VT $24 \bigcirc_{\text {serese }}$

Programmer Pocket Guide

VT 24O.

Programmer Pocket Guide

Digital Equipment Corporation

1st Edition, September 1983

Copyright © 1983 by Digital Equipment Corporation. All Rights Reserved.
Printed in U.S.A.
The reproduction of this material, in part or whole, is strictly prohibited. For copy information, contact the Educational Services Department, Digital Equipment Corporation, Maynard, Massachusetts 01754.

The information in this document is subject to change without notice. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts.
digital
DEC
DECmate
DECnet
DECUS
DECwriter
DIGITAL

LA RSTS
MASSBUS RSX
PDP UNIBUS
P/OS VAX
Professional VMS
Rainbow VT
Work Processor

CONTENTS

Character Encoding 2
7-Bit Code 2
7-Bit ASCII Code Table 2
8 -Bit Code 3
8-Bit Code Table 3
DEC Multinational CharacterSet(CO and GL) 4
DEC Multinational CharacterSet(C1 and GR) 5
UK National Character Set 6
DEC Special Graphics 7
Display Controls Font 8
Escape Sequences 10
Control Seqences 10
Device Control Strings 10
Transmitted Codes 10
Main Keypad Function Keys 10
Editing Keys 11
Cursor Control Keys 11
Auxiliary Keypad Keys 12
Top Row Function Keys 13
Keys Used to Generate 7-Bit Control Characters 14
Received Codes 15
Compatibility Level (DECSCL) 15
CO (ASCII) Control Character Recognized 15
C1 Control Characters Recognized 17
Character Set Selection (SCS) 18
Designating "Hard" Character Sets 18
Designating "Soft" Character Sets 19
Invoking Character Sets Using Lock Shifts 19
Invoking Character Sets Using Single Shifts 20
Select C1 Control Transmission 20
Terminal Modes 21
Cursor Positioning 22
Tab Stops 24
Select Graphic Rendition (SGR) 24
Select Character Attributes (DECSCA) 25
Line Attributes 25
Editing 26
Erasing 26
Set Top and Bottom Margins (DECSTBM) 27
Printing 28
\qquad
User Defined Keys (DECUDK) 29
Down-Line Loading Characters (DRCS) 30
DECDLD Parameter Characters 30
Clearing a Down-Line Loaded Character Set 31
Reports 32
Device Attributes (DA) 32
Device Status Report (DSR) 33
DSR - Printer Port 33
DSR - User Defined Keys (VT200 mode only) 34
Identification (DECID) 34
ReGIS Graphics Protocol Controls Mode 34
Terminal Reset 35
Tests (DECTST) 35
Adjustments (DECALN) 35
VT52 Escape Sequences 36
ReGIS 37
ReGIS Command Summary 37
ReGIS Power On/Reset Default Values
Summary 38
Screen Control Command Summary 40
Position Command Summary 42
Write Control Command Summary 42
Vector Commands Summary 44
Curve Commands Summary 45
Text Command Summary 46
Load Command Summary 49
Macrograph Summary 49
Report Command Summary 50
Report Command Error Condition Option Responses 50
4010/4014 51
Entering/Exiting 4010/4014 Mode 51
Alpha Mode Summary 51
Graph and Point Plot Mode Summary 52
Incremental Plot Mode 55
Gin Mode 56
Bypass Condition 56

This Pocket Guide provides a summary of the information contained in the VT240 Programmer's Reference Manual EK-VT240-RM which can be ordered from DIGITAL. It is provided for use by people with a knowledge of computer programming to access the VT240 features.

CHARACTER ENCODING

7-Bit Code

7-Bit ASCII Code Table

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& column \& \multicolumn{2}{|l|}{0} \& \multicolumn{2}{|l|}{1} \& \multicolumn{2}{|l|}{2} \& \multicolumn{2}{|l|}{3} \& \multicolumn{2}{|l|}{4} \& \multicolumn{2}{|c|}{5} \& \multicolumn{2}{|l|}{6} \& \multicolumn{2}{|l|}{7} \\
\hline \& \& \multicolumn{2}{|l|}{\({ }^{\circ}{ }^{\circ}\)} \& \multicolumn{2}{|l|}{\(\bigcirc{ }^{\circ}\),} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{\({ }^{\circ} 1\)} \& \multicolumn{2}{|c|}{1 。} \& \multicolumn{2}{|l|}{'。} \& \multicolumn{2}{|l|}{1 ,} \& \multicolumn{2}{|l|}{',} \\
\hline 0 \& 0000 \& NUL \& : \& DLE \& \[
\begin{array}{|l|}
\hline 20 \\
16 \\
10 \\
\hline
\end{array}
\] \& SP \& \[
\begin{array}{|l|}
\hline 40 \\
32 \\
20 \\
\hline
\end{array}
\] \& 0 \& \[
\left[\begin{array}{l}
60 \\
48 \\
30
\end{array}\right.
\] \& @ \& \[
\begin{array}{|c|}
\hline 100 \\
64 \\
40
\end{array}
\] \& P \& \[
\begin{gathered}
180 \\
80 \\
50 \\
50
\end{gathered}
\] \& , \& \[
\left.\begin{array}{l}
190 \\
96 \\
60
\end{array}\right]
\] \& p \& \begin{tabular}{|l|}
160 \\
112 \\
70 \\
\hline 10
\end{tabular} \\
\hline 1 \& 0001 \& SOH \& \(!\) \& \[
\underset{\text { (xoN) }}{\mathrm{DCO}}
\] \& \[
\begin{array}{|l|}
\hline 21 \\
17 \\
17 \\
\hline
\end{array}
\] \& ! \& \[
\begin{array}{|l|}
\hline 41 \\
33 \\
21 \\
\hline
\end{array}
\] \& 1 \& \[
\begin{array}{|}
61 \\
\hline 61 \\
49 \\
\hline
\end{array}
\] \& A \& \[
\begin{array}{|c|}
\hline 10 \\
\hline 65 \\
61 \\
\hline 19 \\
\hline
\end{array}
\] \& 0 \& \[
\begin{array}{|c|}
\hline 181 \\
81 \\
81 \\
51 \\
\hline
\end{array}
\] \& a \& \[
\begin{array}{|r|}
\hline 191 \\
97 \\
97 \\
\hline 61 \\
\hline
\end{array}
\] \& 9 \& \(\begin{array}{r}112 \\ 111 \\ 111 \\ 711 \\ \hline 18\end{array}\) \\
\hline 2 \& 0010 \& STX \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& \hline
\end{aligned}
\] \& DC2 \& \[
\begin{array}{|l|}
\hline 22 \\
18 \\
12 \\
\hline
\end{array}
\] \& " \& \[
\begin{array}{|l|}
\hline 42 \\
34 \\
22 \\
\hline
\end{array}
\] \& 2 \& \[
\begin{array}{|l|}
\hline 62 \\
50 \\
50 \\
32 \\
\hline
\end{array}
\] \& B \& \[
\begin{array}{|l|}
\hline 102 \\
66 \\
\hline 42 \\
\hline
\end{array}
\] \& R \& \[
\begin{array}{|c|}
\hline 122 \\
82 \\
52 \\
\hline
\end{array}
\] \& b \& \[
\begin{array}{|c|}
\hline 192 \\
98 \\
62 \\
\hline
\end{array}
\] \& r \& \\
\hline 3 \& 0011 \& ETX \& \[
\begin{array}{r}
3 \\
3 \\
\hline
\end{array}
\] \& DCOFF) \& \[
\begin{aligned}
\& 23 \\
\& 19 \\
\& 13 \\
\& \hline
\end{aligned}
\] \& \# \& \[
\begin{array}{|l}
22 \\
43 \\
35 \\
23
\end{array}
\] \& 3 \& \[
\begin{array}{|l|}
\hline 63 \\
\hline 63 \\
51 \\
\hline
\end{array}
\] \& C \& \[
\left.\begin{array}{|}
42 \\
103 \\
67 \\
63
\end{array} \right\rvert\,
\] \& S \& \[
\begin{array}{|c}
123 \\
83 \\
83 \\
53 \\
\hline
\end{array}
\] \& c \& \[
\begin{aligned}
\& 62 \\
\& \hline 143 \\
\& 99 \\
\& 63
\end{aligned}
\] \& s \& \begin{tabular}{|c|}
16 \\
\hline 163 \\
115 \\
73 \\
\hline 16
\end{tabular} \\
\hline 4 \& 0100 \& EOT \& \[
\begin{aligned}
\& 4 \\
\& 4 \\
\& \hline
\end{aligned}
\] \& DC4 \& \[
\begin{array}{|l|}
\hline 24 \\
20 \\
14 \\
\hline
\end{array}
\] \& \$ \& \[
\begin{array}{|l|}
\hline 44 \\
36 \\
24 \\
\hline
\end{array}
\] \& 4 \& \[
\begin{array}{|l|}
\hline 64 \\
52 \\
54 \\
\hline
\end{array}
\] \& D \& \[
\begin{array}{|c|}
\hline 104 \\
68 \\
44 \\
\hline
\end{array}
\] \& T \& \[
\begin{array}{|c}
124 \\
84 \\
84 \\
\hline
\end{array}
\] \& d \& \[
\begin{array}{|c|}
\hline 144 \\
100 \\
64
\end{array}
\] \& \(t\) \& 164

116
74
714

\hline 5 \& 0101 \& ENQ \& $$
\begin{aligned}
& 5 \\
& 5
\end{aligned}
$$ \& NAK \& \[

$$
\begin{aligned}
& 25 \\
& 21 \\
& 21 \\
& 15
\end{aligned}
$$

\] \& \% \& \[

\left\lvert\, $$
\begin{aligned}
& 45 \\
& 45 \\
& 37 \\
& 25
\end{aligned}
$$\right.

\] \& 5 \& \[

$$
\begin{array}{|l|}
\hline 65 \\
\hline 53 \\
35 \\
\hline
\end{array}
$$

\] \& E \& \[

$$
\begin{array}{|c|}
\hline 105 \\
69 \\
45 \\
\hline
\end{array}
$$

\] \& U \& \[

\left.$$
\begin{array}{|l|}
\hline 125 \\
85 \\
85
\end{array}
$$ \right\rvert\,

\] \& e \& \[

\left|$$
\begin{array}{c}
145 \\
101 \\
65
\end{array}
$$\right|

\] \& u \& | 165 |
| :---: |
| 117 |
| 75 |
| 7 |

\hline 6 \& 0110 \& ACK \& $$
\begin{aligned}
& 6 \\
& 6 \\
& \hline
\end{aligned}
$$ \& SYN \& \[

$$
\begin{array}{|l}
26 \\
22 \\
16 \\
\hline
\end{array}
$$

\] \& 8 \& \[

$$
\begin{array}{|l|}
\hline 46 \\
38 \\
26 \\
\hline
\end{array}
$$

\] \& 6 \& \[

$$
\begin{aligned}
& 66 \\
& 54 \\
& 36 \\
& \hline
\end{aligned}
$$

\] \& F \& \[

$$
\begin{array}{|c|}
\hline 106 \\
70 \\
46 \\
\hline
\end{array}
$$

\] \& V \& \[

$$
\begin{array}{|l|}
\hline 186 \\
86 \\
56 \\
\hline
\end{array}
$$

\] \& f \& \[

$$
\begin{array}{|c|}
\hline 146 \\
102 \\
68 \\
\hline
\end{array}
$$

\] \& v \& | 166 |
| :---: |
| 118 |
| 76 |
| 76 |
| 16 |

\hline 7 \& 0 1 11 \& BEL \& $$
1
$$ \& ETB \& \[

$$
\begin{array}{|l|}
\hline 10 \\
27 \\
23 \\
12
\end{array}
$$

\] \& , \& \[

\left.$$
\begin{array}{|l|}
\hline 20 \\
39 \\
39 \\
27
\end{array}
$$ \right\rvert\,

\] \& 7 \& \[

$$
\begin{array}{|l|}
\hline 67 \\
\hline 67 \\
35 \\
37
\end{array}
$$

\] \& G \& \[

\left.$$
\begin{array}{|c|}
\hline 007 \\
71 \\
77 \\
\hline 1
\end{array}
$$ \right\rvert\,

\] \& W \& \[

$$
\begin{aligned}
& 127 \\
& 87 \\
& 57 \\
& 57
\end{aligned}
$$

\] \& g \& \[

\left.$$
\begin{array}{|c|}
147 \\
140 \\
103 \\
67
\end{array}
$$ \right\rvert\,

\] \& w \& | 161 |
| :---: |
| 119 |
| 77 |
| 17 |

\hline 8 \& 1000 \& BS \& $$
\begin{array}{|c|}
\hline 10 \\
8 \\
8 \\
\hline
\end{array}
$$ \& CAN \& \[

$$
\begin{array}{|l|l|}
\hline 30 \\
24 \\
18 \\
\hline
\end{array}
$$

\] \& 1 \& \[

$$
\begin{array}{|l|}
\hline 50 \\
40 \\
40 \\
28 \\
\hline
\end{array}
$$

\] \& 8 \& \[

$$
\begin{array}{|l|}
\hline 7 i \\
50 \\
56 \\
\hline
\end{array}
$$

\] \& H \& \[

$$
\begin{array}{|c|}
\hline 110 \\
72 \\
78 \\
\hline 8 \\
\hline
\end{array}
$$

\] \& X \& \[

$$
\begin{array}{|l|}
\hline 180 \\
\hline \\
\hline 88 \\
\hline 88 \\
\hline 8
\end{array}
$$

\] \& h \& \[

$$
\begin{array}{|l|}
\hline 150 \\
150 \\
\hline 68 \\
\hline 8
\end{array}
$$
\] \& x \& (170

\hline 9 \& 1001 \& HT \& $$
\begin{array}{|l|}
\hline 11 \\
9 \\
9
\end{array}
$$ \& EM \& \[

$$
\begin{array}{|l|l|}
\hline 23 \\
25 \\
19
\end{array}
$$

\] \&) \& \[

$$
\begin{aligned}
& 51 \\
& 41 \\
& 49 \\
& \hline 1
\end{aligned}
$$

\] \& 9 \& \[

$$
\begin{array}{|l|}
\hline 11 \\
57 \\
39
\end{array}
$$

\] \& 1 \& \[

$$
\begin{array}{|c|}
111 \\
73 \\
49 \\
\hline
\end{array}
$$

\] \& Y \& \[

\left.$$
\begin{array}{|c|}
\hline 139 \\
59 \\
\hline 9
\end{array}
$$ \right\rvert\,

\] \& i \& \[

$$
\begin{array}{|c|}
\hline 15 \\
105 \\
69 \\
\hline
\end{array}
$$

\] \& y \& | 171 |
| :--- |
| 121 |
| 79 |
| 12 |

\hline 10 \& 1010 \& LF \& $$
\begin{array}{|l|}
\hline 12 \\
10 \\
10 \\
\hline
\end{array}
$$ \& SUB \& \[

$$
\begin{array}{|l|}
\hline 32 \\
26 \\
1 A \\
\hline
\end{array}
$$

\] \& * \& \[

$$
\begin{array}{|l|}
\hline 52 \\
42 \\
2 A \\
\hline
\end{array}
$$

\] \& : \& \[

\left|$$
\begin{array}{l}
72 \\
58 \\
5 A \\
38
\end{array}
$$\right|

\] \& J \& \[

$$
\begin{array}{|l|}
\hline 12 \\
74 \\
44 \\
\hline
\end{array}
$$

\] \& z \& \[

$$
\begin{array}{|l|}
\hline 132 \\
90 \\
5 A \\
\hline
\end{array}
$$

\] \& j \& \[

$$
\begin{array}{|c|}
152 \\
106 \\
6 A \\
\hline 106 \\
\hline
\end{array}
$$
\] \& z \& 172

112
7×1
7

\hline 11 \& 1011 \& VT \& $$
\begin{array}{|c|}
\hline \\
\hline 13 \\
11 \\
8
\end{array}
$$ \& ESC \& \[

