28

Feature Automata
and Sets of Feature Trees

dliloli[tlall

PARIS RESEARCH LABORATORY

March 1993 Joachim Niehren
Andreas Podelski






28

Feature Automata
and Sets of Feature Trees

Joachim Niehren
Andreas Podelski

March 1993




Publication Notes

This report is a revised version of a paper that was presented at the 4th International Joint
Conference on the Theory and Practice of Software Development (TAPSOFT’93) in Orsay,
France, April 13-16, 1993, and appeared in the proceedings of the conference, edited by
Marie-Claude Gaudel and Jean-Pierre Jouannaud, as volume 668 of Springer Lecture Notes in
Computer Science 668 (1993), on pages 356-375.

The authors can be contacted at the following addresses:

Joachim Niehren Andreas Podelski

German Research Center for Digital Equipment Corporation
Artificial Intelligence (DFKI) Paris Research Laboratory
Stuhlsatzenhausweg 3 85, avenue Victor Hugo

6600 Saarhrcken 11 92563 Rueil-Malmaison Cedex
Germany France
niehren@dfki.uni-sh.de podelski@prl.dec.com

(© Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.



Abstract

Feature trees generalize first-order trees (which are called ground terms in the general
framework of universal algebra). Namely, argument positions become keywords (“features”)
from an infinite symbol sef. A constructor symbol becomes a node symbol that can occur
with arbitrary and arbitrarily many argument positions. Feature trees are used to model flexible
records; the assumption thatis infinite accounts for dynamic record field additions.

We develop a universal algebra framework for feature trees. We extend the classical set-
defining notions: automata, regular expressions and equational systems, and show that they
coincide. This extension of the regular theory of trees requires new notions and proofs.
Roughly, a feature automaton reads a feature tree in two directions: along its branches and
along the list of the direct descendants of each node. The second direction corresponds to an
automaton on a commutative monoid (over an infinite alphabet).

One motivation for this work stems from the fact that, in a type system for the programming
language LIFE, the types denote sets of feature trees. Operations needed for type checking
can now be implemented by the corresponding automata algorithms.

Résumé

Des arbresa‘traits gréralisent des arbres du premier ordre (qui sont &spdEs termes
clos dans l'algbre universelle)é\ savoir, les positions d’arguments deviennent des mets cl”
(“traits”) appartenanta un ensemble infini de symbolées,Un symbole de constructeur devient
un symbole de noeud qui peut appreavec n'importe quelles positions d’arguments en
n’importe quel nombre. Des arbrasraits sont utilies pour la modlisation des enregistrements
flexibles; la supposition de I'infinitude d€ est récessaire pour rendre compte des additions
dynamiques de champs d’enregistrements.

Nous dveloppons un cadre formel pour les arbaesaits, dans I'algbre universelle. Nous
étendons les notions classiquesfidissant les ensembles : les automates, les expressions
réguliéres et les sysmesequationels, et nous montrons qu’ellesnoident. Cette extension

de la tkorie Eguliere des arbresatessite de nouvelles notions et preuveseBattiqguement,

un automate traits lit un arbrea‘traits dans deux directions : le long de ses branches, et le
long de la liste des descendants directs de chaque noeud. Cetterdewhiection correspond

a un automate sur un monoid commutatif.

Une motivation de ce travail vient du fait que, dans un exyst ‘de types pour le langage
de programmation LIFE, les typegmdtent des ensembles d’'arbeesraits. Des oprations
utilisées pour la gfification de types peuvent maintenatrte impEmenges par les algorithmes
d’automates correspondants.
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Feature Automata and Sets of Feature Trees 1

1 Introduction

In this section, we will give some background and motivation (“the task”) and then outline the
rest of the paper (“the method”).

The Task. We describe a specific formalism of data structures called feature trees. They
are a generalization of first-order trees, also called constructor trees or the elements of the
Herbrand universe. Since trees have been usefylfor structuring data in modern symbolic
programming languages like Prolog and ML, the more flexible feature trees have an interesting
potential. Precisely, feature trees model record structures. They form the semantics of record
calculilike [AK86], which are used in programming languages [AKP91b] and in computational
linguistics €f., the book [Car92]). In the logical framework for record structures of [AKPS92],
they constitute the interpretation of a first-order theory, which is completely axiomatizable,
and hence decidable [BS92].

As graphs, feature trees are easily described as finite trees whose nodes are labeled by node
symbols (instead of constructor symbols), and whose edges are labeled by feature symbols
(instead of being numbered), all those edges outgoing from the same node by different ones.
Thus, symbolic keywords called features denote the possible argument positions of a node.
They access uniquely the node’s direct subtrees. All node symbols can label a node with any
features attached to it, in any, though finite, number.

Although thoroughly investigated [AK86, Sm092, BS92, AKPS92], also in comparison with
first-order trees [ST92], feature trees have never been characterized as composable elements
in an algebraic structuree., with operations defined on them. Also, up to now, there has been

no corresponding notion of automaton. This device has generally proven useful for systems
calculating over sets of elements.

The practical motivation for such a system comes from the possibility of defining a hierarchy
of types denoting sets of feature trees. For its use in a logical programming system employing
feature trees such as LIFE [AKP91b], we need to compute efficiently the intersection of two
types (roughly, for unification). Concurrent systems, in connection with control mechanisms
such as residuation or guards [AKP91a], require furthermore an efficient test of the subset
relation (matching). Thus, we need to provide a formalism defining the types in a way that is
expressive enough and yet keeps the two problems decidable. Such a formalism can be given,
for example, as a system of equations and the corresponding automata notion with Boolean
closure properties and decidable emptiness problem.

