VAXstation 2000 and MicroVAX 2000 Maintenance Guide

Order No. EK-VSTAA-MG-001

digital equipment corporation maynard, massachusetts

First Edition, January 1987

Copyright [©] 1987 by Digital Equipment Corporation. All Rights Reserved. Printed in U.S.A.

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

The following are trademarks of Digital Equipment Corporation.

	EDCS	RSTS
BASEWAY	FMS	RSX
BI Bus	MASSBUS	RT
COMPACTape	Micro/RSTS	ThinWire
DEC	MicroPDP-11	UNIBUS
DECconnect	Micro/RSX	VAX
DEC/MAP	MicroVAX II	VAXcluster
DECmate	PDP	VAXstation II
DECnet	P/OS	VAX station II/GPX
DECUS	Professional	VMS
DECwriter	Q-Bus	VT
DIBOL	Rainbow	

Contents

Chapter 1 Systems Introduction

1.1	The VAX station 2000 and MicroVAX 2000 Systems 1-1
1.2	Mass Storage Expansion Box for Both Systems 1-5
1.3	Options
1.3.1	Internal Memory Options
1.3.2	ThinWire Ethernet Option on MicroVAX 2000 1-8
1.4	FRU Locations

Chapter 2 Testing and Troubleshooting

2.1	Introduction	2-1
2.2	Using Console Mode	2-1
2.2.1	Determining the Console Device	2-2
2.2.2	Entering Console Mode.	2-2
2.2.3	Exiting Console Mode	2-3
2.2.4	Diagnostic Console Device	2-4
2.2.5	Console Commands.	2-4
2.3	Testing	2-5
2.3.1	Power-up Tests	2-5
2.3.1.1	Power-up Test Error Codes	2-8
2.3.2	Self-test	2-9
2.3.2.1	Self-test with Loopback Connectors.	2-11
2.3.2.2	Self-test Error Codes	2-11
2.3.3	System Exerciser Diagnostics	2-13
2.3.3.1	System Exerciser Diagnostic Commands	2-14
2.3.3.2	System Exerciser Error Codes	2-15
2.4	Troubleshooting Procedures	2-16
2.4.1	MONO — Monochrome Video Troubleshooting	
	Procedures (VAX station 2000 only).	2-16
2.4.1.1	Self-test	2-16
2.4.1.2	System Exerciser	2-16
2.4.2	CLK — Time-of-Year Clock Troubleshooting Procedures	2-17
2.4.2.1	Self-test	2-17
2.4.3	NVR — Non-Volatile RAM Troubleshooting Procedures	2-17
2.4.3.1	Self-test	2-17

iii

2.4.4	DZ — Serial Line Controller Troubleshooting Procedures	2-17
2.4.4.1	Self-test	2-18
2.4.4.2	System Exerciser	2-18
2.4.5	MEM — Memory Troubleshooting Procedures	2-19
2.4.5.1	Self-test	2-19
2.4.5.2	System Exerciser	2-19
2.4.6	MM — Memory Management Unit Troubleshooting	
	Procedures	2-20
2.4.6.1	Self-test	2-20
2.4.7	FP — Floating Point Unit Troubleshooting Procedures	2-21
2.4.7.1	Self-test	2-2 1
2.4.8	IT — Interval Timer Troubleshooting Procedures	2-2 1
2.4.8.1	Self-test	2-21
2.4.9	HDC — Disk Drives and Controller Troubleshooting	
	Procedures	2-21
2.4.9.1	Self-test	2-22
2.4.9.2	System Exerciser	2-24
2.4.9.3	Troubleshooting the Hard Disk Drive Expansion Box	2-27
2.4.9.4	Drive Select Jumper Settings on Disk Drives	2-27
2.4.10	PC — Tape Drive Controller Troubleshooting	
	Procedures	2-29
2.4.10.1	Self-test	2-29
2.4.10.2	System Exerciser	2-31
2.4.10.3	Troubleshooting the Tape Expansion Box	2-35
2.4.11	SYS — Interrupt Controller and ThinWire Ethernet ID	
	ROM Troubleshooting Procedures	2-38
2.4.11.1	Self-test	2-38
2.4.12	NI — ThinWire Ethernet Network Option Troubleshooting	
	Procedures	2-39
2.4.12.1	Self-test	2-39
2.4.12.2	System Exerciser	2-39
2.4.13	Power Supply Troubleshooting Procedures	2-40
2.4.14	VR260 Monochrome Monitor Troubleshooting Procedures	2-42
2.4.15	Terminal Communication Troubleshooting Procedures	
	(MicroVAX 2000 only)	2-44
2.5	Utilities	2-46
2.5.1	Configuration Table	2-47
2.5.1.1	DZ Explanation in Configuration Table	2-48
2.5.1.2	MEM Explanation in Configuration Table	2-48
2.5.1.3	HDC Explanation in Configuration Table	2-51
2.5.1.4	TPC Explanation in Configuration Table	2-52
2.5.1.5	NI Explanation in Configuration Table	2-53
2.5.1.6	Determining the Revision Levels in the System	0 50
	Module's ROM	2-53

iv

959	Setting NVR Default Boot Device 2-55
2.0.2	
2.5.3	Setting NVR Default Boot Flags
2.5.4	Setting NVR Default Recovery Action Flags 2-58
2.5.5	Language Inquiry Menu
2.5.6	Circle Cross-Hatch Alignment Pattern
2.5.7	Screen of E's Pattern
2.5.8	White Screen
2.5.9	Mass Storage Disk Formatter
2.5.9.1	Disk Formatter Messages
2.5.10	Mass Storage Disk Verifier
2.5.10.1	Disk Verifier Messages
2.5.11	Special Diagnostic Key for Field Service System
	Exerciser
2.5.12	ThinWire Network Loop Testing Utility

Chapter 3 FRU Removal and Replacement Procedures

3.1	Introduction	3-1
3.2	Shield Removal.	3-4
3.3	System Module Assembly Removal from Shield	3-10
3.4	System Module Removal	3-13
3.5	Memory Module Removal	3-17
3.6	Network Interconnect Module Removal	3-18
3.7	RD53 Hard Disk Drive Removal from System Box	3-19
3.7.1	RD53 Disk Drive Device Electronics Board Removal	3-21
3.8	RX33 and RD32 Drive Removal (Half-Height Drives) from	
	the System Box	3-24
3.8.1	RD32 Disk Drive Device Electronics Board Removal	3-27
3.9	Resistor Load Board Removal from System Box	3-31
3.10	Battery Pack Removal	3-33
3.11	Power Supply Removal from the System Box	3-34
3.12	VAX station 2000 VR260 Monochrome Monitor	3-35
3.12.1	VR260 Cover	3-36
3.12.2	VR260 Deflection Board Removal	3-39
3.12.3	VR260 Rear Bulkhead Assembly	3-42
3.12.4	VR260 Video Board Removal	3-44
3.12.5	VR260 Transformer Assembly	3-45
3.12.6	VR260 Tube/Yoke/Bezel Assembly Removal	3-47
3.12.7	VR260 LED Assembly	3-50
3.13	Keyboard Removal (VAXstation 2000 only)	3-51
3.14	Mouse and Tablet (VAX station 2000 only)	3-52
3.15	Terminal Disconnection from MicroVAX 2000	3-53

3.15.1	DEC423 Converter Removal from MicroVAX 2000 3-5	3
3.16	Expansion Adapter Removal	4
3.16.1	Expansion Adapter Disk Interface Module Removal 3-5	6
3.17	VAXstation 2000 and MicroVAX 2000 Expansion Box 3-5	8
3.17.1	Hard Disk Drive Expansion Box Disconnection from	
	System Box	8
3.17.1.1	Hard Disk Drive Removal from Hard Disk Expansion	
	Box	0
3.17.1.2	Power Supply Removal from the Hard Disk Expansion	
	Box	6
3.17.1.3	Resistor Load Board Removal from the Hard Disk	
	Expansion Box	0
3.17.2	Tape Drive Expansion Box Disconnection from System	
	Box	2
3.17.2.1	TZK50 Controller Board Removal from the Tape Drive	
	Expansion Box	3
3.17.2.2	TK50 Tape Drive Removal from Tape Drive Expansion	
	Box	6
3.17.2.3	Power Supply Removal from the Tape Drive Expansion	
	Box	9
3.17.2.4	Resistor Load Board Removal from the Tape Drive	
	Expansion Box	1
3.18	Recommended Spares List	2

Chapter 4 Video Monitor Adjustments (VAXstation 2000)

4.1	Introduction
4.2	VR260 Monochrome Monitor
4.2.1	Preparations
4.2.2	Horizontal and Vertical Linearity and Focus Adjustments 4-4
4.2.3	Width, Height. and Centering Adjustments 4-6
4.2.4	Rechecking the Display
4.2.5	Adjusting Minimum Raster
4.2.6	Reassembling the VR260 Monitor

Chapter 5 Option Installation

5.1	Introduction
5.2	Memory Module Installation
5.3	ThinWire Ethernet Network Interconnect Module Installation . 5-2
5.4	System Box Disk Drive Installation
5.5	Expansion Adapter Installation
5.6	Hard Disk Expansion Box Installation
5.7	Tape Drive Expansion Box Installation

vi

Appendix A Console Test Commands

Appendix B Console Commands

B.1	Console Comman	d	S	'n	ta	x	•		•							•	•		•	•		•		•	B-1
B.2	Console Comman	ds	3			•		•	•		•						•		•	•	•	•	•	•	B-1
B.2.1	BOOT				•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	B- 1
B.2.2	COMMENT.							•		•	•	•				•	•	•	•	•			•	•	B-2
B.2.3	CONTINUE																•			•			•		B-3
B.2.4	DEPOSIT																								B-3
B.2.5	EXAMINE .																								B-4
B.2.6	FIND																							•	B-5
B.2.7	HALT																				•				B-5
B.2.8	INITIALIZE								•								•		•	•	•			•	B- 5
B.2.9	REPEAT																								B-6
B.2.10	START					•			•						•									•	B-6
B.2.11	TEST																		•	•	•				B-6
B.2.12	UNJAM																				•	•			B-7
B.2.13	TRANSFER																								B-7
B.3	Special Keys																								B-8

Appendix C Console Messages and Explanations

Appendix D VMB Boot Error Status Codes

Figures

1-1	Front View of the VAXstation 2000 and MicroVAX 2000
	Systems
1-2	Rear View of the VAX station 2000 System
1-3	Rear View of the MicroVAX 2000 System
1-4	Front View of the Hard Disk Expansion Box 1-5
1-5	Front View of the Tape Drive Expansion Box
1-6	System Box with Expansion Adapter 1-7
1-7	FRU Locations in the System Box
1-8	FRU Locations in the Expansion Boxes 1-9
2-1	Example of Power-up Tests Screen Display 2-5
2-2	Power-up Symbols Defined.
2-3	Example of Power-up Tests Screen Display with Errors 2-7
2-4	Example of the Configuration Table
2-5	Example of Running Self-test on the Disk Controller 2-9
2-6	Example of Running a Series of Self-tests
2-7	Example of a Self-test Error on the Disk Controller 2-12

2-8	System Exerciser Display Example	2-15
2-9	Example of MEM System Exerciser Error Code	2-20
2-10	HDC Power-up and Self-test Error Code.	2-22
2-1 1	Example of System Exerciser Display for the Disk Controller .	2-24
2-12	RD32 Drive Select Jumper Setting for DUA0	2-28
2-13	RD53 Drive Select Jumper Setting for DUA0 and DUA1	2-28
2-14	RX33 Drive Select Jumper Setting for DUA2	2-29
2-15	TPC Power-up and Self-test Error Code	2-30
2-16	Example of System Exerciser Display for the Tape Controller .	2-32
2-17	TZK50 Controller Board Jumper Locations	2-37
2-18	Flowchart for Troubleshooting the Power Supply	2-40
2-19	Power Connectors Pin Voltages	2-41
2-20	Flowchart for Troubleshooting Terminal Communications	2-44
2-21	Flowchart for Troubleshooting Terminal Communications	
	on the DEC423 Converter	2-45
2-22	Example of the Configuration Table	2-47
2-23	Example of the DZ Line in the Configuration Table	2-48
2-24	Example of MEM Error Display in the Configuration Table.	2-49
2-25	Example of the Second HDC Line in the Configuration Table.	2-51
2-26	Example of the Second TPC Line in the Configuration Table	2-52
2-27	Example of the System Module's ROM Code Revision Levels.	2-53
2-28	Example of Tape Port Bus Information	2-54
2-29	Example of the TZK50 and TK50 ROM Revision Levels	2-55
2-30	Example of Changing the Default Boot Device	2-55
2-31	Example of Changing the Default Boot Flag.	2-56
2-32	Determining the NVR Code for Three Boot Flags	2-56
2-33	Example of Changing the NVR Recovery Action Flags	2-58
2-34	Example of Formatting a Hard Disk Drive	2-60
2-35	Example of Formatting an RX33 Floppy Diskette.	2-61
2-36	Example of Formatting an Unknown Hard Disk Drive	2-62
2-37	Example of Running the Disk Verifier on DUA1.	2-64
2-38	Example of Creating the Special Key on a Floppy Diskette	2-66
2-39	Example of Creating the Special Key on a COMPACTape	
	Cartridge	2-67
2-40	Example of ThinWire Ethernet Loop Testing Using TEST 90 .	2-68
3-1	FRU Locations.	3-3
3-2	Expansion Adapter Cover Screw Locations	3-4
3-3	System Box Cover Screw Locations	3-5
3-4	System Box Cover Removal	3-6
3-5	Shield Screw Locations	3-7
3-6	Removing the Shield from the Main Chassis	3-8
3-7	Disconnecting the Cables from the Shield	3-9

3-8	System Module Assembly Screw Locations on the Shield	3-10
3-9	Network Interconnect Cables	3-11
3-10	Removing System Module Assembly from Shield	3-12
3-11	Battery Cable Location.	3-13
3-12	Memory Module Removal	3-14
3-13	Network ID ROM Location on System Module	3-15
3-14	VAX station 2000 and MicroVAX 2000 System Jumper	3-16
3-15		3-17
3-16	Network Interconnect Module Removal	3-18
3-17	Hard Disk Screw Locations	3-19
3-18	Disconnecting the Hard Disk Drive from System Box	3-20
3-19	Drive Mounting Bracket Screw Locations	3-21
3-20	RD53 Device Electronics Board Removal	3-22
3-21	RD53 Device Electronics Board Jumper and Switch Locations .	3-23
3-22	Half-Height Drive(s) Screw Locations	3-24
3-23	Disconnecting the RX33 and RD32 Half-Height Drives	3-25
3-24	Half-Height Drives Mounting Brackets Removal	3-26
3-25	RD32 Device Electronics Board Screw Locations	3-27
3-26	Disconnecting J4 from RD32 Device Electronics Board	3-28
3-27	Disconnecting J5 and J6 from RD32 Device Electronics Board .	3-29
3-28	RD32 Device Electronics Board Jumper Location	3-30
3-29	Drive Mounting Bracket Screw Locations	3-32
3-30	Battery Cable Location.	3-33
3-31	Power Supply Screw Locations in the System Box	3-34
3-32	VR260 FRU Locations	3-35
3-33	VR260 Controls and Video Cable Locations	3-36
3-34	VR260 Cover Screw Locations	3-37
3-35	VR260 Rear Bezel Location	3-38
3-36	VR260 Side Door Screw Locations.	3-39
3-37	High-Voltage Discharge Tool.	3-40
3-38	VR260 Deflection Board	3-41
3-39	VR260 Rear Bulkhead Screw Locations	3-42
3-40	VR260 Rear Bulkhead	3-43
3-41	VR260 Video Board	3-45
3-42	VR260 Transformer Assembly	3-46
3-43	VR260 Tube/Yoke/Bezel Assembly Screw Locations	3-47
3-44	VR260 Tube/Yoke/Bezel Assembly's LED Cable	3-48
3-45	VR260 Cable Connections	3-49
3-46	VR260 LED/Bezel Assembly.	3-50
3-47	Disconnecting the Keyboard (VAX station 2000)	3-51
3-48	Disconnecting the Mouse or Tablet (VAX station 2000)	3-52
3-49	DEC423 Converter's Mounting Screw Locations	3-53
3-50	Expansion Adapter Screws.	3-54

(

r

3-51	Expansion Cables Locations	3-55
3-52	Expansion Adapter Cover Screws Location	3-56
3-53	Expansion Adapter Disk Interface Module Cables and Screw	
	Locations.	3-57
3-54	Hard Disk Expansion Box Cable.	3-59
3-55	Hard Disk Expansion Box Cover Screw Locations.	3-60
3-56	Resistor Load Board Power Cable	3-61
3-57	Hard Disk Expansion Box Shield Screw Locations	3-62
3-58	Hard Disk Expansion Box Drive Mounting Screws	3-63
3-59	Hard Disk Expansion Box Drive Cables Locations	3-64
3-60	Hard Disk Expansion Box Drive Mounting Bracket Screws	
		3-65
3-61	Hard Disk Expansion Box Cover Screw Locations.	3-66
3-62	Hard Disk Expansion Box Resistor Load Board Power Cable .	3-67
3-63	Hard Disk Expansion Box Shield Screw Locations	3-68
3-64	Hard Disk Expansion Box Power Supply Mounting Screw	
		3-69
3-65	Hard Disk Expansion Box Cover Screw Location	3-70
3-66	Hard Disk Expansion Box Resistor Load Board Power Cable	3-71
3-67	Tape Drive Expansion Box Data Cable	3-72
3-68	Tape Drive Expansion Box Cover Screw Locations	3-73
3-69	TZK50 Controller Board Cable Locations	3-74
3-70	TZK50 Controller Board Jumper and Resistor Pack Locations .	3-75
3-71	Tape Drive Expansion Box Shield Screw Locations	3-76
3-72	Tape Drive Expansion Box Drive Mounting Screw	3-77
3-73	TK50 Tape Drive Cable Locations	3-78
3-74	Tape Drive Mounting Brackets Screw Locations	3-79
3-75	Tape Drive Expansion Box Power Supply Mounting Screw	
		3-80
3-76	Tape Drive Expansion Box Resistor Load Board Power	
	Cable Locations	3-81
4-1	Brightness and Contrast Controls	4-3
4-2	VR260 Internal Adjustment Locations.	4-4
4-3	Circle Cross-Hatch Display.	4-5
4-4	Width and Height Measurements	4-6
5-1	Drive Mounting Brackets Screw Locations	5-3
5-2	Resistor Load Board Location	5-4
5-3	Drive Mounting Positions	5-5
5-4	Drive Screw Location	5-6
5-5	Cover Plate Location	5-7

5-6 5-7 5-8 D-1	Installing Expansion Adapter5-8Connecting RD Extension Cable to Disk Interface Module5-9Connecting Read/Write Cable to Disk Interface Module5-10VMB Error DisplaysD-1
Tables	
2-1	Prompts
2-2	Keyboard LEDs Defined

2-2	
2-3	Self-test Commands
2-4	System Exerciser Diagnostic Commands
2-5	MEM System Exerciser Error Codes
2-6	Power-up and Self-test Error Codes for each Disk Drive 2-23
2-7	HDC Disk Controller System Exerciser Error Codes 2-25
2-8	HDC Disk Drive System Exerciser Error Codes
2-9	TPC Tape Controller System Exerciser Error Codes 2-33
2-10	Tape Drive Expansion Box System Exerciser Error Codes 2-34
2-11	VR260 troubleshooting Table
2-12	Utilities
2-13	Determining the Location of the Failing Memory Bank 2-50
2-14	Boot Flags Used by VMB for Booting All Operating
	System Software
2-15	Specific Boot Flags Used by VMS
2-16	Default Recovery Flags
2-17	Disk Formatter Messages
2-18	Error Codes for the Disk Formatter
2-19	Disk Verifier Messages
2-20	Error Codes for the Disk Verifier
2-21	ThinWire Ethernet Loopback Test Report Definitions 2-69
3-1	FRU Section Listings
4-1	Base Video Alignment Test Commands
5-1	Options Installation Section Listings
A- 1	Test Commands
B- 1	Special Keys Used in Console Program Mode
C-1	Console Error Messages
D-1	VMB Boot Error Status Codes

ABOUT THIS BOOK

This book describes how to troubleshoot, adjust, and repair the VAXstation 2000 and the MicroVAX 2000 workstation to the field replaceable unit (FRU) level in the field. It covers all FRU options presently available for these two systems.

- Chapter 1 contains a system overview that outlines the components of the VAXstation 2000 and MicroVAX 2000 systems.
- Chapter 2 contains testing and troubleshooting procedures to help isolate the problem to an FRU.
- Chapter 3 contains FRU removal and replacement procedures.
- Chapter 4 contains video monitor adjustment procedures for the VAXstation 2000 monitor.
- Chapter 5 contains installation instructions for each option available on both the VAXstation 2000 and the MicroVAX 2000.
- Appendix A contains a list of the test commands.
- Appendix B contains a complete listing and definitions of the console commands.
- Appendix C contains a complete listing and definitions of the console messages.
- Appendix D contains a complete listing and definitions of the VMB boot error status codes.

The detailed index and glossary also help you find information.

Notes, Cautions, and Warnings

Notes, cautions, and warnings appear throughout this book.

- Notes contain general, supplemental information about a topic.
- Cautions contain information to prevent damage to equipment.
- Warnings contain information to prevent personal injury.

REFERENCE MANUALS

Manual	Order Number
VAXstation 2000 Hardware Installation Guide	EK-VAXAA-IN
VAXstation 2000 Owner's Manual	EK-VAXAA-OM
VAXstation 2000/MicroVAX 2000 Technical Manual	EK-VTTAA-TM
MicroVAX 2000 Hardware Installation Guide	EK-MVXAA-IN
MicroVAX 2000 Owner's Manual	EK-MVXAA-OM
VR290 Service Guide	EK-VR290-SM
VAXstation 2000, MicroVAX 2000, VAXmate Network Guide	EK-NETAA-UG
RD53 Technical Description Manual	EK-RD53A-TD
RX33 Technical Description Manual	EK-RX33T-TM
TZK50/SCSI Controller Technical Manual	EK-TZK50-TM

TOOLS AND MATERIALS

You will need the following tools and materials to service the VAXstation 2000 and MicroVAX 2000 systems.

• Field Service Tool Kits

50 Hz Tool Kit p/n 29-23270-00 60 Hz Tool Kit p/n 29-23268-00

• VR260 Video Monitor Tools

Metric Measuring Tape p/n 29-25342-00 High-Voltage Anode Discharge Tool p/n 29-24717-00

• ThinWire Ethernet Tools

Face Plate Installation Kit p/n H8242

Chapter 1 Systems Introduction

1.1 The VAXstation 2000 and MicroVAX 2000 Systems

The VAXstation 2000 and MicroVAX 2000 systems are mechanically identical. Both come in the same style box, both use the same drives, and both use the same mass storage expansion boxes. Also, both use the same diagnostic tools for troubleshooting and repair. Once familiar -with troubleshooting one system, you'll be able to troubleshoot the other if necessary. One major difference is the VAXstation 2000 is a single-user system and the MicroVAX 2000 is a multiuser system. Another difference is the VAXstation 2000 uses a video monitor while the MicroVAX 2000 uses video terminals.

Both the VAXstation 2000 and the MicroVAX 2000 have three main pieces of hardware. They are the system box, the hard disk expansion box, and the tape drive expansion box. The system box can have a half-height RX33 floppy disk drive, a half-height RD32 hard disk drive, or both the RX33 and the RD32. A full-height RD53 hard disk drive can be substituted for the half-height drives in the system box. The hard disk expansion box comes with a full-height RD53 hard disk drive. The tape drive expansion box comes with a TK50 tape drive.