\left.$$
\begin{array}{|l|}
\hline 33 \\
27 \\
18
\end{array}
$$ \right\rvert\,

\] \& + \& \[

$$
\begin{array}{|l|l}
\hline 43 \\
43 \\
43 \\
28
\end{array}
$$

\] \& ; \& \[

\left.$$
\begin{array}{|l|}
\hline 73 \\
59 \\
38
\end{array}
$$ \right\rvert\,

\] \& K \& \[

$$
\begin{array}{|l|}
\hline 113 \\
75 \\
48
\end{array}
$$

\] \& [\& \[

\left.$$
\begin{array}{|c|}
133 \\
99 \\
98 \\
58
\end{array}
$$ \right\rvert\,

\] \& k \& \[

$$
\begin{array}{|l|}
\hline 153 \\
107 \\
68 \\
\hline 8
\end{array}
$$
\] \& \{ \& (123

\hline 12 \& 1100 \& FF \& $$
\begin{gathered}
14 \\
14 \\
12 \\
c
\end{gathered}
$$ \& FS \& \[

$$
\begin{array}{|l|}
\hline 38 \\
28 \\
10 \\
\hline
\end{array}
$$

\] \& , \& \[

$$
\begin{array}{|l}
\hline 54 \\
44 \\
20 \\
\hline
\end{array}
$$

\] \& $<$ \& \[

$$
\begin{array}{|l|}
\hline 74 \\
60 \\
\hline 3 \\
\hline
\end{array}
$$

\] \& L \& \[

$$
\begin{array}{|l|}
\hline 164 \\
76 \\
4 c \\
\hline
\end{array}
$$

\] \& \} \& \[

$$
\begin{array}{|c|}
\hline 139 \\
92 \\
59 \\
\hline
\end{array}
$$

\] \& 1 \& \[

$$
\begin{array}{|c|}
\hline 154 \\
150 \\
\hline 60 \\
\hline
\end{array}
$$

\] \& 1 \& | 174 |
| :--- |
| 124 |
| 124 |
| 712 |

\hline 13 \& 1101 \& CR \& $$
\begin{array}{r}
15 \\
15 \\
13 \\
\hline
\end{array}
$$ \& GS \& \[

$$
\begin{aligned}
& 35 \\
& 29 \\
& 10 \\
& \hline
\end{aligned}
$$

\] \& - \& \[

$$
\begin{array}{|l}
\hline 55 \\
\hline 55 \\
45 \\
\hline
\end{array}
$$

\] \& $=$ \& \[

$$
\begin{aligned}
& 75 \\
& 61 \\
& 30 \\
& \hline
\end{aligned}
$$

\] \& M \& \[

$$
\begin{array}{|c}
\hline 15 \\
\hline 7 \\
40 \\
\hline
\end{array}
$$

\] \&] \& \[

$$
\begin{array}{|l}
\hline 135 \\
93 \\
93 \\
50 \\
\hline
\end{array}
$$

\] \& m \& \[

$$
\begin{array}{|c|}
\hline 15 \\
\hline 150 \\
\hline 109 \\
\hline 60 \\
\hline
\end{array}
$$

\] \& \} \& | 175 |
| :--- |
| 115 |
| 70 |
| 70 |
| 18 |

\hline 14 \& 1110 \& SO \& $$
\begin{array}{|c|}
\hline 16 \\
14 \\
\hline
\end{array}
$$ \& RS \& \[

$$
\begin{aligned}
& 36 \\
& 30 \\
& 16
\end{aligned}
$$

\] \& \& \[

$$
\begin{array}{|l|}
\hline 56 \\
46 \\
46 \\
\hline 6
\end{array}
$$

\] \& > \& \[

$$
\begin{aligned}
& 76 \\
& 62 \\
& 3 E
\end{aligned}
$$

\] \& N \& \[

$$
\begin{aligned}
& 116 \\
& 78 \\
& 78 \\
& 48
\end{aligned}
$$

\] \& \wedge \& \[

$$
\begin{array}{|c|}
\hline 136 \\
94 \\
55 \\
\hline 5
\end{array}
$$

\] \& n \& \[

$$
\begin{array}{|c|}
\hline 156 \\
110 \\
6 E \\
\hline
\end{array}
$$
\] \& \sim \&

\hline 15 \& 1 1 1 1 \& SI \& $$
\begin{array}{|c|}
\hline 17 \\
15 \\
\hline
\end{array}
$$ \& US \& \[

$$
\begin{aligned}
& 37 \\
& 31 \\
& 17 \\
& \hline
\end{aligned}
$$

\] \& 1 \& \[

$$
\begin{aligned}
& 57 \\
& 47 \\
& 47 \\
& \hline
\end{aligned}
$$

\] \& ? \& \[

$$
\begin{aligned}
& 77 \\
& 78 \\
& 63 \\
& 3 F
\end{aligned}
$$

\] \& 0 \& \[

$$
\begin{aligned}
& 17 \\
& 79 \\
& 79 \\
& 45 \\
& \hline
\end{aligned}
$$

\] \& - \& \[

$$
\begin{array}{|c|}
\hline 137 \\
95 \\
55 \\
\hline
\end{array}
$$

\] \& - \& \[

$$
\begin{array}{|c}
157 \\
111 \\
6 F \\
\hline 6
\end{array}
$$
\] \& DEL \& (177

\hline
\end{tabular}

KEY
character ${ }^{\text {octal }}$

8-Bit Code

8-Bit Code Table

DEC Multinational Character Set (CO and GL Codes)

	column	0		1		2		3		4		5		6		7	
0	0000	NUL	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \\ \hline \end{array}$	SP	$\begin{array}{\|l\|l\|} \hline 40 \\ 32 \\ 20 \\ \hline \end{array}$	0	$\begin{array}{\|l\|} \hline 60 \\ 48 \\ \hline 30 \\ \hline \end{array}$	@	$\begin{array}{\|l\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{aligned} & 120 \\ & 80 \\ & 50 \\ & \hline \end{aligned}$,	$\begin{array}{\|c\|} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	p	\| $\|$160 112 70 70 10
1	0001	SOH		DC1	$\left.\begin{array}{\|} 21 \\ 17 \\ 11 \\ 11 \end{array} \right\rvert\,$!	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \\ \hline \end{array}$	1	$\begin{array}{\|} 51 \\ 69 \\ 49 \\ 31 \end{array}$	A	$\left.\begin{array}{\|c\|} \hline 101 \\ 65 \\ 41 \end{array}\right]$	0	$\begin{aligned} & 121 \\ & 81 \\ & 81 \\ & 51 \\ & \hline \end{aligned}$	a	$\begin{aligned} & 141 \\ & 97 \\ & 97 \\ & 61 \end{aligned}$	9	(161 113 71 18
2	0010	STX	$\begin{array}{\|l\|} \hline 2 \\ 2 \\ 2 \\ \hline \end{array}$	DC2.	$\begin{array}{\|} 22 \\ 18 \\ 12 \\ 1 \\ \hline \end{array}$	'	$\begin{aligned} & 42 \\ & 34 \\ & 22 \\ & \hline \end{aligned}$	2	$\begin{array}{\|l\|} \hline 62 \\ 50 \\ 32 \\ \hline \end{array}$	B	$\begin{aligned} & 102 \\ & 66 \\ & 42 \\ & \hline \end{aligned}$	R	$\begin{aligned} & 182 \\ & 82 \\ & 52 \\ & \hline \end{aligned}$	b	$\begin{aligned} & 192 \\ & 98 \\ & 62 \\ & \hline \end{aligned}$	r	162 114 72 72 18
3	0011	ETX	$\begin{array}{\|l\|} \hline 3 \\ 3 \\ 3 \\ \hline \end{array}$	$\mathbf{D C O F F}_{1}$	$\begin{array}{\|l\|} \hline 23 \\ 19 \\ 13 \\ \hline \end{array}$	\#	$\begin{array}{\|l} \hline 43 \\ 35 \\ 23 \\ \hline \end{array}$	3	$\begin{aligned} & 63 \\ & 51 \\ & 33 \\ & \hline \end{aligned}$	C	$\begin{array}{\|} \hline 103 \\ 67 \\ 43 \\ \hline \end{array}$	S	$\begin{array}{r} 183 \\ 83 \\ 53 \\ \hline \end{array}$	c	$\begin{aligned} & 143 \\ & 99 \\ & 93 \\ & \hline \end{aligned}$	s	(163 115 73 717
4	0100	EOT	$\begin{array}{\|l\|} \hline 4 \\ 4 \\ \hline \end{array}$	DC4	$\begin{array}{\|l\|} \hline 24 \\ 20 \\ 14 \\ \hline \end{array}$	\$	$\begin{aligned} & 44 \\ & 36 \\ & 34 \\ & \hline \end{aligned}$	4	$\begin{array}{\|l} \hline 64 \\ 52 \\ 34 \\ \hline \end{array}$	D	$\begin{array}{\|l\|} \hline 106 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{aligned} & 124 \\ & 84 \\ & 84 \\ & \hline \end{aligned}$	d	$\begin{aligned} & 144 \\ & 100 \\ & 64 \\ & \hline \end{aligned}$	t	(164164 116 74 18
5	0101	ENQ	$\begin{array}{\|l\|} \hline 5 \\ 5 \\ \hline \\ \hline \end{array}$	NAK	$\left.\begin{aligned} & 25 \\ & 21 \\ & 15 \end{aligned} \right\rvert\,$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 25 \\ & \hline \end{aligned}$	5	$\begin{array}{\|l\|} \hline 65 \\ 53 \\ \hline \end{array}$	E	$\left.\begin{gathered} 105 \\ 69 \\ 45 \end{gathered} \right\rvert\,$	U	$\begin{aligned} & 125 \\ & 85 \\ & 85 \\ & \hline \end{aligned}$	e	$\begin{array}{\|c\|} \hline 145 \\ 105 \\ \hline 65 \\ \hline \end{array}$	u	\|165 117 75 17
6	0110	ACK	$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 6 \\ \hline \end{array}$	SYN	$\begin{array}{\|l\|} \hline 26 \\ 22 \\ 16 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 46 \\ \hline \end{array}$	6	$\begin{array}{\|l\|} \hline 66 \\ 54 \\ 36 \\ \hline \end{array}$	F	$\begin{array}{r} 106 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|c} 126 \\ 86 \\ 56 \\ \hline 5 \end{array}$	f	$\begin{aligned} & 146 \\ & 102 \\ & 106 \\ & \hline \end{aligned}$	v	\|116 188 76 16
7	0111	BEL	$\begin{array}{\|l\|} \hline 7 \\ 7 \\ 7 \end{array}$	ETB	$\left.\begin{aligned} & 27 \\ & 23 \\ & 27 \\ & 17 \end{aligned} \right\rvert\,$,	$\left.\begin{array}{\|l\|} \hline 0 \\ \hline 7 \\ 39 \\ 27 \end{array} \right\rvert\,$	7	$\begin{aligned} & 67 \\ & \hline 65 \\ & 57 \\ & 37 \end{aligned}$	G	$\left\|\begin{array}{c} 107 \\ 107 \\ 77 \\ 47 \end{array}\right\|$	W	$\begin{array}{r} 127 \\ \hline 87 \\ 87 \\ 57 \end{array}$	g	$\left.\begin{gathered} 147 \\ 103 \\ 103 \\ 67 \end{gathered} \right\rvert\,$	w	167 119 71 17
8	1000	BS	$\begin{array}{\|c\|} \hline 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|c\|} 30 \\ 24 \\ 18 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 50 \\ 40 \\ 28 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 70 \\ 56 \\ \hline 38 \\ \hline \end{array}$	H	$\begin{array}{\|c\|} 110 \\ 72 \\ 48 \\ 48 \\ \hline \end{array}$	X	$\begin{aligned} & 130 \\ & 88 \\ & \hline 88 \\ & \hline \end{aligned}$	h	$\begin{aligned} & 150 \\ & 104 \\ & 68 \\ & \hline \end{aligned}$	x	$\begin{array}{r}170 \\ 170 \\ 78 \\ 78 \\ \hline 18\end{array}$
9	1001	HT	$\begin{array}{\|c\|} \hline 1 \\ 9 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|c} 31 \\ 25 \\ 19 \\ \hline \end{array}$)	$\begin{array}{\|l\|} \hline 51 \\ 41 \\ 29 \\ \hline \end{array}$	9	$\begin{array}{\|l\|} \hline 17 \\ 57 \\ 39 \\ \hline \end{array}$	1	$\begin{aligned} & 111 \\ & 73 \\ & 79 \\ & 49 \end{aligned}$	V	$\begin{aligned} & 131 \\ & \hline 89 \\ & 59 \end{aligned}$	i	$\begin{aligned} & 151 \\ & 105 \\ & 69 \\ & 69 \end{aligned}$	y	171 121 79 712
10	1010	LF	$\begin{array}{\|l\|} \hline 12 \\ 10 \\ A \\ \hline \end{array}$	SUB	$\begin{array}{\|l\|} \hline 32 \\ 26 \\ 14 \end{array}$	*	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 2 A \\ \hline \end{array}$:	$\begin{aligned} & 79 \\ & 58 \\ & 5 A \\ & \hline 38 \end{aligned}$	J	$\begin{aligned} & 112 \\ & 14 \\ & 74 \\ & 4 \mathrm{~A} \\ & \hline \end{aligned}$	z	$\begin{aligned} & 132 \\ & 90 \\ & 9 A \\ & \hline \end{aligned}$	j	$\begin{aligned} & 152 \\ & 106 \\ & 6 A \\ & \hline 64 \\ & \hline \end{aligned}$	z	(1212
11	1011	VT	$\begin{array}{\|c} A \\ \hline 13 \\ 11 \\ B \\ \hline \end{array}$	ESC	$\left.\begin{array}{\|l\|} 33 \\ 27 \\ 18 \end{array} \right\rvert\,$	+	$\begin{array}{\|l\|l} \hline 24 \\ 53 \\ 43 \\ 28 \\ \hline \end{array}$;	$\begin{aligned} & 73 \\ & 59 \\ & 38 \\ & \hline \end{aligned}$	K	$\begin{aligned} & 113 \\ & 75 \\ & 78 \\ & \hline \end{aligned}$	[$\begin{aligned} & 343 \\ & 133 \\ & 91 \\ & 58 \\ & \hline \end{aligned}$	k	$\begin{aligned} & 153 \\ & 107 \\ & 68 \\ & \hline \end{aligned}$	\{	(123
12	1100	FF	$\begin{array}{\|c} 14 \\ 12 \\ 12 \\ \hline \end{array}$	FS	$\begin{aligned} & 34 \\ & 28 \\ & 18 \end{aligned}$,	$\begin{array}{\|l\|} \hline 54 \\ 44 \\ 26 \\ \hline \end{array}$	<	$\begin{aligned} & 74 \\ & 60 \\ & 30 \\ & \hline \end{aligned}$	L	$\begin{array}{\|l\|} 196 \\ 76 \\ 76 \\ \hline \end{array}$	1	$\begin{aligned} & 136 \\ & 92 \\ & 50 \\ & 50 \end{aligned}$	1	$\begin{aligned} & 154 \\ & 108 \\ & 108 \\ & \hline 60 \\ & \hline \end{aligned}$	1	174 1124 76 12
13	1101	CR	$\begin{array}{\|c} 15 \\ 13 \\ 0 \\ \hline \end{array}$	GS	$\begin{aligned} & 35 \\ & 29 \\ & 10 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 55 \\ & 45 \\ & 20 \\ & \hline \end{aligned}$	=	$\begin{array}{r} 75 \\ 61 \\ 61 \\ \hline 30 \\ \hline \end{array}$	M	$\begin{aligned} & 115 \\ & 77 \\ & 40 \\ & \hline \end{aligned}$]	$\begin{array}{r} 105 \\ \hline 135 \\ 93 \\ \hline 90 \\ \hline \end{array}$	m	$\begin{aligned} & 0 \\ & \hline 159 \\ & 109 \\ & 60 \\ & \hline \end{aligned}$	\}	(175
14	1110	SO	$\begin{array}{\|l\|l\|} \hline 16 \\ 14 \\ \hline \end{array}$	RS	$\begin{aligned} & 36 \\ & 30 \\ & 1 E \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 56 \\ 46 \\ \hline 4 E \\ \hline \end{array}$	>	$\begin{aligned} & 76 \\ & 62 \\ & \hline 68 \end{aligned}$	N	$\begin{aligned} & 16 \\ & 78 \\ & 78 \\ & \hline 8 \end{aligned}$	\wedge	$\begin{aligned} & 136 \\ & 94 \\ & 5 E \end{aligned}$	n	$\begin{aligned} & 156 \\ & 116 \\ & 6 E \end{aligned}$	\sim	(176
15	1 1 1 1	SI	$\begin{array}{\|c\|} \hline 17 \\ 15 \\ 5 \\ \hline \end{array}$	US	$\begin{aligned} & 37 \\ & 31 \\ & 31 \\ & 1 F \\ & \hline \end{aligned}$	/	$\begin{array}{\|l\|} \hline 57 \\ 47 \\ 47 \\ \hline \end{array}$?	$\begin{aligned} & 3 \\ & \hline 7 \\ & \hline 63 \\ & 3 F \end{aligned}$	0	$\begin{aligned} & 4 E \\ & 17 \\ & 79 \\ & 4 F \\ & \hline \end{aligned}$	-	$\begin{aligned} & 137 \\ & \hline 95 \\ & \hline \\ & \hline \end{aligned}$	0	$\begin{aligned} & 159 \\ & 151 \\ & 111 \\ & 6 F \\ & \hline \end{aligned}$	DEL	(17

