

EK-DS780-TD-001

V AX-11 /780 Diagnostic System
Technical Description

digital equipment corporation • maynard, massachusetts

First Edition, February 1979

Copyright © 1979 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.
Digital Equipment Corporation assumes no re­
sponsibility for any errors which may appear in
this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DEC US
UNIBUS

D ECsystem-10
DECSYSTEM-20
DIBOL
EDUSYSTEM
VAX
VMS

MASSBUS
OMNIBUS
OS/8
RSTS
RSX
IAS

8184-15

CHAPTER 1

1.1
1. 2
1. 3
1. 4
1. 5
1. 6
1. 6.1
1. 6. 2
1. 7
1. 7 .1
1. 7. 2
1.7.2.1
1.7.2.2
1.7.2.3
1. 8
1. 9
1. 9.1
1. 9. 2
1.9.2.1
1.9.2.2
1.9.2.3
1. 9. 3
1.9.3.1
1.9.3.2
1.9.3.3
1.9.3.4

CHAPTER 2

2.1
2 .1.1
2.1. 2
2 .1. 3
2.1. 4
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8

CONTENTS

INTRODUCTION

MANUAL SCOPE
DIAGNOSTIC SYSTEM CAPABILITIES
DIAGNOSTIC SYSTEM OVERVIEW
DIAGNOSTIC SYSTEM EXECUTION ENVIRONMENTS
CONSOLE DIAGNOSTICS
MICRODIAGNOSTIC PROGRAM

Console Adapter and Hardcore Division
Microtest Division

MICRODIAGNOSTIC PROGRAMS
Diagnostic Supervisor
Cluster Diagnostic Program

CPU Cluster Exerciser Package
RH780 (MBA) Diagnostic Program
DW780 (UBA) Diagnostic Program

PERIPHERAL DIAGNOSTIC PROGRAMS
OPERATOR/VAX-11/780 COMMUNICATION

Console Terminal Modes
Console Panel Equivalent Functions

Program Control
Memory Element Display and Modification
Clock Control

Console Control Functions
Default Settings
Status Displays
Command Linking and Repeating
Real-Time Delays

CONSOLE PROGRAM AND CONTROL DESCRIPTION

CONSOLE PROGRAM OVERVIEW
Command Getter
Parser and Parser Tables
Command Executor Module
Additional Services

COMMAND TERMS AND SYMBOLS
Notation Examples
Command Abbreviations

CONSOLE COMMAND DESCRIPTIONS
Boot Command (B)
Clear Command (CL)
Continue Command (C)
Deposit Command (D)
Enable DXl: Command
Examine Command (E)
Halt Command (H)
Help Command (HE)

iii

Page

1-1
1-2
1-3
1-8
1-8

1-10
1-12
1-12
1-14
1-14
1-18
1-18
1-18
1-19
1-20
1-20
1-20
1-21
1-21
1-21
1-22
1-22
1-22
1-23
1-23
1-23

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-8
2-8

2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14
2.3.15
2.3.16
2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
2.3.22
2.3.23
2.3.24
2.4

2. 5
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7
2.7.8
2.7.8.1
2.7.8.2
2.7.8.3
2.7.8.4
2.7.9
2.8
2.8.1
2.9
2.9.1
2.9.2
2.10
2.11
2.11.1
2.12
2.13
2.14
2.15
2.15.1
2.15.2

CONTENTS (Cont)

In i t i a 1 i ze Comm and (I)
LINK Command (LI)
Load Command (LO)
Perform Command (P)
Quad Clear Command (Q)
Reboot Command (REB)
Repeat Command (R)
Set Command (SE)
Show Command (SH)
Start Command (S)
Next Command (N)
Test Command {T)
Unjam Command (U)
Wait Command (WA)
Indirect (@) Command
WCS Command (W)

COMMANDS PERFORMED WITH THE
VAX-11/780 CPU RUNNING
COMMENTS WITHIN COMMANDS
CONTROL CHARACTERS AND SPECIAL CHARACTERS
COMMAND QUALIFIERS AND DEFAULTS

Address Type Qualifiers
Address Type Defaults
Data Length Qualifiers
Data Length Defaults
Qualifiers for RADIX
Defaults for RADIX
Local Radix Override
Default Address Facility

Specifying Default Address in a Command
Last Address Notation
Preceding Address Notation
Use of Last Data as an Address Argument

NEXT Qualifier
COMMAND REPEAT FACILITY

Repeating Commands
COMMAND LINK FACILITY

Link Facility Operation
Link Facility Usage

CONSOLE MODE CHANGE
VMS COMMUNICATION WITH CONSOLE FLOPPY DISK

Floppy Function Protocol
MISCELLANEOUS CONSOLE COMMUNICATIONS
COMMUNICATION REGISTER FORMATS AND SELECT CODES
FLOPPY STATUS BYTE DEFINITION
REMOTE CONSOLE ACCESS COMMAND SET

Enable Talk Mode Command
Enable/Disable Echo Command

iv

Page

2-8
2-8
2-8
2-9
2-9
2-9

2-10
2-10
2-12
2-12
2-12
2-13
2-13
2-13
2-14
2-14

2-14
2-15
2-15
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-22
2-22
2-23
2-23
2-23
2-241
2-24
2-26
2-27
2-28
2-30
2-30
2-31
2-32

2.15.3
2.15.4
2.15.5
2.15.6
2.16
2.16.1
2.16.2
2.16.3
2.16.4
2.16.5
2.16.6

CHAPTER 3

3.1
3.2
3.2.l
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

CONTENTS (Cont)

Enable/Disable Local Copy Command
Enable Local Control Command
Enable/Disable Carrier Error Command
Enable/Disable Local Floppy Command

CONSOLE ERROR MESSAGES
Syntactic Error Messages
Command Generated Error Messages
Microroutine Error Messages
CPU Fault Generated Error Messages
RX01 Error Messages
Miscellaneous Error Messages

DIAGNOSTIC SUPERVISOR AND CONTROL

SUPERVISOR STRUCTURE OVERVIEW
CL! FUNCTIONAL MODULE DESCRIPTION

Image Loader Module
Test Sequence Control Module
Script Processor Module

PG! FUNCTIONAL MODULE DESCRIPTION
Memory Management and Adapter Services
Operator Terminal Services
System Error Handling

SUPERVISOR COMMAND DESCRIPTIONS
Command Terms and Symbols
Command Description Segments
Command Abbreviations
Command Overview

SEQUENCE CONTROL COMMANDS
Lo ad Comm and
Start Command
Restart Command
Run Command
Control Characters and Special Characters
Continue Command
Summary Command
Abort Command
Submit Command

EXECUTION CONTROL COMMANDS
Set Control Flag Command
Clear Control Flag Command
Set Control Flag Default Command
Show Control Flags Command
Set Event Flags Command
Clear Event Flags Command
Show Event Flags Command

v

Page

2-32
2-32
2-32
2-33
2-33
2-33
2-33
2-34
2-35
2-35
2-36

3-1
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-6
3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-8
3-9
3-9

3-10
3-10
3-10
3-10
3-12
3-12
3-13
3-13
3-13
3-13

3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7

CHAPTER 4

4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.5
4.5.1
4.6
4.6.1
4.6.1.l
4. 6.1.2
4.6.1.3
4.6.1.4
4.6.1.5
4.6.1.6
4.7
4.7.1
4.7.2
4.7.3
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.9
4.9.1
4.9.2
4.9.3
4.9.4

CHAPTER 5

5.1
5.2
5.3

CONTENTS (Cont)

DEBUG AND UTILITY COMMANDS
Set Base Command
Set Breakpoint Command
Clear Breakpoint Command
Show Breakpoints Command
Set Default Command
Examine Command
Deposit Command

MICRODIAGNOSTIC DESCRIPTION

MICRODIAGNOSTIC PROGRAM OVERVIEW
BASIC PROGRAM EXECUTION
BASIC TEST STRATEGY
HARDCORE TEST DESCRIPTION

Hardcore Test Structure
Pseudo Instruction Description

MICROTEST DESCRIPTION
Microtest Structure

MICRODIAGNOSTIC MONITOR CONTROLS
Monitor Control Examples

HD/HI Flags
Loop on Error Flag (LOOP}
No Error Report Flag (NER}
Bell on Error Flag (BELL}
Continue Command (CONT)
Error Abort Flag (ERABX)

MICRODIAGNOSTIC RELATED ERROR MESSAGES
Syntax Error Messages
System Error Messages
Go Chain Monitor Error Messages

PROGRAM LISTING AND ERROR MESSAGE DESCRIPTIONS
Monitor Listing Descriptions
Hardcore Listing Description
Microtest Listing Description
Microdiagnostic Execution
Error Message Format

LISTING/ERROR MESSAGE CORRELATION
No Error Message Situation
Hardcore Loop and Single Step Setup
Microtest Scope Loop Setup
Microtest Single Bus Steps Setup

MACRODIAGNOSTIC PROGRAM DESCRIPTIONS

DEFINITION OF TERMS
OVERVIEW OF THE MACRODIAGNOSTIC PROGRAM
MACRODIAGNOSTIC PROGRAM LISTING DESCRIPTION

vi

Page

3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-15

4-1
4-1
4-2
4-4
4-5
4-6

4-14
4-14
4-16
4-21
4-21
4-21
4-22
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-26
4-28
4-29
4-29
4-32
4-32
4-34
4-34
4-37

5-1
5-2
5-2

5.4
5.5

5.5.1
5.5.2
5.6

5.6.1
5.6.2
5.7

5.7.1
5.7.2

5.8

5.8.1
5.8.2

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.6.5
6.2.6.6
6.2.6.7
6.2.6.8
6.2.6.9
6.2.6.10
6.2.7
6.3
6.3.1

6.3.2
6.3.2.1
6.3.2.2

CONTENTS {Cont)

DIAGNOSTIC PROGRAM AND SUPERVISION INTERACTION
ANALYSIS OF A SAMPLE TEST: RH780 (MBA)
TEST 3, SUBTEST 1

Listing Column Format Description
Analysis of Typical Lines

RH780 (MBA) DIAGNOSTIC SAMPLE SUBTEST
(Direct I/O)

RH780 Diagnostic Detailed Flow
RH780 Diagnostic Sample Error Message

RP0X/DCL REPAIR DIAGNOSTIC (DIRECT I/O),
SAMPLE SUBTEST

De ta i 1 ed Flow
RP0X/DCL Repair Diagnostic Sample Error
Message

DISK RELIABILITY DIAGNOSTIC (QUEUE I/O)
SAMPLE SUBTEST

Detailed Flow
Disk Reliability Diagnostic Sample Error
Message

CPU CLUSTER EXERCISER PACKAGE

CONTROL MODULE
COMMON INSTRUCTION TEST SERVICES MODULE (CITS)

CITS DECODE
CITS-SETUP
CITS-EXECUTE
CITS-CHECK
CITS-SUBTEST
CITS-Error Messages

Message Heading
CITS Subtest Troubleshooting Features
Unexpected Exceptions in CITS
Results Register Errors
Leading or Tra i 1 ing Bae kg round Errors
Data Errors
PSL Errors
Branch Errors
Expected Exception or Trace Traps Errors
Extended Pr in tout

How to NO-OP a Test Case
ESKAX DESCRIPTION

Compatibility Mode Entry/Exit Module
(ESKAX02, Test 1)
First Part Done Test {ESKAX04, Test 2)

Possible First Part Done Failures
First Part Done Test Procedures

vii

Page

5-6

5-8
5-8

5-10

5-11
5-11
5-17

5-18
5-18

5-22

5-22
5-22

5-32

6-1
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-8

6-10
6-10
6-12
6-13
6-13
6-14
6-15
6-17

6-17
6-25
6-25
6-25

6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.3.5
6.3.3.6
6.3.3.7
6.4
6.4.1

6.4.1.1
6.4.1.2
6.4.2

6.4.3

6.4.4

6.4.5

6.4.6
6.4.7
6.4.8

6.4.9

6.5
6.5.1

6.5.1.1
6.5.1.2
6.5.1.3
6.6

6.6.1
6.6.2

6.6.3
6.6.4

APPENDIX A

CONTENTS (Cont)

SB! Verification Module (ESKAX05, Test 3)
SBI Checkout Subtest
UBA Checkout Subtest
MBA Checkout Subtest
SB! Interaction Subtest
UBE Checkout Subtest
MBE Checkout Subtest
Memory Verify (ESKAX06, Test 4}

ES KAY
Internal Timer and Day Clock Verification
Module (ESKAY02, Test l}

Interval Timer Functions
Day Clock Function

Arithmetic, Logic, and Field Instruction
Test Module (ESKAY0 3, Test 2}
Branch, CRC, and Queue Test Module
(ESKAY0 4, Test 3)
Floating-Point Instruction Test Module
{ESKAY05, Test 4; ESKAY06, Test 5}
Operand Specifier Dependent Floating-Point
Test (ESKAY07, Test 6}
Decimal Strings Module (ESKAY08, Test 7}
EDITPC Operators Module {ESKAY09, Test 8}
Character String Instructions Test Module
(ES KAY 1 0, Tes t 9 }
Privileged Instruction Exception Test
(ESKAYll, Test 10}

ESKAZ DESCRIPTION
Memory Management Test Module (ESKAZ03,
Test l}

Memory Management Test, General Flow
Memory Management Te~t, Subsection Flow
Test Reference Execution

COMPATIBILITY MODE INSTRUCTION TEST
{ESKAZ03, TEST 2}

Instructions Tested
Compatibility Mode Test Error Message
Format
Sample Error Message Explanation
Compatibility Mode Instruction Module
Assumptions

GLOSSARY OF DIAGNOSTIC SOFTWARE TERMS

viii

Page

6-32
6-33
6-35
6-35
6-36
6-36
6-37
6-39
6-40

6-40
6-40
6-44

6-46

6-50

6-50

6-57
6-57
6-57

6-60

6-60
6-60

6-60
6-62
6-62
6-62

6-70
6-70

6-72
6-73

6-74

Figure No.

1-1
1-2
1-3

1-4
1-5
1-6
1-7

2-1
2-2
3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8
5-9

5-10
5-11

5-12

FIGURES

Title

Diagnostic Program Mode, Environment and Levels
VAX-11/780 Diagnostic System Program Hierarchy
VAX-11/780 Diagnostic System, Execution
Environments
Monitor Relationships and Test Sequencing
Hardcore Monitor Residency/Test Flow
Microtest Monitor Residency/Test Flow
Functions of the Diagnostic Supervisor
Environments
Communication Register Formats and Select Codes
Floppy Status Bit Assignments
Basic Diagnostic Supervisor Structure
LSI-11 Memory Program Residency
Simplified Microdiagnostic Test Procedure
Hardcore Test Sequence
Microtest Structure
Monitor Li sting Sample
Hardcor~ Listing Sample
Microtest Listing Sample
Typical Error-Free Terminal Output
Error Message Format
Listing Indexing Example
Loop and Single Example
Microtest Scope Loop Example
Microtest Single Bus Example
Portion of the Program Section Synopsis,
RH780 (MBA) Diagnostic Program
Portion of the Global Symbol Table for the
Absolute PSECT of the Loader File of the RH780
(MBA) Diagnostic Program
Diagnostic Program and Diagnostic Supervisor
Interaction
RH780 (MBA) Diagnostic Program Test 3,
Subtest 1, Listing
RH780 (MBA) Diagnostic Program Test 3,
Subtest 1, Flowchart
DS$BGNSUB Listed in the Symbol Table in the
ESCAA Link Map
DS$BGNSUB Listed in the Symbol Table in the
Supervisor Link Map
DS$BGNSUB Entry Point
RBGNSUB Listed in the Symbol Table in the
Diagnostic Supervisor Link Map
ESRCA Sample Error Listing
ESRCA RP0X/DCL Test 1, Subtest 0, Program
Listing
ESRCA RP0X/DCL Repair Diagnostic Test 1,
Subtest 0, Flowchart

ix

Page

1-5
1-6

1-9
1-11
1-13
1-15

1-16
2-28
2-30

3-2
4-2
4-3
4-5

4-15
4-25
4-27
4-30
4-31
4-31
4-33
4-35
4-36
4-38

5-3

5-5

5-7

5-9

5-12

5-13

5-14
5-15

5-16
5-18

5-19

5-20

Figure No.

5-13
5-14

5-15
5-16
5-17
5-18
5-19
6-1
6-2
6-3

Table No.

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
3-2
3-3
3-4
4-1
4-2
6-1

6-2

6-3

6-4
6-5
6-6
6-7
6-8
6-9
6-10

FIGURES (Cont)

Title

ESRCA Sample Error Message
Disk Reliability (ESRAA) Test 1, Subtest 0,
Error 12 Listing
ESRAA Test 1, Subtest 0, Error 12 Flowchart
I/O Status Block Contents (for disks)
CHECKBLOCK Routine Code
GETBBFSECTOR Routine Code
ESRAA Sample Error Listing
CPU Cluster Exerciser Package Memory Allocation
Execution of a Test Case in ESKAY03
Compatibility Mode Instruction Modul~ Subtest
Structure

TABLES

Title

VAX-11/780 System Manuals
Term and Symbol Definition
Deposit Symbolic Addresses
Examine Symbolic Address
Load Command Qualifiers
Set Default Command Options
Set Step Command Options
Control/Special Character Descriptions
Memory Management Error Code Definitions
RX01 Error Message Code Definitions
Term and Symbol Definitions
Control/Special Character Descriptions
Control Flag Descriptions
Qualifier Descriptions
Instruction Symbol/Abbreviation Definitions
Microdiagnostic Command/Flag Descriptions
Summary Parameter, Length Parameter for
Vector 4
Information Pushed on the Stack by the
Exception Handler
Reserved Operand Faults and PSL Bit Settings
Compatibility Mode Entry
Compatibility Mode Trap Instructions
Compatibility Mode Reserved Instructions
Page Faulting with First Part Done
First Part Done Test Table Entries
First Part Done IDB Format
First Part Done TCB General Format
First Part Done TCB Passed to CITS DECODE

x

on

Page

5-23

5-24
5-25
5-28
5-30
5-31
5-32
6-2
6-9

6-70

Page

1-1
2-2
2-6
2-7
2-9

2-10
2-11
2-15
2-34
2-35
3-5
3-9

3-11
3-15
4-6

4-17

6-3

6-5

6-17
6-18
6-19
6-26
6-27
6-27
6-27
6-28

Table No.

6-11
6-12

6-13

TABLES (Cont)

Title

Unibus Adapter Map Register Address Offsets
Compatibility Mode Instructions Provided by
Compatibility Mode Hardware and Exercised by
ESKAZ Test 2
Compatibility Mode Instructions Not Yet Tested

EXAMPLES

Example No. Title

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37

Unexpected Exception Error Message
Unexpected Exception in CITS, Error Message
Result Register Errors
CITS Detects a Longword Data Error
CITS Detects a Quadword Data Error
CITS Detects a String Data Error
PSL Error
Branch Error
Expected Exception Error
Trace Trap Error
Ex tended Pr in tout
Case 105 SUBD2 Instruction
ESKAX Test 1, Subtest 1, Error 2
ESKAX Test 1, Subtest 1, Error 2
ESKAX Test 1, Subtest 2, Error 3
ESKAX Test 1, Subtest 2, Error 3
ESKAX Test 1, Subtest 2, Error 3
ESKAX Test 1, Subtest 3, Error 4
ESKAX Test 1, Subtest 4, Error 3
ESKAX Test 1, Subtest 4, Error 3
ESKAX Test 1, Subtest 5, Error 4
ESKAX Test 1, Subtest 5, Error 4
ESKAX Test 1, Subtest 6, Error 3
ESKAX Test 1, Subtest 6, Error 3
ESKAX Test 2, Subtest 0, Error 212
ESKAX Test 2, Subtest 0, Error 213
ESKAX Test 2, Subtest 0, Error 207
ESKAY Test 3, Subtest 2, Error 10
ESKAX Test 3, Subtest 3, Error 4
ESKAX Test 3, Subtest 3, Error 4
ESKAY Test 1, Subtest 1, Error 2
ESKAY Test 1, Subtest 2, Error 1
ESKAY Test 1, Subtest 2, Error 2
ESKAY Test 1, Subtest 3, Error 2
ESKAY Test 1, Subtest 4, Error 1
ESKAY Test 1, Subtest 5, Error 1
ESKAY Test 1, Subtest 5, Error 1

xi

Page

6-39

6-71
6-71

Page

6-3
6-8

6-10
6-11
6-11
6-12
6-12
6-13
6-13
6-14
6-14
6-16
6-18
6-18
6-19
6-20
6-20
6-21
6-21
6-22
6-22
6-22
6-23
6-23
6-28
6-30
6-32
6-38
6-38
6-38
6-40
6-40
6-40
6-41
6-41
6-42
6-42

EXAMPLES (Cont)

Example No. Title Page

6-38 ES KAY Test 1, Subtest 6, Error 1 6-43
6-39 ES KAY Test 1, Subtest 6, Error 2 6-43
6-40 ES KAY Test 1, Subtest 7, Error 3 6-43
6-41 ES KAY Test 1, Subtest 8, Error 2 6-44
6-42 ES KAY Test 1, Subtest 9, Error 1 6-44
6-43 ES KAY Test 1, Subtest 10, Error 2 6-44
6-44 ES KAY Test 1, Subtest 11, Error 1 6-45
6-45 ES KAY Test 1, Subtest 12, Error 1 6-45
6-46 ES KAY Test 2, Subtest 2, Error 1 6-46
6-4 7 ES KAY Test 2, Subtest 1, Error 31 6-47
6-48 ES KAY Test 2, Subtest 3, Error 1 6-49
6-49 ES KAY Test 4, Subtest 1, Error 2 6-51
6-50 ES KAY Test 4, Subtest 1, Error 7 6-52
6-51 ES KAY Test 4, Subtest 1, Error 24 6-53
6-52 ES KAY Test 5, Subtest 2, Error 7 6-55
6-53 ES KAY Test 5, Subtest 8, Error 100 6-56
6-54 ES KAY Test 5, Subtest 8, Error 101 6-56
6-55 ES KAY Test 7, Subtest 2, Error 26 6-58
6-56 ES KAY Test 8, Subtest 1, Error 48 6-59
6-57 ES KAZ Test 1, Subtest 1, Error 20212 6-64
6-58 ES KAZ Test 1, Subtest 1, Error 20213 6-65
6-59 ES KAZ Compatibility Mode Test Error 6-73

xii

1.1 MANUAL SCOPE

CHAPTER 1
INTRODUCTION

This manual provides a comprehensive description of the functional
and operational characteristics of the VAX-11/780 diagnostic
system. The level of detai 1 presented prov ides a resource for
appropriate branch courses of the field service training program
and for a field reference. Table 1-1 provides a list of related
documents. Note that a glossary of diagnostic software terms is
provided in Appendix A.

Table 1-1 VAX-11/780 System Manuals

Document Title Control Number

VAX-11/780 Power System
Technical Description EK-PS780-TD-001

~. VAX-11/780 System
Installation Manual EK-SI780-IN-001

DS780 Diagnostic System
User's Guide EK-DS780-UG-001

DS780 Diagnostic System
Technical Description EK-DS780-TD-001

FP780 Floating-point
Processor Technical
Description EK-FP780-TD-001

REP05/REP06 Subsystem
Technical Description EK-REP06-TD-001

VAX-11 KA780 Central
Processor Technical
Description EK-MS780-TD-001

VAX-11 MS780 Memory
System Technical
Description EK-MS780-TD-001

DW780 Unibus Adapter
Technical Description EK-DW780-TD-001

KC780 Console Interface
Technical Description EK-KC780-TD-001

VAX-11/780 Architecture
Handbook EB07466

1-1

Form

In Microfiche Library

Available in hard copy*

Available in hard copy*

In Microfiche Library

In Microfiche Library

In Microfiche Library

In Microfiche Library

In Microfiche Library

In Microfiche Library

In Microfiche Library

Available in hard copy*

Table 1-1 VAX-11/788 System Manuals (Cont)

Document Title Control Number

VAX-11/780 Software
Handbook EB08126

VAX-11/780 Hardware
Handbook EB09987

VAX/VMS Primer AA-D030A-TE

VAX/VMS Command Language
User's Guide AA-D023A-TE

VAX-11 MACRO User's
Guide AA-D033A-TE

VAX-11 Linker Reference
Manual AA-D019A-TE

VAX-11 Symbolic Debugger
Reference Manual AA-D026A-TE

*These documents can be ordered from:

Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532

Form

Available in hard copy*

Available in hard copy*

Available in hard copy*

Available in hard copy*

Available in hard copy*

Available in hard copy*

Available in hard copy*

Attn: Printing and Circulation Services (NR2/Ml5)
Customer Services Section

For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group, PK3-2/Tl2
129 Parker Street
Maynard, MA 01754

1.2 DIAGNOSTIC SYSTEM CAPABILITIES
The VAX-11/780 diagnostic system is a set of software components
integrated as a system to provide a wide range of error detection
and isolation capabilities for the VAX-11/780 hardware. The
diagnostic levels range from system functional tests to dedicated
microprogram techniques capable of identifying a faulty module
(printed circuit board) or group of modules. In addition, the
diagnostic control functions provide substantial selection and
execution options.

1-2

The overall diagnostic strategy satisfies the major field service
goals of:

a. High quality and efficiency of system installation, by
providing formal installation procedures, automated test
package configurations, and a system exerciser program
that can be configured for specific VAX-11/780 systems.

b. Reduction of fault isolation and repair times, by
providing high visibility diagnostic programs (programs
accessible to the operator) and procedures keyed to the
field service troubleshooting and repair philosophy.

The diagnostic system is supported by a PDP-ll/V03 (LSI-11)
microcomputer console system. In addition to providing for local
(on-site) diagnostic execution, the diagnostic system allows for
diagnosis from a remote diagnostic center.

1.3 DIAGNOSTIC SYSTEM OVERVIEW
The diagnostic system consists of programs that are organized
hierarchically (from general to specific capabilities) in six
levels. Each level contains one or more categories, as follows:

Level 1

Level 2·--

Operating system (VMS} based diagnostic programs
(using queue I/O)

System exerciser program

Diagnostic supervisor--based diagnostic programs that
can be run either under VMS or in the standalone mode
(using queue I/O)

Bus interaction program
Formatter and reliability level peripheral diagnostic
programs

Level 2R -- Diagnostic supervisor--based diagnostic programs that
can be run only under VMS.

Level 3 --

Level 4

Certain peripheral diagnostic programs

Diagnostic supervisor--based diagnostic programs that
can be run in standalone mode only (using direct I/O)

Functional level peripheral diagnostic programs
Repair level peripheral diagnostic programs
Cluster diagnostic programs

Standalone macrodiagnostic programs that run without
the supervisor.

Hardcore instruction test

1-3

Console
Level-- Console-based diagnostics that can be run in the

standalone mode only

Mic rod iagno st ics
Console program
Octal Debugging Technique (ODT)
ROM resident power-up tests
LSI-11 diagnostics

The diagnostic programs can be used for preventive maintenance
checks to ensure proper computer operation; or, if system
malfunctions have been detected, specific programs or groups of
programs can be run to isolate the fault.

Figure 1-1 shows the relation of the six levels to four diagnostic
program operating environments. The console environment requires
exclusive use of the VAX-11/780 system (standalone mode). It
includes only the console level programs. In this environment,
program control is exercised by the LSI-11 processor in the
console subsystem.

In the cluster environment, the system environment, and the user
environment, control is exercised in the VAX-11/780 CPU. The
cluster environment supports only standalone diagnostic programs.
It includes level 4 programs and some level 3 programs. The level
3 programs supported are those that test the CPU and the channel
adapters.

The system environment supports peripheral diagnostic programs
that can run in the standalone mode. These include level 2
programs and level 3 peripheral programs.

The user environment supports only programs that can be run under
VMS, namely levels 2R, 2, and 1.

In general, the diagnostic system uses a building block approach
to testing (and subsequent fault detection and isolation). When
the diagnostic programs are executed in the standard system
checkout sequence, they will initially test a minimum (basic) set
of logical functions to ensure their proper operation. After these
basic operations are verified, a larger and more complex block is
tested, using the previously tested block as a base. This sequence
is implemented consistently from the ROM resident- f)OWer-up tests
(which check the console) to interactive system tests executed as
user mode tasks under the VMS operating system, as shown in Figure
1-2.

It may be that a diagnostic program will indicate an error in a
hardware component which is more easily diagnosed by another
program. For instance, the bus interaction program may indicate a
failure of a tape drive. The tape reliability program may also
detect the same failure or a related failure, but the problem may

1-4

MODE

OFF-LINE
(STANDALONE)

ON-LINE
(UNDER VMS)

PROGRAM
ENVIRONMENT

CONSOLE
ENVIRONMENT

CLUSTER
ENVIRONMENT

SYSTEM
ENVIRONMENT

USER
ENVIRONMENT

PROGRAM
LEVEL

CONSOLE LEVEL

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 2R

LEVEL 1

TK-1170

Figure 1-1 Diagnostic Program Mode, Environment and Levels

1-5

-I O'I

LEVEL 3

LEVEL 2

LEVEL 2R

STAND ALONE ONLY
(DIRECT 1/0)
REPAIR LEVEL

STAND ALONE ONLY
(DIRECT 1/0)
FUNCTION LEVEL

STAND ALONE
OR UNDER VMS

(QUEUE 1/0)

STAND ALONE
OR UNDER VMS

(QUEUE 1/0)

UNDER VMS
ONLY
(QUEUE 1/0)

TAPE DRIVE
FUNCTIONAL
TIMER
(ESMAB)

TAPE
RELIABILITY
(ESMAA)

RM03
FUNCTIONAL
DIAGNOSTIC
(ESRDB)

1
RPOX/DCL
REPAIR
DIAGNOSTIC
(ES RCA)

RK611
DIAGNOSTIC
PARTS A-E
(ESREA- E)

-l-
RPOX
FUNCTIONAL
DIAGNOSTIC
(ESRBA)

--11-
RP/RK/RM
DISK
FORMATTER
(ES RAB)

RP/RK/RM
DISK
RELIABILITY
(ESRAA)

BUS
INTERACTION
(ESXBA)

SYSTEM
EXERCISER

Figure 1-2 VAX-11/780
Diagnostic System Program
Hierarchy (Sheet 1 of 2)

2

RK611 MANUAL
INTERVENTION
TESTS
(ESREF)

DMC
EXERCISER
(ESDBB)

LOCAL TERMINAL
DIAGNOSTIC
(EST AA)

MULTI­
TERMINAL
DIAGNOSTIC
(ESTBA)

LINE PRINTER
DIAGNOSTIC
(ESAAA)

TK-0606

-I
-.J

CONSOLE­
BASED

LEVEL 4

LEVEL 3

LSl-11 DIAGNOSTICS

STAND ALONE ONLY

STAND ALONE ONLY

(DIRECT 1/0)

DEDICATED
LSl-11
TESTS

PROGRAM 1/0 MODE

HARDCORE TESTS

RH780 (MBA)
DIAGNOSTIC
(ESCAA)

POWER UP
TESTS
(IBM RESIDENT)

CONSOLE
PROGRAM

MICRO­
DIAGNOSTIC
PROGRAM

HARDCORE
INSTRUCTION
TEST
(EVKAA)

CLUSTER
EXERCISER
(ESKAX)

Figure 1-2 VAX-11/780
Diagnostic System Program
Hierarchy (Sheet 2 of 2)

ODT

CONSOLE 1/0 MODE

MICROTESTS

DW780(UBA)
DIAGNOSTIC
(ESCBA)

MOST BASIC LEVEL

TK-0607

be on the tape drive controller, the RH780 (MBA), or the KA780
(CPU). Proper use of the six levels of diagnostic programs should
enable the field service engineer to identify the failure quickly
and accurately.

1.4 DIAGNOSTIC SYSTEM EXECUTION ENVIRONMENTS
Most of the diagnostic programs must be run off-line (standalone).
In other words, they require exclusive use of the VAX-11/780
computer system and will not run under the VMS operating system.
Diagnostic programs in levels 3, 4, and the console level are of
this type (Figure 1-2). The diagnostic programs in level 2 can be
run off-line or on-line (under VMS).

Off-line diagnostics must be run from the console
terminal.

On-line diagnostics may be run from any terminal on the
system and will share the computer system with other user
mode programs. Figure 1-3 shows the execution
environments required by the various diagnostic programs.

1.5 CONSOLE DIAGNOSTICS
On power up, a set of ROM resident tests verifies the proper
functioning of the LSI-11 within the console subsystem before the
console program is booted from the floppy disk. If the console
program cannot be booted, the ROM resident tests, together with
ODT, can be used to isolate the fault. For details see the
VAX-11/780 Diagnostic System User's Guide (EK-DS780-UG-001),
Appendix D. In addition, a set of dedicated LSI-11 diagnostics may
be used to perform in-depth tests on each component of the console
subsystem.

The console subsystem, in connect ion with the console program,
provides the basis for the diagnostic system with the following
functions:

Traditional lights and switch functions such as EXAMINE,
DEPOSIT, HALT, START, and single instruction

Diagnostic and maintenance functions, including the
capability to load diagnostic microcode into Writable
Control Store (WCS) , control execution, control single
step clock functions, and examine key system points via a
serial diagnostic visibility bus (V Bus), and to deposit
and examine data in locations in the VAX-11/780 main
memory and I/O space

Operator communication with the VAX-11/780 software.

The console program enables the operator to run microdiagnostics,
to load and run the diagnostic supervisor (in the standalone mode)
and the standalone macrodiagnostic programs (using VAX-11/780
native code), and to boot the operating system.

1-8

-I
'°

STAND ALONE
UNDER
VMS

r--~=;:--::S::L::-------,
1
r- - ---,

\;~i~ - POWER r TESTS - OOT \

/

MICRODIAGNOSTICS
MONITOR

MICRODIAGNOSTICS
HARD CORE TESTS
MICROTESTS

-GO CHAIN
- FAIL CHAIN

CONSOLE
PROGRAM \ I

VAX/VMS \ I
\ I I ___ CONSOLE

r PROGRAM

LOAD FROM
CON SO LE FLOP PY

HARDCORE
INSTRUCTION
TEST

DIAGNOSTIC
SUPERVISOR

DIAGNOSTIC
SUPERVISOR

LOAD FROM * *
SYSTEM DEVICE

I I
DIRECT 1/0 * I

I

'I
'I\

DIAGNOSTIC
SUPERVISOR·

I \
I \ LOAD FROM I \ SYSTEM DEVICE

I \
I I
01/0 *

I I
\
\

KA-11/780 CPU CLUSTER EXERCISER I
RH-780 MBA DIAGNOSTIC
DW780 UBA DIAGNOSTIC I TAPE RELIABILITY
TM03/TEE16-TU77 TAPE DRIVE FUNC TIMER RP/RK/RM DISK FORMATTER
RP06/FUNCTIONAL DIAGNOSTIC RP/RK/RM DISK RELIABILITY

\
\

RK611 DIAGNOSTIC PARTS A-E I MULTITERMINAL EXERCISER \
RK06/RK07 DRIVE FUNC DIAGNOSTIC LOCAL TERMINAL DIAGNOSTIC
RM03 DISKLESS DIAGNOSTIC · ·

I
01/0

I
EXER

RM03 FUNCTIONAL DIAGNOSTIC I LINE PRINTER DIAGNOSTIC \
DR11-B DIAGNOSTIC BUS INTERACTION

L DZ11 DIAGNOSTIC CR11 CARO READER DIAGNOSTIC \ _J
--------------~---------~--*THE NUMBER OF 1/0 DIAGNOSTIC PROGRAMS WILL GROW.

Figure 1-3 VAX-11/780
Diagnostic System,

Execution Environments

TK-0373

Note that when the console program is running in the LSI-11, it
will always be in one of two modes, console I/O mode or program
I/O mode. With the exception of the Control P (AP) command, the
console commands (console command language) listed in the help
files are available only when the console program is in the
console I/O mode.

In the console I/O mode, the console program interprets the
characters typed on the console terminal as console commands. In
the program I/O mode, however, the console program is transparent
to the operator. The console program passes characters from the
console terminal directly to the VAX-11/780 CPU for use by VMS or
the diagnostic supervisor.

Type Control P to switch from program I/O mode to console I/O
mode.

Type SET TERMINAL PROGRAM to switch from console I/O mode to
program I/O mode.

1.6 MICRODIAGNOSTIC PROGRAM
The microdiagnostic program provides module isolation for logic
failures within the CPU, floating-point accelerator and MOS memory
controllers. The program will detect stuck high/low logic
functions and open or grounded etch and wire interconnections. The
microdiagnostics are organized in a bootstrapping test sequence
(i.e., building blocks) of the console interface, CPU hardware,
cache-translation buffer, I-stream buffer, Synchronous Backplane
Interconnect (SBI), and memory controller and array. All detected
faults result in an error typeout indicating the smallest set of
modules to which the diagnostic can isolate the failure.

The m icrodiagnost ic program is initiated by one console command
and executed from the CPU cluster test facility. The test facility
consists of the console subsystem, console interface, Writable
Control Store (WCS), and the V Bus.

The microdiagnostic package consists of two major test divisions:
console adapter and hardcore, and microtests. Each test division
is controlled by an associated monitor that provides nondiagnostic
services to that division. Both test division monitors are
serviced by the console-resident microdiagnostic monitor. In
addition to loading the test monitors, the microdiagnostic monitor
retrieves microtest overlays from the floppy disk, loads test
sequences into WCS, performs test dispatching and sequencing,
performs error reporting, and manages fault isolation. The
microdiagnostic monitor also allows the operator microdiagnostic
test selection and execution options (Chapter 4). Figure 1-4 shows
overall monitor relationships and test sequencing.

1-10

MICRODIAGNOSTIC
MONITOR

,, •
HARDCORE MICROTEST
MONITOR MONITOR

~~ ~~

,~ ,,
TEST TEST

SEQUENCE SEQUENCE

• CONSOLE • DATA PATHS
ADAPTER

• TRANSLATION
• MICRO BUFFER

SEQUENCER
• CACHE

• wcs
• INSTRUCTION

• DATA PATH BUFFER
SUBSET

• FPA OPTION

• SBI INTERFACE

• MEMORY
CONTROLLER

• MEMORY ARRAY

TK-0752

Figure 1-4 Monitor Relationships and Test Sequencing

1-11

1.6.1 Console Adapter and Hardcore Division
The adapter and hardcore division microdiagnostic is composed of a
test stream of pseudo-instructions and test data located on the
console floppy disk. Note that the pseudo-instructions are defined
specifically for the test stream. This division tests the console
adapter (CIB module), microsequencer, WCS, and a subset of the
data paths. The hardcore monitor is called into the console memory
by the microdiagnostic monitor. The hardcore monitor, in turn,
retrieves small blocks (+l.SK bytes) of test data from the floppy
into a cons o 1 e buffer , - and then cont r o 1 s exec u t ion • When the
current block has been completed, the hardcore monitor overlays
this block with a new test block. The test data port ion of the
test stream is comprised of data words and lists of VAX-11/780
microinstructions. The microinstructions are loaded into the WCS
and executed in single bus cycle or single time-state modes.

When an error is detected, an error header message is typed. Then,
if the HALTD flag is not set, a trace message is typed and
additional code is executed to isolate the fault. This additional
testing will normally consist of V Bus compare instructions.
Figure 1-5 shows monitor residency and the basic flow of the
console adapter and hardcore tests.

1.6.2 Microtest Division
The microtest division completes testing of the CPU not covered by
the hardcore division, and provides isolation to a failing module.
The microtests, which are executed under control of the microtest
monitor, are divided into two subdivisions: GO chain and FAIL
cha in. The GO cha in consists of m ic retests loaded into WCS and
executed at full speed. The purpose of the GO chain is to detect
an error. If an error is detected, control is passed to the FAIL
chain, which isolates the error and reports the failing module
through the microdiagnostic monitor. Note that the FAIL chain is
executed only on detection of an error.

The GO chain consists of a series of WCS overlays. Each overlay is
approximately lK microwords in length and will contain one or more
microtests. Initially, the microdiagnostic monitor loads the first
over lay into WCS; that overlay is then executed. If no error is
detected, the next overlay is loaded into WCS and executed. This
sequence continues until each test in each overlay has been
executed, or until an error is detected.

When the GO chain detects an error, execution of the microtest
that detected the error is suspended. The error microtest address
is saved and used by the FAIL chain to restart microtest execution
to recreate the conditions that detected the error.

The FAIL chain reenters the failing microtest and begins fault
i sol a ti on. The microtest is clocked a specific number of tic ks
from the error address and then certain V Bus signals are
processed. If the V Bus signals identify the faulty module, an
error report is made through the microdiagnostic monitor. If these

1-12

CO RESIDENT WITH
MICRODIAGNOSTIC

MONITOR

CONSOLE MEMORY

ERROR
MICRODIAGNOS­
TIC MONITOR

I

LOAD AND
SERVICE CALLS

HARDCORE

I MONITOR

L _______ J
SERVICE CALLS

CONSOLE
BUFFER
EXECUTION

TEST
STREAM

EXECUTE
NEW
TEST

wcs
EXECUTION

YES

REPORT

ERROR
REPORT

TK-0753

Figure 1-5 Hardcore Monitor Residency/Test Flow

1-13

signals do
processed.
reproduced
lists the
Figure 1-6

not identify the error, additional V Bus signals are
In the case of an intermittent error which is not

during FAIL chain execution, a report is printed that
modules involved in the failing GO chain microtest.
shows monitor residency and the basic test flow.

1.7 MACRODIAGNOSTIC PROGRAMS
The macrodiagnostic programs are written in VAX-11 MACRO and
assembled in VAX-11 native code. Level 2, 2R, and 3 programs do
not run independently; they must always be loaded and executed
with the diagnostic supervisor.

1.7.1 Diagnostic Supervisor
The diagnostic supervisor provides a framework that supports each
of the macrodiagnostic programs, one at a time. It operates in
three environments and provides two major functions. Two of these
environments, cluster environment (CE) and system environment
(SE), constitute the standalone mode. The diagnostic supervisor
operates in the user environment (USE) when it runs under the VMS
operating system. In each of these environments different modules
w i thin the d i a g nos t i c super v i so r are act iv ate d • The f i rs t ma j o r
function of the diagnostic supervisor is the interpretation of the
c ornm and 1 in e typed on the opera to r ' s term in a 1 • The co mm and 1 i n e
interpreter (CLI) portion of the supervisor performs this
function, enabling the operator to control the loading,
sequencing, and execution of diagnostic test programs. The program
interface (PGI) performs the second major function of the
supervisor, providing a set of common services required by some or
a 11 di a g n 0 st i c programs • The PG I services inc 1 ud e operator
interaction routines, error message formatting, memory management,
and I/O request handling. Notice that the operator can communicate
w i th the d i ag nos ti c program on 1 y th r o ugh the c LI and the PG I
message service in the supervisor.

The supervisor supports programs that provide their own device
interfaces (direct I/O) and programs that require I/O services.
The direct I/O diagnostic programs must be run in the standalone
mode (cluster environment and system environment), since VMS
inhibits direct access to peripheral devices. Programs that do not
directly access the peripheral devices under test rely on queue
I/O system services. Both VMS and the diagnostic supervisor
provide queue I/O system services, so that these programs can run
in either the standalone mode (in the system environment) or the
user mode (user environment, under VMS). When the diagnostic
programs requiring queue I/O services are run in the user mode,
the supervisor passes the queue I/O requests directly to VMS. When
queue I/O diagnostic programs are run standalone, the supervisor
emulates the VMS operating system, providing the queue I/O system
services. Figure 1-7 shows the functions of the diagnostic
supervisor in the three macrodiagnostic operating environments.

1-14

CORESIDENT WITH
MICRO DIAGNOSTIC
MONITOR

EXECUTE
NEXT
OVERLAY

CONSOLE MEMORY

MICRODIAGNOSTICr---ti---+---- ERROR/TRACE
MONITOR REPORT

LOAD AND
SERVICE CALLS

MICROTEST
MONITOR

SERVICE CALLS

GO
CHAIN

wcs
EXECUTION

FAIL CHAIN
VBUS SIGNAL
EXECUTION

ADDITIONAL
VBUS SIGNAL
PROCESSING

I __ _J

ERROR
REPORT

YES

TRACE
REPORT

TK-0738

Figure 1-6 Microtest Monitor Residency/Test Flow

1-15

CL.,USTE R ENVIRONMENT

(CLUSTER EXERCISER
RH780 DIAGNOSTIC
DW780 DIAGNOSTIC)

DIAGNOSTIC
TEST
PROGRAM

-
SYSTEM ENVIRONMENT

(DIRECT 1/0 PERIPHERAL
DIAGNOSTICS, STAND ALONE)

DIAGNOSTIC
TEST
PROGRAM

....

-..

--

--...

---...

DIAGNOSTIC
SUPERVISOR

cu

PGI

VMS
SERVICES
_iVECTORS)

CHANNEL
SERVICES

DIAGNOSTIC
SUPERVISOR

cu

PGI

VMS
SERVICES
(VECTORS)

CHANNEL
SERVICES

VAX-11/780

OPERATOR ---- -- TERMINAL

-- ---- -
CPU
CLUSTER

~---"""""'I

-- UUT -

VAX-111780

l.- .. OPERATOR
TERMINAL

'-- ---
CPU
CLUSTER

-- .. -- -
-- UUT -

TK-0746A

Figure 1-7 Functions of the Diagnostic Supervisor Environments
(Sheet 1 of 2)

1-16

(O 1/0 PERIPHERAL
DIAGNOSTICS,
STAND ALONE)

DIAGNOSTIC
TEST
PROGRAM

USER
ENVIRONMENT

...._ -

0 1/0 PERIPHERAL
DIAGNOSTICS
UNDER VMS

DIAGNOSTIC
TEST --r--

PROGRAM

..

...

-

DIAGNOSTIC
SUPERVISOR

cu

PGI

VMS SERVICES

CHANNEL
SERVICES

DIAGNOSTIC
SUPERVISOR

cu

PGI

VMS
SERVICES
(VECTORS)

CHANNEL
SERVICES

---~

i..... -

Q 1/0 DRIVERS

~ --

VMS

.. -
-

VMS

- OPERATING
SYSTEM

VAX-11/780

.......i OPERATOR - TERMINAL

i..... - --
f4-,

CPU CLUSTER

::::tJ UUT --

VAX-111780

OPERATOR -- .. - TERMINAL

-- -- CPU -- - CLUSTER

-- UUT -- -
TK-07468

Figure 1-7 Functions of the Diagnostic Supervisor Environments
(Sheet 2 of 2)

1-17

1.7.2 Cluster Diagnostic Programs
The CPU cluster exerciser, the RH780 (MBA) diagnostic program, and
the DW780 (UBA) diagnostic program test the VAX-11/780 cluster
hardware. They run under the cluster environment portion of the
diagnostic supervisor, in the standalone mode.

1. 7.2.1 CPU Cluster Exerciser Package -- The cluster exerciser
package consists of three diagnostic programs. The package
provides a comprehensive functional test of the CPU cluster,
including the CPU, the Unibus and Massbus adapters, and memory.
The first program (ESKAX) is the quick verify portion of the CPU
cluster exerciser package. The second program (ESKAY) tests the
native mode instruction set of the VAX-11/780. EXKAZ, the third
program in the package, checks memory management and the PDP-11
instruction set (in compatability mode).

The CPU cluster exerciser programs identify failing functions and
failing subsystems. For further fault isolation the operator
should run the microdiagnostic program or restrict the desired CPU
cluster exerciser program to the minimum number of modules which
will detect the failure, through commands to the diagnostic
supervisor.

1.7.2.2 RH780 (MBA) Diagnostic Program The RH780 (MBA)
diagnostic program tests the majority of the MBA logic regardless
of the type of peripheral device attached to the Massbus. Although
the program does not provide explicit component level fault
isolation, every detectable error is associated with an
operator-selectable scope loop. Diagnosis of attached devices is
not attempted. Verification of the Massbus transceivers and cables
is possible with a Massbus exerciser (MBE, RHll-TB) attached to
the Massbus. Use of an MBE on the Massbus also allows verification
of the MBA ability to perform high speed block transfers. Note
that either a device or a bus terminator must be attached to the
Massbus to enable program execution. The program tests the MBA at
three levels.

1. The first level checks basic functions. The functions
tested are those which are necessary for subsequent,
detailed fault detection. The objective is to locate
functional failures prior to testing for explicit bit
failures. Map register access, virtual address register
access, and correct data input buffer byte selection are
tested at this level.

2. The second level of testing locates bit failures (stuck
high/low). The program toggles bits directly accessible
to the CPU, and it sets and clears bits indirectly by
setting up specific commands and conditions.

1-18

3. The third level determines the ability of the MBA to meet
system demands. The program performs block transfers
using the MBA wraparound features. These block transfers
are executed in the maintenance mode and ensure that the
MBA will support data transfers typically associated with
system software. In addition, the program tests the
ability of the MBA to interrupt the CPU under all legal
conditions.

1. 7. 2. 3 DW78f2J (UBA) Diagnostic Program -- Like the RH780 (MBA)
diagnostic program, the DW780 (UBA) diagnostic program tests most
of the UBA logic. Every detectable error is associated with an
operator-selectable scope loop. The program does not at tempt to
test devices attached to the Unibus. However, if a Unibus
exerciser is attached to the Unibus, the program will verify the
integrity of the Unibus transceivers and the ability of the UBA to
respond to device-initiated functions. The program tests the UBA
at seven levels.

1. The program tests the basic functions necessary for
subsequent fault detection: the addressability of the UBA
registers, their initial states, and whether they can be
read and written.

2. The program tests the RAM addressing capability of the
UBA logic (accessing map registers, data path registers,
and BRS VRs) .

3. Power-fail and interrupt functions of the UBA are tested
next.

4. The program creates and tests all error conditions.

5. Extensive data transfer tests check the map registers,
the direct data path, the buffered data paths, the data
path registers, the Unibus address and data 1 ines, and
the microsequencer.

6. The device tests check all types of data transfer on the
Unibus: DATI, DATIP, DATO, DATOB initiated by the UBA and
by the UBE. Interrupts from the UBE to the CPU are also
tested at the four BR levels.

7. The contention logic test checks for race conditions when
the four microsequencer select lines (UBATT SEL, SB SEL,
DMA SEL, FILE WRITE SEL) are asserted at about the same
time.

1-19

1.8 PERIPHERAL DIAGNOSTIC PROGRAMS
In accordance with the structure of the diagnostic system as a
whole, the peripheral diagnostic programs are organized in a
hierarchy. Repair and functional level programs are designed to
test specific peripheral devices. These programs (with the
exception of the line printer and terminal diagnostics) must be
executed in the standalone mode under the system environment (SE)
s er vi c es of the super v i so r , s i nc e they prov i de the i r own access
(direct I/0) to the devices under test. The diagnostic programs
which rely on VMS, or the supervisor, for access to the uni ts
under test (queue I/O) are each designed to test a range of
peripheral device types. For example, the disk reliability program
(ESRAA) will test all disk drive types supported by the VMS
operating system.

On error detection, the repair level diagnostic programs will call
out both the failing device controller module and the failing
function, dump the contents of relevant registers, and list
expected and received data patterns. The functional level programs
provide register dumps and call out the failing function when an
error is detected. The rel iabi 1 i ty and formatter level programs
provide more detailed information on the failing function in
addition to the register dumps.

The system exe re i ser program tests the integrity of the major
system buses (i • e • , SB I , Mass bus , Unibus) under heavy I IO
activity, and it highlights any interaction problems that result.
The program should be run as a dedicated process under VMS. No
other program may run concurrently or compete for system
resources, since the program requires the use of all system
resources.

1.9 OPERATOR/VAX-11/780 COMMUNICATION
The operator communicates with the VAX-11/780 computer through the
console subsystem. The console subsystem provides a programmed
interface between the console terminal and the VAX-11/780 hardware
and software, including the diagnostic system. The console

, subsystem hardware consists of an LSI-11 microprocessor (11/03), a
single floppy disk drive and controller, a terminal and two serial
line units, a VAX-11/780 CPU console interface (CIB), and a
control panel on the VAX-11/780 CPU cabinet. The console program
includes a console command language and the software utilities
that provide operator console functions. These functions are
required for VMS and diagnostic support. The paragraphs that
follow introduce the basic console functions. Refer to Chapter 2
for a detailed description of the console command language.

1.9.1 Console Terminal Modes
The console terminal serves as the console program's I/O device
and as a VMS operator terminal. The console program has two
operating modes: console I/O mode and program I/O mode.

In console I/O mode, the terminal serves as the operator interface
to the console panel functions, CPU debug functions, and CPU
kernel test functions. In this mode console terminal input is not

1-20

passed to the VAX ISP-level software. All terminal input is
interpreted by the LSI-11, and appropriate console functions are
invoked.

In program I/O mode the terminal serves as a VMS operator
terminal. All terminal input is passed, character by character, to
the ISP-level software. All validity checking, etc. is performed
by VMS. The console program is transparent to the VAX-11/780
software. All terminal output from the software is passed directly
to the console terminal.

1.9.2 Console Panel Equivalent Functions
The functions in this group are those normally available through a
traditional console panel. These functions include ISP-level
program and CPU clock controls, and display and modification of
memory elements.

1.9.2.1 Program Control -- The console can initialize the CPU by
setting certain logic to a defined state. It can initiate
ISP-level instruction execution at a point specified by the
program counter, as well as terminate instruction execution. In
addition, the console can bootstrap the system by loading memory
with a specific file from the system load device, and initiate
instruction execution at a predefined address after the load. The
console can also stop ISP level instruction execution.

1.9.2.2 Memory Element Display and Modification -- The console
allows display and modification of memory elements in the
VAX-11/780 including main memory, I/O, general, and internal
register addressing space. The address spaces can be accessed,
read, and written in the quantities specified below:

a. Main memory elements: byte, word, longword, quadword
quantities

b. CPU general registers (R0--R 13, SP, PC) , and processor
register space: longword quantity

c. CPU processor register space: longword quantity

d. I/O registers: byte, word, longword quantities depending
on register data length

e. ID bus registers: longword quantity

f. VAX-11/780 V Bus (Visibility Bus) channels can be
displayed (V Bus channels are read-only)

g. VAX-11/780 main memory and/or Writable Control Store
(WCS) can be loaded from files on the console subsystem
floppy disk.

1-21

1.9.2.3 Clock Control -- The CPU clock can be controlled by the
console to provide single step clock mode for use in hardware or
software debugging. The control modes available include single
instruction step, single SBI bus cycle step, and single SBI time
state step modes.

Single instruction step mode allows ISP-level programs to execute
one instruction at a time. This mode causes the CPU to enter the
halt state after the instruction execution.

Single SBI bus cycle step mode causes the CPU clock to stop each
time SBI time state 0 (T0) is asserted. T0 remains asserted until
a control signal from the console causes the clock to resume
operation. The clock ticks until the next SBI T0.

Single SBI time state step mode causes the CPU clock to assert and
hold a time state (T0, Tl, T2, or T3) until a control signal from
the console causes the next time state to be asserted and held.

1.9.3 Console Control Functions
The console control functions allow control of numeric radices,
addressing modes, and data length, and provide for displaying
console and CPU status. Functions are also provided that repeat
commands and link multiple commands into a single executable
command list. In addition, the console provides a means to control
the number of fill characters to be added after special characters
are sent to the console terminal.

