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Abstract

Current technology trends make it possible to build communication networks that
can support high performance distributed computing. This paper describes issues
in the design of a prototype switch for an arbitrary topology point-to-point network
with link speeds of up to one gigabit per second. The switch deals in �xed-length
ATM-style cells, which it can process at a rate of 37 million cells per second. It
provides high bandwidth and low latency for datagram tra�c. In addition, it sup-
ports real-time tra�c by providing bandwidth reservations with guaranteed latency
bounds. The key to the switch's operation is a technique called parallel iterative

matching, which can quickly identify a set of conict-free cells for transmission in
a time slot. Bandwidth reservations are accommodated in the switch by building a
�xed schedule for transporting cells from reserved ows across the switch; parallel
iterative matching can �ll unused slots with datagram tra�c. Finally, we note that
parallel iterative matching may not allocate bandwidth fairly among ows of data-
gram tra�c. We describe a technique called statistical matching, which can be used
to ensure fairness at the switch and to support applications with rapidly changing
needs for guaranteed bandwidth.
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1 Introduction

Over the past few years, several technology trends have converged to provide an
opportunity for high performance distributed computing. Advances in laser and
�ber optic technology have driven feasible link throughputs above a gigabit per
second. Dynamic RAM chips have become cheap enough to be cost-e�ective at
providing the large amounts of bu�ering needed at these very high link speeds.
Moreover, quick routing and switching decisions are possible with current CMOS
technology.

In combination, these trends make it possible to construct a practical local area
network using multiple switches and gigabit-per-second point-to-point �ber links
con�gured in an arbitrary topology. This kind of a network has several advan-
tages [Schroeder et al. 91]. In contrast to networks like Ethernet [Metcalfe & Boggs
76] that use a broadcast physical medium, or networks like FDDI [Ame 87, Ame 88]
based on a token ring, arbitrary topology point-to-point networks o�er (i) aggre-
gate network bandwidth that can be much larger than the throughput of a single
link, (ii) the ability to add throughput incrementally by adding extra switches and
links to match workload requirements, (iii) the potential for achieving lower latency,
both by shortening path lengths and by eliminating the need to acquire control over
the entire network before transmitting, and (iv) a more exible approach to high
availability using multiple redundant paths between hosts.

This paper studies the architectural issues in building high performance switches
for arbitrary topology local area networks.

High performance networks have the potential to change the nature of distributed
computing. Low latency and high throughput communication allow a much closer
coupling of distributed systems than has been feasible in the past: with previous
generation networks, the high cost of sending messages led programmers to carefully
minimize the amount of network communication [Schroeder & Burrows 90]. Further,
when combined with today's faster processors, faster networks can enable a new set
of applications, such as desktop multimedia and the use of a network of workstations
as a supercomputer.

A primary barrier to building high performance networks is the di�culty of high
speed switching { of taking data arriving on an input link of a switch and quickly
sending it out on the appropriate output link. The switching task is simpli�ed if
the data can be processed in �xed-length cells, as discussed in Section 2.3. Given
�xed-length cells, switching involves at least two separate tasks:

� scheduling { choosing which cell to send during each time slot, when more
than one cell is destined for the same output, and

� data forwarding { delivering the cell to the output once it has been scheduled.

Many high speed switch architectures use the same hardware for both scheduling
and data forwarding; Starlite [Huang & Knauer 84], Knockout [Yeh et al. 87], and
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Sunshine [Giacopelli et al. 91] are just a few of the switches that take this approach.
If the input and output links of a switch are connected internally by a multi-stage in-
terconnection network, the internal network can detect and resolve conicts between
cells as they work their way through the switch.

We take a di�erent approach. We argue that for high speed switching, both
now and in the future, switch scheduling can pro�tably be separated from data
forwarding. By doing this, the hardware for each function can be specialized to the
task. Because switch cost is dominated by the optical components needed to drive
the �ber links, the added cost of separate hardware to do scheduling is justi�ed,
particularly if link utilization is improved as a result.

We observe that switch scheduling is simply an application of bipartite graph
matching { each output must be paired with at most one input that has a cell
destined for that output. Unfortunately, existing algorithms for bipartite matching
are either too slow to be used in a high speed switch or do not maximally schedule
the switch, sacri�cing throughput.

A primary contribution of this paper is a randomized parallel algorithm, called
parallel iterative matching, for �nding a maximal bipartite match at high speed.
(In practice, we run the algorithm for a �xed short time; in most cases it �nds
a maximal match.) Parallel iterative matching can be e�ciently implemented in
hardware for switches of moderate scale. Our work is motivated by the needs of AN2,
an arbitrary topology network under development at Digital's Systems Research
Center; we expect to begin using the network in mid-1993. Using only o�-the-shelf
�eld-programmable gate array technology [Xil 91], the AN2 switch using parallel
iterative matching will be able to schedule a standard 53-byte ATM cell out each
link of a 16 by 16 crossbar switch in the time for one cell to arrive at a link speed
of one gigabit per second. This requires scheduling over 37 million cells per second.
Cell latency across the switch is about 2.2 microseconds in the absence of contention.
The switch does not drop cells, and it preserves the order of cells sent between a
pair of hosts. If implemented in custom CMOS, we expect our algorithm to scale to
larger switches and faster links.

Supporting the demands of new distributed applications requires more from a
network than simply high throughput or low latency. The ability to provide guaran-
teed throughput and bounded latency is crucial to multimedia applications [Ferrari
& Verma 90]. Even for applications that do not need guarantees, predictable and fair
performance is often important to higher layers of protocol software [Jain 90, Zhang
91].

Parallel iterative matching does not by itself provide either fairness or guaranteed
throughput. We present enhancements to our algorithm to provide these features.
These enhancements pull from the bag of tricks of network and distributed system
design { local decisions are more e�cient if they can be made independently of
global information, purely static scheduling can simplify performance analysis, and
�nally, randomness can de-synchronize decisions made by a large number of agents.
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The remainder of the paper discusses these issues in more detail. Section 2 puts
our work in context by describing related work. Section 3 presents the basic parallel
scheduling algorithm. Section 4 explains how we provide guaranteed bandwidth
and latency using the AN2 switch. Section 5 describes a technique called statistical

matching, which uses additional randomness in the switching algorithm to support
dynamic allocation of bandwidth. Section 6 provides a summary of our work.

2 Background and Related Work

Our goal is to build a local area network that supports high performance distributed
computing; for this, a network must have high throughput, low latency, graceful
degradation under heavy workloads, the ability to provide guaranteed performance
to real-time applications, and performance that is both fair and predictable. The
network should be capable of connecting anywhere from tens to thousands of work-
stations.

The network we envision consists of a collection of switches, links, and host
network controllers. Data is injected into the network by the controller in a sending
host; after traversing a sequence of links and switches, the data is delivered to the
controller at the receiving host. Each link is point-to-point, connecting a single
switch port to either a controller or to the port of another switch. Switches can be
connected to each other and to controllers in any topology.

Routing in the network is based on ows, where a ow is a stream of cells between
a pair of hosts. (Our network also supports multicast ows, but we will not discuss
that here.) There may be multiple ows between a given pair of hosts, for example,
with di�erent performance guarantees. Each cell is tagged with an identi�er for its
ow. A routing table in each switch, built during network con�guration, determines
the output port for each ow. All cells from a ow take the same path through the
network.

This paper focuses on the algorithms to be used for switch scheduling. But we
must �rst provide context for our work by discussing other aspects of the AN2 switch
design, including switch size, the con�guration of the switch's internal interconnect,
�xed-length cells vs. variable-length packets, and bu�er organization.

2.1 Switch Size

A key parameter in designing a point-to-point network is the size of each switch.
Part of the host-to-host interconnect is provided by the �ber optic links between
switches and part by the silicon implementing the internal interconnect within each
switch. In designing a network, we need to �nd an appropriate balance between
using a large number of small switches or a small number of large switches.

At one extreme, very small switches are not cost-e�ective. The largest compo-
nent in the cost of a local area �ber optic network comes from the optoelectronic
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devices in each switch that drive the �ber links. These devices account for almost
half the cost of the 16 by 16 AN2 switch; we discuss the component costs of the AN2
switch in more detail in Section 3.3. A smaller switch size requires the network to
have a larger number of �ber connections and thus a larger number of optoelectronic
devices.

On the other hand, very large switches are often inappropriate for local area
networks. While it is feasible to build switches with thousands of ports, such a switch
would be unduly costly for sites that have only dozens of workstations. Smaller
switches allow capacity to be added incrementally at low cost; smaller switches can
also lower the cost of availability by making it less expensive for the network to have
fully redundant paths.

