
July 4, 1995

Revised December 1, 1997

SRC
Research

Report
137

Proving Possibility Properties

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Proving Possibility Properties

Leslie Lamport

July 4, 1995

Revised December 1, 1997

cDigital Equipment Corporation 1995

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

Author's Abstract

A method is described for proving \always possibly" properties of speci�-

cations in formalisms with linear-time trace semantics. It is shown to be

relatively complete for TLA (Temporal Logic of Actions) speci�cations.

iii

iv

Contents

1 Introduction 1

2 Possibility and Closure 2

2.1 Closure and Safety . 2

2.2 Possibility . 3

3 Proving Possibility Properties in TLA 3

3.1 TLA . 3

3.2 The Proof Method . 5

4 Conclusion 7

Acknowledgments 7

References 8

Appendix 9

A.1 Proof of Proposition 2 . 9

A.2 Proof of Proposition 3 . 10

A.3 Proof of Proposition 4 . 11

A.4 Proof of Proposition 5 . 12

v

vi

1 Introduction

Does proving possibility properties provide any useful information about a

system? Why prove that it is possible for a user to press q on the keyboard

and for a q subsequently to appear on the screen? We know that the user can

always press the q key, and what good is knowing that a q might appear on

the screen? Isn't it enough to prove that no q appears on the screen unless a

q is typed (a safety property), and that, if a q is typed, then a q eventually

does appear (a liveness property)?

Although possibility properties may tell us nothing about a system, we

do not reason about a system; we reason about a mathematical model of

a system. A possibility property can provide a sanity check on our model.

Proving that it is always possible for a press(q) action to occur tells us

something useful about the model. In general, we want to prove that a

model allows the occurrence of actions representing events that the system

cannot prevent.

We present a method for proving that it is always possible for some

state or action eventually to occur. This is the simplest class of possibility

properties and seems to be the most useful. (The simpler requirement that

it is always possible for an action to occur may also be useful, but it just

asserts that the action is always enabled, so it is a safety property and

not a possibility property.) We �rst describe the general approach, which

applies to any formalism with a linear-time semantics. We then show how

the method is used with TLA, the Temporal Logic of Actions [8], and prove

a relative completeness result.

Possibility properties pose no problem in formalisms based on branching-

time semantics [4]. However, it is impossible to assert in linear-time temporal

logic that something is always possible [6]. It is therefore not obvious how

to prove possibility properties in the formalisms that we consider, which are

based on linear-time semantics.

We are concerned with proofs, not �nite-state model checking. Model

checking begins by writing (or rewriting) a speci�cation as a transition sys-

tem. A �nite-state linear-time speci�cation should yield the same transition

system as the corresponding branching-time speci�cation, and hence the

same model checking algorithm.

1

2 Possibility and Closure

2.1 Closure and Safety

We begin by reviewing some basic concepts of linear-time temporal logic [10].

A behavior is an in�nite sequence of states or of events|for now, it doesn't

matter which. The meaning [[�]] of a temporal-logic formula � is a Boolean-

valued function on behaviors. We say that the behavior � satis�es � i�

(if and only if) [[�]](�) equals true. Formula � is valid, written j= �, i�

every behavior satis�es �. To use temporal logic to specify (a mathematical

model of) a system, we consider states to represent possible system states

and events to represent possible system actions, so a behavior represents a

conceivable execution of a system. A system is speci�ed by a formula �

that is satis�ed by precisely those behaviors that represent a legal system

execution.

Boolean operations on formulas are de�ned in the obvious way; for ex-

ample, [[� ^ �]](�)
�

= [[�]](�) ^ [[�]](�). We de�ne 2� to be the formula

that is satis�ed by a behavior � i� every su�x of � satis�es �, and we

de�ne 3� to be satis�ed by � i� some su�x of � satis�es �. The opera-

tors 2 and 3 are read always and eventually, respectively. We de�ne ; by

�; �
�

= 2(�) 3�).

