
SRC Technical Note

1997-005c

June 2, 1998

The Vesta-2 Software Description Language

Allan Heydon, Jim Horning, Roy Levin, Timothy Mann, and Yuan Yu

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301
http://www.research.digital.com/SRC/ 

Copyright 1997, 1998 Digital Equipment Corporation. All rights reserved. 

Table of Contents

1. Introduction 
2. Lexical Conventions 

2.1 Meta-notation 
2.2 Terminals 

3. Semantics 
3.1 Value Space 
3.2 Type Declarations 
3.3 Evaluation Rules 

3.3.1 Expr 
3.3.2 Literal 
3.3.3 Id 
3.3.4 List 
3.3.5 Binding 
3.3.6 Select 
3.3.7 Block 
3.3.8 Stmt 
3.3.9 Assign 

1 of 42



3.3.10 Iterate 
3.3.11 FuncDef 
3.3.12 FuncCall 
3.3.13 Model 
3.3.14 Files 
3.3.15 Imports 
3.3.16 Filename Interpretation 

3.4 Primitives 
3.4.1 Functions on Type t_bool 
3.4.2 Functions on Type t_int 
3.4.3 Functions on Type t_text 
3.4.4 Functions on Type t_list 
3.4.5 Functions on Type t_binding 
3.4.6 Type Manipulation Functions 
3.4.7 Tool Invocation Function 

4. Concrete Syntax 
4.1 Grammar 
4.2 Ambiguity Resolution 
4.3 Tokens 
4.4 Reserved Identifiers 

5. Acknowledgments 
6. References 

1. Introduction

This note describes the formal syntax and semantics of the Vesta-2 Software Description Language (SDL). We
expect it will be used as a reference by Vesta-2 users. Although the description is meant to be complete and
unambiguous, it is by no means a language tutorial or user guide. 

Vesta-2 is a software configuration management system [1]. Developers use Vesta-2 to build and manage
potentially large-scale software. In Vesta-2, the instructions for building a software artifact are written as an SDL
program. Evaluating the program causes the software system to be constructed; the program's result value
typically contains the derived files produced by the evaluation. 

Vesta-1, the precursor of Vesta-2, saw extensive use at the Digital Systems Research Center [2, 3, 4, 5].
Vesta-2 adopts many of the same concepts as Vesta-1, but Vesta-2 features substantial design changes
(including major changes to the syntax and semantics of the SDL itself) and a portable implementation. In the rest
of this note, references to ``Vesta'' mean ``Vesta-2''. 

The Vesta SDL is a functional language with lexical scoping. Its value space includes Booleans, integers, texts,
lists (similar to LISP lists), sequences of name-value pairs called bindings, closures, and a unique error value. 

The language is dynamically typed; that is, types are associated with run-time values instead of with static names
and expressions. Even without static type checking, the language is strongly typed: an executing Vesta program
cannot breach the language's type system. The expected types of parameters to language primitives are defined,
and those types are checked when the primitives are evaluated. The language includes provisions for specifying
the types of used-defined function arguments and local variables, but these type declarations are currently
unchecked. 

2 of 42



The language contains roughly 60 primitive functions. There is a single _run_tool primitive for invoking external
tools like compilers and linkers as function calls. External tools can be invoked from Vesta without modification. 

Conceptually, every software artifact built with Vesta is constructed from scratch, thereby guaranteeing that the
resulting artifact is composed of consistent pieces. Vesta uses extensive caching to avoid unnecessary rebuilding.
Vesta records software dependencies automatically. The techniques by which the implementation caches function
calls and determines dependencies are described in the complete Vesta-2 paper [1]. 

2. Lexical Conventions

The language semantics presented in Section 3 introduces each language construct by giving its syntax and
semantics. This section defines the meta-notation and terminals assumed by the presented syntax fragments. The
complete language syntax is given in Section 4. 

2.1 Meta-notation

Nonterminals of the grammar begin with an uppercase letter, are at least two characters in length, and include at
least one lowercase letter. Except for the four terminals listed in Section 2.2 below, each of which denotes a class
of tokens, the terminals of the grammar are character strings not of this form. 

The grammar is written in a variant of BNF (Backus-Naur Form). The meta-characters of this notation are: 

  ::=  |  [  ]  {  }  *  +  `  '

The meaning of the metacharacters is as follows: 

  NT ::= Ex  NT rewrites to Ex
  Ex1 | Ex2  Ex1 or Ex2
  [ Ex ]     optional Ex
  { Ex }     meta-parentheses for grouping.
  Ex*        zero or more Ex's
  Ex*,       zero or more Ex's separated by commas, trailing comma optional
  Ex*;       zero or more Ex's separated by semicolons, trailing optional
  Ex+        one or more Ex's
  Ex+,       one or more Ex's separated by commas, trailing comma optional
  Ex+;       one or more Ex's separated by semicolons, trailing optional
  `s'        the literal character or character sequence s

When used as terminals, square brackets, curly brackets, and vertical bar appear in single quotes to avoid
ambiguity with the corresponding metacharacters (i.e., `[', `]', `{', `}', `|' ). 

2.2 Terminals

The following names are used as terminals in the grammar. They denote classes of tokens, and are defined
precisely in Section 4.3 

Delim 
A pathname delimiter. Either forward or backward slashes are allowed within pathnames, but not both. 

Integer 

3 of 42



An integer, expressed in either decimal, octal, or hexadecimal. 
Id 

An identifier. An identifier is any sequence of letters, digits, periods, and underscores that does not
represent an integer. For example, foo and 36.foo are identifiers, but 36 and 0x36 are not. 

Text 
A text string. Texts are enclosed in double-quotes. They may contain escape sequences and spaces. 

Comments and white space follow C++ conventions. A comment either begins with // and ends with the first
subsequent newline or begins with /* and ends with */ (the latter form does not nest). Of course, these delimiters
are only recognized outside text literals. White space delimits tokens but is otherwise ignored (except that the
Space character, the ASCII character represented by the decimal number 32, is significant within text literals).
The grammar prohibits white space other than the Space character within text literals. 

The names of the built-in functions begin with an underscore character, and the identifier consisting of the single
character "." plays a special role in the Vesta SDL. It is therefore recommended that Vesta programs avoid
defining identifiers of these forms. 

3. Semantics

The semantics of programs written in the Vesta SDL are described by a function Eval that maps a syntactic
expression and a context to a value. That is, Eval(E, C) returns the value of the syntactic expression E in the
context C. In addition to syntactic expressions (denoted by the non-terminal Expr in the grammar), the domain of
Eval includes additional syntactic constructs. Some of these additional constructs are defined by the concrete
grammar, while others are introduced as ``intermediate results'' during the evaluation process (the latter are noted
where they are introduced). Each value returned by Eval is in the Vesta value space, described in the next
section. The context parameter C to Eval is a value of type t_binding in the Vesta value space. 

3.1 Value Space

Values are typed. The types and values of the language are: 

  Type name     Values of the type
  --------------------------------------------------------------------------
  t_bool        true, false
  t_int         integers
  t_text        arbitrary byte sequences
  t_list        sequences of zero or more arbitrary values
  t_binding     sequences of zero or more pairs, in which the first member 
                  of each pair is a non-empty t_text, the second is an 
                  arbitrary value, and the first members of all the pairs 
                  are distinct
  t_closure     closures, each of which is a triple <e, f, b> where
                  e is a function body (i.e., a Block as per the grammar),
                  f is a list of pairs <t_i, e_i>, where t_i is a
                    t_text value (a formal parameter name) and e_i is either
                    the distinguished expression <emptyExpr> or is
                    an Expr (for a default parameter value)
                  b is a value of type t_binding (the context)
  t_err         err

The values true, false, emptylist (the list of length zero), emptybinding (the binding of length zero), and err are

4 of 42



not to be confused with the language literals TRUE, FALSE, <>, [], and ERR that denote those values. 

The following supertype is used chiefly for defining the domain of primitive functions (the U(...) notation is type
union): 

  t_value       U(t_bool, t_int, t_text, t_list,
                  t_binding, t_closure, t_err)

The type t_bool contains the Boolean values true and false, denoted in the language by the literals TRUE and
FALSE. 

The type t_int contains integers over at least the range -2^31 .. 2^31-1; the exact range is implementation
dependent. 

The type t_text contains arbitrary sequences of 8-bit bytes. This type is used to represent text literals (quoted
strings) in SDL programs as well as the contents of files introduced through the Files nonterminal of the grammar.
Consequently, an implementation must reasonably support the representation of large values of this type
(thousands of bytes or more), but is not required to support efficient operations on large text values. 

The type t_list contains sequences of values. The elements of a list need not be of the same type. 

The type t_binding contains sequences of pairs <t_i, v_i>, in which each t_i is a non-empty value of type t_text,
each v_i is an arbitrary Vesta value (i.e., of type t_value), and the t_i are all distinct. Note that bindings are
sequences: they are ordered. The domain of a binding is the set of names t_i at its top level. Bindings may be
nested. 

Bindings play an important role in the Vesta language. They are used to represent a variety of interesting objects.
For example, flat bindings that map names to texts can be used to represent command-line switches and
environment variables; bindings that contain nested bindings can be used to represent file systems; and bindings
that map names to closures can be used to represent interfaces. Section 3.4.5 describes the primitive functions
and operators for manipulating bindings, including three primitives for combining two bindings. 

The type t_closure contains closure values for the primitive operators and functions (defined in Section 3.4) as
well as for user-defined functions. 

The type t_err consists of the single distinguished value err, denoted in the language by the literal ERR, which is
used to represent erroneous evaluations. Primitive functions return err when applied to values outside their natural
domain. For most (but not all) primitives, the value err lies outside the natural domain and so is ``contagious''; that
is, most primitives return err when given err for any input. The evaluation rules and the descriptions of primitive
functions document these cases. 

In most cases, err represents a definite error and the implementation should generate a suitable diagnostic for
human consumption, in addition to merely propagating the err value through subsequent evaluation. Whether the
evaluation terminates or continues in these cases is left to the implementation. 

