et

teenfI A A £0) S g
o § i

£ SO A P
A A 6P AR T A AR R VISV TN SNl oW <3

9

2 AN

PR ROCE G oA A A L e
2 25 o e

DERL LR

AL SR A B MR

icr st R A

EK-DS780-TD-001

VAX-11/780 Diagnostic System
Technical Description

digital equipment corporation - maynard, massachusetts

First Edition, February 1979

Copyright © 1979 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.
Digital Equipment Corporation assumes no re-
sponsibility for any errors which may appear in
this manual.

Printed in US.A.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

8/84-15

CHAPTER 1

L I L] . L] L[] . [} * o . . * . (] . . e o L * o L]
WWOWWOVWWVWOVWWOVWOVWOVWYWWOUYWONNNNNNTaoO TS WN -

2 s b s e e s b e e b e e e e e e

CHAPTER 2

¢ ¢ & o e ¢ o o e o e ¢ o
WWWWWwWwwWwWw NN

NN DD DD NDN

.
N =

s ¢ o o o
N NN N
o o o
w N

* o o & o
. o
w N =

[]
WWwwwhoNhDND -

. o
W N =

WK -

¢
N -

. o o " o L[]
O~JO U WN

CONTENTS

INTRODUCTION

MANUAL SCOPE
DIAGNOSTIC SYSTEM CAPABILITIES
DIAGNOSTIC SYSTEM OVERVIEW
DIAGNOSTIC SYSTEM EXECUTION ENVIRONMENTS
CONSOLE DIAGNOSTICS
MICRODIAGNOSTIC PROGRAM
Console Adapter and Hardcore Division
Microtest Division
MICRODIAGNOSTIC PROGRAMS
Diagnostic Supervisor
Cluster Diagnostic Program
CPU Cluster Exerciser Package
RH78¢ (MBA) Diagnostic Program
DW78@ (UBA) Diagnostic Program
PERIPHERAL DIAGNOSTIC PROGRAMS
OPERATOR/VAX-11/780 COMMUNICATION
Console Terminal Modes
Console Panel Equivalent Functions
Program Control

Memory Element Display and Modification

Clock Control

Console Control Functions
Default Settings
Status Displays
Command Linking and Repeating
Real-Time Delays

CONSOLE PROGRAM AND CONTROL DESCRIPTION

CONSOLE PROGRAM OVERVIEW
Command Getter
Parser and Parser Tables
Command Executor Module
Additional Services
COMMAND TERMS AND SYMBOLS
Notation Examples
Command Abbreviations
CONSOLE COMMAND DESCRIPTIONS
Boot Command (B)
Clear Command (CL)
Continue Command (C)
Deposit Command (D)
Enable DX1: Command
Examine Command (E)
Halt Command (H)
Help Command (HE)

1ii

Page

e
I

NDNNNDNNDNNDNNNODNDNDNDNDNDNONNDN
|
OO JAHAUTUL UL BDDWNNF

[N I I R e e e e e el ol S S Vo)
HWNhHFOUONOTULTDWNDH®R

o e 6 e o o 6 8 e o 6 o o s »
PWWWWwwuwwwwwwwwww
® o o o e o e e e e o s o o

NN DD DD DD N

HHEFOWOWOOONNNNNNNNNNNNNNNgOOL

S e

W00 0o A ~JOYUN > WN -

. L] [] -
L] [] L]
N -
[] [] .
B WA

DN NN NN DD NN NN

2.11.1
2.12
2.13
2.14
2.15
2.15.1
2.15.2

CONTENTS (Cont)

Initialize Command (I)
LINK Command (LI)
Load Command (LO)
Perform Command (P)
Quad Clear Command (Q)
Reboot Command (REB)
Repeat Command (R)
Set Command (SE)
Show Command (SH)
Start Command (S)
Next Command (N)
Test Command (T)
Unjam Command (U)
Wait Command (WA)
Indirect (@) Command
WCS Command (W)
COMMANDS PERFORMED WITH THE
VAX-11/780 CPU RUNNING
COMMENTS WITHIN COMMANDS
CONTROL CHARACTERS AND SPECIAL CHARACTERS
COMMAND QUALIFIERS AND DEFAULTS
Address Type Qualifiers
Address Type Defaults
Data Length Qualifiers
Data Length Defaults
Qualifiers for RADIX
Defaults for RADIX
Local Radix Override
Default Address Facility
Specifying Default Address in a Command
Last Address Notation
Preceding Address Notation
Use of Last Data as an Address Argument
NEXT Qualifier
COMMAND REPEAT FACILITY
Repeating Commands
COMMAND LINK FACILITY
Link Facility Operation
Link Facility Usage
CONSOLE MODE CHANGE
VMS COMMUNICATION WITH CONSOLE FLOPPY DISK
Floppy Function Protocol
MISCELLANEOUS CONSOLE COMMUNICATIONS
COMMUNICATION REGISTER FORMATS AND SELECT CODES
FLOPPY STATUS BYTE DEFINITION
REMOTE CONSOLE ACCESS COMMAND SET
Enable Talk Mode Command
Enable/Disable Echo Command

v

0
[\
| «Q
(1]

I
NSO OO0

DN
|

NN
i
=

¢ 6 ¢ 0 0 e 8 e 0 & 0 0 6 6 s e % & 8 & & 4 0 0 0 0 . s 0 s
¢ o o s b ® o o o ® o s o 0 * o o o ¢« e e o« e e
N s WN OO~ wh - =W N w N~ w N+

WWWWwWwWwWwwWwWwwWwWwwwWwwwwWwWwwwwwwwuwwwww ww
SO oo uvutiuununuunuuuea BB BLWWWWND NN D

CONTENTS (Cont)

Enable/Disable Local Copy Command

Enable Local Control Command

Enable/Disable Carrier Error Command

Enable/Disable Local Floppy Command
CONSOLE ERROR MESSAGES

Syntactic Error Messages

Command Generated Error Messages

Microroutine Error Messages

CPU Fault Generated Error Messages

RX@1 Error Messages

Miscellaneous Error Messages

DIAGNOSTIC SUPERVISOR AND CONTROL

SUPERVISOR STRUCTURE OVERVIEW
CLI FUNCTIONAL MODULE DESCRIPTION
Image Loader Module
Test Sequence Control Module
Script Processor Module
PGI FUNCTIONAL MODULE DESCRIPTION
Memory Management and Adapter Services
Operator Terminal Services
System Error Handling
SUPERVISOR COMMAND DESCRIPTIONS
Command Terms and Symbols
Command Description Segments
Command Abbreviations
Command Overview
SEQUENCE CONTROL COMMANDS
Load Command
Start Command
Restart Command
Run Command
Control Characters and Special Characters
Continue Command
Summary Command
Abort Command
Submit Command
EXECUTION CONTROL COMMANDS
Set Control Flag Command
Clear Control Flag Command
Set Control Flag Default Command
Show Control Flags Command
Set Event Flags Command
Clear Event Flags Command
Show Event Flags Command

Page

2-32
2-32
2-32
2-33
2-33
2-33
2-33
2-34
2-35
2-35
2-36

Wwwww

1l wwwWuwwuwWwWwuwWwWwuwWwwwuwwuwwuww
[l el R T T TN T N TR JRE TR N A B B

NS [VNOVOWOOO0OOIIANNO B BB D W WWWW

3-12
3-13
3-13
3-13
3-13

L I * 0 []
NN NN NN

WwWwwwwww

CHAPTER 4

g [O O N O S N O N O N O NG S N N S Y O O . SO O QY S SO O SO SO SN O NI S
L) [] . (] . L] . [] . .

% WOWOVWWWOVOWOWOOMNINIIJAOAAOAAAAAAAUNTUTE BB WN -

w3

=

o]

wn

(00, 0,
e o
WN -

NOY b W N

. o o o o . .

I e T

" e e ¢ o o o ¢« o o .
N b wWN -

—_ N

w N

Sw N

AUV WN

CONTENTS (Cont)

DEBUG AND UTILITY COMMANDS
Set Base Command
Set Breakpoint Command
Clear Breakpoint Command
Show Breakpoints Command
Set Default Command
Examine Command
Deposit Command

MICRODIAGNOSTIC DESCRIPTION

MICRODIAGNOSTIC PROGRAM OVERVIEW
BASIC PROGRAM EXECUTION
BASIC TEST STRATEGY
HARDCORE TEST DESCRIPTION
Hardcore Test Structure
Pseudo Instruction Description
MICROTEST DESCRIPTION
Microtest Structure
MICRODIAGNOSTIC MONITOR CONTROLS
Monitor Control Examples
HD/HI Flags
Loop on Error Flag (LOOP)
No Error Report Flag (NER)
Bell on Error Flag (BELL)
Continue Command (CONT)
Error Abort Flag (ERABT)
MICRODIAGNOSTIC RELATED ERROR MESSAGES
Syntax Error Messages
System Error Messages
Go Chain Monitor Error Messages

PROGRAM LISTING AND ERROR MESSAGE DESCRIPTIONS

Monitor Listing Descriptions
Hardcore Listing Description
Microtest Listing Description
Microdiagnostic Execution
Error Message Format

LISTING/ERROR MESSAGE CORRELATION
No Error Message Situation
Hardcore Loop and Single Step Setup
Microtest Scope Loop Setup
Microtest Single Bus Steps Setup

MACRODIAGNOSTIC PROGRAM DESCRIPTIONS
DEFINITION OF TERMS

OVERVIEW OF THE MACRODIAGNOSTIC PROGRAM
MACRODIAGNOSTIC PROGRAM LISTING DESCRIPTION

Vi

Page

3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-15

i
B OYUT BN

(S0,]
.
(S

Ut »n
.
N =

v »n
.

(S, N8, NV,
« o o
~N oy Oy
o o
N =

wn u
. .
[o0) N
o . o o
N - N =

(S, X8,]
o o
0 0

CHAPTER 6

e o o o o o
e o o o o o o

N OO WN -
e o o o o o

HO oo d W+

=

[«)Xo)W) Ne) i) WerJe2Ne) Wer We)W e) Ne)W) Weo W) We) W) We) W o) W e)Y

S O Oy

¢ o o

w ww WwhpNhND DD DNDNDMDNDNDMNDNDDNDDNDNDDND R
« e .

NN =

o o

N =

.

CONTENTS (Cont)

DIAGNOSTIC PROGRAM AND SUPERVISION INTERACTION
ANALYSIS OF A SAMPLE TEST: RH784 (MBA)
TEST 3, SUBTEST 1
Listing Column Format Description
Analysis of Typical Lines
RH78¢ (MBA) DIAGNOSTIC SAMPLE SUBTEST
(Direct 1/0)
RH780 Diagnostic Detailed Flow
RH780@ Diagnostic Sample Error Message
RP@X/DCL REPAIR DIAGNOSTIC (DIRECT I/0),
SAMPLE SUBTEST
Detailed Flow
RP@X/DCL Repair Diagnostic Sample Error
Message
DISK RELIABILITY DIAGNOSTIC (QUEUE I/O)
SAMPLE SUBTEST
Detailed Flow
Disk Reliability Diagnostic Sample Error
Message

CPU CLUSTER EXERCISER PACKAGE

CONTROL MODULE
COMMON INSTRUCTION TEST SERVICES MODULE (CITS)
CITS_DECODE
CITS SETUP
CITS_EXECUTE
CITS CHECK
CITS_SUBTEST
CITS Error Messages
Message Heading
CITS Subtest Troubleshooting Features
Unexpected Exceptions in CITS
Results Register Errors
Leading or Trailing Background Errors
Data Errors
PSL Errors
Branch Errors
Expected Exception or Trace Traps Errors
Extended Printout
How to NO-OP a Test Case
ESKAX DESCRIPTION
Compatibility Mode Entry/Exit Module
(ESKAX@2, Test 1)
First Part Done Test (ESKAX@4, Test 2)
Possible First Part Done Failures
First Part Done Test Procedures

vii

Page

[[
VNV OONIIJINANADAAN NO

[l W Ne)W)l We)Ne) We) e o) Wop We))
I

|
-

[o) W) Mo We) Wo We)}
|

b

B ww N

6-15
6-17

6-17
6-25
6-25
6-25

L] .
e o .
e 0 .

WWwwwwwww

. o
[S S P wWwwWwwwwww
. o
« o
NSOy WK

.

N =
L]
N

(o)) ()W) W) [)N)N W) Wo el Weo W) N6,

N

. .
= o
. .
> w

[e)] [e)We)e)) o)}
. « o e .
1= DD o
. ¢ o .
e} [ooJEN le)) ($5]

[e) 3K)}
.
(G210,]
L]
ot

.
.

L] . []
L] .
[Ep -
. . .
W N

[)] (o) We) W W)
L]
N

.
[e) W) [N, 0, 0]

[e)Ne))
* e

[e))

> W

APPENDIX A

CONTENTS (Cont)

SBI Verification Module (ESKAX@S5, Test 3)
SBI Checkout Subtest
UBA Checkout Subtest
MBA Checkout Subtest
SBI Interaction Subtest
UBE Checkout Subtest
MBE Checkout Subtest
Memory Verify (ESKAX@6, Test 4)
ESKAY
Internal Timer and Day Clock Verification
Module (ESKAY@2, Test 1)
Interval Timer Functions
Day Clock Function
Arithmetic, Logic, and Field Instruction
Test Module (ESKAY@3, Test 2)
Branch, CRC, and Queue Test Module
(ESKAY@4, Test 3)
Floating-Point Instruction Test Module
(ESKAY@5, Test 4; ESKAY@6, Test 5)
Operand Specifier Dependent Floating-Point
Test (ESKAY@7, Test 6)
Decimal Strings Module (ESKAY@8, Test 7)
EDITPC Operators Module (ESKAY@G9, Test 8)
Character String Instructions Test Module
(ESKAY1@, Test 9)
Privileged Instruction Exception Test
(ESKAY1l1l, Test 1)
ESKAZ DESCRIPTION
Memory Management Test Module (ESKAZ@3,
Test 1)
Memory Management Test, General Flow
Memory Management Test, Subsection Flow
Test Reference Execution
COMPATIBILITY MODE INSTRUCTION TEST
(ESKAZ@3, TEST 2)
Instructions Tested
Compatibility Mode Test Error Message
Format
Sample Error Message Explanation
Compatibility Mode Instruction Module
Assumptions

GLOSSARY OF DIAGNOSTIC SOFTWARE TERMS

viii

Page

6-32
6-33
6-35
6-35
6-36
6-36
6-37
6-39
6-49

6-40
6-40
6-44
6-46
6-50
6-50
6-57
6-57
6-57
6-60

6-60
6-60

6-60
6-62
6-62
6-62

6-70
6-70

6-72
6-73

Figure No.

e
!
w N =

o
I [
N oy U

|

|
HH R RO B WN N -

G D D DD DS D DD W N
|

|
N

FIGURES

Title

Diagnostic Program Mode, Environment and Levels
VAX-11/780 Diagnostic System Program Hierarchy
VAX-11/780 Diagnostic System, Execution
Environments

Monitor Relationships and Test Sequencing
Hardcore Monitor Residency/Test Flow
Microtest Monitor Residency/Test Flow
Functions of the Diagnostic Supervisor
Environments

Communication Register Formats and Select Codes
Floppy Status Bit Assignments

Basic Diagnostic Supervisor Structure

LSI-11 Memory Program Residency

Simplified Microdiagnostic Test Procedure
Hardcore Test Sequence

Microtest Structure

Monitor Listing Sample

Hardcore Listing Sample

Microtest Listing Sample

Typical Error-Free Terminal Output

Error Message Format

Listing Indexing Example

Loop and Single Example

Microtest Scope Loop Example

Microtest Single Bus Example

Portion of the Program Section Synopsis,
RH78¢ (MBA) Diagnostic Program

Portion of the Global Symbol Table for the
Absolute PSECT of the Loader File of the RH780
(MBA) Diagnostic Program

Diagnostic Program and Diagnostic Supervisor
Interaction

RH78@ (MBA) Diagnostic Program Test 3,
Subtest 1, Listing

RH784 (MBA) Diagnostic Program Test 3,
Subtest 1, Flowchart

DSSBGNSUB Listed in the Symbol Table in the
ESCAA Link Map

DSSBGNSUB Listed in the Symbol Table in the
Supervisor Link Map

DS$BGNSUB Entry Point

RBGNSUB Listed in the Symbol Table in the
Diagnostic Supervisor Link Map

ESRCA Sample Error Listing

ESRCA RP@X/DCL Test 1, Subtest @, Program
Listing

ESRCA RP@X/DCL Repair Diagnostic Test 1,
Subtest @, Flowchart

ix

Page

Figure No.

5-13
5-14

Table No.

DWW WW NN NDNDNDND N
i
HN®WNFEOONOYUTDdWN -

<)}
| |
w N

[}) We) W) Ne) W) Ne) N
|
HOoNOU N

[\

FIGURES (Cont)

Title

ESRCA Sample Error Message

Disk Reliability (ESRAA) Test 1, Subtest 4,
Error 12 Listing

ESRAA Test 1, Subtest @, Error 12 Flowchart
I/0 Status Block Contents (for disks)
CHECKBLOCK Routine Code

GETBBFSECTOR Routine Code

ESRAA Sample Error Listing

CPU Cluster Exerciser Package Memory Allocation
Execution of a Test Case in ESKAY#3
Compatibility Mode Instruction Module Subtest
Structure

TABLES

Title

VAX-11/780 System Manuals

Term and Symbol Definition

Deposit Symbolic Addresses

Examine Symbolic Address

Load Command Qualifiers

Set Default Command Options

Set Step Command Options

Control/Special Character Descriptions
Memory Management Error Code Definitions
RX@01 Error Message Code Definitions

Term and Symbol Definitions
Control/Special Character Descriptions
Control Flag Descriptions

Qualifier Descriptions

Instruction Symbol/Abbreviation Definitions
Microdiagnostic Command/Flag Descriptions
Summary Parameter, Length Parameter for
Vector 4

Information Pushed on the Stack by the
Exception Handler

Reserved Operand Faults and PSL Bit Settings on
Compatibility Mode Entry

Compatibility Mode Trap Instructions
Compatibility Mode Reserved Instructions
Page Faulting with First Part Done

First Part Done Test Table Entries

First Part Done IDB Format

First Part Done TCB General Format

First Part Done TCB Passed to CITS DECODE

Page
5-23

5-24
5-25
5-28
5-30
5-31
5-32

0
]
Q
o

NN NN
|

NN NN
|
| WW |
SV ULMPOFROIANAN -

1S w W
o w W
e B

~J

()}
|
w

6-17
6-18
6-19
6-26
6-27
6-27
6-27
6-28

TABLES (Cont)

Table No. Title Page
6-11 Unibus Adapter Map Register Address Offsets 6-39
6-12 Compatibility Mode Instructions Provided by

Compatibility Mode Hardware and Exercised by

ESKAZ Test 2 6-71
6-13 Compatibility Mode Instructions Not Yet Tested 6-71

EXAMPLES

Example No. Title Page
6-1 Unexpected Exception Error Message 6-3
6-2 Unexpected Exception in CITS, Error Message 6-8
6-3 Result Register Errors 6-10
6-4 CITS Detects a Longword Data Error 6-11
6-5 CITS Detects a Quadword Data Error 6-11
6-6 CITS Detects a String Data Error 6-12
6-7 PSL Error 6-12
6-8 Branch Error 6-13
6-9 Expected Exception Error 6-13
6-10 Trace Trap Error 6-14
6-11 Extended Printout 6-14
6-12 Case 1#5 SUBD2 Instruction 6-16
6-13 ESKAX Test 1, Subtest 1, Error 2 6-18
6-14 ESKAX Test 1, Subtest 1, Error 2 6-18
6-15 ESKAX Test 1, Subtest 2, Error 3 6-19
6-16 ESKAX Test 1, Subtest 2, Error 3 6-20
6-17 ESKAX Test 1, Subtest 2, Error 3 6-20
6-18 ESKAX Test 1, Subtest 3, Error 4 6-21
6-19 ESKAX Test 1, Subtest 4, Error 3 6-21
6-20 ESKAX Test 1, Subtest 4, Error 3 6-22
6-21 ESKAX Test 1, Subtest 5, Error 4 6-22
6-22 ESKAX Test 1, Subtest 5, Error 4 6-22
6-23 ESKAX Test 1, Subtest 6, Error 3 6-23
6-24 ESKAX Test 1, Subtest 6, Error 3 6-23
6-25 ESKAX Test 2, Subtest @, Error 212 6-28
6-26 ESKAX Test 2, Subtest 6, Error 213 6-30
6-27 ESKAX Test 2, Subtest @, Error 207 6-32
6-28 ESKAY Test 3, Subtest 2, Error 10 6-38
6-29 ESKAX Test 3, Subtest 3, Error 4 6-38
6-30 ESKAX Test 3, Subtest 3, Error 4 6-38
6-31 ESKAY Test 1, Subtest 1, Error 2 6-40
6-32 ESKAY Test 1, Subtest 2, Error 1 6-40
6~-33 ESKAY Test 1, Subtest 2, Error 2 6-40
6-34 ESKAY Test 1, Subtest 3, Error 2 6-41
6-35 ESKAY Test 1, Subtest 4, Error 1 6-41
6-36 ESKAY Test 1, Subtest 5, Error 1 6-42
6-37 ESKAY Test 1, Subtest 5, Error 1 6-42

xi

Example No.

6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59

Title

ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAY
ESKAZ
ESKAZ
ESKAZ

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

EXAMPLES

Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest
Subtest

(Cont)

Compatibility Mode

Xii

Error
Error
Error
Error
Error
Error 2
Error 1
Error 1
Error 1
Error 31
Error 1
Error 2
Error 7
Error 24
Error 7
Error 190
Error 101
Error 26
Error 48
Error 26212
Error 20213
Test Error

HNWN -

Page

6-43
6-43
6-43
6-44
6-44
6-44
6-45
6-45
6-46
6-47
6-49
6-51
6-52
6-53
6-55
6-56
6-56
6-58
6-59
6-64
6-65
6-73

CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE

This manual provides a comprehensive description of the functional
and operational characteristics of the VAX-11/780 diagnostic
system. The 1level of detail presented provides a resource for
appropriate branch courses of the field service training program
and for a field reference. Table 1-1 provides a list of related
documents. Note that a glossary of diagnostic software terms is
provided in Appendix A.

Table 1-1 VAX-11/780 System Manuals

Document Title Control Number Form

%VAX—ll/?BG Power System
]Technical Description EK-PS78¢-TD-0@1 In Microfiche Library

VAX-11/788 System
Installation Manual EK-SI780-IN-001 Available in hard copy*

DS78¢ Diagnostic System }
User's Guide EK-DS780-UG~-001 Available in hard copy*

DS78¢ Diagnostic System
Technical Description EK-DS780-TD-041 In Microfiche Library

FP780 Floating-point
Processor Technical
Description EK-FP780~-TD-001 In Microfiche Library

REP@5/REP@#6 Subsystem
Technical Description EK-REP@6-TD-001 In Microfiche Library

VAX-11 KA780 Central
Processor Technical
Description EK-MS780-TD-0801 In Microfiche Library

VAX-11 MS788 Memory
System Technical
Description EK-MS780-TD-0201 In Microfiche Library

DW78@ Unibus Adapter
Technical Description EK-DW780-TD-0401 In Microfiche Library

KC788 Console Interface
Technical Description EK-KC780-TD-001 In Microfiche Library

VAX-11/780 Architecture
Handbook EBO7466 Available in hard copy*

1-1

Table 1-1 VAX-11/786 System Manuals (Cont)

Document Title Control Number Form

VAX-11/788 Software

Handbook EB@8126 Available in hard copy*
VAX-11/78¢ Hardware

Handbook EB@9987 Available in hard copy*
VAX/VMS Primer AA-D@30A-TE Available in hard copy*

VAX/VMS Command Language
User's Guide AA-D@23A-TE Available in hard copy*

VAX-11 MACRO User's
Guide AA-D@33A-TE Available in hard copy*

VAX-11 Linker Reference
Manual AA-D@19A-TE Available in hard copy*

VAX-11 Symbolic Debugger
Reference Manual AA-D@25A-TE Available in hard copy*

*These documents can be ordered from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA @¢1532

Attn: Printing and Circulation Services (NR2/M15)
Customer Services Section

For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group, PK3-2/T12
129 Parker Street

Maynard, MA @1754

1.2 DIAGNOSTIC SYSTEM CAPABILITIES

The VAX-11/78@ diagnostic system is a set of software components
integrated as a system to provide a wide range of error detection
and isolation capabilities for the VAX-11/780 hardware. The
diagnostic levels range from system functional tests to dedicated
microprogram techniques capable of identifying a faulty module
(printed circuit board) or group of modules. In addition, the
diagnostic control functions provide substantial selection and
execution options.

1-2

The overall diagnostic strategy satisfies the major field service
goals of:

a. High quality and efficiency of system installation, by
providing formal installation procedures, automated test
package configurations, and a system exerciser program
that can be configured for specific VAX-11/78@ systems.

b. Reduction of fault isolation and repair times, by
providing high wvisibility diagnostic programs (programs
accessible to the operator) and procedures keyed to the
field service troubleshooting and repair philosophy.

The diagnostic system is supported by a PDP-11/V@3 (LSI-11)
microcomputer console system. In addition to providing for 1local
(on-site) diagnostic execution, the diagnostic system allows for
diagnosis from a remote diagnostic center.

1.3 DIAGNOSTIC SYSTEM OVERVIEW

The diagnostic system consists of programs that are organized
hierarchically (from general to specific capabilities) in six
levels. Each level contains one or more categories, as follows:

Level 1 -- Operating system (VMS) based diagnostic programs
(using queue I/0)

System exerciser program

Level 2 -- Diagnostic supervisor--based diagnostic programs that
can be run either under VMS or in the standalone mode
(using queue I/0)

Bus interaction program

Formatter and reliability level peripheral diagnostic
programs

Level 2R -- Diagnostic supervisor--based diagnostic programs that
can be run only under VMS.

Certain peripheral diagnostic programs

Level 3 -- Diagnostic supervisor--based diagnostic programs that
can be run in standalone mode only (using direct I/O0)

Functional level peripheral diagnostic programs
Repair level peripheral diagnostic programs
Cluster diagnostic programs

Level 4 -- Standalone macrodiagnostic programs that run without
the supervisor.

Hardcore instruction test

Console
Level—- Console-based diagnostics that can be run in the
standalone mode only

Microdiagnostics

Console program

Octal Debugging Technique (ODT)
ROM resident power-up tests
LSI-11 diagnostics

The diagnostic programs can be used for preventive maintenance
checks to ensure proper computer operation; or, if system
mal functions have been detected, specific programs or groups of
programs can be run to isolate the fault.

Figure 1-1 shows the relation of the six levels to four diagnostic
program operating environments. The console environment requires
exclusive use of the VAX-11/780 system (standalone mode). It
includes only the console 1level programs. In this environment,
program control is exercised by the LSI-11 processor in the
console subsystem.

In the cluster environment, the system environment, and the user
environment, control is exercised in the VAX-11/788 CPU. The
cluster environment supports only standalone diagnostic programs.
It includes level 4 programs and some level 3 programs. The level
3 programs supported are those that test the CPU and the channel
adapters.

The system environment supports peripheral diagnostic programs
that can run in the standalone mode. These include 1level 2
programs and level 3 peripheral programs.

The user environment supports only programs that can be run under
VMS, namely levels 2R, 2, and 1.

In general, the diagnostic system uses a building block approach
to testing (and subsequent fault detection and isolation). When
the diagnostic programs are executed in the standard system
checkout sequence, they will initially test a minimum (basic) set
of logical functions to ensure their proper operation. After these
basic operations are verified, a larger and more complex block is
tested, using the previously tested block as a base. This sequence
is implemented consistently from the ROM resident pewer-up tests
(which check the console) to interactive system tests executed as
user mode tasks under the VMS operating system, as shown in Figure
1-2.

It may be that a diagnostic program will indicate an error in a
hardware component which is more easily diagnosed by another
program. For instance, the bus interaction program may indicate a
failure of a tape drive. The tape reliability program may also
detect the same failure or a related failure, but the problem may

1-4

Figure 1-1

PROGRAM PROGRAM
MODE ENVIRONMENT LEVEL
CONSOLE
ENVIRONMENT | CONSOLE LEVEL
OFF-LINE CLUSTER LEVEL 4
(STANDALONE) | ENVIRONMENT
LEVEL 3
SYSTEM
ENVIRONMENT
LEVEL 2
LEVEL 2R
ON-LINE USER
(UNDER VMS) ENVIRONMENT
LEVEL 1

Diagnostic Program Mode,

1-5

TK-1170

Environment and Levels

9-1

LEVELSJ

LEVEL 2 <

LEVEL 2R

|1| 2
STAND ALONE ONLY RPOX/DCL RK611 RK611 MANUAL
(DIRECT 1/0) REPAIR DIAGNOSTIC INTERVENTION
REPAIR LEVEL DIAGNOSTIC PARTS A-E TESTS
(ESRCA) (ESREA - E) (ESREF)
TAPE DRIVE RM03 RPOX
STAND ALONE ONLY
(DIRECT 170) FUNCTIONAL FUNCTIONAL FUNCTIONAL DNE;CSER
O CTiON LEVEL TIMER DIAGNOSTIC DIAGNOSTIC EX
(ESMAB) (ESRDB) (ESRBA) (ESDBB)
RP/RK/RM
STAND ALONE ;QEFABMY DISK LOCAL TERMINAL LINE PRINTER
OR UNDER VMS (ESMAA) FORMATTER DIAGNOSTIC %égsgsnc
(QUEUE 1/0) (ESRAB) (ESTAA)
RP/RK/RM MULTI-
DISK TERMINAL
RELIABILITY DIAGNQSTIC
(ESRAA) (ESTBA)
STAND ALONE
OR UNDER VMS BUS
(QUEUE 1/0) INTERACTION
(ESXBA)
UNDER VMS
ONLY SYSTEM
(QUEUE 1/0) EXERCISER

Figure 1-2 VAX-11/780
Diagnostic System Program
Hierarchy (Sheet 1 of 2)

TK-0606

L1

"
DEDICATED POWER UP
LSI-11 DIAGNOSTICS LSI-11 TESTS ooT MOST BASIC LEVEL
TESTS (1BM RESIDENT)
CONSOLE
CONSOLE- PROGRAM 1/0 MODE — PROGRAM CONSOLE 1/0 MODE
BASED
MICRO-
STAND ALONE ONLY HARDCORE TESTS ——{ DIAGNOSTIC f—— MICROTESTS.
PROGRAM
>
HARDCORE
LEVEL 4 INSTRUCTION
TEST
(EVKAA)
, \
CLUSTER
EXERCISER
(ESKAX)
STAND ALONE ONLY]
(DIRECT 1/0) l]
LEVEL 3 <
RH780 (MBA) DW780 (UBA)
DIAGNOSTIC DIAGNOSTIC
(ESCAA) (ESCBA)
-~
TK-0607

Figure 1-2 VAX-11/789¢
Diagnostic System Program
Hierarchy (Sheet 2 of 2)

be on the tape drive controller, the RH780 (MBA), or the KA780
(CPU). Proper use of the six levels of diagnostic programs should
enable the field service engineer to identify the failure quickly
and accurately.

1.4 DIAGNOSTIC SYSTEM EXECUTION ENVIRONMENTS

Most of the diagnostic programs must be run off-line (standalone).
In other words, they require exclusive use of the VAX-11/780
computer system and will not run under the VMS operating system.
Diagnostic programs in levels 3, 4, and the console level are of
this type (Figure 1-2). The diagnostic programs in level 2 can be
run off-line or on-line (under VMS).

° Off-1line diagnostics must be run from the console
terminal.

On-line diagnostics may be run from any terminal on the
system and will share the computer system with other user
mode programs. Figure 1-3 shows the execution
environments required by the various diagnostic programs.

1.5 CONSOLE DIAGNOSTICS

On power up, a set of ROM resident tests verifies the proper
functioning of the LSI-11 within the console subsystem before the
console program is booted from the floppy disk. If the console
program cannot be booted, the ROM resident tests, together with
ODT, can be used to 1isolate the fault. For details see the
VAX-11/78@ Diagnostic System User's Guide (EK-DS78¢0-UG-0401),
Appendix D. In addition, a set of dedicated LSI-11 diagnostics may
be used to perform in-depth tests on each component of the console
subsystem.

The console subsystem, in connection with the console program,
provides the basis for the diagnostic system with the following
functions:

~

Traditional lights and switch functions such as EXAMINE,
DEPOSIT, HALT, START, and single instruction

Diagnostic and maintenance functions, including the
capability to load diagnostic microcode into Writable
Control Store (WCS), control execution, control single
step clock functions, and examine key system points via a
serial diagnostic visibility bus (V Bus), and to deposit
and examine data in 1locations in the VAX-11/780 main
memory and I/0 space

Operator communication with the VAX-11/784 software.
The console program enables the operator to run microdiagnostics,
to load and run the diagnostic supervisor (in the standalone mode)

and the standalone macrodiagnostic programs (using VAX-11/78¢
native code), and to boot the operating system.

1-8

61

—_—— e /.__..V_Ms___|
DEDICATED _ cONSOLE LSI-11 __ ooy
LSI-11 POWER UP TESTS /
TESTS /
CONSOLE /
PROGRAM

\ / VAX/VMS
\ / |____co~sox.s
PROGRAM

LOAD FROM /

DIAGNOSTIC DIAGNOSTIC
CONSOLE FLOPPY SUPERVISOR)\ SUPERVISOR-
HARDCORE LOAD FROM ** / \ LOAD FROM

MICRODIAGNOSTICS INSTROCTION DIAGNOSTIC SYSTEM DEVICE SYSTEM DEVICE

MONITOR TEST SUPERVISOR / \

MICRODIAGNOSTICS .
HARD CORE TESTS l / 1 | \
MICROTESTS

- GO CHAIN DIRECT 1/0 * / Qo * \ Q1/0
- FAIL CHAIN

KA-11/780 CPU CLUSTER EXERCISER / \

RH.780 MBA DIAGNOSTIC TAPE RELIABILITY EXER

DW780 UBA DIAGNOSTIC

l TMO3/TEE16-TU77 TAPE DRIVE FUNC TIMER / RP/RK/RM DISK FORMATTER \
RPO6/FUNCTIONAL DIAGNOSTIC RP/RK/RM DISK RELIABILITY
FR(Egt's}n?g&Gggf\/Té%m%TguﬁisENOST:c / MULTITERMINAL EXERCISER \

LOCAL TERMINAL DIAGNOSTIC

RMO3 DISKLESS DIAGNOSTIC : ;

l RMO3 FUNCTIONAL DIAGNOSTIC LINE PRINTER DIAGNOSTIC

DR11-B DIAGNOSTIC BUS INTERACTION

CR11 CARD READER DIAGNOSTIC

| DZ11 DIAGNOSTIC \ I
————————————J—_—————— ma

* THE NUMBER OF 1/0 DIAGNOSTIC PROGRAMS WILL GROW. Treeaa

Figure 1-3 VAX-11/780
Diagnostic System,
Execution Environments

Note that when the console program is running in the LSI-11, it
will always be in one of two modes, console I/0O mode or program
I1/0 mode. With the exception of the Control P ("P) command, the
console commands (console command language) 1listed in the help
files are available only when the console program is in the
console I/O mode.

In the console I/0 mode, the console program interprets the
characters typed on the console terminal as console commands. In
the program I/0 mode, however, the console program is transparent
to the operator. The console program passes characters from the
console terminal directly to the VAX-11/788 CPU for use by VMS or
the diagnostic supervisor.

Type Control P to switch from program I/0 mode to console I/O
mode.

Type SET TERMINAL PROGRAM to switch from console I/0 mode to
program 1I/0 mode.

1.6 MICRODIAGNOSTIC PROGRAM

The microdiagnostic program provides module isolation for 1logic
failures within the CPU, floating-point accelerator and MOS memory
controllers. The program will detect stuck high/low 1logic
functions and open or grounded etch and wire interconnections. The
microdiagnostics are organized in a bootstrapping test sequence
(i.e., building blocks) of the console interface, CPU hardware,
cache-translation buffer, I-stream buffer, Synchronous Backplane
Interconnect (SBI), and memory controller and array. All detected
faults result in an error typeout indicating the smallest set of
modules to which the diagnostic can isolate the failure.

The microdiagnostic program is initiated by one console command
and executed from the CPU cluster test facility. The test facility
consists of the console subsystem, console interface, Writable
Control Store (WCS), and the V Bus.

The microdiagnostic package consists of two major test divisions:
console adapter and hardcore, and microtests. Each test division
is controlled by an associated monitor that provides nondiagnostic
services to that division. Both test division monitors are
serviced by the console-resident microdiagnostic monitor. In
addition to loading the test monitors, the microdiagnostic monitor
retrieves microtest overlays from the floppy disk, loads test
sequences into WCS, performs test dispatching and sequencing,
performs error reporting, and manages fault isolation. The
microdiagnostic monitor also allows the operator microdiagnostic
test selection and execution options (Chapter 4). Figure 1-4 shows
overall monitor relationships and test sequencing.

MICRODIAGNOSTIC
MONITOR

pan

$ L 4
HARDCORE MICROTEST
MONITOR MONITOR

3

v ¥
TEST TEST
SEQUENCE SEQUENCE

e CONSOLE e DATA PATHS
ADAPTER e TRANSLATION
e MICRO BUFFER
SEQUENCER . CACHE
« WCS
e INSTRUCTION
o DATA PATH BUFFER
SUBSET
o FPA OPTION
e SBI INTERFACE
e MEMORY
CONTROLLER

¢ MEMORY ARRAY

TK-0752

Figure 1-4 Monitor Relationships and Test Sequencing

l1.6.1 Console Adapter and Hardcore Division

The adapter and hardcore division microdiagnostic is composed of a
test stream of pseudo-instructions and test data located on the
console floppy disk. Note that the pseudo-instructions are defined
specifically for the test stream. This division tests the console
adapter (CIB module), microsequencer, WCS, and a subset of the
data paths. The hardcore monitor is called into the console memory
by the microdiagnostic monitor. The hardcore monitor, in turn,
retrieves small blocks (+1.5K bytes) of test data from the floppy
into a console buffer, and then controls execution. When the
current block has been completed, the hardcore monitor overlays
this block with a new test block. The test data portion of the
test stream is comprised of data words and lists of VAX-11/78¢
microinstructions. The microinstructions are loaded into the WCS
and executed in single bus cycle or single time-state modes.

When an error is detected, an error header message is typed. Then,
if the HALTD flag is not set, a trace message is typed and
additional code is executed to isolate the fault. This additional
testing will normally consist of V Bus compare instructions.
Figure 1-5 shows monitor residency and the basic flow of the
console adapter and hardcore tests.

1.6.2 Microtest Division

The microtest division completes testing of the CPU not covered by
the hardcore division, and provides isolation to a failing module.
The microtests, which are executed under control of the microtest
monitor, are divided into two subdivisions: GO chain and FAIL
chain. The GO chain consists of microtests loaded into WCS and
executed at full speed. The purpose of the GO chain is to detect
an error. If an error is detected, control is passed to the FAIL
chain, which isolates the error and reports the failing module
through the microdiagnostic monitor. Note that the FAIL chain is
executed only on detection of an error.

The GO chain consists of a series of WCS overlays. Each overlay is
approximately 1K microwords in length and will contain one or more
microtests. Initially, the microdiagnostic monitor loads the first
overlay into WCS; that overlay is then executed. If no error is
detected, the next overlay is loaded into WCS and executed. This
sequence continues until each test in each overlay has been
executed, or until an error is detected.

When the GO chain detects an error, execution of the microtest
that detected the error is suspended. The error microtest address
is saved and used by the FAIL chain to restart microtest execution
to recreate the conditions that detected the error.

The FAIL chain reenters the failing microtest and begins fault
isolation. The microtest is clocked a specific number of ticks
from the error address and then certain V Bus signals are
processed. If the V Bus signals identify the faulty module, an
error report is made through the microdiagnostic monitor. If these

1-12

CONSOLE MEMORY

_ ERROR
MICRODIAGNOS- "~ REPORT

TIC MONITOR

) ol

CORESIDENT WITH
MICRODIAGNOSTIC LOAD AND

MONITOR SERVICE CALLS

' I

|

I

I

I

R HARDCORE L |
1

1

I

—d

MONITOR

SERVICE CALLS

TEST
STREAM

N

CONSOLE WCeS

BUFFER EXECUTION
EXECUTION

ERROR
REPORT

ERR. YES
DETECT

NO
EXECUTE
NEW TK-0753
TES'II'

Figure 1-5 Hardcore Monitor Residency/Test Flow .

1-13

signals do not identify the error, additional V Bus signals are
processed. In the case of an intermittent error which is not
reproduced during FAIL chain execution, a report is printed that
lists the modules involved in the failing GO chain microtest.
Figure 1-6 shows monitor residency and the basic test flow.

1.7 MACRODIAGNOSTIC PROGRAMS

The macrodiagnostic programs are written in VAX-11 MACRO and
assembled in VAX-1ll native code. Level 2, 2R, and 3 programs do
not run independently; they must always be loaded and executed
with the diagnostic supervisor.

1.7.1 Diagnostic Supervisor

The diagnostic supervisor provides a framework that supports each
of the macrodiagnostic programs, one at a time. It operates in
three environments and provides two major functions. Two of these
environments, cluster environment (CE) and system environment
(SE), constitute the standalone mode. The diagnostic supervisor
operates in the user environment (USE) when it runs under the VMS
operating system. In each of these environments different modules
within the diagnostic supervisor are activated. The first major
function of the diagnostic supervisor is the interpretation of the
command line typed on the operator's terminal. The command 1line
interpreter (CLI) portion of the supervisor performs this
function, enabling the operator to <control the 1loading,
sequencing, and execution of diagnostic test programs. The program
interface (PGI) performs the second major function of the
supervisor, providing a set of common services required by some or
all diagnoestic programs. The PGI services include operator
interaction routines, error message formatting, memory management,
and I/0 request handling. Notice that the operator can communicate
with the diagnostic program only through the CLI and the PGI
message service in the supervisor.

The supervisor supports programs that provide their own device
interfaces (direct I/0) and programs that require I/0 services.
The direct I/0 diagnostic programs must be run in the standalone
mode (cluster environment and system environment), since VMS
inhibits direct access to peripheral devices. Programs that do not
directly access the peripheral devices under test rely on queue
I/0 system services. Both VMS and the diagnostic supervisor
provide queue I/0 system services, so that these programs can run
in either the standalone mode (in the system environment) or the
user mode (user environment, under VMS). When the diagnostic
programs requiring queue I/O services are run in the user mode,
the supervisor passes the queue I/0 requests directly to VMS. When
queue I/0 diagnostic programs are run standalone, the supervisor
emulates the VMS operating system, providing the queue I/0 system
services. Figure 1-7 shows the functions of the diagnostic
supervisor in the three macrodiagnostic operating environments.

CONSOLE MEMORY

MICRODIAGNOSTIC

CORESIDENT WITH
MICRODIAGNOSTIC
MONITOR

MONITOR

ERROR/TRACE

LOAD AND
SERVICE CALLS

MICROTEST
MONITOR

EXECUTE
NEXT
OVERLAY

Figure 1-6

REPORT

SERVICE CALLS

!
| N D 5

GO
CHAIN

:

WCS
EXECUTION

NO

YES

ERROR
REPORT

FAIL CHAIN
VBUS SIGNAL
EXECUTION

NO

ADDITIONAL
VBUS SIGNAL
PROCESSING

|

YES

TRACE
REPORT

1-15

TK-0738

Microtest Monitor Residency/Test Flow

CLUSTER ENVIRONMENT

(CLUSTER EXERCISER
RH780 DIAGNOSTIC

DIAGNOSTIC
DW780 DIAGNOSTIC) SUPERVISOR VAX-11/780
cLl | OPERATOR
TERMINAL
- PGI -
DIAGNOSTIC VMS
TEST SERVICES CPU
PROGRAM (VECTORS) CLUSTER
CHANNEL
SERVICES
uuT
SYSTEM ENVIRONMENT
(DIRECT 1/0 PERIPHERAL DIAGNOSTIC
DIAGNOSTICS, STAND ALONE) SUPERVISOR VAX-11/780
cu | OPERATOR
TERMINAL
PGI -
DIAGNOSTIC VMS CcPU
TEST SERVICES CLUSTER
PROGRAM (VECTORS)
CHANNEL
B "] SERvicEs | o
uuT

TK-0746A

Figure 1-7 Functions of the Diagnostic Supervisor Environments
(Sheet 1 of 2)

1-16

(Q1/0 PERIPHERAL

DIAGNOSTICS, DIAGNOSTIC
STAND ALONE) SUPERVISOR VAX-11/780
oLl OPERATOR
- TERMINAL
PGI
———>
l«——»{ VMSSERVICES | Q1/0 DRIVERS
DIAGNOSTIC
TEST CPU CLUSTER
PROGRAM
CHANNEL »
SERVICES
L_» uuT
USER
ENVIRONMENT
Q 1/0 PERIPHERAL
DIAGNOSTICS DIAGNOSTIC
UNDER VMS SUPERVISOR VMS VAX-11/780
cu N OPERATOR
N TERMINAL
- PGI >
DIAGNOSTIC VMS VMS CPU
TEST - SERVICES OPERATING [STER
PROGRAM (VECTORS) SYSTEM
CHANNEL
SERVICES
> > uuT

TK-0746B

Figure 1-7 Functions of the Diagnostic Supervisor Environments
(Sheet 2 of 2)

1-17

1.7.2 Cluster Diagnostic Programs

The CPU cluster exerciser, the RH780 (MBA) diagnostic program, and
the DW780 (UBA) diagnostic program test the VAX-11/788 cluster
hardware. They run under the cluster environment portion of the
diagnostic supervisor, in the standalone mode.

1.7.2.1 CPU Cluster Exerciser Package -—- The cluster exerciser
package consists of three diagnostic programs. The package
provides a comprehensive functional test of the CPU cluster,
including the CPU, the Unibus and Massbus adapters, and memory.
The first program (ESKAX) is the quick verify portion of the CPU
cluster exerciser package. The second program (ESKAY) tests the
native mode instruction set of the VAX-11/786. EXKAZ, the third
program in the package, checks memory management and the PDP-11
instruction set (in compatability mode).

The CPU cluster exerciser programs identify failing functions and
failing subsystems. For further fault isolation the operator
should run the microdiagnostic program or restrict the desired CPU
cluster exerciser program to the minimum number of modules which
will detect the failure, through commands to the diagnostic
supervisor.

1.7.2.2 RH789 (MBA) Diagnostic Program -- The RH780 (MBA)
diagnostic program tests the majority of the MBA logic regardless
of the type of peripheral device attached to the Massbus. Although
the program does not provide explicit component 1level fault
isolation, every detectable error is associated with an
operator-selectable scope loop. Diagnosis of attached devices is
not attempted. Verification of the Massbus transceivers and cables
is possible with a Massbus exerciser (MBE, RH11-TB) attached to
the Massbus. Use of an MBE on the Massbus also allows verification
of the MBA ability to perform high speed block transfers. Note
that either a device or a bus terminator must be attached to the
Massbus to enable program execution. The program tests the MBA at
three levels.

1. The first 1level checks basic functions. The functions
tested are those which are necessary for subsequent,
detailed fault detection. The objective is to locate
functional failures prior to testing for explicit bit
failures. Map register access, virtual address register
access, and correct data input buffer byte selection are
tested at this level.

2. The second level of testing locates bit failures (stuck
high/low). The program toggles bits directly accessible
to the CPU, and it sets and clears bits indirectly by
setting up specific commands and conditions.

3. The third level determines the ability of the MBA to meet
system demands. The program performs block transfers
using the MBA wraparound features. These block transfers
are executed in the maintenance mode and ensure that the
MBA will support data transfers typically associated with
system software. In addition, the program tests the
ability of the MBA to interrupt the CPU under all legal
conditions.

1.7.2.3 DW7880 (UBA) Diagnostic Program -- Like the RH788¢ (MBA)
diagnostic program, the DW78@¢ (UBA) diagnostic program tests most
of the UBA logic. Every detectable error is associated with an
operator-selectable scope loop. The program does not attempt to
test devices attached to the Unibus. However, if a Unibus
exerciser is attached to the Unibus, the program will verify the
integrity of the Unibus transceivers and the ability of the UBA to
respond to device-initiated functions. The program tests the UBA
at seven levels.

1. The program tests the basic functions necessary for
subsequent fault detection: the addressability of the UBA
registers, their initial states, and whether they can be
read and written.

2. The program tests the RAM addressing capability of the
UBA logic (accessing map registers, data path registers,
and BRSVRs).

3. Power-fail and interrupt functions of the UBA are tested
next.

4. The program creates and tests all error conditions.

5. Extensive data transfer tests check the map registers,

the direct data path, the buffered data paths, the data
path registers, the Unibus address and data lines, and
the microsequencer.

6. The device tests check all types of data transfer on the
Unibus: DATI, DATIP, DATO, DATOB initiated by the UBA and
by the UBE. Interrupts from the UBE to the CPU are also
tested at the four BR levels.

7. The contention logic test checks for race conditions when
the four microsequencer select lines (UBATT SEL, SB SEL,
DMA SEL, FILE WRITE SEL) are asserted at about the same
time.

1-19

1.8 PERIPHERAL DIAGNOSTIC PROGRAMS

In accordance with the structure of the diagnostic system as a
whole, the peripheral diagnostic programs are organized in a
hierarchy. Repair and functional level programs are designed to
test specific peripheral devices. These programs (with the
exception of the line printer and terminal diagnostics) must be
executed in the standalone mode under the system environment (SE)
services of the supervisor, since they provide their own access
(direct I/0) to the devices under test. The diagnostic programs
which rely on VMS, or the supervisor, for access to the units
under test (queue I/0) are each designed to test a range of
peripheral device types. For example, the disk reliability program
(ESRAA) will test all disk drive types supported by the VMS
operating system.

On error detection, the repair level diagnostic programs will call
out both the failing device controller module and the failing
function, dump the contents of relevant registers, and 1list
expected and received data patterns. The functional level programs
provide register dumps and call out the failing function when an
error is detected. The reliability and formatter level programs
provide more detailed information on the failing £function in
addition to the register dumps.

The system exerciser program tests the integrity of the major
system buses (i.e., SBI, Massbus, Unibus) under heavy 1I/0
activity, and it highlights any interaction problems that result.
The program should be run as a dedicated process under VMS. No
other program may run concurrently or compete for system
resources, since the program requires the use of all system
resources.

1.9 OPERATOR/VAX-11/788 COMMUNICATION

The operator communicates with the VAX-11/780 computer through the
console subsystem. The console subsystem provides a programmed
interface between the console terminal and the VAX-11/780 hardware
and software, including the diagnostic system. The console
, subsystem hardware consists of an LSI-11 microprocessor (11/63), a
single floppy disk drive and controller, a terminal and two serial
line wunits, a VAX-11/78¢4 CPU console interface (CIB), and a
control panel on the VAX-11/78@¢ CPU cabinet. The console program
includes a console command language and the software utilities
that provide operator console functions. These functions are
required for VMS and diagnostic support. The paragraphs that
follow introduce the basic console functions. Refer to Chapter 2
for a detailed description of the console command language.

1.9.1 Console Terminal Modes

The console terminal serves as the console program's I/0 device
and as a VMS operator terminal. The console program has two
operating modes: console I/O mode and program I/O mode.

In console I/0 mode, the terminal serves as the operator interface
to the console panel functions, CPU debug functions, and CPU
kernel test functions. In this mode console terminal input is not

1-20

passed to the VAX 1ISP-level software. All terminal 1input I1is
interpreted by the LSI-11, and appropriate console functions are
invoked.

In program I/0 mode the terminal serves as a VMS operator
terminal. All terminal input is passed, character by character, to
the ISP-level software. All validity checking, etc. is performed
by VMS. The console program is transparent to the VAX-11/780
software. All terminal output from the software is passed directly
to the console terminal.

1.9.2 Console Panel Equivalent Functions

The functions in this group are those normally available through a
traditional console panel. These functions include ISP-level
program and CPU clock controls, and display and modification of
memory elements.

1.9.2.1 Program Control —-- The console can initialize the CPU by
setting certain logic to a defined state. It can initiate
ISP-level instruction execution at a point specified by the
program counter, as well as terminate instruction execution. 1In
addition, the console can bootstrap the system by loading memory
with a specific file from the system load device, and initiate
instruction execution at a predefined address after the load. The
console can also stop ISP level instruction execution.

1.9.2.2 Memory Element Display and Modification -- The console
allows display and modification of memory elements in the
VAX-11/788 including main memory, I/0, general, and internal
register addressing space. The address spaces can be accessed,
read, and written in the quantities specified below:

a. Main memory elements: byte, word, 1longword, quadword
quantities

b. CPU general registers (R#--R13, SP, PC), and processor
register space: longword quantity

c. CPU processor register space: longword quantity

d. I/0 registers: byte, word, longword quantities depending
on register data length

e. ID bus registers: longword quantity

f. VAX-11/780 V Bus (Visibility Bus) channels can be
displayed (V Bus channels are read-only)

g. VAX-11/780 main memory and/or Writable Control Store

(WCS) can be loaded from files on the console subsystem
floppy disk.

1-21

1.9.2.3 Clock Control -- The CPU clock can be controlled by the
console to provide single step clock mode for use in hardware or
software debugging. The control modes available include single
instruction step, single SBI bus cycle step, and single SBI time
state step modes.

Single instruction step mode allows ISP-level programs to execute
one instruction at a time. This mode causes the CPU to enter the
halt state after the instruction execution.

Single SBI bus cycle step mode causes the CPU clock to stop each
time SBI time state @ (T@) is asserted. TP remains asserted until
a control signal from the console causes the clock to resume
operation. The clock ticks until the next SBI T4#.

Single SBI time state step mode causes the CPU clock to assert and
hold a time state (T@, T1, T2, or T3) until a control signal from
the console causes the next time state to be asserted and held.

