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Abstract

Feature trees generalize first-order trees (which are called ground terms in the general
framework of universal algebra). Namely, argument positions become keywords (“features”)
from an infinite symbol setF . A constructor symbol becomes a node symbol that can occur
with arbitrary and arbitrarily many argument positions. Feature trees are used to model flexible
records; the assumption thatF is infinite accounts for dynamic record field additions.

We develop a universal algebra framework for feature trees. We extend the classical set-
defining notions: automata, regular expressions and equational systems, and show that they
coincide. This extension of the regular theory of trees requires new notions and proofs.
Roughly, a feature automaton reads a feature tree in two directions: along its branches and
along the list of the direct descendants of each node. The second direction corresponds to an
automaton on a commutative monoid (over an infinite alphabet).

One motivation for this work stems from the fact that, in a type system for the programming
language LIFE, the types denote sets of feature trees. Operations needed for type checking
can now be implemented by the corresponding automata algorithms.

Résumé

Des arbres `a traits généralisent des arbres du premier ordre (qui sont appel´es des termes
clos dans l’alg`ebre universelle).̀A savoir, les positions d’arguments deviennent des mots cl´es
(“traits”) appartenants `a un ensemble infini de symboles,F . Un symbole de constructeur devient
un symbole de noeud qui peut apparaˆıtre avec n’importe quelles positions d’arguments en
n’importe quel nombre. Des arbres `a traits sont utilis´espour la mod´elisationdes enregistrements
flexibles; la supposition de l’infinitude deF est nécessaire pour rendre compte des additions
dynamiques de champs d’enregistrements.

Nous développons un cadre formel pour les arbres `a traits, dans l’alg`ebre universelle. Nous
étendons les notions classiques d´efinissant les ensembles : les automates, les expressions
régulières et les syst`emeséquationels, et nous montrons qu’elles co¨ıncident. Cette extension
de la théorie régulière des arbres n´ecessite de nouvelles notions et preuves. Sch´ematiquement,
un automate `a traits lit un arbre `a traits dans deux directions : le long de ses branches, et le
long de la liste des descendants directs de chaque noeud. Cette deuxi`eme direction correspond
à un automate sur un monoid commutatif.

Une motivation de ce travail vient du fait que, dans un syst`eme de types pour le langage
de programmation LIFE, les types d´enotent des ensembles d’arbres `a traits. Des op´erations
utilisées pour la v´erification de types peuvent maintenant ˆetre implémentées par les algorithmes
d’automates correspondants.
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Feature Automata and Sets of Feature Trees 1

1 Introduction

In this section, we will give some background and motivation (“the task”) and then outline the
rest of the paper (“the method”).

The Task. We describe a specific formalism of data structures called feature trees. They
are a generalization of first-order trees, also called constructor trees or the elements of the
Herbrand universe. Since trees have been useful,e.g., for structuring data in modern symbolic
programming languages like Prolog and ML, the more flexible feature trees have an interesting
potential. Precisely, feature trees model record structures. They form the semantics of record
calculi like [AK86], which are used in programming languages [AKP91b] and in computational
linguistics (cf., the book [Car92]). In the logical framework for record structures of [AKPS92],
they constitute the interpretation of a first-order theory, which is completely axiomatizable,
and hence decidable [BS92].

As graphs, feature trees are easily described as finite trees whose nodes are labeled by node
symbols (instead of constructor symbols), and whose edges are labeled by feature symbols
(instead of being numbered), all those edges outgoing from the same node by different ones.
Thus, symbolic keywords called features denote the possible argument positions of a node.
They access uniquely the node’s direct subtrees. All node symbols can label a node with any
features attached to it, in any, though finite, number.

Although thoroughly investigated [AK86, Smo92, BS92, AKPS92], also in comparison with
first-order trees [ST92], feature trees have never been characterized as composable elements
in an algebraic structure,i.e., with operations defined on them. Also, up to now, there has been
no corresponding notion of automaton. This device has generally proven useful for systems
calculating over sets of elements.

The practical motivation for such a system comes from the possibility of defining a hierarchy
of types denoting sets of feature trees. For its use in a logical programming system employing
feature trees such as LIFE [AKP91b], we need to compute efficiently the intersection of two
types (roughly, for unification). Concurrent systems, in connection with control mechanisms
such as residuation or guards [AKP91a], require furthermore an efficient test of the subset
relation (matching). Thus, we need to provide a formalism defining the types in a way that is
expressive enough and yet keeps the two problems decidable. Such a formalism can be given,
for example, as a system of equations and the corresponding automata notion with Boolean
closure properties and decidable emptiness problem.

Also, if we want to extend the techniques of type systems for logic programming, where types
denote sets of trees (cf., the book [Pfe92]), to LIFE, where types will instead denote sets of
feature trees, we first have to provide a corresponding formal framework.

A major difficulty in the construction of a suitable algebraic framework for feature trees (i.e.,
with the property that automata and equational systems coincide1) comes from the fact that the
setF of features,i.e., of possible argument positions of a node accessing its direct subtrees, is

1We note that the expressiveness of tree automata is equal to the one of equational systems for the free term
algebras over finite signatures; it is strictly weaker in the case of infinite signatures for all tree species, including
those considered in [Cou89, Cou92].
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2 Joachim Niehren and Andreas Podelski

infinite. The infiniteness ofF is, however, an essential ingredient of the formal frameworks
modeling structures. A practical motivation of the infiniteness is the need to account for the
possibility of dynamic addition of (arbitrarily many) record fields to a value. It turns out
that this semantical point of view has advantages for implementation as well. Namely, the
correctness of the efficient algorithms for entailment and for solving negated constraints on
feature trees [AKPS92] relies on the infiniteness ofF .

The Method. The first step in solving the problem described above is to build an appropriate
algebraic framework. Such a framework is provided by universal algebra in the case of
first-order trees. Formally, these are the elements of the free algebra over a given signature
of function symbols (finite or infinite,cf., [Mah88]). This framework yields immediately a
“good” notion of automata.