3.2 Type Declarations

The language includes a rudimentary mechanism for declaring the expected types of values computed during

5 of 42



evaluation. The grammar defines a small sub-language of type expressions, which includes the ability to give
names to types and to describe aggregate types (lists, bindings, functions) with varying degrees of detail. Type
expressions may be attached to function arguments and results and to local variables, indicating the type of the
expected value for these identifiers and expressions during evaluation. 

The Vesta evaluator currently treats type names and type expressions as syntactically checked comments; it
performs no other checking. Future implementations may type-check expressions at run-time and report an error
if the value does not match the specified type (according to some as yet unspecified definition of what it means for
a value to ``match'' a type specification). 

The syntax fragments and semantic descriptions in subsequent sections omit any further reference to type
expressions entirely. 

3.3 Evaluation Rules

The evaluation of a Vesta program corresponds to the abstract evaluation: 

  Eval( M([]) , C_initial)

where M is the closure corresponding to the contents of an immutable file (a system model) in the Vesta
repository and C_initial is an initial context. M's model should have the syntactic form defined by the nonterminal
Model described in Section 3.3.13 below. C_initial defines the names and associated values of the built-in
primitive operators and functions described in Section 3.4 below. 

The definition of Eval by cases follows. Unless E is handled by one of these cases, Eval(E, C) is err. As
mentioned above, the domain of Eval includes the language generated by the concrete grammar as a proper
subset. Thus, in some of the cases below, the expression E can arise only as an intermediate result of another
case of Eval. These cases are explicitly noted. 

The pseudo-code that defines the various cases of Eval and the primitive functions should be read like C++. That
code assumes the following declaration for the representation of Vesta values: 

  class val {
    public:
      operator int();
      // converts Vesta t_int or t_bool to C++ int

      val(int);
      // converts a C++ integer to a Vesta t_int

      int operator== (val);
      // compares two Vesta values, returning true (1)
      // if they have the same type and are equal, and
      // false (0) otherwise
  }

Note that the operator== above is the one invoked by uses of ``=='' in the C++ pseudo-code. It is not to be
confused with the primitive equality operator defined on various Vesta types in Section 3.4. 

The pseudo-code also refers to the following constants: 

6 of 42



  static val true;         // value of literal TRUE
  static val false;        // value of literal FALSE
  static val emptylist;    // value of literal < >
  static val emptybinding; // value of literal [ ]
  static val err;          // value of literal ERR

For convenience, the pseudo-code adopts the following notational conveniences: 

Eval is defined by cases rather than by one C++ function with an enormous embedded case selection. 

Recursive references to Eval appear inline in the same form that is used to identify the individual cases. 

Primitive functions of the Vesta language, whose names begin with an underscore, are invoked inline from
the pseudo-code as if they were ordinary C++ functions. The primitive operators of the Vesta language
are invoked this way too; for example, when the pseudo-code refers to operator+, it means the Vesta
primitive function, not the C++ operator. Note that some of the Vesta operators are overloaded by type,
but not by arity. For example, operator+ is defined on integers, texts, lists, and bindings, but it always
takes two arguments. 

In the pseudo-code for rules that contain the terminal Id, the variable id denotes the value of the Id
represented as a t_text. 

In each of the following sections, we first present the relevant portions of the language syntax. We then present
the evaluation rules that apply to those syntactic constructs. The complete language syntax is given in Section 4. 

3.3.1 Expr

Syntax: 

Expr       ::= if Expr then Expr else Expr | Expr1
Expr1      ::= Expr2 {  =>  Expr2 }*
Expr2      ::= Expr3 {  ||  Expr3 }*
Expr3      ::= Expr4 {  &&  Expr4 }*
Expr4      ::= Expr5 [ { == | != | < | > | <= | >= } Expr5 ]
Expr5      ::= Expr6 { AddOp Expr6 }*
AddOp      ::= +  |  ++  |  -
Expr6      ::= Expr7 { MulOp Expr7 }*
MulOp      ::= *
Expr7      ::= [ UnaryOp ] Expr8
UnaryOp    ::= -  |  !
Expr8      ::= Primary [ TypeQual ]
Primary    ::= ( Expr ) | Literal | Id | List
             | Binding | Select | Block | FuncCall

The grammar lists the operators in increasing order of precedence. The binary operators at each precedence level
are left-associative. 

Evaluation Rules: 

// conditional expression
Eval( if Expr_1 then Expr_2 else Expr_3 , C) =

7 of 42



{
  val b = Eval( Expr_1 , C);
  if (_is_bool(b) == false) return err;
  if (b == true) return Eval( Expr_2 , C);
  else return Eval( Expr_3 , C);
}

As defined in Section 3.4.6, _is_bool(b) is true if b is a value of type t_bool and false otherwise. 

// conditional implication
Eval( Expr_1 => Expr_2 , C) =
{
  val b = Eval( Expr_1 , C);
  if (_is_bool(b) == false) return err;
  if (b == false) return true;
  b = Eval( Expr_2 , C);
  if (_is_bool(b) == false) return err;
  return b;
}

// conditional OR
Eval( Expr_1 || Expr_2 , C) =
{
  val b = Eval( Expr_1 , C);
  if (_is_bool(b) == false) return err;
  if (b == true) return true;
  b = Eval( Expr_2 , C);
  if (_is_bool(b) == false) return err;
  return b;
}

// conditional AND
Eval( Expr_1 && Expr_2 , C) =
{
  val b = Eval( Expr_1 , C);
  if (_is_bool(b) == false) return err;
  if (b == false) return false;
  b = Eval( Expr_2 , C);
  if (_is_bool(b) == false) return err;
  return b;
}

// comparison
Eval( Expr_1 == Expr_2 , C) = operator==(Eval( Expr_1 , C), Eval( Expr_2 , C)) 
Eval( Expr_1 != Expr_2 , C) = operator!=(Eval( Expr_1 , C), Eval( Expr_2 , C)) 
Eval( Expr_1 <  Expr_2 , C) = operator< (Eval( Expr_1 , C), Eval( Expr_2 , C)) 
Eval( Expr_1 >  Expr_2 , C) = operator> (Eval( Expr_1 , C), Eval( Expr_2 , C)) 
Eval( Expr_1 <= Expr_2 , C) = operator<=(Eval( Expr_1 , C), Eval( Expr_2 , C)) 
Eval( Expr_1 >= Expr_2 , C) = operator>=(Eval( Expr_1 , C), Eval( Expr_2 , C))

// AddOp and MulOp
Eval( Expr_1 +  Expr_2 , C) = operator+ (Eval( Expr_1 , C), Eval( Expr_2 , C))
Eval( Expr_1 ++ Expr_2 , C) = operator++(Eval( Expr_1 , C), Eval( Expr_2 , C))
Eval( Expr_1 -  Expr_2 , C) = operator- (Eval( Expr_1 , C), Eval( Expr_2 , C))
Eval( Expr_1 *  Expr_2 , C) = operator* (Eval( Expr_1 , C), Eval( Expr_2 , C))

// UnaryOp

8 of 42



Eval( ! Expr , C) = operator!(Eval( Expr , C)) 
Eval( - Expr , C) = operator-(Eval( Expr , C)) 

// parenthesization
Eval( ( Expr ) , C) = Eval( Expr , C)

There are seven remaining possibilities for a Primary: Literal, Id, List, Binding, Select, Block, and FuncCall.
These are treated separately in subsequent sections. 

3.3.2 Literal

Syntax: 

Literal    ::= ERR | TRUE | FALSE | Text | Integer

Evaluation Rules: 

Eval( ERR    , C) = err
Eval( TRUE   , C) = true
Eval( FALSE  , C) = false
Eval( Text   , C) = the corresponding t_text value, following the C++
                    interpretation for the Escape characters.
Eval( Integer, C) = the corresponding t_int value if it can be
                    represented by the implementation, otherwise `err'.

3.3.3 Id

Evaluation Rules: 

Eval( Id , C) = _lookup(C, id),

As defined in Section 3.4.5, _lookup(b, nm) is the value associated with the non-empty name nm in the
binding b, or err if nm is empty or is not in b's domain. 

3.3.4 List

Syntax: 

List       ::= < Expr*, >

The use of <, > as both binary operators and list delimiters makes the grammar ambiguous. Section 4.2 explains
how the ambiguity is resolved. 

Syntactic desugarings: 

< Expr_1, ..., Expr_n >  desugars to  < Expr_1 > + < Expr_2, ..., Expr_n >

Here, `+' is the concatenation operator on lists. 

Evaluation Rules: 

Eval( <>       , C) = emptylist

9 of 42



Eval( < Expr > , C) = _list1(Eval( Expr , C))

As defined in Section 3.4.4, _list1(val) evaluates to a list containing the single value val. 

3.3.5 Binding

Syntax: 

Binding    ::= `[' BindElem*, `]'
BindElem   ::= SelfNameB | NameBind
SelfNameB  ::= Id
NameBind   ::= GenPath = Expr
GenPath    ::= GenArc { Delim GenArc }* [ Delim ]
GenArc     ::= Arc | $ Id | $ ( Expr ) | % Expr %
Arc        ::= Id | Integer | Text

Syntactic desugarings: 

The following desugarings apply to BindElem's within a Binding. 

Id                           desugars to  Id = Id
GenArc Delim = Expr          desugars to  GenArc = Expr 
GenArc Delim GenPath = Expr  desugars to  GenArc = [ GenPath = Expr ]
$ Id = Expr                  desugars to  $ ( Id ) = Expr
% Expr_1 % = Expr_2          desugars to  $ ( Expr_1 ) = Expr_2

The SelfNameB syntactic sugar allows names from the current scope to be copied into bindings more succinctly.
For example, the binding value: 

  [ progs = progs, tests = tests, lib = lib ]

can instead be written: 

  [ progs, tests, lib ]

The GenPath syntactic sugar allows bindings consisting of a single path to be written more succinctly. For
example, the binding value: 

  [ env_ovs = [ Cxx = [ switches = [ compile =
    [ debug = "-g3", optimize = "-O" ]]]]]

can instead be written: 

  [ env_ovs/Cxx/switches/compile = 
    [ debug = "-g3", optimize = "-O" ]]

Evaluation Rules: 

First, the rules for constructing empty and singleton bindings: 

Eval( [ ]            , C) = emptybinding
Eval( [ Arc = Expr ] , C) = _bind1(id, Eval( Expr , C))

10 of 42



Here id is the t_text representation of Arc. The conversion from an Arc to a t_text is straightforward. If the Arc is
an Id, the literal characters of the identifier become the text value. If the Arc is an Integer, the literal characters
used to represent the integer in the source of the model become the text value. If the Arc is a Text, the result of
Eval(Arc, C) is used. As defined in Section 3.4.5, _bind1(id, v) evaluates to a singleton binding that
associates the non-empty t_text id with the value v. 

