
EY-2217E-SG-0001

Guide to VAX-11/780
System Troubleshooting

FOR INTERNAL USE ONLY

First Printing, November 1985

Copyright © 1985 by Digital Equipment Corporation.
All Rights Reserved

The material in this document is for informational purposes only
and is subject to change without notice; it should not be
construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

Some portions of this manual are copied from other manuals,
microfiche, etc. The reason for this is to provide as much
information as possible in a single, easily cariied manual.

UNIX is a trademark of AT&T.

The following are trademarks of Digital Equipment Corporation:

mnmnama MASSBUS RT
DEC PDP UNIBUS
DECmate P/OS VAX
DECOS Professional VAXstation
DECwriter Rainbow VMS
DIBOL RSTS VT
LSI RSX Work Processor

Contents

Page

Pref ace ... xi

Section Description .. . xiii

Troubleshooting Approach •••••••••••••••••••••..••••••••••••••• xv
Research and Define the Problem .••.••••••••••••••••••• xvi
Venture a Testable Guess ••.••.•••.•••••.•.••••••.••••• xvi
Set-up a Test Case • • • . • • . • • • • • • • • • • • • • • . • • . • • • • • • • • • • • xvii
Predict the Results •••.•••••••.•.•..•••..•••••••.••••• xviii
Conduct the Test Case •••.•••••••••••.•••••••••.••••••• xviii
Evaluate the Definitio~ ••••••.••••••.••.•••••••••••••• xix
Research and Refine the Definition ••••••••••••••.••••• xix
Return Non-Failing Units •.•••.•.•••••.••..•••••••••••• xx
Replace Failing Units •••••••••.•••••••••••.•••••..•••• xx
Repeat Until Problem is Solved ..•.••.••••••..••.•••••• xx

System Log Books • • • • • • • • • • • . • . • • • • • • • . . • • • • • • • • • • • • • • . • • • • • • • • xxi

Sources of Information • • • . • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • . • • • • xxiii

Maintaining Control ••••••••.•.••••••••.•••••••.•.•••.••.•••.•• xxv

Section I. VAX-11/780 Troubleshooting Outline •••••••••••••••••••• 1-1

VAX-11/780 Troubleshooting Basics 1-2

VAX-11/780 System Troubleshooting Tools •.•.•••••...••••••.•••• 1-5

VMS Operating System Crashes or Bugchecks .•.••••.•...•••••.••• 1-6

Machine Checks . • • • • • • • • • . • • • . • . • • • • • • . • • • • • • . • • . • • • • . • 1-9
VAX-11/780 Machine Check Error Logout •••..••.•
VMS Fatal Bugcheck/Machine Check Example ••••••
ESSAA Machine Check Example •••••...•••••••••••
Breakdown of VMS Machine Check Printout ••.•.•.
Getting Started on Machine Checks •••••.•.••...
Machine Check Logout Informatio~ ..••.••.••••••
Summary Parameter Description .••••••••••••••••
Bit Breakdown of Stack entries ••••.••..•...•••
Machine Check Logout Breakdown Flowchart ••••••

Cache Parity Errors ••••..••••.••.••••..•.•••••
Problem Areas if Cache "DATA Par Err" ••••.•
Problem Areas if Cache "TAG Par Err" •.•••••
Disabling CACHE by Backplane Jumpers ••••.••
ID Register #lE ••••.•..•••••....•.....•••••

lll

1-10
1-13
1-14
1-15
1-16
1-17
1-17
1-18
1-22

1-34
1-35
1-36
1-36
1-37

Translation Buffer Parity Errors •••••••.•••...
Problem Areas if TB "TAG Par Err" ••••••••••
Problem Areas if TB "DATA Par Err" •••••••••
ID Reg i st er # 12 •••••.••.••••••..•...•••••••
IO Register #13 •••••.••••.••••...•••••.••.•

Control Store Parity Errors •.••••••••.••••••••
ID Register #0C •••••.•••••••••••••••••.••••
ID Reg i st er # 2 0 . . •••••..•••••••••••••••••••
Voltages to Micro-code Boards •..•.••••••...
M8235 LED Description ••.•••••.••..••••.•.••
CS Bus Groups and CS Bit Breakdown •.••••..•
Chart Showing "Bus CS" Bits to Boards ••••••
Chart Showing "Bus CS" Groups to Boards ••••
Using the Microcode Sync Point ..•••••••••••
Control Store Bit Backplane Pin Layout •••.•

CPU Read Timeouts/Error Confirmation .••••••••••
ID Register #19 •••..••••••••••.••••.•••••.•
ID Register #lA •••••••••••••••.•.••..••••••
Breaking Down Physical Byte Addresses ••.•••
Memory Array Physical Byte Addresses .••••..
NEXUS Physical Byte Addresses •••••••.•••.••
UNIBUS Physical Byte Addresses ••.•..•••••••
RH780 External Reg. Phy. Byte Addresses ••..
RH780 Internal Reg. Phy. Byte Addresses ••••
Physical Byte Address Breakdown Procedure ••
I/O Address Ranges •.•.••..•.••.•.••.•......
Physical Memory Array Address Range •••.••.•
DW780 Register Offsets ••.••..•.••...••••...
RH780 Internal Register Offsets ••.••.•.••••
RH780 MASSBUS (EXTERNAL) Register Offsets ••
Memory Array Address Bit Breakdown ••••••.••
"Timeout Address" ID Reg. Bit Breakdown ••••
Physical "BYTE" Address Space Charts ••••..•
Physical "LONGWORD" Address Space Charts .••
MS780-C/A Longword Address Charts ••.••.••••
MA780-A Longword Address Charts •••.•••••.•.
MS780-E Longword Address Charts .•.•••.•••••

Internally Interleaved •.•.•.•••.••••••
No Internal Interleaving ••.•.•••.••...
Externally Interleaved •••.•.....•.••••

Converting UNIBUS to Longword Addresses •••.
Converting Longword to UNIBUS Addresses .•••
Converting Physical Byte to UNIBUS Addr ••••
Converting UNIBUS to Physical Byte Adar ••••
DW780 UNIBUS Longword Address Chart ••..••••
DW780 UNIBUS Physical Byte Address Chart .••

Read Data Substitute Faults and Aborts •.••.••.
MS780A/C Memory RDS Error Indications .••..•
MS780E Memory RDS Error Indications ••.•...•
MA780 Memory RDS Error Indications •.•.••.••

IV

1-38
1-38
1-39
1-41
1-43

1-45
1-47
1-48
1-49
1-49
1-50
1-51
1-52
1-53
1-54

1-55
1-57
1-60
1-60
1-60
1-60
1-61
1-61
1-6-1
1-62
1-64
1-64
1-65
1-66
1-67
1-68
1-68
1-69
1-77
1-81
1-82
1-83
1-83
1-84
1-85
l-86
1-87
1-88
1-89
1-90
1-91

1-92
1-93
1-93
1-93

Micro-code Not Supposed to Get Here Faults ••••
ID Register # 2 0
Micro-PC Wirelist and Slot Chart •••••••••••

CPU Double Error Halts ••••••••••••••••••••••••••••••.•••.•••••
Double Error Halt Error Information •••••••••.•••••••••
CPU Detected Error VALIDITY CHECKS .•••••••••••••••••••
CPU DBLE-ERR HALT Flowchart •••••••••••••••••••••••••••
VAX-11/780 "ID" Register ERROR Information •••••.••••••
Example of DOUBLE ERROR HALT and Hardware Dump ••••••••

Interrupt Stack Not Valid Halts

Kernel Stack Not Valid Aborts

Other Types of Crashes

VMS Operating System Hangs •••••••••••••••••••••.••••••••••••••

Operating System Functional Problems ••••••••••••••••••••••••••

Operating System Backup or Rebuild Problems .••...••••••.••••••

Boot i n g Prob 1 ems , , ., '! •••••••

Power-Up Booting Outline ••••••••••••••••.•••••••••••••
Troubleshooting Booting Problems •.•••••••.••••••••••••
Overview of LSI-11 Subsystem Bootstrapping .•••••••••••
Overview of VAX CPU Bootstrapping •••••••••.•••••••••••

Front-End Subsystem Problems ••••••••••••••••••••••••••••••••••
LSI Subsystem Traps •••••••.••••••••••••••••••••••••.••
TRAP Vector Assignments •••.•••••••••••••••••••••••••••
LSI/PDP-11 Trap Catcher Setup Procedure •••••••••••••••
Power Fa i 1 Traps •••..•••••.••••••.•••••.•••••••••••••.
Gathering an LSI Software DUMP ••••••••••••••••••••••••
Analyzing LSI Software Dumps •••••••••..•••••••.•••••••
LSI-Traps Software Dump Analysis Flow c•···············
VAX Front-end Subsystem Q-Bus Address Assignments ••.••
CIB Q-Bus registers Bit Breakdown .••••••••••••••••••••
PDP-11 Instruction Set •.••.••••••••.•.•••••••••.•.••••
PDP-11 Processor Status Word Breakdown ••••••••••••••••
PDP-11 Addressing Mode Description •••.••••.••.••••••••

Unexplained Reboots and Power Restarts ••.•••••••••••••••••••••
Symptoms of Spurious Reboots and Power Restarts ••••••.
Isolating Problem Area •.••.•.••.••••••••••••••.•••••••
BPOK/BDCOK Connections on KA780 Backplane •••••••••••••
AC/DCLO H7100 Supply Connections to KA780 Backplane •••
Voltage pins on the KA780 Backplane •••••••••••••.•••••
Q-Bus Connectors on KA780 Backplane and Wirelist ••••••

Problems on Certain Device(s)

1-94
1-95
1-95

1-97
1-99
1-100
1-101
1-105
1-107

1-109

1-113

1-115

1-119

1-123

1-127

1-131
1-132
1-134
1-136
1-137

1-139
1-140
1-141
1-142
1-142
1-143
1-144
1-145
1-146
1-147
1-148
1-149
1-149

1-151
1-152
1-154
1-155
1-155
1-158
1-159

1-161

~von' t Power-Up . • • • . • • • • . • • • . . • • • • • • • • • . • • • . • • • • • • • • • • • • • • 1-165

v

Something's Burning ••••.•.•..•....•..•.....•.•...•..••.••....• 1-167

Problems Building VMS•....•.....•...•.•...•............. 1-169

Non-Duplicatable, Intermittent and What To Do Now Problems ..•. 1-171

Vibration Testing

Operating Temperature Change Testing ..•.•..•..•..•.•..........
Heat Testing•.•.............•.•..•...............
Testing By Cooling•....••..................

Margin Testing•..•..•....•......
C 1 o c k Ma r g i n s •
Voltage Margins ...•.....•.......•..••.................

DW 7 8 0 Errors •....•........................... ••...........
SBI Parity Fault ..•.........................•.........
SBI Write Sequence Fault .•.•...•......••.•••...••...•.
SBI Unexoected Read Data Fault•......•..........•.
SBI Inte~lock Sequence Fault•.....•••..
SB! Multiple Transmitter Fault ...•.....•........••....
Adapter Power Down .•.•.•..•••....•.•.••......•....•••.
Adapter Power Up•...•..................
UNIBUS Power Down .•...........•..•••.......•.•........
UNIBUS Power Up .•...•............•.....•...•...•....•.
Read Data Timeout •.•.•.•••.....••.....••...••• " .. ••••-=;
Read Data Substitute•..........
Corrected Read Data
Command Transmit Error•..............
Command Transmit Timeout•...............•
Data Path Parity Error•....................
Invalid Map Register ...•.•...................•...•....
Map Register Parity Fail•.•......•.....•.....•
Lost Error Bit •..•........•..•.................•......
UNIBUS Select Timeout•.•••.•..•..........•.
UNIBUS SSYN Timeout ..•....•..•..•........•.....•......
Buffer Transfer Error•.•....•.......•.•..•

S.B.I. Faults•...•.•................•....•..........
Parity Fault Description
Write Sequence Fault Description .••..••....•..•....•..
Unexpected Read Data Fault Description
Interlock Sequence Fault Description •.....•......•....
Multiple Transmitter Fault •........•..•..•..•..•....•.
Troubleshooting S.B.I. FAULTS •••.........•.......•...•
S.B.I. SILO Interpretation••.•...........•..•.....
CONFIGURATION/STATUS Register Interpretation•

Troubleshooting Using the SYSTEM CONTROL BLOCK (SCB) ...•....••
HALTED AT xxxxxxxx .•................•.•..........•....
Building and Using a VAX Trap Catcher
VMB V4.02 Trap Catcher Generation .•....•.•.........•..
?ILL I/E VEC Errors•...........•.•••
System Control Block Vector Assignments Chart .••...•..

vi

1-175

1-177
1-178
1-179

1-181
1-182
1-182

1-183
1-184
1-184
1-184
1-184
1-184
1-185
1-185
1-185
1-185
1-185
1-185
1-185
1-186
1-186
1-186
1-186
1-186
1-187
1-187
1-187
1-187
1-189
1-190
1-190
1-190
1-190
1-191
1-191
1-193
1-195

1-197
1-198
1-199
1-199
1-200
1-201

Section II. VMS Information

VMS SYSGEN Error Control Parameters
BUGCHECKFATAL
BUG REBOOT
DUMPBUG

VMS CRASH HANDLING •••••••••••••••••••••••••••••.••..
Non-Fatal Bugchecks •••••••.•••••••.•••••••••
Fatal Bugchecks in Supervisor and User Mode~
Fatal Bugchecks in Kernel and Executive Modes

Assigning Addresses and Vectors to UNIBUS Devices •...•••.•••••

UNIBUS Device Floating Address Table

UNIBUS Device Floating Vector Table

SYSGEN Commands ••••••••
LOAD command
CONNECT command
RELOAD command
SHOW/ADAPTER
SHOW/CONFIGURATION
SHOW/DEVICE •••••.•
AUTOCONFIGURE ALL
CONFIGURE command
CONNECT CONSOLE
CREATE command
DISABLE CHECKS
ENABLE CHECKS
EXIT ••••••.•••
INSTALL command
SET/OUTPUT command
SET/STARTUP command
SHARE MPMn command
SHOW parameter command
SET parameter command
SHOW/UNIBUS
USE command
WRITE command

Using SYSGEN to determine UNIBUS device Addr/Vec Assignments

LOCAL CONSOLE Boot Co~mand
DB0BOO.CMD
RESTART.CMD

Files

DSC or BACKUP Boot Command
RESTAR.ILV
RMEM.•.

Vll

File

2-1

2-2
2-2
2-2
2-2

2-3
2-3
2-3
2-4

2-5

2-6

2-6

2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-8
2-9
2-9
2-9
2-9
2-10
2-10
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11
2-11

2-12

2-13
2-13
2-14
2-14
2-14
2-14

Section III. Special Command Files/Programs •.•••••..•.••..••••.•• 3-1

Hardware Dump File Maintenance/Generation •...••••••.•...•.•••• 3-2

Version 3.x VMS Dump File Generation 3-3

Version 4.x VMS Dump File Generation 3-5

DUMP. Command File 3-7

HANG. Command File 3-8

SAVEDUMP.COM Command File •••••••.••••••••••••••••.••••••••••.• 3-9

SPEAR BATCH Command File • • . . • • • • • • • • • • . • • . • • • • . . • • . • • • . . • . • • • • 3-11
Spear Batch Control •••......•••.••..••.•••.••.....•••.• 3-12

SDA.COM • • . • • • . . • . • . . • • • . • • • • • • . . . • • . • • • . • • • . • . • . . • • . • • 3-13

F P 7 8 0 Co n t r o 1 P r o g r a.m s •
FPAOFF.MAR ••••.•••.•••.•...••..••••••••.•••..•..•..•••
FPAON. MAR ••••.•.•••.••..••......••••.•.•••••••..••••.•

3-17
3-18
3-19

Section IV. VAX-11/780 Basics ..•.••••..•.•.•••.•..•••...•.•.•••.• 4-1

VAX Virtual and Physical Address Space•.•..•........•. 4-2

VAX-11/780 General Registers Assignments•.•..•.........• 4-3

Subroutine Usage and Operation •••...•...••........•••........• 4-4

Procedure Usage and Operation•..•..•.••.•.•.•...•••.•..•.. 4-5
Entry Mask • • • • • • • • . . • • . . • . • . • . . . • • • • . . . • • • . . . • • • 4 - 6
Argument List • . . • • • • • • • . • • • • • • . . 4-6

"CALLG" Procedure Call Operation 4-7

"CALLS" Procedure Call Operation 4-7

"RET" Procedure Return Operation 4-9

Procedure Call (CALLS/CALLG) Notes •.••••..••......••..•.•.••.• 4-10

Return from Procedure (RET) Notes ••••.••..••..•...•.••••..•..• 4-10

Procedure Call Stack Layout •••..•••••.......••.•••.•••...•..•• 4-11

VAX-11/780 Native Addressing Modes••••..•.•..•...•........
Indexing Mode •.....••...........•..•...•.••.........•.
PC Mode Addressing ••..........•....•...•..•...•.•...•.

Vlll

4-12
4-14
4-16

Section v. Buses Used on VAX-11/780 Systems •.•••••••..••••••••••• 5-1

Synchronous Backplane Interconnect •••••.••••••••••••...••..••• 5-3
S.B.I. Pin Layout •••...•••••••••••••••••••.••••••••••• 5-4
SBI/CPU Time State Equivalents •••••••.••••••••••••••.• 5-5
SBI T0 Clock Time • • . • • . • . . . • • • • . . • 5-5
SBI Tl Clock Time • . • • • . • . • . • • • • • • 5-5
SBI ·r2 Clock Time •••...•.•••••••.•.••••••••.•.•••.•.•• 5-5
SBI T3 Clock Time • • • • • • • • . • • • . • . • . • • • • . • • • • • • • • • • • • • • • 5-5

S.B.I. Write Transfer Example to Show S.B.I. Timing •.••••••••• 5-6

VAX-11/780 Internal Data Bus •••••••••••••••••••••••••••••••••• 5-7
Chart Showing Modules Fed by the ID Bus Bits •••••..••• 5-8
ID Bus Parity Bits Chart Showing Who Uses Them •.•.•••• 5-9
ID Bus KA780 Backplane Pin List ••••••••••••.•••••••••• 5-9

Section VI. UNIX Error Reporting .••.••••..•••••••.••.•••••.••••••• 6-1

This section will be added to a future release of this manual.

Section VII. Miscellaneous Information ••••.•..•.•••.••.••••••••••• 7-1

Using EVSBA.EXE, the Diagnostic Autosizer .•••••.••••.•••••••••
EVSBA Autosizer Default Mode Operation ••••.••••.••••••
Autosizer Manual or Self-test Mode Operation ••••.•••••
Autosizer Commands for Manual or Self-test Mode •••••••

Re ad
Size
List
He 1 p
Wr it e •••
Change .••••••...••••.••••.•••.••••••••••••••••
Ex it
At ta ch

Standard Performance Error Analysis Reporting •••.••••.••••••••
How to Initiate SPEAR •.•.••••....•••.•••.••.•••.••••••
Summary of Questions asked by SPEAR ••.•.••.••..••••••.

Examining UNIBUS Registers ••••••••...•••••.•••.•••••••••••••••

LPll Diagnostic Check Under VMS ••••••••••.••..•.•••••••.••••••

To Restore LPll Queue

Defining and Starting Print Queues (LPll)

Defining and Starting Terminal Queues

"Unexpected UNIBUS Adapter Interrupt"

IX

7-2
7-3
7-3
7-4
7-4
7-4
7-4
7-4
7-4
7-4
7-4
7-4

7-5
7-8
7-9

7-10

7-10

7-10

7-11

7-11

7-11

Interleaving Memories

Booting with CACHE Disabled

H7100 Power Regulator LEDs

M8232, Clock Board, Jumpers

LSI-11 Controls and Indicators

VAX-11/780 Controls and Indicators

MS780/MA780 Error Correction Logic

EVKAA. EXE •••

SECTION VI I I. NEXUS Register Bit Definitions

DW780 Registers .•.••••••••.•..••••••••••••••••••••••••••••••••

Configuration Register
Control Register •••.••
St at us Reg i st er • • • • • • ••
Diagnostic Control Register
Failed MAP Entry Register
Failed UNIBUS Address Register ••••••
Buffer Selection Verification Registers
BR Receive Vector Registers 4-7
Data Path Register 00-15
MAP Registers 000-495

RH780 Registers

Configuration/Status Register
Control Register •••••..•.
Status Register •.••••...
Virtual Address Register
Byte Count Register ..•.•••
Diagnostic Register
Selected MAP Register
Command/Address Register

MS780-E Registers

Configuration Register "A"
Configuration Register "B"

........

.......

0-3

Configuration Registers "C and D"
Configuration Registers "E and F"

x

7-12

7-12

7-13

7-14

7-15

7-16

7-17

7-17

8-1

8-3

8-3
8-7
8-11
8-17
8-21
8-23
8-25
8-27
8-31
8-35

8-39

8-39
8-43
8-45
8-51
8-53
8-55
8-59
8-61

8-63

8-63
8-67
8-71
8-73

P R E F A C E

This Trouble-shooting Manual was written as an aid to D.E.C. Field
Service Engineers for VAX-11/780 System problems.

This outline is not intended to tell you what module to replace,
but instead, is meant to lead you in the right direction. It is
assumed that you are familiar with at least the following:

1. VAX-11/780 Processor
a. Understand CONSOL.SYS command language.
b. Know Physical and Electrical Configurations.
c. Know HEX.
d. Can examine/deposit Memory,I/O Regs.,and ID Regs.

2. VMS Booting
a. Know how to boot.
b. Have a basic understanding how boot is done.

3. Basic use of VMS such as:
a. Able to login.
b. Able to run "SYE" or "SPEAR".
c. Able to use an editor.

4. Know how to run all VAX-11/780 Diagnostics.

Often times referen\.e is made to "DUMP., HANG., & SDA.COM" command
files within this outline. These files are files that I ha~e written
to do specific functions. You can use the files I have written or you
can create similiar files yourself. I have also written s.everal VMS
DCL command files that are meant to aid D.E.C. Field Service in doing
certain time-consuming functions.

The "DUMP. and HANG." command files are CONSOL.SYS command files that
should be generated by D.E.C. Field Service and placed on the "LOCAL
CONSOLE Floppy". The purpose of these two command files are as
follows:

DUMP.

Is a command file that dumps all the Hardware Register contents to
the Console Terminale This coro.mand file is executed as an indirect
command file from CONSOL.SYS. The purpose of this command file is to
provide D.E.C. Field Service with additional trouble-shooting
information concerning crashes that bring the software down and
control is passed back to the CONSOL.SYS program.

HANG.

Is a command file that dumps all the Hardware Register contents, a few
PC's during single step mode (to determine Hung loop), and then

Xl

I I.

initiates the "CRASH." Local Console Floppy command file so that a
Software Dump will be taken. The purpose of this command file is to
provide D.E.C. Field Service with additional trouble-shooting
information concerning system software hangs.

SDA.COM

The "SDA.COM" file is a VMS DCL command file that creates an output
file that contains basic information taken from a specified Software
Dump file. This file should be used, by you, when you are gathering
information about a Software Dump to take back to your Support
Group.

SAVEDUMP.COM

It is very inportant for the Customer to save the Software Dump file,
"SYS$SYSTEM:SYSDUMP.DMP", every time the system is rebooted due to an
Operating System crash. The easiest way to assure thai this happens
on every crash is to put the appropriate commands, to do the save, in
the "SYS$SYSROOT:[SYSMGR]SYSTARTUP.COM" command file. I have generated
a command file that the Customer can execute from the SYSTARTUP command
file that will save the SYSDUMP.DMP file in the area that the Customer
specifies. This command file, SAVEDUMP.COM, will name the saved file
with a name that specifies the date and time of the reboot, after the
crash. By using. SAVEDUMP.COM, it is much easier to match Software
Dumps to the appropriate crash.

This GUIDE references two handbooks extensively. These handbooks
should always accompany you when you are working on a VAX-11/780
System. These handbooks are:

VAX Maintenance Handbook, VAX Systems
VAX Maintenance Handbook, VAX-11/780

#EK-VAXVl-HB-???
#EK-VAXV2-HB-???

Any suggestions as to how to improve this manual will be appreciated.

Roy D. Fulton
D.E.C. Field Service

Xll

SECTION Description

SECTION I of this manual is the actual "VAX-11/780 Trouble-Shooting"
Outline. This section should be used as a guideline as to how to
attack VAX-11/780 System problems.

SECTION II of this manual contains information about the VMS Operating
System, the Command files used to boot VMS, SYSGEN commands, Unibus
autoconf iguration requirements, etc.

SECTION III of this manual contains information concerning special
command files and special programs.

SECTION IV of this manual contains information on VAX Architecture
that may be needed as a reference while trouble-shooting.

SECTION V of this manual contains information about the different
buses used on the VAX-11/780 systems.

SECTION VI of this manual contains information about the UNIX
Operating System errors.

SECTION VII of this manual contains miscellaneous tidbits of
information.

SECTION VIII of this manual contains the defintions of the bits
in the NEXUS registers. The definitions for the CPU's registers
are contained in the VAX Maintenance Handbook for the VAX-11/780.
This section was copied from various VAX-11/780 Nexus Hardware
manuals and microfiche.

Xlll

T R 0 U B L E - S H 0 0 T I N G A P P R 0 A C H
**

xv

Trouble-Shooting Approach

The following pages are an Outline as to some of the things that you
should do for certain types of VAX-11/780 problems. It is assumed
that you will use a sound trouble-shooting approach to fixing the
problem. The following Trouble-Shooting Method is a proven
approach that can be tailored to every situation.

The correct steps to take in trouble-shooting are:

1. RESEARCH and DEFINE the PROBLEM.

The problem should be diagnosed to a certain type of
problem that happens under certain types of conditions.
This must be done so that you will be able to recognize the
problem on the next failure even though it may not exhibit
exactly the same symptoms on the next failure.

The Definition of the Problem does not necessarily identify
the failing unit or subsystem, but simply describes the problem
symptoms.

Do not proceed to the next step until this is accomplished.

Enter all error symptoms in the Log book.

2. VENTURE a Testable EDUCATED GUESS as to the PROBLEM AREA.

From the information examined in step #1, make an educated
guess as to where within the VAX-11/780 SYSTEM the problem
lies. In other words, what subsystem or unit do you believe
the failure to be in based on past experience, training, and
the failure data information examined.

If you are not able to make an educated guess at this time,
it may be necessary to either wait for another failure in order
to obtain more information, and/or you may need to ask your
sources for aid in diagnosis.

xu1

If unable to do this step, be sure that error information
catching facilities are in place, wait for another failure,
and then go back to step #1. The error catching facilities
you· may want to implement for the VAX-11/780 SYSTEM may be
as fallows:

a. Set the SYSGEN parameter "BUGREBOOT" to a
"0", so that a Hardware Register Dump may be
taken at failure time.

b. Set the SYSGEN parameter "DUMPBUG" to a "l", so
that the Software Dump will be taken.

c. Set the SYSGEN parameter "BUGCHECKFATAL" to a
"l", so that NON-FATAL Bugchecks will be
treated as Fatal Bugchecks. You probably don't
want to do this without also setting "BUGREBOOT"
to a "0 n.

d. Education of customer as to how to dump the
Hardware Registers.

e. Making sure that the Customer's SYSTARTUP.COM file
saves the Software Dumps or at least make sure that
the Customer has Software Dump Saving procedures in
place.

f. An Error Log report should be taken, and available
on Hardcopy, of the time prior to and at time of
the failure(s).

Be sure you enter into the Log Book what your evaluation is and
anything else you may have done.

3. SET-UP an TEST CASE in order to isolate the PROBLEM.

Using your knowledge of the system, past experience, and your
Support resources (if you need them), make a decision as to
what area of Hardware or Software should be replaced or
swapped first. This replacement or swapping should be done
in a educated manner.

DO NOT swap or replace parts within the believed problem
area in a haphazard manner. You should be able to pick out
the most suspectable area.

xvn

Once you have decided what_parts to replace or swap, MARK in
a CLEAR easily defined METHOD each part that will be used
in the test case in such a way that you and your counterparts
will readily be able to determine the following:

a. The ORIGINAL SOURCE of EACH UNIT involved in the
test case swap or replacement.

b. The DATE and TIME of the SWAP or REPLACEMENT of
EACH UNIT involved in the test case.

This may be accomplished by either tagging the appropriate
units or by marking each unit with a different marking and
then entering the appropriate information in the SYSTEM's
LOG Book by referencing these markings. This is VERY
IMPORTANT.

4. PREDICT the RESULTS of the TEST CASE.

Make an educated prediction as to what the results of the
test case will be. In other words, if you swapped a couple
of units within the SYSTEM or DEVICE, what type of failure
do you suspect will happen if the expected failing unit does
indeed fail again.

It is very important that this information be recorded in the
SYSTEM's LOG Book, so that you and your counterparts will know
what to suspect upon the next failure.

5. CONDUCT the TEST CASE.

Perform the appropriate changes in order to conduct the
test case as planned. Be sure to log everything in the
SYSTEM'S LOG Book.

xvm

6. EVALUATE the DEFINITION of the PROBLEM upon the NEXT FAILURE.

Now that you have more informatron to work with, does this
failure still fit under the first definition of the problem?

If it doesn't, then proceed according to the following:

a. Is there more than one problem? If there is more
than one problem, each should be researched,
defined, tested, etc., separately.

Be sure to label all failure information so that
you will know what information goes with what
failure.

b. Has another problem been introduced as a result of
units used in the test case? One of the units
that you inserted into the SYSTEM may have gone
bad. If so, then you will have to evaluate
whether to insert another new unit and wait for
another failure or should you just replace the
original and conduct another test case.

If it does fit under the same definition, continue to step #7.

7. RESEARCH and REFINE the DEFINITION of the PROBLEM.

After each failure, it may be necessary to redefine the problem
or to refine.the definition of the problem due to the contents
of the problem's dumps. Refine the problems definition at this
point based on past experience, knowledge of the failing unit,
input from your Support resources, and the added problem
failure information taken at the last failure.

In other words, you may be able to give a better definition to
the problem, at this point in time, that will make it easier to
determine where the problem lies and easier to determine when
it is fixed. Be sure to enter this information in the SYSTEM's
LOG Book.

Be sure to enter into the Log Book exactly how each failure
occurs and exhibits itself.

XlX

8. RETURN NON-FAILING UNITS to their ORIGINAL POSITIONS.

It is very important to return the non-failing units, moved
as a result of the test case, to their original positions
as soon as the test case is completed.

This should be recorded in the SYSTEM's LOG Book in order to
prevent confusion in the future.

This step is probably the most often ignored step even though
it is one of the most important steps.

9. REPLACE FAILING UNITS with SPARES.

Replace the failing units with spares. Since step #8 was done,
the new unit (a spare) should be going into the ORIGINAL
position of the failing unit.

This information should be recorded in the SYSTEM LOG Book, and
an entry should be made on the appropriate DEVICE's LOG Sheet.

10. REPEAT UNTIL the PROBLEM is SOLVED.

Repeat steps 2 thru 9 until the problem is solved.

When the Problem is declared solved should be a predetermined
period of time after the last failure. This time must be
mutually agreeable between D.E.C. Field Service and the
Customer. The determination of how long the system must run,
without the defined problem happening, should be primarily
based upon two things. They are:

a. The T.B.F. (time-between-failures).

b. The minimum run time that the customer would
feel comfortable with.

The elapsed time period before the problem is declared solved
should be no less than twice the longest time between failures,
and should be equal to or greater that the customer required
time.

xx

S Y S T E M L 0 G B 0 0 K S

XXl

Log Book maintenance is a very important part of SYSTEM trouble
shooting. The keeping of a Log book is not just the Site
Representative's duty but is the duty of every person that goes
onsite to fix any problem. Every time you are onsite, anywhere,
you should not consider the call complete until the System's LOG
book has been filled out giving a detailed description of everything
that has expired during your visit.

When properly used, a System Log Book will:

1. Stop UNNEEDED CONFUSION about the status of
the SYSTEM, what was replaced when, what is
expected to happen, what to do next if a certain
event happens, if a certain event doesn't reoccur, etc.

2. Provide SYSTEM History information.

3. Provide DEVICE History information.

4. Provide updated SYSTEM Configuration information.

5. Provide an Intermittent Problem Action Plan.

6. Provide SYSTEM and DEVICE PM Status.

7. Provide SYSTEM and DEVICE diagnostic Run sheets.

8. Provide a means of passing information from one
D.E.C. Field Service Engineer to another.

9. Provide a means of obtaining SYSTEM uptime information.

10. Provide specific SITE Dependent information such as
where the Diagnostics are kept, where the Prints are kept,
what test to run, special security considerations, specific
site dependent information, etc.

Every little tidbit of information about a problem should be entered
into the Log Book. These tidbits may seem unimportant to you now, but
may become valuable bits of information later on.

It is your duty to help maintain an accurate log book for each
system that you work on, every time you are on site.

xx ii

S 0 U R C E S of I N F 0 R M A T i 0 N

XXlll

At times you may need some help in Problem Diagnosis, Repair, ECO
information, Diagnostic information, and etc. A list of resources that
you can use is listed below:

1. Your fellow workers in your Branch.
This is an important resource. If you know someone
in your group that probably knows the answer to your
question(s), don't be afraid to ask for their help.
Working together in this way also helps to build morale
within a group.

2. Your Remote Support and local Support Groups.

3. The Remote Diagnosis Center, (RDC),in Colorado.

RDC can : Run Diagnostics.
Examine VMS Dumps.
Answer ECO problems.
Look up information in the Library.
Answer functional questions.
Run/Monitor extended testing.

Be aware that the RDC now has a library of all
kinds of information. When you call RDC, they
will ask you your SYSTEM TYPE, at this point
ask for the LIBRARY.

4. If vou know ANYONE in D.E.C. that orobablv knows the answer
to your question, feel free to cali and ask. We, all D.E.C.
employees, owe our jobs to our Customers. Therefore, there
is no reason why anyone in D.E.C. should refuse to answer a
question for you if they know the answer.

XXIV

M A I N T A I N I N G C 0 N T R 0 L

xxv

This is probably the most misunderstood and abused concept of
trouble-shooting basics, but it is of the utmost importance that
the Field Service Engineer MAINTAINS CONTROL of the SITUATION at
ALL times. This manual will not do you any good if you do not
have the control needed to perform the steps specified. In order
to fix Customer Problems quickly and efficiently, you must:

1. Be able to MAINTAIN CONTROL at all times.
2. Have good CUSTOMER RELATION SKILLS.
3. Have a sound TROUBLE-SHOOTING APPROACH.
4. Have the ABILITY TO BE SYMPATHATIC towards the

CUSTOMER'S BUSINESS NEEDS.
5. Have KNOWLEDGE of the hardware and software.

What is meant by Maintaining Control as related to trouble-shooting?

Maintaining Control simply means that you, a D.E.C. Field Service
Engineer that is attempting to fix a Customer's problem, must at all
times approach the problem with you in command of the situation. This
simply means that you make the decisions as to what to do, when to do
it, and how to do it, while carefully considering the Customer's
business· needs (all your decisions must remain within the Problem
Manager's guidelines). You must maintain control while also making
sure that your decisions will impact the Customer's business as little
as possible.

Loosing control, more often than not, causes longer overall downtime
for the Customer and also causes you to start to loose confidence in
your ability to do your job properly. Your job is to fix the
Customer's problem(s) as soon as possible while affecting his/her
business as little as possible. If you do not Maintain Control of the
situation, you obviously cannot perform your job properly.

If at any time you feel that you are starting to loose control,
immediately contact your management and get them involved. DO NOT
allow yourself to loose complete control before contacting your
management. Everyone needs help occassionally. Don't let your
pride prevent you from doing what is best for the Customer and D.E.C ..

The amount your decisions impact the Customer's business needs must
always be considered carefully. Sometimes it makes more sense to take
the System for an extended period of time, in order to reduce the
total overall time spent repairing the Customer's problem.

XXVl

Maintaining Control does not mean that you make your decisions without
the Customer's input. One of the first steps you should always do when
trouble-shooting a problem, is to gather as much information about the
problem as possible. The first source of information about the problem
comes from the Customer. The Customer may even have an idea about
what is causing the problem. You should listen to everything that the
Customer has to say. This does not mean that you base your
trouble-shooting totally on the information received from the Customer.
Research the problem thoroughly before jumping in and replacing things.
You must also use input from the Customer when you are weighing what
you want to do·with how it will affect the Customer's business.

It is of the utmost importance not to abuse your control. Abuse of
control can only result in a poor D.E.C./Customer relationship. You
must maintain good D.E.C./Customer relations and supply the Customer
with the best service possible within the guidelines of the Customer's
Contract.

SUMMARY

Your goal is to fix the Customer's problem, in the shortest length of
time, while maintaining complete control of the situation, and while
constantly evaluating your decisions with respect to the Customer's
needs, concerns, and Contract Coverage.

Keep in mind the following:

1. Maintain Control of the situation.

2. Always weigh your decisions with respect to the
following:

a. Customer's Business needs and concerns.
b. D.E.C.'s Contract Obligations to the Customer.
c. Is this the quickest approach to fixing the

problem?

3. Maintain good D.E.C./Customer relations.

4. Always be CONSIDERATE, TRUTHFUL, and FAIR.

XXVll

SECTION I

VAX-11I780 Trouble-Shooting Outline

VAX-11/780 Trouble-Shooting Basics

This outline is designed to aid you in isolating problems to either the
Memory, the VAX-11/780 CPU, the VAX-11/780 Front-end Subsystem, a VAX-11/780
Nexus, a Peripheral Device or to Software. Peripheral Devices will only be
covered in general while the VAX CPU, the MEMORY, and the NEXUSes will be
covered more thoroughly.

1. An UNDEFINED PROBLEM exists. The problem is undefined until "YOU" make
an educated guess as to where the problem probably lies.

2. GATHER all INFORMATION, from the Customer, that is available about the
problem and its symptoms. At this point in time, you are not
evaluating the problem but are merely gathering information that you
can evaluate later. Keep an open mind, don't let any tidbit of
information pass you by. Many problems could have been solved sooner
if the Field Engineer had remembered seemingly insignificant tidbits
of information that may appear unrelated to the problem. Be sure to
record as much Symptom information as possible in the "LOG Book".

a. How is the problem exhibited?

1. This is found by talking to the Customer. Be
sure to record this information in the "LOG Book".

2. Is the problem intermittent or a solid problem?

3. Can the problem be recreated at will?

4. What is the MTBF (mean time between failures)?

5. Does the problem seem to be related to only one or
only a group of functions or programs?

6. If it is a program that causes the problem, is this
a customer program or a D.E.C. supported program?

7. Is there anything common about the problem in either
software or hardware?

8. Did any System Environmental changes take place
previous to or at time of the problem?

9. Does the problem appear to be, or could the problem
be, media related?

1-2

b. What is the customer's evaluation of the problem?

1. Does the customer believe the problem to be in
a certain area of the hardware or software? Be
sure to record this information in the "LOG Book".

c. Is there a hard copy printout showing the problem symptom?
If the Operating System crashed or hung, what you want is
the Console Terminal output at the time of the failure.

1. If a "Hard Copy Printout" is available, ask the
customer for it.

d. Was a "Hardware Register Dump" taken at failure time?

1. If the software crashed or hung, the customer should
have taken a "Hardware Register Dump" (by using the
"DUMP. or HANG." command file on the "LOCAL CONSOLE"
floppy) immediately at time of failure. Ask for this
dump.

e. Was a "Software Dump" taken and saved?

1. If the software crashed a software dump should have
occurred automatically as a result of _the Operating
System executing its crash routine (if SYSGEN parameter
DUMPBUG=l). The dump should have been saved by the
Customer when the system was rebooted. Ask the Customer
for the "DDCU:[DIRECTORY]FILENAME.EXT" of the "SAVED
SOFTWARE DUMP".

3. Get an ERROR LOG REPORT if possible at time of and prior to failure.
If the problem is of the type that allows the Operating System to
run, or is a problem that intermittently crashes the Operating System,
attempt to get an "ERROR LOG" report by running either "SPEAR" or
"SYE". Have the output go to a file, and then print that file.
If you are running SPEAR, use the "SPEAR Analyze" function to analyze
the errors prior to the crash. It may be necessary to do a full
retrieve of all information. In some cases it may not be possible to
do Error Log reporting at this time. In those cases, it is wise to run
Error Log reporting as soon as the system is functional enough to do
so. Operating System Error Logging is a great aid to trouble-shooting,
use it whenever possible. The VAX Error logging utility is very good.

1-3

4. IDENTIFY the TYPE of PROBLEM if possible. Now that you have gathered
as much information as you can about the problem, find a desk or table
somewhere where you can sit down and attempt to "Isolate the Problem".
The first step in problem isolation, is to determine the "Type of
Problem".

VAX-11/780 Problems can be broken down into several basic types:

1. Operating System Crashes or Bugchecks.
(This includes "Machine Checks" & "CPU DBLE-ERR HLT's")

2. Operating System Hangs.

3. Operating System Functional Problems.

4. Operating System Backup Problems.

5. Booting Problems.

6. Front-end Subsystem goes back to ODT, Hangs, Halts.

7. Unexplained Reboots or Power Restarts.

8. Problems on a Certain Device or Devices.

9. System or Peripheral Device won't Power-Up.

10. Something's Burning.

11. Problems Building the VMS Operating System.

12. Error Bits set in a NEXUS (DW780, RH780, etc.)

13. S.B.I. FAULTS

Determine which of the above types the problem fits under and then
go to the outline for that problem type. Every problem should
fit under one of these problem types.

1-4

VAX-11I780 System Trouble-Shooting tools:

Visual and Sensual Indications
a. LSI-11 Front panel indicators - DCON, RUN
b. VAX-11/780 Control panel indicators - ATTN, RUN, POWER
c. H7100 status indicators

Power Normal, Regulator Failure, Overtemp,
Overcurrent, & Power Inverter Failure

d. Smoke, fire, heat, burning smell

Registers
a. The CPU ID <00:3E> registers

E/ID/L/N:3E 0
b. The Control/Status registers in each nexus

E/L/P/N:x 200xx000 - for each nexus
c. The Control/Status registers in each UNIBUS device

E/L/P/N:x 20lxxxxx - for each UNIBUS device
d. The Control/Status registers in each MASSBUS device

E/L/P/N:x 200xx400 - for each MASSBUS drive

Console Terminal Messages
a. LSI-11 ODT error messages

xxxxxx <- PC at time of LSI macro program halt
@ <- LSI ODT prompt

b. Error messages from CONSOL.SYS
? xxxxxxxxxxxxxxxx

c.

d.

>>>
Error messages from

FATAL BUGCHECK

Error messages from

the OPERATING SYSTEM (VMS/UNIX)
<- From VMS. Is followed by

a General register dump, Stack
dump and a description of error.

other programs

User Terminal Messages
a. Error messages from the OPERATING SYSTEM .(VMS/UNIX)
b. Error messages from other programs

Error Log Information
a. "ERRLOG.SYS" for the VMS operating system

in SYS$ERRORLOG:ERRLOG.SYS
b. "/messages" file for the UNIX operating system

System Manager I User Input
a. System Manager/User definition of the problem
b. System Manager/User feelings of problem area
c. Any customer known or initiated changes to system

System History
a. Past failure/repair history of the system
b. ECO status of the system
c. System configuration changes
d. Software changes
e. PM history
f. Enviromental Changes

1-5

VMS Operating System Crashes or Bugchecks

Due to the nature of these types of problems and the Software decisions
that are made, the System may not be down when you arrive onsite. For this
reason, these flows will not specify when to run diagnostics. If the
Operating System is operative when you arrive onsite, it is probably best
to gather the listed information about the crash and attempt to at least
make a preliminary diagnosis before taking the system to run diagnostics.
This preliminary diagnosis should point you to an area or subsystem on
which to start running diagnostics.

In order to trouble-shoot these types of problems, it is necessary to gather
as much information about the crash as possible. The amount of information
that you will be able to gather will depend upon how the system is set up.
Procedures to gather the following types of information should have been
setup previous to the crash:

1. Doing a HARDWARE REGISTER DUMP.
2. SYSGEN parameter DUMPBUG set to a 1 so as to get a SOFTWARE dump.
3. Saving of SOFTWARE dumps on reboots.
4. Saving of Errlog (EVENT file) information.
5. Saving of the Console Terminal output (on hardcopy).
6. Accurate LOG BOOK information concerning all activity on the system.
"It is IMPOSSIBLE to gather TOO MUCH information about a problem."

In order to gather the Hardware Register Dumps, certain modifications to the
LOCAL/REMOTE CONSOLE FLOPPY should be made. A "DUMP." and "HANG." command
file should be created that is tailored to the associated system (see the
procedures in Chapter 3 of this manual). It is possible to get all the
Hardware Register information needed by using these two command files, but
the customer must run the system with SYSGEN parameter BUGREBOOT = 0 and
the AUTO-RESTART switch OFF. Then when the system crashes, you or the
customer must take the dump by initiating either the "DUMP." or "HANG."
CONSOL.SYS command file prior to rebooting of the system. This method
is usually not desirable from the customer's standpoint of trying to have
the system up as much as possible. A better method is to add the commands
in the "DUMP." command file to the front of the "DEFBOO.CMD" & "RESTAR.CMD"
command files on the LOCAL/REMOTE CONSOLE Floppy. This will allow the
customer to run with AUTO-RESTART set ON and the SYSGEN parameter BUGREBOOT
set to a 1, and the Hardware Register dump will automatically be taken prio~
to the system rebooting.

On these crashes, the Hardware Register Dump may not reflect the
same ID register contents as were present at the actual time of the error
due to VMS not halting immediately (several things are done prior to VMS
halting, one of which is the writing of the Software Dump). The Hardware
Register Dump may show some Device· or Nexus errors though. It is always
better to have extra information rather than not enough, so take the
HARDWARE REGISTER DUMP whenever possible.

The ERRLOG.SYS file should be examined, whenever possible, to see if the
Operating System was able to log any error information that may be causing
the crashes. The VAX VMS "System Event File (ERRLOG.SYS)" is a very useful
trouble-shooting tool that is very often overlooked. Many times the
Fatal Bugchecks are caused by something that is logged in ERRLOG.SYS just
prior to the crash.

1-6

There are many different types of "FATAL and/or NON-FATAL BUGCHECKS".
BUGCHECKS can either be caused by Hardware errors or Software detected
error conditions. The SOFTWARE detected errors "may notn be caused by
any hardware failures.

Whether a BUGCHECK is declared "FATAL or NON-FATAL" depends upon what
"MODE" the processors is in when the error occured. B"asical.ly, a
"Non-Fatal Bugcheck" is a Bugcheck that has occured while the processor
is in either the "USER" or "SUPERVISOR" mode. A "Fatal Bugcheck" is one
that has occured while the processor is in either the "EXEC" or "KERNEL"
mode. Chapter 2, of this manual, describes Fatal and Non-Fatal Bugcheck
action.

The easiest of the Bugchecks to trouble-shoot is the MACHINE CHECKS. This
is due to a specific logout procedure that the VAX-11/780 CPU microcode
goes through to insure that you have the needed error information stored
on the stack. Fatal Machine Check Bugchecks will print out the stack
information on the console terminal. This is usually all the information
that you need to trouble-shoot this type of bugcheck. Non-Fatal Machine
Check Bugchecks will cause VMS to store the stack information in the
system event file (ERRLOG.SYS). All of the other types of BUGCHECKS require
a software knowledge to affectively trouble-shoot them since these errors
usually are not the result of some hardware detected error but due to
softwares detection of a problem. Therefore, you.would probably have to
know what the system software was attempting to do in order to effectively
trouble-shoot them.

1-7

* FATAL BUGCHECK, VERSION-V3.l MACHINECHK, Machine check while in kernel mode *

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

MACHINE CHECKs

?? MACHINE CHECK EXCEPTION THROUGH VECTOR: 04(X)

1-9

VAX-11/780 MACHINE CHECK Error Logout

A Machine Check Exception indicates that the processor detected an
INTERNAL ERROR in itself, an SBI TIMEOUT, or an SBI ERROR CONFIRMATION is
received when the processor was attempted an SBI transfer. Software
decides, on the basis of the logout information presented, whether to abort
the current process or simply to continue.

The following steps show the basics of what happens when the VAX-11/780
CPU detects an error.

1. The VAX-11/780 CPU detects an error.

The types of errors that can cause a Machine Check are:

a.
b.
c.
d.
e.

Control Store Parity Error
Cache Parity Error
Translation Buffer Parity Error
Read Data Substitute Error
SBI Read Timeout

f.
g.

SBI Error Confirmation received
VAX CPU Micro-code goes to unused Micro-code location

'

2. The VAX-11/780 Micro-code branches to a "Error Snapshot" micro-code
routine that performs the saving of the "Machine Check Logout"
information onto a specified Stack.

MicroPC Error entry points for PCS (version 1.0) microcode

uPC OlOF
uPC 0107
uPC 0108
uPC OlOC
uPC OlOD
uPC OEEO

Control Store Parity Error
Translation Buffer Parity Error
Cache Parity Error
Read Data Substitute
S.B.I. Read Timeout or Error Confirmation
Microseqencer Error

3. The VAX-11/780 Micro-code saves certain CPU registers in TO thru
T9 (ID #30 thru 39) for temporary storage. These registers, along
with the PSL, PC and a byte count, make up the "Machine Check
Logout" information. The Registers that are saved are:

a. The CPU Error Status Register (CES = ID #OC)
b. The Trapped UPC Register (USTACK = ID #20)
c. The VA/VIBA (from the VA/VAMX multiplexers)
d. The D-Register (DQ = ID #08)
e. The TB Error Register #0 (TB ERR #0 = ID #12)
f. The TB Error Register #1 (TB ERR #1 = ID #13)
g. The Timeout Address Register (TIME.ADR = ID #lA)
h. The Cache Parity Error Register (PARITY = ID #lE)
i. The SBI Error Register (SBI.ERR = ID #19)
j. The D.SV Register (D.SV = ID #2E)

1-10

This data is first stored in TO thru T9, in the following order,
on execution. of the micro-words at the specified PCS (version 1.0)
micro-addresses:

UPC Register Name ID No. Saved in

OEFl CPU Error Status oc Tl - ID#31
OEF~ Trapped Micro-PC 20 T2 - ID#32
OEF4 VA/VI BA T3 - ID#33
OEF5 D Register T4 - ID#34
OEF8 TB Error Register 0 12 TS - ID#35
OEFB TB Error Register l 13 T6 - ID#36
OEFC Timeout Address lA T7 - ID#37
OFOl Cache Parity Register lE TS - ID#38
OF03 S.B.I. Error Register 19 T9 - ID#39
OF06 Summary Parameter TO - ID#30

Then this MACHINE CHECK logout information is stored onto the
stack, along with the PC and PSL.

This two step procedure is used in order to preserve 1st error
information in the case of another error occuring while the
micro-code is attempting to logout the 1st error's information
onto the stack.

PCS (Version l;O) micro-code entry points

uPC OEE9

uPC OFlO

"Error Snapshot micro-routine" that stores certain
registers in the TO-T9 temporary registers.

"Error Snapshot micro-routine" that stores the
Temporary registers (T0:9) onto the stack along with
the PC, PSL, and a Byte Count longword equal to a
hex 00000028.

4. The VAX-11/780 Micro-code gets the SCBB data to be used to find
the physical address of the "MACHINE CHECK VECTOR". The SCBB
is a register (ID #3B) that contains the starting address of the
System Control Block (SCB).

The System Control Block is the physical page in memory that
contains the Exception and Interrupt Vectors.

1-11

5. Bits <1:0> of the data in "SCBB+4" are checked, by the Micro-code,
to determine what Stack to use for the Machine Check Logout
information storage, or to see if the CPU should halt.

The Kernel Stack or the Interrupt Stack can be used as the storage
place for the Machine Check Logout information.

6. The VAX-11/780 Micro-code saves the Machine Check Logout
information onto the Stack specified by "SCBB+4" bits <1:0>, or
will halt if these bits are both l's (<1:0>=3). If the VAX CPU
halts, control will pass back to the CONSOL.SYS program.

The Machine Check Logout information consists of the Saved Register
contents that were saved in Temporary Storage registers ID #30-39,
the PC and PSL at the time of the error, and a byte count that
specifies the total number of bytes dumped on the stack (which
is "always" a hexadecimal 28 or decimal 40).

7. The VAX-11/780 Micro-code causes the Instruction Set Processor to
jump to the routine whose Longword address is in-"SCBB+4" if
"SCBB+4 Bits <1:0>" is not equal to 3. If "SCBB+4 Bits <1:0>=3"
then the VAX Instruction Set Processor is halted.

8. If "SCBB+4 Bits <1:0>" are not equal to 3, the VAX-11/780
Instruction Set Processor runs VAX Macro instructions to perform
the specified trap routine.

What is done in this routine depends totally on the running
Macro-code program. When a Machine Check occurs while running the
VMS Operating System, the Macro Routine that is run now will
determine whether the Machine Check is FATAL or NON-FATAL and
will act accordingly. When a Machine Check occurs while running
the Diagnostic Supervisor, the Macro Routine that is run now will
normally print out the STACK contents and then go back to the
"OS>" prompt and await operator input. Other software may simply
halt when the Machine Check occurs. Still other software may not
properly set up a "SYSTEM CONTROL BLOCK" and all sorts of strange
things may happen.

NOTE: If another Machine Check condition occurs while the microcode
is performing the functions in steps 2 thru 6, the VAX
microcode flags a "Double Error Halt" and turns control over
to the LSI Subsystem's CONSOL.SYS program.

1-12

VMS Fatal Bugcheck printout example caused by a Machine Check

*** FATAL BUGCHECK, VERSION-V3.l MACHINECHK, Machine check while in kernel mode

CURRENT PROCESS
REGISTER DUMP

= STARTUP

RO = 00000206
Rl = 00000028
R2 0000792E
R3 = 00000000
R4 = 0000792E
RS = 0000021E
R6 = 80027600
R7 = 00002768
R8 = 80137300
R9 = OOOOC768
RlO= 000015F8
Rll= 80137300
AP = 7FFB4888
FP = 7FFEADA8
SP = 80154FC4
PC = 800CF411
PSL= 041F0008

KERNEL/INTERRUPT
80154FCC
80154FDO
80154FD4
80154FD8
80154FDC
80154FEO
80154FE4
80154FE8
80154FEC
80154FFO
80154FF4
80154FF8
80154FFC

STACK
00000028
00000000
00010084
00000224
80027Al8
03FB5E6C
00007E81
00000040
28005106
00004000
00009402
00002C4D
OODFOOOO

HALT INST EXECUTED
HALTED AT 800039ED

(BOOTING)
CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT 200034F9

G OOOOOOOE 00000200
LOAD DONE, 00004200 BYTES LOADED

VAX/VMS Version V3.l ll-AUG-1982 16:21

1-13

Example of a Machine Check while running ESSAA

DS> RUN EVRAA

•. Program: VAX DISK AND TU58 RELIABILITY TESTS *EVRAA*, revision 12.0,
6 tests, at 07:19:26.94.

Testing: _DRBl

?? MACHINE CHECK EXCEPTION THROUGH VECTOR: 04(X)
CP READ TIMEOUT/SB! ERROR CONFIRMATION FAULT

MACHINE CHECK LOGOUT:
COUNT:
SUMMARY PARAMETER:
CPU ERROR STATUS:

TRAPPED MICRO PC:
VA/VI BA:
D REGISTER:
TBERO:

TBERl:
TIME.ADDR:

PARITY:
SBI. ERR:

PC at error:
PSL at error:
User return PC:
OS>

00000028(X)
OOOOOOOO(X)
00010084(X)

00000248(X)
60014008(X)
0504A056(X)
00007EOO(X)

00000040(X}
28005002(X)

00004000(X)
00009402(X)

00051649(X)
OOlFOOOO(X)
0001A40D(X)

i-14

;NESTED ERROR, ALU C31

.
' ;LAST REFERENCE = ADS,MCTE,MCT2
MCTl,MCTO,IBWCHK
;FORCE TB PARITY ERROR=NO ERROR
FORCED
;LAST TB WRP
;MODE=KERNEL,PROT CHECK, SBI AD
DR=20014008(X)
;CP ERROR
;RDS INT EN,CP TO, CP TO STO,
NOT BUSY

;CUR=KERNEL,PRV=KERNEL,IPL=lF

Breakdown of a VMS Machine Check printout example.

*** FATAL BUGCHECK, VERSION-V3.l MACHINECHK, Machine check while in kernel mode

CURRENT PROCESS
REGISTER DUMP

RO = 00000206
Rl 00000028
R2 = 0000792E
R3 = 00000000
R4 = 0000792E
RS = 0000021E
R6 80027600

STARTUP

<-I
I

I
Specifies type of BUGCHECK. This
breakdown defines the meaning of this
printout when the BUGHECK type is a
"Machine Check".

R7 =
RS =
R9 =

00002768
80137300
OOOOC768

This register dump isn't of much use to us if
the BUGCHECK is a "Machine Check". Is useful
for other types of BUGCHECKs.

RlO= 000015F8
Rll= 80137300
AP = 7FFB4888
FP = 7FFEADA8
SP = 80154FC4
PC = 800CF4ll
PSL= 041F0008 <-

KERNEL/INTERRUPT
80154FCC
80154FDO
80154FD4
80154FD8
80154FDC
80154FEO
80154FE4
80154FE8
80154FEC
80154FFO
80154FF4
80154FF8
80154FFC

STACK
00000028
00000000
00010084
00000224
80027Al8
03FB5E6C
00007E81
00000040
28005106
00004000
00009402
00002C4D
OODFOOOO

HALT INST EXECUTED
HALTED AT 800039ED

<----
<----
<----
<----
<----
<----
<----
<----
<----
<----
<----
<----
<-----

The following definitions apply only
when BUGCHECK is a MACHINE CHECK.
Byte Count
Summary Parameter
CPU Error Status (ID#OC)
Trapped micro-PC (ID#20)
VA/VI BA
D Register (ID#08)
TB Err. Reg. #0 (ID#l2)
TB Err. Reg. #1 (ID#l3)
Timeout Address (ID#lA)
Cache Parity (ID#lE)
SBI Erre Reg. (ID#l9)
PC (General Reg. #F)
PSL (ID#OF)

(BOOTING) <--------------- SYSGEN "BUGREBOOT = l", , so rebooting
CPU HALTED via "DEFBOO.CMD" command file.
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT 200034F9 <------ ISP Rom Macro program finished. "SP"

now contains SA+200 of good 64K chunk.
G OOOOOOOE 00000200
LOAD DONE, 00004200 BYTES LOADED <----- VMB.EXE loaded into VAX mem.

VAX/VMS Version V3.l ll-AUG-1982 16:21 <----- VMS is loaded and started.

1-15

Getting Started on MACHINE CHECKs

The contents of the "STACK" are used to trouble-shoot "Machine Checks".
The Stack Contents are printed out on the "Console Terminal", by the
VMS Operating System, immediately after a "FATAL" Machine Check.
"Fatal Machine Checks" are basically those Machine Checks that happened
when the VMS Operating System was in "Kernel" or "Exec" mode. Machine
Checks that happened during "User" or "Supervisor" mode are normally
considered "Non-Fatal" and will result in the Machine Check Logout
information (the contents of the STACK and the General Registers) being
saved in the System Event file ("SYS$ERRORLOG:ERRLOG.SYS") versus being
printed out on the "Console Terminal".

If the Machine Check occurred while running a program that does not
output the "Logout" information to the "Console Terminal" or
"SYSTEM EVENT File", then you will have to dump the Stack yourself.
To do this, first examine (using CONSOL.SYS) ID #12 and check to see
if Bit 00 is set. Then use the appropriate command to examine the
STACK.

ID #12 - Bit <00> = 0 ; Memory Management not enabled.

>>> E/L/H SP
>>> E/L/H/P/N:30 @

ID #12 - Bit <00> = 1 ; Memory Management is Enabled.

>>> E/L/H SP
>>> E/L/H/V/N:30 @

Now, use the following steps to determine what caused the "Machine
Check":

1. Find the "LONGWORD" on the Stack that contains a "00000028".

If you cannot find this longword, then the Stack doesn't
contain the "Machine Check Logout" information. You will,
therefore, have to make sure the appropriate error catching
facilities are in place, and then must wait for the next
"Machine Check" to occur.

2. The "LONGWORD" following the "00000028", is the "Summary
Parameter" word. Using "byte O" of this longword, check
the SUMMARY PARAMETER DESCRIPTION, on the next page, to
determine what type of error occurred.

J. Now that you know what type of error occurred, go to the
appropriate section of this Trouble-Shooting Guide to
find out how to use the Stack "Machine Check Logout"
information to further isolate the problem.

1-16

Normally the Exception Vector bits <1:0> define the following:

O - Service the EXCEPTION on the KERNEL STACK unless running on
the INTERRUPT STACK.

