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Abstract

The path planning problem, i.e, the geometrica problem of finding a collision-free path
between two given configurations of a robot moving among obstacles, has been studied by
many authors in recent years. Several complete algorithms exist for robots with few degrees
of freedom (DOF), but they are intractable for more than 4 DOF. In order to tackle problemsin
higher dimensions, several heuristic approaches have been devel oped for various subclasses of
the genera problem. The most efficient heuristics rely on the construction of potential fields,
attracting the robot towardsits goa configuration. However, thereis no obviousway to extend
this approach to manipulation task planning problems.

This report presents anovel approach to path planning which does not make use of a potential
function to guide the search. It isavariationa technique, consisting of iteratively improving
an initia path possibly colliding with obstacles. At each iteration, the path is improved
by performing a dynamic programming search in a submanifold of the configuration space
containing the current path. We call this method Variational Dynamic Programming (VDP).
The method can solve difficult high-dimensional path planning problems without using any
problem-specific heuristics. Experiments are reported for several computer simulated robots
in 2D and 3D workspaces, including manipulator arms and mobile robots with up to 16
DOFs. More importantly, an extension of VDP can solve manipulation planning problems of
unprecedented complexity. We report an experiment in dual-arm manipulation planning with
12 DOF in a cluttered workspace.

Résumé

Leproblemedelaplanification detrgjectoire, i.e., le probléme géométrique consistant atrouver
des chemins sans collision entre deux configurations d’ un robot en présence d’ obstacles, aété
largement é&tudié ces dernieres années. De nombreux algorithmes existent pour résoudre ce
probléme dans des cas pratiques. Toutefois, I’ extension de ces méthodes aux probléemes de
planifications de taches de manipulation n’est pastriviale.

Nous présentons dans ce rapport une méthode variationnelle, consistant & améliorer itéra-
tivement un chemin initial pour éviter une collision éventuelle avec les obstacles. A chague
itération, le chemin est amélioréen réalisant une recherche par programmation dynamiquedans
une sous variété de I’ espace des configurations contenant le chemin courant. Nous appelons
cette méthode Programmation Dynamique Variationnelle (PDV). La méthode peut résoudre
des problemes difficiles de planification de trajectoire en dimension élevée sans recourir a des
heuri stiques spécifiques au probléme considéré. De plus, une extension de PDV peut résoudre
des problemes de planification de manipulation d’ une compl exité sans précédent.
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1 Introduction

We present a new method for geometrical path planning with many DOF. This method, unlike
other planning methods for many DOF, does not require problem-specific heuristics such as
potential functions to guide the search. The method was initially devel oped for the basic path
planning problem in open free space, but itscapabilities extend to several other instances of the
more general constrained motion planning problem. In particular, an extension of the method
can solvecomplex manipul ation task planning problems. Itisavariational technique, consisting
of iteratively improving an initial path possibly colliding with obstacles. The originality of our
method is to depart from standard gradient-based variationa calculus techniques. Instead, at
each iteration, we perturb the current path by performing a dynamic programming search in
ak-dimensiona submanifold of the n-dimensional configuration space containing the current
path. In practice, k is chosen equal to 2, 3, or 4 in order to make the dynamic programming
search tractable. Thanks to this dynamic programming strategy, the algorithm can avoid in
many cases spurious local minima of the cost functional. Furthermore, when local minima
arise, the result of the dynamic programming search can be used to adequately modify the cost
functional, by the introduction of additional repulsion points around colliding zones on the
path. Thisenables the agorithm to get out of the most difficult local minima.

The k-dimensional submanifold is an arbitrarily chosen ruled surface containing the current
path. This surface is quantized into a k-dimensional grid of configurations. Then, the grid is
searched using Dijkstra’s algorithm with an additive cost function proportional to the number
of configurations colliding with obstacles. Thus, it is guaranteed that fewer pointsin the new
path collide with obstacles. Then, the operation is repeated until a free path is found. We
call thismethod Variational Dynamic Programming (VDP). Theidea behind VDP isto use as
much as possiblethe power of classical complete dynamic programming-based methods, while
avoiding their exponential memory and time requirements.

We have implemented this approach in afully functional simulation program, and conducted
extensive tests. Experiments are reported for several computer simulated robotsin 2D and 3D
workspaces, including manipulator arms and mobile robots with up to 16 DOF. To the best of
our knowledge, only potential field based methods can solve problems of similar complexity.
The specificity of VDPisthat it can solvedifficult high-dimensional planning problemswithout
using any problem-specific heuristics. Thisisinitself animportant point for future research in
geometrical planning. It demonstratesthat cluttered high-dimensional spaces can bepractically
searched without relying on any problem-specific knowledge. One major implication of this
result is that VDP can be generalized for solving complex manipulation planning problems.
This is to be contrasted with potentia field based methods, which require problem-specific
heuristics to resolve such praoblems. Of course, the generdity of the method is obtained at
some cost: the planner is considerably slower than some potential field-based methods, in
particular the RPP method described in Barraquand and Latombe 1991 [5].

In order to explore the flexibility of the VDP approach, we have attempted to imbed into the
planner some heuristic information about the topology of the workspace. More precisely,
instead of applying the VDP method directly on the input workspace, wefirst generate a series
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2 Jérébme Barraquand and Pierre Ferbach

of more and more cluttered workspaces, the first being virtually free of obstacles, and the last
being theoriginal input workspace. Then, we progressively apply theV DP method to the series
of workspaces. Theinput path used in the VDP agorithm for agiven workspacein the seriesis
the output path of the VDP method applied to the previousless cluttered workspace. Inorder to
speed up the algorithm, the dynamic programming search at each iterationisonly conducted in
asmall neighborhood of the current path. Thismakesthe method considerably faster, although
less general intheory. Theideaisthat the solution paths for two similar workspaces should be
relatively close to one another in many cases. We call this version of the planner Progressive
Variational Dynamic Programming (PV DP). Theresulting planner islessgeneral intheory than
the original VDP planner, since it uses problem-specific heuristicsto guide the search. On the
other hand, it is dramatically faster. In fact, it can solve some problems in atime comparable
to that of potentia-field based methods.

