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Abstract

The memory consistency model for a shared-memory multiprocessor specifies
the behavior of memory with respect to read and write operations from multiple
processors. As such, the memory model influences many aspects of system
design, including the design of programming languages, compilers, and the under-
lying hardware. Relaxed models that impose fewer memory ordering constraints
offer the potential for higher performance by allowing hardware and software to
overlap and reorder memory operations. However, fewer ordering guarantees can
compromise programmability and portability.  Many of the previously proposed
models either fail to provide reasonable programming semantics or are biased
toward programming ease at the cost of sacrificing performance.  Furthermore,
the lack of consensus on an acceptable model hinders software portability across
different systems.

This dissertation focuses on providing a balanced solution that directly ad-
dresses the trade-off between programming ease and performance. To address
programmability, we propose an alternative method for specifying memory be-
havior that presents a higher level abstraction to the programmer.  We show that
with only a few types of information supplied by the programmer, an implemen-
tation can exploit the full range of optimizations enabled by previous models.
Furthermore, the same information enables automatic and efficient portability
across a wide range of implementations.

To expose the optimizations enabled by a model, we have developed a formal
framework for specifying the low-level ordering constraints that must be enforced
by an implementation. Based on these specifications, we present a wide range of
architecture and compiler implementation techniques for efficiently supporting a
given model.  Finally, we evaluate the performance benefits of exploiting relaxed
models based on detailed simulations of realistic parallel applications.  Our results
show that the optimizations enabled by relaxed models are extremely effective in
hiding virtually the full latency of writes in architectures with blocking reads (i.e.,
processor stalls on reads), with gains as high as 80%.  Architectures with non-
blocking reads can further exploit relaxed models to hide a substantial fraction of
the read latency as well, leading to a larger overall performance benefit.  Further-
more, these optimizations complement gains from other latency hiding techniques
such as prefetching and multiple contexts.

We believe that the combined benefits in hardware and software will make
relaxed models universal in future multiprocessors, as is already evidenced by
their adoption in several commercial systems.



Acknowledgements

Many thanks go to my advisors John Hennessy and Anoop Gupta for their continued guidance, support,

and encouragement. John Hennessy’s vision and enthusiasm have served as an inspiration since my early

graduate days at Stanford. He has been a great source of insight and an excellent sounding board for ideas.

His leadership was instrumental in the conception of the DASH project which provided a great infrastructure

for multiprocessor research at Stanford. Anoop Gupta encouraged me to pursue my early ideas on memory

consistency models. I am grateful for the tremendous time, energy, and wisdom that he invested in steering

my research. He has been an excellent role model through his dedication to quality research. I also thank

James Plummer for graciously serving as my orals committee chairman and my third reader.

I was fortunate to be among great friends and colleagues at Stanford. In particular, I would like to thank

the other members of the DASH project, especially Jim Laudon, Dan Lenoski, and Wolf-Dietrich Weber,

for making the DASH project an exciting experience. I thank the following people for providing the base

simulation tools for my studies: Steve Goldschmidt for TangoLite, Todd Mowry for Dixie, and Mike Johnson

for the dynamic scheduled processor simulator. Charles Orgish, Laura Schrager, and Thoi Nguyen at Stanford,

and Annie Warren and Jason Wold at Digital, were instrumental in supporting the computing environment.

I also thank Margaret Rowland and Darlene Hadding for their administrative support. I thank Vivek Sarkar

for serving as a mentor during my first year at Stanford. Rohit Chandra, Dan Scales, and Ravi Soundararajan

get special thanks for their help in proof reading the final version of the thesis. Finally, I am grateful to my

friends and office mates, Paul Calder, Rohit Chandra, Jaswinder Pal Singh, and Mike Smith, who made my

time at Stanford most enjoyable.

My research on memory consistency models has been enriched through collaborations with Phil Gibbons

and Sarita Adve. I have also enjoyed working with Andreas Nowatzyk on the Sparc V9 RMO model, and

with Jim Horning, Jim Saxe, and Yuan Yu on the Digital Alpha memory model.

I thank Digital Equipment Corporation, the Western Research Laboratory, and especially Joel Bartlett and

Richard Swan, for giving me the freedom to continue my work in this area after joining Digital. The work

presented in this thesis represents a substantial extension to my earlier work at Stanford.

I would like to thank my friends and relatives, Ali, Farima, Hadi, Hooman, Illah, Rohit, Sapideh, Shahin,

Shahrzad, Shervin, Siamak, Siavosh, and Sina, who have made these past years so enjoyable. Finally, I thank

my family, my parents and brother, for their immeasurable love, encouragement, and support of my education.

Most importantly, I thank my wife, Nazhin, who has been the source of happiness in my life.

i



ii



To my parents Nezhat and Vali

and my wife Nazhin

iii



iv



Contents

Acknowledgements i

1 Introduction 1

1.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Our Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2.1 Programming Ease and Portability : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.2 Implementation Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.2.3 Performance Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.4 Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2 Background 7

2.1 What is a Memory Consistency Model? : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.1.1 Interface between Programmer and System : : : : : : : : : : : : : : : : : : : : : 7

2.1.2 Terminology and Assumptions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.1.3 Sequential Consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.1.4 Examples of Sequentially Consistent Executions : : : : : : : : : : : : : : : : : : : 10

2.1.5 Relating Memory Behavior Based on Possible Outcomes : : : : : : : : : : : : : : 15

2.2 Impact of Architecture and Compiler Optimizations : : : : : : : : : : : : : : : : : : : : : 15

2.2.1 Architecture Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

2.2.2 Compiler Optimizations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2.3 Implications of Sequential Consistency : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.3.1 Sufficient Conditions for Maintaining Sequential Consistency : : : : : : : : : : : : 21

2.3.2 Using Program-Specific Information : : : : : : : : : : : : : : : : : : : : : : : : : 22

2.3.3 Other Aggressive Implementations of Sequential Consistency : : : : : : : : : : : : 23

2.4 Alternative Memory Consistency Models : : : : : : : : : : : : : : : : : : : : : : : : : : 24

2.4.1 Overview of Relaxed Memory Consistency Models : : : : : : : : : : : : : : : : : 24

2.4.2 Framework for Representing Different Models : : : : : : : : : : : : : : : : : : : 25

2.4.3 Relaxing the Write to Read Program Order : : : : : : : : : : : : : : : : : : : : : 26

v



2.4.4 Relaxing the Write to Write Program Order : : : : : : : : : : : : : : : : : : : : : 31

2.4.5 Relaxing the Read to Read and Read to Write Program Order : : : : : : : : : : : : 31

2.4.6 Impact of Relaxed Models on Compiler Optimizations : : : : : : : : : : : : : : : 38

2.4.7 Relationship among the Models : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

2.4.8 Some Shortcomings of Relaxed Models : : : : : : : : : : : : : : : : : : : : : : : 39

2.5 How to Evaluate a Memory Model? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.5.1 Identifying the Target Environment : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.5.2 Programming Ease and Performance : : : : : : : : : : : : : : : : : : : : : : : : : 41

2.5.3 Enhancing Programming Ease : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

2.6 Related Concepts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

2.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

3 Approach for Programming Simplicity 45

3.1 Overview of Programmer-Centric Models : : : : : : : : : : : : : : : : : : : : : : : : : : 45

3.2 A Hierarchy of Programmer-Centric Models : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.2.1 Properly-Labeled Model—Level One (PL1) : : : : : : : : : : : : : : : : : : : : : 48

3.2.2 Properly-Labeled Model—Level Two (PL2) : : : : : : : : : : : : : : : : : : : : : 52

3.2.3 Properly-Labeled Model—Level Three (PL3) : : : : : : : : : : : : : : : : : : : : 55

3.2.4 Relationship among the Properly-Labeled Models : : : : : : : : : : : : : : : : : : 60

3.3 Relating Programmer-Centric and System-Centric Models : : : : : : : : : : : : : : : : : : 61

3.4 Benefits of Using Properly-Labeled Models : : : : : : : : : : : : : : : : : : : : : : : : : 63

3.5 How to Obtain Information about Memory Operations : : : : : : : : : : : : : : : : : : : : 65

3.5.1 Who Provides the Information : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

3.5.2 Mechanisms for Conveying Operation Labels : : : : : : : : : : : : : : : : : : : : 67

3.6 Programs with Unsynchronized Memory Operations : : : : : : : : : : : : : : : : : : : : : 70

3.6.1 Why Programmers Use Unsynchronized Operations : : : : : : : : : : : : : : : : : 70

3.6.2 Trade-offs in Properly Labeling Programs with Unsynchronized Operations : : : : : 71

3.6.3 Summary for Programs with Unsynchronized Operations : : : : : : : : : : : : : : 74

3.7 Possible Extensions to Properly-Labeled Models : : : : : : : : : : : : : : : : : : : : : : : 74

3.7.1 Requiring Alternate Information from the Programmer : : : : : : : : : : : : : : : 74

3.7.2 Choosing a Different Base Model : : : : : : : : : : : : : : : : : : : : : : : : : : 75

3.7.3 Other Possible Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

3.8 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

3.8.1 Relation to Past Work on Properly-Labeled Programs : : : : : : : : : : : : : : : : 76

3.8.2 Comparison with the Data-Race-Free Models : : : : : : : : : : : : : : : : : : : : 78

3.8.3 Other Related Work on Programmer-Centric Models : : : : : : : : : : : : : : : : 79

3.8.4 Related Work on Programming Environments : : : : : : : : : : : : : : : : : : : : 80

3.9 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

4 Specification of System Requirements 82

4.1 Framework for Specifying System Requirements : : : : : : : : : : : : : : : : : : : : : : 82

4.1.1 Terminology and Assumptions for Specifying System Requirements : : : : : : : : 83

vi



4.1.2 Simple Abstraction for Memory Operations : : : : : : : : : : : : : : : : : : : : : 86

4.1.3 A More General Abstraction for Memory Operations : : : : : : : : : : : : : : : : 88

4.2 Supporting Properly-Labeled Programs : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

4.2.1 Sufficient Requirements for PL1 : : : : : : : : : : : : : : : : : : : : : : : : : : : 97

4.2.2 Sufficient Requirements for PL2 : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

4.2.3 Sufficient Requirements for PL3 : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

4.3 Expressing System-Centric Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

4.4 Porting Programs Among Various Specifications : : : : : : : : : : : : : : : : : : : : : : : 114

4.4.1 Porting Sequentially Consistent Programs to System-Centric Models : : : : : : : : 115

4.4.2 Porting Programs Among System-Centric Models : : : : : : : : : : : : : : : : : : 120

4.4.3 Porting Properly-Labeled Programs to System-Centric Models : : : : : : : : : : : 121

4.5 Extensions to Our Abstraction and Specification Framework : : : : : : : : : : : : : : : : : 126

4.6 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 126

4.6.1 Relationship to other Shared-Memory Abstractions : : : : : : : : : : : : : : : : : 126

4.6.2 Related Work on Memory Model Specification : : : : : : : : : : : : : : : : : : : 128

4.6.3 Related Work on Sufficient Conditions for Programmer-Centric Models : : : : : : : 129

4.6.4 Work on Verifying Specifications : : : : : : : : : : : : : : : : : : : : : : : : : : 130

4.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131

5 Implementation Techniques 132

5.1 Cache Coherence : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

5.1.1 Features of Cache Coherence : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133

5.1.2 Abstraction for Cache Coherence Protocols : : : : : : : : : : : : : : : : : : : : : 134

5.2 Mechanisms for Exploiting Relaxed Models : : : : : : : : : : : : : : : : : : : : : : : : : 138

5.2.1 Processor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 140

5.2.2 Read and Write Buffers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

5.2.3 Caches and Intermediate Buffers : : : : : : : : : : : : : : : : : : : : : : : : : : : 143

5.2.4 External Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 148

5.2.5 Network and Memory System : : : : : : : : : : : : : : : : : : : : : : : : : : : : 149

5.2.6 Summary on Exploiting Relaxed Models : : : : : : : : : : : : : : : : : : : : : : 150

5.3 Maintaining the Correct Ordering Among Operations : : : : : : : : : : : : : : : : : : : : 150

5.3.1 Relating Abstract Events in the Specification to Actual Events in an Implementation 151

5.3.2 Correctness Issues for Cache Coherence Protocols : : : : : : : : : : : : : : : : : : 154

5.3.3 Supporting the Initiation and Uniprocessor Dependence Conditions : : : : : : : : : 158

5.3.4 Interaction between Value, Coherence, Initiation, and Uniprocessor Dependence Con-

ditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

5.3.5 Supporting the Multiprocessor Dependence Chains : : : : : : : : : : : : : : : : : 162

5.3.6 Supporting the Reach Condition : : : : : : : : : : : : : : : : : : : : : : : : : : : 183

5.3.7 Supporting Atomic Read-Modify-Write Operations : : : : : : : : : : : : : : : : : 184

5.3.8 Comparing Implementations of System-Centric and Programmer-Centric Models : : 185

5.3.9 Summary on Maintaining Correct Order : : : : : : : : : : : : : : : : : : : : : : : 186

5.4 More Aggressive Mechanisms for Supporting Multiprocessor Dependence Chains : : : : : 186

vii



5.4.1 Early Acknowledgement of Invalidation and Update Requests : : : : : : : : : : : : 187

5.4.2 Simple Automatic Hardware-Prefetching : : : : : : : : : : : : : : : : : : : : : : 196

5.4.3 Exploiting the Roll-Back Mechanism in Dynamically-Scheduled Processors : : : : 199

5.4.4 Combining Speculative Reads with Hardware Prefetching for Writes : : : : : : : : 201

5.4.5 Other Related Work on Aggressively Supporting Multiprocessor Dependence Chains 202

5.5 Restricted Interconnection Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204

5.5.1 Broadcast Bus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 204

5.5.2 Hierarchies of Buses and Hybrid Designs : : : : : : : : : : : : : : : : : : : : : : 205

5.5.3 Rings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

5.5.4 Related Work on Restricted Interconnection Networks : : : : : : : : : : : : : : : : 209

5.6 Systems with Software-Based Coherence : : : : : : : : : : : : : : : : : : : : : : : : : : 210

5.7 Interaction with Thread Placement and Migration : : : : : : : : : : : : : : : : : : : : : : 212

5.7.1 Thread Migration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213

5.7.2 Thread Placement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 215

5.8 Interaction with Other Latency Hiding Techniques : : : : : : : : : : : : : : : : : : : : : : 221

5.8.1 Prefetching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 221

5.8.2 Multiple Contexts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 222

5.8.3 Synergy Among the Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : 224

5.9 Supporting Other Types of Events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 224

5.10 Implications for Compilers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225

5.10.1 Problems with Current Compilers : : : : : : : : : : : : : : : : : : : : : : : : : : 225

5.10.2 Memory Model Assumptions for the Source Program and the Target Architecture : : 227

5.10.3 Reasoning about Compiler Optimizations : : : : : : : : : : : : : : : : : : : : : : 228

5.10.4 Determining Safe Compiler Optimizations : : : : : : : : : : : : : : : : : : : : : : 229

5.10.5 Summary of Compiler Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

5.11 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 233

6 Performance Evaluation 234

6.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 234

6.2 Architectures with Blocking Reads : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 235

6.2.1 Experimental Framework : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 235

6.2.2 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 240

6.2.3 Effect of Varying Architectural Assumptions : : : : : : : : : : : : : : : : : : : : 248

6.2.4 Summary of Blocking Read Results : : : : : : : : : : : : : : : : : : : : : : : : : 255

6.3 Interaction with Other Latency Hiding Techniques : : : : : : : : : : : : : : : : : : : : : : 256

6.3.1 Interaction with Prefetching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 256

6.3.2 Interaction with Multiple Contexts : : : : : : : : : : : : : : : : : : : : : : : : : : 258

6.3.3 Summary of Other Latency Hiding Techniques : : : : : : : : : : : : : : : : : : : 259

6.4 Architectures with Non-Blocking Reads : : : : : : : : : : : : : : : : : : : : : : : : : : : 261

6.4.1 Experimental Framework : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 261

6.4.2 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 264

6.4.3 Discussion of Non-Blocking Read Results : : : : : : : : : : : : : : : : : : : : : : 271

viii



6.4.4 Summary of Non-Blocking Read Results : : : : : : : : : : : : : : : : : : : : : : 272

6.5 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 272

6.5.1 Related Work on Blocking Reads : : : : : : : : : : : : : : : : : : : : : : : : : : 272

6.5.2 Related Work on Interaction with Other Techniques : : : : : : : : : : : : : : : : : 273

6.5.3 Related Work on Non-Blocking Reads : : : : : : : : : : : : : : : : : : : : : : : : 273

6.5.4 Areas for Further Investigation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 274

6.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 275

7 Conclusions 276

7.1 Thesis Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 277

7.2 Future Directions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 277

A Alternative Definition for Ordering Chain 279

B General Definition for Synchronization Loop Constructs 281

C Subtleties in the PL3 Model 283

C.1 Illustrative Example for Loop Read and Loop Write : : : : : : : : : : : : : : : : : : : : : 283

C.2 Simplification of the PL3 Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 284

D Detecting Incorrect Labels and Violations of Sequential Consistency 285

D.1 Detecting Incorrect Labels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 285

D.2 Detecting Violations of Sequential Consistency : : : : : : : : : : : : : : : : : : : : : : : 287

D.3 Summary of Detection Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 289

E Alternative Definition for Return Value of Reads 290

F Reach Relation 291

G Aggressive Form of the Uniprocessor Correctness Condition 295

H Aggressive Form of the Termination Condition for Writes 296

H.1 Relaxation of the Termination Condition : : : : : : : : : : : : : : : : : : : : : : : : : : : 296

H.2 Implications of the Relaxed Termination Condition on Implementations : : : : : : : : : : : 297

I Aggressive Specifications for Various System-Centric Models 299

I.1 Aggressive Specification of the Models : : : : : : : : : : : : : : : : : : : : : : : : : : : 299

I.2 Reach Relation for System-Centric Models : : : : : : : : : : : : : : : : : : : : : : : : : 314

I.3 Aggressive Uniprocessor Correctness Condition for System-Centric Models : : : : : : : : 314

J Extensions to Our Abstraction and Specification Framework 316

J.1 Assumptions about the Result of an Execution : : : : : : : : : : : : : : : : : : : : : : : : 316

J.2 External Devices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 318

J.3 Other Event Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 321

J.4 Incorporating various Events into Abstraction and Specification : : : : : : : : : : : : : : : 325

ix



J.5 A More Realistic Notion for Result : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 326

J.6 Summary on Extensions to Framework : : : : : : : : : : : : : : : : : : : : : : : : : : : 326

K Subtle Issues in Implementing Cache Coherence Protocols 328

K.1 Dealing with Protocol Deadlock : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 329

K.2 Examples of Transient or Corner Cases : : : : : : : : : : : : : : : : : : : : : : : : : : : 329

K.3 Serializing Simultaneous Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 333

K.4 Cross Checking between Incoming and Outgoing Messages : : : : : : : : : : : : : : : : : 335

K.5 Importance of Point-to-Point Orders : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 337

L Benefits of Speculative Execution 339

M Supporting Value Condition and Coherence Requirement with Updates 341

N Subtle Implementation Issues for Load-Locked and Store-Conditional Instructions 343

O Early Acknowledgement of Invalidation and Update Requests 345

P Implementation of Speculative Execution for Reads 351

P.1 Example Implementation of Speculative Execution : : : : : : : : : : : : : : : : : : : : : 351

P.2 Illustrative Example for Speculative Reads : : : : : : : : : : : : : : : : : : : : : : : : : : 355

Q Implementation Issues for a More General Set of Events 357

Q.1 Instruction Fetch : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 357

Q.2 Multiple Granularity Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 358

Q.3 I/O Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 360

Q.4 Other Miscellaneous Events : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 361

Q.5 Summary of Ordering Other Events Types : : : : : : : : : : : : : : : : : : : : : : : : : : 361

Bibliography 362

x



List of Tables

3.1 Sufficient program order and atomicity conditions for the PL models. : : : : : : : : : : : : 62

3.2 Unnecessary program order and atomicity conditions for the PL models. : : : : : : : : : : 63

4.1 Sufficient mappings for achieving sequential consistency. : : : : : : : : : : : : : : : : : : 116

4.2 Sufficient mappings for extended versions of models. : : : : : : : : : : : : : : : : : : : : 119

4.3 Sufficient mappings for porting PL programs to system-centric models. : : : : : : : : : : : 122

4.4 Sufficient mappings for porting PL programs to system-centric models. : : : : : : : : : : : 123

4.5 Sufficient mappings for porting PL programs to system-centric models. : : : : : : : : : : : 124

4.6 Porting PL programs to extended versions of some system-centric models. : : : : : : : : : 125

5.1 Messages exchanged within the processor cache hierarchy. [wt] and [wb] mark messages

particular to write through or write back caches, respectively. (data) and (data*) mark

messages that carry data, where (data*) is a subset of a cache line. : : : : : : : : : : : : : : 136

5.2 How various models inherently convey ordering information. : : : : : : : : : : : : : : : : 167

6.1 Latency for various memory system operations in processor clocks. Numbers are based on

33MHz processors. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 238

6.2 Description of benchmark applications. : : : : : : : : : : : : : : : : : : : : : : : : : : : 239

6.3 General statistics on the applications. Numbers are aggregated for 16 processors. : : : : : : 241

6.4 Statistics on shared data references and synchronization operations, aggregated for all 16

processors. Numbers in parentheses are rates given as references per thousand instructions. : 241

6.5 Statistics on branch behavior. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 264

xi



List of Figures

1.1 Example producer-consumer interaction. : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.1 Various interfaces between programmer and system. : : : : : : : : : : : : : : : : : : : : : 8

2.2 Conceptual representation of sequential consistency (SC). : : : : : : : : : : : : : : : : : : 10

2.3 Sample programs to illustrate sequential consistency. : : : : : : : : : : : : : : : : : : : : 11

2.4 Examples illustrating instructions with multiple memory operations. : : : : : : : : : : : : : 13

2.5 Examples illustrating the need for synchronization under SC. : : : : : : : : : : : : : : : : 14

2.6 A typical scalable shared-memory architecture. : : : : : : : : : : : : : : : : : : : : : : : 16

2.7 Reordering of operations arising from distribution of memory and network resources. : : : : 17

2.8 Non-atomic behavior of writes due to caching. : : : : : : : : : : : : : : : : : : : : : : : : 18

2.9 Non-atomic behavior of writes to the same location. : : : : : : : : : : : : : : : : : : : : : 19

2.10 Program segments before and after register allocation. : : : : : : : : : : : : : : : : : : : : 20

2.11 Representation for the sequential consistency (SC) model. : : : : : : : : : : : : : : : : : : 26

2.12 The IBM-370 memory model. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.13 The total store ordering (TSO) memory model. : : : : : : : : : : : : : : : : : : : : : : : 29

2.14 Example program segments for the TSO model. : : : : : : : : : : : : : : : : : : : : : : : 29

2.15 The processor consistency (PC) model. : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.16 The partial store ordering (PSO) model. : : : : : : : : : : : : : : : : : : : : : : : : : : : 31

2.17 The weak ordering (WO) model. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.18 Comparing the WO and RC models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.19 The release consistency (RC) models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.20 The Alpha memory model. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

2.21 The Relaxed Memory Order (RMO) model. : : : : : : : : : : : : : : : : : : : : : : : : : 37

2.22 An approximate representation for the PowerPC model. : : : : : : : : : : : : : : : : : : : 37

2.23 Example program segments for the PowerPC model. : : : : : : : : : : : : : : : : : : : : : 38

2.24 Relationship among models according to the “stricter” relation. : : : : : : : : : : : : : : : 39

2.25 Trade-off between programming ease and performance. : : : : : : : : : : : : : : : : : : : 41

2.26 Effect of enhancing programming ease. : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

3.1 Exploiting information about memory operations. : : : : : : : : : : : : : : : : : : : : : : 46

xii



3.2 Example of program order and conflict order. : : : : : : : : : : : : : : : : : : : : : : : : 49

3.3 Categorization of read and write operations for PL1. : : : : : : : : : : : : : : : : : : : : : 49

3.4 Program segments with competing operations. : : : : : : : : : : : : : : : : : : : : : : : : 50

3.5 Possible reordering and overlap for PL1 programs. : : : : : : : : : : : : : : : : : : : : : : 51

3.6 Categorization of read and write operations for PL2. : : : : : : : : : : : : : : : : : : : : : 53

3.7 Program segment from a branch-and-bound algorithm : : : : : : : : : : : : : : : : : : : : 54

3.8 Possible reordering and overlap for PL2 programs. : : : : : : : : : : : : : : : : : : : : : : 55

3.9 Categorization of read and write operations for PL3. : : : : : : : : : : : : : : : : : : : : : 57

3.10 Example program segments: (a) critical section, (b) barrier. : : : : : : : : : : : : : : : : : 58

3.11 Example program segments with loop read and write operations. : : : : : : : : : : : : : : 59

3.12 Possible reordering and overlap for PL3 programs. : : : : : : : : : : : : : : : : : : : : : : 60

3.13 Example with no explicit synchronization. : : : : : : : : : : : : : : : : : : : : : : : : : : 73

4.1 Simple model for shared memory. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

4.2 Conditions for SC using simple abstraction of shared memory. : : : : : : : : : : : : : : : : 88

4.3 General model for shared memory. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

4.4 Conservative conditions for SC using general abstraction of shared memory. : : : : : : : : 92

4.5 Example producer-consumer interaction. : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

4.6 Scheurich and Dubois’ conditions for SC. : : : : : : : : : : : : : : : : : : : : : : : : : : 94

4.7 Aggressive conditions for SC. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

4.8 Examples illustrating the need for the initiation and termination conditions. : : : : : : : : : 96

4.9 Conservative conditions for PL1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

4.10 Examples to illustrate the need for the reach condition. : : : : : : : : : : : : : : : : : : : 100

4.11 Examples to illustrate the aggressiveness of the reach relation. : : : : : : : : : : : : : : : : 103

4.12 Example to illustrate optimizations with potentially non-terminating loops. : : : : : : : : : 104

4.13 Unsafe optimizations with potentially non-terminating loops. : : : : : : : : : : : : : : : : 105

4.14 Sufficient conditions for PL1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

4.15 Sufficient conditions for PL2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108

4.16 Sufficient conditions for PL3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 110

4.17 Original conditions for RCsc. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111

4.18 Equivalent aggressive conditions for RCsc. : : : : : : : : : : : : : : : : : : : : : : : : : 112

4.19 Example to illustrate the behavior of the RCsc specifications. : : : : : : : : : : : : : : : : 113

4.20 Aggressive conditions for RCpc. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

4.21 Relationship among models (arrow points to stricter model). : : : : : : : : : : : : : : : : : 115

4.22 Examples to illustrate porting SC programs to system-centric models. : : : : : : : : : : : : 117

5.1 Cache hierarchy and buffer organization. : : : : : : : : : : : : : : : : : : : : : : : : : : : 135

5.2 Typical architecture for distributed shared memory. : : : : : : : : : : : : : : : : : : : : : 139

5.3 Example of out-of-order instruction issue. : : : : : : : : : : : : : : : : : : : : : : : : : : 141

5.4 Example of buffer deadlock. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

5.5 Alternative buffer organizations between caches. : : : : : : : : : : : : : : : : : : : : : : 147

5.6 Conditions for SC with reference to relevant implementation sections. : : : : : : : : : : : : 151

xiii



5.7 Typical scalable shared memory architecture. : : : : : : : : : : : : : : : : : : : : : : : : 152

5.8 Generic conditions for a cache coherence protocol. : : : : : : : : : : : : : : : : : : : : : 154

5.9 Updates without enforcing the coherence requirement. : : : : : : : : : : : : : : : : : : : : 157

5.10 Example showing interaction between the various conditions. : : : : : : : : : : : : : : : : 160

5.11 Simultaneous write operations. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

5.12 Multiprocessor dependence chains in the SC specification. : : : : : : : : : : : : : : : : : : 163

5.13 Multiprocessor dependence chains in the PL1 specification. : : : : : : : : : : : : : : : : : 164

5.14 Examples for the three categories of multiprocessor dependence chains. : : : : : : : : : : : 165

5.15 Protocol options for a write operation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 171

5.16 Subtle interaction caused by eager exclusive replies. : : : : : : : : : : : : : : : : : : : : : 173

5.17 Difficulty in aggressively supporting RMO. : : : : : : : : : : : : : : : : : : : : : : : : : 176

5.18 Merging writes assuming the PC model. : : : : : : : : : : : : : : : : : : : : : : : : : : : 180

5.19 Semantics of read-modify-write operations. : : : : : : : : : : : : : : : : : : : : : : : : : 185

5.20 Example illustrating early invalidation acknowledgements. : : : : : : : : : : : : : : : : : 188

5.21 Order among commit and completion events. : : : : : : : : : : : : : : : : : : : : : : : : 189

5.22 Multiprocessor dependence chain with a R
co
�! W conflict order. : : : : : : : : : : : : : : 190

5.23 Reasoning with a chain that contains a R
co
�! W conflict orders. : : : : : : : : : : : : : : 191

5.24 Example illustrating early update acknowledgements. : : : : : : : : : : : : : : : : : : : : 192

5.25 Multiprocessor dependence chain with R co
�!W. : : : : : : : : : : : : : : : : : : : : : : 194

5.26 Example code segments for hardware prefetching. : : : : : : : : : : : : : : : : : : : : : : 198

5.27 Bus hierarchies and hybrid designs. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 205

5.28 Simple abstraction for a hierarchy. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

5.29 Rings and hierarchies of rings. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 207

5.30 Example of thread migration. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 213

5.31 Example of a category 1 chain transformed to a category 3 chain. : : : : : : : : : : : : : : 213

5.32 A more realistic example for thread migration. : : : : : : : : : : : : : : : : : : : : : : : : 215

5.33 Different ways of implementing thread migration. : : : : : : : : : : : : : : : : : : : : : : 216

5.34 Scheduling multiple threads on the same processor. : : : : : : : : : : : : : : : : : : : : : 217

5.35 An example of thread placement with a write-write interaction. : : : : : : : : : : : : : : : 218

5.36 Another example of thread placement with a write-read interaction. : : : : : : : : : : : : : 219

5.37 Example of thread placement for the RCsc model. : : : : : : : : : : : : : : : : : : : : : : 220

5.38 Effect of loop interchange. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 226

5.39 Effect of register allocation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 226

5.40 Example to illustrate the termination condition. : : : : : : : : : : : : : : : : : : : : : : : 232

6.1 Categories of program reordering optimizations. : : : : : : : : : : : : : : : : : : : : : : : 235

6.2 Simulated architecture and processor environment. : : : : : : : : : : : : : : : : : : : : : 237

6.3 Performance of applications with all program orders preserved. : : : : : : : : : : : : : : : 242

6.4 Effect of buffering writes while preserving program orders. : : : : : : : : : : : : : : : : : 243

6.5 Effect of relaxing write-read program ordering. : : : : : : : : : : : : : : : : : : : : : : : 244

6.6 Effect of relaxing write-write and write-read program ordering. : : : : : : : : : : : : : : : 246

6.7 Effect of differences between the WO and RCpc models. : : : : : : : : : : : : : : : : : : 248

xiv



6.8 Write-read reordering with less aggressive implementations. : : : : : : : : : : : : : : : : : 250

6.9 Write-read and write-write reordering with less aggressive implementations. : : : : : : : : 252

6.10 Effect of varying the cache sizes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 254

6.11 Effect of varying the cache line size. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 255

6.12 Effect of prefetching and relaxing program order. : : : : : : : : : : : : : : : : : : : : : : 257

6.13 Effect of multiple contexts and relaxing program order. : : : : : : : : : : : : : : : : : : : 260

6.14 Overall structure of Johnson’s dynamically scheduled processor. : : : : : : : : : : : : : : : 262

6.15 Results for dynamically scheduled processors (memory latency of 50 cycles). : : : : : : : : 266

6.16 Effect of perfect branch prediction and ignoring data dependences for dynamic scheduling

results. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 269

A.1 Canonical 3 processor example. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 280

C.1 Program segment illustrating subtleties of loop read and loop write. : : : : : : : : : : : : : 284

F.1 Examples to illustrate the reach condition. : : : : : : : : : : : : : : : : : : : : : : : : : : 294

H.1 Example to illustrate the more aggressive termination condition. : : : : : : : : : : : : : : : 297

H.2 Example of the aggressive termination condition for the PL3 model. : : : : : : : : : : : : : 297

I.1 Aggressive conditions for IBM-370. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 301

I.2 Aggressive conditions for TSO. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 302

I.3 Aggressive conditions for PC. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 303

I.4 Aggressive conditions for PSO. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 304

I.5 Aggressive conditions for WO. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 305

I.6 Aggressive conditions for Alpha. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 306

I.7 Aggressive conditions for RMO. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 307

I.8 Aggressive conditions for PowerPC. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 308

I.9 Aggressive conditions for TSO+. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 309

I.10 Aggressive conditions for PC+. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 310

I.11 Aggressive conditions for PSO+. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 311

I.12 Aggressive conditions for RCpc+. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 312

I.13 Aggressive conditions for PowerPC+. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 313

I.14 Example illustrating the infinite execution condition. : : : : : : : : : : : : : : : : : : : : 315

J.1 Illustrating memory operation reordering in uniprocessors. : : : : : : : : : : : : : : : : : 317

J.2 An example multiprocessor program segment. : : : : : : : : : : : : : : : : : : : : : : : : 318

J.3 Examples illustrating I/O operations. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 320

J.4 Synchronization between a processor and an I/O device. : : : : : : : : : : : : : : : : : : : 321

J.5 Multiple granularity access to memory. : : : : : : : : : : : : : : : : : : : : : : : : : : : 322

J.6 Interaction of private memory operations and process migration. : : : : : : : : : : : : : : 324

K.1 A transient write-back scenario. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 329

K.2 Messages bypassing one another in a cache hierarchy. : : : : : : : : : : : : : : : : : : : : 330

xv



K.3 Example of a transient invalidate from a later write. : : : : : : : : : : : : : : : : : : : : : 331

K.4 Example of a transient invalidate from an earlier write. : : : : : : : : : : : : : : : : : : : 331

K.5 Example of a transient invalidate from a later write in a 3-hop exchange. : : : : : : : : : : 332

K.6 Example of a transient invalidate with a pending exclusive request. : : : : : : : : : : : : : 333

K.7 Example with simultaneous write operations. : : : : : : : : : : : : : : : : : : : : : : : : 334

K.8 Example transient problems specific to update-based protocols. : : : : : : : : : : : : : : : 335

K.9 Complexity arising from multiple operations forwarded to an exclusive copy. : : : : : : : : 336

L.1 Example program segments for illustrating speculative execution. : : : : : : : : : : : : : : 340

O.1 Reasoning with a category three multiprocessor dependence chain. : : : : : : : : : : : : : 346

O.2 Another design choice for ensuring a category three multiprocessor dependence chain. : : : 347

O.3 Carrying orders along a multiprocessor dependence chain. : : : : : : : : : : : : : : : : : : 348

O.4 Atomicity properties for miss operations. : : : : : : : : : : : : : : : : : : : : : : : : : : 349

O.5 Category three multiprocessor dependence chain with R
co
�!W. : : : : : : : : : : : : : : : 349

O.6 Category three multiprocessor dependence chain with R co
�!W. : : : : : : : : : : : : : : : 350

P.1 Overall structure of Johnson’s dynamically scheduled processor. : : : : : : : : : : : : : : : 352

P.2 Organization of the load/store functional unit. : : : : : : : : : : : : : : : : : : : : : : : : 353

P.3 Illustration of buffers during an execution with speculative reads. : : : : : : : : : : : : : : 356

Q.1 Split instruction and data caches. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 358

Q.2 Examples with multiple granularity operations. : : : : : : : : : : : : : : : : : : : : : : : 359

xvi



Chapter 1

Introduction

Parallel architectures provide the potential for achieving substantially higher performance than traditional

uniprocessor architectures. By utilizing the fastest available microprocessors, multiprocessors are increasingly

becoming a viable and cost-effective technology even at small numbers of processing nodes.

The key differentiating feature among multiprocessors is the mechanisms used to support communication

among different processors. Message-passing architectures provide each processor with a local memory that

is accessible only to that processor and require processors to communicate through explicit messages. In

contrast, multiprocessors with a single address space, such as shared-memory architectures, make the entire

memory accessible to all processors and allow processors to communicate directly through read and write

operations to memory.

The single address space abstraction greatly enhances the programmability of a multiprocessor. In

comparison to a message-passing architecture, the ability of each processor to access the entire memory

simplifies programming by reducing the need for explicit data partitioning and data movement. The single

address space also provides better support for parallelizing compilers and standard operating systems. These

factors make it substantially easier to develop and incrementally tune parallel applications.

Since shared-memory systems allow multiple processors to simultaneously read and write the same

memory locations, programmers require a conceptual model for the semantics of memory operations to allow

them to correctly use the shared memory. This model is typically referred to as a memory consistency model or

memory model. To maintain the programmability of shared-memory systems, such a model should be intuitive

and simple to use. Unfortunately, architecture and compiler optimizations that are required for efficiently

supporting a single address space often complicate the memory behavior by causing different processors to

observe distinct views of the shared memory. Therefore, one of the challenging problems in designing a

shared-memory system is to present the programmer with a view of the memory system that is easy to use

and yet allows the optimizations that are necessary for efficiently supporting a single address space.

Even though there have been numerous attempts at defining an appropriate memory model for shared-

memory systems, many of the proposed models either fail to provide reasonable programming semantics or
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are biased toward programming ease at the cost of sacrificing performance. In addition, the lack of consensus

on an acceptable model, along with subtle yet important semantic differences among the various models,

hinder simple and efficient portability of programs across different systems. This thesis focuses on provid-

ing a balanced solution that directly addresses the trade-off between programming ease and performance.

Furthermore, our solution provides automatic portability across a wide range of implementations.

1.1 The Problem

Uniprocessors present a simple and intuitive view of memory to programmers. Memory operations are

assumed to execute one at a time in the order specified by the program and a read is assumed to return the

value of the last write to the same location. However, an implementation does not need to directly maintain

this order among all memory operations for correctness. The illusion of sequentiality can be maintained by

only preserving the sequential order among memory operations to the same location. This flexibility to overlap

and reorder operations to different locations is exploited to provide efficient uniprocessor implementations.

To hide memory latency, architectures routinely use optimizations that overlap or pipeline memory operations

and allow memory operations to complete out-of-order. Similarly, compilers use optimizations such as

code motion and register allocation that exploit the ability to reorder memory operations. In summary, the

uniprocessor memory model is simple and intuitive for programmers and yet allows for high performance

implementations.

Allowing multiple processors to concurrently read and write a set of common memory locations compli-

cates the behavior of memory operations in a shared-memory multiprocessor. Consider the example code

segment shown in Figure 1.1 which illustrates a producer-consumer interaction between two processors. As

shown, the first processor writes to location A and synchronizes with the second processor by setting location

Flag, after which the second processor reads location A. The intended behavior of this producer-consumer

interaction is for the read of A to return the new value of 1 in every execution. However, this behavior may

be easily violated in some systems. For example, the read of A may observe the old value of 0 if the two

writes on the first processor are allowed to execute out of program order. This simple example illustrates the

need for clearly specifying the behavior of memory operations supported by a shared-memory system.1

Since a multiprocessor is conceptually a collection of uniprocessors sharing the same memory, it is natural

to expect its memory behavior to be a simple extension of that of a uniprocessor. The intuitive memory model

assumed by most programmers requires the execution of a parallel program on a multiprocessor to appear

as some interleaving of the execution of the parallel processes on a uniprocessor. This intuitive model was

formally defined by Lamport as sequential consistency [Lam79]:

Definition 1.1: Sequential Consistency
[A multiprocessor is sequentially consistent if] the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.

Referring back to Figure 1.1, sequential consistency guarantees that the read of A will return the newly pro-

duced value in all executions. Even though sequential consistency provides a simple model to programmers,

the restrictions it places on implementations can adversely affect efficiency and performance. Since several

1Even though we are primarily interested in specifying memory behavior for systems with multiple processors, similar issues arise
in a uniprocessor system that supports a single address space across multiple processes or threads.
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A = 1;
FLAG = 1; while (FLAG == 0);

... = A;

P1 P2

Initially  A = FLAG = 0

Figure 1.1: Example producer-consumer interaction.

processors are allowed to concurrently access the same memory locations, reordering memory operations on

one processor can be easily detected by another processor. Therefore, simply preserving the program order

on a per-location basis, as is done in uniprocessors, is not sufficient for guaranteeing sequential consistency.

A straightforward implementation of sequential consistency must disallow the reordering of shared memory

operations from each processor. Consequently, many of the architecture and compiler optimizations used

in uniprocessors are not safely applicable to sequentially consistent multiprocessors. Meanwhile, the high

latency of memory operations in multiprocessors makes the use of such optimizations even more important

than in uniprocessors.

To achieve better performance, alternative memory models have been proposed that relax some of the

memory ordering constraints imposed by sequential consistency. The seminal model among these is the

weak ordering model proposed by Dubois et al. [DSB86]. Weak ordering distinguishes between ordinary

memory operations and memory operations used for synchronization. By ensuring consistency only at the

synchronization points, weak ordering allows ordinary operations in between pairs of synchronizations to be

reordered with respect to one another.

The advantage of using a relaxed memory model such as weak ordering is that it enables many of the

uniprocessor optimizations that require the flexibility to reorder memory operations. However, a major draw-

back of this approach is that programmers can no longer assume a simple serial memory semantics. This

makes reasoning about parallel programs cumbersome because the programmer is directly exposed to the

low-level memory reorderings that are allowed by a relaxed model. Therefore, while relaxed memory models

address the performance deficiencies of sequential consistency, they may unduly compromise programma-

bility. Programming complexity is further exacerbated by the subtle semantic differences among the various

relaxed models which hinders efficient portability of programs across different systems.

1.2 Our Approach

The trade-offs between performance, programmability, and portability present a dilemma in defining an

appropriate memory consistency model for shared-memory multiprocessors. Choosing an appropriate model

requires considering three important factors. First, we need to determine how the model is presented to

the programmer and how this impacts programming ease and portability. Second, we need to specify the

restrictions the model places on the system and determine techniques required for correctly and efficiently

implementing the model. Finally, we need to evaluate the performance of the model and consider the

implementation complexity that is necessary to achieve this performance. We discuss our approach for
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addressing these issues below.

1.2.1 Programming Ease and Portability

Relaxed memory models such as weak ordering are specified as a set of conditions that define the allowable

orderings among memory operations. Such specifications can be considered system-centric since they in

effect expose the low-level system optimizations to the programmer. To address programmability, we have

developed an alternative framework for specifying relaxed memory models that presents the programmer

with a higher-level abstraction of the system. We refer to this type of specification as programmer-centric.

The premise behind a programmer-centric specification is that programmers prefer to reason with a simple

memory model such as sequential consistency. Therefore, in contrast to the system-centric approach, the

programmer is allowed to use sequential consistency to reason about programs. To enable optimizations,

the programmer is required to provide information about the behavior of memory operations in sequentially

consistent executions of the program. This information allows the system to determine the memory ordering

optimizations that can be safely exploited without violating sequential consistency. Furthermore, the same

information can be used to automatically and efficiently port the program to a wide range of implementations.

Overall, providing this type of program-level information is simpler and more natural for programmers than

directly reasoning with system-centric models.

In this thesis, we present a set of programmer-centric models that unify the optimizations captured by

previous system-centric models. We show that this approach is easier to use and provides a higher performance

potential than previous system-centric models.

1.2.2 Implementation Issues

To better understand the implementation needs of a memory consistency model, we must first specify the

precise conditions that an implementation must obey to satisfy the semantics of the model. To address this

issue, we have developed a formal framework for specifying the low-level system conditions imposed by a

model. Specifications in this framework have the advantage of being formal and precise, and naturally expose

the system optimizations that are allowed by a model. We use the above framework to express the sufficient

conditions for implementing the programmer-centric models described in the previous section, in addition to

the conditions for several of the system-centric models.

Based on the above specifications, we next consider a wide range of architecture and compiler techniques

for correctly and efficiently supporting a given memory model.

1.2.3 Performance Evaluation

The primary motivation for studying relaxed memory models is to achieve higher performance. Evaluating

the performance of such models is critical in deciding whether the benefits of a model outweigh its costs in

terms of programming and implementation complexity. In addition, such a study sheds light on the features

in a model that have the most impact on performance. Surprisingly, numerous relaxed memory models have

been proposed without any attempt to quantify their performance effects.

We focus on evaluating performance gains from exploiting relaxed memory models in cache-coherent

shared-memory architectures using a set of realistic parallel programs. By studying implementations with
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varying degrees of complexity, we identify the key architectural features for efficiently supporting relaxed

memory models and relate the performance gains to the level of implementation complexity. Our results

show that with a modest level of architectural support, relaxed memory models are extremely effective in

hiding the large latency of memory operations in shared-memory machines.

1.3 Contributions

The primary contributions of this dissertation are as follows:

� We propose a set of programmer-centric models that unify the optimizations enabled by system-centric

models. Compared to the system-centric models, the programmer-centric models are superior in

their programming ease, portability, and performance potential. The models presented in this thesis

extend our previous work on the release consistency model and properly labeled programs [GLL+90,

GAG+92].

� We present a formal framework for specifying the implementation conditions that are required to

maintain the semantics of a memory model. This framework leads to precise specifications that can be

easily translated into correct and efficient implementations of both the architecture and the compiler.

The framework presented in this thesis extends our previous work in this area [GGH93b, GAG+93].

We use it to specify the sufficient conditions for implementing our programmer-centric models, as well

as to specify the conditions for several system-centric memory models. Expressing these models within

a uniform and precise framework allows for a direct comparison of the optimizations enabled by each

model. Furthermore, based on these specifications, we determine transformations for automatically

porting programs across different models.

� We present a variety of practical implementation techniques for efficiently supporting memory models

at the architecture and compiler level. Several of the architectural techniques discussed here have been

successfully used in the design of the Stanford DASH [LLG+92] and FLASH [KOH+94] multiproces-

sors. We also describe a couple of aggressive techniques that can significantly boost the performance

of models such as sequential consistency relative to straightforward hardware implementations of

such models [GGH91b]. These latter techniques have recently been adopted by several commercial

processors, including the Intel Pentium Pro (or P6) and the MIPS R10000.

� We provide a detailed performance evaluation of relaxed memory models at the architecture level.

Our earlier studies in this area [GGH91a, GGH92] represent the first set of comprehensive results to

quantify the performance gains from exploiting relaxed memory models.

1.4 Organization

Chapter 2 presents the background material for the thesis. We begin by describing the various components of

a multiprocessor system that are affected by the memory consistency model. We next discuss the implications

of sequential consistency on both architecture and compiler optimizations. Finally, we provide an overview

of the previously proposed memory consistency models.
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Chapter 3 presents the programmer-centric approach for specifying memory models. We discuss the

abstraction that is presented to the programmer and describe the type of information that the programmer is

required to convey about memory operations.

Chapter 4 presents the framework for specifying system requirements for different memory models. This

framework is used to specify sufficient conditions for implementing the programmer-centric models proposed

in Chapter 3. In addition, we provide specifications for several of the system-centric models and describe

how programs that are written for programmer-centric models can be automatically ported to such models.

Chapter 5 presents a wide range of implementation techniques for efficiently supporting memory consis-

tency models at both the architecture and the compiler level.

Chapter 6 presents a detailed evaluation of the performance gains from exploiting relaxed memory models.

We identify the key optimizations and architectural enhancements that are necessary for achieving these gains

in cache-coherent shared-memory architectures. In addition, we study the interaction of relaxed memory

models with other latency hiding techniques such as prefetching and use of multiple contexts.

Finally, Chapter 7 summarizes the major results of this dissertation and discusses potential directions for

future research.
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Chapter 2

Background

This chapter provides the background information on memory consistency models. The first section describes

the role of memory consistency models in specifying the behavior of memory operations and introduces

sequential consistency as an intuitive model for shared-memory systems. We next consider the impact of

common architecture and compiler optimizations on the behavior of shared memory operations. The third

section illustrates the inherent difficulties in exploiting these optimizations in conjunction with sequential

consistency. Finally, we explore some of the alternative models that have been proposed to remedy the

performance inefficiencies associated with sequential consistency.

2.1 What is a Memory Consistency Model?

A memory consistency model, or memory model, for a shared-memory multiprocessor specifies how memory

behaves with respect to read and write operations from multiple processors. From the programmer’s point

of view, the model enables correct reasoning about the memory operations in a program. From the system

designer’s point of view, the model specifies acceptable memory behaviors for the system. As such, the

memory consistency model influences many aspects of system design, including the design of programming

languages, compilers, and the underlying hardware.

This section begins with a brief description of the interfaces at which a memory model may be defined.

We next present some basic terminology and assumptions for describing memory models. This is followed

by a description of the sequential consistency model along with numerous examples that provide further

familiarization with this model. Finally, we describe how different models or implementations may be

compared based on the memory behaviors they allow.

2.1.1 Interface between Programmer and System

A memory model can be defined at any interface between the programmer and the system. Figure 2.1 shows

a variety of possible interfaces in a typical multiprocessor system. At the lowest interface, the system consists
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Figure 2.1: Various interfaces between programmer and system.

of the base hardware and programmers express their programs in machine-level instructions. At higher level

interfaces, the system is typically composed of more components, including the compiler, assembler, and

base architecture.

The definition of the memory model is often incorporated into the semantics of the programming language

used at a given interface. Therefore, the memory model may vary for different interfaces or for different

languages at the same interface. An intermediate system component such as the compiler is responsible for

correctly mapping the memory semantics of its input language to that of its output language.

The majority of programmers deal with the highest interface, using a high-level programming language

for specifying programs. At this level, a programmer typically has the choice of using either a traditional

sequential language or an explicitly parallel language. The sequential language interface provides the familiar

uniprocessor semantics for memory, thus relieving the programmer from reasoning about the multiprocessor

aspects of the system. This interface is typically supported either by a traditional sequential compiler that

generates a single thread of control to execute on the multiprocessor or by a parallelizing compiler that deals

with the multiprocessor issues transparently to the programmer. On the other hand, programmers who opt to

express their algorithms more directly using an explicitly parallel language are exposed to the multiprocessor

semantics for memory operations in one form or another.

Many of the concepts that are discussed in this thesis apply across all interfaces. We will explicitly point

out any concepts that are interface-specific.

2.1.2 Terminology and Assumptions

This section presents some of the basic terminology and assumptions we use to describe multiprocessor

systems and memory consistency models. Our goal is to provide intuitive definitions; a more formal and

general framework for describing memory models will be presented in Chapter 4.

A multiprocessor program conceptually consists of several parallel threads of control, each with its

individual program consisting of a sequence of instructions. Since we are primarily concerned with the

behavior of memory operations, our focus will be on instructions that generate memory accesses to shared
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data.

We assume a canonical multiprocessor system that consists of several virtual processors sharing a common

memory. To execute a multiprocessor program, we assume there is a virtual processor per parallel thread of

control in the application. Therefore, the semantics of a memory model should not be affected by the physical

mapping of multiple threads to the same physical processor.

An execution consists of a sequence of shared memory operations that is generated as a result of executing

the multiprocessor program. A memory operation corresponds to a specific instance of executing a memory

instruction. Initializing the state of memory may be modeled by a set of initial write operations to memory

that occur before the program execution begins.

We assume processors communicate with one another solely through read and write memory operations

to the shared data memory. A read operation specifies a memory location and results in a single read event

that returns the value of that memory location. Similarly, a write operation specifies a memory location along

with a new value and results in a single write event that modifies the memory location to the new value. Two

operations conflict if they are to the same location and at least one of them is a write [SS88]. Except for the

events described above, there are no other side effects due to a read or write operation. For simplicity, we

assume the instruction space is read only; Chapter 4 discusses how this assumption may be removed.

In general, an instruction may specify more than a single memory operation. Multiple memory operations

generated by the execution of an instruction should appear to execute atomically; for any two instructions i1

and i2, either all operations of i1 appear to execute before any operation of i2 or vice versa. Each instruction

must also specify the order in which its constituent operations must execute. The above generality is useful

for modeling read and write memory operations to multiple granularities of data (e.g., byte, word, double

word) and for modeling atomic read-modify-write operations (e.g., test-and-set, compare-and-swap). For

simplicity, we assume instructions can generate a single read operation, a single write operation, or a read

followed by a write operation to the same location, all with the same data granularity. Extensions to this

assumption will be discussed in Chapter 4.

The program for each virtual processor imposes a conceptual total order on the operations issued by the

processor in a given execution. The program order is defined as a partial order on all memory operations that

is consistent with the per-processor total order on memory operations from each processor [SS88].

Finally, we need to discuss the notion of result or outcome for an execution of a program. We will assume

that the result of an execution comprises of the values returned by the read operations in the execution. The

final state of memory can be included in this notion by modeling it through read operations to memory that

occur after the actual program execution completes. The above notion of result does not capture the time or

actual order in which operations execute; we can only deduce the order in which operations appear to execute.

Therefore, the results of two executions are considered equivalent if the reads return the same values in both

executions, regardless of whether the actual order of operations is the same in the two executions. Chapter 4

will discuss more realistic notions of result that include the effect of I/O devices.

2.1.3 Sequential Consistency

A natural way to define a memory model for multiprocessors is to base it on the sequential semantics of

memory operations in uniprocessors. An intuitivedefinition would require executions of a parallel program on

a multiprocessor to behave the same as some interleaved execution of the parallel processes on a uniprocessor.
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Figure 2.2: Conceptual representation of sequential consistency (SC).

Such a model was formally defined by Lamport as sequential consistency [Lam79] (abbreviated as SC). The

definition below assumes a multiprocessor consists of several correctly-functioning uniprocessors, referred to

as sequential processors [Lam79], that access a common memory. Another implicit assumption is that a read

returns the value of the last write to the same location that is before it in the sequential order described above.

Definition 2.1: Sequential Consistency
[A multiprocessor is sequentially consistent if] the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.

Sequential consistency maintains the memory behavior that is intuitively expected by most programmers.

Figure 2.2 provides a conceptual representation of sequential consistency with several processors sharing

a common logical memory. Each processor is required to issue its memory operations in program order.

Operations are serviced by memory one-at-a-time; thus, they appear to execute atomically with respect to

other memory operations. The memory services operations from different processors based on an arbitrary

but fair global schedule. This leads to an arbitrary interleaving of operations from different processors into a

single sequential order. The fairness criteria guarantees eventual completion of all processor requests. The

above requirements lead to a total order on all memory operations that is consistent with the program order

dictated by each processor’s program.

An execution (or the result of an execution) of a program is sequentially consistent if there exists at least

one execution on a conceptual sequentially consistent system that provides the same result (given the same

input and same initial state in memory). Otherwise, the execution violates sequential consistency.

2.1.4 Examples of Sequentially Consistent Executions

Figure 2.3 provides some canonical sample programs to illustrate the semantics of sequential consistency.

We use the following convention for specifying programs. We use uppercase letters (e.g., A, B, C) to denote

shared memory locations and lowercase letters (e.g., u, v, w) to denote private memory locations. Register

locations are denoted as r1, r2 : : : rn. Each instruction is given a unique label. Instructions from the same

processor are sequenced by letters in alphabetical order with the processor number following the letter (e.g.,

(a1) is the first instruction on processor 1). We will often use the instruction labels to also identify the memory

operation that results from executing the instruction. Unless specified otherwise, the initial values for all

memory locations are implicitly assumed to be zero.
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Figure 2.3: Sample programs to illustrate sequential consistency.
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Consider the program segment in Figure 2.3(a). The result of executions of this program segment can

be depicted by enumerating the values for variables (u,v). Consider an execution with the result (u,v)=(1,1).

This execution is sequentially consistent because there is a total order on the operations, (a1,b1,a2,b2), that is

consistent with program order and produces the same result. Now consider another execution with the result

(u,v)=(1,0). This result violates the simple notion of causality since P2 observes the new value for B, but does

not observe the new value for A even though the write to A is before the write to B on P1. One total order

on operations that produces the same result is (b1,a2,b2,a1), but this total order violates the program order

imposed by P1. Furthermore, there are no other total orders that are consistent with program order and yet

produce the same result. Therefore, an execution that results in (u,v)=(1,0) violates sequential consistency.

Figure 2.3(b) shows another two processor example, where an execution with the result (u,v)=(0,0) violates

sequential consistency. Again, all total orders that produce the same result are inconsistent with the program

order on at least one of the processors.

Figure 2.3(c) shows a three processor example. Consider the result (u,v,w)=(1,1,0), which is not sequen-

tially consistent. This result violates causality across the three processors since P2 writes the new value

of B after observing the new value of A, after which P3 observes the new value of B written by P2, but

fails to observe the new value of A. And finally, in the four processor example of Figure 2.3(d), the result

(u,v,w,x)=(1,0,1,0) violates sequential consistency. The result suggests that P2 observes the write of A hap-

pened before the write of B, while P4 observes the opposite order for the two writes. However, all processors

should observe the same order on all writes in sequentially consistent executions.

An important attribute of the definition for sequential consistency is that it depends on the order in which

operations appear to execute, not necessarily the order in which they actually execute in a system. For

example, refer back to the program segment in Figure 2.3(a). Consider an execution on a system where the

actual execution order on operations is (b1,a1,b2,a2) with the result (u,v)=(1,1). Even though the actual order

above violates the program order on both processors, the execution is still considered sequentially consistent.

This is because the result of the execution is the same as if the operations were done in the order (a1,b1,a2,b2)

which is consistent with program order.

Figure 2.4 provides a couple of examples with multiple memory operations per instruction. The example

in Figure 2.4(a) illustrates accessing data at multiple granularities. Assume A and B are consecutive words

aligned at a double word boundary. The instruction on P1 represents an atomic double word write. We show

the operations specified by the same instruction in a dotted box, and use an extended version of our labeling

scheme to identify these operations (e.g., (a1.1) and (a1.2) are the operations specified by instruction (a1)).

Since the two operations on P1 must appear atomic, the result (u,v)=(1,0) is disallowed under sequential

consistency. Figure 2.4(b) illustrates the same example except the operations on P1 are now separated into

two instructions. The result (u,v)=(1,0) is allowed under sequential consistency in the latter example since the

total order (a1,a2,b2,b1) explains the result and is consistent with program order. Note that the analogous total

order (a1.1,a2,b2,a1.2) for the first example violates the atomicity requirement for the multiple operations

from instruction (a1).

Figure 2.4(c) illustrates the use of multiple operations per instruction to achieve an atomic read-modify-

write. The example shows a fetch-and-increment of the same location on both processors. Again, atomicity

requires all operations specified by one instructions to appear to execute before any operations specified by

the other instruction. Therefore, (u,v)=(0,1) and (u,v)=(1,0) are possible outcomes, while (0,0) and (1,1) are
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Figure 2.4: Examples illustrating instructions with multiple memory operations.

not possible. Figure 2.4(d) illustrates the same example except the operations on each processor are separated

into two instructions. In contrast to the previous case, the outcome (u,v)=(0,0) is now possible. The total

order on operations that explains this result is (a1,a2,b1,b2) and is consistent with program order.

Finally, our last set of examples illustrate the need for synchronization under sequential consistency. Even

though sequential consistency maintains the sequential order among operations on each processor, it allows

operations from different processors to be arbitrarily interleaved at the instruction granularity. Therefore, extra

synchronization is required to provide atomicity across operations belonging to multiple instructions (e.g.,

by using locks). Similarly, synchronization is required to impose a deterministic order among operations

on different processors (e.g., by waiting for a flag to be set). A number of mutual exclusion algorithms

(e.g., Dekker’s or Peterson’s algorithm [And91]) have been developed for the sequential consistency model

using single read and write operations. However, most current systems support atomic read-modify-write

instructions, providing a simpler and more efficient mechanism for achieving mutual exclusion.

Consider the program segment in Figure 2.5(a). Assume A and B are two fields in a record and assume

the desired semantics for the program is that reads and writes to the record should be done in a mutually

exclusive fashion. Therefore, if P1 writes the two fields, and P2 reads the two fields, the only two acceptable

results are (u,v)=(0,0) or (u,v)=(1,1) corresponding to either P1 or P2 accessing the record first. The program

in Figure 2.5(a) fails to satisfy this requirement because the results (u,v)=(1,0) or (u,v)=(0,1) are possible

under sequential consistency (possible total orders for these two results are (a1,a2,b2,b1) and (a2,a1,b1,b2),

respectively). Figure 2.5(b) shows one way of guaranteeing atomic behavior by using a test&set instruction

to achieve mutual exclusion; the two outcomes of (u,v)=(1,0) and (u,v)=(0,1) are no longer allowed.

Now consider the case where the programmer wants to communicate the new values of A and B to P2

in every execution as in a producer-consumer interaction. Therefore, we would like to guarantee the result

(u,v)=(1,1) in every execution. Obviously mutual exclusion is not sufficient for guaranteeing this since if

P2 gains access to the critical section before P1, then we can get the result (u,v)=(0,0). Figure 2.5(c) shows

one possible way of supporting the desired producer-consumer semantics whereby P1 sets a flag after writing

to the two locations and P2 waits for the flag to be set before reading the two locations. Other forms of
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Figure 2.5: Examples illustrating the need for synchronization under SC.
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synchronization (e.g., barriers) can also be easily implemented using read, write, and atomic read-modify-

write operations to shared memory.

2.1.5 Relating Memory Behavior Based on Possible Outcomes

We can compare the memory behaviors of two different models, two different implementations, or a model and

an implementation, by considering the set of possible results or outcomes (for executing various programs)

that is allowed by each model or implementation.

Let A and B refer to different models or implementations. A and B are equivalent iff (abbreviation for if

and only if) for any run of any program, the outcome in A is possible in B and vice versa. A is stricter than B

iff for any run of any program, the outcome in A is possible in B but not vice versa. The above two relations

are transitive by definition. A and B are distinguishable if they are not equivalent. A and B are incomparable

iff they are distinguishable and neither is stricter than the other. Finally, a program that runs “correctly” on

A is guaranteed to run correctly on B if B is equivalent to or stricter than A. This is because there will be no

“unexpected outcomes”; all outcomes allowed by B are also possible on A. It is sometimes useful to define

the equivalent and stricter relations over a subset of all programs. For example, two implementations may

behave the same across a large subset of programs even though they are distinguishable if we consider all

programs.

An implementation satisfies a given memory model if it is equivalent to or is stricter than the model. In

practice, most implementations are actually stricter than the model they satisfy, i.e., they allow a subset of

the outcomes allowed by the model. For example, a realistic design issues instructions at a set rate and does

not arbitrarily vary the rate at which operations are issued, thus eliminating the possibility for some of the

interleavings that are allowed by a conceptual model.

2.2 Impact of Architecture and Compiler Optimizations

This section considers the impact of common architecture and compiler optimizations on the behavior of

shared memory operations. Many of the optimizations we discuss are critical to achieving high performance.

However, most of them end up violating the semantics of a strict model such as sequential consistency. The

issues presented here will be described in greater detail in Chapter 5.

2.2.1 Architecture Optimizations

Figure 2.6 shows the typical architecture for a scalable shared-memory multiprocessor. The processor

environment (i.e., processor, write buffer, cache) within each node is quite similar to that of a uniprocessor.

The nodes are connected using a general network (the figure shows a two-dimensional mesh network), and the

shared memory is distributed among the nodes. The latency of memory operations is one of the key factors

that determines the performance of a multiprocessor system such as the one shown above. Optimizations that

reduce or hide the latency of memory operations are especially important in multiprocessors because of the

following two reasons. First, memory latencies are typically larger than in a uniprocessor especially if the

operation involves a remote node. Second, multiprocessors typically exhibit a larger cache miss rate relative

to uniprocessors due to the inherent communication that takes place among the processors.
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Figure 2.6: A typical scalable shared-memory architecture.

Aside from using caches, the typical way in which uniprocessors deal with large memory latencies is to

overlap the service of multiple memory operations. For example, instead of stalling after a write operation, the

processor simply places the write into a write buffer and continues to execute other instructions and memory

operations. Even though such optimizations can potentially lead to a reordering of memory operations to

different locations, the illusion of a sequential execution is still maintained. Maintaining this illusion is more

difficult in multiprocessors because there is more than one processor that can observe the memory state.

For example, the out-of-order execution of shared memory operations by one processor can potentially be

detected by other processors.

To maintain sequential consistency, memory operations from individual processors must appear to execute

in program order and all memory operations must appear atomic with respect to one another. We refer to these

as the program order and atomicity requirements, respectively. Below, we describe how various architectural

optimizations can violate the above two requirements. We will use the following notion of completion for

memory operations. A read completes when its return value is bound (i.e., cannot be changed). A write

completes when the corresponding location is updated with the new value. When there is more than a single

copy of the same location (e.g., due to caching), the write is considered complete after all the copies have

been affected. Explicit acknowledgement messages may be required for detecting the completion of write

operations in a system such as the one shown in Figure 2.6.

Program Order Requirement

Memory operations from individual processors may complete out of program order due to a number of

optimizations that attempt to overlap the servicing of such operations. We begin with optimizations at the

processor level and move down in the memory hierarchy.

Operations may execute out of program order if the processor issues them out-of-order. This can easily

occur in a dynamically scheduled (or out-of-order issue) processor, for example. Consider the program
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Figure 2.7: Reordering of operations arising from distribution of memory and network resources.

segment from Figure 2.3(a). Assume the processor issues the read of A before the read of B on P2, for

example, because the effective address for A is available earlier. It is now possible for the execution to result

in (u,v)=(1,0), which violates SC. An analogous situation can arise if the processor issues the writes on P1

out-of-order.

Even if the processor issues memory operations in program order, there is ample opportunity for them to

get reordered due to optimizations within the memory hierarchy. Consider the write buffer. Optimizations

such as read bypassing and forwarding have the effect of reordering a read with respect to previous write

operations. Similarly, optimizations such as write merging (or coalescing) can lead to the reordering of writes.

At the next level, a non-blocking or lockup-free cache [Kro81] can cause reordering. For example, consider

two operations o1 and o2 in program order where o1 misses in the cache and o2 is a cache hit. Even if the

two operations are issued to the cache in program order, operation o2 completes earlier than operation o1.

Past the processor environment, reordering of memory operations can occur due to the distribution of

memory system and network resources. Figure 2.7 shows an example of such reordering. The program

segment we consider is the same as in Figure 1.1. As shown, the physical memory corresponding to locations

A and Flag reside on two separate nodes. Assume the processor on the left issues the writes to these locations

in program order. Since the write operations travel on separate paths to two different nodes, it is possible for

the write of Flag to reach its memory module first. It is then possible for the processor on the right to observe

the set flag and to read the old value of A from memory, all before the write to A reaches its memory module.

Therefore, the presence of multiple paths in the network causes a reordering of the writes which leads to a

violation of SC.

The reordering of memory operations from the same processor can be eliminated if a processor issues its

operations in program order and waits for one to complete before issuing the next operation. While the above

solution will satisfy the program order requirement, it fails to exploit many of the optimizations discussed

above that are critical for dealing with large memory latencies.

Atomicity Requirement

Caching of shared data is an important optimization for reducing memory latency in shared memory systems.

Of course, caching leads to multiple copies of data on different nodes which must be kept up-to-date on every
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Figure 2.8: Non-atomic behavior of writes due to caching.

write. This can be achieved by either invalidating (i.e., eliminating) the copies or updating them to the new

value. However, the distribution of the copies, along with the presence of multiple paths in the network, make

it difficult to invalidate or update these copies in an atomic fashion.

Figure 2.8 shows an example of how caching can lead to a violation of the atomicity requirement for write

operations. The program segment shown is similar to the one in Figure 2.3(c). Assume P2 initially has a

copy of A and P3 initially has a copy of A and B in its cache. Furthermore, assume these copies are updated

on every write to the corresponding location. Therefore, the write to A on P1 generates two update message,

one for each copy of A. Because these update messages traverse different network paths, it is possible for the

update to P2’s cache to reach its target earlier. Therefore, P2 can observe the new value of A and can proceed

with its write to B, which causes an update message to be sent to P3’s copy of B. This latter update message

can also reach P3 before the earlier update for A arrives there. It is now possible for P3 to proceed with

its read of A which can return the old value of 0 that still resides in its cache. The above outcome violates

sequential consistency and arises because the updates to the cached copies of A do not preserve the illusion

of atomicity with respect to other operations. A similar situation can arise for the four processor example

in Figure 2.3(d). As we will see later, there are efficient solutions to the above problem for systems that

use invalidations to eliminate stale copies. However, solutions for update-based systems are inherently more

difficult and inefficient.

Figure 2.9 shows another example of how caching can violate the atomicity requirement for writes to

the same location. The program segment shown is similar to the one in Figure 2.3(d) except all operations

are to the same location. Assume both P2 and P3 initially have a copy of A in their caches. Consider P1

and P4 attempting to write to A at the same time. Therefore, P1 will send an update message to P2 and P3

with the value of 1. Similarly, P4 will send an update message to P2 and P3 with the value 2. Due to the

multiple paths in the network, the update messages may reach P2 and P3 in a different order. For example,
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Figure 2.9: Non-atomic behavior of writes to the same location.

P2 may observe P1’s write first followed by P4’s write, while P2 may observe the writes in the opposite order.

This can lead to the outcome (u,v,w,x)=(1,2,2,1) which violates sequential consistency. Furthermore, the two

cached copies of A may remain permanently incoherent, with P2 caching the value of 2 and P3 caching the

value of 1. Unlike the problem shown in Figure 2.8, this problem can be solved relatively efficiently for both

invalidation and update-based protocols by serializing write operations on a per location basis.

In summary, many architectural enhancements that are commonly used to deal with large memory latencies

affect memory behavior by either allowing operations to complete out of program order or making them appear

non-atomic.

2.2.2 Compiler Optimizations

Analogous to architecture optimizations, many common compiler optimizations can also affect the behavior

of shared memory operations. For example, optimizations such as register allocation, code motion, common

sub-expression elimination, or loop interchange and blocking transformations, all have the effect of either

reordering or eliminating memory operations. We briefly consider the effect of such optimizations in the

context of compiling explicitly parallel programs.

In most cases, compiler optimizations lead to a violation of the program order requirement by reordering

operations from the same processor. For example, consider applying code motion to the example program

segment in Figure 2.3(a). Reordering the two writes on P1 or the two reads on P2 through code motion can

change the behavior of this program by allowing the non-SC result of (u,v)=(1,0). Therefore, the overall

effect is similar to hardware optimizations that reorder memory operations. Figures 2.10(a) and (b) show an

example of how register allocation can lead to a similar reordering. The two program segments correspond

to before and after register allocation. The result (u,v)=(0,0) is disallowed by the original program under

SC. However, all executions of the program after register allocation result in (u,v)=(0,0). In effect, register
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Figure 2.10: Program segments before and after register allocation.

allocation reorders the read of B with the write of A on P1 and the read of A with the write of B on P2. Note

that the above transformation would be considered safe if we treat each processor’s code as a uniprocessor

program.

Figures 2.10(c) and (d) illustrate yet another effect of optimizations such as register allocation that arise

due to the elimination of memory operations. The while loop in the program segment on the left terminates

in every SC execution. The program segment on the right shows the Flag location register allocated on P2,

thus eliminating the multiple reads of Flag within the while loop. Consider an execution of the transformed

program where the read of Flag on P2 returns the value 0. This execution violates SC because the while loop

on P2 will not terminate. In effect, register allocating Flag disallows P2 from observing any changes to the

location caused by the write on P1, making it appear as if the write of Flag on P1 is never observed by P2.

Again, this optimization would be considered safe in a uniprocessor program.

In summary, the above examples show that common uniprocessor compiler optimizations can lead to

“erroneous” program behavior if they are applied to explicitly parallel programs.

2.3 Implications of Sequential Consistency

This section provides a brief overview of the requirements that a system must satisfy to guarantee sequential

consistency. We begin by considering the set of sufficient conditions proposed by Lamport [Lam79] and by

Scheurich and Dubois [SD87]. We then briefly mention some of the more aggressive approaches that have

been proposed for implementing sequential consistency more efficiently. The goal of this section is to provide

a basic intuition for the relevant implementation issues. Chapter 5 provides a more thorough discussion of

these issues.

20 Chapter 2 Background



2.3.1 Sufficient Conditions for Maintaining Sequential Consistency

In the same paper that introduces the notion of sequential consistency, Lamport proposes a set of system

requirements that are sufficient for satisfying the semantics of this model [Lam79]. The conceptual system

that is assumed consists of a set of processors having access to a set of memory modules; theoretically, there

can be as many memory modules as there are unique memory locations. The two requirements are as follows.

Condition 2.1: Lamport’s Requirements for Sequential Consistency
(a) Each processor issues memory requests in the order specified by its program.
(b) Memory requests from all processors issued to an individual memory module are serviced from a single
FIFO queue. Issuing a memory request consists of placing the request in this queue.

Based on the above requirements, each processor needs to issue its memory operations in program order

and needs to wait for each operation to get to the memory module, or its queue, before issuing the next

memory operation. In architectures with general networks such as the one shown in Figure 2.7, detecting

that a memory operation has reached its memory module requires an acknowledgement reply to be sent back

from the memory module to the processor. Therefore, the processor is effectively delayed for the full latency

of an operation before issuing its next operation. More efficient implementations are conceptually possible,

especially with a more restrictive interconnection network such as a bus. The key observation made by

Lamport’s conditions is that, from an ordering point of view, a memory operation is effectively complete

as soon as it is queued at its memory module (as long as the queue is FIFO). Therefore, a processor can

conceptually overlap the period of time from when an operation reaches the queue to when the memory

actually responds with the time to issue and service a later operation. The above observation does not hold

for designs with caches, however. Furthermore, Condition 2.1 itself is not sufficient for correctness in the

presence of data replication.

Scheurich and Dubois [SD87] provide a more general set of requirements that explicitly deals with

optimizations such as caching. One of the key issues that arises in the presence of multiple copies is that

writes may no longer behave atomically with respect to other memory operations. Scheurich and Dubois’

sufficient conditions are summarized below. A read is considered complete when its return value is bound

and a write is considered complete when all copies of the location are brought up-to-date (i.e., either through

an invalidation or update mechanism).

Condition 2.2: Scheurich and Dubois’ Requirements for Sequential Consistency
(a) Each processor issues memory requests in the order specified by its program.
(b) After a write operation is issued, the issuing processor should wait for the write to complete before issuing
its next operation.
(c) After a read operation is issued, the issuing processor should wait for the read to complete, and for the write
whose value is being returned by the read to complete, before issuing its next operation.
(d) Write operations to the same location are serialized in the same order with respect to all processors.

There are several important differences with Lamport’s conditions that arise from dealing with multiple

copies of the same location. For example, a write is considered complete only after all copies of the location

are brought up-to-date, and a processor cannot issue operations following a read until the read return value is

bound and the write responsible for that value is complete. Condition 2.2(c) and (d) are important for dealing

with the inherently non-atomic behavior of writes, and address the problems depicted in Figures 2.8 and 2.9,

respectively. One way to satisfy Condition 2.2(c) in an invalidation-based caching scheme is to disallow a

newly written value from being read by any processor until all invalidations corresponding to the write are
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complete. Maintaining this condition for update-based protocols is more cumbersome, however, and typically

requires a two phase interaction where cached copies are updated during the first phase followed by a second

message that is sent to all copies to signal the completion of the first phase. These and other techniques are

covered in detail in Chapter 5.

The conditions for satisfying sequential consistency are often confused with the conditions for keeping

caches coherent. A cache coherence protocol typically ensures that the effect of every write is eventually

made visible to all processors (through invalidation or update messages) and that all writes to the same location

are seen in the same order by all processors. The above conditions are clearly not sufficient for satisfying

sequential consistency. For example, sequential consistency ultimately requires writes to all locations to

appear to be seen in the same order by all processors. Furthermore, operations from the same processor must

appear in program order.

From an architecture perspective, the above conditions effectively require each processor to wait for

a memory operation to complete before issuing its next memory operation in program order. Therefore,

optimizations that overlap and reorder memory operations from the same processor may not be exploited.

In addition, designs with caches require extra mechanisms to preserve the illusion of atomicity for writes.

Similarly, from a compiler perspective, program order must be maintained among memory operations to

shared data.

We next discuss how program-specific information can be used to achieve more aggressive implementa-

tions of SC.

2.3.2 Using Program-Specific Information

The sufficient requirements presented in the previous section maintain program order among all shared

memory operations. However, for many programs, not all operations need to be executed in program order

for the execution to be sequentially consistent. Consider the program segment in Figure 2.5(c), for example.

The only sequentially consistent outcome for this program is (u,v)=(1,1). However, maintaining the program

order between the two writes to A and B on P1 or the two reads to A and B on P2 is not necessary for

guaranteeing a sequentially consistent result for this program. For example, consider an actual execution

where the two writes on P1 are executed out of program order, with the corresponding total order on operations

of (b1,a1,c1,a2,b2,c2) which is not consistent with program order. Nevertheless, the result of the execution is

(u,v)=(1,1) since the writes to A and B still occur before the reads to those locations. This result is the same as

if the total order was (a1,b1,c1,a2,b2,c2), which does satisfy program order. An analogous observation holds

for the program segment in Figure 2.5(b). Of course, some program orders may still need to be maintained.

For example, referring back to Figure 2.5(c), executing the write to Flag before the writes to A and B are

complete can easily lead to the non-SC result of (u,v)=(0,0). Therefore, program-specific information must

be used about memory operations in order to decide whether a given program order can be safely violated.

Shasha and Snir [SS88] have actually proposed an automatic method for identifying the “critical” program

orders that are sufficient for guaranteeing sequentially consistent executions. This method may be used, for

example, to determine that no program orders must be maintained in the example program segment in

Figure 2.5(a). The reason is the outcomes (u,v)=(0,0), (0,1), (1,0), and (1,1) are all sequentially consistent

outcomes, and allowing the operations to execute out of program order does not introduce any new outcomes

that are not possible under sequential consistency. The information that is generated by such an analysis can
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be used by both the architecture and the compiler to exploit the reordering of operations where it is deemed

safe. Similar to Lamport’s work, Shasha and Snir assumed writes are atomic; therefore, their framework does

not deal with issues of non-atomicity arising from the presence of multiple copies.

Unfortunately, automatically figuring out the critical set of program orders is a difficult task for general

programs. The primary source of difficulty is in detecting conflicting data operations (i.e., operations to

the same location where at least one is a write) at compile time. This is virtually the same as solving the

well-known aliasing problem, except it is further complicated by the fact that we are dealing with an explicitly

parallel program. The above problem is undecidable in the context of general programs. Furthermore, inexact

solutions are often too conservative especially if the program uses pointers and has a complex control flow.

Therefore, while the above techniques may work reasonably well for limited programs and programming

languages, it is not clear whether they will ever become practical in the context of general programs.

The next section describes alternative techniques for enhancing system performance without violating the

semantics of SC.

2.3.3 Other Aggressive Implementations of Sequential Consistency

This section presents a brief overview of a few other techniques that have been proposed to enhance the

performance of sequentially consistent implementations. These techniques are specifically targeted at hard-

ware implementations and are not applicable to the compiler. More detailed descriptions are presented in

Chapter 5.

The first technique we discuss reduces the latency of write operations when the write has to invalidate

or update other cached copies. A naive implementation of sequential consistency would acknowledge the

invalidation or update message from each cache after the relevant copy has actually been affected. A more

efficient implementation can acknowledge the invalidation or update earlier, i.e., as soon as the message

is buffered by the target processor node. Thus, the issuing processor will observe a lower latency for the

write. Sequential consistency is still upheld as long as certain orders are maintained with respect to other

incoming messages. Afek et al. [ABM89, ABM93] originally proposed this idea, referred to as lazy caching,

in the context of a bus-based implementation using updates and write-through caches. We present several

extensions and optimizations to this idea in Chapter 5, making this technique applicable to a much wider

range of implementations.

The above technique can be extended to more dramatically reduce the write latency in systems that use

restrictive network topologies. Examples of such networks include buses, rings, trees, and hierarchies of such

topologies. Landin et al. [LHH91] propose an implementation of SC that exploits the ordering guarantees in

such networks to provide an early acknowledgement for writes. The acknowledgement is generated when the

write reaches the “root” node in the network, which occurs before the write actually reaches its target caches.

Chapter 5 presents our generalized version of this optimization in the context of various restricted network

topologies.

Adve and Hill [AH90a] have also proposed an implementation for sequential consistency that can alleviate

some of the write latency by allowing certain operations that follow the write to be serviced as soon as the

write is serialized (i.e., receives ownership for the line) as opposed to waiting for all invalidations to be

acknowledged.

Finally, a more promising way to enhance the performance of SC is to use a combination of the speculative
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read and automatic write prefetching techniques that we proposed in an earlier paper [GGH91b]. The idea

behind speculative reads is to actually issue reads in an overlapped manner with previous operations from

the same processor, thus allowing the operations to potentially complete out of program order. A simple

mechanism is used to detect whether the overlapped completion of the operations can possibly violate

sequential consistency. In the unlikely case that such a violation is detected, the speculative read and any

computation that is dependent on it are simply rolled back and reissued. This technique is especially suited for

dynamically scheduled processors with branch prediction capability since the required roll-back mechanism

is virtually identical to that used to recover for branch mispredictions. The idea behind the second technique

is to automatically prefetch the cache lines for write operations that are delayed due to the program order

requirements. Thus, the write is likely to hit in the cache when it is actually issued. This latter technique

allows multiple writes to be (almost fully) serviced at the same time, thus reducing the write latency as seen by

the processor. The above two techniques have been adopted by several next generation processors, including

the MIPS R1000 and the Intel Pentium Pro (both are dynamically scheduled processors), to allow for more

efficient SC implementations.

Overall, except for the speculative read and the write prefetching techniques which are primarily applicable

to systems with dynamically scheduled processors, the rest of the techniques described above fail to exploit

many of the hardware optimizations that are required for dealing with large memory latencies. Furthermore,

we are not aware of any analogous techniques that allow the compiler to safely exploit common optimizations

without violating SC. Therefore, preserving the semantics of sequential consistency can still severely limit the

performance of a shared-memory system. The following quotation from the two-page note by Lamport that

originally proposed sequential consistency [Lam79] echoes the same concern: “The requirements needed to

guarantee sequential consistency rule out some techniques which can be used to speed up individual sequential

processors. For some applications, achieving sequential consistency may not be worth the price of slowing

down the processors.”

To achieve higher performance, many shared-memory systems have opted to violate sequential consistency

by exploiting the types of architecture and compiler optimizations described in Section 2.2. This has led to a

need for alternative memory consistency models that capture the behavior of such systems.

2.4 Alternative Memory Consistency Models

This section describes the various relaxed memory consistency models that have been proposed to capture

the behavior of memory operations in systems that do not strictly obey the constraints set forth by sequential

consistency. We begin the section by presenting a progression of relaxed models that enable more aggressive

architecture and compiler optimizations as compared to sequential consistency. We next consider the rela-

tionship among these models in terms of the possible outcomes they allow for individual programs. Finally,

the latter part of the section describes some of the shortcomings of relaxed models relative to sequential

consistency.

2.4.1 Overview of Relaxed Memory Consistency Models

The basic idea behind relaxed memory models is to enable the use of more optimizations by eliminating some

of the constraints that sequential consistency places on the overlap and reordering of memory operations.
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While sequential consistency requires the illusion of program order and atomicity to be maintained for all

operations, relaxed models typically allow certain memory operations to execute out of program order or

non-atomically. The degree to which the program order and atomicity constraints are relaxed varies among

the different models.

The following sections provide an overview of several of the relaxed memory consistency models that

have been proposed. We have broadly categorized the various models based on how they relax the program

order constraint. The first category of models includes the IBM-370 [IBM83], Sun SPARC V8 total store

ordering (TSO) [SFC91, SUN91], and processor consistency (PC) [GLL+90, GGH93b] models, all of

which allow a write followed by a read to execute out of program order. The second category includes

the Sun SPARC V8 partial store ordering (PSO) model [SFC91, SUN91], which also allows two writes to

execute out of program order. Finally, the models in the third and last category extend this relaxation by

allowing reads to execute out of program order with respect to their following reads and writes. These

include the weak ordering (WO) [DSB86], release consistency (RC) [GLL+90, GGH93b], Digital Equipment

Alpha (Alpha) [Sit92, SW95], Sun SPARC V9 relaxed memory order (RMO) [WG94], and IBM PowerPC

(PowerPC) [MSSW94, CSB93] models.

In what follows, we present the basic representation and notation used for describing the models and

proceed to describe each model using this representation. Our primary goal is to provide an intuitive notion

about the behavior of memory operations under each model. A more formal and complete specification of

the models is provided in Chapter 4. Since many of the above models were inspired by the desire to enable

more optimizations in hardware, our preliminary discussion of the models focuses mainly on the architectural

advantages. Discussion of compiler optimizations that are enabled by each model is deferred to Section 2.4.6.

2.4.2 Framework for Representing Different Models

This section describes the uniform framework we use to represent the various relaxed memory models. For

each model, our representation associates the model with a conceptual system and a set of constraints that are

obeyed by executions on that system. Below, we use sequential consistency as an example model to motivate

the various aspects of our representation.

Figure 2.11 shows the basic representation for sequential consistency. The conceptual system for SC

consists of n processors sharing a single logical memory. Note that the conceptual system is meant to capture

the behavior of memory operations from a programmer’s point of view and does not directly represent the

implementation of a model. For example, even though we do not show caches in our conceptual system, an

SC implementation may still cache data as long as the memory system appears as a single copy memory (e.g.,

writes should appear atomic).

We represent shared memory read and write operations as R and W, respectively. A read operation is

assumed to complete when its return value is bound. A write operation is assumed to complete when the

corresponding memory location is updated with the new value. We assume each processor issues its memory

operations in program order. However, operations do not necessarily complete in this order. Furthermore,

unless specified otherwise, we implicitly assume all memory operations eventually complete.

Atomic read-modify-write operations are treated as both a read and a write operation. Most models

require that it appears as if no other writes to the same location (from a different processor) occur between

the read and the write of the read-modify-write. The TSO, PSO, and RMO models, however, require that no
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Figure 2.11: Representation for the sequential consistency (SC) model.

other writes to any location occur between the read and the write of the read-modify-write.

The first type of constraint on the execution of memory operations relates to program order and is referred

to as the program order requirement. We use a pictorial representation to illustrate the program orders that

are maintained by a model. As shown on the right side of Figure 2.11, we represent all possible pairs of read

and write operations issued by the same processor that follow one another in program order: read followed

by a read, read followed by a write, write followed by a read, and write followed by a write. The presence

of a line between a given pair of operations signifies that program order should be maintained between such

pairs, (i.e., the operations are required to complete in program order). As shown, SC requires program order

to be maintained among all operation types.

The second type of constraint relates to the values returned by reads and is referred to as the value

requirement. For sequential consistency, the value requirement is as follows: a read is required to return the

value of the last write to the same location that completed in memory before the read completes. We will refer

to this as the memory value requirement. Some of the models, such as TSO and PC, have a different value

requirement that allows a processor to read the value of its own write before the write completes in memory.

This latter semantics models the effect of optimizations such as read forwarding that allows a read to return

the value of a write from a write buffer. We refer to this as the buffer-and-memory value requirement. Other

models may impose additional types of constraints that will be discussed as we introduce each model.

The conceptual system shown in Figure 2.11 must obey the program order and memory value requirement

described above to satisfy sequential consistency. An implementation obeys a given model if the result

of any execution is the same as if the program was executed on the conceptual system. Therefore, a real

system need not satisfy the constraints imposed on the conceptual system (e.g., program order) as long as

the results of its executions appear as if these constraints are maintained. As a result, similar techniques to

those described in Section 2.3 for implementing SC more aggressively are applicable to relaxed models as

well. For simplicity, our discussion on the possible optimizations enabled by each model will concentrate on

straightforward implementations. Chapter 5 provides more details about aggressive techniques that can be

used to implement these models more efficiently.

2.4.3 Relaxing the Write to Read Program Order

The first category of relaxed models that we consider are those models that allow a write followed by a read

to execute out of program order. The typical way hardware exploits this relaxation is through buffering writes

and allowing a read to bypass the writes in the buffer. While maintaining sequential consistency typically
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requires the processor to wait for a previous write to complete before completing the next read operation, this

optimization allows the processor to continue with a read without waiting for write operations to complete.

As a result, the write latency can be effectively hidden. Furthermore, many applications function correctly

(i.e., provide sequentially consistent results) even if the program order from a write to a read is not maintained.

Therefore, even though systems that exploit this optimization are not sequentially consistent, they appear

sequentially consistent to a large class of programs.

The three models that we describe in this section are the IBM-370, TSO, and PC models. These models

all provide the relaxation described above. The differences among them arise from the way they deal with

the atomicity of memory operations and whether a processor is allowed to return the value of its own write

before the write completes in memory.

IBM-370

Figure 2.12 provides the representation for the IBM-370 model [IBM83]. The IBM-370 model allows a write

followed by a read to complete out of program order unless the two operations are to the same location, or if

either operation is generated by a serialization instruction, or if there is a serialization instruction in program

order between the two operations. The IBM-370 model has two types of serialization instructions: special

instructions that generate memory operations (e.g., compare-and-swap) and special non-memory instructions

(e.g., a special branch).

The conceptual system shown in Figure 2.12 is similar to that used for representing SC with a single

logical memory shared by the processors. The main difference is the presence of a buffer between each

processor and the memory. Since we assume that each processor issues its operations in program order, we

use the buffer to model the fact that the operations are not necessarily issued in the same order to memory.

Of course, the program order requirement places constraints on the reordering that can take place within the

buffer. We also use the buffer to capture the behavior of models that allow a read to return the value of a

conflicting write in the buffer before the write is actually issued to the memory.

The program order requirement for the IBM-370 model is shown on the right side of Figure 2.12. Similar

to SC, the program orders between two reads, a read followed by a write, and two writes are maintained. The

only difference is in the program order from a write to a read, which is only maintained in the three cases

enumerated below. First, a write followed by a read to the same location must complete in the same order. We

use a dashed line between the write-read pair to depict program order between operations to the same location.
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Second, program order is maintained if either the write or the read are generated by a serialization instruction.

We use RS and WS to depict read and write operations generated by serialization instructions; R and W still

denote any read or write, including those generated by serialization instructions. Finally, program order is

maintained if there is a non-memory serialization instruction between the write and the read. We generically

refer to non-memory instructions that enforce program order as fence instructions [BMW85, GLL+90], and

use a line with an “F” symbol (for fence) beside it to depict the presence of a program order enforced by

a fence instruction. The program order constraints are transitive by definition. For example, if we have a

sequence of (W,RS ,R) in program order, program order is automatically enforced between the first write and

the last read.

The fact that the IBM-370 requires a write followed by a read to the same location to complete in program

order implies that a read is not allowed to return the value of a write from the buffer. We depict this in

Figure 2.12 by showing the reply path for a read from memory with the forwarding path from the buffer

blocked. Therefore, the value requirement for IBM-370 is the same as for SC, i.e., a read returns the latest

value in memory. Among the models we discuss in this section, IBM-370 is the only model that disallows

optimizations such as read forwarding in an implementation.

To better understand the relationship between the SC and the IBM-370 models, we consider the possible

outcomes under the two models for the program segments in Figure 2.3. Of the four programs, all except the

example in Figure 2.3(b) provide the same set of outcomes on SC and the IBM-370 models. By allowing

a read to be reordered with respect to a previous write, the IBM-370 model allows the non-SC outcome

(u,v)=(0,0) for the example in Figure 2.3(b). Of course, the above difference with SC can be alleviated by

using serialization or fence instructions to enforce the write-read program orders.

By requiring a write followed by a read to the same location to complete in program order, the IBM-370

model does not allow the latency of some writes to be hidden from the processor since the read must be

delayed for the write to complete. The TSO model which is described next removes this restriction.

SPARC V8 Total Store Ordering (TSO)

The total store ordering (TSO) model is one of the models proposed for the SPARC V8 architecture [SFC91,

SUN91]. Figure 2.13 shows the representation for this model. The main difference between the IBM-370

model and the TSO model is that TSO always allows a write followed by a read to complete out of program

order. All other program orders are maintained. The conceptual system is almost identical to that of IBM-370

except the forwarding path from the buffer to a read is no longer blocked. Therefore, if a read matches (i.e., is

to the same location as) a write in the write buffer, the value of the last such write in the buffer that is before

it in program order is forwarded to the read. Otherwise, the read returns the value in memory, as in the SC

and IBM-370 models.

Because the value of a write in the buffer is allowed to be forwarded to a read, the value requirement for

TSO is different from the simple memory value requirement for SC and IBM-370. If we consider operations

as executing in some sequential order, the buffer-and-memory value requirement requires the read to return

the value of either the last write to the same location that appears before the read in this sequence or the last

write to the same location that is before the read in program order, whichever occurs later in the sequence.

This requirement captures the effect of forwarding the value of a write in the buffer in case of a match.

Figure 2.14 presents a couple of program segments that illustrate the differences between the TSO and
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Figure 2.14: Example program segments for the TSO model.

IBM-370 or SC models. First consider the program segment in Figure 2.14(a). Under the SC or IBM-370

model, the outcome (u,v,w,x)=(1,1,0,0) is disallowed. However, this outcome is possible under TSO because

reads are allowed to bypass all previous writes, even if they are to the same location; therefore the sequence

(b1,b2,c1,c2,a1,a2) is a valid total order for TSO. Of course, the value requirement still requires b1 and b2

to return the values of a1 and a2, respectively, even though the reads occur earlier in the sequence than the

writes. This maintains the intuition that a read observes all the writes issued from the same processor as the

read. Figure 2.14(b) shows a slightly different program segment. In this case, the outcome (u,v,w,x)=(1,2,0,0)

is not allowed under SC or IBM-370, but is possible under TSO.

Processor Consistency (PC)

The models we have considered up to now all provide the appearance of a single copy of memory to the

programmer. Processor consistency (PC) [GLL+90, GGH93b] is the first model that we consider where the

multiple-copy aspects of the memory are exposed to the programmer.1 Figure 2.15 shows the representation

for this model. The conceptual system consists of several processors each with their own copy of the entire

memory. By modeling memory as being replicated at every processing node, we can capture the non-atomic

effects that arise due to presence of multiple copies of a single memory location.

Since the memory no longer behaves as a single logical copy, we need to extend the notion of read and

write memory operations to deal with the presence of multiple copies. Read operations are quite similar to

before and remain atomic. The only difference is that a read is satisfied by the memory copy at the issuing

processor’s node (i.e., read from Pi is serviced by Mi). Write operations no longer appear atomic, however.

1The processor consistency model described here is distinct from the (informal) model proposed by Goodman [Goo89, Goo91].
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Figure 2.15: The processor consistency (PC) model.

Each write operation conceptually results in all memory copies corresponding to the location to be updated

to the new value. Therefore, we model each write as a set of n sub-operations, W(1) : : : W(n), where n is

the number of processors, and each sub-operation represents the event of updating one of the memory copies

(e.g., W(1) updates the location in M1). Since we need to refer to the sub-operations of a write, we will also

refer to a read as a single atomic sub-operation for uniformity (denoted as R(i) for a read from Pi).

Given that writes consist of multiple sub-operations now, our notion of maintaining program order changes

slightly as well. Consider two writes in program order, for example. To maintain the program order among

the two writes, we require all sub-operations of the first write to complete before any sub-operations of

the second write complete. As before, a read sub-operation completes when its return value is bound. A

write sub-operation W(i) completes when it updates its corresponding location in Mi. Figure 2.15 shows the

program order requirement for PC. We use the double lines between a pair of operations to denote the fact that

operations may no longer be atomic and that all sub-operations of the first operation must complete before

any sub-operations of the second operation.

Since write operations are no longer atomic, processor consistency imposes an additional constraint on

the order of write sub-operations to the same location. This requirement is called the coherence requirement.

The coherence requirement constrains all write sub-operations to the same location to complete in the same

order across all memory copies. In other words, given W1 and W2 are two writes to the same location,

if W1(i) completes before W2(i), the coherence requirement requires W1(j) to also complete before W2(j)

for all j. Therefore, there is conceptually a serialization point for all write operations to the same location.

Finally, the value requirement for PC is an extension of the buffer-and-memory value requirement described

for TSO. The following summarizes the conditions for PC.

Condition 2.3: Conditions for Processor Consistency (PC)
Memory sub-operations must execute in a sequential order that satisfies the following conditions:
(a) sub-operationsappear in this sequencein the order specifiedby the program order requirement of Figure 2.15,
and
(b) the order among sub-operations satisfies the coherence requirement, and
(c) a read sub-operation issued by R(i) returns the value of either the last write sub-operation W(i) to the same
location that appears before the read in this sequence or the last write sub-operation to the location that is before
the read in program order, whichever occurs later in the execution sequence.

To illustrate the effect of non-atomic writes, consider the program segments in Figures 2.3(c) and (d). Pro-

cessor consistency allows the outcome (u,v,w)=(1,1,0) in the first example and the outcome (u,v,w,x)=(1,0,1,0)

in the second example, while none of the previous models we have discussed allow these outcomes.

The fact that writes are not required to appear atomic makes PC suitable for update-based as well as

invalidation-based designs (as discussed in Section 2.2.1, supporting atomic writes is difficult in update-based
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designs). However, by far the major advantage of models such as PC, TSO, and IBM-370 over SC is the

ability to hide the write latency by allowing reads to execute out of program order with respect to previous

writes.

2.4.4 Relaxing the Write to Write Program Order

The second category of relaxed models that we consider allow two writes to execute out of program order

in addition to allowing the reordering of a write followed by a read. This relaxation enables a number of

hardware optimizations, including write merging in a write buffer and overlapping multiple write misses, all

of which can lead to a reodering of write operations. Therefore, write operations can be serviced at a much

faster rate. Below, we describe the characteristics of the partial store ordering (PSO) model which allows this

optimization.

SPARC V8 Partial Store Ordering (PSO)

The partial store ordering model (PSO) [SFC91, SUN91] is an extension of the TSO model and is the second

model provided by the SPARC V8 architecture. Figure 2.16 shows the representation for this model. The

conceptual system is identical to that of TSO. The program order requirement is also similar except that writes

to different locations are allowed to execute out of program order. We use the same notation of a dotted line,

which we used for the IBM-370 model, to indicate program order is maintained between (write) operations

to the same location. PSO also provides a fence instruction, called the store barrier or STBAR, that may be

used to enforce the program order between writes.

Referring back to the program segment in Figure 2.5(c), the only outcome allowed by the previous models

we have discussed is (u,v)=(1,1). However, since PSO allows writes to different locations to complete out

of program order, it also allows the outcomes (u,v)=(0,0) or (0,1) or (1,0). For this specific example, it is

sufficient to place a single store barrier immediately before the write to Flag on P1 in order to disallow all

outcomes except (u,v)=(1,1).

2.4.5 Relaxing the Read to Read and Read to Write Program Order

The third category of relaxed models we consider provide a more general set of reorderings by also allowing

two reads or a read followed by a write to complete out of program order. The hardware can exploit the
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overlap of a read operation with operations that follow it in program order to hide some of the read latency.

We will consider the following five relaxed memory models in this section: weak ordering (WO), release

consistency (RC), Alpha, Relaxed Memory Order (RMO), and PowerPC. Weak ordering [DSB86] is the

seminal model among these. We extended the ideas in weak ordering to define the release consistency model;

this model is supported by the Stanford DASH design [LLG+92]. Finally, the last three models have been

proposed for use in commercial multiprocessors.

In what follows, we describe the characteristics of each of the above models. For simplicity, we ignore

a few subtle ordering requirements, related to control dependences, that are imposed by some of the original

definitions for these models.2 We also have had to make some interpretations of our own to describe a few of

the models whose original definitions are partially ambiguous. Finally, we do not attempt to model instruction

fetches, I/O operations, or multiple granularity data operations, even though some of the commercial models

describe the semantics for such operations. Formal specifications for these models are presented in Chapter 4

and Appendix I.

Weak Ordering (WO)

The weak ordering model (also known as weak consistency) was proposed by Dubois et al. [DSB86] and relies

on maintaining program order only at the synchronization points in the program. The intuition behind weak

ordering is that most programs are written using synchronization operations to coordinate memory operations

on different processors and maintaining program order at such synchronization operations typically leads

to correct outcomes (e.g., SC outcomes) for the program. For example, consider the program segment in

Figure 2.5(b). In this example, locks are used to ensure that accesses to shared data occur within critical

sections on each processor. If the test-and-set operation and the write to reset the lock variable on each

processor are identified explicitly as synchronizations, weak ordering guarantees the executions of this

program will be sequentially consistent.

Figure 2.17 shows the representation for weak ordering. The conceptual system is similar to that of PC

since weak ordering also exposes the multiple-copy semantics of memory to the programmer.3 The only

difference is that, similar to the IBM-370 model, a read is not allowed to return the value of a previous write

to the same location until the write completes (i.e., the forwarding path from the buffer is blocked).

Figure 2.17 also shows the program order requirements for WO. We use RS and WS to denote read and

write operations that are identified as synchronization. As before, R and W denote any read or write operation,

including synchronization operations. As with PC, the double lines between operations in program order

denotes the fact that each operation may consist of multiple sub-operations and that all sub-operations of the

first operation must complete before any sub-operations of the second operation. We also use a new notation

consisting of triple lines between a read and a following operation in program order. This notation denotes

that the read sub-operation and the sub-operations of the write (possibly from a different processor) whose

value is returned by the read should complete before any of the sub-operations of the operation that follows

the read in program order. Dubois et al. refer to this as the read being “globally performed” [DSB86]. As

shown in the figure, weak ordering maintains the program order between a synchronization operation and

2See the description of the reach condition in Appendix F and Appendix I.
3The way multiple-copy semantics is exposed is subtle and is only apparent from the formal specification of WO presented in

Appendix I.
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Figure 2.17: The weak ordering (WO) model.

operations that are before or after it in program order. Furthermore, program order is maintained among

conflicting operations (i.e., operations to the same location with at least one being a write).

Similar to PC, the weak ordering model also constrains the order of writes to the same location by the

coherence requirement. Therefore, writes to the same location must complete in the same order with respect

to all memory copies.

Finally, the value requirement for WO is an extension of the memory value requirement: a read sub-

operation R(i) returns the value of the last write sub-operation W(i) to the same location that appears before

the read in the execution sequence. It turns out that the outcomes allowed by WO would be identical if we

relax the program order requirement from a write to a read and use the extension of the buffer-and-memory

value requirement defined for PC. Therefore, optimizations such as read forwarding can be safely exploited.

Nevertheless, since the behavior of the model is the same without this relaxation, we do not need to expose

the relaxation to the programmer. This same observation holds for the Alpha and PowerPC models.

Figure 2.18(a) illustrates the types of reordering allowed by WO by showing a sample set of operations

from the same processor. Each block with a set of reads and writes represents a run of non-synchronization

operations. Synchronization operation are identified separately. The figure shows that a synchronization

operation (either a read or a write) must be delayed until all previous read and write operations complete, and

read and write operations may not complete until the previous synchronization operation is complete. Weak

ordering allows operations to different locations to be reordered in the region between two synchronization

operations. Since synchronization operations are infrequent in many applications, this flexibility provides the

opportunity to reorder and overlap operations across large regions of code. Note that by conservatively identi-

fying all operations as synchronization, weak ordering trivially guarantees sequentially consistent executions

for any program.

Release Consistency (RC)

Release consistency extends the ideas in weak ordering by further distinguishing among memory opera-

tions [GLL+90, GGH93b]. Specifically, release consistency further categorizes synchronization operations

into acquire and release operations. An acquire is a read memory operation that is performed to gain access to

a set of shared locations (e.g., a lock operation or spinning for a flag to be set). A release is a write operation
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that is performed to grant the permission for accessing a set of shared locations (e.g., an unlock operation or

the setting of a flag). This extra information is used to allow further reordering among memory operations.

For simplicity, we describe only a subset of the operation categories used by release consistency. Chapter 4

presents the complete specification for this model.

Figure 2.18 shows the difference between WO and RC for the example we discussed in the previous

section. The main idea behind release consistency is that read and write synchronization operations have

different ordering requirements. The purpose of a write synchronization used as a release is to signal that

previous accesses are complete and it does not have anything to say about ordering of accesses that follow

it. Therefore, while the completion of the release is delayed until previous memory operations in program

order complete, memory operations after a release are not delayed for the release to complete. Similarly, the

completion of a read synchronization used as an acquire need not be delayed for previous memory operations

to complete. This is because the acquire is not giving permission to any other process to read or write the

previous pending locations. As shown in the figure, this allows for extra reordering and overlap of memory

operations across acquires and releases.

Figure 2.19 provides the representation for release consistency. There are two flavors of release consistency

that differ in the order that is maintained among synchronization operations. The first flavor maintains

sequential consistency among synchronization operations and is referred to RCsc, while the second flavor

maintains processor consistency among such operations and is called RCpc. Except for the program order

requirements, these two models are identical. Considering the conceptual system, release consistency is

similar to weak ordering except a read is allowed to return the value of a write (to the same location) that is

in the buffer. The value requirement for both RCsc and RCpc is the same as that for PC. Finally, both models

obey the coherence requirement.

