CPU and systems designers, 
software people, and invested in fabs (for better or worse – some of us could never quite 
figure out how they could afford the fabs in the 1990s). They had some superb circuit 
designers, who even impressed some of the best circuit designers I've known.  

However, in the 1980s, they never had more than about 100 VLSI CPU designers, which 
in practice meant that at any one time, they could realistically be doing one brand new 
design, and one shrink or variation. Of course, they were also doing the ECL VAX9000 
mainframe, but that was a whole different organization.  

The problem that DEC faced was that their VAX cash cow was under attack, and they 
simply couldn't figure out how to keep the VAX competitive. This was first seen in the 
technical markets, where PA-RISC, SPARC, and MIPS started out. Eventually, PA-RISC 
migrated to the commercial market and began to pose a threat there as well. I think 
Robert Supnik's foreward in the Digital Technical Journal described this reasonably well.  

As a good head-to-head comparison, NVAX and the Alpha 20164 were built:  

• in same process  

http://www.realworldtech.com/page.cfm?ArticleID=RWT012406203308
http://www.hpl.hp.com/hpjournal/dtj/vol4num4/foreword.htm


• about the same time  
• with the same design tools  
• with similar-sized teams  

Moreover, the NVAX team had already implemented pipelined CMOS VAXen before, 
and had a long history of diagnostics, test programs, behavioral statistics, etc. while the 
Alpha team had far fewer resources and experience to call upon. So the extent that there 
was an advantage, it was certainly in favor of the NVAX team.  

As a result of the ISA differences between VAX and Alpha, the NVAX team had to 
spend a lot more effort on micro-architecture, whereas the Alpha team could spend that 
effort on aggressive implementation. The NVAX/NVAX+ was only able to hit 80-
90MHz, while the 21064 was running at 200MHz and was superscalar to boot. The end 
result was that the 21064 vastly outperformed the NVAX/NVAX+.  

The Competition's Performance Vexes DEC 

The prior example of the NVAX/NVAX+ and the Alpha 21064 serves to illustrate the 
implementation advantages of a clean RISC architecture. Despite similar resources, 
which if anything favored the NVAX/NVAX+, the Alpha 21064 performed roughly 3x 
better in SPECint89 and 5x better on SPECfp89. RISC designs were much simpler which 
lead to substantial performance benefits, consequently this created a difficult competitive 
environment for the VAX. The table below includes quite a few systems from the early 
1990’s, most of which were released around 1992 (give or take a year) and several 
systems from mid 1990's as well.  



 
Table 1 – Performance and Characteristics of VAX and Competing Systems 

I started with SPEC89 numbers for VAXen, because I cannot find SPEC92 numbers. 
Then I made a gross estimate of the equivalent SPEC92 scores, so that all of the 
machines are on the same scale, noting of course that benchmarks degrade over time due 
to compiler-cracking. The asterisked SPECfp89 scores include the effect of the 
heightened matrix300 numbers (NB: matrix300 was a subtest that certain compilers were 
able to ‘crack’, producing what some felt were unrealistic performance gains, this also 
happened to 179.art in SPECcpu2000). I used the highest NVAX numbers I had handy, 
from my old paper SPEC Newsletters. I am ignoring costs, and the dates in the table must 
be taken with lots of salt, for numerous reasons, and as always SPECint and SPECfp are 
not everything (spoken as an old OS person).  

The NVAX shipped in 4Q91, and the NVAX+ in 1992. The first R4000s shipped in 
systems in 1Q92, so these are contemporaneous, as they are with 486DX and 486DX2.  

The NVAX+ performs at about 75-80% of a MIPS R4000 on integer and FP here, despite 
using a better process (0.75um, 3-metal versus 1.0um, 2-metal), a larger die (237mm2 
versus 184mm2), and being 32-bit rather than 64-bit. As a side note, it is somewhat an 
accident of history and business arrangements that the R4000 was done in 2-metal. The 
original plan called for a 2-issue superscalar MPU, but the 2-metal process forced the 
designers to opt for a super pipelined, 1-issue instead. As a result, the R4000/R4400 often 
had lower SPECfp numbers than the contemporaneous HP and IBM RISCs. To 



compensate, it sometimes had better integer performance, and sometimes could afford 
bigger L2 caches, because the R4000/R4400s were relatively small.  

