
Automatic Reconfiguration in Autonet

Thomas L. Rodeheffer and Michael D. Schroeder

September 18, 1991

SRC Research Report 77

This report is an expanded version of a paper that has been accepted
for presentation at the ACM Symposium on Operating Systems
Principles, October 13-16, 1991.

 Digital Equipment Corporation 1990.

This work may not be copied or reproduced in whole or in part for
any commercial purpose. Permission to copy in whole or in part
without any payment of fee is granted for nonprofit, educational, and
research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of
the Systems Research Center of Digital Equipment Corporation in
Palo Alto, California; an acknowledgement of the authors and
individual contributors to the work; and all applicable portions of the
copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

ABSTRACT
Autonet is a switch-based local area network using 100 Mbit/s

full-duplex point-to-point links. Crossbar switches are intercon-
nected to other switches and to host controllers in an arbitrary pat-
tern. Switch hardware uses the destination address in each packet to
determine the proper outgoing link for the next step in the path from
source to destination. Autonet automatically recalculates these for-
warding paths in response to failures and additions of network com-
ponents. This automatic reconfiguration allows the network to con-
tinue normal operation without need of human intervention. Recon-
figuration occurs quickly enough that higher-level protocols are not
disrupted. This paper describes the fault monitoring and topology
acquisition mechanisms that are central to automatic reconfiguration
in Autonet.

1

1. Introduction
Autonet is a switch-based local area network. In an Autonet,

12-by-12 crossbar switches are interconnected to other switches and
to host controllers with 100 Mbit/s full-duplex links in an arbitrary
pattern. In normal operation each packet follows a precomputed
link-to-link path from source to destination. At each switch, hard-
ware uses the destination address in each packet as the lookup index
in a forwarding table to determine the proper outgoing link for the
next step in the path. An earlier paper [15] provides an overview of
the Autonet design. In the present paper we concentrate on
automatic reconfiguration in Autonet.

Automatic operation and high availability are important objec-
tives for Autonet. Our goal was to make Autonet look to host com-
munications software like a fast, high-capacity Ethernet segment that
never failed permanently. To provide automatic operation and high
availability an Autonet automatically reconfigures itself to use the
available topology of switches and links. A processor in each switch
monitors the directly connected links and neighboring switches.
Whenever this monitor notices a change in what is working (either
additions or removals), it triggers a distributed algorithm on all
switch processors that determines and distributes the new network
topology to all switches. Once each switch knows the new topology,
it recalculates routing information and reloads its forwarding table
to permit operation with the new topology. This automatic recon-
figuration is fast enough that high-level communication protocols are
not permanently disrupted, even though client packets may be lost
while reconfiguration is in process.

When an Autonet is installed with a redundant topology, au-
tomatic reconfiguration allows it to continue to provide full
interconnection of all hosts as components fail or are removed from
service. If there are so many failures that connectivity is lost, the
Autonet will partition, but service will continue within each
connected portion. When components are repaired, or the topology
is extended with new switches or links, automatic reconfiguration
incorporates the added components in the operational network.

Autonet has been the service LAN for our research center
since February of 1990, with 31 switches providing service to over

2

100 hosts. Operational experience has allowed (forced) us to
improve the sensitivity, stability, and performance of the automatic
reconfiguration mechanisms. So this paper, in addition to giving a
more detailed description than we have previously published on
reconfiguration in Autonet, also highlights the important changes
that were dictated by our experience.

The paper is organized as follows. Section 2 compares
Autonet with other networks with automatic reconfiguration.
Section 3 gives the overall structure of reconfiguration in Autonet.
Section 4 discusses monitoring and Section 5 topology acquisition.
Section 6 presents conclusions.

2. Reconfiguration in Other Networks
The standard example of automatic reconfiguration in a com-

puter network is the ARPANET [10, 11]. The principle differences
between ARPANET and Autonet relate to the fact that ARPANET is
designed as a wide-area, moderate-speed network while Autonet is
designed as a local-area, high-speed network.

The ARPANET performs store-and-forward routing based on
topology descriptions maintained at each switch (IMP), and tolerates
temporary forwarding loops by discarding packets if necessary.
Each switch regularly broadcasts updates of the status of its local
links.

The Autonet switch hardware processes packets first-come-
first-served from each link and uses cut-through to decrease the ex-
pected delay through the switch. This design was chosen because it
provided the best light-load performance for the simplest hardware.
However as a consequence, transient forwarding loops might result
in deadlock and thus cannot be tolerated. We do not have efficient
means of detecting a deadlock or of clearing one. We took the sim-
plest approach of rapidly recalculating the entire topology whenever
it changes and expunging all old forwarding tables before installing
any new ones. This global-recalculation design is simpler than in-
cremental approaches and represents an appropriate engineering
tradeoff for a moderate-sized network of several dozen switches.

 Another network that provides automatic topology mainte-
nance is PARIS [2]. Like ARPANET, PARIS maintains a topology
description at each switch via regular broadcasts of local link status

3

updates. PARIS is designed more as a fast connection network than a
packet switching network. Packets travel on explicit source routes
which are determined at connection setup by examining a description
of the current topology. Topology changes have no effect on exist-
ing connections, except that a link failure kills all of the connections
using that link. Link updates are distributed reliably and with very
high bandwidth by hardware flooding over a spanning tree managed
by the software. The software tree management is very careful not
to introduce inconsistencies into the tree. In contrast to PARIS, Au-
tonet routes each new packet independently and thus automatically
maintains ongoing conversations by routing around link failures and
exploiting link recoveries.

Bridged Ethernet [13] is another network that provides auto-
matic reconfiguration. The principle difference from Autonet is that
a bridged Ethernet supports multiple-access links with no way to dis-
tinguish forwarded packets from originals. A bridged Ethernet
carefully maintains a loop-free forwarding tree so that each bridge
can deduce what to do with each packet. Although the time constants
required to maintain consistency in the forwarding tree are on the
order of several seconds, a bridged Ethernet does eventually adapt to
any topology change. In contrast, Autonet has an implicit addressing
structure induced by its point-to-point links. An arriving packet is al-
ways known to be intended for the recipient, at least as an inter-
mediate hop. We also designed a packet encapsulation using net-
work-assigned destination addresses, in order to make forwarding
easier (much like Cypress [4]). As a consequence, Autonet uses more
forwarding paths and reconfigures much faster than a bridged Eth-
ernet.

3. The Structure of the Automatic Reconfiguration
Mechanism

Automatic reconfiguration in Autonet involves three main
tasks: monitoring, topology acquisition, and routing. Monitoring in-
volves watching the neighborhood of each switch to determine when
the network topology changes. Topology acquisition involves
collecting and distributing the description of the network topology.
Routing involves recalculating the forwarding table at each switch.

4

Monitoring determines which links are useful for carrying
client packets from one switch to another. From the point of view of
reconfiguration, a link is useful if and only if it has an acceptable er-
ror rate in both directions, the nodes at each end are distinct, opera-
tional switches, and each switch knows the identity of the other. (A
switch is identified by a 48-bit unique identifier stored in a ROM.)
Topology acquisition and route recalculation is triggered whenever
the set of useful links changes. Of course, host-to-switch links also
carry client packets, but changes in the state of such links never trig-
ger topology acquisition and route recalculations. At most, changes
in the host links to a particular switch cause locally calculated
changes in that switch’s forwarding table. So, from the point of
view of network reconfiguration, we largely ignore such links.

Monitoring guarantees that topology acquisition (and client)
packets will not travel over a link unless both switches agree the link
is useful. Because there are two switches involved there will always
be transient disagreement whenever the link is changing state, but the
monitoring task makes the period of disagreement as brief as pos-
sible. A monitor runs independently for each link in each switch and
is always active. It will trigger topology acquisition whenever its
link changes from useful to not useful or vice versa. The monitors
guarantee that, eventually, links remain stable in one state or the
other long enough that topology acquisition and routing can finish.