Let us consider the program order requirements in more detail. As we mentioned above, release consis-

tency provides a further categorization of operations. Both acquires and releases belong to a category called

competing operations. Intuitively, competing operations are those operations that are involved in a race with

other conflicting operations.4 Competing operations also include a third category of operations that are not

used to achieve synchronization. We use RC and WC to depict competing operations. Racq and Wrel denote

4In release consistency, the requirement for a write operation to eventually complete applies to competing writes only.
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Figure 2.19: The release consistency (RC) models.

acquire and release operations. Finally, R and W still denote any read or write. For RCsc, all competing

operations are required to complete in program order. In addition, the program order between an acquire

and following operations, and between an operation and a following release, are maintained. Finally, for

conflicting operations, program order is maintained from a read to a write and between two writes (shown

with dotted lines); the order from a conflicting write to a read is not upheld, however. RCpc differs from

RCsc only in the order maintained among pairs of competing operations.

Referring back to Figure 2.5(c), it is sufficient to identify the write to Flag as a release and the read

of Flag as an acquire operation to ensure SC outcomes under both RCsc and RCpc models. The release

consistency model was proposed in conjunction with the proper labeling (PL) framework [GLL+90], which

is a programmer-centric specification that presents the programmer with a higher level abstraction of system

behavior to simplify the task of programming with RC. This framework is described in detail in the next

chapter.

DEC Alpha (Alpha)

In contrast to the WO and RC models which require memory operations to be identified or labeled according

to a given categorization, the three commercial memory models we consider impose ordering solely through

explicit fence instructions. We begin by considering the Alpha memory model [Sit92, SW95]. Figure 2.20

provides the representation for this model. The conceptual system is identical to that of the IBM-370 model.

The program order constraints allow reads and writes to different locations to complete out of program order

unless there is a fence instruction between them. The Alpha model supports two types of fences, the memory

barrier (MB) and the write memory barrier (WMB); these are labeled as F1 and F2 in the figure for fence types

1 and 2, respectively. As shown, an MB imposes program order between all read and write operations, while

the WMB only imposes program order between writes. Finally, memory operations to the same location,

including reads to the same location, are required to complete in program order. Among the models discussed

in this category (i.e., WO, RCsc, RCpc, Alpha, RMO, PowerPC), Alpha is the only model that enforces the

program order between reads to the same location.

The value requirement for Alpha is the same as the memory value requirement used for SC or IBM-370,
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Figure 2.20: The Alpha memory model.

which requires a read to return the value of the last write operation to the same location. However, similar

to WO, the semantics of the model is unaffected if we relax the program order requirement from a write to

a read and use the buffer-and-memory value requirement of TSO.5 Therefore, implementations can safely

exploit optimizations such as read forwarding.

The Alpha memory model can be used to emulate several of the previous models we have discussed by

appropriately using the explicit fence instructions. For example, we can guarantee SC by naively placing a

fence instruction between any pair of memory operations. Similarly, we can preserve the requirements for

WO by placing a fence instruction before and after every memory operation identified as a synchronization.

Frequent use of fence instructions can incur a significant overhead, however, due to an increase in the number

of instructions and the extra delay that may be associated with executing fence instructions. This observation

holds for any model that requires the use of explicit fence instructions to impose orders (e.g., PSO, RMO,

PowerPC).

SPARC V9 Relaxed Memory Order (RMO)

The relaxed memory order (RMO) model is an extension of the TSO and PSO models and was adopted for the

SPARC V9 architecture [WG94]. RMO extends the PSO model to allow a read to complete out of program

order with respect to following read and write operations. Our research on the release consistency model

and quantifying its performance gains had a direct influence on the design of RMO, and we helped Sun with

formalizing the semantics of this model. Figure 2.21 shows the representation for RMO. RMO provides four

types of fences that allow program order to be selectively maintained between any two types of operations. A

single fence instruction can specify a combination of the above fence types by setting the appropriate bits in

a four-bit opcode. The program order constraints are shown in the figure, with the four fence types depicted

as F1 through F4. RMO also maintains the program order between a read followed by a write or two writes

to the same location. The value requirement for RMO is the same as for TSO and PSO.

Similar to the Alpha model, the RMO model can be used to provide sufficient implementations for several

of the models we have discussed.
5We are not considering the effect of data accesses at multiple granularities (e.g., byte, word, long word, quad word) in this discussion.

Capturing the behavior of the Alpha model with multiple granularity accesses would actually require the use of the buffer-and-memory
value requirement, along with allowing a write followed by a read to the same location to complete out of program order [SW95].
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IBM PowerPC (PowerPC)

In contrast to the Alpha and RMO models, the IBM PowerPC model [CSB93, MSSW94] exposes the

multiple-copy semantics of memory to the programmer. Figure 2.22 shows the representation for PowerPC.

This representation is only approximate for reasons that will be described shortly. The conceptual system

is identical to that of WO. PowerPC provides a single fence instruction, called a SYNC, that may be used

to impose program orders. Remember that the double lines between operations in program order denotes

the fact that each operation may consist of multiple sub-operations and that all sub-operations of the first

operation must complete before any sub-operations of the second operation. Note that the program order from

a read to its following operations does not delay for the read to be globally performed, which would have

been depicted by a triple line. Program order is also maintained among conflicting operations. PowerPC also

constrains the order of writes to the same location through the coherence requirement. The value requirement

for PowerPC is the same as for WO: a read sub-operation R(i) returns the value of the last write sub-operation

W(i) to the same location that appears before the read in the execution sequence. The semantics of the model

is unaffected if we relax the program order requirement from a write to a read and use the extension of the

buffer-and-memory value requirement used for PC. Therefore, optimizations such as read forwarding from

the buffer are actually safe.

The representation shown in Figure 2.22 is stricter than the actual PowerPC model. Figure 2.23(a)

shows an example program that illustrates this distinction. The representation in Figure 2.22 along with the

constraints described above imply that the outcome (u,v)=(1,0) is disallowed under PowerPC. However, the

formalism provided by Corella et al. [CSB93] implies that this outcome is actually allowed even though a
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Figure 2.23: Example program segments for the PowerPC model.

fence instruction is placed between the two reads on P2. Figure 2.23(b) shows a similar code segment to

illustrate that this scenario can actually occur in practice. P2 waits for a null pointer to be set and then

proceeds to dereference the pointer. Under PowerPC, it is possible for P2 to erroneously dereference a null

pointer. Capturing this behavior in the simple framework we have been using is difficult. Similarly, designing

a hardware implementation that satisfies PowerPC and yet allows the outcome (u,v)=(1,0) for the program

in Figure 2.23(a) also seems quite difficult. Therefore, this behavior arises more as a side effect of the way

PowerPC has been formalized, and actual implementations of the model will likely not behave in this way.

Nevertheless, this subtle relaxation in PowerPC can make ports to this model more difficult and inefficient.

Appendix I provides the precise specification for PowerPC using our more general framework.

2.4.6 Impact of Relaxed Models on Compiler Optimizations

In discussing the relaxed memory models, we have mainly concentrated on the performance differences among

the models based on the types of architectural optimizations they enable. This section briefly discusses some

of the implications for compiler optimizations.

The main flexibility required for doing compiler optimizations is to allow memory operations within

each process or thread to be reordered with respect to their program order. As we discussed in Section 2.3,

maintaining sequential consistency effectively disallows such reordering on shared memory operations.

Compared to SC, the three categories of relaxed models that we discussed provide a higher degree of freedom

for such reordering. However, not all the relaxed models provide sufficient flexibility to allow general

compiler optimizations. For example, the first category of models that we discussed (e.g., TSO and PC) only

allow reordering of reads with respect to previous writes in program order. While hardware can exploit this

relaxation to hide write latency, exploiting this limited type of reordering is difficult for a compiler.

Enabling a reasonable set of compiler optimizations effectively requires full flexibility in reordering both

reads and writes with respect to one another. Among the models we discussed, only the last category of

models (i.e., WO, RC, Alpha, RMO, PowerPC) provide such flexibility. With WO or RC, the compiler is

allowed to freely reorder operations in between consecutive synchronization points. Similarly, with Alpha,

RMO, and PowerPC, memory operations between consecutive fence instructions can be arbitrarily reordered

with respect to one another. Therefore, the compiler can perform optimizations such as register allocation

and code motion on regions of code delimited by synchronization or fences. Chapter 5 will provide a more

detailed discussion about compiler optimizations.
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2.4.7 Relationship among the Models

Figure 2.24 provides a pictorial view of the “stricter” relation introduced in Section 2.1.5 among the models

we have discussed so far. Given A and B refer to different models, A is stricter than B iff for any run of any

program, the outcome in A is possible in B but not vice versa. The models are partitioned into four categories

based on the level of flexibility they allow in reordering the program order among memory operations. In

the figure, A  B denotes that A is stricter than B. Since the stricter relation is transitive, the arrows can

be followed transitively as well. For example, RCpc is stricter than SC. The lack of an arrow between two

models means that the two models are incomparable. For example, even though a model such as WO allows

a more general set of reorderings compared to TSO, neither is stricter than the other due to subtle differences

among the two models. Similarly, IBM-370 is not stricter than TSO because TSO imposes stricter constraints

on read-modify-write operations.

The relations in the figure are based on precise specifications of the models presented in Chapter 4 and

Appendix I. We should note that we do not consider the semantics for operations such as instruction fetches

and I/O operations or the effect of multiple granularity accesses. Some of the stricter relations shown in the

figure depend on straightforward assumptions regarding the interpretation of fences or operation labels across

different models. For example, we assume all SYNC instructions in PowerPC are treated as MB instructions in

Alpha. Similarly, we assume competing operations in RCsc or RCpc are treated as synchronization operations

in WO. We make no assumptions about transforming fences to labels or labels to fences, however.

A program written for model A is guaranteed to run “correctly” (i.e., all outcomes will be allowable by

A) on another model B if the latter is stricter than the former. For example, any programs written assuming

the PC model can be safely executed on the TSO, IBM-370, or SC models. However, the reverse is not

necessarily true because PC violates some of the ordering requirements guaranteed by the other three models.

Nevertheless, it is still possible to port programs between any two models by appropriately transforming

the program. We will further discuss automatic techniques for porting program across different models in

Chapter 4.

2.4.8 Some Shortcomings of Relaxed Models

Even though relaxed models enable desirable optimizations, their major drawback is increased programming

complexity. Most programmers have implicit assumptions about the memory behavior of a shared-memory
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multiprocessor and use these assumptions when reasoning about the correctness of their programs. Correctness

problems arise when certain orders that are implicitly assumed by the programmer are not maintained by

the underlying memory model. The advantage of sequential consistency is that no matter what implicit

assumptions a programmer makes regarding the program order or atomicity of memory operations, SC

conservatively maintains all such orders. Therefore, the programmer’s implicit assumptions are never

violated.

In contrast to sequential consistency, relaxed memory models require programmers to abandon their

implicit and intuitive understanding of how memory behaves. Most of the relaxed models we have described

require the programmer to reason with low level (and non-intuitive) reordering optimizations to understand

the behavior of their programs. In addition, many of the models have been defined using complicated

terminology, and in some cases, the original definitions have ambiguities which leave the semantics open to

interpretation. These factors further exacerbate the difficulties in programming these models.

Another difficulty with relaxed models is the lack of compatibility among the numerous models and

systems in existence. Many of the subtle differences among models make little difference in the actual

performance of a model. However, such differences make the task of porting programs across different

systems quite cumbersome. Similarly, the variety of models in existence make it difficult for programmers to

adopt a programming methodology that works across a wide range of systems.

With all their shortcomings, relaxed models are widely used in many commercial multiprocessor systems,

including systems designed by major computer manufacturers such as Digital Equipment, IBM, and Sun

Microsystems. The wide-spread use of these systems suggests that even though sequential consistency is

simpler to use for programmers, performance often plays an important role in the ultimate choice made by

system designers and programmers. Nevertheless, we would ideally like to provide the extra performance

with as little programming complexity as possible.

2.5 How to Evaluate a Memory Model?

Designing a new memory model that provides a higher performance potential is in some ways quite trivial.

After all, performance can often be enhanced by simply ensuring fewer program orders and reducing atomicity

constraints on memory operations. The challenge lies in providing a balanced design that appropriately trades

off diminishing programming ease for the extra performance that is attained. The lack of a metric for

objectively quantifying programming ease further complicates the choice for a system designer.

In what follows, we discuss some important issues in evaluating the trade-off between programming ease

and performance.

2.5.1 Identifying the Target Environment

The first step in evaluating a memory model is to identify the environment for which it is intended. Evaluating

the programming ease of a memory model requires identifying the target programmers and the target appli-

cations. For example, sophisticated system programmers will likely have an easier time with complicated

models because they are accustomed to dealing with low-level abstractions and system details. Similarly, it is

easier to reason about the memory behavior of well-structured applications with synchronized access to data

structures as compared to applications with unstructured access to shared data.
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Figure 2.25: Trade-off between programming ease and performance.

Evaluating the performance of a memory model also requires identifying the target system and architecture.

Specifically, it is important to identify the components in a system that may benefit from the flexibility provided

by a relaxed model. The attainable performance gains can vary greatly if we are focusing on the hardware, the

compiler, or both. Similarly, architectural assumptions play an important role; the performance gains from

exploiting a relaxed model can be quite different depending on whether we are considering a tightly coupled

shared-memory multiprocessor or a loosely coupled system that supports shared memory in software. Finally,

the achievable gains can depend heavily on the characteristics of the target applications.

2.5.2 Programming Ease and Performance

Figure 2.25 shows the conceptual design space for memory models with respect to performance and pro-

gramming complexity. The trends shown in this figure should be considered only as a coarse guideline

for providing some intuition about the design space. The programming complexity axis is a measure of

programmer effort required to develop a correctly functioning program that exploits the flexibility of a given

model. The performance axis reflects the performance of the overall system, including both the compiler

and underlying architecture. Each point in this space corresponds to a system that exposes some level of

memory operation reordering and overlap to the programmer. The point labeled SC corresponds to a system

that supports sequential consistency. Such a system has the advantage of low programming complexity, but

provides low performance.

The figure shows a curve that corresponds to the envelope of maximum performance in the design

space. In other words, systems that lie on the curve provide the highest performance for a given level of

programming complexity. The shape of this curve can provide some intuition about the design choices. We

have shown four hypothetical systems (denoted as A, B, C, and D) that lie on the curve, each successively

exploiting more optimizations to achieve a higher performance. As we move from SC to A, there is a large

increase in programming complexity before we observe any noticeable performance gains. The intuitive

explanation for the sudden increase in programming complexity is that as soon as we move to a non-SC

system, the programmer can no longer rely on the intuitive orders maintained by SC and is forced to explicitly

reason with the low-level reordering optimizations. After this point, the curve is shown to be steep as we

move to systems B and C. Since the programmer is already burdened with directly reasoning with reorderings,

exploiting more memory reorderings can be quite effective because we can achieve large gains in performance
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Figure 2.26: Effect of enhancing programming ease.

with a marginal increase in programming complexity. Eventually, exploiting more optimizations provides

diminishing returns in performance (e.g., we have achieved most the gains that are possible from allowing

memory operations to execute out of order) and can cause a jump in programming complexity since it becomes

difficult to write correct programs given an extreme lack of order among memory operations. This effect is

shown as a leveling off of the curve when we go from system C to system D. Given the non-linear shape of

the curve, the most sensible design point for a non-SC system probably lies at the second knee of the curve,

near point C.

It is important to note that not every system falls on the maximum performance curve (e.g., consider point

E). In fact, one of the challenges in designing a relaxed model is to at least ensure that it provides close to the

highest performance possible for its level of programming complexity. Given the large number of models that

have been proposed in the literature, it is not difficult to find poorly designed models that fail in this respect.

2.5.3 Enhancing Programming Ease

The relaxed models we have discussed so far provide the programmer with an abstract specification for the low

level reordering and overlap optimizations that are allowed among memory operations. Because these models

directly expose the programmer to reordering optimizations in a system, we refer to them as system-centric

models.

The next chapter will present an alternative category of memory models, called programmer-centric

models. Programmer-centric models present the programmer with a higher-level abstraction of the system,

thus relieving the programmer from directly reasoning with low-level reordering optimizations. To enhance

programming ease, programmers are allowed to reason with sequential consistency. Programmers can enhance

performance by providing intuitive program-level information about the behavior of memory operations in

their programs (e.g., identifying synchronization operations). This information is in turn used by the system to

determine the optimizations that may be safely exploited without violating sequential consistency for the given

program. We will show that programmer-centric models can achieve better or comparable performance to

system-centric models, and yet provide a much higher level of programming ease. This effect is conceptually

depicted in Figure 2.26 as a shift of the performance curve towards lower programming complexity. By

enhancing the programming ease of relaxed models, the programmer-centric approach makes it easier to

justify the use of relaxed memory models over sequential consistency.
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2.6 Related Concepts

This section presents a brief comparison of sequential consistency with other related correctness conditions

such as linearizability [HW90] and serializability [Pap86].

Linearizability is a correctness condition proposed by Herlihy and Wing [HW90] for concurrent operations

on shared objects. Shared objects are typically represented by abstract data types. For example, an object may

represent a queue with corresponding operations such as enqueue and dequeue. Unlike sequential consistency,

linearizability implicitly assumes the notion of an observable global time across all processes. Operations

are modeled by an interval which consists of the period of time between the invocation and response for the

operation and each operation is assumed to take effect instantaneously at some point within this interval. A

processor does not issue an operation until it receives the response to its previous operation.

Linearizability can be trivially transformed to a correctness condition on memory operations by limiting

objects to only represent shared memory locations with corresponding read and write operations. When

interpreted in this way, linearizability is similar to sequential consistency because it requires valid executions

to represent a total order on all operations that is consistent with individual program orders for each of the

processes. However, linearizability is a stricter correctness condition than sequential consistency because it

requires the actual order in which operations were executed in time to be reflected in this total order. For

example, consider the program segment in Figure 2.3(a). Assume an actual execution of this program with

operations executing in the time order (a1,b1,a2,b2) and with outcome (u,v)=(0,0). While this execution and

outcome are sequentially consistent because it appears as if the operations were done in the order (a2,b2,a1,b1)

to produce (u,v)=(0,0), the execution is not linearizable because the total order that explains the outcome is not

consistent with the actual times at which the operations were executed. The stricter nature of linearizability

naturally makes it a less efficient model to implement compared to sequential consistency. Furthermore, there

are no compelling arguments that justify preserving linearizability over sequential consistency as the base

correctness condition for multiprocessors.

Serializability is the correctness condition that is commonly assumed by most databases and distributed

systems [Pap86]. In serializability, parallel threads consist of separate transactions each executing a finite

sequence of operations to a set of objects shared with other transactions. An execution is considered

serializable if it appears as if all transactions were executed in a sequential order with no interleaving within

transaction boundaries. Strict serializability further constrains this condition by requiring this sequential

order to correspond to the order in which the transactions are executed in real time [Pap86]. This difference

between serializability and strict serializability is analogous to the difference we noted above between

sequential consistency and linearizability.

Even though there are superficial similarities between sequential consistency and serializability, the two

correctness conditions target different system and problem domains. Serializability is appropriate for systems

such as databases and allows programmers to reason about transactions without considering the concurrency

that the underlying system exploits. On the other hand, sequential consistency is targeted for programmers

who write explicitly parallel programs and are willing to reason with the concurrency in a multiprocessor

system. We refer the interested reader to Herlihy and Wing’s paper [HW90] for a more thorough discussion

of some of the theoretical differences among the correctness conditions discussed in this section.
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2.7 Summary

This chapter presented the background information for the remainder of the thesis. We motivated the need

for a memory consistency model for the purpose of specifying the behavior of memory operations, and

introduced the notion of sequential consistency as an intuitive model for shared-memory multiprocessors. We

next considered some of the architecture and compiler optimizations that are desirable in multiprocessors,

and showed that the majority of these optimizations violate the semantics of sequential consistency. This led

to the discussion of alternative memory models that enable a higher degree of performance by relaxing some

of the constraints imposed by sequential consistency. Choosing among these models requires considering

fundamental trade-offs between programmability, portability, implementation complexity, and performance.

The remaining chapters in this thesis are devoted to a thorough analysis of each of these issues with the hope

of clarifying and resolving the various trade-offs.
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Chapter 3

Approach for Programming Simplicity

This chapter presents our approach for enhancing the programmability of relaxed memory models while

maintaining the performance advantages associated with the system-centric models described in the previous

chapter. We propose an alternative method for specifying memory behavior that presents a higher level

abstraction to the programmer. Instead of requiring the programmer to deal with the complex semantics of

system-centric models, we allow programmers to reason with sequential consistency and simply require them

to provide program-level information about shared memory operations. This information is then exploited to

provide higher performance. Models developed using this framework are referred to as programmer-centric

models.

Section 3.1 provides an overview of the programmer-centric approach. We next present a set of related

programmer-centric models that successively exploit more information about memory operations to achieve

higher performance. Sections 3.3 and 3.4 compare the above programmer-centric models with system-centric

models in terms of performance and ease of use. Section 3.5 describes practical ways that may be used by

programmers to convey the required information about memory operations. We discuss the relevance of

programmer-centric models to programs that exhibit frequent unsynchronized data accesses in Section 3.6.

Finally, Sections 3.7 and 3.8 discuss possible extensions to this work and describe the related work in this

area.

3.1 Overview of Programmer-Centric Models

Programmer-centric models provide an alternative approach to system-centric models for specifying the

memory behavior of a system. The primary goal of programmer-centric models is to achieve the high

performance associated with system-centric models while maintaining the programming ease of sequential

consistency. We describe the basic foundation for this approach below.

The programmer-centric approach is based on the premise that programmers prefer to reason with an
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Figure 3.1: Exploiting information about memory operations.

intuitive model such as sequential consistency. Therefore, the programmer is allowed to reason with se-

quential consistency. To allow for higher performance, we require the programmer to provide program-level

information about the behavior of shared-memory operations. This information is then used by the system to

determine the memory reordering optimizations that can be exploited safely without affecting correctness.

Figure 3.1(a) shows an example program segment to motivate the use of program-level information about

memory operations. The program shows a producer-consumer interaction between two processors, where

P1 writes to two memory locations and sets a flag and P2 waits for the flag to be set before reading the two

locations. A straightforward implementation of sequential consistency would maintain all program orders in

this example, thus disabling overlap and reordering of memory operations within each processor. However,

as we discussed in Section 2.3.2, maintaining all program orders is not necessary for achieving sequentially

consistent results in most programs. Figure 3.1(b) shows a sufficient set of program orders that guarantee

sequential consistency (SC) in this example. The multiple reads of Flag correspond to reading the old value

multiple times before the set value is read. As shown, reordering the writes to A and B on P1, or the

reads of A and B on P2, does not affect the correctness of the execution; the result of the execution with

reordering is indistinguishable from the result with no reordering. The intuitive reason for this is that the flag

synchronization ensures there is only one processor accessing locations A and B at any given time. Once P2

proceeds past its waiting loop, P1 is already done with its writes to A and B. Therefore, reordering the reads

to A and B does not change the result of the execution since each read occurs after the write to the same

location. A similar argument holds for reordering the writes to A and B on P1.

Ideally, we would like to automatically identify (e.g., through compiler analysis) the memory operations

in a program that can be safely reordered and overlapped without violating sequential consistency. Shasha

and Snir have proposed such an approach [SS88]. However, as we pointed out in Section 2.3.2, the success

of such approaches has been limited to simple programs written with restrictive languages or programming

models.

Instead of depending on automatic techniques, we require the programmer to provide explicit information

about the usage and semantics of memory operations, which allows the system to easily determine the

set of orders that may be safely violated. For example, referring back to Figure 3.1, simply knowing

that the operations to the flag location function as synchronization allows us to determine that reordering

the operations to the other locations is safe. The information we require is often naturally known by the
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programmer. Furthermore, with only a few types of information supplied by the programmer, we can exploit

the full range of optimizations captured by the aggressive system-centric models.

Overall, the programmer-centric approach unifies the memory optimizations captured by the system-

centric models without sacrificing programming ease or portability. Providing the extra program-level

information is easier and more natural than reasoning directly with the system-centric models. In addition, as

long as the information provided by the programmer is correct, the system guarantees sequentially consistent

results and yet performs comparably to the most aggressive system-centric models.

3.2 A Hierarchy of Programmer-Centric Models

This section presents a hierarchy of programmer-centric models that exploit information about memory

operations to provide higher performance. We describe the categorization that can be used to distinguish

different memory operations based on their semantics and behavior in sequentially consistent executions of

a program. This information is used by the system to determine whether a given operation can be safely

executed out of program order or non-atomically without violating sequential consistency. The hierarchy

of programmer-centric models described here is an extension of our earlier work on the PL [GLL+90] and

PLpc [GAG+92] models which are described in more detail in Section 3.8.

We use the notion of a label associated with each memory operation as an abstraction for distinguishingthe

operation based on its categorization. Section 3.5 discusses practical techniques for allowing programmers to

convey such information about memory operations. For now, we assume that the label is conveyed along with

the static memory instructions in a program; the execution of the instruction generates a memory operation

with the associated label. A program that provides correct labels (will be defined shortly) for its memory

operations is referred to as a properly-labeled (PL) program. Given a properly-labeled program, a canonical

programmer-centric model guarantees that all executions of the program will be sequentially consistent. We

refer to programmer-centric models that are based on the above framework as properly-labeled (PL) models.

We will present three properly-labeled models that successively exploit more information about memory

operations to achieve higher performance. The first type of information categorizes a memory operation based

on whether it executes simultaneously with other operations to the same location. This information effectively

identifies conflicting operations that are involved in a race; we refer to such operations as competing operations.

The second type of information distinguishes between competing operations based on whether they are used

to order or synchronize operations to other locations. Finally, the third type of information identifies a

common use of competing operations for synchronization where one processor waits on a location until a

particular value is written by another processor. Among the above three types of information, the first type is

by far the most important in allowing the system to achieve higher performance relative to a straightforward

implementation of SC. The latter two types of information become more relevant if competing operations

are frequent. The categorization described here can be extended to include other useful information about

memory operations. However, there is a trade-off between how easy it is for the programmer to provide the

extra information and what incremental performance benefits it can provide.

Before presenting the models, we clarify some terminology and assumptions that will be used throughout

this section. Some of this terminology was introduced in Chapter 2. Memory operations are modeled as

a single read or a single write access to a memory location. Read-modify-write operations are modeled as
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a separate read and write operation. Two operations conflict if they are to the same location and at least

one of them is a write operation. A system is considered an SC system if it obeys sequential consistency.

An execution is an SC execution if it is possible on an SC system. By every SC execution, we mean all

SC executions of the program for all valid inputs and initial states of memory. Memory operations appear

to execute in some total order in an SC execution, referred to as the execution order. Given an execution

order, the conflicting order ( co
�!) is the order imposed on conflicting memory operations.1 Finally, for every

execution of a program, the program order (
po
�!) represents a partial order on all memory operations that

is consistent with the per-processor total order on memory operations imposed by the program for each

processor.

The following sections describe each model in detail and provide intuition for how the extra information

about memory operations can be exploited by the system to enable further reordering and overlap of memory

operations. Chapter 4 provides the more precise set of system requirements for guaranteeing sequential

consistency for properly-labeled programs, and describes how properly-labeled programs can be efficiently

ported to systems that support a system-centric model.

3.2.1 Properly-Labeled Model—Level One (PL1)

The first programmer-centric model we consider requires the programmer to identify the memory operations

that may be involved in a race. The following describes the formal categorization of shared-memory operations

used by this model and provides intuition for the optimizations that can be exploited by a system based on

such a categorization.

Categorization of Shared-Memory Operations for PL1

We use the example program from Figure 3.1 to illustrate the intuition behind competing operations, which

are memory operations that are involved in a race. Figure 3.2 shows the program order and conflict order for

one execution of this program. In the SC execution shown, the conflicting operations to location A, and to

location B, are synchronized or ordered by operations to the Flag location. In contrast, conflicting accesses

to the Flag location are not ordered through other operations. Therefore, we refer to the memory operations

to Flag as competing operations and to A and B as non-competing operations. The formal definitions follow.

Appendix A presents a slightly different definition for an ordering chain and explains why we chose Definition

3.1 below.

Definition 3.1: Ordering Chain
Given two conflicting operations u and v in an execution, an ordering chain exists from operation u to operation
v if and only if
(a) u

po
�! v, or

(b) u
po
�! w1

co
�! r1

po
�! w2

co
�! r2

po
�! w3 : : :

co
�! rn

po
�! v, where n � 1, wi is a write access, rj is a read

access, and wi and rj are to the same location if i = j. If all accesses in this chain are to the same location, then
u may be the same as w1, and v may be the same as rn, as long as there is at least one

po
�! arc in the chain.

Definition 3.2: Competing and Non-Competing Operations
Given a pair of conflicting operations u and v in an execution, operation u competes with operation v if and only
if there is no ordering chain (as defined above) between u and v (either from u to v or vice versa). An operation
u is a competing operation if and only if there exists at least one conflicting operation v in this execution that
competes with u. Otherwise, the operation is a non-competing operation.

1This order is not transitive (i.e, not a partial order) because it does not hold between two reads to the same location.

48 Chapter 3 Programming Simplicity



P1 P2

A = 1;

B = 1;

Flag = 1;

.. = Flag;
po

po

po

.. = Flag;

u = A;

v = B;

po

co

Figure 3.2: Example of program order and conflict order.

shared

competing non−competing

Figure 3.3: Categorization of read and write operations for PL1.

Referring back to Figure 3.2, there is an ordering chain between the conflicting operations to locations

A and B in the execution that is shown. However, there is no ordering chain between the write and read

operations to Flag. Therefore, operations to Flag are indeed competing while the remaining operations to the

other locations are non-competing. Although the formal definition for competing operations seems complex,

it essentially captures the fairly intuitive notion of a race. Thus, programmers should be able to identify such

operations relatively easily.

Figure 3.3 shows the categorization of shared-memory operations discussed above. As we will see shortly,

the PL1 model also distinguishes between competing read and competing write operations and exploits this

distinction to provide more optimizations. However, since determining whether an operation is a read or

a write is trivial and can be done automatically, we do not include it in the categorization that is visible to

the programmer. Given the categorization shown in the figure, the valid labels for memory operations are

competing and non-competing. Note that operations that access the same location can have differing labels;

e.g., one operation may be competing while another is non-competing.

Since a system exploits the information conveyed by the labels to ensure correctness, a label needs to have

a proper relationship to the actual category of a memory operation. We consider the labeling correct if every

memory operation is labeled with the category that it actually belongs to. However, providing labels that

exactly correspond to the actual category of an operation requires perfect information about the behavior of

memory operations. Since it may be difficult for the programmer to obtain such exact information, we provide

the flexibility of allowing conservative labels. Intuitively, a label is conservative if it leads to fewer reordering

and overlap optimizations by a system as compared to the actual category of the operation. The conservative

labels for PL1 are shown in bold in Figure 3.3. As we will see, the system exploits fewer optimizations

for competing operations as compared to non-competing operations. Therefore, labeling an operation that

is actually non-competing as competing still leads to correct (i.e., sequentially consistent) executions. In

contrast, labeling an operation that is intrinsically competing as non-competing is not safe. While allowing

conservative labels can substantially enhance programming ease, it is important to realize that frequent use
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          (test&set(L)==0);while          (test&set(L)==0);while

u = B;

v = A;

L = 0; L = 0;

Figure 3.4: Program segments with competing operations.

of conservative labels can reduce system performance.

Below, we introduce the notion of proper labeling to formally capture the correctness property for labels.

The subscript L is used to distinguish an operation’s label from the operation’s intrinsic category.

Definition 3.3: Properly-Labeled Execution—Level One (PL1)
An execution is a properly-labeled (PL1) execution if and only if all operations labeled non-competingL are
non-competing (i.e., non-competingL� non-competing), and the remaining operations are labeled competingL.

Definition 3.4: Properly-Labeled Program—Level One (PL1)
A program is a properly-labeled (PL1) program if and only if all sequentially consistent executions of the
program result in properly-labeled (PL1) executions.

Note that the programmer can directly reason with sequential consistency to determine whether a program

is properly-labeled.2 Figure 3.4 shows a couple of program segments with competing operations. The

memory instructions that can potentially generate a competing operation are shown in bold; i.e., there is at

least one SC execution of the program where the operation that is generated by the instruction is competing.

Below, we overload the competing label to refer to the instruction as well. Consider the program segment in

Figure 3.4(a). For each instruction, there is at least one SC execution where the operation that is generated

by the instruction competes with another conflicting operation. Therefore, all instructions are competing.

Figure 3.4(b) shows a similar program segment except now the memory instructions are encapsulated within

critical sections. There is still some non-determinism since either P1 or P2 may enter the critical section first.

Nevertheless, in every SC execution, memory operations to locations A and B are non-competing because the

lock synchronization provides an ordering chain separating the conflicting pairs. In contrast, the instructions

that access location L are competing.

Given the above definitions, we can now define the properly-labeled (PL1) memory model. The basic

idea behind this model is to guarantee sequential consistency for programs that are properly-labeled. The

formal definition follows.

Definition 3.5: The Properly-Labeled Memory Model—Level One (PL1)
A system obeys the PL1 memory model if and only if for any PL1 program (defined above), all executions of
the program on this system are sequentially consistent.

An interesting observation is that the above definition specifies the memory behavior for properly-labeled

programs only; the behavior of programs that are not properly-labeled is unspecified. Of course, any practical

implementation of the above model will have a specified behavior for all programs, regardless of whether the

2It is conceptually possible for an instruction in a program to never generate an operation in any SC execution. Naturally, the decision
on whether the program is a PL1 program does not depend on the label on such instructions. Therefore, the programmer is free to use
any label for such instructions.
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Figure 3.5: Possible reordering and overlap for PL1 programs.

program is properly-labeled. Nevertheless, the above under-specification provides implementations with an

extra flexibility in the behavior they support for non-PL programs.

Possible Optimizations for PL1

As we discussed in Chapter 2, a simple and sufficient way to maintain sequential consistency is to (i) execute

memory operations from each processor one at a time and in program order, and (ii) ensure write operations

execute atomically (i.e., as if there is a single copy of memory). The information conveyed by the labels in a

PL1 program allows the system to relax some of these constraints while maintaining sequential consistency.

The system can exploit the distinction between competing and non-competing operations, and between

competing read and competing write operations. Figure 3.5 illustrates the overlap and reordering that is

possible among the operations from a single processor. Figure 3.5(a) shows a sample sequence of memory

operations in program order. The operations shown in bold are competing operations. Each block of multiple

operations depicts a sequence of non-competing operations between two competing ones. The numbers

beside each block uniquely identify the block. Figure 3.5(b) shows the sufficient program orders that can be

maintained to satisfy the PL1 model. Within each block of non-competing operations, reads and writes to

different locations can be overlapped or reordered. The system can trivially distinguish between competing

read and competing write operations to allow extra overlap between competing and non-competing operations.

A competing read is only ordered with respect to operations that follow it in program order, while a competing

write is only ordered with respect to operations that precede it in program order. This is analogous to the

distinction between acquire and release operations in the release consistency model (see Section 2.4 of the

previous chapter), and arises from the fact that the interprocessor links in an ordering chain (Definition 3.1) are

always from a competing write to a competing read. Finally, program order is maintained among competing

operations. Regarding atomicity, non-competing writes are allowed to appear non-atomic.

PL1 programs can be easily ported to a system-centric model such as release consistency (RCsc) to
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exploit most of the above optimizations; competing reads and writes can be mapped to acquire and release

operations, respectively, and non-competing operations can be simply mapped to ordinary data operations.

Chapter 4 describes a slightly more aggressive set of system requirements (relative to RCsc) that still satisfies

the PL1 model. Overall, the most important optimization is the ability to reorder memory operations in

between competing operations, which can provide a substantial performance potential especially if competing

operations are infrequent.

3.2.2 Properly-Labeled Model—Level Two (PL2)

The second programmer-centric model we consider requires extra information about memory operations to

identify competing operations that are directly used for synchronizing non-competing operations. Below, we

describe the formal categorization of operations and the types of optimizations that are enabled by this extra

information.

Categorization of Shared-Memory Operations for PL2

This section extends the categorization of memory operations to identify the subset of competing operations

that are used to order non-competing operations through ordering chains. We refer to such operations as

synchronization (abbreviated to sync) operations and the remaining competing operations are referred to as

non-synchronization (or non-sync) operations.

Consider the program segment in Figure 3.4(b) (from the previous section) that shows two processors

accessing memory locations within critical sections implemented using test-and-set operations. As we

discussed in the previous section, the operations to locations A and B are non-competing because in every SC

execution, there is an ordering chain between conflicting pairs of operations to these locations. Therefore,

the read and write of the test-and-set and the write to unset the lock are the only competing operations in the

program. By considering SC executions of this program, it becomes apparent that while the write to unset

the lock and the read of the test-and-set are required to form ordering chains among conflicting operations

to locations A and B, the write of the test-and-set is not part of the ordering chains. Intuitively, the write to

unset the lock acts as a release operation and informs the other processor that operations that appear before it

in program order have completed. Similarly, the read of the test-and-set acts an acquire operation which, in

conjunction with the while loop, delays future operations that follow it in program order until a release is done

by another processor. In contrast, the write of the test-and-set is simply used to ensure mutual exclusion and

does not function as either an acquire or a release. Therefore, we categorize the read of the test-and-set and the

write to unset the lock as synchronization operations and the write of the test-and-set as a non-synchronization

operation.

Figure 3.6 shows the categorization of shared-memory operations for the PL2 memory model. Given

this categorization, the valid labels for memory operations (i.e., leaves of the categorization tree) are sync,

non-sync, and non-competing. As discussed above, read synchronization operations function as an acquire,

while write synchronization operations function as a release. This extra distinction between read and write

synchronization operations will also be used to allow further optimization, but is not shown as explicit labels

since the distinction between reads and writes is trivial and automatic. The conservative labels are shown

in bold in Figure 3.6. For example, operations that are non-competing or non-sync can conservatively be
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Figure 3.6: Categorization of read and write operations for PL2.

labeled as sync. Below, we formalize the notion of proper labeling based on the above categorization.

Definition 3.6: Sufficient Synchronization Ordering Chains
Given an execution, there are sufficient synchronization ordering chains if and only if for every operation u
labeled as non-competingL and any operation v from a different processor that conflicts with u, there is at least
one ordering chain (see Definition 3.1) either from u to v, or from v to u, such that every wi and ri in the chain
is labeled as syncL.

Definition 3.7: Properly-Labeled Execution—Level Two (PL2)
An execution is a properly-labeled(PL2) execution if and only if all operations labeled non-competingL are non-
competing (i.e., non-competingL � non-competing), enough operations are labeled syncL to ensure sufficient
synchronization ordering chains (defined above), and the remaining operations are labeled as non-syncL.

Definition 3.8: Properly-Labeled Program—Level Two (PL2)
A program is a properly-labeled (PL2) program if and only if all sequentially consistent executions of the
program result in properly-labeled (PL2) executions.

Figure 3.7 shows a two-processor program segment that further illustrates the use of synchronization

and non-synchronization operations. Recall that uppercase identifiers denote shared locations and lowercase

identifiers denote private locations. The program depicts part of a branch-and-bound algorithm where each

processor attempts to update the global bound in case the locally computed bound is smaller. This type of

algorithm may be used to solve the traveling-salesperson problem, for example, with the bound representing

the current shortest path among the cities. In this type of an algorithm, each processor may check the global

bound many more times than it actually updates the bound. Therefore, for efficiency, each processor reads

the current global bound in an unsynchronized fashion (as a hint) and obtains mutual exclusion for updating

the bound only if the locally computed bound is smaller. The competing operations are shown in bold. In

addition, we show a set of valid labels for the memory instructions in this program. The test-and-set is

used to achieve mutual exclusion. As in our earlier discussion, the read of the test-and-set and the write to

unset the lock are synchronization operations, while the write of the test-and-set is a non-synchronization

competing operation. The read of Bound within the critical section is non-competing since in every execution

there exists an ordering chain between it and any conflicting operations. In contrast, the read of Bound

outside the critical section and the write of Bound within the critical section are competing; however, they

are non-synchronization operations since they do not participate in any ordering chains for non-competing

operations.

The definition of the PL2 model is similar to the definition in the previous section (Definition 3.5), except

we use the new definition for PL2 programs now.

Definition 3.9: The Properly-Labeled Memory Model—Level Two (PL2)
A system obeys the PL2 memory model if and only if for any PL2 program (defined above), all executions of
the program on this system are sequentially consistent.
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Figure 3.7: Program segment from a branch-and-bound algorithm

Possible Optimizations for PL2

The distinction between competing operations that are used for synchronization versus those that are not

enables the system to further relax the order among memory operations relative to the PL1 model. The

main optimization that is enabled by the sync/non-sync distinction is with respect to the program order

between competing and non-competing operations. The program order between a sync read (acquire) and

non-competing operations that follow it, and a sync write (release) and non-competing operations that precede

it is maintained. However, the program order between competing and non-competing operations to different

locations need not be maintained if the competing operations are non-sync operations. PL2 programs can be

ported to a model such as release consistency (RCsc) to exploit the above relaxation; competing sync read

and write operations should be mapped to acquire and release, respectively, competing non-sync operations

should be mapped to non-sync, and non-competing operations should be mapped to ordinary data operations.

Again, Chapter 4 describes a slightly more aggressive set of system requirements (relative to RCsc) that still

satisfies the PL2 model.

Figure 3.8 provides an example to illustrate the overlap between operations. Figure 3.8(a) shows the

program order among memory operations from a single processor. Assume the only competing operations

in the sequence are the read and write of a test-and-set and the write that unsets the lock (shown in bold).

The dashed box around the test-and-set signifies the atomicity of the read and write operations. As in our

previous examples, assume the labels on the test and the write to unset the lock are syncL (acquire and release,

respectively), and the label on the set is non-syncL. Figure 3.8(b) shows the sufficient program orders for

satisfying the PL2 memory model. Even though the write of the test-and-set is a competing operation, its

program order with respect to non-competing operations need not be maintained since it is identified as a

non-sync. One of the implications is that the test-and-set can be overlapped and reordered with respect to

non-competing operations that precede it in program order. Note that this optimization is not necessarily safe

unless we know that the set of the test-and-set does not play a role in the ordering chains among non-competing

operations (i.e., it is not a sync).
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Figure 3.8: Possible reordering and overlap for PL2 programs.

3.2.3 Properly-Labeled Model—Level Three (PL3)

The third programmer-centric model we consider requires further information from the programmer to

identify a common use of competing synchronization operations where one processor waits on a location until

a particular value is written by another processor. The synchronization examples we have considered up to

now, including the use of a flag to synchronize producer-consumer interactions or the use of test-and-set to

implement locks, fall in this category. Below we describe the categorization of operations that allows us to

correctly identify such synchronizations and discuss the optimizations that are enabled by such information.

Categorization of Shared-Memory Operations for PL3

To motivate the categorization described below, consider the program segment shown in Figure 3.1(a). Based

on the categories we have already discussed, the operations to Flag are the only competing operations and are

used to synchronize accesses to locations A and B. The way this synchronization is achieved is by P2 reading

Flag within a loop until P1 writes the value of 1 to this location. We refer to such a loop as a synchronization

loop construct. Below, we formalize a simple case of a synchronization loop construct in which the loop

repeatedly executes a read or a read-modify-write to a specific location until it returns one in a set of specified

values.3

Definition 3.10: Synchronization Loop Construct
A synchronization loop construct is a sequence of instructions in a program that satisfies the following:
(a) The construct executes a read or a read-modify-write to a specific location. Depending on whether the value
returned is one of certain specified values, the construct either terminates or repeats the above.
(b) If the construct executes a read-modify-write, then the writes of all but the last read-modify-write store
values that are returned by the corresponding reads.
(c) The construct terminates in every SC execution.

3The definition for a synchronization loop construct and for loop/non-loop reads and writes (Definitions 3.11 and 3.12) are similar to
those used for the PLpc model [GAG+92, AGG+93], which will be discussed in Section 3.8.
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The above definition captures many of the common uses for such synchronization constructs. Appendix B

provides a more general set of conditions that, for example, allows implementations of locks using test-and-

test-and-set [RS84] or back-off [MCS91] techniques to also be considered as synchronization loop constructs.

Finally, Appendix F describes an optional restriction of synchronization loop constructs that slightly simplifies

the required system conditions for supporting the PL3 model.

Given that a synchronization loop construct eventually terminates, the number of times the loop executes

or the values returned by its unsuccessful reads cannot be practically detected and should not matter to the

programmer. For example, in Figure 3.1(a), the number of time P2 reads Flag unsuccessfully, or even the

values returned by the unsuccessful reads, should not matter as long as eventually a read of Flag returns the

value 1 and terminates the loop. Therefore, we do not consider the unsuccessful reads of a synchronization

loop construct as part of the result or outcome for the program. In other words, we assume that replacing

the operations of a synchronization loop construct with only the last read or read-modify-write that causes

the loop to terminate leads to an equivalent execution as far as outcomes are concerned. Note that this

is a slightly relaxed interpretation of equivalence between two executions, and this relaxation allows more

aggressive labels which in turn enable more optimizations. Finally, all executions that we consider (e.g., for

deciding whether operation labels are correct) are assumed to be modified to replace every synchronization

loop construct with only the last read or read-modify-write that causes the loop to terminate. We refer to this

as a modified execution.

Operations associated with synchronization loop constructs often exhibit a special property that can be

exploited by the system to achieve higher performance. For example, consider the write and read operations to

Flag in Figure 3.1(a). In every SC execution of this program, the write to Flag by P1 must execute before P2’s

final read of Flag that terminates the synchronization loop. Therefore, while a competing pair of operations

can in general occur in any order, certain write-read pairs such as the operations to Flag have a fixed order of

execution. We refer to such write-read pairs as loop writes and loop reads. The formal definitions follow. As

we will discuss shortly, the fact that the read effectively waits for the write can be exploited by the system to

safely ignore certain program orders with respect to the read and to allow the write to behave non-atomically

with respect to multiple copies.

Definition 3.11: Loop and Non-loop Reads
Given a competing read R in a modified execution, the read is a loop read if and only if
(a) it is the final read of a synchronization loop construct that terminates the construct,
(b) it competes with at most one write in the modified execution,
(c) if it competes with a write W in the modified execution, the write is necessary to make the synchronization
loop construct terminate; i.e., the read returns the value of that write and the immediately preceding conflicting
write in the execution order would not make the loop construct terminate, and
(d) let W’ be the last conflicting write (if any) before W whose value could terminate the loop construct; if
there exists any competing write W” (does not necessarily compete with R, W or W’) to the same location
between W’ and W in the execution order (by definition, W” fails to terminate the loop construct), then there is
an ordering chain from W” to R that ends with a

po
�!.

A competing read that is not a loop read is a non-loop read.

Definition 3.12: Loop and Non-loop Writes
Given a competing write W in a modified execution, the write is a loop write if and only if
(a) it competes only with loop reads, and
(b) for any non-loop read R that conflicts with W and is after W, there is an ordering chain from W to R that
ends with a

po
�!.

A competing write that is not a loop write is a non-loop write.
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Figure 3.9: Categorization of read and write operations for PL3.

Appendix C motivates the need for the relatively complex conditions such as condition (d) for loop reads

and condition (b) for loop writes above. In addition, the appendix describes a simplification of the PL3 model

that forgoes some of the optimizations that are allowed by the more general form described here.

Figure 3.9 shows the extended categories of shared-memory operations. As shown, synchronization

operations are now distinguished into two categories, loop and non-loop.4 With this distinction, the valid

labels (i.e., leaves of categorization tree) are non-loop, loop, non-sync, and non-competing. The conservative

labels are shown in bold in the figure. As with the previous models, the system further distinguishes between

read and write operations that are labeled as loop or non-loop. Again, since this distinction is trivial and

automatic, we do not include it explicitly in the set of labels that is visible to the programmer. We next

formalize the notion of correct labels.

Definition 3.13: Properly-Labeled Execution—Level Three (PL3)
A modified execution is a properly-labeled (PL3) execution if and only if all operation labeled non-competingL
are non-competing (i.e., non-competingL� non-competing), all operations labeled loopL are either loop or non-
competing operations (loopL � (loop [ non-competing)), enough operations are labeled loopL or non-loopL
to ensure sufficient synchronization ordering chains (both loop and non-loop labels are considered as a sync in
Definition 3.6), and the remaining operations are labeled as non-syncL.

Definition 3.14: Properly-Labeled Program—Level Three (PL3)
A program is a properly-labeled (PL3) program if and only if all sequentially consistent executions (i.e.,
modified executions) of the program result in properly-labeled (PL3) executions.

Figure 3.10 shows the implementation of two common synchronization primitives that we will use to

illustrate correct labels for PL3. Even though we show only two processors, the labels we discuss are still

valid if the synchronization primitives are used across a larger number of processors. Figure 3.10(a) shows

an implementation of locks using test-and-set and a write to unset the lock. The while loop on each processor

that contains the test-and-set qualifies as a synchronization loop construct. Therefore, all operations (i.e.,

unsuccessful test-and-sets) except for the final successful test-and-set in an execution are ignored. In any

such modified SC execution of this program, the test of a final test-and-set competes only with the write to

unset the lock that is required for the loop to terminate. Therefore, the test is a loop read.5 Similarly, the

write to unset the lock competes only with a loop read (a successful test) and there are no non-loop reads that

conflict with it; therefore, it qualifies as a loop write. Finally, the set of the final test-and-set does not compete

4It is also possible to further distinguish non-sync operations as loop and non-loop operations since the distinction between loop and
non-loop operations is really orthogonal to whether the operation is a sync or non-sync. We chose not to do this for simplicity (and the
fact that non-sync operations are typically infrequent), but the model can be trivially generalized in this way.

5This depends on the fact that we are discarding unsuccessful test-and-sets from the execution, since the test in unsuccessful test-and-
sets do not qualify as loop reads, and the set of the unsuccessful test-and-sets would compete with the successful test thus disqualifying
it as a loop read.
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c1,c2:   non−competing
L

Figure 3.10: Example program segments: (a) critical section, (b) barrier.

with any operations (again, assuming we discard unsuccessful test-and-sets) and can therefore be labeled as

non-competing.

Figure 3.10(b) shows the implementation of a barrier [MCS91] using an atomic fetch-and-increment

operation. The while loop containing the reads of Flag forms a synchronization loop construct. Therefore,

we ignore the unsuccessful reads of Flag. The write to Count is non-competing. In contrast, the fetch (read)

and the increment (write) to Count and the write and the final read of Flag are competing. The read and write

to Flag qualify as loop operations, while the fetch and the increment on Count are non-loop operations.

The formal definition for the PL3 model follows.

Definition 3.15: The Properly-Labeled Memory Model—Level Three (PL3)
A system obeys the PL3 memory model if and only if for any PL3 program (defined above), all modified
executions of the program on this system are sequentially consistent.

Possible Optimizations for PL3

The distinction of sync operations into loop and non-loop categories enables the system to relax the program

order among competing operations as compared to the previous two models we described. Specifically, given

a competing write followed by a competing read, the program order between the write-read pair need not be

maintained if either operation is identified with the loop label. In addition, competing writes that are identified

with the loop label can be non-atomic with respect to multiple copies. It is possible to map PL3 programs
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L
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a1,a2,d1,d2:   non−competing
L
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L

Figure 3.11: Example program segments with loop read and write operations.

to RCpc in order to exploit the above relaxations. Chapter 5 describes the mapping to RCpc, in addition to

presenting a more aggressive set of constraints that still satisfy the PL3 model.

Figure 3.11 shows a couple of program segments to provide intuition for the program reordering opti-

mization described above. The first example in Figure 3.10(a) shows two processors communicating data.

Each processor produces a value, sets a flag, waits for the other processor’s flag to be set, and consumes the

value produced by the other processor. The operations to Flag1 and Flag2 are competing and are shown in

bold. These operations all qualify as loop operations. The optimization discussed above allows the write of

one flag and the read of the other flag to be overlapped on each processor, e.g., read of Flag1 can be reordered

with respect to the write of Flag2 on P1. As long as we ignore unsuccessful reads of the flag locations on each

processor, the above optimization yields sequentially consistent executions of the program.6 Furthermore,

the writes to the flag locations need not be atomic with respect to multiple copies; therefore, even in scalable

systems (where it is difficult to make an update write appear atomic), it is possible to use a simple update

protocol to more efficiently communicate the modification to each flag.

Figure 3.11(b) shows a program segment that is similar to the one in Figure 3.11(a), except we use locks

and unlocks (implemented by test-and-set and write to unset the lock) instead of flags. As shown, the test of

the test-and-set and the write to unset the lock on each processor are loop reads and writes, respectively, and

the set is a non-competing operation. Thus, the acquisition of the lock can occur fully before the release of

the previous lock on a given processor (i.e., if the lock being acquired is already free).

Figure 3.12 provides another example to illustrate the reordering and overlap that is enabled by PL3. The

sequence of operations shown in Figure 3.12(a) is the same as those in Figure 3.5. As before, the competing

6In a sequentially consistent execution, it is impossible for both P1 and P2 to read the value of 0 for Flag2 and Flag1, respectively.
However, this can occur with the optimization discussed above. Nevertheless, these unsuccessful reads do not need to be considered as
part of the outcome for the (modified) execution, thus allowing us to consider executions with the optimization as being sequentially
consistent.
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Figure 3.12: Possible reordering and overlap for PL3 programs.

operations are shown in bold. Assume all competing operations that are shown are identified with the loop

label, and that blocks 1 to 3 and blocks 5 to 7 correspond to two critical sections. Compared to the overlap

shown in Figure 3.5(b), the categorization of competing operations into loop and non-loop enables further

overlap by allowing the write in block 3 (end of first critical section) to be reordered with respect to the read in

block 5 (beginning of the second critical section). As a result, the two critical sections on the same processor

can be almost fully overlapped.

3.2.4 Relationship among the Properly-Labeled Models

We have presented three programmer-centric models that successively exploit more information about mem-

ory operations to increase opportunities for overlap and reordering. The first model (PL1) requires information

about operations that are competing (i.e., involved in a race). The second model (PL2) requires a further dis-

tinction among competing operation based on whether they are used to synchronize other memory operations.

Finally, the third model (PL3) further distinguishes a common type of waiting synchronization construct. We

expect that the majority of programmers will opt for the PL1 model due to its simplicity and the fact that

the information required by PL1 enables by far the most important set of optimizations. The PL2 and PL3

models target a much smaller group of programmers. For example, the PL3 model may be used by system

programmers who write the code for synchronization primitives such as locks and barriers.

Since the three properly-labeled models form a hierarchy, programs written for one model can be easily

and automatically ported to another model in the group. We first consider porting a program in the direction

of a more aggressive model. The categorization tree for memory operations (e.g., Figure 3.9) can be used to

determine how to correctly transform operation labels in one model to labels in another model. For example,

to port a program written for PL1 to PL2, any operations labeled as competing in PL1 can be trivially treated

as sync in PL2. Of course, with some extra reasoning, the programmer may be able to more aggressively label

some of the competing operations in PL1 as non-sync in PL2. Porting a program to a less aggressive model
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is similar. For example, a sync or non-sync label under PL2 must be treated as a competing label under PL1.

A subtle issue arises when porting a program from PL3 to either PL1 or PL2 because PL3 excludes

unsuccessful operations (in synchronization loop constructs) from executions when deciding whether an

operation is competing. As a result, some operations that are labeled as non-competing in PL3 may be

considered as competing in PL1 and PL2 (e.g., the set in a test-and-set used within a lock primitive).

Therefore, a simple transformation such as treating non-loop, loop, and non-sync operations in PL3 as

competing operations in PL1 does not necessarily lead to a PL1 program. This means that the PL1 model

does not theoretically guarantee that such a program will behave correctly. One possible remedy is to extend

the PL1 and PL2 definitions to also exclude unsuccessful operations in a synchronization loop construct. This

is not necessary in practice, however, since the memory ordering constraints enforced by systems that support

the PL1 or PL2 models are typically a strict superset of the sufficient constraints required for supporting the

PL3 model.7

Section 3.5 describes practical ways for programmers to convey information about memory operations

to the system based on the proper labeling framework discussed in this section. As we will discuss, most

application programmers deal with information at the level of the PL1 model only. Therefore, only a few

system programmers or sophisticated application programmers may deal with the extra information required

by the PL2 and PL3 models.

3.3 Relating Programmer-Centric and System-Centric Models

This section summarizes the memory optimizations enabled by properly-labeled models as compared to the

system-centric models described in Chapter 2. The more formal sets of sufficient conditions for supporting

the three properly-labeled models are presented in Chapter 4.

Table 3.1 summarizes the set of sufficient constraints for satisfying each of the three properly-labeled

models described in the previous section. For each model, we show the labels used by the model and the

sufficient program order and atomicity constraints that would satisfy the model. The program order constraints

apply to operations to different locations. For simplicity, we no longer carefully distinguish an operation’s

label from the operation’s intrinsic category. Furthermore, we use the names of categories (i.e., the non-leaf

nodes in the category trees shown in Figures 3.3, 3.6, and 3.9) in addition to label names (i.e., the leaf nodes).

For example, the competing category covers the sync and non-sync labels in PL2 and the non-loop, loop, and

non-sync labels in PL3. We want to emphasize that the constraints we describe are only sufficient constraints;

they are not necessary constraints for either supporting the given PL model or for guaranteeing sequentially

consistent results for a given program.

Consider the PL1 model. Table 3.1 shows that it is sufficient to maintain program order between a

non-competing operation followed by a competing write, a competing read followed by a non-competing

operation, and two competing operations. Similarly, multiple-copy atomicity should be maintained for

competing writes. Table 3.2 provides the complementary information to Table 3.1 by showing the operations

for which program order and multiple-copy atomicity do not need to be maintained. As before, the program

order relaxations apply to operations to different locations. For PL1, program order need not be maintained

between two non-competing operations, a non-competing operation followed by a competing read, and a

7This property also holds for the sufficient conditions presented in Chapter 4 for supporting the above three models.

Section 3.3 Relating Programmer-Centric and System-Centric Models 61



Table 3.1: Sufficient program order and atomicity conditions for the PL models.

Program Order (sufficient) Multiple-Copy Atomicity
Model Labels first op second op (sufficient)

competing non-competing competing write
PL1 non-competing competing read non-competing competing write

competing competing

sync non-competing sync write
PL2 non-sync sync read non-competing competing write

non-competing competing competing

non-competing sync write
non-loop sync read non-competing

PL3 loop competing read competing read non-loop write
non-sync competing read competing write non-sync write

non-competing competing write competing write
non-loop or non-loop or

non-sync write non-sync read

competing write followed by a non-competing operation. Similarly, multiple-copy atomicity need not be

maintained for non-competing writes.

As shown in Tables 3.1 and 3.2, each PL model successively relaxes the program order and atomicity

constraints of the previous level. Consider how program order is relaxed. The distinction between competing

and non-competing operations in PL1 enables the most important class of optimizations by allowing for

non-competing operations to be overlapped with respect to one another. Since non-competing operations

constitute the large majority of operations in most program, relaxing the ordering constraints among them

can provide substantial performance gains. The further distinction of competing operations into sync and

non-sync in PL2 can improve performance by relaxing the program order between non-competing operations

and competing operations that are categorized as non-sync. Finally, the distinction of sync operations into

loop and non-loop in PL3 allows the system to relax the program order between a competing write and a

competing read if either one is a loop operation. Relative to PL1, the extra optimizations enabled by PL2 and

PL3 are important only if the program has a frequent occurrence of competing operations.

The above discussion shows that the information conveyed through labels can be used to exploit the

same type of optimizations that are enabled by aggressive system-centric models. Below, we provide some

intuition for how this information may be used to efficiently execute PL programs on system-centric models

while still maintaining sequential consistency. The next chapter provides a more formal set of conditions for

porting PL programs to system-centric models.

We begin by considering the first set of system-centric models introduced in the previous chapter (i.e., IBM-

370, TSO, PC) that allow reordering of a write followed by a read in program order. Given the information

conveyed by a PL1 program, this reordering is safe if either the write or the read is non-competing. The

additional information provided by PL2 does not provide any additional cases. Finally, with PL3 information,

the reordering is also safe between a competing write and a competing read as long as at least one is a loop

operation. The second set of system-centric models that includes PSO can further exploit the information

conveyed by labels by allowing the reordering of two writes as well. For example, the PL1 information makes

the reordering of two writes safe as long as the second write is non-competing.
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Table 3.2: Unnecessary program order and atomicity conditions for the PL models.

Program Order (unnecessary) Multiple-Copy Atomicity
Model Labels first op second op (unnecessary)

competing non-competing non-competing
PL1 non-competing non-competing competing read non-competing write

competing write non-competing

non-competing non-competing
sync non-competing sync read

PL2 non-sync sync write non-competing non-competing write
non-competing non-competing non-sync

non-sync non-competing

non-competing non-competing
non-loop non-competing sync read

PL3 loop sync write non-competing non-competing write
non-sync non-competing non-sync loop write

non-competing non-sync non-competing
competing write loop read

loop write competing read

The third and last category of system-centric models consists of models such as WO, RCsc, RCpc, Alpha,

RMO, and PowerPC, that allow program reordering among all types of operations. Given WO, we can

exploit the information conveyed by PL1 to allow non-competing operations to be reordered with respect to

one another. The extent to which each model exploits the label information varies, however. For example,

while WO cannot exploit the distinction between competing read and competing write operations, the other

models (i.e., RCsc, RCpc, Alpha, RMO, and PowerPC) can use this distinction to safely relax the program

order between certain competing and non-competing operations (e.g., between a competing write followed

by a non-competing read).

Among the system-centric models, the RCsc model best exploits the label information provided by PL1

and PL2 programs, and the RCpc model best exploits the information provided by PL3 programs. This is

partly because the definition of PL programs was closely linked to the design of release consistency as the

implementation conditions for a system [GLL+90]. The next chapter provides an even more aggressive set

of conditions, as compared with RCsc and RCpc, that still lead to sequentially consistent executions of PL

programs. While the release consistency conditions are sufficiently aggressive for most practical hardware

designs, the more aggressive set of conditions provide opportunity for higher performance in designs that

support shared-memory in software (see Chapter 5).

3.4 Benefits of Using Properly-Labeled Models

The benefits of using properly-labeled models mainly arise from programming simplicity and easy and

efficient portability among different systems. We briefly summarize some of these advantages below.

The primary advantage of properly-labeled models is that they are simpler to program with and reason

with than the system-centric models. While system-centric models require the programmer to reason with

low-level reordering optimization, programmer-centric models maintain the intuitive sequential consistency
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model as the base model and simply require extra information to be provided about the behavior of memory

operations in sequentially consistent executions of the program. By far the most important piece of information

is whether a memory operation is involved in a race (i.e., competing or non-competing). Since most parallel

programs are written with the intent of disallowing races on shared data, the programmer already has to

analyze the program for any races. Therefore, requiring this information to be made explicit leverages the

fact that such information is already naturally known by the programmer. The other two types of information

required by PL2 and PL3 (i.e., sync/non-sync and loop/non-loop, respectively) are also relatively intuitive,

even though the formal definitions for these categories may seem complex.

An important attribute of the properly-labeled models is that they allow the programmer to provide

conservative information about memory operations. This greatly simplifies the task of providing correct

information about memory operations since if the exact information about some operation is not known,

the programmer can simply provide the conservative information. For example, an operation may be safely

labeled as competing if the programmer is not sure whether the operation is involved in a race. At the

extreme, a program can be trivially labeled by providing conservative labels for all operations; for example,

labeling all operations as competing trivially yields a PL1 program. Of course, conservative labels reduce

the opportunity for doing optimizations, and in the extreme case where all labels are conservative, system

performance degrades to the level of a typical sequentially consistent implementation. Therefore, from a

performance perspective, it is best to limit the use of conservative labels.

Another benefit of allowing conservative labels is that programmers can focus on providing accurate

information for the performance critical regions in a program. For example, if most of the program’s

execution time is spent in a handful of procedures, the programmer can concentrate on analyzing the memory

operations in those procedures, and provide more conservative labels for the remaining memory operations.

Similarly, the more detailed information required by PL2 or PL3 may be provided for critical synchronization

algorithms used in a program, while the remaining parts may provide the less detailed information required

by the PL1 program. Overall, the ability to provide conservative labels allows programmers to observe

performance benefits that are proportional to the amount of effort spent by the programmer to properly label

a program.

The information provided by properly-labeled programs also allows automatic and efficient portability

of such programs across a wide range of systems. Contrast this to system-centric models. For example,

consider porting a program that is originally written for the Alpha model to the RMO model. Recall that the

Alpha model inherently maintains program order among read operations to the same location while the RMO

model does not maintain this order. This subtle difference makes it difficult to efficiently port a program from

Alpha to RMO because we must conservatively assume that the program orders between all pairs of reads

to the same location are pertinent for correctness. In contrast, the labels in a PL program convey a lot more

information about the operations, allowing us to efficiently match the orders required by the program to the

orders provided by a given system.

Finally, a side benefit of operation labels is that they can serve as a form of documentation for the program

by conveying information such as the set of memory operations that are involved in races or the set of

operations that are used for synchronization. This type of information simplifies the task of understanding a

program and can therefore enhance the maintainability of parallel programs.

Overall, the PL models provide programmers with a uniform programming strategy across a wide range
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of systems without sacrificing ease of use, efficiency, and portability.

3.5 How to Obtain Information about Memory Operations

The previous sections introduced the notion of operation labels as an abstraction for conveying information

about memory operations. This section describes practical ways of obtaining such information. The program-

ming interface between the programmer and the system plays a key role in determining who is responsible

for conveying the labels and how the labels are conveyed. We begin by describing a number of possible

interfaces between the programmer and the system, and discuss the responsibilities of the programmer at each

interface. We next describe mechanisms that allow programmers to convey any required information at the

language level. The actual mechanisms for conveying such information to the underlying hardware will be

discussed in Chapter 5.

3.5.1 Who Provides the Information

The degree to which the programmer is exposed to the underlying relaxed memory model in a system is solely

determined by the type of programming language interface. We will consider three broad classes of languages

below: sequential languages with compiler-generated parallelism, explicitly parallel languages with implicit

synchronization to ensure lack of races, and explicitly parallel languages with explicit synchronization under

programmer control. For the first two classes of languages, the underlying memory model is transparent to

the programmer. For the third class of languages, however, the programmer observes the relaxed memory

model and may also be required to provide explicit information about memory operations to ensure correct

program behavior.

Even though a language may not expose the underlying relaxed model to the application programmer,

it is still beneficial to exploit relaxed models for achieving higher performance implementations of the

language. This requires exposing the compiler and system programmers who implement the language and

associated software libraries to the underlying relaxed model. Whether the operation labels are provided by

the application programmer or the language library and compiler programmers, the proper labeling approach

can be used to simplify the task of the programmer who is exposed to the underlying relaxed model.

Sequential Languages

The first category of languages we consider is traditional sequential languages. To exploit parallelism in

such languages, the compiler is responsible for automatically parallelizing the program and coordinating the

communication and synchronization among the parallel threads that it generates. Since the programmer’s

logical view of the system is that of a uniprocessor, all multiprocessor aspects including the multiprocessor

memory model are transparent to the programmer.

To exploit the underlying relaxed memory model in a system, the compiler is responsible for properly

labeling the memory operations in the parallel program that it generates. Since the compiler generates

sufficient synchronization to ensure accesses to the original program’s data structures are race-free, memory

operations to these data structures will inherently be non-competing. The remaining operations in the parallel

program are generated by the compiler to coordinate and synchronize the parallel tasks. The compiler must
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convey appropriate labels for these latter operations as well. For example, consider the lock and barrier

synchronization primitives in Figure 3.10 with the corresponding labels. The effort in aggressively labeling

such synchronization code is well worth it since the code is reused across multiple applications.

In summary, sequential languages can exploit relaxed memory models without increasing programming

complexity for the application programmer.

Explicitly Parallel Languages with Implicit Synchronization

The languages in the second category are similar to sequential languages in that the programmer is allowed

to reason with the traditional uniprocessor memory model. The only difference from a sequential language

is that the programmer is required to provide information that allow the compiler to more effectively extract

the parallelism in the program. With the parallelism exposed, the compiler is responsible for generating the

parallel threads and imposing sufficient synchronization to ensure accesses to the original program’s data

structures are race-free (i.e., non-competing). Therefore, similar to sequential languages, the compiler is

responsible for properly labeling the output program that it generates in order to exploit an underlying relaxed

memory model.

Jade [RSL93] and FX-87 [JG88] are examples of languages designed to express parallel execution while

preserving the serial semantics of the corresponding sequential program. In Jade, for example, the programmer

identifies tasks that are useful to execute concurrently and specifies the data usage information for each task.

This data usage information allows the compiler and run time system to execute tasks concurrently while

preserving the data dependences between tasks; the system ensures this serial semantics by automatically

inserting appropriate synchronization among the tasks. High Performance Fortran (HPF) [Lov93] is another

example of a language in this category. In HPF, the programmer writes a serial program and annotates it with

data distribution specifications. HPF also provides primitives to identify concurrent computation, such as an

intrinsic data-parallel array operation or an explicit forall statement that identifies a loop as fully parallel.8

Explicitly Parallel Languages with Explicit Synchronization

The third category of languages we consider require the programmer to explicitly identify the parallelism and

to coordinate the parallel tasks through explicit synchronization. Therefore, unlike the previous categories,

the programmer is exposed to the multiprocessor semantics. The various options in this category trade off the

level of control versus ease-of-use provided to the programmer.

The first option is to provide a set of predefined synchronization constructs and to require the program-

mer to use these constructs appropriately to ensure all memory operations are race-free or non-competing.

These predefined synchronization constructs may either be part of the language or provided through parallel

runtime libraries. For example, monitor-based languages such as Concurrent Pascal [Han77], Mesa [LR80],

and Modula [Wir77] provide language-based synchronization constructs, while environments such as C-

threads [CD88], Presto [BLL88], and the ANL [BBD+87]/Parmacs [Bec90] macros extend conventional

sequential languages through parallel runtime libraries.

As we mentioned above, the application programmer is responsible for ensuring that all memory operations

are non-competing by using sufficient synchronization. To achieve this, the programmer needs a high-level

8These constructs have parallel copy-in/copy-out semantics.
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semantic description of the synchronization constructs and a definition of non-competing based on these

high-level constructs. Providing this type of description is relatively straightforward. For example, consider

lock and unlock operations as part of the synchronization constructs. To define the notion of non-competing

with lock and unlock constructs, one can simply adapt Definition 3.1 to describe a chain of unlock-lock pairs

ordering conflicting operations. Given that the programmer is responsible for guaranteeing that all memory

instructions that access program data structures are race-free, the compiler can automatically label such

instructions as non-competing. Furthermore, as in the case of sequential languages, the memory instructions

that comprise the predefined synchronization constructs are assumed to be labeled by the programmers who

implement them and such labels can be passed along in the compiled code. Therefore, even though the

application programmer is exposed to the multiprocessor semantics, no explicit operation labels are provided

by the programmer.

The option described above may be limiting for some programmers since it disallows the use of synchro-

nization primitives that are customized by the programmer and disallows the use of competing operations

(e.g., refer back to the branch-and-bound algorithm of Figure 3.7 with the unsynchronized access to the bound

variable). We can provide the programmer with more control at the cost of requiring the programmer to

supply explicit labels for the memory operations in the program.

In summary, for languages with explicit synchronization, the programmer is responsible for providing

extra information that helps the compiler in generating operation labels, ranging from guaranteeing that all

memory operations are race-free by using predefined synchronization primitives to explicitly providing labels

for all operations. Section 3.8.4 describes some programming environment tools and architectural features

that can help the programmer provide correct information in the form of operation labels, while Section 3.6

further discusses the trade-offs in applying the proper labeling approach to programs with unsynchronized

accesses.

3.5.2 Mechanisms for Conveying Operation Labels

As we discussed in the previous part, memory operation labels are provided either by language library and

compiler programmers or by application programmers, depending on the language interface that is chosen.

In this section, we describe language-level mechanisms that can be used by the programmer to convey the

required information. The actual mechanisms for further conveying such information to the underlying

hardware will be discussed in Chapter 5.

Operation labels as described in Section 3.2 are attributes for memory operations that appear in the

dynamic memory reference stream corresponding to the parallel execution of a program. However, practical

techniques for providing this information at the language level need to work within the context of the static

program text. We describe two reasonable approaches for expressing operation labels. The first approach

is to express the category information as an attribute of shared variables or memory locations. This can be

achieved by either providing the information as part of the declaration for each program variable or specifying

the information based on address ranges for memory locations; every operation in the dynamic execution

that accesses the given variable or memory location inherits this information as a label. We refer to this as

the variable or address-based approach. The second approach is to provide the appropriate information for

each static memory instruction that may access a shared-memory location.9 Analogous to the address-based

9Instructions that specify more than a single memory operation, such as read-modify-write operations, may conceptually require a
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approach, the execution of a memory instruction leads to a dynamic instance of a memory operation that

inherits this information as a label. We refer to this as the instruction-based approach.

Providing labels in the above two approaches may be done on a per address or per instruction basis, or

it may be based on regions of addresses or instructions. The mechanisms through which this is achieved are

naturally language dependent. For example, the address-based approach may be supported by associating the

appropriate label to operations that access specific pages. Similarly, the instruction-based approach may be

supported by providing multiple flavors of memory instructions, e.g., either through extra opcodes or through

extra bits in the address (i.e., address shadowing) to achieve a similar functionality to extra opcodes. Or else,

regions of instructions may be associated with a given label through special delimiter instructions.

In what follows, we discuss the relative merits of the address-based and instruction-based approaches for

labeling operations.

Expressive Power

The address-based and instruction-based approaches are inherently different in their level of expressiveness.

With the address-based technique, dynamic operations to different memory locations can inherit different

operation labels. However, accesses to the same memory location inherit the same label. On the other hand,

the instruction-based approach allows different memory instructions that possibly access the same memory

location to inherit different labels, but invocations of the same memory instruction always inherit the same

label even if the accesses are to different memory locations.

Both methods are theoretically less expressive than the conceptual approach of individually labeling

every dynamic memory operation in a given execution, which would allow using a different label for different

invocations of the same memory instruction or different accesses to the same memory location. For example,

consider the execution of a single instruction that leads to two dynamic accesses to memory location A.

Assume that individually labeling the operations in an execution would lead to the first operation being

non-competing and the second operation being competing. To ensure correct labels, we would have to declare

location A as competing or the instruction as competing depending on whether we use the address-based or

instruction-based approach, respectively. In either case, the resulting execution of the program would lead to

both memory operations being labeled as competing, which is more conservative than conceptually labeling

the operations in an execution.

In practice, the instruction-based approach may be more appropriate than the address-based approach

since it is often the case that operations generated by the same instruction require the same label, while

different operations to the same location may require different labels.10

Default Labels

Default operations labels can be used to simplify the task of labeling a program or to reduce the chance of

incorrect labels resulting from programmer error.11 These two goals may often be conflicting. To achieve

the latter goal, the conservative labels would be chosen as the default. For the PL1 model, for example, we

label per operation that they generate.
10For example, consider the test and set operations in Figure 3.7 (or Figure 3.10(a)) which access the same location but require different

labels.
11Ideally, the mechanism that is chosen should allow the programmer to override a default label. Otherwise, it will not be possible in

general to make a program properly labeled by simply providing correct labels.

68 Chapter 3 Programming Simplicity



would assume every operation is competing by default. Therefore, reordering optimizations would only be

allowed if the programmer explicitly identifies an operation as non-competing. This can reduce the chances

of incorrect behavior that may be caused if we implicitly assume an operation is non-competing.

To simplify the task of providing operation labels, an alternative approach would be to choose the more

frequent labels as the default. Given PL1 programs, for example, the non-competing label is empirically more

frequent than the competing label in most programs. Therefore, by assuming the non-competing label by

default, we reduce the number of instructions or variables that must be explicitly labeled (i.e., as competing)

by the programmer.12 A related technique that is relevant to the instruction-based labeling scheme is to

choose the default on a per instruction basis depending on the label that is most frequently used for the given

instruction type. Assume the PL1 model again. Special instructionssuch as test-and-set or compare-and-swap

are frequently associated with competing operations. Therefore, such instructionscan be labeled as competing

by default. On the other hand, ordinary load and store instructions would be labeled as non-competing since

it is the more frequent label for such instructions. Again, these default choices can reduce the number of

explicit labels that must be provided by the programmer.

Another interesting approach is to allow the programmer to choose potentially different default labels

for different regions of code. For example, consider a scenario where the programmer focuses on providing

accurate labels (i.e., in contrast to conservative labels) for only the performance critical regions in a program.

In this case, it may be beneficial to choose the frequent labels as the default in the performance critical regions

and choose the conservative labels as the default for the remaining sections of code. The above idea may not

work well with the address-based approach for conveying labels since the same data structure may be used in

both critical and non-critical regions of code.

In summary, providing flexible mechanisms for specifying default labels can be extremely effective in

simplifying the task of properly labeling a program.

Implementation Issues

The information conveyed in the form of labels is used by the underlying system to enable various reordering

optimizations. The instruction-based labeling approach has an advantage over the address-based approach in

this respect since it provides the required information to the underlying system in a more direct and usable

form.

Consider compiling a parallel program with explicit synchronizations, for example. To determine whether

a given set of memory instructions may be safely reordered, the compiler must ultimately deduce the labels

on individual instructions based on the static information provided by the program text. This information is

directly provided by the instruction-based approach. On the other hand, the address-based approach provides

labels as an attribute of a given memory address. Since the memory address accessed by an instruction may

be dynamic (e.g., due to indirect addressing), it can be difficult to statically determine the appropriate label

for a given instruction based on information provided by the address-based approach. This is especially true

in languages such as C that are not strongly-typed. Therefore, the compiler may end up with conservative

information in trying to transform labels on memory addresses to labels on memory instructions.

Unlike the compiler, the hardware has access to the dynamic execution of the program, allowing it

12For the other PL models, the sync label is empirically more frequent than the non-sync label and the loop label is more frequent than
the non-loop label in most programs.
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to accurately transform memory address labels to instruction labels. Nevertheless, the instruction-based

approach still provides an advantage over the address-based approach simply because it directly notifies the

hardware of the instruction label even before the instruction’s effective address is computed. Assume an

implementation of the PL1 model, for example. Consider a read instruction with a yet unresolved memory

address that depends on a long series of previous computations. With the instruction-based approach, the

hardware knows whether the read is competing or non-competing as soon as the instruction is fetched.

In the case of a non-competing read, an aggressive hardware can safely service operations past the read

potentially before the read address is computed. With the address-based approach, however, the hardware

must conservatively assume that the read is competing until its effective address is resolved, thus losing the

opportunity to overlap the time to compute the read’s address with the servicing of operations that follow the

read.

The above issues regarding implementation efficiency are by far the most important in comparing the

address-based and instruction-based approaches, making the latter approach more desirable.

3.6 Programs with Unsynchronized Memory Operations

The majority of parallel programs are written with sufficient synchronization to ensure memory operations to

data structures are race-free (i.e., non-competing). However, programmers sometimes avoid synchronization

operations to achieve higher efficiency and performance. We loosely refer to such programs as unsynchronized

programs and refer to memory operations that are not protected by synchronization as unsynchronized

operations (similar to competing operations).

This section discusses the appropriateness of properly-labeled models for reasoning about unsynchronized

programs. The section begins by further describing the incentive for writing unsynchronized programs. We

next consider the trade-off of properly labeling unsynchronized programs, as compared to using system-centric

models, from both a performance and an ease-of-use perspective.

3.6.1 Why Programmers Use Unsynchronized Operations

For most programs, eliminating races on program data structures is necessary for correctness even when

we use a conservative memory model such as sequential consistency (e.g., refer back to Section 2.1.4).

Furthermore, the presence of data races complicates the task of reasoning about program correctness since

races often lead to a larger set of program behaviors that must be analyzed. Therefore, most programs use

synchronizations to avoid races and the lack of sufficient synchronization to protect data structure is often

considered a programming mistake.

There are some algorithms that can tolerate data races, however, and removing synchronization in such

algorithms can potentially lead to higher performance and efficiency.13 The main performance gains from

removing synchronization arise from eliminating the serialization among tasks (e.g., one task waiting for

another task to release a lock or reach a barrier) and eliminating the cost of synchronization (e.g., acquiring

a free lock). In addition, since fine grain synchronization can sometimes incur a large memory overhead,

13The option of removing synchronization is only available if the programmer uses an explicitly parallel language with explicit
synchronization, since a parallel program generated from a sequential language or a language with implicit synchronization will
inherently have sufficient synchronization (refer back to the discussion Section 3.5.1).
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eliminating such synchronization can lead to a more efficient use of the available memory space.

A common class of algorithms that can tolerate unsynchronized operations are iterative algorithms based

on chaotic relaxation. An example is the parallel successive-over-relaxation (SOR) method for solving

differential equations which leads to a nearest-neighbor computation among processors and is relaxed to

tolerate old values from neighboring processors within each phase of the computation. Eliminating the

synchronization in this algorithm is essential for exploiting parallelism even though it changes the semantics

compared to the sequential SOR method. Since the algorithm iterates to convergence, old values are tolerated

robustly and do not affect the correctness of the result. Many other iterative techniques based on chaotic

relaxation work on a similar principle and can robustly tolerate unsynchronized memory operations.

In addition to the iterative algorithms described above, there are other types of algorithms that function

correctly with unsynchronized memory operations. Refer back to the branch-and-bound algorithm shown

in Figure 3.7, for example. As we mentioned in Section 3.2.2, each processor computes a new bound and

compares it to the global bound to see whether the new bound is the lowest bound computed up to that point.

The typical behavior is that the global bound is read frequently but is seldom written to. Therefore, acquiring

a synchronization for every read can needlessly serialize the computation when several processors attempt to

read the bound. This serialization can be alleviated if the global bound is read in an unsynchronized manner.

The lock protecting the global bound is acquired only if a processor’s computed bound is smaller than the

global bound. This algorithm is sufficiently robust to tolerate the unsynchronized read of the global bound;

the global bound monotonically decreases during the course of the computation and reading an old value

simply implies that some processors will do extra work but does not affect the overall correctness of the

results.

Finally, efficient high-level synchronization primitives such as the barrier synchronization shown in

Figure 3.10(b) often require the use of unsynchronized operations. However, properly labeling such synchro-

nization algorithms typically leads to efficient primitives, as is the case with the barrier example.

In summary, reasoning about the correctness of programs with unsynchronized accesses is a non-trivial

task regardless of whether we assume a strict model such as sequential consistency or a relaxed memory

model. Nevertheless, eliminating the synchronization can potentially provide a large enough performance

advantage to warrant the use of unsynchronized memory operations in some programs. The next section

describes the appropriateness of the properly-labeled models for reasoning about unsynchronized programs.

3.6.2 Trade-offs in Properly Labeling Programs with Unsynchronized Operations

Compared to the system-centric models, the properly-labeled (PL) models offer an advantage in ease of

use, and for the majority of programs, provide a comparable or higher performance potential. The main

performance gain from PL models arises from the ability to reorder and overlap memory operations that are

non-competing. Therefore, PL models are especially well suited for programs that exhibit a high frequency

of non-competing operations due to use of sufficient synchronization. Conversely, PL models are not well

suited for programs that exhibit a high frequency of unsynchronized (i.e., competing) operations; even though

the PL models still provide an advantage in ease of programming compared to system-centric models, using

system-centric models may lead to a higher performance potential for such programs.

There are two options for programs with a high frequency of competing operations: (i) use the PL models

at a possible loss in performance, or (ii) use system-centric models to possibly achieve higher performance
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at the cost of higher programming complexity. Before considering these two options in more detail, we first

discuss some possible misconceptions regarding the frequency of competing operations in typical programs.

Possible Misconceptions about Unsynchronized Operations

Regardless of whether the programmer uses sequential consistency or a more relaxed memory model, most

programs typically require sufficient synchronization in order to function correctly. The majority of programs

have a relatively low frequency of competing memory operations, with races typically confined to only a few

operations. The frequency of competing or unsynchronized operations may sometimes be over-estimated

simply because of a misconception about what a competing operation is. Below, we present a few illustrative

examples to clarify some of the common misconceptions about competing operations.

One potential source of confusion is that non-determinism in the order in which operations are executed

may be mistaken as an indication of competing operations. Consider the example in Figure 3.4(b). The order

in which the writes on P1 occur with respect to the reads on P2 to locations A and B is non-deterministic and

depends on the order in which the two processors enter the critical section. However, this non-determinism

does not constitute a race on locations A and B. In every execution, conflicting operations to these locations

are ordered through an ordering chain consisting of a write to unset the lock on one processor and a test-and-set

on the other processor. Thus, operations to locations A and B are actually non-competing.

Another source of confusion may arise from the use of ordinary reads and writes to achieve synchro-

nization. Consider the program segment from Figure 3.1(a). Event synchronization is achieved with one

processor writing to the Flag location while the other waits for the new value. Since this example does not

use a conventional critical section (e.g., locks), some programmers may consider operation to locations A

and B as competing. However, these operations are in fact non-competing since they are ordered in every

execution by the competing operations to Flag.

Finally, the example in Figure 3.13 shows a more subtle interaction between two processors with no explicit

synchronization. Assume Head Ptr, Rec0 Ptr, and Rec1 Ptr are record pointers. The program segment shows

P1 inserting a new record at the head of a linked list while P2 asynchronously reads the record at the head. The

record at the head is initially the one pointed to by Rec0 Ptr, with P1 later inserting a different record pointed

to by Rec1 Ptr at the head. The read of the head record by P2 can occur either before or after the insertion

of the new record by P1. This type of optimized code may for example be used to add and look up records

in a list with no deletions. The lack of any form of explicit synchronization in this example may lead to the

conclusion that all the memory operations are competing. However, the only competing operations are the

write on P1 and the read on P2 to the Head Ptr. Consider the two possible sequentially consistent outcomes.

In the first outcome, P2 reads the original record before P1 inserts the new record. Therefore, except for the

write and read operations to the Head Ptr, the remaining operations on P1 and P2 are to fields of two different

records and cannot compete. In the second outcome, P2 reads the newly inserted record. The operations on

P1 and P2 are now to fields of the same record. However, these operations remain non-competing because

they are ordered through the ordering chain comprising of the write on P1 and the read on P2 to the Head Ptr.

Therefore, even though there is no explicit synchronization between the two processors, the operations to the

record fields are in fact non-competing.

In summary, intuitive inspection of a program may often lead to an over-estimation of the actual frequency

of competing operations that is revealed by a more careful analysis.
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Initially   Head_Ptr = Rec0_Ptr

b2:

P2

Head_Ptr;a2:

r1 = ptr−>field1;

P1

c1:

b1:

a1: Rec1_Ptr−>field1 = 1;

Rec1_Ptr−>field2 = 2;

Head_Ptr = Rec1_Ptr;

Rec1_Ptr−>next = Head_Ptr;

ptr = 

c2:

d1: d2:

r2 = ptr−>field2;

r3 = ptr−>next;

Figure 3.13: Example with no explicit synchronization.

Properly Labeling Unsynchronized Operations

Compared to a program written for relaxed system-centric models, the performance using the PL approach is

often comparable or better when competing operations are infrequent. On the other hand, programs written

for system-centric models may potentially perform better if competing operations are frequent. Of course,

the system-centric approach may not provide an advantage if many of the conservative orders maintained (by

the PL approach) among competing operations are actually necessary for the correctness of a given program

and must therefore also be maintained by the system-centric model.14

We want to emphasize that the PL models may be used to reason about any program, regardless of whether

the program has sufficient synchronization. The only requirement for properly labeling a program is to provide

correct labels for all memory operations. For example, given the PL1 model, the only requirement is for every

memory operation that is competing (i.e., unsynchronized) to be identified as competingL. Therefore, properly

labeling an unsynchronized program is conceptually no more difficult than properly labeling a program with

sufficient synchronization. It is important to note that properly labeling an unsynchronized program does not

require adding any extra synchronization to the program. In fact, it is likely that the programmer made a

conscious decision to eliminate synchronizations to achieve higher performance; reinserting synchronization

to eliminate the unsynchronized operations could therefore be the wrong choice (e.g., consider the chaotic

relaxation or branch-and-bound algorithm described in Section 3.6.1).

Using System-Centric Models to Reason about Unsynchronized Operations

Algorithms that are consciously designed with insufficient synchronization are robust enough to tolerate

the memory behavior caused by unsynchronized operations. Typically, the same robustness characteristics

make many such algorithms immune to the reordering of memory operations that results from relaxing the

memory model. As a result, many unsynchronized algorithms do not depend on sequential consistency

for correctness. For example, the results of a chaotic over-relaxation algorithm may be considered correct

if they satisfy specific convergence criteria, even though some of these results would not be possible on

a sequentially consistent system. The above characteristics make unsynchronized algorithms suitable for

systems with relaxed memory models since the system can achieve reordering and overlap optimizations that

would not be possible if the results were required to be sequentially consistent.

For algorithms that do not depend on sequential consistency for correctness, there may be a performance

14For iterative algorithms, it is also important to consider the effect of relaxing the memory model on the number of iterations that are
required for convergence.
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advantage in using the system-centric approach instead of the properly-labeled approach because the latter

can limit performance by guaranteeing sequentially consistent executions.15 Of course, the correctness of

unsynchronized programs still depends on maintaining certain ordering constraints. For example, the fact that

an unsynchronized program functions correctly on a sequentially consistent system does not automatically

imply that it will function correctly with any relaxed memory model. Therefore, the programmer must

still ensure that the low-level reordering optimizations enabled by a given relaxed model do not affect the

correctness of the program. The above can be a non-trivial task from an ease of programming perspective.

3.6.3 Summary for Programs with Unsynchronized Operations

Most programs use sufficient synchronization since this simplifies reasoning about the program. The proper

labeling approach is well suited for such programs since it provides higher ease of programming and compa-

rable or higher performance than the system-centric approach. However, there are a small class of programs

that eliminate some synchronization operations in order to achieve higher performance. The system-centric

approach may exhibit a performance advantage for such programs over the PL approach. Nevertheless, this

performance advantage is accompanied with a large increase in programming complexity since the program-

mer has to reason about the correctness of the program given both the lack of synchronization in the algorithm

and the low-level reordering that is exposed by a system-centric model.

3.7 Possible Extensions to Properly-Labeled Models

This section describes a number of possible extensions to the programmer-centric models we have presented

in this chapter.

3.7.1 Requiring Alternate Information from the Programmer

Section 3.2 presented the three properly-labeled models along with the types of information about memory

operations that is exploited by each model to achieve higher performance. Although we only described three

specific types of information, our general framework may be extended to allow other types of information to

be expressed by the programmer.

In assessing the utility of a new type of information, it is important to consider the trade-off between the

extra performance that results from exploiting this information versus the extra complexity for the programmer

to provide the information. As discussed in Section 3.3, among the three types of information used by the

PL models, the first type of information that distinguishes between competing and non-competing operations

allows the system to achieve most of the performance gain possible from exploiting relaxed memory models;

in most cases, the further distinction of competing operations into sync/non-sync and loop/non-loop does not

lead to substantial gains in performance. Therefore, it is important to consider the diminishing returns in

performance when proposing new types of information and to balance this with the extra burden imposed on

the programmer for providing such information.

15The programmer has the option of not properly labeling a program in order to allow non-SC outcomes. Even though the memory
behavior for non-PL programs is theoretically unspecified under a PL model, any practical implementation will obey a set of sufficient
conditions (similar to those specified by a system-centric model) that inherently specifies the memory behavior for all programs. These
conditions can be used in a similar way to a system-centric model to reason about the behavior of a non-PL program.
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The explicit relationship between data and synchronization operations in a program is an example of a

type of information that is not captured by the labels we have presented thus far. Inherently, a synchronization

operation protects a specific set of memory operations from competing with conflicting operations on other

processors. For example, referring back to the program segment in Figure 3.1(a), the write to Flag on P1 and

the read of Flag on P2 act as a synchronization to protect operations to locations A and B from competing.

It is relatively straightforward to extend the programmer-centric models presented in this chapter to also

require the relationship between data and synchronization to be expressed as part of the labeling process. This

extra information can be exploited by the system to order synchronization operations only with respect to the

memory operations that they protect as opposed to conservatively ordering them with respect to unrelated

operations.

As discussed in Section 2.5, identifying the environment and the types of architectures that a model is

intended for is an important factor in assessing the performance gains from exploiting a specific information.

For example, consider the extra information discussed above for relating synchronization to the data they

protect. Exploiting this information in a typical shared-memory hardware architecture can be quite difficult

and may not yield enough of a performance gain to make it worthwhile. However, in the domain of software

distributed-shared-memory (DSM) systems where more of the coherence protocol is managed in software,

exploiting this type of information can enable important optimizations that would not be possible otherwise.

In fact, Midway [BZ91] is an example software DSM system that successfully exploits this type of information

(see Chapter 5).

3.7.2 Choosing a Different Base Model

The PL framework presented in this chapter uses sequential consistency as its base model. Therefore,

programmers can simply reason with SC and are guaranteed that the result of their programs satisfy SC as

long as they provide the correct information about the memory operations. The reason for choosing SC as

the base model is not so much based on the fact that most programmers depend on this model, but because

SC maintains sufficient orders among memory operations to eliminate any “unexpected” behavior that may

arise due to overlap and reordering of memory operations. This relieves the programmer from considering

the effect of low-level reordering optimizations on the correctness of a program.

However, the model that is implicitly assumed by most programmers is likely to be less strict than

sequential consistency. For example, many programmers may simply expect some notion of causality to

be upheld. Therefore, a model such as TSO which maintains causality may be sufficiently strict for such

programmers. This suggests that extending the basic programmer-centric framework to explore the use of

non-SC models as the base model may be a plausible option. Consider the effect of using an alternative model

such as TSO as the base model. First, programmers would now reason with TSO instead of SC, and the

system would guarantee that executions of the program would satisfy TSO. Second, some of the information

required from the programmer to achieve certain optimizations with SC as the base model may no longer

be required if the optimizations are already allowed by the alternative base model. For example, since the

TSO model already allows reads to execute out of program order with respect to preceding writes, we no

longer need the loop/non-loop information (as required by the PL3 model) to exploit this reordering between

competing memory operations (i.e., competing write followed in program order by a competing read). Of

course, the programmer is now exposed to the write-to-read reordering through TSO.
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The programmer-centric framework can alternatively be thought of as a way of providing an equivalence

between two different memory models; the programmer is presented with the more conservative model

while the system achieves the performance associated with the more aggressive model. As an example, we

can choose two system-centric models such as TSO and RMO. The programmer may be allowed to reason

with TSO and is required to provide certain information about the behavior of memory operations in TSO

executions of the program. The system can in turn use this information to exploit the optimizations possible

under RMO while maintaining correctness according to TSO. The type of information required from the

programmer will obviously be a function of the two models chosen.

3.7.3 Other Possible Extensions

The framework presented in this chapter may be extended in several other areas, a few of which are described

below. One possible area is to explore extensions to the programmer-centric approach to provide better

performance for unsynchronized programs that exhibit a high frequency of competing operations while still

maintaining programming simplicity. This will likely require a deeper understanding of the behavior of

such programs. Other possible areas to explore include extending programmer-centric models to deal with

multiple granularity operations (e.g., operations at byte and word granularity), writes to the instruction space,

and operations to I/O devices; the system specification and implementation issues related to the above are

discussed in more detail in Chapters 4 and 5.

3.8 Related Work

This section provides an overview of the related research on programmer-centric models. The two seminal

programmer-centric frameworks were independently developed by our group at Stanford (proper labeling

(PL) framework [GLL+90]) and Adve and Hill at Wisconsin (data-race-free (DRF) framework [AH90b])

(both papers were published in the same conference). Even though some of the ideas that led to these two

frameworks already existed, the PL and DRF work were the first to formally define the exact conditions

on programs (e.g., formally defining the notion of correct labels) and to precisely define the set of possible

executions for programs that satisfy these conditions (e.g., guaranteeing SC executions). The hierarchy of

programmer-centric models described in this chapter is an extension of our original work on PL [GLL+90]

and our joint work with Adve and Hill on PLpc [GAG+92]. We begin by relating the PL hierarchy presented

here to the previous work on the PL and DRF frameworks, in addition to discussing other related work

on programmer-centric models. The latter part of this section describes related research on programming

environments and tools that can simplify the task of using programmer-centric models.

In what follows, we mainly focus on the specification of the various programmer-centric memory models.

The related work on specifying sufficient implementation rules and efficient implementation techniques for

supporting programmer-centric models are covered in Chapters 4 and 5.

3.8.1 Relation to Past Work on Properly-Labeled Programs

The proper labeling (PL) framework [GLL+90] was originally introduced to simplify the task of programming

for system-centric models such as release consistency (i.e., RCsc). This framework categorizes operations
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into competing and non-competing, and further categorizes competing operations based on whether they are

used for synchronization, in addition to distinguishing between synchronization read and write operations.

We later extended the PL framework to further distinguish synchronization operations into loop and non-

loop operations which captures the extra optimizations enabled by a model such as RCpc. This latter

framework was developed jointly with Wisconsin and led to the PLpc model [GAG+92]. Finally, Gibbons et

al. [GMG91, GM92] have also introduced variations of the original PL framework. Below, we compare the

above definitions with the hierarchy of PL programs presented in this chapter.

The original definition of a PL program [GLL+90] most closely matches the requirements for PL2

programs in the hierarchy of PL programs presented in this chapter.16 There are a few subtle differences

between the two definitions, however. For example, the definition of PL2 makes the notion of an ordering

chain explicit while this notion is only implicitly present in the original description of PL programs. This

leads to some minor semantic differences between the two definitions.17 Therefore, it is conceptually possible

for a program with a given set of labels to be considered a PL program according to the original definition,

but not satisfy the requirements for PL2 programs. Nevertheless, the differences between the two definitions

is not expected to show through for most realistic programs and labelings.

The PLpc model [GAG+92] most closely matches the PL3 model among the hierarchy of program-

centric models presented in this thesis (a later technical report [AGG+93] provides some minor fixes to the

definitions in the original paper [GAG+92]). Aside from differences in the definition style,18 the major

difference between the two is that the PLpc model did not distinguish between sync and non-sync operations.

Making this distinction in PL3 is mainly motivated by the desire to provide a clean hierarchy among the three

different models we propose (i.e., since PL2 makes the distinction).

Finally, Gibbons et al. have proposed two variations of the original PL framework. The first one is the

PLbr framework (“br” stands for blocking reads) [GMG91]. The PLbr framework is more restrictive than

the original PL framework because it assumes that reads are blocking (i.e., processor stalls on reads). This

removes the need for distinguishing between sync and non-sync reads. Furthermore, due to the blocking read

restriction, PLbr does not allow optimizations involving the overlap of a read with operations that follow

it in program order. Gibbons and Merritt later proposed the PLnr (“nr” stands for non-blocking reads)

framework that removes the restriction of blocking reads [GM92]. PLnr also extends the PLbr work by

relating synchronization operations to the data operations that they protect. The notion of a release set is

used to identify the memory operations preceding the release operation in program order that are protected

by the release. The above idea is also used to merge the notions of sync and non-sync operations; a non-sync

operation is a degenerate form of a sync operation with a null release set. There is no corresponding notion

of an acquire set, however, which is somewhat asymmetric. PLnr also generalizes the notion of sequential

consistency by allowing the program order on each processor to be a partial as opposed to a total order; the

paper does not describe how this extra information can be conveyed by the programmer, however. Among the

PL models proposed in this chapter, PLnr is closest to the PL2 model except for the release set and program

16The non-sync label was referred to as nsync in the original definition.
17One superficial difference between the original PL definition and the PL2 definition is that the former requires synchronization

operations (i.e., sync) to be explicitly distinguished as either an acquire or a release. PL2 does not make this categorization explicit to
the programmer simply because it is trivial for the system to automatically generate the relevant information; a read synchronization is
labeled as an acquire while a write synchronization is labeled as a release. The above does not lead to a semantic difference between the
PL and PL2 definitions.

18The original definition of PLpc refers to the same operation across different executions. Since this is difficult to formalize, we use a
different way of defining PL programs here.
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order extensions that are described above.

3.8.2 Comparison with the Data-Race-Free Models

The data-race-free (DRF) framework [AH90b] was introduced by Adve and Hill at the same time that we

introduced the proper labeling (PL) framework [GLL+90]. The original paper by Adve and Hill [AH90b]

described the Data-Race-Free-0 (DRF0) model. The data-race-free-1 (DRF1) model [AH93] was later

introduced as an extension.

The data-race-free-0 (DRF0) framework [AH90b] requires the programmer to distinguish data and syn-

chronization operations. Similar to the proper labeling framework, appropriate conditions are given for

determining whether a program is data-race-free.19 Specifically, the program order and the synchronization

order (order between synchronization operations to the same address) are used to define an ordering relation

among memory operation. This relation, called happens-before, is defined as the transitive closure of program

order and synchronizations order. A program is considered to be data-race-free-0 if and only if (i) for any

sequentially consistent execution, all conflicting accesses are ordered by the happens-before relation, and (ii)

all synchronization operation in the program are recognizable by the hardware and each accesses exactly a

single memory location.

Among the hierarchy of properly-labeled models described in this chapter, the data-race-free-0 model is

most similar to the PL1 model. Intuitively, the notion of synchronization and data operations in DRF0 is

similar to the notion of competing and non-competing operations in PL1. The way the notion of a race is

defined in DRF0 is different from the way a competing operation is defined in PL1. For example, while the

interprocessor conflict orders in an ordering chain for PL1 comprise solely of write to read pairs, the DRF0

model also allows a read after a read, a read after a write, or a write after a write synchronization order to

appear in the happens-before relation. Therefore, given an SC execution, the operations that are considered

competing under PL1 are a superset of those considered as a race under DRF0. This difference originally

led to a stricter set of constraints for supporting DRF0 [AH90b] whereby the distinction between read and

write synchronizations was not fully exploited as in PL1 implementations (e.g., reordering a data write with

a following synchronization read). However, Adve later observed that such optimizations are actually safe to

exploit in DRF0 programs [Adv93].

Adve and Hill later extended the data-race-free framework to capture similar ideas to those introduced

by the original PL framework [GLL+90]. This extended model is called the data-race-free-1 (DRF1)

model [AH92b, AH93]. Similar to DRF0, the DRF1 model distinguishes between data and synchronization

operations. Synchronization operations are further categorized into paired and unpaired operations; pairable

synchronization operations comprise of a write synchronization (release) and a read synchronization (acquire)

to the same location that returns the value of the write. The happens-before is then defined as the union of

program order and synchronization order among paired operations. Compared to the categorization in

the original PL framework (or the PL2 model), the distinction of data and synchronization operations in

DRF1 roughly corresponds to the non-competing and competing categories and the pairable and unpairable

synchronizations roughly correspond to sync and non-sync operations. Furthermore, similar to PL, DRF1

19The name “data-race-free” is non-ideal since it may be interpreted as saying that enough synchronization primitives must be used to
avoid all races, while in fact it is perfectly fine to have unsynchronized operations as long as they are identified with the synchronization
label.
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exploits the distinction between pairable read and write synchronizations. Overall, the achievable performance

potential for DRF1 programs is comparable to that of PL (or PL2) programs.

3.8.3 Other Related Work on Programmer-Centric Models

This section provides a brief overview of other efforts aimed at enhancing the programmability of relaxed

models. The common technique used in many of the approaches described below is to identify a specific

class of “good” programs that provide “correct” behavior on a given system. As we will see, the notions of

“good” programs and “correct” behavior are often informal and sometimes lead to ambiguous definitions.

The memory model adopted for the VAX architecture requires that accesses to shared writable data be

synchronized and provides several interlocked instructions that may be used to access memory for the purpose

of synchronization [DEC81]: “Accesses to explicitly shared data that may be written must be synchronized.

Before accessing shared writable data, the programmer must acquire control of the data structures.” Similar

to the programmer-centric framework presented in this chapter, the outcome of programs that do not comply

to the model’s specification are unspecified.

The requirement of ensuring multiple-reader single-writer mutual exclusion among accesses to shared

data has been used in several other frameworks. The weak ordering model [DSB86, DS90b, Sch89] suggests

using such a programming style (based on hardware-recognizable synchronization operations) to achieve

“correct” results. Unlike the VAX description however, the behavior of the model is well defined for

all programs (see Section 2.4.5), including programs that do not obey the mutual exclusion constraint.

Similar to weak ordering, numerous other hardware-centric models, including Sun TSO, PSO, and RMO

models [SUN91], the Digital Alpha model [Sit92], and the IBM PowerPC model [MSSW94], recommend

protecting shared data through mutual exclusion for achieving correctness and portability. In addition to

promoting the use of sufficient synchronization, the description of these hardware-centric models is often

accompanied by recommended implementations of common synchronization constructs (e.g., locks) for the

given model [SUN91, Sit92, MSSW94].

Although the models discussed above specify particular programming styles to enhance programmability,

the informal nature of the specifications often lead to ambiguities and possible correctness problems. For

example, the notion of accesses to shared data being synchronized lacks a formal definition. Furthermore, it is

often not clear what memory model should be assumed when determining whether accesses are synchronized.