Also, if we want to extend the techniques of type systems for logic programming, where types
denote sets of treesf(, the book [Pfe92]), to LIFE, where types will instead denote sets of
feature trees, we first have to provide a corresponding formal framework.

A major difficulty in the construction of a suitable algebraic framework for feature tiges (
with the property that automata and equational systems co)@idmes from the fact that the
setF of featuresj.e., of possible argument positions of a node accessing its direct subtrees, is

We note that the expressiveness of tree automata is equal to the one of equational systems for the free term
algebras over finite signatures; it is strictly weaker in the case of infinite signatures for all tree species, including
those considered in [Cou89, Cou92].
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2 Joachim Niehren and Andreas Podelski

infinite. The infiniteness aof is, however, an essential ingredient of the formal frameworks
modeling structures. A practical motivation of the infiniteness is the need to account for the
possibility of dynamic addition of (arbitrarily many) record fields to a value. It turns out
that this semantical point of view has advantages for implementation as well. Namely, the
correctness of the efficient algorithms for entailment and for solving negated constraints on
feature trees [AKPS92] relies on the infinitenessrof

The Method. The first step in solving the problem described above is to build an appropriate
algebraic framework. Such a framework is provided by universal algebra in the case of
first-order trees. Formally, these are the elements of the free algebra over a given signature
of function symbols (finite or infinitecf., [Mah88]). This framework yields immediately a
“good” notion of automata.

In fact, as Courcelle has shownin [Cou89, Cou92], universal algebra provides a framework for
a rich variety of trees. Clearly, that work inspired our notion of the algebra underlying feature
trees. We introduce this notion in Section 2. Informally speaking, the operation composing
feature trees in the algebra takes a record value and adds a record field containing another
value to it. In a special case, this amounts to Nivat’s notion of ‘sum of trees’ [Niv92]; thus,
incidentally, we obtain an algebraic formalization hereof.

To define feature automata as algebras, it is useful to consider the class of all finite trees
whose nodes are labeled by node symbols, and whose edges are labeled by feature symbols.
We call these multitrees.Multitrees are of interest on their own, namely for representation

of knowledge with set-valued attributes [Rou88]. Thus, feature trees are multitrees with the
restriction that features are “functionailg., all edges outgoing from the same node are labeled

with different features. Feature automata recognize languages of multitrees, which are then
cut down to recognize languages of feature trees.

In Section 3, we will define feature automata and show the basic properties of this notion:
closure under the Boolean operations and decidability of the emptiness problem. In order to
restrict our study to finitely representable automata and yet to account for the infiniteness of
the set of featureg, we introduce the notion of #nitary automaton: the number of states

is finite, and the evaluation of the automaton can be specified not only on single symbols, but
also on finite sets or on complements of finite sets of symbols. Thus, it could be specified by
saying either “the value df ... for all symbold € F” or “the value off ... for all symbols

f ¢ F,” whereF C Fis finite.

Roughly, a feature automaton reads a feature tree in two directions: along its branches (from
the frontier to the root) and along the fan-out of each node (along all argumétopss This

is necessary in order to account for the flexibility in the depth as well as in the out-degree of
the nodes of feature trees. The first direction is standard for all automata over trees. In order
to study its behavior in the latter direction, or what we call the local structure of the recognized
language, we consider recognizable sets of feature trees of Hagahed flat feature trees.

2The unranked unordered trees studied in [Cou89] (the number of arguments of the nodes is not restricted, and
the arguments are not ordered) are a special case of multitrees, namely with just one feature. In the framework
of [Cou89], however, recognizdity by automata is strictly weaker than definability by equational systems, even
if the set of node labels is finite.
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Feature Automata and Sets of Feature Trees 3

In Section 4, we define a class of logical formulas, calednting constraints The name
comes from the fact that they express threshold or modulo counting of the subtrees which are
accessed via features from a finite or co-finite set of features. That is, their occurrences are
counted up to a certain number, or modulo a certain number.

The main technical result of this paper is a theorem saying that counting constraints characterize
exactly the recognizable sets of flat feature trees. The proof takes up Sections A and B. The
theorem essentially links counting and the finitary-condition; in all of the set-defining devices
presented here, either of these two notions accounts for the infinitenéss of

Counting constraints can express that certain features exist in the flat feature tree (labeling
edges from the root), and that others do hdts a consequence, one can show that the set of
first-order trees, with fixed arity assigned to node symbols, and recognizable subsets of these,
are sets recognized by feature automata.

In Sections 5 and 6, we give two alternative ways to define recognizable sets of feature trees
which are more practical than automata: regular expressions and equational systems. In the
first one, the sets are constructed by union, substitution andi&taiterated substitution

(and, optionally, complement or intersection). In the second, they are defined as solutions of
equations in a certain form. For both, counting constraints can be used to define the base cases.
Thanks to the main theorem in Section 4, we are able to show that either class of defined sets
is equal to the one for feature automata. Moreover, the devices can be effectively translated
one into the other. These results, together with the previous ones, are necessary to present
a complete regular theory of feature trees and to offer a solution to the practical problem of
computing with types denoting sets of feature trees as described above.

2 The Algebra J

In this section, we will introduce feature trees and the more general multitrees as elements of
an algebra that we define, callgfl This yields the notion of & -automaton. This section
follows the approach of [Cou89] and [Cou92].

In the following we will assume a given s&tof node symbolé (referred to byA, B, etc) and
a given setF of feature symbols (also called attributes, or record field selectors, referred to by
f, g, etc).

Formally, multitrees are treesi(e., finite directed acyclic rooted graphs) whose nodes are
labeled overkS, and whose edges are labeled osfer Or, the setM 7 of multitrees overS
and F can be introduced as17 = J,>q M7 Where (let N denote the set of all natural

numbers, and Mte the set of finite multisets with elements from the BBt

MTo = {(A0)|A€ s}
MT” = {(A7 E) | Ac S: Ee N%iﬁit: MTn_l } U MTn_l.

