
January 1978

This manual provides the information required to
develop and implement a software interface to the
COMM IOP·DUP synchronous communications
line controller.

COMM IOP-DUP
Programming Manual

Order No. AA-5670A-TC

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard. massachusetts

First Printing, January 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-IO

I

PREFACE

CHAPTER 1

1.1
1.2
1. 2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5
1.2.1.6
1. 2.2
1.2.2.1
1.2.2.2
1.3
1. 3.1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3
2.2.3.1
2.2.3.2
2.2.3.3
2.2.4
2.2.4.1
2.2.4.2
2.3
2.3.1
2.3.2
2.3.2.1
2.3.3
2.3.3.1

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4

CONTENTS

SYSTEM OVERVIEW

SYSTEM CONCEPT
SYSTEM OPERATION

Command Structure
INITIALIZATION Command
BASE IN Command
CONTROL IN Command
BUFFER ADDRESS IN Command
BUFFER ADDRESS OUT Command
CONTROL OUT Command
Data Transfer Operations
Initialization Sequence
Synchronous Receive/Transmit

SYSTEM APPLICATIONS
Protocol Support

SYSTEM PROGRAMMING

COMMAND STRUCTURE
INPUT COMMANDS

INITIALIZATION Command
BASE IN Command
Issuing a BASE IN Command
Completing a BASE IN Command
CONTROL IN Command

Sequence

CONTROL IN Command Format
Issuing a CONTROL IN Command
Completing a CONTROL IN Command
BUFFER ADDRESS IN Command
Issuing a BUFFER ADDRESS IN Command
Completing a BUFFER ADDRESS IN Command

OUTPUT COMMANDS
Output Command Structures
BUFFER ADDRESS OUT Command
BUFFER ADDRESS OUT Format
CONTROL OUT Command
CONTROL OUT Command Format

SYSTEM OPERATIONS

BUFFER DESCRIPTOR FORMAT
DDCMP OPERATIONS

DDCMP Transmission
DDCMP Reception

BIT STUFFING PROTOCOL OPERATIONS
Bit Stuffing Protocol Transmission
Bit Stuffing Protocol Reception

SHUTTING DOWN AND REENABLING A LINE

iii

Page

v

1-1

1-1
1-2
1-3
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5

2-1

2-1
2-2
2-2
2-3
2-4
2-7
2-7
2-7
2-9
2-9
2-10
2-11
2-12
2-13
2-13
2-14
2-15
2-15
2-16

3-1

3-1
3-3
3-4
3-5
3-6
3-7
3-8
3-9

CHAPTER 4

4.1
4.2
4.2.1
4.2.2

APPENDIX A

INDEX

FIGURE

TABLE

1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1

4-1
4-2
4-3
4-4
A-l

2-1

2-2

CONTENTS (Cont.)

COMM IOP-DUP-KMCll MICROPROGRAM LOADER

KMCll BASIC LOADER SUBROUTINE
KMCll LOADER RUNNING ON RSX-llM

Loader Assembly
Loader and COMM IOP-DUP Micro~ode
Task Building

COMM IOP-DUP INTERRUPT HANDLING

Page

4-1

4-2
4-3
4-4

4-4

A-l

Index-l

FIGURES

COMM IOP-DUP Synchronous Communications
Line Controller Configuration
COMM IOP-DUP CSR Symbolic Addresses and Format
INITIALIZATION Command Format
BASE IN Command Format
CONTROL IN Command Format
BUFFER ADDRESS IN Command Format
BUFFER ADDRESS OUT Command Format
CONTROL OUT Command Format
COMM IOP-DUP Synchronous Communications
Controller Buffer Descriptor Format
Control and Status Registers CSRl Bit Map
KMCll Loader Subroutines
KMCll Loader Printout Example
KMCll Loader Error Printout Example
Flow Chart of a User Program Routine to Handle
COMM IOP-DUP Interrupt Processing

TABLES

Relationship between Line Data Rate and
Polling Count
Error Codes for the COMM rOP-DUP Synchronous
Communications Controller Configuration

iv

1-2
2-1
2-2
2-4
2-8
2-11
2-15
2-16

3-2
4-2
4-2
4-3
4-3

A-2

2-9

2-17

PREFACE

MANUAL OBJECTIVES AND READER CLASS ASSUMPTIONS

The objective of this manual is to provide experienced programmers
with the detailed information necessary to develop and implement a
software interface to the COMM IOP-DUP synchronous communications line
controller.

The level of technical detail presented in this manual assumes that
the reader is proficient in the preparation of MACRO-II assembly
language programs and is versed in the use of the RSX-IIM, RSX-IID or
the lAS task builder to create an executable task image. In addition,
the reader is assumed to be familiar with PDP-II processor
architecture and UNIBUS interfacing and to have an in-depth knowledge
of PDP-II programming techniques.

STRUCTURE OF MANUAL

This manual consists of four chapters and an appendix. Chapter I
provides an operational overview of the COMM IOP-DUP synchronous
communications line controller as well as particular details on system
applications.

Chapter 2 presents the detailed information on command formats and
functions and provides numerous coding examples pertinent to the
operation of a COMM IOP-DUP/PDP-II software interface.

Chapter 3 details system operation with respect to the supported line
protocols, data transmission and reception, and line shutdown and
reenabling.

Chapter 4 describes the procedure for loading the COMM IOP-DUP
microprogram into the KMCII microprocessor writeable control store for
subsequent execution.

Appendix A describes and illustrates a suggested method for handling
COMM IOP-DUP/PDP-II interrupt dialogue.

v

I

CHAPTER 1

SYSTEM OVERVIEW

The Communications I/O Processor (COMM lOP) is a microprocessor-based,
intelligent communications controller residing as a direct memory
access device on the PDP-II UNIBUS. In Digital Equipment Corporation
systems, a direct memory access device is referred to as a
nonprocessor request (NPR) device. COMM lOP operation is controlled
by the KMCll-A microprocessor, which is equipped with a l024-word
writeable control store.

Through a series of microprograms executed from the KMCIl-A writeable
control store, COMM lOP can be configured to implement a family of
intelligent communications line controllers. This family currently
includes the synchronous communications line controller version
operating with the DUPll interface and the asynchronous communications
line multiplexer version operating with the DZll interface. This
manual presents the full range of information necessary for the
preparation of user programs that most efficiently use the
capabilities of the COMM IOP-DUP synchronous communications line
controller.

1.1 SYSTEM CONCEPT

A COMM IOP-DUP configured as a synchronous communications line
controller (Figure 1-1) consists of a single KMCII-A microprocessor
that supports up to 16 DUPll synchronous communications line
interfaces. Each DUPll, in turn, controls a single communications
line capable of message handling under DDCMP or under one of the bit
stuffing protocols SDLC, ADCCP, HDLC, BDLC, X.2S, and SNAP. In
addition, each DUPll can be programmed to operate in full- or
half-duplex mode.

A COMM IOP-DUP microprogram is loaded over the UNIBUS at system
startup time by a dedicated loader residing in, and executed by, the
main CPU. A COMM IOP-DUP microprogram is loaded by performing a
word-by-word transfer to the KMCll-A control store from a core image
stored on the main CPU disk.

1-1

MAIN

CPU

(PDP·l1)

SYSTEM OVERVIEW

KMC11·A
SYSTEM MICRO· OTHER

MEMORY PROCESSOR PERIPHERAL

K UNIBUS

.....

DUP11 DUP11 • • • •

0 V
DDCMP SOLC

COMMUNICATIONS COMMUNICATIONS
LINE LINE

•

OTHER
PERIPHERAL

"'-

DUP11

0
ADCCP

COMMUNICATIONS
LINE

Figure 1-1 COMM IOP-DUP Synchronous Communications
Line Controller Configuration

A COMM IOP-DUP loading routine that runs under RSX-llM, RSX-llD, and
lAS, is described in Chapter 4 of this manual along with the necessary
criteria for developing a loader to execute under a user designated
operating system.

1.2 SYSTEM OPERATION

Operation of the COMM IOP-DUP microprogram is initiated and directed
by a user-produced program residing in the PDP-II (main CPU) memory
space. A user program is defined as a device driver or an equivalent
routine that interfaces to the COMM IOP-DUP. Communication between
the user program and COMM IOP-DUP is provided by four control and
status registers (CSRs) , which are integral to the KMCll-A
microprocessor. These four l6-bit registers are used for control
input, status output, and data input and output. In general, the
first two CSR words are used for control and status information and
the remaining two words serve as an I/O data port.

The first two registers in this group have a fixed format and serve as
the command header for the second two registers. The second two
registers form a two-word data port for the exchange of unique
control/status commands between COMM IOP-DUP and the user program.
The contents of the data port are specified by an identification field
in the command header. Other specific fields in the two-word command
header control interrupt enabling, set up data transfers between the
main CPU and the COMM IOP-DUP device, and identify the communications
line of interest. The high byte of the first CSR is used to contain a
special command issued by the user program for implementing
microprocessor start, halt, and initialization. Detailed descriptions
of each field in these four words are presented in Chapter 2.

1-2

SYSTEM OVERVIEW

A user program issues a command to COMM lOP-CUP by storing the command
1n the pertinent CSRs. COMM lOP-CUP then interprets the command and
performs the specified actions. Similarly, COMM lOP-CUP issues a
command to the user program by storing the command in the pertinent
CSRs and notifying the user program that a command is available for
retrieval and processing.

Message data received or transmitted by COMM lOP-CUP is written into
or read from user program assigned buffers in main CPU memory. COMM
lOP-CUP accesses these buffers through Non Processor Requests (NPR) to
a UNIBUS address. A UNIBUS address is defined as an IS-bit address
used by an NPR device to access a device on the UNIBUS or a location
in main CPU memory.

1.2.1 Command Structure

The functions of the six COMM lOP-CUP control/status/data commands are
described in the sections that follow.

1.2.1.1 INITIALIZATION Command - This command is used to clear all
condition sensitive logic in the KMCII-A microprocessor and place the
microprocessor in the Run state. This command must be issued by the
user program once prior to starting the COMM lOP-CUP initialization
procedure.

1.2.1.2 BASE IN Command - This command is used to initialize the
CUPll interfaces supported by the specific COMM lOP-CUP, and it is
performed once, generally at startup time, for each supported CUPII.
This command informs the COMM lOP-CUP of the CSR address for each
CUPll and assigns a communications line number for each interface.

1.2.1.3 CONTROL IN Command - This command defines the characteristics
of the communications line driven by the pertinent CUPll. These
characteristics include line state (enabled or disabled), protocol
specification, half- or full-duplex operation, and CRC inhibit/enable.
The user program must issue one CONTROL IN command for each supported
CUPll.

1.2.1.4 BUPPER ADDRESS IN Command - The user program issues this
control command to a COMM lOP-CUP to assign a new buffer descriptor
list to the designated line. A buffer descriptor list is a sequential
list of one or more three-word buffer descriptors in main CPU memory.
Each buffer descriptor points to and describes a single user assigned
buffer. The user program can assign a maximum of two receive and two
transmit buffer descriptor lists to each communications line.

Each buffer descriptor contains a buffer pointer, a byte count, and a
set of control fields pertinent to the CUPll. Upon completion of each
transmit or receive operation, COMM lOP-CUP replaces the original byte
count in the buffer descriptor with the actual number of bytes or
characters transmitted or received. All buffers pointed to by a
specific descriptor list are either transmit or receive buffers, as
specified by the command header.

1-3

SYSTBM OVBRVIBW

1.2.1.5 BUPPBR ADDRBSS OUT Command - COMM lOP-CUP issues this control
command to the user program when the buffer assigned to a transmit or
receive operation by a given buffer descriptor is terminated.
Generally, a transmit or receive buffer is terminated when the buffer
is full (descriptor byte count = zero). The first word in the data
port for this command always contains the first 16 bits of UNIBUS
address for the pertinent buffer descriptor with the two extension
bits contained in the high-order byte of the second word in the port.

1.2.1.6 CONTROL OUT Command - COMM lOP-CUP issues this status command
to the main CPU when it detects a transmission or receive error. A
specific bit in the command header tells the main CPU, if relevant,
whether the error occurred during data transmission or reception.

Where applicable, this command informs the user program of the UNIBUS
address for the buffer descriptor, which, in turn, points to the
specific buffer and the erroneous byte in the buffer. The command
also includes a field containing a code that designates the nature of
the detected error. If data is received on a synchronous
communications line not having a buffer assigned, the CONTROL OUT
buffer descriptor field will be indeterminate and the error field will
contain the code for "no buffer assigned."

1.2.2 Data Transfer Operations

For the purposes of this system overview, the transmit and receive
data command sequences described in this section are general and are
meant to serve as background for the detailed presentations in the
chapters that follow.

1.2.2.1 Initialization Sequence - After the COMM lOP-CUP microprogram
is loaded, the first action taken by the user program is to issue an
INITIALIZATION command, which performs a Master Clear on the KMCll
microprocessor and places the processor in the Run state. With this
action complete, COMM lOP-CUP is ready to accept the first command
from the user.