1.9.3.1 Default Settings -- The console allows specification of
defaults for addressing modes, radix of numeric input and output,
and the data length of addressable memory elements. Any default
setting can be overridden within the context of a console command.

a. The default addressing modes can be set for
physical, ID Bus, V Bus, general register, or
(processor) register.

virtual,
internal

b. Default radices for console numeric input and output can
be set to octal, decimal, or hexadecimal radix.

c. Defaults for memory element data lengths can be set for
byte, word, longword, and quadword.

d. Power-up defaults --

Address Type
Radix
Data Length

=
=
=

1-22

Physical
Hexadec ima 1
Longword (32 Bits)

1.9.3.2 Status Displays The console provides a means to
display CPU and console subsystem status. The CPU status includes
the stop/run state of the instruction set processor, the current
clock step mode, and the state of the Stop on Microbreak Match
Enable (SOMM). Console subsystem status includes the current
setting of all console defaults and the number of terminal fill
characters.

1.9.3.3 Command Linking and Repeating -- The console provides a
facility that allows multiple commands to be linked into a single
executable list. Commands to be linked are entered into an
internal console queue. The console operator can specify execution
of the command queue one pass at a time. Or, the queue may be
executed continuously. This facility allows the diagnostic user to
create short routines of console commands for use in hardware
debugging operations.

The console also provides a facility to continuously execute a
single command or list of commands. Once initiated, command
execution continues until terminated by the operator. The repeat
faci 1 i ty allows maintenance personnel to scope the operation of
CPU and subsystem logic invoked by console commands.

1.9.3.4 Real-Time Delays -- The console provides a facility f6r
introducing real-time delays of varying duration between the
execution of console commands linked with the command linking
facility. This function has no effect on the CPU, but only delays
the console' s processing of the next sequential command in the
command queue. The delay facility is provided for use after
console commands that invoke CPU functions which require time to
complete (e.g., initialization).

1-23

CHAPTER 2
CONSOLE PROGRAM AND CONTROL DESCRIPTION

This chapter describes the console command language and associated
command faci 1 i ti es. Where appropriate, examples of command usage
are included. Also included are all applicable console error
messages.

2.1 CONSOLE PROGRAM OVERVIEW
The following paragraphs provide a basic overview of the console
software modules. Note that the services provided by the console
are contained in the LSI-11 4K ROM and BK RAM. The console
provides services for console control, operator interface,
microdiagnostic execution, VMS support functions and remote
diagnosis.

2.1.1 Command Getter
The basic functions of this module are to retrieve a command line
from the console terminal (get a command line routine), and
provide a check point (or wait) loop for the console program
(console null loop).

The program spends the majority of its time in the null loop,
which consists of a series of test points and conditional branches
(e.g., bootstrap initiated, VAX-11/780 CPU halted, etc.). Should
any of these functions be active (i.e. , flag set) the program
performs a branch to the routine required to service the request
initiated by that flag.

2.1.2 Parser and Parser Tables
The parser module decodes the command typed on the console
terminal and provides a pointer to the appropriate routine to
execute the command. The parser manipulates the command line to
condition it for decoding (e.g., discarding leading blanks and
checking for a delimiter in the command input string). The command
is decoded through a set of syntax check trees that provide
pointers to the appropriate execution routine within the command
execution module. Any data required for command execution has been
set up in tables included as part of the parser.

2.1.3 Command Executor Module
The command execution pointer from the parser is passed to the
command execution module entry point. This entry point provides a
pointer (i.e., starting address) to the appropriate command
execution routine (e.g., DO BOOT, PERFORM QUAD CLEAR). The basic
sequence of module action is:

a. Apply switches or defaults for radix, address space, and
data length.

b. Execute command routine.
c. Test for repeat function.

2-1

If a repeat function is specified, the routine monitors the
console for the control character ("C) required to terminate the
loop.

The module also supplies the required subroutines to support the
execution functions (e.g., open a file, load a file). Following
command execution, control is passed to the console null loop
within the command getter module.

2.1.4 Additional Services
In addition to the command decoding and execution functions, the
console provides several other services.

Remote support is provided to allow console access from a remote
terminal or computer. The facility also enables communication
between local and remote operators, as well as transfer of console
control between local and remote operators.

VMS services are also provided. These services include routines
for terminal support and the associated drivers, as well as a file
service for the floppy drive and its associated drivers. The code
for some of these services is contained in the ROM as well as the
RAM. These services are provided through emulator traps.

The console software also includes the basic LSI-11 processor and
memory tests, that are executed on each power-up and bootstrap,
and the primary bootstrap routine for the floppy.

2.2 COMMAND TERMS AND SYMBOLS
Table 2-1 provides a summary of terms and symbols used to describe
the syntax of the console commands.

Table 2-1 Term and Symbol Definitions

Term/Symbol Definition

< > Used to denote a category name (label)
e.g., category name <address> represents
a valid address

()

[]

Used to indicate the Exclusive OR
opera t ion (i • e • , s e 1 e ct ion of par am et er s
within a command 1 ine). For example,
<A>! means either <A> or but not
both is to be selected

Used to indicate that one of the
syntactic units of the expression is to
be selected

Used to indicate the part of an
expression that is optional e.g., WAIT [

indicates that the wait command takes
an optional count argument

2-2

Table 2-1 Term and Symbol Definitions (Cont)

Term/Symbol Definition

<blank> Represents one or more spaces or tabs

<count> Represents a numeric count

<XYZ -list>

<address>

<data>

<qualifier>

<input prompt>

<reverse prompt>

<CR>

<LF>

I

+

*

Indicates one or more occurrences from
the category indicated by XYZ

Represents an address argument

Represents a numeric argument

Represents a command modifier (switch)

Represents the console's input prompt
string '>>>'

Represents the linking prompt '<<<'

Represents a console terminal carriage
return

Represents a console terminal line feed

Delimits a command from its qualifiers

Represents the default address when used
as an address argument in an examine or
deposit command (The default address is
the last address used plus the current
data length in bytes.)

Used as an address argument in an examine
or deposit command and represents the
last address referenced.

2.2.1 Notation Examples
EXAMINE [<qualifier - list> [<blank> <address>]

An examine command explanation follows.

a. An examine command may optionally contain a list of one
or more qualifiers.

b. An examine command may optionally contain an address
argument. If the address is specified it must be preceded
by one or more spaces or tabs.

2-3

Following is a list of valid examine commands:

EXAMINE
EXAMINE/BYTE/VIRTUAL
EXAMINE <space> 123456
EXAMINE <tab> 123456
EXAMINE/WORD <space> 123456
EXAMINE/WORD <space> <tab> 123456

2.2.2 Command Abbreviations
Console command words may be abbreviated by typing only enough
characters to identify each command word. The minimum abbreviation
for each command is specified in parentheses in each command
description paragraph title.

Example

EXAMINE/VIRTUAL/BYTE 1234

may be abbreviated to:

E/V/B 1234

2.3 CONSOLE COMMAND DESCRIPTIONS
Each console command description is divided into three, four, or
five descriptive segments, depending on the particular command.
The descriptive segments are:

a. Syntax: describes the command structure

b. Command description: a brief paragraph describing command
operation, general restrictions, or available options

c. Response: a description of the console program response
to the specified command

d. Qualifiers: a list of applicable command modifiers

e. Options: a list of applicable command options.

The descriptive segments use the terms
Tab1e 2-1. Note that every command (or
terminated with a <CR>.

2.3.1 Boot Command (B)
Syntax: BOOT [<device name>] <CR>

and symbols defined
command 1 ine) must

in
be

The boot command initiates a VAX-11/780 system bootstrap sequence.
The command may support bootstrap operations from a set of
alternate system devices.

<device name> has the following
two-letter device mnemonic (e.g.,
one-digit unit number.

2-4

format:
DX for

DDn, where DD
floppy) , and n

is
is

a
a

If no <device name> is given with the boot command, the console
will perform the boo_t sequence for the default system device by
executing an indirect command file named DEFBOO.CMD. This indirect
file contains the necessary console commands to boot from
whichever device is chosen to be the default system device.

If <device name> is given with the command, the console wi 11
execute an indirect command file named DDNBOO.CMD, where DDN is
the <device name> given.

Example

BOOT RP0 -- will cause the console to execute an indirect
command file named RP0BOO.CMD {console enters program I/O
mode after executing the command file) •

Bootstraps from devices other than the system default device are
performed by indirect command files containing the console
commands necessary to boot an alternate device. After successful
CPU bootstrap completion, a response from VMS will be displayed on
the console terminal.

2.3.2 Clear Command {CL)
Syntax: Clear<BLANK>(SOMM ! Step)

CLEAR SOMM The Stop on Microbreak Match {SOMM) enable on
the console interface board is cleared
(disabled) •

CLEAR STEP Any existing clock step mode (single bus cycle,
single time state, single instruction) is
cleared, and the VAX-11/780 CPU clock will be in
the normal {free-running) mode.

Response: <CR><LF><CONSOLE-PROMPT>

2.3.3 Continue Command (C)
Syntax: CONTINUE <CR>

The continue command causes the VAX-11/780 CPU to
instruction execution at the address currently contained
CPU program counter (PC). Note that CPU initialization
performed. The console enters the program I/O mode after
the continue command.

Response: <CR> <LF> (console enters program I/O mode)

2.3.4 Deposit Command (D)

begin
in the
is not
issuing

Syntax: DEPOSIT [<qualifier - list>] <blank> <address> <blank>
<data> <CR>

Qualifiers: /BYTE, /WORD, /LONG, /QUAD, /NEXT, /VIRTUAL,
/PHYSICAL, /V BUS, /INTERNAL, /GENERAL. {Refer to Paragraph 2. 7
for description of defaults.)

2-5

The deposit command writes (deposits) <data> into the address
spec i f i e d • The add res s space used w i 11 depend on the qua 1 i f i er s
specified with the command. If no qualifiers are used, the current
address type default will determine the address space to be used.

Response: <CR> <LF> <input prompt>

The <address> argument may also be one of the symbolic addresses
defined in Table 2-2.

Table 2-2 Deposit Symbolic Addresses

Symbol

PSL

PC

SP

+

*
@

Example:

E SP

D @ <data>

Definition

Deposits to the processor status longword

Deposits to the program counter (general
register F)

Deposits to the stack pointer (general
register E)

Deposits to the location immediately following
the last location referenced. For physical and
virtual references the location referenced
will be the last address plus n, where n = 1
for byte, 2 for word, 4 for longword, 8 for
quadword. For all other address spaces, n is
always equal to 1.

Deposits to the location immediately preceding
the last location referenced

Deposits to the location last referenced

Deposits to the address represented by the
last data examined or deposited.

Examines stack pointer

Deposits <data> to the location specified by
the contents of the stack pointer.

2.3.5 Enable DXl: Command
Syntax: Enable DXl:

Qualifiers: None

Enable console software to access floppy on those systems with
dual floppies.

2-6

Response: <CR><LF> <INPUT-PROMPT>

2.3.6 Examine Command (E)
Syntax: EXAMINE [<qualifier - list> [<blank> <address>] <CR>

Qualifiers: /BYTE' /WORD, /LONG' /QUAD, /NEXT'
/PHYSICAL, /ID BUS, /V BUS, /INTERNAL, /GENERAL.
Paragraph 2.7 for description of defaults.)

/VIRTUAL,
(Refer to

The examine command reads and displays the contents
specified <address>. If no <address> is specified, the
<default address> is examined.

of the
current

The <address> argument may also be one of the symbolic addresses
defined in Table 2-3.

Symbol

PSL

PC

SP

+

*
@

Table 2-3 Examine Symbolic Address

Definition

Displays the processor status longword

Displays the program counter (general register
F}

Displays the stack pointer (general register
E)

Displays the location immediately fnllowing
the last location referenced.

Displays the location immediately preceding
the last location referenced

Displays the last location referenced

Displays the location whose <address> is the
last data examined or deposited.

Response: <CR> <LF> <tab> <address space identifier> <address>
<data> <CR> <LF> <input prompt>

Sample responses (console output underlined}

>>> EXAMINE/PHYSICAL 1234
P 00001234 ABCDEF89
>>> EXAMINE/VIRTUAL 1234
p 00005634 01234567

NOTE
The translated physical address is
displayed for virtual examines.

>>> EXAMINE/G 0
G 00000000 98765432; GPR 0

2-7

2.3.7 Halt Command (H)
Syntax: HALT <CR>

The halt command causes the VAX-11/780 CPU ISP to stop instruction
execution after completing execution of the instruction being
executed, when the console presents the halt request to the
VAX-11/780 CPU.

Response: (VAX-11/780 CPU indicates it has stopped) <CR> <LF>
<tab> HALTED AT <contents of VAX-11/780 CPU PC> <CR> <LF> <input
prompt>

2.3.8 Help Command (HE)
Syntax: HELP <CR>

The console opens an indirect command file that displays a console
help file, CONSOLE.HLP. The help file contains a description of
all console commands and console abbreviation rules, and it lists
the names of all other help files that may be displayed.

Response: Help file printed on console terminal.

2.3.9 Initialize Command (I)
Syntax: INITIALIZE <CR>

This command causes VAX-11/780 CPU system initialization.

Response: <CR> <LF> <tab> INIT SEQ DONE <er> <LF> <input prompt>

2.3.10 LINK Command (LI)
Syntax: Link

Qualifiers: None

Link causes the console to begin command linking. Console prints
reversed prompt to indicate linking. All commands typed by user
are then stored in an indirect command file for later execution.
Control C.terminates linking.

Response: <CR><LF><REVERSE-PROMPT>

(Refer to Paragraph 2.9 for further details.)

2.3.11 Load command (LO)
Syntax: LOAD [<qualifier list>] <blank> <file specification> <CR>

The load command is used to read f i 1 e data from the console' s
floppy disk to the VAX-11/780 main memory, or Writable Control
Store (WCS). The applicable qualifiers are defined in Table 2-4.
If no qualifier is given with the load command, physical main
memory is loaded.

2-8

Table 2-4 Load Command Qualifiers

Qualifier Definition

/START: <address> This qualifier specifies a starting
address for the load. If no start
qualifier is given, the console will
start loading at address 0.

/WCS This qualifier specifies that the WCS is
to be loaded.

2.3.12 Perform Command (P)
Syntax: Perform

Qualifiers: None

The perform command executes a file of linked commands previously
generated by a link command.

Response: <dependent on commands linked>

2.3.13 Quad Clear Command (Q)
Syntax: QCLEAR <blank> <physical address> <CR>

The quad clear command clears
specified. The command is used
e r r or • The <address> i s a 1 ways
memory location. The <address>
boundary by the unconditional
address bits.

2.3.14 Reboot Command (REB)
Syntax: REBOOT

Qualifiers: None

the quadword at the <address>
to clear an uncorrectable ECC
interpreted as a physical main
given is forced to a quadword

clearing of the three low-order

This command causes a console software reload, without disturbing
the VAX-11/780.

Response: <console start-up display>

2-9

2.3.15 Repeat Command {R)
Syntax: REPEAT <console command> <CR>

A repeat
specified
Control C
specified
command.

command causes the console to repeatedly execute the
<console command> unti 1 execution is terminated by a
("'C) (Paragraph 2.8). Any valid console command may be
for <console command> with the exception of the repeat

Response: Dependent on command specified.

2.3.16 Set Command {SE)
Syntax: SET <blank> DEFAULT [<blank> <default option>] <CR>

or
SET <blank> STEP [<blank> <step option>] <CR>
or
SET <blank> TERMINAL <blank> {fill: <count>! PROGRAM)
<CR>
or
SET <blank> SOMM <CR>
or
SET <blank> CLOCK [<blank> (SLOW! FAST! NORMAL)] <CR>
or
SET RELOCATION: <data> <CR>

Response: <CR> <LF> <input prompt> (for all commands)

The set default command sets console default for radix of console
numeric input and output, address type, and data length. The
console will apply defaults when a console command does not
explicitly specify radix, address type, or data length. A set
default command with no options specified will set all default
settings to the power-up state. Applicable default options are
listed in Table 2-5.

Table 2-5 Set Default Command Options

Option

Address Default
Options

Data Default
Options

Default Radix
Options

Format

Physical
Virtual
General
Internal
ID Bus
V Bus

Long
Byte
Word
Quad

Hex
Octal

Specification

Sets default addressing mode
as specified

Sets default data length as
specified

Sets default radix for terminal
numeric I/O to radix specified

2-10

The set step command sets the VAX-11/780 CPU processor clock mode
to the mode specified. The applicable modes are listed in Table
2-6.

Table 2-6 Set Step Command Options

Option Specification

Step Step Instruction

Set Step Bus

Set Step State

Sets CPU clock mode to single
instruction _step mode

Sets CPU clock mode to single SBI
cycle step mode

Sets CPU clock mode to single SBI
time state step mode

The set terminal command allows the selection of two parameters.

a. Set Terminal Fill: <count> = The count specifies the
number of fill characters to be added after special
characters (e.g., prompts) are transmitted to the console
terminal.

b. Set Terminal Program = The console terminal enters the
program I/O mode.

The set clock command sets the VAX-11/780 CPU clock to a frequency
specified by one of the arguments (Fast, Slow, Normal) within the
command where:

Fast = 10.525 MHz
Slow= 8.925 MHz
Normal (or no argument) = 10.0 MHz

The set S OMM command sets the Stop on Mic rob r ea k Match (S OMM)
enable on the console interface board (CIB). When SOMM is set, if
the contents of the VAX-11/780 micro PC ever become equal to the
contents of the microbreak match register (ID register 21), the
CPU clock is stopped.

The set relocation command deposits <data> to the console's
relocation register. The contents of the relocation register are
added to the effective address of all virtual and physical memory
examines and deposits.

Response: <CR><LF><input-prompt>

2-11

2.3.17 Show Command (SH)
Syntax: SHOW <CR>

The show command will cause the console terminal to display:

a. The current default settings for data length, address
type, and radix of address and data inputs and outputs.

b. The terminal fill character count.

c. The VAX-11/780 CPU status including the run/halt state
and current clock mode setting.

2.3.18 Start Command (S)
The two start command formats are described below.

Syntax: START <blank> <address> <CR>

This format performs the equivalent of the following sequence of
console commands:

1. Performs a VAX-11/780 CPU initialization (>>> INIT).

2. <address> is deposited into the VAX-11/780 PC (>>>
DEPOSIT PC <address>).

3. A continue function is issued to begin VAX-11/780 CPU
instruction execution (>>> CONTINUE) •

Response: <CR><LF> (console enters program I/O mode) (for START)

Syntax: START/WCS <blank> <address>

This format performs the equivalent of the following sequence of
commands:

1. <address> is deposited to the VAX-11/780 micro PC.
2. CPU clock is started in free-running mode.

Response: <CR><LF> <input prompt> (for START/WCS)

2.3.19 Next Command (N)
Syntax: NEXT [<blank> <count>] <CR>

The next command causes the VAX-11/780 CPU clock to step the
number of times indicated by <count>. The type of step performed
by the clock is determined by the current state of the CPU clock
mode, as set by a previous set step command. A next command issued
while the VAX-11/780 CPU is in normal (free-running) mode will
default to single instruction step mode for the duration of the
command.

2-12

The console enters program I/O mode immediately before issuing the
step, and reenters console I/O mode as soon as the step is
completed. Step-dependent responses are displayed on the console
terminal after the completion of each of the count steps as
specified below.

a. Single instruction step:
<CR> <LF> <tab> HALTED AT <contents of PC>

b. Single bus cycle step:
<CR> <LF> <tab> CPT0 UPC = <contents of UPC>

c. Single time state step:
<CR> <LF> <tab> CPTn (where n = 1, 2, or 3) or
<CR> <LF> <tab> CPT0 UPC = <contents of UPC>

If no <count> is specified, one step is performed, and the console
en t e r s th e spa c e b a r s t e p mod e • Wh i 1 e i n th i s mod e , ea ch
depression of the space bar causes one execution of the step
option currently enabled (i.e., bus cycle, time state,
instruction) •

A next command with an argument wi 11 not enable the space bar
feature. For example, NEXT 2 will cause two steps to be executed;
the console will then prompt for another command.

An input of any character except SPACE will cause an exit from the
space bar step mode.

2.3.21 Test Command (T)
Syntax: TEST [/COMMAND] <CR>

This command invokes the microdiagnostic monitor program. If no
/COMMAND qualifier is issued with the command, microdiagnostic
exec u t i on beg i n s i mm e d i ate 1 y • I f m i c rod i a g no s t i c t est i n g i s
completed successfully (i.e., no errors detected) the console
program is invoked automatically.

The COMMAND qualifier is used to cause the microdiagnostic monitor
to enter its command mode and wait for operator input before
initiating microdiagnostic execution.

2.3.21 Unjam Command (U)
Syntax: UNJAM <CR>

This command initiates an SBI unjam operation.

Response: >>>

2.3.22 Wait Command (WA)
Syntax: WAIT <blank> DONE

The wait
indirect

command
command

has no effect
file. When it

2-13

unless it is
is executed

executed
from an

from an
indirect

command file, it causes further execution of the command file to
be suspended until one of the following occurs:

a. A DONE signal is received from a program running in the
VAX-11/780 CPU. On receipt of DONE, the console will
resume execution of the command file.

b. If the VAX-11/780 CPU halts (or if the clock stops) and
no DONE signal has been received, the console prints
<@EXIT> and aborts execution of the remainder of the
command file.

c. A Control C
which causes
command file.

("C)
the

is entered
console to

Response: <CR> <LF> <input prompt>

2.3.23 Indirect (@) Command

on the
abort

console terminal,
execution of the

Syntax: @ <filename> <CR> or @ DXl: <filename> <CR>

This command causes the console to open the file specified by
<filename> and begin executing console commands from the file.
Execution continues until one of the following occurs:

a. A WAIT DONE command is read from the f i 1 e (Paragraph
2.3.22).

b. The end of the indirect file is reached. In this case the
console prints <@EOF> and prompts for normal command
input.

c. A "C is entered on the console causing it to abort
execution of the indirect file.

2.3.24 WCS Command (W)
Syntax: WCS

This command invokes the control store debugger, overlaying the
console program. The console help file, WCSMON.HLP, contains a
summary of control store debugger commands. To print out this
file, type @ WCSMON.HLP.

Response: WCS> (Control store debugger prompt)

2.4 COMMANDS PERFORMED WITH THE VAX-11/780 CPU RUNNING
Most console commands require that the VAX-11/780 CPU be halted to
allow the command to be executed. However, some console commands
do not require interaction with the VAX-11/780 CPU, and may be
executed with the VAX-11/780 CPU running. These commands include:

a.
b.
c.
d.

Show
Help
Set commands
Examine /V Bus

e.
f.
g.

2-14

Halt
Clear
Wait Done

Specifying any other console command while the VAX-11/780 CPU is
running will cause the console adapter to reject the command and
type out the following error message on the console terminal:

<CR> <LF> ? CPU NOT IN CONSOLE WAIT LOOP, COMMAND ABORTED
<CR> <LF> <INPUT PROMPT>

2.5 COMMENTS WITHIN COMMANDS
The console allows comments, preceded by an exclamation mark (!),
to appear in any command line. When the console detects an
exclamation mark, any remaining text in the command line is
ignored.

A comment may begin in any character position within a command
line, including the first.

Example (console output underlined)

>>> ! THIS IS A VALID COMMENT <CR>
>>> EXAMINE 1234 ! THIS IS ALSO A COMMENT <CR>

2.6 CONTROL CHARACTERS AND SPECIAL CHARACTERS
Table 2-7 contains a description of the control characters and
special characters recognized by the console program.

Table 2-7 Control/Special Character Descriptions

Character Description

CONTROL C ("C)

CONTROL 0 ("O)

Causes the suspension of all repetitive
console operations such as:

a.

b.

c.

d.

e.

Repeated command executions as
a result of a repeat command

Successive operations as a
result of a /NEXT qualifier

Delays resulting from a wait
command

Successive steps resulting from
a next command

Aborts further execution of an
indirect command file after
current instruction is
completed.

Suppresses or enables (on a toggle basis)
console terminal output. Console terminal
output is always enabled at the next
console terminal input prompt.

2-15

Table 2-7 Control/Special Character Descriptions (Cont)

Character Description

CONTROL U (AU) AU typed before a line terminator causes
the deletion of all characters typed
since the last line terminator. The
console echoes:

RUBOUT

Carriage Return <CR>

Au <CR> <LF>

Typing RUBOUT deletes the last character
typed on an input line. Only characters
typed since the last line terminator can
be rubbed out. Several characters can be
deleted in sequence by typing successive
rubouts. The first rubout echoes as a
backslash (\) fol lowed by the character
that has been deleted. Subsequent rubouts
cause only the deleted character to be
echoed. The next character typed that is
not a rubout causes another backslash
(\) to be printed, followed by the new
character to be echoed.

Terminates a console command line.

2-16

2.7 COMMAND QUALIFIERS AND DEFAULTS
Qualifiers are used within a command to specify the type of
addressing and the length of data arguments. Defaults are applied
by the console when a command does not contain a qualifier
specifying address-type or data length. An operator can specify
the radix of a numeric argument by the use of a <local radix
override> prefixed to the argument. The console will interpret
numeric arguments in the current default radix when an argument is
not prefixed by a <local radix override>.

Certain commands permit an address argument to be defaulted. The
<default address> used by the console is the next address
following the last virtual, physical, or register address accessed
by an examine or deposit command. Note that the next address is
dependent upon data length, since a byte reference updates the
<default address> by 1, while a longword reference updates the
<default address> by 4.

The /NEXT qualifier allows an examine or deposit command to
operate on more than one address.

2.7.1 Address Type Qualifiers
Address type qualifiers are used within a command line to specify
the type of address argument as virtual, physical, ID Bus, V Bus
or register address. The qualifiers for the respective types are:
/VIRTUAL, /PHYSICAL, /ID BUS, /V BUS, /GENERAL, /INTERNAL.

Virtual addresses that reference nonexistent or nonresident pages
will cause the console to abort execution of the console command
that referenced the virtual address. In each case an appropriate
error message will be typed out on the console terminal.

Example

To examine virtual address 1234, type:

EXAMINE/VIRTUAL 1234 <CR>

Note that since some register addresses have mnemonic names that
are unique and unambiguous, the /GENERAL qualifier need not be
specified when mnemonic addresses such as PC, or SP, are
referenced.

Example

To examine the VAX-11/780 PC, an operator could type either
of the following statements:

EXAMINE/GENERAL PC <CR> or
E PC <CR> or
E GENERAL F <CR>

2-17

2.7.2 Address Type Defaults
The console applies an address type default to any command that
requires an address argument and does not contain an address
qualifier. The default applied can be set by using the set default
command.

Example

The command:

SET DEFAULT VIRTUAL <CR>

will cause the console to default to virtual addressing for
any console command that requires an address argument, but
does not contain an address type qualifier. Thus, the command
EXAMINE 1234 would type out the contents of virtual address
1234.

2.7.3 Data Length Qualifiers
Data length qualifiers are used within a command line to specify
the length of the data quantity associated with the command. Data
length may be specified as either byte, word, longword, or
quadword by means of the /BYTE, /WORD, /LONG, /QUAD qualifiers,
respectively.

Example

The command:

EXAMINE/BYTE 1234 <CR>

will type out the byte at address 1234.

Since VAX-11/780 CPU general and processor registers are longword
quantities, all register references will default to longword data
length, regardless of the current setting of the data length
default.

2.7.4 Data Length Defaults
The console applies a data length default to any command that
references data and does not contain a data length qualifier. The
default applied can be set using the set default command.

Example

The command:

SET DEFAULT WORD <CR>

will cause the console to default to word data length.

2-18

The command:

EXAMINE 1234 <CR>

will then reference the word which has its first byte at
address 1234.

Since all VAX-11/780 CPU general and processor registers are
longword quantities, all register references will default to
longword data length, regardless of the current setting of the
data length default. Word length must be specified when accessing
Unibus device registers.

2.7.5 Qualifiers for RADIX
The radix of console output for a command can be sepcified by a
qualifier (/OCTAL or /HEX). The qualifier will override the
current default radix.

2.7.6 Defaults for RADIX
The default radix for console numeric inputs and outputs is
selectable as either HEX or OCTAL via the SET DEFAULT HEX or SET
DEFAULT OCTAL command.

2.7.7 Local Radix Override
It is frequently convenient to specify an address or data argument
in a radix different from the current default radix. The console
allows the current default radix to be overridden by including a
<local radix override> as a prefix to any numeric argument. A
<local radix override> can be any one of the following:

% O (percent O) for octal arguments

% X (percent X) for hexadecimal arguments

Th e 1 o ca 1 rad i x o v e r r i d e mus t a pp e a r a s th e two 1 e f t mo s t
characters of the numeric argument it modifies, and must not be
separated by spaces or tabs from that argument.

Example

As s um in g th a t the c u r r en t d e fa u 1 t rad i x i s o ct a 1 , the
operator can deposit the octal value 3456 into the
hexadecimal address 12A4 using <local radix override> as
follows:

DEPOSIT %Xl2A4 3456

2.7.8 Default Address Facility
Each time an examine or deposit command is executed, the console
computes the address of the next memory location following the
location referenced by the command. The address of the next memory
location is termed the <default address>, since an examine command

2-19

that does not specify an address will reference the next address
by default. The console computes the <default address> as follows:

<default address> = <address used by last examine or deposit
command> + n, where n is
1 for byte references
2 for word references
4 for longword references
8 for quadword references

The fol lowing example shows a sequence of console commands, and
the value taken by the default address after each command is
executed. Note that the next address is data length dependent,
since a byte reference updates the <default address> by 1, while a
longword reference updates the <default address> by 4.

Example of default address facility (all numbers are hex):

Command <default address> after execution

EXAMINE/BYTE 2341 2342
EXAMINE/WORD
(uses <default address> 2342) 2344
EXAMINE/LONG
(uses <default address> 2344) 2348
EXAMINE/GENERAL 0 general register 1 (Rl)
EXAMINE/GENERAL D general register E (SP)
EXAMINE PC general register 0 (R0)

Note that the <default address> is R0 following a PC reference.

2.7.8.1 Specifying Default Address in a Command -- The symbol (+)
can be used as an address argument in a deposit or examine command
to represent the <default address>. This symbol permits depositing
to (or examining) successive location without typing the address
argument after the first deposit.

Example

To toggle-in a program starting at address 123456, the
following deposit commands can be used:

DEPOSIT
DEPOSIT
DEPOSIT

123456
+
+

<DATA>
<DATA>
<DATA>

Each deposit command, after the first, writes the <DATA> into
the next successive memory location.

2.7.8.2 Last Address Notation The last address referenced
(virtual, physical, or register) by an examine or deposit command
is denoted by an asterisk (*). The LAST ADDRESS may be used as an
argument to an examine or deposit command by typing an asterisk in
place of the address argument.

2-20

Example

The command:

EXAMINE 1234 <CR>

will type out the contents of location 1234.

If the next command issued is

DEPOSIT * 356 <CR>

the console will deposit the number 356 into location 1234.

Examine and deposit commands to VAX-11/780 CPU general and
processor registers will replace the <last address> with the
register address. Mnemonic register names are translated into
register addresses by the console.

2.7.8.3 Preceding Address Notation -- The symbol - (minus sig-n)
can be used as an address in a deposit or examine command to
specify the location immediately preceding the last location
referenced.

2.7.8.4 Use of Last Data as an Address Argument -- The symbol @
can be used as an <address> in a deposit or examine command. The
last <data> deposited or examined will be used as the address.

2.7.9 NEXT Qualifier
Syntax: SLASH NEXT [:<COUNT>]

The /NEXT qualifier permits examine and deposit commands to
operate on multiple sequential addresses.

The <count> argument specifies the number of additional executions
of the command to be performed after the initial execution. The
default value for <count> is one.

Example 1

The command:

EXAMINE/BYTE 1230/NEXT:2

is evaluated by the console as follows:

1. The console initially evaluates the command and applies
any applicable default values.

2. The command, with applied defaults, is executed.
console types out the contents of location 1230,
updates the <default address> to 1231.

2-21

The
and

3 • The /NEXT s w i t ch i s now e v a 1 u a t e d by the cons o 1 e • The
console repeats the command operation the number of times
indicated by the <count> argument. Each execution uses
the < de fa u 1 t add r e s s > f o r i ts add r e s s a r g um e n t and
updates the <default address> afterwards. In this
example, locations 1231 and 1232 are successively typed
o u t • The f in a 1 v a 1 u e of the <de fa u 1 t add res s > w i 11 be
1233.

Example 2

If the command:

EXAMINE/NEXT:2 <CR>

is issued following the command in the previous example, the
contents of locations 1233, 1234, and 1235 will be typed out.
Since the examine command does not contain an address
argument, the initial execution of the command will use the
current <default address>, which was 1233, following the
command in the previous example.

Note that when using the /NEXT qualifier to
successive VAX-11/780 CPU general registers,
after the PC is defined to be R0.

Example 3

The command:

EXAMINE/NEXT:S GENERAL D

examine or deposit
the NEXT register

will type out the contents of Rl3, SP, PC, R0, Rl, and R2, in
that order.

2.8 COMMAND REPEAT FACILITY
The command repeat facility is provided to allow commands to be
executed repeatedly so that CPU logic invoked by console commands
can easily be scoped. The following paragraphs describe the repeat
facility commands and capabilities.

2.8.1
Example

Repeating Commands

The command:

REPEAT EXAMINE 1234 <CR>

will continuously examine and display the contents of
location 1234.

Once initiated, repeated execution continues until terminated by
the operator typing Control C (AC) on the console keyboard.

2-22

2.9 COMMAND LINK FACILITY
The console's command link facility allows successive commands to
be linked by the console into a single executable list of
commands. Once a list of linked commands is constructed, the list
can be executed one pass at a time, or executed continuously.

2.9.1 Link Facility Operation
Commands are linked by entering LINK on the console terminal,
causing the console to enter the link mode. LINK is then followed
by the desired commands. The LINK command is entered only at the
beginning of the command string (i.e., at the beginning of the
initial command line}. Commands to be linked must be entered
one-per-1 ine, with each command 1 ine terminated by a <CR>. The
console then returns a link mode prompt (<<<) requesting the next
command. The linking operation is terminated by entering a Control
C on the console.

As the command string is entered on the console, the commands are
stored in dedicated sectors (limit of 10 sectors} on the floppy
disk (RX01). When the command string is executed, the string is
treated as if it were an indirect command file (i.e., command
retrieved, parsed, executed, and the next command retrieved,
etc •) •

The console does not execute commands being linked until a PERFORM
command is issued. Once the input of a list of linked commands has
been terminated, no further commands can be added to the commands
already linked.

The command string can be executed one pass at a time or
continuously by means of the PERFORM command. If the PERFORM
command is entered after the Control C to terminate the string,
the string will execute only one pass. However, if PERFORM is
entered before the Control C, that command becomes part of the
command list and causes continuous execution of the command list.

Should a linked command be entered incorrectly, the console will
output an appropriate error message when the command containing
the syntactic error is executed. Typing a Control U (AU) while
linking commands will cause the console to reject only the current
command 1 ine.

2.9.2 Link Facility Usage
Syntax: LINK

COMMAND <CR>
COMMAND <CR>
(AC)

Response: Dependent on command list.

Example

The operator wishes to repeatedly examine the contents of a
device register after VAX-11/780 CPU initialization. Since

2-23

the CPU initialization requires a certain amount of time to
complete, a delay must be inserted between the initialize and
examine commands. The sequence of commands is as follows
(console output is underlined).

>>> LINK INITIALIZE <CR>

<<< DELAY 5 <CR>

<<< EXAMINE/LONG FFFFABBC <CR>

<<< PERFORM <CR> <AC>

>>> PERFORM <CR>

P FFFFABBC
P FFFFABBC

12A00123
12A00123, etc.

2.11 CONSOLE MODE CHANGE

LINK causes the console to
enter the link mode and begin
linking.

De 1 a y s five c 1 o ck ticks to
a 11 ow in it i a 1 i z e ti me to
complete.

Examine command is entered into
string.

PERFORM is entered prior to
linking termination.

Initiates execution.

Command string executed
continuously.

The console I/O mode escape sequence causes the console to switch
from console to progra~ I/O mode. The escape sequence to program
I/O is:

SET TERMINAL PROGRAM <CR>

In addition, the console commands START, CONTINUE, and NEXT also
enable program I/O mode.

The program I/O mode escape sequence causes the console to switch
from program to console I/O mode. The escape sequence to console
I/O is:

Note that Control P is not recognized by the console if the
console power switch is in either the REMOTE DISABLE position or
the LOCAL DISABLE position.

2.11 VMS COMMUNICATION WITH CONSOLE FLOPPY DISK
VMS must be able to read and write the console subsystem's floppy
disk drive. These functions are available only when the console is
in program I/O mode. The following set of commands are supported
by the console software.

a. Write sector -- VMS supplies track, sector, and 128 bytes
of data. Console returns status upon completion of write.

2-24

b. Read sector -- VMS supplies track and sector. Console
returns 128 bytes of data, and status of read operation.

c. Read floppy status -- Console returns floppy status.

d. Write sector with deleted data mark -- VMS supplies track
and sector (no data required). Console returns status
upon completion of the write.

e. Cancel floppy function -- Console aborts current floppy
function.

The following floppy functions will not be directly available to
VMS: empty silo, fill silo, read error register, initialize.

While VMS initiated floppy functions are in progress, operator
terminal I/O is not disabled. Terminal I/O may be interspersed
with floppy I/O.

Once a floppy function is initiated, no other floppy commands will
be issued by VMS until the function is complete. The only
exception is the command cancel floppy function, which may be
issued at any time.

The floppy functions described in this
available to VMS when the console is in
the console terminal is being used as
terminal).

NOTE

document will only be
program I/O mode (i.e.,

the system operator's

In the following protocols, two hardware
side-effects are implied:

1. Each time VMS loads the transmit
buffer (TXDB) , the TX ready bit in
the transmit status register (TXCS)
is automatically cleared. TXDB is
only loaded by VMS, and only when TX
ready is set. TX ready is explicitly
set by the console when the console
is ready to accept another transfer
through TXDB.

2. Each time VMS reads the receiver
buffer (RXDB) , the RX done bit in
the receiver status register (RXCS)
will automatically clear. RXDB is
only read by VMS, and only when RX
done is set. RX done is explicitly
set by the console each time the
console has loaded RXDB with a
character for VMS.

2-25

2.11.1 Floppy Function Protocol
A. Write sector/write deleted data sector

1. VMS puts the write sector or the write deleted data
sector command into TXDB.

2.

3.

4.

The console takes the
ready in TXCS.

VMS puts a sector number

The console takes the
ready.

write command,

into TXDB.

sector number

5. VMS puts a track number into TXDB.

and sets TX

and sets TX

6. The console takes the track number and sets TX ready.

7. VMS puts a byte of data into TXDB.

8. The console accepts a byte of data and sets TX ready.
Steps 7 and 8 are done 128 times for write sector.
Steps 7 and 8 are skipped for write deleted data
sector.

9. The console initiates a floppy write function.

10. The floppy write is completed.

11. The console sends a floppy function complete message.
The floppy function complete message consists of
loading RXDB bits 8--11 with a select code of 2, and
bits 0--7 with the floppy status byte.

12. VMS receives the floppy function completed message.

B. Read sector
1. VMS puts the read sector command into TXDB.

2. The console takes the read command, and sets TX ready
in TXCS.

3. VMS puts a sector number into TXDB.

4. The console takes the sector number and sets TX
ready.

5. VMS puts a track number into TXDB.

6. The console takes the track number and sets TX ready.

7. The console initiates a floppy read function.

8. The floppy read is completed.

2-26

9. The console sends a floppy function complete message.
The floppy fun ct ion complete message consists of a
select code of 2 in bits 8--11 of RXDB, and a floppy
status byte in bits 0--7 of RXDB.

10. VMS receives the floppy function completed message.

11. The console puts one byte of data in RXDB and sets RX
done.

12. VMS accepts one byte of data from RXDB. Steps 11 and
12 are done 128 times. When the !28th byte is
accepted by VMS, the read is complete.

NOTE
If a floppy error occurs on Step 8,
Steps 11 and 12 will be skipped.

C. Read status
1. VMS puts the read floppy status command in TXDB.

2. The console takes the read status command and sets TX
ready in TXCS.

3. The console gets the floppy status from last floppy
function performed.

4. The console puts a floppy function complete message;
with the floppy status, into RXDB and sets RX done.

5. VMS reads the floppy status.

D. Terminate floppy function
1. VMS puts the cancel floppy function command in TXDB.

2. The console takes the cancel floppy function.

3. The console terminates the floppy function in
progress, if any.

4. The console sets TX ready in TXCS.

2.12 MISCELLANEOUS CONSOLE COMMUNICATIONS
The console software will support certain additional functional
communications from VMS and the diagnostic supervisor (VMS/DS).

A. Examine console memory -- VMS supplies an offset from the
console-supplied base address of examinable memory space.
The console returns the examine code and the contents of
the requested byte.

Examinable Console Memory Space

2-27

(Octal Offset from 37600(8) -- FIRSTF)

+145
+146
+147
+150
+151
+152
+153
+155

Warm-start flag
Cold-start flag
APT-load flag
Last setting of remote and disable
Auto-restart flag
PCS version
WCS primary version
FPLA version

B. Software communication codes
1. Software done -- VMS issues this code to cause the

console to resume execution of an indirect-command
file that has been suspended due to a wait done
command.

2. Warm restart boot command -- The console will boot
the VAX-11/78 0.

3. Clear warm-start and cold-start flags -- VMS/DS
issues these codes when the VAX has
restarted/rebooted successfully. The console clears
the associated flags.

NOTE
The cold and warm restart flags are used
by the console to prevent infinite loops
when a warm restart results in a
VAX-11/780 error halt.

2.13 COMMUNICATION REGISTER FORMATS AND SELECT CODES
The LSI-11 processor communicates with the VAX-11/780 CPU via two
registers on the console interface board. Figure 2-1 shows the
register formats and select codes.

TXDB
31 2423- 1 6 1 5 14 131211 0807 00

I MBZ I MBZ I MBZ I SELECT I DATA I FIELD FIELD

RXDB
31 2423 161514131211 08 07 00

MBZ MBZ
USED BY SELECT DATA

DL-11 FIELD FIELD

TK-0742

Figure 2-1 Communication Register Formats and Select Codes

2-28

Select Field Values (in hex)

Select Code Device Data Field Values

0 Operator's terminal 0 through 7F ! ASCII data

1

2

3

9

F

Floppy drive 0 (data) 0 through FF binary data

Floppy function complete (floppy status)

Examine console memory Address offset/contents of
address

Floppy drive 0 (command) 0 = read sector
1 = write sector
2 = read status

Misc. communication

NOTE
Code 5 (protocol error)
console when one of
occurs:

3 = write deleted data
sector

4 = cancel floppy function
5 = protocol error

1 = software done
2 = boot VAX-11/780
3 = clear warm-start flag
4 = clear cold-start flag

is sent by the
the following

1. Another floppy command (except for
cancel floppy function) is issued
by VMS before a previous command is
completed.

2. The console gets a floppy drive e
code (DATA) when expecting a
command.

2-29

2.r4 FLOPPY STATUS BYTE DEFINITION
The floppy status byte is used by VMS to determine the success or
failure of a read or write operation. The floppy status byte is
sent to VMS at the completion of a read, write, or read status
operation. The select code is always the floppy function complete
(code 2). The status bit assignments are shown in Figure 2-2.

RXDB
31

MBZ

24 1615 12 11 08 07 06 05 03 020100

MBZ MBZ CODE '2' MBZ

CRC ERR

--- PARITY ERROR

--- INIT DONE

-------DELETED DATA

--------ERROR

Figure 2-2 Floppy Status Bit Assignments

NOTE
The status bit assignments are identical
to those supplied by the floppy
controller, except for bit 7. Bit 7
corresponds to bit 15 of the floppy's
RXCS register.

TK-0745

2.15 REMOTE CONSOLE ACCESS COMMAND SET
A spec i a 1 set of co mm ands i s inc 1 ud e d in the cons o 1 e co mm and
language of systems that use the remote diagnostic facility to
faci 1 i tate console access from a remote terminal or computer.
Commands can be initiated only on the terminal in control,
according to the five-position key switch. The remote access
command set provides for:

a. A talk mode, to allow communication between local and
remote terminal operators (enable talk).

b. A copy control, to permit suppressing or enabling typeout
on the local terminal while a remote operator is in
control (enable/disable local copy).

c. A method of transferring control of the console between
the local and remote operators (enable local control).

2-30

d. A method of controlling the echo of characters to the
remote terminal while in talk mode (enable/disable echo).

e. A method of suppressing lost carrier error messages
caused by a loss of carrier on the remote line
(enable/disable carrier error).

f. A method of enabling and disabling use of the console
subsystem floppy disk (enable/disable local floppy) •

g. A method of enabling and disabling use of the remote
floppy disk (enable/disable remote floppy).

2.15.1 Enable Talk Mode Command
Syntax: ENABLE <blank> TALK <CR>

The enable talk command puts the console into talk mode. While in
talk mode, characters typed on the remote keyboard are typed on
the local terminal, and vice versa. The console does not echo
characters back to the originating keyboard, unless the talk mode
echo feature has been enabled. No console commands are recognized
while in talk mode.

Talk mode is terminated by typing the console escape character
(""P) on the terminal in control. When talk mode is terminated,
console mode is enabled.

Entering talk mode causes the console to enable the remote serial
interface and assert the data terminal ready signal to the data
set. All terminal I/O to a program running in the VAX-11/780 CPU
is disabled while the console is in the talk mode.

2-31

2.15.2 Enable/Disable Echo Command
Syntax: (ENABLE ! DISABLE) <blank> ECHO <CR>

The enable echo command will cause the console to echo characters
typed on either the remote or local keyboards while in talk mode.
The di sable echo command causes the console to suppress echo of
characters typed on both keyboards.

Enable and disable echo are issued while the console is in console
mode, but do not have any effect unti 1 talk mode is entered. A
disable echo is automatically done each time the console keyswitch
is put in the LOCAL/DISABLE position, and on power up of the
console.

2.15.3 Enable/Disable Local Copy Command
Syntax: (ENABLE ! DISABLE) <blank. LOCAL <blank> COPY

The enable local copy command causes the local terminal to print a
copy of al 1 output directed to the remote terminal. The di sable
local copy command disables the local terminal from getting a copy
of output directed to the remote terminal.

Local copy is automatically disabled each time the console
keyswitch is turned to the LOCAL or LOCAL/DISABLE position and on
power up of the console. Local copy is automatically enabled each
time the console keyswitch is placed in the REMOTE/DISABLE
position.

2.15.4 Enable Local Control Command
Syntax: ENABLE <blank> LOCAL <blank> CONTROL <CR>

An enable local control command, issued by the remote terminal
operator while the console keyswitch is in the REMOTE position,
transfers control of the console to the local terminal operator.
(Normal remote operation locks out the local terminal.) This
allows a local operator to take control of the console and the
VAX-11/780 CPU, while the remote link is maintained. The remote
operator may regain control of the console by typing a Control P
on the remote keyboard.

An enable local control command issued from the local terminal has
no effect. Local control is automatically enabled when the console
keyswitch is placed in the LOCAL or LOCAL/DISABLE position, and
also on console power up.

2.15.5 Enable/Disable Carrier Error Command
Syntax: (ENABLE ! DISABLE) <blank> CARRIER <blank> ERROR <CR>

The enable carrier error command causes the console to print the
message ?CARRIER LOST each time a loss of carrier on the remote
line is detected. Also, if the console keyswitch is in the LOCAL
or REMOTE position, the console enters talk mode, enabling data
terminal ready on the modem.

2-32

The disable carrier error command causes the console to inhibit
the carrier lost message, and prevents a transition to talk mode.
An enable carrier error is automatically done on console power up,
and whenever the console keyswi tch is placed in the LOCAL or
LOCAL/DISABLE position.

2.15.6 ENABLE/DISABLE LOCAL Floppy Command
Syntax: (ENable!Disable)<BLANK>Local<BLANK>FLoppy

Enable local floppy will cause the directory of the local floppy
to be searched first, in an attempt to open a file. If the file is
not found, the remote floppy directory is searched. Note that in
terms of the console software, the remote floppy is a virtual
device. It may be a floppy or it may be some other storage device.

Disable local floppy will cause only the directory of the remote
floppy to be searched in an attempt to open a file.

An enable/disable local floppy command affects protocol operation
only (transmission format).

2.16 CONSOLE ERROR MESSAGES
This paragraph describes all console error message formats and
their interpretation. All console error messages are prefixed by a
question mark to distinguish them from informational messages.

2.16.1 Syntactic Error Messages
?<TEXT STRING> IS INCOMPLETE
The <TEXT STRING> is not a complete console command.

?<TEXT STRING> IS INCORRECT
The <TEXT STRING> is not recognized as part of a console command.

?FILE NAME ERR
A <FILENAME> given with a LOAD or @ command cannot be translated
to RAD 5 0 • One of the characters is not transl a tab 1 e to RAD 5 0 or
the number of characters allowed is exceeded: six characters for
file name, three for extension.

2.16.2 Command Generated Error Messages
?FILE NOT FOUND
A <FILENAME> given with a LOAD or @ command does not match any
file on the current floppy disk. This error can also be generated
by a HELP or BOOT command if the help file or boot file is missing
from the floppy.

?NO CPU RESPONSE
The console timed out while waiting for a response from a
VAX-11/780 CPU microroutine.

?CPU NOT IN CONSOLE WAIT LOOP, COMMAND ABORTED
A console command that required the assistance of the VAX-11/780
CPU was issued when the CPU was not in the console service loop.

2-33

?CPU CLOCK STOPPED, COMMAND ABORTED
A console command that requires the CPU clock to be running was
issued with the clock stopped.

?IND-COM ERR
An indirect command file error was detected. This error is
generated if:

a. An indirect command line exceeds 80 characters.
b. An indirect command line does not end with <CR> <LF>.

2.16.3 Microroutine Error Messages
The console uses various microcode routines in the VAX-11/780 CPU
control store to perform console functions. The following errors
are generated by microroutine failures.

?MEM-MAN FAULT, CODE = XX
A virtual examine or deposit caused an error in the memory
management microroutine. XX is a one-byte error code supplied by
the memory management routine and defined in Table 2-8.

NOTE
Bit positions are numbered from the
right.

Table 2-8 Memory Management Error Code Definitions

Bit Position Definition

Length violation

1 Fault was on a PTE reference

2 Write or modify intent

3 Access violation

4--7 Ignored

?MICROMACHINE TIME OUT
This message indicates that the VAX-11/780 micromachine has failed
to strobe interrupts within the maximum time period allowed.

?MIC-ERR ON FUNCTION
An unspecified error occurred in the CPU while serv1c1ng a console
request. Referencing nonexistent memory will cause this error.

?INT-REG ERR
An error occurred while referencing one of the VAX-11/780 CPU
internal (processor) registers. Specifying a register address that
is too large will cause this error.

2-34

?MICROERR, CODE = XX
An unrecognized microerror occurred. The code returned by the CPU
is not in the range of recognized error codes. XX is the one-byte
error code returned by the microroutine.

2.16.4 CPU Fault Generated Error Messages
?INT-STACK INVLD
The VAX-11/780 CPU interrupt stack was marked invalid.

?CPU DBLE-ERR BLT
The VAX-11/780 CPU has done a double error halt.

?ILL I/E VEC
An illegal interrupt/exception vector was encountered by the
VAX-11/780 CPU.

?NO USR WCS
An interrupt/exception vector to WCS was encountered, and no WCS
exists.

?CHM ERR
A change-mode instruction was attempted from the interrupt stack.

2.16.5 RX01 Error Messages
?FLOPPY ERR, CODE = X
The console floppy driver
detected an error. X is an
defined in Table 2-9.

(a part of
error code

the console software)
(in hexadecimal) and is

Table 2-9 RX01 Error Message Code Definitions

Code Definition

1

2

3

?FLOPPY NOT READY

Floppy
parity,
error) •

hardware error (i.e., CRC,
or a floppy firmware detected

An open file command failed to find the
specified file.

The floppy driver queue is full.

A floppy sector was referenced that is
out of the legal range of sector
numbers.

The console floppy drive failed to become ready when booting.

?NO BOOT ON FLOPPY
The console attempted to boot from a floppy that does not contain
a valid boot block.

?FLOPPY ERROR ON BOOT
A floppy error was detected while attempting a console boot.

2-35

2.16.6 Miscellaneous Error Messages
INT PENDING
This is not actually an error (note absence of ?) • The message
indicates that an error was pending at the time that a console
requested halt was performed. Type CONTINUE to clear interrupt.

?WARNING-WCS and FPLA VER MISMATCH
The microcode in the WCS is not compatible with the FPLA. This
message is printed on each ISP START or CONTINUE. However, no
other action is taken by the console.

?FATAL-WCS and PCS VER MISMATCH
The microcode in the PCS is not compatible with that in the WCS.
ISP START and CONTINUE are disabled by the console.

?REMOTE ACCESS NOT SUPPORTED
This message is printed when the console mode switch enters a
REMOTE position, and the remote support software is not included
in the console.

?TRAP -4, RESTARTING CONSOLE
The console took a time-out trap. Console will restart.

?UNEXPECTED TRAP
Console trapped to an unused vector. Console reboots when operator
types Control C.

?QB LOCKED
Indicates that the console's output queue is blocked. Console will
reboot.

2-36

CHAPTER 3
DIAGNOSTIC SUPERVISOR AND CONTROL

This chapter describes the basic structure and operating
characteristics of the diagnostic supervisor. In addition,
operator commands and execution control functions are described.
This description is applicable to macro testing, and while many
similarities exist for the micros, this chapter does not include
them (refer to Chapter 4).

3.1 SUPERVISOR STRUCTURE OVERVIEW
The diagnostic supervisor provides operator control and utility
support functions for three diagnostic runtime environments. The
three runtime environments are:

a. Cluster Environment (CE): This environment supports the
CPU cluster and repair level I/O bus adapter diagnostic
programs. The CE consists of program modules that provide
u t i 1 it y s er vi c es (i • e • , err o r report in g , scope 1 oops ,
etc.), initialization and test dispatch, and operator
term i na 1 interface • Add i t ion a 1 mod u 1 es provide 1 o ad and
script management.

b. System Environment (SE): This environment supports the
repair level I/O subsystem diagnostic programs, and the
device functional test programs. The SE provides the same
runtime support functions as the CE. Program modules
provide CPU cluster hardware interface support (i.e.,
real-time clock control, interrupt system control, I/O
bus adapter control, etc.).

c. User Environment (UE): This environment supports the I/O
subsystem functional level diagnostic programs that run
under the VMS operating system as a privileged user task.

I/O services are provided primarily for functional level programs.
This allows programs that can execute in an operating system
environment, which restricts I/O access, to perform equally well
in a standalone environment.

The three supervisor environments are assembled into a common
executable module that provides all necessary operator and program
services. As shown in Figure 3-1, these services are implemented
in two major functional areas: Command Line Interpreter (CL!) and
Program Interface (PGI).

3-1

COMMAND LINE TEST

-- -- INTERPRETER PROGRAM -- --OPERATOR
TERMINAL J A~ -- -- --- - --PROGRAM ,,

INTERFACE -- UNIT --
UNDER
TEST

TK-0741

Figure 3-1 Basic Diagnostic Supervisor Structure

The CL! interfaces to an operator (controlling) terminal and
enables the operator to control the loading, sequencing, and
execution of diagnostic test programs. The CL! monitors all
control information passing between the terminal and the
supervisor. This information consists of supervisor commands from
the operator which control either supervisor or test program
operation. The CL! directs control to the appropriate supervisor
service module according to the command supplied by the operator.

The PG! provides common services required by all diagnostic test
programs. These services include operator interaction, program
control, error message formatting, memory management, and I/O
request handling. Note that the operator can communicate with the
diagnostic program only through a PG! message service or with the
CL! directly.

When the operator initiates diagnostic program execution (through
the CLI), that program assumes control. Once program execution
beg ins, the · PGI handles all test information flowing between the
terminal or the Unit Under Test (UUT) (i.e., QI/0-I/O driver
interface) and a functional level program. For repair level
programs, test information flows directly between the UUT and the
diagnostic program (i.e., direct test program access to I/O
registers) •

Test control information flow between the terminal and the
diagnostic program consists mainly of test parameter requests and
responses, while test information flow between the UUT and the
program consists mainly of test stimuli and responses.