In fact, as Courcelle has shown in [Cou89, Cou92], universal algebra provides a framework for
a rich variety of trees. Clearly, that work inspired our notion of the algebra underlying feature
trees. We introduce this notion in Section 2. Informally speaking, the operation composing
feature trees in the algebra takes a record value and adds a record field containing another
value to it. In a special case, this amounts to Nivat’s notion of ‘sum of trees’ [Niv92]; thus,
incidentally, we obtain an algebraic formalization hereof.

To define feature automata as algebras, it is useful to consider the class of all finite trees
whose nodes are labeled by node symbols, and whose edges are labeled by feature symbols.
We call these multitrees.2 Multitrees are of interest on their own, namely for representation
of knowledge with set-valued attributes [Rou88]. Thus, feature trees are multitrees with the
restriction that features are “functional,”i.e., all edges outgoing from the same node are labeled
with different features. Feature automata recognize languages of multitrees, which are then
cut down to recognize languages of feature trees.

In Section 3, we will define feature automata and show the basic properties of this notion:
closure under the Boolean operations and decidability of the emptiness problem. In order to
restrict our study to finitely representable automata and yet to account for the infiniteness of
the set of featuresF , we introduce the notion of afinitary automaton: the number of states
is finite, and the evaluation of the automaton can be specified not only on single symbols, but
also on finite sets or on complements of finite sets of symbols. Thus, it could be specified by
saying either “the value off . . . for all symbolsf 2 F” or “the value off . . . for all symbols
f 62 F,” whereF � F is finite.

Roughly, a feature automaton reads a feature tree in two directions: along its branches (from
the frontier to the root) and along the fan-out of each node (along all argument positions). This
is necessary in order to account for the flexibility in the depth as well as in the out-degree of
the nodes of feature trees. The first direction is standard for all automata over trees. In order
to study its behavior in the latter direction, or what we call the local structure of the recognized
language, we consider recognizable sets of feature trees of depth1, called flat feature trees.

2The unranked unordered trees studied in [Cou89] (the number of arguments of the nodes is not restricted, and
the arguments are not ordered) are a special case of multitrees, namely with just one feature. In the framework
of [Cou89], however, recognizability by automata is strictly weaker than definability by equational systems, even
if the set of node labels is finite.
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Feature Automata and Sets of Feature Trees 3

In Section 4, we define a class of logical formulas, calledcounting constraints. The name
comes from the fact that they express threshold or modulo counting of the subtrees which are
accessed via features from a finite or co-finite set of features. That is, their occurrences are
counted up to a certain number, or modulo a certain number.

The main technical result of this paper is a theorem saying that counting constraintscharacterize
exactly the recognizable sets of flat feature trees. The proof takes up Sections A and B. The
theorem essentially links counting and the finitary-condition; in all of the set-defining devices
presented here, either of these two notions accounts for the infiniteness ofF .

Counting constraints can express that certain features exist in the flat feature tree (labeling
edges from the root), and that others do not.3 As a consequence, one can show that the set of
first-order trees, with fixed arity assigned to node symbols, and recognizable subsets of these,
are sets recognized by feature automata.

In Sections 5 and 6, we give two alternative ways to define recognizable sets of feature trees
which are more practical than automata: regular expressions and equational systems. In the
first one, the sets are constructed by union, substitution and star,i.e., iterated substitution
(and, optionally, complement or intersection). In the second, they are defined as solutions of
equations in a certain form. For both, counting constraints can be used to define the base cases.
Thanks to the main theorem in Section 4, we are able to show that either class of defined sets
is equal to the one for feature automata. Moreover, the devices can be effectively translated
one into the other. These results, together with the previous ones, are necessary to present
a complete regular theory of feature trees and to offer a solution to the practical problem of
computing with types denoting sets of feature trees as described above.

2 The Algebra J

In this section, we will introduce feature trees and the more general multitrees as elements of
an algebra that we define, calledJ . This yields the notion of aJ -automaton. This section
follows the approach of [Cou89] and [Cou92].

In the following we will assume a given setS of node symbols4 (referred to byA, B, etc.) and
a given setF of feature symbols (also called attributes, or record field selectors, referred to by
f , g, etc.).

Formally, multitrees are trees (i.e., finite directed acyclic rooted graphs) whose nodes are
labeled overS, and whose edges are labeled overF . Or, the setMT of multitrees overS
andF can be introduced asMT =

S
n�0MT n where (let IN denote the set of all natural

numbers, and INMfinite the set of finite multisets with elements from the setM):

MT 0 = f (A; ;) jA 2 Sg;

MT n = f (A;E) j A 2 S; E 2 IN
F �MT n�1
finite g [ MT n�1:

3In [ST92, Smo92], these correspond to the constraintsxF, xf# or their negations, whereF � F finite and
f 2 F .

4In the literature on feature trees, the elements ofS are usually called “sorts.” In this text, we use “node
symbols” instead of “sorts” in order to avoid confusion with the notion of sorts of domains in universal algebra.
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4 Joachim Niehren and Andreas Podelski

MT n contains the multitrees of depth� n.

Feature trees are multitrees such that all edges outgoing from the same node are labeled by
different features.FT denote the set of all feature trees (andFT n all those of depth� n).

We introduce two sortsMT and F for multitrees and features, respectively, and define the
fMT;Fg-sorted signature:

� = f)g ] F ] S

where) is a function symbol of profile:MT� F� MT 7! MT, and the symbols inF andS
are constants of sortF and of sortMT, respectively.

Thealgebra of multitreesJ is defined as a�-algebra. Its two domains areDMT =MT and
DF = F of the sortsMT andF, respectively. Its ternary function symbol)5 is interpreted in
J as the operation which composes two multitreest; t0 2 MT via a featuref 2 F to a new
multitree composed oft and t0 with an edge labeledf from the root oft to the root oft0. Or
(wheret denotes multiset union),

)J
((A;E); f ; t) = (A;Et f(f ; t)g):

Borrowing the ‘tree sum’ notation from [Niv92], we might write)J (t; f ; t0)more intuitively
as t + ft0. In fact, for the special case whereF = f1; 2g (the two features denoting left and
right successors), we obtain an algebraic reading of the notation of [Niv92].