Figure 1-1 shows the front of the VAXstation 2000 and MicroVAX 2000 systems. There are three ways to differentiate between the two systems: the medallion next to the power switch on the front, the DEC423 converter on the back, or the system jumper position on the system module inside the box.

Figure 1-2 shows the rear view of the VAXstation 2000 and labels each connector. A modem or a terminal can be connected to the 25-pin communication port. A VR260 monochrome monitor can be connected to the 15-pin video port. A printer can be connected to the 9-pin printer port. The ThinWire Ethernet port supports IEEE 802.3 (standard Ethernet) network communications connections over the ThinWire Ethernet cable.

MR-1086-1246 MA-0132-87

Systems Introduction 1-3

Figure 1-3 shows the rear view of the MicroVAX 2000 and labels each connector. Like the VAXstation 2000, the MicroVAX 2000 supports a modem or a terminal on the 25-pin communication port. The MicroVAX 2000 supports the DECconnect strategy which uses the modified modular jack (MMJ) 6-conductor telephone type cable (DEC423 asynchronous protocol) for connection to the terminals. The DEC423 converter changes the 15-pin video port and the 9-pin printer port (RS232 protocol) to three MMJ communication ports. Port 1 on the DEC423 converter is reserved for the console terminal. Ports 2 and 3 can have either a terminal or a printer attached to them. The operating system software configures each port for either a terminal or a printer. The ThinWire Ethernet port supports IEEE 802.3 (standard Ethernet) network communications connections over the ThinWire Ethernet cable.

Figure 1-3: Rear View of the MicroVAX 2000 System

1.2 Mass Storage Expansion Box for Both Systems

Additional mass storage devices are contained in expansion boxes that look very similar to the system box. Figures 1-4 and 1-5 show the front view of the expansion boxes.

The hard disk expansion box contains an RD53 or RD54 hard disk drive. The tape drive expansion box contains a TK50 tape drive and a controller board. Each expansion box contains a power supply, a resistor load board (to regulate the power supply), and the drive.

Figure 1-4: Front View of the Hard Disk Expansion Box

MR-1286-1406 MA-0065-87

Figure 1-5: Front View of the Tape Drive Expansion Box

MR-1286-1410 MA-0064-87 Both expansion boxes connect to the system box through an expansion adapter that attaches to the bottom of the system box. The expansion adapter has three connectors on the back labeled ports A, B, and C. Port A connects the tape expansion box to the system. Port B connects the hard disk expansion box to the system. Port C is reserved for future options. Figure 1-6 shows the back of a MicroVAX 2000 system box with an expansion adapter.

Figure 1-6: System Box with Expansion Adapter

1.3 Options

1.3.1 Internal Memory Options

Two additional memory modules are available for both systems. One is a 2megabyte memory module and the other is a 4-megabyte memory module. The memory module is located in the system box and is connected directly to the system module.

1.3.2 ThinWire Ethernet Option on MicroVAX 2000

ThinWire Ethernet is an option on the MicroVAX 2000. It comes standard on the VAX station 2000. It adds the capability of connecting the system to the DECnet through the ThinWire Ethernet network. The option consists of a network interconnect module that is located in the system box and is connected to the system module through two 40-conductor cables.

1.4 FRU Locations

Figure 1-7 shows the locations of the FRUs in the system box. Figure 1-8 shows the locations of the FRUs in the expansion boxes.

VAXstation 2000 AND MicroVAX 2000 SYSTEM BOX

MA-0160-87

Figure 1-8: FRU Locations in the Expansion Boxes

VAXstation 2000 AND MicroVAX 2000 EXPANSION BOXES

MR-1186-1275 MA-0133-87

Chapter 2 Testing and Troubleshooting

2.1 Introduction

This chapter describes how to test and troubleshoot the VAXstation 2000 and the MicroVAX 2000 systems. Differences between the VAXstation 2000 and the MicroVAX 2000 are specifically identified in the text.

This chapter contains the following sections.

- How to use console mode: determining the console device, entering console mode, exiting console mode, utilizing the diagnostic console device, and where to find a list of the console commands.
- How to run the diagnostic tests and interpret the error codes for each test: power-up tests, self-test, and system exerciser.
- How to troubleshoot all devices in the system.
- How to use the utilities.

2.2 Using Console Mode

The VAXstation 2000 and the MicroVAX 2000 systems have two modes of operation: program mode and console mode. Normal operation of the VAXstation 2000 and the MicroVAX 2000 is in program mode, that is, with the operating system controlling the system. Console mode allows the user to control the system from the console terminal using the console commands described in Appendix B. Console mode is contained in ROM on the system module.

Testing is done while in console mode. The system returns the >>> prompt when it is in console mode. Table 2-1 lists the prompts and the mode of operation each prompt represents.

Table 2-1: Prompts

Prompt	Mode of operation	
>>>	Console mode. Console commands are listed in Appendix B.	
\$	Program mode (VMS operating system)	
%	Program mode (Ultrix operating system)	
\$ %	Program mode (VMS operating system) Program mode (Ultrix operating system)	_

2.2.1 Determining the Console Device

The console device for a VAXstation 2000 system is the keyboard (LK201) and monitor (VR260) connected to the video port. The keyboard inputs commands at 4800 baud and the monitor displays output from the video circuits.

The console device for a MicroVAX 2000 system is the terminal (VT220 or similar terminal) connected to connector 1 on the DEC423 converter. The terminal operates at 9600 baud.

2.2.2 Entering Console Mode

Console mode is entered any time the CPU halts. The CPU can be halted automatically or manually. A halt means that CPU control has passed control from the operating system to the console mode program in ROM. If the system halts the CPU, then the console mode program checks the nonvolatile RAM (NVR) for user-defined instructions on how to handle the halt. If you manually halt the CPU, the system enters console mode program immediately without checking the NVR for instructions.

You can manually halt the CPU and enter console mode by one of the following methods.

- HALT button—Press the halt button. It is located next to the printer port on the back of the system box. The >>> prompt is displayed when ready for console commands.
- BREAK key—Press the BREAK key on the diagnostic console device that is connected to the printer port with the BCC08 cable. The >>> prompt is displayed when ready for console commands.

The system automatically halts the CPU for the following reasons.

• After power-up testing—If the default recovery action is halt, the system automatically halts the CPU and enters console mode after power-up tests are complete. See Section 2.5.4 for information on setting the default recovery actions.

- For a boot failure—If the system fails to boot properly, the system automatically halts the CPU and enters console mode. See Section 2.5.2 for information on setting the default boot device.
- On a system error—If the CPU detects a severe corruption of its operating environment, it halts and reads the default recovery action in the NVR. The default recovery action can be restart, boot, or halt. When it is restart and the restart fails, then the system automatically tries to boot the operating system software. If the boot fails, the CPU halts and enters console mode. When the default recovery action is boot and the boot fails, the CPU halts and enters console mode. When the default recovery action is halt, the CPU unconditionally halts and enters console mode.

One other way to halt the CPU is when the operating system software executes a halt instruction. The CPU then reads the default recovery action in the NVR and acts on it as described above.

2.2.3 Exiting Console Mode

Console mode is exited by typing one of the following console commands.

BOOT—This command initializes the CPU and boots the operating system software from the device specified. If no device is specified, the system searches each on-line device until the operating system software is found. The boot command starts the system similar to when power is turned on except that the power-up tests are not run. If the system attempts to boot over the net (ESA0) and no software is available on another node, the system keeps looking for the software indefinitely. If a boot message for the operating system software does not appear shortly after the Ethernet boot message (ESA0) is displayed, then you must press the halt button to abort the Ethernet boot. If you still need to boot over the Ethernet, make sure the node with the operating system software is loaded. Run the Ethernet loopback utility (TEST 90) to check the networking capability of the system if the Ethernet boot continues to fail.

When a boot is invoked using this boot command, you can specify several boot command flags by bit encoding the flags in a flag word specified with the /R5: qualifier. These command flags are listed in Paragraph 2.5.3.

Testing and Troubleshooting 2-3

- CONTINUE—This command instructs the CPU to continue the operating system software at the address contained in the program counter (PC). This command starts up the operating software where it was halted provided no console test commands were run. Running a test command alters the PC and memory so that the operating system software cannot be started properly by entering the continue command. If a test command was entered, use the boot command to start the operating system software. The continue command is similar to the start command. The start command can specify the address to start the operating software and the continue command has the operating software continue where it left off.
- START—This command starts the operating system software at a specified address. If no address is given, the contents of the PC are used. However, running a test command alters the PC and memory so that the operating system software cannot be started properly by entering the start command. If a test command was entered, use the boot command to start the operating system software.

2.2.4 Diagnostic Console Device

There is a diagnostic console device available on the VAXstation 2000. The MicroVAX 2000 can use this device if the DEC423 converter is removed.

The diagnostic console device can be utilized by connecting a terminal (such as the VT100 or VT220) to the printer port with the special BCC08 cable. The terminal operates at 9600 baud. Field service technicians can use this terminal as a diagnostic tool to isolate a problem in the normal console device.

To use this diagnostic console device you must turn off power, connect the BCC08 cable to the printer port and terminal, and then turn power back on. The diagnostic console device now controls the system. The normal console monitor displays video test patterns on the VAXstation 2000 when the video circuits are tested. The normal console keyboard does not operate.

2.2.5 Console Commands

Console commands are listed in Appendix B.

2.3 Testing

Testing procedures on the VAXstation 2000 and the MicroVAX 2000 systems are almost identical. The differences between the systems are explained where applicable. All diagnostic tests are ROM-based and testing is done while in console mode. Tests are executed in either of two ways:

- Automatically—When power is turned on the power-up tests begin.
- Manually—By entering one of the console test commands on the console terminal. See Appendix A for a complete listing of the test commands.

2.3.1 Power-up Tests

Power-up tests run each time the system power is turned on. Power-up testing consists of a sequence of tests executed for each device installed in the system. The test number of each device is listed on the power-up screen display as the device is tested. Figure 2-1 shows an example of the powerup screen display. The first line indicates the CPU name (KA410-A) and the ROM version (V1.0). The test numbers are listed next in descending order from the first test, F, to the final test, 1. TEST F will have an underscore after it on the MicroVAX 2000 to indicate that TEST F was not run. Note in Figure 2-1 that tests 4, 3, 2, and 1 have an underscore (_) immediately after them. This underscore indicates that there is no option device installed for that test; thus, no tests are done. TEST F has an underscore after it on the MicroVAX 2000 systems because the monochrome video circuits are not used by the MicroVAX 2000. No other test numbers can have underscores after them. An asterisk (*) after TESTS 4 through 1 indicate that an option is installed, but its ROM is destroyed and the option device must be replaced. Only TESTS 1 through 4 can have an asterisk after them. Figure 2-2 lists the symbols that can appear in between the tests and what they indicate.

Figure 2-1: Example of Power-up Tests Screen Display

KA410-A V1.0

F...E...D...C...B...A...9...8...7...6...5...4_...3_..2_..1_..

Figure 2-2 lists the definitions of the symbols that appear between the test numbers in the power-up test countdown.

Testing and Troubleshooting 2-5

Figure 2-2: Power-up Symbols Defined

- ... Device tested successfully or has a soft error
- ?.. Device has a hard error
- _.. Device not installed or not tested
- *.. Device installed but its ROM is destroyed

If any hard errors (errors that indicate the device must be replaced for proper operation) are found during power-up testing, a question mark is placed after the failing test number during the countdown sequence. An error summary of all errors detected is listed after the power-up sequence is complete. Two question marks in the error summary indicate a hard error. Error codes that indicate the status or soft errors do not put a question mark after the failing test number in the sequence, but do list the error code in the error summary. Figure 2-3 shows the power-up screen display with a hard error found in TEST F and a soft error found in TEST E. The error summary for each failed device is displayed before the boot sequence is started. However, the screen usually scrolls so fast when the system starts to boot that you may not be able to see what the error summary contained (if there was an error summary). To see what errors the power-up tests found, press the halt button and enter TEST 50 on the console terminal. TEST 50 is the command for bringing up the configuration table. The configuration table is created during power-up testing. This configuration table contains all of the error codes listed in the power-up error summary as well as error codes for all devices installed in the system. The error codes in the configuration table are updated every time self-test is run. See Paragraph 2.5.1 for an explanation of how to use the configuration table.

Each error summary consists of one or two question marks, a test number, the ID number of the failed device, and an eight-digit error code. For example, in Figure 2-3, the first line of the error summary shows a hard error for TEST F, a device ID number of 00B0, and an error code of 0001.F002. The second line shows a soft error for TEST E, a device ID of 0040, and an error code of 0000.0005. Section (2.3.1.1) describes the error codes.

Figure 2-3: Example of Power-up Tests Screen Display with Errors.

KA410-A V1.0 F?..E...D...C...B...A...9...8...7...6...5...4_..3_..2_..1_.. ?? F 00B0 0001.F002 ? E 0040 0000.0005

If there is a fatal error in the NVR during power-up testing, the system stops testing the other devices and displays ?14 TOY ERR on the screen. When this happens, the only way to determine the cause of the problem is by viewing the LEDs on the keyboard. One of the LEDs will be lit to indicate the failing module. Table 2-2 lists the LEDs and which module has failed.

Table 2-2: Keyboard LEDs Defined

Keyboard LED	Failing module
Hold Screen	System module
Lock	Not used
Compose	ThinWire Ethernet option module
Wait	Not used

Once power-up testing is complete and no fatal or hard errors are found, the system boots the operating system software. Both the VAXstation 2000 and the MicroVAX 2000 boot the operating system software the same. The only difference between the two is that the VAXstation 2000 clears the console screen before it boots and the MicroVAX 2000 does not. If a default boot device is loaded in the NVR, the system boots off of that device. If no default device is loaded in the NVR, the system searches every on-line storage drive for the operating software. DUA2 is searched first if a floppy diskette is loaded. Otherwise, it is not searched at all. The hard disks are searched next, DUA0 then DUA1. MUA0, the tape drive, is checked after the hard disk drives if it is installed and a cartridge is loaded. Finally, the system searches the Ethernet network for the software and ESA0 is listed on the screen. The system continues to search the Ethernet network until the operating system software is found.

2.3.1.1 Power-up Test Error Codes

The power-up test error codes indicate status and/or error information. Any errors found by power-up tests are listed in the error summary after the power-up test countdown sequence. This summary, if any, gives you a brief summary of the errors. Table 2-3 lists the test numbers and the devices that are tested during that particular test. To look at the complete list of devices and the status of that device, you must display the configuration table. The configuration table lists every device in the system and also lists the results of the self-test and power-up tests and is updated each time self-test is run. The error codes for each device in the configuration table are explained in the troubleshooting section for that individual device. Remember that the configuration table contains the results of the self-test and power-up tests and not the results of the system exerciser. Figure 2-4 shows an example of the configuration table and for an explanation of the configuration table, see Paragraph 2.5.1.

Figure 2-4: Example of the Configuration Table

```
>>> TEST 50
KA410-A V1.0
ID 08-00-2B-02-CF-A4
?? MONO
            0001.F002
? CLK
            0000.0005
  NVR
            0000.0001
  DZ
            0000.0001
      MEM
            0002.0001
      00200000
  MM
            0000.0001
  FP
            0000.0001
  IT
            0000.0001
  HDC
            1710.0001
      000146B8 0000000 00000320
  TPC
            0202.0001
      FFFFFF03 01000001 FFFFFF05 FFFFF05 FFFFF05 FFFFF05 ...
  SYS
            0000.0001
            0000.0001 V1.0
  NI
```

```
>>>
```

The most common good error code is 0000.0001. There are, however, some devices that use the first four digits in the error code to indicate the status of the device and the last four digits to indicate the error found on the device. The memory (MEM) error code, for instance, contains 0002.0001 which indicates two megabytes of memory is available (0002.) and no error found (.0001). On devices like these, the last four digits always indicate .0001 as a good (non-error) indication.

Some error codes indicate no error at all and give a status of the device such as the clock (CLK) which shows that the date and time has not been set. This is not an error, just a status of the clock circuits.

Any error code other than 0000.0001 on the MONO, MM, FP, IT, or SYS devices indicates a hard error and that device must be replaced for proper operation of the system. The other devices such as CLK, NVR, DZ, MEM, HDC, TPC, and NI may have a status or a soft error message in the error codes and may still operate normally.

See the troubleshooting procedures section (Paragraph 2.4) for each device to determine whether or not the error code indicates a fault or a status for the device.

2.3.2 Self-test

Self-test allows you to test every device again individually, a few at a time, or all of them sequentially just like power-up tests. To individually test a device, enter TEST # where # is the test number of the device you want tested. Table 2-3 lists the test numbers and the devices tested by those numbers. Figure 2-5 shows an example of running self-test successfully on the disk controller.

Figure 2-5: Example of Running Self-test on the Disk Controller

>>> TEST 7 7... To test a group of devices, enter TEST followed by the test number of the first device to be tested and then the test number of the last device to be tested. Figure 2-6 shows an example of testing a group of devices. In Figure 2-6, all tests between C and 4 are tested successfully. Note that you cannot pick and choose which devices to test between C and 4, all tests between C and 4 are tested when entered as a group.

Figure 2-6: Example of Running a Series of Self-tests

```
>>> TEST C 4
C...B...A...9...8...7...6...5...4_...
>>>
```

To test all devices, enter TEST F 1. The MicroVAX 2000 skips over the MONO video test (TEST F) since it does not use the video circuits.

Test Number	Device Tested	
1	Option module (Network Interconnect module) (NI)	
2	Option module (not available)	
3	Option module (not available)	
4	Option module (not available)	
5	Interrupt controller and ThinWire Ethernet ID ROM (SYS)	
6	Tape controller. (TPC)	
7	Disk conroller. (HDC)	
8	Interval timer. (IT)	
9	Floating point unit. (FP)	
А	Memory management unit. (MM)	
В	Memory. (MEM)	
С	DZ controller. (DZ)	
D	Non-volatile RAM. (NVR)	

Table 2-3: Self-test Commands

Table 2-3 (Cont.): Self-test Commands

Test Number	Device Tested
E	Time-of-year clock. (CLK)
F	Base video (MONO) (VAXstation 2000 only)

2.3.2.1 Self-test with Loopback Connectors

Customer mode self-test does not test the drivers or the lines of the serial line conroller (DZ) since loopbacks are not used. Run self-test in field service mode to test the DZ drivers by installing the loopback connectors on the back of the system. Follow one of the procedures below.

To test the DZ on VAXstation 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and a loopback (p/n 29-24794) on the 9-pin printer port. Run TEST C. You cannot use loopback connectors if you are using the diagnostic console device with the BCC08 cable on the printer port since there is no loopback connector for the video port.

To test the DZ on MicroVAX 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and install an MMJ loopback on both ports 2 and 3. Run TEST C.

NOTE: The ThinWire Ethernet port on the back of the system box must be terminated properly when running diagnostics on the network option (TEST 1) otherwise an error code of 0000.7001 or greater is listed in the configuration table.

2.3.2.2 Self-test Error Codes

Figure 2-7 shows how an error is displayed if found during self-test. This example shows an error on the disk controller during self-test. The 84 FAIL indicates an error was found on the device tested. You must display the configuration table (TEST 50) after self-test is complete to see the error code, if there is an error during self-test, since the error codes do not appear on the screen. The configuration table lists every device in the system, lists the results of the self-test and power-up tests, and is updated each time self-test is run. The error codes for each device in the configuration table are explained in the troubleshooting section for that individual device. Remember that the configuration table contains the results of the self-test and power-up tests and not the results of the system exerciser. See Paragraph 2.5.1 for an explanation of the configuration table.

Testing and Troubleshooting 2-11

Figure 2-7: Example of a Self-test Error on the Disk Controller

```
>>> TEST 7
7?..
84 FAIL
>>>
```

(You must display the configuration table to see the error code)
2.3.3 System Exerciser Diagnostics

The system exerciser simulates a worst-case situation test for each device and checks how the device operates under these conditions. It does not use the configuration table to list its results of the tests. The system exerciser has a separate display that appears on the screen as the exerciser is running. Any errors found are displayed in the exerciser display. When examining the exerciser display, a single question mark in the far left column indicates a soft error, a double question mark indicates a hard error, and the absence of question marks indicate success. Figure 2-8 shows an example of the exerciser display.

The system exerciser exercises most of the devices. However, some devices such as the memory management unit (MM) and the interval timer (IT) are tested through the testing of other devices and are not displayed. Of the devices the exerciser does exercise, it runs each one sequentially until all have been run once, then it runs them all at the same time (worst-case). This type of testing usually finds any intermittent failures.

The system exerciser has two modes: customer mode and field service mode. Customer mode system exerciser (TEST 0) does not use loopback connectors and does not fully test all of the devices. Field service mode system exerciser requires loopback connectors installed and removable media from the maintenance kit inserted and loaded. You must initialize the floppy diskette in the maintenance kit with a special diagnostic key so the exerciser can perform write tests on the RX33. Refer to Paragraph 2.5.11 for more information on creating the special diagnostic keys. Once the floppy has been initialized, load it into the RX33 (if a full read/write test of the RX33 is necessary) before you run the system exerciser in field service mode. You must also initialize the COMPACTape cartridge in the maintenance kit with a special diagnostic key so the exerciser can perform read/write tests on the TK50. Refer to Paragraph 2.5.11 for more information on creating the special diagnostic keys. Once the COMPACTape cartridge has been initialized, load it into the TK50 (if a full read/write test of the TK50 is necessary) before you run the system exerciser in field service mode. If the RX33 or the TK50 are not loaded with the special-key media, the system exerciser does not do destructive writes to them and tests them the same as it does during the customer mode system exerciser. This special-key on the media prevents the exerciser from accidentally destroying data on the customers floppy diskette or COMPACTape cartridge. The field service mode system exerciser is available in a run once (TEST 101) and a run forever (TEST 102) configuration.

2.3.3.1 System Exerciser Diagnostic Commands

Table 2-4 lists the system exerciser diagnostic commands.

Table 2-4: System Exerciser Diagnostic Commands

Test Commands	Description of Commands
0	Runs customer mode system exerciser. It exercises each device once sequen- tially, then exercises them simultaneously, and stops when the slowest device finishes its second pass. No loopback connectors and no removable media re- quired.
101	Runs field service system exerciser. It exercises each device once sequentially, then exercises them simultaneously, and stops when the slowest device finishes its second pass. Do not stop the exerciser before it finishes exercising every device twice (second pass). Loopbacks and removable media required.
102	Runs field service system exerciser. It exercises each device once sequentially and then exercises them simultaneously until you enter a $\boxed{CTRL/C}$. Note that the exerciser takes up to thirty seconds to stop after you enter $\boxed{CTRL/C}$. Do not stop the exerciser until every device is exercised twice (second pass). Also, do not press the halt button to stop the exerciser. Loopbacks and removable media required.

When the exerciser is started, PRA0 is displayed and the monitor connected to the video port on the VAXstation 2000 blinks white and black several times while the monochrome circuits are being tested. The results of the MONO tests are then displayed on the console screen. MicroVAX 2000 does not use the MONO circuits and, therefore, does not test them. The DZ test results are the first to be displayed on the console screen. The rest of the devices are then exercised one at a time and the results are listed on the display. The console displays the results of each device until the last device is finished testing. When the last device is done, the exerciser starts running all devices together at the same time. When this happens, the monitor connected to the video port starts blinking again until the slowest device finishes testing. On the MicroVAX 2000, the console terminal holds the first pass display until the slowest device is done testing then displays a new exerciser display. The console screen (VAXstation 2000 and MicroVAX 2000) displays the results of each device tested. This display stays on the screen for about 10 seconds, then the exerciser starts running all devices together again if TEST 102 was entered. If TEST 0 or TEST 101 was entered, the exerciser stops after the slowest device is done testing. The halt message is displayed when the exerciser is stopped.