1.9.3 Console Control Functions

The console control functions allow control of numeric radices,
addressing modes, and data length, and provide for displaying
console and CPU status. Functions are also provided that repeat
commands and 1link multiple commands into a single executable
command list. In addition, the console provides a means to control
the number of fill characters to be added after special characters
are sent to the console terminal.

1.9.3.1 Default Settings —-- The console allows specification of
defaults for addressing modes, radix of numeric input and output,
and the data length of addressable memory elements. Any default
setting can be overridden within the context of a console command.

a. The default addressing modes can be set for virtual,
physical, ID Bus, V Bus, general register, or internal
(processor) register.

b. Default radices for console numeric input and output can
be set to octal, decimal, or hexadecimal radix.

c. Defaults for memory element data lengths can be set for
byte, word, longword, and quadword.

d. Power-up defaults --
Physical

Hexadecimal
Longword (32 Bits)

Address Type
Radix
Data Length

1-22

1.9.3.2 Status Displays -- The console provides a means to
display CPU and console subsystem status. The CPU status includes
the stop/run state of the instruction set processor, the current
clock step mode, and the state of the Stop on Microbreak Match
Enable (SOMM). Console subsystem status includes the current
setting of all console defaults and the number of terminal fill
characters.

1.9.3.3 Command Linking and Repeating -- The console provides a
facility that allows multiple commands to be linked into a single
executable 1list. Commands to be 1linked are entered into an
internal console queue. The console operator can specify execution
of the command queue one pass at a time. Or, the queue may be
executed continuously. This facility allows the diagnostic user to
create short routines of console commands for use in hardware
debugging operations.

The console also provides a facility to continuously execute a
single command or 1list of commands. Once 1initiated, command
execution continues until terminated by the operator. The repeat
facility allows maintenance personnel to scope the operation of
CPU and subsystem logic invoked by console commands.

1.9.3.4 Real-Time Delays —-- The console provides a facility for
introducing real-time delays of varying duration between the
execution of console commands 1linked with the command 1linking
facility. This function has no effect on the CPU, but only delays
the console's processing of the next sequential command in the
command queue. The delay facility 1is provided for use after
console commands that invoke CPU functions which require time to
complete (e.g., initialization).

1-23

CHAPTER 2
CONSOLE PROGRAM AND CONTROL DESCRIPTION

This chapter describes the console command language and associated
command facilities. Where appropriate, examples of command usage
are included. Also included are all applicable console error
messages.

2.1 CONSOLE PROGRAM OVERVIEW

The following paragraphs provide a basic overview of the console
software modules. Note that the services provided by the console
are contained in the LSI-11 4K ROM and 8K RAM. The console
provides services for console control, operator interface,
microdiagnostic execution, VMS support functions and remote
diagnosis.

2.1.1 Command Getter

The basic functions of this module are to retrieve a command line
from the console terminal (get a command 1line routine), and
provide a check point (or wait) 1loop for the console program
(console null loop).

The program spends the majority of its time in the null 1loop,
which consists of a series of test points and conditional branches
(e.g., bootstrap initiated, VAX-11/784 CPU halted, etc.). Should
any of these functions be active (i.e., flag set) the program
performs a branch to the routine required to service the request
initiated by that flag.

2.1.2 Parser and Parser Tables

The parser module decodes the command typed on the console
terminal and provides a pointer to the appropriate routine to
execute the command. The parser manipulates the command line to
condition it for decoding (e.g., discarding leading blanks and
checking for a delimiter in the command input string). The command
is decoded through a set of syntax check trees that provide
pointers to the appropriate execution routine within the command
execution module. Any data required for command execution has been
set up in tables included as part of the parser.

2.1.3 Command Executor Module

The command execution pointer from the parser is passed to the
command execution module entry point. This entry point provides a
pointer (i.e., starting address) to the appropriate command
execution routine (e.g., DO BOOT, PERFORM QUAD CLEAR). The basic
sequence of module action is:

a. Apply switches or defaults for radix, address space, and
data length.

b. Execute command routine.

c. Test for repeat function.

If a repeat function is specified, the routine monitors the
console for the control character (°C) required to terminate the
loop.

The module also supplies the required subroutines to support the
execution functions (e.g., open a file, load a file). Following
command execution, control is passed to the console null loop
within the command getter module.

2.1.4 Additional Services
In addition to the command decoding and execution functions, the
console provides several other services.

Remote support is provided to allow console access from a remote
terminal or computer. The facility also enables communication
between local and remote operators, as well as transfer of console
control between local and remote operators.

VMS services are also provided. These services include routines
for terminal support and the associated drivers, as well as a file
service for the floppy drive and its associated drivers. The code
for some of these services is contained in the ROM as well as the
RAM. These services are provided through emulator traps.

The console software also includes the basic LSI-11 processor and
memory tests, that are executed on each power-up and bootstrap,
and the primary bootstrap routine for the floppy.

2.2 COMMAND TERMS AND SYMBOLS
Table 2-1 provides a summary of terms and symbols used to describe
the syntax of the console commands.

Table 2-1 Term and Symbol Definitions

Term/Symbol Definition

< > Used to denote a category name (label)
e.g., category name <address> represents
a valid address

Used to indicate the Exclusive OR
operation (i.e., selection of parameters
within a command 1line). For example,
<A>!1 means either <A> or but not
both is to be selected

() Used to indicate that one of the
syntactic units of the expression is to
be selected

[1 Used to indicate the ©part of an
expression that is optional e.g., WAIT |
] indicates that the wait command takes
an optional count argument

2-2

Table 2-1

Term and Symbol Definitions (Cont)

Term/Symbol Definition
<blank> Represents one or more spaces or tabs
<count> Represents a numeric count

<XYZ -list>

<address>
<data>
<qualifier>

<input prompt>

{reverse prompt>

<CR>

<LF>

/

+

Indicates one or more occurrences from
the category indicated by XYZ

Represents an address argument
Represents a numeric argument
Represents a command modifier (switch)

Represents the console's input prompt
string '>>>!

Represents the linking prompt '<<K'

Represents a console terminal carriage
return

Represents a console terminal line feed
Delimits a command from its qualifiers

Represents the default address when used
as an address argument in an examine or
deposit command (The default address is
the last address used plus the current
data length in bytes.)

Used as an address argument in an examine
or deposit command and represents the
last address referenced.

2.2.1 Notation Examples
EXAMINE [<qualifier - list>] [<blank> <address>]

An examine command explanation follows.

a. An examine command may optionally contain a 1list of one
or more qualifiers.

b. An examine command may optionally contain an address

argument.

If the address is specified it must be preceded

by one or more spaces or tabs.

2-3

Following is a list of valid examine commands:

EXAMINE

EXAMINE/BYTE/VIRTUAL

EXAMINE <space> 123456

EXAMINE <tab> 123456

EXAMINE/WORD <space> 123456
EXAMINE/WORD <space> <tab> 123456

2.2.2 Command Abbreviations
Console command words may be abbreviated by typing only enough
characters to identify each command word. The minimum abbreviation

for each command is specified in parentheses 1in each command
description paragraph title.

Example

EXAMINE/VIRTUAL/BYTE 1234

may be abbreviated to:

E/V/B 1234
2.3 CONSOLE COMMAND DESCRIPTIONS
Each console command description is divided into three, four, or
five descriptive segments, depending on the particular command.
The descriptive segments are:

a. Syntax: describes the command structure

b. Command description: a brief paragraph describing command
operation, general restrictions, or available options

c. Response: a description of the console program response
to the specified command

d. Qualifiers: a list of applicable command modifiers
e. Options: a list of applicable command options.

The descriptive segments use the terms and symbols defined in
Table 2-1. Note that every command (or command 1line) must be
terminated with a <CR>.

2.3.1 Boot Command (B)
Syntax: BOOT [<device name>] <CR>

The boot command initiates a VAX-11/780 system bootstrap sequence.
The command may support bootstrap operations from a set of
alternate system devices.

<device name> has the following format: DDn, where DD is a

two-letter device mnemonic (e.g., DX for floppy), and n is a
one-digit unit number.

2-4

If no <device name> is given with the boot command, the console
will perform the boot sequence for the default system device by
executing an indirect command file named DEFBOO.CMD. This indirect
file contains the necessary console commands to boot from
whichever device is chosen to be the default system device.

If <device name> 1is given with the command, the console will
execute an indirect command file named DDNBQOO.CMD, where DDN is
the <device name> given.

Example

BOOT RP# -~ will cause the console to execute an indirect
command file named RP@BOO.CMD (console enters program I/0
mode after executing the command file).

Bootstraps from devices other than the system default device are
performed by indirect command files containing the console
commands necessary to boot an alternate device. After successful
CPU bootstrap completion, a response from VMS will be displayed on
the console terminal.

2.3.2 Clear Command (CL)
Syntax: Clear<BLANK> (SOMM ! Step)

CLEAR SOMM The Stop on Microbreak Match (SOMM) enable on
the console interface board is cleared --
(disabled) .

CLEAR STEP Any existing clock step mode (single bus cycle,
single time state, single 1instruction) is
cleared, and the VAX-11/780 CPU clock will be in
the normal (free-running) mode.

Response: <CR><LF><CONSOLE-PROMPT>

2.3.3 Continue Command (C)
Syntax: CONTINUE <CR>

The continue command causes the VAX-11/784 CPU to begin
instruction execution at the address currently contained in the
CPU program counter (PC). Note that CPU initialization is not
performed. The console enters the program I/0 mode after issuing
the continue command.

Response: <CR> <KLF> (console enters program I/0 mode)
2.3.4 Deposit Command (D)

Syntax: DEPOSIT [<qualifier - 1list>] <blank> <address> <blank>
<data> <CR>

Qualifiers: /BYTE, /WORD, /LONG, /QUAD, /NEXT, /VIRTUAL,
/PHYSICAL, /V BUS, /INTERNAL, /GENERAL. (Refer to Paragraph 2.7
for description of defaults.)

2-5

The deposit command writes (deposits) <data> into the address
specified. The address space used will depend on the qualifiers
specified with the command. If no qualifiers are used, the current
address type default will determine the address space to be used.

Response: <CR> <LF> <input prompt>

The <address> argument may also be one of the symbolic addresses
defined in Table 2-2.

Table 2-2 Deposit Symbolic Addresses

Symbol Definition
PSL Deposits to the processor status longword
PC Deposits to the program counter (general

register F)

SP Deposits to the stack pointer (general
register E)

+ Deposits to the location immediately following
the last location referenced. For physical and
virtual references the location referenced
will be the last address plus n, where n = 1
for byte, 2 for word, 4 for longword, 8 for
quadword. For all other address spaces, n is
always equal to 1.

- Deposits to the location immediately preceding
the last location referenced

* Deposits to the location last referenced

@ Deposits to the address represented by the
last data examined or deposited.

Example:

E Sp Examines stack pointer

D @ <data> Deposits <data> to the location specified by
the contents of the stack pointer.

2.3.5 Enable DX1: Command

Syntax: Enable DXl1:
Qualifiers: None

Enable console software to access floppy on those systems with
dual floppies.

2-6

Response: <CR>XLF> <INPUT-PROMPT>

2.3.6 Examine Command (E)
Syntax: EXAMINE [<qualifier - list>] [<blank> <address>] <CR>

Qualifiers: /BYTE, /WORD, /LONG, /QUAD, /NEXT, /VIRTUAL,
/PHYSICAL, /ID BUS, /V BUS, /INTERNAL, /GENERAL. (Refer to
Paragraph 2.7 for description of defaults.)

The examine command reads and displays the contents of the
specified <address>. If no <address> 1is specified, the current
<default address> is examined.

The <address> argument may also be one of the symbolic addresses
defined in Table 2-3.

Table 2-3 Examine Symbolic Address

Symbol Definition

PSL Displays the processor status longword

PC Displays the program counter (general register
F)

SP Displays the stack pointer (general register
E)

+ Displays the 1location immediately following

the last location referenced.

- Displays the 1location immediately preceding
the last location referenced

* Displays the last location referenced

@ Displays the location whose <address> 1is the
last data examined or deposited.

Response: <CR> <LF> <tab> <address space identifier> <address>
<data> <CR> <LF> <input prompt>

Sample responses (console output underlined)

>>> EXAMINE/PHYSICAL 1234

P ¢0001234 ABCDEF89
>>> EXAMINE/VIRTUAL 1234
P 90005634 91234567

NOTE
The translated physical address is
displayed for virtual examines.

>>> EXAMINE/G #
G 00000000 98765432; GPR @

2-7

2.3.7 Halt Command (H)
Syntax: HALT <CR>

The halt command causes the VAX-11/780 CPU ISP to stop instruction
execution after completing execution of the instruction being
executed, when the console presents the halt request to the
VAX-11/780 CPU.

Response: (VAX-11/7886 CPU indicates it has stopped) <CR> <LF>
<tab> HALTED AT <contents of VAX-11/780 CPU PC> <CR> <KLF> <input
prompt>

2.3.8 Help Command (HE)
Syntax: HELP <CR>

The console opens an indirect command file that displays a console
help file, CONSOLE.HLP. The help file contains a description of
all console commands and console abbreviation rules, and it lists
the names of all other help files that may be displayed.

Response: Help file printed on console terminal.

2.3.9 Initialize Command (I)
Syntax: INITIALIZE <CR>

This command causes VAX-11/78@ CPU system initialization.
Response: <CR> <LF> <tab> INIT SEQ DONE <cr> <LF> <input prompt>

2.3.10 LINK Command (LI)
Syntax: Link

Qualifiers: None

Link causes the console to begin command linking. Console prints
reversed prompt to indicate 1linking. All commands typed by user
are then stored in an indirect command file for later execution.
Control C.terminates linking.

Response: <CR>CLF><REVERSE-PROMPT>
(Refer to Paragraph 2.9 for further details.)

2.3.11 Load command (LO)
Syntax: LOAD [<qualifier list>] <blank> <file specification> <CR>

The load command is used to read file data from the console's
floppy disk to the VAX-11/780 main memory, or Writable Control
Store (WCS). The applicable qualifiers are defined in Table 2-4.
If no qualifier is given with the load command, physical main
memory is loaded.

2-8

Table 2-4 Load Command Qualifiers

Qualifier Definition

/START: <address> This qualifier specifies a starting
address for the 1load. If no start
qualifier is given, the console will
start loading at address #.

/WCS This qualifier specifies that the WCS is
to be loaded.

2.3.12 Perform Command (P)
Syntax: Perform

Qualifiers: None

The perform command executes a file of linked commands previously
generated by a link command.

Response: <dependent on commands linked>

2.3.13 Quad Clear Command (Q)
Syntax: QCLEAR <blank> <physical address> <CR>

The quad clear command clears the quadword at the <address>
specified. The command is used to clear an uncorrectable ECC
error. The <address> 1is always interpreted as a physical main
memory location. The <address> given is forced to a gquadword
boundary by the unconditional clearing of the three 1low-order
address bits.

2.3.14 Reboot Command (REB)
Syntax: REBOOT

Qualifiers: None

This command causes a console software reload, without disturbing
the VAX-11/780.

Response: <console start-up display>

2.3.15 Repeat Command (R)
Syntax: REPEAT <console command> <CR>

A repeat command causes the console to repeatedly execute the
specified <console command> until execution is terminated by a
Control C (°C) (Paragraph 2.8). Any valid console command may be
specified for <console command> with the exception of the repeat
command.

Response: Dependent on command specified.

2.3.16 Set Command (SE)
Syntax: SET <blank> DEFAULT [<blank> <default option>] <CR>
or
SET <blank> STEP [<blank> <step option>] <CR>
or
SET <blank> TERMINAL <blank> (fill: <count>! PROGRAM)
<CR>
or
SET <blank> SOMM <CR>
or
SET <blank> CLOCK ([<blank> (SLOW! FAST! NORMAL)] <CR>
or
SET RELOCATION: <data> <CR>

Response: <CR> <LF> <input prompt> (for all commands)

The set default command sets console default for radix of console
numeric input and output, address type, and data 1length. The
console will apply defaults when a console command does not
explicitly specify radix, address type, or data length. A set
default command with no options specified will set all default
settings to the power-up state. Applicable default options are
listed in Table 2-5.

Table 2-5 Set Default Command Options

Option Format Specification
Address Default Physical Sets default addressing mode
Options Virtual as specified

General

Internal

ID Bus

V Bus
Data Default Long Sets default data length as
Options Byte specified

Word

Quad
Default Radix Hex Sets default radix for terminal
Options Octal numeric I/0 to radix specified

2-10

The set step command sets the VAX-11/788 CPU processor clock mode
to the mode specified. The applicable modes are listed in Table
2-6.

Table 2-6 Set Step Command Options

Option Specification

Step Step Instruction Sets CPU clock mode to single
instruction step mode

Set Step Bus Sets CPU clock mode to single SBI
cycle step mode

Set Step State Sets CPU clock mode to single SBI
time state step mode

The set terminal command allows the selection of two parameters.

a. Set Terminal Fill: <count> = The count specifies the
number of £fill characters to be added after special
characters (e.g., prompts) are transmitted to the console
terminal.

b. Set Terminal Program = The console terminal enters the
program I/O mode.

The set clock command sets the VAX-11/788 CPU clock to a frequency
specified by one of the arguments (Fast, Slow, Normal) within the
command where:

Fast = 10.525 MHz
Slow = 8.925 MHz
Normal (or no argument) = 10.¢ MHz

The set SOMM command sets the Stop on Microbreak Match (SOMM)
enable on the console interface board (CIB). When SOMM is set, if
the contents of the VAX-11/786 micro PC ever become equal to the
contents of the microbreak match register (ID register 21), the
CPU clock is stopped.

The set relocation command deposits <data> to the console's
relocation register. The contents of the relocation register are
added to the effective address of all virtual and physical memory
examines and deposits.

Response: <CR>XLF><input-prompt>

2-11

2.3.17 Show Command (SH)
Syntax: SHOW <CR>

The show command will cause the console terminal to display:

a. The current default settings for data 1length, address
type, and radix of address and data inputs and outputs.

b. The terminal fill character count.

c. The VAX-11/788 CPU status including the run/halt state
and current clock mode setting.

2.3.18 Start Command (S)
The two start command formats are described below.

Syntax: START <blank> <address> <CR>

This format performs the equivalent of the following sequence of
console commands:

1. Performs a VAX-11/789 CPU initialization (>>> INIT).

2. <address> is deposited into the VAX-11/780 PC (>>>
DEPOSIT PC <address>).

3. A continue function is issued to begin VAX-11/780 CPU
instruction execution (>>> CONTINUE).

Response: <CR>CLF> (console enters program I/0 mode) (for START)
Syntax: START/WCS <blank> <address>

This format performs the equivalent of the following sequence of
commands:

1. <address> is deposited to the VAX-11/780 micro PC.
2. CPU clock is started in free-running mode.

Response: <CR>XLF> <input prompt> (for START/WCS)

2.3.19 Next Command (N)
Syntax: NEXT [<blank> <count>] <CR>

The next command causes the VAX-11/780 CPU clock to step the
number of times indicated by <count>. The type of step performed
by the clock is determined by the current state of the CPU clock
mode, as set by a previous set step command. A next command issued
while the VAX-11/780 CPU is in normal (free-running) mode will
default to single instruction step mode for the duration of the
command.

2-12

The console enters program I/0 mode immediately before issuing the
step, and reenters console I/O0 mode as soon as the step is
completed. Step-dependent responses are displayed on the console
terminal after the completion of each of the count steps as
specified below.

a. Single instruction step:
<CR> <LF> <tab> HALTED AT <contents of PC>

b. Single bus cycle step:
<CR> <LF> <tab> CPT@ UPC = <contents of UPC>

c. Single time state step:
<CR> <LF> <tab> CPTn (where n =1, 2, or 3) or
<CR> <LF> <tab> CPT@ UPC = <contents of UPC>

If no <count> is specified, one step is performed, and the console
enters the space bar step mode. While in this mode, each
depression of the space bar causes one execution of the step
option currently enabled (i.e., bus cycle, time state,
instruction).

A next command with an argument will not enable the space bar
feature. For example, NEXT 2 will cause two steps to be executed;
the console will then prompt for another command.

An input of any character except SPACE will cause an exit from the
space bar step mode.

2.3.20 Test Command (T)
Syntax: TEST [/COMMAND] <CR>

This command invokes the microdiagnostic monitor program. If no
/COMMAND qualifier is issued with the command, microdiagnostic
execution begins immediately. If microdiagnostic testing is
completed successfully (i.e., no errors detected) the console
program is invoked automatically.

The COMMAND qualifier is used to cause the microdiagnostic monitor
to enter its command mode and wait for operator input before
initiating microdiagnostic execution.

2.3.21 Unjam Command (U)
Syntax: UNJAM <CR>

This command initiates an SBI unjam operation.
Response: >>>

2.3.22 Wait Command (WA)
Syntax: WAIT <blank> DONE

The wait command has no effect unless it is executed from an
indirect command file. When it is executed from an indirect

2-13

command file, it causes further execution of the command file to
be suspended until one of the following occurs:

a. A DONE signal is received from a program running in the
VAX-11/78¢0 CPU. On receipt of DONE, the console will
resume execution of the command file.

b. If the VAX-11/780 CPU halts (or if the clock stops) and
no DONE signal has been received, the console prints
<@EXIT> and aborts execution of the remainder of the
command file.

c. A Control C (°C) 1is entered on the console terminal,
which causes the <console to abort execution of the
command file.

Response: <CR> <LF> <input prompt>

2.3.23 Indirect (@) Command
Syntax: @ <filename> <CR> or @ DX1l: <filename> <CR>

This command causes the console to open the file specified by
<filename> and begin executing console commands from the file.
Execution continues until one of the following occurs:

a. A WAIT DONE command is read from the file (Paragraph

2.3.22).

b. The end of the indirect file is reached. In this case the
console prints <QEOF> and prompts for normal command
input.

c. A “C 1is entered on the console causing it to abort

execution of the indirect file.

2.3.24 WCS Command (W)
Syntax: WCS

This command invokes the control store debugger, overlaying the
console program. The console help file, WCSMON.HLP, contains a
summary of control store debugger commands. To print out this
file, type @ WCSMON.HLP.

Response: WCS> (Control store debugger prompt)

2.4 COMMANDS PERFORMED WITH THE VAX-11/780 CPU RUNNING

Most console commands require that the VAX-11/788 CPU be halted to
allow the command to be executed. However, some console commands
do not require interaction with the VAX-11/784 CPU, and may be
executed with the VAX-11/780 CPU running. These commands include:

a. Show e. Halt

b. Help f. Clear

c. Set commands g. Wait Done
d. Examine /V Bus

2-14

Specifying any other console command while the VAX-11/788 CPU is
running will cause the console adapter to reject the command and
type out the following error message on the console terminal:

<CR> <LF> ? CPU NOT IN CONSOLE WAIT LOOP, COMMAND ABORTED
<CR> <LF> <INPUT PROMPT>

2.5 COMMENTS WITHIN COMMANDS

The console allows comments, preceded by an exclamation mark (!),
to appear in any command 1line. When the console detects an
exclamation mark, any remaining text in the command 1line 1is
ignored.

A comment may begin in any character position within a command
line, including the first.

Example (console output underlined)

\%

>> ! THIS IS A VALID COMMENT <CR>
> EXAMINE 1234 ! THIS IS ALSO A COMMENT <CR>

|

\4
\'4

2.6 CONTROL CHARACTERS AND SPECIAL CHARACTERS
Table 2-7 contains a description of the control characters and
special characters recognized by the console program. »

Table 2-7 Control/Special Character Descriptions

Character Description

CONTROL C (°C) Causes the suspension of all repetitive
console operations such as:

a. Repeated command executions as
a result of a repeat command

b. Successive operations as a
result of a /NEXT qualifier

c. Delays resulting from a wait
command
d. Successive steps resulting from

a next command

e. Aborts further execution of an
indirect command file after
current instruction is
completed.

CONTROL O (70) Suppresses or enables (on a toggle basis)

console terminal output. Console terminal
output 1is always enabled at the next
console terminal input prompt.

2-15

Table 2-7 Control/Special Character Descriptions (Cont)

Character

Description

CONTROL U (°U)

RUBOUT

Carriage Return <CR>

“U typed before a line terminator causes
the deletion of all characters typed
since the 1last 1line terminator. The
console echoes:

“U <CR> <LF>

Typing RUBOUT deletes the last character
typed on an input line. Only characters
typed since the last line terminator can
be rubbed out. Several characters can be
deleted in sequence by typing successive
rubouts. The first rubout echoes as a
backslash (\) followed by the character
that has been deleted. Subsequent rubouts
cause only the deleted character to be
echoed. The next character typed that is
not a rubout causes another backslash
(\) to be printed, followed by the new
character to be echoed.

Terminates a console command line.

2-16

2.7 COMMAND QUALIFIERS AND DEFAULTS

Qualifiers are used within a command to specify the type of
addressing and the length of data arguments. Defaults are applied
by the console when a command does not contain a qualifier
specifying address-type or data length. An operator can specify
the radix of a numeric argument by the use of a <local radix
override> prefixed to the argument. The console will interpret
numeric arguments in the current default radix when an argument is
not prefixed by a <local radix override>.

Certain commands permit an address argument to be defaulted. The
<default address> used by the console is the next address
following the last virtual, physical, or register address accessed
by an examine or deposit command. Note that the next address is
dependent upon data length, since a byte reference updates the
<default address> by 1, while a longword reference updates the
<default address> by 4.

The /NEXT qualifier allows an examine or deposit command to
operate on more than one address.

2.7.1 Address Type Qualifiers

Address type qualifiers are used within a command line to specify
the type of address argument as virtual, physical, ID Bus, V Bus
or register address. The qualifiers for the respective types are:
/VIRTUAL, /PHYSICAL, /ID BUS, /V BUS, /GENERAL, /INTERNAL.

Virtual addresses that reference nonexistent or nonresident pages
will cause the console to abort execution of the console command

that referenced the virtual address. In each case an appropriate
error message will be typed out on the console terminal.

Example
To examine virtual address 1234, type:

EXAMINE/VIRTUAL 1234 <CR>

Note that since some register addresses have mnemonic names that

are unique and unambiguous, the /GENERAL qualifier need not be
specified when mnemonic addresses such as PC, or SP, are
referenced.

Example

To examine the VAX-11/784 PC, an operator could type either
of the following statements:

EXAMINE/GENERAL PC <CR> or

E PC <CR> or
E GENERAL F <CR>

2-17

2.7.2 Address Type Defaults

The console applies an address type default to any command that
requires an address argument and does not contain an address
qualifier. The default applied can be set by using the set default
command.

Example
The command:
SET DEFAULT VIRTUAL <CR>

will cause the console to default to virtual addressing for
any console command that requires an address argument, but
does not contain an address type qualifier. Thus, the command
EXAMINE 1234 would type out the contents of virtual address
1234.

2.7.3 Data Length Qualifiers

Data length qualifiers are used within a command line to specify
the length of the data quantity associated with the command. Data
length may be specified as either byte, word, 1longword, or
quadword by means of the /BYTE, /WORD, /LONG, /QUAD qualifiers,

respectively.
Example
The command:
EXAMINE/BYTE 1234 <CR>
will type out the byte at address 1234.
Since VAX-11/788 CPU general and processor registers are longword
dquantities, all register references will default to longword data

length, regardless of the current setting of the data length
default.

2.7.4 Data Length Defaults
The console applies a data 1length default to any command that
references data and does not contain a data length qualifier. The
default applied can be set using the set default command.
Example

The command:

SET DEFAULT WORD <CR>

will cause the console to default to word data length.

2-18

The command:
EXAMINE 1234 <CR>

will then reference the word which has its first byte at
address 1234.

Since all VAX-11/788 CPU general and processor registers are
longword quantities, all register references will default to
longword data length, regardless of the current setting of the
data length default. Word length must be specified when accessing
Unibus device registers.

2.7.5 Qualifiers for RADIX

The radix of console output for a command can be sepcified by a
qualifier (/OCTAL or /HEX). The qualifier will override the
current default radix.

2.7.6 Defaults for RADIX

The default radix for console numeric inputs and outputs is
selectable as either HEX or OCTAL via the SET DEFAULT HEX or SET
DEFAULT OCTAL command.

2.7.7 Local Radix Override

It is frequently convenient to specify an address or data argument
in a radix different from the current default radix. The console
allows the current default radix to be overridden by including a
<local radix override> as a prefix to any numeric argument. A
<local radix override> can be any one of the following:

% 0 (percent 0) for octal arguments
$ X (percent X) for hexadecimal arguments

The 1local radix override must appear as the two 1leftmost
characters of the numeric argument it modifies, and must not be
separated by spaces or tabs from that argument.

Example

Assuming that the current default radix is octal, the
operator <can deposit the octal value 3456 into the
hexadecimal address 12A4 using <local radix override> as
follows:

DEPOSIT $%X12A4 3456

2.7.8 Default Address Facility

Each time an examine or deposit command is executed, the console
computes the address of the next memory location following the
location referenced by the command. The address of the next memory
location is termed the <default address>, since an examine command

that does not specify an address will reference the next address
by default. The console computes the <default address> as follows:

<default address> = <address used by last examine or deposit
command> + n, where n is

1 for byte references

2 for word references

4 for longword references

8 for quadword references

The following example shows a sequence of console commands, and
the value taken by the default address after each command is
executed. Note that the next address is data length dependent,
since a byte reference updates the <default address> by 1, while a

longword reference updates the <default address> by 4.

Example of default address facility (all numbers are hex):

Command <default address> after execution
EXAMINE/BYTE 2341 2342

EXAMINE/WORD

(uses <default address> 2342) 2344

EXAMINE/LONG

(uses <default address> 2344) 2348

EXAMINE/GENERAL @ general register 1 (R1)
EXAMINE/GENERAL D general register E (SP)

EXAMINE PC general register @ (R@)

Note that the <default address> is R@ following a PC reference.

2.7.8.1 Specifying Default Address in a Command -- The symbol (+)
can be used as an address argument in a deposit or examine command
to represent the <default address>. This symbol permits depositing
to (or examining) successive location without typing the address
argument after the first deposit.

Example

To toggle-in a program starting at address 123456, the
following deposit commands can be used:

DEPOSIT 123456 <DATA>
DEPOSIT + <DATA>
DEPOSIT + <DATA>

Each deposit command, after the first, writes the <DATA> into
the next successive memory location.

2.7.8.2 Last Address Notation -- The 1last address referenced
(virtual, physical, or register) by an examine or deposit command
is denoted by an asterisk (*). The LAST ADDRESS may be used as an
argument to an examine or deposit command by typing an asterisk in
place of the address argument.

2-20

Example
The command:
EXAMINE 1234 <CR>
will type out the contents of location 1234.
If the next command issued is
DEPOSIT * 356 <CR>
the console will deposit the number 356 into location 1234.

Examine and deposit commands to VAX-11/788 CPU general and
processor registers will replace the <last address> with the
register address. Mnemonic register names are translated into
register addresses by the console.

2.7.8.3 Preceding Address Notation -- The symbol - (minus sign)
can be used as an address in a deposit or examine command to
specify the 1location immediately preceding the 1last location
referenced.

2.7.8.4 Use of Last Data as an Address Argument —--— The symbol @
can be used as an <address> in a deposit or examine command. The
last <data> deposited or examined will be used as the address.

2.7.9 NEXT Qualifier
Syntax: SLASH NEXT [:<COUNT>]

The /NEXT qualifier permits examine and deposit commands to
operate on multiple sequential addresses.

The <count> argument specifies the number of additional executions
of the command to be performed after the initial execution. The
default value for <count> is one.
Example 1

The command:

EXAMINE/BYTE 1230/NEXT:2

is evaluated by the console as follows:

1. The console initially evaluates the command and applies
any applicable default values.

2. The command, with applied defaults, 1is executed. The

console types out the contents of 1location 1230, and
updates the <default address> to 1231.

2-21

3. The /NEXT switch is now evaluated by the console. The
console repeats the command operation the number of times
indicated by the <count> argument. Each execution uses
the <default address> for its address argument and
updates the <default address> afterwards. In this
example, locations 1231 and 1232 are successively typed
out. The final value of the <default address> will be
1233.

Example 2
If the command:
EXAMINE/NEXT:2 <CR>

is issued following the command in the previous example, the
contents of locations 1233, 1234, and 1235 will be typed out.
Since the examine command does not contain an address
argument, the initial execution of the command will use the
current <default address>, which was 1233, following the
command in the previous example.

Note that when using the /NEXT qualifier to examine or deposit
successive VAX-11/780 CPU general registers, the NEXT register
after the PC is defined to be R#.

Example 3
The command:
EXAMINE/NEXT:5 GENERAL D

will type out the contents of R13, SP, PC, R#, R1l, and R2, in
that order.

2.8 COMMAND REPEAT FACILITY

The command repeat facility is provided to allow commands to be
executed repeatedly so that CPU logic invoked by console commands
can easily be scoped. The following paragraphs describe the repeat
facility commands and capabilities.

2.8.1 Repeating Commands
Example

The command:
REPEAT EXAMINE 1234 <CR>

will continuously examine and display the contents of
location 1234.

Once initiated, repeated execution continues until terminated by
the operator typing Control C ("C) on the console keyboard.

2-22

2.9 COMMAND LINK FACILITY

The console's command link facility allows successive commands to
be 1linked by the console into a single executable 1list of
commands. Once a list of linked commands is constructed, the list
can be executed one pass at a time, or executed continuously.

2.9.1 Link Facility Operation

Commands are linked by entering LINK on the console terminal,
causing the console to enter the link mode. LINK is then followed
by the desired commands. The LINK command is entered only at the
beginning of the command string (i.e., at the beginning of the
initial command 1line). Commands to be linked must be entered
one-per-line, with each command line terminated by a <CR>. The
console then returns a link mode prompt (<<<) requesting the next
command. The linking operation is terminated by entering a Control
C on the console.

As the command string is entered on the console, the commands are
stored in dedicated sectors (limit of 10 sectors) on the floppy
disk (RX@l). When the command string is executed, the string is
treated as if it were an indirect command file (i.e., command
retrieved, parsed, executed, and the next command retrieved,
etc.).

The console does not execute commands being linked until a PERFORM
command is issued. Once the input of a list of linked commands has
been terminated, no further commands can be added to the commands
already linked.

The command string can be executed one pass at a time or
continuously by means of the PERFORM command. If the PERFORM
command is entered after the Control C to terminate the string,
the string will execute only one pass. However, if PERFORM is
entered before the Control C, that command becomes part of the
command list and causes continuous execution of the command list.

Should a linked command be entered incorrectly, the console will
output an appropriate error message when the command containing
the syntactic error is executed. Typing a Control U ("U) while
linking commands will cause the console to reject only the current
command line.

2.9.2 Link Facility Usage
Syntax: LINK
COMMAND <CR>
COMMAND <CR>
<"C>
Response: Dependent on command list.
Example

The operator wishes to repeatedly examine the contents of a
device register after VAX-11/780 CPU initialization. Since

2-23

the CPU initialization requires a certain amount of time to
complete, a delay must be inserted between the initialize and
examine commands. The sequence of commands 1is as follows
(console output is underlined).

>>> LINK INITIALIZE <CR> LINK causes the <console to
enter the link mode and begin
linking.

<<< DELAY 5 <CR> Delays five <clock ticks to
allow initialize time to

complete.

<K< EXAMINE/LONG FFFFABBC <CR> Examine command is entered into
string.

<<< PERFORM <CR> <7C> PERFORM is entered prior to
linking termination.

>>> PERFORM <CR> Initiates execution.

P FFFFABBC 12A@00123

P FFFFABBC 12A¢g@0123, etc. Command string executed
continuously.

2.10 CONSOLE MODE CHANGE

The console I/0 mode escape sequence causes the console to switch
from console to program I/0 mode. The escape sequence to program
I1/0 is:

SET TERMINAL PROGRAM <CR>

In addition, the console commands START, CONTINUE, and NEXT also
enable program I/O mode.

The program I/O mode escape sequence causes the console to switch
from program to console I/O mode. The escape sequence to console
I/0 is:

Control P (°P)

Note that Control P 1is not recognized by the console if the
console power switch is in either the REMOTE DISABLE position or
the LOCAL DISABLE position.

2.11 VMS COMMUNICATION WITH CONSOLE FLOPPY DISK

VMS must be able to read and write the console subsystem's floppy
disk drive. These functions are available only when the console is
in program I/0 mode. The following set of commands are supported
by the console software.

a. Write sector -- VMS supplies track, sector, and 128 bytes
of data. Console returns status upon completion of write.

2-24

b. Read sector -- VMS supplies track and sector. Console
returns 128 bytes of data, and status of read operation.

c. Read floppy status -- Console returns floppy status.

d. Write sector with deleted data mark -- VMS supplies track
and sector (no data required). Console returns status
upon completion of the write.

e. Cancel floppy function -- Console aborts current floppy
function.

The following floppy functions will not be directly available to
VMS: empty silo, fill silo, read error register, initialize.

While VMS initiated floppy functions are in progress, operator
terminal I/0 is not disabled. Terminal I/0 may be interspersed
with floppy I/0.

Once a floppy function is initiated, no other floppy commands will
be issued by VMS until the function 1is complete. The only
exception 1is the command cancel floppy function, which may be
issued at any time.

The floppy functions described in this document will only be
available to VMS when the console is in program I/O mode (i.e.,
the console terminal 1is being used as the system operator's
terminal).

NOTE
In the following protocols, two hardware
side-effects are implied:

1. Each time VMS 1loads the transmit
buffer (TXDB), the TX ready bit in
the transmit status register (TXCS)
is automatically cleared. TXDB is
only loaded by VMS, and only when TX
ready is set. TX ready is explicitly
set by the console when the console
is ready to accept another transfer
through TXDB.

2. Each time VMS reads the receiver
buffer (RXDB), the RX done bit in
the receiver status register (RXCS)
will automatically clear. RXDB is
only read by VMS, and only when RX
done is set. RX done is explicitly
set by the console each time the
console has 1loaded RXDB with a
character for VMS.

2-25

2.11.1 Floppy Function Protocol
A, Write sector/write deleted data sector

1. VMS puts the write sector or the write deleted data
sector command into TXDB.

2. The console takes the write command, and sets TX
ready in TXCS.

3. VMS puts a sector number into TXDB.

4. The console takes the sector number and sets TX
ready.

5. VMS puts a track number into TXDB.

6. The console takes the track number and sets TX ready.

7. VMS puts a byte of data into TXDB.

8. The console accepts a byte of data and sets TX ready.
Steps 7 and 8 are done 128 times for write sector.
Steps 7 and 8 are skipped for write deleted data
sector.

9. The console initiates a floppy write function.

1d. The floppy write is completed.

11. The console sends a floppy function complete message.
The floppy function complete message consists of
loading RXDB bits 8--11 with a select code of 2, and
bits @--7 with the floppy status byte.

12, VMS receives the floppy function completed message.

. B. Read sector

1. VMS puts the read sector command into TXDB.

2. The console takes the read command, and sets TX ready
in TXCS.

3. VMS puts a sector number into TXDB.

4, The console takes the sector number and sets TX
ready.

5. VMS puts a track number into TXDB.

6. The console takes the track number and sets TX ready.

7. The console initiates a floppy read function.

8. The floppy read is completed.

2-26

C.

2.12

A.

1a.

11.

12.

The console sends a floppy function complete message.
The floppy function complete message consists of a
select code of 2 in bits 8--11 of RXDB, and a floppy
status byte in bits @g--7 of RXDB.

VMS receives the floppy function completed message.

The console puts one byte of data in RXDB and sets RX
done.

VMS accepts one byte of data from RXDB. Steps 11 and
12 are done 128 times. When the 128th byte 1is
accepted by VMS, the read is complete.

NOTE

If a floppy error occurs on Step 8,
Steps 11 and 12 will be skipped.

Read status

5.

VMS puts the read floppy status command in TXDB.

The console takes the read status command and sets TX
ready in TXCS.

The console gets the floppy status from last floppy
function performed.

The console puts a floppy function complete message;,
with the floppy status, into RXDB and sets RX done.

VMS reads the floppy status.

Terminate floppy function

1.

2.

3.

4.

VMS puts the cancel floppy function command in TXDB.
The console takes the cancel floppy function.

The console terminates the floppy function 1in
progress, if any.

The console sets TX ready in TXCS.

MISCELLANEOUS CONSOLE COMMUNICATIONS
The console software will support certain additional functional
communications from VMS and the diagnostic supervisor (VMS/DS).

Examine console memory -- VMS supplies an offset from the
console-supplied base address of examinable memory space.
The console returns the examine code and the contents of
the requested byte.

Examinable Console Memory Space

2-27

(Octal Of

+145
+146
+147
+150
+151
+152
+153
+155

B.

fset from 37600 (8) -- FIRSTF)

Warm-start flag

Cold-start flag

APT-load flag

Last setting of remote and disable
Auto-restart flag

PCS version

WCS primary version

FPLA version

Software communication codes

1. Software done -- VMS issues this code to cause the
console to resume execution of an indirect-command
file that has been suspended due to a wait done

command.

2. Warm restart boot command -- The console will boot

the VvAX-11/7889.

3. Clear warm-start and cold-start flags -- VMS/DS
has
restarted/rebooted successfully. The console clears

issues these codes when the VAX
the associated flags.

NOTE
The cold and warm restart flags are used
by the console to prevent infinite loops
when a warm restart results in a
VAX-11/780 error halt.

2.13 COMMUNICATION REGISTER FORMATS AND SELECT CODES
The LSI-11 processor communicates with the VAX-11/788 CPU via two
registers on the console interface board. Figure 2-1 shows the
register formats and select codes.
TXDB
31 24 23. 16 1514131211 08 07 00
SELECT DATA
MB z
z M8 MBZ | FiED FIELD
RXDB
31 2423 1615141312 11 08 07 00
USED BY | SELECT DATA
MBZ MBZ DL-11_| FIELD FIELD
TK-0742
Figure 2-1 Communication Register Formats and Select Codes

2-28

Select Field Values (in hex)

Select Code

Device

Data Field Values

Y] Operator's terminal 9 through 7F ! ASCII data
1 Floppy drive g (data) ¢ through FF -- binary data
2 Floppy function complete | (floppy status)
3 Examine console memory Address offset/contents of
address
9 Floppy drive # (command) | @ = read sector
1 = write sector
2 = read status
3 = write deleted data
sector
4 = cancel floppy function
5 = protocol error
F Misc. communication 1l = software done
2 = boot VAX-11/789
3 = clear warm-start flag
4 = clear cold-start flag
NOTE
Code 5 (protocol error) is sent by the
console when one of the following
occurs:

1. Another floppy command

cancel floppy function)
by VMS before a previous command is

(except for

is issued

expecting a

completed.

2. The console gets a floppy drive @
code (DATA) when
command.

2-29

2.14 FLOPPY STATUS BYTE DEFINITION

The floppy status byte is used by VMS to determine the success or
failure of a read or write operation. The floppy status byte is
sent to VMS at the completion of a read, write, or read status
operation. The select code is always the floppy function complete
(code 2). The status bit assignments are shown in Figure 2-2.

RXDB
31 24 1615 1211 08070605 03 020100
MBZ MBZ MBZ |CODE 2 MBZ
L——-CRCEHR
PARITY ERROR
INIT DONE
DELETED DATA
ERROR
TK-0745
Figure 2-2 Floppy Status Bit Assignments
NOTE
The status bit assignments are identical
to those supplied by the floppy
controller, except for bit 7. Bit 7
corresponds to bit 15 of the floppy's
RXCS register.
2.15 REMOTE CONSOLE ACCESS COMMAND SET

A special set of commands is included in the console command
language of systems that use the remote diagnostic facility to
facilitate console access from a remote terminal or computer.
Commands can be initiated only on the terminal in control,
according to the five-position key switch. The remote access
command set provides for:

a. A talk mode, to allow communication between 1local and
remote terminal operators (enable talk).

b. A copy control, to permit suppressing or enabling typeout
on the 1local terminal while a remote operator 1is 1in
control (enable/disable local copy).

c. A method of transferring control of the console between
the local and remote operators (enable local control).

2-30

d. A method of controlling the echo of characters to the
remote terminal while in talk mode (enable/disable echo).

e. A method of suppressing lost carrier error messages
caused by a 1loss of carrier on the remote 1line
(enable/disable carrier error).

f. A method of enabling and disabling use of the console
subsystem floppy disk (enable/disable local floppy).

g. A method of enabling and disabling use of the remote
floppy disk (enable/disable remote floppy).

2.15.1 Enable Talk Mode Command
Syntax: ENABLE <blank> TALK <CR>

The enable talk command puts the console into talk mode. While in
talk mode, characters typed on the remote keyboard are typed on
the 1local terminal, and vice versa. The console does not echo
characters back to the originating keyboard, unless the talk mode
echo feature has been enabled. No console commands are recognized
while in talk mode.

Talk mode is terminated by typing the console escape character
("P) on the terminal in control. When talk mode is terminated,
console mode is enabled.

Entering talk mode causes the console to enable the remote serial
interface and assert the data terminal ready signal to the data
set. All terminal I/0 to a program running in the VAX-11/7864 CPU
is disabled while the console is in the talk mode.

2-31

2.15.2 Enable/Disable Echo Command
Syntax: (ENABLE ! DISABLE) <blank> ECHO <CR>

The enable echo command will cause the console to echo characters
typed on either the remote or local keyboards while in talk mode.
The disable echo command causes the console to suppress echo of
characters typed on both keyboards.

Enable and disable echo are issued while the console is in console
mode, but do not have any effect until talk mode is entered. A
disable echo is automatically done each time the console keyswitch

is put in the LOCAL/DISABLE position, and on power up of the
console.

2.15.3 Enable/Disable Local Copy Command
Syntax: (ENABLE ! DISABLE) <blank. LOCAL <blank> COPY

The enable local copy command causes the local terminal to print a
copy of all output directed to the remote terminal. The disable
local copy command disables the local terminal from getting a copy
of output directed to the remote terminal.

Local copy is automatically disabled each time the console
keyswitch is turned to the LOCAL or LOCAL/DISABLE position and on
power up of the console. Local copy is automatically enabled each
time the console keyswitch is placed in the REMOTE/DISABLE
position. '

2.15.4 Enable Local Control Command
Syntax: ENABLE <blank> LOCAL <blank> CONTROL <CR>

An enable local control command, issued by the remote terminal
operator while the console keyswitch is in the REMOTE position,
transfers control of the console to the local terminal operator.
(Normal remote operation locks out the 1local terminal.) This
allows a local operator to take control of the console and the
VAX-11/78¢ CPU, while the remote link is maintained. The remote
operator may regain control of the console by typing a Control P
on the remote keyboard.

An enable local control command issued from the local terminal has
no effect. Local control is automatically enabled when the console
keyswitch is placed in the LOCAL or LOCAL/DISABLE position, and
also on console power up.

2.15.5 Enable/Disable Carrier Error Command
Syntax: (ENABLE ! DISABLE) <blank> CARRIER <blank> ERROR <CR>

The enable carrier error command causes the console to print the
message ?CARRIER LOST each time a loss of carrier on the remote
line is detected. Also, if the console keyswitch is in the LOCAL
or REMOTE position, the console enters talk mode, enabling data
terminal ready on the modem.

2-32

The disable carrier error command causes the console to inhibit
the carrier lost message, and prevents a transition to talk mode.
An enable carrier error is automatically done on console power up,
and whenever the console keyswitch is placed in the LOCAL or
LOCAL/DISABLE position.

2.15.6 ENABLE/DISABLE LOCAL Floppy Command
Syntax: (ENable!DIsable)<BLANK>Local<BLANK>FLoppy

Enable local floppy will cause the directory of the local floppy
to be searched first, in an attempt to open a file. If the file is
not found, the remote floppy directory is searched. Note that in
terms of the console software, the remote floppy is a virtual
device. It may be a floppy or it may be some other storage device.

Disable local floppy will cause only the directory of the remote
floppy to be searched in an attempt to open a file.

An enable/disable local floppy command affects protocol operation
only (transmission format).

2.16 CONSOLE ERROR MESSAGES

This paragraph describes all console error message formats and
their interpretation. All console error messages are prefixed by a
question mark to distinguish them from informational messages.

2.16.1 Syntactic Error Messages
2<TEXT STRING> IS INCOMPLETE
The <TEXT STRING> is not a complete console command.

?<TEXT STRING> IS INCORRECT
The <TEXT STRING> is not recognized as part of a console command.

?FILE NAME ERR

A <FILENAME> given with a LOAD or @ command cannot be translated
to RAD50. One of the characters is not translatable to RAD5# or
the number of characters allowed is exceeded: six characters for
file name, three for extension.

2.16.2 Command Generated Error Messages

?FILE NOT FOUND

A <FILENAME> given with a LOAD or @ command does not match any
file on the current floppy disk. This error can also be generated
by a HELP or BOOT command if the help file or boot file is missing
from the floppy.

?NO CPU RESPONSE
The console timed out while waiting for a response from a
VAX-11/780 CPU microroutine.

?CPU NOT IN CONSOLE WAIT LOOP, COMMAND ABORTED

A console command that required the assistance of the VAX-11/784
CPU was issued when the CPU was not in the console service loop.

2-33

?CPU CLOCK STOPPED, COMMAND ABORTED
A console command that requires the CPU clock to be running was
issued with the clock stopped.

?IND-COM ERR
An indirect command file error was detected. This error is
generated if:

a. An indirect command line exceeds 8@ characters.
b. An indirect command line does not end with <CR> <LF>.

2.16.3 Microroutine Brror Messages

The console uses various microcode routines in the VAX-11/784 CPU
control store to perform console functions. The following errors
are generated by microroutine failures.

?MEM-MAN FAULT, CODE = XX

A virtual examine or deposit caused an error in the memory
management microroutine. XX is a one-byte error code supplied by
the memory management routine and defined in Table 2-8.

NOTE
Bit positions are numbered from the
right.

Table 2-8 Memory Management Error Code Definitions

Bit Position Definition

7} Length violation

1 Fault was on a PTE reference
2 Write or modify intent

3 Access violation

4--7 Ignored

?MICROMACHINE TIME OUT
This message indicates that the VAX-11/780 micromachine has failed
to strobe interrupts within the maximum time period allowed.

?MIC-ERR ON FUNCTION

An unspecified error occurred in the CPU while servicing a console
request. Referencing nonexistent memory will cause this error.

?INT-REG ERR

An error occurred while referencing one of the VAX-11/780 CPU
internal (processor) registers. Specifying a register address that
is too large will cause this error.

2-34

?MICROERR, CODE = XX

An unrecognized microerror occurred. The code returned by the CPU
is not in the range of recognized error codes. XX is the one-byte
error code returned by the microroutine.

2.16.4 CPU Fault Generated Error Messages
?2INT-STACK INVLD
The VAX-11/788 CPU interrupt stack was marked invalid.

?CPU DBLE-ERR HLT
The VAX-11/786 CPU has done a double error halt.

?ILL I/E VEC
An illegal interrupt/exception vector was encountered by the
VAX-11/780 CPU.

?NO USR WCS

An interrupt/exception vector to WCS was encountered, and no WCS
exists.

?CHM ERR
A change-mode instruction was attempted from the interrupt stack.

2.16.5 RX@#1 Error Messages

?FLOPPY ERR, CODE = X

The console floppy driver (a part of the console software)
detected an error. X is an error code (in hexadecimal) and is
defined in Table 2-9.

Table 2-9 RX@l Error Message Code Definitions

Code Definition

2 Floppy hardware error (i.e., CRC,
parity, or a floppy firmware detected
error) .

1 An open file command failed to find the
specified file.

2 The floppy driver queue 1is full.

3 A floppy sector was referenced that is
out of the 1legal range of sector
numbers.

?FLOPPY NOT READY
The console floppy drive failed to become ready when booting.

?NO BOOT ON FLOPPY

The console attempted to boot from a floppy that does not contain
a valid boot block.

?FLOPPY ERROR ON BOOT
A floppy error was detected while attempting a console boot.

2-35

2.16.6 Miscellaneous Error Messages

INT PENDING

This is not actually an error (note absence of ?). The message
indicates that an error was pending at the time that a console
requested halt was performed. Type CONTINUE to clear interrupt.

?WARNING-WCS and FPLA VER MISMATCH

The microcode in the WCS is not compatible with the FPLA. This
message is printed on each ISP START or CONTINUE. However, no
other action is taken by the console.

?FATAL-WCS and PCS VER MISMATCH

The microcode in the PCS is not compatible with that in the WCS.
ISP START and CONTINUE are disabled by the console.

?REMOTE ACCESS NOT SUPPORTED

This message is printed when the console mode switch enters a
REMOTE position, and the remote support software is not included
in the console.

?TRAP -4, RESTARTING CONSOLE
The console took a time-out trap. Console will restart.

?UNEXPECTED TRAP

Console trapped to an unused vector. Console reboots when operator
. types Control C.

?2Q0BLOCKED

Indicates that the console's output queue is blocked. Console will
reboot.

2-36

CHAPTER 3
DIAGNOSTIC SUPERVISOR AND CONTROL

This chapter describes the basic structure and operating
characteristics of the diagnostic supervisor. In addition,
operator commands and execution control functions are described.
This description is applicable to macro testing, and while many
similarities exist for the micros, this chapter does not include
them (refer to Chapter 4).

3.1 SUPERVISOR STRUCTURE OVERVIEW

The diagnostic supervisor provides operator control and utility
support functions for three diagnostic runtime environments. The
three runtime environments are:

a. Cluster Environment (CE): This environment supports the
CPU cluster and repair level I/0O bus adapter diagnostic
programs. The CE consists of program modules that provide
utility services (i.e., error reporting, scope 1loops,
etc.), 1initialization and test dispatch, and operator
terminal interface. Additional modules provide load and
script management.

b. System Environment (SE): This environment supports the
repair level I/0 subsystem diagnostic programs, and the
device functional test programs. The SE provides the same
runtime support functions as the CE. Program modules
provide CPU cluster hardware interface support (i.e.,
real-time clock control, interrupt system control, I/O
bus adapter control, etc.).

c. User Environment (UE): This environment supports the I/O
subsystem functional level diagnostic programs that run
under the VMS operating system as a privileged user task.