Similarly, the behavior of programs that comply with the synchronization requirement is not formally specified.

Even though these efforts suffer from ambiguities, they provided valuable intuition for the ensuing research

on programming-centric approaches such as the PL framework. The PL framework presented in this chapter

attempts to alleviate ambiguities associated with previous approaches by formally specifying the criteria for

programs through imposing well-defined constraints on sequentially consistent executions of the program.

In addition, the behavior of programs that satisfy this criteria is explicitly specified to be the same as that

of a sequentially consistent system. Another unique aspect of the PL framework is that any program can be

transformed to a PL program by simply providing the appropriate labels that convey extra information about

memory instructions. In contrast, ensuring that a program’s memory operations obey mutual exclusion, as is

required by the techniques discussed above, may sometimes require adding extra synchronization operations

and changing the overall structure of the program. Overall, the PL framework has the advantage of a formal

and unambiguous specification and is applicable across a larger range of programs and programming styles.
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More recently, Hagit et al. [ACFW93] have suggested a few alternative techniques for enhancing the pro-

grammability of relaxed memory models by ensuring sequentially consistent results for certain programming

styles. This work is in the context of hybrid consistency model [AF92, ACFW93], a system-centric model

that has similarities to weak ordering with strong memory operations roughly corresponding to synchroniza-

tion operations and weak operations roughly corresponding to data operations in weak ordering. One of the

techniques they suggest is virtually the same as the data-race-free-0 (DRF0) model, so we do not discuss it

further. They suggest two other alternative techniques. The first alternative requires all write operations in a

program to be identified as strong. Even though it is simple to automatically label all writes in a program as

strong, ensuring sequential consistency for such programs unduly restricts the use of important optimizations

in hybrid consistency as compared to relaxed models such as weak ordering. For example, hybrid consis-

tency constrains the reordering of weak reads with respect to each other, while such reordering is perfectly

allowable in models such as weak ordering. The second technique is a dual of the above, requiring all read

operations to be identified as strong. To ensure sequentially consistent results in this case, the programmer

has to also guarantee that (i) every value written to the same location is unique, and (ii) every value written

is returned by some read. These latter requirements are obviously overconstraining and can greatly limit

the applicability of this technique to real programs. Furthermore, analogous to the case with strong writes,

ensuring sequential consistency for programs with strong reads unduly constrains the reordering of weak

writes in hybrid consistency.

3.8.4 Related Work on Programming Environments

Programmer-centric models place the burden of providing correct operation labels on either the programmer

or compiler. While labels can be generated automatically for certain languages, languages that provide

explicit synchronization often require the programmer to provide this information (see Section 3.5.1). We

briefly describe programming environment tools and architectural features that have been proposed to help

the programmer with this task. Appendix D presents these techniques in greater detail.

Appendix D primarily discusses two distinct options for helping programmers use programmer-centric

models. The first option involves an extension to the debugging environment (based on data race detection

work [AP87, DS90a, HKMC90, NM89, NM91]) that helps the programmer identify incorrect labels (e.g.,

whether a program is properly labeled according to Definition 3.4 for PL1). While this technique is useful

during the debugging phase, it fails to protect the programmer from incorrect labels during normal program

runs. On the other hand, the second option provides programmers with a mechanism to directly determine

whether a program can lead to sequentially inconsistent executions on a given system. This is achieved through

a simple hardware mechanism that can efficiently monitor normal executions of the program and notify the

programmer if sequential consistency may be compromised due to the presence of incorrect labels [GG91].

This latter option is motivated by the observation that programmers ultimately care about achieving correct

(i.e., sequentially consistent) results and ensuring correct labels is only a means to this end. Even though the

above two options are related, there is a subtle but important difference between the two. A program that

provides correct labels according to a programmer-centric model is indeed guaranteed to yield sequentially

consistent executions on systems that support that model. However, correct labels are not a necessity for

a given program to yield sequentially consistent executions on that system. This subtle distinction leads

to different techniques for detecting violations of sequential consistency as compared to detecting incorrect
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labels, allowing the former to be used during normal execution while the latter is confined to executions

during the debugging phase.

Techniques such as those described above are critical for enhancing the usability of programmer-centric

models. However, work in this area is still in its infancy. In a more general context, there are various

opportunities in providing a more supportive programming and debugging environment for relaxed models

by exploring enhancements to the language, compiler, runtime environment, and even the architecture.

3.9 Summary

Programmer-centric models provide an alternative approach to system-centric models for specifying the

memory behavior of a system to the programmer. The primary goal of programmer-centric models is to

achieve high performance while maintaining the programming ease associated with a simple and intuitive

model such as sequential consistency. To achieve this, the programmer is required to provide program-level

information about the behavior of shared memory operations in sequentially consistent executions of the

program. This information is in turn used to enable safe ordering optimization; as long as the information

provided by the programmer is correct, the system guarantees sequentially consistent results.

We defined a set of three programmer-centric models, referred to as properly-labeled (or PL) models. The

three PL models form a hierarchy, with each model exploiting an additional piece of information to achieve

higher performance. We demonstrated that with only a few types of information supplied by the programmer,

one can exploit the full range of optimizations captured by the aggressive system-centric models and yet

maintain sequential consistency. Providing the type of information that is required by these programmer-

centric models is easier and more natural for the programmer than reasoning with system-centric models

directly and allows for simple and efficient portability of programs across a wide range of systems. Therefore,

the above approach unifies the memory ordering optimizations captured by many of the system-centric models

without sacrificing ease of use and portability.

The next chapter presents the sufficient requirements that a system must obey to support the PL models,

and also describes how PL programs can be correctly ported to various system-centric models.
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Chapter 4

Specification of System Requirements

To correctly and efficiently implement a memory model, a system designer must first identify the memory

ordering optimizations that are safely allowed by the model. The specification of system requirements

simplifies this task by directly defining such ordering constraints for a given model. System-centric models

inherently provide these requirements by the nature of their specification. In contrast, it is difficult to directly

deduce such requirements from the specification of programmer-centric models. Consequently, these models

are also typically accompanied by a set of system requirements that are proven sufficient for correctness.

For both classes of models, the low-level system specification plays a key role by directly influencing

hardware and system software implementations. Therefore, it is important for such system specifications to be

unambiguous and relatively straightforward to convert into efficient implementations. This chapter presents

a framework for specifying system requirements that satisfies the above goals.

Section 4.1 presents our framework for specifying system requirements. Section 4.2 uses this framework

to express the sufficient requirements for supporting the properly-labeled programs presented in the previous

chapter. Section 4.3 uses the same framework to express the system-centric models described in Chapter 2.

Conditions for correctly and efficiently porting programs between programmer-centric and system-centric

models are presented in Section 4.4. Section 4.5 considers a number of extensions to our specification

framework. Finally, Section 4.6 provides a comparison with other related work. Techniques for transforming

the system requirement specifications into efficient implementations are covered in Chapter 5.

4.1 Framework for Specifying System Requirements

Given the relative importance of system specifications in helping the designer determine optimizations

that may be safely exploited under a specific model, there are a number of desirable properties for such

specifications. First, the specification should be precise and complete. Any ambiguity arising from the

specification is undesirable and can lead to incorrect implementations. Second, the specification should be

general, allowing a wide range of system designs and optimizations. To achieve this goal, the specification
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should impose as few constraints as necessary to maintain the semantics of the model. Third, it should be

relatively straightforward to convert the conditions into efficient implementations, and conversely, to verify if

an implementation obeys the conditions. As will be further discussed in Section 4.6, many of the previously

proposed specifications fall short of meeting these goals by being either overly restrictive or ambiguous.

This section presents a framework for specifying system requirements that meets the above criteria. Our

abstraction extends previous work [Col92, SFC91, AH92a] by adequately modeling essential characteristics of

a shared-memory system, such as replication of data and the non-atomicity of memory operations. In addition,

a key attribute of our specification methodology is the exclusion of ordering constraints among operations

to different locations by observing that such constraints are unnecessary for maintaining the semantics of a

model. The above characteristics allow us to easily expose the inherent optimizations allowed by a given

model. We begin by describing some terminology and assumptions. We next present our abstraction of a

shared-memory system that forms the basis for the framework, and describe our methodology for specifying

system requirements based on this abstraction. The framework presented here is an extension of our earlier

work in this area [GAG+93].

4.1.1 Terminology and Assumptions for Specifying System Requirements

This section presents the terminology and assumptions used in our framework for specifying system require-

ments. We describe the notions of a shared-memory system and a shared-memory program, along with our

assumptions about executions on canonical uniprocessors that comprise the multiprocessor system. In addi-

tion, we describe the notion of a result of an execution and discuss the implications of different interpretations

of this notion. Finally we discuss some of the simplifying assumptions in our abstraction of a shared-memory

system; we will later revisit these assumptions in Section 4.5.

A typical shared-memory system consists of a set of processes,1 a set of private locations per process

representing its private state (e.g., registers) and private memory, a set of shared-memory locations, a set

of external I/O devices (e.g., disk, network, terminal) which we refer to as external devices, and a set of

special I/O locations for communicating with the external devices. Definition 4.1 below describes our model

for the system. While we model access to private process state and external I/O through read and write

operations, the semantics of such operations may be substantially different from that of simple reads and

writes to shared-memory locations. For example, a write to an external output state associated with a disk

controller may have the complex semantics of initiating the transfer of data from the disk to memory.

Definition 4.1: Abstraction for a Shared-Memory System
A shared-memory system consists of a set of processes and a set of external devices. Processes communicate
through read and write operations to a set of shared-memory locations. Each process also has access to a
set of private locations representing its private state. Communication between processes and external devices
occurs through operations to special locations associated with external input state and external output state. An
external input (output) is written (read) by an external device and read (written) by a process. External devices
are also allowed to perform read and write operations to the shared-memory locations. The semantics of read
and write operations to the private state of each process and to external input and output states may be different
(e.g., due to side-effects) from the simple memory-like behavior of operations to shared-memory locations.

Definition 4.2 describes our model for a shared-memory program and its constituent instructions. Each

static instruction may specify a set of read and write operations to its process’ private state, shared memory,

1For specification purposes, we assume a canonical system with a virtual processor per process. Therefore, we will use processor and
process interchangeably. Chapter 5 describes implementation issues that arise in executing multiple processes per physical processor.
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or external input and output states, along with partial ordering and atomicity relations (e.g., to specify an

atomic read-modify-write) among these operations; the instruction fetch can be modeled as simply one such

read operation. A dynamic instance of an instruction further specifies the actual locations and values that are

read and written by the constituent operations. Each static instruction also specifies a set of possible next

instructions within its process, which translates to a unique next instruction for a dynamic instance of the

instruction (e.g., consider a conditional branch). This partial order among dynamic instructions from each

process leads to the concept of program order, which is described in Definition 4.3. We have chosen to use

the conventional definition of program order which imposes a total order on instruction instances from the

same process [SS88], though our framework can be trivially extended to deal with a definition of program

order that only imposes a partial order among instructions from the same process [GM92]. Definition 4.4

extends the notion of program order from instructions to memory operations.

Definition 4.2: Abstraction for a Shared-Memory Program
A shared-memory program specifies the following: (a) a sequence of static instructions for each process, and
(b) the initial state for the system, including the per process private state, the state of shared-memory locations,
and external input and output states. Each static instruction may specify the following: (i) read and write
operations to its process’ private state, shared memory, or external input and output states, (ii) a partial ordering
among its read and write operations (we assume that at least the order of any conflicting operations is specified),
and (iii) atomicity relations among its read and write operations. In addition, each instruction specifies (either
implicitly or explicitly) a set of possible next instructions from the same process; the choice of a unique next
instruction within this set is made dynamically in each run of the program based on the values returned by the
read operations within the given process. A dynamic instance of an instruction provides further information
regarding the dynamic locations and values for the read and write operations generated by executing the static
instruction, in addition to specifying the next dynamic instruction instance within its process.

Definition 4.3: Program Order among Instruction Instances
The program order, denoted by

po
�!, is a partial order on the dynamic instruction instances in a run of the

program. The program order is a total order among instruction instances from the same process, reflecting the
order specified by the “next instruction relation” described in Definition 4.2. Dynamic instruction instances
from different processes are not comparable by program order.

Definition 4.4: Program Order among Memory Operations
Two memory operations, o1 and o2, are ordered by program order (o1

po
�! o2) if either (a) their corresponding

instruction instances, i1 and i2, respectively, are ordered by
po
�! (i1

po
�! i2) as specified by Definition 4.3, or

(b) they both belong to the same instruction instance and o1 is partially ordered before o2 by the instruction
instance (as specified by Definition 4.2(ii)). In contrast to program order among instruction instances, the
program order among memory operations from the same process is not necessarily a total order (because an
instruction instance does not necessarily impose a total order among its own memory operations).

In specifying multiprocessor executions, we assume that the execution on each process at least obeys

the semantics of a canonical uniprocessor by executing the instructions for the process correctly. Since our

focus is on specifying multiprocessor behavior however, we do not attempt to formalize the notion of a

canonical uniprocessor and rely instead on the intuitive notion. Condition 4.1 specifies what we refer to as

the uniprocessor correctness condition. Intuitively, the condition requires the instruction instances from any

process in a multiprocessor execution of a program to be the same as the instruction instances of a conceptual

execution of the program for that process on a canonical uniprocessor, given that read operations to shared

memory and external input state are made to return the same values as those in the original multiprocessor

execution. Note that even though this condition imposes constraints on the set of possible executions, it

does not constrain the behavior of operations to shared memory (which is the primary function served by a
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memory consistency model). Our methodology for constraining shared memory behavior is presented in the

next section.

Condition 4.1: Uniprocessor Correctness Condition
The instructions specified by the program for each process are executed in the same way as by a canonical
uniprocessor, with return values for read operations to shared memory and external input state assumed to
be externally supplied. This implies that (a) the semantics for each instruction and its constituent operations
are upheld, including the correct choice for the next instruction instance from the process, (b) the dynamic
instruction sequence is solely a function of the values returned by read operations to private state, shared
memory, and external input state, and (c) read operations to the process’ private state return the semantically
correct value based on previous operations to private state that appear in program order (for operations with
memory-like behavior, the requirement is that a read should return the value of the previous write in program
order that modified that location, or the initial value if there is no such write). One important implication of the
above constraints is that the number of instruction instances that are in program order before a given instruction
instance is required to be finite.

The remaining concept we need to define is the result of an execution of a program. The result intuitively

comprises of the set of states that are considered “observable” during or after a run of the program. For

example, the sequence of changes to external output state (e.g., messages printed on a terminal) may be

considered as part of the result. Or the state of portions of the shared memory may be considered as

observable during different stages of the execution and may therefore be considered part of the result. At the

extreme, every state in the system may be considered observable in real time.

The notion of result plays a key role in comparing different memory model specifications or different

implementations. Definition 4.5 describes how two specifications or implementations may be compared

based on the results they allow (same terminology as in Section 2.1.5). Because the equivalence between two

specifications is strongly dependent on the definition of result, it is possible to have two specifications that are

equivalent under one interpretation of result and not equivalent under a different interpretation. Therefore,

we need a clear definition for result.

Definition 4.5: Comparison of Memory Model Specifications or Implementations Based on Result
Given a formal definition of result, two memory model specifications or implementations S1 and S2 are
equivalent iff for any run of any program, the result in S1 is possible in S2 and vice versa. S1 is considered
to be stricter than S2, and S2 is considered more relaxed than S1, iff for any run of any program, the result in
S1 is possible in S2 but not vice versa. S1 and S2 are distinguishable if they are not equivalent. S1 and S2 are
incomparable iff they are distinguishable and neither is stricter than the other.

A definition of result that allows too much state to be observable is undesirable because it may limit

various optimizations that would otherwise be possible. To better understand this, consider the example of

a uniprocessor system with two different notions for result. Assume the first definition for result consists of

the final state of memory when the program completes its execution, while the second definition also makes

the real-time order in which memory operations are performed observable. With the second definition of

result, a system that employs typical uniprocessor optimizations that change the order of memory operations

will be considered distinguishable from a canonical uniprocessor that issues its memory operations in order.

Meanwhile, the first definition considers the two systems to be indistinguishable as long as the final state of

memory is the same, thus allowing a lot more optimizations.

Since the main focus of our specification framework is to define the behavior of operations to shared

memory, we will make the simplifying assumption of excluding external devices from the our definition of

the system. Therefore, we assume read and write operations are only to private state and shared memory, and

all such operations are initiated by the processes (in effect ignoring communication between external devices
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and processes through external input/output state and shared memory). Based on the above assumption, we

have adopted a simple notion of result, specified by Definition 4.6, that consists of the set of values returned

by read operations in an execution, which uniquely determine the dynamic instruction instances for each

process in a run of the program (by Condition 4.1).

Definition 4.6: Simple Notion for Result of an Execution
We assume the result of an execution of a shared-memory program consists of the set of values returned by
read operations to private state and shared memory. Since we require that all executions obey the uniprocessor
correctness condition (Condition 4.1), the above set of values uniquely determines the dynamic instruction
instances for each process.

Even though the above definition for result is not adequate for modeling real systems due to the exclusion

of external devices, it is extremely useful for isolating and specifying the behavior of shared memory. For

this reason, many of the previous efforts in specifying memory models have either implicitly or explicitly

assumed a similar notion of result. Section 4.5 considers extensions to our framework to encompass a more

realistic notion of result. As we will see, many of the complexities that arise, such as the modeling of I/O

devices, are also present for uniprocessors and are thus not unique to multiprocessors.

In addition to excluding external devices, we make a few other simplifying assumptions that are described

below. The first assumption is a restriction on the possible atomicity relations among read and write

operations generated by an instruction (Definition 4.2(iii)) and the granularity of data atomically accessed by

these operations. We assume three atomic operations: read, write, and read-modify-write, all with the same

granularity of access to data (e.g., a word). For an atomic read-modify-write, the read and write are assumed

to be to the same location and the read is assumed to occur before the write in program order. The second

assumption is regarding the locations or addresses dynamically generated by the read and write operations.

We assume all locations are specified in terms of logical addresses to simplify identifying operations to the

same location.2 The third assumption is that the instruction space is read only. Therefore, we will initially

not concern ourselves with instruction fetches being affected by the behavior of shared memory. Section 4.5

describes how each of the above assumptions may be relaxed.

4.1.2 Simple Abstraction for Memory Operations

This section introduces a simple abstraction for memory operations along with a description of how the

behavior of shared-memory operations may be constrained to specify a model such as sequential consistency.

The main purpose for this section is to build intuition for the more general abstraction that we will present in

the next section.

The simple abstraction presented below is inspired by the conceptual model for shared memory depicted

in Figure 4.1. As shown, there is conceptually a single copy of memory and each processor accesses this

memory through either a read operation, denoted by R, that returns the value of a specific location, or a write

operation, denoted by W, that modifies the value of the location.

An execution of a program (specified in Definition 4.7) consists of a set of dynamic instruction instances,

a set of memory operations specified by the instruction instances, a partial order (i.e., program order) on the

instructions and the memory operations, and a total order (called execution order) on all memory operations.

2We did not choose virtual addresses since they may have synonyms and we did not choose physical addresses since the correspondence
for a given virtual address may vary during an execution.
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Figure 4.1: Simple model for shared memory.

Definition 4.7: Components of an Execution
An execution of a multiprocessor program consists of the following components.
(a) A (possibly infinite) set, I, of dynamic instruction instances from the run of the program that obeys the
uniprocessor correctness condition (Condition 4.1).
(b) A set, O, of memory operations specified by the instruction instances in I. For every instruction instance i
in I that reads (writes) a memory location, the set O contains a corresponding read (write) memory operation.
(c) A partial order, called the program order (denoted by

po
�!), on the instruction instances in I (Definition 4.3)

and on the memory operations in O (Definition 4.4).
(d) A total order, called the execution order (denoted by

xo
�!), on the memory operations in O. The number of

memory operations ordered before any given memory operation by the execution order (
xo
�!) is finite.

To specify the behavior of a system, we will need to place various constraints on the execution order

component. We first describe a couple of general conditions on the execution order. Condition 4.2 defines the

constraint on the return values for read operations. This condition formalizes the intuitive notion that a read

should return the latest value of a given memory location, as implied by Figure 4.1. Similarly, Condition 4.3

describes the notion of atomicity for atomic read-modify-write operations.

Condition 4.2: Return Value for Read Operations
A read memory operation returns the value of the last write operation to the same location that is ordered before
the read by the execution order (

xo
�!). If there is no such write ordered before the read, the initial value of the

location is returned.

Condition 4.3: Atomicity of Read-Modify-Write Operations
If R and W are the constituent read and write operations for an atomic read-modify-write to a given location (R
po
�! W by definition), then there is no write operation W’ to the same location such that R

xo
�! W’

xo
�! W.

We can specify various consistency models by further constraining the execution order. To illustrate

this, Figure 4.2 specifies the conditions for sequential consistency. In addition to obeying the general

conditions specified above, the execution order among memory operations is required to be consistent with

program order. These requirements trivially (and conservatively) satisfy Scheurich and Dubois’ conditions

for sequential consistency (Condition 2.2 in Chapter 2).

We define a valid execution order as one that satisfies the constraints specified by a memory model. A

valid execution is then an execution for which a corresponding valid execution order may be constructed.3

3Our framework covers infinite executions since an execution can comprise of an infinite set of dynamic instructions and the conditions
for a model are specified as a restriction on the execution order among these instructions. In practice, one may want to test whether a
partial execution (potentially leading to an infinite execution) generates a valid outcome. For this, we can define a partial execution as a
set I’ of instructions, a set O’ of memory operations, and a program order and an execution order relation that represent the instructions
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Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.2: return value for read operations.
Condition 4.3: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X
po
�! Y, then X

xo
�! Y.

Figure 4.2: Conditions for SC using simple abstraction of shared memory.

A system correctly implements a model if the result of every execution is the same as the result of a valid

execution.

Definition 4.8: Valid Execution Order
An execution order is valid for a memory model iff it satisfies the conditions (i.e., restrictions on execution
orders) specified for that model.

Definition 4.9: Valid Execution
An execution is a valid execution under a memory model iff at least one valid execution order can be constructed
for the execution.

Definition 4.10: Correct Implementation of a Memory Model
A system correctly implements a memory model iff for every execution allowed by the system, the result is the
same as a result of a valid execution (as specified by Definition 4.9).

A typical implementation of a model obeys the constraints on execution order directly (and usually

conservatively); i.e., constraints on the execution order are enforced in real time. A system designer is free

to violate these constraints as long as the resulting executions appear to obey the constraints by generating

the same results (Definition 4.10).4 However, in practice it is difficult for a designer to come up with less

restrictive constraints and yet guarantee that the allowable executions will produce the same results as with

the original constraints. Therefore, it is important to initially provide the designer with as minimal a set of

constraints as possible.

The next section presents a more general abstraction for memory operations that is better suited for

providing aggressive specifications that further expose the optimizations allowed by a model, thus making

it easier to come up with more efficient implementations. This generality also enables the specification of a

much larger set of relaxed models.

4.1.3 A More General Abstraction for Memory Operations

Figure 4.3 depicts the conceptual model for memory that inspires our general abstraction. The abstraction

consists of n processors, P1,: : : ,Pn, each with a complete copy of the shared (writable) memory, denoted as

Mi for Pi. Each processing node also has a conceptually infinite memory buffer between the processor and

memory on that node. As before, processors access memory using read and write operations. However, due to

the presence of multiple copies, we introduce the notion of sub-operations for each memory operation. A read

operation R by Pi is comprised of two atomic sub-operations: an initial sub-operation Rinit(i) and a single

and operations that have been generated so far in the system. The partial execution generates a valid outcome or is valid if it could
possibly lead to a valid complete execution; i.e., a partial execution is valid if its sets I’ and O’ are respectively subset of sets I and
O of the instructions and operations of some valid execution. Note here that in forming I’ and O’, we should not include speculative
instructions or operations that may have been generated but are not yet committed in the system.

4This would not be possible for models such as linearizability (see Section 2.6 in Chapter 2) where correctness depends on the
real time when events occur. In contrast, for the models discussed here, we have assumed that the real time occurrence of events is
unobservable to the programmer and is therefore not part of the correctness criteria (e.g., see Definition 4.6).
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Figure 4.3: General model for shared memory.

read sub-operation R(i). A write operation W by Pi is comprised of at most (n+1) atomic sub-operations:

an initial write sub-operation Winit(i) and at most n sub-operations W(1),: : : ,W(n). A read operation on Pi

results in the read sub-operation R(i) being placed into Pi’s memory buffer. Similarly, a write operation

on Pi results in write sub-operations W(1),: : : ,W(n) being placed in its processor’s memory buffer. The

initial sub-operations Rinit(i) and Winit(i) are mainly used to capture the program order among conflicting

operations. Conceptually, Rinit(i) for a read corresponds to the initial event of placing R(i) into a memory

buffer and Winit(i) for a write corresponds to the initial event of placing W(1),: : : ,W(n) into the memory

buffer.

The sub-operations placed in the buffer are later issued to the memory system (not necessarily in first-in-

first-out order). A write sub-operation W(j) by Pi executes when it is issued from the buffer to the memory

system and atomically updates its destination location in the memory copy Mj of Pj to the specified value. A

read sub-operation R(i) by Pi executes when its corresponding read operation is issued to the memory system

and returns a value. If there are any write sub-operations W(i) in Pi’s memory buffer that are to the same

location as R(i), then R(i) returns the value of the last such W(i) that was placed in the buffer (and is still in

the buffer). Otherwise, R(i) returns the value of the last write sub-operation W(i) that executed in the memory

copy Mi of Pi, or returns the initial value of the location if there is no such write.

The above abstraction is a conceptual model that captures the important properties of a shared-memory

system that are relevant to specifying system requirements for memory models. Below, we describe the

significance of the following features that are modeled by the abstraction: a complete copy of memory for

each processor, several atomic sub-operations for a write, and buffering operations before issue to memory.

Providing each processor with a copy of memory serves to model the multiple copies that are present in

real systems due to the replication and caching of shared data. For example, the copy of memory modeled

for a processor may in reality represent a union of the state of the processor’s cache, and blocks belonging to

memory or other caches that are not present in this processor’s cache.

The multiple sub-operations attributed to each write operation model the fact that updating multiple
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copies of a location may be non-atomic. Adve and Hill [AH92a] explain the correspondence to real systems

as follows (paraphrased). “While there may be no distinct physical entity in a real system that corresponds

to a certain sub-operation, a logically distinct sub-operation may be associated with every operation and a

memory copy. For example, updating the main memory on a write corresponds to the sub-operations of the

write in memory copies of processors that do not have the block in their cache. Also, while sub-operations

may not actually execute atomically in real systems, one can identify a single instant in time at which the

sub-operation takes effect such that other sub-operations appear to take effect either before or after this time.”

Note that in reality, write operations may actually invalidate a processor’s copy instead of updating it with new

data. Nevertheless, the event can be modeled as an update of the logical copy of memory for that processor.

The third feature, i.e., the memory buffer, seems necessary to capture the behavior of many multiprocessor

system designs where a processor reads the value of its own write before any of the write’s sub-operations

take effect in memory. We refer to this feature as read forwarding. As with the other features, there may be

no physical entity corresponding to this buffer in a real system. For example, this scenario can occur in a

cache-coherent multiprocessor if a processor does a write to a location that requires exclusive ownership to

be requested and allows a subsequent conflicting read (from the same processor) to return the new value from

the cache while the ownership request is pending.

The conceptual model presented above provides the intuition for the formalism we present below. Defini-

tion 4.11 describes the components of an execution based on the general abstraction for memory operations.

Compared to Definition 4.7, the only differences are the presence of memory sub-operations and the fact that

the execution order is defined among these sub-operations as opposed to among memory operations.

Definition 4.11: Components of an Execution with the General Abstraction for Memory Operations
An execution of a multiprocessor program consists of the following components.
(a) A (possibly infinite) set, I, of dynamic instruction instances from the run of the program that obeys the
uniprocessor correctness condition (Condition 4.1).
(b) A set, O, of memory operations specified by the instruction instances in I. For every instruction instance i
in I that reads (writes) a memory location, the set O contains a corresponding read (write) memory operation.
(c) A set, Osub, of memory sub-operations for the operations in O. For every read operation, R, in O by Pi,
the set Osub contains a corresponding initial sub-operation Rinit(i) plus a read sub-operation R(i) that denotes
the read from the processor’s memory copy. For every write operation, W, in O by process Pi, the set Osub

contains a corresponding initial write sub-operation, Winit(i), plus zero or more corresponding write memory
sub-operations W(1),: : : ,W(n) denoting writes to different memory copies. Memory sub-operations have the
same location and value as their parent memory operations.
(d) A partial order, called the program order (denoted by

po
�!), on the instruction instances in I (Definition 4.3)

and on the memory operations in O (Definition 4.4).
(e) A total order, called the execution order (denoted by

xo
�!), on the sub-operations in Osub. The number of

memory sub-operations ordered before any given memory sub-operation by the execution order (
xo
�!) is finite.

We will be using the following notation in the specifications that follow. We use R and W to denote any

read and write memory operations, respectively, and RW to denote either a read or a write. We use X and Y

for either read or write memory operations, and X(i) or Y(i) denote either a read sub-operation R(i) or a write

sub-operation W(i), excluding the initial read or write sub-operations which are always denoted explicitly. A

condition like “X(i) xo
�! Y(j) for all i,j” implicitly refers to pairs of values for i and j for which both X(i) and

Y(j) are defined; if such an order is imposed by any of the conditions in the specification, we also implicitly

assume that X(i) and Y(j) appear in the execution for all such pairs. For example, given R is issued by Pk,

“W(i) xo
�! R(j) for all i,j” reduces to “W(i) xo

�! R(k) for all i” because R(j) is not defined for any value

other than k. Finally, we define the conflict order relation. Two memory operations, or two sub-operations
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from different memory operations, conflict if they are to the same location and at least one is a write. The

conflict order relation (denoted by co
�!) is defined as follows. For an execution order xo

�! and two conflicting

memory operations X and Y, X
co
�!Y iff X(i)

xo
�! Y(i) holds for any i. If X and Y are on different processors

and X
co
�! Y, then X and Y are also ordered by the interprocessor conflict order X

co0

�! Y. Note that neither
co
�! nor

co0

�! are partial orders; for example, R
co
�! W and W

co
�! R’ do not together imply R

co
�! R’.

We begin by describing a number of general constraints on the execution order that are assumed to be

common among the specifications we present. The first two general conditions relate to the initiation of

read and write operations and the termination of write operations. Condition 4.4 is a restriction on the

execution order of initial read and write sub-operations with respect to one another. This condition effectively

captures the program order among read and write operations to the same location. Meanwhile, Condition 4.5

intuitively requires that certain write sub-operations take effect in finite “time”; a memory model may restrict

this requirement to a subset of all write sub-operations. As mentioned in the previous paragraph, a write

sub-operation is also required to appear in the execution if any of the conditions in the specification impose

an execution order on the given write sub-operation with respect to other sub-operations. We will shortly

provide examples that illustrate the need for these two conditions for precisely specifying memory models.

Appendix H presents a more aggressive form of the termination condition for the properly-labeled models.

Condition 4.4: Initiation Condition for Reads and Writes
Given memory operations by Pi to the same location, the following conditions hold: If R

po
�! W, then

Rinit(i)
xo
�! Winit(i). If W

po
�! R, then Winit(i)

xo
�! Rinit(i). If W

po
�! W’, then Winit(i)

xo
�! W’init(i).

Condition 4.5: Termination Condition for Writes
Suppose a write sub-operation Winit(i) (corresponding to operation W) by Pi appears in the execution. The
termination condition requires the other n corresponding sub-operations, W(1),: : : ,W(n), to also appear in the
execution. A memory model may restrict this condition to a subset of all write sub-operations.

The next two conditions are similar to Conditions 4.2 and 4.3 from the previous section, except they

are extended to deal with multiple write sub-operations. Condition 4.6 formally captures the semantics of

return values for reads that was presented in the intuitive description of our abstraction. Appendix E presents

an alternative value condition that alleviates the need for the Rinit(i) and Winit(i) sub-operations in the

abstraction. Condition 4.7 simply states the atomicity of read-modify-write operations with respect to other

writes to the same location.5

Condition 4.6: Return Value for Read Sub-Operations
A read sub-operation R(i) by Pi returns a value that satisfies the following conditions. If there is a write operation
W by Pi to the same location as R(i) such that Winit(i)

xo
�! Rinit(i) and R(i)

xo
�! W(i), then R(i) returns the

value of the last such Winit(i) in
xo
�!. Otherwise, R(i) returns the value of W’(i) (from any processor) such

that W’(i) is the last write sub-operation to the same location that is ordered before R(i) by
xo
�!. If there are no

writes that satisfy either of the above two categories, then R(i) returns the initial value of the location.

Condition 4.7: Atomicity of Read-Modify-Write Operations
If R and W are the constituent read and write operations for an atomic read-modify-write (R

po
�! W by definition)

on Pj , then for every conflicting write operation W’ from a different processor Pk, either W’(i)
xo
�! R(i) and

W’(i)
xo
�! W(i) for all i or R(i)

xo
�! W’(i) and W(i)

xo
�! W’(i) for all i.

The above abstraction is extremely general and allows us to specify the behavior for a wide range

of memory models and implementations. In addition, it is trivial to “emulate” simpler abstractions. For

5This condition can be trivially extended to deal with operations such as the load-locked and store-conditional of the Alpha [Sit92];
the requirement would be to disallow conflicting writes from other processors between a load-locked and a correspondingsuccessful
store-conditional. See Section 5.3.7 for more details on such operations.
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Conditions on
xo
�!:

(a) if R is read operation with constituent sub-operations Rinit(i) and R(i),
no other sub-operation is ordered between R’s sub-operations by

xo
�!.

(b) if W is a write operation with constituent sub-operations Winit(i) and W(1),: : : ,W(n)),
no other sub-operation is ordered between W’s sub-operations by

xo
�!.

(c) the following conditions must be obeyed:
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(d) given memory operations X and Y, if X
po
�! Y, then X(i)

xo
�! Y(j) for all i,j.

Figure 4.4: Conservative conditions for SC using general abstraction of shared memory.

example, to emulate an abstraction with a single copy of memory and no buffering (e.g., the abstraction

depicted in Figure 4.1), we can add a condition that would require the constituent sub-operations for each

read (Rinit(i) and R(i)) and each write (Winit(i) plus W(1),: : : ,W(n)) to appear atomic in the execution order;

i.e., no other sub-operations are ordered among the sub-operations of a read or write by xo
�!. Alternatively, to

model multiple copies of memory without the buffer (e.g., as in Figure 2.17 for WO with no read forwarding),

we can require that for every read R by Pi, the Rinit(i) and R(i) sub-operations for that read appear atomic,

and for every write W by Pi, the Winit(i) and W(i) sub-operations for that write appear atomic. Another

way to achieve the above is to require W
po
�! R to imply W(i) xo

�! R(i) for all i, which effectively

defeats the read forwarding optimization. Similarly, to model the buffer without multiple copies (e.g., as in

Figure 2.13 for TSO), we can require the sub-operations of a write except for the initial write sub-operation

(i.e., W(1),: : : ,W(n)) to appear atomic. Finally, the initiation condition for reads and writes is only needed if

the buffer is being modeled and the termination condition for writes is only needed if multiple memory copies

are being modeled.

To illustrate the use of our general abstraction, we will present three different specifications of sequential

consistency below that successively place fewer restrictions on the execution order while maintaining the

same semantics with respect to the results they allow.

Conservative Specification of Sequential Consistency

Figure 4.4 shows the conservative specification for sequential consistency based on the general abstraction.

This specification is virtually identical to the specification in Figure 4.2 since conditions (a) and (b) effectively

eliminate the effect of modeling multiple sub-operations for reads and writes. Therefore, we can effectively

ignore the multiple memory copies and read forwarding in the abstraction. Similar to the conditions in

Figure 4.2, the last condition requires the execution order among sub-operations to be consistent with the

program order among memory operations. Conditions (a), (b), and (d) together alleviate the need for the

initiation condition. This is achieved by requiring all sub-operations of one operation to be ordered before

any sub-operations of another operation that proceeds it in program order.

To better understand the conservative conditions, consider the program segment in Figure 4.5. The

example shows a processor writing a location and setting a flag, while the other processor waits for the flag

to be set and then reads the location. Assume the values of A and Flag are initially zero. The right side of

the figure shows the program order arcs (
po
�!) and the conflict order arcs ( co

�!) between the write and the
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Figure 4.5: Example producer-consumer interaction.

successful read of the flag in an execution of the program. With sequential consistency, the read of A should

return the value 1 in every execution. Let us consider how the conditions on execution order in Figure 4.4

ensure this. The program order condition (condition (d)) constrains xo
�! as follows: WA(i) xo

�!WFlag (j) and

RFlag(i) xo
�! RA(j) for all i,j. If we assume the successful read of the flag returns the value of the write of

flag by the first processor, then WFlag (2)
xo
�! RFlag (2). Therefore, by transitivity, we have WA(i)

xo
�! RA(j)

for all i,j, which denotes that all sub-operations of the write to A happen before the read A sub-operation,

ensuring that the read returns the value 1 in all executions. We next present a slightly more aggressive set of

conditions for sequential consistency.

Expressing Scheurich and Dubois’ Conditions for Sequential Consistency

Figure 4.6 presents a specification for sequential consistency that is effectively a translation of Scheurich and

Dubois’ requirements for SC (Condition 2.2 in Chapter 2) to our general abstraction. To match Scheurich and

Dubois’ abstraction [SD87], conditions (a) and (b) of the specification alleviate the effect of read forwarding.

However, we still model the non-atomicity of write sub-operations to different memory copies. Condition (d)

of the specification captures the fact that all sub-operations of a read or write should appear in xo
�! before any

sub-operations of the next read or write in program order. The second chain (i.e., W
co
�! R

po
�!RW) captures

the requirement that any operation that follows a read in program order appears in
xo
�! after all sub-operations

of the write whose value is returned by the read. This formalizes the notion of “globally performed” [SD87]

(see Condition 2.2(c)). Finally, condition (e) of the specification formalizes the cache coherence requirement

(Condition 2.2(d)), requiring sub-operations of conflicting writes to occur in the same order in all memory

copies. As with the previous specification, conditions (a), (b), and (d) together alleviate the need for the

initiation condition.

We now consider the behavior of the program segment in Figure 4.5 under this specification. As in the

previous specification, the effect of the program order condition in part (d) is to imply WA(i)
xo
�!WFlag (j)

and RFlag (i)
xo
�! RA(j) for all i,j. The termination condition in part (c) guarantees that WFlag(2) (in fact

WFlag (i) for all i) will appear in the execution order. As before, we know WFlag (2) xo
�! RFlag(2). By

transitivity, this implies WA(i) xo
�! RA(j) for all i,j. Therefore, the behavior of the program segment will

satisfy sequential consistency. Note that we did not need to use the second chain in part (d) of the specification

to reason about the correctness of this example. However, this constraint plays a key role in making writes

appear atomic in examples such as those shown in Figure 2.3(c) and (d) in Chapter 2.
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Conditions on
xo
�!:

(a) if R is a read operation by Pi with constituent sub-operations Rinit(i) and R(i),
no other sub-operation is ordered between Rinit(i) and R(i) by

xo
�!.

(b) if W is a write operation by Pi with constituent sub-operations Winit(i) and W(i),
no other sub-operation is ordered between Winit(i) and W(i) by

xo
�!.

(c) the following conditions must be obeyed:
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(d) given memory operations X and Y, if X and Y are the first and last operations in one of
RW

po
�! RW, or

W
co
�! R

po
�! RW (or more conservatively: W

co
�! R)

then X(i)
xo
�! Y(j) for all i,j.

(e) if W
co
�! W’, then W(i)

xo
�! W’(i) for all i.

Figure 4.6: Scheurich and Dubois’ conditions for SC.

To illustrate that our second specification for SC is less restrictive than the previous one, we consider some

of the differences between the orders the two impose on execution orders in our example program segment.

The most distinct difference is that the previous specification requires the sub-operations of a write to appear

atomic in xo
�! with no intervening sub-operations from a different operation. Therefore, given WFlag (2)

xo
�! RFlag(2), the previous specification requires Winit:Flag(1)

xo
�! RFlag(2) and WFlag (i)

xo
�!RFlag(2) for

all i. However, the second specification is less restrictive. For example, it is ok for WFlag(1) to appear after

RFlag(2) in xo
�! (note that the second chain in part (d) requires that WFlag (i) xo

�! RA(j) for all i,j). Similarly,

given two conflicting writes on different processors, the previous specification requires all sub-operations

of one write to occur in
xo
�! before any sub-operations of the second write. On the other hand, the second

specification is less restrictive because it only requires that the sub-operations for the two writes occur in

the same order for all memory copies (part (e) of the specification). By imposing fewer constraints on the

execution order, this specification exposes more optimizations that may be exploited when implementing

sequential consistency.

An Aggressive Specification of Sequential Consistency

This section presents a specification of sequential consistency which fully exploits the features of our general

abstraction to place fewer restrictions on the execution order. To avoid execution order constraints that are

unnecessary for maintaining the semantics of a model, we exploit the following observation. Given our

simple notion of the result of an execution, any two executions that impose the same order among conflicting

sub-operations appear equivalent in terms of results. Therefore, given a valid execution E (Definition 4.9)

with a valid execution order
xo
�!, any execution E’ whose execution order

xo0

�! maintains the same order

among conflicting sub-operations (to the same memory copy) as xo
�! is also a valid execution. The reason

is constructing a valid execution order for E’ is trivial since xo
�! is one such execution order.6 Therefore,

6By exploiting the read forwarding optimization, the specification presented in this section goes further by actually allowing execution
orders that do not maintain the same order among conflicting operations as any valid execution order allowed by the more conservative

specifications. The reason is that given W
po
�! R on Pi to the same location, we will in some cases allow R(i) to occur before W(i)

in the execution order, while this may never be allowed by the conservative specifications. Nevertheless, the initiation condition along
with the value condition still require the read to return the value of the write, thus ensuring the results of the executions will be possible
under the more conservative specifications.
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it is sufficient to only constrain the execution order among conflicting operations in order to specify correct

executions.

The previous conditions in Figures 4.4 and 4.6 impose constraints on the execution order between both

conflicting and non-conflicting sub-operations. The key insight behind the more aggressive conditions is

to impose constraints on the execution order among conflicting sub-operations only, as discussed above.

Figure 4.7 shows these aggressive conditions for SC. The conditions are expressed in terms of some new

relations that are used for notational convenience. The
spo
�! relation is a subset of

po
�! and the sco

�! relation is

composed of
co
�! relations (spo and sco stand for significant program order and conflict order, respectively).

These relations capture certain
po
�! and

co
�! orders that are used to constrain the execution order.

Part (a) of the constraints on xo
�! enumerates the four general conditions on xo

�!, including the initiation

condition for reads and writes. Part (b) places further restrictions on conflicting sub-operations. Consider the

various components in this part. In general, the constraint placed on the execution order for two operations X

and Y is of the form X(i)
xo
�!Y(i) for all i. The first component is uniprocessor dependence which captures the

order of operations from the same processor and to the same location. Together with the initiation condition

for reads and writes (Condition 4.4) and the value condition (Condition 4.6), this component captures the fact

that a read should return either the value of the last write to the same location that is before it in program

order or the value of a subsequent write to that location. The second component is coherence which ensures

that write sub-operations to the same location take effect in the same order in every memory copy. The third

component, denoted as the multiprocessor dependence chain, consists of a set of conditions that capture the

relation among conflicting operations that are ordered by
po
�! [

co
�! chains. As we will see shortly, this set

of conditions is the key component of our aggressive specification that differentiates it from a conservative

specification (e.g., Figure 4.4). The notation “fA sco
�! B

spo
�! g+” denotes one or more occurrences of this

pattern within the chain. This is similar to regular expression notation; we will also use “*” to denote zero

or more occurrences of a pattern. In contrast to the conservative specifications, the aggressive specification

imposes an order only among the conflicting endpoints of a
po
�![

co
�! chain as opposed to enforcing the order

at every intermediate point within such a chain. The formal proof of equivalence between these aggressive

conditions and Lamport’s definition of SC appears in one of our previous publications [GAG+93].

Consider the program segment in Figure 4.5 again, this time with the aggressive specification. The

relevant constraint in Figure 4.7 that ensures the correct behavior for this program is the second condition

under the multiprocessor dependence chain category. This condition applies as follows: given WA
spo
�!

WFlag
sco
�! RFlag

spo
�! RA, the condition implies WA(i) xo

�! RA(i) for all i (this reduces to WA(2)
xo
�! RA(2) since RA(i) is only defined for i=2). Therefore, every execution is required to return the value

of 1 for the read of A. Note that there are many more valid execution orders possible under the aggressive

specifications as compared to the previous conservative specifications. For example, the following execution

order, WFlag(2) xo
�! RFlag(2) xo

�! WA(2) xo
�! RA(2), is allowed under the aggressive but not under the

conservative specifications (because program order is violated on the first processor). As we will see in the

next chapter, this flexibility exposes optimizations that are not obvious with the conservative specifications.

We now consider a few examples to motivate the need for the termination and initiation conditions.

First, consider the example in Figure 4.5. Without the termination condition, no other condition requires the

sub-operation WFlag (2) to occur in the execution. Without this sub-operation appearing in the execution, the
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define
spo
�!: X

spo
�! Y if X and Y are to different locations and X

po
�! Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co0

�! Y

R
co0

�! W
co0

�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co0

�! W
multiprocessor dependence chain: one of

W
co0

�! R
po
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure 4.7: Aggressive conditions for SC.

(a)

P1

a1:

b1:

A = 1; a2:

b2:

P2

B = 1;

u = B; v = A;

P1

a1:

b1:

A = 1;

u = A;

(b)

Figure 4.8: Examples illustrating the need for the initiation and termination conditions.

while loop on P2 would never terminate, which violates sequential consistency. Therefore, the termination

condition plays an important role in the specification. Figure 4.8(a) provides a more subtle example for the

termination condition. The outcome (u,v)=(0,0) does not occur in any SC execution of this program. As

long as WA(2) and WB(1) appear in the execution, the second chain under the multiprocessor dependence

chain in the specification would ensure that this outcome is disallowed. However, without the termination

condition, no other condition would force these two sub-operations to appear in the execution and the outcome

(u,v)=(0,0) would incorrectly be allowed by the specification.

Figure 4.8(b) shows an example to motivate the need for the initiation condition. In any sequentially

consistent execution, the read of A should return the value of 1. However, without the initiation condition, our

aggressive specification would fail to ensure this. To illustrate how the initiation condition works, consider

the execution order: Winit:A(1) xo
�! Rinit:A(1) xo

�! RA(1) xo
�! WA(1). The above is a valid execution

order under our aggressive specification (note that the uniprocessor dependence condition does not require

WA(1)
xo
�! RA(1)). However, even though the read sub-operation RA(1) occurs before WA(1), the initiation

condition requires Winit:A(1) to occur before Rinit:A(1), and along with Condition 4.6, this ensures that the

read of A will return the value 1.

The important facets of our specification methodology are (a) the abstraction used for shared memory
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(e.g., modeling sub-operations) and (b) imposing execution order constraints only among conflicting sub-

operations. Given this, there are many possible ways to represent the same set of constraints. Nevertheless, as

we will see in the next chapter, our notation and representation does lend itself well to mapping the constraints

into an implementation.

In summary, even though the aggressive specification in Figure 4.7 places much fewer constraints on the

execution order, the resulting executions provide the same results as with the more conservative specifications.

While the difference between the two sets of specifications is not discernable by the programmer, from a

system design perspective, the aggressive specification exposes the optimizations that are safe thus making

it easier for the system designer to implement the model efficiently. The next chapter considers efficient

implementation techniques that exploit such aggressive specifications.

The specification framework we have described is general and can be used to express a variety of other

memory models. In the following two sections, we use this framework to specify sufficient requirements for

supporting properly-labeled programs and to formalize the specifications for various system-centric models.

4.2 Supporting Properly-Labeled Programs

This section specifies the sufficient system requirements for supporting the three programmer-centric models

that were introduced in the previous chapter. The proof of correctness for these specifications is similar

to the proof presented in our earlier paper [AGG+93] on sufficient conditions for supporting the PLpc

model [GAG+92]. Section 4.6 describes related specifications and proofs for other programmer-centric

models.

4.2.1 Sufficient Requirements for PL1

We begin by specifying the system requirements for supporting the PL1 model. As we discussed in the previous

chapter, the system can exploit the distinction between competing and non-competing labels provided by this

model to allow certain operations to be reordered and overlapped. The specification of system requirements

is considered sufficient if for any PL1 program, all executions allowed by the specification are sequentially

consistent (Definition 3.5 in Chapter 3). For programs that do not qualify as a PL1 program, the PL1 model

does not impose any restrictions on the system. To build intuition, we begin with a conservative specification

of system requirements that is sufficient for supporting PL1 programs. We next provide a more aggressive

specification that imposes execution order constraints among conflicting operations only.

Figure 4.9 presents a conservative specification that is sufficient for supporting the PL1 model. Similar

to the conservative specifications for SC presented in Figures 4.4 and 4.6, program order is enforced by

imposing constraints on the execution order of both conflicting and non-conflicting operations. The
spo
�! and

spo0

�! relations identify the program orders that are significant for maintaining the appropriate ordering among

memory operations. Rc and Wc denote competing read and write memory operations, respectively; this is

based on the labels that are conveyed by a PL1 program. R and W represent any read or write operations,

including competing ones. As before, RW denotes either a read or write; RWc is either a competing read or

competing write. Below, we describe conditions (a) through (e) on the execution order.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
RWc

po
�! RWc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc
po
�! RW

RW
po
�! Wc

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) uniprocessor dependence: if X
po
�! Y, X,Y conflict, and X=RW and Y=W, then X(i)

po
�! Y(i) for all i.

(c) coherence: if Wc
co
�! Wc’, then Wc(i)

xo
�! Wc’(i) for all i.

(d) multiprocessor dependence: if X and Y are the first and last operations in one of

X
spo0

�! Y
X

spo
�! Y

Wc
co
�! Rc

spo
�! RW (or more conservatively: Wc

co
�! Rc)

then X(i)
xo
�! Y(j) for all i,j.

(e) reach: if R
rch
�! W, then R(i)

xo
�! W(j) for all i,j.

Figure 4.9: Conservative conditions for PL1.

Part (a) requires the general conditions (Conditions 4.4-4.7) to be obeyed. In contrast to the specifications

for sequential consistency, the termination condition (Condition 4.5) is imposed only on competing writes.

Referring back to Figure 4.5, the program would be considered a PL1 program as long as the write of Flag on

P1 and the read of Flag on P2 are labeled as competing. If the example is properly-labeled, the termination

condition guarantees that the while loop will eventually terminate by requiring the write sub-operation of

Flag in P2’s memory copy to appear in the execution order. On the other hand, if the write of Flag on P1 is

incorrectly labeled as a non-competing operation, this guarantee is no longer upheld. This is alright, however,

since the specification need not guarantee sequentially consistent executions for non-PL1 programs.

The uniprocessor condition (part (b)) captures the order among conflicting operations from the same

process and to the same location (similar to the uniprocessor condition in Figure 4.7 for SC). The coherence

requirement (part (c)) represents the order among competing writes; its effect on the execution order is to

ensure competing write sub-operations to the same address execute in the same order in all memory copies.

Even though non-competing writes are not directly covered by the coherence requirement, the other conditions

ensure that the above property is upheld for all writes as long as the program is properly labeled.

The multiprocessor dependence condition (part (d)) identifies other important program orders and conflict

orders. This condition effectively formalizes the sufficient program order and atomicity conditions for

supporting PL1 (e.g., see Table 3.1 in Chapter 3). The first two components identify the cases where the

execution order has to be consistent with the program order. The first component requires that all sub-

operations of one competing operation occur before any sub-operations of a second competing operation that

proceeds it in program order. The second component imposes a similar execution order from a competing

read to any memory operation that follows it in program order and from any memory operation to a competing

write that follows it. The third component in this condition effectively captures the need for making competing

writes appear atomic with respect to competing reads that proceed them in the execution order.
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Finally, the reach condition (part (e)) captures the order among operations arising from uniprocessor data

and control dependences and certain multiprocessor dependences. This condition introduces a new relation,

called the reach relation (
rch
�!), that in some cases orders a read with respect to a write that proceeds it

in program order. The next section will motivate the need for and discuss the characteristics of the reach

condition.

Consider the example in Figure 4.5 with the conditions for PL1. Assume the read and write to Flag are

labeled as competing. Therefore, we have WA
spo
�!WFlag and RFlag

spo
�! RA . Given the above, the rules

under multiprocessor dependence require WA(i)
xo
�! WFlag (j) and RFlag(i)

xo
�! RA(j) for all i,j. Assume

RFlag returns the value of WFlag , which implies WFlag (2)
xo
�! RFlag (2). Therefore, by transitivity, we

know WA(2) xo
�! RA(2), which ensures that the read of A will always return the value 1. Now consider the

effect of incorrect labels. For example, assume the write to Flag is labeled as a non-competing operation. In

this case, WA
spo
�!WFlag no longer holds, and the conditions no longer guarantee that the read of A would

always return the new value, i.e., RA(2)
xo
�!WA(2) becomes a valid execution order. An analogous situation

arises if the read of Flag is incorrectly labeled as non-competing. Again, both of the above cases are fine

since the conditions are not required to guarantee SC outcomes for non-PL1 programs.

In what follows, we will describe the reach condition and a relaxation of the uniprocessor correctness

condition (Condition 4.1). We will then present the more aggressive specification for supporting the PL1

model. Appendix H describes a more aggressive version of the termination condition for the PL models.

Motivation for the Reach Condition

The main purpose for the reach condition is to disallow anomalous executions that arise if we allow certain

“speculative” write sub-operations to take effect with respect to other processors. This type of optimization

is possible for systems that have the ability to overlap or reorder a read operation with respect to a following

write operation.7 The need for the reach condition is best described through examples. Figure 4.10 shows

four program segments, all of which are properly-labeled (according to PL1) with the competing operations

shown in bold. Using these examples, we show that without an extra constraint such as the reach condition,

conditions (a)-(d) in Figure 4.9 fail to provide sequentially consistent executions for these programs. We then

proceed to describe the reach condition and how it disallows the non-SC executions.

Consider the program segment in Figure 4.10(a). The program shows P1 reading location A, testing its

value, and conditionally writing location B, while P2 does the symmetric computation with accesses to A and

B interchanged. As usual, assume all memory locations are initialized to zero. On each processor, whether

the write occurs depends on the value returned by the read. With the sequential consistency model, neither

write occurs in any execution since both conditionals would fail in every possible case. Therefore, the two

read operations are non-competing, and since the write operations do not appear in any SC execution, we

can safely label both of them as non-competing as well. Given that the program is a PL1 program, any

implementation that satisfies the conditions provided in Figure 4.9 should disallow the writes from occurring

in any execution as well. Now consider an implementation that speculatively allows writes to occur before

the result of the conditional is resolved (e.g., theoretically possible in a system that uses branch prediction

with speculative execution past branches). In such an implementation, it is possible to get an execution in

7Since the specifications presented for SC in the previous sections disallow this type of optimization, there is no need for an explicit
reach condition in those specifications.
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P1

b1:

a1:

c1:

if (A == 1) {

    B = 1;

}

a2:

b2:

P2

c2:

if (B == 1) {

    A = 1;

}

(a)

P1

b1:

a1:

C[u] = 5;

u = A;

P2

a2:

b2: D[v] = 11;

v = B;

(b)

P1

b1:

a1:

c1:

d1:

while          (test&set(L1)==0);

u = A;

C[u] = 5;

a2:

b2:

P2

c2:

d2:

while          (test&set(L2)==0);

v = B;

D[v] = 11;

(c)

(d)

P1

b1:

a1:

c1:

d1:

a2:

b2:

P2

c2:

d2:Flag = 1;

    B = 1;

}

if (A == 1) { if (B == 0) {

A = 1;

}

     while               (Flag == 0);

C[0]
C[1]
C[2]
C[3]
C[4]
D[0]
D[1]
D[2]
D[3]
D[4]

A
B

memory layout

L1 = 0; L2 = 0;

Figure 4.10: Examples to illustrate the need for the reach condition.
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which both conditionals succeed and both writes occur in the execution. The above execution is somewhat

anomalous since writes in the future affect the value of previous reads that in turn determine whether the

writes should have been executed in the first place. However, without the reach condition, such an anomalous

execution with its corresponding execution order is perfectly consistent with conditions (a)-(d) in Figure 4.9.

The purpose of the reach requirement is to provide a precise and formal condition that would prohibit the

above type of anomalous executions.

Figure 4.10 shows a number of other scenarios where such anomalous executions can occur. The example

in Figure 4.10(a) illustrated that certain control dependences need to be upheld for PL1 programs to execute

correctly. Figure 4.10(b) shows an example that illustrates the need for upholding certain data dependences as

well. Each processor reads a shared-memory location and uses the return value to index an array in memory.

Assume all locations are 32-bit words and arrays C and D are each 5 elements long (i.e., C[0..4] and D[0..4]).

In addition, assume the following contrived positioning of the locations in memory (depicted in the figure):

the location specified by C[11] is the same as location B (i.e., in the C language notation, &(C[11]) == &B)

and the location specified by D[5] is the same as location A (i.e., &(D[5]) == &A).8 Assuming all locations

initially have the value zero, all sequentially consistent executions of this program would result in P1 reading

the value of 0 for A and accessing C[0] and P2 reading the value of 0 for B and accessing D[0]. Since there

are no conflicts among the memory operations, all operations are non-competing. Now consider a non-SC

execution where the read of A returns the value of 11 (causing P1 to write to C[11]) and the read of B returns

the value of 5 (causing P2 to write to D[5]). This execution conceptually corresponds to guessing/predicting

the value of the read operations (analogous to branch prediction), performing the stores based on the guess,

and then noticing that the values that were guessed are indeed the values returned by the reads. Similar to

the previous example, the anomaly arises from the fact that future stores affect the return value of previous

reads which in turn determine the address the stores write to. And again, conditions (a)-(d) in Figure 4.9 fail

to disallow this behavior.

To illustrate that scenarios such as the one above may actually occur even when programmers follow strict

synchronization disciplines, Figure 4.10(c) shows the same program segment as in Figure 4.10(b) with extra

synchronization. Assume that, by convention, the programmer protects operations to array C by lock L1 and

operations to array D by lock L2. Even in the presence of this locking strategy, the same anomalous behavior

can occur in this example unless we further restrict the execution order with a constraint such as the reach

condition. Furthermore, even though no practical system may actually behave in this anomalous way, it is

still important to explicitly disallow such behaviors if we hope to provide a complete and formal specification

of the system constraints.

The previous examples illustrate the importance of observing certain uniprocessor data and control

dependences. The next example, shown in Figure 4.10(d), illustrates the importance of a dependence that

is particular to multiprocessors. The example shows two processes synchronizing through a flag. In all

sequentially consistent executions, the first processor reads the value 0 for A which causes the conditional to

fail. Similarly, the second processor always returns the value 0 for the read of B and thus waits for the flag to

be set and then stores to the A location. Therefore, the write to B on the first processor never occurs in any

SC execution (and it is therefore safe to label it as non-competing). The operations to Flag are competing,

and the operations to location A are non-competing since they are ordered by the flag synchronization in

8Assume there is no address range checking on array accesses, as in the C language. The example can be easily written to use pointers
instead of arrays to illustrate the point even with range checking.
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every execution. Now, consider a hypothetical implementation that allows the write to A on P2 to proceed

before the read of B. This can lead to a non-SC execution where P1 and P2 read the value of 1 for A and

B, respectively. And again, conditions (a)-(d) in Figure 4.9 fail to disallow this execution. Note that while

the dependence on P1 from the read of A to write of B is a uniprocessor control dependence, there is neither

a data nor a control dependence from the read of B to the write of A on P2. Therefore, simply observing

uniprocessor data and control dependences is not sufficient for guaranteeing correct behavior in this example.

The ultimate goal of the reach condition is to guarantee correctness for properly-labeled programs by

imposing the fewest constraints possible. For example, it is not necessary to guarantee correctness for

programs that are improperly labeled. Furthermore, even when a program is properly labeled, the reach

condition need not impose extra conditions if the other conditions in the specification already guarantee

sequentially consistent executions for the program. Unfortunately, defining the reach condition to maintain

correctness only for the necessary cases is quite difficult. Therefore, the challenge is to provide a condition

that is as aggressive as possible while still maintaining correctness.

The reach relation, denoted by rch
�!, attempts to identify the relationships between memory operations

that are relevant to disallowing the types of anomalous behavior discussed above. Due to the numerous

subtleties that arise when one attempts to provide an extremely aggressive reach relation, the definition for

this relation is somewhat complex. Therefore, we will only describe the intuition behind our definition of the

reach relation below. The formal definition is provided in Appendix F.

Informally, a read operation reaches a write operation (i.e., R rch
�! W) that follows it in program order

(R
po
�! W) if the read determines whether the write will execute, the address accessed by the write, or the

value written by it. This aspect of reach effectively captures the notions of uniprocessor data and control

dependence, covering cases such as examples (a)-(c) in Figure 4.10. In addition, the reach condition relates

a read followed by a write in program order if the read controls the execution, address, or value written (in

case of a write) of another memory operation that is in between R and W in program order and is related to

W by certain program orders (e.g., significant program order
spo
�!). This latter aspect of the reach relation

captures dependences that are particular to multiprocessors to cover cases such the example in Figure 4.10(d),

and makes the reach relation both model-dependent and specification-dependent. The way we transform the

reach relation into a constraint in our conservative specification (Figure 4.9) is to require the sub-operation

of a read to occur before any sub-operations of a write that follows it in program order if R
rch
�! W. Our

aggressive specification will provide a less restrictive condition based on the reach relation.

Our formulation for the reach relation is formal and aggressive, and is simple to translate into correct and

efficient implementations. It is conceptually possible to provide less restrictive conditions at a higher level

of abstraction, for example by requiring that all properly-labeled programs behave correctly. However, it is

difficult to provide such conditions in a way that can be easily used by system designers to determine the type

of optimizations they can exploit.

One key observation that makes the reach relation aggressive is that we ultimately care only about

dependences from a read to a write. Therefore, even though we delay certain “speculative” writes, we

never delay speculative reads. For example, a system that performs branch prediction is allowed to freely

issue read operations speculatively past unresolved branches; this optimization is critical for achieving

high performance in dynamically scheduled processors and is exploited by several next generation processor

designs. Furthermore, writes that do not have any dependence to previous reads can be performed speculatively
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b1:

if (A == 1) {

    u = B;

c1:     C = 1;

a1:

}

e1: D = 1;

d1:

(a)

b1:

c1:

a1:

e1:

d1:

for (i=0; i < N; i++) {

}

}f1:

(b)

    B[i] = A[i];

    D[j] = C[j];

for (j=0; j < N; j++) {

Figure 4.11: Examples to illustrate the aggressiveness of the reach relation.

as well. Figure 4.11 shows a couple of examples to illustrate the aggressiveness of our definition. Assume all

operations are labeled as non-competing in both examples. In Figure 4.11(a), the reach relation exists only

between the read of A and the write of C. Therefore, the read of B within the conditional and the write to D

outside are not included in reach and may be executed before the read of A or write of C. In Figure 4.11(b),

the reach relation exists between the read of array A and write of array B, and between the read of array C

and write of array D, within each iteration (we are assuming the arrays are non-overlapping). However, there

is no reach implied among operations in different iterations or among operations across the two loops, thus

allowing substantial reordering and overlap among the different iterations.

Section 4.6 compares our approach to other related work in this area. The next section discusses the

relaxation of another ordering issue related to dependences arising from the presence of infinite loops.

Relaxing the Uniprocessor Correctness Condition

One of the consequences of the uniprocessor correctness condition (Condition 4.1) is that it effectively

disallows issuing instruction instances that follow infinite loops in a process’ program.9 Otherwise, a

requirement such as “the number of instruction instances program ordered before a given instruction instance

should be finite” would be violated. A practical way to enforce this condition is to disallow any instructions

or operations that follow an unbounded (or potentially non-terminating) loop by program order from being

executed until it is known that the loop will terminate. Below, we consider a relaxation of the uniprocessor

correctness condition that allows certain instruction instances to execute before a preceding loop actually

terminates.

The motivation for the above relaxation comes from the fact that guaranteeing sequentially consistent

executions for properly-labeled programs does not necessarily require delaying instructions that follow

a potentially non-terminating loop. Furthermore, optimizations such as allowing speculative reads past

potentially non-terminating loops to execute before the loop terminates are important in achieving higher

performance especially if the loop actually terminates in the execution (analogous to speculative reads past

an unresolved branch). Figure 4.12 shows a contrived example to illustrate this. Assume the operations on

P1 and P2 are synchronized through the flag synchronization such that all other operations can be correctly

labeled as non-competing. After waiting for the flag synchronization, the second processor follows a linked

list within a while loop and then performs other operations. Assume that the linked list is acyclic such that

the while loop would terminate in every SC execution. Without this knowledge, the system would have to

9This condition is used in Definition 4.11(a) which formalizes the notion of an execution.
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P1

b1:

a1: ...

Flag = 1;

a2:

b2:

P2

while          (Flag == 0);

c2:

e2:

d2:

}f2:

v = A;g2:

h2: B = v;

ptr = Head_List;

while (ptr != nil) {

    u += ptr −> data;

    ptr = ptr −> next;

Figure 4.12: Example to illustrate optimizations with potentially non-terminating loops.

treat the loop as potentially non-terminating and thus treat the instructions that follow the loop conservatively.

However, if we knew that the loop terminates in every SC execution, then it would be safe to reorder or

overlap the iterations of the while loop with instructions that follow it (assume locations A and B are disjoint

from the locations accessed by the linked list).

Unfortunately, automatically determining that a potentially unbounded loop terminates in every SC

execution is quite difficult in general. Furthermore, the optimization of speculatively issuing instructions

after a loop is not necessarily safe even when the loop terminates in every SC execution. Therefore, our goal

is to determine the cases where such an optimization would be safe (such as the case in the example above)

and precisely identify the type of information that is required to make this decision.

Figure 4.13 shows a couple of examples to illustrate the need for some constraints on issuing instructions

before a loop is known to terminate. Both examples are properly-labeled with competing operations (if any)

shown in bold. Figure 4.13(a) shows an example with a loop that never terminates in any SC execution.

Therefore, the write to A on P1 never occurs in any SC execution and the read of A on P2 always returns the

value 0, thus causing the conditional to fail. Executing the write of A on P1 speculatively is therefore unsafe

since it will lead to a non-SC execution for this properly-labeled program. Figure 4.13(b) shows a different

example where the loop terminates in every SC execution. Therefore, it may seem safe to speculatively

issue the write to B before knowing that the loop will terminate. However, this optimization can also lead

to a non-SC execution since P2 may observe the new value for B and thus not issue the write to A which

ultimately causes the while loop to not terminate. Even though the second example looks similar to the

examples that were disallowed by the reach condition discussed in the previous section, it turns out that the

reach condition is ineffective in this case; in the anomalous case, the write on P2 does not appear in the

execution and therefore there is no reach relation on P2. The conservative conditions in Figure 4.9 do not

allow the anomalous behavior because condition (d) requires all sub-operations of a competing operation to

occur in the execution order before any operations that follow it in program order, thus disallowing the write

on P1 from being executed early. However, as we will see, the more aggressive specification we present in

the next section does not enforce such an order and depends on extra constraints to disallow such anomalous

executions.

Appendix G provides the aggressive uniprocessor correctness condition that allows speculative execution

of certain instructions while previous loops have not terminated. With these aggressive conditions, a system
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P1

b1:

a1: while (1);

A = 1;

a2:

b2:

P2

c2:

if (A == 1) {

    B = 1;

}

(a)

P1

b1:

a1: while          (A == 0);

B = 1;

a2:

b2:

P2

c2:

if (B == 0) {

}

    A = 1;

(b)

Figure 4.13: Unsafe optimizations with potentially non-terminating loops.

can execute an instruction even if it is not known whether the previous loops will terminate, as long as these

previous loops are known to terminate in every SC execution. A read memory operation is always allowed

to execute before it is known whether the previous loops in program order will terminate. Therefore, as with

the reach condition, we always allow reads to execute speculatively. In contrast, a write memory operation is

not allowed to execute if the previous loop is not known to terminate in every SC execution; this restriction

covers examples such as that in Figure 4.13(a). For a write memory operation to occur in the execution order

before operations from a previous loop, there should also be no read operations from the previous loops that

are ordered before the write by the rch0

�! relation (the slight difference between rch
�! and rch0

�! is described in

Appendix F); this latter restriction covers examples such as that in Figure 4.13(b). The information of whether

a loop will always terminate in an SC execution is often known to the programmer and can be obtained from

the programmer. In fact, most programs are written such that all their SC executions are finite (thus implying

that all loops terminate). If the information is not known, then the conservative option is to assume the loop

may not terminate in some SC executions (unless compiler analysis can determine otherwise).10

The relaxation of the uniprocessor correctness condition (Condition 4.1) as described above changes some

of the assumptions described in Section 4.1.1. The basic effect of the relaxation is that given a potentially

non-terminating loop, the processor can conceptually follow two paths of execution, one within and one

after the loop. The difference between the relaxed version and the original version arises when an execution

involves loops that actually do not terminate. First, we still require every instruction instance within the loop

to occur in program order before any instruction instant that proceeds the loop. For non-terminating loops

however, this allows program order to potentially order an infinite number of instruction instances (from

the loop) before an instruction instance after the loop. Second, the notion of correct choice for the next

instruction must be changed when there is a non-terminating loop, since the processor is now allowed to

follow two paths. Finally, the values returned by read operations no longer uniquely determine the dynamic

instruction instances. Of course, the original assumptions still hold for properly-labeled programs if we

maintain sufficient conditions similar to those specified in Figure 4.9 (or the more aggressive conditions

that are specified next), since for these programs our aggressive uniprocessor correctness condition makes

everything appear the same as if the original uniprocessor correctness condition was upheld.

We will be assuming the aggressive form of the uniprocessor dependence condition described above for

the system requirement specifications we present for the PL models.

10The use of potentially non-terminating loops is not necessarily a program error; consider the scheduling loop in an operating system,
for example.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! Rc

Rc
po
�! Wc

Wc
po
�! Rc, to different locations

Wc
po
�! Wc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc
po
�! RW

RW
po
�! Wc

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

Wc
co0

�! Rc

Rc
co0

�! Wc

Wc
co0

�! Wc

Rc
co0

�! Wc
co0

�! Rc

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: Wc
co0

�! Wc
multiprocessor dependence chain: one of

Wc
co0

�! Rc
spo
�! RW

RW
spo
�! fWc

sco
�! Rc

spo0

�! g* fWc
sco
�! Rc

spo
�! g RW

Wc
sco
�! Rc

spo0

�! fWc
sco
�! Rc

spo0

�! g* fWc
sco
�! Rc

spo
�! g RW

RWc
spo0

�! fA
sco
�! B

spo0

�! g+ RWc

Wc
sco
�! Rc

spo0

�! fA
sco
�! B

spo0

�! g+ Rc

reach: R
rch
�! fW

co0

�! R
rch
�! g+ W

then X(i)
xo
�! Y(i) for all i.

Figure 4.14: Sufficient conditions for PL1.

A More Aggressive Specification for PL1

Figure 4.14 presents the aggressive set of sufficient conditions for supporting the PL1 model. In contrast to the

conservative conditions in Figure 4.9, these conditions impose execution order restrictions among conflicting

sub-operations only. The format of the specification is quite similar to the aggressive specification for SC in

Figure 4.7. As before, we use the
spo
�! (and

spo0

�! ) and sco
�! relations for notational convenience in order to

capture the relevant
po
�! and co

�! orders that are used in constraining the execution order.

The constraints on the execution order consist of two parts. The first part imposes the four general

constraints on the execution order. The second part imposes further constraints on the order of conflicting

sub-operations whose operations are ordered through certain
po
�! [

co
�! chains. Below, we briefly describe

the different components in the second part. As before, the uniprocessor dependence condition captures

the order among conflicting operations from same processor. Similar to the aggressive specification of SC,

uniprocessor dependence does not impose an order from a write to a conflicting read that follows the write
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in program order. The coherence requirement captures the order among competing writes, requiring the

sub-operations for conflicting writes to execute in the same order in all memory copies. The multiprocessor

dependence chains capture the order among certain conflicting operations related by
po
�! [

co
�!.

Intuitively, the first three multiprocessor dependence chains primarily impose orders between two non-

competing operations or between a non-competing and a competing operation,while the last two chains impose

an order among competing operations only. The effect of the first two chains is to order conflicting operations

if there is an ordering chain (Definition 3.1 in Chapter 3) between them. For competing operations, conflicting

pairs ordered by
po
�! [

co0

�! are captured by either the last two chains or the first chain. Finally, the reach

condition captures the order among conflicting operations that are ordered through
rch
�! [

co0

�! chains. The

third multiprocessor dependence chain turns out not to be necessary for correctly supporting the PL1 model

as defined in the previous chapter. Nevertheless, this chain must be maintained if we adopt the alternative

definition for ordering chains presented in Appendix A. Furthermore, as we will discuss in Section 5.7 in

Chapter 5, this extra constraint greatly simplifies the support required for transparently migrating processes

or threads across physical processors. Finally, adding this extra restriction is not expected to affect the

performance of any practical implementations of the PL1 model.

Compared to the conservative conditions for PL1 in Figure 4.9, the aggressive specification exposes more

optimizations that can be safely exploited while still guaranteeing SC executions for PL1 programs. While

the various specifications provided for SC (Figures 4.4, 4.6, and 4.7) are equivalent based on the result of

executions (see Definition 4.5), the aggressive specification for PL1 actually allows a larger set of results

compared to the conservative specification. Both specifications guarantee sequentially consistent results for

PL1 programs. However, the aggressive specification takes fuller advantage of the fact that the PL1 model

does not place any constraints on the memory behavior for non-PL1 programs by allowing a larger set of

results for such programs.11

4.2.2 Sufficient Requirements for PL2

Compared to the PL1 model, the PL2 model requires a further distinction of competing memory operations

conveyed through the sync and non-sync labels. By convention, we will use acquire and release to refer to

sync read and write operations, respectively. Figure 4.15 provides the sufficient conditions for supporting PL2

programs. As before, Rc and Wc represent competing operations. Rc acq and Wc rel represent competing

sync operations. Finally, R and W represent any read or write, whether non-competing, sync, or non-sync.

The conditions for PL2 are quite similar to those for PL1. The main difference arises in the multiprocessor

dependence chains (and the
spo
�! relation that is used in these chains). The first three chains order conflicting

pairs of operations where at least one operation in the pair is potentially non-competing. The conditions for

PL2 are more relaxed than those for PL1. Compared to PL1, the competing operations that compose the first

three chains are required to be sync operations, with the writes denoted as releases and the reads denoted as

acquires. The reason is ordering chains for non-competing operations in PL2 are required to consist of sync

operations (Definition 3.6 from the previous chapter). Therefore, unlike PL1, the program order between

11In general, given a conservative specification that imposes constraints among both conflicting and non-conflicting sub-operations,
it is possible to come up with an equivalent (in terms of results) aggressive specification that imposes constraints only on conflicting
sub-operations. However, the reverse path from an aggressive specification to an equivalent conservative one is not always possible.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! Rc

Rc
po
�! Wc

Wc
po
�! Rc, to different locations

Wc
po
�! Wc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc acq
po
�! RW

RW
po
�! Wc rel

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

Wc
co0

�! Rc

Rc
co0

�! Wc

Wc
co0

�! Wc

Rc
co0

�! Wc
co0

�! Rc

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: Wc
co0

�! Wc
multiprocessor dependence chain: one of

Wc rel
co0

�! Rc acq
spo
�! RW

RW
spo
�! fWc rel

sco
�! Rc acq

spo0

�! g* fWc rel
sco
�! Rc acq

spo
�! g RW

Wc rel
sco
�! Rc acq

spo0

�! fWc rel
sco
�! Rc acq

spo0

�! g* fWc rel
sco
�! Rc acq

spo
�! g RW

Wc
co0

�! Rc
spo0

�! RWc

RWc
spo0

�! fA
sco
�! B

spo0

�! g+ RWc

Wc
sco
�! Rc

spo0

�! fA
sco
�! B

spo0

�! g+ Rc

reach: R
rch
�! fW

co0

�! R
rch
�! g+ W

then X(i)
xo
�! Y(i) for all i.

Figure 4.15: Sufficient conditions for PL2.
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non-competing operations and non-sync operations is unimportant. Similar to the PL1 conditions, the third

multiprocessor dependence chain is not necessary for supporting the PL2 model, but its presence simplifies

process migration and would be required if we adopt the alternative definition for ordering chains presented

in Appendix A. The last three chains maintain order between conflicting pairs that are labeled competing. As

with PL1, the effect is to order any pair that is ordered by
po
�! [

co0

�! when there is at least one
po
�! and one

co
�! in the chain.

4.2.3 Sufficient Requirements for PL3

Compared to the PL2 model, the PL3 model requires a further distinction of sync operations that is conveyed

through the loop and non-loop labels. Figure 4.16 provides the sufficient conditions for supporting PL3

programs. As before, Rc and Wc represent competing operations. Rc acq and Wc rel represent competing

sync operations, whether they are labeled loop or non-loop. Rc nl ns and Wc nl ns represent a competing

read or write that is either non-loop (which is a sub-category of sync) or non-sync. Finally, R and W represent

any read or write, whether non-competing, loop, non-loop, or non-sync.

Again, the main difference between this specification and the previous ones for PL1 and PL2 is in the

multiprocessor dependence chains (and the
spo
�! relation that is used in these chains). The first two chains

order conflicting operations where at least one is potentially non-competing. The PL3 conditions do not

maintain a chain similar to the third chain in the PL1 or PL2 conditions. The reason is supporting such a chain

effectively disallows the optimization of allowing loop writes to be non-atomic. Section 5.7 in Chapter 5

describes how transparent process migration may be supported in light of this relaxation. The third and fourth

chains maintain the order between conflicting pairs that are labeled competing if there is an ordering chain

between them. Finally, the last two chains impose further constraints on the order of conflicting pairs of

non-loop sync or non-sync operations. In general, the order maintained among operations labeled as loop

sync is much less constraining than for the non-loop sync and non-sync operations.

4.3 Expressing System-Centric Models

The specification framework presented in Section 4.1 can also be used to express various system-centric mod-

els, including those discussed in Chapter 2. Using this framework leads to formal and precise specifications

of such models. Furthermore, by constraining the execution order among conflicting sub-operations only,

we can provide aggressive conditions that are semantically equivalent to the original specifications and yet

expose a larger set of optimizations that may be exploited by system designers.

This section presents the conditions for the two flavors of the release consistency model, RCsc and

RCpc [GLL+90, GGH93b]. Appendix I provides the conditions for the other system-centric models described

in Chapter 2 (i.e, IBM-370, TSO, PC, PSO, WO, Alpha, RMO, PowerPC). A few of these conditions have

been presented in an earlier paper that described our specification framework [GAG+93], using a slightly

different format and notation.

Figure 4.17 presents the original conditions for RCsc [GLL+90, GGH93b] translated directly to our

specification framework. The RCsc model was originally proposed as a set of implementation conditions

for supporting PL programs [GLL+90]. RCsc requires the same categories of labels as PL2 programs
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define
spo
�!,

spo0

�!,
spo00

�! :

X
spo00

�! Y if X and Y are the first and last operations in one of
Rc

po
�! Rc nl ns

Rc
po
�! Wc

Wc nl ns
po
�! Rc nl ns, to different locations

Wc nl ns
po
�! Wc

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! Rc

Rc
po
�! Wc

Wc
po
�! Wc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc acq
po
�! RW

RW
po
�! Wc rel

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

Wc
co0

�! Rc

Rc nl ns
co0

�! Wc nl ns

Wc nl ns
co0

�! Wc nl ns

Rc nl ns
co0

�! Wc nl ns
co0

�! Rc

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: Wc nl ns
co0

�! Wc nl ns
multiprocessor dependence chain: one of

Wc rel
co0

�! Rc acq
spo
�! RW

RW
spo
�! fWc rel

sco
�! Rc acq

spo0

�! g* fWc rel
sco
�! Rc acq

spo
�! g RW

Wc
co0

�! Rc
spo0

�! RWc

RWc
spo0

�! fWc
sco
�! Rc

spo0

�! g+ RWc

RWc nl ns
spo00

�! fA
sco
�! B

spo00

�! g+ RWc nl ns

Wc nl ns
sco
�! Rc

spo00

�! fA
sco
�! B

spo00

�! g+ Rc nl ns

reach: R
rch
�! fW

co0

�! R
rch
�! g+ W

then X(i)
xo
�! Y(i) for all i.

Figure 4.16: Sufficient conditions for PL3.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
RWc

po
�! RWc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc acq
po
�! RW

RW
po
�! Wc rel

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) uniprocessor dependence: if X and Y conflict and are the first and last operations
in RW

po
�! W from Pk , then X(k)

xo
�! Y(k).

(c) coherence: if W1
co
�! W2, then W1(i)

xo
�! W2(i) for all i.

(d) multiprocessor dependence: given X and Y are the first and last operations in one of following and Y is from Pk

X
spo0

�! Y
X

spo
�! Y

W
co
�! R

spo0

�! RW
if Y=R then X(i)

xo
�! Y(j) for all i,j and if Y=W then X(i)

xo
�! Y(j) for all i,j except j=k.

(e) reach: if R
rch
�! W, where R and W are from Pk , then R(i)

xo
�! W(j) for all i,j except j=k.

Figure 4.17: Original conditions for RCsc.

(the distinction between the PL and PL2 models was described in the previous chapter). As with the PL2

specification, we use the following notation. Rc and Wc represent competing operations. Rc acq and Wc rel

represent competing sync operations. Finally, R and W represent any read or write, whether non-competing,

sync, or non-sync. The conditions for RCsc exploit the read forwarding abstraction in our framework to

capture the behavior of this model. This abstraction is also important for capturing the behavior of other

models such as PC, RCpc, TSO, PSO, and RMO. The original conditions for RCsc and RCpc do not formally

define the behavior with respect to the termination of writes, the reach condition, and the uniprocessor

correctness condition (the same is true for most other system-centric models). We assume that termination

holds for all competing write sub-operations. We formalize the notion of “uniprocessor data and control

dependences” [GLL+90] by using the reach relation ( rch�!). The reach relation is only necessary for models

such as WO and RCsc that allow the reordering of reads with respect to writes that follow them in program

order. Appendix I describes how the reach relation and the aggressive uniprocessor correctness conditions

can be adapted for the relevant system-centric models.

Figure 4.18 presents the equivalent conditions for RCsc in their aggressive form where the constraints

on the execution order are present among conflicting sub-operations only. These conditions produce the

same set of valid executions as the conditions shown in Figure 4.17; the proof for this is presented in an

earlier paper [GAG+93]. The “j” symbol used in the regular expressions represents an “or” that signifies

a choice among the different options. Since the original specification constrains execution order among

non-conflicting operations and at every intermediate point in relevant
po
�! [

co
�! chains, there are a lot

of extraneous constraints that are imposed. These extra constraints are clearly exposed when we express

the conditions in their aggressive form, especially when we consider the multiprocessor dependence chains.
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define
spo
�!,

spo0

�!,
spo00

�! ,
spo000

�! :

X
spo000

�! Y if X and Y are the first and last operations in one of
RWc

po
�! RWc

X
spo00

�! Y if X and Y are the first and last operations in one of
Rc acq

po
�! RW

RW
po
�! Wc rel

X
spo0

�! Y if X f
spo000

�! g f
rch
�! j

spo00

�! j
spo000

�! g* Y

X
spo
�! Y if X f

rch
�! j

spo00

�! j
spo000

�! g+ Y

define
sco
�!,

sco0

�!:
X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R1
co
�! W

co
�! R2 where R1,R2 are on the same processor

X
sco0

�! Y if X and Y are the first and last operations in R1
co
�! W

co
�! R2 where R1,R2 are on different processors

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! f(A

sco
�! B

spo
�! ) j (A

sco0

�! B
spo0

�! )g+ RW

W
sco
�! R

spo0

�! f(A
sco
�! B

spo
�! ) j (A

sco0

�! B
spo0

�! )g+ R
then X(i)

xo
�! Y(i) for all i.

Figure 4.18: Equivalent aggressive conditions for RCsc.

To better illustrate this, we can compare the sufficient conditions for PL2 shown in Figure 4.15 with the

RCsc conditions in Figure 4.18. As we will show below, the conditions for RCsc are a superset of those

for PL2. The general conditions (Conditions 4.4-4.7) in part (a) of the specification are identical in the two

specifications. We next compare the different components in part (b). The uniprocessor dependence condition

is identical. Coherence is stricter in the RCsc specification, since PL2 only requires it among competing

operations. The most important difference is in the multiprocessor dependence chains. The chains in RCsc

clearly cover every chain specified for the PL2 specification. While chains in the PL2 specification only

contain competing operations in the middle of the chain, the RCsc specification maintains a chain even when

the intermediate operations in the chain are non-competing. Finally, the reach condition of PL2 is upheld in

the RCsc specification in a more conservative way through the second multiprocessor dependence chain (note

that the reach relation is used in the definition of
spo
�! and

spo0

�!).

We illustrate the extra constraints imposed by the RCsc multiprocessor dependence chains as compared to

the PL2 specification using the example program segments in Figure 4.19. The program segment on the right

is identical to the program segment on the left except for the couple of competing operations added to each

process’ program. Competing operations are shown in bold and the label for such operations is shown beside

the operation. Neither program is properly labeled since the operations to locations A and B are competing,
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P1

b1:

a1: A = 1;

B = 1;

a2:

b2:

P2

(a)

u = B;

v = A;

P1

b1:

a1:

c1:

d1: B = 1;

L1 = 1;

x = L2;

A = 1;

[sync (rel)]

[sync (acq)]

a2:

b2:

P2

c2:

d2:

u = B;

v = A;

L3 = 1;

y = L4;

[sync (rel)]

[sync (acq)]

(b)

Figure 4.19: Example to illustrate the behavior of the RCsc specifications.

but are not labeled as such. Under sequential consistency, the outcome (u,v)=(1,0) is disallowed in both

examples. Meanwhile, the sufficient conditions for PL2 allow this non-SC outcome in both example; this

does not violate the PL2 model since neither example is a PL2 program. Similar to the PL2 specification, both

the original specification and the equivalent aggressive specification for RCsc allow the non-SC outcome of

(u,v)=(1,0) for the example in Figure 4.19(a). However, unlike the PL2 specification, the non-SC outcome is

surprisingly disallowed for the example on the right. This arises from the fact that the original conditions for

RCsc constrain execution order at every intermediate point in relevant
po
�! [

co
�! chains.

Figure 4.20 shows the aggressive conditions for RCpc, the second flavor of release consistency. In

comparison to the RCsc specification in Figure 4.18, the main difference is that the multiprocessor dependence

chains enforce fewer ordering constraints. The reason is (a) RCpc allows reads to be reordered with respect

to preceding writes in program order even when both are competing, and (b) all writes are allowed to be

non-atomic. Since the PL3 model was originally inspired by RCpc, it is interesting to compare the sufficient

conditions for supporting PL3 with the conditions for RCpc. As with the PL2 comparison with RCsc, the three

main differences are in the coherence requirement, the reach condition, and the multiprocessor dependence

chains. Similar to RCsc, RCpc maintains coherence for all write operations and supports the reach condition

by incorporating the reach relation into
spo
�!. RCpc also suffers from extraneous orders that arise because

the original conditions impose orders at intermediate points within a chain. The multiprocessor dependence

chains in RCpc strictly cover the first four chains in the PL3 specification. However, the last two chains in

PL3, which mainly order non-loop or non-sync operations, are not fully covered by RCpc. This makes the

two specifications incomparable. Nevertheless, as we will show in the next section, it is still possible to port

PL3 programs to the RCpc model relatively efficiently by mapping the operations in a way that would enforce

the last two multiprocessor dependence chains in the PL3 specification.

Compared to the original conditions for RCsc and RCpc [GLL+90, GGH93b], the conditions presented

here are more precise (e.g., with respect to formally specifying data and control dependences) and expose

more aggressive optimizations while maintaining the same semantics. Appendix I provides aggressive

specifications for a number of other system-centric models; these specifications are also often more precise

and expose more aggressive optimizations compared to the original specifications for the models. The use of

a formal framework such as the one we have presented is extremely important for precisely specifying, and

for helping designers correctly implement, such models.

The next section describes how we can efficiently port properly-labeled programs to implementations that

support various system-centric models.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! RWc

Wc
po
�! Wc

Rc acq
po
�! RW

RW
po
�! Wc rel

X
spo
�! Y if X f

rch
�! j

spo0

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R1
co
�! W

co
�! R2 where R1,R2 are on the same processor

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

then X(i)
xo
�! Y(i) for all i.

Figure 4.20: Aggressive conditions for RCpc.

4.4 Porting Programs Among Various Specifications

This section describes the process of correctly and efficiently porting programs written for one model or

specification to another. We specify the ports by providing a mapping from operations in the source model

to operations in the target model. The process of choosing the appropriate mapping of operations involves

comparing the source and target system specifications and ensuring that all orders required by the source

specification are maintained by the target specification. This task is greatly simplified if both systems are

specified using the same framework, which emphasizes the importance of a general specification framework

such as the one proposed in this chapter.

We begin by describing the required mappings for porting programs written for the sequential consistency

model to other system-centric models. Since we assume no extra information is known about the program,

these ports fail to exploit the various optimizations allowed by the more relaxed system-centric models. These

mappings build intuition as to how various orders may be enforced in system-centric models. We next discuss

how the subtle differences among the system-centric models make it difficult to efficiently port programs

among them. Finally, we describe the mappings for porting properly-labeled programs to the various system-

centric models. In contrast to the other mappings, the information provided by properly-labeled programs in

the form of operation labels enable extremely efficient mapping of such programs to the various system-centric

models. Furthermore, the mappings are mechanical, allowing for automatic and efficient portability. A few

of the mappings we describe here are similar to mappings previously presented in the context of porting PLpc

programs to system-centric model [GAG+92].12

12The correctness proofs for the PLpc ports are in a different paper [AGG+93]; the proof of correctness for the ports presented in this
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Figure 4.21: Relationship among models (arrow points to stricter model).

4.4.1 Porting Sequentially Consistent Programs to System-Centric Models

This section describes how a program that is written for a sequentially consistent system may be ported to the

more relaxed system-centric models. Since no extra information is assumed about the program, we need to

conservatively enforce the same ordering constraints as a sequentially consistent system and cannot exploit

the reorderings allowed by the target models. Furthermore, enforcing the required orderings can incur extra

overhead (e.g., additional instructions) in some of the models. Therefore, depending on the target model,

the port may achieve either the same performance or lower performance relative to a comparable system

that inherently supports sequential consistency. As we will show later, the extra information conveyed by

properly-labeled programs is instrumental in allowing us to achieve higher performance by exploiting the

reordering optimizations offered by the relaxed models without violating sequential consistency.

Figure 4.21 depicts the various system-centric models discussed in Chapter 2; this figure appeared in

Chapter 2 and is reproduced here for easier reference. The arrows depict the stricter relation, going from the

more relaxed to the stricter model (e.g., SC is stricter than WO). This relation is transitive (e.g., SC is stricter

than RCpc); models not related by the stricter relation are incomparable. The models are partitioned into

four categories depending on the types of program orders that are enforced among operations. SC enforces

all program orders. The models in the second category allow write-read reordering. The models in the third

category allow write-write reordering as well. Finally, models in the fourth category also allow read-read and

read-write reordering. Another main difference among the models (that is not depicted in the figure) is the

level of multiple-copy atomicity that is supported for writes.

Table 4.1 shows the sufficient mappings for a correct port from the sequential consistency model to various

target system-centric models. The mappings in the table specify how read and write operations in SC should

be mapped to operations in the target model, sometimes requiring extra instructions such as fences to be added

to the program text (RMW in the table denotes a read-modify-write instruction). To determine the sufficient

mappings, we compare the specification for SC (e.g., from Figure 4.7) with the specification of the target

model (e.g., specification for RCsc in Figure 4.18). A mapping is sufficient if every order enforced by the SC

specification is also enforced the target model after the mapping. In our experience, it is simpler to figure out

the appropriate mappings by comparing the aggressive specifications for the two models since conservative

specifications often mask the extraneous orders that are maintained by a model. The mappings specified are

chapter are similar to these proofs.
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Table 4.1: Sufficient mappings for achieving sequential consistency.

Model Mapping to Achieve Sequential Consistency

IBM-370 (a) for every W
po
�! R, at least one of R or W is a synchronization operation, or W

po
�!

X
po
�! R where X is a fence, a synchronization, or a read to same location as W.

TSO (a) for every W
po
�! R, at least one of R or W is part of a RMW, or there is a RMW such

that W
po
�! RMW

po
�! R.

PC (a) every R is part of a RMW.

PSO
(a) for every W

po
�! R, at least one of R or W is part of a RMW, or there is a RMW such

that W
po
�! STBAR

po
�! RMW

po
�! R.

(b) a STBAR exists between every W
po
�! W.

WO (a) every R and W is mapped to a synchronization operation.

RCsc
(a) every R is mapped to an acquire or non-sync.
(b) every W is mapped to a release or non-sync.

RCpc
(a) every R is mapped to an acquire or non-sync.
(b) every W is mapped to a release or non-sync.
(c) every R is part of a RMW, with W mapped to a release or non-sync.

Alpha (a) an MB exists between every X
po
�! Y.

RMO (a) a MEMBAR(XY) exists between every X
po
�! Y.

PowerPC (a) a SYNC exists between every X
po
�! Y.

(b) every R is part of a RMW.

not necessarily unique. In addition, the port will be correct as long as these mappings or a more conservative

set of mappings are used. For example, even though we require a fence between every W
po
�! W pair for

PSO, the port remains correct if there are extra fences also present among other operation pairs.

The mappings for models that require fences to enforce program orders (e.g., IBM-370, PSO, Alpha,

RMO, and PowerPC) raise an important issue regarding the static placement of the fence instructions within

the program text. For example, the mapping for Alpha requires a memory barrier instruction (MB) between

every pair of memory operations X
po
�! Y. For correctness, we assume that the fence instruction is placed in

such a way that every execution path between X and Y results in the execution of the fence. A simple way

to ensure this is to place the fence instruction within the same basic block as the instruction that generates

memory operation X or memory operation Y.

Porting SC Programs to IBM-370, WO, RCsc, Alpha, and RMO

We first concentrate on the system-centric models that provide direct mechanisms for enforcing the orders

required for supporting sequential consistency: IBM-370, WO, RCsc, Alpha, and RMO. IBM-370, Alpha,

and RMO are fence-based models and degenerate to SC if sufficient fences are introduced in between memory

operations. For example, the Alpha model guarantees SC if every operation pair in program order is separated

by a memory barrier (MB). WO and RCsc enforce orders based on operation labels and degenerate to SC if

operations are labeled conservatively. For example, RCsc guarantees SC executions if all reads are labeled
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a1:

b1:

A = 1;

u = B;

a2:

b2:
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B = 1;

v = A;

(a)

P1

a1: A = 1; a2:

b2:

P2

u = A;

B = 1;

P3

a3:

b3:

v = B;

w = A;

(b)

P1

a1: A = 1; a2:

b2:

P2

u = A;

P3

a3:

b3: w = A;A = 2;

v = A;

(c) (d)

P1

a1: A = 1; a2:

b2:

P2

u = A;

v = A;

Figure 4.22: Examples to illustrate porting SC programs to system-centric models.

as acquires or non-syncs and all writes are labeled as releases or non-syncs.

Porting SC Programs to TSO, PSO, PC, RCpc, and PowerPC

Ports to the remaining system-centric models are more complicated since these models do not provide direct

mechanisms for enforcing some relevant program orders or multiple-copy atomicity for writes. For example,

the TSO and PSO models do not provide any direct mechanism for enforcing the W
po
�! R order. Similarly,

the PowerPC model does not directly provide multiple-copy atomicity for any writes; therefore, even if every

pair of operations is separated by a fence, it is still possible that SC may be violated. Finally, PC and RCpc

do not provide any mechanisms to directly enforce either of the above constraints.

Figure 4.22 shows a number of examples to illustrate these issues. For the program segment in Fig-

ure 4.22(a), TSO, PSO, PC, and RCpc do not provide a direct mechanism to disallow the non-SC outcome

of (u,v) = (0,0). Similarly, PC, RCpc, and PowerPC do not provide a direct mechanism for enforcing a

multiprocessor dependence chain between the write of A on P1 and the read of A on P3 in Figure 4.22(b), and

thus allow the non-SC outcome of (u,v,w) = (1,1,0). Figure 4.22(c) shows a similar example to Figure 4.22(b),

except with all the operations to the same location. This example distinguishes the behavior of PowerPC from

the other models since PowerPC is the only model that does not provide a direct mechanism for disallowing

the non-SC outcome of (u,v,w) = (1,1,0). Finally, Figure 4.22(d) shows a degenerate form of the previous

example using only two processors. Even for this simple example, the PowerPC model does not provide a

direct way to disallow the non-SC outcome of (u,v) = (1,0).

Even though these models fail to provide direct mechanisms for enforcing all the required orders for

guaranteeing SC, there are indirect ways to enforce such orders. Consider TSO first. Table 4.1 enumerates

several indirect ways to enforce the W
po
�! R order in TSO, some of which are directly derived from looking

at the definition of
spo
�! for this model in Appendix I. Given W

po
�! R, if W is part of an atomic read-

modify-write operation or if there is a read-modify-write (to any location) between the two operations such

that W
po
�! RMW

po
�! R, then the specification implies W

spo
�! R which ends up maintaining the required

order through the multiprocessor dependence chains. The above orders are maintained due to the strong
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restrictions that the original specifications for TSO and PSO place on atomic read-modify-write operations

which disallow writes to any location from occurring between the read and write of the read-modify-write

(other models, except RMO, only disallow writes to the same location). As an alternative mapping to the

above, the write to read program order is also maintained if the read is part of a read-modify-write. This

mapping does not depend on the stricter definition of read-modify-write, though proving the correctness of

the latter mapping is slightly more subtle compared to proving the other two mappings [GAG+92, AGG+93].

Referring back to Figure 4.22(a), use of any of the above mappings will disallow the non-SC outcome. The

mapping for PSO is similar to TSO, except we also need store barriers (STBAR) between writes to disallow

write reordering.

In contrast to TSO and PSO, the PC and RCpc models do not provide as many options for enforcing the

write to read program order simply because their constraints on atomic read-modify-writes are less restrictive

than those of TSO and PSO. However, the option of requiring the read to be part of a read-modify-write for

every W
po
�! R still provides the correct behavior. Furthermore, requiring reads to be part of a read-modify-

write also solves the lack of atomicity for writes. For example, referring back to Figure 4.22(b), if the read

of A on P3 is made to be part of a read-modify-write, then the outcome (u,v,w) = (1,1,0) is disallowed by PC.

Since we cannot automatically select the reads in a program that depend on this extra order, the mapping for

PC presented in Table 4.1 requires every read to be part of a read-modify-write. The mapping for RCpc is

similar, but also requires conservative labels for all reads and writes (similar to RCsc).

Similar to PC and RCpc, the PowerPC model lacks a direct way of providing multiple-copy atomicity. To

solve this, we can use the same mapping used for PC, i.e., require every read to be part of a read-modify-write.

In conjunction with the use of fences (called SYNC in PowerPC), this mapping enforces sufficient order to

guarantee sequential consistency, even for the examples in Figure 4.22(c) and (d) which were particular to

PowerPC.

The above mappings for TSO, PSO, PC, RCpc, and PowerPC use atomic read-modify-write operations

to indirectly enforce some of the orders required for guaranteeing sequential consistency. In the cases where

an operation is not naturally part of an atomic read-modify-write, these mappings require the operation to be

converted into a dummy read-modify-write. When a read is converted to a dummy read-modify-write, the

write is required to store the same value as the read. Similarly, when a write is converted to a dummy read-

modify-write, as for TSO and PSO, the write is required to store the originally specified value regardless of the

value returned by the read. Conversion of a read or write to a dummy read-modify-write may be impossible

if the implementation does not provide sufficiently general read-modify-write operations. For example, a

test&set instruction is not general enough for this purpose. In practice, however, the wide acceptance of

instructions similar to Alpha’s load-locked and store-conditional [Sit92] effectively alleviates this problem

by providing sufficient generality.

The more important concern about converting normal operations into dummy read-modify-write opera-

tions is the extra overhead involved with the read-modify-write. One possible solution is to extend the above

models to provide direct (and therefore, more efficient) mechanisms for enforcing the required orders. For

example, TSO and PSO can be extended with an extra fence instruction that orders W
po
�! R. In fact, the

Sparc V9 architecture allows the use of memory barriers defined for RMO under TSO and PSO (TSO and

PSO were originally defined under Sparc V8), with the MEMBAR(WR) providing the desired functionality.

For PC, we need a similar fence mechanism. In addition, we need a mechanism to force certain writes to
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Table 4.2: Sufficient mappings for extended versions of models.

Model Mapping to Achieve Sequential Consistency

TSO+ (a) a MEMBAR(WR) exists between every W
po
�! R.

PC+ (a) a fence exists between every W
po
�! R.

(b) every W is mapped to an atomic write.

PSO+ (a) a MEMBAR(WR) exists between every W
po
�! R.

(b) a STBAR exists between every W
po
�! W.

RCpc+

(a) every R is mapped to an non-sync or acquire.
(b) every W is mapped to a non-sync or release.

(c) a fence exists between every W
po
�! R.

(d) every W is mapped to an atomic write.

PowerPC+ (a) a SYNC exists between every X
po
�! Y.

(b) every W is mapped to an atomic write.

appear atomic, for example by labeling them as atomic writes. RCpc requires similar mechanisms to PC,

except we can limit the scope of the fence and the atomic write label to competing operations only. Finally,

PowerPC can be extended with the atomic write option. We have included the formal specifications for the

extended models in Appendix I along with the other specifications. Table 4.2 shows the alternative mappings

for the extended versions of the models, shown with a “+” following the name of the model (e.g., TSO+).

Efficiency of Porting SC Programs to System-Centric Models

The ports presented in Tables 4.1 and 4.2 do not exploit the reordering optimizations that are enabled by the

system-centric models since they impose program order and atomicity constraints on all operations. Further-

more imposing these constraints often incurs extra overhead compared to the original program executing on

a sequentially consistent system. For some of the ports, the overhead is due to the extra fence instructions

that are added to the program. For other ports, transforming a read or write operation into a dummy atomic

read-modify-write incurs overhead. The effect of these overheads on performance can be quite substantial

due to their high frequency. For example, if we assume 50% of the instructions lead to shared-memory

operations, adding a fence instruction between every pair of memory instructions (as is required for models

such as Alpha, RMO, or PowerPC) leads to 1.5 times more instructions. In fact, WO and RCsc are the only

two target models that have the potential of incurring no extra overhead since labeling all memory operations

conservatively enforces the required ordering constraints to satisfy SC without requiring extra instructions.

However, this requires the underlying implementation to support orderings through labels.

Many of the ordering constraints that are enforced by the above ports are unnecessary for guaranteeing

sequential consistency in a typical program. As we will see shortly, the type of information provided by

properly-labeled programs allows us to identify the unnecessary constraints and achieve substantially more

efficient ports to system-centric models.
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4.4.2 Porting Programs Among System-Centric Models

This section considers the issues in porting programs across various system-centric models. A naive way

to provide a correct port from any source to any target system-centric model is to pretend the source model

is sequential consistency and use the same mappings as those specified in the previous section. Since

sequential consistency is stricter than any system-centric model, guaranteeing sequential consistency on the

target trivially disallows any executions that are disallowed by the source model. A more efficient port would

attempt to only enforce the orderings imposed by the source model.

We consider a port to be efficient if the ported program on the target model does not perform much worse

relative to the minimum of the two performance levels described below: (a) the performance of the original

program on the source model, and (b) the performance of the program on the target model assuming it is

optimized for the target model. According to the above criteria, porting a program to a stricter target model is

simple and efficient. For example, referring back to Figure 4.21, porting a program from WO to SC or from

RMO to Alpha fall in this category. There is typically no change required in such a port. As an optimization,

it is sometimes possible to remove fence instructions if the orders enforced by the fence are implicitly upheld

on the target model (e.g., consider a port from Alpha to SC).