To run the field service mode system exerciser on VAXstation 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and a loopback (p/n 29-24794) on the 9-pin printer port. Insert and load the floppy diskette

and TK50 COMPACTape cartridge from the maintenance kit if the system has these devices installed. Run the exerciser by entering TEST 101 or TEST 102. If you are using the diagnostic console device, you will get errors on the DZ line since there is no loopback for the video port.

To run the field service mode system exerciser on MicroVAX 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and install an MMJ loopback on both ports 2 and 3. Insert and load the scratch floppy diskette and scratch TK50 COMPACTape cartridge from the maintenance kit if the system has these devices installed. Run the exerciser by entering TEST 101 or TEST 102. If the scratch floppy or TK50 cartridge is not installed, the system tests those devices the same as in customer mode.

2.3.3.2 System Exerciser Error Codes

Figure 2-8 shows an example of the system exerciser display while running the system exerciser in field service mode. Customer mode gives the same display, but with a CU in place of the FS on the top of the display.

Figure 2-8: System Exerciser Display Example

KA4	110	-A V1.0		01	F8			
	F	00B0	MONO	0000.0	0001	2	0	00:00:55.01
	C	0080	DZ	0000.0	0001	5	0	00:01:28.03
	В	0010	MEM	0175.0	0001	2	0	00:02:03.07
	7	0090	HDC	2000.0	0001	4	0	00:02:08.58
?				0700.7	7091		0	00:02:08.58
??				1002.0	0051		0	00:01:03:45
				2500.0	0001			
	6	00A0	TPC	1000.0	0001	9	0	00:02:44.04
				1300.0	0001			
??	1	0000	NI	0000.1	7004	3	0	00:04:46.32
>>:	>							

(The error codes are defined in the troubleshooting procedures for each individual device)

The first line indicates the CPU name (KA410-A), the ROM version (V1.0), the ROM status (01 — the ROM is corrupted if this is anything other than 01), and the mode of the system exerciser (CU for customer and FS for field service mode). The next several lines list information on the devices that are exercised by the system exerciser.

The first column of the display lists the test number (F,C,B,7,6,1). TESTS 4 through 1 are option modules and these options may not be installed. They

are listed in the display only if they are installed. The second column lists the device identifier (00B0, 0080, 0010,...). Next is the mnemonic for each device (MONO, DZ, MEM,...) followed by the error code (0000.0000) for that device (the HDC and TPC devices have additional error codes for each drive). After the error code is the number of times the device was tested followed by the time of the last pass the exerciser made on that device. The time is in the format of days hours:minutes:seconds.hundredths of seconds. Question marks identify hard (??) and soft (?) errors. See the troubleshooting procedures (Paragraph 2.4) for the device that has an error detected with it.

2.4 Troubleshooting Procedures

Each section below contains troubleshooting information for the device indicated. Find the section below with the mnemonic (such as MONO or TPC) that you want to troubleshoot. Once the section is located, read through the procedures to familiarize yourself with the testing of the device.

2.4.1 MONO — Monochrome Video Troubleshooting Procedures (VAXstation 2000 only)

You can troubleshoot the monochrome circuitry on the system module in either customer mode or field service mode. Both modes test the monochrome circuits the same. This procedure does not troubleshoot the video monitor, just the video circuits on the system module.

2.4.1.1 Self-test

To run self-test on MONO, enter TEST F. The monitor connected to the video port blinks white and black several times. This is normal. The results of the self-test are displayed when self-test is complete. Any error code other than 0000.0001 indicates a fault in the monochrome video circuits. You must replace the system module to fix this problem.

2.4.1.2 System Exerciser

To run the system exerciser, enter TEST 0 for customer mode or TEST 101 for field service mode. The monitor connected to the video port blinks white and black several times while the monochrome circuits are being tested. The results of the MONO tests are displayed on the console screen after they are tested for the first time, then displayed again after each concurrent testing. Any error code other than 0000.0001 indicates a fault in monochrome video circuits. You must replace the system module to fix this problem. This device is not exercised on the MicroVAX 2000 system since MicroVAX 2000 does not use video monitors.

2.4.2 CLK — Time-of-Year Clock Troubleshooting Procedures

You can troubleshoot the CLK circuitry in either customer mode or field service mode. Both modes test the CLK circuits the same.

2.4.2.1 Self-test

To run self-test, enter TEST E. Any error code other than 0000.0001 indicates a fault in the CLK circuits. An error code of 0000.0005 indicates that the system time is not set. Refer to the operating system software documentation to set the time. If any other error code appears in the CLK error display, you must replace the system module.

The system exerciser does not display the status of the CLK circuits. The CLK circuits are not directly tested but are tested through the testing of other circuits.

2.4.3 NVR — Non-Volatile RAM Troubleshooting Procedures

You can troubleshoot the NVR circuitry in either customer mode or field service mode. Both modes test the NVR circuits the same.

2.4.3.1 Self-test

To run self-test, enter TEST D. Any error code other than 0000.0001 indicates a fault in the NVR. An error code of 0000.0005 indicates that the battery charge is below the normal voltage level. If the battery is low, allow the system to charge the battery for five minutes and then run TEST D again. If the error code is still 0000.0005, replace the battery. A charging time of 20-25 hours is needed to fully charge the battery. Leaving the system powered up charges the battery. If any other error code appears in the CLK error display, you must replace the system module.

The system exerciser does not display the status of the NVR circuits. The NVR circuits are not directly tested but are tested through the testing of other circuits.

2.4.4 DZ — Serial Line Controller Troubleshooting Procedures

You can troubleshoot the DZ in either customer mode or field service mode. The difference between the two modes is that field service mode tests the serial line drivers on the system module and customer mode does not.

2.4.4.1 Self-test

To run customer mode self-test on either the VAXstation 2000 or the MicroVAX 2000, enter TEST C. Loopback connectors must not be installed when in customer mode. Loopback connectors must, however, be installed to run field service mode diagnostics. Any error code other than 0000.0001 indicates a fault in the DZ controller. You must replace the system module to fix the problem. If you are using the diagnostic console device, any error code other than 0000.4001 indicates a fault in the DZ controller.

VAXstation 2000

To run self-test in field service mode on VAXstation 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and a loopback (p/n 29-24794) on the 9-pin printer port. Enter TEST C. If the error code is not 0000.0001, check to see if the loopbacks are still connected. Reconnect them, if necessary, and test again. Replace the system module if the error still exists. Loopbacks cannot be used to test the DZ controller when the console device is the diagnostic console with the BCC08 cable since there is no loopback for the video port.

MicroVAX 2000

To run self-test in field service mode on MicroVAX 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and install an MMJ loopback on both ports 2 and 3. Enter TEST C. If the error code is not 0000.0001, check to see if the loopbacks are still connected. Reconnect them, if necessary, and test again. Replace the system module if the error still exists.

2:4.4.2 System Exerciser

To run the customer mode system exerciser on either the VAXstation 2000 or the MicroVAX 2000, enter TEST 0. The results are displayed on the video screen as the tests are completed.

VAXstation 2000

To run the field service mode system exerciser on VAXstation 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and a loopback (p/n 29-24794) on the 9-pin printer port. Enter TEST 101. If you are using the diagnostic console device, you will get errors on the DZ line since there is no loopback for the video port. Any error code other than 0X00.0001, where X is the serial line being used for the console device, indicates a fault in the DZ controller. You must replace the system module to fix the problem. If the console device is connected to the video port on VAXstation 2000, then you will see a 0 (zero) in the X position. If the console device is the diagnostic console device with the BCC08 cable on the printer port, then you will see a 3 in the X position. If the error code is not 0X00.0001, check

to see if the loopbacks are still connected. Reconnect them, if necessary, and test again. Replace the system module if the error still exists.

MicroVAX 2000

To run the field service mode system exerciser on MicroVAX 2000, install a loopback (p/n 29-24795) on the 25-pin communication port and install an MMJ loopback on both ports 2 and 3. Enter TEST 101 or TEST 102. Any error code other than 0X00.0001, where X is the serial line being used for the console device, indicates a fault in the DZ controller. You must replace the system module to fix the problem. With the console device connected to port 1 on the MicroVAX 2000, you will see a 0 (zero) in the X position. If the error code is not 0X00.0001, check to see if the loopbacks are still connected. Reconnect them, if necessary, and test again. Replace the system module if the error still exists. If the error still exists after replacing the system module, replace the DEC423 converter on the back of the system box.

2.4.5 MEM — Memory Troubleshooting Procedures

You can troubleshoot memory in either customer mode or field service mode. Both modes test the MEM circuits the same. These procedures are for both VAXstation 2000 and MicroVAX 2000.

2.4.5.1 Self-test

To run self-test, enter TEST B. Any error code other than 000X.0001, where X is the size of memory (megabytes) in the system, indicates a fault in the memory circuits. The problem could either be with the system module or the memory option module. To determine which module is at fault, go to Paragraph 2.5.1.2.

2.4.5.2 System Exerciser

To run the system exerciser, enter TEST 0 for customer mode or TEST 101 for field service mode. Figure 2-9 shows what the MEM system exerciser error code indicates. The status portion of the code indicates the number of pages tested during the last test pass (1 page = 512 bytes) if there were no errors found.

Testing and Troubleshooting 2-19

An error code of .0001 indicates no errors. If errors were detected during the last test pass, the error portion of the code contains the error code. Table 2-5 lists the MEM system exerciser errors and shows which module is causing the error.

Table 2-5: MEM System Exerciser Error Codes

Error Codes	Definition	
0001.001F	Compare error on the system module	_ ^
0002.001F	Compare error on the option module	
0001.002F	Parity error on the system module	
0002.002F	Parity error on the option module	

2.4.6 MM — Memory Management Unit Troubleshooting Procedures

You can troubleshoot the memory management (MM) circuitry in either customer mode or field service mode. Both modes test the MM circuits the same.

2.4.6.1 Self-test

To run self-test, enter TEST A. Any error code other than 0000.0001 indicates a fault in the memory managment circuits. You must replace the system module to fix the problem.

The system exerciser does not display the status of the MM circuits. The MM circuits are not directly tested but are tested through the testing of other circuits.

2.4.7 FP — Floating Point Unit Troubleshooting Procedures

You can troubleshoot the floating point (FP) circuitry in either customer mode or field service mode. Both modes test the FP circuits the same.

2.4.7.1 Self-test

To run self-test, enter TEST 9. Any error code other than 0000.0001 indicates a fault in the floating point circuits. You must replace the system module to fix the problem.

The system exerciser does not display the status of the FP circuits. The FP circuits are not directly tested but are tested through the testing of other circuits.

2.4.8 IT — Interval Timer Troubleshooting Procedures

You can troubleshoot the interval timer (IT) circuitry in either customer mode or field service mode. Both modes test the IT circuits the same.

2.4.8.1 Self-test

To run self-test, enter TEST 8. Any error code other than 0000.0001 indicates a fault in the timing circuits. You must replace the system module to fix the problem.

The system exerciser does not exercise the IT circuits.

2.4.9 HDC — Disk Drives and Controller Troubleshooting Procedures

You can troubleshoot the disk controller and drives using self-test and the system exerciser. These diagnostics test the disk controller on the system module and also test the drives connected to the controller. There is a maximum number of three drives that can be supported in either a VAXstation 2000 or a MicroVAX 2000. The three drives are labelled DUA0, DUA1, and DUA2. DUA0 will always be the hard disk drive (RD) located in the system box. DUA0 can be a full-height or a half-height drive. DUA1 will always be the hard disk drive (RD) located in the system box. DUA1 communicates to the system module through port B on the expansion adapter; thus allowing you to isolate DUA1 during testing, if necessary, without opening the system box. DUA2 will always be the half-height floppy disk drive (RX33) and will only be located in the system box. If DUA0 is a full-height drive, then a floppy disk drive cannot be installed because of lack of space in the system box. The disk controller labels any drive off-line that is not installed. It also labels DUA2 off-line if a floppy diskette is not properly loaded.

2.4.9.1 Self-test

To run self-test on the HDC, enter TEST 7. Self-test gives a quick status of the disk controller on the system module and the drives. You can run self-test in either customer mode or field service mode since both modes test these devices the same. The error code for the disk controller (HDC in the configuration table) contains the test results of the disk controller and the status of the three drives. Figure 2-10 shows how the error code is broken into five segments: status of DUA2, DUA1, DUA0, tape controller, and the error code if a hard error is found. The power-up error code is the same as the self-test error code.

Each drive has the same set of error codes. These codes are listed in Table 2-6. All odd-numbered error codes are soft errors or a status. All evennumbered error codes (including A and F) are hard errors. The last four digits of the error code repeat the first four digits if a hard error is found on the disk controller. Otherwise, the last four digits contain 0001 to indicate no errors or soft errors.

Error Codes	Description of error codes for each disk drive
1	Good — No error for this drive.
2	Drive select error. Disk controller or the drive failed. Replace the system module first. Replace the drive if the problem is not fixed after replacin the system module.
3	Read during read test error. The disk or diskette may not be formatted. Run the disk verifier to check out the disk. Copy the disk data onto another dis or to another system over the net if you have to reformat the drive.
4	Read after write error. Drive failed. Replace the drive first. Replace th system module if the problem is not fixed after replacing the drive.
5	Invalid UIB (DUA0 and DUA1 only). Disk needs formatting or the disk in not a Digital disk. Run the disk verifier to check out the disk. Copy the disk data onto another disk or to another system over the net if you hav to reformat the drive.
6	Drive failed to restore. Drive failed. Replace the drive first. Replace the system module if the problem is not fixed after replacing the drive.
7	Off-line — No drive installed, no floppy diskette loaded in DUA2, or DUA (in expansion box) is not turned on.
8	Drive not done error. Drive failed. Replace the drive first. Replace the system module if the problem is not fixed after replacing the drive.
9	Invalid status from controller. Disk controller or diskette failed. If DUA ro DUA1, replace the system module first then replace the disk drive if th problem is not fixed after replacing the system module. If DUA2, replac the floppy diskette first or save the data on it and reformat it. If DUA2 an the floppy diskette is not the problem, replace the system module and the replace the floppy disk drive if replacing the system module did not fix th problem.
Α	Drive select timeout error. Drive failed. Replace the drive first. Replace the system module if the problem is not fixed after replacing the drive.
F	Untested — Drive was not tested because of a hard error found on the dis controller. For example, FFF8.FFF8 indicates an error on the disk controlle and no drives were tested. Replace the system module.

Table 2-6: Power-up and Self-test Error Codes for each

If any error (except 7 and F) appears for any drive, check the drive for power and check the cables for a good connection. If the error still exists, the problem is either in the drive, in the cables, in the system module, or in the disk interface module located in the expansion adapter. If, for example, you replace one of the disks to fix an error code and the error still exists, replace the system module. If the system module does not fix the problem, replace the disk interface module.

Testing and Troubleshooting 2-23

2.4.9.2 System Exerciser

Start the system exerciser by entering TEST 0 for customer mode or install the 25-pin loopback on the communications port and enter TEST 101 for field service mode. The customer mode system exerciser does not exercise the disks as thoroughly as the field service exerciser. The field service system exerciser performs a complete read/write test on all drives and also performs a data transfer test between the disk controller and one of the drives.

The results of the system exerciser are displayed on the screen after the first test pass of each device tested and again after all devices have been run concurrently. Figure 2-11 shows the system exerciser display for the disk controller (HDC). There is one line for the controller status and one line for each drive connected to the controller. A drive that is not installed or is off-line is not listed in the display. For example, no diskette in DUA2 or an unformatted diskette in DUA2 labels DUA2 as off-line and no display for DUA2 is listed. If there are two question marks on the controller's line, replace the system module. If there is a single question mark on the drive's line, there is a soft error in the drive and the drive may operate normally. Two question marks on the drive's line indicate a hard error in the drive or an error in the controller. You must replace one or both to fix the error. Two question marks for DUA2 may also indicate bad media on the floppy diskette.

Figure 2-11: Example of System Exerciser Display for the Disk Controller

0090

HDC

1000.0001 0700.0001 1700.0001 2500.0001 2 0 00:02:09.47

Table 2-7 lists the error codes for the disk controller's line and Table 2-8 lists the error codes for the drives.

	NOTIFICAD.	
1	and a second	
ſ		

Table 2-7: HDC Disk Controller System Exerciser Error Codes Codes

Error Codes	Possible Cause	Corrective Action
X000.0001	The X indicates the drive used for the data trans- fer test.	0 = DUA0, 1 = DUA1, 2 = DUA2, and F = no data transfer test was done.
0X00.0001	Data transfer error if X is anything other than zero.	Replace the system module. If the error still ex- ists after replacing the system module, replace the drive that was used for the data transfer test. Al- ways replace the drive's device electronics board (hard disk drives only) before replacing the whole drive.
00XX.0001	The XX indicates the num- ber of errors detected dur- ing the data transfer test. Make note of the drive used for the data trans- fer test.	Run the exerciser again. Was the same drive used for the transfer test?
		If yes, and the number of transfer errors are the same (or close to the same), replace system mod- ule. Replace the drive that was used for the data transfer test if replacing the system module did not fix the problem.
		If no, and the number of transfer errors are zero, replace the drive that got errors during the data transfer test. Always replace the drive's device electronics board (hard disk drives only) before replacing the whole drive.
0000.XXX1	Controller error.	If XXX is anything other than 000 (three zeros), replace the system module.

Error Codes	Possible Cause	Corrective Action
X000.0001	The X position indicates the drive that this error code is for.	0 = DUA0, 1 = DUA1, and 2 = DUA2.
0X00.0001	The X position indicates the drive status.	The X position indicates drive status as listed be- low.
		DUA0 and DUA1: 7 writeable, formatted, UIB and RCT ok 5 writeable, formatted, no UIB and RCT 4 writeable, unformatted, no UIB and RCT 3 non-writeable, formatted, UIB and RCT ok 1 non-writeable, formatted, no UIB and RCT 0 non-writeable, unformatted, no UIB and RCT
		DUA2: 5 writeable and formatted 4 writeable and unformatted 1 non-writeable and formatted 0 non-writeable and unformatted
00XX.0001	The XX position indicates the drive error count. 00 indicates no error.	Run the exerciser again. Note the error count for the failing drive after each pass. If the count stays the same or increases, replace the failing drive. If the error still exists after replacing the drive, replace the system module. Always replace the drive's device electronics board (hard disk drives only) before replacing the whole drive.
0000.XXX1	The XXX position indi- cates the error codes for the drive. 000 indicates no error.	If anything other than zeros (0001), replace the system module. Replace the drive if replacing the system module did not fix the problem. Always replace the drive's device electronics board (hard disk drives only) before replacing the whole drive.

 Table 2-8:
 HDC Disk Drive System Exerciser Error Codes

2.4.9.3 Troubleshooting the Hard Disk Drive Expansion Box

Troubleshoot the hard disk in the expansion box (DUA1) using self-test and the system exerciser. However, if the diagnostic tests indicate an error on DUA1, perform the steps in the following procedure.

- 1. Check to make sure the expansion box has power to it and it is switched on.
- 2. Check to make sure the hard disk cable is properly connected to port B on the expansion adapter and the back of the expansion box.
- 3. Run the tests again and if the status code shows DUA1 to be off-line, troubleshoot the power supply in the expansion box.
- 4. Disconnect the cable from port B on the expansion adapter and run self-test (TEST 6). If any status other than the off-line indication (7) or the not tested indication (F) shows up in the status code for DUA1, then replace the disk controller on the system module.
- 5. If the status code does show that DUA1 is off-line after disconnecting it from port B, check the drive select jumpers on DUA1 for proper positioning. Refer to Paragraph 2.4.9.4 below for proper drive select jumper settings.
- 6. If the drive select jumper is set properly, replace DUA1 in the disk expansion box. Always replace the drive's device electronics board before replacing the whole drive.

2.4.9.4 Drive Select Jumper Settings on Disk Drives

DUA0 — Refer to Figure 2-12 to set the drive select jumper on an RD32 in the system box. Refer to Figure 2-13 to set the drive select jumper on an RD53 in the system box.

DUA1 — Refer to Figure 2-13 to set the drive select jumper on an RD53 in the expansion box.

DUA2 — Refer to Figure 2-14 to set the drive select jumper on an RX33 in the system box.

Testing and Troubleshooting 2-27

0 RESISTOR TERMINATION PACK (1)(3)(5)(7)(9)(1)(13)(5)(2) (4) (6) 10 12 WRITE DS4 DS2 RADIAL DS3 DSI RECOVERY LIFE MOD SHR-0418-85 MA-0131-87

Figure 2-12: RD32 Drive Select Jumper Setting for DUA0

Figure 2-13: RD53 Drive Select Jumper Setting for DUA0 and DUA1

2-28 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

2.4.10 TPC — Tape Drive Controller Troubleshooting Procedures

You can troubleshoot the tape drive controller on the system module and the tape drive controller in the expansion box using self-test or the system exerciser. The tape drive expansion box has an internal self-test to troubleshoot the TK50 tape drive as described in Paragraph 2.4.10.3.

These troubleshooting procedures assume that only one tape expansion box is connected to the tape port (port A) on the expansion adapter. Although the diagnostic firmware located in ROM supports up to seven devices on port A of the expansion adapter, we will only cover how to troubleshoot one tape expansion box since the VMS and ULTRIX operating systems support only one tape expansion box on either system. Also, the tape expansion box must be configured for ID address 1 on the tape port.

2.4.10.1 Self-test

To run self-test, enter TEST 6. Self-test gives a quick status of the tape controller on the system module and also the tape drive expansion box connected to the tape controller via port A of the expansion adapter. You

Testing and Troubleshooting 2-29

can run self-test in either customer mode or field service mode since both modes test these devices the same. Enter TEST 50 to see the results of the self-test. The TPC error code contains the test results of the tape controller on the system module and the tape drives connected to port A on the expansion adapter. Figure 2-15 shows how the TPC error code is broken into five segments: ID addresses of devices connected to the tape port, ID addresses of the devices that tested successfully, two possible cause indicators, and a status of the tape controller.

A status code of 0000.4001 indicates a good status for the tape controller when no devices are connected to port A. If there is a tape expansion box connected to port A and the status code is 0000.4001, then the controller does not recognize it or it is not powered up.

If the second two digits of the status code shown in Figure 2-15 (good devices) do not match the first two digits (connected devices), then there is a communication problem between the tape expansion box and the system. Disconnect the cable from port A on the expansion adapter and run self-test again. If the status code for TPC now contains anything other than 0000.4001, replace the system module. Otherwise, if the status code is 0000.4001, reconnect the cable to port A and make sure the tape expansion box is powered up. Run self-test again. If the status code for TPC is not 0202.0001 after reconnecting the cable, run the system exerciser to thoroughly test the tape controller and the tape expansion box. If the error code is 0202.0001 after reconnecting the tape expansion box, the tape controller and the expansion tape box are operating properly. Note that there may be more than one tape expansion box on systems that run an operating system other than VMS or ULTRIX. This means that the status code may be 0606.0001 for two devices at ID address 1 and 2 or FEFE.0001 for all seven devices connected to the tape port. However, if the system does use VMS or ULTRIX, the tape expansion box at ID address 1 is the only device VMS and ULTRIX can communicate with.