KEY

Chatacter \begin{tabular}{|c|c|c}

ESC \& | 33 |
| :---: |
| 27 |
| | \& \(\begin{array}{l}OCtal

Decimal

HEX\end{array}\)

\hline
\end{tabular}

DEC Multinational Character Set (C1 and GR Codes)

\qquad

UK National Character Set

	column	0		1		2		3		4		5		6		7					
0	0000	NUL	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \end{array}$	SP	$\begin{aligned} & 40 \\ & 32 \\ & 20 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 60 \\ 48 \\ 30 \end{array}$	@	$\begin{array}{\|l\|} \hline 106 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\left\|\begin{array}{c} 120 \\ 80 \\ 50 \end{array}\right\|$,	$\begin{aligned} & 140 \\ & 96 \\ & 60 \end{aligned}$	p	160 112 70 10				
1	0001	SOH	i	DC1	$\begin{array}{\|l\|} \hline 21 \\ 17 \\ 11 \end{array}$!	$\begin{aligned} & 41 \\ & 33 \\ & 21 \\ & 21 \end{aligned}$	1	$\begin{array}{\|l\|} \hline 61 \\ 49 \\ 31 \\ \hline \end{array}$	A	$\begin{array}{\|l\|} \hline 105 \\ 85 \\ 48 \\ 40 \end{array}$	0	$\begin{array}{\|l\|} \hline 129 \\ 88 \\ 5 \end{array}$	a	$\begin{gathered} 194 \\ 97 \\ 97 \\ 61 \end{gathered}$	9	(13				
2	0010	STX	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	DC2	$\begin{array}{\|l\|} \hline 22 \\ 18 \\ 12 \\ \hline \end{array}$	"	$\begin{aligned} & \hline 42 \\ & 34 \\ & 24 \\ & \hline \end{aligned}$	2	$\begin{array}{\|l\|} \hline 62 \\ 50 \\ 32 \\ \hline \end{array}$	B	$\begin{array}{\|l\|} \hline 102 \\ 66 \\ \hline 42 \\ \hline \end{array}$	R	$\begin{array}{\|l\|} \hline 122 \\ 82 \\ 52 \\ \hline \end{array}$	b	$\begin{array}{\|} 192 \\ 98 \\ 98 \\ \hline \end{array}$	r	$\begin{array}{r}162 \\ 114 \\ 112 \\ 72 \\ \hline 16\end{array}$				
3	0011	ETX	$\begin{array}{\|} \hline \\ 3 \\ 3 \\ \hline \end{array}$	$\mathbf{D C O}_{(\times 0 F)}^{\text {DC3 }}$	$\begin{array}{\|c\|} \hline 23 \\ 19 \\ 13 \end{array}$	£	$\left.\begin{aligned} & 43 \\ & 35 \\ & 23 \end{aligned} \right\rvert\,$	3	$\begin{aligned} & \hline 63 \\ & 51 \\ & 33 \\ & \hline \end{aligned}$	C	$\left[\begin{array}{l} 103 \\ 67 \\ 43 \end{array}\right]$	S	$\begin{array}{\|l\|} \hline 123 \\ 83 \\ 53 \\ \hline \end{array}$	c	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	s	118 115 115 73 176				
4	0100	EOT	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	DC4	$\begin{aligned} & 24 \\ & 20 \\ & 20 \\ & 14 \\ & \hline \end{aligned}$	\$	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 64 \\ 52 \\ 54 \\ \hline \end{array}$	D	$\begin{array}{\|l\|} \hline 104 \\ 68 \\ \hline 48 \\ \hline \end{array}$	T	$\begin{array}{\|c\|} \hline 134 \\ \hline 84 \\ \hline 84 \\ \hline \end{array}$	d	$\begin{array}{\|} \hline 144 \\ 140 \\ 100 \\ \hline 64 \\ \hline \end{array}$	t	(164				
5	0101	ENQ	$\begin{array}{\|l\|} \hline 5 \\ \mathbf{5} \\ 5 \\ \hline \end{array}$	NAK	$\begin{array}{\|l\|} 25 \\ 21 \\ 15 \end{array}$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 25 \end{aligned}$	5	$\begin{array}{\|l\|} \hline 65 \\ 53 \\ 35 \end{array}$	E	$\begin{array}{\|l\|} \hline 105 \\ 69 \\ 85 \\ 45 \end{array}$	U	$\begin{array}{\|c\|} \hline 125 \\ 85 \\ 85 \\ \hline 5 \end{array}$	-	$\begin{aligned} & 145 \\ & 101 \\ & 65 \\ & \hline \end{aligned}$	u	166 117 75 717				
6	0110	ACK	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	SYN	$\begin{array}{\|l\|} 28 \\ 22 \\ 16 \\ \hline \end{array}$	8	$\begin{aligned} & 46 \\ & 38 \\ & 36 \\ & \hline \end{aligned}$	6	$\begin{array}{\|l\|} \hline 56 \\ 54 \\ 54 \\ \hline 36 \\ \hline \end{array}$	F	$\begin{array}{\|l\|} \hline 100 \\ 70 \\ 46 \\ \hline \end{array}$	V	$\begin{array}{\|l\|} \hline 126 \\ \hline 26 \\ \hline 86 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 146 \\ 1462 \\ 66 \\ \hline 6 \\ \hline \end{array}$	v	$\begin{array}{r}1186 \\ 118 \\ 76 \\ \hline 18\end{array}$				
7	01.11	BEL	$\begin{aligned} & 7 \\ & 7 \\ & 3 \end{aligned}$	ETB	$\begin{array}{\|l\|} 27 \\ 23 \\ 17 \end{array}$,	$\begin{aligned} & 47 \\ & 39 \\ & 27 \\ & 27 \end{aligned}$	7	$\begin{aligned} & 67 \\ & 55 \\ & 37 \end{aligned}$	G	$\left.\begin{array}{\|c\|} 107 \\ 71 \\ 47 \end{array} \right\rvert\,$	W	$\begin{array}{\|c\|} \hline 127 \\ 87 \\ 57 \\ \hline \end{array}$	g	$\begin{array}{\|l\|} \hline 149 \\ 103 \\ 67 \\ \hline \end{array}$	w	$\begin{array}{r}167 \\ 119 \\ 77 \\ \hline 17\end{array}$				
8	1000	BS	$\begin{array}{\|c\|} \hline 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\left.\begin{gathered} 30 \\ 24 \\ 18 \end{gathered} \right\rvert\,$	1	$\begin{aligned} & 50 \\ & 40 \\ & 28 \\ & 28 \end{aligned}$	8	$\begin{array}{\|} 70 \\ 56 \\ 38 \\ \hline 38 \\ \hline \end{array}$	H	$\begin{array}{\|l\|} \hline 10 \\ 72 \\ 48 \\ \hline 8 \end{array}$	\mathbf{X}	$\begin{array}{\|c} \hline 130 \\ 88 \\ \hline 88 \\ \hline 8 \end{array}$	h	$\begin{array}{r} 150 \\ \hline 104 \\ 68 \\ \hline \end{array}$	x	170 120 78 78				
9	1001	HT	$\begin{array}{\|c\|} \hline 11 \\ 9 \\ 9 \end{array}$	EM	$\begin{array}{\|l\|} \hline 31 \\ 25 \\ 19 \end{array}$)	$\left.\begin{array}{l} 51 \\ 51 \\ 41 \\ 29 \end{array}\right]$	9	$\begin{aligned} & \infty \\ & \hline 1 \\ & 57 \\ & 39 \end{aligned}$	1	$\left\|\begin{array}{l} 111 \\ 73 \\ 49 \end{array}\right\|$	Y	$\left\|\begin{array}{c} 131 \\ \hline 89 \\ 59 \end{array}\right\|$	i	$\begin{array}{\|c\|} \hline 151 \\ 105 \\ 69 \end{array}$	y	(171				
10	1010	LF	$\begin{aligned} & 12 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	SUB	$\begin{array}{\|l\|} \hline 32 \\ 26 \\ 14 \\ \hline \end{array}$	*	$\begin{aligned} & 52 \\ & 42 \\ & 2 A \\ & \hline \end{aligned}$:	$\begin{aligned} & \hline 72 \\ & 58 \\ & 3 A \\ & \hline \end{aligned}$	J	$\left.\begin{array}{\|l\|} 112 \\ 74 \\ 4 A \end{array} \right\rvert\,$	z	$\begin{array}{\|c\|} \hline 132 \\ 90 \\ 54 \\ \hline \end{array}$	i	152 106 64 1	z	172 122 12 7 1				
11	1011	VT	$\begin{array}{\|c\|} \hline 13 \\ 11 \\ 18 \\ \hline \end{array}$	ESC	$\begin{array}{\|l\|} \hline 33 \\ 27 \\ 18 \\ \hline \end{array}$	+	$\begin{aligned} & 53 \\ & 53 \\ & 43 \\ & \hline 28 \\ & \hline \end{aligned}$;	$\begin{array}{\|l\|} \hline 73 \\ 59 \\ \hline 88 \\ \hline \end{array}$	K	$\begin{array}{\|c\|} \hline 13 \\ 75 \\ 78 \\ \hline 8 \\ \hline \end{array}$	[$\begin{array}{\|c\|} \hline 13 \\ 93 \\ 98 \\ 58 \\ \hline \end{array}$	k	$\begin{array}{\|c} 150 \\ 150 \\ 68 \\ \hline 8 \end{array}$	\{	173 123 78 718 18				
12	1100	FF	$\begin{array}{\|c\|} \hline 14 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{array}{\|l\|} \hline 38 \\ 28 \\ 16 \\ \hline \end{array}$,	$\begin{aligned} & 50 \\ & 54 \\ & 44 \\ & 20 \\ & \hline \end{aligned}$	$<$	$\begin{aligned} & 74 \\ & \hline 60 \\ & 30 \\ & \hline \end{aligned}$	L	$\begin{array}{\|l\|} \hline 114 \\ 76 \\ \hline 4 \\ \hline \end{array}$	$\$ & $\begin{array}{\|c\|} \hline 134 \\ 92 \\ 90 \\ \hline \end{array}$ & 1 & $\begin{array}{\|l\|} \hline 154 \\ 108 \\ 6 \mathrm{c} \\ \hline \end{array}$ & 1 & 114 114 124 718 \hline 13 & 1101 & CR & $\begin{array}{\|c\|} \hline 15 \\ 13 \\ 0 \end{array}$ & GS & $\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$ & - & $\begin{array}{\|} 55 \\ 45 \\ 20 \\ \hline \end{array}$ & $=$	$\begin{array}{\|l} \hline 75 \\ 81 \\ 30 \\ \hline \end{array}$	M	$\begin{array}{\|c\|} \hline 115 \\ 40 \\ 40 \\ \hline \end{array}$]	$\begin{array}{\|l\|} \hline 135 \\ 93 \\ 50 \\ \hline \end{array}$	m	$\begin{array}{\|c} 155 \\ 109 \\ 60 \\ \hline \end{array}$	\}	125 175 170 70 18
14	1110	SO	$\begin{array}{\|c\|} \hline 16 \\ 14 \\ E \\ \hline \end{array}$	RS	$\begin{array}{\|l\|} \hline 36 \\ 30 \\ 15 \\ \hline \end{array}$		$\begin{aligned} & 56 \\ & 46 \\ & 46 \\ & \hline \end{aligned}$	$>$	$\begin{array}{\|l\|} \hline 66 \\ 68 \\ \hline 38 \\ \hline \end{array}$	N	$\begin{array}{\|c\|} \hline 116 \\ 78 \\ 48 \\ \hline 8 \end{array}$	\wedge	$\begin{array}{\|l\|} \hline 136 \\ 94 \\ 5 E \\ \hline \end{array}$	n	156 110 $6 E$ 10 18	\sim	$\underset{\substack{176 \\ 178 \\ 7 \% \\ 17 \\ \hline 12 \\ \hline}}{ }$				
15	1111	SI	$\begin{array}{\|c\|} \hline 17 \\ 15 \\ \hline \end{array}$	US	$\begin{aligned} & 37 \\ & 31 \\ & 18 \\ & 1 \end{aligned}$	7	$\begin{aligned} & 57 \\ & 47 \\ & 27 \end{aligned}$?	$\begin{array}{\|l\|} \hline 7 \\ 63 \\ 3 F \end{array}$	0	$\begin{aligned} & 171 \\ & 79 \\ & 47 \\ & \hline \end{aligned}$	-	$\begin{array}{\|c\|} \hline 137 \\ 95 \\ 95 \\ \hline 5 \end{array}$	\bigcirc	(117 $\begin{gathered}117 \\ 65\end{gathered}$	DEL	(177				