The $(Expr) syntax allows the name introduced into a binding to be computed: 

Eval( [ $ ( Expr_1 ) = Expr_2 ] , C) =
  _bind1(Eval(Expr_1, C), Eval( Expr_2 , C))

When the field name is computed using the $ syntax, an empty string is illegal (see _bind1 below), and the
expression must evaluate to a t_text. 

The following rule handles the case where multiple BindElem's are given. 

Eval( [ BindElem_1, ..., BindElem_n ] , C) =
  _append(Eval( [ BindElem_1 ] , C),
          Eval( [ BindElem_2, ..., BindElem_n ] , C)

As defined in Section 3.4.5, _append(b1, b2) evaluates to the concatenation of the bindings b1 and b2; it
requires that their domains are disjoint. 

3.3.6 Select

Syntax: 

Select     ::= Primary Selector GenArc
Selector   ::= Delim | !
GenArc     ::= Arc | $ Id | $ ( Expr ) | % Expr %
Arc        ::= Id | Integer | Text

A Select expression denotes a selection from a binding, so the Primary must evaluate to a binding value. 

Syntactic Desugarings: 

Primary Selector % Expr %  desugars to  Primary Selector $ ( Expr )

Evaluation Rules: 

The Delim syntax selects a value out of a binding by name. 

Eval( Primary Delim Arc , C) =
  _lookup(Eval( Primary , C), id)

Here id is the t_text value of Arc, as defined in Section 3.3.5 above. 

The $(Expr) syntax allows the selected name to be computed: 

Eval( Primary Delim $ ( Expr ) , C) =
  _lookup(Eval( Primary , C), Eval( Expr , C))

11 of 42



The ! syntax tests whether a name is in a binding's domain: 

Eval( Primary ! Id , C) =
  _defined(Eval( Primary , C), id),

As defined in Section 3.4.5, _defined(b, nm) evaluates to true if nm is non-empty and in b's domain, and to
false otherwise. 

As above, the $(Expr) syntax can be used to compute the name: 

Eval( Primary ! $ ( Expr ) , C) =
  _defined(Eval( Primary , C), Eval( Expr , C))

In both cases where the GenArc is a computed expression, the Expr must evaluate to a t_text. 

3.3.7 Block

Syntax: 

Block      ::= `{' Stmt*; Result; `}'
Stmt       ::= Assign | Iterate | FuncDef | TypeDef
Result     ::= { value | return } Expr

Syntactic Desugarings: 

return Expr   desugars to   value Expr

That is, the keywords return and value are synonyms, provided for stylistic reasons. The return/value
statement must appear at the end of a Block; there is no analog of the C/C++ return statement that terminates
execution of the function in which it appears. 

Evaluation Rules: 

Since the Vesta SDL is functional, evaluation of a statement does not produce side-effects, but rather produces a
binding. Evaluation of a block occurs by augmenting the context with the bindings produced by evaluating the
Stmts, then evaluating the final Expr in the augmented context. 

Eval( { value Expr } , C) = Eval( Expr , C)

Eval( { Stmt_1; ...; Stmt_n; value Expr } , C) =
  Eval( Expr , operator+(C, Eval( { Stmt_1; ...; Stmt_n } , C)))

Notice that this second rule introduces an argument to Eval in the ``extended'' language that is not generated by
any non-terminal of the grammar. 

3.3.8 Stmt

Evaluation Rules: 

Evaluating a Stmt or sequence of Stmts produces a binding. Note that the binding resulting from the evaluation of

12 of 42



a sequence of Stmts is simply the overlay (operator `+') of the bindings resulting from evaluating each Stmt in the
sequence, and does not include the context C. 

Eval( { } , C) = emptybinding

Eval( { Stmt_1; Stmt_2 ...; Stmt_n } , C) =
{
  val b = Eval( Stmt_1 , C);
  return operator+(b, Eval( { Stmt_2; ...; Stmt_n } , operator+(C, b)))
}

These rules apply to constructs in the ``extended'' language. There are three possibilities for a Stmt: Assign,
Iterate, and FuncDef. They are covered in the next three sections. 

3.3.9 Assign

Since the Vesta SDL is functional, assignments do not produce side-effects. Instead, they introduce a new name
into the evaluation context whose value is that of the given expression. 

Syntax: 

Assign     ::= Id [ TypeQual ] [ Op ] = Expr 
Op         ::= AddOp | MulOp
AddOp      ::= +  |  ++  |  -
MulOp      ::= *

Syntactic Desugarings: 

Id Op = Expr   desugars to   Id = Id Op Expr

Evaluation Rules: 

Eval( Id = Expr , C) = _bind1(id, Eval( Expr , C))

3.3.10 Iterate

The language includes expressions for iterating over both lists and bindings. There is also a _map primitive defined
on lists (Section 3.4.4) and bindings (Section 3.4.5). _map is more efficient but less general than the language's
Iterate construct. 

Syntax: 

Iterate    ::= foreach Control in Expr do IterBody
Control    ::= Id | `[' Id = Id `]'
IterBody   ::= Stmt | `{' Stmt+; `}'

The two Control forms are used to iterate over lists and bindings, respectively. 

Evaluation Rules: 

// iteration with single-statement body
Eval( foreach Control in Expr do Stmt , C) =

13 of 42



  Eval( foreach Control in Expr do { Stmt } , C)

The semantics of a loop are to conceptually unroll the loop n times, where n is the length of the list or binding
being iterated over. 

// iteration over a list
Eval( foreach Id in Expr do { Stmt_1; ...; Stmt_n } , C) =
{
  val l = Eval( Expr, C);
  if (_is_list(l) == false) return err;
  t_text id = Id; // identifier Id as a t_text
  val r = emptybinding;
  for (; !(l == emptylist); l = _tail(l)) {
    val r1 = operator+(C, r);
    r1 = operator+(r1, _bind1(id, _head(l)));
    r = operator+(r, Eval( { Stmt_1; ...; Stmt_n } , r1));
  }
  return r;
}

As defined in Section 3.4.6, _is_list(l) is true if l is of type t_list, and false otherwise. 

// iteration over a binding
Eval( foreach [ Id1 = Id2 ] in Expr do { Stmt_1; ...; Stmt_n } , C) =
{
  val b = Eval( Expr, C);
  if (_is_binding(b) == false) return err;
  t_text id1 = Id1; // identifier Id1 as a t_text
  t_text id2 = Id2; // identifier Id2 as a t_text
  val r = emptybinding;
  for (; !(b == emptybinding); b = _tail(b)) {
    val r1 = operator+(C, r);
    r1 = operator+(r1, _bind1(id1, _n(_head(b))));
    r1 = operator+(r1, _bind1(id2, _v(_head(b))));
    r = operator+(r, Eval( { Stmt_1; ...; Stmt_n } , r1));
  }
  return r;
}

As defined in Section 3.4.6, _is_binding(b) is true if b is of type t_binding, and false otherwise. 

Note that the iteration variables (that is, Id, Id1, and Id2 above) are not bound in the binding that results from
evaluating the foreach statement. However, any assignments made in the loop body are included in the result
binding. 

Iteration statements are typically used to walk over or collect parts of a list or binding. For example, here is a
function for reversing a list: 

  reverse_list(l: list): list
  {
    res: list = <>;
    foreach elt in l do
      res = <elt> + res;
    return res;

14 of 42



  }

Here is a function that counts the number of leaves of a binding: 

  count_leaves(b: binding): int
  {
    res: int = 0;
    foreach [ nm = val ] in b do
      res += if _is_binding(val) then count_leaves(val) else 1;
    return res;
  }

3.3.11 FuncDef

Syntax: 

The function definition syntax allows a suffix of the formal parameters to have associated default values. 

FuncDef    ::= Id Formals+ [ TypeQual ] Block
Formals    ::= ( FormalArgs )
FormalArgs ::= { TypedId*,                                    // none defaulted
             | { TypedId = Expr }*,                           // all defaulted
             | TypedId { , TypedId }* { , TypedId = Expr }+ } // some defaulted

Note that the syntax allows multiple Formals to follow the function name. As the rules below describe, the use of
multiple Formals produces a sequence of curried functions, all but the first of which is anonymous. 

Evaluation Rules: 

Eval( Id Formals_1 ... Formals_n Block , C) =
  _bind1(id, Eval( e , C1)),
  where:
    e = LAMBDA Formals_1 ... LAMBDA Formals_n Block
    C1 = operator+(C, _bind1(id, Eval( e , C1)))

Notice the recursive definition of C1. This permits functions to be self-recursive, but not mutually recursive.
Although this recursive definition looks a little odd, it can be implemented by the evaluator by introducing a cycle
into the context C1. This is the only case where any Vesta value can contain a cycle (the language syntax and
operators do not allow cyclic lists or bindings to be constructed), and the cycle is invisible to clients. There is no
practical difficulty in constructing the cycle because, as we are about to see, the ``evaluation'' of a LAMBDA is
purely syntactic. 

Also note that this rule produces a LAMBDA construct in the ``extended'' language that is not generated by any
non-terminal of the grammar. The following is the simple case of LAMBDA, where all actual parameters must be
given in any application of the closure. The reason for the restriction on the use of "." as a formal parameter is
treated below in the section on function calls. 

Eval( LAMBDA (Id_1, ..., Id_m)
      LAMBDA Formals_2 ... LAMBDA Formals_n Block , C) =
  If any of the Id's is the identifier ".", return err; otherwise,
  return the t_closure value
    <LAMBDA Formals_2 ... LAMBDA Formals_n Block, f, C>, where:

15 of 42



       f is a list of pairs <id_i, <emptyExpr>> where:
         id_i is the t_text representation of Id_i, for i in [1..m]

In the typical case where only one set of Formals is specified (that is, n = 1), the first element of the resulting
closure value is simply a Block. 