2.4.10.2 System Exerciser

Start the system exerciser by entering TEST 0 for customer mode or install the 25-pin loopback on the communications port, load the COMPACTape cartridge with the special-key into the TK50, and enter TEST 101 for field service mode. The customer mode system exerciser does not exercise the tape controller as thoroughly as the field service exerciser. The field service mode system exerciser performs a complete read/write test on the TK50 tape drive and also performs a data transfer test while the customer mode system exerciser does not test the TK50 tape drive at all.

The system exerciser runs a first pass test on MONO (VAXstation only), DZ, MEM, and HDC before it runs the first pass test on the TPC. The first pass test on the TPC tests the tape controller on the system module and checks the tape port for the presence of a tape expansion box only if the tape controller is operating properly. If the tape controller on the system module tests bad, the error code for the tape controller lists an error and the tape port is not checked for the presence of the tape expansion box. The first pass test of the TPC does not perform any diagnostics or data transfer tests on the tape expansion box. The first pass test only checks whether or not the tape expansion box is there and whether or not it can communicate over the tape port to the tape controller. Complete data transfer and read/write (field service mode only) testing is done on subsequent test passes. For example, in field service mode with the special keyed COMPACTape cartridge installed, the error code for the tape expansion box shows that the TK50 is not writeable (1100.0001) during the first pass. However, the second pass shows that the TK50 is writeable (1300.0001) as long as the cartridge has a good special key on it and the tape expansion box is operating properly. So you must wait for the system exerciser to complete at least two passes on the TPC to see if the tape expansion box is operating properly.

Figure 2-16 shows the system exerciser display for the TPC. There is one line for the status of the tape controller on the system module and one line for each tape expansion box connected to the tape port if it is powered up. The status of the tape controller is next to the TPC mnemonic (first line) and the status of the tape expansion box is listed under the status of the controller. An easy way of determining if any errors are detected is by looking for the question marks in the left column. If there are any question marks on the tape controller's status line, the tape controller is faulty and the error code identifies the problem. Refer to Table 2-9 to decifer the tape controller's error code and determine how to fix the problem. If there are any question marks on the tape expansion box's status line, the problem could be in either the tape expansion box, the tape expansion box cable, or the tape controller on the system module. An error that is listed in the tape expansion box's error code may be a data transfer error and thus does not isolate the problem to the tape expansion box; it may still be in the tape controller on the system module. Refer to Table 2-10 to decifer the tape expansion box's error code and determine how to fix the problem.

If errors are detected with the TPC, disconnect the tape expansion box cable from port A on the expansion adapter and run the test again. This procedure isolates the tape expansion box from the system box. If any errors appear in the tape controllers error code, the problem is with the tape controller and the system module must be replaced. Otherwise, the error is in the expansion box and you must run the internal self-test on the expansion box as described below.

Figure 2-16: Example of System Exerciser Display for the Tape Controller

•					
6	00A0	TPC	1000.0001	2	0 00:03:18.26
			1300.0001		

Table 2-9 lists the system exerciser error codes for the controller's error line and Table 2-10 lists the system exerciser error codes for the tape drives error line.

Error Codes	Possible Cause	Corrective Action
X000.0001	This error code indi- cates no controller er- ror. The X indicates the transfer test drive number.	The X position indicates the tape drive that was used for data transfer testing. This number should be 1 if a tape expansion box is connected to the sys- tem and it is powered up. This number should be 8 if no tape expansion box is connected or if it is turned off. An F will always be in this position during the first pass of the exerciser. If the F is still in this position after the first pass is complete, a fatal error is detected in the tape controller on the system module and the tape expansion box is not tested.
0X00.0001	The X indicates a data transfer error if X is anything other than zero	Replace the system module. If the error still exists, replace the TK50 tape drive. Then if the error code still exists, replace the TZK50 controller board.
00XX.0001	The XX indicates the num ber of data transfer er- rors detected. Make note of the tape drive used for the data transfer test.	n-Run the exerciser again. Was the same drive used for the transfer test? If yes, and the number of transfer errors are the same (or close to the same), replace the system module. If no, and the number of transfer errors are zero or considerably less than before, replace the TK50 drive that was originally used for the transfer test. If the error code still ex- ists, replace the TZK50 controller board.
0000.XXX1	Controller error if any X is anything other than zero.	Replace the system module.

Table 2-9: TPC Tape Controller System Exerciser Error Codes

Error Codes	Possible Cause	Corrective Action
X000.0001	The X indicates the de- vice ID address of tape expansion box.	This device ID address can be 1, 2, 3, 4, 5, 6, or 7. It should normally be 1 unless the device ID address jumpers (P1, P2, P3) on the TZK50 controller board have been changed. It must never be 0. If a 0 is in this position, the device ID address jumpers are set to zero and they must be reset to another ID. The ID address must be 1 for systems running VMS or ULTRIX.
0X00.0001	The X indicates the tape cartridge status.	The X position indicates whether or not the device on the tape port has removeable or non-removeable media and also whether or not the device is write- able. 1 = removeable media, 2 = writeable, and 3 = removeable media and it is writeable. This digit should be a 1 or a 3 since the TK50 has removeable media. This digit should be a 1 in customer mode and a 3 in field service mode if the special-keyed cartridge is installed and loaded in the TK50. Note that this digit can never be a 3 in field service mode until a second pass test is done on the TPC since the system exerciser does not do a write test on the first pass.
00XX.0001	The XX indicates the driv error count during the data transfer test. 00 indicates no error.	veThe error may be in the TZK50 controller board, the TK50 tape drive, or the tape controller on the system module. Run the exerciser again but with another tape expansion box, if possible, to deter- mine if the error is on the tape controller or in the tape expansion box you removed. If the data transfer error still appears after replacing the tape expansion box, replace the system module. Other- wise, troubleshoot the tape expansion box as shown in Paragraph 2.4.10.3 below. If you do not have an- other tape expansion box to swap out, replace the following FRUs one at a time and run the exerciser after each one is replaced until there are no more transfer errors. First, TZK50 controller board; sec- ond, TK50 tape drive; third, the system module. Remember that the TK50 tape drive is not tested in customer mode and is also not tested in field ser- vice mode if the special-keyed tape cartridge is not loaded in the TK50 tape drive.

Table 2-10: Tape Drive Expansion Box System Exerciser Error Codes

Table 2-10 (Cont.): Tape Drive Expansion Box System Exerciser Error Codes

Error Codes	Possible Cause	Corrective Action
0000.XXX1	The XXX indicates the error codes. 000 indi- cates no errors.	If anything other than zeros (.0001) appear, Run the exerciser again but with another tape expan- sion box, if possible, to determine if the error is on the tape controller or in the tape expansion box you removed. If the error still appears after replacing the tape expansion box, replace the system module. Otherwise, troubleshoot the tape expansion box as shown in Paragraph 2.4.10.3 below. If you do not have another tape expansion box to swap out, re- place the following FRUs one at a time and run the exerciser after each one is replaced until there are no more transfer errors. First, TZK50 controller board; second, TK50 tape drive; third, the system module. Remember that the TK50 tape drive is not tested in customer mode and is also not tested in field service mode if the special-keyed tape cartridge is not loaded in the TK50 tape drive.

2.4.10.3 Troubleshooting the Tape Expansion Box

If the results for the TPC indicate a problem in the tape expansion box, the problem could be the TK50 tape drive, the TZK50 controller board, or the power supply. The TK50 tape drive performs an internal self-test every time the tape expansion box is powered up. The TZK50 controller also performs an internal self-test at power up. To do an in-depth self-test on the TK50 tape drive and the TZK50 controller board, follow the procedure below. Do each step indicated until you find and fix the problem.

- 1. Remove the tape drive expansion box cover.
- 2. Check all cables to make sure they are connected properly. Remove the shield to check the cables on the back of the drive. Note that there are two power cables connected to the resistor load board.
- 3. Check the jumpers on the TZK50 controller board for proper installation. Refer to Figure 2-17 for jumper locations and tape port ID address confirmation. Figure 2-17 shows the controller board set for ID address 1, with parity checking enabled, and internal diagnostics disabled. Make sure the three ID address jumpers (P1, P2, and P3) are set to ID address 1. Jumper P4 is the parity checking jumper and must be installed for normal operation. Jumper P5 is the diagnostic jumper and must not be installed for normal operation. Note the position of the spare jumper(s). Spare jumpers should be stored across P5 and one of the spare posts.

- 4. Check the three resistor network packs (Z7, Z6, and Z5) to make sure they are installed properly. If this expansion box is the only box connected to the tape port, these resistor network packs must be installed on this board. If this expansion box is not the only box connected to the tape port, then make sure the last box in the chain contains these resistor network packs and all other boxes in the chain have their resistor network packs removed.
- 5. Plug in the power cord and switch on power to the expansion box.
- 6. If the LED on the TZK50 controller board and on the TK50 tape drive do not light when power is first turned on or the fan does not turn, troubleshoot the power supply (Paragraph 2.4.13).
- 7. Watch the red light on the TK50 tape drive. It should shut off after five to six seconds after power up if no tape is installed. If it starts flashing, replace the TK50 tape drive. When a tape is installed, the red light stays lit.
- 8. Look at the LED on the TZK50 controller board. It turns on at power up, then turns off after two seconds. It must stay off once it turns off. If it does not stay off, replace the TZK50 controller board.
- 9. Insert and load a blank COMPACTape cartridge into the TK50 tape drive. Do not use the special-keyed cartridge from the kit or a cartridge that has good data, because the next few steps will erase the special key and the data on the cartridge. If you must use the special-keyed cartridge, reload the special key onto the cartridge using TEST 73 after you complete this procedure.
- 10. Switch off power to the expansion box.
- 11. Remove a spare jumper and install it onto P5. If there are two spare jumpers then both must be removed from their storage positions so one of them can be installed onto P5.
- 12. Switch on the power switch.
- 13. Wait about one minute for the test to finish. If the LED on the TZK50 controller board starts flashing during or at the end of the test, replace the TK50 tape drive. If the LED is on steady, replace the TZK50 controller board. If the LED is off, the TZK50 controller board and the TK50 tape drive are operating properly. Note that the LED comes on again at the end of the test for about two seconds to indicate that the testing cycle has completed and is starting over again. The test will continue to cycle until the P5 diagnostic jumper is removed or power is switched off.

- 14. Replace the faulty component, if any, and retest.
- 15. Set up the jumpers on the TZK50 controller board for normal operation. Spare jumpers must be stored across P5 and one of the spare posts.
- 16. This concludes the troubleshooting procedures for the tape expansion box.

2.4.11 SYS — Interrupt Controller and ThinWire Ethernet ID ROM Troubleshooting Procedures

You can troubleshoot the interrupt controller and ThinWire Ethernet ID ROM (SYS) in either customer mode or field service mode. Both modes test these circuits the same.

2.4.11.1 Self-test

To run self-test, enter TEST 5. Any error code other than 0000.0001 or 0000.0100 indicates a fault in the interrupt controller or the ThinWire Ethernet ID ROM on the system module. The 0000.0100 error code indicates that the keyboard is disconnected from the VAXstation 2000 systems. Replace just the ThinWire Ethernet ID ROM on the system module to fix an error code of 0000.0004. Replace the system module to fix any other error code. The replacement procedure for the system module instructs you to remove the Thinwire Ethernet ID ROM from the system module being removed and install it onto the new system module. If the ThinWire Ethernet ID ROM has been replaced for an error code of 0000.0004 and the same error code of 0000.0004 reappears when you retest, replace the system module instead of just the ThinWire Ethernet ID ROM.

The system exerciser does not display the status of the SYS circuits. The SYS circuits are not directly tested but are tested through the testing of other circuits.

2.4.12 NI — ThinWire Ethernet Network Option Troubleshooting Procedures

You can troubleshoot the ThinWire Ethernet network option (NI) in either customer mode or field service mode. Both modes of self-test test the network option the same. The field service mode of the system exerciser does a more in-depth testing of the option. To troubleshoot the network option, run self-test (TEST 1) or run the system exerciser (TEST 0 for customer mode or TEST 101 for field service mode).

Self-test and the system exerciser test the network interconnect module, the ThinWire transceiver circuits on the system module, and also perform a loopback function on the ThinWire cable. All tests fail with an error code of 0000.7004 if the ThinWire cable is not connected to the back of the system box. An error code of 0000.7008 indicates the ThinWire cable is not terminated properly. Check the ThinWire cable first if any error code has a number seven in the fifth position (0000.7000). The seven in the fifth position indicates a loopback error, but it does not exclude a problem on the network option inside the system box. An error code of 0000.0001 indicates no error and the network option is operational.

2.4.12.1 Self-test

To run self-test, enter TEST 1. Any error code other than 0000.0001 indicates a fault in either the network interconnect module or on the ThinWire Ethernet cable. Note that positions 3 and 4 (00XX.0001) in the error code indicate the number of retries over the Ethernet cable before a success. If the error code is not 0000.0001, check the ThinWire Ethernet cable on the back of the system for proper connections and terminators. Reconnect the Thinwire cable and terminators, if disconnected, and test again. If the error code is 0000.7000 or above (for example, 0000.7001 or higher), disconnect the ThinWire T connector from the back of the system and install the T connector with terminators from the service kit. Run the test again. If the error code is 0000.0001 after installing the T connector with both terminators, the problem is on the ThinWire Ethernet cable. Otherwise, if the error code is anything other than 0000.0001, replace the network interconnect module and test again with the T connector and both terminators installed. If the error code is still not 0000.0001 after replacing the network interconnect module, replace the system module.

2.4.12.2 System Exerciser

To run the system exerciser, enter TEST 0 for customer mode or TEST 101 for field service mode. Field service mode does a more in-depth test of the circuits. Any error code other than 0000.0001 indicates a fault in the network interconnect module or on the system module. Unlike the self-test for the network option, the system exerciser does not do any testing over the ThinWire Ethernet cable. It only tests the internal circuitry. If the error

code is not 0000.0001, replace the network interconnect module. If the error code is still not 0000.0001 after replacing the network interconnect module, replace the system module.

2.4.13 Power Supply Troubleshooting Procedures

Follow the flowchart in Figure 2-18 if a problem with the power supply in either the system box, hard disk expansion box, or tape drive expansion box exists. The flowchart is designed to troubleshoot the power supply in any of the three boxes.

Figure 2-18: Flowchart for Troubleshooting the Power Supply

CHECK VOLTAGE LEVELS WITH THE POWER CABLES CONNECTED!

MR-1286-1412 MA-0156-87

2.4.14 VR260 Monochrome Monitor Troubleshooting Procedures

Table 2-11 lists some symptoms of common problems with the VR260. When troubleshooting the VR260, follow the suggested corrective actions in the order listed.

Symptom	Corrective Action
No LED; blank screen.	Check the power cord connection.
	Check the 120/240 Vac setting.
	Check the fuse.
	Remove the rear bulkhead assembly and check the con- nection to the transformer assembly.
	Check the deflection board connections.
	Replace the deflection board connections.
Flashing LED.	Check the deflection board connections, including the chassis ground.
	Make sure the high-voltage anode lead has a good connec- tion with the CRT.
	Replace the deflection board.
Compressed raster; no video dis- play.	Make sure the monitor cable is connected between the system and the monitor.
	Adjust the contrast and brightness adjustments.
	Run the monochrome video diagnostics (TEST F). If a fail- ure is indicated, replace the system module in the system box before proceeding with troubleshooting the VR260.
	Remove the rear bulkhead assembly and check the cable connections to the video amp board.
	Remove the video amp board and check the CRT pin connections.
	Replace the video amp board.
Raster; no video display.	Run the monochrome video diagnostics (TEST F). If a fail- ure is indicated, replace the system module in the system box before proceeding with troubleshooting the VR260.
	Ensure good CRT connections.

Table 2-11: VR260 Troubleshooting Table

Table 2-11 (Cont.): VR260 Troubleshooting Table

Symptom	Corrective Action	
	Replace the video amp board.	
No LED but good video display.	Remove the LED bezel assembly and check for a good con- nection.	
	Replace the LED.	
	Ensure proper cable connections from the deflection board to the LED bezel assembly.	
Video display but not to specifications.	Bring up the appropriate monochrome display alignment pattern (TESTS 60, 61, or 62) and perform the adjustment according to Chapter 4.	

2.4.15 Terminal Communication Troubleshooting Procedures (MicroVAX 2000 only)

If you are having communications problems on a terminal, follow the flowcharts starting at Figure 2-20. If you have performed the loopback test on the terminal and the terminal passed the tests, follow the flowcharts starting at Figure 2-21.

Figure 2-20: Flowchart for Troubleshooting Terminal Communications

MR-1286-1408 MA-0067-87

2.5 Utilities

The utilities help the user format a hard disk, set default and restart flags, and display alignment patterns on VAXstation 2000's monitors as well as other functions. Each utility is described below and is available on VAXstation 2000 and MicroVAX 2000 unless otherwise noted. Table 2-12 lists the console mode TEST commands that invoke the utilities.

Test Number	Description of Utility		
50	Configuration table		
51	Set NVR default Boot device		
52	Set NVR default Boot flags		
53	Set NVR default recovery action flags		
54	Language inquiry menu		
60	Monochrome circle cross-hatch alignment pattern (25-pin loopback (p/n 29-24795) must be installed)		
61	Monochrome screen of E's		
62	Monochrome white screen		
70	Mass storage disk formatter		
71	Mass storage verifier		
72	Special key on floppy diskettes for field service system exerciser (25-pin loopback (p/n 29-24795) must be installed)		
73	Special key on TK50 COMPACTapes for field service system exerciser (25-pin loopback (p/n 29-24795) must be installed)		
80-8F	Reserved for future option utilities		
90	Network test utility		

Tab	le	2-	12:	Utilities
-----	----	----	-----	-----------

2.5.1 Configuration Table

The configuration table lists the status of each device installed in the system. This configuration table holds the results of the self-test and power-up tests and is updated each time self-test is run. See Figure 2-22 for an example of a configuration table. The error codes for each device in the configuration table are explained in the troubleshooting section for that individual device. Remember that the configuration table contains the results of the self-test and power-up tests and not the results of the system exerciser.

Figure 2-22: Example of the Configuration Table

```
>>> TEST 50
KA410-A V1.0
ID 08-00-2B-02-CF-A4
 MONO
           0000.0001
 CLK
           0000.0001
  NVR
           0000.0001
           0000.0001
 DZ
     MEM
           0002.0001
     00200000
 MM
           0000.0001
 FP
           0000.0001
  IT
           0000.0001
  HDC
           1110.0001
     000146B8 0028173 00000320
  TPC
           0202.0001
     FFFFFF03 01000001 FFFFFF05 FFFFF05 FFFFF05 FFFFF05 ...
           0000.0001
  SYS
           0000.0001 V1.0
  NI
>>>
```

The first line contains the CPU and the ROM version (KA410-A V1.0). The second line contains the ThinWire Ethernet hardware address (in this example it is ID 08-00-2B-02-CF-A4). The rest of the display contains the error codes for the devices installed on the system. The configuration table is built during power-up testing and the error codes are the result of the self-test and power-up tests. This configuration table is the only place the results of self-test are indicated. It is updated every time self-test is run. Additional codes on the DZ, MEM, HDC, TPC, and NI give a more detailed status on these devices as listed below.

2.5.1.1 DZ Explanation in Configuration Table

The DZ has six 8-digit numbers that contain the status of the four serial lines, the keyboard, and the mouse or tablet. Any 8-digit number other than 00000001 for the first five status codes indicates a failure. A status code of 00000000 for the keyboard indicates that the keyboard is disconnected. The sixth 8-digit number is anything other than 000012A0 (good status) or 00000000 (nothing connected) indicates a failure in the device connected to the monitor cable. The MicroVAX 2000 does not use the last two 8-digit numbers and 00000000 is the normal display for the MicroVAX systems. Figure 2-23 shows what each 8-digit number represents.

2.5.1.2 MEM Explanation in Configuration Table

The MEM has one 8-digit number that contains the amount of physical memory in the system. This number is in hexadecimal. For example, 00200000 indicates that at least 2 megabytes of memory is in the system. If there is an error in the memory, however, a second 8-digit number that contains the location of the failed memory is displayed. Figure 2-24 shows the second 8-digit number of the MEM display in the configuration table. The 3 in the last digit indicates the error is on the system module. Only the last digit needs to be explained because if any of the other seven digits are anything other than 0 (zero), then an error is on the memory option module. Table 2-13 lists whether the system module or memory option module is faultly according to the last digit in the second 8-digit number.
Figure 2-24: Example of MEM Error Display in the Configuration Table

?? MEM 0000.0020 00200000 00000003

total amount of memory in the system.

Error Codes	System Module	Option Module	
0			(creation)
1	x		
2	x	,	
3	x		
4		x	
5	x	x	
6	x	x	
7	x	x	
8		x	
9	x	x	
А	x	x	
В	x	x	
С		x	
D	x	x	
Е	x	x	
F	x	x	

Table 2-13:Determining the Location of the Failing Memory Bank

2.5.1.3 HDC Explanation in Configuration Table

The HDC has three 8-digit numbers that contain the megabyte size of the hard disk drives and of the floppy diskette in the floppy drive. Figure 2-25 shows the status codes that contain the sizes of the drives. The amount of megabytes may be different for each drive because one drive may have more revectored bad blocks than another.

Figure 2-25: Example of the Second HDC Line in the Configuration Table

2.5.1.4 TPC Explanation in Configuration Table

The TPC has eight 8-digit numbers as shown in Figure 2-26. The example in Figure 2-22 shows only six 8-digit numbers for lack of space. Each of the 8-digit numbers contain the status of the devices connected to the tape port (port A on the expansion adapter). Up to seven devices can be connected to the tape port, but VMS and ULTRIX only support one tape expansion box. The tape controller on the system module always holds ID address 0 as shown in Figure 2-26 by the FFFFF03 code in ID 0. ID address 1 contains a status code of 01000001 to indicate that the tape expansion box connected to the tape port is at this address and it has no errors. The status code 01000001 is the good status code for the tape expansion box only, not for any other type of device that the customer may have connected to port A (if any). The other ID addresses hold a status code of FFFFFF05 since, in this example, no more devices are installed at those ID addresses. Normally, when there is only one tape expansion box, it is located in ID address 1. However, the ID address may be changed to any ID address except ID address 0 since ID 0 is the tape controller on the system module. The TPC troubleshooting procedure shows how the ID address of the expansion box can be changed. Figure 2-26 shows the ID addresses of the 8-digit numbers.

Figure 2-26: Example of the Second TPC Line in the Configuration Table

TPC 0202.0001 FFFFFF03 01000001 FFFFFF05 FFFFFF05 FFFFFF05 FFFFFF05 FFFFFF05 FFFFFF05

NOTE: If there are no devices connected to port A, or if they are not powered up, the top line will indicate 0000.4001 with a single question mark for a good indication.

2.5.1.5 NI Explanation in Configuration Table

The ThinWire Ethernet network interconnect option module display in the configuration table contains the revision level of the ROM located on the NI module. V1.0 on the NI line in Figure 2-22 indicates the ROM on the network interconnect option module is version 1.

2.5.1.6 Determining the Revision Levels in the System Module's ROM

The ROM on the system module contains four separate sections of program code. These sections are the self-test code, console code, VMB code, and the system exerciser code and all have different internal revision levels. Enter TEST 80000050 to see the internal revision levels of the self-test, console, and VMB code displayed next to the KA410-A in the configuration table. An example of these three revision levels is shown in Figure 2-27. The V1.17C is for the self-test revision level, 0BF is for the console revision level, and V1.0 is for the VMB revision level. The revision level of the system exerciser is shown in the system exerciser display when the exerciser is running.