I1/0 services are provided primarily for functional level programs.
This allows programs that can execute in an operating system
environment, which restricts I/0 access, to perform equally well
in a standalone environment.

The three supervisor environments are assembled into a common
executable module that provides all necessary operator and program
services. As shown in Figure 3-1, these services are implemented
in two major functional areas: Command Line Interpreter (CLI) and
Program Interface (PGI).

COMMAND LINE TEST
INTERPRETER PROGRAM
OPERATOR
TERMINAL 1
PROGRAM
INTERFACE o
UNDER
TEST

TK-0741

Figure 3-1 Basic Diagnostic Supervisor Structure

The CLI interfaces to an operator (controlling) terminal and
enables the operator to control the 1loading, sequencing, and
execution of diagnostic test programs. The CLI monitors all
control information passing between the terminal and the
supervisor. This information consists of supervisor commands from
the operator which control either supervisor or test program
operation. The CLI directs control to the appropriate supervisor
service module according to the command supplied by the operator.

The PGI provides common services required by all diagnostic test
programs. These services 1include operator interaction, program
control, error message formatting, memory management, and I/O
request handling. Note that the operator can communicate with the
diagnostic program only through a PGI message service or with the
CLI directly.

When the operator initiates diagnostic program execution (through
the CLI), that program assumes control. Once program execution
begins, the PGI handles all test information flowing between the
terminal or the Unit Under Test (UUT) (i.e., QI/O-I/0 driver
interface) and a functional 1level program. For repair 1level
programs, test information flows directly between the UUT and the
diagnostic program (i.e., direct test program access to I/O
registers).

Test control information flow between the terminal and the
diagnostic program consists mainly of test parameter requests and
responses, while test information flow between the UUT and the
program consists mainly of test stimuli and responses.

The diagnostic program executes until the test sequence is
completed, aborted, or the operator enters the appropriate control
character, at which point control returns to the CLI.

System errors not directly related to the UUT are handled by the
supervisor. Unless the program explicitly requests notification,
these errors are transparent to the program and are reported
directly to the operator. ‘

3-2

3.2 CLI FUNCTIONAL MODULE DESCRIPTION

The CLI consists of a tree-structured command decoder and several
service modules that execute the operator's commands (e.g.,
loading a diagnostic program from the system device; altering the
operational characteristics of the program; or driving the CLI
through a script file). The command syntax is a subset of the
console command language.

Once a command line is interpreted, the CLI dispatches control to
the appropriate service module. After the operator's command has
been completed or aborted, control is returned to the CLI. Certain
CLI service modules pass control to the diagnostic program, rather
than back to the CLI. However, the CLI continues to monitor the
operator's terminal for certain commands (e.g., “C).

3.2.1 Image Loader Module

The image loader allows the operator to specify a load device and
a file name for loading diagnostic programs. Depending on the
environment (i.e., console, system, or user), the device media
will be either the diagnostic load device (console floppy) or the
system load device.

3.2.2 Test Sequence Control Module

The test sequence control module provides the operator with the
capability to control the order in which tests within a program
are executed. This is implemented by specifying test numbers in
the run, start, and restart supervisor commands (Paragraph 3.4).

3.2.3 Script Processor Module

Automatic test sequence control is achieved through the use of a
script file. This script file is a line-oriented ASCII file that
contains standard CLI supervisor commands. To allow for commenting
on a command line, any text following a (!) on a line is ignored
by the script processor. Blank 1lines and extraneous spacing
characters are also ignored.

A script file may contain CLI supervisor commands (Paragraph 3.5)
only, or a combination of commands and program parameter
responses. Generating script or parameter files 1is performed
off-line using a standard editor system utility.

3.3 PGI FUNCTIONAL MODULE DESCRIPTION

The major function of the PGI module is to handle all information
flowing between the operator's terminal or the UUT and the
functional 1level I/0 program. While a diagnostic program 1is
executing, that program can call on the supervisor to supply
various services. These services provide the program with the
required common functions (e.g., memory allocation and mapping,
I/0 processing, operator terminal interfacing, error message
formatting, and system error handling).

Several of the functions the PGI provides are a subset of the VMS
system services. For example, the supervisor provides the VMS
queue I/0 service so that user mode diagnostics may be executed
standalone as well as under VMS.

3-3

3.3.1 Memory Management and Adapter Services

All memory buffer allocation 1is performed by the diagnostic
supervisor. This ensures system integrity throughout the various
operating environments.

All necessary interfacing between the CPU and UUT will be handled
by the diagnostic supervisor.

Running standalone, the supervisor provides I/O services similar
to those available under VMS. This provides a smaller standalone
environment for running user mode diagnostics. Only a small kernel
subset of VMS system services is provided.

All functional level diagnostics perform device I/O as specified
by the VMS operating system. However, in addition to the normal
queue I/0 functions, VMS provides special features that diagnostic
programs can use if executing as privileged processes. On I/0
completion, if requested and privilege permitting, raw status is
deposited into a buffer specified by the program. This status
contains all device registers and pertinent channel registers. A
time stamp is also deposited into the status buffer.

3.3.2 Operator Terminal Services

Since the diagnostic programs do not interface directly with the
operator's terminal, the supervisor provides all required operator
communication services for the diagnostic program. The program can
perform operator dialogue through a supervisor service to allow
testing of mechanical devices that require operator interaction.

The terminal drivers within the service eliminate the need for the
diagnostic programmer to be aware of the type of terminal
currently used by the operator.

The output to the operator, including error reporting, uses
formatted ASCII output to simplify the program's message-sending
routines. Conversion of binary data to ASCII display is handled by
the diagnostic supervisor instead of the programmer. The formatted
ASCII output syntax is the same as that used by VMS.

3.3.3 System Error Handling
All system errors are intercepted and reported directly to the

operator by the supervisor unless the program explicitly requests
notification of exceptions or interrupts.

3.4 SUPERVISOR COMMAND DESCRIPTIONS

The following paragraphs describe the operator command and
execution control functions provided by the diagnostic supervisor.
Where appropriate, examples of command usage are included.

3.4.1 Command Terms and Symbols

Since the supervisor commands are a subset of the console
commands, many of the console command terms and symbols are used
in the symbolic supervisor command descriptions. The applicable
characters are defined in Table 3-1.

3-4

Table 3-1 Term and Symbol Definitions

Term/Symbol Definition

! Used to indicate the Exclusive OR operation
(i.e., selection of parameters within a
command line)

() Used to indicate that one of the syntactic
units of the expression is to be selected

< > Used to indicate symbolic arguments, or
program functions to/from the operator
terminal

[] Used to indicate that part of an expression
is optional; e.g., WAIT [<blank> <count>]
indicates that the wait command takes an
optional <count> argument

<blank> Represents one or more spaces

<tab> Represents one or more tabs

<count> Represents a numeric count

<XYZ - 1list>

<address>
<data>
<qualifier>
<input prompt>
>>>

DS>

<CR>

<LF>

/

Indicates one or more occurrences from the
category indicated by XYZ

Represents an address argument

Represents a numeric argument

Represents a command modifier (switch)
Represents the console's input prompt string
Console program input prompt character
Diagnostic supervisor prompt

Represents a console terminal carriage return
Represents a console terminal line feed
Delimits a command from its qualifiers

Used as a separator within a list

Used as a separator within a command 1line.

3-5

3.4.2 Command Description Segments

Each supervisor command description is divided into three, four,
or five descriptive segments, depending on the particular command.
The descriptive segments are:

a. Syntax: describes the command structure.

b. Command description: a brief paragraph describing command
operation, general restrictions, or available options.

C. Response: a description of the console program response
to the specified command.

d. Qualifiers: a list of applicable command modifiers.
e. Options: a list of applicable command options.

The descriptive segments use the terms and symbols defined in
Table 3-1. Note that every command (or command line) must be
terminated with a <CR>.

3.4.3 Command Abbreviations

Supervisor command words, switches, and arguments may be
abbreviated by typing only enough characters to uniquely identify
each item. For example, the load command can be specified by L,
while the start command requires a minimum entry of ST.

3.4.4 Command Overview
The supervisor operator commands are divided 1into the three
following groups:

a. Load/test sequence control: provides the operator with
the capability of loading and sequencing diagnostic
programs.

b. Execution control: provides the operator with control of

the operational characteristics of the diagnostic program
and/or supervisor (e.g., looping, error reporting, etc.).

c. Debug/utility functions: provide the operator with debug
and wutility functions such as: breakpoints, examine,
deposit, etc.

The supervisors also support operator terminal characteristics
such as width, fill, etc. In addition, all control functions
provided by the console (e.g., Control C) are also supported by
the supervisor.

3.5 SEQUENCE CONTROL COMMANDS

The program/test sequence control commands provide the operator
with the capability of loading and controlling the sequencing of
diagnostic programs, as well as the capability of controlling the

sequence of test execution within a program. The supervisor also
provides for the execution of a single subtest, and if the pass
count option is used, provides a loop-on-subtest capability.

The submit command allows an entire diagnostic test session to be
predefined by the operator. The supervisor is then capable of
performing the test session without operator assistance.

Note that the symbolic argument <file spec> as used in the
following subsection is defined as:

dev unit :[UIC] filename . ext

3.5.1 Load Command
Syntax: LOAD <file spec> [/PHYSICAL : <address>] <CR>

The load command causes the specified file to be 1loaded into
memory. The supervisor obtains sufficient information from the
program.

After a successful load, the supervisor prints out the following
message: Progname-r.p LOADED.

Progname is the program name. This is the internal name which
the supervisor extracts from the program header section.

--r.p is the release version number and the DEPO (patch)
number of the program.

The optional PHYSICAL switch directs the image loader to attempt
to load the program into physically contiguous memory starting at
<address>. The <address> argument is normally accepted in
hexadecimal format by default.

3.5.2 Start Command
Syntax: START [/SEC : <section named] -- [/TEST : <first>]
[:<last> !/SUBTEST : <number>]] -- [/PASS : <count>] <CR>

The start command causes the program in memory to begin execution.
As execution begins, the supervisor enters into a dialogue with
the operator to determine the program specific parameters. (e.g.,
which units to test). The command switches and certain arguments
are optional.

The SECTION switch is program specific and not available for use
with all programs. When a section is selected, only the tests that
it contains will be executed.
The TEST switch is used in two distinctly different ways.

a. If the <first> and <last> arguments are specified, the

supervisor sequentially passes control to tests <first>
through <last> inclusively.

3-7

b. If the <first> argument is combined with the SUBTEST
switch, program execution begins at the beginning of the
<first> test and terminates at the end of SUBTEST
<number>.

If the SUBTEST switch is used in conjunction with the PASS switch,
the operator is provided with a loop-on-subtest capability. If the
optional PASS switch is not specified, a default <count> of one is
assumed.

If the TEST switch is not specified, all tests within the program
are executed. If only the <first> argument is specified with the
TEST switch, the <last)> argument is assumed by default to be the
highest numbered test within the program.

3.5.3 Restart Command
Syntax: RESTART [/SEC: <section name>] -- {[/TEST : <first>
[:<last> ! /SUBTEST : <number>]] -- [/PASS : <count>] <CR>

The restart command is similar to the start command; however, the
supervisor does not enter into the parameter retrieval dialogue.
This command requires that the program P-Tables have been
previously setup with a start command. Switch syntax is identical
to the start command switches.

3.5.4 Run Command
Syntax: RUN<file spec> [/SEC: <section-name>]! -- [/TEST : <first>
[¢+ <last>! -- /SUBTEST : <number>]] [/PASS : <count>]

The run command 1is equivalent to a 1load and start command
sequence. (Refer to Paragraph 3.5.2 for a description of the
optional switches.)

3.5.5 Control Characters and Special Characters
Table 3-2 contains a description of the control and special
characters recognized by the supervisor.

Table 3-2 Control/Special Character Descriptions

Character Description

Control C (°C) Returns program control to the supervisor
which enters a command wait state. The
operator may then issue any valid supervisor
command.

Control 0O ("0) Suppresses or enables (on a toggle basis)
console terminal output. Console terminal
output is always enabled at the next console
terminal supervisor input prompt. However,
the supervisor will override “0O and
reinstate an active output status to the
operator terminal when it is servicing
system errors, CLI prompts, or forced
messages.

Control U ("U) “U typed before a line terminator causes the
deletion of all characters entered since the
last line termination. The console echoes:
“U/<CR><LF>

Rubout Typing rubout deletes the 1last character
typed on the input 1line. Only characters
entered since the last line terminator can
be rubbed out. Several characters can be
deleted 1in sequence by typing successive
rubouts. The first rubout echoes as a
backslash (\) followed by the character
which has been deleted. Subsequent rubouts
cause only the deleted character to be
echoed. The next character typed that is not
a rubout causes another (\) to be printed,
followed by the new character to be echoed.

Carriage Return (CR) | Terminates a command line.

3.5.6 Continue Command
Syntax: CONTINUE <CR>

The continue command causes program execution to resume at the
point at which the program was suspended. This command is used to
proceed from a breakpoint, error halt, or Control C situation.

3.5.7 Summary Command
Syntax: SUMMARY <CR>

The summary command causes the execution of the program's summary
report code section which prints statistical reports.

39

3.5.8 Abort Command
Syntax: ABORT <CR>

The abort command executes the program's cleanup code and returns
control to the supervisor, which enters a command wait state. At
this point the operator may issue any command except restart or
continue.

3.5.9 Submit Command
Syntax: SUBMIT <file spec> [/LOG : ON ! OFF] [/CONSOLE : ON! OFF]
<CR>

The submit command causes the supervisor to read a script file
from any file-oriented device. The supervisor performs the
functions outlined in the script file and then returns control to
the operator at the console.

The script file may contain any valid operator commands, including
a submit command. However, a submit command within a script file
is considered a terminal command (i.e., the supervisor will close
the current script and log files and open new ones as specified by
the current command).

If the LOG switch is specified as ON, a transcript of the indirect
terminal dialogue is maintained in a file of the same filename as
the script file with an extension of .LOG on the device where the
script file is located. The default for this switch is OFF.

If the CONSOLE switch is specified as ON, the terminal dialogue
generated by the script file is printed on the operator's
terminal. The default for this switch is ON.

3.6 EXECUTION CONTROL COMMANDS

This group of commands allows the operator to statically or
dynamically alter the operational characteristics of the
diagnostic program and/or the supervisor. These functions are
implemented by flags that reside in both the supervisor and the
program. The event flags are located within the diagnostic program
and are supported by VMS and the supervisor.

These commands are used to control the printing of error messages,
ringing the bell, halting and looping of the program, etc. Flags
are provided that indicate to the supervisor which type of
dialogue characteristics are desired by the operator. The operator
also has access to a subset of the event flags that are available
to the program.

3.6.1 Set Control Flag Command
Syntax: SET [FLAGS] <argument list> <CR>

This command sets the execution control flags specified by
<argument list>; no other flags are affected. <argument list> is a
string of flag mnemonics separated by commas. The applicable flags
are described in Table 3-3.

3-10

Table 3-3 Control Flag Descriptions

Flag

Description

HALT

LOOP

BELL

IEl

IE2

IE3

IES

QUICK

Halt on error detection. When the program
detects a failure, with this flag set, the
supervisor enters a command wait state after
all error messages associated with the
failure have been output. The operator may
then continue, restart, or abort the
program. This flag takes precedence over the
LOOP flag.

Loop on error. When set, this flag causes
the program to enter a predetermined scope
loop on a test or subtest that detects a
failure.

Looping will continue until the operator
returns to the supervisor by using “C. The

operator may then continue, clear the flag
and continue, restart, or abort the program.

Bell on error. When set, this flag will
cause the supervisor to output a bell to the
operator whenever the program detects a
failure.

Inhibit error messages at level 1. When set,
this flag suppresses all error messages
except those that are forced by the program
or supervisor.

Inhibit error messages at level 2. When set,
this flag suppresses basic and extended
information concerning the failure. Only the
header information message (the first three
lines) is output for each failure.

Inhibit error messages at level 3. When set,
this flag suppresses extended information
concerning the failure. The header and basic
information messages are output for each
failure.

Inhibit summary report. When set, this flag
suppresses statistical report messages.

Quick verify. When set, this flag indicates
to the program that the operator desires a
quick verify mode of operation.

Table 3-3 Control Flag Descriptions (Cont)

Flag Description

SPOOL List error messages on line printer. When
set, this flag causes the supervisor to
direct all program messages to the 1line
printer. In the VMS environment, the
messages are not actually printed but
entered into a file on disk (not vyet
implemented).

TRACE Report the execution of each test. When set,
this flag causes the supervisor to report
the execution of each individual test within
the program as the supervisor dispatches to
that test.

LOCK Lock in physical memory. When set, this flag
disables the program relocation function.
Self-relocating programs are then locked
into their current physical memory space.

OPERATOR Operator present. When set, this flag
indicates to the supervisor that operator
interaction is possible. When cleared, the
supervisor takes appropriate actions to
ensure that the test session bypasses any
tests that require manual intervention.

PROMPT Display long dialogue. When set, this flag
indicates to the supervisor that the
operator wants to see the 1limits and
defaults for all questions printed by the
program.

ALL All flags in this 1list.

3.6.2 Clear Control Flag Command
Syntax: CLEAR [FLAGS] <argument list> <CR>

The clear command clears the flags specified by <argument 1list)>;
no other flags are affected. The <argument list> is a string of
flag mnemonics separated by commas. The supported arguments are
described in Table 3-3.

3.6.3 Set Control Flag Default Command
Syntax: SET FLAGS DEFAULT <CR>

This command returns all flags to their initial default status.
The default flag settings are OPERATOR and PROMPT.

3.6.4 Show Control Flags Command
Syntax: SHOW FLAGS <CR>

This command causes the display of all execution control flags and
their current status. The flags are displayed as two mnemonic
lists: one for set flags, one for clear flags.

3.6.5 Set Event Flags Command
Syntax: SET EVENT [FLAGS] <argument list> ! ALL <CR>

This command sets those event flags specified by <argument list>;
no other event flags are affected. The <argument list> is a string
of flag numbers 1in the range 1--23, separated by commas. The
optional ALL may be specified instead of <argument list>.

Event related services are provided by the supervisor to provide
intraprocess synchronization and signaling by means of event
flags. Event flags are located in clusters of 32 flags each.

The supervisor provides two event flag clusters. Event flags are
specified by the numbers @--63. However, flags 24--31 are
restricted for use by VMS. The operator has the capability to
interactively set and clear flags 1--23.

Note that numbers 32--63 are for program use. Number @ is used by
the supervisor.

3.6.6 Clear Event Flags Command
Syntax: CLEAR EVENT [FLAGS] <argument list> ! ALL <CR>

This command clears those event flags specified by <argument
list>; no other event flags are affected. The optional ALL may be
specified instead of <argument list>.

3.6.7 Show Event Flags Command
Syntax: SHOW EVENT [FLAGS] <CR>

This command causes the display of a 1list of the event flags
currently set.

3.7 DEBUG AND UTILITY COMMANDS

This group of commands provides the operator with the ability to
alter diagnostic program code. The supervisor allows up to 15
simultaneous breakpoints within the program. The operator can also
examine and/or modify the program image in memory. Optionally, a
modified image can be written to a load device so that patching
need occur only once.

Another feature allows the operator to unconditionally list any or
all of the program error messages.

3.7.1 Set Base Command
Syntax: SET BASE <address> <CR>

3-13

This command loads the address specified into a software register.
This number is then used as a base to which the address specified

in the set breakpoint, clear breakpoint, examine, and deposit
commands is added. The set base command is useful when referencing
code in the diagnostic program listings. The base should be set to
the base address (see the program link map) of the program section
referenced. Then the PC numbers provided in the listings can be
used directly in referencing locations in the program sections.

NOTE
Virtual address = physical address
(normally) when memory management is
turned off.

3.7.2 Set Breakpoint Command
Syntax: SET BREAKPOINT <address> <CR>

This command causes control to pass to the supervisor when program
execution encounters the <address> previously specified by this
command. A maximum of 15 simultaneous breakpoints can be set
within the diagnostic program.

3.7.3 Clear Breakpoint Command
Syntax: CLEAR BREAKPOINT <address> ! ALL <CR>

This command clears the previously set breakpoint at the memory
location specified by <address>. If no breakpoint existed at the
specified address, no error message is given. An optional argument
of all clears all previously defined breakpoints.

3.7.4 Show Breakpoints Command
Syntax: SHOW BREAKPOINTS <CR>

This command displays all currently defined breakpoints.

3.7.5 Set Default Command
Syntax: SET DEFAULT <argument list> <CR>

This command causes setting of default qualifiers for the examine
and deposit commands. The <argument list> argument consists of a
data length default and/or radix default qualifiers. If both
qualifiers are present, they are separated by a comma. If only one
default qualifier is specified, the other one is not affected.
Default defaults are HEX and LONG. Default qualifiers are:

Data Length: Byte, Word, Long
Radix: Hexadecimal, Decimal, Octal

3.7.6 Examine Command
Syntax: EXAMINE [<qualifiers>] [<address>] <CR>

The examine command displays the contents of memory in the format
described by the qualifiers. If no qualifiers are specified, the
default qualifiers set by a previous default command are
implemented. The applicable qualifiers are described in Table 3-4.

3-14

Table 3-4 Qualifier Descriptions

Qualifier Description

/B Address points to a byte

/W Address points to a word

/L Address points to a longword
/X Display in hexadecimal radix
/D Display in decimal radix

/0 Display in octal radix

/A Display in ASCII bytes

When specified, the <address> argument is accepted in hexadecimal
format unless some other radix has been set with the set default
command. Optionally, <address> may be specified by immediately
preceding the address argument with %D OR %0, respectively.
<Address> may also be one of the following: R@#--R11, AP, FP, SP,
PC, PSL.

3.7.7 Deposit Command
Syntax: DEPOSIT [<qualifiers>] <address> <data> <CR>

The command accepts data and writes it into the memory location
specified by <address> in the format described by the qualifiers.
If no qualifiers are specified, the default qualifiers are
implemented. The applicable qualifiers are identical to those of
the examine command and described in Table 3-4.

The <address> argument is accepted in hexadecimal format unless
some other radix has been set with the set default command.
Optionally, <address> may be specified as decimal or octal by
immediately preceding <address> with %D or %0, respectively.

3-15

CHAPTER 4
MICRODIAGNOSTIC DESCRIPTION

4.1 MICRODIAGNOSTIC PROGRAM OVERVIEW
The microdiagnostic programs provide module isolation for 1logic
failures within the CPU, floating-point, and MDS memory
controllers. All detected failures result in an error printout
indicating the module, or smallest set of modules, to which the
microdiagnostics can isolate the failure.

The microdiagnostic package consists of two major test divisions:
console adapter and hardcore, and microtests. Each test division
is controlled by an associated monitor that ©provides
non-diagnostic services to that division.

a. Hardcore Monitor -- Console Adapter and Hardcore Program
b. Microtest Monitor -- Microtest Program

Both test division monitors are serviced by the console-resident
microdiagnostic monitor. 1In addition to loading the hardcore and
microtest monitors, the microdiagnostic monitor allows the
operator test selection and execution options (Paragraph 4.6). 1In
order to reduce the address space required to execute the hardcore
and microtest programs, the common code of both programs has been
incorporated into the microdiagnostic monitor. That code, which
is unique to either the hardcore tests or microtests, has been
incorporated into the associated monitors.

The microdiagnostics reside on diskettes for the floppy drive.
The basic test sequence is: 1) hardcore tests, 2) microtests.
The hardcore tests verify the operation of the minimum logic
required to reliably execute the microtests. The minimum logic
consists of the basic hardware elements required for data transfer
and error reporting.

The code, data, and structure required by the microdiagnostics
prohibit them from being resident in the LSI-11 address space at
any one time. The hardcore tests are executed out of a small
buffer area in the LSI-11 memory. The microtests are executed out
of the WCS of the VAX-11/780 CPU.

4.2 BASIC PROGRAM EXECUTION

With the console program resident (in LSI-11 memory), the operator
can execute the entire microdiagnostic package by issuing the test
commang. The console program overlays itself with the
microdiagnostic monitor from the console floppy. (However, the
floppy and terminal software drivers are not overlaid since they
provide utility service to each of the monitors.)

In turn, the microdiagnostic monitor transfers the hardcore
monitor into the LSI-11 memory from the floppy. The hardcore
tests are then executed sequentially out of the buffer in the
LSI~-11 memory. On completion of the hardcore tests, the hardcore
monitor notifies the microdiagnostic monitor. The microdiagnostic

4-1

monitor, in turn, transfers the microtest monitor into the LSI-11
memory (from floppy). The microtest monitor then executes the
microtests out of the WCS in approximately 1K microword overlays.
On completion of the microtests, control 1is returned to the
console program.

Figure 4-1 illustrates program residency in the LSI-11 memory.
Note that those items on a horizontal 1line are exclusive in
memory; e.g., the console program or the microdiagnostic monitor
may be resident, but not both. As previously mentioned, the
floppy and terminal drivers (and software bootstrap) are always
resident.

4.3 BASIC TEST STRATEGY

The basic test strategy is to transfer data from a test source and
load it into the logic element under test. The next step is to
retrieve the data from that element and compare it with the
original data 1loaded. Depending on the test requirements, logic
element structure, and functional location, the retrieved data may
or may not have a true compare. In either case, the fail/no fail
decision is based on the expected results. In some tests, the
same logic is tested using an array of data patterns.

HARDCORE
TEST STREAM
OVERLAYS
1 B - MICRO-CODE
I I BUFFER
.
I)
HARDCORE MICRO-TESTS
MONITOR MONITOR
MICRO-
WCS
DEBUGGER CONSOLE DIAGNOSTIC
MONITOR

L I |
I

FLOPPY &
TERMINAL
DRIVERS

TK-0754

Figure 4-1 LSI-11 Memory Program Residency

4-2

It is essential to the test strategy that the basic load and error
reporting paths are initially tested for reliable operation. 1In
an error-free situation, the microdiagnostic can notify the user
when a test is completed. In the case of error detection, the
microdiagnostic can identify for the user: the failed module and
test, the data pattern used, and the expected test result.

A simplified test procedure is illustrated in Figure 4-2. Note
that a true compare is not necessarily the expected result.

GENERATE TEST
DATA, WRITE
TO REGISTER

READ REGISTER
COMPARE DATA

DISPLAY:
YES TEST 1.D.
TEST DATA
RESULTS

NEXT HALT

TEST OR
REPEAT TEST

OR
NEXT TEST

TK-0779

Figure 4-2 Simplified Microdiagnostic Test Procedure

4-3

4.4 HARDCORE TEST DESCRIPTION
The hardcore tests are the initial set of microdiagnostic tests
executed. Paragraph 4.4.1 describes the hardcore test structure.

The hardcore tests initially check the control and data registers
of the Console Interface Board (CIB). This ensures test access to
the VAX ID Bus. After the CIB tests, the clock board is tested.
The clock is turned on and off, single-stepped, and certain clock
function status is retrieved over the Visibility Bus (V Bus).

The next element tested is the microsequencer. For example, data
is transferred onto the microstack and then retrieved. An address
is placed on the microstack. The maintenance return feature is
then used to pop the address off the microstack and load it into
the micro PC. This allows the microaddress paths to be tested in
small segments.

As shown in Figure 4-3, the remainder of the hardcore test
sequence tests WCS, PROM Control Store (PCS), and basic elements
of the data path. Generally, these are address integrity and
parity checking tests. The WCS is tested by writing a variety of
address and data patterns to it, and checking for good parity, or
forced bad parity.

The basic elements of the data path are tested by writing data to
certain registers, reading that data back, and comparing the
results. The data path is tested for its ability to transmit and
retain expected data. The basic capabilities of the Arithmetic
Logic Unit (ALU) to transfer and compare data are tested. The
scratch pads are also tested for retaining data; the scratch pads
are used to hold error data in the case of error detection.

CLOCK

START/STOP
STATUS

usc

ADDRESS PATHS

TRAPS, ECO'S
STACK
MAINT. RETURN
HARDCORE > ciB
TESTS wces
DATA REGS PARITY GEN.
CONTROL/STATUS ADDRESS INTEG.
ID BUS DATA INTEG.
CLOCK CONTROL
PCS

PARITY CHECKER
ADDRESS INTEG.

DATA
PATH

D BUs Q& D REGS.
SCRATCHPADS
ALU
ZERO BRANCH

“TK-0751

Figure 4-3 Hardcore Test Sequence

4.4.1 Hardcore Test Structure

Because of the limited LSI-11 memory address space, the hardcore
tests are sequentially loaded from the floppy and executed out of
a 1.5K byte buffer in the LSI-11 memory. The hardcore tests are
implemented using special pseudo instructions. The pseudo
instructions are actually functional statements, where each
statement produces a table of parameters that resemble op codes
and operand addresses,

The hardcore monitor contains a software PC which, in effect, is a
pointer into the tables. Based on the content of the op codes and
operands, the monitor calls subroutines that are written in PDP-11
code to perform the operation required by a specific test.
Implementing test code in this manner allows a large test
functionality to reside in a small address space.

4-5

4.4.2 Pseudo Instruction Description

The following paragraphs describe the hardcore test pseudo
instructions and their associated statement formats. Table 4-1
defines the symbols and abbreviations used 1in describing the
statement formats.

Table 4-1 Instruction Symbol/Abbreviation Definitions

Item Definition

< > Used to denote a category name or argument within a
functional statement, e.g., <SCR ADDRESS> represents a
valid source address.

[] Used to indicate that part of a functional statement
that is optional, e.g., [<KWCS ADDRESS INDEX>],
represents an address index value that may or may not be
specified depending on the functional statement.

' Used to separate category names or arguments within a
functional statement.

SCR Abbreviation for source.
DST Abbreviation for destination.
I,J,K Legal index names.

Each pseudo instruction description 1is divided 1into two
descriptive segments. The format segment describes the statement
format using the symbols defined in Table 4-1. The instruction
description is a brief paragraph describing general command
operation and the available options. Each instruction description
is preceded by the instruction mnemonic in boldface type.

BLKMIC

BLKMIC <SCR ADDRESS>, <SCR INDEX>, <WCS ADDRESS>,
<WORD COUNT>, [<KWCS ADDRESS INDEX>]

Move the <WORD COUNT> number of 96-bit microwords from the <SCR
ADDRESS>, indexed by <SCR INDEX>, to the WCS starting at <WCS
ADDRESS>, indexed by <WCS ADDRESS INDEX>. If an <SCR INDEX> is
specified, the <SCR ADDRESS> is indexed by six PDP-11 words (i.e.,
96 bits).

If the <WCS ADDRESS> starts with an alpha character, the <WCS
ADDRESS> is used as a pointer to a table in the test data area of
the test. Otherwise, it is used as a physical WCS address.

For example, if the current value of the index is 2, 148 (<SCR
INDEX> * 6) would be added to the <SCR ADDRESS> to find the first
96-bit microword to load into the WCS.

4-6

CHKPNT

CHKPNT [<PASS ADDRESS>], [<FAIL ADDRESS>]

If the error flag, set during a compare instruction (see CMPXXX
instructions), is 2zero, go to the <PASS ADDRESS>. If the error
flag is not zero, go to the <FAIL ADDRESS>. 1If neither a pass nor
a fail address is specified, go to the next instruction in line.

The address of the next instruction is typed. These addresses
appear on the typed line named TRACE (Figure 4-140).

CLOCK
CLOCK <TIMES>

Step the system clock <TIMES> number of single time states. If
<TIMES> 1is an integral number of four, single bus cycles are
executed for each four <TIMES>.

CMPCA
CMPCA [<MODE>], <REGISTER>, <DST ADDRESS>, [<DST ADDRESS INDEX>]

Compare the contents of the console register specified by
<REGISTER> with the contents of the 1location specified by <DST
ADDRESS>, indexed by <DST ADDRESS INDEX>. The <MODE> argument is
generally EQUAL. If left blank, the default for <MODE> is EQUAL.

If the comparison is false, set the error flag. If the <MODE>
argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READID instruction.

CMPCAD

CMPCAD [<MODE>], <REGISTER>, <DST ADDRESS>, [<KDST ADDRESS INDEX>]

Compare the contents of the console registers specified by
<REGISTER> and <REGISTER>+2 with the contents of the 1location
specified by <DST ADDRESS> and <DST ADDRESS>+2, indexed by <DST
ADDRESS INDEX>.

If the comparison 1is false, set the error flag. If the <MODE>
argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the

register used in the comparison is the ID Bus register that was
read in the most recent READID instruction.

4-7

CMPCAM

CMPCAM [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS
INDEX>] , <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the content of the console register specified by <REGISTER>,
mask it with the content of the <MASK ADDRESS>, indexed by <MASK
ADDRESS INDEX>, and compare it with the content of <DST ADDRESS>,
indexed by <DST ADDRESS INDEX>.

If the comparison is false, set the error flag. If the <MODE>
argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the

register used in the comparison is the ID Bus register that was
read in the most recent READIN instruction.

The mask is performed by taking the content of <MASK ADDRESS>,
indexed by <MASK ADDRESS INDEX>, complementing it, and
bit-clearing the contents of <REGISTER> with it.

CMPCMD

CMPCMD [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS
INDEX>], <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the content of the console registers specified by <REGISTER>
and <REGISTER>+2, mask it with the contents of <MASK ADDRESS> and
<MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>», and compare it
with the contents of <DST ADDRESS> and <DST ADDRESS>+2, indexed by
<DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag. If the
<MODE> argument is not specified, it defaults to EQUAL.

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READIN instruction.

The mask is performed by taking the content of <MASK ADDRESS> and
<MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>, complementing
it, and bit-clearing the contents of <REGISTER> and <REGISTER>+2.

CMPPCSV
CMPPCSV <DST ADDRESS>, [<DST ADDRESS INDEX>]
Compare the content of the PC save register with the content of

the location specified by <DST ADDRESS>, indexed by <DST ADDRESS
INDEX>. 1If the contents are not equal, set the error flag.

4-8

ENDLOOP
ENDLOOP <INDEX NAME>

Add the increment value of <INDEX NAME> (see loop instruction) to
the current value of the index specified by <INDEX NAME>. Compare
the current value with the 1last value (specified in the 1loop
instruction). If the current value is less than or equal to the
last value, go to the instruction following the associated (I, J,
or K) 1loop instruction. Otherwise, go to the next sequential
instruction.

ERRLOOP
ERRLOOP

Save the address of the next instruction. If an error 1is
detected, and the 1loop or error flag is set (Paragraph 4.6),
execution is restarted at this saved address after the IFERROR
instruction is executed (Figure 4-11).

FETCH
FETCH <WCS ADDRESS>, [<KWCS ADDRESS INDEX>], [<WCS ROM NOP>]

If <WCS ADDRESS> is a numeric string, execute a maintenance return
to the 1location specified by <WCS ADDRESS>, indexed by <WCS
ADDRESS INDEX>. If <WCS ADDRESS> is an alphanumeric string,
execute a maintenance return to the 1location specified by the
content of <KWCS ADDRESS>, indexed by <WCS ADDRESS INDEX>. If <ROM
NOP> is specified, clear bit 7 of the Machine Control Register
(MCR) during the maintenance return.

FLTONE
FLTONE <DST ADDRESS>, <INDEX NAME>
Generate a 32-bit word of all zeros. 1Insert a logic one in the
bit postion specified by the current value minus one of <INDEX
NAME>, and load this word into the 1location specified by <DST
ADDRESS> and <DST ADDRESS>+2.

FLTZRO
FLTZRO <DST ADDRESS>, <INDEX NAME>
Generate a 32-bit word of all logic ones. Insert a zero in the
bit position specified by the current value minus one of <INDEX

NAME>, and load this word into the location specified by <KDST
ADDRESS> and <DST ADDRESS>+2.

4-9

IFERROR
IFERROR [<MESSAGE NUMBER>], [<FAIL ADDRESS>]
If the error flag is nonzero, type the PC of this instruction, the
test number, subtest number, and the good and bad data. Then, go
to <FAIL ADDRESS> if the HALTD flag is not set (Paragraph 4.6).

If the error flag is zero, or the <FAIL ADDRESS> is not specified,
go to the next instruction.

INITIALIZE

INITIALIZE
Set and clear the CPU initialize bit in the MCR, clear the single
time state bit, set the single bus cycle bit, set the ROM NOP bit,
and set the proceed bit in the MCR.

KMXGEN
KMXGEN <SRC ADDRESS>, <INDEX NAME>
Generate the KMUX address specified by the current value minus one
of <INDEX NAME> and 1load it into the KMUX field of the
microinstruction specified by <SRC ADDRESS>. <SRC ADDRESS> points
to a six word table in the test data section of the test that
contains the microinstruction.

LDIDREG
LDIDREG <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]
Load the ID Bus register specified by <REGISTER> with the contents
of the locations specified by <SCR ADDRESS> and <SCR ADDRESS>+2,
indexed by <SRC ADDRESS INDEX>.
If <REGISTER> is the microstack, microbreak, or WCS address, the
content of <SCR ADDRESS> is taken to be 16 bits. Otherwise, it is
taken to be 32 bits.

LOADCA
LOADCA <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]
Load the console register specified by <KREGISTER> with the

content of the location specified by <SRC ADDRESS>, indexed by
<SRC ADDRESS INDEX>. This instruction loads 16 bits of data.

4-10

LOOP

LOOP <INDEX NAME>, <START>, <END>, [<SIZE DEPENDENT>]

Initialize the 1loop parameter specified by <INDEX NAME> to the
value specified by <START>. Save the value specified by <END> for
the ENDLOOP instruction. Calculate and save the increment value
for the ENDLOOP instruction with the following algorithm:

If <START> 1is less than or equal to
<END>, set the increment value to +1;
otherwise, set it to -1.

If <END> is an <INDEX NAME>, save the current value of that index
name as the <END> value of this index name.

If <SIZE DEPENDENT> is specified, and there is only one WCS module
on the system, divide the larger of <START> and <END> by two.
Otherwise, leave them unchanged.

NOTE
The tests are written for two WCS
modules. This argument allows the loop
parameters to be modified at run time if
the system only has one module.

MASK
MASK <DST ADDRESS>, <MASK ADDRESS>

Take the content of location <MASK ADDRESS>, complement it, and
bit-clear the content of location <DST ADDRESS> with it.

MOVE
MOVE <SRC ADDRESS>, [<SRC ADDRESS INDEX>], <DST ADDRESS>

Move the content of <SRC ADDRESS INDEX> (indexed by <SRC ADDRESS
INDEX>) to the location specified by <DST ADDRESS>.

NEWTST

NEWTST <TEST NAME>, [<TEST DESCRIPTION>], [<LOGIC
DESCRIPTION>], [<ERROR DESCRIPTION>], [<SYNC POINT
DESCRIPTION>]

This instruction creates a test header document for the specified

arguments. It clears the error flag and saves the PC of the next
instruction for looping on test.

4-11

READID
READID <REGISTER>

Read the ID Bus register specified by <REGISTER> and load the
content into locations IDREGLO and IDREGHI.

RESET
RESET
Execute an LSI-11 reset instruction.

REPORT
REPORT <MODULE NAME STRING>
Type out the module numbers of the modules specified by <MODULE
NAME STRING>. If the HALTI flag 1is set, return to the
microdiagnostic monitor.

SETPSW
' SETPSW <DATA>

Load the LSI processor status word with the value specified by
<DATA>.

SETVEC
SETVEC <VECTOR ADDRESS>

Set the LSI-11 address specified by <VECTOR ADDRESS> to the
expected trap routine.

SKIP
SKIP [<DST ADDRESS>]
Go to the <DST ADDRESS>. 1If <DST ADDRESS> is not specified, go to
the next test. If <DST ADDRESS> starts with the alpha character
S, go to the next subtest.
SUBTEST
SUBTEST

Increment the subtest counter.

4-12

TSTVB
TSTVB <SRC TABLE ADDRESS>, [<SRC TABLE ADDRESS INDEX>]
Load and read the V Bus. Compare the contents of the data at <SRC

TABLE ADDRESS>, indexed by <SRC TABLE ADDRESS INDEX>, with the V
Bus data just read. The <SRC TABLE> has the following format:

1$: .WORD <NUMBER OF BITS TO CHECK>
VBUSG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT
VALUE>
2$: .WORD <NUMBER OF BITS TO CHECK>
VBUSG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT
VALUE>

VBUSG is a MACRO name that encodes the three arguments into one
16-bit word as follows:

BITS <@7:08> <CHANNEL NUMBER>
BITS <14:08> <BIT NUMBER)
BIT <15> = <EXPECTED BIT VALUE>

The following is an example of the <SRC TABLE ADDRESS INDEX>:

TSTVB 1§,1

If the current value of the <SRC TABLE ADDRESS INDEX> is 2,
and the <SRC TABLE> 1looks 1like the preceding table, the
physical <SRC TABLE ADDRESS> would be 2S§.

TYPSIZE

TYPSIZE

Use the content of location BADDATA, which contains the value of
the WCS data register when it was read, to determine the WCS
module configuration, and type a message and the number of WCS
modules that will be tested. If any of the following conditions
exist, the test stream is aborted and the NER (No Error Report)
flag is set.

a. WCS module count is zero
b. bits 3--0 are nonzero
c. fifth K of WCS is not present

These conditions mean that the WCS 1is either configured
incorrectly or the WCS data register cannot be read correctly.

4-13

4.5 MICROTEST DESCRIPTION

On completion of the hardcore tests, the microdiagnostic monitor
overlays the hardcore monitor with the microtest monitor.
Microtest sequencing and execution are then controlled by the
microtest monitor.

The microtest monitor begins to l1load the microtests from the
floppy into the same buffer area used by the hardcore tests.
However, in the case of microtests, this area is strictly a
buffer. Since the microtests are implemented in system microcode,
the tests are transferred from the buffer and loaded into and
executed out of the WCS.

The monitor references a table that contains the WCS addresses of
the first instruction of every test in the overlay (section) that
was just loaded in order to locate the address of the first test
(first entry in the table). The address 1is 1loaded onto the
microstack. A maintenance return 1is performed, popping the
address from the microstack into the micro PC and initiating
execution of the £first test. At the end of each test, the
microtest monitor is interrupted. This allows the monitor to
check that the microtests are being executed in the correct order.

The monitor then initiates the next test with another maintenance
return. This sequence continues until the original 1K microword
overlay has been executed. At this point, the microtest monitor
loads another 1K microword overlay into WCS.

Because of the microtest package size, more than one diskette is
required for storage. When the monitor executes the last test on
a diskette, it determines whether it is the last test of the
entire package. In the case where it is the 1last test, the
monitor prints out a message to the operator with instructions to
load the next sequential diskette and enter a command to continue
microtest execution (Paragraph 4.8).

4.5.1 Microtest Structure
The initial microtests complete the data path testing started by
the hardcore tests. The microtests then begin to test the

Translation Buffer (TB) and cache without using memory. The tests
check the TB and cache for their ability to retain correct address
and data information, and to check parity correctly.

The Instruction Buffer (IB) tests are then executed, again without
using memory. The IB test data is 1loaded into cache. The
microtests cause instruction test patterns to be retrieved from
cache, and check the IB branching functions and controls for the
data path.

The interrupt and condition code logic is checked in a similar

manner (i.e., test data loaded into and subsequently retrieved
from cache.)

4-14

The next test segment covers the SBI control 1logic and its
maintenance functions, and the memory system. After performing
these tests, the microtests go back and test those functions of
the TB, cache, and SBI subsystem that depend on retrieving data
from memory (e.g., cache, SBI faults, etc.). A minimal amount of
testing is performed on the Unibus and Massbus adapters. These
tests force selected errors on the SBI and determine the adapters!'
capability to detect and react to the forced errors correctly.

The floating-point accelerator is tested last.

Figure 4-4 shows the microtest sequence.

DATA PATH

TB, CACHE
W/0 MEMORY

|iB (W/O MEMORY)
IB BRANCH
FUNCTIONS,
CONTROLS FOR
DATA PATH

:

INTERRUPT &
CONDITION
CODE LOGIC

UTESTS

SB1 CONTROL
LOGIC,
MAINTENANCE
FEATURES,
IMEMORY SYSTEM

TB, CACHE, SBI
FUNCTIONS
PERTAINING
TO MEMORY

:

MINIMAL UBA,
MBA TESTING

:

FPA

TK-0778

Figure 4-4 Microtest Structure

4- 15

On completion of the microtests, control is returned through the
microdiagnostic monitor to the console program. The console
reboots, sends the relevant bootstrap header information to the
console terminal, and prompts for operator input.

4.6 MICRODIAGNOSTIC MONITOR CONTROLS

The following paragraphs describe the operator command execution
control functions provided by the microdiagnostic monitor. Where
appropriate, examples of command and program control flag usage
are included. Also included is a description of microdiagnostic
related error messages.

The majority of the commands available in the microdiagnostic
monitor are not used in the normal course of execution. Normally
the operator enters the test command and executes the entire
microdiagnostic package. The command mode is usually used
following error detection. Following the error message printout,
testing stops and control is returned to the monitor command mode.
At this point, the operator executes those microdiagnostic
commands he decides would be most helpful.

Symbols used in the command syntax are the comma and < >. The
comma is used to separate items within a 1list. < > denotes an
argument, that is, either an address, pass count value, or a V Bus
channel. Note that every command (or command 1line) must be
terminated with a carriage return (CR).

Control C (°C) 1is the user interrupt control character. If
Control C is entered during test execution, the current test will
complete, further testing is suspended, and control is returned to
the monitor command mode. If Control C is entered while a test is
looping on an error, the loop will be suspended and control
returned to the command mode. Any command may be aborted if a
Control C is entered in that command line.

Table 4-2 describes the monitor commands. Note that although all
commands, keywords, qualifiers, and flags are spelled out, they
can be abbreviated to the first two characters. The only
exceptions are the halt on error detection and halt on error
isolation flags, which must be typed HD and HI, respectively.

4-16

Table 4-2 Miérodiagnostic Command/Flag Descriptions

Command/Flag

Description

DIAGNOSE

Initializes the program control flags,
and starts microdiagnostic execution at
test number one.

Valid qualifiers are:

/TEST: <NUMBER> -- Dispatch to the test
number specified (do not execute any
prior tests), and 1loop on the test
indefinitely.

/SECTION: <NUMBER> -- Dispatch to the
section number specified (do not
execute any prior sections), and 1loop
on the section indefinitely.

/PASS: <NUMBER> -- Execute the micro-
diagnostics and the specified number of
passes before returning to the console.
If the number is -1, execute the micro-
diagnostics indefinitely.

/CONTINUE -- Used with the /TEST or
/SECT switch to automatically continue
after the specified test or section has
been reached.

/TEST: <KN> <M> -- Dispatch to test <N>,
execute tests <N> through <MD
(inclusive), and return to command
mode.

/SECT: <N> <M> -- Dispatch to section
<N>, execute sections <N> through <M>
(inclusive), and return to command
mode.

Examples

NOTE

In the preceding variations of the
/TEST and /SECTION qualifiers, the value
of <N> must be less than or equal to
<M>. If <M> is less than <N>, testing
will start at <N> and continue to the
end.

/TEST and /SECT cannot be specified
simultaneously.

DIAG/TEST: 2F

Dispatch to test number 2F and execute

it indefinitely.
4-17

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag

Description

CONTINUE

Set and Clear Flags

SET/CLEAR FLAG HD

SET/CLEAR

SET/CLEAR

SET/CLEAR

SET/CLEAR

SET/CLEAR

FLAG

FLAG

FLAG

FLAG

FLAG

CLEAR FLAG LS

CLEAR LT FLAG

SET/CLEAR

SET/CLEAR

SET/CLEAR SOMM:<ADDRESS>

FLAG

SOMM

HI

LOOP

NER

BELL

ERABT

ALL

DIAG/SECT:B
Dispatch to section
execute it indefinitely.

number B and

DIAG/PASS:—-1
Execute all of the microdiagnostics
indefinitely.

DIAG/TEST: 2F/CONT
Dispatch to test 2F and start execution
of the remaining tests.

Continues microdiagnostic execution
without changing the program control
flags.

Sets (or <clears) the halt on error
detection flag.

Sets (or <clears) the halt on error
isolation flag.

Sets (or clears) the 1loop on error
flag.

Sets (or clears) the no error report
flag.

Sets (or <clears) the bell on error
flag.

Sets (or clears) the error abort flag.

Clears the loop on special section
flag. (Note that this flag cannot be
set.)

Clears the loop on special test flag.
(Note that this flag cannot be set.)

Sets (or clears) all of the previous
flags.

Sets (or clears) the stop on micromatch
bit.

Loads address into the CPU microsync
register, and sets (or clears) the stop
on micromatch bit.

4-18

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag

Description

SET/CLEAR FPA:<ADDRESS>

SET STEP STATE

SET STEP BUS

SET STEP INSTRUCTION

SET CLOCK FAST

SET CLOCK SLOW

SET CLOCK NORMAL

SET CLOCK EXTERNAL

SHOW

LOOP

RETURN

Loads <ADDRESS> into the FPA microsync
register.

Sets the CPU clock to single time
state.

Sets the CPU clock to single bus cycle.

Both the SET STEP STATE and SET STEP
BUS commands cause the monitor to enter
step mode. Step mode types the current
clock state or the UPC value, and waits
for terminal input. If a space is
typed, the clock 1is triggered and the
current UPC value is typed out. If any
other character 1is entered, step mode
is exited.

Sets the software single instruction
flag and returns to the monitor. When
the hardcore tests are invoked, the
current value of the Test PC (TPC) is
typed. The monitor waits for terminal
input. If a space is typed, the
current pseudo instruction is executed
and the current value of the TPC is
typed. If any other character |is
typed, step mode is exited.

Sets the CPU clock speed to the fast
margin.

Sets the CPU clock speed to the slow
margin.

Sets the CPU clock speed to normal.

Sets the CPU clock for an external
oscillator.

Causes a display of the HD, HI, LOOP,
NER, BELL, ERABT, LS, and LT flags.

Clears the HD and HI flags. Sets the
LOOP and NER flags and executes a
continue command.

Returns control to the console program.

4-19

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag

Description

Examine

EXAMINE

EXAMINE

EXAMINE

EXAMINE

EXAMINE
EXAMINE
EXAMINE
EXAMINE

EXAMINE

EXAMINE

EXAMINE

EXAMINE

Commands

ID: <ADDRESS>

VBUS : <CHANNEL>

RA: <ADDRESS>

RC: <ADDRESS>

LA

LC

DR

VA

PC

The following examine commands cause
the current microinstruction to be
executed before the examine is
performed, if it is the first examine
since entering the monitor command
mode. All successive examines do not
execute any additional
microinstructions. ID Bus registers
Tl1--T8 are destroyed during the
examines, except for the V Bus
examines. All of the following
examines, except V Bus, advance the
clock to CPT@ before executing the
command .

Displays the content of the ID Bus
register specified by <ADDRESS>.

Displays the content of the V BUS
channel specified by <CHANNEL>. Bit ¢
is at the right side of the display.

Displays the content of the RA scratch
pad specified by <ADDRESS>.

Displays the content of the RC scratch
pad specified by <ADDRESS>. '

Displays the content of the LA latch.
Displays the content of the LC latch.
Displays the content of the D register.
Displays the content of the Q register.

Displays the —content of the SC
register.
Displays the content of the FE
register.
Displays the —content of the VA
register.

Registers
counter.

the content of the program

4-20

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag Description

Deposit Commands The deposit command is the same as the
examine command, except that the data
to be deposited must be supplied by the
user.

DEPOSIT ID: <ADDRESS> <DATA>
DEPOSIT RA: <ADDRESS> <DATA>
DEPOSIT RC: <ADDRESS> <DATA>
DEPOSIT LA: <DATA>
DEPOSIT LC: <DATA>
DEPOSIT DR: <DATA>
DEPOSIT QR: <DATA>
DEPOSIT SC: <DATA>
DEPOSIT FE: <DATA>
DEPOSIT VA: <DATA>
DEPOSIT PC: <DATA>

4.6.1 Monitor Control Examples

The following paragraphs provide usage examples of selected
monitor controls. These descriptions are brief and are intended
only to indicate some of the capabilities of the microdiagnostic
monitor.

4.6.1.1 HD/HI Flags -- In addition to testing, the
microdiagnostics perform two basic functions: error detection and
error isolation. Under normal circumstances, the user would set
the HI flag. Setting the HI flag initiates the following
microdiagnostic sequence:

a. Error detection
b. Call isolation routine to identify the error cause

c. Display an error message identifying the failed test,
data pattern used, and the failing modules

d. Terminate test execution.

In a situation where the user does not require a scope loop, and
wants to halt execution at the error detection point, the HD flag
is set. This flag halts the test before the microdiagnostic calls
the isolation routine overlay (e.g., V Bus compare).

4.6.1.2 Loop On Error Flag (LOOP) -- With this flag set, the
microdiagnostic will revert to a tight program loop after error
detection (assuming the NER flag is set). Note that the loop will
continue even though the error is intermittent; the flag must be
cleared to break the loop.

4-21

4.6.1.3 No Error Report Flag (NER) -- This flag suppresses the
typing of error messages. The flag is especially useful in the
case of looping on an error. Since the error printout takes time,
the scope sync is lost during typing time. With error reports
suppressed, the loop is tight and produces a reasonable sync.

4.6.1.4 Bell On Error Flag (BELL)

Hardcore Tests -- When running the hardcore tests, setting this
flag causes the console terminal to ring its bell when an error
occurs. This flag is wuseful in a situation where a manual
adjustment could clear the error. In this situation, the user

would set the LOOP flag and the NER flag, producing a tight loop.

However, with no error report, the user does not have an
indication of where the error cleared during the adjustment.
Setting the BELL flag is a compromise between a reasonably tight
error loop (the BELL flag slows the loop somewhat) and an error
indication during the adjustment. If a scope were used during the
adjustment, the user would have an error indication without losing
the scope trace.

Microtests -- In the microtests, one must 1loop on test
(DI/TEST:n); then, after the error message has been printed, set
the NER and BELL flags, clear the HI flag, and type CONTINUE.