Next is the general case of LAMBDA, in which ``default expressions'' are given for a suffix of the formal
parameter list. Functions may be called with fewer actuals than formals if each formal corresponding to an
omitted actual includes an expression specifying the default value to be computed. When the closure is applied, if
an actual parameter is missing, its formal's expression is evaluated (in the context of the LAMBDA) and passed
instead. The following FuncCall section defines this precisely. 

Eval( LAMBDA (Id_1, ..., Id_k, Id_k+1 = Expr_k+1, ... Id_m = Expr_m)
      LAMBDA Formals_2 ... LAMBDA Formals_n Block , C) =
  If any of the Id's is the identifier ".", return err; otherwise,
  return the t_closure value
    <LAMBDA Formals_2 ... LAMBDA Formals_n Block, f, C>, where:
       f is a list of pairs <id_i, expr_i> where:
         id_i is the t_text representation of Id_i, for i in [1..m]
         expr_i is <emptyExpr>, for i in [1..k],
         expr_i is Expr_i, for i in [k+1..m]

3.3.12 FuncCall

Syntax: 

FuncCall   ::= Primary Actuals
Actuals    ::= ( Expr*, )

Evaluation Rules: 

The function call mechanism provides special treatment for the identifier consisting of a single period, called the
current environment and pronounced ``dot''. Dot is typically assigned a binding that contains the tools,
switches, and file system required for the rest of the build. The initial environment, C_initial, does not bind dot
(that is, ``_defined(C_initial, ".") == false''). 

When a function is called, the context in which its body executes may bind "." to a value established as follows: 

if the function is defined with n formals and called with n or fewer actuals, then the value for "." at the point
of call is bound to the implicit formal parameter named "." in the callee; 

if the function is defined with n formals and called with n+1 actuals, then the value bound to the implicit
formal parameter named "." is the value of the last actual. 

Thus, the binding for ".", if any, is passed through the dynamic call chain until it is altered either explicitly by an
Assign statement or implicitly by calling a function with an extra actual parameter. The pseudo-code below makes
this precise. 

Eval( Primary ( Expr_1, ..., Expr_n ) , C) =
{
  val cl = Eval( Primary , C);

16 of 42



  if (_is_closure(cl) == false) return err;

  // cl.e is the function body, cl.f are the formals, cl.b is the context
  int m = _length(cl.f);              // number of formals
  if (n > m + 1) return err;          // too many actuals
  val C1 = cl.b;                      // t_binding
  val f = cl.f;                       // t_list (of <t, e> pairs)

  // augment C1 to include formals bound to corresponding actuals
  int i;
  for (i = 1; i <= m; i++) {
    val form = _head(f);              // i-th formal (a <t, e> pair)
    val act;                          // value of corresponding actual
    if (i <= n)
      act = Eval( Expr_i , C);        // value for i-th actual
    else {
      if (form.e == <emptyExpr>)
        return err;                   // missing required actual
      act = Eval( form.e , cl.b);     // value for defaulted argument
    }
    C1 = operator+(C1, _bind1(form.t, act));
    f = _tail(f);
  }

  // bind "." in C1
  val dot;
  if (n <= m)
    dot = _lookup(C, ".");            // inherit value for "." from C
  else
    dot = Eval( Expr_n , C);          // explicit value for last actual
  C1 = operator+(C1, _bind1(".", dot));

  /* C1 is now a suitable environment.  If the closure is a primitive
     function, then invoke it by a special mechanism internal to the
     evaluator and return the value it computes.  Otherwise, perform
     the following: */
  return Eval( cl.e , C1);      
}

Note: The comparison with <emptyExpr> has not been formalized, but it should be intuitively clear. 

3.3.13 Model

Syntax: 

Model      ::= Files Imports Block

Evaluation Rules: 

The nonterminal Model is treated like the body of a function definition (i.e., like a FuncDef, but without the
identifier naming the function and with an empty list of formal parameters). More precisely: 

Eval( Files Imports Block , C) =
  Eval( LAMBDA () Block , _append(Eval( Files Imports , emptybinding), C))

17 of 42



As this rule indicates, the Files and Imports constructs are evaluated in an empty context, and they augment the
closure context in which the model's LAMBDA is evaluated. In practice, the context C will always be the initial
context C_initial when this rule is applied (cf. Sections 3.3 and 3.3.15). 

The Files nonterminal introduces values corresponding to the contents of ordinary files and directories. The
Imports nonterminal introduces closure values corresponding to other Vesta SDL models. 

The evaluation rules handle Files and Imports clauses by augmenting the context using the _append primitive,
thereby ensuring that the names introduced by these clauses are all distinct, just as if the Files and Imports clauses
of the Model were a single binding constructor. The Files and Imports clauses are evaluated independently: 

Eval( Files Imports , C) =
  _append(Eval( Files , C), Eval( Imports , C))

The following two sections give the rules for evaluating Files and Imports clauses individually. It is worth noting
that the evaluation context C is ignored in those rules. 

3.3.14 Files

A Files clause introduces names corresponding to files or directories in the Vesta repository. Generally, these files
or directories are named by relative paths, which are interpreted relative to the location of the model containing
the Files clause. Absolute paths are permitted, though they are expected to be rarely used. 

Syntax: 

Files       ::= FileClause*
FileClause  ::= files FileItem*;
FileItem    ::= FileSpec | FileBinding
FileSpec    ::= [ Arc = ] DelimPath
FileBinding ::= Arc = `[' FileSpec*, `]'

DelimPath   ::= [ Delim ] Path [ Delim ]
Path        ::= Arc { Delim Arc }*
Arc         ::= Id | Integer | Text

Each FileItem in a Files clause takes one of two forms: a FileSpec or a FileBinding. Each form introduces (binds)
exactly one name. In the former case, the name corresponds to the contents of a single file or directory; in the
latter case, the name corresponds to a binding consisting of perhaps many files or directories. In both cases, the
identifier introduced into the Vesta naming context or the identifiers introduced into the binding can be specified
explicitly or derived from an Arc in the Path. 

For example, consider the following files clause: 

  files
    scripts = bin;
    c_files = [ utils.c, main.c ];

Suppose the directory containing this model also contains a directory named bin and files named utils.c and
main.c. Then this files clause introduces the two names scripts and c_files into the context. The former
is bound to a binding whose structure corresponds to the bin directory. The latter is bound to a binding that
maps the names utils.c and main.c to the contents of those files, respectively. The file contents are values of

18 of 42



type t_text. 

Syntactic Desugaring: 

When multiple FileItem's are given in a FileClause, the files keyword simply distributes over each of the
FileItem's. That is: 

  files FileItem_1; ...; FileItem_n;

desugars to: 

  files FileItem_1;
  ...;
  files FileItem_n;

When the initial Arc is omitted from a FileSpec, it is inferred from the path. In particular: 

  files [ Delim ] { Arc Delim }* Arc [ Delim ];

desugars to: 

  files Arc = [ Delim ] { Arc Delim }* Arc [ Delim ];

Evaluation Rules: 

Multiple FileClause's are evaluated independently: 

Eval( FileClause_0 FileClause_1 ... FileClause_n , C) =
  _append(Eval( FileClause_0 , C), Eval( FileClause_1 ... FileClause_n , C))

That leaves only two cases to consider: FileSpec (in which the initial Arc is specified) and FileBinding. 

// FileSpec
Eval( files Arc = DelimPath , C) = _bind1(id, v)

where: 

id is the t_text representation of Arc, as defined in Section 3.3.5 above. 

If DelimPath begins with a Delim, it is interpreted as an absolute path, which must nevertheless resolve to
a file or directory in the Vesta repository. If DelimPath does not begin with a Delim, it refers to a file or
directory named relative to the directory of the enclosing Model. 

If the entity named by DelimPath is a file, v is a t_text value formed by taking the file's contents. If
DelimPath names a directory, v is a t_binding value constructed from the contents of the the directory,
treating the files (if any) in the directory as above (i.e., as t_text values) and the directories (if any)
recursively (i.e., as bindings). The members of the resulting binding are in an unspecified order. If
DelimPath does not correspond to either an extant file or directory, v is the value err. 

// FileBinding
Eval( files Arc = [ FileSpec_1, ..., FileSpec_n ] , C) =

19 of 42



  _bind1(id, Eval( files FileSpec_1; ...; FileSpec_n , C))

Again, id is the t_text representation of Arc. 

The FileBinding form of the Files clause provides a convenient way to create a binding containing multiple
FileSpecs. Without this construct, it would be necessary to name each file twice, once in the FileSpec and once in
a subsequent binding constructor. Making a binding with FileBinding is semantically similar to constructing a file
system directory, with the additional property that there is an enumeration order for the component files. 

Notice that the grammar and evaluation rules given above for FileSpec and FileBinding allow a general Arc on
the left-hand side of each equal sign, not just an Id. This was done to simplify the definitions and desugaring rules.
However, it would be useless to write constructs like the following, which introduce names that cannot be
referenced in the body of the model: 

files 
    33;
    34 = 34;
    "hash-table.c";
    "foo bar" = [ foo, bar ];

Therefore, we introduce an additional restriction: the context created by a Files clause must bind only names that
are legal identifiers; that is, names that match the syntax of the Id token. 

If you need to use files whose names are not legal identifiers, you should either assign them legal names with the
equal sign syntax or embed them in a binding. Some possibilities: 

// Choose a legal name
files 
    f33 = 33;
    f34 = 34;
    hash_table.c = "hash-table.c";
    foo_bar = [ foo, bar ]; 

// Embed in a binding
files
    f = [ 33, 34 ];
    src = [ "hash-table.c" ];

3.3.15 Imports

The Imports clause enables one Vesta SDL model to reference and use others; that is, it supports modular
decomposition of Vesta SDL programs. 