For these reasons, our algorithms are designed for switches of moderate scale,
in the range of 16 by 16 to 64 by 64. We expect that it will be some time before
workstations are able to use a full gigabit-per-second link; for AN2, we are designing
a special concentrator card to connect four workstations, each using slower speed
link, to a single AN2 switch port. A single 16 by 16 AN2 switch can thus connect
up to 64 workstations.

2.2 Internal Interconnect

Once the switch size has been decided, there are several approaches to designing the
internal data path needed to transport cells from the inputs to the outputs of the
switch. Probably the simplest approach to transporting data across a switch is to use
shared memory or a shared bus. We do not pursue these techniques here, because
they do not seem feasible for even moderate-sized switches with gigabit-per-second
links, much less for the faster link speeds of the future.

Another uncomplicated approach is to connect inputs to outputs via a crossbar,
using some external logic to control the crossbar, i.e., to decide which cells are
forwarded over the crossbar during each time slot and to set up the crossbar for
those cells. In the absence of a fast algorithm, however, scheduling the crossbar
quickly becomes a performance bottleneck for all but the smallest switches.

Many switch architectures call for the switch's internal interconnection to be
self-routing [Ahmadi & Denzel 89]. The switch is organized internally as a multi-
stage network of smaller switches arranged in a buttery, or more generally, in a
banyan [Patel 79]. Cells placed into a banyan network are automatically routed and
delivered to the correct output based solely on the information in the cell header.

Unlike a crossbar, however, banyan networks su�er from internal blocking. A
cell destined for one output can be delayed (or even dropped) because of contention
at the internal switches with cells destined for other outputs. This makes it di�cult
to provide guaranteed performance.

Internal blocking can be avoided by observing that banyan networks are in-
ternally non-blocking if cells are sorted according to output destination and then
shu�ed before being placed into the network [Huang & Knauer 84]. Thus, a com-
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mon switch design is to put a Batcher sorting network [Batcher 68] and a shu�e
exchange network in front of a normal banyan network. As with a crossbar, a cell
may be sent from any input to any output provided no two cells are destined for
the same output.

Our scheduling algorithm assumes that data can be forwarded through the switch
with no internal blocking; this can be implemented using either a crossbar or a
batcher-banyan network. Our prototype uses a crossbar because it is simpler and
has lower latency. Even though the hardware for a crossbar for an N by N switch
grows as O(N2), for moderate scale switches the cost of a crossbar is small relative
to the rest of cost of the switch. In the AN2 prototype switch, for example, the
crossbar accounts for less than 5% of the overall cost of the switch.

2.3 Fixed-Length Cells vs. Variable-Length Packets

Within our network, data is transmitted in �xed-length cells rather than variable-
length packets. We support standard 53-byte ATM cells with 5-byte cell headers,
although a 128-byte cell size with 8-byte cell headers would have simpli�ed our
implementation. Applications may still deal in variable-length packets. It is the
responsibility of the network controller at the sending host to divide packets into
cells, each containing the ow identi�er for routing; the receiving controller re-
assembles the cells into packets.

Using �xed-length cells has a number of advantages for switch design, despite
the disadvantages that the switch must make more frequent scheduling decisions and
that a greater proportion of the link bandwidth is consumed by the overhead of cell
headers and internal fragmentation. The chief gain of using cells is that performance
guarantees are easier to provide when the entire crossbar is re-con�gured after every
cell time slot. In addition, �xed-length cells simplify random access bu�er man-
agement (discussed in the next sub-section). Using cells can also improve packet
latency for both short and long packets. Short packets do better because they can
be interleaved over a link with long packets; a long packet cannot monopolize a con-
nection for its entire duration. For long packets, cells simulate the performance of
cut-through [Kermani & Kleinrock 79] while permitting a simpler store-and-forward
implementation.

2.4 Bu�er Organization

Even with an internally non-blocking switch, when several cells destined for the
same output arrive in a time slot, at most one can actually leave the switch; the
others must be bu�ered. There are many options for organizing the bu�er pools.
For example, bu�ers may be placed at the switch inputs or outputs; when placed
at the inputs they may be strictly FIFO or allow random access. There has been
considerable research on the impact of these alternatives. In this sub-section we
review the work that is most relevant to our switch design.

5



The simplest approach is to maintain a FIFO queue of cells at each input; only
the �rst cell in the queue is eligible for being transmitted during the next time
slot. The di�culty with FIFO queueing is that when the cell at the head of an
input queue is blocked, all cells behind it in the queue are prevented from being
transmitted, even when the output link they need is idle. This is called head-of-line

(HOL) blocking. Karol et al. [1987] have shown that head-of-line blocking limits
switch throughput to 58% of each link, when the destinations of incoming cells are
uniformly distributed among all outputs.

... 1 1 1 4 4 4 3 3 3 2 2 2 1 1 1

... 1 1 1 4 4 4 3 3 3 2 2 2 1 1 1

... 1 1 1 4 4 4 3 3 3 2 2 2 1 1 1

... 1 1 1 4 4 4 3 3 3 2 2 2 1 1 1

Figure 1: Performance Degradation Due to FIFO Queueing

Unfortunately, FIFO queueing can have even worse performance under certain
tra�c patterns. For example, if several input ports each receive a burst of cells for
the same output, cells that arrive later for other outputs will be delayed while the
burst cells are forwarded sequentially through the bottleneck link. If incoming tra�c
is periodic, Li [1988] shows that the aggregate switch throughput can be as small as
the throughput of a single link, even for very large switches; this is called stationary

blocking. Figure 1 illustrates this e�ect.1 The worst case in Figure 1 occurs when
scheduling priority rotates among inputs so that the �rst cell from each input is
scheduled in turn. The example assumes for simplicity that cells can be sent out the
same link they came in on; even if this is not the case, aggregate switch throughput
can still be limited to twice the throughput of a single link. Note that without the
restriction of FIFO queueing { that is, if any queued cell is eligible for forwarding {
all of the switch's links could be fully utilized in steady state.

Various approaches have been proposed for avoiding the performance problems
of FIFO input bu�ers. One is to expand the internal switch bandwidth so that it can
transmit k cells to an output in a single time slot. This can be done by replicating
the crossbar or, more typically, in a batcher-banyan switch by replicating the banyan
part of the switch k times [Huang & Knauer 84]. Since only one cell can depart from
an output during each slot, bu�ers are required at the outputs with this technique.
In the limit, with enough internal bandwidth in an N by N switch to transmit N

1In this and other �gures in this paper, input ports on the left and output ports on the right are

shown as distinct entities. However, in an AN2 switch, the ith input and the ith output actually

connect to the same full-duplex �ber optic link. The small boxes represent cells queued at each
input; the number in each box corresponds to the output destination of that cell.
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cells to the same output, there is no need for input bu�ers, since any pattern of
arriving cells can be transmitted to the outputs. We will refer to this as perfect
output queueing.

Perfect output queueing yields the best performance possible in a switch, be-
cause cells are only delayed due to contention for limited output link bandwidth,
never due to contention internal to the switch. Unfortunately, the hardware cost
of perfect output queueing is prohibitive for all but the smallest switches; the in-
ternal interconnect plus the bu�ers at each output must accomodate N times the
link bandwidth. Thus it is more common for switches to be built with some small
k chosen as the replication factor. If more than k cells arrive during a slot for a
given output, not all of them can be forwarded immediately. Typically, the excess
cells are simply dropped. While studies have shown that few cells are dropped with
a uniform workload [Giacopelli et al. 91], unfortunately local area network tra�c is
rarely uniform. Instead, a common pattern is client-server communication, where
a large fraction of incoming cells tend to be destined for the same output port, as
described by Owicki and Karlin [1992]. Unlike previous generation networks, �ber
links have very low error rates; the links we are using in AN2, for example, have a
bit error rate of less than 10�12. Thus, loss induced by the switch architecture will
be more noticeable.

Another technique, often combined with the previous one [Giacopelli et al. 91],
is to shunt blocked cells into a re-circulating queue that feeds back into extra ports
in the batcher-banyan network. The re-circulated cells are then sorted, along with
incoming cells, during the next time slot. Once again, if there is too much contention
for outputs, some cells will be dropped.

Our switch takes the alternative approach of using random access input bu�ers.
Cells that cannot be forwarded in a slot are retained at the input, and the �rst cell of
any queued ow can be selected for transmission across the switch. This avoids the
cell loss problem in the schemes above, but requires a more sophisticated algorithm
for scheduling the cells to be transmitted in a slot.

While there have been several proposals for switches that use random access
input bu�ers [Karol et al. 87, Tamir & Frazier 88, Obara & Yasushi 89, Karol et al.
92], the di�culty is in devising an algorithm that is both fast enough to schedule
cells at high link speeds and e�ective enough to deliver high link throughput. For
example, Hui and Arthurs [1987] use the batcher network to schedule the batcher-
banyan. At �rst, only the header for the �rst queued cell at each input port is sent
through the batcher network; an acknowledgement is returned indicating whether
the cell is blocked or can be forwarded during this time slot. Karol et al. [1987]
suggest that iteration can be used to increase switch throughput. In this approach,
an input that loses the �rst round of the competition sends the header for the second
cell in its queue on the second round, and so on. After some number of iterations
k, the winning cells, header plus data, are sent through the batcher-banyan to the
outputs. Note that this reduces the impact of head-of-line blocking but does not
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eliminate it, since only the �rst k cells in each queue are eligible for transmission.

