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Abstract

We have investigated the register file requirements of dynamically scheduled
processors using register renaming and dispatch queues running the SPEC92
benchmarks. We looked at processors capable of issuing either four or eight in-
structions per cycle and found that in most cases implementing precise exceptions
requires a relatively small number of additional registers compared to imprecise
exceptions. Systems with aggressive non-blocking load support were able to
achieve performance similar to processors with perfect memory systems at the
cost of some additional registers.  Given our machine assumptions, we found that
the performance of a four-issue machine with a 32-entry dispatch queue tends to
saturate around 80 registers.  For an eight-issue machine with a 64-entry dispatch
queue performance does not saturate until about 128 registers.  Assuming the
machine cycle time is proportional to the register file cycle time, the 8-issue
machine yields only 20% higher performance than the 4-issue machine due in part
to the cycle time impact of additional hardware.
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1 Introduction

A continuing trend in the design of computer systems is the use of superscalar processors
that can issue ever more instructions per cycle. Traditionally, these processors have been
statically scheduled with the compilers having had the task of uncovering sufficient amounts
of instruction-level parallelism to take advantage of the hardware. More recently, however, an
increasing number of processors are being introduced that schedule the code at run-time.

Dynamically-scheduled processors seek to increase the instruction-level parallelism by pos-
sibly issuing instructions in an order that is different from the issue order for a statically scheduled
processor; we refer to the issue order for a statically-scheduled processor as the program order.
In a dynamically scheduled processor, instructions are issued when a suitable functional unit
is available, and after the resolution of data and memory-location dependences with preceding
instructions. Since the issue order and hence the completion order of instructions is not deter-
ministic, dynamically-scheduled processors require hardware to ensure that instruction ordering
does not affect the behavior of applications.

Hardware is required to control the issuing instructions, to track data flow, and to recover
from exceptions. A number of techniques have been used to implement this functionality.
Scoreboarding, a technique first employed in the CDC 6600 [1], allows instructions to be
dispatched in order but execute out of order. A similar but more powerful technique is that
of reservation stations, an idea pioneered by the IBM 360/91 [2]. Implicit in the design of
a reservation station is the technique of renaming registers. Register renaming involves the
mapping of the registers named in the instructions, the virtual registers, to the actual or physical
registers. Register renaming, in addition to eliminating write-after-write and write-after-read
dependences, can also provide more temporary storage locations, which are necessary to allow
many instructions to be in execution simultaneously. Although both reservation stations and
scoreboards allow instructions to complete out of order, in-order completion can be implemented
with the addition of a reorder buffer [1]. Reorder buffers, reservation stations and explicit
register renaming hardware are used in the PowerPC 604 processor [3] to implement dynamic
scheduling.

An alternate technique and one which subsumes the functionality of reorder buffers, reser-
vation stations, and scoreboards, is dispatch queues with explicit register renaming hardware.
With this technique, which is used in the MIPS R10000 [4], in-order completion is implemented
by the register control logic. Processors using this technique have been implemented with one
or more different dispatch queues for different types of instructions. In our model, we use the
dispatch-queue technique and a single dispatch queue, because one queue is simpler and the
dispatch queue is not the focus of our study. Figure 1 presents an overview of our model; some
details are described further below.

The dispatch queue in a dynamically scheduled processor is used to maintain a pool of
instructions from which the scheduling logic chooses the instructions to issue next. As instruc-
tions are issued, additional instructions are fetched from the memory system and are inserted
into the dispatch queue, in program order. As instructions are inserted into the queue, the source
registers named in the instruction are mapped to physical registers, and the named destination
register, if there is one, is mapped to a free physical register. If there are no free registers, then
the instruction stream stalls until one becomes available.
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Figure 1: Overview of our dynamic scheduling implementation; only the data path is shown.

Registers can be freed only when doing so will not prevent the processor from recovering
and resuming execution after an exception occurs. With precise exceptions, it is required that
the instructions preceding the faulting instruction in the program order be allowed to change the
state of the system while those following the instruction will not; the complete set of conditions
for freeing registers is discussed in Section 2.2. In this exception model, a register cannot be
freed until all the instructions preceding the instruction writing this register are guaranteed to
complete. Under imprecise exceptions, the state of the system is not maintained so exactly,
thereby allowing registers to be freed earlier, and hence allowing for their more frequent reuse.
Although machines with truly imprecise exceptions are rare these days in general purpose
systems (since it prohibits multiprogramming and modern OS systems), we have examined a
true imprecise exception model as a best case limit for other hybrid exception approaches [1].

The freeing of registers is also affected by branch prediction. Branch prediction is typically
used in dynamically scheduled processors to allow the processor to move instructions across
branches and thereby increase the pool of those instructions available for issue. Branch pre-
diction, however, can negatively affect performance in two ways. First, mispredicted branches
result in the execution of unnecessary instructions, giving rise to a reduction in the average use-
ful instruction-level parallelism. And second, as discussed above but in regards to exceptions,
because the direction a branch takes is not definitively known until it is executed, the physical
registers that are written by instructions following the branch in program order cannot be freed
until the branch is executed. Hence, the time that a register is live (i.e., in use) depends on the
accuracy of the branch prediction hardware.

Another factor that directly affects the time that a register is live is the miss rate of the primary
data cache. When an instruction does not find the required data in the cache, the instruction’s
completion is delayed until the data can be fetched. If the instruction is a load instruction, then
the register that is the target for the load will need to remain live until the fetch can complete.
In addition, the miss will delay the issuing of any instructions in the dispatch queue that require
the result of the load, hence keeping the registers assigned to them live for longer.

