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Abstract

In this technical report, we address the problem of recovering the camera radial distortion
coefficients fromone image. In particular, we present three interactive methods where the user
indicate lines in the single image. The first method is the most direct: the manually chosen points
are used to compute the radial distortion parameters. The second and third methods allow the user
to draw snakes on the image, with each approximately corresponding to a projected straight line in
space. These snakes are drawn to strong edges subject to regularization. The difference between
these two methods is the behavior of the snakes. In one of the last two methods, they behave like
independent, conventional snakes. In the other method, their behavior are globally connected via
a consistent model of image radial distortion. We call such snacd@al distortion snakes.

Experiments show that among the three methods, radial distortion snakes are the most robust
and accurate. This is attributed to the direct link of edge fitting to the radial distortion parameters,
in comparison to the other methods in which the process of locating edges is independent of radial
distortion parameter estimation.
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1 Introduction

Most cameras having wide fields of view suffer from non-linear distortion due to simplified lens
construction and lens imperfection. Applications that require 3-D modeling of large scenes (e.g.,
[1, 10, 18]) or image compositing over a large scene area (e.g., [13, 16, 17]) typically use cameras
with such wide fields of view. In such instances, the camera distortion effect has to be removed
by calibrating the camera and subsequently undistorting the input image.

In general, there are two forms of camera distortion, namely radial distortion and tangential
distortion.  In this technical report, we address the problem of recovering the camera radial
distortion coefficients fronone image. In particular, we present three interactive methods where
the user indicate lines in the single image. The first method is the most direct: the manually chosen
points are used to compute the radial distortion parameters. The second and third methods allow the
user to draw snakes on the image, with each approximately corresponding to a projected straight
line in space. These snakes are drawn to strong edges subject to regularization. The difference
between these two methods is their behavior. In one of the last two methods, they behave like
independent, conventional snakes. In the other method, their behavior are globally connected via a
common model of image radial distortion. Such snakes are teraual distortion snakes. These
methods, and in particular the one that uses radial distortion snakes, are especially useful in cases
where only one image is available and straight 3-D lines are known to exist in the scene.

In many cases, camera parameter recovery is disconnected from the feature detection process.
While this does not present a problem if the feature detection is correct, directly linking the feature
detection to parameter estimation results in more robust recovery, especially in the presence of
noise. The spirit of this work is very much linked to this philosophy.

1.1 Prior work

There has been significant work done on camera calibration, but many of them require a specific
calibration pattern with known exact dimensions. There is a class of work done on calibrating
the camera using the scene image or images themselves, and possibly taking advantage of special
structures such as straight lines, parallel straight lines, perpendicular lines, and so on. One relevant
work that belong to this class is that of Becker and Bove [1]. They use the minimum vanishing
point dispersion constraint to estimate both radial and decentering (or tangential) lens distortion.
The user has to group parallel lines together.

Brown [3] uses a number of parallel plumb lines to compute the radial distortion parameters
using an iterative gradient-descent technique involving the first order Taylor’s expansion of the line
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fit function. The points on the plumb lines were extracted manually; the measuring process was
guoted as consuming between 5-6 hours for 162 points from horizontal lines and 162 from vertical
lines!

Stein [15] uses point correspondences between multiple views to extract radial distortion coef-
ficients. He uses epipolar and trilinear constraints and searches for the amount of radial distortion
that minimizes the errors in these constraints.

Photogrammetry methods usually rely on using known calibration points or structures [2, 3,
6, 20]. Tsai [20] uses corners of regularly spaced boxes of known dimensions for full camera
calibration. In a more flexible arrangement, Faig [6] requires that the points used only be coplanar,
and that there are identified horizontal and vertical points among these points. Wei and Ma [21],
on the other hand, use projective invariants to recover radial distortion coefficients.

The idea of active deformable contours, or snakes, was first described in [11]. Since then, there
has been numerous papers on the applications and refinement of snakes. Snakes has been applied
to, for example, from tracking human facial features [22] and cells [4] to reconstruction of objects
[19]. The various forms of snakes include the notion of “inflating contour” to reduce sensitivity to
initialization (but at the expense of increase in parameters) [5], and the “dual active contour” [8].

In all these cases, the snakes, some of which may be parameterized, work independently of each
other. In one of our proposed methods, the snakes are globally parameterized, and they deform in
a globally consistent manner.