4.6.1.5 Continue Command (CONT) -- This command allows the user
to proceed from a microdiagnostic halt situation. For example,
suppose that a hardware ECO, which has not been reflected in the
diagnostic system, is incorporated into the computer. When the
microdiagnostic halts following detection of the pseudo error, the
user can bypass the failing test and continue execution at the
next test by entering CONTINUE.

4.6.1.6 Error Abort Flag (ERABT) -- This flag allows the user to
display more than one error report in certain hardcore tests
(tests which exercise a particular piece of logic with more than
one data pattern).

For example, consider the situation where the ERABT flag is set,
and the test detects a type 2 error (ERROR2) on one of the initial
data patterns. 1If the user were to enter CONTINUE, the flag would
abort the remainder of the test and initiate execution of the next
sequential test. However, with the flag cleared, CONTINUE will
initiate execution of the same test with the next sequential data
pattern.

4.7 MICRODIAGNOSTIC RELATED ERROR MESSAGES
The following paragraphs describe the microdiagnostic-related
error message formats and their interpretation. All error

messages are prefixed by a question mark to distinquish them from
informational messages.

4-22

4.7.1 Syntax Error Messages

?USE DIAG COMMAND

Execution of a continue command was attempted before a diagnose
command. This would only occur if TEST/COM were used to invoke
the microdiagnostics from the console program.

2INVALID COMMAND
The previously entered command was not recognized.

2INVALID KEYWORD
The argument of a command was not recognized.

?NUMBER MUST BE HEX
A non-hexadecimal number was recognized.

4.7.2 System Error Messages

?0PEN FILE: <KNUMBER>

An error was detected and identified while trying to open a floppy
file. Error code is:

<NUMBER> = 1 = Floppy hardware error
<NUMBER> = 2 = File not found
<NUMBER> = 3 = Floppy not ready

?READ SECTOR: <NUMBER>
An error was detected and identified while trying to read a sector
from the floppy. Error code is:

<NUMBER> = 4 = Sector number out of range
<NUMBER> = 3 = Floppy queue full
<NUMBER> = 1 = Floppy hardware error

?KEYBOARD ERROR: <NUMBER>
An error was detected and identified while trying to read the
terminal. Error code is:

<NUMBER>
<NUMBER>

5
7

Terminal driver busy
Terminal hardware error

2UNEXPECTED TRAP TO 4 PC =
The LSI-11 trapped to 4 at the specified PC.

4.7.3 Go Chain Monitor Error Messages

?TIMEOUT IN TEST ... UPC =

Indicates that the microcode is hung. The monitor did not receive
a call from the microcode in the last four seconds.

?EXECUTION OUT OF SEQUENCE UPC = SHOULD BE =
The microcode has not executed the tests within the overlay in
sequential order.

?2CLOCK STOPPED UNEXPECTEDLY
The clock stopped and the SOMM bit was not set.

2ILLEGAL MONITOR CALL: <NUMBER>
The microcode made a call to the monitor with a bad argument,
which was <NUMBER>. 193

4.8 PROGRAM LISTING AND ERROR MESSAGE DESCRIPTIONS

The following paragraphs describe microdiagnostic program listings
and error message formats. It is beyond the scope of this chapter
to describe the various diagnostic program assemblers and their
associated languages.

4.8.1 Monitor Listing Descriptions

The program listings for the microdiagnostic-associated monitors
(i.e., microdiagnostic, hardcore, and microtest) share the same
listing format. That is, since the three monitors operate out of

the LSI-11, they are coded in MACRO-11 (PDP-11 assembly language)
and are discussed as one in the general description.

Each 1listing is comprised of three general sections: Table of
Contents, Program Definitions, and Program Code and Descriptions.
Each page in a listing has a title containing the name of the
program, the date the particular listing was generated, the page
number, and a line item that indicates the content of that page
(listing header) (Figure 4-5).

The Table of Contents is a list of the content of the program
listing. The first (left) column contains a hyphenated number. The
number preceding the hyphen specifies the page number of the
listing on which the line appears. The number following the hyphen
is a listing line number. This number specifies the starting line
(within the 1listing) of the associated listing content contained
in the right column (e.g., definitions, utility routines, test
sections, etc.)

The Program Definition section specifies register address
assignments, bit definitions, module and bus name assignments, and
other constants that are used throughout the program.

The remainder of the listing (and the largest section by far) is
the Program Code and Description section (Figure 4-5). The format
is described on a per column basis from left to right. Note that
the address and data radix for all monitor listings is octal.

- Column 1, Listing Line Number -- Each line in the listing
is assigned a unique decimal number to allow easy
referencing from the Table of Contents.

Column 2, Address —-- The address of the instruction.

Column 3, Content of the Address listed in Column 2 --
This is wusually an instruction (e.g., reference 1line
number 79 in Figure 4-5). The address is 1@¢1020, and its
content is @32767, which is the octal code for a Bit Test
(BIT) instruction.

Column 4 and 5 -- If the instruction is a two-word or
three-word instruction, the second and third words are
specified in columns 4 and 5, respectively (e.g.,
reference line number 79 in Fiqgure 4-5). This BIT

4-24

STAR MICRO YEST MONITOR MACRO MiQ

@3=MAR=77 10382 PAGE S

LISTING

FLAG TEST ROUTINE PAGE
HEADER
7: JSBTTL PLAG TEST ROUTINE
7
77 108776 @05067 177138 FLGTST: CLR TIMER) INITIALIZE THE TIMEOUT TIMER
78 ie1002 181 PDATESWR FIRST
[79 101020 ©32767 wn4ovd0 177084 1 WCTRLC, SWR] _CONTROL € FLAG SET? l€&————— TEXT
80 101026 020146/ E 118 } BRANCH IF NO REFERENC!
81 101032 @32767 @e9@d4 177054 81y #LOOP, SWR ? LOOP FLAG SET?
82 101936 001463 L] 118 ? BRANCH IF NO
83 101040 Q04767 003146 JsR PC,STOPCLK) 8TOP THE CLOCK
84 101044 GETUPC } GET THE CURRENT UPC
85 101046 212667 177022 MOV (8P)¢,STHPO 1 SAVE
86 191052 CALLMICNON } GO TO TWE WICRO MONITOR
87 101070 032767 000024 177014 81T ‘#L00P, SWR 7 LOOP FLAG STILL SET?
88 161076 opoin4! BNE 128 1 BRANCH IF YES
89 101100 052737 e@9200 163032 818 NCLRUWRD, ##CONMCR J GOING TO RESTORE MONITOR CALLS
90 101106 LOADID WER1ADR,#USCADR 7 LOAD THE ERROR i ADDRESS
91 101124 LOADID WER1DAT,#USCDAT) RESTORE. THE JUMP ADORESS
92 101142 LOADID WER2ADR,#USCADR j LOAD THE ERROR 2 ADORESS
93 101160 LOADID WER1DAT,NUSCDAT § RESTORE THE JUMP ADDRESS
4 76 004767 03236 85 PC,MRETURN J DO MAINTENANCE RETURN ON ORIGINAL UPC
193 204767 godaid4 1283 . PC,RUNCLK § STAR HE
6 26 105737 163016 1181 TSTE ##TXRDY 7 MICROCODE CALL YET?
97 101212 {00402 au1 108] BRANCH IF NO
98 101214 Q08167 @G0412 Jup 2 SECOND
99 101220 032737 ae004e 163032 1A% 817 WCLKSTPD,s#CONMCR 7 DID THE STAR CLOCK STOP? TEXT
100 101226 001116 BNE 3 } BRANCH IF YES REFERENCE
1AL 101230 232767 000004 176654 BIT #LOOP, SWR ? LOOP FLAG SET?
192 101236 001257 BNE FLGTST ? BRANCH IF YES
103 101249 P@5267 176666 INC TIMER ? INCREMENT THE TIMEOUT TIMER
:a; 191244 Q1256 8NE 19 ? BRANCH IF NO TIMEOUT YET
]
106 1
1o: ! THIS CODE INOICATES THAT THE MICROCODE HAS BLOWN UP
ie)
109
110 101246 TYPE WSCRLF '
111 11260 TYPE #NSG2 } TYPE TIMEQUT ERROR MESSAGE
112 181272 226767 177314 176546 cuP TSTSAVE,$TSTNM § IN THE FIRST TEST YET?
113 101302 ooinid 8NE 53) BRANCH IF YES
114 101362 016767 177324 {76564 MOV TSTSAVE,STHPO
115 101310 205267 176560 Ine sTMPR
116 101314 TYPES WSTNPQ,HEX
117 101332 a004e6 8r 6s
118 101332 583 TYPES @STSTNM,HEX ? TYPE THE TEST NUMBER
119 101346 681 TYPE NSIXSPC ? TYPE SIX SPACES
120 101360 TYPE #MSG3 } TYPE "UPCa"
121 101372 Q04767 022614 JSR PC,STOPCLK ? STOP THE STAR CLOCK
122 101376 883 LOADVBUS
123 to1400 GETUPC 7 READ THE UPC SAVE REGISTER
124 101402 012667 176468 Mov (SP}+,5THPD] SAVE IT
125 101426 | TYPES | #STHMPO,HEX 1 TYPE THE CURRENT UPC
| 126) 101422 | | | tvee ' wscRLF | 1
1271 101434 CALLMICMON 7 GO TO THE MICRD MONITOR |
128 101452 | 162767 | aveoed | 176372 | SuB | w4, TSTPTR # RESTART AT THE CURRENT TEST
| 129] 101460 ' aoes67 ' 177262 e | gest I, |
130 ' 1 | ¢ i
N | l i i | |
141 l | l Lt I | x
LISTING
LINE ADDRESS INSTRUCTION
NUMBER CONTENT MNEMONIC COMMENTS
ADDRESS SECOND AND LABEL OPERAND
THIRD WORDS DEFINITIONS
OF INSTRUCTION
TK-0773

Figure 4-5 Monitor Listing
Sample

4-25

instruction happens to be a three-word instruction, the
second word is @40000, and the third word is 177064.
Thus, this instruction is testing bit 14 (040000) to
determine if the Control C flag is set at address 177064.
(Note that this flag was defined in the definition
section.)

Column 6, Label -- This symbol is the name used by the
program mnemonics to reference this instruction (e.g.,
reference line number 95 in Figure 4-5). The label in
this case is 128.

Column 7, Instruction Mnemonic —-- This is the assembler
language mnemonic for the instruction (e.g., Bit Test
Instruction = BIT).

Column 8, Operand Definitions -~ These symbols and
mnemonics are the assembler language mnemonic definitions
for the operands.

Column 9, Comments —-- A brief description (following the
semicolon) of the instruction operation.

'4,8.2 Hardcore Listing Description

The general format of the hardcore listing is similar to that of
the monitors (i.e., Table of Contents, Program Definitions, and
Program Code and Descriptions). The left column of the Table of
Contents contains a hyphenated number. The number preceding the
hyphen specifies the page number of the listing on which the line
appears. The number following the hyphen 1is the 1listing 1line
number, indicating the starting line of the associated listing
contents. The definition section is similar to the monitor
listings, 1i.e., address, module and bus assignments, bit
definitions, and other constants used in the program.

The remainder of the listing is the Program Code and Descriptions.
As indicated in the Table of Contents, the hardcore tests are
composed of sections and tests. The section number represents a
1.5K byte segment. The section number is displayed on the console
terminal during hardcore test execution. The test number
identifies a test on a particular logic area or function. The
subtest number (which is not referenced in the Table of Contents)
identifies a particular portion of a test. For example, Subtest 1
floats a 1logic one through each bit of a register; Subtest 2
floats a logic zero through the same register.

As shown 1in Figure 4-6, the program code 1is preceded by an
outlined test header area. A subtitle statement (.SBTTL) generates
the test number and title above the header area.

The header area consists of five descriptive segments. The first
line within the outlined header repeats the test number and test
title. The test description segment is a brief paragraph
describing the general logic area tested and method of test. The
logic description segment describes the test in more detail.

4-26

MICRO DIAGNOSTIC WARDCORE TEST MACRD 18 20=APReTT 10137 PAGE 29

T1C CS BUS DATA INTEGRITY ‘—/SUBTITLE
1
2530 [.8BTTL TiC CS BUS DATA INTEGRITY | STATEMENT
[EARIAAR RS R 2R 2 2 X2 0 R 2 22 22 22222012 2322 22322 2222 3202222221232 32332]
P44
STEST 1€ CS BUS DATA INTEGRITY

TEST DESCRIPTION
THIS TEST CHECKS THE DATA INTEGRITY OF THE (8 BUS BY FLOATING
A ONE AND A ZERO THWRU A MICRO WORD, EXECUTING THE MICRO
WORD, AND CHECKING THE V BUS FOR PARITY ERRORS,

SUBTST | « FLOAT A ZERO THRU THE CS 8US
TEST SUBTST 2 « FLOAT A& ONE THRU THE CS BUS

HEADER

AREA \\\\\

LOGIC DESCRIPTION
THIS TEST CHECKS THE ID BUS INTERFACE TO THE WCS MOOULES, THE
DATA INTEGRITY OF THE WCS MEMORY CHIPS AND THE DATA INTEGRITY OF
THE CONTRQL STORE (CS) BUS,

ERROR DESCRIPTION
DATAS EXPECTEC V BUS CHANNEL, BIT AND VALUE
RECEIVED VvV BUS CHANNEL, BIT AND VALUE
LOOP COUNT = INDICATES WHICH BIT IN YHE 32 BIT GROUP 18 UNDER
TEST, 1.E, 1®BIT o, 2=8IT {, 3sBIT 2, ETC,
LOOP COUNT = INDICATES WHICH 32 BIT GROUP IS8 UNDER
TEST, T.E., 13 RITS<3110>, 23BITS«<63132>, 3IsBITS<9S164>

NOTEt THE EXPECTED AND RECEIVED V BUS CHANNEL INDICATES WHICH 32 BIT
GROUP HAS AAD PARITY IN IT, 1,E., {22X=BIT8<31:18P>,
101X3BITS<63132>, AND 108X®BITSC€9S5164>,

SYNC POINT DESCRIPTION
SUBTST | « SYNCUC=<TEST PATTERN IS ACTIVE ON THE CS BUS
' SURTSY 2 = SYNCUD==TEST PATTERN IS ACTIVE ON THE CS AUS
'..
R R e I Y
AdASSA TIC!

W T W W W W W W S VO N N W e W W W W Y S W W W e W W v

2534 mRaSSYy INITTALIZE
253s
2536 800556 SUBTESY

V1117700777770 010777777072187707707077777707777270727707720077077770777772777777¢277
280556 T1CS1t

2537 ’e

2538 1 FIRST FLOAT 4 ZERD THRU THE CS BUS

2539 -

2540

2541 200560 LOOP J,1,3 ? LOOP COUNT FOR THE 3 BANKS

2542 80AS7p LDIDREG USCADR,TMP1ad y SELECT LOCATION ZERO

2843 @00576 LOOP K,1,3) INITIALIZE THE CONTENTS OF LOCATION @

2544 POB6R6 LPIDREG USCDAT,TMP102 3 4,

2545 8AB614 ENDLOOP K P oees

2546

2547 200620 LooP 1,1,32 1 LOOP COUNT FOR THE BITS IN o BANK

2548 @o0630 LDIDREG USCADR,TMP100,J 3 LOAD THE BANK ADDRESS

2549, 200636 FLTZRO | Thé 121, 1 t GENERATE THE TEST PATTERN
| 2sselasesas | emLoop | |

2551 M096us LDIDREG, USCOAT, TMP101 'y LOAD INTO THE SELECTED BANK
| 2552l socesa | FETeH |1eace |+ EXECUTE THE MICRO WORD f
I I l I I I
| | | I | |
LISTING ADDRESS ADDRESS INSTRUCTION COMMENTS
LINE CONTENT OPERANDS
NUMBER

TK-0769

Figure 4-6 Hardcore Listing Sample

4-27

The error description segment specifies test parameters. For
example, in the error description of Figure 4-6, the first line
specifies what 1is expected during the test; the second 1line
specifies what is received. The third line indicates which bit in
the 32-bit array 1is under test; the fourth line indicates the
32-bit group under test. The sync point segment specifies critical
points in the 1listing around which an error loop or scope loop
might be set up (Paragraph 4.9.2).

Following the test header 1is the program code. The hardcore
listings are described on a per column basis below.

© Column 1, Listing Line Number -- Each line is assigned a
unique decimal number to allow easy referencing.

Column 2, Address -- The relative address (PC) of the
instruction.

Column 3, Address Content -—- Content of the address
listed in Column 2. (Note that the contents are the
pseudo instructions described in Paragraph 4.4.2.)

Columns 4 and 5, Instruction Operands -- The operands are
the instruction source, destination, or index wvalues. The
mnemonics appearing in these columns have been defined in
the definition section of the listing.

Column 6, Comments -~ A brief descriptive note concerning
the instruction operation.

4.8.3 Microtest Listing Description

The general format of the microtest listing is somewhat similar to
the other microdiagnostic listings, 1i.e., a Table of Contents,
Program Definitions, and Program Code and Descriptions. However,
since the microtests are executed out of the WCS, they are written
in system microcode and, therefore, are similar to the system
firmware listings. Unlike the hardcore listings that are assembled
in one listing, the microtests are assembled into separate
listings by 1K microword test sections and identified by those
section numbers. Note also that the address and data radix for
these listings is hexadecimal.

The Table of Contents is similar to those of the other 1listings;
i.e., it contains a 1line number entry and the corresponding
listing content description. Since the first column does not
contain assembler directives, only the line number appears. The
Program Definition section describes all macro definitions
associated with the listing.

The Program Code and Description section format is similar to that
of the system firmware listing. As in the hardcore listing, the
program code is identical to the hardcore format and content
described in Paragraph 4.8.2.

4-28

The microtest listing is described on a per column basis (Figure
4-7) .
° Column 1, UPC -- This column specifies the address
contained in the UPC at that particular microstate.

Column 2, Microword -- This column describes the
microword content of the address specified in column 1.

Column 3, Listing Line Number -- Decimal number assigned
to allow easy referencing.

Column 4, Microstate Operation -- This column specifies
the operation during a particular microstate. The
notations used to describe the operation have been
defined in the program definition section.

Column 5, Comments -- A brief descriptive note concerning
the microstate operation. (A detailed firmware
description is provided in the VAX-11/780 Central
Processor Technical Description, e.g., field definitions,
coding conventions, etc.)

4.8.4 Microdiagnostic Execution

The entire microdiagnostic package may be executed by entering
TEST on the console terminal. Other operation options are
described in the detailed diagnostic operating procedures in The
VAX-11/780 Diagnostic System User's Guide (EK-DS780-UG-001).
Following microdiagnostic identification the monitors 1initiate
hardcore and microtest execution. Figure 4-8 illustrates typical
console terminal output during error-free microdiagnostic
execution.

The microtests and hardcore tests are numbered sequentially (with
no duplication of test numbers). As shown in Figure 4-8, there is

no differentiation between hardcore and microtests. A
differentiation 1is required only in the case of an error
(Paragraph 4.8.5).

The monitor loads the test, and the test section number is printed
on the console terminal. Test execution is then initiated. The
section number is printed (in hexadecimal) prior to execution to
allow the operator to identify the exact failing section in the
case of an error.

The entire microdiagnostic package requires two diskettes. As
indicated in Figure 4-8, the microdiagnostic monitor instructs the
operator when to mount the second diskette, and prompts for the
command required to initiate execution of those diagnostics.

4.8.5 Error Message Format

The general error message format for both types of
microdiagnostics is shown in Figure 4-9.

4-29

3 DWMPOA,MCR([400,3262)
s DWMBRA ,MIC[4900,3262)

12313 21°APRe1977
14335 20=APRe1977

TEST
HEADER
AREA

1014,
1015,

¢018,0039,0D80,097 08,0000, 10F)
7018,0038,6500,0A80,0000,1018

1832
1033
1834
1838
1836
1837
1839
1839
1840
1041

1846
1847
1848
1849
1850
1881
1852
1853
1854
1888
1856
1857
1858
1889
1860
1861
1862
1863
1864
1868
1866
1867
1868
1869

MICRO 31(241)

TEST AS
«PAGE

Microcode tile Page 7
CES REGISTER ALU N BIT

"TEST AS CES REGISTER ALU N BIT*

JRNREBEBRNBVNPRRRBBRERVVBRBRBERRVIR PR RR RNV VRBB RO RVAGTRRBRRIRNERATRRREDY

144
' TEST

LOGIC

ERROR

AS CES REGISTER ALU N BIT

’
TEST DESCRIPTION

THIS TEST CHECKS THE ALU N BIT IN THE CES REGISTER, THIS IS DOME
BY SELECTING THE ALU TO DO A+¢B AND AeB, AND FsB, WITH SPECIFIC
DATA PATTERNS ON THE AMX AND BMX TO CHECK THE LOGIC THAT GENERATES
THIS BIT,

SUBTST § « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU TO

BE EXECUTING AN A+B 70 GET THE CORRECT ALU DATA,

SUBTST 2 « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU 7T0

. BE EXECUTING AN A=8 T0 GET THE CORRECT ALy DATA,

SUBTST 3 « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU TO
BE EXECUTING ANYTHIN BUT AN A+B OR A*B,

DESCRIPTION

THIS TEST CHECKS THE LOGIC NETWORK ON THE CEH MODULE THAT GENERATES
THE ALU N BIT, AND THE MULTIPLEXOR ON THE ICL MODULE THAT FEEDS
THE ALU N BIT IN THE CES REGISTER,

DESCRIPTION
DATAS EXPECTED CES REGISTER
RECEIVED CES REGISTER
LOOP COUNT « INDICATES WHICH DATA PATTERN Is BEING USED,
(SEE THE DATA AT THE END OF THE TEST)

SYNC POINT DESCRIPTION

SUBTST 1 = SYNCilAe=ALy N BIT GETS LOADED
SUBTST 2 = SYNCiBeeALU N BIT GETS LOADED
SUBTST 3 = SYNCiCee=ALy ¥ BIT GEYS LOADED

1018,
1219,
1140,
1141,
1142,
1143,

n0n0,2030,0180,0800,0000,1138%
0018,0038,7580,0A88,0000,1140
0018,0038,7980,0090,0000, 1141
f818,0038,4180,0800,0000,1142
0120.,003C,0180,0000,0002,1143
0001,003C,0190,0A98,0000,1144

1879
1871
1872
1873
1874
18758
1876
1877
1878
1879
108¢
1881
1882
168)
1884
IGISI
1886

ccoccecac

1144,
1214A,
1018,

#218,0038,D580,09E0,0000, 1814
%000,003D,0180,0000,0000, 1124
?000,003C,0180,0A00,0200,114%
1148,] 9000,803C,08180,C800,0000, 1146
1146, 0001,003C,0180,0AA8,0000,1147 |
1147, #800,003C,0180,0A08 0200, 1148 1887
114¢,! 9007,003C,0180,C600,0000,1149 | 1 1898 |

| | |

caccccecacc

MICRO
PROGRAM
COUNTER
(UPC)

MICROWORD
CONTENT

LINE
NUMBER

Figure 4-7 Microtest Listing

Sample

4-30

'..

(RAXZZ 222X L 2 Y2 22122 X2 4222 222222822y ST X222 YL Y)

0

ICLT81 NEWTSTL,3)
R(D]1.K(,19)) ADDRESS OF AMX DATA

'] CALL,J/UNJAM 3 CLEAR ANY SBI INTERRUPTS
ri1)LK(,29) ? ADDRESS OF BMX DATA
Rl2).K(,30)) ADDRESS OF EXPECTED ALU N BIT
DaK[+82)
D.D,LEFT2) GENERATE MASK FOR N BIT
R[3)LD) SAVE

SILIII1L27000707700007807000277707072070720020707077077272070070707727777771727777

e :
3 DO THOSE FUNCTIONS REQUIRING THE ALU TO DO AN A PLUS B

L

TeS11 RCLOCIKL,6)) SET THE LOP COUNT

=0 SUBTEST

ICLTOL1 1 VAR 0]
DEBYTE)_CACHE,P |) FETCH ANX DATA |
R{S1D 1 SAVE
VALR(1) | |
DIBYTE]LCACHE,P 3 FETCH BMX DATA

MICROSTATE
OPERATION

COMMENTS

TK-0771

B>TEST

MICRO DIAGNOSTIC V.05
01,02,03,

NO. OF WCS MODULES = 0001 —
04,05706+07+082095s0A»0ORs0CrO0sO0E»OF y10511+12513+14515+516+17
18719»1Ay1Bs1Cs1Dy1Es1F 1209219229 23+2452592692792892992A928,2C»20 2E,

2Fy30r31532+,33534r35,36537138,3%23Ar B
END FASS 000001

SECOND
MOUNT FLOFFY #2 &% TYFE 'DI'I TEXT
MIC>DI REFERENCE
3Ky
* MEM CTRLS= 00000001
3C,» 30y
4K CHIF 00000E08 OPERATOR
3Es3F»
CFU TR= 00000010 'UNNP;,.ErRLINED
40741942+43944945246147 1481491 40
CTRL 1 MAX AlR+1= 00080000
4R,
CTRL 1 MAX ADR+1= 00080000
4CyAD,

ENDI' FASS 000001

FIRST
TEXT
REFERENCE

TK-0772

Figure 4-8 Typical Error-Free Terminal Output

ERROR: <PC> TEST: <#> SUBTEST: <#>

DATA: XXXXXXXX
XXXXXXXX

XXXXXXXX
TRACE: WX\Y.Z
FAILING MODULES: (M8269 (S13)...
NOTE:

PC IS OCTAL FOR HARDCORE TESTS.
OTHERWISE ALL NUMBERS ARE HEX.

TK-0750

Figure 4-9 Error Message Format

4-31

The first line items are ERROR, TEST, and SUBTEST. ERROR is the
address (PC) of the failing test. In the case of a hardcore test
error, the PC is displayed as a six-digit octal address, since
these tests are executed out of the LSI-11. In the case of a
microtest error, the PC is displayed as a four-digit hexadecimal
address since it executes out of WCS.

TEST is the failing test number. Note that this is different from
the section number sent to the console terminal during error-free
execution. SUBTEST is the failing subtest number. These three
first line items are important in referencing the program listings
(Paragraph 4.9.2).

The DATA line item represents data used during the particular
test. The number of data words displayed depends on the particular
test. Generally, in the hardcore tests two words are displayed;
the first word is the expected (or good) data, the second word is
the received (or bad) data. However, as described in Paragraphs
4.8.2 and 4.8.3, the program listings contain a header describing
the data patterns used.

The TRACE line item is involved in the fault isolation procedure
in determining the set of modules responsible for the failure.

The last line item is FAILING MODULES. The output of this item
represents the failing module and its backplane slot number. In
some cases, the output will be several module numbers listed in
the order of failure probability. However, in other cases the
output will not be a module number. For example, consider the
situation of a grounded ID Bus bit. The failure could appear to
extend across all boards on the bus. Rather than printing out all
related module numbers, the program would print out ID BUS.

4.9 LISTING/ERROR MESSAGE CORRELATION

This subsection provides basic direction in the use of error
message content and its relationship to the program listings. The
examples are included mainly to illustrate basic microdiagnostic
capabilities.

4.9.1 No Error Message Situation

Consider the situation where the operator has initiated
microdiagnostic execution using the TEST command. For one reason
or another execution stops in the hardcore tests, and an error
message is not printed. As shown in Fiqure 4-10, execution stops
on test section @g4.

The operator has a reasonable index 1into the hardcore test
listings since section #4 is one of the initial sections executed.
Referencing the section number in the hardcore listing Table of
Contents, the operator finds that the section @4 description
starts on listing line number 777.

4-32

CONSOLE TERMINAL OUTPUT

e TEST

MICRO DIAGNOSTIC V.05
015,02,03,
. OF WCS MODULES = 0001

’

MICRO DIAGNOSTIC HARDCORE TEST MACRO M@
TABLE OF CONTENTS

LISTING TABLE OF CONTENTS

20=APReTT 10137

1« S CMPCA AND CMPCAM MODE DEFINITIONS

1e S SWITCH REGISTER BIT DEFINITIONS

e § CONSOLE ADAPTER REGISTER DEFINITIONS

e 5 1D BUS REGISTER DEFINTTIONS

1= 5 MODULE AND BUS NAME ASSIGNMENTS

1= SECTION NUMBER a1 ;

2« 42 Ty CONSOLE ADAPTER REGISTER RESPONSE
TEST 3e 141 122 CONSOLE "TO 10" REGISTER DATA INTEGRITY
NUMBER 4e 206 SECTION NUMBER @2
INDEX 4« 206 123 CONSOLE "MCR™ REGISTER DATA INTEGRITY

S- 284 104 CONSOLE "10CS" REGISTER DATA INTEGRITY

6e 356 108 CONSOLE RXDNE AND TXRDY REG DATA INTEGRITY

7. 439 106 TXREADY AND RXDONE INTERRUPTS

8= 564 SECTION NUMSER @3

8« 564 187 ID BUS DATA LINES DATA INTEGRITY

9« 66 T8 v _BUS SELF TEST

[Tee 777 SECTION NUMBER 04 | <@—

10« 777 189 CONSOLE CLOCK CONTROL

11 901 ToA CONSOLE ID CYCLE FUNCTION

12= 975 T8 CONSL FROM ID REG CLX CTRL 8 DATA INTEG
13=1070 SECTION NUMBER @S

131079 Tac CONSOLE MAINTENANCE RETURN
14e1162 Top RXCS REGISTER FROM THE ID BUS SIDE
15-1282 SECTION NUMRER 6

15«1282 T0F TXCS REGISTER ON THE 1D BUS
151367 SECTION NUMBER @7

161394 TaF 1D BUS REGISTER ADDRESS INTEGRITY
16=1509 SECTNO NUMBER 08

17-153% 110 CI8 INITIALIZE FUNCTION

17=1656 SECTION NUMBER @9

1801677 T11 CONSOLE REGISTER DUAL ADDRESSING
19=1745 T12 Wes DATA REGISTER READ

201771 T3 INITIALIZE THE CONTROL STORE
211817 SECTION NUMBER @A _
211817 T14 WCS ADDRESS REGISTER DATA INTEGRITY
22-1906 115 wCS ADDRESS REGISTER COUNT LOGIC
23+1976 Ti6 MICRO STACK DATA INTEGRITY
24=2061 SECTION NUMBER 08B

2ue2261 117 MICRO STACK DUAL ADDRESSING
25-2158 T18 MAINTENANCE RETURN DATA INTEGRITY
2622327 SECTION NUMBER @C

262327 T19 MAINTENANCE RETURN MICRO STACK INCREMENY
27-2372 TiA MICRO STACK WRITE DISABLE

28.2424 T1R WCS PARITY GENERATOR

29=2530 T1c €S BUS DATA INTEGRITY

302621 SECTION NUMBER 2D

302621 T10 PCS PARITY CHECKERS

312748 TE wCS DUAL ADDRESSING

312887 SECTION NUMRER QE

322845 T1F WCS DYNAMIC MEMORY TEST

3322959 r20 UBEN FIELD DECODE

34=3060 SECTION NUMBER @Ff

34=3262 121 USUB FIELD "CALL FUNCTION®
35-3168 122 USUB FIELD "RETURN®

363229 SECTION NUMBER 10

363229 T23 USUB FIELD "SELECT SPECIFIER"
373365 T24 UJMP FIELD DATA INTEGRITY

Figure 4-10

Listing Indexing Example

4-33

PROGRAM
LISTING
INDEX

TK-0770

4.9.2 Hardcore Loop and Single Step Setup

During microdiagnostic execution the error message shown in Figure
4-11 is displayed on the console terminal. Since the error PC is a
six-digit number (#00670), it is an octal address and indicates a
hardcore test. Referencing TEST: 1C in the hardcore Table of
Contents indicates that the test begins on line 253@. Referencing
the error PC of 0006780 in the program code shows the PC to be at
an IFERROR statement on line 2554.

The function of the IFERROR statement (Paragraph 4.4.2) 1is to
produce an error report if a failure is encountered in the test.
Usually the IFERROR statement is preceded by a check or compare
function (in this case TSTVB). Basically this test is comparing V
Bus signals. In this example, the received data did not match the
expected data; consequently, an error was detected.

Since the hardcore tests execute out of the LSI-11, a scope loop
may be too slow to be of practical use. An alternative is to use
the set step instruction and loop commands of the microdiagnostic
monitor. As indicated in Figure 4-11, the operator sets the single
instruction and loop flags. In this case the loop range is between
the statement following the previous ERLOOP statement (line 2551)
and the IFERROR statement (line 2554). As shown in Figure 4-11,
each time the operator types SPACE, the current PC is displayed.
At TPC = @P@#662 the operator reaches sync point SYNC4C, at which
time the operator could scope the CS Bus data bits in an attempt
to detect the failing bit. (At this point 1in the test the
microword has just been fetched from WCS and is driving the CS
Bus.)

The operator can exit from the step mode by typing any character
except SPACE. In the example, Control C has been typed and control
returned to the microdiagnostic monitor command mode.

4.9.3 Microtest Scope Loop Setup

During microdiagnostic execution the error message shown in Figure
4-12 is sent to the console terminal. Note that execution stopped
on test section 3A.

Since the error PC is a four-digit number (101E), it 1is a
hexadecimal address and indicates a microtest. Using the test
section number of 3A, and referencing the Table of Contents for
that section, test A5 starts on line 1832. A look at the PC column
(of the microtest 1listing) shows that the error PC is on line
1906.

By scanning back through the microcode, select a sync point, in
this case SYNC1A on 1line 19641. Control 1is returned to the
microdiagnostic monitor via Control C. The operator enters a CLEAR
SOMM: <1153> command. This command will clear the stop on
micromatch bit, and produce a sync pulse when the UPC equals the
content of the microbreak register (i.e., 1153). The operator then
enters a loop command. This sequence causes the test to begin
looping and produce a sync pulse each time the UPC = 1153.

4-34

CONSOLE TERMINAL OUTPUT LISTING TABLE OF CONTENTS HARDCORE PROGRAM LISTING PAGE #

=TEST MICRO DIAGNOSTIC HARDCORE TEST MACRO M1p 20=APReTT 1137 MICRO DIAGNQOSTIC HARDCORE TEST MACRO M1B 20=APReT7 18137 PAGE 29 o
STEST TABLE OF CONTENTS T1C CS-BUS DATA INTEGRITY . :
gifzg.gfz?wos”c V.02 1« S CMPCA AND CMPCAM MODE DEFINITIONS JSBTTL TiC CS BUS DATA INTEGRITY o
NO. OF WCS MODULES = 0001 le S SWITCH REGISTER BIY DEFINITIONS AR L L T T e L e LTI LI L
04,05,06+07708+0950A50F>0C e S CONSOLE ADAPTER REGISTER DEFINITIONS 4\ 144
fte S 1D BUS REGISTER DEFINITIONS nesv ic €S BUS DATA INTEGRITY T
1« S MODULE AND RUS NAME ASSIGNMENTS _ o
f= 6 SECTION NUMBER 01) TEST DESCRIPTION
2= 42 Ty CONSOLE ADAPTER REGISTER RESPONSE ' THIS TEST CHECKS THE DATA INTEGRITY OF THE CS BUS BY FLOATING
3 144 182 CONSOLE "TO 10" REGISTER DATA INTEGRITY ' A ONE AND A ZERO THRU A MICRO WORD, EXECUTING THE MICRO
4e 206 SECTION NUMBER 02 ’ WORD, AND CHECKING THE V BUS FOR PARITY ERRORS,
) . 4e 206 T3 CONSOLE "MCR"™ REGISTER DATA INTEGRITY ' -
ERROR:°°°67°I lTEST' ":1 SUBTEST:1 Se 284 104 CONSOLE "IDCS" REGISTER DATA INTEGRITY ' SUBTST 1 = FLOAT A ZERC THRU THE €S BUS L
be 356 08 CONSOLE RXDNE AND TXROY REG DATA INTEGRITY ' SUBTST 2 « FLOAT A ONE THRU THE ¢§ BUS T - —
DATA: 1010 7= 439 106 TXREADY AND RXDONE INTERRUPTS '
1011 8- 564 SECTION NUMSER 03 y LOGIC DESCRIPTION
. 8 S64 187 1D BUS DATA LINES DATA INTEGRITY ’ THIS TEST CHECKS THE ID BUS INTERFACE TO THE WCS MODULES, THE
000A 9« 661 r28 v BUS SELF TEST ' DATA INTEGRITY OF THE WCS MEMORY CHIPS AND YHE DATA INTEGRITY OF
0002 10« 777 SECTION NUMBER 04 ' THE CONTROL STORE (CS) BUS, o
18« 777 199 CONSOLE CLOCK CONTROL 1 Tt -
TRACE: 000700, 000720 1te 901 T4 CONSOLE ID CYCLE FUNCTION 3 ERROR DESCRIPTION
FAILING MODULES: C.S. BUS 12« 975 TeR CONSL FROM ID REG CLX CTRL 8 DATA INTEG T ' DATAt EXPECTED vV BUS CHANNEL, BIT AND VALUE
131070 SECTION NUMRER 05 TES ’ RECEIVED v BUS CWANNEL, BIT AND VALUE
MIC>SET STEP INST) 13=1070 Tac CONSOLE MAINTENANCE RETURN STARTING ' LOOP COUNT = INDICATES WHICH BIT IN THE 32 BIT GROUP I3 UNDER
_— 14e1162 Tap RXCS REGISTER FROM THE 1D BUS SIDE LINE 4 TEST, 1.6, 1®BIT @, 2=BIT 1, 3=BIT 2, ETC,
MIC>LOOP) N 151282 SECTION NUMBER 06 > NUMBER ' LOOP COUNT = INDICATES WHYCH 32 ST GROUP IS UNDER T
TPC = 000646 (SPACE BAR) 15-1282 TOE TXCS REGISTER ON THE ID BUS ' TEST, 1.E, 1% BITS<3118>, 28BITS<63132>, 3sBITS<95164>
— 151367 SECTION NUMBER @7 H
TPC = 000654 (SPACE 3AR) TEST 161394 TOF ID BUS REGISTER ADORESS INTEGRITY ' NOTE: THE EXPECTED AND RECEIVED V BUS CHANNEL INDICATES WHICH 32 BIT
- <+— ANY CHAR. TO RESUME 16=1509 SECTNO NUMBER 98 ' GROUP HAS BAD PARITY IN IT, I,E, {02X€RTITS<IT180>, ~
TPC = 000662 = NUMBER 171535 Tio €18 INITIALIZE FUNCTION ' 101X3BITS<63232>, AND {POXSBITS<IS164>,
FULL SPEED. INDEX 17=1656 SECTION NUMBER @9 ' T T T T
- 18-1677 T1y CONSOLE REGISTER DUAL ADDRESSING 3 SYNC POINT DESCRIPTION
$C «— CONTROL -C 10 #ETURN TO MONITOR 19«1745 2 WCS DATA REGISTER READ ' SUBTST 1 = SYNCGC=eTEST PATTERN IS ACTIVE ON THE €8 BUS
Mic> 2017714 T3 INITIALIZE THE CONTROL STORE ' SUBTST 2 = SYNCUD==TEST PATTERN IS ACTIVE ON TWE CS 8US
211817 SECTION NUMBER 04 you T)
21-1817 T4 WCS ADDRESS REGISTER DATA INTEGRITY 1]ﬁttittttt‘t.ﬁitttﬂtQttttittttitﬁitttttiQtitttttttttntﬂ'.tiit.ﬂ't.tlt
22-1926 T1S WCS ADDRESS REGISTER COUNT LOGIC A0ASSA TiC! - -
2321976 T1e MICRO STACK DATA INTEGRITY 2534 A22554 INTTTIALIZE
2ue2061 SECTION NUMBER 08 2535
2ue2061 T17 MICRO STACK DUAL ADDRESSING 2536 800556 SUBTEST
2S5=2158 T18 MAINTENANCE RETURN DATA INTEGRITY V2017002087000 000007770702727020000772782070070070027207007007707270174727277717774
OPERATOR 262327 SECTION NUMBER oC 280556 T1CS11 N
INPUT 2622327 T19 MAINTENANCE RPETURN MICRO STACK TNCREWENT 2537 1e
UNDERLINED 272372 TiA MICRO STACK WRITE DISABLE 2538 3 FIRSY FLOAT 4 ZERO THRII THE CS BUS
8e2424 148 WCS PARITY GENERATOR 2539 [’ B
292530 T1C €S BUS DATA INTEGRITY 2540
2621 SECTION NUMBER @D 2541 800560 LooP i 1,3 3 LOOP COUNT FOR THE 3 BANRS
302621 T1D PCS PARITY CHECKERS 2542 000570 LDIDREG USCADR,TMP1a@ 3 SELECT LOCATION ZERO
PAGE # 312748 T1E wCS DUAL ADDRESSING 2543 200576 Looe K,1,3) INITTALTIE THE CONTENTS OF LOCATION 8~ —
3te2837 SECTION NUMRER @E 2544 0go60R6 LNIOREG USCDAT, TMP1R2) ses
32.2845 TiF WCS DYNAMIC MEMORY TEST 2545 eae614 ENDLOOP K ! aee
332959 v20 UBEN FIELD DECODE 2546
34=3260 SECTION NUMBER @F 2547 000620 Loor 1,1,32 LOOP CDUNT PDR THE BITS IN A BANK
3ie=3960 ra1 USUB FIELD "CALL FUNCTION® 2548 200630 LDIDREG USCADR,TMP108,J a LOAD THE BANK ADDRESS
353168 r22 USUB FIELD “RETURN® 2549 080636 FLTZRO TMPwl.I y CENERATE YHE TESY PATYERN
36=3229 SECTION NUMBER 10 2550 aoesad FRLOOP _
363229 r23 USUB FIELD "SELECT SPECIFIER" S1 00N646 LDIDREG USCDAT,TMP121 ; LOAD INTO THE BELEETED BANK
373365 v24 UJMP FIELD OATA INTEGRITY L 2552 200654 FETCH 10020 3 EXECUTE THE MICRO WORD
ERROR SYNC POINT
LooeP
RANGE MICRO DIAGNOSTIC HARDCORE TEST| MACRO M1m 20-APR=77 18137 PAGE 29=t
TiC €S BUS DATA INTEGRITY : e e
25 PP662 SYNCUCI TSTVE MP103 3 CHECK THAT THERE WAS NO PARITY ERROR
ERROR — 15884 dooet0 FERROR 30, CSERR ’
pC 2555 000676 ENDLOOP } CONTINUE WITH THE NEXT BIT
INDEX 2556 eos702 ENDLODP J 3 CONTINUE WITH THE NEXT BANK
2557 enn706 sKIP syeTST L
2558
gzse #@@T12 CSERR3 REPORT <CSBUS>) CS BUS BIT(S) STUCK
Y]
2561 @20722 SUBTEST

SIL1100707770000077070720720077200727000070077070701207700070277070720700401274717¢27,
aRQT22 TICS2!

Figure 4-11 Loop and Single
Example

4-35

CONSOLE TERMINAL OUTPUT TABLE OF CONTENTS MICROTEST PROGRAM LISTING

S TEST ! DWM@OA.MCR400,3262) 12115 21eAPRe1977 MICRO 31(241) Microcode file Page 7
t DWMO@A,MIC(400,3262] 14138 20=APR=1977 TEST A5 CES REGISTER ALU N BIT

MICKO DIAGNOSTIC V.0S 1832 SECTION 3A

01:02,03, TEST A5 :i;ii] WPAGE "TEST AS CES REGISTER ALU N BIT®

NO. OF WCS MOIULES = 0001 193] JRNERNSIRNRRRIRRRRRNEBRERRRBRRER NN D BB R ARG B DR BB ESBER RS RB SRR RR AR R BB R R DY
04,05,06,07,08:0950Ar0KsOCsO0,0E»OF»10,11912513s14515,16+17 1834 s¢¢

18v15,1As1Er1Cs 10, 1E»1F 1209219229 2% 241259265 279285299 2A» 2B, 2C, 20 2E 1838 3 TEST AS CES REGISTER ALU N BIT
2F:30!31'32735v34735736v37’38739:@ ’ 1036

’
TEST DESCRIPTION

)
1
3
H
H
ION 3 H
FAILING SECTIO Lfﬁ:;En 1 1838 THIS TEST CHECKS THE ALU N BIT IN THE CES REGISTER. THIS I3 DONE
; s 1839 BY SELECTING THE ALU TO DO A4B AND AeB, AND FuB, WITH SPECIFIC
ERROR:101EJ | TEST:A5‘4l SUBTEST: 1 INDEX 3 1840 DATA PATTERNS ON THE AMX AND BMX TO CHECK THE LOGIC THAT GENERATES
) 1.4; 1] TH1S BIT,
.) 1842
DATA: 00000200 1 1843 SUBTST { « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU TO
00000000 s 1844 BE EXECUTING AN A¢B TO GET THE CORRECT ALU DATA,
00000003 TEST 1 1848 3 SUBTST 2 « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU T0
STARTING 7 1846 . BE EXECUTING AN A«B TO GET THE CORRECT ALU DATA,
LINE 1 1847 1 SUBTST 3 « CHECK THE DATA PATTERNS THAT REQUIRE THE ALU TO
3 1848 BE EXECUTING ANYTHIN BUT AN A+B OR AeB,
NUMBER 3 1849
3 1850 3 LOGIC DESCRIPTION
MIC>CLR SOMM: 1153 -— (IF SYNC WANTED 3 1851 THIS TEST CHECKS THE LOGIC NETWORK ON THE CEH MODULE THAT GENERATE
AT THAT ADDRESS) 1 1852 THE ALU N BIT, AND THE MULTIPLEXOR ON THE ICL MODULE THAT FEEDS
M|C>LOOP) - START SCOPE LOOP ; :::: : THE ALU N BIT IN THE CES REGISTER,
tc «— CONTROL -C TO STOP LOOP $ 1855y ERROR DESCRIPTION
1 1856 3 DATAT EXPECTED CES REGISTER
MIC>RET)4— RETURN TO CONSOLE ' 1:3; ' :gg;xvgp cES p:cx;:ga
s ' P COUNT « INDICATES WHICH DATA PATTERN IS BEING USED,
>>> 4—— CONSOLE PROMPT 1 1889 (SEE THE DATA AT THE END OF THE TEST)
OPERATOR 1 1860
INPUT 3 1861 3 SYNC POINT DESCRIPTION
UNDERLINED 1 1862 SUBTST 1 = SYNCiAesALU N BIT GETS LOADED
3 1863 3 SUBTST 2 = SYNC{B-«ALU N BIT GETS LOADED
) 1864 3 SUBTST 3 « SYNCICeeALU N BIT GETS LOADED
3 1868 jee
H 1065 [R2Z222 2222222222222 2 X2 222222 2842222222 T2 22T XYY YTIRZY R LY)
1 1867 s=p
U 1014, @018,0039,0080,09F8,0000,10F1 1 1868 ICLT8: NEWTST(,3)
U 1015, #018,0038,6580,2A80,0000,1018 ; 1869 R{P}K(,10) 1 ADDRESS OF AMX DATA
U 1018, »0ne,2030,0100,0800,0000,1135 1 1870 =g CALL,J/UNJAM 3 CLEAR ANY SBI INTERRUPTS
U 1219, #918,8038,7580,0A88,0000,1140 3 1871 RI1).K[,29) 3 ADDRESS OF BMX DATA
U 1140, ¢019,0038,7980,0A90,0000,1141 3 1872 R{2).K(,30) y ADDRESS OF EXPECTED ALU N BIT
U 1141, #818,0038,4180,0000,0000,1142 3 1873 DuK[+80]
U 1142, 0100,203C+0182,0900,0000,1143 1 1874 DD, LEFT2) GENERATE MASK FOR N BIT
U 1143, @001,003C,01980,0A98,000C,1144 1 187S R(3)LD } SAVE
1 1876
RS S A Y s
s 1878 1¢
t 1879 3 DO THOSE FUNCTIONS REQUIRING THE ALU TO DO AN A PLUS B
1 1880 e
: 1 188}
U 1144, #218,0039,D500,09%0,0000,101A 1 1882 T8S1s RC{AC).K[,6) 3 SET THE LOP COUNT
U 101A, #009,003D,0160,0800,0000,1124 1 1883 = SUBTEST
U 1018, 0000,003C,n180,0A00,0200,1145 1 1884 ICLT8L1i1VA.R{g)
U 1145, 9000,803C,01080,C800,0000,1146 3 1885 D{BYTE).CACHE,p 3 FETCH AMX DATA
U 1146, ©¢001,003C,0100,0AA8,0000,1147 1 1806 R{5)aD) SAVE
U 1147, P002,003C,0180,0A08,0200,1148 ; 1887 VALR(1)
U 1148, 7009,803C,010¢,C800,0000,1149 1 1898 D(BYTE).CACHE,P y FETCH BMX DATA
U 1149, #001,203C,0180,09A0,0000,114A 3 18089 RC[5}aD 1 SAVE
U 114A, ¥070,203C,0180,0A10,0200,114B 1 1890 VALR(2)
U 114B, ©080,403C,0180,C800,0000,114C 3 1891 D[WORD)..CACHE P) FETCH EXPECTED N BIT DATA
U 114C, 0802,403C,n160,0800,0000,114D ; 1892 DoD, SXT [WORD)
U 114D, ©001,003C,n18¢,09F0,0000,101C ; 1893 RCIOE).D) SAVE
U 1C, #0p0,003D,0 10800,0000,10FD] 94 =9 ERLOOP
————{ U 101D, 9810,0038,P180,0970,0000,114E 3 189S DoRC [PE) | .
U 114E, 080A1,00208,0190,0800,0000,114F 3 1896 D.NOT,D 3 GENERATE INITIAL VALUE OF N BIT
U 114F, ©01€,2034,0180,0A18,0000,11%0 ; 1897 D.D,AND R[3) 1 MASK
U 1150, #810,0038,3180,3D75,08000,1151 3 1898 ID(CES],D,D.RCIBE) 3 INIT THE CES REGISTER
U 1151, 007@,203C,0180,0A28,0000,1152 1 1899 LABLRIS)
U 1152, @000,0203C,0184,8928,0000,1} 1 199 LCLRC(S 3 LATCH AMX AND BMX DATA
(U 11%Y, 9010,6014,0160,0800,0010,11 s 1901 gyNCiAs ALU_LA+LC,CLK,UBCC,BYTE]) EXECUTE THE TEST
U 1154, 0000,003C,31Fa,2C00,0000,115%6 1 1902 Q..ID [CES]
LOOP U 1156, 001C,0034,01C0,PA18,0000,1187 ; 1983 0=Q,AND,R{3) 1 MASK
RANGE U 1157, @01D,2000,0180,0800,0010,1158 3 19504 ALU,Q=D,CLK,UBCC 1 CHECK
ERROR U 1158, 2000,013C,0189,0000,00008,101F 3 199% 1?
U 101F, 0001,203D,0180,09E8,0000,1109 3§ 1906 =0 ERRORZ,RC(AD) .0 | 3 ALU N BIT FAILED IN CES REG
PC T U 101F, 0000,003C,A180,0A00,0000,1159 1 1907 LABLR(®)
INDEX U 1159, #018,03014,2580,0A80,0000,115A 1 1908 RIOILLAGKL,¢) 1 INCREMENT ADR OF AMX DATA
U 115A, #900,003C,0180,0A08,0000,1158 ; 1909 LAB.R[1)
U 1158, 0018,0014,0580,9A88,0000,115C 3 1910 RI1}LLAGKI,1] 3 INCREMENT ADR OF BMX DATA

TK-0775

Figure 4-12 Microtest Scope Loop Example

4-36

As shown in Figure 4-12, the operator has entered a Control C
followed by a RETURN (RET) command. This sequence breaks the test
loop and returns control to the console program.

4.9.4 Microtest Single Bus Step Setup

During microdiagnostic execution the error message shown in Figure
4-13 is printed on the console terminal. As in the previous
example, execution stopped on test section 3A.

As in Paragraph 4.9.3, the error PC is a four-digit number
indicating a microtest. A look at the section 3A listing indicates
that the error PC is on line 1948. At this point it is decided to
use the single bus step capability.

A scan backward through the microcode indicates a possible loop
between SYNC1B (line 1943) and ERLOOP (line 1936). A point in the
loop is chosen to stop the microtest, in this case UPC 116C (line
1940). The operator enters SET SOMM: 116C, which sets the stop on
micromatch bit and loads 116C into the microbreak register. A loop
command is then entered which initiates execution of the 1loop.
When the loop reaches UPC 116C, the microtest halts and prints the
UPC on the console terminal.

At this point, the operator enters the bus cycle mode (set step
bus command). Each time the operator types SPACE, a single bus
cycle 1is executed and the UPC 1is displayed on the console
terminal. At any point in the loop the operator may scope the
current conditions.

As shown in Figure 4-13, the operator has exited from step mode by
typing any character other than SPACE. The program control flags
previously set are cleared. The HI flag is set to restore the
normal default case. A CLEAR SOMM is then performed to clear the
stop on micromatch bit and the microbreak register, then a
CONTINUE is performed to begin normal test execution at the next
sequential test (i.e., A6). If the operator feels that the problem
has been cleared, it is probably more practical to start the tests
over rather than to begin at the next test.