KEY

CHARACTER \begin{tabular}{|l|l|l}

\hline ESC \& | 33 |
| :---: |
| 27 |
| |
| 18 | \& \(\begin{array}{l}OCTAL

DECIMAL

HEX\end{array}\)
\end{tabular}

DEC Special Graphics

	column	0		1		2		3		4		5		6		7	
	$\begin{array}{\|c\|} \left.\hline{ }^{81}\right)_{86} \\ \text { BITS } \\ \hline 85 \end{array}$	${ }^{\circ} 0$						0		'。。		${ }^{1} 0$.		' ${ }^{1}$		',	
0	0000	NUL	$\begin{array}{\|l} \hline 0 \\ 0 \\ \hline \end{array}$	DLE	$\begin{array}{\|l\|} \hline 20 \\ 16 \\ 10 \\ \hline \end{array}$	SP	$\begin{aligned} & 40 \\ & 32 \\ & 32 \\ & \hline \end{aligned}$	0	$\begin{array}{\|l\|} \hline 60 \\ 48 \\ 30 \\ \hline \end{array}$	@	$\begin{array}{\|l\|} \hline 100 \\ 64 \\ 40 \\ \hline \end{array}$	P	$\begin{array}{\|c\|c\|} \hline 120 \\ 80 \\ 50 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline 140 \\ 96 \\ 60 \\ \hline \end{array}$	SCAN ${ }^{-}$	160 112 70 710
1	0001	SOH	$\begin{array}{\|} \hline 1 \\ \hline 1 \\ 1 \\ \hline \end{array}$	$\mathrm{D}_{\text {(xow }}$	$\begin{array}{\|} \hline 21 \\ 17 \\ \hline 11 \\ \hline \end{array}$	$!$	$\begin{array}{\|l\|} \hline 41 \\ 33 \\ 21 \\ \hline \end{array}$	1	$\begin{array}{\|} 61 \\ 49 \\ 41 \\ \hline \end{array}$	A	$\begin{array}{\|l\|} \hline 101 \\ 65 \\ \hline 41 \\ \hline \end{array}$	0	$\begin{array}{\|} 121 \\ 81 \\ 51 \\ \hline 1 \end{array}$	I	$\begin{array}{\|c\|} \hline 14 \\ 97 \\ 97 \\ \hline \end{array}$	SCANS	1121
2	0010	STX	$\begin{array}{\|l\|} 2 \\ 2 \\ 2 \\ \hline \end{array}$	DC2	$\begin{array}{\|l\|} \hline 22 \\ 18 \\ 12 \\ \hline \end{array}$	'	$\begin{array}{\|l\|} \hline 42 \\ 34 \\ 32 \\ \hline \end{array}$	2	$\begin{array}{\|l\|} \hline 62 \\ 50 \\ \hline 32 \\ \hline \end{array}$	B	$\begin{array}{\|c\|} \hline 102 \\ 66 \\ 42 \\ \hline \end{array}$	R	$\begin{array}{\|l\|} \hline 12 \\ 82 \\ 52 \\ \hline \end{array}$	7	$\begin{array}{\|c\|} \hline 192 \\ 98 \\ \hline 62 \\ \hline \end{array}$	(CAN)	162 114 72 12
3	0011	ETX	$\begin{array}{r} 3 \\ 3 \\ 3 \\ \hline \end{array}$	DCOFF)	$\begin{array}{r} 23 \\ 19 \\ 13 \\ \hline \end{array}$	\#	$\begin{array}{\|r} 43 \\ 35 \\ 35 \\ \hline 23 \\ \hline \end{array}$	3	$\begin{array}{\|r} 63 \\ 51 \\ 51 \\ \hline \end{array}$	C	$\begin{array}{\|c\|} \hline 103 \\ 67 \\ \hline 43 \\ \hline \end{array}$	S	$\begin{gathered} 123 \\ 83 \\ 53 \\ 53 \end{gathered}$	F	$\begin{array}{\|c} 143 \\ 99 \\ 99 \\ \hline 6 \end{array}$	SCĀN9	163 115 73 715
4	0100	EOT	$\begin{array}{\|l\|} \hline 4 \\ 4 \\ 4 \\ \hline \end{array}$	DC4	$\begin{array}{\|l\|} 24 \\ 20 \\ 14 \\ \hline \end{array}$	\$	$\begin{array}{\|l\|} \hline 44 \\ 36 \\ 24 \\ \hline \end{array}$	4	$\begin{array}{\|l\|} \hline 64 \\ 52 \\ 34 \\ \hline \end{array}$	D	$\begin{array}{\|l\|} \hline 104 \\ 68 \\ 44 \\ \hline \end{array}$	T	$\begin{array}{\|l\|} \hline 184 \\ 84 \\ 54 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 144 \\ 100 \\ 64 \\ \hline \end{array}$	+	(164
5	0101	ENQ	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	NAK	$\begin{aligned} & 25 \\ & 21 \\ & 15 \end{aligned}$	\%	$\begin{aligned} & 45 \\ & 37 \\ & 37 \\ & 25 \end{aligned}$	5	$\begin{array}{\|l\|} \hline 65 \\ 53 \\ 35 \\ 35 \end{array}$	E	$\left\|\begin{array}{c\|} \hline 05 \\ 69 \\ 45 \end{array}\right\|$	U	$\left\|\begin{array}{l} 125 \\ 85 \\ 55 \end{array}\right\|$	\%	$\begin{array}{\|l\|} \hline 145 \\ 101 \\ 65 \\ \hline \end{array}$	1	(161
6	0110	ACK	$\begin{array}{\|l\|} \hline 6 \\ 6 \\ 6 \\ \hline \end{array}$	SYN	$\begin{array}{\|l\|} \hline 26 \\ 22 \\ 16 \\ \hline \end{array}$	8	$\begin{array}{\|l\|} \hline 46 \\ 38 \\ 26 \\ \hline \end{array}$	6	$\begin{array}{\|l} \hline 66 \\ 54 \\ 56 \\ \hline \end{array}$	F	$\begin{array}{\|l\|} \hline 106 \\ 70 \\ 46 \\ \hline \end{array}$	v	$\begin{array}{\|l\|} 126 \\ 85 \\ \hline 86 \\ \hline \end{array}$	0	(196	1	(118116 118 76 16
7	011 t	BEL	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	ETB	$\begin{array}{\|l\|} \hline 27 \\ 23 \\ 17 \end{array}$,	$\left\lvert\, \begin{aligned} & 47 \\ & 39 \\ & 39 \\ & 27 \end{aligned}\right.$	7	$\begin{array}{\|l\|} \hline 67 \\ 55 \\ 37 \\ \hline \end{array}$	G	$\begin{array}{\|} 107 \\ 71 \\ 77 \\ \hline 0 \end{array}$	W	$\left\lvert\, \begin{gathered} 127 \\ 87 \\ 57 \\ \hline 1 \end{gathered}\right.$	\pm	$\begin{array}{\|c\|} 14 \\ 143 \\ 103 \\ 67 \end{array}$	T	167 119 77 717
8	1000	BS	$\begin{array}{\|c\|} \hline 10 \\ 8 \\ 8 \\ \hline \end{array}$	CAN	$\begin{array}{\|l\|} \hline 30 \\ 24 \\ 18 \\ \hline \end{array}$	1	$\begin{aligned} & 50 \\ & 40 \\ & 20 \\ & 28 \\ & \hline \end{aligned}$	8	$\begin{array}{\|r\|} 70 \\ 56 \\ 58 \\ \hline \end{array}$	H	$\begin{array}{\|l\|} \hline 10 \\ 72 \\ \hline 48 \\ \hline \end{array}$	X	$\begin{array}{\|} 130 \\ 88 \\ 58 \\ \hline 8 \end{array}$	'	(150 ${ }_{1}^{104} 1$	1	17 717 78 78 7
9	1001	HT	$\begin{array}{\|c\|} \hline 11 \\ 9 \\ 9 \\ \hline \end{array}$	EM	$\begin{array}{\|l\|} \hline 31 \\ 25 \\ 19 \\ \hline \end{array}$)	$\begin{array}{\|l\|} \hline 51 \\ 41 \\ 29 \\ \hline \end{array}$	9	$\begin{array}{\|} \hline 1 \\ 57 \\ 59 \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 111 \\ 73 \\ 49 \\ \hline \end{array}$	Y	$\begin{array}{\|l\|} \hline 131 \\ 89 \\ 59 \\ \hline \end{array}$	\}	$\begin{array}{\|} \hline 151 \\ 105 \\ 69 \\ \hline \end{array}$	\leq	171 121 79 17 12
10	1010	LF	$\begin{array}{\|l\|} \hline 12 \\ 10 \\ \hline \end{array}$	SUB	$\left[\left.\begin{array}{l} 32 \\ 26 \\ 1 A \end{array} \right\rvert\,\right.$	*	$\begin{array}{\|l\|} \hline 52 \\ 42 \\ 24 \\ \hline \end{array}$:	$\begin{array}{\|l\|} \hline 72 \\ 58 \\ 3 A \\ \hline \end{array}$	J	$\begin{array}{\|l\|} 112 \\ 74 \\ 4 A \\ \hline \end{array}$	z	$\begin{array}{\|c\|} \hline 132 \\ 90 \\ 5 A \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline 152 \\ 106 \\ 6 A \\ \hline \end{array}$	2	($\begin{aligned} & 12 \\ & 122 \\ & 122 \\ & 71 \\ & 18\end{aligned}$
11	1011	VT	$\begin{array}{\|l\|} \hline 13 \\ 13 \\ 11 \\ \hline 8 \end{array}$	ESC	$\left.\begin{array}{\|l\|} \hline 33 \\ 27 \\ 18 \end{array} \right\rvert\,$	+	$\left\|\begin{array}{l\|} \hline \text { an } \\ 43 \\ 43 \\ 28 \end{array}\right\|$;	$\begin{array}{\|l\|} \hline 73 \\ 59 \\ 38 \\ \hline \end{array}$	K	$\left\|\begin{array}{\|l\|} 113 \\ 75 \\ 48 \end{array}\right\|$	[$\begin{gathered} 36 \\ \hline 133 \\ 99 \\ 58 \end{gathered}$	1	$\left[\begin{array}{c} 153 \\ 150 \\ 68 \end{array}\right]$	π	12 123 712 78 718
12	1100	FF	$\begin{array}{\|c\|} \hline 14 \\ 12 \\ c \\ \hline \end{array}$	FS	$\begin{array}{\|l\|} \hline 38 \\ 28 \\ 16 \end{array}$,	$\begin{aligned} & 54 \\ & 44 \\ & 42 \\ & 20 \end{aligned}$	$<$	$\begin{array}{\|l\|} \hline 74 \\ 60 \\ 30 \\ \hline \end{array}$	L	$\begin{array}{\|l\|} \hline 19 \\ 76 \\ \hline 9 \\ \hline \end{array}$	1	$\begin{aligned} & 134 \\ & 92 \\ & 96 \\ & 50 \end{aligned}$	r	$\left\|\begin{array}{l} 150 \\ 108 \\ 60 \end{array}\right\|$	\#	174 117 76 74
13	1101	CR	$\begin{array}{\|c\|} \hline 15 \\ 13 \\ \hline \end{array}$	GS	$\begin{array}{\|l\|} \hline 35 \\ 29 \\ 10 \\ \hline \end{array}$	-	$\begin{array}{\|l\|} \hline 55 \\ 45 \\ 20 \\ \hline \end{array}$	=	$\begin{array}{\|l\|} \hline 75 \\ 61 \\ \hline 30 \\ \hline \end{array}$	M	$\begin{array}{\|c\|} 115 \\ 17 \\ 40 \\ \hline \end{array}$]	$\begin{aligned} & 193 \\ & 93 \\ & 90 \\ & \hline \end{aligned}$	L	$\begin{array}{r} 155 \\ 109 \\ 109 \\ \hline 60 \\ \hline \end{array}$	£	175 1125 70 70 17
14	1110	SO	$\begin{array}{\|c\|} \hline 16 \\ 14 \\ \mathbf{E} \end{array}$	RS	$\begin{array}{\|c\|} \hline 36 \\ 30 \\ 16 \end{array}$		$\begin{array}{\|l\|} \hline 56 \\ \hline 46 \\ 46 \\ \hline \end{array}$	>	$\begin{aligned} & 76 \\ & 62 \\ & 62 \\ & \hline 3 \end{aligned}$	N	$\begin{array}{\|c\|} \hline 116 \\ 78 \\ 4 E \\ \hline 1 \end{array}$	\wedge	$\begin{array}{\|l\|} \hline 136 \\ 94 \\ 58 \\ \hline \end{array}$	\dagger	$\begin{gathered} 156 \\ 110 \\ 6 E \end{gathered}$		(178
15	1111	SI	$\begin{array}{\|l\|} \hline 15 \\ 15 \\ \hline \end{array}$	US	$\begin{aligned} & 37 \\ & 31 \\ & 31 \\ & 15 \end{aligned}$	1	$\left[\begin{array}{c} 97 \\ 47 \\ 47 \end{array}\right.$?	$\begin{aligned} & 77 \\ & 63 \\ & 37 \\ & \hline \end{aligned}$	0	$\begin{array}{\|c\|} \hline 17 \\ 79 \\ 48 \\ \hline 4 \end{array}$	(k)	$\begin{aligned} & 139 \\ & 95 \\ & 55 \end{aligned}$		$\left[\begin{array}{c} 157 \\ 111 \\ 6 f \end{array}\right]$	DEL	(178

1 COCODES——_ (DEC SPECIALGRAPHICS)
KEY

character | ESC | 33 |
| :---: | :---: |
| | 27 |
| | 18 | \(\begin{aligned} \& OCtal

\& OECIMAL

\& hex\end{aligned}\)
\qquad

Display Controls Font

	couum			1		2		3		4		5		6		7	
		－\％		0												0	
0	0000	N	：	Q	｜		$\begin{aligned} & 40 \\ & 320 \\ & 20 \end{aligned}$	0	$\begin{array}{\|l\|} \hline 69 \\ 40 \\ \hline 30 \end{array}$	＠		P	（120 80 50	，	$\begin{array}{\|l\|} \hline 100 \\ 96 \\ 96 \\ \hline 6 \end{array}$	p	（160
1	00	S	！	9	，	！	${ }_{21}^{31}$	1	$\begin{aligned} & 61 \\ & 49 \\ & 39 \\ & 39 \end{aligned}$	A		a	$\begin{array}{\|c\|c\|} \substack{121 \\ 81 \\ 51} \end{array}$	a	\％${ }^{9}$	9	$\underset{\substack{161 \\ 113 \\ 112}}{ }$
2	00	S	2	\％		＂		2	$\begin{array}{\|c\|} \hline 10 \\ 50 \\ 52 \\ 32 \\ \hline \end{array}$	B	（102	R	$\underset{\substack{122 \\ 82 \\ 52}}{\substack{ \\ \\\hline}}$	b	（192	r	（120
3	00	E	1 3 3 3	${ }_{3}$	${ }^{19} 18$	\＃		3	$\left.\begin{array}{l} 63 \\ 5 . \\ 5 \\ 3 \end{array}\right)$	C	（103	s	$\begin{gathered} 123 \\ \hline 123 \\ \hline 83 \\ \hline 53 \\ \hline \end{gathered}$	c	（193）	s	（163
4	0100	E_{T}	$\stackrel{4}{4}$	4	20 20	\＄		4	$\left.\begin{array}{\|l\|} \hline 69 \\ 529 \end{array} \right\rvert\,$	D		T		d	（129	t	$\xrightarrow{166}$116 114 14
5	0	镸	5 5 5	N	近21 15 1	\％	$\begin{aligned} & 45 \\ & 35 \\ & 25 \end{aligned}$	5	$\left\|\begin{array}{l} 34 \\ \hline 63 \\ 35 \\ 35 \end{array}\right\|$	E		U	$\begin{gathered} 54 \\ \hline 125 \\ \hline 25 \\ \hline 55 \\ \hline \end{gathered}$	e	（1．45	u	（124
6	01	${ }^{\text {A }}$	${ }^{6}$	§	（ 26	\＆	$\begin{aligned} & 96 \\ & \begin{array}{l} 46 \\ 38 \\ 26 \end{array} \\ & \hline \end{aligned}$	6	$\begin{array}{r} 56 \\ \hline 56 \\ 56 \\ \hline 56 \\ \hline \end{array}$	F	（106	v	$\begin{aligned} & 36 \\ & \begin{array}{l} 276 \\ 86 \\ 86 \end{array} \\ & \hline \end{aligned}$	f	${ }_{\substack{196 \\ 106 \\ 66}}^{\substack{16}}$	v	（186
7	0	星	$\begin{aligned} & 7 \\ & 3 \\ & 7 \end{aligned}$	E	（18	，	$\left.\begin{array}{\|l\|} \hline 6 \\ \hline \\ 39 \\ 39 \\ 27 \end{array} \right\rvert\,$	7	$\begin{array}{\|} \hline 00 \\ \left.\begin{array}{l} 65 \\ 55 \\ 37 \end{array} \right\rvert\, \end{array}$	G	$\left\|\begin{array}{l} 60 \\ 107 \\ 47 \\ 47 \end{array}\right\|$	w	$\begin{array}{\|l\|} \hline-30 \\ \hline 87 \\ 87 \\ 87 \\ 57 \end{array}$	9		w	（167
8	100，0	昂	边	¢	（ 30	1	$\begin{aligned} & 180 \\ & 40 \\ & 20 \\ & 28 \end{aligned}$	8	$\begin{array}{\|c\|} \hline 70 \\ 50 \\ 38 \\ \hline 88 \end{array}$	H	$\left\|\begin{array}{\|c\|} 110 \\ 120 \\ 48 \end{array}\right\|$	X		h	$\xrightarrow[\substack{150 \\ 108 \\ 68}]{ }$	x	（170
9	1001	H	$\stackrel{9}{8}$	M	$\underset{\substack{25 \\ 19}}{ }$	）	$\left\|\begin{array}{l} 28 \\ 51 \\ 51 \\ 29 \end{array}\right\|$	9	$\left.\begin{aligned} & 38 \\ & 79 \\ & 59 \\ & 39 \end{aligned} \right\rvert\,$	1	$\left.\begin{array}{\|l\|} 1118 \\ 69 \\ 69 \end{array} \right\rvert\,$	r	$\begin{gathered} 36 \\ \hline \end{gathered}$	i		y	
10	， 0	k	$\left[\begin{array}{l} 12 \\ 10 \\ 10 \end{array}\right.$	\bigcirc	－	＊	$\left\|\begin{array}{l} 35 \\ { }_{2}^{52} \\ 2 A \\ 2 A \end{array}\right\|$	：	$\left.\begin{array}{c} 39 \\ \hline 78 \\ 58 \\ 3 A \end{array}\right]$	J	$\left[\begin{array}{l} 19 \\ 124 \\ 4 a \\ 40 \end{array}\right]$	z	$\left.\begin{aligned} & 132 \\ & \hline 132 \\ & 50 \\ & 50 \end{aligned} \right\rvert\,$	i	$\begin{aligned} & 159 \\ & 106 \\ & 109 \\ & \hline 64 \\ & \hline \end{aligned}$	z	（112
11	1011	V_{T}		E		＋	$\begin{aligned} & 2 A \\ & 53 \\ & 43 \\ & 43 \end{aligned}$	；	（ta	K		［		k	（150	\｛	$\underset{\substack{173 \\ 712 \\ 78}}{19}$
12	1.00	F_{F}		${ }_{5}$	边38 28 18		（	$<$	$\begin{aligned} & -36 \\ & \hline 18 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	L	（119	1		1	（154	1	
13	1101	C	$1{ }_{1}^{15}$	g	（38 29 10	－	$\left.\begin{array}{l} 26 \\ \hline 50 \\ 45 \\ 20 \end{array}\right]$	$=$		M	$\begin{array}{\|l\|} 46 \\ \hline 15 \\ 10 \\ 40 \end{array}$	］	$\begin{aligned} & 5 c \\ & \hline 185 \\ & 95 \\ & 50 \\ & 50 \end{aligned}$	m	（109 ${ }_{\substack{109 \\ 100}}$	\}	$\underset{\substack{75 \\ 17 \\ 125}}{\substack{10}}$
14	10	8	$\stackrel{\substack{19 \\ 18 \\ 16}}{ }$	${ }_{\text {R }}$	（		$\begin{aligned} & 20 \\ & \hline 56 \\ & \hline 86 \\ & 26 \\ & 26 \end{aligned}$	＞	$\left.\begin{aligned} & 30 \\ & 76 \\ & \hline 62 \\ & 35 \\ & 35 \end{aligned} \right\rvert\,$	N		\wedge	$\begin{gathered} 50 \\ \hline 136 \\ \hline 96 \\ 56 \\ \hline 5 \end{gathered}$	n	（186	\sim	$\underset{\substack{176 \\ \\ 7,6}}{\substack{17}}$
15		\＄	${ }_{15}^{17}$	¢	31.	1	［	？		0	（179	－	（1）	－	（151	P	