Syntax: 

Imports   ::= ImpClause*
ImpClause  ::= ImpIdReq | ImpIdOpt

There are two major forms of the Imports clause: one where identifiers are required (ImpIdReq), and one where
they are optional (ImpIdOpt). Both forms have two sub-forms in which either a single model or a list of models
may be imported. 

20 of 42



First, consider the ImpIdReq case. This form is typically used to import models in the same package as the
importing model. Each ImpItemR in the ImpIdReq clause takes one of two forms: an ImpSpecR or an ImpListR.
Each form binds exactly one name. 

ImpIdReq   ::= import ImpItemR*;
ImpItemR   ::= ImpSpecR | ImpListR
ImpSpecR   ::= Arc = DelimPath
ImpListR   ::= Arc = `[' ImpSpecR*, `]'

DelimPath  ::= [ Delim ] Path [ Delim ]
Path       ::= Arc { Delim Arc }*
Arc        ::= Id | Integer | Text

In the ImpSpecR case, the name is bound to the t_closure value that results from evaluation of the contents of a
file according to the Model evaluation rules of Section 3.3.13. For example, consider the Import clause: 

  import self = progs.ves;

This clause binds the name self to the closure corresponding to the local progs.ves model in the same
directory as the model in which it appears. 

In the ImpList case, the name is bound to a binding of such values. For example: 

  import sub =
    [ progs = src/progs.ves, tests = src/tests.ves ];

This clause binds the name sub to a binding containing the names progs and tests; these names within the
binding are bound to the closures corresponding to the models named progs.ves and tests.ves in the
package's src subdirectory. For example, the progs.ves model would be invoked by the expression
``sub/progs()''. 

Because the Imports clause often mentions several files with names that share a common prefix, a syntactic form
is provided to allow the prefix to be written once. This is the ImpIdOpt form. It is used to import models from
other packages. The semantics are defined so that many identifiers are optional; when omitted, they default to the
name of the package from which the model is being imported. As in the ImpIdReq case, ImpIdOpt has forms for
importing both single models and lists of multiple models. 

ImpIdOpt   ::= from DelimPath import ImpItemO*;
ImpItemO   ::= ImpSpecO | ImpListO
ImpSpecO   ::= [ Arc = ] Path [ Delim ]
ImpListO   ::= Arc = `[' ImpSpecO*, `]'

Here are some examples of ImpIdOpt imports: 

  from /vesta/src.dec.com/vesta import
    cache/12/build.ves;
    libs = [ srpc/2/build.ves, basics/5/build.ves ];

This example binds the name cache to the closure corresponding to version 12 of that package's build.ves
model, and it binds the name libs to a binding containing the names srpc and basics, bound to versions 2 and
5 of those package's build.ves models. (As the evaluation rules below describe, the three occurrences of
``/build.ves'' in this example could actually have been omitted.) 

21 of 42



Syntactic Desugaring: 

When multiple ImpItemR's are given in a ImpIdReq, the import keyword distributes over each of the
ImpItemR's. That is: 

  import ImpSpec_1; ...; ImpSpec_n;

desugars to: 

  import ImpSpec_1;
  ...;
  import ImpSpec_n;

Similarly, the from clause distributes over the individual imports of an ImpIdOpt. In particular: 

  from DelimPath import ImpItemO_1; ...; ImpItemO_n;

desugars to: 

  from DelimPath import ImpItemO_1;
  ...;
  from DelimPath import ImpItemO_n;

The use of from makes it optional to supply a name for the closure value being introduced; if the name is omitted,
it is derived from the Path following the import keyword as follows: 

  from DelimPath import
    [ Arc_1 = ] [ Delim ] Arc_2 { Delim Arc }* [ Delim ]

desugars to: 

  import Arc =
    DelimPath Delim Arc_2 { Delim Arc }* [ Delim ]

where Arc is Arc_1 if it is present and is Arc_2 otherwise. 

Similarly: 

  from DelimPath import Arc = [
    [ Arc1_1 = ] [ Delim ] Arc2_1 { Delim Arc }* [ Delim ],
    ...,
    [ Arc1_n = ] [ Delim ] Arc2_n { Delim Arc }* [ Delim ] ]

desugars to: 

  import Arc = [
    Arc_1 = DelimPath Delim Arc2_1 {Delim Arc }* [ Delim ],
    ...,
    Arc_n = DelimPath Delim Arc2_n {Delim Arc }* [ Delim ] ]

where Arc_i is Arc1_i if it is present and is Arc2_i otherwise. 

22 of 42



Evaluation Rules: 

Multiple ImpClause's are evaluated independently: 

Eval( ImpClause_0 ImpClause_1 ... ImpClause_n , C) =
  _append(Eval( ImpClause_0 , C), Eval( ImpClause_1 ... ImpClause_n , C))

This leaves two fundamental forms of the Imports clause, whose semantics are defined as follows: 

// ImpSpecR
Eval( import Arc = DelimPath , C) =
  _bind1(id, Eval( model , C_initial))

where: 

id is the t_text representation of Arc, as defined in Section 3.3.5 above. 

Let f be the sequence of Delims and Arcs that constitute the DelimPath. 
1. If f does not begin with a Delim, prepend ``Delim Path0 Delim'' to f, where Path0 names the

directory containing the Model in which this Imports clause appears. 
2. Lookup the path f in the Vesta repository. (See Filename Interpretation below.) If f names a

directory, append a Delim (if f doesn't already end in one) and the string "build.ves", then lookup
the augmented path f in the repository again. If f does not name a directory and its final element
does not end in ".ves", append the string ".ves" to the final element of f, and look it up in the
repository again. 

model is the Vesta SDL Model represented by the contents of the file in the Vesta repository named by
the sequence f. If no such expression can be produced (e.g., the file doesn't exist, or can't be parsed as an
expression), model is the expression ERR. 

// ImpListR
Eval( import Arc = [ ImpSpecR_1, ..., ImpSpecR_n ] , C) =
  _bind1(id, Eval( import ImpSpecR_1; ...; ImpSpecR_n , C))

Again, id is the t_text representation of Arc. 

As with the Files clause, and for the same reason, we add one restriction to the rules just given: the context
created by an Imports clause must bind only names that are legal identifiers; that is, names that match the syntax
of the Id token. 

3.3.16 Filename Interpretation

The evaluation rules for the Files and Imports clauses do not specify how the sequence of Arcs and Delims
making up a DelimPath is converted into a filename in the underlying file system. While this is somewhat
system-dependent, it is nevertheless intended to be intuitive. In particular, 

Multiple adjacent Delims are replaced by a single one. (The grammar above doesn't permit adjacent
Delims, but they can be produced by the desugaring rules.)

23 of 42



The Vesta SDL syntax allows the arbitrary intermingling of ``/'' and ``\'' as arc separators. However, the
implementation actually requires that Vesta programs use one or the other uniformly. When creating a
filename from a sequence of Arcs and Delims, the implementation inserts the appropriate arc separator
required by the underlying file system. The choice is not influenced by the choice of Delim that appears in
the Vesta SDL program.

The grammar permits an Arc to be an arbitrary Text. An Arc in a filename, however, is forbidden to
contain a Delim character (i.e., forward or backward slash), and the Arcs ``..'' and ``.'' are forbidden in
filenames as well. In particular, ``..'' cannot be used to mean parent directory and ``.'' cannot be used
to mean current directory. The ``..'' notation is forbidden for technical reasons related to Vesta caching,
while the ``.'' notation is simply unimplemented. However, the empty Arc ` '̀' can be used to denote the
current directory. 

3.4 Primitives

The primitive names and associated values described below are provided by the Vesta SDL interpreter in
C_initial, the initial context. Most of these values are closures with empty contexts; that is, they are primitive
functions. 

In the descriptions that follow, the notation used for the function signatures follows C++, with the result type
preceding the function name and each argument type preceding the corresponding argument name. Defaulting
conventions also follow C++; if an argument name is followed by "= <value>", then omitting the corresponding
actual argument is equivalent to supplying <value>. 

Some of the function signatures use the C++ operator definition syntax, which should be understood as defining a
function whose name is not an Id in the sense of the grammar above. Such operator names cannot be rebound.
These operators are typically overloaded, as the descriptions below indicate. Uses of these built-in Vesta
primitives within C++ code are denoted by the operator syntax. 

The pseudo-code of this section assumes the definition of the Vesta value class given at the start of Section 3.3.
Invocation of a Vesta operator primitive within the pseudo-code is denoted by the operator syntax. All other
operators appearing in the pseudo-code denote the C++ operators. 

In these descriptions, the argument types represent the natural domain; the result type is the natural range. In
reality, all functions accept arguments of any type, producing err for arguments that lie outside the natural domain.
For this reason, a function whose specified (natural) result is of type T has an actual result of type U(T, t_err).

Type-checking occurs when primitive functions are called, not before. 