Following this initial command, the user program must issue one BASE
IN command for each CUPII supported by the COMM lOP-CUP. This command
conveys the CSR address of the CUPll associated with that line.

After all BASE IN commands are issued, the next step for the user
program is to issue a CONTROL IN command for each communication line
supported by a COMM lOP-CUP. This command establishes the various
characteristics of the line and enables the line for subsequent
transmission and reception.

1.2.2.2 Synchronous Receive/Transmit Sequence - Once the user program
has initialized each CUPII interface through BASE IN commands and
issued a series of CONTROL IN commands to establish the
characteristics of each active line, COMM lOP-CUP is ready to perform
a receive or transmit data operation.

The configuration of the CONTROL IN command determines whether the
line will be half- or full-duplex, and whether the data received or
transmitted will be handled under DDCMP or one of the bit-stuffing

1-4

SYSTEM OVERVIEW

protocols. Through the CONTROL IN command, a user program can also
assign a secondary station address. This feature is used in multidrop
systems to designate the line address of a slave station drop. Also,
a CONTROL IN command enables the receiver in the designated DUPII.

An actual reception or transmission is initiated when the user program
issues a BUFFER ADDRESS IN command. COMM IOP-DUP requires a buffer
descriptor list assignment through a BUFFER ADDRESS IN command in
order to initiate a data transfer.

The buffer descriptor list is a sequential list of three word
descriptors in main CPU memory with each descriptor pointing to and
describing a single buffer. When a buffer descriptor list is
assigned, it is designated for either reception or transmission. In
addition to a buffer address and a byte count, each buffer descriptor
contains control bits that provide for sync character transmission and
for flagging the start and the end of transmit messages.

COMM IOP-DUP informs the user program of a normal data transfer
completion by issuing a BUFFER ADDRESS OUT command. COMM IOP-DUP
completes a normal data transfer operation for one of two reasons:
the current buffer has been completed, or in the case of a receive
buffer, an End-Of-Message has been detected. If a transmission or
reception error is detected, COMM IOP-DUP informs the user program of
the error by issuing a CONTROL OUT command containing the code
designating the error condition.

1.3 SYSTEM APPLICATIONS

COMM IOP-DUP is designed to implement high-performance communication
network systems for the user who does not have a sufficient number of
lines to justify the additional cost of a large-scale front end. In
effect, COMM IOP-DUP is a small, low cost, but extremely powerful
front end and is ideal for implementing large, highly efficient
message-switching systems at substantial cost savings over the more
conventional approaches.

1.3.1 Protocol Support

A COMM IOP-DUP operating as a synchronous communications line
controller can support multiple-buffered NPR (Non Processor Request)
interfaces for up to 16 DUPII devices. Each DUPII handles one full
or half-duplex synchronous communications line. The maximum aggregate
throughput for all communications lines in a COMM IOP-DUP system,
including both input and output lines, is 19,200 characters per
second. When operating half-duplex, the maximum aggregate throughput
is 9600 characters per second. Data rates for 4, 8, and 16 lines
operating either full- or half-duplex are as follows:

1. Data rate for 16 lines is 4800 bits per second.

2. Data rate for 8 lines is 9600 bits per second.

3. Data rate for 4 lines is 19,200 bits per second.

The speed of the fastest line in a given configuration determines the
number of lines that can be supported by that configuration. This
throughput rate assumes a UNIBUS band width of 500,000 Hz and relates
to the speed of the KMCII-A only to the extent that the associated
PDP-II supplies sufficient transmit and receive buffers and responds

1-5

SYSTEM OVERVIBW

promptly to completion postings by the COMM IOP-DUP. The throughput
rate for a COMM IOP-DUP has no relationship to the throughput rate for
the associated PDP-II software since this throughput rate depends on
such factors as CPU model, memory type, buffering capability, and the
overall efficiency of the specific software.

The COMM IOP-DUP supports DDCMP protocol or one of six bit-stuffing
protocols, namely SDLC, ADCCP, HDLC, BDLC, X.25, and SNAP, and other
similar protocols. In addition, the protocol assignment for a given
line can be switched under user program control. In a COMM
IOP-DUP-implemented synchronous communications network, user program
responsibilities are minimal; they are limited mainly to command
interpretation, protocol related functions such as half-duplex
control, error recovery, and header control.

COMM IOP-DUP performs all modem control functions, with the exception
of ring and carrier monitoring, and checks and initiates the sending
of CRC characters during the respective transmit and receive data
operations. Under DDCMP, COMM IOP-DUP performs the following time
critical tasks, which in conventional installations tend to limit the
number of DDCMP lines available for simultaneous servicing:

1. Identification of numbered versus unnumbered message headers
to permit retrieval of the byte count from numbered headers
for use in determining message length.

2. Automatic receiver resynchronization through analysis of the
DDCMP quick sync CQ) bit.

3. Automatic receiver resynchronization upon detection of block
check errors and header errors.

4. Recognition of slave station addresses in the multidrop line
environment so that the main CPU is interrupted only for
messages having the proper station address.

Under the bit-stuffing protocols, COMM IOP-DUP controls the flag
character generation and detection, secondary station selection, frame
check sequence generation and checking, and error and abort detection.

1-6

85EL 1

BSEL3

BSEl5

BSEL7

CHAPTER 2

SYSTEM PROGRAMMING

This chapter contains the detailed information necessary to support
the development of main CPU user programs that most effectively employ
the network communications resources provided by COMM IOP-DUP. This
information includes the COMM IOP-DUP command structure, typical user
program implementations, and detailed programming information on
command functions and formats.

2.1 COMMAND STRUCTURE

As previously shown, COMM IOP-DUP is an NPR device residing on a
PDP-II UNIBUS. Communication between the main CPU-resident user
program and COMM IOP-DUP is accomplished through a set of four 16-bit
UNIBUS Control and Status Registers (CSRs). The eight bytes
comprising these four registers are assigned the following addresses
in the I/O page floating address space: 76xxxO, 76xxxl, 76xxx2,
76xxx3, 76xxx4, 76xxxS, 76xxx6, and 76xxx7, with the word addresses
being the four even-numbered locations. All four UNIBUS CSRs are both
byte and word addressable. Within the concept of floating UNIBUS
addresses, the actual word and byte addresses are assigned at system
configuration time. (See the KMCll Programmers Manual,
AA-S244B-TC.)

In this explanatory narrative, the eight byte addresses are designated
BSELO through BSEL7 and the four word addresses, SELO, SEL2, SEL4, and
SEL6. The relationship of byte and word addresses for COMM IOP-DUP
UNIBUS CSRs, based on these designations, are summarized in Figure
2-1. Figure 2-1 also illustrates the basic COMM IOP-DUP input/output
command format for the KMCll CSRs along with pertinent command ID
codes.

I

I

I

I
I

I
15

I I I

1~ITlAl1ZATION REGISTER Ral

I I I I I
I I

LINE NuMBER FIELD RDVD

I I
I I I I I I

I I I I DATA

I I I I I I PORT

I I I I I I I
14 13 12 " 10

I

RESERVED

I
I

RESERVED

I
I

I I
I I

I I

!
I I

I ,0 RESERVED

I QDYI RESERVEC !N 1.0

i
I

_L I I I
I I I I

I I 1

BASE I N Command
CONTqOL IN, CONTROL OUT Commands

lEI

COMMAND"
TVPE CODE

I

I
I

I

BUFFER ADDRESS IN BUFFER ADDRESS our Commands 0

Figure 2-1 COMM IOP-DUP CSR Symbolic Addresses and Format

2-1

BSELO
SELO

BSEL2
SEL2

BSEl4
SEL4

BSEL6
SEL6

SYSTEM PROGRAMMING

These address references, as designated in Figure 2-1, are the basis
for CSR address identification in the following detailed descriptions
of the COMM IOP-DUP commands.

Since COMM IOP-DUP is basically an input-output device, it follows
that the command set for this device can be categorized as input
commands and output commands. As opposed to received and transmitted
data, input commands are commands issued to COMM IOP-DUP by the main
CPU; output commands are those issued to the main CPU by COMM
IOP-DUP. The structure and format of COMM IOP-DUP input and output
commands are described in Sections 2.2 and 2.3, respectively.

2.2 INPUT COMMANDS

As previously described, COMM IOP-DUP executes four forms of input
commands. These commands are listed below in the usual order of user
program issuance:

1. INITIALIZATION

2. BASE IN

3. CONTROL IN

4. BUFFER ADDRESS IN

The format and field descriptions for each command are detailed in the
following paragraphs. Some typical examples of PDP-II instructions
and instruction sequences are included to demonstrate the user-program
command-issuing process. These examples are presented for explanation
only and do not imply a single method of implementation.

2.2.1 INITIALIZATION Command

The INITIALIZATION command (Figure 2-2) is the first command issued by
a user program at startup time to initialize the KMCll-A
microprocessor and place the unit in the Run state.

7 6 5 4 3 2 0

RUN I MAST" I
_ CLEAR_

Figure 2-2 INITIALIZATION Command Format

Initializing the KMCll microprocessor by the user program is done in
two steps. First the Master Clear bit is set followed by setting of
the Run bit.

2-2

J

SYSTBM PROGRAMMING

After the Run bit is set, the user program must wait for 1 ~s before
accessing one of the command headers BSELO or BSEL2 since part of the
COMM IOP-DUP initialization procedure involves clearing BSELO and
BSEL2. The recommended method for setting the Master Clear and Run
bits, and at the same time implementing the required delay, is to
write a nonzero value into BSEL2 and wait for COMM IOP-DUP to clear
the byte before proceeding. For example:

A:

MOV
~V

MOV
TSTB
BNE
BR

#40000 , SELO
i377 , BSEL2
ilOOOOO, SELO
BSEL2

A
B

NOTE

Set Master Clear bit
Write nonzero value in BSEL2
Set Run bit
Cleared yet?
No
Yes, exit to B

Since the Master Clear bit is not
self-clearing, a Move instead of a bit
set instruction is required to clear the
Master Clear bit and set the Run bit.

These actions set the Run bit placing COMM IOP-DUP in the operational
state. At this point, the user program can begin setting up COMM
IOP-DUP for subsequent operations. Note in Figure 2-2 that SELO bits
8 through 13 are designated maintenance bits. These bits are used by
maintenance and diagnostic routines and are not used during normal
COMM IOP-DUP operation and should never be set by the user program.
(Refer to Chapter 4 of this manual and the KMCII Programmers Manual,
AA-5244B-TC.)

2.2.2 BASB IN Command

Figure 2-3 illustrates the format for the BASE IN command, which
performs the initialization function for the DUPll interfaces
operating under COMM IOP-DUP. One BASE IN command must be issued for
each DUPll supported by COMM IOP-DUP.

Bit 7 of BSELO, ROI (Request In), is set by the user program to
request use of BSEL3, SEL4, and SEL6 for the transfer of data to COMM
IOP-DUP. Bit 4 of BSEL2, RDYI (Ready In), is set by COMM IOP-DUP in
response to the user program setting of ROI and informs the user
program that data can be transferred into aSEL3, SEL4, and SEL6.
After BSEL3, SEL4, and SEL6 are set up, the user program clears ROI,
sets the command ID code and clears ROYI. Bit 0, lEI (Interrupt
Enable Input), is set by the user program to permit COMM IOP-DUP to
interrupt the main CPU when the data port (SEL4 and SEL6) is available
(RDYI set). When main CPU interrupts are enabled, COMM IOP-DUP is
assigned the floating vectors xxO and xx4; xxO is the input interrupt
vector (RDYI) and xx4 is for completion interrupts (RDYO). BSEL3
comprises the line number field, which serves to identify the
communications lines in a COMM IOP-DUP configuration. Bits 0 and 1 of
BSEL2 (Figure 2-3) contain the 2-bit code identifying a BASE IN
command, with the associated control bits for this command located in
both BSELO and BSEL2.

2-3

BSELJ

SYSTEM PROGRAMMING

I I T
ROI RESERVED

NOT
RESERVED lEI

USED
7 6 5 4 J 2 , 0 I

I I I I I I

LINE NUMBER ILNBR) NOT
RESERVED RESERVEC

NOT 1 CO AND
USED

ROY)
USED TYPEICODE 1

I I I I I I I I
I I I I I I I I I

RESERVED

I I I I I I I I

RESERVED CSA ADDRESS RESERVED

I I I I I I I I I I I I I

'5 '4 '3 '2 " '0

Figure 2-3 BASE IN Command Format

One BASE IN command is issued for each
IOP-DUP, and the line number field
contains an octal number in the range a
be assigned to the communications lines

DUPll supported by a COMM
in each BASE IN command issued
to 17. These line numbers can
in any order.