3 Parallel Iterative Matching

In this section, we describe our algorithm for switch scheduling, �rst giving an
overview, and then discussing its execution time and hardware cost. The section
concludes with simulations of its performance relative to FIFO and output queueing.

3.1 Overview

The goal of our scheduling algorithm is to quickly �nd a conict-free pairing of inputs
to outputs, considering only those pairs with a queued cell to transmit between
them. This pairing determines which inputs transmit cells over the crossbar to
which outputs in a given time slot. With random access bu�ers, an input may
transmit to any one of the outputs for which it has a queued cell, but the constraint
is that each input can be matched to at most one output and each output to at
most one input.

Our algorithm, parallel iterative matching, uses parallelism, randomness, and
iteration to accomplish this goal e�ciently. We iterate the following three steps
(initially, all inputs and outputs are unmatched):

1. Each unmatched input sends a request to every output for which it has a
bu�ered cell. This noti�es an output of all its potential partners.

2. If an unmatched output receives any requests, it chooses one randomly to
grant. The output noti�es each input whether its request was granted.

3. If an input receives any grants, it chooses one to accept and noti�es that
output.

Each of these steps occurs independently and in parallel at each input/output
port; there is no centralized scheduler. Yet at the end of one iteration of the protocol,
we have a legal matching of inputs to outputs. More than one input can request
the same output; the grant phase chooses among them, ensuring that each output is
paired with at most one input. More than one output can grant to the same input
(if the input made more than one request); the accept phase chooses among them,
ensuring that each input is paired with at most one output.

While we have a legal matching after one iteration, there may remain unmatched
inputs with queued cells for unmatched outputs. An output whose grant is not
accepted may be able to be paired with an input, none of whose requests were
granted. To address this, we repeat the request, grant, accept protocol, retaining
the matches made in previous iterations. We iterate to \�ll in the gaps" in the
match left by previous iterations. However, there can be no head-of-line blocking in
our approach, since we consider all potential connections at each iteration.

8



4

4 2

1 2

request grant accept

-

�
�
��3

Q
Q
QQs

Q
Q
QQs

-

Q
Q

QQk

�
�

��+

�

�
�
��3

-

Figure 2: Parallel Iterative Matching: One Iteration

Figure 2 illustrates one iteration of parallel iterative matching. Five requests
are made, three are granted, and two are accepted. Further, at the end of the
�rst iteration, one request (from the bottom input to output 4) remains from an
unmatched input to an unmatched output. This request is made, granted, and
accepted during the second iteration; at this point, no further pairings can be added.

After a �xed number of iterations (discussed below), we use the result of parallel
iterative matching to set up the crossbar for the next time slot. We then transmit
cells over the crossbar, and re-run parallel iterative matching from scratch for the
following time slot. Any remaining ows with queued cells can be considered for
matching, as can any ows that have had cells arrive at the switch in the meantime.

Parallel iterative matching may forward cells through the switch in an order
di�erent from the order in which they arrived. However, the switch maintains a
FIFO queue for each ow, so cells within a ow are not re-ordered. Only the �rst
queued cell in each ow is eligible to be trasmitted over the crossbar. This use of
FIFO queueing does not lead to head-of-line blocking, however: since all cells from
a ow are routed to the same output, either none of the cells of a ow are blocked
or all are.

Our algorithm can be generalized to handle switches with replicated switching
fabrics. For instance, consider a batcher-banyan switch with k copies of the banyan
network. With such a switch, up to k cells can be delivered to a single output during
one time slot. (Note that this requires bu�ers at the outputs, since only one cell per
slot can leave the output.) In this case, we can modify parallel iterative matching to
allow each output to make up to k grants in step 2. In all other ways, the algorithm
remains the same. An analogous change can be made for switch fabrics that allow
inputs to forward more than one cell during any time slot. For the remainder of the
paper, however, we assume that each input must be paired with at most one output
and vice versa.
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3.2 Number of Iterations

A key performance question is the number of iterations that it takes parallel iterative
matching to complete, that is, to reach a point where no unmatched input has cells
queued for any unmatched output. In the worst case, this can take N iterations for
an N by N switch: if all outputs grant to the same input, only one of the grants can
be accepted on each round. If this pattern were repeated, parallel iterative matching
would be no faster than a sequential matching algorithm. On the other hand, in the
best case, each output grants to a distinct input, in which case the algorithm takes
only one iteration to �nish.

To avoid the worst case behavior, we make it unlikely that outputs grant to
the same input by having each output choose among requests using an independent
random number. In Appendix A, we show that by using randomness, the algorithm
completes in an average of O(logN) iterations; this result is independent of the
initial pattern of input requests. The key to the proof is that each iteration resolves,
either by matching or by removing from future consideration, an average of at least
3=4 of the remaining unresolved requests.

The AN2 prototype switch runs parallel iterative matching for four iterations,
rather than iterating until no more matches can be added. There is a �xed amount
of time to schedule the switch { the time to receive one cell at link speed. In our
current implementation using 53-byte ATM cells, �eld-programmable gate arrays,
and 1.0 gigabit-per-second links, there is slightly more than enough time for four
iterations.

Prfinput i has a Number of Iterations (K)
cell for output jg 1 2 3 4

.10 87% 99.8% 100%

.25 75% 97.6% 99.97% 100%

.50 69% 93% 99.6% 99.997%

.75 66% 90% 98.6% 99.97%
1.0 64% 88% 97% 99.9%

Table 1: Percentage of Total Matches Found Within K Iterations: Uniform Work-
load

To determine how many iterations it would take in practice for parallel iterative
matching to complete, we simulated the algorithm on a variety of request patterns.
Table 1 shows the results of these tests for a 16 by 16 switch. The �rst column
lists the probability p that there is a cell queued, and thus a request, for a given
input-output pair; several hundred thousand patterns were generated for each value
of p. The remaining columns show the percentages of matches found within one
through four iterations, where 100% represents the number of matches found by
running iterative matching to completion. Table 1 shows that additional matches
are hardly ever found after four iterations in a 16 by 16 switch; we observed similar
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results for client-server request patterns.

3.3 Implementation Issues

We next consider issues in implementing parallel iterative matching in hardware.

Functional Unit Prototype Cost Production Cost (est.)

Optoelectronics 48% 63%
Crossbar 4% 5%
Bu�er RAM/Logic 21% 19%
Scheduling Logic 10% 3%
Routing/Control CPU 17% 10%

Table 2: AN2 Switch Component Costs, as Proportion of Total Switch Cost

First, note that the overall cost of implementing parallel iterative matching is
small relative to the rest of the cost of the AN2 switch. In addition to switch
scheduling hardware, the AN2 switch has optoelectronics for receiving and trans-
mitting cells over the �ber links, a crossbar for forwarding cells from inputs to
outputs, cell bu�ers at each input port along with logic for managing the bu�ers,
and a control processor for managing routing tables and the pre-computed sched-
ule described in the next section. Table 2 lists the hardware cost of each of these
functional units as a percentage of the total cost of a 16 by 16 AN2 switch. Table 2
considers only the cost of the hardware devices needed by each functional unit, not
the engineering cost of designing the switch logic. We list both the actual costs for
our prototype switch and our estimate of the costs for a production version of the
switch. To simplify the design process, we implemented most of the logic in the
AN2 prototype with Xilinx �eld-programmable gate arrays [Xil 91]. A production
system would use a more cost-e�ective technology, such as custom CMOS, reducing
cost of the random logic needed to implement parallel iterative matching relative to
the rest of the cost of the switch. In either the prototype or the production version,
the cost of the optoelectronics dominates the cost of the switch.

Parallel iterative matching requires random access input bu�ers, so that any
input-output pair with a queued cell can be matched during the next time slot. We
implement this by organizing the input bu�ers into lists. Each ow has its own
FIFO queue of bu�ered cells. A ow is eligible for scheduling if it has at least one
cell queued. A list of eligible ows is kept for each input-output pair. If there is at
least one eligible ow for a given input-output pair, the input requests the output
during parallel iterative matching. If the request is granted, one of the eligible ows
is chosen for scheduling in round-robin fashion. When a cell arrives, it is put on the
queue for its ow, and its ow is added to the list of eligible ows if it is not already
there. When a cell departs the switch, its ow may need to be removed from the list
of eligible ows. Much of this mechanism is also needed for providing guaranteed
performance to ows as described in the next section.
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We implement the request, grant, accept protocol by running a wire between
every input and output. Even though this requires hardware that grows as O(N2)
for an N by N switch, this is not a signi�cant portion of the switch cost, at least for
moderate scale switches. The request and grant signals can be encoded by a single
bit on the appropriate wire. As a simple optimization, no separate communication
is required in step 3 to indicate which grants are accepted. Instead, when an input
accepts an output's grant, it simply continues to request that output on subsequent
iterations, but drops all other requests. Once an output grants to an input, it
continues to grant to the same input on subsequent iterations unless the input
drops its request.