1.2 Organization

In Section 2, we briefly describe the radial distortion equation before presenting the three interac-
tive methods of recovering the distortion parameters from one image. Subsequently, we present
results using synthetic and real images in Section 3. In the same section, we propose a metric
for comparing accuracy of recovered radial distortion parameters. The methods are compared and
discussed in Section 4, with a summary and directions for future research given in Section 5.

2 Finding theradial distortion parameters

We begin this section with a brief description of the lens distortion equation before describing the
three proposed interactive calibration methods.
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2.1 Theradial distortion equation

The modeling of lens distortion can be found in [14]. In essence, there are two kinds of lens
distortion, namely radial and tangential (or decentering) distortion. Each kind of distortion is
represented by an infinite series, but generally, a small number is adequate.

According to Brown [2], the lens distortion equations are

Ty = xg+TqY KRy +[Pi(Rg+ 2%5) + 2PZqfa)[l + Y PryoRY)
=1 =1

o0 o0
Yo = Ya+TaD kiRy+ [2PiZaa+ Po(Ra+277)|[1 + > PioRY] (1)

=1 =1
wherex's are the radial distortion parametef3s are the tangential distortion parametetrs,, v,
is the theoretical undistorted image point locatiory, ) is the measured distorted image point
location,Zy = x4 — T, Ja = Ya — Yp, (Tp, y,) is the principal point, and®; = 72+ 3. This model
of radial distortion has been adopted by the U.S. Geological Survey [12]. In our work, we equate
(x4, y4) to the center of the image and assume the decentering distortion coefficients to be zero,
i.e.,P, = P, = ... = 0. This leaves us with

00

l

Ty = xd‘i‘de/ﬁRd
=1

Yu = Yd+ Yd Z kiR, (2)

=1

In our proposed calibration methods (each of which using only a single image), we expect
the user to indicate the image locations of the projected straight lines in the scene. The most
direct way possible is to directly on the edges and have the radial distortion parameters computed
automatically.

2.2 Method 1. Using user-specified points
This method comprises two stages:

e Manual stage—the user select points on lines by clicking directly on the image,

e Automatic stage—the camera radial distortion parameters are computed using a least-squares
formulation.
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The radial distortion parameters are recovered by minimizing the objective function

Niine Npts,i L 2
£ = Z Z (cos b;x;; + sin 0;y;;) (1 + Z /ﬂRﬁj) — i (3)
i=1 j=1 =1
where(z;;, y;;) is the distorted input image coordinaté§;,. is the number of linesy,;; ; is the
number of points in ling, (0;, p;) is the parametric line representation for lid. is the number
of radial distortion parameters to the extracted, &)d= x?j + yfj
To get a closed form solution for the line equation, (3) can be recast as either

Nline Npts,i Ci 2
= Z Z [yij — M;xi; — LZ ] ] 4)
i=1 j=1 L4302, kil
for lines whose inclinations are closer to the horizontal axis, or
Nline Npts,i C, 2
= > l%’ — MgYij — T ] (5)
=1 j=1 L4200 kiR

for lines whose inclinations are closer to the vertical axis. The choice bet$je@md&, is made
based on the slope of the best fit line through the set of distorted points.
Taking the partials of (4) with respect ¢ andm,, and solving yields

m, = Sn(l) Z;'thls,annjynj Sn(x)sn (y) (6)
Sn(1) 520" 2y — Sa(x)

where N
pts,n f (7)
and Su(y) — muS(2)
- n y — Mpop T
Cn = S 8)
Similarly, for (5),
;o Sn(1) Ej'\]:pis’n TnjYnj — Su(T)Suly) _ Sn(x) —my,Sn(y)
my, = Npt y Cp = (9)
Sn(1) 520" yas — S2(y) Sn(1)

The (m,, ¢,) and (m.,, ¢! representations are then converteddg, p,,) line representation as
in (3), from which thex,’s can directly be recovered in a similar manner to Method 3 described
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later (compare (3), wher@;, p;)’s are known, with (18))x,’s can be found by solving the set of
simultaneous linear equations

L
S 1Gomit = Hyp — Gy (10)
=1

withm =1,..., L, and

Niine Nptsi

Gn = > > g;RY

=1 j=1
Niine Nptsyi

Hn = Y pi Y 94RY (11)
=1 =1

gij = cosb;x;; + sin0y;;
For the special case of estimating only one radial distortion coefficient/ie.1),

H, -Gy
G

K1 =

(12)

For the case of two radial distortion coefficients (ife + 2),

(n)-(& &) (@)
K2 Gs Gy (Hz - Gz)

An alternative would be to employ the iterative gradient-descent technique involving the first
order Taylor’s expansion of the line fit function [3].