1 - Service the EXCEPTION on the INTERRUPT STACK.
2 - Service the EXCEPTION in WCS, Pass Bits <15:02> to Micro PC.
3 - Halt

The Machine Check Exception Vector is found at "SCBB+4". The "System
Control Block Base" is a Physical address and can be found by examining
"ID Register #3B" or "Internal Register #11".

MACHINE CHECK LOGOUT Information Description:

Description Memory Loe. ID Loe. Notes

1. Byte Count (SP) None Must be a 28 (hex) .
2. Summary Parameter (SP+4) TO (3 0) See below.
3. CPU Error Status (SP+8) Tl (31) See ID #OC.
4. Trapped UPC (SP+l2) T2 (3 2) See ID #20.
5. VA/VI BA (SP+l6) T3 (33) Virtual address.
6. D Register (SP+20) T4 (34) See ID #08.
7. TB ERROR 0 (SP+24) TS (3 5) See ID #12.
8. TB ERROR 1 (SP+28) T6 (36) See ID #13.
9. Timeout Address (SP+32) T7 (37) See ID #lA.
10. Parity (SP+36) T8 (38) See ID #lE.
11. SBI Error (SP+40) T9 (39) See ID #19.
12. PC (SP+44) None General Reg. #F.
13. PSL (SP+48) None See ID #OF.

SUMMARY PARAMETER Description (use Byte #0, only!)

Page Code Description

1-55 00 CP Read Timeout or Error Confirmation Fault
1=38 02 CP Translation Buffer Parity Error Fault.
1-34 03 CP Cache Parity Error Fault.
1-92 05 CP Read Data Substitute Fault.
1-38 OA IB Translation Buffer Parity Error Fault.
1-92 oc IB Read Data Substitute Fault.
1-55 OD IB Read Timeout or Error Confirmation Fault.
1-34 OF IB Cache Parity Error Fault.
1-55 FO CP Read Timeout or Error Confirmation Abort.
1-45 Fl Control Store Parity Error Abort.
1-38 F2 CP Translation Buffer Parity Error Abort.
1-34 F3 CP Cache Parity Error Abort.
1-92 F5 CP Read Data Substitute Abort.
1-94 F6 Microcode "not suppose to get here" Abort.

I
j __

Goto to this page to find out how to trouble-shoot associated error. I

1-17

BIT BREAKDOWN OF STACK ENTRIES - Showing error information

ID #OC - CES

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A A A A

Control Store Parity Error Summary - I I I I
CS Parity Error in Group #2 ----------1 I I
CS Parity Error in Group #1 ------------1 I
CS Parity Error in Group #0. --------------1

ID #20 .. MICRO STACK

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I<-- Micro PC bits <12:0> -->I

VA/VIBA - output of VAMX

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I<---------------- Virtual Address bits <31:00> --------------------->I
From VA register if "CP" reference.
From VISA register if "IB" reference.

ID #08 - D Register

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Data 11 Data I I Data I I Data I
I<-- Byte #3 ---> 11 <-- Byte #2 ---> 11 <-- Byte #1 ---> 11 <-- Byte #0 --->I

ID #12 - TBERO

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Force Replace Both Grps-1 I I I I I I I I I
Force Replace Group # 1 ----1 I I I I I I I I
Force Replace Group #0 ------1 I I I I I I I
Force TB miss Group #1 --------1 I I I I I I
Force TB miss Group #0 ----------1 I I I I I
TB Hit Group #1 --------------------------------------1 I I I I
TB Hit Group #0 --1 I I I
Force TB Parity Error (code determines specific group/byte) --->I I
MEMORY MANAGEMENT ENABLE --1

1-18

ID #}3 - TBERl

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
l 0 9 8 7 6 5 4 3 2 l 0 9 8 7 6 5 4 3 2 l 0 9 8 7 6 5 4 3 2 ,

" J. u
A A A A A A A A A A A A A

PE Group 1 Data Byte 2 -I I I I I I I I I I I I 1-- CP TB Parity Error
PE Group 1 Data Byte 1 ----1 I I I I I I I I I I- PE Group 0 Addr Byte
PE Group 1 Data Byte 0 -'-----1 I I I I I I I 1--- PE Group 0 Addr Byte
PE Group 0 Data Byte 2 --------1 I I I I I 1----- PE Group 0 Addr Byte
PE Group 0 Data Byte 1 ----------1 I I I 1-------- PE Group 1 Addr Byte
PE Group 0 Data Byte 0 -------------1 I 1---------- PE Group 1 Addr Byte

1------------ PE Group 1 Addr Byte

ID #lA - TIMEOUT ADDRESS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
i o 9 a 1 6 s 4 3 2 i o 9 a 1 6 5 4 3 2 i o 9 a 1 6 5 4 3 2 i o

I<------------------------ PA <29:02> ----------------------->!

ID #lE - CACHE PARITY

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A A A A A A A A A A A A A A A A

Cache Parity error was detected ----1 I I I I I I I I I I I I
0 = IB reference, 1 = CP reference ---1 I I I I I I

I I I I I I
Parity OK in Data Group 1 Byte 0 -------1 I I I I I I I
Parity OK in Data Group 1 Byte 1 ---------1 I I I I I I
Parity OK in Data Group 1 Byte 2 ------------1 I I I I I I
Pari tv OK in Data Group 1 Byte 3 --------------! ! ! ! ! !
Parity OK in Data Group 0 Byte 0 ----------------1 I I I I I
Parity OK in Data Group 0 Byte 1

__________________ ,
I I I I

Parity OK in Data Group 0 Byte 2 --~------------------! I I I
Parity OK in Data Group 0 Byte 3 -----------------------! I I

I I
Parity OK in Address Group 0 Byte 0 ----------------------! I
Parity OK in Address Group 0 Byte 1 ------------------------! I I
Parity OK in Address Group 0 Byte 2 ---------------------------! I I
Parity OK in Address Group 1 Byte 0 -----------------------------! I
Parity OK in Address Group 1 Byte l -------------------------------!
Parity OK in Address Group 1 Byte 2 ---------------------------------!

1-19

0
1
2
0
1
2

ID #19 - SBl.ERR

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A A A A

RDS received for a CP requested cycle --1 I
SBI Timeout on a CP requested cycle ------1

11 10
----------- <-- see chart

0 0 - No device response
0 1 - Device Busy Timeout
1 0 - Waiting for READ DATA timeout
1 1 - Impossible code

I I
I I
I I

--=r

I
I
I
I
I
I
I
I
I

SBI Error Confirmation on CP requested cycle ------1 I
RDS received for an IB requested cycle ---------------1
SBI Timeout on an IB requested cycle -------------------

I
I
I
I
I
I
I
I
I
I
I
I

5 4
<-- see

I
chart ---------=!

0 0 - No device response
0 1 - Device Busy Timeout
1 0 - Waiting for READ DATA timeout
1 1 - Impossible code

PC - General Register #f - Program Counter

I
I
SBI Err CNF
received
for an IB
request

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

!<---------------Program execution address pointer ------------------>I

ID #Of - PSL - Processor Status Longword

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
A A A A

I
I I I I I I I I I I I I Decimal ovrflo --1 I I T N z v c
I I I I I I I I Float Underflow ---1 I
I I I I I I I I Integer Overflow ----1
I I I I I I 1--- Interrupt Priority Level
I I I I I 1--- Previous MODE
I I I I 1------ Current MODE
I I I 1----- Interrupt Stack selected
I I 1----- First Part Done
I 1--- Trace Pending
1--- Compatibility Mode

1-20

1
~ TB

[PG
~ l

TAG DATA

I

PC PC

DATA PATHS
ID llIS

PG ,,.
1

[1. 0/0 Register
~

CIB
mm;

PC • Parity Dlecked
____ _.. PG = Parity fienerated

PA ElJS

..... ,,
CACHE ~ ~ SBI Control

PG 911 m;
~

~
·~ PG ,,.

TAG DATA

~ l PC
PC PC

~

ti) llli PG ~ ~ ~

~ ,.
Instruction Buffer cs m;

WCS/OCS PCS

lt'CS/OCS RAN PCS RON PC

Machine Check Logout breakdown flowchart

"START HERE"

I •
1--1
I Find 00000028 on Kernel/Interrupt Stack I
1--1

I
1---1
I Extract "Byte O" from the LONGWORD following the 00000028. l
I This byte is the SUMMARY PARAMETER code. I
1---1

I
I

1---1
!Go to the appropriate flow for the associated parameter codesl
l------l------l------l---~--1------1------1------1------------1
I 00 I OD I 02 I 03 I 05 I Fl I F6 I all others I
I FO I I F2 I OF I oc I I I I
I I I OA I F3 I F5 I I I I
l------l------1------1------1------l------l------l------------I

I I I I I I I I
goto I goto I goto I goto I

"CP READ ERR" I "TB ERR" I "RDS ERR" I "MICRO SEQ ERR" I
- - I I - I -- I

I I I I
goto goto goto I

"IB READ ERR" "CACHE ERR" "CS PAR ERR" I
I
I

l<-----------------------------1
I

1---1
I If none of the above codes are what is contained in BYTE 0 of I
I the LONGWORD following the BYTE COUNT (00000028), then the summary I
I parameter byte is invalid. The problem could be in any of the I
I following areas of the VAX CPU logic: I
I I
I DATA PATHs, CONTROL STORE, MICRO SEQUENCER, or INTERRUPT I
I CONTROL LOGIC. I
1---1

Error Type Flowchart Additional Info.
**

"CP READ ERR" --------- 1.023 ---------------------- 1.056
"IB-READ-ERR" --------- 1.025 ---------------------- 1.056
"TB-ERR" ------------- 1.028 ---------------------- 1.038
"CACHE ERR" ----------- 1.030 ---------------------- 1.034
"RDS E~R" ------------ 1.031 ---------------------- 1.092
"CS ~AR ERR" ---------- 1.032 ---------------------- 1.046
"MICRO_SEQ_ERR" ------- 1.033 ---------------------- 1.094

1-22

"CP READ ERR"

I
!--!
I Extract the "SBI ERROR" register from the STACK DUMP. I
I It is the 11th logout entry (counting the 00000028 as I
I entry #1). I
1--1

I
yes 1---------------------1 no

l<------1 Bit <12> or <08> =l 1------->I
I 1---------------------1 I
I I
I 1-------------------------------1

yes 1-------------1 I Summary Parameter code and I
goto <------1 Bit <08>=1 I I Error Bits do not agree. I

"E" 1-------------1 I I
I no I Problem in INTERRUPT CONTROL I
I I LOGIC, CS or CS BUS, or the I
I I MICROSEQUENCER or MicroPC bus, I
I 1-------------------------------1

Binary value of Bits <11:10> =

00 01

I
I
I

10

Goto "A"

11

Goto "B"
I
I
I
I
I

!--->!
--1
I No Device Response received when attempting to access I
I the address contained in the "TIMEOUT ADDRESS" register. I
I Problem is probably in the address logic of the device I
I being accessed. I
1---1

I
1---1
I Goto TIMEOUT ADDRESS flows to determine what device was I
I being accessed. I
!---!

I
I
I
I
I
I
I
I
I
I
I
I
I
I

1---1<---I
I Device Busy Timeout occurred. Device being accessed is I
I contained in the "TIMEOUT ADDRESS" register. The device!
I recognized that it was being accessed, but was "busy" I
I doing a previous command. The CPU timed out since 512 I
1. cycles went by and the device was still "busy". I
I Problem could be almost anywhere in the accessed device I
I or on the buses it is interfacing to. I
!---!

I
!---!
I Goto TIMEOUT ADDRESS flows to determine what device was I
I being accessed. I
1---1

1-23

"A" "B"

I . I
I
I
I

!----------------------------->!

1--->I
I
I

1---1<-------I
I Waiting for Read Data Timeout occured. The device being!
I accessed (whose address is contained in the TIMEOUT I
I ADDRESS register) acknowledged the CPU's C/A cycle, but I
I didn't send back the expected READ DATA within 512 SBI I
I cycles. I
I I
!Problem could be almost anywhere in the controlling NEXUSI
Ito the device/unit acutally being addressed. I
1---1

I
1---1
I Goto TIMEOUT ADDRESS flows to determine what device was I
I being accessed. I
l---1

I
I
I
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1---1<-----------1
I IMPOSSIBLE CODE. This code should never occur. I
I i
I Problem is most likely in the CPU's SBI control logic, I
I or in the DATA PATHS (may have picked a bit when moving I
I register first to T9 and then to the STACK). I
1---1

1-24

"IB READ ERR"

I
1--1
I Extract the "SB! ERROR" register from the STACK DUMP. I
I It is the 11th logout entry (counting the 00000028 as I
I entry #1). I
!--!

I
yes 1---------------------1 no

l<------1 Bit <06> or <03> =l 1------->I
I 1---------------------1 I
I I
I !-------------------------------!

yes 1-------------1 I Summary Parameter code and I
goto <------1 Bit <03>=1 I I Error Bits do not agree. I

"E" 1-------------1 I I
I no I Problem in INTERRUPT CONTROL I
I I LOGIC, CS or CS BUS, or the I
I I MICROSEQUENCER or MicroPC bus. I
I !-------------------------------!

Binary value of Bits <05:04> =

00 01

I
I
I

10

Goto "C"

11

Goto "D"
I
I
I
I
I

1--->I

--!
I No Device Response received when attempting to access I
I the address contained in the "TIMEOUT ADDRESS" register.I
I Problem is probably in the address logic of the device I
I which contains the address being accessed. I
!--------------~--!

I
1---1
I Goto TIMEOUT ADDRESS flows to determine what device was I
I being accessed. I
!---1

I
I
I
I
I
I
I
I
I
I
I
I
I
I

1---1<---I
I Device Busy Timeout occurred. Device being accessed is I
I contained in the "TIMEOUT ADDRESS" register. The device!
I recognized that it was being accessed, but was "busy" I
I doing a previous command. The CPU timed out since 512 I
I cycles went by and the device was still "busy". I
I Problem could be almost anywhere in the accessed device I

or on the arrays or array buses it is interfacing to. I
1---1

I
!---!
I Goto TIMEOUT ADDRESS flows to determine what device and I
I the location-within the device that was being accessed. I
1---1

1-25

"C" "D"

I I
I
I
I

!----------------------------->!

!--->!
I
I

1---1<-------I
I Waiting for Read Data Timeout occured. The device being!
I accessed (whose address is contained in the TIMEOUT I
I ADDRESS register) acknowledged the CPU's C/A cycle, but I
I didn't send back the expected READ DATA within 512 SBI I
I cycles. I
I I
!Problem could be almost anywhere in the controlling NEXUS!
Ito the unit actually being addressed. I
!---!

I
!---!
I Goto TIMEOUT ADDRESS flows to determine what device and I
I the location-within the device that was being accessed. I
!---!

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1---1<-----------I
I IMPOSSIBLE CODE. This code should never occur. I
I I
I Problem is most likely in the CPU's SBI control logic, I
I or in the DATA PATHS (may have picked a bit when moving I
I register first to T9 and then to the STACK). I
!---!

l-26

"TIMEOUT ADDRESS"

------>I
I
I

1---1
I Extract the "TIMEOUT ADDRESS" register from the STACK DUMP. I
I I
I It is the 9th logout entry (counting the 00000028 as #1). I
1---1

-~Lt :
--------------------'-~--------------------------------------!
Extract Bits <27:00> from this register. Bits <27:00> of I
the TIMEOUT ADDRESS register correspond to bits <29:02> of I
the PHYSICAL BYTE ADDRESS of the device/location being I
accessed. I

I
Convert the TIMEOUT ADDRESS Bits <27:00> to a 30-bit VAX I
PHYSICAL BYTE addresi by first converting to binary, then I
adding to binary zeros to the least significant end, and I
then converting back to HEX. The resultant is the 30-bit I
VAX Physical Byte Address of the device/location that the I
VAX CPU was attempting to access at the time of the error. I

---!
I
I

---!
Now you know what type of error occured and who the CPU I
was attempting to access at the time of the error. I
With this. information, you should be able to zero in on I
the failing area of the system. I

I
If you got here from an IB_READ_ERROR, the address must bel
either a Physical MEMORY Address, or the address of one of I
the locations in the ISP ROM (should only occur during a I
boot). If it is an I/0 address, the problem has to do I
with CPU addressing or address translation. I
----------------------------------~------------------------!

"E"

I
1--1
I An ERROR Confirmation was returned by the addressed device. I
I This means that the function specified by the CPU in the I
I C/A cycle. was either illegal or not implemented by this I
I NEXUS device. I
I I
! The problem could be a CPU problem, a Software problem, or
I a NEXUS problem.
I
I The TIMEOUT ADDRESS register should indicate which NEXUS
I was being accessed. I
1--1

I
<-------------------------------1

1-27

"TB ERR"

I
1--1
I Extract "TB ERROR Register #0" from the STACK DUMP. I
I It is the 7th logout entry (counting the 00000028 as I
I entry #1). I
1--1

I
1--------------------------------1 no
I Is Bits <04:01> equal to 0? 1--------> goto
1--------------------------------1 FORCED TB PAR ERR

I yes - -
yes 1---------------------1 no 1---------------------------1

<-----1 Is Bit <00> = 1 ? 1---->IMemory Management is OFF ? I
1---------------------1 1---------------------------1

I
1--1
I Should never have gotten a Parity Error since I
I memory management wasn't turned on, therefore I
I the Translation Buffer wasn't used. I
1--1

I
1--1
I Problem is in the error detection logic. I
1-------------------------~----------------------I

1---1
I Extract "TB ERROR Register #1" from the STACK DUMP. I
I It is the 8th logout entry (counting the 00000028 asl
! entry #1). I
l---~---1

I

""

1--1 no I
I Are any of Bits <20:09> equal to a 1 ? 1------------->I
1--1

I
1------------------------------1
I Any of Bits <14:09> = 1 ??? I
1------------------------------1 l<--------------

1 yes I no I
1-------------------------------1 1-------------------------------1
I "TAG Parity Error" flagged. I I "PTE Parity Error" flagged. I
I Problem is most likely on the I I Problem is most likely on the I
I M8220 board. Could also be onl I M8222 board. Could also be onl
I M8222, M8226, M8219, M8223, I I the M8237, M8218, M8219, M8223, I
I M8224, M8226, M8230, M8233/8'sl I M8224, M8226, M8227, M8228, I
I M8234, M8286, M8236, or KA780 I IM8230, M8231, M8233/8's, M8234, I
I backplane or power. I IM8235, M8286, M8287, M8236, or I
1-------------------------------1 I the KA780 backplane or power. I

I 1-------------------------------1
1---------------------------------1

I
I
I
I
I
I
I
I
I
I
I

!Check for other TB Parity Errors 1---> 1------------------------------1 I
1---------------------------------1 I Any of Bits <20:15> = 1 ??? 1-->I

!------------------------------! yes
I no
I

then exit

1-28

"FORCED TB PAR ERR" - - -
I
I
I

1--1
I None of these bits should ever be set in normal operation. I
I These may be set by diagnostics, but should have been cleared I
I prior to booting of the operating system or the Diagnostic I
I Supervisor. I
!--!

I
I
I
I

1--1
I Either the software that you are running is setting these bits I
I so as to cause a "Translation Buffer Parity Error" or the M8222 I
I board is probably bad. I
1---~--1

1-29

"CACHE ERR"

I
I

1---1
I Extract the "CACHE PARITY Register" from the STACK DUMP. I
I This is the 10th logout entry (counting the 00000028 as #1). I
!---!

I
I

1--1
I Is any of Bits <13:00> = 0 ??? These bits are a "O" to I
I indicate a parity error in the associated group and byte.I
1--1

I yes I no
I I
I !---!
I I False detection of a cache parity error. I
I I Problem is probably in the error detection!
I I logic or microsequence logic.· I
I !---!
I
I

!--------------------------------! yes
I Is any of Bits <13:06> = O ??? 1-------------->I
I ----------~--------------------! I

I no I
I I
I 1---~-I
I I "Cache DATA Parity Error" flagged. I
I ! The M8221 is most likely bad. Could also be !
I I the M8218, M8219, M8223, M8225, KA780 backplane I
I I or KA 7 8 0 power. I
I !---!
I I
I I
I I<--------- I
I I I
I I I

!--------------------------------------! I
I "Cache TAG Parity Error" flagged. I !---------------------
! The M8220 is most likely bad. Could I I Check to see if any
I also be the M8218, KA780 backplane, I I other Cache errors.
I or KA780 power. I 1---------------------
-------------------------------------- I

1-30

1---------------------1
I Any of Bits <05:00> I
I equal to a "O" ???
I 1---------------------1

I yes I no
'<------!

then exit

"RDS ERR"

I
1--1
I Multiple bits were detected bad by the accessed SBI NEXUS wheri it I
I attempted to get the data that the CPU requested. I
I I
I Indicates that a problem exists in the referenced SBI NEXUS. I
I This NEXUS will be an SBI MEMORY CONTROLLER. I
I I
I This type of error easiest to trouble-shoot by using the contents I
I of the memory control registers in order to find the failing array. I
1--1

I
I

1--1
I Find the contents of all the SBI Memory Nexus registers either by I
I examining error log files, or by using CONSOL.SYS commands to examine!
I these registers. The CONSOL.SYS method can only be used if the CPU I
I was halted before the software was able to clear the memory control I
I registers. I
1--1

I
I

1--1
I The memory controller who detected the error should have error bits I
I set that indicate that a multiple bit error was detected and the I
I array in error should be latched. I
I Look in: I
I "Memory Register C" for MS780A's and MS780C's I
I "Memory Register C & D" for MS780E's and MS780F's I
I "Array Error Register" for MA780' s I
1--1

I
I

1--1
I Problem is typically an array problem, but could also be the SBI I
I Memory control board(s), memory power, memory backplane, M8218, or I
I M8219. I
!--!

1-31

"CS PAR ERR" - -
I

1---1
I Extract the "CPU ERROR STATUS Register" from the STACK DUMP I
I It is the 3rd logout entry (counting the 00000028 as #1). I
1---1

I
1---------------------1 no 1-------------------------------1
I Is Bit <15> = 1 ??? 1-------->I Is any of Bits <14:12> =l ??? I
1---------------------1 1-------------------------------1

I yes I yes I no
I 1------------------------------1 I
I I CS Summary bit probably bad. I I
I !Check M8231. Still a possible I I
I !Control Store Parity Error. I I
I 1------------------------------1 I
I I I

1--1 I
I Bits <14:12> indicates the specific group (2,1, or 0) that I I
I that the Parity error was detected in. Log this information!
I for future use in case problem is not fixed immediately. I
1--1

I
1--1
I Extract the "TRAPPED Micro-PC Register" from the STACK DUMPI
I It is the 4th logout entry (counting the 00000028 as #1). I
1--1

I
1--------------------1 no 1----------------------------------1
!Trapped UPC> FFF ? 1----->IProblem occured while accessing a I
1--------------------1 !PCS microword. The M8234 should bel

I yes I replaced as a 1st try. I
I 1----------------------------------1
I I

!--! I
I Problem occured while accessing a micro-word in WCS. I I
I Bits <11:10> of the UPC indicate the WCS slot in error.I I
I The appropriate M8233/M8238 should be replaced 1st try.I I
1--1 I

I I
1---1
I If 1st try fails; try those module that receive or transmit onl
I the Control Store Bus for the micro-bits associated with the I
I failing group. Charts indicating which boards are in question!
I for each group can be found in chapter 1 under the section forl
I Control Store Parity Errors. I
1---1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

l<--1
!---!
I False detection of a Control Store Parity Error. Problem is in the I
I error detection circuitry and is probably one of the following: I
I M8230, M8231, M8222, M8235, KA780 Backplane, or power. I
!---!

1-32

"MICRO_SEQ_ERR"

I
I
I

1--~-------I
I Extract the "TRAPPED Micro-PC Register" from the STACK DUMP. I
I It is the 4th logout entry (counting the 00000028 as #1). I
1--1

I
I
I

1---1
I This address can be verified in the micro-fiche to verify thatl
I it is indeed an unused micro-word. However, this problem is I
I a micro-sequencer/micro-PC problem no matter how you look at I
I it. I
1--~--------------------I

I
I
I

1--1
I This problem is most likely the M8235 board. Could also be I
I the M8224, the M8234, an M8233 or M8238, or the KA780 backplane!
I or KA780 power. I
1--1

1-33

1.) * * * * * Cache Parity errors * * * * *

The "Parity" register is normally all that is needed to trouble
shoot this type of Machine Check.

Cache Parity is checked when the data is read from cache.
The SBI control checks parity of SBI data as it is sent to
the Cache from Memory. Cache Tag Parity is generated on the
"CAM" board on a cache write and checked on the "CAM" board
on a read from cache. Cache Data Parity is checked on the
"COM" board.

Bit #15 of ID Register #lE, equal to a 1, indicates
that a Cache Parity error occur~ed.

If Bit #14 of ID #lE is set, the read reference was from
the CP (micro-code). This bit is not really an error
flag but simply states who made the reference that caused
the Cache Parity Error. If Bit #15 is not set, this bit
is of no real importance.

If Bit #14 of ID #lE is cleared, the read reference was
from the IB (Instruction Buffer). Not an error flag bit.

Bits <13:06>, of ID #lE, define the Group and Byte of Bad
DATA that the parity error was detected upon. Beware, the
bad Group and Byte are indicated by a 0 in the appropriate
bit location. These bits = l indicate parity was good.

Bits <05:00>, of ID #lE, define what Group and Byte has a
bad address tag. Beware, the bad Group and Byte are
indicated by a 0 in the appropriate bit location. These
bits = 1 indicate parity was good.

ID Register #lE is stored in "(SP)+36" by the machine check
logout. It is stored in ID Register #38 on a Double Error
Halt's first error.

The Cache Data Matrix is on the "COM" (M8221) board. The
Cache Address Martix is on the "CAM" (M8220) board.

If ID Register #lE contains a parity error indication for
the instruction buffer, the register is automatically
cleared when the instruction buffer is flushed.

1-34

Problem areas if Cache "DATA Parity Error" :

1. cache Data Matrix - M8221 - "COM" - Slot 5

Parity is checked as it is being read from the matrix.
Parity that is written into the matrix comes directly
from the MD bus (not checked or generated by the cache
control logic on the way into the matrix).

2. SBI Control/Interface boards:

a. If problem is in "BYTE #1 or #0"
SBI Interface Low bits - M8218 - "SBL" - Slot 2

b. If problem is in "BYTE #3 or #2"
SBI Interface High bits - M8219 - "SBH" - Slot 3

The SBI Control boards do not check the parity on the received
MD Bus data but do generate parity for the data that is
written from the SBI to the MD bus. The M8218 uses the output
from the parity checkers to generate "SBLP GO or Gl Par Err".

3. Instruction Buffer - M8223 - "IDP" - Slot 7

Receives "Bus MD <31:00>" but NOT "Bus MD Byte <3:0> Parn.
Therefore, the Instruction Buffer does not check parity on
the data used from the MD Bus.

4. Data Aligner - M8225 - "DBP" - Slot 9

Transmits "Bus MD <31:00> + Bus MD Byte <3:0> Par".
Receives "Bus MD <31:00>" but NOT "Bus MD Byte <3:0> Par",
therefore, parity is not checked on "Bus MD <31:00> prior
to use by the data path boards.

5. KA780 backplane

6. KA780 backplane power

1-35

Problem areas if Cache "TAG Parity Error"

1. Cache Data Matrix - M8220 - "CAM" - Slot 4

Parity is generated on the "Bus PA <29:12> bits" prior to
being written into the Tag Matrix. Parity is checked as
it is being read from the Tag Matrix, prior to use.

2. SBI Interface Low - M8218 - "SBl" - Slot 2

This board uses the output from the parity checkers to
create a "SBLP GO Par Err" or "SBLP Gl Par Err" signal.

3. KA780 backplane

4. KA780 backplane power

Disabling CACHE by KA780 backplane jumpers.

If you cannot obtain the correct cache boards in order to fix a cache
parity error problem, you may still be able to get the system up by
installing the following jumpers:

D04Pl to a ground pin
D04P2 to a ground pin

This will cause a cache miss on all references. Therefore, the system
will run much slower than normal.

This should only be done in case of an emergency. You must let the
customer know that cache is disable, since it may cause problems due
to program timing problems.

1-36

ID Register #lE

3 3 2 2 2 2 2 2
1 0 9 8 7 6 5 4

2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8

0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

Bits <31:16>

Not used, should be all zeros.

Bits <15:14>

15 14

0
1
1

1
0
1

Bits <13:06>

13 Parity
12 Parity
11 Parity
10 Parity
09 Parity
08 Parity
07 Parity
06 Parity

Bits <05:00>

05 - Parity
04 - Parity
03 - Parity
02 - Parity
01 - Parity
00 - Parity

OK
OK
OK
OK
OK
OK
OK
OK

OK
OK
OK
OK
OK
OK

No Error
IB read reference caused the'error
CP read reference caused the error

Data Parity OK for specified Group and Byte
the associated bit is set.

for CDM Group 1 Byte 0
for CDM Group 1 Byte 1
for CDM Group 1 Byte 2
for CDM Group 1 Byte 3
for CDM Group 0 Byte 0
for CDM Group 0 Byte 1
for CDM Group 0 Byte 2
for CDM Group 0 Byte 3

Address Parity OK for each Group and Byte if
the associated bit is set.

for CAM Group 0 Byte 0
for CAM Group 0 Byte 1
for CAM Group 0 Byte 2
for CAM Group 1 Byte 0
for CAM Group 1 Byte 1
for CAM Group 1 Byte 2

1-37

if

2.) * * * * * Translation Buffer Parity errors * * * * *

The TB ERR Registers, #0 and #1, are all that are needed to
trouble-shoot Translation Buffer Parity error Machine Checks.

TB Data Parity is written as it was on the ID bus. TB Data
Parity is checked on the "TBM" (M8222) board as it is read.

TB Tag Parity is generated on the "CAM" board and is checked
on the "CAM" board on a read from the translation buffer.
The TB Tag= "VAMX<30:15>" or "ID bus <31:26>".

The TB Data= "ID bus <20:00>".

Bits <20:09> of ID Register #13 define what
the GROUP and whether it was a DATA Byte or ADDRESS
Byte that caused the Translation Buffer Parity error.

The Translation Buffer ADDRESS matrix is on the "CAM"
(M8220) board.

The Translation Buffer DATA matrix is on the "TBM"
(M8222) board.

Problem areas if Translation Buffer "TAG Parity Error":

1. Cache Address/TB Address Matrix - M8220 - "CAM" - Slot 4

Parity is generated on "VAMX bits <30:15>", and is written
into TAG Matrix, on this board. Parity is checked, on this
board, as the TAG is being read.

The "Modify, Protect <3:0>, and Valid" bits are written from
the ID bus. The associated parity bit for these bits also
comes from the ID bus (it is NOT generated or checked on
th i s board) .

2. Translation Buffer Matrix - M8222 - "TBM" - Slot 6

The output of the parity checkers goes to this board (used
to set appropriate bits in "TB Register 0").

The "VAMX bits" feed this module along with the "CAM'' board
(MS 2 2 0) •

1-38

3. Data Path bits <31:16> - M8226 - "DEP" - Slot 10

4.

4.

5.

The "VAMX bits" are created on this board and the "Bus ID
bits <31:26>, that are used to write the "Modify, Protect <3:0>,
and Valid" bits, are used on this board.

Any board that sends or receives the "Bus ID bi ts <31:26>". The
following boards have receivers/drivers for these bits:

SBI Interface/Control High - M8219 - "SBH" - Slot 3
Cache Address Matrix ------ M8220 - "CAM" - Slot 4
Instruction Data Path M8223 - "IDP" - Slot 7
Instruction Decode -------- M8224 - "IRC" - Slot 8
Data Path bits <31:16> M8226 - "DEP" - Slot 10
Condition Codes/Exceptions - M8230 - "CEH" - Slot 14
Optional wcs -------------- M8233/8 - "OCS" - Slot 18
Writable Control Store M8233/8 - "WCS" - Slot 20
Prom Control Store -------- M8234 - "PCS" - Slot 22
Fraction Multiplier High M8286 - "FMH" - Slot 25
Console Interface Board M8236 - "CIB" - Slot 29

KA780 backplane

KA780 backplane power

Problem areas if Translation Buffer "DATA Parity Error":

1. Translation Buffer Matrix - M8222 - "TBM" - Slot 6

Parity is not generated, on this board, for the data to
be written into the DATA Matrix from the ID Bus. The
parity bits that are written are the ID Bus Parity bits
as received from the bus.

Parity is checked as the data is read from the DATA matrix.

2. Any board on the ID bus that transmits or receives "Bus ID
bits <20:00>". The following boards do this:

Terminator and Silo - M8237 - "TRS" - Slot 1
SBI Interface Low Bits - M8218 - "SBL" - Slot 2
SBI Interface High Bits - M8219 - "SBH" - Slot 3
Translation Buffer - M8222 - "TBM" - Slot 6
Instruction Data Path - M8223 "!DP" - Slot 7
Instruction Decode M8224 "!RC" Slot 8

1-39

Data Path bits <31:16> - M8226 - "DEP" - Slot 10
Data Path bits <15:08> - M8227 - "DDP" - Slot 11
Data Path bits <07:00> - M8228 - "DCP" - Slot 12
Cond. Codes/Exceptions - M8230 - "CEH" - Slot 14
Interrupt Control - M8231 - "ICL" - Slot 15
Optional WCS - M8233/8 - "OCS" - Slot 18
Writable Control Store - M8233/8 - "WCS" - Slot 20
PROM Control Store - M8234 - "PCS" - Slot 22
Microsequence Control - M8235 - "USC" - Slot 23
Fraction Multiplier Hi - M8286 - "FMH" - Slot 25
Fraction Multiplier Low - M8287 - "FML" - Slot 26
Console Interface Board - M8236 - "CIB" - Slot 29

3. KA780 backplane

4. KA780 backplane power

1-40

ID #12 Translation Buffer Register #0

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Bits <20:18>

Force Replace

Directs TB writes to defined groups.

20 - Write Both
19 - Force Replace Group 1
18 - Force Replace Group 0

Bits <17:16>

Force Miss

Force TB miss on the defined group.

17 - Group 1
16 - Group 0

Bits <15:08>

Last Reference

Data on last non-nop memory reference.

15 _, __ _

14 ----
13: l 0 -
09
08 ----

Bits <07:06>

Status of micro-FS bit
Status of micro-ADS bit
Status of micro-MCT field
1 means IB WCHK existed on an
1 means reference delayed one

TB Hit

Indicates which group was a TB hit.

07 - Group 1
06 - Group 0

1-41

IB reference
cycle by IB auto-reload

Bits <04:01> Force TB Parity Error

Allows bad parity to be generated in the encoded

Code of 0 - No errors
Code of 1 - No errors
Code of 2 - Group 0 Data Byte 0
Code of 3 - Group 0 Data Byte 1
Code of 4 - Group 0 Data Byte 2
Code of 5 - Group 1 Data Byte 0
Code of 6 - Group 1 Data Byte 1
Code of 7 - Group 1 Data Byte 2
Code of 8 - Group 0 Address Byte 0
Code of 9 - Group 0 Address Byte 1
Code of A - Group 0 Address Byte 2
Code
Code
Code
Code
Code

Bit <00>

of B
of c
of D
of E
of F

- Group 1 Address Byte 0
- Group 1 Address Byte 1
- Group 1 Address Byte 2
- No errors
- No errors

MME

If a 1, enables Memory Management.

1-42

Group and Byte.

ID #13 Translation Buffer Register #l

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0
1 0 9· 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8

Bits <20:09> TB Parity Error Status

0 0 0 0
7 6 5 4

0 0 0 0
3 2 1 0

Translation Buffer Error Status. When set indicates a parity error
in the associated Group and Byte.

Bit <08>

20

19
18
17
16

15
14
13
12

11
10
09

- Group 1 Data_Byte 2

- Group 1 Data_Byte 1
- Group 1 Data_Byte 0
- Group 0 Data_Byte 2
- Group 0 Data_Byte 1

- Group 0 Data_Byte 0
- Group 1 Address_Byte
- Group 1 Address_Byte
- Group 1 Address_Byte

- Group 0 Address_Byte
- Group 0 Address_Byte
- Group 0 Address_Byte

CP TB Parity Error

Parity error

Parity error
Parity error
Parity error
Parity error

Parity error
2 Parity error
1 Parity error
0 Parity error

2 Parity error
1 Parity error
0 Parity error

Indicates a TB micro-trap has been requested.

Bit <06>

Last TB Write Pulse

Indicates which TB group was last written. Unpredictable if both were
written into.

0 = Group 0
1 Group 1

1-43

Bit <04>

Bad IPA

Contents of IPA are not meaningful if this bit is set.

Bits <03:00>

IPA information

Status of the last load from the IPA.

3 = 1 for TB miss on load.
2 1 for TB parity error.
1 1 for Protection violation or miss.
0 1 for automatic hardware initiated load.

1-44

3.) * * * * Control Store Parity errors (PCS, WCS, or OCS) * * * *

Two registers are used to trouble-shoot this type of Machine
Check. They are as follows:

CPU Error Status (CES) for Group the error occurred in.

Trapped UPC for the micro-address of the error.

Bit <15> of the CES register must be a l if a Control Store
parity error occurred. If CES Bit <15>=0, then the problem
could be either the microcode board (M8234, M8238, or M8233)
whose address appears in the "Trapped UPC", or one of the
following boards:

M8231 Contains the register ("CES") that holds the
"CS Par Err Summary" bit and the "CS Par Err
Group <2:0>" bits.

M8222 Receives the "CS Parity Error" signals to use
to stop TB operations.

M8230 Creates the signals needed to trap the microcode
for a CS Parity Error.

M8235 Controls the micro-addressing.

Bit <12> of the "TRAPPED UPC" identifies where the Control
Store Parity Error was generated from (WCS or PCS).

If Bit <12> is a 0, then the problem occurred as a
result of a PCS (M8234) access.

If Bit <12> is a 1, then the problem occurred as a result
of a WCS (M8233 or M8238) access. If an Optional WCS
board is installed, further breakdown of the "TRAPPED UPC"
address will reveal which WCS board is at fault.

The following statements will define the board at fault providing
the lowest addressed WCS/OCS board is in slot 20 (addressing is
controlled by VAX-11/780 backplane jumpers):

If there is an M8233 (lK board) in Slot 20 and:
Bit <12>=1, Bit <10>=0 then wcs in Slot 20 had the error.
Bit <12>=1, Bit <10>=1 then Optional WCS (slot 18) had

the error.

If there is an M8238 (2K board) in Slot 20 and:
Bit <12>=1, Bit <11>=0 then WCS in Slot 20 had the error.
Bit <12>=1, Bit <11>=1 then Optional WCS (slot 18) had

the error.

1-45

The "Parity Error" checking logic is located on the
PCS (M8234) logic board. The 96 bit micro-word is broken
into three 32 bit sections, each with an associated parity
bit, and parity is checked on each section individually.
Parity should be EVEN (an even number of ones in each 32
bit section counting the associated parity bit).

Use the bit configuration layout for ID register #20
for the "TRAPPED UPC" bit definitions.

The "TRAPPED UPC" is stored in "(SP)+l2" on a MACHINE
CHECK logout. The "TRAPPED UPC" remains in ID #32 for
the first error of a DOUBLE ERROR HALT.

The "CPU Error Status Register" bits <14:12> define the
failing 32 bit section of the 96 bit Micro-code word.

Bits <31:00> = Group 0
Bits <63:32> = Group 1
Bits <95:64> = Group 2

(CES B i t 12 = 1)
(CES Bi t 13=1)
(CES Bit 14=1)

- Pin A22Al
- Pin A22Sl
- Pin A22U2

If an OPTIONAL WCS board is installed in the System, Jumpers
"W23 & W24" must be installed on the M8232, "CLK", board. If
the jumpers are out, attempted access of the Optional WCS
board will result in Control Store Parity Errors in all
groups (the micro-word sent to "CS" bus is all ones). The
same symptom will occur, when accessing any Micro-code
board, if the clock lines are bad.

Be aware that the WCS data can only be written by the LSI
Subsystem. WCS data cannot be read by the LSI Subsystem.

Problem areas:

PCS, WCS, or OPTIONAL WCS.
Incorrect setup of KA780 backplane jumpers for WCS and PCS.
No jumpers, for OPTIONAL WCS, on M8232.
Any Board on the "CS" bus.
M8232 Clock Board.
CPU Backplane.
CPU Power or Backplane Power Pin to Module connections.

1-46

ID #OC CPU Error Status Register

3 3 2 2
1 0 9 8

2 2 2 2
7 6 5 4

2 2 2 2
3 2 1 0

1 1 1 1
9 8 7 6

1 1 1 1
5 4 3 2

1 1 0 0
1 0 9 8

Bit <16>

Nested Error

Used by Memory Management.

Bit <15>

Control Store Parity Error Summary

Set if any of Bits <14:12> are set.

Bits <14:12>

When set,
group.

Bit <11>

Bit <10>

Bit <09>

Bit <08>

14
13
12

Control Store Parity Error bits

indicates a parity error was detected

- Group 2 Parity Error
- Group 1 Parity Error
- Group 0 Parity Error

E ALU N

E ALU Z

ALU N

ALU Z

1-47

in

0 0 0 0
7 6 5 4

0 0 0 0
3 2 1 0

the associated

Bit <07>

Bits <06:04>

ALU C31

Arithmetic Trap Code

The octal code in these bits defines the type of arithmetic trap.

Bit <03>

7
6
5
4
3
2
1
0

=
=
=
=
=
=
=

Decimal divide by o.
Decimal overflow.
Float underflow.
Float divide by 0.
Float overflow.
Integer divide by o.
Integer overflow.
No trap pending.

Performance Monitor Enable

Loaded or read by the microcode.

Bits <02:01>

AST Level

Used to deliver AST SIR during RET.

ID #20 Micro Stack Register

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Reading this register pops the top address from the micro stack.
Writing this register pushes an address onto the micro stack.

Bits <15:00>

Control Store Address <15:00>

<15:00> = micro Address <15:00>

1-48

Voltages to the Micro-code Boards

The Microcode boards use +5 volts and -5 volts. These voltages
may be checked at the following places:

+5 volts should be on pins "A2" and "Vl" of rows
"A" thru "F" of each slot that contains a Microcode board.

-5 volts should be on pins "BL2" and "EKl" of each
slot that contains a Microcode board.

Ground is on pins "C2" and "Hl" of rows "A" thru "F"
of each slot that contains a Microcode board.

M8235 LED description

The M8235, Micro Sequencer board, contains 14 LED's that reflect the
following:

1.) "Dl - Dl3" "Micro PC 00 - 12" respectively.
2.) "Dl4" ="STALL"

LED "Dl" is the bottom most LED while LED "Dl4" is the uppermost.

1-49

CS Bus Groups .and CS Bit Breakdown

Besides going to all the Microcode boards the "Bus CS" bits
also go to the following boards:

Group 0

Group 1

Group 2

<12:00>
<19:13>
<22:20>
<24:23>
<25>
<26>
<31>

<34:32>
<41: 35>
<45:42>

<47:46>
<54:48>
<57:55>

<58>

<63>

<65:64>
<69:66>
<71: 70>
<74:72>

<76:75>
<77>
<79:78>

<87:80>
<91:88>
<95:92>

M8235 - USC - Slot 23
M8227 - OOP - Slot 11
M8230 - CEH - Slot 14
M8227 - OOP - Slot 11
M8228 - OCP - Slot 12
M8230 - CEH - Slot 14
M8230 - CEH - Slot 14

M8228 - OCP - Slot 12
M8229 - OAP - Slot 13
M8231 - ICL - Slot 15
M8222 - TBM - Slot 6
M8222 - TBM - Slot 6
M8229 - OAP - Slot 13
M8229 - OAP - Slot 13
M8289 - FCT - Slot 28
M8231 - ICL - Slot 15
M8228 - OCP - Slot 12
M8231 - ICL - Slot 15

M8235 - USC - Slot 23
M8229 - OAP - Slot 13
M8289 - FCT - Slot 28
M8235 - USC - Slot 23
M8231 - ICL - Slot 15
M8235 - USC - Slot 23
M8229 - OAP - Slot 13
M8229 - OAP - Slot 13
M8230 - CEH - Slot 14
M8229 - OAP - Slot 13
M8225 - OBP - Slot 9
M8223 - IOP - Slot 7

Note: Remember that "Bus CS <95:00>" also go to slots 18,20 and 22.

1-50

Chart showing "Bus CS" bits to each Board by Board

M8222

M8225

M8228

M8230

M8235

M8234

"TBM" Slot 6

<45:42> - Group 1
<47:46> - Group 1

"DBP" slot 9

<91:88> - Group 2

"DCP"

<25>
<34:32> -
<58>

"CEH"

<22:20> -
<26>
<31>
<79:78> -

"USC"

<12:00> -
<65:64> -
<74:72> -
<76:75> -

"PCS"

Slot 12

Group O
Group 1
Group 1

Slot 14

Group 0
Group 0
Group 0
Group 2

Slot 23

Group 0
Group 2
Group 2
Group 2

Slot 22

<95:00> - Groups 0,1,2

M8233/M8238 "OCS" Slot 18

<95:00> - Groups 0,1,2

M8233/M8238 "WCS" Slot 20

<95:00> - Groups 0,1,2

1-51

M8223

M8227

M8229

M8231

M8289

"IDP" Slot 7

<95:92> - Group 2

"DDP" Slot 11

<19:13> - Group 0
<24:23> - Group 0

"OAP"

<41:35> -
<54:48> -
<57:55> -
<69:66> -
<77>
<79:78> -
<87:80> -

"ICL"

<45:42> -
<58>
<63>
<74:72> -

"FCT"

<57:55> -
<71:70> -

Slot 13

Group 1
Group 1
Group 1
Group 2
Group 2
Group 2
Group 2

Slot 15

Group 1
Group 1
Group 1
Group 2

Slot 28

Group 1
Group 2

Chart showing "Bus CS" Groups to each Board

Board Group 0 Group 1 Group 2

M8222 x

M8223 x

M8225 x

M8227 x

M8228 x x

M8229 x x

M8230 x x

M8231 x x

M8233 x x x

M8234 x x x

M8235 x x

M8238 x x x

M8289 x x

1-52

Using the Microcode Sync Point for scoping of the CS Bus

The VAX-11/780 CPU has a "Microcode Sync Pain~" that can be
set up to provide a scope trigger whenever the Microcode
reaches a specified address. To use this feature, proceed
as follows:

1. Determine what Micro PC you want the Sync to trigger at.

2. Deposit, uiing the CONSOL.SYS program, the address
into ID register #21.

3. Place your scopes SYNC on pin "A23V2" of the CPU
backplane.

4. Start the failing Macro program.

5. You can now scope the "CS" bus to determine what
bit(s) are bad.

The VAX-11/780 CPU also has logic that can stop the CPU when
the microcode reaches a specified Micro PC. This feature
may be used as follows:

l. Determine what Micro PC you want the CPU to halt at.

2. Deposit, using the CONSOL.SYS program, the desired
address into ID register #21.

3. Set, using the CONSOL.SYS program, the Stop or
Micro Match bit with the "SET SOMM" command.

4. Start the appropriate failing macro program. The
VAX-11/780 CPU will halt when it reaches the
Micro PC specified in ID register #21. You can
then scope the logic in the static state.

5. Be sure to execute the "CLEAR SOMM" command before
returning the system to the customer.

1-53

The Control Store Bit Backplane pin layout follows for the slots that
contain WCS and PCS boards (18, 20, and 22).

Group 0 (VAX CPU Slot 18. 20. or 22.)
Bus CS 00 - ABl Bus cs 11 - ALl Bus cs 22 - BM2
Bus CS 01 - AB2 Bus cs 12 - AL2 Bus cs 23 - AV2
Bus CS 02 - ACl Bus cs 13 - AM2 Bus cs 24 - BDl
Bus CS 03 - ADl Bus cs 14 - ARl Bus cs 25 - BD2
Bus cs 04 - AD2 Bus cs 15 - AR2 Bus cs 26 - BNl
Bus CS 05 - AEl Bus cs 16 - BAl Bus cs 27 - BPl
Bus CS 06 - AE2 Bus cs 17 - BBl Bus cs 28 - BP2
Bus CS 07 - AFl Bus cs 18 - BB2 Bus cs 29 - BRl
Bus CS 08 - AJ2 Bus cs 19 - BCl Bus cs 30 - BR2
Bus CS 09 - AKl Bus cs 20 - BLl Bus CS 31 - BSl
Bus CS 10 - AK2 Bus cs 21 - BMl Bus CS UPAR 0 - FL2

Group 1 (VAX CPU Slot 18.20. or 22.)
Bus cs 32 - BEl Bus cs 43 - CSl Bus cs 54 - DU2
Bus CS 33 - BE2 Bus cs 44 - CS2 Bus cs 55 - DD2
Bus CS 34 - BFl Bus cs 45 - CT2 Bus cs 56 - DF2
Bus CS 35 - BS2 Bus cs 46 - cu1 Bus cs 57 - DH2
Bus CS 36 - BT2 Bus cs 47 - CU2 Bus cs 58 - DJl
Bus CS 37 - BUl Bus cs 48 - CD2 Bus cs 59 - DJ2
Bus CS 38 - BU2 Bus cs 49 - CNl Bus cs 60 - DMl
Bus CS 39 - BV2 Bus cs 50 - CPl Bus cs 61 - DNl
Bus CS 40 - CCl Bus cs 51 - DP2 Bus cs 62 - DPl
Bus CS 41 - CDl Bus cs 52 - DT2 Bus CS 63 - DS2
Bus CS 42 - CP2 Bus cs 53 - DUl Bus CS UPAR 1 - FMl

Group 2 (VAX CPU Slot 18.20. or 22.)
Bus CS 64 - EH2 Bus cs 75 - ENl Bus cs 86 - FU2
Bus CS 65 - EJl Bus cs 76 - EPl Bus cs 87 - FV2
Bus CS 66 - EP2 Bus cs 77 - EBl Bus cs 88 - FPl
Bus CS 67 - ES2 Bus cs 78 - FAl Bus cs 89 - FP2
Bus CS 68 - ET2 Bus cs 79 - FBl Bus cs 90 - FRl
Bus CS 69 - EUl Bus cs 80 - FCl Bus cs 91 - FR2
Bus CS 70 - DCl Bus cs 81 - FLl Bus cs 92 - FJl
Bus CS 71 - DDl Bus cs 82 - FSl Bus cs 93 - FJ2
Bus CS 72 - EJ2 Bus cs 83 - FS2 Bus cs 94 - FKl
Bus CS 73 - EK2 Bus cs 84 - FT2 Bus CS 95 - FK2
Bus cs 74 - EMl Bus cs 85 - FUl Bus CS UPAR 2 - FM2

1-54

4.) * * * * * CPU READ Timeouts or Error Confirmation Aborts * * * * *
during Instruction Buffer ("IB") or Micro-code ("CP") accesses.

Two registers are needed to correctly trouble-shoot this type
of Machine Check. They are as follows:

TIMEOUT Address

SBI Error Reg.

to determine what device or location was
being referenced when error occurred.

to determine what type of error occurred.

The VAX-11/780 Processor initiates accesses to SBI NEXUS
from two separate sources. The VAX microcode can initiate
"read or write" accesses to any address and does so to
obtain operands (these operands may be used to calculate
source/destination addresses or may be the operand that
will be operated on.). The Instruction Buffer is the other
source from which the CPU can initiate an SBI data transfer.
The IB, however, can only do read accesses and these accesses
are used to fetch instruction stream data.

This type of error occurs whenever one of the following types of
conditions has occurred:

1. An attempt was made to access a non-existent NEXUS
address or a NEXUS did not respond when accessed. This
will result in the VAX CPU receiving a "NO DEVICE RESPONSE"
confirmation on the second cycle following the "Command
Address" or "Write Data" cycle. A "NO DEVICE RESPONSE"
confirmation is when the SBI CNF<l:O> lines are deasserted.
The CPU will wait a cycle and then retry the cycle that
got the NO DEVICE RESPONSE confirmation. If 512 cycles
elapse, from the initial C/A cycle, before an ACKNOWLEDGE
confirmation is received the CPU will timeout and a
Machine Check Exception will occur.

2. The CPU detected a "Device Busy" response from a NEXUS
and 512 SBI cycles later, still receives a "Device Busy"
response on attempted accesses. Whenever the VAX CPU
detects a "Device Busy" response, it will wait a cycle,
and then will arbitrate for the bus in an attempt to
retry the same transfer. This continues until the CPU
receives an "Acknowledge" confirmation response or until
512 SBI cycles have occurred from the first transfer
attempt (in this case, the CPU will timeout and a Machine
Check exception will occur).

3. The CPU receives an "Error" confirmation to a "Command
Address" transfer. This usually means that the CPU has
requested a function that the NEXUS cannot perform.

1-55

The "TIMEOUT ADDRESS", ID Register #lA, latches the SBI
PHYSICAL Longword Address whenever an SBI CP Timeout occurs.
When using this ID register, be aware that ID #lA bits <27:00>
are bits <29:02> of the PHYSICAL BYTE ADDRESS. The SBI
address is a LONGWORD address. To convert to a BYTE Physical
address, simply insert two BINARY ZERO's to the right of the
least significant digit (first convert the LONGWORD S.B.I. address
from HEX format to BINARY format, then add two zeros to the right,
least significant digits, and then convert the result back to
HEX format).

The "TIMEOUT ADDRESS", ID #lA, does not latch the physical
SBI address for IB data timeouts, but ID #lA "may" still be valid.

The "TIMEOUT ADDRESS", ID Register #lA, is stored in
"(SP)+32" on a MACHINE CHECK logout. It is stored in
ID register #37 on the first error of a Double Error Halt.

Bits <27:00> of ID Register #lA, are Bits <29:02> of the
SBI Physical Byte Address. The SBI uses Longword Addresses.
Bits <31:30> contain the "MODE" of the reference and Bit 29
flags whether or not a hardware protection check was done.

Instruction Buff er accesses should always be "reads" in order
to obtain instruction stream data. Therefore, they should always
be to a memory location or ISP ROM location.

ID register #19 identifies the type of error that occurred. If
Bit 12=1 a CP timeout occurred and Bits <11:10> identify the type
of timeout. If Bit 06=1 an !B timeout occurred and Bits <5:4>
identify the type of timeout that occurred. If Bit 08=1 the error
was due to an Error Confirmation as a result of a CP reference.
If Bit 03=1 the error was due to an Error Confirmation as a result
of an IB reference.

ID register #19 also contains some other bits that may be of
interest. Bit 13 flags the fact that a multiple bit error occurred
in memory and that the data received by the VAX CPU is bad.
Bit 7 flags the fact that a multiple bit error occurred in memory
while fetching data for the Instruction Buffer (IB).
Bit 2 flags a Multiple CP error, (another error occurred before the
first error was cleared).

Problem areas:
CPU SBI interface.
CPU Memory/CACHE control.
Memory.
Any Nexus.
Power.
SBI cables.

1-56

3 3 2 2
1 0 9 8

Bit <15>

2 2 2 2
7 6 5 4

ID #19

2 2 2 2
3 2 1 0

- SBI Error Register

1 1 1 1
9 8 7 6

1 1 1 1
5 4 3 2

1 1 0 0
1 0 9 8

RDS Interrupt Enable

0 0 0 0
7 6 5 4

0 0 0 0
3 2 1 0

Enable interrupts for Read Data Substitute (Bad Data) errors.

Bit <14>

CRD

Received corrected read data (CRD) from memory.

Bit <13>

RDS

Received read data substitute (RDS) from memory.

Bits <12:10>

CP Timeout Status

If 12 = 1, indicates a timeout occurred as a result of a CP requested
cycle.

12 11 10

l
1
1
l

0
0
1
1

Bit <08>

0
l
0
1

"No Device Response" timeout.
"Device Busy" ti~eout.
"Waiting for Read Data" timeout.
Impossible code.

CP SBI Error Confirmation

Set when the CP requested cycle received an error confirmation to
a command address transfer.

Bit <07>

IB RDS

Read data substitute {RDS) data was received from memory on an
IB data· request.

1-57

Bits <06:04> IB Timeout Status

If bit <06>=1, a timeout occurred on an IB requested cycle.

06 05 04

1
1
1
1

0
0
1
1

Bit <03>

0
1
0
1

"No Device Response" timeout.
"Device Busy" timeout.
"Waiting for Read Data" timeout.
Impossible code.

IB SBI Error Confirmation

Set when an IB requested cycle receives an error confirmation.

Bit <02>

Multiple CP Error

Set with pending CP timeout or CP SBI error confirmation not
serviced.

Bit <01> SBI Not Busy

1-58

3 3 2 2
1 0 9 8

ID #IA

2 2 2 2
7 6 5 4

2 2 2 2
3 2 1 0

- Timeout Address Register

l 1 1 l
9 8 7 6

1 l l 1
5 4 3 2

1 l 0 0
1 0 9 8

0 0 0 0
7 6 5 4

0 0 0 0
3 2 1 0

Latches the SBI PHYSICAL LONGWORD Address on an SBI Timeout. Will not
latch for IB data timeouts.

Bits <31:30>

31 30

0
0
1
1

Bit <29>

0
1
0
1

Mode

Kernel mode
Executive mode
Supervisor mode
User mode

Protection Check

Equal to a zero for references not subject to a hardware protection
check.

Bits <27:00>

SBI Physical Longword Address

Contains the latched Physical Address bits <29:02> of the SBI Physical
address.

<27:00> PA<29:02>

1-59

Note: A written step by step procedure on how to break down Physical
VAX BYTE addresses follows these bit breakdown charts.

Breaking down PHYSICAL BYTE ADDRESSES

If <29>=1 & <20>=1 -->I I
MBZ if <29>=1 & <20>=01 I

Adapter # I
I<- MBZ if <29>=1 ->I I I I

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2

I
I
I

I
I
I

"l<------->I
I I
I TR Levt:!l
I "

NEXUS Register Offset
<29>=1 & <20>=0.

1 1 0 0 0 0 0 0
1 0 9 8 7 6 5 4

0 =
1 =

MEMORY Array
I/0 Address

Addr. I
I
I
I

I 1-------- If <29>=1 & <20>=0
I
l<-------MBZ if <29>=1 & <20>=0

If <29>=1 & <20>=1 this is a UNIBUS ADAPTER Address.
If <29>=1 & <20>=0 this is a NEXUS Register Address.

MEMORY ARRAY Physical Byte Addresses

OOOOOOOO:lFFFFFFF

I<------------ 64KB Array # --->I
I<------ 256KB Array # ---->I
I<-- 1 MB Array # --->I I I

if

0 0
3 2

I
I
I
I

0 0
1 0

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
"I<------------------------- Memory Array address ---------------------->!
I
0

NEXUS Physical Byte Addresses

20002000:2001FFFF

2 2 2 2 2 2 2 2 2 2 1 1 1
9 8 7 6 5 4 3 2 1 0 9 8 7
" " A /'\.. A A " " " ""I

1 1 1 1 1 1 1 0 0 0
6 5 4 3 2 1 0 9 8 7

I
I I I I I I I I I I I I I I <---1 --->I<---- Register
1 0 0 0 0 0 0 0 0 0 0 0 0 I

1-- Hex representation
\

1-60

0 0 0 0 0 0 0
6 5 4 3 2 1 0

I
Offset ------->!

of NEXUS TR Level

UNIBUS Physical Byte Addresses

20100000:201FFFFF

2 2
9 8

I I
1 0

2 2 2 2
7 6 5 4

I I I I
0 0 0 0

2 2 2 2
3 2 1 0

I I I I
0 0 0 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I I<-- 18 Bit UNIBUS Address in HEX format -->I
l<->I

I UNIBUS ADAPTER number

A maximum of 4 DW780 controllers, and therefore a maximum of 4 UNIBUSes,
are supported on the VAX-11/780 system. Jumpers on the DW780 backplanes
select the "UNIBUS Adapter #" for the associated UNIBUS.

RH780 External Register Physical Byte Addresses

200xx400:200xx7FC RH780 Drive number
xx = RH780 TR Level l<-TR # ->I I

I I r---r
2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A A A A A A A A A A A A A l<---1--->I
I I I I I I I I I I I I I I I I I
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Register number

Offsets (in bits <12:0>) from 400 thru 7FC are External Drive registers.

RH780 Internal Register Physical Byte Addresses

200xx000:200xx3FC
and

200xx800:200xxFCO

2 2 2 2 2 2 2 2 2 2
9 8 7 6 5 4 3 2 1 0

"' "' A A A A

I I I I I I I I I I
1 0 0 0 0 0 0 0 0 0

RH780
i<-TR # ->i
I I

xx = RH780 TR Level

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

!<----------------------------->!
I I I I Register Byte offset. Bits I
0 0 0 I <12:10> must not = 001~ I

Offsets of 000 thru 3FC are internal registers, except MAP registers.
Offsets of 800 thru FCO are internal MAP registers.