Topology acquisition is responsible for discovering the
network topology and delivering a description of it to every switch
that is currently part of the network. This task runs in an artificial
environment in which changes in link state do not occur. When two
switches disagree about the state of a link, the task does not complete.
The artificial environment is implemented on top of the monitoring
layer by means of an epoch mechanism: any change or inconsistency
triggers a new epoch corresponding to a new stable environment.
Topology acquisition is a distributed computation that spreads to all
switches from the one where a link monitor triggered it.

Routing, the final task of reconfiguration, uses the topology
description to compute the forwarding tables for each switch.
Because each switch knows the entire topology, each can calculate its
own forwarding table. In this paper we are not concerned with the
algorithm for constructing the forwarding tables. During topology

5

acquisition and routing, the switch discards client packets. Once the
forwarding table has been recalculated, a switch is able to forward
any client packets it receives. The reason for discarding client
packets during reconfiguration is to prevent deadlock.

The remainder of the paper concentrates on monitoring and
topology acquisition. In considering these topics in more detail we
can model the Autonet as a collection of nodes (switches) with num-
bered ports. Nodes may be interconnected in an arbitrary pattern by
full-duplex, port-to-port links. Each node is a computer that can
send and receive packets on each attached link that works. Each
node has a predetermined unique identifier. From now on we will
largely ignore links to hosts, the hosts themselves, forwarding of
host packets, and even the forwarding tables in the switches.

The neighborhood of a node N is the set of all useful switch-
to-switch links that have N as one endpoint. The neighborhood of a
set of nodes is the union of the neighborhoods of the members. Au-
tonet reconfiguration can be characterized in terms of these
neighborhoods. The monitoring task on node N is responsible for
knowing the current neighborhood of N, and for initiating a topol-
ogy task whenever the neighborhood changes. Topology acquisition
works by building a spanning tree, merging neighborhoods of larger
and larger subtrees until the root has the neighborhood of the entire
graph, and then flooding the topology down the spanning tree to all
nodes.

We are now ready to describe monitoring and topology
acquisition in more detail. In this discussion, “packet” and “signal”
refer to information passing between separate nodes over a con-
necting link. Packets are regular data packets whereas signals are
transported in link protocols below the level of packet traffic. “Mes-
sage”refers to information passing between software components in
a single node.

4. Monitoring
The monitoring task imposes a model that allows only two

types of changes in a node’s neighborhood: link failure, which re-
moves a connection from the network topology, and link recovery,
which adds a connection. All changes in network interconnection
result in some combination of these two types of neighborhood

6

change. For example, if a technician powers off a switch, all of the
adjacent nodes see link failures on their links to the dead node.

The monitoring task responds rapidly to link failures and less
rapidly to link recoveries. Link failure, especially abrupt failure,
must be detected and reported quickly, because failure can disrupt
ongoing client communication. It is not so urgent to rush back into
service a link that recently gave problems. Although it is true that
link recovery might heal a network partition or increase network ca-
pacity, repairing or adding a link usually takes quite a bit of time, so
clients usually will not notice a small additional delay. Many net-
works, for example, the ARPANET, have a delay before placing
links back in service [7]. By delaying longer as a link proves its
unreliability, we achieve network stability despite intermittent
failures.

A useful link is one that allows bidirectional packet transfer
with acceptably low error rates between two distinct nodes. The
only way this condition can be verified, of course, is for the two
nodes to periodically exchange packets, and this is what the
monitoring task does. This strategy has the advantage that it is an
end-to-end check [14]. It has the disadvantage that failure detection
may not be very prompt, because it depends on a timeout whose
minimum value is bounded by processing overhead. In order to give
prompt detection of expected modes of link failure, the monitoring
task also treats certain kinds of hardware errors as indicating failure.
For example, if more than three link coding violations are detected
in a ten-millisecond interval, the monitoring task immediately as-
sumes that the link has failed.

The monitoring task is organized as two layers: a transmission
layer and a connectivity layer. The transmission layer deals with
proper transmission and reception of data on the link as seen by the
hardware. It makes sure that problems on this link do not interfere
with other links and it responds promptly to expected modes of link
failure. The connectivity layer, which rests on top of the trans-
mission layer, deals with exchanging packets with the remote node
and agreeing on the state of the link. Both of these layers make use
of a method for defending against intermittent operation called the
skeptic. We describe the skeptic and then the two layers of the moni-
toring task in detail.

7

4.1. The Skeptic
The skeptic limits the failure rate of a link by delaying its re-

covery if it has a bad history. Without the skeptic, an intermittent
link could cause an unlimited amount of disruption: we are espe-
cially concerned with limiting the frequency of reconfigurations.
There are four requirements in the design of the skeptic: 1) A link
with a good history must be allowed to fail and recover several times
without significant penalty. 2) In the worst case, a link’s average
long-term failure rate must not be allowed to exceed some low rate.
3) Common behaviors shown by bad links should result in exceed-
ingly low average long-term failure rates. 4) A link that stops being
bad must eventually be forgiven its bad history.

Requirement 3 distinguishes the skeptic from typical fault iso-
lation and forgiveness methods such as the autorestart mechanism in
Hydra [17]. The typical method to meet requirements 1, 2, and 4
sets a quota of say, ten failures per hour, and refuses to recover any
link that is over quota. We have observed a common pattern of in-
termittent behavior in which a link fails again soon after being
recovered, in spite of its passing all diagnostics performed in the in-
terim. With the quota method, this pattern would produce a long-
term average failure rate of ten failures per hour. This kind of
error pattern may not be uncommon, for example Lin and Siewiorek
observed a clustering pattern of transient errors in the VICE file
system [9].

The skeptic can be used with any object whose status may
change intermittently: it provides a “filtered object” whose rate of
status change is limited. As seen by the skeptic, an object is an ab-
straction that emits a series of messages, each of which says either
“working” or “broken”. The skeptic in turn sends out a filtered ver-
sion of these messages to the next higher level of abstraction. This
operation is shown in Figure 1.

4.1.1. Details of the skeptic
The skeptic is a state machine with auxiliary variables, timers,

and policy parameters, as is shown in Figure 2. Dead state means
that the subordinate object is broken, wait state means that the object
is working but the skeptic is delaying for a while before passing on

8

that information, and good state means that the object is working and
the skeptic has concurred.

“broken”

“working”

skeptic
“broken”

“working”
subordinate

object

filtered object

Figure 1: The concept of the skeptic.

dead good

wait

recv “broken”

recv “broken”

recv “working”

wait timer expires

send “broken”

send “working”

–1 level
+1 level

skepticism
level

Figure 2: The internals of the skeptic.

Three of the state transitions are caused by messages from the
subordinate object. When the skeptic is in wait state or good state
and it receives a “broken” message, it moves to dead state. When the
skeptic is in dead state and it receives a “working” message, it moves
to wait state. Otherwise the messages have no effect. The only other
transition in the state machine happens when the wait timer expires;
in this case the skeptic moves from wait state to good state.

9

When the skeptic moves from wait to good, it sends a
“working” message to the next higher level of abstraction. When the
skeptic moves from good to dead, it sends a “broken” message.
Hence, in the filtered view provided by the skeptic, the object
appears to be working only when the skeptic is in good. If the
subordinate object fails intermittently, the skeptic alternates between
dead and wait without ever reaching good.

When the skeptic enters wait state, it sets and starts the wait
timer. The duration set on this timer is calculated by a formula de-
scribed below. If the skeptic returns to dead before the timer ex-
pires, the timer is stopped. Otherwise, when the timer expires, the
skeptic moves to good. This is the only way the skeptic can get to
good state.

The skeptic responds to intermittent failures by maintaining a
level of skepticism about the subordinate object. The skepticism
level is kept in an auxiliary variable. Every time the skeptic leaves
good state it increments the level. The skepticism level is used in
computing wtime, the duration set on the wait timer, according to
the formula

wtime = wbase + wmult * 2level

where wbase and wmult are policy parameters and level is the
skepticism level. A policy parameter maxlevel establishes an upper
limit on skepticism.

The skeptic forgives old failures by decrementing the skepti-
cism level occasionally. When the skeptic enters good state, it sets
and starts the good timer. When the good timer expires, the skeptic
decrements the skepticism level and sets and starts the good timer
again. The good timer is always running as long as the skeptic is in
good state. When the skeptic leaves good state, the good timer is
stopped. The formula used to compute gtime, the duration set on
the good timer, is identical to the formula used for the wait timer,
except that it uses different policy parameters, gbase and gmult.
The skepticism level never decrements below zero.