Bits 3 through 12 of SEL6 contain the corresponding bits of the CSR
address for each DUPll being initialized. Since bits 0, 1, and 2 of
the 18-bit CSR address are always zeros and bits 13, 14, 15, 16, and
17 are always ones, only bits 3 through 12 are necessary to specify
that address. This value is stored in bit positions 3 through 12 of
SEL6 for the pertinent BASE IN command. For example, if a given DUPll
CSR address is octal 760110, SEL6 of the BASE IN for that device would
contain the octal value 110. Note that bits a through 2 and bits 13
through 15 of SEL6 should always be zero.

2.2.2.1 Issuing a BASE IN Command - All input commands are issued by
a user program in two successive steps. In general, the first step
involves a request for permission to issue an input command and a
response by COMM IOP-DUP that it is ready to accept the command.
Although the programming sequences for the first step are described
for the BASE IN command, they also apply to the CONTROL IN and BUFFER
ADDRESS IN commands.

The sequence for the second step involves completing the command by
loading BSEL3, SEL4, and SEL6 with the data appropriate to each
command. This sequence is therefore different for each command.

The initial task to be performed by the
bit, and if necessary the lEI bit.
program must then wait for COMM IOP-DUP
procedure involves the following steps:

user program is to set the ROI
With the RQI bit set, the user
to set ROYI. Generally this

1. The user program sets ROI and then waits for COMM IOP-DUP to
set ROYI. This wait can be implemented through a delay loop
or the user program can wait for an interrupt if interrupts
are enabled.

2. When ROYI is set, the user program clears ROI if a single
command is involved; if multiple commands are being issued,
ROI can be left set and the next step performed. In this
case ROI would be cleared just prior to completing the next
step for the last command issued.

2-4

BSELO

BSEL2

SEL4

SEL6

SYSTEM PROGRAMMING

3. The user program sets up BSEL3, SEL4, and SEL6.

4. Set up the command type code in BSEL2 (BSEL2 bits 0 and 1 =
1) and clear ROYI to inform COMM IOP-OUP that the data port
can be read.

NOTE

The command type code may be set at the
same time ROYI is cleared by using a
MOVB instruction.

upon completion of processing for a given command, COMM IOP-OUP clears
all bits in BSEL2.

NOTE

Since COMM IOP-OUP does not clear BSEL3,
SEL4, or SEL6, the user must ensure that
these registers are cleared by executing
appropriate clear instructions prior to
issuing a command or by issuing the
command with MOV or MOVB instructions.

How this procedure is actually programmed depends on whether the state
of the lEI bit is set to enable interrupts. The latency between the
user program setting the ROI bit and COMM IOP-OUP responding by
setting ROYI can range from a minimum of 3 ~s to a maximum of 250 ~s
providing an output completion is not pending. When using the lEI
bit, the user has three alternatives:

1. Set the lEI bit to enable interrupts. As a consequence, COMM
IOP-OUP interrupts the main cpu when it sets the ROYI bit.
The POP-II instruction implementing this alternative can have
the form

BISB *20l,BSELO :set ROI and lEI

When interrupted the user program can proceed directly to
load BSEL3, SEL4, and SEL6 with the appropriate data and to
set the BASE IN 10 code in BSEL2 bits 0 and 1.

NOTE

COMM IOP-OUP will not set ROYI if ROYO
is set.

2. Leave the lEI bit cleared and check the state of the ROYI bit
by setting a timer and performing a test or performing a
continuous test loop. The form of the bit test sequence
based on a timer is as follows:

C: TSTB
BMI

BSEL2
G

2-5

:ROYO set?
:If RDYO set, exit to process
:completion. This assumes
:that lEO is not set otherwise
:the setting of RDYO would
:generate an interrupt
: (Section 2.3.1).

BITB
BNE

BR

SISTSM PROGRAMMING

t20,BSEL2
A

B

:ROYI set, exit to load
:command routine
:ROYI not set, reset timer and
:resume prior task at B. When
:timer goes off reenter at C.

If a bit test loop is required, the sequence form is:

E: TSTB
BMI

BITB
BEO

BR

BSEL2
F

i20,BSEL2
E

o

:ROYO set?
:If ROYO set, exit to process
:completion.
:This assumes that lEO is
:cleared otherwise the setting
:of ROYO would generate an
:interrupt (Section 2.3.1).
:Test ROYI
:ROYI not set, branch to E and
:test again.
:ROYI set, exit to complete
:command processing

3. Using this alternative, the user program clears lEI (if set
by the prior command), sets ROI, and then performs the
housekeeping associated with issuing the current command.
with the housekeeping done, the user program checks ROYI. If
ROYI is set, the user program completes the command issuing
process. If not set, the user program sets lEI and resumes a
prior task while waiting for an interrupt on ROYI set.

The advantage of this alternative is that interrupt overhead
is substantially reduced since COMM IOP-OUP usually sets ROYI
within a few microseconds after the user program sets ROI.
The form of the instruction sequence for this approach is as
follows:

BICB
BISB

BITB
BNE

BISB

U,BSELO
#200,BSELO

00 housekeeping
t20,BSEL2
H

U,BSELO

NOTE

;Clear lEI
;Set ROI

:Test ROYI
:Exit to complete command
:processing
;Set lEI

If ROYI is already set at the point that
the user program sets lEI, an interrupt
will be generated. In addition, with
lEI set, only one interrupt is generated
for each setting of ROYI. However, if
the user program clears lEI, an
interrupt may still be generated if COMM
IOP-OUP sets ROYI within 3 ~s after it
clears lEI. This situation can be
avoided by always clearing lEI while ROI
and ROYI are in the cleared state.

A suggested sequence for processing input interrupts is described in
Appendix A.

2-6

SYSTEM PROGRAMMING

2.2.2.2 Completing a BASE IN Command - The instruction sequence to
initialize the first OUPll is:

BICB
CLR
MOVB
MOV
MOVB

t200,BSELO
RO
RO,BSEL3
CSR(RO) ,SEL6
t3,BSEL2

1Clear ROt . ,
1Set line number to line zero
1Set CSR for line zero
1Set BASE IN command 10 and clear
1ROYI

For the second, the sequence is as follows:

BIC
ADD

MOVB
ASRB

MOV
MOVB

t200,BSELO
t2,RO

RO,BSEL3
BSEL3

CSR(RO) ,SEL6
#3,BSEL2

1Clear ROI
1Perform a word increment of
11ine number
1Set line number
1convert word index into line number
1by a right shift
1Set CSR for line
1Set BASE IN command ID and clear
1RDYI

and so on until all supported OUPll units are initialized.

NOTE

In the coding example above, CSR is a
table containing the OUPll CSR addresses
in the required format.

2.2.3 CONTROL IN Command

This command establishes the characteristics of each communications
line supported by a COMM IOP-DUP. Figure 2-4 shows the format for a
DUPll CONTROL IN command. One CONTROL IN command must be issued for
each DUPll in a given configuration.

2.2.3.1 CONTROL IN Command Format - With the exception of the command
identification code (bit 0 = 11 bit 1 = 0), the format for the OUPll
CONTROL IN command header bytes (BSELO and BSEL2) is the same as for
the BASE IN command (Figure 2-3). For a detailed description of the
functions performed by the BSELO and BSEL2 ROI, lEI, and RDYI bits,
refer to Section 2.2.2.

For each CONTROL IN command issued, the line number field (BSEL3)
contains the line number assigned to the communications line of
interest.

As shown in Figure 2-4, aSEL5 along with bits 2, 3, and 6 of BSEL7 are
reserved for future expansion of COMM IOP-OUP capability and should
always be zeros. Figure 2-4 also shows that a CONTROL IN command is
formed by aSELO, BSEL2, aSEL3, aSEL4, BSEL6, and BSEL7. In the
description of fields contained in BSEL6 and aSEL7, clarity dictates
that aSEL7 be described first starting at the high-order bit position.

2-7

BSEL3

SYSTEM PROGRAMMING

The Digital Data Communications Message Protocol (DDCMP) bit (Bit 7 of
BSEL7) informs COMM IOP-DUP which message protocol will be employed in
the reception and transmission of messages over the pertinent
communications line. In the one state, this bit designates that the
pertinent communications line is to operate under DDCMP. In the zero
state, this bit specifies that a bit-stuffing protocol such as SDLC,
ADCCP, HDLC, BDLC, X.25, or SNAP will be used on the pertinent line.

Half- or full-duplex operation of the pertinent communications line is
controlled by bit 5 of BSEL7. This bit is set when the pertinent
communications line is a half-duplex circuit. In this mode, data
reception is inhibited whenever data is being transmitted over the
line. Conversely, this bit is cleared when the pertinent
communications line is a full-duplex circuit.

I I I

ROI RESERVED
NOT

RESERVED
USED

lEI
7 6 5 4 3 2 1 0 1
I I I I I I I I

UNE NUMBER (LNBRI
NOT

RESERVED RDYI RESERVEt
NOT o ;~~MC~~E 1 USED USED

I I I I I I I
I I I I I I I I I

BSELO

BSEL2

RESERVED

I
POLUNG COUNT BSEL5 BSEL4

I I

ENABLE I I I I I I I I

DDCMP ~ESERVEO HALF
SEC. RESERVED

CRC ENABLE
SECONDARY ADDRESS (SECADRI

DUPLEX INHI8 LINE
BSE17 BSEL6

STA
1 I I I I I I I

Figure 2-4 CONTROL IN Command Format

If a secondary station address field is stored in BSEL6, bit 4 of
BSEL7 must be set. This bit serves to flag COMM IOP-DUP to process
BSEL6. If this bit is cleared, BSEL6 is ignored.

Under bit stuffing protocols, when the CRC inhibit bit (bit 1 of
BSEL7) is set, CRC calculations for the message data being transmitted
or received are not performed by COMM IOP-DUP. Conversely, when this
bit is cleared, CRC calculations are performed. The CRC inhibit bit
must be cleared to zero under DDCMP operations.

Each communications line controlled by a DUPll and directed by COMM
IOP-DUP can be selectively enabled or disabled at startup time or at
some subsequent time through the CONTROL IN command enable line bit
(bit a of BSEL7). When set, this bit enables the line by forcing the
setting of the DTR bit (Data Terminal Ready) at the associated modem
and enabling the DUPll receiver. When this bit is cleared, DTR is
cleared and the DUPll receiver is disabled.

The secondary address field (BSEL6) permits the user program to
designate the pertinent DUPll as a slave station on a multidrop line.
In the multidrop environment, the COMM IOP-DUP automatically compares
the secondary address field assigned to the pertinent line with the
station address field in the protocol header of each message received.
COMM IOP-DUP accepts only messages having the secondary address
assigned to the pertinent communications line.

BSEL4 contains a count that designates the time interval at which COMM
IOP-DUP will check the associated DUPll for a transmit or receive
done. The COMM IOP-DUP polling interval is specified in 50 ~s units
so that a count of zero in BSEL4 would result in a 50 ~s polling
interval, a count of one produces a 100 ~s polling interval, a count
of 2 a 150 ~s polling interval and so on.

2-8

t

SYSTEM PROGRAMMING

The required polling interval for each supported line is determined by
the speed of the pertinent line, the number of active lines supported
by a COMM IOP-OUP and the band width of the UNIBUS. In general, the
higher the line data rate, the more lines active; and the lower the
UNIBUS band width, the faster the polling rate (lower polling count)
should be. For example, for a COMM IOP-DUP supporting eight active
full-duplex lines, each with a line data rate of 9600 bps, the polling
count would be set to one (100 ~s). However, with only one active
line having the same data rate, a polling count of three (200 ~s)
could be used. The general relationship between line speed and
polling count is shown in Table 2-1.

Table 2-1
Relationship between Line Data Rate and Polling Count

Line Data Rate
(Full-Duplex) Polling Count

19,200 bps 0
9600 bps 1 to 3
4800 bps 2 to 6
2400 bps 4 to 12

When frequent overruns or underruns are encountered on a given line,
the polling count for that line should be decreased. In general, a
polling interval that is shorter than required has no detrimental
effect on COMM IOP-OUP operation. However, it will result in
superfluous UNIBUS cycles that can degrade system throughput.

2.2.3.2 Issuing a CONTROL IN Command - The first steps to be taken by
a user program when issuing a CONTROL IN command are to set the RQI
bit in BSELO and to test the ROYI bit for COMM IOP-OUP response. The
procedure followed is exactly the same as that used for issuing a BASE
IN command (Section 2.2.2.1). A CONTROL IN command must not be issued
to a OUPll that has not been initialized by a prior BASE IN command.