The interpretation of the constants is given byfJ = f andAJ = (A; ;).

It is easy to verify that the algebraJ satisfies theorder independence theory (OIT), i.e., the
following equation is valid inJ .

) () (x; f1; x1); f2; x2) = ) () (x; f2; x2); f1; x1) (1)

In the ‘tree sum’ notation this expresses the commutativity6 of +, in the sense thatt+f1t1+f2t2 =
t + f2t2 + f1t1. Of course, alwayst + f1t1 + f2t2 6= t + f1(t1 + f2t2).

We useT� to denote the free algebra of terms over the signature�.

Lemma 1 The algebra of multitreesJ is isomorphic to the quotient of the free term algebra
over� with the least congruence generated by the order-independence equation (1),

J = T�/OIT :

We note the well-known fact that, given any system of equationsE , T
�/E is the initial object

in the category of all�-algebras satisfying the equationsE .

A J -automaton is a tuple(A; h;Qfinal) consisting of a finite�-algebraA, a homomorphism
h : J 7! A and the subsetQfinal � DAMT of values of sortMT (“final states”) where the number
of values of sortMT and of sortF (“states”) is finite. AJ -automaton corresponds to the “more

5We use the symbol) in reminiscence of the notation for record descriptions like -terms in [AK86, AKP91b],
which are of the form = X : s(f1 )  1; . . .; fn )  n).

6In a sense which can be made formal (cf., Section A), also the associativity holds for +; this justifies dropping
the parenthesis.
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Feature Automata and Sets of Feature Trees 5

concrete” notion of a (finite deterministic bottom-up) tree automaton over the terms ofT�

such that all terms which are equal modulo OIT are evaluated to the same state. This means
that any representation of a multitreet as a term inT� can be chosen in order to calculate the
value oft.

3 Feature Automata

Given any many-sorted signature� with a finite number of non-constant function symbols
c 2 (� � �0

s) for every sorts, we define a�-algebraA to befinitary if, for each sorts and
each valueq 2 DAs of sort s, the set:

fc 2 �0
s j cA = q g

of constant symbols in� of sort s which are valued toq is finite or co-finite.

We now return to the particularfMT;Fg-sorted signature� introduced above; clearly, the
definitions below can be made in the general framework as well.7

A feature automatonA is defined as a finitaryJ –automaton. The set of multitrees recognized
byA is the set:

LMT (A) = ft 2 MT j h(t) 2 Qfinalg;

and the set of feature trees recognized byA is the set:LFT (A) = LMT (A) \ FT . The
familiesRecMT (J ) andRecFT (J ) of recognizable setsof multitrees and feature trees are
defined accordingly.

Remark. If (and only if) the set of features is infinite, the set of all feature trees is not a
recognizable language of multitrees (with respect toJ ).

Example. We will construct a feature automatonA that recognizes the set of natural numbers.
These are coded into the feature trees of the form(0; f(succ; (0; f(succ; (:::; f(0; ;)g)g)g)g),
with n edges labeledsuccfor the natural numbern. As elements in the quotient term algebra
T
�/OIT, they would be written as the singleton congruence classesf) (0; succ;) (0; succ;)

(:::; 0)))g. The feature automatonA has the statesQ = fqnat; qotherg andP = fpsucc; potherg
of sortMT andF, respectively. The evaluation is given by:

0A = qnat ;

AA = qother if A 6= 0 ;
succA = psucc;

fA = pother if f 6= succ;

)A
(qnat; psucc; qnat) = qnat ;

)A
(q1; p; q2) = qother otherwise.

As final state set we chooseQfinal = fqnatg. It is clear thatA respects the order independence
theory and the finitary-condition. Of course, it will be more practical to define this set by
regular expressions or equational systems.

7Also, the finitary-condition: finite or co-finite, could be made more general such that the proof of Theorem 1
still holds.
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6 Joachim Niehren and Andreas Podelski

The following theorem and corollary state that the standard properties of recognizable
languages are valid for the sets inRecFT as well.

Theorem 1

1. The family of recognizable languages of feature trees RecFT is closed under the Boolean
operations. The corresponding feature automata can be given effectively.

2. The emptiness problem( LFT (A)
?
= ; ) is decidable for each feature automatonA.

Proof. The known constructions for Boolean operations on automata are still valid for
J -automata. To see that the finitary-condition is preserved, simply note that the system of
finite and co-finite sets is Boolean closed and, for two statesq1 andq2 of the feature automata
A1 andA2, respectively,

fc 2 �0
s j c(A1;A2) = (q1; q2) g= fc 2 �0

s j cA1 = q1 g \ fc 2 �0
s j cA2 = q2 g:

SinceJ = T
�/OIT, eachJ -automatonA corresponds to a tree automatonAT over terms in

T� , and:
LFT (A) = ; iff LT�(AT) = ;;

it suffices to decide the emptiness problem for the tree automatonAT. As usual, this can be
done by checking all terms of depth smaller than the number of states ofAT. Let C be some
finite set of constantsc such thatcA = q for each stateq which is a value of some constant.
If (and only if) L is not empty, it contains a term of bounded depth that is constructed with
constants ofC and non-constant function symbols. But there are only finitely many terms of
this kind.

A finitary automaton can be finitely represented. From such a representation one can calculate
some setC as described above. This yields an algorithm for testingLMT (A) = ;. In the case
of LFT (A) the algorithm checks only terms representing feature trees. 2

We conclude the section by defining non-deterministic feature automata which are needed in
Sections 5 and 6.