The number of physical registers and the frequency of their reuse have a significant impact
on system performance since most instructions require a destination register and instructions
cannot be inserted into the dispatch queue when there are no free registers. Such instruction-
stream stalls may result in the hardware not being able to keep the dispatch queue full, thereby
reducing the number of instructions available for selection by the scheduler, which in turn may
limit its ability to schedule the maximum number of instructions per cycle. As mentioned above,
the register reuse frequency is a function of the exception model, the branch prediction accuracy,
and cache misses. It is also a function of the issue width, and the number and type of functional
units, for these factors affect the length of time between the insertion of an instruction into the
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dispatch queue and its completion. In this paper, we investigate the demand these factors place
on the number of registers required. We also consider the demands these factors place on the
number of register file ports, and how they affect the cycle time of the register file.

Previous Work

Although many other researchers have investigated dynamically scheduled processors that used
register renaming, we know of no research that has focused specifically on issues affecting the
register file. And for the most part, in the literature describing these investigations, many authors
have neglected to state how many physical registers were available for the renaming of virtual
registers. An exception is an investigation carried out by Wall on the limits of instruction-level
parallelism that included looking at the impact of varying the number of registers for a 64-
issue, 2048-instruction window machine with unit operation latencies [5]. Bradlee, Eggers, and
Henry investigated the performance tradeoffs of the number of registers for a RISC instruction
set architecture with various kinds of compiler support, but this study was for a statically-
scheduled, single-issue processor [6]. Franklin and Sohi also considered a statically-scheduled,
single-issue processor in their study of register life times and the replacement of the register file
with a distributed mechanism [7].

2 Simulation Methodology

The design requirements of the register file for a dynamically scheduled processor are in part
defined by the functionality offered by other system components. The components of interest
are: the issue width of the processor and the number of functional units, the size of the dispatch
queue, the type of exceptions employed, and the memory system used to service the processor’s
requests for data. To investigate the relationship between the register file and these components,
we simulated a number of machine configurations using scheduling rules and functional unit
latencies that resemble those of a number of commercial processors including the PowerPC 604
[3], the DEC 21164 [8], the MIPS R10000 [4] and the SUN UltraSPARC [9]. Each configuration
we simulated used the same hardware with the exception of the hardware required to implement
the components listed above.

The processor model implements a RISC, superscalar processor whose instruction set is
based on the DEC Alpha instruction set. The processor supports non-blocking loads and non-
blocking stores, and allows all instructions to be speculatively executed. The processor includes
separate instruction and data caches. Since our goal is to keep constant the factors that do not
directly concern the register file, we assume the servicing of instruction cache misses does not
delay the servicing of data cache misses. Hence, the instruction cache has a fixed miss penalty.
The data cache can be configured to be either lockup or lockup-free, and requires a deterministic
and constant time to resolve cache misses.

The instruction scheduling logic includes a single dispatch queue for all functional units, and
its size is configurable. In a clock cycle, the number of instructions that can be inserted into the
dispatch queue is equal to 1.5 times the maximum issue width of the processor. Instructions are
selected for issuing using a greedy algorithm that issues the earliest instructions in the program
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Figure 2: Overview of machine model.

order first. The issue logic includes hardware to dynamically disambiguate memory addresses
so as to allow memory instructions to issue before those occurring earlier in the program order.
The register file includes a configurable and equal number of integer and floating-point registers.
The register renaming scheme we use is modeled after the scheme used in the IBM ES/9000
[10], while the dispatch queue is similar to the fast dispatch stack of Dwyer and Torng [11].

The simulator implements both precise and imprecise exceptions. In our simulations, the
only source of exceptions is mispredicted branches; arithmetic exceptions are not modeled. We
use a branch prediction scheme proposed by McFarling [12] that includes two branch predictors
and a mechanism to select between them. This scheme is used to predict the direction of
conditional branches; all other control flow instructions are assumed to be 100% predictable.
Figure 2 presents an overview of the above machine model; some of the model details are
described further below.

2.1 Processor and Memory Models

The processor can issue 4 or 8 instructions per cycle, which are issue widths representative
of the current state-of-the art and future processors. For the four-way issue processor, each
instruction word can contain at most four operations of which there can be at most: four integer
operations, one floating-point division operation, two floating-point operations, two memory
operations (i.e., two loads, two stores, or one of each), and one control flow operation (i.e.,
branch, subroutine call or return). The issue rules for the eight-way issue processor are the same
but for each of the above instruction classes, twice the number can be issued in a cycle. All
integer functional units have single-cycle latencies except for the multiply unit, which is fully
pipelined and has a six-cycle latency. All floating point units have three-cycle latencies and are
also fully pipelined, with the exception of the floating-point divider. The floating-point divider
is not pipelined and has an eight-cycle latency for 32-bit divides, and a 16-cycle latency for

4



64-bit divides. Finally, stores take one cycle to be resolved and there is a single load-delay slot.