The thorniest hardware implementation problem is randomly selecting one
among k requesting inputs. The obvious way to do this is to generate a pseudo-
random number between 1 and k, but we are examining ways of doing more e�cient
random selection. For instance, for moderate-scale switches, the selection can be
e�ciently implemented using tables of precomputed values. Our simulations indi-
cate that the number of iterations needed by parallel iterative matching is relatively
insensitive to the technique used to approximate randomness.

3.4 Maximal vs. Maximum Matching

It is reasonable to consider whether a switch scheduling algorithmmore sophisticated
than parallel iterative matching might achieve better switch throughput, although
perhaps with higher hardware cost. Scheduling a switch with random access input
bu�ers is an application of bipartite graph matching [Tarjan 83]. Switch inputs and
outputs form the nodes of a bipartite graph; the edges are the connections needed
by queued cells.

Bipartite graph matching has been studied extensively. There are two interesting
kinds of bipartite matches. A maximum match is one that pairs the maximum
number of inputs and outputs together; there is no other pairing that matches more
inputs and outputs. A maximal match is one for which pairings cannot be trivially
added; each node is either matched or has no edge to an unmatched node. A
maximum match must of course be maximal, but the reverse is not true; it may be
possible to improve a maximal match by deleting some pairings and adding others.

We designed parallel iterative matching to �nd a maximal match, even though
link utilization would be better with a maximum match. One reason was the length
of time we had to make a scheduling decision; we saw no way using current technol-
ogy to do maximum matching under the time constraint imposed by 53-byte ATM
cells and gigabit-per-second links. Finding a maximum match for an N by N graph
with M edges can take O(N � (N +M)) time. Although Karp et al. [1990] give
a randomized algorithm that comes close on average to �nding a maximum match,
even that algorithm can take O(N +M) time. As discussed above, our parallel
algorithm �nds a maximal match in logarithmic time, on average.

Another disadvantage of maximum matching is that it can lead to starvation.
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The example we used to explain parallel iterative matching (Figure 2) also illustrates
this possibility. Assuming a su�cient supply of incoming cells, maximum matching
would never connect input 1 with output 2. In contrast, parallel iterative matching
does not incur starvation. Since every output grants randomly among requests, an
input will eventually receive a grant from every output it requests. Provided inputs
choose among grants in a round-robin or other fair fashion, every queued cell will
eventually be transmitted.

In the worst case, the number of pairings in a maximal match can be as small
as 50% of the number of pairings in a maximum match. However, the simulations
reported below indicate that even if it were possible to do maximum matching (or
some even more sophisticated algorithm) in one ATM cell time slot at gigabit link
speeds, there could be only a marginal bene�t, since parallel iterative matching
comes close to the optimal switch performance of perfect output queueing.

3.5 Performance of Iterative Matching

To evaluate the performance of parallel iterative matching, we compared it to FIFO
queueing and output queueing by simulating each under a variety of workloads
on a 16 by 16 switch. All simulations were run for long enough to eliminate the
e�ect of any initial transient. As noted in Section 2, FIFO queueing is simple
to implement, but can have performance problems. Perfect output queueing is
infeasible to implement even for a moderate scale gigabit switch, but provides a
good basis for comparison, because it indicates the optimal switch performance
given unlimited hardware resources.

Figure 3 shows average queueing delay (in cell time slots) vs. o�ered load for
the three scheduling algorithms. O�ered load is the probability that a cell arrives
(departs) on a given link in a given time slot. The destinations of arriving cells are
uniformly distributed among the outputs.

Figure 3 illustrates several points:

� At low loads, there is little di�erence in performance between the three algo-
rithms. When there are few queued cells, it does not matter (beyond hardware
implementation cost) which switch scheduling algorithm is used.

� At moderately high loads, neither parallel iterative matching nor output
queueing is limited, as FIFO queueing is, by head-of-line blocking. Parallel
iterative matching does have signi�cantly higher queueing delay than perfect
output queuing. This is because, with output queueing, a queued cell is de-
layed only by other cells at the same output. With parallel iterative matching,
a queued cell must compete for the crossbar with both cells queued at the same
input and cells destined for the same output.

� The peak switch throughput of parallel iterative matching comes quite close to
that of perfect output queueing. Even at very high loads, the queueing delay
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Figure 3: Simulated Performance of Switch Scheduling Algorithms: Uniform Work-
load

for parallel iterative matching is quite reasonable. For instance, our switch,
with 53-byte ATM cells and gigabit-per-second links, will forward an arriving
cell in an average of less than 13 �sec. when the links are being used at 95%
of capacity.

Figure 4, shows average queueing delay vs. o�ered load under a non-uniform
client-server workload. In de�ning the workload, four of the sixteen ports were
assumed to connect to servers, the remainder to clients. Destinations for arriving
cells were randomly chosen in such a way that client-client connections carried only
5% of the tra�c of client-server or server-server connections. Here o�ered load refers
to the load on a server link.

The results in Figure 4 are qualitatively similar to those of Figure 3. FIFO queue-
ing still su�ers from head-of-line blocking, limiting its maximum possible through-
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Figure 4: Simulated Performance of Switch Scheduling Algorithms: Client-Server
Workload

put. Parallel iterative matching performs well on this workload, coming even closer
to optimal than in the uniform case. The results were similar for other client/server
tra�c ratios and for di�erent numbers of servers.

Finally, Figure 5 shows the impact of the number of iterations on the performance
of parallel iterative matching. Here the number of iterations was varied, using the
uniform workload of Figure 3. The result con�rms that for a 16 by 16 switch, there
is no signi�cant bene�t to running parallel iterative matching for more than four
iterations; the queueing delay with four iterations is everywhere within 0.5% of the
delay assuming parallel iterative matching is run to completion. Note that even
with one iteration, parallel iterative matching does better than FIFO queueing.

To summarize, parallel iterative matching makes it possible for the switch to
achieve a nearly ideal match in a short time. Moreover, the hardware requirements
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are modest enough to make parallel iterative matching practical for high speed
switching.

4 Real-Time Performance Guarantees

As network and processor speeds increase, new types of high performance distributed
applications become feasible. Supporting the demands of these applications requires
more from a network than just high throughput or low latency. Parallel iterative
matching, while fast and e�ective at keeping links utilized, cannot by itself provide
all of the needed services. The remainder of this paper discusses these issues and
suggests ways of augmenting the basic algorithm to address them.

One important class of applications are those that depend on real-time perfor-
mance guarantees. For example, multimedia applications must display video frames
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at �xed intervals. They require that the network provide a certain minimum band-
width and a bounded latency for cell delivery. Following the conventions of the
ATM community, we will refer to tra�c with reserved bandwidth requirements as
constant bit rate (CBR), and refer to other tra�c as variable bit rate (VBR). (VBR
tra�c is often called datagram tra�c). Switches distinguish VBR and CBR cells
based on the ow identi�er in the cell header.

To ensure guaranteed performance, an application issues a request to the net-
work to reserve a certain bandwidth and latency bound for a CBR ow [Ferrari &
Verma 90]. If the request can be met without violating any existing guarantees,
the network grants it and reserves the required resources on a �xed path between
source and destination. The application can then transmit cells at a rate up to its
requested bandwidth, and the network ensures that they are delivered on time. By
contrast, applications can transmit VBR cells with no prior arrangement. If the
network becomes heavily loaded, VBR cells may su�er arbitrary delays. But CBR
performance guarantees are met no matter how high the load of VBR tra�c.

With CBR tra�c, since we know the o�ered load in advance, we can a�ord to
spend time to pre-compute a schedule at each switch to accomodate the reservations.
By contrast, parallel iterative matching was devised to rapidly schedule the switch
in response to whatever VBR tra�c arrives at the switch.

Our contribution is showing how to implement performance guarantees in a net-
work of input-bu�ered switches with unsynchronized clocks. The rest of this section
describes our approach to CBR tra�c. We �rst describe the form of a bandwidth
request and the criterion used to determine whether it can be accepted. We next
show how a switch can be scheduled to meet bandwidth guarantees. Finally, we show
that bu�ers for CBR tra�c can be statically allocated and the latency of CBR cells
can be bounded, even when network switch clock rates are unsynchronized. Our
approach smoothly integrates both CBR and VBR tra�c; VBR cells can consume
all of the network bandwidth unused by CBR cells.