Figure 2-27: Example of the System Module's ROM Code Revision Levels

>>> TEST 80000050

KA410-A V1.17C-OBF-V1.0 ID 08-00-2B-02-CF-A4

MONO	0000.0001
CLK	0000.0001
NVR	0000.0001

2.5.1.7 Determining the Revision Levels of the Tape Expansion Box's ROMs

The tape expansion box contains two ROMs. One ROM is on the TZK50 controller board and the other ROM is in the TK50 tape drive. Perform the following steps to determine the revision levels of these two ROMs.

- 1. Power up the tape expansion box.
- Unload and remove any COMPACTape cartridge from the TK50 tape drive.
- 3. Enter TEST 73.
- 4. Enter 1 when the system prompts with VStmk_QUE_id (1,2,3,4,5,6,7) ?.
- 5. Enter 60000001 when the system prompts withVStmk_QUE_RUsure (1/0) ?.
- 6. The screen will scroll fast. Stop the screen from scrolling as soon as the information shown in the example in Figure 2-28.

Figure 2-28: Example of Tape Port Bus Information

```
receive_diagnostic
command: 1C 00 00 00 50 00
data_in: 05 1E 00 0A FB 00
status : 00
msg_in : 00
```

7. The data_in: line holds the revision levels of the ROMs. Figure 2-29 shows the codes that identify the TZK50 firmware/hardware revision and the TK50 firmware/hardware revision levels. These revision level codes are in hexadecimal.

Figure 2-29: Example of the TZK50 and TK50 ROM Revision Levels

2.5.2 Setting NVR Default Boot Device

This utility sets the default boot device in the NVR. There are five boot devices to choose from: DUA0, DUA1, DUA2, MUA0, or ESA0. Figure 2-30 shows an example of changing the default boot device from four periods (....), no default device to DUA1 (RD53 in the expansion box).

Figure 2-30: Example of Changing the Default Boot Device

```
>>> TEST 51
.... ? >>> DUA1
```

>>>

Enter a carriage return to exit TEST 51 without changing the default boot device. Enter a period (.) to clear the default boot device from NVR. Enter the device, such as DUA1, to set the default boot device to that device.

2.5.3 Setting NVR Default Boot Flags

This utility sets the default boot flags in the NVR. Table 2-14 lists the boot flags common to all operating systems. Table 2-15 lists additional boot flags that the VMS operating system uses. The boot flags in Table 2-15 has additional definitions for other operating systems. Figure 2-31 shows an example of changing the default boot flag from 00000000 to 00000010 (diagnostic boot). Enter a carriage return to exit TEST 52 without changing the default boot flag.

Figure 2-31: Example of Changing the Default Boot Flag

>>> TEST 52 00000000 ? >>> 00000010

```
>>>
```

You can specify one or any combination of boot flags in the NVR. To specify more than one flag, enter the sum value (in hex) of the flags that you want loaded into the NVR. For example, if you want to specify the RPB\$V_DIAG flag, RPB\$V_HALT flag, and the RPB\$V_MPM flag, add all three flags as shown in Figure 2-32 and enter the sum into NVR (TEST 52).

Figure 2-32: Determining the NVR Code for Three Boot Flags

RPB\$V_DIAG		00000010
RPB\$V_HALT		00000200
RPB\$V_MPM		00000800
Enter this	code	00000A10

Table 2-14: Boot Flags Used by VMB for Booting All Operating System Software

Flag	Definition
0000008	RPB\$V_BBLOCK — This skips the files-11 boot and performs only the boot block type boot.
0000010	RPB\$V_DIAG — Diagnostic boot. Secondary bootstrap is image called [SYSMAINT]DIAGBOOT.EXE.
00000020	RPB\$V_BOOBPT — Bootstrap breakpoint. Stops the primary and sec- ondary bootstraps with a breakpoint instruction before testing memory.
0000040	RPB\$V_HEADER — Image header. Takes the transfer address of the sec- ondary bootstrap image from that file's image header. If RPB\$V_HEADER is not set, transfers control to the first byte of the secondary boot file.
00000100	RPB\$V_SOLICT — File name. Prompt for the name of a secondary boot- strap file

Table 2-14 (Cont.):Boot Flags Used by VMB for Booting
All Operating System Software

Flag	Definition
00000200	RPB\$V_HALT — Halt before transfer. Executes a halt instruction before transferring control to the secondary bootstrap.
00001000	RPB\$V_PFILE — (overlays RPB\$V_USEMPM) File name. Prompt for the name of the parameters file on a network bootstrap operation.
X0000000	RPB\$V_TOPSYS — The X position specifies the top level directory number for system disks with multiple systems.

Table 2-15: Specific Boot Flags Used by VMS

	Flag	Definition	
	00000001	RPB\$V_CONV — Conversational boot. At various points in the system boot procedure, the bootstrap code solicits parameters and other input from the console terminal. If the DIAG is also on, the diagnostic supervisor then enters "MENU" mode and prompts the user for devices to test.	
	00000002	RPB\$V_DEBUG — Debug. If this flag is set, VMS maps the code for the XDELTA debugger into the system page tables of the running system.	
	00000004	RPB\$V_INIBPT — Initial breakpoint. If RPB\$V_DEBUG is set, VMS ex- ecutes a BPT instruction immediately after enabling mapping.	
	00000080	RPB\$V_NOTEST — Memory test inhibit. Sets a bit in the PFN bit map for each page of memory present. Does not test the memory.	
	00000400	RPB\$V_NOPFND — No PFN deletion (not implemented; intended to tell VMB not to read a file from the boot device that identifies bad or reserved memory pages, so that VMB does not mark these pages as valid in the PFN bitmap).	
	00000800	RPB\$V_MPM — Specifies that multiport memory is to be used for the total exec memory requirement. No local memory is to be used. This is for tightly-coupled multiprocessing. If the DIAG is also on, then the diagnostic supervisor enters "AUTOTEST" mode.	
	00002000	RPB\$V_MEMTEST — Specifies that a more extensive algorithm be used when testing main memory for hardware uncorrectable (RDS) errors.	
	00004000	RPB\$V_FINDMEM — Requests use of MA780 memory if MS780 is insuf- ficient for booting. Used for 11/782 installations.	
	00008000	RPB\$V_AUTOTEST - Used by diagnostic supervisor.	
~	00010000	RPB\$V_CRDTEST — Request pages with CRD errors to be removed from bitmap.	

Testing and Troubleshooting 2-57

2.5.4 Setting NVR Default Recovery Action Flags

This utility sets the recovery action flags in the NVR. The default recovery action flag is used by the system during power up and also if the system detects a severe error of its operating environment. There are three flags to choose from: restart, boot, or halt. Restart searches for the restart parameter block (RPB) in memory (the RPB contains addresses of certain registers that hold restart information). Boot starts booting the operating system software. Halt automatically halts the system and enters console mode. Table 2–16 lists the recovery flags available.

Number	Recovery Action Flag
1	RESTART
2	BOOT
3	HALT

Table 2-16:	Default	Recovery	Flags
-------------	---------	----------	-------

To change the NVR recovery action flag, enter TEST 53. Figure 2-33 shows an example of changing the flag from 2 (boot) to 3 (HALT). Enter a carriage return to exit TEST 53 without changing the flag.

Figure 2-33: Example of Changing the NVR Recovery Action Flags

```
>>> TEST 53
2 ? >>> 3
>>>
```

2.5.5 Language Inquiry Menu

This utility is only available on the VAXstation 2000. This utility displays the language inquiry menu on the console device. To choose another language for the keyboard, enter TEST 54 and select the proper language. Hit the return key to obtain the console prompt without changing the language. The terminal on the MicroVAX 2000 has the language menu available in the setup procedures.

2.5.6 Circle Cross-Hatch Alignment Pattern

This utility is only available on the VAX station 2000. This utility sends the circle cross-hatch alignment pattern to the monitor connected to the video port. Enter TEST 60 to display the circle cross-hatch alignment pattern. A loopback (p/n 29-24795) must be attached to the 25-pin communication port to run this utility. Hit the carriage return to stop the display.

2.5.7 Screen of E's Pattern

This utility is only available on the VAXstation 2000. This utility sends a full screen of E's to the monitor connected to the video port. Enter TEST 61 to display the screen of E's pattern. Hit the carriage return to stop the display.

2.5.8 White Screen

This utility is only available on the VAXstation 2000. This utility sends a full white screen to the monitor connected to the video port. Enter TEST 62 to display the white screen. Hit the carriage return to stop the display.

2.5.9 Mass Storage Disk Formatter

This utility formats the hard disk drives and RX33 floppy diskettes. The command to start the formatter is TEST 70. Figure 2-34 shows an example of running the formatter on DUA0. The procedure shown in Figure 2-34 is for all Digital hard disk drives. Figure 2-35 shows an example of running the formatter on an RX33 diskette in DUA2. This formatter cannot format RX50 diskettes. If the hard disk is not a Digital hard disk drive or if it is a hard disk drive that the formatter does not recognize, the formatter goes into a query mode. This query mode allows you to input specific data about the drive so the formatter can format it. Figure 2-36 shows an example of formatting an unknown hard disk drive and also explains the data needed to format the unknown disk drive.

CAUTION: Formatting destroys all user data on the disk or diskette.

To run the formatter, enter TEST 70 then enter the drive number when the formatter asks, VSfmt_QUE_unitno (0-2)? ___. Enter a 0 for the hard disk drive in the system box, enter 1 for the hard disk drive in the expansion box, and enter 2 for a diskette in the floppy drive. If you entered a 0 or 1 for a hard disk, follow Figure 2-34. If you entered 2 for a floppy diskette, follow Figure 2-35.

Figure 2-34: Example of Formatting a Hard Disk Drive

>>> TEST 70

KA410-A RDRXfmt

VSfmt_QUE_unitno (0-2) ? 0 <--- Enter drive number.</pre> VSfmt_STS_Siz RD32 <--- RD32 is DUAO. VSfmt_QUE_SerNbr (0-99999999) ? 361 <--- Enter a number. VSfmt_QUE_RUsure (DUAO 1/0) ? 1 <--- Enter a 1 for yes, O for no. VSfmt_STS_RdMbbOK <--- Manufacturer's bad block located. VSfmt_STS_FMTingOK <--- Disk formatted OK. VSfmt_STS_ChkPssOK <--- Check pass is OK. VSfmt_STS_BBRvec := 7 <--- Number of bad blocks revectored. VSfmt_RES_Succ <--- Disk is formatted

successfully.

>>>

Figure 2-35: Example of Formatting an RX33 Floppy Diskette

>>> TEST 70

KA410-A RDRXfmt

VSfmt_QUE_unitno (0-2) ? 2 <--- Enter drive number. VSfmt_QUE_RXmedtyp (1=RX33)?1 <--- Enter a 1 if RX33 diskette media. VSfmt_QUE_RUsure (DUA2 1/0) ? 1 <--- Enter a 1 for yes, 0 for no. <--- Diskette formatted OK. VSfmt_STS_FMTing OK VSfmt_STS_CkRXfmt OK <--- RX33 format checked OK. VSfmt_RES_Succ <--- Diskette is formatted successfully.

>>>

(] = Toshiba MKSE

Figure 2-36: Example of Formatting an Unknown Hard Disk Drive >>> TEST 70

KA410 RDRXfmt

VSfmt_QUE_unitno (0-2) ? 0 <--- Enter drive number. VSfmt_STS_Siz ???? <---- Unknown disk drive. VSfmt_STS_EntUIB <---- Formatter needs disk specifics. xbnsiz := 54 (S^{γ}) <--- Enter number of transfer blocks. dbnsiz := 48(82) <---- Enter number of diagnostic blocks. lbnsiz := 83236 (140,514) Enter number of logical blocks. rbnsiz := 200<--- Enter number of replacement blocks. (280) surpun := 6 (10) <--- Enter number of surfaces per unit. cylpun := 820 (\$30) <--- Enter number of cylinders per unit. wrtprc := 820 (S/2) <---- Enter the write precompensation cylinder. rctsiz := 4 (5) <---- Enter size of revectoring control table (RCT). rctnbr := 8 (\mathcal{S}) <---- Enter number of copies of RCT. secitl := 1 (τ) <---- Enter the sector interleave. staskw := 2 (2) <---- Enter the surface to surface skew. ctcekw := 9 (g) <--- Enter the cylinder to cylinder skew. mediai := 627327008) <---- Enter media MSCP ID. VSfmt_QUE_SerNbr (0-99999999) ? 361 <---- Enter serial number. VSfmt_QUE_RUBure (DUAO 1/O) ? 1 <---- Enter a 1 for yes, 0 for no. VSfmt_STS_RdMbbOK <---- Manufacturer's bad block located. VSfmt_STS_FMTingOK <---- Disk formatted OK. VSfmt_STS_ChkPssOK <---- Check pass is OK. <---- Number of bad blocks VSfmt_STS_BBRvec := 2 revectored. <---- Disk is formatted VSfmt_RES_Succ successfully. >>>

2.5.9.1 Disk Formatter Messages

All messages for the formatter start with VSfmt_. The second segment of the message indicates the type of message; STS_ for a status message, QUE_ for a question that waits for a response, and RES_ for an indication of a resultant message. Table 2-17 lists all the formatter messages and gives an explanation for each.

Fomatter Message	Explanation
VSfmt_STS_ChkPss	A check pass is being done on the disk.
VSfmt_STS_CkRXfmt	The RX33 diskette format is being checked.
VSfmt_STS_EntUIB	The formatter has sized an unknown disk and will prompt you to input information about the disk.
VSfmt_STS_FMTing	The disk is being formatted.
VSfmt_STS_RdMbb	The manufacturer's bad block is being located.
VSfmt_STS_RXfmt	The RX33 diskette is being formatted.
VSfmt_STS_Siz	The hard disk selected is being sized.
VSfmt_QUE_RUsure (DUA# 1/0) ?	The formatter uses this question as a safety check. If you want to format the disk or diskette that is indicated by the #, enter 1 for yes. Otherwise, enter any character other than 1 to abort the for- matter.
VSfmt_QUE_SerNbr (0-9999999999) ?	Enter a number for the hard disk you are for- matting. The number can be any number from 0 to 9999999999. This number should be the serial number of the drive, but does not have to be. You can enter a 0 for DUA0 and a 1 for DUA1, but any number will do.
VSfmt_QUE_unitno (0-2) ?	Enter the drive that needs formatting. Enter 0 for DUA0, 1 for DUA1, and 2 for DUA2. Any other character aborts the formatter.
VSfmt_RES_Succ	The disk has been successfully formatted.
VSfmt_RES_Abtd	The RDRX formatter has been aborted.
VSfmt_RES_ERR #	The formatter has been stopped because of the er- ror code indicated by the #. Table 2-18 lists the error codes.

Table 2-17: Disk Formatter Messages

Table 2-18: Error Codes for the Disk Formatter

Code	Description
1	Illegal unit number entered.
2	Error occurred during the RD autosizer. Either disk is not a Digital disk or the disk is bad.
3	Error occurred during formatting.
4	Error occurred during the hard disk check pass.
5	Error occurred during the floppy disk check pass.
6	No diskette loaded in the floppy drive or the diskette is not RX33 media.

2.5.10 Mass Storage Disk Verifier

This utility verifies the hard disk formats. It does not verify the diskette formats nor does it destroy data on the disks. The command to start the verifier is TEST 71. Figure 2-37 shows an example of running the formatter on DUA1.

To run the verifier, enter TEST 71, then enter the drive number when the verifier asks, VSmsv_QUE_unitno (0-1)? ___. Enter a 0 for the hard disk drive in the system box or enter 1 for the hard disk drive in the expansion box.

Figure 2-37: Example of Running the Disk Verifier on DUA1

>>> TEST 71

KA410-A RDver

VSmsv_QUE_unitno (0-1) ? 1	< Enter drive number.
VSmsv_STS_Siz RD53	< Drive being sized.
VSmsv_QUE_RUsure (DUA1 1/0) ? 1	< Enter a 1 for yes, O for no.
VSmsv_STS_RDingOK	< Read pass finished OK.
VSmsv_STS_OBBcnt = 16	< Old bad block count.
VSmsv_STS_NBBcnt = 0	< New bad block count.
VSmsv_RES_Succ	<pre>< Disk verified successfully.</pre>

>>>

2.5.10.1 Disk Verifier Messages

All messages for the verifier start with VSmsv_. The second segment of the message indicates the type of message. STS_ for a status message, QUE_ for a question that waits for a response, and RES_ for an indication of a resultant message.Table 2-19 lists all the verifier messages and gives an explanation for each.

Verifier Message	Explanation
VSmsv_STS_NBBcnt	The verifier lists the new bad block count since the last time the disk was formatted.
VSmsv_STS_NBBpos	The verifier lists the new bad block locations if any new bad blocks are found. It lists the cylinder number, surface, and the sector.
VSmsv_STS_OBBcnt	The verifier lists the old bad block count.
VSmsv_STS_RDing	The verifier is reading the disk.
VSmsv_STS_Siz	The hard disk selected is being sized.
VSmsv_QUE_RUsure (DUA# 1/0) ?	The verifier uses this question as a safety check. If you want to verify the disk indicated by the #, enter 1 for yes. Otherwise, enter any character other than 1 to abort the verifier.
VSmsv_QUE_unitno (0-1) ?	Enter the drive that you are verifying. Enter 0 for DUA0 or a 1 for DUA1. Any other character aborts the verifier.
VSmsv_RES_Succ	The disk has been successfully verified.
VSmsv_RES_Abtd	The RD verifier has been aborted.
VSmsv_RES_ERR #	The verifier has been stopped because of the error code indicated by the #. Table 2-20 lists the error codes.

Table 2-19: Disk Verifier Messages

Table 2-20: Error Codes for the Disk Verifier

Code	Description
1	Illegal unit number entered.
2	Error occurred during the RD autosizer. The disk may not be formatted.
3	Error reading the revectored block control table (RCT)

2.5.11 Special Diagnostic Key for Field Service System Exerciser

The removable media in the maintenance kit contains a special diagnostic code on it that allows the system exerciser to write on this media when running in field service mode. Without this special coding, such as on normal customer media, the system exerciser does not do write testing on the removable media devices. This safety feature prevents accidentally destroying the customers programed floppy diskettes or TK50 COMPACTapes.

There are two utilities that create these special-keys for the floppy diskette and TK50 COMPACTapes. TEST 72 creates a special-key on the floppy diskette and TEST 73 creates a special-key on the TK50 COMPACTape. The diskette and COMPACTape in the maintenance kit must be initialized with these special diagnostic keys before they can be used. The COMPACTape must be initialized every time you use it with the field service system exerciser, because the special diagnostic key on the COMPACTape is destroyed once the exerciser recognizes the key. The special diagnostic key on the floppy diskette is not destroyed when it is used. Figure 2-38 shows a successful example of creating a special-key floppy diskette. Figure 2-39 shows a successful example of creating a special-key COMPACTape cartridge. If any errors occur while running TEST 72 or TEST 73, make sure the drive is on-line and operating properly and run the special-key command again. Also, make sure the COMPACTape is not write protected.

Figure 2-38: Example of Creating the Special Key on a Floppy Diskette

>>> TEST 72

KA410-A RXmker

VSfmk_QUE_MEDtyp (O=RX50) (1=RX33) ? 0 <--- Enter media type. VSfmk_QUE_RUsure (DUA2 1/0) ? 1 <--- Enter 1 for yes, 0 for no. VSfmk_RES_SUCC <--- Keyed successfully.

>>>

Figure 2-39: Example of Creating the Special Key on a COMPACTape Cartridge

>>> TEST 73

KA410-A TPmker

VStmk_QUE_id (1,2,3,4,5,6,7) ? 1 <--- Enter ID address of drive. VStmk_QUE_RUsure (1/0) ? 1 <--- Enter 1 for yes, 0 for no. VStmk OK <--- Keyed successfully.

2.5.12 ThinWire Network Loop Testing Utility

This utility enables a ThinWire Ethernet network loop test or system ID procedure to verify correct operation of the ThinWire Ethernet port. It sets up the system to loopback Thinwire Ethernet data packets from another node which uses troubleshooting software such as NIE, Ethernim, UETP, or NCP loop testing. This troubleshooting software does Ethernet loop testing at various levels: firmware/hardware loop testing, protocol loop testing, operating system loop testing, and application loop testing. The level this utility works on is the firmware/hardware loop testing. You use this utility if booting over the network fails or if other levels of loopback testing fail. The other levels of loopback testing do not need to use this utility.

To run this utility, halt the system and enter console mode. Once in console mode, enter TEST 90 to start the utility. The screen blanks then displays _E_ net\$_util followed by the Ethernet address of the system. Now the system is ready to respond to the network loopback commands issued from any other node on the network (typically the host system). Once TEST 90 is entered, nothing more can be done on this system since this system is now acting like a loopback connector. All loopback commands must be sent from another node on the network.

When a loopback data packet is received from another node, the system checks for errors and extracts the Ethernet address of the next node that this packet must be sent to. The Ethernet address of the next node that this system is sending the loopback packet to is displayed on the screen. Most likely, the Ethernet address displayed on the screen will be the node that sent the packet, but some troubleshooting software have the capability to do three or more node loopback testing. Once all loopback testing is complete, enter a carriage return to get a report on the status of the loopback testing. Enter a <u>CTFL/C</u> to exit TEST 90 and return to the console prompt. Figure 2-40 shows an example of the report. Table 2-21 lists the definitions of each item in the report.

Figure 2-40:	Example of ThinWire Ethernet Loop Testing Using TEST
	90

>>> TEST 90				
_E_net\$_util ID 08-00-2B-0)2-CF-A4	< Ethernet a	ddress of thi	s node
08-00-2B-03-0	F-A8	< Ethernet a	ddress of nex	t node
<return></return>		< Enter a ca	rridge return	
req\$_num tx\$_cnt rx\$_cnt	- 0 - 0 - 0	sysid\$_cnt	- 0	
mxcst\$_cnt r_err	- 0 - 0	jnk\$_pkts	- 0	
r_fram r_crc	- 0 - 0	r_oflo r_buff	- 0 - 0	
t_err	- 0	t_more	- 0	
t_one t_buff	- 0 - 0	t_def t_uflo	- 0 - 0	
t_lcol	- 0	t_lcar	- 0	
t_rtry s_err	- 0 - 0	hng\$_tx	- 0	
s_babl	- 0	s_cerr	- 0	
s_miss	- 0	s_merr	- 0	

	initions	
Item	Definition	
req\$_num	System ID request response sent	
sysid\$_cnt	Unsolicited system ID's sent	
tx\$_cnt	Packets transmitted	
rx\$_cnt	Packets received	
mxcst\$_cnt	Multicast or broadcast packets received	
jnk\$_pkts	Packets received with bad format	
r_err	Total receive errors detected by lance	
r_fram	Receive framing error	
r_oflo	Receive FIFO overflow error	
r_crc	Receive crc error	
r_buff	Receive buffer in chain not available error	
t_err	Total transmit errors detected by lance	
t_more	Transmits with more than one collision	
t_one	Transmits with one collision	
t_def	Transmits deferred	
t_buff	Transmit buffer not available error	
t_uflo	Transmit FIFO underflow error	
t_lcol	Transmits with late collision error	
t_lcar	Transmit loss of carrier error	
t_rtry	Transmit maximum retry error	
hng\$_tx	Transmit failed to complete error	
8_err	Total errors reported in CSR0 of lance	
s_babl	Babble error	
s_cerr	Collision check (heartbeat) error	
s_miss	Missed packet, no buffer available	
s_merr	DMA memory access or memory parity error	

Table 2-21: ThinWire Ethernet Loopback Test Report Definitions

Testing and Troubleshooting 2-69

• .