PVDP can be used to address constrained motion planning problems, i.e., extensions of the
basic path planning problem where the free space in not necessarily an open subset of the
configuration space. In particular, we have successfully applied PVDP to high-dimensional
manipul ation planning problems. We briefly describe below the extension of the PV DP method
to manipulation planning problems. A complete presentation of the method can be found in
Ferbach and Barraguand 1993 [16]. Given an environment containing a robot, stationary
obstacles, and movabl e bodies, the mani pul ation problem consistsin finding a sequence of free
robot motions, grasping and ungrasping operations, to reach a given state from a given initial
statein thejoint configuration space of the robot and all movable bodies. The movable objects
can only move when they are grasped by the robot. The generalized obstacles (i.e.,, forbidden
postures) in the joint configuration space C are not only the configurations where the robot
or the movable objects hit the stationary obstacles, but also al postures where the movable
objects are levitating without being grasped by the robot. Hence, the free space of the joint
system is not anymore an open subset of the configuration space manifold. In particular, at
a configuration g where the robot grasps one object, the free space in the neighborhood of g
isan (n — h)-dimensional submanifold of the n-dimensional configuration space C, h being
the number of grasping constraints. The principle underlying PVDP isto replace the equality-
constrained problem by a convergent series of more and more difficult inequality-constrained
planning problems in open free space. In other words, grasping constraints are handled by
PVDP in an iterative fashion. PVDP first computes a path where the movable aobjects can
levitate without being grasped by the robots. Then, this path is used as the input for a series
of increasingly difficult problems where the objects must get closer and closer to the robots
in order to move. The planner has successfully solved manipulation planning problems of
unprecedented complexity. In particular, we report an experiment in dual-arm manipulation
task planning for a 12 DOF system. Severa other examples are described in Ferbach and
Barraguand 1993 [16].

Thisreport isorganized asfollows. In Section 2, werelate our contribution to previouswork in
motion planning. In Section 3, we discuss the representational issues for geometric primitives
relevant to the path planning problem, and more specifically to the collision detection problem.
In Section 4 we describe the genera principle underlying Variational Dynamic Programming.
In Section 5 we present the faster heuristic version of the planner PVDP. In Section 6, we
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Path Planning through Variational Dynamic Programming 3

present experimental results illustrating the capabilities of the implemented planners. In
section 7, webriefly discuss sometheoretical and practical issuesrelated to variational dynamic
programming.

2 Relation to other work

The path planning problem, i.e, the geometrica problem of finding a collision-free path
between two given configurations of arobot moving among obstacl es, hasbeen much studiedin
recent years (Latombe 1990 [24]). Today the mathematical and computational structures of the
general problem (when stated in algebrai c terms) are reasonably well understood (Schwartz and
Sharir 1983 [32]) (Canny 1988 [11]). In addition, practical algorithms have been implemented
in more or less specific cases, eg., (Brooks and Lozano-Perez 1983 [9]) (Faverjon 1984 [14])
(Lozano-Perez [27]) (Faverjon and Tournassoud 1987 [15]) (Zhu and Latombe 1991 [35])
(Barraguand Langloisand Latombe 1992 [4] ).

Many efficient and complete algorithms exist when the number of degrees of freedom (DOF)
of the robot is small (Latombe 1990 [24]): exact or approximate cell decomposition methods,
roadmap methods, grid search methods. These methods differ mostly in the data representa
tions used to construct the connectivity graph of the free space. But they all rely on the same
general agorithmic principle for searching the connectivity graph: Dynamic Programming.
Sometimes, heuristics are imbedded to speedup the search, and various algorithms such as A*
or Best First Search are used instead of Breadth First agorithms such as Dijkstra’s. These
algorithms nevertheless use variants of the Bellman principle of Dynamic Programming, as
exemplified in Bertsekas 1988 [8]. Hence, they suffer from thetraditional “ curse of dimension-
ality” prablem of Dynamic Programming (Bellman 1958 [7]): they require exponential space
and timein the number of DOF. These methods are therefore intractable for more than 4 DOF.
Thisis not surprising, since these methods are complete, while the path planning problem is
known to be PSPACE-hard.

In order totackle problemsin higher dimensions, severa heuristic(i.e., incomplete) approaches
have been devel oped for vari ous subcl asses of thegeneral problem, and somesuccessful systems
have been implemented, e.g., (Donald 1984 [12]) and (Faverjon and Tournassoud 1987 [15]).

Variational techniques, i.e., techniques consisting of improving aninitial path possibly colliding
with obstacles, have already been used in an earlier work on path planning (e.g., Buckley
1985 [10], Gilbert and Johnson 1985 [17], Dupont and Derby 1988 [13], Warren 1989 [33]).
In its original form, variational planning suffers from a severe drawback. Indeed, since it
usually consists of minimizing a cost function along its negated gradient by means of standard
variational calculus methods, it gets stuck in most realistic casesin alocal minimum of the cost
functional that does not correspond to afree path. 1naddition, the optimization of thefunctional
isconducted over the space of al possiblepaths, and can be quite computationally intensive. To
the best of our knowledge, no robust planning method based solely upon variational techniques
has been devel oped to date. Variational Dynamic Programming isnot agradient-based method,
hence does not suffer from the same drawbacks.
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4 Jérébme Barraquand and Pierre Ferbach

A widely used heuristic consistsin guiding therobot along the negated gradient of areal-valued
function defined over the configuration space, called the potential function. The potentia has
two components. a goal potentia attracting the robot towards its goa configuration, and an
obstacle potential, repulsing the robot from the obstacles. This so-called artificial potential
field approach was originally proposed in Khatib 1986 [20]. Emphasis was put on real-time
efficiency, rather than on completeness. In particular, since it acts as a gradient descent
optimization procedure, this approach may get stuck at a local minimum of the potentia
function. The local-minimaproblem can be addressed at two levels: (1) inthe definition of the
potential function, by attempting to specify a function with no or few local minima; and (2)
in the design of the search algorithm, by including appropriate techniques for escaping from
local minima. At thefirst level, the construction of analytical potentias free of loca minima
has been investigated, so far with limited success. Solutions have been proposed only in
Euclidean configuration spaces with spherical or star-shaped obstacles (Koditschek 1987 [21])
(Rimon and Koditschek 1989 [31]). Another line of research has been to construct numerical
potential functions with “good” properties (Barraquand Langlois and Latombe 1992 [4] ). At
the second level, powerful methods have been developed for escaping from local minima, in
particular randomi zation methods (Barraquand and Latombe 1991 [5]). Very recently, new and
promissing randomization methods have been devel oped by Overmars 1992 [30] and Kavraki
and Latombe 1993 [19].

