December 1977

This manual provides the information required to develop,
assemble, load, and debug microprograms for the KMC11
auxiliary microprocessor. It includes descriptions of the
KMC11 architecture, microinstruction repertoire, macro
syntax and expansion, loader utility, KMCDA debugging
aid, and special programming techniques.

KMC11
Programmer’s Manual

Order No. AA-5244B-TC

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes the document
of the same name, Order No. AA-5244A-TC,
published November 1977.

OPERATING SYSTEM AND VERSION: RSX-11M V3.0
RSX-11D V6.2
IASV2.0

SOFTWARE VERSION: KMC11 MACRO V01

KMC11 LOADER V01
KMC11 DEBUGGER V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

Preliminary (First) Printing, November 1977

Second Printing, December 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1977 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10
DEC DECtape

PDP DIBOL

DECUS EDUSYSTEM
UNIBUS FLIP CHIP
COMPUTER LABS FOCAL
COMTEX INDAC

DDT LAB-8
DECCOMM DECSYSTEM-20
ASSIST-11l RTS-8

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10

CONTENTS

Page
PREFACE vii
CHAPTER 1 INTRODUCTION 1-1
1.1 PURPOSE OF MANUAL 1-1
1.2 KMCll GENERAL DESCRIPTION 1-1
l.2.1 Controlling Peripherals over the UNIBUS 1-2
1.2.2 Controlling Peripherals Attached to the
External Connector 1-2
1.3 OPERATING ENVIRONMENT 1-2
1.3.1 KMCll Microprogramming Tools Minimum
Hardware Requirements 1-2
1.3.2 KMCll Software Tools 1-3
1.3.3 Prerequisite Software 1-3
1.4 MICROPROGRAM DEVELOPMENT CONSIDERATIONS 1-3
1.5 REFERENCE DOCUMENTS 1-4
1.6 NOTATIONS 1-4
CHAPTER 2 KMC1ll MICROPROCESSOR ARCHITECTURE 2-1
2.1 CPU STRUCTURES 2-1
2.1.1 INBUS/OUTBUS and INBUS*/OUTBUS* Accessed
: Registers 2-2
2.1.1.1 Multiport RAM 2-2
2.1.1.2 NPR Control Register 2-2
2.1.1.3 Microprocessor Miscellaneous Control
Register 2-4
2.1.1.4 External Connector 2-4
2.,1.2 Components Accessed Through Direct
Microinstruction Execution 2-4
2.1.2.1 Branch Register 2-4
2,1.2.2 Data Memory and Memory Address Register 2-4
2.1.2.3 Program Counter 2-5
2.1.2.4 Scratch Pad Memory 2-5
2.1.3 Components Accessed from the UNIBUS 2-5
2.1.3.1 Control RAM 2-5
2.1.3.2 Maintenance Registers 2-6
2.1.4 Arithmetic/Logic Unit 2-6
2.2 DATA PATHS 2-7
2.2.,1 Source Destination Data Transfer 2-7
2.2.2 Source Bus 2-8
2.2.3 Destination Bus 2-8
2.2.4 UNIBUS Interface 2-9
2.2.5 Microprogram Read/Write Bus 2-10
2.3 REGISTER AND MEMORY FORMATS 2-10
2.3.1 KMCl1ll CSR Format 2-10
2.3.2 NPR Address and Data and NPR Control
Register Formats 2-14
2.3.3 UPMISC Register Format 2-17
2.3.4 Branch Register Format 2-18

iii

CONTENTS (Cont.)

CHAPTER KMC1ll MICROINSTRUCTION REPERTOIRE
MOVE CLASS MICROINSTRUCTIONS
MAR Control Field
Move Class Microinstructions: Formats
and Functions
Destination NODST
Destination BRG
Destination OUTBUS*
Destination BRG Right-Shifted
Destination OUTBUS
Destination Data Memory
Destination Scratch Pad
Destination Scratch Pad and BRG
BRANCH CLASS MICROINSTRUCTIONS
Branch Address Field
Branch Class Microinstructions: Formats
and Functions
Source Immediate
Source Data Memory
Source BRG

wWww w

NNNFRRFEFRFHERHRE e
Y

WWwwwwwwwww
e o & & & o o e e e+ .
e s s s s e s .
» e+ s o ° s &
odJoandd W

NN N NN

www
« o
NN
. e e

+ o o
WN =

CHAPTER 4 KMC1ll1l MACRO INSTRUCTIONS

MICROPROCESSOR REGISTER DEFINITIONS
1l NPR Control Register
MACRO INSTRUCTION SYNTAX
.1 Macro Arguments
2 Source Field Mnemonics
3 INBUS* and INBUS Register Symbolic
Addresses
4 Arithmetic/Logic Unit (ALU) Functions
.5 OUTBUS* and OUTBUS Register Symbolic
Addresses
6 Scratch Pad Locations
7 Memory Address Register (MAR) Field
Definitions
2.8 Data Memory Page Definitions
3 MICROINSTRUCTION SYNTAX
4 EXAMPLES OF KMCll INSTRUCTION MACRO
EXPANSIONS
5 RESERVED SYMBOLS
6 OPERATING INSTRUCTIONS
CHAPTER KMC1ll LOADER
1 INTRODUCTION
.2 KMCl1ll BASIC LOADER SUBROUTINE
.3 KMC1ll LOADER UTILITY PROGRAM
.3.1 Loader Assembly
.3.2 Loader and Microcode Task Building

CHAPTER 6 KMCll DEBUGGING AID
COMMAND CATEGORIES

1 Examine and Modify CRAM
2 Execution Control Commands

iv

LI I I | 1
NN |

> [o

T
ww ww

N

1

[o)We W)

CONTENTS (Cont.)

Page
6.1.2.1 Set Breakpoints 6-4
6.1.2.2 Clear Breakpoints 6-5
6.1.2.3 Begin Execution of Microprogram 6-5
6.1.2.4 Proceed from Breakpoint 6-6
6.1.2.5 Single Step 6-6
6.1.3 Examine and Modify CSRs 6-7
6.1.4 Examine Internal Registers and Data
Memory 6-7
6.1.4.1 Examine BRG and Scratch Pad 6=7
6.1.4.2 Examine INBUS and INBUS* 6-8
6.1.4.3 Examine Data Memory 6-8
6.1.5 Utility Commands 6-9
6.1.5.1 Display a Breakpoint 6~10
6.1.5.2 Execute a Microinstruction 6-10
6.1.5.3 Load Data Memory 6-11
6.1.5.4 Load or Display the Memory Address
Register (MAR) 6-12
6.1.5.5 Load Scratch Pad or BRG 6-12
6.1.5.6 Zero Data Memory 6-13
6.1.5.7 Calculate Offset 6-13
6.2 BREAKPOINT HANDLING 6-13
6.2.1 Reserved CRAM Requirements 6-14
6.2.2 Breakpoint Location Constraints 6-14
6.2.3 Proceed Counter 6-14
6.3 EXAMPLE OF A KMCDA CONVERSATION 6-17
CHAPTER 7 SPECIAL PROGRAMMING CHARACTERISTICS 7-1
7.1 CSR DISCIPLINE 7-1
7.1.1 Initializing the CSRs 7-1
7.1.2 Microprogram Modification of CSRs 7-2
7.1.3 UNIBUS Modification of the CSRs 7-2
7.2 MULTIPORT RAM LOCKOUT 7-3
7.3 CSR BIT SETTLING TIME 7-3
7.4 UPMISC AND NPR REGISTER CONSTRAINTS 7-4
APPENDIX A SPECIAL PROGRAMMING TECHNIQUES A-1
A.1l PREVENTING LOSS OF DATA BY OVERWRITING
WHEN THE MICROPROGRAM OR THE PDP-11
MODIFIES THE CSRs A-1
A.2 ENSURING THAT CSR BITS HAVE SETTLED A-3
INDEX Index-1
FIGURES
FIGURE 2-1 KMCll Register and Data Path Structure 2-3
2-2 KMC1ll CSR Format 2-11
2-3 NPR Data and Address Register 2-14
2~4 NPR Control Register 2-15
2-5 Microprocessor Miscellaneous (uPMISC)
Register 2=-17
2-6 Branch Register 2-18
3-1 Move Class Microinstructions 3-3
3-2 Branch Class Microinstructions 3-28

v-

FIGURE

TABLE

>U1U1lf101n>-h
o WwNhHENE

B W G 6
HFoOUld WN

B B DD D
11 [B |
O ® SN s Wi

F—r -
1

e
o

FIGURES (Cont.)

Summary of KMCll Instruction Macros
Examples of KMCll Macro Expansions
Control and Status Registers CSR1l Bit Map
KMCll Basic Loader Subroutines

KMC-11 Loader Printout Example

KMC-11l Loader Error Printout Example
Suggested Format for UNIBUS CSRs

TABLES

Arithmetic/Logic Unit Functions

INBUS Register Symbolic Addresses

INBUS* Register Symbolic Addresses
OUTBUS* Register Symbolic Addresses
OUTBUS Register Symbolic Addresses
Symbolic Values of the Argument OPARGl
Legal Separating and Delimiting Characters
Used in Macro Definitions

INBUS* Register Symbolic Addresses

INBUS Register Symbolic Addresses
Arithmetic/Logic Unit Functions

OUTBUS* Register Symbolic Addresses
OUTBUS Symbolic Addresses

Move Instruction Destination: Branch
Address Register

Move Instruction Destination: OUTBUS*
Move Instruction Destination: Branch
Address Register Right-Shifted

Move Instruction Destination: OUTBUS
Move Instruction Destination: Data
Memory

Move Instruction Destination: Scratch
Pad

Move Instruction Destination: Scratch
Pad and Branch Address Register

Move Instruction Destination: NODST (No
Destination)

Move Instruction: Increment and Load MAR
Branch Instruction Source: Immediate
Branch Instruction Source: Data Memory
Branch Instruction Source: Branch Address
Register

Compare Values and Subroutine Calls and
Returns

vi

Page

I
[20§]

f G I, WS,
1
NWWNNDWW

1
NHEE NS
NN

| O T I I | 1 !
g Ut

[R S (iowwwwu

b
[}

=9

o

PREFACE

MANUAL OBJECTIVES AND READER CLASS ASSUMPTIONS

The objective of this manual is to provide experienced programmers
with the information needed to develop, assemble, load, and debug
microprograms for the KMCll-A auxiliary microprocessor.

The level of technical detail presented in this manual assumes that
the reader is proficient in developing MACRO-11 assembly language
programs and using the RSX-11 Task Builder to «create an executable
task image. In addition, the reader is assumed to be familiar with
PDP-11 processor architecture and UNIBUS interfacing and have an
in-depth knowledge of PDP-11 programming technigues.

STRUCTURE OF THIS MANUAL
This manual consists of seven chapters and an appendix.

Chapter 1 is a concise overview of the KMCll and a summary of its
operating environment. This chapter also contains microprogram
development criteria, a 1list of . reference documents, and an
explanation of the notations used in this manual.

Chapter 2 describes the KMCll microprocessor architecture with emphasis
on the internal registers and data paths.

Chapter 3 provides detailed descriptions of the KMCll microinstruction
repertorie; a bit map precedes the description of each
microinstruction. This chapter is subdivided into two major parts
corresponding to the two classes of microinstructions: Move class and
Branch class.

Chapter 4 defines the KMCll macro syntax, the macros, and expansion of
the macros. This chapter also lists the reserved symbols and outlines
the general procedures to operate the KMC-11 MACRO assembler.

Chapter 5 describes the KMCll loader utility. The basic KMCll loader
subroutine in this chapter provides the basis for the user to develop
his own operating system specific loader. The KMCll Loader (KMCLDR)
running on RSX-11M is also described in this chapter for users who
utilize this DIGITAL-developed component.

Chapter 6 provides the programmer with the detailed information
necessary to use the KMCll Debugging Aid (KMCDA); this chapter also
includes details on task building KMCDA.

Chapter 7 considers special programming characteristics and
techniques; some are unique to the KMCll microprocessor and some are
unique to KMCll microprocessors operating in the multiprocessor
environment.

vii

Appendix A provides information ancillary to that contained in Chapter
7 on preventing overwriting data in the KMCll Control and Status
Registers and on ensuring data bit settling.

viii

CHAPTER 1

INTRODUCTION

1.1 PURPOSE OF MANUAL

This manual provides the information needed by an experienced
programmer to assemble, load, and debug microprograms for the KMCll-A
auxiliary microprocessor. It therefore describes the KMCll software
tools that aid the programmer in developing, loading, and debugging a
KMC1ll microprogram.

1.2 KMCll GENERAL DESCRIPTION

The KMCll is an auxiliary processor designed £for use on PDP-11
computer systems. It operates in parallel with the main CPU and has
an architecture specifically suited to data movement, character
processing, address arithmetic, and other functions necessary for
controlling I/0 devices, formatting data, and processing
communications protocols. The KMCll can be used in conjunction with
all UNIBUS-based PDP-11 processors, from the PDP-11/04 to the
PDP-11/70.

The functions performed by the KMCll are determined primarily by the
microprogram in the KMCll control memory. This control memory is
writable and may be changed whenever desired by the PDP-11 processor.
In normal operation, the PDP-1ll operating system would load the
microprogram into the KMCll control memory as part of system
initialization; it would remain in the control memory until the
system is subsequently reinitialized.

Software support of the KMCll by a PDP-1l operating system consists of
two parts:

1. the PDP-11 operating system driver, and
2. the KMCll microprogram,

The microprogram must be tailored to the specific processing to be
performed by the KMCll. The operating system driver interfaces the
microprogram to the rest of the PDP-11 software. Communication
between the microprogram and the operating system uses the KMCll
control status registers and is entirely defined by the software.
Different applications may reguire different types of
microcode/software interfaces. Operating system support for the KMCll
should always be considered in terms of the specific KMC1ll
microprogram employed.

INTRODUCTION

1.2.1 Controlling Peripherals over the UNIBUS

A typical application of the KMCl1ll is the control of several
peripheral devices attached to the UNIBUS. These devices, for example
the DZ1ll 8-line asynchronous multiplexer, typically operate by
programmed I/0, interrupting the PDP-11 processor for each character
input or output. However, with the addition of a KMCll, this
processor overhead can be substantially reduced and I/0 throughput
increased.

The PDP-11 processor communicates with the KMCll on a message basis,
with the KMCll interrupting the processor at the end of each message.
The KMCll has direct memory access to message buffers in PDP-11 memory
by means of NPR transfers. Data is transferred between the KMCll and
associated peripherals on a character-by-character basis through NPR
transfers that address the peripheral's control, status, and data
registers (CSRs). NER transfers are conducted over the UNIBUS with no
direct connection between the KMC1ll and associated peripherals. The
peripherals are operated with their interrupts disabled. The KMCll1
periodically scans the peripheral status registers to determine when
characters may be transferred. A single KMCll can simultaneously
control many transfers between peripherals and memory, keeping track
of their status by using its 1024-byte data memory.

In addition to assembling and disassembling messages, the KMCll
microprogram can perform formatting, special character recognition,
error checking, and other protocol functions.

1.2.2 Controlling Peripherals Attached to the External Connector

For high-speed operation, the KMCll can be connected directly to a
specially designed peripheral device, such as a DMC1ll synchronous line
unit.

In this mode of operation, the KMCll communicates with the PDP-11
processor and memory as described above, but has a direct path to the
high-speed peripheral via the KMCll's external connector., The
external connector implements a simple bidirectional data port.
Transfers are entirely under microprogram control.

1.3 OPERATING ENVIRONMENT

The KMCll microcode can operate on any UNIBUS-based system (PDP-11/04
to PDP-11/70) with whatever hardware the user program requires so long
as the means exist to load the previously developed microprogram.

To develop the KMCll microprogram, the hardware, software, and
software tools listed in Sections 1.3.1 to 1.3.3 are required.

1.3.1 KMC1l1l Microprogramming Tools Minimum Hardware Requirements

Any valid RSX-11M, RSX-11D, or IAS hardware configuration and one
KMC11 auxiliary microprocessor comprise the minimum hardware
requirements.

INTRODUCTION

1.3.2 KMCll Software Tools

The KMCll microprogramming tools are wused to aid a programmer 1in
developing and debugging a KMCll microprogram; the tools enable the
programmer to assemble, load and debug the new microprogram.

The KMCll software tools consist of three parts:

1. A MACRO-11 prefix file consisting of macro definitions of
KMC1ll instructions. The prefix file 1is assembled using
MACRO-11 together with a file containing customer written
microinstructions in the form of macro calls.

2. A utility program to load the writable control memory of a
KMC11l-A from a file containing an image of a KMCll
microprogram. The utility program runs as a privileged task
under the supporting operating system. The input to the
program is a file created by the Operating System Task
Builder from the output of the MACRO-11 assembly.

3. A utility program to enable a programmer to debug
interactively a microprogram running on a KMCll. The utility
program runs as a privileged task under the supporting
operating system and utilizes the maintenance features of the
KMC1ll hardware. The user may examine and modify the contents
of the microprocessor internal registers, data memory and
control memory. The user may start, stop, or single step the
microprogram; or he may direct the KMC1ll to execute a single
microinstruction from the console. The user may optionally
set up to eight breakpoints in the microprogram. Breakpoints
are user-selected locations at which microprogram execution
is to be halted temporarily to permit interaction between the
microprogram and the user. If breakpoint support is to be
used, the 16 highest locations in the KMC1ll control memory
must be reserved for the utility program. All addresses and
data input and output to the user are in octal.

1.3.3 Prerequisite Software

The KMCll microprogramming tools operate with one of the following
PDP-11 systems:

RSX-11M, Version 3.0
RSX-11D, Version 6.2
IAS, Version 1.1

1.4 MICROPROGRAM DEVELOPMENT CONSIDERATIONS

Software support of a KMCll by a PDP-1l1 operating system consists of
two parts: the KMCll microprogram and the PDP-11 operating system.
The operating system driver interfaces the microprogram with the rest
of the PDP-11 software. The microprogram must be tailored to the
specific processing to be performed by the KMCI1l.

Development or acquisition of the microprogram can be through one of
the following ways:

1. Users can use DIGITAL-developed microprograms and drivers
supplied with DIGITAL's PDP-1l operating systems.

INTRODUCTION

2. Users can use DIGITAL-developed microprograms in their own
software environment. These users will develop their own
operating system drivers.

3. Users can develop their own microprograms tailored to
specific applications. These users can also develop their
own operating system drivers. They may utilize the DIGITAL
software tools described in Section 1.3.2.

4. Users can use DIGITAL's Computer Special Systems (CSS) to
design and develop custom microprograms. CSS services avoid
the need to develop in-house expertise and experience in the
details of KMCll microprogramming, yet provide the benefits
of custom-microcode.

If KMC1ll microcode is to be developed by the user, personnel should be
senior-level and should have experience in programming I/0 routines in
several different minicomputer or microprocessor assembly languages.
In addition, the personnel should be familiar with the problems of
correctly synchronizing multiple processors.

1.5 REFERENCE DOCUMENTS

The following documents supplement the information in this manual.
Some will aid in understanding the wuse and programming of the
peripheral devices mentioned in this manual; others provide
installation, operational and maintenance information for the KMC1l.

Document
Title Number
KMC1ll General Purpose Microprocessor User's Manual EK-KMC11-0P
KMC1l General Purpose Microprocessor Maintenance Manual EK-KMC1l1-MM
COMM IOP-DUP Programming Manual AA-5670A-TC
COMM IOP-DZ Programming Manual AA-5127A-TC
DMC11-DA Network Link Synchronous Line Unit
Maintenance Manual EK-DMCLU~-MM
PDP-11 Peripherals Handbook EB05961
RSX-11M MACRO-11 Reference Manual DEC-11-OMMAA
RSX-11M Task Builder Reference Manual DEC-11-OMTBA

1.6 NOTATIONS

The following notations are used throughout this manual. These
notations represent actions or processes that express Boolean
functions, programming conventions, and line printer or I/O terminal
actions.

A Boolean AND + Prompt

v Boolean OR CR Carriage Return

¥ Boolean Exclusive OR LF Line Feed

~ Negation [] Bracketed Argument is Optional
g Becomes

CHAPTER 2

KMC1l MICROPROCESSOR ARCHITECTURE

2.1 CPU STRUCTURES

The KMC1ll microprocessor is a parallel l6-bit general-purpose
microcomputer. Its architecture and instruction set are optimized for
the character processing environment specific to network
communications and other I/O-oriented systems. The KMCll instruction
cycle has a period ranging from 300 to 330 ns, and microinstructions
are executed from a 1K x 16-bit writeable control store referred to as
the control RAM or CRAM. Microinstructions executed from the CRAM can
access all KMCll internal registers as well as data memory.

Within the instruction cycle period, the KMCll can (1) execute
internal register~-to-register transfers; (2) initiate bus requests
(interrupt the main CPU); (3) initiate NPR transactions; and (4)
perform transfers between an internal register and data memory. 1In
addition, the KMCll can perform a wide range of arithmetic and logical
functions on internally transferred data. (The main CPU is defined as
the resident PDP-11 processor and its associated memory.)

All internal registers and data paths are 8 bits wide. In addition,
the Control and Status Registers (CSRs) are both word and byte
addressable from the UNIBUS, but byte addressable only from the KMC1ll.

The microprogram can read from or write into - all internal registers
and memories, except the microinstruction memory (CRAM), the memory
address register (MAR), and the program counter (PC). The CRAM can be
addressed for microinstruction execution only through the PC, and the
MAR and PC can only be written into.

The KMC1l1 microprocessor executes two major classes of
microinstructions: the Branch class and the Move class. Branch class
microinstructions implement conditional and unconditional program
jumps as well as subroutine entry and return. Move class instructions
provide for interregister and intermemory data transfers and for
logical and arithmetic operations on the transferred data.

Various confiqgurations of each microinstruction class are used to
construct the macroinstruction set described in Chapter 4. The
detailed descriptions of each microinstruction class are presented in
Chapter 3.

A major characteristic of the KMCll is that the CRAM is separate from
the data memory. A microprogram executed from the CRAM has free
access to the data memory and all internal registers through
microinstruction execution. However, a CRAM location cannot be
modified through microinstruction execution.

Figure 2-1 is an overall block diagram of the KMC1ll. It shows the
structure of the processor and the data paths connecting that

KMC11l MICROPROCESSOR ARCHITECTURE

structure. This section summarizes the structural components accessed
through internal buses, through direct microinstruction execution,
and over the UNIBUS, as well as the Arithmetic Logic Unit (ALU), which
is accessible to all internal registers.

2.1.1 1INBUS/OUTBUS and INBUS*/OUTBUS* Accessed Registers

The INBUS/OUTBUS and the INBUS*/QOUTBUS* (extended) serve as the data
and address 1link between the KMCll and its external environment.
These busses link a group of internal registers and serve as the
interface between the KMCll and the UNIBUS as well as the KMC1ll and an
external device. They are accessed through assigned fields in the
microinstruction. The registers addressed over these busses include
the 16 bytes of the multiport RAM, the NPR control register, the yPMISC
register, and registers associated with an external device. These
registers are described in detail in Sections 2.,1.1.1 through 2.1.1.4.

2.1.1.1 Multiport RAM - The multiport RAM is a l6-byte random-access
memory divided into two 8-byte sections that are addressed
through the INBUS*/OUTBUS* and the INBUS/OUTBUS. One section contains
the CSRs for the KMCll microprocessor, and the other serves as an
address and data port for NPR transfers. As shown in Figure 2-1, the
multiport RAM interfaces directly with the UNIBUS for the transfer of
data words or bytes and the 16 low-order bits of a UNIBUS address.
This memory is byte addressable from the microprocessor; the two
8~byte sections can be accessed by the microprogram for both read and
write operations. The UNIBUS CSRs are accessed through the
INBUS*/QUTBUS* and NPR interface through the INBUS/OUTBUS. From the
UNIBUS, the CSRs are both word and byte addressable and can be read
from and written into by the main CPU or another NPR device.

2.1.1.2 NPR Control Register - The NPR control register is an 8-bit
formatted register that enables the microprogram to control input and
output NPR transactions. This register also contains the two
high-order bits of the UNIBUS address for an input NPR transaction.
Note that an input NPR transaction involves the transfer of data from
main CPU memory to the microprocessor. Conversely, an output NPR
transaction involves transfer of data from the multiport RAM to main
CPU memory.

The NPR register also stores the state of MAR bits 8 and 10, which can
be read by the microprogram for detection of page and memory overflow.
This register 1is addressed as a register in the INBUS#*/QUTBUS*
category.

KMC1ll MICROPROCESSOR ARCHITECTURE

UNIBUS

—

MULTIPORT
RAM

REGISTERS
8x8

16
BITS
UNIBUS

DATA
PORT,

CONTROL
AND
STATUS
REGISTERS
8x8

N

“JMAINTENANCE

TO CONTROL ROMS

|
———————)

8 ouTBUS* e, REGISTERS
T L
| |8 INBUS
I |u
1 |s
L M ————————— - ——— —— —————
s
0
u
R
c
E L !
|
8 Tor
] cram kK~ Sy
NPR s Kxts |-t
ouTBUS* > CONTROL INBUS®
REGISTER 8 |
1x8 BIT17 8 b
EXTERNAL 9 P A_____|
p [_Inaus EXTERNAL, - !
LS
S \~'— ——————— -
uPMISC w
oUTBUS" ::> CONTROL ! BRANCH PROGRAM
RE?'SEE“ ED MOVE COUNTER
X SINGE STEP 1x10
BRANCH
REGISTER
(BRG)
1x8
MEMORY
ADDRESS DATA
ae(gnﬂr)sn MEMORY
Tx 10 1Kx8
B
ARITHMETIC
LOGIC UNIT
(ALU)
DESTINATION BUS 8 BITS WIDE J—* outeus ES

ERNAL
INECTOR >

Figure 2-1

KMC11

Register and Data Path Structure

KMC1l MICROPROCESSOR ARCHITECTURE

2.1.1.3 Microprocessor Miscellaneous Control Register - The
microprocessor miscellaneous control (uPMISC) register is an 8-bit
register that contains various control and function bits necessary for
operation of the KMCll. For example, this register contains (1) an
internal timing bit that times 50-ys intervals, and (2) a bit that
flags the addressing of a nonexistent main CPU memory location by the
microprocessor.

Specific bits are also available to the microprogram to control
initiation of bus requests over the UNIBUS and to specify one of two
vectors for appropriate interrupt processing. In addition, this
register contains the two high-order UNIBUS address bits for an output
NPR transaction. This register is addressed as a register in the
INBUS*/OUTBUS* category.

2.1.1.4 External Connector - The KMCll microprocessor 1is equipped
with an external connector that supports eight parallel data input
lines and eight parallel data output lines. These lines provide the
KMC1ll with direct access to a high-speed peripheral device such as a
DMC11l line unit.

Eight internal 8-bit register addresses are assigned to the supported
line unit. As shown in Figure 2-1, these registers (physically
located in the external line unit) are read from the input bus and
written from the output bus through the external connector. A typical
line unit capable of being used with the KMC1ll microprocessor is the
Network Link Synchronous Line Unit (DMC11-DA). (The title and
document number identifying the maintenance manual for this device are
listed in Section 1.5.)

2.1.2 Components Accessed Through Direct Microinstruction Execution

Specific KMC1ll registers are addressed as either sources or
destinations of data or loaded through uniquely coded fields in the

pertinent microinstruction. These registers include the branch
register (BRG), data memory, the memory address register (MAR), the
program counter (PC), and the scratch pad. These components are

described in detail in Sections 2.1.2.1 through 2.1.2.4.

2.1.2.1 Branch Register - The branch register (BRG) is an 8-bit
register used by Branch class microinstructions to specify branch
conditions and to derive a branch address. The Move class
microinstruction also uses the BRG as a data source and destination.
A specific Move class microinstruction can perform a l-bit right shift
on the BRG. Through this Move microinstruction, the BRG can be set up
to implement a subsequent conditional branch based on. the state of
certain BRG bits. The BRG also can be used as a general-purpose
storage register by the microprogram.

2.1.2.2 Data Memory and Memory Address Register — As previously
indicated, a major feature of the KMCll architecture is the use of a
separate instruction and data memory. The KMCll data memory is a 1K x
8-bit RAM that is read/write accessible to the microprogram. The
memory is addressed by a 10-bit memory address register (MAR) that is
write-accessible only to the microprogram and cannot be read directly.

KMC11l MICROPROCESSOR ARCHITECTURE

Through specific Move class instructions, the MAR can be loaded with
an 8-bit address for page offsets (256-byte page) and the two
high-order bits to designate one of four pages. A full 10-bit address
is loaded 1in two steps: the eight low-order bits and the two
high-order bits. This loading of the MAR can be performed in any
sequence desired. In addition, _the full 10-bit contents can be
incremented to address the next data memory location.

Since the microprogram cannot read the MAR, a page overflow bit and a
memory overflow bit are stored in the NPR register. The microprogram
uses the page overflow bit (bit 8 of the MAR) to detect page overflow
and the memory overflow bit to detect total data memory overflow. In
addition, the MAR can be incremented across page boundaries.

2.1.2.3 Program Counter - The KMCll PC has two modes of operation,
determined by the class of microinstruction currently being executed.
When a Move class instruction is executed, the content of the PC is
incremented by one at the conclusion of current microinstruction
execution to address the next sequential microinstruction.

If a Branch <c¢lass instruction 1is executed and designated branch
conditions are satisfied, the result of ALU operation on the two
microinstruction-specified operands or the value of a single operand
is written into the PC to address the next microinstruction to be
executed. Figure 2-1 shows that the microprogram can write into the
PC only through the ALU, as a consequence of a Branch <class
microinstruction execution.

2.1.2.4 Scratch Pad Memory - The KMCll scratch pad memory 1is a
high-speed, read-write, random-access memory made up of sixteen 8-bit
bytes, and addressed by the microprogram over the destination bus
(Figure 2-1). Scratch pad memory output provides the sole input to
the A-side of the ALU.

With Branch class microinstructions, the contents of a scratch pad
location can serve as an operand for an arithmetic or logic operation
with a second operand such as a data memory location or the BRG to
derive a jump address. By using Move class microinstructions, data
can be transferred between all internal registers and memories except
for the CRAM, the PC, and the MAR. A single Move class instruction
cannot be used to exchange the contents of two scratch pad locations.
Rather, the <contents of one 1location must first be moved to an
internal register that inputs to the B-side of the ALU (such as the
BRG). A second Move transfers it to the desired scratch pad location.

2.1.3 Components Accessed from the UNIBUS

The KMCll structural components that are accessed only from the UNIBUS
include the Control RAM (CRAM) and the two maintenance registers. The
functions of these components are described in detail in this section.

2.1.3.1 Control RAM - The KMC1ll control RAM (CRAM) is a 1K x 16-bit
random-access memory characterized by an extremely high speed access
cycle resulting in a microinstruction execution time ranging from 300
ns for most microinstructions to 330 ns for microinstructions
accessing the multiport RAM. As previously stated, the microprogram

KMC11 MICROPROCESSOR ARCHITECTURE

which controls the functioning of the microprocessor, is stored in and
executed from the CRAM.

A loader residing in the main CPU. loads the microprogram into the
CRAM. A loader that operates as a task under RSX-11/IAS is described
in detail in Chapter 5. Techniques for interfacing this loader with
other operating systems are also presented in Chapter 5.

A loader transfers a microprogram stored in main CPU memory over the
UNIBUS one microinstruction at a time for storage in the KMC1ll CSRs.
Each instruction is accompanied by the CRAM address for that
instruction. For each microinstruction transferred, the loader sets
two control bits in the CSR maintenance register: one to load the
microinstruction address and another to store the instruction in the
CRAM address designated.

Conversely, a given CRAM location can be read over the UNIBUS from the
main CPU through use of the KMCl1l1 CSRs. In this case only a PC
address is stored in the CSRs and specific control bits configured. A
main CPU program can then read the addressed CRAM location from the
CSRs.

As shown in- Figure 2-1, these transfers are accomplished from the CSRs
over the microprogram read/write bus. This bus, although internal to
the KMCll, cannot be accessed by the microprogram; rather, it is a
facility employed by the main CPU for 1loading, debugging, and
maintaining the KMC1ll microprogram. Details on the structure and use
of the microprogram read/write bus are covered in Section 2.2.2.

2.1.3.2 Maintenance Registers - One maintenance register is wused to
store a test microinstruction for subsequent execution, and the second
serves to address a CRAM location for microinstruction loading. For
this discussion, the first is referred to as the maintenance register
and the second, the maintenance address register.

The microprogramming debugging function is performed through the
maintenance register. During debugging, the KMCll debugging aid
(Chapter 6) must be able to read the registers and data memory
internal to the KMCll. The debugging aid primarily resides in and is
executed from main CPU memory with breakpoint support code in the
KMC11.

In actual practice, the debugging aid, through use of specific CSR
control bits, can store a microinstruction in the maintenance
register, and then execute it as though it came from the CRAM. For
example, a series of instructions could move the content of a data
memory location addressed by the MAR to the CSRs (INBUS*/OUTBUS*) for
retrieval and examination by the debugging aid.

During CRAM load time, the maintenance address register is loaded from
the UNIBUS to address the CRAM location, which stores an associated
microinstruction. This register is also used by the KMCll debugger
when a CRAM location is examined or modified. (See Section 6.1.1.)

2.1.4 Arithmetic/Logic Unit

The KMC1ll arithmetic/logic unit (ALU) has two sets of 8-bit data input
lines and one set of 8-bit data output lines (Figure 2-1). The two
sets of input lines are referred to as the A-input and the B-input.
The output lines are extended to form a destination bus to all

KMC11l MICROPROCESSOR ARCHITECTURE

internal registers and memories in the microprocessor. The A-input
accepts data from the scratchpad memory only; the B-input accepts
data from the data, CRAM, and multiport memories as well as the NPR,
BRG, and uPMISC registers.

For Branch class instructions, the KMCll ALU implements jump address
derivations, indexed Jjumps, and conditional jumps based on an
arithmetic or logical condition. For Move class instructions, the ALU
performs logical and arithmetic operations on registers and the
contents of memory locations; the results are stored in a specified
register or memory over the destination bus. As shown in Figure 2-1,
the CRAM cannot be accessed through the ALU.

The ALU also asserts the Carry (C) bit and the Zero (2Z) bit in
response to the various arithmetic and logic operations implemented by
Move class microinstructions. The C~bit is asserted as a binary one
when a given addition produces a carry term, and as a zero when a
given subtraction produces a borrow term. Similarly, when a given
arithmetic or logic operation produces a result of all ones (377
octal), the Z-bit is asserted as a binary one.

2.2 DATA PATHS
Within the structure of the KMC1ll, there are four defined data paths:
1. the source bus,
2. the destination bus,
3. the UNIBUS interface, and
4. the microprogram read/write bus.

The first two paths in this list are concerned with the transfer of
data between KMCll internal registers and memories. The third
provides for transfer of data over the UNIBUS between the KMCll and
the main CPU. Finally, the fourth data path listed, the microprogram
read/write bus, facilitates the loading of microinstructions from the
UNIBUS to the CRAM or to the maintenance registers. The
functional descriptions of these buses (Sections 2.2.2 through
2.2.5) are preceded by a discussion of the concept of source
destination data transfers as implemented by the KMC1l1
microprocessor (Section 2.2.1).

2.2.1 Source Destination Data Transfer

Data transfer between internal registers and memories is conducted
exclusively over the source bus and destination bus (Figure 2-1). A
data source is always an input to the B-side of the ALU, and a
destination 1is always the internal register or memory designated as
the recipient of ALU output.

In general, the data source specified in the microinstruction is one
of two operands to be operated on by the ALU in a manner designated by
the instruction; the second operand is the contents of a scratch pad
location. For data memory, the location containing the source operand
is the location addressed by the current contents of the MAR. When
the 1INBUS/OUTBUS or INBUS*/OUTBUS* is designated as the source of an
operand for input into the B-side of the ALU, the operand is addressed
by a field in the microinstruction. Where relevant, a scratch pad
address is also specified by a microinstruction field.

2-7

KMC1l MICROPROCESSOR ARCHITECTURE

For certain configurations of Branch class instructions, the source
operand and the scratch pad 1location addressed by the pertinent
microinstruction are operated upon by the ALU to derive a jump

address. This derived address would point to a page offset in the
CRAM containing the next microinstruction to be executed if the branch
conditions are satisfied. Note that page address bits 8 and 9 are

also contained in the microinstruction to form the full 10-bit
address.