KEY

Display Controls Font（Cont）

		9		10	10		1	12		13	3	14			15	coun	
\％	$\underbrace{2}_{\substack { 208 \\ \begin{subarray}{c}{198 \\ 80{ 2 0 8 \\ \begin{subarray} { c } { 1 9 8 \\ 8 0 } }\end{subarray}}$	8	$\left\|\begin{array}{c} 2,20 \\ 904 \\ 90 \end{array}\right\|$	A_{0}	${ }_{\substack{180 \\ 10}}^{10}$	－	$\begin{array}{\|c\|} 1116 \\ \hline 80 \\ \hline \end{array}$	À	$\left\|\begin{array}{c} 190 \\ 80 \end{array}\right\|$	Do	$\left[\left.\begin{array}{l} 320 \\ 208 \\ \hline 80 \end{array} \right\rvert\,\right.$	à	$\begin{array}{\|c\|c\|} \hline 330 \\ \hline 28 \\ \hline 0 \\ \hline 0 \end{array}$	F_{0}	$\underbrace{\substack{0}}_{\substack{380 \\ \text { at } \\ 40}}$	－	0
8	coin	9		i	$\underset{\substack{201 \\ 161 \\ a_{1}}}{\substack{1 \\ \hline}}$	\pm	${ }_{\text {cl }}^{11}$	Á	A	N	（	á		ก		0001	1
8	${ }_{\substack{202 \\ 192 \\ 82}}^{\substack{ \\ \\ }}$	2	$\begin{aligned} & 2,28 \\ & 926 \\ & 982 \end{aligned}$	c		2	$\begin{aligned} & 278 \\ & \substack{182 \\ 080} \end{aligned}$	A	$\left\|\begin{array}{c} 302 \\ 108 \\ 1020 \end{array}\right\|$	ò	$\left[\begin{array}{c} 320 \\ 200 \\ 0 \\ 02 \end{array}\right]$	â		¢		－	2
${ }_{3}^{8}$	${ }_{\substack{203 \\ 133 \\ 83}}^{2}$	${ }_{3}$	$\left.\begin{array}{r} 223 \\ 293 \\ 93 \\ 93 \end{array} \right\rvert\,$	£	$\left.\begin{array}{c} 246 \\ 1,59 \\ 193 \end{array}\right]$	3	${ }_{1,2}^{20,9}$	A	$\begin{aligned} & 303 \\ & 195 \\ & \hline 93 \end{aligned}$	ó	$\left.\begin{array}{c} 323 \\ 203 \\ 03 \\ 03 \end{array}\right]$	a		\％		001，	3
${ }_{4}^{8}$	$\underset{\substack{208 \\ 138}}{\substack{\text { cid }}}$	${ }_{4}^{4}$	${ }_{\substack{\text { a }}}^{\substack{224 \\ 94 \\ 94}}$	${ }_{4}^{4}$	$\begin{aligned} & 246 \\ & \begin{array}{l} 246 \\ 494 \end{array} \\ & \hline 1 \end{aligned}$	B_{4}	${ }_{\text {cter }}^{180}$	\ddot{A}	－	ô	$\left.\begin{aligned} & 328 \\ & 282 \\ & 084 \end{aligned} \right\rvert\,$	\because		－		0100	4
\％	$\left.\begin{array}{\|c\|c\|c\|c\|} \hline 185 \\ 185 \\ \hline 85 \end{array} \right\rvert\,$	${ }_{5}$	$\left.\begin{array}{c} 272 \\ \hline 189 \\ 995 \end{array}\right)$	7	$\left.\begin{array}{\|c\|c\|} \hline 1245 \\ \hline 185 \end{array} \right\rvert\,$	μ		A	$\begin{array}{\|l\|l} 3999 \\ 999 \\ 05 \end{array}$	õ	$\left[\begin{array}{c} 3,5 \\ 205 \\ 05 \end{array}\right]$	a	$\left.\begin{array}{\|c\|c\|} \hline 2425 \\ \hline 295 \end{array}\right\}$	\％		010	5
8	$\underset{\substack{206 \\ 185}}{\substack{206}}$	9	$\left.\begin{array}{\|l\|} 276 \\ 120 \\ 90 \\ \hline 90 \end{array} \right\rvert\,$	${ }_{\text {A }}$	$\begin{aligned} & 268 \\ & \hline 164 \\ & 468 \end{aligned}$	\uparrow	$\begin{gathered} 2.26 \\ \hline 189 \\ \hline 186 \\ \hline \end{gathered}$	A	$\begin{array}{\|c} 306 \\ \left.\begin{array}{c} 306 \\ 96 \\ \hline 6 \end{array} \right\rvert\, \end{array}$	ö	$\left[\left.\begin{array}{l} 326 \\ 2126 \\ 0 \end{array} \right\rvert\,\right.$	m	$\begin{array}{\|l\|l\|} \substack{326 \\ 80 \\ 80} \\ \hline \end{array}$	\％		0，10	6
87		9	$\left.\begin{array}{\|c\|c\|} \hline 1251 \\ 97 \\ 97 \end{array} \right\rvert\,$	§	$\left.\begin{array}{c} 249 \\ \hline 189 \\ A 9 \end{array}\right]$			Ç	$\left.\begin{array}{\|c\|c\|} \hline 309 \\ 909 \\ 09 \end{array}\right]$	©	$\left.\begin{array}{\|l\|l\|} \hline 275 \\ 205 \\ 0 \end{array} \right\rvert\,$	9	$\left.\begin{array}{c} 39 \\ 293 \\ 89 \end{array}\right)$	∞		0.1	7
\％	$\left.\begin{array}{c} 2106 \\ 189 \\ \hline 89 \end{array}\right)$	${ }_{8}^{8}$	$\begin{aligned} & 20 \\ & \hline 189 \\ & 90 \end{aligned}$	\checkmark	$\begin{aligned} & 250 \\ & \hline \end{aligned}$	B_{8}	$\begin{gathered} 2180 \\ \hline 188 \\ \hline 80 \\ \hline \end{gathered}$	E	$\begin{array}{\|c} 300 \\ 200 \\ c 8 \\ c 8 \end{array}$	\varnothing	$\begin{aligned} & 320 \\ & 208 \\ & 0108 \end{aligned}$	è	$\left(\begin{array}{c} 350 \\ 325 \\ 22_{8} \end{array}\right)$	\square	$\begin{array}{\|c\|c\|} \hline 30 \\ 288 \\ \hline 888 \\ \hline \end{array}$	1000	8
8	$\begin{aligned} & 2138 \\ & \hline 189 \\ & \hline 89 \end{aligned}$	9	$\begin{array}{\|l\|l\|} \substack{2393 \\ 99 \\ 90} \end{array}$	©			$\begin{gathered} 185 \\ \hline 189 \\ \hline 89 \\ \hline 89 \end{gathered}$	É	$\left.\begin{array}{c} 31 \\ 201 \\ c 9 \\ c 9 \end{array}\right]$	ù	$\begin{aligned} & 3, \\ & 3, \\ & 010 \\ & 09 \end{aligned}$	é	$\begin{array}{\|c} 3535 \\ \hline 239 \\ \hline 9 \\ \hline 9 \end{array}$	ù	¢	－	9
${ }_{8}$	边	${ }_{9}$	$\begin{array}{\|c} 232 \\ \substack{134 \\ 94 \\ 94 \\ \hline} \end{array}$	$\underline{\square}$	$\begin{aligned} & 252 \\ & 1020 \\ & 104 \end{aligned}$	\bigcirc	$\begin{gathered} 2826 \\ \substack{186 \\ 80} \\ \hline \end{gathered}$	\hat{E}	$\begin{aligned} & 3120 \\ & 202 \\ & c 4 \end{aligned}$	ú		é	${ }_{\substack { 35 \\ \begin{subarray}{c}{35 \\ \text { EA }{ 3 5 \\ \begin{subarray} { c } { 3 5 \\ \text { EA } } }\end{subarray}}$	í	cos	，	10
8		\％	$\begin{array}{\|c\|c\|} \hline 233 \\ \hline 159 \\ 98 \\ \hline \end{array}$	＜		》	$\begin{array}{\|c\|c\|} \hline 273 \\ \hline 888 \\ \hline 88 \\ \hline \end{array}$	\ddot{E}		ט̂	$\left.\begin{aligned} & 339 \\ & 239 \\ & 08 \\ & 08 \end{aligned} \right\rvert\,$	\because		人	$\begin{array}{\|c\|c\|} \hline 235 \\ \hline 251 \\ f=1 \end{array}$	10．1	11
${ }^{8} \mathrm{C}$	${ }_{\substack{2 \\ 124 \\ 140}}^{140}$	${ }^{9}$	$\begin{array}{\|} 239 \\ \hline 156 \\ 90 \\ \hline 90 \end{array}$	A	$\left.\begin{array}{\|c\|c\|} \hline 254 \\ 104 \\ 10 c \end{array} \right\rvert\,$	1／4	$\begin{array}{\|l\|} \hline 218 \\ \hline 188 \\ \hline 80 \\ \hline 80 \\ \hline \end{array}$	1	$\begin{aligned} & 319 \\ & 304 \\ & 040 \end{aligned}$	u		i	${ }_{\substack{354 \\ \hline 26 \\ \text { ec }}}^{36}$	\ddot{u}	cis	1100	12
\％	$\begin{array}{\|c\|c\|} \hline 2151 \\ \hline 180 \\ \hline 80 \\ \hline \end{array}$	${ }^{\circ}$	$\begin{array}{\|} 235 \\ \left.\begin{array}{r} 235 \\ 150 \\ 90 \end{array} \right\rvert\, \end{array}$	A	$\begin{aligned} & 235 \\ & \left.\begin{array}{c} 256 \\ 130 \\ 100 \end{array} \right\rvert\, \end{aligned}$	1／2	$\begin{gathered} 2789 \\ \hline 808 \\ 880 \\ \hline 80 \end{gathered}$	i	$\begin{array}{\|} 315 \\ 235 \\ 0.05 \\ \hline 0 \end{array}$	$\ddot{\text { i }}$		i	$\left[\begin{array}{c} 355 \\ 355 \\ 85 \\ \hline 0 \end{array}\right]$	\＃	$\begin{array}{\|c\|c\|} \hline 355 \\ \left.\begin{array}{c} 235 \\ 70 \end{array} \right\rvert\, \end{array}$	0	13
${ }_{5}^{8}$		${ }_{5}{ }_{5}$		A	$\left[\begin{array}{l} 256 \\ 186 \\ 106 \end{array}\right]$	${ }_{\text {B }}$	$\left\|\begin{array}{\|c\|c\|} \hline 206 \\ \hline 90 \\ \hline 80 \\ \hline 80 \end{array}\right\|$	$\hat{\imath}$		D_{E}	$\left.\begin{array}{\|c\|c\|} \hline 00 \\ 326 \\ 220 \\ 06 \end{array} \right\rvert\,$	\hat{i}	${ }_{\substack { 356 \\ \begin{subarray}{c}{356 \\ \text { 2E }{ 3 5 6 \\ \begin{subarray} { c } { 3 5 6 \\ \text { 2E } } }\end{subarray}}^{\substack{\text { E }}}$	F_{E}		い1．0	14
${ }_{8}^{8}$		${ }_{\text {F }}$	$\underset{\substack{239 \\ \hline 15 \\ 98}}{\substack{\text { a }}}$	A	仿	i	（in	\because		，	$\left.\begin{array}{c} 332 \\ \hline 23 \\ 030 \end{array}\right]$	i		－			15

C1 CODES \rightarrow（DEC SUPPLEMENTAL GRAPHICS）$\longrightarrow \rightarrow+$

Escape Sequences

An escape sequence is a sequence of one or more ASCII graphic characters preceded by the CO character ESC. For example,

ESC \# 6

is an escape sequence that causes the current line of text to have double-width characters. Escape sequences use only 7 -bit characters, and can be used in 7 -bit or 8 -bit environments.

Control Sequences

A control sequence is a sequence of one or more ASCII graphic characters preceded by CSI ($9 / 11$). CSI can also be expressed as the 7 -bit code extension ESC[. So you can express all control sequences as escape sequences whose second character code is [. For example, the following two sequences are equivalent sequences that perform the same function (they cause the display to use 132 columns per line rather than 80).

CSI ? 3 h
ESC [? 3 h
Whenever possible, use CSI instead of ESC [to introduce a control sequence. CSI can be used only in an 8-bit environment.

Device Control Strings

A device control string is a delimited string of characters used in a data stream as a logical entity for control purposes. It consists of an opening delimiter DCS, a command string (data), and a closing delimiter ST.

DCS is an 8-bit control character that can also be expressed as ESC P when coding for a 7 -bit environment.

ST is an 8-bit control character that can also be expressed as ESC / when coding for a 7-bit environment.

TRANSMITTED CODES

Main Keypad Function Keys

Key	Code Transmitted
TAB	DEL character. HETUR character
	CR character only or a CR character and an LF character, depending on the set/reset state of Linefeed/New Line mode (LNM).

Main Keypad Function Keys (Cont)

Key	Code Transmitted
CTRL	Does not transmit a code.
LOCK	Does not transmit a code.
SHIFT $(2$ keys $)$	Does not transmit a code.
SPACE BAR	SP character.
COMPOSE CHARACTER	Does not transmit a code.

Editing Keys

Key	Code Generated VT200 Mode	VT100, VT52, 4010/4014 Modes
FIND	CSI $1 \sim$	None
INSERT HERE	CSI $2 \sim$	None
REMOVE	CSI $3 \sim$	None
SELECT	CSI $4 \sim$	None
PREV SCREEN	CSI $5 \sim$	None
NEXT SCREEN	CSI $6 \sim$	None

* In 4010/4014 mode, NEXT SCREEN is used as a "CLEAR SCREEN" key.