Potential field methods appear to outperform other approaches for practical path planning
problemswith many degreesof freedom. In particular, the RPP method described in Barraquand
and Latombe 1991 [5] isalready being used in industrial settings (Ohlund 1990 [29]), (Graux
et a. 1992 [18]). However, the efficiency of these methods highly depends on the properties
of problem-specific potentia functions. In particular, extending the capabilities of potential
field-based planners to more general manipulation task planning problemsis a difficult task.

Theinterestin manipulation task planning ismore recent in theroboticsliterature. The problem
of planning the path of a convex polygonal robot tranglating in a two-dimensional polygonal
workspace in the presence of multiple convex polygonal movable objects is addressed in
Wilfong 1988 [34]. The general manipulation problem is described in a series of papers from
Alami, Laumond, and Simeon (Alami Simeon and Laumond 1989 [2], Laumond and Alami
1989 [25]). Animplemented algorithm for a 2 DOF robot grasping a single object at atime
and several 2 DOF bodiestranglating in the planeis presented in Alami Simeon and Laumond
1989 [2]. The planner has two components: a classical path planner, and a manipulation
task planner (MTP). The MTP plans a sequence a robot motions, grasping and ungrasping
operations, and transfer motions (i.e,, motions of the robot together with a grasped object).
The approach is practically limited to non-redundant robots with few DOF, and requires an
exhaustive exploration of therobot’s configuration space. Kogaand Latombe 1992 [22] present
severa implemented planners solving various dual-arm manipulation planning problems of
increasing difficulty. They useand extend the framework of Alami Simeon and Laumond 1989
[2]. The planner is again the combination of a path planner and a manipulation task planner.
An extension of this approach yielding impressive experimental resultsis presented in Koga
and Latombe 1993 [23].
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Path Planning through Variational Dynamic Programming 5

Our approach to manipulation task planning is fundamentally different. We do not decompose
the problem into a sequence of robot motions and manipulation tasks. Our planner is not a
combination of a path planner and a manipulation task planner. Instead, we simply consider
the whole manipul ation problem as a special instance of the basic path planning problemin the
joint configuration space of the robot and the movable objects. The major advantage of this
approach isto avoid the artificial decoupling between motion planning and task planning. Asa
conseguence, PV DP can solve manipulation planning problems of unprecedented complexity.

3 Centralized versus Distributed Representations

3.1 Definitions

Let A denotetherobot, W itsworkspace, and € its configuration space. A configuration of the
robot, i.e, apointin C, completely specifies the position of every point in .4 with respect to a
coordinate system attached to W (L ozano-Perez 1983 [26]). Let n be the dimension of C, i.e,
the number of DOF. We represent a configuration g € C by alist of n parameters (qy, ..., On),
with appropriate modulo arithmetic for the angular parameters (Latombe 1990 [24]). The
subset of C consisting of al the configurations where the robot has no contact or intersection
with the obstaclesin W is called the free space and is denoted by Ciree.

For each point p € .A, one can consider the geometrical application that mapsany configuration
g = (91, ...,0n) € C tothe positionw € W of p in theworkspace. This map:

X 1 AxC — w
pa) — X(p,q)=w

is called forward kinematic map.

3.2 Centralized Representations: the Problem of Collision Detection

Most solid modeling systems used in scientific computing or computer aided design represent
geometric primitives by algebraic inequalities defining the boundaries of objects. This is
also the case of systems used for the generation of computer graphics scenes. Often, the
algebraic inequalities used are linear, and the geometric primitives are simply polyhedra.
Representations of this kind are called centralized representations. The great advantage of
centralized representations is that they provide a precise description of objects boundaries at
any scal e, while minimizing the amount of redundant information. Using such representations,
accurate modeling of 3D structures can fit into the memory of current computer workstations.
However, these representations have a severe drawback. They are unstructured, i.e., ng
the occupancy of a given location in space requires scanning the list of objects present in the
scene. Therefore, detecting the collision of a given point in space with the objects present
in the scene requires a time linear in the number of geometric primitives. Through the use
of hierarchical representations such as octrees, the assessment of relative positions of static
objects in the scene can be made much faster. Unfortunately, octree decompositions are not
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6 Jérébme Barraquand and Pierre Ferbach

practical when some objects are movable, since they may change dramatically under small
displacements.

The high computational requirements of motion planning are mostly dueto the need to perform
repeated collision checking between the robot and the obstacles (Metivier and Urbschat 1990
[28]). Detecting the collision of arobot with many DOF in realistic environments may take as
much as 1/10 to 1 second when using centralized representations. Planning of a path requires
a number of collision detections ranging from a few hundred for the simplest cases to a few
hundreds of thousands for the most complex ones. Such computation times are practically
prohibitive for planning very complex motions using centralized representations.

3.3 Distributed Representations

The experiments reported in this paper were al performed using a distributed representation
of theworkspace. The workspace )V is modeled as aN-dimensiona bitmap array, withN = 2
or 3 being thedimension of W. The array is defined by the following function BM:

BM : W — {10}
w — BM(w)

in such a way that the subset of points w such that BM(w) = 1 represents the workspace
obstacles and the subset of points w such that BM(w) = O represents the empty part of the
workspace. We write Wempty = {W € W, BM(w) = 0}.