 Skeptics are used in both the transmission layer and the con-
nectivity layer. Each of these layers has mechanisms to decide when
a significant error has occurred. A significant error is called a fault.
Faults feed into the skeptic though a mechanism called the fault

10

monitor, shown in Figure 3. The fault monitor relays the state of
the subordinate object to the skeptic. Whenever the fault monitor re-
ceives a “fault” message and the subordinate object is working, the
fault monitor presents an interruption to the skeptic by sending it
“broken” immediately followed by “working”. This causes the
skeptic to notice the fault and enter wait state. If the subordinate
object was already broken, the fault monitor takes no action on a
“fault” message.

fault
monitor“broken”

“working”

“broken”

“working”

skeptic

“fault”

Figure 3: The skeptic with the fault monitor.

In the actual implementation, the fault monitor and the skeptic
are combined together as one unit. Procedure calls are used for the
messages.

There is one more feature in the skeptic, which is that the du-
ration set on the wait timer actually varies as a random fraction be-
tween one and two times the value calculated for wtime. This ran-
dom variation causes different skeptics to disperse their wait-timer
expirations. If the network is running with several intermittent
links, this randomness reduces the possibility of getting caught in
some systematic pattern.

4.1.2. How the skeptic works in practice
Figure 4 shows an example of how the skeptic wait timer be-

haves, using the policy parameters of the transmission layer. Ob-
serve that at low skepticism levels, the wait time is dominated by
wbase, which is constant, whereas at high levels, the wait time is
dominated by wmult * 2level, which doubles with each level.

11

The crossover between low and high levels occurs when the two
terms are equal:

crossover level = log2(wbase / wmult)

The transmission layer skeptic crosses over at about level 12. Policy
parameters for our skeptics are given in Table 1.

skepticism level
0 105 15 20

1000

100

10

1w
ai

t t
im

e
 (

se
co

nd
s)

transmission layer skeptic wait time
wbase = 5 sec
wmult = 0.001 sec
maxlevel = 20

Figure 4: Skepticism level versus wait time.

transmission
skeptic

connectivity
skeptic

wbase
wmult
gbase
gmult
maxlevel

5 sec
0.001 sec
600 sec
0.01 sec

20

1 sec
0.1 sec
600 sec
0.1 sec

20

Table 1: Skeptic policy parameters.

12

A few examples of how the transmission layer skeptic re-
sponds to common problems will illustrate its utility.

One common mode of link failure we have observed, espe-
cially in newly installed hardware, is that the link transceiver
hardware continuously detects coding violations. In this case, the
transmission layer will declare a fault about once every 170 millisec-
onds. Because this is much less than the five-second minimum wait
time, the skeptic never lets the link recover. To higher levels of ab-
straction, the link appears permanently broken.

Another common failure mode occurs when a technician
screws in a link cable. As the metal components scrape past each
other, the link transceiver hardware detects bursts of coding viola-
tions that the transmission layer quite reliably evaluates as faults.
Unfortunately, the cable connectors we use are quite difficult to
thread correctly, and often several tries and some wiggling are
needed before the cable allows itself to be properly screwed in.
Each additional wiggle tends to generate more faults. The five-
second minimum wait time in the skeptic causes all of these faults to
be reflected as only one failure.

A third common failure mode occurs on marginal links. In
our experience, the error rate on a marginal link is very data depen-
dent: it is much higher when the link is carrying packets than when
it is idle. This results in such a link failing soon after it recovers,
but then having no further faults until it recovers again. The skepti-
cism level on such a link increases over time. Eventually the
skepticism level in the transmission layer reaches its maximum value
of 20, at which point the wait time is about 17 minutes. If the link is
part of the switch-to-switch topology, so that failures and recoveries
cause network-wide reconfigurations, the connectivity layer skeptic
gets involved, and its policy parameters produce a maximum wait
time of about 28 hours.

4.1.3. Fulfillment of our design requirements
Now let us consider how the skeptic fulfills our design re-

quirements.
1) A link with a good history must be allowed to fail and

recover several times without significant penalty. We interpret
“good history”on a link to mean that its skepticism level is zero.

13

Rapid cycles of failure and recovery in the subordinate object
increase the skepticism level by one each cycle, but at low skepticism
levels, the skeptic’s delay in wait state is dominated by the constant
wbase, which is chosen to have a small value of only a few seconds.
Consequently, during the first several cycles of failure and recovery,
the filtered object recovers soon after the subordinate object recov-
ers.

2) In the worst case, a link’s average long-term failure rate
must not be allowed to exceed some low rate. The worst case long-
term average failure rate of the filtered object occurs when the skep-
tic spends the minimum time in good state required to forgive the
lowest level of skepticism. This minimum time is slightly larger
than gbase and hence the long-term average failure rate cannot ex-
ceed 1/gbase. A sketch of the proof is as follows. Each failure
of the filtered object creates a level of skepticism. It takes at least
gbase time in good state to forgive a level of skepticism, so we
count each gbase interval in good state as an opportunity to
“forgive” a failure. At a sufficiently high level of skepticism, say N,
the wait time is at least gbase. We count each gbase interval in wait
state as an opportunity to “forget” a failure. Each level of skepticism
from 0 to N-1 we count as an opportunity to “retain” a failure.
Now over a period of time each failure must be counted under one
or more of these opportunities. Therefore over a period of time t
there can be at most (t/gbase)+N failures. We assume N does
not exceed maxlevel.

3) Common behaviors shown by bad links should result in ex-
ceedingly low average long-term failure rates. The interesting be-
havior here is when the subordinate object tends to fail again soon
after the filtered object has recovered. If the failure happens before
the good timer expires, then the skepticism level increases over time.
At sufficiently high skepticism levels, the wait time becomes
significant and increases the interval between failures by delaying the
recovery of the filtered object.

4) A link that stops being bad must eventually be forgiven its
bad history. If the subordinate object remains working for a long
period of time, eventually the skeptic will decrement the skepticism
level down to zero. Hence any link that remains working for long
enough will eventually appear to have a good history.

14

4.1.4. Choice of skeptic parameters
We chose the skeptic parameters as follows. The transmission

layer skeptic deals with physical phenomena, so several of its pa-
rameters derive from maintenance needs. Five seconds is the short-
est minimum wait time that will cover the process of screwing in a
link cable. A technician often recables a host controller several
times during testing, so we allow about eight levels before the in-
crease in wait time becomes perceptible. Twenty minutes is the
longest time a technician will bear before seeing whether an at-
tempted hardware repair has any effect on the system. Ten minutes
seems like a reasonable interval for the minimum good time.

We expect problems in the connectivity layer to be unusual ex-
cept when induced by the transmission layer, so we set its minimum
wait time smaller, at one second, and its crossover point lower, at
level four. Because failures in the connectivity layer cause network-
wide reconfigurations, the maximum wait time should be as long as
possible. We chose 28 hours because we did not want the system to
hold off much more than a day on its own authority.

4.1.5. Relation to other work
Many networks contain a mechanism for discriminating

against unreliable links. For example, PARIS [2] increments a reli-
ability counter with each link failure. (The value of this “reliability”
counter actually represents unreliability.) The current value of a
link’s reliability counter forms the most significant component of a
link’s weight, which is broadcast regularly in updates of the link sta-
tus. Connection setup and the tree manager shy away from links
with high weight, and thus unreliable links will tend not to get used
unless necessary. The value in a link’s reliability counter decays
over time so that information about old failures expires eventually
[1]. However, PARIS does not have a backoff strategy, so if the
unreliable link is the only connection between two parts of the net-
work, PARIS will suffer repeated topology changes rather than
permit the network to remain partitioned.

Jacobson observes that a network closely approximates a linear
system and speculates that consequently its stability may be ensured
by adding exponential damping to its primary excitation [8]. This

15

speculation supports the exponential increase in wait time at high
skepticism levels.