Definition 1 A non-deterministic feature automatonA = (Q;P; h;Qfinal) is a tuple such
that:

Q is the set of states of sort MT, P the set of states of sort F and Qfinal � Q the set of final
states,

h is composed of the functions h: S ! 2Q and h : F ! 2P and the transition function
)A: Q� P�Q! 2Q,

A satisfies OIT, i.e., for all states q; p1; q1; p2; q2,

)A
()A

(q; p1; q1); p2; q2) = )A
()A

(q; p2; q2); p1; q1);

and A satisfies the finitary-condition, i.e., for all states p and q, the sets
ff 2 F j p 2 fA g andfA 2 S j q 2 AA g are finite or co-finite.
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Feature Automata and Sets of Feature Trees 7

The evaluation of the termt 2 T� byA, i.e., the seth(t) � Q is defined inductively by:

h() (t1; f ; t2)) =)A
(h(t1); h(f ); h(t2)):

If t1 and t2 are congruent modulo OIT, we haveh(t1) = h(t2). Thus,h([t]) = h(t) is well
defined for all congruence classes [t]. The language of multitrees recognized byA is:

LMT (A) = f [t] j h([t]) \ Qfinal 6= ; g;

and the language of feature trees recognized byA is LFT (A) = LMT (A) \ FT . Each
feature automaton is also a non-deterministic feature automaton.

Lemma 2 Given a non-deterministic feature automatonA, an equivalent (deterministic)
feature automatonAd can be constructed effectively.

Proof We apply the usual subset construction on a given non-deterministic feature automaton
A of the form above, yielding the equivalent automatonAd as follows: Qd = 2Q; Pd =

2P; AA
d
= AA; fA

d
:= fA; and:

)Ad
(qd

1; p
d; qd

2) =
[
f)A

(q1; p; q2) j (q1; p; q2) 2 qd
1 � pd � qd

2g:

We define the final states ofAd by: Qd
final = fqd j qd \ Qfinal 6= ; g:

Clearly, the algebraAd satisfies theOIT-axiom. The equality: The finitary-condition is
preserved, since:

fA jAA
d
= qdg =

\

q2qd

fA j q 2 AAg \
\

q62qd

fA j q 2 AAgC

shows that the finitary-condition is preserved, too. 2

4 Counting Constraints

In this section we characterize recognizable languages of flat feature trees using formulae of a
certain from, called counting constraints. The proof of this characterization, which is the main
technical result of this paper, will be done in Sections A and B.

The syntax ofcounting constraintsC (writtenC(x) to indicate thatx is the only free variable)
is defined in the BNF style as follows (whereF is a finite or co-finite sets of features,n; m2 IN
are natural numbers, andS is a finite or co-finite subset ofS).

C(x) ::= cardf' 2 F j 9y: (x'y ^ Ty)g = nmodm
j Sx
j C(x) ^ C(x)
j :C(x)

(2)

The counting constraintC(x) � card f' 2 F j 9y: (x'y ^ Ty)g = nmodm holds for the
multitreex if the number of all edges inx which: (1) go from the root to a node labeled by
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8 Joachim Niehren and Andreas Podelski

a symbol inT and (2) are labeled by a feature' in F, is equal tonmodm.8 The cardinality
operatorcard applies on a multiset of features,i.e., counts their double occurrences.

The counting constraintC(x) � Sxholds for the multitreex if the root of x is labeled by
some symbol inS.

We note the following fact (cf., [Eil74]).

Fact 1 A language of natural numbers is recognizable iff it can be decomposed into a finite
union of sets of the form:fn + k �m j k 2 INg; with n; m2 IN.

Thus, we can define the syntax of counting constraints equivalently in the form (whereN is
a set of natural numbers which is recognizable in the monoid(IN; +; 0); S, andT, a finite or
co-finite subset ofS; F a finite or co-finite sets of features):

C(x) ::= cardf' 2 F j 9y: (x'y ^ Ty)g 2 N
j Sx
j C(x) ^ C(x)
j C(x) _ C(x)

(3)

Note that this definition, too, yields immediately that counting constraints are closed under
negation. Indeed,: card f' 2 F j 9y: (x'y ^ Ty)g 2 N is equivalent tocard f' 2
F j 9y: (x'y ^ Ty)g 2 Nc, and: Tx is equivalent toTcx.

Some important feature constraints can be expressed by our new constraints. For example,
in the syntax of [Smo92], forF � F finite, for f 2 F , and forA 2 S: xF (“for exactly the
featuresf in F there exists one edge labeledf from the root”), xf # (“there exists no edge
labeledf from the root”), andAx (“the root is labeled byA”).

xF �
^

f2F

cardf' 2 ffg j 9y: x'yg 2 f1g

^ cardf' 2 Fc j 9y: x'y g 2 f0g ;

xf # � cardf' 2 ffg j 9y: x'yg 2 f0g ;

Ax � fAgx :

Each constraintC(x) defines the setLMT(C) of multitreesx for which the constraintC(x)
holds. Accordingly, we define:LFT(C) = LMT(C) \ FT , LMT1(C) = LMT(C) \MT 1, and
LFT1(C) = LFT(C) \ FT 1. The languages of flat multitrees of the formLMT1(C), or of flat
feature treesLFT1(C), are calledcounting-definable.

The following theorem holds for multitrees instead of feature trees, as well.

Theorem 2 A language of flat feature trees is counting-definable iff it is recognizable (inJ ,
by a feature automaton).

8We definenmod0 = n, although this is not quite standard. That is, “counting” means here threshold- and
modulo counting.
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Feature Automata and Sets of Feature Trees 9

Proof Sketch. A flat multitree can be represented as a finite multiset over(F [ frootg)� S.
The operation)J corresponds to the union of such multisets. In Section A we study the
algebraM of finite multisets of pairs. It is three-sorted, the sorts denotingF [ frootg, S and
MT , respectively. We show thatJ - andM-recognizability coincide.