The main advantage of distributed representations is that they are structured, i.e., assessing
the occupancy of any point in workspace is performed in a time constant in the number and
shape of the obstacles, and in the resolution of the bitmap. A point x isoccupied if and only if
BM(x) = 1. Consequently, checking the collision of the robot with obstacles can be done by
simply “drawing” the robot on the bitmap. The drawing procedures used are reminiscent of the
Bresenham’s agorithm well known in Computer Graphics literature. Details on the collision
detection methods employed can be found in (Barraquand and Latombe 1991 [5]).

The drawback of distributed representations is the high memory requirement associated with
the bitmap array, especially for 3D workspaces. In the experiments, the resolution used was
2562 for 2D workspaces, and 1282 for 3D workspaces. In order to store high resolution
3D bitmaps on current workstations, it is necessary to compress the bitmap. Indeed, some
industrial settings require a resolution of the order of 10003, Corresponding bitmaps arrays do
not fit in the memory of current low cost computer workstations without compression. Strong
compression ratios can be obtained by using an octree or a runlength coding technique for one
of the spatia dimensions. However, ng occupancy over the compressed representation
isno longer constant in the resolution of the bitmap. Collision checking istypically one order
of magnitude slower for such compressed representations.
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Path Planning through Variational Dynamic Programming 7

4 Variational Dynamic Programming

In this section we describe the Variational Dynamic Programming (VDP) method. It is based
upon a dynamic programming technique applied successively to various submanifolds of the
configuration space. The ideabehind VDP isto use as much as possiblethe power of classica
compl ete dynamic programming-based methods, while avoiding their exponential memory and
time requirements. In order to generate a free path in a configuration space of much higher
dimension, VDP conducts iteratively several searchesin 2 or 3-dimensional submanifolds of
the configuration space.

4.1 General VDP algorithm

The input to the dgorithmiis;

e Theinitia configuration Qijnit
e Thegoal configuration ggoal

e The specification of the forward kinematic map and the distribution of obstaclesin the
workspace. In the current implementation, the workspace in represented as a bitmap as
described in Section 3. However, the algorithm below is independent of the chosen data
representation.

The output of the algorithm at any given iteration is a path lying as much as possible in free
space. The total number of iterations is arbitrarily bounded to a prespecified number. The
agorithmterminatesif afree path isfound at agiveniteration. Otherwise, thealgorithmreturns
the best available path obtained after the prespecified number of iterations.

The genera VDP agorithm can be described as follows.
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8 Jérébme Barraquand and Pierre Ferbach

algorithm VDP (VARIATIONAL DYNAMIC PROGRAMMING)
begin
Generation of theinitial path;
while Collision with obstacles
Generation of submanifold:;
Generation of repulsion points;
Generation of cost function;
Generation of minimum cost path within submanifold,;
Reparameterization of path;
endwhile;
end;

This agorithm generates iteratively a series of paths joining ginit t0 Qgoal, With a decreasing
percentage of collision points.

We now describe the various parts of the general agorithm in more detail.

4.2 Generation of the initial path

In the current implementation, theinitia path ~ is simply a geodesic path (for an appropriate
metric) between v(0) = init and v(1) = Qgoa in the configuration space manifold. For
example, if the configuration spaceis aconvex open subset of R, theinitial path isthe straight
line joining Qinit and Qgoar. Thisstraight lineis quantized into aseries of m+ 1 equally spaced
configurations, the (i + 1)th point being v (i/m) = (1 —i/m)0init + i/MAgoal. The distance des
between two consecutive configurations is chosen small enough so as to induce a small robot
motion in the workspace (see e.g., Barraquand and Latombe 1991 [5] for a discussion).

4.3 Collision with obstacles

This function returns true if the current path collides with obstacles, and false if the current
pathisafree path. More precisely, it examines each discrete point al ong the path and computes
the corresponding position of the robot using the forward kinematic map. Then, it testsif this
position hits obstacles using the collision detection techniques described in Section 3.

4.4 Generation of the repulsion points

At agiven iteration of the VDP agorithm, the current path + collides with obstacles at one or
more points. We partition the path into a series of connected free and colliding zones. More
precisely, we compute a subdivision0 = 55 < S3 < ... < Sy41 = 1 of the interval [0, 1]
verifying the following properties:

Vi € [0,r],Vs€lsai, Sival,  Y(S) € Crree
Vi € [0,r — 1], VS € [Sit1, Sit2],  7(S) & Crree
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Path Planning through Variational Dynamic Programming 9

For each colliding zone [Spit1, Soiv2], | € [0,r — 1], we define a repulsion point rep;, =
v((S2i+1 + S2i4+2)/2) in the middle of the zone. The definition of these r repulsion points
will be useful for escaping local minima of the overall cost function along the path. We aso
compute for each repulsion point rep; the radius of the corresponding colliding zone:

R = 5d1(8241),7(5242)

where d(q, ') is the Riemanian distance between q and g’ for an appropriate metric in the
configuration space manifold C. In practice, d is the Euclidean distance between the two
vectors g and g’ considered as elements of R".

4.5 Generation of the submanifolds

We describe how a k-dimensional submanifold of the configuration space containing a given
path can be constructed. At a given iteration of the VDP algorithm, we have a current path

7v(s) linking v(0) = dinit and (1) = qgoal-

In afirst step, we select two unit vectors Vinit and vVgoa in the generalized coordinate system
(01, -..,0n). Inthe absence of reliable heuristic, we select these two vectors randomly using
a uniform probability distribution on the unit sphere in R". We extend the path v at both
extremities by defining the extended path 4 in the following fashion:

¥(s) it se0,1]
qgoa|‘|‘9/goa| |f S> 1

Qinit + SVinit ~ if s< O
Y(s) =

Ingeneral, theextended path 4 canbedefinedforall s € R, i.e., it canbeprolongated indefinitely
in both directions. However, we assume that the configuration space is a bounded manifold.
Thisisavery reasonable assumption, since any practical robotics system has a bounded range
of action. Hence, the generalized coordinatesq = (q, . . ., ) Stay in abounded subset of R".
Therefore, there exist two numbers spin < 0 < 1 < Smax Such that al configurations 7 (s) for
S & [Smin, Smax| &€ unreachable.