In contrast, porting programs from a stricter model to a more relaxed model, or porting programs among

incomparable models (i.e., neither model is stricter than the other), may lead to inefficiencies especially

when there are subtle differences between the source and target models. Such subtle differences can arise

in several areas, e.g., definition of significant program orders, whether read forwarding is allowed, level of

write atomicity, requirements on atomic read-modify-writes, and how the reach and termination conditions

are enforced. Problems often arise because the constraints imposed by the source model are difficult and

inefficient to impose in the destination model. There can be two reasons for this: (i) the constraints in the

source model may be extraneous constraints that are not necessary for the correctness of most programs,

but need to be enforced in the port since we do not have more information about the program, or (ii) the

destination model is deficient since it cannot efficiently enforce certain constraints that are actually required

for the correctness of most programs. As an example of the first reason, consider the Alpha model which

enforces program order among reads to the same location. This makes the Alpha model a difficult source if

we want to port programs to other models, such as WO, RCsc, or RMO, that also relax the program order

among reads but do not implicitly maintain program order among reads to the same location. As an example

of the second reason, consider porting programs to models such as PC, RCpc, or PowerPC. The fact that these

models do not support write atomicity, along with the lack of extra information about the program, can make

these models inefficient targets. Of course, models that are related do not exhibit such subtle differences,

making ports between them relatively efficient. For example, porting programs between PC and RCpc, or

among TSO, PSO, and RMO, is simple. Overall, the closest to an ideal source model is RCpc, since it

is virtually the most relaxed system-centric model. Similarly, the closest to an ideal target is SC since it

implicitly enforces every constraint, whether it is extraneous or not.

In summary, porting programs among system-centric models can be inefficient due to subtle differences

among the models. The fact that we do not have any extra information about the program exacerbates this

problem because the port must guarantee that all orders enforced by the source model are also enforced on the

target. As we will see in the next section, the information provided by properly-labeled programs provides

much more efficient portability across the whole range of system-centric models.
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4.4.3 Porting Properly-Labeled Programs to System-Centric Models

While porting a properly-labeled program to a system-centric model requires guaranteeing sequentially

consistent executions for the program, the information provided by properly-labeled programs in the form of

operation labels allows us to achieve ports that are substantially more efficient than the ports of SC programs

specified in Table 4.1.

Tables 4.3, 4.4, and 4.5 show the sufficient mappings for porting PL1, PL2, and PL3 programs.13 These

mappings are not unique and other mappings may be possible. To determine the appropriate mappings, we

ensure that any orders imposed by the sufficient conditions for a properly-labeled program (Figures 4.14, 4.15,

and 4.16) are also imposed by the specification of the destination model with the specified mapping. Although

these mappings are similar in nature to the mappings for SC programs in Table 4.1, they are significantly

more selective. For example, while porting an SC program to WO requires all memory operation to be

labeled as synchronization, porting a PL1 program requires this for only the competing memory operations.

Since competing operations are typically far less frequent that non-competing operations, selective mapping

of operations can provide a substantial performance advantage by exploiting the reordering optimizations of

the target model.

Properly-labeled programs port efficiently to most of the system-centric models. Furthermore, overheads

due to extra fence instructions for models such as IBM-370, PSO, Alpha, RMO, and PowerPC, or dummy read-

modify-writes for models such as TSO, PSO, PC, RCpc, and PowerPC, are significantly reduced compared to

porting SC programs simply because these additional instructions are used selectively and infrequently. For

example, consider the need for dummy read-modify-writes when porting a PL1 program to PC. Without any

information about the program, the mapping in Table 4.1 requires every read to be part of a read-modify-write.

However, with the PL1 labels, we can limit this requirement to competing reads only. Therefore, the number

of dummy read-modify-writes that are added by the port can be quite low because (a) competing reads are

typically infrequent, and (b) some of these reads may already be part of a read-modify-write.14 Table 4.6

shows the ports of properly-labeled programs to the extended versions of some of the system-centric models

introduced in Section 4.4.1. While the extended versions were important for porting SC programs more

efficiently, the ordinary versions of the models are sufficiently efficient for porting PL programs.

Most of the system-centric models can beneficially exploit the extra information about memory operations

as we move from PL1 to PL2 and PL3. The IBM-370, TSO, and PC models have the same mapping for PL1

and PL2 programs since the distinction between competing sync and non-sync operations cannot be exploited

by these models. However, PL3 programs lead to potentially more efficient mappings in the above models.

Table 4.4 also shows the RCsc model as having the same mapping for PL2 and PL3 programs. While RCsc

can actually benefit from the extra information provided by PL3 programs, the more aggressive mapping that

arises is complicated and difficult to achieve in practice; therefore, we use the same mappings as for PL2.

Among the system-centric models shown, RCsc is the most efficient model for executing PL1 and PL2

programs and RCpc is the most efficient model for executing PL3 programs. Compared to the other system-

centric models, RCsc and RCpc best exploit the reordering optimizations allowed by PL programs and enforce

13For the PowerPC mappings shown in Table 4.5, we assume that if we depend on an existing write to the same address (clause (c) for
PL1 and PL2, or clause (d) for PL3), any SYNC that needs to be placed after the Rc due to the other clauses is placed after the existing
write as well (except the SYNC that may be required between Rc and the existing write).

14The fact that PL1 and PL2 programs can be ported reasonably efficiently to the PC, RCpc, and PowerPC models is quite surprising
since the latter models do not provide direct mechanisms for providing atomic writes. As explained above, however, it turns out the need
for (potentially dummy) read-modify-writes can be limited to competing reads.
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the required orders with virtually no extra overhead (such as additional fence instructions). This is somewhat

expected since the RC models were originally developed in conjunction with the proper labeling framework.

Of course, the sufficient conditions for properly-labeled models allow yet further optimizations not exploited

by RCsc and RCpc.

Table 4.3: Sufficient mappings for porting PL programs to system-centric models.

Model PL1 PL2 PL3

IBM-370

(a) for every Wc
po
�! Rc, at least one

of Rc or Wc is a synchronization op-

eration, or Wc
po
�! X

po
�! Rc where

X is a fence, a synchronization, or a
read to same location as Wc.

(a) same as PL1.

(a) for every Wc nl ns
po
�!

Rc nl ns, at least one of Rc nl ns
or Wc nl ns is a synchronization op-

eration, or Wc nl ns
po
�! X

po
�!

Rc nl ns where X is a fence, a syn-
chronization, or a read to same loca-
tion as Wc nl ns.

TSO

(a) for every Wc
po
�! Rc, at least

one of Rc or Wc is part of a RMW,

or there is a RMW such that Wc
po
�!

RMW
po
�! Rc.

(a) same as PL1.

(a) for every Wc nl ns
po
�!

Rc nl ns, at least one of R nl ns or
W nl ns is part of a RMW, or there

is a RMW such that Wc nl ns
po
�!

RMW
po
�! R nl ns.

PC (a) every Rc is part of a RMW. (a) same as PL1. (a) every Rc nl ns is part of a RMW.

PSO

(a) for every Wc
po
�! Rc, at least

one of Rc or Wc is part of a RMW,

or there is a RMW such that Wc
po
�!

STBAR
po
�! RMW

po
�! Rc.

(b) a STBAR exists between every

W
po
�! Wc.

(a) for every Wc
po
�! Rc, at least

one of Rc or Wc is part of a RMW,

or there is a RMW such that Wc
po
�!

STBAR
po
�! RMW

po
�! Rc.

(b) a STBAR exists between ev-

ery Wc
po
�! Wc and every W

po
�!

Wc rel.

(a) for every Wc nl ns
po
�!

Rc nl ns, at least one of Rc nl ns or
Wc nl ns is part of a RMW, or there

is a RMW such that Wc nl ns
po
�!

STBAR
po
�! RMW

po
�! Rc nl ns.

(b) a STBAR exists between ev-

ery Wc
po
�! Wc and every W

po
�!

Wc rel.
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Table 4.4: Sufficient mappings for porting PL programs to system-centric models.

Model PL1 PL2 PL3

WO
(a) every Rc and Wc is mapped to a
synchronization operation.

(a) every Rc acq and Wc rel is
mapped to a synchronization oper-
ation.
(b) for every Xc

po
�! Yc, at least

one of X or Y is mapped to a syn-
chronization operation.

(a) every Rc acq and Wc rel is
mapped to a synchronization oper-
ation.
(b) for every Rc

po
�! Yc or Wc

po
�!

Wc, at least one operation is mapped
to a synchronization operation.

(c) for every Wc nl ns
po
�!

Rc nl ns, at least one operation is
mapped to a synchronization opera-
tion.

RCsc
(a) every Rc is mapped to an acquire.
(b) every Wc is mapped to a release.

(a) every Rc acq is mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.

(a) same as PL2.

RCpc

(a) every Rc is mapped to an acquire.
(b) every Wc is mapped to a release.
(c) every Rc is part of a RMW, with
W mapped to non-sync or release.

(a) every Rc acq is mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.
(c) every Rc is part of a RMW, with
W mapped to non-sync or release.

(a) every Rc acq is mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.
(c) every Rc nl ns is part of a RMW,
with W mapped to non-sync or re-
lease.
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Table 4.5: Sufficient mappings for porting PL programs to system-centric models.

Model PL1 PL2 PL3

Alpha

(a) an MB exists between every

Rc
po
�! RW and RW

po
�! Wc.

(b) an MB exists between every

Xc
po
�! Yc.

(a) an MB exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) an MB exists between every

Xc
po
�! Yc.

(a) an MB exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) an MB exists between every

Rc
po
�! Rc, Rc

po
�! Wc, and

Wc
po
�! Wc.

(c) an MB exists between every

Wc nl ns
po
�! Rc nl ns.

RMO

(a) a MEMBAR(RY) exists between
every Rc

po
�! Y.

(b) a MEMBAR(XW) exists be-

tween every X
po
�! Wc.

(c) a MEMBAR(XY) exists between

every Xc
po
�! Yc.

(a) a MEMBAR(RY) exists between
every Rc acq

po
�! Y.

(b) a MEMBAR(XW) exists be-

tween every X
po
�! Wc rel.

(c) a MEMBAR(XY) exists between

every Xc
po
�! Yc.

(a) a MEMBAR(RY) exists between
every Rc acq

po
�! Y.

(b) a MEMBAR(XW) exists be-

tween every X
po
�! Wc rel.

(c) a MEMBAR(RY) exists between

every Rc
po
�! Yc.

(d) a MEMBAR(WW) exists be-

tween every Wc
po
�! Wc.

(e) a
MEMBAR(WR) exists between ev-

ery Wc nl ns
po
�! Rc nl ns.

PowerPC

(a) a SYNC exists between every

Rc
po
�! RW and RW

po
�! Wc.

(b) a SYNC exists between every

Xc
po
�! Yc.

(c) every Rc is either part of a RMW
or is immediately followed in pro-
gram order by an existing write to
the same address.

(a) a SYNC exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) a SYNC exists between every

Xc
po
�! Yc.

(c) every Rc is either part of a RMW
or is immediately followed in pro-
gram order by an existing write to
the same address.

(a) a SYNC exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) a SYNC exists between every

Rc
po
�! Rc, Rc

po
�! Wc, and

Wc
po
�! Wc.

(c) a SYNC exists between every

Wc nl ns
po
�! Rc nl ns.

(d) every Rc is either part of a RMW
or is immediately followed in pro-
gram order by an existing write to
the same address.
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Table 4.6: Porting PL programs to extended versions of some system-centric models.

Model PL1 PL2 PL3

TSO+
(a) a MEMBAR(WR) exists be-

tween every Wc
po
�! Rc.

(a) same as PL1.
(a) a
MEMBAR(WR) exists between ev-

ery Wc nl ns
po
�! Rc nl ns.

PC+

(a) a fence exists between every

Wc
po
�! Rc.

(b) every Wc is mapped to an atomic
write.

(a) same as PL1.
(a) a fence exists between every

Wc nl ns
po
�! Rc nl ns.

(b) every Wc nl ns is mapped to an
atomic write.

PSO+

(a) a MEMBAR(WR) exists be-
tween every Wc

po
�! Rc.

(b) a STBAR exists between every

W
po
�! Wc.

(a) a MEMBAR(WR) exists be-
tween every Wc

po
�! Rc.

(b) a STBAR exists between ev-

ery Wc
po
�! Wc and every W

po
�!

Wc rel.

(a) a
MEMBAR(WR) exists between ev-

ery Wc nl ns
po
�! Rc nl ns.

(b) a STBAR exists between ev-
ery Wc

po
�! Wc and every W

po
�!

Wc rel.

RCpc+

(a) every Rc is mapped to an acquire.
(b) every Wc is mapped to a release.
(c) a fence exists between every

Wc
po
�! Rc.

(d) every Wc is mapped to an atomic
write.

(a) every Rc acq is mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.
(c) a fence exists between every

Wc
po
�! Rc.

(d) every Wc is mapped to an atomic
write.

(a) every Rc acq is mapped to an ac-
quire; other Rc mapped to non-sync
or acquire.
(b) every Wc rel is mapped to a re-
lease; other Wc mapped to non-sync
or release.
(c) a fence exists between every

Wc nl ns
po
�! Rc nl ns.

(d) every Wc nl ns is mapped to an
atomic write.

PowerPC+

(a) a SYNC exists between every

Rc
po
�! RW and RW

po
�! Wc.

(b) a SYNC exists between every

Xc
po
�! Yc.

(c) every Wc is mapped to an atomic
write.

(a) a SYNC exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) a SYNC exists between every

Xc
po
�! Yc.

(c) every Wc is mapped to an atomic
write.

(a) a SYNC exists between every

Rc acq
po
�! RW and RW

po
�!

Wc rel.
(b) a SYNC exists between every

Rc
po
�! Rc, Rc

po
�! Wc, and

Wc
po
�! Wc.

(c) a SYNC exists between every

Wc nl ns
po
�! Rc nl ns.

(c) every Wc is mapped to an atomic
write.

Section 4.4 Porting Programs Among Various Specifications 125



4.5 Extensions to Our Abstraction and Specification Framework

While our framework is general and extensible, the methodology we have presented so far deals only with

data read and data write memory operations. Furthermore, parts of our specification methodology, such as

imposing execution order constraints among conflicting operations only, depend heavily upon our simplified

definition for the result of an execution. This simplified abstraction is extremely useful for isolating and

specifying the behavior of shared memory. Furthermore, for most programmers, the simple abstraction and

specifications are sufficient for understanding the behavior of a system. Nevertheless, a small number of

programmers, such as system programmers, may require a more general framework that also encompasses

other types of operations such as those issued to and from I/O devices. Similarly, system designers must

typically deal with ordering semantics for a more general set of events.

To characterize the behavior of realistic shared-memory systems, our framework must be generalized in

two ways: (a) include more events, such as events generated by I/O devices, and (b) extend the notion of

result to include the effect of some of these events. Appendix J identifies some of the issues that arise in

modeling a realistic system and describes possible extensions to our framework to deal with these issues.

Many of the issues we discuss are not particular to multiprocessors and occur in uniprocessor systems as well.

Furthermore, even uniprocessor designs may sacrifice serial semantics for events such as I/O operations or

instruction fetches in order to achieve higher performance. Chapter 5 further describes implementation issues

with respect to I/O operations, instruction fetches, and multiple granularity data operations.

4.6 Related Work

This section compares our abstraction and specification framework with other approaches. We also describe

related work in specifying sufficient conditions for supporting properly-labeled programs.

4.6.1 Relationship to other Shared-Memory Abstractions

Section 4.1.3 presented our general abstraction for shared memory and enumerated the significance of the

three main features modeled by this abstraction: a complete copy of memory for each processor, several

atomic sub-operations for a write, and buffering operations before issue to memory. This abstraction is an

extension of an earlier abstraction we developed jointly with Adve and Hill of Wisconsin [GAG+93]. Below

we discuss some other abstractions for shared-memory that have been proposed as a basis for specifying

memory models. We compare these abstractions mainly on the basis of their flexibility for capturing the

behavior of various memory models and ordering optimizations. The next section considers the various

specification methodologies, most of which are based on the abstractions discussed below.

Dubois et al. [DSB86, SD87] present an abstraction that models the various stages of completion for a

memory operation. They use this abstraction to present specifications for both sequential consistency and

weak ordering. The notion of “perform with respect to a processor” in this abstraction models the effects

of replication and the non-atomicity of writes, essentially capturing the first two features of our abstraction.

One of the problems with this abstraction is that the definition of “perform” is based on real time. Another

shortcoming of the abstraction is that it does not seem to be powerful enough to capture the read forwarding

optimization where the processor is allowed to read the value of its own write before the write takes effect in
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any memory copy. In fact, it seems difficult to capture the behavior of commercial models such as TSO, PSO,

and RMO and other models such as PC, RCsc, and RCpc using Dubois’ abstraction.15 Furthermore, even

though models such as SC or WO can be easily modeled without resorting to the notion of read forwarding,

more aggressive specifications of such models (e.g., conditions shown for SC in Figure 4.7) benefit from a

more general abstraction.

The abstraction proposed by Collier [Col92] is formal and captures replication of data and the non-

atomicity of writes. In fact, the first two features in our abstraction, that of a complete memory copy per

processor and several atomic sub-operations for writes, are based directly on this abstraction. Collier’s

abstraction has also been used by other researchers to specify system requirements for memory models (e.g.,

DRF1 [AH92a]). Yet it has the same shortcoming as Dubois et al.’s abstraction in its inability to capture the

read forwarding optimization. Our abstraction subsumes Collier’s abstraction. In particular, our abstraction

degenerates to Collier’s abstraction if we remove the Rinit and Winit sub-operations and require W
po
�! R

to imply W(i)
xo
�! R(i) in the specification when both operations are to the same location. These notions are

important, however, for properly capturing the read forwarding optimization.

Sindhu et al. [SFC91] also propose an abstraction which is used to specify the TSO and PSO models. This

abstraction is flexible enough to handle the read forwarding optimization, modeling it through a conceptual

write buffer that allows a read to return the value of a write before it is retired from this buffer. However,

the abstraction fails to capture the non-atomicity of writes which is an important feature for modeling the

behavior of several models and systems. More recently, Corella et al. [CSB93] have also proposed an

abstraction for specifying the PowerPC model. This abstraction fails to deal with the lack of multiple-copy

atomicity when the coherence requirement is not imposed on all writes, and also fails to model the read

forwarding optimization.

Yet another way of abstracting the system is to represent it in terms of execution histories [HW90]; Hagit

et al. have also used this type of abstraction to specify the hybrid consistency model [AF92]. Effectively, a

history represents one processor’s view of all memory operations or a combined view of different processors.

This type of abstraction is in essence similar to Collier’s abstraction and shares the same advantages and

disadvantages.

The abstraction used by Gibbons et al. [GMG91, GM92] to formalize the system requirements for

properly-labeled (PL) programs and release consistency is the only abstraction we are aware of that captures

the same set of features as our general abstraction. That is, they model the existence of multiple copies, the

non-atomicity of writes, the out-of-order execution of memory operations, and allowing the processor to read

its own write before the write is issued to the memory system.16 The one shortcoming of this abstraction is

that specifications based on it typically model the system at too detailed a level. For example, Gibbons et al.’s

specifications [GMG91, GM92] involve more events than we use in our specification and inherently depend

on states and state transitions, making it complex to reason with and difficult to apply to system designs with

substantially different assumptions.

The abstraction presented in this chapter extends our previous abstraction [GAG+93] in a few ways. First,

we added the Rinit(i) sub-operation. Our original abstraction had a subtle limitation: given R1
po
�! W

po
�! R2

15See an earlier technical report [GGH93b] for a discussion of this limitation and a possible extension to Dubois’ abstraction that
remedies it.

16While the originalMbase abstraction [GMG91] did not model out-of-order read operations fromthe same processor,the non-blocking
Mbase abstraction [GM92] later removed this restriction.
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to the same location on Pi, our original definition of the initiation condition would require R1(i)
xo
�! Winit(i)

and Winit(i)
xo
�! R2(i). This implicitly orders R1 and R2 (i.e., R1(i) xo

�! R2(i)) which turns out to

be overconstraining in some specifications. Introducing the Rinit(i) sub-operation removes this problem.

Second, we made the atomic read-modify-write condition (Condition 4.7) more aggressive to allow the read

forwarding optimization from a previous write to the read of the read-modify-write. Finally, we simplified the

format of the specifications by removing some of the intermediate ordering relations (such as sxo
�! [GAG+93]).

4.6.2 Related Work on Memory Model Specification

This section describes the various approaches that have been proposed for specifying system requirements

for memory models. We compare the various specification methodologies primarily based on the level of

aggressive optimizations that can be captured and exposed by each technique.

One of the key observations in our specification methodology is that the behavior of most memory models

can be captured without constraining the execution order among non-conflicting operations. For example,

we showed equivalent conservative and aggressive specifications for sequential consistency (Figures 4.4 and

4.7), where the aggressive specification imposes execution orders among conflicting operations only and yet

maintains the same semantics as the conservative specification. Such aggressive specifications expose a much

wider range of optimizations and allow the specification to be used for a wider range of system designs.

We originally made the observation that memory models can be specified aggressively by only imposing

constraints on conflicting operations as part of our joint work with Adve and Hill [GAG+93]. The above

observation has been previously made by others as well. For example, Shasha and Snir [SS88] exploit a

similar observation in identifying a minimal set of orders (derived from the program order) that are sufficient

for achieving sequential consistency for a given program. Collier [Col92] also uses this observation for

proving equivalences between different sets of ordering constraints. However, previous specifications of

memory models do not exploit this observation to its full potential. Specifically, many of the specifications

impose unnecessary ordering constraints on non-conflicting pairs of memory operations; even Shasha and

Snir’s implementation involves imposing delays among non-conflicting memory operations that occur in

program order. In contrast, our framework presents a unified methodology for specifying ordering constraints

that apply to pairs of conflicting memory operations only.

There have been numerous specification techniques that lead to conservative constraints. Dubois et al.’s

specification style [DSB86, SD87] places unnecessary constraints on memory ordering since it constrains

the execution order among accesses to different locations in a similar way to the conservative conditions

for SC in Figure 4.6. This same limitation exists with the specifications for TSO and PSO provided by

Sindhu et al. [SFC91] and the specification of release consistency provided by Gibbons et al. [GMG91,

GM92]. As discussed above, Collier [Col92] does observe that two sets of conditions are indistinguishable

if they maintain the same order among conflicting accesses, yet his methodology for specifying conditions

constrains order among non-conflicting operations just like the other schemes. Therefore, none of the

above methodologies expose the optimizations that become possible when only the order among conflicting

operations is constrained.

Adve and Hill’s specification of sufficient conditions for satisfying DRF1 [AH92a] is one of the few

specifications that presents ordering restrictions among conflicting memory operations only. However, parts

of these conditions are too general to be easily convertible to an implementation. While Adve and Hill provide
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a second set of conditions that translates more easily into an implementation, this latter set of conditions are not

as aggressive and restrict orders among operations to different locations. Finally, because their specification

is based on Collier’s abstraction, their approach does not easily lend itself to specifying models that exploit

the read forwarding optimization.

In designing our specification technique, our primary goals have been to provide a framework that covers

both the architecture and compiler requirements, is applicable to a wide range of designs, and exposes as many

optimizations as possible without violating the semantics of a memory model. Our specification framework

could conceivably be different if we chose a different set of goals. For example, with the general nature of our

framework, the designer may have to do some extra work to relate our conditions to a specific implementation.

Had we focused on a specific class of implementations, it may have been possible to come up with an

abstraction and a set of conditions that more closely match specific designs. Similarly, our methodology of

only restricting the order among conflicting operations is beneficial mainly at the architectural level. This

complexity would not be very useful if we wanted to only specify requirements for the compiler. And in fact,

such complexity is undesirable if the specification is to only be used by programmers to determine the set of

possible outcomes under a model (however, we strongly believe programmers should reason with the high-

level abstraction presented by programmer-centric models). Nevertheless, we feel the benefit of providing a

uniform framework that applies to a wide range of implementations outweighs any of its shortcomings.

In summary, our specification methodology exposes more optimizations and is easier to translate into

aggressive implementations than previous methods. Given the generality of our framework, it would be

interesting to also use it to specify the system requirements for other models that we have not discussed in this

thesis. The fact that a uniform framework may be used for specifying different models can greatly simplify

the task of comparing the system implications across the various models.

4.6.3 Related Work on Sufficient Conditions for Programmer-Centric Models

There have been a number of attempts at specifying and proving the correctness of sufficient conditions for

supporting various programmer-centric models. The seminal work in this area has been done by our group at

Stanford and Adve and Hill at Wisconsin, with some of the work done jointly.

The original papers on the properly-labeled (PL) [GLL+90] and the data-race-free-0 (DRF0) [AH90b]

frameworks each provide sufficient conditions for satisfying the relevant programmer-centric model, along

with proofs of correctness for these conditions. For the PL work, the sufficient conditions were in the form

of the RCsc model. Adve and Hill later extended their data-race-free model to distinguish between acquire

and release operations similar to the PL framework, and provided a new set of conditions for satisfying

DRF1 [AH93]. Gibbons et al. [GMG91, GM92] have also provided sufficient conditions, along with proofs,

for supporting properly-labeled programs. The sufficient conditions presented in the first paper [GMG91]

were limited to processors with blocking reads, but this restriction was alleviated in a later paper [GM92].

As part of our joint work with Adve and Hill on the PLpc model, we identified the optimizations allowed

by this model along with specifying ports of PLpc programs to a few system-centric models [GAG+92].

In a later paper [AGG+93], we formally specified the sufficient conditions for supporting PLpc programs

and provided correctness proofs for both these conditions and the conditions specified for porting PLpc

programs to other models. The conditions for supporting PLpc programs were specified using our aggressive

specification methodology [GAG+93], and therefore imposed execution orders among conflicting operations
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only, thus exposing a large set of ordering optimizations. The sufficient conditions presented in this chapter

for supporting the three properly-labeled models, along with the conditions for porting properly-labeled

programs, are an extension of the above work on PLpc. Furthermore, the conditions for porting PL programs

provided in this chapter cover a wider range of system-centric model compared to our previous work in

specifying such ports for the PLpc model [GAG+92].

Hagit et al. [AF92, ACFW93] have also proposed hybrid consistency as a set of sufficient conditions for

supporting a few programmer-centric models that they have defined. However, as we mentioned in Chapter 3,

hybrid consistency places severe restrictionson the reordering of operations compared to analogous conditions

for PL and DRF programs, partly because some of the programmer-centric models defined by Hagit et al. are

overly restrictive.

Compared to the sufficient conditions presented in this chapter (or in our work on PLpc [AGG+93]), many

of the other specifications are more conservative and often less precise. The evolution of the reach condition

is indicative of the latter point. The main purpose for the reach condition is to disallow the types of anomalous

executions that arise if we allow “speculative” write sub-operations to take effect in other processors’ memory

copies. In most previous work, such conditions were either implicitly assumed or assumed to be imposed by

informal descriptions such as “intra-processor dependencies are preserved” [AH90b] or “uniprocessor control

and data dependences are respected” [GLL+90]. Some proofs of correctness (e.g., proof of correctness for PL

programs executing on the RCsc model [GLL+90]) formalized certain aspects of this condition, but the full

condition was never presented in precise terms. Later work by Adve and Hill specified this condition more

explicitly in the context of the DRF1 model [AH92a] and proved that it is sufficient for ensuring sequentially

consistent results for data-race-free programs executing on models such as WO and RCsc. More recently,

we jointly formalized an aggressive form of this condition as part of specifying sufficient conditions for

PLpc [AGG+93]. The reach condition presented in this thesis is based upon the above work on PLpc and

constitutes the most precise and aggressive set of conditions that we are aware of to eliminate anomalous

executions due to speculative writes.

4.6.4 Work on Verifying Specifications

Specifying system requirements often involves subtle issues that may lead to errors in the specification or im-

plementation based on the specification, making automatic verification of specifications and implementations

an important research area.

There are several types of verification tools that are interesting. One use is to verify that two specifications

are equivalent, or that one is stricter than the other. For example, such a tool may be used to check the

equivalence of the aggressive and conservative specifications for various models. Another use is to verify that

an implementation satisfies the constraints imposed by a specification. This is somewhat similar to verifying

two specifications, except the specification of an implementation may be provided at a much lower level

of abstraction compared to the specification of a memory model. Yet a third use is to automatically verify

the outcome of small programs or traces or to verify the correctness of simple synchronization primitives

under a given specification. A tool that verifies the outcome of small programs or traces may also be used

to probabilistically check the equivalence (or stricter relation) between two specifications by comparing the

behavior of each specification across a large set of examples (potentially generated in a random fashion). A

side benefit of attempting to verify a given specification using any of the above methods is that it will require
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the description of the model to be formal and precise. This alone can expose a number of subtle issues to the

designers of the model.

Park and Dill [PD95] have described a verifier for the Sparc TSO, PSO, and RMO models that is capable

of producing the possible outcomes of very small programs and may also be used to verify the correctness of

simple synchronization primitives. Hojati et al. [HMTLB95] have also suggested automatic tools for verifying

the correctness of an implementation against a set of properties and the correctness of simple programs in

the context of the Sparc TSO and PSO models. Finally, Collier [Col92] has suggested a number of simple

test programs that may be executed on a target system to identify the type of optimizations that are exploited.

These tests are limited in scope, however; they do not check for many of the aggressive optimizations that

are used in systems today and the fact that a system passes a given test fails to conclusively determine that

the system does not exploit a given optimization. Overall, there remain a lot of opportunities and challenges

for research in this area.

4.7 Summary

This chapter described a formal framework for specifying sufficient system requirements that precisely

capture the semantics of various memory consistency models. Our specification methodology has two major

advantages compared to previous approaches. First, it exposes many aggressive implementation optimizations

that do not violate the semantics of a given model. The key observation is to constrain the execution order

among conflicting operations only; this turns out to be sufficient for specifying the semantics of the models

described in this thesis. The second advantage of our methodology is that converting our specifications into

either conservative or aggressive implementations and conversely verifying that an implementation satisfies

the specification are relatively straightforward. These characteristics aid the designer in implementing a

memory model correctly and efficiently across a wide range of system designs. The next chapter describes

how these specifications can be translated into efficient implementations.
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Chapter 5

Implementation Techniques

The choice of a memory consistency model often influences the implementation of the entire system, in-

cluding the hardware, compiler, and runtime or operating system. The three most important issues from an

implementation point of view are correctness, performance, and complexity or cost. The memory model, or

the corresponding system requirement specification, determines the set of ordering constraints for a correct

implementation. The challenge for a designer is to maintain correctness while achieving the full performance

potential of the chosen memory model and limiting the complexity or cost of the design.

This chapter describes a wide range of practical techniques for efficiently supporting various memory

models, focusing on both architecture and compiler issues. A major portion of the chapter is dedicated

to implementation issues related to the architecture, with a focus on scalable designs based on hardware-

coherent caches and general interconnects. We begin by describing the notion of cache coherence which

is often subsumed by the specification of a memory model (Section 5.1). Section 5.2 enumerates several

architectural techniques (e.g., lockup-free caches) that take advantage of the ordering optimizations enabled

by relaxed memory models. Since unconstrained ordering optimizations can violate the semantics of a given

memory model, the implementation must also provide extra mechanisms that appropriately limit the scope of

various optimizations. These mechanisms are described in detail in Section 5.3. Finally, Section 5.4 presents

several promising techniques that utilize a higher degree of hardware complexity to enable more aggressive

optimizations. While we mainly focus on systems with scalable interconnects and hardware-coherent caches,

Sections 5.5 and 5.6 describe implementation techniques that are applicable to systems that use more restrictive

interconnects (e.g., bus or ring) or support cache coherence in software.

The implementation of a memory model is influenced by a number of other issues such as the dynamic

mapping of processes to processors, interaction with other latency hiding techniques such as prefetching or

multiple contexts, and supporting other types of events such as I/O operations. These topics are covered in

Sections 5.7-5.9. Finally, to fully realize the performance benefits of relaxed memory models, it is important

to also exploit the compiler optimizations that are enabled by the model. To this end, Section 5.10 describes

methods for determining the set of safe compiler optimizations for a given model. Discussion of related work
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is spread throughout the chapter.

5.1 Cache Coherence

The caching of shared data leads to the presence of multiple copies for a given memory location. Cache

coherence refers to keeping such copies up-to-date with respect to one another. In what follows, we briefly

describe issues related to cache coherence and provide an abstraction for it. Section 5.3.2 provides a further

formalization of the correctness conditions for cache coherence protocols. A given cache coherence protocol

can be usually adapted to support a wide range of memory models, allowing us to leverage the large body of

work on correct and efficient cache coherence implementations.

While cache coherence is a prerequisite for achieving correct memory behavior in systems that allow the

caching of shared data, it is not a sufficient condition and constitutes only a small subset of the constraints

imposed by a memory model. For example, cache coherence does not cover ordering constraints implied

by program order relations among operations to different locations. Furthermore, many of the constraints

imposed by a memory model apply regardless of whether a system supports caches. Finally, it may be difficult

to distinguish the cache coherence protocol from the overall protocol used to maintain consistency in some

systems. Nevertheless, in most systems, the cache coherence protocol is an important part of the overall

scheme for supporting a memory model.

5.1.1 Features of Cache Coherence

There are two distinct features for any cache coherence protocol: (i) the mechanism for locating all copies of

a memory location, and (ii) the mechanism for eliminating stale copies. Bus-based multiprocessors typically

use a snoopy scheme to locate cached copies, whereby addresses transmitted on the bus are observed by all

caches. A more scalable approach is to keep a directory per memory location that identifies the list of copies.

The simplest representation for the directory information is a full bit vector, as used in DASH [LLG+90],

where there are as many bits as the maximum number of sharers. A number of more scalable representations

have been proposed based on the observation that most of memory is either not cached or cached by only a

few processors at any given time [Web93, Sim92, CKA91].

To keep the copies up-to-date, a write must eliminate the stale data at the other copies. This can be

accomplished by either invalidating the stale data or updating the cached data to the newly written value.

The invalidation or update of a copy is often accompanied by an acknowledgement response that signals

completion. While most designs are either invalidation-based or update-based, a hybrid design may statically

or dynamically choose between the two schemes on a per memory location basis [KMRS88].

Systems that support cache coherence in hardware often maintain coherence at the granularity of several

words, typically corresponding to the cache line size. We refer to this as the coherence granularity. A

larger coherence granularity helps amortize the overhead of state and tag bits in caches and other state bits

associated with directory-based schemes. Cache copies are typically fetched at the granularity of a cache

line. In addition, invalidations eliminate a whole line even though the write that causes the invalidation is to

a single word. Large coherence granularities present an obvious performance trade-off since data with good

spatial locality benefit from operations on a cache line granularity, while data with poor spatial locality may

experience more cache misses due to false sharing [TLH94].
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Another common and important function of the cache coherence protocol is to serialize the effect of

simultaneous write operations to a given location. For example, consider two processors simultaneously

issuing a write to the same location with different values. Cache coherence ensures that the two writes

are observed in the same order by all processors, with the same value persisting at all copies. This is

effectively the same notion as the coherence requirement introduced in Chapters 2 and 4. In terms of system

requirements discussed in Chapter 4, coherence implies that for two writes, W1 and W2, to the same location,

W1(i) xo
�! W2(i) for all i. While most specifications impose this constraints on all writes, some specifications

(e.g., sufficient conditions for PL1, PL2, and PL3) limit the scope of this constraint to a subset of writes.

However, as we will later discuss in Section 5.3.2, most practical implementations provide this serialization

for all writes.

5.1.2 Abstraction for Cache Coherence Protocols

The techniques used to support a memory model are naturally influenced by some inherent characteristics of

the underlying cache coherence protocol. This section presents a general abstraction for directory-based cache

coherence protocols that captures the relevant characteristics of such protocols. This abstraction provides a

concrete base for the various implementation techniques that are discussed in the later sections.

For purposes of describing a cache coherence protocol, it is often useful to distinguish between the

following two components: (i) the coherence protocol within a processor’s cache hierarchy, and (ii) the

coherence protocol across different processors’ caches. In what follows, we will discuss the states and events

corresponding to the above two components.

Coherence for the Processor Cache Hierarchy

We begin by considering the coherence protocol within a processor cache hierarchy. In general, the cache

hierarchy consists of n levels (typically 2 to 3) of caches, often with m levels (typically zero or one) of write

through caches and (n � m) levels of write back caches at the lower levels of the hierarchy (farther away

from the processor). The use of write back caches often leads to a substantial reduction in write traffic to the

memory system. Typically, each cache line has a state and tag associated with it. For a simple write through

cache, the state comprises of a single valid bit. For a simple write back cache, there are three states associated

with a cache line: invalid, clean (or shared), and dirty (or modified exclusive). The clean or shared state

signifies that the cached copy is valid, other processors may be caching the data, and memory is up-to-date.

The dirty or modified exclusive state signifies that no other processor is caching the data and that the data in

memory is stale.

To simplify the design of cache hierarchies, designers often enforce the inclusion (or subset) property

that requires the contents of each cache to be a subset of the lower cache in the hierarchy. The state bits in

each cache are also extended to keep track of the presence or state of the line in the next higher level cache.

For example, the dirty state in a write back cache may be expanded to three states: dirty-invalid (no copy in

higher level), dirty-clean (clean copy in higher level), and dirty-dirty (dirty copy in higher level).

More sophisticated cache designs may also associate extra states with a cache line. For example, some

write through caches maintain multiple valid bits per cache line to obtain better write performance [OMB92].

Similarly, write back caches may maintain more states per line to optimize certain transitions especially in
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the context of snoopy (bus-based) coherence protocols. For example, a clean exclusive state may be used to

signify that no other processor is caching the data, yet the data in memory is up-to-date, or a dirty shared state

may be used to allow the cache to supply data to other processors without updating memory. Finally, some

lockup-free cache designs may use extra states per line to signify pending requests to the memory system

that are awaiting a response (see Section 5.2.3). The implementation techniques discussed in the following

sections can be easily adapted to deal with these extra cache states.

The cache hierarchy is responsible for servicing processor requests and external requests that are forwarded

to it. To achieve the above, various messages are exchanged between the processor and cache hierarchy,

among the caches in the hierarchy, and between the cache hierarchy and the external interface (i.e., to memory

and other processor caches). Figure 5.1(a) illustrates the organization of a typical cache hierarchy. Messages

that travel in the direction of the external interface are called outgoing messages, while those that travel

towards the processor are called incoming messages. As shown in the figure, these messages are often

buffered among the different levels to enhance performance. Various buffer organizations may be used. For

example, Figure 5.1(b) shows an organization with separate buffers for request and reply messages which

may make it easier to avoid deadlocks in message handling and buffer management. Section 5.2.3 discusses

the impact of buffer organization on the ordering among messages and the types of solutions that may be used

to avoid deadlock due to finite buffer space.

The processor issues two types of memory operations to the first level cache: a read operation that expects

a data reply, and a write operation with data that typically expects a completion or acknowledge reply. Each

level in the cache hierarchy attempts to service the memory operations issued by the processor and otherwise

passes the request to the lower level cache. If the lowest level cache fails to service the request, the request

is sent to the external interface and is eventually serviced either by memory or by another processor’s cache

hierarchy. Similarly, requests from the external interface may be passed from the lower to the higher level

caches. Table 5.1 enumerates typical messages that are exchanged within a processor cache hierarchy to

service requests from either the processor (outgoing request) or the external interface (incoming request).
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Table 5.1: Messages exchanged within the processor cache hierarchy. [wt] and [wb] mark messages particular
to write through or write back caches, respectively. (data) and (data*) mark messages that carry data, where
(data*) is a subset of a cache line.

Mode Outgoing Request Incoming Reply Incoming Request Outgoing Reply

read read (data) read [wb] read (data) [wb]
read-exclusive [wb] read-exclusive (data) [wb] read-exclusive [wb] read-exclusive (data) [wb]

invalidation- exclusive [wb] exclusive [wb]
based write-read (data*) [wt] invalidate-ack invalidate (invalidate-ack)

write (data*) [wt]
write-back (data) [wb]
(replacement-hint)

read read (data) read [wb] read (data) [wb]
update-read (data*) read-exclusive (data) [wb] update-read (data*) [wb]

update- update (data*) update update (data*) (update-ack)
based update-exclusive [wb]

update-ack
write-back (data) [wb]
(replacement-hint)

The table shows messages for both write through and write back caches using either an invalidation or

update based coherence scheme. For simplicity, we do not show messages related to prefetch or uncached

memory operations, and negative acknowledgement (nack) replies that force a retry of the original request

(the significance of nack replies is discussed in Appendix K). The actual protocol and types of messages used

within a processor’s cache hierarchy are often dictated by the commercial microprocessor used in a design.

Invalidation-Based Cache Hierarchy Consider the invalidation-based scheme with write back caches. We

begin by discussing the outgoing requests. A read operation by the processor can be serviced by the cache if

the line is present in either clean or dirty state. Otherwise, the cache issues an outgoing read request, which is

eventually satisfied by an incoming reply that returns a cache-line of data. A write operation by the processor

can be serviced by the cache if the line is present in dirty state. Otherwise, the cache issues an outgoing

read-exclusive request. The incoming read-exclusive reply returns a cache-line of data in addition to signaling

that the write has been serialized with respect to other writes to the same location. As an optimization, the

cache may issue an exclusive (or upgrade) request if the line is already in clean state (i.e., the cache already

has the latest data). An exclusive (or upgrade) reply is similar to the read-exclusive reply but does not return

any data. The exclusive request may still need to be satisfied by a read-exclusive reply that carries the new

data (or must be reissued as a read-exclusive request) if another processor acquires the cache line in exclusive

mode in the interim.

Read-exclusive or exclusive requests that reach the external interface eventually lead to the invalidation

of copies in other processors’ caches. The invalidate-ack reply signals the completion of these invalidations;

Section 5.4.1 discusses the distinction between conservative and aggressive notionsof completion. Depending

on the design, the invalidate-ack reply may either be merged with the read-exclusive or exclusive reply or

explicitly sent as a separate message (or as multiple invalidate-ack replies per processor copy). Section 5.3.5

describes designs where the read-exclusive or exclusive replies may be sent earlier than the invalidate-ack

reply. The fetch and invalidation granularity are the same in most design, though this is not the case in all
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designs.

The replacement of a dirty line from a cache leads to an outgoing write-back request that carries the only

valid copy of the data. Some cache designs also provide the option of signaling the replacement of a clean

line through an outgoing replacement-hint request; this latter message can be safely dropped without affecting

correctness in most designs (e.g., the directory information will conservatively consider the cache as still

sharing a copy). There is typically no reply associated with either type of replacement request. Finally, some

designs may overload the outgoing read-exclusive reply for doing a write-back, thus alleviating the need for

two separate message types.

We now consider incoming requests. A cache hierarchy may receive an incoming invalidate request

caused by a write from another processor. In most cache designs, there is no explicit invalidate-ack reply

to signal when the clean copy is actually invalidated in the hierarchy; we further discuss this optimization

in Section 5.4.1. The cache hierarchy with a dirty copy of a cache line is also responsible for servicing

read or read-exclusive requests from other processors since the data in memory is stale. An incoming read

request alters the state of the cache line from dirty to clean, while a read-exclusive request alters the state to

invalid. In some designs, such as a snoopy bus-based scheme, the incoming read or read-exclusive request

may be broadcast to all processor cache hierarchies as opposed to only the cache hierarchy with the dirty

copy. A cache hierarchy that does not have the line in dirty mode simply ignores an incoming read request,

and implicitly treats the incoming read-exclusive request as an invalidate request.

A processor write is handled differently in a write through cache. The write leads to an outgoing write

request that carries the newly written data. As an optimization, outgoing write requests to the same or

consecutive addresses may be merged into a single write request of a larger granularity. Caches that use an

allocate-on-write policy may issue a write-read request if the line is not already in a valid state. The write-read

request is similar to a write request except it expects a read reply that supplies the data for the portion of the

cache line that is not written to. With respect to incoming requests, a write-through cache does not need to

service incoming read and read-exclusive requests since memory is always kept up-to-date.

Update-Based Cache Hierarchy We first consider the update-based scheme with write through caches,

referring to the message types in Table 5.1. Processor reads work exactly the same as for invalidation-based

coherence. Processor writes are also similar, though other cache copies are updated with the new value

instead of being invalidated. A processor write generates an outgoing update request that carries the newly

written data. The update reply signals that the write has been serialized with respect to other writes to the

same location. In designs with more than a single level cache, the update reply (or update-exclusive reply

described below) may carry data in order to update lower level caches on its incoming path; this issue is

described in more detail in Section 5.3.2. The update-ack reply is analogous to the invalidate-ack reply and

signals the completion of the updates. The incoming update-ack reply may either be merged with other replies

such as the update reply or may be sent as a separate message. Similar to invalidation-based caches, updates

to same or consecutive addresses may be merged into a single update request. Similarly, a write may lead

to an update-read request which is analogous to the write-read request; the read and update replies are often

merged in this case.

Using a write back cache allows a cache copy to be maintained in a dirty state in some cases, thus

alleviating the need to propagate updates on every write. For example, the external interface may respond to
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an update or update-read request with an update-exclusive or read-exclusive reply if no other processor caches

currently have a copy, thus signaling the cache to maintain the copy in dirty state. A cache that maintains a

dirty copy may receive incoming read or update-read requests, both of which lead to an outgoing read reply

and alter the state of the line to clean; the update-read request also updates the stale cache copy (similar to an

incoming update request).

Hybrid protocols may selectively choose between an invalidate or update policy and potentially alter the

policy on a per cache line basis. Such protocols use a combination of the message types discussed above to

maintain coherence within the processor cache hierarchy.

Coherence across Different Processor Cache Hierarchies

Coherence actions across different processor cache hierarchies are triggered by outgoing requests that flow

to the external interface. The coherence protocol is responsible for locating the most up-to-date copy for read

requests, and for locating and eliminating stale copies for write requests. Requests such as a read-exclusive

request involve both the read and the write functionality. Below, we briefly describe the states and events

associated with simple snoopy and directory protocols for supporting this functionality.

In a snoopy protocol, outgoing requests that reach the external interface are broadcast to all processor

cache hierarchies. Each cache hierarchy determines whether it needs to take any actions. For example, a

read or read-exclusive request must be serviced by the hierarchy that has the line in a dirty state. In an

invalidation-based protocol, the read-exclusive request also leads to the invalidation of copies in caches with

the line in clean state. The memory is responsible for supplying valid data if none of the caches have the

line in dirty state; this case may either be detected by delaying the response from memory until all processor

caches have had a chance to respond or by maintaining extra state (i.e, a single bit) at the memory to determine

whether the memory copy is up-to-date.

In a directory protocol, directory state is logically maintained for each line of memory (typically the same

granularity as the cache line). A given memory line may be in one of three possible states: uncached, shared,

and exclusive. The uncached state corresponds to the only valid copy residing in memory. The shared state

corresponds to both memory and one or more processor caches having a valid copy. Finally, the exclusive

state corresponds to a single processor cache owning the valid copy. The protocol typically associates extra

information with each line to identify the set of sharers or the owner processor. Requests are first sent to the

home node where the given memory location resides. Read or write requests to a line in exclusive state are

forwarded from the home to the processor cache with the exclusive copy. Other requests are satisfied at the

home memory, with write requests potentially causing invalidate or update messages to be sent to other cache

copies.

5.2 Mechanisms for Exploiting Relaxed Models

With the widening gap between computation and memory access speeds, the overlap of memory operations

with other memory operations and computation within a given thread of execution has become an impor-

tant factor in achieving high performance in both uniprocessor and multiprocessor systems. The effect of

overlapping optimizations is to partially or fully hide the latency of memory operations. Such optimizations

are especially important in multiprocessors due to the typically higher number of cache misses and larger
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Figure 5.2: Typical architecture for distributed shared memory.

memory latencies. The performance potential for a multiprocessor implementation depends on two factors:

(a) the overlap and reordering optimizations enabled by the memory model, and (b) the extent to which the

implementation exploits these optimizations.

Figure 5.2 shows a typical distributed shared memory architecture. Read and write operations issued

by the processor may be serviced at various levels of the memory hierarchy: by the processor’s buffers

or caches, by the memory, or by another processor’s buffer or cache. Memory latency may be hidden by

supporting multiple outstanding memory operations from each processor and servicing memory operation

as early as possible. To attain the maximum benefit from these optimizations, it is important to (a) provide

sufficient resources, often in the form of buffers, to support multiple outstanding memory operations, (b)

reduce or eliminate serialization in issuing and servicing memory operations,1 and (c) provide a balanced

design with optimizations applied at all levels. The latter point is extremely important; for example, an

aggressive processor that supports multiple outstanding operations also requires an aggressive cache and

memory system.

This section describes architectural mechanisms for supporting aggressive overlapping optimizations,

exposing a variety of techniques (many of which are derived from uniprocessors) along with the associated

complexities of handling multiple outstanding operations. Additional mechanisms for appropriately limiting

the scope of these optimizations to satisfy the constraints of specific multiprocessor memory models are

discussed in the next section.
1Serialization in handling memory operations can limit the achievable number of outstanding operations (i.e., equal to approximately

the time to service a typical operation divided by the serialization time).
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5.2.1 Processor

The opportunity to overlap memory operations with other operations and computation from the same thread

begins at the processor. To effectively hide the latency of memory accesses, the processor requires the ability

to continue past pending operations to find other computation and memory accesses to execute. The extent

of this ability is primarily determined by the technique used for scheduling instructions.

We categorize processors into two groups: in-order issue and out-of-order issue. An in-order issue, or

statically scheduled, processor checks for data and structural hazards at decode time [HP90]. The issue of

the instruction is delayed in case there is a hazard, leading to an in-order issue and execution of instructions.

Typical sources of hazards are source data that is not yet computed (data hazard) or busy resources such

as computation units or full buffers (structural hazards). In contrast to an in-order issue processor, an

out-of-order issue, or dynamically scheduled, processor decouples the decoding of an instruction from its

issue and execution, with the execution unit assuming the responsibility for detecting structural and data

hazards [HP90]. The out-of-order issue and execution of instructions allows the processor to continue

decoding and executing instructions even though some previous instructions may be delayed due to data

dependences or busy functional units. While out-of-order issue designs are substantially more complex

than in-order issue designs, they are becoming more common place in the new generation of commercial

processors.

Consider the potential overlap between memory operations and computation with in-order issue proces-

sors. Write operations are typically issued into a write buffer and are overlapped with future computation

since the processor does not inherently require a response for the write. Therefore, as long as there is sufficient

space to buffer writes, the processor does not stall due to pending writes. Read operations are inherently

different from write operations since future instructions may depend on the value returned by the read. Simple

in-order issue processors often support blocking reads which stall the processor at the read operation until the

return value arrives. To allow overlap of read operations with future instructions, the processor can support

non-blocking reads, thus postponing the stall until the first instruction that uses the read return value. The

possible overlap in typical code generated by current compilers is rather small since the use is often within

a few instructions from the read instruction [GGH92], but may be enhanced by instruction schedulers that

attempt to further separate the read instruction from its use [FJ94]. Therefore, the potential of overlap for

non-blocking reads is highly sensitive to instruction scheduling.

Now consider the potential overlap among different memory operations given in-order issue processors.

We divide overlap of memory operations into three categories: (i) overlap of a write followed by a read

(write-read), (ii) overlap of multiple writes (write-write), and (iii) overlap of a read with a following read

or write (read-read or read-write). The first two types of overlap effectively allow the processor to hide the

latency of writes. The third type of overlap (read-read or read-write) allows the latency of reads to be partially

hidden as well, but obviously requires a processor with non-blocking reads. Since there can be multiple

outstanding memory operations, the memory system has the opportunity to overlap the service of multiple

operations from the same thread. However, the number of outstanding operations at any given time may be

small (e.g., zero or one) unless instructions are carefully scheduled.

Dynamic scheduling provides the opportunity for the processor to continue past an outstanding load and

the instructions that are dependent on the return value. The use of dynamic scheduling to hide memory

latency dates back to the IBM Stretch [Buc62] and IBM 360/91 [Tom67]. Figure 5.3 shows a simple example
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of this type of overlap. The program segment in Figure 5.3(a) shows two load instructions each followed

immediately by the use of the return value. Assume both load instructions are long latency cache misses. An

in-order issue processor would issue the first load, stall at the use until the return value is back, issue the add,

and then issue the second load. Even with non-blocking reads, no overlap is achieved between the two read

operations. Figure 5.3(b) shows an abstract view of an out-of-order issue processor, modeled as a lookahead

window of instructions where the processor can issue any ready instructions from the window. The processor

starts by issuing the load to A. The add instruction that uses the return value of the load is not ready to be

issued. However, the processor can proceed to issue the load to B while the load of A is outstanding. The add

instructions are issued later when the relevant read data is returned to the processor. The effective overlap that

is achieved is illustrated in Figure 5.3(c). The same type of overlap would be possible with an in-order issue

processor (with non-blocking reads) if the original code is scheduled as in Figure 5.3(c), again illustrating

that in-order issue processors are more sensitive to the initial instruction schedule.

To be effective in hiding large latencies, dynamic scheduling must be complemented with techniques

such as register renaming [Kel75], dynamic branch prediction [LS84], and speculative execution. Register

renaming alleviates write-after-read (WAR) and write-after-write (WAW) dependences that would otherwise

delay the execution of future instructions. Dynamic branch prediction increases the lookahead capability

of the processor while speculative execution allows the processor to execute instructions past unresolved

branches.2 Appendix L provides a few examples of how speculative execution can help in exploiting a

relaxed model.

The following sections describe how the various components in the memory system can exploit the overlap

among memory operations that is exposed by the processor.

5.2.2 Read and Write Buffers

Memory operations are typically buffered after they are issued by the processor. The main purpose for

buffering is to avoid processor stalls when the memory system cannot accept operations as fast as the

processor issues them. This section briefly discusses buffering optimizations such as forwarding, bypassing,

merging, and out-of-order (non-FIFO) service, that are enabled by relaxed models. Section 5.3.5 describes

2Limited forms of speculative execution can also be supported in in-order issue processors, e.g., through boosting [SLH90].
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how buffers can also play an important role in enforcing the appropriate order among memory operations as

dictated by a memory model.

The processor issues two types of memory operations: a read operation along with an address, and a write

operation along with an address and relevant data. In-order issue processors issue memory operations to

the buffer in program order with valid address and data. Out-of-order issue processors may issue operations

out of program order; however, some designs may issue place-holders for unready memory operations with

unresolved addresses or values in order to allow the first level of buffering to keep track of program order

among the operations. In the discussion below, we will assume two logical buffers, one for reads and

another for writes. In an actual implementation, the two logical buffers may be physically merged or may be

implemented as several separate buffers.

Consider the logical write buffer first. Assume write operations are issued to the write buffer in program

order. A simple write buffer maintains first-in-first-out (FIFO) order in issuing the writes to the next level

in the memory hierarchy. More aggressive buffers may allow non-FIFO issue to alleviate issue stalls. For

example, the write at the head of the buffer may still be unresolved (i.e., given an out-of-order issue processor)

or the next level in the memory hierarchy may temporarily not be able to accept operations to certain addresses

(e.g., if there is already an outstanding operation to that line). In such cases, non-FIFO issue can improve the

service rate for writes, thus reducing the chance of processor stalls due to buffer overflow.

Another common optimization for write buffers is write merging. The purpose of write merging is to

coalesce writes to the same address or nearby addresses into a single write. In an aggressive implementation,

each entry in the write buffer can maintain data for a set of consecutive addresses, typically corresponding to

the line size for the next level in the memory hierarchy. When a write is issued to the write buffer, the write

buffer first searches for an already existing entry for the given address range. In case such an entry already

exists, the new data is merged in with the previous data for that entry. Otherwise, a new entry is allocated

for the write. In this way, before an entry is retired, any writes issued to the buffer that match the entry are

merged and coalesced into a single write with potentially more data. Of course, a side effect of merging and

coalescing writes is that writes may be serviced in a different order relative the order they are issued to the

buffer.

We now consider optimizations for reads. Read operations are more critical than write operations since

the processor typically requires the return value before proceeding with subsequent computation. Therefore,

it is beneficial to allow a read to be serviced before pending writes that have already been issued. This requires

the read to bypass any writes in the write buffer. To ensure the correct value for the read, such bypassing is

only allowed if the address of the read does not match any of the write addresses. This requires an associative

match, but the match can be made conservative by comparing fewer address bits. The read is simply stalled if

an address match is detected. An optimization in this case is to service the read right away by forwarding the

value of the latest write in the buffer that matches its address; this latter match requires comparing all address

bits. Both bypassing and forwarding can lead to the reordering of reads with respect to writes relative to the

order in which they are issued by the processor. Finally, similar to writes, non-FIFO issue of reads from the

buffer may also be beneficial.

The next section describes cache optimizations that exploit relaxed models. An aggressive cache design

may reduce the benefits from optimizations such as bypassing and forwarding by increasing the service rate

of buffers which increases the chances of an operation encountering an empty buffer; this effect is illustrated
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by our simulation results in Section 6.2.3 of the next chapter. Finally, the optimizations discussed above

(i.e., non-FIFO issue, merging, bypassing, and forwarding) may also be beneficial at the lower levels in the

memory hierarchy.

5.2.3 Caches and Intermediate Buffers

To exploit overlap among memory operations requires a lockup-free cache that is capable of servicing

memory operations while previous operations are still outstanding [Kro81]. A standard blocking cache

services processor requests one at a time. Therefore, only a single processor request is serviced during a

long latency cache miss. It is reasonably straightforward to extend a blocking cache design to allow requests

that hit in the cache to be serviced while there is an outstanding miss. To achieve higher performance, it

is important to also allow multiple outstanding misses. Lockup-free caches are inherently more complex

than standard blocking caches. However, since they play a critical role as a latency hiding mechanism, their

use is becoming more widespread both in uniprocessor and multiprocessor designs. The first part of this

section describes various design issues for lockup-free caches. The second part considers the design of the

intermediate buffers between caches, and issues such as deadlock that arise in handling multiple messages in

the incoming and outgoing paths.

Lockup-free Cache Design

We begin by identifying some of the requirements for a lockup-free cache. A general lockup-free cache

must support multiple outstanding read and write requests. For writes, the data written by the write must be

buffered while the write request is outstanding and must be correctly merged with the reply data. For reads,

there needs to be a mechanism to forward the relevant portion of the returning data reply to the requesting

unit or destination register.

A key component in the design of a lockup-free cache is the mechanism that is used for tracking

outstanding requests. Most designs track outstanding requests in transaction buffers that are external to

the cache [Kro81, SD91, FJ94], often referred to as MSHRs (miss information/status holding registers). An

alternative approach is to track the requests directly in the cache, as in the remote access cache for the Stanford

DASH [LLG+90, Len92]. Finally, some recent proposals advocate a hybrid approach [Lau94]. The main

difference between these designs is in the limitations placed on the number and type of outstanding requests,

and the hardware complexity of each design.

Below, we describe a straightforward implementation that keeps track of outstanding requests within the

cache. For simplicity, we assume an invalidation-based coherence scheme using a simple write back cache

with three states: invalid, clean, and dirty. To support multiple outstanding operations, an extra state is

introduced per cache line to represent a pending (or transient) state. A cache line enters the pending state on

a cache miss and remains in this state while the miss is outstanding. The line may not be replaced while it is

in the pending state. Therefore, operations that conflict on the line must be delayed, allowing only a single

outstanding request per cache line (or per set in a set-associate cache). While this restriction may cause some

stalls in small caches, larger caches or set-associative caches are less likely to be affected by such conflicts.

As we will see below, there are numerous optimizations possible for accesses to a cache line that already

has an outstanding request. The following is a list of such optimizations for operations to the same address

Section 5.2 Mechanisms for Exploiting Relaxed Models 143



or line: merge reads with outstanding requests as appropriate, read data from a line with a write outstanding

and forward the value appropriately, write to a line with a read outstanding, and merge multiple writes to

the same line. Some designs may also allow simultaneous outstanding operations to different addresses even

when there is a mapping conflict in the cache.

A write miss results in the write data to be written into the cache line and the state of the line to be changed

to pending. To allow for correct merging with the reply data, each cache line is augmented with fine grain

valid bits (corresponding to the smallest size write operation that is supported). The state of the valid bits are

only considered while the line is in the pending state. The appropriate valid bits are set during a write miss

as the write data is written to the cache. A future write to the pending line may be merged by simply setting

the corresponding valid bits and writing its data into the line. Once the write data reply arrives, it is merged

appropriately with the data present in the cache line according to the valid bits. A future read to the pending

line may fetch its value if the corresponding valid bits for that data segment are all set. Otherwise, the read

must be delayed. As an optimization, an extra pending state may be used to signify a line that was in clean

mode before a write miss. We refer to this as the pending clean state. A read to a line in pending clean state

may fetch its value immediately regardless of the state of the valid bits. The line can exit the pending or

pending clean state as soon as the exclusive or read-exclusive reply returns, even in protocols that provide an

early response (i.e., before all invalidation-ack replies are back).

A read miss results in the data to be requested and the state of the cache line to be changed to pending. To

allow appropriate routing of the return value when the read reply arrives, the destination register or unit and

the actual word address to be read from the line are also recorded in a separate read transaction buffer. The

size of this buffer places a limit on the number of outstanding reads. A future read to the pending line can be

merged with the pending read if there is sufficient space in the transaction buffer to record the information for

the new read. A future write to the pending line is treated in the same way as when the state is set to pending

due to a previous write miss (in fact, these two cases are indistinguishable based on the state); the appropriate

valid bits are set and the write data is stored in the cache line. The read data reply is placed in the cache on

arrival. In addition, for each address/register pair in the transaction buffer that corresponds to this line, the

specified word is selected and appropriately routed to its destination. If any of the valid bits are set, the read

data reply is properly merged with the write data in the line, a write miss request is generated to fetch the

line in exclusive mode, the valid bits remain set, and the line remains in the pending state (or is changed to

pending clean state if this state is supported) until the write reply arrives. Even though delaying the servicing

of a write miss until the read reply returns is conservative, it greatly simplifies the design.

While the line is in the pending or pending clean state, incoming read and read-exclusive requests (i.e.,

originating from lower level caches or the external interface) destined for the line must be either delayed or

sent back with a negative acknowledgement reply.3 Incoming invalidate requests may be readily serviced,

however. An invalidate request has no effect if the line is in the pending state. An invalidate to a line in

pending clean state changes the state to pending to reflect the fact that blocks with clear valid bits contain

potentially stale data (and should therefore not be forwarded to future reads).

Another issue in lockup-free cache designs is the out-of-order arrival of replies. In a standard blocking

3Implementations that support a dirty-shared caching state may have to service certain requests in order to avoid deadlock or livelock.
For example, consider P1 with a dirty-shared copy. Assume P1 and P2 both write to A, resulting in an exclusive request from P1 and a
read-exclusive request from P2 to be sent to the home. If P2’s request gets to the home first, it will be forwarded to P1 and may need to
be serviced by P1 to avoid deadlock or livelock.
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cache, there is only a single request outstanding. Therefore, an incoming reply can be easily matched with the

request. A simple way to solve the problem in lockup-free caches is to require the reply to carry an address.

This allows replies to be easily matched with requests, but implies that the address must be carried back by the

reply even outside the cache hierarchy. To reduce the amount of extra bits carried by the reply, the external

interface can assign a unique tag to each outstanding request to be carried back by the reply. For example,

supporting eight outstanding requests would require only a three bit tag.

In the lockup-free cache hierarchy design described above, only the first level cache needs to support the

mechanisms required for dealing with pending requests and appropriately merging requests to a pending line.

The first level cache essentially acts as a filter for requests to the lower level caches, guaranteeing that a lower

level cache will not receive further requests for a given line while the line has a miss pending.4 Therefore,

while the lower level caches still need to allow multipleoutstanding requests, they need not support extra cache

states, valid bits, or read transaction buffers. Allowing multiple outstanding requests is a simple extension

over a blocking cache in the context of a multiprocessor, since even blocking caches need to simultaneously

service processor requests and requests from the external interface.

Compared to a standard blocking cache, the above lockup-free cache design incurs some obvious additional

costs. There is a separate transaction buffer that keeps track of address/register pairs for pending read requests.

Furthermore, replies must carry either a unique tag or the full address. Finally, each cache line has one or two

(in case the pending clean state is provided) extra states in addition to the fine grain valid bits. There is a way

to reduce the extra cost per cache line, however. The main observation is that the valid bits are only useful

for lines with outstanding requests. Based on this observation, Laudon has proposed a hybrid design that

maintains the valid bits for outstanding cache lines in an external transaction buffer, called the pending-write

buffer, while still maintaining the write data in the cache [Lau94]. The pending-write buffer can be built

as a small fully-associative cache, with the tag pointing to the cache line for which the pending-write entry

is allocated. While Laudon’s design only maintains a single pending state (i.e., the optimization involving

the pending clean state is not included), it is possible to extend the pending-write buffer to support the extra

pending clean state and still maintain a single pending state per line within the cache. Of course, the size of the

pending-write buffer places a limit on the number of outstanding write requests as compared to the original

approach discussed above which theoretically allows a maximum of one outstanding request per cache line.

However, the pending-write buffer can have more entries than a traditional MSHR since each entry is smaller

given the write data is placed within the cache.

Overall, there are numerous possible techniques for supporting lockup-free caches with varying imple-

mentation and performance trade-offs. While there have been some detailed studies of these trade-offs

in the context of uniprocessors [FJ94] and multiprocessors [Lau94], we expect more studies to appear as

lockup-free caches become more widely used. Finally, multi-ported and interleaved caches are also becoming

more prominent as a way of satisfying the bandwidth requirements of multiple instruction issue processors.

Like lockup-free caches, these designs depend on the reordering of operations allowed by relaxed models to

overlap simultaneous accesses to the cache.

4This assumes that the lower level caches do not have a larger cache line size relative to the higher caches. This simplification may
also not apply to hierarchies that contain a write through cache.
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Figure 5.4: Example of buffer deadlock.

Inter-Cache Buffers

The buffers between caches allow each cache to operate more independently and are important for supporting

multiple simultaneous requests within the hierarchy. However, the buffer design has to cope with the potential

for deadlock in hierarchies with more than a single write back cache. Figure 5.4 shows a canonical example

of how buffer deadlock may arise. Assume both levels use write back caches. There is an incoming and an

outgoing FIFO buffer connecting the two caches, each with two entries. The figure shows two read requests

in the outgoing queue (originating from the processor) going to the level 2 cache and two read requests in the

incoming queue (originating from the external interface) going to the level 1 cache. Assume the states of the

cache lines are such that the each cache can service the request destined to it. However, the level 2 cache

requires an entry in the incoming buffer to generate the reply to the read of A, and the level 1 cache requires

an entry in the outgoing buffer to generate the reply to the read of C. This circular dependency arises because

servicing a request involves placing a reply in the buffer in the opposite direction and leads to deadlock due

to a lack of buffering resources.

The buffer deadlock problems described above arise only in cache hierarchies with more than a single

write back cache. Write through caches do not cause a buffer deadlock problem because incoming requests to

higher level caches do not generate a reply, thus breaking the circular dependency.5 Therefore, the simplest

solution to the buffer deadlock problem is to use only a single level of write back cache in the cache hierarchy.

Use of multiple levels of write back caches requires a more general solution, as described below.

Solving the buffer deadlock problem requires analyzing the flow of messages between the caches. Consider

the message types shown in Table 5.1 for write back caches using an invalidation-based coherence scheme.

In general, a given message may lead to the generation of zero, one, or two messages. Most incoming or

outgoing requests are either serviced by a cache, leading to a reply in the opposite direction, or are passed

along to the next level cache potentially as a different type of request. The incoming read-exclusive request is

unique since it sometimes leads to a reply going in the opposite direction in addition to an invalidation request

going to the next level cache. The generation of replies is one source of circular dependencies. Servicing

an outgoing read or read-exclusive request may also cause two messages to be sent to the next level cache,

one of them being an outgoing write-back request; these write-back messages are another potential source of

5We are assuming that incoming invalidate requests are acknowledgedearly (see Section 5.4.1), thus no outgoing invalidate-ack reply
is generated within the cache hierarchy.
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Figure 5.5: Alternative buffer organizations between caches.

buffer deadlock.6

There are a number of possible solutions to the buffer deadlock problem. We begin by describing a

solution for designs with a single incoming and a single outgoing FIFO buffer between each cache [Lau94].

The solution is based on limiting the maximum number of requests that are injected into the hierarchy by

the processor or the external interface and providing large enough buffers to absorb these messages. Given a

limit of m outstanding requests from the processor and n incoming requests from the external interface, the

pair of buffers between two adjacent write back caches are required to hold 2m+ n messages plus one extra

space per buffer to allow a waiting message to be processed. The reason each processor request requires two

entries is because it may lead to a write-back message. Therefore, if we split the entries equally between

the incoming and the outgoing buffers, each buffer must hold d(2m+n)/2e+1 messages.7 Unfortunately, the

above solution requires fairly large buffers to allow a reasonable number of outstanding requests within the

hierarchy.8

An alternative way to solve the buffer deadlock problem is to disassociate the consumption of replies from

the servicing of requests. One way to achieve this is to provide separate paths for request and reply messages.

Figure 5.5 shows a number of alternative organizations. The organization in Figure 5.5(a) depicts separate

outgoing buffers and a combined incoming buffer. The separate outgoing reply buffer allows incoming

requests to be serviced regardless of the state of outgoing requests. This eliminates the circular dependencies

that are present in single FIFO buffer designs. Figure 5.5(b) shows the dual organization where the incoming

buffers are separated and the outgoing buffer is combined. Finally, Figure 5.5(c) shows the organization with

separate buffers on both the incoming and the outgoing paths.

The fundamental requirement for avoiding deadlocks in the above scheme is to separate messages that

potentially generate a “loop-around” message from the “loop-around” messages on both the incoming and

outgoing paths. It turns out that only request messages can generate loop-around messages and the loop-around

6Outgoing write-back requests result from servicing an outgoing read or read-exclusive request (from a higher level outgoing queue)
that misses in the cache but maps to a line that is already in the dirty state. In addition to passing the read or read-exclusive request to
the lower level cache, the write-back request must also be eventually injected into the outgoing queue.

7The above assumes that all messages fit within a single buffer entry; the scheme can be easily extended to deal with variable size
messages (e.g., messages with and without data).

8Laudon [Lau94] describes a second solution with more modest buffer requirements whereby an incoming (outgoing) buffer accepts
messages from the downstream (upstream) buffer only when it is at least half empty. However, we uncovered scenarios where this
algorithm would actually deadlock.
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messages are always replies. Therefore, separation based on requests and replies satisfies the requirement

above. However, this is not the only way of separating the messages. For example, not every request generates

a loop-around message. Therefore, requests such as an incoming invalidate message may be placed on either

queue in a design with separate incoming buffers. The same holds for outgoing requests such as a write-back

in a design with separate outgoing buffers. This flexibility allows the choice of separating messages into

different paths to be customized for the purpose of performance or maintaining certain orders among messages

while still avoiding deadlocks.

In addition to providing separate incoming or outgoing paths, write-back requests must also be handled

properly to avoid deadlock. One solution is to provide a minimum outgoing request buffer size of at least two

entries. The cache does not service any outgoing requests from the higher level buffer unless there are two

entries available in its outgoing request queue. In case a write-back is generated, the write-back message is

placed into the queue along with the request that is passed down. Another solution is to buffer the write-back

request in a separate buffer and to reinject it into the outgoing request queue when there is sufficient space

available. The cache does not service requests from the higher-level outgoing queue while the write-back

request is buffered. A write-back buffer of greater than one entry may be used to allow multiple miss request

to be sent out before the write-backs need to be sent out. Similar issues arise in cache hierarchies that support

replacement-hint requests (when the line that is replaced is clean), though a replacement-hint request does

not carry any data along with it and may be dropped if necessary.

Providing separate paths for requests and replies on at least one of the incoming or outgoing directions

has several advantages. First, a large number of outstanding messages can be handled with relatively small

buffers. In fact, a single entry suffices for avoiding deadlock. Second, messages of different size are handled

naturally, without needing to design for the worst case. Finally, as we will discuss shortly, separate paths

on both the incoming and the outgoing direction provide advantages in the design of the external interface.

One potential disadvantage of separate paths for requests and replies is the loss of certain ordering guarantees

that would otherwise be preserved with a single incoming or outgoing path. Nevertheless, it is still possible

to maintain sufficient ordering for correctly supporting a memory model by carefully choosing the messages

that travel on each path.

5.2.4 External Interface

The external interface is responsible for exchanging messages between the cache hierarchy and the rest of

the system. To overlap the latency of operations to memory and other processor caches, this interface must

support multiple outstanding requests to and from the memory system. This section briefly discusses issues

related to the buffer organization at this interface. As we will see, the design of the external interface is

heavily influenced by the way messages are handled by the network and memory system, and also by the

buffering scheme used between caches within the hierarchy.

First consider the issue of supporting multiple outstanding (outgoing) requests from the cache hierarchy.

Almost all outgoing requests, except for write-back requests, expect an incoming reply message in response.

The way such replies must be handled depends on how the network and memory system copes with potential

deadlocks that may arise due to message handling (similar to issues that arise in inter-cache buffers). In

designs with a large number of processors, a viable approach for avoiding deadlock within the network
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and memory system is to provide separate logical paths and buffers for requests and replies.9 Both the

DASH [LLG+90] and FLASH [KOH+94] systems use this technique; DASH uses physically separate

request and reply networks while FLASH uses a single network with multiple virtual lanes to provide the

separate paths. A key requirement for avoiding deadlock in the above scheme is that reply messages must

be serviced (or consumed) unconditionally without depending on the service of any other messages (e.g.,

requiring a request message to be serviced first). This requirement affects the external interface since it is

involved in accepting incoming replies from the network and memory system. Cache hierarchy designs with

logically separate incoming request and reply paths allow the interface to unconditionally accept incoming

replies. Designs with a combined request and reply path require extra support, however. A simple solution

is to ensure sufficient buffer space for the reply message(s) before issuing an outgoing request that expects a

reply. A static solution is to allow at most n outstanding requests and to provide sufficient buffering resources

to accept n incoming replies. More dynamic solutions would reserve sufficient space on the incoming side

before sending out an outgoing request.

Next consider the issues related to incoming requests. One of the key aspects with respect to incoming

requests is whether the corresponding outgoingreply is expected by the outside interface potentially before any

outgoing requests from the cache hierarchy are accepted. For example, a simple bus-based implementation

that supports a single outstanding request on the bus requires the reply message to appear on the bus before

any other messages are accepted. This is easy to support if the cache hierarchy and external interface provide

logically separate paths for outgoing requests and replies. However, in designs with a single outgoing path,

the external interface must provide sufficient buffering to absorb all outgoing requests buffered within the

cache hierarchy (including write-back requests) in order to allow replies to bypass these requests on the way

out. The above functionality may also be required in most split-transaction bus designs since there is typically

a global limit on the maximum number of outstanding requests on the bus. Again, outgoing replies must be

able to bypass outgoing requests within the cache hierarchy and external interface in order to avoid deadlock.

Finally, to simplify the cache coherence protocol, even systems with more general interconnect networks

(e.g., FLASH [KOH+94]) may require the cache hierarchy and external interface to provide the reply to an

incoming request before any other outgoing messages are accepted.

In summary, cache hierarchy designs with a single incoming and single outgoing path require the external

interface to provide sufficient buffering to absorb all expected incoming replies and outgoing requests. The

size of both buffers is proportional to the number of outstanding requests that is allowed by each processor;

the outgoing buffer must absorb both this maximum number of requests plus any write-back requests that

may be induced by these requests. Designs with separate incoming paths alleviate the need for the incoming

buffer in the external interface. Similarly, designs with separate outgoing paths alleviate the need for the

outgoing buffer.

5.2.5 Network and Memory System

The network and memory system play an important role in overlapping the service of multiple memory

operations from the same processor or different processors. To achieve such overlap, network and memory

9With a limited number of processors, it is possible to use large buffers to absorb the maximum number of messages that may be
issued by all the processors. This approach is impractical in larger systems. An exception to this is a system such as Alewife [CKA91]
that uses main memory as a large buffer to break deadlocks.
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resources are often replicated and distributed across the system. Main memory is also often distributed among

the nodes. This provides a level of interleaving in the memory system, and also provides each processor with

higher bandwidth and lower latency to the memory local to its node. The memory within each node may also

be interleaved or partitioned into multiple banks to support further overlap. High performance networks, such

as two or three dimensional mesh networks, also enable the overlapping of memory operations by providing

multiple paths and heavily pipelining the messages within each path. One of the consequences of multiple

paths is that the network provides very few message ordering guarantees; designs that use static routing at

best guarantee point-to-point order for messages within the same virtual lane.

Overall, the above optimizations lead to memory operations being serviced in an order that is potentially

different from the order they are issued to the memory system and network. Furthermore, the presence of

multiple paths in the network leads to inherently non-atomic coherence operations (e.g., updating a copy)

across the multiple cached copies.

5.2.6 Summary on Exploiting Relaxed Models

This section described example optimizations that attempt to issue and service memory operations as quickly

as possible at various levels of the memory hierarchy, exploiting operation reordering whenever necessary.

Achieving high performance requires a balanced design that provides sufficient bandwidth at all levels of

the memory hierarchy. Therefore, all components of the system, including the processor, cache hierarchy,

network, and memory system, must be designed to support the desired level of overlap among memory oper-

ations. Such aggressive designs are naturally more complex. Furthermore, supporting multiple outstanding

operations introduces various deadlock problems that must be addressed in such designs.

5.3 Maintaining the Correct Ordering Among Operations

The three most important issues from an implementation perspective are performance, correctness, and

complexity. The previous section described examples of optimizations that boost performance, but lead to

the reordering of memory operations that may violate the semantics of a given memory model. A key design

challenge is to appropriately limit the scope of such optimizations for correctness while still achieving the

full performance potential for a given model. At the same time, it is important to limit implementation

complexity. Therefore, a designer must trade off the marginal performance gain from a given optimization

versus the resulting increase in design complexity.

This section presents practical and efficient mechanisms for enforcing the correct ordering among memory

operations. We mainly focus on issues relevant to tightly-coupled architectures based on scalable intercon-

nection networks. Mechanisms relevant to systems with restricted networks and loosely coupled architectures

are later discussed in Sections 5.5 and 5.6, respectively. As with performance optimizations, mechanisms

for ensuring the correct ordering of memory operations are not just limited to the processor or the memory

system, but affect the whole system. Furthermore, there is often an interdependence between the type of

reordering optimizations exploited (along with deadlock-avoidance solutions) and the mechanisms used to

enforce correct ordering.

We use the specifications developed in Chapter 4 to determine whether an implementation correctly imple-

ments a given memory consistency model. Because these specifications provide close to minimal constraints
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Figure 5.6: Conditions for SC with reference to relevant implementation sections.

on memory ordering, most implementations conservatively satisfy a given specification by imposing stricter

ordering constraints than required. We begin this section by relating the abstract events used in the specifi-

cations to actual events in an implementation. Sections 5.3.2 to 5.3.7 describe mechanisms and techniques

for satisfying the various conditions imposed by a specification.10 Figure 5.6 shows the sufficient system

conditions for sequential consistency as presented in the previous chapter. Beside each of the main conditions,

we have referenced the section that addresses the relevant implementation issues; the reach condition (which

does not apply to SC) is discussed in Section 5.3.6. Section 5.4 describes a number of more sophisticated

techniques that provide more efficient implementations by exploiting optimizations exposed by the aggressive

specifications developed in Chapter 4.

5.3.1 Relating Abstract Events in the Specification to Actual Events in an Implemen-

tation

To determine the correctness of an implementation, we need to relate the abstract memory events and the

corresponding execution order described in Chapter 4 (specifically, in Section 4.1.3) to physical events and

orders in the implementation. The relationship between abstract and physical events is straightforward except

for a few subtle issues related to the completion of write operations; the reason for this subtlety will become

more clear in Section 5.3.4.

Figure 4.3 in the previous chapter pictorially (and informally) depicts the general abstraction for memory

operations that the specifications are based upon. In this abstraction, each processing node conceptually has a

complete copy of the shared memory along with a memory operation buffer that buffers that node’s memory

10We assume the uniprocessor correctness condition (Condition 4.1 in Chapter 4) is trivially satisfied by all implementations.
Appendix G describes a relaxation of this condition.
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Figure 5.7: Typical scalable shared memory architecture.

operations. Reads are modeled as two sub-operation, Rinit(i) and R(i) by Pi, and are serviced by either

the local copy of memory or the local buffer. Writes are modeled as n + 1 sub-operations (where n is the

number of processing nodes), consisting of a single initial sub-operation, Winit(i) by Pi, and n sub-operations,

W(1), : : : , W(n), corresponding to the write updating the values in each of the n memory copies. Since the

main purpose for the Rinit(i) and Winit(i) sub-operations is to capture the program order among conflicting

operations, we do not attempt to relate them to physical events.

The mapping between abstract events and physical events depends heavily on the underlying implemen-

tation. Figure 5.7 shows the type of implementation we are assuming. For concreteness, we assume a simple

directory-based coherence protocol similar to the protocols used in DASH [LLG+90] and FLASH [KOH+94].

The concept of the owner copy plays an important role in such coherence protocols. If the line is held ex-

clusive by a cache, then it is considered to be the owner copy. Otherwise, the memory at the home node is

considered to be the owner. For simplicity, we also assume the protocol maintains the coherence requirement

for all writes; i.e., writes to the same location (or memory line) are serialized at the owner copy so that they

complete in the same order with respect to all processors. Below we describe the path taken by a read or a

write request before it is serviced.

Consider a read request. After the processor issues the read, the processor’s caches and buffers attempt

to service it. If this fails, the read is sent to the home node corresponding to its physical address and can be

serviced there if a valid copy of the line exists in memory (i.e., the home node is the owner). Otherwise, the

read is forwarded to the owner node that maintains an exclusive copy of the cache line. Due to infrequent

transient cases in the protocol, a read request may need to traverse the above path more than once (e.g., due

to negative-acknowledgement replies) before it is serviced. The read request is considered complete when

its return value is bound. This completion event in the physical implementation corresponds to the read

appearing in the execution order in our specification abstraction. Of course, in a distributed architecture such

as the one shown in Figure 5.7, the processor detects the completion of the read only after it receives the reply

message containing the return data.

Consider a write request now. A write request may also involve reading the cache line if the cache

supports a write-allocate policy (e.g., consider a read-exclusive request); this can be effectively treated as a

read request piggy-backed on top of the write. Below, we focus on the path that the write request traverses to
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invalidate or update stale copies of the cache line. Since the effect of a write request on multiple cache copies

is inherently non-atomic, we model the write event as consisting of multiple completion events with respect

to each of the n processors. A write is considered complete when its constituent events have occurred with

respect to every processor.

Given a write W issued by Pi, W completes with respect to another processor Pj (i.e., i 6= j) at the time

all older values (i.e., values from writes that are serialized before W) are eliminated from Pj’s read path.

Along with the coherence requirement, this implies that a write cannot complete with respect to any processor

before it is serialized (at the current owner) with respect to other writes to the same location (or same line,

since serialization typically takes place at the line granularity). Furthermore, a read by Pj that completes after

a conflicting write W has completed with respect to Pj can no longer return an old or stale value. Finally,

except for the issuing processor Pi, a read from another processor Pj cannot physically return the value of

a write before the write is serialized and completes with respect to Pj . However, the issuing processor Pi is

allowed to return the value of its own write before the write is serialized or completes with respect to itself.

Below, we enumerate the various cases for servicing a write. The points at which we consider a write

to be complete with respect to a given processor are conservative; in some protocols, it may be possible to

consider the write as having completed at an earlier point in time. A write request W by Pi can be serviced by

its own processor’s caches if an exclusive copy of the line exists within the hierarchy. The write is considered

complete with respect to Pi at the time the exclusive copy is modified. The write is considered complete

with respect to another processor Pj either when the exclusive copy is modified or when all previous writes

to the same line that are serialized before W are complete with respect to Pj , whichever occurs later.11 If

the cache hierarchy cannot satisfy the write, the request is forwarded to the home node. The directory at the

home maintains information on the location of other copies of the line. We enumerate the three possible cases

below. The first case corresponds to the directory indicating that no other processor caches hold a copy of

the line. In this case, the write W is considered complete with respect to a processor either when the copy at

memory is modified12 or when all previous writes to the same line that are serialized before W are complete

with respect to Pj , whichever occurs later. The second case corresponds to the directory indicating that an

exclusive copy of the line is held by Pk. In this case, the write request is simply forwarded to Pk’s cache

hierarchy. The write W is considered complete with respect to another processor Pj (i.e., not the same as Pk)

either when the exclusive copy within Pk’s hierarchy is modified or when all previous writes to the same line

that are serialized before W are complete with respect to Pj, whichever occurs later. The write is considered

complete with respect to Pk at the time all stale copies within its hierarchy are appropriately modified.

Finally, the third case for a write corresponds to the directory indicating that one or more cache hierarchies

(other than Pi’s hierarchy) are sharing clean copies of the line. In addition to modifying the memory copy,

invalidate or update messages are sent to each of the relevant cache hierarchies to eliminate the stale copies.

Within each cache hierarchy, the invalidate or update message traverses the hierarchy until all copies there are

appropriately modified. The write W is considered complete with respect to Pj (i 6= j) at the time all copies

within Pj’s cache hierarchy are appropriately modified; if Pj’s cache hierarchy does not maintain a copy of

11Because the state is distributed in the system, the information at the caches or at the directory may not exactly capture the actual
state of the system. For example, even though a cache may indicate that there are no cache copies of a line, there may be pending
invalidations from previous writes that are still in route to the “stale” copies. This explains the need for the complicated second clause
that requires previous writes to have completed before a new write is considered complete with respect to a processor.

12Modification of a copy does not necessarily imply the updating of that copy. The modification may only comprise of changing the
relevant state to signify a stale copy.
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Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.5: termination condition for writes (may apply to only a subset of write sub-operations).
Condition 4.6: return value for read sub-operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
coherence: W

co
�! W (may apply to only a subset of write sub-operations)

then X(i)
xo
�! Y(i) for all i.

Figure 5.8: Generic conditions for a cache coherence protocol.

the line, then the write completes with respect to Pj (i 6= j) either when the memory copy at the home node is

modified or when all previous writes to the same line that are serialized before W are complete with respect

to Pj , whichever occurs later. The write W is considered complete with respect to its issuing processor Pi

in the time interval after the completion with respect to Pi of any writes to the same line that are serialized

before W and before the completion with respect to Pi of any writes to the same line that are serialized after

W. In some protocols, a message is sent back from the home node to the issuing processor (i.e., an early

read-exclusive or exclusive reply before invalidations are acknowledged) to signal that the write is serialized

with respect to other writes to the same location; this message may be used to denote the completion of the

write with respect to the issuing processor. Similar to read requests, transient cases may lead to a write request

traversing the above paths more than once before it completes. In addition, the processor that issues the write

request detects the completion of the write only after receiving the appropriate reply messages.

Given the above mapping between abstract and real events, the implementation is considered to be correct

if the order among the real events is consistent with the order imposed by the specification among the abstract

events. The above is a sufficient and not a necessary condition since an implementation is considered correct

as long as it appears as if the specification is upheld (i.e., it provides the same results as the specification).

However, given the aggressive nature of the specifications developed in Chapter 4, all the implementations

we consider satisfy the sufficient condition.

5.3.2 Correctness Issues for Cache Coherence Protocols

This section describes the issues related to correctly implementing a cache coherence protocol. Figure 5.8

presents a formal set of conditions, based on the abstraction framework developed in Chapter 4, that a cache

coherence protocol must satisfy. These conditions constitute a strict subset of, and are common across (except

for a more selective termination or coherence requirement in some specifications), the model specifications

presented in Chapter 4. Picking a specific set of common conditions to represent the specification for

the cache coherence protocol can be somewhat arbitrary. We chose the common subset by excluding the

following: conditions that restrict ordering based on the program order relation (which eliminates the initiation

condition for writes, the uniprocessor dependence condition, and the multiprocessor dependence chains), the

reach condition, and the atomicity condition for read-modify-write operations. We believe that this subset

formally captures the intuitive correctness requirements for a cache coherence protocol. Condition 5.1 is a

straightforward translation of the conditions in Figure 5.8 from abstract events to physical events based on

the relationship described in the previous section.
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Condition 5.1: Implementation Conditions for a Cache Coherence Protocol
The following conditions must be satisfied by the cache coherence protocol:
(a) Termination Condition for Writes: Every write issued by a processor eventually completes (i.e., within a
finite time) with respect to all processors.
(b) Return Value for Read Operations: A read operation by Pi returns a value that satisfies the following
conditions. Below, we assume the read and write operations are to the same address. If there is a write operation
issued by Pi that has not yet completed with respect to Pi before the read completes, then the value returned
by the read must be from the last such write that has been issued by Pi. Otherwise, the value returned by the
read must be from the latest write (from any processor) that has completed with respect to Pi before the read
completes. If there are no writes that satisfy either of the above two categories, then the read must return the
initial value of the location.
(c) Coherence Requirement: Writes to the same address complete in the same order with respect to every
processor.
Conditions (a) and (c) above may be restricted to only a subset of the write operations.

The termination and coherence requirements are especially relevant to systems that replicate data through

caching. The termination condition requires an issued write to eventually appear in the completion order

with respect to every processor. Furthermore, our specification framework implicitly requires each issued

write to appear at most once in the completion order with respect to a given processor. The above constraints

imply that each issued write appears exactly once and only once in the completion order with respect to each

processor. The coherence requirement further requires that writes to the same address complete in the same

order with respect to every processor. Finally, the value condition constrains the value that a read must return.

The remaining part of this section presents implementation techniques for satisfying the restrictions

outlined by Condition 5.1 above. We begin by discussing implementation techniques for satisfying the

value condition and coherence requirement. We next discuss the importance of supporting the coherence

requirement and issues that arise if this condition is not supported for all writes. We finally describe techniques

for satisfying the termination condition. The more subtle issues in correctly implementing a coherence protocol

(e.g., transient cases, cross checking, maintaining point-to-point order, etc.) are described in Appendix K.

Supporting the Value Condition and Coherence Requirement

This section presents a few different techniques for supporting the value condition and coherence requirement.

There are a number of subtle issues in a cache coherence protocol for correctly supporting the above two

conditions that are covered in Appendix K.

The simplest way of supporting the coherence requirement is to serialize writes to the same location at the

current owner. This serialization is used to ensure that writes to the same location complete in the same order

with respect to every processor. In a typical invalidation-based protocol, the owner may be either the issuing

processor’s cache hierarchy, the memory at the home node, or another processor’s cache; the read-exclusive

or exclusive reply typically signals the issuing processor that its write is serialized. In a simple update-based

protocol, the memory at the home node is the only possible owner; the update reply typically signals the

serialization in this case.

One of the key aspects in supporting the value and coherence requirements is to correctly deal with

outgoing and incoming requests at a processor that already has a pending write to that location. Consider an

invalidation-based coherence protocol with a write buffer and a single level write-back cache per processor.

We consider two different implementations below. In the first implementation, an exclusive or read-exclusive

request is issued to the memory system and the pending write remains in the write buffer until the cache
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obtains exclusive ownership for the line. Consider subsequent operations to this cache line by the issuing

processor while the original write is pending. A subsequent write is simply queued in the write buffer; the

write can be merged or coalesced with the pending write. Since an exclusive copy of the line has already

been requested, no new requests are generated for the memory system. A subsequent read must return the

value of the latest write to the same address from the write buffer if any such write exists. In case of a match,

the system may support forwarding or may simply stall the read until the conflicting writes are retired from

the write buffer. Requests from other processors destined to this cache are handled in the usual way. The

value condition is satisfied because pending writes are only visible to the issuing processor; this is because

the value of the write is not placed in the cache until after the write is serialized at the owner. Appendix K

describes the message orderings between incoming invalidate requests and read or read-exclusive replies that

may be important to maintain especially within the cache hierarchy.

Note that from the time the write miss request is issued by Pi to the time the write is serialized with respect

to other writes to the same location, conflicting writes from other processors that are serialized and complete

with respect Pi are actually not visible to Pi. Therefore, reads from Pi may never return the value of such

writes since they instead return the value of Pi’s outstanding write.

The second implementation differs from the implementation above by allowing the write to be retired

and the write data to be written to the cache while the write is still pending (similar to the lockup-free

implementation described in Section 5.2.3). This implementation is trickier since we have to ensure that the

value of a pending write is visible to its own processor and yet disallow other processors from observing

the value placed in the cache. Furthermore, the data placed in the cache must be appropriately merged with

the reply data that returns in response to the write (in the case of a read-exclusive reply). Mechanisms for

achieving the above functionality were discussed in the context of lockup-free caches in Section 5.2.3. For

instance, while the line is pending, incoming read or read-exclusive requests are either delayed or turned back

with a negative acknowledge reply. Similarly, incoming invalidate requests are serviced by changing the state

of the line from pending clean to pending, but do not get rid of the values in the cache line corresponding to

pending writes. Designs such as DASH [LLG+90] use a hybrid scheme that is a merge of the two techniques

discussed above. In DASH, a write updates the write through first level cache immediately (similar to the

second technique),13 but the update to the second level write back cache is delayed by the write buffer until

ownership is granted (as in the first technique).

Appendix M considers implementation issues for supporting the value condition and coherence require-

ment in update-based designs.

Importance of Upholding the Coherence Requirement

While the system-centric models discussed in this thesis impose the coherence requirement on all writes, the

programmer-centric models relax this condition by imposing it on only a subset of the write operations (i.e.,

competing writes for PL1 and PL2, and non-loop and non-sync writes for PL3). While it may seem beneficial

to exploit the above relaxation, this section describes the several advantages of providing coherence for all

writes in the context of hardware shared-memory implementations.

The primary reason for providing coherence is to simplify the implementation. Consider the sufficient

13Dealing with a write through cache is simpler than dealing with write back caches because it is alright to invalidate or replace the
line even before the write to the line is serialized. In addition, there are no incoming read or read-exclusive requests.
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Figure 5.9: Updates without enforcing the coherence requirement.

conditions for satisfying the PL1 model shown in Figure 4.14 in the previous chapter, with the coherence

requirement only imposed among competing writes. Nevertheless, it turns out that satisfying constraints such

as the uniprocessor dependence condition (of the form W1
po
�!W2) or multiprocessor dependence chain (of

the form Wc co0

�! Rc
spo
�! W) is easier if we guarantee coherence among all writes. For example, for the

uniprocessor dependence condition, enforcing W1(i)
xo
�! W2(i) for all i is much simpler if the coherence

requirement is upheld for the two writes. The same holds for the constraints imposed by the atomicity

condition for read-modify-write operations (Condition 4.7). Finally, upholding the coherence requirement

for all writes can be done quite efficiently in the context of hardware cache-coherent implementations. As

we will see in Section 5.3.5, the simplest implementations for keeping track of outstanding invalidation or

update requests inherently satisfy the coherence requirement for all writes by allowing only a single write to

have outstanding coherence transactions.

The second reason for enforcing the coherence requirement for all writes is to provide a sensible semantics

for programs that are not properly-labeled. Figure 5.9 illustrates an update-based coherence protocol which

does not satisfy the coherence requirement for all writes. Assume location A is initialized to the value 0,

P1 and P2 both maintain copies of this location, and the home for A resides on a third node. The example

shows both P1 and P2 writing to location A. Each processor updates its own cache and sends update requests

to other copies. If the coherence requirement is not upheld for the two writes, it is possible for the copy at

P2 to transition from 0 to 2 to 1 while the copy at memory and at P1 transition from 0 to 1 to 2, allowing

P1 and P2 to permanently observe different values for location A. The semantics is even more intractable if

P2 replaces its cache copy, making the copy at memory visible to P2. In this scenario, the value of A visible

to P2 transitions from 0 to 2 to 1 and back to 2, making it appear as if P2’s write occurred more than once.

Without maintaining a complete copy of memory at each node, it is virtually impossible to alleviate the above

behavior caused by replacements unless the coherence requirement is upheld for all writes.

Migrating a process to a different processor can present similar problems. Consider migrating the process

at P2 to either P1 or the home node. Again, the process can observe the effect of its write more than once,

with the value transitioning from 0 to 2 to 1 while the process is on P2 and then transitioning back to 2 after

it is migrated. In fact, indefinitely migrating a process among different processors can lead to the process

Section 5.3 Maintaining the Correct Ordering Among Operations 157



observing the effect of a single write infinitely many times. Furthermore, even maintaining a full copy of

memory does not solve the problems caused by migration. Therefore, supporting the coherence requirement

on all writes is worthwhile unless designers are willing to limit an implementation to only executing properly-

labeled programs. Even though this limitation is imposed by several software-supported shared-memory

implementations (see Section 5.6), hardware implementations are often required to support a larger set of

programming styles.

Supporting the Termination Condition

The termination condition requires a write that is issued to eventually complete with respect to all processors,

thus ensuring all processors will eventually observe the effect of a given write.14 For some specifications

(e.g., RCsc, RCpc, and the sufficient conditions for PL1, PL2, and PL3), the termination condition is

imposed on only a subset of the write operations (i.e., competing writes).15 A number of software-supported

shared-memory implementations (see Section 5.6) benefit from this relaxation. However, most hardware

cache-coherent implementations end up inherently ensuring the termination condition for all write operations.

To satisfy the termination condition, an implementation must ensure that a write eventually affects all

stale copies in the system. A designer must carefully consider places in a design where the servicing of a

write is delayed either due to queueing or due to arbitration (e.g., if reads have priority over writes) to ensure

that the write operations will eventually get serviced. Furthermore, the implementation cannot depend on

the arrival of new operations to trigger the completion of previous write operations. For example, a merging

write buffer that delays write operations in order to increase the window of opportunity for merging may need

to periodically flush the write operations in the buffer. Similarly, incoming buffers within a cache hierarchy

must ensure queued invalidate and update requests will eventually get serviced.

Appendix H describes a more aggressive form of the termination condition for the PL models, along with

its implementation implications.

5.3.3 Supporting the Initiation and Uniprocessor Dependence Conditions

The initiation and uniprocessor dependence conditions interact closely to maintain the intuitive notion of

uniprocessor data dependence; i.e., to ensure that the “effect” of a processor’s conflicting read and write

operations are consistent with program order. A simple way to ensure this is to require conflicting operations

from the same processor to complete in program order. Thus, given conflicting operations from Pi, R
po
�! W

implies Rinit(i)
xo
�! Winit(i) and R(i) xo

�! W(i), W1
po
�! W2 implies W1init(i)

xo
�! W2init(i) and

W1(j)
xo
�! W2(j) for all j,16 and W

po
�! R implies Winit(i)

xo
�! Rinit(i) and W(i)

xo
�! R(i). Note that the

initiation and uniprocessor dependence conditions do not impose any ordering constraints on two reads to the

same location.

Except for the IBM-370 model, the other models discussed in this thesis relax the above constraints in the

case of W
po
�! R by only requiring Winit(i)

xo
�! Rinit(i) (and not W(i)

xo
�! R(i)) to hold. This relaxation

14The termination condition implicitly depends on the uniprocessor correctness condition (Condition 4.1 in Chapter 4) which requires
every write in the program to be issued (i.e., the Winit(i) sub-operation for every write must appear in the execution order).

15For some asynchronous algorithms, enforcing that all writes will eventually become visible to all processors may be important for
convergence. This can be guaranteed by periodically flushing any writes whose completion has been delayed by the system.

16In an implementation that maintains the coherence requirement for all writes, it is sufficient to ensure W1(i)
xo
�! W2(i) since the

coherence requirement will then ensure W1(j)
xo
�! W2(j) for all j.
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allows a processor to read the value of its own write before the write completes with respect to it. Even

though it may seem that allowing a read R that is after a conflicting write W in program order to complete

before the write may cause a possible violation of uniprocessor data dependence, the initiation condition still

requires Winit(i)
xo
�! Rinit(i) and along with the value condition, the read is guaranteed to return the value

of W (or a later conflicting write that is between W and R in program order). Therefore, the read still sees the

effect of the last conflicting write that is before it in program order.

Techniques for satisfying the initiation and uniprocessor dependence conditions are well understood since

similar conditions must be maintained in uniprocessors. A conservative way to satisfy the conditions is to

delay issuing an operation until the previous conflicting operation in program order completes. Delaying an

operation does not necessarily require the processor to be stalled; read and write buffers may be used for this

purpose. Below, we discuss the implementation techniques for supporting the required orders in more detail.

Given a conflicting read followed by a write, the system must disallow the read to return the value of the

write by ensuring the read completes before the write. Processors with blocking reads inherently satisfy the

above condition. A more efficient technique may be to delay the completion of the write without stalling the

processor. For example, the write may be placed in the write buffer, or may be retired into a lockup-free

cache, but the sending of the exclusive or read-exclusive request may be delayed until the read completes.17

In some protocols, it may be possible to issue the exclusive or read-exclusive request for the line before

the read completes; this typically requires a guarantee that the read will complete without retries and that

point-to-point order is maintained between the two requests. Such optimizations are more difficult to support

in protocols that can force the read to retry (e.g., through a negative acknowledgement reply). For example,

if the write is delayed in a write buffer, it is important for a read that is being retried to unconditionally bypass

the write buffer (i.e., not forward the value of the write). A similar precaution applies to implementations

that do an early retire of the write into the cache. Retrying the read from a lower level in the hierarchy can

eliminate some of these issues. Finally, the presence of retries makes it difficult to correctly implement the

optimization of issuing the exclusive request before the read completes since point-to-point order no longer

inherently translates to the correct completion order.18

For two conflicting writes in program order, the simple approach is to delay the servicing of the second

write until the first write completes with respect to the issuing processor. Again, this does not necessarily

imply a processor stall since the second write may be delayed in a buffer or may be retired to the cache

and merged when the reply for the first write arrives (as discussed in Section 5.2.3). Retiring the write to

the cache is more complex for update-based schemes or write through invalidation-based schemes since the

second write generates a new request to the memory system which may get out of order with respect to the

first write’s request either if point-to-point order is not maintained or if the protocol can force the first write

to be retried. For protocols that enforce the coherence requirement for all writes, ensuring that the writes

complete in program order with respect to the issuing processor automatically ensures that the writes complete

in program order with respect to other processors. As discussed in Section 5.3.2, this is one of the ways in

which enforcing the coherence requirement on all writes simplifies the implementation.

Finally, in the case of a write followed by a conflicting read in program order, only the IBM-370 model

17In protocols that do an early retiring of the write values into the cache, an exclusive or read-exclusive request caused by any write
that lies in the same cache line as the read (i.e., even if the write and read do not conflict) may also need to be delayed until the read
completes.

18For example, to maintain the correct order, the protocol may need to ensure that the write request will also be forced to retry if the
previous read request to the same line is retried (by keeping additional state at the home node).
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Figure 5.10: Example showing interaction between the various conditions.

requires the read to complete after the write completes with respect to the issuing processor. The techniques

described above for ensuring in-order completion of conflicting requests are applicable in this case as well.

Maintaining the initiation and uniprocessor dependence conditions has special implications for systems

with out-of-order issue processors. This is because the processor can continue issuing memory operations

even if a previous memory operation’s address, or value in case of a write, has not yet been computed. The

conservative approach is to treat an unknown address as potentially matching addresses of future reads and

writes. In case of a read operation with an unknown address, the completion of future write operations

is delayed until at least the read’s address is resolved. In case of a write with an unresolved address, the

completion of future read and write operations is delayed for the address to be resolved. Finally, in case of

an unresolved value for a write, future read and write operations that conflict with the write are held back.

Section 5.4.3 describes an optimization in the case of an unresolved write address, whereby a following read

is allowed to be speculatively serviced and is retried (through a roll-back mechanism) if the write’s address

turns out to match that of the read.

Finally, as we will see in Section 5.3.5, enforcing the multiprocessor dependence chains in stricter models

such as SC, PC, or TSO ends up inherently satisfying the initiation and uniprocessor dependence conditions.

Therefore, no additional mechanisms are needed in such implementations.

5.3.4 Interaction between Value, Coherence, Initiation, and Uniprocessor Depen-

dence Conditions

There is a subtle interaction between the value, coherence, initiation, and uniprocessor dependence conditions

when all of them are to be satisfied by a set of operations.19 Understanding this interaction provides intuition

for the form of the value condition and the exclusion (in most models) of W
po
�! R from the uniprocessor

dependence condition.

Consider the code segment in Figure 5.10. Both P1 and P2 write to location A and then read this location.

Assume location A is initialized to 0, and each processor caches a clean copy. Let W1 and R1 denote the write

and read on P1, and W2 and R2 the operations on P2. Consider W1 and W2 being issued at approximately

the same time. Figure 5.11 depicts this scenario in two different implementations, both with write-back

caches and an invalidation-based coherence scheme. A one word line size is assumed for simplicity. In both

implementations, the write request leads to a miss on a clean line. The implementation in Figure 5.11(a) delays

the write in the write buffer until the exclusive request is satisfied, while the implementation in Figure 5.11(b)

allows the write to immediately retire into the cache with the corresponding cache line remaining in the pending

state for the duration of the miss. These correspond to the two implementations discussed in Section 5.3.2 for

19This interaction was described first in a revision to the release consistency paper [GGH93b], and also in a later technical re-
port [GAG+93].
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Figure 5.11: Simultaneous write operations.

supporting the coherence and value conditions. For the traditional notion of data dependences to be satisfied,

the read on each processor must return the value of its own write on A or a write that completes after its own

write. Thus, in our example code segment, it is safe for the reads to return the value of their own processor’s

write while the exclusive request is outstanding. The two key questions that arise are: (a) at what point in

time can we consider a write complete with respect to its issuing processor? and (b) can a subsequent read

(e.g., R1 or R2) return the value of its own processor’s write and complete before the write completes with

respect to that processor?