3In [ST92, Sm092], these correspond to the constraiRtsxf| or their negations, where C F finite and
ferF.

“In the literature on feature trees, the elementss cdre usually called “sorts.” In this text, we use “node
symbols” instead of “sorts” in order to avoid confusion with the notion of sorts of domains in universal algebra.
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4 Joachim Niehren and Andreas Podelski

MT , contains the multitrees of depthn.

Feature trees are multitrees such that all edges outgoing from the same node are labeled by
different featuresF7 denote the set of all feature trees (af, all those of depth< n).

We introduce two sort8T and F for multitrees and features, respectively, and define the
{MT, F}-sorted signature:
Y={=}lwFuS
where=> is a function symbol of profileMT x F x MT — MT, and the symbols itF andS
are constants of soR and of sortMT, respectively.

Thealgebra of multitrees 7 is defined as &-algebra. Its two domains at = M7 and

D = F of the sortsMT andF, respectively. Its ternary function symbel® is interpreted in
J as the operation which composes two multitreds € M7 via a featurd € F to a new
multitree composed dfandt’ with an edge labeletl from the root oft to the root oft’. Or

(wherelJ denotes multiset union),

=7 ((AE),f,t) = (A EU{(f,1)}).

Borrowing the ‘tree sum’ notation from [Niv92], we might write (t,f,t') more intuitively
ast +ft’. In fact, for the special case whefe= {1, 2} (the two features denoting left and
right successors), we obtain an algebraic reading of the notation of [Niv92].

The interpretation of the constants is givenffy = f andA? = (A, 0).

It is easy to verify that the algebra satisfies th@rder independence theory (OIT) i.e, the
following equation is valid in7.

= (= (%f,x),f %) = = (= (%f2,%), 1, %) (1)
In the ‘tree sum’ notation this expresses the commutafiaity, in the sense that f1ty +ft, =

t + foto + f1t1. Of course, always+ fity + foto 7& t+ fl(tl + fztz).
We useTy to denote the free algebra of terms over the signafure

Lemma 1 The algebra of multitreeg’ is isomorphic to the quotient of the free term algebra
over X' with the least congruence generated by the order-independence equation (1),

J =Tg0IT -
We note the well-known fact that, given any system of equatioris;, ¢ is the initial object

in the category of all'-algebras satisfying the equatiofis

A J-automaton is a tupIéA, h, Qﬁna|) consisting of a finite¥'-algebra4, a homomorphism
h:J — Aandthe subs&ny C DQT of values of sorMT (“final states”) where the number
of values of sorMT and of sorf (“states”) is finite. A7-automaton corresponds to the “more

SWe use the symbeb in reminiscence of the notation for record descriptionsdikeerms in [AK86, AKP91b],
which are of the formp = X : s(fi = ¥1,...,fn = ¥n).

%In a sense which can be made formzdl,(Section A), also the associativity holds for +; this justifies dropping
the parenthesis.
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Feature Automata and Sets of Feature Trees 5

concrete” notion of a (finite deterministic bottom-up) tree automaton over the terifig of

such that all terms which are equal modulo OIT are evaluated to the same state. This means
that any representation of a multitreas a term inlz can be chosen in order to calculate the
value oft.

3 Feature Automata

Given any many-sorted signatuke with a finite number of non-constant function symbols
ce (2 - Zg) for every sorts, we define a¥-algebraA to befinitary if, for each sorts and
each valug € D2 of sort s, the set:

{ce 2| ct=q}
of constant symbols i&¥’ of sort s which are valued mis finite or co-finite.

We now return to the particuldMT, F}-sorted signatureé introduced above; clearly, the
definitions below can be made in the general framework as‘well.

A feature automaton.A is defined as a finitary—automaton. The set of multitrees recognized
by A is the set:

LMT(A) ={te MT| h(t) € Qfinal},
and the set of feature trees recognizedAys the set:Lrr(A) = Laz(A) N FT. The
families Reqy7(7) andReg=7(.7) of recognizable setof multitrees and feature trees are
defined accordingly.

Remark. If (and only if) the set of features is infinite, the set of all feature trees is not a
recognizable language of multitrees (with respecfjo

Example. We will construct a feature automatgtithat recognizes the set of natural numbers.
These are coded into the feature trees of the @ (sucg (0, {(sucg (..., {(0,0)})})H)}),
with n edges labeleduccfor the natural numben. As elements in the quotient term algebra

T5/0IT» they would be written as the singleton congruence clgssef0, sucg = (0, sucg =

(..,0)))}. The feature automataA has the state® = {nat, Qotnery andP = {Psuca Potner}
of sortMT andF, respectively. The evaluation is given by:

ot = Onat

At = Qother IfAZ O,
succ! = Psuce;

fA = pomer Iif f 7 succ,

=4 (Clnat: Psuca Qnat) Onat »
=>4 (41,p,d2) = Gomer Otherwise.
As final state set we choo€®ina = {Onat}- It is clear thatA respects the order independence

theory and the finitary-condition. Of course, it will be more practical to define this set by
regular expressions or equational systems.

"Also, the finitary-condition: finite or co-finite, could be made more general such that the proof of Theorem 1
still holds.
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6 Joachim Niehren and Andreas Podelski

The following theorem and corollary state that the standard properties of recognizable
languages are valid for the setsRieg-7 as well.

Theorem 1

1. The family of recognizable languages of feature treeg-Réxclosed under the Boolean
operations. The corresponding feature automata can be given effectively.