4.2. The Transmission Layer
The transmission layer contains a skeptic with a fault monitor,

three error detectors, and a round trip verifier, shown in Figure 5.
The transmission layer watches the error indicators in the link hard-
ware and determines if the link appears to be successful at sending
and receiving data. It passes its conclusion up to the connectivity
layer. The transmission layer does not care where the data might be
going to or coming from—it is the responsibility of the connectivity
layer to determine that. If the transmission layer determines that the
link is broken, it sets the switch hardware to discard all incoming
and outgoing packets, isolating the link. No packets can be sent or
received over an isolated link. The reason for isolating a broken
link is to prevent it from interfering with the rest of the network.

fault
monitor“broken”

“working”

“broken”

“working”

skeptic

“fault”

round
trip

verifier

violation
detector

hardware status indicators

“warning”

stuck
link

detector

“fault”

quota

corrupt
packet

detector

quota

hardware status indicator

er
ro

r
d

et
ec

to
rs

to
 c

on
ne

ct
iv

ity
 la

ye
r

Figure 5: Diagram of the transmission layer.

16

The fault monitor here at the lowest level of the system really
has no subordinate object, so it is connected to a dummy object that
is always working. “Working” and “broken” are abstractions that
are synthesized based on the hardware status indicators, as
interpreted by the error detectors and round trip verifier. The
round trip verifier filters the output of the skeptic by delaying
“working” messages until it believes that the transmission layer
skeptic on the other end of the link also believes the link is working.

Each of the three error detectors analyzes and responds to a
different type of error indicated in the switch hardware.

4.2.1. The corrupt packet detector
The corrupt packet detector examines all packets received by

the switch control processor and declares a fault when CRC errors
or impermissible packet lengths are seen too frequently. It is possi-
ble for packets to be corrupted without any detectable coding viola-
tions, when a data error happens inside the crossbar at some switch.
Such an error is eventually detected as a CRC error at the packet’s
ultimate destination. It would be better if each link verified the CRC
of all incoming packets, but this feature was omitted from the hard-
ware. We achieve some protection against corruption by checking
all of the packets destined for the local switch control processor.

An isolated corrupt packet might be the result of a random
glitch, so it should be forgiven. Corrupt packets become a
significant error if they happen too frequently. The corrupt packet
detector imposes a quota on how often it forgives corrupt packets by
using a leaky bucket mechanism [16]. Every time it encounters a
corrupt packet, it puts a token in the bucket. One token leaks out of
the bucket every ten minutes. Whenever adding a token to the
bucket causes the bucket to hold more than five tokens, the corrupt
packet detector declares a fault. Because the transmission layer
isolates a broken link so that it can neither send nor receive packets,
no further corrupt packets will arrive from the link until the skeptic
recovers it.

4.2.2. The stuck link detector
In Autonet, certain problems cause a link to become stuck in a

state which prevents any data transmission. Typically this is due to

17

some corruption of flow control commands. If a link has been
trying to transmit a packet, but has made no progress for several
milliseconds, something is wrong on the link. At this point it is
necessary to dump the stuck packet and free up its resources.

This recovery is bound to be disruptive, although in our
switches it is perhaps more disruptive than absolutely necessary,
since our only mechanism for dumping a packet is to reinitialize the
entire switch. This destroys all packets in the switch. Fortunately,
reinitializing only takes about ten microseconds. Isolating a broken
link removes the opportunity for it to cause further switch reinitial-
izations.

Although a stuck link should not happen in normal operation,
links can appear to be stuck as a result of mistransmission of a single
command code pertaining to flow-control or packet framing. Thus
the stuck link detector must be willing to forgive an isolated oc-
currence. The detector samples its hardware indicators every 100
milliseconds and, if the link is stuck, responds by reinitializing the
switch. The stuck link detector imposes a quota on how often it for-
gives by using a leaky bucket mechanism to declare faults, exactly
like the corrupt packet detector.

4.2.3. The violation detector
The violation detector analyzes and responds to coding and

format violations received on the link. A coding violation basically
means that the link receiver heard a piece of static on the line. For
example, coding violations result from connecting or disconnecting
the link cable, from a cable that is too long for good transmission, or
from a nearby heavy-duty electric motor. Although connecting or
disconnecting a link generates a burst of coding violations tens of
milliseconds long, even the best links in our system pick up one or
two isolated coding violations per week. A format violation means
that the link receiver did not hear proper packet framing or flow-
control where it expected. Static can cause isolated format viola-
tions, as can occasional activity such as reinitializing the switch.
Hence a burst of violations is a significant error, but isolated viola-
tions should be ignored.

The violation detector samples status registers in the link hard-
ware once every 1.3 milliseconds and accumulates the results for a

18

block of 128 samples. At the end of each block, the violation de-
tector checks the number of violations and, if there are too many it
declares a fault. The permitted number of violations depends on
whether the skeptic says the link is working or broken, which is why
Figure 5 shows the error detectors receiving the “working” and
“broken” messages from the skeptic. If the link is working, three er-
rors are permitted in a block, but if the link is broken no errors are
permitted. The more strict rule for broken links insures that no link
will recover unless it can pass the entire skeptic recovery time with-
out a single violation, while occasional violations on working links
are ignored.

If a broken link continues to have violations, the violation de-
tector continues to declare a fault at the end of each block. The
transmission layer skeptic always spends at least five seconds in wait
state, so it will keep believing that the link is broken.

In order to detect promptly the bursts of violations that result
from the anticipated activity of plugging and unplugging link cables,
the violation detector examines subblocks of eight samples. If a sub-
block contains more than three violations, the violation detector im-
mediately declares a fault. In order to eliminate the processing over-
head of declaring faults every subblock, subblock checking applies
only to working links.

Our method of ignoring occasional problems by declaring a
fault only when more than three violations occur in 128 samples is
known as the k out of n method. This method is used in testing
neighbor reachability in the Internet’s Exterior Gateway Protocol
(EGP) [12] and in the Cypress network [4]. For simplicity, we test k
out of n only at the end of n samples, rather than continuously. EGP
also shares our idea of using different threshold parameters depend-
ing on the current state of the link.

4.2.4. The round trip verifier
Now let us consider the problem of getting the transmission

layers in two adjacent nodes to agree about the state of a connecting
link. The solution is a protocol in which each node indicates to its
peer whether it thinks the link should be working or not. When a
node knows both from itself and from its peer that the link should be

19

working, then it declares the link to be working. Otherwise, the link
is broken. This function is implemented by the round trip verifier.

The round trip verifier contains a state machine with three
states: dead, test, and good, shown in Figure 6. Because it supports
the same structure of interactions between subordinate object and fil-
tered object as the skeptic, the state machine resembles that of the
skeptic (Figure 2). Dead state means that the underlying skeptic de-
clares that the link is broken, test state that the skeptic declares the
link is working but the remote node does not yet concur, and good
state that both agree the link is working.

dead good

test

recv “broken”

recv “working”
recv “broken”

send “broken”

send “working”
detect “okay” from peer

signal “bad”
to peer

signal “okay”
to peer

signal “okay”
to peer

send “fault” to fault monitor
detect “bad” from peer

Figure 6: Round trip verifier state machine.

The round trip verifier uses the flow-control channel on a link
to send a signal to the other node. The flow-control channel is a
dedicated time slot in which the link’s transmitter normally sends
flow-control command codes. Under software control, the
transmitter fills this slot instead with a distinguished command code
called idhy, which stands for “I Don’t Hear You”. The round trip
verifier uses idhy to send a “bad” signal, and uses the absence of
idhy to send an “okay” signal. The verifier receives these signals by
decoding hardware status indicators using the same sampling system
of blocks and subblocks as the violation detector.

20

The round trip verifier continually sends “bad” to its peer in
dead state and “okay”in test state and good state. Because the link
transports these signals below the level of packet traffic, the nodes
can exchange this information even when the link is isolated. The
verifier remains in test state until it detects an “okay” signal, at
which point it moves to good. When the verifier is in good state, it
immediately declares a fault if it ever detects a “bad” signal. The
fault causes the underlying skeptic to declare the link broken which
results in the verifier moving back to dead state. The verifier sends
and receives “working” and “broken” messages from adjacent
software layers just like the skeptic does.