4-37

MICROTEST PROGRAM LISTING

TEST HEADER AREA

CONSOLE TERMINAL OUTPUT TABLE OF CONTENTS

1832 SECTION 3A U 1149, 0001,003C,0182,09A8,0000,114A 1 1089 RC(S)aD } SAVE
S TEST TEST AS U 114A, ¢008,003C,0100,0410,7200,1148 1 1890 VALRI2]
- U 1148, ©088,403C,0180,C800,0000,114C 1 1891 D {NORD)..CACHE P 3 FETCH EXPECTED N BIT DATA
MICKRO DIAGNOSTIC V.05 U 114C, 0822,403C,n180,0000,0000,114D 1 1892 DD, 8XT[WORD)
01,02,03, U 114D, 9081,003C,A180,09F0,0000,101C 1893 RC[OE)..D 1 SAVE
NO. OF WCS MODULES = 0001 U 101Cs @000.,003D,0180,0800,0000,107D 1 1894 =9 ERLOOP
04,05506,07r08s09,0A,0B,0C»O0s0E»OF »10y11912913,14915,16r17» U 101D, ©810,7038,A180,0970,0000,114L s 1098 DLRC (AE)
18+1991Ar1By1Cr1051E+1F»20921522,23924525926927 1289292207 2K»2C»20+2Ey U 114E, 0801,0020,2180,0800,0000,114F 3 10896 DaNOT,D 3§ GENERATE INITIAL VALUE OF N BIT
2F»30r31y32r33534935936937+383993A U 114F, 061C,2034,0180,0A18,0000,1150 3 1897 D.D,Anb.l[!] 3 MASK
U 1150, 98190,0038,3180,3D72,08400,11%1 3 1898 1D (CES).D,D.RC [AE)) INIT THE CES REGISTER
U 1151, 00092,003C,0100,0A28,0000,1152 1 1999 LAB_R[S)
v }:3;. s:gg.ggss.ei:a.gzzc.uoe.u:: ' 1:0@ LCSRC (8} 5 LATCH AMX AND BMX DATA
_ . R v ’ »8014,0100,0800,0010,11 t 1901 SYNC1A1 ALULLA+LC,CLK,UBCC,BYTE) EXECUTE THE TEST
{ErRoR: 1026 | | TesTias | sustesT:z TEsT U 1154, 9099,003C,31F0,2CA0,0000,1156 1 1902 Q. ID(CES)
DATA: U 1156, 001C,0034,01C0,PA18,0000,1187 1 190) 0.Q,AND, R[3}) MASK
: NUMBER U 1157, 0901D,2000,0180,0000,0010,11%8 1 1904 ALU,Q~D,CLK,UBCC) CHECK
INDEX U 1158, A000,013C,7180,0800,0000,161E 1 1908 1?
U 101E, 0001,2030,0180,09E8,0000,1149 ; 1906 =@ ERROR2,RC [3D]..0 3 ALU N BIT FAILED IN CES REG
U 1017, 0028,003C,M180,0A00,0000,1159 1 19687 LAB_R[2) .
U 1159, 7010,0014,05600,0A60,0000,115A 3 1908 RLOlLLAGKL, 1) 3 INCREMENT ADR OF AMX DATA
U 115A, P0BP,003C,0180,0M00,0000,1158 1 1909 LAB.R[1)
U 1158, #A18,0014,0580,0A88,0000,115C 1 1910 RI11aLAGKE, 1] 3 INCREMENT ADR OF BMX DATA
MIC>SET SOMM: 116C U 115C, 0000,003C,2180,0A10,0000,1150 1 1911 LABLRI2]
= U 1150, 0018,0014,0900,0A90,00080,115E 1 1912 RI2)LLA®K(,2]) INCREMENT ADR OF EXPECTED DATA
MIC>LOOP g us;. 0010,0030,0180,0960,0000,115F 1 1913 DuRC (0C]
— _ 1187, 0019,8000,0580,09E0,0017,1160 1 1914 RC(aC).DeK(,1),CLK,UBCC,BYTE) CHECK THE LOOP COUNT
MICROBREAK MATCH UPC = 116C U 1160, 0900,013C,0180,0000,0000,1020 1 1915 77
MIC>SET STEP BUS U 1020, 2000,603C,7180,0000,0000,101B 3 1916 =p J/1CLTOLY 3 CONTINUE
T - 1 1917
UPC = 116D (SPACE BAR) o OPERATOR : 1918
UPC = 116E (SPACE BAR) d INPUT ' 1;:9 NI12IP1E010000000070070000028072008000000002000000000000001000000000007077
1 1920 ¢+
UPC = 116F (SPACE BAR) UNDERLINED 3 1921 1 NOW CHECK THOSE PATTERNS REQUIRING THE ALU TO DO AN A MINUS B
UPC =1170 X @—— ANY KEY LEAVES STEP MODE } 1:22 (L
= 1 1923
1C_<«— CONTROL-C TO GET COMMAND MODE U 1021, 7018,0038,0980,09E0,0000,1022 1 1924 TES2: RC[AC).K(,2]) SET THE LOOP COUNT
MIC>CLR FLAG ALL) 7 THESE 2 STEPS 3 wg;. Ouo.oegg'0::0.0:9%0:00-1124 ! 1:2: ;LT!L ﬂ:ﬁs‘;
R E— 1023, 0000,003C,0180,0A00,0200,1161 1 192 21 o
MIC>SET FLAG HALTI RESTORE NORMAL FLAGS U 1161, ¢000,803C,0100,C800,0000,1162 1 1927 D{BYTEJ.CACHE P) FETCH AMX DATA
MIC>CLR SOMM) «—— CONTINUE TESTING U 1162, 0001,003C,0180,0AA0,0200,1163 3 1928 RIS].D 3 SAVE
= U 1163, 0000,@03C,2180,0AR8,0200,1164 1 1929 VALR{1)
M|c>cowT) FULL SPEED, NEXT TEST U 1164, #000,803C,08180,C000,0000,1165 1 1930 D(BYTE).CACHE,P 3 FETCH BMX DATA
— U 1165, @001,003C,0160,09A8,0000,1166 3 1931 RC{5).D) SAVE
U 1166, 0000,003C,2180,7A10,0200,1167 t 1932 VALR{2)
U 1167, %02e,403C,0180,C000,0000,1168 3 1933 D [WORD).CACHE,P y FETCH EXPECTED N BIT DATA
U 1168, 0802,403C,0100,0000,0000,1169 3 1934 DD, SXT[WORD)
U 1169, 2001,003C,0180,09F0,0000,1082¢ 1.193% BCIOEID 1 SAVE
‘U 1024, @ +0030,04080,0000,0000,10FD 1 1 =p ERLOOP
4]% S, 10938,0180,0970,0000,116A | | D.RC[OF] i |
. + 0001,0020,0160,0000,0000,1168 1 § D.NOT,D y GENERATE INITIAL VALUE OF N BIT
LOOP STOP TEST ON U B, 001C,2034,0 9,0418,0000,116C 3 1939 2ABD.RI)] § MASK
RANGE MICROMATCH C, 0.0038,3180,3070,0000,1160 1 1940 D [CES).D D RC [oF]] y INIT THE CES REGISTER
U D, 0900,003C,01803,0420,0000,116C 3 1941 AB_R{S)
AE, 0000,003C,0180,0928,0000,146F 3 19 LCLRC(S } LATCH AMX AND BMX DATA
{ 6F, 0010,8000,8100,0000,0010,1178 ; 1943 SYNC1B3 ALU,LA-LC,CLK, UBCC,BYTE]) EXECUTE THE TEST
i 70, 0000,003C,31F0,2C00,0000,1171 1 194 0.ID{CES)
U 1171, 901C,7034,01C2,0A18,0000,1172 1 1945 Qa0,AND,R(3}) MASK
U 1172, 901D,2000,0180,0800,0010,1173 31 1946 ALU.Q=D,CLK,UBCC 1 CHECK
ERROR U 1173, 0000,013C,0180,0800,0000,1026 3 1947 z?
PC »{U 1026, 0001,203D,0180,00E8,0000,1109 3 1948 =@ ERROR2,RC (8D)a0 1 y ALU N BIT FAILED IN CES REG
INDEX

TK-0776

Figure 4-13 Microtest Single
Bus Example

4-38

CHAPTER 5
MACRODIAGNOSTIC PROGRAM DESCRIPTIONS

5.1 DEFINITION OF TERMS

Module -- The diagnostic programs are written in a modular format.
Each module (file) is a part of the program assembled separately.
Modular programming allows the development of large programs in
which separate parts share data and routines.

Assembler -- The MARS assembler (which runs on a PDP-11) and the
VAX-11 Macro assembler (which runs on a VAX-11) are programs that
accept one or more source modules written in MACRO assembly
language and produce relocatable object modules and symbol tables.

Linker -- The VAX/VMS linker and the cross linker accept as input
one or more native code object modules produced by the assembler.
Linking consists of three basic operations.

1. Allocation of virtual memory addresses
2. Resolution of intermodule symbolic references (global
symbols)
3. Initialization of the contents of a memory image.
Program Defined Symbols -- Program defined symbols (and 1labels)

are either internal or external (global) to a source program
module. An internal symbol definition (and reference) is limited
to the module in which it appears. Internal symbols used by the
diagnostics are temporary definitions that are resolved by the
assembler.

A global symbol can be defined in one source program module and
referenced by another. Global symbols are preserved in the object
module and are not resolved until the object modules are linked
into an executable program by the linker.

Program Sections -- The assembler creates a number of program
sections (.PSECT) within a module, according to directives by the
program developer. In addition, any code that precedes the first
defined program section is placed in the BLANK program section by
the assembler.

Through program sectioning the program developer controls the
virtual memory allocation of a program. Any program attributes
established by the program section directive are passed on to the
linker. Thus program sections can be declared as read-only,
non—-executable, etc. Refer to the VAX-11] MACRO Language Reference
Manual for an explanation of the varilous program section attribute
functions.

In the diagnostic programs, each test is given a separate program
section.

5-1

5.2 OVERVIEW OF THE MACRODIAGNOSTIC PROGRAM

The macrodiagnostic programs and the diagnostic supervisor are
written in VAX-11] native code. Each of the programs (and the
supervisor) consists of modules. These modules are separate files,
which are assembled separately and then 1linked by the linker
program. Each module contains one or more program sections. The
program sections and routines are organized according to a common
format and a set of conventions that enable them to interact with
the supervisor. Note that the listings described in this chapter
are those assembled by the MARS assembler and linked by the cross
linker in compatibility mode. The format will change when the
native assembler and linker are used.

5.3 MACRODIAGNOSTIC PROGRAM LISTING DESCRIPTION

This section describes the program 1listings in general terms.
Illustrations and examples are taken from the MBA RH780 diagnostic
program. The formats of the other listings are similar.

Each program listing begins with user information and a link map
created by the linker program. The separate modules that make up
the program constitute the rest of the listing. The first module,
called the header, defines symbols and labels and provides
routines that are called by other modules. The modules which
follow contain the test routines.

User Information -- The user information, which comes at the
beginning of the listing, includes the following items.

Program identification

Copyright statement

Program abstract

Hardware and software requirements
Prerequisites to running the program
Load and start instructions

Program description

History of program maintenance

Link Map -- The link map shows the virtual memory allocation of
the total program image in the program section allocation
synopsis. Figure 5-1 shows this synopsis for the MBA diagnostic
listing.

The program section allocation synopsis lists the program sections
according to the order in which they appear in memory. A list of
attributes and the base, end, and length are given for each
program section. The base address is the virtual address of the
first location in each program section assigned at link time. This
number must be added to the relative addresses given in the module
listings to determine the virtual addresses of specific
instructions because the assembly addresses are all relative to
the base of the program section.

5-2

VIRTIJAL MEMORY ALLOCATION OF IMAGF "ESCAA,FXEgs1"
THIS ALLOCATION WAS DONE 0N 20«SEP=TA
AT 12343 BRY CROSS LINKER VERSION X4,6

- VIRTUAL MEMORY LIMITS!

STACK SIZE (DEC, PAGES):
VIRTUAL DISK BLOCK LIMITS (OCTAL)s
IDENTIFICATIONS

DYNAMIC MEMORY AVAILABLE (BYTES):

DYNAMIC MEMORY USED (BYTES):
LARGEST FREE HOLE SIZEt

NUMBER OF HOLES FREES
47 HOLES OF 4
11 HOLES OF 8

_—eAsNEe

HOLES
HOLES
HOLES
HOLES
HOLES
HOLES

NUMBER OF P=SECTS
NUMBER OF GLORAL SYMBOLS:

PROGRAM SECTION ALLOCATION

NAME

<$ABSS>
<SHEADER>:
CSTSTCNT>?
<, ABS

CARGLIST>t
<BUFFERS>)
SCLEANUP>:
SDISPATCH>?

2
€, BLANK ,>3

<DISPATCH, X>3
<HEADER CODE>:
<INITIALIZE>:

CSUMMARY> s
<TEST GQ1>:
<TEST_ r02>:
<TEST_ee3>s
CTESY eou>y
<TEST _@0S>:
STEST _0ve>:
<TEST 007>
CTEST _Q08>s
<TEST, Pn9>3
STEST, P10>3
<TEST,@11>¢
<TEST 012>
<TEST 13>
<TEST 014>
<TEST_ 015>
<TEST _ 016>:
<TEST 017>

BYTES

BYTES

OF 12 RYTES

OF 16 BYTES

OF 27 BYTES

OF 24 RYTES

OF 32 BYTES

OF 182 BYTES

DEFINED:

SYNOPSIS:!
NOPIC, USSR, CON,
NORPIC, USR, CON,
NOPIC, -USR, O0OVR,
NOPIC, SR, cOoN,
NOPIC, USR, CON,
NOPTC, USSR, CON,
NOPIC, USRKR, coN,
NOPIC, USR, CON,
NOPIC, USR, COM,
NDPIC, USR, cow,
NOPIC, USR, £oN,
NOPIC’ Usk, CON'
NORPIC, USR, C(CON,
NOPIC, 'SR, cON,
NOPIC, ''SR, CON,
NOPIC, USR, cCcON,
NOPTIC, USF, CON,
NOPIC, SR, CON,
NOPIC, USR, coN,
NOPIC, USR, cOoN,
NOPIC, USSR, COMN,
NOPIC, ISR, coN,
NOPIC, USP, COWN,
NOPIC, SR, cOoN,
NORIC, USR, COM,
NOPIC, SR, CON,
NORIC, SR, CON,
NORIC, USSR, CONM,
NOPIC, USR, cCON,
NOPIC, USR, conN,

WAEAr20Rr AANABSFF AR2RARLPA

19
cRrnpnl
5.3
427s2
2iM6UB
212458
arvnT9

BRI E Y]
ILIelo At

ATTRIAUTES

4RS,
FEL,
REL,
AHS,
FEL,
REL,
REL,
REL,
REL,
REL,
REL,
REL,
REL,
REL,
WEL,
REL,
REL,
KEL,
REL,
HFL,
REL,
FEL,
PEL,
REL,
BEL,
FEL,
REL,
REL,
Rel,

2EL,

fep132 A1
END LENGTH

LCL,MOSKF, EXE, RD , WRY PQ0o2QerQ CA0A0R0Q 20200000
LCL,NOSHR,NOEXE, RD ,NOWRT 200002200 Q00270281 PAQ20Q82
LCL,NOSHR,NDEXE, RD ,NOWRT Q2204284 07020287 0PQ00GQ4
LCL,NOSHR ,NOQEXE,NORD ,NOWRT 20002200 QAR0RA200 PARRO20Q
LCL,NOSKHR, EXE, RD , WRT 2000M288 POAA1ABS 2QAQ1831%
LCL,NOSHR, EXE, RD ,NOWRT 20PQ1ARC QQPRNAIE63 QANAB3A8
LCL,~NOSHR,MNDEXF, RD , WRT 492029007 00RO2SFF C0Q0RAA60Q
LCL,NOSHR, EXF, RD , WRT AP002607 APAN266F 20RAQRR7Q
LCL,MOSHR,NDEYE, RD ,NOWRY 20202677 QQQ2A2B4F 280001EQ
LCL,NOSHR,NOEXE, ~RD ,MOWRY 20202850 00P@2867 AACAPRB18
LCL,%0SHR, EXE, RD ,NOWRT 2P002A00 OCPAP2E3A 20000438
LCL,NOSHR, EXE, KD , WRT QQP2P2E3C 00023091 AONZRA256
LCL,NOSHR, EXE, RD , WRT 202030294 220030290 2000000A
LCL,NOSHR, EXE, RD ,NOWRT 220032740 Q0023355 ¢008A1S56
LCL,NOSHR, FXF, RD ,NOWRT Q003400 A0PA369B AR00B29C
LCL,NNSKHR, FEXE, RD ,NOWRY 220Q3807 AQ0RP3I987 20PARQ188
LCL,NNSHR, EXE, RD ,NOWRT 20703400 BABR4152 A22QATS3
LCL,NOSHR, EXE, FD ,NOwWRT 200Q4207 GRDRU2AT B0PPR0A8
LCL,NOSHR, EXE, RD ,NOWRT 2Q2PU4n2 @NADUSE] GAMOAAIE2
I CL,NOSHR, EXF, RD ,NOWRT Q200024600 AG004773 200203174
LCL,MOSHR, EXE, RD ,NOWRT 20004800 AGBASIFC A30QGB9FD
LCL,MOSHR, EXE, RD ,NOWRY #Pr25202 AMORSADT 020028D8
LCL,NOSHR, EYE, RN ,MOWRT 22405C00 AGQASEAR 3MANAQA20C
LCL,NOSHR, EXE, RD ,NOWRT P0P06Q2Q2 ACAA6T9D 2BGVOT9E
LCL,NOSHR, EXE, RD ,NOWRT 20P26807 ANAB6AS9 2AGRA22SA
LCL,ROSHR, EXE, RD ,MOWRT 20006CRP7 OABR6F2F 00AGA33Q
LCL,MOSHR, EXxE, RD ,NOWRT 202Q@7270 B0BRT61S 20000616
LCL,MOSHR, EXF, RD ,NMOWRT P2AQT780C NARPTAE @@a00022F
LCL.":08HR, EXE, RD ,NQWRT P0207CA0 QOQAGBFFC 000BI3FD
LCL,~OSHR, FXE, RD ,NOwRY GRAZ9QQAR 27AR9158 2P6OV1S9

TK-1118

Figure 5-1 Portion of the

Program Section Synopsis,
RH780 (MBA) Diagnostic Program

5-3

The 1link map also 1lists the global symbols and their assigned
values. Note that symbols used as labels point to routines in the
diagnostic supervisor, if their values are over 100684.

Figure 5-2 shows a portion of the global symbol table for the
absolute program section in the header file of the MBA diagnostic
program.

The link map is a part of the listing created by the linker, but
not a part of the actual program in memory. It always precedes the
first file in the macrodiagnostic program listings.

Header Module -- Like all of the modules in the program, the
header module begins with a Table of Contents, a Copyright
Statement, and a Revision History.

The declarations section in the header module contains global
symbol definitions for register bit names, data patterns, masks
referenced by the program, and Macro definitions. This section
constitutes the beginning of the program code. The own storage
section in the header module contains program labeled data, such
as drive addresses, and program text and format statements,
containing the ASCII texts of error and status messages.

The header module also contains code that generates the hardware
and software parameter tables, report and print routines,
initialization and clean up routines, and interrupt and exception
service routines.

The assembler prints a symbol table and a program section synopsis
for the entire module following the last program section in the
module.

Test Modules -- The remaining modules in the program contain the
tests, which are the main body of the program. Each module begins
with a Table of Contents, Copyright Statement, and Program
Maintenance History. The program code begins with macro
definitions. A symbol table and program section synopsis are
provided by the assembler following the last program section for
each test module. Notice that each test begins a new program
section.

wan FILES ESCAAL,NRJsY1 TITLE?D RH780_ HEADER IDEMT3 5,3 20=SEP=1678 113104
Seo0, NAME ALIGNMENT BASF END LENGTH
0 €<, ABS > BYTE @ AAANAR0G ARAPAAAA 2PARAQNAD

GLORAL SYMBOLS DEFINED:e

SENV epRanRR1 $MO RADADCAY ASSA

AASS RAAAAASS ADAPTER,CODE ararrn2a ALL

ALL_ONES QABAFFFF ASP_OFFSET LLEFLYETY ATA

ATTENTION r@gianae ATTN 12418 BCR

BLKSCSBI 2¢AR201C BLKSNN,COMD 1reeEARpA BRQ

BR1 e9eeonp1t AR2 enprreay2 BR3

BRY PPRRRR1Y BRS Ne2PARR15 BRé&

BR7 ereea21? BYTE® BANAAAFF BYTE1

BYTE2 AOFFaeee PYTE3 FFORAVRQ BYTE,COUNT_ MSK
CAR R20pARr1C CPF ARORATAR CR
CRTED,READ,DATA 20200030 CSR PRPRRRAN DATA,XFER, ABRT
DATA_XFER_DONE aeea220s DATA_XFER,_LATE 0@PPYBAD DEFAULT
DISABLE_LOG Jooaneon hLD] puravIny pocc

DPE 72800310 neR a0e22122 DR

DRIVE OFFSET 2e00RN8N DRIVE, SEL MSK @reoE@e DRV _ERRMASK
DRV _INTTMASK erar118@ nNRY ARPARABH DS MSK

DTE eppu1000 DT,ABQORT pearnang DT, BUSY

Dva P2p20800 ERL ARAEAAL A ENABLE PS

ERR 200a4nen ERR CONF 0200008 EXT REG, OFFSET
FoaF gnerFearF FATL nAN20a13 FERR

FORCE _MEMERR NOPRO2FF HP&® A, CHANNEL ArRpan 4 HPSA, DEVICE
HP$B BR nagaon2t HPER DRIVE APAE2N22 HPSB,SLAVE
HPSB, TR 0030027 HPSL, IIRVEC deRAPP 24 HPSL, VECTOR
HP$Q DEVICE ede2ae00 HPFT NEVICE QU008 ILF

IMAPP eveaanl1n I¥RCP auR2201E IMBDP
INTERRUPT_ENBLE 2r@2pany INT SEQ,TIMEQUT 0apania2 INVRT _MAP_ PAR
INVRT MR, CPAR 4P@QQ90Q INVRT MB DPAR BUABRRZUD? 10,PAGE

IPLR Aeonan12 LOWRITS MSK BeARAALF MAINT, MODE
MANUAL nagennn? MAP 1 PATTRN BUIFFFFF MAP _ TINVALID
MAP OFFSET aeaepseyd MAR PE APAAC22A MAP_ PTR_ MSK
MASS,CNTRL,PE 0Qe@20000 MaSS, CTOD NRALPAAQ MASS DATA_ PE
MASS ECP . 90208 A MASS,EXCP arn20600 MASS,FATL
MASS_ RUN ArABAAAD MASS WCLK ARRURANAD MBDIB, SEL

MBE na0nn0@3 MEE, ASR AAA2221 0 MBE_CR1

MBE , CR2 20000914 MRE , DRR 2002a81C MBE,DTR
MBE_ER 220898 MBE MR pneaeeac MBE, PARAM
MBE, SR 2AnRAQY MCLK pRarann2 MISSED, XFER
MOL P31 002 SR CRAARAA18 MULT_ TX

NEXUS OFFSET 0022009 MIRRLE® AUANRAF NIBBLE1
NIBBLE?2 2APRAFPo NIRBLES ACOAFAND NIBBLE4
NIRBLES PuFoe20n NIRBLEG BF A2 R NIBBLE7
NON_XIST, DRIVE Quo4oven NONP APACRARA NO_RESP_CONF
occ eAQrAR19 oPT anepaan PAGE_ BYTE MSK
PF _FIELD PeOLORA9 PF,WINTH Pr0pae1s PGMLUINIT

PIP dren2eon POAER DOWN AUBPARAQ POWER, UP

Figure 5-2 Portion of the
Global Symbol Table for the
Absolute PSECT of the Loader
File of the RH788 (MBA)
Diagnostic Program

5-5

AQPAASSA
aeeroeal
neoa8c0R
oeoaev1a
000010
oeeena1s
aeepeadieé
PGCOFFQQ
@OAOFFFF
2200002084
anpoiece
rooeoean
gopeaice
AngaRRLy
Q¢0cERPO
OFFFF8FF
8a0P2200
20070809
AoQAouge
20020004
200200218
ae2e0023
ageeae1c
2000202001
oeoRQe1LF
20002000
2eereode0
20000008
gaepo0le
AQOIFEQD
ae2paa4e
¢eloenea
20800000
20000200
20000018
PN2000287
gooaoien
asaneene
A00@00FQ
2@0FoRQR
Foeepoen
4egpgeee
@@ARR1IFF
20000001
aedonese

TK-1119

5.4 DIAGNOSTIC PROGRAM AND SUPERVISOR INTERACTION

Whether a diagnostic program is executed in the user mode or in
the standalone mode, its relation to the diagnostic supervisor is
basically that shown in Figure 5-3. Once a diagnostic program has
been loaded and the diagnostic supervisor has been locaded and
started, program control moves to the boot routine of the
supervisor. This routine clears vector space, flags, mail boxes,
and sets up the processor registers to a known state. The boot
routine checks to determine whether the operator has typed a
Control C and sets up a map of memory and I/0 addresses creating
P@ and Pl page tables. It then initializes the system control
block and the process control block, and then calls the begin
routine.

The begin routine changes the processor mode to kernel and calls
the CLI (the command flag should be set). The CLI types out the
prompt symbol, DS>, indicating that the supervisor is ready for
commands. When the operator types in a command (e.g. START), a
parser routine in the supervisor 1is activated to decode the
command and call the requisite action routines, clear the command
flag, and then call the dispatch routine.

The dispatch routine forms the heart of the supervisor. It begins
by clearing the error count and setting the pass 2zero flag and
then calls the initialization routine in the diagnostic program to
be executed.

The initialization routine initializes the unit under test and
sets up conditions in the CPU and on the SBI which are necessary
to the diagnostic program. The initialization routine then
questions the operator concerning the unit to be tested, creates a
hardware parameter table (P Table), tests for end of pass, and
returns control to the dispatch routine in the supervisor.

The dispatch routine then calls the first test. At the end of each
test, control returns to the dispatch routine. At the end of the
last test in the program (or the 1last test selected by the
operator), the dispatch routine in the supervisor calls the
initialization routine in the diagnostic program. This routine
determines whether or not the end of the current pass has been
reached. If the end of the current pass has not been reached, the
first test routine in the dispatch section of the supervisor is
called, beginning another test sequence. If the end of the pass
has been reached, the program calls the end of pass routine in the
supervisor.

The end of pass routine in the supervisor determines whether or
not the last pass to be run has been completed. If so, the cleanup
and summary routines in the diagnostic program are called, the CLI
command mode is set, and control passes to the begin routine which
calls the CLI. The CLI prints out the DS> prompt symbol and waits
for operator input.

5-6

L-S

DIAGNOSTIC DIAGNOSTIC DIAGNOSTIC DIAGNOSTIC

SUPERVISOR ' PROGRAM SUPERVISOR l PROGRAM
i C
CALL SERVICE
FIRST ROUTINES
BOOTSTRAP l TEST RETURN FROM
AND SUPER SERVICE
INIT ROUTINE l ROUTINES
| -—
1 l CALL SERVICE
BEGIN
ROUTINE I ROUTINES
TESTN RETURN FROM
l SERVICE
FIRST L ROUTINES
PASS -—
(COMMAND
MODE)
—— —— — —
Vs ' END OF PASS ROUTINE 1 l
COMMAND LINE '
INTERPRETER O
o l __fourine___ |
l SUMMARY
ROUTINE
_ | SET COMNANG ™]
START l ;:xmmue E
RESTART
' OR' INTERRUPTED |
DISPATCH I TEST ROUTINE I
' PROGRAM INIT ROUTINE _-| | l - .|
YES NO
CONTINUE 'r | BUILD P | | ex pass :
TABLES,
I I INITIALIZE | l I l
' DEVICE TO BE | t
I TESTED l
— e e | s e GO TO BEGIN
DISPATCH -I I | | ROUTINE TO : ! l
INITIALIZE
% 4 SERVICE
I ;’;‘3; TEEST 1 — | l SYSTEM ROUTINES
'“] l l
(PRINT, ETC)
I ——-]
— v e c— — —l ' L CALL CLI YES AC NOIRETURN TO TEST
®E ® l |

TK-0807

Figure 5-3 Diagnostic Program
and Diagnostic Supervisor
Interaction

If the last pass has not been completed, the end of pass routine
checks to see whether the operator has typed control C. If the
Control C flag is set, control returns to the CLI. Otherwise, the
end of pass routine calls the begin routine in the supervisor to
initialize the system and initiate the next pass of the diagnostic
program.

Note that when the operator types Control C, he does not cause an
interrupt routine to be called. The Control C merely sets a flag.
The status of the flag is checked periodically when the tests in
the diagnostic program call various service routines and at the
end of a pass.

5.5 ANALYSIS OF A SAMPLE TEST: RH7804 (MBA) TEST 3, SUBTEST 1

5.5.1 Listing Column Format Description

Figure 5-4 shows the program listing for the MBA RH78¢ diagnostic
program (ESCAA), test 3, subtest 1. The sixth column from the left
contains the relative address of each instruction. These numbers
begin at @ with the beginning of each program section. Note that
the address offset of the program section containing Test 3
(3680.), found in the 1link map, must be added to the relative
addre%g to find the virtual memory address of the instruction.

The seventh column from the 1left contains the 1listing 1line
numbers. These numbers begin at @ for each module of the program.
Note that the line number increments for each line of the source
module. The sixth column shows the program counter, containing the
relative address. The relative address increases according to the
amount of memory space required for the instructions and operands.
Line numbers are present only for 1lines entered by the program
developer. Macro expansions do not have line numbers.

The eighth column from the 1left contains labels used by the
programmer as symbolic addresses.

The ninth column from the left contains instruction mnemonics and
Macro calls. Note that the Macro calls themselves require no
memory space (the relative address does not change), and that in
the Macro expansion which follows, the line number is not
incremented (line 317). At assembly time, the assembler program
responds to the Macro calls, expanding the Macro according to the
definition listed at the beginning of the file.

Column ten contains operands for those instructions contained in
column nine; and it contains instruction mnemonics and parameters
for the Macro expansions.

The eleventh column from the left contains operands from the Macro
expansions.

Column five contains the op codes (hex) for the instructions
contained in columns seven and eight.

5-8

RHT80,TESTS

L] : TEST 23 INITIALIZATION TEST
*29C
wa9c
e29c
(LI T
eetc
nesit
a01¢
*a1C
eric
ae2e
aa2n
an2e
an22
an2
an22
nea2
#0222
22
ae22
2022
N2
neg22
922
€022
%n22
“n22
nea22
na22
a2
wa22
“n29
“029
“aly
na38
g
PLITY
ELLTY
woue
2046
g6

aeeanana

a0ne

52 PBARARRRCEF ne
‘ARARPARREF PARAAAARCEF
PRARAANAEF 21
R0PPRNAREF PRPAABINEF

nE
A
DE

2000A00A0° 9F aQAANBNA°EF FaA

284

288
286

287
288
289
29a
291
292
293
294
298
296
297
298
299
300
3a1
302
3a3
304
30%
3ee

3n7
3ng
329
e

L4
(3)

112JANe 1978 15306341 VAXely MACRO X@,3=¢ Page

SSBTTL <«CONTROL REGISTER 840 TEST>
«3BTTL TESY 33 CONTROL REGISTER SA@ TEST
S3SSBTTL 003,<CONTROL REGISTER 8AQ TEST>,<PAGE>

JPSECT TEST 283, PAGE, NOWRT

30(3))
SAGNTEST
DATA. 2033

<DEFAULT, ALL>

. +LONG 2 3 TEST ARGUMENT TABLE TERMINATOR,
TEST 00321
LTS

«WORD 3 ENTRY MASK

e
TEST DESCRIPTION?
THIS TEST CHECKS FOR STUCK AT 2ERO BITS IN THE RH78@ CONTROL REGISTER

A CHECK I8 ALSO MADE TO INSURE THAT THE REGISTER WILL CLEAR VIA ‘
THE DeINPUTS OF THE CONTROL REGISTER FLIP/FLOPS,

TEST ALGORITHMy

wRITE ONE®S INTO EACH BIT, CLEAR VIA THE DeINPUTS
WRITE EACH BIT IN THWE CONTROL REGISTER
REPORT ERROR IF SELECTED BIT 18 NOT SET

NG 8 % e %6 e e e e ve Yo %6 e % e e N

MOVL RM.CURTADR,R2 1 MOVE RH788
ERRPREP RHCR,M8G,1,FMT CONTRL REG,SA0_ MSG
MOVAL RHCR_M8G,REG_NAME
MOVZBL #1,REG.NO
MOVAL FMT_CONTRL,REG,REG.STRING

ADORESS Y0 R2
y PREPARE TO HANDLE ERROR

1224
31 TEST CLEARING VIA DeINPUTS
sem
. . $BGNSUB
TII811%

CALLG $8S, S#DSSBGNSUA

anan’c2 20030900 8F oL I] 311 108 818L IFG“,INH’S?R;R!) L INIY e —— e e
a’c 13 94 aas, 312 MOVZBL #“XE,CR(R 3 WRITE ONE’S VIA D INPUTS TO CONTROL REGIST

»000°C2 04 @asF 313 CLRL CR(R2) s CLEAR VIA D INPUTS
53 anamsca pa @ne3 316 MovL CR(P2),R3 3 READ #°8 FROM CONTROL REGISTER
L) 13 0ne8 31% BEOL 208 3 S8KIP IF NO ERRORS
54 pd weed 316 CLRL R4 3 CLEAR EXPECTED RESULTS REGISTER
noec 317 SERRHARD. S #1,LUN, MIR, PRINT 8BE ’
ABPAPBAA’EF DF neec BUSRAC -
ARAARAEACEF DF 2072 PUSHAL MIR
A000NRARTEF DLII'S £) PUSHL LUN
81 DD DUTE PUSHL #1
P0AAOANG°IF 84 FR posa CALLS #38M, ##DSSERRHARD
2087 318 283 SCKLOOP 108 3 SCOPE LOOP?
aeneARnra’aF C7 AF FA p8y CALLG 1AS, o¥DSSCKLOOP
?28F 319 SENDSUSB,
@4@8F 73.81.x¢
20200A0A OF ARRAAALACEF FA 08F CALLG $8S, e¥DSSENDSUA
1 |
LISTING INST
INST LINE MNEMONICS OPERANDS
OPERAND
SPECIFIER OPCODE | NUMBER AND FROM MACRO
(HEX) (DECIMAL) | MACROS EXPANSIONS
OPERAND
OPERAND SPECIFIER PROGRAM MACRO
SPECIFIER EXTENSION COUNTER EXPANSIONS
EXTENSION {(HEX) LABELS AND COMMENTS
OPERAND OPERANDS
SPE?IFIER
1 2 3 4 5 6 7 8 9 10 11 12

Figure 5-4

TK-0736

RH788 (MBA)

Diagnostic Program Test 3,
Subtest 1, Listing

5-9

Columns one through four contain the hexadecimal code for the
operands specified in columns ten and eleven. Columns two and four
contain operand specifiers. Columns one and three contain operand
specifier extensions. Numbers followed by an apostrophe (e.g.,
poP00P0A"') are the machine code for symbolic operands. They are
modified by the 1linker at 1link time. (MARS is a one pass
assembler. Forward references, with the exception of branches
within P sections, and global symbols cannot be resolved until
link time.)

The twelfth column contains comments describing the functions of
the instructions. Each comment is preceded by a semicolon.

5.5.2 Analysis Of Typical Lines

Line 311 -- The BISL instruction sets bits in the destination
according to the mask provided. #PGM.INIT is the symbol for the
mask. Its value (00000001l) can be found in the symbol table at the
end of the module. CR is the symbol for the relative address
(offset from the MBA base register) of the control register of the
MBA under test. Its value (00000004) is also listed in the symbol
table. This value is added to the contents of R2, the base address
of the MBA under test, to produce the physical address of the
control register. The instruction thus sets bit 2zero of the
control register. The comment, INIT, indicates the function that
setting bit zero performs.

Line 317 -- $ERRHARDS, in line 317, is a Macro call. The symbols
that follow it are arguments to be used in the call. The five
lines that follow line 317 show the expansion of the Macro. These
instructions push the arguments on the stack and call the
DSSERRHARD subroutine in the supervisor, which sets the error flag
and prints an error message based on the stored arguments.

5-10

5.6 RH784 (MBA) DIAGNOSTIC SAMPLE SUBTEST (Direct I/O)

5.6.1 RH780 Diagnostic Detailed Flow

Each test in a given diagnostic program relies on subroutines
provided by the diagnostic supervisor. The diagnostic program thus
depends on the supervisor for services as well as initialization
and test sequencing functions. The operator should be able to
follow references and subroutine calls back and forth between the
diagnostic program being run and the supervisor in order to use
the listings.

The general strategy used throughout the diagnostic programs
involves writing and then reading back data directly (with MOVE
instructions) in order to exercise the logic circuits or device
functions under test. Data retrieved is compared with data
expected. If the comparison indicates a failure, an error routine
takes appropriate action and sends a message to the operator.
Subroutine 1 of test 3 of the MBA diagnostic is representative of
this strategy. This subtest determines whether the control
register of the MBA under test can be cleared after each bit in
the register has been set.

When the diagnostic supervisor calls test 3 of the MBA diagnostic,
the test initialization code moves the base address of the MBA
under test to general register 2. This register is then used to
index specific MBA registers. The ERRPREP Macro then stores
information concerning test 3 in a buffer area for use in error
messages.

Subtest 1 begins with a call to the DS$SBGNSUB entry point in the
supervisor, as shown in Figure 5-5. In order to find this entry
point, look in the global symbol table in the program link map
(Figure 5-6). DSS$BGNSUB equals @@@10030, an address in the
supervisor. Note that the first two characters of the symbol (DS)
indicate that the symbol points into the diagnostic supervisor.
The global symbol table in the link map for the supervisor shows
that the entry module (ESSAAll) defines the symbol (contains the
code for the entry point) (Figure 5-7). The names of the
supervisor modules suggest their functions (e.g., entry, 1loop,
print) .

The DSS$BGNSUB entry point contains only one instruction, a jump to
RBGNSUB, as shown in Figure 5-8. This subroutine is in the loop
module of the supervisor (Figure 5-9). RBGNSUB checks the subtest
sequence for correct order. A discrepancy causes the subroutine to
call a print routine, which displays an error message, and then to
return to the CLI. If the subtest sequence is correct, the RBGNSUB
subroutine calls the KB-CHECK routine to check for Control C. If
the operator has typed Control C, control returns to the CLI.
Otherwise, control returns to subtest 1 which, at this point,
begins testing the MBA logic.

1%

ENTRY
MODULE

!

$DSGNSUB
ROUTINE

DIAGNOSTIC
SUPERVISOR

DISPATCH

CALL TEST

MBA RH780
DIAGNOSTIC PROGRAM

= ——

ROUTINE

NO SUBTEST

SETUP

BASE ADDRESS
OF MBA
UNDER TEST

'S

ERROR
PREPARATION

CALL BGNSUB

-

SEQUENCE

DIAGNOSTIC SUPERVISOR

ENTRY
MODULE

LOOP
MODULE |

—
' RCKLOOP
ROUTINE

YES

YES

MBA RH780
DIAGNOSTIC PROGRAM

i

DS$CKLOOP

CALL CKLOOP @

FIRST
LOOP AFTER
ERROR CALL

CORRECT

Loor

-

CALCULATE
LOOP ADDRESS

!

RETURN TO I
SUBROUTINE 1
——— e e _I

]
I MOIi)ULE oK I : cul
I PRINT ERROR l
MESSAGE, l |
CALL CLI l
| NO ' RETURN TO SUBTEST INITIALIZE
l I l THE MBA
I I WRITE ONES
__| TO CONTROL
—_— e — e —— ' REGISTER (CR)
ENTRY
COMMAND mooute} [| -
LINE DSS$ERR SOEGTROL
INTERPRETER
HARD l REGISTER
RERR HARD l
ERROR SET ERROR FLAG NO READ
MODULE RING BELL }
0 F BELL FLAG l STORE ERROR INFORMATION ZEROS
CALL ERROR ROUTINE
SET
' YES
— T
ENTRY 1
MODULE I DSSPRINTF] |
—ly r
PRINT l RPRINTF
MODULE 1
PRINT RPRINTOUT '
PRINT ERROR
MODULE f
MESSAGE '
TEST3 l
SUBROUTINE
LUN #
MIR MODULE l
FAILURE @

Figure 5-5 RH788 (MBA)

Diagnostic Program Test 3,
Subtest 1,

Flowchart

BEGINNING OF
REND sSUB

CALL

SUBROUTINE

DS$ENDSUB

TK-0506

MIR MDP MCP MSI (@@OPA66E=R MIR, MS] P2@AP6AR=R MIR MSI MCP 200006D2=R
MIR _MSI _MCP MDP PIQRAQTR4=R MIR _MSI_ MDP QAPeNT41=R MIR_MSI_MDP_MCP 20PQ0Q773eR
MS1I @22209A8=R MST, MCP PRABVAS9eRr MST MCP,MIR APQ2GABA=R
MSI _MCP,MIR MDP ui#@2PABPeR MST , MIR p2ed29CI=R MSI MIR, MCP PORRR9EA=R
MSI_MIR,MCP_MDP APOAAA{C=R MSR, SNAP ACAPA2FA=R NODRIVE PRCAQRER=R
NO,UNITS ArR2e22B83=k NUMBRER_RUFFER PAARPSUZeR PTBASE CP02R2B4=R
AST INITY ANPA1953=R REC, MSG AAAB1BF =R REG NAME 00020544=R
REG_NO 72000548=F REG,STRING @enRnSuCeR REPORT_ BUFFER 2023234p=R
RHO@ N2PQ@28D=R RHI P0200291«R RH2 0PPP0295=R
RH3 A¢A0Q299=R RHY PARAQR29ND=R RHS 00202A =R
RH6 PrAPR2AS=R RH7 Q¢ACZ2A9«R RHBCR, MSG 202P21933«R
RHCR _MSG 2722191DeR RHCSR _MSG @U3r1915«R RHDR_MSG 20202193B=R
RHMAPR , MSG BROM1942eR RHSP_ MSG @o¥n1924=R RHVAR,_MSG ?000192B=R
RH_ADR,TARLE P0BAR2BDeR RH,RRLVL AA0VP2AE=R RH,CUR_ADR P00202288«R
RH,_TRLVL A0ARQA2AD=R SAD A MSG AAAA1BCE=R SA1 _MSG 200018D9=R
SFT, P, TABLE 2P2P1ABS«R SUFFIX,PTR AOORA554«R TEMP 20P0R0@55C=R
TIMOUT EVT, FLAG @0000@2E6~R TIMOUY_ RET,PC 2A2722ET=R UNEXPECTED PPRR18EU=R
WAIT,TIME APQRR2EC=R
2 <¢SHEADER> PAGE 9 PAPPA2AD PRORA28Y CORVPPR82
3 < LAST> PAGE & AGPBEPD APPAPBLRA ARK2AZRND
'] <STSTCNT>? LONG 2 QArPA284 CQRANU2BU ZPAVARAND
S «$ABSS> BYTE @ 4RRARARY PPPAARAD AACRAARR
GLOBAL SYMBOLS DEFINED:=
DS8SABORT P0012029 DSEASKADR 20212090 DSSASKDATA 20010080
DSSASKLG P2210298 DS*ASKSTR FAN1PAAQ DSEASKVLD P2012n88
: DSSRREAK a00102058 DSSCANWAIT gee1a0270
DSSCK DSECKLOOP eeR12nY2 DSSCLRVEC 02210168
DSSCNTIRLC parioe? DSSCVTREG oRa10pBA DSSELOGOFF ePgie108
DSSELOGOMN roa10100 DSSENDPASS popi1oa1 @ NSSENDSUB oeo10038
DSSERRDEYV or9100C8 DSSERRHARD pegieadDe DSSERRSOFT 20010008
DSSERRSYS arpiPacCe DSSESCAPE 22210250 DSSGETBUF ggelei2n
DSSGETMEM paei1e132 DSSGPHARD 20012318 NDSEINITSCR eoe1e17e
DSSINLOOP 20013048 DSSMMOFF eepie158 DSSMMON oeaiei1se
DSSMOVPHY aen1a148 DSEMOVVRT poR1atua DS$PARSE ee@10088
DSSPRINTB PeR1PRER DSEPRINTF peR1erFQ DSSPRINTS pee100F8
DSSPRINTX PRO1B0ES DS8SRELBUF Pen10128 DSSRELMEM 20010138
DSSSETIPL ragio178 DSSSETMAP P0n12188 DSSSETVEC ge210160
DSSSHOCHAN 23214190 DSSSUMMARY 210028 DSSWATTMS pod10060
DSSWAITUS 202100268 SYSRALLOC eer1p238 SYSSASSIGN pee10250
SYSSBINTIM 22104258 SYSSCANCEL 22010260 SYSSCANTIM 20010268
SYSSCLREF eraipa298 SYSsDALLOC aeoa1v2n8 SYSSDASSGN POB1022ER
SYSSGETCHN 0¢a184Ce SYSSGETTIM ee2153378 SYS$Q10 npa103C8
SYSSQINW pea102002 SYSEREADEF aea12300 SYSSSETEF pPR10400
SYSSSETIMR govipue SYSSSETPRT Nea10432 SYSSWAITFR 020212478
SYSSWFLAND (LR TLY SYSSWFLOR pea1nL9@
[<DISPATCH>S LONG 2 AQAVP26TA APRQ26T0 QAPENRRD
7 <DISPATCH, X>t LONG 2 ©A¥A2850 QPAP286T PACAARLS
TK-1120
Figure 5-6 DS$BGNSUB Listed

in the Symbol Table in the
ESCAA Link Map

5-13

I2»ESSAA=U, 24

Map

DMA13([340,42)1ESSAA,EXE46T

SymMBOL

LY T X T
DrRASUCB?
DrRASUCB3
DSSAA, BPTADDR
DSSABORY

DSSABORTWAIT
DSSAB, BPTINSY
DsSaQ, SSEND
DS$AQ,SYSSRY
DSSASKADR
DSSASKDATA
DssaskiLGeL
DSSASKSTR
DSSASKVLD
DSSaX, SOFTPCH

DSSCANWATT
DSSCHANMNEL
DssckLoop
DsscL:
DSSCLRVEC

DSSCNTRLC
DSSCVTREG

DSSDOSUMMARY
DSSENDPASS
DSSENDSUR
DSSENTRY
DSSERRDEV
DSSERRHARD
DSSERRSOFT
DSSERRSYS
DSSESCAPE
DS$GA BREAKVEC
DSSGA, BUFPTR
DS$GA, CHKLPPC
DS$GA CHMKVEC
DSSGA,_LASTADR
DSSGA, LOOPADR
DS$SGA _PBASE
D88GA, TBITVEC
DS§GB, BYTEBUF
DSSGETADDRESS
DSEGETBUF
DSSGETDATA
DSSGETLOGICAL
DSSGETSTRING
DSSGETVIELD
DSSGL_ BUFCNT
DSSGL, BUFLEN

VALUE

AOPIBY4EB=R
20218%588~R
PAA12FDO=R
P2210P20=R

AN@10073<R
20012FCOeR
P0A1ATFF=R
29010200P<R
*2010090<R
01010080=R
2rP10098=R
AnP102A0=P
nIA10088eR
A@1ETR0=R

DEFINED BY

10BASE ESSAAYS
TOBASE, ESSAALS
DEBUG,ESSAAS
ENTRY_ESSAALL

ENTRY_ESSAA1L
DEBUG,ESSAASB
ENTRY, ESSAALL
ENTRY, ESSAALY
ENTRY_ESSAA1)
ENTRY,ESSAALY
ENTRY,ESSAALL
ENTRY,ESSAALL
ENTRY, ESSAALY
KERNEL, ESSAA1LS

SSAALS

nNB100%58«R
20210070R
©¥A010180=R
?20010040=R
ArR1388%2«R
N7p10168«R

NABINaT8=R
20A19380=R

89@10928«R
AAAING18=R
"o 10038«R
PUB16621=R
A?a100C8=R
naRa100DA=R
7o010n08=R
n0@100C0o=R
#7810950eR
A9013588«R
2021318C=R
70013160eR
20013584=R
20013168eR
22213164=R
2001 3568<R
2301358C-R
P0013190=R
20019890«R
P0010120eR
pe21p082«R
P0010098=R
P00100AR=R
f2010388«R
90031 2E008R
P0033188<R

ENTRY_ESSAALL
ENTRY ESSAALY
ENTRY_ESSAAL]
CLI_ESSAAS

ENTRY ;ESSAA11

ENTRY_ESSAALL
ENTRY_ESSAA1Y

ENTRY, ESSAALY
ENTRY,ESSAALL
ENTRY, ESSAALY
VERSION, ESSAA33
ENTRY, ESSAAL1
ENTRY_ESSAALL
ENTRY,ESSAA1Y
ENTRY_ _ESSAA1YL
ENTRY_ESSAALYL
SCB, ESSAA2}Y
KERNEL ES84415
KERNEL _ESSAALS
SCB, ESSAA23
KERNEL ,ESSAALS
KERNEL ESSAALS
PARAM_ESSAALQ
$CB,ESSAA23
KERNEL ESSAALS
ENTRY, ESSAALY
ENTRY_ESSAALL
ENTRY_ESSAALY
ENTRY,ESSAALL
ENTRY, ESSAALY
ENTRY_ESSAALL
BUFFER, ESSAA2
KERNEL _ESSAALS

ALANATITYE N
ENTRY (ESSAA

30=-AUG=1978 @931
REFERENCED BY ,,,

DEVICE ESSAA9
DEVICE ESSAA9
ERROR, ESSAAL2
FRKCTL, ESSAAUY
PARAM, ESSAALS

ERROR, ESSAALR
KERNEL ESSAALS
KERNEL [ESSAALS

START,ESSAA2S
DEVICE,ESSAA9
ASSTGN, ESSAA3G
CHMK ESSAAY
10POST ESSAAS2
APY

APT
CLOCK_ESSAASL

DEBUG,ESSAAS
CHANNEL ESSAA3
START, ESSAA2S
DISPAT ESSAALD
CHANNEL ,ESSAA3
SCB,ESSAA2S

DISPAT _ESSAALID
CHMK ESSAAUY
MEMMGT ESSAALS
Loor
DEVICE_ESSAA9

CONSOLE

PARAM,ESSAALS
MEMMGT ESSAA1S
PARAM_ESSAALQ
PARAM,ESSAALS
PARAM,ESSAALS
PARAM,ESSAALS
KERNEL _ESSAA1S
PARAM,ESSAALS

LOOP
TOSRAM, ESSAALG
CIOREQ,ESSAASY
LooP

MEMMGT ESSAA18

ASTDEL,ESSAAY
PASSGN,_ESSAA3S

LOAD, ESSAALE

SCB.ESSAA23
DEVICE_ESSAAS

DEBUG, ESSAAS

ERROR_ESSAAL2

START_ESSAA2S

MEMMGT, ESSAA18
PRINT

Fiche { Frame L1}
LINKER X@§,20

SCB_ESSAAR3
LODMAP,ESSAAUT
SCB,ESSAA23

CANCEL,ESSAA37
DEVALC,ESSAAUB

UBAINT _ESSAASS
MEMMGT,_ESSAA18

FLAGS, ESSAALU

LooP

Figure 5-7 DS$BGNSUB Listed
in the Symbol Table in the

Supervisor Link Map

5-14

Sequence 11

PAGE

TK-1121

10

I2=ESSAA=4, 04 ENTRY POINTS TO THE DIAGNOSTIC SUPERVISOR, Fiche 3 Frane J9 Sequence 528

ENTRY, ESSAALL DIAGNOSTIC AND STARLET SERVICE ENTRY VECTORS, 22°AUG=1978 08322306 VAXell MACRO X@,3=6 Page &
Pe=08 ENTRY POINTS TO THE DIAGNOSTIC SUPERVISOR, T ocH)
na3e 171 3+
2930 172 5 4,2.1 PROGRAM CONTROL SERVICES,
2030 73 ;e
zmi"a 174 <ALIGN QUAD
@230 175 DS$SBGNSUB:? 3 BEGIN SUBTEST ENTRY POINT,
2000 ¢330 176 LWORD *M<> § ENTRY MASK
PARQRARDATEF 17 #3332 177 JMp RBGNSUB ;
238 178
g <ALIGN GUAD i
7238 180 DSSENDSUB?: 3 END SUBTEST ENTRY POINT,
2008 9938 181 +WORD “Me» 3 ENTRY MASK
AARRAAGAEF 17 @32 182 Jvp RENDSUB 3
Yy 183
ap40 {84 +ALIGN QUAD
ALY 1R8BS DSSCKLOOPz1: s CHECK LOOP ENRTY POINT,
2U0E wRun 186 JWORD *Me> 3 ENTRY MASK
AP2AJBBQEF 17 vo4 187 JMp RCKLOOP '
ARUR 1R8
LT 189 JALIGN QUAD
2948 19¢ DSSINLOOPS: 7 IN LOOP ENTRY POINT,
APAR QAQU8 191 +WORD Engy 1 ENTRY MASK
NRAGROAREF 17 ©Q4A 192 JMp RINLOOP 3
¢asa 193
“ASA 194 +ALIGN QUAD
©¥asa 195 DSSESCAPES! 3+ ESCAPE ENTRY POINT,
A900 vase 196 +«WORD “me» 1 ENTRY MASK
ANOBAAREF 17 35?2 197 JMp RESCAPE H
2958 198
$ASA 199 +ALIGN QUAD
77458 2A? DSSBREAKSS s BREAK FOR DYNAMIC SERVICES,
2000 9as8 201 LWORD Fuer 3 SAVE NO REGISTERS
FFAZ® 33 @nSa 202 BSBW KB, CHECK 3 CHECK KEYBOARD
24 2@S5D 2@3 RET
AQSE 274
QASE 205 <ALIGN QUAD
uned 206 DSSWAITMSt: $ WAIT MILLISECONDS ENTRY POINT,
6898 A6 227 .WORD Emey» 3 ENTRY MASK
AROARAGAEF 17 a2 208 Jup DSXSWAITMS
"R68 209
1068 210 +ALIGN QUAD
7nnes 211 DSSWAITUS?:: 3 WAIT MICROSECONDS ENTRY POINT,
P30 P68 212 +«WORD EMe» 3 ENTRY MASK
YONEABNATEF 17 9064 213 JMp DSXSWATTUS
"na7a 214
@910 215 JALIGN QuUAD
5A7a 216 DSSCANWAITSS
anT® 217 DSSABORTWATIT: 3 CANCEL WAIT ENTRY POINT,
2030 0A70 218 «WORD SMe» 3 ENTRY MASK
APANQARREF 17 w872 219 JMp DSXSCANWAIT
$»O78 229
2078 221 «ALIGN QUAD
2878 222 DSSCNTRLC1! ;s “xie078
20p0° »078 223 +VECTOR DSXSCNTRLC
N0PBOAR2°EF 17 @37A 224 Jmp DSXSCNTRLC+2
TK-1122
Figure 5-8 DSS$BGNSUB

Entry Point

5-15

IZIvESSAAy,PY Map
DMA1:[340,401ESSAA,EXEsSUGT

SymrsoL VALUE
Torvow eowes
PREADVBLK 28@17170=R

DEFINED BY

CONSOLE

30=AUG=1978 29131
REFERENCED BY ,4,

GIN,ESSAA22
DEBUG FSSAAS

PRISC, UW 20A%0004 SYSVECTCR
- LO0F
RBREAK 220 {SAF 6= "

PRTRVLESSAAIT 1

RckLOOP f2015394=R LooP ENTRY_ ESSAA1L
:EIRLC PUd1Sa5B=R KERNEL ,ESSAALS
. DVBLK 22317170 CONSOLE QIO ESSAA2?

v 4 *R oop ENTAY _ESSAA 1

REKRDEV A3n1486F=R ERROR,ESSAAL?2 NYRY, ESSAA

RERRHARD AA214859=R ERROR,ESSAL12 ENTRY_ESSAALL

RERRSOFT A0U14843=R ERROR,ESSAAL? ENTRY,ESSAALY

RERRSYS PAXIURBR=R ERROR, ESSAAL2 ENTRY_ESSAALL

RESCAPE 2ON1524C=R Loop ENTRY_ESSAALY

RGETADDRESS aNnN1SSFE=R PARAM,FSSAAL9 ENTRY ESSAALY

RGETDATA NANIS4TCeR PARAM,ESSAAL9 ENTRY, ESSAALL

RGETLOGICAL BAN156A2=R PARAM_ESSAA19 ENTRY,_ ESSAALY

RGETSTRING B47A15779=R PARAM,ESSAAL9 ENTRY_ESSAALY

RGETVIELD RAA1SSUY=R PARAM, ESSAALS ENTRY_ESSAALY

RGPHARD PUA1SABReR PARAM_ESSAA19 ENTRY, ESSAALL

RINLOOP ANN153IBCeR LnoP ENTRY,ESSAALYL

RPTEADR PAAITCHLI=R MEMMGT ESSAALS QIOFNY ESSAASE

RTYPEMSG A9n15DRb=R PRINT CLI_ESSAAS DISPAT _ESSAALQ
SCB,ESSAA23 START_ESSAARS

Scbk_ BaSE APAIESRAR KERNEL ESSAALS SCB_ESSAA2S

SCB, IMAGE NPA16RN2=R SCB,FSSAA2Y KERNEL_ESSAALS

SCHSASTDEL WON189Fd=R ASTDEL ,ESSAAY SCR,ESSAA23

SCHENEWL VL 20218A13=R ASTDEL _ESSAAY CHMK ESSAAY

SCHSBAST wAP18AEA=R ASTDEL ESSAAL CLOCK_ESSAAG I10POST _ESSAAS2

SEC, TICK 2AQRANGY CLOCK,ESSALG KERNEL ES8AALS

SGNSC,IRPCNT PAARIGLD KERNEL ,ESSAA1LS MEMMGT ESSAALS

SGNSGL IRPCNT #331C3EN=R KERNEL ,FSSAALS MEMMGT ESSAALB

SGNSGL, MPAGEDYN AzyiC3CCmR KERNEL FSSAALS MEMMGT ,ESSAALSB

SSS _ARDRT nUpEAI2C SYSVECTOR TMDRVR ESSAASY

88§ ACCVID a%AIAARC SYSVECTOR ACPFDT,ESSAA3S DEBUG_ESSAAB

8§8% ,BADPARAM aARANALY SYSVECTOR ACPFDT_ESSAA3S

S,BREAK *UNaL14 SYSVECTOR DEBUG,ESSAAS

§8$ BUFRYTALT Aun303nc SYSVECTOR PMDRVR ESSAASY

8§88, CANCEL A4APA83Y SYSVECTOR CANCEL _ESSAAZY

885, CMODSYPR RAABLLC SYSVECTOR DEBUG,ESSAASB

8% ,CMODUSER AAPANL24 SYSVECTOR DEBUG, ESSAAS

§s$ Compar AAPGEL2C SYSVECTOR DEBUG _ESSAAS

SS$ CONTINUE HAABARA 1 SYSVECTOR DERUG_ESSAAS

S§8, CONTROLC A2PR2651 SYSVECTOR CONSOLE

88$_ CTRLERR rueUAYSY SYSVECTOR DBDRVR_ESSAA3Y DMDRVR_ESSAASS
TMDRVR, ESSAASY

SS$,DATACHECK BARPARSC SYSVECTOR DBDRVR_ESSAALS DMDRVR_ESSAAS3
TMPRVR_ESSAASY

SSS, DATAQOVERUN QAN2@R3E SYSVECTOR TMDRVR_ESSAAST

SS$ _DEVFOREIGN naan@ned SYSVECTOR ACPFDT _ESSAA3S

SSS DEVNOTMOUNT pau2a2TC SYSVECTOR ACPFDT _ESSAA3S

SSS DEVOFFLINE 20R20G84 SYSVECTOR QIOREG_ ESSAASY

888 DRVERR ARAAANBC SYSVECTOR DBDRVR_ESSAAZS DMDRVR_ESSAASY
TMDRVR ESSAAST

8SS _ENDOFFILE aaNan8TA SYSVECTOR ACPFDT_ESSAAlS 10POST_ ESSAAS?2

§S$, ENDOFTAPE 72000878 SYSVECTOR TMDRVR,ESSAASY?