First consider the question about completion of a write with respect to the issuing processor. Without the

coherence requirement, a write can be considered complete with respect to its own processor immediately

after it issued. However, pinpointing this event is more subtle when the coherence requirement is imposed on

a pair of writes. The coherence requirement requires writes to the same location to complete in the same order

with respect to all processors: either W1(i) xo
�! W2(i), or W2(i) xo

�! W1(i), for all i. If the write is assumed

to complete with respect to its own processor as soon as it is issued (i.e., before it is serialized with respect to

other writes to the same location), then the completion events with respect to the issuing processors, W1(1)

and W2(2), would be considered to occur before either W1(2) and W2(1) which are the completion events

with respect to the other processor. This clearly violates the coherence requirement. The above example

motivates why the completion event for a write with respect to its own processor is related to the reception
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of the exclusive or read-exclusive reply, which signals that the write has been serialized with respect to other

writes to the same location.

Next consider the question about a read returning the value of its own processor’s write before the write

completes with respect to that processor. This optimization is uninteresting for models that do not impose the

coherence requirement on a given write since, as we discussed above, the write can be considered complete

with respect to its own processor immediately after it is issued. Therefore, the optimization only applies

to models that impose the coherence requirement on the given write. The optimization can be supported

in either implementation depicted in Figure 5.11; the implementation on the top can forward the value

from the write buffer, while the implementation on the bottom can forward the value from the cache. The

read-forwarding optimization is not safe for every memory model, however. Referring back to the example

in Figure 5.10, consider a model with a strict uniprocessor dependence condition which would require

W1(1)
xo
�! R1(1) and W2(2)

xo
�! R2(2). If the model also imposes the coherence requirement, either

W1(2)
xo
�! W2(2)

xo
�! R2(2) or W2(1)

xo
�! W1(1)

xo
�! R1(1) must hold in any execution of the code. To

ensure the above, the implementation must disallow a read to return the value of its own write until the write is

serialized. The need to delay the read arises from the subtle interaction of the initiation, value, coherence, and

uniprocessor dependence conditions: a read must return the value of its own processor’s write or a later write

in the execution order (initiation and value condition); the read cannot complete (i.e., return a value) until

the conflicting write that precedes it in program order completes with respect to this processor (strict form

of the uniprocessor dependence condition); and the write is considered complete with respect to its issuing

processor after it has been serialized with respect to other writes to the same location (indirectly imposed by

the coherence requirement).

Except for the IBM-370 model, all other models described in this thesis safely allow the read forwarding

optimization by relaxing the uniprocessor dependence condition through the elimination of the W(i) xo
�! R(i)

requirement given W
po
�! R. Therefore, referring back to the example in Figure 5.10, execution orders such

as R1(1)
xo
�! R2(2)

xo
�! W1(1)

xo
�! W1(2)

xo
�! W2(1)

xo
�! W2(2) are allowed. Note that the coherence

requirement is still satisfied. Furthermore, even though the reads complete before the writes in the above

execution order, the initiation and value conditions still maintain the traditional notion of data dependence

by requiring R1 and R2 to return the value of their own processor’s write (i.e., outcome of (u,v)=(1,2)).

The subtle interaction among the conditions is broken by the following two things: (a) the relaxed form of

the uniprocessor dependence condition allows a read to complete before a conflicting write that precedes it

in program order, and (b) the value condition disassociates the visibility and completion events for writes,

allowing a read to return the value of its own processor’s write before the write completes. Switching between

the strict and relaxed versions of the uniprocessor dependence condition affects the semantics of several of

the models: the IBM-370 model depends on the strict version, while the TSO, PSO, PC, RCsc, RCpc, and

RMO models depend on the relaxed version. For example, the program segments shown in Figure 2.14 in

Chapter 2 distinguish the IBM-370 and the TSO (or PC) models based on whether a read is allowed to return

the value of its processor’s write early.

5.3.5 Supporting the Multiprocessor Dependence Chains

The multiprocessor dependence chains represent the most distinctive aspect of a memory model specification.

Intuitively, these chains capture the orders imposed on pairs of conflicting operations based on the relative
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define
spo
�!: X

spo
�! Y if X and Y are to different locations and X

po
�! Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co0

�! Y

R
co0

�! W
co0

�! R

Conditions on
xo
�!:

: : :

(b) given memory operations X and Y, if X and Y conflict
and X,Y are the first and last operations in one of

: : :

multiprocessor dependence chain: one of

W
co0

�! R
po
�! R

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure 5.12: Multiprocessor dependence chains in the SC specification.

program and conflict orders of other operations. This section describes the relevant mechanisms for supporting

multiprocessor dependence chains, including mechanisms for providing the ordering information to the

hardware (e.g., through fences or operation labels), for keeping track of outstanding operations, and for

enforcing the appropriate order among operations.20

Much of the discussion and examples in the following sections pertain to the SC and PL1 specifications

which represent the strict and relaxed sides of the spectrum. For easier reference, Figures 5.12 and 5.13 show

the isolated multiprocessor dependence chains for these two specifications.

Overview of Implementing Multiprocessor Dependence Chains

Multiprocessor dependence chains comprise of specific program and conflict orders that impose an execution

order between the conflicting pair of operations at the beginning and end of the chain. In our specification

notation, most of the relevant program order and conflict order arcs that constitute these chains are represented

by the
spo
�! and

sco
�! relations, respectively. For implementation purposes, it is useful to separate the

multiprocessor dependence chains into three different categories:

1. Chains of the form W
co
�! R

po
�! R or W

co
�! R

po
�! W consisting of three operations to the same

location.

2. Chains that begin with a
po
�! and do not contain conflict orders of the form R

co
�! W

co
�! R.

3. Chains that begin with a
co
�! or contain conflict orders of the form R

co
�! W

co
�! R.

The above categories do not directly match the way the chains are separated in the model specifications.

For example, the second chain representation in the specification for SC can fall in either the second or the

third category above depending on the presence of conflict orders of the form R co
�! W co

�! R.

20Even though the reach relation appears as part of the multiprocessor dependence chains (through
spo
�! ) in system-centric models

such as RCsc, we postpone the discussion of this relation until Section 5.3.6.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! Rc

Rc
po
�! Wc

Wc
po
�! Rc, to different locations

Wc
po
�! Wc

X
spo
�! Y if X and Y are the first and last operations in one of

Rc
po
�! RW

RW
po
�! Wc

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

Wc
co0

�! Rc

Rc
co0

�! Wc

Wc
co0

�! Wc

Rc
co0

�! Wc
co0

�! Rc

Conditions on
xo
�!:

: : :

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
: : :

multiprocessor dependence chain: one of

Wc
co0

�! Rc
spo
�! RW

RW
spo
�! fWc

sco
�! Rc

spo0

�! g* fWc
sco
�! Rc

spo
�! g RW

Wc
sco
�! Rc

spo0

�! fWc
sco
�! Rc

spo0

�! g* fWc
sco
�! Rc

spo
�! g RW

RWc
spo0

�! fA
sco
�! B

spo0

�! g+ RWc

Wc
sco
�! Rc

spo0

�! fA
sco
�! B

spo0

�! g+ Rc
: : :

then X(i)
xo
�! Y(i) for all i.

Figure 5.13: Multiprocessor dependence chains in the PL1 specification.
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(a) Category 1: outcome (u,v)=(1,0) disallowed

P1

A = 1;

P2

a2:

b2:

a1:

v = A;

u = A;

(b) Category 2: outcome (u,v)=(0,0) disallowed

P1

A = 1;

P2

a1:

b1:

a2:

b2: v = A;

B = 1;

u = B;

(c) Category 2: outcome (u,v,w)=(1,1,0) disallowed

P3

a3:

b3:

P1 P2

a2:a1: A = 1;

b2: w = A;b2: B = 1;

u = B;

C = 1;

v = C;

(d) Category 3: outcome (u,v,w)=(1,1,0) disallowed

P3

a3:

b3:

P1 P2

a2:

b2:

a1: A = 1; u = A;

B = 1;

v = B;

w = A;

P4

a4:

b4:

P3

a3:

P1

A = 1;

P2

a2:

b2:

a1: u = A;

v = B;

B = 1; w = B;

x = A;

(e) Category 3: outcome (u,v,w,x)=(1,0,1,0) disallowed

Figure 5.14: Examples for the three categories of multiprocessor dependence chains.

Figure 5.14 provides examples of the three multiprocessor dependence chain categories. The disallowed

outcomes assume the SC specification, with all locations initially 0. The first two categories of chains

can be satisfied by enforcing specific program orders. The third category of chains also require enforcing

multiple-copy atomicity on some writes.

The first category is of the form W
co
�! R

po
�! Y, where all three operations are to the same location.

Assume R and Y are issued by Pi. W
co
�! R already implies W(i)

xo
�! R(i), i.e., the write completes

with respect to Pi before the read completes. If Y is a write, the required order, W(j) xo
�! Y(j) for all j,

is automatically enforced by the combination of the uniprocessor dependence condition and the coherence

requirement (i.e., if the implementation enforces this requirement between W and Y). If Y is a read, the

required order, W(i)
xo
�! Y(i), can be trivially satisfied by forcing R and Y to complete in program order with

respect to Pi, i.e., R(i) xo
�! Y(i). Referring to the example in Figure 5.14(a), this correspond to maintaining

program order between the two reads on P2. In a relaxed model such as PL1, program order between reads

to the same location needs to be enforced only if the first read is a competing read.

Figures 5.14(b) and (c) provide examples of the second category of chains. A simple way to satisfy such

chains is to conservatively enforce the relevant program orders. Consider the SC specification, for example.

For every A
spo
�! B in the chain, the implementation can ensure A(i) xo

�! B(j) for all i,j by delaying any sub-

operations of B until all sub-operation of A have completed. Given X and Y are the first and last operations

in the chain, maintaining the strict execution order at every point in the chain enforces X(i)
xo
�! Y(j) for

all i,j. This conservatively satisfies the specification requirement of X(i) xo
�! Y(i) for all i. In fact, such

an implementation satisfies conservative specification styles such as those presented for SC in Figure 4.6 of

Chapter 4.

Satisfying the third category of chains requires extra ordering restrictions beyond maintaining program

order since these chains expose the multiple-copy behavior in an implementation. Consider the example in
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Figure 5.14(d). We will use the statement labels to uniquely identify operations; e.g., Wa1 refers to the write

on P1. Given an execution with the conflict orders shown in Figure 5.14(d), the SC specification requires

Wa1(3)
xo
�! Rb3(3) to be enforced. The conflict orders already imply Wa1(2)

xo
�! Ra2(2) and Wb2(3)

xo
�!

Ra3(3). Maintaining the program order among operations on P2 and P3 would enforce Ra2(2)
xo
�! Wb2(j)

for all j and Ra3(3)
xo
�! Rb3(3). However, maintaining the program order is insufficient for disallowing the

outcome (u,v,w)=(1,1,0) since it allows Rb3(3) xo
�! Wa1(3).

The third category of chains can be enforced by ensuring that certain writes appear atomic with respect

to multiple copies.21 A simple mechanism to achieve this is to require a write to complete with respect

to all other processors before allowing a conflicting read from another processor to return the value of this

write. Referring to Figure 5.14(d), this restriction ensures Wa1(i) xo
�! Ra2(2) for i=(2,3). Assuming program

order is maintained on P2 and P3, the atomicity restriction enforces Wa1(i) xo
�! Rb3(3) for i=(2,3), which

conservatively satisfies the execution order constraints of the SC specification. In general, the atomicity

constraint must be enforced for a write that starts a chain with a conflict order or a write that is part of a

conflict order of the form R co
�! W co

�! R (e.g., the write on P3 in Figure 5.14(e)). In practice, satisfying

the SC specification requires enforcing this requirement for all writes, while the PL1 specification limits this

requirement to competing writes only.

An alternative mechanism for enforcing atomicity is inspired by the conditions Dubois and Scheurich

proposed for satisfying SC (see Sections 2.3 and 4.1.3), whereby the program order from a read to a following

operation is enforced by delaying the latter operation for both the read to complete and for the write whose

value is read to complete with respect to all other processors. Therefore, given W
co
�! R

po
�! Y in a chain, the

above requirement enforces W(i)
xo
�! Y(j) for all i,j except for i equal to W’s issuing processor. Compared

to the previous mechanism, the delay for the write W to complete simply occurs after, instead of before, the

read R. Referring back to the example in Figure 5.14(d), the above enforces Wa1(i) xo
�! Wb2(j) for all i,j

except for i=1. Along with enforcing the program order on P3, this implies Wa1(i)
xo
�! Rb3(3) for i=(2,3),

which conservatively satisfies the specification. Maintaining the program order conservatively past a read is

required for the following reads that appear in third category chains: (i) the first read (R) in the chain if the

chain begins with W co
�! R , or (ii) the second read (R2) in a conflict order of the form R1 co

�! W co
�! R2.

In practice, the SC specification requires every R
po
�! Y to be enforced in the conservative way, while the

PL1 specification requires this only for Rc
po
�! Yc.

The following sections describe the various mechanisms for enforcing multiprocessor dependence chains

in more detail. The techniques described maintain the execution orders at all intermediate points in the

chain, and therefore do not exploit the aggressive form in which such chains are expressed in the specifica-

tions. Section 5.4.1 describes alternative techniques that satisfy the multiprocessor dependence chains more

aggressively.

Providing Ordering Information to the Hardware

To aggressively support multiprocessor dependence chains, the information about significant program orders

and write operations that must obey multiple-copy atomicity needs to be communicated to the underlying

system. This information is implicit for models such as SC, TSO, and PC. In SC, for example, all program

21Section 4.4 in Chapter 4 described indirect ways of supporting multiple-copy atomicity by transforming specific reads into dummy
read-modify-write operations. This section describes more direct methods for supporting this type of atomicity.
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Table 5.2: How various models inherently convey ordering information.

Mechanism for Providing Information on
Model Program Order Multiple-Copy Atomicity

SC, TSO, PC - -
IBM-370, PSO, fence -
Alpha, RMO, PowerPC
WO, RCpc label -
RCsc, label label
PL1, PL2, PL3

TSO+, PSO+ fence -
PC+, PowerPC+ fence label
RCpc+ label, fence label

orders are significant and every write must obey multiple-copy atomicity. For most relaxed models, however,

explicit information that is provided through operation labels or fences must somehow be explicitly commu-

nicated to the hardware. Table 5.2 shows how such information is inherently provided by various models

(models such as TSO+ are extensions that were defined in Section 4.4).

There are several ways to communicate the information inherently provided by a model to the underlying

hardware:

� The information may be conveyed in the form of an operation label encoded either in the type or the

address of a memory instruction.

� The information may be conveyed through additional instructions, for example explicit fence instruc-

tions.

� The default implicit ordering or implicit operation labels may be altered through special mode instruc-

tions.

The above mechanisms may be used in a hybrid manner. Furthermore, the way information is conveyed to

the hardware does not necessarily have to be the same as the way the information is inherently conveyed by

a memory model. For example, a program written for the PL1 memory model conveys information through

operation labels, yet the program may be executed on hardware that supports explicit fence instructions. This

requires the information provided by the labels to be transformed to explicit fences, similar to the way a

program is ported to different models (see Section 4.4). There may be some loss of information in such a

transformation, resulting in more conservative ordering constraints.

Piggybacking ordering information on top of the instruction type or address has the advantage of incurring

no additional instruction bandwidth. For example, consider the PL1 model which inherently distinguishes

between competing and non-competing operations. The first option is to encode the information in the

operation type by providing two flavors for every read and write memory instruction. Some operations,

such as special synchronization operations, may be represented with a single flavor corresponding to the

conservative label to reduce the number of extra instructions. Nonetheless, this approach is only feasible if

the architecture provides sufficient additional opcode space. The second option is to encode the information
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in the effective virtual or physical address for a memory operation (using a double mapping technique), thus

alleviating the need for additional instruction flavors.22 Similar to the address-based approach discussed in

Section 3.5.2, the main disadvantage of the latter option is that the ordering information is not known until

after the effective virtual or physical address is computed. This can limit some desirable optimizations. For

example, given two reads in program order, the hardware may have to delay issuing the second read until

the address of the first read has been computed since it would otherwise not know whether the first read is a

competing operation. In contrast, encoding the information as extra instruction flavors reveals the operation

labels as soon as the instruction is fetched. However, as mentioned above, using extra instruction flavors may

not be practical in most architectures due to opcode space limitations.

Explicit fence instructions are an alternative to operation labels. The most common use of fence instruc-

tions is to communicate the significance of specific program orders among instructions that occur before and

after the fence. One way to classify a fence instruction is by the set of previous operations and the set of

future operations that are related by the fence [GLL+90]. For example, the set of future operations may

be: (a) all future read and write operations (full fence); (b) all future write operations (write fence), (c) all

future read operations (read fence), and (d) only the operation immediately following the fence (immediate

fence). Likewise, the set of previous operations may be a combination of specific read and write operations

that precede the fence in program order. For example, for supporting PL1, an immediate fence may be

used to capture the program order from previous read and write operations to a competing write. A more

conservative way to convey this program order is to use a write fence before the competing write, which has

the side effect of also imposing an order to the writes following the competing write; the use of conservative

fences obviously leads to a loss of information. In implementations that do not directly support explicit fence

instructions, achieving the functionality of a fence may require issuing a sequence of other instructions that

end up enforcing the desired operation ordering.23

The use of fences as described above is not suitable for distinguishing write operations that must appear

atomic with respect to multiple copies. There are several alternatives, however. The simplest is to provide

atomic behavior for all writes if a model requires it for any write. Alternatively, the third category chains

can be supported through the second technique described earlier in this section, whereby for some reads, the

program order from the read to a following operation is enforced by delaying the latter operation for both the

read to complete and for the write whose value is read to complete with respect to all processors; two flavors

of fences may be used, with one imposing the more conservative ordering. Finally, a different mechanism

may be used to identify the writes that must appear atomic. Explicit fence instructions can theoretically be

used to directly provide equivalent information to operation labels. For example, a fence instruction may be

used to logically identify the proceeding memory operation as a competing operation.24 However, we are not

aware of any systems that use fence instructions in this manner.

The primary disadvantage of fence instructions is the extra cost of the additional instructions especially

in programs that require frequent use of fences. As mentioned in Section 4.4.1, porting a program written

22As an example of double mapping, consider two virtual addresses that only differ in the high order bit being mapped to two physical
addresses that also only differ in the high order bit. This allows the hardware to treat the high order bit in the physical address as a
“flavor” bit to distinguish competing and non-competing operations. Of course, the size of both the virtual and physical address spaces
is effectively reduced.

23For example, delaying for previous writes to complete may require issuing a set number of dummy writes to flush previous writes
out of a write buffer.

24Since a thread can be interrupted between the fence and the actual memory instruction, the implementation may need to save and
restore the presence of an unmatched fence on context switches (e.g., just like a condition code).
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for SC to an implementation with fences may require a fence instruction to be inserted between every pair

of shared memory operations; if we assume memory operations constitute 50% of all instructions in the

original program, the additional fence instructions would constitute a 1.5 times increase in the total number

of instructions.

To alleviate the inefficiency of explicit fence instruction, an implementation may provide multiple modes

corresponding to different default orderings, ideally with the ability to switch among modes through user-level

instructions.25 For example, an implementation that supports the RMO memory model through explicit fence

instructions may provide modes for supporting SC, TSO, and PSO as well, where implicit fences are imposed

appropriately by the implementation to alleviate the need for inserting explicit fence instructions. The above

approach can be quite efficient for programs that do not require mode changes frequently.

Explicit modes can also be used to communicate default labels for operations that follow the explicit

mode instruction. For example, a couple of mode instructions may be used to switch between competing and

non-competing default labels for implementing a model such as PL1. This option has the advantage of not

requiring the extra instructions flavors that would be required to explicitly specify labels on a per operation

basis.

Operation labels or fences may be passed down by the processor to various levels of the memory system.

In many cases, this information is consumed within the processor cache hierarchy. However, information

such as whether a write must appear atomic may need to be passed all the way down to the serialization point

at the home node in some designs.

Keeping Track of Outstanding Memory Operations

Enforcing the appropriate program order and multiple-copy atomicity constraints requires mechanisms to

keep track of outstanding memory operations. The following two sections describe techniques for tracking

the completion of individual memory operations as well as the completion of specific groups of memory

operations.

Completion of a Single Memory Operation The following describes mechanisms for detecting the com-

pletion of a given memory operation. For concreteness, we will assume an invalidation-based protocol with

single-level write back caches. Detecting the completion of a read operation is trivial since it is signaled by

the read reply. Therefore, the rest of this section focuses on write operations.

A write that misses in its processor’s cache generates a read-exclusive or exclusive request to the memory

system. In response, the processor expects two logical replies from the memory system: (i) a read-exclusive

or exclusive reply (depending on whether the processor has the up-to-date data for the line) that signifies

exclusive ownership, and (ii) a final acknowledgement reply to signify the completion of the write with respect

to other processors. Detecting the completion of a write with respect to other processors may in turn require

gathering invalidation acknowledgement messages from cached copies.

There are three important protocol design issues with respect to writes:

� when (i.e., how early) an acknowledgement reply can be sent back in response to an invalidation

request,

25The mode becomes part of the process state and must be saved/restored on context switches.
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� whether invalidation acknowledgements are gathered at the home node or at the requesting node, and

� whether the read-exclusive or exclusive reply may be sent to the requesting node before the write

is actually complete with respect to other processors (as a means to reduce the latency to the first

response), or whether this reply must always be logically piggybacked with the final acknowledgement

reply (delaying the response until the write is complete).

The above issues are primarily relevant for writes to lines with shared cache copies. For example, a write to a

line that is uncached or cached in exclusive mode at another node does not generate any explicit invalidation

messages; therefore, there are no invalidation acknowledgements and no latency benefit in separating the

read-exclusive or exclusive reply and the final acknowledgement into two messages.

First consider the option of early invalidation acknowledgements. For simplicity, we have been assuming

that an invalidation acknowledgement reply is sent back by a cache hierarchy after all stale copies in the

hierarchy are eliminated. However, virtually all practical designs send back the acknowledgement as soon as

the invalidation request is placed in the cache hierarchy’s incoming queue. The above optimization clearly

changes the semantics of the acknowledgement: the early acknowledgement only signals that the write is

committed, but not necessarily completed, with respect to the target cache. Nevertheless, as we will discuss in

Section 5.4.1, the multiprocessor dependence chains and other memory model ordering constraints imposed

by a memory model can still be enforced in the same way as long as a few ordering constraints are imposed

among incoming writes after they are committed. For the purpose of this section, we continue to assume the

conservative approach.

Figure 5.15 illustrates some possible options with respect to where invalidation acknowledgements are

gathered and whether an exclusive reply is sent back possibly before the write is complete. Figure 5.15(a)

shows the option of gathering invalidation acknowledgements at the home along with a delayed exclusive

reply. In the scenario shown, P1 is the write requester that already has a clean copy, P2 also maintains a

clean copy of the line, and P3 is the home node. The figure depicts the logical request and reply paths in the

network as “R” and “Q”, respectively; the number beside each message depicts the sequence in time. Because

the exclusive reply is delayed until invalidations are complete, this reply implicitly signals completion of

the write.26 Figure 5.15(b) shows the scenario where the exclusive reply is sent back as soon as the write

is serialized at the home. The eager exclusive reply reduces the latency for the first reply to the requester.

Nevertheless, a final invalidation acknowledgement reply is still sent later to notify the requesting processor

that all invalidations sent on behalf of this write are complete; in cases where no invalidations are generated

from the home, the final invalidation acknowledgement is implicitly piggybacked with the exclusive reply.

The base cache coherence protocol for the Stanford FLASH [KOH+94] supports both of the above modes

of operation.27 Note that the eager reply optimization is only useful for the more relaxed models, especially

those that allow multiple outstanding write operations; a strict model such as SC requires the processor to

wait for the write to complete almost immediately anyway.

26In designs that use early invalidation or update acknowledgements, the exclusive reply is considered delayed as long as it signals
the fact that the write is committed with respect to all processors even though the write may not be complete yet.

27There is a subtle protocol design issue with the above two options since an incoming reply to the home (i.e., invalidation acknowl-
edgement reply) may need to generate a reply to the requester (i.e., either a delayed exclusive or a final acknowledgement reply). This
violates the request-reply convention used in the protocol to avoid deadlock among network messages. The FLASH protocol deals with
this by reserving sufficient resources upon reception of a write request at the home to later allow the sending of the reply to the requester
to be delayed in case the outgoing reply network queue at the home is full.
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Figure 5.15: Protocol options for a write operation.
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Figure 5.15(c) shows the alternative of gathering invalidation acknowledgements at the requesting node,

which is the option used in the Stanford DASH [LLG+90]. The invalidation acknowledgement from P2 is

directly forwarded to P1 instead of going through the home node, thus reducing the latency for notifying

the requester about the write completion. In this scenario, there is no distinction between a delayed versus

eager exclusive reply at the level of network messages; the requester node can support both modes by either

forwarding the exclusive reply to the processor immediately (eager) or gathering both the exclusive and the

acknowledgement replies before responding to the processor (delayed).

Detecting completion of writes requires maintaining a count of pending invalidation acknowledgements

for each outstanding write. The invalidation-ack count may reside either at the requester node or at the home

node, depending on where acknowledgements are gathered. The number of expected acknowledgements

is determined by the number of sharers for the line that is recorded at the home directory. In the FLASH

design, the invalidation count is kept within the directory entry associated with each memory line, allowing

the directory state and the count to be accessed in the same lookup. In the DASH design, the requester

is responsible for gathering acknowledgements and each requester maintains a limited number of counters

that are allocated to outstanding writes and accessed through an associative lookup. The number of sharers

is communicated from the home to the requester node as part of the exclusive reply message (refer to

Figure 5.15(c)); since the exclusive reply and the invalidation acknowledgements may traverse different paths

in the network, the requester must correctly deal with the reception of acknowledgements before the expected

number of acknowledgements is known.

The choices of where to gather acknowledgements and whether to support eager or delayed exclusive

replies lead to trade-offs in complexity and performance. For example, gathering invalidation acknowledge-

ments at the requester can reduce the latency to detect the completion of a write (compare Figure 5.15(a)

or (b) with Figure 5.15(c)), which can be especially beneficial for strict models such as SC that cannot hide

the write latency. At the same time, gathering acknowledgements at the home can simplify the design. For

example, as we will discuss below, blocking the service of requests (e.g., by forcing a retry) to lines with

pending invalidations eliminates several corner cases in a coherence protocol. Gathering acknowledgements

at the home makes it easy to support this blocking functionality since all cache misses must first visit the

home node and the information on lines with pending invalidations is readily available at the home.

Similar trade-offs arise for the choice between delayed or eager exclusive replies. Most commercial

processors expect only a single reply to a write that signals both ownership and completion (and also provides

the data for the line in case of a read-exclusive reply). The advantage of the eager exclusive reply is

that the processor or cache resources (e.g., write buffer entry) that are committed for pending writes are

relinquished earlier. However, the design becomes more challenging since the processor may assume the

write is complete as soon as the exclusive reply arrives. For correctness, the design must provide extra

functionality external to the processor to determine the actual completion of writes by keeping track of the

follow-on acknowledgements; this functionality is discussed in the next section.

Another key design issue that affects designs with eager exclusive replies is whether future read or

write requests from other processors can be serviced while a line has pending invalidations or updates due

to a previous write. By far the simplest solution is to disallow such requests from being serviced (e.g.,

either through nacking or buffering). Protocols with delayed exclusive replies inherently satisfy the above

since the requester with the pending write does not receive ownership for the line until all invalidations are
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Figure 5.16: Subtle interaction caused by eager exclusive replies.

acknowledged and neither the home nor this requester can service new requests during the time the write is

outstanding. The same is not necessarily true for protocols that support eager exclusive replies.

Figure 5.16 shows an example scenario with eager exclusive replies where servicing a write while there are

invalidations pending for a line can lead to complications. Consider the program segment in Figure 5.16(a),

with operations to Flag labeled as competing under the PL1 model. A correct implementation of PL1 must

disallow the outcome (u=0). However, as we will show below, guaranteeing this requires extra support in

designs with eager exclusive replies. Assume the following conditions for the example in the figure: all

locations are initialized to zero, A and B are co-located within the same memory line, P1 is the home for A/B,

P2 is the home for FLAG, and P3 initially maintains a copy of line A/B. Consider a design with eager exclusive

replies whereby the protocol allows a future write to be serviced even though there are pending invalidations

for a line. Figure 5.16(b) depicts the sequence of network messages corresponding to the scenario described

below. P1 attempts to write to A, leading to an invalidation request to be sent to P3’s copy. Assume the

invalidation request is delayed on its path to P3, for example, due to previous messages that are congesting

this path. With eager exclusive replies, P1 obtains the line in exclusive mode before the invalidation is

acknowledged. Meanwhile, P2’s write to B generates a read-exclusive request which is sent to P1. Since P1’s

cache already has ownership of line A/B, it can surrender ownership to P2 even though invalidations are still

pending for the line. At this point, if P2 assumes its write to B is complete, it can proceed with its write to

Flag. Therefore, it is possible for P3 to read the new value for Flag and proceed to read its own stale copy of

B with the value 0 all before the invalidation request from P1 reaches it. This execution clearly violates the

PL1 model.

The problem in the above example arises because P2 receives a line in dirty state while there are

invalidations pending to that line due to a previous write, and P2 is neither aware of these invalidation nor

able to detect their completion. Consequently, in a design with eager exclusive replies, a write request to

a block with pending invalidations must be handled in one of two ways: (a) the write must be delayed (by

buffering or forcing retry) until the invalidations are complete, or (b) if the write is serviced, the requesting

processor must be notified about the pending invalidations and must be later notified of their completion.

The second option leads to a more complex design since the system must maintain pointers to the new

requesters and notify them when the pending invalidations are complete. The first option also has the added
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benefit of trivially satisfying the serialization of writes that is necessary for supporting cache coherence (see

Section 5.3.2). Supporting the first option is simple in designs that gather invalidation acknowledgements

at the home since the home can easily deny service to requests to lines with pending invalidations. For

designs that gather acknowledgements at the requester, such as in DASH, it is the requester awaiting for the

invalidation acknowledgements that must nack new requests; it is also important to delay the writing back of

the line to the home node while invalidations are pending since this could otherwise expose a window for a

future request to be serviced at the home even though there are pending invalidations. The above functionality

is supported by the remote-access-cache (RAC) in DASH [LLG+90].28

Delaying the service of read requests to a line with pending invalidations also simplifies the design,

especially for supporting the third category of multiprocessor chains where we must maintain the illusion of

multiple-copy atomicity.29 At the other extreme, aggressive designs that attempt to allow both read and write

requests to be serviced while a line has pending invalidations can get quite complex. For example, consider

a write W1 by P1 with pending invalidations, followed by a read by P2 that obtains a cached copy of the

line, followed by a write W2 by P3 to the line. To service W2, we not only have to notify P3 of when W1

completes, but we also need to invalidate the copy at P2 and notify P3 of the completion of this invalidation

that is caused by its own write.

Update-based protocols are also greatly simplified if we delay the service of write requests to a line that

has pending updates. Consider a write W1 by P1 with pending updates followed by a write W2 by P2 to the

same line. Unlike invalidation-based protocols, W1 does not eliminate the copies, and therefore W2 must

also send update requests to these copies. Allowing simultaneous pending updates from multiple writes to the

same line gets complicated because we must notify each requester on the completion of its updates. Thus, an

aggressive design would require a counter per outstanding write in addition to sufficient tagging of the updates

and acknowledgements to identify the requesting processor (and appropriate counter). This is more feasible

in a DASH-like design where acknowledgements are gathered at the requesting node since acknowledgement

messages are already forwarded to the appropriate node and counter. Another issue in update-based protocols

is that it is difficult to disallow a read from observing the new value of a write that has outstanding updates;

the protocol inherently updates (i.e. provides the new value to) copies in a non-atomic manner. This makes

it more difficult to support the illusion of multiple-copy atomicity for writes in update-based protocols.

Completion of a Set of Memory Operations The significant program orders for a given model can be

represented by a directed acyclic graph with the nodes representing memory operations from the same

processor and the edges representing the partial orders among these operations. For any given memory

operation O, an ideal implementation would be capable of tracking the completion of the set of operations

that are ordered beforeO in this graph. It may be impractical to maintain such level of detail for some relaxed

models, however. In what follows, we describe both conservative and aggressive techniques for keeping

track of the completion of various sets of operations for different models. Choosing the appropriate technique

inherently depends on the mechanisms used for enforcing program orders, which is the topic of the next

section. For purposes of this section, we assume ordering is enforced by delaying the issue of an operation

28The DASH design actually supports a hybrid version of the (a) and (b) solutions above. Requests from processors on a different
cluster than the original requester are rejected. However, requests from other processors in the same cluster are serviced since it is simple
to later inform them about the completion of the invalidations.

29It is actually alright to return the old value of the location to a read while invalidations are pending, but this old value should not be
cached since it constitutes a stale copy.
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until the appropriate set of previous operations are complete.

Sequential consistency is the simplest model to support because it imposes virtually a total order on

operations from the same processor. This implies at most one outstanding memory operation at any given

time. Therefore, the only information we need is whether the previous read or write operation has completed.

The IBM-370, TSO, and PC models are also quite simple to support since they allow at most one outstanding

read and one outstanding write operation at any time. On a read, the implementation can delay the issue

of all future operations until the read completes (e.g., blocking read implementations trivially satisfy this);

this alleviates the need to explicitly check for previous reads. Thus, an operation needs to at most check for

completion of the previous write operation.

Unlike the models above, the PSO model allows more than a single write to be outstanding at any

given time. As with the TSO model, the implementation can delay the issue of all future operations on a

read. However, PSO still requires a mechanism to check for the completion of potentially multiple previous

writes. One option is to keep a count of outstanding writes at each processor which is incremented when

a read-exclusive or exclusive request is generated and is decremented on the corresponding exclusive or

acknowledgement reply (depending on whether exclusive replies are delayed or eager, respectively; the two

replies are piggybacked in the eager case if the home does not generate any remote invalidations).30 Some

implementations may not require an explicit counter. For example, implementations with a pending write

buffer may simply wait for all entries in the buffer to be flushed as a sign that previous writes have completed.

This latter technique may not be applicable if the protocol supports eager exclusive replies; a processor or

cache hierarchy that expects a single reply to a write may deallocate entries associated with the write upon

receiving the eager exclusive reply even though invalidations may be pending.

The remaining models all allow multiple outstanding read and write operations. The simplest set of models

to support are WO, Alpha, and PowerPC, because the primary mechanism they require is to sometimes delay

all future operations until all previous read and write operations are complete.31 For implementations

with blocking reads, there is no need to explicitly keep track of read operations. A simple solution for

implementations that support multiple outstanding reads is to keep a combined count of outstanding read and

write operations at each processor. As with PSO, some implementations may not require an explicit count.

For example, mechanisms such as a read transaction buffer (see Section 5.2.3) that are already used to keep

track of outstanding reads may be sufficient for detecting the completion of previous reads. Writes may still

require an explicit count if the protocol implements eager exclusive replies.

Aggressive support for the RMO model is a little more complex than the above. RMO provides four

types of fence operations that may be combined to selectively order previous reads or writes with respect

to future reads or writes. Therefore, an aggressive implementation must keep track of previous read and

write operations separately, e.g., by implementing separate counters for each. However, the main source of

complexity arises from the occasional need to wait for previous operations of one type without delaying future

operations of the same type. This scenario arises whenever the combination of fences requires waiting for

previous reads without delaying future reads or waiting for previous writes without delaying future writes.

Consider the example in Figure 5.17 with a fence from previous writes to future reads; the arcs show the

30For designs that use counters, the size of the counter sets an upper limit on the number of outstanding operations from each processor.
A subtle issue arises in designs that support eager exclusive replies: supportingn outstanding requests by the processor typically requires
a counter that can keep track of more than n requests because even though only n may be waiting on the exclusive reply there may be
more than n requests with pending invalidations.

31The Alpha model also requires program order to be maintained between read operations to the same address.
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Figure 5.17: Difficulty in aggressively supporting RMO.

ordering imposed by RMO. Assume the implementation provides a count of outstanding write operations,

and that the write to A is pending (i.e., count=1) when the fence instruction is issued. Thus, the read to C will

be delayed until the count reaches zero. The problem is that writes past the fence, such as the writes to D and

E, can be issued and can increment the count of outstanding writes before the write of A actually completes

(an analogous problem arises with the read-to-write fence). This raises two issues: (i) the read of C may be

unnecessarily delayed for the completion of future writes, and (ii) theoretically, the read of C may be delayed

indefinitely since the count may never reach zero if the processor continuously issues write operations that

miss in its cache. One possible solution to the latter problem is to limit the number of writes that can be issued

past the fence if there are any operations waiting for the count to reach zero; the degenerate case of limiting

the number of such writes to zero actually eliminates issue (i) as well. Nevertheless, both solutions constrain

orderings beyond the minimum imposed by RMO.

More aggressive implementations of RMO can involve undue complexity. For example, a design based

on counters requires multiple counters corresponding to intervals between fence operations. Request and

reply messages may also need to be tagged with the corresponding interval in order to distinguish the counter

that should be incremented or decremented. Referring back to the example in Figure 5.17, such an aggressive

design would use separate counters to keep track of the writes before and after the fence, allowing the read

of C to be delayed for only the writes before the fence. However, the performance gains from such an

implementation may not justify the extra complexity especially if we expect fence operations to be infrequent.

Compared to RMO, achieving aggressive implementations for RCsc, RCpc, and the three PL models

can be even more challenging. These models exhibit the same asymmetric behavior as RMO of waiting for

previous operations of a certain type without necessarily delaying future operations of the same type. The

additional complexity arises from the further distinctions of read and write operations. For example, the

PL1 model (which is the simplest among these models) distinguishes between competing and non-competing

reads and writes, leading to four distinct types of operations.

Consider the program orders imposed by PL1: (a) a competing read is ordered before any future operations,

(b) a competing write is ordered after any previous operations, and (c) a competing write is ordered before

a competing read (the first two conditions already imply read-read, read-write, and write-write order among

competing operations). Condition (a) can be easily satisfied by delaying the issue of all future operations

after a competing read until the read is complete. Condition (b) is more difficult to support aggressively

since while a competing write is delayed for all previous operations, an implementation is allowed to issue

future non-competing reads and writes. An aggressive implementation based on counters would require
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multiple counters corresponding to intervals between competing writes (along with message tags to choose

the appropriate counter) so that operations before and after a competing write can be tracked by separate

counters. Similar to RMO, conservatively using a single counter would require limiting the number of future

operations that can be issued when an operation is waiting for the count to decrease to zero. Condition (c)

is not as difficult to support aggressively since there can at most be one competing write outstanding before

the competing read (future competing writes are delayed for the read by condition (a)). Therefore, we need

to only determine whether the previous competing write has completed. More conservative implementations

may use the same counter(s) as for condition (b) which implies that the competing read may be unnecessarily

delayed for previous non-competing operations as well.

The PL2 model requires slightly more aggressive support since it further distinguishes competing op-

erations into sync and non-sync categories (sync reads and writes are referred to as acquires and releases,

respectively). Support for acquires and releases is virtually analogous to the support for competing reads and

writes (i.e., conditions (a) and (b)) in PL1: an acquire is ordered before any future operations and a release

is ordered after any previous operations. The ordering among competing operations limits the number of

outstanding competing operations to at most one. Therefore, before issuing any competing operation, we

need to know whether the previous competing operation (read or write, sync or non-sync) has completed.32

The PL3 model further distinguishes competing sync operations into loop and non-loop categories. The

important optimization in PL3 is that the order from a competing write to a competing read does not need to

be maintained if either the write is a loop write or the read is a loop read. One simplification may be to ignore

the distinction between sync and non-sync operations (i.e., treat non-sync as sync) if non-sync operations

are known to be infrequent in the target programs. With this simplification, keeping track of outstanding

operations for PL3 is no more difficult than for PL1. In fact, since condition (c) of PL1 can be reduced to

only maintaining an order from a non-loop write to a non-loop read (which are likely to be less frequent than

loop reads and writes), less aggressive implementations of this condition may be tolerable in PL3.

There is often a latency associated with detecting the completion of previous memory operations. In

some designs, this may be as simple as waiting for the MSHRs (or alternatively the pending-write buffer)

corresponding to write operations to become empty, and the latency for the check may be quite small if there

are no outstanding writes. In other designs, the latency for detecting completion of previous writes may be

substantially larger. For example, in designs with eager exclusive replies, the counter that keeps track of

outstanding writes may actually be external to the CPU chip. Therefore, checking for write completion may

involve flushing any outgoing buffers to ensure that the counter is properly incremented by all previous writes

and then waiting for the count to reach zero. Even when there are no outstanding writes, determining that

the appropriate queues are flushed and checking the external count may take a long time. While this latency

may not be directly or fully visible to the processor, it ultimately affects the rate at which write operations are

retired especially if the counter must be checked often. Therefore, it does not make sense to support eager

exclusive replies with external counters if our goal is to efficiently support a model like SC. However, for

models that enforce program order less frequently, the benefit of eager exclusive replies may easily outweigh

the higher latency to check an external counter.

32There is a subtle issue with respect to protocols with eager replies for writes when we wait for competing non-sync writes. Consider
the sequence of a non-competing write followed by a non-sync write to the line. An eager exclusive or read-exclusive reply to the
non-competing write may make the non-sync write hit in the cache. Nevertheless, we cannot assume the non-sync write is complete
since the invalidations sent on behalf of the non-competing write may still be outstanding. This issue does not arise for a sync write
(release) since the write inherently waits for all previous writes to complete.
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There are a number of alternatives for decreasing the latency to detect the completion of writes in systems

with counters that are external to the processor core. One alternative is to actually propagate the final

acknowledgement replies all the way up the cache hierarchy so that mechanisms such as counters can be

placed closer to the processor core. The trade-off here is the extra incoming messages propagated within the

cache hierarchy. Another alternative is to keep an external counter but provide a continuous signal to the

processor core as to whether the count is zero. Once the processor flushes the appropriate internal queues,

it can check the signal after a specified bounded time (i.e., allowing enough time for any flushed requests to

reach the counter and for the signal to be adjusted). This can reduce the latency for checking the counter

since it alleviates the round trip latency of sending an external message to read the counter and is especially

effective for quickly detecting zero counts.

Mechanisms for Enforcing Order

Enforcing the ordering imposed by multiprocessor dependence chains typically requires two different mech-

anisms: (i) a mechanism to maintain specific program orders among operations, and (ii) a mechanism to

maintain the illusion of multiple-copy atomicity for specific write operations. The first is required for all

types of multiprocessor dependence chains, while the second is only required for the third category of chains.

This section describes various methods of supporting the above functionality.

Maintaining Program Order The previous section described techniques for keeping track of the comple-

tion of memory operations. This information can be used to enforce the appropriate partial orders among

operations from the same processor. As with other implementation aspects, conservatively enforcing program

ordering constraints for a model can in some cases lead to significantly simpler designs. There are effectively

two ways to delay future operations for the appropriate set of previous operations. The simplest mechanism

is to stall the processor until the previous operations complete. However, this leads to a conservative imple-

mentation for most relaxed models since all future memory and non-memory instructions are delayed while

the processor is stalled. The alternative is to issue memory operations into one or more buffers and to enforce

the appropriate ordering by controlling how operations are retired from these buffers. To enforce SC, for

example, a combined read and write buffer can maintain sufficient order by retiring operations one at a time

and waiting for each operation to complete before retiring the next operation. Buffers can play an important

role in enforcing program orders since they allow the processor to proceed with future instructions.

Some implementations may use a hybrid of the above techniques. For example, consider supporting

the TSO (or IBM-370 or PC) model in a design with blocking reads. As a result of blocking reads, the

processor inherently maintains the program order from reads to future read and write operations by stalling

on every read until the read completes. To maintain the required order among write operations, we can use a

write buffer that delays retiring the write at its head until the previously retired write is complete. Thus, the

processor does not directly stall on write operations, and is only stalled if it attempts to issue a write to a full

buffer. By avoiding processor stalls in this way, much of the latency associated with write operations can be

hidden even though the design maintains strict program order among write operations. The above example

also illustrates how a conservative design choice, such as blocking reads, inherently enforces a number of the

required program ordering constraints.

Memory operation buffers can be effective in enforcing the program order requirements for more relaxed
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models as well. Consider the ordering of writes in the PSO model, for example. PSO allows write operations

to be reordered unless there is an explicit write fence between them. The processor can issue both write

operations and write fence operations into a write buffer. The write buffer can retire writes in a pipelined

fashion (i.e., without waiting for a write to complete before issuing the next write) until a write fence reaches

the head of the buffer. A write fence at the head of the buffer stalls the retiring of writes until all previously

retired writes are complete. This has the effect of ordering all writes before the write fence with respect to all

writes after the write fence.

An analogous mechanism can be used for ordering writes in a model like PL1. In PL1, a competing

write must be ordered after any previous read or write operations. The processor can issue writes into a write

buffer. The buffer can retire writes in a pipelined fashion until a competing write reaches the head of the

buffer. A competing write at the head of the buffer stalls the retiring of writes until all previous read and

write operations are complete. Again, note that delaying a competing write for previous operations does not

involve stalling the processor but is achieved through controlling the retiring of writes from the write buffer.

The above is a conservative implementation of PL1 since writes after (in program order) the competing write

may be unnecessarily delayed for the writes before the competing write. A more aggressive implementation

requires a substantially more complicated buffering structure since the competing write must be delayed

without delaying future non-competing writes;33 as discussed in the previous section, detecting completion

of operations also becomes more complex since we must separately keep track of operations before and after

a competing write.

The above has mainly discussed delaying a single operation or a select set of future operations for a set

of previous operations. Another common form of order is delaying future operations for a single previous

operation. This type of order is also quite simple to support with buffers. Consider delaying future operations

for a competing read in PL1. After a competing read is retired from the head of the buffer, retiring the

remaining operations in the buffer can be delayed until the competing read is complete.

For most models, conservative design choices alleviate the need for extra mechanisms to enforce the

appropriate program orders. As discussed before, blocking reads automatically maintain the order from

reads to future operations. Similarly, blocking caches or strict FIFO queues can also automatically enforce

many of the required program orders. Another example, common in dynamically scheduled processors that

support precise exceptions, is the conservative delaying of write operations until all previous instructions and

operations are complete (rolling back write operations would be too complex). In an analogous way, models

that impose strict program ordering constraints alleviate the need for extremely aggressive implementations.

For example, a lockup-free cache design for models such as IBM-370, TSO, or PSO needs to support a

maximum of one read and one write operation outstanding at any given time.

The implementations described above enforce the required program ordering constraints at the early stages

in the memory hierarchy. Once these orders are enforced, the lower components of the memory hierarchy can

safely exploit optimizations that lead to reordering of memory operations to different lines (as discussed in

the previous sections, some ordering requirements may still need to be guaranteed for operations to the same

location or line). Therefore, the remaining part of the cache hierarchy on the outgoing path, the network, the

memory system, and the incoming path in the cache hierarchy can all exploit reordering optimizations among

messages to distinct memory lines.

33The conservative implementation is analogous to placing a write fence before a competing write instead of the more aggressive
immediate fence.
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Figure 5.18: Merging writes assuming the PC model.

Bypassing, Merging, and Forwarding Buffering optimizations such as bypassing, merging, and forward-

ing must also be restricted appropriately to satisfy program ordering constraints imposed by a memory model

(a number of these optimizations apply to lockup-free caches as well as to buffers). The initiation, value, and

uniprocessor dependence conditions already impose constraints on such optimizations by imposing program

ordering on operations to the same location. However, we must also satisfy program ordering constraints with

respect to operations to different locations. For an operation O to bypass pending operations that are before

it in program order, reordering operation O with respect to those operations must be allowed by the model.

Similarly, for read forwarding, the read must be allowed to be reordered with respect all pending operations

that are before it in program order. Finally, for merging operation O2 with an earlier operation O1, we must

determine whether it is safe to reorder operation O2 with respect to the pending operations between O1 and

O2 (excluding O1 itself).34 For systems that support operation labels, merging also requires the resulting

operations to inherit the more conservative labels from the constituent operations. For example, if we merge a

non-competing write with a competing one in the PL1 model, the merged operation should have the competing

label. It is interesting to note that limited forms of buffering, merging, and even read forwarding are actually

possible even with strict models such as SC. For example, in SC, writes to the same location can be merged

into a single write as long as no other operations appear among these writes in program order.

Merging writes can create a subtle correctness issue for specific combinations of models and implemen-

tations. Consider the PC model, for example, with a couple of write merging scenarios shown in Figure 5.18.

The first example involves merging a pair of writes with consecutive addresses within the same memory line

into a single write with larger granularity, while the second example illustrates merging of writes with the

same address. In both cases, the set of possible outcomes after write merging should be a strict subset of the

possible outcomes allowed by the model before the merging optimization. Aggressive implementations of PC

may fail to satisfy the above requirement, however, if we allow write merging. The reason is write merging

in the above examples effectively transforms a category two chain (refer back to categorization earlier in this

section) into a category three chain, yet the system specification for PC does not require the order imposed

34For example, assuming the PL1 model, and given a non-competing write W1 followed in program order by a competing write W2,
it is possible to merge the two writes even though W2 is not allowed to be reordered with respect to W1. In effect, merging makes it
appear as if both writes happen at the same time.
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by the category three chain to be upheld. Nevertheless, write merging is safe in any implementation of PC

that conservatively upholds multiple copy atomicity for all writes. Therefore, whether write merging is safe

depends both on the model and the specific implementation. Here is a list of other models along with pairs

of writes that should not be merged if the implementation is sufficiently aggressive (i.e., does not support

multiple-copy atomicity for the second type of write in the pair): a write followed by a competing write in

RCsc or RCpc, two writes separated by a fence in PowerPC, and a write followed by a loop write in PL3.

Maintaining Multiple-Copy Atomicity As we discussed earlier in this section, enforcing the third category

of multiprocessor dependence chains requires providing the illusion of multiple-copy atomicity in addition

to maintaining the program order among operations. This section describes the implementation of the two

techniques for enforcing multiple-copy atomicity (that were introduced earlier) in more detail.

The first technique is to require the write to complete with respect to all other processors before allowing

a conflicting read from another processor to return the value of this write. Therefore, given a write W on

Pi and a read R on a different processor Pj , W(j) xo
�! R(j) must imply W(k) xo

�! R(j) for all k except k=i.

For invalidation-based protocols, the above condition can be enforced by simply disallowing a read request

from another processor (i.e., different from Pi) to return the value of the write while there are invalidations

pending for the line. The simplest and most practical way to achieve this is to delay (e.g., through nacking)

the read request if any invalidations are pending for the line.35 This can be supported in an analogous way

to the implementations described earlier in this section for disallowing new write requests while there are

pending invalidations. As before, this functionality can be supported either at the home for the line or at the

requester depending on where invalidation acknowledgements are gathered.

Depending on the given model, the above restriction may apply to only a subset of the write operations.

The functionality is not needed at all for the PC, RCpc, and PowerPC models since these models do not

enforce any category three multiprocessor dependence chains. For the SC, TSO, IBM-370, PSO, WO, RCsc,

Alpha, and RMO models, all writes must be treated conservatively. Finally, the PL1 and PL2 models impose

this restriction on competing writes only, and the PL3 model is similar except it excludes competing loop

writes from this restriction.36 For the latter models, extra information must be communicated to the memory

system to distinguish writes that must be treated conservatively.

The first technique is more difficult to apply to update-based protocols since shared copies of a location are

inherently updated at different times, allowing a read from a different processor to return the new value while

updates to other copies are pending. One solution is to use a two-phase update protocol (a similar technique

is described by Wilson and LaRowe [WL92]). The first phase involves sending updates to the cached copies

and receiving acknowledgements for these updates. In this phase, a processor (other than the processor that

issued the write) must not allow its reads to return the value of the updated location. In the second phase, a

35Alternatively, we can service the read request by providing an uncached version of the old value for the line (i.e., value before the
current write is done). Note that providing the new value to a read-exclusive request from another processor can also cause problems
since a subsequent read on that processor can see the value too early; however, as we mentioned earlier in this section, most designs
delay read-exclusive requests while there are outstanding invalidations in order to simplify detecting the completion of writes.

36There can be a subtle correctness issue for aggressive implementations of PL2 and PL3 that do not delay a read from returning the
value of a non-competing write even if the write has pending invalidations. The problem arises if the implementation also supports eager
exclusive replies. Consider a non-competing write followed in program order by a competing write to the same cache block. With eager
replies, the reply to the non-competing write may make the competing write appear as a cache hit even though there are still pending
invalidations due to the non-competing write. Meanwhile, the memory system may be forwarding read requests to this cache, allowing
them to see the new value of the competing write while there are outstanding invalidations. The solution for both PL2 and PL3 is to
delay a competing non-sync write for previous non-competing writes to complete (a sync write already satisfies this requirement).
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confirmation message is sent to the updated copies to signal the receipt of all acknowledgements. A processor

can use the updated value from its cache once it receives the confirmation message from the second phase.

The processor that issued the write can consider the write complete at the end of the first phase since all stale

copies are eliminated.

Another solution for update protocols is to use a hybrid two-phase scheme, with an invalidation phase

followed by an update phase. The first phase involves invalidating (instead of updating) the copies and

gathering the acknowledgements. Read requests are not serviced while invalidations are pending, similar to

the solution described for a pure invalidation protocol. After the invalidations are acknowledged, the second

phase sends updates with the new value to the copies (that were invalidated).37 The write is considered

complete once the invalidations are acknowledged; the update requests in the second phase do not require

acknowledgements since they simply constitute data movement within the memory hierarchy.

The second technique for maintaining multiple-copy atomicity allows the new value for a line to be read

while there are pending invalidations or updates, but alters the way program order is enforced. To enforce

the program order from a read to a following operation, the latter operation is not only delayed for the read to

complete but is also delayed for the write that provided the value for the read to complete with respect to all

processors (other than the processor that issues the write). Therefore, given W
co0

�! R
po
�! Y where R and Y

are on a different processor than W on Pk, the above condition enforces W(i)
xo
�! Y(j) for all i,j except i=k

(the first technique discussed above enforces the stricter condition of W(i) xo
�! R(j) for all i,j except i=k).

Consider an invalidation protocol. The first phase involves invalidating all copies as usual. The memory

system must keep track of any processors whose read is serviced while there are pending invalidations to

the line and must notify those processors once the invalidations are complete. Furthermore, each processor

must appropriately keep track of read operations that expect the separate notification and must appropriately

delay for this notification when enforcing program order from these reads to future operations. The write

is considered complete as soon as the invalidations are acknowledged. The above technique can be easily

adapted to update-based schemes as well. The program orders that must be treated conservatively are model

dependent. For SC, IBM-370, TSO, and PSO, any R
po
�! Y must be treated conservatively. Here are the

program orders that must be treated conservatively for the other models (
spo
�! is defined differently for each

model): R
spo0

�! Y for WO, Rc
spo0

�! Y for RCsc, R
spo
�! Y for Alpha, R

spo
�! Y for RMO, Rc

spo0

�! Y (only if

R returns the value of a Wc) for PL1 and PL2, and Rc
spo00

�! Y (only if R returns the value of a Wc nl ns) for

PL3. Except for the PL models, the other models require all writes to support the second phase notification.

For PL1 and PL2, only competing writes, and for PL3, only competing non-loop or non-sync writes must

support the second phase notification.

Except for implementations of the first technique for invalidation-based protocols, the other implementa-

tions are less practical since they incur extra design complexity and require extra messages to be communi-

cated. For this reason, it is typically cumbersome and impractical to support update protocols in a scalable

shared-memory system for models that require multiple-copy atomicity for writes. The properly-labeled

models allow a more efficient implementation of update protocols since non-competing writes (which are

typically much more frequent than competing writes) do not need to behave atomically in these models and

can be implemented using a simple single-phase update protocol; competing writes may be supported by

using either a two-phase update scheme or a simple invalidation scheme.

37Depending on the granularity of valid bits in the caches, the invalidation and update requests may either be at the granularity of a
whole cache line or a smaller portion of the line.
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5.3.6 Supporting the Reach Condition

Section 4.2 from the previous chapter describes the intuition behind the reach condition, while Appendices F

and I provide the formal definition for the reach relation (
rch
�!) for both programmer-centric and system-

centric models. The reach condition applies only to models that relax the program order from read to write

operations; this includes WO, RCsc, RCpc, Alpha, RMO, and PowerPC among the system-centric models

and PL1, PL2, and PL3 among the programmer-centric models. While the programmer-centric models

specify the reach condition as a separate constraint, the system-centric models support the reach condition

more conservatively by incorporating the reach relation into the significant program orders that comprise the

multiprocessor dependence chains.

The main purpose for the reach condition is to disallow anomalous executions that arise if we allow

“speculative” write sub-operations to take effect in other processors’ memory copies. The reach relation is

defined between certain R
po
�! W pairs and consists of two components. The first component captures the

notions of uniprocessor data and control dependence. Informally, a read operation reaches a write operation

(i.e., R rch
�! W) that follows it in program order (R

po
�! W) if the read determines whether the write will

execute, the address accessed by the write, or the value written by it. The second component of reach is

particular to multiprocessors. A read operation R reaches a write operation W if R controls the execution, or

address of, or value written (in case of a write) by another memory operation that is before W in program

order and must be ordered before W in the execution order (i.e., if we were to conservatively satisfy the

uniprocessor dependence condition or the multiprocessor dependence chains).

Given R
rch
�! W, the simplest way to satisfy the reach condition is to delay the write for the read to complete.

The formal definition for the reach relation presented in Appendix F is quite complicated primarily because

we tried to provide an extremely aggressive set of conditions. However, most hardware implementations

end up trivially satisfying the reach condition because of their conservative designs. For example, designs

with blocking reads trivially satisfy this condition since for any R
po
�! W, the read is guaranteed to complete

before the write. At the same time, even aggressive dynamically scheduled processors with non-blocking

reads may trivially satisfy the reach condition since they may conservatively delay writes for all previous

instructions to complete as a simple way of supporting precise exceptions. Nevertheless, a key advantage

of our aggressive formulation for the reach condition is that it does not impose any order on future read

operations, thus allowing the processor to issue “speculative” reads (e.g., issuing reads past a branch before

the branch is resolved).

The conditions presented in the appendix allow for more aggressive implementations. For example, a

processor can allow a write W to complete even when there are outstanding reads before it as long as (a) it is

known that W will indeed be executed (i.e., will not have to be rolled back) with the given address and value,

and (b) for any memory operation O before W in program order, whether O will be executed along with its

address and write value (in case of writes) are already resolved. Thus, a write needs to only be delayed until

the control flow for the execution, and the addresses and values of any operations before the write and the

write itself, are resolved. Even more aggressive hardware designs may be achieved by more closely matching

the specification in the appendix. However, the performance gains from doing this may be marginal.
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5.3.7 Supporting Atomic Read-Modify-Write Operations

Read-modify-write operations are commonly used for implementing synchronization algorithms in shared-

memory multiprocessors. Examples include test-and-set, compare-and-swap, fetch-and-op, and the load-

locked and store-conditional instructions [Sit92] which have gained popularity more recently. Condition 4.7

from the previous chapter specifies the consistency requirements for supporting atomic read-modify-write

operations. Intuitively, this constraint requires conflicting write operations from other processors to appear to

execute either before or after a read-modify-write.

The read-modify-write functionality may be supported either at the processor or at the memory. From a

performance point-of-view, operations supported at the processor can exploit reuse locality through caching.

On the other hand, supporting high contention operations at the memory can minimize serialization latencies

(e.g., consider a fetch-and-increment used to implement barrier synchronization).

A read-modify-write operation consists of both a read and a write component. The read component is

allowed to complete as soon as the write component is serialized with respect to other writes (load-locked

and store-conditional operations will be discussed later). Assuming an invalidation protocol with write back

caches, a cache-based implementation can service the read component as soon as the cache acquires ownership

for the line; with eager exclusive replies, this event can actually occur before invalidations caused by the

write component are complete. Of course, the read-modify-write operation can be serviced immediately if the

cache already has exclusive ownership for the line. Memory-based implementations are simpler to support

if we guarantee that memory is always the owner for the location by disallowing caches from maintaining a

dirty copy, or more conservatively any copy, of the line. In this way, the read-modify-write can be serialized

with respect to other conflicting writes as soon as it arrives at the memory and we can respond to the read

component in parallel with sending out any invalidations.

Condition 4.7 is a reasonably aggressive specification since it only requires conflicting write operations

from other processors to appear to execute either before or after the read-modify-write. A more conservative

specification could require any write operation (regardless of its address) to behave atomically with respect

to a read-modify-write. In fact, the original specifications for the SPARC V8 and V9 models (i.e., TSO, PSO,

and RMO) impose the more conservative semantics.38 Figure 5.19 provides an example that illustrates the

semantic difference between the aggressive and conservative specifications (with other constraints the same

as TSO or PSO). Assume all locations are initially zero. The test-and-set on each processor reads the value

zero and sets the value to 1, leading to (u,v)=(0,0) in all executions. Meanwhile, the outcome (w,x)=(0,0)

is allowed by the aggressive semantics and disallowed by the conservative one. The more conservative

specification, as used in TSO, PSO, and RMO, is less desirable since it disallows the servicing of the read

component until all invalidation or update requests generated by the write component are complete, making it

more difficult to implement the read-modify-write operations at the memory, or in caches that support eager

exclusive replies.

Load-locked and store-conditional operations are slightly different from a typical read-modify-write.

The load-locked operation returns the value of a given location, which can be modified and written back

using the store-conditional operation. The store-conditional successfully modifies the location if no other

38The specifications for TSO, PSO, and RMO in Appendix I use the aggressive constraints for read-modify-writes and capture the
effect of the conservative constraints by imposing extra program orders.
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a1: u = test&set(A);

P1

b2: w = B;

P2

a2: v= test&set(B);

b2: x = A;

Figure 5.19: Semantics of read-modify-write operations.

processor performs a conflicting write between the time the load-locked completes and the time the store-

conditional is retired. Otherwise, the store-conditional simply fails without modifying the location. The store

conditional’s return value indicates its success or failure; the load-locked/store-conditional sequence can be

simply repeated until the store-conditional succeeds. In this way, the load-locked/store-conditional pair can

be used to implement an arbitrary set of atomic read-modify-write operations.

An implementation can support the above functionality by logically maintaining a lock-flag and a lock-

address register at each processor. A load-locked operation sets the lock-flag and stores the address for the

lock location in the lock-address register. Incoming invalidation and update requests from other processors

are monitored and matched against the lock-address register, and a successful match resets the lock-flag.

Therefore, the lock-flag is used as a conservative indicator of whether another processor has performed a store

since the last load-locked operation. For correctness, the lock-flag is also cleared if the line corresponding to

the lock-address is replaced from the cache or if there is a context switch.39

Even though the above functionality seems simple to support, there are a number of subtle issues that

make correct implementations of load-locked and store-conditional operations quite challenging. Appendix N

describes some of the implementation issues, including the complexity that arises from the need to avoid

livelock conditions whereby no process can successfully complete a load-locked/store-conditional sequence.

There are also important efficiency issues associated with the use of load-locked/store-conditional se-

quences in scalable shared-memory systems. Performing a read-modify-write to a location that is not already

cached by a processor leads to at least two misses, a read miss for the load-locked followed by a write miss for

the store-conditional, both of which may involve large round-trip latencies. One possible optimization is to

prefetch the line in exclusive mode either before the sequence or at the same time the load-locked is serviced,

which incurs just a single long-latency miss. However, sequences that exploit this optimization must support

some sort of exponential back-off to reduce the probability of livelock.40

5.3.8 Comparing Implementations of System-Centric and Programmer-Centric Mod-

els

The system specifications for the properly-labeled (PL) models are more aggressive than even the most relaxed

system-centric specifications (e.g., RCsc, RCpc), primarily because the multiprocessor dependence chains are

more selective in the PL specifications. However, taking full advantage of the aggressive specifications in a

hardware design can lead to excessive complexity and can have diminishing performance returns.41 For this

39A replacementmakes the cache unaware of future writes to the line. A context switch in the middle of a load-locked/store-conditional
sequence can incorrectly allow the load-locked of one process to lead to the success of the store-conditional in another process.

40Livelock may arise because grabbing the line in exclusive mode can lead to the failure of other processors’ sequences without a
guarantee that this processor’s store-conditional will succeed.

41For example, Section 5.3.2 explained why an implementation may still uphold the coherence requirement for all writes even though
PL specifications require it for competing writes only.

Section 5.3 Maintaining the Correct Ordering Among Operations 185



reason, practical hardware implementations of a programmer-centric model such as PL2 and an aggressive

system-centric model such as RCsc are often quite similar in performance and in the type of optimizations

they exploit. Nevertheless, programmer-centric models still enable a few extra optimizations (not allowed by

the RCsc or RCpc specifications) that are relatively simple to exploit in hardware.

One key advantage of the PL specifications compared to the RCsc specification is that non-competing

writes (and loop writes in PL3) do not need to appear atomic with respect to multiple copies. This is

especially beneficial for update-based designs since non-competing and loop writes can safely use a simple

update protocol for maintaining coherence among copies (Section 5.3.5 described the difficulties of supporting

multiple-copy atomicity for updates). Even though the PC, RCpc, and PowerPC models allow all writes to

appear non-atomic, the PL1 and PL2 models are simpler to program (e.g., they do not require the extra

categorizations of PL3) and yet enable this optimization for the frequent write operations. Another potential

advantage of the PL specifications is that a more aggressive version of the termination condition may be used,

as discussed in Appendix H.42

In contrast to practical hardware designs, designs that support cache coherence in software benefit more,

and can better tolerate the extra complexity, from exploiting the aggressive nature of the PL specifications.

This issue is further discussed in Section 5.6.

5.3.9 Summary on Maintaining Correct Order

The previous sections provided a detailed overview of various design issues related to correctly and efficiently

implementing a given memory model. As we saw, there is often a trade-off between design complexity and

supporting more aggressive reordering optimizations. Furthermore, there are numerous subtle issues in

maintaining correctness with the more aggressive optimizations.

5.4 More Aggressive Mechanisms for Supporting Multiprocessor De-

pendence Chains

This section describes three different techniques for achieving more efficient implementations for a given

memory model. The first technique exploits the aggressive nature of our specifications (i.e., the fact that

execution order is only imposed among conflicting operations) to enable the earlier acknowledgement of

invalidation and update requests. The second technique involves automaticprefetching of values for operations

that are delayed due to consistency model constraints. Finally, the third technique employs speculative

execution to speculatively service memory operations even though the consistency model would require

the operation to be delayed. Most of the ideas for the prefetching and speculative execution techniques

have been published in our previous paper [GGH91b]. All three techniques are applicable across the full

range of models, even though implementations of stricter models are expected to gain the most from these

optimizations. Furthermore, the latter two techniques allow us to exploit many of the hardware optimizations

that motivate the use of relaxed memory models while still maintaining the illusion of a stricter model such

as SC.
42A more minor advantage of PL specifications is mentioned in Section 5.4.1 in the context of ordering incoming requests whereby

an incoming non-competing update request is allowed to bypass previous update or invalidate requests.
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5.4.1 Early Acknowledgement of Invalidation and Update Requests

So far, we have assumed that invalidation or update requests are acknowledged only after all stale copies

of the line are eliminated from a processor’s cache hierarchy. Therefore, the acknowledgement reflects the

completion of the write with respect to a given processor. To reduce the latency for write acknowledgements

especially in designs with deep cache hierarchies, a common optimization is to acknowledge an invalidation

or update request as soon as the request is placed in the cache hierarchy’s incoming queue which is before

all stale copies are actually eliminated.43 This optimization also simplifies the buffer deadlock issues in

handling incoming invalidation or update requests within the cache hierarchy since an acknowledgement

reply is no longer generated from within the hierarchy (see Section 5.2.3). However, naive applications of this

optimization can lead to incorrect implementations since an acknowledgement reply no longer signifies the

completion of the write with respect to the target processor. This section describes two distinct implementation

techniques that enable the safe use of early acknowledgements.

To simplify discussing the above optimization, we introduce an additional set of physical events for a

write operation. A write operation currently consists of multiple completion events with respect to each of

the n processors. For each write, we also define a commit event with respect to each processor. The commit

event corresponds to the time when the write is either explicitly or implicitly acknowledged and precedes the

completion event with respect to a processor in cases involving an early acknowledgement. The commit and

completion events (with respect to a given processor) coincide in time if no invalidation or update requests

are exchanged, or if the early acknowledgement optimization is not used.

In designs with early acknowledgements, the program order between a write W and a following operation

Y is enforced by waiting for W to commit with respect to every processor before issuing Y (there is no longer

an explicit message that signals the completion of the write). This does not directly satisfy conservative

specifications (e.g., conditions for SC in Figure 4.4) which prescribe enforcing program order from a write by

waiting for the write to complete with respect to every processor. Instead, such designs exploit the flexibility

of the more aggressive specifications (e.g., conditions for SC in Figure 4.7) whereby completion order is only

enforced among the endpoints of a multiprocessor dependence chain and not at every program order arc.

Figure 5.20 shows an example to illustrate the issues related to early acknowledgements. Consider the

program segment in Figure 5.20(a) with all locations initialized to zero. The outcome (u,v)=(1,0) is disallowed

under the SC model. Consider an invalidation-based protocol with write-through caches. Assume P1 initially

caches both locations and P2 caches location A. Without early acknowledgements, P1 issues the write to A,

waits for it to complete, and proceeds to issue the write to B. Therefore, the stale copy of A at P2 is eliminated

before P1 even issues its second write. Furthermore, as long as P2 ensures its reads complete in program

order, the outcome (u,v)=(1,0) will indeed be disallowed.

Now consider the scenario with early invalidation acknowledgements. P1’s write to A causes an invali-

dation request to be sent to P2. The invalidation is queued at P2 and an acknowledgement reply is generated.

At this point, the write of A is committed but has yet to complete with respect to P2 (i.e., P2 can still read the

old value of A). While the invalidation request remains queued, P1 can proceed to issue its write to B, and

P2 can issue its read request to B. Figure 5.20(b) captures the state of P2’s incoming buffer at this point, with

both the invalidation request for A and the read reply for B (with the return value of 1) queued. A key issue

43One reason we can acknowledge the request before checking the state of the line in the caches is that an update or invalidate request
sent to a clean cache copy is always acknowledged (i.e., never nacked) even if the line is no longer present in the cache hierarchy (e.g.,
due to a replacement). In other words, it is trivial to service the request when the stale copy is no longer cached.
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Figure 5.20: Example illustrating early invalidation acknowledgements.

is that allowing the read reply to bypass the invalidation request in the buffer, which would be allowed in an

ordinary implementation, will violate SC because P2 can proceed to read the stale value for A out of its cache

after obtaining the new value for B.

Figure 5.21 depicts an alternative view of the above scenario by showing the order among completion

events. Write operations are shown with a completion event with respect to each of the two processors, while

read operations are shown with a single completion event with respect to the issuing processor. Figure 5.21(a)

shows the scenario without early invalidation acknowledgements. As shown, P1 ensures the write to A

completes with respect to both processors before the write to B completes with respect to any processor, and

P2 ensures its two reads complete in program order. The fact that the read of B returns 1 implies that the

write of B completes with respect to P2 before the read of B completes. The above orders imply that the write

of A completes with respect to P2 before the read of A completes, which correctly disallows the outcome

(u,v)=(1,0). Figure 5.21(b) shows the scenario with early invalidation acknowledgements. For each write,

there is now also a commit event with respect to each of the two processors. The program order on P1 is

upheld by ensuring the write to A commits with respect to both processors before the write to B commits

with respect to any processor. The order imposed on P2 and the implied order between the write of B and the

read of B are the same as those in Figure 5.21(a). These orders imply that the write of A is indeed committed

with respect to P2 before the read of B or the read of A complete. However, to disallow (u,v)=(1,0), we need

to somehow ensure that the write of A completes with respect to P2 before the read of A completes (shown

as a dashed arrow).

The first solution we discuss imposes ordering constraints among incoming messages with respect to

previously committed invalidations and updates. Referring back to the example, this solution would disallow

the read reply from bypassing the invalidation request, which forces the committed write to A to complete with

respect to P2 before the read of B completes. The second solution does not impose any ordering constraints

among incoming messages. Instead, it requires previously committed invalidation and update requests to be

serviced anytime program order is enforced for satisfying a multiprocessor dependence chain. In the example,

this latter solution would force the invalidation request to be serviced (e.g., by flushing the incoming queue)

as part of enforcing the program order from the read of B to the read of A. Thus, both solutions correctly
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Figure 5.21: Order among commit and completion events.

disallow the outcome (u,v)=(1,0). In what follows, we present each solution in more detail, discuss their

trade-offs, describe hybrid combinations of the two techniques, and also compare them to previous work in

this area.

Imposing Orders among Incoming Messages

Designs without early acknowledgements can safely reorder incoming messages to different memory lines;

the only ordering constraints are imposed among a subset of incoming messages that address the same memory

line (e.g., refer to Sections 5.3.2 and 5.3.3, and Appendix K). In contrast, arbitrary reordering of incoming

messages to different memory lines can violate correctness in designs that use early acknowledgements.44

One possible solution is to impose a total FIFO ordering among all incoming messages. However, as we will

see below, the actual ordering constraints required for correctness are much less restrictive.

Invalidation-Based Protocol Table 5.1 in Section 5.1.2 enumerates the typical set of incoming request and

reply messages used within a cache hierarchy. Consider an invalidation protocol with write back caches. The

possible incoming messages are as follows:

� incoming requests: read, read-exclusive, invalidate, and

� incoming replies: read, read-exclusive, exclusive, invalidate-ack.45

To achieve correct behavior, it is sufficient to maintain the queue order from an incoming reply message to a

previous incoming invalidate request.46 No other ordering constraints are required for incoming messages to

different memory lines.47

44In our discussion, we implicitly assume that the ordering constraints imposed among incoming messages that address the same
memory line are identical to those in a design without early acknowledgements.

45If the design maintains counters that keep track of previous writes, the response from checking the counter must be considered the
same as an invalidate-ack reply since it signals the fact that the write has been committed or completed with respect to all processors.
Replies to explicit fence instructions must be treated in a similar way.

46For designs with multiple paths for incoming messages, maintaining this order can be simplified by placing incoming invalidate
requests in the same path as incoming replies. This is possible because invalidate requests do not generate a reply from within the
hierarchy, thus alleviating the deadlock issues associated with general requests.

47In a cache hierarchy, an incoming read-exclusive request may generate an invalidation request when it reaches the top most write
back cache that has the dirty copy in order to eliminate any copies at the higher levels. At the same time, the request also generates
an outgoing read-exclusive reply typically merged with an implicit early invalidate-ack reply. The write is considered committed with
respect to the processor at this time and the newly generated invalidation request must not be reordered with respect to future incoming
replies that reach that point in the hierarchy.
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Figure 5.22: Multiprocessor dependence chain with a R co
�! W conflict order.

Therefore, incoming requests can be safely reordered with respect to one another, including the reordering

of two invalidation requests. Incoming replies can also be reordered with respect to one another. Incoming

read or read-exclusive requests can be reordered with respect to incoming replies. And finally, incoming

invalidation requests can be reordered with respect to previous incoming replies. The above conditions are

model independent, at least for the models discussed in this thesis. Therefore, even a design that supports a

strict model such as SC can exploit the reorderings discussed above.48

We refer back to Figure 5.21 to build some intuition for how sufficient order is maintained for correctness.

The fact that the read of B on P2 returns the value 1 implies that the read reply for B arrived at P2 sometime

after the write of B completes with respect to P2. Furthermore, we know that the write of A is committed

with respect to P2 before the above completion event. The above two facts imply that the incoming invalidate

request for location A is queued at P2 before the reply for B arrives. Therefore, maintaining the order from

the reply to the previous incoming invalidate guarantees that the write of A completes with respect to P2

before the read of B completes, correctly disallowing the outcome (u,v)=(1,0).

Reasoning about the correctness of multiprocessor dependence chains consisting of R
co
�! W conflict

orders is more challenging. Figure 5.22 shows the behavior of one such chain (same chain as in Figure 5.14(b)).

The left side of the figure depicts the behavior in a system without early acknowledgements, which clearly

ensures that the write of A completes with respect to P2 before the read of A. The right side depicts a system

with early acknowledgements. To show that the chain is correctly upheld, we need to first show that the write

of A is committed with respect to P2 sometime before the read of A completes. Second, we need to show that

P2 receives an incoming reply after the write of A is committed with respect to it and consumes this reply

before the read of A completes. Along with the ordering constraints among incoming messages, the above

combination ensures that the write of A completes with respect to P2 before the read of A.

Figure 5.23 graphically shows the steps involved in reasoning about the correctness of the example chain

from Figure 5.22. For each write operation, we have added an extra operation labeled as a miss with its own

commit and completion events. For a write operation that misses in the cache, the “miss” operation is the

same as the original write operation. For cache hits, the extra operation represents the last operation that

48The following trade-offs should be considered in exploiting the above flexibility. Delaying the service of incoming replies and
incoming read or read-exclusive requests has a direct effect on the latency of operations for this processor or other processors. Meanwhile,
delaying the service of incoming invalidate or update requests does not directly affect the latency of any processors’ operations since
an early acknowledgement is sent for these requests. In fact, delaying incoming invalidation requests can have a positive effect by
reducing the amount of false sharing [DWB+91]; however, delaying invalidation or update messages for too long can hurt performance
by delaying the time when the processor observes the most recent value for a location (e.g., if a processor is waiting for a lock or flag to
be released).
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Figure 5.23: Reasoning with a chain that contains a R co
�! W conflict orders.

fetched a dirty copy of the line into the cache (e.g., due to an earlier write to the same word, or a different word

in the same line); the cache hit itself does not lead to external communication. We need to consider the miss

event because it is the reply to this operation that pushes previously committed invalidations to completion.

The dashed box enclosing the miss operation and the actual write operation on each processor denotes the

atomicity relationship between the two events; by definition, a read or write event from a different processor

to the same line may not be ordered between these two operations, otherwise the line would not remain dirty

in the cache.

Consider the reasoning for the above chain. Assume the miss operation on P2 commits with respect to P1

either before the miss operation on P1 commits with respect to P1 or before the latter commits with respect

to P2. The above implies that the miss operation on P2 completes with respect to P1 before the read of B

completes, which further implies (by the atomicity relationship between the miss and write operations) that

the write of B completes with respect to P1 before this read. This leads to a contradiction with an already

existing order from the read of B to the completion event for the write of B. Therefore, it has to be that the

miss operation on P2 commits with respect to P1 after the miss operation on P1 commits with respect to P1

and P2, as depicted by the dashed arrow labeled (I). Given this order, the second dashed arrow labeled (II)

follows based on the incoming message orders. Finally, the third dashed arrow labeled (III) follows from the

second one based on the atomicity relationship between the miss and write operations on P1.

Appendix O provides a number of other examples and further intuition about the above technique.

Update-Based Protocols The relevant incoming messages for an update-based protocol are listed below:

� incoming requests: read, update-read, update, and

� incoming replies: read, read-exclusive, update, update-exclusive, and update-ack.

Similar to the case for invalidation protocols, an incoming reply must be ordered with respect to a previous

incoming update request. In addition, there is an extra requirement that incoming update requests may not

bypass one another.49 To illustrate the importance of this latter constraint, Figure 5.24 illustrates the same

scenario as in Figure 5.20 except with updates instead of invalidations. P2 is assumed to initially have copies

of both A and B. As shown, the updates due to the writes of P1 are queued in order and maintaining this order

49The incoming update-read request behaves in an analogous way to the read-exclusive request in a hierarchy of caches.
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is important for correctness since P2 may otherwise read the new value for B and later read the old value for

A.

In systems with hybrid invalidation and update protocols, the sufficient condition is a combined version

of the conditions for each type of protocol: an incoming reply or an incoming update request must be ordered

with respect to a previous incoming invalidate or update request.50

The order from an incoming update request to previous incoming invalidate or update requests may be

relaxed for the PL models due to the aggressive specification of multiprocessor dependence chains in these

models: any conflict order within a chain is between a pair of operations labeled as competing. The above

may be exploited if incoming update requests carry a label to distinguish whether the write is competing or

non-competing. Given such information, it is sufficient to only ensure the order from an incoming competing

update request to previous incoming invalidate or update requests. In other words, an incoming non-competing

update request is allowed to bypass previous update or invalidate requests.

The techniques described above for invalidation and update protocols can be easily extended for use in

multi-level cache hierarchies. The ordering among messages in the incoming queues is the same as described

above. Furthermore, a reply from a level i cache (i.e., if the cache services an outgoing request) is placed into

the incoming queue for the level i-1 cache as usual. This reply stays ordered with respect to any invalidation

or update requests that are already in the incoming queues for the level i-1 cache and above. The relaxed

ordering constraints on incoming messages can also be beneficial in designs with interleaved or multi-banked

caches for exploiting the overlap of operations among multiple banks.

Related Work on Imposing Orders among Incoming Messages Afek et al. [ABM89, ABM93] proposed

the idea of lazy caching for supporting sequential consistency. The implementation they propose uses a

bus-based update protocol for maintaining cache coherence. When a processor issues a write, it only waits for

the updates of its write to be queued into the FIFO incoming queues of the other processors and can continue

with its next operation as soon as the reply from the bus comes back to it which may be before the updates

actually take effect in the other processors’ caches. The authors prove that this implementation satisfies

sequential consistency. However, this work has several major limitations. First, the algorithm depends on the

broadcast mechanism of a bus interconnect and does not apply to systems with general interconnects where

50Early acknowledgement of incoming update requests can create subtle correctness issues if a protocol sends an update request to a
dirty cached copy mainly because of a race with the possible writing back of the line. The protocol we have discussed avoids this by
always sending an update-read request to a dirty copy; the update-read is implicitly acknowledged only after it finds the dirty copy in the
hierarchy and a negative acknowledgement is sent if the line has already been written back.
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writes to different addresses may commit in a different order with respect to different processors. Second,

the algorithm assumes that every write goes to the bus and comes back through the incoming queue, thus

effectively flushing the incoming queue on every write before the processor can continue with a read. This

fails to handle designs that maintain a dirty state in a write back cache, and in effect disallows the processor

from executing reads in isolation (i.e., without servicing the incoming queue) after a write. Third, the fact

that write back caches are not handled implies the incoming queue for a processor never receives a read

or read-exclusive request from another processor and also the cache never needs to reply to such a request.

Finally, the algorithm assumes a single level of caching.

Scheurich proposes a similar idea to lazy caching for supporting SC in a bus-based system [Sch89].

Although Scheurich does not make the same restrictive assumptions as in the lazy caching work, his imple-

mentation still depends on the broadcast mechanism of a bus and on FIFO ordering among incoming and

outgoing messages. Furthermore, the description of the implementation is sketchy and informal.

Our work provides a completely general solution that alleviates the limitations discussed above. We

show that a strict FIFO ordering among incoming messages is not necessary for correctness. In addition, our

technique applies not only to SC, but to all other relaxed models. Section 5.5 describes how this technique

can also be adapted to systems with restricted interconnects such as buses.

Servicing Incoming Messages when Enforcing Program Order

As an alternative to imposing extra constraints on the order of incoming messages, it is possible instead

to require invalidation or update requests that are in the incoming queues to be serviced whenever the

implementation enforces certain program orders that are part of a multiprocessor dependence chain.

Given X
po
�! Y is part of a chain, the program order can be enforced by delaying Y’s completion or

commit events until X completes or is committed with respect to all processors (depending on whether X is

a read or a write, respectively). Conservatively, Y may also be delayed for the service of any invalidation

or update requests that have entered the incoming queue before X completes (or commits with respect to all

processors, if X is a write). One way to do this is to force the incoming queue to be flushed.51 The above

forces any writes that have committed with respect to this processor before X to complete with respect to the

processor before Y is issued. Referring back to the example in Figures 5.20 and 5.21, the write of A commits

with respect to P2 before the read of B completes and the read of A is delayed for the read of B to complete.

Therefore, the above solution indeed guarantees that this write completes with respect to P2 sometime before

the read of A is allowed to complete.

Reasoning about the correctness of chains with the above optimization is much simpler than with the

optimization discussed in the previous section. Consider the example chain from Figures 5.22. Figure 5.25

shows the reasoning for the chain pictorially. The dashed arrow labeled (I) can be shown to be true by

contradiction (with similar arguments to those used for the example in Figure 5.23). Given that the write of

A commits with respect to P2 before the write of B is committed with respect to all processors, flushing the

incoming queue ensures that the write of A also completes with respect to P2 before the read of A. Compared

to the reasoning steps in Figure 5.23, there is no need to introduce the miss operations in this case because

enforcing a program order already forces incoming invalidations to be serviced; Appendix O shows another

example to illustrate the above point.

51The only requirement is to service the invalidation and update requests that are already in the incoming queue.
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In contrast to the solution discussed in the previous section, the efficiency of the above solution is heavily

dependent on the model. For SC, the incoming queue must be flushed after almost every memory operation

since virtually all program orders are enforced. The frequency of flushes can be much less in a model such as

PL1. The only program orders that must be enforced for multiprocessor dependence chains are Xc
po
�! Yc,

Rc
po
�! Y, and X

po
�! Wc, making it sufficient to flush the queue after a competing read, before a competing

write, and between a competing write followed by a competing read.52 More conservatively, the queue can

be flushed before and after every competing operation. Even so, the frequency of flushes will be proportional

to the frequency of competing operations which is low in most applications.

There are a number of optimizations to the above solution that can further reduce the frequency of checking

for or flushing incoming invalidation and update requests. The first optimization is based on the following

observation: it is sufficient to force a flush only on program orders where the second operation is a read (i.e.,

X
po
�! R). Therefore, SC can be implemented by only forcing a flush before every read. For PL1, the relevant

program orders are Rc
po
�! R and Wc

po
�! Rc. The first program order can be satisfied by flushing after every

competing read. To satisfy the second program order, the implementation can aggressively perform a flush

only between a competing write followed by a competing read, or more conservatively do the flush either

before every competing read or after every competing write (e.g., if competing writes are less common).

The second optimization uses the intuition behind the solution described in the previous section to further

reduce the frequency of checking or flushing the incoming queue. Specifically, there is no need to check or

flush the incoming queue if the processor (i.e., first level cache) has not serviced any incoming replies (or

incoming update requests) since the last flush. For a model like SC, this optimization can substantially reduce

the frequency of checking and possibly flushing the incoming queue; the number of flushes goes from being

proportional to the number of reads to being proportional to the number of cache misses (and updates). The

optimization is not as effective for a model like PL1 since flushes are already infrequent (e.g., likely to be

less frequent than cache misses); therefore, there is a high likelihood that the processor will have serviced an

incoming reply (or incoming update request) since the last flush.

Finally, the third optimization tries to make the flushes more efficient when the first operation of the

enforced program order is a cache miss (i.e., X
po
�! R is enforced and X is a miss). The conservative way to

achieve the flush is to first wait for the processor to receive the reply for X and to then service any invalidation

or update requests that are present in the incoming queue. A slightly more aggressive option is to flush of

the queue while the processor waits for the reply to X. The implementation must still check for and flush any

new invalidation or update requests that enter the incoming queue before the reply gets back; however, there

52The design can maintain a single bit that keeps track of whether a competing write has occurred and can clear the bit every time a
flush is done. This bit can be used to determine whether a flush is necessary before a competing read.
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may often be no new invalidations and updates during this period. A third option is to specially designate

the reply for X to disallow it from bypassing incoming invalidation or update requests that are queued before

it. This last option alleviates the need for explicitly flushing the queue in cases where the first operation in

the program order pair misses. For a model such as SC, every reply must be specially designated to disallow

bypassing. The optimization is more effective for a model like PL1 since it is sufficient to only designate

replies to competing reads and competing writes in this way.

The above techniques can be easily extended to deal with multi-level cache hierarchies. The conservative

approach would be to flush any incoming invalidation or update requests within the whole hierarchy every

time a relevant program order is enforced. Extending the optimizations described above can lead to more

efficient solutions. For example, the second optimization can be used as follows: if a cache at level i has

not serviced an incoming reply or update request since the last flush of the incoming queues below it, the

implementation can avoid checking or flushing those queues.

Related Work on Servicing Incoming Messages when Enforcing Program Order Dubois et al. propose

an implementation of release consistency called delayed consistency [DWB+91] that delays servicing the

invalidations at a destination cache until the destination processor completes an acquire operation. This idea

is similar to the idea of flushing an incoming queue when enforcing certain program orders. In contrast

to our work, however, the delayed consistency work assumes that locations used for synchronization are

disjoint from locations used for data and seems to implicitly assume that a different mechanism is used to

maintain the order among synchronization operations. For example, to correctly support the RCsc model,53

the implementation must service all committed invalidations not only after an acquire, but also in between

a release followed by an acquire. The work on delayed consistency does not expose the need for servicing

invalidations in the latter case. In contrast, our work clearly outlines the requirements for correctness and

explores several important optimizations.

Comparing the Two Early Acknowledgement Techniques

The relative efficiency of the techniques discussed in the previous two sections is extremely model dependent.

The first technique is better suited for strict models such as SC where the frequency of enforcing a program

order (for supporting multiprocessor dependence chains) is much higher than the frequency of cache misses.

On the other hand, the second technique is better suited for more relaxed models where enforcing a program

order occurs less frequently. Both techniques provide fast service of incoming requests; for more relaxed

models, the second technique may provide faster servicing of incoming replies by allowing them to bypass

previous invalidate and update requests.

Multi-level cache hierarchies may reduce the relative advantage of using the second technique for support-

ing relaxed models. Even though flushing of the incoming queues may be infrequent, it may be cumbersome

to check and clear incoming queues throughout the hierarchy. This motivates a hybrid design that employs

the first technique at the lower levels and the second technique at the higher levels of the cache hierarchy.

Consider a two-level cache hierarchy with an incoming queue for each level. The incoming queue to the

second level cache can use the first technique to disallow replies or update messages from overtaking previous

53As in the delayed consistency work, the distinction between sync and non-sync operations is ignored (i.e., all operations are treated
as a sync).
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invalidations or updates. This alleviates the need to explicitly flush this incoming queue. Meanwhile, the

incoming queue to the first level can use the second technique to relax the ordering from replies to previous

incoming messages by requiring explicit flushes at program ordering points. The above hybrid solution has

a couple of other desirable properties. The number of second level misses is typically much smaller than the

number of first level misses, making the first technique more suitable at the lower levels. Furthermore, since

the first level cache is typically occupied by processor accesses, there is a higher possibility of build up of

incoming invalidations and updates in its incoming queue. Therefore, allowing incoming replies to bypass

previous incoming messages can have a bigger impact at the higher level caches.

Section 5.5 describes other designs based on restricted network topologies where the above techniques

can be used to efficiently support early acknowledgements.

5.4.2 Simple Automatic Hardware-Prefetching

Section 5.3.5 described the conventional mechanism for enforcing program order whereby the servicing

of an operation is delayed until a previous operation completes (or is committed in case of writes with

early acknowledgements) with respect to all processors. The prefetching technique described in this section

provides one method for increasing performance by partially proceeding with the servicing of the an operation

while the previous operation is still pending. The following subsections describe this prefetch technique and

provide insight into its strengths and weaknesses.

Description of the Prefetch Technique

Prefetching can be classified based on whether it is binding or non-binding, and whether it is controlled by

hardware or software. With a binding prefetch, the value of a later reference (e.g., a register load) is bound

at the time the prefetch completes. This places restrictions on when a binding prefetch can be issued, since

the value will become stale if another processor modifies the location during the interval between prefetch

and reference. Hardware cache-coherent architectures can provide prefetching that is non-binding. With a

non-binding prefetch, the data is brought close to the processor (e.g., into the cache) and is kept coherent until

the processor actually reads the value. Thus, non-binding prefetching does not affect correctness for any of

the consistency models and can be simply used to boost performance. The technique described in this section

assumes hardware-controlled non-binding prefetch. Section 5.8 covers the interaction between prefetching

and memory models in more detail.

Automatic prefetching can be used to enhance performance by partially servicing large latency accesses

that are delayed due to program ordering constraints. For a read operation, a read prefetch can be used to

bring the data into the cache in a clean state while the operation is being delayed for ordering purposes. Since

the prefetch is non-binding, we are guaranteed that the read operation will return a correct value once it is

allowed to complete, regardless of when the prefetch completed. In the majority of cases, we expect the result

returned by the prefetch to be the correct result. The only time the result may be different is if the location

is written to between the time the prefetch returns the value and the time the read is allowed to complete, in

which case the prefetched copy will either be invalidated or updated appropriately.

For a write operation, a read-exclusive prefetch can be used to acquire exclusive ownership of the line,
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enabling the write to be serviced quickly once it is allowed to complete.54 A read-exclusive prefetch is only

applicable for invalidate protocols; in an update protocol, it is difficult to partially service a write operation

without making the new value visible to other processors.55 Similar to the read prefetch, the line is invalidated

if another processor writes to the location between the time the read-exclusive prefetch completes and the

actual write operation is allowed to proceed. In addition, exclusive ownership is surrendered if another

processor reads the location during this time.

Implementation of the Prefetch Technique

The conventional way to enforce program ordering is to delay the issue of an operation in the processor’s

buffer until certain previous operations complete. Prefetching can be incorporated in this framework by

having the hardware automatically issue a prefetch (read prefetch for reads and read-exclusive prefetch for

writes) for operations that are in the processor’s read or write buffer, but are delayed due to program ordering

constraints.

The prefetch request behaves similarly to an ordinary read or write request from the memory system

point of view. The prefetch first checks the cache hierarchy to see whether the line is already present in the

appropriate state. If so, it is discarded. Otherwise, the prefetch is issued to the memory system. When the

prefetch reply returns to the processor, it is placed in the cache. While a prefetch is outstanding, future requests

to the same line can be combined with the prefetch request (using techniques similar to those described in

Section 5.2.3) so that a duplicate request is not sent out.

One of the issues with prefetching is that the caches will be more busy since references that are prefetched

access the cache twice, once for the prefetch and another time for the actual reference. As previously

mentioned, accessing the cache for the prefetch request is desirable for avoiding extraneous traffic. Overall,

we do not believe that the double access will be a major issue since prefetch requests are generated only when

ordinary operations are being delayed due to consistency constraints, and it is likely that there are no other

requests to the cache during that time.

Lookahead in the instruction stream is also beneficial for hardware-controlled prefetch schemes. Aggres-

sive lookahead is possible with processors that support dynamic instruction scheduling, branch prediction,

and speculative execution past unresolved branches. Such lookahead can provide the hardware with several

memory requests that are being delayed in the load and store buffers due to consistency constraints (espe-

cially for the stricter memory consistency models) and gives prefetching the opportunity to overlap such

operations. The strengths and weaknesses of hardware-controlled non-binding prefetching are discussed in

the next subsection.

Strengths and Weaknesses of the Prefetch Technique

Figure 5.26 presents two example code segments to provide intuition for the circumstances where prefetching

boosts performance and where prefetching fails. We make the following assumptions to make the examples

more concrete. We assume a processor with non-blocking reads and branch prediction machinery. The caches

54Depending on the state of the cache line, a read-exclusive prefetch leads to either no request, an exclusive request, or a read-exclusive
request.

55A two-phase hybrid scheme similar to the one described in Section 5.3.5 may be used for update protocols. In the first phase, the
prefetch can invalidate all copies, which completes the write from a consistency point of view. Issuing the actual write leads to updating
the same copies; no acknowledgements are needed for these updates.
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Figure 5.26: Example code segments for hardware prefetching.

are assumed to be lockup-free with an invalidation-based coherence scheme. We assume a cache hit latency

of 1 cycle, a cache miss latency of 100 cycles, and a memory system that can accept an access on every cycle.

Finally, we assume that no other processes are writing to the locations used in the examples and that the lock

synchronizations succeed (i.e., the lock is free).

First consider the code segment on the left side of Figure 5.26. This code segment resembles a producer

process updating the values of two memory locations. Given a system with sequential consistency, each

operation is delayed for the previous operation to complete. The first three operations miss in the cache, while

the unlock operation hits due to the fact that exclusive ownership was gained by the previous lock operation.

Therefore, the four operations take a total of 301 cycles to perform. In a system with a relaxed model such as

PL1 or release consistency, the write operations are delayed until the lock operation completes, and the unlock

operation is delayed for the write operations to complete. However, the write operations can be overlapped.

Therefore, the operations take 202 cycles.

The prefetch technique described in this section boosts the performance of both the strict and the relaxed

model. Concerning the loop that would be used to implement the lock synchronization, we assume the

branch predictor takes the path that assumes the lock synchronization succeeds. Thus, the lookahead into

the instruction stream allows locations A and B to be prefetched in read-exclusive mode. Regardless of the

consistency model, the lock operation is serviced in parallel with prefetch of the two write accesses. Once

the result for the lock operation returns, the two write accesses will be satisfied quickly since the locations

are prefetched into the cache. Therefore, with prefetching, the accesses complete in 103 cycles for both SC

and PL1. For this example, prefetching boosts the performance of both SC and PL1 and also equalizes the

performance of the two models.

We now consider the second code segment on the right side of Figure 5.26. This code segment resembles

a consumer process reading several memory locations. There are three read operations within the critical

section. As shown, the read to location D is assumed to hit in the cache, and the read of array E depends

on the value of D to access the appropriate element. For simplicity, we will ignore the delay due to address

calculation for accessing the array element. Under SC, the operations take 302 cycles to perform. Under

PL1, they take 203 cycles. With the prefetch technique, the operations take 203 cycles under SC and 202

cycles under PL1. Although the performance of both SC and PL1 are enhanced by prefetching, the maximum

performance is not achieved for either model. The reason is simply because the address of the read access

to array E depends on the value of D and although the read access to D is a cache hit, this access is not

allowed to perform (i.e., the value cannot be used by the processor) until the read of C completes (under SC)

or until the lock access completes (under PL1). Thus, while prefetching can boost performance by pipelining

several accesses that are delayed due to consistency constraints, it fails to remedy the cases where out-of-order
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consumption of return values is important to allow the processor to proceed efficiently.

In summary, prefetching is an effective technique for pipelining large latency references when the refer-

ence is delayed for ordering purposes. However, prefetching fails to boost performance when out-of-order

consumption of prefetched values is important. Such cases occur in many applications, where accesses that hit

in the cache are dispersed among accesses that miss, and the out-of-order use of the values returned by cache

hits is critical for achieving the highest performance. The next section describes a speculative technique that

remedies this shortcoming by allowing the processor to consume return values out-of-order regardless of the

consistency constraints. The combination of prefetching for writes and the speculative execution technique

for reads will be shown to be effective in regaining substantial opportunity for overlapping operations even

for strict models such as SC.

5.4.3 Exploiting the Roll-Back Mechanism in Dynamically-Scheduled Processors

This section describes the speculative execution technique for read operations. An example implementation

is presented in Appendix P. As we will see, this technique is particularly applicable to dynamically-scheduled

processors which already support a roll-back mechanism for branch misprediction.

Description of the Speculative Execution Technique

The idea behind speculative execution is simple. Assume u and v are two operations in program order,

with u being any large latency access and v being a read operation. In addition, assume the program order

constraints for the model require the completion of v to be delayed until u completes. Speculative execution

for read operations works as follows. The processor obtains or assumes a return value for operation v before

u completes and proceeds. At the time u completes, if the return value for v used by the processor is the

same as the current value of v, then the speculation is successful. Clearly, the computation is correct since

even if v was delayed, the value the operation returns would have been the same. However, if the current

value of v is different from what was speculated by the processor, then the computation is incorrect. In this

case, we need to throw out the computation that depended on the value of v and repeat that computation.

The implementation of such a scheme requires a speculation mechanism to obtain a speculated value for the

access, a detection mechanism to determine whether the speculation succeeded, and a correction mechanism

to repeat the computation if the speculation was unsuccessful.

Let us consider the speculation mechanism first. The most reasonable thing to do is to complete the read

operation and use the returned value. In case the access is a cache hit, the value will be obtained quickly. In

the case of a cache miss, although the return value will not be obtained quickly, the operation is effectively

overlapped with previous operations in a way similar to prefetching. In general, guessing on the value of the

access is not beneficial unless the value is known to be constrained to a small set (e.g., lock operations).

Regarding the detection mechanism, a naive way to detect an incorrect speculated value is to repeat the

access when the memory model would have allowed it to proceed under non-speculative circumstances and

to check the return value against the speculated value. However, if the speculation mechanism performs the

speculative access and keeps the location in the cache, it is possible to determine whether the speculated

value is correct by simply monitoring the coherence transactions for that location.56 Thus, the speculative

56The above statement implies that the location is cached. Therefore, the speculative read technique does not apply to uncached
operations since no coherence transactions will be sent to the requesting processor.
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execution technique can be implemented such that the cache is accessed only once per access versus the two

times required by the prefetch technique. Let us refer back to accesses u and v, where the memory model

requires the completion of read operation v to be delayed untilu completes. The speculative technique allows

access v to be issued and the processor is allowed to proceed with the return value. The detection mechanism

is as follows. An incoming invalidation or update request for location v before u has completed indicates that

the value of the access may be incorrect.57 In addition, the lack of invalidation and update messages indicates

that the speculated value is correct. Cache replacements need to be handled properly also. If location v is

replaced from the cache before u completes, then invalidation and update requests may no longer be sent to

the cache. The speculated value for v is assumed stale in such a case (unless one is willing to repeat the access

once u completes and to check the current value with the speculated value). Appendix P provides further

implementation details for this mechanism.

Once the speculated value is determined to be wrong, the correction mechanism involves discarding the

computation that depended on the speculated value and repeating the operation and the following computation.

This mechanism is almost the same as the correction mechanism used in processors with branch prediction

machinery and the ability to execute instructions past unresolved branches. With branch prediction, if the

prediction is determined to be incorrect, the instructions and computation following the branch are discarded

and the new target instructionsare fetched. In a similar way, if a speculated value is determined to be incorrect,

the read operation and the computation following it can be discarded and the instructions can be fetched and

executed again to achieve correctness.

The speculative technique overcomes the shortcoming of the prefetch technique by allowing out-of-order

consumption of speculated values. Given speculative execution, read operations can be issued as soon as the

address for the access is known, regardless of the consistency model supported. Referring back to the second

example in Figure 5.26, let us consider how well the speculative technique performs. We still assume that

no other processes are writing to the locations. Speculative execution achieves the same level of pipelining

achieved by prefetching. In addition, the read operation to D no longer hinders the performance since its

return value is allowed to be consumed while previous operations are outstanding. Thus, both SC and PL1

can complete the operations in 104 cycles.

The speculative read technique described above can also be easily adopted to efficiently support the

initiation condition between a conflicting write followed by a read. Given a write with an unresolved address,

the processor can allow reads that follow it to be speculatively issued and completed. Once the address of

the write is resolved, it can be matched against the address of the speculative reads. In case of a match, we

can use the correction mechanism described above to retry the matching read and any computation that used

its value.58 This optimization is also applicable to uniprocessors since a read is required to return the value

of the latest conflicting write that is before it in program order.

Appendix P describes an example implementation of the speculative read technique.

57There are two cases where the speculated value remains correct. The first is if the invalidation or update occurs due to false sharing,
that is, for another location in the same cache line. The second is if the new value written is the same as the speculated value. We
conservatively assume the speculated value is incorrect in either case.

58A similar optimization can be used for the Alpha memory model which requires reads to the same address to appear in program
order. The latter read can be performed speculatively, and in case the former read is to the same address, either the latter read can be
retried or its return value can be supplied to the former read.
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Related Work on Speculative Reads

We recently became aware of a couple of related patents in this area. There is an IBM patent from 1993

by Frey and Pederson [FP93] that describes a similar idea to that presented in our earlier publication from

1991 [GGH91b] regarding the use of speculative reads and rolling back in case a correction is needed. An

earlier IBM patent from 1991 by Emma et al. [EKP+91] describes a mechanism for detecting speculative

reads that may have returned incorrect data. However, the detection mechanism described in the 1991 patent

is extremely conservative since it treats a speculative read as incorrect not only on an incoming invalidation

but also on any cache miss. Such a conservative detection mechanism can substantially reduce the benefits of

speculative reads since it essentially prohibits the benefits of overlapping multiple misses and can also lead

to frequent false detection and rollback. Neither patent describes the automatic write prefetching technique

which complements speculative reads in an advantageous way.

5.4.4 Combining Speculative Reads with Hardware Prefetching for Writes

The combination of speculative reads with hardware prefetching for writes provides significant opportunity

to overlap memory operations regardless of the memory model supported. Consequently, the performance of

any consistency model, even the most relaxed models, can be enhanced. More importantly, the performance

difference among the various models is reduced. This latter result is noteworthy in light of the fact that

relaxed models are accompanied by a more complex programming model.