Notice the effect of the round trip verifier on a link that works
well in only one direction, say from node A to node B. The error
detector in node B has no cause for complaint and its skeptic declares
that the link is working. The error detector in node A is upset and
its skeptic declares that the link is broken. The round trip verifier in
node A is signalling “bad”, which tells the round trip verifier in node
B that A is upset. Consequently, the transmission layers in both
nodes agree that the link is broken. The verifier in A is in dead state
and the verifier in B is in test state.

Now suppose that the link is repaired and the error detector in
node A is now happy. After the skeptic recovery delay, the round
trip verifier in node A moves to test state and begins signalling
“okay”. It detects “okay” from B, which is in test state, and moves to
good state. The round trip verifier in node B soon detects the
“okay” from A and moves to good state. Both nodes now believe
that the link is working. The transmission layer always brings a link
up with this handshake.

One other task of the round trip verifier is to filter out links
that connect to host controllers. A host controller uses different
command codes than a switch, and this difference is reflected in the
link’s hardware status. The round trip verifier classifies a link as a
host link or a switch link based on an examination of this status, and
it declares a fault whenever the classification changes. A link that
connects to a host has no effect on switch-to-switch connectivity and
therefore is considered as broken for the purpose of reconfiguration,
but assuming that the skeptic and verifier are otherwise happy, the

21

link is taken out of isolation so that packets can pass across it to the
host.

As we have seen, the transmission layer filters out links with
error conditions and links that connect to host controllers. It is the
job of the connectivity layer to filter out links that do not connect
anywhere or that connect back to the same switch.

4.3. The Connectivity Layer
The connectivity layer comes into action once the transmission

layer has declared that a link is working. The connectivity layer
sends packets back and forth across the link to determine if the link
is a useful node-to-node connection. When the connectivity layer de-
clares that a link is useful, it also provides the identity of the remote
node. The union of the results of the connectivity layers for the
links at a node comprises the current state of the neighborhood
monitoring task at that node.

The connectivity layer contains a skeptic with a fault monitor,
a round trip verifier, and a distinct node verifier, as in Figure 7.
The fault monitor receives the messages from the transmission layer
about whether the link is working or broken. The round trip
verifier filters the output of the skeptic by delaying “working” mes-
sages until it has exchanged packets over the link and has determined
the identity of the remote node. The distinct node verifier filters the
output of the round trip verifier by checking that the remote node is
indeed different from the local node. Whenever the connectivity
layer generates either a “working” or “broken” message, topology
acquisition is initiated.

The design of the round trip verifier satisfies three goals. 1)
A link is tested vigorously whenever there is reason to believe that
the testing might change the link’s state. 2) A link is always
regularly retested. 3) Retesting a stable link occurs at a rate low
enough to impose little overhead. By adjusting the testing effort
according to a hint of how interesting the test result might be, we
achieve prompt detection of common changes while incurring little
overhead on average. The testing effort never falls below a certain
minimum to guarantee that any change is detected eventually. A
more detailed description follows.

22

fault
monitor“broken”

“working”

“broken”

“working”

skeptic

“fault”

round
trip

verifier

fr
om

 tr
an

sm
is

si
on

 la
ye

r

distinct
node

verifier

“warning” to
 to

po
lo

gy
 ta

sk
 in

iti
at

or

Figure 7: Diagram of the connectivity layer.

The round trip verifier exchanges connectivity packets with its
peer on the remote end of the link, to determine the identity of its
peer. Peer identity (id) has two components: a 48-bit unique node
identifier and a 4-bit port number within the node. To insure that an
identity is current, we create a sequenced identity (s-id) by attaching
a 32-bit sequence number. The round trip verifier knows its own lo-
cal s-id and it maintains a current estimate of the s-id of its remote
peer. A connectivity packet carries the local and remote s-ids from
the transmitter as source and destination s-ids.

The connectivity round trip verifier has a state machine simi-
lar to that of the transmission round trip verifier. In place of detect-
ing “okay” and “bad” signals, the connectivity round trip verifier
checks the result of a round trip exchange of connectivity packets.

Some connectivity packets are requests and others are replies.
The only difference is that the receiver must send back a connectivity
packet in response to a request, whereas a reply does not need a re-
sponse. Requests and replies are distinguished by a flag in the packet
header.

When the round trip verifier enters test state, it sends request
packets and waits for a matching packet to be received. A matching
packet contains a destination s-id equal to the local s-id. When it re-
ceives a matching packet, the verifier moves to good state and de-
clares that the link is working. In any case, the receiver saves the
source s-id of any received packet as its estimate of the remote s-id.
This causes any subsequent packet sent back to be seen as a matching
packet at the other end. The verifier retransmits very frequently at

23

first but backs off exponentially if no matching packet is forthcom-
ing.

The round trip verifier continues sending request packets in
good state, and it expects confirming packets to be received. A con-
firming packet contains a destination s-id equal to the local s-id and a
source id equal to the remote id. (It is not necessary to inspect the
remote sequence number to insure that the packet exchange is cur-
rent.) We save the source s-id as the estimate of the remote s-id and
increment the local sequence number. A packet that would be con-
firming except that the destination and local sequence numbers fail to
match is ignored. Any other received connectivity packet causes an
immediate fault (which, in turn, causes the skeptic to declare the link
broken and the verifier to move to dead state). The verifier
transmits requests very frequently at first but backs off exponentially
as confirming packets are received. When confirming packets fail to
be received within five times the transmission interval, the interval is
decreased by half and another five transmissions attempted. A fault
is declared if the interval had already attained its minimum value.

Whenever the skeptic declares that the link is broken, the
round trip verifier passes on the declaration and enters dead state. In
dead state, the round trip verifier sends no requests. If any requests
are received during dead state, they are answered with replies that
good state treats as contradictory and test state ignores.

The effect of the round trip verifier is as follows. Suppose
that the link appears healthy to the transmission layer but connects to
a node that does not answer. The round trip verifier will be in test
state and will back off exponentially until the transmission rate is one
request packet every ten seconds. Now suppose that the remote node
begins responding. With the first matching reply, the round trip
verifier moves to good state with the minimum transmission interval.
As confirmations arrive, the transmission interval increases to its
maximum, at which point the round trip verifier will be sending one
request packet every ten seconds to continue verifying that the link is
still working.

The exponential backoff in the transmission interval allows a
gradual transition between the vigorous testing regime and the back-
ground testing regime. Occasional losses or delays in responding to
the round trip protocol do not significantly alter the regime, while a

24

reasonable response time is still provided in the case of complete
autism.

The distinct node verifier filters the output of the round trip
verifier by comparing the remote node identity against the local node
identity. If they are equal, the distinct node verifier does not pass on
the declaration that the link is working. Links that connect back to
the same node are not useful node-to-node connections even though
they may carry packets perfectly. Whenever the distinct node
verifier changes a link from “working” to “broken” or back, the
neighborhood monitoring task declares a change in the neigh-
borhood, which causes the topology task to recompute the network
topology. The topology task is discussed in detail later.

In addition to the actions described above, the round trip veri-
fier also responds to warnings issued by the error detector in the
transmission layer. The error detector issues an immediate warning
whenever it detects one or more violations in a subblock, assuming
the condition is not serious enough to warrant declaring a fault. The
round trip verifier in the connectivity layer responds to a warning in
good state by resetting its transmission interval to the minimum.
This results in rapid transmission of round trip request packets and a
fault if no confirmation is soon received. Warnings are ignored in
dead state and test state.

All packets sent by the topology task, to be described in
Section 5, have a header that contains the source id. These values are
checked against the remote id and any mismatch results in a connec-
tivity fault just like receiving a contradictory connectivity packet. If
the distinct node verifier says that the link is broken, any topology
packets received will be discarded.