The problem with this approach is that it can be rather manually intensive. Typically, the
extracted radial distortion parameters are more reliable with more (carefully) chosen points.

The other two methods described in the subsequent two subsection, the user draws curves over
projected straight lines. The drawn curves need not be very accurate. Once this is done, these
algorithms automatically reshape the snakes to stick to edges and compute the radial distortion
parameters based on the final snake configuration. The difference between the these two methods
is in the formulation of the snakes.

For all the subsequent snake methods described in this section, the input image is first blurred

to remove high frequency changes which may prevent the snake from being attracted to a strong
edge when the edge is sufficiently far away from the user specified initial snake configuration.
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2.3 Method 2: Using conventional snakes

In this method, the motion of the snakes is based on two factors: motion smoothness (due to
external forces) and spatial smoothness (due to internal forces). Given the original configuration
of a snake, a point on the snagg moves by the amourntp; at each step given by

0p; = (1= A) D 1jkOPedge + A D H(Pk — Py) (14)
keN; keN;

where \V; and \Vj are the neighborhood of pixel @t;, includingp;. dpeqg.,; iS the computed
motion of theith point towards the nearest detectable edge, with its magnitude being inversely
proportional to its local intensity gradient (only when it is not close to zemg).and ., are the
respective neighborhood weights. is set according to the emphasis on motion coherency and
spatial smoothness. In our implementatiafy, = A, the radius of the neighborhood being 5 and
the weights.;;, = p);, being{1,2,4,8,16,32,16,8,4,2,1}.

Once the snakes have settled, the camera radial distortion parameters are recovered using the
least-squares formulation. Note that a very simplistic version of the snake is implemented here.
The intent is to compare the effect of having snakes that operate independently of each other
behaves worse in general than those which actgiolal manner (as in Method 3 below), given
the constraints of the types of curves that they are collectively attempt to seek.

2.4 Method 3: Using radial distortion snakes

Using conventional snakes have the problem of getting stuck on wrong local minima. This problem
can be reduced by imposing more structure on the snake—namely, the shape of the snake has to
be consistent with the expected distortion of straight lines due to global radial distortion. For this
reason, we call such snakexlial distortion snakes.

The complexity of the original objective function can be reduced if we consider the fact that the
effect of radial distortion is rotationally invariant about the principal point, ignoring asymmetric
distortions due to tangential distortion and non-unit aspect ratio.

This method has the following steps:

1. For each snake, find the best fit line,

2. Rotate each snake about the principal point so that the rotated best fit line is horizontal. Let
the angle of this rotation be; for theith snake.
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3. Estimate best fit set of radial distortion parameters.., x;, from the rotated set of lines
(described shortly).

4. Find the expected rotated distorted pgifit= (z;, y;), whose undistorted version lies on a

horizontal line, i.e.,
L

yi |1+ mlal + )| =h (15)
=1

(0) (0)

Given the initial points(asg-o),yj ), we takex; —3: ) and iteratively computg, from

(k+1) h
y, = (16)
! 1+XF, k(g + y] )

until the difference between successive valueys](-'é?fs is negligible.

5. Update points using current best estimate’sfand edge normal. In other words, the point

p; is updated based on
p?ew — npgappa + (1 n)p?orma,l (17)

with0 < n < 1. pnorme‘*1 is the expected new position of the snake point using Method 2
described earlier (see (14)). For the snakepka‘ppa is obtained by rotating’; (calculated
from the previous step) about the principal point(by;).

6. Iterate all the above steps until overall mean change is negligible, or for a fixed number of
iterations. The latter condition is adopted in our work.