The diagnostic program executes until the test sequence is
completed, aborted, or the operator enters the appropriate control
character, at which point control returns to the CL!.

System errors not directly related to the UUT are handled by the
supervisor. Unless the program explicitly requests notification,
these errors are transparent to the program and are reported
directly to the operator.

3-2

3.2 CLI FUNCTIONAL MODULE DESCRIPTION
The CL! consists of a tree-structured command decoder and several
service modules that execute the operator's commands (e.g.,
loading a diagnostic program from the system device; altering the
operational characteristics of the program; or driving the CLI
through a script file). The command syntax is a subset of the
console command language.

Once a command line is interpreted, the CLI dispatches control to
the appropriate service module. After the operator's command has
been completed or aborted, control is returned to the CLI. Certain
CLI service modules pass control to the diagnostic program, rather
than back to the CL!. However, the CLI continues to monitor the
operator's terminal for certain commands (e.g., AC).

3.2.1 Image Loader Module
The image loader allows the operator to specify a load device and
a file name for loading diagnostic programs. Depending on the
environment (i.e., console, system, or user), the device media
will be either the diagnostic load device (console floppy) or the
system load device.

3.2.2 Test Sequence Control Module
The test sequence control module provides the operator with the
capability to control the order in which tests within a program
are executed. This is implemented by specifying test numbers in
the run, start, and restart supervisor commands (Paragraph 3.4).

3.2.3 Script Processor Module
Automatic ~est sequence control is achieved through the use of a
script file. This script file is a line-oriented ASCII file that
contains standard CLI supervisor commands. To allow for commenting
on a command line, any text following a (!) on a line is ignored
by the script processor. Blank lines and extraneous spacing
characters are also ignored.

A script file may contain CLI supervisor commands (Paragraph 3.5)
only, or a combination of commands and program parameter
responses. Generating script or parameter files is performed
off-line using a standard editor system utility.

3.3 PGI FUNCTIONAL MODULE DESCRIPTION
The major function of the PG! module is to handle all information
flowing between the operator's terminal or the UUT and the
functional level I/O program. While a diagnostic program is
executing, that program can call on the supervisor to supply
various services. These services provide the program with the
required common functions (e.g., memory allocation and mapping,
I/O processing, operator terminal interfacing, error message
formatting, and system error handling).

Several of the functions the PG! provides are a subset of the VMS
system services. For example, the supervisor provides the VMS
queue I/O service so that user mode diagnostics may be executed
standalone as well as under VMS.

3-3

3.3.1 Memory Management and Adapter Services
All memory buffer allocation is performed by the diagnostic
supervisor. This ensures system integrity throughout the various
operating environments.

All necessary interfacing between the CPU and UUT will be handled
by the diagnostic supervisor.

Running standalone, the supervisor provides I/O services similar
to those available under VMS. This provides a smaller standalone
environment for running user mode diagnostics. Only a small kernel
subset of VMS system services is provided.

All functional level diagnostics perform device I/O as specified
by the VMS operating system. However, in addition to the normal
queue I/O functions, VMS provides special features that diagnostic
programs can use if executing as privileged processes. On I/O
completion, if requested and privilege permitting, raw status is
de po s i t ed into a buffer spec i fie d by the program • Thi s status
contains all device registers and pertinent channel registers. A
time stamp is also deposited into the status buffer.

3.3.2 Operator Terminal Services
Since the diagnostic programs do not interface directly with the
operator's terminal, the supervisor provides all required operator
communication services for the diagnostic program. The program c~n
perform operator dialogue through a supervisor service to allow
testing of mechanical dev1ces that require operator interaction.

The terminal drivers within the service eliminate the need for the
diagnostic programmer to be aware of the type of terminal
currently used by the operator.

The output to the operator, including error reporting, uses
formatted ASCII output to simplify the program's message-sending
routines. Conversion of binary data to ASCII display is handled by
the diagnostic supervisor instead of the programmer. The formatted
ASCII output syntax is the same as that used by VMS.

3.3.3 System Error Handling
All system errors are intercepted and reported directly to the
operator by the supervisor unless the program explicitly requests
notification of exceptions or interrupts.

3.4 SUPERVISOR COMMAND DESCRIPTIONS
The following paragraphs describe the operator command and
execution control functions provided by the diagnostic supervisor.
Where appropriate, examples of command usage are included.

3.4.1 Command Terms and Symbols
Since the supervisor commands are a subset of the console
commands, many of the console command terms and symbols are used
in the symbolic supervisor command descriptions. The applicable
characters are defined in Table 3-1.

3-4

Term/Symbol

()

< >

[]

<blank>

<tab>

<count>

<XYZ - list>

<address>

<data>

<qualifier>

<input prompt>

>>>

DS>

<CR>

<LF>

I

Table 3-1 Term and Symbol Definitions

Definition

Used to indicate the Exclusive OR operation
(i.e., selection of parameters within a
command line)

Used to indicate that one of the syntactic
units of the expression is to be selected

Used to
program
terminal

indicate
functions

symbolic
to/from

a r g um en ts , o r
the operator

Used to indicate that part of an expression
is optional; e.g., WAIT [<blank> <count>]
indicates that the wait command takes an
optional <count> argument

Represents one or more spaces

Represents one or more tabs

Represents a numeric count

Indicates one or more occurrences from the
category indicated by XYZ

Represents an address argument

Represents a numeric argument

Represents a command modifier (switch)

Represents the console's input prompt string

Console program input prompt character

Diagnostic supervisor prompt

Represents a console terminal carriage return

Represents a console terminal line feed

Delimits a command from its qualifiers

Used as a separator within a list

Used as a separator within a command line.

3-5

3.4.2 Command Description Segments
Each supervisor command description is divided into three, four,
or five descriptive segments, depending on the particular command.
The descriptive segments ·are:

a. Syntax: describes the command structure.

b. Command description: a brief paragraph describing command
operation, general restrictions, or available options.

c. Response: a description of the console program response
to the specified command.

d. Qualifiers: a list of applicable command modifiers.

e. Options: a list of applicable command options.

The descriptive segments use the terms
Table 3-1. Note that every command (or
terminated with a <CR>.

3.4.3 Command Abbreviations

and symbols defined
command line) must

in
be

Supervisor command words, switches, and arguments may be
abbreviated by typing only enough characters to uniquely identify
each i tern. For example , the load command can be specified by L,
while the start command requires a minimum entry of ST.

3.4.4 Command Overview
The supervisor operator commands are divided into the three
following groups:

a. Load/test sequence control:
the capability of loading
programs.

prov ides the operator with
and sequencing diagnostic

b. Execution control: provides the operator with control of
the operational characteristics of the diagnostic program
and/or supervisor {e.g., looping, error reporting, etc.).

c. Debug/utility functions: provide the operator with debug
and utility functions such as: breakpoints, examine,
deposit, etc.

The supervisors also support operator terminal characteristics
such as width, fill, etc. In addition, all control functions
provided by the console (e.g., Control C) are also supported by
the supervisor.

3.5 SEQUENCE CONTROL COMMANDS
The program/test sequence control commands provide the operator
with the capability of loading and controlling the sequencing of
diagnostic programs, as well as the capability of controlling the

3-6

sequence of test execution within a program. The supervisor also
provides for the execution of a single subtest, and if the pass
count option is used, provides a loop-on-subtest capability.

The submit command allows an entire diagnostic test session to be
predefined by the operator. The supervisor is then capable of
performing the test session without operator assistance.

Note that the symbolic argument <file spec> as used in the
following subsection is defined as:

dev unit : [UIC] filename • ext

3.5.1 Load Command
Syntax: LOAD <file spec> [/PHYSICAL : <address>] <CR>

The load command causes the specified file to be loaded into
memory. The supervisor obtains sufficient information from the
program.

After a successful load, the supervisor prints out the following
message: Progname-r.p LOADED.

Progname is the program name. This is the internal name which
the supervisor extracts from the program header section.

--r.p is the release version number and the DEPO (patch)
number of the program.

The optional PHYSICAL switch directs the image loader to attempt
to load the program into physically contiguous memory starting at
< add r e s s > • The < add r es s > a r g um en t i s no rm a 11 y accepted i n
hexadecimal format by default.

3.5.2 Start Command
Syntax: START [/SEC <section name>] [/TEST <first>]
[:<last> !/SUBTEST : <number>]] -- [/PASS : <count>] <CR>

The start command causes the program in memory to begin execution.
As execution begins, the supervisor enters into a dialogue with
the operator to determine the program specific parameters. (e.g.,
w hi ch un its to t es t) • The co mm and switches and c e rt a in a r g um en ts
are optional.

The SECTION switch is program specific and not available for use
with all programs. When a section is selected, only the tests that
it contains will be executed.

The TEST switch is used in two distinctly different ways.

a. If the <first> and <last> arguments are specified, the
supervisor sequentially passes control to tests <first>
through <last> inclusively.

3-7

b. If the <first> argument is combined with the SUBTEST
switch, program execution begins at the beginning of the
<first> test and terminates at the end of SUBTEST
<number>.

If the SUBTEST switch is used in conjunction with the PASS switch,
the operator is provided with a loop-on-subtest capability. If the
optional PASS switch is not specified, a default <count> of one is
assumed.

If the TEST switch is not specified, all tests within the program
are executed. If only the <first> argument is specified with the
TEST switch, the <last> argument is assumed by default to be the
highest numbered test within the program.

3.5.3 Restart Command
Syn tax: RESTART [/SEC: <section name>]
[:<last> ! /SUBTEST : <number>]] -- [/PASS

[/TEST <first>
<count>] <CR>

The restart command is similar to the start command; however, the
supervisor does not enter into the parameter retrieval dialogue.
This command requires that the program P-Tables have been
previously setup with a start command. Switch syntax is identical
to the start command switches.

3.5.4 Run Command
Syntax: RUN<file spec> [/SEC: <section-name>]! -- [/TEST
[: <last>! -- /SUBTEST : <number>]] [/PASS : <count>]

The run command is
sequence. (Refer to
optional switches.)

equivalent to
Paragraph 3.5.2

a load
for a

and start
description

3.5.5 Control Characters and Special Characters

<first>

command
of the

Table 3-2 contains a description of the control and special
characters recognized by the supervisor.

3-8

Table 3-2 Control/Special Character Descriptions

Character Description

Control c (AC) Returns program control to the supervisor
w h i ch en t e rs a co mm and w a i t state • The
operator may then issue any valid supervisor
command.

Control o (AO) Suppresses or enables (on a toggle basis)
console terminal output. Console terminal
output is always enabled at the next console
terminal supervisor input prompt. However,
the supervisor will override Ao and
reinstate an active output status to the
operator terminal when it is servicing
system errors, CL! prompts, or forced
messages.

Control U (AU) Au typed before a line terminator causes the
deletion of all characters entered since the
last line termination. The console echoes:
AU/<CR><LF>

Rubout Typing rubout deletes the last character
typed on the input line. Only characters
entered since the last line terminator can
be rubbed out. Several characters can be
deleted in sequence by typing successive
rubouts. The first rubout echoes as a
backs lash (\) fol lowed by the character
which has been deleted. Subsequent rubouts
cause only the deleted character to be
echoed. The next character typed that is not
a rubout causes another (\) to be printed,
followed by the new character to be echoed.

Carriage Return (CR) Terminates a command line.

3.5.6 Continue Command
Syntax: CONTINUE <CR>

The continue command causes program execution to resume at the
point at which the program was suspended. This command is used to
proceed from a breakpoint, error halt, or Control C situation.

3.5.7 Summary Command
Syntax: SUMMARY <CR>

The summary command causes the execution of the program's summary
report code section which prints statistical reports.

3-9

3.5.8 Abort Command
Syntax: ABORT <CR>

The abort command executes the program's cleanup code and returns
control to the supervisor, which enters a command wait state. At
this. point the operator may issue any command except restart or
continue.

3.5.9 Submit Command
Syntax: SUBMIT <file spec> [/LOG
<CR>

ON OFF] [/CONSOLE ON! OFF]

The submit command causes the supervisor to read a script file
f r om any f i 1 e -o r i en t e d de v i c e • The super vi so r per f o rm s the
functions outlined in the script file and then returns control to
the operator at the console.

The script file may contain any valid operator commands, including
a submit command. However, a submit command within a script file
is considered a terminal command (i.e., the supervisor will close
the current script and log files and open new ones as specified by
the current command) •

If the LOG switch is specified as ON, a transcript of the indirect
terminal dialogue is maintained in a file of the same filename as
the script file with an extension of .LOG on the device where the
script file is located. The default for this switch is OFF.

If the CONSOLE switch is specified as ON, the terminal dialogue
generated by the script file is printed on the operator's
terminal. The default for this switch is ON.

3.6 EXECUTION CONTROL COMMANDS
This group of commands allows the operator to statically or
dynamically alter the operational characteristics of the
diagnostic program and/or the supervisor. These functions are
implemented by flags that reside in both the supervisor and the
program. The event flags are located within the diagnostic program
and are supported by VMS and the supervisor.

These commands are used to control the printing of error messages,
ringing the bell, halting and looping of the program, etc. Flags
are provided that indicate to the supervisor which type of
dialogue characteristics are desired by the operator. The operator
also has access to a subset of the event flags that are available
to the program.

3.6.1 Set Control Flag Command
Syntax: SET [FLAGS] <argument list> <CR>

This command sets the execution control flags specified by
<argument list>; no other flags are affected. <argument list> is a
string of flag mnemonics separated by commas. The applicable flags
are described in Table 3-3.

3-10

Flag

HALT

LOOP

BELL

!El

IE2

IE3

IES

QUICK

Table 3-3 Control Flag Descriptions

Description

Halt on error detection. When the program
detects a failure, with this flag set, the
supervisor enters a command wait state after
all error messages associated with the
fai 1 ure have been output. The operator may
then continue, restart, or abort the
program. This flag takes precedence over the
LOOP flag.

Loop on error. When set, this flag causes
the program to enter a predetermined scope
loop on a test or subtest that detects a
failure.

Looping will continue until the operator
returns to the super vi so r by us in g ""C • The
operator may then continue, clear the flag
and continue, restart, or abort the program.

Bell on error. When set, this flag will
cause the supervisor to output a bell to the
operator whenever the program detects a
failure.

Inhibit error messages at level 1. When set,
this flag suppresses all error messages
except those that are forced by the program
or supervisor.

Inhibit error messages at level 2. When set,
this flag suppresses basic and extended
information concerning the failure. Only the
header information message (the first three
lines) is output for each failure.

Inhibit error messages at level 3. When set,
this flag suppresses extended information
concerning the failure. The header and basic
information messages are output for each
failure.

Inhibit summary report. When set, this flag
suppresses statistical report messages.

Quick verify. When set, this flag indicates
to the program that the operator desires a
quick verify mode of operation.

3-11

Table 3-3 Control Flag Descriptions (Cont)

Flag Description

SPOOL List error messages on line printer. When
set, this flag causes the supervisor to
direct all program messages to the line
p r i n t e r • In th e VMS en v i r on men t , the
messages are not actually printed but
entered into a file on disk (not yet
implemented).

TRACE Report the execution of each test. When set,
this flag causes the supervisor to report
the execution of each individual test within
the program as the supervisor dispatches to
that test.

LOCK Lock in physical memory. When set, this flag
disables the program relocation function.
Self-relocating programs are then locked
into their current physical memory space.

OPERATOR Operator present. When set, this flag
indicates to the supervisor that operator
interaction is possible. When cleared, the
supervisor takes appropriate actions to
ensure that the test session bypasses any
tests that require manual intervention.

PROMPT Display long dialogue. When set, this flag
indicates to the supervisor that the
operator wants to see the limits and
defaults for all questions printed by the
program.

ALL All flags in this list.

3.6.2 Clear Control Flag Command
Syntax: CLEAR [FLAGS] <argument list> <CR>

The clear command clears the flags specified by <argument list>;
no o the r f 1 ag s are affected • The <a r g um en t 1 is t > i s a st r in g o f
flag mnemonics separated by commas. The supported arguments are
described in Table 3-3.

3.6.3 Set Control Flag Default Command
Syntax: SET FLAGS DEFAULT <CR>

This command returns all flags to their initial default status·.
The default flag settings are OPERATOR and PROMPT.

3-12

3.6.4 Show Control Flags Command
Syntax: SHOW FLAGS <CR>

This command causes the display of all execution control flags and
their current status. The flags are displayed as two mnemonic
lists: one for set flags, one for clear flags.

3.6.5 Set Event Flags Command
Syntax: SET EVENT [FLAGS] <argument list> ! ALL <CR>

This command sets those event flags specified by <argument list>;
no other event flags are affected. The <argument list> is a string
of flag numbers in the range 1--23, separated by commas. The
optional ALL may be specified instead of <argument list>.

Event re 1 ate d services are prov i d ed by the super vi so r to prov i de
intraprocess synchronization and signaling by means of event
flags. Event flags are located in clusters of 32 flags each.

The supervisor provides two event flag clusters. Event flags are
specified by the numbers 0--63. However, flags 24--31 are
restricted for use by VMS. The operator has the capability to
interactively set and clear flags 1--23.

Note that numbers 32--63 are for program use. Number 0 is used by
the supervisor.

3.6.6 Clear Event Flags Command
Syntax: CLEAR EVENT [FLAGS] <argument list> ! ALL <CR>

This command clears those event flags specified by <argument
list>; no other event flags are affected. The optional ALL may be
specified instead of <argument list>.

3.6.7 Show Event Flags Command
Syntax: SHOW EVENT [FLAGS] <CR>

This command causes the display of a list of the event flags
currently set.

3.7 DEBUG AND UTILITY COMMANDS
This group of commands provides the operator with the ability to
alter diagnostic program code. The supervisor allows up to 15
simultaneous breakpoints within the program. The operator can also
examine and/or modify the program image in memory. Optionally, a
modified image can be written to a load device so that patching
need occur only once.

Another feature allows the operator to unconditionally list any or
all of the program error messages.

3.7.1 Set Base Command
Syntax: SET BASE <address> <CR>

3-13

This command loads the address specified into a software register.
This number is then used as a base to which the address specified
in the set breakpoint, clear breakpoint, examine, and deposit
commands is added. The set base command is useful when referencing
code in the diagnostic program listings. The base should be set to
the base address (see the program link map) of the program section
referenced. Then the PC numbers provided in the 1 i stings can be
used directly in referencing locations in the program sections.

NOTE
Virtual address = physical address
(normally) when memory management is
turned off.

3.7.2 Set Breakpoint Command
Syntax: SET BREAKPOINT <address> <CR>

This command causes control to pass to the supervisor when program
execution encounters the <address> previously specified by this
command. A maximum of 15 simultaneous breakpoints can be set
within the diagnostic program.

3.7.3 Clear Breakpoint Command
Syntax: CLEAR BREAKPOINT <address> ALL <CR>

This command clears the previously set breakpoint at the memory
location specified by <address>. If no breakpoint existed at the
specified address, no error message is given. An optional argument
of all clears all previously defined breakpoints.

3.7.4 Show Breakpoints Command
Syntax: SHOW BREAKPOINTS <CR>

This command displays all currently defined breakpoints.

3.7.5 Set Default Command
Syntax: SET DEFAULT <argument list> <CR>

This command causes setting of default qualifiers for the examine
and deposit commands. The <argument list> argument consists of a
data length default and/or radix default qualifiers. If both
qualifiers are present, they are separated by a comma. If only one
default qualifier is specified, the other one is not affected.
Default defaults are HEX and LONG. Default qualifiers are:

Data Length: Byte, Word, Long
Radix: Hexadecimal, Decimal, Octal

3.7.6 Examine Command
Syntax: EXAMINE [<qualifiers>] [<address>] <CR>

The examine command displays the contents of memory in the format
described by the qualifiers. If no qualifiers are specified, the
default qualifiers set by a previous default command are
implemented. The applicable qualifiers are described in Table 3-4.

3-14

Table 3-4 Qualifier Descriptions

Qualifier Description

/B Address points to a byte

/W Address points to a word

/L Address points to a longword

/X Display in hexadecimal radix

/D Display in decimal radix

/0 Display in octal radix

/A Display in ASCII bytes

When specified, the <address> argument is accepted in hexadecimal
format unless some other radix has been set with the set default
command. Optionally, <address> may be specified by immediately
preceding the address argument with %D OR %0, respectively.
<Address> may also be one of the following: R0--Rll, AP, FP, SP,
PC, PSL.

3.7.7 Deposit Command
Syntax: DEPOSIT [<qualifiers>] <address> <data> <CR>

The command accepts data and writes it into the memory location
specified by <address> in the format described by the qualifiers.
If no qualifiers are specified, the default qualifiers are
implemented. The applicable qualifiers are identical to those of
the examine command and described in Table 3-4.

The <address> argument is accepted in hexadecimal format unless
some other radix has been set with the set default command.
Optionally, <address> may be specified as decimal or octal by
immediately preceding <address> with %D or %0, respectively.

J-15

CHAPTER 4
MICRODIAGNOSTIC DESCRIPTION

4.1 MICRODIAGNOSTIC PROGRAM OVERVIEW
The microdiagnostic programs provide module isolation for logic
failures within the CPU, floating-point, and MDS memory
controllers. All detected failures result in an error printout
indicating the module, or smallest set of modules, to which the
microdiagnostic~ can isolate the failure.

The microdiagnostic package consists of two major test divisions:
console adapter and hardcore, and microtests. Each test division
is controlled by an associated monitor that provides
non-diagnostic services to that division.

a. Hardcore Monitor -- Console Adapter and Hardcore Program
b. Microtest Monitor -- Microtest Program

Both test division monitors are serviced by the console-resident
microdiagnostic monitor. In addition to loading the hardcore and
microtest monitors, the microdiagnostic monitor allows the
operator test selection and execution options (Paragraph 4.6). In
order to reduce the address space required to execute the hardcore
and microtest programs, the common code of both programs has been
incorporated into the microdiagnostic monitor. That code, which
is unique to either the hardcore tests or microtests, has been
incorporated into the associated monitors.

The microdiagnostics reside on diskettes for the floppy drive.
The basic test sequence is: 1) hardcore tests, 2) microtests.
The hardcore tests verify the operation of the minimum logic
r eq u i red to re 1 i ab 1 y execute the mi c rotes ts • ·The min i mum 1 og i c
consists of the basic hardware elements required for data transfer
and error reporting.

The code, data, and structure required by the microdiagnostics
prohibit them from being resident in the LSI-11 address space at
any one time. The hardcore tests are executed out of a small
buffer area in the LSI-11 memory. The microtests are executed out
of the WCS of the VAX-11/780 CPU.

4.2 BASIC PROGRAM EXECUTION
With the console program resident (in LSI-11 memory), the operator
can execute the entire microdiagnostic package by issuing the test
command. The console program overlays itself with the
microdiagnostic monitor from the console floppy. (However, the
floppy and terminal software drivers are not overlaid since they
provide utility service to each of the monitors.)

In turn, the microdiagnostic monitor transfers the hardcore
monitor into the LSI-11 memory from the floppy. The hardcore
tests are then executed sequentially out of the buffer in the
LSI-11 memory. On completion of the hardcore tests, the hardcore
monitor notifies the microdiagnostic monitor. The microdiagnostic

4-1

monitor, in turn, transfers the microtest monitor into the LSI-11
memory (from floppy) • The microtest monitor then executes the
microtests out of the WCS in approximately lK microword overlays.
On completion of the microtests, control is returned to the
console program.

Fig.ure 4-1 illustrates program residency in the LSI-11 memory.
Note that those items on a horizontal line are exclusive in
memory; e.g., the console program or the microdiagnostic monitor
may be resident, but not both. As previously mentioned, the
floppy and terminal drivers (and software bootstrap) are always
resident.

4.3 BASIC TEST STRATEGY
The basic test strategy is to transfer data from a test source and
load it into the logic element under test. The next step is to
retrieve the data from that element and compare it with the
original data loaded. Depending on the test requirements, logic
element structure, and functional location, the retrieved data may
or may not have a true compare. In either case, the fail/no fail
dee is ion is based on the expected results. In some tests, the
same logic is tested using an array of data patterns.

wcs
DEBUGGER

l

i

HARDCORE
TEST STREAM
OVERLAYS

HARDCORE
MONITOR

l
I

MICRO-CODE
BUFFER

l
MICRO-TESTS
MONITOR

J

CONSOLE

MICRO­

DIAGNOSTIC

MONITOR

I
l

FLOPPY &
TERMINAL

DRIVERS

J

TK-0754

Figure 4-1 LSI-11 Memory Program Residency

4-2

It is essential to the test strategy that the basic load and error
reporting paths are initially tested for reliable operation. In
an error-free situation, the microdiagnostic can notify the user
when a test is completed. In the case of error detection, the
microdiagnostic can identify for the user: the failed module and
test, the data pattern used, and the expected test result.

A simplified test procedure is illustrated in Figure 4-2.
that a true compare is not necessarily the expected result.

START

GENERATE TEST
DATA, WRITE
TO REGISTER

READ REGISTER
COMPARE DATA

YES

NEXT
TEST

NO

DISPLAY:
TEST 1.D.
TEST DATA
RESULTS

HALT
OR
REPEAT TEST
OR
NEXT TEST

TK-0779

Figure 4-2 Simplified Microdiagnostic Test Procedure

4-3

Note

4.4 HARDCORE TEST DESCRIPTION
The hardcore tests are the in i ti a 1 set o f mi c rod i a gn o st i c tests
executed. Paragraph 4.4.1 describes the hardcore test structure.

The hardcore tests initially check the control and data registers
of the Console Interface Board (CIB). This ensures test access to
the VAX ID Bus. After the CIB tests, the clock board is tested.
The clock is turned on and off, single-stepped, and certain clock
function status is retrieved over the Visibility Bus (V Bus).

The next element tested is the microsequencer. For example, data
is transferred onto the microstack and then retrieved. An address
is placed on the microstack. The maintenance return feature is
then used to pop the address off the microstack and load it into
the micro PC. This allows the microaddress paths to be tested in
small segments.

As shown in Figure 4-3, the remainder of the hardcore test
sequence tests WCS, PROM Control Store (PCS), and basic elements
of the data path. Generally, these are address integrity and
parity checking tests. The WCS is tested by writing a variety of
address and data patterns to it, and checking for good parity, or
forced bad parity.

The basic elements of the data path are tested by writing data to
certain registers, reading that data back, and comparing the
results. The data path is tested for its ability to transmit and
retain expected data. The basic capabilities of the Arithmetic
Logic Unit (ALU) to transfer and compare data are tested. The
scratch pads are also tested for retaining data; the scratch pads
are used to hold error data in the case of error detection.

4-4

HARDCORE
TESTS

I
I
I
I
I
I
I
I
I

p

r---1 CLOCK

START/STOP
STATUS

~ USC

CIB r---

DATA REGS
CONTROUSTATUS
ID BUS
CLOCK CONTROL

ADDRESS PAT HS
TRAPS. ECO'S

I---

~

STACK
MAINT. RETUR N

wcs

PARITY GEN.
ADDRESS INT EG.
DATA INTEG.

PCS

PARITY CHECK ER

EG. ADDRESS INT

1-----i
DATA
PATH

ID BUS Q& DREGS.
SCRATCH PADS
ALU
ZERO BRANCH

·TK-0751

Figure 4-3 Hardcore Test Sequence

4.4.1 Hardcore Test Structure
Because of the limited LSI-11 memory address space, the hardcore
tests are _sequentially loaded from the floppy and executed out of
a l.SK byte buffer in the LSI-11 memory. The hardcore tests are
implemented using special pseudo instructions. The pseudo
instructions are actually functional statements, where each
statement produces a table of parameters that resemble op codes
and operand addresses.

The hardcore monitor contains a software PC which, in effect, is a
pointer into the tables. Based on the content of the op codes and
operands, the monitor calls subroutines that are written in PDP-11
code to perform the operation required by a specific test.
Implementing test code in this manner allows a large test
functionality to reside in a small address space.

4-5

4.4.2 Pseudo Instruction Description
The following paragraphs describe the hardcore test pseudo
instructions and their associated statement formats. Table 4-1
defines the symbols and abbreviations used in describing the
statement formats.

Table 4-1 Instruction Symbol/Abbreviation Definitions

Item Definition

< > Used to denote a category name or argument within a
functional statement, e.g., <SCR ADDRESS> represents a
valid source address.

[]

SCR

DST

I,J,K

Used to indicate that part of a functional statement
that is optional, e.g., [<WCS ADDRESS INDEX>],
represents an address index value that may or may not be
specified depending on the functional statement.

Used to separate category names or arguments within a
functional statement.

Abbreviation for source.

Abbreviation for destination.

Legal index names.

Each pseudo instruction description is divided into two
descriptive segments. The format segment describes the statement
format using the symbols defined in Table 4-1. The instruction
description is a brief paragraph describing general command
operation and the available options. Each instruction description
is preceded by the instruction mnemonic in boldface type.

BLKMIC

BLKMIC <SCR ADDRESS>, <SCR INDEX>, <WCS ADDRESS>,
<WORD COUNT>, [<WCS ADDRESS INDEX>]

Move the <WORD COUNT> number of 96-bit microwords from the <SCR
ADDRESS>, indexed by <SCR INDEX>, to the WCS starting at <WCS
ADDRESS>, indexed by <WCS ADDRESS INDEX>. If an <SCR INDEX> is
specified, the <SCR ADDRESS> is indexed by six PDP-11 words (i.e.,
96 bits).

If the <WCS ADDRESS> starts with an alpha character, the <WCS
ADDRESS> is used as a pointer to a table in the test data area of
the test. Otherwise, it is used as a physical WCS address.

For example, if the current value of the index is 2, 148 (<SCR
INDEX> * 6) would be added to the <SCR ADDRESS> to find the first
96-bit microword to load into the WCS.

4-6

CHKPNT

CHKPNT [<PASS ADDRESS)], [<FAIL ADDRESS>]

If the error flag, set during a compare instruction (see CMPXXX
instructions), is zero, go to the <PASS ADDRESS>. If the error
flag is not zero, go to the <FAIL ADDRESS>. If neither a pass nor
a fail address is specified, go to the next instruction in line.

The address of the next instruction is typed. These addresses
appear on the typed line named TRACE (Figure 4-10).

CLOCK

CLOCK <TIMES>

Step the system clock <TIMES> number of single time states. If
<TIMES> is an integral number of four, single bus cycles are
executed for each four <TIMES>.

CMPC A

CMPCA [<MODE>], <REGISTER>, <DST ADDRESS>, [<DST ADDRESS INDEX>]

Compare the contents of the console register specified by
<REGISTER> with the contents of the location specified by <DST
ADDRESS>, indexed by <DST ADDRESS INDEX>. The <MODE> argument is
generally EQUAL. If left blank, the default for <MODE> is EQUAL.

If the comparison is false, set the error flag.
argument is not specified, it defaults to EQUAL.

If the <MODE>

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READID instruction.

CMPCAD

CMPCAD [<MODE>], <REGISTER>, <DST ADDRESS>, [<DST ADDRESS INDEX>]

Comp a re the con tents of the console registers specified by
<REGISTER> and <REGISTER>+2 with the contents of the location
specified by <DST ADDRESS> and <DST ADDRESS>+2, indexed by <DST
ADDRESS INDEX>.

If the com par i son i s fa 1 s e , set the error f 1 a g •
argument is not specified, it defaults to EQUAL.

If the <MODE>

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READID instruction.

4-7

CMPCAM

CMPCAM [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS
INDEX>], <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the content of the console register specified by <REGISTER>,
mask it with the content of the <MASK ADDRESS>, indexed by <MASK
ADDRESS INDEX>, and compare it with the content of <DST ADDRESS>,
indexed by <DST ADDRESS INDEX>.

If the comparison is false, set the error flag.
argument is not specified, it defaults to EQUAL.

If the <MODE>

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READIN instruction.

The mask is performed by taking the content of <MASK ADDRESS>,
indexed by <MASK ADDRESS INDEX>, complementing it, and
bit-clearing the contents of <REGISTER> with it.

CMPC MD

CMPCMD [<MODE>], <REGISTER>, <MASK ADDRESS>, [<MASK ADDRESS
INDEX>], <DST ADDRESS>, [<DST ADDRESS INDEX>]

Take the content of the console registers specified by <REGISTER>
and <REGISTER>+2, mask it with the contents of <MASK ADDRESS> and
<MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>, and compare it
with the contents of <DST ADDRESS> and <DST ADDRESS>+2, indexed by
<DST ADDRESS INDEX>.

If the <MODE> argument is false, set the error flag.
<MODE> argument is not specified, it defaults to EQUAL.

If the

If the <REGISTER> argument is specified as IDREGLO or IDREGHI, the
register used in the comparison is the ID Bus register that was
read in the most recent READIN instruction.

The mask is performed by taking the content of <MASK ADDRESS> and
<MASK ADDRESS>+2, indexed by <MASK ADDRESS INDEX>, complementing
it, and bit-clearing the contents of <REGISTER> and <REGISTER>+2.

CMPPCSV

CMPPCSV <DST ADDRESS>, [<DST ADDRESS INDEX>]

Compare the content of the PC save register with the content of
the location specified by <DST ADDRESS>, indexed by <DST ADDRESS
INDEX>. If the contents are not equal, set the error flag.

4-8

END LOOP

ENDLOOP <INDEX NAME>

Add the increment value of <INDEX NAME> (see loop instruction) to
the current value of the index specified by <INDEX NAME>. Compare
the current value with the last value (specified in the loop
instruction). If the current value is less than or equal to the
last value, go to the instruction following the associated (I, J,
or K) loop instruction. Otherwise, go to the next sequential
instruction.

ERRLOOP

ERR LOOP

Save the address of the next instruction. If an error is
detected, and the loop or error flag is set (Paragraph 4.6),
execution is restarted at this saved address after the IFERROR
instruction is executed (Figure 4-11).

FETCH

FETCH <WCS ADDRESS>, [<WCS ADDRESS INDEX>], [<WCS ROM NOP>]

If <WCS ADDRESS> is a numeric string, execute a maintenance return
to the location specified by <WCS ADDRESS>, indexed by <WCS
ADDRESS INDEX>. If <WCS ADDRESS> is an alphanumeric string,
execute a maintenance return to the location specified by the
content of <WCS ADDRESS>, indexed by <WCS ADDRESS INDEX>. If <ROM
NOP> is specified, clear bit 7 of the Machine Control Register
(MCR) during the maintenance return.

FL TONE

FLTONE <DST ADDRESS>, <INDEX NAME>

Generate a 32-bi t word of all zeros• Insert a logic one in the
bit postion specified by the current value minus one of <INDEX
NAME>, and load this word into the location specified by <DST
ADDRESS> and <DST ADDRESS>+2.

FLTZRO

FLTZRO <DST ADDRESS>, <INDEX NAME>

Generate a 32-bi t word of all logic ones. Insert a zero in the
bit position specified by the current value minus one of <INDEX
NAME>, and load this word into the location specified by <DST
ADDRESS> and <DST ADDRESS>+2.

4-9

IF ERROR

IFERROR [<MESSAGE NUMBER>], [<FAIL ADDRESS>]

If the error flag is nonzero, type the PC of this instruction, the
test number, subtest number, and the good and bad data. Then, go
to <FAIL ADDRESS> if the HALTD flag is not set (Paragraph 4.6).

If the error flag is zero, or the <FAIL ADDRESS> is not specified,
go to the next instruction.

INITIALIZE

INITIALIZE

Set and clear the CPU initialize bit in the MCR, clear the single
time state bit, set the single bus cycle bit, set the ROM NOP bit,
and set the proceed bit in the MCR.

KMXGEN

KMXGEN <SRC ADDRESS>, <INDEX NAME>

Generate the KMUX address specified by the current value minus one
of <INDEX NAME> and load it in to the KMU X field of the
microinstruction specified by <SRC ADDRESS>. <SRC ADDRESS> points
to a six word table in the test data section of the test that
contains the microinstruction.

LDIDREG

LDIDREG <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]

Load the ID Bus register specified by <REGISTER> with the contents
of the locations specified by <SCR ADDRESS> and <SCR ADDRESS>+2,
indexed by <SRC ADDRESS INDEX>.

If <REGISTER> is the microstack, microbreak, or WCS address, the
content of <SCR ADDRESS> is taken to be 16 bits. Otherwise, it is
taken to be 32 bits.

LO ADC A

LOADCA <REGISTER>, <SRC ADDRESS>, [<SRC ADDRESS INDEX>]

Load the console register specified by <REGISTER> with the
content of the location specified by <SRC ADDRESS>, indexed by
<SRC ADDRESS INDEX>. This instruction loads 16 bits of data.

4-10

LOOP

LOOP <INDEX NAME>, <START>, <END>, [<SIZE DEPENDENT>]

Initialize the loop parameter specified by <INDEX NAME> to the
value specified by <START>. Save the value specified by <END> for
the ENDLOOP instruction. Calculate and save the increment value
for the ENDLOOP instruction with the following algorithm:

If <START> is less than or equal to
<END>, set the increment value to +l;
otherwise, set it to -1.

If <END> is an <INDEX NAME>, save the current value of that index
name as the <END> value of this index name.

If <SIZE DEPENDENT> is specified, and there is only one WCS module
on the system, divide the larger of <START> and <END> by two.
Otherwise, leave them unchanged.

NOTE
The tests are written for two WCS
modules. This argument allows the loop
parameters to be modified at run time if
the system only has one module.

MASK

MASK <DST ADDRESS>, <MASK ADDRESS>

Take the content of location <MASK ADDRESS>, complement it, and
bit-clear the content of location <DST ADDRESS> with it.

MOVE

MOVE <SRC ADDRESS>, [<SRC ADDRESS INDEX>], <DST ADDRESS>

Move the content of <SRC ADDRESS INDEX> (indexed by <SRC ADDRESS
INDEX>) to the location specified by <DST ADDRESS>.

NEWTST

NEWTST <TEST NAME>, [<TEST DESCRIPTION>], [<LOGIC
DESCRIPTION>], [<ERROR DESCRIPTION>], [<SYNC POINT
DESCRIPTION>]

This instruction creates a test header document for the specified
arguments. It clears the error flag and saves the PC of the next
instruction for looping on test.

4-11

READ ID

READID <REGISTER>

Read the ID Bus register specified by <REGISTER> and load the
content into locations IDREGLO and IDREGHI.

RESET

RESET

Execute an LSI-11 reset instruction.

REPORT

REPORT <MODULE NAME STRING>

Type out the module numbers of the modules specified by <MODULE
NAME STRING>. If the HALT I flag is set, return to the
microdiagnostic monitor.

SETPSW

SETPSW <DATA>

Load the LSI processor status word with the value specified by
<DATA>.

SETVEC

SETVEC <VECTOR ADDRESS>

Set the LSI-11 address specified by <VECTOR ADDRESS> to the
expected trap routine.

SKIP

SKIP [<DST ADDRESS>]

Go to the <DST ADDRESS>. If <DST ADDRESS> is not specified, go to
the next test. If <DST ADDRESS> starts with the alpha character
S, go to the next subtest.

SUBTEST

SUBTEST

Increment the subtest counter.

4-12

TSTVB

TSTVB <SRC TABLE ADDRESS>, [<SRC TABLE ADDRESS INDEX>]

Load and read the V Bus. Compare the contents of the data at <SRC
TABLE ADDRESS>, indexed by <SRC TABLE ADDRESS INDEX>, with the V
Bus data just read. The <SRC TABLE> has the following format:

1 $: .WORD <NUMBER OF BITS TO CHECK>
VB USG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT

VALUE>

2$: .WORD <NUMBER OF BITS TO CHECK>
VB USG <CHANNEL NUMBER>, <BIT NUMBER>, <EXPECTED BIT

VALUE>

VBUSG is a MACRO name that encodes the three arguments into one
16-bit word as follows:

BITS <07:00> = <CHANNEL NUMBER>
BITS <14:08> = <BIT NUMBER)
BIT <15> = <EXPECTED BIT VALUE>

The following is an example of the <SRC TABLE ADDRESS INDEX>:

TSTVB 1$,I
If the current value of the <SRC TABLE ADDRESS INDEX> is 2,
and the <SRC TABLE> looks like the preceding table, the
physical <SRC TABLE ADDRESS> would be 2$.

TYPSIZE

TYPSIZE

Use the content of location BADDATA, which contains the value of
the WCS data register when it was read, to determine the WCS
module configuration, and type a message and the number of WCS
modules that will be tested. If any of the following conditions
exist, the test stream is aborted and the NER (No Error Report)
flag is set.

a. WCS module count is zero
b. bits 3--0 are nonzero
c. fifth K of WCS is not present

These conditions mean that the WCS is either configured
incorrectly or the WCS data register cannot be read correctly.

4-13

4.5 MICROTEST DESCRIPTION
On completion of the hardcore tests, the microdiagnostic monitor
overlays the hardcore monitor with the microtest monitor.
Microtest sequencing and execution are then controlled by the
microtest monitor.

The microtest monitor begins to load the microtests from the
floppy into the same buffer area used by the hardcore tests.
However, in the case of microtests, this area is strictly a
buffer. Since the microtests are implemented in system microcode,
the tests are transferred from the buffer and loaded into and
executed out of the WCS.

The monitor references a table that contains the WCS addresses of
the first instruction of every test in the overlay (section) that
was just loaded in order to locate the address of the first test
(first entry in the table). The address is loaded onto the
microstack. A maintenance return is performed, popping the
address from the microstack into the micro PC and initiating
execution of the first test. At the end of each test, the
microtest monitor is interrupted. This allows the monitor to
check that the microtests are being executed in the correct order.

The monitor then initiates the next test with another maintenance
return. This sequence continues until the original lK microword
overlay has been executed. At this point, the microtest monitor
loads another lK microword overlay into WCS.

Because of the microtest package size, more than one diskette is
required for storage. When the monitor executes the last test on
a diskette, it determines whether it is the last test of the
entire package. In the case where it is the last test, the
monitor prints out a message to the operator with instructions to
load the next sequential diskette and enter a command to continue
microtest execution (Paragraph 4.8).

4.5.1 Microtest Structure
The initial microtests complete the data path testing started by
the hardcore tests. The microtests then begin to test the
Translation Buffer (TB) and cache without using memory. The tests
check the TB and cache for their ability to retain correct address
and data information, and to check parity correctly.

The Instruction Buffer (IB) tests are then executed, again without
using memory. The IB test data is loaded into cache. The
microtests cause instruction test patterns to be retrieved from
cache, and check the IB branching functions ·and controls for the
data path.

The interrupt and condition code logic is checked in
manner (i.e., test data loaded into and subsequently
from cache.)

4-14

a similar
retrieved

The next test segment covers the SB! control logic and its
maintenance functions, and the memory system. After performing
these tests, the micro tests go back and test those functions of
the TB, cache, and SB! subsystem that depend on retrieving data
from memory (e.g., cache, SB! faults, etc.). A minimal amount of
testing is performed on the Unibus and Massbus adapters. These
tests force selected errors on the SBI and determine the adapters'
capability to detect and react to the forced errors correctly.

The floating-point accelerator is tested last.

Figure 4-4 shows the microtest sequence.

µTESTS

DATA PATH

TB, CACHE
W/O MEMORY

18 (W/0 MEMORY)
18 BRANCH
FUNCTIONS,
CONTROLS FOR
DATA PATH

INTERRUPT &
CONDITION
CODE LOGIC

$81 CONTROL
LOGIC,
MAINTENANCE
FEATURES,
MEMORY SYSTEM

TB, CACHE, SBI
FUNCTIONS
PERTAINING
TO MEMORY

MINIMAL UBA,
MBA TESTING

FPA

TK-0778

Figure 4-4 Microtest Structure

4- 15

On completion of the microtests, control is returned through the
microdiagnostic monitor to the console program. The console
reboots, sends the relevant bootstrap header information to the
console terminal, and prompts for operator input.

4.6 MICRODIAGNOSTIC MONITOR CONTROLS
The following paragraphs describe the operator command execution
control functions provided by the microdiagnostic monitor. Where
appropriate, examples of command and program control flag usage
are included. Also included is a description of microdiagnostic
related error messages.

The majority of the commands available in the microdiagnostic
monitor are not used in the normal course of execution. Normally
the operator enters the test command and executes the entire
microdiagnostic package. The command mode is usually used
following error detection. Following the error message printout,
testing stops and control is returned to the monitor command mode.
At this point, the operator executes those microdiagnostic
commands he decides would be most helpful.

Symbols used in the command syntax a re the comma and < >. The
comma is used to separate items within a list. < > denotes an
argument, that is, either an address, pass count value, or a V Bus
channel. Note that every command (or command line) must be
terminated with a carriage return (CR).

Control C (AC) is the user interrupt control character. If
Control C is entered during test execution, the current test will
complete, further testing is suspended, and control is returned to
the monitor command mode. If Control C is entered while a test is
looping on an error, the loop will be suspended and control
returned to the command mode. Any command may be aborted if a
Control C is entered in that command line.

Table 4-2 describes the monitor commands. Note that although all
commands, keywords, qualifiers, and flags are spelled out, they
can be abbreviated to the first two characters. The only
exceptions are the halt on error detection and halt on error
isolation flags, which must be typed HD and HI, respectively.

4-16

Table 4-2 Microdiagnostic Command/Flag Descriptions

Command/Flag Description

DIAGNOSE Initializes the program control flags,
and starts microdiagnostic execution at
test number one.

Examples

Valid qualifiers are:

/TEST: <NUMBER> -- Dispatch to the test
number specified (do not execute any
prior tests) , and loop on the test
indefinitely.

/SECTION: <NUMBER> -- Dispatch to the
sect ion numb e r spec i f i e d (do no t
execute any prior sections), and loop
on the section indefinitely.

/PASS: <NUMBER> -- Execute the micro­
d i agnostics and the specified number of
passes before returning to the console.
If the number is -1, execute the micro­
diagnostics indefinitely.

/CONTINUE Used with the /TEST or
/SECT switch to automatically continue
after the specified test or section has
been reached.

/TEST: <N> <M> -- Dispatch to test <N>,
execute tests <N> through <M>
(i n c 1 us i v e) , and r e t u r n to co mm and
mode.

/SECT: <N> <M> -- Di spat ch to sect ion
<N>, execute sections <N> through <M>
(inclusive), and return to command
mode.

NOTE
In the preceding variations of the
/TEST and /SECTION qualifiers, the value
of <N> must be less than or equal to
<M>. If <M> is less than <N>, testing
will start at <N> and continue to the
end.

/TEST and /SECT cannot be specified
simultaneously.

DIAG/TEST:2F
Dispatch to test number 2F and execute
it indefinitely.

4-17

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag Description

CONTINUE

Set and Clear Flags

SET/CLEAR FLAG HD

SET/CLEAR FLAG HI

SET/CLEAR FLAG LOOP

SET/CLEAR FLAG NER

SET/CLEAR FLAG BELL

SET/CLEAR FLAG ERABT

CLEAR FLAG LS

CLEAR LT FLAG

SET/CLEAR FLAG ALL

SET/CLEAR SOMM

SET/CLEAR SOMM:<ADDRESS>

DIAG/SECT:B
Dispatch to section number B and
execute it indefinitely.

DIAG/PASS:--1
Execute all of the microdiagnostics
indefinitely.

DIAG/TEST:2F/CONT
Dispatch to test 2F and start execution
of the remaining tests.

Continues microdiagnostic execution
without changing the program control
f 1 ag s.

Sets (or clears) the halt on error
detection flag.

Sets (or clears) the halt on error
isolation flag.

Sets (or clears) the loop on error
flag.

Sets (or clears) the no error report
flag.

Sets (or clears) the bell on error
flag.

Sets (or clears) the error abort flag.

Clears
flag.
set.)

the loop on special section
(Note that this flag cannot be

Clears the loop on special test flag.
(Note that this flag cannot be set.)

Sets (or clears) all of the previous
flags.

Sets (or clears) the stop on micromatch
bit.

Loads address into the CPU microsync
register, and sets (or clears) the stop
on micromatch bit.

4-18

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag Description

SET/CLEAR FPA:<ADDRESS>

SET STEP STATE

SET STEP BUS

SET STEP INSTRUCTION

SET CLOCK FAST

SET CLOCK SLOW

SET CLOCK NORMAL

SET CLOCK EXTERNAL

SHOW

LOOP

RETURN

Loads <ADDRESS> into the FPA microsync
register.

Sets the CPU clock to single time
state.

Sets the CPU clock to single bus cycle.

Both the SET STEP STATE and SET STEP
BUS commands cause the monitor to enter
step mode. Step mode types the current
clock state or the UPC value, and waits
for terminal input. If a space is
typed, the clock is triggered and the
current UPC value is typed out. If any
other character is entered, step mode
is exited.

Sets the software single instruction
flag and returns to the monitor. When
the hardcore tests are invoked, the
current value of the Test PC (TPC) is
typed. The monitor waits for terminal
input. If a space is typed, the
current pseudo instruction is executed
and the current value of the TPC is
typed. If any other character is
typed, step mode is exited.

Sets the CPU clock speed to the fast
margin.

Sets the CPU clock speed to the slow
margin.

Sets the CPU clock speed to normal.

Sets the CPU clock for an external
oscillator.

Causes a display of the HD, HI, LOOP,
NER, BELL, ERABT, LS, and LT flags.

Clears the HD and HI flags. Sets the
LOOP and NER flags and executes a
continue command.

Returns control to the console program.

4-19

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag Description

Examine Commands

EXAMINE ID:<ADDRESS>

EXAMINE VBUS:<CHANNEL>

EXAMINE RA:<ADDRESS>

EXAMINE RC:<ADDRESS>

EXAMINE LA

EXAMINE LC

EXAMINE DR

EXAMINE QR

EXAMINE SC

EXAMINE FE

EXAMINE VA

EXAMINE PC

The following examine commands cause
the current microinstruction to be
executed before the examine is
performed, if it is the first examine
since entering the monitor command
mode. All successive examines do not
execute any additional
microinstructions. ID Bus registers
Tl--T8 are destroyed during the
exam in es, except for the V Bus
examines. All of the following
examines, except V Bus, advance the
clock to CPT0 before executing the
command.

Displays the content of the ID Bus
register specified by <ADDRESS>.

Di splays the content of the V BUS
channel specified by <CHANNEL>. Bit 0
is at the right side of the display.

Displays the content of the RA scratch
pad specified by <ADDRESS>.

Displays the content of the RC scratch
pad specified by <ADDRESS>.

Displays the content of the LA latch.

Displays the content of the LC latch.

Displays the content of the D register.

Displays the content of the Q register.

Displays the content of the SC
register.

Displays the content of the FE
register.

Displays the content of the VA
register.

Registers the content of the program
counter.

4-20

Table 4-2 Microdiagnostic Command/Flag Descriptions (Cont)

Command/Flag Description

Deposit Commands

DEPOSIT ID: <ADDRESS>
DEPOSIT RA: <ADDRESS>
DEPOSIT RC: <ADDRESS>
DEPOSIT LA: <DATA>
DEPOSIT LC: <DATA>
DEPOSIT DR: <DATA>
DEPOSIT QR: <DATA>
DEPOSIT SC: <DATA>
DEPOSIT FE: <DATA>
DEPOSIT VA: <DATA>
DEPOSIT PC: <DATA>

The deposit command is the same as the
examine command, except that the data
to be deposited must be supplied by the
user.

<DATA>
<DATA>
<DATA>

4.6.l Monitor Control Examples
The following paragraphs provide usage examples of selected
monitor controls. These descriptions are brief and are intended
only to indicate some of the capabilities of the microdiagnostic
monitor.

4.6.1.l HD/HI Flags In addition to testing, the
microdiagnostics perform two basic functions: error detection and
error isolation. Under normal circumstances, the user would set
the HI flag. Setting the HI flag initiates the following
microdiagnostic sequence:

a. Error detection

b. Call isolation routine to identify the error cause

c. Display an error message identifying the failed test,
data pattern used, and the failing modules

d. Terminate test execution.

In a situation where the user does not require a scope loop, and
wants to halt execution at the error detection point, the HD flag
is set. This flag halts the test before the microdiagnostic calls
the isolation routine overlay (e.g., V Bus compare).

4.6.1.2 Loop On Error Flag (LOOP) -- With this flag set, the
microdiagnostic will revert to a tight program loop after error
detection (assuming the NER flag is set). Note that the loop will
continue even though the error is intermittent; the flag must be
cleared to break the loop.

4-21

4.6.1.3 No Error Report Flag (NER) -- This flag suppresses the
typing of error messages. The flag is especially useful in the
case of looping on an error. Since the error printout takes time,
the scope sync is lost during typing time. With error reports
suppressed, the loop is tight and produces a reasonable sync.

4.6.·l.4 Bell On Error Flag (BELL)

Hardcore Tests -- When running the hardcore tests, setting this
flag causes the console terminal to ring its bell when an error
occurs. This flag is useful in a situation where a manual
adjustment could clear the error. In this situation, the user
would set the LOOP flag and the NER flag, producing a tight loop.

However, with no error report, the user does not have an
indication of where the error cleared during the adjustment.
Setting the BELL flag is a compromise between a reasonably tight
error loop (the BELL flag slows the loop somewhat) and an error
indication during the adjustment. If a scope were used during the
adjustment, the user would have an error indication without losing
the scope trace.

Microtests In the microtests, one must loop on test
(DI/TEST:n); then, after the error message has been printed, set
the NER and BELL flags, clear the HI flag, and type CONTINUE.

4.6.1.5 Continue Command (CONT) -- This command allows the user
to proceed from a microdiagnostic halt situation. For example,
suppose that a hardware ECO, which has not been reflected in the
diagnostic system, is incorporated into the computer. When the
microdiagnostic halts following detection of the pseudo error, the
user can bypass the failing test and continue execution at the
next test by entering CONTINUE.

4.6.1.6 Error Abort Flag (ERABT) -- This flag allows the user to
di splay more than one error report in certain hardcore tests
(tests which exercise a particular piece of logic with more than
one data pattern).

For example, consider the situation where the ERABT flag is set,
and the test detects a type 2 error (ERROR2) on one of the initial
data patterns. If the user were to enter CONTINUE, the flag would
abort the remainder of the test and initiate execution of the next
sequential test. However, with the flag cleared, CONTINUE will
initiate execution of the same test with the next sequential data
pattern.

4.7 MICRODIAGNOSTIC RELATED ERROR MESSAGES
The following paragraphs describe the microdiagnostic-related
error message formats and their interpretation. All error
messages are prefixed by a question mark to distinquish them from
informational messages.

4-22

4.7.1 Syntax Error Messages
?USE DIAG COMMAND
Execution of a continue command was attempted before a diagnose
command. This would only occur if TEST/COM were used to invoke
the microdiagnostics from the console program.

?INVALID COMMAND
The previously entered command was not recognized.

?INVALID KEYWORD
The argument of a command was not recognized.

?NUMBER MUST BE HEX
A non-hexadecimal number was recognized.

4.7.2 System Error Messages
?OPEN FILE: <NUMBER>
An error was detected and identified while trying to open a floppy
file. Error code is:

<NUMBER> = 1 = Floppy hardware error
<NUMBER> = 2 = File not found
<NUMBER> = 3 = Floppy not ready

?READ SECTOR: <NUMBER>
An error was detected and identified while trying to read a sector
from the floppy. Error code is:

<NUMBER> = 4 = Sector number out of range
<NUMBER> = 3 = Floppy queue full
<NUMBER> = 1 = Floppy hardware error

?KEYBOARD ERROR: <NUMBER>
An error
terminal.

was detected and
Error code is:

identified while trying

<NUMBER> = 5 = Terminal driver busy
<NUMBER> = 7 = Terminal hardware error

?UNEXPECTED TRAP TO 4 PC =
The LSI-11 trapped to 4 at the specified PC.