. ? . .
2. The emptiness problefiLz7(A) = @ ) is decidable for each feature automatdn

Proof. The known constructions for Boolean operations on automata are still valid for
J-automata. To see that the finitary-condition is preserved, simply note that the system of
finite and co-finite sets is Boolean closed and, for two sigtesdq, of the feature automata

Az and Ay, respectively,

fce 20| M) = (qp,qp) }={ce D2 |t =q}n{ce 22| ct=q}

SinceJ = Ty 0o|T, €achJ -automatonA corresponds to a tree automatds over terms in
Ts;, and:
L]:T(A) = @ iff I—Tz; (AT) = @,

it suffices to decide the emptiness problem for the tree autom&torAs usual, this can be
done by checking all terms of depth smaller than the number of statég.ofet C be some
finite set of constants such that” = q for each state which is a value of some constant.

If (and only if) L is not empty, it contains a term of bounded depth that is constructed with
constants ofC and non-constant function symbols. But there are only finitely many terms of
this kind.

A finitary automaton can be finitely represented. From such a representation one can calculate
some se€ as described above. This yields an algorithm for teslli,ng(A) = 0. Inthe case
of L;T(A) the algorithm checks only terms representing feature trees. O

We conclude the section by defining hon-deterministic feature automata which are needed in
Sections 5 and 6.

Definition 1 A non-deterministic feature automaton.A = (Q, P, h, Qﬁna|) is a tuple such
that:

Q is the set of states of sort MT, P the set of states of sort F apg Q Q the set of final
states,

h is composed of the functions:hS — 29 and h: F — 2° and the transition function
=4 QxPxQ— 2%
A satisfies OIT, i.e., for all states pu, d1, p2, d2,

=>4 (=24 (0, p101), P2, ) = =7 (=7 (0,02, %), 1, ),

and A satisfies the finitary-condition, i.e., for all states p and (, the sets
{fe FlpefAland{Ae S|qe A*} are finite or co-finite.
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Feature Automata and Sets of Feature Trees 7

The evaluation of the terine 7z by A, i.e, the seh(t) C Qis defined inductively by:

h(= (t,f,t2)) = =" (h(ts), h(f), h(t2)).

If t; andt, are congruent modulo OIT, we habét;) = h(tp). Thus,h([t]) = h(t) is well
defined for all congruence classés [The language of multitrees recognized Ays:

Laer (A) = {[t] | h([t]) N Qtinat # 0},

and the language of feature trees recognizeddbig Lr7(A) = Lmr(A) N FT. Each
feature automaton is also a non-deterministic feature automaton.

Lemma 2 Given a non-deterministic feature automat@dn an equivalent (deterministic)
feature automatomt® can be constructed effectively.

Proof We apply the usual subset construction on a given non-deterministic feature automaton
A of the form above, yielding the equivalent automat as follows: Q4 = 29, P4 =
2P AA = A4 FAY = f4 and:

>4 (of,p%,68) = J{=* (a1, p, %) | (a1, P, a2) € o x p* x o3}

We define the final states gf¢ by: Q4. ., = {a| g% N Qfinar 7 0 }.

Clearly, the algebrad? satisfies theOIT-axiom. The equality: The finitary-condition is
preserved, since:

(AIAY =¢} = N{Alge A} n N {Alge A*}C
qeqd qgod

shows that the finitary-condition is preserved, too. O

4 Counting Constraints

In this section we characterize recognizable languages of flat feature trees using formulae of a
certain from, called counting constraints. The proof of this characterization, which is the main
technical result of this paper, will be done in Sections A and B.

The syntax otounting constraintsC (written C(x) to indicate thak is the only free variable)
is defined in the BNF style as follows (whd¥és a finite or co-finite sets of featureg,mc N
are natural numbers, ai®ls a finite or co-finite subset df).

C(x) == card{p € F|3y.(xpy A Ty)} = nmodm
| Sx (2)
| C(x) A C(x)
| —~c(x)

The counting constrair®(x) = card{¢ € F|3y.(xpy A Ty)} = nmodm holds for the
multitreex if the number of all edges ir which: (1) go from the root to a node labeled by
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8 Joachim Niehren and Andreas Podelski

a symbol inT and (2) are labeled by a featugein F, is equal tonmodm.2 The cardinality
operatorcard applies on a multiset of featurés., counts their double occurrences.

The counting constrainE(x) = Sxholds for the multitreex if the root of x is labeled by
some symbol irs.

We note the following factdf., [Eil74]).

Fact 1 A language of natural numbers is recognizable iff it can be decomposed into a finite
union of sets of the formfn+k-m|k € N}, withn,me N.

Thus, we can define the syntax of counting constraints equivalently in the form (Mhere
a set of natural numbers which is recognizable in the mo(1Nid+, 0); S, andT, a finite or
co-finite subset of; F a finite or co-finite sets of features):

C(x) == card{p € F|3y.(xpy A Ty)} €N
| Sx
| c(x) A C(x) (3)
| C(x) v C(x)

Note that this definition, too, yields immediately that counting constraints are closed under
negation. Indeedi~ card {¢ € F|3y. (xpy A Ty)} € N is equivalent tocard {¢ ¢
F|3Jy. (xpy A Ty)} € N, and— Txis equivalent tarex.

Some important feature constraints can be expressed by our new constraints. For example,
in the syntax of [Sm092], foF C F finite, forf € F, and forA € S§: xF (“for exactly the
featuresf in F there exists one edge labeledrom the root”), xf | (“there exists no edge
labeledf from the root”), andAx (“the root is labeled by”).

xF = A\ card{p e {f} | y.xpy} € {1}
f/\GF card{e € F°|Jy.xpy } € {0},
xt | = card{p € {f}|3Jy.xpy} € {0},
Ax = {Alx.