In asecond step, werandomly select aset of k— 1 independent unit vectorsug, . . ., Ux_1, Using
again a uniform probability distribution on the unit sphere in R". This enables us to define
parametrically a k-dimensional ruled submanifold S., of the configuration space C:

k-1
SW:{qGC | 3(S7A17"-7Ak—1)7 q::%(s)‘szlul}
i=1

Asitisthecasefor thefirst parametric coordinates, al other parametriccoordinates Ay, . . ., Ak_1
are bounded, since the configuration space is assumed bounded:

Vie[Lk=1], XenNm ™
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10 Jérdme Barraquand and Pierre Ferbach

Hence, the set of parametric coordinates (s, Ay, . .., \k_1) is a bounded subset of RX. The
bounded submanifold S, is then quantized into a finite cartesian grid along its parametric co-
ordinates s, A1, . . ., Ak_1, Using constant increments 8s, § A4, . . ., 6 Ak—1. Within the quantized
submanifold, the set of neighbors of agiven configuration qisthe classical k-neighborhood for
the parametric coordinates, i.e., the set of 3¢ — 1 configurations whose parameters differ from
those of g of one quantization step at most. For notational convenience, we will indifferently
denote by s or A\g the parameter along the current path. The quantization §)\; along each
parameter ) ischosenin such away that the distance between two neighboring configurations
is of the order of dyef.

Remark: The construction of the k-dimensiona submanifold described above can be dlightly
modified in the following fashion. Instead of selecting constant unit vectors vinit and Vgoa, We
can select two series of “slowly” varying vectors Vs < 0, Vinit(S) and Vs > 1, Vgoa (S) such that
the difference between two consecutivevectorsinthe seriesis“small”. Similarly, we can define
slowly varying series of vectors Vs, u;i(s) for each index i € [1,k — 1]. In our experiments,
we have implemented both approaches. The experimenta performance of the VDP algorithm
does not seem to be affected by the variability of unit vectors. However, there is an important
theoretical difference between the two approaches. Indeed, the version using varying unit
vectorsis probabilisticallyresol ution-complete, i.e., if asolution path existsin open free space,
then the probability of finding a quantized path at distance less than dy to this solution path
tends towards one when the computation time tends towards infinity.

Let usassumethat acollision free path v« exists. If the unit vectors are allowed to vary along
the coordinate s, it iseasily seen that at each iteration, thereisavery small but strictly positive
lower bound p on the probability that the submanifold generated contains a path +' identical
to vso Up to the configuration space quantization dre. In thisevent, 4’ isa collision-free path
in the search submanifold. The agorithm will therefore necessarily find a collision-free path
thanksto the optimality of Dijkstra'sa gorithm. We can conclude that the probability of finding
a solution path after N iterations of VDP is lower bounded by 1 — (1 — p)N. Therefore, this
probability tends towards 1 when the number of iterations tends towards infinity. The rate of
convergence is geometric. However, the lower bound p is so small in practice that this result
says little about the actual efficiency of VDP.

4.6 Generation of the cost function

The VDP algorithm consists in iteratively improving an initial path by performing dynamic
programming searches in k-dimensional submanifold grids. We describe the cost function
used for the search within a given grid. The total cost along a quantized path v(so =
0),7(s1), - - -,v(sn= 1) isan additive functional:
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Path Planning through Variational Dynamic Programming 11

The elementary cost function C(q, g’) between two neighboring configurations is the product
of two components:

C(a,9") = Copst(0, q') X Crep(a1, ')

The component Cyng has higher valuesin colliding zones, thereby inducing the optimal path to
lieasmuchaspossiblein free space. The component Cre, has higher valuesin theneighborhood
of repulsion points, thereby forcing the optimal path out of local minimaof the pure obstacle-
avoidance functional Jc .

We now describe in more detail the expressions of Copg and Crep.

c , 0.001 x d(gr—;‘/) if gand g’ are non-collision configurations
bt (0 ) = 1x d(gr—;‘/) if g or q" isacallision configuration

whered(q, ') is again the distance between g and g’ in configuration space.

rep,, ..., rep, beingther repulsion pointsprecomputed at the current iteration, and Ry, . . ., R
the radii of the corresponding colliding zones, the multiplicative cost factor Cye, is defined as

follows.
- R
Crep(0,0) =1+ ) aim————
@) =14 2 i e

whereq” = &2"” and a1, ay, . . ., ar are positivecoefficientschosen at each iteration randomly
between 0.5 and 2 for example. We call these coefficients the repulsion coefficients.

4.7 Generation of the minimum cost path within a submanifold
This procedure achieves the dynamic programming search of an optimal path within the

guantized submanifold using the standard Dijkstra’s algorithm (see e.g., Aho Hopcroft and
Ullman 1983 [1]). The priority queueisimplemented as a heap.

4.8 Reparameterization of the path
After an optima path has been found by the search agorithm, the distance in configuration
space between two consecutive points along the path is not equal anymore to the reference

distance dres. This procedure simply reparameterizes the path in such away that the distance
between two consecutive points equals dyes.