For Move class instructions, the source operand and the scratch pad
location addressed by the pertinent microinstruction can be operated
upon by the ALU with the result transferred to the destination
designated by the microinstruction. Alternatively, the source operand
can be transferred directly to the designated destination without
change. Note that the wuse of internal registers and memories as
destinations of data has relevance only to Move <c¢lass instructions
since the PC is the only possible destination for the results of
Branch instruction execution.

Specific internal registers such as the scratch pads, the NPR control
register, the uPMISC register, the CSRs, and the NPR data and address
registers require a subaddress field in the microinstruction for
proper referencing. Therefore, when any of these registers is used as
a data source or destination, a field in the microinstruction is
reserved for the specific address. When data memory is designated as
a data destination, the memory location to contain the transferred
data 1is addressed by the current content of the MAR. Since the MAR
can be a data destination, it can be set to address a desired data
memory location by a Move instruction (Figure 2-1).

2.2.2 Source Bus

Figure 2-1 shows that the KMCll internal source bus is a parallel
8-bit data path that accepts data from one of eight separate sources
as designated by the currently executed microinstruction. These
sources include the BRG, the registers addressed through the INBUS and
INBUS*, the external connector, the data memory, and the low-order
byte of the current microinstruction. This bus connects to the B-side
of the ALU providing for input of a source operand from the selected
source register or memory location.

At microinstruction execution +time, the state of the instruction
source field specifies the source operand, thereby selecting the
specific register or memory as the source of data input to the B-side
of the ALU.

2.2.3 Destination Bus

Figure 2-1 shows that the destination bus is also a parallel 8-bit
data path that conveys the output of the ALU to all internal registers
and memories. The output bus routes data to six separate
destinations: (1) BRG, (2) MAR, (3) data memory, (4) OUTBUS and
OUTBUS* registers including the NPR and uPMISC registers, the external
connector, the CSRs and the NPR data and address registers, (5)
scratch pad, and (6) PC.

Move class microinstructions can designate any of these registers- and
memories, with the exception of the PC, as a data destination. As
previously noted, the PC serves as a data destination only for the
results of a Branch class microinstruction execution.

KMC11l MICROPROCESSOR ARCHITECTURE

2.2.4 UNIBUS Interface

As shown in Figure 2-1, the destination bus, in conjunction with the
source bus, provides the path not only for internal data transfers,
but also for transfer of data between internal registers and memories
and the main CPU. The interface between the KMC1ll microprocessor and
the UNIBUS is the multiport RAM. Through the multiport RAM, data is
transferred over the UNIBUS between the KMCll and the main CPU by way
of the CSRs or under NPR control.

I/0 data routed through the CSRs is controlled by the KMCll and the
main CPU through the use of a microprogram-defined scheme. 1In a
typical microprogram implementation such as COMM I/OP, data received
and transmitted through the CSRs takes the form of structured
commands.

Note that the programmer must design his CSR-accessing algorithms
in a manner that implements the orderly discipline necessary to the
parallel operation of a KMCll and an associated PDP-11. This
discipline must take into account all the detailed programming
considerations described in Chapter 7.

CAUTION
Failure to implement a properly
disciplined KMC1l1 CSR accessing

algorithm can lead to timing problems
and cause unreliable system operation.

In COMM I/0P, one set of these commands permits a user program in the
main CPU to configure and initialize a KMCll microprogram as well as
assign and deassign main CPU buffer space accessed by that program.
Similarly, a second command set permits a KMCll microprogram to
transfer certain control information and communicate normal and error
completions to the main CPU. These commands are described in detail
in the COMM TIOP-DUP and -DZ programming manuals. (Refer to
Section 1.5 for document numbers.)

All data transfers between the KMCll and the main CPU, with the
exception of user-designated control information normally passed
through the CSRs, are typically performed by NPRs. An NPR transaction
can access any UNIBUS address including main CPU memory and any -I/0
control register in the I/O page. These NPR transfers are conducted
under the control of the KMCl1l. As indicated in Figure 2-1, NPR
transfers occur over the UNIBUS from the KMCll to a UNIBUS address and
from a UNIBUS address to the KMCll. An NPR that transfers data from
the KMCll to a UNIBUS address is designated an output NPR, and the
converse, an input NPR. The INBUS/OUTBUS section of the multiport RAM
is partitioned to store the 16 low-order bits of a UNIBUS address and
the associated 16 data bits for both input and output NPRs. Actual
control of an NPR transfer, which is performed asynchronously with
respect to the microprogram, is exercised by the NPR control register.
As previously indicated, the extended bus address bits (bits 16 and
17) for an output NPR are contained in the pyPMISC register and for an
input NPR these bits are contained in the NPR register.

KMC11l MICROPROCESSOR ARCHITECTURE

2.2.5 Microprogram Read/Write Bus

Unlike the source bus, the destination bus, and the UNIBUS interface,
the microprogram Read/Write bus is accessible only to the main CPU
over the UNIBUS and cannot be accessed in any manner by the KMC1l
microprogram. The purpose of this data path is to provide for loading
the microprogram into the CRAM from the main CPU. 1In addition, a user
program in the main CPU (for example, a debugger) can use this path to
write into and read from the maintenance registers as well
as read from a CRAM location addressed by the PC.

Figure 2-1 shows that this data path originates at the KMCll UNIBUS
data interface connecting to the INBUS/OUTBUS section of the multiport
RAM. 1In the process of loading microinstructions into the CRAM or
maintenance registers or reading from these sources, the
data is stored in the INBUS*/QUTBUS* section of the
multiport RAM. Data is also routed onto or off the microprogram
read/write bus directly onto or from the UNIBUS. Note that data is
moved over this path by the user program through programmmed data
transfers involving l16-bit address and data words only. As previously
stated, control of this data path is maintained by a user program
through specifically assigned bits in the high byte of CSRO.

2.3 REGISTER AND MEMORY FORMATS

The operational components of the KMCll microprocessor that are
assigned a fixed format for control purposes include the following:
(1) the KMC1ll CSRs, (2) the NPR data and address registers, (3) the
NPR control register, (4) the uPMISC register, and (5) the BRG.

The functions performed by the remaining KMCll components, for
example, the CRAM, the scratch pad, the data memory, and the
maintenance instruction register, do not require assigned formats. An
illustration of each format along with a detailed description of the
function performed by each field within a register or memory is
presented for each pertinent KMCll component in Sections 2.3.1 through
2.3.4.

2.3.1 KMCll CSR Format

As shown in Figure 2-2, the 8-byte partition of the multiport RAM,
which is addressed through the INBUS*/OUTBUS*, contains the UNIBUS
CSRs for the KMCll microprocessor. These registers are assigned the
following UNIBUS addresses in the floating I/O page: 76XXX0, 76XXX1,
76XXX2, 76XXX3, 76XXX4, 76XXX5, 76XXX6, and 76XXX7, with the even
addresses forming the word boundaries. These CSRs are both word and
byte addressable from the UNIBUS. For purposes of identity (Figure
2-2), the CSR bytes are referred to by the names BSEL0O through BSEL7,
and on word boundaries by the names SELO, SEL2, SEL4, and SEL6.
However, from the KMCll, the CSRs are byte addressable only.

2-10

KMC1l MICROPROCESSOR ARCHITECTURE

INTERNAL INTERNAL

INTERNAL INPUT OUTPUT
UNIBUS PHYSICAL SYMBOLIC SYMBOLIC
A A
ADDRESS . 6 51 4 5 2 ¥ o ADDRESS ADDRESS' ADDRESS
| T | | | I |
76 xxx 0 0 INCON OINCON
CSRBYTE O
(BSEL 0, SEL 0)
|
|
CRAM TO EXTERNAL RAM RAM STEP
76 xox 1 1 MAIN OMAIN
o RUN MCLR | WRITE CONNECTOR o A uP
(BSEL 1)
|
I
76 wxx 2 CSR BYTE 2 2 OCON 0OCON
{BSEL 2, SEL 2)
! | | | | I |
T T 1 T 1 f i
76 xxx 3 CSRBYTE 3 3 LINENM OLINEN
{BSEL 3) ' I
| | | | |
i I i I | I !
76 xxx 4 CSRBYTE4 4 PORT1 OPORT1
(BSEL 4, SEL 4) | l |
| | | |
| [I | I I |
76 xxx & CSR BYTE 6 5 PORT2 OPORT2
{BSEL 5)] l
| ! [| |
T I | I | i 1
76 xxx 6 CSR BYTE 6 6 PORT3 OPORT3
(BSEL 6, SEL 6) | | l | | | |
] 1 | | | | |
122211’ CSRBYTE 7 7 PORT4 OPORTA4
| | | | i | |

*Symbols used by KMC11 Macroassembler; see Chapter 4.

Figure 2-2 KMCll CSR Format

Figure 2-2 shows that the only CSR having a fixed or hardware-defined
format is CSR 1. CSR 1, like the remaining CSRs, exist as read/write
locations in the multiport RAM. In addition, the CSR 1 <control bits
have associated hardware logic elements that implement the functions
performed by these bits. The user program can set and clear these
bits and the associated 1logic elements over the UNIBUS through
programmed data transfers. The microprogram can also access the
multiport RAM through the internal data paths to set and clear CSR 1
control bits. However, the states of the associated 1logic elements
are not altered when the microprogram changes the state of a
corresponding bit. Therefore, the microprogram can never assume that
the state of a CSR 1 control bit reflects the state of the associated
logic element.

Formats for the remaining CSRs are a function of the specific

application microprogram; therefore, the descriptions that follow are
concerned only with CSR 1.

NOTE

The symbolic addresses assigned the CSR
registers shown in Figure 2-2 are those
defined by the KMC1l Macroassembler
described in Chapter 4.

KMC1l MICROPROCESSOR ARCHITECTURE

The user program sets bit 6 of CSR 1, the MCLR (master clear) bit, and
bit 7 (the RUN bit) at KMCll initialization time to clear all
condition-sensitive logic and to place the microprocessor in the run
state.

Setting the MCLR bit performs the following actions on the KMC1l
microprocessor:

1. clears all hardware logic related to the maintenance bits 1in
CSR1,

2. clears all flip-flops related to the NPR register with the
exception of the £flip-flop associated with NPR REQ (Figure
2-4),

3. clears all flip-flops related to the uPMISC register,
4, clears the Z-bit and the C-bit,

5. clears the BRG, the MAR, and the PC,

6. clears the maintenance instruction register, and

7. clears the RUN bit and zeros all timing signals.

However, setting the MCLR bit has no effect on the following KMCI1l
components:

1. the multiport RAM,

2. the CRAM,

3. data memory,

4., the scratch pad, and

5. the flip-flop associated with the NPR REQ bit.

The NPR REQ bit is cleared independently due to its function in the
NPR process by the UNIBUS control signal DATA BUS INIT asserted by the
main CPU. Delays implemented through ACLO and PGM CLK (Section 2.3.3)
are not cleared but expire at the end of the delay associated with
these signals.

With MCLR set, a PDP-11 program can then immediately set the RUN bit
through execution of an instruction. The specific conventions
concerning the setting and clearing of the RUN bit are detailed in
Chapter 7. Detailed examples of the use of the MCLR and RUN bits at
initialization time are contained in the COMM IOP-DUP and COMM IOP-
DZ programming manuals. (Refer to Section 1.5 for document
numbers.)

Bits 2 and 5, RAM O and CRAM WRITE (Figure 2-2), are used together to
load a CRAM address and a microinstruction over the microinstruction
read/write bus into the maintenance address register and CRAM,
respectively. These bits provide the mechanism for loading a complete
microprogram into the KMC11 CRAM and for changing unique
microinstructions.

In this process, the user sets RAM O to one, and loads (1) the address
of the CRAM location to which the microinstruction is to be written
into SEL4 (this action loads the maintenance address register but does
not change the PC content) and (2) the actual instruction into SEL6.
The user then sets CRAM WRITE to one, and the instruction is loaded

KMC11l MICROPROCESSOR ARCHITECTURE

into the CRAM location addressed by the new value of the maintenance
address register.

At this point, both the RAM O and CRAM WRITE bits may be <cleared by
the PDP-11 program prior to performing the next microinstruction
write. However, instead of clearing both RAM O and CRAM WRITE, CRAM
WRITE alone can be cleared, and the SEL6 read to verify that the
microinstruction was correctly written into the proper location. In
this case, the CSR SEL6 contains the contents of the CRAM location
addressed by the maintenance address register. SEL4 also contains the
contents of the CRAM location written into. However, after RAM O is
cleared, SEL4 contains the address of the last CRAM location written.
Similarly, the user can read a selected CRAM location by loading the
desired PC address into SEL4, setting RAM O, and then reading SELS6.

As an example of this CRAM write/read process, consider the storing of
a microinstruction that transfers the contents of the INBUS* byte 7 to
location 4 of the scratch pad into CRAM location 1754 and then
verifies the write:

MOVB #4,BSEL1 ;Set RAM O to one

MOV #1754 ,8SEL4 sLoad address

MOV $#123146,SEL6 ;Load microinstruction

BISB #40,BSELL ;Set CRAM WRITE

BICB #40,BSEL1 ;Clear CRAM WRITE

CMP #123146,SEL6 sVerify that instruction is loaded

After clearing CRAM WRITE, the user can examine the contents of SEL4
and SEL6 directly from the main CPU console. This method of single
instruction writing and reading is useful during the microprogram
debugging process for changing the contents of specific CRAM locations
and verifying that the change is correct. RAM O must be cleared prior
to writing the next instruction.

For example, when loading a complete microprogram, the first 1location
in that program could be the base address to be incremented for each
microinstruction stored in the CRAM. The microprogram could be stored
in a main CPU buffer to be accesssed for loading by programmed data
transfers in the autoincrement mode. Note that RAM O and CRAM WRITE
should be cleared after each microinstruction is loaded (Chapter 6).

Combinations of bits 0 and 1 of BSELl1l, RAM I and STEP uP are used to
write a microinstruction from the main CPU into the KMCll maintenance
instruction register. As described in Section 2.1.10, a debugging aid
resident in the main CPU can store a microinstruction in this register
from the UNIBUS and then execute that instruction in place of a
specific instruction in the CRAM.

The first step in loading a microinstruction into the maintenance
instruction register 1involves clearing the RUN bit (Bit 7 of BSEL1l).
Next, the microinstruction is loaded into SEL6, and RAM I is set to
load the microinstruction into the maintenance instruction register.
Finally, setting STEP uP causes the instruction to be executed from the
maintenance instruction register rather than the CRAM. The PC is also
incremented each time STEP uP bit is set. With RAM I cleared, setting
STEP yP causes the microinstruction in the next CRAM location to be
executed. In addition, the contents of the maintenance instruction
register can be read from either SEL4 or SEL6. The user must first
clear the STEP P bit, and then set RAM I along with RAM O and read the
contents of SEL4 or SEL6.

2-13

KMC1ll MICROPROCESSOR ARCHITECTURE

As shown in Figure 2-2, bits 3 and 4 of BSELl are labeled "to external
connector." These bits can serve as status/control bits for an
external device.

2.3.2 NPR Address and Data and NPR Control Register Formats

The NPR transactions performed by the KMCll directly involve the NPR
address and data registers, which are addressed through the
INBUS/OUTBUS and the NPR control register. Note that the NPR register
is addressed through the INBUS*/OUTBUS*. As shown in Figure 2-3, the
NPR address and data registers serve as the buffer for the 16
low-order UNIBUS address bits and the 1l6-bit data words for both
in-NPR and out-NPR transactions. The NPR transactions performed by
the KMCll microprocessor are controlled by the NPR control register
(Figure 2-4).

Before executing an NPR transaction, the KMCll microprogram must store
the 16 low-order bits of the UNIBUS address and the associated 16-bit
data word (if the transaction is an out-NPR) in the NPR address and
data registers. For an in-NPR, the source of UNIBUS address bits 16
and 17 is the NPR register, and for an out-NPR, the source of these
bits 1is the uPMISC register. (See Figures 2-4 and 2-5.) The
microprogram accesses the NPR address and data registers by
referencing the NPR register and using the internal symbolic or
physical addresses shown in Figure 2-3.

PHYSICAL INTERNAL™ INTERNAL™
ADDRESS INPUT OUTPUT
{OCTAL) ADDRESS ADDRESS
7| 6] 5| 4| 3] 2] 1 0
| I I | il I [
4] INDAT 1 IN DATA LOW BYTE OIDAT 1
| | | 1 | ! |
I 1 I [[i |
1 INDAT 2 IN DATA HIGH BYTE OIDAT 2
|] | | |] |
I I I I [] I
2 IODAT 1 OUT DATA LOWBYTE OUTDA 1
|]] |] | |
I | T [I | I
3 IODAT 2 QUT DATA HIGH BYTE OUTDA 2
| | | | | | |
| | | | | [|
4 HBA 1 IN UNIBUS AbDRESS 0:7 IBA 1
] | | |] | |
| I] | 1 i I
5 11BA 2 IN UNIBUS ADDRESS 8:15 IAB 2
| | | | | | |
|] I | 1 I !
6 10BA 1 OUT UNIBUS ADDRESS 0:7 OBA 1
| | | | | | |
I [| i | | I
7 10BA 2 OUT UNIBUS ADDRESS 8:156 OBA 2
1 | | !] | 1

*Symbols used by KMC11 Macroassembler; see Chapter 4.

Figure 2-3 NPR Data and Address Register

2-14-

KMC11l MICROPROCESSOR ARCHITECTURE

INTERNAL INTERNALt INTERNALt
PHYSICAL INPUT OUTPUT
ADDRESS ADDRESS ADDRESS
7
(OCTAL) - =
BYTE MAR MAR ouT INBA INBA NoT NPR
L NPR XFER 10 8 NPR 17 16 ;ﬁg; RQ ONPR

* KMC11 can read and write these bits.
** KMC11 can only read these bits.
KMC11 can only set this bit to a one or read it.
It is cleared automaticaily at completion of NPR,
t Symbols used by KMC11 Macraassembler; see Chapter 4.

Figure 2-4 NPR Control Register

With the 18 bits of the UNIBUS address and the related data stored
appropriately in the INBUS/OUTBUS, the KMCll microprogram can then set
up the NPR control register for an out-NPR transaction. All the
pertinent bits in the NPR control register can be set to the required
state by moving a single 8-bit binary array appropriately configured
into the register. Note that bits 5 and 6 (MAR8 and MAR10) can be
read only by the microprogram and are unaffected by writing. The
function performed by each NPR control bit is described in detail
below.

Bit 0 of the NPR control register, NPR RQ, provides the start and end
control for an NPR transaction. When set by the microprogram, an NPR
transaction <c¢ycle is initiated. During this <c¢ycle, the UNIBUS
physical address specified 1is accessed independent of microprogram
operation. As a consequence, the microprogram can continue operation
during an NPR transaction.

Upon completion of an NPR transaction, the NPR RQ bit is automatically
cleared to designate completion of the -transaction. If the
transaction is an in-NPR, this action informs the microprogram that
retrieved data is ready to be read from the NPR data registers INDATI
and INDAT2 (register 0 and 1 of the INBUS). If the transaction is an
out-NPR, the clearing of NPR RQ informs the microprogram that the data
in the NPR data registers OUTDAl and OUTDA2 (registers 2 and 3 of the
INBUS) have been stored in the location specified by the UNIBUS
address. If a nonexistent memory 1location 1is accessed by an NPR
transaction, the transaction 1is terminated after 20 us by the
microprocessor, the NON EX MEM bit in the uyPMISC register 1is set
(Section 2.3.3), and the NPR RQ bit is automatically cleared.

The state of NPR register bit 4 (the OUT NPR bit) designates whether a
given NPR transaction 1is to store data in or retrieve data from a
specified UNIBUS address. When this bit 1is set to one, the
transaction will be an out-NPR, and when zero, an in-NPR.

Bits 2 and 3 of the NPR register INBA 16 and INBA 17 are the
high-order bits of the extended UNIBUS address for an in-NPR. The
state of these bits is automatically placed on the UNIBUS along with
the 16 1low-order bits contained in bytes 4 and 5 of the OUTBUS/INBUS
(Figure 2-3) during an in-NPR transaction to form the full 18-bit
UNIBUS address. The corresponding bits for an out-NPR are contained
in the same bit positions in the uPMISC register (Section 2.3.3).

2-15

KMC1l1l MICROPROCESSOR ARCHITECTURE

Bit 7, BYTE XFER, applies only to out-NPR transactions. If a single
byte is to be transferred during an in-NPR transaction, the
microprogram must perform the NPR for the entire word and then
retrieve the pertinent byte from either INDAT1 (low byte) or INDAT2
(high byte) (Figure 2-3).

CAUTION

Setting the BYTE XFER bit during an
in-NPR transaction could have a
detrimental effect on system operation,

When this bit is at zero, all out-NPR transactions are conducted on
word boundaries. However, when set to one, bit 0 of the UNIBUS
address determines whether the transaction involves the 1low byte or
the high byte. For example, with BYTE XFER set, where address bit
zero is zero, the contents of the NPR data register symbolically
addressed as OUTDAl is transferred to the low-byte position of the
location specified by the UNIBUS address, Similarly, if address bit
zero 1is one, the contents of OUTDA2 is transferred to the high-byte
position of the 1location specified by the UNIBUS address. When
performing a single-byte out-NPR, the programmer should be sure
that the data is placed in the proper OUTBUS register: OUTDAl for the
low byte and OUTDA2 for the high byte (Figure 2-3).

NPR transactions can be conducted by the KMCll microprogram singly or
as a series of transactions executed sequentially. When NPR
transactions are conducted singly, control or mastership of the UNIBUS
is automatically relinquished when the transaction 1is completed.
However, when conducting multiple sequential NPR transactions, it may
be advantageous, for processing efficiency, to maintain bus control
until the last transaction is completed. Bit 1 of the NPR register,
the NOT LAST XFER bit, maintains this bus control throughout a series
of NPR transactions. The KMCll microprogram sets this bit along with
other pertinent control bits when starting the first transaction in
the series. The microprogram must clear this bit to relinquish bus
control with the first instruction following the start of the last
transaction in the series.

CAUTION

The maximum number of sequential NPRs
that can be executed is determined by
the specific PDP-11 system
configuration. Exceeding this maximum
can cause latency problems with such
associated peripherals as mass storage
devices and communications controllers.

The bit labeled MAR8 (Figure 2-4) always reflects the current state of
bit 8 in the MAR. The bit labeled MAR10 in the NPR register does not
reflect a bit state in the MAR, but rather can serve as an overflow
indicator for the MAR. MAR10 is set to one when the MAR is
incremented from 1777 octal to zero. If the MAR is incremented beyond
1777 a second time, MAR10 is set to zero. MAR10 is automatically
cleared when the two high-order bits of the MAR are loaded (Section
3.1.1).

KMCl1ll MICROPROCESSOR ARCHITECTURE

2.3.3 uPMISC Register Format

The WPMISC register is an internal register containing various
function and control bits necessary for the operation of the KMCll
microprocessor. The format for this register is illustrated in Figure
2-5, and the detailed functions performed are presented below.

Bit 0, the NON EX MEM bit, is set by microprocessor hardware when a
nonexistent UNIBUS location is addressed by the microprogram during an
NPR transaction. The microprogram is responsible for monitoring the
state of this bit and clearing it when set. 1If the microprogram does
not do this on each NPR, it cannot identify a specific NPR that has
failed.

INTERNAL INTERNALT INTERNALt
PHYSICAL INPUT OUTPUT
ADDRESS ADDRESS 7 6 5 4 3 2 1 ADDRESS
‘OCTAL) LL) - *n » * e *
VECTOR ouT ouT NON
1" UBBR iﬂf @ RESERVED Ziﬁ BA BA ACLO EX OBR
xx4 17 16 MEM

KMC11 can read and write these bits.

KMC11 can only set these bits to one, they are reset
automatically at the completion of a bus request, a
power fail sequence, or by expiration of the pertinent
delay period, whichever is applicable.

t Symbols used by KMC11 Macroassembler; see Chapter 4.

Figure 2-5 Microprocessor Miscellaneous (uPMISC) Register

Bit 1, ACLO, is set by the microprogram to initiate a power fail
sequence at the main CPU. This bit clears automatically upon
completion of the sequence. The period of this sequence is 500 us.

Bits 2 and 3, OUT BA 16 and OUT BA 17, comprise the extended address
bits for an out-NPR transaction. These bits are automatically
transferred onto the UNIBUS during an out-NPR. The microprogram is
responsible for the maintenance of these bits.

When the microprogram writes a one to PGM CLK, the PGM CLK bit goes to
a zero and remains in that state for 50 us. At the end of that
period, it returns to the one state and remains in that state until
the microprogram again writes a one to it. The 50-us timing period
provided by this bit is useful to the microprogram during operations
such as communications line polling.

Another use of the PGM CLK bit is as a watch-dog timer. 1In this case,
the microprogram writes a one to PGM CLK (the PGM CLK bit will go to
the zero state for 50 us) and then during the 50-us zero state of that
bit, the microprogram writes a series of ones to PGM CLK. The zero
state of that bit will be assured for 50 us after the writing of the
last one; if the time period between writing ones exceeds 50 us, the
state of the PGM CLK bit will return to the one state.

It should be noted that the microprogram cannot stop the PGM CLK bit
during any on-going timeout period. However, the microprogram can
reset this bit at any time to start a new 50 us timeout period.

Bit 7, BUS RQ, is set by the KMCll microprogram to inform the main CPU
that it 1is ready to send or receive data over the UNIBUS on a
programmed-data-transfer basis. Setting this bit interrupts the main
CPU. The vector location used by the main CPU to process the

KMC1l MICROPROCESSOR ARCHITECTURE

interrupt is designated by bit 6, VECTOR @ XX4. When set to one, this
bit implies a vector to location XX4, and when set to zero, implies a
vector to XX0. The XX portion of a vector address is defined by
switches on the KMC11 module. (See KMCll General Purpose
Microprocessor User's Manual, EK-KMCll-OP.) If the system designer
requires an 1interrupt enable capability, he can designate a bit in a
CSR as the interrupt enable bit for interpretation by the
microprogram.

2.3.4 Branch Register Format

The Branch register (BRG) can be considered as both a formatted and an
unformatted register in that it can serve as a general-purpose storage
register as well as a branch designator for Branch class instructions.
Figure 2-6 depicts the BRG as a formatted register.

7 6 5 4 3 2 1 0

BRANCH BRANCH BRANCH | BRANCH

WHEN WHEN WHEN WHEN
=1 =1 =1 =1

Figure 2-6 Branch Register

Use of the BRG as a formatted register is a function of Branch class
microinstructions. When the BRG 1is wused in this manner, a Branch
class microinstruction can be configured to branch when BRG bit 0, bit
1, bit 4, or bit 7 is set to one. A branch cannot be made on the
remaining BRG bits.

As an example of how the BRG can be used to implement decision-making
microprogram branches, consider the execution of an NPR transaction.
As previously indicated, the NPR RQ bit (bit 0 of the NPR register) is
automatically cleared to zero when the transaction is complete. As a
test for NPR completion, the microprogram can periodically move the
contents of the NPR register into the BRG and execute a branch on the
state of bit 0. If bit 0 is one, the transaction is still wunder way
and a branch out of the test sequence is made. When NPR register bit
0 is zero, the next NPR transaction can begin. This technigue can
also be applied to the uPMISC register bits NON EX MEM (bit 0), ACLO
(bit 1), PGM CLK (bit 4), and BUS RQ (bit 7).

The BRG can also be right-shifted under program control. In this
process, the contents of the BRG are right-shifted one bit position,
and bit 0 of the ALU output resulting from microinstruction execution
is placed in BRG bit position 7. This capability serves to implement
a single instruction one bit right rotate as well as permitting a test
of the state of a specific BRG bit.

CHAPTER 3

KMCll MICROINSTRUCTION REPERTOIRE

KMCll microinstructions fall into two major categories: the Move
class instruction and the Branch «c¢lass instruction. Move class
instructions provide the mechanism for performing data transfers
between internal registers; Branch class instructions implement the
conditional and unconditional branch functions. The basic functions
of both Move and Branch class instructions include the ability to
perform a designated arithmetic or logical operation on the source
operands. For Move class instructions, the memory address register
(MAR) can be incremented as a consequence of instruction execution or
the resultant destination data can be stored in the MAR as well as the
destination register.

The level of detail presented in this chapter is sufficient for a
systems programmer who has experience with PDP-11 architecture,
specifically the UNIBUS, to quickly understand the functions and
application of the KMCll microinstruction set. Systems programmers
desiring further information on the PDP-11 UNIBUS should refer to
Chapters 5 and 6 of the PDP-11 Peripherals Handbook, EB05961.

3.1 MOVE CLASS MICROINSTRUCTIONS

Figure 3-1 summarizes Move class microinstructions. Excluding the
permutations provided by the 16 ALU functions, there are 40 basic Move
class microinstructions. Note that Figure 3-1 presents the mnemonics
for each Move class microinstruction field along with the binary
equivalent and a brief description of the function performed during
microinstruction execution by that field. In day-to-day
microprogramming activity, the programmer can use Figure 3-1 as a
reference.

A unique feature of Move <class microinstructions 1is that the MAR
control field can be used as needed by any instruction in the total
set. Therefore, the functions and use of the MAR Control field are
presented first, followed by a detailed description of each basic Move
class microinstruction - format and function. The Move class
microinstructions are organized according to data destination.

3.1.1 MAR Control Field

As shown in Figure 3-1, the MAR control field occupies bits 11 and 12
of each KMC11 Move class microinstruction. For each Move
microinstruction, the two MAR control bits implement one of four
functions. These functions and the associated arguments (in
parentheses) to the KMCll macroassembler are as follows:

KMC1l MICROINSTRUCTION REPERTOIRE

1. Leave contents of MAR unchanged (no argument needed).
2. Load MAR bits 0 to 7 (LDMAR).

3. Load MAR bits 8 and 9 (LDMAPG).

4, Increment MAR (INCMAR).

Syntactically within a Move class macroinstruction, a MAR control
field argument will generally be the last argument in a
microinstruction mnemonic. In a given Move class macroinstruction,
the absence of an MAR control field mnemonic causes the KMC1ll
macroassembler to assemble zeros into the MAR control field so that
the MAR remains unchanged during execution of that instruction.

When the eight low-order bits of the MAR are to be loaded, the content
of the destination bus is moved to corresponding MAR bit positions.
When the two high-order bit positions are loaded, bits 0 and 1 of the
destination bus are moved to bits 8 and 9 of the MAR.

In actual practice, the four states of MAR bits 8 and 9 designate one
of four 256-word pages 1in data memory. Bits 0 to 7 identify the
specific word addressed (page offset) within the designated page.

Finally, the MAR can be incremented by one through execution of any
Move «c¢lass microinstruction. 1In this operation, any other functions
performed by the executed microinstruction have no effect on the MAR.
This incrementing action 1is performed during the last phase of the
microinstruction cycle, after the register-to-register transfer is
complete. When performing the increment MAR function, the
microprogram can consider the data memory as a 1K set of contiguous
and cyclical memory locations. (MAR address 1777+1 -MAR address 0.)

3.1.2 Move Class Microinstructions: Formats and Functions

The detailed information for Move class microinstructions is organized
by data destination. The detailed information presented for each
microinstruction in the Move class includes the following:

1. the microinstruction name,

2. the macroassembler mnemonic,

3. the format,

4. a detailed functional description, and

5. a description of microinstruction arguments.

As previously indicated, certain Move class instructions can perform
an arithmetic or logical operation on the source operands; the result
is stored in the specified destination register. Figure 2-1 shows
that these operations are performed by the KMCll Arithmetic/Logic Unit
(ALU) and that this unit accepts two input operands. On the B-side of
the ALU, the operand 1is always from the KMCll source bus; on the
A-gide, the operand is always from the scratch pad. The KMCl1ll ALU
performs a total of 16 arithmetic and logical functions (Table 3-1).

KMC11l MICROINSTRUCTION REPERTOIRE

SUOTIONIFSUTOIDTI SSeTD SQAOW T-¢ whsmﬂ.m
*€-0 slig uononuisul
-ORMW Uy S1 ssaippe 13}sibas ped YyI1LIS 8Y |, “SUOIILUIISAP BlEP 3Y) 3l
1815161 ped yoiesos e pue 9y g ayl (H8dS) AVd HOLVHIS NV OHE L1
*€-0 SHQ UOIINIISUICIDIW U) S| SSAIPPE asoym
uoneuiIsep elep ayl si Ja1s1Bas ped Y1eIds v (udS) AVd HOLVHIS 0Ll N1V 3Y1 J0 apis-y 3yl 01 Indut se
"HVIN 33 JO JUBIUOD JUALING BUL Pa102}83s A[jeoljewolne si gds ased siyl uj .hwum_wmh »SN8LNo
Aq pejeubisap si uoneunsap ay se buialas uoneso| Alowsw elep [enjoe 10 SNALNO UE St LONEULISIP 1 UdYM 3d30x@ “g-Q suq
ay "uoneunsap eep v.._« s Aowsw e1eq (WIW) ABOWIWVIVG L0 AQ paiy1oads N7y 8yl 1o apis-y ayl o1 1ndul yum ‘uoilduny
T) l N1V ue a1eubisap sAemie /-4 S1Q UOIIONIISUIODIN "OHY
*€-0 S1Q UOIIONASUIcIONW Ul §1 ssaippe 31 JO 1ULU0D JUBAIND 3y} S| puesado aainos ay] {9g) Odg 110
3SOUM ‘uoijeun ayl si Jaisibas u
Uar “uoneuiisap exep auy sy uasibal sSNELNO LY (LNO) SNELNC 00L ‘Y 3U1 40 3pIs-y Y1 O3
"NV 2y Jo apis-g ay3 ol indut s! ‘pajjiysun ‘Hy g ayy 4o 1ualU0d HYIN 1ndu) se pajoaas Aj|edlleWOlNe sI OdS ased siyl uj "1a1sibas
3yl “UoNeUIISIP AU SB |[2M SB 30INOS YL OS|E S| DY G Yl }| "DYE By O 1UaWaIU| LSNALNO 10 SNGLNO UL S UCIIBUIISAP FYL UaYM 1d3dX3
L 119 031 panouws s\ (ajqedtdde si JaneydIYM) JUELNS3I NV Y2 10 puesado HVWONI L1 '€-0 sHQq Aq payioads NV 3yl 4o apis-y ayl 01 Indut Yum
92IN0s 3y} 40 g Hq pue 1ybi1 ay1 01 20e|d BUO PaYIYs HY Y 3Y} 4O LU0 e 2 s ‘uoiouny Ny ue a1eubisap sAemie /-4 S1IQ UOIIINIISUIOIDIA
341 yum uoneunsap elep syl st OHE 2yl (1J4HSHE) A3L4IHS DHA 110 mmmq.s wunw“ "HVIN 3U3.14nd 3y} AQ passaippe uo!1ed0]| Alowauw elep ayl jo
“£-0 SH] UOIONISUIOIDNUS Ut S| SSBIPPE BSOYM SdvWal 10 Jus3uod 83Uy si puetado adunos 3yl (XIWIIW) AHOWIN VIVAd 010
‘uoneunisap exep ayl st saasibes ,SNE1LNO vy (INOY ,SNELNO 01O £-051G ‘- SHQ uononnsulololus Aq passaippe salsibas , SNENI
§ ay} 40 Jualuod ayl si-puesado aounos ayl (SNdl) ,SnNaNi 1oL
‘uoneunsap elep 343 St HHFG 8yl (ILYMYE) DHE 100 HVYW peo
. dvwail ot "L~ SHQ uonanasuloldiw Aq passaippe salsibas SNANI
pateubisap pjay} 80IN0s pue uonduUNY NTY 3y uo Buipuadap siiq o 10/pue a1 40 3UB1U0S ayy st pueiado 30n0s 3yl (SN SHENT 100
Z 9y} 1e9)2 10 135 0} pasn aq ued | SGON UY "HVW 3y Ajipow o} “pabueyd
pasn aq ued | SQON Ue ‘18A3MOH “mojaq palsi| sialsibal uoneunssp auy -Un sufeway *UOIIONISUIOIIIW 3Y} 4O /-0 SHG W
UO 103443 OU Sy UONONIISUIOIdIW | SOON Ue J0 uonnoaxy 1SGON 000 dYWayl 00 pueJado a1eipawiwi ayl s elep 84nog (IWINI) ILVIGIWWI 000
L] T LJ] 1 ¥ * 1 T * ! 1
SS3HAAY AVd HOLVHIS HO NOLLONNLA NV HO a1aid
'+SNALNO ‘SNELNO $S3HAAV LNdNI
= P I
GNYH3dO 31VIAINWI = HYW
1 1 1 1 1 1 1 { 1 i 1 1
0 l 4 € 14 S 9 L 8 6 oL Lt cl €l 14 Sl

KMC11 MICROINSTRUCTION REPERTOIRE

Table 3-1
Arithmetic/Logic Unit Functions
ALU ALU Function ALU Functions Function C-Bit
Function Field Binary Performed Notation Affected?
Mnemonic Equivalent
ADD 0000 Add A and B A+B Yes
ADDC 0001 Add A and B with carry A+B+C Yes
SUBC 0010 Subtract B from A with borrow A-B-~C Yes
INCA 0011 Increment A A+l Yes
APLUSC 0100 A plus carry A+C Yes
TWOA 0101 A plus A A+A Yes
TWOAC 0110 A plus A plus carry A+A+C Yes
DECA 0111 Decrement A A-1 Yes
SELA 1000 Select A side-of ALU A No
SELB 1001 Select B side of ALU B No
AORNB 1010 A OR NOT B AV~B No
AANDB 1011 A AND B AAB No
AORB 1100 A OR B AVB No
AXORB 1101 A exclusive OR B A¥B : No
SUB 1110 Subtract B from A A-B Yes
(two's complement)
SUBOC 1111 Subtract B from A A-B-1 Yes
(one's complement)

NOTE

The ALU function SUBC is actually a
subtract with complement of the C-bit to
allow double-precision subtraction.