Each constrain€(x) defines the setyt(C) of multitreesx for which the constrain€(x)
holds. Accordingly, we definetgr(C) = Lyt(C) N F7, Lyr,(C) = Lur(C) N M7, and
Ler, (C) = Ler(C) N FT1. The languages of flat multitrees of the fotmr, (C), or of flat
feature treeker, (C), are calleccounting-definable

The following theorem holds for multitrees instead of feature trees, as well.

Theorem 2 A language of flat feature trees is counting-definable iff it is recognizablg (in
by a feature automaton).

8We definenmod0 = n, although this is not quite standard. That is, “counting” means here threshold- and
modulo counting.
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Feature Automata and Sets of Feature Trees 9

Proof Sketch. A flat multitree can be represented as a finite multiset ¢eu {root}) x S.

The operation=" corresponds to the union of such multisets. In Section A we study the
algebraM of finite multisets of pairs. It is three-sorted, the sorts denafing {root}, S and
MT, respectively. We show thgft- and M-recognizability coincide.

In Section B, we consider counting constraibsc) for multisetsx of M. They are of the
form:
D(x) = card{(f,A) e x|f € F, Ae T} € N,

or conjunctions or disjunctions of these. Ag&andT are finite or co-finite subsets &f and
S andN is a recognizable set of natural numbers.

We show that definability of languages of multisets by these constraint&anetognizability
coincide. The main idea is that the mapping:

x > card{(f,A) e x|f ¢ F, Ac T}

is essentially a homomorphism fraM into N. O

The theorem above expresses that feature automata can count features either threshold or
modulo a natural number.

5 Kleene’'s Theorem

We define regular expressions over feature trees. In generalization of the standard cases, the
atomic constituents of these are not just constants (denoting singletons or trees df) deypth
expressions which denote sets of feature trees of defth

As usual, we need construction variables labeling the nodes where the substitution and the
Kleene star operations can take place. These variables are taken frovfvehdel is assumed

given (disjoint fromS). It is infinite; the definition ofeach regular language, of course, uses
only a finite number of construction variables. We call a syntactic expre€sabthe form (2)

a counting-expressionif T ranges over finite or co-finite subsets® Y. Its denotation is
defined as the set of all feature trees of depthwhich satisfy it as a counting constraint over

the extended alphabet of sorts.

A regular expressionR over F andS U Y is of the form given by:

R:= C Cis a counting-expression
| RyR concatenation (whenge Y)
| R Kleene star (wherg € Y)
| RUR union

Complement and intersection are optional operators, which, as we will see, do not properly
add expressiveness.

The definition of the languaderr (R) of feature trees (drar (R) of multitrees) denoted by
the regular expressidis by straightforward induction. For concatenation and Kleene star for
sets of multitrees: I, andL are sets of feature trees, then -y L, is obtained by replacing
the construction variablgin the leaves of the trees bf by (possibly different) trees df,.
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10 Joachim Niehren and Andreas Podelski

The Kleene star operation on a set is an iterated concatenation of a set with itself. Formally,
for a setL of feature treesL§ =L = Lg—l vy Ly andL = J;5q LY.

The languages of feature trees (or multitrees) denoted by regular expressions aregaled
languages

Theorem 3 (Kleene) A language of feature trees (or multitrees) is regular iff it is recogniz-
able.

Proof. It is sufficient to prove the theorem for multitrees. We show by induction over the
structure of the regular expressions that the language of each regular expressiSnJjover

andF is recognizable. The base cdRe= C is handled by Theorem 2. Union is captured by

the Boolean closure properties in Theorem 1. Substitution and star are established using the
equivalence of deterministic and non deterministic feature automata. For the other direction,
we use the standard McNaughton/Papert induction technique, the base case being handled
again by Theorem 2. |

6 Equational Systems

The next possibility to define recognizable sets of feature trees (or multitrees) in a convenient
way uses equational systems. These systems again generalize the constituents from singletons
of trees of the forma orf(yl, .. .,yn), fora € Xy andf € X, in the case of a ranked signature

for first-order trees, to counting-expressions denoting (unions of) sets of flat feature trees.

The extra symbolg € Y in these counting expressions now correspond to set variables of the
equations.

We WriteC(yl, ey yn) instead ofC if the set variables of are contained inthe s§ys, . .., yn}.
These variables are not to be confused with the logical varabised inC = C(x) as a
logical formula.

An equational systemis a finite setf of equations of the form (wher€; is a counting-
expression, for=1,...,n):

Vi = Ci(Y1,-»¥n)-
Given an assignmenite., a mappingx : Y — 277 the equations i€ are interpreted such
thatCi(yi, . . ., yn) denotes the set:

Lrr(C) o a(y1) vy, -~ y0 @(¥n)-

A solution of £ is an assignment satisfying€. Each equational system has a least solution.
The existence follows with the usual fixed point argument. Namely, an equational system is
considered as an operator over the lattice of assignneeatsl the least solution is obtained

in w iteration steps of this operator, starting with the assignmémt) =0fori=1,...,n

A language of feature trees is callequational if it is the union of some of the sets(yi) for
the least solutiom of £. The notion is defined accordingly for ftitrees.

We can now formulate the last characterization of recognizability:
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Feature Automata and Sets of Feature Trees 11

Theorem 4 A language of feature trees (or multitrees) is equational iff it is recognizable.

Proof SinceJ-recognizability corresponds to the characterization by congruence relations,
and Theorem 2 covers the case of feature trees of defththe proof can be done following
the standard one for first-order tree$, ([GS84]). O

7 Conclusion and Further Work

The results of this paper together present a complete regular theory of feature trees. They offer
a solution to the concrete practical problem of computing with types denoting sets of feature
trees as described in the introduction.