Bandwidth allocations are made on the basis of frames which consist of a �xed
number of slots, where a slot is the time required to transmit one cell [Golestani
90]. An application's bandwidth request is expressed as a certain number of cells
per frame; if the request is granted, each switch in the path schedules the ow into
that number of frame slots, and repeats the frame schedule to deliver the promised
throughput. Frame boundaries are internal to the switch; they are not encoded on
the link.

Frame size is a parameter of the network. A larger frame size allows for �ner
granularity in bandwidth allocation; we will see later that smaller frames yield lower
latency. The frame size in our prototype switch is 1000 slots; a frame takes less than
half a millisecond to transmit. This leads to latency bounds that seem acceptable
for multimedia applications, the most likely use for CBR guarantees.

When a request is issued, network management software must determine whether
it can be granted. In our approach, this is possible if there is a path from source
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to destination on which each link's uncommitted capacity can accomodate the re-
quested bandwidth. If network software �nds such a path, it grants the request, and
noti�es the involved switches of the additional reservation. The application can then
send up to the reserved number of cells each frame. The host controller or the �rst
switch on the ow's path can meter the rate at which cells enter the network; if the
application exceeds its reservation, the excess cells may be dropped. Alternatively,
excess cells may be allowed into the network, and any switch may drop cells for a
ow that exceeds its allocation of bu�ers.

Note that this allocation criterion allows 100% of the link bandwidth to be
reserved (although we shall see later that a small amount of bandwidth is lost in
dealing with clock drift). Meeting this throughput level is straightforward with
perfect output queueing [Golestani 90, Kalmanek et al. 90], but this assumes the
switch has enough internal bandwidth that it never needs to drop cells under any
pattern of arriving CBR cells. With input bu�ering, parallel iterative matching is
not capable of guaranteeing this throughput level.

Instead, in AN2, CBR tra�c is handled by having each switch build an explicit
schedule of input-output pairings for each slot in a frame; the frame schedule is
constructed to accomodate the guaranteed tra�c through the switch. The Slepian-
Duguid theorem [Hui 90] implies that such a schedule can be found for any tra�c
pattern, so long as the number of cells per frame from any input or to any output
is no more than the number of slots in a frame, in other words, so long as the
link bandwidth is not over-committed. When a new reservation is made, it may be
necessary to rearrange the connections in the schedule. We are free to rearrange
the schedule, since our guarantees depend only on delivering the reserved number of
cells per frame for each ow, not on which slot in the frame is assigned to each ow.
The slot assignment can be changed dynamically without disrupting guaranteed
performance.

An algorithm for computing the frame schedule is as follows [Hui 90]. Suppose
a reservation is to be added for k cells per frame from input P to output Q; P and
Q have k free slots per frame, or else the reservation cannot be accomodated. We
add the reservation to the schedule one cell at a time. First, if there is a slot in the
schedule where both P and Q are unreserved, the connection can be added to that
slot. Otherwise, we must �nd a slot where P is unreserved, and a di�erent slot where
Q is unreserved. These slots must exist if P and Q are not over-committed. The
algorithm swaps pairings between these two slots, starting by adding the connection
from P to Q to either of the two slots. This will cause a conict with an existing
connection (for instance, from R to Q); this connection is removed and added to
the other slot. In turn, this can cause a conict with an existing connection (from
R to S), which is removed and added to the �rst slot. The process is repeated until
no conict remains. It can be shown that this algorithm always terminates.

Figure 6 provides an example of reservations and a schedule for a frame size of
3 slots; Figure 7 illustrates the modi�cation to the schedule needed to accomodate
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Reservations (cells per frame)

Output
Input 1 2 3 4

1 1 1 1
2 2
3 2 1
4 1 1

Schedule

Slot 1 1 ! 3 2 ! 1 3 ! 2
Slot 2 1 ! 4 2 ! 1 3 ! 2 4 ! 3
Slot 3 1 ! 2 3 ! 4 4 ! 1

Figure 6: CBR Tra�c: Reservations and Schedule

Reservations (cells per frame)

Output
Input 1 2 3 4

1 1 1 1
2 2 1
3 2 1
4 1 1

Schedule

Slot 1 1 ! 2 2 ! 1 3 ! 4
Slot 2 1 ! 4 2 ! 1 3 ! 2 4 ! 3
Slot 3 1 ! 3 2 ! 4 3 ! 2 4 ! 1

Figure 7: CBR Tra�c with Added Reservation

an additional reservation of one cell per frame from input 2 to output 4. Because
there is no slot in which both input 2 and output 4 are free, the existing schedule
must be shu�ed in order to accommodate the new ow. In the example, we added
the connection to slot 3, and swapped several connections between slots 1 and 3.

Computing a new schedule may require a number of steps proportional to the
size of the reservation (in cells/frame) � N , for an N by N switch. However, the
test for whether a switch can accommodate a new ow is much simpler; it is possible
so long as the input and output link each have adequate unreserved capacity. Once
a feasible path is found, the selected switches can compute their new schedules in
parallel.

CBR cells are routed across the switch during scheduled slots. VBR cells are
transmitted during slots not used by CBR cells. For example, in Figure 6, a VBR
cell can be routed from input 2 to output 3 during the third slot. In addition, VBR
cells can use an allocated slot if no cell from the scheduled ow is present at the
switch.

Pre-scheduling the switch ensures that there is adequate bandwidth at each
switch and link for CBR tra�c. It is also necessary to have enough bu�er space at
each switch to hold cells until they can be transmitted; otherwise, some cells would
be lost. The AN2 switch statically allocates enough bu�er space for CBR tra�c.
VBR cells use a di�erent set of bu�ers, which are subject to ow control.

In a network where switch clock rates are synchronized, as in the telephone
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network, a switch needs enough bu�er space at each input link for two frames worth
of cells [Golestani 90, Zhang & Keshav 91]. Note that one frame of bu�ering is not
enough, because the frame boundaries may not be the same at both switches, and
because the switches can rearrange their schedules from one frame to the next.

The situation becomes more complicated when each switch or controller's clock
can run at a slightly di�erent rate. The time to transmit a frame of cells is de-
termined by the local clock rate at the switch or controller. Thus, an upstream
switch or controller with a fast clock rate can overrun the bu�er space for a slow
downstream switch, by sending cells at a faster rate than the downstream switch
can forward cells. More deviously, a switch may run more slowly for a time, building
up a backlog of cells, then run faster, dumping the backlog onto the downstream
switch.

Our solution assumes the clock rates on all switches and controllers are within
some tolerance of the same rate. We then constrain the network controllers to insert
cells at a slower rate than that of the slowest possible downstream switch. We do
this by adding extra empty slots to the end of each controller (but not switch)
frame, so that even if the controller has a fast clock and a switch has a slow clock,
the controller's frame will still take longer than the switch's frame. Because the rate
at which controllers insert cells is constrained, a fast switch can only temporarily
overrun a slower downstream switch; we need to allocate enough bu�er space to
accomodate these temporary bursts. Over the long run, cells can arrive at a switch
only at the rate at which they are inserted by the network controller.

We derive the exact bound on the bu�er space required in Appendix B as a
function of network parameters: the switch and controller frame sizes, the network
diameter, and the clock error limits. Four or �ve frames of bu�ers are su�cient for
values of these parameters that are reasonable for local area networks.

Now let us consider latency guarantees. If switch clocks are synchronized, a
cell can be delayed at most two frame times at each switch on its path [Golestani
90, Zhang & Keshav 91]. Let p be the number of hops in the cell's path, f the time
to transmit a frame, and l an upper bound on link latency plus switch overhead
for processing a cell. Then the total latency for a cell is less than p(2f + l). When
switches are not synchronized, the delay experienced by a cell at a particular switch
may be larger than (2f + l), but the end-to-end delay is still bounded by p(2f + l).
Again, the derivation is presented in Appendix B. This yields latency bounds in
AN2 that are adequate for most multimedia applications. A smaller frame size
would provide lower CBR latency, but as already mentioned it would entail a larger
granularity in bandwidth reservations. We are considering schemes in which a large
frame is subdivided into smaller frames. This would allow each application to trade
o� a guarantee of lower latency against a smaller granularity of allocation.

To summarize, bandwidth and latency guarantees are provided through the fol-
lowing mechanisms:

� Applications request bandwidth reservations in terms of slots/frame.
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� The network grants a request if it can �nd a path on which each link has the
required capacity.

� Each switch, when noti�ed of a new reservation, builds a schedule for trans-
mitting cells across the switch.

� Enough bu�ers are permanently reserved for CBR tra�c to ensure that arriv-
ing cells will always �nd an empty bu�er.

� Latency is bounded by a simple function of link latency, path length, and
frame size.