The main idea behind the prefetch and speculative read techniques is to service operations as soon as

possible, regardless of the constraints imposed by the memory model. Of course, since correctness needs to be

maintained, the early (and speculative) service of the operations is not always useful. For these techniques to

provide performance benefits, the probability that a prefetched or speculated value is invalidated (or updated,

in case of a speculative read) must be small. There are several reasons for expecting such invalidations to be

infrequent. Whether prefetched or speculated locations are invalidated loosely depends on whether it is critical

to delay such operations to obtain a correct execution. If the supported consistency model is a relaxed model

such as PL1, delays are imposed only at synchronization points. In many applications, the time at which one

process releases a synchronization is long before the time another process tries to acquire the synchronization.

This implies that no other process is simultaneously accessing the locations protected by the synchronization.

Correctness can be achieved in this case without delaying the accesses following a competing read until the

read completes or delaying a competing write until its previous operations complete. For cases where the

supported consistency model is strict, such as SC, the strict delays imposed on operations are also rarely

necessary for correctness. As discussed in Chapter 3, the actual frequency of competing operations is quite

low in most programs. Therefore, most of the delays imposed by a typical SC implementation are superfluous.

Nevertheless, it is important to substantiate the above observations in the future with extensive simulation

experiments.

Both the speculative read and the write prefetching techniques provide higher performance gains (relative

to a less aggressive implementation) when there is a higher frequency of long latency operations (i.e., cache

misses). With infrequent long latency operations (i.e., large number of instructions separating each cache

miss), limitations in buffer resources often disallow the processor from overlapping multiple long latency

operations due to the limited lookahead capability. Fortunately, such applications already perform efficiently
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and optimizing the communication latency is less important.

A major implication of the techniques proposed is that the performance of different consistency models is

somewhat equalized once these techniques are employed. Therefore, the choice of the consistency model to

be supported in hardware becomes less important if one is willing to implement these techniques. The cost, of

course, is the extra hardware complexity associated with the implementation. While the prefetch technique is

simple to incorporate into cache-coherent multiprocessors, the speculative execution technique requires more

sophisticated hardware support. Nevertheless, the mechanisms required to implement speculative execution

are present in many current and next generation commercial processors. In particular, we showed how the

speculative technique could be incorporated into one such processor design with minimal additional hardware.

Dynamically scheduled processor designs have gained enormous popularity since 1991 when we originally

published the ideas on speculative reads and hardware prefetching for writes [GGH91b]. Furthermore,

to provide more efficient support for stricter memory models, several of the next generation commercial

processors have actually adopted either one or both of these techniques in their designs. The Metaflow

Thunder Sparc processor claims multiple speculative memory reads while maintaining “strong consistency”

(probably means TSO in the context of the Sparc architecture) [Lig94]. The MIPS R10000 uses both

speculative reads and hardware prefetching for writes to support sequential consistency. Finally, Intel’s

Pentium Pro (or P6) seems to be using at least the speculative read technique for supporting sequential

consistency.

5.4.5 Other Related Work on Aggressively Supporting Multiprocessor Dependence

Chains

There have been a number of other techniques proposed for aggressively supporting multiprocessor de-

pendence chains that do not directly relate to any of the optimizations discussed in this section. In what

follows, we will focus on three separate implementations proposed by Adve and Hill for supporting either

the sequential consistency or the data-race-free models [AH90a, AH90b, AH93]. All three implementations

exploit the aggressive form of the specifications since they do not maintain completion or commit order at

the intermediate points in a chain.

Adve and Hill [AH90a] have proposed an implementation for sequential consistency that is potentially

more efficient than conventional implementations. The scheme depends on an invalidation-based cache

coherence protocol with write back caches and eager exclusive replies. Instead of delaying the next operation

until a previous write commits or completes with respect to all processors, the more aggressive implementation

delays the next operation only until the previous write is serialized (i.e., gets ownership). In case the next

operation is a write, the new value written by the write is not made visible to other processors (or written

back) until all previous writes by this processor have completed. In case the next operation is a read, the

processor can proceed to complete the read either if the read is a cache miss or if the read is a cache hit

to a dirty copy. However, a read to a clean copy may not proceed until all previous writes are complete;

the alternative is to always treat the read as a cache miss. The gains from this optimization are expected to

be limited because of the following reasons: (a) only writes to lines with other shared copies benefit from

the optimization, (b) the latency for obtaining ownership may be only slightly smaller than the latency for

the write to commit with respect to all processors, and (c) a following read to a clean cache line cannot be

serviced quickly. Furthermore, as we discussed in the previous sections, using eager exclusive replies for
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strict models such as SC complicates the implementation without much performance benefit. Finally, holding

back visibility of a line in a cache for previous operations to complete requires complex hardware support. In

contrast, the combination of the early acknowledgement, write prefetching, and speculative read techniques

discussed in this section can lead to a substantially higher performance implementation of SC.

Adve and Hill have also proposed an implementation for the data-race-free-0 (DRF0) model that exploits

the aggressive specification of multiprocessor dependence chains [AH90b]. Instead of delaying the service of

a synchronization write (analogous to a competing write in PL1) until previous data operations are complete,

the processor proceeds to service the synchronization write by obtaining ownership for the line and performing

the write. However, a synchronization read (analogous to competing read in PL1) from any processor must

be disallowed from observing the value of this synchronization write until the operations preceding the write

complete. A synchronization write from any processor or the writing back of the line must also be delayed

in a similar fashion. To avoid deadlock, however, data requests to this line from other processors must

be serviced using the “remote service” mechanism [Adv93] which involves servicing a read or write from

another processor without giving up ownership for the line. For a read, an uncachable copy of the selected

word is sent back to the requesting processor. For a write, the new data must be merged into the current

copy at the destination cache and only an acknowledgement is sent back, thus disallowing the requesting

line from obtaining either a clean or dirty copy of the line. Overall, the performance gain from using the

above technique over a conventional design is likely to be minimal. A conventional design uses the write

buffer to delay synchronization writes, allowing the processor to proceed without stalling. Since this latency

is already not visible to the processor, servicing the write slightly earlier should not affect performance much.

Therefore, the performance advantage will most likely not justify the substantial complexity in supporting

the remote service mechanism and holding back visibility of the write.

Finally, the most aggressive implementation proposed by Adve and Hill is for supporting the data-race-

free-1 (DRF1) model [AH93]. This implementation is more aggressive than the one described in the previous

paragraph because a synchronization write is not only allowed to be serviced early, but a synchronization read

from another processor is allowed to read the new value before operations previous to the synchronization

write are complete. To achieve correctness, the writing processor informs the reading processor of any of

its incomplete operations before the synchronization write. In turn, the reading processor must ensure not to

access the locations that are on the incomplete list until those operations complete. In effect, this is a very

aggressive way of implementing a multiprocessor dependence chain by enforcing completion orders only

at the two end points in the chain. However, supporting this functionality in hardware is overwhelmingly

complex and does not map well to current system designs. Furthermore, the gains from these optimizations

will likely be minimal in efficient hardware designs.

Overall, the implementation techniques suggested for DRF0 and DRF1 are more illustrative of the fact

that program-centric specifications allow more aggressive implementations compared to hardware-centric

specifications such as WO or RCsc. However, the techniques do not seem to provide a substantial performance

gain over conventional hardware designs and may in fact be impractical due to their complexity. As we will

discuss in Section 5.6, techniques similar to those proposed by the DRF1 implementation can be beneficial

in the context of software-based shared memory systems where the complexity is manageable and the extra

flexibility can actually provide noticeable performance gains. In fact, some of the techniques used in designs

such as LRC [KCZ92, DKCZ93] are more aggressive than the DRF1 implementation.
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5.5 Restricted Interconnection Networks

A restricted network such as a bus provides lower connectivity among nodes as compared to a general network,

which typically translates into lower scalability and performance as well. For this reason, restricted networks

are often used for connecting only a small number of nodes. There are a number of different restricted network

topologies including buses, rings, and hierarchies of the above. Restricted networks may also be used in

combination with general networks; for example, the DASH design uses a two-dimensional mesh network to

connect multiple clusters, with each cluster consisting of multiple processors connected by a bus.

From a memory model implementation perspective, the lower connectivity in restricted networks typically

translates to more ordering guarantees among messages. This section describes how such ordering guarantees

may be exploited to achieve simpler and more efficient designs. As we will see, such designs benefit from

the aggressive form of the system requirement specifications presented in Chapter 4.

5.5.1 Broadcast Bus

Broadcast buses are the most popular form of restricted networks. The key characteristics of a bus that can

be exploited for implementing a cache consistency protocol are: (a) a message is seen by all nodes on the

bus, and (b) the bus serializes all messages into a single total order. This section describes how the above

characteristics affect the design assuming a snoopy protocol; the discussion can also be extended to a directory

protocol implemented on a bus.

A broadcast bus greatly simplifies the support for multiprocessor dependence chains relative to the more

general techniques described in Section 5.3.5. Consider the way write operations are handled assuming an

invalidation-based protocol. Virtually all bus-based designs use the early acknowledgement optimization

discussed in Section 5.4.1. There are two types of requests generated by a write: an exclusive or a read-

exclusive request. The exclusive request commits with respect to all processors as soon as it appears on

the bus; it immediately turns into an incoming invalidation request at every cache. The exclusive reply is

generated implicitly by the requester’s bus interface and does not appear on the bus; the early invalidation

acknowledgement is implicitly piggy-backed on this reply. The outgoing read-exclusive request behaves

differently. This request turns into an incoming read-exclusive request at other processors’ caches and at

the memory. The cache (or memory) that is the current owner of the line responds with a read-exclusive

reply; non-owner caches treat the read-exclusive request simply as an incoming invalidation request. The

read-exclusive request is guaranteed to be committed with respect to all processors by the time its reply

appears on the bus. Again, the invalidation ack is implicitly piggy-backed with the read-exclusive reply.

Writes are handled in an analogous way in update protocols.

Compared to the general case described in Section 5.3.5, detecting write completion is much simpler

since a single implicit invalidation acknowledgement signals that the write is committed with respect to

every processor. Therefore, there is no need to keep a count of pending invalidations for each outstanding

write. Furthermore, exclusive and read-exclusive replies are inherently delayed (i.e., they are not eager);

they implicitly signal that the write is committed with respect to all processors. Supporting category three

multiprocessor dependence chains is also simplified greatly because writes are inherently atomic with respect

to multiple copies due to the broadcast nature of the bus: a write is committed with respect to all processors

before a read from another processor can read its value. This same behavior also holds for updates, making
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Figure 5.27: Bus hierarchies and hybrid designs.

it trivial to support category three chains with update writes.

Due to the lack of multiple paths and lack of message reordering, a bus-based design can also significantly

reduce the number of subtle corner cases relative to those in a general network (see Appendix K). Therefore,

the design can be simplified by maintaining sufficient order among messages (to the same line) in the cache

hierarchy and performing sufficient cross checks among the incoming and outgoing queues.59 For example,

there is no need for negative acknowledgement replies, or the corresponding mechanisms for retrying requests,

in most bus designs. Single transaction buses, which allow only a single outstanding request on the bus,

eliminate more transient cases especially those resulting from simultaneous operations on the same line. For

example, it is inherently impossible for incoming invalidation or update requests (from an earlier or later

write) to arrive at a cache while it has an outstanding request to the same line. This alleviates the need for

supporting structures for detecting the transient conditions described in Appendix K. Split-transaction buses,

which allow multiple outstanding requests on the bus, can guarantee an analogous behavior by disallowing

a new request from issuing on the bus if it is to the same line as a previous outstanding request from any

processor.

5.5.2 Hierarchies of Buses and Hybrid Designs

Hierarchical designs based on restricted networks also exhibit special message ordering guarantees. Fig-

ure 5.27(a) shows an example design with a hierarchy of buses, while Figure 5.27(b) shows a hybrid design

with a small number of processors connected hierarchically to form a cluster and clusters connected using

a general network. The following describes how the message ordering guarantees can be exploited for

efficiently supporting various memory models.

A hierarchical design such as the one shown in Figure 5.27(a) shares a lot of similarities to a cache

hierarchy (except that a given cache may be shared by multiple processors). As in a cache hierarchy, the

subset property is often enforced so that a higher level cache contains a strict subset of the data in a lower

level cache. Incoming and outgoing messages are appropriately filtered by the caches in the hierarchy. An

59Of course, there is a trade-off since cross checking and maintaining a stricter order within the hierarchy can themselves lead to
higher complexity and lower performance.
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outgoing processor request traverses down the hierarchy until it is serviced, which may sometimes involve

traversing up in a separate trunk to find the data. As shown in the figure, physical memory may be placed

either close to the processors or near the bottom of the hierarchy.

Figure 5.28 shows a simple abstraction of the hierarchy. We use the concept of a root node for a given

memory line to be the highest parent node in the hierarchy that covers the set of nodes that have a copy of the

line. For example, if P1 and P2 are the only two processors that have a copy of a memory line, R.1 is the root

node for the line. However, if P3 also maintains a copy, then the root node is R. The root node designation

for a line may changes as copies of the location are dynamically created and eliminated within the hierarchy;

the cache states at each level provide sufficient information to determine the root node as a request traverses

down the hierarchy.

A key implementation issue in a hierarchical design such as the one described above is how writes

are committed with respect to other processors. Consider the case where a location is cached by multiple

processors. For simplicity, assume the writing processor already has a clean copy of the line. To invalidate

other copies of the line, the outgoing exclusive request traverses down towards the root node for the line.

On receiving this request, the root node emanates incoming invalidation requests to all the child nodes that

may have a copy. The write can be considered committed with respect to all processors at this point, and

the exclusive reply that is sent back to the requesting node implicitly signals the acknowledgement for the

invalidations. Since the above exploits the early acknowledgement technique, extra order must be maintained

among incoming messages (i.e., those moving upward in the hierarchy) to correctly support multiprocessor

dependence chains. The constraints on incoming messages are virtually identical to those for an ordinary

cache hierarchy as discussed in Section 5.4.1: the order from an incoming reply message to a previous

incoming invalidate request must be maintained. Furthermore, the writing processor must disallow other

processors from observing the new value until it receives the implicit acknowledgement reply from the root.

This latter condition is especially important for supporting models that maintain category three multiprocessor

dependence chains.

The following provides some intuition for why the above implementation behaves correctly. Consider

a processor Pi that communicates with a processor Pj. Such communication involves a message that is

guaranteed to traverse from the common root of Pi and Pj up towards Pj. By maintaining the appropriate

order among incoming messages, any incoming invalidation messages that had previously arrived at the

common root are guaranteed to be pushed towards Pj by the later communication message. Therefore, any

writes that were committed with respect to Pi (before Pi sends out the message to Pj) also get committed with
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respect to Pj and any other nodes that are traversed on the way from the common root to Pj.

Update protocols can be implemented in an analogous manner, with the requirement that an incoming

reply or an incoming update request must be ordered with respect to a previous incoming invalidate or update

request. The implementation for invalidation-based protocols can be modified slightly to allow incoming

invalidate requests to be sent to the child nodes as the outgoing exclusive request traverses down the hierarchy

toward the node (instead of delaying the sending of invalidations until the request reaches the root node),

with the acknowledgement still generated at the root. However, this alternative is not applicable to update

requests since the order among updates to the same location is important and the root node plays an important

role in serializing the updates.

Even though restricted networks such as hierarchies of buses do not scale well, they can be effective for

connecting a small number of processors together. For this reason, some designs may use a hybrid mix of

restricted and general networks as shown in Figure 5.27(b). In such a design, each cluster of processors

connected with a restricted network can be treated as a single cache hierarchy, with the difference that some

inter-processor communication occurs completely within a cluster. Outgoing exclusive requests that reach

the root node at the interface with the general network lead to invalidation messages that are sent to other

clusters with a copy. Each invalidation request is acknowledged as soon as it is propagated (through the

general network) to the bottom root node of its destination cluster and the requesting cluster receives a

final invalidation acknowledgement (implicit in case of delayed exclusive replies) after all invalidations are

acknowledged. For update-based protocols, supporting category three multiprocessor dependence chains is

difficult in a hybrid design for the same reasons discussed in Section 5.3.5.

5.5.3 Rings

A ring is another example of a restricted network whose ordering properties can be exploited to efficiently

support a memory model. Figure 5.29(a) shows an example of a single ring, while Figure 5.29(b) shows

multiple rings connected into a hierarchy. A ring may either be unidirectional or bidirectional; a unidirectional

ring requires all messages to traverse the ring in the same direction (e.g., clockwise). The discussion below

assumes rings with a snoopy coherence protocol; many of the issues apply to directory protocols as well.

Invalidation-based protocols can be implemented on a ring using conventional techniques. For example,

assume an exclusive request is issued from node 3 in the ring in Figure 5.29(a). The exclusive request travels

around the ring (e.g., from 3 to 4 to 1 to 2 to 3) and commits an incoming invalidation at each node along
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the way. Therefore, by the time the request gets back to node 3, the write has been committed with respect

to all nodes on the ring. Node 3 must disallow any other processor from reading the value of its write until

the exclusive request makes the loop around the ring. No other message ordering constraints are required

and except for invalidations that must make the full loop, other messages may travel in either direction on the

ring.

Update-based protocols are a little bit more challenging. To implement updates, a single node must be

chosen as the root node in the ring. The root node acts as a serialization point for update requests. Assume

node 1 is the root node and consider an update request generated by node 3. The update request must first

travel from node 3 to the node 1 without affecting any nodes along the way. Once the request reaches the root

node, it traverses the ring once in a single direction (i.e., same direction as other updates emanated by the root

node) and generates an incoming update request at every node along the way. Update requests are not allowed

to bypass one another as they loop back towards the root node. Node 3 can consider the update request

acknowledged when the request reaches it; it should also not provide the new value to any other processors

until this happens. Note that node 3 considers the update acknowledged even though the update has not yet

been committed with respect to node 4. Correctness is still maintained because of the following constraints

on reply messages. Assume all update requests travel in the clockwise direction; therefore, starting at the

root, the node numbers as depicted in Figure 5.29(a) increase in this direction. To ensure correctness, a reply

that is generated by node i and destined for node j must travel from node i to node j in the same direction as

update requests (i.e., clockwise) if i < j. Furthermore, reply messages cannot overtake update requests in the

clockwise direction. The above ensures that a reply from node i pushes all updates seen by node i to node j

and any other nodes along the way. The reason the first constraint is not necessary when i > j is because any

updates received by i have already been received by j given j is “upstream” from i. Therefore, a reply from

node 4 to node 3 can indeed exploit the shorter path by traveling counter-clockwise. The above technique

can also be used to implement invalidation-based protocols; however, the implementation described in the

previous paragraph is simpler and more efficient since it does not impose any message ordering constraints

around the ring.

The above techniques can be easily extended to a hierarchy of rings. Figure 5.29(b) shows a two-level

hierarchy with four rings at the first level of the hierarchy connected by a single ring at the second level.

Within the rings at the first level, the root node is the node that interfaces to the second level (node 1 in each

ring). In addition, one of the nodes at the second level must be chosen as the root node at that level; assume

node A is the root in the discussion below. Just as in a cache hierarchy, messages can filtered at the interface

between the rings to decide whether the message must be sent up or down to the next level. Consider an

exclusive or update request issued by node 2 on the rightmost first level ring (connected to node C at the

second level). This request must first traverse to the root node (node 1) on its own ring without affecting any

nodes on its path. At the root node, the implementation must determine whether any copies of the location

exist outside this ring. If there are no such copies, then the same technique described above for a single ring

can be used for handling the request. Otherwise, the request must go onto the second level ring and travel to

the root node at that level (node A) again without affecting any nodes on its path. Once it reaches the root

node, the update or invalidate request must traverse the nodes on the second level ring in a single direction

(i.e., same direction as any other requests emanated from the root node). Assume the direction is clockwise

for this discussion. As the request visits each node, the interface at the node must decide if an update or
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invalidate request must be generated for the first level ring attached to that node based on whether any copies

of the line are present on that ring. When a request is sent to the first level ring, the root node (node 1) on

that ring sends the request around in a single direction (again assume this is clockwise). The requesting node

can consider the write acknowledged when the request makes it back to it and it must hold back the new

value from other processors until this event occurs. The following constraints must be upheld for correctness.

Update requests that emanate from a root node on any ring may not bypass previous invalidate or update

requests as they travel clockwise on that ring. As before, there is also a constraint on reply messages that is a

simple extension of the requirements in a single ring. If a reply is destined from node i to node j on a given

ring, it has to travel clockwise if i < j. In addition, it cannot bypass any previous invalidation or update

requests on the ring as it travels clockwise. For example, if a reply is sent from node 2 on ring A to node 2

on ring C, the reply can travel counter-clockwise to node 1 on ring A, then clockwise from node A to node C

on the level 2 ring (since A < C), and then clockwise from node 1 to node 2 on ring C. Again, the intuition

behind the above requirement is that replies appropriately push previous invalidate and update requests as

they go around the rings.

5.5.4 Related Work on Restricted Interconnection Networks

There are a number of previously proposed schemes for exploiting the extra ordering guarantees in restricted

interconnection networks to implement various memory models. We briefly cover a few of these schemes

below.

Landin et al. [LHH91] propose implementations of the SC and PC models on so called race-free networks.

They define a race-free network as follows:

� A race-free network is a network with the topology of any acyclic undirected network graph.

� Transactions propagate on the arcs in the network without the possibility of overtaking each other.

� Transactions may be buffered in the network nodes but buffers must maintain a strict FIFO order

between transactions.

Landin et al. describe three different implementations. The first is an implementation of SC and is similar

to the implementation for hierarchies of buses described in Section 5.5.2: a write request traverses to the

root node for the memory line and sends invalidations to all copies from the root; the root node also sends

an acknowledge reply to the writing processor. The second implementation supports the PC model. This

implementation takes advantage of the order among outgoing messages to pipeline writes. After issuing a

write that misses, the processor can issue a subsequent write before the previous write is acknowledged. The

write is acknowledged by the root in a similar way to the first scheme, and the value of the write is not made

visible to any other operations until the write is acknowledged.60 We do not describe the third implementation

proposed by Landin et al. since it does not enforce the coherence requirement for writes, and therefore fails

to support the semantics of the PC model as it is defined in our work.

One problem with the concept of race-free networks is its restrictiveness. For example, even processors

connected on a shared bus do not satisfy the required restrictions if the cache hierarchy is considered as part

60The definition of PC used by Landin et al. for this implementation is stricter than that used in this thesis because it maintain category
3 chains. Even with the stricter definition, they could relax the above condition to allow the write to be visible to reads from its own
processor.
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of the network. This is because most commercial processors use multiple paths for incoming and outgoing

messages within the cache hierarchy which allows messages to get reordered; for example, an outgoing

reply is often allowed to bypass previous outgoing requests from within the cache hierarchy. Therefore,

an implementation such as the one for PC that depends on all messages being maintained in order on the

outgoing path fails to work; the processor must wait for the write to at least reach the bus before issuing the

next write. Landin et al. correctly observe that the first implementation of SC is robust in this respect and

does not depend on FIFO ordering among outgoing messages. However, in contrast to our solution, they still

impose FIFO ordering among incoming messages (i.e., sent from a root node to its children).

Our suggested implementations for buses or hierarchies of buses are more general than the race-free work

in several ways. The primary difference arises from the observation that FIFO ordering is not necessary

in either the outgoing or the incoming path. For example, the only requirement on the incoming path (for

an invalidation protocol) is to maintain the order from an incoming reply to a previous incoming invalidate

request. This makes the implementation technique applicable to a much larger set of designs where FIFO

ordering may not be maintained. Furthermore, the techniques described here are applicable to any of the

relaxed models described in this thesis.

Several researchers have studied the ordering properties in rings for supporting various memory consis-

tency models. Collier [Col92] describes a conceptual single ring system that maintains a full copy of memory

at every node and uses updates to provide coherence among the copies. Collier observes that a root node

can be used to serialize all writes by requiring updates to traverse in the same direction, and that the writing

processor can consider the write “complete” when the update message reaches it. However, because each

node is assumed to maintain a full copy of memory, Collier’s solution does not deal with any read requests or

corresponding read replies on the ring. In contrast, our solution for updates on a single ring is more general

and prescribes the ordering constraints between updates requests and other messages such as read replies that

are required for correctness in a realistic system. Furthermore, our solution for invalidations in a single ring

environment is more efficient since it does not require writes to be serialized at a root node. Keith Farkas et

al. [FVS92] describe a protocol for supporting sequential consistency in a hierarchy of rings in the context of

the Hector multiprocessor. Their design assumptions are quite different from the implementations discussed

here; furthermore, their design does not fully exploit the ordering properties of rings for supporting update

protocols.

5.6 Systems with Software-Based Coherence

As an alternative to hardware cache coherence, loosely coupled multicomputers, such as workstations con-

nected by a fast local area network, may support the single address space model in software and provide

caching through replication of shared data in the local main memory of each node. To amortize the high

software overhead and large latency of communication, loosely coupled systems require transfer of data to

be done at larger granularities. Thus, the granularity for communication is typically chosen to be either that

of fixed size pages of several kilobytes or large variable size objects. The flexibility provided by relaxed

memory models can be used to boost performance in both types of designs. Compared to hardware designs,

software designs exhibit an extremely large overhead and latency for communication. Therefore, in contrast
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to hardware designs where relaxed models are primarily used to hide the latency of communication, soft-

ware designs also exploit relaxed models to both delay and reduce (e.g., through coalescing) the number of

communicated messages. Below, we provide a brief overview of several software systems.

Ivy is among the first systems that implemented a page-based distributed shared memory (DSM) proto-

col [LH89]. Ivy allows pages to be replicated among multiple readers and exploits conventional memory

management hardware to maintain coherence among the multiple copies. The protection status for each page

is manipulated to trigger faults on references to invalid pages and on writes to read shared pages. The fault

handlers in turn generate the appropriate coherence operations. Ivy maintains the sequential consistency

model which allows the system to execute any shared memory program without modifications. However, the

large coherence granularity of pages makes false sharing a major problem in Ivy.

The false sharing problems in page-based designs can be partially alleviated by exploiting relaxed memory

models. For example, Munin [CBZ91] exploits a model similar to release consistency to efficiently support

multiple writers to a single page by delaying the propagation of invalidation or update transactions due to

writes until a release synchronization (e.g., unlock). In a hardware design, this optimization is conceptually

analogous to gathering write operations in a write buffer and flushing the buffer on a release. To ensure that

the page returns to a consistent state, each processor is required to keep track of the changes it makes to its

local copy. Munin accomplishes this by duplicating a page before modifying it and comparing the dirty page

to the original duplicate. These computed changes or diffs are then communicated to other copies at the next

release synchronization. Delaying the communication of write operations and coalescing several writes into

a single message improves performance in two ways: (a) the extra communication induced by false sharing

is reduced, and (b) fewer messages are communicated due to the coalescing.

Lazy release consistency (LRC) [KCZ92, DKCZ93] is a more aggressive implementation technique for

page-based systems that further exploits optimizations enabled by relaxed models such as PL1.61 Instead

of eagerly propagating changes to all copies at each release synchronization as in Munin, LRC delays

communication until a processor with a copy attempts to acquire a synchronization variable (e.g., through a

lock). This corresponds to an aggressive implementation of the multiprocessor dependence chains in a model

such as PL1 where the completion of a write at the head of a chain (with respect to the last processor in

the chain) is delayed until just before the conflicting operation at the tail of the chain. The more advanced

optimizations in LRC lead to a more complex and higher overhead protocol than Munin. Nevertheless,

simulation results have shown that reduction in the number and size of messages can lead to an overall

performance gain [KCZ92, DKCZ93].

The main difficulty with software page-based systems is the mismatch between the fixed size coherence

granularity and the inherent grain of sharing and communication in an application. The ability to maintain

coherence at a variable grain size has the potential of alleviating many of the problems (e.g., false sharing)

that arise from such a mismatch. Midway [BZ91, BZS93] is an example of a software system that allows

the coherence grain to be defined at the level of arbitrary programmer-defined regions. The Midway protocol

is based on an extension of release consistency called entry consistency (EC). Entry consistency extends the

release consistency model by requiring the programmer to explicitly associate shared data with synchronization

variables. Similar to LRC, EC allows communication to be delayed until a processor attempts to acquire a

synchronization. Instead of maintaining duplicate copies and computing diffs as in Munin and LRC, Midway

61The LRC implementation is more relaxed than a release consistent system because it enforces a multiprocessor dependence chain
only if all the constituent conflict orders are among pairs of competing operations (e.g., as in the PL1 model).
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associates a version number with finer grain sub-regions within each region. The compiler is required to

generate extra instructions for each shared store to modify the appropriate version number. By comparing the

version numbers of the two copies, the system can identify the sub-regions that must be communicated. EC

provides an advantage over LRC since it can exploit the information associated with each synchronization

to limit the communication to only the data regions protected by that synchronization. This is a classic

example of an optimization that can be beneficial in a software design, and yet is too complex and probably

not worthwhile to support in a hardware design.

One disadvantage of Midway compared to Munin and LRC is that the programmer is required to provide

additional information to associate data with synchronizations. The original Midway proposal [BZ91] required

all shared data to be explicitly associated with synchronizations. Since annotating every use of every shared

data can become burdensome for programmers, a follow-on proposal [BZS93] prescribes supporting default

conservative information whereby entry consistency intuitively degenerates either to release consistency or

to processor consistency for certain operations depending on the amount of information provided by the

programmer. This approach allows the programmer to selectively provide usage information for only the

subset of data regions that should be kept coherent through entry consistency. The remaining data regions

are kept coherent using a page-based approach with updates that adheres to either the processor or release

consistency semantics.

Software systems such as Munin, LRC, and Midway provide their own stylized synchronization primitives

such as locks and barriers. These synchronization primitives are usually implemented using explicit message

passing (i.e., primitives are not implemented on top of a shared memory abstraction). Furthermore, programs

are required to only use the provided primitives for synchronization and sufficient synchronization must be

used to avoid competing data operations. This leads to a restrictive programming model since programmers

cannot define their own synchronization primitives. However, the restrictive nature of the programs greatly

simplifies the implementation of these systems. Unlike general models such as PL1, the only multiprocessor

dependence chain that involves data operations is a category two chain that starts and ends with a pair of

conflicting data operations, with all its constituent conflict orders being “write-read” pairs of synchronization

primitives (e.g., an unlock-lock pair). Similarly, a data location cannot be accessed by a synchronization

primitive, so data locations are always accessed by non-competing operations. Furthermore, these systems

typically exploit the fact that neither the coherence requirement nor the termination condition need to be

supported for data write operations (similar to non-competing writes in PL1, for example). Finally, they do

not support atomic read-modify-write operations on data locations.

5.7 Interaction with Thread Placement and Migration

So far, we have implicitly assumed that every thread or process executes on its own dedicated physical

processor. However, an actual system may map multiple threads or processes onto a single physical processor.

Furthermore, threads or processes may be dynamically migrated to different physical processors during their

execution. Thread placement and migration may interact with the memory behavior of a program if they are

not carefully implemented. In this section, we describe various techniques for transparently supporting this

type of resource scheduling.
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... = *TaskQ_P1

  ... 

Figure 5.30: Example of thread migration.

P1

a1: A = 1;

P2

a2:
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(a) original program

(b) after migration

P1

a1: A = 1;

b2: v = A;

P3P2

a2: u = A; ... = *TaskQ_P2

*TaskQ_P2 = ...

   ...    ...

Figure 5.31: Example of a category 1 chain transformed to a category 3 chain.

5.7.1 Thread Migration

Figure 5.30 shows a simple program before and after thread migration. As shown in Figure 5.30(b), the thread

executing on P1 is preempted after issuing its first operation, is placed on the task queue and removed from

the queue by P2, and finally resumes its execution on P2. The overhead of achieving thread migration varies

depending on how light-weight the threads are. Even in its simplest form, however, thread migration involves

saving a minimum amount of context (such as registers on the source processor) and restoring this context

on the target processor. There are numerous mechanisms and policies for thread migration. Regardless of

how migration is achieved however, some form of communication is required between the source and target

processors. For simplicity, our examples conceptually depict this communication through the write and read

operations to the task queue.

Consider how thread migration can interact with memory behavior. Assume the program in Figure 5.30(a)

is written for the sequential consistency model, thus requiring the read of A to return the value 1 in all

executions. For thread migration to be transparent, the above condition must also be upheld after migration.

Such transparency is present if the implementation maintains the multiprocessor dependence chain from the

write of A on P1 to the read of A on P2 with the intermediate conflict order between the write and read of

the task queue. Since this chain is maintained by any SC implementation, the above migration is indeed

transparent.

In the example above, migration transforms a simple program order relation between two conflicting

operations into a category 2 multiprocessor dependence chain. Similarly, a category 1 chain may be trans-

formed into a category 3 chain, for example as shown in Figure 5.31. Finally, migration transforms category

2 and category 3 chains into longer chains of the same category. And in all cases, migration introduces extra

operations to new addresses (e.g., operations to task queue) within the chain.
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As discussed above, transparent thread migration requires any execution outcomes that are disallowed

before migration to remain disallowed after migration. The above condition is trivially satisfied for imple-

mentations of the SC, IBM-370, and TSO models because these models enforce the resulting multiprocessor

chains that arise due to migration. However, implementations of other models typically require extra precau-

tions to satisfy this condition. For example, consider an implementation of the PSO model with the example

in Figure 5.30. Since the outcome (u=0) is disallowed before migration, it must remain disallowed after.

However, the program as shown in Figure 5.30(b) may yield the (u=0) outcome under PSO since the write to

the task queue is allowed to complete before the write of A. To remedy this, the write to the task queue on P1

must be proceeded with a write fence (the store barrier for PSO) to ensure the chain from the write of A to

the read of A is upheld. This can be easily achieved by appropriately modifying the preemption code along

with the code that performs the thread migration.

Other models require similar modifications to the preemption and thread migration code to ensure cor-

rectness. For example, WO requires both the write and the read operation to the task queue to be labeled as

synchronizations in the example in Figure 5.30. The RCsc and RCpc models require the two operation to be

labeled as release and acquire respectively. Alpha, RMO, and PowerPC all require the write to be preceded

by and the read to be followed by a fence.62 Finally, PL1 requires competing labels, and PL2 and PL3 require

sync labels for both operations.63

The requirements described above may be insufficient for achieving transparency in aggressive imple-

mentations of the PC, RCsc, RCpc, and PL3 models.64 The problem arises due to certain category 1 chains

that are enforced before migration, but are transformed to unenforced category 3 chains after migration.65

Figure 5.31 shows a canonical example where a category 1 chain is transformed into a category 3 chain as a

result of migration. Consider the PC model as an example. Given the original program in Figure 5.31(a), the

outcome (u,v)=(1,0) is disallowed. However, PC allows the (u,v)=(1,0) outcome for the transformed program

after thread migration since the resulting category 3 chain is not enforced. The RCsc, RCpc, and PL3 models

can lead to analogous problems.66 Whether an implementation exhibits the above problem depends on how

aggressive it is; e.g., implementations that conservatively support multiple-copy atomicity for all writes (or

in case of PL3, for all competing writes) do not exhibit the anomalous behavior described above.

Even though the example in Figure 5.31 may seem contrived, this type of interaction can easily arise

in practice. Figure 5.32 shows an example program where P1 modifies the fields of a record and then sets

Rec Ptr to point to the record, and P2 waits for the pointer to become valid before reading the fields of the

record. The competing operations are shown in bold (labeled as release and acquire for RCpc, and as loop

for PL3). The above program provides sequentially consistent results if executed on a PC, RCpc, or PL3

62RMO requires a membar(RW,WW) fence before the write and a membar(RR,RW) fence after the read.
63The operations can be conservatively labeled as non-loop syncs in PL3; the more aggressive loop label can be used if the operations

satisfy the requirements for this label.
64The addition of the third multiprocessor dependence chain in the sufficient conditions for PL1 and PL2 (Figures 4.14 and 4.15,

respectively) presented in Chapter 4 ensures that the above two models do not exhibit the problem described here.
65Even though PowerPC does not support any category 3 chains, it also does not support any category 1 chains so the above problem

does not arise. A similar problem can arise for ports of PL3 programs, as specified in Section 4.4 of the previous chapter, to a sufficiently
aggressive implementation of PC or RCpc; one way to remedy this problem is to use a more conservative port, such as the same port
used for PL2 programs.

66Examples that lead to the above problem in aggressive implementations of RCsc are a bit more subtle. Consider the program in
Figure 5.31(a) with all operations labeled as non-competing, and insert a release to location B and an acquire to location C between
the two reads of A on P2. In this example, the category 1 chain from the write of A to the second read of A is upheld under the RCsc
model, but the category 3 chain for the transformed program (e.g., assuming the migration point is right before the second read of A)
is not guaranteed to be enforced even if the operations to the task queue are appropriately labeled according to the rules in the previous
paragraph.
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tmp_ptr−>field2 = 2;

= tmp_ptr;Rec_Ptr 

u = Rec_Ptr−>field1;

v = Rec_Ptr−>field2;

Initially   Rec_Ptr = nil

Figure 5.32: A more realistic example for thread migration.

implementation. However, if the execution thread on P2 is preempted (at either of the two points shown by

the arrows) and migrated to a different processor, the program may erroneously dereference a null pointer

(in statement (b2) or (c2)) since the new value for the pointer may not have yet been propagated to the third

processor.

A general way to remedy the above problem for aggressive implementations of PC, RCsc, RCpc, and PL3

is to ensure that any writes that have completed with respect to the processor from which the thread is migrated

also complete with respect to the target processor where the thread is migrated. Consider the example in

Figure 5.33(a) executing on an aggressive implementation of PC. The outcomes (u,v,w)=(1,2,0) and (1,2,1)

are disallowed before migration. However, either outcome may occur with the simple migration shown in

Figure 5.33(a). Figure 5.33(b) shows one way to extend the migration code to guarantee correct behavior. As

shown, the processor where the thread is migrated to (i.e., P4) sends an interrupt to all other processors (except

the processor where the thread is migrated from) and forces a synchronization with these processors to ensure

all write issued by those processors are complete with respect to it. In this way, the implementation guarantees

that the read of A on P4 completes after the writes of A on P1 and P2.67 For models such as RCsc, RCpc,

and PL3, appropriate labels must be used for the additional synchronizations to ensure the relevant chains

are indeed enforced. There are several ways to reduce the overhead of the above technique. For example,

the runtime or operating system may be able to limit the set of processors that need to be interrupted based

on knowledge of other processors that have access to the pages used by the migrated thread. Similarly, the

interrupt and synchronization phases may be optimized by using tree algorithms. Nevertheless, interrupting

and communicating with a set of other processors increases the overhead of thread migration, and can be

especially undesirable in systems with light weight threads and frequent thread migration. This creates a

trade-off for aggressive implementations of the four models discussed above.

5.7.2 Thread Placement

In specifying memory models, we inherently assumed an ideal system where each thread executes on its own

dedicated processor. In practice, however, each processor may execute multiple threads by context switching

from one thread to another. Nevertheless, the memory behavior for the real system must resemble that of

the ideal system; i.e., outcomes that are disallowed in the ideal system must remain disallowed by the real

system. This section describes several techniques for ensuring the above property.

67The above mechanism is quite similar to the way TLB consistency is managed by some operating systems when a page mapping is
changed; the node that attempts to change the mapping communicates with other processors to ensure that all previous operations issued
to the given physical page complete before the mapping is altered.
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Figure 5.33: Different ways of implementing thread migration.
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Figure 5.34: Scheduling multiple threads on the same processor.

The main issue that arises with respect to thread placement is the potentially different behavior of

conflicting operations when they are issued by different processors as compared to when they are issued by

the same processor. For example, consider a write on P1 and a conflicting read on P2. If the operations are

on different processors, the read is not allowed to return the value of the write until the write completes with

respect to P2. Implementations that enforce multiple-copy atomicity (assuming the first technique described

in Section 5.3.5) may further restrict the interaction: the read is not allowed to return the value of the write

until the write commits or completes with respect to all processors. Contrast the above restrictions with the

case when the conflicting operations are issued by the same processor. For example, implementations that

exploit the read forwarding optimization allow the read to return the value of the write before the write is even

serialized with respect to other writes. Consequently, the fact that the read has completed (i.e., it returned the

value of the write) no longer implies that the corresponding write is committed or completed with respect to

any processor. The above can lead to different semantics when multiple threads are mapped onto the same

processor.68

Figure 5.34 shows a simple example of the write-read interaction described above. The original program

has three independent threads. Assuming the SC model, the outcome (u,v,w)=(1,1,0) is disallowed. Fig-

ure 5.34(b) shows the effect of mapping the first two threads onto a single physical processor. Consider the

interaction between the write of A and the read of A in statements (a1) and (a2), respectively. Assume an

aggressive implementation of SC. When the two operations are on different processors, the read is not allowed

to return the value of the write until the write is committed or completed with respect to all other processors.

Therefore, by delaying the write of B for the read to complete, the implementation can ensure that the write

of A has been committed with respect to all processors before the write of B commits or completes with

respect to any processor. On the other hand, when the operations are on the same processor, a sufficiently

aggressive implementation of SC may allow the read to return the value of the write before the write is even

serialized with respect to other writes. Therefore, delaying the write of B for the read of A fails to impose

an order between the write of B and the write of A. Fortunately, as long as the SC implementation treats the

operations on P1’ as though they belong to the same thread, the above issue does not lead to a problem; the

write of B is still delayed for the write of A to commit or complete with respect to all processors and therefore,

the outcome (u,v,w)=(1,1,0) remains disallowed. However, problems may arise if the SC implementation

attempts to exploit the fact that the write of A and B actually belong to two different threads and does not

enforce the “program order” between the two writes.

68The anomalous behaviors described in this section do not occur in the degenerate case where all threads are mapped to the same
processor.
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Figure 5.35: An example of thread placement with a write-write interaction.

A similar issue arises with write operations in implementations that support eager exclusive replies (see

Section 5.3.5). Consider two conflicting write operations on different processors (anomalies may also arise

for non-conflicting writes if they lie on the same cache line). As mentioned in Section 5.3.5, to facilitate

detecting the completion of writes, most implementations delay the service of the second write until the first

write is completed or committed with respect to all processors. However, if the two writes are issued by

the same processor, the second write may be serviced immediately after the eager exclusive reply returns for

the first write, even though the first write may not have completed yet. Figure 5.35 shows an example that

illustrates the write-write interaction. Assume a model such as WO with the write and read to B labeled as a

synchronization operations. The outcomes (u,v)=(1,0) and (1,1) are disallowed by the original program, but

may not be disallowed in Figure 5.35(b) given an aggressive implementation with eager replies where the

write of B does not get delayed for the first write of A (labeled (a1)).

Anomalies arising from the above write-write interaction can be alleviated for any memory model by

conservatively treating all operations on the same processor (e.g., P1’ in the above example) as belonging

to the same thread. Unfortunately, the above is not a sufficient solution for anomalies arising from the

write-read interaction when all combinations of models and implementations are considered. Consider the

example in Figure 5.36, along with an aggressive implementation of a model such as TSO or PC. The outcome

(u,v,w,x)=(1,2,0,0) is disallowed in the original program mapped onto four processors. Figure 5.36(b) shows

the scenario where two threads are assigned to each processor. In this case, even if the operations on P2’ are

conservatively treated as if they belong to the same thread, an aggressive implementation of TSO or PC can

lead to the outcome (u,v,w,x)=(1,2,0,0) (this is the same example as in Figure 2.14(b) discussed in Chapter 2).

The above behavior is somewhat anomalous since it is typically the case that the same program running on

fewer processors leads to fewer possible outcomes. However, the read forwarding optimization changes this

(for some of the models) by actually allowing a program that runs on fewer processors to possibly lead to

more outcomes than if it ran on more processors.

Similar problems can arise for implementations of other models whose semantics are stricter in the absence

of the read forwarding optimization. These include TSO, PC, PSO, RCsc, RCpc, RMO, and the sufficient

specifications for PL1, PL2, and PL3. The example in Figure 5.36 can be easily adapted to illustrate this

issue for most of the above models. For the PL1 specification, for example, simply consider the operations

to location C to be competing and the remaining operations to be non-competing.69 Examples for RCsc

are a little bit more subtle; Figure 5.37 shows one such example where the outcome (u,v,w,x)=(2,0,1,2) is

69This labeling does not make the program properly-labeled. However, the sufficient conditions for PL1 (or PL2 or PL3) place
restrictions on non-properly-labeled programs as well. Our conjecture is that the anomalous behavior will not be noticeable for the
properly-labeled programs.
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a4:

b4:
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b1: C = 1;
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b2:

u = C;

v = B;

B = 1;a3:

b3: C = 2;

w = C;

x = A;

a4:

b4:

P1’ P2’

(b) scheduled on two processors

Figure 5.36: Another example of thread placement with a write-read interaction.

disallowed by the original program, but may potentially be allowed when two of the threads are merged onto

a single processor.

One conservative solution for remedying the write-read interaction described above is to simply disallow

optimizations such as read forwarding. However, this solution is undesirable since it can reduce single thread

performance. Another conservative solution is to wait for all writes from a processor to complete (or commit

with respect to other processors) before switching to a different context. This functionality can be included as

part of the context switch code, and achieving the delay may require using explicit fence instructions in some

designs. In this way, a read or write operation from the next thread is inherently delayed until the conflicting

writes from the previous thread are complete, and therefore the interaction among conflicting operations in

the two threads is similar to when the threads are on different processors.

The solutions described above are satisfactory for systems with infrequent context switching among

processes or threads. However, these solutionsare not appropriate for systems that exploit context switching at

a finer grain, for example, to achieve overlap among longer latency operations from different threads. Treating

operations from multiple threads as though they belong to the same thread is undesirable since it imposes

unnecessary program order among operations from independent threads, thus reducing the opportunity for

overlap especially with stricter models such as SC. Similarly, waiting for writes in one thread to complete

before switching to the next thread is undesirable because it eliminates the opportunity to overlap the latency

of the write with operations in the next thread.

A more aggressive solution is possible if the implementation dynamically detects a read or write operation

from one thread that is to the same line as an outstanding write operation from a different thread and delays

the service of this operation relative to the outstanding write in the same way that it would be delayed if it

had been issued by another processor. The above requires adding some form of thread identification to the

record of the outstanding write operations from the processor (e.g., by extending the entries in the pending

write buffer discussed in Section 5.2.3). In this way, optimizations such as read forwarding can be allowed
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(b) scheduled on three processors

Figure 5.37: Example of thread placement for the RCsc model.

for read operations from the same thread while they are disallowed for read operations from a different thread

(read forwarding from a different thread is disallowed if the write is not yet complete with respect to its

processor). Similarly, for models that require multiple-copy atomicity for writes, a conflicting read from a

different thread is delayed until the outstanding write actually commits (or completes) with respect to all

processors.70 Finally, to deal with the write-write interaction in implementations with eager exclusive replies,

a write operation from a different thread that is within the same cache line is delayed until the outstanding

write is committed with respect to all processors.

The above solution effectively disallows optimizations, such as read forwarding, that are used within

a single thread from being used across threads. This technique clearly incurs more hardware support and

complexity. However, it exploits the fact that no program order must be enforced among operations from

different threads, and does not unnecessarily delay the next thread for completion of writes from the previous

thread. In fact, delays only occur when there is an operation from one thread to the same address (or cache

line in case of a write) as an outstanding write from the previous thread. Such delays are typically infrequent

since the chances for a write immediately followed by a read or write to the same line is much lower across

threads as compared to within a single thread. Therefore, this solution can indeed efficiently support fine

grain context switching.

While the above discussion has focused on executing multiple threads on a single processor, similar issues

may arise in designs that tightly couple processors to share buffers or caches within a cache hierarchy. For

example, the same write-read or write-write interactions may be present if two processors share a cache

and the write from one processor can become visible to the other processor before the write is serialized or

committed with respect to all processors. The aggressive solution that dynamically disallows the service of

conflicting operations from one thread while there is an outstanding write from another can be easily adapted

for achieving correct implementations in these types of designs.71

70As discussed in Section 5.3.5, this requirement is unnecessary for the PC, RCpc, and PowerPC models. For the PL1 and PL2 models,
it is sufficient to delay the read only if the outstanding write is competing. For the PL3 model, it is sufficient to delay the read only if the
write is non-loop or non-sync.

71The remote access cache (RAC) in DASH uses a variation of this solution by actually allowing an operation from another processor
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5.8 Interaction with Other Latency Hiding Techniques

This section describes the interaction of memory consistency models with two other latency hiding techniques:

prefetching and use of multiple context processors.

5.8.1 Prefetching

Prefetching techniques can be classified based on the following characteristics:

� binding or non-binding,

� hardware or software controlled,

� shared or exclusive copy prefetch, and

� producer-initiated or consumer-initiated.

Section 5.4.2 introduced some of the above distinctions.

A binding prefetch binds the value of a later reference at the time the prefetch completes. In contrast,

a non-binding prefetch simply brings data closer to the processor and the value is kept coherent until the

processor actually accesses the data. Binding prefetches can affect the memory behavior of a program

and must be treated identically to read operations in terms of their ordering with respect to other memory

operations. On the other hand, non-binding prefetches do not affect the correctness of a program and can be

used simply as a performance boosting technique; for example, the data within a critical section can be safely

prefetched before the critical section is actually entered. The following discussion focuses on non-binding

prefetches due to their greater flexibility.

The second distinction is based on whether prefetch operations are generated automatically by hardware

or whether the compiler or programmer must invoke the appropriate prefetch operations through software.

The next feature distinguishes whether the copy that is prefetched is a shared or an exclusive copy of the data,

corresponding to a read versus a read-exclusive prefetch, respectively. Finally, consumer-initiated prefetch is

the more common form of prefetching where the processor that issues the prefetch is the ultimate consumer

of the data. The alternative is producer-initiated prefetch where the “producer” processor pushes a copy

of the data closer to the consumer processor. The deliver operation in DASH [LLG+92] and the post-store

operation in KSR [Res92] are examples of producer-initiated prefetches. The following discussion primarily

focuses on consumer-initiated prefetching.

To eliminate unnecessary prefetches, consumer-initiated read and read-exclusive prefetch operations

should ideally check for the data within the processor’s cache hierarchy before they are issued to the memory

system.72 Furthermore, it is desirable to keep track of outstanding prefetch operations to allow the merging

of subsequent prefetches or ordinary operations to the same cache line. A simple way to achieve the above

is to treat prefetches as ordinary read and write operations within a lockup-free cache hierarchy. Of course,

keeping track of outstanding prefetch operations is actually simpler than keeping track of outstanding read

or write operations since there is no destination register associated with a read prefetch and no write data

to be serviced (even though invalidations may be pending to that line) and noting this event. The appropriate delay is imposed on the
next fence operation from the processor.

72A read-exclusive prefetch may be converted to an exclusive prefetch if the cache already has a clean copy.

Section 5.8 Interaction with Other Latency Hiding Techniques 221



associated with a read-exclusive prefetch. Furthermore, since prefetches can simply be dropped, a processor

does not necessarily need to stall when there are insufficient resources for keeping track of a prefetch.73

Consider the required program ordering constraints for consumer-initiated non-binding prefetches. A

read prefetch need not be delayed for any previous operations, and no future operations need to be delayed for

the prefetch to complete. Similarly, there are no program ordering constraints for read-exclusive prefetches

if the memory system services the prefetches using delayed exclusive replies (see Section 5.3.5). In fact,

some designs may use a separate buffer for prefetch operations which will inherently lead to the reordering of

prefetches with respect to other operations. However, program ordering constraints become important if the

memory system uses eager exclusive replies to service read-exclusive prefetches. This is because an eager

exclusive reply to the prefetch can allow a subsequent write W to the same line to be serviced by the cache

even though there may still be outstanding invalidation due to the prefetch. However, a later operation that

must be delayed for W needs to wait for these invalidations to be acknowledged. One possible solution is

to increment the count of outstanding writes on a read-exclusive prefetch (that may be serviced by an eager

exclusive reply) sometime before the prefetch reply returns. Therefore, subsequent operations that wait for

W will inherently wait for previous read-exclusive prefetches as well.74

Within the memory system, consumer-initiated prefetches can be treated in virtually the same way as

ordinary read or read-exclusive operations. This ensures that prefetched data will be kept coherent at all

times. For example, ordering constraints such as those described in Section 5.3.2 also apply to prefetch

operations. Similarly, replies to prefetch operations must be treated in the same way as ordinary replies in

systems that exploit early invalidation or update acknowledgements (see Section 5.4.1). For this reason, most

systems do not distinguish between prefetch and ordinary operations once the prefetch leaves the processor

environment.

Finally, we briefly consider producer-initiated prefetches for pushing either a shared or exclusive copy

of a line to another processor. The sole purpose of producer-initiated prefetches is movement of copies and

not eliminating stale copies. The processor that issues the producer-initiated prefetch need not wait for its

completion; therefore, no acknowledgements are required. Within the memory system, a producer-initiated

prefetch operation that carries a shared copy of the line in many ways behaves similarly to an update request.

However, unlike an update request, the prefetch can be safely dropped unless it is carrying an exclusive copy.

5.8.2 Multiple Contexts

Multiple context processors offer an alternative mechanism for hiding latency by assigning multiple threads

to each processor and context switching among the threads at a fine granularity. This allows a long latency

operation on one thread to be overlapped with computation and communication in the other threads.

A key decision in the design of a multiple context processor is the granularity at which context switches

occur. A blocked multiple context processor switches to a different context only if the processor encounters a

long latency operation such as a cache miss. An inter-cycle interleaved multiple context processor switches

to a different active context on every cycle; a context remains inactive while it is waiting for a long latency

73A consequence of merging prefetches with subsequentoperations is that the memory system may no longer drop prefetch operations
silently past the merge point. An explicit negative acknowledgement reply may be used to signal a prefetch that is not serviced
successfully.

74It is sufficient to wait only for the read-exclusive prefetches whose eager reply is back; prefetches that have not yet been issued, or
prefetches with outstanding replies, do not lead to the early service of a subsequent write.
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operation. Finally, intra-cycle interleaving allows issuing instructions from different contexts within the same

cycle. Providing fast context switch times requires support in hardware. A major component of this support

involves replicating state structures such as register files for the resident set of contexts in order to avoid

the overhead of saving and restoring such state. The blocked scheme requires less aggressive support due

to the lower frequency of switches and the fact that switch overheads of a few cycles are tolerable. On the

other hand, interleaved schemes effectively require a zero overhead switch. In return, interleaved schemes

are capable of hiding smaller latencies such as the latency associated with a floating point functional unit or

a first level cache miss.

From a memory model perspective, the implementation should ideally exploit the independence of memory

operations on different threads especially with respect to program ordering constraints. Consider supporting

four contexts on each processor. Even with a strict model such as sequential consistency, each context must

be allowed to have a single outstanding memory operation leading to a total of four outstanding requests from

each processor. Therefore, while a single context processor implementation of sequential consistency may

allow a single outstanding operation, the multiple context implementation must provide sufficient support

structures to allow operations from different threads to be serviced simultaneously.

Exploiting the independence of memory operations across threads is not too difficult for a model such as

sequential consistency since the implementation can simply keep track of a single outstanding operation per

thread. Things become more challenging for more relaxed memory models, however. For example, consider

models such as RCsc or PL1 that allow each thread to have multiple read and multiple write operations

outstanding. A brute force technique for independently dealing with operations from different threads would

require replicating the appropriate read and write buffers (and potentially counts of outstanding operations),

thus providing separate structures to keep track of the operations from each active context. However, simpler

implementations that do not fully exploit the independence of operations across threads can often provide

most of the performance gains. For example, a single context design that supports the PL1 model with

blocking reads can be extended to allow one outstanding read per context, but may still use a single write

buffer for all write operations. This causes a competing write operation to be conservatively delayed for not

only its own context’s previous writes but also for the previous writes from the other contexts. However,

since write latency is not visible to the thread under a model such as PL1 (i.e., writes are simply buffered and

the thread does not need to stall unless the write buffer is full), the extra delay in servicing writes due to a

unified write buffer does not have a direct impact on performance. Similar trade-offs can be made for designs

with non-blocking reads where each context may have multiple outstanding reads. Assuming the PL1 model

again, the implementation may be extended to allow each context to have a single outstanding competing

read. However, non-competing reads from different contexts may still be conservatively merged into a single

read buffer, and writes can be handled as described above.

The main correctness issue with respect to the interaction of memory models and supporting multiple

contexts was discussed Section 5.7.2. As discussed there, one way to eliminate the anomalous behavior that

arises from this interaction is to delay operations from the next context if a previous context has an outstanding

write to the same memory line. This functionality may require extra hardware mechanisms in a multiple

context design.

Finally, from an implementation point of view, the lockup-free cache design for a multiple context

processor is complicated by the fact that cache misses typically lead to two phase transactions: (a) a thread
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originally requests a line and becomes inactive, (b) the reply to the line puts the thread back on the active

list, (c) the request reissues when the thread is rescheduled and is satisfied if the line is still in the cache. The

problem that arises is that other activity (e.g., instruction or data fetches or operations by other processors)

may invalidate or replace the line between the time the reply comes back and the time the thread gets to

reissue its request. The above behavior can potentially lead to livelock where the system continuously fails

to fully service requests. Kubiatowicz et al. [KCA92] and Laudon [Lau94] suggest several possible solutions

for alleviating such livelock problems.

5.8.3 Synergy Among the Techniques

Relaxed memory models and prefetching are alternative ways for exploiting fine grain overlap of computation

and memory operations within a single thread. Multiple contexts, on the other hand, provides overlap of

computation and memory operations by exploiting the parallelism across different threads. Since the three

techniques are alternative ways for hiding latency in a hardware architecture, it may seem that the use of one

technique eliminates the need for the others. However, it turns out that there is synergy in exploiting relaxed

memory models with either the prefetching or the multiple context techniques. We illustrate this synergy by

providing performance results for combinations of these techniques in the next chapter.

There is also synergy from an implementation point of view. The synergy arises from the fact that many

of the architectural mechanism used to exploit relaxed memory models are also needed for fully exploiting

the prefetching or multiple context techniques. This should not be surprising since all three techniques hide

latency by overlapping and pipelining multiple memory operations, thus they all gain from more aggressive

cache and memory designs. Lockup-free caches are a good example of a universal requirement across the

three techniques. Even though prefetching allows for a simpler lockup-freecache design, such a design can be

easily extended to support the extra requirements for relaxed models (e.g., forwarding read data to a register

on a read reply and merging the write data on a write reply). Alternatively, a lockup-free cache design that

supports multiple contexts already has sufficient mechanisms to also support relaxed memory models.

5.9 Supporting Other Types of Events

The implementation discussion has so far focused solely on the ordering of data read and write operations to

a single granularity (e.g., a word). As discussed in Section 4.5 of the previous chapter, a real implementation

has to deal with ordering issues among a larger set of events. The following are examples of other types of

events that must be considered:

� instruction fetch,

� data operations at multiple granularities (e.g, byte, word),

� operations to I/O devices, and

� exception events (e.g., for arithmetic operations or related to virtual memory).

Most designs violate the notion of serial semantics for the above events in order to achieve higher perfor-

mance. Furthermore, many of the ordering issues that arise with respect to these events are not unique to

multiprocessors and must be dealt with in uniprocessor systems as well.

224 Chapter 5 Implementation Techniques



Given the above set of events, it is often desirable to enforce ordering constraints among not only events of

the same type but also events of different types. For example, memory operations may be used to synchronize

access to I/O devices. Therefore, an implementation requires mechanisms for detecting the completion of

each type of event (e.g., an I/O write) and mechanisms for enforcing orders among different types of events

(e.g., between an I/O write and a data write). Furthermore, events such as I/O operations often exhibit

non-memory-like side effects, making some of reordering optimizations that are safe for ordinary memory

operations unsafe for such operations.

Appendix Q describes some of the practical implementation issues for supporting ordering among the

larger set of events, primarily focusing on solutions adopted by various commercial architectures such as the

Alpha [Sit92], PowerPC [MSSW94], and Sparc V9 [WG94].

5.10 Implications for Compilers

The previous sections in this chapter have focused on the impact of memory model specifications on the

hardware implementation of a system. The memory model also impacts the implementation of the compiler

since many important compiler optimizations involve reordering or eliminating memory operations (e.g.,

register allocation, code motion, loop interchange). This section describes the implications of memory model

specifications on optimizations that can be safely exploited by the compilers explicitly parallel programs (with

explicit synchronization; see Section 3.5.1). Many of the ideas in this section are extensions of our earlier

joint work with Adve [GAG+93].

This section begins by motivating issues related to compiler optimizations and describing some of the

problems with current compiler implementations. Section 5.10.2 describes the assumptions about the level

of information conveyed by a source program and the type of architecture that the compiler is targeting.

Section 5.10.3 provides a framework for reasoning about various compiler optimizations and their effect on

memory behavior. Finally, Section 5.10.4 describes the safe compiler optimizations for the various memory

models.

5.10.1 Problems with Current Compilers

Figures 5.38 and 5.39 show a couple of examples to illustrate the effect of compiler optimizations on memory

behavior. The example in Figure 5.38 shows two nested for-loops before and after loop interchange; this

optimization may for example be used to increase temporal locality for the B[j] reference. The loop interchange

is safe for a uniprocessor since the there are no data dependences across the loop iterations. From a memory

model perspective, however, the effect of the loop interchange is a major reordering of the memory operations

to arrays A and B. Such reordering can potentially translate into incorrect behaviors in a multiprocessor

especially if the parallel program is written assuming a strict model such as sequential consistency (e.g.,

consider other processors simultaneously accessing the arrays without any synchronizations). The above

example is indicative of a large group of compiler transformations that lead to a reordering of memory

operations.

Figure 5.39 shows the effect of another common optimization. Figure 5.39(a) shows the original program,

written for the SC model. P1 writes to A, sets a flag, then reads A, and P2 waits for the flag to be set before

reading A. Under SC, the while loop on P2 always terminates and the only possible outcome is (u=1).
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(a) before

a1:

b1:

for (i=0; i<m; i++)

    for (j=0; j<n; j++)

        A[i][j] = B[j];

a1:

b1:

        A[i][j] = B[j];

    for (i=0; i<m; i++)

for (j=0; j<n; j++)

(b) after

c1: c1:

Figure 5.38: Effect of loop interchange.

(a) before

a1: A = 1;

b1: Flag = 1;

P1 P2

a2:

b2: u = A;

while (Flag == 0);

c1: ... = A;

a1:

b1: Flag = 1;

c1:

d1:

r1 = 1; a2:

b2:

u = A;

r2 = Flag;

while (r2 == 0);

A = r1;

c2:

(b) after

P1 P2

... = r1;

Figure 5.39: Effect of register allocation.

Figure 5.39(b) shows the effect of register allocating locations A and Flag. This optimization is perfectly

legal if each processor’s code is treated as a uniprocessor program. However, the transformation can violate

the semantics of a model such as SC. Register allocating A on P1 makes it possible for P2 to read the value

of 0 for A since the write to A on P1 no longer occurs before the write to Flag. This is an example of how

register allocation can effectively lead to a reordering of operations. Similarly, register allocating Flag on P2

can lead to a potentially non-terminating while loop (i.e., if the read of Flag that sets r2 returns the value 0)

since P2 essentially reads Flag only once and does not monitor its value continuously. Neither of the above

behaviors is allowable for the original program under SC.

Problems similar to the above may routinely arise when compiling explicitly parallel programs. The

reason is most compilers that are used to compile parallel programs are not “multiprocessor-ready”; the

resulting optimizations that arise from treating the program as a uniprocessor code can violate the semantics

of even the most relaxed multiprocessor memory models. A common technique for remedying this problem

is to use the volatile keyword provided by languages such as C to identify shared variables. The functionality

of the volatile keyword was originally devised to deal with I/O operations in the context of uniprocessors.

Compilers typically avoid register allocating volatile variables and maintain program order among operations

to volatile variables. Ensuring correctness for an explicitly parallel program requires all shared locations to
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be declared as volatile. For example, both A and Flag must be declared as volatile in Figure 5.39.

While the functionality supported by the volatile keyword is suitable for enforcing the semantics of

a strict model such as sequential consistency, it lacks sufficient flexibility for efficiently supporting more

relaxed models. The main difficulty arises from the fact that operations to volatile variables are not ordered

with respect to operations to non-volatile variables. For example, for a model such as WO, declaring all

synchronization operations as volatile is not sufficient for correctness since the compiler may still move or

register allocate data operations across synchronization operations. The alternative is to declare all shared

locations as volatile which fails to exploit any of the reorderings allowed by most relaxed models. The key

mechanism that is missing is a way to disallow optimization of non-volatile operations across boundaries

set by volatile operations. An empirical and inelegant solution is to insert code segments that are difficult

for the compiler to analyze before and after the volatile operations, in effect forcing the compiler to avoid

code motion and register allocation across such boundaries. For example, for compilers that do not perform

aggressive interprocedural analysis (and do not in-line procedures), a dummy procedure call may be used to

force the compiler to spill registers before the call and reload registers after the call. As compiler technology

advances, however, the need for a more robust and elegant solution increases.

A number of other researchers have observed the correctness issues that arise when uniprocessor compiler

technology is applied to explicitly parallel programs. Midkiff et al. [MPC89] briefly explore the idea of

finding more parallelism in an already parallelized program and describe the difficulties that arise due to the

strict ordering constraints imposed by SC. Callahan and Smith [CS90] mention the idea of providing the

compiler with further information about operations (labels similar to those used by release consistency) in

order to allow more flexibility for compiler optimizations.

5.10.2 Memory Model Assumptions for the Source Program and the Target Archi-

tecture

A given source program assumes an underlying memory model. At the same time, the target architecture or

hardware may support a potentially different model. Therefore, the requirements on a compiler are twofold.

First, compiler optimizations must be constrained to correctly support the semantics of the memory model

assumed by the source program. Second, the compiler needs to correctly map the semantics of the source

memory model onto the hardware’s target model when the two models are different. Section 4.4 in the

previous chapter described techniques for efficiently mapping the semantics of one model onto another. The

discussion here focuses on the first requirement of determining safe compiler optimizations with respect to

the source program model. However, as we will see in Section 5.10.4, the compiler may still need to be aware

of the target architecture’s memory model even for determining the safe optimizations.

To allow for safe optimizations, sufficient information in the form of labels or fences must be communicated

to the compiler. Section 3.5 in Chapter 3 described techniques for communicating the associated operation

labels for properly-labeled models. Similar techniques may be used to communicate appropriate labels for

models such as WO, RCsc, and RCpc. For fence-based models such as Alpha, RMO, and PowerPC, the

explicit fence instructions are assumed to be directly visible to the compiler.
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5.10.3 Reasoning about Compiler Optimizations

There are two types of compiler optimizations from a memory model perspective: (a) optimizations that lead

to a simple reordering of memory operations (e.g., code motion, loop transformations such as interchange

and blocking [LRW91]), and (b) optimizations that eliminate or substitute memory operations and other

instructions (e.g., register allocation, common sub-expression elimination).

Reasoning about the first type of compiler optimizations is relatively straightforward. Given an execution

E of an optimized version of the program, the optimizations are considered safe if the instructions and the

sub-operations of E (including the values read and written) form a valid execution of the unoptimized program

with respect to the memory model assumed by the source program. Therefore, we can reason about reordering

optimizations by the compiler in almost the same way as we reason about such optimizations by the hardware.

The above reasoning precludes the use of optimizations of the second type, such as register allocation and

common sub-expression elimination, that eliminate or substitute memory sub-operations and/or instructions.

One way to deal with such optimizations is to start with the execution of the optimized code and conceptually

alter the execution by adding back the deleted memory sub-operations and replacing new instructions by

original instructionsof the unoptimized code. The augmented execution is now comparable to the unoptimized

execution, and the compiler optimizations may be deemed safe if the instructions and sub-operations of the

augmented execution form an execution of the unoptimized code. We illustrate the above idea by discussing

how an execution can be conceptually augmented to reason about the register allocation optimization. The

concepts presented below can be extended to deal with other optimizations such as common sub-expression

elimination or combinations thereof.

Consider a memory location that is allocated to a register within a given code interval. For simplicity,

we assume a straightforward register allocation scheme. In the middle of this interval, register allocation

transforms a memory read to a register read (memory-read to register-read) and a memory write to a register

write with the same value (memory-write to register-write). The transformations at the two ends of the

interval are slightly different. If the original interval starts with a read operation (a read-initiated interval), the

memory read is still performed and the value read is written to a register (memory-read plus register-write).

If the original interval starts with a write operation (a write-initiated interval), the memory write is simply

transformed into a register write as is done with memory writes in the middle of the interval. Finally, if there

are any writes to this location within the interval, the value of the register may be written back (or spilled) to

memory (register to memory write-back).

We now describe how the execution of a program that has been register allocated may be appropriately

augmented by adding the relevant memory operations back into the execution. We refer to Rinit and

Winit sub-operations as initial sub-operations. For a read, the remaining sub-operation is simply referred to

as the read sub-operation. For a write, the remaining n sub-operations are referred to as per-processor write

sub-operations. In transforming the optimized execution, we augment the operations from each processor

independently. For each processor, we traverse its instruction instances in program order. The following

enumerates the way the execution is augmented:

1. A register read on Pi that corresponds to a memory-read to register-read case is replaced with the

Rinit(i) and R(i) sub-operations to the corresponding memory location with the same return value as

the register read.
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2. A register write on Pi that corresponds to a memory-write to register-write case is replaced with an

initial write sub-operation (Winit(i)) and the per-processor write sub-operations (i.e., W(1) : : :W(n))

that write the same value to the corresponding memory location. For the last register write before

the write-back in an interval, only the Winit(i) sub-operation is added to the execution (the remaining

sub-operations will be contributed by the register to memory write-back event).

3. A Winit(i) sub-operation belonging to a write W on Pi that corresponds to a register to memory write-

back case is removed from the execution (the previous case already adds a Winit(i) for the last register

write before the write-back).

The sub-operations added by the above augmentation must be appropriately ordered with respect to other

sub-operations in the augmented execution. The Rinit(i) and R(i) sub-operations added by the first case above

must be placed immediately after either the Winit(i) of the last conflicting memory write in program order

or the R(i) of the last memory read to the same location which starts the interval (i.e., a memory-read plus

register-write case), whichever is later in program order. The Winit(i) added by the second case above must

be placed immediately after the R(i) or Winit(i) sub-operation of the last conflicting read or write (whichever

is later) that is before the added write in program order. Finally, a per-processor write sub-operation W(j)

added by the second case above must be placed immediately before the corresponding sub-operation W’(j)

belonging to the next conflicting write-back write; multiple write sub-operations to the same memory copy

corresponding to multiple register writes within an interval must be kept in program order. The intuitive

effect of the above conditions is to push the Winit(i), Rinit(i), and R(i) events to near the top and the W(i)

events to the bottom of the register allocation interval.

Given the above augmented execution, the register allocation optimizations are considered safe if the

instructions and sub-operations of the augmented execution form an execution of the unoptimized program

with respect to the memory model assumed by the source program. As mentioned before, this methodology

can be extended to reason about the correctness of other combinations of optimizations.

5.10.4 Determining Safe Compiler Optimizations

This section explores the optimizations that a compiler can safely perform assuming a given memory model.

To determine whether an optimization is safe, the compiler must conceptually consider all possible executions

for all possible sets of input data for the given program. Most compiler optimizations require full flexibility

in reordering operations to different locations. Therefore, models such as SC, IBM-370, TSO, PC, and PSO

disallow virtually all important compiler optimizations on shared memory operations because they do not

provide the compiler with regions of instructions where read and write operations may be flexibly reordered

with respect to one another. This is in contrast to hardware designs where limited flexibility such as allowing

a read to bypass previous writes as in TSO can provide substantial gains through hiding the write latency.

As in the previous section, we will use register allocation as a canonical example of compiler optimizations

that eliminate memory operations. Another assumption in this section is that cache coherence is supported

by hardware, relieving the compiler from ensuring coherence in software. Finally, some of the specification

conditions such as the coherence requirement and the atomicity condition for read-modify-write operations

turn out not to be relevant to the compiler; this section considers only the relevant conditions.
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Value, Initiation, and Uniprocessor Dependence Conditions

To satisfy the notion of uniprocessor data dependence upheld by the value, initiation, and uniprocessor

dependence conditions, the compiler needs to ensure that if a read returns the value of its own processor’s

write, then the write is the last write before the read in program order. In the absence of optimizations

such as register allocation, this is easily achieved if the compiler does not reorder a write followed (in

program order) by a read to the same address. With register allocation, correctness is maintained if within the

register allocation interval, the program order among conflicting register operations in the compiled program

matches the program order among the corresponding memory operations in the original source program. In

addition, the uniprocessor dependence condition requires program order among all conflicting operations to

be maintained. The exception for most models is the order from a write followed by a read, thus allowing the

read forwarding optimization. This relaxation is important because one of the effects of register allocation

is to make it appear as if the read completes before the write and yet returns the value of the write. Overall,

uniprocessor data dependence can be maintained in a similar way to a uniprocessor compiler.

The above conditions apply to operations with the same address. Since compiler optimizations are

done at compile time, the compiler does not have access to dynamic runtime information about the addresses.

Therefore, the compiler may sometimes have to make conservative assumptions about whether two operations

conflict. On the other hand, there are cases where the compiler can do better than runtime hardware by using

its knowledge about the program and data structures to determine that two operations cannot possibly conflict.

Multiprocessor Dependence Chains

The key issue with respect to enforcing multiprocessor dependence chains is to disallow the reordering of

operations related by program orders that make up the different types of chains. For virtually all of the

specifications, these program orders are identified by the various flavors of the
spo
�! relation.75 Therefore, we

will use
spo
�! to generically refer to the variety of program order arcs (and their transitive closures) that make

up multiprocessor dependence chains.

The restrictions are pretty straightforward for optimizations that lead to a simple reordering of memory

operations. Given X
spo
�! Y, the compiler must avoid reordering the two operations; otherwise, reordering is

safe. For example, for a model such as PL1, non-competing operations that appear in the interval between

competing operations may be freely reordered with respect one another since they are not related by the
spo
�! relation.

The restrictions for optimizations such as register allocation that end up eliminating memory operations

is slightly different. The conservative condition is to (a) disallow replacing a memory read R with a register

read if the value of the register is set prior to the previous operation ordered before R by
spo
�!, and (b) disallow

replacing a memory write W with a register write if the write-back operation corresponding to W (or a later

write in program order) does not appear in program order before the next operation ordered after W by
spo
�!.

Given a region of non-competing operations in a model such as PL1, the above conditions allow operations

to be freely register allocated within the region.

The above restrictions can be relaxed to allow register allocation across
spo
�!’s in some cases. For example,

given X
spo
�! R, R may be replaced by a register read if the value that it reads belongs to a write that is also

75The only two exceptions are the aggressive specification for SC and the specification for Alpha where two reads to the same address

appear in a category 1 chain but are not included in
spo
�!.
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register allocated and whose value is not written back to memory until after X in program order. Similarly,

given W
spo
�! Y, W may be replaced by a register write as long as there is a write-back to memory (of the

value written by W or by a later write to the same location) before Y in program order; the value that remains

in the register may still be used to replace read references after Y as long as all the other conditions allow this.

One of the important requirements for the compiler is to preserve the conservative operation labels or

explicit fence instructions that appear in the source program in order to ensure the information remains visible

to the underlying system that will execute the compiler code. This requirement places a few more restrictions

on optimizations, such as register allocation, that eliminate memory operations or instructions. For example,

register allocating a read R should be disallowed if the value of the register is set by another read R’ and

the label for R is more conservative than the label for R’. Similarly, register allocating a write W should be

disallowed if the label for W is more conservative than the label of the write-back memory operation (e.g.,

consider the case where W is a competing operation and the write-back memory operation is non-competing,

assuming the PL1 model). In addition, if X
spo
�! Y

spo
�! Z implies X

spo
�! Z through transitivity, and register

allocating Y (i.e., eliminating the operation) makes X
spo
�! Z no longer hold, we must conservatively disallow

the register allocation.76

Much of the above complexity can be eliminated if the compiler simply uses the more conservative

approach for register allocation. Consider the PL1 model, for example. The conservative yet simple approach

described earlier limits the use of register allocation to within regions of instructions between competing

operations; the compiler can safely register allocate any operations within such regions. The more complex

conditions allow the compiler to sometimes extend the register allocation region past competing operations.

Yet, these aggressive conditions may not lead to a significant performance gain especially if competing

operations occur infrequently in a program.

Termination and Other Related Conditions

The termination condition plays an important role in disallowing incorrect compiler optimizationsby requiring

the compiler to ensure that, for certain writes, the write operation occurs in all executions of the compiled

code. For example, if a memory write is converted to a register write, the compiler must guarantee that the

register value will eventually get written to memory. For most models, the termination condition applies to

all writes; for RCsc, RCpc, and the three PL specifications, the condition only applies to competing writes.

The termination condition also interacts closely with the condition on execution orders (
xo
�!) that requires

the number of memory sub-operations ordered before any given sub-operation to be finite (see Definition 4.11

in Chapter 4). Intuitively, the two requirements together guarantee that certain writes will not only appear

in the execution, but will also eventually be seen by reads in other processors. For example, consider a read

that may possibly be issued an infinite number of times, such as the read of the Flag location in Figure 5.39.

If this read is register allocated within a potentially infinite loop with a value from outside the loop, the old

value for the location may be used in every iteration of the loop and new writes to this location that appear

in the execution order would not affect the value returned. The above would violate the requirement on the

execution order (assuming the augmented version of the execution where register reads are transformed back

to memory reads) since it will appear as if there are an infinite number of read sub-operations ordered before

76Consider the specification for RCsc, for example. Assume Wc
po
�! Rc acq

po
�! W, which implies Wc

spo
�! W. This latter relation

may not hold if the acquire is register allocated. A compiler may use implementation-dependent information about the target hardware
to more aggressively determine whether eliminating the middle operation ends up allowing the reordering of the other two operations.
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P1

a1: A = 1;

b1: while (B == 0);

P2

a2:

b2:

B = 1;

while (A == 0);

Figure 5.40: Example to illustrate the termination condition.

the new write sub-operation to the same memory copy. This explains how the register allocation of Flag in

the example in Figure 5.39 is disallowed by the specification.

The uniprocessor correctness condition (Condition 4.1 in Chapter 4) also interacts with the termination

condition to ensure that certain write operations occur in all executions of the compiled code. The unipro-

cessor correctness condition requires that memory sub-operations in the execution for each processor should

correspond to a “correct” uniprocessor execution of the process’ program given the reads return the same

values as the multiprocessor execution. The intuitive notion of correctness for a uniprocessor compiler is for

most part sufficient for maintaining this condition. However, there are certain aspects that are specific to mul-

tiprocessors. For example, an initial write sub-operation Winit that would occur in the correct uniprocessor

execution is required to also occur in the multiprocessor execution. Similarly, if an operation A is followed by

an operation B where B can execute for an infinite number of times, then the compiler cannot reorder B before

A since this can cause A to never execute. Or, if a write operation D is preceded by an operation C where

C can execute for an infinite number of times, then D cannot be reordered before C. This is because D may

execute in the “optimized” execution while it would not have executed in the corresponding “unoptimized”

execution. Appendix G describes how the latter constraint may be relaxed.

We use the code segment in Figure 5.40 to illustrate various scenarios that can result in the violation of

the termination condition or the related uniprocessor correctness condition and the “finite” requirement on

execution orders. Assume a model that requires the termination condition to hold for P1’s write of A and

for P2’s write of B. The uniprocessor correctness, value, and termination conditions together require both

loops to terminate in any possible executions of this code. However, any of the following optimizations may

violate this property: (1) if the while loop on each processor is moved above the write on that processor, (2)

if the writes of A and B are done as register writes and the new values are not written back to memory, or

(3) if location B is register allocated on P1 or location A is register allocated on P2. The first optimization is

disallowed by the uniprocessor correctness condition, the second by the termination condition, and the third

by the definition of execution order which allows only a finite number of sub-operations (reads in this case)

to precede any given sub-operation (the write in this case) in the execution order.

Appendix H describes a more aggressive form of the termination condition for the PL models, along with

its implementation implications.

Reach Condition

The constraints imposed on the compiler by the reach condition are analogous to those imposed on hardware

as discussed in Section 5.3.6. Consider a shared-memory write instruction W that follows (in program order)

a shared-memory read instruction R in the unoptimized source code. If an instance of R could be ordered

before an instance of W by rch
�! in any execution of the unoptimized code (assuming the source memory
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model), then the compiler cannot move W to before R in the optimized code.

5.10.5 Summary of Compiler Issues

The major flexibility required for doing compiler optimizations is to allow read and write memory operations

to be arbitrarily reordered with respect to their original program order. However, relaxing just the write-read

order, as is done by TSO or PC, or the write-write order, as is done by PSO, fails to provide sufficient flexibility.

Therefore, such models end up disallowing virtually all interesting compiler optimizations on shared memory

operations. The only models with sufficient flexibility are those that provide regions of instructions where

read-read, read-write, write-read, or write-write program orders are relaxed among operations to different

addresses. This includes the label-based models WO, RCsc, RCpc, and the three PL models, and the fence-

based models Alpha, RMO, and PowerPC. For these models, the compiler can identify regions of instructions

where it can apply many of the same optimizations that are used by a uniprocessor compiler.

The way the flexibility provided by relaxed models is exploited by compilers is somewhat different

from the way hardware typically exploits this flexibility. For example, the aggressive specifications of

multiprocessor dependence chains (that do not impose orders at every point in the chain) are difficult to

exploit for the compiler. Similarly, relaxing multiple copy atomicity constraints do not provide any additional

optimizations to the compiler. On the other hand, extra information such as the relationship between data

and synchronization (e.g., information on data that is covered by a lock synchronization) can be more easily

exploited by a compiler.

Finally, most current compilers are inadequate for supporting explicitly parallel programs simply because

they are really uniprocessor compilers and can therefore violate some of the constraints that are required

for correctly compiling for multiprocessors. To remedy this situation, compilers must become aware of the

memory model assumed by the source program and must use information such as labels or fences provided

by the program to guide optimizations.

5.11 Summary

This chapter covered a wide range of issues related to correctly and efficiently implementing various memory

consistency models in a multiprocessor system. The scope of the techniques covered points to the wide variety

of implementation options with differing trade-offs in performance and complexity or cost. The challenge

for a designer is to choose the design that provides close to the full performance potential for a model while

limiting the complexity and cost of the design. The performance results provided in the next chapter shed

further light on this important trade-off.
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Chapter 6

Performance Evaluation

Choosing a memory consistency model, and selecting the appropriate implementation techniques for support-

ing a model, requires designers to balance the trade-offs between programmability, design complexity, and

performance. Performance data for various models and implementations play a key role in helping designers

make an informed decision on the above trade-off.

This chapter presents a detailed evaluation of the performance gains from exploiting the optimizations

enabled by relaxed memory models in the context of large-scale shared-memory architectures with hard-

ware support for cache coherence. Our results are based on detailed simulation studies of several parallel

applications. Section 6.2 characterizes the performance of different models in architectures with blocking

reads, which is typical for most current commercial systems. We consider the interaction of relaxed models

with other latency hiding techniques, such as prefetching and hardware support for multiple contexts, in

Section 6.3. Finally, Section 6.4 considers the effect of supporting non-blocking reads, which is becoming

prevalent in many new generation processor designs. Related work on performance evaluations is discussed

in Section 6.5.

Overall, our results show that the overlapping and reordering optimizations enabled by relaxed models are

extremely effective in hiding virtually the full latency of write operations in architectures with blocking reads.

Furthermore, we show that these optimizations complement the gains from other latency hiding techniques

by further enhancing system performance. Finally, we show that a substantial fraction of the read latency can

also be hidden if the architecture supports non-blocking reads. In each of the above cases, we identify the

key architectural enhancements that are necessary for achieving these gains by considering implementations

with different degrees of aggressiveness.

6.1 Overview

The main focus of this chapter is to quantify the performance gains from optimizations enabled by relaxed

memory models in the context of scalable shared-memory multiprocessors with hardware support for cache
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Figure 6.1: Categories of program reordering optimizations.

coherence. More specifically, we concentrate on designs with an invalidation-based cache coherence protocol,

which is by far the most common choice. Examples of such machines include the Stanford DASH [LLG+90],

the MIT Alewife [ALKK90], and the Convex Exemplar.

Instead of providing performance results for specific memory models, we primarily present results for the

basic optimizations that are enabled by different groups of models. This approach isolates the effect of different

optimizations and provides better intuition for the important sources of performance gain. Furthermore, it is

simple to map these results into performance gains for specific models, based on whether the optimization is

allowed by the model and whether a given implementation exploits this optimization.

The two key optimizations enabled by relaxed models are the relaxation of various program orders and

the relaxation of multiple-copy atomicity constraints for writes. Our study primarily focuses on program

reordering optimizations. Since we assume an invalidation-based protocol, it is simple to support the illusion

of multiple copy atomicity for writes (see Section 5.3.5 in Chapter 5); furthermore, relaxing this constraint is

unlikely to enhance the performance of such a protocol.

Figure 6.1 depicts the program reordering optimizations, divided into three categories. These are the

same categories used in Chapter 2 to describe the various relaxed memory models. The first category

allows the reordering of read operations with respect to previous write operations. The second category

allows the reordering of write operations. Finally, the third category allows the reordering of read operations

with respect to future operations. While the first two optimizations can be exploited by most architectures,

the latter optimization requires more sophisticated processor support in the form of non-blocking reads.

Correspondingly, this chapter presents two distinct set of results, one for architectures with blocking reads

and another for those with non-blocking reads.

6.2 Architectures with Blocking Reads

This section presents the performance results for architectures with blocking reads. We describe the framework

for our simulation experiments in Section 6.2.1. The performance results for implementations that aggressively

exploit write-read and write-write program reordering are presented in Section 6.2.2. Finally, Section 6.2.3

studies the effect of less aggressive implementations, and the effect of varying the cache and cache line sizes.

The performance results presented in this section extend the results that were published in a prior

paper [GGH91a] by considering a larger set of applications and varying more architectural parameters.

6.2.1 Experimental Framework

This section describes the architectural assumptions, simulation environment, and benchmark applications

used in our performance study.
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Architectural Assumptions

To provide meaningful performance comparisons for the optimizations enabled by relaxed models, we need

to focus on a specific class of multiprocessor architectures. The reason is that trade-offs may vary depending

on the architecture chosen. For example, the trade-offs for a small bus-based multiprocessor with broadcast

capability and miss latencies in tens of cycles are quite different than those in a larger scale multiprocessor

where broadcast is not possible and miss latencies are in hundreds of cycles.

For our study, we have chosen an architecture that resembles the DASH shared-memory multiproces-

sor [LLG+90], a large scale cache-coherent machine that has been built at Stanford. Figure 6.2 shows the

high-level organization of the simulated architecture, which consists of several processing nodes connected

through a low-latency scalable interconnection network. Physical memory is distributed among the nodes

and cache coherence is maintained using a distributed directory-based protocol. For each memory block, the

directory keeps track of remote nodes caching the block, and point-to-point messages are sent to invalidate

remote copies. Acknowledgement messages are used to inform the originating processing node when an

invalidation has been completed. Although the DASH prototype has four processors within each node, we

simulate an architecture with only one processor per node. This allows us to isolate the performance effect of

optimizations more clearly.

All our simulation results are based on a 16 processor configuration. The parameters used are loosely

based on the DASH prototype; we have removed some of the limitations that were imposed on the DASH

prototype due to design time constraints. The bus bandwidth of the node bus is assumed to be 133 Mbytes/sec,

along with a peak network bandwidth of 120 Mbytes/sec into and 120 Mbytes/sec out of each node. Figure 6.2

also shows the organization of the processor environment. Each processing node in the system consists of a

33MHz MIPS R3000/R3010 processor connected to a 64 Kbyte write-through primary data cache. The write-

through cache enables processors to do single cycle write operations. The first-level data cache interfaces

to a 256 Kbyte second-level write-back cache. The interface includes read and write buffers. Both the first

and second-level caches are direct-mapped and support 16 byte lines. For most of this study, we assume an

aggressive implementation with a lockup-free secondary cache, a 16 word deep write buffer, and reads that

bypass the write buffer; results for more conservative implementations are presented in Section 6.2.3.

The following describes some features of the simulated cache-coherence protocol (for more details, refer

to the original paper on the DASH protocol [LLG+90]); many of the terms used below were discussed

in Section 5.3.5 of the previous chapter. As we mentioned before, the protocol is invalidation-based.

Invalidations are acknowledged as soon as they arrive at the target cache’s incoming buffer (i.e., early

acknowledgement), and acknowledgements are gathered at the requesting node. The protocol maintains the

illusion of multiple-copy atomicity for writes by nacking operations from other processors while there are

invalidations pending for the line. Write operations always generate a read-exclusive request even if the

second level cache has a clean copy of the line (i.e., the exclusive request optimization is not used). For

implementations that allow multiple outstanding writes, the protocol supports eager read-exclusive replies;

otherwise, read-exclusive replies are delayed until all invalidations are acknowledged.

The latency of a memory access in the simulated architecture depends on where in the memory hierarchy

the access is serviced. Table 6.1 shows the latency for servicing an access at different levels of the hierarchy,

in the absence of contention (the simulation results include the effect of contention, however). The latency

shown for writes is the time for acquiring exclusive ownership of the line, which does not necessarily include
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Figure 6.2: Simulated architecture and processor environment.

the time for receiving the acknowledgement messages for invalidations. The following naming convention is

used for describing the memory hierarchy. The local node is the node that contains the processor originating

a given request, while the home node is the node that contains the main memory and directory for the given

physical memory address. A remote node is any other node.

Synchronization primitives are also modeled after DASH. The queue-based lock primitive [LLG+90] is

used for supporting locks. In general, locks are not cached except when a processor is spinning on a locked

value. When the lock is released, if there are any waiting processors, one is chosen at random and is granted

the lock using an update message. Acquiring a free lock takes approximately 20 and 100 processor cycles for

local and remote locks, respectively. The total latency to perform a barrier for 16 processors, given all reach

the barrier at the same time, is about 400 processor cycles; the typical simulated time for a barrier is much

larger in practice since all processors do not reach the barrier at the same time.

Simulation Environment

We use an event-driven simulator that models the major components of the DASH architecture at a behavioral

level. For example, the caches and the coherence protocol, contention, and arbitration for buses are all

modeled in detail. The simulations are based on a 16 processor configuration. The architecture simulator is

tightly coupled to the Tango-Lite reference generator, the light-weight thread-based version of Tango [GD90],

to assure a correct interleaving of accesses. For example, a process doing a read operation is blocked until

that read completes, where the latency of the read is determined by the architecture simulator. Instruction

references are assumed to always hit in the instruction cache. Furthermore, operating system references are

not modeled. Finally, main memory is distributed across all nodes and allocated using a round-robin scheme
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Table 6.1: Latency for various memory system operations in processor clocks. Numbers are based on 33MHz
processors.

Read Operations
Hit in Primary Cache 1 pclock
Fill from Secondary Cache 15 pclock
Fill from Local Node 29 pclock
Fill from Remote Node 101 pclock
Fill from Dirty Remote, Remote Home 132 pclock

Write Operations
Owned by Secondary Cache 2 pclock
Owned by Local Node 17 pclock
Owned in Remote Node 89 pclock
Owned in Dirty Remote, Remote Home 120 pclock

for the applications, unless specific directives are given by an application.

Given that our detailed simulator is significantly slower than the target multiprocessor that is being

simulated, we can only afford to simulate smaller problem sizes relative to those that would be run on

the actual machine. An important question that arises is how the simulated cache sizes must be scaled to

approximate the behavior of larger problem sizes running on full-sized caches. We assume the full-sized

caches (i.e., 64K first level and 256K second level) for most of our performance results. Since these cache

sizes are large relative to the simulated problem sizes, most of the cache misses correspond to inherent

communication misses. We later study the effect of smaller cache sizes in Section 6.2.3.

Benchmark Applications

The parallel applications we use consist of the entire SPLASH suite [SWG91] plus the LU-decomposition

application that we used in earlier studies [GHG+91, MG91]. These applications are representative of

algorithms used today in scientific and engineering computing environments. The applications use the

synchronization primitives provided by the Argonne National Laboratory macro package [BBD+87]. All

applications, except OCEAN, are written in C; OCEAN is written in Fortran. Table 6.2 provides a brief

summary of the applications, along with their input data sets. We describe each application in more detail

below.

OCEAN [SH92] models the role of eddy and boundary currents in influencing large-scale ocean move-

ments. The simulation is performed for many time-steps until the eddies and mean ocean flow attain a mutual

balance. The work in each time-step involves solving a set of spatial partial differential equations using Suc-

cessive Over Relaxation (SOR). The principle data structure consists of a set of 25 two-dimensional arrays

holding discretized values of the various values associated with the model’s equations. For our experiments

we simulated a 98-by-98 point square grid.

PTHOR [SG89] is a parallel distributed-time logic simulator based on the Chandy-Misra simulation

algorithm. The primary data structures associated with the simulator are the logic elements (e.g., AND-gates,

flip-flops), the nets (wires linking the elements), and the task queues which contain activated elements. Each

processor executes the following loop. It removes an activated element from one of its task queues and

determines the changes on that element’s outputs. It then schedules the newly activated elements onto the
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Table 6.2: Description of benchmark applications.

Application Description Input Data Set

OCEAN simulates eddy currents 98x98 grid
in an ocean basin

PTHOR simulates digital circuit at RISC (5 K elements),
the gate level 5 steps

MP3D simulates rarified hypersonic flow 100 K mols., cylinder.geom
(6144 cells), 5 steps

CHOLESKY sparse Cholesky factorization bcsstk15
LU dense LU decomposition with pivoting 200x200 matrix

LOCUS routes wires for VLSI Primary2
standard cell designs (25.8 K cells, 3817 wires)

BARNES performs a hierarchical N-body 8192 bodies, 3 steps
gravitation simulation

WATER simulates water molecule interaction 512 mols., 2 steps

task queues. For our experiments we simulated five clock cycles of a small RISC processor consisting of

about 5000 elements.

MP3D [MB88] is a 3-dimensional particle simulator used to study the pressure and temperature profiles

created by an object flying at high speed through the upper atmosphere. The primary data objects in MP3D are

the particles (representing the air molecules), and the space cells (representing the physical space, the boundary

conditions, and the flying object). The overall computation of MP3D consists of evaluating the positions and

velocities of molecules over a sequence of time steps. During each time step, the molecules are picked up one

at a time and moved according to their velocity vectors. Collisions of molecules among themselves and with

the object and the boundaries are all modeled. The simulator is well suited to parallelization because each

molecule can be treated independently at each time step. The program is parallelized by statically dividing

the particles equally among the processors. The main synchronization consists of barriers between each time

step. Accesses to the space cells occur in an asynchronous manner within a time step; the algorithm is robust,

however, due to the low frequency of particle collisions at a given space cell. For our experiments we ran

MP3D with 100,000 particles in a 32x6x32 space array, and simulated 5 time steps.

CHOLESKY [RG90] performs sparse Cholesky factorization using a dynamic version of the supernodal

fan-out method. The matrix is divided into supernodes (sets of columns with identical non-zero structures),

which are further divided into conveniently-sized chunks called panels. A panel receives updates from other

panels to its left, and is placed on a task queue after all updates have been received. Processors remove

panels from this task queue to perform the associated modifications; this in turn causes other panels to be

placed on the task queue. The principal data structure is the sparse matrix itself. The primary operation that

is performed repeatedly is adding a multiple of one column to another column. Contention occurs for the

task queue and the modified columns, which are protected by locks. For our experiments we ran bcsstk15

which is a 3948-by-3948 matrix with 56,934 non-zeroes in the matrix and 647,274 non-zeroes in the factor.

LU performs LU-decomposition for dense matrices. The primary data structure in LU is the matrix being

decomposed. Columns are statically assigned to the processors in an interleaved fashion. Each processor

waits for the current pivot column, and then uses that column to modify all the columns that it owns. The

processor that produces the current pivot column releases any processors waiting for that column. For our
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experiments we performed LU-decomposition on a 200x200 matrix.

LOCUS (abbreviation for “LocusRoute”) [Ros88] is a high quality VLSI standard cell router. The program

evaluates standard cell circuit placement with the objective of finding an efficient routing that minimizes area.

The parallelism in LOCUS comes from routing multiple wires concurrently. Each processor continuously

picks up a new wire from the task queue, explores alternative routes, and places the wire along the best route.

The main data structure is a cost array that keeps track of the number of wires running through each routing

cell of the circuit. Although the cost array is accessed and updated concurrently by several processors, it

is not protected by locks since the resulting distortions are considered acceptable. For our experiments we

used the largest circuit provided with the application, Primary2.grin, which contains 3817 wires and a

1290-by-20 cost array.

BARNES (abbreviation for “Barnes-Hut”) [SHG92] is a hierarchical N-body gravitational simulation,

with each body modeled as a point mass that exerts force on all other bodies in the system. For efficiency, a

set of sufficiently far bodies are abstracted as a simple point mass. To facilitate this clustering, physical space

is divided recursively to form an oct-tree until each cell contains at most one body. The octree is implemented

as an array of bodies and an array of cells that are linked together to form a tree. Bodies are statically assigned

to processors for the duration of a time-step. During each time-step, each processor calculates the forces of

all bodies on its subset of bodies, and the bodies are then moved according to those forces. The tree is then

regenerated for the next time step. A set of distributed locks provide exclusive access to the tree. For our

experiments we ran BARNES with 8192 bodies through 3 time steps.

WATER is an N-body molecular dynamics application that evaluates forces and potentials in a system

of water molecules in the liquid state. The main data structure is an array of molecules. Each processor is

statically assigned a subset of the molecules. In each time step the program computes the potential of each

molecule based on intra- and inter-molecular interactions. Due to symmetry, each processor only computes

the interaction between a molecule it owns and half the other molecules. Synchronization in the program is

maintained through locks on the molecules being modified, and through barriers that separate different phases

in the program. We ran WATER with 512 molecules through 2 time steps.

Table 6.3 shows some general statistics for the eight applications. The numbers correspond to a 16 pro-

cessor configuration, assuming the sequential consistency model (i.e., no program reordering optimizations).

Table 6.4 presents more detailed statistics on shared data and synchronization access behavior. The read and

write miss statistics correspond to misses past the second level cache. Except for LU, the hit rate for the

combined caches is not substantially better than the rate achieved by the primary cache. The table also shows

the frequency of accesses or misses relative to the total number of instructions executed.

6.2.2 Experimental Results

This section presents the performance results for architectures with blocking reads. We begin by presenting

a base set of results for an implementation that preserves all program orders, as may be required by the

sequential consistency model. We next study the effect of relaxing the write-read and write-write program

orders. Finally, we consider the performance effect of minor ordering differences among relaxed models.
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Table 6.3: General statistics on the applications. Numbers are aggregated for 16 processors.

Instructions Shared Data Shared
Executed References Data Size

Application (millions) (millions) (Kbytes)

OCEAN 120 16.5 2972
PTHOR 86 15.8 2760
MP3D 209 22.4 4028

CHOLESKY 1302 217.2 6856
LU 50 8.2 640

LOCUS 897 130.3 5156
BARNES 337 44.9 1528
WATER 2165 195.3 484

Table 6.4: Statistics on shared data references and synchronization operations, aggregated for all 16 processors.
Numbers in parentheses are rates given as references per thousand instructions.

Reads Writes R/W Read Misses Write Misses RMiss/WMiss
Application X1000 X1000 Ratio X1000 X1000 Ratio Locks Barriers

OCEAN 12,280 4,255 2.9 1,438 1,810 0.8 352 2,400
(102) (35) (12) (15) (0.00) (0.02)

PTHOR 14,516 1,316 11.0 550 237 2.3 105,414 3,984
(169) (15) (6.4) (2.8) (1.23) (0.05)

MP3D 16,965 5,468 3.1 1,875 1,320 1.4 2,172 384
(81) (26) (9.0) (6.3) (0.01) (0.00)

CHOLESKY 193,216 24,049 8.0 4,908 3,917 1.2 90,307 16
(148) (19) (3.8) (3.0) (0.07) (0.00)

LU 5,478 2,727 2.0 273 123 2.2 3,184 29
(110) (55) (5.5) (2.5) (0.06) (0.00)

LOCUS 117,440 12,847 9.1 2,721 1,845 1.5 51,016 16
(131) (14) (3.0) (2.1) (0.06) (0.00)

BARNES 34,121 10,765 3.2 1,054 156 6.7 16,525 96
(101) (32) (3.1) (0.5) (0.05) (0.00)

WATER 146,376 48,91 3.0 1,173 818 1.4 302,272 208
(68) (23) (0.5) (0.4) (0.14) (0.00)

Preserving all Program Orders

This section evaluates the performance of implementations that preserve all program orders. The program

order from a read to a following operation is inherently maintained because the processor stalls for the

completion of each read (i.e., the blocking read restriction). To preserve the program order from writes to

following operations, we assume the processor also stalls for each write operation to complete. The above

depicts a straightforward implementation of the sequential consistency model.

Figure 6.3 shows the performance for the benchmark applications assuming all program orders are

preserved. The figure presents a breakdown of the execution time for each application. The bottom component

of each column represents the time spent executing instructions. This component provides a measure of

processor utilization or efficiency. The remaining three components represent time spent stalling for read,

write, and synchronization operations to complete. The synchronization component includes the time spent

acquiring a lock, waiting for other processors to reach a barrier, or spinning on empty task queues.1 We have

1The latter type of spinning is achieved through normal instructions. However, the applications are appropriately annotated to
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Figure 6.3: Performance of applications with all program orders preserved.

shown the applications in the order of increasing processor utilization. In general, the applications with lower

processor utilizations benefit more from optimizations that hide the latency of memory operations.

As shown in Figure 6.3, many of the applications spend large portions of their execution time stalled for

memory operations and synchronization. As a consequence, five out of eight applications achieve below 40%

processor utilization. Referring back to Table 6.4, the time spent stalling for reads and writes is closely related

to the frequency of misses for these operations. The correlation between synchronization operation frequency

and the time spent on synchronization is much weaker because synchronization latency is often dominated

by load balance issues. For example, even though LU and LOCUS have approximately the same frequency

for locks and barriers, LU spends a much larger percentage of its execution time stalled for synchronization

(mainly busy locks).

The program order from writes to following operations can be maintained in a slightly more efficient way.

In the implementation described above (referred to as BASE), the processor stalls immediately after each

write until the write completes. The alternative is to place the writes in the write buffer without stalling the

processor. To maintain the order among write operations, the write buffer retires the write at the head only

after the write is complete. Furthermore, the write-read program order is preserved by stalling a read until

the write buffer is empty. This latter implementation (referred to as BASE’) allows part of the write latency

to be overlapped with computation up to the next read. In most cases, however, a read access occurs soon

after a write miss, and most of the latency for completing the write miss will still be seen by the processor.

Figure 6.4 shows the performance of the alternative implementation described above. For each application,

we show the breakdown of the execution time for both BASE and BASE’ (labeled B and B’, respectively),

normalized to the execution time for BASE. The small variation in the instruction time for CHOLESKY is

due to the slightly non-deterministic behavior of the application. We will later observe the same effect in

some of the other applications. As expected, the performance of BASE’ is within a few percent of BASE

delineate regions of code that are used for such synchronization purposes.
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Figure 6.4: Effect of buffering writes while preserving program orders.

for all applications. BASE’ performs better than BASE for all applications except LOCUS, with the gain

mainly due to a slight decrease in the write stall time. LOCUS and PTHOR experience a higher write stall

time, however. This latter effect is simply an artifact caused by the different interleaving of operations in the

two executions. Overall, the performance difference between the two implementations is negligible. For this

reason, we will continue to use the BASE implementation as a point of comparison.

Relaxing the Write-Read Program Ordering

The first reordering optimization we consider is relaxing the write-read program order, which is enabled by

models such as TSO and PC. We begin by describing the implementation requirements for supporting this

optimization. As before, the processor stalls for a read to complete. Writes, on the other hand, are simply

sent to the write buffer. The only time the processor directly stalls on a write is if the write buffer is full. The

program order among writes is maintained through the write buffer by retiring a write only after it completes.

Relaxing the write-read program order is exploited by allowing reads to bypass pending writes in the write

buffer; in case of an address match with a pending write, the value of the latest such write is forwarded to

the read. To fully exploit the overlap of a read with previous writes, the secondary cache (refer to Figure 6.2)

must be lockup-free. In this way, even if the cache is currently handling a write miss, it can service a later

read (hit or miss) operation. This is a limited form of lockup-free behavior, however, since there can at most

be a single write miss and a single read miss outstanding at any given time (due to write-write ordering and

blocking read constraints, respectively).

The main effect of relaxing the write-read program ordering is to allow a read to complete without

waiting for previous outstanding writes. Figure 6.5 presents the results of the above relaxation. For each

application, we show the execution time for the write-read reodering optimization (labeled W-R) normalized

to the time for the BASE implementation described in the previous section (labeled B). The visible variation

in the instruction times for PTHOR, CHOLESKY, and WATER are due to the non-deterministic behavior
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Figure 6.5: Effect of relaxing write-read program ordering.

mentioned in the previous section.

The performance results in the figure show a significant benefit from this relaxation, ranging from

approximately 10% to 55% improvement in performance. This improvement arises mainly from a significant

reduction in the write stall time; the write stall time is virtually eliminated in all the applications except

OCEAN. Any leftover write stall time arises from the write buffer filling up which in turn stalls the processor

on its next write. Referring back to Table 6.4, the magnitude of gains is highly correlated to the frequency of

write misses in the application.