In (17),n = 0 is equivalent to moving the points according to the usual snake behavior as
in Method 2 (function of edge normal, edge strength, smoothness, and continuity) ywhile
is equivalent to moving to a position consistent to the current estimated radial distortion. From
experiments, setting = 1 has the effect of slower convergence, and in some cases, convergence
to a wrong configuration. In generaj,may be time-varying, for example, with = 0 initially
and gradually increasing to 1. n our case, we set the time-varying functiptodse linear from O
to 1 with respect to the preset maximum number of iterations.

To find the radial distortion parametetgs givenrotated coordinates, we minimize the objec-

tive function )

e-3 flw” [yw (1—I—ZI€ZR ) ] (18)

i=1 j=1
wherel; is the number of snake®,;; = =7; + y;; andwy; is the confidence weight associated with
the jth point in theith snake. In our Worl@,J is equated to the edge strength at image location
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(wij, vi;). We use the rotated versions in order to simplify the analysis of the objective function to
a point where a direct closed form solution is possible.

Taking the partial derivatives with respect to the unknown parameters and equating them to
zero, we get

0¢ 0=~h L pr:mw Y (1—1—2/{}% ) (29)
"L m — —Notsm mjYm 4ty
ah’m Ej'\]:pl, Wmj j=1 7oma 7

form=1,..., Ng, and

o€ L
5 T2 D Wi [ym ( +D K jo> h] yiRi; = 0 (20)
n =1

i=1 j=1

forn =1,..., L, which yields
Ns Npts,i L Npts,i
> 5wty (14 ) = 3o > ok (1)
i=1 j=1 I=1

Letting
A, = ’%@W. (22)

L Ns Npts,i
LHS = A, +)> & > wijyijé;r”
=1 =1 j=1
L
= An + Z HlAlJrn (23)

As for the RHS of (21), substituting fdr; from (19) and changing the summation subscript in the
last summation term to avoid confusion, we get

pts i Nptsai

RHS = Z Nowi Z WijYij (1 + Z“le]> Z wi i Ry
J=1

ptsz
zlz Wij =1

NS pts i L Npts i
- Z ptsz Z ZK/leyl] Z wZJleRZ]

=1 j=1 Wij j=1 I=1

NS Npts i pts i pts i
n
- Z winuRiJ Ly v Nopts,i Z ki Z WijYij Rzy Z w”leRlJ

i=1 j=1 Wij =1



pts 7 Npts,i Npts,i
= Zyz Z wiYis Ry +Z/€zz Npm > wijyinéj > wiyisRY
=1 =1 =1 E Wij =1 J=1
= Cn + Z HlDln (24)

=1
forn=1,..., L.
From (23) and (24), after rearranging, we get

L
Z ’fl(AH-n - Dln) = Cn - An (25)
=1

forn =1, ..., L, which is a linear system of equations that can be easily solved,fer For the
special case where only one radial distortion coefficient is sufficient,

O - A
= AQ - Dll (26)
For the case of two radial distortion coefficients,
-1
k1| (As — D11) (A3 — Do) (Cy — Ay) 27)
K2 (As - D12) (A4 - D22) (02 - A2)

For L > 1, we estimate the’s in succession. In other words, we first estimatefollowed by
k1 and ko, and so on, up til the last stage where we estimate all the radial distortion parameters

o R

3 Results

In this section, we present results from both synthetic and real images. The synthetic images
are used to verify the accuracy of the recovered radial distortion parameters. We also artificially
incorporate image noise to study the effects of noise on the snakes. Real images with significant
radial distortion are used to illustrate their use in practice. For all the experiments described in
this section, we recovet; andk, only, i.e., we setl, = 2. This is generally sufficient for low to
moderately distorted images in practice.

3.1 Metric for accuracy

In evaluating the accuracy of the recovered radial distortion parameters, it does not make much
sense to compare directly the values:gé for cases wheré, > 1. This is because significantly
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different sets ofk;,'s may give rise to visually similar undistorted images. In addition, coming

up with an error metric using only the actual and estimated setg'®fs not trivial. In such a
situation, it is more reasonable to compute an image distance-based metric that is a function of the
error in undistorting the image using the actual and estimated sets of radial distortion parameters.
A reasonable error measure is the RMS differefAgg, s between the predicted and the estimated
undistorted coordinates (based on actual and estimated radial distortion parameters respectively).
The error measur€'z ), s is given by

H w
1 2 2
Puss = S % (ot - i)+ (vt — vik)|
r=—Z =-%
1 % % L 2
SR LRI D e | I C
rzf% 0:7% I=1
H w 2
1 2 2 L l
- \ W rzz_:% sz_:% Rd,rc |Jz; 5’€le,7‘0‘|

where H and1V are the image height and width respectivaty,.. = ¢ + r2, anddx;, = k" —
k¢t We use the superscripist andest to denote actual and estimated values respectively, and
subscripts: andd to denote undistorted and distorted values respectively.