Now, itis interesting to investigate where, in the wide range of applications of first-order trees,
feature trees can be useful in replacing or extending those. Since tree automata play a major
role, either directly or just by underlying some other formalism, the regular theory of feature
trees developed here is a prerequisite for this investigation.

A more speculative application might be conceived as part of the compiler optimizer of
the programming language LIFE [AKP91b]. Namely, unary predicates over feature trees
defined by Horn clauses without multiple occurrences of variables define recognizable sets
of feature trees. Now, satisfiability of the conjunction of two such predicates corresponds to
non-emptiness of the intersection of the defined sets. When used in deep guards, entailment
of a predicate by others of this kind corresponds to the subset relation on the defined sets of
feature trees.

We are curious to extend the developed theory in the following ways. First, we would like to
find a logical characterization of the class of recognizable feature trees, extending the results
of Doner, Thatcher/Wright and Courcelle [Don70, TW67, Cou90]. It will be interesting to
combine second-order logic and the counting constraints introduced here, in order to account
for the flexibility in the depth as well as in the out-degree of the nodes of feature trees.

Also, in order to account for circular data structures, likg, circular lists, it is necessary to
consider infinite (rational) feature trees. Thus, it would be useful to construct a regular theory
of these.

Finally, in [CD91] it is shown that the first-order theory of a tree automaton is decidable (in the
case of a finite signature). More precisely, it is possible to solve first-order formulas built up
from equalities between first-order terms and membership constraints of the togqnwhere

g denotes a set defined by a tree automaton. Since we have established the corresponding
automaton notion, we may hope to obtain the corresponding result for feature trees. For the
special case of the set of all feature trees, this is the decidability of first-order feature logic.

A proof for infinite feature trees can be found in [BS92]. Can the techniques of that proof be
combined with the ones of [CD91]?

We add the fact, suggested by one of the referees, that the first-order theory of multitrees is not
decidable. This can be shown by employing a proof technique by Ralf Treinen [Trei92].
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12 Joachim Niehren and Andreas Podelski

Appendix
A The Algebra of Multisets

We will reduce -recognizability for languages of flat multitrees to a notion of recognizability
of finite multisets of pairs. The idea is to identify a flat multitree with a finite multiset of pairs,

(AJE) = {(root,A)}UE
where root is considered like an extra feature. Roughly, the operation of adding edges

corresponds to the union operation on multisets.

In all generality, we introduce the algebsal = M(Ul,...,un) of finite multisets over
n-tuples with components in given séts, . . ., Uy, for somen > 1. (Later, we will instantiate

Uy = FU{root} andil; = §.) Misn+1-sorted, over the the sorsg, . . ., s, andFMSwhich
denote, respectively, the domaibg, = 1, ..., Ds, = Up, andDeys = N%litex -+ X Un
(where I\Mite denotes the set of finite multisets o).

The operations oM are the (associative and commutative) unio¥f of multisets and the
creation of a singleton multiset fromelements, one for each componest, (uy, .. ., un>M =
{(ug,...,un)}. Thus, they are mappings™ : Deus X Dems — Dems, and ( Y™
Uy X ... X Un — Dpms.

Formally, M is an algebra over thgsy, . . ., s, FMS}-sorted signature:
Zul,...,un = Z/{l W... W Z/{n v {<,,>,|_|}

where the constants of s@tare just the elements &, and the two function symbols have
the profile:LJ : FMSx FMS+— FMS and( ) : s X ... X Sy — FMS

Lemma 3 The algebraAM is isomorphic to the quotient of the term algebra with the
congruence generated by the associativity and commutativity laws for

We define a subset @gyt of multisets ofn-tuples to beecognizableif it is recognized by a
finitary M-automaton.

It is important to note that the notions of recognizability M = M(Ul,...,un) and
M(ul X ... X L{n) can be different, namely if > 2 and one of thé/ is infinite ®

Now, we consider the special case whigie= F U {root} andi/, = S, i.e,

M = M(Fu{root},S).

Generally, the finiteness condition far (24 x ... x Un)-automata is weaker than the one fot-automata.
It may be strictly weaker since cartesian products of finite and co-finite sets need neither be finite nor co-finite.
For example, suppogé to be an infinite set. The cartesian prodick {1} is neither finite nor co-finite as
subset ot/ x {0,1}. Thus, the language of the singleton subset® of {1} is not recognizable in the algebra
M(U x {0,1}), but it is with respect toM = M(U, {0, 1}).—In fact, it is this finitary-condition which makes
the proofs that complicated and non-standard.
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Feature Automata and Sets of Feature Trees 13

Thus, the domains o1 areD{* = Fu{root}, D! = S, andDis = FMS(FuU{root} xS) .

We define the injection:
(Fu{root}) x S

finite

l: MT]_ —- N
by I((A,E)) = {(root, A)} U E. Thus (writing the operatar™ infix):

(=7 (t,f,A)) = 1(t) LM (F,AM.

Lemma 4 (Reduction Lemma) A language L of flat multitrees is recognizablejniff the
language (L) of multisets of pairs is recognizable jv.

Proof The difficult direction is from left to right. Given afinita[y-automatodA, h, Qﬁna|),
whereDYT = Q andDf; = P, we construct a finitarp\{-automator{.A*, h*, Qsnal) Such that,
for all flat multitreeq:

h(1(1)) = h(y). @)

This is sufficient to show the recognizability kL), sincel(L) = h=%(.A) N 1(MT;), and
I(MT) is a recognizable set i.
We setDg” = Q, D" = P U {pwot}, and (whereFunc denotes the set of functions
generated by the functions 7 (.,p, q); i.e, the smallest set containing these and closed
under composition):

Dfus = Funcy Q u {q.}.