4.7.3 Go Chain Monitor Error Messages
?TIMEOUT IN TEST ••• UPC =

to read the

Indicates that the microcode is hung. The monitor did not receive
a call from the microcode in the last four seconds.

?EXECUTION OUT OF SEQUENCE UPC = SHOULD BE =
The microcode has not executed the tests within the overlay in
sequential order.

?CLOCK STOPPED UNEXPECTEDLY
The clock stopped and the SOMM bit was not set.

?ILLEGAL MONITOR CALL: <NUMBER>
The microcode made a call to the
which was <NUMBER>.

4-23

monitor with a bad argument,

4.8 PROGRAM LISTING AND ERROR MESSAGE DESCRIPTIONS
The following paragraphs describe microdiagnostic program listings
and error message formats. It is beyond the scope of this chapter
to describe the various diagnostic program assemblers and their
associated languages.

4.8.1 Monitor Listing Descriptions
The program listings for the microdiagnostic-associated monitors
(i.e., microdiagnostic, hardcore, and microtest) share the same
listing format. That is, since the three monitors operate out of
the LSI-11, they are coded in MACR0-11 (PDP-11 assembly language)
and are discussed as one in the general description.

Each listing is comprised of three general sections: Table of
Contents, Program Definitions, and Program Code and Descriptions.
Each page in a listing has a title containing the name of the
program, the date the particular listing was generated, the page
number, and a line item that indicates the content of that page
(listing header) (Figure 4-5).

The Table of Contents is a list of the content of the program
listing. The first (left) column contains a hyphenated number. The
number preceding the hyphen specifies the page number of the
listing on which the line appears. The number following the hyphen
is a listing line number. This number specifies the starting line
(within the listing) of the associated listing content contained
in the right column (e.g., definitions, utility routines, test
sections, etc.)

The Program Definition section specifies register address
assignments, bit definitions, module and bus name assignments, and
other constants that are used throu~hout the program.

The remainder of the listing (and the largest section by far) is
the Program Code and Description section (Figure 4-5). The format
is described on a per column basis from left to right. Note that
the address and data radix for all monitor listings is octal.

Column 1, Listing Line Number -- Each line in the listing
is assigned a unique dee imal number to al 1 ow easy
referencing from the Table of Contents.

Column 2, Address -- The address of the instruction.

Column 3, Content of the Address listed in Column 2 -­
This is usually an instruction (e.g., reference line
number 79 in Figure 4-5). The address is 101020, and its
content is 032767, which is the octal code for a Bit Test
(BIT) instruction.

Column 4 and 5 -- If the instruction is a two-word or
three-word instruction, the second and third words are
specified in columns 4 and 5, respectively (e.g.,
reference line number 79 in Figure 4-5). This BIT

4-24

ITAR MICRO T!IT MONITOR MACRO Mll
'LAG TEST ROUTINE

75
71

.slTTL 'LAG TEST ROUTINE

77 111775 1~5067 177131 'LGTSTI CLR TIMER

LISTING
PAGE
HEADER

INITIALIZE THE TIMEOUT TIMER

[?71~l~l~l~l~1!2:::J~~~:!!!!~C:::I!:~!:!::::::l:l:l::::::lU~P!D:AT:!:S~M~R~~~~C::::::J~~~~;s::~!i:i]UJLr.,_~~~FIRST 111121 13278 B•llll 177el4 SIT •c RL ON ROL c 'LAG E TEXT
II ll HUI l!Q 111 BRANCH II' NO REFERENCI
81 111131 132717 11111• 177P5• 8!T •LOOP,IWR LOOP FLAG SET1
12 111135 111•13 9!Q Ill BRANCH 1,-~0
13 1111•1 11•717 113145 JSR ,C,ITOPCLK STOP THE CLOCK
e• 1111•• GETUPC GET THE CURRE~T UPC
85 llll•S 112517 177122 MOY CIP)+,ITMPI SAVE
ea 111152 CALLMICM~N . GO TO THE "ICRO MONITOR
17 111171 132787 11111• 177P1• 91T ·•LOOP,IWR LOOP FLAG STILL l!TT
ea 111178 1111•1 9N! 121 , BRANCH IF YES
89 111111 152737 111211 l83f32 8IS •CLRUWRO,f#CONMCR I GOING TO RESTORE MONITOR C•LLS
91 111111 LOADID •ERlADR,#UICADR I LOAD THE ERROR l ADDRESS
91 11112• LOAOID #ERlOAT,#UICDAT r RESTORE THE JUMP ADDR!ll
92 1111•2 LOADID •ER2ADR,#UICADR I LOAD THE ENROR 2 ADDRESS
93 llllll LOADID •ERIDAT,•USCDAT I RESTORE THE JUMP ADDRESS
t• 111178 JSR PC MRETURM DO MAINTENANC R TUR ON ORIGINAL UPC
95 2 2 R P R NC R HE
91 111288 TST8 f#TXRDY MICROCODE
97 UUU 8MI UIS BRANC"4 IF
98 11121• 111•12 JMP 21 SECOND

99 111221 1111•1 l83P32 1~11 BIT #CLKSTPD,f#CONMCR I DID THE ShR CL.OCI< STOPT TEXT
UllJ 111228 8NE 31 I BRANCH IF YES REFERENCE
l~l 111231 11111• 178854 81T #L.OOP,S~R r
1~2 111238 8NE FL.GTST I
113 1112•0 178888 INC TIMER I
l014 1111244 8NE U I

,.

L.OOP FLAG SEU
BRANCH IF YES
INCREMENT THE TIMEOuT Tl~ER
8RAMCH IF NO TIMEOUT VET

U5
ua
117
1"8
119

I THIS CQD! INDICATES THAT THE MICROCODE HAS 8LOwN UP ,_

111 u1ue
111 UUH
112 111272 121767 177314 178548
113 1~1310 111~14
11• 111312 815767 17731• 178554
115 111311 lf5287 17858~
ue u131•
117 111330 111•18
UI Ul3H
119 UU45
ue UUH
121 111372 1~4787 1~281•
122 UU78
U3 U1411
12• 111•12 112887 178•89
12s i11•05 I

I 1211 111422 I
U7 111•3'

I
ue

1
111452 t 1e21e1 I eHeu f 11n121 129 lit••• 111117 177282

131 t I I

I I I I I

I
I ' I 1 j '. I J

~:~~ING . ADDRESS t
NUMBER CONTENT

ADDRESS SECOND AND
THIRD WORDS
OF INSTRUCTION

511
Ill

811

TYP! #ICRLF
TYPE •MSG2
CMP TSTSAVE,STSTNM
8NE 51
MOV TSTSAVE,STMPI
INC JT"PI
TYPES #ITMP8,MEX
U H
TYPES •ITSTNM,H!X
TYPE #SIXSPC
TYPE #MSG3
JSR PC,STOPCLK
LOADYBUS
G!TUPC
MOY CSP)+,ITMPI
TYPES I #ITMPl,H!X
TYPE #ICRL.F
CALL.MICHON
SUB I ••,TSTPTR
JMP RUT

i

1 1NsTRL~N
MNEMONIC

LABEL
1

OPERAND
DEFINITIONS

Figure 4-5 Monitor Listing
Sample

4-25

TYPE TIMEOUT ERROR MESSAGE
IN THE FIRST TEST YETT
BRANCH IF YES

TYPE THE TEST NUM8EA
TYPE SU SPACU
TYPE 11 UPC•"
STOP THE STAR CLOCK

READ THE UPC 8AVE REGISTER
SAVE IT
TYPE THE CURRENT UPC

GO TO THE MICRO MONITOR
RESTART AT THE CURRENT TEST ...

l
COMMENTS

TK-0773

instruction happens to be a three-word
second word is 04000 0, and the third
Thus, this instruction is testing bit
determine if the Control C flag is set at
(Note that this flag was defined in
sect ion.)

instruction, the
word is 177064.
14 (0 4 0 0 0 0) to
address 177064.
the definition

Column 6, Label -- This symbol is the name used by the
program mnemonics to reference this instruction (e.g.,
reference 1 ine number 9 5 in Figure 4-5) • The 1 abel in
this case is 12$.

Column 7, Instruction Mnemonic -- This is the assembler
language mnemonic for the instruction (e.g., Bit Test
Instruction= BIT).

Column 8, Operand Definitions -- These symbols and
mnemonics are the assembler language mnemonic definitions
for the operands.

Column 9, Comments -- A brief description (fo~lowing the
semicolon) of the instruction operation.

·4.8.2 Hardcore Listing Description
The general format of the hardcore listing is similar to that of
the monitors (i.e., Table of Contents, Program Definitions, and
Program Code and Descriptions). The left column of the Table of
Contents con ta ins a hyphenated number. The number preceding the
hyphen specifies the page number of the listing on which the line
appears. The number following the hyphen is the listing line
number, indicating the starting line of the associated listing
contents. The definition section is similar to the monitor
listings, i.e., address, module and bus assignments, bit
definitions, and other constants used in the program.

The remainder of the listing is the Program Code and Descriptions.
As indicated in the Table of Contents, the hardcore tests are
composed of sections and tests. The section number represents a
l.SK byte segment. The section number is displayed on the console
t e rm i n a 1 d u r i n g ha rd c o r e t es t ex e c u t i on • The t e s t n um be r
identifies a test on a particular logic area or function. The
subtest number (which is not referenced in the Table of Contents)
identifies a particular portion of a test. For example, Subtest 1
floats a logic one through each bit of a register; Subtest 2
floats a logic zero through the same register.

As shown in Figure 4-6, the program code is preceded by an
outlined test header area. A subtitle statement (.SBTTL) generates
the test number and title above the header area.

The header area consists of five descriptive segments. The first
line within the outlined header repeats the test number and test
title. The test description segment is a brief paragraph
describing the general logic area tested and method of test. The
logic description segment describes the test in more detail.

4-26

MJCAO DIAGNOSTIC MARDCORE TEST MACRO 14U 2ll•APA•'T7 1 Wtl1 PlG? n
TtC CS BUS DATA INTEGRITY

- SUBTITLE
STATEMENT

TEST
HEADER
AREA

111011155~
2530 1.1100554
2535
2536 000556

2537
2538
253q
2540
2541
2542
2543
2544
2545
25"6

00P556

011105&0
00111570
el0057b
111006i'6
000614

2547 01110&20
2548 00111630
2saql 000636
2550 11101/1644
255111110!J646
2552 P00654

.SBTTL TtC CS BUS DATA INTEGRITY
''** , ..
rTEST tC CS BUS DATA INTEGRITY ,

TEST DESCAIPTJO'N
THIS TEST CHECKS TME DATA INTEGRITY OF TME CS BUS BY ~LOATING
A ONE AND A ZERO THRU A MICRO WORD, EXECUTING TH! MICRO
WORD, AND CHECKI~G THE V BUS 'OR PARITY ERRORS.

SUBTST 1 • FLOAT A ZERO THRU THE CS BUS
SUBTST 2 • FLOAT A ONE THAU THE cs eus

LOGIC DESCRIPTION
TM!S TEST CHECKS THF. ID AUS INTERFACE TO THE WCS MODULES, TME
DATA INTEGRITY OF THE wCS ME~DRY CHIPS AND THE DATA I"NlEGRITV C~
THE CONTROL STOQE (CS) BUS.

ERROR nESCRIPTION
OATAI EXPECTEO V BUS CHANNEL, BIT ANO VALUE

RECEIVED v ~us CHANNEL, BIT AND VALUE
LOOP COUNT • I~DJCATES WHICH BIT IN TME 32 BIT GROUP lS UNDER

TEST, I.E. l•BIT 0, 2•8IT 11 3•8IT z, !TC.
LOOP COUNT • INDICAT!$ WM!CH lZ 8IT GROUP IS UNDER

TEST, J.E. t• ~ITSC3110~, 2•8ITSC63132>1 3•8ITSc~5164>

NOTE• THE EXPECTED ANO RECEIVED v eus CHANNEL INDICATES WHICH 32 BIT
GROUP MAS AAO PARITY IN IT, I.E. 102~•8ITSc31i~~>,
101X•BITS<63132>, ANO l00X•BITScqsa~4>.

r SYNC POI~T DESCRIPTION
SUATST 1 • SYNC4C••TEST PATTERN rs ACTIVE ON THE cs BUS
SU~TST 2 • SYNC4D••TEST PATTERN IS ACTIVE ON TME cs ~us , ..

''**
T1CI

PHTULlZE

SUBTEST
Jll/ll
T1CS11
t+
I #IRST FLOAT A ZERO THRl_I THE es BUS ,.

LOO,_ J,1,3
LDIDREG USCAOR,TMPl~~
LOOP 1< 1 11 3
LntOREG USCOAT,TMPt~2
ENDLOOP I(

LOOP I,t,32 I
LDIDREG USCAOR,T~Pt00 1 J t
FLTZRO ITMPl01 1 I r
ERLnOP I
LOIOREGIUSCDAT,TMP101 ,
'ETCM leel00 J I

LOOP COUNT ~OR T~E 3 BAN~S
SELECT LOCATION ZERO
INITIALIZE THE CONTENTS 0' LOCATION 0

LOOP COUNT ,OR THE BtfS IN A BANK
LOAD TH~ BANK AnDRESS
GENERAfl" TME T!ST PlTTE~N

LOAD INTO TH! SEL!CT!D 8ANl<
EXECUTE T~E MICRO ~ORO

l l l \

t
I
I
I l

LISTING
LINE
NUMBER

ADDRESS ADDRESS INSTRUCTION COMMENTS
CONTENT OPERANDS

TK-0769

Figure 4-6 Hardcore Listing Sample

4-27

The error description segment specifies test parameters. For
example, in the error description of Figure 4-6, the first line
specifies what is expected during the test; the second line
specifies what is received. The third line indicates which bit in
the 12-bit array is under test; the fourth line indicates the
32-bit group under test. The sync point segment specifies critical
points in the listing around which an error loop or scope loop
might be set up {Paragraph 4.9.2).

Following the test header is the program code. The hardcore
listings are described on a per column basis below.

Column 1, Listing Line Number -- Each line is assigned a
unique decimal number to allow easy referencing.

Column 2, Address -- The relative address (PC) of the
instruction.

Column 3, Address Content Content of the address
listed in Column 2. (Note that the contents are the
pseudo instructions described in Paragraph 4.4.2.)

Columns 4 and 5, Instruction Operands -- The operands are
the instruction source, destination, or index values. The
mnemonics appearing in these columns have been defined in
the definition section of the listing.

Column 6, Co~ments -- A brief descriptive note concerning
the instruction operation.

4.8.3 Microtest Listing Description
The general format of the microtest listing is somewhat similar to
the other microdiagnostic listings, i.e., a Table of Contents,
Program Definitions, and Program Code and Descriptions. However,
since the microtests are executed out of the WCS, they are written
in system microcode and, therefore, are similar to the system
firmware listings. Unlike the hardcore listings that are assembled
in one listing, the microtests are assembled into separate
listings by lK microword test sections and identified by those
section numbers. Note also that the address and data radix for
these listings is hexadecimal.

The Table of Contents is similar to those of the other listings;
i.e., it con ta ins a 1 ine number entry and the corresponding
listing content description. Since the first column does not
contain assembler directives, only the line number appears. The
Pr o g r am De f i n i t i on sec t i on d es c r i be s a 1 r mac r o d e f i n i t i on s
associated with the listing.

The Program Code and Description section format is similar to that
of the system firmware listing. As in the hardcore listing, the
program code is identical to the hardcore format and content
described in Paragraph 4.8.2.

4-28

The microtest listing is described on a per column basis (Figure
4-7).

Column 1, UPC This column specifies the address
contained in the UPC at rhat particular microstate.

Co 1 um n 2 , Mi c r o wo rd Th i s co 1 um n des c r i bes the
microword content of the address specified in column 1.

Column 3, Listing Line Number -- Decimal number assigned
to allow easy referencing.

Column 4, Microstate Ope rat ion -- This column specifies
the ope r at ion du r in g a pa rt i c u 1 a r m i c r o s tat e • The
notations used to describe the operation have been
defined in the program definition section.

Column 5, Comments -- A brief descriptive note concerning
the microstate operation. (A detailed firmware
description is provided in the VAX-11/780 Central
Processor Technical Description, e.g., field definitions,
coding conventions, etc.)

4.8.4 Microdiagnostic Execution
The entire microdiagnostic package may be executed by entering
TEST on the console terminal. Other operation options are
described in the detailed diagnostic operating procedures in The
VAX-11/780 Diagnostic System User's Guide (EK-DS780-UG-00IT:°
Following microdiagnostic identification the monitors initiate
hardcore and microtest execution. Figure 4-8 illustrates typical
console terminal output during error-free microdiagnostic
execution.

The microtests and hardcore tests are numbered sequentially (with
no duplication of test numbers). As shown in Figure 4-8, there is
no differentiation between hardcore and microtests. A
differentiation is required only in the case of an error
(Paragraph 4.8.5).

The monitor loads the test, and the test section number is printed
on the console terminal. Test execution is then initiated. The
section number is printed (in hexadecimal) prior to execution to
allow the operator to identify the exact failing section in the
case of an error.

The entire microdiagnostic package requires two diskettes. As
indicated in Figure 4-8, the microdiagnostic monitor instructs the
operator when to mount the second diskette, and prompts for the
command required to initiate execution of those diagnostics.

4.8.5 Error Message Format
The general error message format
microdiagnostics is shown in Figure 4-9.

4-29

for both types of

DWMtea.MCPt499,)262l 12115 21•1PR•t9Tl
DWMl1l.MJC[489,)262l l41J5 29•lP'•l917

MlCRO J1C241) Mieroeod• 111• •• ,. '
TEIT AS C!I REGllTER ALU N IJT

TEST
HEADER

AREA

u 1014, 0011.0eJt,0D10.etr1,eee~.1er1
u 1015, 001e,011e,6se0.eaeP,eeee,1e1s
u t01e, ~e~e.00JD,e1e0.e1e0.e0ee.111s
u 1119, 0e1a,00Je,,sae,eA11,ee0e,11t0
u 1140. Pet810eJe,1te0.eA•e,e0ee.11•1
u 1141, 081a,0eJ8,4180,eeee,eeee,1142
u tt42• 01e0.001c.01s0,ea0010eee.114J
u 1141, 0001,ee1c,e110,0At1,ee0e,11••

u 1144, 001a,0e1a,DS80,etre,eee0,1e1A
u 1e1A, 000e.eelD,e1ee,010e,eee0,1124
u 101&, 00e0.0eJC,A110,0A00,e200.1t45 I u 1 us,1 0000. 1111c ,e1u,c10e,eeeei, 1 tH
u 1146, ee01,0eJc,011e,0aae,~e00,11t1

I UU 1147,, "'100,08lC,018P,0A08,0a00,tt48
,,.,, Ae00,a0Jc,e1e0,c800,ee00,11•9

I f I l
MICRO
PROGRAM

COUNTER
(UPC)

MICROWORD
CONTENT

1132
1133
UH
105
UH
un
UH
1839
1849
1841
1142
110
1844

1846
1841
1848
1849
18!50
1851
1852
!8!53
11!54
18!55
11!56
18!5'7
18!51
1859
1860
1161
1862
18U
1864
1865
1866
1867
1868
1869

ePlGE •T!IT 15 C!I 'tGllTIR ALU N BIT• , ..•...............................
1++
t HIT l5 CEI REGISTER ALU N BIT

' ' ' ' '

TllT DESCRIPTION
THIS TllT CHECKS TH! ALU N llT IN THE CEI R!GllTIR. THIS Ia DONE
BY SILICTlNG THI lLU TO DO l+I IND A•I, AND ,.,, WITH SPECIFIC
DATA PATTERNS ON TH! AMX AND BMX TO CHECK TH! LOGIC TMAT GENERATES
Tt!U an.
SUBTST • CHECK TH! OATA PATTERNS THAT REQUIRE THI ALU TO

IE EXECUTING AN l+B TO GET TME CORRECT ALU DATA1
SUITST 2 • CHECK THE DATA PATTERNS THAT REQUIRE TM! ALU TO

8! EXECUTING AN A•I TO GET THE CORRECT •Lu DATA,
S~BTIT J ~ CHECK THE DATA PATTERNS THAT REIUIRE TH! ALU TO

IE EXECUTING ANYTHIN IUT lN l+I OR A•B 1

LOGIC DESCRIPTION
TMJS TEST CHECKS TH! LOGIC NETWORK ON THE CEH MODUL! THAT GENERATES
Tffl ALU N BIT, AND TH! MULTlPL!XOa ON TH! ICL MODULE THAT FEEDS
TME ALU N BIT IN TH! C!S R!GlsTERe

!RROR D!ICPlPTION
DATll EXPECTED CES 'EGISTER

RECEIVED C!S '!GIITER
LOOP COUNT • INDICATES WHICH DATA PATTERN IS !EING USED,

Cl!! THE OATA AT THE !ND or TH! TEST)

IYNe POtNT D!SeRIPTION
SUITST 1 • ITNCSA••ALU M BIT G!TI LOADED
IUBTIT 2 • SYNCtl••ALU N IIT GETS LOADED
SUBTST l • SYNClC••ILU N BIT G!'TI LOADED , .. ,•................•...........................•.....................

•0
lC:LTl 1 NtwTST t.ll

1ne •e
11'71

R [8J-K (, 10]
CILL,J/UNJAM
~ClJ-IC[,20]
IH2J-K,t.30]
a.JC r;·1e1
D.D,LEFT2

ADDRESS or lMX DITA
CLEAR ANY S!I INT!PRUPTS
ADDREsa or IMX DlTA

1172
117l

' 1174
187!5
1116

R [ll-0

ADDRESS or EXP!CT!D ALU N BIT

GENERATE MASK FOR N BIT
SAVE

1871 s111
1878 I+
1879 1 00 THOS! FUNCTIONS REQUIRING TH! ALU TO DO IN l PLUS B
1180 ,.
1111
1112 T8111 RCteCJ.KC.6l
188) •t SUBTEST
1814 ICLTBLtlVA..RC8l
1815 I DCBYTE]-CACHE.P
1816 RtSl.D
1881 VA..R[1)
1888 DCBYTEJ-CACHE,P

f
LINE
NUMBER

f
MICROSTATE
OPERATION

t SET THE LOP COUNT

FETCH lMX DAfl
SAVE

FETCH BMX.DUA

f
COMMENTS

TK-0771

Figure 4-7 Microtest Listing
Sample

4-30

>>>TEST

MOUNT FLOPPY t2 & TYPE
MIC> DI
3Br
t MEM CTRLS= 00000001
3Cr3Dr
4K CHIP OOOOOE08
:3Er3l='r
CPU TR= 00000010

SECOND
TEXT
REFERENCE

40,41,42,43,44,45,46,47,49,49,4A,
CTRL 1 MAX ADR+1= 00080000
4Br
CTRL 1 MAX ADR+1= 00080000
4c,4ri,
END PASS 000001

OPERATOR
INPUT
UNDERLINED

FIRST
TEXT
REFERENCE

TK-0772

Figure 4-8 Typical Error-Free Terminal Output

ERROR: <PC> TEST: <#>SUBTEST: <#>

DATA:

TRACE:

xxxxxxxx
xxxxxxxx

•
•
•

xxxxxxxx

W.X.Y.Z

FAILING MODULES: (M8269 (S13) ...

NOTE:
PC IS OCTAL FOR HARDCORE TESTS.
OTHERWISE ALL NUMBERS ARE HEX.

TK-0750

Figure 4-9 Error Message Format

4-31

The first line items are ERROR, TEST, and SUBTEST. ERROR is the
address (PC) of the failing test. In the case of a hardcore test
er r o r , the PC i s d i s pl a ye d as a s i x-d i g it o ct a 1 add res s , since
these tests are executed out of the LSI-11. In the case of a
microtest error, the PC is displayed as a four-digit hexadecimal
address since it executes out of WCS.

TEST is the failing test number. Note that this is different from
the section number sent to the console terminal during error-free
execution. SUBTEST is the failing subtest number. These three
first line items are important in referencing the program listings
(Paragraph 4.9.2).

The DATA 1 ine i tern represents data used during the particular
test. The number of data words displayed depends on the particular
test. Generally, in the hardcore tests two words are displayed;
the first word is the expected (or good) data, the second word is
the received (or bad) data. However, as described in Paragraphs
4.8.2 and 4.8.3, the program listings contain a header describing
the data patterns used.

The TRACE 1 ine i tern is involved in the fault isolation procedure
in determining the set of modules responsible for the failure.

The last 1 ine i tern is FAILING MODULES. The output of this i tern
represents the failing module and its backplane slot number. In
some cases, the output will be several module numbers listed in
the order of failure probability. However, in other cases the
output will not be a module number. For example, consider the
situation of a grounded ID Bus bit. The failure could appear to
extend across all boards on the bus. Rather than printing out all
related modul.e numbers, the program would print out ID BUS.

4.9 LISTING/ERROR MESSAGE CORRELATION
This subsection prov ides basic direction
message content and its relationship to the
examples are included mainly to ill us tr ate
capabilities.

4.9.1 No Error Message Situation

in the use of error
program listings. The
basic microdiagnostic

Consider the situation where the operator has initiated
microdiagnostic execution using the TEST command. For one reason
or another execution stops in the hardcore tests, and an error
message is not printed. As shown in Figure 4-10, execution stops
on test section 04.

The operator has a reasonable index into the hardcore test
listings since section 04 is one of the initial sections executed.
Referencing the section number in the hardcore listing Table of
Contents, the operator finds that the section 04 description
starts on listing line number 777.

4-32

CONSOLE TERMINAL OUTPUT

>>>TEST

MICRO DIAGNOSTIC V.05
01.02.03,
~: OF WCS MODULES = 0001

TEST
NUMBER
INDEX

LISTING TABLE OF CONTENTS

"ICRO DIAGNOSTIC HARDCORE TEST MACRO Ml~
TAeLE OF CONTENTS

1• 5 CMPCA ANO CMPCAM MODE DEFINITIONS
1• 5 SWITCH ~EGISTER BIT DEFINITIONS
1• 5 CONSOLE AOAPTER REGISTER DEFINITIONS
1· 5 IO eus REGISTER DEFINTTIONS
l• 5 MODULE AND AUS NAME ASSIGNMENTS
1• b SECTION NUMBER 01
2• 42 T~1 CONSOLE ADAPTER REGISTER RESPONSE
l• 141 T02 CONSOLE "TO tO" REGISTER DATA INTEGRITY
4• 2Ab SECTION NUMBER 02
4• 2~6 T03 CONSOLE "MCA" REGISTER DATA INTEGRITY
5• 284 T04 CONSOLE "IDCS" REGISTER DATA INTEGRITY
6• 356 T0~ CONSOLE RXDNF. ANO TXROV REG DATA INTEGRITY
7• 439 T06 TXREADY ANO RXOONE INTERRUPTS
8• 564 SECTION NUMSER 03
8• 5&4 T~7 tD 8US DATA LINES DATA INTEGRITY
'· bbl T:.118 v eus SELF TEST PROGRAM

~---~ 1 l;..;;llJ~· 7.,;,.7.,;,.7 __ __,,s,..,.E"""C"""T 1...,o N_~;,,..;U:;.;M.-.8~E;..,.R~llJ..,;4__,,...,l ---------------- LISTI NG
UJ. 777 TllJ9 COt.ISOLE CLOCI' CONTROL INDEX
11• 901 T0A CONSOLE IO CYCLE FUNCTION
12• 975 T~8 CONSL FROM IO REG CL~ CTRL & DATA INTEG
11·1~7~ SECTION NUM~ER 05
ll•107A T~C CONSOLE MAINTENANCE RETURN
14•1162 T~D RXCS REGISTER FRO~ THE ID BUS SIDE
15•t282 SECTION NUMBER 0&
15•1282 T0F. TXC5 REGISTER ON THE ID BUS
15•1367 SECTION ~UMBER 07
1&•1394 T0F ID BUS REGISTER ADDRESS INTEGRITY
16•150q ~ECTNO NUMBER 08
17•1535 Tl~ Cl8 l~ITIALIZE FUNCTION
17•1&56 SECT?ON NUMBER 0Q
18•16~7 Tll CONSOLE REGISTER OUAL ADDRESSING
1Q•t745 Tl2 wcs DATA REGISTER READ
20•1771 T\3 INITIALIZE TME CONTROL STORE
21•1817 SECTION NUMBER ~A
21•1817 T14 WCS ADDRESS REGISTER DATA INTEGRilV
22•1Q0b Tt5 WCS ADDRESS REGISTER COUNT LOGIC
23•1916 Tt& MICPO STACK OATA INTEGRITY
24•2061 SECTION NUMBER 08
24•2061 T11 MICRO STACK OUAL AO~RESSING
25•215A Tt8 MAINTENANCE RETURN DATA INTEGRITY
26•2327 SECTION NUMBER 0C
26•2327 T19 MAINTENANCE PfTURN MICRO STACK f~CA!Mlllf
27•2372 TtA MICRO STACK WRITE DISABLE
28•2424 TlB WCS PARITY GF.NERATOR
2Q•253~ TtC CS BUS DATA INTEGRITY
30•2&21 SECTION NUMBER 0D
30•2621 TlD PCS PARITY CHEC~ERS
31•2748 TlE -cs DUAL ADOR~SSING
31•2807 SECTION NUMA.ER 0E
32•2845 TlF WCS OVNAMIC MEMORY TEST
33•295Q T20 ueEN FIELD DECODE
34•3060 SECTION NUMBER 0F
34•3060 T2t USUB FIELD "CALL FUNCTION•
35•3168 T22 USUB FIELD "RETURN"
3&•3229 SECTION NUMBER 10
3b•322Q T23 USUB FIELD "SELECT SPECIFIER"
37•3365 T24 UJM~ FIELD DATA INTEGRITY

TK-0770

Figure 4-10 Listing Indexing Example

4-33

4.9.2 Hardcore Loop and Single Step Setup
During microdiagnostic execution the error message shown in Figure
4-11 is displayed on the console terminal. Since the error PC is a
six-digit number (000670), it is an octal address and indicates a
hardcore test. Referencing TEST: lC in the hardcore Table of
Contents indicates that the test begins on line 2530. Referencing
the error PC of 000670 in the program code shows the PC to be at
an IFERROR statement on line 2554.

The function of the IFERROR statement (Paragraph 4.4.2) is to
produce an error report if a failure is encountered in the test.
Usually the IFERROR statement is preceded by a check or compare
function (in this case TSTVB). Basically this test is comparing V
Bus signals. In this example, the received data did not match the
expected data; consequently, an error was detected.

Since the hardcore tests execute out of the LSI-11, a scope loop
may be too slow to be of practical use. An alternative is to use
the set step instruction and loop commands of the microdiagnostic
monitor. As indicated in Figure 4-11, the operator sets the single
instruction and loop flags. In this case the loop range is between
the statement following the previous ERLOOP statement (line 2551)
_and the IF ERROR statement (1 ine 2554) • As shown in Figure 4-11,
each time the operator types SPACE, the current PC is displayed.
At TPC = 000662 the operator reaches sync point SYNC4C, at which
time the operator could scope the CS Bus data bits in an attempt
to detect the failing bit. (At this point in the test the
microword has just been fetched from WCS and is driving the CS
Bus.)

The operator can exit from the step mode by typing any character
except SPACE. In the example, Control C has been typed and control
returned to the microdiagnostic monitor command mode.

4.9.3 Microtest Scope Loop Setup
During microdiagnostic execution the error message shown in Figure
4-12 is sent to the console terminal. Note that execution stopped
on test section 3A.

Since the error PC is a four-digit number (101E), it is a
hexadecimal address and indicates a microtest. Using the test
section number of 3A, and referencing the Table of Contents for
that section, test AS starts on line 1832. A look at the PC column
(of the microtest listing) shows that the error PC is on 1 ine
1906.

By scanning back through the microcode, select a sync point, in
this case SYNClA on line 1901. Control is returned to the
microdiagnostic monitor via Control C. The operator enters a CLEAR
SOMM: <1153> command. This command will clear the stop on
micromatch bit, and produce a sync pulse when the UPC equals the
content of the microbreak register (i.e., 1153). The operator then
enters a loop command. This sequence causes the test to beg in
looping and produce a sync pulse each time the UPC = 1153.

4-34

CONSOLE TERMINAL OUTPUT

>>>TEST

MICRO DinGNOSTIC v.05
01.0~.03,

NO. O~ WCS MODULES = 0001
04•05,06,Q7,0i·0910A•OB•OC

ERROR: 000670 TEST: 1C

1010
1011
OOOA
0002

TRACE: 000700, 000720
FAILING MODULES: C.S. BUS

MIC>SET STEP INST)

MIC>!:Q£!')

TPC = 000646

TPC = 000654

(~BAR)

(SPACE SAR)

SUBTEST: 1

TPC = 000662 X - ANY CHAR. TO RESUME

FULL SPEED.

tc - CONTROL-Cl 0 Hc'rURN TO MONITOR

MiC>

t
OPE8ATOR
INPUT
UNDERLINED

ERROR

TEST
NUMBER
INDEX

PAGE#

LISTING TABLE OF CONTENTS

MICRO DIAGNOSTIC HARDCORE TEST ~ACRO ~lP
TA~LE OF CONTENTS

l• 5
1· 5
l• 5
l• 5
l• 5
l• II
ii?• 42
3. 141
II• 2011
4· 2011
5. 2811
II· 3511
7. 439
8· 5bll
a. su
q. bbl

1 e. 111
U• 777
ll• CJ01
12· CJ75
13•1071'1
t3·1071l
14• 11 flii?
15·1282
15•1282
t5•13t-T
1h 13CJ11
1hl50CJ
17•1535
17• lbl56
18•lf>77
t'i•t745
2B•l771
21•1817
21•1817
22•1CJ06
23•1CJ7b
24•20111
24•2061
25•215R
211•2327
211•2327
27•2372
28• 4 II

30-2&21
3i'-21121
31·21118
31·2807
32•2845
33•ii?Q5CJ
34•30110
31i•33f>111
35•3lb8
36·322Q
36•3229
]Te33b5

C~PCA ANO tMPCAM MODE DEFINITIONS
SWITCH REGISTER BIT DEFINITIONS
CONSOLE ADAPTER REGISTER DEFINITIONS
ID aus REGISTER DEFINITIONS
MODULE AND AUS NAME ASSIGNMENTS
SECTION NUMBER 01
T01 CONSOLE AOAPTER REGISTER RESPONSE
T02 CONSOLE •To to• REGISTER DATA INTEGRITY
~fCTION NUMBER 02
T03 CONSOLE •McR• REGISTER DATA INTEGRITY
T04 CONSOLE •toes• REGISTER DATA INTEGRITY
T0~ CONSOLE R-D~E AND TXROV REG DATA INT!G~lTY
T0f> TXAEADY AND RXDONE INTERRUPTS
SECTION NUMBER 03
T07 TD BUS DATA LYNES DATA INTEGRITY
T08 v eus SELF TEST
SECTION NUMBER 011
T0Q CONSOLE CLOCK CONTROL
T0A CONSOLE ID CYCLE FUNCTION
Tl'!~ CONSL FROM ID REG CLK CTRL & DATA INTEG
SECTJON NU~SER 05
T0C CONSOLE MAINTENANCE RETURN
T~O RXCS REGISTER FROM TME ID aus SIDE
SECTION NUMBER 06
T0E TXCS REGISTER ON TME IO BUS
SECTION ~UMBER 07
T0F ID BUS REGISTER ADDRESS INTEGRITY
~ECTNO NUl"BER 08
TlP CIB INITIALIZE FUNCTION
SECTION NUMBER ~Q

Tll CONSOLE REGISTER DUAL ADDRESSING
Tl2 WCS OAT& REGISTER READ
T\3 INITIALIZE TME CONTROL STORE
SECTION NUMBER 0A
Tlll WCS ADDRESS REGISTER DATA INTEGRITY
TIS wcs ADDRESS REGISTER COUNT lOGtC
Tl6 MICRO STACK DATA INTEGRITY
SECTION NUMBER 08
Tl1 MICRO STACK OUAL ADDRESSING
Tl8 MAJNTENANCE RETURN OATA INTEGRITY
SECTION NUMBER 0C
Tl CJ MAINTENANCE
TlA MICRO STACK

PETURN ~!CAO STACK fNCR[Mlf.J~
WRITE DISABLE

T B W PAA T N AATOR

SECTION NUMBER 00
TIO PCS PARITY CHECKERS
TlE wCS DUAL ADDRESSING
SECTTON NUM~ER 0E
TlF WCS DYNAMIC ME~ORY TEST
T20 UBEN FtELO DECODE
SECTION NUM8EA 0F
T21 USUB FIELO •tALL FUNCTION•
T22 USUB FIELD •RETURN•
SECTION NUMBER 10
T23 USUB FIELD •sELECT SPECJ'JER•
T2a UJ~P FIELD DATA INTEGRITY

ERROR
LOOP
RANGE

HARDCORE PROGRAM LISTING

MtCAO DIAGNQSTIC HARDCORE TEST MACRO Mll!l
T1C CS·BUS DATA INTEGRITY

CS BUS DATA INTEGRITY ~ .SBTTL TlC
''**

TEST
STARTING
LINE

'NUMBER

A0A55111
25311 1'!00551'
2535
253b 0005511

01'lei556
2'537
2538
253Q
2541!1
25111 00056111
2'542 0111"570
2'543 011l1115711
25114 1'!00f>l!'f>
2545 1111111111114
254f>
2547 1'!001!1120
2548 0011lb3111
2549 tll!llllf>]

5111 fl0Pf>44
'51 H~b46

2552 1'100654

t+•
sTEST IC CS BUS DATA INTEGRITY

TEST DESCAUtTION ·---·----·-·
TMrS TEST CHECKS THE DATA INTEGRITY O' TME CS BUS BY 'LOATING
A O.,E ~ND A ZERO TMRU A MICRO WO-AD, E"XECUTnn: TR! M!CRD' -­
woRl'D, ANO CHECKI"G THE v BUS FOR PARITY !UOA_s. .

SUBTST .l • FLOAT A ZERO TMRU TME CS BUS
SUBTST l • FLO•T A ONE fMllU TM! cs~u-.--- -----------

r LOGIC DESCRIPTION
TM!S TEST CHECKS TME ID eus INT!RFAC! TO TH! wcs MODULES, TM!
DATA INTEGRITY OF TME WCS ME'IDRV CHIPS AND TR£ Ifill fWT[l:R?TV v-­
TME CONTROL STO~E CCS) eus.

ERROR DESCRIPTION
DATAI EXPECTEO V BUS CMANNEL 1 BIT ANO VALUE

RECEIVEO V BUS CM&NNEL 1 BIT ANO VALUE
LOOP COUNT • INDICATES WMICM BIT IN fi;j£ n BIT li'R'OUP n IIND[A

TEST, Io!o l•BIT e, 2•8IT 11 3•8IT 2 1 ETC.
LOOP COUNT • IND IC AT!$ iilMICM- !2 8fT---P-IWPU~r----- -

TEST, T.£ 0 t• BITSCllll'l>, 2•8ITSC63132>, l•8ITScCJ5164>

NOTEa THE ~XPECTEO ANO RECEIVED V BUS CHANNEL INDICATES WHICH 32 BIT
GROUP MAS l!lD PARITY IN n, r.t. UZlf•e·1ncn1n>, -
l0lUBJTScU132>, AND lHlC!!BIT~c!.'5~~!•_ ------ __ _

SYNC POINT DESCRIPTION
SUBTST l • SYNC4C••TEST PATTERN rs ACTIVE ON THE es B~S
SU~TST 2 • SYNC40••TEST PATTERN IS ACTIVE ON TM! cs ~us

·- - - -, ..
''** TICI ----------------

YNITTALJZE

SUBTEST
111/111111//}ll/lllllf/lll1
TIC St I -----------••
t #?AST Fl.DAT A ZERO TMRl.1 THE CS BUS ,.

LOOlll J,l,3
LDIDREG USCAOR,TMPll'IA
LOOP K,t,3
LntOREG USCOAT,TMPl1!'2
ENDLOOP K

SYNC POINT

LOOP COUNT FOR .TJ.fE :r B.U.llfS
SELECT LOCATION ZERO
IN!TfALtiE. TME-COlllTENTS O' LOCATION 8

LOOP caut>.1T ·1a11 tHl -nrrn1r1n11r-·
J LOAD THE BA~K ADDRESS
,-"CfijfJi'Tf"""fME TEST PATTERN

LOAD ·rNTO TH! JE(UT!O ~itlle
EXECUTE THE MICRO ~ORD

---~~~~~~~~-pc ~~~~~~~~~-~~~~~~~~~~~~~~~-~~--~~~-~~~~~~~~~~~-~--~-~l...-!:-!-!!-=-~~~~~~~~~1.:;.ii1~~1..1&.1i.&:~

CHECK THAT THERE WAI NO PARITY ERROR

CONTINUE WITH TijE NEXT BIT
INDEX CONTINUE WITH THE N!XT BANK

90~112 CSEAR1 REPORT CCSBUS> r CS BUS BITCS) STUCK

90~122 SUBTEST ,,
1'!1'!1'!122 T1CS21

Figure 4-11 Loop and Single
Example

4-35

CONSOLE TERMINAL OUTPUT TABLE OF CONTENTS MICROTEST PROGRAM LISTING

>>>TEST

MIC~O DIAGNOSTIC V,05
01.02.03,
NO. OF WCS MODULES ~ 0001
04.05.-06.o7.0B.09.0A.OB.oc.0D.OE10F.10.11.12.13,14,15,16.17.
18. 19· lA· lB .1c. 1 [1, lE' lF. 20. 21. 22. ~ 24. 25t26. 27. 28. 29· 2A' 2B, 2c. 2D • 2E'
2F,30,31,32,33,34,35,36,J7,J8•39,~

FAILING SECTION TEST

ERROR: 101E'

DATA: 00000200

00000000

00000003

TEST: A5

MIC>CLR SOMM: 1153 - (IF SYNC WANTED

AT THAT ADDRESS)

MIC>LOOP} -- START SCOPE LOOP

tc - CONTROL-C TO STOP LOOP

MIC>£!!.!~- RETURN TO CONSOLE

>>> 4-- CONSOLE PROMPT

OPERATOR
INPUT
UNDERLINED

NUMBER
INDEX

1832 SECTION 3A
TEST A5

DWM00AoMCPt4t0,l262)
DWM00l 0 MIC[4101J262)

12115
tun

21•APll•1917
20•APh19''J

'1i»l ,1113
' 1814

1U5
UH
lll'J

TEST
STARTING

--~~~~~~~-LINE ~~~~--~

t UH
18)9
1840
1141
1142
180
l844
1845
1846
1841
1848
1849
1850
1851
1852
185)

LOOP
RANGE

NUMBER

u
u
u
u
u
u
u
u

u
u
u
u
u
u
u

1"!141
uu,
111Jl 8,
1019,
1140•
1141.
1142•
110.

Pet1.e019,0Dw0.09r1,0ee0.10r1
0e1e,0eJ&,6580,01aP,eee0,101e
~e00.001D,01a0.0100.e0ee.1tJ5
0e1a,ee11,1510,eA11,0eee,1140
001~.0011.1te0.0At0.00e0.11•1
P&1e,001a,41a0,e1ee,e0e0,11•2
0100.001c.~1•0·e•00.~00e.114J
0001,0e1c,01a0,0Ata,000e,11••

~e1s,0011,D5a0,09te,eeee,101A
00ee,1eJD,0180,e10e,eeee,112•
0000.0eJc,~1•0.0Ae0,0200.1t45
000e,ae1c,0110.ca00,e000,1t46
0e01,0eJc,0180.01A1.00~0.11•'
Pe00,0e1c,011P,0A0e,0200,11•a
0e00,a01c,01e0,c100,0e00,114t

1854
1855
1856
1851
1851
1859
UH
1861
1862
180
1864

' 1865
1866
186'
1868
1869
18'1!1
18'1
1112
UH
t 814
18'5

' l 8'76
I 18'7'7
I 18'78

18'79
1880
1881
1882
llll
1884
1815
1816
188'7

t IHI

1119
1899
1891
1192
189)

89

1196
189'7
S898
1899
1 t00
l 01
1902
190J
1994

MICllO l1C24l) Mleroeo•• !11• ••9•
T!IT 15 C!I ,EG?IT!, lLU N BIT

0 PlGE "T!ST A5 CES ~EGllTE~ ALU N BIT• ,
++

TEIT l! CEI REGIITE~ aLU N BIT

'l'EIT DEICJtIPTION
THia TIST CHICK• TH! lLU N IIT JN THI CEI llEGIITI~. THla II DONE
BY SELECTING THI ·~u TO DO A+B AND A•B, lND ,.B, WITH IPEC?,lC
DATA PATT!RNI ON THE lMX lND BMX TO CHECK TME LOG?C THAT GENERATE$
T"'IS BIT•

SUBTST • CH!CK THE DATA PATTE~NS THaT REQUIRE THE ALU TO
BE EXECUTING AN l+B TO GET THE CORRECT ALU DATA1

IUBTST 2 • CHECK THE DlTl PATTERNS THAT REQUIRE THE ALU TO
81 EXECUTING AN l•I TO GET THE CORRECT -LU DATA,

S~ITIT J ~ CHECK TH! DATA PATTERNS THAT REQUIRE THE ALU TO
8! EXECUTING lNYTM!N BUT AN A+B OR l•8 1

LOGIC DESCRIPTION
THIS TEST CHECKS TH! LOClC NETWORK ON THE CEH MODULE THAT G!N!RAT!
THE ALU N BIT, AND TH! MULTlPLEXOll ON THE ICL MODULE THAT F!EDS
THE ALU N BIT IN TH! CES REGISTER,

!RROP DESCRIPTION
DATAI EXPECTED CES REGISTER

RECtIVID C!S ~!GlSTER
LOOP COUNT • INDICATES WHICH DATA PATTERN IS BEING USED,

(I!! THE DAT• AT THE !ND or THE TEST)

SYNC POINT DESCRIPTION
IUBTST 1 • IYMCll••lLU N BIT GETS LOADED
IUITST 2 • SYIC1B••ALU N BIT GETS LOADED
IUITST J • SYNClC••ALU N BIT GETS LOADED , .. , .. .

•e
ICLTl 1 NEWTSTC.Jl

11(9J-!Ct,UJ
C•1'L 1 J/UNJAM
R 1 lJ-!t C,29J
R r2J-H, JeJ
D.K [• 8111]
D.D 0 LEFT2
u11_0

lDD11Ess OF AMX DATA
Cl.EAR ANT SBI INT!~RUPTS
ADDRESS or BMX DlTl
ADDRESS or EXP!CT!D ALU " BIT

G!N!RaT! MASK rOR N BIT
savE

r111 ,.
I DO THOS! ru~CTIONS REQUIRING TH! ALU TO DO AN A PLUS B ,.
TBSll RCteCJ-Kt,6l
•0 8U8TEST
ICLTILl IVA.R lel

DflYTEJ.CACllE 0 p
llUl-D
VA..R U l
D [BYTEJ.CACH!,P
RCt5J.D
VA.R t2J
DIWORDJ .. CACH!,P
D.D 1 llXT tWOflDJ
llCtHl.D

• DLOOP
D C fl!
D.NOT,D
D.D,AND,ll[J]
ID[CEll.DrD.RCt0!]
LAl!l.,rt[5J
LC.ltC[5J

Q..ID tCEll
Q.Q,AND,llUJ
lLU.Q•D,CLl(1 UBCC

SET TH! LOP COUNT

FETCH AMX DAU
1 UV!

r!TCH BMX DAU
UV!

FETCH EXPECTED N BIT DlTl

SAVE

G!N!RAT! INITIAL VALUE or N BI~
MASIC
INIT TH! CES REGISTER

LATCH lMX AND BMX DATA
EX!CUT! THE TEST

MASIC
CHICK

ERROR ;
--~~~~~~~~~~~~~~pc ~~~~~~~~~~~~~~~~~~~~~~~~~~..,i~~~;.L-..;;~..f...;~~~~~~u..!i!.5!,!!.E..1~~:..._.....Ll-A.1~90E,~..:JK.-~~.£1:~~..U::Jo..i..llLlll..i.-.L-~~~~ ALU N BIT FAILED IN CES llEG

INDEX 1908
1919
19te

Figure 4-12

r INCREMENT

lNCllEl«ENT

Microtest Scope Loop Example

4-36

lDR or lMX DATA

ADR or BMX DATA

TK-0775

As shown in Figure 4-12, the operator has entered a Control c
followed by a RETURN (RET) command. This sequence breaks the test
loop and returns control to the console program.

4.9.4 Microtest Single Bus Step Setup
During microdiagnostic execution the error message shown in Figure
4-13 is printed on the console terminal. As in the previous
example, execution stopped on test section 3A.

As in Paragraph 4.9.3, the error PC is a four-digit number
indicating a microtest. A look at the section 3A listing indicates
that the error PC is on line 1948. At this point it is decided to
use the single bus step capability.

A scan backward through the microcode indicates a possible loop
between SYNClB (line 1943) and ERLOOP (line 1936). A point in the
loop is chosen to stop the microtest, in this case UPC 116C (line
1940). The operator enters SET SOMM: 116C, which sets the stop on
micromatch bit and loads 116C into the microbreak register. A loop
command is then entered which initiates execution of the loop.
When the loop reaches UPC 116C, the microtest halts and prints the
UPC on the console terminal.

At this point, the operator enters the bus cycle mode (set step
bus command) • Each time the operator types SPACE, a single bus
cycle is executed and the- UPC is displayed on the console
terminal. At any point in the loop the operator may scope the
current conditions.

As shown in Figure 4-13, the operator has exited from step mode by
typing any character other than SPACE. The program control flags
previously set are cleared. The HI flag is set to restore the
normal default case. A CLEAR SOMM is then performed to clear the
stop on micromatch bit and the microbreak register, then a
CONTINUE is performed to begin normal test execution at the next
sequential test (i.e., A6). If the operator feels that the problem
has been cleared, it is probably more practical to start the tests
over rather than to begin at the next test.

4-37

CONSOLE TERMINAL OUTPUT

>>>IEST

MICRO DIAGNOSTIC V.05
01.02.03,
NO, OF WCS MODULES = 0001
04,os,06.07.os.09,oA.os.oc.on.oE.oF.10.11.12.13,14,15,16•17•
1s.19,1A.1s.1c.1n.1E.1F.20.21.22.23,24,2s.26.27.2s.29,2A.2a.2c.2n.2E.
2F,30,31,32,33,34,35,36,37,39,39,3A,

ERROR: 1026

DATA:
TEST
NUMBER
INDEX

TEST~ SUBTEST• 2

/
MIC>SET SOMM: 116C

MtC>LOOP

MICROBR.EAK MATCH UPC= 116C

MIC>SET STEP BUS

UPC= 116D (SPACE BAR)

UPC=116E

UPC= 116F

UPC=1170

(SPACE BAR) INPUT
•t---~~~~~~~~~-{OPERATOR

(SPACE BAA) UNDERLINED

X +--ANY KEY LEAVES STEP MODE

tc - CONTROL -C TO GET COMMAND MODE

~>CLR FLAG ALL~ ~ THESE 2 STEPS

MIC>SET FLAG HALTI RESTORE NORMAL FLAGS

MtC>CLR SOMM)

MIC>CONT)

CONTINUE TESTING

FULL SPEED, NEXT TEST

1832 SECTION 3A
TEST A5

U UH,
u 11u,
U 11H,
u 114(:,
U 114D,
u u1c.
U UtO,
u 114!1
u 1!4P',
u 11501
u 1151.
u 11521
u 1153,
u 11541
u 1156,
u t 15?,
u 1151,
u uu.
u un·,
u 1159,
u 115A,
u u••· u 11~.
u 1uo,
u 115!,
u t15P',
u 11u,
u uu,

LOOP
RANGE

MICROMATCH U

u
u
u
u
u

ee11,e01c,01a0,0tA1,e0ee,11tA
eei11e, 001c, 01u,Hu,uee.11•1
eeee,tt1c,011e,c1ee,1111e1,11•c
01~2.•e1c,011e,0100,111eee,114D
tll'l1,1e1c,A1ee,etre,e0ee,1e1c
Aeee,001D,0110,e100.111000,1erD
0110,0011,~1e0,0•11,001e,114E

0101.0021,0110,0••0,eiee0.11•P'
e11c,201•,0110,eA11,e0ee,1159
0a1e,0011,1110,1D10,e~e0,11s1
000e,001c,e110,eA21,0ee0,11s2
000e.001c,0110,e•21,00ee,1ts1
ee1e,e014,e110,ea00,ee10,11s4
eeee.ee1c,11r0.2c~0.00ee,1ts6
001c,0e14,11ce,e111,ee1e,11sT
0e10,2011,0111,110e,001e,11s1
ee10,111c,e11e,e1ee,ee11,111E
ee11,2010,0110,0•ra,10ee.1119
0111,001c,011e,1Ae~,,,,,,1159
Ae11,0014,0s10,0Aee,e0ee.11sA
eeee,0e1c,0110,1Ae1,101e,11s1
•e11,e014,esee,e111,e0ee,11sc
eeee,011c,e11e,0A1e,e01e,11sD
e011,ee14,e990,0Ate,eeee,11sE
0111,ee11,011e,et6e,e010,11sr
011t,1e00,esee,e•r0,0010,1160
eeee,e11c,e1ae,0100,eee0,1e2e
0100,e11c,0110,010e,0000,101B

1119
1891
1191
1192
SIU
1894
1895
1896
1197
1891
119'
1•00
1911
1•n
19U
1984
1915
1906
1901
1901
1919
1•1•
1911
1•12
191)

I 1914
1915
1916
1917
1918
1919
1920
1921
1922
192]
1924
1925
1926
1927
1921
1929
l9Jfl
19)1
t9J:Z uu
19J4
uu

MICROTEST PROGRAM LISTI NG

TEST HEADER AREA

RC [5J.D SAVE
Yl-U2J
D(WORDJ.ClCHE 0 P I FETCH !IP!CT!D N IIT DlTl
D..D 0 SIT [WOltDJ
RC(HJ-D a AVE

•• EltLOOP
D.RC [fl!]
D.MOT 0 D GUERlTE INITIAL VALUE or Nan
D.D 0 lND,1ttJJ MASK
IDCCllJ.D,D.RCtl!J INIT TH! CES REGIST!R
LAB.Rt5J
LC.RCUJ LATCH lMX AND 8MX DATA

1YNCU1 lLU.LA+LC1CLIC 0 UBCC1IYTE EXECUTE THE TEST
Q,.ID[CEaJ
Q..Q 0 lND 0 1t UJ Mlllt
lLU..Q•D1CLK,UICC CK!CIC
u ., EltltOR21ltC[IDJ.Q ALU N BIT FU LED IN CU 1'!G
LA8-R[81
It CfH.Ll+IC I. t l INCltEMINT ADR or llMX DATA
LU.,R[lJ
1tr1J..LA+1Ct,1J lNCP!lilENT ADR or BMX DATA
LAl.IH2J
It t 2J.Ll+l<C, 2J INClt!lil!NT lDR or EXPECTED DATA
D.RC CICJ
RC[0CJ-D•Kt,1J,CLK,UBCC,8YTE CK!CK THE LOOP COUNT
u

•Ill JIICLTIL1 CONTilllU!