4.4. Development History and Experience
In our original implementation we had a much simpler filter

in place of the skeptic: the simple filter just refrained from recover-
ing the link more than once every ten seconds. We had not realized
how perverse malfunctioning hardware could be. As more and more
hardware was deployed we soon had several marginal links that each
cycled through failure and recovery once a minute or so. The
problem was that the rate of errors on a marginal link depended on
the data pattern being sent on the link, and links that were in service

25

tended to provoke a lot more errors than links that were being
tested. At that time the topology task took about five seconds to
complete, so the network was completely unusable. The skeptic
fixed the problem by effectively removing marginal links from the
network.

 We encountered another difficulty due to a malfunctioning
host controller that sent incorrect flow control commands. This
caused the adjacent node to get stuck when it attempted to send a
packet to the host. We had not realized how important it would be to
detect stuck links. The stuck node could not respond to connectivity
requests from its neighbors, so after ten seconds they gave up and re-
configured. The stuck node also reconfigured into a partition by it-
self. Part of reconfiguration involves reinitializing the crossbar
switch, which has the side effect of unsticking a stuck node. The
node would then join back with its neighbors and everyone would re-
configure again. Soon the node would attempt to send the host an-
other packet, and the process would repeat. Once we implemented
the skeptic it defended against this problem by effectively
partitioning the stuck node out of the network, which at least saved
the network from collapse. Implementing stuck link detection
allowed links with specific problems to be identified and isolated,
without partitioning the network.

We added the warnings when we observed an unexpectedly
disruptive link failure mode that was not being detected promptly.
The failure produced one or two error samples in the transmission
layer error detector (not enough to declare a fault), but no other
indications until the next time the connectivity layer round trip
verifier performed its end-to-end check, which would occur on
average five seconds later. The failure mode was provoked by
turning off the power of the remote node, which was quite frequent
in the early days. The way the hardware is implemented, a powered-
off node reflects data perfectly. A link watching its remote node
power off sees the line change from “node-to-node” to “reflecting”.
In some cases, this change would be so clean that it dependably pro-
voked only a single error sample. We needed to detect this failure
promptly. If the link to the powered off node was on the broadcast
distribution tree, outgoing broadcast packets would reflect back into
the network and continuously regenerate, causing network collapse.

26

This was unexpected. Users were unhappy. Implementing the warn-
ings caused the end-to-end check to detect the failure promptly and
fixed the problem.

One excellent success of the connectivity layer occurred when
a node’s crossbar switch started acting erratically. The crossbar
began switching occasional packets to the wrong output link. The
neighboring nodes would detect a connectivity violation and break
their links, but the links would then seem to work fine in test state so
they would recover for a while before breaking again. Eventually
the skeptics partitioned the malfunctioning node out of the network.

One scenario that exercises most mechanisms in the monitor-
ing task is the powering-on of a switch. Let A be a switch that is
about to be powered-on. As mentioned above, a powered-off switch
reflects data perfectly. Therefore, while A is powered-off, all of its
neighbors B, C, and D see links that work fine at the transmission
layer and at the connectivity layer, except that the distinct node veri-
fier refuses to pass on the working declaration. The connectivity
layer round trip verifiers are in good state at maximum back-off
level. Now a technician powers on A. The software initializes all
the state machines in dead state, which causes A’s transmission layer
round trip verifiers to send idhy. Switches B, C, and D probably
hear enough static during the power-on to declare faults, but if not,
then their transmission layer round trip verifiers will do so when the
idhy from A starts arriving. At this point everything pauses at least
five seconds for transmission layer skeptics to finish their wait
timeouts. Whenever both transmission layer skeptics on a link con-
cur, the transmission layers pass on working declarations to the
connectivity layers, which then start the connectivity layer skeptic
timeouts. Finally, both connectivity layer skeptics concur, a round
trip packet exchange verifies the connectivity of the link, and the
topology task performs a reconfiguration. Because of the random
adjustment to the skeptic wait timer, this happens at different times
on different links. In this example, we would probably have three
separate reconfigurations as each of B, C, and D established its con-
nection to A.

27

5. Topology Acquisition
The monitoring task provides each node N with a description

of its neighborhood. In this description the links that do not work or
that connect from N back to N have been eliminated. The responsi-
bility of the topology acquisition task is to provide each node with a
description of the current topology of the entire network.

We first describe the basic method of the topology task assum-
ing a very simple scenario: some single node initiates the task (for
an unknown reason) and the task runs to completion without any
confusion from topology changes (which are assumed never to hap-
pen). Then we describe how to extend the basic method to deal with
multiple initiators and with topology changes.

5.1. The Basic Method
Let us consider a single instance of topology acquisition as if it

were the only thing that ever happened in the network. The basic
method presumes that the network is quiet, some single node sponta-
neously initiates the topology task, it runs for a while, and then the
network is quiet forever after. Note that, even in this simple case, it
is possible that two nodes may disagree about the state of their con-
necting link. In this circumstance it is required that the topology
task never claim to produce a complete topology description.

The topology acquisition task consists of three phases: 1) prop-
agation, which constructs a rooted spanning tree over the set of all
reachable nodes; 2) collection, which merges together descriptions of
larger and larger subtree neighborhoods; and 3) distribution, which
sends the complete description from the root back down the spanning
tree to all nodes.

The propagation phase consists of a wave of packets that
spreads across all links through the network starting from the initi-
ating node. The initiating node becomes the root of the spanning
tree, and each other node joins the spanning tree by designating as its
parent link the link on which it is first contacted. This is called a
propagation order spanning tree. Generally one would expect the
depth of a propagation order spanning tree not to exceed by more
than a small factor the minimum possible depth of a spanning tree
rooted at the initiating node, and experience in our network supports
this intuition.

28

During the propagation phase, each node N in the spanning
tree contacts each of its neighbors, M, to offer M the opportunity to
join the spanning tree as a child of N. If M has not yet joined the
spanning tree, it accepts the offer and joins. M then contacts each of
its neighbors, in turn. Otherwise, M is already in the tree, and it re-
fuses the offer. M sends back a reply to N so that N knows whether
M accepted or refused. In this way each node comes to know its
parent and its children in the spanning tree.

During the propagation phase each node conducts a query-re-
ply exchange with each of its neighbors. The neighborhood
monitoring task guarantees that topology-task packets will pass only
if both end nodes agree that the link is useful. Suppose there is
disagreement about the state of a link between nodes P and Q: P
considers the link to be useful but Q does not. Then the propagation
phase will get stuck when it arrives at P, because P will not be able
to get a reply from Q. Therefore the propagation phase will manage
to finish building a spanning tree only if all nodes agree about the
state of their connecting links.

The propagation phase dies out when all nodes have been con-
tacted and a spanning tree has been formed. This is a global condi-
tion, however, and no individual node knows when it has been at-
tained. Instead, there is a rolling transition from the propagation
phase to the collection phase that begins at the leaves of the spanning
tree. A node knows that it is a leaf in the spanning tree when it has
contacted all of its neighbors and they have all refused to be chil-
dren.

The collection phase begins at the leaves of the spanning tree
and rises up to the root. When a node M accepts a propagation-phase
offer to be a child of N, it also commits to sending up to N a descrip-
tion of the neighborhood of M’s subtree. If M is a leaf in the
spanning tree, this is easy, because the link monitoring task provides
each node with a description of its neighborhood. Otherwise, M has
children. In this case, M waits for subtree neighborhood
descriptions from all of its children, merges them together with the
description of its own neighborhood, and then sends the result on up
to N.

Eventually the collection phase reaches the point at which the
root—just like any other node—has merged together a description of

29

its neighborhood and descriptions from all of its children and has a
description of its subtree neighborhood. But of course, in the case of
the root, this is a description of the entire network. At this point the
collection phase ends and the distribution phase begins. The root
sends to each of its children the full network description. The chil-
dren in turn send it to their children, and so on, until every node in
the network possesses the full network description.

5.2. Multiple Initiators
The basic method assumes that exactly one node initiates the

topology task. Now we extend the method to deal with multiple
initiators. Multiple initiators cause confusion because more than one
node is claiming to be the root of the spanning tree. The confusion
is solved by separating the activity into distinct instances of the
topology task based on the initiator. Each initiator creates a new,
distinct instance of the topology task, which runs independently of all
other instances. All state records and packets are labeled with the
unique identifier of the initiator in order to keep things straight.