Depending on the function performed, execution of a Move class
microinstruction involving an ALU function can affect the state of the
C-bit. However, all Move class microinstructions can affect the state
of the 2-bit. The specific effects on these bits by Move class
microinstruction execution are as follows:

1. C-bit:
a. The C-bit is set to one when the sum produced by any ALU

add function results in a carry, and cleared to zero when
a carry is not produced.

KMC11l MICROINSTRUCTION REPERTOIRE

b. The C-bit is cleared to zero when the difference produced
by any ALU subtract function results in a borrow or a
sign change and set to one when a borrow or a sign change
is not produced.

c. The C-bit is unaffected when a logical ALU function is
performed.

2, The Z-bit is set to one when the output of the ALU, through
execution of any Move microinstruction, results in a value of
all ones (377, octal). If the result is not equal to
377 (octal) the Z-bit is set to zero.

The state of the C-bit is used to determine the result of a
compare transaction. For the ALU function mnemonic SUB
(binary code 1110), subtract B from A (two's complement);
the C-bit will be set to one when A is greater than or equal
to B and will be cleared to zero when A is less than B. For
the ALU function mnemonic SUBOC (binary code 1111), subtract
B from A (one's complement); the C-bit will be set to one
when A is greater than B and will be cleared to zero when A
is less than or equal to B.

The state of the Z-bit is used to determine the equality of
two quantities followed by a branch on Z-bit set to one. For
the ALU function SUBOC (binary code 1111), subtract B from A
(one's complement); the Z-bit will be set when A is egqual to
B and will be cleared to zero when A is not equal to B.

3.1.2.1 Destination NODST

NO DESTINATION

(NODST)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| [I I T T T T I T 1 T
0 0 0 MAR 0 0 0 0 0 0 0 0 0 0 0
SOURCE DESTINATION OPERAND
| | | 1 1 | | 1 1 1 ! !

This instruction, with the MAR control field set to zero, performs a
null operation. A microinstruction cycle is executed, and no internal
registers are changed but the Z-bit is cleared. 1In this configuration
the NODST Immediate microinstruction can be used to implement program
delays of any length.

However, this instruction can also be used to increment or load the
MAR without affecting the contents of any other internal register
using the arguments INCMAR, LDMAR, and LDMAPG. For example, the MAR
can be incremented by

NODST INCMAR
the lower eight bits loaded by

NODST IMM,opr ,LDMAR
and the upper two bits by

NODST IMM,opr,LDMAPG

KMC11l MICROINSTRUCTION REPERTOIRE

The argument for LDMAR, namely opr, would be a value in the range 0 to
377 (octal) and contained in bits 0 to 7 of the microinstruction. On
the other hand, the argument for LDMAPG could be any value up to 377
(octal) as 1long as bit positions 0 and 1 of the microinstruction
argument correspond to the desired values of MAR bits 8 and 9.

TEST INBUS
(NODST IBUS, adri)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 I ! I I I I INéUS] T I]
0 1 0 0 0
SOURCE MIAR DESTINATION ADDIRESS | | NOT IUSED |
I | | | |

This microinstruction permits a microprogram to determine if the value
of an INBUS register 1is equal to or not equal to 377(octal).
Execution of this microinstruction may be followed by a Branch class
microinstruction that tests and branches on the state of the ALU Z-bit
(Section 3.2). 1If the Z-bit is equal to 1, the contents of the
selected INBUS register have an octal value of 377. 1If the Z-bit is
equal to U, the register has an octal value not equal to 377. The
contents of the addressed INBUS register are not changed by this test.

The symbolic addresses for INBUS registers, as specified by the
argument adri, are 1listed in Table 3-2 along with the internal
physical address of the corresponding register.

For detailed information on the first eight INBUS registers, refer to
Section 2.3.2 and Figure 2-3. The eight INBUS registers 10 through 17
are assigned to support a high-speed peripheral device such as the
DMC11-DA Synchronous Line Unit. The titles and document numbers
identifying the maintenance and user manuals for this device are
listed in Section 1.5.

TEST INBUS*
(NODST IBUS, adri)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
L I | E— I — | E—
1 0 0 o INBUS
SOURCE MAR DESTINATION | ADDRESS NOT USED
| | Loy Lo

This microinstruction permits a microprogram to determine if the value
of an INBUS* register 1is equal to or not equal to 377 (octal).
Execution of this microinstruction may be followed by a Branch class
microinstruction that tests and branches on the state of the ALU Z-bit
(Section 3.2). If the Z-bit is equal to 1, the contents of the
selected INBUS* register have an exact octal value of 377. If the
Z-bit is equal to 0, the contents of the selected register have an
octal value not equal to 377. The contents of the addressed INBUS*
register are not affected by this test.

The symbolic addresses for the INBUS* registers as specified by the
argument adri are listed in Table 3-3 along with the internal physical
address of the corresponding register.

KMCll MICROINSTRUCTION REPERTOIRE

Table 3-2
INBUS Register Symbolic Addresses

Symbol Register Function Octal Address
INDAT1 In-NPR data low bYte 0
INDAT2 In-NPR data high byte 1
IODAT1 Out-NPR data low byte 2
IODAT2 Out-NPR data high byte 3
I1BAl In-NPR UNIBUS address low byte 4
IIBA2 In-NPR UNIBUS address high byte 5
I0BAl Out~-NPR UNIBUS address low byte 6
IOBA2 Out-NPR UNIBUS address high byte 7
XREGO User-specified 10
XREG1 User-specified 11
XREG2 User-~specified 12
XREG3 User-specified 13
XREG4 User-specified 14
XREG5 User-specified 15
XREG6 User-specified 16
XREG7 User—-specified 17
Table 3-3
INBUS* Register Symbolic Addresses

Symbol Register Function Octal Address
INCON CSRO 0
MAIN CSR1 (Maintenance Register) 1
OCON CSR2 2
LINENM CSR3 3
PORT1 CSR4 4
PORT2 CSR5 5
PORT3 CSR6 6
PORT4 CSR7 7
NPR NPR Register 10
UBBR uPMISC Register 11

3-7

KMCl1ll MICROINSTRUCTION REPERTOIRE

Note that the first eight symbolic INBUS* addresses comprise the KMCll
CSRs and that the symbols NPR and UBBR address the NPR and uPMISC
registers. See Sections 2.3.1, 2.3.2, and 2.3.3 for detailed
operational information on the CSRs, the NPR register, and the uPMISC
register, respectively.

TEST MEMORY AND SCRATCH PAD
(NODST MEMX, func, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PRLEE B T I R — 71
1 o 0 o0 P
SOURCE MAR DESTINATION | ALUFUNCTION ADDRESS
L1 l L1 | |

With this microinstruction, the microprogram can test the result of a
designated ALU functien (Table 3-1) on the contents of the data memory
addressed by the current MAR and the contents of the addressed scratch
pad location. If the result is egqual to the octal value 377, the
Z-bit is set to one. If the ALU function designated by the argument
func implements an add or subtract operation, the C-bit is affected as
described in Section 3.1.2. For example, the microinstruction NODST
MEMX,ADD,SP3 adds the contents of the data memory location addressed
by the current MAR to the contents of SP3, with the result capable of
affecting the state of both the C-bit and Z-bit. The contents of a
memory and a scratch pad location involved in this test are unaffected
by the test.

The pertinent mnemonics comprising the arguments for func are listed
in Table 3-1 along with the corresponding binary code and the
arithmetic/logic function initiated by the mnemonic. 1In the argument
SPn, the 1lowercase letter n represents an octal value in the range 0
to 17, which specifies the physical address of the scratch pad
location to be involved in the microinstruction execution.

TEST BRG AND SCRATCH PAD
(NODST BR, func, SPn)

15 14 1312 11_10 9 8 7 6 & 4 3 2 1
T T I T | 1] T T 1

o 1 1 " 0 0 o0 SP
SOURCE AR DESTINATION ALU FUNCTION ADDRESS

| |]]] | |]

With this microinstruction, the microprogram can test the result of a
designated ALU function (Table 3-1) on the contents of the Branch
Register (BRG) and the addressed scratch pad location. If the result
is equal to the octal value 377, the Z-bit is set to one; 1if the
result is not equal to this value, the Z-bit is cleared to zero. If
the ALU function designated by the argument for func implements an add
or subtract function, the C-bit is affected as described in Section
3.1.2. The contents of the BRG and a scratch pad location involved in
this test are unaffected by the test.

The pertinent mnemonics comprising the arguments for func are 1listed
in Table 3-1 along with the <corresponding binary code and the
arithmetic/logic function implemented by the mnemonic. In the
argument SPn, the lowercase n represents an octal value in the range 0
to 17, which specifies the physical address of the scratch pad
location to be involved in the microinstruction execution.

KMC11l MICROINSTRUCTION REPERTOIRE

3.1.2.2 Destination BRG

MOVE IMMEDIATE TO BRG
(BRWRTE IMM, opr)

15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0
T T I l I T I [I I | I

0 0 0 0 0 1
MAR DESTINATION OPERAND 0 - 377g

]]] | | | | | 1 |]]

The microinstruction Move Immediate to BRG permits an 8-bit operand to
be stored in the BRG. The actual value of the operand, as specified
by the argument opr, can be an octal value in the range 0 to 377 or it
can be the contents of any symbolic address designated by the symbol
table for the pertinent microprogram.

NOTE

If the operand is equal to 377 (octal),
the Z-bit is set to one.

MOVE INBUS TO BRG
(BRWRTE 1BUS, adri)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LIS T R T | E—
, 1 INBUS
souRce M?R DESTINATION ADDRESS NOT USED
l et Wl L1

The microinstruction Move INBUS to BRG moves the contents of a
designated INBUS register to the BRG with the contents of the source
INBUS register remaining unchanged. The INBUS symbolic addresses
represented by the argument adri are listed in Table 3-3.

NOTE

If the contents of the INBUS register
addressed by the microinstruction are
equal to the 377 (octal), the Z-bit is
set to one.

MOVE INBUS™ TO BRG
(BRWRTE IBUS, adri)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
! T I ! | l [| I I |

1 0 1 0 0 1 INBUS*
SOUR(iE MAR DES;I'INATIION | ADD?ESS | I NOTIUSED]
I

The microinstruction Move INBUS* to BRG moves the contents of a
designated INBUS* register to the BRG, with the contents of the source
INBUS* register remaining unchanged. The INBUS* symbolic addresses
represented by the argument adri are listed in Table 3-3.

3-9

KMC11l MICROINSTRUCTION REPERTOIRE

NOTE

If the contents of the INBUS* Register
addressed by the microinstruction are
equal to 377 (octal), the Z-bit is set
to one.

MOVE RESULTS OF MEMORY AND SCRATCH PAD TO BRG
(BRWRTE MEMX, func, SPn)

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T

o 1 0 o 0 1 sP
SOUR(IZE MAR DESITINA'I;ION ALU FUNCTION ADDPESS
l I ! L 1

This microinstruction can go beyond a simple source-to~destination
transfer to permit the microprogram to perform an ALU function (Table
3-1) on the contents of the data memory 1location addressed by the
current MAR and the contents of the scratch pad location addressed by
the argument SPn. The result of the designated ALU function on these
values is then stored in the BRG. An example of such a
microinstruction is as follows:

BRWRTE MEMX,SUB,SP5

The contents of the specific memory and scratch pad location involved
remain unchanged. Similarly, a direct source-to-destination transfer
of data from the memory location addressed by the current MAR to the
BRG can be implemented with the ALU function Select B (Table 3-1).
This microinstruction would take the following form:

BRWRTE MEMX,SELB

The mnemonics for the argument func are listed in Table 3-1 along with
the arithmetic/logic function implemented by each mnemonic. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of the scratch pad
location involved in the execution of this microinstruction.

MOVE RESULTS OF BRG AND SCRATCH PAD TO BRG
{(BRWRTE BR, func, SPn)

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T T T T T T
0 1 1 0 0 1 sp
SOURCE MAR DESTINATION ALU FUNCTION ADDRESS
|] | | | | |]]
As with the previous Move class microinstruction, this

microinstruction also goes beyond a simple source-to-destination
transfer to perform a designated ALU function on the contents of the
BRG and the contents of the addressed scratch pad location with the
result being stored in the BRG. The result produced after executing
this instruction is stored in the BRG, and the contents of the
addressed scratch pad location remain unchanged.

A direct source-to-destination transfer of data from the scratch pad
to the BRG can be implemented by using the ALU function Select A

3-10

KMC11l MICROINSTRUCTION REPERTOIRE

(SELA, Table 3-1). This microinstruction would take the following
form:

BRWRTE SELA,SPn

The pertinent mnemonics comprising the arguments for func are listed
in Table 3-1. 1In the argument SPn, the lowercase letter n represents
an octal value in the range 0 to 17, which specifies the physical
address of the scratch pad location involved in the execution of this
microinstruction.

3.1.2.3 Destination OUTBUS* - Microinstructions with the destination
OUTBUS* and OUTBUS share the same destination name (specifically OUT).
The KMCll macroassembler distinguishes between these two Move
instruction sets by analyzing the names of the OUTBUS* and OUTBUS
registers.

MOVE IMMEDIATE TO OUTBUS*
(OUT IMM, opr, adro)

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
T T I T I I | [I 1 | |
0 0 0 MAR 0 1 0 OPERAND
SOURCE DESTINATION OUTBUS™ ADDRESS
1 1]] |] 1 | |] |

The microinstruction Move Immediate to OUTBUS* permits the
microprogram to move an 8-bit operand directly to the OUTBUS* register
addressed by the four low-order bits of the immediate operand. To
understand this instruction, consider the arguments opr and adro. The
argument opr is an octal number or a symbol having a value in the
range 0 to 377. Conversely, the argument adro is one of the symbolic
addresses for an OUTBUS* register as listed in Table 3-4,
Consequently, the four low-order bits of the operand opr must have a
value equal to the value of the physical address corresponding to the
pertinent OUTBUS* symbolic address.

For example, if, the argument opr in a Move Immediate to OUTBUS* has
the -octal value 364, then the argument adro must be the OUTBUS*
register symbolic address OPORT1 (Table 3-4). This microinstruction
would take the following form:

, OUT IMM,364,0PORT1

If a conflict occurs during assembly between the value of the four
low-order bits of an operand and the value of adro (the corresponding
octal code for an OUTBUS* register symbolic address), an assembly
error is posted (Chapter 4).

3-11

KMC11l MICROINSTRUCTION REPERTOIRE

Table 3-4
OUTBUS* Register Symbolic Addresses
Symbol Register Function Octal Address
OICOM gSRO 0
OMAIN CSR1 (Maintenance Register) 1
OOCON CSR2 2
OLINEN CSR3 3
OPORT1 CSR4 4
OPORT2 CSR5 5
OPORT3 CSR6 6
OPORT4 CSR7 7
ONPR NPR Register 10
OBR ‘ pPMISC Register 11

MOVE INBUS TO OUTBUS*
(OUT IBUS, adri, adro)

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
! I 1 T I I I T I | I
0 0 1 MAR 0 1 0 INBUS ouTBUS™
SOURCE DESTINATION ADDRESS ADDRESS
I | | 1 | | | | | 1 1

This microinstruction provides the microprogram with the ability to
transfer data directly from an INBUS register to an OUTBUS* register,
with the contents of the source INBUS register remaining unchanged.
The argument adri is always one of the INBUS register symbolic
addresses listed in Table 3-2. Similarly, the argument adro is one of
the OUTBUS* symbolic addresses listed in Table 3-4.

MOVE INBUS* TO OUTBUS*
(OUT IBUS, adri, adro)

1 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0
T | T T T T I | T]]
1 0 1 MAR 0 1 0 INBUS* OUTBUS*
ﬁOURCE DE?HNANON ADDRESS ADDRESS
1] 1 1 l] 1 ! I

This microinstruction provides the microprogram with the ability to
transfer data directly from an INBUS* register to an OUTBUS* register
with the contents of the source INBUS* register remaining unchanged.
The argument adri 1is one of the INBUS* register symbolic addresses
listed in Table 3-3. Similarly, the argument adro is always one of
the OUTBUS* symbolic registers listed in Table 3-4,.

KMC11l MICROINSTRUCTION REPERTOIRE

MOVE RESULTS OF MEMORY AND SP0O TO OUTBUS*
(OUT MEMX, func, adro)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0
LA] E— T B —
o 1 o OUTBUS*
SOURCE MIAR DESTINATION ALU FUNCTION ADDRESS
. | L1 Lo

This microinstruction permits a microprogram to perform a designated
ALU function on two operands, one being the contents of the data
memory location addressed by current MAR and the other being the
contents of scratch pad location. zero. The result of the designated
ALU function on these operands is then stored in the OUTBUS* register
addressed by the instruction. A direct source~to-destination transfer
of data from data memory to the addressed OUTBUS* register can be
implemented by using the ALU function Select B (SELB, Table 3-1).
This microinstruction would take the following form:

OUT MEMX,SELB,adro

Similarly, a direct transfer of the contents of scratch pad location
zero (SP0) can be implemented using the ALU function Select A (SELA).
This microinstruction would take the following form:

OUT SELA,adro

The complete set of arithmetic/logic functions and corresponding
mnemonics for the argument func are listed in Table 3-1. Symbolic
addresses for the argument adro, which are the addresses of the ten
OUTBUS* registers, are listed in Table 3-4.

MOVE RESULTS OF BRG AND SPO TO OUTBUS*
(OUT BR, func, adro)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PR] ST T 1 T
0 ouTBUS*
SOURCE MAR | DESTINATION ALU FUNCTION ADDRESS
L ! L1 Lo P

With this microinstruction, a microprogram can perform. a designated
ALU function on two operands; one is the contents of the BRG and the
other is the contents of scratch pad location zero (SP0O). The result
produced by the designated ALU function is then stored in the
addressed OUTBUS* register. The contents of the BRG and SP0 remain
unchanged.

A direct source-to-destination transfer between the BRG and a
designated OUTBUS* register can be implemented by using the ALU
function Select B (SELB, Table 3-1). This microinstruction would be
in the following form:

OUT BR,SELB,adro
The complete set of arithmetic/logic functions and corresponding
mnemonics for the argument func 1is listed in Table 3-1. Symbolic

addresses for the argument adro, which are the addresses for the ten
OUTBUS* registers, are listed in Table 3-4.

3-13

KMC11 MICROINSTRUCTION REPERTOIRE

3.1.2.4 Destination BRG Right-Shifted

RIGHT SHIFT BRG ONE PLACE AND MOVE OPERAND BITOTOBRGBIT 7
(BRSHFT IMM, opr)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 ! 0 ' 0 ! 0 | I | T T T T] T
1 1
SOURCE DESTINATION OPERAND 0 —377g
L ' L1 I NN MO DU R I

Execution of this microinstruction is performed functionally in two
steps. First the contents of the BRG are shifted right one place, and
second, bit 0 of the immediate operand is moved to bit position 7 of

the BRG. Bit 0 of the BRG, as it was prior to the right-shift
operation, is lost. A typical use of this instruction is to shift
zeros 1into the high-order end of the BRG. Such an instruction would

take the following form:
BRSHFT IMM,O0
or

BRSHFT

RIGHT SHIFT BRG ONE PLACE AND MOVE INBUS BIT 0 TO BRG BIT 7
(BRSHFT IBUS, adri)

INBUS
SOURCE MAR | DESTINATION ADDRESS NOT USED

] | | !]]] |] I]

Execution of this microinstruction results in the contents of the BRG
being shifted one place to the right. Bit 0 of the INBUS register
addressed by the symbolic address designated by the argument adri is

then moved to bit position 7 of the BRG. Bit 0 of the BRG as it was
prior to the right-shift operation is 1lost. The contents of the
addressed INBUS register remain unchanged. The INBUS symbolic
addresses for the argument adri are listed in Table 3-2.
RIGHT SHIFT BRG ONE PLACE AND MOVE INBUS” BIT 0 TO BRG BIT 7
(BRSHFT IBUS, adri)
1 14 13 12 11 10 9 6 5 3 2 1
; T o T ; T 0 T . T] T 1 T T T
INBUS*
SOURCE MAR | DESTINATION ADDGRESS NOT USED
| | 1 | | | 1 | L | 1
Execution of this microinstruction shifts the contents of the BRG one

place to
position

unchanged.

the
symbolic address designated by the argument adri is then moved to
7 of the BRG.
shift is lost.

right.

The
listed in Table 3-3.

INBUS*

Bit 0 of the INBUS* register addressed by the

bit

Bit 0 of the BRG as it was prior to the right
The contents of the addressed

register

remain

symbolic addresses for the argument ardi are

3-14

KMC11l MICROINSTRUCTION REPERTOIRE

RIGHT SHIFT BRG ONE PLACE AND MOVE ALU OUTPUT BIT 0 (MEMORY AND SPn) TOBRG BIT 7
(BRSHFT MEMX, func, SPn)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I | I 0 I | I [| | | |

0o 1 o0 11 op
SOURCE MAR | DESTINATION ALU FUNCTION ADDRESS
L1 | L1 R R Loy

This microinstruction functionally executes in three steps. First,
the BRG is right-shifted one place with bit 0 of the BRG being lost.
Next, the contents of the data memory location addressed by the
current MAR and the contents of the addressed scratch pad location are
operated on according to the designated ALU function. Finally, bit 0
of the resulting ALU output is moved to bit position 7 of the BRG.
The contents of the addressed data memory location and scratch pad
location remain unchanged.

Bit 0 of the data memory location addressed by the current MAR can be
moved to bit position 7 of the BRG by using the ALU function Select B
(SELB, Table 3-1). Similarly, bit 0 of the scratch pad register
addressed by the argument SPn (where n is the octal address of the
designated register) can be moved to bit 7 of the BRG by using the ALU
function Select A (SELA). The symbols for the argument func are
listed in Table 3-1 along with the function performed and the
corresponding binary code.

RIGHT SHIFT BRG ONE PLACE AND MOVE ALU OUTPUT BIT 0 (BRG AND SPn) TO BRGBIT 7
(BRSHFT BR, func, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I T I T l T I T T

0 1 1 MAR 0 1 1 SP
SOURCE DESTINATION ALU FUNCTION ADDRESS
[| 1 | | | ! l -

In this microinstruction, the BRG is both the source and the
destination of data. As a consequence, the first step in the
execution of this instruction involves placing the unshifted contents
of the BRG onto the source bus (Figure 2-1) for input to the B-side of
the ALU. Following this action, the contents of the BRG are
right-shifted one place. The designated ALU function 1is then
performed on the unshifted BRG and the addressed scratch pad location.
Bit 0 of the resulting ALU output is moved to bit position 7 of the
BRG.

One of the major functions of this microinstruction is to provide a
single-bit right rotate of the BRG, which is implemented when the ALU
function Select B (SELB, Table 3-1) is used. Since the BRG 1is the
source, its contents are placed on the source bus unshifted for input
to the ALU. With the BRG also the destination, it 1is then
right-shifted one place. Such an instruction would take the following
form:

BRSHFT BR,SELB
With SELB the designated ALU function, the B-side is selected and bit

0 of the unshifted BRG is moved to bit position 7 of the BRG. The
result is a one-instruction one-bit right rotate of the BRG.

KMCll MICROINSTRUCTION REPERTOIRE

The mnemonics for the argument func are listed in Table 3-1 along with
the arithmetic/logic function implemented and the corresponding binary
code. For the argument SPn, the lowercase letter n represents an
octal value in the range 0 to 17, which specifies the physical address
of scratch pad 1location involved in the execution of this
microinstruction.

3.1.2.5 Destination OUTBUS

Microinstructions with the destination OUTBUS and OUTBUS* share the
same destination name (specifically OUT). The KMCll macroassembler
distinguishes between these two Move instruction sets by analyzing the
names of the OUTBUS and OUTBUS* registers.

MOVE IMMEDIATE TO OUTBUS
(OUT IMM, opr, adro)

0 0 0 MAR 1 0 0 OPERAND
l DESTINATION OUTBUSADDRﬁSS
|] 1 1 |] | | |

The microinstruction Move Immediate to OUTBUS permits the microprogram
to move the 8-bit operand directly to the OUTBUS register addressed by
the four low-order bits of the immediate operand. To understand this
instruction, consider the arguments opr and adro. The argument opr is
an octal value in the range 0 to 377. Conversely, the argument adro
is of the symbolic addresses of an OUTBUS register as listed in Table
3-5. Consequently, the four low-order bits of the operand must have a
value equal to the physical address corresponding to the pertinent
OUTBUS symbolic address.

For example, if the argument opr has the octal value 305 in a Move
Immediate to OUTBUS, then the argument for adro must be the OUTBUS
register symbolic address IBA2. This microinstruction would take the
following form:

ouT IMM,305,IBA2

If a conflict occurs between the value of the four low-order bits of
an operand and the corresponding octal code for an OUTBUS register
symbolic address, then an assembly error will be posted (Chapter 4).

For detailed information on the first eight OUTBUS registers, refer to
Section 2.3.2 and Figure 2-3, The eight OUTBUS registers 10 through
17 are assigned to support a high-speed peripheral device such as the
DMCl11-DA Synchronous Line Unit. The title and document numbers
identifying the maintenance and wuser manuals for this device are
listed in Section 1.5.

3-16

KMC1l MICROINSTRUCTION REPERTOIRE

Table 3-5
OUTBUS Register Symbolic Addresses
Octal
Symbolic Address Register Function Address
OIDAT1 In-NPR data low byte 0
OIDAT2 In-NPR data high byte 1
OUTDAl Qut-NPR data low byte 2
OUTDA2 Out-NPR data high byte 3
IBAl In-NPR UNIBUS address low byte 4
IBA2 In-NPR UNIBUS address high byte 5
OBAl Out~-NPR UNIBUS address low byte 6
OBA2 Out-NPR UNIBUS address high byte 7
OXREGO User-specified 10
OXREG1 User~specified 11
OXREG2 User-specified 12
OXREG3 User-specified 13
OXREG4 User-specified 14
OXREG5 User-specified 15
OXREG6 User-specified 16
OXREG7 User-specified 17
MOVE INBUS TO QUTBUS
(OUT IBUS, adri, adro)

15 14 13 12 11 10 9 8 7 6 5 2 1 0

T [I I T T I T I I
0 0 1 MAR 1 0 0 INBUS OUTBUS

SOURCE DES’ITINATION ADDIRESS | ADDIRESS |

1] ! 1 1

This microinstruction provides the microprogram with the ability
transfer directly from an INBUS register to an OUTBUS register. The

argument adri is one of the INBUS register symbolic
Similarly,

in Table

3-2.

the

symbolic addresses listed in Table 3-5.
INBUS register are not affected by execution of this instruction.

argument

addresses
adro is one of the OUTBUS
The contents of the addressed

listed

KMCll MICROINSTRUCTION REPERTOIRE

MOVE INBUS™ TO OUTBUS
(OUT 1BUS, adri, adro)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
] I I | I] I I T T 1

1 0 1 MAR 1 0 0 INBUS* QUTBUS
SOURCE DESTINATION ADDRESS ADDRESS
| 1] | | | |] | | |

This microinstruction provides the microprogram with the ability to
transfer data directly from an INBUS* register to an OUTBUS register.
The argument adri is one of the 1INBUS* register symbolic addresses
listed in Table 3-3. Similarly, the argument adro is one of the
OUTBUS symbolic registers listed in Table 3-5. The contents of the
addressed INBUS* register are not affected by execution of this
instruction.

MOVE RESULTS OF MEMORY AND SP0O TO OUTBUS
(OUT MEMX, func, adro)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T I T T T T I I T T

0 1 0 1 0 0 OUTBUS
SOURCE MAR DESTINATION ALUFUFCNON ADDRESS
1 1 1] 1 | ! 1 |

This microinstruction permits a microprogram to perform a designated
ALU function on two operands, one being the contents of the data
memory location addressed by the current MAR, and the second being the
contents of scratch pad location zero. The result produced by the
designated ALU function is then stored in the OUTBUS register
addressed by the instruction.

A direct source-to-destination transfer of data from data memory to
the addressed OUTBUS register can be implemented by using the ALU
function Select B (SELB, Table 3-1). This microinstruction would take
the following form:

OUTPUT MEMX,SELB,adro

Similarly, a direct transfer of the contents of scratch pad location
zero (SPO) can be implemented using the ALU function Select A (SELA).
This microinstruction would take the following form:

OQUTPUT SELA,adro

The contents of the addressed data memory location and SP0 are not
affected by execution of this instruction.

The complete set of arithmetic/logic functions and corresponding
mnemonics for the argument func is listed in Table 3-1. Symbolic
addresses for the argument adro, which are the addresses of the OUTBUS
registers, are listed in Table 3-5.

KMC11l MICROINSTRUCTION REPERTOIRE

MOVE RESULTS OF BRG AND SP0O TO OUTBUS
(OUT BR, func, adro)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
PRI B | P I B N B
OUTBUS
SOURCE MAR | DESTINATION | ALUFUNCTION ADORESS
L1 ! L1 | [N

With this microinstruction, a microprogram can perform a designated
ALU function on two operands; one being the contents of the BRG and
the other the contents of scratch pad location zero (SP0). The result
produced by the designated ALU function is then stored in the
addressed OUTBUS register.

A direct source-to-destination transfer between the BRG and the
designated OUTBUS register can be implemented by using the ALU
function Select B (SELB, Table 3-1) this microinstruction would take
the following form:

OUTPUT BR,SELB,adro

The complete set of arithmetic/logic functions and corresponding
mnemonics 1is listed in Table 3-1. Symbolic addresses for the
argument adro, which are the addresses of the OUTBUS registers, are
listed in Table 3-5.

The contents of the BRG and SP0 are not affected by execution of this
instruction. :

3.1.2.6 Destination Data Memory - As previously described, the KMCll
data memory is addressed by the Memory Address Register (MAR), which
in turn is accessed from the destination bus. Since the destination
for all five microinstructions in this group is data memory, the
actual data memory location comprising the data destination is that
location addressed by the current MAR. For all the microinstructions
in this group, when the MAR control field is used, the address in the
MAR will be the value prior to execution of the current instruction.
The function initiated by the MAR control field in a pertinent
microinstruction is performed after the result produced by execution
of the instruction is stored in data memory.

MOVE IMMEDIATE TO MEMORY

(MEM IMM, opr)
5 14 13 12 1 110 9 8 7 & 5 4 3 2 1 0
o o o ' L o T T T T | 1
1
SOURCE MAR | DESTINATION | C,’PEIRANDO—3I778 o
| |] | | 1]

The microinstruction Move Immediate to Data Memory permits the
microprogram to move an 8-bit operand directly to the data memory
location addressed by the current content of the MAR. The argument
opr can be a number or a symbol having a value in the range 0 to 377
(octal).

KMC1l MICROINSTRUCTION REPERTOIRE

MOVE INBUS TO MEMORY

(MEM IBUS, adri)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 I o | . I ; I o | I I I I I |
1 INBUS
SOURCE MAR | DESTINATION ADDRESS NOT USED
] 1 | 1 | | |] 1 | l
Execution of this microinstruction enables the microprogram to
transfer data directly from an addressed INBUS register to the data
memory location addressed by the current MAR. The argument adri is
one of the INBUS register symbolic addresses listed in Table 3-2. The
contents of the addressed INBUS register are unaffected by execution
of this instruction.
MOVE INBUS* TO MEMORY
(MEM IBUS, adri)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I I I . I R | { I I I I I
1 0 1 1 INBUS*
SOURCE MAR DESTINATION ADDRESS NOT USED
1 1 | 1 | L | | |] |
Execution of this instruction enables the microprogram to transfer

data

directly from

an

addressed INBUS* register to the data memory

location addressed by the current MAR. The argument adri is one of
the 1INBUS* register symbolic addresses 1listed 1in Table 3-3. The
contents of the addressed INBUS* register are unaffected by execution
of this instruction.
MOVE RESULTS OF MEMORY AND SP TO MEMORY
(MEM MEMX, func, SPn)
15 14 13 12 11 10 9 8 7 6 5 3 2 1 0
0 I 1 T | I T i T I | I
1 0 1 0 1 SP
SOURCE MAR | DESTINATION ALU FUNCTION ADDRESS
I | 1]]] | |] | |
This microinstruction permits a microprogram perform an ALU
function on two operands, one being the contents of the data memory
location addressed by the current MAR, and the second being the
contents of the scratch pad location addressed by the argument SPn.
The result produced by the designated ALU function on these two
operands 1is then stored in the same data memory location from which

the memory operand was fetched with the prior content of that location
being lost. Such an instruction would take the following form:

MEM MEMX,ADD,SP5

KMCl1ll MICROINSTRUCTION REPERTOIRE

The contents of the addressed scratch pad location are not affected by
execution of this instruction. A direct transfer of data from the
addressed scratch pad location to the memory location addressed by the
current MAR can be performed using the ALU function Select A (SELA,
Table 3-1). This microinstruction would take the following form:

MEM SELA,SPn

The complete set of arithmetic/logic functions and the corresponding
mnemonics for the argument func is 1listed in Table 3-1. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of scratch pad
locations involved in the execution of this microinstruction.

MOVE RESULTS OF BRG AND SP TO MEMORY
(MEM BR, func, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 T T T ! I 1 | I T] I
1 1 1 0 1 SP
S'OURC’E M?R DES;I'INA'I;ION AJLU Fl:NCTI?N | ADDIRESS |

As with the previous microinstruction, this microinstruction permits
the microprogram to perform a designated ALU function on two operands.
One operand is the current contents of the BRG, and the second the
contents of the addressed scratch pad location.

The result produced by the designated ALU function on these two
operands 1is then stored in the data memory location addressed by the
current MAR. The contents of the BRG and the addressed scratch pad
location are unaffected by execution of this microinstruction.

A direct transfer of data from the BRG to the data memory location
addressed by the current MAR can be performed by using the ALU
function Select B (SELB, Table 3-1). This microinstruction would take
the following form:

MEM BR,SELB

The complete set of arithmetic/logic functions and the corresponding
mnemonics for the argument func is 1listed in Table 3-1. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of the scratch pad
location involved in the execution of this instruction.

KMC11l MICROINSTRUCTION REPERTOIRE

3.1.2.7 Destination Scratch Pad

MOVE IMMEDIATE TO SCRATCH PAD
(SP IMM, opr, SPn)

I I I I
1 1 0 OPERAND

DESITINATION | O SP P;DDREISS
| !]

ISOUR(['JE

The microinstruction Move Immediate to Scratch Pad permits the
microprogram to move an eight-bit operand directly to the scratch pad
location addressed by the 1low-order four bits of the immediate
operand. To understand how this microinstruction decodes to address
the destination scratch pad location consider the arguments opr and
SPn. The argument opr can be an octal number or a symbol having a
value in the range 0 to 377, and the argument SPn must be an octal
number in the range 0 to 17. 1If, for example, the argument for opr
has an octal value of 377, then the argument SPn must have the octal
value 17 to address the last register in the scratch pad as the data
destination. Such a microinstruction would take the following form:

sp IMM,377,SP17

If a conflict occurs during assembly between the value of the four
low-order bits of an operand opr and the value of SPn, then an
assembly error will be posted (Chapter 4).