1-61

Physical Byte Address breakdown procedure:

The 30 bit VAX Physical address spaces is broken into two equal parts.
The upper 512 Megabytes of address space is called I/0 space and is
used to address NEXUS, UNIBUS, and MASSBUS registers. The lower 512
Megabytes is used to address Physical Memory Arrays. The address space
is broken down as follows:

00000000
20000000

lFFFFFFF
3FFFFFFF

Physical Memory array addresses
= Physical I/0 register & I/0 memory space.

The first step in breaking down a PHYSICAL BYTE ADDRESS is to determine
if the address is an I/0 or MEMORY ARRAY address. This is done by
checking the state of PA bit <29>.

PA<29> 1 indicates that the address is an I/O address.
PA<2"9> = 0 indicates that the address is a MEMORY ARRAY address.

PA bit <29> = 0 - Physical Memory Array address

The address is a Memory ARRAY address if PA<29>=0. The system
configuration must be known in order to determine what array is being
addressed. Further on in this section are several pages of charts and
procedure that can be used to determine what addresses correspond to what
physical array.

PA bit <29> = 1 - Physical I/O address

Use the following procedure to breakdown a Physical I/0 address.

1. "PA Bit <29>" must be a 1 to indicate that the address is a
VAX I/0 address. If "PA Bit <29> = O" the address is a Physical
MEMORY address, and the remainder of this procedure cannot be
used.

2. If PA Bit <29>=1 then PA Bits <28:21> must be zeros. If not, the
address is illegal.

3. Check "PA Bit <20>" and proceed as indicated:

1-62

PA bit <20> = 1

If "PA Bit <20> = l", the I/0 address is in a "UNIBUS ADAPTER'S"
address region, and the following procedure can be used to find out
what UNIBUS ADAPTER and UNIBUS DEVICE is being addressed:

a. "PA bits <19:18>" indicate the "UNIBUS ADAPTER number".

b. "PA bits <17:00>" contain the 18-bit UNIBUS DEVICE address.

NOTE: "UNIBUS ADAPTER" does not ref er to which DW780 but indicates which
"UNIBUS" is being referenced. In other words, the UNIBUS ADAPTER
number is not an indication of how the "TR Level" jumpers are set
for a DW780, but indicate how DW780 backplane jumpers "Wl & W2"
are configured for the controlling DW780

PA bit <20> = 0

If "PA bit <20> = O", the I/0 address is a NEXUS Registers or MASSBUS
Drive register address. In both cases, "PA<l6:13>" will contain
the "TR Level" of the NEXUS being addressed. The system
configuration must be known in order to determine if the address
is a NEXUS Register or MASSBUS Drive register address.

If PA Bit <29>=1 & PA Bit <20>=0, then PA Bit <17> and PA Bits <19:18>
must be zero. If they do not, the address is illegal.

If "PA bits <16:13>" indicate an RH780 address, use the following
procedure to determine if the address is for an RH780 NEXUS
register or for an associated MASSBUS Drive register:

a. If "PA bits <12:10> do not = l", then "PA<l2:00>" contain
the offset address for an RH780 (Internal) register.

b. If "PA bit <12:10> = l", then "PA bits <9:7>" indicate the
MASSBUS Drive addressed, and "PA bits <6:2>" indicate the
register (EXTERNAL MASSBUS register) addressed.

1-63

1/0 ADDRESS Ranges

NEXUS
TR level "LONGWORD" range "BYTE" range
---------------~--

0 (see note) 8000000 80007FF 20000000 - 20001FFF
1 8000800 8000FFF 20002000 - 20003FFF
2 8001000 80017FF 20004000 - 20005FFF
3 8001800 8001FFF 20006000 - 20007FFF
4 8002000 80027FF 20008000 - 20009FFF
5 8002800 8002FFF 2000AOOO - 2000BFFF
6 8003000 80037FF 2000COOO - 2000DFFF
7 8003800 8003FFF 2000EOOO - 2000FFFF
8 8004000 80047FF 20010000 - 20011FFF
9 8004800 8004FFF 20012000 - 20013FFF

10 8005000 80057FF 20014000 - 20015FFF
11 8005800 8005FFF 20016000 - 20017FFF
12 8006000 80067FF 20018000 - 20019FFF
13 8006800 8006FFF 2001AOOO - 2001BFFF
14 8007000 80077FF 2001COOO - 2001DFFF
15 8007800 8007FFF 2001EOOO - 2001FFFF

Note: "TR#O address space" is not assigned to any NEXUS. This is
unused address space.

DW780 NEXUS
Adapter CODE

"Longword" Address ranges
for UNIBUS devices

"BYTE" Address ranges
for UNIBUS devices

0
1
2
3

28
29
2A
2B

8040000
8050000
8060000
8070000

804FFFF
805FFFF
806FFFF
807FFFF

20100000 - 2013FFFF
20140000 - 2017FFFF
20180000 - 201BFFFF
201COOOO - 201FFFFF

NOTE: Adapter numbers are assigned by DW780 backplane jumpers and do
not have to correspond to any TR level scheme. The ADAPTER #
simply indicates a particular UNIBUS.

Unused "LONGWORD" Address

8000000 - 80007FF
8008000 - 803FFFF
8080000 - FFFFFFF

Physical Memory Array Address range

"Longword" Address range

0000000 - 7FFFFFF

1-64

Unused "BYTE" Address Ranges

20000000 - 20001FFF
20020000 - 200FFFFF
20200000 - 3FFFFFFF

"Byte" Address range

00000000 - lFFFFFFF

DW780 Register offsets

Reg. Byte Longword Reg. Byte Longword
Name offset offset Name off set off set
---------------------- -----------------------
CNF GR 000 000 MR13 830 20C
UBACR 004 001 MR14 834 200
UBASR 008 002 MR15 838 20E
OCR ooc 003 MR16 83C 20F
FMER 010 004 MR17 840 210
FU BAR 014 005 MR18 844 211
FMER 018 006 MR19 848 212
FU BAR OlC 007 MR20 84C 213
BRSVRO 020 008 MR22 850 214
BRSVRl 024 009 MR23 854 215
BRSVR2 028 OOA MR24 858 216
BRSVR3 02C OOB MR25 85c 217
BRRVR4 030 ooc MR26 860 218
BRRVR5 034 OOD MR27 864 219
BRRVR6 038 OOE MR28 868 21A
BRRVR7 03C OOF MR29 86C 21B
DPRO 040 010 MR30 870 21C
DPRl 044 Oll MR31 874 210
DPR2 048 012 MR32 878 21E
DPR3 04C 013 MR33 87C 21F
DPR4 050 014 MR34 880 220
DPRS 054 015 MR35 884 221
DPR6 058 016 MR36 888 222
DPR7 05C 017 MR37 BBC 223
DPR8 060 018
DPR9 064 019
DPRlO 06B OlA
DPRll 06C OlB . . .
DPR12 070 OlC MR480 F80 3EO
DPR13 074 010 MR481 F84 3El
DPR14 078 OlE MR482 F88 3E2
DPR15 07C OlF MR4B3 F8C 3E3
resvd 080 020 MR484 F90 3E4

MR485 F94 3E5 . MR486 .F98 3E6
resvd 7EC lFF MR4B7 F9C 3E7
MRO 800 200 MR488 FAO 3E8
MRl 804 201 MR489 FA4 3E9
MR3 BOB 202 MR490 FAB 3EA
MR4 BOC 203 MR491 FAC 3EB
MRS 810 204 MR492 FBO 3EC
MR6 814 205 MR493 FB4 3ED
MR7 818 206 MR494 FBB 3EE
MRS 81C 207 MR495 FBC 3EF
MR9 820 208 resvd FCO 3FO
MRlO 824 209
MRll 828 20A . .
MR12 82C 208 resvd FFC 3FF

1-65

RH780 Internal Register offsets

Reg. Byte Longword Reg. Byte Longword
Name offset offset Name off set offset
---------------------- -----------------------
CNF GR 000 000 MR65 SFC 23F
MBA CR 004· 001 MR66 900 240
MBASR oos 002 MR67 904 241
MBAVAR ooc 003 MR6S 90S 242
MB AB CR 010 004 MR69 90C 243
MBADR 014 005 MR70 910 244
MBASMR 018 006 MR71 914 245
MBA CAR OlC 007 MR72 918 246
resvd . . MR73 91C 247
(and MASSBUS Registers) MR74 920 248
resvd . . MR75 924 249
MRO 800 200 MR76 92S 24A
MRl 804 201 MR77 92C 24B
MRl SOB 202 MR78 930 24C
MR2 BOC 203 MR79 934 240
MR3 810 204 MRSO 938 24E

MR81 93C 24F
MR82 940 250 . . MR83 944 251

MR37 SSC 223 MR84 948 252
MR38 890 224 MR85 94C 253
MR39 S94 225
MR40 S98 226
MR41 89C 227
MR42 SAO 228 .
MR43 8A4 229 MR467 F4C 303
MR44 SAS 22A MR468 F50 3D4
MR45 SAC 22B MR469 F54 3D5
MR46 8BO 22C MR470 F58 3D6
MR47 8B4 22D MR471 FSC 3D7
MR48 8B8 22E MR472 F60 3D8
MR49 SBC 22F MR473 F64 3D9
MRSO SCO 230 MR474 F6S 30A
MRSl SC4 231 MR475 F6C 30B
MR52 aca 232 MR476 F70 30C
MR53 ace 233 MR477 F74 300
MR54 8DO 234 MR478 F7S 30E
MR55 804 235 MR479 F7C 3DF
MR56 808 236 MR480 FSO 3EO
MR57 SOC 237
MR58 SEO 238
MR59 8E4 239
MR60 8E8 23A MR491 FBO 3EC
MR61 SEC 23B MR492 FB4 3EO
MR62 8FO 23C MR493 FB8 3EE
MR63 8F4 230 MR494 FBC 3EF
MR64 8F8 23E MR495 FCO 3FO

If PA<lO>=l then the register is a "MASSBUS" (external) register.
The "MASSBUS Register Offsets" are on the next page.

1-66

RH780 MASSBUS (EXTERNAL) Register offsets

Reg. "Offsets for MASSBUS register of Drives 0 thru 7"
No. #0 I #1 I #2 I #3 I #4 I #5 I #6 I #7

0 0 80 100 180 200 280 300 380
1 4 84 104 184 204 284 304 384
2 8 88 108 188 208 288 308 388
3 c SC 100 18C 20C 28C 30C 38C
4 10 90 100 190 210 290 310 390
5 14 94 100 194 214 294 314 394
6 18 98 100 198 218 298 318 398
7 lC 9C 100 19C 21C 29C 31C 39C
8 20 AO 100 lAO 220 2AO 320 3AO
9 24 A4 100 1A4 224 2A4 324 3A4
A 28 A8 100 1A8 228 2A8 328 3A8
B 2C AC 100 lAC 22C 2AC 32C 3AC
c 30 BO 100 lBO 230 2BO 330 3BO
D 34 84 100 1B4 234 284 334 3B4
E 38 88 100 1B8 238 288 338 3B8
F 3C BC 100 lBC 23C 2BC 33C 3BC

10 40 co 100 lCO 240 2CO 340 3CO
11 44 C4 100 1C4 244 2C4 344 3C4
12 48 ca 100 1C8 248 2C8 348 3C8
13 4C cc 100 lCC 24C 2CC 34C 3CC
14 50 DO 100 lDO 250 2DO 350 3DO
15 54 D4 100 1D4 254 2D4 354 3D4
16 58 D8 100 1D8 258 2D8 358 3D8
17 5C DC 100 lDC 25C 2DC 35C 3DC
18 60 EO 100 lEO 260 2EO 360 3EO
19 64 E4 100 1E4 264 2E4 364 3E4
lA 68 E8 100 1E8 268 2E8 368 3E8
18 6C EC 100 lEC 26C 2EC 36C 3EC
lC 70 FO 100 lFO 270 2FO 370 3FO
lD 74 F4 100 1F4 274 2F4 374 3F4
lE 78 F8 100 1F8 278 2F8 378 3F8
lF 7C FC 100 lFC 27C 2FC 37C 3FC

Reg.# RPOx RMOx TE16
0 CSl RMCSl CSl
1 DS RMDS DS
2 ERl RMERl ER
3 MR RMMRl MR
4 AS RMAS AS
5 DA RMDA FC
6 DT RMDT DT
7 LA RMLA ex
8 SN RMSN SN
9 OFF RMOF TC
A DCA RMOC
B CCA RONR
c ER2 RMMR2
D ER3 RMER2
E ECCPOS RMECl
F ECCPAT RMEC2

1-67

Memory Array Address Bit breakdown

Operand
Array Length

Boundaries Boundaries

PA Bit -> 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Bit

1
0

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
A A A A

I 1 Mb I I
= I/0 space 256 Kb. I -= Phy. Mem. space 64 Kb

<28:16> = 64KB array number
<28:18> = 256KB array number
<28:20> = lMegaByte array number

Longword _ I I I
Word I I

Byte _ I

Physical Address bits 0 & 1 are not used on the SBI. All addresses to
Nexus devices are Longword addresses, (only Physical Address bits
<29:02> are used on the SBI).

The "SBI MASK" field is used to specify which byte(s) are to be
referenced within a Longword.

There is a total of 1 GigaByte of Physical address space. This space
is broken up into two equal sections.

5i2 Megabyte of Physical MEMORY Address Space,
512 Megabyte of Physical I/0 Address Space

"Timeout Address" ID register bit breakdown (ID #IA)

->3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
A A A I I
I I I I<---------- Physical Address Bits <29:02> ------------------>!
I I I
I I I Protection Check specifier value

"A

Mode

1-68

Physical "BYTE" Address Space. - 64KB boundries
000.00 Megabyte 002.75 Megabyte 005.50 Megabyte

00000000 - OOOOFFFF 002C0000 - 002CFFFF 00580000 - 0058FFFF
00010000 - OOOlFFFF 00200000 - 0020FFFF 00590000 - 0059FFFF
00020000 - 0002FFFF 002EOOOO - 002EFFFF 005A0000 - 005AFFFF
00030000 - 0003FFFF 002FOOOO - 002FFFFF 00580000 - 0058FFFF

000.25 Megabyte 003.00 Megabyte 005.75 Megabyte
00040000 - 0004FFFF 00300000 - 0030FFFF 005COOOO - 005CFFFF
00050000 - 0005FFFF 00310000 - 0031FFFF 00500000 - 0050FFFF
00060000 - 0006FFFF 00320000 - 0032FFFF 005EOOOO - 005EFFFF
00070000 - 0007FFFF 00330000 - 0033FFFF 005FOOOO - 005FFFFF

000.50 Megabyte 003.25 Megabyte 006.00 Megabyte
00080000 - 0008FFFF 00340000 - 0034FFFF 00600000 - 0060FFFF
00090000 - 0009FFFF 00350000 - 0035FFFF 00610000 - 0061FFFF
OOOAOOOO - OOOAFFFF 00360000 - 0036FFFF 00620000 - 0062FFFF
00080000 - 0008FFFF 00370000 - 0037FFFF 00630000 - 0063FFFF

000.75 Megabyte 003.50 Megabyte 006.25 Megabyte
ooocoooo - OOOCFFFF 00380000 - 0038FFFF 00640000 - 0064FFFF
00000000 - OOOOFFFF 00390000 - 0039FFFF 00650000 - 0065FFFF
OOOEOOOO - OOOEFFFF 003A0000 - 003AFFFF 00660000 - 0066FFFF
OOOFOOOO - OOOFFFFF 00380000 - 0038FFFF 00670000 - 0067FFFF

001. 00 Megabyte 003.75 Megabyte 006.50 Megabyte
00100000 - OOlOFFFF 003COOOO - 003CFFFF 00680000 - 0068FFFF
00110000 - OOllFFFF 00300000 - 0030FFFF 00690000 - 0069FFFF
00120000 - 0012FFFF 003EOOOO - 003EFFFF 006AOOOO - 006AFFFF
00130000 - 0013FFFF 003FOOOO - 003FFFFF 00680000 - 0068FFFF

001. 25 Megabyte 004.00 Megabyte 006.75 Megabyte
00140000 - 0014FFFF 00400000 - 0040FFFF 006C0000 - 006CFFFF
00150000 - 0015FFFF 00410000 - 0041FFFF 00600000 - 0060FFFF
00160000 - 0016FFFF 00420000 - 0042FFFF 006EOOOO - 006EFFFF
00170000 - 0017FFFF 00430000 - 0043FFFF 006FOOOO - 006FFFFF

001.50 Megabyte 004.25 Megabyte 007.00 Megabyte
00180000 - 0018FFFF 00440000 - 0044FFFF 00700000 - 0070FFFF
00190000 - 0019FFFF 00450000 - 0045FFFF 00710000 - 0071FFFF
OOlAOOOO - OQlAFFFF 00460000 - 0046FFFF 00720000 - 0072FFFF
OOlBOOOO - OOlBFFFF 00470000 - 0047FFFF 00730000 - 0073FFFF

001. 75 Megabyte 004.50 Megabyte 007.25 Megabyte
OOlCOOOO - OOlCFFFF 00480000 - 0048FFFF 00740000 - 0074FFFF
00100000 - OOlOFFFF 00490000 - 0049FFFF 00750000 - 0075FFFF
OOlEOOOO - OOlEFFFF 004AOOOO - 004AFFFF 00760000 - 0076FFFF
OOlFOOOO - OOlFFFFF 004BOOOO - 004BFFFF 00770000 - 0077FFFF

002.00 Megabyte 004.75 Megabyte 007.50 Megabyte
00200000 - 0020FFFF 004COOOO - 004CFFFF 00780000 - 0078FFFF
00210000 - 0021FFFF 00400000 - 0040FFFF 00790000 - 0079FFFF
00220000 - 0022FFFF 004EOOOO - 004EFFFF 007AOOOO - 007AFFFF
00230000 - 0023FFFF 004FOOOO - 004FFFFF 007BOOOO - 0078FFFF

002.25 Megabyte 005.00 Megabyte 007.75 Megabyte
00240000 - 0024FFFF 00500000 - 0050FFFF 007COOOO - 007CFFFF
00250000 - 0025FFFF 00510000 - 0051FFFF 00700000 - 007DFFFF
00260000 - 0026FFFF 00520000 - 0052FFFF 007EOOOO - 007EFFFF
00270000 - 0027FFFF 00530000 - 0053FFFF 007FOOOO - 007FFFFF

002.50 Megabyte 005.25 Megabyte 008.00 Megabyte
00280000 - 0028FFFF 00540000 - 0054FFFF 00800000 - 0080FFFF
00290000 - 0029FFFF 00550000 - 0055FFFF 00810000 - 0081FFFF
002A0000 - 002AFFFF 00560000 - 0056FEFF 00820000 - 0082FFFF
00280000 - 002BFFFF 00570000 - 0057FFFF 00830000 - 0083FFFF

1-69

Physical "BYTE" Address Space - 64KB boundries
008.25 Megabyte 011. 00 Megabyte 013. 75 Megabyte

00840000 - 0084FFFF 00800000 - 0080FFFF OOOCOOOO - OOOCFFFF
00850000 - 0085FFFF 00810000 - 0081FFFF 00000000 - OOOOFFFF
00860000 - 0086FFFF 00820000 - 0082FFFF OOOEOOOO - OOOEFFFF
00870000 - 0087FFFF 00830000 - 0083FFFF OOOFOOOO - OOOFFFFF

008.50Megabyte Oll. 25 Megabyte 014.00 Megabyte
00880000 - 0088FFFF 00840000 - 0084FFFF OOEOOOOO - OOEOFFFF
00890000 - 0089FFFF 00850000 - 0085FFFF OOElOOOO - OOElFFFF
008A0000 - 008AFFFF 00860000 - 0086FFFF OOE20000 - OOE2FFFF
00880000 - 0088FFFF 00870000 - 0087FFFF OOE30000 - OOE3FFFF

008.75 Megabyte Oll.50 Megabyte 014.25 Megabyte
000coooo - 008CFFFF 00880000 - OOB8FFFF OOE40000 - OOE4FFFF
00800000 - 0080FFFF 00890000 - 0089FFFF OOE50000 - OOE5FFFF
008EOOOO - 008EFFFF OOBAOOOO - OOBAFFFF OOE60000 - OOE6FFFF
008FOOOO - 008FFFFF OOBBOOOO - OOB8FFFF OOE70000 - OOE7FFFF

009.00 Megabyte 0 ll. 7 5 Megabyte 014.50 Megabyte
00900000 - 0090FFFF OOBCOOOO - 008CFFFF OOE80000 - OOE8FFFF
00910000 - 0091FFFF OOBOOOOO - OOBOFFFF OOE90000 - OOE9FFFF
00920000 - 0092FFFF 008EOOOO - OOBEFFFF OOEAOOOO - OOEAFFFF
0093000.0 - 0093FFFF 008FOOOO - OOBFFFFF OOEBOOOO - OOEBFFFF

009.25 Megabyte 012.00 Megabyte 014. 75 Megabyte
00940000 - 0094FFFF OOCOOOOO - OOCOFFFF OOECOOOO - OOECFFFF
00950000 - 0095FFFF OOClOOOO - OOClFFFF OOEOOOOO - OOEOFFFF
00960000 - 0096FFFF OOC20000 - OOC2FFFF OOEEOOOO - OOEEFFFF
00970000 - 0097FFFF OOC30000 - OOC3FFFF OOEFOOOO - OOEFFFFF

009.50 Megabyte 012.25 Megabyte 015.00 Megabyte
00980000 - 0098FFFF OOC40000 - OOC4FFFF OOFOOOOO - OOFOFFFF
00990000 - 0099FFFF OOC50000 - OOC5FFFF OOFlOOOO - OOFlFFFF
009A0000 - 009AFFFF OOC60000 - OOC6FFFF OOF20000 - OOF2FFFF
00980000 - 009BFFFF OOC70000 - OOC7FFFF OOF30000 - OOF3FFFF

889. 75 Megabyte 012.50 Megabyte 015.25 Megabyte
009COOOO - 009CFFFF OOC80000 - OOC8FFFF OOF40000 - OOF4FFFF
00900000 - 0090FFFF OOC90000 - OOC9FFFF OOF50000 - OOF5FFFF
009EOOOO - 009EFFFF OOCAOOOO - OOCAFFFF OOF60000 - OOF6FFFF
009FOOOO - 009FFFFF OOCBOOOO - OOCBFFFF OOF70000 - OOF7FFFF

010. 00 Megabyte 012.75 Megabyte 015.50 Megabyte
OOAOOOOO - OOAOFFFF OOCCOOOO - OOCCFFFF OOF80000 - OOF8FFFF
OOAlOOOO - OOAlFFFF OOCOOOOO - OOCOFFFF OOF90000 - OOF9FFFF
OOA20000 - 00A2FFFF OOCEOOOO - OOCEFFFF OOFAOOOO - OOFAFFFF
OOA30000 - 00A3FFFF OOCFOOOO - OOCFFFFF OOFBOOOO - OOF8FFFF

010.25 Megabyte 013.00 Megabyte 015.75 Megabyte
OOA40000 - 00A4FFFF 00000000 - OOOOFFFF OOFCOOOO - OOFCFFFF
OOA50000 - OOA5FFFF 00010000 - OOOlFFFF OOFOOOOO - OOFOFFFF
OOA60000 - 00A6FFFF 00020000 - 0002FFFF OOFEOOOO - OOFEFFFF
OOA70000 - OOA7FFFF 00030000 - 0003FFFF OOFFOOOO - OOFFFFFF

010.50 Megabyte 013.25 Megabyte 016.00 Megabyte
OOA80000 - 00A8FFFF 00040000 - 0004FFFF 01000000 - OlOOFFFF
OOA90000 - 00A9FFFF 00050000 - 0005FFFF 01010000 - 0101FFFF
OOAAOOOO - OOAAFFFF 00060000 - 0006FFFF 01020000 - 0102FFFF
OOA80000 - OOABFFFF 00070000 - 0007FFFF 01030000 - 0103FFFF

010.75 Megabyte 013.50 Megabyte 016.25 Megabyte
OOACOOOO - OOACFFFF 00080000 - 0008FFFF 01040000 - 0 04FFFF
OOAOOOOO - OOAOFFFF 00090000 - 0009FFFF 01050000 - 0 05FFFF
OOAEOOOO - OOAEFFFF OOOAOOOO - OODAFFFF 01060000 - 0 06FFFF
OOAFOOOO - OOAFFFFF 00080000 - OOD8FFFF 01070000 - 0 07FFFF

1-70

Physical "BYTE" Address Space - 256KB boundries

016.0 Megabyte 026.0 Megabyte 036.0 Megabyte
01000000 - 0103FFFF OlAOOOOO - 01A3FFFF 02400000 - 0243FFFF
01040000 - 0107FFFF 01A40000 - 01A7FFFF 02440000 - 0247FFFF
01080000 - OlOBFFFF 01A80000 - OlABFFFF 02480000 - 024BFFFF
OlOCOOOO - OlOFFFFF OlACOOOO - OlAFFFFF 024COOOO - 024FFFFF

017.0 Megabyte 027.0 Megabyte 037.0 Megabyte
01100000 - 0113FFFF OlBOOOOO - 01B3FFFF 02500000 - 0253FFFF
01140000 - 0117FFFF 01B40000 - 01B7FFFF 02540000 - 0257FFFF
01180000 - OllBFFFF 01B80000 - OlBBFFFF 02580000 - 025BFFFF
OllCOOOO - OllFFFFF OlBCOOOO - OlBFFFFF 025COOOO - 025FFFFF

018.0 Megabyte 028.0 Megabyte 038.0 Megabyte
01200000 - 0123FFFF OlCOOOOO - 01C3FFFF 02600000 - 0263FFFF
01240000 - 0127FFFF 01C40000 - 01C7FFFF 02640000 - 0267FFFF
01280000 - 012BFFFF 01C80000 - OlCBFFFF 02680000 - 026BFFFF
012COOOO - 012FFFFF OlCCOOOO - OlCFFFFF 026COOOO - 026FFFFF

019.0 Megabyte 029.0 Megabyte 039.0 Megabyte
01300000 - 0133FFFF 01000000 - 0103FFFF 02700000 - 0273FFFF
01340000 - 0137FFFF 01040000 - 0107FFFF 02740000 - 0277FFFF
01380000 - 013BFFFF 01080000 - OlOBFFFF 02780000 - 027BFFFF
013COOOO - 013FFFFF OlOCOOOO - OlOFFFFF 027COOOO - 027FOOOO

020.0 Megabyte 030.0 Megabyte 040.0 Megatyte
01400000 - 0143FFFF OlEOOOOO - 01E3FFFF 02800000 - 0283FFFF
01440000 - 0147FFFF 01E40000 - 01E7FFFF 02840000 - 0287FFFF
01480000 - 014BFFFF 01E80000 - OlEBFFFF 02880000 - 028BFFFF
014COOOO - 014FFFFF OlECOOOO - OlEFFFFF 028COOOO - 028FFFFF

021. 0 Megabyte 031. 0 Megabyte 041. 0 Megabyte
01500000 - 0153FFFF OlFOOOOO - 01F3FFFF 02900000 - 0293FFFF
01540000 - 0157FFFF 01F40000 - 01F3FFFF 02940000 - 0297FFFF
01580000 - 015BFFFF 01F80000 - OlFBFFFF 02980000 - 029BFFFF
015COOOO - 015FFFFF OlFCOOOO - OlFFFFFF· 029COOOO - 029FFFFF

022.0 Megabyte 032.0 Megabyte 042.0 Megabyte
01600000 - 0163FFFF 02000000 - 0203FFFF 02A00000 - 02A3FFFF
01640000 - 0167FFFF 02040000 - 0207FFFF 02A40000 - 02A7FFFF
01680000 - 016BFFFF 02080000 - 020BFFFF 02A80000 - 02ABFFFF
016COOOO - 016FFFFF 020COOOO - 020FFFFF 02AC0000 - 02AFFFFF

023.0 Megabyte 033.0 Megabyte 043.0 Megabyte
01700000 - 0173FFFF 02100000 - 0213FFFF 02BOOOOO - 02B3FFFF
01740000 - 0177FFFF 02140000 - 0217FFFF 02840000 - 02B7FFFF
01780000 - 017BFFFF 02180000 - 021BFFFF 02880000 - 02BBFFFF
017COOOO - 017FFFFF 021COOOO - 021FFFFF 02BCOOOO - 02BFFFFF

024.0 Megabyte 034.0 Megabyte 044.0 Megabyte
01800000 - 0183FFFF 02200000 - 0223FFFF 02COOOOO - 02C3FFFF
01840000 - 0187FFFF 02240000 - 0227FFFF 02C40000 - 02C7FFF'F
01880000 - 018BFFFF 02280000 - 022BFFFF 02C80000 - 02CBFFFF
018COOOO - 018FFFFF 022COOOO - 022FFFFF 02CCOOOO - 02CFFFFF

025.0 Megabyte 035.0 Megabyte 045.0 Megabyte
01900000 - 0193FFFF 02300000 - 0233FFFF 02000000 - 0203FFFF
01940000 - 0197FFFF 02340000 - 0237FFFF 02040000 - 0207FFFF
01980000 - 019BFFFF 02380000 - 023BFFFF 02080000 - 020BFFFF
019COOOO - 019FFFFF 023COOOO - 023FFFFF 020COOOO - 020FFFFF

1-71

Physical "BYTE" Address Space - 256KB boundries

046.0 Megabyte 053.0 Megabyte 059.0 Megabyte
02EOOOOO - 02E3FFFF 03500000 - 0353FFFF 03800000 - 03B3FFFF
02E40000 - 02E7FFFF 03540000 - 0357FFFF 03840000 - 03B7FFFF
02E80000 - 02EBFFFF 03580000 - 035BFFFF 03880000 - 0388FFFF
02ECOOOO - 02EFFFFF 035COOOO - 035FFFFF 03BCOOOO - 03BFFFFF

047.0 Megabyte 054.0 Megabyte 060.0 Megabyte
02FOOOOO - 02F3FFFF 03600000 - 0363FFFF 03COOOOO - 03C3FFFF
02F40000 - 02F7FFFF 03640000 - 0367FFFF 03C40000 - 03C7FFFF
02F80000 - 02F8FFFF 03680000 - 0368FFFF 03C80000 - 03C8FFFF
02FCOOOO - 02FFFFFF 036COOOO - 036FFFFF 03CCOOOO - 03CFFFFF

048.0 Megabyte 055.0 Megabyte 061. 0 Megabyte
03000000 - 0303FFFF 03700000 - 0373FFFF 03000000 - 0303FFFF
03040000 - 0307FFFF 03740000 - 0377FFFF 03040000 - 0307FFFF
03080000 - 0308FFFF 03780000 - 0378FFFF 03080000 - 0308FFFF
030COOOO - 030FFFFF 037COOOO - 037FFFFF 030COOOO - 030FFFFF

049.0 Megabyte 056.0 Megabyte 062.0 Megabyte
03100000 - 0313FFFF 03800000 - 0383FFFF 03EOOOOO - 03E3FFFF
03140000 - 0317FFFF 03840000 - 0387FFFF 03E40000 - 03E7FFFF
03180000 - 031BFFFF 03880000 - 0388FFFF 03E80000 - 03EBFFFF
031COOOO - 031FFFFF 038COOOO - 038FFFFF 03ECOOOO - 03EFFFFF

050.0 Megabyte 057.0 Megabyte 063.0 Megabyte
03200000 - 0323FFFF 03900000 - 0393FFFF 03FOOOOO - 03F3FFFF
03240000 - 0327FFFF 03940000 - 0397FFFF 03F40000 - 03F7FFFF
03280000 - 032BFFFF 03980000 - 039BFFFF 03F80000 - 03F8FFFF
032COOOO - 032FFFFF 039COOOO - 039FFFFF 03FCOOOO - 03FFFFFF

051. O Megabyte 058.0 Megabyte 064.0 Megabyte
03300000 - 0333FFFF 03A00000 - 03A3FFFF 04000000 - 0403FFFF
03340000 - 0337FFFF 03A40000 - 03A7FFFF 04040000 - 0407FFFF
03380000 - 033BFFFF 03A80000 - 03ABFFFF 04080000 - 0408FFFF
033COOOO - 033FFFFF 03ACOOOO - 03AFFFFF 040COOOO - 040FFFFF

052.0 Megabyte
03400000 - 0343FFFF
03440000 - 0347FFFF
03480000 - 034BFFFF
034COOOO - 034FFFFF

1-72

Physical "BYTE" Address Space - lMB boundries

000 Megabyte 045 Megabyte 090 Megabyte
00000000 - OOOFFFFF 02000000 - 02DFFFFF 05AOOOOO - 05AFFFFF
00100000 - OOlFFFFF 02EOOOOO - 02EFFFFF 05BOOOOO - 05BFFFFF
00200000 - 002FFFFF 02FOOOOO - 02FFFFFF 05COOOOO - 05CFFFFF
00300000 - 003FFFFF 03000000 - 030FFFFF 05DOOOOO - 05DFFFFF
00400000 - 004FFFFF 03100000 - 031FFFFF 05EOOOOO - 05EFFFFF

005 Megabyte 050 Megabyte 095 Megabyte
00500000 - 005FFFFF 03200000 - 032FFFFF 05FOOOOO - 05FFFFFF
00600000 - 006FFFFF 03300000 - 033FFFFF 06000000 - 060FFFFF
00700000 - 007FFFFF 03400000 - 034FFFFF 06100000 - 061FFFFF
00800000 - 008FFFFF 03500000 - 035FFFFF 06200000 - 062FFFFF
00900000 - 009FFFFF 03600000 - 036FFFFF 06300000 - 063FFFFF

010 Megabyte 055 Megabyte 100 Megabyte
OOAOOOOO - OOAFFFFF 03700000 - 037FFFFF 06400000 - 064FFFFF
OOBOOOOO - OOBFFFFF 03800000 - 038FFFFF 06500000 - 065FFFFF
oocooooo - OOCFFFFF 03900000 - 039FFFFF 06600000 - 066FFFFF
OODOOOOO - OODFFFFF 03AOOOOO - 03AFFFFF 06700000 - 067FFFFF
OOEOOOOO - OOEFFFFF 03800000 - 03BFFFFF 06800000 - 068FFFFF

015 Megabyte 060 Megabyte 105 Megabyte
OOFOOOOO OOFFFFFF 03COOOOO 03CFFFFF 06900000 069FFFFF
01000000 - OlOFFFFF 03DOOOOO - 03DFFFFF 06AOOOOO - 06AFFFFF
01100000 - OllFFFFF 03EOOOOO - 03EFFFFF 06BOOOOO - 06BFFFFF
01200000 - 012FFFFF 03FOOOOO - 03FFFFFF 06COOOOO - 06CFFFFF
01300000 - 013FFFFF 04000000 - 040FFFFF 06DOOOOO - 06DFFFFF

020 Megabyte 065 Megabyte llO Megabyte
01400000 - 014FFFFF 04100000 - 041FFFFF 06EOOOOO - 06EFFFFF
01500000 - 015FFFFF 04200000 - 042FFFFF 06FOOOOO - 06FFFFFF
01600000 - 016FFFFF 04300000 - 043FFFFF 07000000 - 070FFFFF
01700000 - 017FFFFF 04400000 - 044FFFFF 07100000 - 071FFFFF
01800000 - 018FFFFF 04500000 - 045FFFFF 07200000 - 072FFFFF

025 Megabyte 070 Megabyte 115 Megabyte
01900000 - 019FFFFF 04600000 - 046FFFFF 07300000 - 073FFFFF
OlAOOOOO - OiAFFFFF 04700000 - 047FFFFF 07400000 - 074FFFFF
OlBOOOOO - OlBFFFFF 04800000 - 048FFFFF 07500000 - 075FFFFF
OlCOOOOO - OlCFFFFF 04900000 - 049FFFFF 07600000 - 076FFFFF
01000000 - OlDFFFFF 04A00000 - 04AFFFFF 07700000 - 077FFFFF

030 Megabyte 075 Megabyte 120 Megabyte
OlEOOOOO - OlEFFFFF 04800000 - 04BFFFFF 07800000 - 078FFFFF
OlFOOOOO - OlFFFFFF 04COOOOO - 04CFFFFF 07900000 - 079FFFFF
02000000 - 020FFFFF 04000000 - 04DFFFFF 07AOOOOO - 07AFFFFF
02100000 - 021FFFFF 04EOOOOO - 04EFFFFF 07BOOOOO - 07BFFFFF
02200000 - 022FFFFF 04FOOOOO - 04FFFFFF 07COOOOO - 07CFFFFF

035 Megabyte 080 Megabyte 12·5 Megabyte
02300000 - 023FFFFF 05000000 - 050FFFFF 07DOOOOO - 07DFFFFF
02400000 - 024FFFFF 05100000 - 051FFFFF 07EOOOOO - 07EFFFFF
02500000 - 025FFFFF 05200000 - 052FFFFF 07FOOOOO - 07FFFFFF
02600000 - 026FFFFF 05300000 - 053FFFFF 08000000 - 080FFFFF
02700000 - 027FFFFF 05400000 - 054FFFFF 08100000 - 081FFFFF

040 Megabyte 085 Megabyte 130 Megabyte
02800000 - 028FFFFF 05500000 - 055FFFFF 08200000 - 082FFFFF
02900000 - 029FFFFF 05600000 - 056FFFFF 08300000 - 083FFFFF
02AOOOOO 02AFFFFF 05700000 057FFFFF 08400000 084FFFFF
02BOOOOO - 02BFFFFF 05800000 - 058FFFFF 08500000 - 085FFFFF
02COOOOO - 02CFFFFF 05900000 - 059FFFFF 08600000 - 086FFFFF

1-73

Physical "BYTE" Address Space - lMB boundries

135 Megabyte 180 Megabyte 225 Megabyte
08700000 - 087FFFFF 084.00000 - 084FFFFF OElOOOOO - OElFFFFF
08800000 - 088FFFFF 08500000 - 085FFFFF OE200000 - OE2FFFFF
08900000 - 089FFFFF 08600000 - 086FFFFF OE300000 - OE3FFFFF
08AOOOOO - 08AFFFFF 08700000 - 087FFFFF OE400000 - OE4FFFFF
08800000 - 08BFFFFF 08800000 - 088FFFFF OE500000 - OE5FFFFF

140 Megabyte 185 Megabyte 230 Megabyte
08COOOOO - 08CFFFFF 08900000 - 089FFFFF OE600000 - OE6FFFFF
08000000 - 080FFFFF 08A00000 - 08AFFFFF OE700000 - OE7FFFFF
08EOOOOO - 08EFFFFF 08800000 - 088FFFFF OE800000 - OE8FFFFF
08FOOOOO - 08FFFFFF 08COOOOO - 08CFFFFF OE900000 - OE9FFFFF
09000000 - 090FFFFF 08000000 - 080FFFFF OEAOOOOO - OEAFFFFF

145 Megabyte 190 Megabyte 235 Megabyte
09100000 - 091FFFFF 08EOOOOO - 08EFFFFF OEBOOOOO - OE8FFFFF
09200000 - 092FFFFF 08FOOOOO - 08FFFFFF OECOOOOO - OECFFFFF
09300000 - 093FFFFF ocoooooo - OCOFFFFF OEOOOOOO - OEOFFFFF
09400000 - 094FFFFF OClOOOOO - OClFFFFF OEEOOOOO - OEEFFFFF
09500000 - 095FFFFF OC200000 - 0C2FFFFF OEFOOOOO - OEFFFFFF

150 Megabyte 195 Megabyte 240 Megabyte
09600000 - 096FFFFF OC300000 - OC3FFFFF OFOOOOOO - OFOFFFFF
09700000 - 097FFFFF OC400000 - OC4FFFFF OFlOOOOO - OFlFFFFF
09800000 - 098FFFFF ocsooooo - OC5FFFFF OF200000 - OF2FFFFF
09900000 - 099FFFFF OC600000 - OC6FFFFF OF300000 - OF3FFFFF
09AOOOOO - 09AFFFFF OC700000 - OC7FFFFF OF400000 - OF4FFFFF

155 Megabyte 200 Megabyte 245 Megabyte
09800000 - 098FFFFF oc8ooooo - OC8FFFFF OF500000 - OF5FFFFF
09COOOOO - 09CFFFFF OC900000 - OC9FFFFF OF600000 - OF6FFFFF
09000000 - 090FFFFF OCAOOOOO - OCAFFFFF OF700000 - OF7FFFFF
09EOOOOO - 09EFFFFF OCBOOOOO - OC8FFFFF OF800000 - OF8FFFFF
09FOOOOO - 09FFFFFF occooooo - OCCFFFFF OF900000 - OF9FFFFF

160 Megabyte 205 Megabyte 250 Megabyte
OAOOOOOO - OAOFFFFF OCOOOOOO - OCOFFFFF OFAOOOOO - OFAFFFFF
OAlOOOOO - OAlFFFFF OCEOOOOO - OCEFFFFF OF800000 - OF8FFFFF
0A200000 - 0A2FFFFF OCFOOOOO - OCFFFFFF OFCOOOOO - OFCFFFFF
0A300000 - 0A3FFFFF 00000000 - OOOFFFFF OFDOOOOO - OFOFFFFF
OA400000 - 0A4FFFFF 00100000 - OOlFFFFF OFEOOOOO - OFEFFFFF

165 Megabyte 210 Megabyte 255 Megabyte
0A500000 - OASFFFFF 00200000 - OD2FFFFF OFFOOOOO - OFFFFFFF
OA600000 - 0A6FFFFF 00300000 - 003FFFFF 10000000 - lOOFFFFF
0A700000 - OA7FFFFF 00400000 - 004FFFFF 10100000 - 101FFFFF
OA800000 - OA8FFFFF ODSOOOOO - 005FFFFF 10200000 - 102FFFFF
0A900000 - OA9FFFFF 00600000 - OD6FFFFF 10300000 - 103FFFFF

170 Megabyte 215 Megabyte 260 Megabyte
OAAOOOOO - OAAFFFFF 00700000 - OD7FFFFF 10400000 - 104FFFFF
OABOOOOO - OA8FFFFF OD800000 - OD8FFF'FF 10500000 - 105FFFFF
OACOOOOO - OACFFFFF 00900000 - 009FFFFF 10600000 - 106FFFFF
OAOOOOOO - OADFFFFF OOAOOOOO - ODAFFFFF 10700000 - 107FFFFF
OAEOOOOO - OAEFFFFF 00800000 - OD8FFFFF 10800000 - 108FFFFF

175 Megabyte 220 Megabyte 265 Megabyte
OAFOOOOO - OAFFFFFF OOCOOOOO - ODCFFFFF 10900000 - 109FFFFF
08000000 - OBOFFFFF OODOOOOO - ODDFFFFF lOAOOOOO - lOAFFFFF
OBlOOOOO - OBlFFFFF OOEOOOOO - ODEFFFFF 10800000 - lOBFFFFF
08200000 - OB2FFFFF ODFOOOOO - ODFFFFFF lOCOOOOO - lOCFFFFF
08300000 - OB3FFFFF OEOOOOOO - OEOFFFFF 10000000 - lODFFFFF

1-74

Physical "BYTE" Address Space - 1 MB boundries

270 Megabyte 315 Megabyte 360 Megabyte
lOEOOOOO - lOEFFFFF 13800000 - 138FFFFF 16800000 - 168FFFFF
lOFOOOOO - lOFFFFFF 13COOOOO - 13CFFFFF 16900000 - 169FFFFF
11000000 - llOFFFFF 13DOOOOO - 13DFFFFF 16AOOOOO - 16AFFFFF
11100000 - lllFFFFF 13EOOOOO - 13EFFFFF 16800000 - 168FFFFF
11200000 - 112FFFFF 13FOOOOO - 13FFFFFF 16COOOOO - 16CFFFFF

275 Megabyte 320 Megabyte 365 Megabyte
11300000 - 113FFFFF 14000000 - 140FFFFF 16DOOOOO - 16DFFFFF
11400000 - 114FFFFF 14100000 - 141FFFFF 16EOOOOO - 16EFFFFF
11500000 - 115FFFFF 14200000 - 142FFFFF 16FOOOOO - 16FFFFFF
11600000 - 116FFFFF 14300000 - 143FFFFF 17000000 - 170FFFFF
11700000 - 117FFFFF 14400000 - 144FFFFF 17100000 - 171FFFFF

280 Megabyte 325 Megabyte 370 Megabyte
11800000 - 118FFFFF 14500000 - 145FFFFF 17200000 - 172FFFFF
11900000 - 119FFFFF 14600000 - 146FFFFF 17300000 - 173FFFFF
llAOOOOO - llAFFFFF 14700000 - 147FFFFF 17400000 - 174FFFFF
11800000 - llBFFFFF 14800000 - 148FFFFF 17500000 - 175FFFFF
llCOOOOO - llCFFFFF 14900000 - 149FFFFF 17600000 - 176FFFFF

285 Megabyte 330 Megabyte 375 Megabyte
llDOOOOO - llDFFFFF 14AOOOOO - 14AFFFFF 17700000 - 177FFFFF
llEOOOOO - llEFFFFF 14800000 - 14BFFFFF 17800000 - 178FFFFF
llFOOOOO - llFFFFFF 14COOOOO - 14CFFFFF 17900000 - 179FFFFF
12000000 - 120FFFFF 14000000 - 140FFFFF 17A00000 - 17AFFFFF
12100000 - 121FFFFF 14EOOOOO - 14EFFFFF 17800000 - 178FFFFF

290 Megabyte 335 Megabyte 380 Megabyte
12200000 122FFFFF 14F0-0-000 -- 14FFFF"FF - l 7COOcrcro-- -- 17CFFFFF ··--···-·· ···---

12300000 - 123FFFFF 15000000 - 150FFFFF 17000000 - 17DFFFFF
12400000 - 124FFFFF 15100000 - 151FFFFF 17EOOOOO - 17EFFFFF
12500000 - 125FFFFF 15200000 - 152FFFFF 17FOOOOO - 17FFFFFF
12600000 - 126FFFFF 15300000 - 153FFFFF 18000000 - 180FFFFF

295 Megabyte 340 Megabyte 385 Megabyte
12700000 - 127FFFFF 15400000 - 154FFFFF 18100000 - 181FFFFF
12800000 - 128FFFFF 15500000 - 155FFFFF 18200000 - 182FFFFF
12900000 - 129FFFFF 15600000 - 156FFFFF 18300000 - 183FFFFF
12A00000 - 12AFFFFF 15700000 - 157FFFFF 18400000 - 184FFFFF
12800000 - 128FFFFF 15800000 - 158FFFFF 18500000 - 185FFFFF

300 Megabyte 345 Megabyte 390 Megabyte
12COOOOO - 12CFFFFF 15900000 - 159FFFFF 18600000 - 186FFFFF
12DOOOOO - 12DFFFFF 15AOOOOO - 15AFFFFF 18700000 - 187FFFFF
12EOOOOO - 12EFFFFF 15800000 - 158FFFFF 18800000 - 188FFFFF
12FOOOOO - 12FFFFFF 15COOOOO - 150FFFFF 18900000 - 189FFFFF
13000000 - 130FFFFF 15DOOOOO - 15DFFFFF 18A00000 - 18AFFFFF

305 Megabyte 350 Megabyte 395 Megabyte
13100000 - 131FFFFF 15EOOOOO - 15EFFFFF 18800000 - 188FFFFF
13200000 - 132FFFFF 15FOOOOO - 15FFFFFF 18COOOOO - 18CFFFFF
13300000 - 133FFFFF 16000000 - 160FFFFF 18000000 - 18DFFFFF
13400000 - 134FFFFF 16100000 - 161FFFFF 18EOOOOO - 18EFFFFF
13500000 - 135FFFFF 16200000 - 162FFFFF 18FOOOOO - 18FFFFFF

310 Megabyte 355 Megabyte 400 Megabyte
13600000 - 136FFFFF 16300000 - 163FFFFF 19000000 - 190FFFFF
13700000 - 137FFFFF 16400000 - 164FFFF\F 19100000 - 191FFFFF
13800000 - 138FFFFF 16500000 - 165FFFFF 19200000 - 192FFFFF
13900000 - 139FFFFF 16600000 - 166FFFFF 19300000 - 193FFFFF
13A00000 - 13AFFFFF 16700000 - 167FFFFF 19400000 - 194FFFFF

1-75

Physical "BYTE" Address Space - lMB boundries

405 Megabyte 450 Megabyte 495 Megabyte
19500000 - 195FFFFF 1C200000 - 1C2FFFFF lEFOOOOO - lEFFFFFF
19600000 - 196FFFFF 1C300000 - 1C3FFFFF lFOOOOOO - lFOFFFFF
19700000 - 197FFFFF 1C400000 - 1C4FFFFF lFlOOOOO - lFlFFFFF
19800000 - 198FFFFF 1C500000 - 1C5FFFFF 1F200000 - 1F2FFFFF
19900000 - 199FFFFF 1C600000 - 1C6FFFFF 1F300000 - 1F3FFFFF

410 Megabyte 455 Megabyte 500 Megabyte
19AOOOOO - 19AFFFFF 1C700000 - 1C7FFFFF 1F400000 - 1F4FFFFF
19800000 - 198FFFFF 1C800000 - 1C8FFFFF 1F500000 ...;. 1F5FFFFF
19COOOOO - 19CFFFFF 1C900000 - 1C9FFFFF 1F600000 - 1F6FFFFF
19DOOOOO - 19DFFFFF lCAOOOOO - lCAFFFFF 1F700000 - 1F7FFFFF
19EOOOOO - 19EFFFFF 1C800000 - 1C8FFFFF 1F800000 - 1F8FFFFF

415 Megabyte 460 Megabyte 505 Megabyte
19FOOOOO - 19FFFFFF lCCOOOOO - lCCFFFFF 1F900000 - 1F9FFFFF
lAOOOOOO - lAOFFFFF lCDOOOOO - lCDFFFFF lFAOOOOO - lFAFFFFF
lAlOOOOO - lAlFFFFF lCEOOOOO - lCEFFFFF 1F800000 - 1F8FFFFF
1A200000 - 1A2FFFFF lCFOOOOO - lCFFFFFF lFCOOOOO - lFCFFFFF
1A300000 - 1A3FFFFF 10000000 - lOOFFFFF lFDOOOOO - lFOFFFFF

420 Megabyte 465 Megabyte 510 Megabyte
1A400000 - J:A4FFFFF 10100000 - lDlFFFFF lFEOOOOO - lFEFFFFF
1A500000 - 1A5FFFFF 10200000 - 1D2FFFFF lFFOOOOO - lFFFFFFF
1A600000 - 1A6FFFFF 1D300000 - 1D3FFFFF
1A700000 - lA7fFFFF 10400000 - l04FFFFF
1A800000 - 1A8FFFFF 1D500000 - l05FFFFF

425 Megabyte 470 Megabyte
1A900000 - 1A9FFFFF 1D600000 - 1D6FFFFF
lAAOOOOO - lAAFFFFF 10700000 - l07FFFFF
lABOOOOO - lABFFFFF 10800000 - 108FFFFF
lACOOOOO - lACFFFFF 10900000 - 1D9FFFFF
lAOOOOOO - lADFFFFF lOAOOOOO - lOAFFFFF

430 Megabyte 475 Megabyte
lAEOOOOO - lAEFFFFF lDBOOOOO - 1D8FFFFF
lAFOOOOO - lAFFFFFF lOCOOOOO - lOCFFFFF
18000000 - 180FFFFF 10000000 - lDOFFFFF
18100000 - lBlFFFFF lOEOOOOO - lOEFFFFF
18200000 - 1B2FFFFF lOFOOOOO - lOFFFFFF

435 Megabyte 480 Megabyte
1B300000 - 183FFFFF lEOOOOOO - lEOFFFFF
18400000 - 1B4FFFFF lElOOOOO - lElFFFFF
18500000 - 1B5FFFFF 1E200000 - 1E2FFFFF
18600000 - 1B6FFFFF lEJOOOOO - 1E3FFFFF
1B700000 - 1B7FFFFF 1E400000 - 1E4FFFFF

440 Megabyte 485 Megabyte
1B800000 - 1B8FFFFF 1E500000 - 1E5FFFFF
18900000 - 1B9FFFFF 1E600000 - 1E6FFFFF
lBAOOOOO - lBAFFFFF 1E700000 - 1E7FFFFF
lBBOOOOO - lBBFFFFF 1E800000 - 1E8FFFFF
lBCOOOOO - lBCFFFFF 1E900000 - 1E9FFFFF

445 Megabyte 490 Megabyte
lBDOOOOO - lBOFFFFF lEAOOOOO - lEAFFFFF
lBEOOOOO - lBEFFFFF 1E800000 - lEBFFFFF
lBFOOOOO - lBFFFFFF lECOOOOO - lECFFFFF
lCOOOOOO - lCOFFFFF lEOOOOOO - lEOFFFFF
lClOOOOO - lClFFFFF lEEOOOOO - lEEFFFFF

1-76

Physical "Longword" Address Space 1 MB boundries

000 Megabyte 044 Megabyte 088 Megabyte
0000000 - 003FFFF OBOOOOO - OB3FFFF 1600000 - 163FFFF
0040000 - 007FFFF OB40000 - OB7FFFF 1640000 - 167FFFF
0080000 - OOBFFFF OB80000 - OBBFFFF 1680000 - 16BFFFF
oocoooo - OOFFFFF OBCOOOO - OBFFFFF 16COOOO - 16FFFFF

004 Megabyte 048 Megabyte 092 Megabyte
0100000 - 013FFFF ocooooo - OC3FFFF 1700000 - 173FFFF
0140000 - 017FFFF OC40000 - OC7FFFF 1740000 - 177FFFF
0180000 - OlBFFFF OC80000 - OCBFFFF 1780000 - 17BFFFF
OlCOOOO - ~lFFFFF occoooo - OCFFFFF 17COOOO - 17FFFFF

008 Megabyte 052 Megabyte 096 Megabyte
0200000 - 023FFFF ODOOOOO - OD3FFFF 1800000 - 183FFFF
0240000 - 027FFFF 0040000 - OD7FFFF 1840000 - 187FFFF
0280000 - 02BFFFF 0080000 - ODBFFFF 1880000 - 18BFFFF
02COOOO - 02FFFFF ODCOOOO - ODFFFFF 18COOOO - 18FFFFF

012 Megabyte 056 Megabyte 100 Megabyte
0300000 - 033FFFF OEOOOOO - OE3FFFF 1900000 - 193FFFF
0340000 - 037FFFF OE40000 - OE7FFFF 1940000 - 197FFFF
0380000 - 03BFFFF OE80000 - OEBFFFF 1980000 - 19BFFFF
03COOOO - 03FFFFF OECOOOO - OEFFFFF 19COOOO - 19FFFFF

016 Megabyte 060 Megabyte 104 Megabyte
0400000 - 043FFFF OFOOOOO - OF3FFFF lAOOOOO - 1A3FFFF
0440000 - 047FFFF OF40000 - 0F7FFFF 1A40000 - 1A7FFFF
0480000 - 04BFFFF OF80000 - OFBFFFF 1A80000 - lABFFFF
04COOOO - 04FFFFF OFCOOOO - OFFFFFF lACOOOO - lAFFFFF

020 Megabyte 064 Megabyte 108 Megabyte
0500000 - 053FFFF 1000000 - 103FFFF lBOOOOO - 1B3FFFF
0540000 - 057FFFF 1040000 - 107FFFF 1840000 - 1B7FFFF
0580000 - 05BFFFF 1080000 - lOBFFFF 1880000 - lBBFFFF
05COOOO - 05FFFFF lOCOOOO - lOFFFFF lBCOOOO - lBFFFFF

024 Megabyte 068 Megabyte 112 Megabyte
0600000 - 063FFFF 1100000 - 113FFFF lCOOOOO - 1C3FFFF
0640000 - 067FFFF 1140000 - 117FFFF 1C40000 - 1C7FFFF
0680000 - 0.6BFFFF 1180000 - llBFFFF 1C80000 - lCBFFFF
06COOOO - 06FFFFF llCOOOO - llFFFFF lCCOOOO - lCFFFFF

028 Megabyte 072 Megabyte 116 Megabyte
0700000 - 073FFFF 1200000 - 123FFFF 1000000 - 1D3FFFF
0740000 - 077FFFF 1240000 - 127FFFF 1040000 - 1D7FFFF
0780000 - 07BFFFF 1280000 - 12BFFFF 1080000 - lDBFFFF
07COOOO - 07FFFFF 12COOOO - 12FFFFF lDCOOOO - lDFFFFF

032 Megabyte 076 Megabyte 120 Megabyte
0800000 - 083FFFF 1300000 - 133FFFF lEOOOOO - 1E3FFFF
0840000 - 087FFFF 1340000 - 137FFFF 1E40000 - 1E7FFFF
0880000 - 08BFFFF 1380000 - 13BFFFF 1E80000 - lEBFFFF
08COOOO - 08FFFFF 13COOOO - 13FFFFF lECOOOO - lEFFFFF

036 Megabyte 080 Megabyte 124 Megabyte
0900000 - 093FFFF 1400000 - 143FFFF lFOOOOO - 1F3FFFF
0940000 - 097FFFF 1440000 - 147FFFF 1F40000 - 1F7FFFF
0980000 - 09BFFFF 1480000 - 14BFFFF 1F80000 - lFBFFFF
09COOOO - 09FFFFF 14COOOO - 14FFFFF lFCOOOO - lFFFFFF

040 Megabyte 084 Megabyte
OAOOOOO 0A3FFFF 1500000 153FFFF *** BEWARE ***
OACOOOO - 0A7FFFF 1540000 - 157FFFF These are LONGWORD address
OA80000 - OABFFFF 1580000 - 15BFFFF ranges,(not byte ranges).
OACOOOO - OAFFFFF 15COOOO - 15FFFFF (PA<29:02>) I (ID#lA<27:00>)

1-77

Physical "Longword" Address Space 1 MB boundries

128 Megabyte 172 Megabyte 216 Megabyte
2000000 - 203FFFF 2800000 - 2B3FFFF 3600000 - 363FFFF
2040000 - 207FFFF 2840000 - 2B7FFFF 3640000 - 367FFFF
2080000 - 20BFFFF 2880000 - 2BBFFFF 3680000 - 36BFFFF
20COOOO - 20FFFFF 2BCOOOO - 2BFFFFF 36COOOO - 36FFFFF

132 Megabyte 176 Megabyte 220 Megabyte
2100000 - 213FFFF 2COOOOO - 2C3FFFF 3700000 - 373FFFF
2140000 - 217FFFF 2C40000 - 2C7FFFF 3740000 - 377FFFF
2180000 - 21BFFFF 2C80000 - 2CBFFFF 3780000 - 37BFFFF
21COOOO - 21FFFFF 2CCOOOO - 2CFFFFF 37COOOO - 37FFFFF

136 Megabyte 180 Megabyte 224 Megabyte
2200000 - 223FFFF 2000000 - 2D3FFFF 3800000 - 383FFFF
2240000 - 227FFFF 2040000 - 2D7FFFF 3840000 - 387FFFF
2280000 - 228FFFF 2080000 - 2D8FFFF 3880000 - 388FFFF
22COOOO - 22FFFFF 2DCOOOO - 2DFFFFF 38COOOO - 38FFFFF

140 Megabyte 184 Megabyte 228 Megabyte
2300000 - 233FFFF 2EOOOOO - 2E3FFFF 3900'000 - 393FFFF
2340000 - 237FFFF 2E40000 - 2E7FFFF 3940000 - 397FFFF
2380000 - 238FFFF 2E80000 - 2E8FFFF 3980000 - 398FFFF
23COOOO - 23FFFFF 2ECOOOO - 2EFFFFF 39COOOO - 39FFFFF

144 Megabyte 188 Megabyte 232 Megabyte
2400000 - 243FFFF 2FOOOOO - 2F3FFFF 3A00000 - 3A3FFFF
2440000 - 247FFFF 2F40000 - 2F7FFFF 3A40000 - 3A7FFFF
2480000 - 248FFFF 2F80000 - 2F8FFFF 3A80000 - 3A8FFFF
24COOOO - 24FFFFF 2FCOOOO - 2FFFFFF 3AC0000 - 3AFFFFF

148 Megabyte 192 Megabyte 236 Megabyte
2500000 - 253FFFF 3000000 - 303FFFF 3800000 - 383FFFF
2540000 - 257FFFF 3040000 - 307FFFF 3840000 - 387FFFF
2580000 - 258FFFF 3080000 - 30BFFFF 3880000 - 3BBFFFF
25COOOO - 25FFFFF 30COOOO - 30FFFFF 38COOOO - 3BFFFFF