The combined-predictor branch prediction scheme we model has a 12 Kbit cost and com-
prises a bimodal predictor and a global history predictor. The bimodal predictor employs the
classical branch prediction idea of having a set of counters that indicate the direction taken by
the branches that shared the counter the previous times they were executed; we use 2048 two-bit
saturating counters. The global history predictor uses a shift register to generate a combined
history of the direction of the last n branches. The contents of this register are exclusive ORed
with the program counter word address to select one of another set of 2048 two-bit counters;
these counters are used in the same way as the first set. The selection mechanism is essentially
a bimodal predictor whose state reflects which branch predictor has been most correct. The
global-history shift register is updated after each conditional branch is inserted into the dispatch
queue using the predicted direction; the two-bit saturating counters are updated when a condi-
tional branch is issued, that is, executed. By updating the shift register during insertion, we can
take advantage of already identified branch patterns when determining the instruction to fetch
next. A consequence of updating the register early, however, is that on a mispredicted branch,
the shift register must be loaded with the value it contained before the mispredicted branch was
inserted into the dispatch queue.

Stores are assumed to be implemented using write-around (i.e., no-write-allocate) and write-
through policies with a write buffer situated between the data cache and lower levels in the
memory hierarchy. Since our goal is to keep constant the factors that do not directly concern
the register file, we assume that no memory bandwidth is required to retire stores in the write
buffer. This assumption prevents any stalls due to a full write buffer and prevents stores from
delaying the servicing of cache fetches.

The data cache can be configured to be lockup or lockup-free. The lockup-free cache
employs an inverted MSHR (Miss Status Holding Register) organization [13] to process cache
misses. An inverted MSHR organization can support as many in-flight cache misses as there
are registers and other destinations for data in the processor. For the four-way issue processor
configuration, the register file has eight read ports and sufficient write ports to prevent any
write-port conflicts arising when registers are filled on the resolution of a cache miss. For the
eight-way processor configuration, there is twice the number of ports. (Section 3.4 discusses
read and write ports further).

Requests for blocks of data are sent via the memory interface to the next level in the memory
hierarchy. The blocks of data are returned in a constant and deterministic number of cycles
called the fetch latency. When a block is returned to the cache, the cache line is written
simultaneous with the writing of the appropriate words into all registers with loads outstanding
to this block (updating all pending registers requires the multiple write ports mentioned above).
This simultaneous writing is represented in Figure 2 by the arrow that bypasses the data cache.
Writing a register or a cache line is assumed to take one cycle.

2.2 Freeing Physical Registers

Registers can be freed only when their being freed will not prevent the processor from recovering
and resuming execution after either an exception occurs during the execution of an instruction,
or a branch is mispredicted. The conditions under which a register can be freed depend on
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whether precise or imprecise exceptions are supported. Key to the freeing of registers are the
following concepts: the completion and commitment of an instruction, and the creation, retiring,
and killing of a virtual-to-physical mapping.

An instruction is said to complete when it has reached the point of altering the state of the
machine; branches complete when they change the program counter, stores complete when the
cache is updated or the data is placed in the write buffer, and other instructions complete when
their destination registers are written. Once an instruction completes, the instructions following
it in the program order can make use of the result or the side-effect it produced. An instruction
is said to commit when it has completed and all the instructions preceding it in program order
have completed. A committed instruction will never be reissued because all of the instructions
before it in the program order have completed. A completed instruction, however, will be issued
again should the subsequent execution of any of the instructions preceding it in the program
order give rise to an exception or a mispredicted branch. In our simulator, the maximum number
of instructions that can be committed in each clock cycle is exactly twice the issue width of the
processor, modeling probable hardware limitations.

When an instruction I that names a destination register, say register Rv, is inserted in the
dispatch queue, this register is renamed to a physical register, say R1

p. When this renaming
occurs, we say that a virtual-to-physical mapping has been created. As subsequent instructions
in the program order are inserted into the queue, any that use register Rv as an operand will
have this register renamed to R1

p. This mapping between Rv and R1
p remains active until a

subsequent instruction is inserted into the queue that names Rv as a destination. At this point,
another physical register R2

p is mapped to Rv , and the Rv ! R1
p mapping is said to have been

retired. A retired mapping is eventually killed and the point at which this killing occurs depends
on the exception model. The register whose mapping has been killed is free for reuse.

Conditions for Freeing Registers

To facilitate the discussion of the conditions for freeing registers, consider the scenario in which
a virtual register Rv is named by an instruction I1 as its destination register, and Rv has been
mapped to a physical register Rp. Under precise exceptions, the register Rp will be freed when
an instruction I2 commits if instruction I2 is the first instruction after instruction I1 in program
order to have register Rv as a destination. Inherent in this condition are the following two
requirements: (1) Instruction I1 has committed; (2) The instructions that use the register Rp

have committed (these instructions occur later in the program order than instruction I1 and
earlier than instruction I2).

The condition for freeing registers ensures that the exact state of the machine can be recovered
at any point should an instruction suffer an exception or a branch is mispredicted1. When an
exception does occur or a branch is mispredicted, the mappings for each virtual register must
be set back to the mapping that existed before the execution of the instruction causing the
exception and any instructions following this instruction in the program order. The resetting