MOVE INBUS TO SP
(SP 1BUS, adri, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T I T T T T T T T T
0 0 1 MAR 1 1 0 INBUS sP
SIOURCIE DES;TINAT}ION | ADDRESS | ADDlRESS
! I ! |

This microinstruction provides the microprogram with the ability to
transfer data directly from an addressed INBUS register to an
addressed scratch pad location. The argument adri is one of the INBUS
register symbolic "~addresses listed in Table 3-2. For the argument
SPn, the lowercase letter n represents an octal value in the range 0
to 17, which specifies the physical address of the scratch pad
location designated the data destination. The contents of the INBUS
register addressed as the data source are not affected by execution of
this microinstruction.

KMC1l MICROINSTRUCTION REPERTOIRE

MOVE INBUS* TO SP
(SP 1BUS, adri, SPn)

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T 1 1 T T T T
1 0 1 MAR 1T 1. 0 INBUS* sP
siounc]E | DES;I'INATIION- | ADD'RESS| lADDRESS
! I

This microinstruction provides the microprogram with the ability to
transfer data directly from an addressed INBUS* register to an
addressed scratch pad location. The argument adri 1is one of the
INBUS* register symbolic addresses listed in Table 3-3. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of the scratch pad
location designated as the destination. The contents of the source
INBUS* register are not affected by execution of this
microinstruction.

MOVE RESULTS OF MEMORY AND SPn TO SPn
(SP MEMX, func, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 I — N E— | I E—
0 1 0 1 1 0 sp
SOURCE M'I“R DESlTINA'I;ION AILU F‘IJNCT'ON | ADDRESS
L ! 1

This microinstruction permits the microprogram to perform a designated
ALU function on two operands: one is the contents of the data memory
location addressed by the current MAR, and the other the contents of
the scratch pad location addressed by the argument SPn. The result of
the designated ALU function on these operands is then stored in the
scratch pad location addressed by the instruction. The contents of
the addressed data memory location are unchanged by execution of this
instruction.

If required, a direct source-to-destination transfer between the data
memory location addressed by the current MAR and the scratch pad
location addressed by SPn can be performed by using the ALU function
Select. B (SELB, Table 3-1). Such an instruction would take the
following form:

SP MEMX,SELB,SPn

The mnemonics for the argument func are listed in Table 3-1 along with
the arithmetic/logic function implemented by each mnemonic. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of the scratch pad
location involved in the execution of this microinstruction.

KMC11l MICROINSTRUCTION REPERTOIRE

MOVE RESULTS OF BRG AND SPn TO SPn
(SP BR, func, SPn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 [I T I I | T I I I I
1 1 1 1 0 SP
sponcg | M Jommaqon | T L oo

This microinstruction permits the microprogram to perform a designated
ALU function on two operands: one is the current contents of the BRG,
and the other the contents of the scratch pad location addressed by
the argument SPn. The result of the designated ALU function on these
operands is then stored in the scratch pad location addressed by the
instruction. The current contents of the BRG are unchanged by
execution of this instruction.

If required, a direct source-to-destination transfer between the BRG
and the scratch pad location addressed by SPn can be performed by
using the ALU function Select B (SELB, Table 3-1). Such an
instruction would take the following form:

SP BR,SELB,SPn

The mnemonics for the argument func are listed in Table 3-1 along with
the arithmetic/logic function implemented by each mnemonic. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17, which specifies the physical address of the scratch pad
location involved in the execution of this microinstruction.

3.1.2.8 Destination Scratch Pad and BRG

MOVE IMMEDIATE TO SP AND BRG
(SPBR IMM, opr, SPn)

15 14 13 12 10 9 8 7 6 5 4 3 2 1 0
I T I I I I I I | I I I
6 o0 o0 MAR U OPERAND
S|OURC|E DESTINATION L sp /-}DDREISS 1
| | L

The microinstruction Move Immediate to Scratch Pad and BRG permits the
microprogram to move an 8-bit operand simultaneously to the BRG and
the scratch pad location addressed by the four low-order bits of the
immediate operand. To understand how this microinstruction functions
to address the destination scratch pad address, consider the arguments
opr and SPn. The argument opr can be an octal number or a symbol
having a value in the range 0 to 377. The argument SPn must be an
octal number in the range 0 to 17.

If, for example, the argument opr is 230 (octal), then the argument SPn
must be 10 (octal). Such a microinstruction would take the following
form:

SPBR IMM,230,S5P10

KMC11 MICROINSTRUCTION REPERTOIRE

Executing this instruction moves the octal value 230 to

the BRG and
SP10. If

a conflict occurs during assembly between the value of the

four low-order bits of an operand opr and the value of SPn, then an
assembly error will be posted (Chapter 4).
MOVE INBUS TQ SP AND BRG
{SPBR 1BUS, adri, SPn)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| [| | I T 1 [I | T
0 0o 1 MAR 1 1 1 INBUS SP
SfOURClE DES'lI'INATIION ADDRESS | ADDlRESS |
! ! l

This microinstruction enables the microprogram to directly transfer

data from an addressed INBUS register simultaneously to the BRG and an
addressed scratch pad location.

The argument adri is one of the 1INBUS register
listed in Table 3-2, For the argument SPn,
represents an octal value in the range 0 to 17.

symbolic addresses
the lowercase letter n
The contents of the

INBUS register addressed as the data source are not affected by
execution of this microinstruction.
MOVE INBUS* TO SP AND BRG
(SPBR 1BUS, adri, SPn)
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
I I I I 1 I I 1 I I I
1 0 1 MAR 1 1 1 INBUS* SP
SOURCE DESTINATION ADDRESS ADDRESS
| |] | | | I | 1 |]
This microinstruction enables the microprogram to directly transfer
data from an addressed INBUS* register simultaneously to the BRG and
an addressed scratch pad location. The argument adri is one of the
INBUS* register symbolic addresses listed 1in Table 3-3. For the
argument SPn, the lowercase letter n represents an octal value in the
range 0 to 17. The contents of the INBUS* register addressed as the

data source are not affected by execution of this microinstruction.

MOVE RESULTS OF MEMORY AND SP TO SP AND BRG
(SPBR MEMX, func, SPn)

T
o 1 o0 11 SP
SOURCE DES'II'INATIION ALU FUNCTION ADDRESS
L 1 | N

This microinstruction enables a microprogram to perform a
ALU function on two source operands: one is the contents of the data
memory location addressed by the current MAR and the second the
contents of the scratch pad location addressed by the argument SPn.
The result produced by the designated ALU function on these two
operands is then simultaneously stored in the BRG and the scratch pad
location addressed by the argument SPn. The contents of the data
memory location accessed as one of the source operands is unaffected
by execution of this microinstruction.

designated

3-25

KMCll MICROINSTRUCTION REPERTOIRE

A direct source-to-destination transfer of the contents of the data
memory location addressed by the current MAR to the BRG and the
scratch pad location addressed by SPn can be implemented by using the
ALU function Select B (SELB, Table 3-1). This microinstruction would
take the following form:

SPBR MEMX,SELB,SPn

The complete set of arithmetic/logic functions and corresponding
mnemonics for the argument func is listed in Table 3-1. For SPn, the
lowercase letter n represents an octal value in the range 0 to 17,
which specifies the physical address of the scratch pad location
involved in the execution of this instruction.

MOVE RESULTS OF BRG AND SP TO SP AND BRG
(SPBR BR, func, SPn)

1514 1312 11 _10 9 8 7 6 5 4 3 2 1 0
T T T T] T T T T T T
o 1 1 MAR L, ALU FUNCTIO >
SOURCE l DESITINATION N ADDRESS
I] ! ! ! I] I I

This microinstruction enables a microprogram to perform a designated
ALU function on two source operands: one is the contents of the BRG,
and the second the contents of the scratch pad location addressed by
the argument SPn. The result produced by the designated ALU function
on these two operands is then simultaneously stored in the BRG and the
scratch pad location addressed by SPn.

The complete set of arithmetic/logic functions and corresponding
mnemonics for the argument func is listed in Table 3-1. For SPn, the
lowercase letter n represents an octal value in the range 0 to 17,
which specifies the physical address of the scratch pad location
involved in execution of this instruction.

3.2 BRANCH CLASS MICROINSTRUCTIONS

Figure 3-2 summarizes KMCll Branch class microinstructions. Excluding
the permutations provided by the 16 ALU functions, there are 21 basic
Branch class microinstructions. Figure 3-2 shows the derivation of
all 21 permutations of Branch class microinstructions. In day-to-day
microprogramming activity, the programmer can use Figure 3-2, in con-
junction with Table 3-1, as a handy recall mechanismn..

The narrative that follows describes the functions and use of the
branch address field. The format and function for each basic Branch
class microinstruction are organized according to the three states of
the source field.

3.2.1 Branch Address Field

As shown in Figure 3-2, the eight low-order bits of a microinstruction
branch address are either immediate or derived from the results of an
ALU function (Table 3-1) on a data memory location or on the BRG and a
scratch pad 1location. However, the two high-order bits required to
form a Control RAM (CRAM) address must be contained as a 2-bit field
(bits 11 and 12) of each Branch class microinstruction executed.

KMC11 MICROINSTRUCTION REPERTOIRE

Figures 3-1 and 3-2 show that these bit positions coincide with the
bit positions occupied by the MAR control field in a Move class
microinstruction,

The four states of branch address bits 8 and 9 of the PC (bits 11 and
12 of the microinstruction) define page boundaries in the KMCll CRAM.
Page offset within each of four 256-word CRAM pages is defined by the
actual contents of microinstruction bits 0 to 7 or the ALU designated
results specified by source field and microinstruction bits 0 to 7.
Within the microinstruction syntax implemented by the KMC1l
macroassembler (Chapter 4), the argument for branch address bits 8 and
9 (Pn) is always the last argument in the pertinent assembly mnemonic
and is one of the symbols listed in Table 3-6.

NOTE

Page boundaries are relevant only to
Branch class microinstructions since the
PC is always incremented as a 1l0-bit
register with execution of a Move class
microinstruction. However, in a given
conditional branch microinstruction
where the branch condition is not met,
the PC 1is also incremented as a 10-bit
register.

Table 3-6
Symbolic Values of the Argument OPARG1
Symbol for Binary Equivalent of CRAM Page
Argument Pn Page Bits 8 and 9
PO 00 Page zero
Pl 01 Page one
P2 10 Page two
P3 11 Page three

KMC11l MICROINSTRUCTION REPERTOIRE

SUOTIONIJISUTOIDTIN SSBTD ydurag

z-¢ °anbTa

'0 319 DY g 10} se dwes ay) e
pawwiogiad suoldUNy 9Y) L=/ 119 DYE 1Byl UOIIPUOD Uo Youelg ZHE LLL
'0 319 DY 10} se dwes 3y} aJe
pawuiopiad suonauny ay] L= 11q OYg 18y} UOIIPUCD Uo Youelg FHE OLL
'0 3q ©Yg 10} se duwes ay) e
pawwioysed suonouny ay] “|=| Ug OYE 18yl UOIPUOD uo Youeig LHE LOL
*pa1INoaXa Si UOIIRIO| INWVH D |enuanbas
1X3U 3y} Ul P3UIBIUOD UOIIONIISUIOION Byl ‘0=0 119 DYI §| PIdY
201n0s ay1 Aq paleubisap UOIIRD0| WY BYl Ul PAUIBIUOD UOIIONJISUL -abed
-0J01W 3L} 3IN23X3 01 | =0 Hq DY 1Byl UOILIPUOD UO Youelg 0YEG 0O0L s1eiidoidde ayy "Z1 PUB || SHQ YLM pauiquiod /-p S11q Ag paiyiaads uonauny
i UIYIIM 195140 3R N1V U3 4O 1[NSa1 J1G-g BYL S| SSAIPPE Youelq 1G-01 BYL
painaaxa st u._o_«moo_ Buiuiyap ssaippe *€-0 S11Q UONONIISUIOIDIW A P3ssaIppe Uoi1eso] ped Yoleios
WyHD [eruanbas 1xau aug ul paUIEIOD UOIINISUIO I 241 '0=14-Z youelq e Jo siig ay1 JO 1UAIUOD 3YL PUB O U} 4O JUBIUOD 1UALIND YL
34 31 “PIay 20in0s 3up Aq pateubisap uoneaol WY au ut pauieiuco 1yb13 19pI0 MO| BYL W01} PAALIAP 2JB SSAIPPE Youelq B JO SHq g Japiomojayl §g LIl
UOI1ONJISUIOIOIUI BY1 91N93X3 01 [=11q-Z a1 1Ryl UOIIPUCD UO Youelg Z L0 I WY o
w! "ZL PUB | | SHQ Ui PaUIGUIOD /- SHQ AQ paij1oads
*pa1naaxa si uoineso| ui sabed piom gGz
, uoIIoUNy MV 3Y3 JO 1 NSaI 11G-g 3y SI SSAIPPE Youelq
WYHD [eniuanbas 1Xau 3yl Ul PBUIEIUOD UOKIONJISUIOIOIW 3y} '0=1]-D N0y ssaippe o1 Q0L 64) “UOBINASUICIONS 84 JO £-0 SHG AQ PasseIppe
ay1 3} "p|ay 21n0s 3yl Aq paieubisap UCIEIO| WYHD 2Yi Ul PaUIRIU0D 3A13S 5110 OM] 31 cozm.oo_ ped :Bmhw au E. Eo.ucoo o1 pue qus_ et 2y
UOIIONIISUIOIdILW BYL 33N33X3 O} | =11G-D) 3yl 1Byl UOILIPUOD Uo Youesg J QL0 1O s1e1s IN0j Ay >n._ pEsSaIPPE UONE00] AIOWIGI E1ZP 3L §0 JUSIUOD BUY WO
*pld1} 821nos . MMEUNMEMW% PaALIBP 2Je SSAUPPE Youeuq e 4o S1ig g Japlo moj ayl W3IW 0Ll
UoIIdNIISUICIONL 3y} AQ paleubisap UOIIEJO| YYD 2Yl Ul PauieIU0d &_M hthM cmm_wc o.z;
UOI19NJISUIOIDIW 3Y1 91NJ9Xa O} AjjeUOilipuodun youelg SAVMIY L0O ‘9: :_E:ow suon LPUBIG WYHD © WO} ZL PUE | | SHG UM pAUIqIOD 7-0 31G
pansasay 000 -1s0d 119 om1 asay | UOIIZNIISUIOIONN “81BIPaWL §) 30JNOS ssaippe youesg WINI 00L
¥ I 1 1 1) I ! 6 0"44 g !)
SS3HAAY @vd HO1VHIOS NOILONN4 NV [CREIE] siig ai3i4
NOILIONOD
HONVHE SS3Haav 324N0S
aNYH3dO 3LVIQIWIAI HONVHSE
1 1 I 1 1 i 1 1 1 1 1 |
l 4 € 14 1 9 L 8 6 oL LL Zl €l 14 Sl

3-28

KMCll MICROINSTRUCTION REPERTOIRE

When a microprogram is assembled under the KMCll macroassembler, one
of the paging symbols PO through P3 for the argument Pn should, where
required, be included as the 1last argument in each Branch c¢lass
microinstruction having a source other than Immediate (Figure 3-2).
Otherwise, the assembler will default to page zero. PFor Branch class
instructions whose source is Immediate, the branch address must be a
microprogram label with paging performed during assembly.

3.2.2 Branch Class Microinstructions: Formats and Functions
The detailed information for Branch c¢lass microinstructions is
organized according to microinstruction source. For each Branch class
microinstruction in the total set, this detailed information includes
the following:

1. the microinstruction name,

2. the macroassembler mnemonic,

3. the microinstruction format,

4, a detailed functional description, and

5. a description of microinstruction arguments.

Branch class microinstructions fall into two categories:

1. microinstructions having an immediate source where the branch
address is formed by fields within the microinstruction, and

2, microinstructions that derive the branch address from an ALU
function performed on the contents of a scratch pad location
and on the contents of the BRG or a data memory location.

The 16 arithmetic/logic functions performed by the KMCll ALU are
listed in ' Table 3-1. Note that execution of Branch class
microinstructions has no effect on the state of the C-bit or the
Z-bit.

3.2.2.1 Source Immediate - All Branch Immediate microinstructions

share one characteristic: the branch address must be a valid
microprogram label whose binary value 1is contained within the
microinstruction. This characteristic 1is a direct function of the

KMCll macroassembler and must be adhered to in all microprograms
assembled by this utility.

UNCONDITIONAL BRANCH

(ALWAYS label)
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T |
L | 0 l° ADDRESS| © o | BIRANc:-i AD[!RESSIBITS |
SOURCE BITS80 | DESTINATION | BRANCHADDRESS fn l
1

An Unconditional Branch microinstruction permits the microprogram to
execute a branch to any location in the CRAM. The binary value of a
labeled address is contained in the microinstruction and 1is wused to

KMC11l MICROINSTRUCTION REPERTOIRE

set the PC to address the branch location. The CRAM page is specified
by the state of the branch address field (bits 11 and 12) of the
microinstruction with the page offset contained in bits 0 to 7 of the
same instruction. The next microinstruction executed is the one at
the addressed location.

BRANCH ON C-BIT SET
{C label)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | 1 I I I | |
s Vo To [eranen | o7 11 o rd !

ADDRESS -
SIOURCIE BITS 5.9 DESITINA'IFION I BTANC:‘I ADDIRESS IBITS C: 7 l
|

This microinstruction, when executed, branches to the labeled CRAM
location specified in the microinstruction only if the C-bit is set to
one. When the C-bit is set to one, the binary value of a labeled
address contained in the microinstruction is used to set the PC to
address the branch location. The CRAM page is specified by the state
of the branch address field (bits 11 and 12) of the microinstruction
with the page offset contained in bits 0 to 7 of the same instruction.
(See Section 3.1.2 for details on the C-bit.) The next
microinstruction executed is the one at the addressed location.

If the C-bit is equal to zero, the PC is incremented by one to execute
the next sequential instruction in the microprogram line.

BRANCH ON Z-BIT SET
(Z label)

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T
Voo lerancn | o7 T, [N S S —
sounce | ADDRESS | O 1 BRANCH ADDRESS BITS 0-7
OURC BITS 89 TINAT

1] |] 1 |]

This microinstruction, when executed, branches to the CRAM 1location
specified in the microinstruction only if the Z-bit is set to one.
When the Z-bit is set to one, the binary value of a 1labeled address
contained in the microinstruction is used to set the PC to address the
branch location. The CRAM page is specified by the state of ' the
branch address field (bits 11 and 12) of the microinstruction with the
page offset contained in bits 0 to 7 of the same instruction. (See
Section 3.1.2 for details on the Z-bit.) The next microinstruction
executed is the one at the addressed location.

If the Z-bit is equal to zero, the PC is incremented by one to execute
the next sequential instruction in the microprogram line.

KMCl1ll MICROINSTRUCTION REPERTOIRE

BRANCH ON BRG BIT O SET
(BRO label)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
10 o AOORESS | K | BRANCH ESS BIT
ADDRESS BITS 0-7
%OUR%E BITS 8,9 DE%HNA?ON] | | | [SI |
i

This microinstruction, when executed, branches to the CRAM 1location
specified in the microinstruction only if bit 0 of the BRG is equal to
one. When BRG bit 0 is set to one, the binary value of a labeled
address contained in the microinstruction is used to set the PC to
address the branch location. The CRAM pade is specified by the state
of the branch address field (bits 11 and 12) of the microinstruction,
with the page offset contained in bits 0 to 7 of the same instruction.
The next instruction executed is the one at the addressed location.

If BRG bit 0 is equal to zero, the PC is incremented by one to execute
the next sequential instruction in the microprogram line.

BRANCH ON BRG BIT 1 SET
(BR1 label)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
: 1 I I S N S N
1o o |BANEE| 1 o 1 BRANCH ADDRESS BITS 0-7
SPURCE [BITS 89 | DESTINATION ' R R R B R
1

This microinstruction, when executed, branches to the 1labeled CRAM
location specified in the microinstruction only if bit 1 of the BRG is
equal to one. When BRG bit 1 is set to one, the binary value of a
labeled address contained in the microinstruction is used to set the
PC to address the branch location. The CRAM page is specified by the
branch address field (bits 11 and 12) of the microinstruction, with
the page offset contained in bits 0 to 7 of the same instruction. The
next instruction executed is the one at the addressed location.

If BRG bit 1 is equal to zero, the PC is incremented by one to execute
the next sequential instruction in the program line.

BRANCH ON BRG BIT 4 SET
(BR4 fabel)

156 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T

o o [manen] 1T 1o

S|OURC'E B|TSS§ DESITINA'll'ION ' BI;%ANCH ADDIRESSIBITSO-7 |
L | L

This microinstruction, when executed, branches to the CRAM location
specified in the microinstruction only if BRG bit 4 is egual to one.
When BRG bit 4 is equal to one, the binary value of a labeled address
contained in the microinstruction is used to set the PC to address the
branch location. The CRAM page is specified by the branch address
field (bits 11 and 12) of the microinstruction, with the page offset

3

31

KMC1l MICROINSTRUCTION REPERTOIRE

contained in bits 0 to 7 of the same instruction. The next
instruction executed is the one at the addressed location.

If BRG bit 4 is egual to zero, the PC is incremented by one to execute
the next sequential instruction in the program line.

BRANCH ON BRG BIT 7 SET

(BR7 label)
15 14 13 12 11 109 8 7 6 5 4 3 2 1 0
1
SOURGE BITS 8,9 | DESTINATION ’ B’?ANC:' ADDIRESS IB'TS ?-7 l
I -

This microinstruction, when executed, branches to the CRAM location
specified 1in the microinstruction only if BRG bit 7 is equal to one.’
When BRG bit 7 is equal to one, the binary value of the labeled
address contained 1in the microinstruction is used to set the PC to
address the branch location. The CRAM page is specified by the branch
address field (bits 11 and 12) of the microinstruction, with the page
offset contained in bits 0 to 7 of the same instruction. The next
instruction executed is the one at the addressed location.

If BRG bit 7 is equal to zero, the PC is incremented by one to execute
the next sequential instruction in the microprogram line.

3.2.2.2 Source Data Memory - In Branch class microinstructions having
data memory as the source, the 8-bit page offset for a branch address
can be obtained in one of two ways:

1. directly from the data memory location addressed by the
current MAR; or)

2. from the result of an ALU function performed on the contents
of a data memory location and a scratch pad location.

The page address bits of a complete CRAM address are obtained from the
microinstruction branch address field as described in Section 3.2.1.

UNCONDITIONAL BRANCH TO ADDRESS DERIVED FROM MEMORY AND SP
((LALWAY MEMX, func, SPn, Pn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[T T T T I I [|
11 0 |RDbRess| 0 0 1 ALU FUNCTIION e |
SIOURCIE BITS 8,9 DES;I'lNA'I;ION I I | | ADD?ESS
1

Executing this microinstruction sets the PC to unconditionally branch
to a location within a designated CRAM page. The page offset for this
location can be derived from the results of a designated ALU function
performed on the data memory location addressed by the current MAR and
the scratch pad location addressed by the microinstruction. The
contents of the addressed data memory location and the addressed
scratch pad location and the state of the C-bit and Z-bit are not
changed by execution of this instruction.

KMC1l MICROINSTRUCTION REPERTOIRE

The page offset for the branch address can also be the contents of the
data memory location addressed by the «current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.ALWAY MEMX,SELB,Pn

The mnemonics comprising the arguments for the field func are listed
in Table 3-1. 1In the argument SPn, the lowercase letter n represents
an octal value in the range 0 to 17, which specifies the physical
address of the scratch pad location involved in the execution of this
microinstruction.

BRANCH ON C-BIT SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.C MEMX, func, SPn, Pn)

15 14 13 12 11 10 9 8 7 6 .5 4 3 2 1 0
T
Do [] o ol renon | podtess.
SIOURCIE BITS 8,9 DESalTINA':'ION | | ADD]RESS |
1 | |

Executing this microinstruction sets the PC to branch to a 1location
within a designated CRAM page only if the state of the C-bit is equal
to one. If the C-bit is equal to zero, the PC is incremented by one
to execute the next sequential instruction in the microprogram line.
The page offset for the branch 1location can be derived from the
results of a designated ALU function performed on the contents of the
data memory location addressed by the current MAR and the scratch pad
location addressed by the microinstruction. The contents of the
addressed data memory location and the addressed scratch pad location
and the state of the C-bit and Z-bit are not changed by execution of
this instruction.

The page offset for the branch address can also be the contents of the
data memory location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.C MEMX,SELB,Pn

The mnemonics comprising the arguments for func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in the execution of this
instruction.

BRANCH ON Z-BIT SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.Z MEMX, func, SPn, Pn)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
I T T I
o om0 1l eenon | softess
SOURCE BITS 89 | DESTINATION ""'-U Ftl’NCT'ION 1 ADDI‘RESS |
]

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if the state of the Z-bit is equal
to one. If the Z-bit is equal to zero, the PC is incremented by one
to execute the next sequential instruction in the microprogram line.

KMCll MICROINSTRUCTION REPERTOIRE

The page offset for the branch location can be derived f£from the
results of a designated ALU function performed on the contents of the
data memory location addressed by the current MAR and the scratch pad
location addressed by the microinstruction. The contents of the
addressed data memory location and the addressed scratch pad 1location
and the state of the C-bit and Z-bit are not changed by execution of
this instruction.

The page offset for a branch location can also be the contents of the
data memory location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.Z MEMX,SELB,Pn

The mnemonics comprising the arguments for func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction.

BRANCH ON BRG BIT 0 SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.BRO MEMX, func, SPn, Pn)

15 14 13 12 11 109 8 7 6 5 4 3 2 1 0
I ! I | [[| | 1 T

1 1 ! 0 BRANCSH 1 0 0 SP

source | ADPRESS | pesTinATION ALU FUNCTION ADDRESS
L BITS 89 L N L1

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 0 of the BRG is equal to
one. If BRG bit 0 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the microprogram line. The
page offset for the branch location can be derived from the results of
a designated ALU function peformed on the contents of the data memory
location addressed by the current MAR and the &scratch pad 1location
addressed by the microinstruction. The contents of the addressed data
memory location and the addressed scratch pad location and the state
of the C-bit and Z-bit are not changed by execution of this
instruction.

The page offset for a branch location can also be the contents of the
data memory location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.BRO MEMX,SELB,Pn

The mnemonics comprising the arguments for func are 1listed 1in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this instruction.

KMC1l MICROINSTRUCTION REPERTOIRE

BRANCH ON BRG BIT 1 SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.BR1 MEMX, func, SPn, Pn)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 o
T T \ T T T T T I T 1
Tt 0| ATbRess| ! 0 LU F sP
soURcE BITS 80 | DESTINATION A‘U ﬂNCﬂ?N | ADDRESS
]

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 1 of the BRG is egqual to
one. If BRG bit 1 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the data memory location
addressed by the current MAR and the scratch pad location addressed by
the microinstruction. The contents of the addressed data memory
location and the addressed scratch pad location and the state of the
C-bit and Z-bit are not changed by execution of this instruction.

The page offset for a branch location can also be the contents of the
data memory location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.BR1 MEMX,SELB,Pn

The mnemonics comprising the arguments for func are listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the "scratch pad location involved in execution of this
microinstruction.

BRANCH ON BRG BIT 4 SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.BR4 MEMX, func, SPn, Pn)

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(R ' 1 T 1 1 1
BRANCH
11 o 11 0 SP
ADDRESS
SOURCE BITS 89 | DESTINATION ArUFﬁNC“?N lADDIRESSl
1

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 4 of the BRG is equal to
one. If BRG bit 4 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the data memory location
addressed by the current MAR and the scratch pad location addressed by
the microinstruction. The contents of the addressed data memory
location and the addressed scratch pad location and the state of the
C-bit and Z-bit are not changed by execution of this instruction.

The page offset for a branch location can also be the contents of the
data memory 1location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.BR4 MEMX,SELB,Pn

KMC1ll MICROINSTRUCTION REPERTOIRE

The mnemonics comprising the arguments for func are listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in the execution of this
instruction,

BRANCH ON BRG BIT 7 SET TO ADDRESS DERIVED FROM MEMORY AND SP
(.BR7 MEMX, func, SPn, Pn) :

1514 13 12 11 _10 9 8 7 6 5 4 3 2 1 0
[— T 1 | — | —
BRANCH
11 o0 1 sp
source | ADRRESS DESTINATION ALU FUNCTION ADDRESS
! L ! 1 1 1 1

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 7 of the BRG is equal to
one. If BRG bit 7 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the data memory location
addressed by the current MAR and the scratch pad location addressed by
the microinstruction. The contents of the addressed data memory
location and the addressed scratch pad location and the state of the
C-bit and Z-bit are not changed by execution of this instruction.

The page offset for a branch location can also be the contents of the
data memory 1location addressed by the current MAR using the ALU
function Select B (SELB, Table 3-1). The argument Pn specifies the
CRAM page. Such an instruction would take the following form:

.BR7 MEMX,SELB,Pn
The mnemonics comprising the arguments for func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of

the scratch pad location involved in the execution of this
instruction.

3.2.2.3 Source BRG - Branch class microinstructions having the BRG as
a source can obtain an 8-bit CRAM page offset in one of three ways:

1. from the result of an ALU function performed on the contents
of the BRG and a scratch pad location;

2, directly from the current BRG; or
3. directly from a scratch pad location.

The page address bits of a complete CRAM address are obtained from the
microinstruction branch address field as described in Section 3.2.1.

KMC11l MICROINSTRUCTION REPERTOIRE

UNCONDITIONAL BRANCH TO ADDRESS BERIVED FROM BRG AND SP
(.ALWAY BR, func, SPn, Pn)

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 I | I I | T]

T
BRANCH L 0 0 1 . sp
ADDR DESTINATION AI"U :’NCT'?N | ADDRESS

BITIS 8,9

Executing this microinstruction sets the PC unconditionally to branch
to a location within a designated CRAM page. The page offset for the
branch address can be derived from the results of a designated ALU
function performed on the current contents of the BRG, the scratch pad
location addressed by the microinstruction. The contents of the BRG
and the addressed scratch pad location and the state of the C-bit and
Z-bit are not changed by execution of this microinstruction,

The page offset for a branch address can also be the current contents
of the BRG alone through use of the ALU function Select B (SELB, Table
3-1). Such an instruction would take the following form:

.ALWAY BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.ALWAY SELA,SPn,Pn
The mnemonics comprisihg the arguments for func are 1listed 1in Table

3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of

the scratch pad location involved in execution of this
microinstruction.
BRANCH ON C-BIT SET TO ADDRESS DERIVED FROM BRG AND SP
{.CBR, func, SPn, Pn)
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
I I T | | 1 I I T I | I
v ABDRESS | 0 1 0O ALU FUNCTION SP
SOURCE BITS 89 | DESTINATION ADDRESS
1 | [1]] | | | | |
Executing this microinstruction sets the PC to branch to a location

within
to one.
to execute

the

next

a designated CRAM page only if the state of the C-bit is equal
If the C-bit is equal to zero, the PC is incremented by
sequential instruction within the microprogram

one

the

line. The page offset for the branch address can be derived from
results of a designated ALU function performed on the current contents
of the BRG and the scratch pad location addressed by the
microinstruction. The contents of the BRG and the addressed scratch
pad location and the state of the C-bit and Z-bit are not changed by
execution of this microinstruction.

KMC1l MICROINSTRUCTION REPERTOIRE

The page offset for a branch address can also be the current contents
of the BRG alone through use of the ALU function Select B (SELB, Table
3-1). Such an instruction would take the following form:

.C BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.C SELA,SPn,Pn

The mnemonics comprising the arguments for func are listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction.

BRANCH ON Z-BIT SET TO ADDRESS DERIVED FROM BRG AND SP
(.Z BR, func, SPn, Pn)

15 14 13 12 11 10 99 8 7 6 5 4 3 2 1 0

T
1 I 1 I‘ fé‘éé“&% 0 | 1 | 1 AII.U FUlNCTIC;N | SIP |
s'ouac's BITS 8,9 DES}I‘INATION |] lADD!;!ESS
] |] |

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if the state of the Z-bit is equal
to one. If the Z-bit is equal to zero, the PC is incremented by one
to execute the next sequential instruction within the program line.
The page offset for a branch address can be derived from the results
of a designated ALU function performed on the current contents of the
BRG and the scratch pad location addressed by the microinstruction.
The contents of the BRG and the addressed scratch pad location and the
state of the C-bit and Z-bit are not changed by execution of this
microinstruction.

The page offset for a branch address can also be the current contents
of the BRG through use of the ALU function Select B (SELB, Table 3-1).
Such an instruction would take the following form:

.%Z BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.Z SELA,SPn,Pn

The mnemonics comprising the arguments for func are 1listed in Table

3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the microinstruction = involved in the execution of this
microinstruction. : ‘

3-38

KMCll MICROINSTRUCTION REPERTOIRE

BRANCH ON BRG BITOSET TO ADDRESS DERIVED FROM BRG AND SP
(.BRO BR, func, SPn, Pn)

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T T |
R S Y A o
siouncle BITS 8,9 DESITINATION o CT'ION 'ADDIRESSI
1

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 0 of the BRG is equal to
one. If BRG bit 0 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the BRG and the scratch pad
location addressed by the instruction. The contents of the BRG and
the addressed scratch pad location and the state of the C-bit and
Z-bit are unchanged by execution of this microinstruction.

The page offset for a branch address can also be the current contents
of the BRG through use of the ALU function Select B (SELB, Table 3-1).
Such an instruction would take the following form:

.BRO BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.BR0O SELA,SPn,Pn

The mnemonics comprising the arguments for. func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction.

BRANCH ON BRG BIT 1 SET TO ADDRESS DERIVED FROM BRG AND SP
(.BR1 BR, func, SPn, Pn)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T T T T ! T T I T T
tov | RObRess| ' 0 ALU FUNCTION S
S'OURCIE BITS 8,9 DESITINA'II'|ON ADDRESS
1

1 | 1 | 1

Executing this microinstruction sets the PC to branch to a 1location
within a designated CRAM page only if bit 1 of the BRG is equal to
one. If BRG bit 1 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the BRG and the scratch pad
location addressed by the instruction. The contents of the BRG and
the addressed scratch pad location and the state of the C-bit and
z-bit are unchanged by execution of this microinstruction.

KMC11l MICROINSTRUCTION REPERTOIRE

The page offset for a branch address can also be the current contents
of the BRG through use of the ALU function Select B (SELB, Table 3-1).
Such an instruction would take the following form:

.BR1 BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.BR1 SELA,SPn,Pn

The mnemonics comprising the arguments for func are 1listed 1in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction. '

BRANCH ON BRG BIT 4 SET TO ADDRESS DERIVED FROM BRG AND SP
(.BR4 BR, func, SPn, Pn)

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T
oorce R L o T o | o
SOURCE ALU FUNCTION
1 | BITS 8,9 DESITINATI'ION | | | i | ADDIRESS |
1

Executing this microinstruction sets the PC to branch to a 1location
within a designated CRAM page only if bit 4 of the BRG is equal to
one. If BRG bit 4 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the BRG and the scratch pad
location addressed by the instruction. The contents of the BRG and
the addressed scratch- pad 1location and the state of the C-bit and
Z-bit are unchanged by execution of this microinstruction.

The page offset for a branch address can also be the current contents
of the BRG through use of the ALU function Select B (SELB, Table 3-1).
Such an instruction would take the following form:

.BR4 BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the <contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.BR4 SELA,SPn,Pn

The mnemonics comprising the arguments for func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction.

KMC1ll MICROINSTRUCTION REPERTOIRE

BRANCH ON BRG BIT 7 SET TO ADDRESS DERIVED FROM BRG AND SP
(.BR7 BR, func, SPn, Pn) .

15 14 13 12 11 100 9 8 7 6 65 4 3 2 1 0
1 T T 1 T 1
1ot 1| ROREs | R AILU FUNCTION sp
SIOURC[E BITS 8,9 DESITINA1"I0N | | | ADDlRESS [
L]

Executing this microinstruction sets the PC to branch to a location
within a designated CRAM page only if bit 7 of the BRG is equal to
one. If BRG bit 7 is equal to zero, the PC is incremented by one to
execute the next sequential instruction in the program line. The page
offset for the branch location can be derived from the results of a
designated ALU function performed on the BRG and the scratch pad
location addressed by the instruction. The contents of the BRG and
the addressed scratch pad location and the state of the C-bit and
Z-bit are unchanged by execution of this microinstruction.