3.2 Experimentsusing synthetic images

In our first set of experiments, we use synthetic images containing straight lines and distort them
with known radial distortion parameters. In addition, we vary the image noise to see how it af-
fects both the conventional and radial distortion snake algorithms. In particular, the actual radial
distortion parameters correspondingsto= 10~% andx, = 10~'° are applied to images with a
resolution o480 x 512. The gaussian image noise (specified by the standard deviation in intensity
level) is varied from 0 to 100 intensity levels. Figure 1 shows the results for the case with no image
noise using all three methods, and Figure 2 shows results for the same test image with image noise
of 100. Itis clear from Figure 2 that the radial distortion snakes yielded a better result than that of
conventional snakes.

The results of the series of experiments are shown in Figures 3 and 4. It can be observed from
these two figures that using the RMS distortion error is a more intuitive metric to determine the
degree of accuracy in recovering radial distortion parameters. As can also be seen, for low image
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Figure 1: Synthetic image with no image noise: (a) Original image, (b) Manually selected points
(299 points), (c) Undistorted image from (b), (d) Manually drawn lines, (e) After applying conven-

tional snake algorithm, (f) After applying radial distortion snake algorithm, (g) Undistorted image

from (f) (very similar to results from (e)).
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Figure 2: Synthetic image with image gaussian noise with standard deviation of 100 intensity lev-
els: (a) Originalimage, (b) Manually drawn lines, (c) After applying conventional snake algorithm,
(d) After applying radial distortion snake algorithm.
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Figure 3: Graphs showing the effect of gaussian image noise (standard deviation in intensity level)
on recovered radial distortion parameters: £a)(true value is10~°), and (b)s, (true value is
10~19). Note that for the manual method, the points were placed on the image with no noise. Also,
for the other two methods, the snakes were initialized on the image with no noise.

noise levels, both snake algorithms exhibit reasonable robustness to image noise. However, the
radial distortion snake algorithm is even more stable despite the presence of high image noise, in
comparison to the conventional snake algorithm. Note that both snake algorithms have essentially
the same implementation and uses the same edge gradient estimation and same maximum number
of 200 steps or iterations. The difference with the radial distortion snake is that all of the radial dis-
tortion snakes arglobally connected via a common set of estimated radial distortion parameters.

As a frame of reference, the radial distortion parameters that are estimated based directly from the
user drawn liness; = 3.22 x 1078 andx, = 1.14 x 10~'9) yield an RMS pixel location error of

4.15.

3.3 Experimentsusing real images

A second series of experiments are conducted using real images. The three methods are used on
the same first real image, and the results are shown in Figures 5-7. The radial distortion parameters
extracted are listed in Table 1. As can be seen from Table 1 and Figures 5-7, significantly different
sets of values of radial distortion parameters result in similar-looking undistorted images. Figure 8
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Figure 4: Graph showing the effect of gaussian image noise (standard deviation in intensity level)
on RMS undistortion erroE'z .

illustrates a situation where the radial distortion snakes appear to have converged to a more optimal
local minima than that of conventional snakes for the same snake initialization. This example
shows that the radial distortion snakes are more tolerant to errors in snake initialization by the user.

Another example involving a real image is shown in Figure 9. This scene is a more difficult
one due to the relative sparseness of structurally straight and long lines within the camera viewing
space. As a result, the recovery of the radial distortion parameters are more sensitive to errors in
the extracted curves. This is evidenced by Figure 9(d) for the conventional snake algorithm, where
slight errors have resulted in significantly erroneous estimates in the radial distortion parameters.

[Wethod |
Manual 293 x 1077 | 7.10 x 10712
Conventional shakes | —5.30 x 10~7 | 1.58 x 10~
Radial distortion snakes 5.47 x 10~7 | 3.55 x 1072

Table 1: Comparison of radial distortion parameters from the three calibration methods for the
office scene image.
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(b)

Figure 5: Office scene (manual): (a) Original distorted image, (b) Selected points, (c) Undistorted
image.