To make efficient use of time and space, we do not want to run
multiple instances of the topology task to completion. Also, the
topology task is supposed to come to a single definite conclusion in
each node. The solution is to conduct a competition during the
propagation phase, so that exactly one instance wins and completes
the phase, while all the others die out. Observe that the propagation
phase spreads over the entire network, so if multiple instances do get
started, they will come into competition with each other. Because
the propagation phase has no definite end but instead rolls into the
collection phase, no node knows which instance wins the competition
until the end of the collection phase.

We conduct the competition as follows. Each node is allowed
to belong to at most one instance of the topology task at a time.
When the propagation phase of instance I first arrives at a node, the
node can be in one of two states. If the node does not yet belong to
any instance, it responds by joining instance I and then within that in-
stance it joins the spanning tree in the normal way. Otherwise the
node already belongs to some other instance J. In this case the node
must decide whether to ignore I and remain in J, or discard J and
join I. The node makes this decision by comparing the unique identi-

30

fier labels of the instances. The instance with the lower unique iden-
tifier wins.

With the further proviso that only those nodes that do not yet
belong to an instance may initiate instances, this competition assures
us that exactly one instance will manage to complete the propagation
phase—it will be the instance whose initiator has the lowest unique
identifier over all initiators. All other instances will die out, as their
nodes get taken over by the winning instance.

5.3. Topology Changes
We have extended the basic method to deal with multiple

initiators. Now we further extend the method to deal with topology
changes. Topology changes cause confusion because the method de-
pends on running in a network whose topology is stable. So we
simulate a stable topology by using an epoch mechanism. Each node
maintains an epoch number that identifies the epoch in which its
topology task is running, and this epoch number is included in all
topology task packets. When a node’s neighborhood monitoring task
reports a change in the neighborhood, the node forgets all of its old
topology task state, increments its epoch number, and initiates a
topology task in the new epoch. Whenever a node receives a topol-
ogy task packet, it compares the epoch number in the packet to its
own epoch number. If the packet has an old epoch number it is
ignored, if it has the current epoch number it is processed, and if it
has a new epoch number, the node forgets all its old topology task
state, adopts the new epoch number, and then processes the packet.
In this latter case, the only possible packet is an offer to join the
spanning tree.

One way to think of epochs is as competing instances of the
topology task. (Of course, these instances may have their own sub-
instances created by multiple initiators.) Each node is always trying
to promulgate the newest epoch it has heard about. We optimize the
competition by having a node keep track of the state of the topology
task only for the newest epoch.

If any instance of the topology task actually runs to
completion, it must have appeared that the network topology was
consistent and stable. This is because a node effectively locks its
current neighborhood into the epoch at the moment it adopts the

31

epoch number. If any changes occur in the node’s neighborhood, the
neighborhood monitoring task reports it and the node advances to the
next epoch. If there are nodes with inconsistent neighborhoods,
which is a possible transient state of the network, the neighborhood
monitoring task rapidly eliminates these inconsistencies and reports
neighborhood changes in at least one of the affected nodes, which
causes new epochs to be created.

5.4. Development History
An initial version of our terminating distributed spanning tree

algorithm was invented in 1987 by Leslie Lamport and K. Mani
Chandy. The current topology task method differs principally in
constructing a propagation-order spanning tree with the initiator as
the root. Lamport and Chandy’s version constructs a unique mini-
mum-depth spanning tree with the node of globally lowest unique
identification as the root. In fact, we still use the Lamport-Chandy
tree as our broadcast distribution tree, but each node computes it
from the topology description rather than during reconfiguration.
The current method also provides for retransmission and acknowl-
edgement to deal with lost packets.

Although experience has not revealed problems with the basic
algorithm, considerable work has gone into tuning the implementa-
tion. Initially, we had 27 switches in our network, and the goal was
reconfiguration in less than 200 milliseconds. The original imple-
mentation took about five seconds to run the topology task. Clearly
this was unacceptable.

In order to speed up the topology task, we had to find perfor-
mance bugs. We added code to each node to keep a trace log of
interesting events such as packet arrival and departure, and we added
fields to topology packets to carry clock exchange information. This
code was optimized for speed so that it would reveal rather than cre-
ate performance bugs. Then we wrote a diagnostic program to ex-
tract trace logs from all the nodes, correlate them by computing
clock synchronization, and then print out the result as a single, global
event trace of all of the activity during a reconfiguration. This tool
was essential in locating and fixing performance bugs. We ran many
experiments and looked long and hard at the resulting traces. Our

32

discoveries are described below. Table 2 shows the history of per-
formance improvement in the topology task.

time
(ms)

next
i m p r o v e m e n t

5000 1. postpone forwarding table calculation
1400 2. reduce propagation timeout from 500ms to 20ms
993 3. delete debugging printout of forwarding table
576 4. convert to propagation order tree
540 5. polish collection and distribution code
538 6. use checksum instead of CRC
439 7. reduce competition of initiators
425 8. implement special distribution method
255 9. reduce collection timeout from 100ms to 30ms
207 10. new packet handling scheme for reduced overhead
183 11. reduce collection timeout from 30ms to 10ms
166 12. delete residual overhead from old packet scheme
154

Table 2: Performance improvement milestones.

We saved about 3600 milliseconds when we discovered that
each node was calculating its forwarding table after receiving the
new topology description but before sending it on to its children.
The calculation took about 700 milliseconds and added a delay to the
critical path at each level in the tree. We changed the code to send
the topology first and then calculate the forwarding table. This work
appears as improvement 1 in Table 2.

We saved about 510 milliseconds by cranking down retrans-
mission timers: in the propagation phase from 500 to 20 milliseconds
and in the collection phase from 100 to 10 milliseconds. The event
trace revealed that one or two retransmissions were always showing
up in the critical path. After studying the situation, we concluded
that these critical path retransmissions were unavoidable. During the
propagation phase, each contacted node clears its forwarding table in

33

order to purge old client traffic, during which time the node is deaf
for about 15 milliseconds. If the nodes do not purge old client
traffic, forwarding cycles may arise during reconfiguration and
cause deadlock or regenerative broadcasts. We tried doing without
the purge and sure enough, we occasionally got regenerative broad-
casts, which, due to a bug in the host controller microcode, tended to
crash the hosts. Because the original switch software for retrans-
mission had too much overhead to permit the desired small timer
values, we had to reimplement it as part of this improvement. This
work appears as improvements 2, 9, 10, 11, and 12 in Table 2.

We saved about 420 milliseconds when we discovered that
each node copied its forwarding table into its debugging log. The
debugging log is flexible, but very slow. We thought these printings
were not on the critical path, but it turned out that some were. The
simplest solution was just to delete the printings. This work appears
as improvement 3 in Table 2.

We saved about 100 milliseconds when we replaced our soft-
ware CRC algorithm with a software checksum for topology packets.
There is no hardware support in the switches for CRC, so it had to
be performed in software. The software CRC algorithm requires
3.32 microseconds per byte, whereas the software checksum requires
only 0.42 microseconds per byte. This work appears as
improvement 6 in Table 2.

At this point we saw that the majority of the run time went
into the topology distribution phase. We completely reimplemented
this phase and saved about 170 milliseconds. The original implemen-
tation unmarshalled the topology description packets into an internal
data structure and then for each child remarshalled the data structure
back into packets to send. The redesigned implementation marshalls
the data structure once at the root, distributes the packets from
parent to children as quickly as possible, and then unmarshalls the
data structure in all nodes in parallel. This work appears as im-
provement 8 in Table 2.

At various times we made changes guided by intuition about
what would speed things up, rather than by study of the trace log.
The resulting improvements were uniformly disappointing. Chang-
ing from the Lamport-Chandy tree to an early version of the
propagation order tree made the code much simpler but saved only

34

26 milliseconds. A later simplification saved an additional 14
milliseconds. Polishing all the code in the collection and distribution
phases saved a total of 2 milliseconds. Changes guided by the
performance trace were much more effective at speeding things up.