5 Progressive Variational Dynamic Programming

5.1 Reducing the size of the search space

Theexperiments presented in Section 6 show that VDPisapowerful path planner. Indeed, it can
solve very difficult planning problemsin cluttered workspaces with robots having many DOF.
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12 Jérdme Barraquand and Pierre Ferbach

We have found that VDP can solve al the problemsthat have been solved by the potential field
based planner RPP (Barraguand and Latombe 1991 [5]). However, inits originad form, VDP
is about two orders of magnitude slower than RPP for the most difficult problems. This can be
easily understood, sinceat each iteration of the algorithm, VDP performsan uninformed search
(Dijkstra's agorithm) of the whole k-dimensional array of quantized parametric coordinates
AQy + v oy AK_1-

By reducing the size of this search space at each iteration, the total computation time can be
dramatically reduced. Let ~; be the path at the end of iteration i of the VDP agorithm. If the
path ~; is already close to a collision free-path, the optimal path ~;,.1 obtained after the search
of the whole k-dimensional submanifold at iterationi + 1 liesin a small neighborhood of ~;.
Hence, asolution for dramatically reducing the number of explored cellsisto limit the search
for viy1 to asmall “tubular” neighborhood of +;. Thiswill work if the configuration space is
not too cluttered, i.e., if the motion planning problem at hand is simple.

In order to use the same idea for more difficult problems, a solution is to replace the initial
motion planning problem by aseriesasimpler problemsinlesscluttered workspaces converging
towards the initial problem. More precisely, instead of applying the VDP method directly on
the input workspace, we can first generate a series of more and more cluttered workspaces
using heuristic ad-hoc techniques, thefirst being virtually free of obstacles, and the last being
the original input workspace. Then, we progressively apply the VDP method to the series of
workspaces. The input path used in the VDP algorithm for a given workspace in the series is
the output path of the VDP method applied to the previous less cluttered workspace. Since
two consecutive problems in the series are similar, it can be expected that the solution paths
for those two problems will also be similar. Hence, the dynamic programming search at each
iteration can be only conducted in a small neighborhood of the current path. This idea of
Progressive Variational Dynamic Programming is described in more detail below.

5.2 Progressive Variational Dynamic Programming

Let P beour initial motion planning problem, consistingin finding apath v joining~(0) = Ginit
and (1) = qgoal While avoiding obstacles:

Vse [0,1], () € Crree
We can define in many different ways (see next subsection) a decreasing finite sequence of
free-spaces € D Clu D Clee D -+ - D Clige D - - -Ci™ = Ciree. Then, we can replace problem
P by the sequence of problems P; whose solution paths ~; must satisfy the simpler obstacle

avoidance constraints; ‘
Vs e [07 1]7 Yi (S) € Cflree

The original VDP agorithm can be reparameterized to better fit the need of each subproblem
P;.

VDP(Ciree, K, AX 5 Nbiter, repulsion)
Crree is the set of authorized configurations. k is the dimension of the submanifold where
the search is conducted. K, is the radius of the tubular neighborhood where the search is
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Path Planning through Variational Dynamic Programming 13

conducted around the current path. nbjier isthe number of iterations of the VDP agorithm, i.e,
the number of times a submanifold is generated and searched. repulsion is aboolean variable
settot r ue if the repulsion parameters have positivevalues, f al se if they are all set to zero,
i.e, thereisno repulsion.

The number AKX, is chosen as afunction of the dimension k of the submanifold. Typically, for
k = 2, \2,,, is chosen equal to about 8 times the size of the quantization step dyef. For k = 3,
/\f'nax is chosen equal t0 4 x drer. For k = 4, A% ischosen equa to dye. In other words, in
a 4-dimensional submanifold, the search is only conducted along the immediate neighboring
configurations of the current path.

The Progressive Variational Dynamic Programming agorithm can be described as follows.
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14 Jérdme Barraquand and Pierre Ferbach

algorithm PVDP (PROGRESSIVE VARIATIONAL DYNAMIC PROGRAMMING)
begin
Generation of theinitia path +o using standard VVDP planner;
fori=1,1 <ipaui=1+1
VDP(Clregr 2, N2 Nbiter, T T UE);
VDP(Cl e, 3, A3 Nbier, f @l s€);
VDP(Cl ooy 4, Moo Nbier, T @l s€);
if not found Backtrack ;
endfor;
end;

In other words, for each subproblem P;, PVDP performs a few (nbi) iterations of the VDP
algorithm using 2D submanifolds, then performs a few iterations using 3D submanifolds, and
finaly continues with a few iterations using 4D submanifolds. Of course, if a free path is
found to problem P; after any of those iterations, the algorithm immediately steps to the next
subproblem P;;. If avalid path for problem P; is not found, the algorithm backtracks, i.e, a
new initia path v is generated using the standard VVDP planner for problem P;, and the PVDP
procedure is restarted from there.

The number nbj istypically setto 5. The search iscontinued until afree path+; isfound. The
agorithm is stopped after a solution path +;,,, = ~ is found for the original problem. Since
the algorithm may never terminate, we artificially impose an upper bound on the total running
time. The algorithm returnsfailure if this upper bound is reached.

Remark: Instead of searching for a better path in a neighborhood of the current path ~ for al
timest € [0, 1], it is possible to limit the search locally to subintervals of [0, 1] for which ~
does not satisfy the constraints. Thisis how the search agorithm has been implemented in the
PV DP method.

5.3 Definition of the approximating sequence by a penalty function

As described in Section 3, the obstacles in the workspace can be represented either using
geometrical primitives (e.g., polygons), or using distributed representations (e.g., bitmaps). In
order to define the sequence of free spaces C},., We have chosen to use the representation
of obstacles by geometrical primitives. Similar algorithms could be defined using bitmap
representations.

We assume for the sake of simplicity that obstacles can be described as a finite set of convex
polygonsB,, . . ., Bm. However, our approach can easily be generalized to the case of obstacles
boundaries represented by higher-order polynomials. Alternatively, the obstacles could be
represented through a bitmap description, and the following definition of the sequence of free
spaces could be adapted accordingly.

Each face B} of polygon B; is modeled as an affine function (i.e., a polynomial of degree one)
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Path Planning through Variational Dynamic Programming 15

denoted g}. Let h; be the number of faces of B;. We define:

Ywe W, giw) = g (w)

s
Polygon B; can be defined in the following way.