11

•• t NOW CHECK THOSE PATTERNS REQUIRING THE ALU TO DO AN A MINUS B
••
TIS21 RC(0CJ.J[o2l
•0 SUITIH
ICLTIL21YA..RIPJ

OCBYT!J.CACH! 0 p
R(5].D
VA-Rtl J
OCITTEJ.ClCH! 0 P
!tC (!5).D
VA-PUJ
D[WORD].CACHE,P
D-D,SXTtWORDl
..RC.!Hl-D

UBCC1BYT1:

S!T THE LOOP COUNT

F!TCH AMX DATA
SAVI

F!TCH BMX DATA
SAVf:

FETCH EXPECTED N BIT DATA

I IAVE

GENERATE INITIAL VlLU! or N BIT
MASJ
INIT TH! CES REGISTER

LATCH l~X AND BMX DATA
!X!CUT! THE TEST

NAIK
CHECK

ERROR-~~~~~~~--l1---~~~~~~~~~~~~~~~~~--t..J"'iiU~i"fi~"ifi~~;ifi':~~~ifl~i':j~f;;----!-t9'1t-ii"~~--:iU'i!iii:ii~iiiI:C~~~ --~~~~~~~~~~~~~PC U Elt~OR2,RCCIDJ.Q ALU N BI.T FAILED JN CE5 REG
INDEX

Figure 4-13 Microtest Single
Bus Example

4-38

TK-0776

5.1 DEFINITION OF TERMS

CHAPTER 5
MACRODIAGNOSTIC PROGRAM DESCRIPTIONS

Module -- The diagnostic programs are written in a modular format.
Each module (file) is a part of the program assembled separately.
Modular programming allows the development of large programs in
which separate parts share data and routines.

Assembler -- The MARS assembler (which runs on a PDP-11) and the
VAX-11 Macro assembler (which runs on a VAX-11) are programs that
accept one or more source modules written in MACRO assembly
language and produce relocatable object modules and symbol tables.

Linker -- The VAX/VMS linker and the cross linker accept as input
one or more native code object modules produced by the assembler.
Linking consists of three basic operations.

1. Allocation of virtual memory addresses

2. Resolution of intermodule symbolic references (global
symbols)

3. Initialization of the contents of a memory image.

Program Defined Symbols -- Program defined symbols (and labels)
are either internal or external (global) to a source program
module. An internal symbol definition (and reference) is 1 imi ted
to the module in which it appears. Internal symbols used by the
diagnostics are temporary definitions that are resolved by the
assembler.

A global symbol can be defined in one source program module and
referenced by another. Global symbols are preserved in the object
module and are not resolved until the object modules are linked
into an executable program by the linker.

Program Sections -- The assembler creates a number of program
sections (.PSECT) within a module, according to directives by the
program developer. In addition, any code that precedes the first
defined program section is placed in the BLANK program section by
the assembler.

Through program sectioning the program developer controls the
virtual memory allocation of a program. Any program attributes
established by the program section directive are passed on to the
linker. Thus program sections can be declared as read-only,
non-executable, etc. Refer to the VAX-11 MACRO Language Reference
Manual for an explanation of the various program section attribute
functions.

In the diagnostic programs, each test is given a separate program
section.

5-1

5.2 OVERVIEW OF THE MACRODIAGNOSTIC PROGRAM
The macrodiagnostic programs and the diagnostic supervisor are
written in VAX-11 native code. Each of the programs (and the
supervisor) consists of modules. These modules are separate files,
which are assembled separately and then linked by the linker
program. Each module contains one or more program sections. The
program sections and routines are organized according to a common
format and a set of conventions that enable them to interact with
the supervisor. Note that the listings described in this chapter
are those assembled by the MARS assembler and linked by the cross
linker in compatibility mode. The format will change when the
native assembler and linker are used.

5.3 MACRODIAGNOSTIC PROGRAM LISTING DESCRIPTION
This section describes the program listings in general terms.
Illustrations and examples are taken from the MBA RH780 diagnostic
program. The formats of the other listings are similar.

Each program listing begins with user information and a link map
created by the linker program. The separate modules that make up
the program constitute the rest of the listing. The first module,
c a 11 e d the he ad e r , de f i n e s s ym b o 1 s and 1 ab e 1 s and p r o v id e s
routines that are called by other modules. The modules which
follow contain the test routines.

User Information -- The user information, which comes at the
beginning of the listing, includes the following items.

Program identification
Copyright statement
Program abstract
Hardware and software requirements
Prerequisites to running the program
Load and start instructions
Program description
History of program maintenance

Link Map -- The link map shows the virtual memory allocation of
the total program image in the program section allocation
synopsis. Figure 5-1 shows. this synopsis for the MBA diagnostic
listing.

The program section allocation synopsis lists the program sections
according to the order in which they appear in memory. A list of
attributes and the base, end, and length are given for each
program section. The base address is the virtual address of the
first location in each program section assigned at link time. This
number must be added to the relative addresses given in the module
listings to determine the virtual addresses of specific
instructions because the assembly addresses are all relative to
the base of the program section.

5-2

VIRTUAL MEMORY ALLOCATION OF JMAGf "ESCAA,~XErl"
THIS ALLOCATION ~AS DONE O~ 20•SEP·7~
AT 12143 0Y CROSS LIN~E~ VEPSlON X4.6

. V I~TUAL Mf "'10RV LI~ITSI lii.-1 (.1 ,102 l.., p V!rll~f'BSFF ~~VIV'~.4 ~~

STACK SIZE COEC, PAGESls H'
VJPTUAL DISK BLOCK LIMITS COCTALll V1ti'00!111 ~@0132 0VlrH 32
lDENTIF IC AT ION I 5,3
lhNAMIC MEMORY AVAILA~LE' CBVTESlt 42752
DYNAMIC ~EMORY USE'~ CSYTES)t 21-1648
LARGEST FREE HOLf. SIZEr ?12'4e.
NUMBER OF HOLES F~EEI k1!i'v1 1q

.47 HOLES OF 4 BYTES
11 HOLES OF 8 BYTES
4 HOLE:S OF 12 BYTES
5 HOLES OF 16 BYTE'S
4 MOLES OF 20 BYTES
5 HOLES OF 24 BYTES
1 HOLES OF 32 l;VTES
1 HOLES OF 1 8 vi 13YifS

NUMBER OF P•SECTS DEFINED: ~1nv.~1.1

NU~BER OF GL08AL SVM80LS: ~·' r~s 1 !:1:

PROGRAt-1 SECTION ALLOCATIOt-i SYNOPSIS I

NAME ATTRIWTES

CSABSS> I ~~OP IC, us~, CON, APS, LCL I ~·JOSHR I e·n,
CSt-!EAOER>: NOP IC, USR, COt..i, Pl= I., LCL,t-..OSHR 1 NOExf 1
csTSTCNT> I NOP IC, .IJ$R, OVR, PF.l, LCL,NOSHR 1 N0E)(f,

RO
RD
RO

c. ABS ,>1 NOP IC, IJSR, co~, ABS, LCL,~OSHQ,~QExf,NORD

c. BLANK ,>: i..iOPIC, USR, CON, l<fL, LCL,NOSiHR, Ell E' RD
CARGLIST> I N('IPTC, IJSR, CON, QEL. LCL,NOSHR, EH:, RO
CBUFFERS>1 NOP IC, ~JS~ I co~~, RE:L, LCL, ·~OSl-IR, t-:OE:XF, RD
CCLEANUP>: ~1 0PIC, !JSR, c o~·J, "~ L' l CL, t..:OSH~, fxr:, RI)

<DISPATCl-I> I NOP IC, I.JSR, CON, QH, L CL , t-• 0 SH R , N 0 E li E , ~D

CDISPATCl-4..,.X>: NnPrc, us~, C Q~• I Pf:'.L, l.Ct, tJ0$HR, ~·Of XE, ··RD
<HEADER...,COOE>: f\J(IPIC, USR, COt.J, ;./FL, LCL, ~·iOSHR, E 1tf, RO
<ItHTIALIZE>: NOP IC, USP, cm.;, Pl= LI LCL,MOSHR 1 EXE, ~D
<SUMMARY>t ~OPIC, usq, CO"i, RF.L, I.. C l , f,i 0 S HP , Ex f., RD
CTf ST ... 001 >' ~JQP IC 1 tJSP, C O~>J, QH I LC'L,~;OSHR, E: H:, !(O

CT EST ... 002.>' NOP IC, l!SR I CON, "·"t L, LCL,NOSHR, F ltf , RD
CTEST ... Ql~3> I NOP IC, us~. CON, .:. I=. L, LCL,NOSHR, F.:)(f. , RO
CTfST ... 0~">1 NOPtC, USF, CON, t..l~L, L CL, ~JOSHR, EXE I ;.(I)

CTEST..,.005>: ~JOPIC, us~. co~~. &:.; E 1. , L C l. , ~.1 0 S !-! P , E JI. E.' PD
CTEST...,00b>s Nf:'.'PIC, USR, co~;, µ r L, LC L, cJOS HR, F.H, RD
CTEST.,007>: ~JQF>IC, USR, CO", >(~ L ' I CL, 1·i0SH~, Elef, RO
CTEST.,008>!1 NOP IC, USR, COM, i.!~ L, LCL 1 ~JOSHR, Ex E, ~D
<Tl:.ST .,0Qlq> I ~H)P!C, tlSR, C O~J, i; t L • l CL, ~HJSHP., F.)(E , ~I)

CT EST .,010> i NOPICr USP, cor11, :;;.-EL, L CL, IJQSl-IR, P'f., QI'

CTfST.011>1 NOP JC, USR, co~, RFI, I Cl 1 NOSHQ, Eli:E, RD
CTEST.012>1 NOP IC, USR, c o~i, DfL, LCL 1 NOSHR, E)(E, RD
CTfST ... 013>: !\l('IP!C, !!SR, CON, 1-'tl.r l CL, ,'·JDS HI=! 1 EH, RO
CTf.ST..,,014>1 NOP JC, •.is~, CON, ~-:LI LCL,t•OSHQ, E • F., "D
CTEST.,,,015>1 "-iOP JC 1 uso, CON, R i:.:L' LCL,NOSl-IR, EXF, RD
CTt.ST .._016)1: !-..if'IPIC, USR, CO~i, :;;- r: I. ' LCLr''OSHR, f. -X-E, RI)

<TE.ST ,,.011>: ·~oPJC, us~. co•.;, :;)EL. LCL 1 N05~~, F: XE• ~!')

~ASE ENO L.ENGTH

, WRT lfl00~P.10~0 P.P-liH11011J00 000000Hl
1 NQWRT 000PIV!200 00000281 000flll/!082
, NOWIH 00000281.1 0A000287 000H004
1 l'llOlllRT 0etQ!lll00N11 0A0P!el000 P00P.0000
, ~RT 9'000'11288 00001AB8 00001831
, NO~RT tl!~L'lf211ABC 0\1!0~1Eb3 000003A8
, lliRT 00f})020~Q.I 000025FF 000(ll060e
, iii RT 0!000260" ~1"1""0266F 000!00070
, NOwRT 00~et2f> 7121 0001i1284F 00111001Ee
, ~!QiailH 00002850 00'1102867 000210018
, NOi-;RT 00002A0G!J 000P12E3A 00000438
, WJH 00"02E3C 000030'H 00000256
, WRT 000030q4 00003090 111000000A
, N(iWRT ~0~0321i10 00003355 00000156
, NOlllRT i2JQl~031J0"1 ~'"'03698 0000029C
, ~-0"-'RT ~0012138C'IL'I 000P3987 00~00188
, t..:owR T ~0Pl03ArlJ0 0~00a1s2 00000753
, ~lOl\'RT 1"0!1' 01.1200! 000Clt42A7 0001l100A8
, ~JOwRT 0N~~/J4010 000045E1 00PIC1101U
1 NOwRT ~C'I010460Pl ~0004773 ·0"0el0174
, NOiaiRT 000048"'0 0000SlFC 000009FO
,NOWRT ~P"'052~1ll ~et005A07 00000808
, ~.JQWRT V'l00~5Clill"' k!Ql0~5E0B 0(.ll~H!1~2QIC
, •.iOill~H '110~Cllfi(i'l0~ Clle'~0o7CJO 0000079E
, "'0WRT ~0~0b800 00~0oA59 0000025A
, ~·01t1RT ;110P!li'!bC~r. 0(ll00oF2F 00000330
, t-.;Q~RT ~001il70~0 00007615 00000616
,M011.'l~i ~?0!07800 00007A2E 0000022F
, t-.1QwRT 00~07C00 00008FFC 000e l 3FO
,1~0!"RT 00~0Q00"1 0(llOll'jq 158 0000015q

TK·1118

Figure 5-1 Portion of the
Program Section Synopsis,

RH780 (MBA) Diagnostic Program

5-3

The link map also lists the global symbols and their assigned
values. Note that symbols used as labels point to routines in the
diagnostic supervisor, if their values are over 10000.

Figure 5-2 shows a portion of the global symbol table for the
absolute program section in the header file of the MBA diagnostic
program.

The link map is a part of the listing created by the linker, but
not a part of the actual program in memory. It always precedes the
first file in the macrodiagnostic program listings.

Header Module Like all of the modules in the
header module begins with a Table of Contents,
Statement, and a Revision History.

program, the
a Copyright

The declarations section in the header module contains global
symbol definitions for register bit names, data pat terns, masks
referenced by the program, and Macro definitions. This section
constitutes the beginning of the program code. The own storage
section in the header module contains program labeled data, such
as drive addresses, and program text and format statements,
containing the ASCII texts of error and status messages.

The header module also contains code that generates the hardware
and software parameter tables, report and print routines,
initialization and clean up routines, and interrupt and exception
service routines.

The assembler prints a symbol table and a program section synopsis
for the entire module following the last program section in the
module.

Test Modules -- The remaining modules in the program contain the
tests, which are the main body of the program. Each module begins
w i th a Ta b 1 e o f Co n t e n ts , Co p yr i g ht St a t em en t , and Pr o g r am
Maintenance History. The program code begins with macro
definitions. A symbol table and program section synopsis are
provided by the assembler following the last program section for
each test module. Notice that each test beg ins a new program
section.

5-4

ALIGNMENT

c, ABS ,>1

SEN\/
AASS
ALL...,ONES
ATTENTION
BLl<SCSBI
A~t
BQq
BR7
8YTE2
CAR
CRTED 4 REAO.._OATA
OATA4 XFER..,OONE
DISABLE.a.LOG
OPE
ORIVE...,OFFSET
ORV ... INHMASK
DTE
OVA
ERR
F00F
FORCE4ME~fRJ(
HPSB4 BR
HPSB.,TR
HPSQ ... DEVICE'
IM•PP
INTER~UPT..,~NBLE
INV RT ... M"..a.CPAR
IPLR
MANUAL
MAP4 0FFSET
MASS.._CNTRL ... PE
MASS ... ECP
MASS.RUN
MBE
M8E..,CR2
MBE ... ER
MSE ... S~
r--OL
~EXUS..,OFFSET
NI88LE2
NIF\RLE5
NON..,XIST ... DRIVE
occ
PF ... FIELD
PIP

RYTE 0

et~00~0Ql1

~NllQIAASS
000il'lFFFF'
000 Ul00P.
0tt!A0001C
0~0PJ0011
~00'11'11~14
(21~00001'7

0QIFF0~00
000~0P'1C
20000000
0P002000
l00Ql0000
~P.!0A0010

0e000080
0"'001180
0~0~1000

P'fA.0008Vl0
00004000
0"'0"F00F
C1J00002FF
"'Vl0A002t
Ql000002~
Ql~0~0000

00000010
000~0~0/J

40!000000
Ql00~0Ql12

"'000000!2
&ll~012!'11800
0Q!frll20ia00

. 0"'000080
0£11080000
0!0(110!0~03

0~0~001U

~0~"0iG1f.l.18
0:t!A~VJ004

0~"101 Pl0QI
t'l~PIQl2000

~P10Ql0F"'0
~~F'00~00
0,·,040~00

~"90Ql0"91 q
~"'0~000Q
0011rn2~ffilOI

BASF ENO LENGTH

GL08AL SVMROLS DEFTNE~:·

$MO
Al)APTf P..,.COOE
ASP._OFFSET
A TT"'
8l I< S Nl"'.a.C ()MD
8R2
8f:(5
BVTEllJ
PVTE3
(PF
CSP
DA u ... xFER.,.LATf
['1"'11')

l)P~

DRIVE ... SEL ... ~S!<
l')RY
f)TJ.Al30RT
Er.:il
fRR,..CQNF
FA TL
HPU ... CHANNE:L
.-.i:>~.R..._DRIVE

HP'J.>L ... URVEC
HPH ... '-'EVICE
I~RCP

JNT ..,SEQ..._ TIMEOUT
I~VRT ... MF; ... DP~R
LC'~~ tTS.._t.1SK
"'iAP .•).,.PATTRN
~AP.a.?E"

~·Ass ... cTOD
~~ASS ... EXCP
MASS,...lttCLI(
:4f'.E.ASR
M~E.._01:u~

~Bf .1.MR
MCLI<
~SR

~'!PBLE"0
~I~~LE3
r .. I~l3Lfb
l\J('(')P

OPT
PF .A.hfl')TH
1:10,,.f.R.,.DOwN

000~0~"111
0PQl~l'}.02~

~~~-'Plil41 b 
0'rn~001 e 
1 ~Q!~tlll?.091 
0~H'101f1012 
~0Ql0Ql~15 
0t""4~v1~t,FF 

FFl?l!iHH"f{let 
00~~L.-'V108 
~0l/10c;\Ql0Qt 

00V4P~H3i;,0 

0~1210\~~(.ll 1 
00017''1!1 ~~ 
Ql~liH"E'1'0QI 
~00~~0801 
0~PIC~Cll0£i'2 

00!1'.'!fl:~i~1 A. 
00'1!0P0"1A 
C\0000013 
0~Ql0il!O! 14 
~'""'17"0Vl?2 
00~~,Cil~24 

0~~v000e 

"''Hrn0C'.l l E 
VI fl! I~~ OI ~IJ C4 2 
e00v1000~ 

0V.'(-10V' 1nF 
e()lt~FFFF 

QIQl~ll'rn~ 

A"'f' l l'1V1"''11 
@0~2~0£110 
AfilfiHl000't1 
ltHiHH~N~t ~ 

eH~Hrn ~ ~ 1 c 
0~~~PIC:'0C 

0(.)l.0e~(}l~2 

~Q!01.f!~?.18 

0""~''rn~Qlf:" 
0et'~F~Hrn 

0F'40~~·HH'' 
0~CH;''Vl'1!~ 
0ff'IM!2~01!1 

Ql~0~0015 

"wer0YJ"'0 

Figure 5-2 Portion of the 
Global Symbol Table for the 

Absolute PSECT of the Loader 
File of the RH780 (MBA) 

Diagnostic Program 

5-5 

A55A 
ALL 
ATA 
BCR 
f3R0 
8R3 
8~6 

BVTEt 
@VTE .... COUNT,..MSI< 
CR 
DAT A ... XFER..,ABIH 
DEFAULT 
oocc 
OR 
ORV .. ERIHUSI< 
OS ... MSI< 
OT.BUSY 
ENA8LE4 PS 
EXT .. REG .. OFFSET 
FERR 
HPU.._OEVICE 
HPSB ... SLAVE 
HPSL.._VECTOR 
ILF 
IMBOP 
INVRT .. MAP .. PAR 
IO.,..PAGE 
MAINT_.,MOOE 
MAP.INVALID 
MAP..,PTP..,MSI< 
MASS .... DATA ... PE 
MASS_...FATL 
"90IB ... SEL 
hlM .. CR 1 
M8E ... OTR 
MBE .. PARAM 
-.itSSEO..,.XFER 
MULT.._TX 
NJ8BLE1 
~IBBLEIJ 
NIBBLE7 
NO.RESP ..,CONF 
PAGE ... BYTE ... MSK 
PGM...,INIT 
POWER..,UP 

9'00~A55A 
000Pl0001 
00008000 
00000010 
00000010 
00000013 
00000016 
0000FFH 
0000,FFF 
0~000004 

00001000 
0000000(11 
00089189 
00000014 
0000EH0 
0FFFF8FF 
800el'1J000 
00000800 
~0000lU10 

00000004 
00000018 
00000023 
0000001C 
00000001 
0000001, 
20000000 
20000000 
00000008 
00lel00010 
0001FE00 
0000Hl40 
00100000 
00800000 
00000000 
00000018 
0!0!000087 
00000100 
rtl80C'l0000 
000000F0 
ee0F0000 
F0000000 
4Ql000000 
000001FF 
00000001 
00400000 



5.4 DIAGNOSTIC PROGRAM AND SUPERVISOR INTERACTION 
Whether a diagnostic program is executed in the user mode or in 
the standalone mode, its relation to the diagnostic supervisor is 
basically that shown in Figure 5-3. Once a diagnostic program has 
been loaded and the diagnostic supervisor has been loaded and 
started, program control moves to the boot routine of the 
supervisor. This routine clears vector space, flags, mail boxes, 
and sets up the processor registers to a known state. The boot 
routine checks to determine whether the operator has typed a 
Control C and sets up a map of memory and I/O addresses creating 
P0 and Pl page tables. It then initializes the system control 
block and the process control block, and then calls the beg in 
routine. 

The begin routine changes the processor mode to kernel and calls 
the CL! (the command flag should be set). The CLI types out the 
prompt symbol, DS>, indicating that the supervisor is ready for 
commands. When the operator types in a command (e.g. START), a 
parser routine in the supervisor is activated to decode the 
command and call the requisite action routines, clear the command 
flag, and then call the dispatch routine. 

The dispatch routine forms the heart of the supervisor. It begins 
by clearing the error count and setting the pass zero flag and 
then calls the initialization routine in the diagnostic program to 
be executed • 

The initialization routine initializes the unit under test and 
sets up conditions in the CPU and on the SB! which are necessary 
to the diagnostic program. The initialization routine then 
questions the operator concerning the unit to be tested, creates a 
hardware parameter table (P Table), tests for end of pass, and 
returns control to the dispatch routine in the supervisor. 

The dispatch routine then calls the first test. At the end of each 
test, control returns to the dispatch routine. At the end of the 
last test in the program (or the last test selected by the 
operator), the dispatch routine in the supervisor calls the 
initialization routine in the diagnostic program. This routine 
determines whether or not the end of the current pass has been 
reached. If the end of the current pass has not been reached, the 
first test routine in the dispatch section of the supervisor is 
called, beg inning another test sequence. If the end of the pass 
has been reached, the program calls the end of pass routine in the 
supervisor. 

The end of pass routine in the supervisor determines whether or 
not the last pass to be run has been completed. If so, the cleanup 
and summary routines in the diagnostic program are called, the CL! 
command mode is set, and control passes to the begin routine which 
calls the CL!. The CL! prints out the OS> prompt symbol and waits 
for operator input. 

5-6 



NO 

DIAGNOSTIC 
SUPERVISOR 

START 

BOOTSTRAP 
AND SUPER 
INIT ROUTINE 

BEGIN 
ROUTINE 

COMMAND LINE 
INTERPRETER 
ROUTINE 
(CLI) 

lnisPA'Tc1i- - - - I 
I ROUTINE 

I 
I 
I 

FIRST TEST 
ROUTINE 

_J I 
I 

DIAGNOSTIC 
PROGRAM 

CONTINUE 
WITH 
INTERRUPTED 
TEST ROUTINE 

f'PR0CiRAMiNiTR00r1N'E - -1 
I BUILD p I 
I TABLES. 

INITIALIZE 

I DEVICE TO BE 
TESTED 

DIAGNOSTIC 
SUPERVIS08 

c 

YES 

NEXT PASS 

GO TO BEGIN 
ROUTINE TO 
INITIALIZE 
SYSTEM 

11 
11 

DIAGNOSTIC 
PROGRAM 

FIRST 
TEST 

TESTN 

CLEAN UP 
ROUTINE ----- ---
SUMMARY 
ROUTINE 

- sE-T CoMMAND­
MODE 

11 
IL-- --, 

I 
I 

I 
I 

I 
I 
I 

SERVICE 
ROUTINES 
(PRINT. ETC.) 

-CALL SERVICE 
ROUTINES 

RETURN FROM 
SERVICE 
ROUTINES 

-CALL SERVICE 
ROUTINES 

RETURN FROM 
SERVICE 
ROUTINES -

E 

_______ J 

Figure 5-3 Diagnostic Program 
and Diagnostic Supervisor 

Interaction 

CALL CU YES NO RETURN TO TEST 

I 
TK-0607 



If the last pass has not been completed, the end of pass routine 
checks to see whether the operator has typed control C. If the 
Control C flag is set, control returns to the CL!. Otherwise, the 
end of pass routine calls the begin routine in the supervisor to 
initialize the system and initiate the next pass of the diagnostic 
program. 

Note that when the operator types Control C, he does not cause an 
interrupt routine to be called. The Control C merely sets a flag. 
The status of the flag is checked periodically when the tests in 
the diagnostic program call various service routines and at the 
end of a pass. 

5.5 ANALYSIS OF A SAMPLE TEST: RH780 (MBA) TEST 3, SUBTEST 1 

5.5.1 Listing Column Format Description 
Figure 5-4 shows the program listing for the MBA RH780 diagnostic 
program (ESCAA), test 3, subtest 1. The sixth column from the left 
contains the relative address of each instruction. These numbers 
begin at 0 with the beginning of each program section. Note that 
the address offset of the program section containing Test 3 
(3600 ) , found in the link map, must be added to the relative 
addre~~ to find the virtual memory address of the instruction. 

The seventh column from the left contains the listing line 
numbers. These numbers begin at 0 for each module of the program. 
Note that the line number increments for each line of the source 
module. The sixth column shows the program counter, containing the 
relative address. The relative address increases according to the 
amount of memory space required for the instructions and operands. 
Line numbers are present only for lines entered by the program 
developer. Macro expansions do not have line numbers. 

The eighth column from the left contains labels used by the 
programmer as symbolic addresses. 

The ninth column from the left contains instruction mnemonics and 
Macro calls. Note that the Macro calls themselves require no 
memory space (the relative address does not change), and that in 
the Macro ex pans ion which fol lows, the 1 ine number is not 
incremented (line 317). At assembly time, the assembler program 
responds to the Macro calls, expanding the Macro according to the 
definition listed at the beginning of the file. 

Column ten contains operands for those instructions contained in 
column nine; and it contains instruction mnemonics and parameters 
for the Macro expansions. 

The eleventh column from the left contains operands from the Macro 
expansions. 

Column five contains the op codes (hex) for the instructions 
contained in columns seven and eight. 

5-8 



RM78111 ... TESTS 

"" 

52 

TEST 21 INtTIALIZATtON TEST 

l-12'1C 
Ml!IC 
UllC 

ll!lllfllA11!01Ht 
001C 
1111,uc 
0DllC 
11101C 

0111ei01H'l111111 n1c 
rlH"2fll 

01111110 flill2111 
11111122 
"'11122 
1111122 
Ol\1122 
vlll'22 
~11122 
CllOl22 
>'11122 
l'lll"22 
'.•~22 

vi11122 
'11"22 
>1P22 
~:~22 

'-111122 
'1111!22 
llllll22 
1•11122 

!'Ill l"Ol22 

284 SSBTTL cCONTROL REGISTER S&I T!ST> 
.SBTT.L T!ST Ji CONTROL R!GIST!R S&I T!IT 
ltSSBTTL eeJ,cCoNTROL REGIST!R SAi T!ST>,clll&G!> 

.PS!CT T!n.:ee·J, lllAG!, NOWAT 

28'5 , [(J)J 
211• Sl.IGNT!ST CDEl'AULT,ALL> 

D&TA .. HJI 
• LONG Ill 

TFST .. l!lll!Jii 
t TEST ARGUMENT TABLE TERMINATOR • 

' ENTRY MASK 
28'7 r++ 
2M t 

0 WORD •fllc> 

28• r TEST OESCRIPTIONt 
2CJ'11 
2111 
292 
24'3 
21111 
211'5 ' 
2110 ' 

THIS TEST CHECKS l'OR STUCK AT ZERO BITS IN THE AMTBI CONTROL REGISTER 
A CM!CK IS ALSO MADE TO INSURE THAT TH! REGISTER WILL CLEAR VIA 
THE O•INPUTS 01' ~HE CONTROL REGISTER l'LIP/l'LOPS 0 

211'7 t TEST ALG~RITM"'I 
21111 , 
21111 
31110! 
3'111 
302 ' 
1'111 , 
3C"ll ~--
3P1'5 

wRITE ONE'S INTO !ACM BIT, CLEAR VIA THE O•INPUTS 
WRITE EACH BIT IN TH! CONTROL REGISTER 
REPORT [RADA II' SELECT!D BIT ti NOT SET 

MOVL RH:cuR:ADR,R2 ' MOVE RM'7110 ADDRESS TO R2 

..... . 
(J) 

:•Cll211 
{'IE '•0!211 
CU '40!111 
OE ~01!! 

Jll'o ERAPREP AMCR~MSG,1,l'MT:coNTRL.REG,SAlll ... ~SG ' PREPARE TO HANDLE ERROR 
·1110111111111111111111'EF 
0'1I010QlllllllP'EF 
llllll0'1IOICHH•'F.F 

•n 

rl'llllllCllllllllllllll'EF 
01 

~Oll1'CllOll!IOllll'EF 

llllil?IClllll0ll!Ol'EF 
t'fllOIDIOl00IPl'81' 

Gii!' 
::1!000"C2 
lllll!Oll'l"C2 

1" 
54 

G1100lfQlellilGll"EF 
~QIVIPACllG'!Ol'EF 

~0AlllOllllQllll'E' 
01 
011 

CT Al' 

OPERAND 
SPECIFIER 

OPERAND 
OPERAND SPECIFIER 
SPECIFIER EXTENSION 

MOVAL RHCR~MSG,REG4NAME 
MOVZBL #t,REG:No 
MOVAL l'MT ... CONTRL ... REG,REG ... STRING 

31'1'7 r++ ""'"" Wllllo 
IA~(jfl 

••lll110 
~' Ol 11 fl 

JOI!.' : TEST CLEARING VIA D•INPUTS 
]All :•• 

FA ~Olllfl 

c~ "'P51 
IJA OIDl5& 
Oii 1119151' 
00 .-111111 
tJ Oltllfl8 
{'14 ~106& 

"'lll!!C 
OF ~0flC 
DF ;i11172 
00 illi!'T8 
"o ;i~1r 
FA ~Dl811! 

:it0R'7 
,A Qlfll87 

P~8F 

31fll S8GNSU8 

J12 
311 
3111 
11'5 
JU 
311 

n: SI ti 

l lllS I 

llOIRil 
PlllHAL 
PUSHL 
PUS ML 

Jl~ 2G11St 
CALLI 

SCl<LOOP t111S 
CAL LG 

tENDSU8. 
u:u ... u 

!NIT 
WRITE ONE'S VIA D INPUTS TO CONTROL REGIST 
CLEAR VIA D !~PUTS 
READ Gll'S ,ROM CONTROL REGISTER 
SKIP I' NO ERRORS 

t CLEAR EXPECTED RESULTS REGIIT!A 
#l1LUN,MIR,PAJNT ... SBE 
lilifijf ... H! 
MIR 
LUN 
•t 
#SIM, ••DSS!RRHARO 

t SCOPE LOOP? 
tH, HOHCKLOOll 

"'"8' Fl ~08F CALLG SSS, •#OSl!NDSU" 

INST 
OPCODE 
(HEX) 

I 
LISTING 
LINE 
NUMBER 
(DECIMAL) 

PROGRAM 

I 
INST 
MNEMONICS 
AND 
MACROS 

MACRO 

OPERANDS 
FROM MACRO 
EXPANSIONS 

COUNTER EXPANSIONS 
EXTENSION (HEX) LABELS AND COMMENTS 

I I OPERAND 

I I OPERANDS I SPE<jlFIER I 
2 3 4 5 6 7 8 9 10 11 

Figure 5-4 RH780 (MBA) 
Diagnostic Program Test 3, 

Subtest 1, Listing 

5-9 

12 

TK-0736 



Columns one through four contain the hexadecimal code for the 
operands specified in columns ten and eleven. Columns two and four 
contain operand specifiers. Columns one and three contain operand 
specifier extensions. Numbers followed by an apostrophe (e.g., 
00000000 ') are the machine code for symbolic operands. They are 
modified by the linker at ,link time. (MARS is a one pass 
assembler. Forward references, with the exception of branches 
within P sections, and global symbols cannot be resolved until 
link time.) 

The twelfth column contains comments describing the functions of 
the instructions. Each comment is preceded by a semicolon. 

5.5.2 Analysis Of Typical Lines 
Line 311 -- The BISL instruction sets bi ts in the destination 
according to the mask provided. #PGM. INIT is the symbol for the 
mask. Its value (00000001) can be found in the symbol table at the 
end of the module. CR is the symbol for the relative address 
(offset from the MBA base register) of the control register of the 
MBA under test. Its value (00000004) is also listed in the symbol 
table. This value is added to the contents of R2, the base address 
of the MBA under test, to produce the physical address of the 
control register. The instruction thus sets bit zero of the 
control register. The comment, INIT, indicates the function that 
setting bit zero performs. 

Line 317 -- $ERRHARDS, in line 317, is a Macro call. The symbols 
that f o 11 ow it are a rg um en ts to be used in the ca 11 • The five 
lines that follow line 317 show the expansion of the Macro. These 
i n st r u ct ions push the a r g um en ts on the stack and ca 11 the 
DS$ERRHARD subroutine in the supervisor, which sets the error flag 
and prints an error message based on the stored arguments. 

5-10 



5.6 RH780 {MBA) DIAGNOSTIC SAMPLE SUBTEST {Direct I/O) 

5.6.1 RH780 Diagnostic Detailed Flow 
Each test in a given diagnostic program relies on subroutines 
provided by the diagnostic supervisor. The diagnostic program thus 
depends on the supervisor for services as well as initialization 
and test sequencing functions. The operator should be able to 
follow references and subroutine calls back and forth between the 
diagnostic program being run and the supervisor in order to use 
the listings. 

The general strategy used throughout the diagnostic programs 
involves writing and then reading back data directly (with MOVE 
instructions) in order to exercise the logic circuits or device 
functions under test. Data retrieved is compared with data 
expected. If the comparison indicates a failure, an error routine 
takes appropriate action and sends a message to the operator. 
Subroutine 1 of test 3 of the MBA diagnostic is representative of 
this strategy. This subtest determines whether the control 
register of the MBA under test can be cleared after each bit in 
the register has been set. 

When the diagnostic supervisor calls test 3 of the MBA diagnostic, 
the test initialization code moves the base address of the MBA 
under test to general register 2. This register is then used to 
index specific MBA registers. The ERRPREP Macro then stores 
information concerning test 3 in a buffer area for use in error 
messages. 

Subtest 1 begins with a call to the DS$BGNSUB entry point in the 
supervisor, as shown in Figure 5-5. In order to find this entry 
point, look in the global symbol table in the program 1 ink map 
(Figure 5-6). DS$BGNSUB equals 00010030, an address in the 
supervisor. Note that the first two characters of the symbol (DS) 
indicate that the symbol points into the diagnostic supervisor. 
The global symbol table in the link map for the supervisor shows 
that the entry module (ESSAAll) defines the symbol (contains the 
cod e f o r the en t r y po i n t ) ( Fi g u r e 5 - 7 ) • The n am e s o f t he 
supervisor modules suggest their functions (e.g., entry, loop, 
print) • 

The DS$BGNSUB entry point contains only one instruction, a jump to 
RBGNSUB, as shown in Figure 5-8. This subroutine is in the loop 
module of the supervisor (Figure 5-9). RBGNSUB checks the subtest 
sequence for correct order. A discrepancy causes the subroutine to 
call a print routine, which displays an error message, and then to 
return to the CLI. If the subtest sequence is correct, the RBGNSUB 
subroutine calls the KB-CHECK routine to check for Control C. If 
the opera tor has typed Control C, control returns to the CLI. 
Otherwise, control returns to subtest 1 which, at this point, 
begins testing the MBA logic. 

5-11 



VI 
I -N 

ENTRY 
MODULE 

! 

DIAGNOSTIC 
SUPERVISOR 

DISPATCH 
ROUTINE 

f°WsGNsUB- - - --

1 ROUTINE 

1
1 

PRINT 

MODULE 

~ 

I 
I 

PRINT ERROR 
MESSAGE. 
CALL CLI 

NO 

CALL TEST 

I I 
L_ ______ _J 

ENTRY 

COMMAND MODULEl 

LINE 
INTERPRETER 

DS$ERR 
HARD 

ERROR 
MODULE 

ENTRY 
MODULE 

PRINT 
MODULE 

PRINT 
MODULE 

RERR HARD 
SET ERROR FLAG 
RING BELL 
IF BELL FLAG 
SET 

DS$PRINTF 

RPRINTF 

RPRINTOUT 
PRINT ERROR 
MESSAGE 

TEST3 
SUBROUTINE 

LUN # 
MIR MODULE 

I 
I 

I 
I 
1. 

I 
I 
I 

MBA RH780 
DIAGNOSTIC PROGRAM 

CALL BGNSUB 

RETURN TO SUBTEST 

STORE ERROR INFORMATION 
CALL ERROR ROUTINE 

SETUP 

BASE ADDRESS 
OF MBA 
UNDER TEST 

ERROR 
PREPARATION 

INITIALIZE 
THE MBA 

WRITE ONES 
TO CONTROL 
REGISTER (CR) 

CLEAR 
CONTROL 
REGISTER 

YES 

A 

CLI 

Figure 5-5 RH780 (MBA) 
Diagnostic Program Test 3, 

Subtest 1, Flowchart 

MBA RH780 
DIAGNOSTIC SUPERVISOR DIAGNOSTIC PROGRAM 

I CALL CKLOOP 
A 

ENTRY DS$CKLOOP 
MODULE 

I I LOOP 
MODULE I I 

I I 
I I 

I I 
I I 

I I 
I I 
I I 
I 1 

I I 
SAVE PC I I 

I I 
CALCULATE I I LOOP ADDRESS 

I 
RETURN TO I I 
BEGINNING OF 

L _ ::ROUTIN::_ :J I 
I 

REND SUB CALL 

SUBROUTINE DS$ENOSUB 

TK-0506 



2 

J 

s 

., 

MJR ... P40P.~CP_.MSI 
MJR ... MSI.MCP.MDP 
MSI 
"451..,MCP.a.MIR,,.~OP 
"4$ I ... M IR .a.MCP ..,MOP 
N0..,U"'lTS 
QST ... INIT1 
REG...,NO 
RH0 
R~l 

~Mb 
RMCR..,MSG 
RHMAPR..,MSG 
Rl-l,,.ADQ.a. TA"LE 
~H,,.TRLVL 
SFT.,P.,TABLE 
TI ,..OUT .e:vr ... FLAG 
WAIT ... TI"1E 

cSHUDElbl 

c.LAST>I 

cSTSTCNT>a 

cUBSS>I 

DSUBORT 

osus·n~ 

OSSCNTRLC 
OSSELOGOt<J 
OSSERROEll 
OSSERRSYS 
OSSGETMEM 
OSSINLOOP 
OSSMOVPMY 
OSSPRINTB 
OSSPRINT>c 
OS!SETIPL 
OSSSMOCMAN 
OSSWAITUS 
SYSSSINTit-4 
SYSSCLREF 
SYS!GETCHN · 
SYSSQJOIM 
SYSSSETIMA 
SYSSWFLANO 

<DISPATCH> I 

cD JSPA.TCM.X> I 

001cHllc;,bbE•R 
r.~000704•R 

000009A8•R 
!iS!l'00fiUB.?•R 
~e!000A1C•l:i 

0t110ei02B3•Jt 
Q!QlftJA195J•R 
0.0000548•" 
~'1100028D•R 
01i'.10002q9•R 
0P.111002A5•R 
M0U q 1 O•R 
000A1942•R 
0'110et0280•R 
~~0Cl!02AD•R 
0@0P1AB5•R 
000002E6•R 
0~0t'!02EC•R 

PAGE 9 

LONG 2 

BYTE 0 

t•.YQ ... >-151 
l"JR ... MSJ 4 ,...(IP 
MST ... ~CP 
MSJ,,.MJR 
~S~ 4 St.JAP 

NIJM9Ek'_.PUFFER 
Rf C4 MSG 
REG,..STRING 
R"' I 
RHIJ 

Rt-!7 
Rl-!CSR 4 MSG 
Rt-jSP4 ~SG 
RM~P.RLVL 
SA\~\. MSG 
SUFFJx.&.PTR 
TI MOUT .RET .PC 

P.~0;~~6AR•R 

000t'1117tl!•R 
00((\liH.iASCJ•R 
0Ql0i3~CJC3•R 

9JEJ0ti'02Fltl•R 
~~(iH.,~sae.R 

00001BFt•R 
0N'l"'lil5UC•R 
000~CA2qt•R 

0:;,00Ql29D•R 
Q!~~~V'02A9•~ 
0~1~W t Q 1 S•R 
0~Vl~~ 1924•R 
0001ril'!?AE•R 
00lii1~18CE•R 
000~0554•R 
00~irH~2E7•P 

"1 JR..,.MS I ... MCP 
MIR..,MSI .. MDP .... MCP 
MS I..,MCP ..,MIR 
MSI ... MIR .... MCP 
NOOR IVE 
PTBASE 
REG..,NAME 
REPORT...,SUFFER 
QH2 
RH5 
Ql-t~C~ ... MSG 
RHDR.&.MSG 
fHt\I AR.,MSG 
~H ... CUR..,AOR 
SA1...,114SG 
TEll'IP 
UNEXPECTED 

000el0602•R 
012100077l•R 
0PCirneA80•R 
000009EA•R 
000~02E0•R 
00000284•R 
0001210544•R 
00000340•R 
00e00295•R 
000002Al•R 
00001q33•R 
0000193B•R 
0001i!1192B•R 
00000288•R 
~0001809•R 
01(10e055C•R 
0fi'l0018E4•R 

GLOBAL SY~80L5 DEFINE~•· 

00010078 
'11'11010100 
0~0100C8 
0oi0100ce 
0'1010\30 
0~010048 
00"10148 
lil00100E0 
ei~0l'10E8 
(210010178 
000101qfill 
0ftl!0100b8 
0~01111258 
0Cil010l98 
00010~C8 
~"'010200 
00011U2'11 
P112101'1'1.1~e 

LONG 2 

LONG 2 • 

DSUSKAOR 
DSUSKSTR 
OSl~REAI< 
DSfCl<LOOP 
OSICVTREG 
DS!ENOPASS 
OSSERR ... ARD 
DS,ESCAPE 
OUGPldRO 
OSI MMOFF 
DSSMOVVRT 
DS!PRINTF 
DBS fl e: L BIJF 
DS$SETMAP 
DSJSUM'91ARV 
SYSULLOC 
SVS'-CANCEL 
SVS~DALLOC 

SYS$GETT I"' 
SYS!Rf A['lfF 
SYSSSETPRT 
SYShlFLOR 

00Vll ~~q(il 
0@01NlA~ 

00010fi''S8 
0~010"'40 
0121'11l0@80 
0~'1'1~010 

00010000 
00010~50! 
001211~018 
0001"! l 5l' 
00010ta~ 
P.0~1~rt11F0 

0Qllil1'11128 
00~1'1118~ 
0P!iH 0026 
000!10238 
01(1'111026~ 
0001Q!208 
0fi'l010378 
0'1101030"' 
0fi'I~ 104 30 
01i'10 t 0aq(i' 

OSUSl<DATA 
OSSASKVLD 
OSSCANWA IT 
DSSCLRVEC 
OSSELOGCIFF 
"SSE NO SUB 
OSSERRSOFT 
OSSGETBUF 
OSSINITSC8 
OS$MM0N 
OSSPARSE 
OSSPRJNTS 
DSSRELMEM 
OSSSETVEC 
DSSWA ITMS 
SYSUSSIGN 
SVSSCOITIM 
SYSSOASSGN 
SYSSQIO 
SVSSSETEF 
sv·sswAITFR 

00010080 
00010088 
00010070 
00010168 
0et010U8 
0e01003e 
00010008 
00010120 
00010170 
0fl010150 
00010088 
H0100F8 
00010138 
00010160 
0001006111 
00010250 
00010268 
000102E0 
0900103C8 
00010400 
00010478 

TK-1120 

Figure 5-6 DS$BGNSUB Listed 
in the Symbol Table in the 

ESCAA Link Map 

5-13 



ZZ•ESSU•G •~HI Me~ Ftche 1 Fl"eme L1 Sequence 11 
DMA11r1a0,401ESSAA.EXEJ467 30•AUG•1978 09131 LINKER u1.20 P4GE u 
Syt180l VALUE DEFINED 13Y REFERENCED BY ••• 
•••••• ····· --·-·-···- ----·-------·-··· 0USUCB2 '1!0~l84E8•R 108ASE..,ESSU43 DE\I ICE..,ESSAA9 
DRASUC83 00018588•R IOBASE..,ESSAA43 DEV I CE.ESSAA9 
DS$U..,8PT 40DR 0l'l012FD0•R DEBUG..,ESSU8 ERROR ... ESS.012 LOOP SCB.ESSU23 
OSUBORT 1'100 tet0Z0•R ENTRY ... EU U t 1 FRl(C TL..,ESO.U 1 IOSRAM.a.ESSU4b LODMAP..,ESSAA47 

PAR A M ... ESSAA1 q QIOREQ.a.ESSAA51 SCB..,ESSAA23 
DSU80RTWA lT P!Q!0 Ult.it70•R ENTRY .... nso 11 
osuB ... BPTINST 0P.let t2FC0•P DEBUG ... ESSUS ERROP ... ESSO U LOOP 
DSl AQ,..SSENO ~11101fll7FF•R EN TAY ... ESS U 11 1<ERNEL..,ESSAA15 
DSUQ .. SVSSRV ~M01020~•R ENTRY ... ESSAA 11 KERNEL,..ESSAA15 MfMMGT._ESSAA18 
DSUSl(Af)R l'}l~cil 1 PJ0•0•R ENTRY .... ESSU 11 
DSUSKDAU 00ftl10080•R FNTRV..,ESSUl 1 
DSUSKLGCL 0PIQl10~H·R ENUY ..,ESSU 11 
DShSl<STR 0PIG'! 10U0•P ENTRY .... ESSAA 11 START....,ESSAA25 
DSUSKVLO 1'10fill 1 Cll08eaA !NTRY ~e-ssu 11 DEVICE 4 ESSOC1 
osso ..... soFTPce f'HHH E10 0 • R 1<ERNEL...,ESSAA15 ASS l GN.fSSU.36 ASTOEL. .. ESSAA t CA NCf l ... ESS AA37 

CH"'1K.ESSAA4 OASSGN.ESSAA38 DEVALC..,ESS AA40 
IOPOST4 ESSAA52 

00 APT LOAD4 ESS--U l & 

°' 
aR 

S 8 f'.AK 0A0100 8•R APT 
OSICANWAIT 000U970•A CLOCK,..ESSAA6 
DUCHANt.1EL ~00U!t81'-1•R 
05$Cl<LOOP "'001001.Ul•A 
DSICLI 00A138B21•R OE8UG ... ESSAA8 SCB,..ESSAA23 UBAINT..,ESSAA55 
DSSCLRVEC Qtl)IJH PJ t68•A C~ANNEL ... ESSU3 DEVICE.a.ESSAAc; MEMMGT ... ESSAA18 

ST ART ... ESSU25 
0S$CNTRLC VHHi'1 ~078•R fNTRV .... ESSU 11 01SPAT..,ESSAA10 
DSSCVTREG 0Aflt1008P•~ !NTRY ... ESSU 11 CHANNEL....,ESSUl OEBUG....,ESSAAB FLAGS....,ESS AA l ta 

sce~ESSAAU 
DS$00SUM"1ARV 00010J028•R ENTRY ..,ESSU 11 
DSIENOPASS CllOJQI 1 f11010•A ENTRY ... ES SAA 11 
DS$ENosue ~010038•FI ENTRY ... ESSU 11 
DSSENTAY 00016Ul•R YER SI ON~ESSAA. 33 
DUERROEV A~0100C8•A ENTRY .... ESSU 11 
DSIERRHARO 0Aet100D~•A ENTRY .... ESS AA 11 
DS$ERRSOFT OtitJ010008•R E"'ITRY ..,ESSU 11 
DSSE~RSYS P100100C0•R ENTRY ~ESSU t 1 
OSSESCAPE 000UJ050•R ENTRY ..,ESSU 11 
0SSGA._8REAKVt'.C r.it0013588•R SCB .... ESSUZ3 
DSIGA..,BUFPTR 0Aet1Jt8C•R l<!~N!L...,ESSA A 15 
DSIGA._Cl"IKLPPC 0'HlJ13t•0•R ICERNH ... ESSU 15 DI SPAT ..,ESSAAH-! ERROR....,ESSAA 12 LOOP 
DSIGA.CHMl<V!C 00013584•R SCB ... ESSAA23 CHMl<.a.ESSAAta 
OS$GA,..LAST ADA 0"'QJ131H•R l<!RNEL.ESUA15 fol£r.A14GT ..,ESS AA 18 
OSSGA ... LOOftADA 000131 U•R K!FH.lfl..,ESSAA 15 LOOP 
DS$GA,.P8ASE 0P.81J5H•R PAl'OM.&.ESSAA 19 DEV I CE..,ESU A9 START ..,ESSU25 
OSIGA..,TBITY!C H81358C•A SCB~!SSU23 
osue.ennu, 1?1001J1 "!l•A KEFfNEL...,ESS.U 15 CONSOLE 
DSHETAOD~!SS 0e.101H•0•R ENTRY 4 ESSU 11 PA~AM..,ESSOU 
DSIGETBUF 0011112el•R ENTRY ... ESSU 11 MEMMGT ..,ESSU 18 
DSHETOATA 0001 lfJ"80•R ENTRY ....,ESSU 11 PAFUM..,Essu1c; 
OsUETLOGtCAL 0001H•8•R ENTRY .&.ESSAA1 t PARA.M..,ESSAA 19 
0SSGET8TRING 000tleAl•R !NTRY ~EUUt t PAIUM..,ESSA.A 1 q 
DSIG!TVI!LD 008SHH•R ENTRY ... Essu 11 PARAM ... ESSAAU 
DSIGL.BU,CNT HISHll•R IUfHR...,£SSU2 KERNEL ... ESSAA 15 MEMMGT .ESSA.A 18 
DSIGL..,BUFL!~ 009Ulll•R ~!lltN!L.,USU 15 PARAM ... ESSUU PRINT 

TK-1121 

Figure 5-7 DS$BGNSUB Listed 
in the Symbol Table in the 

Supervisor Link Map 

5-14 



ZZ•ESUA-4.eui 
ENTRV..,.ESSAA11 
"6 .. 08 

!NTRV POINTS TO THE DIAGNOSTIC SUPERVISOR. ~iCftt 3 ,,.Hit Jt lequertce !19 
DIAGNOSTIC ANO STARLET SERVICE ENTRY VECTORS, 
ENTRY POINTS TO THE DIAGNOSTIC SUPERVISOR. 

n030 1+ 
0930 . 4.2.l , 
;;-0 0 .. 
0!11 0 .AL N 
0A.3o.t DSSBGNSUB11 

001210 ~~030 .waRO 
00~e~0091"EF 17 it.332 JMP 

~038 . 
0038 te0 t'ISSENOSUB11 

0000 ?~38 181 • illlORO 
Q!r.Jl~~~t2J(llf'.l~"EF 17 N'3A 1@2 Jto!P 

'HH10 183 
~,~I.IQ.I 1A~ •ALIGN 
~\il40 185 OSSCKLOOP:t 

00~0 lr,0U~ 18& .WORD 
l?IQ10Ql0000" EF 17 Vl~Hl2 187 Jt-4P 

~74 l~48 1M 
\HHJ8 189 •All GN 
~Ql48 1Qf21 DS!INLOOP 11 

00~0 <'~48 1q1 .woRo 
(1~~~P000•EF 17 U~l.l.A 192 JMP 

PP!5('! 193 
';050 1q4 .ALIGN 
~H'JSO! 195 DSSESCAPE11 

'11000 tH't5PI 1% .wo~D 
~~ ~V01001210 • EF 17 !'05? 191 JfolP 

NJ58 198 
'1"'513 19Q .ALIGN 
0058 2~0 OSSBREAK11 

00~0 ~F-158 2QI 1 .WORD 
FFA3• 30 0'""54 2Ql2 esew 

01.1 ~050 2~3 RET 
~el5E 21i.1U 
0111Sf 21215 •ALIGN 
1(1~6QI 2~6 DSSWAITMS11 

001?J0 ~Qlb0 2~7 • l.IJORD 
i-~~0~"'01210! • EF 17 ;4 ?; 62 2Q!8 Jt-4P 

9!068 21719 
\:1068 21~ .ALIGN 
'1Vl68 211 DSSWAITLISI I 

0000 "'1~b8 212 .woRo 
ltHHH'!(il0ft'~ • EF 11 a06A 213 J~P 

~07(11 214 
!!J07'11 215 •ALIGN 
r~~7QI 216 DSSCANWA I Tl I 
~~70 217 OSSABORTWATTs I 

0000 ~070 218 .1110RD 
~l'lli'l00009! • EF 17 '1~72 219 J,..P 

""'-'78 220 
21078 221 .AlIGt-4 
007~ 222 OSSC:NTf:?LC11 

0000" Cl!~78 223 .VECTOR 
l'i10000002"EF 17 ~07A 224 JMP 

22•AUG•1978 08122106 VAX•11 MACRO Xl,J•6 Pao• 

PROGRAM CONTROL SERVICES. 

QUAD 

;;;M<> 
R8GNSU8 

,;;M<> 
RENOSUB 

QUAD 

~M<> 

RCKLOOP 

QUAO 

iii~<> 
RI NLOOP 

QUAD 

•Mc> 
RE SCAPE 

QUAD 

9 MC> 
l<B .... CHECK 

QUAD 

a~Cllll> 

OSXSWAITMS 

QUAD 

6 MC> 
DS>CSWAJTUS 

QUAD 

•tote> 
DSX!CANWAIT 

QUAD 

' OSXSCNT~LC 
OSXSCNTRLC+2 

BEGIN SUllTUT ENTfltV flOINT, 
EN TAY MASI< 

END SUBTEST ENT RV .POINT 1 

ENTRY MASI< 

CHECI< L.OOP ENRTY POINT, 
ENTRY MASI( 

IN LOOP ENTRY POitl!T • 
ENTRY MASI< 

ESCAP! ENTRY POINT. 
ENTRY MASI< 

BREAK FOR OVNA~IC SERVICES. 
S~VE NO REGISTERS 
CHECK l<EVBOARO 

WAIT MILLISECONDS ENTRY POINT. 
ENTRY MASI< 

WA?T MICROS!CONOS fNTRV POINT, 
ENTRY MASI< 

CANCEL WAIT ENTRV POINT, 
ENTRY MASI< 

ili)(10018 

Figure 5-8 DS$BGNSUB 
Entry Point 

5-15 

• U) 

TK-1122 



ZZ•ESSAA•4,~4 Mao 
0MA11[340,40]ESSAA,EXEsU67 

SVf'180L ....... 

I( 

Rffil?OEV 
RERRHARO 
RERRSOFT 
REfHlSVS 
RESCAF'E 
RGETAOORfSS 
RGETDATA 
RGETLOGICAL 
RGETSTRING 
RGf.TVIE'LD 
RGPt-IAR" 
RJtJLOOP 
RPTEADR 
RT'f PE"1SG 

SC(j ... BASE 
SCij .. I~AGE 
SChUSTOEL 
5Ct1Sl'\IEWL Ill 
SCt-!SfilAST 
SEC ... TICK 
8Gt·J$C ... I RPC "'T 
SGl>1$GL,,_! RPC i\: T 
SGt~SGL .. ~tP A Gi:D v N 

SS$ .. ARORT 
sss .. •ccvto 
sss..,eADPARAM 
SSS..,8R£AI< 
sss .. euFRVTAU 
SSS.,CANCEL 
ssS,..CMODsuPR 
S5$..,C""00USER 
SSl..,COMPAT 
SS$..,CONTINUE 
sss,,,,coNTROLC 
SS$ ... CTRLERR 

SS$,.OATAC...iEC:I( 

VALLIE ··---00P.17170•R 
rr.rnA!."'A004 

~~Cil1t.l~bF•R 
l'A~~U85q•R 

l·HHH a Ba 3-R 
r,~;it,~1 t.198~•R 

~V11~152ac-P 
r;HHH SSFE·R 
&' '1 ~ 1 '5 4 7 C • R 
it.FIHH .:;~A2•1? 
~0~1'57H•R 
l"illi-' 1 '5544•R 
'H.llV115888•R 
0!ll01538C•~ 
@'!!A17Cbl•~ 
i;,11'1.1 t '5 OAb•R 

M011E80~·R 
"'0\ll l t,A0~·~ 
0~~18QF'a-~ 

00018A13•R 
~lA0t8AEA-R 

r;t~.wc:'"""'"" 
~ '110! ~VI "14 ~ 
~~01C3E~•R 

!iH~~1C3CC•R 
V''-'~i'i.1·112C 
~~1:rn~~PC 

WHWrnql.I 
Cll~HW0Q 14 
itWWJ~30C 