In Section B, we consider counting constraintsD(x) for multisetsx of M. They are of the
form:

D(x) � cardf(f ;A) 2 x j f 2 F; A 2 Tg 2 N ;

or conjunctions or disjunctions of these. AgainF andT are finite or co-finite subsets ofF and
S andN is a recognizable set of natural numbers.

We show that definability of languages of multisets by these constraints andM-recognizability
coincide. The main idea is that the mapping:

x 7! cardf(f ;A) 2 x j f 2 F; A 2 Tg

is essentially a homomorphism fromM into IN. 2

The theorem above expresses that feature automata can count features either threshold or
modulo a natural number.

5 Kleene’s Theorem

We define regular expressions over feature trees. In generalization of the standard cases, the
atomic constituents of these are not just constants (denoting singletons or trees of depth1), but
expressions which denote sets of feature trees of depth� 1.

As usual, we need construction variables labeling the nodes where the substitution and the
Kleene star operations can take place. These variables are taken from a setY which is assumed
given (disjoint fromS). It is infinite; the definition ofeach regular language, of course, uses
only a finite number of construction variables. We call a syntactic expressionC of the form (2)
a counting-expressionif T ranges over finite or co-finite subsets ofS [ Y. Its denotation is
defined as the set of all feature trees of depth� 1 which satisfy it as a counting constraint over
the extended alphabet of sorts.

A regular expressionRoverF andS [ Y is of the form given by:

R ::= C C is a counting-expression
j R �y R concatenation (wherey 2 Y)
j R?y Kleene star (wherey 2 Y)
j R [ R union

Complement and intersection are optional operators, which, as we will see, do not properly
add expressiveness.

The definition of the languageLFT (R) of feature trees (orLMT (R) of multitrees) denoted by
the regular expressionR is by straightforward induction. For concatenation and Kleene star for
sets of multitrees: IfL1 andL2 are sets of feature trees, thenL1 �y L2 is obtained by replacing
the construction variabley in the leaves of the trees ofL1 by (possibly different) trees ofL2.
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10 Joachim Niehren and Andreas Podelski

The Kleene star operation on a set is an iterated concatenation of a set with itself. Formally,
for a setL of feature trees,L1

y = L, Ln
y := Ln�1

y �y L, andL?y =
S

n�1 Ln
y.

The languages of feature trees (or multitrees) denoted by regular expressions are calledregular
languages.

Theorem 3 (Kleene) A language of feature trees (or multitrees) is regular iff it is recogniz-
able.

Proof. It is sufficient to prove the theorem for multitrees. We show by induction over the
structure of the regular expressions that the language of each regular expression overS [ Y
andF is recognizable. The base caseR= C is handled by Theorem 2. Union is captured by
the Boolean closure properties in Theorem 1. Substitution and star are established using the
equivalence of deterministic and non deterministic feature automata. For the other direction,
we use the standard McNaughton/Papert induction technique, the base case being handled
again by Theorem 2. 2

6 Equational Systems

The next possibility to define recognizable sets of feature trees (or multitrees) in a convenient
way uses equational systems. These systems again generalize the constituents from singletons
of trees of the forma or f(y1; . . .; yn), for a 2 �0 andf 2 �n in the case of a ranked signature
for first-order trees, to counting-expressions denoting (unions of) sets of flat feature trees.

The extra symbolsy 2 Y in these counting expressions now correspond to set variables of the
equations.

We writeC(y1; . . .; yn) instead ofC if the set variables ofCare contained in the setfy1; . . .; yng.
These variables are not to be confused with the logical variablex used inC = C(x) as a
logical formula.

An equational systemis a finite setE of equations of the form (whereCi is a counting-
expression, fori = 1; . . .; n):

yi = Ci(y1; . . .; yn):

Given an assignment,i.e., a mapping� : Y 7! 2FT , the equations inE are interpreted such
thatCi(y1; . . .; yn) denotes the set:

LFT (Ci) �y1 �(y1) �y2 . . . �yn �(yn):

A solution ofE is an assignment� satisfyingE . Each equational system has a least solution.
The existence follows with the usual fixed point argument. Namely, an equational system is
considered as an operator over the lattice of assignments� and the least solution is obtained
in ! iteration steps of this operator, starting with the assignment�(yi) = ; for i = 1; . . .; n.

A language of feature trees is calledequational if it is the union of some of the sets�(yi) for
the least solution� of E . The notion is defined accordingly for multitrees.

We can now formulate the last characterization of recognizability:
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Theorem 4 A language of feature trees (or multitrees) is equational iff it is recognizable.

Proof SinceJ -recognizability corresponds to the characterization by congruence relations,
and Theorem 2 covers the case of feature trees of depth� 1, the proof can be done following
the standard one for first-order trees (cf., [GS84]). 2

7 Conclusion and Further Work

The results of this paper together present a complete regular theory of feature trees. They offer
a solution to the concrete practical problem of computing with types denoting sets of feature
trees as described in the introduction.

Now, it is interesting to investigate where, in the wide range of applications of first-order trees,
feature trees can be useful in replacing or extending those. Since tree automata play a major
role, either directly or just by underlying some other formalism, the regular theory of feature
trees developed here is a prerequisite for this investigation.

A more speculative application might be conceived as part of the compiler optimizer of
the programming language LIFE [AKP91b]. Namely, unary predicates over feature trees
defined by Horn clauses without multiple occurrences of variables define recognizable sets
of feature trees. Now, satisfiability of the conjunction of two such predicates corresponds to
non-emptiness of the intersection of the defined sets. When used in deep guards, entailment
of a predicate by others of this kind corresponds to the subset relation on the defined sets of
feature trees.

We are curious to extend the developed theory in the following ways. First, we would like to
find a logical characterization of the class of recognizable feature trees, extending the results
of Doner, Thatcher/Wright and Courcelle [Don70, TW67, Cou90]. It will be interesting to
combine second-order logic and the counting constraints introduced here, in order to account
for the flexibility in the depth as well as in the out-degree of the nodes of feature trees.