5 Statistical Matching

The AN2 switch combines the methods described in the previous two sections to pro-
vide low latency and high throughput for VBR tra�c and guaranteed performance
for CBR tra�c. In this section, we present a generalization of parallel iterative
matching, called statistical matching, that can e�ciently support frequent changes
of bandwidth allocation. In contrast, the Slepian-Duguid technique for bandwidth
allocation works well so long as allocations are not changed too frequently, since
changes require computing a new schedule at each switch. One motivation for dy-
namic bandwidth allocation is to provide fair sharing of network resources among
competing ows of VBR tra�c. Another is to support applications that require
guaranteed performance and have bandwidth requirements that vary over time, as
can be the case with compressed video.

Statistical matching works by systematically using randomness in choosing which
request to grant and which grant to accept. We might say that parallel iterative
matching uses fair dice in making random decisions; with statistical matching, the
dice are weighted to divide bandwidth between competing ows according to their
allocations. About 72% of the bandwidth can be reserved using our scheme; the
remaining bandwidth can be �lled in by normal parallel iterative matching. The
�rst implementation of the AN2 switch does not implement statistical matching.

In this section, we �rst motivate statistical matching by briey discussing net-
work fairness, then we describe the statistical matching algorithm.

5.1 Motivation

Ramakrishnan et al. [1990] provide a formal de�nition of fairness in the allocation
of network resources. To be fair, every user should receive an equal share of every
network resource that does not have enough capacity to satisfy all user requests.
If a user needs less than its equal share, the remainder should be split among the
other users. One result of a fair network, then, is that users typically see graceful
degradation in performance under increased load. Adding an additional user to an
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already crowded system will result in a relatively small decrease in everyone else's
resource allocation.
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Figure 8: Unfairness with Parallel Iterative Matching

Unfortunately, an arbitrary topology network built out of switches using paral-
lel iterative matching may not be fair, for two reasons. First, to be scheduled, a
queued cell needs to receive a grant from its output and to have its input accept the
grant. Both the input and output ports are sources of contention; parallel iterative
matching will tend to give higher throughput to input-output connections that have
fewer contending connections. In Figure 8, for instance, if input 4 chooses randomly
which grant to accept, the connection from input 4 to output 1 will receive only
one sixteenth of the link throughput; all other connections receive �ve times this
bandwidth.

d d d d

c c c c

b b b b a a a a

c d c d b c b d a b a c a b a d

Figure 9: Unfairness with Arbitrary Topology Networks

Second, even if switches allocate output bandwidth equally among all requesting
input ports, arbitrary topology networks using these switches may not share band-
width fairly among users or ows [Demers et al. 89].2 Depending on the workload
and the topology of the network, each switch input may have a di�erent number
of ows. A ow reaching a bottleneck link at the end of a long chain of switches
may receive an arbitrarily small portion of the link throughput, while another ow
merging closer to the bottleneck receives a much larger portion. Unfortunately, this
pattern is quite likely when one host is a highly-used server. Figure 9 illustrates

2A \network user" may, of course, be sending more than one ow of cells through a switch, for
example, to di�erent hosts. For simplicity, though, the remainder of our discussion will assume

that our target is fairness among ows as an approximation to fairness among users.
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what happens when four ows share a bottleneck link. Each letter represents a cell;
switches are assumed to select input ports round robin. In a fair allocation, each
ow would receive the same throughput on the rightmost link, but ows `c' and `d'
receive much less throughput than does ow `a'.

A number of approaches to fairness in arbitary topology networks have been
proposed. One class of techniques involves using some measure of network load to
determine a fair allocation of bandwidth among competing ows. Once such an
allocation has been determined, the problem remains of dividing network resources
according to the allocation. For example, Zhang [1991] suggests a virtual clock

algorithm. Host network software assigns each ow a share of the network bandwidth
and noti�es each switch along the ow's path of the rate to be delivered to the ow.
When a cell arrives at a switch, it is assigned a timestamp based on when it would
be scheduled if the network were operating fairly; the switch gives priority to cells
with earlier timestamps.

The virtual clock algorithm requires that each output link can select arbitrarily
among any of the cells queued for it. This is the case in a switch with perfect output
queueing. In our input-bu�ered switch, however, only one cell from each input can
be forwarded at a time. Section 4 gave one way of supporting bandwidth allocation
in an input-bu�ered switch. Statistical matching is another approach; one which is
more suited to the rapid changes in allocation needed to provide fairness.

5.2 Algorithm

Statistical matching, like using a pre-computed frame schedule, delivers to each
ow a speci�ed portion of the link throughput. With statistical matching, up to
(1� 1

e
)(1 + 1

e2
), or 72%, of each link's throughput can be reserved; the throughput

allocation can be in any pattern, provided the sum of the throughputs at any input
or output is less than 72%. Any slot not used by statistical matching can be �lled
with other tra�c by parallel iterative matching. However, adjusting throughput
rates is more e�cient with statistical matching than with a pre-computed schedule,
because only the input and output ports used by a ow need be informed of a change
in its rate.

Statistical matching is based on parallel iterative matching, but it makes more
systematic use of randomness in making and accepting grants. The pairing of inputs
to outputs is chosen independently for each time slot, but on average, each ow is
scheduled according to its speci�ed throughput rate. The algorithm mirrors parallel
iterative matching except that there is no request phase.

We divide the allocatable bandwidth per link into X discrete units; Xi;j denotes
the number of units allocated to tra�c from input i to output j. The key is that we
arrange the random weighting factors at the inputs and outputs so that each input
receives up to X virtual grants, each made independently with probability 1

X
. Xi;j

of the potential virtual grants to input i are associated with output j. If input i
then chooses randomly among the virtual grants it receives, it will connect to each
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output with probability proportional to its reservation.
We outline the steps of the algorithm here, using the simplifying assumption that

switch bandwidth is completely allocated. Appendix C presents a precise de�nition
of the algorithm without this assumption, and shows that it delivers up to 72% of
the link throughput.

1. Each output randomly chooses one input to grant; output j chooses input i
with probability

Xi;j

X
proportional to the bandwidth reservation.

2. If an input receives any grants, it chooses at most one grant to accept (it may
accept none) in a two-step process:

(a) The input reinterprets the grant as zero or more virtual grants, so that the
resulting probability that input i receives k virtual grants from output
j is just the binomial distribution { the likelihood that exactly k of X
independent events occur, given that each occurs with probability 1

X
.

(b) If an input receives any virtual grants, it chooses one randomly to accept;
the output corresponding to the accepted virtual grant is then matched
to the input.

Since each virtual grant is made with probability 1

X
, the likelihood that an

input receives no virtual grants (and thus is not matched) by the above algorithm is
(X�1

X
)X . As X grows large, this approaches 1

e
from below. Since each virtual grant

is equally likely to be accepted, the probability of a connection between an input i
and an output j is

Xi;j

X
(1� 1

e
), or about 63% of

Xi;j

X
.

Better throughput can be achieved by running a second iteration of statistical
matching. The grant/accept steps are carried out independently of the results of the
�rst iteration, but a match made by the second iteration is added only if both the
input and output were left unmatched by the �rst iteration. Conicting matches are
discarded. We show in Appendix C that a match is added by the second iteration
with probability (for large X) 1

e2
(1 � 1

e
)Xi;j

X
, yielding the ability to reserve a total

72% of the link bandwidth. Additional iterations yield insigni�cant throughput
improvements.

Statistical matching requires more hardware to implement than does parallel
iterative matching, although the cost is not prohibitive. Steps 1 and 2a can both be
implemented as table lookups. The table is initialized with the number of entries for
each outcome proportional to its probability; a random index into the table selects
the outcome. Step 2b is a generalization of the random choice among requests
needed by parallel iterative matching; similar implementation techniques apply.

5.3 Discussion

We motivated statistical matching by suggesting that it could be used to schedule
the switch fairly among competing ows. Statistical matching meets many of the
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goals that motivated Zhang's virtual clock approach. With either approach, the
switch can be set to assign equal throughput to every competing ow through a
bottleneck link. Statistical matching can provide roughly equal throughput without
the need for tagging individual cells with timestamps and prioritizing ows based on
those timestamps, although some unfairness may be added when parallel iterative
matching �lls in gaps left by statistical matching. With statistical matching, as
with the virtual clock approach, a ow can temporarily send cells faster or slower
than its speci�ed rate, provided the throughput is not exceeded over the long term.
Queues in the network increase if the ow sends at a faster rate; queues empty as
the ow sends at a slower rate. The virtual clock approach also provides a way of
monitoring whether a ow is exceeding its speci�ed rate over the long term; there
is no analogue with statistical matching.