(b)

Figure 6: Office scene (using conventional snakes): (a) Chosen snakes, (b) Final snake configura-
tion, (c) Undistorted image. Note the relatively uneven snake to the left of image in (b).

Figure 7: Office scene (using radial distortion snakes): (a) Chosen snakes, (b) Final snake config-
uration, (c) Undistorted image. Notice the smoother snakes compared to Figure 6.
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Figure 8: Office scene (comparing the two snake implementation): (a) Initial snake configuration,
and final snake configuration for (b) Conventional snakes, (c) Radial distortion snakes.

On the other hand, the radial distortion snake algorithm resulted in a visually more correct undis-
torted image.

Radial distortion snakes appear to have the effect of widening the range of convergence com-
pared to conventional snakes (as exemplified by Figure 8). It is reasonable to hypothesize that
radial distortion snakes have fewer false local minima, although this number will increase with the
number of radial distortion parameters to be estimated. An example of radial distortion snakes
converging to a wrong local minima is shown in Figure 10. As can be seen, due to the rather bad
placing of the initial snakes (specifically the two most vertical ones), the snakes in both implemen-
tations converged to straddle different parallel edges, causing incorrect estimated radial distortion
parameters.

4 Discussion

The first method of manually picking discrete direct line points is the simpliest to implement and
understand, but of all the three methods described, it is the most burdensome to the user. In our
implementation, the user has to be relatively careful in choosing the points. This is because the
user-designated input locations are used directly in the radial distortion parameter estimation step.
One can, however, add the intermediate process of automatic local edge searching and location
refinement, but this may pose a problem in an image of a complicated scene with many local
edges.

For the two methods that uses snakes, it is clear from experiments that using the radial dis-
tortion snakes is better than using conventional snakes. We have demonstrated that the radial
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Figure 9: Another example: (a) Original image, (b) Initial snake configuration, and final snake
configuration for (c) Conventional snakes, (e) Radial distortion snakes. The respective undistorted
images are (d) and (f). Note that the snakes are shown in black here.

distortion snakes find best adaptation according to best global fit to radial distortion parameters.

They appear to have fewer false local minima in comparison to conventional snakes, and are less
prone to being trapped in bad local minima. At every step, the radial distortion snakes act together

to give an optimal estimate of the global radial distortion parameters and deform in a consistent

manner in approaching edges in the image.

In comparison to the radial distortion snake, each conventional snake is locally adaptive and
works independently of all the other snakes in the same image. They are not specialized, nor are
they designed to be optimal to the task (in our case, the recovery of radial distortion parameters).
This is clearly another demonstration of the benefit of incorporating global task knowledge directly
in the early stages of the problem-solving algorithm. The concept of the radial distortion snake is
very much in the same spirit as thattagk-oriented vision [9].
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(© )

Figure 10: Snake failure example: (a) Original image, (b) Initial snake configuration, and final
snhake configuration for (c) Conventional snakes, (d) Radial distortion snakes. Note that the snakes
are shown in black here.
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5 Summary and future work

We have described three semiauthomatic methods for estimating radial distortion parameters from
a single image. All the methods rely on the user indicating the edges of projected straight lines
in space on the image. The first requires good user point to point localization while the other two
only requires approximate initial snake configurations.

In essence, all the methods use the point locations to estimate the radial distortion parameters
based on least-squares minimization technique. However, the last two methods automatically de-
forms the snakes to adapt and align along to strong edges subject to regularization. In the second
method, the snakes behave independently and in a conventional way with internal smoothing con-
straints and external edge-seeking forces. In the third method, the snakes (called radial distortion
snakes) behave coherently to external edge-seeking forces and more importantly, directly linked
to the image radial distortion model. As a result, this method is more robust and accurate than the
other two methods.

One direction for future work is to extend this work to estimate the principal point and tan-
gential (or decentering) distortion parameters in addition to the radial distortion parameters. This
would come at the expense of higher complexity and potential instability or problems in conver-
gence. Another area is to fully automate the process of determining radial distortion by edge
detection and linking, followed by hypothesis and testing. A robust estimator may be used to
reject outliers (e.g., RANSAC-like algorithm [7]).
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