2.2.3.3 Completing a CONTROL IN Command - Upon detecting ROYI set,
the user program can complete the issuing of a CONTROL IN command. As
previously stated, each OUPII supports one synchronous communications
line and one CONTROL IN command must be issued at startup time for
each DUPll supported by a COMM IOP-DUP. The following example
describes the form of the user program-executed PDP-II instructions
required to transfer the data comprising a CON~ROL IN command to the
COMM IOP-OUP CSR registers BSEL3, BSEL4, BSEL6, and BSEL7:

l. The line number field (LNBR) is set in BSEL3;

2. bit 7 of BSEL7 is set to one for ODCMP operation;

3. bit 5 of BSEL7 is cleared to zero to designate a full-duplex
line;

4. bit 4 of BSEL7 is set to one to indicate a secondary address
assignment;

2-9

SYSTEM PROGRAMMING

5. bit 1 of BSEL7 is cleared to zero to enable CRC calculation;

6. set secondary address in BSEL6 (consider the secondary
address to be octal 10);

7. bit 0 of BSEL7 is set to one to enable the pertinent line;
and

S. the polling count (BSEL4) is set to 3.

The instructions implementing this example can take the following
form:

MOVB
MOV

MOVB
MOVB

#LNBR1,BSEL3
#110410,SEL6

#3,BSEL4
#1,BSEL2

;Set line number
;Set BSEL6 for secondary address
iand BSEL7 for line characteristics
iSet polling count to 3
iSet CONTROL IN code and clear
iRDYI

In response to a given CONTROL IN command with the Enable Line bit set
to one, COMM IOP-DUP will assert DTR and enable the receiver. If the
Enable Line bit in that command is cleared to zero, DTR will be
cleared and the receiver disabled. In addition, the DUPll designated
by the line number field (BSEL3) will be assigned the line
characteristics specified by BSEL7 (Figure 2-4).

2.2.4 BUFFER ADDRESS IN Command

This command provides the user program with the mechanism for
assigning, deassigning, and reassigning transmit and receive buffers.
The format for this command is presented in Figure 2-5. Also, Figure
2-5 shows that, in addition to the command identity bits in bits 0 and
1 of BSEL2 (code=O,O), BSEL2 also contains the control bit IN I/O in
bit position two. The function of this bit is to designate the
assigned buffers as either transmit buffers or receive buffers. When
set, the buffers for the designated line are assigned as receive
buffers, and when cleared the pertinent buffers are assigned as
transmit buffers. The user program must set the appropriate state of
the IN I/O bit at the same time the command type code is set (Section
2.2.2.1). Aside from the value of the identity bits and the presence
of the IN I/O bit, the format for BSELO and BSEL2 is the same as that
for BASE IN and CONTROL IN commands. Consequently, the user
program/COMM IOP-DUP processing sequence involving the ROI, lEI, and
RDYI bits is exactly the same for the BUFFER ADDRESS IN command as for
the BASE IN and CONTROL IN commands (Sections 2.2.2 and 2.2.3).

As in the CONTROL IN command, the line number field (BSEL3) specifies
the DUPll communications line to which a BUFFER ADDRESS IN command is
to apply.

In COMM IOP-DUP, buffers are assigned to a communications line through
a buffer descriptor list. Note in Figure 2-5 that SEL4 and bits 6 and
7 of BSEL7 contain an IS-bit UNIBUS address that is the starting
address of the buffer descriptor list assigned to the pertinent
communications line.

2-10

J

BSEl3

BSEl7

SYSTEM PROGRAMMING

J

ROI RESERVED
NOT

RESERVED lEI
7 6 5 4 3 I

USED
2 0 I

I J J J

LINE NUMBER (lNBR) NOT
RESERVED RESERVED o COMMAND 0

USED
ROYI IN 110

I J I I I
TYPE1CODE

I I I I I I I I I
BUFFER DESCRIPTOR LIST ADDRESS

I I I I I I I I I I I
I I I I I I I I I I

16 17
BUFFER
ENABLE

KILL RESERVED RESERVED

I I i I I I I I
15 14 13 12 11 10

Figure 2-5 BUFFER ADDRESS IN Command Format

A buffer descriptor list is a sequential list of three word blocks in
main CPU memory space. Each 3-word block points to and describes the
boundaries of a single buffer also in main CPU memory space. The
length of a buffer descriptor list is user-defined and a maximum of
two transmit and two receive lists can be assigned to each COMM
IOP-DUP supported communications line. Finally, by definition, the
starting address of a buffer descriptor list must be word aligned,
that is on an even address boundary. The format and function of the
buffer descriptor list are described in Section 3.1.

Buffer descriptor lists are deassigned through use of the Kill bit
(bit 4 of BSEL7) and also reassigned when this bit is used in
conjunction with the Buffer Enable bit (bit 5 of BSEL7). For the
relevant data transfer (receive or transmit as determined by the state
of the IN I/O bit) issuing a BUFFER ADDRESS IN command with the Kill
bit set and the Buffer Enable bit cleared deassigns all buffer
descriptor lists currently assigned to the communications line
designated by the line number field.

When the user program issues a BUFFER ADDRESS IN command with both the
Kill and Buffer Enable bits set, the current buffer descriptor receive
or transmit list or lists are deassigned, and a new buffer descriptor
list address specified by SEL4 and bits 6 and 7 of BSEL7 is assigned
to the pertinent line. When the Kill bit is cleared, COMM IOP-DUP
ignores the Buffer Enable bit and treats the command as a normal
buffer descriptor list address assignment. Note that setting the Kill
bit during a receive operation also causes the pertinent DUPII to be
placed in the search sync mode, if operating under DDCMP, or in the
flag search mode if operating under one of the bit stuffing protocols.
Under DDCMP, when an active transmission is stopped, the pertinent
line is brought back to a mark hold condition. Under a bit stuffing
protocol, when an active transmission is stopped, an abort character
is transmitted and the pertinent line is brought back to a mark-hold
condition. COMM IOP-DUP signals the completion of a particular kill
operation by issuing a CONTROL OUT command (Section 2.3.3).

2.2.4.1 Issuing a BUFFER ADDRESS IN Command - The first steps to be
taken by a user program when issuing a BUFFER ADDRESS IN command, are
to set the ROI bit in BSELO and to test the RDYI bit for COMM IOP-DUP
response. The procedure followed is the same as that used for issuing
a BASE IN command (Section 2.2.2.1) except that the state of the IN

2-11

BSElO

BSEL2

SEL4

BSEl6

SYSTEM PROGRAMMING

I/O bit, in BSEL2 must be established when the command type code is
set. This action defines the buffers described by the assigned buffer
descriptor list as either receive or transmit buffers.

The various methods of using the lEI bit and the RQI-RDYI
request/response cycle described in Section 2.2.2.1 apply directly to
the processes of issuing a BUFFER ADDRESS IN command.

2.2.4.2 Completing a BUFFER ADDRESS IN Command - A user program
completes this command upon detecting RDYI set. Various examples of
implementing PDP-II instruction sequences are described below to
demonstrate the variations of this command.

An example of an instruction sequence to assign a buffer descriptor
list address to a DUPII takes the following form:

or

MOVB
MOV
MOVB

MOVB

CLRB

tLNBROO, BSEL3
#100004,SEL4
i200,BSEL7

i4, BSEL2

BSEL2

iSet line number
iSet 16 bits of UNIBUS address
iSet the state of the two most
isignificant bits of UNIBUS
iaddress (18-bit
iaddress = 500004)
iAssign a receive buffer and
iclear RDYI

iAssign a transmit buffer and
iclear RDYI

An example of an instruction sequence to kill all current buffers
assigned to a given line and assign a new buffer descriptor list to
that line, takes the following form:

or

MOVB
MOV

MOV

MOVB

CLRB

#LNBRnn,BSEL3
U05000 ,SEL4

U60,BSEL7

i4, BSEL2

BSEL2

iSet line number
iSet least significant 16 bits of
iUNIBUS address
iSet the state of the two most
isignificant UNIBUS address
ibits plus Kill and
ibuffer enable bits (18-bit
iaddress = 305000)
iKill and assign a receive buffer and
iclear RDYI

iKill and assign a transmit buffer and
iclear RDYI

An example of an instruction sequence to kill all buffers assigned to
a given communications line without reassigning a new buffer
descriptor list takes the following form:

MOVB iLNBRnn,BSEL3 i Set line number
MOVB i20,BSEL7 i Set Kill bit
MOVB t4, BSEL2 i Kill all receive buffers and

iclear RDYI
or

CLRB BSEL2 i Kill all transmit buffers and
iclear RDYI

2-12

SYSTEM PROGRAMMING

2.3 OUTPUT COMMANDS

Output commands provide the vehicle whereby COMM IOP-DUP communicates
with the main CPU. COMM IOP-DUP uses the output commands to convey
two categories of information:

1. Information pertinent to the normal completion of data
transfers;

2. information concerning the forced completion
transfers due to detection of an error condition.

of data

The BUFFER ADDRESS OUT command is used to post normal completions to
the user program and the CONTROL OUT command for completions posted
due to the detection of an error condition.

Note that the lEO (Interrupt Enable Out) bit, when set, will cause
COMM 10P-DUP to interrupt the main CPU each time an output command is
ready for retrieval by the user program. When cleared, COMM IOP-DUP
does not interrupt, making the user program responsible for
recognizing that an output command is ready for retrieval.

2.3.1 Output Command Structures

COMM IOP-DUP issues output commands in two steps. First, the data
pertinent to the command being issued is stored in BSEL3, SEL4, and
SEL6 (Figure 2-1). Once this data storage is complete, COMM IOP-DUP
sets the RDYO and identity bits in BSEL2 and generates an interrupt
through vector xx4 if the lEO bit is set. If the command issued is a
BUFFER ADDRESS OUT, the IN I/O bit is set to one to indicate that the
completion posted involves a receive data operation or cleared to zero
to designate a completion posting for a transmit data operation.
Generally, processing an output command involves the following steps:

1. The user program checks for RDYO set. This can be done
through periodic checking or by waiting for an interrupt,
assuming that interrupts are enabled.

2. When RDYO is detected as set, the user program would check
BSEL2, bits 0, 1, and 2 to determine type of completion
(receive or transmit, normal or error), then read BSEL3,
SEL4, and SEL6, and process as necessary.

3. Upon reading the data port (SEL4 and SEL6), the user program
clears RDYO to inform COMM IOP-DUP of port availability.
This can be done with the PDP-II instruction:

CLRB BSEL2

NOTE

If RDYO is already set at the time that
the user program sets lEO, an interrupt
will be generated. In addition, with
lEO set, only one interrupt is generated
for each setting of RDYO. However, when
the user program clears lEO, an
interrupt can still be generated if COMM
IOP-DUP sets RDYO within 3 ~s of
clearing lEO.

2-13

SYSTEM PROGRAMMING

A user program, designed to operate in a noninterrupt mode,
set up to periodically test the state of the RDYO bit.
instruction sequence to periodically test the RDYO bit, and
check the ID bits, can take the following form:

A: TSTB
BPL

BITB
BEQ

BR

BSEL2
B

#1,BSEL2
C

D

~Test RDYO bit.
~Cleared, exit to perform
~user task and reenter
~at A during next period.
~Test ID bits.
~Exit to retrieve
~BUFFER ADDRESS OUT command
~and process.
~Exit to retrieve CONTROL
~OUT command and process.

must be
A PDP-II

when set

with interrupts enabled (lEO set) the first user program action upon
receiving the interrupt is to test the ID bits to determine the
command type to be processed. If the command is ascertained to be a
BUFFER ADDRESS OUT command, the user program can determine whether the
completion being posted involves a transmit or receive data operation
by checking the IN I/O bit. For example,

C: BITB
BEQ

BR

#4,BSEL2
F

G

~Check IN I/O bit
;Exit to perform transmit
;operation
;Exit to perform receive
;operation

Upon completing the retrieval of the pertinent command, the user
program must clear RDYO to inform COMM IOP-DUP that the retrieval is
complete. For example:

CLRB BSEL2 ;Clear RDYO

Upon completion of an output command, COMM IOP-DUP will check for an
input command (RQI = 1) and service that command before issuing the
next output command, if any are pending. On this basis, the user
program can set RQI before clearing RDYO to guarantee that the next
command serviced will be an input command. (A suggested sequence for
processing interrupts is described in Appendix A.)

NOTE

COMM IOP-DUP will not respond to a user
program request to input a command (RQI
set to 1 in BSELO) if an output
completion is pending (RDYO = 1). In
addition, the states of RDYO and RDYI
are mutually exclusive. Therefore,
these bits are never set simultaneously.

2.3.2 BUFFER ADDRESS OUT Command

This command is used to post the normal completion of data-transfer
operations to the user program. Normal completions are posted when a
message is completed or when the current buffer is filled. All other
completions are posted by a CONTROL OUT command as error completions.

2-14

BSEL3

BSE17

SYSTEM PROGRAMMING

2.3.2.1 BUFFER ADDRESS OUT Format - Figure 2-6 illustrates the format
for this command. Since the control bits in BSELO and BSEL2 have been
described in detail previously, the narrative that follows describes
the fields in BSEL3, SEL4, and SEL6. It should be reiterated that bit
2 of BSEL2 (Figure 2-6), the IN I/O bit, serves to specify to the user
program whether the pertinent BUFFER ADDRESS OUT command applies to
the completion of a receive data operation (IN I/O = 1) or a transmit
data operation (IN I/O = 0).