Let S1 be the set of all behaviors, let S� be the set of all �nite behaviors

(�nite pre�xes of elements of S1), let \�" be concatenation of sequences, and

let � < � mean that � is a nonempty �nite pre�x of the behavior �. The

closure C(�) of a formula � is de�ned by

[[C(�)]](�)
�

= 8� < � : 9� 2 S1 : [[�]](� � �) (1)

where 8� < � is universal quanti�cation over all �nite pre�xes � of �. Thus,

a behavior � satis�es C(�) i� every �nite pre�x of � can be extended to a

behavior that satis�es �. The following proposition follows easily from (1).

Proposition 1 For any formulas � and �:

1. j= �) C(�)

2. j= �) � implies j= C(�)) C(�)

A safety formula is one that equals its closure. Thus, a safety formula

� is satis�ed by a behavior � i� every pre�x of � can be extended to a

behavior satisfying �. Intuitively, a safety property � constrains only the

�nite behavior of a system|any behavior that fails to satisfy � fails at some

2

speci�c instant. More precisely, � is a safety property (equals its closure)

i�

8� 2 S1 : [[:�]](�) � 9� < � : 8� 2 S1 : [[:�]](� � �) (2)

2.2 Possibility

We now de�ne a class of possibility properties and relate them to closure.

The properties are of the form always possibly P , meaning that at all times

during an execution of the system, it is possible for P eventually to become

true. In linear-time temporal logic, it is impossible to write a formula whose

meaning is always possibly P [6]. However, for any particular system, we

can write a formula asserting that always possibly P holds for behaviors

of that system. More precisely, we can de�ne a formula P
�
(P) such that

always possibly P holds for the system speci�ed by � i� P
�
(P) is valid.

Intuitively, always possibly P holds for a system i�, at any point during

any execution of the system, it is possible to choose some particular way of

continuing the execution that makes P eventually hold. In other words, if �

is the pre�x of a behavior satisfying the system's speci�cation �, then there

exists a behavior � such that � � � satis�es �, and P holds at some point in

� . We can therefore de�ne P
�
(P) by

[[P
�
(P)]](�)

�

= [[�]](�)) 8� < � : 9� : [[�]](� � �) ^ [[3P]](�) (3)

Our method of proving possibility properties is based on the following result.

It and all subsequent propositions are proved in the appendix.

Proposition 2 If :P is a safety property, then

j= (C(�)) C(C(�) ^23P))) P
�
(P)

We will use this result when [[P]](�) depends only on the �rst one or two

elements of �. By (2), :P is a safety property for such a P .

3 Proving Possibility Properties in TLA

3.1 TLA

To apply Proposition 2, we need to compute closures. One can write TLA

speci�cations in a way that makes computing the closure easy. We now give

a thumbnail review of TLA; see [8] for a real explanation of the logic.

In TLA, behaviors are in�nite sequences of states, where a state is an

assignment of variables to values. We let S be the set of all states. Formulas

3

are built from actions, Boolean operators, and the temporal operator 2. An

action is a Boolean expression containing primed and unprimed variables.

For states s and t , we de�ne [[A]](s; t) to equal true i� A holds with values

from s substituted for unprimed variables and with values from t substituted

for primed variables. We consider action A to be a temporal formula by

letting [[A]](s0; s1; s2; : : :) equal [[A]](s0; s1).

A state predicate P is an action with no primed variables; we write [[P]](s)

instead of [[P]](s; t), which is independent of t . For an action A, we de�ne

the predicate EnabledA by [[EnabledA]](s)
�

= 9t 2 S : [[A]](s; t). A state

function is a nonBoolean expression containing no primed variables. For

any state function v , we let [A]v
�

= A _ (v 0 = v) and hAiv
�

= A ^ (v 0 6= v),

where v 0 is the expression obtained by priming the free variables in v .