~~~0~~830 
~.~0i:,04 t c
V'l~~H191424
c;,t~~'~042C
~~~~l'llHH 
~~~h~VJo5 l 
~'10~"'054

SSS.,OATAOVERUN 00~~~838
SSf .DEVFORE!GN 0~~~0~b4
sss.oEVNOTMOUNT 0~~~P.~7C
SsS.DEVCFFLINE ~0~~~084
ss1 ... o~vERR A~~0""0ec

SsS.ENOOFFJLE
sss.ENOOFT APE

00Wi1087~
~~~H.1!0878 

DEFINED BY 
-········-

LOOP 
l<EFHiEL ... ESSAA 15 

ON 0 

ERROR 4 ESSU 12 
ERROR.1.ESSAA 12 
fRROR.1.ESSAA 12 
ERROR.ESSAA1Z 
LOOP 
PARAM.1.ESSAA 1 q 
PAFUM.ESSAA 1 q 
PARAM,,_ESSAA19 
PARAM"'"ESSAA1q 
PARA~"'"ESSAA19 
PARA~.ESSAA19 
LOOP 
Mf ~MGT ... ESS AA P3 
PRINT 

1<ERNEL,...ESSAA15 
SCB.1o.E'SSAA23 
ASTOEL.,ESSAAJ 
ASTOEL,...ESSAA 1 
ASTDEL,...tSSU 1 
CLOCK.ESSAA6 
l<ERNEL.,..ESSAA 15 
KERNEL .. E' SS AA 15 
l<ERNEL.,.F:SSAA 15 
SYS VECTOR 
SVSVECTOR 
SVSVECTOR 
SYSVECTOP 
SVSVECTOR 
SYS VECTOR 
SVSVECTOR 
SVSVE'CTOR 
SVSVECTOR 
SYSV~CTOR 
SVSVECTOR 
SYSVf CTOR 

SVSVECTOR 

SVSVECTOR 
SVSVECTOP 
SY SVEC TOR 
SYSVECTOR 
SVSVECTOR 

SVSVECTOR 
SVSV~CTOR 

30•AUG•1978 09131 
'f e~• 1 '~••• 12 

LI Nl<ER xru, 20 

REFEPENC!O BY ,,, 
·--·--·-·······--

ENTRY ,...ESSAA 11 

QIO ESSAA22 

N R .... A11 
ENTQY ,...ES SAA 11 
ENTRY ,,_ES SAA 11 
ENTRY ,.F-SSAA l 1 
ENTRY ,,_ESSAA 11 
ENTRY ,,_ESSAA 11 
ENTRY .,..ESSAA 11 
ENTRY .. ESS AA 11 
ENTRY .... ESS U 11 
ENTPY.,..ESS.U11 
El'!TRY ,...ESSAA 11 
F:NT~Y ,...ESSAA 1 t 
QJOFl'>T "'ESSAA5P, 
CLI.1o.ESSAA5 
SCB.1o.ESSAA23 
sc~~Essun 
l<ERNEL .... ESSAA 15 
sc~.._ESSAA23 
CHf'IK,,_ESSAAtl 
C:LOCK,...ESS06 
!('ERNE'L..,ESSAA 15 
~EMMGT.ESSAAte 

MEMMGT ... ESSH18 
""E"1MGT ,...ESSA A 1 e 
TMORVR,.ESSU57 
ACPFDT ,...ESSU35 
ACPFDT ... ESSA.A35 
DE~UG .... ESSU8 
D~D.RVP ... ESSAA53 
C: ANCEL ... fSSAAH 
OEBUG,...ESSAA8 
OEEIUG,...ESS ue 
OE!;UG,,_ESSAA8 
DEAUG,,_ESS ue 
CONSOLE 
09DRVR .... ESSAA39 
TMDRVR..,ESSAA57 
OBDRVA...,ESSU19 
T Mf'H~VR.,..ES SAA 57 
TMC'>RVR ... ESSAA57 
ACPFDT ..,ESS035 
ACPFDT..,ESSAA35 
QIOREQ ... ESSAA51 
DBORVR.ESSAA39 
TMORVR ... ESSAA57 
ACPFDT..,fSSU35 
T~DRVR ... ESSAA57 

DISPAT..,ESSAA10 
SURT .... ESSAA25 

I OPOS T ..,ESSAASZ 

DEBUG..,Essue 

0 MD RV R ... ES SAA 5 l 

Clt-1DRVR ... ESS AA53 

OMORVR.ESSAA53 

IOPOST ... ESSAA52 

Q IOREQ.fSSU51 

ORDRVR ... ESSAA54 

ORDRVR ... ESSAA54 

DRDRVR4 ESSAA5'1 

TMDRVR4 fSSAA57 

Figure 5-9 RBGNSUB Listed in 
the Symbol Table in the 

Diagnostic Supervisor Link Map 

5-16 

•••u•"e• 11 
PAI! 16 

TK-1123 



Subtest 1 initializes the MBA under test by writing a one to bit 
zero of the control register, the initialization bit. The subtest 
then writes ones to the control register, writes zeros, and then 
reads the register. If zeros are not returned from the control 
register, the subtest calls the DS$ERRHARD entry point in the 
supervisor. The DS$ERRHARD code is in the supervisor entry module, 
ESSAAll (see the supervisor link map). DS$ERRHARD causes a jump to 
RERRHARD, which is located in the error module of the supervisor. 
RERRHARD sets the error flag, rings the bell if the bell on error 
flag is set, and calls the DS$PRINTF entry point. Like the other 
DS$ entry points, this one is locate.a in the entry module and 
contains only a jump instruction. The jump transfers control to 
the RPRINTF routine in the print module (see the supervisor link 
map). RPRINTF, in turn, calls the RPRINTOUT routine, also in the 
print module. This routine prints out a message on the operator's 
terminal indicating the test and subtest numbers, the logical unit 
number (LUN) under test, and the failing module name (MIR). 
RP.RINTOUT returns control to RPRINTF, which returns control to 
RERRHARD, which returns control to ESCAA test 3, subtest 1. 

At this point, the testing and error reporting portions of subtest 
1 have been completed. The subtest then calls DS$CKLOOP (in the 
control module of the supervisor). This entry point causes a jump 
to the RCKLOOP subroutine, which is located in the loop module. 
Unless the loop and error flags are both set, control returns to 
the subtest, which in turn calls DS$ENDSUB in the supervisor to 
terminate subtest 1 and start the next subtest. 

If the loop and error flags are both set, the loop address is 
calculated and the RCLKLOOP routine causes a jump back to the 
beginning of subtest 1, at label 10$. Note that if the loop is the 
first loop after the error call, the test and subtest numbers are 
checked. If one of these numbers is wrong, control returns to the 
subtest as if the loop flag were not set. After the first loop, 
the subtest will be repeated continually. 

5.6.2 RH780 Diagnostic Sample Error Message 
The error messages generated by the RH780 diagnostic vary, 
depending on the type of error detected and the type of the 
failing test. However, in all cases the error message will 
identify the failing module (or bus signal) and the nature of the 
failure. Expected and received data are printed when meaningful. 
For example, if bit 2 (IE) of the MBA control register is set, the 
error message printed wi11 look like that shown in Figure 5-10. 

5-17 



********MAINDEC ZZ-ESCAA-5.0 RH780 DIAGNOSTIC-5.0******** 

PASS 1 TEST 3 SUBTEST 1 ERROR 1 l-JUN-1978 10:53:30.70 

HARE ERROR WHILE TESTING MBA: FAILING MODULE: MIR(M8276} 

(RHCR}=00000004 

EXPECTED: ZERO 

RECEIVED: IE 

XOR: IE 

TK-0780 

Figure 5-10 ESRCA Sample Error Listing 

Use the test, subtest, and error number to look up the relevant 
code in the program listing. Notice that test 3, subtest 1, error 
1 is the portion of the program discussed in the previous 
paragraph. The program sets the maintenance bit in the control 
register. It then writes ones to the control register, clears the 
register, and reads the register. Since bit 2 is stuck at one, the 
received data and the expected data do not match. 

After listing the failure, the program continues with the 
succeeding tests. The operator may, at this point, shut down the 
computer to change the MIR board as directed, or use the 
diagnostic supervisor commands to set up a scope loop and monitor 
the failure more closely. 

5.7 RP0X/DCL REPAIR DIAGNOSTIC (DIRECT I/O), SAMPLE SUBTEST 

5.7.1 Detailed Flow 
The RP0X/DCL Repair Diagnostic (ESRCA) is representative of the 
peripheral diagnostic programs that use direct I/O. Like the 
cluster diagnostic programs, the RP0X/DCL repair diagnostic 
accesses registers on the unit under test directly, with move and 
bit set instructions and the 1 ike. However, the RP0X/DCL repair 
diagnostic relies more heavily than the MBA diagnostic on services 
provided by the diagnostic supervisor. In particular, it uses the 
channel services of the supervisor to perform such functions as 
initializing a channel, aborting a function, enabling and 
disabling interrupts, setting map registers, defeating parity, and 
determining adapter and error status. 

For example, when the dispatch routine in the supervisor calls the 
first test in the RP0X/DCL repair diagnostic, the test .routine 
gets the address of the device under test and then, passing a list 
of arguments, calls for channel services through the DS$CHANNEL 
entry point in the supervisor. Figure 5-11 shows the code for 
test 1, subtest 0, errors 1-3. Figure 5-12 shows the subtest flow. 
DS$CHANNEL calls DSX$CHANNEL, which in turn, calls the BLDCDB 
subroutine, which builds a channel data block containing the 

5-18 



0000001110 

001ii0 
52 0~111Pl"CF 00 

01!100id000"EF 7F 
00 DD 
00 DD 

"l/J01/J~000'EF OD 
HHHH'9F 04 FB 

53 62 00 

0HHllUl'EF 7F 
00 DD 
07 DO 

0000lill/J00'EF DD 
IHU0HPl'·9F 04 Fa 
IHl!ll!IHH'EF 15 El 

2B 

00 ,DO 
FED0 CF OF 
011100 'CF DO 

01 DD 

H0000H'ifF 04 FB 
00000000"EF DD 

H011JHH'9F 01 FB 
H0HIH''F 9F 4F FA 

0188 31 
Vl 
I HHHH'U 11 Et -"° C!C 

0fd DO 
FEBF CF OF 
0000'CF DD 

02 DO 

11000H0"9F 04 F8 

000U000"EF DO 
019000H'9F ""1 FB 

IH01HH'9F FFU CF FA 

0157 31 

~<lFE OATA...,a01& 
"'0H 8 L0fliG 0 s TEST ARGUMENT UBL£ TERMINATOR 
Vil k'2 TEST...,00111 
~tfl2 .wORD .,MC> s ENTRY MASI< 
k."n" 1"'6 1011 MOVI. ~·BASE4AODRESS,R2 f GET DUVE'S ADDRHS 
lill!Ofi PUSMAQ CH ... STATUS 
taHlF PUSHL ·~ Ii! 111 PUSHL. #CHCS...,INIU 
1-1113 Pl)SHL DRIVE 
\A 119 CALLS •4, •#DSSCHANNEL 
VI 1 Zli' 1 lel8 MOVL RPCS1(R2) 1 Rl t GET CONTROL/STATUS 
1:'11l3 10fi sos ... CHA~NEL ... s DRIVE,#CHCS ... STATus,,CH...,STATUS 
0123 PUS HAQ CH ... STATUS 
Vl1,2fi PUSHL #Ill 
tt12B PUSHL #CHCs ... su TUS 
1n20 PUSHL DRIVE 
LHH CAL.LS #4, t#DSSCHANNEL 
?'13A 110 sac #tHSSV ... M8ACPE,tH ... sTATUS,20s f CHECK FOR CONTROL BUS 
MUt 
1-11 '12 111 s PARITY ERROR 
~142 PUSHL #0 
~14'1 PUS HAL. w•MsG ... MCPE 
k.11"8 PUSHL W.;;DRIVE 
~14C PUSHL #SER 
lH'iE '"TEST 11 SUBTEST 0, ERROR l 
1114E CALLS USM, UOSIERRHARD 
ii'l 55 PUSHL O~IVE 
~lSB CAl.L.S # 11 UDSSSHOCHAN 
"1 b2 CALL.G us, UDSSCKl.OOP 
vllcA BRW TEST ... 001.,X ' EXIT TEST 1 
~loO '******************************************************************** 
'1lbD 117 2121$1 BBC #CHSSV ... MBANEO,CH.,STATus,2ss r CHECK ,OR NON•EXlSTe DRIVE 
~174 

~175 118 SDS ... ERRHARD ... S ,W 9 DRIVE,w 6 MSG ... NED 
Vl17S PUSHI. #Id 

~· 77 
PUS HAL w•MsG ... NEO 

1:117B PUSHL 111
9 DRIVE 

11117F PUSHL UER 
id 1t!1 "' TEST 1, SUBTEST 11J, ERROR 2 
11181 CALl.5 #SS!'il, UOSSERRHARD 
'1188 11 q sos ... SHOCHAN..,S DRIVE 
~1188 PUSHI. O~IVE 
1:118E CAI.LS * 1, UDSISHOCHAN 
I~ 1 q5 12~ sus ... CKLOOP l0S 
~it qs CAI.LG lldS, •#DSSCKLOOP 
1'.119E 121 SDS..,EX IT TEST 
"119£ BRw TEST.,001 4 X t 'EXIT T!ST 1 

TK-1124 

Figure 5-11 ESRCA RP0X/DCL 
Test 1, Subtest 0, 

Program Listing 



DIAGNOSTIC SUPERVISOR 

ENTRY MODULE 

+ 
CHANNEL MODULE 

START 

DISPATCH 
ROUTINE 

~DC~OUTINE l l~S$ CHAN~ -1 
I GET HARDWARE ...... ~1---11 GET 

P-TABLE UNIT# 

I 
I 
I BUILD CHANNEL 

DATA BLOCK 

I 
I 

INDICATE 
SUCCESS . ....__ __ JJ 
r---

1 

I GET STATUS 

I 
OF DEVICE CHAN, 
SYSTEM 

L------

SET MBA 
INIT 

I 
I 
I 
I 
I 
I 
I 
I 
I 

ESRCA 
RPOYy'DCL REPAIR 

TEST I, SUBTEST 0 

GET ADDRESS 

OF DRIVE 

UNDER TEST 

CALL 
DS$CHANNEL 
(INIT) 

TK-0747 

Figure 5-12 ESRCA RP0X/DCL Repair Diagnostic Test 1, Subtest 0, 
Flowchart (Sheet 1 of 2) 

5-20 



DIAGNOSTIC SUPERVISOR 

DS$ERRHARD 
(PRINT ERROR 
TYPE) 

DS$SHOCHAN 
(SHOW MBA 
REGISTERS) 

DS$CKLOOP 
(LOOP IF LOOP 
FLAG SET) 

DISPATCH 
ROUTINE 
(CALL NEXT TEST) 

ESRCA 
RPOX/DCL REPAIR 
TEST I, SUBTEST 0 

READ RPCS1 
OF DRIVE 

CALL 
DS$ CHANNEL 
(STATUS) 

AND SO ON 

TK-0748 

Figure 5-12 ESRCA RP0X/DCL Repair Diagnostic Test 1, Subtest 0, 
Flowchart (Sheet 2 of 2) 

5-21 



P-Tabl e address, and the adapter address; clears the flag word; 
and determines whether the channel is an MBA or a UBA. When 
control returns to the DSX$CHANNEL routine, the function argument 
passed from the calling program (ESRCA) is evaluated, activating 
one of several function subroutines. In this case, the INITA 
subroutine sets the initialization bit in the MBA control 
register. 

Control then returns to the calling program (ESRCA), which reads 
the RPCSl (control status) register of the unit under test with a 
MOVE instruction (direct I/O). The test routine then calls 
DS$CHANNEL again, this time passing a different function argument 
(CHC$ STATUS). The DSX$CHANNEL routine is executed again, 
activating the CHC$ STATUS subroutine which stores the unit and 
adapter status in the location labeled CH STATUS. 

Then when control returns from the DSX$CHANNEL routine to the test 
routine, the data in location CH STATUS is compared, bit by bit, 
with expected data patterns. If-an error is detected, the test 
routine calls a series of supervisor routines (DS$ERRHARD, 
DS$SHOCHAN, DS$CKLOOP, and DISPATCH) to print out error 
information, loop if the loop flag is set, and return to the 
dispatch routine if the loop flag is not set. 

5.7.2 RP0X/DCL Repair Diagnostic Sample Error Message 
Test 1, subtest 0, error 1 of the RP0X/DCL diagnostic identifies 
control bus parity failures on the Massbus (Figure 5-11). When the 
program detects this failure, the error message identifies the 
failure by test, subtest, error, failing unit, and error type. In 
addition, the message includes an MBA channel status dump, showing 
the contents of the pertinent registers, as shown in Figure 5-13. 

Bit 17 of the status register is set, indicating the Massbus 
control parity error. 

Other error message formats display expected and received data and 
the contents of relevant registers in the RP0X/DCL, depending on 
the error and the failing test. 

5.8 DISK RELIABILITY DIAGNOSTIC (QUEUE I/O), SAMPLE SUBTEST 

5.8.1 Detailed Flow 
The Disk Reliability Diagnostic program (ESRAA) is representative 
of the queue I/O diagnostics. Instead of performing move 
instructions to read and write peripheral device registers 
directly (as the MBA diagnostic does), the program builds an 
a r g um en t 1 i st cont a i n i n g d e v i c e and t ran sf e r pa r am e t e r s and 
pointing to the data to be transferred and the function to be 
performed. The program then calls the queue I/O services of VMS or 
the diagnostic supervisor. In this way, the program transfers 
information to and from the peripheral device under test without 
requiring exclusive use of the device, the channel, or the 
computer system. Figure 5-14 shows the listing for ESRAA test 1, 
subtest 0, error 12, the first of the data transfer tests. Figure 
5-15 shows the program flow for the same routine. 

5-22 



** PROGRAM: ZZ-ESRCA RP0X/DCL DIAGNOSTIC, REV 4.1, 46 TESTS. 

TEST 1: QUALIFICATION TESTS 
******** ZZ-ESRCA RP0X/DCL DIAGNOSTIC - 4.1 ******** 
PASS 1 TEST 1 SUBTEST 0 ERROR 2 le-MAR-1978 08:26:20.26 
DEVICE FATAL WHILE TESTING DBA0: CONTROL BUS PARITY ERROR DETECTED 

MBA CHANNEL STATUS DUMP 

MBA CSR: [20010000] 00000020(X); 
MBA-CR:[20010004] 00000000(X); 
MBA-SR: [20010008] 00020000(X); MCPE 
MBA-VAR: [2001000C] 00000200(X); 
MBA-MAP(80): 00000000(X); 
MBA=BCNT:[20010010] 00000000(X); 

TK~~5 

Figure 5-13 ESRCA Sample Error Message 

5-23 



ZZ•ESRAA•S.2 DATA TRANSFER TESTS 
~SR4A86QA.TESTS QUALIFICATION TESTS Zl•ESRAA•S 0 0 
5 1 ~ DATA TRANSFER TESTS 

Ftche 1 '~•~• 016 
VAX•ll MACRO X0 0 3•6 

Seq11e"ce l91 
l'ege 1Z (., 

55 
56 
57 

05 AB 

0A Al3 
0q AB 
0tl AB 
00•eF 

08 

?.111F SF 
~" 

1215 8F 
50 

i0000111B4'EF40 A570A570 8F 
Slil ~01"111007F !F 

56 

51.1 
tC A4 
20 Al.I 

00~"·c1.1 
1110'1'0•c11 
00,H11•c11 

30 Al.I 

~C A4 

7E 
7E 
7E 

00PJIH!000•EF 
ri!3 

ec 
58 
SA 
01 
59 

~l/IQ!lttlilftllll~·EF42 
~1000.ilolB4•EF 
;alila0~21rn 8F 

5q 
SA 
5~ 

:aPl'l\Hll001i1• EF42 

52 
51J 
5q 
SA 
~2 
5'71 
"178 

6E 

'l\lllll"!llfi'0111Ql•EF 
•H•i\@~0AA•EF 

52 
0C 

CA AF 

1'3"'5 
<1.J115 

n21r; 
,,3.,~5 

,·:3115 
1•~(115 

r•3~5 
:•3.~5 

!'3Vl5 
t-131'15 
f.13';15 
l!l31<'15 
ill]:ll5 
11130'5 
.,3;,5 
IJH15 
l!3\lj5 
~!HS 
~305 
1-)305 
!1305 
!:130!5 

3C •t3ill5 
qA it309 
qA \:]00 
CJt ~311 

12 ll!lo 
Fl"1 ~1318 

~319 
11 \1321 
80 ::i'.523 

:.t3211 
011 ~i32C 
00 1-132E 
F3 ~)]!& 

'-'HI 
04 \'.!]I.Ii 
D4 1naa 
C3 ;13qe. 

~·3119 
IHI ~3UA 

DE <t35i! 
00 ~35A 
90 '.'3b2 
"" ''367 
Fl!/! .t36C 
00 :.'371 

V.37A 
D~ »HA 
CJ0 >H3 

t;3ea 
•'387 

F• rne1 
-lleE 

Fl. ;>!f!E 
EB ••395 

wi39!! 
DD P.398 
80 1"391 
90 U91'.1 
90 "'3Ae 
FB .J3A3 
E9 :>t3U 
31 ll]An 

~3~0 
FA :'3f.l~ 

''387 
FA i'3~7 

El3 H3eF 
:13c1 
'13(1 

OF 03Ct 
DF 'HC7 
DD ~1 3Cl' 
DO :'3CF 

P301 
FB ii3ot 

1•3llll 
FA '·l3DIJ 
31 ••3f'~ 

L1 3EJ 
FA 'tJ3E3 

3M 
31 ii! 
311 
312 
313 
314 
315 
316 
317 
318 
llCJ 
320 
321 
322 
323 
3211 
325 
326 
327 
328 
32q 
33111 
331 
332 
313 
334 
335 
336 
337 
338 
339 
340 
341 
302 
Jin 

31u1 
3115 
3116 

3117 
148 
349 
l'S~ 
3'51 
352 
353 
3'54 
355 
1'56 
157 
358 

360 
361 

165 

366 
167 
"468 

37~ 

;++ 

BEGIN MULTI•SECTOR WRITES,wRITECHECI<, AND READS 

REGISTERS USAGE1 

R8 • CURPENT CYLI~DER NU~BER 

J Rq s CURRENT TRACI< NUMBER 

Rl0 • CURRENT S~CTOR NU~BER 

R11 • DEVICE CHARACTERISTICS POINTER , .. 

llHSI 

182H 
1qn1 

2fll0SI 

MOVZWL 
MOVZBL 
l'IOVZBL 
CMPf! 
BNEQ 
r10Vlol 

CLRL 
""0VL 
AOBLEQ 

CLRL 
CLRL 
SUBL3 

MOVL 
MOVAL 
MOVL 
MOVB 
MOVB 
MOVili 
MOVL 

0SMQCl• ... CYLNOR(Rlt),R5 
DSMOCl8 ... TRACKCRlll1R6 
DSKDCS64 SECTORCR11),R1 
#RM03,0SkDCSB.TYPE(Rll) 
ieu 
#LSTSECT ... RM,• 
LAST 11'1..,.SEC TtlR 
tt'2~ 
llLST$ECT 6 PP,• 
LASUW_..SECTOR 
PQI 

#PATTERNl,8UFFEP1(R0) 
•121,R0, un 

QIOPTRLIST(R2J 1 R4 
BUFFER1,QI016 Pl(R4) 
• '5 ti!, a I os.n < R41 
R9,QIOSA6 TRACK(Rll) 
Rtt11,QIOSB 6 SECTORCR4) 
R8,QJOSW ... CYLNORCR4) 
05k086 PTRLISTCR2],• 
QJ{l'll.._P6(R4) 

PICK UP MAXIMUM.NO 0, CYLINDERS 
PICK UP MAXIMUM NUMBER 0, TRACKS 
PICK UP MAXIMUM NUMBER 0, SECTORS 
IS THIS AN RM83T 
NOPE 
GET LAST SECTOR IN CYLIND!R 

SKIP 
LAST SECTOR FOR RP 

CLEAR LONG WORD BUffER INDEX 
WRITE PHTERN 
WRITE 512 BYTES 

CLEAR CURRENT CYLINDER 
CLEAR CURRENT SECTOR 
BEGIN AT LAST TRACK 

R4 POINTS TO QlO ARGLIST 
PUT BUF,ER ADDRESS IN QJO ARGLllT 
lllRITE BYTE COUNT 
WRITE TRACK VALUE 
WRITE SECTOR COUNT 
WRITE CYLINDER 
WRITE DIAGNOSTIC BUFFER A91HtEll 

""0VL 
"'0VB 

EF ... LISTIR2J.QIOl,..EF~(R4) f WRITE EVENT FLAG NU~BER 
#JOf.._WRITEPeLK 1 • I SET FUNCTION • WRITE 
QIOl.._FUlllC(Rll) 

sos.BREAK 
CALLG 

SQIOlll ... G CPU] 
CSP), ••OSIBREAI< 

CALLG (RG),G~SYSSQIOW 
BLBS CR3),210S 
CHECl< ... BLOCKS R2,R8,Rq,Rl0 

PUSHL A2 
MOV• R&,•CSP) 
MOVe Rq,•(SP) 
~OV8 R10,•(SP) 
CALLS #2,CHECK.BLOCk 

RLBC R~,205!1 
BRW &OJ 
sos.Bl!BK 

CSP), HDSSBREAI< CAL LG 
!QJow ... G (RO) 

CALLG CRll),G'SYSSQIOw 
BLeS C~3),2t111S 
sos.ERRHARO.s ,R2,BLANI<,• 

(\IJMP ... s T 6 TIJS 
PUSHAL OUMP ... STATUS 
PUS111oL BLANK 
PUSHL R2 
PUSHL HER 

TEST 11 SUSTEST 0, ERROR 12 

J Cl"ECK FOR "'C 

ISSUE QIO REQUEST 

J BRANCH IF NO ERRRORI 
Cl"ECI< BAD BLOCK FILE 

J BRANCH IF NOT IN BAD BLOCK FILE 
GET NEXT BLOCK 

J C!o!ECK FOR •c 

J BRANCH IF SUCCESS 
REPORT ErlROf:l 

J DUMP STATUS 

CALLS #$$"4, •IDSIERRHARD 
SDS.CKLOOP 2051 I LOOP 

CALLG 205!, ••OSSCi<LOOP 
~Rw b40$ J GET NEXT 8LOCK 

371 21~s1 $0S 4 CKL00P 
CALLG 

2'115$ 
205!, ••DSSCl<LOOP 

Figure 5-14 Disk Reliability 
(ESRAA) Test 1, Subtest 0, 

Error 12 Listing 

5-24 

TK-1127 



VMS 
AND 
DIAGNOSTIC 
SUPERVISOR 

COMMAND 
LINE 
INTERPRETE~ 

01/0 SERVICES 
WRITE PATTERN 1 TO 
FIRST CYLINDER 
FIRST BLOCK LAST 
TRACK 
LOAD DIAGNOSTIC 
BUFFER 
LOAD 1/0 STATUS 
BLOCK (IOSB) 

DS$CKLOOP 

I 
I 
1 
I 
I 
I 
I 
I 

I 
I 
I 

I 

DISK RELIABILITY ESRAA TEST 1, 
SUBTEST 0, (ERROR 12) DATA TRANSFER TESTS 

START 

DETERMINE NUMBER 
OF CYLINDERS 
TRACKS 
SECTORS 
DETERMINE DRIVE 

TYPE 

WRITE PATTERN 1 
(A570A570) 
INTO A BUFFER 
512 BYTES 

SUCCESS 

YES 

YES 

SET POINTERS 
TO CYLINDER 0 
SECTOR 0 

LAST TRACK 

BUILD Q 1/0 
ARGUMENT LIST: 
BUFFER ADDRESS 
BYT~ COUNT 
TRACK SECTOR 
CYLINDER 
DIAGNOSTIC BUFFER 
ADDRESS 
EVENT FLAG# 
FUNC =WRITE 

ISSUE 
Q 110 
REQUEST 

CONTINUE WITH 
NEXT PART 

OF TEST 1 
(READ PATTERN 

JUST WRITTEN) 

TK-0582 

Figure 5-15 ESRAA Test 1, Subtest 0, Error 12 Flowchart 
(Sheet 1 of 3) 

5-25 



VMS 
AND 
DIAGNOSTIC 
SUPERVISOR 

COMMAND YES 
LINE 
INTERPRETER 

VI 
I 

N 

°' 0 1/0 SERVICES 
WRITE PATTERN 1 
LOAD IOSB 
AND DIAG BUFFER 

DS$ERRHARD 
DUMP STATUS 
PRINT ERROR MSG 

DS$CKLOOP 

ESRAA DISK RELIABILITY 

r --- -------1 CHECK BLOCK 
ROUTINE 

ISSUE 
Ql/O REQUEST 
(RETRY) 

I r 7ET-;;F 
----, 

I I SECTOR I ROUTINE 

I I READ I 
I BAD BLOCK I 

I I 
FILE I 

L __ _J 

I 
I 
I 

NO 

GET (NEXT) 
WORD FROM 
BAD BLOCK 
FILE 

L-- ----

Figure 5-15 ESRAA Test 1, 
Subtest 0, Error 12 Flowchart 

(Sheet 2 of 3) 

I 
I 
I 
I 
I 
I 
I 

ADD 2 TO I 
SECTOR 
COUNTER I 

I 
I 

r -- J 

I 
BAD BLOCK 

I FILE IS 
OK 

I 
..J 

TK·Ol83 



VMS AND DIAGNOSTIC 
SUPERVISOR 

COMMAND 
LINE 
INTERPRETER 

DISPATCH 
ROUTINE 

STATUS DUMP 

I 

I 

YES 

YES 

ESRAA 
DISK RELIABILITY 

SET POINTERS 
FOR NEXT 
BLOCK 

PAINT 
COMPLETION 
TIME 

NO 

TK-0584 

Figure 5-15 ESRAA Test 1, Subtest 0, Error 12 Flowchart 
(Sheet 3 of 3) 

5-27 



The first test, when it is called by the dispatch routine in the 
supervisor, sets up a pointer to the I/O status block and tests 
various drive commands (drive clear, seek, recalibrate, NOP, 
offset, and reset). Test 1 then performs an oscillating seek test 
before beginning the data transfer tests. 

In the data transfer tests portion of test 1, the program sets up 
a write transfer of a data pattern (A570A570) to the first block 
on the disk pack in the drive under test. The data to be written 
to the disk is loaded into a buffer area in memory. The program 
then builds an argument list containing the address of the data 
buffer, the byte count of the data to be transferred, the location 
of the target block on the disk pack (track, sector, cylinder), 
the diagnostic buffer address, the event flag number, and the 
function to be performed. Then, after checking for Control C, the 
program calls SYS$QIOW. 

If the program is being run in the user mode (VMS environment), 
the call to SYS$QIOW invokes a routine in VMS. If the program is 
being run in the standalone mode, the SYS$QIOW call invokes a 
similar routine in the supervisor. SYS$QIOW builds an I/O packet 
from the parameters passed from the diagnostic program and then 
(if in VMS) checks the privilege of the cal 1 ing process (the 
diagnostic supervisor) through internal data structures. The 
SYS$QIOW routine then places the packet in a queue for processing 
by a device driven routine, clears the event flag, and waits for 
completion of the I/O function (indicated by the setting of the 
event flag). When the driver completes the I/O function, it 
examines the controller and drive status registers, formulates a 
status message that is stored in the I/O packet, and loads the 
d i agnostic buff e r w i th d r iv e and adapter reg i st er contents • The 
I/O packet is then inserted into the I/O post queue and a software 
interrupt to initiate I/O post processing is requested. The I/O 
post routine performs final I/O request processing and status 
posting (IOSB), loads the diagnostic buffer with device and 
adapter (on MBA or UBA) register contents, and sets the event 
flag. 

With the event flag set, the calling program (ESRAA) resumes 
control. The diagnostic program then checks the I/O Status Block 
(IOSB) to determine whether or not the requested function was 
completed successfully. The IOSB has the format shown in Figure 
5-16. 

31 1615 00 

BYTE COUNT STATUS I 
DEVICE-DEPENDENT DATA 

TK-0743 

Figure 5-16 I/O Status Block Contents (for disks) 

5-28 



If the low order bit of the first longword of the IOSB is set, 
indicating success, the program does a branch to the next portion 
of the test (label 210$), where it tests the loop flag and then 
reads the data just written to the disk pack. 

If the low order bit of the IOSB is not set, the test calls the 
CHECKBLOCK routine (refer to the code in Figure 5-17) , which is 
located in the load blocks module (module 6) of the disk 
reliability program (refer to the link map). This routine, in 
turn, calls the GETBBFSECTOR routine (Figure 5-18) which reads the 
load block sector on the disk pack. If the load block file cannot 
be read at all, the routine returns control to test 1, where the 
queue I/O request is retried. If the load block file has been read 
successfully, the routine checks through the item in the file to 
see if the address of the block which cannot be writ ten to is 
already noted in the load block file. If so, the load block file 
is OK, and control returns to test 1, which sets up po inter to 
access the next block on the disk, builds a new queue I/O argument 
list, and again calls SYS$QIOW, as previously explained, in an 
attempt to write the pattern into the next block on the disk. 

If the failing block address is not listed in the load block file, 
the CHECKBLOCK routine returns control to test 1 which, in turn, 
issues a second queue I/O request (after checking for Control C) • 
If the request fails again (IOSB status code = 0), the program 
calls the DS$ERRHARD routine in the supervisor, which dumps the 
status block and diagnostic buffer contents and other error 
information. After detecting a failure of this type, the program 
checks the loop flag. If the loop flag is set, the program repeats 
the queue I/O request indefinitely. Otherwise, the program checks 
each block on the disk pack .until it finds one that it can write 
into successfully, before going on to check the next function 
(read the block just written, beginning at label 210$). 

5-29 



ZZ•ESRAA•S.2 
ESRU& 4 "1AP .&.BB 
s.0 

00000POIOl'9F 
18 

00000000'9F 
S2 
53 
54 
55 

S7 
58 

00"1!00PC A 'EF 
0A 
Sb 

Sb 

Sb 

000000ca"EF 
113 
57 
S0 
50 

54 

08 
'52 

0!1 
53 

0001l1001l10•9F 
5l'I 

SAO BLOCK FILE ROUTINES 
~AP ~AO BLOCKS ZZ•ESRAA•5 0 0 
BAD BLOCK FILE ROUTINES 

1110 
0171 

00\10l0030'EF 
01 
04 
5@ 

00 
Cll"!HHllll00'EF 

08 AC 
!Ill 

011 

bC 
04 AC 
05 AC 
0b AC 
08 AC 

'Sb 
02 

:HW0l10~4 • EF4S 

55 
56 
02 
50 
1118 
b4 
~2 
E8 

1118 
11 
55 
56 
02 
50 
02 

"1000AOl3ill"FF47 
FFFF 8F 

31 
Sic" 
24 
10 
51<1 
10 
18 
5~ 
16 

00 
~lll:!l11H1i'l 30 "EF 

01 
PJ 
01 
13 

001"i~IH'l00 

°'~PH! 
0FFC ~01710 

~i'102 
DD V130i? 
DD b'111lll 
7F 21:-llilb 
DD ,~11.;ic 

FR \!@oll: 

E8 •11'115 
QI!~ 113 

DD 1i0t8 
OF 1•:.otA 
DO lh'li?f;I 
OD i'.'>323 

r1!~25 

FB \Hll25 
''02C: 

FA llij?C 
CJA ,,;iJ3 
9A l"t.H7 
3C ~'13B 
0111 !H'3F 
04 1111143 

9A ~·'145 
7D 1Hl4FI 

V."5i'I 
l)D tttlSVI 
DD P-052 
FR tHl54 
EB •H~58 
91 f1l'l5E 
13 h!lb 1 
Cfl! ~·1•&3 
11 {Hi66 

f'~bfl 
9A 'l'P~8 

11 'IWlbR 
DD 1'~60 
OD ~:~'bF 
FB l 1 !~71 

E9 'l'it.'78 
1U ~''-'7R 
DP ''ll"7E 
Rt ¥"08ti 
13 ..,lll~R 

81 tr'~'!O 
12 ti~9i..t 
ED ~l.,92 

~"q5 
12 1<0cn 
ED V:~qq 

nCJC 
12 rMf 

i•PA0 
OD llH!A~ 
TF (•:uz 
DD A~AI! 

FB ·~~AA 

9A 1•:itF!1 
I 1 •'i/!84 

144 
145 
14& 
11.17 

1118 
149 

150 

151 
152 
153 
154 
155 
156 
157 
158 
159 
1 blil 
101 
162 
161 
1b4 
165 
166 
167 
168 
16CJ 
17111 
171 
172 
173 
174 
175 
176 
177 
178 
17CJ 
180 

183 
lAU 

185 
180 

Ftc~e l F~•~• L1l 
VAX•ll MACRO X0.3•6 

leQt.iePIC• UT 
PH• 5 

CJ> 

0 PSECT CODES 
CHECK.,BLOCK11 

.wORO •McR2 1 R3,R4 1 PS,Rb,RT,R8,R9,Rl0,R11> 
$OS.,GETRUF~S #1,8BF.,POINTER J ALLOCATE BUFFER 

PUSHL #0 
PUSHL #0 
PUSHAQ 8RF.,POINTER 
PLJSHL #l 
CALLS #4, •#DSSGETBUF 

BL~S P~,2$ 

ios .. ERRSYS.,S 
PUSHL 
PUS HAL 
PIJSHL 
PUSHL 

, SUCCESS? 
1 LUN(AP).MSG.,NOMEM 
#0 
MSG ... NO"lEM 
LUN(AP) 
#$fR 

:11 TEST ~. SUBTEST 0, 
CALLS 

ERROR 1 
#!$~, ••DSSERRSYS 

2$1 

SCANI 

$05.,ABOPT . 

"10VZEIL 
"10VZEIL 
MOVZwL 
"'OVL 
CUil 
"40Vl8L 
MOVQ 

PUSHL 
PllSHL 
CALLS 
BUIS 
C"1P13 
BEQL 
AOOL 
l!RB 

M(lVZl3L 
13P13 
PUSHL 
PllSHL 
CALLS 
SLSC 
MOVZ8L 
MOVL 
CMPW 
8EQL 
CMPW 
BNEQ 
C"1PZV 

CALLG CAP), ••DSSABORT 
SECTORCAP),R2 
TRACKCAP),Rl 
CVLINOERCAPl 1 R4 
LUNU.P), RS 
RI! 
1112,R7 
DSKl>C.,QWDLIST+4[R5] 1 R~ 

RS 
R6 
1112,GETSFlF.,SECTOR 
RP, SCAN 
#8 1 P6 
CMECK.&.BLOCllZX 
#2,Rll 
us 
*B,Rb 
20' 
RS 
Rb 
n, GETBl'lF .. s~CTOR 
R0 1 U0$ 
*2 1 R7 
•BBF.POINTERfR7],R0 
*•l,R~ 
401 
RP', Rll 
3~$ 
#16 1 #8 1 R0 1 P2 

8111EQ 311'' 
IDS.,RELBUF' ,.S 

PUSHL 
PUSHAQ 
PUSHL 
OLLS 

MO'/Z!ll 111,R~ 

Iii l 1 IH~F ..,POINTER 
#0 
BBF ... POilllTER 
Iii 1 
*31 UOSSRELBUF 

BAB CMECK ... BLOCkX 

PICI( UP SECTOR 
PICK UP TRACK 
PICI( UP CYLINDER 
PICK UP LOGICAL UNIT NUM8!R 
CLEAR SECTOR COUNTER 
INITIALIZE INDEX OFFSET 
PICK UP ADDRESS OF DRIVE CHARACTERISTICS 

PUSH LUN 
PUSH SEC:TOR 
READ BAD BLOCK SECTOR 
BRANCH IF SUCCESS 
HAVE FIRST FIVE SECTORS BEEN READ? 
TAKE FAILURE EXIT 

J ADO 2 TO SECTOR COUNTER 
r CONTINUE READING 

:~INITIALIZE SECTOR COUNTER 
CHECK BLOCK READ FROM PREVIOUS LOOP 
PUSH LUN 

J PUSH SECTOR NUMBER 
READ NEXT SECTOR 
IF FAILURE TRY NEXT BLOCK 
IGNORE FIRST TWO LONG WORDS OF THE FILE 
PICK UP BAD BLOCK FILE ITEM 
CHECK FOR END OF BAD BLOCK FILE 
If:" EOF TRY NEXT SECTOR 

1 IF CYLINDERS DON'T MATCH 
THEN BRANCH 
IF SECTORS OON"T MATCH 

THEN BRANCM 
IF TRAC~S OON"T MATCH 

THEN BRANCH 

INDICATE SUCCESS 
ANO EXIT 

'57 ill~'10?!f"7F BF 
c~ 
(II(? 

56 
Ab 

F3 'tj;IBb 187 3il!Si AORLEQ #127,R7r2~S IF ALL BLOCKS NOT CHECKED INDEX AND LOOP 

Figure 5-17 
Routine Code 

5-30 

>ll!'ijl) 

C0 lll'.,f 
CJ1 ,_,~(J 

111 rr.ocs 
,c:)C7 

04 !-IVJC7 
:me CJ 

r;,4 ·1t•CCI 
v1:1CA 
,1~CA 

:-li'ICA 
r.rn(A 

CHECKBLOCK 

AOOL 
C"'PB 
BLSS 

Cl-IECK..,BLOCKZ><: 
CLPL 

C:lifCK..,BLOCKX: 
RET 

0 SBTTL 

#2,R& 
Po,OSKDCSB..,SECTORCR8) 
1 r/1$ 

BUMP SECTOR COUNTER SY TWO 
CHECK FOR LAST SECTOR 
CONTINUE READING IF NOT LAST SECTOR 

r ELSE INDICATE F•ILURE 

EXIT 

TIC-1126 



~0CA 

~07C \-~~CA 
52 08 AC 00 '.•~cc 
'53 0~H-lei"10~/J • EF42 70 f.jiilf)~ 

5ll ;.rnf?!~000W' EF DE ,.~oa 

"'1 83 :H~OF 
0~00•c1.1 ~q Al vt'"1Et 

01 A3 !:.1"'Eb 
0000'C4 '1A A3 tl~E8 

lC A4 v.l0~'1Chf3~ • EF 00 1t1~EO 

0~H·rn·c'-' '~4 AC q0 '1k'F5 
V'i 
I 20 AIJ 'il2et0 8F JC MIFR 
w 04 Atl OllHJ~tl'-"~Ol·EF42 D~ n1~1 

5l'I Y'~lA~~~fl!,_,0' EF 4 2 D0 iJl 0A 
fr:J8 A4 08 Alli 00 !...·"112 
0C A4 ~c 00 I'! 11 7 
0C AlJ ~'0~1Cl!i-l8n~ SF C8 ~) t 18 

955 ~10 v. "0 0 i;, (I! • E F 4 2 7E (Al 23 
1 r;t A'' 55 00 '''ea 

!A 1 ?F 
1110000~"'0' GF 61J FA >' t 2F 

04 ¥113b 
'.' 137 

208 GETBBF 4SECTO~ 11 
26q .WORD •McR2,R3,R4,R5,R6• 
270 MOVL LUNCAP),R2 PICK UP THE LOGICAL UNIT NU"BER 
n1 MQVQ DSl<OC.QWOLIST+4[R2] 1 Rl PICK UP POINT!A TO DRIV! CHA•ACTlRllTICI 
272 MOVAL ARGUST, IU R4 C•• POINTER TO LOCAL QIO ARGLIIT 
273 SU~B3 #1,0SKOCSB4 TRACKCR3)1• 
274 QI0$8.._T~ACk(R4) , WRITE TRACI< TO READ 
2715 susw 3 •1,os~ocsw.CYLNORCR3),• 
270 QJoiw .. cYLNOR(R4) , WRITE CYLINDER TO READ 
277 MOVL BBF 4 POINTER,QIOS..,P1CR4) , WRITE 8U,F!R ADOR!IS INTO HO ARGLUT 
278 ~ove SECTOR(AP),QIOSB..,SECTORCR4) , WRITE SECTOR TO READ IN QIO ARGLllT 
27q MOVZWL #c;t2,QIOS..,P2(R4) , WRITE BVTE COUNT 
280 MOVL EF~LIST[R2],QIOS..,EFNCR4) ' WRITE EVENT ~LAG 
28t MOVL QJOPTRLIST(R2),~0 , PICK UP QIO PTA 
21'2 ~OVL QIOS..,CHAN(~0),QIOS4CHAN(R4) , WRIT! ASSIGNED CHANNEL 
283 MOVL •IO!.RfADP8LK,QIOS..,FUNC(A4) , WRITE R!AD PMVSICAL 'UNCTION COD! 
28U ~ISL #IOSM.INHERLOG,QIOS.FUNC(R4) ' INHIBIT !RROR LOG 
285 MOVAQ IOSTATUS.BLOCK[R2J,R5 1 PICK UP IOS8 ADOREll 
286 MOVL R5,GIOt..,IOSBCR4) r WRITE IOS8 AODR!SS INTO QJO ARGLIST 
287 sorow.G ( Rll) 1 ISSUE QIO REQUEST 

CALLG (R4),G.,SYSSQIOw 
2~8 RET EXIT 
2M .SB TTL PUT 4 8ADBLK ROUTINE 

TK-1125 

Figure 5-18 GETBBFSECTOR 

Routine Code 



5.8.2 Disk Reliability Program Sample Error Message 
Test 1, Subtest 0, Error 12 of the disk reliability program 
identifies bad blocks, on the disk pack under test, that are not 
entered in the bad block file. The message shown in Figure 5-19 
identifies the failing test, subtest, and error numbers. The 
me~sage also includes a dump of the channel registers (MBA 
registers in this case) and the RM03 registers. 

Notice that bits 12 and 15 of the RMERl register are set, 
indicating a data check error. The starting cylinder is 0. The bad 
block is located in sector 1, on track 4, as shown by the contents 
of the RMDA registers. 

TEST 1: QUALIFICATION TEST 
DRAl QA BEGUN AT 2-FEB-1979 14:26:18.54 

******** VAX DISK RELIABILITY TESTS ** ESRAA ** -- 5.2 ******** 
PASS 1 TEST 1 SUBTEST 0 ERROR 12 2-FEB-1977 14:26:20.52 
HARD ERROR WHILE TESTING DRAl: 

FUNCTION INITIATION SUMMARY: 

FUNCTION ATTEMPTED: WRITE DATA 
BUFFER ADDRESS RANGE: FROM: 00000388 TO: 00000587 
ATTEMPTING BYTE COUNT WAS: 512 
STARTING DISK ADDRESS: 
CYLINDER: 0 TRACK: 4 SECTOR: 0 

FUNCTION ABORT SUMMARY: 

UNDEFINED SYSTEM STATUS VALUE = 00000000 
ADAPTER CODE= 20(X) 
IE 
DT COMP 
MAP POINTER= 0l(X), PAGE BYTE ADDRESS= 188(X) 

MBA CSR 
MBA CR 
MBA SR 
MBAVAR 
MB AB CR 
MBAFMAP 
MBAPMAP 
RMCSl 
RMDS 
RMERl 
RMMR 
RMAS 
RMDA 
RMDT 
RMLA 
RMSN 
RMOF 
RMDC 
RMHR 
RMMR2 
RMER2 
RMECl 
RMEC2 

00000020 
00000004 
00002000 
00000388 
00000000 
800000E7 
800000F2 

MASSBUS BYTE COUNT = 0000 (X) , SBI BYTE COUNT = 0000 (X 
BIT 31, BIT 7, BIT 6, BIT 5, BIT 2, BIT 1, BIT 0 

0830 
11C0 
8000 
0028 
0000 
0401 
2814 
0040 
8846 
1800 
0000 
0000 
13FF 
0000 
0836 
0000 

BIT 31, BIT 7, BIT 6, BIT 5, BIT 4, BIT 1 
DVA, FUNCTION = WRITE DATA 
MOL, DPR, DRY, VV 
DCK 
MWR, MSCLK 

TRACK= 04(D), SECTOR= 0l(D) 
MOH, DRQ, DRIVE TYPE = RM03 
SECTOR= 0l(D) 
SERIAL NUMBER= 8846(X) 
FMT22, ECCI 
DESIRED CYLINDER= 00000(D) 

CNT/CYL, BUS IN LINES = lFF(X) 

BURST LOCATION = 0836(X) 
ERROR BURST= 0000(X) 

Figure 5-19 ESRAA 
Sample Error Listing 

5-32 

TK-1237 



CHAPTER 6 
CPU CLUSTER EXERCISER P~KAGE 

The CPU cluster exerciser package consists of three separate 
programs (ESKAX, ESKAY, ESKAZ). Two modules, the control module 
and the common instruction test services module (CITS), are common 
to all three programs. ESKAX, the first program, is the quick 
verify port ion of the c 1 us t er exerciser package • This program 
includes the compatibility mode entry and exit test, the first 
part done test, and the SBI exerciser. The second program, ESKAY, 
contains the timer and clock tests and the native mode instruction 
set tests. ESKAZ contains the memory management test and the 
compatibility mode instruction set tests. Figure 6-1 is a map 
showing the memory allocations of the three programs. 

The cluster exerciser diagnostics will handle three classes of 
errors, providing three corresponding types of error messages: 
unexpected exceptions or interrupts; test failures; and safe 
return halts (resulting from fatal errors). The code for the 
cluster exerciser programs is not as easy to follow as the code 
for other diagnostic programs. However, the error messages which 
the programs generate are detailed and, for the most part, 
self-explanatory. The operator should understand the general 
structure of each test and the error message formats in order to 
use all of the facilities provided by the cluster exerciser 
programs. 

6.1 CONTROL MODULE 
The control module in the cluster exerciser programs serves as the 
interface between the programs and the diagnostic supervisor. The 
module performs the following functions: 

Program initialization and clean up 

Execution of all tests twice in one pass 

Print out of a module summary message at the end of each 
pass, if errors exist 

Initialization and reinitialization of pertinent control 
variables 

Set up of all vectors for interrupt and exception 
handling 

Proper fielding of all exceptions and interrupts 
(expected and unexpected). 

When the control module detects an unexpected interrupt or 
exception, it prints out an error message as shown in Example 6-1. 

6-1 



ES KAZ 
(MEMORY MANAGEMENT 

AND 
PDP-11 INSTRUCTIONS) 

ESKAXOO 
10236 
CONTROL 

ESKAX01 
18000 
CITS 

MEMORY 
MANAGEMENT 
10000 
ESKAZ02 
TEST 01 

COMPATIBILITY 
INSTRUCTIONS 
13500 
ESKAZ03 
TEST 02 

ES KAY 
(NATIVE INSTRUCTIONS) 

ESKAXOO 
10236 
CONTROL 

ESKAX01 
18000 
CITS 

TIMER AND CLOCK TESTS 
3822 
ESKAY02. TEST 01 

ARITHMETIC. LOGIC. AND 
FIELD INSTRUCTION 
ESKAY 03. TEST 02 

BRANCH.CRC.AND 
QUEUE 
ESKA Y05. TEST 04 

BRANCH. CRC. AND 
QUEUE 
ESKAY06. TEST 05 

OPERAND SPECIFIER 
FLOATING POINT DEPENDENT 
ESKAY 07. TEST 06 

DECIMAL STRINGS 
ESKAY 08. TEST 07 

EDITPC OPERATORS 
ESKAY09. TEST 08 

CHARACTER STRING 
INSSTRUCTIONS 
ESKAY10. TEST 09 

PRIVILEGED INSTRUCTION 
EXCEPTION. ESKAY11. TEST 10 

ESKAX 
(QUICK VERIFY) 

ESKAXOO 
10236 
CONTROL 

ESKAX01 
18000 
CITS 

COMPATIBILITY MODE 
ENTRY/EXIT 
6534 
ES KAX02. TEST 1 

FIRST PART DONE 
ES KAX04. TEST 2 

SBI 
VERIFICATION 
17155 
ESKAX05. TEST 03 

MEMORY VERIFY 
ESKAX06. TEST 04 

TK-0737 

Figure 6-1 CPU Cluster Exerciser Package Memory Allocation 

6-2 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 6 SUBTEST 4 ERROR 1 

HARD ERROR WHILE TESTING CPU: EXCEPTION SERVICE ROUTINE 

UNEXPECTED EXCEPTION 

ERROR# 00000001 

VECTOR# 00000030 

SUBTYPE# 00000006 

PSL 83C00000 

PC 0000110D 

Example 6-1 Unexpected Exception Error Message 

Refer to Chapter 2 of the VAX-11 KA780 Central Processor Technical 
Description for a discussion of vectors and subtypes. When the 
machine check vector is asserted, the exception handler attempts 
to log out relevant status registers on the stack before pushing 
two longword parameters (summary and length) on the stack (Table 
6-1). In addition, the subtypes for vector 4 (machine check) are 
listed in Table 6-1. 

Table 6-1 Summary Parameter, Length Parameter for Vector 4 

Summary Parameter 

Subtype Byte 9 

00 CP Read Timeout/SB! Error Confirmation Fault 

02 CP TBUF Parity Error Fault 

03 CP Cache Parity Error Fault 

05 CP Read Data Substitute Fault 

0A Instruction Buffer TBUF Parity Error Fault 

0C Instruction Buffer Read Data Substitute Fault 

0A Instruction Buffer TBUF Parity Error Fault 

0C Instruction Buffer Read Data Substitute Fault 

0D IB Read Timeout/SB! Error Confirmation Fault 

0F IB Cache Parity Error Fault 

6-3 



Table 6-1 Summary Parameter, Length Parameter for Vector 4 
(Cont) 

Summary Parameter 

Subtype 

F0 

Fl 

F2 

F3 

FS 

F6 

Byte 0 

CP Read Timeout/SB! Error Confirmation Abort 

CS Parity Error Abort 

CP TBUF Parity Error Abort 

CP Cache Parity Error Abort 

CP Read Data Substitute Abort 

CP (Not Supposed To Be Here) Abort 

Byte 1 

This byte will be a nonzero value if a CP timeout 
or CP error confirmation interrupt is pending. 

Bytes 2 & 3 

These two bytes must be zero. 

Length Parameter 

Byte 0 

The number of bytes logged out are exclusive of 
this parameter. 

Byte 1--3 

These three bytes must be zero. 

When an unexpected interrupt or exception occurs, information is 
pushed on the stack by the exception handler as shown in Table 
6-2. 

6-4 



Mnemonic 

SP: 

CES 

D 

TBER0 

TBERl 

TIME.ADDR 

PARITY 

SB I.ERR 

Table 6-2 Information Pushed on the Stack 
by the Exception Handler 

Meaning 

Length Parameter 

Summary Parameter 

CPU Error & Status 

Trapped UPC 

Virtual Address/ 
Virtual Instruction 
Buff er Address 

Interface Between 
Data Paths and 
Memory 

Translation Buff er 
Error Register 0 

Translation Buff er 
Error Register 1 

Cache Parity Register 

SB! Error Register 

PC 

PSL 

ID Bus Address 

0C 

08 (Bytes 1 & 3) 

12 

13 

lA 

lE 

19 

Note that information on the stack is not saved by the exception 
handler. The EIH module must be breakpointed before this data is 
accessed. 

6-5 



6.2 COMMON INSTRUCTION TEST SERVICES MODULE (CITS) 
Thi s mod u 1 e cons i st s o f a group o f soft war e rout i n es that 
implement a table-driven test method for a majority of the VAX-11 
instruction set. CITS interprets the contents of a specially coded 
test table and executes tests of VAX-11 instructions. CITS is also 
used for tests of the first part done function and memory 
management. A copy of each of these test instructions is coded in 
register deferred mode (RN). Before the test instruction is 
executed, the test data is placed somewhere in memory, and the 
registers are loaded with the addresses of that test data. After 
the test instruction is executed, the contents of the registers 
and the contents of the test data area of memory are checked. 

There are four main routines in CITS that do the work of executing 
tests: CITS_DECODE, CITS_SETUP, CITS_EXECUTE, and CITS CHECK. 

6.2.1 CITS DECODE 
This routine decodes one test table entry, in a table of cases, 
and generates directions for the other three routines to use. 
These directions are lists of addresses and other variables placed 
in the parameter blocks of the CITS data area. 

6.2.2 CITS SETUP 
CITS SETUP moves the test data from the common data pool into the 
operand buffer. The operand buffer is the location of the data 
referenced during execution of the test instruction. The locations 
to be used for destination data are filled with a standard 
background pattern, hexadecimal AS, in each byte. Also, each 
operand, whether source or destination, is preceded and followed 
by a longword of the background pattern. CITS SETUP loads 
registers R0--R6 with the operand addresses to be used by the test 
instruction. The initial PC and PSL calculated by CITS DECODE are 
pushed on the stack by CITS SETUP along with a return address. The 
return address points to a routine to save the result PSL and 
registers. 

6.2.3 CITS EXECUTE 
CITS EXECUTE enables the exerciser's exception handler to react 
properly for the current test. It passes the address of a CITS 
unexpected exception handler and enables validation of the 
except ion of trace trap being tested, if any. CITS EXECUTE then 
executes an REI to start the test. A NOP instruction-precedes the 
REI and can be used for scope sync if the microbreak address is 
set up correctly from the console. When the test instruction 
finishes, the test subroutine returns to a result-saving routine. 
The PSL and registers R0--R6 are saved in the execution parameter 
block, as are the contents of the exception handler Interface Data 
Block (IDB). Also saved is an indication of whether the 
instruction branched, if it is a branch instruction. 

6.2.4 CITS CHECK 
CITS CHECK checks the results of instruction execution, and also 
checks the source operands and background pattern. It uses the 
directions and addresses put into its parameter block by 

6-6 



CITS DECODE to control checking. It checks branches, the PSL, 
exceptions (whether an exception happened and at the right PC), 
registers R0--R6, and memory data. When checking memory data, 
CITS CHECK also checks the longword before and after each operand 
to make sure that the background pattern has not been disturbed. 
CITS CHECK keeps a list of all errors found during one test case. 
This-complete list will be typed out when the test module using 
CITS makes the $DS_ERRHARD call to the diagnostic supervisor. 

6.2.5 CITS SUBTEST 
CITS_SUBTEST is a common subtest control routine that is used by 
most of the tests that call CITS. It processes a complete test 
table, calling the preceding four CITS routines in the proper 
order and calling the supervisor error reporter when necessary. 

6.2.6 CITS Error Messages 

6.2.6.1 Message Heading -- A standard diagnostic supervisor 
head in g i s typed (by the super vis o r) • That i s f o 11 owed by an 
extended error printout that supplies the test, subtest, and error 
numbers; the test case number; the op code of the failing 
instruction; addresses referenced; operand data; etc. Refer to 
Paragraph 6.4.2 for examples and detailed interpretation. 

6. 2. 6. 2 CITS Subtest Troubleshooting Features -- SCOPE SYNC -­
CITS EXECUTE executes a NOP instruction just before the REI to the 
test- instruction. Putting the microaddress of SE into ID Bus 
register 21 will cause a sync pulse to be generated on the 
microsequencer board (M8235) each time a NOP is executed. 

To loop on a failure with SCOPE SYNC, perform the following steps: 

>>> D /ID 21 SE 

>>> START 10000 

(DIAGNOSTIC SUPERVISOR STARTUP) 

DS> SET !El,LOOPD 

DS> START /TEST: N (WHERE 'N' IS FAILING TEST NUMBER) 

ETC. 

Halt Before the Failing Test Case -- At the beginning of 
the t es t-case exec u t in g 1 o op , the case numb e r 
(CITS CASE) is always incremented and compared with the 
content of CASE HALT. If these are equal, a HALT is 
executed. This feature allows the operator to stop before 
execution of a particular case, in order to examine 
registers, e.g., deposit the hex case number into 
CASE HALT. Run the test unti 1 the halt is executed. (If 
needed, use CONTINUE until you get to the right subtest.) 
Then either set a breakpoint or deposit a byte of zero (a 

6-7 



HALT) in CITS SYNC and type CONTINUE to get to that HALT. 
You have now- stopped just before the REI to the test 
instruction of interest. Use the console to set up 
whatever operation you wish to perform and continue as 
desired. 

Figure 6-2 shows the sequence of events fol lowed by CITS in the 
execution of ESKAY03, test 2, the arithmetic, logic, and field 
instruction· test module. 

6.2.6.3 Unexpected Exceptions in CITS If an unexpected 
exception occurs during a test, CITS will print a header 
containing the case number and the error information from the 
exerciser exception handler. This printout only occurs while CITS 
is handling unexpected exceptions, i.e., only during the execution 
of the five instructions before the test instruction and 
approximately through the three instructions after it (Example 
6-2). If an exception occurs outside of that set of instructions, 
then the error typeout is not handled by CITS and will not have a 
case number heading. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 25 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 25 

UNEXPECTED EXCEPTION 

ERROR# 00000001 

VECTOR# 00000004 

SUBTYPE# 00000000 

PSL 001F00E0 

PC 00000003 

Example 6-2 Unexpected Exception in CITS, Error Message 

Refer to Example 6-1 (Paragraph 6.1) for an explanation of the 
unexpected exception error message format. 

6.2.6.4 Result Register Errors -- If the contents of any of the 
registers R0--R6 are not as expected, CITS prints out initial, 
expected, and actual values, as shown in Example 6-3. 

6-8 



DIAGNOSTIC 
SUPERVISOR 

START 

COMMAND LINE 
INTERPRETER 

DISPATCH 
ROUTINE 

INIT 

TEST 2 

CITS­
SUBTEST 

CASE= 0 

CASE= 
CASE+ 1 

ESKAY 03 

CITS DECODE 
(DECODE CASE) 

CITS­
SETUP 

CITS­
EXECUTE 

REI, POP PC, 
POP PSL, EXECUTE 
INSTRUCTION 

RETURN FROM 
EXECUTION 

CITS­
CHECK 

DEPOSIT 
00 IN CITS 
SYNC (HALT) 

STEP 
THROUGH 
INSTRUCTION 

PRINT 
ERROR 
MESSAGE 

Figure 6-2 Execution of a 
Test Case in ESKAY03 

6-9 

TK-0755 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 4 ERROR 17 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 17 

? REGISTER CONTENTS ERROR 

INITIAL EXPECTED ACTUAL 

R0 00005404 00003800 00003880 

Rl 00005414 00008000 00008000 

R2 00005418 00000000 00000000 

R3 00000000 00005476 00005476 

R4 00000000 00000000 00000000 

·RS 00000000 00000000 00000000 

R6 00000000 00000000 00000000 

Example 6-3 Result Register Errors 

Initial data shows the values loaded into the registers at the 
start of the instruction. 

6.2.6.5 Leading or Trailing Background Errors -- If the longword 
before or the longword after an operand is changed during 
execution, CITS reports the error. Leading means the longword 
before the data (lower address than the data) • Hexadec ima 1 
ASASASAS is the standard background pattern. 

6. 2. 6. 6 Data Errors -- When CITS detects a data error, part of 
the error typeout is an operand number. That is, a number in the 
range 1 to 6 corresponding to the left-to-right order of the 
operands for the instruction. For example, in a MOVL instruction 
the source longword will be called operand 1 and the destination 
longword operand 2. 

If the incorrect operand is not of a writable or modifiable access 
type, then the error message includes the statement: read-only 
operand overwritten. 

If the incorrect operand is writable or modifiable, then the error 
message includes the statement: incorrect result (Example 6-4). 

6-10 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 7 ERROR 10 0 · 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 10 

? INCORRECT RESULT OPERAND 2 

EXPECTED ACTUAL 

Example 6-4 CITS Detects a Longword Data Error 

Example 6-4 shows incorrect longword data. For word and byte data 
errors, the format is the same except that a word is typed as four 
hex digits, and a byte as two hex digits. In a quadword or 
double-floating word typeout, the lowest addressed longword is the 
first line of data typed. That is the longword containing the sign 
and the exponent for the double-floating case. (In the quadword 
case, the sign is in the longword typed on the second 1 ine of 
data, Example 6-5.) 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 91 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 91 

? INCORRECT RESULT, OPERAND 2 

EXPECTED ACTUAL 

996740D6 

86A2E99E 

Example 6-5 CITS Detects a Quadword Data Error 

Errors in string data (character string, packed decimal string, 
etc.) are displayed in Example 6-6. 

6-11 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 44 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 44 

? INCORRECT RESULT, OPERAND 4 

EXPECTED ACTUAL 

38 ••• A5A5*39*4E39 ••• 

0 BYTES FROM START OF STRING 

Example 6-6 CITS Detects a String Data Error 

Each byte is typed as two hexadecimal digits. The expected data 
only shows the good value of the byte that did not compare. The 
actual data shows five bytes of the result string. The beginning 
of the string is to the left, the end is to the right. The left 
hand two bytes (four digits) are good result data; the byte 
between asterisks (*) is the one that failed to compare; and the 
right two bytes are the start of the rest of the (uncompared) 
string. The last line tells how far from the beginning of the 
string the bad byte is. 

6.2.6.7 PSL Errors Result PSL errors are typically wrong 
condition codes. The condition codes are the right-hand hex digit 
of the PSL. The E in the second from right-hand digit indicates 
that the decimal overflow, floating underflow, and integer 
overflow traps are enabled (Example 6-7). This condition is always 
true when the test instruction is being executed. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 50 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 50 

? RESULT PSL ERROR 

EXPECTED ACTUAL 

001F00E8 001F00El 

Example 6-7 PSL Error 

6-12 



6.2.6.8 Branch Errors When testing instructions that may 
branch, failure to branch when expected or a branch taken when not 
expected produces a message like that in Example 6-8. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 4 ERROR 1 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 1 

? EXPECTED BRANCH DIDN'T HAPPEN 

Example 6-8 Branch Error 

6.2.6.9 Expected Exception or Trace Trap Errors 

1. An error message is produced if an expected exception or 
trace trap fails to occur at all. 

2. The PC and PSL of expected exceptions and trace traps are 
checked. If an error is detected, a message like that in 
Example 6-9 is typed. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 4 ERROR 2 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 2 

? INCORRECT EXCEPTION PC 

EXPECTED ACTUAL 

000025FS 00002566 

? INCORRECT EXCEPTION PSL 

EXPECTED ACTUAL 

001F00E5 001F00E4 

Example 6-9 Expected Exception Error 

In Example 6-9 both the PC and the PSL were incorrect at the time 
of the exception. In Example 6-10 only the PSL was wrong at the 
time a valid trace trap occurred. 

6-13 



******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 2 SUBTEST 2 ERROR 127 0 

HARD ERROR WHILE TESTING KA0: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 127 

? INCORRECT TRACE TRAP PSL 

EXPECTED ACTUAL 

001F00F0 001F00F8 

Example 6-10 Trace Trap Error 

6.2.6.HJ Extended Printout -- If the extended error printout 