The evaluation of4* is defined by (we write*” instead ofh*(-) and use the more intuitive
infix notation):

o™ = =4(.,pa),
<proot, Q>A = qQ,
hy LA h, = hyohy,
qu4 h = n(q),
hut g = h(g),

quAg = q..

QU h = q,
hut"qr = qu,
QU g = q.,
quA"qL = qu,
(pa)™ = a.,

{Proot, QJ_>A* = QL.

Clearly, A* is anAC-automatori,e., the operatiomJA* is associative and commutative. The
associativity is trivial for functions as arguments. The commutativity for functions follows
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14 Joachim Niehren and Andreas Podelski

from theOIT-axiom, and the associativity for functions by:

A (Lpg) UM =4 (Lppa) = =>4 (=4 (., pLm),p0))
= :>A (:>A ( -5 P, Q):pl: ql) )
= :>A('7pl7ql) I—lA* :>A (7p7q)
The proof for all possible cases is now easily established.

The identity (4) is now easily verified. Finally, we note that the finitary-condition is preserved
from A to A*.

For the other direction, given a finitacyf-automaton4*, we will construct a finitary7 -
automatonA satisfying (4). This is sufficient, now, sinde{ 71 is a recognizable set iff. In
fact, we will construct an automaton in another algeBralext, we will introduce this algebra.
We resume this proof after having proven Lemma 6.

The algebraJioca Of flat multitrees is obtained from the algehfaby restricting the domain
of the third argument froM 7 to S (... = M7T), and the domain of the first fro!v 7 to
MT1,i.e, toto flat multitrees instead of arbitrary ones.

That is, the algebrdiocal is three-sorted with sorfélT;, F andS. The domains are given by
Dur, = MT1,Dg = F,Ds = S. The operation is given by (wheEeis a finite multiset
over pairs inF x §):

:>-7Iocal ((Ab E)7f7A2) = (Ala EU {(f7A2)})
(which is equal to=7 ( (A1, E), f,A2)). The signature offiocal is the disjoint union:
Zlocal =SWUFUSUY {:>}

Here, the symbols i& appear twice: they are supposed to be renamed apart. Firstly, they are
constants of sotTy, and secondly, they are constants of &fThe different functionality is
made clear syntactically by writin@r, andAs, with interpretation§Aur, ) 7ot = (A,0) ¢

MTo C MT, and(As)Jloca' = A €S.

The features are constants of d6nd interpreted freely. The profile of the function symbol

The algebraJioca satisfies the order independence theory (OIT); namely, for all flat multitrees
t, featured and symbol®# the following holds.

:>-7local ((:>-7local (t, fl: Al): f27 AZ) = :>-7local ((:>-7local (t, f27 A2)7 fl: Al)
The following lemma states that we can use the more concrete notion of tree automata.

Lemma5 Jiocal is isomorphic to a quotient term algebra,

jlocal = 7}l‘local/orl— .

9The motivation for the construction of yet another algebra is, roughly, the fact that a sirgbSloccurs as a
root-labeling as well as a leave-labeling; these two roles are distinguisijg@irtomata, but not iM-automata.
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Again, we define recognizability iffioca in terms of finitary automata.
Lemma 6 A language of flat multitrees is recognizableJniff it is recognizable in7jocal-
Proof We will first modify a finitary 7 -automaton4, whereDT = Q andDf; = P, in order

to obtain a finitaryZjoca-automatond! such that the two automata (with the same set of final
states) will recognize the same languages of flat multitrees. We define the domdihbyaf

1

D¢ = Q,
1

DJI\jI‘Tl = Q:
1

D& = P,

and we define the evaluation df by (forallA € S, f € F, and for allg, ¢ € Q andp € P):

(AMTl)Al = A4,
(A" = A%,
fAl — fA

>4 (q,p,q) = =>*(a,pd).

Clearly the finitary-condition and the order independence theory are preserved beteen
andA.

For the other direction, given a finitatfioca-automatonA? (with final statesQ?,, of sort
MT1), we will define a finitaryJjoca-automatonA® that recognizes the same language, but
has the two propertiesDfj;, = DZ", and, for all symbol#\in S, (Aur,)4" = (As)*.
Thanks to these, one can defing’eautomatonA that accepts the same flat Hiwees asAl.
Again, this is sufficient since the languag¢T ; is recognizable with respect .

We define the domains of! by:

Al _ A2 A2
Dur, = Dwur, xDg,
1 2 2
Dé - DJI\jI‘Tl X Dé )
Al A?
DF - DF )

and, after having fixed an arbitrary elemegte D“S“Z, we define the evaluation of! by (for
allAc S, f e F,andforallg,§ € Difr,, p € DZ° andr,F € D£°):

(Avm)* = ((Am)™, (A)*),
(A = ((Awm)™, (As)"),
fAS = A7

SA (@ @) = (57 (@), ).

As final states ofA! we choose:

Qflinal = {(q: I’) Kefs szinal andr € Déz }-
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16 Joachim Niehren and Andreas Podelski

Again, the finiteness condition and the order independence theory are preserved. This
concludes the proof of Lemma 6. O

End of Proof of Reduction Lemma 4

Given a finitary M-automatonA*, we construct a finitaryJoca-automatonA such that
(1(t))#*" = t4 for all flat multitreest. The domains ofd are: D& = Dg", DA = DZ”
and Di};, = Dfys.