 \bigcirc

Chapter 3 FRU REMOVAL AND REPLACEMENT PROCEDURES

3.1 Introduction

This chapter describes the removal and replacement procedures for the field replaceable units (FRUs). To use this chapter, find the name of the FRU that needs replacing in Table 3-1 then go to the section listed beside the FRU. Follow the steps in the section to remove the FRU and reverse the procedures to replace the FRU.

Table 3-1: FRU Section Listings

FRU	Section	Page	
Battery pack	3.10	3-33	
DEC423 converter (MicroVAX 2000 only)	3.15.1	3-53	
Expansion adapter	3.16	3-54	
Expansion adapter disk interface module	3.16.1	3-56	
Hard disk expansion box	3.17.1	3-58	
Keyboard (VAXstation 2000 only)	3.13	3-51	
Memory module	3.5	3-17	
Mouse (VAXstation 2000 only)	3.14	3-52	
Network interconnect module	3.6	3-18	
Power supply in hard disk expansion box	3.17.1.2	3-66	
Power supply in system box	3.11	3-64	
Power supply in tape drive expansion box	3.17.2.3	3-79	
RD32 disk drive	3.8	3-24	
RD32 disk drive device electronics board	3.8.1	3-27	

<u> </u>		
FRU	Section	Page
RD53 disk drive	3.7	3-19
RD53 disk drive device electronics board	3.7.1	3-21
RD53 disk drive in hard disk expansion box	3.17.1.1	3-60
Resistor load board in hard disk expansion box	3.17.1.3	3-70
Resistor load board in system box	3.9	3-31
Resistor load board in tape drive expansion box	3.17.2.4	3-81
RX33 floppy disk drive	3.8	3-24
System module	3.4	3-13
Tablet (VAXstation 2000 only)	3.14	3-52
Tape drive expansion box	3.17.2	3-72
Terminal disconnection from MicroVAX 2000	3.15	3-53
TK50 tape drive in tape drive expansion box	3.17.2.2	3-76
TZK50 controller board in tape drive expansion box	3.17.2.1	3-73
VR260 deflection board	3.12.2	3-39
VR260 monochrome monitor	3.12	3-35
VR260 power LED	3.12.7	3-50
VR260 rear bulkhead assembly	3.12.3	3-42
VR260 transformer assembly	3.12.5	3-45
VR260 video board	3.12.4	3-44
VR260 tube/yoke/bezel assembly	3.12.6	3-47

Table 3-1 (Cont.): FRU Section Listings

Figure 3-1 shows the locations of the FRUs as seen from the front.

Figure 3-1: FRU Locations

MR-1186-1275 MA-0133-87

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-3

3.2 Shield Removal

- 1. Turn the system power switch off and disconnect all cables from the rear of the system box.
- 2. If the system is a MicroVAX 2000, remove the DEC423 converter from the rear of the system box.
- 3. If the expansion adapter is installed, then remove the two screws shown in Figure 3-2 on the bottom of the expansion adapter to access the four screws securing the system box cover.

Figure 3-2: Expansion Adapter Cover Screw Locations

4. Remove the four system box cover screws shown in Figure 3-3.

Figure 3-3: System Box Cover Screw Locations

MR-1186-1277 MA-0070-87 5. Slide the cover off the system box as shown in Figure 3-4.

Figure 3-4: System Box Cover Removal

MR-1188-1278 MA-0071-87 6. Put the system on its feet and remove the five screws shown in Figure 3-5 from the shield.

MR-1186-1279 MA-0072-87 7. Lift the shield as shown in Figure 3-6 and rest it on the rear of the system.

Figure 3-6: Removing the Shield from the Main Chassis

MR-1186-1280 MA-0073-87 8. Hold the shield with one hand and disconnect the power cable and the drive interconnect cable(s) from the shield with the other hand. Refer to Figure 3-7.

MR-1166-1281 MA-0074-87

- 9. Lift the shield off the main chassis.
- 10. Return to the FRU removal instructions that sent you to this procedure.

3.3 System Module Assembly Removal from Shield

1. Remove the two screws shown in Figure 3-8 from the shield.

Figure 3-8: System Module Assembly Screw Locations on the Shield

MA-0075-87

2. Disconnect the two network interconnect cables shown in Figure 3-9 (if installed).

Figure 3-9: Network Interconnect Cables

MR-1186-1283 MA-0076-87 3. Remove the system module assembly from the shield as shown in Figure 3-10 and lay it down beside the shield.

CAUTION: Disconnection of the battery cable from the system module destroys all NVR memory. Be careful not to disconnect the battery cable from the system module until a procedure specifically instructs you to do so.

Figure 3-10: Removing System Module Assembly from Shield

MA-0077-87

3.4 System Module Removal

- 1. Remove the shield (Paragraph 3.2).
- 2. Remove the system module assembly from the shield (Paragraph 3.3).
- 3. Disconnect the battery cable from the system module. Refer to Figure 3-11.

Figure 3-11: Battery Cable Location

MA-0078-87

4. Remove the memory module (if installed). Refer to Figure 3-12. Two connectors disconnect as you lift the memory module.

Figure 3-12: Memory Module Removal

MR-1185-1285 MA-0079-87

5. Remove the two network interconnect cables from the system module and install them on the new system module.
6. Remove the network ID ROM shown in Figure 3-13 from the system module you are removing and install it on the system module you are installing.

Figure 3-13: Network ID ROM Location on System Module

MA-0080-87

7. You must set the system jumper, shown in Figure 3-14, for either a VAXstation 2000 or a MicroVAX 2000. Both systems use the same system module and this system jumper tells the firmware whether the module is in a VAXstation 2000 or a MicroVAX 2000. Determine which system you are working on and set the jumper accordingly.

MR-1286-1411 MA-DOB1-87

8. Install the new system module by reversing the above procedures.

3.5 Memory Module Removal

- 1. Remove the shield (Paragraph 3.2)
- 2. Remove the system module assembly from the shield (Paragraph 3.3)
- 3. Remove the memory module shown in Figure 3-15 Two connectors disconnect as you lift the module.

Figure 3-15: Memory Module Removal

4. Replace the memory module by reversing the above procedures.

3.6 Network Interconnect Module Removal

- 1. Remove the shield (Paragraph 3.2)
- 2. Remove the system module assembly from the shield (Paragraph 3.3)
- 3. Remove the network interconnect module from the shield as shown in Figure 3-16.

Figure 3-16: Network Interconnect Module Removal

MR-1186-1285 MA-0082-87

4. Replace the network interconnect module by reversing the above procedures.

3-18 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

3.7 RD53 Hard Disk Drive Removal from System Box

- 1. Remove the shield (Paragraph 3.2).
- 2. Remove the three screws shown in Figure 3-17 that secure the drive to the chassis.

Figure 3-17: Hard Disk Screw Locations

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-19

3. Slide the drive out halfway and disconnect the drive interconnect cables and the power cable from the drive as shown in Figure 3-18.

Figure 3-18: Disconnecting the Hard Disk Drive from System Box

MR-1185-1291 MA-0125-87

4. Slide the drive out of the chassis.

5. Remove two screws on each side of the drive mounting brackets shown in Figure 3-19. Remove the mounting brackets and front panels from the drive.

Figure 3-19: Drive Mounting Bracket Screw Locations

- 6. If you removed the RD53 because of an error with the drive, go to Paragraph 3.7.1.
- 7. Reverse the above procedures to replace the drive.

3.7.1 RD53 Disk Drive Device Electronics Board Removal

The RD53 disk drive has an FRU inside it. It is the device electronics board. Always replace the device electronics board on the RD53 before you replace an entire RD53 disk drive.

- 1. If a skid plate is installed on the drive, remove the four phillips screws securing the skid plate and ground clip to the frame. Remove the plate and set aside.
- 2. Loosen the two captive screws that hold the device electronics board in place and then disconnect the ground wire.

3. Rotate the board upward as shown in Figure 3-20 (the board pivots in hinged slots at the front of the drive). Be careful not to strain any of the connectors or cables, and tilt the board up and back until it rests against the outer frame.

CAUTION: Flexible circuit material is fragile and requires careful handling to avoid damage.

Figure 3-20: RD53 Device Electronics Board Removal

- 4. Disconnect the two connectors from under the device electronics board. Both connectors and cables are fragile, handle them with care.
- 5. Lift the board out of the hinged slots.

6. Position the jumpers and switches on the new board to the same position as the jumpers and switches on the old board you just removed. Refer to Figure 3-21. Also be sure the new board has the resistor terminator pack installed.

SHR-0126-85

7. Install the replacement device electronics board by reversing the above procedure.

3.8 RX33 and RD32 Drive Removal (Half-Height Drives) from the System Box

- 1. Remove the shield (Paragraph 3.2).
- 2. Remove the three screws shown in Figure 3-22 that hold the drive(s) to the chassis.

Figure 3-22: Half-Height Drive(s) Screw Locations

3-24 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

3. Slide the drive(s) out halfway and disconnect the drive interconnect cable(s) and the power cable(s) from the drive(s). Refer to Figure 3-23.

4. Slide the drive(s) out of the chassis.

5. Remove four screws on each side of the mounting brackets shown in Figure 3-24. Remove the mounting brackets and front panels from the drive(s).

Figure 3-24: Half-Height Drives Mounting Brackets Removal

- 6. If you are replacing the RX33 floppy drive, install the new RX33 by reversing the above procedures.
- 7. If you removed the RD32 because of an error with the drive, go to Paragraph 3.8.1 below. Then reverse the above procedure to reinstall the drive.

3.8.1 RD32 Disk Drive Device Electronics Board Removal

The RD32 disk drive has an FRU inside it. It is the device electronics board. Always replace the device electronics board on the RD32 before you replace an entire RD32 disk drive.

CAUTION: Do not remove any of the screws that secure the cover (cover/filter assembly) to the base casting. Removing any of the screws violates the clean area.

1. Remove the three flat head screws shown in Figure 3-25 that hold the device electronics board in place under the drive unit. Besure to locate the one screw with the nylon washer next to the drive motor when replaceing the board.

Figure 3-25: RD32 Device Electronics Board Screw Locations

2. Disconnect the cable from J4 (middle of board) as shown in Figure 3-26. The J4 connector is not keyed and can be reconnected incorrectly. Make sure the violet and yellow wire in the connector is located near the LED and the orange and blue wires are located toward the outer edge of the board when reconnecting J4.

3. Stand the board up. Be careful not to strain any of the connectors or cables, and tilt the board over center until it rests against the outer frame.

CAUTION: Flexible circuit material is fragile and requires careful handling to avoid damage.

4. Disconnect the cables from J6 and J5 as shown in Figure 3-27 from the device electronics board. Both connectors and cables are fragile—handle them with care.

SHR-0298-86

5. Remove the device electronics board from the RD32.

6. Position the jumper on the new board to the same position as the jumper on the old board you just removed (Figure 3-28). Also be sure the new board has the resistor termination pack installed.

Figure 3-28: RD32 Device Electronics Board Jumper Location

7. Replace the new device electronics board by reversing the above procedures.

3.9 Resistor Load Board Removal from System Box

The resistor load board loads down the power supply in a diskless system or when just the RX33 floppy drive is installed in the system box. The power supply does not have enough of a load on it to regulate properly in these configurations. The load board simulates the drives by drawing enough power to regulate the power supply. You must remove the load board whenever a hard disk drive is installed in the system box.

The resistor load board in the system box is different from the resistor load board in the expansion boxes. The part number of the resistor load board in the system box must be 5417163-02. The -01 version goes in the expansion boxes.

- 1. Remove the shield (Paragraph 3.2).
- 2. Remove the three screws shown in Figure 3-29 that secure the drive mounting bracket to the chassis.
- 3. Disconnect the power cable from the resistor load board.
- 4. Lift the load board up and out of the chassis.
- 5. If you are removing the load board to install a drive, remove and discard the standoffs that the load board sat on, then install the drive by reversing the removal instructions for that drive. Otherwise, install the new load board (p/n 5417163-02) by reversing the above procedures.

3.10 Battery Pack Removal

- 1. Remove the shield (Paragraph 3.2).
- 2. Remove the system module assembly from the shield (Paragraph 3.3)
- 3. Disconnect the battery cable from the system module.

Figure 3-30: Battery Cable Location

MR-1186-1296 MA-0078-87

- 4. Take the battery pack out of its holder.
- 5. Replace the battery pack by reversing the above procedures.

NOTE: A new battery needs a minimum of 25 hours of continous power on to fully charge the battery. If the battery's charge is low, you will see an error for the NVR when you power up the system.

3.11 Power Supply Removal from the System Box

- 1. Remove the shield (Paragraph 3.2).
- 2. Disconnect the power cables from the rear of the drives. If you need more room behind the drives, remove the three drive mounting screws and slide the drives out part way.
- 3. Put the system on its side and remove the four screws shown in Figure 3-31 that hold the power supply to the bottom of the chassis.

Figure 3-31: Power Supply Screw Locations in the System Box

3-34 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

- 4. Slide the power supply out of the chassis.
- 5. Replace the power supply by reversing the above procedures.

3.12 VAXstation 2000 VR260 Monochrome Monitor

You may need the following tools to repair the VR260 Monitor.

- Phillips screwdriver
- Slotted screwdriver
- High-voltage discharge tool (p/n 29-24717)

Figure 3-32 shows the FRUs in the VR260 monitor.

Figure 3-32: VR260 FRU Locations

MR-1086-1255 MA-0088-87

3.12.1 VR260 Cover

- 1. Switch the monitor power switch off.
- 2. Disconnect the power cord and video cable from the monitor. Refer to Figure 3-33.

Figure 3-33: VR260 Controls and Video Cable Locations

- 3. Carefully place the monitor on its face.
- 4. Loosen the four rubber feet on the bottom.
- 5. Slide the tilt-swivel base up and off the monitor.
- 6. Finish unscrewing the four rubber feet and remove them from the monitor.

7. Remove the four phillips cover screws shown in Figure 3-34 from the rear of the monitor.

Figure 3-34: VR260 Cover Screw Locations

8. Lift the cover off.

9. Lift the rear bezel off. Refer to Figure 3-35.

- 10. Place the monitor back down to its normal position.
- 11. Reverse the above procedures to replace the cover.

3.12.2 VR260 Deflection Board Removal

The deflection board is mounted inside the chassis door.

- 1. Remove the monitor cover (Paragraph 3.12.1)
- 2. Loosen the two 1/4-turn fasteners on the chassis door, and open the door. Refer to Figure 3-36.

Figure 3-36: VR260 Side Door Screw Locations

MR-1086-1239 MA-0091-87

- 3. Discharge and disconnect the high-voltage anode wire from the cathode ray tube (CRT) as follows.
 - Make sure the monitor's power switch is off.
 - Ground the high-voltage discharge tool (p/n 29-24717) to the tension band or the chassis.
 - Insert the high-voltage discharge tool under the anode cap on the CRT and make contact with the anode clip. Refer to Figure 3-37.

Figure 3-37: High-Voltage Discharge Tool

- Remove the discharge tool from the monitor.
- Disconnect the high-voltage anode wire from the CRT by squeezing the metal clips inside the cap.

- 4. Disconnect the following cables from the deflection board. Refer to Figure 3-38 for cable location.
 - CRT yoke (J3)
 - Power transformer (J1, blue and green wires)
 - Slip-on ground (J4)
 - Video board (J5, red and orange wires)
 - Video board (J2)

Figure 3-38: VR260 Deflection Board

- 5. Remove the deflection board from the six plastic clips on the chassis door.
- 6. Reverse the above procedures to replace the deflection board.

3.12.3 VR260 Rear Bulkhead Assembly

- 1. Remove the monitor cover (Paragraph 3.12.1).
- 2. Carefully place the monitor on its face.
- 3. Loosen the six keyhole screws shown in Figure 3-39 on the rear bulkhead assembly.

Figure 3-39: VR260 Rear Bulkhead Screw Locations

4. Slide the rear bulkhead assembly up and off.

3-42 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

- 6. Disconnect the cable from the transformer assembly.
- 7. Disconnect the grounding strap.

CAUTION: Be sure to reconnect the grounding strap when replacing the rear bulkhead assembly.

8. Reverse the above procedures to replace the rear bulkhead.

3.12.4 VR260 Video Board Removal

- 1. Remove the monitor cover (Paragraph 3.12.1).
- 2. Remove the rear bulkhead assembly (Paragraph 3.12.3).
- 3. Release the video board from the three standoffs by pressing in on the standoffs and lifting the video board.
- 4. Refer to Figure 3-41 and disconnect the following cables from the video board.
 - Deflection board (J12)
 - Deflection board (J9)
 - 3-Wire cable (J6)
 - 2-Wire cable (J7)
 - Ground wire (J8, double clip)

1

NOTE: When replacing the video board, be sure to match the keyed CRT socket on the video board to the pins of the CRT. Squeeze the standoffs while pressing the board onto the CRT.

5. Reverse the above procedures to replace the video board.

3.12.5 VR260 Transformer Assembly

- 1. Remove the monitor cover (Paragraph 3.12.1).
- 2. Remove the rear bulkhead assembly (Paragraph 3.12.3).
- 3. Remove the video board (Paragraph 3.12.4).

4. Disconnect the 2-wire cable from the deflection board (J1) and remove this 2-wire cable from the plastic clips (3) on the chassis. Refer to Figure 3-42.

Figure 3-42: VR260 Transformer Assembly

CAUTION: Make sure the transformer does not drop onto the CRT while you remove the four screws in the next step.

- 5. Remove the four screws holding the transformer assembly to the bottom of the chassis.
- 6. Reverse the above procedure to replace the transformer assembly.

3.12.6 VR260 Tube/Yoke/Bezel Assembly Removal

The tube/yoke/bezel assembly is made up of the CRT, yoke, and front bezel subassemblies.

- 1. Remove the monitor cover (Paragraph 3.12.1).
- 2. Remove the deflection board (Paragraph 3.12.2).
- 3. Remove the rear bulkhead assembly (Paragraph 3.12.3).
- 4. Remove the video board (Paragraph 3.12.4). Put the cable from J12 on the video board aside or leave it connected to the video board so it will not get misplaced.
- 5. If the tube/yoke/bezel assembly has a braided ground strap attached to the tension band, then remove it from the chassis by unscrewing the grounding screw on the chassis, not from the tension band. The braided ground strap stays connected to the tension band. Unscrew any other braided grounding straps from the chassis.
- 6. Loosen the middle screws and remove the two outer screws as shown in Figure 3-43. Do this for both sides of the chassis.

- 7. Lift the chassis from the tube/yoke/bezel assembly.
- 8. Place the new tube/yoke/bezel assembly face down and reverse the above procedures to replace the tube/yoke/bezel assembly.

CAUTION: The cable between the deflection board (J2) and the video board (J9) must be connected to the proper locations as shown in Figure 3-44. If you were to connect it backwards, (that is, the LED connector end to the video board) the green LED will not light when power is turned on.

Figure 3-44: VR260 Tube/Yoke/Bezel Assembly's LED Cable

Figure 3-45 shows the cable connections for the VR260 monochrome monitor.

3.12.7 VR260 LED Assembly

Use a small-bladed screwdriver or a similar tool for the following procedure.

Carefully pry the LED/bezel assembly off the monitor. Refer to Figure 3-46.

2. Disconnect the LED wires.

To replace the LED/bezel assembly, do the following.

- 1. Connect the LED wires to the LED/bezel assembly. The black wire is connected to the notched connector leg.
- 2. Remove the protective paper backing from the double-sided tape on the LED/bezel assembly.
- 3. Press the LED/bezel assembly in place.
3.13 Keyboard Removal (VAXstation 2000 only)

1. Unplug the keyboard cable from the rear of the monitor. Refer to Figure 3-47.

NOTE: The keyboard is a single FRU. Do not try to remove the keycaps or disassemble the keyboard.

Figure 3-47: Disconnecting the Keyboard (VAXstation 2000)

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-51

3.14 Mouse and Tablet (VAXstation 2000 only)

1. Disconnect the mouse or tablet from the monitor's cable. Refer to Figure 3-48.

NOTE: The mouse and the tablet are single FRUs. Do not try to disassemble them.

Figure 3-48: Disconnecting the Mouse or Tablet (VAXstation 2000)

MR-1186-1333 MA-0099-87

3.15 Terminal Disconnection from MicroVAX 2000

- 1. Switch off the terminal's power switch.
- 2. Disconnect the cable from the COMM connector on the back of the terminal.
- 3. Refer to the terminal's pocket service guide for troubleshooting and removal and replacement procedures for the terminal.

3.15.1 DEC423 Converter Removal from MicroVAX 2000

- 1. Switch off MicroVAX 2000's power.
- 2. Unscrew two screws on the bottom of the DEC423 converter as shown in Figure 3-49 and remove the DEC423 converter from the back of the MicroVAX 2000 system box.

Figure 3-49: DEC423 Converter's Mounting Screw Locations

- 3. One at a time, disconnect the cables from the converter you are removing and reconnect them to the same connectors on the new converter.
- 4. Connect the new converter to the back of the MicroVAX 2000 system box and screw in the two mounting screws.

3.16 Expansion Adapter Removal

The expansion adapter is not an FRU. There is one FRU module located inside the expansion adapter called the disk interface module. There is also an interface cable for the tape drive expansion box that passes through the expansion adapter and attaches directly to connector A on the back of the expansion adapter. Removal procedures for the expansion adapter are below. The removal and replacement information for the disk interface module is in Paragraph 3.16.1.

- 1. Remove the shield (Paragraph 3.2)
- 2. Remove the four screws shown in Figure 3-50 that hold the expansion adapter to the bottom of the system.

Figure 3-50: Expansion Adapter Screws

MA-0100-87

3-54 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

3. Disconnect the disk expansion cables from the disk interface module. Refer to Figure 3-51.

Figure 3-51: Expansion Cables Locations

- 4. Unscrew the tape port connector from the expansion adapter.
- 5. Replace the expansion adapter by reversing the above procedures.

3.16.1 Expansion Adapter Disk Interface Module Removal

- 1. Switch off power to the system.
- 2. Put the system box on its side and remove the two cover screws shown in Figure 3-52 and remove the cover.

Figure 3-52: Expansion Adapter Cover Screws Location

3. Disconnect the cables to the disk interface module and remove the three screws shown in Figure 3-53.

4. Reverse the above procedure to replace the disk interface module.

3.17 VAXstation 2000 and MicroVAX 2000 Expansion Box

There are two configurations of expansion boxes and both configurations are available for the VAXstation 2000 and MicroVAX 2000 systems. One configuration consists of an RD53 hard disk drive in an expansion box for 70 megabytes of storage memory. Another configuration consists of a TK50 tape drive with a TZK50 controller board in an expansion box for 94.5 megabytes of storage memory.

The expansion box with the hard disk contains five FRUs. They are the disk, disk device electronics board inside the disk, a resistor load board, the power supply, and the expansion box itself. The expansion box with the tape drive also contains five FRUs. They are the TK50 tape drive, TZK50 controller board, a resistor load board, the power supply, and the expansion box itself.

Paragraph 3.17.1 contains removal procedures for the hard disk drive expansion box and Paragraph 3.17.2 contains removal procedures for the tape drive expansion box.

3.17.1 Hard Disk Drive Expansion Box Disconnection from System Box

- 1. Switch off power to the expansion box.
- 2. Disconnect the power cable on the expansion box from the wall plug and then from the expansion box.

3. Disconnect the hard disk drive expansion box cable shown is Figure 3-54 from the back of the expansion box.

Figure 3-54: Hard Disk Expansion Box Cable

3.17.1.1 Hard Disk Drive Removal from Hard Disk Expansion Box

- 1. Switch off power to the expansion box.
- 2. Unscrew the four screws shown in Figure 3-55 and remove the expansion box cover.