Figure 5-9

Fiche 1
LINKER X21,20

PARAM_ESSAALY

QIOREQ_ESSAAS]

DRORVR ESSAASY

DRORVR ESSAASUY

DRDRVR,ESSAASY
TMDRVR,ESSAAST

RBGNSUB Listed in
the Symbol Table in the

Diagnostic Supervisor Link Map

5-16

Frane E2

Sequence 17

16

TK-1123

Subtest 1 initializes the MBA under test by writing a one to bit
zero of the control register, the initialization bit. The subtest
then writes ones to the control register, writes 2zeros, and then
reads the register. If 2zeros are not returned from the control
register, the subtest calls the DS$SERRHARD entry point in the
supervisor. The DSSERRHARD code is in the supervisor entry module,
ESSAAll (see the supervisor link map). DSSERRHARD causes a jump to
RERRHARD, which is located in the error module of the supervisor.
RERRHARD sets the error flag, rings the bell if the bell on error
flag is set, and calls the DSSPRINTF entry point. Like the other
DS$ entry points, this one is located in the entry module and
contains only a Jjump instruction. The jump transfers control to
the RPRINTF routine in the print module (see the supervisor 1link
map) . RPRINTF, in turn, calls the RPRINTOUT routine, also in the
print module. This routine prints out a message on the operator's
terminal indicating the test and subtest numbers, the logical unit
number (LUN) wunder test, and the failing module name (MIR).
RPRINTOUT returns control to RPRINTF, which returns control to
RERRHARD, which returns control to ESCAA test 3, subtest 1.

At this point, the testing and error reporting portions of subtest
1 have been completed. The subtest then calls DSSCKLOOP (in the
control module of the supervisor). This entry point causes a jump
to the RCKLOOP subroutine, which is located in the loop module.
Unless the loop and error flags are both set, control returns to
the subtest, which in turn calls DSSENDSUB in the supervisor to
terminate subtest 1 and start the next subtest.

If the loop and error flags are both set, the loop address is
calculated and the RCLKLOOP routine causes a jump back to the
beginning of subtest 1, at label 14$. Note that if the loop is the
first loop after the error call, the test and subtest numbers are
checked. If one of these numbers is wrong, control returns to the
subtest as if the loop flag were not set. After the first 1loop,
the subtest will be repeated continually.

5.6.2 RH780# Diagnostic Sample Error Message

The error messages generated by the RH780 diagnostic vary,
depending on the type of error detected and the type of the
failing test. However, in all cases the error message will
identify the failing module (or bus signal) and the nature of the
failure. Expected and received data are printed when meaningful.
For example, if bit 2 (IE) of the MBA control register is set, the
error message printed will look like that shown in Figure 5-14.

5-17

*k*kkkx**MAINDEC ZZ-ESCAA-5.0 RH780 DIAGNOSTIC-5.0******x%%
PASS 1 TEST 3 SUBTEST 1 ERROR 1 1-JUN-1978 10:53:30.70

HARE ERROR WHILE TESTING MBA: FAILING MODULE: MIR(M8276)

(RHCR) =00000004
EXPECTED: ZERO
RECEIVED: IE

XOR: IE

TK-0780

Figure 5-1¢ ESRCA Sample Error Listing

Use the test, subtest, and error number to look up the relevant
code in the program listing. Notice that test 3, subtest 1, error
1 is the portion of the program discussed 1in the previous
paragraph. The program sets the maintenance bit in the control
register. It then writes ones to the control register, clears the
register, and reads the register. Since bit 2 is stuck at one, the
received data and the expected data do not match.

After 1listing the failure, the program continues with the
succeeding tests. The operator may, at this point, shut down the
computer to change the MIR board as directed, or use the
diagnostic supervisor commands to set up a scope loop and monitor
the failure more closely.

5.7 RPOX/DCL REPAIR DIAGNOSTIC (DIRECT I/0), SAMPLE SUBTEST

5.7.1 Detailed Flow

The RP@OX/DCL Repair Diagnostic (ESRCA) is representative of the
peripheral diagnostic programs that use direct I/O0. Like the
cluster diagnostic programs, the RP@X/DCL repair diagnostic
accesses registers on the unit under test directly, with move and
bit set instructions and the like. However, the RP@OX/DCL repair
diagnostic relies more heavily than the MBA diagnostic on services
provided by the diagnostic supervisor. In particular, it uses the
channel services of the supervisor to perform such functions as
initializing a channel, aborting a function, enabling and
disabling interrupts, setting map registers, defeating parity, and
determining adapter and error status.

For example, when the dispatch routine in the supervisor calls the
first test in the RPOX/DCL repair diagnostic, the test routine
gets the address of the device under test and then, passing a list
of arguments, calls for channel services through the DSSCHANNEL
entry point in the supervisor. Figure 5-11 shows the code for
test 1, subtest @, errors 1-3. Figure 5-12 shows the subtest flow.
DSSCHANNEL calls DSXSCHANNEL, which in turn, calls the BLDCDB
subroutine, which builds a channel data block containing the

5-18

61-S

52

000000800° 9F
53

0a2a00800A*9F
0000200@’EF

200020000’ 9F
aoeaeooe’9F
2aBQ000B ° 9F

08000000 EF

ooooepeR’9F

200000002°9F
oo0o0peR’9F

00080020
po00
200n°CF e
00002000 EF 7F
a0 00
20 oD
¥oVBROBR*EF oD
24 FB
62 e
20000008 EF 7F
20 0D
27 00
20008000 EF 00
24 F8
15 El

28
20 Do
FED® CF DF
2000°CF 00
21 DD
024 FB
@n0o2PeR EF o))
21 F8
9F AF Fa
nies 31
11 Ey

2c
2 DD
FEBF CF OF
@oep°CF 00
H DO
a4 F8
000P3200 *EF 0o
"1 F8
FFeB CF Fa
2157 31

VIFE
WOFE
wive
nipe
eled
109
v1oF
2111
w1l
wite
wiew
w123

0123
w129
“128
uied
©v133
7213a
[BLBY
nide
[SYT
niad
Y'Y]
?14C
014E
B14E
w155
2158
[Y T4
016A
016D
a16D
wiTd
uwi7s
w17s
0177
4178
#LTF
uisy
v18l
w188
188
©v18E
n195
#1958
¥19E
v19E

136

148
109

111

117
118

119

120
124

Figure 5-11
Test 1,

3 TEST ARGUMENT TABLE TERMINATOR

) GET DRIVE’S ADDRESS

9 CHECK FOR CONTROL BUS

DATA, 201
+LONG 2
TEST. ¥0113
JWORD *Me> s ENTRY MASK
1082 MGVL W "BASE_ADDRESS,R2
PUSHAG CH_STATUS
PUSHL R
PUSHL #CHCS,_INITA
PUSHL DRIVE
CALLS 84, OaDSSCHANNEL
MOVL RPCS1(R2),R3 9 GET CONTROL/STATUS
$DS,_CHANNEL,S DRIVE,®CHCS _STATUS,,CH, STATUS
PUSHAQ CH,_STATUS
PUSHL [7']
PUSHL #CHCS,STATUS
PUSHL DRIVE
CALLS #4, e#DSSCHANNEL
8HC #CHSSV MBACPE,CH,STATUS, 208
¢ PARITY ERROR
PUSHL #@
PUSHAL W<MSG MCPE
PUSHL WSDRIVE
PUSHL #3ER
133 TEST {, SUBTEST @, ERROR 1
CALLS ¥$3M, OWDSSERRMARD
PUSHL DRIVE
CALLS %1, PwDSSSHOCHAN
caLLG 108, exDSSCKLOOP
BRW TEST 9201 ,.X y EXIT TEST 1§

PRRRENE RN RARE AR ARRAR AR R AR RN AR AR N AN RRARERRARRARRRANRNANAAAAA RN

2083 B8C #CHSSV _MBANED, CH,STATUS, 258
S$DS_ERRHARD,S ,WSDRIVE,W*MSG,NED
PUSHL #u
PUSHAL W=M8G,_NED
PUSHL W*DRIVE
PUSHL #3ER
139 TEST {, SUBTEST @, ERROR 2
CALLS #38M, SWDSSERRHARD
$05,SHOCHAN,S DRIVE
PUSHL DRIVE
CALLS #1, O¥DSISHOCHAN
$08,CKLOOP 10
CALLG 148, ewDSSCKLOOP
$08_ EXIT TEST
BRW TEST 001X 3 ‘EXIT TEST 1

Program Listing

ESRCA RP@X/DCL
Subtest @,

3 CHECK FOR NONEXI8T, ORIVE

TK-1124

DIAGNOSTIC SUPERVISOR ESRCA
RPOX/DCL REPAIR
TEST I, SUBTEST O
GET ADDRESS
DISPATCH
ENTRY MODULE ROUTINE » OF DRIVE
UNDER TEST
CHANNEL MODULE -
! BLDCDB ROUTINE DS$ CHANNEL
4
GET HARDWARE GET CALL
P-TABLE UNIT # N DSSCHANNEL
(INIT)
YES
ERROR
NO
BUILD CHANNEL
DATA BLOCK
INDICATE
SUCCESS o
l -
—_— FUNC
r
STATUS @ INITA
GET STATUS .
OF DEVICE CHAN, ISNEI-:.MBA
SYSTEM
[l []
| 1 l l 2 I

TK-0747

Figure 5-12 ESRCA RP@X/DCL Repair Diagnostic Test 1, Subtest @,
Flowchart (Sheet 1 of 2)

5-20

DIAGNOSTIC SUPERVISOR

ESRCA

RPOX/DCL REPAIR
TEST |, SUBTEST O

READ RPCS1
OF DRIVE

CALL
DS$ CHANNEL
(STATUS)

DS$ERRHARD
{PRINT ERROR

ERROR 1

TYPE)

DS$SHOCHAN

(SHOW MBA -
REGISTERS)

|

DS$CKLOOP
(LOOP IF LOOP

FLAG SET)

1

DISPATCH
ROUTINE

(CALL NEXT TEST)

| ERROR 2

CONTROL
BUS PARITY
ERROR

NON-
EXISTENT
DRIVE

AND SO ON

TK-0748

Figure 5-12

ESRCA RP@X/DCL Repair Diagnostic Test 1,

Flowchart (Sheet 2 of 2)

5-21

Subtest @,

P-Table address, and the adapter address; clears the flag word;
and determines whether the channel is an MBA or a UBA. When
control returns to the DSXS$CHANNEL routine, the function argument
passed from the calling program (ESRCA) is evaluated, activating
one of several function subroutines. In this case, the INITA
subroutine sets the initialization bit in the MBA control
register.

Control then returns to the calling program (ESRCA), which reads
the RPCS1 (control status) register of the unit under test with a
MOVE instruction (direct I/0). The test routine then calls
DSSCHANNEL again, this time passing a different function argument
(CHCS$ STATUS). The DSXS$CHANNEL routine 1is executed again,
activating the CHC$ STATUS subroutine which stores the unit and
adapter status in the location labeled CH STATUS.

Then when control returns from the DSX$CHANNEL routine to the test
routine, the data in location CH STATUS is compared, bit by bit,
with expected data patterns. If an error is detected, the test
routine calls a series of supervisor routines (DSSERRHARD,
DS$SHOCHAN, DSSCKLOOP, and DISPATCH) to print out error
information, loop if the loop flag is set, and return to the
dispatch routine if the loop flag is not set.

5.7.2 RPPX/DCL Repair Diagnostic Sample Error Message

Test 1, subtest @, error 1 of the RP@#X/DCL diagnostic identifies
control bus parity failures on the Massbus (Figure 5-11). When the
program detects this failure, the error message identifies the
failure by test, subtest, error, failing unit, and error type. In
addition, the message includes an MBA channel status dump, showing
the contents of the pertinent registers, as shown in Figure 5-13.

Bit 17 of the status register 1is set, indicating the Massbus
control parity error.

Other error message formats display expected and received data and
the contents of relevant registers in the RP@X/DCL, depending on
the error and the failing test.

5.8 DISK RELIABILITY DIAGNOSTIC (QUEUE I/O), SAMPLE SUBTEST

5.8.1 Detailed Flow

The Disk Reliability Diagnostic program (ESRAA) is representative
of the queue I/0 diagnostics. Instead of performing move
instructions to read and write peripheral device registers
directly (as the MBA diagnostic does), the program builds an
argument list containing device and transfer parameters and
pointing to the data to be transferred and the function to be
performed. The program then calls the queue I/0O services of VMS or
the diagnostic supervisor. In this way, the program transfers
information to and from the peripheral device under test without
requiring exclusive use of the device, the channel, or the
computer system. Figure 5-14 shows the listing for ESRAA test 1,
subtest @, error 12, the first of the data transfer tests. Figure
5-15 shows the program flow for the same routine.

5-22

** PROGRAM: ZZ-ESRCA RP@X/DCL DIAGNOSTIC, REV 4.1, 46 TESTS.

TEST 1: QUALIFICATION TESTS

Thkkkkhk ZZ-ESRCA RPO@X/DCL DIAGNOSTIC - 4.1 kkkkkddhk

PASS 1 TEST 1 SUBTEST @ ERROR 2 18-MAR-1978 ©8:26:20.26

DEVICE FATAL WHILE TESTING DBA@: CONTROL BUS PARITY ERROR DETECTED

MBA CHANNEL STATUS DUMP

MBA CSR: [20010000] P0000020 (X);

MBA_ CR: [20010004] P0000000 (X);

MBA SR: (20010008] 20020000 (X); MCPE
MBA_VAR: [2001000C] P0B00200 (X) ;
MBA_MAP(80): PB0000B00 (X);

MBA BCNT: [200106010] po0P00A0d (X);

TK-1265

Figure 5-13 ESRCA Sample Error Message

5-23

1Z=ESRAA=S,2

DATA TRANSFER TESTS
ESRAAB, QA TESTS QUALIFICATION TESTS ZZ-ESRAA=S,2

31=aUG~1978 1@:52144

VAXei] MACRO X0,3=6

Fiche 1 Frame D16

Sequence 198
12

(4)

TK-1127

5,0 DaTA TRANSFER TESTS
n3Ag 309
A3uS 312 ;¢4
325 311 ;
318 312 ; BEGIN MULTI«SECTOR WRITES,WwRITECHECK, AND READS
1M 313 ;
1325 314
“30s 315 ; REGISTERS USAGEs
#4345 316 ¢
r3fs 317 : RS = MAXIMUM NUMBER OF CYLINDERS
1328 318 ;
345 319 ; Ré6 = MAXIMUM NUMBER OF TRACKS
»3ns 3ee ;
232§ 321 ; R7 ® MAXIMUM MUMRER OF SECTORS
n38s 322 ;
¥3As 323 ; R8 ® CURRENT CYLIMDER NUMBER
034S 324 ;
u34s 325 3 R9 = CURRENT TRACK NUMBER
#3285 326
n3QS 327 ; R10 = CURRENT SFCTOR NUMBER
©3es 328 3
9308 329 ; R11 = DEVICE CHARACTERISTICS POINTER
2325 330 jee .
sS 2A AB 3C 49345 33¢ MOVZWL DSKGCSwW, CYLNDR(Ri{1),RS 3 PICK UP MAXIMUM NO OF CYLINDERS
S6 39 AB 9A ©3A9 332 MOVZBL DSkDCSR_TRACK(R11),R6 3 PICK UP MAXIMUM NUMBER OF TRACKS
S7 38 AB 94 ¢320D 333 MOVZBL DSKDCSB,SECTOR(R11),R7 3 PICK UP MAXIMUM NUMBER OF SECTORS
2S AB Pa°8F 91 311 334 cMPR $RM23,DSKDCSB, TYPE(RIL) 3 IS THIS AN RMO3?
a8 12 0316 335 BNEQ 1818 3 NOPE
B2 5318 336 MOVW ¥ STSECT RM,= s GET LAST SECTOR IN CYLINDER
POOPOPNL°EF 241F 8F 2319 337 LASTSw, SECTNR H
29 11 32 338 BRB 182% 3 SKIP
B? 9323 339 1818 MOV W #LSTSECT PP,= 3 LAST SECTOR FOR RP
000eANN1 “EF 1215 8F #2324 3ae LASTSW,SECTOR '
S9 D4 G32C 341 182%: CLRL R s CLEAR LONG WORD BUFFER INDEX
P@QQRABU’EF4 ASTAASTA BF D@ w32E 342 19983 MovL ¥PATTERN],BUFFERL [RQ] $ WRITE PATTERN
s 2OAAVOTF BF F3 033a 343 AOBLEOD #127,Ra,190% s WRITE Si2 BYTES
EC ¢341
58 04 v342 344 CLRL R8 s CLEAR CURRENT CYLINDER
SA D4 ©34u 348 CLRL R10 3 CLEAR CURRENT SECTOR
Sé 81 €3 A34e 346 SUBL3 ¥1,R6,R9 ;3 BEGIN AT LAST TRACK
59 349
sS4 202920 A2°EF42 ne w3ua 347 MOVL GIOPTRLIST(R2),R4 3 R4 POINTS TO QIO ARGLIST
1C A4 WAGBAGBYEF 0E u3S2 348 2r0$y MOVAL BUFFER],QI08, P1(R4) 3 PUT BUFFER ADDRESS IN QIO ARGLIST
20 ad 20291200 8F D@ 235a 349 MOVL #512,0108, P2(RY) 3 WRITE BYTE COUNT
[-LECM A S9 90 2362 35@ MOvE R9,QINSB, TRACK(RY) 3 WRITE TRACK VALUE
AANB°CY 54 92 e3e67 351 MOV R12,0108B,SECTOR(RY) 3 WRITE SECTOR COUNT
aaaa‘’ca 58 R 236C 352 MOV R8,QT08W_ CYLNDR(RY) 3 WRITE CYLINDER
3¢ A4 ANVAPPBNEFU2 N #3714 353 MOovVL DSKDB, PTRLIST (R2),~ 7 WRITE DIAGNOSTIC BUFFER ADDRESS
V374 354 QJ0% ,P6(RY)
A4 A4 WRAPRANANTEFLR DY 37a 358 MOVL EF,LIST[R2),QI03 EFN(R4) 3 WRITE EVENT FLAG NUMBER
9¢ 2383 35¢ MOVB Y108 WRITEPRLK,= 3 SET FUNCTION = WRITE
aC A4 2R 384 357 AI0S FUNC(RY))
+387 358 $NS BREAK 3 CHECK FOR *C
00000000 °9F b€ FA @387 CALLG (SP), @xDSSBREAK
J38E 359 $QIOK,G (RY) . : ISSUE QIO REQUEST
00000RAA°GF 64 FA 238 CALLG (RU), G SYSSQIOW
4R 63 E8 w395 362 aLes (R3),2108 3 BRANCH IF NO ERRRORS
v393 361 CHECK_BLOCKS R2,R8,R9,R10 : CHECK BAD BLOCK FILE
s2 0D #3938 PUSHL R2
7€ 58 B2 ¥394A MOVW R8,«(SP)
7€ 59 90 039D Move R9,=(SP)
7€ 54 99 A3AQ »ovB R1Q,=(8P)
00MaNN02°EF a2 FB 43A3 CALLS #2,CHECK,BLOCK
e3 Sa E9 A3AA 362 RLBC R(, 205% 3 BRANCH IF NOT IN BAD BLOCK FILE
2178 31 23AD 363 BRW (YT} s GET NEXT BLOCK
v3RG 364 205%% $DS BREAK 3 CHECK FOR *C
peeeAAnrN9F [13 £A 2382 CALLG (SP), #¥DSSBREAK
n3IBT 365 $QI0W,6 (RY) 3 RETRY WRITE COMMAND
00e0eRrIN’GF 64 FA #387 CALLG (RY4), G SYSSQIOW
22 63 E8 w3ef 366 BLBS (R3),2108 3 BRANCH IF SUCCESS
a3C1 134 $NS ERRHARD,S »R2,BLANK, s REPORT ERROR
w3Ct 168 PUMP STATUS s DUMP STATUS
AAAACRAPCEF DF #3Ct PUSHAL DUMP_STATUS
NOARRAAACEF DF 33C? PUSHAL BLANK
52 DD ¢3CD PUSHL R2
ac DD *3CF PUSHL #EER
2301 311 TEST 1, SUBTEST @, ERROR 12
090U R*QF nu FB 4301 CALLS #S3SM, O¥DSSERRMARD
w3DR 369 $0g, CKxLOOP 205% 3 LOOP
002027 N°9F DS AF FA 303 CaLLG 205%, e#DSSCKLOOP
AL 31 w3En 37e BRW Y133 3 GET NEXT BLOCK
©3E3 371 21e%: $0S , CKLOOP 2725%
[TT-1EITI AL TS CA AF FA ©3E3 CaLLG 2a5%, e¢DSSCKL00P
Figure 5-14 Disk Reliability

(ESRAA) Test 1, Subtest 4,

Error 12 Listing

5-24

VMS DISK RELIABILITY ESRAA TEST 1,
AND SUBTEST O, (ERROR 12) DATA TRANSFER TESTS
DIAGNOSTIC ‘ CD 4
START
SUPERVISOR SET POINTERS
TO CYLINDER O
SECTOR O
DETERMINE NUMBER LAST TRACK
OF CYLINDERS
TRACKS \<i/J
SECTORS SUIB oD
DETERMINE DRIVE ARGUMENT LIST-
TYPE BUFFER ADDRESS
BYTE COUNT
TRACK SECTOR
WRITE PATTERN 1 CYLINDER
(A570A570) DIAGNOSTIC BUFFER
INTO A BUFFER ADDRESS
512 BYTES EVENT FLAG #
[FUNC = WRITE
COMMAND YES
LINE AgC
INTERPRETER
Qi/0° SERVICES NO
WRITE PATTERN 1 TO
FIRST CYLINDER ISSUE
FIRST BLOCK LAST Qo
TRACK REQUEST
LOAD DIAGNOSTIC
BUFFER
LOAD I/0 STATUS
BLOCK (10OSB)
ISOB
SUCCESS YES CONTENTS
2 NORMAL
_ NO
FAILURE
DS$CKLOOP
CONTINUE WITH
NEXT PART
OF TEST 1
(READ PATTERN
JUST WRITTEN)

TK-0582

Figure 5-15 ESRAA Test 1, Subtest @, Error 12 Flowchart
(Sheet 1 of 3)

5-25

9C-¢

VMS
AND
DIAGNOSTIC
SUPERVISOR

COMMAND
LINE
INTERPRETER

Q 1/0 SERVICES
WRITE PATTERN 1

<
m
(2]

ESRAA DISK RELIABILITY O
1

o G m—
CHECK BLOCK

ROUTINE

I eerser [)

' SECTOR
ROUTINE

READ
BAD BLOCK
FILE

I
|
I
L——

SUCCESS

NO

ISSUE
Q170 REQUEST
{RETRY)

J

LOAD 10SB
AND DIAG BUFFER

DSSERRHARD
DUMP STATUS

PRINT ERROR MSG

0SB
CONTENTS
JNORMAL

HAVE
FIRST 5 SECTORS
BEEN READ

GET (NEXT)
WORD FROM
BAD BLOCK
FILE

-J

END OF
BAD BLOCK

ADD2TO
SECTOR
COUNTER

LAST

OF CYLINDER.

TRACK. SECTOR

NO WITH ITEM FROM
BAD BLOCK

SECTOR

e e e e o e o e ——

BAD BLOCK
FILEIS
oK

'

DS$CKLOOP

L.

—_— | e | —

Figure 5-15
Subtest @,

ESRAA Test 1,
Error 12 Flowchart

(Sheet 2 of 3)

TK-0883

VMS AND DIAGNOSTIC

SUPERVISOR

y

ESRAA

DISK RELIABILITY

SET POINTERS

FOR NEXT
BLOCK

STATUS DUMP

|

COMMAND
LINE
INTERPRETER

NO

PRINT

TIME

COMPLETION

YES

DISPATCH
ROUTINE

Figure 5-15

ESRAA Test 1, Subtest @,

(Sheet 3 of 3)

5-27

AC

NO

TK-0584

Error 12 Flowchart

The first test, when it is called by the dispatch routine in the
supervisor, sets up a pointer to the I/0 status block and tests
various drive commands (drive clear, seek, recalibrate, NOP,
offset, and reset). Test 1 then performs an oscillating seek test
before beginning the data transfer tests.

In the data transfer tests portion of test 1, the program sets up
a write transfer of a data pattern (A570A574) to the first block
on the disk pack in the drive under test. The data to be written
to the disk is loaded into a buffer area in memory. The program
then builds an argument 1list containing the address of the data
buffer, the byte count of the data to be transferred, the location
of the target block on the disk pack (track, sector, cylinder),
the diagnostic buffer address, the event flag number, and the
function to be performed. Then, after checking for Control C, the
program calls SYSS$SQIOW.

If the program is being run in the user mode (VMS environment),
the call to SYS$QIOW invokes a routine in VMS. If the program is
being run in the standalone mode, the SYS$SQIOW call invokes a
similar routine in the supervisor. SYS$QIOW builds an I/0O packet
from the parameters passed from the diagnostic program and then
(if in VMS) checks the privilege of the calling process (the
diagnostic supervisor) through internal data structures. The
SYSSQIOW routine then places the packet in a queue for processing
by a device driven routine, clears the event flag, and waits for
completion of the I/0 function (indicated by the setting of the
event flag). When the driver completes the I/0 function, it
examines the controller and drive status registers, formulates a
status message that is stored in the I/0 packet, and loads the
diagnostic buffer with drive and adapter register contents. The
I/0 packet is then inserted into the I/0 post queue and a software
interrupt to initiate I/0 post processing is requested. The I/O
post routine performs final I/0 request processing and status
posting (I0SB), 1loads the diagnostic buffer with device and
adapter (on MBA or UBA) register contents, and sets the event
flag.

With the event flag set, the calling program (ESRAA) resumes
control. The diagnostic program then checks the I/O Status Block
(I0SB) to determine whether or not the requested function was
completed successfully. The IOSB has the format shown in Figure
5-16.

31 16 15 00

BYTE COUNT STATUS

DEVICE-DEPENDENT DATA
TK-0743

Figure 5-16 I/0 Status Block Contents (for disks)

5-28

If the low order bit of the first longword of the IOSB is set,
indicating success, the program does a branch to the next portion
of the test (label 210$), where it tests the loop flag and then
reads the data just written to the disk pack.

If the low order bit of the IOSB is not set, the test calls the
CHECKBLOCK routine (refer to the code in Figure 5-17), which is
located in the load blocks module (module 6) of the disk
reliability program (refer to the 1link map). This routine, in
turn, calls the GETBBFSECTOR routine (Figure 5-18) which reads the
load block sector on the disk pack. If the load block file cannot
be read at all, the routine returns control to test 1, where the
queue I/0 request is retried. If the load block file has been read
successfully, the routine checks through the item in the file to
see if the address of the block which cannot be written to 1is
already noted in the load block file. If so, the load block file
is OK, and control returns to test 1, which sets up pointer to
access the next block on the disk, builds a new queue I/0 argument
list, and again calls SYS$QIOW, as previously explained, in an
attempt to write the pattern into the next block on the disk.

If the failing block address is not listed in the load block file,
the CHECKBLOCK routine returns control to test 1 which, in turn,
issues a second queue I/0 request (after checking for Control C).
If the request fails again (IOSB status code = @), the program
calls the DSSERRHARD routine in the supervisor, which dumps the
status block and diagnostic buffer contents and other error
information. After detecting a failure of this type, the program
checks the loop flag. If the loop flag is set, the program repeats
the queue I/0 request indefinitely. Otherwise, the program checks
each block on the disk pack until it finds one that it can write
into successfully, before going on to check the next function
(read the block just written, beginning at label 210$).

5-29

L2=ESRAA=S 2

ESRAAG, MAP_BB “AP RAD BLOCKS ZZ-ESRAA-S,D
5,0 BAD BLOCK FILE ROUTINES
20070020 144
FLET] 145
3FFC 29009 146
@an2 147
k] DD @y22
ea DD wued
2ouNRe3°EF TF asine
21 DD *8aC
02000PAN° 9F a4 FR (@€
18 52 E8 uo1s 148
qa18 149
ne DD 218
A29AVAABEF DF w214A
28 AC DD w320
(3] DD 2u23
1125
20n900AG° IF -I'} FB 202S
192c 150
20007309204°9F 6C FA 9232C
52 o4 AC 9A 2n33 151
s3 25 AC 94 ne37 152
S4 06 AC 3C wva3B 153
sS a8 AC D8 ON3F 154
Se D4 uA43 155
S7 22 94 Ap4S 156
58 AA2AUBNE°EFUS 70 w048 157
“wpSi 158
31 noD wys” 159
56 pD PRS2 160
BPNARPCACEF e2 FB ap54 161
2A Se E8 eS8 162
Se o8 91 ©eSE 163
64 13 evel 164
Sé e2 ce wpeld 165
E8 11 Adeb 166
PROR 167
56 ne 94 7068 168
11 11 6B 169
55 DD aeD 170
Sé DD eeF 171
P00PP0PRCA"EF a2 FB 1971 172
a3 S@ E9 2278 173
57 e2 9A @4TR 174
59 ApPANAIATFFLT DR we7E 175
52 FFFF 8Ff Rl 9086 176
31 13 va8R 177
sS4 Se BY wasD 178
24 12 #2299 179
28 12 ED v¥92 180
s2 Sv 40098
10 12 #0297 181
ea 18 ED #@99 182
53 52 429C
16 12 +29E 183
AEAD 184
-] DD voyan
2N2PCAINTEF TF vaaQ
21 DD ©nA8
890nA202° 9F ”n3 FB wuasA
52 " 9A VaRY 185
13 11 v2B4 186
s7 R20@227F BF F3 dARe 187
ca WPRD
56 02 Co ueRE 184
78 A8 56 91 wACy 189
LY] 19 ¢0CS 190
lad 191
59 D4 uaC? 192
3009 193
a4 wCe 194
HICA 195
H4ACA 196
IACA 197
“aCA 198
Figure 5-17 CHECKBLOCK

Routine Code

5-30

BAD BLOCK FILE RQUTINES

Fiche { Frame L13 Seauence 167
31«AUG=1978 123151131 VAXelf{ MACRO X@,3~6 Page ;
(3
+PSECT CODES
CHECK, BLOCK:S
«WORD “M<RR,R3,R4,R5,R6,R7,RB,R9,R10,R{1>
$DS . GETRUF,_S #1,BBF,POINTER ; ALLOCATE BUFFER
PUSHL (1]
PUSHL 50
PIUSHAQG BRF_POINTER
PUSHL #1
CALLS w4, e#DSSGEYBUF
BLAS R, 28 ;s SUCCESS?
$DS_ERRSYS,S +LUN(CAP) ,MSG NOMEM
PUSHL #0
PUSHAL MSG _NOMEM
PUSHL LUNCAP)
PUSHL ¥SER
13 TEST 9, SUBTEST 8, ERROR |
CALLS #ESM, O4DSSERRSYS
$DS_ABORT ~
CALLG (AP), #%#DSSABORT
2% MOVZBL SECTOR(AP),R2 3 PICK UP SECTOR
MOVZBL TRACK(AP),R3 s PICK UP TRACK
MOVZwL CYLINDER(AP),R4 s PICK UP CYLINDER
MOVL LUN(AP), RS 3 PICK UP LOGICAL UNIT NUMBER
CLRL R6 3 CLEAR SECTOR COUNTER
MovzeL #2,R7 s INITIALIZE INDEX OFFSET
Move DSKNC,OWDLIST+4[RS],R8 ; PICK UP AODDRESS OF DRIVE CHARACTERISTICS
1282
PUSHL RS 3 PUSH LUN
PUSHL Re : PUSH SECTOR
CALLS #2,GETBRF_ SECTOR s READ BAD BLOCK SECTOR
BLBS Re,SCAN 3 BRANCH IF SUCCESS
cMPB 48,R6 s HAVE FIRST FIVE SECTORS BEEN READ?
BEGL CHECK _BLOCKZX 3 TAKE FAILURE EXIT
ADDL #2,R6 3 ADD 2 TO SECTOR COUNTER
LL].} 108 t CONTINUE READING
SCANg P
MOVZBL #8,R6 3" INITIALIZE SECTOR COUNTER
8RB 20¢% 3 CHECK BLOCK READ FROM PREVIOUS LOOP
128 PUSHL RS ;s PUSH LUN
PUSHL R6 s PUSH SECTOR NUMBER
CaLLS #2,GETBRF, SFCTOR ; READ NEXT SECTOR
BLBC RQ, 40% s IF FAILURE TRY NEXT BLOCK
MOVZIBL #2,R7 : IGNORE FIRST TWO LONG WORDS OF THWE FILE
2082 MOVL ®BBF _POINTER{RT),R@ s PICK UP BAD BLOCK FILE ITEM
CMPH #=1,RE ;3 CHECK FOR END OF BAD BLOCK FILE
BEQL 4es ;s IF EOF TRY NEXT SECTOR
CMPW RO, RY 3 IF CYLINDERS DON’T MATCH
BNEG ins 3 THEN BRANCH
CMPZV #16,%#8,RP,R2 s IF SECTORS DON’T MATCH
BNEQ 308 3 THEN BRANCH
cMPZV 424,%8,RQ,R3 ; IF TRACKS DON’T MATCH
BNEQ £1:4) THEN BRANCM
$D0S_ RELBUF,S #1,RBF ,POINTER
PUSHL #9
PUSHAQ BBF_ POINTER
PUSHL ¥1
CALLS #3, OxDSSRELBUF
MOVZBL #1,R9 ;s INDICATE SUCCESS
BRB CHECK BLOCKX s AND EXIT
328 ADBLEG #127,R7,278 s IF ALL BLOCKS NOT CHECKED INDEX AND LOOP
4082 ADDL H2,Ré : BUMP SECTOR COUNTER BY TWO
cMPB R6,DSKDCSB, SECTOR(RB) : CHMECK FOR LAST SECTOR
BLSS 12% ; CONTINUE READING IF NOT LAST SECTOR
CHECK, BLOCKZX?
CLRL R s ELSE INDICATE FAILURE
CHECK, BLOCKXS
RET ;s EXIT
+SBYTL GETBRF,SECTOR ROUTINE

TK-1126

1€-6

5e
53
sS4

2A00°C4

eveA’Cy
1C A4
aPpa°CcY
20 A4
fu AU
s

28 A4
ac a4
3¢ A4
55

1¢ A4

200021 ° GF

28 AC
PABRAUNLU EF YR
AB2A200°EF

13}

"9 A3

3

YA A3
BAAACAIA’EF

24 AC

n"2N2 8F
POVQRAVANCEF Y
NARARRAA EFY2

A8 AQ@

[

Aenonann gF
WAL IBAARTEFU2

ss

Y]

4e7C
oe
70
DE
a3

A3

DA
9@
3¢
DA
D2
pa
hYd
cse
7€
Do

FA
a4

2aCA
@acaA
NACC
GANA
©nD8
WHBDF
WOE1
URE6
“AES
WAED
HAFS
NOFR
nyat
i AA
2112
”117
wilB
123
“128
w1 2F
#12F
136
”137

268 GETBBF SECTOR1:

269
270
271
272
273
274
278
276
277
278
279
280
281
282
283
284
285
286
287

248
289

«SBTTL

+WORD
MOVL
Mova
MOVAL
suRAB3

SUBW3

MOovL
MQovVB
MOVZWL
Mov(L
MOVL
MovL
MOvL
RISL
MOVAQ
MOvVL
$O10W, G

RET

“M¢R2,R3,R4,R5,R6>

LUNCAP),R2 ¢ PICK UP THE LOGICAL UNIT NUMBER

DSKNC, QWDLIST+4[R2],R3 3 PICK UP POINTER YO DRIVE CHARACTERISTICS
ARGLIST,R4 3 R4 <== POINTER TO LOCAL QIO ARGLISY
#1,08KDCEB_ TRACK(RY),=

DI0SB, TRACK(RY) 3 WRITE TRACK YO READ

#1,D8KDCEW, CYLNDR(R3),=

QIOSW,_ CYLNDR(R4) WRITE CYLINDER TO READ

BBF _POINTER,QIOS P (RY) x WRITE BUFFER ADDRESS INTO Q0 ARGLIST
SECTOR(AP).GIOSB‘SECTOR(RUJ t WRITE SECTOR TO READ IN QIO ARGLISY
#512,0108, P2(RY) ¢ WRITE BYTE COUNT
EF‘LIST[RZJ.GIOS‘EFN(HGJ 1 WRITE EVENT FLAG
RIOPTRLIST[R2),RP 3 PICK UP QIO PTR
QIDS CHAN(RD),QI08 CHAN(RU) p WRITE ASSIGNED CHANNEL
¥I0S,READPBLK,QIOS_FUNC(RU) y WRITE READ PHYSICAL FUNCTION CODE
#IOSM‘INHERLOG Gxos FUNC(R4) y INMWIBIT ERROR LOG
IOSTATUS¢BLOCK[R2]oRS 1 PICK UP 1088 ADDRESS
RS, Q108 ,I0SB(RY) $ WRITE 1088 ADDRESS INTO QIO ARGLIST
(RY) _ 3 ISSUE QIO REQUEST
CALLG (RY), G SYSSQIOW

s EXIT

PUT BADBLK ROUTINE

Figure 5-18

TK-1126

GETBBFSECTOR

Routine Code

5.8.2 Disk Reliability Program Sample Error Message

Test 1, Subtest @, Error 12 of the disk reliability program
identifies bad blocks, on the disk pack under test, that are not
entered in the bad block file. The message shown in Figure 5-19
identifies the failing test, subtest, and error numbers. The
message also includes a dump of the channel registers (MBA
registers in this case) and the RM@3 registers.

Notice that bits 12 and 15 of the RMER1 register are set,
indicating a data check error. The starting cylinder is @. The bad
block is located in sector 1, on track 4, as shown by the contents
of the RMDA registers.

TEST 1: QUALIFICATION TEST
DRA1l QA BEGUN AT 2-FEB-1979 14:26:18.54
Fhkhkkkk VAX DISK RELIABILITY TESTS ** ESRAA ** —- 5.2 LAk b
PASS 1 TEST 1 SUBTEST # ERROR 12 2-FEB-1977 14:26:20.52
HARD ERROR WHILE TESTING DRAl:

FUNCTION INITIATION SUMMARY:

FUNCTION ATTEMPTED: WRITE DATA

BUFFER ADDRESS RANGE: FROM: $0000388 TO: 6000606587
ATTEMPTING BYTE COUNT WAS: 512

STARTING DISK ADDRESS:

CYLINDER: # TRACK: 4 SECTOR: @

FUNCTION ABORT SUMMARY:

UNDEFINED SYSTEM STATUS VALUE = ¢0000000

MBACSR : 90000020 ; ADAPTER CODE = 20 (X)

MBACR : 00000004 ; IE

MBASR : 000062000 ; DT_COMP

MBAVAR : p0008388 : MAP POINTER = @#1(X), PAGE BYTE ADDRESS = 188 (X)
MBABCR : 20000000 ; MASSBUS BYTE COUNT = @@@8 (X), SBI BYTE COUNT = 0000 (X
MBAFMAP : 800000E7 ; BIT 31, BIT 7, BIT 6, BIT 5, BIT 2, BIT 1, BIT @
MBAPMAP : 80000 OF2 ; BIT 31, BIT 7, BIT 6, BIT 5, BIT 4, BIT 1
RMCS1 : 6830 ; DVA, FUNCTION = WRITE DATA

RMDS : 11Co ; MOL, DPR, DRY, VV

RMER1 : 8000 ; DCK

RMMR : 29928 ; MWR, MSCLK

RMAS : 0000 H

RMDA : 9401 ; TRACK = @4(D), SECTOR = @1(D)

RMDT : 2814 ; MOH, DRQ, DRIVE TYPE = RM@3

RMLA : 8040 ; SECTOR = @1(D)

RMSN : 8846 ; SERIAL NUMBER = 8846 (X)

RMOF : 1800 ; FMT22, ECCI

RMDC : 0000 ; DESIRED CYLINDER = 00608 (D)

RMHR : 2000 i

RMMR 2 : 13FF ; CNT/CYL, BUS IN LINES = 1FF(X)

RMER2 : 0000 H

RMEC1 : 9836 ; BURST LOCATION = 9836 (X)

RMEC2 : 0000 ; ERROR BURST = 08080 (X)

TK-1237

Figure 5-19 ESRAA
Sample Error Listing

5-32

CHAPTER 6
CPU CLUSTER EXERCISER PACKAGE

The CPU cluster exerciser package consists of three separate
programs (ESKAX, ESKAY, ESKAZ). Two modules, the control module
and the common instruction test services module (CITS), are common
to all three programs. ESKAX, the first program, is the quick
verify portion of the cluster exerciser package. This program
includes the compatibility mode entry and exit test, the first
part done test, and the SBI exerciser. The second program, ESKAY,
contains the timer and clock tests and the native mode instruction
set tests. ESKAZ contains the memory management test and the
compatibility mode instruction set tests. Figure 6-1 is a map
showing the memory allocations of the three programs.

The cluster exerciser diagnostics will handle three classes of
errors, providing three corresponding types of error messages:
unexpected exceptions or interrupts; test failures; and safe
return halts (resulting from fatal errors). The code for the
cluster exerciser programs is not as easy to follow as the code
for other diagnostic programs. However, the error messages which
the programs generate are detailed and, for the most part,
self-explanatory. The operator should understand the general
structure of each test and the error message formats in order to
use all of the facilities provided by the cluster exerciser
programs.

6.1 CONTROL MODULE

The control module in the cluster exerciser programs serves as the
interface between the programs and the diagnostic supervisor. The
module performs the following functions:

Program initialization and clean up
Execution of all tests twice in one pass

Print out of a module summary message at the end of each
pass, if errors exist

Initialization and reinitialization of pertinent control
variables

Set up of all vectors for interrupt and exception
handling

Proper fielding of all exceptions and interrupts
(expected and unexpected).

When the control module detects an unexpected interrupt or
exception, it prints out an error message as shown in Example 6-1.

ESKAZ

(MEMORY MANAGEMENT

AND

PDP-11 INSTRUCTIONS)

ESKAY
(NATIVE INSTRUCTIONS)

ESKAX
(QUICK VERIFY)

ESKAX00 ESKAXO00 ESKAX00
10236 10236 10236
CONTROL CONTROL CONTROL

ESKAXO1 ESKAXO01 ESKAXO1

18000 18000 18000

CITS CITS CITS
TIMER AND CLOCK TESTS

MEMORY 3822

MANAGEMENT ESKAYO2, TEST 01 COMPATIBILITY MODE

10000 ARITHMETIC, LOGIC, AND :';;ZY’ EXIT

ESKAZ02 FIELD INSTRUCTION

TEST 01 ESKAY 03, TEST 02 ESKAX02, TEST 1

COMPATIBILITY
INSTRUCTIONS
13500
ESKAZO3

TEST 02

BRANCH, CRC, AND
QUEUE
ESKAYO5, TEST 04

BRANCH, CRC, AND
QUEUE
ESKAYO06, TEST 05

FIRST PART DONE
ESKAXO04, TEST 2

OPERAND SPECIFIER
FLOATING POINT DEPENDENT
ESKAY 07, TEST 06

DECIMAL STRINGS
ESKAY 08, TEST 07

EDITPC OPERATORS
ESKAYO9, TEST 08

CHARACTER STRING
INSSTRUCTIONS
ESKAY10, TEST 09

SBl

VERIFICATION
17155

ESKAXO05, TEST 03

PRIVILEGED INSTRUCTION
EXCEPTION, ESKAY11, TEST 10

MEMORY VERIFY
ESKAXO06. TEST 04

TK-0737

Figure 6-1 CPU Cluster Exerciser Package Memory Allocation

6-2

Fhkkkkhkk CPU CLUSTER EXERCISER -- 9.0 khkkkkkx

PASS 1 TEST 6 SUBTEST 4 ERROR1

HARD ERROR WHILE TESTING CPU: EXCEPTION SERVICE ROUTINE
UNEXPECTED EXCEPTION

ERROR# 00000001

VECTOR# 00000030

SUBTYPE# 00009006

PSL 83C00000

PC 0000110D

Example 6-1 Unexpected Exception Error Message

Refer to Chapter 2 of the VAX-11] KA780 Central Processor Technical
Description for a discussion of vectors and subtypes. When the
machine check vector is asserted, the exception handler attempts
to log out relevant status registers on the stack before pushing
two longword parameters (summary and length) on the stack (Table
6-1). In addition, the subtypes for vector 4 (machine check) are
listed in Table 6-1.

Table 6-1 Summary Parameter, Length Parameter for Vector 4

Summary Parameter

Subtype Byte 0

29 CP Read Timeout/SBI Error Confirmation Fault

g2 CP TBUF Parity Error Fault

g3 CP Cache Parity Error Fault

@5 CP Read Data Substitute Fault

oA Instruction Buffer TBUF Parity Error Fault

gC Instruction Buffer Read Data Substitute Fault
oA Instruction Buffer TBUF Parity Error Fault

ac Instruction Buffer Read Data Substitute Fault
@D IB Read Timeout/SBI Error Confirmation Fault

gF IB Cache Parity Error Fault

6-3

Table 6-1

Summary Parameter, Length Parameter for Vector 4
(Cont)

Summary Parameter

Subtype
F@
Fl
F2
F3
F5

F6

Byte 0

CP Read Timeout/SBI Error Confirmation Abort
CS Parity Error Abort

CP TBUF Parity Error Abort

CP Cache Parity Error Abort

CP Read Data Substitute Abort

CP (Not Supposed To Be Here) Abort

Byte 1

This byte will be a nonzero value if a CP timeout
or CP error confirmation interrupt is pending.

Bytes 2 & 3

These two bytes must be zero.

Length Parameter

Byte @

The number of bytes logged out are exclusive of
this parameter.

Byte 1--3

These three bytes must be zero.

When an unexpected interrupt or exception occurs, information is
pushed on the stack by the exception handler as shown in Table

6—20

Table 6-2

Information

Pushed on the Stack

by the Exception Handler

Mnemonic Meaning ID Bus Address
SP: Length Parameter
Summary Parameter
CES CPU Error & Status ac
Trapped UPC
Virtual Address/
Virtual Instruction
Buffer Address
D Interface Between P8 (Bytes 1 & 3)
Data Paths and
Memory
TBER® Translation Buffer 12
Error Register @
TBER1 Translation Buffer 13
Error Register 1
TIME.ADDR 1A
PARITY Cache Parity Register 1E
SBI.ERR SBI Error Register 19

PC

PSL

Note that information on the stack is not saved by the exception
handler. The EIH module must be breakpointed before this data is

accessed.

6.2 COMMON INSTRUCTION TEST SERVICES MODULE (CITS)

This module consists of a group of software routines that
implement a table-driven test method for a majority of the VAX-11
instruction set. CITS interprets the contents of a specially coded
test table and executes tests of VAX-1ll instructions. CITS is also
used for tests of the first part done function and memory
management. A copy of each of these test instructions is coded in
register deferred mode (RN). Before the test instruction is
executed, the test data is placed somewhere in memory, and the
registers are loaded with the addresses of that test data. After
the test instruction is executed, the contents of the registers
and the contents of the test data area of memory are checked.

There are four main routines in CITS that do the work of executing
tests: CITS DECODE, CITS_ SETUP, CITS_EXECUTE, and CITS_CHECK.

6.2.1 CITS DECODE

This routine decodes one test table entry, in a table of cases,
and generates directions for the other three routines to use.
These directions are lists of addresses and other variables placed
in the parameter blocks of the CITS data area.

6.2.2 CITS_SETUP

CITS SETUP moves the test data from the common data pool into the
operand buffer. The operand buffer is the location of the data
referenced during execution of the test instruction. The locations
to be used for destination data are filled with a standard
background pattern, hexadecimal A5, in each byte. Also, each
operand, whether source or destination, is preceded and followed
by a 1longword of the background pattern. CITS SETUP 1loads
registers R@--R6 with the operand addresses to be used by the test
instruction. The initial PC and PSL calculated by CITS DECODE are
pushed on the stack by CITS SETUP along with a return address. The
return address points to a routine to save the result PSL and
registers.

6.2.3 CITS EXECUTE

CITS EXECUTE enables the exerciser's exception handler to react
properly for the current test. It passes the address of a CITS
unexpected exception handler and enables validation of the
exception of trace trap being tested, if any. CITS EXECUTE then
executes an REI to start the test. A NOP instruction precedes the
REI and can be used for scope sync if the microbreak address is
set up correctly from the console. When the test instruction
finishes, the test subroutine returns to a result-saving routine.
The PSL and registers R@--R6 are saved in the execution parameter
block, as are the contents of the exception handler Interface Data
Block (IDB). Also saved 1is an 1indication of whether the
instruction branched, if it is a branch instruction.