Also, in order to account for circular data structures, like,e.g., circular lists, it is necessary to
consider infinite (rational) feature trees. Thus, it would be useful to construct a regular theory
of these.

Finally, in [CD91] it is shown that the first-order theory of a tree automaton is decidable (in the
case of a finite signature). More precisely, it is possible to solve first-order formulas built up
from equalities between first-order terms and membership constraints of the formx 2 q, where
q denotes a set defined by a tree automaton. Since we have established the corresponding
automaton notion, we may hope to obtain the corresponding result for feature trees. For the
special case of the set of all feature trees, this is the decidability of first-order feature logic.
A proof for infinite feature trees can be found in [BS92]. Can the techniques of that proof be
combined with the ones of [CD91]?

We add the fact, suggested by one of the referees, that the first-order theory of multitrees is not
decidable. This can be shown by employing a proof technique by Ralf Treinen [Trei92].
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Appendix

A The Algebra of Multisets

We will reduceJ -recognizability for languages of flat multitrees to a notion of recognizability
of finite multisets of pairs. The idea is to identify a flat multitree with a finite multiset of pairs,

(A;E) � f(root;A)g t E

where root is considered like an extra feature. Roughly, the operation of adding edges
corresponds to the union operation on multisets.

In all generality, we introduce the algebraM = M(U1; . . .;Un) of finite multisets over
n-tuples with components in given setsU1; . . .;Un, for somen� 1. (Later, we will instantiate
U1 = F [frootg andU2 = S.) M is n+ 1-sorted, over the the sortss1; . . .; sn andFMSwhich

denote, respectively, the domainsDs1 = U1, . . . , Dsn = Un, andDFMS = INU1 � . . .� Un
finite

(where INM
finite denotes the set of finite multisets overM).

The operations ofM are the (associative and commutative) uniontM of multisets and the
creation of a singleton multiset fromnelements, one for each component,i.e., hu1; . . .; uniM =

f(u1; . . .; un)g. Thus, they are mappingstM : DFMS � DFMS 7! DFMS, and h iM :
U1 � . . .� Un 7! DFMS.

Formally,M is an algebra over thefs1; . . .; sn;FMSg-sorted signature:

�U1;...;Un = U1 ] . . . ] Un ] fh:; . . .; :i ; t g

where the constants of sortsi are just the elements ofUi, and the two function symbols have
the profile:t : FMS� FMS 7! FMS, andh i : s1� . . .� sn 7! FMS.

Lemma 3 The algebraM is isomorphic to the quotient of the term algebra with the
congruence generated by the associativity and commutativity laws fort,

M = T�U1;...;Un /AC :

We define a subset ofDFMT of multisets ofn-tuples to berecognizableif it is recognized by a
finitary M-automaton.

It is important to note that the notions of recognizability inM = M(U1; . . .;Un) and
M(U1 � . . .� Un) can be different, namely ifn � 2 and one of theUi is infinite.9

Now, we consider the special case whereU1 = F [ frootg andU2 = S, i.e.,

M = M(F [ frootg;S):

9Generally, the finiteness condition forM(U1 � . . .� Un)-automata is weaker than the one forM-automata.
It may be strictly weaker since cartesian products of finite and co-finite sets need neither be finite nor co-finite.
For example, supposeU to be an infinite set. The cartesian productU � f1g is neither finite nor co-finite as
subset ofU � f0;1g. Thus, the language of the singleton subsets ofU � f1g is not recognizable in the algebra
M(U � f0;1g), but it is with respect toM = M(U ; f0;1g).—In fact, it is this finitary-condition which makes
the proofs that complicated and non-standard.
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Thus, the domains ofMareDMs1
= F[frootg,DMs2

= S, andDMFMS = FMS(F[frootg�S) :

We define the injection:

I : MT 1 ! IN
(F [ frootg)� S
finite

by I((A;E)) = f(root;A)g t E. Thus (writing the operatortM infix):

I()J
(t; f ;A)) = I(t) tM hf ;AiM:

Lemma 4 (Reduction Lemma) A language L of flat multitrees is recognizable inJ iff the
language I(L) of multisets of pairs is recognizable inM.

Proof The difficult direction is from left to right. Given a finitaryJ -automaton(A; h;Qfinal),
whereDMT

A = Q andDF
A = P, we construct a finitaryM-automaton(A?; h?;Qfinal) such that,

for all flat multitreest:

h?(I(t)) = h(t): (4)

This is sufficient to show the recognizability ofI(L), sinceI(L) = h�1(A) \ I(MT 1), and
I(MT 1) is a recognizable set inM.

We setDA
?

s2
= Q, DA

?

s1
= P [ fprootg, and (whereFunc denotes the set of functions

generated by the functions)J ( : ; p; q); i.e., the smallest set containing these and closed
under composition):

DA
?

FMS = Func] Q ] fq?g:

The evaluation ofA? is defined by (we write�A
?

instead ofh?(�) and use the more intuitive
infix notation):

hp; qiA
?

= )A ( : ; p; q) ;
hproot; qiA

?

= q ;
h1 tA

?

h2 = h1 � h2 ;

qtA
?

h = h(q) ;
htA

?

q = h(q) ;
qtA

?

q̃ = q? :

Every function in the interpretations takingq? as argument is again mapped toq?. Precisely:

q? tA
?

h = q? ;

htA
?

q? = q? ;

q? tA
?

q = q? ;

qtA
?

q? = q? ;

hp; q?iA
?

= q? ;

hproot; q?iA
?

= q? :

Clearly,A? is anAC-automaton,i.e., the operationtA
?

is associative and commutative. The
associativity is trivial for functions as arguments. The commutativity for functions follows
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14 Joachim Niehren and Andreas Podelski

from theOIT-axiom, and the associativity for functions by:

)A
( : ; p; q) tA

?

)A
( : ; p1; q1) = )A

()A
( : ; p1; q1); p; q) )

= )A
()A

( : ; p; q);p1; q1) )

= )A
( : ; p1; q1) t

A?