The line number field in BSEL3 identifies for the user program the
communications line to which the information in the remaining command
fields apply. Bit 7 of the line number field (BSEL3, Figure 2-6),
when set to one indicates that COMM IOP-DUP has overrun the internal
completion stack. At this point one or more completions have been
lost. This situation results from the user program not retrieving
completions at a fast enough rate.

SEL4 and bits 6 and 7 of BSEL7 form the IS-bit UNIBUS address for the
buffer descriptor describing the completed buffer. The format and
function of the buffer descriptor is described in Section 3.1.

I I I
NOT

RESERVED lEO RESERVED
NOT

7 6 5 4
USED USED

3 2 1 0 I
CQMPlE· I I I I I I I

TION LINE NUMBER ROYO RESERVED
NOT

RESERVEC
IN a COMMAND

OVERRUN
I I I I I I

USED 1'0 TYPE ICODE a
I I I I I I I I

!::SUFFER DESCRIPTOR ADDRESS

I I I I I I I I I I
I I I I I I I I I I I

RECEIVE
BOA RESERVED

EOM
RESERVED RESERVED

17 16 I J J I I J 1 I
15 14 13 12 11 10

Figure 2-6 BUFFER ADDRESS OUT Co~~and Format

Bit 4 of BSEL7 specifies, for receive data operations, whether the
completion resulted from an end-of-message (RECEIVE EOM) signal being
detected or as a consequence of buffer completion. Bit 4 = 1
designates that a RECEIVE EOM signal has been detected and bit 4 = a
specifies that the current buffer is filled without detection of a
RECEIVE EOM signal (message not complete). If a message exactly fills
a buffer, the RECEIVE EOM bit will be set to one.

2.3.3 CONTROL OUT Command

This command is used by COMM IOP-DUP to inform the user program of the
nature of an error condition detected during the current receive or
transmit data operation. In addition to identifying the line on which
the error occurred, this command provides the address of the buffer
descriptor pointing to the buffer that was active when the error
occurred. The byte count field in the descriptor reflects the number
of characters processed in the pertinent buffer prior to occurrence of
the error.

2-15

BSELO

BSEL2

SEL4

BSEL6

BSELJ

BSEL7

SYSTEM PROGRAMMING

2.3.3.1 CONTROL OUT Command Format - Figure 2-7 illustrates the
format for this command. Since the control bits in BSELO and BSEL2
have been described in detail in Section 2.3.1, the narrative that
follows concerns the fields in BSEL3, SEL4, BSEL6, and BSEL7. Note
that bit 2 of BSEL2 (compare Figures 2-6 and 2-7) is used in this
command to distinguish between transmit and receive errors.

The line number field in BSEL3 identifies for the user program the
line number to which information in the remaining command fields
apply. Bit 7 of the line number field (BSEL3, see Figure 2-7), when
set to one, indicates that COMM IOP-DUP has overrun the internal
completion stack. At this point one or more completions have been
lost. This situation results from the user program not retrieving
completions at a fast enough rate.

SEL4 and bits 6 and 7 of BSEL7 form the
which in turn describes the buffer
occurred. The format and function of
described in Section 3.1.

buffer descriptor address,
in which the error condition

the buffer descriptor is

I I I

NOT
RESERVED lEO RESERVED

NOT
USED uSED

7 6 5 4 3 2 1 0 ~

COMPLE·
I I I I I I I

TION LINE NUMBER ROVO RESERVED
NOT

RESERVED
IN COMMAND 1

OIIERRUN
I I I I I I I

USED 1,0 o TYPE ICODE

I I I I I I I I

BUFFER DESCRIPTOR ADDRESS (BOA 0 15\

I I I I I I
I I I I I I I I

BDA RESERVED E A AOA CODE

17 I 16 1 I I I I I I I I I I 1
15 14 13 12 11 10

Figure 2-7 CONTROL OUT Command Format

BSEL6 contains a code defining the specific error which initiated the
issuing of the associated CONTROL OUT command. Table 2-2 lists the
error codes for the COMM IOP-DUP. When the Kill Complete condition is
detected, all transmit or receive buffers currently assigned to the
communications line designated by the line number field in the command
are flushed. To resume operation on that line, the user must assign
new buffer descriptor lists to that communications line (Section
2.2.4). The DSR (Data Set Ready) transition condition does not affect
buffer assignments. All other error conditions cause the pertinent
reception or transmission operation and the currently associated
buffer to be terminated. All other assigned buffers are unaffected
and remain assigned. In addition, all receive errors cause the
pertinent DUPll to be placed in the search sync mode for DDCMP
operations, or the flag search mode for bit stuffing operations. When
a transmit error is detected, the pertinent DUPII conditions the
associated line to mark hold.

NOTE

The address in SEL4 designates the
buffer descriptor that was active when
the error occurred. The byte count in
the pertinent buffer descriptor is
changed to reflect the number of
characters actually transmitted or
received.

2-16

BSELO I
BSEl2

SEL4

BSEL6

Code
(Octal)

6

10

12

14

16

20

SYSTEM PROGRAMMING

Table 2-2
Error Codes for the COMM IOP-DUP Synchronous

Communications Controller Configuration

Error Type

Abort

Receive DDCMP
Header CRC Error

Receive Data CRC
Error

No Buffer Assigned

Data Set Ready
(DSR) Transition

Nonexistent Memory

Reason for Error

A receive data operation conducted
under one of the bit stuffing
protocols was terminated by the
sending station, and seven consecutive
one's were received.

A ODCMP header with an invalid CRC
was received.

In ODCMP mode a numbered message with
an invalid CRC was received. In bit
stuffing mode, a frame with an invalid
CRC was received.

Received data was received without a
buffer being assigned by the user
program (Section 2.2.2). The
pertinent OUPll will resynchronize the
communications line in anticipation of
a buffer assignment. In this case,
the content of SEL4 in the pertinent
CONTROL OUT command is undefined.

Each transition of DSR on each enabled
line is posted to the user program
through this code. For each line, th~
first posting designates a DSR
transition from off-to-on, the second
from on-to-off, the third from
off-to-on, and so on. A DSR
transition does not affect any
currently assigned buffers.

COMM IOP-DUP attempted to access a
nonexistent main CPU memory location.
This error condition applies to any
user program assigned memory location,
including a OUPII CSR address. This
error condition only indicates that a
nonexistent memory error condition was
detected while servicing the
communications line designated by
BSEL3. To isolate the actual invalid
address, the user must determine the
addresses of the receive and transmit
buffers active on that line.

(continued on next page)

2-17

Code
(Octal)

22

24

26

SYSTIM PROGRAMMING

Table 2-2 (Cont.)
Error Codes for the COMM lOP-DUP Synchronous

Communications Controller Configuration

Error Type

Transmit Underrun

Receiver Overrun

Kill Complete

Reason for Error

COMM IOP-DUP is not processing
transmitted characters fast enough.
This error condition usually results
when the user program does not assign
subsequent buffers for a message in
time, thereby causing COMM IOP-DUP to
wait for a buffer assignment. Note
that the user program should assign
all buffers for a given message as a
single list. UNIBUS latency or a slow
polling rate (Section 2.2.3.2) can
also cause this error.

COMM IOP-DUP is not processing
received data fast enough. Typical
causes of this type of error are
UNIBUS latency and a slow polling rate
(Section 2.2.3.2).

This error return informs the user
program that the kill request has been
completed and also serves to help the
user program resynchronize with the
COMM IOP-DUP completion silo. Note
that all transmit or receive buffers
assigned to the pertinent line are
de-assigned. The IN I/O bit in BSEL2
of the pertinent CONTROL OUT command
informs the user program whether the
killed buffers were transmit buffers
(IN I/O = 0) or receive buffers (IN
I/O = 1). In addition, the buffer
descriptor address field of the
pertinent CONTROL OUT command contains
the address of the buffer descriptor
in use when the kill was executed.
The byte count field of the pertinent
buffer descriptor (Figure 3-1)
contains a count of the number of
bytes transferred prior to execution
of the kill.

2-18

CHAPTER 3

SYSTEM OPERATIONS

A COMM IOP-DUP configured as a synchronous communications line
controller has two basic modes of protocol operation:

1. Digital Data Communications Message Protocol (DDCMP) V4.0

2. The bit stuffing protocols:

a. SDLC - IBM

b. ADCCP - ANSI

c. HDLC - ISO

d. BDLC -Burroughs

e. X.2S - ISO

f. SNAP - Data Pac

As described in Section 2.2.3.1 under CONTROL IN Command Format, the
protocol mode for each COMM IOP-DUP controlled communications line is
assigned at initialization time by the pertinent CONTROL IN command.

Transmit and receive operations under both protocol modes require the
assignment of buffer descriptor lists to the pertinent communications
line. These lists contain buffer descriptors which in turn point to
buffers in the main CPU physical address space. COMM IOP-DUP accesses
these assigned buffers on an NPR basis to store received data or to
retrieve data to be transmitted.

Under both ODCMP and the bit stuffing protocols, a single message can
encompass a number of buffers. In addition, a message always starts
at a new buffer. The narrative that follows starts with a detailing
of the structure and format of the component buffer descriptors in
COMM IOP-DUP buffer descriptor lists. This description is used as the
basis for a detailed delineation of DDCMP and bit stuffing protocol
operations.

3.1 BUFFER DESCRIPTOR FORMAT

A buffer descriptor list is a contiguous set of word aligned locations
in main CPU memory assigned to a specific communications line by the
user program through the issue of a BUFFER ADDRESS IN command.
Structurally, a buffer descriptor list consists of a sequential series
of 3-word blocks with each block forming a single buffer descriptor.
The only limits to the length of a buffer descriptor list are the
practicalities of memory allocation and the size of main CPU memory.

3-1

SYSTEM OPERATIONS

A user program can assign up to two receive and two transmit buffer
descriptor lists to each COMM IOP-DUP communications line.

The format for a COMM IOP-DUP communications line buffer descriptor is
shown in Figure 3-1. The first word of each descriptor contains the
16 low-order bits of the UNIBUS address for the associated buffer,
starting with the two high-order bits contained in bit positions 10
and 11 of the third word.

15 14 13 12 11 10

I I I I I I I I I I I I I I I

BUFFER ADDRESS

I I I I I I I I I I I
I I I I I I I I I I I I I I I

BUFFER BYTE COUNT

I I I I I I I I

LAST
I

RESYNC BUFFER XMIT XMIT
I I I I I I I

DSCP NOT USED XMtT ADDRESS EOM SOM NOT USED

~
17 I 16 I I I I I I I

Figure 3-1 COMM IOP-DUP Synchronous Communications
Controller Buffer Descriptor Format

A 16-bit byte count field defining the length of the associated buffer
is contained in the second word of each buffer descriptor. When used
in conjunction with the UNIBUS address of the buffer starting
location, this field provides COMM IOP-DUP with the necessary
information to access the user assigned buffer in a true DMA fashion
through NPR executions. This capability relieves the main CPU of a
significant portion of the overhead normally associated with
communications line activities.

Bit positions 8 and 9 in the third word of each buffer descriptor
contains the XMIT SOM (Start Of Message) and XMIT EOM (End Of Message)
bits, respectively. When set to one, these bits define the boundaries
of a transmitted message. Note that in buffer descriptors assigned
for receive data, the XMIT SOM and XMIT EOM bits must be zero.

For example, if a given transmit buffer descriptor has the XMIT SOM
bit set, COMM IOP-DUP knows that the first byte in"the buffer pointed
to by the buffer descriptor is the first byte of the message to be
transmitted. In addition, COMM IOP-DUP knows that the message
continues in the buffer pointed to by the next assigned buffer
descriptor. Similarly, in a given transmit buffer descriptor if the
XMIT EOM bit is set, COMM IOP-DUP knows that the last byte in the
buffer pointed to by that buffer descriptor is the last byte of the
message. Therefore, in a given buffer descriptor, if both the XMIT
SOM and XMIT EOM bits are set, the message to be transmitted is
completely contained in that buffer.

With reference to Figure 3-1, bit 12 of the third
word, the RESYNC XMIT bit, provides the user
mechanism for separating messages and informing COMM
pertinent line requires resynchronization prior to

3-2

buffer descriptor
program with the
IOP-DUP when the
transmitting data

J

SYSTEM OPERATIONS

from the assigned buffer. The need for line resynchronization
typically results from line turn around on half-duplex lines or a
transmit error such as detection of an erroneous CRC character (Block
Check Characters, BCC). Since this bit is pertinent to only transmit
buffers, it must be cleared to zero in buffer descriptors assigned for
receive data.

For lines operating in DDCMP mode, COMM IOP-DUP will transmit eight
sync characters (ASCII 226) when bit 12 is set prior to accessing the
assigned buffer. On lines operating under one of the bit-stuffing
protocols, COMM IOP-DUP will first initiate transmission of a stream
of 16 zero bits when bit 12 is set and then send the starting flag
followed by the assigned transmit buffer. In the bit-stuffing mode,
bit 12 can only be set after the pertinent line has been idled~ for
example, after a turn-around on a half-duplex line.