B = {we W,gj(w) >0}
Hence, apoint w in the workspace does not intersect with any obstacle iff

Jobst(W) = max gj(w) < 0
jef1,m
Besides, if the robot considered is articulated, we must check whether or not it collides with
itself. We assume the set of configurations where the robot does not collide with itself can be
defined by:
{q € C, Qautocoll(q) < O}

Let X be the forward kinematic map of the robot A. The free space Cree being defined as the
set of configurations such that the robot does not collidewith itself or obstacles, we can write:

Cree = {0 € C, Gautocall(4) < 0} N {q € C,Vp € A, gobst(X(p, q)) < O}

We consider afinite decreasing sequence of numberse; > ¢ > ... > €, = 0, and wedefine
the corresponding finite sequence of free spaces

Chee = {0 € C, Gautocoll(A) < 0} N {q € C,¥p € A, Gobst(X(p, q)) < €i}

The sequence ¢ is called e-strategy. More complex e-strategies can be defined. For example,
for a given obstacle Bj, the function g; can be replaced by any other function gj:

gw) = min aigy(w
where oy, .. ., an, are arbitrary positive numbers. Also, any other additional heuristic can be
added to improve the progressiveness in the sequence of problems P;. Examples of practical
e-strategies will be givenin Section 6. In general we call e-strategy the whole set of empirical
parameters that can be used to define the sequence Cf‘ree. The function gopg is called a penalty
function, since it is used in the sequence of problems P; to increasingly penalize the robot
motionsthat do not satisfy the obstacle avoidance constraints.

5.4 Applications of PVDP to manipulation planning problems

PVDP can be used to address constrained motion planning problems, i.e., extensions of the
basic path planning problem where the free space in not necessarily an open subset of the
configuration space. In particular, we have successfully applied PVDP to high-dimensional
manipul ation planning problems. We briefly describe below the extension of the PV DP method
to manipulation planning problems. A complete presentation of the method can be found in

Research Report Draft September 1993



16 Jérdme Barraquand and Pierre Ferbach

Ferbach and Barraguand 1993 [16]. Given an environment containing a robot, stationary
obstacles, and a movable object, the manipulation problem consists in finding a sequence of
free robot motions, grasping and ungrasping operations, to reach a given state from a given
initial statein thejoint configuration space of the robot and of the movable object. The movable
object can only movewhenitisgrasped by therobot. The generalized obstacles(i.e., forbidden
postures) in the joint configuration space C are not only the configurations where the robot or
the movable object hit the stationary obstacles, but also al postures where the movable object
is levitating without being grasped by the robot.

It is shown in Ferbach and Barraguand 1993 [16] that under suitable conditions on the set of
stable configurations for the movable abject, the grasping constraints are holonomic, i.e., they
can be represented by:

VS € [07 1]7 ggrasp('Y (S)) = O
where v isthe path followed by the robot and the movable object.

Hence, we can define in a fashion similar to that of the previous subsection a decreasing
sequence of positive numbers ¢ converging towards zero, and consider the corresponding
sequence of problems P; for which the original grasping constraint is replaced by:

s € [0, 1], Ggrasp(7(S)) < €i

The principle underlying PVDP is to replace the original problem by the series of problems
Pi. In other words, grasping constraints are handled by PVDP in an iterative fashion. PVDP
first computes a path where the movable objects can levitate without being grasped by the
robots. Then, thispathis used asthe input for a series of increasingly difficult problemswhere
the objects must get closer and closer to the robotsin order to move. PVDP has successfully
solved manipulation planning problems of unprecedented complexity. We report in Section
6 an experiment in dual-arm manipulation task planning for a 12 DOF system. Several other
examples are described in Ferbach and Barraguand 1993 [16].

6 Experimental results

We have implemented both VDP and PVDP in two programs written in C, running on a
DEC3000-500 Alpha AXP workstation. We have experimented with VDP and PYDP using a
variety of robot structures. Severa of these experiments are derived from the RPP simulation
program developed at the Stanford Computer Science Robotics Laboratory (see eg., Bar-
raguand and Latombe 1991 [5]). We present below some of the most significant experiments,
and we compare the capabilities of VDP to that of RPP.

6.1 10-DOF non-serial manipulator robot in 2D workspace
We applied VDPto the planar non-serial manipulator robot depicted in Figure 1, which includes

three prismatic joints (telescopic links) and seven revolute joints. Figure 1 illustrates a path
found by VDP for ardatively simple obstacle avoidance problem.
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Figure 2: VDP method, 3D submanifolds
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In thisexample, the dimension of the submanifoldswas chosen equal to k = 2. The number of
iterations of the VDP agorithm was 34. Thetotal computation timewas about 3 minutes. This
isslower than the computation time using the RPP method, which takes about 10 secondsin this
case. Using 3D submanifolds, VDP finds a path in only 3 iterations instead of 34. However,
the overall computationtimeis over 13 minutes, sinceasingle 3D iteration is computationally
intensive. PV DP solvesthe same problem inlessthan 30 seconds. We seethat the performance
of PVDP iscomparableto that of RPP on thisrelatively simple problem.

We aso tested VDP on the more difficult problem depicted in Figure 2. Figure 2 shows a
path found by VDP using 3D submanifolds. The number of iterations was 76, and the total
computation time was 7 hours. The VDP method using only 2D submanifoldsfailed to solve
this problem. Thisis dramatically slower than RPP, which solved this problem in about 30
seconds. Figure 3 shows a path found by PVDP for the same problem. The total computation
time was 20 minutes. Thisis much faster than VDR, but still not nearly as fast as RPP.

We now describe the e-strategy that was used by PV DP for this problem. The origina problem
P was replaced by a sequence of 15 prablems P;. Figure 4 shows afew of the workspacesin
the series. The length L of the two bars in the middle was chosen according to the following
formula:

Vi€ [1,15), Li=Ly+ (Lis— L1)\/i/15

A strictly similar formula was used for the diameter D of the diamond on the left. We seein
the above formulathat the lengths of the obstacles were increased with the square root of the
problem index i, since the last steps are the most difficult.