3.4.1 Functions on Type t_bool

Recall that true and false are Vesta values, not C++ quantities. 

t_bool
operator==(t_bool b1, t_bool b2)

Returns true if b1 and b2 are the same, and false otherwise. 

t_bool

24 of 42



operator!=(t_bool b1, t_bool b2)
  operator!(operator==(b1, b2))

t_bool
operator!(t_bool b) =
{
  int ib = b; // convert to C++ integer
  if (ib) return false; else return true;
}

3.4.2 Functions on Type t_int

t_bool
operator==(t_int i1, t_int i2)

Returns true if i1 and i2 are equal, and false otherwise. 

t_bool
operator!=(t_int i1, t_int i2) =
  operator!(operator==(i1, i2))

t_int
operator+(t_int i1, t_int i2)

Returns the integer sum i1 + i2 unless it lies outside the implementation-defined range, in which case
err is returned. 

t_int
operator-(t_int i1, t_int i2)

Returns the integer difference i1 - i2 unless it lies outside the implementation-defined range, in which
case err is returned. 

t_int
operator-(t_int i) =
  operator-(0, i)

t_int
operator*(t_int i1, t_int i2)

Returns the integer product i1 * i2 unless it lies outside the implementation-defined range, in which
case err is returned. 

t_int
_div(t_int i1, t_int i2)

Returns the integer quotient i1 / i2 (that is, the floor of the real quotient) unless it lies outside the
implementation-defined range, in which case err is returned. (err is possible only if i2 is zero or if i2
is -1 and i1 is the largest implementation-defined negative number.) 

t_int
_mod(t_int i1, t_int i2) =
  operator-(i1, operator*(_div(i1,i2), i2))

25 of 42



t_bool
operator<(t_int i1, t_int i2) =
{
  int ii1 = i1, ii2 = i2; // convert to C++ integers
  if (ii1 < ii2) return true; else return false;
}

t_bool
operator>(t_int i1, t_int i2) =
  operator<(i2, i1)

t_bool
operator<=(t_int i1, t_int i2) =
{
  int ii1 = i1, ii2 = i2; // convert to C++ integers
  if (ii1 <= ii2) return true; else return false;
}

t_bool
operator>=(t_int i1, t_int i2) =
  operator<=(i2, i1)

t_int
_min(t_int i1, t_int i2) =
{ if (operator<(i1, i2)) return i1; else return i2; }

t_int
_max(t_int i1, t_int i2) =
{ if (operator>(i1, i2)) return i1; else return i2; }

3.4.3 Functions on Type t_text

The first byte of a t_text value has index 0. 

t_bool
operator==(t_text t1, t_text t2)

Returns true if t1 and t2 are identical byte sequences, and false otherwise. 

t_bool
operator!=(t_text t1, t_text t2) =
  operator!(operator==(t1, t2))

t_text
operator+(t_text t1, t_text t2)

Returns the byte sequence formed by appending the byte sequence t2 to the byte sequence t1
(concatenation). 

t_int
_length(t_text t)

Returns the number of bytes in the byte sequence t. 

t_text

26 of 42



_elem(t_text t, t_int i)

If 0 <= i < _length(t), returns a byte sequence of length 1 consisting of byte i of the byte
sequence t. Otherwise, returns the empty byte sequence. 

t_text
_sub(t_text t, t_int start = 0, t_int len = _length(t)) =
{
  int w = _length(t);
  int i = _min(_max(start, 0)), w);
  int j = _min(i + _max(len, 0), w);
  // 0 <= i <= j <= _length(t); extract [i..j)
  t_text r = "";
  for (; i < j; i++) r = operator+(r, _elem(t, i));
  return r;
}

Extracts from t and returns a byte sequence of length len beginning at byte start. Note the
boundary cases defined by the pseudo-code; _sub produces err only if it is passed arguments of
the wrong type. 

t_int
_find(t_text t, t_text p, t_int start = 0) =
{
  int j = _length(t) - _length(p);
  if (j < 0) return -1;
  int i = _max(start, 0);
  if (i > j) return -1;
  for (; i <= j; i++) {
    int k = 0;
    while (k < _length(p) && _elem(t, i+k) == _elem(p, k)) k++;
    if (k == _length(p)) return i;
  }
  return -1;
}

Finds the leftmost occurrence of p in t that begins at or after position start. Returns the index of the
first byte of the occurrence, or -1 if none exists. 

t_int
_findr(t_text t, t_text p, t_int start = 0) =
{
  int j = _length(t) - _length(p);
  if (j < 0) return -1;
  int i = _max(start, 0);
  if (i > j) return -1;
  for (; i <= j; j--) {
    int k = 0;
    while (k < _length(p) && _elem(t, j+k) == _elem(p, k)) k++;
    if (k == _length(p)) return j;
  }
  return -1;
}

Finds the rightmost occurrence of p in t that begins at or after position start. Returns the index of

27 of 42



the first byte of the occurrence, or -1 if none exists. 

3.4.4 Functions on Type t_list

t_bool
operator==(t_list l1, t_list l2)

Returns true if l1 and l2 are lists of the same length containing (recursively) equal values, and false
otherwise. 

t_bool
operator!=(t_list l1, t_list l2) =
  operator!(operator==(l1, l2))

t_list
_list1(t_value v)

Returns a list containing a single element whose value is v. 

t_value
_head(t_list l)

Returns the first element of l. If l is empty, returns err. 

t_list
_tail(t_list l)

Returns the list consisting of all elements of l, in order, except the first. If l is empty, returns err. 

t_int
_length(t_list l)

Returns the number of (top-level) values in the list l. 

t_value
_elem(t_list l, t_int i)

Returns the i-th value in the list l, or err if no such value exists. The first value of a list has index 0. 

t_list
operator+(t_list l1, t_list l2)

Returns the list formed by appending l2 to l1. 

t_list
_sub(t_list l, t_int start = 0, t_int len = _length(l))
{
  int w = _length(l);
  int i = _min(_max(start, 0)), w);
  int j = _min(i + _max(len, 0), w);
  // 0 <= i <= j <= _length(l); extract [i..j)
  t_list r = emptylist;
  for (; i < j; i++) r = operator+(r, _elem(l, i));

28 of 42



  return r;
}

Returns the sub-list of l of length len starting at element start. Note the boundary cases defined by
the pseudo-code; _sub produces err only if it is passed arguments of the wrong type. 

t_list
_map(t_closure f, t_list l) =
{
  t_list res = emptylist;
  for (; !(l == emptylist); l = _tail(l)) {
    t_value v = f(_head(l)); // apply the closure "f"
    if (res == err || v == err) res = err;
    else res = operator+(res, v);
  }
  return res;
}

Returns the list that results from applying the closure f to each element of the list l, and
concatenating the results in order. The closure f should take one value (of type t_value) as argument
and return a value of any type. If f has the wrong signature or if any evaluation of f returns err, then
_map returns err. However, f will be applied to every element of the list, even if one of its
evaluations produces err. 

t_list
_par_map(t_closure f, t_list l)

Formally equivalent to _map, but the implementation may perform each application of f in a separate
parallel thread. External tools invoked by _run_tool in different threads may be run simultaneously
on different machines. 

3.4.5 Functions on type t_binding

t_bool
operator==(t_binding b1, t_binding b2)

Returns true if b1 and b2 are bindings of the same length containing the same names (in order)
bound to (recursively) equal values, and false otherwise. 

t_bool
operator!=(t_binding b1, t_binding b2) =
  operator!(operator==(b1, b2))

t_binding
_bind1(t_text n, t_value v)

If n is empty, returns err. Otherwise, returns a binding with the single <name, value> pair <n, v>.
Note that v may be any value, including err. 

t_binding
_head(t_binding b)

Returns a binding with one <name, value> pair equal to the first element of b. If b is empty, returns

29 of 42



err. 

t_binding
_tail(t_binding b)

Returns the binding consisting of all elements of b, in order, except the first. If b is empty, returns
err. 

t_int
_length(t_binding b)

Returns the number of <name, value> pairs in b. 

t_binding
_elem(t_binding b, t_int i)

Returns a binding consisting solely of the i-th <name, value> pair in the binding b, or err if no such
pair exists. The first pair of a binding has index 0. 

t_text
_n(t_binding b)

If _length(b) = 1, returns the name part of the <name, value> pair that constitutes b. Otherwise,
returns err. 

t_value
_v(t_binding b)

If _length(b) differs from 1, returns err. Otherwise, let v be the value part of the <name, value>
pair that constitutes b. This function returns v. (Note that a result value of err does not imply that
_length(b) differs from 1, since v may be the value err.) 

t_bool
_defined(t_binding b, t_text name)

If name is empty, returns err. Otherwise, returns true if the binding b contains a pair <n, v> with n
identical to name, and false otherwise. 

t_value
_lookup(t_binding b, t_text name)

If name is empty, returns err. If name is defined in b, returns the value associated with it;
otherwise, returns err. Note that the value associated with name may be of any type, including
t_err, so a result of err does not necessarily imply that _defined(b, name) is false. 

t_binding
_append(t_binding b1, t_binding b2)

Returns a binding formed by appending b2 to b1, but only if all the names in b1 and b2 are distinct.
Otherwise, returns err. 

t_binding

30 of 42



operator+(t_binding b1, t_binding b2) =
{
  val r = emptybinding;
  for (; !(b1 == emptybinding); b1 = _tail(b1)) {
    val n = _n(_head(b1));
    val v;
    if (_defined(b2, n) == true)
      v = _lookup(b2, n);
    else v = _v(_head(b1));
    r = _append(r, _bind1(n, v));
  }
  for (; !(b2 == emptybinding); b2 = _tail(b2)) {
    if (_defined(b1, _n(_head(b2)) == false)
      r = _append(r, _head(b2));
  }
  return r;
}

Returns a binding formed by appending b2 to b1, giving precedence to b2 when both b1 and b2
contain <name, value> pairs with the same name. 

t_binding
operator++(t_binding b1, t_binding b2) =
{
  val r = emptybinding;
  for (; !(b1 == emptybinding); b1 = _tail(b1)) {
    val n = _n(_head(b1));
    val v;
    if (_defined(b2, n) == true) {
      val v2 = _lookup(b2, n);
      if (_is_binding(v2) == true) {
        v = _v(_head(b1);
        if (_is_binding(v) == true)
          v = operator++(v, v2);
        else v = v2;
      }
      else v = v2;
    }
    else v = _v(_head(b1));
    r = _append(r, _bind1(n, v));
  }
  for (; !(b2 == emptybinding); b2 = _tail(b2)) {
    if (_defined(r, _n(_head(b2)) == false)
      r = _append(r, _head(b2));
  }
  return r;
}

Similar to operator+, but performs the operation recursively for each name n for which both
_isbinding(_lookup(b1, n)) and _isbinding(_lookup(b2, n)) are true. 

t_binding
operator-(t_binding b1, t_binding b2) =
{
  val r = emptybinding;
  for (; !(b1 = emptybinding); b1 = _tail(b1)) {

31 of 42



    val n = _n(_head(b1));
    if (_defined(b2, n) == false)
      r = _append(r, _head(b1));
  }
  return r;
}

Returns a binding formed by removing from b1 any pair <n, v> such that _defined(b2, n). The
value v associated with n in b2 is irrelevant. 

t_binding
_sub(t_binding b, t_int start = 0, t_int len = _length(b))
{
  int w = _length(b);
  int i = _min(_max(start, 0)), w);
  int j = _min(i + _max(len, 0), w);
  // 0 <= i <= j <= _length(b); extract [i..j)
  t_binding r = emptybinding;
  for (; i < j; i++) r = _append(r, _elem(b, i));
  return r;
}

Returns the sub-binding of b of length len starting at element start. Note the boundary cases
defined by the pseudo-code; _sub produces err only if it is passed arguments of the wrong type. 

t_binding
_map(t_closure f, t_binding b) =
{
  t_binding res = emptybinding;
  for (; !(b == emptybinding); b = _tail(l)) {
    t_binding b1 = f(_n(_head(b)), _v(_head(b))); // apply the closure "f"
    if (res == err || b1 == err) res = err;
    else res = _append(res, b1);
  }
  return res;
}

Returns the binding that results from applying the closure f to each <name, value> pair of the
binding b, and appending the resulting bindings together. The closure f should take the name (of
type t_text) and value (of type t_value) as arguments, and return a value of type t_binding. If f has
the wrong signature or if any evaluation of f returns err, then _map returns err. However, f will be
applied to every pair of the binding, even if one of its evaluations produces err. 

t_binding
_par_map(t_closure f, t_binding b)

Formally equivalent to _map, but the implementation may perform each application of f in a separate
parallel thread. External tools invoked by _run_tool in different threads may be run simultaneously
on different machines. 