As previously denoted in this section, a buffer descriptor list is an
ordered sequential list of 3-word buffer descriptors in main CPU
memory space and accessed by COMM IOP-DUP to determine the location
and size of each related buffer. The end of a buffer descriptor list
is designated by bit 15 of the third descriptor word, specifically the
LAST DSCP bit. This bit is always set to one in the last buffer
descriptor in a list. Upon reaching the end of a buffer descriptor
list, COMM IOP-DUP will continue processing with the next assigned
list. For a receive data operation, if a second buffer descriptor
list is not assigned and another character is received COMM IOP-DUP
will post a No Receive Buffer Assigned Error Return (Table 2-2).

For a transmit operation, if the last buffer descriptor in the
assigned list does not have the XMIT EOM bit set, COMM IOP-DUP will
wait until another buffer is assigned before continuing the transmit
operation. However, if a new buffer is not assigned within one
character time after the last character in the last assigned buffer
was transmitted, the DUPII will under run and as a result COMM IOP-DUP
will post an error return (CONTROL OUT) with the code for a Transmit
Underrun Error (Table 2-2).

3.2 DDCMP OPERATIONS

DIGITAL's standard message protocol, Digital Data Communications
Message Protocol (DDCMP), is a character-oriented protocol designed
for error-free transmission and reception over both half- and
full-duplex synchronous communications lines. DDCMP is characterized
by extremely high efficiency, low overhead, and operation over
point-to-point and multidrop lines within the same message format.

Under DDCMP, the message handling function performed by COMM IOP-DUP
includes header analysis, message assembly and disassembly, CRC
calculation and checking, I/O buffer management, and error checking.

However, COMM IOP-DUP does not perform any higher level protocol
functions. This activity must be performed under control of the main
CPU operating system. In addition, the higher level must provide a
valid DDCMP header with each transmitted message, and error recovery
must be handled by the user program for both transmit and receive
operations. Finally, line control on half-duplex lines is the
responsibility of the user program, using the facilities provided by
COMM IOP-DUP. Based on the functional specification for DDCMP Version
4.0, COMM IOP-DUP is primarily responsible for the framing function,
and the user program is primarily responsible for the link management
and message exchange functions.

3-3

SYSTBM OPBRATIONS

Under DDCMP, CRC calculation for transmit and receive messages must be
enabled for the pertinent line by the user program. In DDCMP mode,
the DUPll Synchronous Line Units associated with a COMM IOP-DUP use
the CRC algorithm CRC-16. At the beginning of a transmit or receive
message, CRC-16 is automatically initialized to zero.

For half-duplex operation under DDCMP, transmission will always take
precedence over reception. As a consequence, assignment of a transmit
buffer by the user program will initiate a transmit operation on the
pertinent line irrespective of a receive operation being conducted.
On this basis, it is the responsibility of the user program to control
buffer assignments so that a transmit buffer is not assigned to a
given line when a receive operation is pending or under way.

3.2.1 DDCMP Transmission

A DDCMP message by the main CPU physical link control layer consists
of either a message consisting of a 6-byte header or a 6-byte header
followed by a variable-length message. A header alone is referred to
as an "unnumbered" message, whereas a header followed by a message is
called a "numbered" message or a "maintenance message".

With reference to Sections 2.2.2 and 2.2.3, the user program
initializes, enables, and establishes the characteristics of each COMM
IOP-DUP supported communications line through the BASE IN and CONTROL
IN commands. with a given line enabled for DDCMP operation, the user
program starts a transmit operation by issuing BUFFER ADDRESS IN
commands to assign the appropriate buffer descriptor lists. For
example, in the buffer descriptor list assigned to a given line for
transmission in DDCMP mode, the first descriptor for that message will
point to a 6-byte buffer containing the header. For maximum
efficiency, the header should be contained in a single buffer
descriptor. The descriptor for this buffer must have both the XMIT
SOM and XMIT EOM bits set. After transmitting the header, COMM
IOP-DUP will transmit the CRC value calculated for the six DDCMP
header bytes contained in the associated buffer. This CRC value is
transmitted immediately following the last header byte transmitted.

For the numbered message, the next descriptor in the list points to a
buffer having the XMIT SOM bit set (Figure 3-1) and containing all or
part of the message to be transmitted. COMM IOP-DUP again initiates
CRC calculations starting with the first character in that buffer and
continues calculation until an XMIT EOM bit is detected in that, or a
subsequent buffer descriptor. The resulting two block check
characters are appended to the message and transmitted.

COMM IOP-DUP also performs all necessary modem control, setting
Request-to-Send (RTS) , waiting for Clear-to-Send (CTS) and
transmitting the message. When a transmission is complete, COMM
IOP-DUP delays clearing RTS until the last character has been clocked
onto the communications line. If the user program decides to
resynchronize the communication prior to transmitting a message, the
RESYNC XMIT bit (bit 12 of word three) in the respective buffer
descriptor should be set to one.

If an error occurs during transmission, COMM IOP-DUP will immediately
halt transmission, store the count of characters transmitted in the
pertinent descriptor, and post an error through a CONTROL OUT command.
The user program can halt transmission by issuing a BUFFER ADDRESS IN
command with the Kill bit set and the Buffer Enable bit cleared
(Section 2.2.4). In this case, COMM IOP-DUP directs the pertinent
DUPll to transmit two characters made up of all ones, drop RTS, and

3-4

I

SYSTEM OPERATIONS

issues an error completion specifying Kill Complete (Table 2-2). To
restart transmission after an error completion the user program must
assign new buffer descriptor lists to the pertinent communications
line, either in conjunction with the kill operation or at some later
time.

3.2.2 DDCMP Reception

Line initialization, specification of line characteristics, and buffer
descriptor list assignments are performed by the user program in the
same manner as in DDCMP transmission operations. In addition, the
same list assignment limitation also applies; namely, up to two
buffer descriptor lists can be asssigned to each line for receive
operations. The major processing distinction between DDCMP
transmission and reception is that COMM IOP-DUP is required to do
considerable header analysis as part of receive data processing; and,
by definition, the header is received first followed by the message
body.

As previously indicated the buffer descriptor XMIT SOM and XMIT EOM
bits define the boundaries of a transmitted message only and these
bits must be zeros in buffer descriptors assigned for receive data
operations. For numbered received messages and maintenance messages,
COMM IOP-DUP determines the length of a message by extracting the byte
count from the header and using that count to differentiate between
the last data character and the two succeeding block check characters.
CRC verification must be enabled for received messages under DDCMP.

NOTE

CRC characters are not stored but are
discarded by COMM IOP-DUP after these
characters are checked.

At the beginning of a receive data operation, COMM IOP-DUP checks the
first byte in the DOCMP message header. If that byte is not an SOH,
ENQ, or OLE character, the pertinent DUPll is resynchronized. In this
case a CONTROL OUT command is not issued.

During a received data operation, COMM IOP-DUP tests the two block
check characters following the 6-byte header and the two following the
last message data character. When an erroneous eRC value is detected,
COMM IOP-DUP halts reception, posts an error completion through the
CONTROL OUT command (Section 2.3.3), and begins a search for sync
characters.

COMM IOP-DUP considers a ODCMP message to consist of a header
(unnumbered message) or a header followed by message data (numbered or
maintenance message). As a consequence, COMM IOP-DUP will only post a
completion after receiving the entire DDCMP message unless the receive
buffer assigned is smaller than the size of the DOCMP message, COMM
IOP-DUP will post a BUFFER ADDRESS OUT, with the RECEIVE EOM flag in
BSEL7 cleared, and use the next assigned buffer, if any. COMM IOP-DUP
starts storing each ODCMP message in a new buffer, thus no two DDCMP
messages are ever stored in the same buffer.

COMM IOP-DUP also checks the DDCMP header QSYNC bit, and when set, it
places the DUPll supporting the pertinent communications line in the
sync search mode at the completion of the current message.

3-5

SYSTEM OPERATIONS

If the QSYNC bit is not set, COMM IOP-DUP expects the next message to
be abutted to the current message or to be preceded by a sync sequence
that is at least a bytes long.

When a line is designated a slave station line in a multidrop
environment (bit 4 of BSEL 7 was set with a secondary address in BSEL
6 of the initializing CONTROL IN command see Figure 2-4), COMM
IOP-DUP checks the header secondary address field for each message
received on that line. If the two addresses do not compare, COMM
IOP-DUP will flush the message.

In slave station operation, COMM IOP-DUP validates the CRC before
checking the secondary station address. If the CRC is invalid, it
posts a Receive CRC error return, irrespective of secondary address
validity. COMM IOP-DUP ignores a message received at a slave station
having a valid CRC but a different secondary station address by
receiving each character and then discarding it rather than
resynchronizing the associated DUPll. In this circumstance the actual
message is received, but it is not stored in the message buffer.

When the CRC is valid and a secondary station address comparison does
occur, COMM IOP-DUP verifies the header and then posts a normal
completion to inform the user program that the pertinent line is being
addressed by the primary station. When assigning buffers to a line
enabled for secondary station reception, the user program must assign
buffers that are a minimum of 6 bytes in length. This 6-byte buffer
length is imposed by the requirement that the complete header be
received and stored before verifying the secondary address. To flush
a message with a wrong secondary station address, the value 6 is
subtracted from the internal buffer pointer to reset the pointer to
the starting address of the buffer.

As each receive buffer is completed, COMM IOP-DUP posts a completion
through a BUFFER ADDRESS OUT command and stores the accumulated byte
count in the associated buffer descriptor. If a received message is
still incomplete after the last buffer in an assigned list is
completed and a second list has not been assigned, COMM IOP-DUP will
post a No Buffer Assigned error completion through a CONTROL OUT
command (Table 2-2).

When the user program initiates a kill receive operation, COMM IOP-DUP
will terminate the current active receive buffer and will designate
the number of characters received prior to the kill by placing that
count in the Byte Count field of the associated buffer descriptor.
COMM IOP-DUP will also place the associated DUPll in the Search Sync
mode.

3.3 BIT STUFFING PROTOCOL OPERATIONS

COMM IOP-DUP is capable of transmitting and receiving messages under
virtually any currently used synchronous bit stuffing protocol
including SDLC, ADCCP, HDLC, BDLC, X.2S, and SNAP. This bit stuffing
protocol transparency is based on three requirements:

1. In receive messages the flag bytes must have a value of 176
(octal).

2. Where applicable, a secondary address must be the first a-bit
byte in the message.

3. All frames must be a multiple of a bits.

3-6

I

" -

SYSTEM OPERATIONS

In processing bit stuffing protocols, COMM IOP-DUP performs message
transmission and reception~ flag character, abort character, and CRC
character generation and detection~ and modem control. However the
actual processing of message data such as message formatting, routine
acknowledgment, and error recovery are the responsibility of the user
program and the higher level involved.

The information required at initialization time for a bit stuffing
line is the same as for a DDCMP line. For each communications line
operating as a bit stuffing line, the user program must assign a line
number and a CSR address. In addition, line characteristics such as
half/full-duplex operation, CRC enable/inhibit, and operation as a
secondary station must also be established (Figure 2-4).

Under the bit stuffing protocols, CRC calculation for transmit and
receive messages can be enabled for the pertinent line by the user
program. For operation in a bit stuffing mode, the DUPll Synchronous
Line Units associated with a COMM IOP-DUP use the CRC algorithm
CRC-CCITT. At the beginning of a receive or transmit operation,
CRC-CCITT is initialized to all ones.

For half-duplex operation under a bit stuffing protocol, transmission
will always take precedence over reception. As a consequence,
assignment of a transmit buffer by the user programs will initiate a
transmit operation on the pertinent line irrespective of a receive
operation being conducted. On this basis, it is the responsibility of
the user program to control buffer assignments so that a transmit
buffer is not assigned when a receive operation is pending or
underway.

3.3.1 Bit Stuffing Protocol Transmission

A user program starts a transmission of a message under the bit
stuffing protocols in the same manner as with DDCMP, namely by
assigning up to two buffer descriptor lists describing transmit
buffers to the pertinent communications line. The format for the
buffer descriptors within the list is the same for bit stuffing
protocols as for DDCMP (Figure 3-1). The boundaries of a transmitted
message under the bit stuffing protocols are established by the XMIT
SOM and XMIT EOM bits in the manner as under DDCMP. In addition, bit
stuffing protocols do not place any restrictions on buffer size other
than the practical restrictions of memory size and program
requirements.

Prior to a transmission, COMM IOP-DUP checks the state of the RESYNC
XMIT bit in the assigned buffer descriptor (Figure 3-1). If this bit
is set, indicating that the receiving device requires line
resynchronization, COMM IOP-DUP will transmit a string of 16 zero-bits
to resynchronize the pertinent line.