Figure 3-55: Hard Disk Expansion Box Cover Screw Locations

MA-0104-87

3. Disconnect the power cable shown in Figure 3-56 from the resistor load board.

MR-1188-1306 MA-0105-87 4. Remove the five screws shown in Figure 3-57 that hold the shield to the main chassis.

MA-0106-87

- 5. Lift the shield up and off to the side of the expansion box.
- 6. Remove the three drive mounting screws shown in Figure 3-58.

Figure 3-58: Hard Disk Expansion Box Drive Mounting Screws

MA-1186-1308 MA-0107-87 7. Slide the drive out halfway and disconnect the two data cables and the power cable from the back of the drive, then remove the drive. See Figure 3-59.

Figure 3-59: Hard Disk Expansion Box Drive Cables Locations

MR-1186-1309 MA-0108-87 8. Remove the four screws shown in Figure 3-60 and remove the mounting bracket from the drive.

9. If you removed an RD53 because of an error with the drive, go to Paragraph 3.7.1 to replace the device electronics board. Replace the RD53 by reversing the above procedure.

3.17.1.2 Power Supply Removal from the Hard Disk Expansion Box

- 1. Switch off power to the expansion box.
- 2. Unscrew the four screws shown in Figure 3-61 and remove the expansion box cover.

Figure 3-61: Hard Disk Expansion Box Cover Screw Locations

MA-0104-87

4. Remove the five screws shown in Figure 3-63 that hold the shield to the main chassis.

Figure 3-63: Hard Disk Expansion Box Shield Screw Locations

MA-0106-87

3-68 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

- 5. Lift the shield up and hold it with one hand and disconnect the power cable from the drive with the other hand.
- 6. Tip the expansion box on its side and remove the four screws shown in Figure 3-64 that hold the power supply to the chassis.

Figure 3-64: Hard Disk Expansion Box Power Supply Mounting Screw Locations

NOTE: One of the power supply cables has an extension cable on it. You must remove this extension from the power supply you are removing and connect it to the same cable on the new power supply.

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-69

7. Replace the power supply by reversing the above procedure.

3.17.1.3 Resistor Load Board Removal from the Hard Disk Expansion Box

The resistor load board in the expansion box is different from the resistor load board in the system box. The part number for the resistor load board in the expansion box is 5417163-01. The -02 version is for the system box.

- 1. Switch off power to the expansion box.
- 2. Unscrew the four screws shown in Figure 3-65 and remove the expansion box cover.

Figure 3-65: Hard Disk Expansion Box Cover Screw Location

MA-0104-87

3. Disconnect the power cable from the resistor load board. Refer to Figure 3-66.

- 4. Remove the resistor load board from the shield.
- 5. Replace the resistor load board by reversing the above procedure.

3.17.2 Tape Drive Expansion Box Disconnection from System Box

- 1. Switch off power to the expansion box.
- 2. Disconnect the power cable on the expansion box from the wall plug and then from the expansion box.
- 3. Disconnect the tape drive expansion box cable shown in Figure 3-67 from the back of the expansion box.

Figure 3-67: Tape Drive Expansion Box Data Cable

3.17.2.1 TZK50 Controller Board Removal from the Tape Drive Expansion Box

- 1. Switch off power to the expansion box.
- 2. Unscrew the four screws shown in Figure 3-68 and remove the expansion box cover.

Figure 3-68: Tape Drive Expansion Box Cover Screw Locations

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-73

3. Disconnect the tape data cable (J3), the TK50 tape drive I/O cable (J1), and the power cable (P1) from the TZK50 controller board. Refer to Figure 3-69.

Figure 3-69: TZK50 Controller Board Cable Locations

- 4. Remove the TZK50 controller board from the shield.
- 5. Set the jumpers on the new TZK50 controller board in the same position as they are on the old TZK50 controller board you just removed (see Figure 3-70). If the old board does not have the three resistor packs installed (Z7, Z6, and Z8), remove them from the new board. Figure 3-70 shows the TZK50 controller board configured for ID address 1, with parity checking enabled, and internal diagnostics disabled.
- 6. Replace the TZK50 controller board by reversing the above procedure.

3.17.2.2 TK50 Tape Drive Removal from Tape Drive Expansion Box

- 1. Remove the TZK50 controller board (Paragraph 3.17.2.1).
- 2. Disconnect the power cable on the resistor load board that comes from the power supply.
- 3. Unscrew the five screws shown in Figure 3-71 that secure the shield to the main chassis.

Figure 3-71: Tape Drive Expansion Box Shield Screw Locations

3-76 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

- 4. Lift the shield up and off of the main chassis.
- 5. Remove the three drive mounting screws shown in Figure 3-72.

Figure 3-72: Tape Drive Expansion Box Drive Mounting Screw

6. Slide the tape drive out halfway and disconnect the I/O cable and the power cable from the back of the drive then remove the drive. Refer to Figure 3-73.

Figure 3-73: TK50 Tape Drive Cable Locations

7. Remove the four screws shown in Figure 3-74 that secure the mounting brackets to the sides of the drive. Remove the mounting brackets from the drive.

Figure 3-74: Tape Drive Mounting Brackets Screw Locations

8. Replace the tape drive by reversing the above procedure.

3.17.2.3 Power Supply Removal from the Tape Drive Expansion Box

- 1. Remove the TZK50 controller board (Paragraph 3.17.2.1).
- 2. Disconnect the power cable on the resistor load board that comes from the power supply.
- 3. Unscrew the five screws shown in Figure 3-71 that secure the shield to the main chassis.
- 4. Lift the shield up and off of the main chassis.
- 5. Remove the three drive mounting screws shown in Figure 3-72.
- 6. Disconnect the power cable from the back of the drive and slide the drive out of the box.

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-79

7. Put the expansion box on its side as shown in Figure 3-75 and remove the four screws holding the power supply to the chassis.

Figure 3-75: Tape Drive Expansion Box Power Supply Mounting Screw Locations

8. Replace the power supply by reversing the above procedure.

3.17.2.4 Resistor Load Board Removal from the Tape Drive Expansion Box

The resistor load board in the expansion box is different from the resistor load board in the system box. The part number for the resistor load board in the expansion box is 5417163-01. The -02 version is for the system box.

- 1. Switch off power to the expansion box.
- 2. Unscrew the four screws shown in Figure 3-68 and remove the expansion box cover.
- 3. Disconnect the two power cables shown in Figure 3-76 from the resistor load board.

Figure 3-76: Tape Drive Expansion Box Resistor Load Board Power Cable Locations

- 4. Remove the resistor load board from the shield.
- 5. Replace the resistor load board by reversing the above procedure.

3.18 Recommended Spares List

Part Number	Description	Qty
70-24268-01	VAXstation 2000 and MicroVAX 2000 system module	1
54-16802-BA	4 Megabyte memory module	1
54-16802-AA	2 Megabyte memory module	1
H7848-BA	120V power supply	1
H7848-BB	240V power supply	1
54-16804-01	Network interconnect module	1
54-17163-01	Resistor load board for Expansion Box	1
54-17163-02	Resistor load board for System Box	1
29-24794-00	9-Pin loopback connector for printer port	1
29-24795-00	25-Pin loopback connector for communication port	1
12-19245-00	Battery pack	1
54-17003-01	Disk interface module (in expansion adaptor)	1
54-17639-01	(TZK50-AA) TZK50 controller module (in expansion box)	1
TK50-AA	TK50 tape drive	1
29-26243-00	Branch suitcase	1
17-00303-07	Network interconnect interface cable (connects network interconnect module to system module)	2
17-01107-01	Internal RX/RD cable (connects internal RX and RD drives to system module)	1
17-01107-02	RX/RD cable (connects internal RX and RD drives and also the disk interface module that is in the expansion adapter to the system module)	1
17-01244-01	Internal tape port cable (connects the tape port A inside the expansion adapter to the system module)	1
17-00674-03	RD expansion adapter cable (From the disk port B on the expansion adapter to the hard disk expansion box)	1

Part Number	Description	Qty
17-01247-02	TK50 tape drive I/O cable (From TK50 to TZK50 in tape drive expansion box)	1
17-01397-01	Load board power cable extension (in tape drive expansion box)	1
17-01249-01	Internal tape data cable (from TZK50 controller board to the bulkhead connector in tape drive expansion box)	1
17-01351-02	Tape drive expansion box data cable (from the tape port A on the expansion adapter to the tape drive expansion box)	1
70-23766-01	DEC423 converter (MicroVAX 2000's RS232 to DEC423 MMJ plugs converter)	1
17-00445-02	Hard disk drive expansion box data cable	1
17-00300-XX	BCC05 printer cable	1
17-00568-01	BC18P monochrome video cable	1
17-00289-XX	BCC04-10 modem cable	1
17-00301-XX	BCC08 console cable	1
17-00313-04	BC22D-50 null modem cable	1
17-00342-01	Power cable extension to resistor load board	1
17-01090-01	Internal RD data cable in expansion box	1
17-00811-03	BC16E-25 DECconnect office cable (with MMJ ends)	2
17-00811-04 12-23599-01 H3103 12-25869-01	BC16E-50 DECconnect office cable (with MMJ ends)	1
	H8571-A 25-Pin passive adapter	3
	MMJ loopback connector	2
	ThinWire Ethernet "T" connector	1
12-26318-01	ThinWire Ethernet cable terminator	2
30-19448-06	RX50 blank media for field service system exerciser	1
30-25145-05	RX33 blank media for field service system exerciser	1
30-20515-01	TK50 blank media for field service system exerciser	1
70-21861-01	VR260 tube/yoke/bezel assembly	1
70-21862-01	VR260 LED bezel assembly	1
70-21266-01	VR260 rear bulkhead	1

FRU REMOVAL AND REPLACEMENT PROCEDURES 3-83

Part Number	Description	Qty	
54-15624-01	VR260 deflection board	1	
54-15626-01	VR260 video amp board	1	
74-30063-01	VR260 video amp board standoffs	1	
70-21863-01	VR260 brightness/contrast control	1	
70-21478-01	VR260 H/V cable	1	
70-21480-01	VR260 ground cable	1	
70-21477-01	V/D cable assembly	1	
70-21865-01	VR260 transformer assembly	1	
70-21924-01	VR260 chassis subset	1	
74-28316-01	VR260 foot	1	
12-21126-04	VR260 fuse holder assembly (Europe)	1	
12-19283-19	VR260 fuse, 240 Vac (Europe)	1	
90-07212-00	VR260 fuse, 115 Vac (U.S.)	1	

Chapter 4 Video Monitor Adjustments (VAXstation 2000)

4.1 Introduction

This chapter describes how to adjust the VR260 monochrome monitor for its best picture. Alignment and adjustments for MicroVAX 2000's terminals are not covered in this guide. See the terminal's pocket service guide for all alignments to MicroVAX 2000's terminals.

4.2 VR260 Monochrome Monitor

Adjustments to the monitor are made with its cover removed. If the monitor's cover is not already removed, remove it (Paragraph 3.12.1) and then reconnect the power cable and the video cable to the monitor.

Follow the procedures in order. The success of one adjustment may depend on the accuracy of preceding checks and adjustments with the exception of the focus and G2 adjustments.

When the procedure tells you to display a test pattern, enter console mode (Paragraph 2.2.2), attach a loopback connector (p/n 29-24795) to the 25-pin communication port, and then type the appropriate test command listed in Table 4-1. Table 4-1 lists the base video alignment patterns and the test commands that invoke them.

Test Command	Test Pattern	Loopback Required	
60	Circle cross-hatch	x	
61	Screen of all E's		
62	White screen pattern		

Table 4-1: Base Video Alignment Test Commands

You will need the following tools to adjust the VR260 monitor.

- Alignment tool (p/n 29-24746-00)
- Metric measuring tape (p/n 29-25342)

4.2.1 Preparations

- 1. Switch on power to the VR260 monitor and the system.
- 2. Set the brightness and contrast controls to their maximum positions (Figure 4-1).
- 3. Wait 30 seconds for the monitor to warm up, then adjust the brightness to extinguish the raster.
- 4. Adjust the contrast for normal viewing level.

Refer to Figure 4-2 for the adjustment locations on the VR260 monitor.

Figure 4-2: VR260 Internal Adjustment Locations

4.2.2 Horizontal and Vertical Linearity and Focus Adjustments

1. Display the circle cross-hatch pattern (TEST 60). If the customer is having problems with text, display the all E's pattern (TEST 61) for a reference check. 2. Adjust the horizontal linearity (LIN) (use the hex trimpot) for horizontal uniformity of the squares across the display. The display should contain 32 horizontal squares and fill the screen. Refer to Figure 4-3.

Figure 4-3: Circle Cross-Hatch Display

- 3. Adjust the vertical linearity (VL) (use the flat-bladed trimpot) for vertical uniformity of the squares up and down the screen. The display should contain 27 vertical squares and fill the screen.
- 4. Adjust the focus (use a long handled flat-blade screwdriver) for the best vertical/horizontal line sharpness. Check an intersection of the cross-hatch pattern that is at least three squares in from any one of the four corners.

4.2.3 Width, Height, and Centering Adjustments

- 1. Display the white screen display (TEST 62).
- 2. Adjust the brightness so the raster is visible.
- 3. Adjust the contrast for normal viewing level.
- 4. Adjust horizontal centering (H CENT) (use the flat-blade screwdriver) until the raster is centered.
- 5. Adjust the horizontal phase (HP) so the video is centered in the raster.
- 6. Adjust the brightness to extinguish the raster.
- 7. Measure the width of the display with the tape measure as shown in Figure 4-4. The display should have a 334 mm width. Adjust width (use the hex trimpot) until the display measures 334 mm across.

CAUTION: Avoid scratching the screen surface with the metal clip of the tape. Start the measurement at 10 cm (100 mm) as shown below.

Figure 4-4: Width and Height Measurements

- 8. Adjust the vertical height (VH) and the vertical centering (VC) so that the display touches the top and bottom edges of the screen at the same time.
- 9. Measure the height of the display with the tape measure. The display should have a 282 mm height. Adjust the vertical height (VH) until the display measures 282 mm top to bottom.

4.2.4 Rechecking the Display

- 1. Display the circle cross-hatch pattern (TEST 60).
- 2. Check the vertical and horizontal linearity of the squares. Readjust if needed (Paragraph 4.2.2, steps 2 and 3).
- 3. Check the vertical and horizontal centering, the height, and the width of the display. Readjust if needed (Paragraph 4.2.3).

4.2.5 Adjusting Minimum Raster

- 1. Set the brightness to maximum and the contrast to minimum. A raster should be faintly visible.
- 2. If no raster is visible, adjust G2 (use a flat-blade screwdriver) until a raster is faintly visible.
- 3. Adjust the brightness and contrast for normal viewing.

4.2.6 Reassembling the VR260 Monitor

1. Switch the system power switch and the monitor power switch off.

WARNING: Wait at least 30 seconds after you turn off power to unplug the power cord. Static electricity dissipates for 30 seconds after power is turned off.

- 2. Disconnect the power cord and the video cable from the monitor.
- 3. Reverse the procedure in Paragraph 3.12.1.

Chapter 5 Option Installation

5.1 Introduction

This chapter contains installation instructions for the options available on the VAXstation 2000 and MicroVAX 2000 systems. These instructions are for the initial installation of the options listed in Table 5-1. Table 5-1 also lists the section and page each option's installation procedures are located on.

Option	Section	Page	
Disk drives into the system box	5.4	5-2	
Expansion adapter	5.5	5-6	
Hard disk expansion box	5.6	5-1 1	
Memory module	5.2	5-2	
Tape drive expansion box	5.7	5-11	
ThinWire Ethernet network interconnect module	5.3	5-2	

Table 5-1: Options Installation Section Listings

After you complete the installation of the option, power up the system and the expansion boxes and run self-test on the option as described in Chapter 2 Paragraph 2.3.2.

5.2 Memory Module Installation

Do the following steps to install the memory module option in either the VAXstation 2000 or the MicroVAX 2000.

- 1. Go to Chapter 3 Paragraph 3.5 and do steps 1 and 2.
- 2. Do step 3 of Paragraph 3.5 if a memory module is already installed.
- 3. Install the new memory module by reversing steps 1, 2, and 3 in Paragraph 3.5 starting at step 3.

5.3 ThinWire Ethernet Network Interconnect Module Installation

Do the following steps to install the network interconnect module into the MicroVAX 2000. The VAX station 2000 comes with the network interconnect module as standard equipment.

- 1. Go to Chapter 3 Paragraph 3.6 and do steps 1 and 2.
- 2. Install the new network interconnect module by reversing steps 1, 2, and 3 in Paragraph 3.6 starting at step 3.

5.4 System Box Disk Drive Installation

This procedure is for the initial installation of an RX33 floppy disk, an RD32 hard disk, or an RD54 hard disk drive into a system box. When the system box does not have any drives installed, a resistor load board must be installed for the power supply to regulate properly. This resistor load board must also be installed if just the RX33 floppy disk drive is installed by itself. The RX33 does not load the power supply enough for it to regulate. The resistor load board must not be installed when either of the hard disk drives are installed or if both the RD32 and RX33 drives are installed together.

Do the following steps to install a hard disk dirve or a floppy disk drive in the system box. If the system box already has the drive installed, go to Chapter 3 for the removal and replacement of the drive.

1. Go to Chapter 3 and do all the steps in Paragraph 3.2.

2. Remove the three screws shown in Figure 5-1 that secure the drive mounting brackets to the chassis, then slide them out of the chassis.

Figure 5-1: Drive Mounting Brackets Screw Locations

3. Disconnect the power cables from the resistor load board as shown in Figure 5-2. If you are just installing an RX33 floppy drive and you are not installing the RD32 hard disk drive along with it, you must leave one power cable connected to the resistor load board and then skip the next two steps (steps 4 and 5).

Figure 5-2: Resistor Load Board Location

MR-1186-1358 MA-0119-87

- 4. Lift the resistor load board up and out of the chassis. It will not be reinstalled.
- 5. Remove the four standoffs from the chassis before installing the drives.

- 6. If you are installing an RX33 floppy drive, remove the top blank panel from the mounting brackets by unscrewing the four screws. If you are installing just the RD32 or just the RD54, leave both blank panels installed.
- 7. Position the drive in the mounting brackets as shown in Figure 5-3. Always put the RX33 in the top position and the RD32 on the bottom position even if either one is not installed. Secure the drive with two screws on each side.

Figure 5-3: Drive Mounting Positions

- 8. Slide the drive into the system box and connect the RD/RX cable and the power cable to the drive or drives if more than one.
- 9. Finish the installation by reversing steps 2 and 1 above.

5.5 Expansion Adapter Installation

- 1. Do all steps in Chapter 3 Paragraph 3.2.
- 2. Remove the three screws shown in Figure 5-4 that secure the drives to the chassis.

Figure 5-4: Drive Screw Location

MR-1186-1293 MA-0085-87

- 3. Slide the drives halfway out of the system box to access the cables behind them later in this procedure.
- 4. Put the system box on its side and remove the cover plate as shown in Figure 5-5.

5. Install the expansion adapter onto the bottom of box and secure it with four screws as shown in Figure 5-6.

- 6. Disconnect the RD/RX cable from the drives. This cable is replaced in the next step.
- 7. Install the new RD/RX cable (p/n 17-01107-02) on the drives then push the RD extension cable through the opening into the expansion adapter.

8. Connect the RD extension cable to the disk interface module as shown in Figure 5-7.

Figure 5-7: Connecting RD Extension Cable to Disk Interface Module

9. Connect either end of the read/write cable (p/n 17-00674-03) to the disk interface module, then push the other end up through the opening into the system box as shown in Figure 5-8.

Figure 5-8: Connecting Read/Write Cable to Disk Interface Module

- 10. Push the tape cable up through the opening into the system box.
- 11. Put the system box back onto its feet again.
- 12. Pull the read/write and tape cables up and hang them over the side of the box so they do not get lost behind the drives.
- 13. Slide the drives back and secure them with three screws as shown in Figure 5-4. Make sure the cables do not get pinched behind the drives.
- 14. Reinstall the shield by reversing the procedures in Paragraph 3.2.

There are no tests for the expansion adapter. However, the test you will do when you verify the installation of an expansion box will also test the connections within the expansion adapter.

5.6 Hard Disk Expansion Box Installation

The hard disk expansion box comes with the hard disk drive already installed. You just have to connect the hard disk cable to the back of the expansion box and to port B (middle connector) on the expansion adapter. Then plug in the power cord to the expansion box and switch it on. Run the HDC self-test (TEST 7) to verify the installation. The HDC error code in the configuration table should indicate a one (1) for DUA1 if the hard disk exapansion box is installed properly. The hard disk in the expansion box may or may not be formatted. Run the mass storage verifier utility on the disk to find out if it is formatted or not. Format the disk before using it if it is not formatted.

5.7 Tape Drive Expansion Box Installation

The tape drive expansion box comes with the TK50 tape drive already installed. You just have to connect the tape drive cable to the back of the expansion box and to port A on the expansion adapter. Then plug in the power cord to the expansion box and switch it on. Run the TPC self-test (TEST 6) to verify the installation. The TPC error code in the configuration table should indicate 0202.0001 if the tape expansion box is installed properly.

Appendix A Console Test Commands

This appendix lists all of the test commands including the utilities. See Chapter 2 for a complete explanation of these test commands. Test numbers for field service diagnostics and certain non-customer utilities are rejected if the loopback connector is not installed on the 25-pin communication port.

Table A-1: Test Commands

TEST		Loopback
Command	Description	Required

Diagnostic Commands

0	Customer mode system exerciser.
1	Self-test on the ThinWire Ethernet option module (NI)
2	Self-test for future option — no test run
3	Self-test for future option - no test run
4	Self-test for future option — no test run
5	Self-test on interrupt controller and ThinWire Ethernet ID ROM (SYS)
6	Self-test on tape drive controller (TPC)
7	Self-test on hard disk controller (HDC)
8	Self-test on interval timer (IT)
9	Self-test on floating point unit (FP)
Α	Self-test on memory management unit (MM)
В	Self-test on system Memory (MEM)
С	Self-test on serial line controller (DZ)
D	Self-test on non-volatile RAM (NVR)

TEST Command	Description	Loopback Required	
Е	Self-test on time-of-year clock (CLK)		
F	Self-test on base video (MONO)		
101	Field service system exerciser (two pass).	x	
102	Field service system exerciser (continuous).	x	
	Utility Commands		
50	Configuration display		
51	Set NVR default boot device	Set NVR default boot device	
52	Set NVR default boot flags		
53	Set NVR default recovery action flags		
54	Display language inquiry menu		
60	Monochrome monitor circle cross-hatch alignment pattern	x	
61	Monochrome monitor screen of E's		
62	Monochrome monitor white screen		
70	Mass storage disk formatter		
71	Mass storage disk verifier		
72	Special key on floppy diskettes X		
73	Special key on TK50 COMPACTapes	x	
80-87	Reserved for future color option		
9 0	Network test utility X		

Table A-1 (Cont.): Test Commands

Appendix B

Console Commands

B.1 Console Command Syntax

- The console program accepts commands up to 80 characters long. Longer commands result in an error message. The character count does not include rubouts, rubbed-out characters, or the terminating <RETURN>.
- Type-ahead is not supported. Characters received before the console prompt appears on the screen are discarded. Only special characters [CTRL/S], [CTRL/Q], [CTRL/C] are recognized.
- Commands can be abbreviated by typing the first character in the command name. All commands are recognized by their first character. For example, B stands for the boot command and T stands for the test command.
- The console program treats multiple adjacent spaces and tabs as a single space. Leading and trailing spaces and tabs are ignored.
- Command qualifiers can appear after the command keyword or after any symbol or number in the command.
- All numbers (addresses, data, and counts) are hexadecimal except for symbolic register names which are decimal.
- The console program accepts uppercase and lowercase letters.