)A
( : ; p; q) :

The proof for all possible cases is now easily established.

The identity (4) is now easily verified. Finally, we note that the finitary-condition is preserved
fromA toA?.

For the other direction, given a finitaryM-automatonA?, we will construct a finitaryJ -
automatonA satisfying (4). This is sufficient, now, sinceMT 1 is a recognizable set inJ . In
fact, we will construct an automaton in another algebra.10 Next, we will introduce this algebra.
We resume this proof after having proven Lemma 6.

The algebraJlocal of flat multitrees is obtained from the algebraJ by restricting the domain
of the third argument fromMT to S (. . .=MT 0), and the domain of the first fromMT to
MT 1, i.e., to to flat multitrees instead of arbitrary ones.

That is, the algebraJlocal is three-sorted with sortsMT1; F andS. The domains are given by
DMT1 = MT 1, DF = F , DS = S. The operation is given by (whereE is a finite multiset
over pairs inF � S):

)Jlocal ((A1;E); f ;A2) = (A1; Et f(f ;A2)g)

(which is equal to)J ( (A1;E); f ;A2)). The signature ofJlocal is the disjoint union:

�local = S ] F ] S ] f)g:

Here, the symbols inS appear twice: they are supposed to be renamed apart. Firstly, they are
constants of sortMT1, and secondly, they are constants of sortS. The different functionality is
made clear syntactically by writingAMT1 andAS, with interpretations(AMT1)

Jlocal = (A; ;) 2
MT 0 �MT 1 and(AS)

Jlocal = A 2 S.

The features are constants of sortF and interpreted freely. The profile of the function symbol
in Jlocal is ): MT1 � F� S! MT1.

The algebraJlocal satisfies the order independence theory (OIT); namely, for all flat multitrees
t, featuresf and symbolsA the following holds.

)Jlocal (()Jlocal (t; f1;A1); f2;A2) =)Jlocal (()Jlocal (t; f2;A2); f1;A1)

The following lemma states that we can use the more concrete notion of tree automata.

Lemma 5 Jlocal is isomorphic to a quotient term algebra,

Jlocal = T
�local=OIT :

10The motivation for the construction of yet another algebra is, roughly, the fact that a symbolA 2 S occurs as a
root-labeling as well as a leave-labeling; these two roles are distinguished inJ -automata, but not inM-automata.
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Again, we define recognizability inJlocal in terms of finitary automata.

Lemma 6 A language of flat multitrees is recognizable inJ iff it is recognizable inJlocal.

Proof We will first modify a finitaryJ -automatonA, whereDMT
A = Q andDF

A = P, in order
to obtain a finitaryJlocal-automatonA1 such that the two automata (with the same set of final
states) will recognize the same languages of flat multitrees. We define the domains ofA1 by:

DA
1

S = Q ;

DA
1

MT1
= Q ;

DA
1

F = P ;

and we define the evaluation ofA1 by (for all A 2 S, f 2 F , and for allq; q0 2 Q andp 2 P):

(AMT1)
A1

= AA ;

(AS)
A1

= AA ;

fA
1

= fA ;

)A1
(q; p; q0) = )A

(q; p; q0) :

Clearly the finitary-condition and the order independence theory are preserved betweenA1

andA.

For the other direction, given a finitaryJlocal-automatonA2 (with final statesQ2
final, of sort

MT1), we will define a finitaryJlocal-automatonA1 that recognizes the same language, but
has the two properties:DA

1
MT1

= DA
1

S , and, for all symbolsA in S, (AMT1)
A1

= (AS)
A1

.
Thanks to these, one can define aJ -automatonA that accepts the same flat multitrees asA1.
Again, this is sufficient since the languageMT 1 is recognizable with respect toJ .

We define the domains ofA1 by:

DA
1

MT1 = DA
2

MT1 � DA
2

S ;

DA
1

S = DA
2

MT1 � DA
2

S ;

DA
1

F = DA
2

F ;

and, after having fixed an arbitrary elementrfix 2 DA
2

S , we define the evaluation ofA1 by (for

all A 2 S, f 2 F , and for allq; q̃ 2 DA
2

MT1
, p 2 DA

2
F andr; r̃ 2 DA

2
S ):

(AMT1)
A1

= ( (AMT1)
A2
; (AS)

A2
);

(AS)
A1

= ( (AMT1)
A2
; (AS)

A2
);

fA
1

= fA
2
;

)A1
((q; r); p; (q̃; r̃)) = ()A2

(q; p; r̃) ; rfix):

As final states ofA1 we choose:

Q1
final = f(q; r) j q 2 Q2

final andr 2 DA
2

S g:
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16 Joachim Niehren and Andreas Podelski

Again, the finiteness condition and the order independence theory are preserved. This
concludes the proof of Lemma 6. 2

End of Proof of Reduction Lemma 4

Given a finitaryM-automatonA?, we construct a finitaryJlocal-automatonA such that
(I(t))A

?

= tA for all flat multitreest. The domains ofA are: DAS = DA
?

s2 , DAF = DA
?

s1

and DAMT1
= DA

?

FMS.

The evaluation ofA is defined by (whereq; p andr are states ofA of sortsMT1, F andS):

(AS)
A = AA

?

;

fA = fA
?

;

(AMT1)
A = h rootA

?

; (AS)
A?

iA
?

;

)A (q; p; r) = qtA
?

hp; riA
?

:

SinceA? satisfies (AC),A satisfies (OIT). The finitary-condition is preserved, as well. 2

B Counting in Multisets

Going back to the general framework whereM =M(U1; . . .;Un), we will now characterize
recognizability inM, i.e., of languages of finite multisets, by appropriate counting constraints.