The page offset for a branch address can also be the current contents
of the BRG through use of the ALU function Select B (SELB, Table 3-1).
Such an instruction would take the following form:

.BR7 BR,SELB,Pn

Similarly, using the ALU function Select A (SELA) implements the use
of the contents of the addressed scratch pad location as the page
offset within the CRAM page specified by Pn. Such an instruction
would take the following form:

.BR7 SELA,SPn,Pn

The mnemonics comprising the arguments for func are 1listed in Table
3-1. In the argument SPn, the lowercase letter n represents an octal
value in the range 0 to 17, which specifies the physical address of
the scratch pad location involved in execution of this
microinstruction.

3-41

CHAPTER 4
KMC1l MACRO INSTRUCTIONS

This chapter provides the user with the information he needs to define
and expand the desired macros to develop programs coded in MACRO-11
assembly language. The information is presented with the assumption
that the user has a working knowledge of PDP-11 programming
requirements and techniques and of the MACRO-11 assembly language.
Detailed information on the ©PDP-11, the UNIBUS, and the MACRO-11
assembly language is contained in the ©PDP-1l1 Peripherals Handbook,
EB05961, and the IAS/RSX-11 MACRO-~11 Reference Manual, DEC-11-OIMRA-A.

4.1 MICROPROCESSOR REGISTER DEFINITIONS

4.1.1 NPR Control Register

The NPR transactions performed by the KMCll microprocessor are
controlled by the NPR control register.

The NPR bit definitions are as follows:

DATI= 1 ;WORD INPUT NPR

DATIH= 3 ;WORD INPUT NPR WITH BUS HOLD
DATO= 21 ;WORD OUTPUT NPR

DATOH= 23 ;WORD OUTPUT NPR WITH BUS HOLD
DATOB= 221 sBYTE OUTPUT NPR

DATOBH=223 ;BYTE OUTPUT NPR WITH BUS HOLD

When performing multiple sequential NPR transactions, it is
advantageous, for processing efficiency, to maintain bus control until
the last transaction is complete; setting bit 1 (NOT LAST XFER) of
the NPR control register guarantees maintaining bus control (i.e., 3,
23, or 223 maintains bus control until the 1last transaction). The
microprogram must clear this bit to relinquish bus control after
starting the last transaction of the series.

CAUTION

The maximum number of sequential NPRs
that can be executed is determined by
the specific KMCll system configuration.
Exceeding this maximum can cause latency
problems with associated peripherals
such as mass storage devices and
communications controllers.

KMC1ll MACRO INSTRUCTIONS

Note that DATOB=221 and DATOBH=223 set bit 7 (BYTE XFER) of the NPR
control register and apply only to out-NPR transactions. When this
bit is set, bit 0 of the UNIBUS address determines whether the
transaction involves the low byte or the high byte.

CAUTION
Setting the BYTE XFER bit during an
in-NPR transaction constitutes an
illegal operation and should not be
done.,

The NPR control register is described in Sections 2.1.2 and 2.3.2.

4.2 MACRO INSTRUCTION SYNTAX

4.2.1 Macro Arguments

Macro arguments are essentially free of fixed syntactical rules; that
is, there 1is no predefined order for listing arguments. Multiple
arguments within a macro definition are separated from each other by
the 1legal separators 1listed in Table 4-1. For convenience, the
convention of having the arguments ordered as source, ALU function or
INBUS address, scratch pad or OUTBUS, and MAR control or page offset
has been adopted in this manual.

4.2.2 Source Field Mnemonics

The mnemonics for the source data are as follows:

IMM Immediate. The source data is the
immediate operand (bits 0-7 of the
microinstruction). The assembler

automatically ANDs all immediate operand
bits with 377 (octal) to mask the high
operand bits.

IBUS INBUS or INBUS*. The source data is the
contents of the INBUS or INBUS* register
addressed by bits 4-7 of the

microinstruction.
MEMX Data Memory. The source data 1is the
contents of the memory location

addressed by the current MAR.

BR Branch Register. The source data is the
current contents of the branch register.

MEMI Data Memory. Same as MEMX except the
argument INCMAR may be omitted and the
MAR will still be incremented.

KMC1ll MACRO INSTRUCTIONS

4.2.3 INBUS* and INBUS Register Symbolic Addresses
The INBUS* register symbolic addresses and functions are 1listed in

Table 4-2. The INBUS register symbolic addresses and functions are
listed in Table 4-3.

4.2.4 Arithmetic/Logic Unit (ALU) Functions

The mnemonics for the ALU functions and the ALU function implemented
by each mnemonic are listed in Table 4-4.

4.2.5 OUTBUS* and OUTBUS Register Symbolic Addresses
The OUTBUS* register symbolic addresses and functions are 1listed 1in

Table 4-5, The OUTBUS register symbolic addresses and functions are
listed in Table 4-6.

4.2.6 Scratch Pad Locations

The 16 KMCll scratch pad memory locations are addressed by the
microprogram according to the following definitions:

SPO spP4 SP10 SP14
SpPl SP5 spPll SP15
SP2 SP6 spl2 SPl6
SP3 sp7 SP13. SP17

The scratch pad memory is described in Section 2.1.2.4 and Chapter 3.

4.2.7 Memory Address Register (MAR) Field Definitions

The KMCll MAR is write-accessible only to the microprogram; the MAR
field definitions are as follows:

LDMAPG ;LOAD THE 2 MOST SIGNIFICANT BITS OF MAR
LDMAR ;LOAD THE 8 LEAST SIGNIFICANT BITS OF MAR
INCMAR ;s INCREMENT MAR

The above arguments can be optionally used as the last argument in any
Move class instruction.

When data memory is used as a source for a move and the MAR 1is being
incremented, the programmer can omit the argument INCMAR and use the
macro MEMI instead of MEMX for the source argument. Similarly, when
data memory is used as the destination for a move and the MAR is being
incremented, the programmer may omit the argument INCMAR and use the
macro MEMINC.

4-3

KMC11l MACRO INSTRUCTIONS

4.2.8 Data Memory Page Definitions

The KMC1ll Data Memory page (four 256-byte pages) definitions are as
follows:

PO ;PAGE 0
Pl ;PAGE 1
P2 ; PAGE 2
P3 ;PAGE 3

The data memory is described in detail in Sections 2.1.1.2 and 2.2.

4.3 MICROINSTRUCTION SYNTAX

The microinstructions comprising the KMCll macro library are divided
into two categories:

1. Move class instructions
2. Branch class instructions

Move class instructions provide interregister and intermemory data
transfers and are based on destination; Branch class
microinstructions provide unconditional or conditional program jumps
to program subroutines and are based on conditions. Tables 4-7
through 4-15 1list the macroassembler mnemonics £for Move class
microinstructions; Tables 4-16, 4-17, and 4-18 list macroassembler
mnemonics for Branch microinstructions. Table 4-19 lists
macroassembler mnemonics for calling subroutines and returning to the
main program from subroutines. Table 4-19 also gives the mnemonics
for comparing values contained in data memory and the BRG with values
in scratch pad locations. These tables briefly describe the function
implemented by each instruction as well as the arguments applicable to
each macro.

An argument for loading the MAR is usually the 1last argument in a

microinstruction mnemonic. In a given microinstruction, the absence
of this argument leaves the MAR unchanged during execution of that
microinstruction. Tables 4-7 through 4-15, which define Move class

instructions, are based on data destinations.

Generally, NODST Move instructions do not provide for data transfers,
but provide program nulls for testing the contents of internal
registers or testing the result of a designated Arithmetic/Logic Unit
(ALU) function. The one exception is the use of a NODST instruction
to load the MAR. '

Tables 4-16, 4-17, and 4-18, which define Branch <c¢lass instructions,
are based on data source.

The Chapter 3 section number referenced below the macroassembler
mnemonic for each microinstruction in Tables 4-7 through 4-18, gives a
detailed description of the microinstruction and the related
arguments. The format (bit map) of each microinstruction is also
illustrated in those sections.

KMC1l1l MACRO INSTRUCTIONS

Table 4-1

Legal Separating and Delimiting Characters Used in Macro Definitions

Character Function

instruction fields.

instruction fields.

preferred separator.

angle brackets) arguments; they must be

characters.

Tab A tab is a legal separator between

, (Comma) A comma 1is a 1legal separator between
arguments. It 1is also a legal separator
between instruction fields;
is the preferred separator between

Space A space 1is a 1legal separator between
instruction fields; however, a tab is the

<...> (Paired Paired angle brackets are used to enclose

arguments themselves contain separating

however, a tab

used when the

Table 4-2

INBUS* Register Symbolic Addresses¥*

Physical Address

Symbol Register Function (octal)
INCON CSRO 0
MAIN CSR1 (Maintenance Register) 1
OCON CSR2

LINENM CSR3 3
PORT1 CSR4 4
PORT2 CSR5 5
PORT3 CSR6 6
PORT4 CSR7 7
NPR NPR Control Register 10
UBBR UPMISC Register 11

Note that the first eight symbolic IBUS addresses
CSRs and that the symbols NPR and UBBR address
registers. For detailed operational information on
control register, and the uPMISC register refer
2.3.2, and 2.3.3.

comprise the KMCll
the NPR and uPMISC
the CSRs, the NPR
to Sections 2.3.1,

KMC1l MACRO INSTRUCTIONS

Table 4-3
INBUS Register Symbolic Addresses*
. Physical Address
Symbol Register Function (octal)
INDAT1 In-NPR data low byte 0
INDAT2 In-NPR data high byte 1
IODATI1 Out-NPR data low byte 2
IODAT2 Out-NPR data high byte 3
IIBAl In-NPR UNIBUS address low byte 4
IIBA2 In-NPR UNIBUS address high byte 5
IOBAl Out-NPR UNIBUS address low byte 6
IOBA2 Out-NPR UNIBUS address high byte 7
XREGO User-specified 10
XREG1 User-specified 11
XREG2 User-specified 12
XREG3 User-specified 13
XREG4 User-specified 14
XREG5 User-specified 15
XREG6 User-specified 16
XREG7 User-specified 17

*For detailed information on the first eight INBUS registers refer to
Section 2.3.2 and Figure 2-3. The eight INBUS registers 10 through 17
are assigned to support a high~speed peripheral device such as the
DMC11-DA Synchronous Line Unit. The title and document numbers
identifying the maintenance and user manuals for this device are
listed in Section 1.5,

KMC1l MACRO INSTRUCTIONS

Table 4-4
Arithmetic/Logic Unit Functions
ALU ALU Function
Function Field Binary Arithmetic/Logic Functions
Mnemonic Equivalent Performed
ADD 0000 Add A and B*
ADDC 0001 Add A and B with carry*
SUBC 0010 Subtract B from A with borrow*
INCA** 0011 Increment A¥*
APLUSC** 0100 A plus carry*
TWOA* * 0101 A plus A*
TWOAC* * 0110 A plus A plus carry¥*
DECA** 0111 Decrement A¥*
SELA** 1000 Select A side of ALU
SELB 1001 Select B side of ALU
AORNB 1010 A OR NOT B
AANDB 1011 A AND B
AORB 1100 A OR B
" AXORB 1101 A exclusive OR B
SUB ’ 1110 Subtract B from A* (two's complement)
SUBOC 1111 Subtract B from A* (one's complement)

* When used in a Move class microinstruction, these ALU functions
clock the C-bit.

** These ALU functions do not require a source argument.

KMC1l MACRO INSTRUCTIONS

Table 4-5

OUTBUS* Register Symbolic Addresses

Physical Address

Symbol Register Function (octal)
OICON CSRO 0
OMAIN CSR1 (Maintenance Register) 1
OOCON CSR2 2
OLINEN CSR3 3
OPORTl CSR4 4
OPORT2 CSR5 5
OPORT3 CSR6 6
OPORT4 CSR7 7
ONPR NPR Control Register 10
OBR UPMISC Register 11
Table 4-6
OUTBUS Symbolic Addresses

Symbolic Physical Address
Address Register Function (octal)
OIDAT1 In-NPR data low byte 0
OIDAT2 In-NPR data high byte 1
OUTDAl Out-NPR data low byte 2
OUTDA2 Out-NPR data high byte 3
IBAl In-NPR UNIBUS address low byte 4
IBA2 In-NPR UNIBUS address high byte 5
OBAl Out-NPR UNIBUS address low byte 6
OBA2 Out-NPR UNIBUS address high byte 7
OXREGO User-specified 10
OXREG1 User-specified 11
OXREG2 User-specified 12
OXREG3 User-specified 13

(continued on next page)

KMC1ll MACRO INSTRUCTIONS

Table 4-6 (Cont.)
OUTBUS Symbolic Addresses

Symbolic Physical Address
Address Register Function (octal)
OXREG4 User-specified » 14
OXREG5 User~-specified 15
OXREG6 User-specified 16
OXREG7 User-specified 17

Table 4-7

Move Instruction Destination: Branch Address Register

Macroassembler Mnemonic Description
BRWRTE 1IMM,opr,mar Stores an 8-bit operand in the BRG.
(Section 3.1.2.2) The argument opr can be any number in

the range 0-377 (octal) or it can be
the contents of any symbolic address
designated by the symbol table for the
microprogram. For example,

BRWRTE 1IMM,1777

will load 377 (octal) into the BRG
since the assembler masks the operand
to eight bits,

BRWRTE IBUS,adri,mar Moves the contents of the addresses

(Section 3.1.2.2) INBUS or INBUS* register, adri, to the
BRG and leaves the contents of the
INBUS or 1INBUS* register unchanged.
The INBUS symbolic addresses are
listed in Table 4-3. The INBUS*
symbolic addresses are listed in Table
4-2,

BRWRTE MEMX, func,SPn,mar Performs the specified ALU function,

(Section 3.1.2.2) func, on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The result of the ALU
function on these values 1is then
stored in the BRG. The contents of
the addressed memory location and the
scratch pad location remain unchanged.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

(continued on next page)

KMC11l MACRO INSTRUCTIONS

Table 4-7 (Cont.)
Move Instruction Destination: Branch Address Register

Macroassembler Mnemonic

Description

BRWRTE MEMX, func,SPn,mar
(Section 3.1.2.2)
(Cont.)

BRWRTE BR, func,SPn,mar
(Section 3.1.2.2)

For the argument SPn, the n represents
an octal number in the range 0-17,
which specifies the address of the
desired scratch pad location.

A direct source-to-destination data
transfer from the addressed memory
location to the BRG can be achieved
with the ALU function Select B. This
microinstruction would take the
following form:

BRWRTE MEMX,SELB

Same as the microinstruction BRWRTE
MEMX, func,SPn,mar except it performs
the specified ALU function on the
contents of the BRG and the contents
of the scratch pad location addressed
by the argument SPn. If specified by
the form

BRWRTE SELA,SPn
the direct source-to-destination data

transfer is from the specified scratch
pad location, SPn, to the BRG.

Table 4-8

Move Instruction Destination: OUTBUS*

Macroassembler Mnemonic

Description

OUT 1IMM,opr,adro,mar
(Section 3.1.2.3)

Moves an 8-bit operand directly to the
OUTBUS* register addressed by the four
low—-order bits of the immediate
operand. Argument opr is any number
or symbol in the range 0-377 (octal).

Argument adro must be a symbolic
address for one of the OUTBUS*
registers listed in Table 4-5.

(continued on next page)

4-10

KMC1l MACRO INSTRUCTIONS

Table 4-8 (Cont.)

Move Instruction Destination: OUTBUS¥*

Macroassembler Mnemonic

Description

OUT IMM,opr,adro,mar
(Section 3.1.2.3)
(Cont.)

OUT 1IBUS,adri,adro,mar
(Section 3.1.2.3)

NOTE

The four low-order bits of
the argument opr must have a
value equal to that of the
argument adro. For example,
if the argument opr is 311
(octal), then the argument
adro must be OUTBUS*
register symbolic address
OBR. This microinstruction
would take the following
form:

ouT 1IMM,311,0BR

If a conflict occurs between the value
of the four low-order bits of the
immediate operand and the octal code
for an OUTBUS* register symbolic
address, an assembly error is posted.

The following 1is a «cross reference
between 8-bit operands and the
appropriate opr and adro arguments.

Argument
8-Bit Operand adro
bbb bb0 000 OICOM
bbb bb0 001 OMAIN
bbb bb0 010 OOCON
bbb bb0 011 OLINEN
bbb bb0 100 OPORT1
bbb bb0 101 OPORT2
bbb bb0 110 OPORT3
bbb bb0 111 OPORT4
bbb bbl 000 ONPR
bbb bbl 001 OBR

~where

b = any binary bit

Moves data directly from the addressed
INBUS or INBUS* register to the
addressed OUTBUS* register.

The argument adri must be one of the
INBUS register symbolic addresses
listed in Table 4-3 or one of the
INBUS* register symbolic addresses
listed in Table 4-2. The argument
adro must be one of the OUTBUS*
register symbolic addresses listed in
Table 4-5.

(continued on next page)

KMC1ll MACRO INSTRUCTIONS

Table 4-8 (Cont.)

Move Instruction Destination: OUTBUS*

Macroassembler Mnemonic

Description

QUT MEMX,func,adro,mar
(Section 3.1.2.3)

OUT BR,func,adro,mar
(Section 3.1.2.3)

Performs the specified ALU function,
func, on the contents of the data
memory location addressed by the
current MAR and the contents of
scratch pad location 0. The result of
the ALU function on these values is
then stored 1in the OUTBUS* register
addressed by the argument adro.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic. The argument adro must be
one of the OUTBUS* symbolic addresses
listed in Table 4-5.

A direct source-to-destination data
transfer from the specified memory
location to the addressed OUTBUS*
register can be achieved with the ALU
function Select B; this
microinstruction would take the
following form:

OUT MEMX,SELB,adro

Similarly, a direct scratch pad

location 0-to-destination data
transfer can be achieved with ALU
function Select A; this
microinstruction would take the

following form:
OUT SELA,adro
Same as the microinstruction O0UT

MEMX, func,adro,mar except it performs
the specified ALU function on the

.contents of the BRG and the contents

of scratch pad location 0. If
specified by the form

OUT BR,SELB,adro

the direct source-to-destination data
transfer will be from the OUTBUS*
register addressed by the argument
adro.

KMC1l MACRO INSTRUCTIONS

Table 4-9
Move Instruction Destination: Branch Address Register Right-Shifted

Macroassembler Mnemonic Description
BRSHFT IMM,opr Shifts the contents of the BRG right
(Section 3.1.2.4) one place; bit 0 of the argument opr
is then moved to bit position 7 of the
BRG. The original (prior to
right-shifting) BRG bit 0 is

discarded. BRSHFT 1is equivalent to
BRSHFT IMM,O0.

BRSHFT 1IBUS,adri,mar Shifts the contents of the BRG right

(Section 3.1.2.4) one place; bit 0 of the INBUS or
INBUS* register addressed by the
argument adri is then moved to bit
position 7 of the BRG. The original
(prior to right-shifting) BRG bit 0 is
discarded.

The INBUS symbolic addresses are
listed in Table 4-3. The INBUS*
symbolic addresses are listed in Table
4-2,

BRSHFT MEMX, func,SPn,mar shifts the contents of the BRG right

(Section 3.1.2.4) one place; the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad addressed by the argument
SPn are then operated on according to
the ALU function specified by func.
Bit 0 of the resulting ALU output 1is
moved to bit position 7 of the BRG.
The original (prior to right-shifting)
BRG bit 0 is discarded.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
an octal number in the range 0-17,
which specifies the address of the
desired scratch pad location.

Bit 0 of the data memory location
addressed by the current MAR can be
moved to bit position 7 of the BRG by
the following form:

BRSHFT MEMX,SELB

Similarly, bit 0 of the scratch pad
location addressed by the argument SPn
can be moved to bit position 7 of the
BRG by the following form:

BRSHFT MEMX,SELA,SPn

(continued on next page)

KMC1ll MACRO INSTRUCTIONS

Table 4-9 (Cont.)
Move Instruction Destination: Branch Address Register Right-Shifted

Macroassembler Mnemonic Description
BRSHFT BR,func,SPn,mar Places the unshifted contents of the
(Section 3.1.2.4) BRG onto the source bus for input to

the B-side of the ALU; the contents
of the BRG are then shifted right one
place (bit 0 1is discarded). The
unshifted contents of the BRG and the
contents of the scratch pad addressed
by the argument SPn are operated on
according to the ALU function
specified by func. Bit 0 of the
resulting ALU output is moved to bit
position 7 of the BRG.

The mnemonics for the argument func
are 1listed in Table 4-4 long with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
the octal number in the range 0-17,
which specifies the address of the
desired scratch pad location.

A major function of this
microinstruction is a single-bit
right-rotate of the BRG. Since the
BRG is both the source and
destination, a single-bit right-rotate
of the BRG 1is accomplished by the

following form:

BROTAT

Table 4-10
Move Instruction Destination: OUTBUS

Macroassembler Mnemonic Description
OUT 1IMM,opr,adro,mar Moves an 8-bit operand directly to the
(Section 3.1.2.5) OUTBUS register addressed by the four

low-order bits of the immediate
operand. Argument opr 1is an octal
number or symbol in the range 0-377.
Argument adro must be a symbolic
address for one of the OUTBUS
registers listed in Table 4-6.

(continued on next page)

4-14

KMC1l MACRO INSTRUCTIONS

Table 4-10 (Cont.)

Move Instruction Destination: OUTBUS

Macroassembler Mnemonic

Description

OUT IMM,opr,adro,mar
(Section 3.1.2.5)
(Cont.)

OUT 1IBUS,adri,adro,mar
(Section 3.1.2.5)

NOTE

The four low-order bits of
the argument opr must have a
value equal to that of
argument adro. For example,
if the argument opr 1is 372
(octal), then the argument
adro must be OUTBUS register
symbolic address OUTDAl.
This microinstruction would
take the following form:

ouT 1IMM,372,0UTDAl

If a conflict occurs between the value
of the four 1low-order bits of the
immediate operand and the octal code
for an OUTBUS register symbolic
address, an assembly error will be
posted.

The following is a cross reference
between 8-bit operands and the
appropriate opr and adro arguments.

Argument

8-Bit Operand adro
bbb bb0 000 OIDAT1
bbb bb0 001 OIDAT2
bbb bb0 010 OUTDAl
bbb bb0 011 OUTDAZ2
bbb bb0 100 IBAl

bbb bb0 101 IBA2

bbb bb0 110 OBAl

bbb bb0 111 OBA2

bbb bbl 000 OXREGO
bbb bbl 001 OXREG1
bbb bbl 010 OXREG2
bbb bbl 011 OXREG3
bbb bbl 100 OXREG4
bbb bbl 101 OXREG5
bbb bbl 110 OXREG6
bbb bbl 111 OXREG7

where
b = any binary bit
Moves data directly from the addressed

INBUS or INBUS* register to the
addressed OUTBUS register.

(continued on next page)

4-15

KMC1l MACRO INSTRUCTIONS

Table 4-10 (Cont.)

Move Instruction Destination: OUTBUS

Macroassembler Mnemonic

Description

OUT 1IBUS,adri,adro,mar
(Section 3.1.2.5)
(Cont.)

OUT MEMX,func,adro,mar
(Section 3.1.2.5)

OUT BR,func,adro,mar
(Section 3.1.2.5)

The argument adri must be one of the
INBUS register symbolic addresses
listed in Table 4-3 or one of the
INBUS* register symbolic addresses
listed in Table 4-2. The argument
adro must be one of the OUTBUS
register symbolic addresses listed in
Table 4-6,.

Performs the specified ALU function,
func, on the contents of the data
memory location addressed by the
current MAR and the contents of
scratch pad location 0. The result of
the ALU function on those values is
then stored 1in the OUTBUS register
addressed by the argument adro.

The mnemonics for the argument £func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic. The argument adro must be
one of the OUTBUS registers listed in
Table 4-6.

A direct source-to-destination data
transfer from the specified memory
location to the addressed OUTBUS
register can be achieved with the ALU
function Select B. This
microinstruction would take the
following form:

OUT MEMX,SELB,adro

A direct source-to-destination data
transfer from scratch pad location 0
to the addressed OUTBUS register can
be achieved with the ALU function
Select A. This microinstruction would
take the following form:

OUT SELA,adro

Same as the microinstruction OUT
MEMX, func,adro except it performs the
specified ALU function on the contents
of the specified BRG and the contents
of scratch pad location 0. If
specified by the form

OUT BR,SELB,adro

the direct source-to-destination data
transfer will be from the BRG to the
OUTBUS register addressed by the
argument adro.

KMC11 MACRO INSTRUCTIONS

Table 4-11

Move Instruction Destination: Data Memory

Macroassembler Mnemonic

Description

MEM IMM,opr,mar
(Section 3.1.2.6)

MEM 1IBUS,adri,mar
(Section 3.1.2.6)

MEM MEMX, func,SPn,mar
(Section 3.1.2.6)

Moves an 8-bit operand directly to the
data memory location addressed by the
current contents of the MAR. The
argument opr can be any number or
symbol in the range 0-377 (octal).

Moves ‘the contents of the addressed
INBUS or INBUS* register, adri, to the
data memory location addressed by the
current MAR and leaves the contents of
the INBUS unchanged.

The INBUS symbolic addresses are
listed 1in Table 4-3 and the INBUS*
symbolic addresses are listed in Table
4-2,

Performs the specified ALU function,
func, on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The result of the ALU
function on these values 1is then

~stored in the same data memory

location and the original contents of
that data memory location are
discarded. The contents of the
addressed scratch pad location remain
unchanged.

The mnemonics for the argument £func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

A direct source-to-destination data
transfer from the addressed scratch
pad location to the data memory
location addressed by the current MAR
can be achieved with the ALU function
Select A. This microinstruction would
take the following form:

MEM SELA,SPn

(continued on next page)

KMC1ll MACRO INSTRUCTIONS

Table 4-11 (Cont.)

Move Instruction Destination: Data Memory

Macroassembler Mnemonic

Description

MEM BR, func,SPn,mar
(Section 3.1.2.6)

Same as the microinstruction MEM
MEMX, func,SPn,mar except it performs
the specified ALU function on the
contents of the BRG and the contents
of the scratch pad location addressed
by the argument SPn. If specified by
the form

MEM BR,SELB

the direct source-to-destination data
transfer will be from the BRG to the
data memory location addressed by the
current MAR.

Table 4-12

Move Instruction Destination: Scratch Pad

Macroassembler Mnemonic

Description

SP IMM,opr,SPn,mar
(Section 3.1.2.7)

Moves an 8-bit operand directly to the
scratch pad location addressed by the
four low-order bits of the immediate
operand. Argument opr is any number
or symbol in the range 0-377 (octal).

For the argument SPn, the n
represents a number in the range 0-17
(octal), which specifies the address
of the desired scratch pad location.

NOTE

The four low-order bits of
the argument opr must have a
value equal to the value of
the argument SPn. For
example, if the argument opr
is 317 (octal), then the
argument SPn must have the
value 17 (octal). This
microinstruction would take
the following form:

sp IMM,317,SPl7

If a conflict occurs between the value
of the four low-order bits of the
immediate operand and the value of
SPn, an assembly error will be posted.

(continued on next page)

KMC1l1l MACRO INSTRUCTIONS

Table 4-12 (Cont.)

Move Instruction Destination: Scratch Pad

Macroassembler Mnemonic

Description

SP IBUS,adri,SPn,mar
(Section 3.1.2.7)

SP MEMX, func,SPn,mar
(Section 3.1.2.7)

Moves data directly from the addressed
INBUS or INBUS* register to the
addressed scratch pad location.

The argument adri must be one of the
INBUS register symbolic addresses
listed in Table 4-3 or one of the
INBUS* register symbolic addresses
listed in Table 4-2,.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

The contents of the addressed INBUS or
INBUS* remain unchanged.

Performs the specified ALU function,
func, on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The result of the ALU
function on these values 1is then
stored in the same scratch pad
location and the original contents of
that scratch pad location are
discarded. The contents of the
addressed data memory location remain
unchanged.

The mnemonics for the argument func
are listed in Table 4~4 along with the
ALU function implemented by each
mnemonic.

For the argqument SPn, the n represents
a number 1in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

A direct source-to-destination data
transfer from the data memory location
addressed by the current MAR to the
addressed scratch pad location can be
achieved with the ALU function Select
B. This microinstruction would take
the following form:

SP MEMX,SELB,SPn

(continued on next page)

KMC1l MACRO INSTRUCTIONS

Table 4-12 (Cont.)
Move Instruction Destination: Scratch Pad

Macroassembler Mnemonic Description
SP BR,func,SPn,mar Same as the microinstruction SP
(Section 3.1.2.7) MEMX,func,SPn,mar except it performs

the specified ALU function on the
contents of the BRG and the contents
of the scratch pad location addressed
by the argument SPn. If specified by
the form

SP BR,SELB,SPn

the direct source-to-destination data
transfer will be from the BRG to the
scratch pad location addressed by the
argument SPn.

Table 4-13
Move Instruction Destination: Scratch Pad and Branch Address Register

Macroassembler Mnemonic Description
SPBR IMM,opr,SPn,mar Moves an 8-bit operand directly to the
(Section 3.1.2.8) BRG and to the scratch pad location
addressed by the four low-order bits
of the 1immediate operand. Argument

opr is any number or symbol in the
range 0-377 (octal).

For the argument SPn, the n represents
a humber 1in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

NOTE

The four low-order bits of
the argument opr must have a
value equal to that of the
argument SPn. For example,
if the argument opr is 230
(octal), then the argument
SPn must be 10(octal). This
microinstruction would take
the following form:

SPBR IMM,230,SP10

If a conflict occurs between the value
of the four low-order bits of the
immediate operand and that of SPn, an
assembly error will be posted.

(continued on next page)

KMCl11 MACRO INSTRUCTIONS

Table 4-13 (Cont.)
Move Instruction Destination: Scratch Pad and Branch Address Register

Macroassembler Mnemonic Description
SPBR IBUS,adri,SPn,mar Moves data directly from the addressed
(Section 3.1.2.8) INBUS or INBUS* register to the BRG
and the addressed scratch pad
location.

The argument adri must be one of the
INBUS register symbolic addresses
listed in Table 4-3 or one of the
INBUS* register symbolic addresses
listed in Table 4-2.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

The contents of the addressed INBUS or
INBUS* register remain unchanged.

SPBR MEMX, func,SPn,mar Performs the specified ALU function,

(Section 3.1.2.8) func, on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The result of the ALU
function on these values 1is then
stored in the BRG and in the same
scratch pad location and the original
contents of that scratch pad location
are discarded. The contents of the
addressed data memory location remain
unchanged.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number 1in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

A direct source-to-destination data
transfer from the data memory location
addressed by the current MAR to the
addressed scratch pad location can be
achieved with the ALU function Select
B; this microinstruction would take
the following form:

SPBR- MEMX,SELB,SPn

(continued on next page)

KMC11l MACRO INSTRUCTIONS

Table 4-13 (Cont.)
Move Instruction Destination: Scratch Pad and Branch Address Register

Macroassembler Mnemonic Description
SPBR BR,func,SPn,mar Same as the microinstruction SPBR
(Section 3.1.2.8) MEMX, func,SPn,mar except it performs

the specified ALU function on the
contents of the BRG and the contents
of the scratch pad location addressed
by the argument SPn. If specified by
the form

SPBR* BR,SELB,SPn

the direct source-to-destination data
transfer is from the BRG to the
scratch pad location addressed by the
argument SPn.

Table 4-14
Move Instruction Destination: NODST (No Destination)

Macroassembler Mnemonic Description
NODST ' Performs a null operation; 1i.e., a
(Section 3.1.2.1) microinstruction is executed, but all

internal registers are unchanged.
Used to implement a program delay of
any length.

NODST INCMAR Increments the MAR by one.
(Section 3.1.2.1)

NODST IMM,opr,LDMAR Loads the 1lower eight bits, bits 0-7,
(Section 3.1.2.1) of the MAR with the value of opr,

0-255 (decimal), corresponding to the
specific memory word addressed (page
offset) within a designated page;
e.g., NODST 1IMM,413,LDMAR loads bits
0-7 of the MAR with 13, If the
Immediate argument 1is equal to 377
(octal), the Z-bit 1is set to one;
otherwise it is cleared to zero. This
instruction does not affect any other
register.

NODST 1IMM,opr,LDMAPG Loads the upper two bits, bits 8 and

(Section 3.1.2.1) 9, of the MAR with the value of the
lower two bits, bits 0 and 1, of the
argument opr, corresponding to one of
four 256-word pages in data memory;
e.g., NODST 1IMM,113,LDMAPG loads both
bits 8 and 9 of the MAR with 1. 1If
the Immediate argument is equal to 377
(octal), the Z-bit 1is set to one;
otherwise it is cleared to zero. This
instruction does not affect any other
register.

(continued on next page)

KMC11l MACRO INSTRUCTIONS

Table 4-14 (Cont.)
Move Instruction Destination: NODST (No Destination)

Macroassembler Mnemonic Description
NODST 1IBUS,adri,mar Tests the INBUS or INBUS* addressed by
(Section 3.1.2.1) the argument adri as to whether the

contents are egual to or not equal to
377 (octal). If the result 1is equal
to 377 (octal), the Z-bit is set to
one; otherwise it is cleared to zero.
The contents of +the INBUS or INBUS*
register are unchanged.

The INBUS symbolic addresses are
listed in Table 4-3. The INBUS*
symbolic addresses are listed in Table

4-2.
NODST MEMX, func,SPn,mar Tests the result of the designated ALU
(Section 3.1.2,1) function, func, on the contents of the

data memory addressed by the current
MAR and the contents of the scratch
pad location addressed by the argument
SPn as to whether the result is equal
to or 1less than 377 (octal). If the
result is equal to 377 (octal), the
Z-bit is set to one. If the result is
less than 377 (octal), the 2Z-bit is
cleared to zero.

If the ALU function is a logic
function (i.e., AVB, AAB, A¥B,or AVAB)
or if the A side or B side of the ALU
is selected, the C-bit is unaffected.
If the ALU function is an arithmetic
function (i.e., add or increment) that
results in a carry, the C-bit is set
to one. . If the ALU function is an
arithmetic function (i.e., subtract or
decrement) that results in a borrow,
the C-bit is cleared to zero. The
contents of the addressed memory
location and the scratch pad 1location
remain unchanged.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

(continued on next page)

KMC1l MACRO INSTRUCTIONS

Table 4-14 (Cont.)
Move Instruction Destination: NODST (No Destination)

Macroassembler Mnemonic Description
NODST BR,func,SPn,mar Tests the result of the designated ALU
(Section 3.1.2.1) function, func, on the contents of the

BRG and the contents of the scratch
pad location addressed by the argument
SPn as to whether the result is equal
to or less than 377 (octal). If the
result is equal to 377 (octal), the
Z~bit is set to one. If the result is
less than 377 (octal), the Z-bit is
cleared to zero.

If the ALU function is a logic
function (i.e., AVB, AAB, A¥B, or
AVWB) or if the A side or B side of
the ALU 1is selected, the C-bit is
unaffected. If the ALU function is an
arithmetic function (i.e., add or
increment) that results 1in a carry,
the C-bit 1is set to one. If the ALU
function 1is an arithmetic function
that results in a borrow, the C-bit is
cleared to zero. The contents of the
BRG and the addressed scratch pad
location remain unchanged.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-~17 (octal),
which specifies the desired scratch
pad location.

Table 4-15
Move Instruction: Increment and Load MAR

Macroassembler Mnemonic Description

INCMA Increments the MAR by one.
(Section 3.1.2.1)

LDMA IMM,opr Loads the 1lower eight bits, bits 0-7,
(Section 3.1.2.1) of the MAR with the value of opr,

0-255 (decimal), corresponding to the
specific memory word addressed (page
offset) within a designated page.

(continued on next page)

KMC1l MACRO INSTRUCTIONS

Table 4-15 (Cont.)