B.2 Console Commands

B.2.1 BOOT

>>> BOOT [<qualifier>][<device_name>]

The boot program is called virtual machine boot (VMB). The console program intializes and starts VMB running.

Qualifier

/R5:<data> - After initializing the processor and before starting VMB,

R5 is loaded with the specified data (in hexadecimal). This allows a console user to pass a parameter to VMB.

Device_name

VMB boots the operating system from the device specified in the <device_name >. The device_name is in the form LLLD, where the first three characters are uppercase letters and the fourth character is a digit (0 through 9). A terminating colon in the device_name is acceptable, but is not required. Devices for the VAXstation 2000 and the MicroVAX 2000 are listed below.

- DUA0 hard disk drive in system box.
- DUA1 hard disk drive in expansion box.
- DUA2 floppy drive in system box.
- MUA0 tape drive in expansion box.
- ESA0 ThinWire Ethernet network.

If no device_name is specified, the console program begins a sniffer boot which searches every device on the system in a specific order until the operating system software is found. It does not look in the NVR for the default boot device. The sniffer searches DUA2 first, DUA0 second, DUA1 third, MUA0 fourth, then ESA0 last. If the sniffer boot gets to ESA0, it stays there on the NET until it finds the operating system software or until you press the halt button. The sniffer boot is not smart enough to stop looking for the software on the NET if there is no software available on the NET. If a device is not installed on the system, the sniffer boot skips over the device and searches the next device in the order. An error message will appear on the screen if no operating system software is found (except over the NET because the sniffer keeps looking).

B.2.2 COMMENT

>>> ! < comment>

The comment command (the exclamation point) is ignored by the console program. It is used to annotate console I/O command sequences.

B.2.3 CONTINUE

>>> CONTINUE

The processor begins instruction execution at the address currently contained in the program counter. The address in the program counter is the address that was saved when the console program was started or is the address that was entered by the operator using the deposit command. Processor initialization is not performed. The console program enters program I/O mode (operating system such as VMS or Ultirx).

B.2.4 DEPOSIT

>>> DEPOSIT [<qualifier>] <address><data>

Deposits the data into the specified address. If no address space or data size qualifiers are specified, the defaults are the address space and data size used in the last deposit or examine command. After processor initialization, the default address space is physical memory, the default address is zero, and the default data size is longword.

Qualifiers

- /B The data size is byte.
- /W The data size is word.
- /L The data size is longword.
- /V The address space is virtual memory. If memory mapping is not enabled, virtual addresses are equal to physical addresses.
- /P The address space is physical memory.
- /I The address space is internal processor registers.
- /G The address space is the general registers (R0 through R15).
- /M The address space is the machine register
- /U Enables access to console program memory.
- /N:<count> The address is the first address in a range of addresses specified in count. The console program deposits to the first address and then to the specified number of succeeding addresses. Even if the address is the symbolic address "-", the succeeding addresses are at the larger addresses. The symbolic address specifies only the starting address, not the direction of succession. For repeated references to preceding addresses, use "Repeat Deposit - <data>".

Address

- Processor status longword (PSL) The address space is set to /M automatically. Do not specify any address space qualifiers with PSL.
- Program counter (PC) (general register R15) The address space is set to /G automatically.
- Stack pointer (SP) (general register R14) The address space is set to /G automatically.
- General register (Rn) The register number is in decimal. The address space is /G.
- + (plus) The location immediately following the last location referenced in a deposit or examine command. For references to physical or virtual memory spaces, the location referenced is the last address plus the size of the last reference (1 for byte, 2 for word, 4 for longword). For other address spaces, the address is the last address referenced plus one.
- (minus) The location immediately preceding the last location referenced in a deposit or examine command. For references to physical or virtual memory spaces, the location referenced is the last address minus the size of this reference (1 for byte, 2 for word, 4 for longword). For other address spaces, the address is the last address referenced minus one.
- * (asterisk) The location last referenced in a deposit or examine command.
- @ (at sign) The location addressed by the last location referenced in a deposit or examine command.

Data

• The data is specified as a hexadecimal number. The default number is zero.

B.2.5 EXAMINE

>>> EXAMINE [<qualifier>] [<address>]

Examines the contents of the specified address. If no address is specified, "+" is assumed. The address may also be one of the symbolic addresses described in deposit.

Qualifiers

Same qualifiers as deposit.

Address

Same address specifications as deposit.

The response is in the form: <address space><address><data>

B.2.6 FIND

>>> FIND [<qualifier>]

The console program searches main memory staring at address zero for a page-aligned 64 Kilobyte segment of good memory or a restart parameter block (RPB). If the segment or block is found, its address plus 512 is left in the SP. If the segment or block is not found, an error message is issued and the contents of the SP are unpredictable. If no qualifier is specified, /RPB is assumed.

Qualifiers

• /Memory

Searches memory for a page-aligned 64 kilobyte segment of good memory. The search includes a read/write test of memory and leaves the contents of memory unpredictable.

• /RPB

Searches memory for a restart parameter block. The search leaves the contents of memory unchanged.

B.2.7 HALT

>>> HALT

The console prompt is displayed. No action is taken.

B.2.8 INITIALIZE

>>> INITIALIZE

A processor initialization is performed. The following registers are set (all values are hexadecimal).

Register	Value	Register	Value	
			10.00	
PSL	041F.0000	IPL	1F	
ASTLVL	4	SISR	0	
ICCS	0	RXCS	0	Constant of the second s
TXCS	80	MAPEN	0	,

All other registers are unpredictable.

The defaults used to fill in unsupplied qualifiers for deposit and examine commands are set to physical address, longword size, and address 0.

B.2.9 REPEAT

>>>REPEAT <command>

The console program repeatedly displays and executes the specified command. The repetition is stopped when the operator types <u>CTRL/C</u>. Any valid console command may be specified for the command with the exception of the repeat command.

B.2.10 START

```
>>> START [<address>]
```

The console program starts instruction execution at the specified address. If no address is given, the current content of the PC is used. If no qualifier is present, macroinstruction execution is started. If memory mapping is enabled, macroinstructions are executed from virtual memory. The start command is equivalent to a deposit to PC followed by a continue command. No Initialize is performed.

B.2.11 TEST

>>> TEST [<test number>]

The console program invokes a diagnostic test program specified by the test number. Test numbers for field service diagnostics are rejected if the loopback connector is not installed on the 25-pin communication port. Some of the test numbers are used to invoke utilities. See Appendix A for a description of the test numbers.

B.2.12 UNJAM

>>> UNJAM

A system reset is performed.

B.2.13 TRANSFER

>>> X <address><count><RETURN><date stream><checksum>

Transfers binary data to and from physical memory. This command is used by automatic systems communicating with the console program. It is not intended for operator use. The console program loads or unloads (that is, writes or reads memory) the specified number of data bytes, starting at the specified address.

Address

The physical address the binary data are transferred to or from. It is specified as a hexadecimal number.

Count

The number of bytes to be transferred. It is specified as a hexadecimal number. If the high order bit of the count is one, the data are transferred (read) from physical memory to the console device. If the high order bit is zero, the data are transferred (written) from the console device to physical memory.

RETURN

A carriage return.

Checksum

The two's complement checksum of the command string or data stream. The checksum is one byte of data expressed as a two digit hexadecimal number.

Data stream

"Count" bytes of binary data.

B.3 Special Keys

Table B-1: Special Keys Used in Console Program Mode

Special Key	Explanation of use
BREAK	Pressing this key on the special attached console device with a BCC08 cable on the 9-pin printer port halts the CPU and enters console mode. A host computer attached to this line may transmit a break signal to get into console mode. A received break on the normal console device on the video port or on port 1 is treated as an illegal character.
RETURN	Terminates the command line so the console program can execute the command.
<x (delete)<="" td=""><td>This is used to delete single characters within a command line. On video terminals and video monitors, the character(s) deleted disappears (the console program sends a BS/SP/BS). On hardcopy terminals, the deleted characters are retyped after a backslash delimiter as they are deleted. For unknown attached console devices, the console program assumes they are hardcopy.</td></x>	This is used to delete single characters within a command line. On video terminals and video monitors, the character(s) deleted disappears (the console program sends a BS/SP/BS). On hardcopy terminals, the deleted characters are retyped after a backslash delimiter as they are deleted. For unknown attached console devices, the console program assumes they are hardcopy.
CTRL/C	Aborts the current command. The current program mode PC will be displayed, and the console prompt is displayed on the next line. The console program echoes this as C.
CTRL/O	Causes the console program to throw away transmissions to the console device until the next CTRL/O is entered. CTRL/O is echoed as 'O when it disables output, but is not echoed when it re-enables output. Output is re-enabled if the console program prints an error message or if the console prompts for a command from the console device.
	Output is also enabled by entering program I/O mode, and by CTRL/C. CTRL/O clears CTRL/S.
CTRL/R	Retypes the current command line. Deleted characters are not displayed.
CTRL/S and CTRL/Q	The console program supports CTRL/S and CTRL/Q on both the normal and attached console devices. These keys are equivalent to the corresponding line pacing control characters XOFF and XON. Characters received between the XOFF/XON pair may be ignored.
	The hold screen key on the normal console device is not used for line pacing.
CTRL/U	Ignores the current command line. The console prompt is displayed on the next line. This only affects entry of the current line. The console program echoes this as U . Pressing $\boxed{CTRL/U}$ when a command is executing does not abort the command.

Appendix C

Console Messages and Explanations

Message	Explanation
02 EXT HLT	<break> was typed at the console, QBINIT or QHALT was as- serted.</break>
04 ISP ERR	Attempt to push interrupt or exception state onto the interrupt stack when the interrupt stack is mapped NO ACCESS or NOT VALID.
05 DBL ERR	A second machine check occurred while the processor was attempting to report a machine check to the operating system.
06 HLT INST	The processor executed a halt instruction in kernal mode.
07 SCB ERR3	Vector bits $\langle 1:0 \rangle = 3$.
08 SCB ERR2	Vector bits $<1:0> = 2$.
0A CHM FR ISTK	A change mode instruction was executed when PSL <is> was set.</is>
0B CHM TO ISTK	Exception vector bit $<0>$ was set for a change mode.
OC SCB RD ERR	A hard memory error occurred during a processor read of an excep- tion or interrupt vector.
10 MCHK AV	An access violation or invalid translation occurred during machine check exception processing.
11 KSP AV	An access violation or invalid translation occurred during invalid kernel stack pointer exception processing.
14 TOY ERR	Time-of-year (TOY) clock failure.
15 CORRPTN	The console database is corrupted. The console simulates a power-up sequence and rebuilds its database.
16 ILL REF	The requested reference violates virtual memory protection and the address is not mapped. Either the reference is not valid in the spec- ified address space or the value is not valid in the specified destina- tion

Table C-1: Console Error Messages

••	
Message	Explanation
17 ILL CMD	The command string cannot be parsed.
18 INV DGT	A number has an invalid digit.
19 LTL	The command is too large for the console to buffer.
1A ILL ADR	The specified address is not in the address space.
1B CAL TOO LRG	The specified value does not fit in the destination.
1C SW CONF	Conflicting switches. For example, an examine command that spec- ifies two different data sizes.
1D UNK SW	The switch is not recognized.
1E UNK SYM	The examine or deposit symbolic address is not recognized.
1F CHKSM	Either the whole transfer (X) command or just the <data> portion of the transfer command is not valid.</data>
20 HLTED	The operator entered the halt command.
21 FND ERR	A find command failed to find either the RPB or 64 kilobytes of good memory.
22 TMOUT	Data failed to arrive in the expected time during a transfer (X) com- mand.
23 MEM ERR	Parity or other memory error detected.
24 UNXINT	An unexpected interrupt or exception occurred.
40 NOSUCHDEV	VMB message: No bootable device found.
41 DEVASSIGN	Device is not present.
42 NOSUCHFILE	Program image not found.
43 FILESTRUCT	Invalid boot device file structure.
44 BADCHKSUM	Bad checksum on header file.
45 BADFILEHDR	Bad file header.
46 BADIRECTORY	Bad directory file.
47 FILNOTCNTG	Invalid program image file.
48 ENDOFFILE	Premature end-of-file encountered.
49 VADFILENAME	Bad file name given.
4A BUFFEROVF	Program image does not fit in available memory.
4B CTRLERR	Boot device I/O error.

٦

Table C-1 (Cont.): Console Error Messages

C-2 VAXstation 2000 and MicroVAX 2000 Maintenance Guide

Message	Explanation
4C DEVINACT	Failed to initialize boot device.
4D DEVOFFLINE	Device is off-line.
4E MEMERR	Memory initialization error.
4F SCBINT	Unexpected SCB exception or machine check.
50 SCBZNDINT	Unexpected exception after starting program image.
51 NOROM	No valid ROM image found.
52 NOSUCHNODE	No response from load server.
53 INSFMAPREG	Invalid memory configuration.
54 RETRY	No devices bootable, retrying.
83 BOOT SYS	Bootstrapping.
84 FAIL	General failure.
85 RESTART SYS	Restarting system software.

Table C-1 (Cont.): Console Error Messages

Appendix D

VMB Boot Error Status Codes

Figure D-1 shows the two types of VMB error displays. PC indicates the contents of the program counter at the time of the error, R0 indicates the contents of register 0 (VMB boot error status codes listed in Table D-1) at the time of the error, and PSL indicates the contents of the program status longword.

Each error code's lower three bits (hexadecimal) represent a severity level and may be changed by the software. For example, 000001F4 is a parity error and represents an error status, but 000001F0 through 000001F7 also represent parity errors of varying severity. Therefore, the error codes numbers listed in Table D-1 represent the typical value of each error code.

Figure D-1: VMB Error Displays

1) Generic error message where RO is a status code (listed below)

%VMB-F-ERR, PC = nnnnnnnn %VMB-I-STS, RO = nnnnnnnn

2) Unexpected exception. These represent internal VMB errors.

%VMB-F-SCBINT, PC = nnnnnnn, PSL = nnnnnnn

OR

%VMB-F-SCBINT2, PC = nnnnnnn, PSL = nnnnnnn

D-1

Table D-1: VMB Boot Error Status Codes

Error Code	Mnemonic	Definition
00000001	SS\$_NORMAL	Normal successful completion
00000054	SS\$_CTRLERR	Fatal controller error
00000084	SS\$_DEVOFFLINE	Device is not in configuration or not available
000008C	SS\$_DRVERR	Fatal drive error
000000DC	SS\$_ILLBLKNUM	Illegal logical block number
000001A4	SS\$_MEDOFL	Medium is off-line
000001AC	SS\$_NODATA	Mailbox is empty
000001F4	SS\$_PARITY	Parity error
0000022C	SS\$_TIMEOUT	Device timeout
0000028C	SS\$_NOSUCHNODE	Remote node is unknown
000002AC	SS\$_FILNOTCNTG	File is not contiguous as required
00000344	SS\$_INSFMAPREG	Insufficient map registers
00000601	SS\$_BUFFEROVF	Output buffer overflow
00000808	SS\$_BADCHKSUM	Bad file header checksum
00000810	SS\$_BADFILEHDR	Bad file header
00000818	SS\$_BADFILENAME	Bad file name syntax
00000828	SS\$_BADIRECTORY	Bad directory file format
00000848	SS\$_DEVASSIGN	Device has channels assigned
00000870	SS\$_ENDOFFILE	End of file
000008C0	SS\$_FILESTRUCT	Unsupported file structure level
00000908	SS\$_NOSUCHDEV	No such device available
00000910	SS\$_NOSUCHFILE	No such file
000020D4	SS\$_DEVINACT	Device inactive
00002144	SS\$_FORCEDERROR	Forced error flagged in last sector read
00008000	SS\$_MEMERR	No good pages of memory found
00008018	SS\$_NOROM	System exerciser not present

Index

A

Alignment Pattern Circle Cross-hatch, 2-59 Screen of E's, 2-59 Test Commands, 4-1 White Screen, 2-59

В

Battery Testing See Troubleshooting, NVR Baud Rate Console Device, 2-2 Diagnostic Console, 2-4 BCC08 Cable, 2-2, 2-4 Boot Device Settings, 2-55 Boot Flag Settings, 2-55

С

Commands, test, A-1 Configuration Table, 2-8, 2-47 DZ Example, 2-48 Example of MEM error display, 2-49 HDC Example, 2-51 MEM Example, 2-48 TPC Example, 2-52 Console Commands, B-1 Boot, 2-3, B-1 Comment, B-2 Continue, 2-3, B-3 Deposit, B-3 Examine, B-4 Find, B-5 Halt, B-5 Initialize, B-5

Console Commands (cont'd.) Repeat, B-6 Start, 2-4, B-6 Syntax, B-1 Test. B-6 Transfer, B-7 Unjam, B-7 **Console** Device Baud Rate, 2-2 Console Messages Explained, C-1 Console Mode Exit. 2-3 How to Enter, 2-2 Special Keys Defined, B-8 Usage, 2-1 Console Test Commands, A-1 CPU, halts, 2-2

D

Diagnostic Console, 2-4 Break Key, 2-2 Disk Drive Drive Select Jumper Settings, 2-27 Installation, 5-2 Mnemonics, 2-21 Power-up and Self-test Error Codes, 2-23 Self-test Example Error Code, 2-22 System Exerciser Error Codes, 2-25 System Exerciser Example Error Code, 2-24 Disk Formatter, 2-59 Floppy Disk Example, 2-61 Hard Disk Example, 2-60 Messages, 2-63 Unknown Hard Disk Example, 2-62 Disk Verifier, 2-64

Disk Verifier (cont'd.) Hard Disk Example, 2-64 Messages, 2-65

Ε

Expansion Adapter Connectors, 1-7 Installation, 5-6

F

Field Replaceable Units (FRU) Locations, 1-8 Formatter, disk, 2-59

Η

Halt Button Location, 1-3, 1-4 Usage, 2-2 Halts CPU, 2-2 Hard Disk Drive Expansion Box, 3-58 See also Removal and Replacement Installation, 5-11

I

Initial Installation Disk Drives, 5-2 Expansion Adapter, 5-6 Hard Disk Drive Expansion Box, 5-11 Memory Module, 5-2 Network Interconnect Module, 5-2 Tape Drive Expansion Box, 5-11

J

Jumper, system, 3-16

Language Inquiry Menu, 2-58 Loopback Connectors, 2-11 Loopbacks Usage, 2-14, 2-17 Loop Testing on the Network, 2-69

M

Memory bank error location, 2-52 Memory Module, 1-8 Memory Module Installation, 5-2 MicroVAX 2000 Connectors, 1-4 Console Device, 2-2

Ν

Network ID ROM Location, 3-15

0

Options, 1-8 Installation, 5-1

Ρ

Power Supply Connector Pin Voltages, 2-41 Power-up Testing Error Codes, 2-8 Error Summary Display, 2-7 Example Display, 2-5 Symbols, 2-6 Program Mode, 2-1 Prompts, 2-2

R

Recommended Spares List, 3-82 Recovery Action Setting, 2-58 Removal and Replacement Battery Pack, 3-33 DEC423 Converter from MicroVAX 2000, 3-53 Disk Interface Module from Expansion Adapter, 3-56 Expansion Adapter, 3-54 Expansion Boxes, 3-58 Hard Disk Drive Expansion Box Disconnection, 3-58
Removal and Replacement Hard Disk Drive Expansion Box (cont'd.) Hard Disk Drive, 3-60 Power Supply, 3-66 Resistor Load Board, 3-70 Keyboard from VAXstation 2000, 3-51 Memory Module, 3-17 Mouse and Tablet from VAXstation 2000, 3-52 Network Interconnect Module, 3-18 Power Supply from System Box, 3-34 RD32 Device Electronics Board, 3-27 RD53 Device Electronics Board, 3-21 RD53 from System Box, 3-19 Resistor Load Board from System Box, 3-31 RX33 and RD32 from System Box, 3-24 Shield, 3-4 System Module, 3-13 System Module Assembly from Shield, 3-10 Tape Drive Expansion Box Disconection, 3-72 Power Supply, 3-79 Resistor Load Board, 3-81 TK50 Tape Drive, 3-76 TZK50 Controller Board, 3-73 Terminal from MicroVAX 2000, 3-53 VR260, 3-35 VR260 Cover, 3-36 VR260 Deflection Board, 3-39 VR260 LED Assembly, 3-50 VR260 Rear Bulkhead, 3-42 VR260 Transformer Assembly, 3-45 VR260 Tube/Yoke/Bezel Assembly, 3-47 VR260 Video Board, 3-44

S

Self-test Error Codes, 2-11 Example Display, 2-9 Using Loopback Connectors, 2-11 Self-test Commands, 2-10 Special Key for System Exerciser, 2-66 COMPACTape Example, 2-67 Floppy Diskette Example, 2-66 System Differences, 1-2 System Exerciser Commands, 2-14 Error Codes, 2-15 Example Display, 2-15 System Jumper, 3-16 System module's ROM revision levels, 2-53

Т

Tape Drive Internal Self-test, 2-35 Jumper Settings, 2-37 Self-test Example Error Code, 2-30 System Exerciser Error Codes, 2-33 System Exerciser Example Error Code, 2-32 Tape Drive Expansion Box, 3-58 See also Removal and Replacement Installation, 5-11 Tape expansion box's ROM revision levels, 2-54 Test Commands, A-1 Testing, 2-5 Power-up, 2-5 Self-test, 2-9 System Exerciser, 2-13 Testing, battery See Troubleshooting, NVR ThinWire Ethernet Loop Testing Example, 2-68 ThinWire Ethernet Network Module, 1-8 Installation, 5-2 ThinWire Ethernet Option Module Loop testing Utility, 2-67 Troubleshooting, 2-39 Troubleshooting, 2-16 Disk Controller (HDC), 2-21 Floating Point (FP), 2-21

Index-3

Troubleshooting (cont'd.) Hard Disk Expansion Box, 2-27 Interval Timer (IT), 2-21 Memory (MEM), 2-19 Memory Management (MM), 2-20 Monochrome Video (MONO), 2-16 Non-Volatile RAM (NVR), 2-17 Power Supply, 2-40 Serial Line Controller (DZ), 2-17 System (SYS), 2-38 Tape Controller (TPC), 2-29 Tape Drive Expansion Box, 2-35 **Terminal Communications**, 2-44 ThinWire Ethernet Option Module (NI), 2-39 Time-of-Year Clock (CLK), 2-17 VR260 Monitor, 2-42

U

Utilities, 2-46 Circle Cross-hatch Alignment Pattern, 2-59 Commands, 2-46 Configuration Table, 2-47 Disk Formatter, 2-59 Disk Verifier, 2-64 Language Inquiry Menu, 2-58 Screen of E's Pattern, 2-59 Setting Default Boot Device, 2-55 Setting Default Boot Flags, 2-55 Setting Default Recovery Action, 2-58 Special Key for F.S. System Exerciser, 2-66 ThinWire Ethernet Loop Testing, 2-67 White Screen, 2-59

۷

VAXstation 2000 Connectors, 1-3 Console Device, 2-2 VMB Boot Error Status Codes, D-1 VR260 Adjustments, 4-1 VR260 Horiz., Vert., and Focus adjustments, 4-4
VR260 Minimum Raster Adjustment, 4-7
VR260 removal and replacement procedures, 3-35
VR260 Width, Height, and Centering Adjustments, 4-6

 \bigcirc \bigcap \bigcirc

.

 \bigcirc

-

(_)