The evaluation of4 is defined by (wherg, p andr are states a#l of sortsMT;, F andS):

(AS)A — A‘A*,
fA = 47,
(Aum)* = (root*”, (A} )4,

=>4 (g,p,r) = quA (p, A"

SinceA* satisfies (AC) A satisfies (OIT). The finitary-condition is preserved, as well. O

B Counting in Multisets

Going back to the general framework whevé = M (U, . . ., Un), we will now characterize
recognizability inM, i.e., of languages of finite multisets, by appropriate counting constraints.

We defineM-counting constraint€ (written C(x) to indicate thak is the only free variable,
which is, logically, a multiset variable) to expressions of the following form:

C(x) :==  card{(uy,...,un) € x| u € Ui foralli} € N
| C(x) nC(x)
| C(x) uC(x).

Here,N is a recognizable set of natural numbers with respect to the méhbid, 0), and the
setsU; C U are finite or co-finite. The counting constraint

C(x) = card{(ug,...,un) € x| u € Ui foralli} € N holds for the multisex if the number
of tuples(uy,...,un) in x such thaty; € U; for alli = 1,...,nis an element oN. The
cardinality operatecard applies on a multiset of tupleise., counts double occurrences.

The language defined by av-counting constrairﬂ:(x) is the set of all finite multisetsthat
satisfyC(x). It is denoted by o(C).

Theorem 5 The family of languages defined B¢-counting constraints is exactly the family
of languages of multisets recognizablet.

Proof. Given anM-counting constraint of the formC = card{(uy,...,un) € x| U €
Ui for alli } € N, we will show the recognizability df a,(C).

We can define a homomorphism M (U ..., Uy) — M({1},...,{1}) by settingh(u;) =
{1} for u; € U;, andh(u;) = 0 otherwise.
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Furthermore, the homomorphisim NIt oLy given byJ({(uy,...,un)} =1

finite
if (Ug,...,un) = (1,...,1),and...= 0, otherwise, identifies a multiset consistingaéiples
(1,...,1) withk € N.

Thus, for all finite multisets ofi-tuplesx € Dgvr,
J(h(x)) = card{(uy,...,un) € x| Ui € Ui foralli}.
Hence Lx(C) = h~1(37%(N)). The finitary-condition is invariant under inverse images of

homomorphisms. Thugu(C) is recognizable in\.

For the reverse inclusion, suppose thé&t recognized by a finitar)M-automatodA, h, Qﬁna|)
with, say, the seéDgvs = {qu, . . ., On} Of states of sorEEMS.

The evaluation of the multiséby A leads to the state (written in a notation which is justified
by the fact that4 satisfies (AC), even ifi# is taken over the empty multiset):

= [ A, uh
(ug,..,un)€t

We define the natural numberai(i) = card {(ug,...,un) € t|{uf,...,u)* = g} and
obtain (again thanks to (AC) being satisfied):

n o afi)
tA — |—|A |—|A q -
i=1 j=1

We define amapping : {1,...,n} — {1,...,n}suchthaty,; = uft:(il)““ gi-lfte Lap(A),
then:

n
| |* dugiy € Qiinay (5)
i=1

Generally, for a mapping : {1,...,n} — {1,...,n}, we define, foi = 1,...,n, the set of
natural numbers: .
N, = {meN|[|[*a = .}
j=1
We note thaa(i) € NL[ fori = 1,...,n. Thatis,tis an element of the language defined by

the M-counting constraint:
n

N ai) € N,.

i=1
Vice versa, for each mapping satisfying the property (5), the language of thé&counting
constraint:

a(i) € N,

n
=1

Research Report No. 28 March 1993



18 Joachim Niehren and Andreas Podelski

is contained irL.. We getL = L(R) whereRis the M-counting constraint:

n
R= \ A ali)eN,.
K i=1
with (5)
Since the number of mappingswith (5) is finite, it only remains to show that the constraints

used inR are of the defined form. The constitueratﬁ_x) are admissible by the finitary-
condition of A. Finally, we have to prove that the séd§ are recognizable with respect to

(N, +,0). We will construct appropriate automats, from A. We seD4x = Q, 0% = ¢4,

1{"# = ¢; and interpret the addition hy“. As final states we take the singletfa),;y}. Then,
A, recognizes\,,. 0

Proof of Theorem 2

For each languagk of flat multitrees defined by a counting constra@twe will find an
M-counting constrain€ that defineg(L), andvice versa

Given a counting constraint for flat multitrees of the form:
C(x) = card{p € F|3y.(xpy A Ty} €N,

we set:
C'(x) = card{(p,y) ex|p € FAYyET} € N
n card{(root,y) € x|y€ F} = 1.

The caseC = Txis obvious, as well as conjunction and disjunction.

For the other direction, given am-counting constrainC’ for finite multisets, we will
give a constrainC such thatlyr,(Cx) = 173(La(C')), or, equivalentlyLpsr,(C) =
La(C) N1(MT ). We note that the languages of the foifh) are the multisets containing
exactly one pair with first componerdot. Given theM-counting constraint:

C' = card{(p,y) ex|pc FAYyeT} € N,
we have to distinguish the two cagest ¢ F androot € F. In the first case we set:
C = card{p € F|3y.(xpy A Ty} € N.

In the second case, we note thatthe 8&t: 1 = {n— 1|n & Nandn > 1} is recognizable
with respect td A, +,0), and set:

C= card{p € F — {root} | Jy. (xgy A Ty)} € N—1
n Tx.

In either cas& has the required property.

This concludes the proof of Theorem 2, since the reduction lemma (Lemma 4, page 13) and
the above theorem (Theorem 5) close the cycle from counting-definable landuafésat
feature trees to those recognizablejirby feature automata. Namely, according to the above
correspondence between counting- amticounting constraints, viaM-counting-definable
Ianguage$(L), which, according to Theorem 5, are exactly the ones recognizalplg imack

toL according to Lemma 4. O
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