In any case, with respect to SPEC FP performance, in late 1992, the fastest NVAX+ was 
outperformed by IBM, HP, MIPS, Sun (maybe), and Alpha (by 3-4X). The NVAX+ was 
3X faster than a 66MHz 486DX2. In SPECint, in late 1992, the NVAX was 
outperformed, generally by the RISCs...but worse, there wasn't much daylight between it 
and a 66MHZ 486DX2, or even a 50MHz 486DX.  

The real problem of course (not just for the VAX, but for everyone), was the last entry in 
Table 1. Intel had the resources and volume to "pipeline" major design teams (Santa 
Clara and Portland) plus variants and shrinks, and there was an incredible proliferation in 
these years. Hence it is also instructive to compare the NVAX+ with Intel's entries, which 
are found in the right part of the table.  

Suppose you were a VAX customer in 1992. If you were using VAX/VMS for:  

• Commercial application, then you were committed to VMS for a long time.  
• Technical applications (FP intensive), then RISC competitors keep coming by 

with their rather attractive numbers  

If you were using Ultrix (Digital’s UNIX for VAX) for:  

• FP applications, then the RISC competitors were looking pretty attractive  
• Integer applications, not only are the RISC competitors looking good, but Intel 

was getting close to parity on performance  

Could DEC Have Done it? 

I'm not going to comment on DEC's handling of Alpha, fabs, announcements and 
alternate strategy variations. But this part should make clear that there was real pressure 
on the VAX architecture, from above (in terms of performance) and below (Intel coming 
up).  

One might imagine, that had there been no Alpha, and had everybody at Hudson had kept 
working on VAXen, that they could have gotten a 2-issue superscalar (like the Pentium), 
in 1994. Alternatively, they could have made an out-of-order CPU (like Pentium Pro) in 
1996 perhaps as well as doing the required shrinks and variants.  

From the resources I've heard described, I find it very difficult to believe they could have 
done both a Pentium-class chip and a Pentium Pro-class chip simultaneously (and note, 
world-class design teams do not grow on trees). I could be convinced otherwise, but as 
one of the NVAX designers says, only by "members of the NVAX and Alpha design 
teams, plus Joel Emer", i.e., well-informed people.  



Moreover, technical feasibility is not enough by itself. The real challenges would have 
been sustaining a customer base in face of incredibly strong competitive pressure 
mentioned previously and getting these hypothetical superscalar and out-of-order VAXes 
to market in a timely fashion.  

In Part III, I'll sketch some of the tough issues for implementing the VAX, as best I can. 
In particular, I will note the ISA features that might make things harder for VAX than for 
x86, to do 2 or 4-issue superscalar, or a full blown out-of-order design. In particular, what 
this means is that you can implement a type of microarchitecture, but it gains you more or 
less performance dependent on the ISA and the rest of the microarchitecture. For 
instance, the NVAX design at one point was going to decode 2 specifiers per cycle, but it 
was found to add too much complexity and only get a 2% performance increase.  

  
 

  Copyright © 1996-2001, Real World Technologies - All Rights Reserved 



Robert M. Supnik, 
Corporate Consultant, Vice-President, 
Technical Director, Engineering  

It all started with eight people in a conference room. [1]  

The time was the summer of 1988. Digital Equipment Corporation had just closed the 
best fiscal year in its history, with record revenues and profits. Digital's VAX systems 
were the most widely used timesharing systems in the industry and were the "blue-ribbon 
standard" for mid- range computing. Digital was the second-largest workstation vendor. 
The company had just introduced the VAX 6000 system, its first expandable 
multiprocessor, was developing a true VAX mainframe, and had decided on a rapid thrust 
into RISC workstations to capitalize on that growing market. What could possibly go 
wrong?  

Nonetheless, senior managers and engineers saw trouble ahead. Workstations had 
displaced VAX VMS from its original technical market. Networks of personal computers 
were replacing timesharing. Application investment was moving to standard, high-
volume computers. Microprocessors had surpassed the performance of traditional mid-
range computers and were closing in on mainframes. And advances in RISC technology 
threatened to aggravate all of these trends. Accordingly, the Executive Committee asked 
Engineering to develop a long-term strategy for keeping Digital's systems competitive. 
Engineering convened a task force to study the problem.  