1This statement is actually only partially true since the conditions given do not address changes in state caused
by the execution of stores. To allow the recovery of the machine state, a non-merging buffer is required to hold the
write data until the store instruction commits. Only at this point can the data be written into the cache or the write
buffer. We do not consider stores further as this paper is concerned primarily with the register file.
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Bench- Data Com- 4-way issue 8-way issue
mark set mit Execute instr. IPC Rates (%) Execute instr. IPC Rates (%)

instr. total load cbr issue c’mit load cbr total load cbr issue c’mit load cbr
compress ref 86 126 29 14 3.06 2.09 15 14 170 42 17 4.90 2.50 10 14
doduc small 190 209 48 12 2.75 2.49 1 10 235 56 13 4.92 3.97 1 10
espresso ti 560 626 138 91 3.39 3.04 1 13 733 171 101 5.57 4.26 1 14
gcc1 cexp 23 27 6 3 2.80 2.35 1 19 32 8 3 4.47 3.14 1 20
mdljdp2 small 291 319 48 31 2.33 2.12 3 6 351 54 34 4.05 3.36 3 6
mdljsp2 small 350 386 82 31 2.97 2.69 1 6 429 94 33 5.25 4.28 1 6
ora small 190 190 31 8 1.86 1.86 0 6 190 31 8 2.08 2.08 0 6
su2cor small 417 437 107 12 3.38 3.22 17 7 460 114 13 6.24 5.65 22 7
tomcatv ref 910 911 247 30 2.77 2.77 33 1 912 248 30 5.52 5.51 39 1

Table 1: Dynamic statistics for each benchmark for both issue widths, using 2048 physical
registers, a 64 KByte, 2-way set associative lockup-free data cache with a 16 cycle fetch
latency. Instruction counts are in millions; the “rates” columns give the cache load miss rate and
conditional branch misprediction rate. The 4-way issue results are for a dispatch queue with 32
entries, while the 8-way issue results are for one with 64.

of the mappings entails moving a pointer in the virtual-to-physical register-map table. The
physical registers will still contain the correct values because a register cannot be freed until all
the instructions preceding its writer have committed. That is, until all the instructions before an
instruction I commit, the operands required by I will remain in the register file. A second step
in the recovery from an exception or a mispredicted branch is that all the instructions later in
the program order than the instruction that caused the exception are removed from the machine.
If any of these names a destination register, then the physical register is freed. These registers
can be freed since the instructions that depend on them are also removed from the machine.
Finally, on-going cache block fetches that were initiated by instructions that have been removed
are marked so that the cache block will not be written into the cache or be used to write registers
when the block returns from memory.

In our processor model, we assume that a register can be reused in the cycle after the
conditions for freeing it are satisfied. We also assume that any functional units that are busy
with an instruction that is removed will be available for reuse in the cycle after the exception or
branch occurred.

Under imprecise exceptions, registers can be freed earlier. Again, to facilitate the discussion,
consider the scenario in which a virtual registerRv is named by an instruction I1 as its destination
register, and Rv has been mapped to a physical register Rp. With imprecise exceptions, the
physical registerRp can be freed when: (1) Instruction I1 has completed; (2) The instructions that
use registerRp have completed; (3) The virtual-to-physical mapping is killed by the completion
of any instruction Ix that follows instruction I1 in the program order if instruction Ix has register
Rv as its destination but only when all the branches preceding instruction Ix have completed.

These conditions differ from those for precise exceptions in several important areas, and
these are indicated by the emphasized typeface in the above list. First, the first two conditions are
not subsumed by the virtual-to-physical mapping condition (condition no. 3), a result of it only
being necessary for instructions to “complete” rather than “commit” (condition no. 2). Second,
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it is important for all preceding branch instructions to complete rather than for all preceding
instructions to commit. And third, the writer of a physical register can cause the killing of any
mappings created by preceding instructions, rather than only the preceding mapping. Taken
together, these differences allow registers to be freed earlier, and allow the exact state of the
machine to be recovered without assistance from software when a mispredicted branch does
occur.

Note that our imprecise model is even more imprecise than the model defined in Digital’s
Alpha AXP Architecture [14] as we assume that memory operations are imprecise, whereas in
the Alpha Architecture, only arithmetic operations are imprecise. Thus, the numbers we present
for imprecise systems provide a lower bound on register requirements as compared to a precise
model.

3 Performance Trends

This study is based on execution-driven simulations using an object code instrumentation system
called ATOM [15], which is available for Alpha AXP workstations. The results presented
correspond to simulations of nine of the SPEC92 benchmarks representing a balance between
floating-point-intensive and integer-intensive applications. The benchmarks are listed in Table 1
along with some run-time characteristics for the four-way and eight-way issue processors. The
column headed “Data set” specifies which of the official SPEC92 data sets were used for the
simulations. In all cases, the benchmarks were compiled using the Alpha native C compiler
with the global ucode optimizer enabled, and the linker was directed to perform link-time
optimizations. In all cases, the instruction cache miss rate was under 1%.

The column headed “Commit instr.” gives the number of instructions in the trace for each
benchmark, which is equivalent to the number that commit (see Section 2.2 for the definition
of commit). The number of committed instructions does not necessarily equal the number
of instructions that are executed (i.e., issued) due to mispredicted branches. The number of
executed instructions is given under the columns headed “Executed instr.” with sub-columns
for the number of loads (“load”) and for the number of conditional branches (“cbr”). Both
the number of committed instructions and the number of executed instructions are dynamic
instruction counts.

The average number of instructions per cycle (IPC) for each benchmark and each issue
width are given in the columns headed “IPC”. The issue IPC, given in the sub-columns headed
“issue”, is the ratio of the number of instructions that are issued to the total (simulated) run time;
the issue IPC measures the rate at which instructions are dispatched to the functional units. In
our system model, the difference between the issue IPC and the maximum issue width is due
to the dependences in the code and the number and type of functional units. The commit IPC,
given in the columns headed “c’mit”, is the ratio of the number of instructions that commit to the
total run time. The difference between the issue IPC and the commit IPC is due to instructions
that are incorrectly speculatively executed when following mispredicted branches. The commit
IPC values we report are optimistic in part due to our assumption of a bandwidth-unconstrained
memory system. To illustrate this fact, consider the commit IPC of 5.51 given in the table for
tomcatv using the eight-way issue processor. Replacing the non-blocking cache with a blocking
one, the commit IPC is reduced by 70%. Our commit IPCs are also high because we assume a
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larger and less restricted set of functional units than many recently announced microprocessors.