Move Instruction: Increment and Load MAR

Macroassembler Mnemonic Description

LDMAP 1IMM,opr Loads the wupper +two bits, bits 8
.2.1) and 9, of the MAR with the value (0-3)

(Section 3.1

memory.
The instruction

LDMAP IMM,1400

NODST IMM, 3,LDMAPG

of the upper two bits, bits 8 and 9,
of the argument opr corresponding to
one of four 256-word pages in data

is equivalent to the instruction

Table 4-16
Branch Instruction Source: Immediate
Macroassembler Mnemonic Description
NOTE

In all immediate branches, the value of
label 1is divided by two to obtain the
corresponding microlocation. (The
reason for this is that MACRO-11 counts
bytes because - the PDP-11 is byte
addressed while the KMCll CRAM is word
addressed.) The result 1is then split
between the offset field and the page
field. The CRAM page .is specified by
bits 11 and 12 and the page offset is
specified by bits 0-8 of the branch
address field of the microinstruction.

ALWAYS label

Causes the microprogram

(Section 3.2.2.1) branch to the binary

C label

location, label.

If the C-bit is set to on

(Section 3.2.2.1) microprogram to execute

label.

to execute a
labeled CRAM

e, causes the
a branch to

the binary labeled CRAM 1location,

(continued

on next page)

KMC1l MACRO INSTRUCTIONS

Table 4-16 (Cont.)

Branch Instruction Source: Immediate

Macroassembler Mnemonic

Description

C label
(Section 3.2,2.1)
(Cont.)

7 label
(Section 3.2.2.1)

BRO 1label
(Section 3.2.2.1)

BR1 label
(Section 3.2.2.1)

BR4 1label
(Section 3.2.2.1)

BR7 label
(Section 3.2.2.1)

If the C-bit is cleared to zero, the
PC 1is incremented by one to execute
the next sequential instruction in the
microprogram line.

Refer to Chapter 3 for a detailed
description on setting and clearing
the C-bit.

Same as the microinstruction C
label except it is dependent on
whether the Z-bit is set or cleared.

Refer to Chapter 3 for a detailed
description on setting and clearing
the Z-bit.

If BRG bit 0 is set to one, causes the
microprogram to execute a branch - to
the binary labeled CRAM 1location,
label.

If BRG bit 0 is cleared to =zero, the
PC 1is incremented by one to execute
the next sequential instruction in the
microprogram line.

Refer to Chapter 2 for a detailed
description on setting and clearing
BRG bits 0, 1, 4, and 7.

Same as the microinstruction BRO
label except it 1is dependent on
whether BRG bit 1 is set or cleared.

Same as the microinstruction BRO
label except it is dependent on
whether BRG bit 4 is set or cleared.

Same as the microinstruction BRO
label except 1t 1is dependent on
whether BRG bit 7 is set or cleared.

KMC1ll MACRO INSTRUCTIONS

Table 4-17

Branch Instruction Source: Data Memory

Macroassembler Mnemonic

Description

.ALWAY MEMX,func,SPn,Pn
(Section 3.2.2.2)

.C MEMX, func,SPn,Pn
(Section 3.2.2.2)

Causes the microprogram to
unconditionally execute a branch to a
specific location (page offset) within
a designated CRAM page. The page
offset 1is derived from the results of
the specified ALU function, func,
performed on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The contents of the
addressed memory and scratch pad
locations remain unchanged as do the
states of the C-bit and the Z-bit.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

For the argument Pn, the n represents
a number in the range 0-3, which
specifies the desired page number of
the CRAM.

The page offset can also be derived
from the contents of the data memory
location addressed by the current MAR.
This microinstruction would take the
following form:

.ALWAY MEMX,SELB,Pn

If the C-bit is set to one, causes the
microprogram to execute a branch to a
specific location (page offset) within
a designated CRAM page. The page
offset 1is derived from the results of
the specified ALU function, func,
performed on the contents of the data
memory location addressed by the
current MAR and the contents of the
scratch pad location addressed by the
argument SPn. The contents of the
addressed data memory and scratch pad
locations remain unchanged as do the
states of the C-bit and Z-bit.

{(continued on next page)

KMC11l MACRO INSTRUCTIONS

Table 4-17 (Cont.)

Branch Instruction Source: Data Memory

Macroassembler Mnemonic

Description

.C MEMX,func,SPn,Pn
(Section 3.2.2.2)
(Cont.)

.2 MEMX, func,SPn,Pn
(Section 3.2.2.2)

.BR0O MEMX,func,SPn,Pn
(Section 3.2.2.2)

.BR1 MEMX,func,SPn,Pn
(Section 3.2.2.2)

.BR4 MEMX, func,SPn,Pn
(Section 3.2.2.2)

.BR7 MEMX, func,SPn,Pn
(Section 3.2.2.2)

The mnemonics for the argument func
are listed in Table 4~4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

For the argument Pn, the n represents
a number in the range 0-3, which
specifies the desired page number of
the CRAM.

The page offset can also be derived
from the contents of the data memory
location addressed by the current MAR.
This microinstruction would take the
following form:

.C MEMX,SELB,Pn

If the C-bit is cleared to zero, the
PC 1is incremented by one to execute
the next sequential instruction in the
microprogram.

Same as the microinstruction .C MEMX,
func,SPn,Pn except it is dependent on
whether the Z-bit is set or cleared.

Same as the microinstruction .C MEMX,
func,SPn,Pn except it is dependent on
whether bit 0 of the BRG is set or
cleared.

Same as the microinstruction .C MEMX,
func,SPn,Pn except it is dependent on
whether bit 1 of the BRG is set or
cleared.

Same as the microinstruction .C MEMX,
func,SPn,Pn except it is dependent on
whether bit 4 of the BRG is set or
cleared.

Same as the microinstruction .C MEMX,
func,SPn,Pn except it is dependent on
whether bit 7 of the BRG is set or
cleared.

KMCl1l MACRO INSTRUCTIONS

Table 4-18

Branch Instruction Source: Branch Address Register

Macroassembler Mnemonic

Description

.ALWAY BR, func,SPn,Pn
(Section 3.2.2.3)

.C BR,func,SPn,Pn
(Section 3.2.2.3)

Causes the microprogram to
unconditionally execute a branch to a
specific location (page offset) within
a designated CRAM page. The page
offset 1is derived from the results of
the specified ALU function, func,
performed on the contents of the BRG
and the contents of the scratch pad
location addressed by the argument
SPn. The contents of the BRG and the
addressed scratch pad location remain
unchanged as do the states of the
C-bit and the Z-bit.

The mnemonics for the argument func
are listed in Table 4-4 along with the
ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

For the argument Pn, the n represents
a number 1in the range 0-3, which
specifies the desired page number of
the CRAM.

The page offset can also be derived
from the contents of the BRG or from
the contents of the scratch pad
location addressed by the
microinstruction. These
microinstructions take the following
forms, respectively:

.ALWAY BRG,SELB,Pn
.ALWAY SELA,SPn,Pn

If the C-bit is set to one, causes the
microprogram to execute -a branch to a
specific location (page offset) within
a designated CRAM page. The page
offset 1is derived from the results of
the specified ALU function, func,
performed on the contents of the BRG
and the contents of the scratch pad
location addressed by the argument
SPn. The contents of the BRG and the
addressed scratch pad location remain
unchanged as do the states of the
C-bit and the Z-bit.

(continued on next page)

KMC1l MACRO INSTRUCTIONS

Table 4-18 (Cont.)
Branch Instruction Source: Branch Address Register

Macroassembler Mnemonic Description
.C BR,func,SPn,Pn The mnemonics for the argument func
(Section 3.2.2.3) are listed in Table 4-4 along with the
(Cont.) ALU function implemented by each
mnemonic.

For the argument SPn, the n represents
a number in the range 0-17 (octal),
which specifies the address of the
desired scratch pad location.

For the argument Pn, the n represents
a number in the range 0-3, which
specifies the desired page number of
the CRAM.

The page offset can also be derived
from the contents of the BRG or from
the contents of the scratch pad
location addressed by the
microinstruction. These
microinstructions take the following
forms, respectively:

.C BRG,SELB,Pn
.C SELA,SPn,Pn

If the C-bit is cleared to zero, the
PC 1is incremented by one to execute
the next sequential instruction in the

microprogram.
.2 BR,func,SPn,Pn Same as the microinstruction .C BR,
(Section 3.2.2.3) func,SPn,Pn except it is dependent on
whether the Z-bit is set or cleared.
.BR0O BR,func,SPn,Pn Same as the microinstruction .C BR,
(Section 3.2.2,3) func,SPn,Pn except it is dependent on
whether bit 0 of the BRG is set or
cleared.
.BR1 BR,func,SPn,Pn Same as the microinstruction .C BR,
(Section 3.2.2.3) - func,SPn,Pn except it is dependent on
whether bit 1 of the BRG is set or
cleared.
.BR4 BR, func,SPn,Pn Same as the microinstruction .C BR,
(Section 3.2.2.3) func,SPn,Pn except it is dependent on
whether bit 4 of the BRG is set or
cleared.
.BR7 BR,func,SPn,Pn Same as the microinstruction .C BR,
(Section 3.2.2.3) func,SPn,Pn except it is dependent on
whether bit 7 of the BRG is set or
cleared.

4-30

KMCll MACRO INSTRUCTIONS

Table 4-19

Compare Values and Subroutine Calls and Returns

Macroassembler Mnemonic

Description

COMP MEMX,SPn

COMP BR,SPn

BRADDR 1label

Compares the contents of the
data memory addressed by the
current MAR with the contents of
the scratch pad location
addressed by the argument SPn to
determine if they are equal. 1If
they are equal, the Z-bit is set
to one; if the contents of the
addressed data memory location
are less than the contents of
the addressed scratch pad
location, the C-bit 1is set to
‘one. The contents of the
addressed data memory and the
scratch pad locations remain
unchanged.

For the argument SPn, the n
represents a number in the range
0-17 (octal), which specifies
the address of the desired
scratch pad location.

Compares the contents of the BRG
with the contents of the scratch
pad location addressed by the
argument SPn to determine if
.they are equal. If they are
equal, the Z-bit is set to one;
if the contents of the BRG are
less than the contents of the
addressed scratch pad 1location,
the C-bit 1is set to one. The
contents of the BRG and the
addressed scratch pad location
remain unchanged.

For the argument SPn, the n
represents a number in the range
0-17 (octal), which specifies
the . address of the " desired
scratch pad location.

Stores the eight low-order bits
of the labeled function address
(the page offset) 1in the BRG.
This macro is useful for
creating dispatch tables. In
the following example, the base
address is in the BRG, and the
index is in SPO:

4

(continued on next page)

31

KMC11l MACRO INSTRUCTIONS

Table 4-19 (Cont.)
Compare Values and Subroutine Calls and Returns

Macroassembler Mnemonic

Description

BRADDR label
(Cont.)

MEMADR label

CALLSB SPn,subrtn label
[,optBRGvall

CALLSR SPn,subrtn label,
return label[,optBRGval]

BRADDR TAB

.ALWAY BR,ADD,SPO, PO
TAB: ALWAYS LABEL1

ALWAYS LABEL2

ALWAYS LABEL3

ALWAYS LABELN

This example assumes that TAB is
on CRAM page 0, and that SPO
contains the appropriate offset
(i.e., 0, 1, 2, 3 or n).

Same as BRADDR, except stores
the page offset in memory.

Calls and performs the 1labeled
subroutine. The eight low-order
bits of the return address are
stored in the referenced scratch
pad location. This assumes that
the 1labeled subroutine returns
to the page where the next
instruction 1is located. Refer
to RTNSUB.

For the argument SPn, the n
represents a number in the range
0-17 (octal), which specifies
the address of the desired
scratch pad location.

For each level of call, another
scratch pad location is required
to store the return address.

Same as the microinstruction
CALLSB SPn, subrtn label
[,optBRGval]. It 1is used when
the labeled subroutine does not
return to the page where the
next instruction is 1located or
when the user wishes to return
to a location other than that
following the call.

(continued on next page)

KMC1ll MACRO INSTRUCTIONS

Table 4-19 (Cont.)
Compare Values and Subroutine Calls and Returns

Macroassembler Mnemonic

Description

CALLSR SPn,subrtn label,
return label[,optBRGvall]
(Cont.)

RTNSUB SPn,Pn

Note that
CALLSB SPn,F00,5
is equivalent to

BRADDR .+10

SPp BR,SELB,SPn
BRWRTE 1IMM,5
ALWAYS FOO

and
CALLSR SPn,FOO,RETN,10
is equivalent to

BRADDR RETN

SP BR,SELB,SPn
BRWRTE 1IMM,10
ALWAYS FOO

This assumes RETN is on the page
where subroutine FOO returns.

Causes the microprogram to
return to the scratch pad
location addressed by the
arguments SPn and Pn.

For the argument SPn, the n
represents a number in the range
0~-17 (octal), which specifies
the address of the desired
return scratch pad location.

For the argument Pn, the n
represents a number in the range
0-3, which specifies the desired
return page number of the CRAM.
Note that

RTNSUB SPn,Pn

is equivalent to

.ALWAY SELA,SPn,Pn

(continued on next page)

4-33

-

KMC1l1l MACRO INSTRUCTIONS

Table 4-19 (Cont.)

Compare Values and Subroutine Calls and Returns

Macroassembler Mnemonic

Description

RTNSUB SPn,Pn
(Cont.)

NOTE

To save CRAM space,
the page with the most
calls to a given
subroutine should be
selected over pages
with fewer calls to
the given subroutine.

For example, if page 0
has one call to SUBR
and page 1 has two
calls to subroutine
SUBR, the appropriate
form is as follows:

RTNSUB SPn,Pl

The following forms are
appropriate for calling
SUBR on any page and then
branching to page 1 (with
the most calls to SUBR) 1if

B is the next
microinstruction to be
executed:

page 0 - CALLSR SPn,SUBR,A
B: next instruction

page 1 - A: ALWAYS B

4-34

KMC1l MACRO INSTRUCTIONS

4.4 EXAMPLES OF KMCll INSTRUCTION MACRO EXPANSIONS

KMC1ll instruction macro expansions are summarized in Figure
Figure 4-2 contains examples of KMCll instruction macros.

4-1.

MOVE INSTRUCTIONS:

IBUS,in addr
ouT [src,]lalu funct,out addr[,mar]
IMM,opr
LDMA
LDMAP
MEM IBUS,in addr
BRWRTE [src,lalu funct[,sp addr]{,mar]
BRSHFT IMM,opr
NODST
_ SP IBUS,in addr
SPBR [src,lalu funct,sp addr|[,mar]
INCMA
BRADDR
label[,mar]
MEMADR
COMP src,sp addr

IBUS,in addr
MEMINC [src,lalu funct[,sp addr]
IMM,opr .

CALLSB sp addr ,SUBRTN label[,optBRGval]
CALLSR sp addr ,SUBRTN label,return label[,optBRGval]
RTNSUB sp addr,page #

BRANCH INSTRUCTIONS:

ALWAYS)
BRO
BR1
BR4 f addr
BR7
C

Z J

<ALWAY)
.BRO
.BR1 IBUS,in addr

.BR4 > [src,]lalu funct[,sp addr] ,page #
+BR7 IMM, opr

.C

<2 J

Figure 4-1 Summary of KMCll Instruction Macros

4-35

KMC11l MACRO

INSTRUCTIONS

MOVE INSTRUCTION EXAMPLES:

ouT

ouT

ouT
or
ouT

ouT

or
MEMINC

BRWRTE

BRWRTE

BRWRTE

BRWRTE

BRWRTE

NODST
or
LDMA

NODST
or
INCMA

NODST
oxr
LDMAP

SELA ,ONPR

BR,AANDB,0OBR

MEMX,ADD,OBAl,INCMAR

MEMI ,ADD,OBAl

IMM,200,I0CON,LDMAPG

MEMX,ADD,SP3, INCMAR

MEMX,ADD,SP3
MEMI ,ADD,SP3
MEMI ,ADD,SP3

IMM, 200, LDMAR

MEMX,SELB

MEMX,ADD,SP3

BR,ADD,SP3

SELA,SP3

IMM, 3,LDMAR

IMM, 3

INCMAR

MEMX,SUB,SP4,LDMAPG

MEMX,SUB, SP4

;move contents of SP0 to the NPR
;control register

;smove to the PMISC register the
;logical AND of SP0 and the BRG

;add SPO0 with memory and store
sin the low byte of the output
;buffer address register then
;increment the MAR

;move 200 to input control register
;CSR0 and load the high-order 2
;bits (page) of the MAR with zeros

;add contents of memory location
;addressed by current MAR with
;contents of SP3 and store result
;in memory then increment the MAR

;move the 8-bit immediate operand
;to the BRG and load the low-order
;8 bits (page offset) of the MAR
;with octal 200

;direct source-to-destination
;data transfer from the memory
:location addressed by the current
sMAR to the BRG

;add contents of memory location
;addressed by current MAR with
;contents of SP3 and store result
;in the BRG

;add contents of BRG to the con-
;tents of SP3 and store result in
;the BRG

;direct source-to-destination
;data transfer from SP3 to the
s BRG

sload the low-order 8 bits
; (page offset) of the MAR with 3

;increment the MAR

;load the high-order 2 bits of
;the MAR with the low-order 2

:sbits of the result from sub-

;tracting the contents of the

;memory contents addressed by

scurrent MAR from SP4

Figure 4-2 Examples of

4-36

KMC1ll Macro Expansions

KMC1ll MACRO INSTRUCTIONS

BRANCH INSTRUCTION EXAMPLES:

ALWAYS

BRO

+ALWAY

.BRO

155,p2

155,p2

408

BR,AORB,SP0,P2

BR,AORB,SP0,P2

BR,AORB,SP0,P2

tbranch to CRAM page 2,

spage offset 155

;branch to CRAM page 2, page
;offset 155 if BRG bit 0
;set to one

;1f the previous move instruction
shad a resultant of 377 octal,
sbranch to label 40§

;branch to page 2 at the offset
;determined by the logical

sOR of the contents of the BRG
;and the contents of SPO

sbranch to page 2 at the offset
;determined by the logical OR
;of the contents of the BRG and
;the contents of SP0 if BRG bit
;0 set to one

;1f the carry bit is set branch
;1to page 2 offset determined by
;the logical OR of the BRG and
; SPO

Figure 4-2

4.5

(Cont.)

RESERVED SYMBOLS

Examples

of KMCll Macro Expansions

The following symbols are reserved for the macroassembler:

AANDB
ADD
ADDC
ALCOND
AORB
AORNB
APLUSC
AXORB
BR
BROCON
BR1CON
BR4CON
BR7CON
CCOND
DATI
DATIH
DATO
DATOB
DATOBH
DATOH
DECA
IBAl
IBA2
IBUS

The programmer (user) is
when

symbols

IIBAl OCON
IIBA2 OIDATI1
IMM QIDATZ2
INCA OINCON
INCMAR OLINEN
INCON OMAIN
INDAT1 ONPR
INDAT2 OOCON
IOBAl OPORT1
I0BA2 OPORT2
IODAT1 OPORT3
IODAT?2 OPORT4
JUMP ouUTDAl
LDMAPG OUTDA?2
LDMAR OXREGO
LINENM OXREG1
MAIN OXREG2
MEMI OXREG3
MEMX OXREG4
MOVE OXREGS5
NPR OXREG6
OBAl OXREG7
OBA2 PORT1
OBR PORT2
cautioned

constructing

error will result.

user-defined

PORT3 SP5
PORT4 SP6
PO Sp7
Pl START
P2 SUB
P3 SUBC
SELA SUBTC
SELB TWOA
SHFTBR TWOAC
SPBRX UBBR
SPX WRMEM
SPO WROUT
SP1 WROUTX
SP10 WRTEBR
SP11 XREGO
SP12 XREG1
SP13 XREG2
SP1l4 XREG3
SP15 XREG4
SPl6 XREGS
SP17 XREG6
sp2 XREG7
SP3 ZCOND
SP4

not to employ these reserved

symbols because an assembly

KMCll MACRO INSTRUCTIONS

4.6 OPERATING INSTRUCTIONS

The user should follow the general rules and procedures discussed in
this section when operating the assembler.

The macro definition file KMCMAC.MAC should precede any user microcode
macro calls. For example, if the user has microcode macro calls on a
file with filename MICRO.MAC, he should answer the assembler prompt
with

object file, listing file = KMCMAC,MICRO
The user must supply

. END
at the end of the microcode program.

For example, using RSX-11M,

>RUN $MAC
MAC> object file, listing file = KMCMAC, microcode input file

MAC>"Z

The user should then link or task build the object file according to
the format that the loader expects.

CHAPTER 5

KMCll LOADER

5.1 INTRODUCTION

The KMCll loader is a utility used during microprogram development and
loading. It enables the user to load the KMCll CRAM from a file when
the file name is input at the console. This wutility runs as a
privileged task under the RSX-11M, RSX-11D, and IAS operating systems.
It runs when the microprogram is being loaded into the KMCll CRAM
during system initialization or reconfiguration. If the user wants to
develop his own driver which incorporates a built-in loader that loads
from an area of PDP-11 memory, the KMCll basic loader subroutine in
Section 5.2 is an example that can be followed. The KMCll Loader
(KMCLDR) 1is described in Section 5.3, which also gives some examples
of its use under RSX-11M.

In this chapter, the KMC1ll is used as the reference point for all
transfers of information between the PDP-1ll processor program and the
KMC1l microprocessor. An OUT-transfer transfers information from the
KMC1l to the PDP-11 program; an IN-transfer transfers information
from the KMCll to the PDP-11 program.

Eight byte~sized Control and Status Registers (CSRs) are used for the
exchange of control and status information between the PDP-11 program
and the KMCll. The eight CSRs are byte or word addressable from the
UNIBUS. The UNIBUS addresses are 76xxx0 through 76xxx7 (BSELO through
BSEL7) with the even addresses forming the word boundaries (SELO,
SEL2, SEL4, and SEL®6).

The only CSR having a fixed or hardware-defined format 1is CSR1
(BSEL1): the maintenance register (Figure 5-1). The other seven CSRs
are undefined and the user <can program them to satisfy specific
requirements.

The maintenance register (BSELl) is used primarily for initializing
and servicing the KMC1ll; two BSEL1 bits (RAM O and CRAM WRITE),
however, are used when loading the KMCll CRAM (Figure 3-1).

RAM O, when set, modifies the source paths for SEL4 to be the CRAM
maintenance address register, enabling CRAM read and/or write via SEL6
of the specified locations. A write is accomplished by 1loading the
new CRAM data into SEL6 and asserting CRAM WRITE. CRAM read is
accomplished by reading SEL6.

CRAM WRITE, when set, allows the contents of SEL6 to be 1loaded into
the CRAM at the address specified by SEL4. Note that RAM O must also
be set to accomplish the loading procedure.

The CSRs are described in detail in Section 2.3.1; the CSRs and all
bits of CSR1 are described in detail in the KMCll General Purpose
Microprocessor User's Manual, EK-KMC11l-OP.

KMCl1l1l LOADER

UNIBUS PHYSICAL
ADDRESS 15 14 13 12 11 10 9 8 ADDRESS
76xxx1 l
BSEL1
‘ ’ CRAM RAM RAM STEP

RUN MCLR WRITE RESERVED 0 | P

Figure 5-1 Control and Status Registers CSR1 Bit Map

5.2 KMC1ll BASIC LOADER SUBROUTINE

The following procedure for loading the KMC1ll CRAM fully utilizes the
KMC1ll hardware and provides for future compatibility:

1. Write CSRO with only bit 10 (BSELl1l bit 2) (RAM OUTPUT) set.
2. Load the right-justified PC into CSR4.

3. Load CRAM data into CSR6.

4. Set CSRO bit 13 (BSELl bit 5) (CRAM WRITE).

5. Clear CSRO.

6. Repeat Steps 2 through 5 as necessary to load the required
instructions.

The following procedure is used to verify the CRAM:
1. Write CSRO with only bit 10 (BSEL1l bit 2) set.
2. Load the right~justified PC into CSR4.
3. Read CRAM data from CSR6.
4, Clear CSRO.

5. Repeat Steps 2 through 4 as necessary to verify the
instructions.

The KMCll Basic Loader Subroutine can be incorporated into a
user~-developed driver, (See Figure 5-2.)

; WRITE THE RAM

INPUTS:

RO = NUMBER OF WORDS TO WRITE

R3 = CSR ADDRESS OF KMC-11

R5 = CRAM ADDRESS AT WHICH TO START LOADING

BUFF = BUFFER CONTAINING MICRO-INSTRUCTIONS

S.LOAD (STATUS) = FLAG TO INDICATE A LOAD (1) OR COMPARE (0)
IS TO BE PERFORMED

Ne N N we W we N

WTRAM:
MOV #BUFF ,R4 ;GET BUFFER ADDRESS
108: BIT #S.LOAD,STATUS ;LOAD KMC?
BEQ 158 ;NO,JUST COMPARE
MOV #2000, (R3) s SELECT CRAM
MOV R5,4 (R3) ; LOAD ADDRESS
MOV (R4) ,6 (R3) ;PUT THE DATA IN THE REGISTER
BIS $#20000, (R3) ;CLOCK IT IN

Figure 5-2 KMC1ll Basic Loader Subroutines

5-2

KMC1l LOADER

158: CLR (R3) ;CLEAR CSR 0
CLR 4(R3) ;CLEAR CSR 4
CLR 6 (R3) ;CLEAR DATA PORT
MOV #2000, (R3) ;READ CURRENT CRAM LOCATION
MOV R5,4 (R3) ; LOAD ADDRESS AGAIN
CMP (R4) ,6 (R3) ;EQUAL TO WHAT JUST WRITTEN THERE?
BNE 258 ;NO,RAM WRITE ERROR
208: ADD #2,R4 sADDRESS NEXT WORD IN INPUT FILE
INC R5 ;s INCREMENT THE RAM ADDRESS
DEC RO ;ONE LESS WORD
BNE 108 ;KEEP GOING
CCC - ;CLEAR CONDITION CODE
RETURN
258: ERROR ROUTINE
BR 208 ; CONTINUE

Figure 5~2 (Cont.) KMC1ll Basic Loader Subroutines

5.3 KMC1ll LOADER UTILITY PROGRAM

Figure 5-3 is a printout example of the KMCll loader running on
RSX~11M, and Figure 5-4 1is an error printout example. In both
examples, the underscored text is system-generated and the
nonunderscored text is user-generated.

>RUN KMCLDR
KMC LOADER

CSR? 170

FILE NAME? COMIOPDZ
LOAD OR COMPARE? L
KMC LOAD COMPLETE

>

Figure 5-3 KMC-11 Loader Printout Example

>RUN KMCLDR
KMC LOADER

CSR? 170

FILE NAME? COMIOPDZ.TSK

LOAD OR COMPARE? C

***KMC COMPARE ERROR AT 000050 SOURCE=101020 KMC RAM=101024 ***
KMC_COMPARE COMPLETE

>

Figure 5-4 KMC-1l Loader Error Printout Example

In Figures 5-3 and 5-4, the user-generated answer (170) to the
system—-generated question "CSR?" is ORed by the system hardware with
760000 to obtain the address of CSRO, i.e., 760170. The default for
the device is SY (system device) and the default for user code is the
current user identification code. 1In Figures 5-3 and 5-4, the file
name 1is COMIOPDZ; there are no defaults for file name. 1In Figure
5-4, the file type is .TSK; the default for file type is .TSK. For
file version, the default for an input file is the highest-numbered
existing version.

5-3

KMC11l LOADER

During a load operation, a compare is automatically performed, and a
message is typed for all errors. An error printout during a load
operation indicates a faulty CRAM location; DIGITAL Field Service
should be called to correct the situation.

A compare is also useful during debugging to obtain a listing of all
modified locations when CRAM locations have been changed. The error
printout example in Figure 5-4 indicates this use of the 1loader.
Alternately, an error could indicate a faulty CRAM location if the user
has not modified the CRAM since loading.

5.3.1 Loader Assembly

To assemble the loader, the user should type the following statement
after the prompt, which is underlined for clarity:

> MAC KMCLDR=[1,1]EXEMC/ML, [user UIC],KMCLDR

NOTE

The KMCll loader must be assembled and
the microcode must be built on the same
version of RSX-11M. '

5.3.2 Loader and Microcode Task Building

To task build the loader, the user should type the following statement
after the underlined prompts:

>TKB KMCLDR/PR=KMCLDR

To task build the microcode, the user should type the following
statements after the underlined prompts:

TKB>file name/-HD/-MM=file name.OBJ
TKB>/

ENTER OPTIONS:

TKB>STACK=0

TKB>PAR=:0:1000

TKB>//

NOTE

File name .0BJ 1is the output of the
assembler. (See Chapter 4.)

The output of the task builder results in a file with at 1least two
label blocks of 512 bytes each, followed by the microcode
instructions. These label blocks are stripped (ignored or skipped) by
the KMCLDR and should also be skipped if a user-designed utility is
used to read this file.

Detailed task building instructions are contained in the RSX-1lM Task
Builder Reference Manual, DEC-11-OMTBA.

CHAPTER 6

KMC1l DEBUGGING AID

This chapter gives the programmer the information he needs to use the
KMC1ll Debugging Aid. The KMCll Debugging Aid, identified by the
mnemonic KMCDA, provides the mictoprogram developer with the ability
to 1isolate and correct microprogram errors. KMCDA uses a minimal
amount of KMCll microinstruction memory (CRAM) space, and it uses that
space only when operating in the breakpoint mode.

For all KMCll debugging operations, KMCDA 1is resident in the
associated main CPU with the microprogram manipulation implemented by
the debugging commands being executed through the KMCll CSRs. KMCDA
runs as a privileged task on all the RSX-1ll operating systems as well
as on IAS. KMCDA is configured to operate from any command terminal
or TTY supported by RSX-11 operating systems and IAS.

KMCDA is distributed as an object module on the distribution kit. As
the first step in using KMCDA, the microprogram uses the utility PIP
to move the object module KMCDA.OBJ and the command file KMCDA.CMD to
the system device (SY). Next, the user task builds KMCDA by typing
the following:

TKB @KMCDA

To run KMCDA, the programmer types
RUN KMCDA

KMCDA responds with the following question:
CSR?

and the programmer types in the CSR address for the KMCll being
debugged. For example,

CSR?160170

NOTE

The address given in the above example
(160170) could have been entered as 170
because KMCDA assumes that the three
high-order bits are ones.

KMCDA then responds with the prompt symbol " (up arrow). At this point
debugging operations can begin. When debugging operations are
finished, KMCDA can be exited by typing the following command after
the prompt:

“X

KMCll DEBUGGING AID

6.1 COMMAND CATEGORIES
Commands executed by KMCDA fall into six functional categories:

1. Examine and modify CRAM contents. With commands in this
category, the programmer can open and examine the contents of
selected CRAM locations either sequentially or randomly, and
where required, modify the contents of the location being
examined. :

2., Control microprogram execution. Using these commands the
programmer can initiate microprogram execution, set and clear
breakpoint, single step the microprocessor, and exit KMCDA.

3. Examine and modify CSRs. With these commands, the contents
of each register comprising the KMCll CSRs (the INBUS*
registers 0 through 7, see Figure 2-2 and Table 3-3) can be
examined and modified.

4. Examine internal registers and data memory. Commands in this
category permit the examination of any internal register
including the BRG, the scratch pad registers, the INBUS and
INBUS* including the NPR, uPMISC and Line Unit registers,
and designated sets of data memory locations.

5. Use utility commands. These commands provide the programmer
with a wvariety of utility functions necessary to debugging
activities. These commands usually support such functions as
replacing microinstructions, 1listing breakpoint, modifying
the MAR and the data memory and the scratch pad, zeroing - the
CRAM, and calculating branch offsets.

The command structure for KMCDA is patterned after the structure for
IAS/RSX-11 ODT. Consequently, prior experience 1in using ODT is
helpful when using KMCDA. Note that 1like ODT, KMCDA will perform
additions and subtractions of octal numbers that are parts of a value
in a command string. The only exception to this are values to be used
to modify the CSRs. This feature is valuable when dealing with two
octal numbers of large magnitude such as two high-order addresses.
The following sections provide the necessary detailed information for
using the debugging commands within each command category.

6.1.1 Examine and Modify CRAM

The ability to examine and modify a microinstruction 1is a basic
program debugging requirement. Using the commands in this category,
the programmer can open any designated CRAM location, examine the
contents of that 1location, modify it as required, and close it. In
addition, the option also exists to close the current location and
open the next sequential location or the prior location.

There are two basic command types in this category. In the first
type, the CRAM location of interest is accessed by the assembly
listing address, which is divided by two by KMCDA to obtain the
physical address. In the second type, the CRAM location of interest
is addressed directly by the physical address. The command to examine
and modify an assembled CRAM location takes the following form:

n/[m]<close>

KMCl1l DEBUGGING AID

where

n is an even octal integer having a value in the range
0 to 3776. It designates the microinstruction address, as
assembled by the KMCll microassembler, that is to be
examined and if necessary modified.

NOTE
This address appears on the 1listing from MACRO-11

and 1s twice the value of the corresponding control
RAM address.

If n is specified as an odd octal integer in this range or
exceeds this range, KMCDA posts an error by displaying the
symbol 2.

The command to examine and modify a CRAM physical location takes the
following form:

n\[m]<close>
where
n is an even or odd octal integer having a value in the range
0 to 1777. It designates the physical address of the
location within the CRAM to be examined and if necessary
modified. If n exceeds this value, KMCDA posts an error by
displaying the symbol 2.
For both command types,

[m] is an optional octal integer equivalent to the binary form

of a microinstruction that is to replace the
microinstruction existing at the CRAM location addressed by
n. If m is omitted from the command string (null), the

contents of the microinstruction 1location addressed by n
remain unchanged.

<close> must be one of the following:

<CR> (carriage return) causes the CRAM location addressed by
n to be closed with no other location being opened.

<LF> (line feed) causes the CRAM location addressed by n to
be closed and the next sequential location opened and
displayed for examination. The next sequential location can
be changed by entering a pertinent value for [m]. 1In
addition, following [m] by <LF> closes location n and opens
location n+l. This sequence can be continued as required.

<"> (up arrow) causes the CRAM location addressed by n to be
closed and the next prior location opened and displayed for
examination. The next prior location <can be changed by
entering a pertinent value for [m]. In addition, following
[m] by an <"> closes location n and opens location n-1.
This sequence can be continued as required.

KMCDA does not limit the programmer as to the sequence of closings
within CRAM boundaries. An <KLF> or an <"> can be entered in any
described pattern, and a <CR> can be executed at any point in an
examination.

KMC11l DEBUGGING AID

An example of these two types of commands is as follows:
MACRO-11 Listing

00000 BRWRTE IMM,5
00002 SP BR,SELB, SP0

To examine with KMCDA:

0/000405<CR> or 0\000405<CR>
2/063220<CR> or 1\063220<CR>

6.1.2 Execution Control Commands

Executive control commands are used in the management of breakpoints
and the pursuant analysis and control of microprogram operation and
single stepping. The specific type of commands in this category are
as follows:

1. Set breakpoints.

2. Clear breakpoints.

3. Begin execution of microprogram.
4. Proceed from breakpoint.

5. Step microprogram.

When a microprogram 1is to be debugged using breakpoints, the
programmer must reserve the 1last 16 CRAM locations for breakpoint
handling microinstructions. These microinstructions are described in
detail in Section 6.2.

6.1.2.1 Set Breakpoints - The set breakpoint command takes the
following form:

n; [m]B
where

n is an even octal integer 1in the range 2 to 3776. It
designates the address of the microinstruction location, as
assembled by the KMCll macroassembler, that 1is to be a
breakpoint location. If n ‘is an odd octal integer or
exceeds 3776, KMCDA posts an error by displaying the symbol
7.

[m] 1is an optional octal integer in the range 0 to 7. It
identifies the specific breakpoint within the total set of
eight breakpoints. If [m] is not included as part of the
command string, KMCDA will assign the identity number of the
next unassigned breakpoint with the lowest identity number
to identify the breakpoint currently being set. For
example, with no breakpoints set

"774;0B sets breakpoint 0
"362;3B sets breakpoint 3
"142;4B sets breakpoint 4
“2062;B sets breakpoint 1

KMCll DEBUGGING AID

If a breakpoint has been previously set, a subsequent command can
reset it. For example,

"176;4B

resets breakpoint 4 to a new CRAM address.

6.1.2.2 Clear Breakpoints - The command to clear breakpoint takes the
following form:

[n]B
where

[n] 1is the optional identity number of the breakpoint to be
cleared. For example,

~

3B
clears breakpoint 3.