Cursor Control Keys

| | $\begin{array}{l}\text { ANSI Mode* } \\ \text { Cursor Key Mode } \\ \text { Reset }\end{array}$ | | VT52 Mode* |
| :--- | :--- | :--- | :--- | :--- |
| Set | | | |$)$

* ANSI mode applies to VT200 and VT100 modes. VT52 mode is ANSI-incompatible mode.
\qquad

Auxiliary Keypad Keys
VT100/VT200 ANSI Mode*

Key	Keypad Numeric Mode	Keypad Application Mode	Keypad Numeric Mode	Keypad Application Mode
0	0	SS3 p	0	ESC? p
1	1	SS3 q	1	ESC? q
2	2	SS3 r	2	ESC? r
3	3	SS3 s	3	ESC? s
4	4	SS3 t	4	ESC? t
5	5	SS3 u	5	ESC? u
6	6	SS3 v	6	ESC? v
7	7	SS3 w	7	ESC? w
8	8	SS3 x	8	ESC? x
9	9	SS3 y	9	ESC? y
-	-(minus)	SS3 m	-	ESC? m
,	,(comma)	SS3 I	,	ESC? It
	.(period)	SS3 n	.	ESC? n
Enter	CR or CR LF	SS3 M	CR or CR LF	ESC? M \ddagger
PF1	SS3 P	SS3 P	ESC P	ESC P
PF2	SS3 Q	SS3 Q	ESC Q	ESC Q
PF3	SS3 R	SS3 R	ESC R	ESC R
PF4	SS3 S	SS3 S	ESC S	ESC S \dagger

[^0]
Top Row Function Keys

Name on Legend Strip	Code Generated		
	Generic Name	VT200 Mode	VT100, VT52 Modes
HOLD SCREEN	(F1)*	-	-
PRINT SCREEN	(F2)*	-	-
SET-UP	(F3)*	-	-
DATA/TALK	(F4)*	-	-
BREAK	(F5)*	-	-
F6	F6	CSI 17 ~	-
F7	F7	CSI 18 ~	-
F8	F8	CSI $19 \sim$	-
F9	F9	CSI $20 \sim$	-
F10	F10	CSI $21 \sim$	-
F11 (ESC)	F11	CSI 23 ~	ESC
F12 (BS)	F12	CSI 24 ~	BS
F13 (LF)	F13	CSI 25 ~	LF
F14	F14	CSI 26 ~	-
HELP	(F15)	CSI 28 ~	-
DO	(F16)	CSI 29 ~	-
F17	F17	CSI $31 \sim$	-
F18	F18	CSI $32 \sim$	-
F19	F19	CSI 3 ~	-
F20	F20	CSI $34 \sim$	-

[^1]\qquad

Keys Used to Generate 7-Bit Control Characters

Control	Key Pressed	
Character	With CTRL	Dedicated
Mnemonic	(All Modes)	Function Key

NUL	2, space	
SOH	A	
STX	B	
ETX	C	
EOT	D	
ENQ	E	
ACK	F	
BEL	G	
BS	H	F12 (BS)*
HT	1	TAB
LF	J	F13 (LF)*
VT	K	
FF	L	
CR	M	RETURN
SO	N	
SI	O	
DLE	P	
DC1	Q \dagger	
DC2	R	
DC3	S \dagger	
DC4	T	
NAK	U	
SYN	V	
ETB	W	
CAN	X	
EM	Y	
SUB	Z	
ESC	3, [F11 (ESC)*
FS	4, /	
GS	5,]	
RS	6, ~	
US	7,?	
DEL	8	DELETE

* Keys F11, F12, and F13 generate these 7-bit control characters only when the terminal is operated in VT100 mode, VT52 mode or 4010/4014 mode.
\dagger These keystrokes are enabled only if XOFF support is disabled. If XOFF support is enabled, then CTRL-S is a"hold screen" local function and CTRL-Q is an "unhold screen" local function.

RECEIVED CODES

Compatibility Level (DECSCL)

CO (ASCII) Control Characters Recognized

Mnemonic	Name	Action
NUL	Null	Ignored when received. Answerback message is generated.
ENQ	Enquiry	Bell
BSL	Backspace	Generates bell tone if bell is enabled. Moves cursor to the left one character position: if cursor is at left margin, no action occurs.
HT	Horizontal tabulation or to right margin if there are no more tab stops. Does not cause autowrap. Causes alinefeed or a new line operation, depending on the setting of new line mode.	
LF	Linefeed Vertical tabulation	Processed as LF.
FF	Form feed Carriage return	Processed as LF. Moves cursor to left margin on current line.
CR	Shift out Ilock shift G1)	Invokes G1 character set into GL. G1 is designated by a select-character-set (SCS) sequence.
SO		

\qquad

CO (ASCII) Control Characters Recognized (Cont)

Mnemonic	Name	Action
$\underset{\text { (LSO) }}{\text { SI }}$	Shift in (lock shift GO)	Invoke GO character set into GL. GO is designated by a select-character-set (SCS) sequence.
DC1	Device control 1	Also referred to as XON. If XOFF support is enabled, DC1 clears DC3 (XOFF), causing the terminal to continue transmitting characters (keyboard unlocks) unless KAM mode is currently set.
DC3	Device control 3	Also referred to as XOFF. If XOFF support is enabled, DC3 causes the terminal to stop transmitting characters until a DC1 control character is received.
CAN	Cancel	If received during an escape or control sequence, terminates and cancels the sequence. No error character is displayed. If received during a device control string, the DCS is terminated and no error character is displayed.
SUB	Substitute	If received during escape or control sequence, terminates and cancels the sequence. Causes a reverse question mark to be displayed. If received during a device control sequence, the DSC is terminated and reverse question mark is displayed.
ESC	Escape	Processed as escape sequence introducer. Terminates any escape, control or device control sequence which is in progress.
DEL	Delete	Ignored when received. Note: May not be used as a time fill character.

C1 Control Characters Recognized

Control Character	Equivalent 7-Bit Code Extension	Name	Action
IND	ESC D	Index	Moves cursor down one line in same column. If cursor is at bottom margin, screen performs a scroll up.
NEL	ESC E	Next line	Moves cursor to first position on next line. If cursor is at bottom margin, screen performs a scroll up.
HTS	ESC H	Horizontal tab set	Sets one horizontal zontal tab stop at the column where the cursor is.
RI	ESC M	Reverse index	Moves cursor up one line in same column. If cursor is at top margin, screen performs a scroll down.
SS2	ESC N	Single shift G2	Temporarily invokes G2 character set into GL for the next graphic character. G2 is designated by a select-characterset(SCS) sequence.
SS3	ESC O	Single shift G3	Temporarily invokes G3 character set into GL for the next graphic character. G3 is designated by a select-characterset(SCS) sequence.
DCS	ESC P	Device control string	Processed as opening delimiter of a device control string for device control use.

\qquad

C1 Control Characters Recognized (Cont)

Control Character	Equivalent 7-Bit Code Extension	Name	Action
CSI	ESC [Control sequence introducer	Processed as control sequence introducer.
ST	ESC \backslash	String terminator	Processed as closing delimiter of a string opened by DCS.

CHARACTER SET SELECTION (SCS)

Designating "Hard" Character Sets

Character Set	Escape Sequence	Designate as:
ASCII	ESC (B	GO (default)
	ESC) B	G1
	ESC * B	G2 (VT200 mode only)
	$E S C+B$	G3 (VT200 mode only)
DEC Supplemental (VT200 mode only)	ESC (<	GO
	ESC) <	G1
	ESC * <	G2
	ESC + <	G3
UK National	ESC (A	G0
(VT100 mode only)	ESC) A	G1
DEC Special Graphics	ESC (0	G0
	ESC) 0	G1
	ESC * 0	G2 (VT200 mode only)
	$E S C+0$	G3 (VT200 mode only)

Designating "Soft" (Down-Line Loadable) Character Sets

Escape Sequence Designate As:

ESC (Dscs	G0
ESC) Dscs	G1
ESC ${ }^{*}$ Dscs	G2
ESC + Dscs	G3

Dscs can consist of zero, one, or two intermediate characters and a final character.

Intermediate characters are in the range of $2 / 0$ to $2 / 15$; Final characters are in the range of $3 / 0$ to $7 / 14$ (see ASCII Code Table for column/row notation).

Invoking Character Sets Using Lock Shifts

Control Name	Coding	Function
LSO - lock shift GO	SI	Invoke GO into GL. (default)
LS1 - lock shift G1	SO	Invoke G1 into GL.
LS1R - lock shift G1, right	ESC ~	Invoke G1 into GR. VT200 mode only.
LS2 - lock shift G2	ESC n	Invoke G2 into GL. VT200 mode only.
LS2R - lock shift G2, right	ESC \}	Invoke G2 into GR. (default) VT200 mode only.
LS3 - lock shift G3	ESC 0	Invoke G3 into GL. VT200 mode only.
LS3R - lock shift G3, right	ESC \|	Invoke G3 into GR. VT200 mode only.

20 \qquad

Invoking Character Sets Using Single Shifts

Control Name	Coding	Function
SS2- single shift G2	SS2 ESC N	Invokes G2 into GL for the next graphic character
SS3- single shift G3	SS3 ESC O	Invokes G3 into GL for the next graphic character

Select C1 Control Transmission
Control
Name Sequence* Action

7-bit C1 ESC sp F Causes all C1 codes
control
transmission
(S7C1T) returned to the application to be converted to their equivalent 7 -bit code extensions.

NOTE
The S7C1T sequence is ignored when the terminal is in VT100 or VT52 mode.

8-bit C1	ESC sp G
control Causes the terminal to return C1 codes to the transmission (S8C1T) application without con- verting them to their equiv- alent 7 -bit code extensions. 	

[^2]
Terminal Modes

Name	Mnemonic	Set Mode	Reset Mode*
Keyboard Action \dagger	KAM	Locked CSI 2 h	Unlocked CSI 2 I
Insertionreplacement	IRM	$\begin{aligned} & \text { Insert } \\ & \text { CSI } 4 \text { h } \end{aligned}$	Replace CSI 4 I
Sendreceive	SRM	$\begin{aligned} & \text { Off } \\ & \text { CSI } 12 \text { h } \end{aligned}$	$\begin{aligned} & \text { On } \\ & \text { CSI } 12 \text { I } \end{aligned}$
Line feednew line	LNM	New line CSI 20 h	Line feed CSI 20 I
Cursor key	DECCKM	Application CSI? 1 h	Cursor CSI? 1 I
ANSI/VT52	DECANM	$\begin{aligned} & \text { N/A } \\ & \text { CSI ? } 21 \end{aligned}$	VT52
Column	DECCOLM	132 column CSI ? 3 h	80 column CSI? 3 ।
Scrolling \dagger	DECSCLM	Smooth CSI ? 4 h	Jump CSI ? 41
Screen \dagger	DECSCNM	Reverse $\text { CSI? } 5 \mathrm{~h}$	Normal CSI? 5 I
Origin	DECOM	Origin CSI ? 6 h	Absolute CSI ? 6 I
Auto wrap	DECAWM	$\begin{aligned} & \text { On } \\ & \text { CSI ? } 7 \text { h } \end{aligned}$	$\begin{aligned} & \text { Off } \\ & \text { CSI ? } 7 \text { I } \end{aligned}$
Auto repeat \dagger	DECARM	$\begin{aligned} & \text { On } \\ & \text { CSI ? } 8 \text { h } \end{aligned}$	$\begin{aligned} & \text { Off } \\ & \text { CSI ? } 8 \text { I } \end{aligned}$
Print form feed	DECPFF	On CSI ? 18 h	$\begin{aligned} & \text { Off } \\ & \text { CSI ? } 18 \text { । } \end{aligned}$
Print extent	DECPEX	Full screen CSI ? 19 h	Scrolling region CSI? 19 I
Text cursor enable	DECTCEM	On CSI ? 25 h	$\begin{aligned} & \text { Off } \\ & \text { CSI ? } 25 \text { । } \end{aligned}$
Keypad	DECKPAM DECKPNM	Application ESC =	Numeric ESC >
Tektronix 4010/4014	DECTEK	On CSI ? 38 h	$\begin{aligned} & \text { Off } \\ & \text { CSI ? } 38 \text { I } \end{aligned}$

[^3]\qquad

Cursor Positioning

Cursor Positioning (Cont)

Name	Control Character	Sequence	Action
Next line (NEL)	NEL	ESC E	Moves the cursor to the first position on the next line. If the cursor is at the bottom margin the screen performs a scroll-up.
Save cursor (DECSC)	-	ESC 7	Saves in terminal memory the: - cursor position - graphic rendition - character set shift state - state of wrap flag - state of origin mode - state of selective erase
Restore cursor (DECRC)	-	ESC 8	Restores the states described for (DECSC) above. If none of these characteristics were saved: the cursor moves to home position, origin mode is reset, no characterattributes are assigned, and the default character set mapping is established.

Tab Stops

NOTE:

These sequences are affected by the User Preference Lock in Set-up.

Name	Control Character	Sequence	Action
Horizontal tab set (HTS)	HTS	ESC H	Sets a tab stop at the current column.
Tabulation clear (TBC)	CSI g	Clears a horizon- tal tab stop at cursor position.	
Clears a horizon-			

Select Graphic Rendition (SGR)

You can select one or more character renditions at a time using the following format:

CSI Ps ; ... Ps m
When you use multiple parameters, they are executed in sequence. The effects are cumulative. For example, to change from increased intensity to blinking-underlined, you can use:

CSI 0 ; 4 ; 5 m
When you select a single parameter, no delimiter (3/11) is used.
Ps Action
$0 \quad$ All attributes off
1 Display bold
4 Display underscored
5 Display blinking
7 Display negative (reverse) image
22 Display normal intensity
24 Display not underlined
25 Display not blinking
27 Display positive image

Select Character Attributes (DECSCA)

You can select all subsequent characters to be "selective erasable" or"not selective erasable" (see section on ERASING) using the following format:

NOTE:

This sequence is supported only in VT200 mode.
CSI Ps " q
where:

Ps	Action
0	All attributes off (does not apply to SGR)
1	Designate character as "non-erasable" by DECSEL/DECSED (attribute on).
2	Designate character as "erasable" by DECSEL/DECSED (attribute off).

Line Attributes

Name	Sequence
	Top half \quad Bottom Half
Double Height Line (DECDHL)	ESC \# 3 ESC \# 4

\qquad

Editing

Name	Sequence	Action
Insert line (IL)	CSI Pn L	Inserts Pn lines at the cursor.
Delete line (DL)	CSI Pn M	Deletes Pn lines starting at the line with the cursor.
Insert characters (ICH) (VT200 mode Only)	CSI Pn @	Insert Pn blank characters at the cursor
Dosition, with the character Delete character (DCH)	CSI Pn P	Deletes Pn characters starting with the character at the cursor position.

Erasing

Name	Sequence	Action
Erase character (ECH) (VT200 mode only)	CSI Pn X	Erases characters at the cursor position and the next $\mathrm{n}-1$ character.
Erase in line (EL)	CSI K	Erases from the cursor to the end of the line, including the cursor position.
	CSI O K	Same as above.
	CSI 1 K	Erases from the beginning of the line to the cursor, including the cursor position.
	CSI 2 K	Erases the complete line.
Erase in display (ED)	CSI J	Erases from the cursor the end of the screen, including the cursor position.
	CSI 0 J	Same as above.
	CSI 1 J	Erases from the beginning of the screen to the cursor, including the cursor position.
	CSI 2 J	Erases the complete display.

Erasing (Cont)

Name	Sequence	Action
Selective erase in line (DECSEL) (VT200 mode only)	CSI ? K	Erases all "erasable" char- acters (DECSCA) from the cursor to the end of the line.
	CSI ? O K	Same as above.
CSI ? 1 K	Erases all "erasable" char- acters (DECSCA) from the beginning of the line to and including the cursor position.	
Selective erase in display (DECSED) (VT200 mode only)	CSI ? J	Erases all "erasable" char acters (DECSCA) on the line
acters (DECSCA) from and		
including the cursor end of		
the screen.		

Set Top and Bottom Margins (DECSTBM)

CSI Pt ; Pb r
Selects top and bottom margins defining the scrolling region. Pt is the line number of the first line in the scrolling region. Pb is the line number of the bottom line. If either Pt or Pb is not selected, they default to top and bottom respectively. Lines are counted from "1".

Printing

Before you select a print operation, check printer status using the print status report (DSR) (see Reports section).