6 Summary

We have described the design of the AN2 switch, which can support high perfor-
mance distributed computing. Key to the switch's operation is a technique called
parallel iterative matching, a fast algorithm for choosing a conict-free set of cells
to forward across the switch during each time slot. Our prototype switch combines
this with a mechanism to support real-time tra�c even in the presence of clock
drift. The switch will be used as the basic component of an arbitrary topology
point-to-point local area network, providing

1. high bandwidth,

2. low latency for datagram tra�c, so long as the network is not overloaded, and

3. bandwidth and latency guarantees for real-time tra�c.

In addition, the switch's scheduling algorithm can be extended to allocate resources
fairly when some part of the network is overloaded.

We believe that the availability of high performance networks with these charac-
teristics will enable a new class of distributed applications. Networks are no longer
slow, serial, highly error-prone bottlenecks where message tra�c must be carefully
minimized in order to get good performance. This enables distributed systems to
be more closely coupled than has been possible in the past.
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A Parallel Iterative Matching: Number of Iterations

In this appendix, we show that the parallel iterative matching algorithm described
in Section 3 reaches a maximal match in an average of O(logN) iterations for an
N by N switch. This bound is independent of the pattern of requests. The key to
the proof is to observe that if an unmatched output receives a request, one iteration
of parallel iterative matching will usually either (i) match the output to one of its
requesting inputs or (ii) match most of the inputs requesting that output to other
outputs. The result is that each iteration reduces the number of unresolved requests
by an average of at least 3=4. A request is unresolved if both its input and its output
port remain unmatched.

Consider the requests to each output separately. Suppose an output Q receives
requests from n inputs during some iteration. Of these n inputs, some fraction will
request and receive a grant from some output besides Q, and the rest will receive no
grants from other outputs. Let k be the number of inputs requesting Q that receive
no other grants.

Q randomly chooses one of its n requests to grant. Since Q chooses among the
requesting inputs with equal probability, and since Q's choice is independent of the
choices made by other outputs, the probability that Q will grant to an input that
has a no competing grant from another output is k=n. In this case, Q's grant will
be accepted, and as a result, all of the n requests to Q will be resolved { one will
be accepted, while the rest will never be accepted.

On the other hand, with probability 1�(k=n), Q will grant to an input that also
receives a grant from some other output. If the input picks Q's grant to accept, all
of the requests to Q will be resolved. But even if Q's grant is not accepted, all of the
n � k inputs that received a grant will be matched (to some other output) during
this iteration; none of their n� k requests to Q will remain on the next iteration.

Thus, with probability k=n all requests to Q are resolved, and with probability
1�(k=n) at most k remain unresolved. As a result, the average number of unresolved
requests to Q is at most (1 � (k=n)) � k, which is no greater than n=4 for any k.
Since we start with at most N2 requests, this implies that the expected number of
unresolved requests after i iterations is at most N2=4i.

It remains to be shown that the algorithm reaches a maximal match in an average
of O(logN) steps. Let C be the step on which the last request is resolved. Then
the expected value of C is:

E[C] =
1X
i=1

i PrfC = ig

Re-writing the sum yields:

E[C] =
1X
i=0

PrfC > ig (1)
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The likelihood that C > i is just the likelihood that at least one match remains
unresolved at the end of i iterations:

PrfC > ig =
1X
j=1

Prfj requests remain after i iterationsg

Replacing the sum by an obviously larger one:

PrfC > ig �
1X
j=1

jPrfj requests remain after i iterationsg �
N2

4i

Here the �nal inequality comes from the previously derived bound on the average
number of unresolved matches after i iterations.

Since a probability can never be greater than 1,

PrfC > ig � min(1; N2=4i)

. Substituting into Formula 1 yields:

E[C] �
1X
i=0

min(1;
N2

4i
)

Since N2 = 4i when log2N = i, the sum has no more than log2N terms with the
value 1, and the remainder of the sum is a power series bounded by 4=3. Thus:

E[C] � log2N +
4

3

B Latency and Bu�er Space Bounds for CBR Tra�c

In this appendix, we show that we can provide end-to-end guaranteed performance
for constant bit rate ows, even if the clocks in the network switches and controllers
are known only to run at approximately the same rate, within some tolerance. As
discussed in Section 4, a frame schedule is pre-computed at each switch, assigning
a ow's cells to a �xed number of frame slots. Because the frame rate depends on
the clock rate in each switch, the bandwidth delivered to a ow varies slightly (and
unpredictably) at each switch in the ow's path. We address this by adding extra
empty slots to each controller (but not switch) frame, to constrain the controller
frame rate to be slower than the frame rate of the slowest possible downstream
switch. Using this constraint and some natural ground rules for controller and
switch operation, we can demonstrate bounds on both a ow's end-to-end latency
and its bu�er space requirements. A ow's end-to-end throughput is bounded by its
rate on the slowest possible controller. Because each ow has its own reserved bu�er
space and bandwidth, the behavior of each ow is independent of the behavior of
other ows; our discussion focuses on a single ow at a time.
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Table 3 summarizes a number of terms used in our proof. The minimum and
maximum frame times are in terms of real \wall-clock" time; that is, the nominal
time for one slot � the number of slots per frame � the maximum or minimum
possible clock rate. Note that Fc�min > Fs�max: the frame of the fastest controller
is constrained to be longer than the frame of the slowest switch. The link latency l
is the maximum wall clock time from when a cell departs one switch to when it is
�rst eligible to be forwarded at the next switch, including any processing overhead
at the switch. Finally, the adjusted latency, L(ci; sn), is the wall clock time from the
end of the frame in which cell ci departs the controller s0 to the end of the frame
in which the cell departs switch sn. We use the adjusted latency instead of the true
latency because it is independent of which slots within a frame are allocated to a
particular ow.

We temporarily make the simplifying assumption that each ow reserves only a
single cell per frame; we remove this assumption later in this section. Each controller
and switch obeys the reservation { each forwards at most one cell per frame for each
ow. Further, switches forward cells in FIFO order, with no needless delays { if a cell
has arrived at a switch and is eligible for forwarding at the beginning of a frame,
then either that cell or an earlier (queued) cell from the same ow is forwarded
during the frame.

Symbol De�nition

Fs�min , Fs�max minimum, maximum time for a switch frame
Fc�min , Fc�max minimum, maximum time for a controller frame

l maximum link latency and switch overhead
p a ow's path length (number of hops)
ci the i'th cell transmitted in a ow
sn n'th switch in a ow's path, 0 <= n <= p

T (ci; sn) time at the end of the frame in which cell ci departs switch sn
L(ci; sn) adjusted latency, T (ci; sn)� T (ci; s0)

Table 3: Symbol De�nitions

B.1 Bounded Latency

The key observation to bounding the end-to-end latency is that if two cells, ci and
ci+1, depart a switch sn in consecutive frames, then the adjusted latency of ci+1
is less than that of ci. This is because ci and ci+1 must depart the controller in
separate frames, and frames take longer at the controller s0 than at any switch sn.

T (ci+1; sn)� T (ci; sn) <= Fs�max < Fc�min <= T (ci+1; s0)� T (ci; s0)

T (ci+1; sn)� T (ci+1; s0) < T (ci; sn)� T (ci; s0)
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L(ci+1; sn) < L(ci; sn) (2)

Note that the queueing delay that cell ci+1 experiences at switch sn may well be
longer than that of the previous cell ci, but ci+1's end-to-end adjusted latency will
be shorter than ci's.

We de�ne an active frame to be one in which a cell is forwarded to the next switch.
Because switch frames occur more frequently than controller frames, at each switch
there will be sequences of active frames interspersed with inactive frames (when
there is no cell available to be forwarded). The consequence of Formula 2 is that
the worst case adjusted latency at a switch sn is experienced by some cell ci that is
sent in the �rst in a sequence of active frames { that is, the cell must be sent in a
frame immediately after a frame when the switch had nothing to forward. Because
we assume the switch does not needlessly delay cells, ci must have arrived at switch
sn after the previous (inactive) frame started, in other words, no more than two
frames before ci departed switch sn. The cell must have departed the upstream
switch sn�1 no earlier than T (ci; sn)� (2Fs�max + l). Since ci's adjusted latency in
departing from the upstream switch sn�1 is likewise bounded by some �rst cell in a
sequence of active frames, by induction we have:

L(ci; sp) <= 2p(Fs�max + l) (3)

B.2 Bounded Bu�er Space Requirements

We next derive bounds for the bu�er space required at each switch. Clearly, a bound
must exist because end-to-end latency is bounded; in this sub-section, we develop a
precise formula for the bound.