The canonical form of a TLA formula is Init ^2[N]v ^ F , where Init is

a state predicate, N an action, v a state function, and F the conjunction of

formulas of the form WFv (A) (weak fairness) or SFv (A) (strong fairness),

with

WFv (A)
�

= 23:Enabled hAiv _23hAiv
SFv (A)

�

= 32:Enabled hAiv _23hAiv

For example, a system that starts with x and y both 0, and repeatedly either

increments x by �1 or, if x equals 0, increments y by �1, is speci�ed by the

following formula �xy .1

Nxy
�

= _ ^ x 0 2 fx + 1; x � 1g
^ y 0 = y

_ ^ x = x 0 = 0

^ y 0 2 fy + 1; y � 1g

�xy
�

= (x = y = 0) ^ 2[Nxy]
hx ;y i ^ WF

hx ;y i(Nxy)

The fairness condition WF
hx ;y i(Nxy) asserts that the system never stops.

TLA also has an operator 999999 , where 999999 x : � is essentially � with variable

x hidden. The system speci�ed by 999999 x : � satis�es a possibility property i�

� does|assuming x does not occur free in the property|so we ignore the 999999
operator here. Using 999999 , we can express P

�
(P) and C(�) as TLA formulas,

for any formulas � and P . Propositions 1 and 2 can then be proved by

temporal-logic reasoning.

Closures of TLA formulas are computed using the following result.

1A list of formulas bulleted with ^ or _ denotes the conjunction or disjunction of the

formulas; indentation is used to eliminate parentheses. Angle brackets enclose tuples.

4

Proposition 3 If Init is a state predicate, M and N are actions such that

M implies N , and F is the conjunction of countably many formulas of the

form WFv (A) and/or SFv (A), where each hAiv implies M , then

C(Init ^2[N]v ^32[M]v ^ F) � Init ^2[N]v

Since 2� implies 32�, for any �, substituting Nxy for both N and M

in the proposition proves that C(�xy) � (x = y = 0) ^ 2[Nxy]
hx ;y i. For

M = N , Proposition 3 is a special case of Proposition 2 of [1].

A formula of the form Init ^ 2[N]v ^ F is called machine closed [1] if

its closure equals Init ^2[N]v . Proposition 3 implies that such a formula is

machine closed if F is the conjunction of fairness conditions for actions that

imply N . Machine closure means that F does not rule out any �nite pre�xes

of behaviors. It can be argued that any speci�cation that models a real

implementation should be machine closed, and that possibility properties

need be proved only for a model of an implementation, not for a high-level

speci�cation.

3.2 The Proof Method

We now show how to use Propositions 1, 2, and 3 to prove possibility

properties of the form P
�
(P) for a state predicate P , where � equals

Init ^ 2[N]v ^ F , and C(�) equals Init ^ 2[N]v . For any action A, for-

mula P
�
(A) is equivalent to P

�
(Enabled ([N]v ^A)). Hence, our method

can be used to prove properties P
�
(A) for arbitrary actions A.

To prove P
�
(P), we �nd an action M and a conjunction G of fairness

properties such that

Init ^2[N]v ^32[M]v ^G) 23P (4)

and for which we can use Proposition 3 to prove

C(Init ^2[N]v ^32[M]v ^G) � Init ^2[N]v (5)

We then deduce P
�
(P) as follows.

1. Init ^2[N]v ^32[M]v ^G) Init ^2[N]v ^23P

Proof: (4).

2. Init ^2[N]v) C(Init ^2[N]v ^23P)

Proof: (5) and part 2 of Proposition 1.

3. Q.E.D.

Proof: By Proposition 2, since Init ^2[N]v � C(�).

5

For example, to prove P
�xy

(y = 17), we take

M
�

= _ ^ ((x > 0) ^ (x 0 = x � 1)) _ ((x < 0) ^ (x 0 = x + 1))

^ y 0 = y

_ ^ x = x 0 = 0

^ ((y > 17) ^ (y 0 = y � 1)) _ ((y < 17) ^ (y 0 = y + 1))

and let G be WF
hx ;y i(M) To prove (4), we use the TLA rules from Figure 5

(page 888) of [8].