152 Megabyte 196 Megabyte 240 Megabyte
2600000 - 263FFFF 3100000 - 313FFFF 3COOOOO - 3C3FFFF
2640000 - 267FFFF 3140000 - 317FFFF 3C40000 - 3C7FFFF
2680000 - 26BFFFF 3180000 - 31BFFFF 3C80000 - 3CBFFFF
26COOOO - 26FFFFF 31COOOO - 31FFFFF 3CCOOOO - 3CFFFFF

156 Megabyte 200 Megabyte 244 Megabyte
2700000 - 273FFFF 3200000 - 323FFFF 3000000 - 3D3FFFF
2740000 - 277FFFF 3240000 - 327FFFF 3040000 - 3D7FFFF
2780000 - 27BFFFF 3280000 - 32BFFFF 3080000 - 3DBFFFF
27COOOO - 27FFFFF 32COOOO - 32FFFFF 3DCOOOO - 3DFFFFF

160 Megabyte 204 Megabyte 248 Megabyte
2800000 - 283FFFF 3300000 - 333FFFF 3EOOOOO - 3E3FFFF
2840000 - 287FFFF 3340000 - 337FFFF 3E40000 - 3E7FFFF
2880000 - 28BFFFF 3380000 - 33BFFFF 3E80000 - 3EBFFFF
28COOOO - 28FFFFF 33COOOO - 33FFFFF 3ECOOOO - 3EFFFFF

164 Megabyte 208 Megabyte 252 Megabyte
2900000 - 293FFFF 3400000 - 343FFFF 3FOOOOO - 3F3FFFF
2940000 - 297FFFF 3440000 - 347FFFF 3F40000 - 3F7FFFF
2980000 - 29BFFFF 3480000 - 348FFFF 3F80000 - 3FBFFFF
29COOOO - 29FFFFF 34COOOO - 34FFFFF 3FCOOOO - 3FFFFFF

168 Megabyte 212 Megabyte
2AOOOOO - 2A3FFFF 3500000 - 353FFFF *** BEWARE ***
2AC0000 - 2A7FFFF 3540000 - 357FFFF These are LONGWORD address
2A80000 - 2ABFFFF 3580000 - 35BFFFF ranges,(not byte ranges).
2AC0000 - 2AFFFFF 35COOOO - 35FFFFF (PA<29:02>) I (ID#lA<27:00>)

1-78

Physical "Longword" Address Space 1. MB boundries

256 Megabyte 300 Megabyte 344 Megabyte
4000000 - 403FFFF 4800000 - 483FFFF 5600000 - 563FFFF
4040000 - 407FFFF 4840000 - 487FFFF 5640000 - 567FFFF
4080000 - 408FFFF 4880000 - 488FFFF 5680000 - 56BFFFF
40COOOO - 40FFFFF 48C0000 - 48FFFFF 56COOOO - 56FFFFF

260 Megabyte 304 Megabyte 348 Megabyte
4100000 - 413FFFF 4COOOOO - 4C3FFFF 5700000 - 573FFFF
4140000 - 417FFFF 4C40000 - 4C7FFFF 5740000 - 57FFFFF
4180000 - 41BFFFF 4C80000 - 4C8FFFF 5780000 - 578FFFF
41C0000 - 41FFFFF 4CCOOOO - 4CFFFFF 57COOOO - 57FFFFF

264 Megabyte 308 Megabyte 352 Megabyte
4200000 - 423FFFF 4000000 - 403FFFF 5800000 - 583FFFF
4240000 - 427FFFF 4040000 - 407FFFF 5840000 - 587FFFF
4280000 - 42BFFFF 4080000 - 408FFFF 5880000 - 588FFFF
42COOOO - 42FFFFF 40COOOO - 4DFFFFF 58COOOO - 58FFFFF

268 Megabyte 312 Megabyte 356 Megabyte
4300000 - 433FFFF 4EOOOOO - 4E3FFFF 5900000 - 593FFFF
4340000 - 437FFFF 4E40000 - 4E7FFFF 5940000 - 597FFFF
4380000 - 438FFFF 4E80000 - 4EBFFFF 5980000 - 598FFFF
43COOOO - 43FFFFF 4ECOOOO - 4EFFFFF 59COOOO - 59FFFFF

272 Megabyte 316 Megabyte 360 Megabyte
4400000 - 443FFFF 4FOOOOO - 4F3FFFF 5AOOOOO - 5A3FFFF
4440000 - 447FFFF 4F40000 - 4F7FFFF 5A40000 - 5A7FFFF
4480000 - 44BFFFF 4F80000 - 4FBFFFF 5A80000 - 5ABFFFF
44COOOO - 44FFFFF 4FCOOOO - 4FFFFFF 5AC0000 - 5AFFFFF

276 Megabyte 320 Megabyte 364 Megabyte
4500000 - 453FFFF 5000000 - 53FFFFF 5800000 - 5B3FFFF
4540000 - 457FFFF 5040000 - 57FFFFF 5840000 - 587FFFF
4580000 - 458FFFF 5080000 - 58FFFFF 5880000 - 58BFFFF
45COOOO - 45FFFFF 50COOOO - 5FFFFFF 5BCOOOO - 5BFFFFF

280 Megabyte 324 Megabyte 368 Megabyte
4600000 - 463FFFF 5100000 - 513FFFF 5COOOOO - 5C3FFFF
4640000 - 467FFFF 5140000 - 517FFFF 5C40000 - 5C7FFFF
4680000 - 46BFFFF 5180000 - SlBFFFF 5C80000 - 5CBFFFF
46C0000 - 46FFFFF 51COOOO - 51FFFFF 5CCOOOO - 5CFFFFF

284 Megabyte 328 Megabyte 372 Megabyte
4700000 - 473FFFF 5200000 - 523FFFF 5000000 - 503FFFF
4740000 - 477FFFF 5240000 - 527FFFF 5040000 - 507FFFF
4780000 - 478FFFF 5280000 - 52BFFFF 5080000 - 50BFFFF
47COOOO - 47FFFFF 52COOOO - 52FFFFF 50COOOO - SOFFFFF

288 Megabyte 332 Megabyte 376 Megabyte
4800000 - 483FFFF 5300000 - 533FFFF 5EOOOOO - SE3FFFF
4840000 - 487FFFF 5340000 - 537FFFF 5E40000 - 5E7FFFF
4880000 - 48BFFFF 5380000 - 538FFFF 5E80000 - 5E8FFFF
48COOOO - 48FFFFF 53COOOO - 53FFFFF 5ECOOOO - 5EFFFFF

292 Megabyte 336 Megabyte 380 Megabyte
4900000 - 493FFFF 5400000 - 543FFFF 5FOOOOO - 5F3FFFF
4940000 - 497FFFF 5440000 - 547FFFF 5F40000 - 5F7FFFF
4980000 - 498FFFF 5480000 - 54BFFFF 5F80000 - 5FBFFFF
49COOOO - 49FFFFF 54COOOO - 54FFFFF SFCOOOO - 5FFFFFF

296 Megabyte 340 Megabyte
4A00000 - 4A3FFFF 5500000 - 553FFFF *** BEWARE ***
4ACOOOO - 4A7FFFF 5540000 - 557FFFF These are LONGWORD address
4A80000 - 4ABFFFF 5580000 - 55BFFFF ranges,(not byte ranges).
4ACOOOO - 4AFFFFF 55COOOO - 55FFFFF (PA<29:02>) I (I0#1A<27:00>)

1-79

Physical "Longword" Address Space 1 MB bou ndries

384 Megabyte· 428 Megabyte 472 Megabyte
6000000 - 603FFFF 6800000 - 6B3FFFF 7600000 - 763FFFF
6040000 - 607FFFF 6840000 - 6B7FFFF 7640000 - 767FFFF
6080000 - 60BFFFF 6880000 - 6BBFFFF 7680000 - 76BFFFF
60COOOO - 60FFFFF 6BCOOOO - 6BFFFFF 76COOOO - 76FFFFF

388 Megabyte 432 Megabyte 476 Megabyte
6100000 - 613FFFF 6C00000 - 6C3FFFF 7700000 - 773FFFF
6140000 - 617FFFF 6C40000 - 6C7FFFF 7740000 - 777FFFF
6180000 - 61BFFFF 6C80000 - 6CBFFFF 7780000 - 77BFFFF
61COOOO - 61FFFFF 6CCOOOO - 6CFFFFF 77COOOO - 77FFFFF

392 Megabyte 436 Megabyte 480 Megabyt
6200000 - 623FFFF 6000000 - 603FFFF 7800000 - 783FFFF
6240000 - 627FFFF 6040000 - 607FFFF 7840000 - 787FFFF
6280000 - 62BFFFF 6080000 - 60BFFFF 7880000 - 78BFFFF
62COOOO - 62FFFFF 60COOOO - 60FFFFF 78COOOO - 78FFFFF

396 Megabyte 440 Megabyte 484 Megabyte
6300000 - 633FFFF 6EOOOOO - 6E3FFFF 7900000 - 793FFFF
6340000 - 637FFFF 6E40000 - 6E7FFFF 7940000 - 797FFFF
6380000 - 63BFFFF 6E80000 - 6EBFFFF 7980000 - 79BFFFF
63COOOO - 63FFFFF 6ECOOOO- 6EFFFFF 79COOOO - 79FFFFF

400 Megabyte 444 Megabyte 488 Megabyte
6400000 - 643FFFF 6FOOOOO - 6F3FFFF 7A00000 - 7A3FFFF
6440000 - 647FFFF 6F40000 - 6F7FFFF 7A40000 - 7A7FFFF
6480000 - 64BFFFF 6F80000 - 6FBFFFF 7A80000 - 7ABFFFF
64COOOO - 64FFFFF 6FCOOOO - 6FFFFFF 7ACOOOO - 7AFFFFF

404 Megabyte 448 Megabyte 492 Megabyte
6500000 - 653FFFF 7000000 - 703FFFF 7800000 - 7B3FFFF
6540000 - 657FFFF 7040000 - 707FFFF 7840000 - 7B7FFFF
6580000 - 65BFFFF 7080000 - 70BFFFF 7880000 - 7BBFFFF
65COOOO - 65FFFFF 70COOOO - 70FFFFF 7BCOOOO - 7BFFFFF

408 Megabyte 452 Megabyte 496 Megabyte
6600000 - 663FFFF 7100000 - 713FFFF 7C00000 - 7C3FFFF
6640000 - 667FFFF 7140000 - 717FFFF 7C40000 - 7C7FFFF
6680000 - 66BFFFF 7180000 - 71BFFFF 7C80000 - 7CBFFFF
66COOOO - 66FFFFF 71COOOO - 71FFFFF 7CC0000 - 7CFFFFF

412 Megabyte 456 Megabyte 500 Megabyte
6700000 - 673FFFF 7200000 - 723FFFF 7000000 - 7D3FFFF
6740000 - 677FFFF 7240000 - 727FFFF 7040000 - 707FFFF
6780000 - 67BFFFF 7280000 - 72BFFFF 7080000 - 7DBFFFF
67COOOO - 67FFFFF 72COOOO - 72FFFFF 70COOOO - 70FFFFF

416 Megabyte 460 Megabyte 504 Megabyte
6800000 - 683F·FFF 7300000 - 733.FFFF 7EOOOOO - 7E3FFFF
6840000 - 687FFFF 7340000 - 737FFFF 7E40000 - 7E7FFFF
6880000 - 68BFFFF 7380000 - 73BFFFF 7E80000 - 7EBFFFF
68COOOO - 68FFFFF 73COOOO - 73FFFFF 7ECOOOO - 7EFFFFF

420 Megabyte 464 Megabyte 508 Megabyte
6900000 - 693FFFF 7400000 - 743FFFF 7FOOOOO - 7F3FFFF
6940000 - 697FFFF 7440000 - 747FFFF 7F40000 - 7F7FFFF
6980000 - 69BFFFF 7480000 - 74BFFFF 7F80000 - 7FBFFFF
69COOOO - 69FFFFF 74COOOO - 74FFFFF 7FCOOOO - 7FFFFFF

424 Megabyte 468 Megabyte
6A00000 - 6A3FFFF 7500000 - 753FFFF *** BEWARE ***
6AC0000 - 6A7FFFF 7540000 - 757FFFF These are LONGWORD address
6A80000 - 6ABFFFF 7580000 - 75BFFFF ranges,(not byte ranges).
6AC0000 - 6AFFFFF 75COOOO - 75FFFFF (PA<29:02>) I (ID#lA<27:00>)

1-80

The following charts show the TIMEOUT ADDRESS (ID #lA) range for the
VAX NEXUS devices. The address ranges actually show the Longword Address
ranges for each device. The address shown in "ID #lA" bits <27:00> are
equal to the Physical address bits PA<29:02>, which is actually a Longword
address. The charts showing memory array address ranges assume that the
memories are not interleaved.

MS780C "0-4 Megabyte" /MS780A "0-1 Megabyte" ("LONGWORD" ranges)
MS780C MS780A

Array Slot M8210 Arrays M8211 Arrays

0 17 0000000 - OOOFFFF 0000000 - 0003FFF
1 16 0010000 - OOlFFFF 0004000 - 0007FFF
2 15 0020000 - 002FFFF 0008000 - OOOBFFF
3 14 0030000 .;,,. 003FFFF ooocooo - OOOFFFF
4 13 0040000 - 004FFFF 0010000 - 0013FFF
5 12 0050000 - 005FFFF 0014000 - 0017FFF
6 11 0060000 - 006FFFF 0018000 - OOlBFFF
7 10 0070000 - 007FFFF OOlCOOO - OOlFFFF
8 9 0080000 - 008FFFF 0020000 - 0023FFF
9 8 0090000 - 009FFFF 0024000 - 0027FFF
A 7 OOAOOOO - OOAFFFF 0028000 - 002BFFF
B 6 0080000 - OOBFFFF 002COOO - 002FFFF
c 5 oocoooo - OOCFFFF 0030000 - 0033FFF
0 4 0000000 - OOOFFFF 0034000 - 0037FFF
E 3 OOEOOOO OOEFFFF 0038000 003BFFF
F 2 OOFOOOO - OOFFFFF 003COOO - 003FFFF

MS780C "4-8 Megabyte" /MS780A "1-2 Megabyte" ("LONGWORD" ranges)
MS780C MS780A

Array Slot M8210 Arrays M8211 Arrays

0 17 0100000 - OlOFFFF 0040000 - 0043FFF
1 16 0110000 - OllFFFF 0044000 - 0047FFF
2 15 0120000 - 012FFFF 0048000 - 004BFFF
3 14 0130000 - 013FFFF 004COOO - 004FFFF
4 13 0140000 - 014FFFF 0050000 - 0053FFF
5 12 0150000 - 015FFFF 0054000 - 0057FFF
6 11 0160000 - 016FFFF 0058000 - 005BFFF
7 10 0170000 - 017FFFF ooscooo - OOSFFFF
8 9 0180000 - 018FFFF 0060000 - 0063FFF
9 8 0190000 - 019FFFF 0064000 - 0067FFF
A 7 OlAOOOO - OlAFFFF 0068000 - 006BFFF
B 6 0180000 - OlBFFFF 006COOO - 006FFFF
c 5 OlCOOOO - OlCFFFF 0070000 - 0073FFF
0 4 0100000 - OlOFFFF 0074000 - 0077FFF
E 3 OlEOOOO - OlEFFFF 0078000 - 007BFFF
F 2 OlFOOOO - OlFFFFF 007COOO - 007FFFF

1-81

Array

0
1
2
3
4
5
6
7

Array

0
1
2
3
4
5
6
7

MA780A Array "Longword" Address Ranges

Slot

8
7
6
5
4
3
2
1

S1ot

8
7
6
5
4
3
2
1

MA780A
M8210 Arrays

O to 2 Megabyte

0000000 - OOOFFFF
0010000 - OOlFFFF
0020000 - 002FFFF
0030000 - 003FFFF
0040000 - 004FFFF
0050000 - OOSFFFF
0060000 - 006FFFF
0070000 - 007FFFF

MA780A
M8210 Arrays

4 to 6 Megabyte

0100000 - OlOFFFF
0110000 - OllFFFF
0120000 - 012FFFF
0130000 - 013FFFF
0140000 - 014FFFF
0150000 - '015FFFF
0160000 - 016FFFF
0170000 - 017FFFF

1-82

MA780A
M8210 Arrays

2 to 4 Megabyte

0080000 - 008FFFF
0090000 - 009FFFF
OOAOOOO - OOAFFFF
OOBOOOO - OOBFFFF
oocoooo - OOCFFFF
0000000 - OOOFFFF
OOEOOOO - OOEFFFF
OOFOOOO - OOFFFFF

MA780A
M8210 Arrays

6 to 8 Megabyte

0180000 - 018FFFF
0190000 - 019FFFF
OlAOOOO - OlAFFFF
OlBOOOO - OlBFFFF
OlCOOOO - OlCFFFF
0100000 - OlOFFFF
OlEOOOO - OlEFFFF
OlFOOOO - OlFFFFF

MS780-E Array "Longword" Address Ranges

Internally Interleaved

A total of 16 Megabytes per MS780-E are possible when ·internally
interleaving. In order to internal interleave the MS780-E, the following
configuration guidelines must be followed:

. Memory Controllers (M8375's) must be installed in slots 10 & 12 .

. Each controller must have the same amount of memory arrays, of the
same type and capacity, in their respective array slots .

. There cannot be any gaps between the arrays on each controller. In
other words, the Lower Controller expands from slot 9 towards slot 2
while the Upper Controller expands from slot 13 towards slot 20.

When the MS780-E is configured with two controllers, the memory is
internally interleaved as follows:

. The "Lower Controller's Arrays" contain the "EVEN Physical QUADWORD"
addresses, (Physical Address bit 3=0) .

. The "Upper Controller's Arrays" contain the "ODD Physical QUADWORD"
addresses, (Physical Address bit 3=1).

Array

LO
uo
Ll
Ul
L2
U2
L3
U3
L4
U4
L5
U5
L6
U6
L7
U7

L =
u =
PA3

MS780-E
M8373 Arrays

Slot 0 to 16 Megabyte

9 0000000 - 007FFFF
13

8 0080000 - OOFFFFF
14

7 0100000 - 017FFFF
15

6 0180000 - OlFFFFF
16

5 0200000 - 027FFFF
17

4 0280000 - 02FFFFF
18

3 0300000 - 037FFFF
19

2 0380000 - 03FFFFF
20

Lower Controller's Array
Upper Controller's Array
= Physical Address bit 3

1-83

(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)

MS780-E
M8373 Arrays

16 to 32 Megabyte

0400000 - 047FFFF

0480000 - 04FFFFF

0500000 - 057FFFF

0580000 - 05FFFFF

0600000 - 067FFFF

0680000 - 06FFFFF

0700000 - 077FFFF

0780000 - 07FFFFF

MS780-E Array "Longword" Address Ranges (cont'd)

No Internal Interleaving

The MS780-E may be operated in NO INTERNAL INTERLEAVING mode but the total
amount of memory per MS780-E is reduced to-a total of 8 Megabytes. This
mode of operation is accomplished whenever the following configuration
guidelines are followed:

Array

There is only one Memory Controller (M8375) installed in the
MS780-E backplane. This controller can be installed in either
slot 10 or 12 (slot 10 is preferred).

If the memory controller is installed in slot 10, the memory array
modules must be installed in slots 9 through 2 only. No memory
arrays are to be installed in slots 13 through 20.

If the memory controller is installed in slot 12, the memory array
modules must be installed in slots 13 through 20 only. No memory
arrays are to be installed in slots 9 through 2.

The memory arrays must be installed with no gaps between arrays and
no gap between the memory controller and the first array.

MS780-E MS780-E
M8373 Arrays M8373 Arrays

Slot 0 to 8 Megabyte 8 to 16 Megabyte

0 9 or 13 0000000 - 003FFFF 0200000 - 023FFFF
1 8 or 14 0040000 - 007FFFF 0240000 - 027FFFF
2 7 or 15 0080000 - OOBFFFF 0280000 - 02BFFFF
3 6 or 16 oocoooo - OOFFFFF 02COOOO - 02FFFFF
4 5 or 17 0100000 - 013FFFF 0300000 - 033FFFF
5 4 or 18 0140000 - 017FFFF 0340000 - 037FFFF
6 3 or 19 0180000 - OlBFFFF 0380000 - 03BFFFF
7 2 or 20 OlCOOOO - OlFFFFF 03COOOO - 03FFFFF

In the above chart, the slot of the array depends upon which memory
controller is installed. Slots 2 through 9 are used if the Memory
Controller is in slot 10, and slots 13 through 20 are used if the
Memory Controller is in slot 12.

1-84

MS780-E Array "Longword" Address Ranges (cont'd)

Externally Interleaved

A total of 16 Megabytes are possible when externally interleaving two
MS780-E controllers. In order to externally interleave 2 MS780-E memory
backplanes, the following configuration guidelines must be followed:

. Both memory backplanes must be configured to operate in the
non internal interleaved mode .

. Both memory subsystems must have the same amount of memory arrays, of
the same type and capacity, and in corresponding slot locations .

. Both memory subsystems must have the same assigned starting address .

. The memory subsystems must have adjacent "TR Levels" assigned to
them .

. "Bit <O>" of both memory subsystems' "CNFG A register" must be
set prior to memory usage.

When two MS780-E's are configured for EXTERNAL interleaving, the following
rules are used to determine what address are located in what memory .

. The Memory Subsystem assigned the "Lower TR Level" contains the "EVEN
Quadword" addresses .

. The Memory Subsystem assigned the "Higher TR Level" contains the "ODD
Quadword" addresses.

L
H
PA3

Array Slot

LO 9/13
uo 9/13
Ll 8/14
Ul 8/14
L2 7/15
U2 7 /15
L3 6/16
U3 6/16
L4 5/17
U4 5/17
L5 4/18
U5 4/18
L6 3/19
U6 3/19
L7 2/20
U7 2/20

Memory Subsystem
Memory Subsystem

MS780-E
M8373 Arrays

0 to 16 Megabyte

0000000 - 007FFFF

0080000 - OOFFFFF

0100000 - 017FFFF

0180000 - OlFFFFF

0200000 - 027FFFF

0280000 - 02FFFFF

0300000 - 037FFFF

0380000 - 03FFFFF

with the Lower assighed

(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=1)
(PA3=0)
(PA3=l)
(PA3=0)
(.?A3=:)

"TR :=...evel".
with t:.he Higher assigned "TR =-.evel".

= Physical Address bit 3

1-85

Converting a "UNIBUS_Byte (Octal Format) Address" to a
"VAX (Hex Format) Longword" address

1. Take the UNIBUS address and drop off the 2 least significant
"binary" bits (Unibus address bits <1:0> are not used).

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I use these binary bits for conversion I not I

used

2. Change the Unibus address bits <17:02> to a Hexadecimal number
by breaking the "binary" representation of these address bits
into 4-bit sections. Do not use address bits <1:0>.

I 17 16 15 14 I 13 12 11 10 I 09 08 07 06 I 05 04 03 02 I

3. Using the hexadecimal number converted in steps 1 and 2, add it
to one of the following DW780 Adapter Base addresses (which one
you use depends on which DW780 the UNIBUS device resides).

DW780
Adapter

0
1
2
3

DW780 Unibus Space
Longword Base Address

8040000
8050000
8060000
8070000

4. The resulting hexadecimal number (should be 7 hexadecimal digits
in length) is the SBI Longword address that is used to access
the UNIBUS address just converted for that particular Adapter's
UNIBUS. This is the address that will be stored in the
"TIMEOUT ADDRESS" {ID #lA) register on a CP Timeout. If you
want to find out what the Physical Byte address is, simply convert
the Longword address by adding two binary zeros as the least
significant bits and then reconvert back to hexadecimal.

1-86

Converting a "VAX LONGWORD (Hex Format)" address to a
"UNIBUS BYTE (Octal Format)" address

1. First of all, you must make sure that you have an SB! address
that is assigned to a DW780 Adapters' Unibus space. Check to see
that the address falls in one of the following ranges:

Adapter #0 SBI UNIBUS Address Space
Adapter #1 SBI UNIBUS-Address-Space
Adapter #2 SBI UNIBUS-Address-Space
Adapter #3 SBI UNIBUS=Address=Space

8040000 thru 804FFFF
8050000 thru 805FFFF
8060000 thru 806FFFF
8070000 thru 807FFFF

2. If the address to be converted falls in one of these ranges, then
you do have a VAX Physical Longword Unibus address.

Drop off the 3 most significant digits (804, 805, 806, or 807),
and use the remaining four digits to find the equivalent UNIBUS
18-bit octal address.

!<---------------- SBI "Longword_Hex" Address -------------------->!
I I
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I I I
I<----- Adapter Base ------->!<- UNIBUS 18-bit HEX LONGWORD Addr. ->I

3. Change these four HEX digits (the digits labeled "UNIBUS 18-bit
HEX LONGWORD Address" in the diagram above) to their BINARY
representation. You should now have 16 binary digits written down.

4. Add two binary zeros to the least significant end (far right end)
of this BINARY number. This will change the "UNIBUS LONGWORD address"
to a "UNIBUS BYTE address". You should now have 18 binary bits
written down with the last two digits on the right being zeros.

5. Convert the result back to octal by breaking up into three digit
sections= You should end up with six octal digits. This is the
"UNIBUS BYTE address" in octal representation.

1-87

Converting "VAX PHYSICAL BYTE (Hex Format)" address to
"UNIBUS (Octal Format)" address

1. First of all, you must make sure that you have a Physical Byte address
that is assigned to one of the DW780 Adapters' UNIBUS space. Check to
see that the address falls in one of the following ranges:

Adapter #0 UNIBUS Byte Address space
Adapter #1 UNIBUS-Byte-Address space
Adapter #2 UNIBUS-Byte-Address space
Adapter #3 UNIBUS=Byte=Address space

20100000 thru 2013FFFF
20140000 thru 2017FFFF
20180000 thru 201BFFFF
201COOOO thru 201FFFFF

2. If the address to be converted falls in one of these ranges, then you
do have a VAX (hex) Physical Byte UNIBUS address.

Extract the 18 least significant digits from this address. These 18
bits represent the HEX representation of the UNIBUS address.

!<---------------- VAX Physical Byte UNIBUS Address ---------------->!
I I
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I I I
!<----- Adapter Base --------->!<-- UNIBUS 18-Bit HEX BYTE Address --->I

3. Change these 5 HEX digits (the digits labeled "UNIBUT 18-Bit HE~ BYTE
Address" in the diagram above) to their BINARY representation. -

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

4. Now, break this BINARY representation up into 3 bit sections so as
to convert to OCTAL representation.

1 1 1 * 1 1 l * 1 1 0 * 0 0 0 * 0 0 0 * 0 0 0
7 6 5 * 4 3 2 * 1 0 9 * 8 7 6 * 5 4 3 * 2 l 0

5. Read this broken up Binary representation in OCTAL. The result is
the UNIBUS BYTE address in OCTAL representation.

1-88

Converting a "UNIBUS Octai_BYTE" Address to a
"VAX Hex PHYSICAL BYTE" Address

- -

le Take the OCTAL UNIBUS BYTE Address and change it to its BINARY
representation~ - -

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

2. Now change this BINARY representation, of the UNIBUS BYTE Address, to
its HEX representation by breaking up the Binary rep~esentation into
4 digit sections (you must start with the least significant digit <00>
and work towards the most significant digit <17>).

1 1 * 1 1 1 1 * 1 1 0 0 * 0 0 0 0 * 0 0 0 0
7 6 * 5 4 3 2 * 1 0 9 8 * 7 6 5 4 * 3 2 1 0

3. Add the appropriate DW780 UNIBUS Adapter Base Address onto the resultant
HEX number converted in the preceeding step. -The following chart shows
the Adapter_Base_Addresses for the 4 possible DW780 adapters.

Adapter #0
Adapter #2

20100000
20180000

Adapter #1 = 20140000
Adapter #3 201COOOO

4. The resultant HEX number is the HEX representation of the VAX PHYSICAL
BYTE UNIBUS Address.

20lx0000
+ yyyyy

<--- UNIBUS Space Base nf desired DW780 Adapter
<--- Hex representation of UNIBUS address

20lzzzzz <--- HEX representation of the UNIBUS Address
converted to a VAX PHYSICAL BYTE-UNIBUS Address. - - -

1-89

UNIBUS device Equivalent DW780 Adapter "Longword" address
Address #0 #1 #2 #3

760010 804F802 805F802 806F802 807F802
760020 804F804 805F804 806F804 807F804
760030 804F806 805F806 806F806 807F806
760040 804F808 805F808 806F808 807F808
760050 804F80A 805F80A 806F80A 807F80A
760060 804F80C 805F80C 806F80C 807F80C
760070 804F80E 805F80E 806F80E 807F80E
760100 804F810 805F810 806F810 807F810
760110 804F812 805F812 806F812 807F812
760120 804F814 805F814 806F814 807F814
760130 804F816 805F816 806F816 807F816
760140 804F818 805F818 806F818 807F818
760150 804F81A 805F81A 806F81A 807F81A
760160 804F81C 805F81C 806F81C 807F81C
760170 804F81E 805F81E 806F81E 807F81E
760200 804F820 805F820 806F820 807F820
760210 804F822 805F822 806F822 807F822
760220 804F824 805F824 806F824 807F824
760230 804F826 805F826 806F826 807F826
760240 804F828 805F828 806F828 807F828
760250 804F82A 805F82A 806F82A 807F82A
760260 804F82C 805F82C 806F82C 807F82C
760270 804F82E 805F82E 806F82E 807F82E
760300 804F830 805F830 806F830 807F830
760310 804F832 805F832 806F832 807F832
760320 804F834 805F834 806F834 807F834
760330 804F836 805F836 806F836 807F836
760340 804F838 805F838 806F838 807F838
760350 804F83A 805F83A 806F83A 807F83A
760360 804F83C 805F83C 806F83C 807F83C
760370 804F83E 805F83E 806F83E 807F83E
760400 804F840 805F840 806F840 807F840
760410 804F842 805F842 806F842 807F842
760420 804F844 805F844 806F844 807F844
760430 804F846 805F846 806F846 807F846
760440 804F848 805F848 806F848 807F848
760450 804F84A 805F84A 806F84A 807F84A

764004 804FA01 805FA01 806FA01 807FA01
764014 804FA03 805FA03 806FA03 807FA03
764024 804FA05 805FA05 806FA05 807FA05

770460 804FC4C 805FC4C 806FC4C 807FC4C

772410 804FD42 805FD42 806FD42 807FD42

774400 804FE40 805FE40 806FE40 807FE40

777160 804FF9C 805FF9C 806FF9C 807FF9C

777440 804FFC8 805FFC8 806FFC8 807FFC8

777514 804FFD3 805FFD3 806FFD3 807FFD3

1-90

UNIBUS device Equivalent DW780 Adapter "BYTE" address
Address #0 #1 #2 #3

760010 2013E008 2017E008 201BE008 201FE008
760020 2013E010 2017E010 201BE010 201FE010
760030 2013E018 2017E018 201BE018 201FE018
760040 2013E020 2017E020 201BE020 201FE020
760050 2013E028 2017E028 201BE028 201FE028
760060 2013E030 2017E030 201BE030 201FE030
760070 2013E038 2017E038 201BE038 201FE038
760100 2013E040 2017E040 201BE040 201FE040
760110 2013E048 2017E048 201BE048 201FE048
760120 2013E050 2017E050 201BE050 201FE050
760130 2013E058 2017E058 201BE058 201FE058
760140 2013E060 2017E060 201BE060 201FE060
760150 2013E068 2017E068 201BE068 201FE068
760160 2013E070 2017E070 201BE070 201FE070
760170 2013E078 2017E078 201BE078 201FE078
760200 2013E080 2017E080 201BE080 201FE080
760210 2013E088 2017E088 201BE088 201FE088
760220 2013E090 2017E090 201BE090 201FE090
760230 2013E098 2017E098 201BE098 201FE098
760240 2013EOAO 2017EOAO 201BEOAO 201FEOAO
760250 2013EOA8 2017EOA8 201BEOA8 201FEOA8
760260 2013EOBO 2017EOBO 201BEOBO 201FEOBO
760270 2013EOB8 2017EOB8 201BEOB8 201FEOB8
760300 2013EOCO 2017EOCO 201BEOCO 201FEOCO
760310 2013EOC8 2017EOC8 201BEOC8 201FEOC8
760320 2013EODO 2017EODO 201BEODO 201FEODO
760330 2013EOD8 2017EOD8 201BEOD8 201FEOD8
760340 2013EOEO 2017EOEO 201BEOEO 201FEOEO
760350 2013EOE8 2017EOE8 201BEOE8 201FEOE8
760360 2013EOFO 2017EOFO 201BEOFO 201FEOFO
760370 20.13EOF8 2017EOF8 201BEOF8 201FEOF8
760400 2013El00 2017El00 201BE100 201FE100
760410 2013El08 2017El08 201BE108 201FE108
760420 2013Ell0 2017Ell0 201BE110 201FE110
760430 2013Ell8 2017Ell8 201BE118 201FE118
760440 2013El20 2017El20 201BE120 201FE120
760450 2013El28 2017El28 201BE128 201FE128

764004 2013E804 2017E804 201BE804 201FE804
764014 2013E80C 2017E80C 201BE80C 201FE80C
764024 2013E814 2017E814 201BE814 201FE814

770460 2013Fl30 2017Fl30 201BF130 201FF130

772410 2013F508 2017F508 201BF508 201FF508

774400 2013F900 2017F900 201BF900 201FF900

777160 2013FE70 2017FE70 201BFE70 201FFE70

777440 2013FF20 2017FF20 201BFF20 201FFF20

777514 2013FF4C 2017FF4C 201BFF4C 201FFF4C

1-91

5.) * * * * * Read Data Substitute (RDS) Faults and Aborts * * * * *

The Machine Check Logout information is not very good for this
type of Machine Check. The associated Memory's status registers
are more helpful for this type of problem.

MS780A and MS780C memories have error correction logic that can
supposedly correct one bad bit per 72 bit array word. For read
accesses that result in one bad bit being detected, the memories' error
correction logic will correct the bad bit and will flag the data that
is returned as "Corrected Read Data". If there are a multiple even
number of bad bits detected ouring the 72 bit array read access, the
data returned will be flagged as "Read Data Substitute". This
indicates that the data has not been corrected and the quadword
returned "may" be bad (the bits bad may have been in the ECC code so,
therefore, the actual data returned may be good). BEWARE that
MS780A & C memories cannot correctly detect and signal a multiple odd
number of bad bi ts read from the ·72 bit array. If this condition
happens, the memory will send back the data and report it as
"Corrected Read Data". It is, therefore, a good idea to swap out any
arrays that are giving single bit errors for those types of problems
that are intermittent and cannot seem to be fixed by other means.

This type of Machine Check means that a Double Bit Error has been
detected, by memory, when the CPU was accessing a memory location.

Bit #13 of ID Register #19 should be set for this type of error to
havt occured.

"(SP)+l6" contains a Virtual Address within the quadword location
at fault. If the system has not been rebooted or disturbed, you
may be able to use this "Virtual Address" in the following console
command to find the Physical BYTE Address causing the error.

>>> E/L/V xxxxxxxx ; where xxxxxxxx = contents of "(SP)+l6".

The CONSOL.SYS program should respond with the following type
of output:

p yyyyyyyy zzzzzzzz

Where "yyyyyyyy" is the Physical Address at fault. If you get
a "Mic-err", the necessary PTE to make the Virtual to Physica
translation isn't available from memory or the TB.

If this command was successful, you can use this Physical
Address to determine what array is at fault. This address is
a "Physical BYTE Address".

If you were not able to find the failing array by the procedure
above, your only other choice is to use the "SYSTEM EVENT File" to
see if any memory errors have been recorded.

Remember that the first array is array #0 not array #1.

1-92

MS780A & MS780C memories:
If bit <28> = 1, in "Memory Register C", then Bits <27:24> should
reflect the array that had the error.

Memory Register "C"

Bit <28>
Bits <27:24>

MS780E memories:

Error Log Request
Array Select

If bit <28> = 1, in "Memory Register C" or "Memory Register D", then
bit <27> will indicate the controller and bits <26:24> will indicate
the array within that controller that had the error.

Memory Registers "C & D" ("C" - Lower Controller)
------------------------ ("D" - Upper Controller)

Bit <28>
Bit <27>
Bits <26:24>
Bits <23:22>
Bits <21:11>
Bits <19:11>
Bit <10>
Bit <09>

MA780 memories:

Error Log Request
Controller Select
Array Select
Array Bank Select
RAM page address for 256K RAMs
RAM page address for 64K RAMs
Multiple bit error
Single bit error detected and corrected

If bit <28> ~ 1, in the "Array Error Register", then bits <27:24>, of
the same register, will indicate the Array in error.

Array Error Register

Bit <28>
Bit <08>
Bits <22:09>
Bit <23>
Bits <27:24>

Problem areas:

Error Log Request
1 = Upper Word, 0 = Lower Word
Chip address presented to the memory chip
1 = Upper Bank, 0 = Lower Bank
Array card with the error

A Memory Array or the MEMORY Control.
Memory or CPU Backplane.
Memory or CPU Power.
SBI/CPU interface.
SBI cables.

1-93

6.) * * * * * VAX Micro-Code NOT SUPPOSE TO GET HERE * * * * *

The "Trapped UPC" is about the only data saved, in the Machine Check
Logout information, that may help you trouble-shoot this type of
problem.

This type of Machine Check exception occurs whenever the microcode
finds itself accessing a microcode location that it should never
make it to. The unused microwords contain jumps that will direct
the Micro-PC to ~he micro routine that flags this error.

The Micro-stack register, ID #20, should contain the Control Store
Address that the microcode wasn't suppose to get to. The microcode
stores this register in ID #32 for a Double Error Halt and on the
stack at "(SP)+12" on a Machine Check exception. Verify that the
address is unused via the micro-fiche MICROCODE listing.

Problem areas:

Micro-code address logic (M8235).

Any board on the "micro PC" bus.
PCS (M8 2 3 4) •
WCS (M8233 or M8238 in slot 20).
OPTIONAL wcs (M8233 or M8238 in slot 18).
IR Decode Logic.

WCSxxx.PAT on the LOCAL CONSOLE Floppy (or whatever
floppy the WCS was loaded from).

WCS load path
(Floppy-> LSI-> CIB ->ID Bus-> WCS).

Clock Board (M8232).

CPU Power.

1-94

ID #20 Micro Stack Register

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Reading this register pops the top address from the micro stack.
Writing this register pushes an address onto the micro stack.

Bits <15:00>

Control Store Address <15:00>

<15:00> = micro Address <15:00>

Micro PC Wirelist and Slot chart

Slot 18 Slot 20 Slot 22 Slot 23 Slot 08
Signal ! Pin !Opt. WCS WCS PCS M8235 M8224

*************!*****!*********!********!*********!********* *********!
Bus uPC 00 ! EAl ! X ! X X X X !
-------------!-----!---------!--------!---------!--------- ---------!
Bus UPC 01 ! ER2 ! x x x x x
-------------!-----!---------!--------!---------!--------- ---------!
Bus uPC 02 ! ESl ! X X X ! X X
-------------!-----!---------!-------- ---------!---------!---------!
Bus uPC 03 ! EU2 ! x x x x x
-------------!-----!---------!-------- ---------!---------!---------
Bus UPC 04 I EV2 ! x x x ! x ! x
------------- -----!---------!-------- ---------!---------!---------
Bus uPC 05 FB2 ! X ! X X X ! X
------------- -----!---------!-------- ---------!---------!---------
Bus uPC 06 FDl ! x x x x x
------------- -----!---------!-------- ---------!--------- ---------
Bus UPC 07 FD2 ! x ! x x x x
------------- -----!---------!-------- ---------!--------- ---------
Bus uPC 08 ! FEl ! X ! X X X no
-------------!-----!---------!-------- ---------!--------- -----~---
Bus uPC 09 ! FE2 ! x x x x no
-------------!-----!---------!-------- ---------!--------- ---------!
Bus uPC 10 ! FFl ! X ! X X x no
-------------!-----!---------!-------- ---------!---------!---------!
Bus uPC 11 ! FF2 ! X X ! X ! X ! no
-------------!-----!---------!--------!---------!---------!---------!
Bus uPC 12 ! FH2 ! X ! X X X no
-------------!-----!---------!--------!---------!---------!---------!

"WCS" and Opt. WCS" boards are either M823~'s (2K) or M8233's (lK).

1-95

c p u

CPU

c p u

CPU

c p u

CPU

c p u

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

DOUBLE ERROR HALTS

$

?CPU DBLE-ERR HLT
HALTED AT 8007E2A8

>>>

1-97

If the Problem is a "CPU Double Error Halt", "?CPU DBLE-ERR HLT" was
printed on the console terminal, diagnosis is similiar to the
"Machine Check" trouble-shooting. The difference is in where the
information is stored by the VAX-11/780 CPU microcode. A "Double
Error Halt" is simply a trap upon a trap.

On a "Double Error Halt" the logout information is stored in 2 places.
The information for the first trap, "Machine Check", is stored in
ID Bus registers 30 thru 39, and the information for the second
trap, "Machine Check", is stored in the associated ERROR/STATUS
Registers and the Memory NEXUS registers.

It is, therefore, very important to take a dump of all the Processor
ID Bus Registers and all the Memory NEXUS registers at the time of the
crash, before any other commands are given. This can be done with the
following CONSOL.SYS commands:

>>> E/L/H/ID/N:l7 0
>>> R E/L/H/ID 18

;allow CONSOL.SYS to do at least 15 examines, then type "AC".

Ac
>>> E/L/H/ID/N:25 19
>>> E/L/H/P/N:x 200yy000 x = depends on memory type

; yy = depends on Mem TR level

Repeat the last command, changing "x" and "yy" as needed
in order to gather all the Memory NEXUS registers.

>>> E/L/H/P 200yy000 ; yy = depends on TR level

Repeat the last command, changing "yy" as needed, in order
to obtain the contents of all NEXUS Configuration Registers.

An easier method to dump the needed information would be to use a
"DUMP." CONSOL.SYS command file, built as outlined in Chapter 3 of
this manual.

Unlike "MACHINE CHECKS", "Double Error Halts" bring the VAX completely
down to a HALT. Control passes back to the VAX-11/780 CONSOL.SYS
program. Therefore, the System Event file, ERRLOG.SYS, will not
contain information at the time of the crash. ERRLOG.SYS may,
however, contain some pertinent information about something that
happ~ned just prior to the crash, (such as a Double Bit Error in
Memory). If you have not isolated the problem by examining the
Hardware Registers, it may be worth your time to try to bring the VMS
Operating System back up and examine the Error log file.

The information for the first error of a DOUBLE ERROR HALT will be
found in the Temporary Registers, ID Registers #30 thru #39 (see note).
The information for the second error of a DOUBLE ERROR HALT will be
found in the associated error/status registers. Therefore, it is
very important to examine all the Hardware Registers in order to
trouble-shoot Double Error Halts. The Hardware Register Dump must be

1-98

Note:

taken immediately before anything else is done, in order to assure
that the Register Contents are valid for the time of the error.

If the second error was a "Control Store Parity Error" or a "Micro
sequencing Error", the information in "TO-T9" MAY NOT BE VALID for the
first error. The safest thing to due is to check ID #OC, see if
bit <15>=1, and IF IT IS DO NOT USE "T0-T9" (which are ID #30-39).
If the second error was a "Micro-sequencing Erro~", there will not be
any other error bits set. In either case, if the SECOND error is
found to be either a "Control Store Parity Error" or "Micro-sequencing
Error", the information in TO thru T9 may not be valid.

Use the MACHINE CHECK outline tb trouble-shoot the first error. The
only difference is that the LOGOUT information is found in "ID 30"
thru "ID 39" instead of on the stack. These ID registers must be
dumped by you, or the customer, prior to anything else being done.

Examine the rest of the ID registers and all the Memory NEXUS hardware
registers in order to determine what the second error was. It is best
to determine what the second error was prior to checking the first
error since the information for the first error may not be valid, due
to the second error occuring before the "TO-T9" logout was completed.
i.e. "Control Store Parity Error" or "Micro-Sequencing Error".

If Bits <19>, <17>, & <16> of ID #lB are equal to a 1, then an S.B.I.
FAULT has occured. Use ID #lB, the S.B.I. Silo dump, and the Configuration
registers in the NEXUS devices, to determine the cause of the FAULT.

DOUBLE ERROR HALT Information

Description Register

Summary Parameter TO
CPU Error Status Tl
Trapped UPC T2
VA/VIBA T3
D Register T4
TB Error 0 T5
TB Error 1 T6
Timeout Address T7
Parity TS
SBI Error T9
Fault Status none

1st Error
ID Location

30
31
32
33
34
35
36
37
38
39

none

If the second error is caused by a RDS error, then
memory registers wi 11 reflect the array in error.

the

2nd Error
ID Location

none
oc
20

none
08
12
13
lA
lE
19
lB

associated

BEWARE: The 1st error information MAY NOT BE VALID 1f ID ::oc
Bit< 15 > = 1, or if a micro-sequencer problem has occured.

1-99

Due to the possibility of the processor detecting a non-existent error
condition, it is a good idea to constantly make certain validity checks
of the error information that you have gathered.

In the case of "Double Error Halts", some of the error information may
not be correctly stored away due to a second error occuring while the
first error is being stored. Therefore, you should always make a
validity check of the information stored in ID #30:39 (the 1st error).
It is a good idea to always make validity checks on the errors.

CPU Detected Error VALIDITY CHECKS:

Control Store Parity Error --

CP/IB Read Timeouts --------

CP/IB Error Confirmations ---

CP/IB RDS Faults ------------

TB Parity Errors ------------

Cache Parity Errors ---------

S.B.I. Fault ----------------

1-100

"CPU Error Status Register", ID #OC,
must have Bit <15>=1.

"SBI Error Register", ID #19, must have
either Bit <12>=1 or Bit <06>=1.

"SBI Error Register", ID #19, must have
either Bit <08>=1 or Bit <03>=1

"SBI Error Register", ID #19, must have
Bit<l3>=1 or Bit <07>=1.

"Translation Buffer Register #1",
ID #13, must have at least one of
Bits <20:09>=1.

"Cache Parity Register", ID #lE, must
have Bit <15>=1.

"SBI Fault Status Register", ID #lB,
must have Bit <19>=1, and Bit <17>=1.
Also, at least one of the NEXUS should
have at least one of Bits <31:27>
set(=l) in their associated
Configuration Status Registers. The
VAX-11/780 is also a NEXUS and its
equivalent register is ID #lB.

CPU Double Error Halt Flowchart

1--1
I ?CPU DBLE-ERR HLT I
I >>> I
I The above printout occured on the console. I
1--1

I
1--1
I Examine all the ID registers, the SB! SILO, alll
I the registers within the MEMORIES, and the I
I CONFIGURATION/STATUS register in each NEXUS. I
I This can be done by using a previously built I
I "DUMP." CONSOL.SYS command file (as outlined inl
I Chapter 3) or by using the commands outlined inl
I the beginning of the DOUBLE ERROR HALT section.I
1--1

I
1---1
I Using the contents of ID OC, 13, 19, lB, and lE I
I determine what the 2nd error was, by checking I
I the following bits: I
1---1

l
I

1-------------------------1
I
I I --1 I --1 I --1 1--1 I --1
I I El I I E2 I I E3 I I E4 I I ES I
I I --1 I --1 I --1 I --1 I --1
I I I I I I

1---1
I ID #OC I ID #13 I ID #19 I ID #19 I ID #lB I ID #lE I none
I I I I I I I of
I I I <12> or I I I I these
I I any of I <06> or I <13> or I <19> and I 1-->I
I <15> =l I <20:09> I <08> or I <07> =l I <17> =l I <15> =l I I
I I =l I <03> =l I I I I I
l----------l----------l----------1----------1----------1----------I I

I yes l yes i yes i yes I yes I yes I
I I I I I I I

goto goto goto goto goto goto I
"CSPE" "TBPE" "SBIERR" "RDS" "SBIFLT" "CAPE" I

I
!<---------------------------------------!
I

!---!
I No errors bits are set. This usually indicates a "MICRO-SEQUENCER" I
I problem in the KA780. I

I
Use the appropriate section in the Machine Check error portion of I

I this manual to trouble-shoot this type error. Then return to this I
I flow at "FIRST ERROR ANALYSIS". I
l---------------=-----=---1

1-101

1------------1
I "CSPE" I
l--~---------1

I
l----------~--1
I ID #OC bit <15>=1 indicates that a "CONTROL STORE PARITY ERROR" was I
I detected in the KA780. I
I I
I Use the appropriate section in the Machine Check error portion of I
I this manual to trouble-shoot this type error (page 1.046). Then I
I return to this flow at "El" to see what other errors occured. I
I However CSPE's should be fixed first. I
1---1

1-----------1
I "TBPE" I
1-----------1

I
1---1
I ID #13 bits <20:09> are used to indicate "TRANSLATION BUFFER PARITY I
I ERRORS" detected in ~he KA780. I
I I
I Use the appropriate section in the Machine Check error portion of I
I this manual to trouble-shoot this type error (page 1.038). Then I
I return to this flow at "E2". I
1---1

1--------------1
I "SBIERR" I
1--------------1

I
1---1
I ID #19 bits <12> and <06> are used to indicate SBI timeouts as a I
I result of a KA780 microcode or IB requests, respectively. I
I I
I ID #19 bits <08> and <03> are used to indicate SBI Error CNF's as a I
I result of a KA780 microcode or IB requests, respectively. I
I I
I Use the appropriate section in the Machine Check error portion of I
I this manual to trouble-shoot this type error (page 1.056). Then I
I return to this flow at "E3". I
1---1

1-102

1------------1
I "RDS~ I
1------------1

I
1---1
I ID #19 bits <13> and <07> are used to indicate that "RDS" data has I
I been received as a result of a KA780 microcode or IB request, I
I respectively. A "READ DATA SUBSTITUTE" error has occured. I
I I
I Use the appropriate section in the Machine Check error portion of I
I this manual to trouble-shoot this type error (page 1.092). Then I
I return to this flow at "E4". I
1---1

l---~--------1
I "SBIFLT" I
1------------1

I
1---1
I ID #lB bits <19> and <17>=1 indicate that an "SBI FAULT" condition I
I was detected by the KA780 or one of the SBI NEXUS. I
I I
I Use the "SBI FAULT" trouble-shooting section of this manual to t
I isolate this problem (page 1.212). Then return to this flowchart I
I at "ES". I
1---1

1------------1
I "CAPE" I
1------------1

I
1---i
I ID #lE bit <15>=1 indicates that a "CACHE PARITY ERROR" was I
I detected in the KA780. I
I I
I Use the appropriate section in the Machine Check error portion of I
I this manual to trouble-shoot this type error (page 1.034). Then I
I return to this flow at "FIRST ERROR ANALYSIS". I
l------------------------------=-----=--------------------------------1

1-103

1---------------------------1
I "FIRST ERROR ANALYSIS" I
l--------=-----=------------1

I
I

!--!
I Information about the first error is stored in the "TEMPORARY" I
I registers (ID #30:39). I
I I
I HOWEVER, this information may not be valid if the 2nd error wasl
I due to a CONTROL STORE PARITY ERROR or a MICROSEQUENCER ERROR. I
I If either of these errors occured, the information MAY still bel
I good. Use the "VALIDITY CHECKS" to make sure. I
1--1

I
I

--!
The information stored in ID #30:39 is basically a MACHINE CHECK I
LOGOUT. You can use the MACHINE CHECK trouble-shooting section I
of this manual to determine what caused this error. The only I
difference is where the information is stored. The LOGOUT info I
is found in the TEMPORARIES instead of on the stack. They are I
assigned as follows: I

ID #30 - Summary Parameter Code I
ID #31 - CPU Error Status (saved ID #OC) I
ID #32 - Trapped UPC (saved ID #20) I
ID #33 - VA/VIBA (saved output of the VAMX) I
ID #34 - D Register (saved ID #08) I
ID #35 - TB Error 0 (saved ID #12) I
ID #36 - TB Error l (saved ID #13)
ID #37 - Timeout Address (saved ID #lA)
ID #38 - Cache Parity (saved ID #lE)
ID #39 - SBI Error (saved ID #19) I

--!
I
I

--!
Using the temporaries instead of the contents of the STACK FRAME, I
go to the appropriate section of the MACHINE CHECK section, I
based on the SUMMARY PARAMETER CODE found in ID #30's byte 0, to I
determine the cause of this error. I

By determining what caused both errors, you now have two pieces
of information to work with in order to fix the system.

I
I
I
I

The two errors may help you zero in on one unit being at fault. I
However, often times Double Error Halts are two separate errors, I
so you have to fix each one individually. I

--!

1-104

VAX-11/780 "ID" Register ERROR information

ID #OC - CES

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Control Store Parity Error Summary -I I I I
CS Parity Error in Group #2 ----------1 I I
CS Parity Error in Group #1 ------------! I
CS Parity Error in Group #0 --------------1

ID #13 - TBERl

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2

"' "' "" "" "' "" "" "' ""
PE Group 1 Data Byte 2 -I I I I I I I I I
PE Group 1 Data Byte 1 ----1 I I I I I I I
PE Group 1 Data Byte 0 ------1 I I I I I I
PE Group 0 Data Byte 2 --------1 I I I I I

1 1 0 0
1 0 9 8
"" "" "" ""
I I I 1--
I I I- PE
I 1--- PE
1----- PE

PE Group 0 Data Byte 1 ----------1 I I I !--------PE
PE Group 0 Data Byte 0 -------------1 I 1---------- PE

1------------ PE

ID #19 - SBJ,ERR

0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

CP TB Parity Error
Group 0 Addr Byte 0
Group 0 Addr Byte 1
Group 0 Addr Byte 2
Gro.up l Addr _Byte 0
Group 1 Addr Byte 1
Group 1 Addr Byte 2

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

RDS received for a CP requested cycle --1 I I I
SBI Timeout on a CP requested cycle ------1 I I

ii iO <-- see chart --1 I
----------- <-- see chart ----1

0 0 - No device response
0 1 - Device Busy Timeout
1 0 - Waiting for READ DATA timeout
1 1 - Impossible code

I I I I
I I I I
I I
I I
I I
I I
I I
I I
I I

SBI Error Confirmation on CP requested cycle ------1 I I
RDS received for an IB requested cycle ---------------1 I
SBI Timeout on an IB requested cycle -------------------1 I

5 4 <-- see chart ---------1 I
----------- <-- see chart -----------1

0 0 - No device response
0 1 - Device Busy Timeout
1 0 Waiting for READ DATA timeout
1 1 - Impossible code

1-105

I
I
SBI Err CNF
received
for an IB
request

ID #18 - FAULT

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I I 1---- Indicates SBI SILO is locked
I 1--- indicates that CPU was transmitting at FAULT

I 1----- A Multiple Transmitter fault was detected by the CPU
I 1---------- An Unexpected Read Data fault was detected by the CPU
1-------------- An SBI Parity Error was detected by the CPU

ID #lE - CACHE PARITY

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

A A A "' "' "' A A "' "'
Cache Parity error was detected ----1 I I I I I I I I I I I I
0 = IB reference, 1 = CP reference ---1 I I I I I I I I I I I

I I I I I I I I I I I
Parity OK in Data Group 1 Byte 0

________ ,
I I I I I I I I I I

Parity OK in Data Group 1 Byte 1 ----------1 I I I I I I I I I
Parity OK in Data Group 1 Byte 2

_____________ ,
I I I I I I I I

Parity OK in Data Group 1 Byte 3
_______________ ,

I I I I I I I
Parity OK in Data Group 0 Byte 0 -----------------1 I I I I I I
Parity OK in Data Group 0 Byte 1 -------------------1 I I I I I
Parity r.u in Data Group 0 Byte "" I I I Vl'- ' ----------------------, I

Parity OK in Data Group 0 Byte 3 ------------------------! I
I

Parity OK in Address Group 0 Byte 0 -----------------------1
Parity OK in Address Group 0 Byte 1 -------------------------1 I I
Parity OK in Address Group 0 Byte 2 ------------------------~---! I
Parity OK in Address Group 1 Byte 0 ------------------------------! I
Parity OK in Address Group 1 Byte 1 --------------------------------! I
Parity OK in Address Group 1 Byte 2 ----------------------------------!

ID #lA - TIMEOUT ADDRESS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I<------------------------ PA <29:02> ----------------------->!

ID #20 - MICRO STACK

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

I<-- Micro PC bits <12:0> -->I

1-106

Example of a Double Error Halt and a hardware dump

?CPU D8LE-ERR HLT
HALTED AT 8007E2A8

>>>E/L/H/ID/N:3F 0
(1st Error)

ID 00000000 8F590908 CP RDS Fault -> ID 00000030 00000005
ID 00000001 5CFA8525 Summary Code ID 00000031 00000002
ID 00000002 00000000 ID 00000032 00001116
ID 00000003 013A0260 ID 00000033 00000040
ID 00000004 00000040 ID 00000034 7FFD7130
ID 00000005 00000000 ID 00000035 00007C81
ID 00000006 00000040 ID 00000036 00000000
ID 00000007 00000000 ID 00000037 00001FA3
ID 00000008 00000000 ID 00000038 00004000
ID 00000009 00000000 CP RDS bit set -> ID 00000039 0000A002
ID OOOOOOOA 000080Cl ID 0000003A 00021074
ID 00000008 FFFFEA96 ID 00000038 0007CEOO
ID oooooooc 00000184 ID 0000003C 00000000
ID OOOOOOOD 03630054 ID 0000003D 003FFDE9
ID OOOOOOOE OOlAOOOO ID 0000003E 00000800

041FOOOO ID 0000003F 00080000
ID 00000010 00007C41 >>> E/L/P/N:2 20002000
ID 00000011 00000000 p 20002000 00002El0
ID 00000012 00007C41 p 20002004 F0001400
ID 00000013 00000000 p 20002008 38080200
ID 0.0000tH4 00000000 "
ID 00000015 00000000 >>> I
ID 00000016 00000000 Array #11.
ID 00000017 00000000 had an error
ID 00000018 00000000
ID 00000019 OOOOA082 <-- CP RDS bit set (2nd Error)
ID OOOOOOlA 0001F8AA
ID 00000018 02040000
ID OOOOOOlC 00000000
ID OOOOOOlD 0021COOO
ID OOOOOOlE 00004000
ID OOOOOOlF FFFFOOOO 1st and 2nd error indicate that
ID 00000020 OOOOOFCF "Read Data Substitute" data was
ID 00000021 00000000 received, by the CPU, on a CP
ID 00000022 00000000 request. The registers within
ID 00000023 00000030 the memory at TR#1 indicate
ID 00000024 80007000 that Array #11. was the array
ID 00000025 7FODFOOO at fault.
ID 00000026 0007EOOO
ID 00000027 33333333
ID 00000028 7FFEAD1C
ID 00000029 7FFE8D04
ID 0000002A 7FFED4FC
ID 00000028 OOOOC6CO
ID 0000002C 800C3COO
ID 0000002D 00000880
ID 0000002E 00000000
ID 0000002F 00000880

1-107

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

$

? INT-STK INVLD
HALTED AT 8007E2A8

>>>

1-109

"INTERRUPT STACK NOT VALID halts" are exceptions that indicate that
the interrupt stack was not valid or that a memory error occurred
while the processor was pushing information onto the stack during
the initiation of an exception or interrupt. In other words, an
"Interrupt Stack Not Valid" means that, while pushing information
onto the STACK a reference was made to a Virtual Address not currently
mapped to Physical Memory or that a Fatal Error occurred while
referencing the STACK. No further interrupt requests are acknowledged
on this processor.

This problem is detected by VAX CPU microcode, which tells the "LSI
Front-end Subsystem", which will halt the VAX CPU and print out the
"?INT-STK INV" message. For this reason, the VAX software will not
have been able to take a Software Dump as the system crashes. In
order to get a Software dump, the "AUTO RESTART" switch must be "on",
or, the "RESTAR.CMD" indirect command file can be used to restart the
operating system. The RESTAR.CMD file will attempt to reboot the
system but will fail, therefore allowing a software dump to be taken.
In either case, the "RESTAR.CMD" command file should have been
previously modified to cause a dump (such as done by the "DUMP."
indirect command file) to be taken prior to rebooting.

This type of problem can be caused by any number of things but listed
below are the most common reasons:

a. Memory Errors

1. Double Bit Errors (Uncorrectable errors)
2. Hardware problems causing NXM (Non-existent Memory)

errors.
3. SBI interface in VAX-11/780 CPU or Memory has

problems.

b. Some device interrupting excessively.

c. Memory Management or System Disk problems.

d. The contents of "SP" and "Internal Register #4" should
be equal. If they are not, the problem is probably the
M8229 or M8225.