We defineM-counting constraintsC (writtenC(x) to indicate thatx is the only free variable,
which is, logically, a multiset variable) to expressions of the following form:

C(x) ::= cardf(u1; . . .; un) 2 x j ui 2 Ui for all i g 2 N
j C(x) \ C(x)
j C(x) [ C(x):

Here,N is a recognizable set of natural numbers with respect to the monoid(IN; +; 0), and the
setsUi � Ui are finite or co-finite. The counting constraint

C(x) � cardf(u1; . . .; un) 2 x j ui 2 Ui for all i g 2 N holds for the multisetx if the number
of tuples(u1; . . .; un) in x such thatui 2 Ui for all i = 1; . . .; n is an element ofN. The
cardinality operatercard applies on a multiset of tuples,i.e., counts double occurrences.

The language defined by anM-counting constraintC(x) is the set of all finite multisetsx that
satisfyC(x). It is denoted byLM(C).

Theorem 5 The family of languages defined byM-counting constraints is exactly the family
of languages of multisets recognizable inM.

Proof. Given anM-counting constraint of the form:C = cardf(u1; . . .; un) 2 x j ui 2
Ui for all i g 2 N, we will show the recognizability ofLM(C).

We can define a homomorphismh : M(U1 . . .;Un) !M(f1g; . . .; f1g) by settingh(ui) =

f1g for ui 2 Ui , andh(ui) = ; otherwise.
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Furthermore, the homomorphismJ : IN
f1g � . . .� f1g
finite ! IN, given byJ(f(u1; . . .; un)g= 1

if (u1; . . .; un) = (1; . . .; 1), and . . .= 0, otherwise, identifies a multiset consisting ofk tuples
(1; . . .; 1) with k 2 IN.

Thus, for all finite multisets ofn-tuplesx 2 DFMT,

J(h(x)) = cardf(u1; . . .; un) 2 x j ui 2 Ui for all i g:

Hence,LM(C) = h�1(J�1(N)). The finitary-condition is invariant under inverse images of
homomorphisms. Thus,LM(C) is recognizable inM.

For the reverse inclusion, suppose thatL is recognized by a finitaryM-automaton(A; h;Qfinal)

with, say, the setDFMS = fq1; . . .; qng of states of sortFMS.

The evaluation of the multisett byA leads to the state (written in a notation which is justified
by the fact thatA satisfies (AC), even iftA is taken over the empty multiset):

tA =
G

(u1;...;un)2t

A huA1 ; . . .; uAn i
A :

We define the natural numbers:at(i) = card f(u1; . . .; un) 2 t j huA1 ; . . .; uAn i
A = qi g and

obtain (again thanks to (AC) being satisfied):

tA =

nG

i=1

A

at(i)G

j=1

A qi :

We define a mapping�t : f1; . . .; ng ! f1; . . .; ng such thatq�t(i) =
Fat(i)

j=1
A qi : If t 2 LM(A),

then:

nG

i=1

A q�t(i) 2 Qfinal; (5)

Generally, for a mapping� : f1; . . .; ng ! f1; . . .; ng, we define, fori = 1; . . .; n, the set of
natural numbers:

Ni
� = fm2 IN j

mG

j=1

A qi = q�(i) g:

We note thatat(i) 2 Ni
�t

for i = 1; . . .; n. That is,t is an element of the language defined by
theM-counting constraint:

n̂

i=1
ax(i) 2 Ni

�t
:

Vice versa, for each mapping� satisfying the property (5), the language of theM-counting
constraint:

n̂

i=1
ax(i) 2 Ni

�
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18 Joachim Niehren and Andreas Podelski

is contained inL. We getL = L(R) whereR is theM-counting constraint:

R =
_

�

with (5)

n̂

i=1
ax(i) 2 Ni

� :

Since the number of mappings� with (5) is finite, it only remains to show that the constraints
used inR are of the defined form. The constituentsai(x) are admissible by the finitary-
condition ofA. Finally, we have to prove that the setsNi

� are recognizable with respect to

(IN; +; 0). We will construct appropriate automataAi
� fromA. We setDA

i
� = Q, 0A

i
� = ;A,

1A
i
� = qi and interpret the addition bytA. As final states we take the singletonfq�(i)g. Then,

Ai
� recognizesNi

�. 2

Proof of Theorem 2.

For each languageL of flat multitrees defined by a counting constraintC we will find an
M-counting constraintC0 that definesI(L), andvice versa.

Given a counting constraint for flat multitrees of the form:

C(x) = cardf' 2 F j 9y: (x'y ^ Tyg 2 N ;

we set:
C0(x) = cardf('; y) 2 x j ' 2 F ^ y 2 Tg 2 N

\ cardf(root; y) 2 x j y 2 Fg = 1 :
The caseC = Tx is obvious, as well as conjunction and disjunction.

For the other direction, given anM-counting constraintC0 for finite multisets, we will
give a constraintC such thatLMT 1(Cx) = I�1(LM(C0)), or, equivalently,LMT 1(C) =
LM(C0)\ I(MT 1). We note that the languages of the formI(L) are the multisets containing
exactly one pair with first componentroot. Given theM-counting constraint:

C0 = cardf('; y) 2 x j ' 2 F ^ y 2 T g 2 N ;

we have to distinguish the two casesroot =2 F androot 2 F. In the first case we set:

C = cardf' 2 F j 9y: (x'y ^ Tyg 2 N :

In the second case, we note that the set:N� 1 = fn� 1 j n2 N andn � 1g is recognizable
with respect to(N ; +; 0), and set:

C= cardf' 2 F� frootg j 9y: (x'y ^ Ty)g 2 N� 1
\ Tx:

In either caseC has the required property.

This concludes the proof of Theorem 2, since the reduction lemma (Lemma 4, page 13) and
the above theorem (Theorem 5) close the cycle from counting-definable languagesL of flat
feature trees to those recognizable inJ by feature automata. Namely, according to the above
correspondence between counting- andM-counting constraints, viaM-counting-definable
languagesI(L), which, according to Theorem 5, are exactly the ones recognizable inM, back
to L according to Lemma 4. 2
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