6.2.4 CITS_CHECK

CITS CHECK checks the results of instruction execution, and also
checks the source operands and background pattern. It uses the
directions and addresses put into its parameter block by

6-6

CITS DECODE to control checking. It checks branches, the PSL,
exceptions (whether an exception happened and at the right PC),
registers R@--R6, and memory data. When checking memory data,
CITS CHECK also checks the longword before and after each operand
to make sure that the background pattern has not been disturbed.
CITS_CHECK keeps a list of all errors found during one test case.
This complete list will be typed out when the test module using
CITS makes the $DS_ERRHARD call to the diagnostic supervisor.

6.2.5 CITS_SUBTEST

CITS_SUBTEST is a common subtest control routine that is used by
most of the tests that call CITS. It processes a complete test
table, calling the preceding four CITS routines in the proper
order and calling the supervisor error reporter when necessary.

6.2.6 CITS Error Messages

6.2.6.1 Message Heading -- A standard diagnostic supervisor
heading is typed (by the supervisor). That is followed by an
extended error printout that supplies the test, subtest, and error
numbers; the test case number; the op code of the failing
instruction; addresses referenced; operand data; etc. Refer to
Paragraph 6.4.2 for examples and detailed interpretation.

6.2.6.2 CITS Subtest Troubleshooting Features -- SCOPE SYNC --
CITS EXECUTE executes a NOP instruction just before the REI to the
test instruction. Putting the microaddress of 8E into ID Bus
register 21 will cause a sync pulse to be generated on the
microsequencer board (M8235) each time a NOP is executed.

To loop on a failure with SCOPE SYNC, perform the following steps:
>>> D /ID 21 8E

>>> START 10009

(DIAGNOSTIC SUPERVISOR STARTUP)

DS> SET IE1,LOOPD

DS> START /TEST: N (WHERE 'N' IS FAILING TEST NUMBER)
ETC.
- Halt Before the Failing Test Case -- At the beginning of

the test-case executing loop, the <case number
(CITS CASE) is always incremented and compared with the
content of CASE HALT. If these are equal, a HALT is
executed. This feature allows the operator to stop before
execution of a particular case, in order to examine
registers, e.g., deposit the hex case number 1into
CASE_HALT. Run the test until the halt is executed. (If
needed, use CONTINUE until you get to the right subtest.)
Then either set a breakpoint or deposit a byte of zero (a

6-7

HALT) in CITS SYNC and type CONTINUE to get to that HALT.
You have now stopped just before the REI to the test
instruction of interest. Use the «console to set up
whatever operation you wish to perform and continue as
desired. :

Figure 6-2 shows the sequence of events followed by CITS in the
execution of ESKAY@3, test 2, the arithmetic, logic, and field
instruction test module.

6.2.6.3 Unexpected Exceptions in CITS -- If an unexpected
exception occurs during a test, CITS will print a header
containing the case number and the error information from the
exerciser exception handler. This printout only occurs while CITS
is handling unexpected exceptions, i.e., only during the execution
of the five 1instructions before the test instruction and
approximately through the three instructions after it (Example
6-2). If an exception occurs outside of that set of instructions,
then the error typeout is not handled by CITS and will not have a
case number heading.

kkkkkkkk CPU CLUSTER EXERCISER -- 9.0 hkhkhkk
PASS 1 TEST 2 SUBTEST 1 ERROR 25 @
HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 25

UNEXPECTED EXCEPTION
ERROR¥ 00000001
VECTOR# 00000004
SUBTYPE# 00000000
PSL 0Q1FOOEQD

PC 00000003

Example 6-2 Unexpected Exception in CITS, Error Message

Refer to Example 6-1 (Paragraph 6.1) for an explanation of the
unexpected exception error message format. ‘

6.2.6.4 Result Register Errors --— If the contents of any of the
registers R@P--R6 are not as expected, CITS prints out initial,
expected, and actual values, as shown in Example 6-3.

DIAGNOSTIC ESKAY 03
SUPERVISOR
!
| CASE =
CASE + 1
COMMAND LINE
INTERPRETER
ves| DEPOSIT
L v 00 IN CITS
J SYNC (HALT)
INIT NO
B CITS DECODE
‘ (DECODE CASE)
DISPATCH
ROUTINE ¥
1 CITS -
1 SETUP
TEST 2 CITS -
{ EXECUTE
CITS -
SUBTEST cITS - ves| STEP
7 SYNC = 00 | THROUGH
HALT INSTRUCTION
CASE = 0
[____.‘ REI, POP PC,
POP PSL, EXECUTE
INSTRUCTION
RETURN FROM
EXECUTION
CITS-
CHECK
YES PRINT
ERROR | ERROR ‘ YES
MESSAGE
NO NO

TK-0755

Figure 6-2 Execution of a
Test Case in ESKAY@3

6-9

kkkkkkhk CPU CLUSTER EXERCISER -- 9.0 krkkkkkk
PASS 1 TEST 2 SUBTEST 4 ERROR 17 @
HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR
? ERROR IN TEST CASE NUMBER: 17
? REGISTER CONTENTS ERROR
INITIAL EXPECTED ACTUAL
RO poOB5404 po003800 00003880
R1 p00B5414 po008000 P0008000
R2 pB0B5418 0000000 PO000000
R3 Po000000 200085476 P000B5476
R4 0P000000 Po000A0A0 00000000
“R5 00000000 0P000000 po000300
R6 00000000 00000000 Po0B0000

Example 6-3 Result Register Errors

Initial data shows the values 1loaded
start of the instruction.

into the registers at the

6.2.6.5 Leading or Trailing Background Errors -- If the longword
before or the longword after an operand is changed during
execution, CITS reports the error. Leading means the 1longword
before the data (lower address than the data). Hexadecimal
AS5AS5A5A5 is the standard background pattern.

6.2.6.6 Data BErrors -- When CITS detects a data error, part of
the error typeout is an operand number. That is, a number in the
range 1 to 6 corresponding to the 1left-to-right order of the
operands for the instruction. For example, in a MOVL instruction
the source longword will be called operand 1 and the destination
longword operand 2.

If the incorrect operand is not of a writable or modifiable access
type, then the error message includes the statement: read-only
operand overwritten.

If the incorrect operand is writable or modifiable, then the error
message includes the statement: incorrect result (Example 6-4).

6-10

*kkkkk** CPU CLUSTER EXERCISER —— 9.0 *xkkkikx
PASS 1 TEST 2 SUBTEST 7 ERROR 18 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

?2 ERROR IN TEST CASE NUMBER: 190
? INCORRECT RESULT OPERAND 2
EXPECTED ACTUAL

Coo0p0000 40000000

Example 6-4 CITS Detects a Longword Data Error

Example 6-4 shows incorrect longword data. For word and byte data
errors, the format is the same except that a word is typed as four
hex digits, and a byte as two hex digits. In a quadword or
double-floating word typeout, the lowest addressed longword is the
first line of data typed. That is the longword containing the sign
and the exponent for the double-floating case. (In the quadword
case, the sign is in the longword typed on the second line of
data, Example 6-5.)

kkkkkkkk CPU CLUSTER EXERCISER -- 9.0 *hkdkkkk
PASS 1 TEST 2 SUBTEST 1 ERROR 91 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

-~

ERROR IN TEST CASE NUMBER: 91

?2 INCORRECT RESULT, OPERAND 2

EXPECTED ACTUAL
20000000 996740D6
Po000000 8 6A2E99E

Example 6-5 CITS Detects a Quadword Data Error

Errors in string data (character string, packed decimal string,
etc.) are displayed in Example 6-6. \

Rk nkkhk CPU CLUSTER EXERCISER -- 9.0 Akkkkhhk
PASS 1 TEST 2 SUBTEST 1 ERROR 44 ¢

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 44

? INCORRECT RESULT, OPERAND 4
EXPECTED ACTUAL

38 ...AS5A5*%39*4E39...

BYTES FROM START OF STRING

Example 6-6 CITS Detects a String Data Error

Each byte is typed as two hexadecimal digits. The expected data
only shows the good value of the byte that did not compare. The
actual data shows five bytes of the result string. The beginning
of the string is to the left, the end is to the right. The 1left
hand two bytes (four digits) are good result data; the byte
between asterisks (*) is the one that failed to compare; and the
right two bytes are the start of the rest of the (uncompared)
string. The last line tells how far from the beginning of the
string the bad byte is.

6.2.6.7 PSL Errors -- Result PSL errors are typically wrong
condition codes. The condition codes are the right-hand hex digit
of the PSL. The E in the second from right-hand digit indicates
that the decimal overflow, floating underflow, and integer
overflow traps are enabled (Example 6-7). This condition is always
true when the test instruction is being executed.

Rkhkhkkk CPU CLUSTER EXERCISER -- 9.0 khkkkhhk
PASS 1 TEST 2 SUBTEST 1 ERROR 50 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 50

? RESULT PSL ERROR

EXPECTED ACTUAL
PO1FOPES PO1FOOE]L

Example 6-7 PSL Error

6-12

6.2.6.8 Branch Errors -- When testing instructions that may
branch, failure to branch when expected or a branch taken when not
expected produces a message like that in Example 6-8.

kkkkkk CPU CLUSTER EXERCISER —- 9.0 ***kkkkx
PASS 1 TEST 2 SUBTEST 4 ERROR 1 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

LV]

ERROR IN TEST CASE NUMBER: 1

V]

EXPECTED BRANCH DIDN'T HAPPEN

Example 6-8 Branch Error

6.2.6.9 Expected Exception or Trace Trap Errors

1. An error message is produced if an expected exception or
trace trap fails to occur at all.

2. The PC and PSL of expected exceptions and trace traps are
checked. If an error is detected, a message like that in
Example 6-9 is typed.

k%kkkk CPU CLUSTER EXERCISER -~ 9.0 ***kxx#x
PASS 1 TEST 2 SUBTEST 4 ERROR 2 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 2
2 INCORRECT EXCEPTION PC
EXPECTED ACTUAL
POBO25F5 PP0B2566

? INCORRECT EXCEPTION PSL
EXPECTED ACTUAL

PO1FPOES PF1FPOE4

Example 6-9 Expected Exception Error

In Example 6-9 both the PC and the PSL were incorrect at the time
of the exception. In Example 6-10 only the PSL was wrong at the
time a valid trace trap occurred.

6-13

*%k%%*** CPU CLUSTER EXERCISER —— 9.§ *¥kxkkxs
PASS 1 TEST 2 SUBTEST 2 ERROR 127 @

HARD ERROR WHILE TESTING KA@: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 127
? INCORRECT TRACE TRAP PSL
EXPECTED ACTUAL

PO1FOQFO 0O1F@OF8

Example 6-14 Trace Trap Error

6.2.6.10 Extended Printout -- If the extended error printout
flag is enabled, the following additional data will be typed out
on error detection (Example 6-11).

(1.] INITIAL CONDITIONS:
PC 00004873 PSL @01F@QFF
OP CODE -- 74 WITH REGISTER INDIRECT OPERANDS

[2.] INITIAL REGISTERS R@-R6:

RO PP0BACO4 R1 @P0oACl4 R2 000
R3 gP@0OAC2D R4 PAGBAC39 RS 000
R6 PPo00000

[3.] SOURCE OPERAND DATA:

OPERAND 1

FFFEAFFF

FFFFFFFF

OPERAND 2

FF

OPERAND 3

00004080

po00e0000

Example 6-11 Extended Printout
6-14

Notes for Example 6-11.

1. This is the first line of the extended typeout. PC is the
location of the test instruction, which can be examined
if the user wants to see the hex code.

PSL is the value of the PSL before the instruction is
executed.

OP CODE is the hex value of the instruction, which in the
example is 74 = EMODD.

REGISTER INDIRECT OPERANDS means that R@ has the address
of operand 1; R1 has the address of operand 2; etc.

2. The INITIAL REGISTERS typeout tells where the operands of
the test instruction were in memory when the instruction
was executed.

3. These are the actual contents of the addresses pointed to
by the registers listed above (2).

All source (read or modifiable) operands are typed.
Formats:
Byte XX
Word XXXX
Longword XXXXXXXX
Quadword XXXXXXXX -- Low Address Longword
XXXXXXXX -- High Address Longword
Strings XX, XX, XX, XX,...,XX

Left side of printout is lowest address byte.
Long strings are printed 16 bytes per line and
are continued for as many lines as needed.

In the preceding example we have the following operands. (Refer to
the VAX-11/780 Architecture Handbook or the instruction card for

further help.)

Operand 1 MULR (R@) Double FFFFFFFF FFFEAFFF

Operand 2 MULRX (R1) Byte FF

Operand 3 MULD (R2) Double g0000000 00004080

The 4th and 5th Operands are Destinations:

Operand 4 INT (R3) Long

Operand 5 FRACT (R4) Double

6.2.7 How To NO-OP a Test Case

If it 1is necessary to bypass a test case while waiting for a

hardware ECO or a microcode ECO, refer to Example 6-12.

6-15

91-9

P 8FB9D62
28
g1
g1

2C9
2C9
2C9
2C9
2C9
2C9
2C9
2C9
2C9
2C9
2C9
2CC
2CD
2CE

946
947
948
949
950
951
952
953
954
955

;CASE 185
; SUBD2 INSTRUCTION

’

’

; OPERANDS

;SUB: @

;DIF: 1.0
;CONDITION CODES

EXP-DIF: 1.9
INITIAL: 1111 EXPECTED: 0o09

TB I_SUBD2, CC_NzVC, CC ¢, D8 D12, D8 D2, DP D2
.BYTE I_SUBD2, <-C<I_SUBD2>>, <I6*<CC_NZVC&15>+CC_@&15>>
.BYTE DP_DI12
.BYTE DP_D2
.BYTE DP_D2

Example 6-12 Case 105 SUBD2
Instruction

Load ESKAX.EXE
Look up the base address of the PSECT <. BLANK .> in the link

map of this program for the module that has the data for the
test case to be No-Oped.

Set the console base register to that value (i.e., SE R:
VALUE) .

Find the TB line of the right test case and examine it to make
sure you are in the right place (Example 6-12).

Examination of 2C9 location (E 2C9) should give @8F@9D62.

Count the number of single bytes following the line that has three
bytes. That would be 3 for this example.

Deposit a new longword, at the address just examined, made up of
the count from the preceding step followed by @3FC.

In Example 6-12, D 2C9 3@3FC, where 2C9 is the address Jjust
examined.

Set the relocation register back to zero when finished (i.e., SE
R: 8).

6.3 ESKAX DESCRIPTION

6.3.1 Compatibility Mode Entry/Exit Module (ESKAX@2, Test #1)
This module tests the conditions generated when the central
processor enters and leaves the compatibility mode. The following
conditions and functions are tested.

ESKAX Test 1, Subtest 1 -- This subtest performs illegal entries
in compatibility mode expecting and checking for reserved operand
faults. The bit settings in the PSL that will cause reserved
operand faults, on an attempt to enter compatibility mode, are
shown in Table 6-3. -

Table 6-3 Reserved Operand Faults and PSL Bit Settings
on Compatibility Mode Entry

PSL Bit/s Condition
DVL7> Nonzero
FU<L6> Nonzero
IV<5> Nonzero
IPL<K20:16> Nonzero
CUR MOD<25:24> Not = 3
PRV MOD<23:22> Not = 3
IS<26> Nonzero
FPD<K27> Nonzero

The conditions in Table 6-3 are tested one at a time.

6-17

The following two examples are typical of ESKAX test 1, subtest _,
error messages.

#*k*kk** CPU CLUSTER EXERCISER —- 9.0 *kk*k*kxs*
PASS 1 TEST 1 SUBTEST 1 ERROR 2 19-JUN-1977 21:25:41.22

HARD ERROR WHILE TESTING CPU: EXCEPTION PC FROM CM ILLEGAL ENTRY
INCORRECT

VECTOR TYPE CODE EXPECTED PC ACTUAL PC PSL ENTRY MNEMONIC

18 NONE gee97D74 20008 7D76 83CP0080A DV

Example 6-13 ESKAX Test 1, Subtest 1, Error 2

*hkkkkkk CPU CLUSTER EXERCISER -- 9.0 khkkkkkk
PASS 1 TEST 1 SUBTEST 1 ERROR 2 19-JUN-1977 21:25:53.04

HARD ERROR WHILE TESTING CPU: EXCEPTION PC FROM CM ILLEGAL ENTRY
INCORRECT

VECTOR TYPE CODE EXPECTED PC ACTUAL PC PSL ENTRY MNEMONIC

18 NON goe07D74 P0807D54 83C00040 FU

Example 6-14 ESKAX Test 1, Subtest 1, Error 2

Interpretation of Example 6-13.

1. 18 is the reserved operand fault vector expected.

2. There is no type code pushed on the stack.

3. The state of the PSL to cause the fault was 83C00@84.
4, DV is the PSL bit that was nonzero (Table 6-3).

5. EXPECTED and ACTUAL PCs are self-explanatory.

ESKAX Test 1, Subtest 2 -- Compatibility mode trap instructions
upon a valid entry into compatibility mode (Table 6-4).

Table 6-4 Compatibility Mode Trap Instructions

Op code Mnemonic
2000603 BPI
000004 IOT
104000 EMT+9
104400 TRAP+0

6-18

-- Compatibility mode reserved instructions upon a valid entry
into compatibility mode (Table 6-5).

Table 6-5 Compatibility Mode Reserved Instructions

Op code Mnemonic
200000 HALT
200001 WAIT
p00085 RESET
P00230 SPL
206400 MARK
275000 FADD
875010 FSUB
375020 FMUL
375030 FDIV
170000 FP11

Typical Error Messages

hkkkdkkkk CPU CLUSTER EXERCISER -- 9.0 hhkkkhkx

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:30.40

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY
MODE TRAP INCORRECT

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC

30 1 83Cp0o000 83C00002 0903 BPT

Example 6-15 ESKAX Test 1, Subtest 2, Error 3

6-19

kx%x%% CPU CLUSTER EXERCISER —— 9.f ****kkxx

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:42.21

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY
MODE TRAP INCORRECT

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC

30 2 83C00000 83Co0p0a2 po04 IOT

Example 6-16 ESKAX Test 1, Subtest 2, Error 3

Ahkhkhdh CPU CLUSTER EXERCISER -- 9.0 Fhkkkkkk

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:54.02

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY
MODE TRAP INCORRECT

VECTOR TYPE CODE EXPECTED PSL ACTUAL SPL TRAP MNEMONIC

30 3 83C00000 83C0000a2 8800 EMT

Example 6-17 ESKAX Test 1, Subtest 2, Error 3

Interpretation of Example 6-16
1. 30 is the compatibility mode TRAP vector expected.
2. A type code of 2 is pushed on the stack.

3. Referencing Chapter 6 of the system reference manual
would show that a typecode of 2 indicates an IOT fault.

4, IOT is shown as well as the hex equivalent of the octal
code (Table 6-4).

5. EXPECTED and ACTUAL PSLs are self-explanatory.

Subtest 3 -- This subtest tests the T-bit trap by having the T-bit
(PSL<4>) set upon entry into compatibility mode:
a. for an instruction that does not trap
b. for an instruction that does trap.
NOTE

Both a and b cases are serviced in
NATIVE mode.

6-20

Typical Error Message

kkkkkkkk

PASS 1 TEST 1 SUBTEST 3 ERROR 4

HARD ERROR WHILE TESTING CPU:

CPU CLUSTER EXERCISER -- 9.0

*khkkkkkk*k

19-JUN-1977 21:32:06.80

A T-BIT TRAP NOT TAKEN

EXPECTED EXC VECTOR TYPE CODE MNEMONIC
@BCO 30 NONE TST R@
Example 6-18 ESKAX Test 1, Subtest 3, Error 4

Interpretation of Example 6-18 (this printout is for Case B):

1. This instruction,
T-bit trap, was 'TST R@'
execution (PSL<KTP>).
2. The hex equivalent of the
3. 38 is the vector expected
4, No type code is pushed on
Subtest 4 -- This subtest performs

T-bit set in the PSW image on the stack,

from the stack by the RTT/RTI.

Typical Error Messages

which was to execute and then take a
with TRACE PENDING prior to its

octal code for 'TST R@' is BCH.
to field the T-bit trap.
the stack.

an RTT/RTI instruction with the
which is to be popped

khkkkkkkk

PASS 1 TEST 1 SUBTEST 4 ERROR 3

HARD ERROR WHILE TESTING CPU:

CPU CLUSTER EXERCISER -- 9.0

kkkkkkkk

19-JUN-1977 21:33:43.60

PC FROM RTT TRACE TRAP

INCORRECT

VECTOR TYPE CODE EXPECTED PC ACTUAL PC TRAP MNEMONIC

30 NONE 90008508 00008408 2006 RTT
Example 6-19 ESKAX Test 1, Subtest 4, Error 3

6-21

kk**x*k*%* CPU CLUSTER EXERCISER —-- 9.0 ***kkkk#
PASS 1 TEST 1 SUBTEST 4 ERROR 3 19-JUN-1977 21:33:54.70

HARD ERROR WHILE TESTING CPU: PC FROM RTI TRACE TRAP

INCORRECT
VECTOR TYPE CODE EXPECTED PC ACTUAL PC TRAP MNEMONIC
30 NONE 00038508 po00e8408 0002 RTI

Example 6-20 ESKAX Test 1, Subtest 4, Error 3
Interpretation of Example 6-19

1. 30 is the vector expected to field the T-bit trap.
2. No type code is pushed on the stack.

3. The RTT instruction was under test.

4. The hex equivalent of the octal code for RTT is 6.
5. EXPECTED and ACTUAL PCs are self-explanatory.

Subtest 5 -- This subtest performs checking of 0dd Address errors
while in compatibility mode. This is accomplished by executing a
PDP-11 MOV instruction with unaligned SRC and DST operands.

Typical Error Messages

khkkkkkkk CPU CLUSTEB EXERCISER -- 9.0 khkkkkdkk

PASS 1 TEST 1 SUBTEST 5 ERROR 4 19-JUN-1977 21:35:17.19

HARD ERROR WHILE TESTING CPU: ODD ADDRESS TRAP CAUSED

UNALIGNED SOURCE CONTENTS CHANGE

VECTOR TYPE CODE EXPECTED VAL ACTUAL VAL ' TRAP MNEMONIC

30 6 20 0A PO OE 17DF UNALIGNED

Example 6-21 ESKAX Test 1, Subtest 5, Error 4

%kxkkk* CPU CLUSTER EXERCISER —- 9.0 *k&kkx
PASS 1 TEST 1 SUBTEST 5 ERROR 4 19-JUN-1977 21:35:29.58
HARD ERROR WHILE TESTING CPU: ODD ADDRESS TRAP CAUSED

UNALIGNED SOURCE CONTENTS CHANGE

VECTOR TYPE CODE EXPECTED VAL ACTUAL VAL TRAP MNEMONIC
30 6 B0 BA g9 0E 17DF UNALIGNED
DST

Example 6-22 ESKAX Test 1, Subtest 5, Error 4
6-22

Interpretation of Example 6-22

1. 30 is the compatibility mode TRAP vector expected.
2. A type code of 6 is pushed on the stack.

3. The position of the destination address on a boundary
caused the failure.

4. The hex equivalent of the octal code for the instruction
under test is 17DF (this translates to #13737 in PDP-11
code) .

5. EXPECTED and ACTUAL VALUES are self-explanatory.

NOTE
On an 0dd Address trap neither SRC nor
DST initial values should change, since

the instruction should not go to
completion.

Subtest 6 -- This subtest performs checking of illegal
instructions with a register destination, i.e.,

JMP R4 or

JSR R4, RS

Typical Error Messages

RkAK kX xK CPU CLUSTER EXERCISER -- 9.0 Ehkkkk®x

PASS 1 TEST 1 SUBTEST 6 ERROR 3 19-JUN-1977 21:36:32.03

HARD ERROR WHILE TESTING CPU: PSL FROM ILLEGAL INSTRUCTION

TRAP INCORRECT

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC

30 5 83Co0000 83D0P0POP0A g044 JMP R4

Example 6-23 ESKAX Test 1, Subtest 6, Error 3

khkkkhdd CPU CLUSTER EXERCISER -- 9.0 kedkkdkdkkk

PASS 1 TEST 1 SUBTEST 6 ERROR 3 19-JUN-1977 21:36:43.64
HARD ERROR WHILE TESTING CPU: PSL FROM ILLEGAL INSTRUCTION
TRAP INCORRECT

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC

30 5 83C00000 83000000 3905 JSR (R5 DST)

Example 6-24 ESKAX Test 1, Subtest 6, Error 3
6-23

Interpretation of Example 6-24
1. 390 is the vector expected to field the TRAP.
2. A type code of 5 is pushed on the stack.
3. The instruction that failed was the JSR R4, R5.

4, The hex equivalent for the octal code of this instruction
is #905.

5. EXPECTED and ACTUAL PSLs are self-explanatory.
ESKAX@2 (test 1) is executed in the user mode for test purposes.
However, the module is serviced in the kernel mode, and control is

returned to the kernel mode on completion of the module.

The operator should note that testing of the T-bit operation with
servicing done in the compatibility mode has not been covered.

6-24

6.3.2 First Part Done Test (ESKAX@4, Test 2)

First Part Done (FPD) 1is the name of bit 27 in the PSL. It
provides a facility for interrupting certain potentially 1long
executing instructions during processing and resuming them later.
Only a few instructions are interruptable in this sense. Most
instructions acknowledge interrupts before their execution, or
acknowledge them in mid-operation by backing up to the beginning
and pretending that they have not yet started. A few instructions,
however, are potentially so lengthy that this is not feasible.
These are the character and decimal string instructions, POLYF,
POLYD, and CRC. Each of these instructions writes a control block
into the general registers. ©Should an interrupt be requested
during processing, the current state of the operation (i.e., what
it is doing and how far it has gotten) can be saved in this
control block to be retrieved after the interrupt is processed.
The instruction then sets FPD in the PSL, and acknowledges the
interrupt. Upon return from the interrupt, the FPD bit is set in
the PSL, so that rather than restarting, the instruction restores
its state from the point at which it was interrupted.

6.3.2.1 Possible First Part Done Failures -- The microcode
implementing the FPD capability must be able to correctly save and
restore state anywhere it does a memory reference (which may cause
a fault) and anywhere it checks for interrupts. The state of the
operation in some cases is complex, and it 1is possible that the
microcode does not save or restore everything correctly. If the
instruction is later resumed, the state of the machine e.g., in
the form of contents of general registers, may well have been
changed by the instructions executed in the interim, and will thus
be incorrect. This will cause unpredictable results, most likely
in the form of incorrect data written, wrong lengths and wrong
condition codes, and will be easy to detect.

The instructions may also fail by saving state (perhaps correctly)
and failing to set FPD. This would normally appear when modified
registers are used as arguments in the restarting of the
instruction. This condition will be detected in the test by
checking in the interrupt routine to make certain that if FPD is
still clear, the original arguments are unchanged.

6.3.2.2 First Part Done Test Procedures —- The interval timer is
used to generate interrupts during the testing of each
instruction, in order to check the microcode and the taking of
interrupts. Although each instruction is interrupted constantly
during execution, it is eventually run to completion.

After having been tested with interrupts, the instruction's
ability to handle page faults is tested. An instruction may have
up to six operands; twelve pages are set up to hold them, allowing
each operand to be placed near an independent page boundary. When
the instruction begins execution, each page 1is invalid. As it
attempts to access its operands, the instruction is repeatedly

6-25

faulted. Each fault validates the page referenced, so that the
instruction progresses, but this alone does not ensure that it is
tested fully. As each page is referenced (and faulted) the first
time, all the other pages holding operands are made invalid. This
process tests all the cases. Since each page has a first reference
only once, the test instruction manages to finish.

As an example, consider the testing of an instruction with two
string operands and one non-string operand in which the
instruction accesses the non-string operand first, and then
processes the strings (e.g., CMP3). First, the non-string operand
is referenced, faulting the page containing it. Upon restart, the
instruction fetches the non-string operand without problem, and
begins processing the strings. Since each operand is located just
before a page boundary, the strings will cross the boundaries. As
the instruction progresses, it will attempt to reference the first
page of the first operand, the first page of the second operand,
the second page of the first operand, and the second page of the
second operand. Because faulting in a page for the first time
signals the test to invalidate all the other pages, however, the
string of references and validations proceeds as shown in Table
6-6.

Table 6-6 Page Faulting with First Part Done

Page 1 Page 2 Page 3 Page 4

I I I I ;All the pages start invalid.

FAULT I I I ;The first page is faulted

v I I I ;and is made valid.

v I FAULT I :The first page of operand 2 is

I I v I ;faulted in, and the rest out.

FAULT I \Y I ;Page 1 is refaulted, and page

\' I v I ;3 is left valid.

v FAULT \' I ;String 1 processing reaches

I \' I I ;page 2, all others faulted.

I A4 FAULT I ;Page 1 is not needed now, but

I ' v I ;page 3 still is needed.

I \Y \Y FAULT ;String 2 reaches 1its second
;ipage

I I I \'s ;faulting page 4 for first
;time.

I FAULT I \' ;Page 2 is still needed, and

I \ I v ;is faulted back in.

I v I \' ;The instruction is completed.

The first part done test uses the CITS routines to help set up,
execute, and check the results of instruction tests. The
instructions to test, and the data with which to test them, are
stored in a table. The table entries are of variable length, and
they begin as shown in Table 6-7.

6-26

Table 6-7 First Part Done Test Table Entries

.BYTE] ;the op code of the test instruction
.BYTE 2 ;the op code's complement

.BYTE] :initial condition codes

.BYTE] ;resultant condition codes

.BYTE 2 ;operand specifiers

The faulting section uses the Interface Data Block (IDB) to
communicate with the exception and interrupt handler. The format
of the IDB is shown in Table 6-8.

Table 6-8 First Part Done IDB Format

T-Bit Exception and State
Count Subtype Bits

PSL of exception

PC of exception

PSL of latest T-bit trap

PC of latest T-bit trap

User service routine address

Number of arguments (zero)

The service routine address points to the code that implements the
faulting algorithm. The exception type and subtype are loaded with
the values for translation-not-valid faults.

This test also interfaces with the CITS routine through a Test
Control Block (TCB). The TCB format is shown in Table 6-9.

Table 6-9 First Part Done TCB General Format

Current Test Table Address

Unused Exception Subtype T-bit trap
Operand 1 address, or §

Operand 2 address, or

Operand 3 address, or @

Operand 4 address, or #

Operand 5 address, or @

Operand 6 address, or @

6-27

The current test table address points into the table of test
instructions.

The TCB passed to CITS DECODE and to CITS REDECODE is shown in
Table 6-10. '

Table 6-10 First Part Done TCB Passed to CITS DECODE

TCB:

TCB_INST_ADDR: .LONG ¢ ;jcurrent test table address

TCB_T BIT: .BYTE g ;trace trap expected flag

TCB_SUBTYPE: .BYTE @ ;exception subtype

TCB_EXCEPTION: .BYTE /] ;expected exception vector
.BYTE @ ;unused ’

TCB_OPERANDS: .BLKL 6 ;optional operand addresses

Typical Error Message

Thkkkdkdhk CPU CLUSTER EXERCISER -- 9.0 Thkkkkkk

PASS 1 TEST 2 SUBTEST # ERROR 212 19-JUN-1977 21:41:22.03

HARD ERROR WHILE TESTING CPU: An unexpected type of fault
occurred.

Fault code Referenced address PC PSL

20000000 POF1IFT7F8 2000 3DDY 0000 OEB

Table number Test case
1 1
TCB's address Test table address Current entry address

2900 8F9C poB9BATC goBBOATC

Example 6-25 ESKAX Test 2, Subtest @, Error 212

Interpretation of Example 6-25

The printout is representative of the first part done test, which
interfaces to the CITS portion of the program for its data pool as
follows.

1. This test interfaces with CITS through the TCB whose
format is shown in Table 6-190.

In this example, the first address of the TCB is 8FOC.

The current test table address (which 1is the first
longword of the TCB) is given as A7C.

2. The starting address of the test table within CITS is
A7C.
6-28

3. CITS contains a number of tables; each table contains a
number of cases (or distinct pieces of data) where:

Table 1 represents BASE FP instructions
Table 2 represents DECIMAL instructions
Table 3 represents EDIT PC instructions
Table 4 represents FPA instructions

A summary of the information presented so far on the
First Part Done Test follows.

a. We are using Table 1 from CITS for our data.
b. The starting address of this table is A7C.
C. We are using DATA CASE 1.

d. The address for DATA CASE 1 is A7C.

e. The address of the CONTROL BLOCK guiding this test

execution is 8F9C (whose format is shown above in
Table 6-19).

f. Examination of the next n locations starting with the
CURRENT ENTRY ADDRESS (in this case A7C) will give
information concerning the instruction under test as
follows:

1st byte is the op code of the test instruction.
2nd byte is the op code's complement.

3rd byte is the INITIAL condition code (N,Z,V,C).
4th byte is the RESULTANT condition code (N,Z,V,C).

The next n bytes represent operand specifiers.
The number of operand specifiers depends on the
instruction under test.

4, The starting address of the area where the test

instruction is placed (residing) while undergoing test is
the PC of 3DDO.

6-29

A Second Error Message

kkk%kk*** CpU CLUSTER EXERCISER —— 9.0 *kEkxkkkx

PASS 1 TEST 2 SUBTEST § ERROR 213 19-JUN-1977 21:41:22.03
HARD ERROR WHILE TESTING CPU: Page fault on non-test instruction.
Fault Code Reference address PC PSL

00000000 G@B1lFFF8 #00@3DD@ fPB000EB

Table number Test case

1 1

TCB's address Test table address Current entry address

@903 8F9C o290 0A7C 900B80A7TC

Example 6-26 ESKAX Test 2, Subtest #, Error 213
Interpretation of Example 6-26
The REFERENCE ADDRESS of 1FFF8 represents the address which caused
the FAULT CODE of 4@.
The breakdown of the FAULT CODE is as follows:

Bit Position Meaning

0 @ = translation not valid
1 = access control violation
1 1 = fault occurred during virtual reference to the
PTE of the stored process virtual address
2 @ = read access
1 = write or modify access

The interrupts portion of the test begins by setting up the test
instruction and data, using the CITS routines named CITS_DECODE
and CITS SETUP.

CITS SETUP returns with the PC and initial PSL of the test
instruction on the stack. The test saves a copy of the test
instruction's PC and general registers, so that its progress may
be observed. Then the test initializes the interval timer service
routine.

6-30

It then sets up a timer interrupt and executes an REI to the test
instruction, which is interrupted immediately.

Since the state of the instruction is contained in the registers,
if they are unchanged since the previous interrupt, the
instruction has not progressed. This condition results from
interrupting too soon. In this case, the interval timer is
increased, and the test instruction is resumed.

In the other case, when the general registers have changed, the
instruction has progressed.

Next, a divide-packed instruction is executed in an attempt to
modify the state of any internal registers that might be used by
the instruction under test. The timer is then set up for the new
wait time, started, and the test instruction is resumed.

When the test instruction has been completed, the results are
checked and any errors are reported.

Once interrupts and faults have been tried, the next entry in the
test instruction table 1is selected, and the testing of that
instruction begins.

There are four classes of errors that may occur.

Class 1 —-- Unexpected exceptions or interrupts.
Class 2 -- Exception or interrupt identifier reports, which simply
state

ERROR IN TEST CASE NN.

These occur when an exception or interrupt occurs during the
testing of an instruction, and they are immediately followed by
the exception report. They exist solely to inform the operator of
the test case in which the exception occurred.

Class 3 -- Instruction test errors describe incorrect results from
instruction testing. The instructions tested are a subset of those
tested 1in ESKAY@5 TEST@A4 and ESKAY@#6 TESTHS, so that the
instruction test errors are identical between those tests and this
test, ESKAXﬂ4_TEST@2. This data is in module ESKAX03_FPD_DATA.

6-31

Class 4 —-- These errors are first part done specific (Example
6-27).

They have error numbers 208 through 209. Each reports error
specific information, the table number, and the test case number.
The interpretation of table numbers is as follows:

Table Number Meaning

1 Floating-point test table
2 Decimal string test table
3 EDITPC test table

4 Floating-point test table

(Executed with FPA enabled if an FPA
exists)

The test case number indexes into the appropriate table to
indicate a single test.

kkkk%k¥* CPU CLUSTER EXERCISER —- 9.0 **¥kkki%
PASS 1 TEST 2 SUBTEST @ ERROR 207

HARD ERROR WHILE TESTING CPU: EXPECTED TIMER INTERRUPTS DIDN'T
OCCUR.

VALUE PASSES

-30

TABLE NUMBER TEST CASE

1 115

TCB'S ADDRESS TEST TABLE ADDRESS CURRENT ENTRY ADDRESS

18E@ 9F6 9F6

Example 6-27 ESKAX Test 2, Subtest @, Error 207

6.3.3 SBI Verification Module (ESKAX@S5, Test 3)

The SBI verification test is designed to exercise and partially
diagnose faults on the SBI nexus connected to it. Error reports
will differentiate between faults on the SBI proper and faults
caused by a nexus. The error printouts will serve as gqguides to
selection of the appropriate repair level diagnostic to further
isolate the problen.

6-32

With the exception of the interactive mode setup subtest, errors
will be reproducible via looping. For interactive mode, due to the
asynchronous operation of the exerciser, only errors introduced by
interrupts from the 1interval timer are guaranteed to be
reproducible.

Note that failing devices are deselected from further testing at
the point of failure. This means that if an MBA or UBA fails in a
test before MBE or UBE checkout, the MBEs or UBEs attached are not
checked for the failing MBA or UBA.

The SBI verification test is composed of the following parts.

- SBI checkout -- Verifies configuration register of each
nexus that can be accessed.

~ UBA checkout -- Verifies that each selected UBA on the
SBI can sustain data transfers without incurring errors
and that interrupts occur at the proper BR level.

- MBA checkout -- Verifies that each selected MBA on the
SBI can sustain data transfers without incurring errors
and that interrupts occur at the proper BR level.

- SBI interaction -- Verifies that all UBAs are capable of
block data transfers in a controlled sequential mode of
operation.

UBE checkout -- Verifies that all existing UBEs are
capable of sustaining data transfers and interrupting on
completion without errors.

MBE checkout -- Verifies that all existing MBEs for
selected MBAs are capable of sustaining data transfers
and interrupting on completion without errors.

6.3.3.1 SBI Checkout Subtest -- The SBI checkout subtest will
perform reads and writes to the configuration register of each
nexus on the SBI as defined by the hardware P-Table. This subtest
will set up the Hardware Interrupt Request Table (HIRT), which
will contain an entry for each UBA and/or MBA responding to a read
of its configuration/status register. This table will be used by
all subtests within the SBI verification test. A nexus that does
not respond will not be entered into the HIRT and, therefore, will
not be used in the following subtests. No response from a nexus is
treated as an error.

6-33

The SBI checkout subtest uses the CPU silo comparator register to
check the validity of the commands and responses from the
receiving nexus on the SBI.

The primary purpose of this subtest is to provide the field user
with a detailed check of the SBI. It will isolate faults in such a
manner that the error information printed will aid the user in the
selection of the proper diagnostic, which may then be run to
further isolate the fault.

~

Silo Compare Servicing -- The silo compare service
routine will read back the SBI silo and compare the
contents with the arguments supplied 1in the 1IDB
(interface data block). Null cycles between command
issue and read reply are checked for continuity of
function, i.e., TR 1lines not continually asserted. No
checking will be made for the number of null cycles.

On completion of the silo read back, the fault bit in the CPU SBI
status register will be checked for clear. The error flag will be
set and the appropriate information will be placed on the error
stack if it is set. The fault bit will be reset if set. The
interrupt on silo compare bit will be cleared and the SBI silo
compare register will be cleared.

A return is then made to the point of invocation of the interrupt
causing this routine to be executed.

6-34

6.3.3.2 UBA Checkout Subtest —-- This subtest will only be run for
UBAs that exist in the HIRT and have been qualified by the SBI
checkout subtest.

Each UBA will be set up to operate in a wraparound mode so that
access from the SBI to Unibus memory space will be mapped into SBI
memory space.

This subtest will check the following UBA capabilities.
1. DDP and BDP1l data paths are operational.

2. Interrupts can be initiated by the adapter and result in
the correct vector being accessed.

3. The map registers can be accessed and used correctly.
4. Purging operates correctly.

5. A read to nonexistent Unibus memory space causes the
correct error sequence and interrupt.

The subtest will autosize the Unibus memory and set the map
register disable portion of the Unibus Adapter Control Register
(UACR) for use by other subtests within the SBI verification test.

Faults detected within this subtest will cause the UBA under test

to be disqualified from further use by any other subtest within
the SBI verification test.

UBA Interrupt Servicing -- Interrupts generated by the Unibus
Adapter are serviced by this routine.

The routine will compare the configuration register and the Unibus
Adapter Status Register (UASR) with arguments supplied in the
Service Data Block (SDB). If there are any differences, they will
be pushed on the error stack and the error flag will be set. For
an invalid map register type interrupt, the failed mapped entry
register will be compared with the SDB entry. Also, for a Unibus
SSYN timeout, the failed Unibus address register will be compared
with the SDB entry.

The AEIL (Additional Exception or Interrupt Longword) is used as
the transfer vehicle to indicate to the interrupted program the
IPL level at which the interrupt occurred.

6.3.3.3 MBA Checkout Subtest - This subtest is run only on MBAs
that exist in the HIRT and have been qualified by the SBI checkout
subtest.

Each MBA is set up to operate in maintenance mode.

6-35

This subtest checks the following MBA capabilities.

1. Initialization clears registers and does not cause
interrupts. §

2. DT _BUSY can be set and causes no interrupts.
3. PGE can be set and causes an interrupt.
4, Read and write transfers operate correctly; on completion

of read data transfer, DONE 1is set and causes an
interrupt.

Faults detected within this subtest cause the MBA under test to be
disqualified from further use by any other subtest within the SBI
verification test.

MBA Interrupt Servicing -- Interrupts generated by the Massbus
adapter are serviced by this routine.

This routine compares the status register with an argument
supplied in the SDB. |

If there are any differences, the SDB + 2 will be set to indicate
error and the error information will be put into the appropriate
slots in the Master Control Space (MCS).

6.3.3.4 SBI Interaction Subtest -- After the UBAs are set up for
wraparound operation, the following data transfer types are
initiated.

1. read word

2. write byte
3. write word
4. modify byte
5. modify word

6.3.3.5 UBE Checkout Subtest -- This subtest determines the
number and location of Unibus exercisers for each Unibus adapter
and checks each as it is found. If no faults are detected, the UBE
is entered in the HIRT and the qualify bit will be set.

Only qualified UBAs are used during this subtest. If none exists,
the subtest will be skipped.

UBAs are set up with two map registers pointing to SBI memory
space. One map uses the Direct Data Path (DP@) and the other uses
buffered Data Path One (DPl). All interrupts are enabled.

Autosizing is used to determine the 1location of a Unibus
exerciser.

6-36

Each exerciser is checked for the following two capabilities:

l.
2.

ability to execute DATO, DATI functions,

ability to interrupt at BR levels 4 through 7 following a
function.

If any of the above conditions is not met, the UBE is not entered
in the HIRT.

UBE Interrupt Servicing -- The contents of the BRRVR and UBA base
address are passed into the test from the master exception and
interrupt handler. In addition, the routine performs the following
four functions.

l.

2.

3.

4.

6.3.3.6

If bit 31 is set in the BRRVR value read, then call the
UBA service routine.

Derive the UBE address from the vector supplied in the
low word of the BRRVR value.

Examine bit 15 (error bit) of CR1l. If the bit is set,
push the error type information and contents of the
control registers, CR1 and CR2, on the error stack and
set the error flag. Clear the error bit.

Return.

MBE Checkout Subtest -- This subtest determines if an MBE

is present for each MBA that has been previously qualified.

Each exerciser will be checked for the following:

1.
2.

read transfers
write transfers.

Additionally, the MBA is checked for whether

1,
2.

Attention can be set which causes an interrupt.
Massbus exception can be set which causes an interrupt.

If any of the above conditions is not met, the MBE is not entered
in the HIRT.

6-37

Typical Error Messages for the

SBI Verification Module:

khkkkkkk*

PASS 1 TEST 3 SUBTEST 2
HARD ERROR WHILE TESTING UBA:

ERROR: DESTINATION OVERWRITTEN

CPU CLUSTER EXERCISER -- 9.0

ERROR 140

kkkkkkkk

19-JUN-1977 21:53:25.06

INVALIDATED MAP REGISTER ACCESS

ADD ACCESS NEXUS ADD MR ADD FUNC EXP DATA ACT DATA
201009F8 60006000 60006810 WRITE 25255252 24255252
Example 6-28 ESKAX Test 3, Subtest 2, Error 10

khkkkkkk CPU CLUSTER EXERCISER -~ 9.0 khkkkhik
PASS 1 TEST 3 SUBTEST 3 ERROR 4 19-JUN-1977 21:57:03.12
HARD ERROR WHILE TESTING MBA@: MBA WRITE
ERROR: RESULT
ADD ACCESS NEXUS ADD EXP DATA ACT DATA
60801040 60010000 00002000 00002400
Example 6-29 ESKAX Test 3, Subtest 3, Error 4
*%k***%* CPU CLUSTER EXERCISER -- 9. **¥&x&kxx
PASS 1 TEST 3 SUBTEST 3 ERROR 4 19-JUN-1977 21:57:13.87
HARD ERROR WHILE TESTING MBAl: MBA WRITE
ERROR: RESULT
ADD ACCESS NEXUS ADD EXP DATA ACT DATA
60012400 60012000 00002000 00033000

Example 6-30

ESKAX Test 3,

Subtest ‘3, Error 4

6-38

Interpretation of Example 6-28
These printouts are typical of ESKAX Test 2, where:

1. The nexus address is 6000688#8. A nexus is defined as a
physical connection to the SBI. In this case the nexus is
the UBA.

2. Since the SBI deals in 3@¢-bit addresses, 18-bit Unibus
addresses must be translated to 3¢-bit SBI addresses.
This function is performed by the Unibus adapter through
one of the 496 UBA memory map registers, as shown in
Table 6-11.

Table 6-11 Unibus Adapter Map Register Address Offsets

Offset from the
Unibus Memory Page UBA Base Address

a 800
1 804
2 808
3 80C
4 810

. .

495 FBC
FCO
. Reserved
. FFC

In the example given, the MR ADDRESS is 60006810. The underlined
portion of the address (using Table 6-11) tells us that we are
working with the map register for Unibus memory, page 4.

One Unibus memory page equals 512 bytes.

3. The function performed was a write.

4. Each UBA has an associated Unibus address space with a
physical starting address as follows:

UBA Number Physical Starting Address
] 20100000
1 20140000
2 20180000
3 201C0000

From Example 6-28 the ADDRESS ACCESSED is 2010#9F8, indicating
UBA # under test.

5. EXPECTED and ACTUAL DATA are self-explanatory.

6.3.3.7 Memory Verify (ESKAX@6_ TEST@#4) -- Not yet implemented.
6-39

6.4 ESKAY

6.4.1 Interval Timer and Day Clock Verification Module
(ESKAY@2 TEST@1)

This module tests the interval timer and the day clock. The
interval timer is used extensively throughout the cluster
exerciser package during interactive operation.

6.4.1.1 Interval Timer Functions

Subtest 1 -- The interrupt enable bit in the control status
register can be set and cleared.

Typical Error Message

*kk%%%%% CPU CLUSTER EXERCISER —— 9.0 **&&*&*x
PASS 1 TEST 1 SUBTEST 1 ERROR 2 18-JUN-1977 06:38:05.10

HARD ERROR WHILE TESTING CPU: INTERRUPT ENABLE BIT CAN'T BE
CLEARED

Example 6-31 ESKAY Test 1, Subtest 1, Error 2

Subtest 2 -- This subtest checks that the transfer bit (bit @4) in
the control status register can be set, thus activiating a
transfer of the contents of the next interval register to the
current interval register.

A check that the transfer bit is read as @ is also performed.

Typical Error Messages

k%%k** CPU CLUSTER EXERCISER —- 9.0 **#kxkx*
PASS 1 TEST 1 SUBTEST 2 ERROR 1 18-JUN-1977 6:39:58.61

HARD ERROR WHILE TESTING CPU: XFER BIT STUCK AT 1

Example 6-32 ESKAY Test 1, Subtest 2, Error 1

kkkekih® CPU CLUSTER EXERCISER -- 9.0 khkkkkkk
PASS 1 TEST 1 SUBTEST 2 ERROR 2 18-JUN-1977 @6:39:58.61

HARD ERROR WHILE TESTING CPU: XFER FROM NEXT INTERVAL TO INTERVAL
COUNT INCORRECT

Example 6-33 ESKAY Test 1, Subtest 2, Error 2

6-40

Subtest 3 -- The single clock bit (bit 5) in the control status
register can be set, thus causing the current interval register to
advance by one.

The test also checks that the single clock bit is read as zero.

*kk%kk*x* CPU CLUSTER EXERCISER -- 9.0 ***xkki%
PASS 1 TEST 1 SUBTEST 3 ERROR 2 18-JUN-1977 £6:43:14.82

HARD ERROR WHILE TESTING CPU: SINGLE CLOCK BIT NOT FUNCTIONING
PROPERLY

Example 6-34 ESKAY Test 1, Subtest 3, Error 2

Subtest 4 -- This test floats a one through a field of zeros in
the current interval register. The medium of transfer 1is the
read/write unit comprised of the current interval register and the
next interval register, respectively. Since the next interval
register is write-only, only the current interval register is
checked at the end of the transfer. If a failure is detected in
the current interval register, it is possible that the failure
originated in the next interval register.

Typical Error Message

*kk*k*%x* CPU CLUSTER EXERCISER —— 9.0 **k*kkk*

PASS 1 TEST 1 SUBTEST 4 ERROR 1 18-JUN-1977 0£6:44:31.89

HARD ERROR WHILE TESTING CPU: ADJACENT PIN STICKING IN INTERVAL
COUNT REGISTER

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE

Po0000a4 P0000006 00000004

Example 6-35 ESKAY Test 1, Subtest 4, Error 1

Interpretation

1. The ENTRY VALUE of 00000004 represents the value loaded
into the next interval register (hex 19).

2. The EXPECTED RESULT of 00000004 represents what the
content of the current interval register (hex 1A) should
be after the transfer is complete.

3. The RECEIVED RESULT is self-explanatory.

6-41

Subtest 5 -- This subtest checks the carry bits of the current
interval register. This 1is accomplished by preloading the next
interval register with the value to force the carry, transferring
this to the next interval register, and then single-clocking to
force the carry expected.

Typical Error Message

*%%x*x%%%* CPU CLUSTER EXERCISER —- 9.0 ***k&xx
PASS 1 TEST 1 SUBTEST 5 ERROR 1 18-JUN-1977 06:45:50.65

HARD ERROR WHILE TESTING CPU: INTERVAL TIMER COUNTING NOT
PROCEEDING PROPERLY

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE

00000002 00000001 00000001

Example 6-36 ESKAY Test 1, Subtest 5, Error 1

kkkk%* CPU CLUSTER EXERCISER —- 9.0 ***kkkx#

PASS 1 TEST 1 SUBTEST 5 ERROR 1 18-JUN-1977 #6:45:50.65

HARD ERROR WHILE TESTING CPU: INTERVAL TIMER COUNTING NOT
PROCEEDING PROPERLY

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE

po000004 P0000003 P0000003

Example 6-37 ESKAY Test 1, Subtest 5, Error 1

Interpretation of Example 6-36

1. The ENTRY VALUE of 00000001 represents the value loaded
into the next interval register (hex 19).

2. The EXPECTED RESULT of 000008002 represents what the
content of the current interval register (hex 1A) should
be after the transfer is complete and the single clock
bit has been ticked once.

3. The RECEIVED RESULT is self-explanatory.

6-42

Subtest 6 -- This subtest checks that the error bit in the control
status register will set in the case of a current interval

register overflow occurrence before a previous interrupt has been
serviced.

The error messages are self-explanatory.

*k*kk*x* CPU CLUSTER EXERCISER ~— 9.f **k*kkk*
PASS 1 TEST 1 SUBTEST 6 ERROR 1 18-JUN-1977 ©#6:53:13.11

HARD ERROR WHILE TESTING CPU: INTERRUPT REQUEST NOT SET ON
OVERF LOW

Example 6-38 ESKAY Test 1, Subtest 6, Error 1

kkhkkhhd CPU CLUSTER EXERCISER -- 9.0 *hdkhhkk
PASS 1 TEST 1 SUBTEST 6 ERROR 2 18-JUN-1977 £6:53:13.11

HARD ERROR WHILE TESTING CPU: ERR NOT SET FROM UNSERVICED OVERFLOW

Example 6-39 ESKAY Test 1, Subtest 6, Error 2

Subtest 7 -~ This subtest checks the run bit of the control status
register with the interrupt enable bit not set (i.e., a check of
no interrupt capability).

Typical Error Message

*kkkk**%* CPU CLUSTER EXERCISER —- 9.0 **kkdkks
PASS 1 TEST 1 SUBTEST 7 ERROR 3 18-JUN-1977 06:53:13.11

HARD ERROR WHILE TESTING CPU: ERR BIT SET -- SHOULD NOT BE

Example 6-44 ESKAY Test 1, Subtest 7, Error 3

Subtest 8 -- This subtest checks the run bit of the control status
register with the interrupt enable bit set, a check of interrupt
capability. A check is also made to verify that the interrupt is
enabled at IPL 24 (hex 18).

6-43

Typical Error Message

kxk%*x* CPU CLUSTER EXERCISER —- 9.0 *kkkk%
PASS 1 TEST 1 SUBTEST 8 ERROR 2 18-JUN-1977 @6:55:56.48

HARD ERROR WHILE TESTING CPU: INTERRUPT OCCURRED AT OTHER THAN IPL
24

IPL WAS 18

Example 6-41 ESKAY Test 1, Subtest 8, Error 2

Interpretation of Example 6-41

1. The IPL WAS would indicate at what IPL 1level the
interrupt did occur (if other than IPL 24).

6.4.1.2 Day Clock Function
Subtest 9 -- This subtest checks the ability of the time of day
register to advance from a known state, given 20 ms to do so.