Figure 6.5 also depicts a number of secondary effects. One effect is that the read stall time increases

in some of the applications (e.g., BARNES). The primary reason for this is that approximately the same

number of read misses are executed in a shorter time compared to BASE, therefore increasing contention at

the memory system which can lead to increased latencies. Consequently, some of the savings due to hiding

write latencies are lost. On the other hand, we notice that synchronization times decrease in most applications

relative to BASE, which in turn magnifies the gains from hiding write latencies. Empirically, we have noticed

that fewer memory stalls often leads to fewer synchronization stalls. This effect may possibly be due to a

decrease in variation of times for different processors to arrive at the synchronization points.

We now return to the issue of the write buffer becoming full. The results show that, except for OCEAN,

the write buffer rarely fills up in any of the other applications. The reason for this is fairly intuitive: write

misses are well interleaved with read misses rather than being clustered, and the number of read misses usually

dominates. Since the processor has blocking reads, the stall duration for read misses provides sufficient time

for write misses to be retired from the write buffer, thus preventing it from getting full. OCEAN is the only

application where read misses are outnumbered by write misses (refer to Table 6.4). This makes the stall

duration for reads insufficient for fully covering the service time for the write buffer; increasing the size of

the write buffer does not help in this case. Overall, the write buffer depth of 16 in our simulated architecture

seems more than sufficient for handling the clustering of writes present in the applications.

In summary, relaxing the write-read program ordering enables an implementation to successfully hide
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virtually all of the write latency in most applications.

Relaxing the Write-Write Program Ordering

We now consider the effect of relaxing write-write program ordering in addition to the write-read program

ordering. This type of relaxation is allowed by a model like PSO. Furthermore, this relaxation characterizes

the behavior of models such as RCpc and RMO in architectures with blocking reads; even though these latter

models relax the program order from reads to later operations, this optimization cannot be exploited in the

context of blocking reads.

We begin by describing the implementation requirements for exploiting the pipelining of writes. There are

two key differences compared to the implementation described in the previous section. The first difference is

that the write buffer can retire a write without requiring ownership to be obtained for the write. Some writes,

such as writes following a STBAR in PSO or a competing write in RCpc, must still be ordered with respect

to previous writes. To achieve this, the write buffer delays the issue and retiring of such writes (when they

arrive at the head of the buffer) until all previous writes have completed. As discussed in the previous chapter,

the implementation may use counters to keep track of the outstanding writes. The second difference is with

respect to the secondary cache in terms of its lockup-free behavior. The cache must now allow multiple

outstanding writes; the blocking read restriction still limits the number of outstanding reads to one, however.

Our simulation limits each lockup-free cache to a maximum eight outstanding misses (i.e., eight write misses,

or one read miss and seven write misses).

The effect of pipelining writes is that writes can be retired at a much faster rate than is possible in the

implementation studied in the previous section. This can help performance in two ways. First, the chances

of the write buffer filling up and stalling the processor are smaller. Second, if there is a write synchronization

operation (e.g., unlock operation) behind several writes in the write buffer, then a remote processor trying to

acquire the synchronization (e.g., lock on the same variable) can observe the write sooner, thus reducing the

synchronization stall time. Even though the write synchronization operation is still delayed until all previous

writes complete, this delay is often reduced because the previous writes are serviced in an overlapped manner.

Therefore, synchronizations that are on the critical path may occur faster.

Figure 6.6 presents the results for the above relaxation. For each application, we show the execution time

for the BASE implementation (labeled B), the write-read reordering optimization from the previous section

(labeled W-R), and the write-write plus write-read reordering optimizations (labeled W-W). As before, the

execution times are normalized to that of BASE for each application. Compared to the W-R case, W-W

eliminates virtually any leftover write stall time. Even in OCEAN, the faster rate of service for writes

effectively eliminates stalls due to a full write buffer. In addition, the synchronization time is reduced in some

of the applications. Except for OCEAN, the performance of W-R and W-W are almost identical since W-R

already eliminates almost all of the write stall time for most of the applications. The fact that CHOLESKY

performs slightly worse under W-W is simply an artifact of the different interleavings in the two executions

causing the synchronization time to increase by a small amount.

In summary, relaxing the write-write program ordering helps eliminate virtually all of the write latency in

all applications, even applications such as OCEAN which exhibit more write misses than read misses. The

performance improvement relative to the BASE implementation ranges from approximately 10% to 80%,

with six out of eight applications gaining over 25%.
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Figure 6.6: Effect of relaxing write-write and write-read program ordering.
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Effect of Subtle Differences Among Models

In studying the effect of relaxing write-read program ordering, we have assumed implementations that allow

a read to always bypass previous writes that do not conflict with the read. Models such as TSO, PC, PSO, and

RCpc allow such an implementation. However, a model such as WO does not allow a read to be reordered

with respect to a previous write if either the write or the read are labeled as synchronization. The Alpha,

RMO, and PowerPC models also disallow such reordering if there is a fence in between the write and the read.

Finally, the RCsc, PL1, PL2, and PL3 models all exhibit cases where the write-read order must be preserved

when both operations are conservatively labeled (e.g., competing write followed by competing read in PL1).

Similarly, for the write-write program ordering, we have assumed that the only case when two writes to

different addresses must be ordered is if the later write in program order has a conservative label or is preceded

by a fence (depending on whether we are dealing with label-based or fence-based models). Except WO, all

models discussed in this thesis that relax write-write reordering allow such an implementation; WO does not

allow a synchronization write to be reordered with respect to either previous or future writes.

The above differences among models become significant only if the frequency of fences or conservative

labels is high. In the context of our applications, this translates to a high synchronization rate. However, as the

data in Table 6.4 shows, the frequency of synchronization operations is extremely low in most of applications

in our study. The only application that shows a relatively high rate of synchronization is PTHOR, with an

average of 1.2 lock (and 1.2 unlock) operations occurring every thousand instructions. Therefore, we do not

expect these secondary differences to affect the performance of most of the applications.

Instead of attempting to show performance results for all the models, we try to place a bound on the

performance effect of the types of differences discussed above. For this purpose, we have selected two

models, WO and RCpc, that lie on the extremes with respect to such differences. The performance of

other models (that allow similar optimizations) will lie somewhere in between these two bounds. The

implementation assumed for RCpc is the same as the W-W implementation studied in the previous section.

The WO implementation has a few extra constraints. In particular, the processor stalls for previous writes

to complete before issuing a synchronization read (e.g., lock). In addition, the write buffer does not retire

a synchronization write (e.g., unlock) until it completes. This latter constraint is less significant since it

influences performance only indirectly by potentially increasing the chances of a full write buffer.

Figure 6.7 presents the performance of the WO and RCpc models for the eight applications. The results

for RCpc are the same as those shown in Figure 6.6 for the W-W implementation. As before, the execution

times are normalized to that of BASE; however, we no longer show the breakdown for the BASE case. As

expected, the performance of the two models is identical for most applications. For PTHOR, the RCpc model

performs significantly better than WO due to the high synchronization rate in this application. Surprisingly,

the performance of WO for PTHOR is also worse than the performance of the W-R implementation (compare

with normalized execution times in Figure 6.5), which is allowed by less relaxed models such as TSO and PC

that do not allow write pipelining. Finally, WO performs slightly worse than RCpc for OCEAN and WATER.

To understand the performance of PTHOR better, we gathered data regarding the extra stalls introduced

by WO over RCpc. We found that there is frequently a write miss or unlock within 20 cycles before a lock

operation. Similarly, there is a read within a small number of cycles after an unlock. Therefore, at most 20

cycles of the latency of the write miss or unlock can be hidden and the rest of the latency is visible to the

processor. More detailed data show that virtually all unlocks caused a delay for the next read and 30% of the
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Figure 6.7: Effect of differences between the WO and RCpc models.

lock operations were delayed due to previous write misses. For the above reasons, WO fails to completely

eliminate the write stall time, with RCpc performing 14% faster.

The relative performance of WO as compared to models such as TSO, PC, and RCpc may be affected by

the fact that our simulated architecture does not cache locks, which increases the average latency for acquiring

or releasing locks. Caching locks is beneficial when a processor acquires and releases a lock several times

with no other processor accessing the lock in between. All models gain from a faster acquire if the lock is

found in the cache. As for the reduced latency of the release, TSO, PC, and RCpc do not benefit since they

already hide write and release latencies. WO can potentially benefit from this, however, which may reduce

the performance difference observed for PTHOR.

In summary, the subtle differences among models do not have a significant affect on performance for most

of the studied applications. The intuitive reason for this is that these subtle differences become significant

only if the application exhibits a high frequency of synchronization.

6.2.3 Effect of Varying Architectural Assumptions

This section studies the effect of less aggressive implementations, and also considers the effect of different

cache and line sizes.

Less Aggressive Implementations

In the previous section, we evaluated the performance of program reordering optimizations using an aggressive

implementation with lockup-free caches. The goal was to minimize the influence of the implementation in

the comparison of the optimizations. In this section, we explore less aggressive implementations and study

the impact on the relative performance of the write-read and write-write reordering optimizations.

We will consider four version of the implementation: (i) LFB (lockup-free with bypass), the aggressive

implementation studied in the previous section with a lockup-free secondary cache, a 16 word deep write
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buffer, and reads that bypass the write buffer; (ii) LFN (lockup-free with no bypass), which is the same as

LFB, except reads are not allowed to bypass the write buffer; (iii) BLB (blocking cache with bypass), which

is the same as LFB, except the secondary cache is blocking (i.e., not lockup-free); and (iv) BLN (blocking

cache with no bypass), which is the same as BLB, except that reads are not allowed to bypass the write

buffer. Recall that the lockup-free cache must only support a single outstanding read and a single outstanding

write at any given time when we consider the write-read reordering optimization. The write-write reordering

optimization requires the cache to allow multiple outstanding writes.

Effect on the Write-Read Reordering Optimization Figure 6.8 presents the performance results for the

various implementations of the write-read reordering optimization. The LFB results are the same as the

W-R results presented in Section 6.2.2. The execution time for each application is normalized to that of the

base implementation (labeled B) that preserves all program orders. For several of the applications, there is a

significant performance loss when we move from LFB to less aggressive implementations. This result shows

that supporting both a lockup-free cache and read bypassing is essential for realizing the full potential of the

write-read reordering optimization.

Comparing the LFB and LFN implementations, we see a large performance difference in several of the

applications. The only difference between the two implementations is that LFB allows reads to bypass the

write buffer. Because writes are serviced one at a time in both implementations, it is likely that there is one

or more writes in the write buffer when a processor tries to issue a read to the secondary cache. In OCEAN,

which has a very high write miss rate, almost 70% of the primary cache read misses run into at least one

or more writes in the write buffer. Therefore, disallowing the read to bypass these writes can substantially

increase the time required to service each read.

Comparing LFB and BLB, we also see a large performance difference for several applications. The only

difference between these two is that LFB’s secondary cache can have both a read miss and a write miss

outstanding, while BLB can have either a read miss or a write miss outstanding but not both. Thus, in BLB, a

read miss that follows closely behind a write miss that is already being serviced by the secondary cache will

have to wait until the write completes, which can be tens of cycles. The detailed results for LFB executing

OCEAN and PTHOR show that 73% and 22% (respectively) of the read misses are serviced while there was

a write miss outstanding.

Comparing BLN, BLB, and LFN, we see less of a difference in performance. For many applications, the

difference among these implementations is negligible. However, in OCEAN and PTHOR, BLB performs

somewhat better than the other two. The obvious advantage of allowing bypassing is that the read miss does

not have to wait for the write buffer to empty before being serviced. The results for OCEAN and PTHOR

suggest that read bypassing is more important than a lockup-free cache if only one is to be supported.

Finally, the reason BLN still performs better than the base implementation (labeled B) is as follows. In

B, both first-level cache read hits and read misses are delayed for the write buffer to empty out. In BLN,

read hits in the first-level cache are not delayed for pending writes and only first-level read misses suffer that

penalty. Therefore, BLN still exploits write-read reordering in a limited way.

In summary, implementations that exploit only write-read program reordering must support both a lockup-

free cache and reads that bypass the write buffer to get the full benefit from this relaxation.
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Figure 6.8: Write-read reordering with less aggressive implementations.
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Effect on the Write-Write Reordering Optimization Figure 6.9 presents the performance results for

implementations that exploit both the write-read and the write-write reordering optimizations. The LFB

results are the same as the W-W results presented in Section 6.2.2. Again, the execution time for each

application is normalized to that of the base implementation (labeled B) that preserves all program orders.

In contrast to the results in the previous section, we see that the performance of LFB and LFN are

comparable. Exploiting write-write reordering allows a much faster service rate for the write buffer, especially

when the implementation supports multiple outstanding writes with a lockup-free cache. This significantly

decreases the chance that a primary read miss encounters a write in the write buffer. For example, over 99.9%

of the primary read misses in OCEAN encounter an empty write buffer under LFN, while without write

pipelining (i.e., the LFN implementation of the previous section), over 70% of the read misses encountered

at least a single pending write. For this reason, disallowing reads to bypass the write buffer does not have a

significant effect on performance. Similarly, a more shallow write buffer would suffice.

The significant performance loss occurs when the implementation no longer supports a lockup-free cache

(i.e., going from LFB or LFN to BLN or BLB). As in the previous section, the lockup-free cache allows a

read miss to be serviced right away regardless of whether a previous write miss is currently being serviced by

the cache. Furthermore, as we mentioned above, write misses in the write buffer are retired at a much faster

rate since the cache allows multiple outstanding writes.

The comparison of BLN and BLB is similar to the previous section. For most applications, allowing read

bypassing with a blocking read does not provide a gain. However, read bypassing is useful in applications

such as OCEAN and PTHOR which have high write miss rates. It is also interesting to compare the results

for BLN or BLB with the results in the previous section. Even though the secondary cache is blocking,

write-write reordering can still be exploited by using eager read-exclusive replies. The write buffer retires a

writes as soon as the read-exclusive reply is back and potentially before the invalidations are acknowledged.

This allows a slightly faster service rate for the write buffer. Furthermore, the blocking cache is kept busy

for a shorter duration on each write miss since it also only waits for the read-exclusive reply and not the

invalidation acknowledgements. Therefore, the BLN and BLB implementation in Figure 6.9 perform better

than the BLN and BLB implementations in Figure 6.8 (which do not exploit write-write reordering).

In summary, implementations that exploit both write-read and write-write program reordering must support

a lockup-free cache to get the full benefit from these relaxations. Allowing reads to bypass the write buffer

does not provide much benefit once the design supports a lockup-free cache; the fast service rate for the writes

also alleviates the need for a deep write buffer.

Cache Size Variations

This section studies the effects of varying the cache size. Varying the cache size typically changes the absolute

number of misses, the ratio of read versus write misses, and the relative mixture of capacity/conflict versus

coherence (or communication) misses. The results will allow us to observe the behavior of the applications

and to evaluate the effectiveness of the reordering optimizations with respect to different cache sizes.

Figure 6.10 presents the results, with the performance of each application shown for three different sets

of cache sizes. The rightmost pair of bars correspond to the full-sized 64K/256K caches in DASH that were

used throughout the previous sections (same as results in Figure 6.6). The leftmost and middle pairs of bars

correspond to 2K/8K and 8K/64K caches, respectively. For each application, the results are normalized to the
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Figure 6.9: Write-read and write-write reordering with less aggressive implementations.
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performance of the base implementation running with the full-sized caches. In addition to showing results for

the base implementation with no reordering optimizations (labeled B), we also show results for the aggressive

implementation with write-read and write-write reordering (labeled W-W) that we studied in Figure 6.6. The

percent number beside each pair of bars shows the relative performance gain of W-W over B for each cache

size.

We begin by considering the effect of varying the cache size on the performance of each application

running on the base implementation. At one extreme, varying the cache size has virtually no impact on

the performance of MP3D. The reason for this is that MP3D sweeps through a large data set on each time

step (the particles for each processor are 200 Kbytes, and the space cell array is 288 Kbytes), and even the

64K/256K caches are not large enough to capture this data set. Real-life runs of MP3D would have even

larger data sets, and therefore, our results are indicative of runs of this application on a real machine with

even larger caches. At the other extreme, applications such as CHOLESKY, LU, LOCUS and BARNES,

exhibit significant increase in performance once key data structures fit in the cache. For LU, the knee of the

performance curve occurs between the 8K/64K and 64/256K cache sizes, corresponding to when the columns

owned by a processor (approximately 20 Kbytes) fit in the primary cache. For CHOLESKY, LOCUS, and

BARNES, the knee occurs between the 2K/8K and 8K/64K cache sizes. The other applications exhibit a

substantially less dramatic change in performance as we vary the cache size.

We next consider the effect on each component of the execution time. The absolute time to execute

instructions is effectively constant as we vary the cache size for each applications. The read and write

stall times typically decrease as we move to larger caches due to a corresponding reduction in misses. The

synchronization component varies a little bit more irregularly; for example, even though the read and write

stall components decrease in WATER as we go from the small to the medium sized caches, the increase in

synchronization time makes the performance of the medium sized cache worse.

The W-W implementation exhibits the same behavior we observed in Figure 6.6: it effectively eliminates

the write stall component of the execution time at all cache sizes. The relative gain from the reordering

optimizations is a bit harder to predict since it depends on the relative mix of read stall, write stall, and

synchronization times as we vary the cache size. The percentage gain over the base implementation is shown

in italics beside each pair of bars. For four of the applications (i.e., OCEAN, PTHOR, CHOLESKY, and

LOCUS), the relative gain from hiding the write latency actually increases as we move to larger caches

even though the absolute number of read and write misses actually decrease. As is especially evident in

CHOLESKY, increasing the cache size end up reducing the absolute read stall time much more substantially

compared to the write stall time. Therefore, the write stall component occupies a larger percentage of the

execution time as we increase the cache size. The relative gain is unaffected in MP3D since the application

is insensitive to the cache size variation. Finally, LU, BARNES, and WATER exhibit a slightly less regular

behavior. LU is the only application where there is a substantial reduction in the gains from hiding write

latency as we move from the small and medium sized caches to the larger cache; nevertheless, the gain at the

larger cache size (27%) is still significant.

In summary, the write-read and write-write reordering optimizations are successful in hiding virtually all

of the write latency irrespective of the cache size. One somewhat non-intuitive result is that the gain from

hiding write latency actually increases with the cache size in four of the applications; the larger caches are

more effective in reducing the read stall time, thus increasing the relative importance of the write stall time.
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Figure 6.10: Effect of varying the cache sizes.
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Figure 6.11: Effect of varying the cache line size.

Line Size Variations

Figure 6.11 presents results using two different cache line sizes for the four applications that benefited most

from the write-read and write-write reordering optimizations. The leftmost pair of bars for each application

are the same as the results in Figure 6.6 with a 16-byte line and 64K/256K caches. The rightmost pair uses a

32-byte line. The results for each application are normalized to the performance of the base implementation

with a 16-byte line. The percent number above each pair of bars shows the relative performance gain of W-W

over B for the given line size. Three of the applications benefit from the larger line size; the performance

of PTHOR is effectively unchanged, however. OCEAN exhibits an anomalous increase in the number of

executed instructions when we go to the larger line size; again, this is an artifact of a non-deterministic

behavior.

The W-W implementation eliminates the write stall time even at the larger line size. The relative gain

from this are slightly less at the larger line size for three of the applications. Nevertheless, the performance

gains still remain significant (26% to 75%).

6.2.4 Summary of Blocking Read Results

This section characterized the performance gains from exploiting the program reordering optimizations in

the context of architectures with blocking reads. Allowing reads to be overlapped with previous writes was

shown to be extremely effective in hiding the latency of write operations; the combination of blocking reads,

and the fact that most applications exhibit a larger number of read misses than write misses, allow writes to

be buffered without stalling the processors. Overlapping and pipelining of write operations was shown to

provide a significant benefit in only a single application (OCEAN) which exhibits a larger number of write

misses than read misses; the faster service rate for writes eliminated any stalls caused by a full write buffer.

Overall, the performance gain from the above two optimizations ranged from roughly 10% to 80%, with

six out of eight applications gaining over 25%. Lockup-free caches were shown to be essential for achieving

the full potential from the above program order relaxations; implementations that do not exploit the write-

write reordering optimization also benefit from deeper write buffers and allowing reads to bypass writes in
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the write buffer.

The blocking read constraint disallows the hardware from exploiting the reordering of reads with respect

to later operations, which is enabled by the more aggressive relaxed models (i.e., WO, RCsc, RCpc, Alpha,

RMO, PowerPC, and the three PL models). For this reason, relaxed models cannot hide the read latency in

architectures with blocking reads. The following section considers the use of other latency hiding techniques

to address the read latency in such architectures. We next study the effect of supporting non-blocking reads

in Section 6.4.

6.3 Interaction with Other Latency Hiding Techniques

This section studies two other latency hiding techniques in the context of architectures with blocking reads.

The two techniques we consider are software-controlled non-binding prefetching and hardware support for

multiple contexts. We will show that exploiting the optimizations enabled by relaxed models in combination

with either of the above techniques leads to a higher overall performance. The study presented in this section

builds on our previous work in this area [GHG+91].

6.3.1 Interaction with Prefetching

This section studies the effect software-controlled non-binding prefetching. We briefly describe the imple-

mentation assumptions for prefetching before presenting the performance results.

In our simulation model, a prefetch instruction is similar to a write in that it does not block the processor.

The primary cache is checked in the cycle the prefetch instruction is executed. If the line is already in the

cache, the prefetch is discarded. Otherwise, the prefetch is sent to a prefetch issue buffer which keeps track

of outstanding prefetches. The reason for having a separate prefetch buffer is to avoid delaying prefetch

requests unnecessarily behind writes in the write buffer. We model a prefetch issue buffer that is 16 entries

deep. The secondary cache is also checked before the prefetch goes to memory. When the prefetch response

returns, it is placed in both the secondary and primary caches. Filling the primary cache is assumed to

require 4 cycles, during which the processor is not allowed to execute any loads or stores. If the processor

references a location for which a prefetch has already been issued, the latter reference is combined with the

prefetch request and the reference completes as soon as the prefetch result returns. We assume support for

both read and read-exclusive prefetches. A read prefetch brings data into the cache in a shared mode, while a

read-exclusive prefetch acquires an exclusive copy, enabling a later write to that location to complete quickly.

The prefetch instructions for five out of the eight applications (i.e., OCEAN, MP3D, CHOLESKY, LU,

LOCUS) were automatically generated using the compiler developed by Mowry [Mow94]. While this

compiler generates efficient prefetch instructions for the above applications, it fails to do so for the other three

applications in our study. For PTHOR and BARNES, we use a version of the application, also provided by

Mowry [Mow94], with hand-inserted prefetch instructions. We did not have access to a version of WATER

with hand-inserted prefetching, however.

The results of the prefetching experiments are shown in Figure 6.12. For each application, we show

the result for the base implementation (labeled B), for prefetching (labeled PF), and for combination of

prefetching with the write-read and write-write program reordering optimizations (labeled RO, for reordering

optimizations). The percent number above each RO bar represents the performance gain from exploiting the
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Figure 6.12: Effect of prefetching and relaxing program order.

program reordering optimizations relative to the prefetching case alone (i.e., as we go from PF to RO). The

results for the program reordering optimizations without prefetching can be found in Figure 6.6 (compare

with the W-W case). The instruction time component of the execution time includes the extra instructions

used for prefetching. Furthermore, there is a new component in the execution time breakdown, shown as the

prefetch memory overhead time. This time corresponds to two situations: (1) when the processor attempts to

issue a prefetch but the prefetch issue buffer is full, and (2) when the processor attempts to execute a load or

store during the time the cache is busy with a prefetch fill.

The results for prefetching (PF bars) show significant gain in many of the applications. Read and write

stall times are reduced due to the use of read and read-exclusive prefetch instructions. The overhead for

prefetch instructions clearly shows through in all cases as an increase in the instruction execution time; this

negates some of the performance gains from prefetching. We also see that the prefetch memory overhead

component is negligible in all applications. At one extreme, the performance improvement over base is 127%

in OCEAN. MP3D and LU also have substantial gains from prefetching. However, the gains for BARNES,

LOCUS, CHOLESKY, and PTHOR are much more modest, with BARNES gaining a mere 2%.

Referring back to results in Figure 6.6 for the W-W implementation, we see that the write-read and

write-write reordering optimizations actually provide a higher performance gain than prefetching for four

out of the seven applications (i.e., PTHOR, CHOLESKY, LOCUS, and BARNES). These are the same four

applications mentioned above where the gains from prefetching are modest, partly because prefetching fails

to significantly reduce the write stall times.

We now consider the results for combining prefetching with the reordering optimizations (labeled as RO).

We see that the performance is enhanced for all applications as a result of the combination. Furthermore,

comparing the results with those of Figure 6.6 for the W-W implementation, we see that the combination

of the techniques performs better or at least as well as (for CHOLESKY and BARNES) the reordering

optimizations alone. The main effect of the reordering optimizations is to eliminate virtually any write stall

time that prefetching could not eliminate. For four of the applications (PTHOR, CHOLESKY, LOCUS,

and BARNES), the incremental gain from exploiting the reordering optimizations beyond prefetching is

larger than the gain prefetching provides over the base implementation; again, these are the applications

where prefetching is less effective. The percent number shown in italics above each RO bar shows the
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performance gain from the reordering optimization over the performance of the prefetching case. Combining

the two techniques provides an extra 35% performance increase in PTHOR, and an extra 15-20% performance

increase for four other applications.

In summary, prefetching and reordering optimizations enabled by relaxed models are complementary

techniques; the reordering optimizations eliminate write latency and prefetching reduces the remaining read

latency.

6.3.2 Interaction with Multiple Contexts

This section evaluates the use of processors with support for multiple contexts. Each processor has several

threads assigned to it, which are kept as hardware contexts. When the context that is currently running

encounters a long-latency operation, it is switched out and another context starts executing. In this manner,

multiple contexts can help tolerate latency by overlapping the latency of operations in one context with the

computation and operations of other concurrent contexts.

The performance gain to be expected from multiple context processors depends on several factors. The

first factor is the number of contexts. More contexts increase the chance that a processor will find a ready-to-

run context on a switch, but the number of contexts is constrained by available parallelism in the application

and the hardware cost to support the contexts. However, a handful of hardware contexts may be sufficient

to hide most of the latency if the interval between long-latency operations such as cache misses is large.

The second factor is the context switch overhead. A shorter context switch time leads to a more efficient

overlap of contexts, but requires more complex hardware support. The third factor relates to application

behavior; applications with clustered misses make it more difficult to overlap the latency of one context with

the operations in another. Finally, multiple contexts on the same processor share the same cache and can

therefore interfere with each other either constructively or destructively.

For our simulations, we use processors with four contexts. We do not consider more contexts per

processor because 16 4-context processors require 64 parallel threads and some of our applications do not

achieve good speedup with that many threads. In fact, for three of the applications (OCEAN, PTHOR, and

CHOLESKY), we show results with only 2 contexts per processor (which translates to 32 threads) since the

overall performance was better than the 4-context case. We assume an aggressive context switch overhead of

4 cycles, which corresponds to flushing/loading a short RISC pipeline when switching to the new instruction

stream.

Figure 6.13 presents the results with multiple contexts. For each application, we show the result for

the base implementation (labeled B), for multiple contexts (labeled MC; the number represents contexts per

processor), and for the combination of multiple contexts with the program reordering optimizations (labeled

RO). The percent number above each RO bar represents the performance gain from exploiting the program

reordering optimizations relative to the multiple contexts case alone (i.e., as we go from MC to RO). The

results for the program reordering optimizations without multiple contexts are in Figure 6.6 (the W-W case).

Each bar in the graphs is broken down into the following components: time spent executing instructions (this

includes instructions used to spin on empty task queues; our previous experiments included the time for these

instructions under the synchronization component), time spent switching between contexts, the time when all

contexts are idle waiting for their operations to complete (all idle), and the time when the current context is

idle but cannot be switched out (no switch). Most of the latter idle time is due to the fact that the processor is
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locked out of the primary cache while fill operations of other contexts complete.

The results show that multiple contexts provide significant gain for most of the applications. Especially

for MP3D and LOCUS (and even for BARNES), multiple contexts eliminate almost all overhead components,

making the time to execute instructions the main component of the execution time. The two exceptions are

PTHOR and CHOLESKY. These two applications do not exhibit sufficient parallelism at even 32 threads, and

therefore the threads spend too much time spinning waiting for work which shows through as an increase in the

instruction component of the execution time. The reason WATER exhibits small gains is that the application

already runs efficiently without multiple contexts. The aggressive context switch time assumption makes the

switching component of the execution time negligible in all applications. Similarly, the “no-switch” idle time

is negligible in most cases.

Referring back to results in Figure 6.6 for the W-W implementation, we see that the reordering opti-

mizations actually provide a higher performance gain than multiple contexts for four of these applications:

OCEAN, PTHOR, CHOLESKY, and WATER. This difference is largest for PTHOR and CHOLESKY, where

multiple contexts fail to hide much of the latency.

We now consider the combination of multiple contexts with the reordering optimizations (labeled as RO).

With the reordering optimizations, write misses are no longer considered long latency operations from the

processor’s perspective since writes are simply put into the write buffer. Therefore, the processor no longer

switches on write misses. The effect of this is to increase the distance between long latency operations, thus

requiring fewer contexts to eliminate most of the remaining read miss latency. The results in Figure 6.13 show

the performance is enhanced for all applications as a result of this combination. The percent number shown in

italics above each RO bar shows the performance gain from the reordering optimization over the performance

of the multiple contexts case. Combining the two techniques provides an extra 37% performance increase

in PTHOR, and a higher than 25% increase for three other applications. Finally, comparing the results with

those of Figure 6.6 for the W-W implementation, we see that the combination of the techniques also performs

better than the reordering optimizations alone.

In summary, multiple contexts and reordering optimizations enabled by relaxed models are also com-

plementary techniques; the latter optimizations eliminate writes as long latency operations, allowing the

remaining read latency to be hidden with fewer contexts.

6.3.3 Summary of Other Latency Hiding Techniques

Since the techniques of relaxing program orders, prefetching, and using multiple contexts are alternative ways

for hiding latency, it may seem that the use of one technique eliminates the need for the others. However, the

results in this section show that there is synergy in exploiting program reordering optimizations in combination

with either prefetching or multiple contexts. The reason for this is that prefetching and multiple contexts

are sensitive to application behavior and fail to universally reduce or eliminate the write latency for every

application. At the same time, allowing writes to overlap with following read and write operations fully

eliminates the write latency in virtually any application. Supporting these techniques together provides

synergy at the implementation level as well; this was discussed in Section 5.8 of the previous chapter.
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Figure 6.13: Effect of multiple contexts and relaxing program order.
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6.4 Architectures with Non-Blocking Reads

The previous sections showed that the latency of write operations can be hidden by buffering writes and

allowing reads to bypass previous pending writes. Hiding the latency of reads by exploiting the overlap

allowed by relaxed models is inherently more difficult, however, simply because the computation following

the read typically depends on the return value. To hide this latency, the processor needs to find other

independent computation and memory accesses to process while awaiting the return value for the read.

Achieving this through hardware implies an aggressive processor architecture with a decoupled decode and

execution unit and capability for dynamic scheduling, branch prediction, and speculative execution. Given

expected memory latencies in the range of tens to hundreds of processor cycles, there are serious concerns as

to whether such a processor architecture allows for effective overlap of read latencies.

This section explores the use of dynamically scheduled processors to aggressively exploit the overlap

of a read with operations that follow it in program order. Our results show that a substantial fraction of

the read latency can be hidden by exploiting this technique. We describe the framework for our simulation

experiments in Section 6.4.1. The performance results for overlapping reads with future operations is

presented in Section 6.4.2.

The results presented in this section are directly derived from a previous study that has already been

published [GGH92].

6.4.1 Experimental Framework

This section presents the different components used in our simulation environment. The first part discusses

architectural details of the processor. The second part explains the coupling of the multiprocessor simulation

with the processor simulator. Finally, we present the benchmark applications used in our study.

Simulated Processor Architecture

The simulated processor environment is based on an architecture proposed by Johnson [Joh91]. Only a brief

description is provided here; the interested reader is referred to [Joh91] for more detail.

Figure 6.14 shows the overall structure of the processor. The processor consists of a number of functional

units with associated reservation stations [Tom67]. Although not shown in the figure, there are also four

floating point units for performing floating point add, multiply, divide, and conversion.2 The reservation

stations are instruction buffers that decouple instruction decoding from instruction execution and allow for

dynamic scheduling of instructions. Decoded instructions and operands are placed into the appropriate

reservation station by the decoder. The reservation station can issue an instruction as soon as the instruction

has its data dependences satisfied and the functional unit is free.

The reorder buffer [SP85] shown in Figure 6.14 is responsible for several functions in this architecture.

The first function is to eliminate storage conflicts through register renaming [Kel75]. Each instruction that is

decoded is dynamically allocated a location in the reorder buffer and a tag is associated with its result register.

The tag is updated to the actual result value once the instruction completes. Correct execution is achieved by

providing the value or tag in the reorder buffer (instead of the value in the register file) to later instructions

2While Johnson assumes the floating point units reside on a coprocessor, we assume they are on the same chip as the integer units.
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Figure 6.14: Overall structure of Johnson’s dynamically scheduled processor.

that attempt to read this register. Unresolved operand tags in the reservation stations are updated when the

corresponding instruction completes.

The second function for the reorder buffer is to provide the rollback mechanism necessary for supporting

speculative execution past unresolved branches. The architecture uses a branch target buffer (BTB) [LS84]

to provide dynamic branch prediction. The rollback mechanism for mispredicted branches works as follows.

Decoded instructions enter the reorder buffer in program order. When an instruction at the head of the

buffer completes, the entry belonging to it is deallocated and the result value is written to the register file.

Since instructions enter the reorder buffer in program order and are retired in the same order, updates to the

register file take place in program order. Therefore, instructions that depend on an unresolved branch are not

committed to the register file until the branch completes. Similarly, memory stores are also held back (the

reorder buffer controls the retiring of stores from the store buffer).3 If a branch is mispredicted, all instructions

past the branch are invalidated from the reorder buffer, the reservation stations, and the appropriate buffers,

and decoding and execution is started from the correct branch target. The mechanism provided for handling

mispredicted branches is also used to provide precise interrupts. This allows the processor to restart quickly

without the need to save and restore complex state information.

For our study, we have assumed a single cycle latency for all functional units except the load/store unit.

The latency for loads and stores is assumed to be one cycle in case of a cache hit. The scheduling of

instructions within each functional unit is allowed to be out-of-order. This pertains to the load and store unit

also as long as the memory consistency constraints allow it. Furthermore, load operations can bypass the

store buffer and dependence checking is done on the store buffer to assure a correct return value for the load.

Regarding the caches, we simulate a lockup-free data cache [Kro81] that allows for multiple outstanding

requests, including multiple reads. We ran our simulations assuming a single cache port, thus limiting the

3A store at the head of the reorder buffer is retired as soon as its address translation completes and the consistency constraints allow
its issue. The store buffer is free to issue the store after this point.
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number of loads and stores executed to at most one per cycle. The branch target buffer size was set to 2048

entries with a 4-way set-associative organization. For simplicity, all instructions are assumed to hit in the

instruction cache.

The next section describes how our processor simulator is coupled to the multiprocessor simulation.

Multiprocessor Simulation

Our multiprocessor simulation is done using Tango Lite, the same reference generator used to do our studies

for blocking reads. The simulation assumes a simple multiprocessor architecture. The architecture consists of

16 processors, each with a 64 Kbyte lockup-free data cache that is kept coherent using an invalidation-based

scheme. The caches are direct mapped, write-back caches with a line size of 16 bytes. The simulated

processors are simple in-order issue processors with blocking reads. Writes are placed in a write buffer

and are pipelined, and reads are allowed to bypass the write buffer. The latency of memory is assumed to

be 1 cycle for cache hits and a fixed number of cycles for cache misses. In our experiments, we use a 50

cycle penalty for cache misses (results for a 100 cycle penalty are provided in a technical report [GGH93a]).

Queueing and contention effects in the interconnection network are not modeled.

The above simulation generates a dynamic instruction trace for each of the simulated processes. The

generated trace is augmented with other dynamic information including the effective address for load and

store instructions and the effective latency for each memory and synchronization operation.

To simulate the effects of dynamic scheduling, we choose the dynamic instruction trace for one of

the processes from the multiprocessor simulation and feed it through our processor simulator (described

in the previous section). Since the pertinent information about the multiprocessor cache simulation and the

synchronization behavior is already contained in the trace, the processor simulator simply uses this information

to determine the latency of memory accesses and synchronization.

The use of trace-driven simulation in our study may introduce some inaccuracies in our results [KEL91].

This is because the trace is generated assuming a different processor architecture than the processor we

eventually simulate. Thus, although the exact global interleaving of shared accesses may be different given

the two processor architectures, we use the same ordering for both. The extent to which this affects results

depends both on the application behavior and on the characteristics being studied. For our study, the program

characteristics that determine how well dynamically scheduled processors hide memory latency are the cache

miss behavior, the data dependence characteristics between memory accesses and computation, and the

predictability of branches. We do not expect these characteristics to vary greatly due to slightly different

global interleaving of the accesses.

One characteristic that can vary greatly due to different interleavings is the synchronization latency and

load balance in an execution; this issue was also witnessed in the results presented for blocking reads. Thus,

synchronization times need to be treated cautiously in trace-driven simulations. In this study, we mainly focus

on the fraction of read latency that can be hidden and the overhead of synchronization does not fundamentally

affect the ability of dynamic scheduling techniques in hiding this latency. Synchronization times are only

reported to provide an estimate for the fraction of execution time that corresponds to memory latency. Overall,

we believe that our results are only minimally affected by the use of traces in our simulations.
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Table 6.5: Statistics on branch behavior.

Program Percentage Avg. Distance Percentage Avg. Distance
of bet. Branches Correctly bet.

Instructions (in instructions) Predicted Mispredictions
(in instructions)

OCEAN 6.0% 16.6 97.9% 778.9
PTHOR 15.3% 6.5 81.2% 34.7
MP3D 6.1% 16.4 90.8% 176.9

LU 8.0% 12.5 98.0% 618.1
LOCUS 15.6% 6.4 92.1% 81.6

Benchmark Applications

We present results for five out of the eight applications that were studied in the previous section: OCEAN,

PTHOR, MP3D, LU, and LOCUS. These are the applications that provide a higher potential for gain from

reducing the read latencies. The descriptions for these applications can be found in Section 6.2.1. There are a

few differences compared to the blocking read study. For two of the above applications, we use inputs different

from those used in the blocking read study. For MP3D, we ran 10,000 particles in a 64x8x8 space array for 5

time steps. For LOCUS, we used the Primary1.grin input, which contains 1266 wires and a 481-by-18

cost array. Furthermore, because we are simulating the detailed data dependences among instructions, both

shared and non-shared data are simulated, and all libraries (e.g., math libraries) are annotated to generate the

appropriate instruction and data references.

Because branch behavior is an important factor in determining the performance of dynamically scheduled

processors, Table 6.5 provides some statistics on branches for the five applications. This data is from the

Tango Lite multiprocessor simulation assuming 16 processors and a memory latency of 50 cycles.

6.4.2 Experimental Results

This section studies the effect of relaxing program orders in conjunction with dynamically scheduled pro-

cessors. We present simulation results comparing statically and dynamically scheduled processors. The

degree to which dynamic scheduling succeeds in hiding the latency of reads is determined by the size of the

lookahead buffer from which the processor chooses instructions to execute, the predictability of branches,

and finally the data dependence characteristics of the program, which determine the degree of independence

among instructions. Our experimental results will shed more light on the effect of each of these factors on

performance. The results assume a 16 processor system with single instruction issue processors and a uniform

50 cycle cache miss latency. We briefly consider the effect of higher latency and using multiple instruction

issue capability in the latter part of this section.

While the results presented in this section show similar trends to the results in the blocking read study

(e.g., for the base implementation with no reordering optimization or for the statically scheduled processor),

these two sets of results are not directly comparable. There are several reasons for this. The most important

reason is that we are simulating a much simpler memory system architecture in this section; e.g., there is

only a single level 64 Kbyte cache, there is a single latency of 50 cycles for all cache misses, and contention

at the memory system or network is not modeled. Another reason is that we are simulating both shared
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and non-shared data, in addition to all library references; furthermore, two of the applications use a slightly

different input set.

Figure 6.15 shows the simulation results comparing statically and dynamically scheduled processors. The

left-most bar in each graph shows the breakdown of the execution time for the base implementation (labeled

B) which completes each operation before initiating the next one (i.e., no overlap in execution of instructions

and memory operations). The order in which we show the components of execution time is slightly different

from the previous sections. The bottom section still represents the time to execute the instructions. The

section above it now represents the time that the processor is stalled waiting for synchronization (e.g., locks,

barriers). The two sections on top show the read and write stall times. The penalty for cache misses is

assumed to be 50 cycles in these simulations.

The rest of the bars in each graph correspond to different implementations of a relaxed memory model

such as RCpc that enables the reordering of read and write operations with respect to one another. The first

bar corresponds to a simple statically scheduled processor with blocking reads (SSBR); this implementation

cannot exploit the reordering of reads with following operations. The second bar is a statically scheduled

processor with non-blocking reads (SS). This processor is allowed to execute past read misses and the stall

is delayed up to the first use of the return value. We assume a 16 word deep write buffer for the above

processors. The SS processor also has a 16 word deep read buffer. Finally, we evaluate the dynamically

scheduled processor (DS) described in Section 6.4.1. To allow us to better isolate the effects on hiding memory

latency, we have limited the decode and issue rate for the DS processor to a maximum of 1 instruction per

cycle. Another important assumption in this study is that the processor cycle time is the same for SSBR,

SS, and DS (i.e., dynamic scheduling does not increase the cycle time). The size of the reorder buffer (or

lookahead window) used is denoted at the bottom of each column. This size corresponds to the maximum

number of instructions that can reside in the window at any given time. The window size is varied from 16

to 256 instructions. All simulations assume an aggressive memory system with lockup-free caches, write

buffers that allow reads to bypass writes, and the ability to issue one access per cycle from each node. Of

course, the extent to which these features are exploited depends the processor architecture.

Some general observations that can be made from the simulation results are: (i) the statically scheduled

processor with blocking reads (SSBR) successfully hides all of the write latency, but fails to hide any read

latency, (ii) the statically scheduled processor with nonblocking reads also fails to hide much of the read

latency, and (iii) dynamic scheduling can substantially reduce the read latency given processors with large

window sizes. The first section below briefly describes the results for static scheduling. The next two sections

analyze the results for dynamic scheduling in greater detail.

Static Scheduling Results

We briefly discuss the results for the two statically scheduled processors (SSBR and SS) below. We first

concentrate on the results for the SSBR processor. The effect of relaxing the write-read and write-write

program order on statically scheduled processors was studied in the previous section. The results here show

the same trend: these two optimizations hide the write latency completely in all applications.

We now consider the results for the SS processor. The difference between SS and SSBR is that SS does

not block on read accesses and delays this stall until the first use of the return value. Therefore, there is the

potential for hiding the latency of reads in the region between the read access and its first use. However,
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Figure 6.15: Results for dynamically scheduled processors (memory latency of 50 cycles).
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as the results indicate, the improvement over SSBR is minimal. This is mainly because the object code has

not been rescheduled to exploit non-blocking reads (by moving the load access further away from the use of

the return value). Thus, the processor is effectively stalled a short distance away from a read miss since the

use of the return value is normally within a few instructions away. It is still interesting to study the effect of

compiler rescheduling to exploit non-blocking reads as an alternative to using dynamic scheduling techniques

in hardware.

Dynamic Scheduling Results

We begin by building some intuition for the different factors that affect the performance of dynamically

scheduled processors, specifically in their ability to hide read latencies. We then analyze the results based on

this intuition. The next section presents more simulation results to further isolate the factors that influence

performance.

Three factors determine the effectiveness of dynamic scheduling in hiding memory latency. Two of these

factors relate to the characteristics of the application: (i) data dependence behavior and (ii) control (or branch)

behavior. The third factor is the size of the lookahead window (or reorder buffer) provided by the architecture.

The data dependence characteristics of an application is the most fundamental factor influencing perfor-

mance. Dynamic scheduling depends on the presence of independent accesses and computation for hiding

memory latency. For the applications we are considering, independent operations are present at different

granularities. Typically, the applications exploit parallelism at the task or loop iteration level and each pro-

cessor is assigned a set of tasks or loop iterations. One source of independent operations is within the task

or loop iteration boundary. Another source of independence is operations from two different tasks or loop

iterations that have been assigned to the same processor. The availability of such independent operations

and the distance between them determines the feasibility of a hardware technique in finding and overlapping

them.

The behavior of branches in an application is also a key factor that affects performance. The frequency

of branches and their predictability determine whether it is feasible for hardware to find distant independent

operations.

Finally, the size of the lookahead window determines the maximum distance between independent opera-

tions that can be overlapped by the hardware. To overlap two independent accesses, the size of the lookahead

window needs to be at least as large as the distance between the two accesses. Furthermore, to fully overlap the

latency of memory accesses with computation requires enough independent instructions to keep the processor

busy for the duration of the latency. This requires the window size to be at least as large as the latency of

memory. For example, with the latency of 50 cycles, we require a window size of at least 50 instructions.

Smaller window sizes overlap only a fraction of this latency (proportional to the size).

We now consider the bound on the gain achievable by dynamic scheduling given that read and write

accesses can be overlapped between synchronization points. Since we limit issue to a maximum of one

instruction per cycle, the time due to the computation (busy/useful time) cannot be diminished. In addition,

acquire synchronization overhead arising from load imbalance or contention for synchronization variables

is also impossible to hide with the techniques we are considering. On the other hand, the fraction of the

synchronization overhead arising from the memory latency to access synchronization variables can be hidden

in the same way that normal memory latency is hidden. For example, the latency to access a free lock can be
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hidden by overlapping this time with the computation prior to it. Relating this to the applications, our detailed

simulation results show that virtually all of the acquire overhead in MP3D, LU, LOCUS, and OCEAN arises

from load imbalance and contention. Therefore, the best dynamic scheduling can do for these applications is

to fully hide the read and write (including release) latency. In PTHOR, however, approximately 30% of the

acquire overhead is due to latency for accessing free locks. Therefore, for PTHOR, it is theoretically possible

to hide a fraction of the acquire overhead as well.

Referring to the results for DS in Figure 6.15, we notice that there is a gradual increase in performance

as we move from window size of 16 to window size of 256, with the performance increasing more rapidly

for the small window sizes and leveling off at the larger windows. For LU and OCEAN, dynamic scheduling

hides virtually all memory latency at window size of 64. For LOCUS, almost all latency, except for 16% of

the read latency, is hidden at the larger window sizes. For MP3D, 24% of the read latency remains even at

the larger window sizes. Similarly, PTHOR has 31% of its read latency remaining.

Data dependence and small window size effects are most likely the two factors that influence performance

at the small window sizes (16 and 32). Based on the average distance between mispredicted branches shown

in Table 6.5, branch behavior is not expected to be a determining factor for the small windows, except possibly

in PTHOR. The factors shift at the larger window sizes. In LU and OCEAN, performance levels off at larger

windows simply because the memory latency is virtually all hidden at the smaller window sizes. On the other

hand, the leveling off of performance in MP3D, PTHOR, and LOCUS is most likely due to the fact that the

branch prediction falls short of effectively using such large window sizes.

Detailed Analysis of Dynamic Scheduling

This section provides simulation results to further isolate the effects of different factors influencing the

performance of dynamically scheduled processors. Figure 6.16 presents these results for all five applications.

The left-most column in each graph repeats the data presented in Figure 6.15 for the BASE processor. The

next five columns in each graph provide performance results for the different window sizes assuming perfect

branch prediction. The last five columns in each graph present the results given for the case where branch

prediction is perfect and data dependences are being ignored.4

To isolate the effect of branches on performance, we can compare the performance for each window size

with and without perfect branch prediction (left side of Figure 6.16 and right side of Figure 6.15). For LU and

OCEAN, the branch prediction is already so good that we see virtually no gain from perfect branch prediction

even at the largest window size of 256. For LOCUS, perfect branch prediction performs slightly better at

the large window sizes of 128 and 256. For MP3D, noticeable gain from perfect branch prediction starts at

window size of 64. PTHOR, which has the worst branch behavior of all the applications, seems to noticeably

gain from perfect branch prediction even at the small window sizes of 16 and 32. Thus, except for PTHOR,

the branch behavior of the applications does not seem to affect the performance until we reach the 128 and

256 window sizes.

To isolate the effect of data dependences, we can look at the improvement in performance at each window

size when we move from perfect branch prediction to additionally ignoring data dependences (left and right

side in Figure 6.16). For LU and OCEAN, there is little or no gain from ignoring data dependences, pointing

4Dependences arising from consistency constraints, for example from an acquire synchronization to the following access, are still
respected.
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Figure 6.16: Effect of perfect branch prediction and ignoring data dependences for dynamic scheduling
results.
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to the fact that data dependences do not hinder performance in these two applications (this is as expected since

it was possible to hide all memory latency for these two applications). For MP3D, PTHOR, and LOCUS, we

observe that ignoring data dependences increases the performance more at the small window sizes. In fact,

at window size of 256, the performance with and without ignoring data dependences is virtually the same

in these three applications. This points to the fact that there are some data dependences at short distances

(within a task or loop iteration), however, by looking ahead at substantially larger distances, it is possible to

find more independent operations (across tasks or loop iterations). Although this is an interesting observation,

from a practical point of view, it is not possible to exploit such independence at large distances with hardware

techniques alone simply because the branch prediction falls short of providing such lookahead distances.

Our detailed simulation results also confirm the presence of data dependences at short distances. One

such result measures the delay of each read miss from the time the instruction is decoded and placed in the

reorder buffer to the time the read is issued to memory. Below, we consider this measure for the window size

of 64 given perfect branch prediction. In LU and OCEAN, we find that read misses are rarely delayed more

than 10 cycles. This clearly points to the fact that read misses are independent from one another in these

two applications. Results for MP3D show that about 15% of the read misses are delayed over 40 cycles.

Similarly, in LOCUS, more than 20% of read misses are delayed over 40 cycles. This indicates the presence

of read misses that are data dependent on one another, with one read miss affecting the address of the next read

miss. Data dependences have the most serious effect in PTHOR. For PTHOR, around 50% of the read misses

are delayed over 50 cycles. This is indicative of dependence chains formed by multiple misses. One effect

of such dependence chains is that there are fewer independent accesses to overlap. Furthermore, it is more

difficult to fully hide the latency of read misses in such a chain by overlap with independent computation,

simply because the misses in the chain behave like a single read miss with double or triple the effective

memory latency. This is the main reason why it takes window sizes of up to 256 to fully hide the latency of

read misses in MP3D and PTHOR even with perfect branch prediction.

Finally, we can isolate the effect of window size by further analyzing the results for when both branch

prediction is perfect and data dependences are ignored (right hand side in Figure 6.16). In this case, the

only remaining factor that can affect performance is the window size. Looking at the results, we notice that

window sizes of 16 and 32 do not fully hide the latency of reads. As explained in the previous section, the

reasons for this are (i) small window sizes do not find independent operations that are farther apart than the

window size, and (ii) to fully overlap latency with computation, the window size (in instructions) needs to be

at least as large as the latency of access (in cycles). Relating to (i), our detailed simulation data for LU show

that 90% of the read misses are a distance of 20-30 instructions apart. Thus, the window size of 16 performs

relatively poorly compared to other applications. Similarly, in OCEAN, about 55% of the read misses are

16 to 20 instructions apart. Again, the reason for the poor performance at window size of 16 is that the

distance between independent accesses exceeds the window size. Regarding reason (ii), we observe from the

results that once we reach a window size of 64 (which exceeds the memory latency), the latency can be fully

overlapped with computation given the assumed lack of data dependences.5

In summary, data dependence and branch predictability do not hinder performance in LU and OCEAN.

5Given perfect branch prediction and the assumed lack of dependence, the execution times for MP3D, LU, LOCUS, and OCEAN
asymptotically approach the time for the computation plus the acquire overhead. For PTHOR, however, some of the acquire overhead is
also being hidden. As explained in the previous section, the reason for this is that about 30% of the acquire overhead in PTHOR arises
from latency for accessing free locks.
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The performance of LOCUS and MP3D are primarily affected by data dependence at small window sizes

and by branch predictability at large window sizes. Finally, PTHOR is affected by both data dependence and

branch behavior at all window sizes.

Effect of Higher Latency and Multiple Instruction Issue

We briefly discuss the effect of higher memory latency and multiple instruction issue in this section. The

simulation results for these experiments are presented in an earlier technical report [GGH93a].

We repeated the simulations assuming a higher memory latency of 100 cycles. The trends were similar to

what we observed for the 50 cycle memory latency. The most obvious difference was that the performance

levels off at the window size of 128 instead of 64. This arises from the fact that the window size needs to

exceed the latency in order to fully overlap memory latency with computation. Another observation was that

the relative gain in performance from hiding memory latency is consistently larger for the higher latency of

100 cycles.

We also did a preliminary study of the effect of multiple instruction issue. As with the higher latency

results, the performance still increases when we moved from window size of 64 to 128, while without multiple

issue, the performance virtually levels off at window size of 64 (see Figure 6.15). This arises from the fact

that multiple issue speeds up the computation, while memory latency remains at 50 cycles. Thus, a larger

window size is needed to fully overlap the memory latency with computation time.

6.4.3 Discussion of Non-Blocking Read Results

The goal of this section has been to evaluate the effect of overlapping reads with later operations. We used a

dynamically scheduled processor to exploit this type of overlap.

The choice of the application domain clearly influences our results. The scientific and engineering parallel

programs used in this study typically exhibit sufficient instruction-level parallelism that can be exploited to

hide memory latency. Furthermore, the branch predictability in these applications is usually better than for

most uniprocessor programs.

Our architectural assumptions also influence the results. Our results are somewhat optimistic since we

assume a high bandwidth memory system. In addition, we do not model the effect of contention in the

network or at memory modules. However, the results are pessimistic in that we did not consider the effect

of compiler help to schedule code to allow the processor to use the lookahead window more effectively. In

addition, the FIFO retirement of instructions from the lookahead window (to provide precise interrupts) is a

conservative way of using the window since instructions that have already been executed may remain in the

window, disallowing new instruction from being considered for overlapped execution. Other techniques for

providing precise interrupts may allow for better use of the window space. More aggressive branch prediction

strategies may also allow higher performance for the applications with poor branch prediction.

The most important concern about dynamically scheduled processors is the extra hardware complexity

and its effect on cycle time. These factors have to be considered in determining the actual gain from dynamic

scheduling. In addition, other techniques for hiding latency need to be considered. For example, the overlap of

memory accesses allowed by relaxed models can also be exploited by the compiler for scheduling read misses

to mask their latency on a statically scheduled processor with non-blocking reads or to decrease window size
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requirements in a dynamically scheduled processor.

6.4.4 Summary of Non-Blocking Read Results

This section explored the overlap of reads with future read and write operations for hiding read latency using

dynamically scheduled processors. Assuming a memory latency of 50 cycles, the average percentage of read

latency that was hidden across the five applications was 33% for window size of 16, 63% for window size

of 32, and 81% for window size of 64. For two of the applications, LU and OCEAN, read latency was fully

hidden at window size of 64. In general, larger window sizes did not increase the performance substantially.

The trends for a memory latency of 100 cycles are similar, except that larger windows were needed to fully

hide the read latency. In isolating the different factors that affect performance, we identified data dependences

at short distances and small lookahead as the limiting factors for small windows and branch prediction as the

limiting factor for large windows.

These results show that a substantial fraction of the memory latency can be hidden by overlapping

operations as allowed by relaxed models. Most next generation commercial processors will be able to benefit

from these gains since they use dynamic scheduling techniques. However, it is not yet clear whether large

window sizes can be efficiently implemented in such processors. Another interesting area for research is to

evaluate compiler techniques that exploit relaxed models to schedule reads early. Such compiler rescheduling

may allow dynamic processors with smaller windows or statically scheduled processors with non-blocking

reads to effectively hide read latency with simpler hardware.

6.5 Related Work

This section describes related work on evaluating the performance of relaxed memory models. The latter part

of the section briefly mentions some remaining areas for investigation.

6.5.1 Related Work on Blocking Reads

Our original study in this area [GGH91a] provided the first comprehensive set of results comparing the

performance of various relaxed memory models on real applications. The work presented in this thesis

extends our previous results to a larger set of applications and a wider set of architectural assumptions.

A later study by Zucker and Baer [ZB92, Zuc92] provides performance results for a “dance-hall” archi-

tecture with uniform memory latency across four applications. The overall trends observed by this study

are qualitatively similar to those in our original study. However, some major architectural differences make

a more detailed comparison difficult. Specifically, the low cache miss latency of 18-20 processor cycles

assumed severely limits the performance gains from relaxed models; real multiprocessor systems exhibit

significantly higher latencies.

Torrellas and Hennessy [TH90] present a detailed analytical model of a multiprocessor architecture

and estimate the effects of relaxing the consistency model on performance. A maximum gain of 20% in

performance is predicted for using weak consistency over sequential consistency. This prediction is lower

than the results in our study mainly due to the low memory latencies and limited bus bandwidth that were

assumed.
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There have also been a number of studies evaluating the performance gain from exploiting relaxed models

in the context of software-supported shared memory systems [CBZ91, KCZ92, DKCZ93]. The sources of

performance gain for relaxed models are quite different in these systems compared to a hardware-supported

cache coherent system studied in this chapter.

6.5.2 Related Work on Interaction with Other Techniques

Our earlier paper on the interaction of relaxed memory models with prefetching and multiple contexts was

the first to provide a performance study of combining these techniques [GHG+91]. Mowry [Mow94] and

Laudon [Lau94] also present results for the interaction with prefetching and multiple contexts, respectively,

across a larger set of applications. The trends observed in all these studies are quite similar.

Another relevant technique is a cache coherence protocol optimization that can reduce write latency by de-

tecting and specially treating migratory data. This idea was concurrently proposed by Cox and Fowler [CF93]

and Stenstrom et al. [SBS93]. The protocol detects a migratory pattern if it sees a read/write miss sequence

by one processor followed by a similar sequence by another processor. Once a line is classified as migratory,

read requests are provided with ownership for the line, effectively prefetching the line for the next write; the

effect is quite similar to issuing a read-exclusive prefetch for certain reads. This technique can substantially

reduce the number of write misses experienced by a processor especially for applications that exhibit a high

percentage of migratory data. Therefore, it can be used to decrease the write stall time in a sequentially

consistent system. Relaxed models provide a more general and robust way of eliminating write stall time

since they work for both migratory and non-migratory data. Nevertheless, the migratory optimization may

be beneficial in systems with low bandwidth interconnects since it eliminates messages associated with some

write misses as opposed to only hiding the latency of the miss. This optimization can also be used in con-

junction with relaxed models to reduce the total number of write misses; performance is enhanced only if the

application’s bandwidth requirements are high relative to the system’s network.

6.5.3 Related Work on Non-Blocking Reads

There have been several studies on the effect of non-blocking reads in both uniprocessor and multiprocessor

systems. We mention a few of the studies that are relevant to our work.

Melvin and Patt [MP91] have observed that dynamically scheduled processors are less sensitive to higher

memory latency than statically scheduled processors. Their study was done in the context of multiple issue of

instructions in uniprocessors and the largest cache miss penalty used was 10 cycles. In addition, the behavior

(e.g., cache miss, data dependence, and branch behavior) of the uniprocessor applications they studied is

substantially different from the parallel applications used in our study.

Farkas and Jouppi [FJ94] study the effect of non-blocking reads and lockup-free caches in the context of

statically scheduled uniprocessors. They use an aggressive compiler to schedule loads early for up to a 20

cycle load penalty. Their results show substantial improvements across many of the SPEC92 benchmarks.

In the context of multiprocessors, Scheurich and Dubois [DSB86, SD88] provided simple analytical

models to estimate the benefits arising from relaxed consistency models and lockup-free caches. The gains

predicted by these models are large, sometimes close to an order of magnitude gain in performance. These

results are over optimistic partly due to the fact that effects such as data dependence, branch prediction, or

Section 6.5 Related Work 273



look-ahead capability are not carefully considered.

Finally, our study of non-blocking reads in conjunction with dynamically scheduled processors [GGH92]

provided evidence that these techniques can also work well in the context of higher latencies that are typical of

multiprocessor systems. The results presented in this chapter are completely derived from this earlier work.

6.5.4 Areas for Further Investigation

The study presented in this chapter focuses on the performance of parallel scientific and engineering ap-

plications on cache-coherent shared memory systems. Below, we briefly describe some areas where the

performance of relaxed models remain to be fully explored.

The choice of the application domain clearly influences any performance study. Other areas that are

interesting to explore include commercial and data base applications and the effect on operating system code,

especially in the context of non-blocking read architectures.6

From a processor perspective, we have not fully explored the effect of multiple instruction issue per cycle.

Because multiple issue processors decrease the time required to execute instructions, it is clear that they

would increase the importance of reducing and hiding memory latency. Therefore, we expect the gains from

relaxed models to increase. However, understanding the detailed interaction between instruction parallelism

and latency hiding demands a comprehensive study. Furthermore, it is interesting to study the detailed

architectural choices in building dynamically scheduled processors from the perspective of exploiting the

overlap of reads.

From a cache coherence protocol perspective, we focused on an invalidation-based directory protocol

similar to the one used by DASH [LLG+90]. The trade-offs for other protocols may be different. For

example, update-based protocols are interesting to study because they trade off an increase in write misses

and write latency for a decrease in read misses. Since relaxed models are extremely effective in hiding write

latency, and since read latency is harder to hide in general, there is a potentially nice match between the two

techniques. Nevertheless, since simple update protocols fail to perform well in large scale systems, more

research is required to develop robust hybrid protocols that selectively use updates. Studying the effect of

relaxed models in the context of other protocol designs, such as the IEEE Scalable Coherent Interface (SCI)

protocol [JLGS90], is also interesting. Typical implementations of the SCI protocol can exhibit large write

latencies since cache copies are invalidated in a serialized fashion, making the latency proportional to the

number of sharers. Therefore, the gains from hiding the write latency can be more substantial.

Chapter 5 described a couple of techniques (i.e., speculative reads and hardware prefetching for writes

described in Section 5.4) for boosting the performance of sequentially consistent systems in hardware. These

techniques enable many of the reordering optimizations that are typically allowed by more relaxed models to

be safely used while maintaining the illusion of the stricter model. The degree to which these techniques boost

the performance of models such as sequential consistency remains to be fully studied. While the success of

these techniques may de-emphasize the correctness aspect of overlapping memory accesses in multiprocessors

at the hardware level, the underlying architectural mechanisms (e.g., lockup-free caches, non-blocking reads,

and other techniques studied in this chapter) that enable and exploit such overlap still remain important.

Chapter 5 also explored a large number of implementation alternatives. In this chapter, we mainly

concentrated on the important design choices. While other design choices are likely to have a more minor

6For blocking read architectures, it is predictable that relaxed models will eliminate the write latency as in scientific applications.
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effect on performance, it is still interesting to consider their performance effects in more detail.

Finally, the effect of relaxed models on compiler optimizations (and vice versa) remain to be fully

studied. As we have discussed before, strict models such as sequential consistency disallow many of the

compiler optimizations that are applied to uniprocessor code. Therefore, the gains from relaxed models on

the compiler side may potentially exceed the gains on the hardware side. Similarly, as we mentioned in

Section 6.4, compiler algorithms for scheduling non-blocking reads are likely to play an important role in

exploiting the overlap of reads in the context of both statically and dynamically scheduled processors.

6.6 Summary

This chapter characterized the performance gains from exploiting the program reordering optimizations

enabled by relaxed memory consistency models. We showed that these optimizations lead to significant

gains in the context of architectures with blocking reads by fully hiding the write latency. The gains ranged

from 10% to 80%, with six out of eight applications gaining over 25%. Furthermore, we showed relaxed

models are complementary to other latency hiding techniques such as prefetching and supporting multiple

contexts. Combining the techniques provided gains of higher than 15% over using prefetching alone for

five applications, and gains higher than 25% over using multiple context alone for four of the applications.

Finally, we showed that architectures that support non-blocking reads can exploit relaxed models to also hide

a substantial fraction of the read latency, leading to a larger overall performance benefit from relaxed models.
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Chapter 7

Conclusions

The memory consistency model for a shared-memory multiprocessor specifies how memory behaves with

respect to read and write operations from multiple processors. As such, the memory consistency model

influences many aspects of system design, including the design of programming languages, compilers, and the

underlying architecture and hardware. The choice of the model can have significant impact on performance,

programming ease, and software portability for a given system. Models that impose fewer constraints offer

the potential for higher performance by providing flexibility to hardware and software to overlap and reorder

memory operations. At the same time, fewer ordering guarantees can compromise programmability and

portability.

Coming up with a new memory consistency model is quite trivial. After all, it is just a matter of picking

and choosing the set of orders that must be maintained among shared memory operations. The real design

challenge lies in providing a balanced solution with respect to the fundamental trade-offs discussed above.

Choosing a relaxed model, or designing a new relaxed model, requires considering questions such as:

� What is the target environment, including the types of programmers, applications, and architectures or

systems that are targeted?

� Are the semantics of the model defined precisely?

� How difficult is it to reason and program with the model? How restrictive is the model with respect to

different programming styles? Is it possible to provide a simple representation to programmers? How

easy is it to port programs to and from the model?

� What are the practical implementation optimizations that motivate the model? How difficult is it to

efficiently implement the model at both the architecture and compiler level?

� What are the performance gains from using this model relative to alternative models? Does the

evaluation include both the compiler and the hardware? And most importantly, do the performance

gains justify the additional programming and implementation complexity?
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Addressing the above issues is non-trivial since it involves considering complex trade-offs and interactions, in

addition to dealing with subtle correctness issues (which are easy to underestimate). Unfortunately, failure to

properly address such issues has led to an abundance of alternative proposals and a lack of clear methodologies

for choosing among them. This situation is exacerbated by the prevalence of non-uniform terminologies and

informal specifications, making it extremely difficult to compare the different alternatives.

7.1 Thesis Summary

The primary goal of this thesis has been to shed light on the complex trade-offs that arise in choosing an

appropriate memory consistency model. The contributions lie in four areas:

� abstractions that enhance programmability with relaxed models,

� precise specification of the ordering constraints imposed by a model,

� efficient and practical techniques for implementing a memory model, and

� detailed quantitative analysis of the performance benefits of various models.

The abstraction presented by properly-labeled programs captures the types of optimizations exploited

by previously proposed relaxed models within a simple and easy-to-use programming style. To enable safe

optimizations, the programmer is required to supply high-level information about the behavior of memory

operations, such as whether an operation is involved in a race with other operations to the same address.

This approach alleviates the need for reasoning with low-level reordering optimizations that are exposed by

a typical relaxed model. Another important benefit of the programmer-supplied information is automatic and

efficient portability across a wide range of implementations.

To enable correct and efficient implementations, the thesis presents a formal framework for specifying

the ordering constraints imposed by a model. Our specification methodology inherently exposes aggressive

optimizations by imposing as few constraints as possible. Specifying various models within this uniform

framework also enables easy comparison of the semantics and optimizations supported by the different

models. Finally, the specifications are useful for determining correct and efficient mechanisms for porting

programs across different models.

The implementation techniques and performance results primarily focus on multiprocessor systems with

hardware-support for cache coherence. On the implementation side, our work represents the most com-

prehensive set of techniques for efficiently supporting various memory models. In addition to presenting

fundamental techniques, the thesis exposes subtle implementation issues that are often not covered in the

literature. Our work on evaluating the performance of different models also represents the most compre-

hensive set of quantitative results currently available. Together, the above two contributions provide a solid

understanding of the trade-off between design complexity and performance.

7.2 Future Directions

This section presents a brief overview of promising areas for future research. Many of the ideas related to

extending this thesis and pursuing new directions have already been discussed in each of the previous four
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chapters.

The least explored areas with respect to relaxed memory models are programming languages, programming

environments, and compilers. The abstraction presented to the programmer and the information provided by

the programmer are tightly linked to the programming language; one important area is with respect to easier

expression of information by programmers. The programming environment, including tools that help detect

races and incorrect programmer-supplied information, is also critical in making relaxed models simpler to use.

Finally, there is much research to be done in the compiler area including implementations that correctly and

efficiently support a given model and performance evaluations to determine the gains from relaxed models

on the compiler side.

Other important areas to study include verification tools for checking the correctness of specifications and

implementations, better understanding and characterization of programs with asynchronous data operations,

and finally exploring other ways to exploit the flexibility provided by relaxed memory models. As an example

of the latter point, exploiting relaxed models for improving the performance of software distributed shared

memory systems has been an active area of research.

An exciting area to pursue is more efficient implementation techniques for supporting strict models such

as sequential consistency. Our work on the hardware side has led to the surprising observation that many

of the optimizations that motivate relaxed memory models are indeed possible to exploit under sequential

consistency (see Section 5.4 in Chapter 5 and our previous paper [GGH91b]). More recently, Krishnamurthy

and Yelick [KY94, KY95] have presented preliminary results on applying safe compiler optimizations to

explicitly parallel programs under sequential consistency, based on an aggressive analysis that attempts to

determine a minimal set of program orders that are required for correctness. Further developments, especially

on the compiler side, can significantly change the balance in the choice of memory models for systems that

can exploit the above optimizations.

It is also instructive to observe the trends in industry. Companies such as Digital, IBM, and Sun have

already opted for supporting relaxed memory models in their commercial multiprocessors and have success-

fully developed fully functional operating systems, compilers, and other software that exploit these models.

Fortunately, all three companies have attempted to provide formal specifications of their models; this is in

contrast to the ambiguous descriptions provided for older architectures such as the IBM-370 and VAX. Other

companies such as Hewlett-Packard (HP), Intel, and Silicon Graphics (SGI) have chosen to support sequen-

tial consistency in their current architectures. The next generation processors from these companies exploit

aggressive implementation techniques in conjunction with dynamically scheduled processors to efficiently

support sequential consistency (mentioned in the previous paragraph). However, there is still a dependence on

relaxed models for enabling compiler optimizations for explicitly parallel programs. Furthermore, companies

such as Intel still maintain the option to move to relaxed models by recommending that programmers use

special serializing and locking operations for future compatibility.

Overall, there is still a lot of room for interesting research and solid contributions in the area of memory

consistency models for shared-memory multiprocessors. Our hope is that the framework and intuition

presented here pave the way for future developments in this area.
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Appendix A

Alternative Definition for Ordering

Chain

This appendix presents an alternative definition for the ordering chain defined by Definition 3.1 in Chapter 3.

The definition given below captures all ordering chains defined by Definition 3.1. The subtle difference is

that the new definition also includes chains that start with a conflict order or end with a conflict order even if

all operations in the chain are not to the same location.

Definition A.1: Ordering Chain
Given two conflicting operations u and v in an execution, an ordering chain exists from operation u to operation
v if and only if
(a) u

po
�! v, or

(b) u
po
�! w1

co
�! r1

po
�! w2

co
�! r2

po
�! w3 : : :

co
�! rn

po
�! v, where n � 1, wi is a write access, rj is a read

access, and wi and rj are to the same location if i = j. u may be the same as w1, and v may be the same as rn,
as long as there is at least one

po
�! arc in the chain.

Assume we substitute the above definition (instead of Definition 3.1) in Definition 3.2 for competing

operations under the PL1 model. Intuitively, fewer operations will be considered competing since the chains

captured by Definition A.1 are a superset of those in Definition 3.1. Consider the program segment in

Figure A.1, for example. With the original definition of ordering chain, all memory instructions in this

example must be labeled as competing to yield a PL1 program. However, with the new definition, the read of

A on P3 can be labeled as non-competing. The latter interpretation of competing is closer to the true notion of

a race; the read of A on P3 is always ordered after the write of A on P1 in every SC execution and is therefore

not involved in a race. Nevertheless, we expect that the resulting labels based on the two different definitions

(i.e., Definition 3.1 and Definition A.1) will be identical for most realistic programs.

The main reason we chose Definition 3.1 over Definition A.1 is that Definition A.1 is not appropriate for the

PL3 model defined in Chapter 3 (e.g., it would disallow the optimization of using non-atomic write operations

to support loop writes), and we wanted to maintain the notion of ordering chains consistent across the three

PL models. The alternative is to use the new definition for ordering chains by appropriately substituting it
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while (A == 0);

P1 P2 P3

b3:

while (B == 0);B = 1;

u = A;

A = 1; a2:

b2: a3:

a1:

Figure A.1: Canonical 3 processor example.

in Definition 3.2 for PL1 and also in Definition 3.6 for PL2. One caveat in doing this is that the notion of

competing will be different for the new PL1 and PL2 models compared to the PL3 model; some operations

that may be considered non-competing under PL1 and PL2 will be considered as competing under PL3 (e.g.,

read of A on P3 in the example discussed above). Therefore, transforming PL1 and PL2 programs to PL3

programs can become complicated.

We refer back to Figure A.1 to illustrate the difference between Definition 3.1 and Definition A.1 in PL3.

Every SC execution must have the result (u=1) for this example. Assume Definition 3.1 as the definition for

an ordering chain. The following labeling of the program yields a PL3 program: (a1) as a non-loop write,

(a2) and (a3) as loop reads, (b2) as a loop write, and (b3) as a non-loop read. Note that (b3) clearly does

not qualify as a loop read, and since (a1) competes with (b3), (a1) does not qualify as a loop write. This is

important because we allow loop writes to be non-atomic for PL3 and if (a1) was labeled as a loop write, this

optimization could lead to a non-SC execution with the result (u=0). Now consider substituting Definition A.1

for Definition 3.1 as the definition of an ordering chain. The write (a1) would no longer be considered as

competing with the read (b3). Therefore, the read (b3) could be labeled as non-competing and the write (a1)

would now qualify as a loop write. This example shows that allowing loop writes to be non-atomic would no

longer be a safe optimization under PL3 if we used Definition A.1 instead of Definition 3.1.

Appendix C describes a modification to the PL3 model based on Definition A.1 for ordering chains; the

modified version inevitably forgoes some of the optimizations exploited by the original version.
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Appendix B

General Definition for Synchronization

Loop Constructs

This appendix provides the more general definition for a synchronization loop construct defined by Defini-

tion 3.10 in Chapter 3. The conditions below are identical to the general conditions provided in the original

paper on PLpc [GAG+92], with a few corrections from a later technical report [AGG+93]. The intuitive idea

behind the conditions is to ensure that the number of times the loop executes or the values returned by the

unsuccessful reads cannot be practically detected. This allows us to conceptually replace the loop construct

with only the successful operation(s) that cause the loop to terminate.

Definition B.1: Loop Construct
A loop construct is a sequence of instructions in a program that would be repeatedly executed until a specific
read in the sequence (the exit read) reads a specific location (the exit location) and returns one of certain values
(the exit read values). If the exit read is part of a read-modify-write, then the write of the read-modify-write is
called the exit write and the value it writes is called the exit write value.
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Definition B.2: Synchronization Loop Construct
A loop construct in a program is a synchronization loop construct if and only if it always terminates in every
SC execution of the program and the following conditions hold. Consider a modification of the program so
that it executes beginning at the loop construct. Add another process to the program that randomly changes the
data memory. Consider every SC execution with every possible initial state of the data memory and processor
registers. At the beginning of every such SC execution, the exit read, exit location, and exit read values should
only be a function of the initial state of memory and registers and of the program text. The exit write value can
additionally be a function of the value that the exit read returns. Then, for every such SC execution,
(i) except for the final exit write, loop instructions should not change the value of any shared memory location,
(ii) the values of registers or private memory changed by any loop instruction cannot be accessed by any
instruction not in the loop construct,
(iii) a loop instruction cannot modify the exit read, exit location, exit read values, or the exit write values
corresponding to a particular exit read value,
(iv) the loop terminates only when the exit read returns one of the exit read values from the exit location and
the exit write stores the exit write value corresponding to the exit read value returned,
(v) if exit read values persist in the exit location, then the loop eventually exits,
(vi) the first instruction instance program ordered after the loop is the same in every other SC execution that
begins with the same initial state of data memory and processor registers, and
(vii) the only shared-memory operations in the iteration that terminates the loop should be the exit read and exit
write (if the exit read is part of a read-modify-write).

When analyzing an SC execution, the accesses of a synchronization loop construct can be replaced by the

final successful exit read and exit write (if any). The unsuccessful accesses can be labeled non-competing.

The above definition is fairly general, which partly explains its complexity. For example, it allows

implementations of locks using a test&test&set [RS84] or back-off [MCS91] techniques to be considered as

synchronization loop constructs.
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Appendix C

Subtleties in the PL3 Model

This appendix presents a subtle example that illustrates the need for some of the complexity in the definitions

of loop read (Definition 3.11) and loop write (Definition 3.12) in the PL3 model. In addition, we describe a

modification to the PL3 model that removes some of this complexity at the cost of forgoing some optimizations.

C.1 Illustrative Example for Loop Read and Loop Write

Figure C.1 shows an example that provides some intuition for the presence of complicated conditions such as

condition (d) in Definition 3.11 for loop reads and condition (b) in Definition 3.12 for loop writes. All four

while loops qualify as synchronization loop constructs; therefore, all unsuccessful reads from each loop are

assumed to be discarded in any execution. In every SC execution, the successful read of (b3) executes after

the write (d1). In addition, the only sequentially consistent result is (u,v,w,x)=(1,1,0,1). Memory instructions

shown in bold generate a competing operation in at least one SC execution. To yield a PL3 program,

all instructions shown in bold must be considered as sync operations to ensure sufficient synchronization

ordering chains among the non-competing operations. The operations generated by the (c1), (b2), and (a3)

loops trivially satisfy the conditions for loop read. Similarly, the write to B on P2 trivially satisfies the

conditions for loop write. In contrast, the successful read operation generated by the (b3) loop satisfies

all conditions for a loop read except for condition (d) in Definition 3.11 (in this case, W’ in condition (d)

corresponds to the hypothetical write that initializes location A). Therefore, this instruction must be labeled

as non-loop. As a result, neither of the two writes to A on P1 qualify as loop writes; (d1) does not qualify

as a loop write because it competes with (b3) which is a non-loop read, and (b1) does not qualify because of

condition (b) in Definition 3.12.

One of the optimizations we exploit in the PL3 model is to allow loop writes to be non-atomic with respect

to multiple copies. This optimization is safe with the labeling described above. The write that especially

matters is (b1), since if this write behaves non-atomically, then it is possible for the loop (b3) on P3 to observe

the initial value of A and terminate before either (b1) or (d1) complete with respect to this processor, which
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A = 1;

A = 0;

while (A == 0);

P1 P2 P3

b3:

while (B == 0);

c3:

while (B == 0);

a1: C = 1;

B = 1;

D = 1;

while (A == 1);v = C;

u = D; w = A;

x = D;

b1:

c1:

d1:

e1:

a2:

b2:

c2:

d2:

a3:

d3:

Figure C.1: Program segment illustrating subtleties of loop read and loop write.

could result in the non-SC result of (u,v,w,x)=(1,1,1,1).

Condition (d) of Definition 3.11 and condition (b) of Definition 3.12 play an important role in disallowing

the write (b1) from being labeled as a loop write. Consider removing condition (d) of Definition 3.11; the

read in (b3) would qualify as a loop read, which would in turn allow the writes in (b1) and (d1) to be labeled

as loop writes. Similarly, consider removing condition (b) of Definition 3.12; even though the write (d1)

would not qualify as a loop write, the write in (b1) would still qualify as a loop write.

The above example is admittedly contrived and the likelihood of observing such behavior in real programs

is low. Nevertheless, the conditions for PL3 must be applicable across all possible programs.

C.2 Simplification of the PL3 Model

It is possible to simplify the PL3 model by forgoing the optimization that allows loop writes to be non-atomic.

Therefore, the only major optimization that would be exploited relative to PL2 is the relaxation of program

order between a competing write followed by a competing read if either is identified with the loop label.

Forgoing the optimization that allows loop writes to be non-atomic simplifies a number of the condition for

the PL3 model. First, condition (d) of Definition 3.11 and condition (b) of Definition 3.12 could be eliminated,

which would simplify the conditions for loop read and loop write. Second, we could now use Definition A.1

instead of Definition 3.1 for the definition of an ordering chain. Of course, forgoing this optimization requires

the sufficient conditions for PL3 to be strengthened. In particular, the following multiprocessor dependence

chains should be added to the conditions presented in Figure 4.16 in Chapter 4: Wc
sco
�!Rc

spo0

�! fWc
sco
�!Rc

spo0

�! g* fWc
sco
�! Rc (

spo
�! j

spo0

�! )g RW. Similarly, the conditions for porting PL3 programs to PC and RCpc

(Tables 4.3 and 4.4) must be changed to require every Rc to be part of a RMW (with W mapped to non-sync

or release for RCpc), and the conditions for porting to PC+ and RCpc+ (Table 4.6) should be changed to

require every Wc to be mapped to an atomic write.
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Appendix D

Detecting Incorrect Labels and

Violations of Sequential Consistency

This appendix describes the two detection techniques, mentioned in Section 3.8.4, for helping programmers

use programmer-centric models.

D.1 Detecting Incorrect Labels

By providing memory operation labels for a program, the programmer assumes that executions of the program

will obey sequential consistency. However, this assumption may be violated if any of the labels are erroneous.

Therefore, tools that help the programmer identify potentially incorrect labels can play an important role in

further simplifying the use of programmer-centric models.

One of the fundamental pieces of information conveyed through labels in the PL framework is whether a

memory operation is involved in a race (i.e., competes with another operation). Identifying races in parallel

programs is in itself an important problem; even with sequentially consistency, programmers opt to avoid

data races to simplify the task of reasoning about programs. In fact, the presence of races often signals a

programming error. Therefore, much research has been done on detecting data races. Fortunately, many of

the proposed techniques can be easily adapted for identifying erroneous labels for competing operations in

the context of programmer-centric models.

The proposed techniques for detecting data races for programs written for sequential consistency can be

classified as static or dynamic. Static techniques use compile-time analysis to detect potential data races

that could occur in any possible execution of a program [BK89, Tay83b]. In contrast, dynamic techniques

analyze individual executions of the program and determine whether a particular execution exhibits a data

race [AP87, DS90a, HKMC90, NM89, NM91]. The following discusses the trade-offs between these two

techniques in more detail.

The advantage of static techniques is that all data races that may potentially occur in any possible SC
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execution of a program are detected. Therefore, the programmer is assured that the program will not exhibit any

data races if no data races are reported by the detection technique. However, the problem of exactly determining

whether a program is free of data races or not is known to be undecidable [Ber66]. Exact analysis has been

shown to be NP-complete even for restricted classes of programs and synchronization primitives [NM90,

Tay83a]. Therefore, practical algorithms for static detection are often extremely conservative. This limits the

usefulness of static techniques since many programs that actually exhibit no data races may conservatively

be reported as having data races.

Dynamic techniques have the advantage of providing exact information on whether a specific execution

of the program exhibits data races. These techniques often use a trace gathering mechanism to monitor

the order among memory accesses in an execution and analyze this information to determine whether the

execution exhibits any data races. The tracing and analysis can be either done on-the-fly (e.g., [DS90a]) or in a

post-mortem fashion (e.g., [NM89]). The on-the-fly techniques buffer trace information in memory and detect

data races as they occur. In contrast, post-mortem techniques generate trace files containing information on

the order of accesses and the information is analyzed after the execution completes.

Like static techniques, dynamic techniques have their own set of limitations. First, the gathering and

analysis of memory traces can adversely affect the execution time for the program. A two to five times

increase in execution time has been reported for on-the-fly techniques [DS90a]. Even though more efficient

on-the-fly techniques have been proposed by limiting the class of programs [MC91], the overhead is still

expected to be unacceptable for normal executions of the program. Thus, dynamic techniques are limited for

use during debugging only. The second problem with the dynamic techniques arises from the fact that exact

information is only provided for a single execution of the program, with no information provided about other

possible executions. This is further complicated by the fact that the extra overhead of tracing can affect the

critical timing in a program, resulting in possibly different executions than would have normally occurred.

Therefore, there is no guarantee that a program will not exhibit any data races even if all executions during

debugging are determined to be free of data races.

The dynamic techniques described above are designed for use with architectures that are sequentially

consistent. Fortunately, most systems that support relaxed models also provide mechanisms for enforcing

sequential consistency (e.g., by simply disallowing some of the reordering optimizations). Therefore, it

is possible to employ dynamic race detection techniques by configuring such systems to be sequentially

consistent during program debugging mode. More recently, an extension has been proposed to allow the

use of dynamic race detection even when the system is configured with a relaxed model during debugging

(certain system restrictions apply) [AHMN91]. This approach extends dynamic detection to systems that

do not support sequential consistency in any form. Furthermore, there is a potential performance advantage

during debugging since the system can operate under a relaxed model. However, this performance advantage

is expected to be small in most systems since the execution time during debugging will be dominated by the

overhead of tracing and analysis which effectively washes out the performance difference between sequential

consistency versus a more relaxed model.

We now briefly describe how the dynamic race detection techniques can be applied to detecting incorrect

labels in programs written for the PL models. Since dynamic techniques capture a trace of the execution, it is

conceptually possible to add additional steps in the analysis phase to verify the validity of labels by checking

for various conditions among the memory operations in the trace. For PL1, the only information provided
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by the programmer is whether an operation is competing or not. Since the notion of race and competing are

closely related, the techniques discussed above can be easily adapted to identify competing operations in an

execution and to check that none of the competing operations are incorrectly identified as non-competing

by the labels. By adding a little more analysis to the race detection techniques, it is possible to extend the

applicability of this technique to the PL2 model by detecting whether enough operations are identified as sync

and non-sync. The PL3 model provides a more challenging problem, however, since (i) the conditions for

distinguishing loop and non-loop operations are quite complex, and (ii) some operations (i.e., all but the final

memory operation in each synchronization loop) have to be ignored during the analysis phase. Although it

may conceptually be possible to extend the race detection techniques to detect incorrect labels with the PL3

model, there needs to be further study to determine the practicality of the approach; for example, the more

complex analysis that is required compared to simple race detection may potentially increase the execution

time overhead above the acceptable threshold for even debugging.

In summary, dynamic detection of races provides a practical method for helping the programmer identify

incorrect labels during the development and debugging phase of a program. However, race detection

techniques do not provide a complete solution since races that do not exhibit themselves during debugging can

unexpectedly occur during normal executions without being detected. In systems that support a relaxed model,

the occurrence of such races can lead to violations of sequential consistency. Therefore, to ensure sequentially

consistent executions, the programmer is still ultimately responsible for guaranteeing the correctness of labels.

D.2 Detecting Violations of Sequential Consistency

Given the difficulty in verifying the correctness of the labels, an alternative approach for helping the pro-

grammer use programmer-centric models is to directly detect whether sequential consistency is upheld by

executions of a program on a given system. After all, the ultimate reason for checking the correctness of

labels is to ensure that all executions of the program will be sequentially consistent. We proposed and studied

the viability of this approach in an earlier paper [GG91]; the following covers the important highlights from

this work.

The main result of our work is a new implementation technique, applicable to cache coherent systems, that

dynamically detects possible violations of sequential consistency [GG91]. Unfortunately, exactly determining

whether or not an execution is sequentially consistent turns out to be a difficult problem. Therefore, we settle

for a conservative detection for violations of sequential consistency. Below, we describe the constraints we

impose on the accuracy of the detection. For the detection to be conservative, we have to guarantee that

a violation is detected if the execution is not sequentially consistent. More formally, if execution E is not

sequentially consistent, the detection mechanism will detect a violation in E. However, this condition can be

trivially satisfied by always detecting a violation for every execution. Such a detection scheme is clearly not

useful. Therefore, we need to place a bound on the conservatism of the detection. We know that PL programs

are guaranteed to produce sequentially consistent executions on systems that support PL models. Therefore,

a useful detection scheme is one that is conservative, but does not conservatively detect a violation when the

program is properly labeled. More formally, the bound on conservative detection is as follows: If program

P is a PL program, then the detection mechanism is guaranteed not to detect a violation in any execution of

P . Therefore, if no violation is detected for an execution, then the execution is sequentially consistent (due
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to conservative detection). And if a violation is detected, then the program is known to have incorrect labels

(due to bound on conservative detection).

The detection technique discussed above can provide useful feedback to programmers on architectures

with relaxed consistency models. In contrast to the work on data race detection, our technique does not exactly

determine whether or not the program or execution have data races (or incorrect labels). Instead, the technique

detects whether sequential consistency may be violated in an execution of the program. An advantage of this

approach is that the programmer is provided with exact information either about the execution or about the

program. For every execution, the proposed implementation conclusively determines either that the execution

is sequentially consistent or that the labels provided by the programmer are incorrect. In the first case, the

programmer is assured that the correctness of the execution was not affected by the fact that the architecture

supports a relaxed model. In the second case, the programmer knows that the program has incorrect labels

and can result in sequentially inconsistent results on architectures supporting relaxed models. Furthermore,

the implementation we proposed provides the functionality for detection with minor additional hardware and

with virtually no affect on the performance of the system [GG91]. Therefore, the detection technique is

efficient enough to be used during all executions of the program (as opposed to monitoring executions only

during debugging).

The intuition behind the detection mechanism is simple. Assume u and v are two accesses in program

order. Sequential consistency is guaranteed if the completion of v is delayed until u completes (Condition 2.2

in Chapter 2). Multiprocessors that support a relaxed model may allow u and v to be reordered to achieve

higher performance. The purpose of the detection mechanism is to determine whether such reordering may

result in a sequentially inconsistent execution. A violation may arise if v completes before u. First consider

the case where v is a read access. Assume the read completes (its return value is bound) before u completes.

This does not necessarily lead to a violation of sequential consistency, however. If at the time u completes,

the return value for v is the same as the current value of the location accessed by v, then any computation

based on the access is correct since even if v was delayed until u completed, the value the access would

return would be the same. However, if the current value is different from the value returned by access v, then

sequential consistency may have been violated and the detection scheme conservatively detects a violation.

Now consider the case where v is a write access. Assume the write completes before u completes. Even so,

sequential consistency is guaranteed if no other processor attempts to access the location touched by v until u

completes since this is as if v was delayed until u completed. However, the detection scheme conservatively

detects a violation in case there is an attempt to access the location touched by v while u is pending.

Cache coherent architectures provide an efficient base for the above detection mechanism. Each processor

can maintain the state of its outstanding memory operations in a per-processor detection buffer and can monitor

coherence transactions destined to its cache to determine whether a violation of SC is likely. Let us refer back

to accesses u and v. If v is a read access, an invalidation or update for the location accessed by v before u has

completed indicates that the value bound by access v is old and may result in a violation of SC. In addition, the

lack of invalidation or update messages indicates that the value bound by v is current. Similarly, if v is a write

access, a read, invalidation (or ownership request), or update message to the location accessed by v before u

has completed indicates a possible violation of SC. The original paper discusses an example implementation

based on the above intuition and describes some restrictions on the system to ensure the desired bound on

conservative detection [GG91]. The implementation techniques described are general, and are compatible
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with either an invalidation-based or update-based coherence mechanism and with cache line sizes of greater

than one word (unlike some proposals for race detection [MC91]).

The detection mechanism discussed above is applicable to the PL1 and PL2 models. As we mentioned

above, a few extra restrictions are imposed on the system to ensure the detection is not overly conservative.

However, these restrictions are either already satisfied or can be easily incorporated in most systems with

virtually no effect on performance [GG91]. As with the race detection techniques, extending the approach

to PL3 seems challenging because (i) some operations (i.e., all but the final memory operation in each

synchronization loop) have to be ignored by the detection mechanism and thus need to be identifiable, and

(ii) systems that support PL3 typically allow optimizations such as allowing some competing writes to be

non-atomic which further complicates detection. Therefore, whether the approach can be extended to PL3

remains to be explored.

D.3 Summary of Detection Techniques

Compared to a sequentially consistent system, the extra effort required to program a system that supports

a programmer-centric model arises from the need to provide correct labels for all memory operations. We

discussed two techniques that can help the programmer in ensuring correct labels. The first technique

involved an extension to the debugging environment that helps the programmer identify incorrect labels while

a program is being developed. While this technique is useful during the debugging phase, it fails to protect the

programmer from incorrect labels during normal program runs. The second technique we discussed remedies

this problem by employing a simple hardware mechanism that can efficiently monitor normal executions of

the program and notify the programmer if sequential consistency may be compromised due to the presence

of incorrect labels.

Work in this area is still in its infancy and there are many opportunities for improvement. Specifically

considering the two techniques discussed above, both inherently depend on the original program order among

memory references in determining whether an execution exhibits incorrect labels or sequentially inconsistent

behavior. Therefore, they are not readily applicable to programs already optimized by a compiler that exploits

the reordering of memory operations enabled by relaxed models. Furthermore, extensions of these techniques

to deal with more complex programmer-centric models such as PL3 remains to be explored.
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Appendix E

Alternative Definition for Return Value

of Reads

The abstraction for memory operations presented in Chapter 4 uses the Rinit(i) and Winit(i) sub-operations

to capture the effect of optimizations such as read forwarding. These sub-operations play an important role

in the return value condition for reads (Condition 4.6) and the initiation condition (Condition 4.4), which

together allow a processor’s read to occur before its own write to the same location and yet ensure that the

read returns the value of that write. We chose to introduce the Rinit(i) and Winit(i) sub-operations because

they lead to a more flexible and intuitive abstraction for modeling optimizations such as read forwarding.

As an alternative, it is possible to eliminate the Rinit(i) and Winit(i) sub-operations and the initiation

condition altogether if we define the return value condition (currently defined by Condition 4.6) as follows:

Condition E.1: Alternative Condition for Return Value for Read Sub-Operations
A read sub-operation R(i) by Pi returns a value that satisfies the following conditions. If there is a write
operation W by Pi to the same location as R(i) such that W

po
�! R and R(i)

xo
�! W(i), then R(i) returns the

value of the last such W in
xo
�!. Otherwise, R(i) returns the value of W’(i) (from any processor) such that W’(i)

is the last write sub-operation to the same location that is ordered before R(i) by
xo
�!. If there are no writes that

satisfy either of the above two categories, then R(i) returns the initial value of the location.

The original specification of TSO and PSO [SFC91] use a similar value condition to model the effect of

optimizations such as read forwarding. The more informal descriptions in Chapter 2 (Section 2.4) also use

a similar value condition that does not require the Rinit(i) and Winit(i) sub-operations. The slightly non-

intuitive aspect of Condition E.1 is that a read can return the value of a write even though all sub-operations

associated with the write occur after the read.
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Appendix F

Reach Relation

This appendix defines the reach relation ( rch�!) discussed in Section 4.2 for the properly labeled models. The

reach relation presented below is a straightforward adaptation of the
rch
�! relation developed for the PLpc

model [AGG+93].

Defining the reach relation requires considering the set of dynamic instruction instances, I, in an execution.

The following presents an abstraction for the instruction instances. We classify instructions into three types:

computation, memory, and control. Computation instructions read a set of registers (register read set) and

map the read values into new values that are written to another (possibly same) set of registers (register write

set). Memory instructions are used to read and write memory locations (both private and shared). A memory

read instruction reads the address to be read from a register, reads the specified memory location, and writes

the return value into a register. A memory write instruction reads the address and value to be written from

registers and writes the value into the specified memory location. A memory read-modify-write instruction

is both a memory read and a memory write instruction that reads and writes the same location. For a read

instruction, the register read set comprises of the address register and the register write set is the destination

register. For a write instruction, the register read set comprises of the address and value registers and there

is no register write set. Finally, control instructions (e.g., branch instructions) change the control flow by

appropriately adjusting the program counter. The register read set for a control instruction is a set of registers

whose values determine the change in the control flow. If an instance of a control instruction results in the

program counter only being incremented, then we say the instruction instance preserves program control

flow; if the program counter changes in any other way, we say the instruction instance results in changing

the program control flow. Note that the above description of instructions is merely an abstraction and can be

adapted to most architectures and languages.

We now define the notion of local data dependence ( dd
�!) and control dependence ( cd

�!) that will be

used to develop the
rch
�! relation. For two instruction instances A and B in an execution, A

dd
�! B if B

reads a value that A writes into its register write set or a private memory location of its processor. (The

interaction due to shared-memory data dependence is handled later.) Our notion of control dependence is
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borrowed from Ferrante et al. [FOW87]. Control dependence is defined in terms of a control flow graph and

dominators [ASU86]. Let Prog be the program under consideration, and let E be an execution of program

Prog. Consider the control flow graph of any process in program Prog, with the final node in the graph

denoted by EXIT. Let C’ and D’ be two instructions in the control flow graph. C’ is post-dominated by D’ if

D’ occurs on every path in the control flow graph from C’ to EXIT. Let A and B be two instruction instances

of processor P in execution E and let A’ and B’ be the instructions corresponding to A and B in the program

text. Instruction instance B is control dependent on instruction instance A if the following conditions hold: (i)

A
po
�! B in execution E, and (ii) A’ is not post-dominated by B’, and (iii) there is a path between A’ and B’ in

the control flow graph of processor P such that all the nodes on this path (excluding A’,B’) are post-dominated

by B’. Note that if A cd
�! B, then A’ is a control instruction.

To allow for possibly non-terminating executions, we need to augment the control flow graph and the

resulting
cd
�! relation with additional arcs. Informally, consider a loop in the program that does not terminate

in some SC execution. Then, for any instruction instance i that is program ordered after an instance of

the loop, we require cd
�!+ to order i after instances of the control instructions of the loop that change the

program flow for this loop and cause infinite execution. More formally, let C’ be any control instruction

that could be executed an infinite number of times in some SC execution E. Suppose an infinite number of

successive instances of C’ change the control flow of the program in E. Add an auxiliary edge from every

such instruction C’ to the EXIT node. This ensures that any such control instruction C’ is not post-dominated

by any of the instructions that follow it in the control flow graph, and so instances of C’ are ordered before all

instances of all subsequent instructions by
cd
�!+. The modification described above is not necessary if all SC

executions of the program will terminate, or if there are no memory operations that are ordered after possibly

non-terminating loops in the control flow graph.

The cd
�! and dd

�! relations are used below to define two other relations, the uniprocessor reach dependence

(
Udep
�!) and the multiprocessor reach dependence (

Mdep
�! ) relations. The

rch
�! relation is defined in terms of

these two new relations.

Definition F.1: Uniprocessor Reach Dependence

Let X and Y be instruction instances in an execution E of program Prog. X
Udep
�! Y in E iff X

po
�! Y, and either

(a) X
cd
�! Y in E, or

(b) X
dd
�! Y in E, or

(c) X and Y occur in another possible SC execution E’ of the program Prog, X
cd
�!+ Z

dd
�! Y in E’, and Z does

not occur in E.

Definition F.2: Multiprocessor Reach Dependence
Let X and Y be instruction instances in an execution E of program Prog. Let Y be an instruction instance that

accesses shared-memory. X
Mdep
�! Y in E iff any of the following are true.

(a) X
po
�! Y in E and X and Y occur in another possible SC execution E’ of Prog, where X

Udep
�!+ Z

rpo
�! Y in

E’, Z is an instance of a shared-memory instruction, for any A
dd
�! B constituting the

Udep
�!+ path from X to Z

in E’, B also occurs in E, and either Z does not occur in E, or Z occurs in E but is to a different address in E and
E’, or Z is a write to the same address in E and E’ but writes a different value in E and E’.
(b) X

po
�! Y in E and X

Udep
�! Z

rpo
�! Y in E.

(c) X
po
�! Y in E and X

Mdep
�! Z

rpo
�! Y in E.

(d) X
po
�!Y or X is the same as Y in E. Further, X generates a competing read R within a loop (a synchronization

loop construct for PL3) and Y generates an operation O (different from R) such that R
rpo
�!+ O.

For PL3, Definition F.2 above assumes an additional constraint on synchronization loop constructs (either

the simple definition in Section 3.2.3 or the general definition in Appendix B). The additional constraint is as
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follows. Consider any read R of a synchronization loop construct in execution E1. If the instruction instance

corresponding to R occurs in any other execution E2, then the values that can terminate the instance of the

synchronization loop construct corresponding to R are the same in E1 and E2. Without the above constraint,

the following additional case must be added to the cases where
Mdep
�! holds: X

po
�! Y in E, Y generates an

exit read of a synchronization loop construct and X
Udep
�!+ Z, where Z is a branch instruction in the loop.

The
rpo
�! relation used as part of the

Mdep
�! definition is defined as follows. The

spo
�! relation and other

conditions mentioned below are derived from the sufficient conditions presented in Chapter 4 for each of the

three PL models.1

Definition F.3:
rpo
�! Relation

Let X and Y be instances of shared-memory instructions in an execution E, and let X’ and Y’ be the memory
operations corresponding to X and Y respectively in E. X

rpo
�! Y in E iff either

(a) X’
spo
�! Y’ or X’

spo0

�! Y’ in E, or X’
spo00

�! Y’ in E for PL3, or
(b) X’

po
�! Y’ in E and X’

po
�!Y’ is used in the uniprocessor dependencecondition to impose an order between

the sub-operations of X’ and Y’, or
(c) X’=W

po
�! Y’=R in E and the initiation condition requires that Winit(i)

xo
�! Rinit(i) in E.

Finally, the following defines the reach relation. The
rch0

�! relation is also used in the next appendix to

relax the uniprocessor correctness condition.

Definition F.4: Reach’ Relation
Given an execution E and instruction instances X and Y in E (where X may or may not be the same as Y), X
rch0

�! Y in E iff X and Y are instances of memory instructions, X generates a shared-memory read, Y generates a

shared-memory write, and X f
Udep
�! j

Mdep
�! g+ Y in E. For two different memory operations, X’ and Y’, from

instruction instances X and Y respectively, X’
rch0

�! Y’ iff X’ is a read, Y’ is a write, X’
po
�! Y’ and X

rch0

�! Y.

Definition F.5: Reach Relation
Given an execution E and instruction instances X and Y in E, X

rch
�! Y in E iff X

rch0

�! Y and X generates a

memory read that reads the value of another processor’s write. The
rch
�! relation among memory operations is

defined in an analogous manner to
rch0

�!.

The reach relation is a transitive closure of the uniprocessor reach dependence (
Udep
�!) and the multipro-

cessor reach dependence (
Mdep
�! ) relations. The uniprocessor component corresponds to uniprocessor data

and control dependence, while the multiprocessor component corresponds to dependences that are present

due to the memory consistency model. The components that make up
Udep
�! and

Mdep
�! are defined for a given

execution E. Both relations also require considering other sequentially consistent executions of the program,

and determining if an instruction in one execution occurs in the other execution.2 For an instruction instance

from one execution to occur in another, we do not require that locations accessed or the values read and

written by the corresponding instruction instances in the two executions be the same; we are only concerned

with whether the specific instances appear in the execution. In the absence of constructs such as loops and

recursion, it is straightforward to determine if an instance that appears in one execution also appears in

another. In the presence of constructs such as loops and recursion, care has to be taken to match consistent

pairs of instruction instances. Instruction instances between two executions are matched consistently if the set

1We allow the relation X
spo
�! Y to be dependent on the addresses of X and Y. In this case, if the same pair of memory instructions

accesses different addresses in two executions, it is possible for the pair to be ordered by
spo
�! in one execution but not in the other.

2It may be simpler to be conservative and consider all possible executions of the program and not just SC executions (for E’) in the

definitions of
Udep
�! and

Mdep
�! .
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b1:

a1:

c1:

if (u == 1) {

    v = B;

}d1:

e1:

u = A;

C = v;

(a) (b)

b1:

a1:

c1:

if (u == 1) {

}d1:

e1:

u = D;

    v = Flag;

E = 1;

Figure F.1: Examples to illustrate the reach condition.

of instances that are considered to appear in both executions have the same program order relation between

them in both executions, and are the maximal such sets. (A set S with property P is a maximal set satisfying

property P if there is no other set that is a superset of S and also satisfies property P.)

To illustrate the above concepts, consider the example in Figure F.1(a). Assume an execution E where

the read of A returns the value of 0. Thus, u is 0 and the read of B and assignment to v do not occur in

execution E. Therefore, in E, there is no instruction instance ordered before the write to C by either
cd
�! or

by dd
�!. Thus, parts (a) and (b) of the definition of

Udep
�! do not order any instruction instance before (e1) by

Udep
�! . However, if we consider a possible SC execution E’ where the return value of A is 1 (assume it is the

value of another processor’s write), then we have (b1)
cd
�! (c1)

dd
�! (e1) in E’, (c1) does not occur in E, and

so (b1)
Udep
�! (e1) in E by part (c) of the definition of

Udep
�! . Further, (a1)

dd
�! (b1) in E and so (a1)

Udep
�! + (e1)

in E and so (a1) rch
�! (e1) in E.

Figure F.1(b) shows an example that uses
Mdep
�! . Assume the PL1 model, with the read of Flag being the

only competing operation. Consider an execution E where the return value for the read of D is 0. Therefore,

(c1) does not occur in E. Consider a possible SC execution E’ where the read of D returns 1 (assume the value

is from another processor’s write), causing (c1) to be executed. Under PL1, Rc
po
�!W constitutes Rc

rpo
�!W.