The final result of performance tuning was a system that ran
the topology task in 154 milliseconds on the 27-switch network. Our
network has since expanded to 31 switches on which the topology
task runs in 179 milliseconds. Based on trials using different subsets
of our network, the following formula, where d is the diameter of
the network and n is the number of switches, gives a fairly reason-
able approximation to the reconfiguration time in milliseconds:

time = 58 + 3.34 d + 1.36 n + 0.315 d n

Extrapolating using this formula, a 100-switch network arranged in
a diameter 10 torus would have a reconfiguration time of 542 mil-
liseconds. Such a reconfiguration time would perhaps just barely be
acceptable. The time would of course be less, given a faster switch
control processor.

5.5. Related Work
Topology acquisition based on computing a spanning tree was

described by Perlman [13] for Ethernet bridges. Her version of the
spanning tree algorithm reaches steady state without any explicit
termination.

The propagation and collection phases of topology acquisition
in Autonet are an example of termination detection in a diffusing
computation as described by Dijkstra and Scholten [5].

The propagation-order tree used for coordinating the
topology task represents an engineering tradeoff in favor of average-
case performance for our network. Although in the worst case the
propagation-order tree might be linear, the trees actually constructed
in our network are almost always no more than one level deeper than
a minimum depth tree. Distributed algorithms for constructing min-
imum depth trees with good asymptotic worst-case performance are
known [3, 6], but they are considerably more complicated than the
propagation-order method and are not nearly as efficient for moder-
ate-sized networks.

35

6. Conclusions
The automatic reconfiguration of Autonet has succeeded in

eliminating human management from day-to-day operation of the
network. Our experience over the past year has been that the net-
work runs itself. Reconfiguration runs quickly enough that the occa-
sional network outages indeed are covered by normal retransmission
in higher-level protocols.

Currently our Autonet installation experiences about ten re-
configurations per week, usually due to one of the “usual suspects”—
a small number of occasionally flaky switch-to-switch links that have
not been worth trying to fix. A recent spell of hot weather provoked
hundreds of isolated reconfigurations due to intermittent malfunc-
tions in a few overheated switch crossbars, but in spite of the many
brief disruptions the Autonet was almost always available and no
user noticed an outage. Experimental hardware has the advantage of
providing tests like this. Occasional reconfigurations also result
from demonstrations to visiting dignitaries.

Redundancy is exploited to work around failed components as
well as to facilitate repair. At any given time over most of the past
year, our operational Autonet contained several link interfaces that
simply did not work. Because the network had redundancy and au-
tomatically reconfigured itself around these failures, there was no
urgency about getting them fixed. When a technician did finally get
around to repairing a failure, it could be accomplished by powering-
off the problem switch, replacing the faulty components, and then
powering the switch back on. Normal network operation continued
during the repair because network redundancy and automatic recon-
figuration covered for the missing switch. A similar scenario applies
to downloading (compatible) new versions of the switch control
program.

The skeptic mechanism has succeeded in defending the net-
work against unreliable hardware, while still allowing quick recov-
ery from isolated failures. An advantage of the skeptic structure is
that none of the error detectors ever have to figure out what to do to
recover from an error: all they have to do is declare a fault. We
have found it much easier to figure out how to detect possible errors
than to worry about how to respond to each one individually.

36

Our Autonet would be completely unusable without these au-
tomatic mechanisms.

It might be noted that the description of the monitoring task in
this paper is longer than the description of the topology task. The
reason is that the monitoring task bridges an enormous gulf between
idiosyncratic hardware functionality and the abstraction of node
neighborhoods, whereas the topology task builds upon a nice abstrac-
tion using well-understood concepts. The monitoring task has a lot
of details that it has to get right in order to work acceptably. The
topology task only has to work fast. In our implementation, the
monitoring task contains about twice as many lines of code as the
topology task.

As is usual in robust systems of this sort, it is important to re-
port component status through a management interface so that timely
repairs may be made. Several times we have been surprised to
discover that some section had only a single connection to the rest of
the network, usually due to the combination of poor interconnection
and multiple link failures. We are still working on management
functions.

Two improvements are needed in the reconfiguration mecha-
nism. We need to suppress multiple reconfigurations during switch
booting and we need to provide a means to indicate that a link repair
has been attempted.

Booting a switch causes separate reconfigurations as each of its
switch-to-switch links are discovered. It would be less disruptive if
all the links could be brought up using only one reconfiguration.
Our idea to accomplish this would be to add a delay between declar-
ing a link as working in the monitoring task and initiating the topol-
ogy task. During this delay, any attempt to perform an action that
depends on the state of the link would cancel the remainder of the
delay. Such actions are receiving a topology message and running
the topology task (either an old one or a new one started by some
other link).

Because the skeptics may have attained a high level of skepti-
cism and refuse to respond to a bad link, a technician may have diffi-
culty determining if the link has indeed been repaired. The maxi-
mum wait time of the transmission skeptic is 17 to 34 minutes and of
the connectivity skeptic is 28 to 56 hours. Our technicians have

37

adopted two strategies: one is to come back the next day and the
other is to reboot a switch. Unfortunately the technician may have to
go to another floor to get to the necessary switch. There should be a
more convenient mechanism that a technician could use to instruct
the network that a link repair has been attempted.

Acknowledgements
Jim Horning reviewed an early version of this paper. Hal

Murray noticed a few amazingly inobtrusive typographical errors.

38

References

[1] B. Awerbuch. Private communication.

[2] B. Awerbuch, I. Cidon, I. Gopal, M. Kaplan, and S. Kutten.
Distributed control for PARIS. In Proceedings of the Ninth
Annual ACM Symposium on Principles of Distributed Com-
puting, 1990, pp. 145-159.

[3] B. Awerbuch and R. G. Gallager. A new distributed algorithm
to find breadth first search trees. IEEE Transactions on
Information Theory, 33(3), May 1987, pp. 315-322.

[4] D. Comer and T. Narten. UNIX systems as Cypress implets.
USENIX 88 Winter Conference, pp. 55-62.

[5] E. W. Dijkstra and C. S. Scholten. Termination detection for
diffusing computations. Information Processing Letters,
11(1), August 29, 1980, pp. 1-4.

[6] R. G. Gallager. Distributed minimum hop algorithms. Techni-
cal Report LIDS-P-1175, Massachusetts Institute of Technol-
ogy, Cambridge, January 1982.

[7] F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther, and
D. C. Walden. The interface message processor for the ARPA
computer network. AFIPS 1970 Spring Joint Computer Con-
ference, pp. 551-567.

[8] V. Jacobson. Congestion avoidance and control. ACM SIG-
COMM 88 Communications Architectures and Protocols, pp.
314-329.

[9] T. Y. Lin and D. P. Siewiorek. Error log analysis: Statistical
modeling and heuristic trend analysis. IEEE Transactions on
Reliability, 39(4), October 1990, pp. 419-432.

39

[10] J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing
algorithm for the ARPANET. IEEE Transactions on Commu-
nications, 28(5), May 1980, pp. 711-719.

[11] J. M. McQuillan and D. C. Walden. The ARPANET design de-
cisions. Computer Networks, 1, August 1977, pp. 243-289.

[12] D. L. Mills. Exterior gateway protocol formal specification.
Request for Comments 904. Network Information Center,
Menlo Park, California, April 1984.

[13] R. Perlman. An algorithm for distributed computation of a
spanning tree in an extended LAN. Proceedings of the Ninth
Data Communications Symposium, 1985, ACM, pp. 44-53.

[14] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argu-
ments in system design. ACM Transactions on Computer Sys-
tems 2(4), November 1984, pp. 277-288.

[15] M. D. Schroeder et al. Autonet: A high-speed, self-
configuring local area network using point-to-point links.
Research Report 59, Digital’s Systems Research Center, Palo
Alto, California, 1990. Submitted to a special issue of the
IEEE Journal on Selected Areas in Communications.

[16] J. S. Turner. New directions in communications (or which way
to the information age?). IEEE Communications Magazine,
24(10), October 1986, pp. 8-15.

[17] W. A. Wulf, R. Levin, and S. P. Harbison. HYDRA/C.mmp:
An Experimental Computer System. McGraw-Hill, 1981.
Pages 212-215 contain material on the autorestart mechanism.