The branch misprediction rates are given along with the overall cache miss rates for loads
under the columns headed “Rates”. The misprediction rates shown are larger than those reported
by McFarling [12] for the same branch prediction scheme and a statically scheduled processor.
The increase is in part due to the use of the dispatch queue in a dynamically scheduled processor.
The dispatch queue increases the time between when the prediction is made and when the
predictor tables are updated with the direction taken by the branch (the prediction is made at the
point of insertion into the dispatch queue while the updating occurs at the point of executing
the branch instruction). Hence, predictions are based on information that may not reflect the
direction actually taken by immediately preceding branches in the program order. In addition,
the information used reflects the execution order rather than the program order of branches, and
these two are not necessarily the same. In practice, however, we found that while the branch
prediction accuracy did improve somewhat with in-order execution of conditional branches, this
improvement occurred at the expense of a notable decrease in the commit IPC. Hence, we allow
branches to execute out of order.

We present our investigation of factors affecting the register file design in four parts. We
begin with an investigation of a processor with a large number of physical registers to evaluate
how register requirements change as we vary the issue width and the size of the dispatch queue.
From the results, we identify a cost effective dispatch queue size for the two issue widths. Using
these dispatch queue sizes, we then investigate the register requirements and performance of
the two exception models. In the third part, we investigate the impact that the memory system
organization has on the register requirements and on performance. Finally, in the last part, we
evaluate the cycle times of the register file designs we use.

3.1 Trends for Large Register Files

To investigate the register file requirements under variations in the dispatch queue size and issue
width, we configured the system model with 2048 integer and 2048 floating-point registers.
These values were chosen to minimize the impact on our measurements from instruction-stream
stalls caused by a lack of free registers. Such stalls occur if an instruction cannot be inserted into
the dispatch queue because there are no free registers; in our simulations, such stalls accounted
for much less than 1% of the run time. Using this system model, we measured the number of
live registers using the 90th percentile as our metric; the 90th percentile indicates how many
registers should be provided by the hardware to achieve nearly the same average commit IPC
as is achieved with 2048 registers2. The 90th percentile was chosen in lieu of a geometric mean
or an arithmetic average owing to the non-uniform and non-Gaussian shape of the distributions.

In examining the relationship between the dispatch queue and the number of registers, it
is useful to categorize the registers that are live into one of four categories. The live registers
in our system may be (1) assigned to instructions residing in the dispatch queue, (2) assigned

2The 90th percentile is determined by first having the simulator record how many registers were live in each
cycle of a benchmark’s execution. Then, this distribution of cycle counts for each register value is normalized by
the (simulated) run time of the benchmark, giving normalized cycle counts of between zero and one. Next, the
normalized distribution for all benchmarks of a given system model are averaged together. Finally, we determine
the number of registers needed to cover 90% of the resulting distribution. This approach was adopted to prevent
the distribution of a single benchmark from dominating the combined distribution.
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Figure 3: Average IPC and 90th percentile number of live registers for all benchmarks as a
function of the size of the dispatch queue. The shaded areas indicate the fraction of the live
registers in each of four states.

to instructions presently being executed (i.e., in-flight), (3) waiting for the imprecise exception
register-freeing requirements to be met, (4) waiting for the precise exception register-freeing
requirements to be met. Applying this categorization to the integer and floating point registers,
and the two issue widths yields four sets of data. Figure 3 presents these four sets of data as
graphs3. We begin by discussing the graph corresponding to the integer registers of the four-way
issue processor (the upper left-hand graph which is enclosed in a dotted box).

This graph presents the average issue IPC, the average commit IPC and the number of
live registers as a function of the dispatch queue size using the baseline cache configuration

3In Figure 3 and all subsequent figures that present averages for all benchmarks, the curves for the integer
registers include data from all benchmarks whereas the floating-point register curves only include data from the
floating point intensive benchmarks.
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of a 64 KByte, two-way set-associative lockup-free cache with a 16-cycle fetch latency. As
shown by the curve marked with the solid circles, the issue IPC approaches the issue width
of the processor as the size of the dispatch queue is increased. This trend is a by-product
of the increased scheduling flexibility afforded by the larger pool of instructions available for
scheduling, with the effect of allowing the scheduler to avoid many functional unit conflicts
and data dependences. The commit IPC, as shown by the curve marked with open circles,
also increases with increasing dispatch queue sizes, but at a slower rate than that of the issue
IPC. This difference in rates is due to the issuing of instructions that don’t commit because a
preceding branch in the program order was mispredicted. Also note that the gap between the
issue and commit IPC is significantly larger for the eight-way issue processor than the four-way
issue processor. This fact is a result of the eight-way issue processor speculatively executing
more instructions, and these instructions are subject to branch misprediction.