We now show that this proof method is complete relative to non-temporal

reasoning about actions. This means that if all the necessary valid action

formulas can be proved, then every valid formula P
�
(P) is provable. We

write ` 	 to mean that formula 	 is provable from Propositions 1, 2, and 3

and the rules in [8].

Our results assume that valid actions in some class of expressible formu-

las are provable. We assume that expressible terms and formulas are closed

under the operations of �rst-order logic (conjunction, quanti�cation, etc.),

priming, forming tuples, and primitive recursive de�nitions. Relative com-

pleteness results for programming logics are generally based on some form

of predicate transformer analogous to the sin operator of [7]. For any action

A and state predicate P , the state predicate sin(A;P) can be de�ned by

[[sin(A;P)]](s)
�

=

9s0; : : : ; sn 2 S : (s = sn) ^ [[P]](s0) ^ (8i < n : [[A]](s i ; s i+1))

(6)

for all states s. We �rst show completeness of the TLA rules for proving

invariance properties.

Proposition 4 For any predicates I and Init, state function v, and action

N , if

1. Every valid expressible action formula is provable.

2. I , Init, v , N , and sin([N]v ; Init) are expressible.

3. j= Init ^2[N]v) 2I

then ` Init ^2[N]v) 2I .

Proposition 4 is essentially the TLA version of the classical completeness

results for Hoare logics [3]. We use it to show completeness of our method

for proving possibility properties:

6

Proposition 5 If

1. Every valid expressible action formula is provable.

2. P, Init, v , N , and sin([N]v ; Init) are expressible.

3. ` C(�) � Init ^2[N]v

4. j= P
�
(P)

then ` P
�
(P).

4 Conclusion

Proving possibility properties provides a way of checking that the mathemat-

ical models we make of our systems are sensible. For real time speci�cations,

an important possibility property is nonZenoness, which asserts that it is

always possible for time to advance. The relation between possibility and

closure was �rst observed for nonZenoness in [1]. Our method generalizes a

method described there for proving nonZenoness.

Propositions 1 and 2 are independent of TLA. They can be used for

proving possibility properties in any trace-based speci�cation method for

which closures can be computed. It is easy to compute closures when speci-

�cations are written as certain kinds of transition systems. For example, the

closure of (the temporal-logic formula corresponding to) a B�uchi automa-

ton [2] with a strongly connected state graph is the automaton obtained by

making every state an accepting state. The closure of a speci�cation writ-

ten as a state transition system [5, 9] is obtained by removing the fairness

properties, if those properties are expressed as fairness conditions on tran-

sitions. We do not know of any practical method for computing the closure

of arbitrary temporal-logic formulas, or of transition systems with arbitrary

temporal formulas as fairness requirements. We do not know how to prove

possibility properties for traditional temporal-logic speci�cations [10].

Acknowledgments

Mart��n Abadi and Stephan Merz pointed out mistakes in the text of an

earlier version. Fred Schneider suggested some improvements to the presen-

tation.

7

References

[1] Mart��n Abadi and Leslie Lamport. An old-fashioned recipe for real

time. ACM Transactions on Programming Languages and Systems,

16(5):1543{1571, September 1994.

[2] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.

Distributed Computing, 2(3):117{126, 1987.

[3] Krzysztof R. Apt. Ten years of Hoare's logic: A survey|part one.

ACM Transactions on Programming Languages and Systems, 3(4):431{

483, October 1981.

[4] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, volume B, chapter 16,

pages 995{1072. Elsevier and MIT Press, Amsterdam and Cambridge,

Massachusetts, 1990.

[5] Simon S. Lam and A. Udaya Shankar. Specifying modules to satisfy

interfaces: A state transition system approach. Distributed Computing,

6(1):39{63, 1992.

[6] Leslie Lamport. `Sometime' is sometimes `not never': A tutorial on

the temporal logic of programs. In Proceedings of the Seventh Annual

Symposium on Principles of Programming Languages, pages 174{185.

ACM SIGACT-SIGPLAN, January 1980.

[7] Leslie Lamport. win and sin: Predicate transformers for concur-

rency. ACM Transactions on Programming Languages and Systems,

12(3):396{428, July 1990.