flag is enabled, the fol lowing additional data will be typed out 
on error detection (Example 6-11). 

[1.] INITIAL CONDITIONS: 

PC 00004873 PSL 001F00FF 

OP CODE -- 74 WITH REGISTER INDIRECT OPERANDS 

[2.] INITIAL REGISTERS R0-R6: 

R0 0000AC04 Rl 0000AC14 R2 000 

R3 000 0AC2D R4 0000AC39 RS 000 

R6 00000000 

[3.] SOURCE OPERAND DATA: 

OPERAND 1 

FFFE4FFF 

FFFFFFFF 

OPERAND 2 

FF 

OPERAND 3 

00004080 

00000000 

Example 6-11 Extended Printout 

6-14 



Rotes for Example 6-11. 

1. This is the first line of the extended typeout. PC is the 
location of the test instruction, which can be examined 
if the user wants to see the hex code. 

PSL is the value of the PSL before the instruction is 
executed. 

OP CODE is the hex value of the instruction, which in the 
example is 74 = EMODD. 

REGISTER INDIRECT OPERANDS means that R0 has the address 
of operand l; Rl has the address of operand 2; etc. 

2. The INITIAL REGISTERS typeout tells where the operands of 
the test instruction were in memory when the instruction 
was executed. 

3. These are the actual contents of the addresses pointed to 
by the registers listed above (2). 

All source (read or modifiable) operands are typed. 

Formats: 

Byte 
Word 
Longword 
Quadword 

Strings 

xx 
xxxx 
xxxxxxxx 
XXXXXXXX -- Low Address Longword 
XXXXXXXX -- High Address Longword 
xx, xx, xx, xx, ... ,xx 
Left side of printout is lowest address byte. 
Long strings are printed 16 bytes per line and 
are continued for as many lines as needed. 

In the preceding example we have the following operands. (Refer to 
the VAX-11/780 Architecture Handbook or the instruction card for 
further help.) 

Operand 1 MULR (R0) Double FFFFFFFF FFFE4FFF 
Operand 2 MULRX (Rl) Byte FF 
Operand 3 MULD (R2) Double 00000000 00004080 

The 4th and 5th Operands are Destinations: 

Operand 4 INT (R3) Long 
Operand 5 FRACT (R4) Double 

6.2.7 How To NO-OP a Test Case 
If it is necessary to bypass a test case while waiting for a 
hardware ECO or a microcode ECO, refer to Example 6-12. 

6-15 



2C9 946 
2C9 947 
2C9 948 
2C9 949 

°' 
2C9 950 

I 2C9 951 -°' 2C9 952 
2C9 953 
2C9 954 
2C9 955 

08F09D62 2C9 
08 2CC 
01 2CD 
01 2CE 

;CASE 105 
;SUBD2 INSTRUCTION 

;OPERANDS 
;SUB: 0 
;DIF: 1. 0 
;CONDITION CODES 

TB CC NZVC, 

EXP-DIF: 
INITIAL: 1111 

1. 0 
EXPECTED: 

CC 0, 08 012, 08 02, DP 02 

0000 

I_SUBD2, 
.BYTE I SUBD2, 

DP Dl2 
<-C<I_SUBD2>>, <l6*<CC NZVC&l5>+CC 0&15>> 

.BYTE 

.BYTE DP-D2 

.BYTE DP-D2 

Example 6-12 Case 105 SUBD2 
Instruction 



Load ESKAX. EXE 
Look up the base address of the PSECT <. BLANK .> in the link 
map of this program for the module that has the data for the 
test case to be No-Oped. 

Set the console base register to that value (i.e., SE R: 
VALUE) • 

Find the TB line of the right test case and examine it to make 
sure you are in the right place (Example 6-12). 

Examination of 2C9 location (E 2C9) should give 08F09D62. 

Count the number of single bytes following the line that has three 
bytes. That would be 3 for this example. 

Deposit a new longword, at the address just examined, made up of 
the count from the preceding step followed by 03FC. 

In Example 6-12, D 2C9 303FC, where 2C9 is the address just 
examined. 

Set the relocation register back to zero when finished (i.e., SE 
R: 0) • 

6.3 ESKAX DESCRIPTION 

6.3.1 Compatibility Mode Entry/Exit Module (ESKAX02, Test Bl) 
This module tests the conditions generated when the central 
processor enters and leaves the compatibility mode. The following 
conditions and functions are tested. 

ESKAX Test 1, Subtest 1 -- This subtest performs iilegal entries 
in compatibility mode expecting and checking for reserved operand 
faults. The bit settings in the PSL that will cause reserved 
operand faults, on an attempt to enter compatibi 1 i ty mode, are 
shown in Table 6-3. 

Table 6-3 Reserved Operand Faults and PSL Bit Settings 
on Compatibility Mode Entry 

PSL Bit/s 

DV<7> 
FU<6> 
IV<S> 
IPL<20:16> 
CUR MOD<2 5: 24 > 
PRV MOD<23:22> 
IS<26> 
FPD<27> 

Condition 

Nonzero 
Nonzero 
Nonzero 
Nonzero 
Not = 3 
Not = 3 
Nonzero 
Nonzero 

The conditions in Table 6-3 are tested one at a time. 

6-17 



The following two examples are typical of ESKAX test 1, subtest:, 
error messages. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 1 ERROR 2 19-JUN-1977 21:25:41.22 

HARD ERROR WHILE TESTING CPU: EXCEPTION PC FROM CM ILLEGAL ENTRY 
INCORRECT 

VECTOR TYPE CODE EXPECTED PC ACTUAL PC PSL ENTRY MNEMONIC 

18 NONE 00007D74 00007D76 83C00080 DV 

Example 6-13 ESKAX Test 1, Subtest 1, Error 2 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 1 ERROR 2 19-JUN-1977 21:25:53.04 

HARD ERROR WHILE TESTING CPU: EXCEPTION PC FROM CM ILLEGAL ENTRY 
INCORRECT 

VECTOR TYPE CODE EXPECTED PC ACTUAL PC PSL ENTRY MNEMONIC 

18 NON 00007D74 00007D54 83C00040 FU 

Example 6-14 ESKAX Test 1, Subtest 1, Error 2 

Interpretation of Example 6-13. 

1. 18 is the reserved operand fault vector expected. 
2. There is no type code pushed on the stack. 
3. The state of the PSL to cause the fault was 83C00080. 
4. DV is the PSL bit that was nonzero (Table 6-3). 
5. EXPECTED and ACTUAL PCs are self-explanatory. 

ESKAX Test I, Subtest 2 -- Compatibi 1 i ty mode trap instruct ions 
upon a valid entry into compatibility mode (Table 6-4). 

Table 6-4 Compatibility Mode Trap Instructions 

Op code Mnemonic 

00000 3 BPI 

000004 !OT 

104000 EMT+0 

104400 TRAP+0 

6-18 



-- Compatibility mode reserved instructions upon a valid entry 
into compatibility mode {Table 6-5). 

Table 6-5 Compatibility Mode Reserved Instructions 

000000 

000001 

00000 5 

000230 

00640 0 

075000 

075010 

075020 

075030 

170000 

Typical Error Messages 

******** CPU CLUSTER EXERCISER 9.0 

Mnemonic 

HALT 

WAIT 

RESET 

SPL 

MARK 

FADD 

FSUB 

FMUL 

FDIV 

FPll 

******** 

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:30.40 

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY 

MODE TRAP INCORRECT 

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC 

30 1 83C00000 8 3C00002 0003 BPT 

Example 6-15 ESKAX Test 1, Subtest 2, Error 3 

6-19 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:42.21 

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY 

MODE TRAP INCORRECT 

VECTOR TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC 

30 2 83C00000 83C00002 0004 IOT 

Example 6-16 ESKAX Test 1, Subtest 2, Error 3 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 2 ERROR 3 19-JUN-1977 21:29:54.02 

HARD ERROR WHILE TESTING CPU: EXCEPTION PSL FROM COMPATIBILITY 

MODE TRAP INCORRECT 

VECTOR TYPE CODE EXPECTED PSL ACTUAL SPL TRAP MNEMONIC 

30 3 83C00000 83C00002 8800 EMT 

Example 6-17 ESKAX Test 1, Subtest 2, Error 3 

Interpretation of Example 6-16 

1. 30 is the compatibility mode TRAP vector expected. 

2. A type code of 2 is pushed on the stack. 

3. Referencing Chapter 6 of the system reference manual 
would show that a typecode of 2 indicates an IOT fault. 

4. !OT is shown as well as the hex equivalent of the octal 
code (Table 6-4). 

5. EXPECTED and ACTUAL PSLs are self-explanatory. 

Subtest 3 -- This subtest tests the T-bit trap by having the T-bit 
(PSL<4>) set upon entry into compatibility mode: 

a. for an instruction that does not trap 
b. for an instruction that does trap. 

NOTE 
Both a and b cases are serviced in 
NATIVE mode. 

6-20 



Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 3 ERROR 4 19-JUN-1977 21:32:06.80 

HARD ERROR WHILE TESTING CPU: A T-BIT TRAP NOT TAKEN 

EXPECTED EXC VECTOR TYPE CODE MNEMONIC 

0BC0 30 NONE TST R0 

Example 6-18 ESKAX Test 1, Subtest 3, Error 4 

Interpretation of Example 6-18 (this printout is for Case B): 

1. This instruction, which was to execute and then take a 
T-bit trap, was 'TST R0' with TRACE PENDING prior to its 
execution (PSL<TP>). 

2. The hex equivalent of the octal code for 'TST R0' is BC0. 

3. 30 is the vector expected to field the T-bit trap. 

4. No type code is pushed on the stack. 

Subtest 4 -- This subtest performs an RTT/RTI instruction with the 
T-bi t set in the PSW image on the stack, which is to be popped 
from the stack by the RTT/RTI. 

Typical Error Messages 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 4 ERROR 3 19-JUN-1977 21:33:43.60 

HARD ERROR WHILE TESTING CPU: PC FROM RTT TRACE TRAP 

INCORRECT 

VECTOR TYPE CODE EXPECTED PC ACTUAL PC TRAP MNEMONIC 

30 NONE 00008508 00008408 000 6 RTT 

Example 6-19 ESKAX Test 1, Subtest 4, Error 3 

6-21 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 4 ERROR 3 19-JUN-1977 21:33:54.70 

HARD ERROR WHILE TESTING CPU: PC FROM RT! TRACE TRAP 

INCORRECT 

VECTOR TYPE CODE EXPECTED PC ACTUAL PC TRAP 

30 NONE 00008508 00008408 0002 

Example 6-20 ESKAX Test 1, Subtest 4, Error 3 

Interpretation of Example 6-19 

MNEMONIC 

RT! 

1. 30 is the vector expected to field the T-bit trap. 
2. No type code is pushed on the stack. 
3. The RTT instruction was under test. 
4. The hex equivalent of the octal code for RTT is 6. 
5. EXPECTED and ACTUAL PCs are self-explanatory. 

Subtest 5 -- This subtest performs checking of Odd Address errors 
while in compatibility mode. This is accomplished by executing a 
PDP-11 MOV instruction with unaligned SRC and DST operands. 

Typical Error Messages 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 5 ERROR 4 19-JUN-1977 21:35:17.19 

HARD ERROR WHILE TESTING CPU: ODD ADDRESS TRAP CAUSED 

UNALIGNED SOURCE CONTENTS CHANGE 

VECTOR TYPE CODE EXPECTED VAL ACTUAL VAL TRAP MNEMONIC 

30 6 000A 000E 17DF UNALIGNED 

Example 6-21 ESKAX Test 1, Subtest 5, Error 4 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 5 ERROR 4 19-JUN-1977 21:35:29.58 

HARD ERROR WHILE TESTING CPU: ODD ADDRESS TRAP CAUSED 

UNALIGNED SOURCE CONTENTS CHANGE 

VECTOR 

30 

TYPE CODE EXPECTED VAL ACTUAL VAL TRAP 

6 000A 000E 17DF 

Example 6-22 ESKAX Test 1, Subtest 5, Error 4 

6-22 

MNEMONIC 

UNALIGNED 
DST 



Interpretation of Example 6-22 

1. 30 is the compatibility mode TRAP vector expected. 

2. A type code of 6 is pushed on the stack. 

3. The position of the destination address on a boundary 
caused the failure. 

4. The hex equivalent of the octal code for the instruction 
under test is 17DF (this translates to 013737 in PDP-11 
code). 

S. EXPECTED and ACTUAL VALUES are self-explanatory. 

NOTE 
On an Odd Address trap neither SRC nor 
DST initial values should change, since 
the instruction should not go to 
completion. 

Subtest 6 This subtest performs checking of illegal 
instructions with a register destination, i.e., 

JMP R4 or 
JSR R4, RS 

Typical Error Messages 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 6 ERROR 3 19-JUN-1977 21:36:32.03 

HARD ERROR WHILE TESTING CPU: PSL FROM ILLEGAL INSTRUCTION 

TRAP INCORRECT 

VECTOR 

30 

******** 

TYPE CODE EXPECTED PSL ACTUAL PSL TRAP 

s 83C00000 83D00000 0044 

Example 6-23 ESKAX Test 1, Subtest 6, Error 3 

CPU CLUSTER EXERCISER 9.0 ******** 

MNEMONIC 

JMP R4 

PASS 1 TEST 1 SUBTEST 6 ERROR 3 19-JUN-1977 21:36:43.64 

HARD ERROR WHILE TESTING CPU: PSL FROM ILLEGAL INSTRUCTION 

TRAP INCORRECT 

VECTOR 

30 

TYPE CODE EXPECTED PSL ACTUAL PSL TRAP MNEMONIC 

s 83C00000 83000000 090S JSR (RS DST) 

Example 6-24 ESKAX Test 1, Subtest 6, Error 3 
6-23 



Interpretation of Example 6-24 

1. 30 is the vector expected to field the TRAP. 

2. A type code of 5 is pushed on the stack. 

3. The instruction that failed was the JSR R4, RS. 

4. The hex equivalent for the octal code of this instruction 
is 0905. 

5. EXPECTED and ACTUAL PSLs are self-explanatory. 

ESKAX02 (test 1) is executed in the user mode for test purposes. 
However, the module is serviced in the kernel mode, and control is 
returned to the kernel mode on completion of the module. 

The operator should note that testing of the T-bit operation with 
servicing done in the compatibility mode has not been covered. 

6-24 



6.3.2 First Part Done Test (ESKAX94, Test 2) 
First Part Done (FPO) is the name of 'bit 27 in the PSL. It 
provides a facility for interrupting certain potentially long 
executing instructions during processing and resuming them later. 
Only a few instructions are interruptable in this sense. Most 
fnstructions acknowledge interrupts before their execution, or 
acknowledge them in mid-operation by backing up to the beg inning 
and pretending that they have not yet started. A few instructions, 
however, are potentially so lengthy that this is not feasible. 
These are the character and dee imal string instructions, POLYF, 
POLYD, and CRC. Each of these instructions writes a control block 
into the general registers. Should an interrupt be requested 
during processing, the current state of the operation (i.e., what 
it is doing and how far it has gotten) can be saved in this 
control block to be retrieved after the interrupt is processed. 
The instruction then sets FPO in the PSL, and acknowledges the 
interrupt. Upon return from the interrupt, the FPD bit is set in 
the PSL, so that rather than restarting, the instruction restores 
its state from the point at which it was interrupted. 

6.3.2.1 Possible First Part Done Failures -- The microcode 
implementing the FPD capability must be able to correctly save and 
restore state anywhere it does a memory reference (which may cause 
a fault) and anywhere it checks for interrupts. The state of the 
operatioh in some cases is complex, and it is possible that the 
microcode does not save or restore everything correctly. If the 
instruction is later resumed, the state of the machine e.g., in 
the form of contents of general registers, may well have been 
changed by the instructions executed in the interim, and will thus 
be incorrect. This will cause unpredictable results, most likely 
in the form of incorrect data written, wrong lengths and wrong 
condition codes, and will be easy to detect. 

The instructions may also fail by saving state (perhaps correctly) 
and failing to set FPD. This would normally appear when modified 
reg i st er s a r e used a s a r g um en ts i n the rest a rt in g o f the 
instruction. This condition will be detected in the test by 
checking in the interrupt routine to make certain that if FPD is 
still clear, the original arguments are unchanged. 

6.3.2.2 First Part Done Test Procedures -- The interval timer is 
used to generate interrupts during the testing of each 
instruction, in order to check the microcode and the taking of 
interrupts. Al though each instruction is interrupted constantly 
during execution, it is eventually run to completion. 

After having been tested with interrupts, the instruction's 
ability to handle page faults is tested. An instruction may have 
up to six operands; twelve pages are set up to hold them, allowing 
each operand to be placed near an independent page boundary. When 
the instruction beg ins execution, each page is invalid. As it 
attempts to access its operands, the instruction is repeatedly 

6-25 



faulted. Each fault validates the page referenced, so that the 
instruction progresses, but this alone does not ensure that it is 
tested fully. As each page is referenced (and faulted) the first 
time, all the other pages holding operands are made invalid. This 
process tests all the cases. Since each page has a first reference 
only once, the test instruction manages to finish. 

As an example, consider the testing of an instruction with two 
string operands and one non-string operand in which the 
instruction accesses the non-string operand first, and then 
processes the strings (e.g., CMP3). First, the non-string operand 
is referenced, faulting the page containing it. Upon restart, the 
instruction fetches the non-string operand without problem, and 
begins processing the strings. Since each operand is located just 
before a page boundary, the strings will cross the boundaries. As 
the instruction progresses, it will attempt to reference the first 
page of the first operand, the first page of the second operand, 
the second page of the first operand, and the second page of the 
second operand. Because faulting in a page for the first time 
signals the test to invalidate all the other pages, however, the 
string of references and validations proceeds as shown in Table 
6-6. 

Table 6-6 Page Faulting with First Part Done 

Page 1 Page 2 Page 3 Page 4 

I I I I ;All the pages start invalid. 
FAULT I I I ;The first page is faulted 
v I I I ;and is made valid. 
v I FAULT I ;The first page of operand 2 is 
I I v I ;faulted in, and the rest out. 
FAULT I v I ; Page 1 is refaulted, and page 
v I v I ;3 is left valid. 
v FAULT v I ;String 1 processing reaches 
I v I I ;page 2, all others faulted. 
I v FAULT I ; Page 1 is not needed now, but 
I v v I ;page 3 still is needed. 
I v v FAULT ;String 2 reaches its second 

;page 
I I I v ;faulting page 4 for first 

;time. 
I FAULT I v ; Page 2 is still needed, and 
I v I v ;is faulted back in. 
I v I v ;The instruction is completed. 

The first part done test uses the CITS routines to help set up, 
e x e c u t e , and ch e c k the r e s u 1 t s o f i n s t r u c t i o n t e s ts • Th e 
instructions to test, and the data with which to test them, are 
stored in a table. The table entries are of variable length, and 
they begin as shown in Table 6-7. 

6-26 



.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

Table 6-7 First Part Done Test Table Entries 

;the op code of the test instruction 
;the op _code's complement 
;initial condition codes 
;resultant condition codes 
;operand specifiers 

The faulting section uses the Interface Data Block (IDB) to 
communicate with the exception and interrupt handler. The format 
of the IDB is shown in Table 6-8. 

Table 6-8 First Part Done IDB Format 

T-Bit 
Count 

Except ion and 
Subtype 

PSL of exception 

PC of exception 

PSL of latest T-bit trap 

PC of latest T-bit trap 

User service routine address 

Number of arguments (zero) 

State 
Bits 

The service routine address points to the code that implements the 
faulting algorithm. The exception type and subtype are loaded with 
the values for translation-not-valid faults. 

This test also interfaces with the CITS routine through a Test 
Control Block (TCB). The TCB format is shown in Table 6-9. 

Table 6-9 First Part Done TCB General Format 

Current Test Table Address 

Unused Exception Subtype T-bit trap 

Operand 1 address, or " 
Operand 2 address, or " 
Operand 3 address, or " 
Operand 4 address, or " 
Operand 5 address, or " 
Operand 6 address, or " 

6-27 



The current test table address points into the table of test 
instructions. 

The TCB passed to CITS DECODE and to CITS REDECODE is shown in 
Table 6-10. 

Table 6-10 First Part Done TCB Passed to CITS DECODE 

TCB: 

TCB INST ADDR: - -TCB T BIT: 
TCB-SUBTYPE: 
TCB-EXCEPTION: 

TCB OPERANDS: 

• LONG 
.BYTE 
.BYTE 
.BYTE 
.BYTE 
.BLKL 

Typical Error Message 

0 
0 
0 
0 
0 
6 

;current test table address 
;trace trap expected flag 
;exception subtype 
;expected exception vector 
;unused 
;optional operand addresses 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 2 SUBTEST 0 ERROR 212 19-JUN-1977 21:41:22.03 

HARD ERROR WHILE TESTING CPU: An unexpected type of fault 
occurred. 

Fault code Referenced address PC PSL 

00000000 0001F7F8 00003DD0 000000EB 

Table number Test case 

1 1 

TCB's address Test table address Current entry address 

00008F9C 00000A7C 00000A7C 

Example 6-25 ESKAX Test 2, Subtest 0, Error 212 

Interpretation of Example 6-25 
The printout is representative of the first part done test, which 
interfaces to the CITS portion of the program for its data pool as 
follows. 

1. This test interfaces with CITS through the TCB whose 
format is shown in Table 6-10. 

In this example, the first address of the TCB is 8F9C. 

The current test table address (which is the first 
longword of the TCB) is given as A7C. 

2. The starting address of the test table within CITS is 
A7C. 

6-28 



3. CITS contains a number of tables; each table contains a 
number of cases (or distinct pieces of data) where: 

Table 1 represents BASE FP instructions 
Table 2 represents DECIMAL instructions 
Table 3 represents EDIT PC instructions 
Table 4 represents FPA instructions 

A summary of the information presented so far on the 
First Part Done Test follows. 

a. We are using Table 1 from CITS for our data. 

b. The starting address of this table is A7C. 

c. We are using DATA CASE 1. 

d. The address for DATA CASE 1 is A7C. 

e. The address of the CONTROL BLOCK guiding this test 
execution is 8F9C (whose format is shown above in 
Table 6-10). 

f. Examination of the next n locations starting with the 
CURRENT ENTRY ADDRESS (in this case A7C) will give 
information concerning the instruction under test as 
follows: 

1st byte is the op code of the test instruction. 
2nd byte is the op code's complement. 
3rd byte is the INITIAL condition code (N,Z,V,C). 
4th byte is the RESULTANT condition code (N,Z,V,C). 

The next n bytes represent operand specifiers. 
The number of operand specifiers depends on the 
instruction under test. 

4. The starting address of the area where the test 
instruction is placed {residing) while undergoing test is 
the PC of 3DD0. 

6-29 



A Second Error Message 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 2 SUBTEST 0 ERROR 213 19-JUN-1977 21:41:22.03 

HARD ERROR WHILE TESTING CPU: Page fault on non-test instruction. 

Fault Code Reference address PC PSL 

00000000 0001FFF8 00003000 000000EB 

Table number Test case 

1 1 

TCB's address Test table address Current entry address 

00008F9C 00000A7C 00000A7C 

Example 6-26 ESKAX Test 2, Subtest 0, Error 213 

Interpretation of Example 6-26 
The REFERENCE ADDRESS of 1FFF8 represents the address which caused 
the FAULT CODE of 0. 

The breakdown of the FAULT CODE is as follows: 

Bit Position 

1 

2 

Meaning 

0 = translation not valid 
1 = access control violation 

1 = fault occurred during virtual reference to the 
PTE of the stored process virtual address 

0 = read access 
1 = write or modify access 

The interrupts portion of the test begins by setting up the test 
instruction and data, using the CITS routines named CITS DECODE 
and CITS SETUP. 

CITS SETUP returns with the PC and initial PSL of the test 
instruction on the stack. The test saves a copy of the test 
instruction's PC and general registers, so that its progress may 
be observed. Then the test initializes the interval timer service 
routine. 

6-30 



It then sets up a timer interrupt and executes an REI to the test 
instruction, which is interrupted immediately. 

Since the state of the instruction is contained in the registers, 
if they are unchanged since the previous interrupt, the 
instruction has not progressed. This condition results from 
interrupting too soon. In this case, the interval timer is 
increased, and the test instruction is resumed. 

In the other case, when the general registers have changed, the 
instruction has progressed. 

Next, a divide-packed instruction is executed in an attempt to 
modify the state of any internal registers that might be used by 
the instruction under test. The timer is then set up for the new 
wait time, started, and the test instruction is resumed. 

When the test instruction has been completed, the results are 
checked and any errors are reported. 

Once interrupts and faults have been tried, the next entry in the 
test instruction table is selected, and the testing of that 
instruction begins. 

There are four classes of errors that may occur. 

Class 1 

Class 2 
state 

Unexpected exceptions or interrupts. 

Exception or interrupt identifier reports, which simply 

ERROR IN TEST CASE NN. 
These occur when an exception or interrupt occurs during the 
testing of an instruction, and they are immediately followed by 
the exception report. They exist solely to inform the operator of 
the test case in which the exception occurred. 

Class 3 -- Instruction test errors describe incorrect results from 
instruction testing. The instructions tested are a subset of those 
tested in ESRAY05 TEST04 and ESKAY06 TEST05, so that the 
instruction test errors are identical between those tests and this 
test, ESKAX04 TEST02. This data is in module ESKAX03 FPO DATA. 

6-31 



Class 4 -- These errors are first part done specific (Example 
6-27) • 

They have error numbers 200 through 209. Each reports error 
specific information, the table number, and the test case number. 
The interpretation of table numbers is as follows: 

Table Number 

1 
2 
3 
4 

Meaning 

Floating-point test taQle 
Decimal string test table 
EDITPC test table 
Floating-point test table 
(Executed with FPA enabled if an FPA 
exists) 

The test case number indexes into the appropriate table to 
indicate a single test. 

********* CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 2 SUBTEST 0 ERROR 207 

HARD ERROR WHILE TESTING CPU: EXPECTED TIMER INTERRUPTS DIDN'T 
OCCUR. 

VALUE PASSES 

-30 

TABLE NUMBER TEST CASE 

1 115 

TCB'S ADDRESS TEST TABLE ADDRESS CURRENT ENTRY ADDRESS 

18E0 9F6 9F6 

Example 6-27 ESKAX Test 2, Subtest 0, Error 207 

6.3.3 SBI Verification Module (ESKAXSS, Test 3) 
The SB! verification test is designed to exercise and partially 
diagnose faults on the SB I nexus connected to it. Error reports 
will differentiate between faults on the SB! proper and faults 
caused by a nexus. The error printouts will serve as guides to 
selection of the appropriate repair level diagnostic to further 
isolate the problem. 

6-32 



With the exception of the interactive mode setup subtest, errors 
will be reproducible via looping. For interactive mode, due to the 
asynchronous operation of the exerciser, only errors introduced by 
interrupts from the interval timer. are guaranteed to be 
rep rod uc i ble. 

Note that failing devices are deselected from further testing at 
the point of failure. This means that if an MBA or UBA fails in a 
test before MBE or UBE checkout, the MBEs or UBEs attached are not 
checked for the failing MBA or UBA. 

The SBI verification test is composed of the following parts. 

SBI checkout -- Verifies configuration register of each 
nexus that can be accessed. 

UBA checkout -- Verifies that each selected UBA on the 
SBI can sustain data transfers without incurring errors 
and that interrupts occur at the proper BR level. 

MBA checkout -- Verifies that each selected MBA on the 
SBI can sustain data transfers without incurring errors 
and that interrupts occur at the proper BR level. 

SBI interaction -- Verifies that all UBAs are capable of 
block data transfers in a controlled sequential mode of 
operation. 

UBE checkout - - Ve r i f i es th a t a 11 ex i st in g UBE s -a re 
capable of sustaining data transfers and interrupting on 
completion without errors. 

MBE checkout -- Verifies that all existing MBEs for 
selected MBAs are capable of sustaining data transfers 
and interrupting on completion without errors. 

6.3.3.1 SBI Checkout Subtest -- The SBI checkout subtest will 
perform reads and writes to the configuration register of each 
nexus on the SBI as defined by the hardware P-Table. This subtest 
will set up the Hardware Interrupt Request Table (HIRT), which 
will contain an entry for each UBA and/or MBA responding to a read 
of its configuration/status register. This table will be used by 
all subtests within the SBI verification test. A nexus that does 
not respond will not be entered into the HIRT and, therefore, will 
not be used in the following subtests. No response from a ~exus is 
treated as an error. 

6-33 



The SB! checkout subtest uses the CPU silo comparator register to 
check the validity of the commands and responses from the 
receiving nexus on the SBI. 

The primary purpose of this subtest is to provide the field user 
with a detailed check of the SBI. It will isolate faults in such a 
manner that the error information printed will aid the user in the 
selection of the proper diagnostic, which may then be run to 
further isolate the fault. 

Si lo Com pa re Servicing The silo com pa re service 
routine will read back the SBI silo and compare the 
contents with the arguments supplied in the IDB 
(interface data block) • Nul 1 eye les between command 
issue and read reply are checked for continuity of 
function, i.e., TR lines not continually asserted. No 
checking will be made for the number of null cycles. 

On completion of the silo read back, the fault bit in the CPU SBI 
status register will be checked for clear. The error flag will be 
set and the appropriate information will be placed on the error 
stack if it is set. The fault bit will be reset if set. The 
interrupt on silo compare bit will be cleared and the SBI silo 
compare register will be cleared. 

A return is then made to the point of invocation of the interrupt 
causing this routine to be executed. 

6-34 



6.3.3.2 UBA Checkout Subtest -- This subtest will only be run for 
UBAs that exist in the HIRT and have been qualified by the SB! 
checkout subtest. 

Each UBA will be set up to operate in a wraparound mode so that 
access from the SB! to Unibus memory space will be mapped into SB! 
memory space. 

This subtest will check the following UBA capabilities. 

1. DDP and BDPl data paths are operational. 

2. Interrupts can be initiated by the adapter and result in 
the correct vector being accessed. 

3. The map registers can be accessed and used correctly. 

4. Purging operates correctly. 

5. A read to nonexistent Unibus memory space causes the 
correct error sequence and interrupt. 

The subtest will autosi ze the Unibus memory and set the map 
register disable portion of the Unibus Adapter Control Register 
(UACR) for use by other subtests within the SB! verification t~st. 

Faults detected within this subtest will cause the UBA under test 
to be disqualified from further use by any other subtest within 
the SBI verification test. 

UBA Interrupt Servicing -- Interrupts generated by the Unibus 
Adapter are serviced by this routine. 

The routine will compare the configuration register and the Unibus 
Adapter Status Register (UASR) with arguments supplied in the 
Service Data Block (SDB). If there are any differences, they will 
be pushed on the error stack and the error flag will be set. For 
an invalid map register type interrupt, the failed mapped entry 
register will be compared with the SDB entry. Also, for a Unibus 
SSYN timeout, the failed Unibus address register will be compared 
with the SDB entry. 

The AEIL (Additional Exception or Interrupt Longword) is used as 
the transfer vehicle to indicate to the interrupted program the 
IPL level at which the interrupt occurred. 

6.3.3.3 MBA Checkout Subtest - This subtest is run only on MBAs 
that exist in the HIRT and have been qualified by the SBI checkout 
subtest. 

Each MBA is set up to operate in maintenance mode. 

6-35 



This subtest checks the following MBA capabilities. 

1. Initialization clears registers and does not cause 
interrupts. l 

2. DT BUSY can be set and causes no interrupts. 

3. PGE can be set and causes an interrupt. 

4. Read and write transfers operate correctly; on completion 
of read data transfer, DONE is set and causes an 
interrupt. 

Faults detected within this subtest cause the MBA under test to be 
disqualified from further use by any other subtest within the SBI 
verification test. 

MBA Interrupt Servicing Interrupts generated by the Massbus 
adapter are serviced by this routine. 

Th i s rout i n e com pa res the status reg i st e r w i th an a r g um en t 
supplied in the SOB. 

If there are any differences, the SOB + 2 will be set to indicate 
error and the error information will be put into the appropriate 
slots in the Master Control Space (MCS). 

6.3.3.4 SBI Interaction Subtest -- After the UBAs are set up for 
wraparound operation, the following data transfer types are 
initiated. 

1. read word 
2. write byte 
3. write word 
4. modify byte 
5. modify word 

6.3.3.5 UBE Checkout Subtest This subtest determines the 
number and location of Unibus exercisers for each Unibus adapter 
and checks each as it is found. If no faults are detected, the UBE 
is entered in the HIRT and the qualify bit will be set. 

Only qualified UBAs are used during this subtest. If none exists, 
the subtest will be skipped. 

UBAs are set up with two map registers pointing to SBI memory 
space. One map uses the Direct Data Path (DP0) and the other uses 
buffered Data Path One (DPl). All interrupts are enabled. 

Autosizing is used to determine the location of a Unibus 
exerciser. 

6-36 



Each exerciser is checked for the following two capabilities: 

1. ability to execute DATO, DATI functions, 

2. ability to interrupt at BR levels 4 through 7 following a 
function. 

If any of the above conditions is not met, the UBE is not entered 
in the HIRT. 

UBE Interrupt Servicing -- The contents of the BRRVR and UBA base 
address are passed into the test from the master except ion and 
interrupt handler. In addition, the routine performs the following 
four functions. 

1. If bit 31 is set in the BRRVR value read, then call the 
UBA service routine. 

2. Derive the UBE address from the vector supplied in the 
low word of the BRRVR value. 

3. Examine bit 15 (error bit) of CRl. If the bit is set, 
push the error type information and contents of the 
control registers, CRl and CR2, on the error stack and 
set the error flag. Clear the error bit. 

4. Return. 

6.3.3.6 MBE Checkout Subtest -- This subtest determines if an MBE 
is present for each MBA that has been previously qualified. 

Each exerciser will be checked for the following: 

1. read transfers 
2. write transfers. 

Additionally, the MBA is checked for whether 

1. Attention can be set which causes an interrupt. 
2. Massbus exception can be set which causes an interrupt. 

If any of the above conditions is not met, the MBE is not entered 
in the HIRT. 

6-37 



Typical Error Messages for the SBI Verification Module: 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 3 SUBTEST 2 ERROR 10 19-JUN-1977 21:53:25.06 

HARD ERROR WHILE TESTING UBA: INVALIDATED MAP REGISTER ACCESS 

ERROR: DESTINATION OVERWRITTEN 

ADD ACCESS NEXUS ADD MR ADD 

201009F8 60006000 60006810 

FUNC 

WRITE 

EXP DATA 

25255252 

Example 6-28 ESKAX Test 3, Subtest 2, Error 10 

9.0 ******** 

ACT DATA 

24255252 

******** CPU CLUSTER EXERCISER 

PASS 1 TEST 3 SUBTEST 3 ERROR 4 19-JUN-1977 21:57:03.12 

HARD ERROR WHILE TESTING MBA0: MBA WRITE 

ERROR: RESULT 

ADD ACCESS 

6001040 

NEXUS ADD 

60010000 

EXP DATA 

00002000 

ACT DATA 

00002400 

Example 6-29 ESKAX Test 3, Subtest 3, Error 4 

******** CPU CLUSTER EXERCISER 

PASS 1 TEST 3 SUBTEST 3 ERROR 4 

9.0 ******** 

19-JUN-1977 21:57:13.07 

HARD ERROR WHILE TESTING MBAl: MBA WRITE 

ERROR: RESULT 

ADD ACCESS NEXUS ADD 

60012400 60012000 

EXP DATA 

00002000 

ACT DATA 

00003000 

Example 6-30 ESKAX Test 3, Subtest ·3, Error 4 

6-38 



Interpretation of Example 6-28 
These printouts are typical of ESKAX Test 2, where: 

1. The nexus address is 6"00600 0. A nexus is defined as a 
physical connection to the SBI. In this case the nexus is 
the UBA. 

2. Since the SBI deals in 30-bi t addresses, 18-bi t Unibus 
addresses must be translated to 30-bi t SBI addresses. 
This function is performed by the Unibus adapter through 
one of the 496 UBA memory map registers, as shown in 
Table 6-11. 

Table 6-11 Unibus Adapter Map Register Address Offsets 

Unibus Memory Page 

0 
1 
2 
3 
4 

495 

Off set from the 
UBA Base Address 

800 
80 4 
808 
80C 
810 

FBC 
FC0 

FFC 
Reserved 

In the example given, the MR ADDRESS is 60006810. The underlined 
portion of the address (using Table 6-11) tells us that we are 
working with the map register for Unibus memory, page 4. 

One Unibus memory page equals 512 bytes. 

3. The function performed was a write. 

4. Each UBA has an associated Unibus address space with a 
physical starting address as follows: 

UBA Number 

0 
1 
2 
3 

Physical Starting Address 

20100000 
20140000 
20180000 
201C0000 

From Example 6-28 the ADDRESS ACCESSED is 201009F8, indicating 
UBA 0 under test. 

5. EXPECTED and ACTUAL DATA are self-explanatory. 

6.3.3.7 Memory Verify (ESKAX96_TEST94) -- Not yet implemented. 

6-39 



6.4 ESKAY 

6.4.1 Interval Timer and Day Clock Verification Module 
(ESKAY02 TEST01) 
This module tests the interval timer and the day clock. The 
inte·rval timer is used extensively throughout the cluster 
exerciser package during interactive operation. 

6.4.1.1 Interval Timer Functions 

Subtest 1 The interrupt enable bit in the control status 
register can be set and cleared. 

Typical Error Message 
....:... 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 1 ERROR 2 18-JUN-1977 06:38:05.10 

HARD ERROR WHILE TESTING CPU: INTERRUPT ENABLE BIT CAN'T BE 
CLEARED 

Example 6-31 ESKAY Test 1, Subtest 1, Error 2 

Subtest 2 -- This subtest checks that the transfer bit (bit 04) in 
the control status register can be set, thus activiating a 
transfer of the contents of the next interval register to the 
current interval register. 

A check that the transfer bit is read as 0 is also performed. 

Typical Error Messages 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 2 ERROR 1 18-JUN-1977 6:39:58.61 

HARD ERROR WHILE TESTING CPU: XFER BIT STUCK AT 1 

Example 6-32 ESKAY Test 1, Subtest 2, Error 1 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 2 ERROR 2 18-JUN-1977 06:39:58.61 

HARD ERROR WHILE TESTING CPU: XFER FROM NEXT INTERVAL TO INTERVAL 
COUNT INCORRECT 

Example 6-33 ESKAY Test 1, Subtest 2, Error 2 

6-40 



Subtest 3 -- The single clock bit {bit 5) in the control status 
register can be set, thus causing the current interval register to 
advance by one. 

The test also checks that the single clock bit is read as zero. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 3 ERROR 2 18-JUN-1977 06:43:14.82 

HARD ERROR WHILE TESTING CPU: SINGLE CLOCK BIT NOT FUNCTIONING 
PROPERLY 

Example 6-34 ESKAY Test 1, Subtest 3, Error 2 

Subtest 4 -- This test floats a one through a field of zeros in 
the current interval register. The medium of transfer is the 
read/write unit comprised of the current interval register and the 
next interval register, respectively. Since the next interval 
register is write-only, only the current interval register is 
checked at the end of the transfer. If a failure is detected in 
the current interval register, it is possible that the failure 
originated in the next interval register. 

Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 4 ERROR 1 18-JUN-1977 06:44:31.89 

HARD ERROR WHILE TESTING CPU: ADJACENT PIN STICKING IN INTERVAL 
COUNT REGISTER 

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE 

00000004 00000006 00000004 

Example 6-35 ESKAY Test 1, Subtest 4, Error 1 

Interpretation 

1. The ENTRY VALUE of 00000004 represents the value loaded 
into the next interval register {hex 19). 

2. The EXPECTED RESULT of 00000004 represents what the 
content of the current interval register {hex lA) should 
be after the transfer is complete. 

3. The RECEIVED RESULT is self-explanatory. 

6-41 



Subtest 5 -- This subtest checks the carry bi ts of the current 
interval register. This is accomplished by preloading the next 
interval register with the value to force the carry, transferring 
this to the next interval register, and then single-clocking to 
force the carry expected. 

Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 5 ERROR 1 18-JUN-1977 06:45:50.65 

HARD ERROR WHILE TESTING CPU: INTERVAL TIMER COUNTING NOT 
PROCEEDING PROPERLY 

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE 

00000002 00000001 00000001 

Example 6-36 ESKAY Test 1, Subtest 5, Error 1 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 5 ERROR 1 18-JUN-1977 06:45:50.65 

HARD ERROR WHILE TESTING CPU: INTERVAL TIMER COUNTING NOT 
PROCEEDING PROPERLY 

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE 

00000004 00000003 00000003 

Example 6-37 ESKAY Test 1, Subtest 5, Error 1 

Interpretation of Example 6-36 

1. The ENTRY VALUE of 00000001 represents the value loaded 
into the next interval register (hex 19). 

2. The EXPECTED RESULT of 00000002 represents what the 
content of the current interval register (hex lA) should 
be after the transfer is complete and the single clock 
bit has been ticked once. 

3. The RECEIVED RESULT is self-explanatory. 

6-42 



Subtest 6 -- This subtest checks that the error bit in the control 
status register will set in the case of a current interval 
register overflow occurrence before a previous interrupt has been 
serviced. 

The error messages are self-explanatory. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 6 ERROR 1 18-JUN-1977 06:53:13.11 

HARD ERROR WHILE TESTING CPU: INTERRUPT REQUEST NOT SET ON 
OVERFLOW 

Example 6-38 ESKAY Test 1, Subtest 6, Error 1 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 6 ERROR 2 18-JUN-1977 06:53:13.11 

HARD ERROR WHILE TESTING CPU: ERR NOT SET FROM UNSERVICED OVERFLOW 

Example 6-39 ESKAY Test 1, Subtest 6, Error 2 

Subtest 7 -- This subtest checks the run bit of the control status 
register with the interrupt enable bit not set (i.e., a check of 
no interrupt capability). 

Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 7 ERROR 3 18-JUN-1977 06:53:13.11 

HARD ERROR WHILE TESTING CPU: ERR BIT SET -- SHOULD NOT BE 

Example 6-40 ESKAY Test 1, Subtest 7, Error 3 

Subtest 8 -- This subtest checks the run bit of the control status 
register with the interrupt enable bit set, a check of interrupt 
capability. A check is also made to verify that the interrupt is 
enabled at IPL 24 (hex 18). 

~43 



Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 8 ERROR 2 18-JUN-1977 06:55:56.48 

HARD ERROR WHILE TESTING CPU: INTERRUPT OCCURRED AT OTHER THAN IPL 
24 

IPL WAS 18 

Example 6-41 ESKAY Test 1, Subtest 8, Error 2 

Interpretation of Example 6-41 

1. The IPL WAS would indicate at what IPL level the 
interrupt did occur (if other than IPL 24). 

6.4.1.2 Day Clock Function 
Subtest 9 -- This subtest checks the ability of the time of day 
register to advance from a known state, given 20 ms to do so. 

Typical Error Message 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 1 SUBTEST 9 ERROR 1 18-JUN-1977 06:58:26.79 

HARD ERROR WHILE TESTING CPU: TIME OF DAY CLOCK NOT INCREMENTING 

Example 6-42 ESKAY Test 1, Subtest 9, Error 1 

Subtest 10 -- This subtest checks the ability of the time of day 
register to accept a back-to-back loading of two different and 
unique values. 

Typical Error Message 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 1 SUBTEST 10 ERROR 2 18-JUN-1977 06:59:43.78 

HARD ERROR WHILE TESTING CPU: DOUBLE LOADING OF TIME OF DAY NOT 
CORRECT 

EXPECTED RESULT RECEIVED RESULT !ST LOAD 2ND LOAD 

AAAAAAAC AAAAAAAA 55555555 AAAAAAAA 

Example 6-43 ESKAY Test 1, Subtest 10, Error 2 

6-44 



Subtest 11 -- This subtest checks for any stuck-at-zero bits in 
the time of day register. 

Typical Error Message 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 1 SUBTEST 11 ERROR 1 18-JUN-1977 07:00:30.34 

HARD ERROR WHILE TESTING CPU: ADJACENT PIN STICKING IN TIME OF DAY 
REGISTER 

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE 

FFFFFFFE FFFFFFFF FFFFFFFD 

Example 6-44 ESKAY Test 1, Subtest 11, Error 1 

Subtest 12 -- This subtest checks the Carry bits of the time of 
day register. This is accomplished by preloading the time of day 
register with the value to force the Carry, and then expecting a 
Carry bit in approximately 14--15 ms. 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 1 SUBTEST 12 ERROR 2 18-JUN-1977 07:05:02.22 

HARD ERROR WHILE TESTING CPU: TIME OF DAY COUNTING NOT PROCEEDING 
PROPERLY 

EXPECTED RESULT RECEIVED RESULT ENTRY VALUE 

00000002 00000001 00000001 

Example 6-45 ESKAY Test 1, Subtest 12, Error 2 

Interpretation of Example 6-45 

1. The ENTRY VALUE of 00000001 is what is initially loaded 
into the time of day register. 

2. The EXPECTED RESULT of 00000002 is the final value 
expected to be in the time of day register approximately 
14 ms after the initial load. 

3. The RECEIVED RESULT is self-explanatory. 

In addition, the test checks for stuck-at-zero bits in the time of 
day register. 

6-45 



6.4.2 Arithmetic, Logic, and Field Instruction Test Module 
(ESKAY03, Test 02) 
This module tests the integer arithmetic, logical, and field 
instruction microcode and associated hardware. CITS performs all 
of the functional control, building expected data patterns, 
executing the instructions to be tested, and checking the results. 

The following two printouts are typical of error reports coming 
from this test. 

a. One shows a result PSL error. 
b. The second shows incorrect operand result contents. 

******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 1 6-AUG-1978 11:34:41.92 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 1 

? RESULT PSL ERROR 

EXPECTED ACTUAL 

000000E5 000000El 

INITIAL CONDITIONS: 

PC 00004958 PSL 000000EF 

OP CODE -- 90 WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6: 

R0 

R3 

0000AE04 

00000000 

R6 00000000 

Rl 

R4 

SOURCE OPERAND DATA: 

OPERAND 1 

05 

0000AE0D R2 

RS 

Example 6-46 ESKAY Test 2, Subtest 2, Error 1 

6-46 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 1 ERROR 31 6-AUG-1978 11:35:27.25 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 31 

? INCORRECT RESULT, OPERAND 2 

EXPECTED ACTUAL 

00004300 00004304 

INITIAL CONDITIONS: 

PC 000046FA PSL 000000EF 

OP CODE -- 6C WITH REGISTER INDIRECT OPERANDS 

INITIAL CONDITIONS: 

R0 0000AE04 Rl 

R3 00000000 R4 

R6 00000000 

SOURCE OPERAND DATA: 

OPERAND 1 

21 

0000AE0D 

00000000 

R2 

RS 

Example 6-47 ESKAY Test 2, Subtest 1, Error 31 

6-47 



Interpretation of Example 6-47 

1. The op code 6C defines the instruction under test as 
CVTBD (you can know this by simply looking up the given 
op code on a coding card). 

2. The general format of this instruction (again from 
looking at the code card) is as follows: 

3. 

op code scr.rx, dst.wy 

The statement WITH REGISTER INDIRECT OPERANDS indicates 
that the form of the instruction being tested is CVTBD 
(R0), (Rl). 

NOTE 
All instruction testing is set up so 
that the first operand always uses RI, 
second operand always uses Rl, third 
operand always uses R2, etc. 

Th e i n i t i a 1 con d i t i on s 
self-explanatory. 

PC and PSL should be 

4. The TEST CASE NUMBER of 31 shows nothing more than how 
far into the current test table we are, i.e., 30 
instruction types were tested up to this point with no 
errors. 

For all intents and purposes, you can ignore this number. 

5. The error indication of INCORRECT RESULT, OPERAND 2 
states that the final contents of the destination operand 
were wrong. OPERAND 2 is shown above as (Rl). 

6. The SOURCE OPERAND DATA of 21 is self-explanatory. 

7. The INITIAL REGISTERS R0--R6 specify the addresses in 
memory in use for the instruction. In this case, CVTBC 
(AE04) , (AE0D). 

NOTE 
R2 through R6 contain es since the CVTBD 
instruction uses only two operands. 

8. Finally, the EXPECTED value of 4300 and the ACTUAL value 
of 4304. 

If you examine the content of AE0D (/W) it should contain 
4304. 

Example 6-48 is another form of printout similar to the preceding 
two examples with a twist. An unexpected exception occurred during 
the testing of an instruction. 

6-48 



******** CPU CLUSTER EXERCISER 9.0 ******** 

PASS 1 TEST 2 SUBTEST 3 ERROR 1 6-AUG-1978 11:34:42.57 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 1 

UNEXPECTED EXCEPTION 

ERROR# 00000001 

VECTOR# 00000034 

SUBTYPE# 00000001 

PSL 000000EB 

PC 00004933 

INITIAL CONDITIONS: 

PC 00004930 PSL 000000E0 

OP CODE -- SE WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6: 

R0 0000AE04 Rl 0000AE0D 

R3 00000000 R4 00000000 

R6 00000000 

SOURCE OPERAND DATA: 

OPERAND 1 

80 

R2 

RS 

00000000 

00000000 

Example 6-48 ESKAY Test 2, Subtest 3, Error 1 

6-49 



Interpretation of Example 6-48 

1. The unexpected exception occurred through VECTOR 34 
(Paragraph 2. 7 of the KA780 Central Processor Technical 
Description 1 is ts VECTOR 34 as the ARITHMETIC TRAP 
vector) • 

2. The SUBTYPE of 1 informs you that 
INTEGER OVERFLOW (Paragraph 2.7 of 
Processor Technical Description) • 

the condition was 
the KA780 Central 

3. The PC of 4933 and PSL of EB are those existing at the 
time of the exception occurrence. 

4. The ERROR 1 is nothing more than a repetition of the 
ERROR 1 printout of the header report. 

5. The rest of the printout is as outlined for the two 
printouts preceding (i.e., the same breakdown applies). 

6.4.3 Branch, CRC, and Queue Test Module (ESKAY04, Test 13) 
Not yet implemented. 

6.4.4 Floating-Point Instructions Test Module (ESKAYIS, Test 4; 
ESKAY06, Test 5) 
Tests 4 and 5 check both the basic floating-point instructions and 
the accelerated floating-point instructions. Arithmetic and 
reserved operand exceptions pertaining to floating-point 
instructions are also tested. Since the FPA takes part in the 
execution of MULL2 and MULL3, the tests also check. these 
instructions. The floating-point accelerator is turned off for 
test 4 and on for test 5. 

6-50 



Typical Error Messages for Test 4 

******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 4 SUBTEST 1 ERROR 2 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 2 

? RESULT PSL ERROR 

EXPECTED ACTUAL 

001F00E3 001F00El 

INITIAL CONDITIONS: 

PC 00004420 PSL 001F00EF 

OP CODE -- 4F WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6: 

R0 0000AC04 Rl 0000AC10 

R3 00000000 R4 00000000 

R6 00000000 

SOURCE OPERAND DATA: 

OPERAND 1 

00004080 

OPERAND 2 

00004080 

OPERAND 3 

00000000 

R2 

RS 

00ctrnAClC 

00000000 

Example 6-49 ESKAY Test 4, Subtest 1, Error 2 

6-51 



******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 4 SUBTEST 1 ERROR 7 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 7 

? RESULT PSL ERROR 

EXPECTED ACTUAL 

001F00E5 001F00E4 

INITIAL CONDITIONS: 

PC 00004695 PSL 001F00EB 

OP CODE -- 71 WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6: 

R0 0000AC04 Rl 0000AC14 

R3 00000000 R4 00000000 

R6 00000000 

SOURCE OPERAND DATA: 

OPERAND 1 

00004080 

00000000 

OPERAND 2 

00004080 

00000000 

R2 

RS 

00000000 

00000000 

Example 6-50 ESKAY Test 4, Subtest 1, Error 7 

6-52 