Turning to the other curves in the graph, the upper boundary of the “instruction in the
dispatch queue” (white) region corresponds to the number of registers live under the precise
exception model, and the size of the “wait precise requirements” (stippled) region indicates the
number of additional registers required to support precise exceptions over imprecise exceptions.
Note that there are at least 32 live registers. This value is the minimum number of live registers
under both exception models for any program that references all virtual registers, as do most
useful programs. With fewer than 32 physical registers, the system will become deadlocked
since, to free a physical register, at some point there must be two physical registers assigned to
the same virtual register, and there are 31 virtual registers that can be renamed (the zero register
is not renamed). This situation is needed to effect the killing of the virtual-to-physical mapping,
as discussed in Section 2.2.

The shape of the upper boundary of the white region shows that the number of live registers
increases with increasing dispatch queue size. There are two primary reasons for this relation-
ship. First, as the number of entries in the dispatch queue increases, instructions will likely
be issued in an order less and less similar to the program order; in other words, there will be
more out of order issue. When these instructions complete, their destination registers cannot be
freed until the conditions for the exception model are met. Since these conditions involve the
completion of instructions earlier in the program order, the registers will remain live for longer.
Hence, there will be an increase in the number of live registers waiting for precise and imprecise
freeing requirements to be met. The increase under imprecise exceptions is illustrated in the
graph by the lined region; the increase under precise exceptions is illustrated by the stippled
region. Observe that the lined region exhibits a more substantial increase in size with larger
dispatch queues than does the stippled region. The stippled region represents registers assigned
to instructions that have already satisfied the requirements for imprecise exceptions. Since these
requirements involve the completion of all preceding conditional branches in the program order,
instructions in the wait-for-precise-requirements category must have had any preceding condi-
tional branches already complete. This fact reduces the out-or-orderness of instructions in the
wait-for-precise-requirements category, and hence, the number of registers pending completion.

Second, as the number of entries in the dispatch queue increases, more instructions remain
in the dispatch queue longer. Since registers are allocated to these instructions when they are
inserted into the queue, there will be an increase in the number of live registers. In addition,
the slight increase in issue IPC gives rise to only a slight increase in the number of instructions
in flight; this effect is illustrated by the black region. This trend is also present in the other
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Figure 4: Average register usage histograms under both the precise and imprecise exception
models using a lockup-free cache. The four-way issue processor histograms correspond to a
dispatch queue with 32 entries while those for the eight-way issue processor correspond to a
dispatch queue of 64 entries.

three graphs in the figure, that is, those corresponding to the floating point register file and the
eight-way issue processor. Observe that the doubling of the issue width results in less than a
doubling of the number of registers associated with instructions in flight. This fact is due to the
less than doubling in the issue IPC that occurs with a doubling in the issue width.

Finally, observe that as the dispatch queue size increases, there is a value at which the
average commit IPC approaches its asymptotic value. For the four-way issue processor, this
point occurs around a dispatch queue of 32 entries whereas for the eight-way issue processor, it
is around 64 entries. Moreover, once a certain number of dispatch queue entries is reached, a
greater proportion of the increase in the number of live registers is attributable to the instructions
residing in the dispatch queue. Taken together, these two trends suggest that a dispatch queue of
32 entries is most cost-effective for the four-way issue processor, and one of 64 entries is most
cost-effective for the eight-way issue processor.

3.2 Precise versus Imprecise Exceptions

The non-zero size of the precise region in Figure 3 suggests that the use of the precise exception
model requires more registers than is required under the imprecise exception model. To examine
this trend in more detail, we begin by presenting register usage histograms of the floating point
registers for tomcatv for both exception models. Figure 5 shows these histograms as run-time
coverage curves. In this figure, the x-axis specifies the number of registers live at each cycle
during the execution of the benchmark while the y-axis indicates the percentage of the total
number of cycles with at most the indicated number of registers live. For example, on an 8-issue
machine under the precise exception model, for 70% of the run time there were 150 or fewer
floating-point registers live.

Observe that the floating-point register count at which the imprecise exception model reaches
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Figure 5: Impact of the exception model on the floating pointer registers for tomcatv with an
8-way issue processor, a 64 entry dispatch queue, and a lockup-free cache.

100% coverage is�130 while the same point for precise exceptions is�500. Also observe that
the curve representing imprecise exceptions has shifted towards zero, an indication that fewer
registers are required with this exception model. With precise exceptions, the corresponding
curve exhibits a flat region between 150 and 400 registers, signifying that there were rarely 150
to 400 registers live, and that the register usage distribution is bimodal. The second modality,
which is centered around 450, is a result of the more strict conditions for freeing registers under
the precise exception model. Even though the dispatch queue has only 64 entries, the need for
500 registers in the precise model shows that at some points there is at least one instruction
in the dispatch queue which is 500 instructions out of sequence (i.e., there is an instruction in
the dispatch queue which occurs at least 500 instructions later in the program order than the
earliest instruction). And because the 499 intervening instructions cannot be committed until
the earliest instruction completes, any registers assigned to these instructions cannot be freed.

Although tomcatv represents an extreme case for register usage, the average 100% coverage
points for all benchmarks are still significant, as shown in Figure 4. This figure gives the run-
time coverage for both issue widths and register files; the curves were obtained by averaging
the run-time coverage curves for each benchmark. As shown in the figure, 90% coverage is
achieved with 90 registers for the four-way issue processor and 150 registers for the eight-way
issue processor. Unfortunately, providing even 90 registers with sufficient numbers of read and
write ports could be prohibitively expensive.