[8] Leslie Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3):872{923, May 1994.

[9] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs for dis-

tributed algorithms. In Proceedings of the Sixth Symposium on the Prin-

ciples of Distributed Computing, pages 137{151. ACM, August 1987.

[10] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag, New York, 1991.

8

Appendix

We now prove Propositions 2{5. The proofs use a hierarchical style in which

the proof of statement hiij is either an ordinary paragraph-style proof or the
sequence of statements hi+1i1, hi+1i2, . . . and their proofs. We recommend

reading proofs top-down|reading the proof of a level-k step by �rst reading

the level-(k+1) statements that form the proof, together with the proof of

the �nal Q.E.D. step, and then reading the proofs of the level-(k+1) steps

in any order.

A.1 Proof of Proposition 2

To prove the proposition, we must prove that if a behavior � satis�es C(�))
C(C(�) ^ 23P), then it satis�es P

�
(P). By the de�nition (3) of P

�
(P),

the proposition is proved as follows.

Assume: 1. [[�]](�)

2. [[C(�)) C(C(�) ^23P)]](�)

Prove: 8� < � : 9� : [[�]](� � �) ^ [[3P]](�)

h1i1. 8� < � : 9� 2 S1 : [[C(�)]](� � �) ^ [[23P]](� � �)

h2i1. [[C(�)(�)]]

Proof: Assumption 1 and part 1 of Proposition 1.

h2i2. C(C(�) ^23P)(�)

Proof: h2i1, assumption 2, and the de�nition of) for temporal for-

mulas.

h2i3. Q.E.D.

Proof: h2i2, (1), and the de�nition of ^ for temporal formulas.

h1i2. 8� < � : 9� 2 S� : ^ 9� 2 S1 : [[�]](� � � � �)
^ 8� 2 S1 : [[3P]](� � �)

h2i1. 8� 2 S�; � 2 S1 : [[23P]](� � �)) 9�1; �2 : � = �1 � �2 ^ [[P]](�2)

Proof: By de�nition of 2 and 3.

h2i2. 8�2 2 S1 : [[P]](�2)) 9�3 < �2 : 8� 2 S1 : [[P]](�3 � �)

Proof: By the hypothesis that :P is a safety property and (2) (sub-

stituting :P for �).

h2i3. 8� 2 S�; � 2 S1 : [[23P]](� � �)) 9� < � : 8� 2 S1 : [[3P]](� � �)

Proof: By h2i1, h2i2, and the de�nition of 3, taking �1 � �3 for �.

h2i4. 8� 2 S�; � 2 S1; � < � : [[C(�)]](� � �)) 9� 2 S1 : [[�]](� � � � �)

Proof: By the de�nition (1) of C.

h2i5. Q.E.D.

9

Proof: h1i1, h2i3, and h2i4.

h1i3. Q.E.D.

Proof: By h1i2, letting � be � � � and instantiating � with �.

A.2 Proof of Proposition 3

We prove the proposition for the special case that F consists of a single WF

or SF formula, which is the only case used here. The general case is handled

much as in the proof of Proposition 2 of [1]. In the following proof, W/SF

denotes either WF or SF.

Assume: 1. j= M) N

2. j= hAiv) M

3. � 2 S1

Prove: [[C(Init ^2[N]v ^32[M]v ^W/SFv (A))]](�) � [[Init ^2[N]v]](�)

h1i1. Assume: 8� < � : 9� : [[Init ^2[N]v ^32[M]v ^W/SFv (A)]](� � �)
Prove: [[Init ^2[N]v]](�)

Proof: Assumption h1i (from this step) implies that Init holds in the �rst

state of � and [N]v holds in every pair of successive states of �, which

implies [[Init ^2[N]v]](�) by de�nition of 2 and of [[B]] for an action B .

h1i2. Assume: 1. [[Init ^2[N]v]](�)