3.4.6 Type Manipulation Functions

t_text
_type_of(t_value v)

32 of 42



_type_of returns a text value corresponding to the type of the value v: 

  value             text returned by _type_of
  -----             -------------------------
  true, false       "t_bool"
  integer           "t_int"
  byte sequence     "t_text"
  err               "t_err"
  list              "t_list"
  binding           "t_binding"
  closures          "t_closure"

t_bool
_same_type(t_value v1, t_value v2) =
   operator==(_type_of(v1), _type_of(v2))

t_bool
_is_bool(t_value v)

Returns true if v is of type t_bool; returns false otherwise. 

t_bool
_is_int(t_value v)

Returns true if v is of type t_int; returns false otherwise. 

t_bool
_is_text(t_value v)

Returns true if v is of type t_text; returns false otherwise. 

t_bool
_is_err(t_value v)

Returns true if v is of type t_err; returns false otherwise. 

t_bool
_is_list(t_value v)

Returns true if v is of type t_list; returns false otherwise. 

t_bool
_is_binding(t_value v)

Returns true if v is of type t_binding; returns false otherwise. 

t_bool
_is_closure(t_value v)

Returns true if v is of type t_closure; returns false otherwise. 

3.4.7 Tool Invocation Function

33 of 42



t_binding
_run_tool(
  platform: t_text,
  command:  t_list,
  stdin:    t_text = "",
  stdout_treatment: t_text = "report",
  stderr_treatment: t_text = "report",
  status_treatment: t_text = "report_nocache",
  signal_treatment: t_text = "report_nocache",
  fp_contents: t_int = 0,
  wd: t_text = ".WD",
  existing_writable: t_bool = FALSE)

_run_tool is the mechanism by which external programs like compilers and linkers are executed
from a Vesta SDL program. It provides functionality that is fairly platform-independent. The
following description, however, is somewhat Unix-specific (for example, in its description of exit
codes and signals). 

The platform argument specifies the platform on which the tool is to be executed. _run_tool
selects a specific machine for the given platform. The legal values for platform and the mechanism
by which a machine of the appropriate platform is chosen are implementation dependent. 

The tool to be executed is specified by the command argument. This argument is a t_list of t_text
values. The first member of the list is the name of the tool (interpretation of the name is discussed
below); the remaining members of the list are the arguments passed to the tool as its command line.
The tool is executed on the specified platform in an environment with the following characteristics: 

The file system is encapsulated so that absolute paths (i.e., those beginning with a Delim) are
interpreted relative to ./root, where `.' is the implicit final parameter to _run_tool.
Non-absolute paths are interpreted relative to ./root/$wd, where wd is a parameter to
_run_tool. The interpretation of filenames is discussed in more detail below. 

The environment variables are taken from ./envVars, where .̀' is the implicit final
parameter to _run_tool. 

The contents of standard input are the value of the stdin parameter to _run_tool. 

Standard output and standard error are treated as specified by the stdout_treatment and
stderr_treatment parameters. Each of these parameters may take on one of the t_text
values "ignore", "report", "report_nocache", or "value". If the value is "ignore",
any bytes written to the corresponding output stream (stdout or stderr) are discarded. If the
value is "report", the corresponding output is made visible to the user. If the value is
"report_nocache", the corresponding output is made visible to the user and, if it is not
empty, the evaluator does not cache the _run_tool result. If the value is "value", the output
stream is converted to a Vesta value of type t_text and returned as part of the _run_tool
result, as described below. 

The status_treatment and signal_treatment arguments may take on the t_text value
"report" or "report_nocache". Regardless of their values, the code and signal fields
of the result value will be set as described below. If the value of status_treatment is

34 of 42



"report_nocache", this run_tool call will not be cached if the result code is nonzero;
similarly, if signal_treatment is "report_nocache", the run_tool call will not be cached if
the result signal is nonzero. 

The existing_writable argument controls whether the tool is permitted to write to files that
already exist in its encapsulated file system when it is started. If the argument is TRUE, such
files may be opened for writing and written to; if it is FALSE, they may not. For technical
reasons in the NFS-based repository implementation, tools will get much better file system
performance when existing_writable is FALSE. It should be set to TRUE only for tools
that require it. 

In the absence of errors, _run_tool returns a binding that contains the results of the command
execution. This binding has type: 

  type run_tool_result = binding [
    code   : int,
    signal : int,
    stdout_written : bool,
    stderr_written : bool,
    stdout : text,
    stderr : text,
    root   : binding
  ]

If r is of type run_tool_result, then: 

r/code is an integer value that characterizes how the command terminated (i.e., the exit
status of the Unix process). 

r/signal is an integer value identifying the Unix signal that terminated the process, or 0 if
the process exited voluntarily. 

r/stdout_written and r/stderr_written indicate whether data was written to the
stdout and stderr streams, respectively. 

r/stdout is defined iff the stdout_treatment parameter to _run_tool is "value", in which
case it contains the bytes written to stdout. 

r/stderr is defined iff the stderr_treatment parameter to _run_tool is "value", in which
case it contains the bytes written to stderr. 

r/root is a binding containing all files created by the command that are extant upon exit.
See File System Encapsulation below for more details. 

Two fine points relating to the results of _run_tool: 

1. If the tool cannot be invoked---for example, because of errors in the parameters to
_run_tool---the evaluator prints a suitable diagnostic and the _run_tool call returns err.
However, errors that result during the execution of the tool are reported in a tool-specific
fashion, with the exit status reported in r/code. 

35 of 42



2. Specifying "report_nocache" as the treatment for an output stream (stdout or stderr) or
the exit status prevents the evaluator from making a cache entry from the call of _run_tool if
any output is produced on the corresponding output stream or if the exit status is nonzero,
respectively. In addition, none of the ancestor functions of the failing _run_tool call in the call
graph are cached either. Since no cache entries are made, a subsequent re-interpretation of
the model will produce the same output (on stdout or stderr). This can be useful for
reproducing error messages from a compiler or other external tool that are displayed through
the Vesta user interface. 

By default, arbitrary unique fingerprints are chosen for any derived files created by the tool
execution, including derived files created for stdout/stderr when the value of the
stdout_treatment/stderr_treatment parameter is "value". You can instead cause the fingerprints
for such files to be computed deterministically from their contents, using the fp_contents parameter.
If this parameter is a nonnegative value, files less than fp_contents bytes long are given
content-based fingerprints, while files of fp_contents or more bytes are given arbitrary unique
fingerprints. If the parameter is set to -1, all files are given content-based fingerprints. The boolean
values TRUE and FALSE are accepted as synonyms for -1 and 0 respectively. 

The cost of fingerprinting a file's contents is non-trivial, but doing so allows for cache hits in cases
where two evaluations depends on an value that is identical but was computed in two different
ways. 

File System Encapsulation: 

When the command process (or any subprocess it creates) executes a Unix system call that
includes a file path as a parameter, the file path is translated into a reference into the `.'
binding that is the last parameter to _run_tool. 

The path is interpreted beginning at ./root if it begins with "/" and at ./root/$wd
otherwise, where $wd is the value of the wd parameter to _run_tool. Each component of the
path---except possibly the final one---must name a Vesta binding. The interpretation of the
final component of the path depends on the semantics of the system call. If the system call
expects an extant file, the final component must name a Vesta value of type t_text. If the
system call expects an extant directory, the Vesta value must be of type t_binding. If the
system call expects an unbound name, the name must not be bound by the binding
corresponding to the penultimate path component. 

A file created or modified by the command process (or a subprocess) remains visible in the
name space throughout the remainder of the process's execution (or until deleted), just as in a
regular file system. This is achieved by modeling file creation, modification, and deletion as a
suitable overlaying of ./root. For example, if the process creates ``foo.o'' in its working
directory, this has the effect of: 

  ./root/$wd += [ foo.o = <bytes of file> ];
  <subsequent execution of the command process>

File modification is handled in exactly the same way. For example, if the process opens the

36 of 42



existing file ``foo.db'' in its working directory and writes to it, this has the effect of: 

  ./root/$wd += [ foo.db = <new contents of file> ];
  <subsequent execution of the command process>

Note that modification of preexisting files is forbidden if the existing_writable argument to
_run_tool is set to FALSE (its default value). 

File deletions are modeled similarly, but the files are removed from the context using the
binding difference (-) operator, instead of added using the binding overlay (+) operator. 

When the command process exits, the accumulated effects of the file creations and deletions
it has performed are returned as part of the _run_tool result (in r/root). In this binding, the
names of files deleted by the tool are bound to false. Such names correspond either to files
that existed in ./root before the tool was invoked, or to files created and subsequently
deleted by the tool. 