NOTE

The buffer descriptor bits XMIT SOM and
XMIT EOM must be set in the appropriate
descriptors to designate the starting
and ending buffers comprising a
transmitted message.

3-7

SYSTEM OPERATIONS

At the start of a transmitted message, and prior to retrieving the
first byte in the message, COMM IOP-DUP sets RTS, waits for CTS to be
set by the modem, then transmits a single flag character. This action
defines the beginning of the message for the receiver.

Immediately following the flag character, COMM IOP-DUP transmits all
designated buffers until a buffer descriptor is detected with the XMIT
EOM bit or the LAST DSCP bit set (Figure 3-1). COMM IOP-DUP will post
a completion for each completed buffer, through a BUFFER ADDRESS OUT
command. COMM IOP-DUP uses the byte count field in each descriptor to
determine the number of bytes to be transmitted and therefore when to
post the completion of a given buffer.

If a message is incomplete at the last buffer descriptor in an
assigned list, COMM IOP-DUP will resume transmission at the beginning
of the second assigned list until a buffer descriptor having the XMIT
EOM bit set is detected. At that point, a final completion for that
message will be posted. If a second buffer descriptor list has not
been assigned, COMM IOP-DUP will wait for the user program to assign
that list. A slow response by the user program in this circumstance
could cause the posting of a Transmit Underrun error (Table 2-2).

Upon transmitting the last data byte of a message, the pertinent DUPll
sends calculated CRC characters for the message body, if CRC
calculations are not inhibited, and transmits a flag character to
conclude the message. The DUPll supporting a given line automatically
idle marks between messages. The resulting message gap is a flag
character followed by all ones and terminated by the flag character
starting the next message.

Under the bit stuffing protocols, the modem control requirements for
half-duplex line turn-around are handled by COMM IOP-DUP. However,
the protocol aspects of half-duplex line turn-around are the
responsibility of the user program and the higher level involved.

Once a transmit operation is started, it continues until completed or
an error is detected. On half-duplex lines the user program must be
careful not to assign a transmit buffer descriptor list to a line on
which receive data is expected.

If an error occurs during transmission, COMM IOP-DUP will immediately
halt transmission, store the count of charcters transmitted in the
pertinent descriptor, and post an error through a CONTROL OUT command.
Also, COMM IOP-DUP causes the associated DUPII to enter the idle mark
mode. The user program can halt transmission by issuing a BUFFER
ADDRESS IN command with the Kill bit set and the Buffer Enable bit
cleared (Section 2.2.4). In this case COMM IOP-DUP directs the
pertinent DUPII to transmit a bit stuffing protocol abort character
(177 octal) informing the receiver of line shutdown and issues an
error completion specifying Kill Complete (Table 2-2). To restart
transmission after an error completion, the user program must assign
new buffer descriptor lists to the pertinent communications line
either in conjunction with the kill operation or at some later time.

3.3.2 Bit Stuffing Protocol Reception

Bit stuffing protocol reception can begin on a line any time after the
line is initialized, its characteristics established, and buffer
descriptor lists are assigned. COMM IOP-DUP identifies the beginning
and end of a received message by detection of the pertinent flag
character. A single receive message can encompass multiple buffer
descriptors. However, each new received message will be started at a
new buffer descriptor.

3-8

I

SYSTEM OPBRATIONS

NOTE

CRC characters are not stored but are
discarded by COMM IOP-DUP after these
characters are checked. If CRC checking
is not enabled, COMM IOP-DUP stores all
characters between the starting and
ending flags of a message.

As each receive buffer is completed, COMM IOP-DUP posts a completion
through a BUFFER ADDRESS OUT command and stores the accumulated byte
count in the associated buffer descriptor. If a received message is
still incomplete after the last buffer in an assigned list is
completed and a second list has not been assigned, COMM IOP-DUP will
post a No Buffer Assigned error completion through a CONTROL OUT
command (Table 2-2). Also, if an error, such as an invalid CRC
character is encountered, or the detection of an abort character
occurs, COMM IOP-DUP will post the appropriate error completion and
terminate the current buffer. When a given communications line is
designated as a multidrop line, with this line being designated as a
slave at initialization time, COMM IOP-DUP will initiate secondary
address checking. As previously indicated, COMM IOP-DUP, in
performing secondary address checking on received messages, expects
the secondary address to be the byte directly following the flag byte.
If the secondary address in a received message does not match the
secondary address assigned to that line, the message will be ignored
and a search initiated for the next flag. CRC validation is not
performed in this circumstance.

NOTE

In order for a DUPII to detect an abort
character, the abort character must be
preceded by a character that is neither
a flag character nor an abort character.

3.4 SHUTTING DOWN AND REENABLING A LINE

During system operation, it is sometimes necessary to shut down a
communications line. The procedures to shut down a line and to
reestablish that line should be included in the user program.

In the first step of the shutdown procedure, the user program disables
the pertinent line by issuing a CONTROL IN command with the Enable
Line bit (bit 0, BSEL7) set to zero. This command is then followed by
a two BUFFER ADDRESS IN commands with the Kill bit (bit 2, BSEL7) set
to one to deassign all transmit and receive buffers currently assigned
to the pertinent line. When all buffers are deassigned, the pertinent
line is shut down.

At this point, the line can be reenabled. To reenable a shutdown
line, the user program issues a CONTROL IN command with the Enable
Line bit set to one and with the specific fields set to establish the
required line characteristics.

3-9

SYSTEM OPERATIONS

This command is followed by a BUFFER ADDRESS IN command with the Kill
bit set zero for each buffer descriptor list to be assigned to the
pertinent line. If an existing line is to be reassigned to a new
DUPll, the user program must first issue the appropriate BASE IN
command, which is then followed by the CONTROL IN and BUFFER ADDRESS
IN commands.

Formats for the CONTROL IN and BUFFER ADDRESS IN commands are shown in
Figures 2-4 and 2-5. In addition, the specific command fields are
described in detail in Sections 2.2.3 and 2.2.4, respectively.

3-10

CHAPTER 4

COMM IOP-DUP-KMCll MICROPROGRAM LOADER

Before a COMM IOP-OUP microprogram can be initialized, it must be
loaded into the KMCll Control RAM (CRAM). Similarly, following a
power failure, the COMM IOP-OUP microcode must be reloaded and again
initialized. This is necessary because the states of the KMCll
internal registers and memories are lost as a consequence of a power
failure.

The COMM IOP-OUP microcode is supplied as a microprogram image file on
a variety of media. Two steps are required to load the COMM IOP-OUP
microcode into the KMCll CRAM:

1. Enter the COMM IOP-OUP microcode into a preassigned space in
main CPU memory.

2. Using the loader described in this chapter, load the COMM
IOP-OUP microcode contained in the main CPU memory space into
the KMCll CRAM.

The second step can be implemented in one of two ways.
KMCLOR can be run as a task by the pertinent operating
required portions of KMCLOR code can be incorporated
program.

The utility
system or the
in the user

The COMM IOP-OUP/KMCll microprogram loader is a utility that runs as a
privileged task under RSX-IIM, RSX-IIO, or lAS. If the user wants to
develop his own loader, the basic loader subroutine in Section 4.2 is
an example that can be used as a basis for development of a user
specific loader. An example is provided by the RMCll Loader (KMCLOR),
which operates on RSX-IIM (Section 4.3).

In this chapter, the RMCll is used as the reference point for all
transfers of information between the PDP-II processor program and the
microprocessor. An OUT-transfer transfers information from the KMCll
to the PDP-II program~ an IN-transfer transfers information from the
PDP-II program to the RMCll.

As indicated in Chapter 2, the RMCll CSRs are used for the exchange of
control and status information between the PDP-II program and the COMM
IOP-DUP microprogram. The only CSR having a fixed or hardware-defined
format is the maintenance register (Figure 4-1). The maintenance
register (BSELl) is used primarily for initializing and servicing the
KMCll~ two BSELI bits (RAM a and RAM I), however, are used when
loading the COMM IOP-OUP microprogram into RMCll CRAM.

RAM 0, when set, modifies the RMCll data paths for SEL4 to be the CRAM
maintenance address register, enabling CRAM read and/or write through
SEL6 to the location addressed by that register. A write is
accomplished by loading the new CRAM data into SEL6 and asserting CRAM
WRITE. CRAM read is accomplished by reading SEL6.

4-1

COMM IOP-DUP-KMCll MICROPROGRAM LOADER

CRAM WRITE, when set, allows the contents of SEL6 to be loaded into
the CRAM at the address specified by SEL4. Note that RAM I must also
be set to accomplish the loading procedure.

UNIBUS
ADDRESS

76xxx1
(BSEL1)

15 14 13 12 11 10 9

I
RUN MCLR

CRAM
RESERVED

RAM RAM STEP
WRITE 0 I J.l.P

I

Figure 4-1 Control and Status Register CSRl Bit Map

PHYSICAL

8 ADDRESS

4.1 KMCll BASIC LOADER SUBROUTINE

The KMCll loader subroutine is an example of the utility running on a
user-developed driver. (See Figure 4-2.)

WRITE THE RAM

INPUTS:

WTRAM:

10$:

15$:

20$:

25$:

RO = NUMBER OF WORDS TO WRITE
R3 = CSR ADDRESS OF KMCll
R5 = CRAM ADDRESS AT WHICH TO START LOADING
BUFF = BUFFER CONTAINING MICRO-INSTRUCTIONS
S.LOAD (STATUS) = FLAG TO INDICATE A LOAD (1) OR COMPARE (0)

IS TO BE PERFORMED

MOV
BIT
BEQ
MOV
MOV
MOV
BIS
CLR
CLR
CLR
MOV
MOV
CMP
BNE
ADD
INC
DEC
BNE
CCC
RETURN

#BUFF,R4
#S.LOAD,STATUS
15$
#2000, (R3)
R5,4(R3)
(R4),6(R3)
#20000, (R3)
(R3)
4 (R3)
6 (R3)
#2000, (R3)
R5,4(R3)
(R4),6(R3)
25$
t2,R4
R5
RO
10$

ERROR ROUTINE

BR 20$

;GET BUFFER ADDRESS
;LOAD KMC?
;NO, JUST COMPARE
;SELECT CRAM
;LOAD ADDRESS
;PUT THE DATA IN THE REGISTER
;CLOCK IT IN
;CLEAR CSR 0
;CLEAR CSR 4
;CLEAR DATA PORT
;READ CURRENT CRAM LOCATION
;LOAD ADDRESS AGAIN
;EQUAL TO WHAT JUST WRITTEN THERE?
;NO,RAM WRITE ERROR
;ADDRESS NEXT WORD IN INPUT FILE
;INCREMENT THE RAM ADDRESS
;ONE LESS WORD
;KEEP GOING
;CLEAR CONDITION CODE

;CONTINUE

Figure 4-2 KMCll Loader Subroutines

4-2

J

COMM IOP-DUP-KMCll MICROPROGRAM LOADBR

The following procedure for loading the KMCll CRAM fully uses the
KMCll hardware and provides for future compatibility:

1. Set BSELl bit 2 (RAM OUTPUT).

2. Load the right-justified PC into SEL4.

3. Load CRAM data into SEL6.

4. Set BSELl bit 5 (CRAM WRITE).

5. Clear SELO.

6. Repeat Steps 2 through 5 as necessary to load the required
instructions.

The following procedure is used to verify the CRAM:

1. Set BSELl bit 2.

2. Load the right-justified PC into SEL4.

3. Read CRAM data from SEL6.

4. Clear SELO.

5. Repeat Steps 2 through 4 as necessary to verify the
instructions.

4.2 KMCll LOADER RUNNING ON RSX-llM

Figure 4-3 is printout of KMCLDR running on RSX-llM, and Figure 4-4 is
an error printout example. In both examples, the underscored text is
system-generated and the remaining text is user-generated.

~RUN KMCLDR
KMC LOADER
CSR? 170
FILE NAME? COMIOPDUP
LOAD OR COMPARE? L
KMC LOAD COMPLETE
~

Figure 4-3 KMCll Loader Printout Example

>RUN KMCLDR
Dic LOADER
CSR? 170
FILE NAME? COMIOPDUP.TSK
LOAD OR COMPARE? C
***KMC COMPARE ERROR AT 000050 SOURCE=101020
KMC COMPARE COMPLETE
~

KMC RAM=101024 ***

Figure 4-4 KMCll Loader Error Printout Example

4-3

COMM IOP-CUP-IMCll MICROPROGRAM LOACBR

In Figures 4-3 and 4-4, the user-generated answer (170) to the
system-generated question "CSR?~ is ORed by the system hardware with
760000 to obtain the address of CSRO~ i.e., 760170. The default for
the device is SY (system device) and the default for user code is the
current user identification code.

In Figures 4-3 and 4-4, the file name is COMIOPDUP~ there are no
defaults for file name. In Figure 4-4 the file type is .TSK: the
default for file type is .TSK. For the file version, the default for
an input file is the highest-numbered existing version.