To evaluate the impact on performance of using a smaller and more realistic number of
registers, we simulated the benchmarks with different register-file sizes while keeping the
dispatch queue size constant. The results of this evaluation are presented in Figure 6 for both
issue widths and both exception models. As shown by the solid lines in the figure, the commit
IPC increases with larger register files, but the degree of improvement diminishes at the larger
sizes. This trend is due to the decreased pressure on the registers with larger register-file sizes.
The register pressure is represented in the figure as dotted lines; these lines give the percentage
of the run-time for which there were no free registers. Observe that with larger register files,
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Figure 6: Average IPC for the benchmarks and the percentage of the run time during which there
were no free registers. The dispatch queue size was held constant and the number of registers
were varied.

there are usually free registers available, a fact that accounts both for the leveling off of the
performance, and for the similar performance under both exception models. With smaller
register files, there is a more significant performance difference between the two exception
models. The performance difference arises because under the imprecise model, on average,
registers are live for shorter amounts of time.

3.3 Memory System Effects

In the preceding sections, we discussed how the number of live registers is affected by the
size of the dispatch queue, the issue width of the processor, and the exception model. Another
factor that directly affects the number of live registers is the data cache miss rate. When a load
instruction does not find the required data in the cache, its completion is delayed until the data
can be fetched from memory. As a result, the register target of the load will need to remain live
for longer. In addition, any instructions that use the result of the load cannot be issued until the
load completes, thereby increasing the live time of their source and destination registers. Finally,
the average time a register is live will also increase because by delaying some instructions from
being issued, it is more likely that fewer instructions will be issued in program order. Thus it
will take longer to meet the exception model requirements for freeing registers.

To evaluate the impact of the memory system organization, we simulated the following
three cache organizations: a cache with an assumed 100% hit rate, referred to as the perfect
cache, and two 64 Kbyte, 2-way set-associative, caches both with a 16 cycle miss penalty, one
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Figure 7: Average commit IPC for three data cache organizations using a 32 entry dispatch
queue for the four-way issue processor, and a 64 entry dispatch queue for the eight-way issue
processor.

being lockup-free and the other not. We assumed that the lockup-free cache could initiate as
many new cache line fetches as necessary from the next lower level in the memory hierarchy
in each cycle. Figure 7 presents the average commit IPC for each issue width and each of
these cache organizations as a function of the number of registers; Figure 7(a) presents a set
of curves for imprecise exceptions, while Figure 7(b) presents a set for precise exceptions.
Observe first the familiar concave shape of the IPC curves, and second, that under precise
exceptions, more registers are required to obtain a similar performance than is required under
imprecise exceptions. Note also that the lockup cache organization achieves significantly worse
performance for both issue widths. This shows that the benchmarks require a cache with at least
some lockup-free support. Finally, the performance curves for different memory system models
tend to saturate at roughly the same register count for a given issue width and exception model.
For example, the performance of an 8-way issue machine with imprecise exceptions saturates
for 96 registers or more, independent of the memory system model.

Further insight into the performance difference between the three cache organizations is
provided by the register usage histograms obtained when these three organizations are employed
in a system with 2048 registers. We have chosen to present the integer register histograms for
compress as they clearly show the differences between the organizations owing to the significant
cache miss rate of compress. The histograms are presented in Figure 8 as run-time coverage
curves. As in Figure 5, the x-axis specifies the number of registers live at each cycle during the
execution of the benchmark while the the y-axis indicates the percentage of the total number of
cycles with at most the indicated number of registers live. Comparing the shapes of the curves
for the perfect cache (the solid line) to the curve for the lockup-free cache (the dotted line), we
note that the lockup-free cache requires more registers to obtain the same run-time coverage
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Figure 8: Cumulative register usage histogram for compress showing how many registers are
live as a percent of run time. The system modeled used precise exceptions, a 4-way issue
processor, 32 entry dispatch queue, and 2048 registers.

as the perfect cache. In addition, the smaller slope of the lockup-free cache curve indicates
that the live registers are concentrated in a wider range. This range becomes smaller when a
lockup cache is used, suggesting that the additional registers required for the lockup-free cache
are a result of allowing multiple outstanding cache misses and cache probes to occur during the
servicing of the misses. The curve for the lockup cache, however, is similar in shape to that for
the perfect cache, but the curve for the lockup cache shows that the majority of the number of
registers is concentrated in a more narrow region (between 55 and 75), suggesting that there is
less variance in the register requirements. This reduction in the register requirements may be
due to more in-order issuing of instructions and thus less variance in the time required to meet
the conditions for freeing registers.

3.4 Timing Model

In a wide-issue dynamically scheduled processor, there are a number of critical paths that will
likely determine the cycle time. These paths include the dispatch queue, the register renaming
unit, and the register file. The implementation size and complexity of these structures tend to
scale together since it is desirable that none of these structures offer an disproportionate amount
of functionality. For example, if many additional ports are added to the register renaming tables,
additional ports to the register file will probably be needed as well. Similarly, if many additional
entries are added to the dispatch queue, additional registers in the register file will probably be
needed as well.

The register renaming unit and the dispatch queue are subject to wide variations in im-
plementation architecture and circuitry, while the register file design space is more limited.
Independent of how the dispatch queue and renaming unit are implemented, however, they will
have structures similar to those found in the register file (such as numbers of ports or numbers
of entries). Hence, we assume the register file cycle time scales similarly to their cycle times,
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and therefore to that of the machine as a whole.