Thus, if ./root represents the state of the file system visible to the command process at the
time it is launched, then the state of the file system when it exits can be described as: 

  ./root ++ r/root

So, if the invoker of _run_tool wanted to update ./root to reflect the changes made by
calling _run_tool, the code might look like this: 

  r = _run_tool( <suitable parameters> );
  new_fs = ./root ++ r/root;
  . += [ root = new_fs ];

After the last assignment, names in ./root bound to false are files that were deleted by the
tool. Here is a recursive function for removing such files: 

  remove_deleted(b: binding): binding
  {
    res: binding = [];
    foreach [ n = v ] in b do
      res += if v = false then [] else
        if _is_binding(v) then [ $n = remove_deleted(v) ]
        else [ $n = v ];
    return res;
  };

4. Concrete Syntax

4.1 Grammar

Models: 

Model       ::= Files Imports Block

Files clauses: 

37 of 42



Files       ::= FileClause*
FileClause  ::= files FileItem*;
FileItem    ::= FileSpec | FileBinding
FileSpec    ::= [ Arc = ] DelimPath
FileBinding ::= Arc = `[' FileSpec*, `]'

Import clauses: 

Imports     ::= ImpClause*
ImpClause   ::= ImpIdReq | ImpIdOpt
ImpIdReq    ::= import ImpItemR*;
ImpItemR    ::= ImpSpecR | ImpListR
ImpSpecR    ::= Arc = DelimPath
ImpListR    ::= Arc = `[' ImpSpecR*, `]'
ImpIdOpt    ::= from DelimPath import ImpItemO*;
ImpItemO    ::= ImpSpecO | ImpListO
ImpSpecO    ::= [ Arc = ] Path [ Delim ]
ImpListO    ::= Arc = `[' ImpSpecO*, `]'

Paths and Arcs: 

DelimPath   ::= [ Delim ] Path [ Delim ]
Path        ::= Arc { Delim Arc }*
Arc         ::= Id | Integer | Text

Blocks and Statements: 

Block       ::= `{' Stmt*; Result; `}'
Stmt        ::= Assign | Iterate | FuncDef | TypeDef
Result      ::= { value | return } Expr

Assignment statements: 

Assign      ::= TypedId [ Op ] = Expr 
Op          ::= AddOp | MulOp
AddOp       ::= +  |  ++  |  -
MulOp       ::= *

Iteration statements: 

Iterate     ::= foreach Control in Expr do IterBody
Control     ::= TypedId | `[' TypedId = TypedId `]'
IterBody    ::= Stmt | `{' Stmt+; `}'

Function definitions: 

FuncDef     ::= Id Formals+ [ TypeQual ] Block
Formals     ::= ( FormalArgs )
FormalArgs  ::= { TypedId*,                                    // none defaulted
              | { TypedId = Expr }*,                           // all defaulted
              | TypedId { , TypedId }* { , TypedId = Expr }+ } // some defaulted

Expressions: 

38 of 42



Expr        ::= if Expr then Expr else Expr | Expr1
Expr1       ::= Expr2 {  =>  Expr2 }*
Expr2       ::= Expr3 {  ||  Expr3 }*
Expr3       ::= Expr4 {  &&  Expr4 }*
Expr4       ::= Expr5 [ { == | != | < | > | <= | >= } Expr5 ]
Expr5       ::= Expr6 { AddOp Expr6 }*
Expr6       ::= Expr7 { MulOp Expr7 }*
Expr7       ::= [ UnaryOp ] Expr8
UnaryOp     ::= -  |  !
Expr8       ::= Primary [ TypeQual ]
Primary     ::= ( Expr ) | Literal | Id | List
              | Binding | Select | Block | FuncCall

Binary operators with equal precedence are left associative. 

Literals: 

Literal     ::= ERR | TRUE | FALSE | Text | Integer

Lists: 

List        ::= < Expr*, >

Bindings: 

Binding     ::= `[' BindElem*, `]'
BindElem    ::= SelfNameB | NameBind
SelfNameB   ::= Id
NameBind    ::= GenPath = Expr
GenPath     ::= GenArc { Delim GenArc }* [ Delim ]
GenArc      ::= Arc | $ Id | $ ( Expr ) | % Expr %

Binding selections: 

Select      ::= Primary Selector GenArc
Selector    ::= Delim | !

Function calls: 

FuncCall    ::= Primary Actuals
Actuals     ::= ( Expr*, )

Type definitions: 

TypeDef     ::= type Id = Type
TypedId     ::= Id [ TypeQual ]
TypeQual    ::= : Type
Type        ::= any | bool | int | text
              | list [ ( Type ) ]
              | binding ( TypeQual )
              | binding [ ( TypedId*, ) ]
              | function { ( TypedForm*, ) }* [ TypeQual ]
              | Id

39 of 42



TypedForm   ::= [ Id : ] Type

4.2 Ambiguity Resolution

The grammar as given above is ambiguous. We resolve the ambiguity as follows. 

The Vesta parser accepts a modified grammar in which the > token is replaced by two distinct tokens:
GREATER in the production for Expr4 and RANGLE in the production for List. The modified grammar is
unambiguous and can easily be parsed by an LL(1) or LALR(1) automaton. 

The Vesta tokenizer is responsible for disambiguating between GREATER and RANGLE wherever > appears in
the input. It does so by looking ahead to the next token after the >. If the next token is one of 

    - ! ( ERR TRUE FALSE Text Integer Id < [ {

then the > is taken as GREATER; otherwise, it is taken as RANGLE. 

Why is this solution reasonable? Inspection of the grammar shows that in a syntactically valid program, the next
token after GREATER must be one of those in the above list. The next token after RANGLE must be one of the
following: 

    : * + ++ - == != < GREATER <= >= && || =>
    ; do , ) then else RANGLE ] % / \ ! (

These sets overlap in the tokens -, !, (, and <. Because we have chosen to resolve these cases as GREATER, it
is impossible to write certain syntactically valid programs containing RANGLE. However, any such program can
be rewritten by replacing every List nonterminal by ( List ), yielding a semantically equivalent program in which
the closing > of the List is correctly resolved as RANGLE. Moreover, we claim (without presenting a proof) that
any program in which RANGLE is followed by -, !, (, or < must have a runtime type error, due to the paucity of
operators defined on the list type, so in practice such programs are never written. 

4.3 Tokens

Here is a BNF description of the tokens of the language. The token classes Delim, Integer, Id, and Text, and the
individual tokens in the classes Punc, TwoPunc, and Keyword, serve as terminals in the BNF of earlier sections. 

TokenSeq   ::= Token*
Token      ::= Integer | Id | Text | Punc | TwoPunc | Keyword
             | Whitespace | Comment

Delim      ::= /  |  \
              
Integer    ::= DecimalNZ Decimal* | 0 Octal* | 0 { x | X } Hex+
Decimal    ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
DecimalNZ  ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Octal      ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hex        ::= Decimal | A | B | C | D | E | F | a | b | c | d | e | f

Id         ::= { Letter | Decimal | IdPunc }+
Letter     ::= A | B | C | D | E | F | G | H | I | J | K | L | M
             | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
             | a | b | c | d | e | f | g | h | i | j | k | l | m

40 of 42



             | n | o | p | q | r | s | t | u | v | w | x | y | z
IdPunc     ::= .  |  _

Text       ::= " TextChar* "
TextChar   ::= Decimal | Letter | Punc | Escape
Punc       ::= ~ | ` | ! | @ | # | $ | % | ^ | & | * | ( | )
             | _ | - | + | = | `{' | `[' | `}' | `]' | : | ;
             | `|' | ' | , | < | . | > | ? | / | Space
Escape     ::= \ { n | t | v | b | r | f | a | \  | " | Octals |  Hexes }
Octals     ::= Octal [ Octal [ Octal ] ]
Hexes      ::= { x | X } Hex [ Hex ]

TwoPunc    ::= ++ | == | != | <= | >= | => | || | &&

Keyword    ::= binding | do | else | ERR | FALSE | files | foreach 
            | from | function | if | in | import | list | return
            | then | type | TRUE | value

Whitespace ::= ` ' | Tab | Newline

Comment    ::= // NonNewlineChar* Newline
            |  `/*' CommentBody `*/'

We define Newline as an ASCII new line sequence, either CR, LF, or CRLF. NonNewlineChar is any ASCII
character other than CR and LF. CommentBody is any sequence of ASCII characters that does not contain `*/'.
Tab is the ASCII TAB character. 

The ambiguities in the token grammar are resolved as follows. The tokenizer interprets the program as a
TokenSeq. It scans from left to right, repeatedly matching the longest possible Token beginning with the next
unmatched character. Whitespace and Comment tokens are discarded after matching; other tokens are passed
on for parsing by the main grammar. When a string of characters matches both Integer and Id, it is tokenized as
Integer. When a string matches both Keyword and Id, it is tokenized as Keyword. 

4.4 Reserved Identifiers

Here are Vesta-2's reserved identifiers; they should not be redefined: 

  _append _bind1 _defined _div _elem _find _findr
  _head _is_binding _is_bool _is_closure _is_err
  _is_int _is_list _is_text _length _list1 _lookup
  _map _max _min _mod _n _run_tool _same_type _sub
  _tail _type_of _v

5. Acknowledgments

Bill McKeeman encouraged us to revise the syntax of the language to make it more palatable to C programmers.
Mark Lillibridge gave us many useful comments on an earlier draft of the paper. 

6. References

[1] Allan Heydon, Roy Levin, Tim Mann, and Yuan Yu. The Vesta-2 Software Configuration Management
System, Research Report, Digital Systems Research Center. In preparation. 

41 of 42



[2] Roy Levin and Paul R. McJones. The Vesta Approach to Precise Configuration of Large Software
Systems, Research Report 105, Digital Systems Research Center. June 1993. 39 pgs. 

[3] Sheng-Yang Chiu and Roy Levin. The Vesta Repository: A File System Extension for Software
Development, Research Report 106, Digital Systems Research Center. June 1993. 34 pgs. 

[4] Christine B. Hanna and Roy Levin. The Vesta Language for Configuration Management , Research
Report 107, Digital Systems Research Center. June 1993. 62 pgs. 

[5] Mark R. Brown and John R. Ellis. Bridges: Tools to Extend the Vesta Configuration Management
System, Research Report 108, Digital Systems Research Center. June 1993. 43 pgs. 

42 of 42