During a load operation, a compare is automatically performed and a
message is typed for all errors. If the error printout of a load
operation indicates a faulty CRAM location, DIGITAL Field Service
should be called to correct the situation.

A compare is also useful during debugging to obtain a listing of all
modified locations when CRAM locations have been changed. The error
printout example in Figure 4-4 indicates this use of the loader.
Alternatively, an error could indicate a faulty CRAM location if the
user has not modified the CRAM since loading.

4.2.1 Loader Assembly

To assemble the loader, the user should type the following statement
after the prompt, which is underlined for clarity:

> MAC KMCLDR=[l,l]EXEMC/ML,[user UIC] ,KMCLDR

NOTE

The KMCll loader must be assembled and
the microcode must be built on the same
version of RSX-llM.

4.2.2 Loader and COMM IOP-DUP Microcode Task Building

To task build the loader, the user should type the following statement
after the underlined prompt:

~ TKB KMCLDR/PR=KMCLDR

To task build the microcode, the user should type the following
statements after the underlined prompts:

TKB>file name/-HD/-MM=file name.OBJ
TKB>/
ENTER OPTIONS:
TKB>STACK=O
TKB>PAR=:O:lOOO
TKB>//

4-4

COMM IOP-DUP-KMCll MICROPROGRAM LOADER

NOTE

File name .08J is the output of the
assembler. (See Chapter 4 of the KMCll
Programmer's Manual, AA-5244B-TC.)

The output of the task builder results in a file with at least two
label blocks of 512 bytes each, followed by the microcode
instructions. These label blocks are stripped (ignored or skipped) by
the KMCLDR and should also be skipped if a user-designed utility is
used to read this file.

Detailed task building instructions are contained in the RSX-lIM Task
Builder Reference Manual, DEC-Il-OMTBA.

4-5

APPENDIX A

COMM IOP-DUP INTERRUPT HANDLING

Figure A-I is a flow chart of a suggested user program routine for the
handling of interrupt dialogue between COMM IOP-DUP and the user
program. Note that steps AO and 80 disable KMCll interrupts. In
addition, steps Al and A2 or Bl through B3 can be performed by the
user program at a priority level lower than that normally assigned to
the KMCII so that devices at a higher priority level will not be
inhibited from interrupting. This method minimizes interrupt lockout
time for other devices on the UNIBUS at the same time that the user
program is receiving and processing COMM lOP-DUP completions.

A-I

AO

A1

A2

INPUT
INTERRUPT

CLEAR
lEO
AND
lEI

SETUP
CSRs

CLEAR
Ral

SETID
CODE AND

CLEAR
RDYI

Figure A-l

COMM IOP-DUP INTERRUPT HANDLING

LEAVE
Ral
SET

YES

SET lEI AND lEO
THEN EXIT

A

YES
A

OUTPUT
INTERRUPT

CLEAR
lEI

AND
lEO

MOVE DATA IN

CSRs TO HOLDING
PLACE IN DATA

MEMORY

CLEAR
RDYO

PROCESS
COMPLETIONS

Flow Chart of a User Program Routine to Handle
COMM IOP-DUP Interrupt Processing

A-2

BO

B1

B2 I

B3

INDEX

Address,
CSR, 1-3, 1-4
slave station, 1-4, 1-5, 3-4,

3-8
UNIBUS, 1-2, 1-4, 2-1, 2-10,

2-14, 3-1

BASE IN command,
completing, 2-7
format, 2-4
general description, 1-3, 2-3
issuing, 2-4

Bit stuffing protocol,
operation, 3-6
reception, 3-7
supported, 1-1, 3-1, 3-6

Block diagram, 1-2
BSEL 2 bit 2, see IN I/O bit
BUFFER ADDRESS IN command,

completing, 2-12
format, 2-10, 2-11
general description, 1-3, 2-10
issuing, 2-11

BUFFER ADDRESS OUT command,
format, 2-15
general description, 1-4, 2-14

Buffer descriptor list,
assigning, 1-3, 3-1, 3-4,

3-5, 3-9
assigning address of, 2-12
buffer address contained in,

1-5
buffer assigned to a line

through the, 2-10
byte count contained in, 1-5
deassigned, 2-11, 3-9
end of, 3-3
end of message flag contained

in, 1-5
format, 3-1, 3-2
last descriptor in a list, 3-3
length limit, 3-1
maximum receive, 1-3, 3-1
maximum transmit, 1-3, 3-1
reassigned, 2-11
start of message flag contained

in, 1-5
sync character contained in,

1-5
termination of, 1-4, see

also Data transfer
three word blocks of, 2-11, 3-1
word aligned, 2-11

Buffers,
assigned as receive or

transmit, 2-10, 2-12

Buffers (Cont.),
Enable bit, 2-11, 3-4
sequence to assign, 2-12
sequence to kill all assigned

to a line, 2-12, 3-9

Clear To Send (CTS), 3-4
Command structure, 1-3, 2-1
Commands,

BASE IN, 1-3, 2-3
BUFFER ADDRESS IN, 1-3, 2-10
BUFFER ADDRESS OUT, 1-4, 2-14
CONTROL IN, 1-3, 2-7
CONTROL OUT, 1-4, 2-15
Header, 1-2, 2-3
INITIALIZATION, 1-3, 2-2
Input, 2-2
Output, 2-13

Communications line,
characteristics, 1-3, 1-4,

2-7, 3-4, 3-5, 3-7, 3-9
control on half-duplex,

3-3, 3-8
date rate, 1-5
disabling, 1-3, 2-8, 3-9
Enable Line bit, 2-8
enabling, 1-3, 2-8, 3-9
half-duplex/full-duplex,

1-4, 2-8, 3-3, 3-4, 3-7
number assignment, 1-3, 2-4,

2-7
number field, 2-3, 2-7, 2-10
number for each interface,

1-3, 2-4
reestablish, 3-9
shut down, 3-9

Control and Status Register -
see CSR addresses

CONTROL IN command,
completing, 2-9
format, 2-7
general description, 1-3, 2-7
issuing, 2-9

CONTROL OUT command,
format, 2-7
general description, 1-4, 2-7

Control random access memory,
see CRAM

CRAM, 4-1
CRC calculations,

algorithm used, 3-4
when performed, 2-8, 3-5,

3-7, 3-9
when transmitted, 3-4, 3-5,

3-7

Index-l

INDEX (CONT.)

CSR addresses,
assigned by BASE IN command,

1-4, 2-7
Control and Status Register,

4-2
for each DUP-ll, 1-3, 2-4
initializing KMCll, 4-1
maintenance register, 4-1
modification for micropro-

gram loading, 4-1, 4-2

Data Set Ready bit, 2-16
Data transfer,

error completion of, 1-5, 2-13,
2-15

into CSRs, 1-3, 2-3, 2-4, 2-7,
2-11

maximum throughput rate, 1-5
normal completion of, 1-5,

2-13, 2-14
out of "CSRs, 1-3, 2-13, 2-15,

2-16
throughput rate, 1-5, 2-9 -

see also Communications line
user program detection of

transmit or receive, 2-14,
2-15, 2-16

DDCMP,
DLE, 3-5
ENQ, 3-5
maintenance messages, 3-4
numbered messages, 1-6, 3-4
operations, 1-6, 3-3
quick sync bit, 1-6
reception, 1-6, 3-5
SOH, 3-5
search sync mode, 2-16, 3-6
transmission, 1-6, 3-4
unnumbered messages, 1-6, 3-4

Digital Data Communications
Message Protocol, see DDCMP

Direct memory access device,
see NPR device

DSR, see Data Set Ready bit

Enable bits,
buffers, see Buffers
communications line, see

Communications line
Error code, 2-17
Errors,

block check, 1-6, 3-4
detection of, 2-13
effect on DDCMP or bit-stuffing

operations, 2-16
forced termination of transfers

due to, 2-13

Errors (Cont.),
header, 1-6
locating in a message, 2-15
transmit/receive, 1-4, 1-5,

3-4, 3-9

Full-duplex, see Communications
line

Half-duplex, see Communications
line

Header, see Commands

IN I/O bit, 2-15
INITIALIZATION command, 1-3, 2-2
Initialization sequence, 1-3, 2-3
Input commands,

field descriptions, 2-2
format, 2-2

Instruction sequence example,
to initialize the first DUP-ll,

2-7
to initialize the second and

subsequent DUP-lls, 2-7
Internal completion stack,

overflow bit, 2-15, 2-16
Interrupts,

by COMM IOP-DUP, 2-3 through
2-6

by main CPU, 2-13, 2-14
dialogue, A-l
overhead, 2-6

Kill bit, 2-11, 3-4, 3-8, 3-9
Kill complete condition, 2-16,

2-18, 3-8
KMCll microprocessor,

initializing, 1-3, 1-4, 2-2
Master Clear, 1-4, 2-3

Loader,
assembly of, 4-4
description of, 4-1
error printout example, 4-3
printout example, 4-3
running on RSX-llM, 4-3
subroutines, 4-2

Index-2

I

INDEX (CONT.)

!1essage boundaries, 2-15, 3-2,
3-5, 3-7, 3-8

Microprogram,
errors, 4-3
initiation, 1-2
loading, 1-1, 4-1 through 4-4
task building, 4-4

Modern control functions, 1-6, 3-4
Multidrop,

line, 2-8, 3-3, 3-9
slave station drop, 1-5
systems, 1-5

Nonprocessor Requests (NPR),
1-3, 3-1, 3-2

Noninterrupt mode, 2-14
NPR device, 1-1, 2-1

Output commands,
error completions, see Data

transfer
formats, 2-15, 2-16
normal completions, see Data

transfer
Overflow bit, see Internal

completion stack

Polling interval, 2-8
Precedence,

transmit over receive, 3-4
Protocol,

bit-stuffing, see Bit stuffing
protocols

DDCMP, see DDCMP
effects of error on, 2-16
header, see DDCMP
support, see DDCMP or Bit

stuffing protocols

Received messages, 3-5
Receiver overrun, 2-9, 2-18
Request To Send (RTS), 3-4

Secondary station address, 1-6,
2-8, 3-6, 3-9

Slave station address, 1-6,
2-8, 3-6, 3-9

Synchronous receive/transmit
sequence, 1-4

System,
applications, 1-5
concept, 1-1
operation, 1-2, 3-1
overview, 1-1
programming, 2-1

Task building, see Microprogram
Transmitter underrun, 2-9,

2-18, 3-3, 3-8

UNIBUS,
address, 1-3, 1-4, 2-1, 2-10,

2-15, 3-2
bandwidth, 1-5

User program, 1-2 - see also
Data transfer

Word aligned, 2-11
Writeable control store,

see CRAM

Index-3

•
'! ,=
I.:
,£

'f ,-," ..
Ii:

:1
Iii:

READER'S COMMENTS

COMM IOP-DUP
Programming Manual
AA-5670A-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Non-programmer interested in computer concepts and capabilities

Name Date ______________________ _

Organization __ _

Street __ __

City _________________________ State ____________ Zip Code ____________ _

or
Country

.---·Fold lIere--

.--- Do Not Tear - Fold lIere and Staple --.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~DmDDmD
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

,

COMM IOP-DUP Release Notes
Update 41

COMM IOP-DUP Vl.O

Problem Statement:

AD-D367A-Tl

Messages received in DDCMP mode by the Comm IOP-DUP are randomly
ignored if they are abutted to the preceeding message. A message
is defined to be abutted if the first character of the DDCMP
heade rimmed i ately follows the last CRC char acte r 0 f the
preceding message without any intervening sync characters. The
DDCMP protocol will be able to recover using the REP message
after the acknowledgment timeout but throughput will be impacted
significantly.

Technical Analysis:

The microcode will randomly decide to search for sync after the
end of a DDCMP message instead of using the QSYNC flag. No
problem exists if it does not decide to search for sync and the
next message is not abutted, since it will initiate a search for
sync when it finds the next character is an invalid DDCMP start
of header. character. However, if multiple messages are abutted
and the microcode initiates a search for sync after one of them,
then the following abutted messages will be ignored until a
message preceded by sync characters is received.

Since the lost messages will not be acknowledged by the PDP-II
DDCMP module, the sending station will timeout and cause these
messages to be retransmitted.

Fix:

If the user has an RSX-11M/D or lAS system, the ZAP utility can
be used to patch the microcode. The procedure is as follows:

)ZAP
ZAP>COMIOPDUP.TSK/AB

3:2000/ .
003:002000/ 117567

60531
-(CR)
003:002002/ 010572

114762
-3:3744/
003:003744/ 000000

117564
-(CR)
003:003746/ 000000

100572
-X

For other users, you must patch the microcode file yourself. The
file consists of six(6), 256 word blocks. The specific words to
be changed are as follows:

Block
5
5
6
6

Offset in the block
-0-

1
242.
243.

Current
117567
010572
000000
000000

New
060531
114762
117564
100572

The Current and New values are given in octal, all the rest are
decimal. The Offset is the offset from the start of the block in
words.