Name	Sequence	Action
Auto print mode	CSI ? 5	Turns on auto print mode. Subsequent display lines print when you move the cursor off the line using a linefeed, form feed, vertical tab, or autowrap. The printed line is terminated with a carriage return and the character which moved the cursor off the previous line (LF, FF, or VT (autowrap lines end with a linefeed).
	CSI ? 4 i	Turns off auto print mode.
Printer controller	CSI 5 i	Turns on printer controller mode. The terminal transmits received characters to the printer without displaying them on the screen. All characters and character sequences except NUL, XON, XOFF, CSI 5 i, and CSI $4 i$ are sent to the printer. The terminal does not insert or delete spaces, or provide line delimiters, or select the correct printer character set.
		Printer controller mode is of higher priority than auto print mode. It can be selected during auto print mode.
		When in printer controller mode, keyboard activity continues to be directed to the host.
	CSI 4 i	Turns off printer controller mode.
Print cursor line	CSI ? 1 i	Prints the display line containing the cursor. The cursor position does not change. The print-cursor-line sequence is completed when the line prints.

Printing (Cont)

Name	Sequence	Action
Print screen	CSI i	Prints the screen display (full screen or scrolling region, depending on the Print Extent DECEXT selection). Printer form feed mode (DECPFF) selects either a form feed(FF) or nothing as the print terminator. The print screen sequence is completed when the screen prints.
	CSI 0 i	Same as above.
Select graphics to printer	CXI ? i	Causes subsequent ReGIS Hardcopy commands to direct the graphics display to the printer port. Text that is part of the graphics screen prints with the graphics.
	CSI ? 0 i	Same as above.
Select graphics to host	CSI ? 2 i	Causes subsequent ReGIS Hardcopy commands to direct the graphics display to the host port.

User Defined Keys (DECUDK)

The device control string format for down-line loading UDK functions is:

```
DCS Pc;PI Ky1/st1;ky2/st2;...kyn/stn ST
```

where:

Pc	Meaning
None	Clear all keys before loading new values
0	Clear all keys before loading new values
$\mathbf{1}$	Load new key values, clear old only where defined
$\mathbf{P I}$	Meaning
None	Lock the keys against future redefinition
0	Lock the keys against future redefinition
1	Do not lock the keys against future redefinition

\qquad

Key (kyn)	Value (stn)
F6	17
F7	18
F8	19
F9	20
F10	21
F11	23
F12	24
F13	25
F14	26
HELP	28
DO	29
F17	31
F18	32
F19	33
F20	34

Down-Line Loading Characters (DRCS)

You can down-line load your DRCS character set using the following DECDLD device control string format:

DCS Pfn;Pcn;Pe;Pcms;Pw;Pt \{ Dscs Sxbp1;Sxbp2;...;Sxbpn ST
Parameter descriptions are as follows:

DECDLD Parameter Characters

Parameter	Name	Description
Pfn	Font number	0 and 1.
Pcn	Starting character number	Selects starting character in DRCS font buffer to be loaded.
Pe	Erase control	$0=$ erase all characters in this DRCS set $1=$ erase only the characters that are being reloaded $2=$ erase all characters in all DRCS sets (this font buffer number and other font buffer numbers)
	Character	$0=$ Device default (7×10)
	Matrix size	$\begin{aligned} & 1=(\text { not used }) \\ & 2=5 \times 10 \\ & 3=6 \times 10 \\ & 4=7 \times 10 \end{aligned}$

DECDLD Parameter Characters (Cont)

Parameter	Name	Description
Pw	Width attribute	$0=$ Device default (80 columns)
		$1=80$ column
Pt	2 $=132$ column	
	Text/ full-cell	0 1$=$ Device default (text)
		$2=$ Full-cell

Dscs defines the character set "name" for the soft font, and is used in the SCS (select character set) escape sequence.

Sxbp1;Sxbp2;...;Sxbpn are sixel bit patterns (1 to 94 patterns) for characters separated by semicolons. Each sixel bit pattern has the form:
S...S/...S
where the first S....S represents the upper columns (sixels) of the DRCS character, the slash advances the sixel pattern to the lower columns of the DRCS character, and the second S....S represents the lower columns (sixels) of the DRCS.

Clearing a Down-Line Loaded Character Set

You can clear a character set that you have down-line loaded using the following DECDLD control sequence:

> DCS 1;1;2 \{ sp @ ST

Down-line loaded character sets are also cleared by.

- performing the power-up self-test
- using the Set-Up Recall or Default functions
- using RIS or ESC c sequences

32 \qquad

Reports

Device Attributes (DA)

Communication Sequence

Host to VT240	CSI c	"What is your
(primary DA	or	service class code and what are your attributes?"

VT240 to host CSI ? 62; 1; 2; 3; 4; 6; 7; 8 c "I am a service (primary DA
response)

Host to VT240 (secondary DA response)	$\begin{aligned} & \mathrm{CSI}>\mathrm{c} \\ & \text { or } \\ & \mathrm{CSI}>0 \mathrm{c} \end{aligned}$	"What type of terminal are you, what is your firmware version, and what hardware options do you have installed?"
VT240 to host (secondary DA response)	CSI > 1; Pv; Po c	"I am a VT240 (2), my firmware version is (Pv), and I have PO option installed.

Where:

$$
\begin{aligned}
& \text { Pv= firmware/software version } \\
& \text { Po: } 0=\text { no options } \\
& 1=\text { Integral modem }
\end{aligned}
$$

EXAMPLE: CSI>2;10;1c = VT240 version 1.0, with integral modem option
\(\left.$$
\begin{array}{lll}\text { Device Status Report (DSR) } & \\
\text { Communication } & \text { Sequence } & \begin{array}{l}\text { Meaning }\end{array} \\
\begin{array}{l}\text { Host to VT240 } \\
\text { (request for } \\
\text { terminal status) }\end{array} & \text { CSI } 5 \mathrm{n} & \begin{array}{l}\text { "Please report your } \\
\text { operating status using }\end{array}
$$

a DSR control se-

quence. Are you in

good operating con-

dition or do you have

a malfunction?"

"I have no\end{array}\right]\)| malfunction." |
| :--- |

Where:
$\mathrm{Pv}=$ vertical position (row)
$\mathrm{Ph}=$ horizontal position (column)

DSR - Printer Port

Communication

Host to VT240
(request for
printer status)
VT240 to host

Sequence
CSI ? 15 n

CSI ? 13 n

CSI ? 10 n

CSI ? 11 n

Meaning

"What is the printer status?"
"DTR has not been asserted on the printer port since power up or reset - in essence, I have no printer."
"DTR is asserted on the printer port. The printer is ready."
"DTR is not currently asserted on the printer port. The printer is not ready."

DSR - User Defined Keys

Host to VT240 (request for	CSI ? 25 n	"Are User Defined Keys locked or Unlocked?"
UDK status)		

Identification (DECID)

ESC Z
Causes the terminal to send a primary DA response sequence. DECID, however, is not recommended. You should use the primary DA request for this purpose.

ReGIS Graphics Protocol Controls Mode

The ReGIS graphics mode is available through the VT200 and VT100 modes only. You enter ReGIS by sending a ReGIS device control string to the terminal.

Control String

 Parameter

Terminal Reset

Name	Sequence	Action
Soft terminal reset (DECSTR)	CSI ! p	Setsterminal to power-up default states
Hard terminal reset (RIS)	ESC c	Replaces all set-up parameters with NVR values or power-up default values if NVR values do not exist.

Tests (DECTST)

The sequence format for invoking terminal tests is:

```
CSI
    4;
    ; Ps y
```

Where:
Ps Test
$0 \quad$ Test 1, 2, 3, 4, and 6
1 Power-up self-test
2 EIA port data loopback test
3 Printer port loopback test
4 Color Bar Test
5 (not used)
6 EIA port modem control line loopback test
$7 \quad 20 \mathrm{~mA}$ port loopback test
8 (not used)
9 Repeat other test in parameter string
10 Full screen blue
11 Full screen green
12 Full screen red
13 Full screen white
14 Integral modem analog loopback test 15 Integral modem external loopback test
16 and up (not used)
NOTE:
DECTST causes a communications line disconnect.

Adjustments (DECALN)

ESC \# 8 Displays screen alignment pattern (full screen of "Es").
\qquad

VT52 Escape Sequences

Escape Sequence	Function
ESC A	Cursor up
ESC B	Cursor down
ESC C	Cursor right
ESC D	Cursor left
ESC F	Enter "graphics" mode
ESC G	Exit "graphics" mode
ESC H	Cursor to home
ESC I	Reverse line feed
ESC J	Erase to end of screen
ESC K	Erase to end of line
ESC Y Line Column*	Direct cursor address
ESC Z†	Identify
ESC =	Enter alternate keypad mode
ESC $>$	Exit alternate keypad mode
ESC <	Enter ANSI mode
ESC ^	Enter auto print mode
ESC $\overline{\text { E }}$	Exit auto print mode
ESC	Enter printer controller mode
ESC	Exit printer controller mode
ESC V	Print screen

* Line and column numbers for direct cursor addressing are single character codes whose value is the desired number plus 37 (octal).
\dagger The response to ESC Z in VT52 mode is ESC / Z.

ReGis

ReGIS Command Summary

| Command | ReGIS | |
| :--- | :--- | :--- | :--- |
| Key | Command | |
| Letter | Name | Description |

P	Position	Positions the graphics cursor without performing any writing.
V	Vector	Draws vectors (straight lines) between screen locations speci- fied within the command.

C Curve \quad| Draws circles, arcs and/or curves |
| :--- |
| using screen locations specified |
| within the command. |

T Text Controls display of graphics text strings, and allows specification of characters to be displayed.
W Write Specifies writing controls, such as shading
S Screen

Macrograph
Specifies screen controls, such as erasing the screen.

Defines a macrograph. Macrographs are used for storing and recalling ReGIS command strings, allowing a complex figure, which is to be used more than once to be stored as a macrograph, and invoked as a single command.
L Load

R
Report
Controls definition and loading of alternate characters which can be displayed using the Text command.

R
Reports information (such as active position, and error codes); initiates report position interactive mode.
; Resychroni- Semicolon serves as a zation resychronization command.
\qquad

ReGIS Power On/Reset Default Values Summary

Command
Type Command Default Description
Screen
Control $\quad \mathrm{S}(\mathrm{A}[0,0][799,499])$

Screen
Control
Screen
Control

Screen	S(MO(LO)1(L25)2(L50)3(L75))	Output map values for monochrome monitor Control
	are dark for M0, dim grey for M1, light grey for M2, and white for	
	M3.	

Screen $\quad S(M O(A D) 1(A B) 2(A R) 3(A G))$
Control

Screen S(IO)
Control

Screen Control	S(TO)
Write Control	W(M1)
Write Control	W(P1)
Write	W(P(M2)
Write Control	W(NO)
Write	W(F3)

Output map values for color monitor are dark for M0, blue for M1, red for M2, and green for M3.
Output map location 0 is selected for background intensity value, with dark background for color and monochrome monitors (default value for MO). No time delay.

Pixel vector (PV) multiplication of 1.
Solid line selected for writing pattern.
Pattern multiplication factor of 2.
Negative pattern control disabled.
Writing enabled to both

Control bit map planes.

ReGIS Power On/Reset Default Values Summary (Cont)		
Command Type	Command	Default Description
Write Control	W(13)	Output maplocation 3 selected for write tasks, resulting in white for monochrome, green for color, since these are the default values for M3.
Write Control	W(V)	Overlay writing in effect.
Write Control	W(SO)	Shading disabled.
Text	T(A0)	Character set containing standard ASCII characters is selected for text processing.
Text	T(S1)	Standard character cell size 1 is selected for text processing.
Text	T(S[9,20])	Display cell size associated with standard character cell size 1.
Text	T(U[8,20])	Unit cell size associated with standard character cell size 1.
Text	T[$+9,+0]$	Character positioning associated with standard character cell size 1.
Text	T(H2)	Height multiplication factor of 2.
Text	T(D0 S1 D0)	String and character tilt disabled.
Text	T(IO)	Italics disabled.
Text	T(M[1,2])	Size multiplication factor of 1 for width, and 2 for height.
Load	L(A1)	Select set 1 for loading.

Screen Control Command Summary

Command	Description
$S(A[X, Y][X, Y])$	Display addressing; allows defining addressing of screen at different size or orientation than actually true for VT240.
$S[X, Y]$	Scroll; uses relative X and Y values to define scrolling of screen data within the bit map while leaving coordinate system unchanged.
S <PV number>	Scroll; uses PV offset values to define scrolling of screen data within the bit map while leaving coordinate system unchanged.
S (H)	Hard copy control defining whole screen area is printed.
$\mathrm{S}(\mathrm{H}[\mathrm{X}, \mathrm{Y}][\mathrm{X}, \mathrm{Y}])$	Hard copy control defining amount of screen to be printed; bracketed values are actual screen coordinates identify opposing positions to be used to define portion of screen to be printed.
$S(H[X, Y])$	Hard copy control defining amount of screen to be printed; bracketed values are actual screen coordinates used with current cursor location to identify opposing positions defining portion of screen to be printed.
$S(H(P[X, Y])$	Print offset; defines relative offset value from current printhead location to where upper left corner of image is to be printed; [50,0] is default at power on, until new value is defined; any new value remains in effect until redefined.
$S(\mathrm{M}<\mathrm{n}>(<$ Lvalue $>$) $)$	Output mapping for changing mono shade values; Any or all values can be changed in a given command; defines the shade to be stored in selected (<n>) output map location.
$S(M<n>(<R G B>))$	Output mapping for changing color values using RGB specifier, any or all values can be changed in a given command; defines the color to be stored in selected $(<\mathrm{n}<)$ output map location.

Screen Control Command Summary (Cont)

Command Description
$\mathrm{S}(\mathrm{M}<\mathrm{n}>(\mathrm{HLS})) \quad$ Output mapping for changing color values using HLS specifier, any or all values can be changed in a given command; defines the color to be stored in selected ($\langle n\rangle$) output map location; default values are HLS values for default RGB values.
$S(1<n>) \quad B a c k g r o u n d ~ i n t e n s i t y ~ s e l e c t ; ~ s e l e c t s ~$ output map location (<n>) to be used for background.
S (I(RGB)) Background intensity select; selects output ap location containing closest color to RGB value specified.
$S(1(H L S)) \quad$ Background intensity select; selects output map location containing closest color to HLS value specified.
$S(T<0-255>) \quad$ Time delay, defines number of ticks f real time clock to be counted for a delay.
S (E) Screen erase; causes all graphic images on screen to be rewritten at current background intensity.
S (I<value>,E) Screen erase to defined background intensity; defines a background intensity, and erases screen to that value.
$S(W(M<n>)) \quad$ Temporary write defining multiplication factor for PV values; defines number of coordinates to be affected by each PV value specified for a scroll.

S ($\mathrm{C}<0$ or $1>$) Graphic Cursor Control; disables(C0) or enables (C1) display of diamond cursor.

Position Command Summary

Command	Description
$\mathrm{P}[\mathrm{X}, \mathrm{Y}]$	Positioning using $[\mathrm{X}, \mathrm{Y}]$ values to define a new active position; the [X, Y] values can be absolute, relative, or absolute/relative.
$\mathrm{P}<\mathrm{PV}$ >	Positioning using PV values to define a relative repositioning of the active position.
$P(W(M<n>))$	Temporary write control defining multiplication factor for PV values; defines number of coordinates to be affected by PV values.
P (B)	Begin a bounded sequence; causes current active position to be stored for reference at the end of the sequence.
P (S)	Start an unbounded sequence; causes a dummy position to be stored for reference at the end of the sequence.
P (E)	End of sequence; causes last stored (B) or (S) value to be referenced; if value referenced was stored by a(B), active position will be defined by the stored value; If value referenced was stored by (S), active position will remain at its current location.
P []	Null position; used in conjunction with write tasks to force write tasks to begin with first location of pattern memory.

Write Control Command Summary

Command	Description
$W(M<n>)$	PV multiplication; defines multiplica- tion factor (<n>) for PV values can be used as temporary write control for other types of commands.
$W(P<0-9>)$	Select standard pattern; selects one of ten stored write patterns for write tasks.
$W(P<$ binary $>)$	Specify binary pattern; allows speci- fication of unique writing patterns for Write tasks. The specified pattern can be up to 8 bits in length.