2. � < �

Prove: 9� : [[Init ^2[N]v ^32[M]v ^W/SFv (A)]](� � �)

h2i1. Choose states s0, s1, . . . such that � = s0; : : : ; sn and, for all i � n,

^ [[Enabled hAiv]](s i)) [[hAiv]](s i ; s i+1)
^ :[[Enabled hAiv]](s i)) (s i+1 = s i)

Proof: The existence of the s i follows from the de�nition of Enabled .

h2i2. [[2[M]v]](sn ; sn+1; : : :)

h3i1. 8i � n : [[[M]v]](s i ; s i+1)

Proof: If [[Enabled hAiv]](s i), this follows from h2i1 and assump-

tion 2. If :[[Enabled hAiv]](s i), this also follows from h2i1 because

[[[M]v]](s; s) holds for any state s.

h3i2. Q.E.D.

Proof: h3i1 and the de�nitions of 2 and of [[B]] for an action B .

h2i3. [[W/SFv (A)]](s0; s1; : : :)

Proof: [[23Enabled hAiv]](s0; s1; : : :) implies [[Enabled hAiv]](s i)
for in�nitely many i , which by h2i1 implies [[hAiv]](s i ; s i+1) for in-

�nitely many i , which implies [[23hAiv]](s0; s1; : : :). The result then

follows from the de�nition of WF and SF, since :23Enabled hAiv is

equivalent to 32:Enabled hAiv , which implies 23:Enabled hAiv .

10

h2i4. [[2[N]v]](s0; s1; : : :)

h3i1. 8i : [[[N]v]](s i ; s i+1)

h4i1. Assume: i < n

Prove: [[[N]v]](s i ; s i+1)

Proof: h2i1 and assumptions h1i:1 and h1i:2 (from step h1i2).

h4i2. Assume: i � n

Prove: [[[N]v]](s i ; s i+1)

Proof: By h2i2, the de�nition of 2, and assumption 1.

h4i3. Q.E.D.

Proof: h4i1 and h4i2.

h3i2. Q.E.D.

Proof: h3i1 and the de�nitions of 2 and of [[B]] for an action B .

h2i5. Q.E.D.

Proof: h2i2, h2i3, h2i4, the de�nition of [[Init]], and the de�nition of

3, taking sn ; sn+1; : : : for � .

h1i3. Q.E.D.

Proof: h1i1, h1i2, and the de�nition (1) of C.

A.3 Proof of Proposition 4

h1i1. ` Init ^2[N]v) 2sin([N]v ; Init)

h2i1. j= Init) sin([N]v ; Init)

Proof: De�nition (6) of sin.

h2i2. j= [N]v ^ sin([N]v ; Init)) sin([N]v ; Init)
0

Proof: De�nition (6) of sin.

h2i3. ` sin([N]v ; Init) ^2[N]v) 2sin([N]v ; Init)

Proof: h2i2, assumptions 1 and 2, and proof rule INV1.

h2i4. Q.E.D.

Proof: h2i1, h2i3, and assumptions 1 and 2.

h1i2. ` sin([N]v ; Init)) I

h2i1. 8s 2 S : [[sin([N]v ; Init)]](s))
9s0; : : : ; sn 2 S : [[Init ^2[N]v]](s0; : : : ; sn ; s; s; s; : : :)

Proof: De�nition (6) of sin, and the de�nitions of 2 and [N]v .

h2i2. 8s; s0; : : : ; sn 2 S : [[Init ^2[N]v]](s0; : : : ; sn ; s; s; s; : : :)) [[I]](s)

Proof: Assumption 3 and de�nition of 2I .

h2i3. j= sin([N]v ; Init)) I

Proof: h2i1 and h2i2.

h2i4. Q.E.D.

11

Proof: h2i3 and assumptions 1 and 2.

h1i3. Q.E.D.

Proof: h1i1, h1i2, and proof rule STL4 of [8].

A.4 Proof of Proposition 5

Let N be the set of natural numbers and let x 1, . . . , xn be the free variables

of P and N . Since [N]v � [[N]v]hv ;w i
, by replacing N with [N]v and v with

hv ; x 1; : : : ; xn i, we can assume:

5. v is a tuple whose components include all free variables of P and N .