Typical Error Message

*%xk**x%* CPU CLUSTER EXERCISER —- 9.0 **kkikk%
PASS 1 TEST 1 SUBTEST 9 ERROR 1 18-JUN-1977 ©6:58:26.79

HARD ERROR WHILE TESTING CPU: TIME OF DAY CLOCK NOT INCREMENTING

Example 6-42 ESKAY Test 1, Subtest 9, Error 1

Subtest 18 -- This subtest checks the ability of the time of day
register to accept a back-to-back loading of two different and
unique values. ‘

Typical Error Message

k*kkxkx*%* CPU CLUSTER EXERCISER —— 9.0 *kkxkk&%
PASS 1 TEST 1 SUBTEST 10 ERROR 2 18-JUN-1977 £6:59:43.78

HARD ERROR WHILE TESTING CPU: DOUBLE LOADING OF TIME OF DAY NOT
CORRECT

EXPECTED RESULT RECEIVED RESULT 1ST LOAD 2ND LOAD

AAAAAAAC AAAAAAAA 55555555 AAAAAAAA

Example 6-43 ESKAY Test 1, Subtest 10, Error 2
6-44

Subtest 11 -- This subtest checks for any stuck-at-zero bits in
the time of day register.

Typical Error Message

*%**x***%* CPU CLUSTER EXERCISER —- 9.@ ****kx*k*
PASS 1 TEST 1 SUBTEST 11 ERROR 1 18-JUN-1977 §7:00:30.34

HARD ERROR WHILE TESTING CPU: ADJACENT PIN STICKING IN TIME OF DAY
REGISTER

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE

FFFFFFFE FFFFFFFF FFFFFFFD

Example 6-44 ESKAY Test 1, Subtest 11, Error 1

Subtest 12 —-- This subtest checks the Carry bits of the time of
day register. This is accomplished by preloading the time of day
register with the value to force the Carry, and then expecting a
Carry bit in approximately 14--15 ms.

kkkkkkkk CPU CLUSTER EXERCISER -- 9.0 kkkkhkkk
PASS 1 TEST 1 SUBTEST 12 ERROR 2 18-JUN-1977 @7:05:02.22

HARD ERROR WHILE TESTING CPU: TIME OF DAY COUNTING NOT PROCEEDING
PROPERLY

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE

Po000002 po000Raa1 00000001

Example 6-45 ESKAY Test 1, Subtest 12, Error 2

Interpretation of Example 6-45

1. The ENTRY VALUE of 00000081 is what is initially loaded
into the time of day register.

2. The EXPECTED RESULT of 00008002 is the final value
expected to be in the time of day register approximately
14 ms after the initial load.

3. The RECEIVED RESULT is self-explanatory.

In addition, the test checks for stuck-at-zero bits in the time of
day register.

6-45

6.4.2 Arithmetic, Logic, and Field Instruction Test Module
(ESKAY@3, Test 02)

This module tests the integer arithmetic, 1logical, and field
instruction microcode and associated hardware. CITS performs all
of the functional control, building expected data patterns,
executing the instructions to be tested, and checking the results.

The following two printouts are typical of error reports coming
from this test.

a. One shows a result PSL error.
b. The second shows incorrect operand result contents.
Fhkhkkkk CPU CLUSTER EXERCISER -- 9.0 hhkhhkxk

PASS 1 TEST 2 SUBTEST 1 ERROR 1 6-AUG-1978 11:34:41.92
HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR
? ERROR IN TEST CASE NUMBER: 1
? RESULT PSL ERROR
EXPECTED ACTUAL
POOOOBES JP0000E1
INITIAL CONDITIONS:
PC 00004958 PSL Q000QQEF

OP CODE -- 90 WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R#--R6:

RO 0P0OAED4 R1 @20 BAEOD R2 00000000
R3 Po000000 R4 20000000 R5 Po000000
R6 00000000

SOURCE OPERAND DATA:

OPERAND 1

@5

Example 6-46 ESKAY Test 2, Subtest 2, Error 1

6-46

kk%xkk%* CPU CLUSTER EXERCISER —- 9.f #*kkkkks
PASS 1 TEST 2 SUBTEST 1 ERROR 31 6-AUG-1978 11:35:27.25

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

)

ERROR IN TEST CASE NUMBER: 31

N

INCORRECT RESULT, OPERAND 2
EXPECTED ACTUAL
Po004300 p0004304

Po000000 go000000

INITIAL CONDITIONS:

PC 000046FA PSL OOPOOGGEF

OP CODE -- 6C WITH REGISTER INDIRECT OPERANDS
INITIAL CONDITIONS:

RO PIBBAEBL R1 909OAEGD R2 P0000000
R3 BP000000 R4 00000000 R5 Po000000

R6 POO00000

SOURCE OPERAND DATA:
OPERAND 1

21

Example 6-47 ESKAY Test 2, Subtest 1, Error 31

6-47

Interpretation of Example 6-47

1. The op code 6C defines the instruction under test as
CVTBD (you can know this by simply looking up the given
op code on a coding card).

2. The general format of this instruction (again from
looking at the code card) is as follows:

op code scr.rx, dst.wy

The statement WITH REGISTER INDIRECT OPERANDS indicates
that the form of the instruction being tested is CVTBD
(Rg), (R1).

NOTE
All instruction testing is set up so
that the first operand always uses R@,
second operand always uses R1l, third
operand always uses R2, etc.

3. The initial conditions PC and PSL should be
self-explanatory.

4. The TEST CASE NUMBER of 31 shows nothing more than how
far into the current test table we are, i.e., 30
instruction types were tested up to this point with no
errors.

For all intents and purposes, you can ignore this number.

5. The error indication of INCORRECT RESULT, OPERAND 2
states that the final contents of the destination operand
were wrong. OPERAND 2 is shown above as (R1l).

6. The SOURCE OPERAND DATA of 21 is self-explanatory.

7. The INITIAL REGISTERS R@--R6 specify the addresses 1in
memory in use for the instruction. In this case, CVTBC
(AE@4) , (AE@D).

NOTE
R2 through R6 contain @s since the CVTBD
instruction uses only two operands.

8. Finally, the EXPECTED value of 4308 and the ACTUAL value
of 4304.

If you examine the content of AE@D (/W) it should contain
4304.

Example 6-48 is another form of printout similar to the preceding

two examples with a twist. An unexpected exception occurred during
the testing of an instruction.

6-48

kkkkkkkk CPU CLUSTER EXERCISER -- 9.0

PASS 1 TEST 2 SUBTEST 3 ERROR 1 6-AUG-1978

HARD ERROR WHILE TESTING CPU:

? ERROR IN TEST CASE NUMBER:
UNEXPECTED EXCEPTION

ERROR# 00000001

VECTOR# 00000034

SUBTYPE# 00000001

PSL 00O0POAEB

PC 00004933

INITIAL CONDITIONS:

PC 00004930 PSL (000G OGOOEQD

kkkkkkkk

11:34:42.57

INSTRUCTION TEST ERROR

1

OP CODE -- 8E WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R#--R6:

RO QOO PAED4 R1 P30 BAEGD
R3 00000000 R4 Po000000
R6 00000000

SOURCE OPERAND DATA:

OPERAND 1

80

R2 00000000

R5 Po000000

Example 6-48 ESKAY

Test 2, Subtest 3,

6-49

Error 1

Interpretation of Example 6-48

1. The unexpected exception occurred through VECTOR 34
(Paragraph 2.7 of the KA780 Central Processor Technical
Description lists VECTOR 34 as the ARITHMETIC TRAP
vector) .

2. The SUBTYPE of 1 informs you that the condition was
INTEGER OVERFLOW (Paragraph 2.7 of the KA780 Central
Processor Technical Description).

3. The PC of 4933 and PSL of EB are those existing at the
time of the exception occurrence.

4. The ERROR 1 is nothing more than a repetition of the
ERROR 1 printout of the header report.

5. The rest of the printout is as outlined for the two
printouts preceding (i.e., the same breakdown applies).

6.4.3 Branch, CRC, and Queue Test Module (ESKAY@4, Test 03)
Not yet implemented.

6.4.4 Floating-Point Instructions Test Module (ESKAY#5, Test 4;
ESKAYP6, Test 5)

Tests 4 and 5 check both the basic floating-point instructions and
the accelerated floating-point instructions. Arithmetic and
reserved operand exceptions pertaining to floating-point
instructions are also tested. Since the FPA takes part in the
execution of MULL2 and MULL3, the tests also check these
instructions. The floating-point accelerator is turned off for
test 4 and on for test 5.

6-50

- Typical Error Messages for Test 4

*kkkk**kx CPU CLUSTER EXERCISER (ZZ-ESKAY) —— 9.0 *k*ksks
PASS 1 TEST 4 SUBTEST 1 ERROR 2 20-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 2
? RESULT PSL ERROR
EXPECTED ACTUAL

GO1FQOE3 GO1F0O0E]

INITIAL CONDITIONS:
PC 00004429 PSL @01F@QEF

OP CODE -- 4F WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R@--R6:
RO POPBACH4 R1 POOOACLO R2 @o8a98AC1C
R3 20000000 R4 POB00000 R5 00000000

R6 000060000
SOURCE OPERAND DATA:

OPERAND 1
00004080
OPERAND 2
00004089
OPERAND 3

000030000

Example 6-49 ESKAY Test 4, Subtest 1, Error 2

6-51

hkkhhhk CPU CLUSTER EXERCISER (ZZ-ESKAY)

PASS 1 TEST 4 SUBTEST 1 ERROR 7

HARD ERROR WHILE TESTING CPU:

2(-FEB-1978

-— 9.0 kkkkhkhx

11:26:00.00

INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 7
? RESULT PSL ERROR
EXPECTED ACTUAL
PO1FAOES gOLFBOE4
INITIAL CONDITIONS:
PC 00004695 PSL @@1FOQEB
OP CODE -- 71 WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R@--R6:
'R¢ @@0OACO4 Rl @@OPACl4
R3 (000@00@ R4 00000000

R6 00000000

SOURCE OPERAND DATA:

OPERAND 1
20004080
po000000
OPERAND 2
P0004080

P0000000

R2

R5

B0000000
P0000000

Example 6-500 ESKAY Test 4, Subtest 1,

6-52

Error 7

*hkkkkddkd CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0

kkkkkkk*k

PASS 1 TEST 4 SUBTEST 1 ERROR 24 20-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

w

ERROR IN TEST CASE NUMBER: 24

)

RESULT PSL ERROR
EXPECTED ACTUAL

@91FOPES PO1FOOED

INITIAL CONDITIONS:

PC ¢00@P4873 PSL @@1F@QEF

OP CODE -- WITH REGISTER INDIRECT OPERANDS
INITIAL REGISTERS R#--R6

RO PPOOACO4 R1 PP990AC14 R2 #A00BACID
R3 B3B3 0AC2D R4 @O0 BAC39 R5 20000000

R6 08000600

SOURCE OPERAND DATA:
OPERAND 1

FFFE4FFF

FFFFFFFF

OPERAND 2

FF

OPERAND 3

00004080

00000000

Example 6-51 ESKAY Test 4, Subtest 1, Error 24

6-53

A lengthy detailed description of this type of error report has
been supplied in Paragraph 6.4.2. Using that description as a
reference, interpretations of the preceding three error reports
follow.
Interpretation of Example 6-49
The instruction being tested is

ACBF (R#), (R1l), (R2), displacement

BREAKING DOWN FURTHER--
ACBF (AC@4), (AC10), (ACIC), displacement

BREAKING DOWN FURTHER--
ACBF 4?8@, 4?80, Gi displacement

limit addend index
Interpretation of Example 6-50
The instruction being tested is
CMPD (R@), (R1)

BREAKING DOWN FURTHER--
CMPD (AC@4, (AC14)

BREAKING DOWN FURTHER-~-
CMPD 4080, 4089

source destination
Interpretation of Example 6-51
Going through a similar analysis

EMODD (R#), (R1l), (R2), integer, fraction

EMODD FFFEAFFF 0004080
FFFFFFFF, FF, f0P00000G, integer, fraction
floating- multiplicand

point multiplier

floating-point
multiplier extension

6-54

Typical Error Messages for Test 5

*#kkkk%** CPU CLUSTER EXERCISER (ZZ-ESKAY) —= 9.0 *xkkaxsk
PASS 1 TEST 5 SUBTEST 2 ERROR 7 20-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 7
? INCORRECT TRACE TRAP PSL
EXPECTED ACTUAL

GO1FOQFS PO1FOOF 4

INITIAL CONDITIONS:

PC 000084695 PSL @01FQ@FB

OP CODE -- 71 WITH REGISTER INDIRECT OPERANDS
INITIAL REGISTERS R#--R6:

RO J900ACH4 R1 POPPACL 4 Ré Po0B00A0
R3 00000000 R4 po000000 R5 PP000000
R6 00000000

SOURCE OPERAND DATA:
OPERAND 1

P0004080

poP000080

OPERAND 2

00004080

00000000

Example 4-52 ESKAY Test 5, Subtest 2, Error 7

6-55

kkkkkdkk CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 hhkkkkhd
PASS 1 TEST 5 SUBTEST 8 ERROR 10@¢ 20-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: FLOATING NORMALIZE SUBTEST

? ERROR IN TEST CASE NUMBER: 113
EXPECTED ACTUAL

FFF849FF POOP3F80

TEST AT PC: @0@@9A87 ADDF3 R@, R2, R4
RO 00004080

R2 0000C040

Example 6-53 ESKAY Test 5, Subtest 8, Error 168

kkkxkdkk CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 Fhkkkkkk
PASS 1 TEST 5 SUBTEST 8 ERROR 101 2¢-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: FLOATING NORMALIZE SUBTEST

? ERROR IN TEST CASE NUMBER: 161
EXPECTED ACTUAL
00004040 Po0B4000
0o000000 POPB0000

TEST AT PC: 0000¢9B11 ADD3 R@#, R2, R4
R1 0000CO00
R2 FFFF4D7F

R3 009O0EQ0O

Example 6-54 ESKAY Test 5, Subtest 8, Error 191

6-56

The interpretation of Example 6-52 is similar to that already
given for Example 6-47.

Examples 6-53 and 6-54 are for the FLOATING NORMALIZE SUBTEST and
differ from the standard CITS printouts as follows:

1. Both printouts give the instructions under test and their
operands, i.e.,

ADDF3 R#, R2, R4
ADD3 RO, R2, R4

2. The operand data is listed directly under the TEST AT PC
statements.

3. The EXPECTED and ACTUAL data in both cases reference the
contents of R4 (R4, by definition, specifies the
destination operand).

6.4.5 Operand Specifier Dependent Floating-Point Test (ESKAY®7,
Test 6)
Not yet implemented.

6.4.6 Decimal Strings Module (ESKAX@8, Test 7)

This module tests the microcode and hardware used for decimal
string execution.

Interpretation of Example 6-55

The error printouts coming from this test are designed like those
of test 5. An overall interpretation has already been described in
the test 2 writeup.

Analysis should show the instruction under test to be

ADDP6 (RO), (R1), (R2), (R3), (R4), (R5)

1 addladdr add2addr sumaddr
addllen add2len sumlen

with ADDRESSES REFERENCED shown under INITIAL REGISTERS R@--R6 and
OPERAND DATA as indicated.

6.4.7 EDITPC Operators Module (ESKAY@9, Test 8)
This module tests the EDITPC microcode and associated hardware.

6-57

Typical Error Message

khkkkkkk CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 Ahkkkikx
PASS 1 TEST 7 SUBTEST 2 ERROR 26 20¢-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

)

ERROR IN TEST CASE NUMBER: 26

)

INCORRECT TRACE TRAP PSL
EXPECTED ACTUAL

POLFOAFS PO1FOQF0Q

INITIAL CONDITIONS:
PC 00004585 PSL 0@G1F@0FF

OP CODE -- 21 WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R#--R6
RO POOOACH4 R1 POQOACOE R2 #P9PAC1B
R3 PPOOAC25 R4 PBABAC35 R5 POBOAC3F

R6 Po000000

SOURCE OPERAND DATA:

OPERAND 1 |

p009

OPERAND 2

12, 34, 56, 78, 9C

OPERAND 3

PO0E

OPERAND 4

¢e, o9, oo, 77, 77, 77, 77, E
OPERAND 5

goL1F

Example 6-55 ESKAY Test 7, Subtest 2, Error 26
6-58

Typical Error Message

kk%x** CPU CLUSTER EXERCISER (ZZ-ESKAY) —— 9.0 ***kkkkx
PASS 1 TEST 8 SUBTEST 1 ERROR 48 2@-FEB-1978 11:26:00.00

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR

? ERROR IN TEST CASE NUMBER: 48
? RESULT PSL ERROR
EXPECTED ACTUAL

0B1FOPES Q01FOOE4

INITIAL CONDITIONS:
PC 0¢0P0485A PSL QO1F@OEB

OP CODE -- 38 WITH REGISTER INDIRECT OPERANDS

INITIAL REGISTERS R@--R6:

RO PBOOACH4 R1 @00 0GACOE R2 PPOPACILE
R3 POOBAC2F R4 00000000 R5 POoRABB0
R6 po000000

SOURCE OPERAND DATA:

OPERAND 1

PO00F

OPERAND 2

oo, 09, 00, 00, 00, 00, 00, @D

OPERAND 3

40, 40, 43, 25, @04, 9F, 46, 10, 00

Example 6-56 ESKAY Test 8, Subtest 1, Error 48

6-59

Interpretation of Example 6-56
The error printouts coming from this test are designed 1like those
described in Paragraph 6.4.2.
Therefore, analysis should show the instruction under test to be
EDITPC- (R@), (R1), (R2) , (R3)

srclen pattern

srcaddr dstaddr

with ADDRESSES REFERENCED shown under INITIAL REGISTERS R@#--R6 and
OPERAND DATA as indicated.

6.4.8 Character String Instructions Test Module (ESKAY14, Test
glt yet implemented.

6.4.9 Privileged Instruction Exception Test (ESKAY1ll, Test 14)
Not yet implemented.

6.5 ESKAZ DESCRIPTION

6.5.1 Memory Management Test Module (ESKAZ@3, Test 1)

The object of this test is to test memory management on a
VAX-11/780 CPU. Memory management is that part of the CPU which
checks protection on memory references, performs virtual to
physical address translation, monitors updates to pages of memory
(with the modify bit of the page table entry), and resolves
unaligned data references. These functions are tested by making
many different kinds of references to see that they work. Working
is defined as: reading or writing the correct data, leaving the
contents of adjacent addresses unaffected, setting the M bit on
the first write to a page, and faulting 1if required. Upon
detecting a failure, the test issues an error report containing
the failure symptom (e.g., unexpected fault, wrong condition
codes) and the circumstances surrounding the failure (instruction
and address under test, expected and received data, etc.).

The test is organized in six subsections, each testing some area
of memory management functionality.

1. Valid read and write -- The intent is to quickly verify
that the basic functions work. Longword aligned reads and
writes are performed to each address space (P@, Pl, and
System). This process performs initial checks of reading
and writing, physical address translation in each address
space, translation buffer loading, and setting of the
modify bit.

6-60

Length register boundary checks - References are made
just before and just beyond each of the length boundaries
to verify the length boundary checks.

Page Table Entry (PTE) combinations -- This subsection
changes privilege modes to kernel, exec, super, and user.
It makes references to pages mapped with each access
code, and with the PTEs both valid and invalid, to verify
the access privilege checks.

Size with PTE combinations -- The size of the access is
varied from byte to quadword and tried with PTE
combinations. -

Page boundary checks -~- The size of the access and the
position of the access with respect to a page boundary
are varied.

IB references with PTE combinations -- This subsection

attempts to make instruction buffer references while
varying the protection of the referenced page.

6-61

6.5.1.1 Memory Management Test General Flow

Initialization -- Three buffer areas are requested from the
supervisor, one each from P@, Pl, and system spaces. A control
block (BVAS) 1is loaded with their addresses, and with the
addresses of three other buffer areas, which are on the last page
in each space.

Execution of Subsections -- A loop selects and executes each of
the subsections, as follows.

1. Select an SCC -- The entry in the subsection description
table associated with the current subsection is selected.
It includes a pointer to a Setup Command Chain (SCC).
There is an SCC for each subsection. The execution
section includes six nested loops, varying access size,
address space, and operand alignment. The SCC contains
start and end limits for these loops. For instance, the
SCC for the fourth loop, page boundary checks, specifies
varying access size from byte to quadword, varying the
offset from a page boundary from 8 bytes before through 1
byte after the page boundary, and varying address space
from P@ to system.

2. Create defaults -- Defaults are provided for any
variables not specified in the SCC.

3. Execute subsection -- A procedure 1is called that will
make test references, varying each reference variable
specified in the SCC across the range.

Clean up -- At the end of the test, all buffers are returned and
control returns to the dispatch routine in the supervisor.

6.5.1.2 Memory Management Test, Subsection Flow
Loop start -- All reference parameters that will vary are loaded
with initial values specified in the SCC.

Execute —-- The test reference described by the current state of
all the reference variables is made. '

Increment -- The next value of the most rapidly varying parameter
is loaded. If its range has been covered, it is set to its initial
value and the next variable is changed.

Loop -- If the slowest varying reference parameter has completed
its range, the subsection is complete. Otherwise, the next
reference is made.

6.5.1.3 Test Reference Execution

Initialize -- The control blocks for this section (MRDB and TCB)
are set up.

Decode -- A CITS (CITS DECODE) is called to decode the test
instruction.

6-62

Simulate -- The test reference 1is simulated, and the expected
results are loaded into the MRDB.

Setup -- Another CITS routine (CITS SETUP) is called to initialize
the data areas, general register, and stack for the test
instruction.

Map -- The address of the test reference is mapped according to
the variables controlling page validity and accessibility.

Probe -- A probe is made to the test address in order to verify
the mapping, and the results are compared with the simulated
results.

Execute -- The test reference is made.

Remap -- The test address mapping is reset to allow all access,
and the result maps are copied and checked.

Data Check -- CITS CHECK is called to check the results of the
test instruction.

Loop -- The flow from setup is repeated for various translation
buffer states.

Return.

6-63

Typical Error Messages

kkkkkk CPU CLUSTER EXERCISER —- 9,0 ***kkkkkx
PASS 1 TEST 1 SUBTEST 1 ERROR 20212 28-MAY-1978 ©8:31:01.89

HARD ERROR WHILE TESTING CPU: LENGTH REGISTER BOUNDARY

ERROR OCCURRED DURING: ACCESS OR ACCESS CHECK

ERROR: PAGE TABLE ENTRY WAS MODIFIED

TESTED PSL MODE ACCESS ACCESS
ADDRESS PRV CUR TYPE SIZE
8000 1FF8 K K R L
PTE PTE PROTEC- V-BIT M-BIT ACCESS ALLOWED
TION
ADDRESS VALUE CODE STATE STATE K E S U
SPTEl: @@@1F43C 00000098 0063 VAL CLR R NO NO NO

SYS BASE SYS LENGTH
REG REG

PO01F 400 po000R22

EXP DATA ACT DATA PTE MODIFIED

po00aA98 00000098 SPTE1:

Example 6-57 ESKAZ Test 1, Subtest 1, Error 26212

6-64

kkkkkkkk

PASS 1

CPU CLUSTER EXERCISER -- 9.0

TEST 1 SUBTEST 1 ERROR 2¢213°

28-MAY-1978

kkkkkkk*k

¥8:50:58.91

HARD ERROR WHILE TESTING CPU: LENGTH REGISTER BOUNDARY

ERROR OCCURRED DURING: ACCESS OR ACCESS CHECK

ERROR: MODIFY BIT ERROR
TESTED PSL MODE ACCESS ACCESS TESTED OPERAND
ADDRESS PRV CUR TYPE SIZE INSTR NO.
6013001F8 K K W L MOV g2
PTE PTE PROTEC- V-BIT M-BIT ACCESS ALLOWED
TION
ADDRESS VALUE CODE STATE STATE K E S U
SPTEl: (Q001F480 000000694 0002 VAL SET RW NO NO NO
T-BUFF
STATE
MISS
PPTEl: 0001lF200 00000094 pog2 VAL SET RW NO NO NO
HIT
SYS BASE SYS LENGTH
REG REG
POB1F 400 g0000022
Pl BASE Pl LENGTH
REG REG
TFCO1ABY 001000 0F
EXPECTED PTE
STATE
SET SPTEl:
Example 6-58 ESKAZ Test 1, Subtest 1, Error 28213

6-65

Interpretation of Example 6-57

l.

So,

2.

3.

First, a discussion of ERROR 284212

All error numbers consist of 3 bytes with a breakdown as
follows:

a.

The left byte (2) defines the location within the
test where the error was encountered

where,
= Subtest

1--6 = Subsection defined prior to the preceding
examples (Paragraph 6.5.1).

The middle byte (#2) indicates the action being taken
by the test at the time of error

where,

SETUP

PROBE/PROBE CHECK
ACCESS/ACCESS CHECK
ACCESS DATA CHECK
FINAL SETUP

W=
[I I TR

The right byte (12) is indicative of the error itself
(it is used by the test software to determine what
gets printed at error report time).

the ERROR number tells us that we were in the LENGTH
REGISTER BOUNDARY subsection (2) performing an ACCESS/ACCESS
CHECK (82), when we got a message saying PAGE TABLE ENTRY WAS
MODIFIED (12).

The ADDRESS UNDER TEST was 8@@@0lFF8.

The PREVIOUS and CURRENT MODES in the PSL at the test
time are shown as K K

where,

K = Kernel

E = Executive
S = Supervisor
U = User

6-66

The ACCESS occurring at the time of the error is shown as
R .

where,

R = Read

W = Write
M = Modify

The SIZE of the access is shown as L

where,

L = Longword
B = Byte

W = Word

Q = Quadword

A discussion of the line labeled SPTEl follows,

In the given example we have only one 1line of
information, but depending on the set of circumstances
there can be more than one line (as shown in Example
6-58).

The lines and combinations that can appear are as
follows:

SPTEl: Page 1 system page table
SPTE2: Page 2 system page table
PPTEl: Page 1 processor page table
PPTE2: Page 2 processor page table

where,

Page 1 = page number of the address of the lowest byte of
the reference address as determined by either the Base
Virtual Address (BVA) or, if the position is negative, by
the BVA + position.

Page 2 = the next page.
NOTE
A reference may be either entirely

within PAGE 1 or PAGE 2, or it may cross
over.

In our example, the PAGE 1 system page table is being
ACCESSED.

6-67

10.

11.

12.

The PHYSICAL ADDRESS of the PTE is 1F43C.
NOTE
The PTE is the medium of translation of
all virtual addresses to physical
addresses. '
The PTE VALUE represents the contents of the PTE or 98.
The PTE content comprises 4 fields.

a. Page Frame Number (PFN) -- Bits <20:00>

This is the upper 21 bits of the physical address of
the base of the page.

b. Modify bit -- Bit <26>
c. Protection -- Bits <30:27>
d. Vvalid -- Bit <31>

The PROTECTION CODE for the page accessed was 3.

Chapter 5 of the VAX-11 System Reference Manual gives an
analysis of a protection code meaning.

To ease the strain of searching through the VAX-11 System
Reference Manual, the protection code breakdown is shown
under ACCESS ALLOWED as R, NO, NO, NO.

This states that the page being accessed can be READ in
kernel mode, and cannot be accessed in any other mode.

NOTE

A W under this column would indicate
that the page can be written in a given
mode.

The state of the wvalid bit (V-BIT) is VAL

where,
VAX = 1 (valid)
INV = @ (invalid) -

The state of the modify bit (M-BIT) is CLR
where, |

CLR = @ (no modify)
SET = 1 (modify)

6-68

13‘

14.

Example

The content of the SYSTEM BASE REGISTER was 1F480 and the
content of the SYSTEM LENGTH REGISTER was 22.

These 13 items represent the SETUP portion of the error
report (i.e., what were all the initial conditions, or
states, at the time of the error).

The SYS BASE REG and SYS LGTH REG printouts always occur
as parts of the SETUP. As a function of the TESTED
ADDRESS value, one or two other printouts will occur
additionally as follows:

a. If bit 31 is clear and bit 38 is set, the message
includes

P1 BASE Pl LENGTH
REG REG

b. If bit 31 is clear and bit 3@ is clear, the message
includes

P@ BASE P@ LENGTH

REG REG
The ERROR portion of the printout shows further proof of
the ERROR: PAGE TABLE ENTRY WAS MODIFIED statement by

showing the EXPECTED and ACTUAL DATA and the PTE
MODIFIED.

6-58 1is similar to Example 6-57 except that it shows

additional information which reflects circumstances at the time of
the error.

The new items in Example 6-58 are:

TESTED INSTR is a MOV

The OPERAND NO. in question is #2 (i.e., the DST).
The translation buffer state (TB-STATE) is listed
where,

HIT =1
MISS = @.

6-69

6.6 COMPATIBILITY MODE INSTRUCTION TEST (ESKAZ@3, TEST 2)

6.6.1 Instructions Tested

Most of the instructions provided by the compatibility mode
hardware are exercised using various data patterns and address
modes (Figure 6-3). These instructions are listed in Table 6-12.

L START)

SUBTEST
SETUP

«——RN:

4

SUBTEST
INSTRUCTION

A
VERIFY

ERROR LOOP

GO TO
NEXT
SUBTEST

TK-1200

Figure 6-3 Compatibility Mode Instruction Module Subtest
Structure

6-70

Table 6-12

Compatibility Mode

Instructions

Provided

Compatibility Mode Hardware and Exercised by ESKAZ Test 2

by

Oop Code (8) Mnemomic Op Code (8) Mnemonic
. 355DD ADC (B) d881DD JMP
.#6SSDD ADD @9 4RDD JSR
.963DD ASL (B) . 1SSDD MOV (B)
.062DD ASR (B) .054DD NEG (B)
.4SSDD BIC (B) .361DD ROL (B)
. 5S8SDD BIS(B) .0608DD ROR (B)
.« 38SDD BIT (B) - 0320R RTS
49@-3777 BRANCHES (*) Pog2d6 RTT
100000-3777 BRANCHES (**) .956DD SBC(B)
.350DD CLR(B) #7 7RNN SOB
. 28SDD CMP (B) 16SSDD SUB
.351DD COM(B) d9a3DD SWAB
240-277 CND CODES (***) @367DD SXT
.853DD DEC(B) .357DD TST (B)
.0852DD INC (B) B#74RSS XOR
where,

(*)=BR, BNE, BEQ, BGE, BLT, BGT, BLE

(**)=BPL, BMI, BVC, BCC, BCS, BHI, BLOS, BHIS, BLO

(***)=CLC, CLV, CLZ, CLN, CCC, SEC, SEV, SEZ, SEN, ScCC

The instructions provided by the compatibility mode hardware that
have not yet been included in this test are listed in Table 6-13.

Table 6-13 Compatibility Mode Instructions Not Yet Tested

Op Code (8) Mnemonic

@7 2RSS ASH

@#73RSS ASHC

@7 1RSS DIV

1965SS MFPD

#665SS MFPI

1466DD MTPD

@06 6DD MTPI

@70RSS MUL

6-71

NOTES
1. The test instruction 1is always
tagged IN.

2. The error is always tagged EN.

3. The return point for looping is
always tagged RN.

4. If more than one verification is
made in a single subtest, the
entries to subsequent checks are
tagged AN, BN, etc.

5. If more than one error is included,
subsequent errors are tagged EIN,
E2N, E3N, etc.

" The RTI instruction provided by compatibility mode hardware is not
tested in this module. The compatibility mode entry/exit module
(ESKAX@2, Test @l) tests this instruction thoroughly.

6.6.2 Compatibility Mode Test Error Message Format
The following header is printed when an error is detected.

(PC) (PSW) (SP) (R1) (R2) (R3) (R4)

Interpretation of Compatibility Mode Test Error Message Format

(PC) Indicates the content of the program counter at the time
of the error call. This is normally an address that is
used to locate the error call statement in the failing

subtest.

(PSW) Indicates the content of the processor status word at the
time of the error call.

(SP) Indicates the content of the stack pointer (R6) at the
time of the error.
NOTE
The error call will push the stack

twice.

6-72

(R1) Indicates a mnemonic of the instruction under test
e.g., MOVB, ASL . . . et al.

(R2) For single- and double-operand instructions, R2 normally
contains the destination address.

(R3) For single- and double-operand instructions, R3 contains
what the result (destination operand) actually was after
the test instruction was executed.

(R4) For single- and double-operand instructions, R4 contains
what the result (destination operand) should have been
(s/B) . .

In some cases, the error information may deviate from that
previously described but the program annotation for those subtests
will describe the meaning of those entries that have been
redefined. :

The error call statement is encoded to print only the information
relative to the particular function being tested. Interpretation
of the error calls is shown below. :

ERROR Print all 7 columns
ERROR1 Print only column 1
ERROR2 Print columns 1, 2
ERROR3 Print columns 1, 2, 3
ERROR4 Print columns 1, 2, 3, 4
ERRORS Print columns 1, 2, 3, 4, 5
ERRORG6 Print columns 1, 2, 3, 4, 5, 6
6.6.3 Sample Error Message Explanation
******** CPU CLUSTER - > L] - . ® L] L2 L] L] - L] L] ********

PASS 1 TEST XX SUBTEST 208 . . . « « « .
HARD ERROR WHILE TESTING CPU: COMPATIBILITY MODE
(PC) (PSW) (Sp) (R1) (R2) (R3) (R4)

@9068DDO poooo0B04 d0@ AAS5AA MOV 20000400 po000aa0 QO@OFFFF

Example 6-59 ESKAZ Compatibility Mode Test Error

6-73

Interpretation of Example 6-59

8DD@ Represents the PC of the error call in the listing.

4 Represents the content of the PSW prior to the error
call.

AS5AA Represents the last position of the PDP-11 mode stack
pointer (R6).

Mov Is a clue that the MOV instruction failed under test.

400 Represents the address used by the destination mode

portion of the MOV instruction.

o000 Represents the actual content of the destination after
instruction execution.

FFFF Represents what the content of the destination should
have been after the MOV instruction was executed.

The listing is laid out with a subtitle printed at the top of each
page. The operator can look through the program 1listing for
subtest 208. The subtest description of 208 shows that a MOV
instruction is tested with source mode 2 and destination mode 3.

6.6.4 Compatibility Mode Instruction Module Assumptions
Four compatibility mode trap instructions are used to control the
execution of this test, as follows.

1. SUBTYPE @ (SPL) Used as program end indicator.
2. SUBTYPE 2 (IOT) Used as next subtest indicator.

NOTE
Appears as SCOPE statement in listing.

3. SUBTYPE 3 (EMT) Used as error report indicator.

NOTE
Appears as ERROR + XX statement 1in
listing.

4, SUBTYPE 4 (TRAP) Used as PSW reference indicator.

NOTE
Appears as TRAP + XX statement in
listing.

It is assumed that the test performing the exercising of
compatibility mode entry/exit conditions has been executed prior
to this test, in which event, the compatibility mode trap
instructions have been checked out.

6-74

APPENDIX A
GLOSSARY OF DIAGNOSTICS SOFTWARE TERMS

absolute (ABS) -- A program section (psect) attribute. An absolute
psect contains only symbol definitions. It does not contribute
binary code to the image. Therefore, it must have a =zero-length
memory allocation. The converse is relocatable (REL).

access mode -- Any of the four processor access modes in which
software executes. Processor access modes are, in order, from most
to least privileged and protected: kernel (mode @), executive
(mode 1), supervisor (mode 2), and user (mode 3).

When the processor is in kernel mode, the executing software has
complete control of, and responsibility for, the system. When the
processor is in any other mode, the processor is inhibited from
executing privileged instructions. The processor status longword
contains the current access mode field. The operating system uses
access modes to define protection levels for software executing in
the context of a process. For example, the executive runs in
kernel and executive modes and is most protected. The command
interpreter is less protected and runs in supervisor mode. The
debugger runs in user mode and is no more protected than normal
user programs.

access type —- The way in which the processor accesses instruction.
operands. Access types are: read, write, modify, address, and
branch.

alignment -- The address boundary at which a program section is
based.
allocate a device -- To reserve a particular device unit for

exclusive use. A user process can allocate a device only when that
device is not allocated by any other process.

allocation -- The number of bytes of memory contributed by a
program section to a particular module.

alphanumeric character -- An upper or lower case letter (A--Z,
a--z), a dollar sign ($), an underscore (_), or a decimal digit
(0--9).

ancillary control process (ACP) -- A process that acts as an
interface between user software and an I/0 driver. An ACP provides
functions supplemental to those performed in the driver, such as
file and directory management.

argument -- An independent value within a command statement that
specifies where, or on what, the command will operate (e.g.,
address, data).

argument pointer -- General register 12 (R12). By convention, AP
contains the address of the base of the argument 1list for
procedures initiated using the CALL instructions.

assign a channel -- To establish the necessary software 1linkage
between a user process and a device unit before a user process can
transfer any data to or from that device. A user process requests
the system to assign a channel and the system returns a channel
number.

assembler -- A program that translates source language code, whose
operations correspond directly to machine op codes, into object
language code.

asynchronous system trap (AST) -- A software-simulated interrupt
to a user-defined service routine. ASTs enable a user process to
be notified asynchronously, with respect to its execution, of the
occurrence of a specific event. If a user process has defined an
AST routine for an event, the system interrupts the process and
executes the AST routine when that event occurs. When the AST
routine exits, the system resumes the process at the point where
it was interrupted.

attributes —-- Various characteristics that can be assigned by the
programmer to each psect in a module (e.g., ABS).

base register -- A general register used to contain the address of
the entry in a list, table, array, or other data structure.

block -- 1. The smallest addressable unit of data that the
specified device can transfer in an I/0 operation (512 contiguous
bytes for most disk devices). 2. An arbitrary number of contiguous
bytes used to store logically related status, control, or other
processing information (i.e., process control block).

breakpoint -- 1In diagnostics, an address assigned through the
diagnostic supervisor. When the PC equals the value of the
breakpoint, control returns to the diagnostic supervisor.

boot (bootstrap) -- A program that loads another (usually larger)
program into memory from a peripheral device.

buffer -- A temporary data storage area.

call frame -- A standard data structure built on the stack during

a procedure call, starting from the location addressed by the FP
to lower addresses, and popped off during a return from procedure
(also called stack frame).

channel -- A logical path connecting a user process to a physical
device wunit. A user process requests the operating system to
assign a channel to a device so that the process can transfer data
to or from that device.

A-2

command file -- A file containing command strings.

command interpreter -- Procedure-based code to receive, syntax
check, and parse commands typed by the user at a terminal or
submitted in a command file.

command parameter -- The positional operand of a command delimited
by spaces, such as a file specification, option, or constant.

command string -- A line, or a set of continued 1lines, normally
terminated by typing the carriage return key containing a command,
and optionally, information modifying the command. A complete
command string consists of a command; its qualifiers, if any; its
parameter (file specifications, for example), if any; and their
qualifiers, if any.

concatenate (CON) -- A program section attribute. If a psect is
concatenated, all psects of the same name yet from different
modules are to be assigned contiguous addresses in the virtual
address space. Each module can specify an independent alignment.
The linker performs the necessary padding of zero bytes between
contributions. The base alignment of the resulting concatenated
psects is according to the greatest alignment granularity of all
the contributions to the psect. For example, if the greatest
alignment granularity of all contributors is a page, the psect is
page-aligned; although, some contributors may be byte-aligned,
others word-aligned, etc.

condition -- An exception condition detected and declared by
software.

condition codes -- Four bits in the processor status word that
indicate the results of the previously executed instruction.

condition handler -- A procedure that a process wants the system
to execute when an exception condition occurs. When an exception
condition does occur, the operating system searches for a
condition handler. When it finds the condition handler, the
operating system initiates the handler immediately. The condition
handler may perform some act to change the situation that caused
the exception condition and then continue execution of the process
that incurred the exception condition. Condition handlers execute
in the context of the process at the access mode of the code that
incurred the exception condition.

context switching -- Interrupting the activity in progress and
switching to another activity. Context switching occurs as one
process after another is scheduled for execution. The operating
system saves the interrupted process's hardware context in its
hardware PCB using the save process context instruction, 1loads
another process's hardware PCB into the hardware context using the
load process context instruction, and schedules that process for
execution.

cylinder -- The tracks at the same radius on all recording
surfaces of a disk pack.

default -- Assumed value supplied when a command qualifier does
not specifically override the normal command function; also,
fields in a file specification that the system fills in when the
specification is not complete.

default disk -- The system disk to which the system writes all
files that the operator creates, by default. The default is used
whenever a file specification in a command does not explicitly
name a device.

delimiter -- A character or symbol used to separate or limit items
within a command or data string. However, the delimiter is not a
member of the string.

device -- The general name for any physical terminus or 1link
connected to the processor that is capable of receiving, storing,
or transmitting data. Card readers, line printers, and terminals
are examples of record-oriented devices. Magnetic tape devices and
disk devices are examples of mass storage devices. Terminal 1line
interfaces and interprocessor links are examples of communications
devices.

device interrupt -- An interrupt received on interrupt priority
levels 16 through 23. Device interrupts can be requested only by
devices, controllers, and memories.

device name -- The field in a file specification that identifies
the device unit on which a file 1is stored. Device names also
include the mnemonics that identify an I/0 peripheral device in a
data transfer request. A device name consists of a mnemonic
followed by a controller identification letter (if applicable),
followed by a unit number (if applicable). A colon (:) separates
it from following fields.

direct I/0 -- A mode of access to peripheral devices in which the
program addresses the device registers directly, without relying
on support from the operating system drivers.

drive -- The electro-mechanical unit of a mass storage device
system on which a recording medium (disk cartridge, disk pack, or
magnetic tape reel) is mounted.

driver -- The set of system code that handles physical I/0 to a
device.
entry mask —-- A word (1) whose bits represent the registers to be

saved or restored on a subroutine or procedure ¢all using the call
and return instructions, and (2) which includes trap enable bits.

entry point -- A location that can be specified as the object of a
call. It contains an entry mask and exception enables known as the
entry point mask.

A-4

event -- A change 1in process status or an indication of the
occurrence of some activity that concerns an individual process or
cooperating processes. An incident reported to the scheduler that
affects a process's ability to execute. Events can be synchronous
with the process's execution (a wait request, or they can be
asynchronous (I/0 completion). Some examples of events: swapping,
wake request, page fault.

event flag -- A bit in an event flag cluster that can be set or
cleared to indicate the occurrence of the event associated with
that flag. Event flags are used to synchronize activities in a
process or among many processes.

exception —-- An event detected by the hardware (other than an
interrupt or jump, branch, case, or call instruction) that changes
the normal flow of instruction execution. An exception is always
caused by the execution of an instruction or set of instructions,
while an interrupt 1is caused by an activity in the system
independent of the current instruction. There are three types of
hardware exceptions: traps, faults, and aborts. Examples are:
attempts to execute a privileged or reserved instruction; trace
traps; compatibility mode faults; breakpoint instruction
execution; and arithmetic traps such as overflow, underflow, and
divide-by-zero.

exception condition -- A hardware- or software-detected event
(other than an interrupt or Jjump, branch, case, or call
instruction) that changes the normal flow of instruction
execution.

exception dispatcher -- An operating system procedure that
searches for a condition handler when an exception condition
occurs. If no exception handler is found for an exception or
condition, the image that incurred the exception is terminated.

executable (EXE) -- A program section attribute. The psect
contains only instructions. This attribute provides the capability
to separate instructions from read-only and read/write data. The
linker uses this attribute in gathering psects and in the
verification of the transfer address that must be present in an
executable psect.

executable image -- An image that 1is capable of being run in a
process. When run, an executable image is read from a file for
execution in a process.

executive -- The generic name for the collection of procedures
included in the operating system software that provides the basic
control and monitor functions of the operating system.

file -- A 1logically related collection of data treated as a
physical entity that occupies one or more blocks on a volume such
as disk or magnetic tape. A file can be referenced by a name
assigned by the user. A file normally consists of one or more
logical records.

A-5

file specification -- A unique name for a file on a mass storage
medium.

frame pointer -- General register 13 (R13). By convention, FP
contains the base address of the most recent call frame on the
stack.

global symbol -- A symbol defined in a module that is potentially
available for reference by another module. The 1linker resolves
(matches references with definitions) global symbols. Contrast
with local symbol.

granularity -- The alignment of a contribution to a psect on a
boundary. The alignment granularity may be byte, word, quadword,
or page.

home block -- A block in the index file that contains the volume
identification, such as volume label and protection.

image -- An image consists of procedures and data that have been
bound together by the linker. There are three types of images:
executable, sharable, and system.

index file -- The file on a FILES-11 volume that contains the
access information for all files on the volume and enables the
operating system to identify and access the volume.

interrupt -- An event (other than an exception or branch, jump,
case, or call instruction) that changes the normal flow of
instruction execution. Interrupts are generally external to the
process executing when the interrupt occurs.

interrupt stack -- The system-wide stack used when executing in an
interrupt service context. At any time, the processor is either in
a process context executing in user, supervisor, executive, or
kernel mode; or in system-wide interrupt service context operating
with kernel privileges, as indicated by the interrupt stack and
current mode bits in the PSL. The interrupt stack 1is not
context-switched.

I/0 function code -- A 6-bit value specified in a queue I/0
request system service that describes the particular I/0 operation
to be performed (e.g., read, write, rewind).

library file -- A direct access file containing one or more
modules of the same module type.

linked commands -- A group of independent commands connected
together (linked) so as to form a single executable 1list of
commands. Once initiated, the entire linked command list may be.
executed without further operator intervention.

linker —- A program that reads one or more object modules created
by language processors and produces an executable image file, a
sharable image file, or a system image file.

linking -~ The resolution of external references between object
modules used to create an image; the acquisition of referenced
library routines, service entry points, and data for the image;
and the assignment of virtual addresses to components of an image.

link map -- A link map shows the virtual memory allocation of the
total program image. The link map is found in a program listing in
the program section allocation synopsis.

literal -- An operand which is used immediately, without being
translated to some other value. An operand which specifies itself.

literal argument -- An independent value within a command
statement that specifies itself.

local symbol -- A symbol that is meaningful only to the module
that defines it. Symbols not identified to a language processor as
global symbols are considered to be 1local symbols. A language
processor resolves (matches references with definitions) 1local
symbols. They are known to the linker and cannot be made available
to another object module. They can, however, be passed through the
linker to the symbolic debugger. Contrast with global symbol.

logical block -- A block on a mass storage device identified by
using the volume-relative address rather than the physical
(device-oriented) address or the virtual (file-relative) address.
The blocks that comprise the volume are 1labeled sequentially
starting with logical block 8.

macro -- A statement that requests a language processor to
generate a predefined set of instructions.

memory management -- The system functions that include the
hardware's page mapping and protection and the operating system's
image activator and pager.

module -- A part of a program assembled as a unit. Modular
programming allows the development of large programs in which
separate parts share data and routines.

mount a volume -- To 1logically associate a volume with the
physical unit on which it is loaded (an activity accomplished by
system software at the request of an operator). Or, to load or
place a magnetic tape or disk pack on a drive and place the drive
on-line (an activity accomplished by a system operator).

object module -- The binary output of a language processor such as
the assembler or a compiler, which is used as input to the linker.

operand —- a value (address or data) that is operated on, or with,
by an instruction.
A-7

overlay (OVR) -- A program section attribute. If a psect 1is
overlayed, all contributions to the psect have the same base
address. The 1length of the psect is the size of the 1largest
contribution. All contributions to an overlayed psect must have
the same alignment.

page -- A set of 512 contiguous byte locations used as the unit of
memory mapping and protection. Also, the data between the
beginning of a file and a page marker, between two markers, or
between a marker and the end of a file.

page frame number (PFN) -- The address of the first byte of a page
in physical memory. The high~order 21 bits of the physical address
of the base of a page make up the PFN.

page table entry (PTE) -- The data structure that identifies the
location and status of a page of virtual address space. When a
virtual page is in memory, the PTE contains the page frame number
needed to map the virtual page to a physical page. When it is not
in memory, the PTE contains the information needed to locate the
page on secondary storage (disk).

parameter -- A parameter is the object of a command. It can be a
file specification, a keyword option, or a symbol value passed to
a command procedure. In diagnostics, parameters are usually
operator-supplied answers to questions asked by a program
concerning devices to be tested.

parameter switch -- A command qualifier. In diagnostics, it is
preceded by a slash (/).

parser -- A procedure that breaks down the components of a command
into structural forms.

physical address -- The address used by hardware to identify a
location in physical memory or on directly addressable secondary
storage devices such as disks. A physical memory address consists
of a page frame number and the number of a byte within the page. A
physical disk block address consists of a cylinder or track and
sector number.

physical block -- A block on a mass storage device referred to by
its physical (device-oriented) address rather than a 1logical
(volume-relative) or virtual (file-relative) address.

position independent code (PIC) -- A program section attribute.
The contents of the psect do not depend on a specific location in
virtual memory. The converse 1is nonposition independent code
(NOPIC) .

A-8

priority -- The rank assigned to an activity that determines its
level of service. For example, when several jobs contend for
system resources, the Jjob with the highest priority receives
service first.

program section -- A portion of a module. The assembler creates a
number of program sections (psect) within a module, according to
directives by the program developer. In addition, any code that
precedes the first defined program section is placed in the BLANK
program section by the assembler.

Through program sectioning the program developer controls the
virtual memory allocation of a program. Any program attributes
established by the program section directive are passed on to the
linker. Thus, program sections can be declared as read only,
nonexecutable, etc. See the VAX-11 MACRO Language Reference Manual
for an explanation of the various program sectlion attribute
functions.

In the diagnostic programs, each test is given a separate program
section.

prompt —-- A program's typed out response to and/or request for
operator action.

qualifier ~-- A portion of a command string that modifies a command
verb or command parameter by selecting one of several options. A
qualifier, if present, follows the command verb or parameter to
which it applies and 1is in the format: /qualifier:option. For
example, in the command string "PRINT <filename> /COPIES:3", the
COPIES qualifier indicates that the user wants three copies of a
given file printed.

queue -- A list of commands or jobs waiting to be processed.

queue I/0 -- A mode of access to peripheral devices in which a
program calls on driver routines provided by the VMS operating
system or the diagnostic supervisor to transfer data.

radix -- The base of the number system currently in use.

readable (RD) -- A program section attribute. The contents of the
psect can be read at the execute time. The converse is nonreadable
(NORD) .

record -- A collection of adjacent items of data treated as a
unit. A logical record can be of any length whose significance is
determined by the programmer. A physical record is a
device-dependent collection of contiguous bytes such as a block on
a disk, or a collection of bytes sent to or received from a
record-oriented device.

relocatable (REL) -- A program section attribute. The psect must
be assigned a base address by the linker. This psect can contain
code and/or data.

A-9

script file -- A line-oriented ASCII file that contains a list of
commands.

section -- A group of tests in a diagnostic program that may be
selected by the operator.

sector -- A portion of a track on the surface of a disk. On a
VAX-11 system, each track on a disk is normally divided into 22
sectors.

semantics -- The interpretation of and relation between commands
or command symbols.

sharable image -- An image that has all of its internal references
resolved, but which must be 1linked with an object module(s) to
produce an executable image. A sharable image cannot be executed.
A sharable image file can be wused to contain a 1library of
routines. A sharable image can be installed as a global section by
the system manager.

stack -- An area of memory set aside for temporary storage, or for
procedure and interrupt service linkages. A stack uses the
last-in, first-out concept. As items are added to (pushed on) the
stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

stack frame -- A standard data structure built on the stack during
a procedure call, starting from the location addressed by the FP
to lower addresses, and popped off during a return from procedure.
Also called call frame.

stack pointer -- General register 14 (R14). SP contains the
address of the top (lowest address) of the processor-defined
stack. Reference to SP will access one of the five possible stack
pointers: kernel, executive, supervisor, user, or interrupt,
depending on the value in the current mode and interrupt stack
bits in the Processor Status Longword (PSL).

standalone mode ~-- A diagnostic program environment in which the
program and the diagnostic supervisor run without the VMS
operating system. The operator must use the console terminal when
running diagnostics in the standalone mode, and no other users
have access to the system.

symbolic argument -- An argument within a command that refers to
another value.

syntax -- The rules governing a command language structure. The
way in which command symbols are ordered to form meaningful
statements.

syntactic unit -- An item contained within a command statement
(e.g., an argument, a qualifier).

A-10

system image -- The image that is read into memory from secondary
storage when the system is started up.

test -- A unit of a diagnostic program that checks a specific
function or portion of the hardware.

time stamp -- A statement of the time of day at which a specific
event occurred.

track -- A <collection of blocks at a single radius on one
recording surface of a disk.

trap -- An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on the stack
is the address of the next instruction that would normally have
been executed. All software can enable and disable some of the
trap conditions with a single instruction.

unit record device -- A device such as a card reader or line
printer.
unwind the call stack -- To remove call frames from the stack by

tracing back through nested procedure calls using the current
content of the FP register and FP register content stored on the
stack for each call frame.

UUT (unit under test) -- The device or portion of the computer
hardware being tested by a diagnostic program.

virtual block number —- A number used to identify a block on a
mass storage device. The number is a file-relative address rather
than a 1logical (volume-oriented) or physical (device-oriented)
address. The first block in a file is always virtual block number
one.

writable (WRT) -- A program section attribute. The content of the

psect can be modified at execute time. The converse is nonwritable
(NOWRT) .

A-11

VAX-11/780 DIAGNOSTIC SYSTEM Reader’s Comments
TECHNICAL DESCRIPTION
EK-DS780-TD-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our
publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information on
the remainder of DIGITAL'’s technical documentation.

Name Street

Title City

Company State/Country
- Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northboro, Ma 01532

Attention: Communications Services (NR2/M15)
Customer Services Section

Order No. _ EK-DS780-TD-001

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Communications Development and Publishing
1925 Andover Street

Tewksbury, Massachusetts 01876

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	replyA
	replyB