We present an evaluation of the register file cycle times required for the four-way and eight-
way issue processor systems. This evaluation assumed a lockup-free cache organization and
a 32 entry dispatch queue for the four-way issue processor, and a 64 entry dispatch queue for
the eight-way issue processor. We simulated a number of register file designs each differing in
the number of read and write ports and the number of registers. The number of read and write
ports was set by the issue width of the processor while the register file sizes correspond to those
used in Figure 6. For these simulations, we modified the cache access and cycle time model of
Wilton and Jouppi [16] to generate cycle times for multiported register files using the register
file cell shown in Figure 9. This cell uses two bitlines per write port and one bitline per read
port. One wordline is required per port. We assumed a 0.5�m CMOS technology.

Using this model, we determined the cycle time for each of the integer and floating-point
register files as a function of the size of the register file. For the four-way issue processor, we
assumed the integer register file had 8 read ports and 4 write ports, whereas the floating-point
register file had half as many (because only half as many floating-point instructions can be
issued per cycle in our model); twice the number of ports were assumed for the eight-way issue
processor. The results of the evaluation are presented graphically in Figure 10. This figure
presents for both issue widths two register file timing curves and two estimated performance
curves.

In the two graphs shown in the figure, the cycle time of the floating-point register file is given
by the curve marked with triangles, while the cycle time of the integer register file is given by
the curve marked with circles. Note that the cycle time of the floating point register file is always
smaller than the integer register file, a speed difference that is attributable to the floating-point
register file having half the number of ports as the integer register file. The register file cycle
times for the four-way issue processor also show a smaller increase as the number of registers is
doubled than the increase which occurs with a doubling of the issue width for the same register

Bit
Read
bitline #1

Write wordline #1

Bitbar
Write bitline #1

Read wordline #1

To sense
amplifier

Figure 9: Multiported register file cell.
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Figure 10: Register file timing and estimated machine performance. The four-way issue
processor used a 32 entry dispatch queue while the eight-way issue processor used a 64 entry
dispatch queue.

file size. This relationship is due to the cycle time of a large register file being more strongly
affected by a doubling of the number of register file ports rather than a doubling of the number
of registers. For a register file, doubling the number of ports doubles the number of wordlines
and bitlines (quadrupling the register file area in the limit), but doubling the number of registers
only doubles the number of wordlines (doubling the register file size in the limit).

The two graphs also show an estimate of machine performance assuming that the machine
cycle time scales proportionally to that of the integer register file. Performance is measured in
billions of instructions per second (BIPS) and is derived by dividing the average commit IPC
from Figure 6 by the cycle time of the register file in question. The performance obtained under
precise exceptions is shown by the curves marked with white squares while that obtained under
imprecise exceptions is shown by the curves with black squares. For both issue widths, the
imprecise model has a small performance advantage with small numbers of registers. However,
in the four-way issue processor, there is little performance difference between the two exception
models with register file sizes greater than 80. For the eight-way issue processor, this point
occurs at 160 registers, a result of the need for more registers due to the more out-of-order issue
of instructions in the eight-way issue processor.

The performance curves in Figure 10 all exhibit performance maxima at moderate numbers
of registers. For register files smaller than these maxima, the average BIPS falls off, a result
of instruction-stream stalls. For register files larger than these maxima, the increasing register
file cycle time negatively impacts the machine cycle time and hence, overall performance. We
also note that the maximum performance only improves by 20% when moving from the 4-issue
machine to the 8-issue machine. A major reason for this fact is the large increase in the cycle
time that is mandated by the larger and more complex register file. Although the data presented
in this figure is for a dynamically scheduled processor, a VLIW processor with centralized
integer and floating-point register files would also be subject to performance limits similar to
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Figure 10. Hence, there is a need for new decentralized architectures, such as the proposed
Multiscalar architecture[17].

4 Conclusions

We have investigated a number of issues in the design of register files for dynamically scheduled
superscalar processors. From these investigations we draw the following conclusions.

First, the additional register requirements for providing precise exceptions in these processors
is relatively small. The imprecise model we simulated only reduced the average number of
registers required by the four-way issue machine by at most 20% with a dispatch queue of 32
entries. The difference between the precise and imprecise models was larger for the eight-way
issue machine, since to get good utilization of the eight-way issue machine, the instructions
must be executed more out of program order. The eight-way issue machine using imprecise
exceptions required an average of 37% fewer registers than one using precise exceptions with a
dispatch queue size of 64. Because the register file cycle time is more heavily dependent on the
number of register file ports than the number of registers, and in view of all the other hardware
required by a dynamically scheduled superscalar processor, the additional registers required to
support precise exceptions are a small cost.

Second, the combination of dynamic scheduling and aggressive non-blocking load support
can achieve performance quite close to that of systems with single-cycle direct memory access (a
perfect memory system). Although the processor at times could use many hundreds of registers,
we found that limiting the number of registers to 80 (both integer and floating-point) for the
four-way issue machine and 128 for the eight-way issue machine, resulted in performance that
was only a few percent lower than that of a machine with an unlimited number of registers.

Third, we extended a cache memory access and cycle time model to model register file cycle
times. Although there are many critical paths in a dynamically scheduled superscalar processor,
the worst may have timing that scales similarly to that of register files with complexity. Therefore
we approximated the scaling of machine cycle time with complexity to be proportional to the
scaling of the required register file cycle time. Since the register file becomes slower as the
number of registers increases, and the resulting IPC tends to saturate, the overall machine
performance has a maxima with the above noted number of registers. In addition, since the
register file cycle time is also strongly dependent on the number of ports, we conclude from
our simulations that the use of centralized integer and floating-point register files may yield
only a 20% performance improvement for an eight-way issue processor over a four-way issue
processor.
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