The following information should be used to trouble-shoot the
"Interrupt Stack Not Valid" problem:

a. A "Hardware Register Bump" should be used to see if
any hardware errors have occured.

b. The contents of the Stack should be dumped for further
examination. This should be available from the "Hardware
Register Dump", if it is set up as the "DUMP." example
in this manual. Look for repeated Machine Check Logouts
or Exceptions on the Stack. This could indicate the hidden
reason for the "INT STK INV".

1-110

c. If the VMS Operation System is operative, an Error Log
report should be taken at least of the time immediately
prior to and at the time of the failure. Does it show
any errors logged?

d. A Software Dump should have been taken. This dump can
be analyzed by either RDC, Remote Support, D.E.C. Software
Support, your District Support Group, or yourself. It may be
necessary to examine several dumps in order to see what
is commonly happening or what device is commonly being
accessed.

This type of problem can be caused by Non-D.E.C. Supported Device
drivers. Find out from the Customer if any new drivers have been
installed recently or if some new foreign equipment has recently
been added to the system. If one or more of these have recently
been added to the system, see if the problem occurs when these
devices are no longer used.

If the Problem is of intermittent nature, it is may be faster to
trouble-shoot this type of problem from a software approach. The
Software Dumps may not point a finger directly at a unit or subsystem,
but will at least let you know what was happening at the time of the
crash. This information along with any Hardware registe~ dumps that
are available, may point you to a unit or subsystem.

The following should be done in order to enable gathering of the
information that is needed to trouble-shoot intermittent type
INTERRUPT STACK not VALID's:

1. Make sure that the SYSGEN Parameter "DUMPBUG" is
set (=l)! This will cause a Software Dump to be taken,
(on the way back up for "?INT-STK INV's").

2. Have the Customer take a Hardware Register Dump when the
System Crashes. After the Hardware Dump is taken, the
Customer can then reboot the Operating System. This step
will be automatically taken care of if the "RESTAR.CMD"
file has been modified to include the "DUMP." commands.

3. Have the Customer save the Software Dump when the System
is rebooted after a crash. This can either be saved on
MAGTAPE or the "SYS$SYSTEM:SYSDUMP.DMP" can be "Copied"
to another file.

4. An ERROR LOG report should be taken for the time just
prior to and at the time of the crash.

5. Have the Customer save the Hardware Dump Output, the
Software Dump, the Console Terminal Output at the
time of the crash, and the ERROR LOG report for you
to examine.

1-111

KERNEL STACK NOT VALID Aborts

KERNEL ST ACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL ST ACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

1-113

"KERNEL STACK NOT VALID ABORTS" are exceptions that indicate that
the Kernel Stack was not valid while the processor was pushing
information onto the stack during the initiation of an exception
or interrupt. Usually this is a indication of stack overflow or
another executive software error. The attempted exception is
transformed into an abort that uses the interrupt stack. No
information other than the PSL and PC is pushed onto the Interrupt
Stack. Software may abort the process without aborting the
Operating System; however, because of the lost information, the
process cannot be continued. If the Kernel Stack is not valid
during the execution of an instruction, the processor initiates
a normal Memory Management fault, and if the exception vector <1:0>
for Kernel Stack not Valid is 0 or 3, the behavior of the processor
is undefined. If the problem is of an intermittent nature, certain
things should be done in order to enable gathering of the information
needed to aid problem diagnosis. If the problem is solid, you should
be able to gather most of the following information without the aid of
the customer. In either case, the following steps should be taken:

1. Make sure that the SYSGEN Parameter "BUGREBOOT"
is cleared (=0). This will cause the Operating System
to halt after a FATAL Bugcheck.

2. Make sure that the SYSGEN Parameter "DUMPBUG" is
set (=l). This will cause a Software Dump to be taken
as the Operating System is coming down.

3. Have the Customer take a Hardware Register Dump when the
System Crashes. After the Hardware Dump is taken, the
Customer can then reboot the Operating System.

4. Have the Customer save the Software Dump when the System
is rebooted after a crash. This can either be saved on
MAGTAPE or "SYS$SYSTEM:SYSDUMP.DMP" can be "Copied" to
another file.

5. An ERROR LOG report should be taken for the time just
prior to and at the time of the crash.

6. Have the Customer save the Hardware Dump Output, the
Software Dump, the Console Terminal Output at the
time of the crash, and the ERROR LOG report for you
to examine.

NOTE: Steps #1 and #3 may be eliminated if the "DEFBOO.CMD" command
file has been modified so that it will dump all the Hardware
Registers. The "REMOTE LOCAL CONSOLE" floppy should be used in
case you should deceide to use the "Remote Diagnostic Center"
as a tool for problem diagnosis. The "DEFBOO.CMD" and
"RESTAR.CMD" command files should be modified, on this floppy,
so as to take a hardware register dump upon reboot. The "DUMP."
and "HANG." files should also be installed on this floppy.

1-114

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

OTHER TYPES of CRASHES

1-115

There are many other types of Crashes that can occur. The basic
trouble-shooting meth_od for them should be as follows:

a. Obtain an Error log report of the Systems Events that happened
prior to and at the time of the crash. This report will many
times show the error.

b. Examine the Console Terminal printout at the time of the crash.

c. Examine the Hardware Register Dump, if taken. If it wasn't taken,
try to recreate the problem and make sure the Hardware Register
Dump is taken.

d. If a Software Dump was taken, examine it to determine what was
happening at the time of the failure. If you do not know how to
analyze a Software Dump, get either D.E.C. Software or Remote
Support to analyze it for you.

e. After making a preliminary analysis of the problem from the above
information, run all diagnostics on the device, and associated
controllers, that you feel may be at fault. If none of these fail,
run diagnostics on everything that may be remotely related to the
problem. It doesn't hurt to spend the time to run all diagnostics
for that particular system configuration.

f. Using both a SCOPE and a DVM, check the VOLTAGES and the POWER
MONITORING signals (ACLO & DCLO, etc.) for both the correct level
and for the amount of NOISE riding on the voltage levels.
Correct any that are out of specification.

Power and Power Monitoring Signal problems cause many strange
problems that can lead you around in circles for quite awhile.
Never overlook these. Always check them no matter what type of
problem you have.

g. Margining, heating, cooling, and vibrating may be used to recreate
and isolate some problems.

1-116

h. Many times problems are intermittent and diagnosis is not
possible on the first crash. If this is the case, try to obtain
as many of the following things as are possible and take them to
your District Support Group so that they may aid you in diagnosing
the problem:

1. Console Terminal output just prior to and at the time
of the crash.

2. Hardware Register Dump printout.

3. Error Log report. If you are using "SYE", get a "STANDARD"
printout. If you are using "SPEAR", get the "FULL"
"RETREIVE" printout and also the "ANALYZE" output.

4. Get an "SDA" output from the examination of the Software
Dump that contains at least the following:

a. SHOW CRASH
b. SHOW PROCESS/ALL
c. SHOW STACK/ALL
d. SHOW DEVICE
e. SHOW PFN DATA/ALL
f. SHOW SUMMARY
g. EXAMINE/PO

5. Get a copy of the Software Dump on Magtape at 1600 B.P.I.
if possible.

6. If a copying machine is available, copy your LOG Book entry
that tells the problem symptoms that you gathered.

i. If the problem is not a solid problem and if the SYSGEN parameters
are set up so that the Operating System reboots, ask the customer
to change them so that the system does not reboot automatically and
educate the customer on the procedure for taking a hardware registe
dump.

The "REMOTE LOCAL CONSOLE" floppy should be used in case you should
deceide to use the "Remote Diagnostic Center" as a tool for problem
diagnosis. The "DEFBOO.CMD" and "RESTAR.CMD" command files should
be modified, on this floppy, to take a hardware register dump upon
reboot. The "DUMP." and "HANG." command files should also be
installed on this floppy.

1-117

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

VMS OPERATING SYSTEM Hangs

1-119

Hangs are perhaps the hardest problems to diagnose. A HANG can occur
due to:

1. Software is stuck in a loop waiting for a certain event
event, or interrupt, to happen.

2. Hardware has failed in such a way that an asynchrounous
event didn't occur so that normal execution can proceed.

Diagnostic Hangs can also be trouble-shot in much the same way as
for an Operating System Hangs, except that Software Dumps cannot be
taken when running diagnostics in stand-alone mode.

Proceed to trouble-shoot a Hang as follows:

1. If you are trouble-shooting an Operating System Hang, determine
if the whole system is hung. Record your findings in the Log.

a. Does the Console Terminal respond?

b. Does any other terminal respond?

c. Are any of the Peripherals doing anything?

1. Are the disks seeking occassionally?
2. Are the tapes moving?
3. Is the printer printing?
4. Etc.

2. Take a Hardware Register Dump by typing a ""P" on the Console
terminal and then examining the registers by using the "HANG."
command file. Console Terminal commands to do this would be:

"P
>>> @HANG

If typing a ""P" does not put you back into "CONSOL" mode,
check the following:

a. Is the KEY Switch on the VAX-11/780 Front panel
in one of the "DISABLE" positions? If so, turn
the KEY to "LOCAL". and retry the ""P".

b. Check the "DC ON" LED and the "RUN" LED on the
Console Subsystem LSI-11 Front Panel. If they
are not lit, your problem is in the Console
Subsystem or is a Power/ACLO/DCLO problem. If
both LED's are lit, proceed to next check.

1-120

c. If neither of the above are the problem, then
the problem is either the Console Terminal or
the LSI-11/DLVll subsystem. Be sure that the
console terminal is not in "LOCAL" or out of
paper.

If you are unable to get a response when typing "AP",
trouble-shoot this problem.

3 .. After the Hardware Register Dump has been taken, the "HANG."
command file will single step the VAX several times (so that
it may be determined where the software is hung), and then
it will crash the software as done by the "CRASH." command file.
This will insure that a Software Dump is taken.

If the SYSGEN parameter "BUGREBOOT" is set (=l), the system
will reboot automatically. You will then have to bring the
system back down in order to run diagnostics.

The single stepping portion of the "HANG." output may indicate
a reason for the hang. Check for one of the following:

a. A PC = 80002EBO (Version 3.x of VMS) indicates that the DW780
is getting a UNIBUS vector of "000000".

b. A PC = 80007B06 (a NULL job address in Version 3.x of VMS)
indicates that a Software resource is exhausted.

c. A PC= 80016400 (Version 3.x of VMS), with an IPL of 14-17 or
8-B, usually means the software is executing a driver.

d. An IPL of "lF" indicates a SYSTEM DISK ERROR or MEMORY
Power problem.

e. A PC without bit 31 or 30 set usually indicates a process
that is compute bound and running at a high priority.

f. A Loop that goes through about 10 addresses close together,
then jumps to a new range of address for about 10
instructions, then back to the first range. This
condition usually indicates a terminal, DZll, DMF32, etc.,
type of problem.

4. Using a DVM, check all System Voltage levels and the levels
of all ACLO and DCLO signals. Are any out of spec.?

5. Using a Scope, check all voltages, ACLO signals, and DCLO
signals for excessive noise. Be sure to use a good Ground on
your scope lead.

1-121

6. Run at least the following diagnostics:

a. VAX-11/780 micro diagnostics (#1, #2, and
#3 if applicable)

b. EVKAA (if the "DS>" prompt appears when this
program is started, deposit zero into
physical location "FEOO" and restart)

c. EVKAB,C,D,E
d. ESCAA
e. ESCBA
f. Disk, Tape, and Unibus peripheral Reliability

dignostics.

If you get a diagnosic failure, trouble-shoot that problem.

After the diagnostics all run O.K., continue on to the next
step. It is important not to assume the HANG problem to be
fixed at this time. You may have fixed another problem other
than the one you were initially trouble-shooting.

7. If you are trouble-shooting an Operating System Hang, attempt
to reboot the system at this point and, if you are successful,
take an Error Log report of the time prior to and at the time
of the Hang.

8. Attempt to diagnose the problem. Use whatever D.E.C. resources
you need to analyze the information that you have gathered.
If you have found a problem before you got to this step, you
may have fixed the Hang problem. Do not assume this yet. Keep
all the information that you have gathered so far with the
SYSTEM LOG Book, just in case the HANG problem reoccurs.

The Software Dump can be analyzed by RDC, Remote Support,
Software Support, or District/Regional Support.

On the Hardware Dump examination, look for such things as:

1. Attentions on Massbus Devices.
2. Adapter Power "UP" or "DOWN" status.
3. Interrupt enables having been cleared, which

may indicate power glitches or problems with the
power monitoring logic.

4. Who was interrupting at the time the Hardware
Register Dump was taken?

5. Any error bits set?

If the problem is not a solid problem and if the SYSGEN parameters
are set up so that the Operating System does reboot, ask the customer
to change them so that the system does not reboot automatically and
educate the customer on the procedure for taking a hardware register
dump.

1-122

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

1-123

"Operating System Functional problemsn are those problems that do
not crash the Operating System but either do not complete properly
or do the wrong thing even though they appear to be working properly.

In order to diagnose the problem, you will first need to know a few
things about the problem. Such as:

1. Is the problem a result of running D.E.C. supported
software or Customer software? This will indicate
to you how far you need to persue the problem.
We are not responsible for fixing Customer Software
or even defining where in the Customer's software
the problem lies. We, D.E.C., are only responsible
in verifying that the D.E.C. hardware and D.E.C.
Supported Software are not at fault.

2. Can the problem be recreated at will. It will.probably
be necessary to recreate the problem in order to
trouble-shoot it.

3. If the problem cannot be recreated at will, what is
the Time Between Failures.

4. You will need to know at what time the last failure
occured. If the customer doesn't know, then the
problem will have to be recreated so that you will
know at what time to look for errors in the error log
file.

These problems may or may not be caused by Hardware. In order to
determine if the problem is Hardware related, check the following:

1. Take an Error log report that covers the time
immediately prior to, at time of, and immediately
after the "Failing Function" was attempted. Does
the report show any errors or strange events?

2. If the "Failing Function" uses a particular device,
run the appropriate diagnostics on that device.

3. If the "Failing Function" uses a particular device,
check the Voltages and AC/DCLO signals (if appropriate)
on that device.

1-124

4. Check with Remote/District/Regional Support to see if this
is a known or common problem. There might be a Hardware
or Software fix for this problem. D.E.C. RDC is also
a good place to check to see if the problem is similiar
to any known or common problems.

If the problem is not found to be a hardware problem, (after doing the above
checks), it may be necessary to get the help of D.E.C. Software in order
to find out how to diagnose the problem.

Note: If all else fails to fix your problem, the VAX-11/780 Data Paths may
be at fa ult.

The VAX-11/780 Data Paths, as with most processors, do not check
parity within themselves as the data moves around within the data path
elements. This is not done since "parity checkers" are extremely
slow when compared to the speed needed within the data paths.

Parity is checked on the "MD Bus" data coming into the Data Paths
by the Cache logic. The Data Paths generates parity for the data
that it is sending out of the "D Register". Data going into and
out of the other Data Path buses, the ID Bus and the VA Bus, does
not have parity checking or generation done by the Data Paths.

1-125

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERA TING SYSTEM BACKUP or REBUILD Problems

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERA TING SYSTEM BACKUP or REBUILD Problems

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERA TING SYSTEM BACKUP or REBUILD Problems

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERATING SYSTEM BACKUP or REBUILD Problems

OPERA TING SYSTEM BACKUP or REBUILD Problems

1-127

Backup or System Rebuild problems are often considered to be
a seperate type of problem. There are really only a few areas that
may be at fault. Check the following:

a. Check to see if the problem can fit into one of the
other "Types of Problems" listed at the beginning of
this Trouble-shooting Outline. If it does fit under
another type, use that types' outline to trouble-shoot
the problem.

An example would be, while attempting to do a
stand-alone backup or restore, the system crashed
with "?INT-STK INVLD". If this was the case, you
should go to the "Interrupt Stack Not VAlid" flow
which is under the "Operating System Crashes or
Bugchecks" section.

b. For "Stand-Alone" Backup or Restore, the following devices
are used :

1. LSI-11 Subsystem
2. VAX-11/780 CPU and MEMORY
3. Disk Drive that contains media being used.
4. Magtape that contains media being written

to or read from.
5. Associated SBi Nexus for Disk Drive and

Tape Drive.
6. SBI Terminator

These devices should be checked for correct operation by
testing with the appropriate diagnostics.

Don't forget to check the voltages and Power Monitoring
signals (AC/DCLO) for these devices.

Other System units may affect the operation of these
devices even though they are not being used. It may become
necessary to remove them, temporarily, from the System in
order to verify that they are not at fault.

c. The MEDIA may be at fault. Try other media on both the
disk and magtape if at all possible to verify that the
media is not at fault.

l-128

If the VMS Operating System was running immediately prior to the
attempted BACKUP or REBUILD, it would be a good idea to verify that
it still runs O.K .. This step will tell you that most of the hardware
is in good shape.

If a VMS/DIAGNOSTIC Field Service Pack is available attempt to back it
up, as a test to help isolate whether there is a media or hardware problem.
A Restore could also be done, to a SCRATCH pack, with the tape just
generated in order to get a better idea of how much hardware is in
reasonably good working order.

If BACKUP or REBUILD is being done in stand-alone mode, it is
somewhat harder to trouble-shoot since you have lost two valuable
sources of information. There isn't any "ERROR LOG" facility under
stand-alone operation and there aren't any facilities that will
provide Software Dumps. Therefore, the only sources of information
available to you are the Console Terminal output and any Hardware
register dumps that may have been taken.

If a NON-D.E.C. Disk or Tape drive is being used for the BACKUP or
REBUILD operation, it may be the source of the problem. We, D.E.C.,
do not support our Device Drivers being used on foreign equipment.

1-129

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

BOOTING Problems

1-131

Power-up booting outline

I. On a system POWER-UP, "CONSOL.SYS" is booted as follows:

A. BPOK & BDCOK, on LSI subsystem H780 Power Supply, goes high.

B. KDll-F jumpers, W5 & W6, specify what to do on power up.
1. Trap to 24
2. Halt go into ODT and print "@" prompt
3. Jump to 173000

The VAX-ll/780's KDll-F is setup to "jump to 173000".

c. Execute PDP-11 MACROCODE routine that starts at Q-Bus
address 173000.

173000 I 000137
173002 I 140200

D. The CIB ROM starts at 140000, is 4Kwords long, and goes to 157776.
This ROM's main purpose is to load in the bootblack off the RXVll
media, and transfer control to it. The entry point at 140200
causes the following to be done:

1. Run some Q-Bus Memory tests.
2. Assign Q-Bus Terminal addresses.
3. Run LSI CPU tests.
4. Read Boot block from RXVll.

The remaining steps happen if the LOCAL or REMOTE CONSOLE FLOPPY
is in the RXVll disk drive:

5. Read Directory on RXVll media.
6. Load CONSOL.SYS into Q-Bus memory.
7. Start CONSOL.SYS program.

E. Upon initialization, CONSOL.SYS does the following:

1. Does a "SHOW" command.
2. Inits VAX CPU.
3. Load WCS microcode.
4. Does a "SHOW VERSIONS" command.

F. CONSOL.SYS checks "AUTO RESTART SWITCH" to see what to do next.

l. if "AUTO-RESTART SWITCH" = "off"

a. use "DEFBOO.CMD", on RXOl floppy, to boot the
system. This command file contains CONSOL.SYS
commands that will perform the following functions:

1.) setup VAX R<0:5> to indicate following:
a.) Boot NEXUS

1-132

b.) Primary Bootstrap
c.) Operator intervention (stop in

SYSBOOT)
d.) Media device type where Secondary

bootstrap is stored.
e.) Boot device unit number

2.) start the VAX macrocode program that is
resident in the ISP ROM. This programs
main job is to find a good 64KB of VAX
memory where the primary VAX bootstrap
can be loaded. The ISP ROM program will
exit, upon successful completion, with the
starting address of the good 64KB chunk of
memory +200 in the STACK POINTER (Rl4).

3.) load VMS.EXE (primary bootstrap), from
RXOl floppy, into VAX memory starting at
the address specified in the SP.

4.) start VMB.EXE (a VAX macro-code program).

b. VMB.EXE loads secondary bootstrap, per flags that
are setup in VAX R<0:5>, which loads program~

1.) [SYSMAINT]DIAGBOOT.EXE if R5<4>=1
a.) loads [SYSMAINT]ESSAA.EXE

2e) [SYSEXE]SYSBOOT.EXE if R5<4>=0
a.) loads [SYSEXE]SYS.EXE

2 . if "AUTO-REST ART SWITCH" = "on"

a. use "RESTAR.CMD", on RXOl floppy, to reboot the
system.

1.) setup VAX R<0:5> to indicate what mapping
registers to use.

2.) start ISP ROM at WARM RESTART location
"20003004".

3.) WARM RESTART code attempts to find
RPB (restart parameter block).

4.) if RPB found, restart power interrupted
routine via contents of the RPB.

b. If unable to reboot via Warm restart, VAX ISP ROM
program (VAX Macrocode) sends code to CONSOL.SYS
indicating a WARM RESTART FAILURE.

1.) CONSOL.SYS then attempts a reboot by
using the DEFBOO.CMD file.

1-133

Booting Problems occur in many different types of ways but the
method of trouble-shooting is fairly simple.

Proceed as follows:

1. Determine WHERE in the VMS Boot outline that the System
is experiencing problems. How far the Boot Procedure got
will tell you how much hardware you have to diagnose.

If it is failing before the VMB.EXE program is started,
the following hardware may be at fault:

a. Any part of the LSI-11 Subsystem.
b. The LOCAL CONSOLE Floppy.
c. VAX Memory.
d. VAX-11/780 CPU.
e. Power Supplies and Power Monitoring circuits.

From this point on, any hardware on the System could cause
failures. However, the most likely problem areas will be
listed here. Just beware that any hardware could be at
fault from this point on.

If it is failing after the VMB.EXE program is started,
but before the VMS identification message is typed on the
Console Terminal, the following hardware is most likely
to be at fault:

a. VAX-11/780 CPU.
b. VAX Memory.
c. VAX Power Supplies and Power Monitoring circuits.
d. System Disk and SBI controller.

If it is failing after the VMS identification message, then
the most likely hardware to be at fault is:

a. VAX-11/780 CPU.
b. VAX Memory.
c. Power Supplies and Power Monitoring circuits.
d. System Disk and SBI controller.
e. DW780 Unibus Devices

1-134

2. Check to see if the problem can fit into one of the
other "Types of Problems" listed at the beginning of
this Trouble-shooting Outline. If it does fit under
another type, use that types' outline to trouble-shoot
the problem.

An example would be, while attempting to
boot the Operating System, it crashes with
"?INT-STK INVLD". If this was the case, you
should go to the "Interrupt Stack Not VAlid" flow
which is under the "Operating System Crashes or
Bugchecks" section.

3. Hardware Register Dumps can be taken to see if there are
any hardware errors set at failure time.

4. The problem could also be a software problem. Try another
SYSTEM Pack if available. Here is where a Field Service
VMS/DIAGNOSTIC Pack would be very useful.

1-135

Overview of LSI-11 Subsystem Bootstrapping

1. With the power-on sequence, the Console ROM bootstrap program
is started (this requires the operator action of applying power).
The Console ROM is located on the CIB (M8236) board and
is initiated by the LSI CPU executing macro instructions starting
at ROM location 173000. The LSI CPU board contains jumpers that
enable it to jump to 173000 on power up.

2. A series of LSI-11 tests are executed by the CIB ROM macro
instructions. These are PDP-11 macro instructions that are
executed by the LSI-11 processor.

3. The Console program, CONSOL.SYS, is then loaded from the Floppy
disk drive (the LOCAL CONSOLE or REMOTE CONSOLE floppy must be
installed in the Floppy Disk Drive) into LSI-11 memory. This is
accomplished by execution of macro instrucions in the CIB ROM.

4. The Console program, CONSOL.SYS, is then started. The initiation
of the CONSOL.SYS program prints the same information that you
would get with a Console "SHOW" command followed by a line
indicating that an INIT VAX-11/780 CPU has finished, and that is
followed by a statement specif ing where the VAX CPU is halted
The following is an example of the type of printout that should
occur on the LSI-11 Console Terminal:

CPU HALTED,SOMM CLEAR,STEP=NONE,CLOCK=NORM
RAD=HEX,ADD=PHYS,DAT=LONG,FILL=OO,REL=OOOOOOOO
INIT SEQ DONE
HALTED AT 00000000

5. The Console program, CONSOL.SYS, then loads the WCSxxx.PAT file
from the Console Floppy into the WCS portion of the VAX-11/780 CPU,
(xxx =current version of WCS code on Floppy). The following is
an example of the type of printout that should now be printed on
the LSI Console Terminal:

(RELOADING WCS)
LOAD DONE, 0800 MICROWORDS LOADED
VER: PCS=Ol WCS=OE-10 FPLA=OE CON=V07-00-L

6. If the AUTO RESTART switch is ON, the CPU bootstrap is now
initiated.

7. If the AUTO RESTART switch is OFF, the console is held in the
Console I/0 mode of operation awaiting operator input. The
LSI Console Terminal will print the CONSOL.SYS prompt and remain
in input mode. Prompt is as follows:

>>>

1-136

Overview of VAX CPU bootstrapping

1. With the power-on sequence, the VAX CPU goes to the
initialization routines of the VAX CPU microcode.

2. The CPU then waits for the start of Q console boot
sequence. The console boot can be initiated by one
of the following ways:

a. Console BOOT command entered to the CONSOL.SYS
program by the operator. The CONSOL.SYS program
executes the appropriate command file from the
CONSOLE Floppy.

b. VAX BOOT switch is pressed by the operator. The
CONSOL.SYS program executes the DEFBOO.CMD command
file from the CONSOLE Floppy.

c. An Auto-restart sequence is initiated, by the AUTO
RESTART switch being ON, and a Warm Restart is
attempted. The CONSOL.SYS program executes the
RESTAR.CMD command file from the CONSOLE Floppy.

If a warm restart fails,go to step 3.

If a warm restart succeeds, go to step 5.

3. When any one of the preceding conditions occur, the console
(CONSOL.SYS) loads a bootstrap into the VAX CPU's memory from
the CONSOLE FLOPPY. The bootstrap is VMB.EXE.

4. The Console program, CONSOL.SYS, starts the VAX CPU in the
VMB.EXE (that was just loaded). VMB.EXE loads and starts the
secondary bootstrap (SYSBOOT.EXE or DIAGBOOT.EXE).

5. The Console Program, CONSOL.SYS, enters its PROGRAM I/0 mode
of operation.

6. Any output to the Console Terminal now comes from the running
VAX-11/780 macro program via the CONSOL.SYS program. The
CONSOL.SYS program passes data to the terminal from the VAX
CPU.

7. Any input is passed from the Console terminal to the running
VAX macro program via the CONSOL.SYS program. EXCEPT, if a
"CTRL""P" ("'P) is typed on the Console terminal, the CONSOL.SYS
program will then go back to "CONSOLE I/0" mode and you will
then be talking to CONSOL.SYS directly again.

1-137

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

FRONT-END SUBSYSTEM Problems

1-139

The Front-end Subsystem (LSI-11 and Associated Peripherals) can
have many types of problems, also. The subsystem is a very simple
and easy to fix system. There are a few things that should be kept
in mind while trouble-shooting subsystem problems.

1. Be sure to check that the jumpers of the modules that
you are placing into the system matches those on the
module that you have taken out.

2. Be sure to mark all original modules so that you will
not get then mixed up later on.

3. Remember that the CIB (M8236) module is part of the
CONSOLE SUBSYSTEM.

4. Remember that AC/DCLO signals from the VAX-11/780 are
turned into FAIL/DEAD on the Q-Bus.

5. Don't forget about checking Voltages and Power Monitoring
Signals.

6. Have you run all the LSI-11 Subsystem Diagnostics?

LSI Subsystem TRAPS

Whenever the LSI processor hardware detects errors, it will execute a
trap sequence. This trap sequence does the following steps:

1. Pushes the "PSW" onto the STACK.

2. Pushes the "PC", at the time of the error, onto the STACK.

3. Places the contents of the "TRAP VECTOR" into the "PC".

4. Places the contents of the "TRAP VECTOR+2" into the "PSW".

5. Resumes executing macro instructions from the "NEW" PC.

1-140

Trap Vector Assignments

000000 Reserved. (an Error Trap)
Also indicates a Trap within a Trap.
Got here due to an error occuring while
servicing another error, or by some instruction
modifying the PC to 000000.

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000004 if this error occurs.

000004 CPU Errors. (an Error Trap)
Non-existent Memory Errors
Sack Timeouts
Odd Addressing Errors

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000010 if this error occurs.

000010 Illegal and Reserved Instruction. (an Error Trap)
An attempt was made to execute an illegal or
reserved instruction opcode.

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000014 if this error occurs.

000014 BPT (Breakpoint Trap} executed.
Got here due to the BPT instruction executed.

000020 JOT (Input/Output Trap) executed.
Got here due to the IOT instruction executed.

000024 Power-Fail detected. (an Error Trap)
Got here due to detection of a Power Failure.

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000030 if this error occurs.

000030 EMT (Emulator Trap} executed.
Got here due to the EMT instruction being executed.

000034 TRAP instruction executed.
Got here due to the TRAP instruction being
executed.

Traps are usually easy to trouble-shoot as long as the proper
information is gathered at the time of the failure. A software dump
of certain locations is very helpful in isola~ing the source of the
error in all of Error traps listed above except for a Power Fail
trap. In order to gather this software information, you must first
install an LSI/PDP-11 TRAP CATCHER in memory and then wait for the
next error to occur.

1-141

LSl/PDP-11 TRAP CATCHER
The later versions of CONSOL.SYS have software routines for the
different LSI traps that can occur, i.e. "Trap-4". These routines,
unfortunately, do not dump any of the information that you need to
trouble-shoot them. In order to get a Software Dump of these traps,
you must deposit a TRAP CATCHER into LSI memory prior to getting the
error. To do this, use LSI ODT commands to deposit the TRAP CATCHER.

$ "'P <--- Type "CTRL/P" to VMS prompt.
>>> <--- Place LSI "HALT/ENABLE" switch to "HALT".
yyyyyy <--- LSI PC at time halted. Remember for later.
@01 xxxxxx 2<line feed>
000002/ xxxxxx O<line feed>
000004/ xxxxxx 6<line feed>
000006/ xxxxxx O<line feed>
000010/ xxxxxx 12<line feed>
000012/ xxxxxx O<return> <-- Place "HALT/ENABLE" to "ENABLE"
@yyyyyyP <--- restarts CONSOL.SYS where left off.
>>> SET TERMINAL PROGRAM<return><return>
$ <--- Now back to VMS. Wait for error.

POWER FAIL Traps
The trap is caused by one of the following:

1. A true drop in power below the specifications of the
power supplies that have their Power Monitoring signals
connected to the LSI's "BPOK" and "BDCOK" circuits.

2. A false detection of a Drop in power by one of the
"BPOK" and/or "BDCOK" circuits, or interconnected Power
monitoring signals.

3. Noisy Power supply and/or Power Monitoring signals.
a. AC/DCLO on H7420 type supplies should be at

least a +3.5 volt level to insure proper noise
immunity.

b. H7100 AC/DCLO signals should be at least a -9.5
volt level to insure proper noise immunity.

4. LSI Subsystem failure causing the LSI Processor to enter
the trap vector.

Possible Problem areas are:
1. The H780 LSI Power Supply.
2. The H780 LSI Power· Supply Power Monitoring Circuits.
3. The VAX-11/780 CPU/Nexus H7100 Power Supplies.
4. The VAX-11/780 CPU/Nexus H7100 Power Monitoring Circuits.

The Power Monitoring signals in the following supplies are or-ed
together and then feed the LSI CPU's Power Fail Circuits:

1. H780 .LSI Power Supply
2. VAX-11/780 H7100 Power Supply #1, #2, and #3

1-142

Gathering LSI Software DUMP (should be halted in a TRAP CATCHER)

If the LSI-11 is trapping, the following ODT commands can be used to
gather information to determine what instruction or address is failing,
(assuming that you have installed the TRAP CATCHER and the LSI halts).
Type those things within double quotation marks. Things within a
single quotation mark signifies what keyboard key to type.

Take the following dump first thing after LSI-11 goes to ODT mode(@).

Upper Case characters must be used when talking to ODT.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type.
Type
Type

"M"
'RETURN'
"RS/"
'RETURN'
"RO/"
'LINEFEED' 6 times
"@"
"@"

""'" 15 times
'RETURN'
"R6/"
"@"
"@"

""'"
" "
"@"
'RETURN'

Get LSI Maintenance Register.

Get the Processor Status Word.

Get Contents of RO.
Get Contents of Rl thru R6.
Get Failure PC off Stack.
Get contents of Failure location.
Get Instruction Stream.

Prepare to get information in
case the mode used in the failing
instruction was either PC mode 6
or PC mode 7 addressing.
Get PC mode 6 or 7 information.
Get PC mode 7 operand.

A dump of the LSI is now complete. Proceed to next step
if you want to RESTART the LSI subsystem or REBOOT the
Operating System.

18. If you want to attempt to reboot the Operating System do one
of the following:

a. If you want to do a complete Operating System reboot,
type the following if at the ODT prompt (@):

"173000G"

b. If you only want to reboot the LSI subsystem without
rebooting the Operating System, type the following:

To "@" (ODT) prompt type - 141330P
To ">>>" (CONSOL.SYS) prompt type - SET TERMINAL PROGRAM

The Dump just taken can be analyzed in order to determine what
address or instruction caused the trap.

1-143

ANALYZING LSI Software Dumps taken after Halting in a Trap Ca~cher.

LSI-11 Software Dumps for crashes that have been halted in a Trap Catcher
are fairly easy to analyze if you have at least a general understanding of
the PDP-11 Instruction set, the PDP-11 Addressing modes, and how a PDP-11
trap occurs. The following steps assume that you have at least this level
of knowledge.

1. The LSI CPU will do the following steps whenever it detects a TRAP
condition:

a. Pushes the PSW onto the stack. The stack is AUTO-DECREMENTED
prior to pushing this data onto it.

b. Pushes the PC onto the stack. Again, the stack is AUTO-DECREMENTED
prior to pushing this data onto it.

c. A new PC is fetched from the TRAP VECTOR location in physical
memory. The actual location will be one of the following:

LSI Memory Location 000000 if DOUBLE BUS ERROR Trap.
LSI Memory Location 000004 if BUS ERROR Trap.
LSI Memory Location 000010 if ILLEGAL/RESERVED INSTRUCTION Trap.
LSI Memory Location 000024 if POWER FAIL/RECOVER Trap.

d. A new PSW is fetched from the TRAP VECTOR+2 location in physical
memory. The actual location will be one of the following:

LSI Memory Location 000002 if DOUBLE BUS ERROR Trap.
LSI Memory Location 000006 if BUS ERROR Trap.
LSI Memory Location 000012 if ILLEGAL/RESERVED INSTRUCTION Trap.
LSI Memory Location 000026 if POWER FAIL/RECOVER Trap.

e. The LSI will then continue MACRO-CODE execution starting at the
new PC. If a TRAP-CATCHER has been deposited, like the one
specified in this section, the LSI CPU will execute a HALT
(code = 000000) instruction.

2. At this point in time, the LSI DUMP procedure should be executed.
This wf 11 gather the needed information to allow you to analyze
what was happening, or who was being accessed, at the time of the
TRAP. In most cases, this analysis will point directly to the
fa i 1 i ng unit.

3. To analyze the dump, proceed as fol.lows:

a. Find out the contents of LSI "General Register #6" (R6, %6, or SP).
This data is the address of the current bottom of the STACK.
The STACK builds from high address towards lower address, therefore
the contents of R6 will be pointing to the last entry pushed onto
the STACK. This entry will be the saved PC of where the LSI
instruction set processor was running at the time of the trap.

b. Using the ncontents of R6" as an "address", examine this memory
location. The data from this last examine is the PC at the time
of the TRAP.

1-144

c. Subtract 2 from this PC to find the address of the last memory
reference prior to the TRAP, or at the time of the TRAP.
The "PC-2" contains INSTRUCTION, or OPERAND-SPECIFIER-DATA,
that was being used at the time of the Trap.

d. Now is when you need the general knowledge about the PDP-11
instruction set, how it works, and how the addressing modes
work. With this knowledge you should be able to look back
through the location prior to the "PC-2" location and determine
what was happening prior to the trap. You must use your knowledge
of the PDP-11 instruction set to find out where the instructions
actually start.

4. If you cannot make sense of the dump, either Remote Support or your
local Support groups should be able to analyze the dump.

LSI-Traps Software Dump Analysis Flow

R6 I xxxxxx --> Points to bottom of Stack --1
I
I
I-> xxxxxx I SavedPC ->I

SavedPC-12/ instruction
SavedPC-10/ instruction
SavedPC-6 I instruction
SavedPC-4 I instruction
SavedPC-2 I instruction
SavedPC I instruction

stream data
stream data
stream data
stream data
stream data
stream data

1-145

xxxxxx+2/ SavedPSW I
I
I
I
I
I

<-- Last reference I
<----------------------------<--!

Device

RXVll

DLVll

DLVll-E

Q-Bus
Address

177170
177172

177560
177562
177564
177566

Register
Name

RXCS
RXDB

RCSR
RBUF
XCSR
XBUF

Vector

264

60 - Reciever

64 - Transmitter

310 - Receiver 175610
175612
175614
175616

RCSR
RBUF
XCSR
XBUF

314 - Transmitter

CIB ROM 0
ROM 1
spare
ID Data LO
ID Data HI
spare
RX DONE
TX READY
TO ID Lo
TO ID Hi
FM ID Lo
FM ID Hi
ID C/S
MCR
MCS
V-BUS

300 - RX Done
304 - TX Ready

173000
173002
173004
173006
173010
173012
173014
173016
173020
173022
173024
173026
173030
173032
173034
173036
Note: The above addresses are dependent on the CIB

Wl jumper being INSTALLED. If Wl is OUT
the addresses would be 1630xx instead.

140000
to

157777

MCR - Q-Bus address = 173032

CIB Bootstrap ROM

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I I I I I I I I
Halt CPU I I I I I 1-- Proceed
Req Reset I I I I I

I I I I 1--- Single Step
Maint Ret Enab ---1 I I I I

BUS

UPC <12> ------------1 I I 1--- Single Step STATE
STAR Interrupt Disable --1 I I I
ROM NOP --------------------1 I I 1-- Freq <O>
Stop On MICRO MATCH -----------1 I I \

Clock Stopped ---------------------! 1--- Freq <l>

1-146

MCS - Q-Bus address 173034

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Floppy on - I I I I 1---- LOCK (Key)
BOOT (Switch) -I I I I I----- REMOTE (Key)
Console Corrunand -----1 I
RUN ---------------------1 I
HALT STATE -~---------------1

I 1------- AUTO RESTART (Switch)
I 1---- DONE Interrupt Enable
1------ READY Interrupt Enable

V-BUS Q-Bus address 173036

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I<- Serial Channel <7:0> ->I " "

I I I I I 1--- V-Bus CLOCK
CPT 0 ------1 I 0 I 1---- V-Bus LOAD
CPT 1 ---------1 I I 1---- V-Bus
CPT 2 -------------1 1-- CPT 3

ID C/S Q-Bus address 173030

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I
I
I Rcvd ID ADDR <5:0>
I Inverted, Read Only
I

I I-- RCV Write
1------ ID Cycle

I
I
I ID Address <5:0>
I
I 1--- ID Write
I
1------ ID Maint

RX DONE - Q-Bus address 1 73014
Contains one bit. Bit <07> = RX DONE

TX READY - Q-Bus address l 73016
Contains one bit. Bit <07> = TX READY

ID Data Lo, TO ID Lo, FM ID Lo all contain the
low order bits, bits <15:00> of a 32 bit data word.

ID Data Hi, TO ID Hi, FM ID Hi all contain the
high order bits, bits <31:16> of a 32 bit data word.

1-147

SELFTEST

PDP-11 Instruction Set

000000 HALT 0060DD ROR 104000
000001 WAIT 0061DD ROL to EMT
000002 RTI 0062DD ASR 104377
000003 BPT 0063DD ASL 104400
000004 IOT 0064NN MARK to TRAP
000005 RESET 0065SS MFPI 104777
000006 RTT 0066DD MTPI 1050DD CLRB
000007 0067DD SXT 1051DD COMB

to reserved 007000 1052DD INCB
000077 to reserved 1053DD DEGB
OOOlDD JMP 007777 1054DD NEGB
00020R RTS OlSSDD MOV 1055DD ADCB
000210 02SSDD CMP 1056DD SBCB

to reserved 03SSDD BIT 1057DD TSTB
000227 04SSDD BIC 1060DD RORB
000240 NOP 05SSDD BIS 1061DD ROLB
000241 CLC 06SSDD ADD 106400
000242 CLV 070RSS MUL to reserved
000244 CLZ 071RSS DIV 1064 77
000250 CLN 072RSS ASH 1065SS MFPD
000257 CLNZVC 073RSS ASHC 106600 MTPD
000260 NOP 074RDD XOR 106700
000261 SEC 07500R FADD to reserved
000262 SEV 07501R FSUB 107777
000264 .SEZ 07502R FMUL llSSDD MOVB
000270 SEN 07503R FDIV 12SSDD CMPB
000277 SECVZN 075040 13SSDD BITB
0004xXX BR to reserved 14SSDD BICB
OOlOxXX BNE 076777 lSSSDD BISB
0014xXX BEQ 077RNN SOB 16SSDD SUB
0020xXX BGE lOOOxXX BPL 170000
0024xXX BLT 1004xXX BMI to Floating
0030xXX BGT 1010xXX BHI 177777 Point inst.
0034xXX BLE 1014xXX BLOS
004RDD JSR 1020xXX SVC
0050DD CLR 1024xXX BVS
OOSlDD COM 1030xXX BCC,BHIS
0052DD INC 1034xXX BCS,BLO
0053DD DEC
005400 NEG
0055DD ADC xXX = 8-bit offset that when sign extended and
0056DD SBC added to the PC results in the new PC.
0057DD TST

1-148

PDP-11 Processor Status Word

15 14 13 12 11 10 09 08

Priority

RO-R6 mode addressing

Mode

0
1
2

3

4

5

6

7

Name

register
register def erred
auto-increment

auto-increment
def erred

auto-decrement

auto-decrement
def erred

index

index def erred

PC Mode addressing

Mode

2

3

6

7

Name

immediate

absolute

relative

relative deferred

07 06 05 04 03
A A

I I
T N

----1

Symbolic

R -------
(R) -------
(R)+ -------

@(R)+ -------

-(R) -------

@-(R) -------

x(R) -------

@x(R) -------

Symbolic

#n

@#A

A

@A

1-149

02 01 00

I I
z v c

Description

(R) is operand
(R) is address of operand
(R) is address of operand,
a 1 or 2 is added to (R) after
use.
(R) is address of the address
of operand. A 1 or 2 is added
to (R) after use.
(R) is decremented by 1 or 2
and the resulting (R) is the
address of the operand.
(R) is decremented by 1 or 2
and the resulting (R) is the
address of the address of the
operand.
(R) is added to "x" and the
result is the address of the
operand.
(R) is added to "x" and the
result is the address of the

address of the operand.

Description

operand, "n", follows the
instruction or source operand.
address of the operand, "A",
follows the instruction or
source operand.
Instruction Address + 4 + X
is the address of the operand.
"A" is the address of the
operand.
Instr. address + 4 + X is the
address of the address of the
operand. The·contents of "A"
is the address of the operand.

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

UNEXPLAINED REBOOTS & POWER RESTARTS

1-151

Symptoms of spurious Reboots and Power Restarts

This type of problem can be identified by finding the following
type of output on the console terminal.

1. The system is running along printing out normal operating
system type information.

2. Then, without any prior error printouts, a message appears that
is like or resembles (depending on the actual version of
the Console Floppy} the following:

$ <-- This line may contain any type of VMS output

CPU HALTED,SOMM CLEAR,STEP=NONE,CLOCK=NORM
RAD=HEX,ADD=PHYS,DAT=LONG,FILL=OO,REL=OOOOOOOO
INIT SEQ DONE
HALTED AT 00000000

(RELOADING WCS)
LOAD DONE, 0800 MICROWORDS LOADED
VER: PCS=Ol WCS=OE-10 FPLA=OE CON=V07-00-L
(AUTO-RESTART) <-- From here on depends on the position of
CPU HALTED the "Auto-Restart Switch".
INIT SEQ DONE

$

3. The Operating System may or may not reboot depending on the
position of the "Auto-Restart Switch" on the VAX control panel.

1-152

This type of problem is usually power related.

Check the following things:

1. Are the VAX-11/780 CPU, MEMORY, and SBI NEXUS power supply
voltages O.K.? Check them with a Scope (for Noise) and
with a DVM (for correct level).

2. Are the LSI-11 Subsystem Voltages O.K.? Check the H780
power supply with a Scope and a DVM for correct levels
and the absence of noise.

3. Check all Power Monitoring signals (AC/DCLO) on both the
VAX supplies and the LSI-11 supply for both the correct
level and absence of noise. Use a Scope and a DVM. The
actual H7100 AC/DCLO signals that can cause this problem
are H7100 Supplies #1,#2,#3, and #4.

4. Verify that the 869 Power Controller is not dropping power
to the system.

5. Check the input AC power to the 869 Power Controller. Is
it low? It may be necessary install a DRANETZ to monitor
input power to the system.

The above mentioned Supplies and Power Controller may need to be
replaced one at a time in order to isolate the problem. Always put
back the original whenever it is determined that it was not at fault.

There are four modules that may be causing the Power Restarts. If
everything else checks O.K., try replacing them. They are:

1. M8232 - Clock board. Monitors "Supplies #1,#2,#3, & #4"
and generates its own ACLO/DCLO signals.

2. M8236 - CIB board. Sends the VAX system ACLO/DCLO signal
onto the Q-Bus BPOK/BDCOK lines so that the LSI knows that
the VAX detected a power problem.

3. M8224 - IRC board. Monitors the T.O.D. Battery DCLO signal
and passes it on to the Clock board.

4. KDll-F LSI CPU Board. This board receives the power fail
indication and causes the reboot.

1-153

Isolating the problem via disconnecting AC I DCLO signals

Sometimes it is necessary to be able to eliminate some of the hardware
by disconnecting sources of the Power Monitoring signals. Here is how
this can be done:

1. The H780 Power Supply can be isolated by disconnecting the
BPOK and BDCOK signals that it generates so that they never
reach the LSI CPU. In order to do this, you can bend the
two pins that receive BDCOK and BPOK so that they are not
connected when you reinstall the H780 to LSI Backplane

LSI

Gray ribbon cable. Use the following diagram to locate the
BPOK and BDCOK signal pins on the LSI backplane.

BE VERY CAREFUL not to bend these two backplane pins any
more than is absolutely necessary. These pins are easily
broken if you bend them too far. "ONLY" bend them far
enough to allow the cable to be put back on "ONLY" far
enough to allow the other signal pins to be connected.

\
\

----!
() ! <-- -12 volts

Backplane
************* () <-- Ground

+ +

Csparel SRUN(A)

Ground
\

CS3 \
\

BHALT \
\ \

\
+
+

\ SRUN
\ \

\ \
\ \ \
+ + +
+ +

CL3
Csparel

BDCOK

() <-- Ground

() <-- +5B volts

() ! <-- +5 volts
!----!

BPOK ! () ! <-- +12 volts
\ !----!
+ I
+ I

BEVNT

1-154

2. The H7100 Power Supplies can be eliminated by diconnecting
the "BPOK & BDCOK" signals that are generated on the "CIB"
board and are transimitted on the Q-Bus lines. To do this,
you can bend "Pins K & M" on "P7" sightly so th~t you can
reinsert the "J7" connector with the two pins disconnected.
This will prevent any spurious ACLO/DCLO signals, from the
H7100A Power Supplies (Supplies #1,#2,#3, or #4), from the
CIB (M8236) board, or from the CLOCK (M8232) board, causing
the system to be rebooted ·or restarted. The actual H7100's
that are connected to the "Supply #1 thru #4" connectors
are Power Supplies #1,#2, and #3. All the other H7100 Power
Supplies feed logic in there associated NEXUS' that uses the
SBI FAIL/DEAD lines to signal the VAX CPU of power problems.

KA780 Backplane AC/DCLO Supply connector assignments:

Supply #1 Jl7
Supply #3 = Jl5

T.O.D. Clock's Battery DCLO:

J20 - A08Fl

No FP780 installed:

Jl4 - Jl6 - SFT - PS #2
Jl5 - PS #3

Supply #2 Jl6
Supply #4 = Jl4

Jl6 - (Jl4 - DW780 #1 - Jl7) - SFT - PS #2
Jl7 - DW780 #1 - Jl4 - Jl6 - SFT - PS #2
Jl4 and Jl6 are connected via the KA780 backplane.

With FP780 installed:

Jl4 - Jl6 - SFT - PS #2
Jl5 - PS #3
Jl6 - (Jl4 - DW780 #1) - SFT - PS #2
Jl7 - PS #1
Jl4 and Jl6 are connected via the KA780 backplane.

BE VERY CAREFUL not to bend the two pins any more than
absolutely necessary or they may break when you attempt
to restraighten them after the problem has been isolated.
It is better if you don't actually bend the pins at all
but simply hold them out of the way while reinstalling the
"P7" cable no more that a third of the way onto the other
"J7" pins.

1-155

"Q-Bus BPOK/BDCOK" are generated on the CIB board as a result of
any H7100 Supply generating an ACLO/DCLO signal or by the T.O.D.
clock Battery backup generating a "BAT DCLO".

Top right of KA780 Backplane (view from pin-side)

KA780 backplane wiring

BDCOK
BPOK

B29Al to J0007M
B29Bl to J0007K

BPOK Pin
BDCOK Pin

A
0

0

0

0
K ---> 0

M ---> 0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

uu

B
0
0

0

0 <-- P7
0 Connector
0
0

0

0

0

0

0
0

0

0

0

0

0

0

0
vv

After disconnecting "BPOK" and "BDCOK" from "J0007", as described
above, the type of failure symptom that occurs next will indicate
in which half the problem lies.

1. If the LSI still reloads CONSOL.SYS and the VAX WCS, then
the problem is in the LSI Subsystem.

2. If an error occurs that indicates that the VAX is hung or
halted, then the problem is in the VAX CPU or VAX Power
Supplies.

1-156

The backplane connectors, Jl4 thru J20, are located on the pin side of
the VAX-11/780 CPU backplane, at the bottom, and are as follows:

Wl
1
2

Jl4

TIT
121
13 I

W2
1
2

JlS

ITT
121
13 I

W3
1
2

Jl6

ITT
121
I 31

W4
1
2

Jl7

ITT
12.1
I 31

W5
1
2

Jl8

TIT
121
131
141

Bottom_p1n_s1de of KA780 Backplane

I I I I
+5 volt I

& I
Ground I

connections I
here. I I

I I I I I
I I I I I
I I I I I

W6
1
2

Jl9

TIT
121
I 31
141

W7 W8
1 1
2 2

J20

11 41
12 51
13 61

I I I I l~~~~~~-
B Bl Bl Bl Bl Bl
a al al al al al
r rl rl rl rl rl

I I I I I
1 21 31 41 51 61

Feeds slots 4-16 --------------------1 I
Feeds slots 1-3,20,22,23,29 ---------------1 I
Feeds slots 18,24-28 ----------------------------1

J14 connections

Wl-1
Wl-2

1 - Supply 4 ACLO
2 - Supply 4 DCLO
3 - Ground

Jl6 connections

W3-l
W3-2

1 - Supply 2 ACLO
2 - Supply 2 DCLO
3 - Ground

1-157

Jl5 connections

W2-l
W2-2

1 - Supply 3 ACLO
2 - Supply 3 DCLO
3 - Ground

Jl7 connections

W4-l
W4-2

1 - Supply 1 ACLO
2 - Supply 1 DCLO
3 - Ground

Jl8 connections Jl9 connections
*************** ***************

W5-l 1 - -5v (to BL2 pins) W6-l 1 - +5v to Front Panel
W5-2 2 - -5v (to EKl pins) W6-2 2 - CIBP FLOPPY ON H

3 - Ground
4 - Ground

J20 connections

W7-l

WS-1

Bar 1
Bar 2

1 - Time of Day Clock's "+5v"
2 - unused
3 - Ground
4 - Time of Day Clock's "Battery DCLO"
5 - unused
6 - Ground

+5v from Power Supply #3
Return from Power Supply #3

3 - Ground
4 - Ground

Bar 3
Bar 4

+5v from Power Supply #2 (also supplies the first DW780)
Return from Power Supply #2

If FP780 is not installed:

Bar 5
Bar 6

+5v from Power Supply #2
Return from Power Supply #2

If FP780 is installed:

Bar 5
Bar 6

+5v from Power Supply #1
Return from Power Supply #1

Voltage Pins on the KA780 Backplane
+5 volts is present on all slots and rows at pins A2 and Vl.
-5 volts is present on all slots at pins BL2 and EKl.

1-158

JlO

Top_right_hand portion of KA780 backplane (Pin_side view)

Jll

Q-Bus Signal Runlist

J07C - B29Rl - BEVENT L
J07E - B29Nl - BSACK L
J07K - B29Bl - BPOK L
J07M - B29Al - BDCOK L
J07S - A29Rl - BREF L
J07W - A29Sl - BHALT L
J07Y - B29Sl - BINIT L
J07CC - B29B2 - BDMR L
J07EE - A29M2 - BIAKI L
J07HH - A29L2 - BIRQ L
J07KK - A29J2 - BYSNC L
J07MM - A2902 - BOIN L
J07PP - B2902 - BRPLY L
J07SS - A29E2 - BDOUT L
JOSC - B29Pl - BBS7 L
JOSE - A29K2 - BWTBT L
JOSH - B29V2 - BOAL 15 L
J08K - B29U2 - BOAL 14 L
J08M - B29T2 - BOAL 13 L
J08P - B29S2 - BOAL 12 L
JOBS - B29R2 - BOAL 11 L
J08U - B29P2 - BOAL 10 L
JOSW - B29Ml - BOAL 09 L
JOBY - B29M2 - BOAL OS L
J08AA - B29Ll - BOAL 07 L
JOSCC - B29Fl - BOAL 06 L
JOSEE - B29El - BOAL 05 L
JOSHH - B2901 - BOAL 04 L
JOSKK - B29Cl - BOAL 03 L
JOSMM - B29E2 - BOAL 02 L
J08PP - A29V2 - BOAL 01 L
J08SS - A29U2 - BOAL 00 L

VAX Control Panel Runlist

J09B - A29Al - SCPA BOOT SW H

Jl2

J09D - A29B2 - SCPA AUTO RESTART H
J09F - A29Fl - SCPA LOCK H
J09K - A29Dl - CIBN RUN H
J09L - A29El - CIBN ATTN H
J09J - A29Kl - SCPA REMOTE H

1-159

Jl3

J07

J08

!--!

!--!

!--!
! !

~--!

!--!
!

J09 ! .

!--!

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

1-161

This area is extremely variable in the types of problem symptoms
that can occur. Therefore, this discussion will only point out
a few of the questions that you should ask yourself while trouble
shooting peripheral device problems.

On such peripheral devices as Magtapes and Disks try to eliminate
the media as being a possible problem as soon as possible. Media
problems are most often seen on Magtapes versus Disks. It is best
to use D.E.C. Certified Magtapes to isolate Magtape Problems. Not
only is the media suspect on Read/Write problems but also should be
suspected on AUTO-LOAD problems.

The Error Log (System Event File) report is a valuable source of
information for problem diagnosis.

If the problem is of the type that points to one particular device,
the following questions should be answered if appropriate:

1. For a failing device that is on a common controller bus with
other devices, answer the following questions for yourself.

a. Do all the other devices run O.K.?

If they don't, then goto the next step that covers
multiple failing devices on the same common controller
interface bus.

If this is the only device that fails on its associated
interface bus, then the problem could either be in that
device or could still be a controller or bus problem. In
order to make sure it is not a controller or bus problem,
check to see if there is anything about the failing device,
as related to how it interfaces to the controller, that is
different than the running devices.

b. If all other devices on the controller run O.K., and
you have exhausted all other ideas, the problem still
could be with one of the other devices on the same bus
somehow interferring with the failing device. Make sure
this is not the case by removing all other devices from
the bus.

1-162

2. For failing devices that are on a common controller bus with
other devices, answer the following question for yourself.

a. Does any other Device on the same common controller bus
run O.K.?

If there isn't, then the problem may be one of the
following:

1. A Bus problem.
2. A Controller problem.
3. Another Device may be causing failures on

other devices on the bus.
4. A Bus Loading problem.
5. A Bus Termination Problem.

If there is, then you know that the Bus is in "Fairly"
good shape. Do not, however, totally eliminate the bus
as being a source of the problem at this time.

If there is, then you also know that the Controller is in
"Fairly" good shape also. Again, do not totally eliminate
the Controller as being a source of the problem yet.

b. If any other Device on the same common controller bus runs
O.K., then answer this question. Are all the failing
devices of the same "DEVICE TYPE" ?

If they aren't, what are the differences as related to how
the Controller treats them? For example, are the failing
devices Interrupt Driven and the non-failing devices
of Direct Memory Access type, or vice-versa? Look for
differences that may give you a clue as to what may be
causing the problem.

1-163

3. For a Failing Device or Devices that are not on a common bus but
are on a Controller that is of the multi-port varity, then answer
the following question.

a. Do all the devices fail on the controller?

If all do then the problem is probably in the controller
or a Software problem.

If some run O.K., then try a running device on the port
that fails. If that port runs O.K. now, do not immediately
blame the other device, but first evaluate the answer to
the following question:

Are both Devices of the same "DEVICE TYPE" and if they
aren't, are there any differences in the way that the
controller uses the failing and the running devices?

Never totally eliminate the possibility that the problem may be caused
by Software. However before you start looking into software problems,
it is most often best to eliminate the "hardware" possibilities first.

1-164

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

Won't POWER-UP

1-165

This type of problem does not warrant much of a discussion, but a
few things to look for will be mentioned.

Check the following:

1. Is the Input Power O.K.?
a. All voltages present?
b. All voltages within specification?

2. Are any Circuit Breakers tripped?
a. If the problem is in the LSI, don't forget to

check the position of the LSI Power Supply's
ON/OFF switch. This switch is in the back
panel of the H780 Power Supply.

b. Are all the H7100 Breakers set?
c. Are all the 869 Power Controller breakers set?
d. Are the breakers for all BAll Boxes set?
e. Are all breakers set in any expander cabinets.

3. Are any Fuses blown?
a. Check with a meter and tap to make sure that

the connection is solid within the fuse.

4. Are all Interlocks O.K.?
a. These can be checked by scoping the circuit or

by simply defeating the interlocks.

5. Are the AC Power Controllers' outputs O.K.?
a. All voltages present?
b. All voltages within specification?
c. Does it work O.K. in the "LOCAL" position?

(D.E.C. Remote Power Bus may be at fault)

6. Are there any THERMAL Switches that may be tripped?
a. These can be checked by scoping the circuit or

by simply defeating the switches.

7. Are there any AIR FLOW Sense switches that may be failing?
a. These can be checked by scoping the circuit or

by simply defeating the switches.

1-166

SOMETHING'S BURNING

SOMETHING'S BURNING

SOMETHING'S BURNING

SOMETHING 'S BURNING

SOMETHING'S BURNING

SOMETHING'S BURNING

SOMETHING'S BURNING

SOMETHING 'S BURNING

SOMETHING'S BURNING

SOMETHING ·s BURNING

1-167

This one is completely up to you. There isn't much that can
be said about how to isolate these problems except to use your
body's senses and possibly diagnostics.

Here are a couple of things to keep in mind:

1. The part that burnt may have been caused to burn due
to failure of another part or possibly due to a short.
Look for shorts between:

a. a VOLTAGE and GROUND.
b. two or more VOLTAGE runs.
c. a SIGNAL and GROUND.
d. a SIGNAL and a VOLTAGE.
e. two or more SIGNAL runs.

2. Heat and excessive currents weaken components. Their
failure may not occur immediately but may show up
several weeks or months later. Be sure to mention
the fact that this particular part burnt in the System
log book. If later on this device starts failing
intermittently, you may want to change some parts which
were in the same circuit as the burnt part.

3. If a Burning Smell occurs and disappears with you unable
to locate the problem, run diagnostics on the device to
see if you can locate the problem that way.

When looking for shorts, remember that signal runs should never
be at ground (0.00 volts). There is a voltage drop, no matter
how minute, across all solid state junctions.

1-168

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

Problems BUILDING VMS

1-169

If the problem cannot be classified under any of the other problem
types, then there isn't very much that can be at fault. The problem
should be one of the following types.

a. If the problem is in the booting of the VMS Backup utility, do
the following:

1. Check out the hardware via diagnostics.
2. Try another set of floppies for Stand-alone Backup.
3. Check Power.

b. If the problem is one such that the VMS pack cannot be built
from the Distrubition tape, then the problem is probably one
of the following:

1. The Distrubition Tape
2. The Magtape Drive
3. The Disk Media
4. The Disk Drive
5. Memory
6. Processor
7. Foreign Disk drives or Magtape drives may be at fault.