Write Control Command Summary (Cont)

Command Description
$\left.\begin{array}{ll}W \mathrm{~W}(\mathrm{M}<1-16>)) & \begin{array}{l}\text { Pattern multiplication; used to define } \\ \text { the number of times each bit of the }\end{array} \\ \text { pattern memory will be processed. } \\ \text { Pattern multiplication can be com- } \\ \text { bined with either select standard } \\ \text { pattern or the specify binary pattern, } \\ \text { or by itself, to define a multiplication } \\ \text { factor for the last specified pattern. }\end{array}\right\}$

W(V,E,C, or R) Four option letters available to define type of writing to occur. (C) for complement writing; (E) for erase writing; (R) for replace writing; (V) for overlay writing.
\(\left.\left.$$
\begin{array}{ll}W(S<0-1>) & \begin{array}{l}\text { Shading on/off control; when on (S1), } \\
\text { enables shading at currently selected } \\
\text { pattern, with the shading reference } \\
\text { line defined by the Y axis value of the }\end{array} \\
\text { active position when (S1) is invoked. }\end{array}
$$\right\} \begin{array}{l}Shading referenceline select; selects

a horizontal shading reference line

defined by[, Y], which can be either

an absolute or relative value.\end{array}\right\}\)| Shading referenceline select; selects |
| :--- |
| a vertical shading reference line |
| defined by $[\mathrm{X}]$, which can be either an |
| absolute or relative value. |

Write Control Command Summary (Cont)

Command	Descri
W (S '<character>')	Shadin graphic charac
Vector Commands Summary	

Command Description

V []	Draw dot; used to write to a single pixel defined by current active posi- tion; No cursor movement occurs.
$V[X, Y]$	Draw line using $[X, Y]$ value to define a position to which a line is to be drawn from the current active position; the $[X, Y]$ value canbean absolute, relative, or absolute/relative positioning value. Draw line using PV values to define a position to which a line is to be drawn, relative tothecurrent active position, in the direction defined by the PV value.

V (B) Begin a bounded sequence; causes current active position to be stored for reference at the end of the sequence.

V (S) \quad| Start an unbounded sequence; |
| :--- |
| causes a dummy position to be |
| stored for reference at the end of the |
| sequence. |

V (E) End of sequence; causes last stored (B) or (S) value to be referenced; If value referenced was stored by a(B), a line is drawn from the active position where (E) is sensed, to the location stored by (B); If value referenced was stored by (S), no line is drawn, and active position remains at current position.
V (W (<suboptions>) Temporary write control; used to invoke write control values different from those currently in effect, without altering those write control values; temporary write control values remain in effect only for the duration of write tasks they are invoked for.

Curve Commands Summary (Cont)

Command	Description C [] C (W (<suboptionition; used with either open
or closed sequence to affect inter-	
polation; [] will cause a position	
equal to the last specified active	
position to be stored as part of the	
positions to be interpolated; when	
used at the beginning of a sequence,	
the value stored will be the current	
active position.	

Text Command Summary

Command	Description
T 'text'	Text string; provides identification of text to be displayed; Text string characters must be delimited by either single quotes ('text'), or double quotes("text").
T ($\mathrm{A}\langle 0-3>$)	Character set; defines which of four possible character sets ($\langle 0-3\rangle$) is to be used for processing text string characters.
T (S<0-16>)	Standard character cell size; defines a set of display cell, unit cell, and character positioning, values to be used in processing text string characters; any one of 17 different sets (<0-16>) can be invoked.
T (S [<width, height>])	Display cell size; allows varying size of cell used for text string characters; default value comes from screen coordinate value associated with the standard character cell size default of (S1); if specified in pixels, $[9,20]$ is [9,10].

Text Command Summary (Cont)

Command	Description
T [$\mathrm{X}, \mathrm{Y}]$	Character positioning; allows varying of positioning between text string characters; default value comes from position value associated with the standard character cell size default of (S1); [X, Y] values are relative.
T (U [<width, height>])	Unit cell size; allows varying size of unit used for text string characters; default value comes from screen coordinate value associated with the standard character cell size default of (S1). In pixels, $[8,20]$ is $[8,10]$.
T ($\mathrm{H}<1-25>)$	Height multiplier; when invoked, the height multiplier will change the display cell and unit cell size height values to a value equal to 10 times the specified multiplier ([1-25]), without affecting width values, or positioning.
$T(D<a>S<0-16>)$	String tilt; used to define a tilt of text string characters, as a whole, relative to the normal horizontal baseline; <a> defines the degrees of the tilt; <0-16> provides a standard set value from which positioning during the tilt can be computed.
$T(D<a>S<0-16>D a)$	String/character tilt; used to define separate tilt values for the string, and the characters in the text string; the first <a> defines the degrees of tilt for the string; the second <a> defines the degrees of tilt for the characters in the string; <0-16> provides a standard set value from which positioning during the tilt can be computed.
T ($1<\mathrm{a}>$)	Italics; defines a degree of tilt (<a>) for characters without changing their orientation to the current baseline.

\qquad

Text Command Summary (Cont)
\(\left.$$
\begin{array}{ll}\text { Command } & \begin{array}{l}\text { Description }\end{array} \\
\text { T (B)<options>(E) } & \begin{array}{l}\text { Temporary text control; allows } \\
\text { selecting text values which differ } \\
\text { from those currently defined, } \\
\text { without affecting the current } \\
\text { values; the temporary values } \\
\text { remain in effect until (E) is } \\
\text { invoked. }\end{array}
$$

PV spacing; Uses PV values to

enable superscript, subscript,

and overstrike functions.\end{array}\right\}\)| Temporary write control; used to |
| :--- |
| invoke write control values differ- |
| ent from those currently in effect, |
| without altering the overall write |
| control values; temporary write |
| control values are only in effect |
| for the text command they are |
| invoked for. |

Load Command Summary

Command	Description
$L(A<1-3>)$	Select set; defines which of the three loadable character sets is to be selected forany subsequent load cell activity.
Specify name; provides a name	
("<name>") of up to ten char-	
acters in length to be applied to	
thecurrently selected set; specify	
name can be combined with the	
select set: (A<1-3> "<name>").	

Macrograph Summary

Syntax	Description @<letter> Invoke macrograph; causes content of the selected macro- graph (<letter>), a single case insensitive letter, to be invoked on the screen starting at the current cursor location.
@:<letter> <definition>@;	Define macrograph; defines the single, case insensitive letter the macrograph is to be stored under, and the definition to be stored.
@.Clear all macrographs; when invoked, deletes stored macro- graph descriptions from all 26 macrograph storage locations.	
@:<letter>@;Clear defined macrograph; used to clear the contents of a single macrograph storage loction; this	
option is actually a define macro-	

Report Command Summary

Command	Description
$R(P)$	Cursor position; causes reporting of the current active position.
R (M (<letter>)	Macrograph contents; causes reporting of the contents of the specified macrograph storage location.
$R(M)(=)$	Macrograph storage status; causes reporting of how much space has been assigned to macrograph storage, and how much of that space is currently free.
R (L)	Character set; cause reporting of set currently selected for loading.
R (E)	Error; causes reporting of the last error encountered by the parser.
$R(P(1))$	Report position interactive; places VT240 in a mode where cursor can be repositioned from the keyboard.

Report Command Error Condition Option Responses

Code Condition Description

$0 \quad$ No Error
1 Ignore

Character
No error has been detected since the last resynchronization character(;); a0 will be reported as the error character (<M>).
Character

An unexpected characterwas encountered, and ignored; the error character (<M>) will represent the character ignored.

2 Extra Option
The syntax $\mathrm{S}(\mathrm{H}[\mathrm{X}, \mathrm{Y}][\mathrm{X}, \mathrm{Y}])$ contained Coordinates more than two coordinate pairs; the extra coordinate pairs were ignored; always returns 0 for the error character (<M>).

3	Extra Coordinate Elements	The syntax $[\mathrm{X}, \mathrm{Y}]$ contained more than two coordinate elements all but the first two elements were ignored; always returns 0 as the error character (<M>).
4	Alphabet Out Of Range	The syntax $\mathrm{L}(\mathrm{A}<0-3>)$ contained a number less than 0 or greater than 3 ; always returns 0 for the error character (<M>).

Reserved

Report Command Error Condition Option Responses (Cont)

Code	Condition	Description
6	Reserved	
7	Begin/Start Overflow	The stacking limit of 16 (B) and (S) position and/or vector commands was exceeded; Subsequent (B) or (S) commands were ignored; the error character ($\langle M\rangle$) represents either a B or an S.
8	Begin/Start Underflow	A position or vector command (E) was encountered with no corresponding (B) or (S) option preceeding it; the (E) option is ignored; the error character (<M>) represents the E option letter.
9	Text Standard Size Error	A standard set number of less than 0 or greater than 16 was attempted by a text command standard set select; always returns 0 as the error character (<m>).

4010/4014

Entering/Exiting 4010/4014 Mode

There are two ways to enter and exit 4010/4014 mode: using set-up or escape sequences.
Sequence Function

| CSI ? 38 h | Enters 4010/4014 mode. |
| :--- | :--- | :--- | :--- |
| CSI ? 381 | Exits 4010/4014 mode. |

NOTE

The VT240 enters 4010/4014 in alpha mode, and exits 4010/4014 to the VT200, 7-bit control mode.

Alpha Mode Summary

```
ESC Set LCE
ESC NUL Set LCE
ESC ESC Set LCE
ESC ENQ Set bypass and return terminal status
BEL
    Ring bell
ESC BEL Ring bell
BS Move one space left
ESC BS Move one space left
HT Move one space right
ESC HT Move one space right
LF Move one line down
ESC LF Set LCE. Ignore filler LF and CR
ESC CR Set LCE. Ignore filler LF and CR
```


Alpha Mode Summary (Cont)

VT	Move one line up
ESC VT	Move one line up
ESC FF	Erase and home (page)
CR	Move to left margin
ESC ETB	Make copy
ESC CAN	Set bypass condition
ESC SUB	Set GIN and bypass condition
FS	Set point plot
ESC FS	Set point plot
GS	Set graph and dark vector
ESC GS	Set graph and dark vector
RS	Set incremental plot
ESC RS	Set incremental plot
SP	Move one space right
ESC 0	Select smallest character size
ESC :	Select smallest character size
ESC ;	Select smallest character size
ESC 1	Select small character size
ESC 8	Select small character size
ESC 9	Select small character size
ESC 2	Select large character size
ESC 3	Select largest character size
ESC DEL	Set LCE.

NOTE

1. LCE is a flag indicating an escape sequence introduction condition.
2. All non-control ASCII characters are print characters in Alpha mode.

Graph and Point Plot Mode Summary

ESC NUL	Set LCE
ESC ENQ	Set bypass and return terminal status
BEL	Ring bell
ESC LF	Set LCE and ignore filler LFs and CRs
ESC FF	Erase and home and go to Alpha
CR	Set Alpha and lift
ESC ETB	Make copy
ESC CAN	Set bypass condition
ESC SUB	Set GIN and bypass condition
FS	Set point plot
ESC FS	Set point plot
GS	Set graph and do a dark vector
ESC GS	Set graph and do a dark vector
RS	Set incremental plot
ESC RS	Set incremental plot
US	Set Alpha mode
ESC US	Set Alpha mode

Graph and Point Plot Mode Summary (Cont)

SP	High X or high Y coordinate value
!	High X or high Y coordinate value
	High X or high Y coordinate value
\#	High X or high Y coordinate value
\$	High X or high Y coordinate value
\%	High X or high Y coordinate value
\&	High X or high Y coordinate value
	High X or high Y coordinate value
(High X or high Y coordinate value
)	High X or high Y coordinate value
*	High X or high Y coordinate value
+	High X or high Y coordinate value
	High X or high Y coordinate value
-	High X or high Y coordinate value
	High X or high Y coordinate value
/	High X or high Y coordinate value
0	High X or high Y coordinate value
1	High X or high Y coordinate value
2	High X or high Y coordinate value
3	High X or high Y coordinate value
4	High X or high Y coordinate value
5	High X or high Y coordinate value
6	High X or high Y coordinate value
7	High X or high Y coordinate value
8	High X or high Y coordinate value
9	High X or high Y coordinate value
:	High X or high Y coordinate value
;	High X or high Y coordinate value
$<$	High X or high Y coordinate value
$=$	High X or high Y coordinate value
>	High X or high Y coordinate value
?	High X or high Y coordinate value
@	High X or high Y coordinate value
[Low Y coordinate value
1	Low Y coordinate value
]	Low Y coordinate value
	Low Y coordinate value
	Low Y coordinate value

Graph and Point Plot Mode Summary (Cont)

	Low Y
ESC	Set Normal, Solid Vector
ESC a	Set Normal, Dotted Vector
ESC b	Set Normal, Dot-Dashed Vector
ESC c	Set Normal, Short Dashed Vector
ESC d	Set Normal, Long Dashed Vector
ESC e	Set Normal, Solid Vector
ESC f	Set Normal, Solid Vector
ESC g	Set Normal, Solid Vector
ESC h	Set Bold, Solid Vector
ESC i	Set Bold, Dotted Vector
ESC j	Set Bold, Dot-Dashed Vector
ESC k	Set Bold, Short Dashed Vector
ESC I	Set Bold, Long Dashed Vector
ESC m	Set Bold, Solid Vector
ESC n	Set Bold, Solid Vector
ESC o	Set Bold, Solid Vector
i	Low Y
1	Low Y
1	Low Y
-	Low Y
DEL	Low Yor NO-OP (note 2)
ESC ?	Low Y (note 2)
ESC DEL	Set LCE

NOTE

1. LCE is a flag indicating an escape sequence introduction condition.
2. The affect of DEL as a Low Y character can be disabled by the DEL implies Low Y option in graphics set-up; if DEL cannot be used, the program can substitute ESC? which performs the same function as DEL.
3. All uppercase alphabetical characters can be used for High X or High Y coordinate values.
4. All lowercase alphabetical characters can be used for Low Y coordinate values.

Incremental Plot Mode

ESC NUL	Set LCE (note 1)
ESC ENQ	Set bypass and return terminal status
ESC BEL	Ring bell
ESC LF	Set LCE and ignore filler LF's and CR's
ESC CR	Set LCE and ignore filler LF's and CR's
ESC FF	Go Alpha and erase and home
CR	Set Alpha and left margin
ESC ETB	Make copy
ESC CAN	Set bypass
ESC SUB	Set bypass and GIN
ESC	Set LCE
ESC ESC	Set LCE
FS	Set point plot mode
ESC FS	Set point plot mode
GS	Set graph mode
ESC GS	Set graph mode
US	Set Alpha mode
ESC US	Set Alpha mode
Space	Turn beam off (pen up)
P	Turn beam on (pen down)
D	Move up (north)
E	Move up, right (northeast)
A	Move right (east)
I	Move down, right 'southeast)
H	Move down (south)
J	Move down, left (southwest)
B	Move left (west)
F	Move up, left (northwest)

Gin Mode

Gin mode is exited from keyboard only. While in GIN, only arrow keys are used (either shifted or unshifted) to reposition cross hair cursor. Gin mode is exited by activating any key normally active in VT100 mode. GIN mode exits to Alpha mode.

Bypass Condition

ESC ENQ	Set Bypass and return terminal status
ESC CAN	Set Bypass with no other action
ESC SUB	Set Bypass and go to GIN
BEL	Clear bypass and ring bell (if enabled)
ESC BEL	Clear bypass and ring bell (if enabled)
LF	Clear bypass and cause new line
ESC LF	Clear bypass, set LCE, and ignore filler LFs and CRs
ESC CR	Clear bypass, set LCE, and ignore filler LFs and CRs
CR	Clear bypass, move cursor to left margin, and go to Alpha
US	Clear bypass and go to graph
ESC US	Clear bypass and go to graph
ESC ETB	Clear bypass and make copy
ESC FF	Clear bypass, go to Alpha, and clear screen and home

NOTE

1. LCE is flag indicating an escape sequence introduction condition.
2. NEXT SCREEN key performs same function as ESC FF.

[^0]: * ANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
 \dagger You cannot generate these sequences on a VT52 terminal.
 \ddagger Keypad Numeric Mode. ENTER generates the same codes as RETURN. You can change the code generated by RETURN with the Linefeed/New Line Mode. When reset, the Linefeed/New Line Mode causes RETURN to generate a single control character (CR). When set, the mode causes RETURN to generate two control characters (CR, LF).

[^1]: * F1 through F5 are local function keys and do not generate codes.

[^2]: * sp is a space character

[^3]: * The last character of each sequence is lowercase $L(6 / 12)$
 \dagger User Preference feature