In the following proof, Pn is the predicate that is true i� P can be made

true by taking n N -steps, but with no fewer than n such steps.

Let: Pn
�

= if n = 0 then P

else ^ 8i < n : :P i

^ Enabled (N ^ (v 0 6= v) ^ P 0

n�1)

M
�

= N ^ (8n : Pn+1) P 0

n)

h1i1. ` Init ^2[N]v) 2(9n : Pn)

Let: �(s;n)
�

= 9s0; : : : ; sn : ^ (s = s0) ^ [[P]](sn)

^ 8i < n : [[N ^ (v 0 6= v)]](s i ; s i+1)

h2i1. 8(s0; s1; : : :) 2 S1 :

[[Init ^2[N]v]](s0; s1; : : :)) 8i 2 N : 9n 2N : �(s i ;n)

Proof: Assumptions 3 and 4, (3) (the de�nition of P
�
(P)), and the

de�nitions of C and 3.

h2i2. 8s 2 S;n 2 N : [[Pn]](s) � �(s;n) ^ (8i < n : :�(s; i))

Proof: By induction on n from the de�nitions of Pn , �, and Enabled .

h2i3. 8s 2 S : [[9n : Pn]](s) � (9n 2 N : �(s;n))

Proof: h2i2.

h2i4. j= Init ^2[N]v) 2(9n : Pn)

Proof: h2i1, h2i3, and the de�nitions of 2 and [[[N]v]].

h2i5. Q.E.D.

Proof: h2i4, assumptions 2 and 1, and Proposition 4, since EnabledA

is obtained by existential quanti�cation over the primed variables of A,

so it is expressible if A is, for any action A.

h1i2. Assume: k 2 N

Prove: ` 2[M]v ^WFv (M)) (Pk+1 ; Pk)

h2i1. ` Pk+1 ^ [M]v) P 0

k+1 _ P 0

k

12

Proof: De�nition of M and assumption 5 (which, by induction on k ,

implies Pk+1 ^ (v 0 = v)) P 0

k+1).

h2i2. ` Pk+1 ^ hM iv) P 0

k

Proof: De�nition of M .

h2i3. ` Pk+1) Enabled hM iv
h3i1. j= Pk+1) 8n 6= (k + 1) : :Pn

Proof: De�nition of Pn .

h3i2. j= Pk+1) (M � N ^ P 0

k)

Proof: h3i1 and de�nition of M .

h3i3. j= Pk+1) Enabled hM iv
Proof: h3i2 and the de�nition of Pk+1.

h3i4. Q.E.D.

Proof: h3i3 and assumption 1.

h2i4. Q.E.D.

Proof: h2i1{h2i3 and rule WF1 of [8].

h1i3. ` 32[M]v ^WFv (M)) 23P

h2i1. ` 2(9n : Pn) ^32[M]v ^WFv (M)) ((9n : Pn); P)

Proof: h1i2 and the Lattice Rule of [8].

h2i2. ` 2F ^ (F ; G)) 23G , for any temporal formulas F and G .

Proof: 2F ^ (F ; G) � 2F ^2(F) 3G) De�nition of ;

� 2(F ^ (F) 3G)) Rule STL5 of [8].

) 23G Rule STL4 of [8].

h2i3. Q.E.D.

Proof: h2i1 and h2i2.

h1i4. Q.E.D.

h2i1. ` C(Init ^2[N]v ^32[M]v ^WFv (M)) � Init ^2[N]v

Proof: Proposition 3, since ` M) N by de�nition of M .

h2i2. ` Init ^2[N]v ^32[M]v ^WFv (M)) C(�) ^23P

Proof: h1i1, h1i3, and assumption 3.

h2i3. ` C(�)) C(C(�) ^23P)

Proof: h2i1, h2i2, assumption 3, and part 2 of Proposition 1.

h2i4. Q.E.D.

Proof: h2i3 and Proposition 2.

13