6.2 8-DOF serial manipulator arm in 2D workspace

We consider the 8-DOF serial manipulator with 8 revolute joints depicted in Figure 5. Figure
5 shows a path found by VDP using 3D submanifolds. The number of iterationswas 93. The
total computation time was 6 hours. Figure 6 shows a path found by PVDP for the same
problem. The computation time was 20 minutes. Thisis still not nearly as fast as RPP, which
solved the same problem in less than 20 seconds. Figure 7 shows a few of the 40 different
workspaces used in the progressive method.

6.3 Coordination of two 3-DOF mobile robots

The same planner was applied to problems requiring the coordination of two 3-DOF mobile
robots in a two-dimensional workspace made of severa corridors. The problem shown in
figure 8 is particularly difficult because the two robots have to interchange their podtionsin
the central corridor; hence, both of them must first move to an intermediate position in order
to alow the permutation. Noticethat in theinitial configuration both robots are rather closeto
their respective goal configurations, however the paths to move there are quite long.

Figure 8 shows a path found by VDP using 3D submanifolds. The total number of iterations
was 67, and the computation time 2 hours and 50 minutes. The same problem was solved by
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Figure 7: A few of the 40 workspaces used in the PV DP method

L

LI

s
t

Figure 8: Coordination of two mobilerobots.
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PVDPin 26 minutes. Thisisstill considerably slower than RPP, which solved this problemin
less than 20 seconds.

6.4 16-DOF manipulator robot in 3D workspace

Figure 9: 3 views of a path found by VDP for a 16DOF manipulator in a 3D workspace.

VDP was aso tested on the 16-DOF manipulator illustrated in Figure 9. This manipulator
consists of 5 telescopic links connected by 5 spherical joints. The bar at the end of the
manipulator is connected to the last link by a revolute joint. A path generated by the program
isillustrated in Figure 9. Three different views (left, center, and right) are given for each of
the five configurations (from top to bottom) represented along the solution path. The number
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of iterations of VDP using 3D submanifoldswas 20. The total computation time was 2 hours
and 15 minutes. RPP solved this problem in less than 3 minutes.

6.5 A manipulation planning problem using two articulated fingers

The 10-DOF robot depicted in Figure 1 was used in the pick and place problem illustrated
in Figure 10. We used the PYDP method. The RPP planner is not designed for solving
manipul ation planning problems, hence cannot be compared with PV DP on this example.

The task assigned to thisrobot is asimple pick and place operation consisting in grasping the
disk in the lower right corner of the workspace, bringing it to the lower left corner, and then
returning to itsinitial configuration. The total number of degrees of freedom for the whole
problem is 12. Figure 10 illustrates a manipulation plan found by PVDP.

In this example, the robot is said to have grasped the disk when the following conditions are
satisfied:

o the center M of the disk coincides with the middle R = E1£E2 of the two end-effectors
E; and E; of the robot.

¢ thedistance ||E;E;|| between the two end effectors E; and E; is equal to the diameter D
of the disk.

Let M1 and M5 be the initial and goal configurations of the disk. The grasping constraint
vt, F(y(t)) = Oisreplaced in the approximating problem P, by the constraint Vt, F(y(t)) < €
with the following expression for F(q).

F(a) = min ( max(|E4E2| - D, R} miny [Mh])

In other words, in problem P,, either the disk is at distance lessthan ¢ of adocking position, or
if satisfies both conditions ||E1Ez|| < D 4 € and ||RM|| < e.

The initia vaue of ¢ is one fourth of the size of the workspace. Then, it is decreased at each
iteration of the penalty function method by 0.001, i.e., 0.1% of the size of the workspace. The
tolerance value was set to ¢, = 0.006, i.e 0.6% of the workspace. The path was computed in
about half an hour.

7 Discussion and conclusion

Theexperimentsreported in Section 6 demonstratethat V DP can solvedifficult motion planning
problems with many degrees of freedom. VDP is by far the most reliable and powerful
variational planner developed to date. But VDP is dramatically slower than potentia field
based planners such as RPP. PVDP isfast for simple problems, but still not nearly as fast as
RPP for more difficult problems. Thisis not surprising, since VDP does not use the numerical
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Figure 10: A pick and place operation using a two-fingered 10-DOF robot

potential functions that make much of the power of planners such as RPP. In the current
implementation of VDP, the submanifoldsused for searching collision-free pathsare generated
purely at random. We think it should be possible to use information deriving from potential
functions in order to improve the procedure generating the submanifolds. Future research
will determine whether or not VDP can be made as fast as RPP through the use of numerical
potential functions.

On the other hand, VDP has several unique features. First, it is a variationa planner, and
can therefore be used in constrained motion planning problems such as manipulation planning
problems. Such problems are out of reach of classical planners such as RPP. However, as
outlined in Ferbach and Barraguand 1993 [16], it may be possible to develop a variationd
version of RPP. Future research will determine whether a variational version of RPP can be
made as efficient as PV DP for solving manipulation planning problems.

Second, V DP uses dynamic programming. Thismay become an important advantage over ran-
domized planners when addressing mation planning problemswith non-holonomic constraints.
Indeed, optimal agorithms based upon dynamic programming aready exist (Barraquand and
Latombe 1993 [6]) for planning motions of non-holonomic mobile robots with few DOF. We
think it is possible to use the main ideas underlying VDP to develop a motion planner for
non-holonomic robots with many DOF. Thisextension is left for future research.

Third, VDP can be used in cases where the constraints on the solution paths are different
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Path Planning through Variational Dynamic Programming 25

from those encountered in classical obstacle avoidance problems. One might think of planning
problemswhere the task assigned to the robot is to avoid dangers other than obstacles, such as
heat or radiation sources. In such acase, the constraint imposed upon the path is not binary but
real valued. For example, the robot’s task may be to minimize along its path the accumul ated
heat or radiation level. Then, the minimum cost functional J of VDP can be easily extended
to take into account such real-valued constraints. More generally, VDP can be viewed as a
systematic technique for addressing optimal control problemsfor high-dimensional holonomic
dynamical systems. Its possible applicationsextend far beyond thosein robotics, to many other
fields of control theory.
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