The hardware can be checked out by diagnostics.

c. If the problem exhibits itself in the booting of VMS from a
newly built Disk Pack, check the following:

1. Are the Startup files correct?
2. Are the Unibus devices configured correctly?
3. Foreign devices will probably have to be Connected

via the SYSGEN utility.
4. Foreign equipment will probably need special Device

drivers installed.

1-170

H E L P

H E L P

H E L P

H E L P

NON-DUPLICATABLE,

INTERMITTENT

&

WHAT t 0 d 0

Problems

H E L P

H E L P

H E L P

H E L P

1-171

NOW

Ocassionally the Customer will come up with a problem that we cannot
duplicate, is of a very intermittent nature, and you have simply just
done everything you could think of to try. Here is a list of things
that can be done to verify the functionality of the D.E.C. equipment for
non-duplicatable problems and that may pull out the cause of intermittent
problems or at least show up a means of more rapidly duplicating the
problem. This list can also be used as a What's Left checklist.

1. Check voltages on the system (Complete system) with a
DVM. Make appropriate adjustments and/or supply
replacement.

a. Verify that the Power connections are good.
Tap wires to verify good contact at connectors.

b. Vibrate Power supply if possible.

2. Check AC/DCLO's on the system (complete system) with
a DVM. Repair any that are out of spec ..

a. Verify that the AC/DCLO connections are good.
Tap wires to verify good contact at connectors.

b. Vibrate Power monitoring section of Supply if
possible.

c. H7420 type AC/DCLO signals should be at least at
a +3.5 volt level.

d. H7100 type AC/DCLO signals should be at least at
a -9.5 volt level.

3. Check voltages on the system (Complete system) with a
scope for excessive noise. Locate the source of the
noise, (Power Supply, Wiring, etc.) and repair.

4. Check AC/DCLO's on the system (complete system) with
a scope. Repair any that have excessive noise on
them.

5. Run all diagnostics.

a. Run LSI Front-end Subsystem diagnostics.
b. Run VAX-11/780 Micro-diagnostics #1 and #2.
c. Run VAX-11/780 Functional diagnostics.

(Don't forget to run EVKAA)
d. Run appropriate VAX-11/780 Nexus diagnostics.
e. Run appropriate Unibus Peripheral diagnosics.
f. Run appropriate Massbus Peripheral diagnostics.
g. Run all other appropriate peripheral

diagnostics.
i. Run UETP if VMS Operating System Pack is

available. Don't use the Customer's only Pack.

1-172

6. While running the appropriate diagnostics, vibrate each
device's modules, backplane, and Power Supplies.

7. Margin all devices that have any of the following types of
margining facilities:

a. Voltage margins. This is possible with any device
that has an adjustable power supply.

b. Clock margins. For example, the VAX-11/780 CPU
can run at a SLOW and FAST system clock rate.
The CONSOL.SYS program has a command that specifies
the desired VAX-11/780 CPU clock rate.

These margins should be performed while running the appro
priate device diagnostics.

8. Heat testing can be done, by blocking or disconnecting the
appropriate fans, if the problem is suspected to be heat
related. This should not be overdone since heat will
damage components. This damage may not be seen immediately
but may show up as an intermittent problem later on. I
would suggest using Heat testing ONLY as a last resort.

9. You can COOL specific components/boards with Freon if you
suspect the problem to be of this nature. Again, do not
overdo.

10. Beware that any Foreign Equipment, that may be on the
system, could be at fault. If all of the above checks
O.K., request that the Customer remove the Foreign
Equipment in order to eliminate it as a possible cause
of failure.

11. Be sure to show the Customer any diagnostic failures
that are due to the Foreign Equipment. If the problem is
found to be the Foreign Equipment, the Customer may
be billed "Per Call" rates (a Local Management decision).

12. If the system has MS/MA780 memory on it, replace or
remove all arrays that are getting Single Bit Errors.
The reason for this is due to the possibility of the
following occuring:

The ECC logic of the MS/MA780 memory controllers
cannot correctly report the conditions in which
an array has a MULTIPLE ODD NUMBER of BAD BITS
(ex. 3,5,7, or etc. bad bits per 72 bit array word).
The memory controller will correct a bit (not
necessarily one of the bad bits) and will send out
the data as "Corrected Read Data".,

1-173

13. If the system has an FP780 Floating Point Accelerator on it, remove
it and see if the problem still occurs. The VAX-11/780 microcode
will execute all of the Floating Point instructions if the FP780
isn't present.

14. Parity is checked as it is received by the VAX-11/780 CPU
Data Paths and is generated for the data going out of the
Data Paths as just prior to it being transmitted.

Therefore, data manipulations and transfers within the Data
Paths don't have any type of parity checking done on them as
they move between Data Path Registers, ALU's, SHIFTERs, etc ..

If all else fails to fix your problem, the VAX-11/780 Data
Paths may be at fault.

l-174

VIBRATION T e s t i n g

VIBRATION Testing

VIBRATION T e s t i n g

VIBRATION Testing

VIBRATION T e s t i n g

VIBRATION Testing

VIBRATION T e s t i n g

VIBRATION Testing

VIBRATION T e s t i n g

VIBRATION Testing

1-175

Vibration testing is a valid way of verifying connections and
internal component damage if done properly. It is not a valid
test if you vibrate so hard that you either bend or damage the
components under test. In fact, vibration testing that is done
to hard may cause more problems.

Here are a few common sense rules that you should keep in mind when
trouble-shooting via vibration testing.

1. Always run an appropriate diagnostic that will test the
device that you are vibrating. You must know how to
determine quickly that a failure has occured so that you
will be able to determine what you vibrated at the time
of the failure.

2. Always vibrate in sections. Do not make a big sweep of
all the modules/components/backplane pins and expect
to know what components caused the failure when vibrated.

3. Vibrate with enough force to jar the components under test,
but do not use so much force that you damage components or
backplanes.

4. Do not OVERDO vibration testing. To much vibrating will
eventually loosen components, loosen connections, or
fracture etches and wires. Vibrate enough to verify, to
yourself, that the device is not vibrational and then
don't vibrate any more.

5. Be very careful when vibration testing cables. Such cables
as the SBI cables are easily damaged.

6. When vibrating backplane pins, use a non-conducting flat
piece of material and drag it along the pins. Use common
sense in applying pressure. Do not vibrate with so much
pressure that you bend the pins together or with so much
pressure that you cut the insulation on the wires that
are against the pins. The object of backplane vibration
testing is to determine if the following exists:

a. Broken insulation on wires surrounding the pins
that intermittently short against the pin.

b. Poor pin to etch run connections.
c. Poor pin to module connections.
d. Free floating pieces of conducting material may

be lodged within the backplane causing
intermittent shorts.

1-176

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

OPERATING TEMPERATURE CHANGE Testing

1-177

Some problems occur more rapidly or only when the circuit
components are warmed up or only when they are cool. In order
to increase the failure rate or aid in isolating problems, the
circuits can either be either heated above normal operating
temperature or cooled below normal operating temperature. This
can be accomplished in several ways.

It is important to realize the this type of testing may show up
additional problems other than the one you are trouble-shooting.

Use this type of testing on only one device at a time.

Heat Testing

Heat is an enemy to electronic and most mechanical components.
Therefore, moderation is the key to successful, non-damaging heat
testing. Whenever you heat test a device or component, be sure
that you don't overheat. It is best to only heat up a circuit
a few degrees warmer than it is normally operating at. This can
usually be accomplished by simply disconnecting or blocking fans
temporarily. Constantly monitor the rise in temperature and
reconnect or unblock the fans when the temperature rises extremely.

Make sure that you run the appropriate diagnostic that will exercise
the device/component, under test, while heat testing.

If you are able to isolate a heat problem down to a few components,
a Heat Gun, or a Hair Dryer, may make it easier for you to isolate the
bad component.

1-178

Testing by Cooling

Extreme cold can also be an enemy to Electronic components and most
Mechanical components. Moderation in cooling is also the key to
successful testing by cooling. Excessive cooling can cause component
damage, fractured etches and wires, etc. Cooling a circuit is not as
easy to do as heating a circuit. A couple of ways that cooling can
be accomplished are as follows:

1. Sometimes, simply opening a cabinet or removing of the device's
skins can cool the system enough to cause failures.

2. The skins can be removed and an additional, free-standing,
fan can be directed into the circuit. Beware, sometimes
this actually increases the device's operating temperature
since air flow is blocked or funneled in such a way that
the proper air flow is not obtained.

3. If you are able to isolate the problem down to several
boards/components/etc. you can then use canned Freon in
order to isolate the problem further.

4. A "Carbon Dioxide Fire Extinguisher" can also be used if the
unit under test is large.

Make sure that you run the appropriate diagnostic that will exercise
the device/component, under test, while cooling.

1-179

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN Testin g

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN T e s t i n g

MARGIN T e s t i n g

1-181

Margin testing is another means of sometimes increasing failure
rate or isolating the problem area. There are two basic types of
margins you can use on the VAX-11/780 system and its' devices.
These are, Clock Margins and Voltage Margins. When you are doing
any type of margining, be sure ~o run diagnostics that will exercise
the device that you are margining.

It is important to realize that whenever any type of margining is done,
you may find other problems other than the one you initially started
trouble-shooting.

CLOCK Margins

On the VAX-11/780 system, the System Clock rate can be varied above
and below the normal clock rate. This is set by a command to the
CONSOL.SYS program. Simply set the desired Margin Clock Rate and
then run functional diagnostics on the VAX-11/780 CPU, Memory, and
SBI Nexus Controllers.

Other devices may contain clock margining facilities also.

Clock Margin only one device at a time.

VOLTAGE Margins

Any device that has Power Supplies that can be adjusted is capable
of being Voltage Margined. When voltage margining, do not take the
voltage above or below the specified component operating levels
that that voltage supplies. Again, moderation is the key. Excessive
voltage margining effects the life of electronic components. The
reason for this is that a change in voltage causes a change in
circuit current, which causes a change in heat dissapated by the
circuit.

Be sure to run the appropriate diagnostics that will exercise the
device being margined.

When voltage margining, be sure to adjust the voltages with a DVM
and then return the voltage to the appropriate level upon completion
of testing.

Voltage Margin only one voltage at a time.

l-182

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

D W 7 8 0 ERRORS

1-183

Parity Fault UBA CONFIG<31 > "PAR FLT"

If "Parity Fault - CONFIG<31>" only in this DW780.

M8270
Flakey Power for any NEXUS

If "Parity Fault - CONFIG<31>" in multiple NEXUS.

M8270, SBI Cables, Other NEXUS SBI Interface
SBI Terminator, Flakey Power for any NEXUS.

Write Sequence Fault - UBA CONFIG < 30 > "WSQ FLT"
M8270, Other NEXUS
SBI Cables
Flakey Power for this NEXUS

Unexpected Read Data Fault - UBA CONFIG<29> "URD FLT"
Other NEXUS, M8270 -
SBI Cables
Flakey Power for this NEXUS

Interlock Sequence Fault UBA CONFIG<28> "!SQ FLT"
Software
M8270, Other NEXUS
SBI Cables
Flakey Power for this NEXUS or CPU

Multiple Transmitter Fault UBA CONFIG<27>

If "Transmitter During Fault - UBA CONFIG<26>" 0

Another NEXUS
M8270, M8271, SBI cables
Flakey Power for any NEXUS

If "Transmitter During Fault - UBA CONFIG<26>" 1

M8270, M8271, Another NEXUS
SBI Cables
Flakey Power for any NEXUS

1-184

"MXT FLT"

Adapter Power Down UBA CONFIG < 23 >
H7100 Power Supply for this NEXUS
M8273
Input AC power.

Adapter Power Up UBA CONFIG<22>
Normally asserted.

II AD PDN"

"AD PUP"

UNIBUS Power Down UBA CONFIG< 17> "UB PDN"
Could be a legal entry ff the UNIBUS box was powered off.
UNIBUS Power supply ACLO logic.
Any UNIBUS device that can assert ACLO.
Input AC power.
M9044

UNIBUS Power Up - UBA CONFIG< 16> "UBIC"
Normally asserted:

Read Data Timeout UBA STATUS<lO> "RDTO"
SBI Memory, M8270, M8272, M8273
M8271, M9044, UNIBUS device that is requesting SBI Memory data.
Flakey Power for this NEXUS or f6r the UNIBUS de~ite.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Read Data Substitute UBA STATUS<9> II RDS"
SBI Memory Array.
SBI Memory NEXUS control.
M8270, SBI Cables, Flakey SBI Memory NEXUS power.

The UNIBUS device that was requesting the SBI Memory data will not
receive the requested data, therefore, its' non-existent memory bit
should be set.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Corrected Read Data UBA STATUS<8> "CRD"
SBI Memory Array.
SBI Memory NEXUS control.
M8270, SBI Cables, Flakey SBI Memory NEXUS power.

1-185

Command Transmit Error UBA STATUS< 7> "CXTER"
M8270
M8271, M8272, M8273, M9044
NEXUS to which this UBA initiates a data transfer.
SBI Cables, Flakey Power for NEXUS or assoc. UNIBUS.
UNIBUS device issuing data transfer command.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Command Transmit Timeout UBA STATUS<6> "CXTMO"
NEXUS to which this UBA initiates a data transfer.
M8270
M8271, M8272, M8273, M9044
UNIBUS device issuing data transfer command.
SBI Cables, Flakey Power

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Data Path Parity Error UBA ST A TUS < 5 > "DPPE"
M8272
M8270, M8271, M8273
Flakey power for this NEXUS

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Invalid Map Register UBA STATUS<4> "IVMR"
M8272
M8273, M9044, M8270, UNIBUS device requesting data transfer.
Software
Flakey power for this NEXUS.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Map Register Parity Fail UBA STATUS<3> "MRPF"
M8272
M8270
Flakey power for this NEXUS.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

1-186

Lost Error Bit UBA ST A TUS < 2 > "LEB"
This bit indicates that-another error has occurred after the locking
field has already been locked. The RDTO, RDS, CXTER, CXTMO, DPPE,
IVMR, and MRPF bits form the locking field that locks the FMER.

UNIBUS Select Timeout
Some UNIBUS device.
M9044, M8273, M8271

UBA STATUS< 1 > "UBSTO"

Flakey power for this NEXUS or the associated UNIBUS devices.
M8272

The FUBAR register is latched when this error occurs. It contains the
upper 16 bits of the UNIBUS address translated from an SBI address.

UNIBUS SSYN Timeout UBA STATUS<O> "UBSSYNTO"
The UNIBUS device to which data transfer is taking place.
M8273, M9044, M8271
M8272
Flakey power for this NEXUS or the associated UNIBUS devices.

The FUBAR register is latched when this error occurs. It contains the
upper 16 bits of the UNIBUS address translated from an SBI address.

Buffer Transfer Error - UBA DPR 0-15 Bit < 30 > "BTE"
M8272, M8271
M8273
Flakey power for this NEXUS

1-187

S . 13 . I . FAULTS

S . B . I. FAULTS

S.13.1. FAULTS

S . B . I. FAULTS

S . 13 . I . FAULTS

S . B . I . FAULTS

S.13.1. FAULTS

S . B . I. FAULTS

S . 13 . I . FAULTS

S . B . I. FAULTS

1-189

An S.B.I. FAULT condition can be caused by any one of the following
conditions having been detected on the S.B.I. Bus:

Parity Fault -
An S.B.I. parity error can be detected on ANY cycle by ANY NEXUS.

The S.B.I. P<l:O> lines provide even parity for their associated
groups of S.B.I. lines. "S.B.I. P<O>" provides EVEN Parity for the
group of S.B.I. lines consisting of the TAG<2:0>, ID<4:0>, and the
M<3:0> lines. "S.B.I. P<l>" provides EVEN Parity for the group of
S.B.I. lines consisting of the B<31:00> lines.

Whenever a NEXUS detects a parity error, on any given S.B.I. cycle,
ALL OTHER NEXUS should also detect the same parity error.

Write Sequence Fault -
Is the result when a NEXUS which has received a COMMAND/ADDRESS Cycle
specifying any type of WRITE COMMAND, does not receive the anticipated
WRITE DATA in the next sequential S.B.I. cycle(s).

This type of FAULT is only detected by the NEXUS to which the write
command was sent.

Unexpected Read Data Fault -
Is the result when a NEXUS whose is not waiting for READ DATA receives
READ DATA.

The destination of the READ DATA is specified by the S.B.I. ID<4:0>
lines. Each device checks the ID field on all Read Data cycles to see
if the B<31:00> lines contain data that is being sent to them.

Only the NEXUS receiving the Unexpected Read Data detects the FAULT.

Interlock Sequence Fault -
Is the result when a NEXUS receives an INTERLOCK WRITE COMMAND
and the INTERLOCK has not been set by an INTERLOCK READ Command.

Only the NEXUS recieving the INTERLOCK WRITE Command will detect
this fault.

1-190

Multiple Transmitter Fault -
Is the result when a TRANSMITTING NEXUS detects multiple transmitters
in the same cycle that it is transmitting. This is detected by
comparing the ID<4:0> field sent, at S.B.Ie TO time, with the ID<4:0>
field recieved, at S.B.I. T3 time. If they do not match, this fault
is detected.

Detected by only the NEXUS that are transmitting in the faulting cycle.

Cycle that I
causes Fault I

I

FAULT

TO Tl T2 T3 'I TO Tl T2

I
A NEXUS detects a
FAULT on the S.B.I.

Trouble-Shooting S.8.1. FAULTS:

TIMING

T3 TO Tl T2 T3

Detecting NEXUS
asserts FAULT

TO Tl T2 T3

I
CPU

Latches
FAULT

I
All NEXUS

latch FAULT
STATUS Bits

Whenever an S.B.I. FAULT occurs, each NEXUS will latch it~ FAULT STATUS
bits which are contained in its CONFIGURATION/STATUS REGISTER (the 1st I/0
register for each NEXUS) Bits <31:26>. These bits indicate the type of
FAULT that the respective NEXUS has detected. It is very important to
gather the contents of these registers immediately after the FAULT occurs.
If the FAULT occured while running VMS, the needed register information may
be saved in ERRLOG.SYS. It is still a good idea to modify the DEFBOO.CMD
and the RESTAR.CMD command files, located on the LOCAL/REMOTE CONSOLE
Floppy, so that a complete register dump will be done prior to rebooting.
If the FAULT occured while running diagnostics, you must do the register
dump yourself. The register dump can be taken by using the following
commands that are appropriate for the system.

>>> E/L/H/P 20002000 I Examine TR#l Configuration Register
>>> E/L/H/P 20004000 Examine TR#2 Configuration Register
>>> E/L/H/P 20006000 Examine TR#3 Configuration Register
>>> E/L/H/P 20008000 Examine TR#4 Configuration Register
>>> E/L/H/P 2000AOOO Examine TR#S Configuration Register
>>> E/L/H/P 2000COOO Examine TR#6 Configuration Register
>>> E/L/H/P 2000EOOO Examine TR#7 Configuration Register
>>> E/L/H/P 20010000 Examine TR#8 Configuration Register
>>> E/L/H/P 20012000 Examine TR#9 Configuration Register
>>> E/L/H/P 20014000 Examine TR#lO Configuration Register
>>> E/L/H/P 20018000 Examine TR#l2 Configuration Register
>>> E/L/H/P 2001AOOO Examine TR#l3 Configuration Register
>>> E/L/H/P 2001COOO Examine TR#l4 Configuration Register
>>> E/L/H/P 2001EOOO Examine TR#lS Configuration Register
>>> E/L/H/ID lB Examine CPU's cdnf iguration Register

Of course you do not need to attempt to examine the registers of the TR's
in which there are no devices for your specific system configuration.

1-191

In addition each NEXUS latching up its FAULT STATUS bits in its
CONFIGURATION/STATUS register, the KA780 CPU will latch the "S.B.I.
SILO". The "S.B.I. SILO" is a 16 location RAM that contains the
states of certain S.B.I. signals for the last 16 S.B.I. cycles. The
"SILO" is located in the KA780's S.B.I. control logic. This SILO can
be examined by reading "ID register #18" 16 times. The first word
stored in the SILO will be the first word read out, the second word
stored will be the second word read out, etc .. You can use the
following CONSOL.SYS commands to gather the contents of the "S.B.I.
SILO":

Method #l
>>> R E/L/ID 18
>>> "'C

Method :r2
>>> E/L/ID 18

Repeat examine ID#l8.
Type "CTRL C" after 16 examines.

Repeat this command 16 times.

Now that you have all the needed information, all that remains is to
breakdown the registers to determine the type of S.B.I. FAULT.
Start off by breaking down the CONFIGURATION/STATUS Registers, (only
need bits <31:26>), to determine the type of FAULT and to find out
which NEXUS(es) detected it. Once you have found the type of FAULT
and who all detected it, you should be able to determine which one or
two NEXUS are most likely at fault. Now you can break down the SILO
information to see if it will help determine who is the most likely
device at fault.

When looking at the S.B.I. SILO dump, break down each entry completely,
and then check to see what went wrong. You must know how the S.B.I.
works in order to do this.

Beware: Any NEXUS can intermittently polute the S.B.I. and can cause
the problem to appear to be someone else's fault.

1-192

SILO Interpretation ID #18

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11019 8 7 6 514 3 211 0 9 817 61 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 OI

I I I I I I I I
After I Tl ID I TAG I MASK ICNFI TR I
Fault I LI I I or I I I

IKI I IFUNCTIONI I I

Bit <31> is the "After Fault" bit which will be set only on the first
SILO entry after the S.B.I. FAULT condition has been cleared.

Bit <30> is the "S.B.I. Interlock" bit. The S.B.I. Interlock line is
asserted by the commanding nexus when issuing an interlock read and then
by the recieving nexus upon assertion of the ACK confirmation.

Bits <29:25> reflect the "S.B.I. ID<4:0> lines" which indicate the
logical source or intended destination of the information on the B<31:0>
lines. These lines reflect the hex representation of the TR level.

TAG not = 0 then, ID<4:0> reflect the source.
TAG = 0 then, ID<4:0> reflect the destination.

Bits <24:22> reflect the state of the "S.B.I. TAG<2:0>" lines. The TAG
lines indicate the type of cycle being transmitted on the S.B.I. bus ...

~AG 0 Read Data Cycle
TAG 3 Command/Address Cycle
TAG = 5 Write Data Cycle
TAG = 6 Interrupt Summary Read Cycle

Bits <21:18> reflect the state of the MASK <3:0> lines if the TAG isn't
equal to 3 (indicating a Command/Address Cycle), in which case it will
reflect the state of the B<31:28> lines (which indicate the FUNCTION).

TAG = 3

FUNCTION 1
FUNCTION 2
FUNCTION 4
FUNCTION - 7
FUNCTION 8
FUNCTION B

TAG = 0,6

MASK 0

MASK 1

MASK 2

then, Bits <21:18> reflect the type of FUNCTION.

Read Masked Function
Write Masked Function
Interlock Read Masked Function
Interlock Write Masked Function
Extended Read Function
Extended Write Masked Function

then, Bits <21:18> reflect the M<3:0> lines.

Read Data in 8<31:00> is good data.

A single bit error was detected and corrected
by the transmitting NEXUS, therefore, the data
in B<31:00> is now good.

Multiple bits were detected as being bad and the
transmitting NEXUS could not repair them.
Therefore the data in 8<31:00> is BAD.

1-193

TAG = 5 then, Bits <21:18> reflect the M<3:0> lines.

The MASK <3:0> lines reflect the respective BYTE(s) that
are being written.

Bits <17:16> reflect the state of the "S.B.I. CNF<l:O> lines". These lines
are the confirmation lines. Each and every transmitted cycle must have a
corresponding confirmation code returned two cycles later.

CNF = 0

CNF = 1

CNF 2

CNF = 3

NO RESPONSE from destination NEXUS

Indicates an ACKNOWLEDGE from the destination NEXUS. If
this confirmation is received two cycles after a C/A cycle,
it indicates that the device knows the command is to him
and also indicates that he can perform the specified
command encoded in the B<31:28> lines.

Indicates that the destination NEXUS knows you want him to
do something, but he is currently BUSY. The transmitting
NEXUS should try the command again later.

Indicates that the destination NEXUS recognizes that the
transmitting NEXUS is talking to him but the command
encoded in the B<31:00> lines specifies a function that
the destination NEXUS cannot perform.

Bits <15:00> reflect the state of the "S.B.I. TR<l5:00> lines".

If a bit is set, it indicates that the respective TR arbitration line
is asserted on the S.B.I., for that cycle.

BEWARE:
In some cases, the S.B.I. SILO may not contain valid information because of
improper setup prior to the FAULT occuring. In order to verify that the
SILO contains valid information, check ID #lB and make sure that Bit 16=1.
If it isn't, don't bother checking the SILO information since it will not
indicate what happened just prior to the fault.

1-194

CONFIGURATION/STATUS Register Interpretation

31 3 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TRANSMITTER DURING FAULT (indicates status)

MULTIPLE TRANSMITTER FAULT detected by this NEXUS

INTERLOCK SEQUENCE FAULT detected by this NEXUS

UNEXPECTED READ DATA FAULT detected by this NEXUS

~WRITE SEQUENCE FAULT detected by this NEXUS

PARITY FAULT detected by this NEXUS

The CONFIGURATION/STATUS Register is the first I/0 Address assigned to each
NEXUS. The CPU's equivalent register is ID #lB. All NEXUS, and the CPU,
have the above assignments for these bits within their CONFIGURATION/STATUS
registers. If a device cannot detect any particular type of FAULT, it will
not have anything assigned to that particular bit and that bit will always
be read as ZERO.

Device at Configuration/Status Register

TR #1 20002000
TR #2 20004000
TR #3 20006000
TR #4 20008000
TR #5 2000AOOO
TR #6 2000COOO
TR #7 2000EOOO
TR #8 20010000
TR #9 20012000
TR #10 20014000
TR #11 20016000
TR #12 20018000
TR #13 2001AOOO
TR #14 2001COOO
TR #15 2001EOOO
CPU ID #18

1-195

EVKAA - V5.l done
EVKAA - V5.l done

HALTED AT 1805

>>>

Trouble-shooting

using the

SYSTEM CONTROL BLOCK

$

?ILL I/E VEC
HALTED AT 100

>>>

1-197

Unexpected EXCEPTIONs or INTERRUPTS can result in a variety of
symptoms. Typically, programmers will setup a trap-catcher, in
the SYSTEM CONTROL BLOCK, in order -to prevent these unexpected
events from destroying ~heir program or data. The trap-catcher
will either flag the error and continue on, or will cause the
CPU to halt. Depending upon how the software is setup the symptom
may be a "HALTED AT xxxxxxxx" message printed on the console
terminal, a "FATAL BUGCHECK" or "NON-FATAL" bugcheck message on
the console or users terminal, an "?ILL I/E VEC" message is printed
on the console terminal followed by the CONSOL.SYS prompt, or the
system software may do unexpected things due to re-vectoring.

Even though the symptoms are many, determing if you have a problem
in this area is easily done by examination of the SYSTEM CONTROL
BLOCK, examination of a listing of the failing software, using
the data typed out with the "?ILL I/E VEC" messager, or by
installing a trap-catcher and then reproducing the problem.

HAL TED AT xxxxxxxx

If the symptom results in a "HALTED AT xxxxxxxx" being printed on
the console terminal, followed by the CONSOL.SYS prompt (>>>), either
a listing of the software or examination of the SYSTEM CONTROL BLOCK
is necessary. A listing of the software being run is probably the
easiest method of determing what went wrong. Simply look up the
"xxxxxxxx" PC that was printed out in the "HALTED AT xxxxxxxx" message.

If you d?n't have a listing of ~he failing so~tware, e~amination of
the SCB is necessary. To do th1s, you must f 1rst examine the SCCB
register in order to find the start of the SCB. The SCCB (ID #38)
contains a longword aligned PHYSICAL ADDRESS that points to the
beginning of the SYSTEM CONTROL BLOCK (SCB). In order to dump the SCB 1

use the following CONSOL.SYS commands:

>>> E/L/ID 38
>>> E/L/P/N:7F @

Now check to see if the "xxxxxxxx" PC, in the "HALTED AT xxxxxxxx"
message, is somewhere in the address range of the SCB. If it is,
the offset from the SCBB can be used to determine what type of
EXCEPTION or INTERRUPT caused the problem by using the SCB vector
assignment chart on the following pages.

If the "xxxxxxxx" PC isn't in the address range of the SCB table,
check to see if any of the longword vectors can re-vector the
software to a location near this address. If there is, examine
memory starting at the vector address up to the "xxxxxxxx" address.
Does the macrocode indicate that re-vectoring could cause a halt
at the specified PC? If so, use the SCB vector assignment chart to
determine what type of EXCEPTION or INTERRUPT caused the problem.

1-198

Building and using a VAX Trap Catcher

In some cases, it may be necessary to modify the SCB so as to form a
TRAP CATCHER. The idea is to deposit vectors into the SCB that will
cause a halt whenever an EXCEPTION or ITERRUPT occurs. Furthermore,
this must result in causing the system to halt at an address unique
to EXCEPTION or INTERRUPT. The easiest way to do this is create a
SCB with each vector pointing to its respective SCB location, with
both bits <l> and <O> set to a 1 (if bits <1:0>=3, the VAX-11/780
will halt with a PC one byte past the specified vector address).

After such a Trap Catcher is installed, the symptom must be reproduced.
Any EXCEPTIONS or INTERRUPTS that occur should then cause the CPU to
halt followed by a "HALTED AT xxxxxxxx" message printed on the console
terminal. The "xxxxxxxx" PC will indicate what type of EXCEPTION or
INTERRUPT occured by determining what vector was used. This can be
determined by subtracting the address of the vector used from the
contents of the SCBB, and then using the SCB vector assignment charts
to determine the type of EXCEPTION or INTERRUPT.

Note about installing Trap Catchers
The only problem with this method of trouble-shooting is that care must
be taken not to modify the vectors for EXCEPTIONS and INTERRUPTS that
the software program uses. Only those that software doesn't expect
to happen should be modified.

VMB V4.02 Trap Catcher generation

Unexpected EXCEPTIONS or INTERRUPTS can cause system software booting
failures. If the booting failures are in VMB, a unique way of modif ing
the SCB is required due to VMB's use of the SCB.

In order to use this procedure, you will have to manually perform the
CONSOL.SYS commands of the command file used to boot the system, with
the following modifications: ·

Use the same commands as the appropriate boot file used to boot
the system, but don't use the "WAIT DONE" command, and DON'T
START VMB YET.

After VMB has been loaded, patch VMB by first finding the contents
of the SP (this was examined just prior to loading of VMB if you
followed the normal boot process).

>>> SET RELOCATION:@
>» E/L/P 2400
>>> D/L/P 2400 2038F3C
>>> E/W/P 240A
>>> D/W/P 240A 76DE
>>> SET RELOCATION:O
>>> E/L SP
>>> START @

1-199

Should contain an xxxxCF9E.
Replace with a MOVZWL #203,R6.
Should contain a 5600.
Replace with a MOVAL -(R6),-(R7).

If an unexpected EXCEPTION or INTERRRUPT occurs while VMB is running,
with the above patch, a "HALTED AT xxxxxxxx" fuessage will be typed
on the console terminal. Now save the "xxxxxxxx" in this message and
do the following procedure:

Examine the SCBB with the following command:

>>> E/L/ID 3B

Subtract the saved "xxxxxxxx" from the contents of ID #3B.

The result is the offset into the SCB for the EXCEPTION or INTERRUPT
that occured. Use the SCB vector assignment chart to determine
the type of unexpected EXCEPTION or INTERRUPT.

Note about VMS

None of these procedures should need to be used with VMS. VMS
will report unexpected EXCEPTIONS and INTERRUPTS by way of its
BUGCHECK routine.

?ILL l/E VEC

This is the easiest to trouble-shoot. The data printed out with
this error message is the offset into the SCB. Use the SCB
vector assignment chart to determine what type of EXCEPTION or
INTERRUPT caused the failure.

Now what?

If one of these procedures have isolated the problem to a certain
type, then go to the section of this chapter that deals with that
type of problem.

i.e. If the vector was at SCBB+04, the failure was due to a MACHINE
CHECK, therefore use the MACHINE CHECK portion of this guide to
find out how to trouble-shoot this problem.

If the vector was at SCBB+5C, the failure was due to an SBI
FAULT, therefore use the SBI FAULT portion of this guide to
find out how to trouble-shoot this problem.

If the vector was at one of the SBI REQUEST level locations,
the device at fault can be isolated by determining what REQUEST
LEVEL, and what TR Level the interrupt occ~red on. Knowledge
of the system configuration, plus these two levels, should
narrow down the suspects.

1-200

VAX-11/780 System Control Block vector assignments

000 Unused, reserved ODO Unused, reserved
004 Machine Check 004 Unused, reserved
008 Kernel Stack Not Valid 008 Unused, reserved
ooc Power Fail ooc Unused, reserved
010 Reserved/Privileged Instr. OEO Unused, reserved
014 Customer Reserved Instr. OE4 Unused, reserved
018 Reserved Operand OE8 Unused, reserved
Ole Reserved Addressing Mode OEC Unused, reserved
020 Access Control Violation OFO Unused, reserved
024 Translation Not Valid OF4 Unused, reserved
028 Trace OF8 CNSL Receive Interrupt
02C Breakpoint OFC CNSL Transmit Interrupt
030 Compatibility 100 SBI REQ 4 - TR #0
034 Arithmetic 104 SBI REQ 4 - TR #1
038 Unused, reserved 108 SBI REQ 4 - TR #2
03C Unused, reserved lOC SBI REQ 4 - TR #3
040 CHMK llO SBI REQ 4 - TR #4
044 CHMB 114 SBI REQ 4 - TR #5
048 CHMS 118 SBI REQ 4 - TR #6
04C CHMU llC SBI REQ 4 - TR #7
050 SBI Silo Compare 120 SBI REQ 4 - TR #8
054 CRD/RDS 124 SBI REQ 4 - TR #9
058 SBI ALERT 128 SBI REQ 4 - TR #10
05C SBI FAULT 12C SBI REQ 4 - TR #11
060 Asynchronous Write 130 SBI REQ 4 TR #12
064 Unused, reserved 134 SBI REQ 4 - TR #13
068 Unused, reserved 138 SBI REQ 4 - TR #14
06C Unused, reserved 13C SBI REQ 4 - TR #15
070 Unused, reserved 140 SBI REQ 5 - TR #0
074 Unused, reserved 144 SBI REQ 5 - TR #1
078 Unused, reserved 148 E?BI REQ 5 - TR #2
07C Unused, reserved 14C SBI REQ 5 - TR #3
080 Unused, reserved 150 SBI REQ 5 - TR #4
084 Software Level 1 154 SBI REQ 5 - TR #5
088 Software Level 2 158 SBI REQ 5 - TR #6
08C Software Level 3 15C SBI REQ 5 - TR #7
090 Software Level 4 160 SBI REQ 5 - TR #8
094 Software Level 5 164 SBI REQ 5 - TR #9
098 Software Level 6 168 SBI REQ 5 - TR #10
09C Software Level 7 16C SBI REQ 5 - TR #11
OAO Software Level 8 170 SBI REQ 5 - TR #12
OM Software Level 9 174 SBI REQ 5 - TR #13
OA8 Software Level A 148 SBI REQ 5 - TR #14
OAC Software Level B 17C SBI REQ 5 - TR #15
OBO Software Level c 180 SBI REQ 6 - TR #0
OB4 Software Level D 184 SBI REQ 6 - TR #1
OBS Software Level E 188 SBI REQ 6 - TR #2
OBC Software Level F 18C SBI REQ 6 - TR #3
oco Unused, reserved 190 SBI REQ 6 - TR #4
OC4 Unused, reserved 194 ss'I REQ 6 - TR #5
OC8 Unused, reserved 198 SBI REQ 6 TR #6
ace Unused, reserved 19C SBI REQ 6 - TR #7

1-201

lAO S8I REQ 6 - TR #8
1A4 S8I REQ 6 - TR #9
1A8 S8I REQ 6 - TR #10
lAC S8I REQ 6 - TR #11
180 S8I REQ 6 - TR #12
184 S8I REQ 6 - TR #13
188 S8I REQ 6 - TR #14
l8C S8I REQ 6 - TR #15
lCO S8I REQ 7 - TR #0
1C4 S8I REQ 7 - TR #1
1C8 SBI REQ 7 - TR #2
lCC S8I REQ 7 - TR #3
lDO S8I REQ 7 - TR #4
1D4 S8I REQ 7 - TR #5
1D8 SBI REQ 7 - TR #6
lDC S8I REQ 7 - TR #7
lEO S8I REQ 7 - TR #8
1E4 S8I REQ 7 - TR #9
1E8 S8I REQ 7 - TR #10
lEC S8I REQ 7 - TR #11
lFO S8I REQ 7 - TR #12
1F4 S8I REQ 7 - TR #13
1F8 S8I REQ 7 - TR #14
lFC S8I REQ 7 - TR #15

The SC88 register contains a longword aligned address that points to
the first vector in the System Control Bleck.

If bits <l:O> are both set to a one in the vector, and the CPU traps
to that vector, the VAX-11/780 will HALT. This is an easy way of
developing a VAX-11/780 Trap Catcher.

1-202

SECTION II

VMS lnformat on

VMS SYSGEN Error Control Parameters

On certain types of errors, the VMS Operating System will attempt to
reboot itself. There are a couple of "SYSGEN" parameters that can
disable this function. It is very important to have these parameters
set correctly when trouble-shooting a problem so that the appropriate
Hardware and Software information can be gathered.

BUGCHECKFATAL

BUG REBOOT

DUMP BUG

is a parameter that enables, when set to a 1,
the conversion of NONFATAL Bugchecks to
FATAL Bugchecks. This causes the Operating
system to crash and reboot. Setting this
parameter to a 1 is useful whenever ERRLOG.SYS
does not give you enough information in order
to diagnose the problem. When set to a 1, and
BUGREBOOT is set to a 0, the Operating System
will not reboot. Therefore, you will then be
able to take a Hardware Register Dump or do
some scoping. It has no effect on bugchecks
from USER or SUPERVISOR mode.

is a parameter that enables, when set to a 1,
the automatic rebooting of the Operating System
if a FATAL BUGCHECK occurs-. It may become
necessary to clear, set to a 0, this parameter
after the first FATAL Bugcheck occurs so that
Hardware Register Dumps can be taken, and so
that scoping may be done whenever the FATAL
Bugcheck occurs. BUGREBOOT=l causes the LSI to
reboot the VAX via DEFBOO.CMD or RESTAR.CMD.

is a parameter that enables, when set to a 1,
the writing of error log buffers and memory
contents to SYS$SYSTEM:SYSDUMP.DMP when a
FATAL Bugcheck occurs. The Software Dump is
written to the "SYS$SYSTEM:SYSDUMP.DMP" file
immediately after the Operating System detects
the Error and before the "BUGREBOOT" bit is
checked to see if a reboot is to be attempted.
In other words, the Software Dump is taken on
the way down.

The state of these "SYSGEN" parameters should be checked if you are
not getting all the dump information that you require. The customer
should have the system set up so that the Software Dump, a function
of the "DUMPBUG" parameter, is always taken. The State of the other
two parameters depends on the Customer's operating enviroment.
However, once a problem occurs, it will probably be necessary to
change the setting of these parameters until the problem is _fixed.

No matter how the SYSGEN parameters are set up, certain types of
failures will crash the system in such a way that the Software
DUMP will not be taken.

2-2

VMS CRASH HANDLING

The following is an overview of what happens when VMS detects a
NON-FATAL BUGCHECK.

1. A message describing the error is passed to the Error Logger.

2. System operation continues.

Th~ following is an overview of what happens when VMS detects a
FATAL BUGCHECK from USER or SUPERVISOR .

1. A message describing the error is passed to the Error Logger.

2. Execution continues as follows:

a. If the process is executing a single image, the process
is deleted.

b. If the process is executing in interactive or batch mode,
the current image exits and control is passed to the CLI
to receive the next command •.

2-3

The following is an overview of what happens when VMS detects a
FATAL BUGCHECK from KERNEL or EXECUTIVE modes.

1. A small amount of information describing the Bugcheck is
typed on the Console Terminal. This information may include
the following:

a. The contents of the VAX General Registers.

b. The Kernel and Executive stack contents.

c. The contents of certain VAX Internal registers.

d. A summary of the reason for the Bugcheck.

2. If the "DUMPBUG" SYSGEN parameter is set to a 1, a software dump
file will be written to SYS$SYSTEM:SYSDUMP.DMP. This file contains
the following information:

a. The Dump Header. This header contains such information as
the contents of certain VAX registers, the Time of the
crash,bugcheck crash code, and other information.

b. The contents of the two errlog buffers.

c. The contents of physical memory.

3. If the "BUGREBOOT" SYSGEN parameter is set to a 1, a VMS system
reboot will be attempted as follows:

a. VMS sends a special code to CONSOL.SYS (AXF02) via the
console transmit buffer register (TXDB).

b. VMS executes a HALT instruction so as to transfer control
back to the CONSOL.SYS program.

c. CONSOL.SYS attempts to reboot the VAX via the "DEFBOO.CMD"
command file if "AUTO RESTART switch = 0" or via the
"RESTAR.CMD" command file if "AUTO RESTART switch= l".
If the appropriate command file is not found, CONSOL.SYS
prints its' prompt (>>>) and awaits operator input.

If the "BUGREBOOT" SYSGEN parameter is set to a 0, the VMS operating
system will simply loop (with IPL=31) and await input on the
console terminal. The "CONSOL.SYS" program prints its' prompt (>>>)
on the console terminal and awaits operator input.

2-4

Assigning Addresses and Vectors to Unibus Devices

In order to make the proper assignments to those Unibus devices
that have Floating Addresses and/or Floating Vectors, you must
first understand the SYSGEN rules for configuration. SYSGEN uses
the following rules for configuration:

o Devices with fixed CSR addresses and fixed vector addresses must
be attached according to the SYSGEN device table settings.

o Devices with floating CSR or vector addresses must be attached
in the order in which they are listed in the SYSGEN device table.

o An 8-byte gap must be reserved between each different type of
device that is located in floating CSR address space.

o An 8-byte gap must be reserved in floating CSR address space for
each device type that has no controller in its configuration.

o An extra 8-byte gap must be reserved between the KWllC and the
RXll in floating CSR address space.

The SYSGEN Device table is found in the "VAX/VMS Guide to Writing
a Device Driver" manual (Order no. AA-H499C-TE), in the chapter
about "Loading a Device Driver".

Unless the Unibus Devices, that have floating address and/or vectors,
are properly assigned, the SYSGEN "AUTOCONFIGURE ALL" command will
not be able to properly assign the devices. In these cases, the
devices must be connected individually.

By using the above rules and the tables on the following page, you
should be able to properly configure Floating Unibus Devices on the
VAX-11/780 system.

The tables, on the following page,list the devices in the order that
SYSGEN looks for them if they have floating address and/or vector
assignments.

NOTE:
An alternate method of determining where to configure UNIBUS devices
is to use the "CONFIG" command under "SYSGEN", (providing that you have
a system, running VMS, that you can do this on). See the "SYSGEN" help
file, in this chapter, for help on using this command.

2-5

Unibus Device
Floating Address Table

Unibus Device
Floating Vector Table

760010
DJll
DHll
DQll
DUll
DUPll
LKll

300

DMCll/DMRll (DMCs before DMRs)
DZ11/DZ32 (DZlls before DZ32s)
KMCll
LPPll
VMV21
VMV31
DWR70
RLll
LPAll (2nd)
KWllC
RSV
RX211
DRllW
DRllB (3rd)
DMPll
DPVll
ISBll
DMVll
UNA
UDA
DMF32 (see TECH. Manual)
KMSll

2-6

DCll
TU58
DNll
DMllB
DRllC
PR611
PP611
DTll
DXll
DLllC
DJll
DHll
GT40
LPSll
DQll
KWllW
DUll
DUPll
DVll
LKll
DMCll/DMRll
DZll
DZ32
KMCll
LPPll
VMV21
VMV31
DWR70
RLll
TSll
LP All
KWllC
RSV
RX211
DRllW
DRllB (2nd & 3rd}
DMPll
DPVll
ISBll
DMVll
UNA
UDA
DMF32
KMSll
PLCll

SYSGEN Commands

The following commands are those SYSGEN commands that manipulate
drivers.

0 LOAD (requires CMKRNL privilege)
0 CONNECT (requires CMKRNL privilege)
0 RELOAD (requires CMKRNL privilege)
0 SHOW/ADAPTER (requires CMEXEC privilege)
0 SHOW/CONFIGURATION (requires CMEXEC privilege)
0 SHOW/DEVICE (requires CMEXEC privilege)
0 AUTOCONFIGURE ALL (requires CMKRNL privilege)

LOAD command

This command is used to load a DEVICE DRIVER. If the CONTROLLER has
only a single unit attached to it, issue the CONNECT command.

Format:
LOAD driver_f ile_spec

CONNECT Command

This command creates I/0 base control blocks for devices. It can
also load the driver if it has not been previously loaded into
System memory.

Format:
CONNECT device_name required_quals optional_quals

Required Qualifiers:

Optional Qualifiers:

/[NO]ADAPTER=nexus
/CSR=csr address
/VECTOR=vector address

/NUMVEC=number interrupt vectors
/DRIVERNAME=drTver name -
/ADPUNIT=unit number
/MAXUNITS=maxTmum number of units - - -

2-7

RELOAD Corrunand

This corrunand loads a driver and removes a previously loaded version
of that driver. Performs the same function as the LOAD corrunand except
it will load the driver regardless of whether it is already loaded.

Format:
RELOAD driver_f ile_spec

SHOW/ADAPTER Command

This corrunand displays nexus numbers and generic names of the Unibus
and Massbus adapters, memory controllers, and device interconnects
such as the DR32.

Format:
SHOW/ADAPTER

SHOW/CONFIGURATION

This command displays information about the system configuration.

Format:

SHOW/DEVICE

SHOW/CONFIGURATION [/ADAPTER=nexus]
[/COMMAND FILE]
[/OUTPUT=f ile_spec]

This command displays the location of a driver and the I/0 data base
describing its devices in system virtual memory.

Format:
SHOW/DEVICE [=driver_name]

AUTOCONFIGURE ALL

Configures D.E.C. supported devices to the system automatically.

Format:
AUTOCONFIGURE ALL

2-8

CONFIGURE [/INPUT=file-spec] [/OUTPUT=file-spec][/(NO)RESET]

This command request the UNIBUS device names and then outputs
the set of CSR and VECTOR addresses that are required for
AUTOCONFIGURE to use.

When executing this command, SYSGEN prompts you with "DEVICE>".
Enter the device names in the following format:

device,n,p where "device" =device's name
and "n" = how many of this device, and
"p" = the optional number of devices on all
previous UNIBUSes in a multiple UNIBUS
system.

This command can be used as follows to determine where UNIBUS devices
should be addressed:

SYSGEN> CONFIGURE <return>
DEVICE> <device,n,p> <return>
DEVICE> <device,n,p> <return>

continue for all Unibus devices, and then:

DEVICE> "Z

SYSGEN will then print the desired configuration.

CONNECT CONSOLE

Connects the Console Floppy Drive and loads its driver.

CREATE file-spec /SIZE=block-count [/(NO)CONTIGUOUS]

Creates or extends a paging, swapping, or dump file.

DISABLE CHECKS

Disables range checks.

2-9

ENABLE CHECKS

Enables range checks.

EXIT

Terminates SYSGEN. Go back to the VMS DCL prompt.

INSTALL file-spec ./PAGEFILE /SWAPFILE

Activates a secondary paging or swapping file.

SET /OUTPUT [=] file-spec

Defines an output file for the SYSGEN session.

SET /STARTUP file-spec

Names the current site-independent startup command procedure.

SHARE MPMn mpm-name

This corruuand connects multiport memory units and initializes them
to the Operating System.

/INITIALIZE
/MAILBOXES=mail
/MAXMAILBOXES=max-mail
/POOLBSIZE=block-size
/CEFCLUSTERS=cef

SHOW parameter /xxx

Where xxx can be
/ACP
/GEN
/NAMES
/SCS
/TTY

any of the
/ALL
/JOB
/PQL
/SPECIAL
[/HEX]

/GLBSECTIONS=glb
/MAXGLBSECTIONS=max-glb
/POOLBCOUNT=block-cnt
/PRQCOUNT=prq-cnt
/MAXCEFCLUSTERS=max-cef

following:
/DYNAMIC
/MAJOR
/RMS
/SYS

Displays the values of the system parameters in the SYSGEN work area,
plus the default, minimum, and maximum values of the parameter and
their units of measure.

2-10

SET parameter-name value

Modifies the value of a system generation parameter in the SYSGEN
work area.

SHOW /UNIBUS

Displays the addresses in UNIBUS I/0 space that can be addressed.

USE file-spec CURRENT ACTIVE DEFAULT

Initializes the SYSGEN work area with system parameter values from
a parameter file, the current system image, the active system, or
the default list.

WRITE file-spec CURRENT ACTIVE

Writes the system parameter values from the SYSGEN work area to a
parameter file, the current system image, or the active system.

2-11

Using SYSGEN to determine UNIBUS device Address/Vector Assignments

The SYSGEN "CONFIG" command can be used to determine the proper
address and vector assignments for the VAX UNIBUS devices. The
following steps can be used to do this.

1. Log into the VMS operating system.

2. Execute the following commands:

$ MCR SYSGEN
SYSGEN> CONFIG
DEV> device name,number of devices
DEV> next device name,number of devices
DEV> next device-name,number-of-devices
DEV> AZ - - -

<-- Enter all device names,
one device type per
"DEV>" prompt.

<-- "AZ" to end input mode.

3. When you type the "AZ", SYSGEN will determine the correct addresses
and vectors for the devices and will print them out on your terminal.
The devices must be assigned these addresses in order for the SYSGEN
utility to be able to auto-configure them.

2-12

LOCAL CONSOLE Boot Command Files

The Local Console Floppy contains the command files necessary to
boot either VMS or the Diagnostic Supervisor. These command files
do four important things:

1. Initialize the VAX-11/780 CPU and the S.B.I. Nexus.

2. Setup the VAX-11/780 CPU's General Registers in such
a way as to tell VMB.EXE who to boot from, what to
boot, and how to start what was booted.

3. Initiate the ISP rom program to find a good 64K chunk
of Memory.

4. Load and Start the VMB.EXE program.

Following is an example of one of the Local Console Boot command files.
This command file boots VMS from Massbus drive #0 on RH780 #0 (TR=8).

DBO Boot command file - DBOBOO.CMD

HALT
UNJAM
INIT
DEPOSIT/I 11 20003800
DEPOSIT RO 0
DEPOSIT Rl 8
DEPOSIT R2 0
DEPOSIT R3 0
DEPOSIT R4 0
DEPOSIT R5 0
DEPOSIT FP 0
START 20003000
WAIT DONE
EXAMINE SP
LOAD VMB.EXE/START:@
START @

Halt the Processor.
Unjam the SB I .
Init the Processor.
Set-up the SCBB.
Disk Pack Device Type.
MBA TR=8.
Adapter Unit = 0.
Controller Unit = 0.
Boot Block LBN (unused)
Software Boot Flags
Set no Machine Check expected.
Start ROM Program.
Wait for Completion.
Show address of working Memory+AX200.
Load the Primary Bootstrap
and start it.

The parameters for VMB.EXE are described on pages 67 thru 70 of the
VAX Systems Maintenance Handbook (EK-VAXVl-HB-001).

2-13

RESTAR.CMD

This command file is invoked in the event of Power Recovery and
other console detected restart conditions if the "AUTO RESTART"
switch is set. It can also be invoked manually with the following
command to CONSOL.SYS:

>» @RESTAR.CMD

The following RESTAR.CMD command file is an example of the type of
restart file used for systems without interleaved memory:

HALT
UNJAM
INIT
DEPOSIT/I 11 20003800
DEPOSIT RO 0
DEPOSIT Rl xxx
DEPOSIT R2 0
DEPOSIT R3 0
DEPOSIT R4 0
DEPOSIT RS 0
DEPOSIT FP 0
START 20003004

DSC or BACKUP Boot Command File

HALT the Processor.
UNJAM the SBI.
INITialize the Processor.
Set address of SCBB.
Clear unused Register.
xxx=TR of Boot Disk NEXUS.
Clear unused Register.
Clear unused Register.
Clear unused Register.
Clear unused Register.
No Machine Check expected.
Start RESTART REFEREE.

This command file boots either STAND-ALONE DSC or STAND-ALONE BACKUP
from Floppies.

HALT
UNJAM
INIT
DEPOSIT/I 11 20003800
DEPOSIT RO 40
DEPOSIT Rl 0
DEPOSIT R2 0
DEPOSIT R3 1
DEPOSIT R4 0
DEPOSIT RS 0
DEPOSIT FP 0
DEPOSIT SP 200
LOAD VMB.EXE/START:200
START 200

2-14

HALT the Processor.
UNJAM the SBI.
INITialize the Processor.
Set address of SCBB.
Console Floppy Device.

Unit Number.
Boot Block LBN (unused).
Software Boot Flags.
No Machine Check expected.
Addr. of working Mem +AX200.
Load Primary Bootstrap
and Start it.

RESTAR.ILV

This command file should replace the RESTAR.CMD command file
for those systems that have two interleaved memory controllers.
This command file assumes that the memory controllers are at
TR levels 1 and 2.

This command file is invoked in the event of Power Recovery and
other Console detected restart conditions if the Auto Restart
switch is set. It can also be invoked with the following command
entered to the CONSOL.SYS pompt (">>>"):

@RESTAR.CMD

The RESTAR.ILV command file consists of the following CONSOL.SYS
commands:

HALT
INIT
DEPOSIT/I 11 20003800
DEPOSIT RO 0
DEPOSIT Rl xxx
DEPOSIT R2 0
DEPOSIT R3 0
DEPOSIT R4 0
DEPOSIT R5 0
DEPOSIT FP 0
DEPOSIT 20002000 101
DEPOSIT 20002004 4000
DEPOSIT 20004000 101
DEPOSIT 20064004 4000
START 20003004

Halt VAX Processor.
Initialize the VAX CPU.
Set Address of SCBB in ISP ram.
Clear unused Register.
xxx = TR of Boot Disk NEXUS.
Clear unused Register.
Clear unused Register.
Clear unused Register.
Clear unused Register.
No MACHINE CHECK expected.
Enable TR#l Memory's interleaving.
Force starting address to 00000000.
Enable TR#2 ~emery's interleaving.
Force starting address to 00000000.
Start Restart Referee in ISP ram.

2-15

RMEM.

This command file is used to reset the starting addresses of the
memories, in a MS780 and MA780 system configuration, so that the
MS780 will again be low memory. This is necessary in order to run
diagnostics on a VAX-11/782 system.

This command file is located on the LOCAL CONSOLE FLOPPY and is
executed by typing "@RMEM" to the CONSOL.SYS prompt (">>>").

Command file to RESET Memory Controller Restart Addresses.

DEPOSIT 20002004 00004000 SET TR=l MEMORY TO START AT O.OMB.
DEPOSIT 2000400C 00200001 SET TR=2 MEMORY OUT OF THE WAY.
DEPOSIT 2000600C OOAOOOOl SET TR=3 MEMORY OUT OF THE WAY.
DEPOSIT 2000800C 01200001 SET TR=4 MEMORY OUT OF THE WAY.
DEPOSIT 2000AOOC OlAOOOOl SET TR=5 MEMORY OUT OF THE WAY.

2-16

S E C T I 0 N Ill

Special COMMAND files I Programs

Hardware Dump File Maintenance/Generation

Two files should be added and two files modified on the LOCAL CONSOLE
floppy in order to take Hardware Register Dumps. "DUMP." and "HANG."
should be generated and installed on the Local Console Floppy by you.
You should also modify the existing DEFBOO.CMD & RESTAR.CMD command
files so that a Hardware Dump i's taken before the system is rebooted
(whenever BUGREBOOT=l). DEFBOO.CMD is used when BUGREBOOT=l and AUTO
RESTART switch is "OFF". RESTAR.CMD is used when BUGREBOOT=l and AUTO
RESTART switch is "ON".

The "REMOTE LOCAL CONSOLE" floppy should also be modified to contain
the files mentioned above.

DUMP.

This command file dumps all the Hardware Registers via the CONSOL.SYS
program commands. It should be tailored to the system on which it will
be used so that all the Hardware Registers will be dumped.

This command file is generated and then placed on the Local Console
Floppy. The customer should be educated, by you, as to WHEN and HOW
this command file should be used.

HANG.

This command file should do three things. They are as follows:

1. Dumps all Hardware Registers as defined by DUMP.
2. Single Steps the VAX CPU so as to find out where

the software is hung.
3. Initiates an @CRASH. so as to obtain a Software Dump.

This command file is to be used for dumping system software hangs. It
is your responsibility to educate the customer as to HOW and WHEN to
use this command file.

DEFBOO.CMD and RESTAR.CMD

These command files are supplied on the distributed Local Console
Floppy. Their purpose is to attempt a restart of the Operating System
on certain failure conditions. UNFORTUNATELY, the DEFBOO.CMD command
file is also used whenever a "B" or "BOOT" is entered to CONSOL.SYS in
order to reboot the system. The information gathered by appending a
set of hardware register dump commands to the beginning of these files
is very useful when trouble shooting system crashes on a system that is
set up to reboot automatically. It is best to get an O.K. from the
customer before modifying these command files. If need be, a seperate
LOCAL CONSOLE floppy (preferably a "REMOTE LOCAL CONSOLE" floppy) can
be made to use when the system has problell\s.

3-2

Version 3.x VMS dump file generation

The following commands can be used to create the HANG., DUMP., and
modify the DEFBOO.CMD & RESTAR.CMD command f1iles on the LOCAL CONSOLE
floppy of a VERSION 3.x VMS Operating System ..

First of all, you must log into an account that has the "SETPRV"
privilege or into an account that has enough privileges to access
ncSAl:". Do the following steps on "VERSION 3.x VMS" systems:

$ SET PROCESS/PRIV=ALL
$ MCR SYSGEN
CONNECT CONSOLE
EXIT
$ MOUNT/FOR CSAl:
$ MCR FLX /RS=CSl:DEFBOO.CMD/RT/FA
$ MCR FLX /RS=CSl:RESTAR.CMD/RT/FA
$ RENAME RESTAR.CMD RESTAR.OLD
$ RENAME DEFBOO.CMD DEFBOO.OLD
$ EDIT DUMP.

Create the DUMP. command file that you wish
to place on the LOCAL CONSOLE floppy. Be sure
to have examines for all registers on the system.
An example of a DUMP. command file is given in this
manual.

$ COPY DUMP. HANG.
$ EDIT HANG.

Now create the HANG. command file by modifying the
just made DUMP. command file to include the commands
shown below. These commands should be appended to
the end of the file.

Set single step mode and gather some PC's
in order to determine where software is hung.

SET DEFAULT HEX,LONG,PHYSICAL
D/ID OA 00008080
SET STEP INSTRUCTION
NEXT 30
CLEAR STEP
NEXT 1
D/ID OA 00000040

Turn off/Clear Interval Timer.
Set single step mode.
Find program loop.
Disable single step mode.
Continue clock.
Re-enable Interval Timer.

Now execute the equivalent of @CRASH in order
to cause a Software Dump to be taken.

HALT
E PC
E PSL
E/I/N:4 0
D PC -1
D PSL lFOOOO
CONTINUE

3-3

Halt the system.
Get current PC.
Get contents of PSL.
Get Stack pointers.
Invalidate PC.
Set Kernel mode, IPL 31.
Continue macro program.

$ COPY DUMP. DEFBOO.CMD
$ COPY DUMP. RESTAR.CMD
$ APPEND DEFBOO.OLD DEFBOO.CMD
$ APPEND RESTAR.OLD RESTAR.CMD
$ COPY/CONTIG RESTAR.CMD RESTAR.CMD
$ COPY/CONTIG DEFBOO.CMD DEFBOO.CMD
$ COPY/CONTIG DUMP. DUMP.
$ COPY/CONTIG HANG. HANG.
$ PURGE DEFBOO.CMD
$ PURGE RESTAR.CMD
$ PURGE DUMP.
$ PURGE HANG.
$ MCR FLX CSl:/RT=DEFBOO.CMD/RS/FA
$ MCR FLX CSl:/RT=RESTAR.CMD/RS/FA
$ MCR FLX CSl:/RT=DUMP./RS/FA
$ MCR FLX CSl:/RT=HANG./RS/FA
$ MCR FLX CSl:/RT/LI
$ DISMOUNT CSAl:

Now you should bring down the system and test the files you have
just created. To test the command files, proceed as follows from
the CONSOL.SYS prompt:

>>>@DUMP

>>>@HANG

>>>B

All registers should be examined. Several errors may
occur on the Memory Stack examines. Ignore them.