The task force looked at a wide range of potential solutions, from the application of 
advanced pipelining techniques in VAX systems to the deployment of a new architecture. 
A basic constraint was that the proposed solution had to provide strong compatibility 
with current products. After several months of study, the team concluded that only a new 
RISC architecture could meet the stated objective of long-term competitiveness, and that 
only the existing VMS and UNIX environments could meet the stated constraint of strong 
compatibility. Thus, the challenge posed by the task force was to design the most 
competitive RISC systems that would run the current software environments.  

Key groups in Engineering responded to this challenge. A cross-functional team from 
hardware and software defined the basic architecture. Advanced development teams 
began work on the knotty engineering problems: in the semiconductor group, the 
specification and design of a fast microprocessor, and the automatic translation of 
executable binary images; in the operating systems groups, on the porting of ULTRIX 
and of VMS (which was not portable!); and in the compiler group, on superscalar code 
generation. In the fall of 1989, Alpha became an officially sanctioned advanced 
development program.[2] In the summer of 1990, it transitioned to product development.  

From the original core in semiconductors, operating systems, and compilers, work 
expanded throughout Engineering. The server and workstation hardware groups specified 
and started designing a family of systems, from desktop to data center. The networks 



group began porting DECnet, TCP/IP, X.25, LAT, and the many other networking 
products. The layered software group inventoried the existing portfolio of products and 
prioritized the order and importance of delivery. The research group pitched in by 
designing an experimental multiprocessor as a software development testbed.  

In parallel with the engineering work, marketing, sales, and service teams worked closely 
with business partners and customers to shape the deliverables and messages to meet 
external requirements. These teams briefed key customers and partners early in the 
development process and incorporated their advice into the development program. 
Ongoing partner and customer advisory boards provided regular feedback on all aspects 
of the program and helped shape two critical extensions of the original concept: the open 
licensing of Alpha technology; and the porting of Windows NT.  

Taken together, the scope of the Engineering effort, the need for Marketing, Field, and 
Service involvement, and the high degree of customer and business partner participation, 
posed unique management challenges. Rather than organize a large scale hierarchical 
project, the company chose to manage Alpha as a distributed program. A small program 
team used enrollment management practices and strict operational discipline to 
coordinate and inspect activities across the company. This networked approach to 
management gave the program both flexibility and resiliency in the face of rapidly 
changing business and organizational conditions.  

The work of Engineering, Manufacturing, Marketing, Sales, and Service came together in 
November 1992 with the announcement of the Alpha AXP systems family: seven 
systems, three operating systems, six languages, multiple networks, migration tools, open 
licensing of technology, hardware and software partnerships, and more than 2000 
committed applications. Today, Alpha AXP embodies a fundamental repositioning of 
Digital Equipment Corporation to be the technology and solutions leader in twenty-first 
century computing: a company dedicated to meeting customers' needs with the best 
computing, business, and service technology available. The delivery of Alpha AXP 
required the largest engineering program in Digital's history, spanning more than twenty 
Engineering groups worldwide. This issue of the Digital Technical Journal documents 
just a few of the hundreds of projects involved in bringing Alpha to fruition; future issues 
will continue the story.  

1. The Corona Borealis conference room in the LTN1 facility in Littleton, Mass. LTN1 
was chosen because it was the geographic epicenter of the arc of Digital engineering 
facilities on Massachusetts Route 495, the Corona Borealis because it was the only 
conference room with windows.  

2. After going through more than one name change. The original study team was called 
the "RISCy VAX Task Force." The advanced development work was labeled "EVAX." 
When the program was approved, the Executive Committee demanded a neutral code 
name, hence "Alpha."  

 



 


	A Historical Look at the VAX: The Economics of Microprocessors [Part I]
	Introduction
	The Design Cost of Microprocessors
	x86s Are Fast Because They Have Volume
	Systems Companies
	Semiconductors, Systems and Fabs
	To Fab or Not To Fab
	An Overview of Systems Companies
	Chip Design and Economics
	Acknowledgements

	 A Historical Look at the VAX: DEC, NVAX, Alpha and Competitors [Part II]
	A Historical Look at the VAX: DEC, NVAX, Alpha and the Competition [Part II]
	The Competition's Performance Vexes DEC
	Could DEC Have Done it?