Therefore, in E’, (c1)
rpo
�! (e1). Since we have (b1) cd

�! (c1)
rpo
�! (e1) in E’ and (c1) does not occur in E, we

have (b1)
Mdep
�! (e1) in E by Definition F.2(a). Further, (a1)

dd
�! (b1) in E and so (a1)

Udep
�! (b1)

Mdep
�! (e1) in

E and so (a1)
rch
�! (e1) in E. Note that in this example,

Udep
�! does not hold between (b1) and (e1).

The proofs for the sufficient conditions of models such as PLpc have shown that the reach relation as

formalized above is adequate [AGG+93]. It is likely that these conditions can be formalized even more

aggressively without violating the semantics of the various PL models.
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Appendix G

Aggressive Form of the Uniprocessor

Correctness Condition

This appendix formalizes the relaxation of the uniprocessor correctness condition (Condition 4.1) discussed in

Section 4.2. The formalism presented below is the same as that developed for the PLpc model [AGG+93]. In

contrast to Condition 4.1, the extension presented here allows certain operations to execute before a preceding

loop may terminate. Definition G.1 below formalizes the notion of a preceding loop. ConditionG.1 formalizes

the conditions that determine whether an operation can execute before its preceding loop terminates.

Definition G.1: Loop
A loop in a control flow graph refers to a cycle in the control flow graph. A loop L does not terminate in an
execution iff the number of instances of instructions from loop L in the execution is infinite.

Condition G.1: Infinite Execution Condition
Consider an execution E of program Prog that contains instruction instance j of instruction j’, and j’ is a write
instruction.
(a) If j’ follows loop L that does not terminate in some SC execution, then the number of instances of instructions
in E that are from loop L and that are ordered by program order before j is finite.

(b) The number of instruction instances that are ordered before j by
rch0

�! in E is finite.

With the above conditions, a processor can execute a read operation before it is known whether the

previous loops in program order will terminate. For a write operation, the processor is allowed to execute the

write before a previous loop as long as the loop is known to terminate in every SC execution and as long as

no memory operations from the loop are ordered before the write by
rch0

�! (defined in the previous appendix).

Referring back to the examples in Section 4.2, the above conditions allow the optimizations discussed for the

example in Figure 4.12, while appropriately disallowing the optimizations discussed for the two examples in

Figure 4.13 (Condition G.1(a) and (b) handle the examples in Figure 4.13(a) and (b), respectively).

Most programs are written so that either they will terminate in all SC executions, or there are no shared-

memory operations that follow a potentially non-terminating loop. In addition, the information about whether

a loop will always terminate in an SC execution is often known to the programmer and can be easily obtained.

Thus, the above relaxation of the uniprocessor correctness condition is applicable to a large class of programs.
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Appendix H

Aggressive Form of the Termination

Condition for Writes

This appendix describes a relaxation of the termination condition for writes specifically for more aggressively

supporting the properly-labeled models.

H.1 Relaxation of the Termination Condition

Condition 4.5 in Chapter 4 specifies when a write sub-operation must appear in the execution. This condition

can be further relaxed for the PL models. Condition H.1 below specifies this relaxation.

Condition H.1: Aggressive Termination Condition for Writes for Properly-Labeled Models
Supposea write sub-operation Winit(i) (corresponding to operation W) by Pi appears in the execution. Consider
an operation O on Pj that conflicts with W. The termination condition requires W(j) (i.e., the sub-operation with
respect to Pj) to appear in the execution if both W and O are labeled as competing (includes sync and non-sync
labels for PL2, and loop, non-loop, and non-sync for PL3).

The relaxed condition turns out to be sufficient for supporting the three properly-labeled models. The

proof for the above is based on the general framework developed in Adve’s thesis [Adv93]; this is the same

framework that was used to prove the sufficient conditions for the PLpc model [GAG+92]. For the three

properly-labeled models, Condition H.1 above trivially satisfies the constraints on termination assumed by

Adve’s framework.

Figure H.1 shows a simple example to illustrate the difference between Condition H.1 and Condition 4.5.

Assume the PL1 model, and assume the operations on P1 and P2 are labeled as competing (shown in

bold) while the operations on P3 are labeled as non-competing. The sufficient conditions for PL1 shown

in Figure 4.14 along with Condition 4.5 require that the while loops on both P2 and P3 terminate in every

execution. However, if we substitute Condition H.1 for Condition 4.5, then the specification allows the while

loop on P3 to not terminate in some executions. This is because the write of A on P1 is not required to complete

with respect to P3 based on Condition H.1. Note that the program in Figure H.1 is not properly-labeled.
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P2

while (A == 0);a2:

P1

A = 1;a1:

P3

a3: while (A == 0);

Figure H.1: Example to illustrate the more aggressive termination condition.

P2

while (A == 0);

B = 1;

a2:

b2:

P1

A = 1;a1:

P3

b3:

while (B == 0);a3:

while (A == 0);

Figure H.2: Example of the aggressive termination condition for the PL3 model.

In fact, the distinction between Conditions 4.5 and H.1 arises only for non-PL programs; the relaxation in

ConditionH.1 simply exploits the fact that the properly-labeled models are not required to provide sequentially

consistent results to non-PL programs.

Figure H.2 shows an example specific to the PL3 model. Assume all operations are labeled as loop

writes and reads, which satisfies the labeling requirements for PL3. None of the system requirements for PL3

(see Figure 4.16) impose an execution order between the sub-operation of the write of A on P1 with respect

to P3 and the read sub-operation of A on P3. Therefore, if we remove the termination condition (either

Condition 4.5 or Condition H.1), the sufficient system conditions for PL3 would not require the second while

loop on P3 to terminate in every execution. Note that with Condition H.1, it is important for the read of A

on P3 be labeled either a loop, non-loop, or non-sync to guarantee that the while loop terminates. In contrast

to the PL3 specification, the same example does not depend on the termination condition (either version) for

correctness if we assume either the PL1 or PL2 sufficient conditions (still assuming all operations are labeled

as competing). This is because the multiprocessor dependence chain from the write of A on P1 to the read of

A on P2 is upheld by the sufficient conditions for either PL1 and PL2, thus already requiring the write of A

on P1 to complete with respect to P3 before the read of A on that processor.

H.2 Implications of the Relaxed Termination Condition on Implemen-

tations

As discussed in Chapter 5, most hardware implementations end up naturally ensuring the termination for all

writes and write sub-operations. Therefore, Condition H.1 would not benefit most of these implementations.

However, there are a few hardware implementations that could exploit the more relaxed condition. For exam-

ple, consider implementations that aggressively exploit the early acknowledgement optimization described

in Section 5.4.1 whereby incoming invalidations and updates are only serviced when the processor enforces

a program order (delayed consistency implementations [DWB+91] use a similar optimization). With this

optimization, it is possible to build an implementation that supports the PL1 model, for example, and still

behaves aggressively for examples such as the one in Figure H.1 by allowing executions where the loop on

P3 does not terminate.
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The performance gains from exploiting the more aggressive termination condition in a hardware imple-

mentation are likely to be small, however. The main reason is that the less aggressive condition (Condition4.5)

can be supported quite efficiently. For example, even in an implementation such as the one described above,

the stricter semantics can be satisfied by guaranteeing that the incoming invalidation and update requests will

be periodically serviced (e.g., by flushing the incoming queue once in a while), even if the period is chosen to

be extremely long and non-deterministic. The semantics of the stricter condition may also be more desirable

for programs with non-synchronized accesses to data that are not properly-labeled for performance reasons

(see Section 3.6).

The relaxed semantics can be more beneficial for compiler optimizations, specifically optimizations

such as register allocation. With the conservative semantics, the compiler must treat non-competing reads

conservatively if it cannot determine that the read will only be executed a finite number of times. For example,

the read on P3 in the example from Figure H.1 cannot be register allocated with the conservative termination

condition (see Section 5.10.4). The more aggressive termination condition allows the compiler to always

register allocate non-competing reads even if there is potential for the read to execute an infinite number of

times.1

Finally, due to a subtle reason, most software distributed shared memory systems (see Section 5.6)

would not benefit from the relaxed termination condition. This is because the restrictions that are typically

placed on programs by such systems make it impossible to write a program that can distinguish between

Condition 4.5 and Condition H.1.2 This observation allows the implementation to exploit optimizations

enabled by Condition H.1, yet provide behavior that is indistinguishable from that of Condition 4.5 for all the

possible programs.

1Analogous to hardware implementations, it is possible to satisfy the conservative condition even when a location is register allocated
by periodically loading the value from memory into the register. However, generating the appropriate compiled code to achieve this can
be challenging.

2In other words, it is not possible to write a program with a competing label for some writes and a non-competing label for other
reads (or writes) to the same location.
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Appendix I

Aggressive Specifications for Various

System-Centric Models

This appendix presents the specification for various system-centric models using the framework described

in Chapter 4. In all cases, the set of conditions presented here are more aggressive than the original

specification for each model because we impose execution order constraints among competing sub-operations

only. However, these aggressive conditions are semantically equivalent to the original specifications of

these models; i.e., an implementation that obeys the aggressive conditions appears as if it obeys the original

conditions and vice versa. Consequently, for the programmer, the two sets of conditions are equivalent;

however, for the system designer, our conditions expose more aggressive implementations.

Chapter 4 already provides the specifications for SC, RCsc, and RCpc. This appendix provides specifica-

tions for the rest of the models: IBM-370, TSO, PC, PSO, WO, Alpha, RMO, and PowerPC. In addition, we

provide the specification for the extended versions of the models described in Section 4.4: TSO+, PC+, PSO+,

RCpc+, PowerPC+. Section I.2 describes how the reach relation is adapted to the system-centric models; this

condition is only relevant to the models that relax the read-write program order (i.e., WO, RCsc, RCpc, Alpha,

RMO, PowerPC, RCpc+, and PowerPC+). Finally, Section I.3 describes how the aggressive uniprocessor

correctness condition is adapted. The aggressive specifications for TSO, PC, PSO, and WO, along with proofs

of their equivalence to the original specifications have appeared in a previous technical report [GAG+93]

using a slightly different specification format; the proofs of equivalence for the other specifications are similar

in nature.

I.1 Aggressive Specification of the Models

Figures I.1-I.13 present the various aggressive specifications. The notation used to identify different types of

operations (e.g., synchronization and data operations in WO) is consistent with the notation used in Chapters 2

and 4.
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The original specification of the models are based on the following sources: IBM-370 [IBM83], TSO and

PSO [SFC91, SUN91], PC [GLL+90, GGH93b], WO [DSB86, Sch89], Alpha [Sit92], RMO [WG94], and

PowerPC [CSB93, MSSW94]. For simplicity, we only specify the behavior of read and write operations to

a single data granularity. Therefore, we do not capture the behavior of other operations such as instruction

fetches, operations to different data granularities (e.g, byte, word), or I/O operations specified by the original

specifications of some of the commercial models (i.e., Alpha, RMO, and PowerPC). In addition, we have

made the following assumptions since certain behaviors are not precisely defined by some of the original

specifications. The first assumption relates to the reach relation. The WO, Alpha, and PowerPC models do

not specify the reach condition and are therefore underspecified. The RMO model, on the other hand, defines

a conservative version of the reach condition; for example, all writes past a conditional branch are delayed

until the branch is resolved. For these models, we adopt the more formal and aggressive reach relation that

is described in Section I.2. For WO, we also assume the following: the cache coherence condition holds for

all writes, and the same location can be read and written by both synchronization and data operations.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
R

po
�! RW

W
po
�! W

Ws
po
�! R

W
po
�! Rs

W
po
�! FENCE

po
�! R

W
po
�! R where W and R conflict

X
spo
�! Y if X f

spo0

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! RW

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.1: Aggressive conditions for IBM-370.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

R
po
�! RW

W
po
�! W

W (in RMW)
po
�! R

W
po
�! RMW

po
�! R

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.2: Aggressive conditions for TSO.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

R
po
�! RW

W
po
�! W

define
sco
�!: X

sco
�! Y if X

co
�! Y

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

then X(i)
xo
�! Y(i) for all i.

Figure I.3: Aggressive conditions for PC.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

R
po
�! RW

W
po
�! STBAR

po
�! W

W (in RMW)
po
�! RW

W
po
�! STBAR

po
�! RMW

po
�! R

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.4: Aggressive conditions for PSO.
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define
spo
�!,

spo0

�!,
spo00

�! :

X
spo00

�! Y if X and Y are the first and last operations in one of
RWs

po
�! RWs

RW
po
�! RWs

RWs
po
�! RW

X
spo0

�! Y if X f
spo00

�! g f
rch
�! j

spo00

�! g* Y

X
spo
�! Y if X f

rch
�! j

spo00

�! g+ Y

define
sco
�!,

sco0

�!:
X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R1
co
�! W

co
�! R2 where R1,R2 are on the same processor

X
sco0

�! Y if X and Y are the first and last operations in R1
co
�! W

co
�! R2 where R1,R2 are on different processors

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W (or RW

po
�! RW)

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! f(A

sco
�! B

spo
�! ) j (A

sco0

�! B
spo0

�! )g+ RW

W
sco
�! R

spo0

�! f(A
sco
�! B

spo
�! ) j (A

sco0

�! B
spo0

�! )g+ R
then X(i)

xo
�! Y(i) for all i.

Figure I.5: Aggressive conditions for WO.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
X

po
�! MB

po
�! Y

W
po
�! WMB

po
�! W

X
spo
�! Y if X f

rch
�! j

spo0

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W (or RW

po
�! RW)

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

po
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.6: Aggressive conditions for Alpha.
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define
spo
�!,

spo0

�!,
spo00

�! :

X
spo00

�! Y if X and Y are the first and last operations in one of
R

po
�! MEMBAR(RR)

po
�! R

R
po
�! MEMBAR(RW)

po
�! W

W
po
�! MEMBAR(WR)

po
�! R

W
po
�! MEMBAR(WW)

po
�! W

X
spo0

�! Y if X and Y are the first and last operations in one of
W (in RMW)

po
�! MEMBAR(RR)

po
�! R

W (in RMW)
po
�! MEMBAR(RW)

po
�! W

X
spo
�! Y if X f

rch
�! j

spo0

�! j
spo00

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.7: Aggressive conditions for RMO.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

X
po
�! SYNC

po
�! Y

define
sco
�!: X

sco
�! Y if X

co
�! Y

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W (or RW

po
�! RW)

coherence: W
co
�! W

multiprocessor dependence chain: one of
RW

spo
�! fA

sco
�! B

spo
�! g+ RW

reach: R
rch
�! fW

co0

�! R
rch
�! g+ W

then X(i)
xo
�! Y(i) for all i.

Figure I.8: Aggressive conditions for PowerPC.
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define
spo
�!,

spo0

�!,
spo00

�! :

X
spo00

�! Y if X,Y are the first and last operations in one of
R

po
�! RW

W
po
�! W

W
po
�! MEMBAR(WR)

po
�! R

X
spo0

�! Y if X,Y are the first and last operations in one of
W (in RMW)

po
�! R

X
spo
�! Y if X f

spo0

�! j
spo00

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.9: Aggressive conditions for TSO+.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

R
po
�! RW

W
po
�! W

W
po
�! Fence

po
�! R

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W atomic

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W atomic
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.10: Aggressive conditions for PC+.
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define
spo
�!,

spo0

�!,
spo00

�! :

X
spo00

�! Y if X,Y are the first and last operations in one of
R

po
�! RW

W
po
�! STBAR

po
�! W

W
po
�! MEMBAR(WR)

po
�! R

X
spo0

�! Y if X,Y are the first and last operations in one of
W (in RMW)

po
�! RW

X
spo
�! Y if X f

spo0

�! j
spo00

�! g+ Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

W
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.11: Aggressive conditions for PSO+.
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define
spo
�!,

spo0

�!:

X
spo0

�! Y if X and Y are the first and last operations in one of
Rc

po
�! RWc

Wc
po
�! Wc

Wc
po
�! Fence

po
�! Rc

Rc acq
po
�! RW

RW
po
�! Wc rel

X
spo
�! Y if X f

rch
�! j

spo0

�! g+ Y

define
sco
�!,

sco0

�!: X
sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R1
co
�! W

co
�! R2 where R1,R2 are on the same processor

R
co
�! Wc atomic

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to write sub-operations for all competing writes.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W

coherence: W
co
�! W

multiprocessor dependence chain: one of
W

co
�! R

spo
�! RW

RW
spo
�! fA

sco
�! B

spo
�! g+ RW

Wc atomic
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

then X(i)
xo
�! Y(i) for all i.

Figure I.12: Aggressive conditions for RCpc+.
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define
spo
�!: X

spo
�! Y if X and Y are the first and last operations in one of

X
po
�! SYNC

po
�! Y

define
sco
�!: X

sco
�! Y if X and Y are the first and last operations in one of

X
co
�! Y

R
co
�! W atomic

co
�! R

Conditions on
xo
�!:

(a) the following conditions must be obeyed:
Condition 4.4: initiation condition for reads and writes.
Condition 4.5: termination condition for writes; applies to all write sub-operations.
Condition 4.6: return value for read sub-operations.
Condition 4.7: atomicity of read-modify-write operations.

(b) given memory operations X and Y, if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW

po
�! W (or RW

po
�! RW)

coherence: W
co
�! W

multiprocessor dependence chain: one of
RW

spo
�! fA

sco
�! B

spo
�! g+ RW

W atomic
co
�! R

spo
�! RW

W atomic
sco
�! R

spo
�! fA

sco
�! B

spo
�! g+ R

reach: R
rch
�! fW

co0

�! R
rch
�! g+ W

then X(i)
xo
�! Y(i) for all i.

Figure I.13: Aggressive conditions for PowerPC+.
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I.2 Reach Relation for System-Centric Models

The reach relation used for the system-centric models is virtually identical to the relation formalized in

Appendix F for the PL models. The only differences are in Definition F.2(d) and Definition F.3(a) which must

be customized for the system-centric models.

Definition F.2(d) can be customized as follows: “X
po
�!Y or X is the same as Y in E. Further, X generates

a read R within a loop and Y generates an operation O (different from R) such that R
rpo
�!+ O. The read R

must be a synchronization read in WO, a competing read in RCsc or RCpc (or RCpc+), and any read in Alpha,

RMO, or PowerPC (or PowerPC+).”

The definition of the
rpo
�! relation (Definition F.3) must also be customized for each model. Definition

F.3(a) can be customized as follows: “X’
spo
�!- Y’ in E”. The

spo
�!- relation represents the

spo
�! relation for a

given model minus the reach relation in the case of WO, RCsc, RCpc (and RCpc+), Alpha, and RMO.1 For

example, for RCpc, the
rpo
�! relation is as follows. Let X and Y be instruction instances and let X’ and Y’ be

memory operations corresponding to X and Y respectively. X
rpo
�! Y if X’ f

spo
0

�! g+ Y’ (i.e.,
spo

0

�! as defined

in Figure 4.20 in Chapter 4), or if X’ and Y’ conflict and X’
po
�! Y’.

I.3 Aggressive Uniprocessor Correctness Condition for System-Centric

Models

The original specifications of the system-centric models do not explicitly state whether they assume the

conservative or aggressive uniprocessor correctness condition. We believe that except for SC, the intent of

the remaining models can be captured with the more aggressive uniprocessor correctness condition if one

additional condition is enforced. The additional condition should ensure the following two properties:

1. For certain classes of well-behaved programs (e.g., properly-labeled programs), the model should

appear sequentially consistent.

2. Consider any pair of shared-memory instructions X’ and Y’ from the same processor where X’ is

before Y’ in the control flow graph of the processor. If the original specification of the model requires

sub-operations of instances of X’ to execute before those of Y’, then the new condition should ensure

that only a finite number of instances of X’ are ordered by program order before any instance of Y’.

This condition is formalized below as ConditionI.1 and is called the infinite execution condition. Parts (a),

(b), and (c) of the condition cover property (1) above and part (c) also covers property (2) above. Definition

I.1 is the same as Definition G.1 in Appendix G. Definition I.2 is particular to system-centric models and is

used in Condition I.1(c) to satisfy property (2) above.

Definition I.1: Loop
A loop in a control flow graph refers to a cycle in the control flow graph. A loop L does not terminate in an
execution iff the number of instances of instructions from loop L in the execution is infinite.

1Removing the reach relation is important since otherwise there would be a circularity in the specification since we use
spo
�! to define

rch
�! through

rpo
�! and

spo
�! itself uses

rch
�!. The reach condition is specified in a more aggressive way in PowerPC and is therefore not

merged with the
spo
�! relation.
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}

while (1) { C = 1;}

P = 1;

if (A==0) {

P1

A = 1;

B = 1;

P2

while (B==0);

P3

if (P==1)

D = 1;

Figure I.14: Example illustrating the infinite execution condition.

Definition I.2: Infinite Execution Order (
ieo
�!)

Let X and Y be two shared-memory instruction instances in an execution E, with X’ and Y’ being the
corresponding memory operations.

If E is an execution on an IBM-370 system, then X
ieo
�! Y iff X’

spo
�! Y’.

If E is an execution on a TSO system, then X
ieo
�! Y iff X’=R

po
�! Y’=RW or X’=W

po
�! Y’=W.

If E is an execution on a PC system, then X
ieo
�! Y iff X’

spo
�! Y’.

If E is an execution on a PSO system, then X
ieo
�! Y iff X’=R

po
�! Y’=RW or X’=W

po
�! STBAR

po
�! Y’=W.

If E is an execution on a WO system, then X
ieo
�! Y iff X’ f

spo00

�! g+ Y’.

If E is an execution on a RCsc system, then X
ieo
�! Y iff X’ f

spo00

�! j
spo000

�! g+ Y’.

If E is an execution on a RCpc or RCpc+ system, then X
ieo
�! Y iff X’ f

spo0

�! g+ Y’.

If E is an execution on an Alpha system, then X
ieo
�! Y iff X’ f

spo0

�! g+ Y’.

If E is an execution on a RMO system, then X
ieo
�! Y iff X’ f

spo00

�! g+ Y’.

If E is an execution on a PC+ system, then X
ieo
�! Y iff X’ f

spo
�! g+ Y’.

If E is an execution on a TSO+ or PSO+ system, then X
ieo
�! Y iff X’ f

spo00

�! g+ Y’.

Condition I.1: Infinite Execution Condition
Consider an execution E of program Prog that contains instruction instance j of instruction j’.
(a) If loop L does not terminate in some SC execution, then the number of instances of instructions in E that are
from loop L and that are ordered by program order before j is finite if j is a write instruction instance.

(b) The number of instruction instances that are ordered before j by
rch0

�! in E is finite (i.e., for models that have
rch0

�! defined: WO, RCsc, RCpc, Alpha, RMO, PowerPC, RCpc+, and PowerPC+). By definition, j is a write
instruction instance.
(c) The number of instruction instances that are ordered before j by

ieo
�! in E is finite. This clause does not

apply to the PowerPC and PowerPC+ models.

Figure I.14 shows an example to illustrate the use of Condition I.1(c) which is particular to the system-

centric models. Assume the WO model with only the write of C and write of P on P2 labeled as synchronization

operations. Note that more operations would have been labeled as synchronization for a port of a properly-

labeled version of this program to WO. P3 would never execute the write to D on P3 in any WO execution

according to the original specification of WO. However, this write may get executed if we allow the write to

P to occur on P2 before its preceding while loop ends. This is disallowed by Condition I.1(c), but would have

been allowed by Conditions I.1(a) and (b) alone.
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Appendix J

Extensions to Our Abstraction and

Specification Framework

We begin by clarifying some of the simplifying assumptions we made in Chapter 4 about the notion of result

for an execution. Section J.2 considers the issues that arise in modeling external I/O devices. Section J.3

describes other event types, such as instruction fetches, that may also need to be modeled. We describe the

steps that are required to incorporate extra events into our framework in Section J.4. Finally, Section J.5

describes a potentially more realistic notion of result that attempts to incorporate the larger set of events.

Chapter 5 and Appendix Q further describe implementation issues with respect to I/O operations, instruction

fetches, and multiple granularity data operations.

J.1 Assumptions about the Result of an Execution

The definition for result should capture sufficient behavior for an execution to include the aspects that a

programmer would consider as the outcome of a program. Yet, we want to exclude other behavior so

as to allow flexibility in specifications and implementations. The simple notion of result introduced by

Definition 4.6 in Section 4.1.1 is useful for isolating the behavior of shared memory operations. Nevertheless,

it fails to capture the behavior of events such as I/O operations. Below, we describe how making additional

aspects of an execution visible to the programmer fundamentally changes the basic notion of result and

assumptions about equivalence between specifications. Many of the issues discussed apply to uniprocessor

systems as well.

Our simple notion of result consists of the values returned by the read operations that occur in a given

execution. This notion provides us with substantial freedom in reordering memory operations, and as long

as the reads in the execution return the same values as with a more conservative system, the aggressive and

conservative systems are considered to be equivalent. One example of this is the aggressive conditions for

SC, shown in Figure 4.7, whereby orders are imposed among conflicting operations only. A more dramatic
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(a)

a1:

b1:

c1:

d1:

A = 1;

B = 1;

u = B;

v = A;

a1:

b1:

c1:

d1:

B = 1;

u = B;

A = 1;

v = A;

(b)

Figure J.1: Illustrating memory operation reordering in uniprocessors.

example is the aggressive conditions for properly-labeled programs (e.g., Figure 4.14 for PL1) which allow a

large number of reordering optimization and yet guarantee sequentially consistent results for such programs.

The situation is quite similar for uniprocessors. The optimizations exploited in uniprocessors depend on

the assumption that the result of executing a program on a conservative system that strictly maintains the

sequential order among all memory operations is the same as executing the program on an aggressive system

that maintains the sequential order among conflicting operations only.

The equivalences discussed above do not necessarily hold if we allow programmers to observe additional

characteristics of an execution beyond the values returned by read operations. In effect, additional knowledge

about the execution may enable the programmer to partially or fully reconstruct the actual execution order

among memory operations. With this information, programmers can trivially distinguish executions on the

conservative and aggressive systems discussed above. Consider the uniprocessor example in Figure J.1(a).

Figure J.1(b) shows a legal transformation of the program that may arise due to either dynamic reordering

in hardware or static reordering by the compiler. If we consider the values returned by read operations, the

possible results for the two program segments are identical (i.e., (u,v)=(1,1)). However, the order in which

memory locations are modified is clearly different in the two programs, making it possible to distinguish the

executions if this order is either directly or indirectly observable.

There are numerous ways in which programmers may be able to partially reconstruct the actual execution

order for an execution in either uniprocessor or multiprocessor systems. For example, the ability to monitor

the contents of memory allows the programmer to infer the actual order among memory writes. Referring

back to the program segments in Figure J.1, this makes it easy to determine whether the writes to locations A

and B are reordered. A programmer may be able to monitor memory contents under a number of scenarios.

For example, most debuggers allow the programmer to single step a program and examine the contents of

registers and memory. For this reason, debugging is often done with unoptimized code even in uniprocessors

since the reordering optimizations done by the compiler may no longer be transparent. In actual runs of the

program, paging activity can indirectly provide snapshots of memory contents for the pages that are pushed

to disk, even though programmers typically do not have default access to the swap data on disk. Hardware

monitors may also allow the order of writes to memory to be observed. Any of these approaches enable the

programmer to distinguish among executions even if the return values for read operations are identical.

Figure J.2 shows a multiprocessor example where having an accurate measure of real time allows the

programmer to observe anomalies. Assume a conceptual implementation that provides an accurate time for

when an operations is issued and when it is considered to be complete (i.e., when the processor issues the next

operation). For example, according to the time bars shown in the figure, the write to A on P1 is considered
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P1

b1:

a1: A = 1;

B = 1;

P2

a2: u = A;

t1

t4

t3
t2

Figure J.2: An example multiprocessor program segment.

complete at time t1 and the read of A on P2 is initiated at time t3. A programmer who is aware of such actual

timing may naturally expect the read of A to return the value 1. However, even the sequential consistency

model allows the value of 0 to be returned for the read of A, regardless of the actual timing of operations.

Another way programmers may observe anomalies is if there is an independent means of communication

among the processors. For example, P1 may signal P2, through a mechanism separate from memory, when it

initiates the write to B. If P2 observes this signal in an execution before it actually initiates its read of A, then

the return value of 0 would again seem anomalous even though it is allowed under sequential consistency. The

above examples show that the equivalence among specifications and implementations is heavily dependent

on what is considered to constitute the result of an execution.

Even though our simple notion of result has many merits, it also has some shortcomings that we describe

below. The most serious shortcoming is that the simple notion does not fully encompass a pragmatic notion

of result as understood by the programmer. For example, external input and output are not included in

the event types even though external output operations are often considered as part of the outcome for the

program by a programmer. Similarly, the final value of some memory locations may be considered as part

of the execution outcome by the programmer (e.g., these values may be saved to disk), but are not included

in our simple notion of result.1 The other shortcoming of our simple notion of result is that it can capture

excess behavior; programmers often do not consider (or cannot observe) the value for each and every read

operation as part of the execution outcome. Including the return value of all reads in the notion of result

can therefore exclude certain desirable optimizations. For example, common compiler optimizations, such

as register allocation, common subexpression elimination, and hoisting loop invariants, have the effect of

eliminating some read operations. Other compiler or hardware optimizations, such as speculative execution,

may introduce extra read operations into the execution. Another example is the optimization allowed by the

PL3 model for synchronization loops where operations issued by unsuccessful iterations of the loop must be

ignored for achieving equivalence with sequential consistency (refer back to Section 3.2.3).

We will discuss a more realistic notion of result in Section J.5 after discussing various extra events that

may need to be incorporated into the system abstraction.

J.2 External Devices

This section describes the issues that arise in modeling external input and output devices. We begin by

discussing external input and output operations whose effect can be an important part of what a programmer

1One possible way to include the latter issue in the notion of result is to assume that every program is augmented with reads of all
memory locations after the original program is complete.
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perceives as the outcome of an execution. We next consider the issues that arise when external devices are

allowed to directly access main memory.

External Input and Output Operations

External input and output operations are commonly used to communicate with user input and output devices

(e.g., keyboard, terminal) and other external devices such as disk or network controllers. Depending on the

architecture, I/O operations are either encoded as special instructions or are generated by issuing ordinary

read and write memory operations (typically uncached) to a predesignated address space (referred to as

memory-mapped I/O). Due to the common use of memory-mapped I/O, external input and output operation

are often referred to as I/O read and I/O write, respectively. The effect of an external output operation, or I/O

write, is to change the state at its target external device. Similarly, an external input operation, or I/O read,

returns a value representing a certain state at the target external device. In some cases, I/O reads may also

modify state at the external device, thus functioning like a read-modify-write.

Even though I/O operations may appear similar to memory operations, their behavior and semantics can

be quite different. First, the functionality achieved by an I/O operation can be quite complex. For example,

an I/O write to a given device may enqueue its value at the tail of an internal queue on the device, while a

subsequent I/O read dequeues and returns the value at the head of this queue. In other cases, an I/O read may

return a value that is unrelated to previous I/O writes to the device (e.g., I/O read that returns the character

typed at the keyboard). Therefore, optimizations that are common for memory operations, such as merging

two writes to the same address into a single write or forwarding the value of a write to a later read to the

same address, can easily violate the intended semantics for many I/O operations. Second, the order of I/O

operations to different addresses can be important. For example, an I/O write to one address may potentially

affect the value returned by an I/O read to a different address. Therefore, unlike ordinary memory operations,

maintaining order among conflicting I/O operations may not be sufficient for guaranteeing correct behavior.

Third, the programmer may be able to infer the actual execution order for certain I/O operations. In some

cases, this order is directly observable in real time (e.g., print statements to a terminal). In other cases, it may

be possible to reconstruct the order because of the semantics of the operations (e.g., consider I/O writes whose

values are sequentially saved on disk). This further emphasizes the importance of avoiding optimizations

such as merging operations to the same address and maintaining the appropriate order among I/O operations

to different addresses.

The above issues affect the specification methodology for both uniprocessor and multiprocessor systems.

Figure J.3 shows several examples to illustrate this. Examples (a)-(b) correspond to the uniprocessor case.

Each I/O location is identified by an identifier and a device number. For example, io(A,dev1) refers to the

location identified by A on device dev1. Figure J.3(a) illustrates a uniprocessor example with I/O operations

to different locations on the same device. Maintaining the program order among these non-conflicting

operations may be important; for example, the I/O write to A may affect the return value for the I/O read to B.

Figure J.3(b) shows a couple of program segments with I/O operations to separate devices. The example on

the left hand side shows two consecutive I/O writes to separate devices. Maintaining the order among such

writes may be important; the writes may be to two output devices that are monitored by the user during the

execution of the program. This example illustrates how uniprocessors may exhibit multiprocessor effects due

to the fact that I/O operations are sometimes visible to the user. Maintaining order among I/O operations to
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(a) non−conflicting operations

a1:

b1:

io(A,dev1) = 1;

io(B,dev2) = 1;

(b) operations to different devices

a1:

b1: u = io(B,dev1);

io(A,dev1) = 1;

io(B,dev2) = 1;

a1:

b1:

c1:

io(A,dev1) = 1;

while (io(Status,dev1) == 0);

P1

a1:

b1:

A = 1; a2:

b2:

P2

u = A;io(B,dev1) = 1;

io(B,dev1) = 2;

(c) behavior in multiprocessors 

Figure J.3: Examples illustrating I/O operations.

separate devices is typically more difficult and often less efficient than maintaining order among operations to

the same device. Some systems may require an explicit mechanism for enforcing this order, such as reading

the status from one device to ensure the completion of operations destined to it before issuing an operation to

a different device. An example of this is shown in the right hand side of Figure J.3(b), where we assume a

non-zero return value for the read of Status on the first device signifies that previously issued I/O operations

have completed with respect to the device.

Finally, Figure J.3(c) shows an example of how I/O operations may influence the specification of mul-

tiprocessor memory behavior. The program segment shows P1 writing to A followed by an I/O write to an

output device and P2 doing another I/O write to the device before reading A. Assume an execution where the

user observes the I/O write from P1 before the I/O write from P2. Serial semantics will lead the user to expect

the read of A to return the value of 1. However, this suggests that memory behavior depends on the order

of I/O operations. Similarly, the behavior of I/O operations may depend on the order of memory operations;

for example, memory operations may be used to synchronize access to a device by ordering I/O operations to

that device from multiple processors.

To achieve higher performance, many designs, including uniprocessors, forgo serial semantics among I/O

operations or between I/O and memory operations. The exact order maintained among I/O operations, and

between I/O and memory operations, are often specified in an implementation-dependent manner. Similarly,

mechanisms for enforcing extra orders are often implementation-dependent.

Memory Operations by External Devices

In addition to servicing I/O operations, some I/O devices have the ability to directly perform read and write

operations to memory. For example, disk and network controllers may directly move data between physical
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A = 1;

B = 1;
 . . .

e1:

f1:

io(Ready,dev1) = 1;

 . . .

observe Ready set

access memory

set Done
while (io(Done,dev1) == 0);

Figure J.4: Synchronization between a processor and an I/O device.

memory and the disk or network. The ability to directly operate on memory introduces many processor-like

behaviors for I/O devices which need to be modeled appropriately to capture the behavior of a realistic system.

Memory access by an I/O device may either be synchronous or asynchronous with respect to the program

execution (analogous to exceptions versus interrupts). The scenario shown in Figure J.4 corresponds to a

synchronous access since it is initiated by the program (e.g., as in initiating a write to disk). On the other hand,

paging activity to disk for supporting virtual memory is an example of asynchronous access to memory since

it is not explicitly initiated by the program. Regardless of whether the memory access by an I/O device occurs

synchronously or asynchronously, such accesses are virtually always synchronized. That is, the processor

and the I/O device coordinate their accesses to memory to avoid simultaneous conflicting operations. This

synchronization may be in the form of either special I/O operations (e.g., I/O write to initiate a transfer to

disk) or memory operations (e.g., network controller may set a flag in memory to signify completion of a

transfer). Figure J.4 shows an example of such synchronization, where a processor signals the I/O device

to access memory by performing an I/O write and waits for the device to signal completion by polling on a

different I/O location. Even though the example corresponds to a uniprocessor system, the presence of the I/O

device makes the behavior of the system multiprocessor-like since the program order relationship between

memory operations and the I/O operations becomes significant.

One of the subtle issues that arises with respect to asynchronous memory operations by I/O devices is

whether they should be included as part of the result of a program. For example, when a disk controller is

invoked to read and transfer the contents of memory page as part of the operating system’s paging activity,

the values read represent a snapshot of the memory contents at a point in the execution. Such a snapshot

of memory can unveil many of the reordering optimizations that take place even in uniprocessor systems

(e.g., compiler optimizations such as code motion and register allocation). Therefore, considering such

asynchronous snapshots of memory as part of the result would disallow many of the reordering optimizations

if we want to provide sequential semantics. For this reason, such snapshots are often excluded from the

definition of the result, especially since they are often not directly visible to the programmer.

J.3 Other Event Types

This section describes other event types, aside from I/O operations, that may need to be included in the

specification of a real system, in addition to issues that arise with respect to each event.
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Figure J.5: Multiple granularity access to memory.

Instruction Fetches

The first type of event is instruction fetch or read from the instruction space. Modeling instruction fetches is

important if the system allows dynamic code modification. This issue arises in uniprocessor systems as well.

Ideally, an instruction fetch should be simply treated as an extra memory read operation that is issued by

the instruction. Therefore, maintaining sequential semantics would imply that the value returned by the read

should correspond to the last write to the location in program order. However, most uniprocessor systems

sacrifice the sequential semantics for read and write operations to the instruction space in order to achieve

higher performance. Optimizations such as instruction prefetching and pipelining, separate instruction and

data caches, issuing multiple instructions in the same cycle, and the out-of-order issue of instructions can

lead to the possibility of temporarily stale copies of instructions being fetched and executed. Therefore, a

write to the instruction space may not be reflected in instruction fetches that immediately follow it in program

order.2 As a result, the programmer is exposed to the non-sequential semantics. Ensuring correct behavior

often requires adding a set of architecture or implementation-specific operations, such as a fence instruction,

that delay future instruction fetches and flush stale instruction copies.

Atomicity Relation among Events

The framework presented in Chapter 4 deals with three atomic operations: a read, a write, and a read-

modify-write to a single address, all with the same granularity of access to data. In general, a system may

define a larger set of memory operations with varying access granularities and atomicity constraints. By

far the most common feature is to support multiple granularity read and write operations. For example, the

Alpha architecture supports atomic read and write operations to consecutive one, two, four, or eight byte

regions [SW95]. We briefly discuss the issues in capturing the behavior of multiple granularity operations

below.

Consider the two examples in Figure J.5. Assume operations in Figure J.5(a) are at a four byte granularity,

and that locations A and B lie within an aligned eight byte boundary. Figure J.5(b) shows a similar code

segment except the operations on P2 appear as an atomic eight byte read operation. Under sequential

consistency, the outcome (u,v)=(0,1) is legal for the example on the left, but is not allowed for the example

on the right since the read operations to A and B must appear atomic.

Our specification methodology is general enough to incorporate the type of multiple granularity operations

discussed above. There are numerous ways in which this can be achieved; we briefly discuss one option

2Capturing this effect is simple within our framework. For an instruction fetch I, the initiation condition can be relaxed to not require

Winit(i)
xo
�! Iinit(i) given W

po
�! I. In addition, uniprocessor dependence would not constrain W(i)

xo
�! I(i) in the above case. This

allows the instruction fetch to return the value of an older write.
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below. First, we need to introduce multiple granularity operations into the operation set. Sub-operations are

still modeled at the lowest granularity. For example, assume a system with word and double-word operations.

A double-word operation consists of two sets of sub-operations, one set for each word boundary. Second,

we must extend the notion of conflict to larger granularity operations; two operations are considered to

conflict if any of the constituent sub-operations conflict. Third, we must provide explicit conditions, similar

to Condition 4.7, to capture the atomicity relation among the sub-operations of a larger granularity operation.

As with our current specifications, chains such as the multiprocessor dependence chain are defined among

conflicting operations while the implied constraints can be defined on conflicting sub-operations. Constraining

the execution order only among conflicting sub-operations makes the specification more challenging. To

capture the behavior of larger granularity operations, we may need to increase the number of chains in the

specification. For example, consider the code segment in Figure J.5(b) under sequential consistency. Each of

the word writes on P1 conflicts with the double-word read on P2. However, the writes on P1 do not conflict

with one another. Therefore, we may require an explicit chain of the form W1
po
�! W2

co
�! R to disallow the

outcome (u,v)=(0,1). This type of a chain is implicit in specifications with single granularity operations since

W1 and W2 would have to be conflicting (i.e., given W1 conflicts with R and W2 conflicts with R) and the

uniprocessor dependence and value conditions along with the transitivity of
xo
�! would end up appropriately

constraining the execution order between the sub-operations of W1 and R.

Operations to Private Memory

The framework presented in Chapter 4 treats memory as a single shared address space. Nevertheless, some

programming languages may allow the programmer to distinguish between shared and private memory, with

private memory locations only accessible to a single process or thread. Because private memory locations

are not read and written by multiple processes, operations to such locations need not obey the same strict

ordering constraints as for shared memory locations. In fact, the necessary constraints are analogous to

uniprocessor memory operations; conflicting operations from the same process must appear to execute in

program order. Exploiting the distinction between private and shared memory operations can potentially lead

to higher performance if (i) the relative frequency of private memory operations is significant, and (ii) the

base memory consistency model imposes strict ordering constraints on the shared memory operations (e.g.,

a model such as SC). Furthermore, the fact that only a single processor needs to access a private memory

location at any time may be useful for customizing the coherence protocol for private memory operations.

Consider the example in Figure J.6(a). By convention, private memory locations are appended with

a “p” (e.g., pX). Assume a typical sequentially consistent system. Without distinguishing private and

shared memory operations, the system would conservatively service one memory operation at a time. By

distinguishing private memory operations, the system can treat such operations less conservatively by only

maintaining the order among conflicting operations (i.e., between (b1) and (e1)). Furthermore, the program

order between shared and private memory operations need not be maintained.

Even though a private memory location is accessed by a single process, process migration effectively

allows more than one processor to access the location and may also lead to multiple copies of the location. To

uphold the correct semantics for private memory locations, we need to ensure a consistent view of the private

memory as processes are migrated. As we will see below, issues such as efficient and transparent support for

process migration may reduce the incentive for distinguishingbetween private and shared memory operations.
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while (Flag ==0);
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Figure J.6: Interaction of private memory operations and process migration.

Figure J.6(b) shows the same program as in Figure J.6(a), except the process is migrated from P1 to

P2 during its execution; this is shown as an interrupt on P1 to preempt the processor, along with a flag

synchronization to signal the fact that the process is ready to move to P2. As a result of the migration,

location pX is written by P1 and read by P2. Nevertheless, to provide transparent migration, the read to pX

on P2 must still return the value of 1. A system that distinguishes between private and shared operations

may require extra mechanisms to ensure transparent migration. For example, the private memory for a

process has to be accessible from any processor, even though at any one time only a single processor will

be accessing it. Similarly, migrating the process may result in multiple copies of private locations; these

multiple copies must either be eliminated or must be kept coherent. One way to support process migration

is to wait for all private memory operations to complete, flush any private memory locations associated from

the process from the current processor’s cache, migrate the private memory pages associated with the process

to the target processor’s node, and finally resume the process at the target process. Unfortunately, the cost

of process migration can become quite large under such a scheme. At the other extreme, a consistent view

is trivially guaranteed if we treat private memory operations the same as shared memory operations, and

process migration can be supported much more efficiently in this way.3 Therefore, there can be a trade-off

between the performance gains from distinguishing between private and shared memory operations and the

cost incurred for process migration.

Overall, most existing systems do not exploit the distinction between private and shared memory oper-

ations. Treating private and shared memory operations differently incurs hardware support and complexity.

At the same time, the gains from making this distinction are less significant if the shared memory model is

already relaxed since much of the reordering optimizations are already allowed for shared memory operations.

Finally, making this distinction can potentially sacrifice efficient process migration.

Address Translation

Another event that is relevant to memory operations and instruction fetches is address translation. To support

virtual memory, every instruction fetch and every memory operation can potentially require a translation

of its address. The appropriate sequential semantics for address translation would be that any modification

3Section 5.7.1 in Chapter 5 describes the requirements with respect to shared memory operations for supporting transparent process
migration.
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to the translation should be reflected in subsequent translations. However, due to the various pipelining

optimizations, even uniprocessor systems may not maintain this semantics and may require the use of special

instructions to guarantee the serial behavior.

The interpretation of addresses is also important for determining whether two operations reference the

same logical location (e.g., for determining whether two operations conflict). For virtual addresses, it is

possible for two distinct addresses to refer to the same logical location. This sort of aliasing is not an issue

with physical addresses. However, dealing with physical addresses requires including the behavior of I/O

devices. For example, paging can cause a given logical location to be moved from one physical address to

disk and back to a different physical address.

Exceptions and Other Miscalleneous Events

Another class of relevant events are exceptions. There are various types of exceptions, some related to integer

and floating point operations and others related to memory operations. For example, an exception may occur

during address translation if the translation is not readily available (e.g., TLB or page miss). Another class

of exceptions related to memory operations are parity or ECC errors during cache or memory accesses. An

important issue is whether the system provides support for precise exceptions. For efficiency reasons, most

architectures do not provide precise exception semantics for every exception, e.g., an ECC error on write

operations. Therefore, the programmer may again be exposed to the non-sequential behavior of such events

even in uniprocessors.

There are other miscalleneous events that may also be of interest in other types of systems. For example,

in a system that provides a stable storage facility, it may be important to know when write operations are

committed to memory as opposed to simply guaranteeing the appropriate order among writes. Therefore, it

may be important to model the actual committing of the write to memory.

J.4 Incorporating various Events into Abstraction and Specification

In addition to memory reads and writes issued by the processors, we have discussed a variety of other events

that may need to be incorporated in a complete specification of a system. Below, we briefly enumerate

the types of changes that are required for incorporating the larger set of events within our abstraction and

specification methodology.

First, the abstractions for a shared-memory system and a shared-memory program (Definitions 4.1 and

4.2) need to be generalized to incorporate the various events. We also need to provide an abstraction for each

type of event, similar to the abstraction presented for memory reads and writes in Section 4.1.3. For example,

the abstraction for instruction fetches or operations to private memory may be identical to that of memory

operations. We can use a similar abstraction to model memory operations issued by I/O devices. On the

other hand, I/O operations issued by the processor may require a different abstraction. The issue of multiple

copies is not present for I/O operations, allowing us to model I/O writes as a single as opposed to multiple

sub-operations. In addition, the semantics for I/O operations is different from typical read and write memory

operations. Finally, events such as address translations or exceptions also need to be modeled.

Second, the notion of result needs to be clearly defined and needs to incorporate all events of interest.

For example, the effect of I/O operations needs to be incorporated in the notion of result. Furthermore, the
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manner in which events are incorporated into the notion of result determines the flexibility in constraining

orders among such events for maintaining equivalent results.

Third, we need to generalize the components of an execution (e.g., Definition 4.11) to include the various

events and to define the relevant relations such as program order and execution order among them. The

execution order relation needs to be defined as a total order on all events (for example, ordering memory

operations with respect to other memory or I/O operations). Similarly, the program order relation needs to

be defined among the relevant events, again possibly relating events of different types with respect to one

another.

Finally, the conditions that impose constraints on the execution order need to be extended to impose the

appropriate orders among the various events. As discussed above, the execution order becomes a total order

on all events. To maintain aggressive implementations, it is important to constrain execution order among

as few events as possible. For most specifications, it should be possible to constrain the execution order

among events of the same type, thus avoiding execution order constraints on events of different types. For

memory operations, we can continue to constrain execution order among conflicting operations only, unless

the notion of result is radically changed. For I/O operations, however, ordering constraints may in general

be required for operations to different locations due to the non-memory-like semantics. Furthermore, chains

that capture the order among events need to be generalized to include different types of events. For example,

memory operations may be used to order I/O operations (e.g., to synchronize access to an I/O device) and

I/O operations may be used to order memory operations (e.g., for synchronizing accesses to memory by I/O

devices).

J.5 A More Realistic Notion for Result

The notion of result can be made more realistic once I/O devices are fully incorporated into the abstraction

and specification of a model. Programmers may observe the effects of some I/O operations, such as output to

a terminal. In addition, some of the values returned by memory reads issued by I/O devices may be observable

by the programmer; for example, an I/O device like the disk controller may read various regions of memory

and save the contents on disk for later retrieval. In many cases, the above two things form a complete notion

of the result for the programmer. Therefore, one possibility is to define the notion of result as consisting of

the sequence of certain I/O operations issued by the processors plus a subset of the return values for memory

reads issued by the I/O devices.

J.6 Summary on Extensions to Framework

This appendix explored the issues that arise in modeling a more general set of events in addition to read and

write memory operations. Many of the issues discussed are not particular to multiprocessors and apply to

uniprocessors as well. Furthermore, even in the context of uniprocessors, maintaining sequential semantics

for some types of events (e.g., I/O operations) is sacrificed for purposes of efficiency. In addition, the behavior

of the more general set of events is often not precisely defined. Fortunately, only a few programmers need to

deal with the semantics of the more general set of events. While it is possible to incorporate various events

into our specification methodology, the remaining question is what the ordering semantics should be on such
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events; this is closely related to the notion of result that is assumed by programmers.
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Appendix K

Subtle Issues in Implementing Cache

Coherence Protocols

Designing a correct and efficient cache coherence protocol for a large scale shared-memory system can be

reasonably challenging. A number of cache coherence protocol designs have been described in previous

publications (e.g., [Len92, CKA91]). This appendix briefly reviews some of the more subtle aspects in de-

signing such protocols, primarily based on our experience with the DASH [LLG+90] and FLASH [KOH+94]

protocols.

One of the big challenges is to implement an efficient cache coherence protocol while still maintaining

correctness. From a performance point of view, it is important to reduce the latency and number of messages

associated with servicing each memory operation in addition to minimizing serializations in the protocol.

Furthermore, since most systems are built around commercial processors, the design of the cache coherence

protocol among different processors is typically influenced by protocol decisions that have been made for

maintaining coherence within the processor cache hierarchy. The difficulties on the correctness side arise

from two sources: (a) the distribution of the protocol state information makes it practically impossible to

atomically access and modify the global state associated with a given memory line, and (b) the presence of

multiple paths within the network leads to minimal message ordering guarantees. In addition, the protocol

must ensure deadlock-free and livelock-free operation (most protocols do not attempt to alleviate starvation).

This appendix begins by briefly discussing protocol deadlock issues. The remaining parts of the appendix

primarily focus on interactions of operations to the same cache line. We provide several examples of transient

or corner cases that arise due to the distributed nature of the protocol. In addition, we describe issues related

to serializing simultaneous operations to the same line, cross checking messages on incoming and outgoing

paths, and maintaining point-to-point ordering among specific messages.
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Figure K.1: A transient write-back scenario.

K.1 Dealing with Protocol Deadlock

Protocol deadlock may arise from circular dependencies among resources, and such dependencies can arise

at many levels within a cache coherence protocol. A simple example of a circular dependences involves two

processors issuing requests to each other’s caches; deadlock can arise if each cache waits for its reply before

servicing its requests. As we discussed in Section 5.2, the buffering and handling of messages within the

cache hierarchy and in the network is another potential source of circular dependences. A common solution

to this problem is to separate request and reply messages and to use logically different paths (either separate

virtual or separate virtual lanes) for transferring such messages within the network and cache hierarchy. A

consequence of this solution is that even point-to-point ordering is not guaranteed among all message types.

K.2 Examples of Transient or Corner Cases

The distribution of state information and the lack of order among coherence messages introduce a number of

subtle transient cases that can occur under normal operation and must be correctly handled by the protocol.

Transient conditions typically arise because multiple processors simultaneously act on a given address and

these action do not take effect atomically with respect to the global state of the line; therefore, different

processors may observe the line in different states at the same time. This section describes some classic

examples of such transient behavior.

The first example, shown in Figure K.1, illustrates the effect of the distributed state information. The

figure shows three processing nodes along with the logical request and reply network paths denoted as “R”

and “Q”, respectively. Consider a line with a home at P3 that is initially dirty in P2’s cache. Assume P1 issues

a read request to this line, which is sent to the home node and is then forwarded to P2. Meanwhile, assume P2

replaces the dirty line (leading to a write-back message destined to the home) while P1’s request is in transit

towards P2. The read request and the write-back request travel in opposite directions in the network and can

easily pass one another without detection (cross checking messages in the network is impractical). Therefore,

when the read request reaches P1’s cache hierarchy, it finds that the line is no longer available. The above

anomaly arises due a window of time when the global state of the line can change while the read request is

in transit towards P2. There is a related window of time while the write-back request is in transit that the

directory information is no longer correct.

One solution to anomalies similar to the above is to generate a negative acknowledgement (nack) reply
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Figure K.2: Messages bypassing one another in a cache hierarchy.

as a response to forwarded requests that do not find the line in the appropriate state at the target cache. The

nack reply can be used to signal the requesting processor that the given request must be reissued, which

implies a mechanism for retrying requests from each node. Nack replies can also play an important role in

deadlock avoidance solutions (based on separating requests and replies) by eliminating certain request-request

dependences. For example, a request that generates additional request messages (e.g., a read request that is

received by the home and forwarded to another node) can simply be nacked if the outgoing request buffer is

temporarily full.

Transient cases similar to the one shown in Figure K.1 can also occur within a cache hierarchy. Figure K.2

shows one such scenario where an incoming read request (from a different processor) bypasses a write-back

request for the same line. In contrast to the network, it is possible to detect these types of bypasses within

a cache hierarchy through some form of cross checking between the incoming and the outgoing paths. By

detecting this case, the cache hierarchy can take appropriate action by grabbing the data from the write-back

to form a reply for the read. There are several ways to achieve the cross check. The brute force way is to use

associative lookup on the queues. Another approach involves appropriately flushing a set of queues before

servicing requests from other queues. The effect of cross checks may also be achieved by exploiting the

cache states. For example, if an incoming read requests arrives at the level 2 cache first, it can appropriately

change the state of the line (e.g., from dirty-dirty, signifying that the hierarchy has a dirty copy and the actual

dirty copy is at a higher level, to clean-dirty) such that the outgoing write-back is automatically turned into

an outgoing read reply by this cache (ordinarily, the write-back expects a dirty-dirty state). This last solution

does not apply to the lowest level buffers in the hierarchy (i.e., past the lowest level cache). Of course,

the simplest option is to use the same solution that is used by the network: allow the messages to bypass

one another and simply nack the read if it does not find the line in the appropriate state. However, since

most bus-based systems do not support nacks, commercial processors typically provide some form of cross

checking functionality.

Figure K.3 shows another example of a transient case where the processor receives an invalidate request

while its read request is pending to the same line. Assume the home for the line is at P2. The sequence in the

figure shows P1’s read request is satisfied by P2 and a reply is sent back to P1. Meanwhile, assume P2 issues
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a write to the same address which results in an invalidate request to be sent to P1. As shown in the figure, the

invalidate can bypass the read reply because they use different paths. Therefore, P1 observes an invalidate

for a line it is waiting upon. From a correctness point of view, P1 must avoid caching the data returned by

the reply since it is already stale. The value of the read can be provided to the processor as long as it is not

cached; alternatively, the read can be reissued.

Figure K.4 shows a similar scenario to the above, except the invalidate request is actually from an earlier

write (i.e., a write that is serialized before the read value is bound). Assume P2 is the home for the line

and that P1 is initially caching a copy. The figure shows P1 replacing the line, leading to a replacement-hint

request (replacement of clean lines may be silent in some protocols). Meanwhile, P2 writes to the line, and

since the directory still shows P1 as a sharer, an invalidate request is sent to it. The sequence in the figure

shows P1 attempting to read the line before the invalidate reaches at. As shown, the invalidate can actually

be acknowledged back to the home before this read reaches the home due to the separate request/reply paths.

The read eventually gets serviced and actually carries the most up-to-date data back to P1. However, in

most protocols, P1 cannot distinguish this scenario from the scenario in Figure K.3; in both cases, P1 simply

receives an invalidate to a line while its read is pending. Therefore, the implementation must conservatively

treat the invalidate as possibly belonging to a later write, which means that it cannot cache the returning

reply.1

The above two transient cases arise primarily due to a lack of point-to-point order between requests and

replies. However, even if the network provides point-to-point order among all messages, similar transient

1Analogous transient scenarios can arise with update requests to pending reads. Similar to the invalidation case, the implementation
cannot distinguish whether the update belongs to an earlier or later write relative to the read reply (see Figure K.8.
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Figure K.5: Example of a transient invalidate from a later write in a 3-hop exchange.

conditions can arise when more than two nodes are involved. Figure K.5 shows one such scenario. Assume

P3 is the home node for the line, and P2 initially has a dirty copy. The sequence shows P1 making a read

request, which is forwarded from the home to P2. The read reply is shown to be directly sent from P2 to

P1, along with a sharing write-back message that informs the directory about the new sharer and write backs

the up-to-date data to memory; both the DASH and the FLASH protocols use this forwarding optimization.

However, assume that P3 issues a write to the line before the reply returns to P1. This scenario is analogous

to the example shown in Figure K.3 where an invalidate from a later write is received by the requesting node

while it has a pending read. In this case, the problem arises due to the forwarding optimization which leads

a different point-to-point path for the reply (P2 to P1) relative to the path for the invalidate request from the

home (P3 to P1).

Figure K.6 illustrates another subtle transient scenario where an invalidate request arrives while a processor

has an outstanding exclusive request to the same line. Assume P2 is the home node and P1 initially holds a

clean copy of the data. Assume P1 and P2 both attempt to write the line, leading to an exclusive request from

P1 to the home, and an invalidate request from P2 to P1. The figure shows P2’s invalidate being acknowledged

before P1’s original exclusive request gets to P2 (another example of request-reply bypassing). There are

three possible solutions for servicing the exclusive request. All three solutions require the directory at the

home to detect that P1 no longer maintains a valid clean copy of the line; this can be easily determined by

examining the list of sharers at the home. The first solution involves responding to P1 with a read-exclusive

reply (instead of the expected exclusive reply) and modifying the directory to point to P1 as the new exclusive

owner; this implies that the implementation can robustly accept a read-exclusive reply to an exclusive request

(even when an invalidate request arrives in between). The second solution is to respond with a negative

acknowledgement reply, which does not change the state of the directory and forces P1 to retry the request;
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Figure K.6: Example of a transient invalidate with a pending exclusive request.

the retry from P1 will lead to a read-exclusive request since it no longer has a clean copy. Finally, the third

solution is to speculatively respond with an exclusive reply before fully checking the sharer list. P1 must still

drop the exclusive reply because it received an invalidate while its exclusive request was outstanding and

no longer has the up-to-date data for the line; similarly, the directory must check the list and not modify the

ownership information. The motivation for the last solution is to reduce the latency of an exclusive request in

the common case (i.e., no transient situation), especially if checking the directory takes a relatively significant

time. The FLASH protocol uses the third solution;2 such scenarios do not arise in the DASH protocol because

of the lack of support for exclusive requests (i.e., the protocol always generates a read-exclusive).

Overall, even though a protocol must correctly handle transient cases, the occurrence of such scenarios is

typically infrequent. A necessary prerequisite is for multiple cache hierarchies to simultaneously act upon the

same line. Furthermore, some of the scenarios arise only if messages experience substantially different delays

within the network or associated network queues. Given the low frequency of transient cases, the efficiency

of handling transient cases is not important as long as the adopted solutions do not degrade performance for

the common coherence operations.

K.3 Serializing Simultaneous Operations

Serializing simultaneous operations on the same line is a powerful design strategy for eliminating a large

number of transient cases in a protocol. Section 5.3.5 already describes the benefits of disallowing new

requests from being serviced while a line has pending invalidations or updates; detection of write completion

and support for category three dependence chains are both simplified. As discussed in Section 5.3.5, the

functionality of disallowing new requests can be supported at either the requester or the home depending on

which is responsible for gathering the invalidation acknowledgements. This section describes a number of

other scenarios where such serializations can greatly simplify the design of the protocol.

Figure K.7 illustrates an example where allowing a write to proceed while the previous write’s invalidations

are pending can lead to subtle problems. Assume P2 is the home node and that P1 initially has a clean copy

of the line, and assume P1 and P2 simultaneously attempt to write the line. The scenario in the figure shows

P2 reaching the directory first and generating an invalidation request to P1 while P1 has an exclusive request

2Due to the fact that the sharers are represented as a linked list in FLASH, the protocol also speculatively sends invalidations to
sharers before having checked the whole list to see whether the exclusive reply will fail. Exclusive requests due to a store-conditional
use the second solution above, however, both to provide correctness and to avoid livelocks (see Section 5.3.7 and Appendix N).
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in transit. Assume the directory actually services the exclusive request from P1 before the invalidate request

from the previous write is acknowledged. As mentioned in the previous section, the directory can detect that

P1 is no longer on the sharing list and responds with a read-exclusive reply. It is now possible for this reply to

reach P1 before the original invalidation request due to the lack of point-to-point order between requests and

replies. Therefore, P1 may later receive an invalidation request to a dirty line, which can lead to anomalous

behavior in most protocols. A simple solution for alleviating this behavior is to disallow any new requests to

the line while there are outstanding invalidations for the line.

Figure K.8 shows that disallowing a new read while there are outstanding updates from previous writes

can simplify the design of update-based protocols. Again, assume P2 is the home for the line. Figure K.8(a)

shows a scenario where P1 replaces a line and then reads the line while there is an outstanding update request

destined for it. As shown, the read reply can reach P1 before the update request. Even though the read reply

provides P1 with the most up-to-date data, the value can be made incorrect if P1 performs the update from the

earlier write when it later receives the request. The difficulty arises from the fact that P1 cannot simply drop

the update request since it cannot distinguish whether the update is due to an earlier or later write relative to

its cached value. Figure K.8(b) shows the latter case, where the update that belongs to a later write (e.g., from

P2) must actually be performed by P1. Note that this problem is easier to solve with an invalidation-based

scheme because the line can be conservatively invalidated even if the invalidate request belongs to an earlier

write; therefore, the invalidate can be accepted in both cases. However, with an update-based scheme, it is

incorrect to uniformly accept or reject the update request under both scenarios. Disallowing a future read

from proceeding until the updates from previous writes are acknowledged turns out to solve this problem by

eliminating the possibility of receiving an update from an earlier write after the processor receives the read

reply.3

A larger number of simplifications are possible by further serializing operations to the same location by

disallowing a new request to be serviced either (a) while there are pending invalidations and updates from

previous writes to the line (described above), or (b) while a previous request that is forwarded from the

home (to the current owner) is not yet satisfied. The FLASH protocol achieves the above serialization by

maintaining a pending bit per memory line (as part of the directory entry) that determines whether a line is in

one of the above two states;4 new read, read-exclusive, and exclusive requests to a line in pending state are

3This solution is described in Appendix M; the other solution described there is to enforce point-to-point order between incoming
read replies and update requests, for example, by placing both of them on the same network path. It turns out that the DASH protocol
does not use either solution, and therefore fails to enforce the coherence requirement if update writes are used. This is the only known
error in the protocol. The error probably arose because the protocol was only tested for invalidation writes; it was uncovered through
the reasoning presented in Chapter 5.

4The pending bit is reset when all invalidations or updates are acknowledged to the home, or when a sharing write-back or ownership
change request arrives at the home in response to a forwarded request.
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Figure K.8: Example transient problems specific to update-based protocols.

forced to retry. This type of serialization makes the FLASH protocol significantly simpler than the DASH

protocol. Figure K.9 shows a scenario that illustrates the type of complexity present in DASH. Assume P3

is the home node and P1 is the initial owner. The sequence in the figure shows P2 grabbing the line next;

the reply is directly forwarded from P1 and an ownership change request is sent to the home to signal the

new owner. Meanwhile, P3 also writes to the location, generating a read-exclusive request to P1 before the

ownership change reaches the home. The sequence shows P1 grabbing the line again, and finally the request

from P3 succeeds in grabbing the line. As shown, this interaction can lead to two ownership change requests

to be simultaneously present in the network; the protocol will fail to properly keep track of the current owner

if the ownership change request from P1 reaches the home first. To avoid this race, the DASH protocol has

an extra message that is sent by the home to the requester of a forwarded message to signal the fact that the

ownership change request has reached the home; before then, the requester disallows other processors (e.g.,

P3 in the example) from accessing the line and also avoids writing back the line. In FLASH, this problem is

trivially solved by disallowing multiple operations on the line as described above.5

K.4 Cross Checking between Incoming and Outgoing Messages

Cross checks are typically done to detect messages to the same line that bypass one another on the incoming

and outgoing paths. As we mentioned before, most types of cross checking can be virtually alleviated by

depending on negative acknowledgement (nack) messages and simply retrying a request that fails to find

the data. However, bus-based designs typically do not support this type of mechanism and therefore depend

5For correctness, an ownership change request that arrives at the home checks to make sure the line is not yet written back by the
new owner before changing the directory state to point to the new owner; otherwise, the ownership change request is simply ignored.
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Figure K.9: Complexity arising from multiple operations forwarded to an exclusive copy.
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on the appropriate cross checks to be done within the cache hierarchy. Referring back to Figure K.2, the

scenario is a classic example where cross checking is important if the implementation does not support nacks

(incoming read or read-exclusive request with outgoing write-back request).

As an example of a cross check that may be important for correctness (i.e., even if the protocol supports

negative acknowledgements), consider an outgoing exclusive request and an incoming invalidate request

within a cache hierarchy. For correctness, most bus-based protocols depend on this interaction to be detected

and for the exclusive request to be transformed to a read-exclusive request which fetches an up-to-date copy of

the line in addition to obtaining ownership. Architectures that support store-conditionals (see Section 5.3.7)

depend on a similar cross check between an outgoing exclusive request generated by the store-conditional and

an incoming invalidate or update request; to provide correctness and to avoid livelock, the store-conditional

must be forced to fail in such a case without invalidating or updating other processor’s copies.

The cross checks described in the previous paragraph involving exclusive requests are actually important

for correctness in snoopy protocols since without detecting them, the protocol can fail to appropriately serialize

simultaneous writes to the same line (or support the atomic semantics for store-conditionals). In contrast,

directory-based protocols typically have sufficient information at the directory to detect such races without

any cross checking; this was described earlier in the context of Figure K.6. Therefore, by using negative

acknowledgement messages and choosing the appropriate solutions for dealing with exclusive requests, a

directory-based protocol can actually eliminate the need for all types of cross checks.6

K.5 Importance of Point-to-Point Orders

Even though the network and cache hierarchy provide only a few message ordering guarantees, maintaining

some of these orders may be important for providing simple and efficient implementations of some protocols.

This section is mainly concerned with point-to-pointordering guarantees among messages to the same address.

The major trade-off here is between further relaxing the ordering guarantees in the network and cache hierarchy

to achieve better message performance versus more aggressively exploiting the stricter ordering guarantees

to achieve simpler and more efficient protocols.

Consider the following example of how point-to-point ordering among messages can simplify the design

of a cache coherence protocol. Assume a processor replaces a clean line, generating a replacement-hint request

to the home, and next issues a read request to the same line. The ordering of these two requests is important in

most protocols since a reordering would lead the directory to incorrectly discard the processor from the sharing

list while the processor maintains a copy as a result of the read reply. The design of the protocol can actually

become complicated if the cache hierarchy and network do not provide the above ordering guarantee. This is

because it is difficult to provide additional state at the directory, other than using sequence numbers or time

stamps to reconstruct the message order, to distinguish whether the replacement-hint actually occurs before

or after the read request. The other option is to provide an acknowledgement reply for the replacement-hint

6Of course, choosing the third solution described in the context of Figure K.6 (i.e., speculatively responding to the exclusive request)
still requires the cross check on the requester side. One solution is to place a detection table that keeps track of outstanding requests
right past the lowest level cache in the hierarchy. By ensuring the cache and this table are accessed atomically by incoming and outgoing
requests, the case where the invalidate request is received right after the exclusive request is sent off can be correctly detected. Note that
if the invalidate request arrives earlier, it will invalidate the copy at the lowest level cache, and the exclusive request can detect this and
turn into a read-exclusive request (or fail) since the hierarchy no longer has a clean copy. The same detection table can be extended to
also detect the types of transients described in the previous sections (e.g., an invalidate occurring while a read request is outstanding).
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request and delay read requests from the processor until the replacement-hint is acknowledged. Both options

are likely to make the protocol less efficient. Other similar ordering guarantees may also be important: for

example, the order from an outgoing replacement-hint request followed by a read-exclusive request, or the

order from an outgoing write-back (or sharing write-back, or ownership change) request followed by a read or

read-exclusive request. The directory state in most protocols may have sufficient state to allow the protocol

to robustly deal with the latter types of reordering. For example, to handle the reordering with a write-back

request, a read or read-exclusive request can be simply nacked if the directory state shows that the requesting

processor still maintains a dirty copy of the line. Nevertheless, the extra checking of state that is required

may still increase latencies and occupancies in the protocol. Finally, Appendix M and Section 5.3.3 describe

the importance of several point-to-point orders for update protocols.

Most designs maintain a higher degree of ordering within the cache hierarchy as compared to the network.

For example, the order between an incoming read reply and a later incoming invalidate request within the

cache hierarchy is important for avoiding stale copies (the reverse order is not critical since reordering will

lead to conservatively invalidating the line). Note that orders such as the above are not maintained in the

network if the request and reply use different paths; this leads to transient cases such as the one depicted in

Figure K.3 that must be handled properly external to the cache hierarchy. Further point-to-point orders may

also be maintained within a cache hierarchy in designs that do not support nacks. For example, the order from

an incoming read or read-exclusive request to an earlier incoming exclusive or read-exclusive reply must be

maintained to make sure the request will find the cache line in the appropriate state.

Overall, the degree to which a protocol depends on (or exploits) point-to-point order within the network

and cache hierarchy varies among different protocols. The amount of changes required in a protocol to

correctly deal with more relaxed point-to-point orders can therefore vary greatly across different protocols.
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Appendix L

Benefits of Speculative Execution

This appendix provides a few examples of how speculative execution helps in aggressively exploiting a

relaxed memory model (see Section 5.2 for the general discussion on this).

Consider the example program segment in Figure L.1(a). Without speculative execution, the processor

must first resolve the conditional clause which involves stalling for the return value for the read of A before

issuing the operations within the conditional statement. Speculative execution along with branch prediction

enable the processor to fetch and issue instructions from the predicted path before the branch condition is

actually resolved. Therefore, with correct branch prediction, the processor has the opportunity to overlap the

read of A with useful computation and memory operations within the conditional.

Speculative execution typically requires a rollback mechanism in the case of an incorrect branch pre-

diction. The rollback mechanism logically discards the results of speculative instructions that appear after

the incorrectly predicted branch and restarts the processor by issuing new instructions from the correct path.

Most instructions can be executed speculatively, though the result of the instruction is not logically committed

until previous branches are known to be correctly predicted. Therefore, memory read operations can be

speculatively issued to the memory system. However, memory write operations are typically not issued

speculatively to the memory system since rolling back would be too difficult. Nevertheless, the write may

be issued internal to the processor and later read operations to the same address can speculatively return the

value written by the write. For example, referring back to Figure L.1(a), the read of B can be speculatively

issued to the memory system, the write to C can be issued internally, the read of C can speculatively return

the new value for C, and finally the value of this read may be used to speculatively execute the following add

operation, all before the read of A is complete.

Even though we discussed speculative execution in the context of conditional branches, there are a number

of other scenarios where speculative execution can increase overlap. For example, processors that support

precise exceptions can benefit from speculative execution. Consider the program segment in Figure L.1(b).

The example shows three consecutive reads, with the return value for the first read determining the address of

the second read. Assume the three reads are long latency operations,and that any read can result in an exception
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b1:

c1:

a1:

d1:

    r2 = B;

e1:

f1:

}g1:

if (r1 == 0) {

r1 = A;

    C = 1;

    r3 = C;

    r5 = r3 + r4;

(a)

(b)

b1:

c1:

a1: r1 = A;

r2 = B[r1];

r3 = C;

Figure L.1: Example program segments for illustrating speculative execution.

such as a page fault. To provide precise exceptions, a processor without support for speculative execution

cannot issue the read of C until the address for the second read is resolved and checked for exceptions, thus

eliminating overlap between the reads of A and C. Speculative execution allows the processor to issue the

read of C early by assuming (or predicting) that previous unresolved addresses will not lead to an exception,

and using rollback if an exception does occur (analogous to branch misprediction).
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Appendix M

Supporting Value Condition and

Coherence Requirement with Updates

Section 5.3.2 describes the support for the value condition and coherence requirement in invalidation-based

designs. This appendix considers implementations with update-based schemes, assuming a single level write

through cache per processor. We consider two implementations similar to those described for the invalidation

case.

In the first implementation, the write remains in the write buffer until the processor is notified that the

write is serialized with respect to other writes to the same location. The update reply from the home signals

the fact that the write has been serialized. The write can be retired from the write buffer when this reply

arrives at the issuing processor. Update requests to stale cache copies emanate from the home node, thus

serializing updates to a given location. Incoming requests to the cache are handled in the usual way while

there is a write miss outstanding.

The ordering between an incoming update reply and an incoming update request (to the same address)

sent from the home to a target cache is important for maintaining coherence. Specifically, if an update request

from a write that is serialized before (after) this processor’s write arrives after (before) the update reply, then

the order in which the writes complete with respect to this processor will not be the same as the order in

which they are serialized. The required order can be maintained in networks that support point-to-point order

by sending both types of message on the same lane; for example, the update reply may be placed on the lane

that is typically used for requests.1 Similarly, for cache hierarchies that provide multiple incoming paths,

both messages can be sent on the same path; for example, the update request may be placed on the path that

is typically used for replies.2 Furthermore, designs with multiple level cache hierarchies may require the

1This turns out to be safe from a deadlock avoidance perspective; the original update request can simply be nack’ed through the reply
lane in case the request lane is full.

2The incoming update request is acknowledged as soon as it arrives at the cache hierarchy in virtually all practical cache designs
(see Section 5.4.1). Therefore, no reply needs to be generated for the update request after it enters the cache hierarchy. This allows the
update request to be sent on the same path that is used by incoming replies (see deadlock avoidance discussion in Section 5.2.3).
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incoming update reply to carry back the data from the original update request so that copies in the lower level

caches can be updated on the incoming path; updating the copies on the incoming instead of the outgoing

path simplifies the task of performing updates in the same order they are serialized by the home.

Another important order is between an incoming read reply and an incoming update request (to the same

address) from the home to a given cache copy. This order can be maintained within the network and the

cache hierarchy using similar techniques to the ones discussed above. Ordering these messages within the

network may be unnecessary in protocols that disallow the home from servicing a read request while the line

has outstanding updates that have not been acknowledged.3 Finally, protocols that allow multiple update

requests to the same address to be in transit from the home to a target cache must ensure the serialization

order is maintained among the update requests sent to each cache.4 Even if the protocol disallows multiple

update requests within the network from the home to a target cache (e.g., by disallowing an update request

to be sent while there are update requests from a previous write that have not been acknowledged), it may

still be necessary to maintain the order among incoming update requests to the same address within the cache

hierarchy in designs with early update acknowledgements (see Section 5.4.1).

The second update-based implementation, that retires the write into the cache before it is serialized with

respect to other writes, is slightly trickier. Assume the smallest granularity for an update is a word. While

an outgoing update request is pending (i.e., not serialized), the cache must ignore incoming update requests

to the same word. This is simple to achieve with a bit per word as long as the cache only allows a single

outstanding update per word in the line. Caches that allow multiple outstanding updates per word require

a more sophisticated mechanism for determining when to stop ignoring incoming update requests. For

example, more than a single bit may be associated with each word to keep a count of the outstanding updates

to that word.5 This count is incremented on an outgoing update request and decremented when the reply

that signals the serialization of the update returns. A count of greater than zero is analogous to the valid bit

being set, and incoming updates to that word are simply ignored. When the count reaches its maximum, no

more updates to the same word can be accepted from the processor. As discussed Section 5.3.3, allowing

multiple outgoing updates (from the same processor) to the same word can also make it difficult to satisfy the

uniprocessor dependence condition especially if such requests can be forced to retry (e.g., through a negative

acknowledgement reply by the home).

3It is still necessary to note the reception of an incoming update request while the read request is pending. Such updates must either
be applied to the read reply data before it is cached, or the data must be dropped without being caching.

4As shown in Section 5.3.5, the gathering of update acknowledgements can also become more tricky in this case especially if the
acknowledgements are gathered at the home node.

5As with the valid bits discussed in Section 5.2.3, these counts are only needed for cache lines with outstanding requests and not all
cache lines.

342 Appendix M Value and Coherence with Updates



Appendix N

Subtle Implementation Issues for

Load-Locked and Store-Conditional

Instructions

This appendix describes some of the more challenging issues in implementing the load-locked and store-

conditional instructions described in Section 5.3.7. Much of the complexity involves alleviating livelock

conditions whereby no process can successfully complete a load-locked/store-conditional sequence. The first

requirement for avoiding livelock is to disallow unnecessary replacements of the cache line corresponding to

the lock-address which could in turn lead to the clearing of the lock-flag. Such replacements can be induced

by either instruction or data fetches in the middle of the sequence. Solutions for avoiding replacements due

to instruction fetches include using split instruction and data caches, using two-way set associativity within

a unified cache (imposes the constraint that the sequence is only guaranteed to succeed on the fall through

path if there are any branches), or disallowing instruction fetches from displacing the lock-address line. A

common solution for avoiding replacements due to other read and write memory operations is to disallow the

use of such operations in between the load-locked and the store-condition sequence. Instruction prefetching,

speculative execution, and out-of-order issue cause further complexity since instruction and data fetches for

instructions from outside the sequence may also lead to the replacement of the line.

The second requirement for avoiding livelock is to avoid unnecessary invalidation or update messages that

cause other processors’ store-conditionals to fail. For example, a failing store-conditional or a load-locked

operation should not cause invalidations or updates that would lead to the clearance of another processor’s

lock-flag. This latter requirement requires special support within a cache coherence protocol since a store

conditional cannot be treated in the same way as an ordinary write operation; the protocol must ensure that a

store-conditional fails, without sending any coherence messages to other copies, if another write beats it to the

serialization point. Ensuring this requirement in a bus-based scheme involves forcing the store-conditional

343



to fail if the cache no longer has a valid copy of the line or if cross checking the incoming messages at the

external interface indicates a match with an invalidation request; both conditions above indicate that another

write may have beaten the store-conditional to the serialization point. A directory-based protocol with a

general network makes satisfying the above requirement more challenging since the simple cross-checking

is no longer sufficient (or necessary). In an invalidation-based scheme, the exclusive request resulting from a

store-conditional must check the list of sharers at the home directory to see whether the requesting processor

is still on the list. Failure to find the requester on the list indicates that another write successfully reached

the home before the store-conditional and the store-conditional must be forced to fail without generating any

invalidations. An update-based scheme is even more difficult to support since the state at the directory cannot

be easily used to tell whether another write operation has beaten the store-conditional to the serialization point.

Here is one possible solution. The store conditional request can lock down the line at the home to disallow

any other requests and proceed to send a message back to the requesting processor (point-to-point order with

other incoming updates is important). On receiving the message, the processor checks the lock-flag. If the

lock-flag is still set (indicating no updates were received), an update request is sent to the home, the line is

released at the home, and the update is forwarded to all sharers. Otherwise, the store-conditional is forced to

fail and a message is sent back to the home to release the line.
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Appendix O

Early Acknowledgement of Invalidation

and Update Requests

This appendix provides several examples, and further intuition, for the first technique described in Section 5.4.1

for dealing with early acknowledgements. This techniques guarantees correctness by imposing specific orders

among incoming messages.

Assume the technique described above with an underlying invalidation-based protocol. Figure O.1

shows an example of a category three multiprocessor dependence chain (same chain as in Figure 5.14(d)).

Figure O.1(a) and (b) show the ordering among events in designs without and with early acknowledgements,

respectively. Assume the first solution described in Section 5.3.5 for satisfying the third category of chains,

whereby the write must complete or commit with respect to all processors before another processor is allowed

to read the new value. For the conservative design, the write of A is clearly guaranteed to complete with

respect to P3 before the read of A. For the aggressive design, the ordering shows that the write of A is

committed with respect to P3 before the read of A completes on P3. However, we need to show that the write

of A also completes with respect to P3 before the read of A (i.e., the dashed arrow). Consider the commit

event for the write of B with respect to P3 which occurs before the read of B on P3, implying that P3 receives

an incoming reply to the read sometime after the write of B commits with respect to it. We also know that the

write of A is committed with respect to P3 before the write of B commits. The above two observations imply

that the write of A completes with respect to P3 before the read of B, and therefore also before the read of A.

Figure O.2 shows the same chain as above except with the second solution (described in Section 5.3.5) for

satisfying such chains, whereby certain program ordering constraints from a read to a following operation are

enforced by not only waiting for the read to complete but also waiting for the write that caused the value of

the read to complete with respect to every processor (for simplicity, we assume it is complete with respect to

the issuing processor as well). The figure shows the read of A on P2 with two events, one of them subscripted

with “g” to denote the fact that the write which provided the value for the read is “globally” committed or

performed. The reasoning for how the chain is maintained with early acknowledgements is quite similar to
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Figure O.1: Reasoning with a category three multiprocessor dependence chain.

the reasoning for the first solution depicted in Figure O.1.

Figure O.3 shows how orders are carried along a chain across conflicting pairs of operations in the middle

of a chain.1 The cases for W co
�! R and W co

�! W are pretty simple. Any write that is committed with

respect to Pj before the pivot event shown for each case can be shown to also have completed with respect to

Pj before the operation that follows (in program order) the conflict order. As previously seen in Figure 5.23,

the R
co
�! W conflict order is a little bit more tricky. Figures O.3(c) and (d) show two separate cases where

the previous operation in program order is either a read or a write. Figure O.3(c) shows a miss operation

for the read on Pi which is analogous to the write miss operation described in Section 5.4.1 (in the context

of Figure 5.23). The arrow labeled (II) exists because otherwise R2
co0

�!W could not hold (same reasoning

as in Figure 5.23). In addition, the dashed arrow labeled (I) shows that if a write completes with respect to

Pi before R1, then the atomicity relationship between R1 and its miss operation implies that the write must

complete before the miss operation as well. The arrows labeled (I) and (II) in Figure O.3(d) are analogous

to the above. The dashed arrow coming into the miss operation on Pi is used for reasoning with chains that

have consecutive occurrences of R
co0

�!W.

Figure O.4 illustrates the atomicity properties of miss operations with respect to other operations to the

same line. Figure O.4(a) shows the atomicity with respect to read miss operations, while Figure O.4(b) shows

it for write miss operations (the dashed lines are implied by the atomicity property). To ensure the atomicity

1The R
co
�! W

co
�! R conflict order is not shown in the figure since it can be treated as a combination of the R

co
�! W and W

co
�! R

cases, with the assumption that the W
co
�! R order is upheld using one of the techniques described in Section 5.3.5 for maintaining

multiple copy atomicity for writes.
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Figure O.2: Another design choice for ensuring a category three multiprocessor dependence chain.

property shown for W
co
�! R, a cache with a dirty exclusive copy must change the state of the line after

providing the value to an incoming read request (even if the return value is not cached by the other processor).

For simplicity, the W1 co
�! W2 is shown assuming a protocol that disallows a write to be serviced until the

previous write to that line is committed with respect to all processors.

Figure O.5 shows a more complex example with a category three chain comprising of R
co
�! W conflict

orders. Figure O.5(a) and (b) show the execution orders without and with early invalidation acknowledge-

ments, respectively. Again, assume the first solution for satisfying the third category of chains, whereby the

write must complete or commit with respect to all processors before another processor is allowed to read the

new value. The reasoning for the aggressive case is similar to that in Figure 5.23.

Section 5.4.1 also describes a second technique for dealing with early acknowledgements that maintains

correctness by servicing incoming messages as part of the enforcing of program orders. As mentioned there,

reasoning about the correctness of the second technique is simpler than reasoning about the first technique.

The example in Figure 5.25 in Chapter 5 was used to illustrate this point. Figure O.6 shows another example

of the simpler reasoning with the second technique for the same chain shown in Figure O.5 with the first

technique. The observations made in the context of the example in Figure 5.25 hold here as well.
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Figure O.5: Category three multiprocessor dependence chain with R co
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Appendix P

Implementation of Speculative

Execution for Reads

This appendix presents an example implementation of the speculation execution technique for reads described

in Section 5.4.3. The latter part of the appendix illustrates the execution of a simple code segment with

speculative reads.

P.1 Example Implementation of Speculative Execution

This section describes an example implementation of the speculative technique. As with the prefetching

technique described in Section 5.4.2, the speculative technique benefits from the lookahead in the instruction

stream provided by dynamically scheduled processors with branch prediction capability. In addition, the

correction mechanism used by the branch prediction machinery can be easily extended to handle correction

for speculative read operations. Although such processors are complex, incorporating speculative execution

for read operations into the design is simple and does not significantly add to the complexity. The section

begins with a description of the dynamically scheduled processor that is used as the base of the example

implementation, followed by a discussion of implementation details for speculative read operations.

The organization for the base processor is directly derived from a study by Johnson [Joh89, Joh91].

Figure P.1 shows the overall structure of the processor. We describe this organization in Section 6.4 of

Chapter 6 in the context of architectures with non-blocking reads. As discussed there, the key component

in this design is the reorder buffer which is responsible for several functions: eliminating storage conflicts

through register renaming, allowing conditional branches to be speculatively bypassed, and providing precise

interrupts. We will discuss the effect of requiring precise interrupts on the implementation of consistency

models later in the section.

To implement the speculative read technique, only the load/store (memory) unit of the base processor

needs to be modified and the rest of the components remain virtually unchanged. Figure P.2 shows the
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Figure P.1: Overall structure of Johnson’s dynamically scheduled processor.

components of the memory unit. We first describe the components shown on the left side of the figure. These

components are present regardless of whether speculative reads are supported. The only new component that

is required for supporting speculative reads is the speculative-load buffer that will be described later.

The load/store reservation station holds decoded load and store instructions in program order. These

instructions are retired to the address unit in a FIFO manner. Since the effective address for the memory

instruction may depend on an unresolved operand, it is possible that the address for the instruction at the head

of the reservation station is not yet computed. The retiring of instructions is stalled until the effective address

for the instruction at the head can be computed.1 The address unit is responsible for computing the effective

address and doing the virtual to physical translation. Once the physical address is obtained, the address and

data (if it is already computed) for store operations are placed into the store buffer. The retiring of writes from

the store buffer is done in a FIFO manner and is controlled by the reorder buffer to ensure precise interrupts

(the mechanism is explained in the next paragraph). Read operations are allowed to bypass the store buffer

and dependence checking is done on the store buffer to ensure a correct return value for the read. Although

the above implementation is sufficient for a uniprocessor, we need to add mechanisms to enforce consistency

constraints for a multiprocessor.

First consider how sequential consistency can be supported. The conventional method is to delay the

completion of each operation until its previous operation is complete. Delaying the write for previous

operations is aided by the fact that writes are already withheld to provide precise interrupts. The mechanism

is as follows. All uncommitted instructions are allocated a location in the reorder buffer and are retired in

program order. Except for a write instruction, an instruction at the head of the reorder buffer is retired when it

completes. For write instructions, the write is retired from the reorder buffer as soon as the address translation

is done. The reorder buffer controls the store buffer by signaling when it is safe to issue the write to the

memory system. This signal is given when the write reaches the head of the reorder buffer. Consequently,

1We could use a more aggressive technique for speculatively issuing reads that follow a write with an unresolved address as was
discussed in Section 5.4.3. However, the implementation described here does not exploit this optimization.
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a write is not issued until all previous loads and computation are complete. This mechanism satisfies the

requirements placed by the SC model on a write operation with respect to previous reads. To make the

implementation simpler for SC, we change the policy for retiring writes such that the write at the head of the

reorder buffer is not retired until it completes also (for PL1, however, the write at the head is still retired as

soon as address translation is done). Thus, under SC, the write is also delayed for previous writes to complete

and the store buffer ends up issuing writes one-at-a-time.

We now turn to how the restrictions on read operations are satisfied. First, we discuss the requirements

assuming the speculative read mechanism is not used. For SC, it is sufficient to delay a read until previous

reads and writes have completed. This can be done by stalling the load/store reservation station on reads until

the previous read is performed and the store buffer empties.

For speculative execution of read operations, the mechanism for satisfying the restrictions on reads is

changed. The major component for supporting the mechanism is the speculative-load buffer. The reservation

station is no longer responsible for delaying certain read operations to satisfy consistency constraints. A read

is issued as soon as its effective address is computed. The speculation mechanism comprises of issuing the

read as soon as possible and using the speculated result when it returns.

The speculative-load buffer provides the detection mechanism by signaling when the speculated result

is incorrect. The buffer works as follows. Reads that are retired from the reservation station are put into

the buffer in addition to being issued to the memory system. There are four fields per entry (as shown in

Figure P.2): load address, comp, done, and store tag. The load address field holds the physical address for the

read. The comp field is set if the read is considered a competing operation. For SC, all reads are treated as

competing. The done field is set when the read completes. If the consistency constraints require the read to

be delayed for a previous write, the store tag uniquely identifies that write. A null store tag specifies that the

read depends on no previous writes. When a write completes, its corresponding tag in the speculative-load

buffer is nullified if present. Entries are retired in a FIFO manner. Two conditions need to be satisfied before

an entry at the head of the buffer is retired. First, the store tag field should equal null. Second, the done field

should be set if the comp field is set. Therefore, for SC, an entry remains in the buffer until all previous read
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and write operations complete and the read operation it refers to completes. The original paper describes how

an atomic read-modify-write can be incorporated in the above implementation [GGH91b].

We now describe the detection mechanism. The following coherence transactions are monitored by the

speculative-load buffer: incoming invalidation (or read-exclusive) requests, incoming updates (or update-

read) requests, and cache line replacements.2 The load addresses in the buffer are associatively checked for

a match with the address of such transactions.3 Multiple matches are possible. We assume the match closest

to the head of the buffer is reported. A match in the buffer for an address that is being invalidated or updated

signals the possibility of an incorrect speculation. A match for an address that is being replaced signifies that

future coherence transactions for that address will not be sent to the processor. In either case, the speculated

value for the read is assumed to be incorrect.

Guaranteeing the constraints for PL1 can be done in a similar way to SC. The conventional way to support

PL1 is to delay a competing write until its previous operations complete, to delay operations following a

competing read until the read completes, and to delay a competing read for a previous competing write. First

consider delays for writes. The mechanism that provides precise interrupts by holding back write operations

in the store buffer is sufficient for guaranteeing that writes are delayed for the previous competing read, even

though it is stricter than what PL1 requires. The same mechanism also guarantees that a competing write

is delayed for previous read operations. To guarantee a competing write is also delayed for previous write

operations, the store buffer delays the issue of the competing write operation until all previously issued writes

are complete. In contrast to SC, however, non-competing writes are issued in a pipelined manner.

Let us consider the restriction on read operations under PL1. The conventional method involves delaying

a read operation until the previous competing read operation is complete. This can be done by stalling the

load/store reservation station after a competing read until the read completes. However, the reservation station

need not be stalled if we use the speculative read technique. Similar to the implementation of SC, reads are

issued as soon as the address is known and the speculative-load buffer is responsible for detecting incorrect

values. The speculative-load buffer description given for SC applies for PL1. The only difference is that the

comp field is only set for read operations that are considered competing under PL1. Therefore, for PL1, an

entry remains in the speculative-load buffer until all previous competing reads are completed. Furthermore, a

competing read entry remains in the buffer until it completes also and its previous competing write completes

(achieved by appropriately setting the store tag field). The detection mechanism described for SC remains

unchanged.

When the speculative-load buffer signals an incorrect speculated value, all computation that depends on

that value needs to be discarded and repeated. There are two cases to consider. The first case is that the

coherence transaction (invalidation, update, or replacement) arrives after the speculative read has completed

(i.e., done field is set). In this case, the speculated value may have been used by the instructions following the

read. We conservatively assume that all instructions past the read instruction depend on the value of the read

and the mechanism for handling branch misprediction is used to treat the read operation as “mispredicted”.

Thus, the reorder buffer discards the read and the instructions following it and the instructions are fetched and

executed again. The second case occurs if the coherence transaction arrives before the speculative read has

2A replacement is required if the processor accesses an address that maps onto a cache line with valid data for a different address. To
avoid deadlock, a replacement request to a line with an outstanding operation is delayed until the operation completes.

3It is possible to ignore the entry at the head of the buffer if the store tag is null. The null store tag for the head entry signifies that all
previous operations that are required to complete have completed and the memory model constraints would have allowed the operation
to perform at such a time.
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completed (i.e., done field is not set). In this case, only the speculative read needs to be reissued, since the

instructions following it have not yet used an incorrect value. This can be done by simply reissuing the read

operation and does not require the instructions following the load to be discarded.4 The next section further

illustrates speculative reads by stepping through the execution of a simple code segment.

P.2 Illustrative Example for Speculative Reads

This section steps through the execution of the code segment shown at the top of Figure P.3 assuming the

sequential consistency model. Both the speculative technique for reads and the prefetch technique for writes

are employed. Figure P.3 also shows the contents of several of the buffers during the execution. We show the

detection and correction mechanism in action by assuming that the speculated value for location D (originally

in the cache) is later invalidated.

The instructions are assumed to have already been decoded and placed in the reorder buffer. In addition,

the load/store reservation station is assumed to have issued the operations already. The first event shows that

both the reads and the exclusive prefetches for the writes have been issued. The store buffer is buffering the

two write operations and the speculative-load buffer has entries for the three reads. Note that the speculated

value for read D has already been consumed by the processor. The second event occurs when ownership

arrives for location B (assume delayed exclusive replies). The completion of write B is delayed by the reorder

buffer, however, since there is an uncommitted instruction ahead of the store (this observes precise interrupts).

Event 3 signifies the arrival of the value for location A. The entry for read A is removed from the reorder buffer

and the speculative-load buffer since the operation has completed. Once read A completes, the store buffer is

signaled by the reorder buffer to allow write B to proceed. Since location B is now cached in exclusive mode,

write B completes quickly (event 4). Thus, write C reaches the head of the reorder buffer. The store buffer

is signaled in turn to allow write C to issue and the access is merged with the previous exclusive prefetch

request for the location.

At this point, assume an incoming invalidation request arrives for location D. Since there is a match for

this location in the speculation buffer and since the speculated value is used, the read D instruction and the

following read instruction are discarded (event 5). Event 6 shows that these two instructions are fetched again

and a speculative read is issued to location D. The read is still speculative since the previous store (store C)

has not completed yet. Event 7 shows the arrival of the new value for location D. Since the value for D is

known now, the read operation E[D] can be issued. Note that although the operation to D has completed, the

entry remains in the reorder buffer since write C is still pending. Once the ownership for location C arrives

(event 8), write C completes and is retired form the reorder buffer and the store buffer. In addition, read D is

no longer considered a speculative load and is retired from both the reorder and the speculative-load buffers.

The execution completes when the value for E[D] arrives (event 9).

4To handle this case properly, reply values must be tagged to distinguish between the initial reply, which has not yet reached the
processor and needs to be discarded, and the reply from the repeated access, which is the one to be used. In addition, in case there
are multiple matches for the address in the speculative-load buffer, we have to guarantee that initial replies are not used by any of the
corresponding reads.
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Appendix Q

Implementation Issues for a More

General Set of Events

This appendix describes some of the practical implementation issues for supporting ordering among the larger

set of events discussed in Section 5.9. We primarily refer to the solutions adopted by various commercial

architectures such as the Alpha [Sit92], PowerPC [MSSW94], and Sparc V9 [WG94]. The above three

architectures use explicit fence instructions as the basic mechanism for ordering memory operations. Alpha

and PowerPC provide a full fence instruction (MB in Alpha, SYNC in PowerPC), while Sparc V9 provides a

more flexible fence instruction (MEMBAR). Ordering among different event types is enforced by overloading

the above fence instructions and using a few specialized fence instructions.

Q.1 Instruction Fetch

An instruction fetch can be modeled as a read from memory. As discussed in the Chapter 4 however,

instruction fetches behave differently from ordinary data read operations. Figure Q.1 shows a typical design

with split instruction and data caches. Assume copies of locations A and B are initially held in both caches.

First consider the order of instruction fetches with respect to previous conflicting writes from the same

processor. Because of the separate instruction and data streams and the use of instruction prefetching, an

instruction fetch can easily bypass previous conflicting writes from the same processor (e.g., consider the

write to A shown in the figure); thus an instruction fetch does not necessarily return the value of the last write

to that location in program order. Second, the fact that instructions and data reside in separate caches makes

coherence actions non-atomic with respect to the two copies. For example, consider a write to location B

by another processor that results in an incoming invalidate request to be sent to both caches. Because the

invalidate requests traverse two separate paths, the write may complete at different times with respect to the
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two caches.1 Finally, some designs may not provide hardware coherence with respect to the instruction cache.

The above characteristics are not unique to multiprocessor systems and arise in uniprocessors as well.

To allow for a consistent view, most architectures provide special fence instructions that order future

instruction fetches with respect to previous operations and eliminate stale copies by flushing operations in

various queues and in some cases flushing copies from the instruction cache. This functionality is provided

by an instruction memory barrier (IMB) in Alpha, an instruction sync (ISYNC) in PowerPC, and a FLUSH in

the Sparc V9 architectures. None of the three architectures require hardware coherence for instruction caches.

Implementations that support hardware coherence must flush the incoming queue to the instruction cache on

an instruction fence in order to service invalidation and update requests that have been previously committed

with respect to this processor.2 The semantics of instruction fences differs among the three architectures when

an implementation does not support hardware coherence for the instruction cache. For the Alpha, the IMB

requires flushing the instruction cache thus eliminating any possible stale copies. The PowerPC architecture

provides an instruction cache block invalidate (icbi) instruction that is issued by the processor that writes to

the instruction region and forces specific lines to be flushed from other processors’ instruction caches. Finally,

the Sparc V9 architecture uses the FLUSH instruction in a similar way to the block invalidate operation of

the PowerPC.

Q.2 Multiple Granularity Operations

Most architectures provide memory operations at multiple granularities, such as read and write operations

to a byte, word, and double word. A larger granularity operation such as a double word operation can be

conceptually modeled as multiple byte operations that are executed atomically with respect other conflicting

operations to the same bytes. To enforce this atomic behavior, implementations typically service larger

granularity operations as a single unit; to simplify this, the memory and cache line granularities are chosen to

1Effectively, there are two completion events for a write with respect to any processor: a completion event with respect to the data
stream and another with respect to the instruction stream.

2We are assuming an implementation with early invalidation or update acknowledgements. The second solution discussed in
Section 5.4.1 is more appropriate in this case since instruction fences are typically infrequent.
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Figure Q.2: Examples with multiple granularity operations.

be larger than the largest granularity data operation.

To illustrate some of the implementation issues, Figure Q.2 shows a couple of examples with different

granularity operations. Assume locations A and B are consecutive 32-bit words on an aligned 64-bit boundary.

Consider a natural extension of a model such as sequential consistency to multiple granularity operations.

For the example in Figure Q.2(a), the outcome (u,v)=(0,1) would be disallowed. Similarly, for the example

in Figure Q.2(b), the outcome (u,v,w,x)=(1,0,0,1) or (0,1,1,0) would be disallowed.

For most part, the implementation techniques for single granularity operations can be easily extended to

deal with multiple granularities. A few subtle issues do arise, however. For example, assume an update-based

implementation of SC that uses early update acknowledgements based on the second technique described

in Section 5.4.1 where incoming updates are serviced as part of enforcing program orders. Consider the

example in Figure Q.2(a). Assume P2 maintains cache copies for both locations A and B. With early update

acknowledgements, P1’s write generates an update request for A and an update request for B into P2’s

incoming queue. Since the writes to locations A and B are completely disjoint (i.e., they do not overlap on

any bits), an aggressive implementation could allow the two updates to be reordered within P2’s incoming

queue. This could then lead to incorrect behavior since the double-word read on P2 could possibly observe

the new value for B and yet the old value for A. To alleviate this problem, the implementation must disallow

an update request to any part of an aligned 64-bit region from bypassing previous update or invalidate requests

to the same region even if the two requests do not overlap. The above requirement is also required for the

example in Figure Q.2(b) to behave correctly. A more conservative option is to enforce order among incoming

operations to the same cache line (assumes a cache line is larger than the largest granularity operation which

is a 64 bits in this case). Note that this restriction is inherently satisfied by the alternative solution for dealing

with early update acknowledgements described in Section 5.4.1 since the order between incoming update

requests and previous incoming update or invalidate requests is always upheld even if the requests are to

completely different locations.

Another subtle issue arises in enforcing multiple-copy atomicity for writes. The above discussion on the

example in Figure Q.2(b) assumes multiple-copy atomicity is enforced by disallowing any other processors
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from reading the new value for the write until the write is committed (or completed) with respect to all

processors. The alternative is to use the second technique described in Section 5.3.5, whereby another

processor is allowed to read the new value but is delayed for the write to commit (or complete) on the next

program order that it enforces. To provide a correct implementation with this latter alternative, the coherence

requirement must be extended to apply to writes to the same aligned 64-bit region even if there is no overlap

between the write operations; this solution would also alleviate the anomalous behavior described in the

previous paragraph.

Q.3 I/O Operations

I/O operations are typically implemented as uncached memory operations to specific regions in the memory

space. The non-memory-like behavior of I/O operations requires disallowing certain reordering optimizations

that may be safely used for ordinary data operations. Examples of such optimizations include merging two

writes to the same address into a single write or forwarding the value of a write to a later read to the same

address. Again, the Alpha, PowerPC, and Sparc V9 architectures allow the appropriate orders to be enforced

through a combination of implicit orders and orders imposed by explicit fence operations.

Consider the order from an I/O write followed in program order by an I/O read to the same location. To

enforce this order, Alpha overloads the memory barrier (MB) instruction,PowerPC provides the eieio (Enforce

In-order Execution of I/O) operation, and the Sparc V9 provides the Look-Aside barrier. Implementations

that implicitly disallow the read forwarding optimization for I/O can treat such fence operations as a nop.

Disallowing the merging of two consecutive I/O writes to the same location is handled slightly different. The

Alpha overloads the write memory barrier (WMB) or the ordinary MB for this purpose, the PowerPC uses the

eieio instruction, and the Sparc V9 inherently disallows such merging on I/O writes. Enforcing orders among

I/O operations to the same I/O device (even if they are not to the same address) can be achieved in Alpha

and PowerPC by using the same fence instructions. The Sparc V9 overloads the ordinary MEMBAR for this

purpose. Enforcing the order between operations to different I/O devices can be a little bit more tricky due to

the non-uniform behavior of different I/O devices. In some cases, for example, an I/O write may need to be

proceeded with an I/O read to the same device to determine whether the write has actually completed.

The ordering between I/O operations and ordinary memory operations may also be important in some

cases. For example, memory operations may be used to synchronize access to an I/O device. The Alpha and

PowerPC enforce such orders by overloading the MB and SYNC fences, respectively, while the Sparc V9

provides a new type of fence instruction (called the memory issue barrier) for this purpose.

A major simplification for I/O operations is that I/O locations are typically not cached; therefore, issues

such as maintaining coherence or making writes appear atomic across multiple copies are not relevant. Nev-

ertheless, detecting the completion of an operation such as an I/O write may still require an acknowledgement

response.3

An implementation may provide various optimizations for handling I/O operations more efficiently. One

important optimization is to coalesce I/O writes to consecutive addresses into a single write with a larger

granularity. Another optimization is to exploit specific ordering guarantees within a design in order to pipeline

3Most commercial processors do not expect an acknowledgement for I/O writes, thus requiring external logic to keep track of
outstanding I/O writes. A similar issue was described in Section 5.3.5 with respect to eager exclusive replies.
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I/O operations. For example, point-to-point ordering guarantees within a network can be exploited to support

pipelined I/O operations from a single processor to a single device while still maintaining the sequential

order among the I/O operations. Such optimization are especially important for uses of I/O that require high

bandwidth, such as communicating with a fast graphics device.

Q.4 Other Miscellaneous Events

There are typically a number of other events, such as exceptions and traps, whose ordering semantics is

important. Many architectures provide yet other specialized fence instructions to ensure such orders. For

example, the Alpha architecture provides exception and trap barriers that delay future operations until all

previous arithmetic exceptions are resolved. Similarly, the synchronization barrier in the Sparc V9 architecture

waits for all types of exceptions, including exceptions caused by address translation.

Q.5 Summary of Ordering Other Events Types

Overall, except for operations to multiple granularities of data, the ordering semantics of other types of events

is quite confusing in most architectures. Many of the same issues are also present in uniprocessor systems.

Fortunately, a lot fewer programmers have to directly deal with the semantics of such events relative to

ordinary memory operations. Furthermore, since optimizations only matter for the frequent events, simple

and potentially inefficient solutions are satisfactory for the infrequent events.
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