All registers should be examined. Several errors may
occur on the Memory Stack examines. Ignore them.

A hardware register dump should occur as with the DUMP.
command file and then the system should reboot.

Now place the AUTO-RESTART switch to "ON" and turn the power "OFF"
and back "ON". The Operating system should reboot via the modified
RESTAR.CMD command file.

3-4

Version 4.x VMS dump file generation

The following commands can be used to create the HANG.J DUMP., and
modify the DEFBOO.CMD & RESTAR.CMD command files on the LOCAL CONSOLE
floppy of a VERSION 4.x VMS Operating System.

First of all, you must log into an account that has the "SETPRV"
privilege or into an account that has enough privileges to access
"CSAl:". Do the following steps on "VERSION 4.x VMS" systems:

$ SET PROCESS/PRIV=ALL
$ MCR SYSGEN
CONNECT CONSOLE
EXIT
$ EXCHANGE
COPY CSAl:RESTAR.CMD RESTAR.OLD
COPY CSAl:DEFBOO.CMD DEFBOO.OLD
EXIT
$ EDIT DUMP.

Create the DUMP. command file that you wish
to place on the LOCAL CONSOLE floppy. Be sure
to have examines for all registers on the system.
An example of a DUMP. command file is given in this
manual.

$ COPY DUMP. HANG.
$ EDIT HANG.

Now create the HANG. command file by modifying the
just made DUMP. command file to include the commands
shown below. These comm-ands should be appended to
the end of the file.

Set single step mode and gather some PC's
in order to determine where software is hung.

SET DEFAULT HEX,LONG,PHYSICAL
D/ID OA 00008080
SET STEP INSTRUCTION
NEXT 30
CLEAR STEP
NEXT 1
D/ID OA 00000040

Turn off/Clear Interval Timer.
Set single step mode.
Find program loop.
Disable single step mode.

! Continue clock.
.! Re-enable Interval Timer.

Now execute the equivalent of @CRASH in order
to cause a Software Dump to be taken.

HALT
E PC
E PSL
E/I/N:4 0
D PC -1
D PSL lFOOOO
CONTINUE

3-5

Halt the system.
Get current PC.
Get contents of PSL.
Get Stack pointers.
Invalidate PC.
Set Kernel mode, IPL 31.
Continue macro prograci.

$ COPY DUMP. DEFBOO.CMD
$ COPY DUMP. RESTAR.CMD
$ APPEND DEFBOO.OLD DEFBOO.CMD
$ APPEND RESTAR.OLD RESTAR.CMD
$ COPY/CONTIG RESTAR.CMD RESTAR.CMD
$ COPY /CONT I G DEFBOO. CMD DEF BOO .. CMD
$ COPY/CONTIG DUMP. DUMP.
$ COPY/CONTIG HANG. HANG.
$ PURGE DEFBOO.CMD
$ PURGE RESTAR.CMD
$ PURGE DUMP.
$ PURGE HANG.
$ EXCHANGE
COPY DEFBOO.CMD CSAl:DEFBOO.CMD
COPY RESTAR.CMD CSAl:RESTAR.CMD
COPY DUMP. CSAl:DUMP.
COPY HANG. CSAl:HANG.
EXIT
$ DISMOUNT CSAl:

Now you should bring down the system and test the files you have
just created. To test the command files, proceed as follows from
the CONSOL.SYS prompt:

>>>@DUMP

>>>@HANG

>>>B

All registers should be examined. Several errors may
occur on the Memory Stack examines. Ignore them.

All registers should be examined. Several errors may
occur on the Memory Stack examines. Ignore them.

A hardware register dump should occur as with the DUMP.
command file and then the system should reboot.

Now place the AUTO-RESTART switch to "ON" and turn the power "OFF"
and back "ON". The Operating system should reboot via the modified
RESTAR.CMD command file.

3-6

DUMP. Command File

This is an example of how a Hardware Register Dump command file should look.
This command file should be tailored for the system it is to be used on.
----> Lines marked with an "*" are system configuration dependent. <----

*
*
*
*
*
*
*
*
*
*
*

H A R D W A R E
Date & Time :
Customer Name:
VAX Serial No.:

R E G I S T E R D U M P

Don't ""'C", even
SHOW

if there is "?MIC" and/or "?MEM-MAN" errors.
Check to see if VAX is running.

HALT ! Make sure that the VAX is halted.
SET RELOCATION:O
SET DEFAULT HEX,LONG,PHYSICAL
E/ID/N:l7 0 ! VAX CPU ID Registers.
E/ID 18 "15" cycles prior to "SBI FAULT".
E/ID * "14" cycles prior to "SBI FAULT".
E/ID * "13" cycles prior to "SBI FAULT".
E/ID * "12" cycles prior to "SBI FAULT".
E/ID * "11" cycles prior to "SBI FAULT".
E/ID * "10" cycles prior to "SBI FAULT".
E/ID * "09" cycles prior to "SBI FAULT".
E/ID * "08" cycles prior to "SBI FAULT".
E/ID * "07" cycles prior to "SBI FAULT".
E/ID * "06" cycles prior to "SBI FAULT".
E/ID * "05" cycles prior to "SBI FAULT".
E/ID * "04" cycles prior to "SBI FAULT".
E/ID * "03" cycles prior to "SBI FAULT".
E/ID * "02" cycles prior to "SBI FAULT".
E/ID * "01" cycle prior to "SBI FAULT".
E/ID * Last cycle stored prior to latching
E/ID/N:25 19 Remaining CPU ID Registers.
E IR Examine the contents of the IR.
E PC Get current PC.
E/L/V - Get some instruction stream data.
E/L/V -
E/L/V -
E/I 0/N:4 Examine STACK "Internal Regs."

MEMORY Registers (TR=l).
DW780 Registers (TR=3).
RH780 (TR=8) Registers.
RH780 (TR=9) Registers.
DBAO: - RP06 #0 on RH780 at TR#8.
DRAl: - RM05 #1 on RH780 at TR#8.
MTAO: - TE16 #0 on RH780 at TR#9.
XMA - (760070) - on Adapter #0.
XMB - (760100) - on Adapter #0.
TTA - (760120) - on Adapter #0.
TTB - (760130) - on Adapter #0.

SILO.

E/N:2 20002000
E/N:7 20006000
E/N:6 20010000
E/N:6 20012000
E/N:F 20010400
E/N:F 20010480
E/N:9 20012400
E/W/N:3 2013E038
E/W/N:3 2013E040
E/W/N:3 2013E050
E/W/N:3 2013E058
E/ ID 3B
E/L/P/N:7F @
E/G/N:F 0

Get System Control Block Base address.
Dump System Control Block contents.
General Registers.

E SP
E/V/N:60 @
SHOW VERSION

Get Stack Pointer.
Contents of STACK.

3-7

IGNORE examine errors.

HANG. Command File

This command file should be tailored to the System it will be used on.
The first part of this command file should almost identical to the DUMP.
file. Some commands are added to the end of the DUMP. file so that some
information can be gathered concerning the hang.
----> Lines marked with an "*" are system configuration dependent. <----

SYSTEM HANG - Hardware & Software Dump file
Date & Time :
Customer Name:
VAX Serial No.:
Don't ""C", even if there is "?MIC" and/or "?MEM-MAN" errors.

SHOW ! Check to see if VAX is running.
HALT ! Make sure that the VAX is halted.
SET RELOCATION: 0
SET DEFAULT HEX,LONG,PHYSICAL
E/ID 0/N:3E VAX CPU ID Registers.
E IR Get the contents of the IR.
E/I 0/N:4 Stacks via Internal Registers.

* E/N:2 20002000 MEMORY Registers (TR=l)
* E/N:7 20006000 DW780 Registers (TR=3)
* E/N:6 20010000 RH780 (TR=8) Registers
* E/N:6 20012000 RH780 (TR=9) Registers
* E/N:F 20010400 DBAO: - RP06 #0 on RH780 at TR#8.
* E/N:F 20010480 DRAl: - RM05 #1 on RH780 at TR#8.
* E/N:9 20012400 MTAO: - TE16 #0 on RH780 at TR#9.
* E/W/N:3 2013E038 XMA - (760070) - on Adapter #0.
* E/W/N:3 2013E040 XMB - (760100) - on Adapter #0.
* E/W/N:3 2013E050 TTA - (760120) - on Adapter #0.
* E/W/N:3 2013E058 TTB - (760130) - on Adapter #0.

E/G/N:F 0 General Registers
E SP Get Stack Pointer.
E/V/N:60 @ Contents of STACK. IGNORE examine errors.
E PC Get some instruction stream data in case
E/L/V - hung in a very tight, one or two instruction
E/L/V - loop.
E/L/V -
SHOW VERSION
! Single Step the system to gather some program loop PC's
SET DEFAULT HEX,LONG,PHYSICAL
D/ID OA 00008080 Turn off/Clear Interval Timer.
SET STEP INSTRUCTION Set single step mode.
NEXT 60 Show program loop.
CLEAR STEP Disable single step mode.
NEXT 1 Continue clock.
D/ID OA 00000041 Re-enable Interval Timer.

Simulate an "@CRASH" so as to get Software Dump
HALT
E PC
E PSL
D PC -1
D PSL lFOOOO
CONTINUE

Invalidate PC
KERNEL mode I IPL=31

3-8

SAVEDUMP COM

A command file that saves SYS$SYSTEM:SYSDUMP.DMP in a
specified area. This command file should be executed
from the SYS$SYSROOT:[SYSMGR]SYSTARTUP.COM command
file so that the Software Dump is saved.

3-9

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

SAVE_VERIFY = 'F$VERIFY("NO") I

Written by Roy D. Fulton, D.E.C. Field Service

This command file copies the Software System Dump File,
SYS$SYSTEM:SYSDUMP.DMP, to a file located in 'AREA NAME'
with a name that reflects the reboot DAY, MONTH, HOUR and MINUTE.

This command file should be entered by specif ing the "AREA_NAME"
as parameter "Pl", as follows:

@yyySAVEDUMP xxx ;where xxx DDCU:DIRECTORY of area
in which to save the dump file and,

;where yyy = DDCU:DIRECTORY of where
the "SAVEDUMP.COM" file is located.

If the "AREA NAME" is not specified as parameter "Pl", the dump
file will be-copied to the area "SYS$LOGIN" (the default directory
of the area that you logged into).

This command file should be executed as part of the VMS System
"SYS$SYSROOT:[SYSMGR]SYSTARTUP.COM" command file by placing the
above command in that command file.

$ IF Pl .NES. "" THEN AREA NAME := 'Pl'
$ IF Pl .EQS. ""THEN AREA-NAME:= 'F$LOGICAL("SYS$LOGIN")'
$ DTIM := 'F$TIME()' -
$ LT= 'F$LOCATE("-",DTIM)'
$ DAY:= 'F$EXTRACT(O,LT,DTIM)'
$ IF LT .EQ. 1 THEN DAY := O'DAY'
$ LT= 'LT'+l
$ MONTH:= 'F$EXTRACT(LT,3,DTIM)'
$ LT= 'F$LOCATE(":",DTIM)'+l
$ MIN:= 'F$EXTRACT(LT,2,DTIM)'
$ LT = 'LT'-3
$ HOUR:= 'F$EXTRACT(LT,2,DTIM)'
$ NEW NAME := 'DAY' 'MONTH' 'HOUR' 'MIN' .DMP
$ NEW-LIST := 'DAY' 'MONTH' 'HOUR' 'MIN' .LIS
$ SEXE := 'F$LOGICAL("SYS$SYSTEM")'
$ WRITE SYS$0UTPUT II II

$WRITE SYS$0UTPUT " Copying"
$ WRITE SYS$0UTPUT " from :
$ WRITE SYS$0UTPUT " to :
$ ANALYZE/CRASH DUMP SYS$SYSTEM:
COPY 'AREA NAME' 'NEW NAME'
SET OUTPUT-' AREA NAME' 'NEW LIST'
SHOW CRASH - -
SHOW STACK
SHOW SUMMARY
SHOW PROCESS/PCB/PHD/REG
SHOW SYMBOL/ALL
EXIT
$
$

IF SAVE VERIFY THEN SET VERIFY
EXIT

3-10

I 'SEXE'SYSDUMP.DMP"
''AREA NAME' I 'NEW NAME' II

SPEAR Batch Command File

3-11

SPEAR BATCH CONTROL

This is an example of a VMS Indirect Command file that can be used
to run SPEAR as a BATCH job. When this command file is executed,
a BATCH job will be submitted that will run the "ANALYZE" portion
of SPEAR and will queue the output to the printer. The command file
is executed by typing "@DDCU:SPEAR" at the VMS prompt, where "DDCU" is
equal to the directory designation of where the SPEAR.COM file resides.
The actual command file would appear as follows for VMS:

$ VMS COMMAND FILE TO RUN SPEAR
$
$ FIRST RE-QUEUE THE JOB TO RUN TOMORROW
$ SUBMIT SPEAR.COM/AFTER:TOMORROW/WSDEFAULT=400/WSQUOTA=O
$
$ RUN SYS$SYSTEM:SPEAR
SUMMARIZE

!FILE NAME
!FROM
!TO

SUMMAR.RPT
!GO

ANALYZE
!FILE NAME
!FROM
!TO

SPEAR.RPT
NL:

!GO
EXIT
$
$! PRINT THE RESULT
$ PRINT SUMMAR.RPT
$ PURGE SUMMAR.RPT/KEEP=l
$ PRINT SPEAR.RPT
$ PURGE SPEAR.RPT/KEEP=l

3-12

SDA.COM

This command file is used to make a printable file containing some
information from a specified system software dump file.

3-13

$ SAVE VERIFY= 'F$VERIFY("NO")'
$
$ Written by Roy D. Fulton, D.E.C. Field Service
$
$ VERSION := 2.0
$ SET NOON
$ ON ERROR THEN CONTINUE
$ ON CONTROL Y THEN EXIT
$ TYPE SYS$INPUT

This command file examines the desired SOFTWARE Dump file, and
creates a file of basic information (about the crash) that can
be used for most crash analysis.

Answer all questions with a "Y" for YES or an "N" for NO, unless
otherwise stated. A "<return>" is equal to a YES.

If you require help, simply type a "?" or "H".

$ START:
$ INQUIRE DMP "What System Dump (DDCU:[DIRECTORY]FILENAME.EXT)? "
$ IF DMP . NES. "/H" . AND. DMP . NES . "H" . AND. DMP . NES . "/HELP" -

.AND. DMP .NES. "HELP" .AND. DMP .NES. "?" THEN GOTO CONTINO
$ TYPE SYS$INPUT

Enter the name of the file that you wish to examine and also
state the device and directory of where the file is located, in
the following format:

DDCU:[DIRECTORY]FILENAME.EXT

where,

$

DDCU
DIRECTORY
FILENAME
EXT

$ GOTO START

3-14

= device on which file is stored.
directory in which dump is located.
filename of the dump file.
three digit extension of dump file.

$ C:ONTINO:
$ IF DMP . EQS . " "
$ INQUIRE TO " .•.

THEN DMP :== SYS$SYSTEM:SYSDUMP.DMP
You wish to examine ''DMP' ? "

$ IF TO .NES. "Y" • AND. TO .NES. "" .AND. TO .NES. "YES" THEN -
GOTO START

$ PRTOUT:
$ INQUIRE PRT "
$ IF PRT .EQS. "Y"
$ IF PRT .EQS. "N"

Output to be printed on the SYS$PRINT device?"
.OR. PRT .EQS. "" .OR. PRT .EQS. "YES" THEN PRT := Y
.OR. PRT .EQS. "NO" THEN PRT := N

$ IF PRT .EQS. "N" .OR. PRT .EQS. "Y" THEN GOTO CONTINI
$ TYPE SYS$INPUT

The output will go to a file in your disk area that is equal to the
Durnp's filename with an extension equal to "LST". This file can be
queued to the SYS$PRINT queue, which is usually a Line Printer queue,
if you so desire. Answer this question with one of the following
responses:

y Queue listing to SYS$PRINT device. File is deleted
after printing.
same as "Y". <return>

N = Do not print the file. File remains in disk area.
? Displays this help file.
H same as "?"- - -

$ WRITE SYS$0UTPUT " The SYS$PRINT device is ''F$LOGICAL("SYS$PRINT")'
$ WRITE SYS$0UTPUT " "
$ GOTO PRTOUT
$ CONTINI:
$ TMP := 'DMP'
$ LT= 'F$LENGTH(DMP)'
$ AA= 'F$LOCATE(":",DMP)'
$ BB = 'LT'-'AA'
$ IF AA .NE. LT THEN TMP := 'F$EXTRACT(AA+l,BB-l,DMP)'
$ LT= 'F$LENGTH(TMP)'
$ AA = I F$LOCATE("]" ,TMP) I

$ BB = 'LT'-'AA'
$ IF AA .NE. LT THEN TMP := 'F$EXTRACT(AA+l,BB-l,TMP)'
$ LT= 'F$LENGTH(TMP)'

3-15

"

$ AA= 'F$LOCATE(".",TMP) I

$ IF AA .NE. LT THEN TMP := 'F$EXTRACT(0,AA,TMP)'
$ TMP := 'F$LOGICAL("SYS$LOGIN")' 'TMP' .LST
$ WRITE SYS$0UTPUT " "
$ WRITE SYS$0UTPUT " "
$WRITE SYS$0UTPUT " Creating ''TMP' ... Please wait
$ ANALYZ:
$ ON ERROR THEN EXIT
$ RUN SYS$SYSTEM:SDA
'DMP'
SET OUTPUT 'TMP'
SHOW CRASH
SHOW PROCESS/ALL
SHOW STACK/ALL
SHOW DEVICE
SHOW SUMMARY
SHOW PFN DATA/ALL
EXAMINE/PO
EXIT
$
$ ON ERROR THEN CONTINUE
$ WRITE SYS$0UTPUT " "
$ WRITE SYS$0UTPUT " "
$ IF PRT .EQS. "Y" THEN WRITE -

II

SYS$0UTPUT 11
••••• '' TMP' is being queued to ' 'F$LOGICAL ("SYS$PRINT") ' 11

$ IF PRT .EQS. 11 Y11 THEN PRINT/DELETE 'TMP'
$ IF PRT .EQS. 11 Y11 THEN GOTO EXITH
$ WRITE SYS$0UTPUT 11 Information about ''DMP' 11

$ WRITE SYS$0UTPUT II II

$ WRITE SYS$0UTPUT " is stored in ''TMP'"
$ EXITH:
$ WRITE SYS$0UTPUT II II

$ WRITE SYS$0UTPUT II II

$ IF SAVE VERIFY THEN SET VERIFY

3-16

FP780 Control Programs

These programs are used to turn the Floating Point Accelerator
noNn or "OFF". These two programs may be created with an editor
and then assembled and linked.

3-17

FPAOFF.MAR

.TITLE FPAOFF.MAR

;Written by Roy D. Fulton, D.E.C. Field Service
,
;This routine "Turns OFF" the Floating Point Accelerator . ,
;This routine needs the "CMKRNL" privilege.

START: .WORD
$CMKRNL S FPAOFF
RET -

FPAOFF: .WORD

SID:

VAX780:

MFPR #"X3E, SID ;get SID Register contents

CMPZV #"D24,#"D4,SID,#"Xl
BEQL VAX780

;is System a VAX-11/780
;Branch if yes

CMPZV #"D24,#"D4,SID,#"X2
BEQL VAX780

;is System a VAX-11/750
;Branch if yes

CMPZV #"D24,#"D4,SID,#"X3
BEQL VAX780

;is System a VAX-11/730
;Branch if yes

MOVL #"X901,RO
RET

.WORD

.WORD

MTPR #0,#"X28
MOVL #"Xl,RO
RET

.END START

3-18

;Unsupported Processor Type
;exit routine due to no such processor

;holds contents of SID register

;Turn off FPA enable on 11/780
;11/780 successful completion
;exit routine

FPAON.MAR

.TITLE FPAON.MAR

;Written by Roy D. Fulton, D.E.C. Field Service
,
;This routine "Turns ON" the Floating Point Accelerator .
' ;This routine needs the "CMKRNL" privilege.

START: .WORD
$CMKRNL S FPAOFF
RET -

FPAOFF: .WORD

SID:

VAX780:

MFPR #"'X3E,SID ;get System Identification Register contents

CMPZV #"'D24,#"'D4,SID,#"'Xl
BEQL VAX780

;is System a VAX-11/780
;Branch if yes

CMPZV #"'D24,#"'D4,SID,#"'X2
BEQL VAX780

;is System a VAX-11/750
;Branch if yes

CMPZV #"'D24,#"'D4,SID,#"'X3
BEQL VAX780

;is System a VAX-11/730
;Branch if yes

MOVL #"'X901,RO
RET

.WORD

.WORD

MTPR #8000,#"'040
MOVL #"'Xl,RO
RET

.END START

;Unsupported Processor Type
;exit routine due to no such processor

;holds contents of SID register

;Turn ON FPA enable on 11/780
;setup RO. for successful completion flag
;exit routine with FPA off

3-19

S E C T I 0 N IV

VAX-11/780 BASICS

VAX Virtual & Physical Address Space

VAX Family VAX-11/780
Virtual Physical

Addressing Addressing

0 ---------- 0 ----------
00000000 ! ! 00000000

! Avail. !
!Program ! Physical!
! Region ! Memory !

! ! 007FFFFF
8 Mb ----------

PO 00800000
Space

!
3FFFFFFF Physical!

1 Gb --------- Memory !
40000000 Addrs.

!
Control'
Region

lFFFFFFF
512 Mb ---------- 20000000

Pl I/0
Space Addrs.

NEXUS
7FFFFFFF Regs.

"' ,...'- --------- ==--======-== 2001FFFF ' UJ..1

80000000 !Not Used!
---------- 20100000

System Unibus
Region ! Space

! (I/0)
---------- 201FFFFF

so !Not Used!
Space I/0

Space
BFFFFFFF Addrs.

---------- 3FFFFFFF
cooooooo 1 Gb ----------

not
used

Sl
Space

FFFFFFFF
4 Gb ----------

4-2

R3,R5
R2,R4
Rl

RO

VAX-11/780 General Registers Assignments

Register No.
Hex Dec. 32 00

F 15 Program Counter PC

E 14 Stack Pointer SP

D 13 Frame Pointer FP

c 12 Argument Pointer AP

B 11

A 10

9 09
•.• Not assigned ...

8 08

7 07

6 06

5 05
Used in Character

4 04
and Decimal String

3 03
instructions. ROO and

2 02
ROl are also used in

1 01
POLY & CRC intructions

0 00

- Address Counter in Character and Decimal instructions.
- Length Counter in Character and Decimal instructions.
- Result of POLYD. Address Counter in Character and

Decimal instructions.
- Result of POLY,CRC. Length counter in Character and

Decimal instructions.

4-3

SUBROUTINE Usage & Operation

Subroutines are portions of code that may be used many times within
a program at different times. In order to save memory space, this
common code can be written as a subroutine and can be called and
exited with the instructions listed below. The processor saves the
current PC on the STACK whenever a subroutine is called so that the
return instruction will know where to return to. The Processor
Status Longword is not saved on the STACK when calling a subroutine,
nor is it modified by the Subroutine call and return instructions.

Three instructions are used for calling a subroutine. They are
as follows:

BSBB

BSBW

JSB

Branch to subroutine with Byte Displacement.
Displaces PC a maximum of +127 or -128 bytes.
Branch to Subroutine with Word Displacement.
Displaces PC a maximum of +32767 or -32768 bytes.

The PC is pushed onto the STACK as a longword.
The sign-extended (to 32 bits) branch
displacement is added to the PC and the PC is
replaced with the result.

-(SP) <--- PC
PC <--- PC + SEXT Displacement

Jump to subroutine.

The destination address is calculated from the
Operand Specifier byte. The PC is then pushed
onto the STACK. Finally, the PC is replaced by
the calculated destinati9n address.

-(SP) <--- PC
PC <--- Destination

One instruction is used to return from a subroutine. It is:

RSB Return from subroutine

Is used to return from subroutines called by the
BSBB, BSBW and JSB instructions. The PC is replaced
by a longword popped from the STACK.

Note:

PC <--- (SP)+

RSB is equivalent to JMP @(SP)+, but is one
byte shorter.

4-4

PROCEDURE Usage & Operation

PROCEDURES are general purpose routines that use argument lists
passed automatically by the processor and use only local variables
for data storage. A PROCEDURE CALL INSTRUCTION provides several
services to the programmer that occur automatically by the processor.

A Procedure Call Instruction:

Saves all the registers (ROO - Rll), that the procedure
uses, before entering the called procedure. This is
accomplished by the programmer specifying which registers
are to be saved in an ENTRY MASK when the Procedure is
written. The ENTRY MASK is the first WORD of a Procedure.

Passes an argument list to a Procedure. This is done in two
ways. The argument list can be stored anywhere in memory,
in which case the CALLG instruction is used, or the list can
be stored on the STACK, in which case the CALLS instruction
is used.

Maintains the STACK, FRAME and ARGUMENT Pointer registers.

Initializes the Arithmetic Trap ENABLES to a given state.
This is accomplished by the ENTRY MASK.

When a PROCEDURE completes execution, it issues the RET (Return from
Procedure) instruction. RET uses the Frame Pointer register to find
the registers that were saved by the Procedure Call Instruction. It
restores the original contents to these registers, cleans up data left
on the Stack (including nested routine linkages), and can return values
using the argument list or other registers.

4-5

PROCEDURE Usage & Operation (continued)

ENTRY MASK

Is one Word in length

Bits 2 thru 11 select Registers to be Saved upon
Procedure Call. A one in the respective bit position
SAVES that register before Procedure is executed.

Bits 0 & 1 are not normally used by software to save
Registers 0 & 1, respectively, due to Procedure Calling
standard. They will be saved if you set the respective bit.

Bit 15 is used to enable/disable Decimal Overflow (DV).

Bit 14 is used to enable/disable Integer Overflow (IV).

Bits 12 & 13 must be zero.

Is located in First WORD of Procedure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENTRY MASK---> !DV!IV! MBZ ! Registers to Save

ARGUMENT LIST

An Argument List is simply Data that is needed for the
Procedure to use. This list of data may be something like
a group of numbers that must be added together by the
Procedure.

The Argument List may be stored anywhere in memory or it
may be stored on the Stack. If the Argument List is stored
on the Stack, the "CALLS" Procedure call instruction is
used to enter the Procedure. If the Argument List is stored
somewhere other than on the Stack, the "CALLG" Procedure
call instruction is used to enter the Procedure.

4-6

Format:

"CALLG" Procedure Call Operation

opcode arglist.ab, dst.ab

opcode
arglist.ab

dst.ab

"FA"
= Specifies starting address of

Argument List in memory.
= Specifies starting address of

the Procedure to be entered.

Description:

1. SP is saved in a temporary register and then bits 1:0 are
replaced by 0 so that the stack is longword aligned.

2. The PROCEDURE ENTRY MASK is scanned from Bit 11 to 00 and the
contents of those registers whose number corresponds to the
set bits in the ENTRY MASK are pushed on the Stack as
LONGWORDS.

3. The "PC","FP", and "AP" are then pushed on the Stack, also
as LONGWORDS.

4. The CONDITION CODES are cleared in the Processor Status
Longword (PSL).

5. A LONGWORD is pushed on the Stack containing:
the two low bits of the saved SP in Bits 31:30
a 0 in Bits 29 & 28
the low 12 bits of the ENTRY MASK in Bits 27:16
the low word of the PSL in Bits 15:00 with the
"T" bit cleared

6. A LONGWORD = 000000 is pushed on the Stack.

7. The "FP" is replaced by the "SP".

8. The "AP" is replaced by the "arglist operand~.

9. The Trap enables are set to a known state in the PSL.
IV and DV are setup according to bits 14 & 15
of the ENTRY MASK, respectively
Floating underflow bit is cleared
T-bit is unaffected

10. The "PC" is replaced by the sum of the destination operand
olus 2, which transfers control to the called procedure at
the byte beyond the ENTRY MASK.

4-7

Format:

"CALLS" Procedure Call Operation

opcode numarg.rl, dst.ab

opcode
numarg.rl
dst. ab

"FB"
number of arguments on stack
specifies starting address of the
procedure in memory

Description:

1. The "numarg" operand is pushed on the Stack as a Longword.
Byte 0 contains the number of arguments
The High order 24 bits are· used by DEC software

2. The "SP" is saved in a temporary register and bits <1:0>
of the "SP" are replaced by 0 so that the stack is Longword
aligned.

3. The Procedure ENTRY MASK is scanned from bit 11 to bit 00 and
the contents of the registers whose number corresponds to the
set bits of the Entry Mask are pushed on the Stack.

4. The "PC","FP", and "AP" are pushed on the Stack as Longwords.

5. The Condition Codes are cleared in the Processor Status
Longword (PSL).

6. A LONGWORD is pushed on the Stack containing:
the two low bits of the saved SP in Bits 31:30
a 1 in Bit 29
a 0 in Bit 28
the low 12 bits of the ENTRY MASK in Bits 27:16
the low word of the PSL in Bits 15:00 with the
"T" bit cleared

7. A LONGWORD= 000000 is pushed on the Stack.

8. The "FP" is replaced by the "SP".

9. The "AP" is set to the value of the Stack Pointer after
the "numarg operand" was pushed on the Stack.

10. The Trap enables are set to a known state in the PSL.
IV and DV are setup according to bits 14 & 15
of the ENTRY MASK, respectively
Floating underflow bit is cleared
T-bit is unaffected

11. The "PC" is replaced by the sum of the destination operand
plus 2, which transfers control to the called procedure at
the byte beyond the ENTRY MASK.

4-8

"RET" Procedure Return Operation

Format:
opcode opcode "04"

Description:

1. The "SP" is replaced by the "FP" plus 4.

2. A Longword is popped from the Stack, and stored in a temporary
register, containing:

Stack Alignment bits in bits 31:30
CALLS/CALLG flag in bit 29 (1 = CALLS, 0 = CALLG)
Low 12 bits of the Procedure ENTRY MASK in
bits 27:16
A saved PSW (low order word of PSL) in bits 15:00

3. The "PC", "FP", and "AP" are replaced by Longwords popped
from the Stack.

4. A register restore mask is formed from bits 27:16 of the
temporary register.

5. Scanning from bit 00 to bit 11 of the restore mask, the
contents of the registers whose number is indicated by set
bits in the restore mask, are replaced by Longwords popped
from the Stack.

6. The "SP" is incremented by 31:30 of the temporary register.

7. The PSW (low order word of PSL) is replaced by bits 15:00
of the temporary register.

8. If bit 29 in the temporary register is a 1 (indicating that
the procedure was called by a CALLS instruction), a Longword
containing the number of arguments is popped from the Stack.
Four times the unsigned value of the low byte of this Longword
is added to the "SP" and the "SP" is replaced by the result.

9. At this point, the Return has been executed. Program control
continues with at the current PC.

4-9

Procedure Call (CALLS/CALLG) notes:

1. If bits 13:12 of the ENTRY MASK are not 0, a reserved
operand fault occurs.

2. On a reserved operand fault, Condition Codes are
UNPREDICTABLE ...

3. The procedure calling standard and the condition handling
facility require the following register saving conventions:

RO & Rl are always available for function return
values and are therefore never saved in the Entry
Mask.
All registers, R2 thru Rll, which are modified in
the called Procedure, must be preserved by setting
the respective bits in the Entry Mask.

4. When using "CALLS" Procedure Call, normal use is to push
the arglist onto the stack in reverse order prior to the
CALLS instruction. On RETurn, the arglist is removed from
the Stack automatically by the processor.

Return from Procedure(RET) notes:

1. A reserved operand fault occurs if the Temporary Register
bits 15:08 is not equal to 0.

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE. The value of the Temporary Register bit 28
is ignored.

3. The procedure calling standard and the condition handling
facility assume that procedures which return a function
value or a status code, do so in RO or RO & Rl.

4-10

PROCEDURE CALL Stack Layout

Before execution of a "CALLS", the Procedure Arguments are
stored on the Stack as follows.

X number of Longwords of Argument List

x

Typical stack layout as a result of a Call to a Procedure.

----------------------------~---------------------------
0-3 bytes specified by the "SPA"

(S-t-ack- Pe-inter -Alignment)

"saved Rll if selected by Mask"

Saved General registers. Which registers are
saved depends on the set bits in the Entry Mask.

"saved ROO if selected by Mask"

saved "PC"

saved "FP"

saved "AP"

! SPA !S!O! MASK<ll: 00> ! saved PSW<l5:05> ! 0

condition handler (initially 000000)

4-11

(SP) before
arguments
pushed.

(AP) & (SP)

(SP) before
CALLS/CALLG

(FP) & new
(SP)

Mode

0-3

5

6

7

8

8

9

9

VAX-11/780 NATIVE ADDRESSING MODES

Many of the modes are very similiar to PDP-11
addressing modes

Indexing can be combined with many of the
addressing modes

Operand Specifier consists of 1 Byte that contains
the MODE and the General Register to be used

The VAX addressing modes are as follows:

Operand
Specifier
Layout

Notation

S"'#num

Rn

(Rn)

-(Rn)

(Rn)+

#num

@(Rn)+

@#ADDR

7

Byte --> mode

Mode Name

Literal

Register

4 3 0

Rn n = 00 - 15

!
!--> Low Nibble

!--> High Nibble

Description

- Mode and Operand are
contained in the same BYTE.
Operand is contained in low
6 bits of addressing mode,

- Rn contains operand.

Register Deferred - Rn contains Address of the
operand.

Autodecrement

Auto increment

Immediate
(PC)

Auto increment
Def erred

Absolute
(PC)

4-12

- Rn is first decremented.
The resulting Rn contains
Address of the operand.

- Rn contains the Address of
the operand.
Rn is incremented after use.

- same as autoincrement mode
with Rl5 (PC) used as the
general register.

- Rn contains an Address that
contains the Address of the
operand.
Rn is incremented after use.

- same as autoincrement
tleferred mode with Rl5 (PC)
used as the General Reg.

Mode

A - Byte
C - Word
E - Longword

A - Byte
C - Word
E - Longword

B - Byte
D - Word
F - Longword

B - Byte
D - Word
F - Longword

Notation

B"d(Rn)
W"d(Rn)
L"d(Rn)

B"ADDR
W"ADDR
L"ADDR

@B"(Rn)
@W"(Rn)
@L"(Rn)

@B"ADDR
@W"ADDR
@L"ADDR

Mode Name

Displacement

Relative
(PC)

Displacement
Def erred

Relative Deferred
(PC)

4-13

Description

- Displacement (Rl5 contains
address of Displacement) is
first sign extended if Byte
or Word displacement is
used. Then the displacement
value is added to Rn. The
resulting value is the
Address of the operand.

- same as displacement mode
with Rl5 (PC) used as the
general register.

- Displacement (Rl5 contains
address of displacement) is
first sign extended if Byte
or Word displacement is
used. Then the displacement
value is added to Rn. The
resulting value is the
Address of the Address of
the operand.

- same as Displacement
Deferred mode with Rl5 (PC)
used as the general
register.

Indexing (Mode = 4) can be used with the following modes as
long Rl5 is not used as the index register:

1. Register Deferred
2. Autodecrement
3. Autoincrement
4. Immediate
5. Autoincrement Deferred
6. Absolute
7. Displacement
8. Relative
9. Displacement Deferred

10. Relative Deferred

7

4 Index Operand Specifier --->

Base Operand Specifier ---> MODE

Mode

Register Def erred Indexed
Autodecrement Indexed
Autoincrement Indexed
Immediate Indexed
Autoincrement Def erred Indexed
Absolute Indexed
Displacement Indexed
Relative Indexed
Displacement Def erred Indexed
Relative Deferred Indexed

4 3 0

Rx

Rn

Notation

(Rn) [Rx]
- (Rn) [Rx]
(Rn)+[Rx]
#num[Rx]
@(Rn)+[Rx]
@#ADDR[Rx]
disp(Rn)[Rx]
ADDR[Rx]
@disp(Rn)[Rx]
@ADDR[RX]

x = 00 - 14

n = 00 - 15

Index Specifiers are physically positioned, in memory,
before the Operand Specifier (that is being indexed).

4-14

Indexing is accomplished as follows:

1. The contents of the index register is modified
by multiplying the contents of the index register
by the value that reflects the context of the data
type specified.

Multiply by 1 for byte
2 for word
4 for longword & F floating
8 for quadword, D & G floating

16 for octaword & H_floating

2. Calculate the Address of the Operand specified
by the "Base" Operand Specifier.

3. Add the results of steps 1 & 2 together in order
to obtain the "address of the Desired Operand" ...

The following restrictions are placed on the Index
register Rx:

1. The PC (Rl5) cannot be used as an index register.
If it is, a reserved addressing mode fault occurs.

2. If the Base Operand Specifier is for an addressing
mode which results in register modification (auto
increment ,autoincrement deferred, or autodecrement)
the same register cannot be the index register. If
it is, the primary operand address is
"UNPREDICTABLE" .••

4-15

Mode

8

9

7 6

Notation

#num

PC (Rl5) Mode Operand Specifiers

5 4 3 2

MODE ! 1 1

Mode Name

Immediate

1

1

START:

0

1 ! Operand Specifier Byte

Description

The contents of the address
following the Operand Specifier
"contains the Operand" ..•

instruction code

operand specifier

This address contains -------------->
the desired operand .•.

Desired Operand

@#address Absolute

START:

The contents of the address
following the Operand Specifier
"contains the Address of the
Operand" ...

instruction code

operand specifier

The contents of this ---------"> "Address of OPERAND" !
address is the address -------------------------
of the desired operand ...

Address of OPERAND Desired Operand

4-16

Mode

A
c
E

PC (Rl5) Mode Operand Specifiers (continued)

Notation

B"address
W"address
L"address

Mode Name

Byte displacement
Word displacement

Longword displacement

START:

This value is added -------->
to the contents of the
PC,(which now points to X:
location "X"), to
form the address of the
desired Operand ...

("Displacement" + "X")

4-17

Description

The contents of the address
following the operand specifier
"contains a displacement that,
is first sign extended to 32
bits and is then added to the
contents of Rl5 to f orrn the
address of the Operand" ..•

instruction code

operand specifier

Displacement

Desired Operand

Mode

B

D

F

PC (Rl5) Mode Operand Specifiers (continued),

Notation Mode Name Description

@B"'address Byte Relative The contents of the location
Def erred following the Operand Specifier

@W"'address Word Relative when sign extended to 32 bits,
Def erred is added to the PC to form the

@L"'address Longword Relative "Address of the Address of the
Def erred Operand" ...

START: instruction code

Operand Specifier

This value is added to the PC, -------> Displacement
(which now points to location X), -------------------------
and the resultant value is an X:
ttAddress that contains the -------------------------
Address of the desired Operand" ...

("Displacement" + "X") New Address

New Address Desired Operand

4-18

SECTION V

... BUSes used on VAX-11/780 Systems ...

SYNCHRONOUS

BACKPLANE

INTERCONNECT

... The VAX-111780 Bus ...

5-3

S.8.1. Signal Pin Layout

Pin - Signal Pin - Signal Pin - Signal
Name Name Name

- -:- - - -:: -. }"""'." '7)- - - - - - - - - - - - - -

ABl - BOO CV2 - FAIL .A-C.. Lu -t"e 11EPl - UNJAM
ACl - BO 1 DAl - DEAD IJL l <) (.1 ;.:) EP2 - ALERT
ADl - B02 , EUl - FAULT
AEl - B03 DBl - MO
AMl - B04 DCl - Ml
ANl - BOS DDl - M2
APl - B06 DD2 - M3

AP2 - B07
AS2 - BOB
AT2 - B09

AUl - BlO
AU2 - Bll
BF2 - Bl2
BH2 - Bl3

BJl - Bl4
BJ2 - Bl5
BS2 - Bl6
BT2 - Bl7

BUl - Bl8
BU2 - Bl9

CBl -. B20
CCl - 821
CDl - 822

CD2 - 823
CMl - 824
CNl - 825
CPl - B26

CP2 - 827
CS2 - 828
CT2 - 829

CUl - 830
CU2 - 831

DF2
DH2

- PO
- Pl

DMl
DNl
DPl

DP2
DS2
DT2

DUl
DU2

EBl
ECl
EDl

ED2

EFl
EF2

EH2
EJl

EJ2
EK2

EMl
ENl

FAl

- TAGO
- TAGl
- TAG2

- IDO
- IDl
- ID2
- ID3
- ID4

- REQ4
- REQ5
- REQ6
- REQ7

- TP H
- TP L

- PCLK H
- PCLK L
- PDCLK H
- PDCLK L

- MPl
- MP2

- INTLK

ES2
ET2

FBl
FCl
FDl
FEl

FF2
FH2

FJl
FJ2

FMl
FNl
FPl

FP2
FS2
FT2

FUl
FU2

*A2
*Vl

*C2
*Hl

*N2
*Tl

- CNFO
- CNFl

- TROO
- TROl
- TR02
- TR03
- TR04
- TROS
- TR06
- TR07
- TR08
- TR09
- TRIO
- TRll
- TR12
- TR13
- TR14
- TR15

- +5V
- +SV

- GND
- GND
- GND
- GND

All Signals are Low when True unless otherwise specified

Signals are found on slot #1 of any NEXUS ...

5-4

SBI I CPU Time State Equivalents

The VAX-11/780 CPU and SBI time states have different names.

M8232 LED CPU Time State SBI Time State

Dl (top) CPTO SBI Tl
D2 CPTl SBI T2
D3 CPT2 SBI T3
D4 (bottom) CPT3 SBI TO

CPTP SBI TP
CPPCLK SBI PCLK
CPPDCLK SBI PDCLK

SB! TO clock time

1. Nexus that has control of the SBI enables the SBI
Drivers at this time.

2. TR Lines are asserted by the NEXUS wishing use of the
SBI Bus.

SB! Tl clock time

1. NEXUS dependent.

SB! T2 clock time

1. "ALL" NEXUS open their Receiver Latches at this time.

SB! T3 clock time

1. "ALL" NEXUS clock their Receiver Latches at this time.

2. All NEXUS who have their TR Line asserted, determine
if they are next in line to get control of the SBI Bus
at the next "SBI TO" time.

5-5

S.8.1. WRITE Transfer example to show timing

I 1st Cycle I 2nd Cycle I 3rd Cycle I 4th Cycle I 5th Cycle 6th
1------------1------------ ------------1------------1------------ ------
ITO Tl T2 T3 ITO Tl T2 T3 TO Tl T2 T3 ITO Tl T2 T3 ITO Tl T2 T3 TO Tl
1------------1------------ -----.------1------------1------------ ------

A I I I I
R I Requester I If Highest TR#O is I If function
B I asserts I Priority, deasserted, I was an EXT.
I assigned !assigned TR UNLESS func. WRITE, TR#O
T TR line lis dropped, was an would be
R land TR#O is EXTENDED deasserted
A !asserted to WRITE - in here.
T I hold next which case
I I cycle for TR#O will
O I the WRITE remain
N I DATA. asserted

------------!------------ ------------ ------------ ------------ ------
I
N
F
0
R
N
A
M
I
0
N

TAG<2:0>=? ITAG = C/A TAG = Write
I Data

ID<4:0> =? IID =source
I

B<31:00>=? IB =Func/Addr
I

ID = code of
commander

M<3:0> = ? IM =Bytes to B = Data
I be written
I
I
I I

M = Bytes to
be written

If function
was an EXT.
WRITE, the

2nd longword
would be
sent here.

Format would
be same as

the previous
Write Data

cycle.
1------------1------------1------------ ------------ ------------ ------

c I I I
o I I I
N I I I
F I I I
I I I I
R ICNF<l:O> ?ICNF<l:O> ?ICNF<l:O> ?
M I I I
A I I I
T I I I
I I I I
o I I I
N 1------------1------------1------------

5-6

CNF
I for

CNF=response CNF=responselsecond
from the from the !Write

destination! destinationlData
to verify I to verify llongwd
acceptance I acceptance lif
of C/A I of the I func
information! Write Data lwas an

I IEXT.
I I Write

------------!------------!------

VAX-11/780 INTERNAL DATA BUS

ID BUS

5-7

ID Bus chart showing what Modules are fed by what bits

Name
MODULE
Number Slot 0-7

ID Bus Bits
8-15 16-20 21-25 26-31

-----!-----------!---------!------- --------!------- -------!-------!
TRS M8237 1 X X !
-----!-----------!---------!------- --------!------- ------- _______ ,
SBL M8218 2 ! X X
-----!-----------!---------!------- --------!------- ------- -------
SBH M8219 3 ! X X X X
-----!-----------!---------·------- --------!------- ------- -------
CAM M8220 4 x
-----!-----------!--------- --------!------- -------
TBM M8222 6 x x x !
-----!-----------!--------- -------!--------!-------!------- -------!
IDP M8223 7 X X ! X ! X X
-----!-----------!--------- -------!--------!-------!------- -------!
IRC M8224 8 X ! X ! X ! X X
-----!-----------!~-------- -------!--------!-------!------- -------!
DEP M8226 10 x x x
-----!-----------!--------- -------!--------!-------!------- -------!
DDP M8 2 2 7 11 ! X ! ! !
-----!-----------!--------- -------!--------!-------!------- -------!
DCP M8228 12 X t !
-----!-----------!--------- ------- --------!-------!------- -------!
CEH M8230 14 x x x x
-----!-----------!--------- ------- --------!-------!-------!-------!
ICL M8231 15 x x
-----!-----------!--------- ________ , _______ -------!-------!
ocs M8233/8 18 x x x x ! x
-----!-----------!--------- ------- -------!-------!
wcs M8233/8 20 x x x x ! x
-----!-----------!--------- ------- -------!-------!
PCS M8234 22 x x x x ! x
-----!-----------!---------!------- -------- ------- -------!-------!
USC M8235 23 x x I

-----!-----------!---------!------- --------!------- -------!-------!
FMH M8286 25 ! ! X X X
-----!-----------!---------!------- --------!------- -------!-------!
FML M8287 26 ! X X ! ! !
-----!-----------!---------!------- --------!------- -------!-------!
CIB M8236 29 ! X X X X X
-----!-----------!---------!-------!--------!------- -------!-------!

5-8

ID Bus Parity bits chart showing who uses th·ese bits

The ID Bus has 4 parity bits ("Bus ID PTY <3:0>"), however, only one
board generates parity and only two others use these bits to check
the parity. The following chart show who these modules are that
generate (G) and use (U) these parity bits.

The
the
pin

Name
Module
Number Slot

------!----------!-------
TBM M8222 6
------!----------!-------
CAM ! M8220 ! 4
------!----------!-------
DBP M8225 9

"Bus ID PTY" bits
<O> I <l> ! <2> ! <3>

-----!-----!-----!
u u ! u ! !

-----!-----!-----!
! u

-----!-----!-----!
G G G G

------!----------!-------!----- -----!-----!-----!
Signal Pin and Row number ! CBl CMl ! ASl ! AU2 !
--------------------------!-----!-----!-----!-----!

ID Bus bits <31:00> Backplane Pin list

ID Bus bits go to the same pin row and pin number on each of
modules that they feed. The following chart shows the row and
number of each ID bus bit:

Bus ID bit <00> - CAl Bus ID Bit <16> - AF2
Bus ID bit <01> - CB2 Bus ID Bit <17> - AH2
Bus ID bit <02> - CEl Bus ID Bit <18> - AJl
Bus ID bit <03> - CE2 Bus ID Bit <19> - AMl
Bus ID bit <04> - CFl Bus ID Bit <20> - ANl
Bus ID bit <OS> - CF2 Bus ID Bit <21> - APl
Bus ID bit <06> - CH2 Bus ID Bit <22> - AP2
Bus ID bit <07> - CJl Bus ID Bit <23> - AS2
Bus ID bit <08> - CJ2 Bus ID Bit <24> - AT2
Bus ID bit <09> - CKl Bus ID Bit <25> - AUl
Bus ID bit <10> - CK2 Bus ID Bit <26> - BF2
Bus ID bit <11> - CM2 Bus ID Bit <27> - BH2
Bus ID bit <12> - DRl Bus ID Bit <28> - BJl
Bus ID bit <13> - DR2 Bus ID Bit <29> - BJ2
Bus ID bit <14> - DSl Bus ID Bit <30> - BKl
Bus ID bit <15> - DV2 Bus ID Bit <31> - BK2

5-9

S E C T I 0 N VI

U N IX ERR 0 R REPORTING

To be added in a later release.

S E C T I 0 N VII

Miscellaneous Information

Using EVSBA.EXE , the Diagnostic Autosizer.
*************************~*****************

EVSBA is an autosizing program that runs under the Diagnostic
Supervisor (ESSAA.EXE) in stand-alone mode. This program will
determine the current configuration of the VAX System. It sizes
the VAX system and builds a data base of Diagnostic Supervisor
ATTACH commands based on the hardware it found during the sizing
process. This ATTACH information can then be passed to the
Diagnostic Supervisor. The operator can cause the system to be
sized completely automatically or can perform the sizing operation
in MANUAL or SELFTEST mode. In MANUAL or SELFTEST mode, the operator
has the capability to change device names or other device parameters
before the information is passed to the Diagnostic Supervisor. If the
QUICK flag is set in the Diagnostic Supervisor, no check is made for
terminals on the DZll's, so the program runs very quickly.

The Autosizer program will probe the system buses to determine what
devices are connected to the system. Each bus requires a different
technique to determine which devices are present. On the SBI each
adapter has a type code in the configuration register which clearly
identifies the adapter type. Similiarly, each MASSBUS device contains
a register which uniquely identifies the device type. The UNIBUS is
the most complicated because of floating CSR and VECTOR assignments
in addition to fixed CSR's and VECTOR's. Each device optionally
requires extra information in order for a diagnostic to verify its
operation. The Autosizer will attempt, on a device by device basis,
to glean the required information from the device itself. This, of
course, assumes that the hardware involved is operating properly.
The information gathered by the sizing process can be edited by the
operator to fix any errors in sizing. It can then be fed to the
Diagnostic Supervisor. The information generated by the Autosizer
can be written to an ASCII script file on the Console Floppy.

The A~tosizer will size the system bus first to determine what adapters
are present. Next, each adapter is considered. Every device on the
adapter is probed and the information saved as to characteristics and
addresses. If a device has units connected to it, each unit is sized
and appropriate information is saved. If fields are required for the
ATTACH command and the information cannot be determined from the
device the Autosizer will use a predefined value for the field. When
this occurs, the operator will be notified that the field may be
incorrect for that device.

7-2

EVSBA Autosizer Default Mode Operation:

DS> SET FLAG QUICK
DS> RUN EVSBA

This will cause the Autosizer to size the hardware, pass the
information to the Diagnostic Supervisor, and exit back to the
Diagnostic Supervisor. No modification of the ATTACH commands
as generated by the Autosizer can be done.

EVSBA Autosizer MANUAL or SELFTEST Mode Operation:

In MANUAL or SELFTEST mode, the operator is immediately prompted with
"COMMAND?". The operator is given the option of reading the current
configuration file from the console floppy or of automatically sizing
the system. In either case, the operator is then given an opportunity
to change o~-list any device or paiameter. When sizing in the selftest
mode, each line is printed as it is produced. Once satisfied with the
configuration, the operator may have it passed directly to the
Diagnostic Supervisor. The file may also be written to the Console
Floppy.

An example of using the Autosizer whenever you are making configuration
changes, while isolating a problem, could be as follows:

>>> LOAD ESSAA.EXE/ST:FEOO
>>> START 10000
DS> SET QUICK
DS> RUN EVSBA/SEC:SELFTEST
COMMAND>SIZE
COMMAND> ATTACH
COMMAND> EX IT
DS>SELECT ALL

7-3

;Load the Diagnostic Supervisor.
;Start the Diagnostic Supervisor.
;Elimate "Terminal" autosizing.
;Run Autosizer in "SELFTEST" mode.
;Autosize the system and list.
;Transfer configuration to Diag.Super ..
;Return to Diag. Super ••
;Select attached devices.

EVSBA Autosizer Commands for MANUAL or SELFTEST Mode:

READ f ilespec - This command reads the specified file from the
load device and stores the information. If the
filename is not specified, "CONFIG.COM" is
used. Any information previously known to the
Autosizer is lost.

SIZE - Performs the process that sizes the buses and
records the configuration information. Any
information previously known to the Autosizer
is lost.

LIST device - Type out all information about the devices,
based on generic names.

HELP - Type out the help test.

WRITE filesp - Write the current file in memory to the Console
floppy. If no f ilespec is given, "CONFIG.COM"
will be used.

CHANGE devi~e-f ield-value

EXIT

ATTACH

- The specified field(s) for the specified device
are given the values specified.

- Control is returned to the Diagnostic Super ..

- For each device in the device database, pass
the information to the Diagnostic Supervisor.

7-4

S tandard P erformance E rror A nalysis R eporting
**

SPEAR is a library of five on-line Field Service maintenance functions.
Four of the functions (Analyze, Summarize, Retrieve, and Compute) are
designed to help you evaluate system performance and analyze the content
of system event files. The fifth function, Instruct, is designed to help
you learn to use the the Spear Library to calculate system availability
and isolate intermittent system failures.

RETRIEVE - extracts and translates (or saves) system event file
entries.

SUMMARIZE - summarizes the contents of system event files.

ANALYZE - attempts to localize the cause of intermittent system
failures.

COMPUTE - calculates system availability and crash and uptime
statistics.

INSTRUCT - explains how to use the extended Spear Library functions.

SPEAR was designed with ease of usage in mind. This is accomplished by
making help information available to each question.

At the SPEAR prompt, you can type:

1. "?" to list the supported Spear Library functions.

2. the "name" of the Spear Library function that you want to execute.

3. "/HELP" for an explanation of the universal Spear Library switches.

4. "@HELP" for information about response streams and indirect files.

5. "EXIT" to exit Spear and return to the operating system.

7-5

S P E A R

At any function prompt you can type:

/BREAK to return to the Spear prompt.

/REVERSE (or press the BACKSPACE key) to repeat the last prompt.

/SHOW to display the current prompt/responses list.

/GO to execute the current prompt/response list.

/CLEAR to clear listed items, at or subordinate to, the current prompt
Listed items are: sequence numbers, entry codes, device types, etc.

/? to display this list without the explanations.

Type @HELP for information about Response Streams and Indirect Files.
Press the RETURN key to specify the default or terminate a response.
Press the ESCAPE (or Altmode) key to: display the default, or complete
a partially typed response. There is no default at the SPEAR> prompt.

You can enter a response stream at the main Spear prompt. A response
stream is a single line of consecutive responses, separated by spaces,
and terminated with a carriage return (use the Escape or Altmode key to
insert defaults). Note: The response stream capability is included only
as a convenience for those S~ear users who do not wish to be prompted.

7-6

Possible
Input files SPEAR program

Possible
Output files

SYSTEM
EVENT
FILE

The
S P E A R

"Program

May be
sent to

your TTY:

REPORT
FILE

--------->! !---------->
ERRLOG.SYS. !Main purpose !All SPEAR

or is to ! command Always
ASCII
format

ERROR.SYS ! translate a
or non-ASCII

renamed ! Event file

! modes
!output some!
! type of !

.event file! to a
------------ ! readable, !

!ASCII format,!
!REPORT File.

HISTORY
file

Contains
sorted
Events.

Is a
Binary
File.

Can also be
used to

perform an
Can be
Sorted
and/or
Merged.

! analysis of !
!an EVENT file!

based upon
its known

!--------->! theories.

! May be Can compute
!used as an! OPERATING
!Event file! SYSTEM

input to !Availability.
SPEAR. ! !

----------- Contains Possible
Commands

are:
!AVAIL.SYS
! (TOPS-10)

&
!NOTIFY.SYS
!
! Used to
!calculate

CONTRACT
Coverage

&
Reload

info.

!--------->
Info. is

! updated
! by the
!Customer

System
Uptime
via

COMPUTE
command. and/or

Field
------------ Service

SUMMARIZE
RETRIEVE
INSTRUCT
ANALYZE
COMPUTE

KLSTAT
EXIT

@HELP
/HELP

?

7-7

report.

Possible
output HISTORY
from file
RETRIEVE.

Contains
sorted

----------> Events.

Is a
Binary
File

One of the! PACKET
OUTPUTS file

from
ANALYZE. Contains

sequence
---------->! #'s of

! Events.

ASCII
·! file

**
Example of How to initiate the SPEAR program !

on a VAX/VMS System.
**

Username: FIELD
Password:

Welcome to VAX/VMS version V3.0 on node NEDVAX

$ RUN SYS$SYSTEM:SPEAR
or

$ MCR SPEAR

Welcome to SPEAR for VMS, Version 1(35)
Type "?" for help.

SPEAR>

At this Point you may enter the appropiate SPEAR command. If you
don't know the commands, simply type "?" and a brief help file will be
typed out showing the ava"ilable commands to this prompt.

SPEAR> ?

Enter one of the following modes

Instruct in the usage of SPEAR
Retrieve individual event file entries
Analyze ? system event file
Compute system availability ststistits
Summarize various event counts
EXIT to exit from SPEAR (if at SPEAR> prompt)
For more info type /HELP

For further information type: HELP

SPEAR>

The commands to the SPEAR prompt can be abbreviated to one character as
follows:

Analyze A
Retrieve = R
Compute c
Summarize = s
Instruct I
Exit = E

7-8

Summary of QUESTIONS asked by SPEAR

SUMMARIZE question.

Event File (SYS$SYSDISK:[SYSERR]ERRLOG.SYS)
Time from (EARLIEST):
Time to (LATEST):
Report to (SUMMAR.RPT)
Type [er] to confirm (/GO):

RETRIEVE questions.

Event File (SYS$SYSDISK:[SYSERR]ERRLOG.SYS)
Selection to be (INCLUDED):
Selection type (ALL):

Error class (ALL):
Sequence numbers:
Event codes:
Next error class (FINISHED):

Time from (EARLIEST):
Time to (LATEST):
Output mode (ASCII):
Report format (SHORT):
Output to (RETRIE.RPT):
Type [er] to confirm (/GO):

ANALYZE questions.

Event File (SYS$SYSDISK:[SYSERR]ERRLOG.SYS)
Time. from (-1):
Time to (LATEST):
Report to (Amrndd.RPT):
Packets to (Ammdd.PAK):
Type [er] to confirm (/GO):

COMPUTE questions.

Event File (SYS$SYSDISK:[SYSERR]ERRLOG.SYS)
Report period (LAST-WEEK):
Availability report to (COMPUT.RPT):
Reload report to (RELOAD.RPT):
Type [er] to confirm (/GO):

7-9

Examining Unibus Registers

It is sometimes a pain in the neck to recalculate the SBI physical
address of Unibus Devices while trouble-shooting. Here is a method
of examining/depositing Unibus Device Registers that eliminates the
need to calculate the SBI physical address. Set up CONSOL.SYS as
follows:

>>> SET DEFAULT HEX
>>> SET REL:20100000
>>> SET DEFAULT OCTAL,WORD,PHYSICAL

Just in case not already set.
Set offset for UBA at TR #3.
Change defaults for exam/dep

Now you can examine/deposit Unibus Device registers by specifing the
Unibus Device Address. For example, to examine the LPll status reg.,
simply type the following to the CONSOL.SYS prompt:

>>> E 777514 (LPll)

LPll Diagnostic check under VMS

The Line Printer diagnostic must be run under VMS. In order to do
this, the Line Printer Queue must first be stopped,(if there is a
Line Printer queue on your particular system). The following commands
are used to stop the queue fer LPAO:. If you are testing another
printer, use the appropriate designation.

$ STOP/QUEUE/NEXT LPAO:
$ DELETE/QUEUE LPAO:
S RUN ESSAA
OS> @CONFIG
OS> RUN EVAAA

To Restore LPll queue

After the Line Printer diagnostic is run, you must now restart the
Line Printer Queue. Use the following commands:

$ INIT/QUEUE/FLAG LPAO:
$ START/QUEUE LPAO:

7-10

Defining and Starting Print queues (LPll)

The following commands can be used to initialize Print queues.
If you want to initialize a queue for a device other than "LPAO:",
simply replace "LPAO:" with the appropriate designation.