If [n] is not specified, all eight breakpoints are cleared,
for example, .

"B

6.1.2.3 Begin Execution of Microprogram - This command permits the
programmer = to begin execution of a microprogram at any valid CRAM
location. The command takes the following form:

[n]G
where

[n] 1is an optional even octal integer in the range 0 to 3776.
It designates the microinstruction address, as assembled by
the KMCll macroassembler, to be the location from which the
microprogram 1is to begin execution. KMCDA then divides the
value of n by two to derive the actual CRAM address. For
example,

2006G

would begin microprogram execution of CRAM location 1003
(octal) or 515 (decimal).

If [n] is not used and the command is
G

microprogram execution begins at the CRAM location addressed
by the current PC.

If any breakpoints are pending at the start of microprogram
execution, no further prompts will be issued until a
breakpoint is encountered. If there are no breakpoints
pending, KMCDA indicates return to the prompt mode by
displaying an " (up arrow) and the microprogram is permitted
to run until the next command is entered. At this point the
KMCll is halted at an indeterminate location.

KMC11l DEBUGGING AID

6.1.2.4 Proceed from Breakpoint - With this command, the wuser can
start the microprogram at the last encountered breakpoint and continue
execution while encountering that breakpoint a specified number of
times. After encountering the last breakpoint the specified number of
times, KMCDA halts the microprogram. This command takes the following
form:

[n]P
where

[n] 1is an optional positive octal integer in the range 1 through
77777. It specifies the number of times the last
encountered breakpoint will be encountered. For example,
for the command

15p

the last encountered breakpoint is passed for a count of
14 (octal) and on the fifteenth time the microprogram is
halted at the pertinent breakpoint location. Assuming, for
example, that the breakpoint of interest is breakpoint 4,
KMCDA will then display the following:

MB4:000176

If [n] is not specified, the proceed counter in KMCDA is set
to one and the microprogram proceeds as if the command 1P
was issued. For details on breakpoint display (MB), see
Section 6.1.5.1.

If the microprogram is halted at a 1location other than a
breakpoint, issuing a P command is equivalent to issuing a G
command.

6.1.2.5 Single Step - This command allows transfer of control to a
designated microprogram location followed by execution of a specified
number of microinstructions beginning at the location to which control
transferred. This command takes the following form:

[n];[m]S
where

[n] 1is an optional even octal integer in the range 0 to 3776.
It designates the address of the microinstruction location,
as assembled by the KMCll macroassembler, from which
microprogram execution is to start. If [n] is not present,
KMCDA begins microinstruction execution at the CRAM location
addressed by the current PC. If the value of [n] exceeds
the specified range or 1is an odd octal integer in the
specified range, KMCDA posts an error by displaying the
symbol ?2. '

[m] is an optional octal integer in the range 1 to 1777. It
specifies the number of instructions, including the
instruction at the starting location [n], to be executed
before halting. If [m] is not specified, the instruction
addressed by [n], or the PC where [n] is not specified, is
executed. Similarly, when neither [n] nor [m] is specified,
the single step function is performed.

KMC1ll DEBUGGING AID

6.1.3 Examine and Modify CSRs

As described in Section 2,2.4 and Figure 2-1, the UNIBUS interface for
the KMCll consists of eight 8-bit Status and Control Registers (CSRs).
The commands in this category allow examination and, 1if necessary,
modification of the KMC1ll CSRs.

This category includes a single basic command with two optional
variations. In the first variation, the CSR of interest can be
opened, examined, and closed. 1In the second variation, the CSR of
interest c¢an be opened, examined, modified, and then closed. This
basic command takes the following forms:

$[n]/<close>
and

$[n]/Im]<close>
where

[n] 1is an optional octal integer in the range 0 to 7. It
specifies the physical address of the CSR to be examined or
modified. If [n] is not specified, CSR 0 is accessed.

[m] 1is an optional octal integer equivalent to an 8-bit binary
array that is to replace the contents of the CSR accessed by

[n].

For both variations of this command, the field <close> must be one of
the following:

<CR> (carriage return) causes the CSR addressed by [n] to be
closed with no other CSR being opened.

<LF> (line feed) causes the CSR addressed by [n] to be closed and
the next sequential CSR opened and displayed for inspection. The
displayed CSR can be modified at this point by entering a
pertinent value for [m]. In addition, following [m] by an <LF>
closes location n and opens location n+l. This sequence can be
continued until the last CSR is opened.

<"> (up arrow) causes the CSR addressed by [n] to be closed and
the next prior location opened and displayed.

6.1.4 Examine Internal Registers and Data Memory

The internal registers and data memory have three basic command types.
One type displays the contents of the BRG and the 16 bytes of the
scratch pad for examination. A second command type displays the
contents of the INBUS and INBUS* for examination. The third type
displays selected portions of data memory for examination. In all
types, the specified contents are printed out or presented as a visual
display, depending on the type of terminal being used for microprogram
debugging.

6.1.4.1 Examine BRG and Scratch Pad - This command takes the
following form:

$R

KMCl1ll DEBUGGING AID

As an example of how the pertinent registers are displayed consider
this annotated conversation with KMCDA. Command is input following
KMCDA prompt, and the following is displayed:

“$R

004 : 000 000 103 232 000 101 010 001 * 110 004 000 100 000 312 305 315
v A v’ v \ ~ J
BRG SPO0 to 7 SP8 to 15

Note that the prompt symbol " following the display of the BRG and
scratch pad contents indicates that KMCDA is ready to receive the next
debugging command.

4.2 Examine INBUS and INBUS* - This command takes the following

$I

As an example of how the pertinent registers are displayed, consider
this annotated conversation with KMCDA:

Command is 1input following KMCDA prompt, and the following is
displayed:

INBUS REGISTERS

LU REGISTERS

r A

+$1
010 000 007 000 000 000 304 340 X 377 377 377 377 377 377 377
004 000 004 000 000 000 000 000 X 000 020
h —
NPR UPMISC
REGISTER REGISTER

INBUS* REGISTERS

Note that the line unit (LU) registers are displayed as all ones (377,
octal) when no LU 1is connected. This value represents the actual
state of LU registers when read from a KMCll-based system not
equipped with an optional LU.

6.1.4.3 Examine Data Memory - This command takes the following form:

n is an octal integer in the range 0 to 1777. It is the
starting address of the series of sequential data memory
locations to be displayed.

m is an octal integer in the same range. It specifies the
number of data memory locations whose contents are to be
displayed. 1In actual practice, if the value of m 1is 1less
than n (for example 100:40L), m is taken as the octal count
of the number of data memory locations to be displayed. In
this example, the contents of data memory locations from 100
to 137 (octal) would be displayed. However, when the value

KMC1l DEBUGGING AID

of m 1is greater than n (for example 100;220L), m is
interpreted by KMCDA as the upper boundary of the data
memory area to be displayed. 1In this example, the contents
of 120 octal locations (from location 100 to 217) would be
displayed.

The examine memory command has a characteristic whereby it displays

memory

locations . in groups of 20 octal 1locations only. If the

quantity specified in the command is not an even multiple of 20, this

memory

command characteristic will cause multiples of 20 locations to

be displayed so that the specified quantity is included 1in the
display. For example the command

150;10L

would display the contents of 20 octal locations starting at location

150 and

ranging to location 167. Similarly, the command

150;21L

would display the contents of 40 octal locations starting at location
150 and going to location 207. In the same manner, the command

10

0;222L

would display the contents of 140 locations starting at location 100
and going to location 237. However, the command

100;100+120L

would display the contents of 120 locations starting at 1location 100
and going to location 217, Note the use of addition in the ending
address field.

An example of a data memory display is shown below along with the
command that initiated the display:

"0;50L
0000 :
0020 :
0040 :

000 000 000 000 000 000 000 003 * 000 173 117 241 342 136 000 000
000 001 000 325 115 041 111 032 * 000 144 117 241 342 136 000 000
000 004 000 275 115 001 005 001 * 000 175 117 241 342 136 000 000

Inspection of this display shows that the command specified the
display of data memory locations 0 through 50 (octal). KMCDA actually
displayed locations 0 through 57 or a total of 60 octal locations.

6.1.5

Utility Commands

Utility commands provide the various wutility functions that are
supportive to microprogram debugging activities.

These functions include the following:

Display a designated breakpoint.
Execute a designated microinstruction.

Load a predesignated value into the data memory location
addressed by the current MAR.

KMC1l1l DEBUGGING AID

4. Load a predesignated value into the MAR or display the
current MAR.

5. Load a predesignated value 1into a prescribed scratch pad
location or into the BRG.

6. Set all locations in the data memory to zero.

7. Calculate the branch offset from a prescribed CRAM 1location
and configure the octal equivalent of the required
unconditional Branch class instruction.

The formats for the commands that implement these wutility functions
are listed below.

6.1.5.1 Display a Breakpoint - With this command, the programmer can
call the KMCDA utility that displays the CRAM address, the
microinstruction at that address, and the outstanding proceed count,
if any, for all active breakpoints.

The format for the command which calls the display breakpoint utility
is as follows:

$B

KMCDA responds with

n:A I C
where
n is a breakpoint number 0 to 7
A is an octal integer in the range 0 to 3776. It is the CRAM
address at which the breakpoint is exercised times two.
I is an octal integer that corresponds to the instruction at
the breakpoint address A. If breakpoint n has been set

without an intervening proceed command being executed, I
will be displayed as all zeros or as the instruction at the
location to which the breakpoint was previously assigned.

C is the proceed count for breakpoint n. When greater than
zero it indicates an outstanding proceed count of C.

The commands to set and clear breakpoints are described in Sections
6.1.2.1 and 6.1.2.2 respectively. Detailed information on breakpoint
handling is given in Section 6.2.

6.1.5.2 Execute a Microinstruction - Using this utility, the
programmer can execute any single KMCll microinstruction. If a Move
class instruction is executed in this manner, the PC is incremented by
one.

6-10

KMC11l DEBUGGING AID

Similarly, if a Branch class instruction is executed by this utility,
the PC will be incremented by one or changed to the address branched
to. Whatever instruction is executed in this manner, the integrity of
the 1instruction set stored in the CRAM is unaffected. However, the
contents of data memory, the MAR, and any. of the KMCll addressable
internal registers can be affected by execution of specific Move class
instructions.

NOTE
If the microinstruction executed
modifies the CSRs, the modification will

be lost.

The command to invoke this utility takes the following form:
nE
where

n is an octal value which is equivalent to the binary form of
the instruction to be executed.

For example:
10200E

causes 10200(octal) to be executed as the microinstruction
LDMA IMM,200

which moves the value 200 to the eight low-order (page offset) bits of
the MAR.

Similarly,
63222E

causes the contents of the BRG to be moved to scratch pad register 2
as the microinstruction

SP BR,SELB,SP2

6.1.5.3 Load Data Memory - This utility permits the loading of data
into any data memory location desired or to the location addressed by
the current MAR. The command to invoke this utility takes the
following form:

[n;lmw
where

[n;] is the optional octal value in the range 0 to 1777, which is
the data memory address into which data is to be loaded.

6-11

KMC1l DEBUGGING AID

m is an octal value in the range 0 to 377, which is the data
to be 1loaded into the data memory location addressed by
[n;]. If the optional qualifier [n;] 1is not supplied so
that the command takes the form

mwW
then the data, m, will be 1loaded into the data memory
location addressed by the current MAR. Note that when [n;]

is supplied, the state of the current MAR 1is restored by
KMCDA by a proceed command.

6.1.5.4 Load or Display the Memory Address Register (MAR) - With this
utility, the programmer can load a value in the MAR to address any one
of the 1024 bytes in the data memory or display the current MAR. The
command to load the MAR takes the following form:

nA
where

n is an octal integer in the range 0 to 1777, which is the
address to be loaded into the MAR. For example,

1000A

sets the MAR to address the data memory decimal location
512.

The command to display the MAR takes the following form:

$A

6.1.5.5 Load Scratch Pad or BRG - Using this wutility, a programmer
can load a selected value in a specified scratch pad location or load
a selected value in the BRG.

The command to load a selected value in a specified scratch pad
location takes the following form:

n;mC
where
n is the address of the desired scratch pad location.
m is an integer in the range 0 to 377 (octal) to be 1loaded

into SPn.

The command to load a selected value in the BRG takes the following
form:

mC
where

m is an integer in the range 0 to 377 (octal) to be 1loaded
into the BRG.

KMC1l DEBUGGING AID

6.1.5.6 Zero Data Memory - This utility sets the contents of each
data memory location to binary zero. The current content of the MAR
remains unchanged. The command to invoke this utility takes the
following form:

Z

6.1.5.7 Calculate Offset - With this utility, the programmer can use
KMCDA to calculate the unconditional immediate branch instruction
required to branch to a specified address. KMCDA will display the
octal form of the unconditional branch to the location addressed by
the calculated offset. The command to perform this function takes the
following form:

no
where
n is an even octal integer in the range 0 to 1776. It
designates the microinstruction address as it appears on the
MACRO-11 listing for which KMCDA is to calculate an offset.
For example, typing,
4320
causes KMCDA to respond with
100615
which is the octal form of the KMCll microinstruction

ALWAYS LABEL

where LABEL has a tag value of octal 432

NOTE

The tag value of 432 (octal) corresponds to a
control RAM address of 215 (octal).

This utility 1is extremely useful for making on-line changes to
existing program logic.

6.2 BREAKPOINT HANDLING

The use of breakpoints permits the programmer to temporarily halt
microprogram execution at a predetermined CRAM location so that the
pertinent internal registers can be examined. If a malfunction 1is
discovered, the program can be modified and microprogram execution can
be resumed and again halted at the same 1location for subsequent
examination. The following sections present the requirements and
techniques and constraints to be applied when performing breakpoint
analysis.

KMCl1l DEBUGGING AID

6.2.1 Reserved CRAM Requirements

As previously indicated, KMCDA resides in the memory space of the
associated PDP-11 and monitors the microprogram from the UNIBUS
through the KMCll CSRs. When a microprogram debugging operation
involves the wuse of breakpoints, the last 16 CRAM locations must be
set aside for use by a breakpoint routine, which implements up to
eight breakpoints. The source microcode comprising this routine is as
follows:

NBRKS = 8.

.SAV=,
.=START+<<1024,.-<NBRK$*2>>*2>
SNBRKS=0

-REPT NBRKS
. IRP $$SNBRK, <\$NBRKS>

ouT IMM, $SNBRK*20+1,0MAIN
ALWAYS .
SNBRKS=$NBRKS+1
. ENDM
. ENDM
«.=.SAV
NOTE

The file name for this routine is
BRKPNT.MAC.

This routine must be assembled with the microprogram to be debugged
when breakpoints are to be used.

6.2.2 Breakpoint Location Constraints

Since KMCDA operates external to the environment it monitors,
information critical to microprogram execution, specifically the state
of the KMCll C-bit and Z-bit, is not available to KMCDA. Although the
structure of KMCDA provides for careful maintenance of the KMCll PC,
and MAR, it cannot keep track of the states of the C-bit and 2Z-bit.
On this basis then, breakpoints should never be set at a microprogram
location containing a Branch class microinstruction that is
conditional on the state of the C-bit or ZzZ-bit.

If a breakpoint is inadvertently set at a Branch class
microinstruction conditional on the state of the C-bit or 2Z-bit,
proper execution of that instruction cannot be guaranteed. Therefore,
setting of breakpoints at locations containing this type of
instruction must be avoided.

6.2.3 Proceed Counter

When a Go (G) command with outstanding breakpoints or a proceed from
breakpoint (nP) command is issued, KMCDA initiates execution of the
microprogram and enters the wait for breakpoint mode. When the next
outstanding breakpoint having a proceed count greater than zero is
encountered, that counter is decremented, and microprogram execution
is resumed. When an outstanding breakpoint is encountered having a
proceed count equal to or less than zero, microinstruction execution
is halted. KMCDA then displays the following message:

MBn:XXXXxX

KMCll DEBUGGING AID

where MB is the acronym for microbreak, n is the identity number of
the breakpoint, and =xxxxxx 1s an octal . integer that is the CRAM
address of that breakpoint location. KMCDA then enters the command
decode mode.

At this juncture, the distinction between the nG and the nP commands
with respect to breakpoints should be clarified. When an nG command
is issued, microprogram execution 1is started at 1location n and
proceeds until the next outstanding breakpoint is encountered. If the
proceed counter for that breakpoint is greater than zero, it 1is
decremented and microprogram execution continues until the next
outstanding breakpoint is encountered. 1If the proceed count for the
currently encountered breakpoint 1is 1less than or equal to zero,
execution is halted at that breakpoint and KMCDA enters the command
decode mode. Note that the nG command will not initiate execution
from a breakpoint unless n is equal to the breakpoint address.

The purpose of the nP command, however, 1is specifically to proceed
from a breakpoint and halt at that breakpoint after encountering it n
times. 1In addition, an nP command will always initiate execution from
the 1last encountered breakpoint even after execution of a series of
single step commands.

If a G or a P command 1is executed and a breakpoint 1is not
encountered, KMCDA can be reentered by placing all data switches on
the PDP-11 console switch register in the up position. At that point
KMCDA will display

FE

followed by

With the prompt symbol displayed KMCll is halted at an indeterminate
location. To continue operation from that location use the G command.
If any commands except G or P are executed, the status of the C-bit
and the Z-bit may be modified.

The PDP-11 must have a Console Switch Register (address 777570) in
order for the debugger to use this feature. If this register is not
on the PDP-11 being used, KMCDA must be reassembled with the RSX-11M
system general configuration file RSXMC.MAC ensuring that the symbol
S$SSWRG is not defined. The command KMCDA=RSXMC.KMCDA 1is used to
assemble the debugger.

6-15

KMCll DEBUGGING AID

6.3 EXAMPLE OF A KMCDA CONVERSATION

»INS KMCDA tInstall KMCDA as RSXijeM tagk

SRUN KMCLDR JRun-the microcode Yoader

KMC LOADER

CSR? 17@ ' tInform loader of KMCii=A CSR lecationm

FILE NAME? COMIOPDUP tAssign file mame

LOAD OR COMPARE? L tSpecify load operation

KMC LOAD COMPLETE :

>KMC ' 1Run debugger

CSR?170 tInform debugger of KMCileA CSR address
£3760/000002 1121 : tEnter microcode to implement breakpoinmts 5,6,amd 7

283766 / Q2202 114773

2@a377¢ 7 vaoeree 1141

8a3772 / "Peeed 114775

03774 1 22002002 1161

003776/ 222200 114777 _

“s8 . tDisplay active breakpoinmts = none

51 ‘ jExamine INBUS amd INBUS* command
ee2 172 @22 224 312 342 312 34@ X 377 377 377 377 377 377 377 317
203 22¢ P22 QPR 277 POD QAPQ Q4@ X 21d 120

“so/ecproe jExamine CSR @

21000023 tLF to examime CSR 2

4sopevee : ' JLF to examime (SR 4

61002000 tLF to examime CSR 6

B ? ' ILF to examime (SR 8 = mo CSR 8

“¢R : 1Display BRG and scratch pad registers

111 1 @57 172 200 ¢0Q @22 125 107 176 * 202 @22 212 227 Ael- 112 232 @22 tContents of BRG and scratch pads @ through 16

1L ’ 1Display octal 22 locations of data memory

8222 1 742 MeE 3P@ 340 202 206 21 PGR * ARA 244 122 0¢7 ARG 222 PP 348 1Contents of first octa) 20 locatioms of data memory
=z tClear all locations {n data memory

“Q1Pe 100 tCisplay contents of data memory from location @ to
2002 : 200 227 QA0 AQA0 AAR B07 2CGC ABD % 2@ 200 000 Q02 222 Q42 2P epP ;Contents of data memory fpom 0 to 120 cctal

020 ! 200 AP PG 0QPG NEA 2A0 A3Q AAD A2Q V090 Pe2 200 22¢ 000 PPQ BP0
2242 3 207 PP A27 PPQ NPQ 202 ABA 2D * 202 022 QR 0200 222 220 02p 00O
0062 1 P20V QR0 PAQ 227 000 COA A2R NRR * 222 292 220 AQQ 70D QP00 Q0P P@Q
*sA a217717 : t0isrlay contents of MAR
*B tClear al)l preakpeints

*53p358 sSet breakpoint 5 to CRAM locatiom 538

*“sa : _ 1Display breakpoints

S1000532 epecda GopepR 1At locatiom 532, contemt=8, proceed countz@
06 tBegin microprogram execution at locatiom zero

6-17/6~-18

RUN SNCFCC
KMC{1eDUP1{ THROUGHPUT TEST

iTtST IS RUN ON 2e16 LINES IN 4 CRISS=CROSS PATTERN
USING BIT=STUFF PROTOCOL, VARIABLE MESSAGES,

ENTER NUMBER OF LINES TO TEST (2e16) 2
ENTER LENGTH OF EACH PASS IN MINUTES (1e99) {

MB1ORAS3A
“s1

822 102 022 P04 312 340 PO 207 X 377 377 377 377 377 377377 3717
520 Pea 223 24D Q09 220 300 342 X QP00 234

-]

MBS$22A539
“sR
g:aaassa 137842 177777

S

=S
hf Y]

203 1 127 A2 271 QR4 280 957 127 176 * A@2 022 221 055 P29 .11 316 @22

“111cC

“34333C

“$R

111 1 122 %22 201 333 one 257 107 176 » Q02 P2 ¢@] 255 aca 118 316 @22
1L :

@@2ad 1 #2¢ 2Aa 323 343 292 206 AR 200 * NAA PRQ AAC BOA 0an 202 299 @R
“$A QPQARS

24

S$A cenenp?

222w

“4gd4n

“sL .

P00 1 20¢ QP2 222 342 @44 206 P@1 002 + PAC 322 228 ARP 200 29¢ 202 P00

“5320 170654

“18P65UE
=X

KMCll DEBUGGING AID

JRUM KMC11=DUP{! throughput test

1Breakpoint 5 emcountered, microprogram halts at 530
JExamine INBUS amd INBUS* registers
sContenmts of INBUS amd INBUS* pegisters displayed

)Proceed from breakpoint 5 (lecatiom 532)
1Breskpoint 5 emcounted, microprogram halts at 539
j1Display breakpoinmt

JAt locatiom 532, conmtentsi37149, proceed countsi777
1Single step to next imstructionm (531)

1Simgle step to next imstruction (532)

tExamine BRG anmd scratch pad registers

jContents of BRG and scratch cad registers

tLoad octs! value 11{ imto BRG

tLoaa octal value 333 imto S5P3

sExamine BRG amd scratch pad registers

1Contents of BRG amd scrateh pad = BRGE111, SP33313
j1Display data memory locatifoms @ to 20 octal
1Contents of data memory locatiens @ to 2@ octal
1Examine contents of MAR, MARZ5S octal

1Set MAR to address data memomry locationm two

$tMAR mow addresses data memory location two

tLoad octal value 222 inte data memory locatiom two
jLo2c octal value 44 into data memory location 4
t0isplay data memory locations @ to 22 octa)
tContents of data memory locatioms D to 20, 2z222,
? 4=e44

tCalcutate offsets derive branch imgtruction to
tlocation 51

tExecute derived bhranch imstruction

tExit KMCDA

6-19/6-20

CHAPTER 7

SPECIAL PROGRAMMING CHARACTERISTICS

The KMCll-A option on a PDP~1l system can be viewed as a peripheral
device as well as a second processor residing on the UNIBUS.
Considering the latter view, that of the KMCll as an auxiliary
processor, complete with memory and interfaced to the UNIBUS, the
KMCll improves the performance of the PDP-1ll system by performing
time-consuming system functions in parallel with the PDP-11 CPU. The
KMC1l has a 1024 16-bit word writeable control memory containing the
microprogram that 1is loaded by the PDP-11l processor. Eight bytes of
control and status registers (CSRs) and associated interrupt logic
provide communication between the PDP-11 program and the KMC1l
microprogram.

Since the KMCll microprogram is writeable and can be changed whenever
desired by the PDP-11, there are some programming characteristics that
require special consideration. The information in this chapter
delineates and describes those special programming characteristics.

A number of programming characteristics are common to a multiprocessor
configuration, 1in this case, the parallel operation of a KMCll and a
PDP-11 main CPU. Most of the KMCll programming characteristics
described in this chapter are typical of the type of multiprocessor
interactions and race conditions normally encountered. However,
several conditions are unigue to the KMCll; these conditions relate
to internal CSR discipline and CSR bit settling times.

7.1 CSR DISCIPLINE

Control and Status Register (CSR) accessing discipline is critical to
the proper operation of a KMCll/PDP-11 multiprocessor configuration.
This discipline has three major aspects. First, the CSRs must be set
to all zeros prior to initialing KMCll microprogram operation. The
second concerns the internal read-modify-write accessing of a KMCll
CSR by the microprogram relative to a collateral activity by the main
CPU over the UNIBUS. The third involves a similar accessing of the
same CSR by the main CPU over the UNIBUS relative to a collateral
activity by the microprogram. To ensure reliable access of the KMCll
CSRs, the KMC1l1l/PDP-11 CSR discipline should be designed to eliminate
the possibility of simultaneous modification of a CSR by the PDP-11
program and microprogram.

7.1.1 1Initializing the CSRs

As indicated in Section 2.3.1, the 1logic elements associated with
specific KMCl1l1 RAM CSR bits in BSELl are cleared when the PDP-11
program sets the MCLR (master clear) bit. However, this action has no

SPECIAL PROGRAMMING CHARACTERISTICS

effect on the state of the CSR RAM bits associated with these logic
elements or on the remaining RAM bits comprising the KMCll CSRs
(BSELO, and BSEL2 to BSEL7).

Proper operation of a KMCl1l/PDP-11 multiprocessor . configuration
requires that the eight CSR bytes be initialized to some known state
prior to run time. This initialization of the KMCll CSRs can be done
at startup time by the microprogram or the associated PDP-11 program.
The programming entity chosen to perform this task depends on the
specific configuration. 1In one method of initializing the KMCll CSRs,
the PDP-11 program performs the following actions:

1. Sets CSR1 bit 6 (MCLR).
2. Initializes CSRs 0 and 2 through 6.

3. Sets CSR1 bit 7 (RUN).

7.1.2 Microprogram Modification of CSRs

It is possible for the microprogram to overwrite the data transferred
over the UNIBUS to a KMCll CSR resulting in the 1loss of the
transferred data and disruption of multiprocessor interaction. As an
example of this situation, consider this step-by-step description of a
CSR read-modify-write by the microprogram:

Step 1. BSELO (CSRO) = 40
Step 2. Microprogram moves contents of BSELO to SPO.
Step 3. Microprogram executes a write immediate to BRG of 200.

Step 4. Microprogram ORs contents of BRG with SP0 and writes
the result into BSELO.

At this point BSELO contains the octal value 240. If between Steps 1
and 4 the PDP-11 program tries to transfer data over the UNIBUS to the
same CSR (for example BISB #100, BSELO), the transferred data will be
lost. Preventing such an overwrite and subsequent loss of data is
delineated in Appendix A, Section A.l.

7.1.3 UNIBUS Modification of the CSRs

In a manner similar to a microprogram overwrite of data transferred to
a CSR over the UNIBUS, it is possible for data transferred to a CSR by
the microprogram to be overwritten from the UNIBUS. As an example of
this situation, consider this step-by-step description of a CSR
read-modify-write from the UNIBUS:

Step 1. BSELO (CSRO) = 40

Step 2. The PDP-11 program executes the instruction BISB #100,
BSELO. This instruction is executed in three steps.

Step 2A. The contents of BSELO are transferred to a
PDP-11 internal register.

Step 2B. The octal value 100 is ORed with the contents
of the internal register.

SPECIAL PROGRAMMING CHARACTERISTICS

Step 2C. The results of Step 2B are written back into
BSELO.

Step 3. The final content of BSELO is 140 (octal).

If the microprogram attempts a write operation between Steps 2A and
2C, the results of the microprogram write to BSELO will be lost.
Preventing such an overwrite and subsequent loss of data is delineated
in Appendix A, Section A.l.

7.2 MULTIPORT RAM LOCKOUT

As shown in Section 2.1.1 of this manual, the multiport RAM is a
l6-byte memory that serves as the UNIBUS interface between the KMCl1l
and associated PDP-11 for CSRs and NPR transactions. The multiport
RAM has a single write port that can be written into by both the KMC1ll
m1croprogram and the associated PDP-11 program. Since the
microprogram and the PDP-11 program can write to the same port (port
A), lockouts on the ports can occur. That 1is, the microprogram is
inhibited from writing into any multiport RAM location while the
UNIBUS is writing into or reading from a CSR. In addition, the
microprogram is inhibited from reading from or writing into any
multlport RAM location during the portion of an NPR transaction cycle
in which the KMCll is bus master.

The KMCll is designed to automatically suspend microprogram execution
while either of these conditions is occurring. These lockouts affect
microprogram timing only and are otherwise transparent to the
microprogram. The <actual time periods involved are a function of
UNIBUS timing and the associated PDP-11 as well as system memory and
the peripheral devices that the KMCll communicates with in a given
configuration. If microprogram execution speed is critical, the
microprogram should be written to minimize the possibility of these
lockouts.

7.3 CSR BIT SETTLING TIME

The settling for the memory bits comprising the multiport RAM varies
from bit-to-bit over a narrow range due to the nature of the
high-speed semiconductor circuits used and the environmental
conditions that the «circuits operate under. Consequently, if the
microprogram attempts to read a CSR immediately after the PDP-11
program has written into that same CSR from the UNIBUS, the data read
by the microprogram could be incomplete. As an example of this
condition, consider the following step-by-step sequence:

Step 1. BSELO = 0

Step 2. The PDP-11 program executes the instruction MOVB #377,
BSELO.
Step 3. BSELO now contains the octal value 377.

If the microprogram reads BSELO prior to Step 2, the correct value (0)
is read; and, if the microprogram reads BSELO after Step 3, the
correct value (377) is read.

If, however, the microprogram reads BSELO during Step 2, the result
read can be any one of the 256 combinations of the eight BSELO bits
and could likely be an incorrect value. An incorrect value will be

SPECIAL PROGRAMMING CHARACTERISTICS

seen only when the microprogram reads a CSR within 20 ns after data
was stored in that CSR from the UNIBUS.

NOTE

The converse of the above condition
(i.e., the PDP-11 reads the CSR when the
microprogram writes that CSR) is not of
concern because the UNIBUS is locked out
during that situation. Refer to Section
7.2 for further details.

Any problems attending the above condition can be eliminated in a

KMCll microprogram by making sure that multibit flag fields are not

referenced in a single microinstruction. A method for eliminating the

possibility of erroneous results due to differential bit settling

rates is delineated by the annotated program example shown in Appendix
, Section A.2. v

7.4 uPMISC AND NPR REGISTER CONSTRAINTS

The uPMISC and NPR control registers contain various function and
control bits necessary for proper, efficient operation of the KMCll
microprocessor. If during a given read-modify-write operation, the
state of certain of these bits change, redundant functions or
undesired timeouts will occur or bus requests will be vectored to the
incorrect 1location. An example is given below as to how these
problems can occur unless precautions are taken.

To avoid the possibility of a change of state of these uPMISC register
bits during a microprogram read-modify-write operation, a zero must
always be written to the uPMISC register BUS RQ, ACLO, and PGM CLK
bits and the NPR control register NPR RQ bit regardless of their prior
states -- unless the function performed by one of these bits Iis
required. If that function is required, the bit performing it should
be set to one.

During an in-NPR transaction (i.e., NPR control register bits 0 and 4,
NPR RQ and OUT-NPR, equal one and zero, respectively), the state of
NPR control register bits 2, 3, and 7 (INBA 17, INBA 18, and BYTE
XFER) should not be changed. Bits INBA 17 and INBA 18 are the
high-order bits of the UNIBUS address for an in-NPR transaction and
their states must be maintained during the transaction. The BYTE XFER
bit applies only to an out-NPR, but its state should not be changed
during an in-NPR transaction because microprogram operation would be
adversely affected.

During an out-NPR transaction (i.e., NPR control register bits 0 and
4, NPR RQ and OUT NPR, both are equal to one), the state of NPR
control register bit 7 (BYTE XFER) and uPMISC register bits 2 and 3
(OUT BA 17 and OUT BA 18) should not be changed. Bits OUT BA 17 and
OUT BA 18 are the high-order bits of the UNIBUS address for an out-NPR
transaction and their states must be maintained during the
transaction. The BYTE XFER bit must not be changed during either an
in=-NPR or out-NPR transaction; during an out-NPR transaction, if BYTE
XFER equals zero, transactions will be on word boundaries and if BYTE
XFER equals one, transactions will be by bytes. Complete details
relative to out-NPR byte transactions arecontained in Chapter 2.

SPECIAL PROGRAMMING CHARACTERISTICS

To allow for valid monitoring of the uPMISC register NON EX MEM bit,
the WPMISC register should never be written into during an NPR
transaction; 1i.e., when NPR control register bit 0 (NPR RQ) equals 1.
If a series of NPR transactions is to be executed, the state of the
NON EX MEM bit should either be preserved or checked after the
completion of each NPR transaction.

When the microprogram writes to the NPR control register, it must
always write a zero to the NPR RQ bit unless an NPR transaction is to
be initiated.

To avoid the possibility of a bus request being vectored to the wrong
location, the UPMISC register VECTOR @ XX4 bit must not be changed if
a bus request is pending; 1i.e., BUS RQ set to one.

To avoid a spurious bus request or an undesired program timeout or
programmed pseudo-power failure at the CPU, a zero must always be
written to the uPMISC register BUS RQ, PGM CLK, and ACLO bits.

Suppose, for example, the following events occur:
1. BUS RQ = 1.
2. Microprogram reads UPMISC register.
3. Microprogram ORs in OUTBA 16:17.

4. Microprogram writes a change to the uPMISC register (BUS RQ
is set to one).

If BUS RQ is automatically cleared as a result of completion of a bus
request between Steps 1 and 4, a spurious bus request will occur. The
following example microinstructions would prevent a spurious bus
request, as described above, from occurring:

SP IBUS,UBBR,SPO jread UPMISC register
BRWRTE IMM,101 smask to save
;NXM and xx4,
;clear all others and
sstore results in SPO

SP BR,AANDB,SPO ;perform the clear
BRWRTE IMM,14 ;smask to set OUTBA 16:17
ouT BR,AORB,OBR ;sOR mask with contents

;0f SP0 and write into
;s UPMISC register

Similar microinstructions apply to the NPR control register NPR RQ
bit.

In summary, when accessing the yPMISC register, a zero must be written
to the BUS RQ, PGM CLK, and ACLO bits, unless the function performed
by that bit is specifically required; when accessing the NPR control
register, a zero must be written to the NPR RQ bit, unless that
function is specifically required. When writing the puPMISC register,
the VECTOR @ XX4 bit must not be changed while a bus reguest is in
progress.

APPENDIX A

SPECIAL PROGRAMMING TECHNIQUES

A.l PREVENTING LOSS OF DATA BY OVERWRITING WHEN THE MICROPROGRAM OR
THE PDP-11 MODIFIES THE CSRs

The possibility of overwriting data when the microprogram or the
PDP-11 modifies the CSRs 1is eliminated by observing the following
conditions for reading and writing the BSELO and BSEL2 status and
control bits (Figure A-1l) and by using the CSR protocols in the
example program in this Appendix.

BSELO
RQI This bit is written by the PDP-11 program and read by
the microprogram. When set, it indicates that the
PDP-11 is ready for and requesting use of BSEL3, SEL4
and SEL6 for data transfer to the microprocessor.
IEO This bit is set by the PDP-11 program to indicate that
an output interrupt is enabled. (RDYO sets.)
IEI This bit set by the PDP-11 program to indicate that an
input interrupt is enabled. (RDYI sets.)
BSEL2
RDYO This bit is read and written by the microprogram and is
also read and written by the PDP-11l, but is written by
the PDP-1l program only when the microprogram is not
writing it. When set, indicates that the
microprocessor has data to give to the PDP-11. This
bit is cleared by the PDP-11l program.
RDYI This bit is set by the microprogram upon finding RQI

set to indicate that the requested CSRs are free. It
is cleared by the PDP-11 program to indicate that the
PDP-11 has completed and input and the CSRs can be read
by the microprogram.

NOTE

RDYO and RDYI are set mutually exclusive.
BSELO is never written by the microprocessor
and BSEL2 has been arranged such that at any
state only the microprocessor or the PDP-11
would be writing it.