******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 4 SUBTEST 1 ERROR 24 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 24 

? RESULT PSL ERROR 

EXPECTED ACTUAL 

001F00E8 001F00E0 

INITIAL CONDITIONS: 

PC 00004873 PSL 001F00EF 

OP CODE -- WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6 

R0 0000AC04 Rl 0000AC14 

R3 0000AC2D R4 0000AC39 

R6 00000000 

SOURCE OPERAND DATA: 

OPERAND 1 

FFFE4FFF 

FFFFFFFF 

OPERAND 2 

FF 

OPERAND 3 

00004080 

00000000 

R2 

RS 

0000AC1D 

00000000 

Ex.ample 6-51 ESKAY Test 4, Subtest 1, Error 24 

6-53 



A lengthy detailed description of this type of error report has 
been supplied in Paragraph 6.4.2. Using that description as a 
reference, interpretations of the preceding three error reports 
follow. 

Interpretation of Example 6-49 

The instruction being tested is 

ACBF (R0), (Rl), (R2), displacement 

BREAKING DOWN FURTHER--
ACBF (AC04), (AC10), (AClC), displacement 

BREAKING DCMN FURTHER--
ACBF 4f80, 4i80, 0, displacement 

limit addend index 

Interpretation of Example 6-50 

The instruction being tested is 

CMPD (R0) , (Rl) 

BREAKING DOWN FURTHER-­
CMPD (AC04, (AC14) 

BREAKING DOWN FURTHER-­
CMPD 4080, 4080 . ' . . source dest1nat1on 

Interpretation of Example 6-51 

Going through a similar analysis 

EMODD (R0), (Rl), (R2), integer, fraction 

EMO DD FFFE4FFF 

FFFFFFFF FF 00000000, integer, fraction 

fltating~ ~ multtplicand 
point multiplier l 

floating-point 
multiplier extension 

6-54 



Typical Error Messages for Test 5 

******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 5 SUBTEST 2 ERROR 7 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 7 

? INCORRECT TRACE TRAP PSL 

EXPECTED 

001F00F5 

ACTUAL 

001F00F4 

INITIAL CONDITIONS: 

PC 00004695 PSL 001F00FB 

OP CODE -- 71 WITH REGISTER INDIRECT OPERANDS 

INI~IAL REGISTERS R0--R6: 

R0 0000AC04 Rl 0000AC14 

R3 

R6 

00000000 

00000000 

R4 

SOURCE OPERAND DATA: 

OPERAND 1 

00004080 

00000000 

OPERAND 2 

00004080 

00000000 

R2 

RS 

00000000 

Example 4-52 ESKAY Test S, Subtest 2, Error 7 

6-55 



******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 5 SUBTEST 8 ERROR 100 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: FLOATING NORMALIZE SUBTEST 

? ERROR IN TEST CASE NUMBER: 113 

EXPECTED ACTUAL 

FFF849FF 00003F80 

TEST AT PC: 00009A87 ADDF3 R0, R2, R4 

R0 00004080 

R2 0000C040 

Example 6-53 ESKAY Test 5, Subtest 8, Error 100 

******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 5 SUBTEST 8 ERROR 101 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: FLOATING NORMALIZE SUBTEST 

? ERROR IN TEST CASE NUMBER: 161 

EXPECTED 

00004040 

00000000 

ACTUAL 

00004000 

00000000 

TEST AT PC: 00009Bll ADD3 R0, R2, R4 

Rl 0000C000 

R2 FFFF4D7F 

R3 0000E000 

Example 6-54 ESKAY Test 5, Subtest ·8, Error 101 

6-56 



The interpretation of Example 6-52 is similar to that already 
given for Example 6-47. 

Examples 6-53 and 6-54 are for the FLOATING NORMALIZE SUBTEST and 
differ from the standard CITS printouts as follows: 

1. Both printouts give the instructions under test and their 
operands, i.e., 

ADDF3 R0, R2, R4 
ADD3 R0, R2, R4 

2. The operand data is listed directly under the TEST AT PC 
statements. 

3. The EXPECTED and ACTUAL data in both cases reference the 
contents of R4 (R4, by definition, specifies the 
destination operand) • 

6.4.5 Operand Specifier Dependent Floating-Point Test (ESKAYl7, 
Test 6) 
Not yet implemented. 

6.4.6 Decimal Strings Module (ESKAX08, Test 7) 
This module tests the microcode and hardware used for decimal 
string execution. 

Interpretation of Example 6-55 
The error printouts coming from this test are designed like those 
of test 5. An overall interpretation has already been described in 
the test 2 writeup. 

Analysis should show the instruction under test to be 

ADDP6 (R0) , (Rl) , (R2) , (R3) , (R4) , (RS) 

l 
~ 

1 ' 1 
~ 

addladdr add2addr sumaddr 

addllen add2len sumlen 

with ADDRESSES REFERENCED shown under INITIAL REGISTERS R0--R6 and 
OPERAND DATA as indicated. 

6.4.7 EDITPC Operators Module (ESKAYl9, Test 8) 
This module tests the EDITPC microcode and associated hardware. 

6-57 



Typical Error Message 

******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 7 SUBTEST 2 ERROR 26 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 26 

? INCORRECT TRACE TRAP PSL 

EXPECTED 

001F00F8 

ACTUAL 

001F00F0 

INITIAL CONDITIONS: 

PC 00004585 PSL 001F00FF 

OP CODE -- 21 WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6 

R0 

R3 

0000AC04 

0000AC25 

R6 00000000 

SOURCE OPERAND 

OPERAND 1 

0009 

OPERAND 2 

12, 34, 56, 78, 

OPERAND 3 

000E 

OPERAND 4 

00' 00' 00, 77, 

OPERAND 5 

001F 

Rl 

R4 

DATA: 

9C 

77, 

0000AC0E 

0000AC35 

77, 77, 7E 

R2 

RS 

0000AC1B 

0000AC3F 

Example 6-55 ESKAY Test 7, Subtest 2, Error 26 

6-58 



Typical Error Message 

******** CPU CLUSTER EXERCISER (ZZ-ESKAY) -- 9.0 ******** 

PASS 1 TEST 8 SUBTEST 1 ERROR 48 20-FEB-1978 11:26:00.00 

HARD ERROR WHILE TESTING CPU: INSTRUCTION TEST ERROR 

? ERROR IN TEST CASE NUMBER: 48 

? RESULT PSL ERROR 

EXPECTED 

001F00E5 

ACTUAL 

001F00E4 

INITIAL CONDITIONS: 

PC 0000485A PSL 001F00EB 

OP CODE -- 38 WITH REGISTER INDIRECT OPERANDS 

INITIAL REGISTERS R0--R6: 

R0 

R3 

0000AC04 

0000AC2F 

SOURCE OPERAND 

OPERAND 1 

0000F 

OPERAND 2 

00, 00, 00, 00, 

OPERAND 3 

40, 40, 43, 25, 

Rl 

R4 

DATA: 

00, 

04, 

0000AC0E 

00000000 

00, 00, 00 

9F, 46, 10, 

R2 

RS 

00 

0000AC1E 

00000000 

Example 6-56 ESKAY Test 8, Subtest 1, Error 48 

6-59 



Interpretation of Example 6-56 
The error printouts coming from this test are designed like those 
described in Paragraph 6.4.2. 

Therefore, analysis should show the instruction under test to be 

EDITPC· (R0) , (Rl) , (R2) , (Rr 
' srclen 1 

srcaddr 

i 
pattern 

dstaddr 

with ADDRESSES REFERENCED shown under INITIAL REGISTERS R0--R6 and 
OPERAND· DATA as indicated. 

6.4.8 Character String Instructions Test Module (ESKAYle, Test 
9) 
Not yet implemented. 

6.4.9 Privileged Instruction Exception Test (ESKAYll, Test 10) 
Not yet implemented. 

6.5 ESKAZ DESCRIPTION 

6.5.1 Memory Management Test Module (ESKAZ03, Test 1) 
The object of this test is to test memory management on a 
VAX-11/780 CPU. Memory management is that part of the CPU which 
checks protection on memory references, performs virtual to 
physical address translation, monitors updates to pages of memory 
(with the modify bit of the page table entry), and resolves 
unaligned data references. These functions are tested by making 
many different kinds of references to see that they work. Working 
is defined as: reading or writing the correct data, leaving the 
contents of adjacent addresses unaffected, setting the M bit on 
the first write to a page, and faulting if required. Upon 
detecting a failure, the test issues an error report containing 
the failure symptom (e.g., unexpected fault, wrong condition 
codes) and the circumstances surrounding the failure (instru_ction 
and address under test, expected and received data, etc.). 

The test is organized in six subsections, each testing some area 
of memory management functionality. 

1. Valid read and write -- The intent is to quickly verify 
that the basic functions work. Longword aligned reads and 
writes are performed to each address space (P0, Pl, and 
System). This process performs initial checks of reading 
and writing, physical address translation in each address 
space, translation buffer loading, and setting of the 
modify bit. 

6-60 



2. Length register boundary checks - References are made 
just before and just beyond each of the length boundaries 
to verify the length boundary checks. 

3. Page Table Entry {PTE) combinations -- This subsection 
changes privilege modes to kernel, exec, super, and user. 
It makes references to pages mapped with each access 
code, and with the PTEs both valid and invalid, to verify 
the access privilege checks. 

4. Size with PTE combinations -- The 
varied from byte to quadword 
combinations. 

size 
and 

of the 
tried 

access is 
with PTE 

5. Page boundary checks -- The size of the access and the 
position of the access with respect to a page boundary 
are varied. 

6. IB references with PTE combinations -- This subsection 
attempts to make instruction buffer references while 
varying the protection of the referenced page. 

6-61 



6.5.1.1 Memory Management Test General Flow 
Initialization -- Three buffer a re as are requested 
supervisor, one each from P0, Pl, and system spaces. 
block (BVAS) is loaded with their addresses, and 
addresses of three other buffer areas, which are on the 
in each space. 

from the 
A control 
with the 
last page 

Execution of Subsections A loop selects and executes each of 
the subsections, as follows. 

1. Select an sec -- The entry in the subsection description 
table associated with the current subsection is selected. 
It includes a pointer to a Setup Command Chain (SCC). 
There is an sec for each subsection. The execution 
section includes six nested loops, varying access size, 
address space, and operand alignment. The sec contains 
start and end limits for these loops. For instance, the 
sec for the fourth loop, page boundary checks, specifies 
varying access size from byte to quadword, varying the 
off set from a page boundary from 8 bytes before through 1 
byte after the page boundary, and varying address space 
from P0 to system. 

2. Create defaults Defaults are provided for any 
variables not specified in the sec. 

3. Execute subsection -- A procedure is called that will 
make test references, varying each reference variable 
specified in the sec across the range. 

Clean up -- At the end of the test, all buffers are returned and 
control returns to the dispatch routine in the supervisor. 

6.5.1.2 Memory Management Test, Subsection Flow 
Loop start -- All reference parameters that will vary are loaded 
with initial values specified in the sec. 

Execute -- The test reference described by the current state of 
all the reference variables is made. 

Increment -- The next value of the most rapidly varying parameter 
is loaded. If its range has been covered, it is set to its initial 
value -and the next variable is changed. 

Loop -- If the slowest varying reference parameter has completed 
its range, the subsection is complete. Otherwise, the next 
reference is made. 

6.5.1.3 Test Reference Execution 
Initialize -- The control blocks for this section (MRDB and TCB) 
are set up. 

Decode A CITS (CITS_DECODE) is called to decode the test 
instruction. 

6-62 



Simulate -- The test reference is simulated, and the expected 
results are loaded into the MRDB. 

Setup -- Another CITS routine (CITS SETUP) is called to initialize 
the data areas, general register, and stack for the test 
instruction. 

Map -- The address of the test reference is mapped according to 
the variables controlling page validity and accessibility. 

Probe -- A probe is made to the test address in order to verify 
the mapping, and the results are compared with the simulated 
results. 

Execute -- The test reference is made. 

Remap -- The test address mapping is reset to allow all access, 
and the result maps are copied and checked. 

Data Check -- CITS CHECK is called to check the results of the 
test instruction. 

Loop -- The flow from setup is repeated for various translation 
buffer states. 

Return. 

6-63 



Typical Error Messages 

******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 1 SUBTEST 1 ERROR 20212 28-MAY-1978 08:31:01.89 

HARD ERROR WHILE TESTING CPU: LENGTH REGISTER BOUNDARY 

ERROR OCCURRED DURING: ACCESS OR ACCESS CHECK 

ERROR: PAGE TABLE ENTRY WAS MODIFIED 

TESTED PSL MODE ACCESS ACCESS 

ADDRESS PRV CUR TYPE SIZE 

80001FF8 K K R L 

PTE PTE PROTEC- V-BIT M-BIT ACCESS ALLOWED 
TION 

ADDRESS VALUE CODE STATE STATE K E s u 

SPTEl: 0001F43C 00000098 0003 VAL CLR R NO NO NO 

SYS BASE SYS LENGTH 

REG REG 

0001F400 00000022 

EXP DATA ACT DATA PTE MODIFIED 

00000098 00000098 SPTEl: 

Example 6-57 ESKAZ Test 1, Subtest 1, Error 20212 

6-64 



******** CPU CLUSTER EXERCISER -- 9.0 ******** 

PASS 1 TEST 1 SUBTEST 1 ERROR 20213. 28-MAY-1978 08:50:58.91 

HARD ERROR WHILE TESTING CPU: LENGTH REGISTER BOUNDARY 

ERROR OCCURRED DURING: ACCESS OR ACCESS CHECK 

ERROR: MODIFY BIT ERROR 

TESTED PSL MODE ACCESS ACCESS TESTED OPERAND 

ADDRESS PRV CUR TYPE SIZE INSTR NO. 

6013001F8 K K w L MOV 02 

PTE PTE PROTEC- V-BIT M-BIT ACCESS ALLOWED 
TION 

ADDRESS VALUE CODE STATE STATE K E 

SPTEl: 0001F480 000000g4 0002 VAL SET RW NO 

T-BUFF 

STATE 

MISS 

PPTEl: 0001F200 00000094 0002 VAL SET RW NO 

HIT 

SYS BASE 

REG 

0001F400 

Pl BASE 

REG 

7FC01A00 

EXPECTED 

STATE 

SET 

SYS LENGTH 

REG 

00000022 

Pl LENGTH 

REG 

0010000F 

PTE 

SPTEl: 

Example 6-58 ESKAZ Test 1, Subtest 1, Error 20213 

6-65 

s u 

NO NO 

NO NO 



Interpretation of Example 6-57 

1. First, a discussion of ERROR 20212 

All error numbers consist of 3 bytes with a breakdown as 
follows: 

a. The left byte ( 2) defines the location within the 
test where the error was encountered 

where, 

0 = Subtest 

1--6 = Subsection defined prior to the preceding 
examples (Paragraph 6.5.1). 

b. The middle byte (02) indicates the action being taken 
by the test at the time of error 

where, 

0 = SETUP 
1 = PROBE/PROBE CHECK 
2 = ACCESS/ACCESS CHECK 
3 = ACCESS DATA CHECK 
4 = FINAI:. SETUP 

c. The right byte (12) is indicative of the error itself 
(it is used by the test software to determine what 
gets printed at error report time). 

So, the ERROR number tells us that we were in the LENGTH 
REGISTER BOUNDARY subsection (2) performing an ACCESS/ACCESS 
CHECK (02), when we got a message saying PAGE TABLE ENTRY WAS 
MODIFIED (12). 

2. The ADDRESS UNDER TEST was 80001FF8. 

3. The PREVIOUS and CURRENT MODES in the PSL at the test 
time are shown as K K 

where, 

K = Kernel 
E = Executive 
S = Supervisor 
U = User 

6-66 



4. The ACCESS occurring at the time of the error is shown as 
R 

where, 

R = Read 
W =Write 
M = Modify 

5. The SIZE of the access is shown as L 

where, 

L 
B 
w 
Q 

= 
= 
= 
= 

Longword 
Byte 
Word 
Quadword 

6. A discussion of the line labeled SPTEl follows. 

In the given example we have only one line of 
information, but depending on the set of circumstances 
there can be more than one line (as shown in Example 
6-58) • 

The lines and combinations that can appear are as 
follows: 

SPTEl: Page 1 system page table 
SPTE2: Page 2 system page table 
PPTEl: Page 1 processor page table 
PPTE2: Page 2 processor page table 

where, 

Page 1 = page number of the address of the lowest byte of 
the reference address as determined by either the Base 
Virtual Address (BVA) or, if the position is negative, by 
the BVA + position. 

Page 2 = the next page. 

NOTE 
A reference may be either entirely 
within PAGE 1 or PAGE 2, or it may cross 
over. 

In our example, the PAGE 1 system page table is being 
ACCESSED. 

6-67 



7. The PHYSICAL ADDRESS of the PTE is 1F43C. 

NOTE 
The PTE is the medium of translation of 
all virtual addresses to physical 
addresses. 

8. The PTE VALUE represents the contents of the PTE or 98. 

The PTE content comprises 4 fields. 

a. Page Frame Number (PFN) -- Bits <20:00> 

This is the upper 21 bits of the physical address of 
the base of the page. 

b. Modify bit Bit <26> 

c. Protection Bits <30:27> 

d. valid -- Bit <31> 

9. The PROTECTION CODE for the page accessed was 3. 

10. Chapter 5 of the VAX-11 System Reference Manual gives an 
analysis of a protection code meaning. 

To ease the strain of searching through the VAX-11 System 
Reference Manual, the protection code breakdown is shown 
under ACCESS ALLOWED as R, NO, NO, NO. 

This states that the page being accessed can be READ in 
kernel mode, and cannot be accessed in any other mode. 

NOTE 
A W under this column would indicate 
that the page can be written in a given 
mode. 

11. The state of the valid bit (V-BIT) is VAL 

where, 

VAX = 1 (valid) 
INV = 0 (invalid) 

12. The state of the modify bit (M-BIT) is CLR 

where, 

CLR = 0 (no modify) 
SET = 1 (modify) 

6~68 



13. The content of the SYSTEM BASE REGISTER was 1F400 and the 
content of the SYSTEM LENGTH REGISTER was 22. 

These 13 items represent the SETUP portion of the error 
report (i.e., what were all the initial conditions, or 
states, at the time of the error). 

The SYS BASE REG and SYS LGTH REG printouts always occur 
as parts of the SETUP. As a function of the TESTED 
ADDRESS value, one or two other printouts will occur 
additionally as follows: 

a. If bit 31 is clear and bit 30 is set, the message 
includes 

Pl BASE Pl LENGTH 

REG REG 

b. If bit 31 is clear and bit 30 is clear, the message 
includes 

P0 BASE P0 LENGTH 

REG REG 

14. The ERROR portion of the printout shows further proof of 
the ERROR: PAGE TABLE ENTRY WAS MODIFIED statement by 
showing the EXPECTED and ACTUAL DATA and the PTE 
MODIFIED. 

Example 6-58 is similar to Example 6-57 except that it shows 
additional information which reflects circumstances at the time of 
the error. 

The new items in Example 6-58 are: 

a. TESTED INSTR is a MOV 
b. The OPERAND NO. in question is 02 (i.e., the DST). 
c. The translation buffer state (TB-STATE) is listed 

where, 

HIT = 1 
MISS = 0. 

6-69 



6.6 COMPATIBILITY MODE INSTRUCTION TEST (ESKAZ93, TEST 2) 

6.6.1 Instructions Tested 
Most of the instructions provided by the compatibility mode 
hardware are exercised using various data patterns and address 
modes (Figure 6-3). These instructions are listed in Table 6-12. 

Figure 6-3 

START 

SUBTEST 
SETUP 

SUBTEST 
INSTRUCTION IN:._ ____________ __. 

VERIFY 

GOTO 
NEXT 
SUBTEST 

LOOP 

TK-1200 

Compatibility Mode Instruction Module Subtest 
Structure 

6-70 



Table 6-12 Compatibility Mode Instructions Provided by 
Compatibility Mode Hardware and Exercised by ESKAZ Test 2 

Op Code (8) Mnemomic Op Code (8) Mnemonic 

.055DD ADC ( B) 0001DD JMP 

.06SSDD ADD 004RDD JSR 

.063DD ASL (B) .lSSDD MOV (B) 

.062DD ASR ( B) .054DD NEG ( B) 

.4SSDD BIC (B) .061DD ROL {B) 

.5SSDD BIS(B) .060DD ROR ( B) 

.3SSDD BIT (B) .0020R RTS 
400-377 7 BRANCHES(*) 000006 RTT 
100000-3777 BRANCHES(**) .056DD SBC ( B) 
.050DD CLR (B) 077RNN SOB 
.2SSDD CMP (B) 16SSDD SUB 
.051DD COM(B) 0003DD SWAB 
240-277 CND CODES(***) 0067DD SXT 
• 0 53DD DEC ( B) .057DD TST ( B) 
.052DD INC ( B) 074RSS XOR 

where, 

(*)=BR, BNE, BEQ, BGE, BLT, BGT, BLE 
(**)=BPL, BMI, BVC, BCC, BCS, BHI, BLOS, BHIS, BLO 
(***)=CLC, CLV, CLZ, CLN, CCC, SEC, SEV, SEZ, SEN, sec 

The instructions provided by the compatibility mode hardware that 
have not yet been included in this test are listed in Table 6-13. 

Table 6-13 Compatibility Mode Instructions Not Yet Tested 

Op Code(8) 

072RSS 
073RS8 
071RS8 
1065S8 
0065S8 
1066DD 
0066DD 
070RS8 

6-71 

Mnemonic 

ASH 
ASHC 
DIV 
MFPD 
MFPI 
MTPD 
MTPI 
MUL 



NOTES 
1. The test instruction is always 

tagged IN. 

2. The error is always tagged EN. 

3. The return point for looping is 
always tagged RN. 

4. If more than one verification is 
made in a single subtest, the 
entries to subsequent checks are 
tagged AN, BN, etc. 

5. If more than one error is included, 
subsequent errors are tagged ElN, 
E2N, E3N, etc. 

The RTI instruction provided by compatibility mode hardware is not 
tested in this module. The compatibility mode entry/exit module 
(ESKAX02, Test 01) tests this instruction thoroughly. 

6.6.2 Compatibility Mode Test Error Message Format 
The following header is printed when an error is detected. 

(PC) (PSW) (SP) (Rl) (R2) (R3) (R4) 

Interpretation of Compatibility Mode Test Error Message Format 

(PC) 

(PSW) 

Indicates the content of the program counter at the time 
of the error call. This is normally an address that is 
used to locate the error cal 1 statement in the failing 
subtest. 

Indicates the content of the processor status word at the 
time of the error call. 

(SP) Indicates the content of the stack pointer (R6) at the 
time of the error. 

The error call 
twice. 

NOTE 
wi 11 push the stack 

6-72 



(Rl) Indicates a mnemonic of the instruction under test 
e.g., MOVB, ASL ••• et al. 

(R2) For single- and double-operand instructions, R2 normally 
contains the destination address. 

(R3) For single- and double-operand instructions, R3 contains 
what the result (destination operand) actually was after 
the test instruction was executed. 

(R4) For single- and double-operand instructions, R4 contains 
what the result (destination operand) should have been 
(S/B). 

In some cases, the error information may deviate from that 
previously described but the program annotation for those subtests 
will describe the meaning of those entries that have been 
redefined. 

The error call statement is encoded to print only the information 
relative to the particular function being tested. Interpretation 
of the error calls is shown below. 

ERROR Print all 7 col urnns 
ERRORl Print only column 1 
ERROR2 Print columns 1, 2 
ERROR3 Print columns 1, 2, 3 
ERROR4 Print col urnns 1, 2, 3, 4 
ERRORS Print columns 1, 2, 3, 4, 5 
ERROR6 Print col urnns 1, 2, 3, 4, 5, 

6.6.3 Sample Error Message Explanation 

******** CPU CLUSTER • 

PASS 1 TEST XX SUBTEST 208 • 

HARD ERROR WHILE TESTING CPU: COMPATIBILITY MODE 

(PC) 

00008DD0 

(PSW) 

00000004 

(SP) (Rl) (R2) 

0000ASAA MOV 00000400 

6 

******** 

(R3) 

Example 6-59 ESKAZ Compatibility Mode Test Error 

6-73 

(R4) 

0000FFFF 



Interpretation of Example 6-59 

8DD0 

4 

ASAA 

MOV 

Represents the PC of the error call in the listing. 

Represents the content of the PSW prior to the error 
call. 

Represents the last position of the PDP-11 mode stack 
pointer (R6). 

Is a clue that the MOV instruction failed under test. 

400 Represents the address used by the destination mode 
portion of the MOV instruction. 

0000 Represents the actual content of the destination after 
instruction execution. 

FFFF Represents what the content of the destination should 
have been after the MOV instruction was executed. 

The listing is laid out with a subtitle printed at the top of each 
page. The operator can look through the program listing for 
·subtest 208. The subtest description of 208 shows that a MOV 
instruction is tested with source mode 2 and destination mode 3. 

6.6.4 Compatibility Mode Instruction Module Assumptions 
Four compatibility mode trap instructions are used to control the 
execution of this test, as follows. 

1. SUBTYPE 0 (SPL) Used as program end indicator. 
2. SUBTYPE 2 (IOT) Used as next subtest indicator. 

NOTE 
Appears as SCOPE statement in listing. 

3. SUBTYPE 3 (EMT) Used as error report indicator. 

NOTE 
Appears as ERROR + XX statement in 
listing. 

4. SUBTYPE 4 (TRAP) Used as PSW reference indicator. 

NOTE 
Appears as TRAP + XX statement in 
listing. 

It is assumed that the test performing the exercising of 
compatibility mode entry/exit conditions has been executed prior 
to this test, in which event, the com pat i bi 1 i ty mode trap 
instructions have been checked -out. 

6-74 



APPENDIX A 
GLOSSARY OF DIAGNOSTICS SOFTWARE TERMS 

absolute (ABS) -- A program section (psect} attribute. An absolute 
psect contains only symbol definitions. It does not contribute 
binary code to the image. Therefore, it must have a zero-length 
memory allocation. The converse is relocatable (REL}. 

access mode -- Any of the four processor access modes in which 
software executes. Processor access modes are, in order, from most 
to least privileged and protected: kernel (mode 0), executive 
(mode 1) , supervisor (mode 2) , and user (mode 3) • 

When the processor is in kernel mode, the executing software has 
complete control of, and responsibility for, the system. When the 
processor is in any other mode, the processor is inhibited from 
executing privileged instructions. The processor status longword 
contains the current access mode field. The operating system uses 
access modes to define protection levels for software executing in 
the context of a process. For example, the executive runs in 
kernel and executive modes and is most protected. The command 
interpreter is less protected and runs in supervisor mode. The 
debugger runs in user mode and is no more protected than normal 
user programs. 

access type -- The way in which the processor accesses instruction. 
operands. Access types are: read, write, modify, address, and 
branch. 

alignment -- The address boundary at which a program section is 
based. 

allocate a device -- To reserve a particular device unit for 
exclusive use. A user process can allocate a device only when that 
device is not allocated by any other process. 

allocation -- The number of bytes of memory contributed by a 
program section to a particular module. 

alphanumeric character -- An upper or lower case letter (A--Z, 
a--z}, a dollar sign ($}, an underscore ( } , or a decimal digit 
(0--9} • 

ancillary control process (ACP} A process that acts as an 
interface between user software and an I/O driver. An ACP provides 
functions supplemental to those performed in the driver, such as 
file and directory management. 

argument -- An independent value within a command statement that 
specifies where, or on what, the command will operate (e.g., 
address, data}. 

A-1 



argument pointer -- General register 12 (Rl2). By convention, AP 
cont a i n s the add r e s s o f th e b a s e o f th e a r g um en t 1 i s t f o r 
procedures initiated using the CALL instructions. 

assign a channel -- To establish the necessary software linkage 
between a user process and a device unit before a user process can 
transfer any data to or from that device. A user process requests 
the system to assign a channel and the system returns a channel 
number. 

assembler -- A program that translates source language code, whose 
operations correspond directly to machine op codes, into object 
language code. 

asynchronous system trap (AST) -- A software-simulated interrupt 
to a user-defined service routine. AS Ts enable a user process to 
be notified asynchronously, with respect to its execution, of the 
occurrence of a specific event. If a user process has defined an 
AST routine for an event, the system interrupts the process and 
executes the AST routine when that event occurs. When the AST 
routine exits, the system resumes the process at the po int where 
it was interrupted. 

attributes Various characteristics that can be assigned by the 
programmer to each psect in a module (e.g., ABS). 

base register --- A general register used to contain the address of 
the entry in a list, table, array, or other data structure. 

block 1. The smallest addressable unit of data that the 
specified device can transfer in an I/O operation (512 contiguous 
bytes for most disk devices). 2. An arbitrary number of contiguous 
bytes used to store logically related status, control, or other 
processing information (i.e., process control block). 

breakpoint In diagnostics, an address assigned through the 
diagnostic supervisor. When the PC equals the value of the 
breakpoint, control returns to the diagnostic supervisor. 

boot (bootstrap) - - A program that 1 o ads another ( usu a 11 y 1 a r g e r) 
program into memory from a peripheral device. 

buffer -- A temporary data storage area. 

call frame -- A standard data structure built on the stack during 
a procedure call, starting from the location addressed by the FP 
to lower addresses, and popped off during a return from procedure 
(also called stack frame) • 

channel -- A logical path connecting a user process to a physical 
device unit. A user process requests the operating system to 
assign a channel to a device so that the process can transfer data 
to or from that device. 

A-2 



command file -- A file containing command strings. 

command interpreter Procedure-based code to receive, syntax 
check, and parse commands typed by the user at a terminal or 
submitted in a command file. 

command parameter -- The positional operand of a command delimited 
by spaces, such as a file specification, option, or constant. 

command string A line, or a set of continued lines, normally 
terminated by typing the carriage return key containing a command, 
and optionally, information modifying the command. A complete 
command string consists of a command; its qua 1 if ie rs, if any; its 
parameter (file specifications, for example), if any; and their 
qualifiers, if any. 

concatenate (CON) A program section attribute. If a psect is 
concatenated, all psects of the same name yet from different 
modules are to be assigned contiguous addresses in the virtual 
address space. Each module can specify an independent alignment. 
The linker performs the necessary padding of zero bytes between 
con tr ibut ions. The base alignment of the resulting concatenated 
psects is according to the greatest alignment granularity of all 
the contributions to the psect. For example, if the greatest 
alignment granularity of all contributors is a page, the psect is 
page-aligned; although, some contributors may be byte-aligned, 
others word-aligned, etc. 

condition 
software·. 

An exception condition detected and declared by 

condition codes -- Four bi ts in the processor status word that 
indicate the results of the previously executed instruction. 

condition handler -- A procedure that a process wants the system 
to execute when an exception condition occurs. When an exception 
condition does occur, the operating system searches for a 
condition handler. When it finds the condition handler, the 
operating system initiates the handler immediately. The condition 
handler may perform some act to change the situation that caused 
the exception condition and then continue execution of the process 
that incurred the exception condition. Condition handlers execute 
in the context of the process at the access mode of the code that 
incurred the exception condition. 

context switching Interrupting the activity in progress and 
switching to another activity. Context switching occurs as one 
process after another is scheduled for execution. The operating 
system saves the interrupted process's hardware context in its 
hardware PCB using the save process context instruction, loads 
another process's hardware PCB into the hardware context using the 
load process context instruction, and schedules that process for 
execution. 

A-3 



cylinder The tracks at the same radius on all recording 
surfaces of a disk pack. 

default -- Assumed value supplied when a command qualifier does 
not specifically override the normal command function; also, 
fields in a file specification that the system fills in when the 
specification is not complete. 

default disk -- The system disk to which the system writes all 
f i 1 es that the opera to r c re ates , by def au 1 t • The def au 1 t i s used 
whenever a file specification in a command does not explicitly 
name a device. 

delimiter -- A character or symbol used to separate or limit items 
within a command or data string. However, the delimiter is not a 
member of the string. 

device The general name for any physical terminus or link 
connected to the processor that is capable of receiving, storing, 
or transmitting data. Card readers, line printers, and terminals 
are examples of record-oriented devices. Magnetic tape devices and 
disk devices are examples of mass storage devices. Terminal line 
interfaces and interprocessor links are examples of communications 
devices •. 

device interrupt -- An interrupt received on interrupt priority 
levels 16 through 23. Device interrupts can be requested only by 
devices, controllers~ and memories. 

d ev ice name - - The f i e 1 d i n a f i 1 e spec i f i cat ion that id en t i f i es 
the device unit on which a file is stored. Device names also 
include the mnemonics that identify an I/0 peripheral device in a 
data transfer request. A device name consists of a mnemonic 
f o 11 owed by a cont r o 11 er i dent i f i cat ion 1 et t e r ( i f a pp 1 i cab 1 e) , 
followed by a unit number (if applicable). A colon (:) separates 
it from following fields. 

direct I/O -- A mode of access to peripheral devices in which the 
program addresses the device registers directly, without relying 
on support from the operating system drivers. 

drive The electro-mechanical unit of a mass storage device 
system on which a recording medium (disk cartridge, disk pack, or 
magnetic tape reel) is mounted. 

driver -- The set of system code that handles physical I/O to a 
device. 

entry mask -- A word (1) whose bits represent the registers to be 
saved or restored on a subroutine or procedure call using the call 
and return instructions, and (2) which includes trap enable bits. 

entry point -- A location that can be specified as the object of a 
call. It contains an entry mask and exception enables known as the 
entry point mask. 

A-4 



event -- A change in process status or an indication of the 
occurrence of some activity that concerns an individual process or 
cooperating processes. An incident reported to the scheduler that 
affects a process's ability to execute. Events can be synchronous 
with the process's execution (a wait request, or they can be 
asynchronous (I/O completion). Some examples of events: swapping, 
wake request, page fault. 

event flag -- A bit in an event flag cluster that can be set or 
cleared to indicate the occurrence of the event associated with 
that flag. Event flags are used to synchronize activities in a 
process or among many processes. 

exception -- An event detected by the hardware (other than an 
interrupt or jump, branch, case, or call instruction) that changes 
the normal flow of instruction execution. An exception is always 
caused by the execution of an instruction or set of instructions, 
while an interrupt is caused by an activity in the system 
independent of the current instruction. There are three types of 
hardware exceptions: traps, faults, and aborts. Examples are: 
attempts to execute a privileged or reserved instruction; trace 
traps; compatibility mode faults; breakpoint instruction 
execution; and arithmetic traps such as overflow, underflow, and 
divide-by-zero. 

exception condition -- A hardware- or software-detected event 
( o the r than an int e r r up t o r j ump , branch , case , o r ca 11 
instruction) that changes the normal flow of instruction 
execution. 

·except ion d i spat ch er - - An ope rat i n g sys t: em pro c e d u re that 
searches for a condition handler when an exception condition 
occurs. If no exception handler is found for an exception or 
condition, the image that incurred the exception is terminated. 

executable (EXE) -- A program section attribute. The psect 
contains only instructions. This attribute provides the capability 
to separate instructions from read-only and read/write data. The 
linker uses this attribute in gathering psects and in the 
verification of the transfer address that must be present in an 
executable psect. 

executable image -- An image that is capable of being run in a 
process. When run, an executable image is read from a file for 
execution in a process. 

executive -- The generic name for the collection of procedures 
included in the operating system software that provides the basic 
control and monitor functions of the operating system. 

file A logically related collection of data treated as a 
physical entity that occupies one or more blocks on a volume such 
as disk or magnetic tape. A file can be referenced by a name 
assigned by the user. A file normally consists of one or more 
logical records. 

A-5 



file specification -- A unique name for a file on a mass storage 
medium. 

frame pointer -- General register 13 {Rl3). By convention, FP 
contains the base address of the most recent call frame on the 
stack. 

global symbol -- A symbol defined in a module that is potentially 
available for reference by another module. The 1 inker resolves 
(matches references with definitions) global symbols. Contrast 
with local symbol. 

granularity -- The alignment of a contribution to a psect on a 
boundary. The alignment granularity may be byte, word, quadword, 
or page. 

home block -- A block in the index file that contains the volume 
identification, such as volume label and protection. 

image -- An image consists of procedures and data that have been 
bound together by the 1 inker. There are three types of images: 
executable, sharable, and system. 

index file -- The file on a FILES-11 volume that contains the 
access information for all files on the volume and enables the 
operating system to identify and access the volume. 

interrupt -- An event (other than an exception or branch, jump, 
case, or call instruction) that changes the normal flow of 
instruction execution. Interrupts are generally external to the 
process executing when the interrupt occurs. 

interrupt stack -- The system-wide stack used when executing in an 
interrupt service context. At any time, the processor is either in 
a process context executing in user, supervisor, executive, or 
kernel mode; or in system-wide interrupt service context operating 
with kernel privileges, as indicated by the interrupt stack and 
current mode bits in the PSL. The interrupt stack is not 
context-switched. 

I/O function code A 6-bit value specified in a queue I/O 
request system service that describes the particular I/O operation 
to be performed (e.g., read, write, rewind). 

library file A direct access file containing one or more 
modules of the same module type. 

linked commands A group of independent commands connected 
together (linked) so as to form a single executable list of 
commands. Once initiated, the entire linked command list may be· 
executed without further operator intervention. 

A-6 



linker -- A program that reads one or more object modules created 
'by language processors and produces an executable image file, a 
sharable image file, or a system image file. 

linking -- The resolution of external references between object 
modules used to create an image; the acquisition of referenced 
library routines, service entry points, and data for the image; 
and the assignment of virtual addresses to components of an image. 

link map -- A link map shows the virtual memory allocation of the 
total program image. The link map is found in a program listing in 
the program section allocation synopsis. 

literal -- An operand which is used immediately, without being 
translated to some other value. An operand which specifies itself. 

1 i t er a 1 a r g urn en t - - An i n depend en t v a 1 u e w i th i n a co mm and 
statement that specifies itself. 

local symbol -- A symbol that is meaningful only to the module 
that defines it. Symbols not identified to a language processor as 
global symbols are considered to be local symbols. A language 
processor resolves (matches references with definitions) local 
symbols. They are known to the linker and cannot be made available 
to another object module. They can, however, be passed through the 
linker to the symbolic debugger. Contrast with global symbol. 

logical block -- A block on a mass storage device identified by 
us i n g the v o 1 um e - re 1 at iv e add res s rat he r than the phys i ca 1 
(device-oriented) address or the virtual (file-relative) address. 
The blocks that comprise the volume are labeled sequentially 
starting with logical block 0. 

macro A statement that requests a language processor to 
generate a predefined set of instructions. 

memory management -- The system functions that include the 
hardware's page mapping and protection and the operating system's 
image activator and pager. 

module -- A part of a program assembled as a unit. Modular 
programming allows the development of large programs in which 
separate parts share data and routines. 

mount a volume To logically associate a volume with the 
physical unit on which it is loaded (an activity accomplished by 
system software at the request of an operator). Or, to load or 
place a magnetic tape or disk pack on a drive and place the drive 
on-line (an activity accomplished by a system operator). 

object module -- The binary output of a language processor such as 
the assembler or a compiler, which is used as input to the linker. 

operand -- a value (address or data) that is operated on, or with, 
by an instruction. 

A-7 



overlay (OVR) -- A program section attribute. If a psect is 
over layed, al 1 con tr ibut ions to the psect have the same base 
address. The length of the psect is the size of the largest 
con tr ibut ion. All con tr ibut ions to an overlayed psect must have 
the same alignment. 

page -- A set of 512 contiguous byte locations used as the unit of 
memory mapping and protection. Also, the data between the 
beg inning of a file and a page marker, between two markers, or 
between a marker and the end of a file. 

page frame number (PFN) -- The address of the first byte of a page 
in physical memory. The high-order 21 bits of the physical address 
of the base of a page make up the PFN. 

page table entry (PTE) -- The data structure that identifies the 
location and status of a page of virtual address space. When a 
virtual page is in memory, the PTE contains the page frame number 
needed to map the virtual page to a physical page. When it is not 
in memory, the PTE contains the information needed to locate the 
page on secondary storage (disk). 

parameter -- A parameter is the object of a command. It can be a 
file specification, a keyword option, or a symbol value passed to 
a command· procedure. In diagnostics, parameters are usually 
operator-supplied answers to questions asked by a program 
concerning devices to be tested. 

parameter switch -- A command qualifier. In diagnostics, it is 
preceded by a slash (/). 

parser -- A procedure that breaks down the components of a command 
into structural forms. 

physical address -- The address used by hardware to identify a 
location in physical memory or on directly addressable secondary 
storage devices such as disks. A physical memory address consists 
of a page frame number and the number of a byte within the page. A 
physical disk block address consists of a cylinder or track and 
sector number. 

physical block -- A block on a mass storage device referred to by 
its physical (device-oriented) address rather than a logical 
(volume-relative) or virtual (file-relative) address. 

position independent code (PIC) -- A program section attribute. 
The contents of the psect do not depend on a specific location in 
virtual memory. The converse is nonposition independent code 
(NOPIC}. 

A-8 



priority -- The rank assigned to an activity that determines its 
level of service. For example, when several jobs contend for 
system resources, the job with the highest priority receives 
service first. 

program section -- A portion of a module. The assembler creates a 
number of program sections (psect) within a module, according to 
directives by the program developer. In addition, any code that 
precedes the first defined program section is placed in the BLANK 
program section by the assembler. 

Through program sectioning the program developer controls the 
virtual memory allocation of a program. Any program attributes 
established by the program section directive are passed on to the 
linker. Thus, program sections can be declared as read only, 
nonexecutable, etc. See the VAX-11 MACRO Language Reference Manual 
for an explanation of the various program section attribute 
functions. 

In the diagnostic programs, each test is given a separate program 
section. 

prompt -- A program's typed out response to and/or request for 
operator action. 

qualifier -- A portion of a command string that modifies a command 
verb or command parameter by selecting one of several options. A 
qualifier, if present, follows the command verb or parameter to 
which it applies and is in the format: /qualifier:option. For 
example, in the command string "PRINT <filenam·e> /COPIES: 3", the 
COPIES qualifier indicates that the user wants three copies of a 
given file printed. 

queue -- A list of commands or jobs waiting to be processed. 

queue I/O -- A mode of access to peripheral devices in which a 
program calls on driver routines provided by the VMS operating 
system or the diagnostic supervisor to transfer data. 

radix -- The base of the number system currently in use. 

readable (RD) -- A program section attribute. The contents of the 
psect can be read at the execute time. The converse is nonreadable 
(NORD) • 

record -- A collection of adjacent i terns of data treated as a 
unit. A logical record can be of any length whose significance is 
determined by the programmer. A physical record is a 
device-dependent collection of contiguous bytes such as a block on 
a di s k , o r a co 11 e ct ion of bytes sent to o r received from a 
record-oriented device. 

relocatable (REL) -- A program section attribute. The psect must 
be assigned a base address by the linker. This psect can contain 
code and/or data. 

A-9 



script file -- A line-oriented ASCII file that contains a list of 
commands. 

section -- A group of tests in a diagnostic program that may be 
selected by the operator. 

sector -- A portion of a track on the surface of a disk. On a 
VAX-11 system, each track on a disk is normally divided into 22 
sectors. 

semantics -- The interpretation of and relation between commands 
or command symbols. 

sharable image -- An image that has all of its internal references 
resolved, but which must be linked with an object module(s) to 
produce an executable image. A sharable image cannot be executed. 
A sharable image file can be used to contain a library of 
routines. A sharable image can be installed as a global section by 
the system manager. 

stack -- An area of memory set aside for temporary storage, or for 
procedure and interrupt service linkages. A stack uses the 
last-in, first-out concept. As items are added to (pushed on) the 
stack, the stack pointer decrements. As items are retrieved from 
(popped off) the stack, the stack pointer increments. 

stack frame -- A standard data structure built on the stack during 
a procedure call, starting from the location ~ddressed by the FP 
to lower addresses, and popped off during a return from procedure. 
Also called call frame. 

stack pointer General register 14 (Rl4). SP contains the 
address of the top (lowest address) of the processor-defined 
stack. Reference to SP will access one of the five possible stack 
pointers: kernel, executive, supervisor, user, or interrupt, 
depending on the value in the current mode and interrupt stack 
bits in the Processor Status Longword (PSL). 

standalone mode -- A diagnostic program environment in which the 
pro g ram and the d i a g nos t i c super v i so r run w i thou t the VMS 
operating system. The operator must use the console terminal when 
running di'agnostics in the standalone mode, and no other users 
have access to the system. 

symbolic argument -- An argument within a command that refers to 
another value. 

syntax -- The rules governing a command language structure. The 
way in which command symbols are ordered to form meaningful 
statements. 

syntactic unit -- An i tern contained within a command statement 
(e.g., an argument, a qualifier). 

A-10 



system image -- The image that is read into memory from secondary 
storage when the system is started up. 

test -- A unit of a diagnostic program that checks a specific 
function or portion of the hardware. 

time stamp -- A statement of the time of day at which a specific 
event occurred. 

track A collection of blocks at a single radius on one 
recording surface of a disk. 

trap -- An exception condition that occurs at the end of the 
instruction that caused the exception. The PC saved on the stack 
is the address of the next instruction that would normally have 
been executed. All software can enable and disable some of the 
trap conditions with a single instruction. 

unit record device -- A device such as a card reader or line 
printer. 

unwind the call stack -- To remove call frames from the stack by 
tracing back through nested procedure calls using the current 
content of the FP register and FP register content stored on the 
stack for each call frame. 

UUT (unit under test) The device or portion of the computer 
hardware being tested by a diagnostic program. 

virtual block number A number used to identify a block on a 
mass storage device. The number is a file-relative address rather 
than a logical (volume-oriented) or physical (device-oriented) 
address. The first block in a file is always virtual block number 
one. 

writable (WRT) -- A program section attribute. The content of the 
psect can be modified at execute- time. The converse is nonwritable 
(NOWRT) • 

A-11 



VAX-11/780 DIAGNOSTIC SYSTEM 
TECHNICAL DESCRIPTION 
EK-DS780-TD-001 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our 
publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
written, etc.? Is it easy to use? ----------------------------

What features are most useful?---------------------------

What faults or errors have you found in the manual?-------------------

Does this manual satisfy the need you think it was intended to satisfy? -------------

Does it satisfy your needs? ____________ _ Why?----------

0 Please send me the current copy of the Technical Documentation Catalog, which contains information on 
the remainder of DIGIT AL's technical documentation. 

Name ---------------------­
Title ------------------Company _____________ _ 

Department -------------

Street----------------­

City --------------------
State/Country -------------­
Zip 

Additional copies of this document are available from: 

Digital Equipment Corporation 
444 Whitney Street 
Northboro, Ma 01532 
Attention: Communications Services (NR2/M15) 

Customer Services Section 

Order No. _E_K_-n_s_1_so_-_T_n_-0_0_1 ------



- - - - - - - - - - - Fold Here - - - - - - - - - - -

- - - -- -- -- -- -- DoNotTear-FoldHereandStaple - - - - - - - -

BUSINESS REPLY MAIL 
NO POSTAGE ST AMP NECESSARY IF MAILED IN THE UNITED ST ATES 

Postage will be paid by: 

Digital Equipment Corporation 
Communications Development and Publishing 
1925 Andover Street 
Tewksbury, Massachusetts 01876 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	replyA
	replyB