$ SET PRINTER/PAGE=64/LP11 LPAO:
$ SET DEVICE/SPOOL LPAO:
$ INIT/QUEUE/FLAG/GENERIC SYS$PRINT
$ INIT/QUEUE/FLAG LPAO:
$ START/QUEUE SYS$PRINT
$ START/QUEUE LPAO:

Defining and Starting Terminal queues (LA36)
**

The following commands can be used to initialize queues for
terminals:

$ INIT/QUEUE/TERM TTXY: (XY = Terminal name)
$ SET TERM/PERM/LA36/PAGE=66/NOBROADCAST TTXY:
$ SET DEVICE/SPOOLED=TTXY: TTXY:
$ START/QUEUE TTXY:

Bugcheck or Crash Restart
with message: "UNEXPECTED UNIBUS ADAPT. INTERRUPT"

**

RO thru R5 contain the following information:

RO =
Rl =
R2 =
R3
R4 =
R5 =

UBA CONFIGURATION REGISTER
UBA CONTROL REGISTER
UBA STATUS REGISTER
UBA DIAGNOSTIC CONTROL REGISTER
UBA FAILED MAP REGISTER
UBA FAILED UNIBUS ADDRESS REGISTER

7-11

Interleaving Memories

The following commands can be entered to CONSOL.SYS in order
to interleave two MS780 memories (memories must be at TR#l and
TR#2).

>>> D 20002000 101
>>> D 20002004 4000
>>> D 20004000 101
>>> D 20004004 4000

Booting with CACHE Disabled

The following commands can be entered to CONSOL.SYS in order to
boot the SYSTEM with CACHE Disabled:

>>> D/ID lD 18000
>>> D RO 0/N:5
>>> D Rl 8
>>> D FP 0
>>> D/I 11 20003800
>>> D SP 200
>>> L VMB.EXE/ST:200
>» D PC 200
>>> CONT

7-12

H7100 Power Regulator LED's

The following chart shows what the LED's on the front of the H7100
Power Regulators mean:

LED indicator

POWER NORMAL

PLUG IN REGULATOR FAILURE

OVER CURRENT

OVER VOLTAGE

POWER INVERTER FAILURE

OVER TEMP

7-13

Description

Power is O.K ••

Problem with one or more of the
following regulators:

+5
+5B or -5B
+12

+5v at 120 amps or more. (120% over).

+5v is +6.2v or greater.

Main +5v failure.

Internal Temperature at 150 degrees F
or more.

M8232, Clock Board, Jumpers

Wl thru Wl4

W23, W24

Wl5, Wl6

Wl7 thru W22

Wl5 thru W22

Installed when FP780 is installed.

Installed when Optional WCS is installed.
Optional WCS is in slot 18.

Installed to ENABLE FAIL/DEAD onto SBI if there
is a Power Failure.

Installed to ENABLE SBI Clock signals
onto SBI Bus.

REMOVED only when the associated CPU receives
its clock signals from another device on the
SBI, such as a second CPU.

7-14

LSI-11 Controls and Indicators

DC ON

RUN

DC ON/OFF

ENABLE/HALT

LTC ON/OFF

Illuninates when the DC ON/OFF toggle switch is
set to ON and proper DC output voltages are
being produced by the LSI power supply.
If either the +5v or +12v outputs from the LSI
are faulty, the DC ON indicator does not go on.

Illuminates when the LSI-11 processor is in the
run state (refer to ENABLE/HALT)

When set to ON, enables the DC outputs. The
DC ON indicator illuminates if the DC output
voltages are of proper values. When set to
OFF, the DC outputs are disabled and the DC ON
indicator is extinguished.

When set to ENABLE, the B HALT L line is not
asserted and the processor is in the run mode
(RUN indicator illuminated).
When set to HALT, the B HALT L line is asserted
allowing the processor to execute the console
ODT microcode (RUN indicator is extinguished).

When set to ON, enables the generation of the
Line Time Clock "BEVNT L" signal.

7-15

VAX-11/780 Controls and Indicators

AUTO RESTART

BOOT

ATTN

RUN

POWER

REMOTE

Key Switch

OFF

LOCAL DISABLE

LOCAL

REMOTE DISABLE

REMOTE

When in the ON (down) position, the VAX-11/780
CPU is restarted·automatically following a
Power' Recovery or Error Halt.

When pressed, the operation system is boot
strapped. When the bootstrap operation is
completed, the console is set to the "Program
I/O" mode of operation.

When lit, indicates that the VAX-11/780 CPU
is halted.

When lit, indicates that the VAX-11/780 CPU
is strobing interrupts (microcode running
properly).

When lit, indicates that the +5v power supply
is on.

When lit, indicates that remote access is
enabled.

In this position, the power is turned OFF.

In this position, Remote access is disabled
and Console I/0 mode is inhibited.

In this position, Remote access is disabled,
but Console I/0 mode is not inhibited.

In this position, Remote access is enabled and
Console I/O mode of operation is inhibited.

In this position, Remote access is enabled and
the Console I/O mode is not inhibited.

7-16

MS780/MA780 Error Correction Logic

The ECC (Error Correction Logic) within the MS780 and the MA780
can give you false indications in a couple of special cases.

1. If the MOS Array outputs an "ODD MULTIPLE number of BAD Bits"'
to the MOS DATA bus on a memory read, the Memory's Error
Correction logic·will send the DATA to the SBI as "Corrected
Read Data" (after making an attempt to correct a bit, which
may be a bit that wasn't even bad in the first place).

For example: If the MOS Array outputs a quadword with 3, 5, 7,
9, or etc. bad bits, the Error Correction Logic
will think that a Single Bit Error has occured,
will correct a bit (possibly not even one that
was really bad), and will then send the data to
the SBI as "Corrected Read Data".

2. If a "Single Bit Error" has occured and has not been serviced
before a "Double Bit Error" occurs in the same memory controller's
arrays, the registers will contain information about the "Single
Bit Error" and the information about the "Double Bit Error" will
be lost.

EVKAA.EXE

This diagnostic is a valuable diagnostic that should be run after
the running of the micro-diagnostics and before attempting to run
the "Diagnostic Supervisor". This diagnostic is a VAX macro functional
diagnostic and does not use the "Diagnostic Supervisor". Run this
program as follows:

>>> LOAD EVKAA.EXE/ST:O
>>> START 200

Sometimes, when restarting EVKAA, the "DS>" prompt will appear on the
Console Terminal. This is caused by the APT control flag, bit 31 of
physical location FEOO, being set. Clear this control flag and restart
EVKAA as follows:

DS> "P
>>> HALT
>>> D/L/P/H FEOO 0
>>> START 200

7-17

S E C T I 0 N VIII

NEXUS Register Bit Definitions

This chapter contains the definitions of the NEXUS registers as
defined by the individual NEXUS manuals. The purpose of this
chapter is to provide all the bit definitions in one place since
the VAX Maintenance guides do not include the definitions of the
NEXUS register bits. This information was copied from the various
VAX-11/780 NEXUS Hardware manuals and microfiche.

DW780 Configuration Register

CNF GR Offset = 000(16)

8-3

Bit 31, Parity Fault (PAR FLT)

Is set shen the UBA detects an SBI parity error.

Bit 30, Write Sequence Fault (WSQ FLT)

Is set when the UBA receives a write masked or interlock write masked
command and does not receive the expected write data in the following
cycle.

Bit 29, Unexpected Read Data Fault (URD FLT)

Is set when the UBA receives data for which a read masked, extended
read, or interlock read masked command has not been issued.

Bit 28, Interlock Sequence Fault (ISQ FLT)

Is set when an interlock write masked command to UNIBUS address space
is received by the UBA without a previous interlock read masked command.

Bit 27, Multiple Transmitter Fault (MXT FLT)

Is set when the UBA is transmitting on the SB! and the ID bits
transmitted by the UBA do not match those latched from the SBI. The
lack of correspondence indicates a multiple transmitter condition.

Bit 26, Transmit Fault (XMT FLT)

Is set if the USA was the transmitter dur~ng a detected fault
condition. When the software subsequently reads the configuration
and status registers of each of the nexus on the SBI in order to
identify the source of the fault, the USA will be identified as that
source if bit 26 is set.

Bit 25,24 Reserved

Should be cleared (zero).

Bit 23 Adaptor Power Down (AD PDN)

Is set when the USA power supply asserts ACLO. It is cleared by
writing a one to the bit location or when the Adaptor Power Up
bit is set.

8-4

Bit 22 Adaptor Power Up (AD PUP)

Is set by the negation of power supply ACLO. It is cleared by writing
a one to the bit location or by the setting of the Adaptor Power Down
bit.

Bits <21:19> Reserved

Should be cleared (zero).

Bit 18 Unibus Init Asserted (UB INIT)

The assertion of UNIBUS INIT will set this bit. It is cleared by the
setting of the Unibus Initialization Complete bit or by the writing
of a one to this bit location.

Bit 17 Unibus Power Down (UB PDN)

Is set when UNIBUS ACLO is asserted. It indicates that the Unibus has
initiated a power down sequence. The setting of the UBIC bit or
writing a one to this location will clear UB PDN.

Bit 16 Unibus Initialization Complete (UBIC)

Is set by a successful completion of a power up sequence on the UNIBUS.
It is the last of the status bits to be set during a UBA initialization
sequence, and it can be interpreted to mean that the UBA and the UNIBUS
are ready. The assertion of Unibus INIT, or the writing of a one to
this bit location will clear UBIC.

Bits <7:0> Adaptor Code

Bits 5 & 3 = 1
Bits 7,6,4 & 2 = 0
Bits <1:0> are determined by backplane jumpers and reflect the UBA

number. The adaptor codes indicate the starting address
of the Unibus address space associated with the UBA.

8-5

DW780 Control Register

UACR Offset = 004(16)

8-7

Bit 31 Reserved
-------------------~--

Should be cleared (zero).

Bits <30:26> Map Register Disable (4:0) (MOR)

This field of five read/write bits disables map registers in groups
of sixteen, according to the binary value contained in the field.
The MRD bits prevent the UBA from responding to a UNIBUS address that
points to a disabled map register. The software will load this field
with a binary value equal to the number of 4k word units of memory
attached to the UNIBUS. DMA transfers to addresses pointing to disabled
map registers are not recognized by the UBA. No error bits are set
and no SBI transfers are initiated. However, SBI access to disabled
map registers is permitted. The MRD field is initialized as zero,
with all map registers enabled. Note, however, that in the
initialized state the map registers are all invalid. False UNIBUS
transfers are prevented in this way.

Bits <25:07> Reserved

Should be cleared (zero).

Bit 5 Bus Request Interrupt Enable (BRIE)

When this bit is set it allows the UBA to pass interrupts from the
UNIBUS to the VAX CPU, providing that the IFS is set~ The power up
state of the BRIE bit is 0. The bit is also cleared by the Adaptor
!NIT, SBI UNJAM, and SBI DEAD signals.

Bit 4 UNIBUS to SBI Error Field Interrupt Enable (USEFIE)

This bit enables an interrupt request to the VAX CPU whenever any of
the following status register bits are set on a OMA transfer:

RDTO
RDS
CXTER
CXTMO
DPPE
IVMR
MRPF

Read Data Timeout
Read Data Substitute
Command Transmit Error
Command Transmit Timeout
Data Path Parity Error
Invalid Map Register
Map Register Parity Failure

The power up state of this bit (USEFIE) is 0. SBI UNJAM and Adaptor
INIT will clear USEFIE.

8-8

Bit 3 SBI to UNIBUS Error Field Interrupt Enable (SUEFIE)

If this bit is set, the UBA will generate interrupt requests to the
VAX CPU when one of the two bits in the SBI to UNIBUS data transfer
error field of the status register is set:

UBS TO
UBSSYNTO -

Unibus Select Timeout
Unibus Slave Sync Timeout

The power up state of the SUEFIE bit is 0. SBI UNJAM, SBI DEAD, and
Adaptor INIT will also clear this bit.

Bit 2 Configuration Interrupt Enable (CNFIE)

If this bit is set, the UBA will initiate an interrupt request to the
VAX CPU whenever any of the environmental status bits of the Config.
register is set. These bits are:

AD PDN
AD PUP
UB INIT -
UB PDN
UBIC

Adaptor Power Down
Adaptor Power Up
Unibus Init Asserted
Unibus Power Down
Unibus Initialization Complete

The power up state of the CNFIE bit is a 1. CNFIE is cleared by
Adaptor INIT, SBI UNJAM, and SBI DEAD.

Bit 1 UNIBUS Power Fail (UPF)

When set, it initiates a power fail sequence on the UNIBUS, asserting
ACLO, DCLO, and INIT in their proper sequence. The software uses this
bit to initialize the UNIBUS. The UNIBUS will remain powered down as
long as UPF is set. The clearing of the UPF bit will initiate a UNIBUS
power up sequence if or when the UNIBUS power down sequence has
finished and UNIBUS power is OK. Thus, the software can initialize
the UNIBUS by setting and the clearing the UPF bit.

Bit 0 Adaptor INIT (ADI NIT)

When this bit is set it will completely initialize the UBA and the
UNIBUS. The map registers, the data path registers, the status reg.,
and the control register will be cleared. The UBA will start the
initialization routine in the microsequencer, and it will generate a
power fail sequence on the UNIBUS. The UBA initialization sequence
takes only 500 microseconds to complete, while the UNIBUS power fail
sequence requires approximately 25 milleseconds.

8-9

Only the configuration register and the diagnostic control register
can be read during the adaptor initialization sequence. Only the
configuration register, the diagnostic control register, the control
register, and the status register can be written during the adapter
initialization sequence.

Once the sequence has been completed, all UBA registers can be
accessed. However, the UNIBUS cannot be accessed until the UNIBUS
initialization has been completed as well. The software can test
for this condition by reading the UBIC bit of the configuration
register, or by setting the CNFIE bit of the control register and
looking for the interrupt generated by the setting of the UBIC
bit. Note, however, that the assertion of either UNIBUS !NIT or
UNIBUS power down will also initiate an interrupt (UBINIT). The
Adaptor INIT bit can be set by writing a one to the bit location;
it is self clearing.

8-10

DW780 STATUS Register

USAR Offset = 008(16)

8-11

Bits <31:28>

Reserved and zero.

Bits <27:24> BR Receve Vector Register Full

Bit 27
Bit 26 =
Bit 25 =
Bit 24 =

BRRVR 7 Full
BRRVR 6 Full
BRRVR 5 Full
BRRVR 4 Full

These bits indicate the state of the SBI addressable BRRVR's. Each bit
is loaded into the corresponding BRRVR during a UNIBUS interrupt
transaction, providing that the SBI processor is fielding UNIBUS device
interrupts.

Each bit is cleared by the successful completion of a read data
transmission following a read BRRVR command. The software will see
these bits set only after a read data failure has occurred during the
execution of a read BRRVR command and the UNIBUS interrupt vector has
been saved by the UBA. These bits are cleared only by a subsequent
read to the corresponding BRRVR or by an adaptor initialization
sequence.

Bits <23:11>

Reserved and zero.

Bit 10 Read Data Time Out (RDTO)

The UBA sets the RDTO bit when the following contitions are true:

A UNIBUS device has initiated a DMA transfer.

The UBA has successfully transmitted a read command on the SBI.

The SBI memory has not returned the requested data within 100
microseconds, and the UNIBUS device has not timed out.

Note that the normal UNIBUS timeout is 10 microseconds and after
the 10 microseconds, the UNIBUS device will set its non-existent
memory bit.

8-12

Thus, the RDTO bit will be set in the UBA status register only if the
UNIBUS device timeout function is inoperative, or takes more than
100 microseconds to timeout. This bit is not set for a BDP to SBI
pref etch.

Bit 9 Read Data Substitute (RDS)

This bit is set if a read data substitute is received in response to
a UNIBUS to SBI read command (DMA read transfer). No data will be
sent to the UNIBUS device, and when the device timeout occurs it will
set the non-existent memory bit in the device's register.

Bit 8 Corrected Read Data (CRD)

The UBA sets this bit when it receives corrected read data in response
to an SBI read command during a DMA read transfero

Bit 7 Command Transmit Error (CXTER)

The UBA sets this bit when it receives an error confirmation in
response to an SBI command transmission during a UNIBUS to SBI access,
a BDP to SBI read, a BDP to SBI write, or a PURGE operation. This
bit is not set for a BDP to SBI prefetch.

Bit 6 Command Transmit Timeout (CXTMO)

The UBA sets this bit when it fails to complete an SBI command transfer
within 100 microseconds for any of the following operation:

a BDP to SBI write
a BDP purge operation
a BDP to SBI read operation for which the UNIBUS device has not
timed out

This bit is not set for a timeout for a EDP to SBI prefetch.

8-13

Bit 5 Data Path Parity Error (DPPE)

This bit is set when a parity error in a buffered data path occurs
during either a UNIBUS to BOP read, BOP to SBI write, or a BOP purge
operation.

Bit 4 Invalid Map Register (IVMR)

The UBA sets this bit during a UNIBUS OMA transfer or purge operation
when the UNIBUS address points to a map register that has not been
validated by the software and has not been disabled by the MRD bitse

Bit 3 Map Register Parity Failure (MRPF)

This bit is set with the occurrence of a map register parity error
during one of the following operations:

A UNIBUS access in which the UNIBUS address points to a map
register that has a parity error in the upper 16 bits, providing
that the map register has not been disabled by the MRD bits.

Mapping a UNIBUS address to an SBI address during a direct data
path to SBI operation or a BDP to SBI read operation (but not
during a prefetch).

Mapping an address from a buffered data path to an SBI address
during a purge operation or a BOP to SBI write.

Seven of the previously defined bits (RDTO, RDS, CXTER, CXTMO, DPPE,
IVMR, and MRPF) form an error locking field. If any of these bits is
set, the field is locked, thereby preventing the setting of other bits
within this field, until the bit indicating the error is cleared. The
failed map entry register (FMER) is also locked and unlocked with this
field. The setting of any of these bits will cause the UBA to initiate
an interrupt request if the interrupt enable bit for the UNIBUS to SBI
data transfer error field (USEFIE) in the control register is set.

Bit 2 Lost Error Bit (LEB)

The UBA sets this bit if the locking error field is locked and another
error within the field occurs. The lost error bit does not initiate
an interrupt request.

8-14

Bit 1 Unibus Select Time Out (UBSTO)

The UBA sets this bit if it cannot gain access to the UNIBUS within
50 microseconds in the execution of a software initiated transfer
(SBI to UNIBUS transfer). When UBSTO is set it indicates that the
UBA has issued NPR on the UNIBUS but has not become bus master. This
condition indicates the presence of a hardware problem on the UNIBUS.
The UNIBUS may be inoperative, or one device may be holding it for
extended periods of time. Note that if the UNIBUS does become
inoperative, it may be possible to clear the problem with the assertion
of UNJAM on the SBI, the setting and clearing of the UNIBUS POWER FAIL
bit (Control register bit 1) or the setting of ADAPTOR INIT (Control
register bit 0).

/

Bit 0 UNIBUS Slave Sync Time Out (UBSSYNTO)

This bit is set when an SBI to UNIBUS transfer (software initiated
transfer) times out during the data transfer cycle on the UNIBUS. The
timeout occurs after 12.8 microseconds. "UBSSYNTO" indicates a
transfer failure resulting when a non-existent memory or device on the
UNIBUS is addressed.

NOTE:
"UBSTO" and "UBSSYNTO" form an SBI to UNIBUS transfer error locking
field. They are set by the occurrence of the conditions mentioned
and cleared by writing a one to the bit location. The setting of
either bit will cause the UBA to make an interrupt request on the SBI
if the SBI to UNIBUS error interrupt enable bit (SUEFIE) is set. The
setting of either UBSTO or UBSSYNTO will lock the failed UNIBUS address
register (FUBAR), thus storing the high 16 bits of the UNIBUS address
identified with the failure. The FUBAR will remain locked until the
UBSTO and UBSSYNTO bits are cleared.

8-15

DW780 Diagnostic Control Register

DCR Offset = OOC(16)

8-17

Bit 31 SPARE

This read/write bit has no effect on any UBA operation. It can be set
by writing a zero to the bit location. SBI DEAD, Adaptor INIT, and a
power up sequence on the UBA will clear this bit.

Bit 30 Disable Interrupt (DINTR)

When it is set, this bit will prevent the UBA from recognizing
interrupts on the UNIBUS. It is useful in testing the response of
the UBA to the passive release condition during a UNIBUS interrupt
transaction. This bit is set by writing a one and cleared by writing
a zero to the bit location. SBI DEAD, Adaptor INIT, and the power
up sequence on the UBA will also clear DINTR.

Bit 29 Defeat Map Parity (DMP)

When it is set, this read/write bit will inhibit the parity bits of the
map registers from entering the map register parity checkers. The map
register parity generator/checkers generate and check parity on eight
bit quantities. Each parity field (eight data bits and one parity bit}
is implemented so that the total number of ones in the field is odd.

For example, if blts <7:0> of the map register equals zero or contain
an even number of ones then the parity bit equals one. However, if the
DMP bit is set, then the parity bit is disabled and the parity checkers
will see all zeros. This results in a map register parity failure.
Then if the DMP bit is cleared, the parity checkers will see correct
parity. Note, however, that if bits <7:0> of the map register contains
an odd number of ones, the generated parity bit will be zero. The
state of the DMP bit, therefore, will have no effect on the parity
result in this case.

When the integrity of the parity generator/checkers is to be tested,
the map register must contain data such that at least one of the bytes
contains and even number of ones. The DMP bit, when set, will disable
the parity bit, and the map register parity failure can be detected
during a OMA transfer. SBI DEAD, Adaptor INIT, and the power up
sequence on the adaptor will clear the DMP bit.

8-18

Bit 28 Defeat Data Path Parity (DDPP)

The DDPP bit functions in the same manner as the DMP bit. When it is
set, the DOPP bit will inhibit the parity bits of the data path RAM
from entering the parity checkers. The data path parity generator/
checkers generate and check parity on eight bit data units. Each
parity field (8 data bits and 1 parity bit) is implemented so that the
total number of ones in the field is odd. When the integrity of the
parity generator/checkers is to be tested through use of the DDPP bit,
a data path parity failure will result during a UNIBUS to BOP read,
a BOP to SBI write, or a purge operation. SBI DEAD, Adaptor INIT, and
the power up sequence on the UBA will clear the DOPP bit.

Bit 27 Microsequencer OK (MIC OK)

The MIC OK bit is a read only bit which indicates that the UBA micro
sequencer is in the idle state. The microsequencer will enter the idle
state after it has completed the initialization sequence or once it has
completed a UBA function.

The MIC OK bit can be used by the diagnostic to determine whether or
not the microsequencer has completed a successful power up sequence
and whether or not it is caught up in any loops. Note that SBI DEAD,
UBA power supply DCLO, and Adaptor INIT force the microsequencer into
the intitialization routine. Once the routine has been completed and
the microsequencer has entered the idle state, MIC OK will be true (1).

Bits <26:24>

Reserved and zero.

Bits <23:00>

These bits are the same as bits <23:00> of the Configuration Register.

8-19

DW780 Failed Map Entry Register

FMER Offset = 010. 018(16)

8-21

The FMER contains the map register number used for either DMA transfer
or a purge operation that has resulted in the setting of one of the
following error bits of the status register: IVMR, MRPF, DPPE, CXTMO,
CXTER, RDS, RDTO. This register is locked and unlocked with the UNIBUS
to SBI data transfer error field of the status register. The FMER is
a read only register. Attempts to write to the FMER will result in an
SBI error confirmation. When the FMER is not locked, its contents are
invalid. The software can read the FMER to obtain the map register
number associated with the failure. It can then read the contents of
the failing map register to determine the number of the data path that
failed.

Bits <31:09>

Reserved and zero.

Bits <08:00> Map Register Number (MRN)

These bits contain the binary value of the number of the map register
that was in use at the time of a failure. Bits <08:00> correspond to
bits <17:09> of the UNIBUS address.

8-22

DW780 Failed Unibus Address Register

FU BAR Offset = 014.0lC (16)

8-23

The FUBAR contains the upper 16 bits of the UNIBUS address translated from
an SBI address during a previous software intiated data transfer. The
occurrence of either "Unibus Select Time Out (UBSTO)" or "UNIBUS Slave
Sync Time Out (UBSSYNTO)" will lock the FUBAR. When the error bit is
cleared, the register will be unlocked.

The FUBAR is a read only register. Attempting to write to the register
will result in an error confirmation. No signals or conditions will clear
the register.

Bits <31:16>

Reserved and zero.

Bits <15:00> Failed Unibus Address Bits <17:00>

Bits <15:00> are the UNIBUS address bits <17:00>, respectively, of the
of the failing UNIBUS memory or device address.

8-24

DW780 Buffer Selection Verification Registers 0-3

BRVSR 0-3 Offsets 020-02C(16)

8-25

These four read/write do-nothing registers are provided to give the
diagnostic software a means of accessing and testing the integrity of
the data path RAM. Four locations in the data path RAM have been
assigned to these registers. Writing and reading the BRSVR's has no
effect on the behavior of the UBA. The BRVSR bit configuration is as
follows:

Bits <31:16> Bits <15:00>

Not used. Test Data bits.

8-26

DW780 BR Receive Vector Registers 4-7

BRRVR4-7 Offsets = 030-03C(16)

8-27

The UBA contains four BRRVRs: BRRVR7, BRRVR6, BRRVR5, and BRRVR4. Each
BRRVR corresponds to a UNIBUS interrupt bus request level: 7, 6, 5,& 4.
Each BRRVR is a read only register and will contain the interrupt
vector of the UNIBUS device interrupting at the corresponding BR level.
Each BRRVR is read by the software as part of the UBA interrupt service
routine. Note that the UBA interrupt service routine is the routine
to which the VAX CPU will transfer control once it has determined that
the UBA or the UNIBUS has issued an interrupt request to the SBI.

If the IFS and BRIE bits on the control register are set so that UNIBUS
interrupt requests are passed to the SBI, then the CPU responds with an
interrupt summary read command. The UBA sends its request sublevel as
an interrupt summary response. The software then invokes the UBA
interrupt service routine, initiating a read transfer to the
appropriate BRRVR. The UBA will assert the contents of the BRRVR on
the SBI as read data if the corresponding BRRVR full bit in the status
register is set. If the BRRVR full bit is not set, the read BRRVR
command causes the UBA to fetch the interrupt vector from the
interrupting UNIBUS device. The interrupt vector is loaded into the
BRRVR only at the successful completion of the UNIBUS transaction.
The UBA will then send the contents of the BRRVR to the SBI as read
data. Following this exchange, the UBA interrupt service routine will
use the contents of the BRRVR to branch to the appropriate UNIBUS
device service routine.

There are 5 types of adnormal completion conditions that may occur during
a UNIBUS to SBI interrupt sequence.

1. If the software attempts to read a BRRVR for which a BR interrupt line
is not asserted, and the BRRVR is not full, the zero vector (all zeros
data) will be sent as read data.

2. If the BR line causes an interrupt sequence to begin on the SBI but is
released before the interrupt summary read transfer (passive release),
then the interrupt summary response from the UBA will be zero.

3. If the BR line asserted by the interrupting UNIBUS device is released
after the interrupt summary read transfer but before the read BRRVR
(passive release), then zero will be sent as read data for the read
BRRVR command.

4. If the vector has been received from the interrupting device, but an
ACT confirmation is not received following the interrupt summary
response (read data transmission), then the BRRVR will not be cleared,
and the BRRVR full bit will remain set. Subsequent read commands
to the full BRRVR will cause the UBA to send the stored vector, but
the BRRVR will remain full until the UBA receives an ACK confirmation
for the read data. Note that the BRRVR full bits always reflect the
state of the BRRVRs.

5. If the IFS bit in the control register is cleared and the software
reads a BRRVR, then the zero vector will be sent as read data to the
SBI.

8-28

The contents of the BRRVRs are also used by the software to determine
whether or not the UBA itself has an interrupt pending. Bit 31 of the
BRRVR is the adaptor interrupt request indicator. Although the bit is
present in all four BRRVRs, it will be active only in the BRRVR
corresponding to the interrupt request level that has been assigned to
the UBA. If bit 31 is set when the software reads the BRRVR, then an
adaptor interrupt request is pending.

Bit 31 Adaptor Interrupt Request Indicator

0 = No UBA interrupt pending.
1 = UBA interrupt pending.

Bits <30:16>

Reserved and zero.

Bits <15:00> Device Interrupt Vector Field

These bits contain the device interrupt vector loaded by the UBA
from the UNIBUS during the UNIBUS interrupt transaction.

8-29

DW780 Data Path Register 0-15

DPR0-15 Offsets = 40- 7C(I 6)

8-31

The UBA contains 16 data path regist~rs (OPRO thru-OPR15), each of which
corresponds to one of the 16 data paths. The OPRs contain status info
relative to the buffered data paths and provide the means for purging and
initializing the BOPs at the completion of a UNIBUS block transfer for
OPl:OP15. OPRO corresponds to the OOP and is, therefore, always zero.

Bit 31 Buffer Not Empty (BNE)

Each ORP contains a data path status bit called Buffer Not Empty.

1 = Buffer Not Empty
0 = Buff er Empty

The BNE bit reflects the state of the associated BOP. If this bit is
set (1), the BOP contains valid data. If clear (0), then the BOP does
not contain valid data. The UBA uses the bit to determine the proper
action for OMA transfers via the BOP. If bit 31 is set as a OATI
transfer begins, the data in the BOP will be asserted to the UNIBUS.
If bit 31=0 on a OATI, the UBA will initiate a read transfer to the
SBI memory, gate the addressed data to the UNIBUS, and then load the
read data into the BOP, thereby setting bit 31.

For OMA write transfer via the associated BOP, the BNE bit is set each
time UNIBUS data is loaded into the BOP. The bit is then cleared when
the contents of the BOP are transferred to SBI memory.

The software will write a one to the BNE bit to initiate a purge
operation at the completion of a OMA transfer using the corresponding
buffered data path (BDP). The UBA executes purge operations as
follows:

1. Write Transfers To Memory - If any bytes of data remain in the
corresponding BOP (BNE is set), the UBA will transfer this data
to the SBI location addressed. The UBA will then initialize the
BOP and clear the BNE bit. If no data remains to be transferred
(BNE=O), the purge operation will be treated as a no-op.

2. Read Transfers To Memory - If any bytes of data remain in the BOP,
the UBA will initialize the BOP by clearing the BNE bit.

In addition, the following considerations apply to the purge operation:

For purge operations in which data is transferred to memory, the
SBI transfer takes about 2 microseconds. The UBA will not respond
to data path register read transfers during this period (a BUSY
confirmation is returned on attempted accesses) thereby preventing
a race condition when testing for the ENE bit.

A purge operation to data path register 0 (Direct Data Path) is
treated by the UBA as a no-op.

8-32

Bit 30 Buffer Transfer Error (BTE)

This is a read-write-one-to-clear bit. The UBA sets the BTE bit if a
failure occurs during a BOP to SBI write or purge, or for a buffer
parity failure during a UNIBUS to BOP read access. If bit 30=1, any
additional OMA transfers via the BOP will be aborted until the bit is
cleared by the software. Note that if a parity error on the UNIBUS
occurs during a OMA read, the UNIBUS PB signal will be asserted,
giving the UNIBUS device the opportunity to abort its own OMA transfer.
If the device does not abort its own transfer, the UBA will abort the
transfer on the next access. The purge operation does not clear the
BTE bit. The software clears this bit by writing a one to the bit.

Bit 29 Data Path Function (DPF)

The DPF is a read only bit. This bit indicates the function of the OMA
transfer using this data path.

Bits <28:24>

0 OMA Read
1 OMA Write

Not used.

Bits <23:16> Buffer State (BS)

These eight read only bits indicate the state of each of the eight byte
buffers of the associated BOP during a OMA write transfer. They are
included in the data path register for diagnostic purposes only. The
UBA generates the SBI mask bits from the BS bits during a BOP to SBI
write transfer or purge ~peration. The bits are set as each byte is
written from the UNIBUS. The bits are cleared during the SBI write
operation.

0 Empty
1 Full

8-33

Bits <15:00> Buffered Unibus Address (BUBA)

This portion of each DPR contains the upper 16 bits of the UNIBUS
address, UA<l7:02>, asserted during a UNIBUS to BDP write transfer
using the associated BDP. If the transfer through the associated
BDPs is in the byte offset mode, and the last UNIBUS transfer has
spilled over into the next quadword, then these bits contain
UA<l7:02>.

BUBA<l5:00> = Upper 16 bits of Unibus Address<l7:00> + Byte Offset

This is the UNIBUS address from which the SBI address will be mapped
during the purge operation.

8-34

DW780 Map Registers 0-495

MR0-495 (10) Offsets = 800-FBC(16)

8-35

The UBA contains 496(10) map registers, one for each UNIBUS memory page
address (a page of UNIBUS addresses= 512(10) bytes).

When a DMA transfer begins, the upper nine address bits asserted by the
UNIBUS device selects a MAP register. The UBA tests whether the MAP reg.
has been validated by the software, steers the transfer throught one of
the 16 data paths, determines whether or not the transfer will take place
in byte offset mode if a BDP has been selected, and maps the UNIBUS page
address to an SBI page address.

The map registers are numbered sequentially from 0 thru 495(10). There
is a 1-1 correspondence between each map register and the UNIBUS memory
page address. Each map register contains the information required to
effect the data transfer of the UNIBUS device addressing that page:

1. The fact that the software has loaded or not loaded the MAP
register (MAP registe Valid).

2. The number of the data path to be used by the transfer and, if a
BDP is used, whether it is in byte offset mode or not.

3. The SBI page to which the transfer will be mapped.

NOTE: For the rest of this description, "this UNIBUS page" refers to
"the UNIBUS memory page corresponding to this MAP register".

0 ~ ".),
UJ,, I... .J..I. Map Register Valid I',....,..,. .. \

\ Mrt VJ

0 Not Valid - initialized state
1 Valid

The MRV is set by the software to indicate that the contents of this
map register are valid. The MRV is tested each time that "this UNIBUS
page" is accessed. If the bit = 1, the transfer continues. If the
bit = 0, the UNIBUS transfer is aborted (non-existent memory error in
the UNIBUS device) and the invalid map register bit is set in the UBA
status register, providing that the map register has not been disabled
by the MRD bits of the control register.

The MRV bit can be set and cleared by software.

Bits <30:26> Unused

Reserved read/write bits.

8-36

Bit 25 Byte Offset Bit (BO)

This is a read/write bit. If set, and "this UNIBUS page" is using one
of the BDPs, and the transfer is to an SBI memory address, then the
UBA will perform a byte offset operation on the current UNIBUS data
transfer. The software can interpret this operation as increasing the
physical SBI memory address, mapped from the UNIBUS address, by 1 byte.
This allows word-aligned UNIBUS devices to transfer to odd byte memory
addresses.

UNIBUS transfers via the DDP or to SBI I/0 addresses will ignore
the byte offset bit.

This bit is cleared on initiaiization.

Bits <24:21> Data Path Designator Bits (DPDB)

0 Direct Data Path (DDP)
1-F Buffered Data Path 1 thru F respectively.

The DPDBs are read/write bits that are set and cleared by the software
to designate the data path that "this UNIBUS page" will be using.

The software can assign more than one UNIBUS transfer to the DDP. The
software must ensure that no more than one active UNIBUS transfer is
assigned to any BDP.

The DPDBs are cleared on initialization.

Bits <20:00> SBI Page Address [SPA<27:07>] (Page Frame Number)

The SPA bits contain the SBI page address to which "this UNIBUS page"
will be mapped. These bits perform the UNIBUS to SBI page address
translation. When an SBI transfer is initiated, the contents of
SPA<27:07> are concatenated with UNIBUS address bits UA<08:02> to
form the 28 bit SBI address.

8-37

RH780 Configuration/ Status Register

CSR Offset = 000(16)

8-39

The configuration/status register is a read/write MBA register that
contains fault status, interrupt status, adapter dependent status,
and adaptor code bits. ~

Bit 31 SBI Parity Error (PE)

Set when an SBI parity error is detected. Cleared by power up or
by the deassertion of the SBI FAULT signal. The setting of this bit
will cause SBI FAULT to be asserted for one cycle.

Bit 30 Write Data Sequence (WS)

Set when no write data is received (TAG lines not equal to "Write Data"
and ID lines do not contain ID of device that transmitted the command)
following a write command. Cleared by power up or the deassertion of
the SBI FAULT signal. The setting of this bit will cause SBI FAULT to
be asserted for one cycle.

Bit 29 Unexpected Read Data (URD)

Set when read data is received and was not expected (no read command
was transmitted by the MBA). Cleared by power up sequence or the
deassertion of SBI FAULT. The setting of this bit will cause SBI
FAULT to be asserted for one cycle.

Bit 28 Unused

Reserved for future use.

Bit 27 Multiple Transmitter Error (MT)

Set when the ID on the SBI does not agree with the ID transmitted
by the MBA while the MBA is transmitting data on the SBI. Cleared
by power up sequence or by the deassertion of SBI FAULT. The setting
of this bit will cause the SBI FAULT signal to be asserted for one
cycle starting at the normal confirmation time.

Bit 26 Transmit Fault (XMTFLT)

Set when the SBI FAULT is detected at the 2nd cycle after the MBA
transmits information onto the SBI. Cleared by the power up sequence
or by the deassertion of the SBI FAULT signal.

Bits <25:24> UNUSED

Read as all zeros. Reserved for future use.

8-40

Bit 23 Adapter Power Down (PD)

Set when the MBA power goes down. Cleared when power comes back up.
The setting of this bit will cause an interrupt to the VAX CPU if the
IE bit is set.

Bit 22 Adapter Power Up (PU)

Set when the MBA power comes up. Is cleared when the power goes down,
assertion of INIT, SBI UNJAM, DCLO or by writing a one to this bit.
The setting of this bit will cause an interrupt if the IE bit is set.

Bit 21 Over Temperature (OT)

Always zero.

Bits <20:08> Unused

Read as all zeros. Reserved for future use.

Bits <7:0> Adapter Code

Equal a hex 20 to signify an RH780 adapter.

8-41

RH780 Control Register

CR Offset = 004(16)

8-43

The MBA Control register is a read/write register that contains the control
bits: Interrupt Enable, Abort, and Initialize. This register is used to
put the RH780 into Maintenance Mode.

Bits <31:04> Unused

Read as all zeros. Reserved for future use.

Bit 3 Maintenance Mode (MM)

The setting of this bit will put the MBA in the maintenance mode, which
will allow the diagnostic software to exercise and examine the MASSBUS
operations without a MASSBUS device. When this bit is set, the MBA
will block MASSBUS RUN, MASSBUS DEMAND, and assert FAIL on the MASSBUS
so that all the devices on the MASSBUS will be logically detached.
This bit can only be set if a data transfer is not in progress.

Bit 2 Interrupt Enable (IE)

Allows the MBA to interrupt the VAX CPU when certain conditions occur.
Set by writing a one to the bit and by the power up sequence.
Cleared by writing a zero to the bit or by !NIT set to a one.

B ~~ ,
J.. ._ .J.. Abort Data Transfer (ABORT)

The setting of this bit will initiate the data transfer abort sequences
that will stop sending of commands and addresses, and stop the byte
counter. It will also negate MASSBUS RUN, assert MASSBUS EXC, wait for
MASSBUS EBL, and set ABORT to a 1 at the trailing edge of MASSBUS EBL.

Set by writing a one. Cleared by writing a zero, INIT set to one, or
by assertion of SBI UNJAM.

Bit 0 Initialize (INIT)

This bit is self-clearing. Always reads as zero. ·The setting of this
bit will:

1. Clear status bits in the MBA Configuration/Status register.
2. Clear ABORT and IE in the MBA Control register.
3. Clear the MBA Status register.
4. Clear the MBA Byte Count register.
5. Clear control and status bits of the diagnostic registers.
6. Cancel all pending commands except read data pending abort

data transfers.
7. Asserts MASSBUS INIT.

8-44

RH780 Status Register

SR Offset = 008(16)

8-45

The MBA Status register is a read/write register that contains MBA status
information such as error indications, timeouts, and busy indicators.
All interrupts will occur immediatedly if there isn't a data transfer in
progress. If a data transfer is in progress, the interrupt will be
postponed until the data transfer has terminated.

Bit 31 Data Transfer Busy (DTBUSY)

Read only. Set when a data transfer command is received. Cleared
when a data transfer is aborted.

Bit 30 No Response Confirmation (NRCONF)

Set when the MBA receives a no-response confirmation for the read
read command, or no-response confirmation for the write command
and the write data sent to the SBI. The setting of this bit will
cause retry of the command.

Cleared by writing a one to this bit or by INIT.

Bit 29 Corrected Read Data (CRD)

Set when corrected read data is received from memory. Cleared by
writing a one to this bit or INIT.

Bits <28:20> Unused

Read as all zeros. Reserved for future use.

Bit 19 Programming Error (PGE)

The setting of this bit will cause an interrupt to the VAX CPU if
the IE bit in the control register is set. Cleared by writing a one
to this bit. Set when one or more of the following conditions exists:

1. The program tries to initiate a data transfer when the MBA is
currently performing one.

2. The program tries to load MAP, VAR, or the BYTE COUNTer while
the MBA is performing a data transfer operation.

3. The program tries to set MBA maintenance mode during a data
transfer operation.

4. The program tries to initiate a nonacceptable data transfer
command.

8-46

Bit 18 Non-existent Drive (NED)

Set when a drive fails to assert MASSBUS TRA within 1.5 microseconds
after the MBA asserts MASSBUS DEM. The setting of this bit will send
zero read data back to the SBI, and interrupt the VAX CPU if the IE bit
is set in the MBA Control register. Cleared by writing a one to this
bit location. · .

Bit 17 Massbus Control Parity Error (MCPE)

Set when a MASSBUS Control Bus Parity error occurs. The setting of
this bit will cause an interrupt to the VAX CPU is the IE bit, in the
Control Register, is set. This bit is cleared by writing a 1 to it.

Bit 16 Attention from the Massbus (ATTN)

Set when the ATTeNtion line on the MASSBUS is asserted. The setting
of this bit will cause an interrupt to the VAX CPU if the IE bit, in
the Control Register, is set.

The ATTN line can be asserted due to any of the following conditions:

1. An error occurs while no data transfer is taking place (asserted
immediately).

2. Upon completion of a data transfer command if an error occured
during the data transfer (asserted at the end of the data
transfer).

3. Upon completion of a mechanical motion command (seek, recalibrate,
etc.} or a search command.

4. As a result of the Medium On Line (MOL} bit changing states (except
in the unload operation).- In the dual MBA configuration, a change
in state of MOL will cause the assertion of ATTN to both MBAs.

The ATTN bit in a drive can be cleared by the following actions:

l. Asserting MASSBUS INIT.
2. Writing a 1 into the Attention Summary Register (in the bit

position for the appropriate drive). This clears the ATA bit;
however, it does not clear the error.

3. Writing a valid command (with the GO bit asserted) into the control
and status register if no error occurs. Note that clearing the
ATA bit of one drive does not always cause the ATTN line to be
negated, because other drives may be asserting the line.

There are 3 cases in which ATA is not reset when a command is written
into the Control/Status register (with the GO bit set). These are as
follows:

1. If there is a CONTROL BUS PARITY ERROR in the write.
2. If an error was previously set.
3. If an ILLEGAL Function (ILF) code is written.

8-47

Bits <15:14> Reserved

Reserved for future use. Read as zeros.

Bit 13 Data Transfer Completed (DT COMP)

Set when the data transfer is completed. Cleared by writing a one
to this bit. The setting of this bit will cause an interrupt to the
VAX CPU if the IE bit, in the Control register, is set.

Bit 12 Data Transfer Aborted (DTABT)

Set with the trailing edge of Massbus EBL when the data transfer has
been aborted. Cleared by writing a one to this bit or by INIT.
The setting of this bit will cause an interrupt to the VAX CPU if the
IE bit, in the Control register, is set.

Bit 11 Data Late (DLT)

This bit i.s set:

1. for either a write check data transfer providing the data
buffer is empty when WCLK is sent to the MASSBUS.

2. for a read data transfer providing the data buffer is full
when SCLK is received from the MASSBUS.

The setting of this bit will cause the data transfer to be aborted.

Bit 10 Write Check Upper Error (WCK UP ERR)

This bit is set when a compare error is detected in the Upper byte
while the MBA is performing a write check operation. Cleared by
writing a 1 to this bit or by INIT. The setting of this bit will
cause the data transfer to be aborted.

Bit 09 Write Check Lower Error (WCK LWR ERR)

Set when a compare error is detected in the lower byte while the MBA
is performing a write check operation. Cleared by writing a 1 to
this bit or by INIT. The setting of this bit will cause the data
transfer to be aborted.

8-48

Bit 08 Missed Transfer Error (MXF)

Set when no OCC or SCLK is received within 50 microseconds after
Data Transfer Busy is set. Cleared by writing a 1 to this bit or
by INIT. The setting of this bit will cause. an interrupt to the VAX
CPU is the IE bit, in the Control register, is set.

Bit 07 Massbus Exception (MBEXE)

Set when EXC is received from the MASSBUS. Cleared by writing a 1 to
this bit or by INIT. The setting of this bit will cause the data
transfer to be aborted.

Bit 06 Massbus Data Parity Error (MOPE)

Set ·when a MASSBUS DATA PARITY Error is detected during a read data
transfer operation. Cleared by writing a 1 to this bit or by INIT.
The setting of this bit will cause the data transfer to be aborted.

Bit 05 Page Frame Map Parity Error (MAPPE)

Set when a parity error is detected on the data read from the map
during a data transfer. Cleared by wr1t1ng a 1 to this bit or by
INIT. The setting of this bit will cause the data transfer to be
aborted.

Bit 04 Invalid Map (INVMAP)

Set when the valid bit of the next page frame number is zero and the
byte counter is not zero. Cleared by writing a one to this bit or by
INIT. The setting of this bit will cause the data transfer to be
aborted.

Bit 03 Error Confirmation (ERR CONF)

Set when the MBA receives error confirmation for a read or write
command. Cleared by writing a one to this bit o_r by INIT. The
setting of this bit will cause the data transfer to be aborted.

8-49

Bit 02 Read Data Substitute (RDS)

Set when the SB! TAG of the of the read data received from memory is
Read Data Substitute (bad data). Cleared by writing a one to this bit
or by !NIT. the setting of this bit will cause the data transfer to
be aborted.

Bit 01 Interface Sequence Timeout (IS TIMEOUT)

Set when an interface timeout occurs. An interface sequence timeout
is defined as the time from when arbitration for the SB! is begun
until:

1. ACK is received for a command/address transfer that specifies
read.

2. ACK is received for a command/address transfer that specifies
a write and the corresponding write data transfer.

3. ERR confirmation is received for any command/address transfer.

The maximum timeout is. 102.4 microseconds. Cleared by writing a one to
this bit or by !NIT. The setting of this bit will cause the data
transfer to be aborted.

Bit 00 Read Data Timeout (RD TIMEOUT)

Set when a read data timeout occurs. A read data timeout is defined as
the time from when an interface sequence that specifies a read command
is completed to the time that the specified read data is returned to
the commander. The maximum timeout is 102.4 microseconds. Cleared by
writing a one to this bit or by INIT. The setting of this bit will
cause the data transfer to be aborted.

8-50

RH780 VIRTUAL ADDRESS Register

VAR Offset = OC(16)

8-51

Before a data transfer is initiated, the program must load an initial
virtual address (pointing to the first byte to be transfered) into
this register.

Bits <31:17> Reserved

Not used. Reserved for future use. Read as zeros.

Bits <16:09> Map Pointer

Selects one of the 256 MAP registers.

Bits <08:00> Physical Page Byte Address

Byte offset into the current page.

The contents of the selected MAP register and the value of Bits <08:00>
are used to assemble a physical SBI address to be sent to memory. Bits
<08:00> indicate the byte offset into the page of the current data byte.
The virtual address register may not be written into during a data
transfer. An attempt to do so will set PGE, but the virtual address
register will not be modified and the data transfer will continue.

The MBA virtual address register is incremented by eitht after every
memory read or write and will not point to the next byte to be transferred
if the transfer does not end on a quadword boundary (it will point eight
bytes ahead). When a write check error occurs, the virtual address
register will not point to the failing data in memory due to the
preloading of the silo data buffer. The virtual address of the bad data
may be found by determining the number of bytes actually transferred on
the MASSBUS (the difference between bits <31:16> of the Byte Count
Register and their initial value) and adding that difference to the
initial virtual address.

8-52

RH780 BYTE COUNT Register

BCR Offset = 10(16)

8-53

The program loads the 2's complement of the number of bytes for the data
transfer to bits <15:00> of this register. The RH780 hardware will load
these 16 bits into bits <31:16> and bits <15:00> of the Byte Count
register. Bits <31:16> serve as the byte counter for the number of bytes
transferred through the MASSBUS and bits <15:00> serve as the byte counter
for the number of bytes transferred through the SBI interface. The
starting byte count with 16 bits of zeros is the maximum number of bytes
of a data transfer. The byte count register may not be modified during a
data transfer. An attempt to do so will be ignored and the PGE bit will
be set.

Bits <31:16> Massbus Byte Counter

Data written to bits <15:00> is duplicated in these bits. This counter
is used to count the number of bytes transferred across the MASSBUS.

These bits are read only.

Bits <15:00> SBI Byte Counter

These bits form the SBI Byte counter. The purpose of this counter is
to count the number of bytes transferred across the SBI and to overflow
to zero to signal the completion of the transfer.

This counter is loaded, by the program, with the 2's complement of the
number of bytes to be transferred. The RH780 hardware duplicates what
is written to these bits, by the program, into bits <31:16>.

This counter is read/write.

8-54

RH780 DIAGNOSTIC Register

DR Offset = 14(16)

8-55

The diagnostic register is a read/write register that contains MBA
diagnostic information. This register allows diagnostics to be run
without any drives on the MASSBUS. The diagnostic register may not
be written unless the MBA is in the maintenance mode. An attempt to
write the diagnostic register when not in the maintenance mode will be
ignored. Caution should be exercised when reading this register in
the maintenance mode. The data path used to read bits <07:00> may
inject invalid data into the silo if the MBA has just read data
from memory. It is advisable to wait 20 microseconds from the initiation
of a transfer or the deassertion of SCLK before reading or modifying
this register.

Bit 31 I MD PG

Invert MASSBUS Data Parity generator.

Bit 30 IMCPG

Invert MASSBUS Control Parity generator.

Bit 29 IMAPP

Invert MAP Parity."

Bit 28 BLKSCOM

Block sending command to the SBI. During a data transfer, the setting
of this bit will eventually cause a DLT bit set and a DT ABORT.

Bit 27 SIMSCLK

Simulate MASSBUS SCLK. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS SCLK; writing a 0 to this bit
will simulate the deassertion of MASSBUS SCLK.

Bit 26 SIMEBL

Simulate MASSBUS EBL. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS EBL; writing a 0 to this bit
will simulate the deassertion of MASSBUS EBL.

Bit 25 SIMOCC

Simulate MASSBUS acc. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS OCC; writing a 0 to this bit
will simulate the deassertion of MASSBUS OCC.

8-56

Bit 24 SIMATTN

Simulate MASSBUS ATTN. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS ATTN; writing a 0 to this bit
will simulate the deassertion of MASSBUS ATTN.

B i t 2 3 MP IB SEL

Maintenance MASSBUS Data Input Buffer Select. When this bit is set to
a 1, the upper eight bits (B<l5:08>) of the MDIB will be sent out from
bits <07:00> of the Diagnostic register if the diagnostic register is
read. When the bit is 0, the lower eight bits (B<l5:08>) of the MDIB
wili be sent out from bits <07:00> of the Diagnostic register if it is
read.

Bits <22:21> Maint only

Read/write with no effect. Used to test the writability of these bits.

Bit 20 MFAIL

MASSBUS FAIL (read only)o MASSBUS FAIL is asserted when the MM bit is
set.

Bit 19 MRUN

MASSBUS RUN (read only).

Bit 18 MWCLK

MASSBUS WCLK (read only).

Bit 17 MEXC

MASSBUS EXC (read only)~

Bit 16 MCTOD

MASSBUS CTOD (read only).

Bits <15:13> MDS

MASSBUS Device Select (read only).

Bits <12:08> MRS

MASSBUS Register Select (read only).

Bits <07:00> U/L MDIB

Maintenance Upper/Lower MDIB.

8-57

RH780 SELECTED MAP Register

SMR Offset = 18

8-59

This register is read only and is valid only when DT BUSY is set. Reading
this registers gives you the contents of the MAP register pointed to by
bits <16:09> of the Virtual Address register.

The bit assignments for the MAP registers are as follows:

Bit 31 Valid

When set, indicates that the contents of bits <20:00> are valid.

Bits <30:21> Not used

Not used. Reserved for future use. Read as zeros.

Bits <20:00> Page Frame Number

Contains the Physical page frame number. These bits are used to
calculate the physical memory address to/from which the transfer
is to take place. These bits actually select only the PHYSICAL
SB! MEMORY PAGE that the transfer will be referencing.

Bit 9 = 1 and Bit 8 = 0.

The RH780 contains 256 MAP registers, each of which may be selected by
Virtual Address bits <07:00>. MAP registers can only be written when
there is no data transfer operation in progress. A write to a MAP reg.
while a data transfer is in progress will be ignored and cause the setting
of PGE and will cause an interrupt to the VAX CPU at the end of the
transfer if the IE bit is set.

8-60

RH780 COMMAND I ADDRESS Register

CAR Offset = 1A(l6)

8-61

This register is read only.

Valid only when DT BUSY is set.

It contains the value of bits <31:00> of the SBI during the
COMMAND/ADDRESS part of the RH780's next data transfer.

8-62

MS780-E Configuration Register "A"

CNFG-A Offset = 000 (16)

8-63

Bit <31>, SBI Parity Fault

A parity error was detected on the SBI.

Bit <30>, SBI Write Sequence Fault

Failure of a WRITE command to be followed immediately (in the next
sequential SBI cycle) by a Write Data Format.

Bit <29>, NOT USED

This bit not assigned.

Bit <28>, SBI Interlock Sequence Fault

An INTERLOCK WRITE command was not proceeded by an INTERLOCK
READ command.

Bit <27>, SBI Multiple Transmitter Fault

The "received ID" (received at SBI T3 time) is not the same as the
"transmitted ID" (transmitted at SBI TO time). The transmitted
ID is checked by comparing it with the ID that is read back at
SBI T3 time of the same cycle.

Bit <26>, Transmit Fault

This memory was the transmitter when the SBI error occured.

Bits <25:24>, NOT USED

·These bits are not assigned.

Bit <23>, Power Down

A power-down sequence is underway.

Bit <22>, Power Up

A power-up sequence is underway.

Bit <21>, NOT USED

This bit is not assigned.

8-64

Bit <20>, Error Summary

Set if any of the following bits are set:
1. Internal Parity Errors

a. Register-A Bit <19>
b. Register-A Bit <18>
c. Register-C Bit <07>

2. Misconfigure Warning
a. Register-A Bit <17>
b. Register-A Bit <16>
c. Register-A Bit <15>

3. Error Log Request
a. Register-C Bit <28>

Bit <19>, CNTR 1 Par Err

Read data from the UPPER controller to interface had a parity
error. Bad data is sent on the SBI, with corrected parity, and
the RDS mask (multiple bit error).

Bit <18>, CNTR 0 Par Err

Read data from the LOWER controller to interface had a parity
error. Bad data is sent on the SBI, with corrected parity, and
the RDS mask (muitiple bit error). ··

Bit <17>, Misconfigured

In INTERNAL Interleave mode, set by an unequal number of arrays
with each ~ontroller.

Bit <16>, CNTR 1 MISCNFG

Misconfiguration in the UPPER Controller's memory. Caused by one
of the following:

1. Illegal array arrangement
2. No Arrays
3. No Controller

Bit <15>, CNTR 0 MISCNFG

Misconfiguration in the LOWER Controller's memory. Caused by one
of the following:

l. Illegal array arrangement
2. No Arrays
3. No Controller

Bits <14:09>, Memory Size

Memory system capacity from 1 MegaByte (000000) to 64 MegaByte
(111111). Count is in Binary.

8-65

Bit <08>, INTLV Mode Write Enable

Permits a WRITE to bits <02:00> which establishes the INTERLEAVE MODE.

Bits <07:05>, Adapter Code

Fixed set of bits identifying the subsystem (NEXUS) as an MS780-E
memory subsystem. Bits read as "011" (from bit <07> to bit <05>).

Bits <04:03>, RAM type

Identifies the size of the RAMs on the arrays as follows:

4

0
0
1
1

Bits
3

0
1
0
1

Description

Misconf igured, No array Boards in backplane
64K RAMs (1 MegaByte Arrays)
256K RAMs (4 MegaByte Arrays)
Misconf igured, both array types in backplane

Bi ts <02: 00>, Interleave Mode

Identifies the Interleave Mode as follows:

0
0
0
0
1

Bits ,
.l.

0
1
0
1
0

I"\
u

0
0
1
1
0

Description

Non-interleaved LOWER controller
Non-interleaved UPPER controller
Externally interleaved LOWER controller
Externally interleaved UPPER controller
Internally interleaved

Bits <02:01> are set, on Power-Up, to interleave mode according to
the hardware configuration, i.e., appropriate to the number and
position of memory controllers present. Bit <00> must be written by
the Software.

8-66

MS780-E Configuration Register "B"

CNFG-B Offset = 004 (16)

8-67

Bits <31:28>, Not Used

These bits are not assigned.

Bits <27:19>, START ADDR

Specifies the starting address of the memory subsystem in
1 MegaByte increments.

Bits <18:15>, Not Used

These bits are not assigned.

Bit <14>, START ADR WR EN

Enables writing to bits <27:19>

Bits <13:12>, INIT and BATTERY Status

Indicates if memory is coming up from a COLD Start and is
initializing the memory, or if valid data is preserved in the
memory arrays as follows:

Bit
13 12 Description

0

0
1
1

0

1
0
1

Initialization in progress (memory written with O's
and BUSY is being sent to any SBI commands that may be
referencing this memory).
Memory contains Valid Data.
Invalid Combination
Initialization completed, NO VALID DATA in memory.

Bit <11>, Force DBUS Par Error

READ DATA from controllers to the SBI interface will have an error
and a read data substitute will be forced~

Bits <10:09>, Diagnostic Mode Select

There are three diagnostic modes that exercise various controller
functions and four data paths and their latches as follows:

Bit
10 09 Description

0
0

1
1

0
1

0
1

Normal Operation
Verifies check bit generation logic and controller
data path.
Verifies the ECC logic.
Verifies the check bit MOS RAMs.

8-68

Bit <08>, Refresh Lock

Prevents the memory controller from executing READ/WRITE cycles.

Bit <07>, Not Used

This bit is not assigned.

Bits <06:00>, Diagnostic ECC bits

Loaded with the substitute ECC bits in conjunction with the diagnostic
modes.

8-69

MS780-E Configuration Registers "C & D"

CNFG-C and CNFG-D Offset = 008(16) and OOC(16)

8-71

Bit <31>, Force Microsequencer Parity Error

Causes the wrong parity across the 56 PROM bits of the
microsequencer data field. Sets bit <07>.

Bit <30>, Inhibit CRD

Prevents single-bit errors from sending CRD with the read data
on the SBI. Error log requests (bit<28>) and CRD error bit <09>
will be set by a single-bit error.

Bit <29>, High Error Rate

Indicates a second error has been detected before the 1st was cleared.

Bit <28>, Error Log Request

Notification of an error on a memory read.

Bits <27:11>, Error Address

Specifies the memory address to the page level of the error. The
address format specified is as follows (VALID ONLY IF Bit <28>=1):

Controller Select
Array Select
Array Bank Select

<27>
<26:24>
<23:22>
<19:11>
<21:11>

RAM page address (64K RAMs)
RAM page address (256K RAMs)

Bit <10>, RDS Flag

Multiple-bit error detected.

Bit <09>, CRD Flag

Single-Bit error detected and corrected.

Bit <08>, Not Used

This bit is not assigned.

Bit <07>, Microsequencer Parity Error

A parity error was detected across the 56-bit PROM data word.

Bit <06:00>, Error Syndrome/ CHECK BITS

Stores 7-bit error syndrome or 7 check bits, depending on the
diagnostic mode set in Configuration Register-B.

8-72

MS780-E Configuration Registers "E & F"

REG-E & REG-F Offset = 010(16) and 014(16)

8-73

Registers E and F are the two data latches on the SBI interface module
(designated as data latches 1 and 2, respectively). After writing to
either or both of these registers, they may be read, causing the data
written to be sent back on the SBI through the SBI transceivers. Thus,
these registers allow a data wrap-around within the SBI interface module
only. No memory controllers have to be installed to execute this data
wrap-around process.

8-74

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	1-175
	1-176
	1-177
	1-178
	1-179
	1-180
	1-181
	1-182
	1-183
	1-184
	1-185
	1-186
	1-187
	1-188
	1-189
	1-190
	1-191
	1-192
	1-193
	1-194
	1-195
	1-196
	1-197
	1-198
	1-199
	1-200
	1-201
	1-202
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74