First, observe that there is a bound on the maximum number of consecutive
active frames. Formula 2 implies that with each successive active frame, adjusted
latency decreases by at least Fc�min � Fs�max. But Formula 3 implies that there is
also a maximum adjusted latency. The minimum adjusted latency is �Fc�max; this
is negative because of the de�nition of adjusted latency { a cell can depart the �rst
switch s1 in a frame that �nishes before the controller s0's frame does. Thus, the
maximum sequence of active frames is:

1 +

�
(2Fs�max + l)p+ Fc�max

Fc�min � Fs�max

�

Since the frames immediately before and after this sequence are inactive, there
could not be a cell queued at the beginning of the frame before the �rst active
frame, nor at the end of the last active frame in the sequence3. This means that the

3We consider only the bu�er space needed by queued cells that are eligible for forwarding;

additional (implementation-dependent) bu�er space may be needed by cells that are in the process

of arriving at the switch.
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maximum length of time that a switch can continuously have a cell queued is:

Fs�max

�
2 +

�
(2Fs�max + l)p+ Fc�max

Fc�min � Fs�max

��
(4)

During any period of time t, the maximum number of cells that could arrive at
a switch is 2 + b t

Fs�min
c. Two cells can depart the upstream switch, one at the end

of a frame and the other at the beginning of the next frame, both arriving at the
beginning of the time period. From then on, the arrival rate is limited by the fastest
possible switch frame rate. Analagously, the minimum number of cells that must
depart the switch during an interval t in which there are queued cells is b t

Fs�max
c�1.

The bu�er space needed at a switch can be bounded by the di�erence in the
maximum arrival rate and the minimum departure rate, over the maximum interval
for which queued cells can be present. Substituting that interval (Formula 4) for
t in the arrival and departure rates derived above, the bu�er space required is no
more than:

4 +
Fs�max � Fs�min

Fs�min

�
2 +

(2Fs�max + l)p+ Fc�max

Fc�min � Fs�max

�
(5)

The above results were derived assuming that each ow reserved only a single
cell per frame. For a ow of k cells per frame, we must change the rules on switch
and controller operation in the obvious way { no switch or controller forwards more
than k cells of the ow in the same frame, cells are forwarded in FIFO order, and
if a cell arrives at a switch before the beginning of a frame, it is either forwarded in
the frame, or k previous cells of the ow are forwarded. If we consider (for purposes
of analysis) a ow of k cells per frame to be partitioned into k classes, with cell ci
assigned to class (i mod k), the cells of a single class will be treated (under these
rules of operation) as if they belonged to a ow with one cell per frame.

Thus the bu�er space required for a CBR ow is a constant factor times the
number of reserved cells per frame, and bu�er space required for all ows is (4 + c)
times the frame size, where c is governed by Formula 5. The value of c is determined
by network parameters: clock skew, link and switch delay, network diameter, and the
di�erence between controller and switch frame size. For many common local area
network con�gurations, c is small; it can be made arbitrarily small by increasing
controller frame size, at some cost in reduced throughput.

C Statistical Matching Throughput

In this appendix, we describe the statistical matching algorithm more completely
and show that it allows up to (1 � 1

e
)(1 + 1

e2
) � 0:72 of the switch throughput to

be allocated in any arbitrary pattern. Recall from Section 5.2 that we divide the
allocatable bandwidth per link into X discrete units; Xi;j denotes the number of
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units allocated to tra�c from input i to output j. We assume temporarily that the
switch bandwidth is completely allocated; we will remove this assumption shortly.

The algorithm is as follows:

1. Each output j randomly chooses an input i to grant to, with probability
proportional to its reservation:

Prfj grants to ig =
Xi;j

X

2. Each input chooses at most one grant to accept (it may accept none) in a
two-step process:

(a) Each input i reinterprets each grant it receives as a random number mi;j

of virtual grants, chosen between 0 and Xi;j according to the probability
distribution:

Prfmi;j = m; 0 < m � Xi;jg =

 
Xi;j

m

!
�

�
1

X

�m
�

�
X � 1

X

�Xi;j�m

�
X

Xi;j

Prfmi;j = 0g = 1� Prf1 � mi;j � Xi;jg

When j does not grant to i, mi;j is set to zero.

(b) If an input receives any virtual grants, the input chooses one randomly
to accept. In other words, the input chooses among granting outputs
with probability proportional to the number of virtual grants from each
output:

Prfi accepts jg =
mi;jP
kmi;k

If a grant is accepted, the input randomly chooses among the ows for the
connection according to their bandwidth reservations.

The key to the algorithm is that each input i receives the same number of
virtual grants from an output j that it would receive had each of the virtual grants
been made with probability 1

X
by an independent output. To see this, note that

the probability that exactly m of Xi;j events occur, given that each occurs with
probability 1

X
, has the binomial distribution: 

Xi;j

m

!
�

�
1

X

�m
�

�
X � 1

X

�Xi;j�m

(6)

Of course, an input i can receive a virtual grant from output j only if j sends a
physical grant to i in step 1:

Prfmi;j = m;m > 0g =

Prfj grants to ig � Prfi chooses mi;j = m;m > 0jj grants to ig (7)
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Substituting in Formula 7 with the probabilities from steps 1 and 2a in the
algorithm, we see that the probability that input i chooses mi;j = m is exactly the
binomial distribution from Formula 6, for m > 0. Since the probabilities in both
cases must sum to one, it follows that the probability that input i chooses mi;j = 0
is also as speci�ed by the binomial distribution.

If an input receives any virtual grants, it randomly chooses one among them to
accept. By the argument above, the input will recieve no virtual grant from any
output with probability (X�1

X
)X . Otherwise, the input will match some output, and

because each virtual grant is made and accepted with equal likelihood, each output
is matched with probability proportional to its reservation:

Prfi matches jg =
Xi;j

X
�

 
1�

�
X � 1

X

�X!

=
Xi;j

X
� Prfi matchesg

=
Xi;j

X
� Prfj matchesg

As X becomes large, (1� (X�1
X

)X) approaches 1� 1

e
� 0:63 from above.

This result implies a rather surprising fact: the probability that a given output
matches is independent of the input to which it grants. For

Xi;j

X
� Prfj matchesg = Prfi matches jg

= Prfi matches jjj grants to ig � Prfj grants to ig

= Prfi matches jjj grants to ig �
Xi;j

X

or
Prfj matchesg = Prfj matchesjj grants to ig:

This fact is useful in analyzing the e�ect of running a second iteration of sta-
tistical matching. The second iteration is run independently of the �rst. If input i
and output j are matched on the second round, a connection between them is made
provided that neither was matched on the �rst round.

Prfi matches j in two roundsg =

Prfi matches j in round 1g+

Prfi matches j in round 2 and neither matches in round 1g

Now, matches in the two rounds are independent and equally likely, Moreover, the
events \i unmatched on the �rst round" and \j unmatched on the �rst round" are
either independent or positively correlated. Consider the probabilities of i and/or
j being matched conditional on each possible recipient of j's grant. If j grants to
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i, then it is impossible for j to be matched while i is unmatched, so \i unmatched"
and \j unmatched" cannot have negative correlation. Now suppose j grants to some
other input h 6= i, and there is no output k such thatXh;k and Xi;k are both positive.
Then the events \i unmatched" and \j unmatched" are independent, because no
other choice made in the algorithm e�ects both events. Finally, suppose j grants to
h 6= i, and there is an output k such that Xh;k and Xi;k are both positive. Then
the potential matching of h to k conicts both with the matching of i to k and that
of h to j, inducing a positive correlation between the events \i unmatched" and \j
unmatched." We have now established that

8x(Prfi and j unmatchedjj grants to xg �

Prfi unmatchedjj grants to xg � Prfj unmatchedjj grants to xg)

Using the previous result that the probability of j matching is independent of the
input to which it grants, and summing over all inputs x we have

Prfi and j unmatchedg � Prfi unmatchedg � Prfj unmatchedg

Finally, we can conclude

Prfi matches j in two rounds g

� Prfi matches j in round 1g+

Prfi matches j in round 2g � Prfi unmatched in round 1g �

Prfj unmatched in round 1g

�
Xi;j

X
�

�
1�

1

e

�
�

�
1 +

1

e2

�

The last step in the analysis is to consider what happens when the switch is
not fully reserved. On each round, an input i (or output j) with less than a full
reservation can simulate being fully reserved by assigning the unreserved bandwidth,
denoted by Xi;0 (resp., X0;j) to an imaginary output (input). If output j is less than
fully reserved, it simulates granting to its imaginary input (i.e., sends no grant to
any real input) with probability X0;j=X . Similarly, an input i that is less than
fully reserved randomly chooses a number mi;0 of virtual grants from its imaginary
output, using the probability distribution:

Prfmi;0 = m; 0 � m � Xi;0g =

 
Xi;j

m

!
�

�
1

X

�m
�

�
X � 1

X

�Xi;j�m

The input accepts such grants (by rejecting grants from real outputs) in proportion
to their number, just as for grants from real outputs. When a second round match
conicts with a �rst round match to an imaginary input or output, it is not necessary
to discard the second round match. Retaining it can only increase the throughput
derived above.
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