SPECIAL PROGRAMMING TECHNIQUES

COMMAND TYPE CODE
These three bits indicate the type of information being
passed in the other CSRs. They are set by the PDP-11
on RDYI transfers and by the microprocessor on RDYO
transfers.

Complete details for implementing PDP-11 code to prevent overwriting
of data when either the PDP-11 or the microprogram modifies the CSRs
are contained in the COMM IOP-DUP Programming Manual, AA-5670A-TC,
and the COMM IOP-DZ Programming Manual, AA-5127A-TC.

7 6 5 4 3 2 1 0 7 6 3 4 3 2 1 0
T I T ! T I T I I I
BSEL1 Ral RESERVED 1E0 RESERVED 1EI BSELO

] |] } } | | |
l ! I T 1 I [I
COMMAND

BSEL3 Y
RDYO RESERVED RDY! |RESERVEDy INI/Q TYPE CODE BSEL2

1 |
I I ! I 1 I I T I
BSELS BSEL4

| |] | | |) i ! | | | | |
[| | I I 1 i | t I | I I [

BSEL7 BSELE

Figure A-1 Suggested Format for UNIBUS CSRs

SPECIAL PROGRAMMING TECHNIQUES

A.2 ENSURING THAT CSR BITS HAVE SETTLED

The following example program procedures demonstrate the way to ensure
that CSR bits have settled when the PDP-11 writes and the microprogram
subsequently reads a CSR. Note especially the annotation A2 for bit
settling time assurance techniques. Note at annotation Al that RDYO
is set as the second to last step in setting up the CSRs or posting a
completion to the PDP-1l. The last step is generating the interrupt,
if requested.

«SBTTL IDLE = IDLE LOOP :
IDLES 8PBR IRUS,UBBR,8P2 JREAD THE BUS REQUEST REGISTER AND
JSTORE THE I[MAGE IN 8PO AND THE BRG

BR4Y TIMER yBRANCH IF THME TIMER HAS EXPIRED
IDLE1s LDMA IMM, P PORT JLOAD MAR TO POINT TO PORT STATUS

LDMAP IMM, P PORT jLOAD MAR HIGH

oALWAY MEMX,SELB,® pTIMER HAS NOT EXPIRED YET, CHECK THE

JDATA PORY TO SEE IF ANY PROCESSING IS

} REQUIRED RAM CONTAINS THE ADDRESS OF

tTHE APPROPRIATE SERVICE ROUTINE

t RQISET ==> WAITING FOR RQI TO SET

3 ROICLR ==>» WAITING FOR RDYI TO CLEAR
"y ROOSET =w=» WAITING FOR A COMPLETION

¢ RDOCLR ==» WAITING FOR RDYO TO CLEAR

oSBTTL DATA PORT PROCESSING ROUTINES
' : - : _
**RQOCLR=WAITING FOR READY OUT TO BE CLEARED BY THE PDPejifiwx

'
]
3 INPUTS)
[} MAR = PORT STATUS WGRD: (P,PORT)
s OUTPUTS:
’ IF READY OUT IS FOUND TO BE CLEARED THE INPUT CONTROL CSR IS
[] EXAMINED NEXT TO SEE IF THERE ARE ANY PENDING INPUT REQUESTS
1] FROM THE PDPei{i, IF NOT, THE COMPLETION QUEUE IS CHECKED FOR
] ANY PENDING DONES,
' .
[} THIS ROUTINE ALSO CHECKS IF INYERRUPT ENABLE HAS BEEN SET 1IF
' IT WAS NOT SET WHEN RDYI wAS,
] .ot :
] NOTE® THERE EXISTS THE POSSIBILITY OF AN INTERRUPT BEING GENERATED
’ IF 1E0 18 CLEARED AT ANY TIME AFTER IT 1S TESTED BY THME MICROe
’ PROCESSOR (APPROX A {,5U$8 NINDDW)
)=
RDOCLRS
BRWRTE IBUS,INCON sREAD INPUT CONTROL CSR
BRY RDOST2 JUSER SET INTERRUPT ENABLE OUTPUT
’
3 ENTER HERE IF AN OUTPUT INTERRUPT HAS ALREADY BEEN GENERATED
|}
RDOCL1Ys
BRWRTE -IBUS,0CON 1READ OQUTPUT CONTROL CS8R
BR?7 "IDLE sREADY OQUT STILL 8ET
BRWRTE IMM,Q sCLEAR QUTPT CONTROL CSR
ourt BR,SELB,00CON Toa
MEMADR RGQISET . sLOOK FOR RGI NEXT
ALWAYS IDLE $sB8ACK TO IDLE LOOP
e)
' #*RDOSET=MICROPROCESSOR COMPLETION POSTING*';
)
3 INPUTSS
] MAR = PORT STATUS WORD (P, PORT) .
3} OUTPUTS:
[] CHECK THE COMPLETION SILO TO SEE IF ANY CONPLEYIONS ARE PENDING,
’ IF THERE ARE POST THE COMPLETION TO THE PDP=11 OTHERWISE
] CHECK TO SEE IF THE PDPwiy1 HAS ANY INPUT DATA
| Ad
RDOSETy
MEMADR RQISET sLOOK FOR RQI NEXTY
LOMA IMM,P,SL0OT $SET MAR TO COMPLETION SILO NEXT OUT POINTER
LDMA MEMX, SELB JPOINT COMPLETION TO NEXT OUT ENTRY
b4 IDLE sTHE POINTER IS ZERO THEREFORE THE S8ILO

1 I8 EMPYY

A-3

SPECIAL PROGRAMMING TECHNIQUES

y A COMPLETION QUTPUT 18 PENDING IN THE COMPLETION $ILO, MAR POINTS TO

3 THE NEXT ENTRY

ouT

MEMI,SELB,OLINEN jWRITE THE LINE NUMBER BYTE

) READ THE SECOND WORD OF THE COMPLETION SILO AND SET UP CSR 4

ouT
ouTt

MEMI,8ELB,OPORTY sWRITE PORT BYTE
MEMI,SELB,OPORT2 yAND PORT BYTE 2

3 READ THE THIRD WORD OF THE COMPLETION SILO AND SET UP CSR 6

3 INCREMENT THE

ouTt
our

our

LOMA

SP

8P

MEM
BRWRTE
COMP

4
BRWRTE
MEM

MEMI,SELB,OPORT3 WRITE PORT BYTE 3
MEMI,SELB,OPORT4 yAND PORT BYTE 4

MEMI,SELB,00CON »WRITE THE NEW OUTPUT CNTRL CSR

NEXT OUT POINTER

IMM,P,8LIN

MEMI,SELB,SPY
MEMX,SELB,8Pd@

IMM, P NPR
IMM,SILOED
BR,SPQ

Sos
IMM, SENTRY
BR,ADD,SP9®

JSET MAR TO POINT TO COMPLETION SILO
JNEXT IN OFFSET

§SAVE THE NEXT IN POINTER IN SP{

}SAVE THE NEXT OUT POINTER IN 8PQ
JASSUME THE SILO IS GOING TO WRAP AROUND
$OFFSET TO LAST SILO ENTRY

1COMPARE CURRENT OUT POINTER WITH END
JOF SILO

JIT WRAPPED AROUND = ALREADY SET UP

JGET THE SIZE OF A SILO ENTRY

J INCREMENT NEXT OUT POINTER AND SAVE IT

t IF SILO IS NOW EMPTY "ZERO"™ THE NEXT OUT POINTER

S50%1

7081
80%:

RDOST2:
RDOST3:

!
!
'
!
!
!
'
'
!
RQISET)

108:

RQIST1

CoMP
z
ALWAYS
MEM

LOMA
SPBR
BRY
MEMADR
ALWAYS
MEMADR
BRWRTE
our
ALWAYS

INPUTS

MEMX,8P1{
72¢
8as
IMM, 377

IMM,P,PORT

IBUS, INCON, SPQ

RDOST2
RDOCLR

IDLE

RDOCL !

IMM, 300

B8R, SELB,0BR
IDLE

J)COMPARE OUT POINTER TO IN POINTER

JTHEY ARE THE SAME

$THEY ARE DIFFERENT :

18ILO IS EMPTY = SET NEXT OUT POINTER
370 A LOGICAL ZERO (~1)

)SET MAR TO POINT Y0 PORY STATUS

JREAD INPUT CONTROL CSR

JOUTPUT INTERRUPT REQUESTED

JSTATE TO WAITING FOR READY OUT CLEARING
pBACK TO IDLE LOOP

'$8TATE TO WAITING FOR READY OUT CLEARING

tMASK FOR BUS REQUEST AND XX4
JGENERATE AN INTERRUPT
yBACK TO IDLE LOOP

[R4
*wRAISETePROCESS INPUT FROM THE PDP=fiww

MAR ® PORT STATUS WORD (P,PORT)

QUTPUTS s

CHECK TO SEE IF REQUEST IN HAS BEEN SET BY THE POP=iy, IF 80O,
SET READY IN AND SET THE PORT STATUS TO WAIT FOR THE PDPeif TO
CLEAR REQUEST IN, '

BRWRTE
BR7
ALWAYS
sP

our
BRO
MEMADR
ALWAYS
MEMADR
BRWRTE
ALWAYS

I1BUS, INCON
103

RDOSET
IMM,20,9P0
SELA,O00CON
ROISTH
ROICLR
IOLE
RDICL1Y
IMM, 200
RDOST3

JREAD INPUT CONTROL CSR
JREQUEST IN 8ET

JSEE IF ANY COMPLETIONS TO POST
JMASK TO SET READY IN

JSET IN OUPUT CONTROL CSR
$INTERRUPT ENABLE I8 SET

PSTATE TO WAITING FOR ROYI TO CLEAR
JBACK TO IDLE LOOP

JSTATE TO WAITING FOR RDY! TO CLEAR
JMASK FOR BUS REQUEST AND XX
JGENERATE AN INTERRUPT

SPECIAL PROGRAMMING TECHNIQUES

1]
3 *w«RDICLR=PNPwiy HAS CLEARED READY IN (DATA PORTS HAVE REEN SET UP)wx

!

) INPUTS:
' MAR = PORT STATU8 WORD (P,PORT)

) OUTPUTS1

' CHECK TO SEE IF THE POPwiy HAS CLEARED READY- IN SIGNIFYING

? THAT IT HAS SET UP THE DATA PORTS, IF SO THEN DISPATCH YO THE
? PROPER ROUTINE TO MANDLE THE REQUEST BASEN ON
' BIT o4y OF THE OUTPUT CONTROL CSR
!

t ROYI CLEAR ROUTINE I8 ENTERED HERE IF INTERRUPT ENABLE WAS NOT
) SEY WHEN THE COMMIOP S8ET READY IN, IF IN THE MEANTIME INTERRUPT ENABLE
) WAS SET, 1T WILL BE SEEN HERE AND AN INTERRUPT WILL BE GENERATED,

+ENABL LSB
RDICLRY
BRWRTE IBUS,0CON pREAD OUTPUT CONTROL CSR
BR4 5% JREADY IN STILL SET
ALWAYS {08 1PDPeyy CLEARED RDYI, DONT BOTHER
JCHECKING FOR IE] JUST PROCESS THE DATA
583 BRWRTE IBUS, INCON tREAD INPUT CONTROL CSR
BR@ RQISTY P INTERRUPT REQUESTED
RDICL1s
BRWRTE 1BUS,0CON JREAD OUTPUT CONTROL CSR
BR4& “IDLE JROYI STILL SET
1e8: MEMADR RDOSET pSTATE TO WAIT FOR COMPLETIONS
t READY IN CLEAR
BRWRTE IMM,P,LADR)GET ADDRESS OF LINE TABLE ADDR TABLE
sP BR,SELB,SPS $1SAVE IT IN §PS
8P 18US, LINENM,SP,LN $READ THE LINE NUMBER
BRWRTE TwOA,S8P,LN JMULTIPY IT BY TWO
LOMA BR,ADD, 8PS fPOINT TO ENTRY IN TABLE FOR THIS LINE
8P MEMI,SELB,SP,RMB GET THE ADDRESS OF THIS LINE’S TABLE
pCLOW) AND SAVE IT IN SP,RMQ
8P MEMX,SELB,SP,RM]1,LDMAPG 31GET THE ADDRESS (HIGH) AND
: JPOINT THE MAR MI TO THIS ADDRESS
LDMA SELA,SP,RMD 1SET MAR [Ow
1581
BRWRTE IMM, 14, INCMAR §SET UP DUP CSR BY SETTING ADDR BITS 1é={7
ourt BR,SELB,0BR, INCMAR)WRITE EXTENDED MEM BITS FOR OUT NPR
QUTPUT MEMI,SELB,0BA{ WRITE OUY LOw BYTE OF CSR ADDRESS
OUTPUT MEMI,SELB,0BA2 WRITE OUT HIGH BYTE
LDMA SELA,SP,RMO gPOINT BACK TO START OF LINE TABLE
BRWRTE 1BUS,0CON $GET ORIGINAL IMAGE OF INPUT CONTROL CSR
JREAD FROM BSELZ TO AVOID RAM BIT SET
JPROBLEM, BY THIS TIME ALL BITS WILL
JHAVE SETTLED
BRY 208 1BIT 1 SET
BR@ CONIN JBIT 1m@ AND BIT Q=) > CONTROL IN REQUEST
ALWAYS BAIN JBIT 281=0 =>» BUFFER ADDRESS IN REQUEST
2081 BR@ BASEIN 1BIT 1=y BIT 23l => BASE IN REQUEST

1BIT 1x1 BIT ¥m@ => JLLEGAL REQUEST
} ABOVE THREE ROUTINES RETURN HERE AFTER REQUEST HAS BEEN PROCESSED

RQICL2s BRWRTE IMM,Q pCLEAR OUT CONTROL C8R
ouY BR,SELB,00CON Too
8§PBR IBUS,UBBR, 8P tREAD THE MISC REGISTER
BRO NXMERR sIF BIT @ SET, THEN A NON=EXISTENT
JMEMORY ERROR OCCURRED, REPORT 1T,
ALWAYS IDLE JOTHERWISE, BACK TO IDLE LOOP

RDYO (Ready Out) is set after the other CSRs
have been setup.

In case Ready In was cleared when the I/0
bits were set, re-reading BSEL2 will assure
that all 1/0 bits have settled.

A-5

A-input =-- see ALU
Addresses
symbolic, 2-11, 2-15, 3-7,
3-12, 3-17, 4-5, 4-6, 4-8
UNIBUS, 2-10, 2-14, 5-1
ALU
A-input, 2-6, 3-2
B-input, 2-6, 3-2
description of, 2-6,
output of, 2-6, 2-18
ALU function
Branch address derived from,

3-2, 3-4

3-29

function mnemonics, 3-4, 4-3,
4-7

functions, 3~2, 3-4, 3-26,
4-~3

result of, 3-32, 3-36

Arguments o
macro, 4-2, 4-4, 4-35

order of, 4~2, 4-4, 4-35
Arithmetic and logical

functions -- see ALU
Arithmetic/logic unit -~ see
ALU
B-input ~-- see ALU
Block diagram, KMCll, 2-3
Borrow bit -- see C-bit
Branch

address field, 3-26
offset calculation, 6-10
on BRG bit 0 set, 2-18,
3-31, 4-26
on BRG bit 1 set,
3-31, 4-26
on BRG bit 4 set,
3-31, 4-26
on BRG bit 7 set, 2-18,
3-32, 4-26 ‘
on C-bit set, 3-30, 4-25
on state of BRG bits, 2-4,
2-18, 3-31, 3-32, 4-26
on Z-bit set, 3-30, 4-26
Branch address register --
see BRG
Branch register ~-- see BRG
BRG

2-18,
2-18,

as data destination, 4-9,
4-20, 4-24

bit 0 set, branch on, 2-18,
3-31, 4-26

bit 1 set, branch on, 2-18,
3-31, 4-26

INDEX

BRG (Cont.),
bit 4 set, branch on, 2-18,
3-31, 4-26
bit 7 set, branch on, 2-18,
3-32, 4-26
bits, conditional Branch
based on state of, 2-4
clearing, 2-12
description of, 2-4, 2-18
display contents of, 6-7
incrementing, 4-24
loading, 4-4, 4-24
l1-bit right shift, 2-4,
2-18, 4-13
used by Branch class
microinstructions,
2-18
Breakpoint
clearing, 6-~4
conditional on state of
C-bit or Z-bit, 6-14
display, 6-9
listing, 6-2
location constraints,
6-14
mode, 1-3, 6-1
proceeding from,
resetting, 6-4
setting, 1-3, 6-4
use of, 1-3, 6-13
Bus
destination, 2-7, 2-8
microprogram read/write,
2-7, 2-10
source, 2-7, 2-8
UNIBUS -- see UNIBUS
Bus requests
control of, 2-4,
spurious, 7-5
Byte addresses,

2-4,

1-3,

6-6 ’ 6-14

4-1

2-10

C-bit :
affected by ALU function, 3-4
asserted by ALU, 2-7
clearing, 2-12
not affected by ALU function,
3-39
not available to KMCDA, 6-~14

Carry bit -- see C-bit
Commands ’
debugging -- see also
Debugging commands,
6-1, 6-2
utility, 6-2, 6-9

Index-1

INDEX (CONT.)

Compare transaction, 3-5, 4-4, Data
4-31 destination, 2-7, 2-8, 3-1,
Control and status registers 4-4, 4-9 through 4-22
-- see CSR lost, 7-2
Control RAM -- see CRAM overflow, 7-2
CRAM overwriting, A-1
addressing, 2-1, 3-26, 5-1, paths, 2-1, 2-7
5-2 source, 2-7, 2-8, 3-1, 3-2,
data memory separate from, 4-4, 4-25 through 4-29
2-1 transfer, 2-7, 3-1, 4-3
description of, 2-3 Data memory
examine contents, 6-2 accessed by CRAM, 2-1
loading, 2-5, 2-10, 5-1, as data destination, 4-4,
5-2 4-17
modify contents, 6-2 description of, 2-4
not cleared by MCLR, 2-12 examine contents of, 6-2, 6-7
reading contents of, 2-10, loading, 5-1
5-2 not cleared by MCLR, 2-12
read/write process, 2-13, page definitions, 2-5, 3-2,
5-2 3-27, 4-4
reserved locations, 6-4, separate from CRAM, 2-1
6-14 setting all locations to
setting to zero, 6-2 zero, 6-10
CSR transfers between internal
accessing discipline, 7-1 registers and, 2-1
addresses, 2-10, 5-1, 6-1 DATI, 4-1
bit setting time, 7-1, 7-3 DATIH, 4-1
closing, 6-7 DATO, 4-1
examination of, 3-6, 3-7, DATOB, 4-1
5-1, 5-2, 6-2, 6-=7 DATOH, 4-1
hardware-defined format of, DATOHB, 4-1
2-11 Debugging command forms
initialization, 5-1, 5-2, $A, 6-12
7-1 $B, 6-10
maintenance register, $I, 6-8
fixed format of, 5-1 SR, 6-7
microprogram algorithms $[n]/<close>, 6-7
for accessing, 2-9 $[nl/ [m]<close>, 6-7
modification, 3-6, 3-7, 5-1, mC, 6-12
5-2, 6-2, 6-7 nA, 6-12
modification by microprogram, ngE, 6-11
7-2 nO, 6-13
modification by UNIBUS, 7-2 [n]1B, 6-5
opening, 6-7 [n]G, 6-5, 6-14
protocols, A-1 [nlp, 6-6, 6-14
reading, 5-1, 7-3 n; (mlB, 6-4
simultaneous access of, 7-3 n;mC, 6-12
symbolic addresses, 2-10, n;mlL, 6-8
3-6, 3-7, 4-5, 4-8 [n]; [m]S, 6-6
writing, 5-1, 7-3, A-1 [n;lmwWw, 6-11
CSRs n\[m] <close>, 6-3
description of, 2~10, 5-1 n/ [m] <close>, 6-2
hardware logic associated Z, 6-13
with, 2-~10 Debugging, general information,
I1/0 data routed through, 1-3, 2-6, 5-3, 6-1
2-9 Delays, programmed, 2-17
not cleared by MCLR, 2-12 Destination
precautions during modifi- BRG, 3-9, 4-9
cation of, 7-1, 7-2, A-1l BRG right-shifted, 3-14, 4-13
word and byte addressable, bus, 2-7, 2-9
2-1, 2-10, 5-1 data memory, 3-19, 4-17

Index-2

INDEX (CONT.)

Destination (Cont.),
NODST, 3-5, 4-22
oUTBUS, 3-1l6, 4-14
QUTBUS*, 3-11, 4-10
. 8P, 3-22, 4-18
SP and BRG, 3-24,

Documents, reference,

4-20
1-4

Environment, 1-2
Errors
assembly, 3-11,
3-25, 4-37
correcting microprogran,
isolating microprogram,
print out, example of,
Error symbol ?, 6-3
Extended bus address bits,
2-9
External connector
controlling peripherals on,
1-2
description of,

operating,

3-16, 3-22,

6-1
6-1
5-3

2-4

INBUS
as source of an operand,
display contents of, 6-7
UNIBUS CSRs accessed through,

2-2

INBUS register
description of, 2-2
symbolic addresses for,

4-6

INBUS*
as source of an operand, 2-7
display contents, 6-~7
UNIBUS CSRs accessed through,

2-2

INBUS* register

description of,

2=7

3-7,

2-2

symbolic addresses for, 3-7,
4-5
Instruction, Branch class ==

see Microinstruction
Instruction cycle, time of,
2-1 .
Instruction, Move class =--
see Microinstruction
Instructions, operatlng,
Internal registers
description of,
examine contents,
6-7
In-transfer, 5-1
I/0 data, 2-7, 2-9

4-38

2-1
4-4, 6-2,

Jump address, 2-7, 2-8

KMC11, general description of,

1-1
KMCDA conversation example,
6-16

Legal separators, 4-5
Link, the object file,
Loader
assembly of, 5-4
description of, 5-1
error printout example,
5-=3
printout example,
running on RSX-11M,

4-38

5-3
5-3

subroutines, 5-2
Macro
arguments, 4-2, 4-4, 4-35
calls, 4-38
expansions, 4-1, 4-2, 4-3,
4-35
instruction syntax, 4-2,
4-3, 4-4, 4-35, 4-38
MACRO-11 assembly language, 4-1
MACRO-11 prefix file, 1-3
Macroassembler mnemonics
ALWAYS, 3-29, 4-25, 6-13
BRO, 3-30, 4-26
BR1, 3-30, 4-26
BR4, 3-30, 4-26
BR7, 3-31, 4-26
BRADDR, 4-31 .
BRSHFT, 3-14, 3-15, 4-13,
4-14
BRWRTE, 3-9, 3-10, 4-9, 4-10,
7-5
Cc, 3-30, 4-9
CALLSB, 4-32
CALLSR, 4-32
coMP, 4-31
INCMA, 4-22, 4-24
LDMA, 4-22, 4-24, 6-11
LDMAP, 4-22, 4-25
MEM, 3-19, 3-20, 3-21, 4-17,
4-18, 4-20 .
MEMADR, 4-32
NODST, 3-5, 3-6, 3-8, 4-22,
4-23, 4-24
our, 3-11, 3-12, 3-13, 3-16,
3-18, 3-19, 4-10, 4-11,
4-12, 4-15, 4-16, 4-17, 7-5

Index-3

INDEX (CONT.)

Macroassembler mnemonics (Cont.

RTNSUB, 4-33
sp, 3-22, 3-23, 3-24,
4-20, 6-11, 7-5
SPBR, 3-24, 3-25,
4-20, 4-21, 4-22
Z, 3-30, 4-25, 4-26
.ALWAY, 3-32, 3-37,
4-29
.BRO,
.BR1,
.BR4,
.BR7,
.C, 3-33,
.2, 3-33,
Main CPU
defined, 2-1
interrupting, 2-17
Maintenance instruction
register
clearing, 2-12
description of, 2-6
MAR)
argument for loading the,
4-4
clearing, 2-12
control field of the,
3-27
description of, 2-4
field definitions,
incrementing, 2-5,
4-4, 4-24
loading, 2-5,
4-24, 6-10
modify contents of, 6-2
Memory address register --
see MAR
Microinstruction
arguments for Branch class,
3-29, 4-4, 4-35
arguments for Move class,
3-2, 4-4, 4-35
description of Branch class,
2-1, 3-1, 4-4, 6-11
description of Move class,
2-1, 3-1, 4-4, 6-10
execution of, 6-10
format of Branch class,

4-19,
3-26,

4-217,

4-30
4-30

3-34,
3-34,

3-39,
3-39,
3-34, 3-40,
3-35, 3-41,
3-37, 4-27,
3-38, 4-28,

4-28,
4-28,
4-28, 4-30
4-28, 4-30
4-29
4-30

3-1,
, 3-1

4-3

3-2, 4-3,
4-3

3-2, , 4-4,

3-29, 4-4

format of Move class, 3-2,
4-4

halt of, 6-6

mnemonics for Branch class,
3-26, 3-28, 3-29, 4-2,
4-4, 4-35, 4-36

mnemonics for Move class,
3-1, 3-3, 4-2, 4-4, 4-35,
4-36

name of Branch class, 3-29,
4-4, 4-29

),

4-29

replacing, 6-2
storing in maintenance

register,

2-6

Microinstruction (Cont.),
name of Move class,

3-2,

summary and example, 4-4,

4-35,
syntax,

4~
4-

36

4, 4-35

Microinstruction functions

Index-4

Branch on
3-30,
Branch on
3-30,
Branch on
3-30,
Branch on
3-31,
Branch on
Address
and Ssp,
Branch on
Address
and 8P,
Branch on
Address
and SP,
Branch on
Address
and SP,
Branch on
Address
and SP,
Branch on
Address
and SP,
Branch on
Address
and SP,
Branch on
Address
and SP,
Branch on
4-25
Branch on
Address
and SP,
Branch on
Address

4-
4-
4-

4~

BRG Bit
26

BRG Bit
26

BRG Bit
26

BRG Bit
26

BRG Bit
Derived
3-39,
BRG Bit
Derived
3-39,
BRG Bit
Derived
3-40,
BRG Bit
Derived
3-41,
BRG Bit
Derived
3-34,
BRG Bit
Derived
3-34,
BRG Bit
Derived
3-34,
BRG Bit
Derived
3-35,

4~

4=~

4~

4~

4~

4-

4-

4-
C-Bit Set,

0 set,
1 Set,
4 Set,
7 Set,

0 Set to
from BRG
30
1l Set to
from BRG
30
4 Set to
from BRG
30
7 Set to
from BRG
30
0 Set to

from Memory

28
1l Set to

from Memory

28
4 Set to

from Memory

28
7 Set to

from Memory

28
3-30,

C-bit Set to

Derived
3-37,

4~

from BRG
29

C-Bit Set to

Derived

Memory and SP,

Branch on
4-26
Branch on

Address
and SP,
Branch on
Address

Z-Bit Set,

3-33,

from
4-27
3-30,

Z-Bit Set to

Derived
3-38,

4-

from BRG
30

Z-Bit Set to

Derived

Memory and SP,
Call Labeled Subroutine,

4-32

3-33,

from
4-28

4-4,

INDEX (CONT.)

Microinstruction functions

(Cont.),

Compare the Contents of
Data Memory and SP
Location, 4-31

Compare the Contents of BRG
and SP Location, 4-31

Increment the MAR, 4-22, 4-24

Load the Lower 8 Bits of MAR
(page offset), 4-22, 4-24

Load the Upper 2 Bits of MAR
(page) , 4-22, 4-25

Move Immediate to BRG, 3-9,
4-9

Move Immediate to Memory,
3-19, 4-17

Move Immediate to OUTBUS,
3-16, 4-14

Move Immediate to OUTBUS*,
3-11, 4-10

Move Immediate to Scratch
Pad, 3-22, 4-18

Move Immediate to SP and
BRG, 3-24, 4-20

Move INBUS to BRG, 3-9, 4-9

Move INBUS to Memory, 3-20,

c 4-17 .

‘Move INBUS to OUTBUS, 3-17,
4-17

Move INBUS to OUTBUS*, 3-12,
4-17

Move INBUS to Sp, 3-22, 4-19

Move INBUS to SP and BRG,
3-25, 4-21 -

Move INBUS* to BRG, 3-9, 4-9

Move INBUS* to Memory, 3-20,
4-17

Move INBUS* to OUTBUS, 3-18,
4-15

Move INBUS* to OUTBUS¥*,
3-12, 4-11

Move INBUS* to sp, 3-23,
4-19

Move INBUS* to SP and BRG,
3-25, 4-=21

Move Results of BRG and
Scratch Pad to BRG, 3-10,
4-10

Move Results of BRG and SP
to Memory, 3-21, 4-18

Move Results of BRG and SP
to SP and BRG, 3-26, 4-22

Move Results of BRG and SPO
to OUTBUS, 3-19, 4-16

Move Results of BRG and SPO
to OUTBUS*, 3-13, 4-12

Move Results of BRG and SPn
to SPn, 3-24, 4-20

Move Results of Memory and
Scratch Pad to BRG, 3-10,
4-9

Microinstruction functions

(Cont.),

Move Results of Memory and
SP to Memory, 3-20, 4-17

Move Results of Memory and
SP to SP and BRG, 3-25,
4-21

Move Results of Memory and
SP0 to OUTBUS, 3-18, 4-16

Move Results of Memory and
SP0 to OUTBUS*, 3-13, 4-12

Move Results of Memory and
SPn to SPn, 3-23, 4-19

No Destination, 3-5, 4-22

Return Program to Addressed
SP Location, 4-33

Right Shift BRG One Place
and Move ALU Output Bit 0
(BRG and SPn) to BRG Bit 7,
3-15, 4-14

Right Shift BRG One Place
and Move ALU OQOutput Bit 0
(Memory and SPn) to BRG
Bit 7, 3-15, 4-13

Right Shift BRG One Place
and Move INBUS Bit 0 to
BRG Bit 7, 3-14, 4-13

Right Shift BRG One Place
and Move INBUS* Bit 0 to
BRG Bit 7, 3-14, 4-13

Right Shift BRG One Place
and Move Operand Bit 0
to BRG Bit 7, 3-14, 4-13

Store Page Offset in BRG,
4-31

Store Page Offset in Data
Memory, 4-32

Test BRG and Scratch Pad,
3-8, 4-24

Test INBUS, 3-6, 4-23

Test INBUS*, 3-6, 4-23

Test Memory and Scratch Pad,
3-8, 4-23

Unconditional Branch, 3-29,
4-25

Unconditional Branch to
Address Derived from BRG
and SpP, 3-37, 4-29

Unconditional Branch to
Address Derived from
Memory and SP, 3-32, 4-27

Microprogram

beginning execution, 6-5

breakpoints, 6-1, 6-5

CSR-accessing algorithms,
2-9

custom, 1-3

debugging, 1-3, 2-6, 6-1

development considerations,
1-3

end of, 4-38

INDEX

Microprogram (Cont.),
errors, 4-37, 5-3, 6-1
halting, 6-6
inhibited from writing CSRs,
7-3
loading, 2-6, 2-10, 5-1
reading the CSRs, 7-3
read/write bus not accessible
to, 2-10
reading/writing, 2-14, 2-17
reserved symbols, 4-37
single-stepping, 6-6
starting at last breakpoint,
6-6
task building, 5-4
writing the CSRs, 7-3
Mnemonics ~- see Macroassembler
mnemonics
Multibit field flags, 7-4
Multiport RAM
description of, 2-2, 2-10
lockout, 7-3
UNIBUS data path to, 2-10
UPMISC register
description of, 2-4, 2-17,
7-4
extended address bits
contained in, 2-9
hardware logic associated
with, 2-11
symbolic addresses for, 3-7

No destination (NODST), 4-4,
4-22
Nonexistent memory,
addressing, 2-15, 2-17
NON EX MEM bit, setting/
clearing, 2-15, 2-17
NPR control bits, 2-9, 2-14,
4-1
NPR control register
description of, 2-2, 2-10,
2-14, 4-1, 7-4
hardware logic associated

with, 2-11
stores MAR Bits 8 and 10,
2-2

symbolic addresses for, 3-7
NPR REQ bit
setting/clearing, 2-12, 2-14
NPR transaction
address for, 2-15, 2-17
description of, 2-1, 2-9,
2-14, 2-17, 2-18, 4-1,
7-3, 7-4
extended bus address bits
for, 2-9, 2-14, 2-17
maximum number of sequential,
2-16, 4-1

(CONT.)

Offset, Branch, 6-1
Offset, page, 2-5, 3-2, 3-27,
6-11
Operand
ALU function, 2-5, 2-7
source, 2-7, 3-1
OUTBUS
as data destination, 2-7,
4-14
as source of an operand,
2-7
UNIBUS CSRs accessed through,
2-2
OUTBUS register
description of, 2-2
symbolic addresses for, 3-17,
4-8
OUTBUS*
as data destination, 2-7,
4-10
as source of an operand,
2-7
UNIBUS CSRs accessed through,
2-2
OUTBUS* register
description of, 2-2
symbolic addresses for, 3-12,
4-8
Out-transfer, 5-1
Overflow
detection of memory, 2-2
detection of page, 2-2
Overflow bit
data memory, 2-5
page, 2-5
Overwriting data, A-1l

Page boundaries, 3-27
Parallel operation,
KMC1ll and PDP~-11l, 7-1
PC
ALU writing to, 2-5
clearing, 2-12
description of, 2-5
incrementing, 2-5
writing CRAM address to,
2-5
PDP-11 program modification
of CSRs, 7-2, 7-3
PGM CLK bit
uses of, 2-17
writing/reading, 2-17
Prefix file, 1-3
Program counter -- see PC
Program null, 4-4, 4-22
Prompt symbol 4+ (up arrow),
6-1

Index—6

INDEX (CONT.)

Read/write bus, 2-10
Right shift, l-bit, 2-4, 2-18,
3-14, 4-4, 4-13

Scratch pad memory -- see SP
SELO, 2-10
SEL2, 2-10
SEL4, 2-10
SEL6, 2-10
Separators, 4-5
Software
minimum, 1-4
optional, 1l-4
tools, 1-3, 1-4
Source
BRG, 3-36, 4-2, 4-4, 4-29
bus, 2-7, 2-8
data memory, 3-~32, 4-2, 4-4,
4-27
field, mnemonics, 4-2
immediate, 3-29, 4-2, 4-4,
4-25
INBUS, 4-2
INBUS*, 4-2
mnemonics, 4-2
SP
addressed by microinstruc-
tion, 2-8
as data destination, 2-8,
4-4, 4-18, 4-20
description of, 2-5
display contents of, 6-2, 6-7
loading, 6-9
locations, 4-3
modify contents of, 6-2
not cleared by MCLR, 2-12
Special programming techniques,
7-1, A-1
Spurious bus requests, 7-5
Symbol
error ?, 6-3
prompt 4 (up arrow), 6-1
Symbolic addresses, 2-11, 2-15,
3-7, 3-12, 3-17, 4-5, 4-6,
4-8
Symbols, reserved, 4-37
Syntax, 3-1, 3-26, 4-1, 4-2,
4-4, 4-35, 4-37, 4-38

Task building

KMCDA, 6-1

the microcode, 4-38

the object file, 4-38
Timeouts, undesired, 7-4

-- see also Watchdog timer

-- see also Delays

-~ see also Program null
Timing signals, 2-12
Transfer

IN, 5-1

our, 5-1

UNIBUS
address, 2-9, 2-14, 5-1
architecture, 2-9, 3-1
controlling peripherals on,
1-2
interface, 2-7, 2-9
mastership of, 2-14
modification of CSRs, 5-1,
7-2
NPR transaction access to,
2-9
read/write bus accessible
to CPU through, 2-11
send and receive data over,
2-1, 2-17
writing the CSRs, 7-3
UNIBUS CSRs =~- see CSR
User program, read/write bus
use of, 2-10
Utility programs, 1-2, 1-3,
5-1, 5-2, 5-4
commands, 6-9

Watchdog timer, 2-12
Word boundaries, addresses of,
2-10

Z-bit
affected by ALU function, 3-4
asserted by ALU, 2-7
clearing, 2-12
not affected by ALU function,
3-39
not available to KMCDA, 6-14

Index-7

Please cut along this line.

KMC1ll Programmer's
Manual
AA-5244B-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State — Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-17
	6-19
	7-1
	7-2
	7-3
	7-4
	7-5
	A-1
	A-2
	A-3
	A-4
	A-5
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	replyA
	replyB

