
The hBΠ-tree:
A Concurrent and Recoverable
Multi-attribute Access Method
Georgios Evangelidis David Lomet

Betty Salzberg
Digital Equipment Corporation

Cambridge Research Lab

CRL 94/5 August 3, 1994

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is
applications technology; that is, the creation of knowledge and tools useful for the preparation of
important classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

TM

The hBΠ-tree:
A Concurrent and Recoverable
Multi-attribute Access Method1

Georgios Evangelidis2 David Lomet
Betty Salzberg3

Digital Equipment Corporation
Cambridge Research Lab

CRL 94/5 August 3, 1994

Abstract

We describe a new access method, the hBΠ-tree, an adaptation of the Lomet
and Salzberg hB-tree index to the constraints of theirΠ-tree . TheΠ-trees, a gen-
eralization of the Blink-trees of Lehman and Yao, provide very high concurrency
with recovery, hence permitting highly parallel access to data. The hB-tree is a
multi-attribute index which is highly insensitive to dimensionality. The combi-
nation makes the hBΠ-tree suitable for inclusion in a general purpose database
management system supporting multi-attribute and spatial queries.

Keywords: concurrency, recovery, indexing, access methods, B-trees
c�Digital Equipment Corporation and Betty Salzberg 1994. All rights reserved.

1This work was partially supported by NSF grant IRI-91-02821 and IRI-93-03403.
2College of Computer Science, Northeastern University, Boston, MA 02115
3College of Computer Science, Northeastern University, Boston, MA 02115

1

1 Introduction

Current DBMSs efficiently organize, access, and manipulate enormous quantities
of data for traditional applications in banks, airlines, government agencies, hospi-
tals, and other large organizations. Almost all of them implement some variation
of the B�-tree [BM72, Com79] which is the best choice for ordered single-attribute
indexing.

However, today new non-traditional applications, with growing mountains of
data, require innovative solutions to storage and access problems. These include
scientific applications such as those proposed for the terabytes of meteorological,
astronomical and geographic data streaming in daily from satellites. This data
must be organized spatially in terms of latitude and longitude and height above
the earth, for example, rather than linearly in terms of one attribute.

Unfortunately, current general purpose DBMSs do not support multi-attribute
and spatial indexing. Spatial organization of large databases is a largely unsolved
problem. Even the research literature does not offer many viable solutions which
would stand up to arbitrary collections of data. There have been a number of
proposals for multi-attribute and spatial indexing in the past 15 years (for example,
[Gut84, NHS84, Gue89, SRF87, LS90]), but none of them has been integrated into
a commercial general purpose DBMS. Two of the most important reasons for this
are:

1. lack of performance guarantees, and

2. very complicated or no concurrency and recovery methods for them.

Concurrency in B�-trees has been the subject of many papers [BS77, LY81,
SG88, ML89, LS92]. Most of these papers, with the exception of [ML89, LS92],
have not addressed the problem of system crashes during structure changes.

We introduce a new access method for multi-attribute point or spatial data
that is based on the hB-tree [LS90] and can be used in a general purpose DBMS
since a robust concurrency and recovery algorithm is available for it [LS92]. This
algorithm is applicable to an abstract index tree structure, theΠ-tree, which is
a generalization of the Blink-tree [LY81]. A recent study [SC91] compared the
performance of various concurrency control algorithms. Its conclusion was that
algorithms using the link technique provide the most concurrency and the best
overall performance.

2 2 CONCURRENCY AND RECOVERY: THEΠ-TREE

We modify the hB-tree so that it becomes a special case of theΠ-tree. This
involves structural changes to the hB-tree, and invention of new node splitting,
index term posting, and node deletion algorithms. Once this is accomplished,
the concurrency and recovery algorithm of [LS92] is applicable on the resulting
method, which we call the hBΠ-tree.

We have implemented the hBΠ-tree and have tested it in extensive experiments
with computer-generated skewed point data and with point data from the Sequoia
2000 Storage Benchmark [SFGM93]. We also show that the hBΠ-tree is fairly
insensitive to dimension. This property makes it suitable fork-dimensional spatial
data that is mapped to 2k-dimensional point data.

This paper is organized as follows. Section 2 briefly reviews theΠ-tree.
Section 3 introduces the hBΠ-tree, which is a combination of the hB-tree and the
Π-tree. Finally, Section 4 reports performance results and explains how and why
the hBΠ-tree can be used as a spatial data index.

2 Concurrency and Recovery: The Π-tree

An abstract index, theΠ-tree, and a well-understood and robust concurrency and
recovery algorithm for it are presented in [LS92]. In this section we review the
Π-tree and show why it achieves a high degree of concurrency and meshes well
with various recovery schemes. These are essential properties an index must have
in order to be suitable for general purpose Database Management Systems.

2.1 Π-tree Structure

As a generalization of the Blink-tree [LY81], theΠ-tree is a rooted DAG. It consists
of index anddata nodes. Each node is responsible for a specific part of the key
space. AΠ-tree node:

� Can bedirectly responsible for some part of the space. In an index node,
this space is distributed among its children nodes and is described byindex
terms. In a data node, existing and potential data points lie in this space.

� Can alsodelegate responsibility for part of the space to sibling nodes. This
space is described bysibling terms.

The index and sibling terms include pointers toΠ-tree nodes. The pointers to
sibling nodes are the links that make theΠ-tree a generalization of the Blink-tree.

2.2 Searching 3

In theΠ-tree it is possible for a node to be referred to by more than one parent,
unlike the Blink-tree. This happens whenever the boundary of a parent split cuts
across a child boundary. This child is called amulti-parent node. Nodes with
only one parent aresingle-parent nodes.

2.2 Searching

For exact match searches, a unique path, that may include sibling-pointers, is
followed down to the leaf (data) level where the point in question will reside if it
exists at all. That is, exact match searches are precisely analogous to those in the
Blink-tree.

2.3 Node Splitting and Index Term Posting

A Π-tree node is split when an insertion causes it to overflow. Part of the node’s
contents go to a new sibling node and an index term that describes the resulting
space decomposition is posted to the parent of the split node.Π-tree node splitting
is analogous to B-tree node splitting.

In the Π-tree node splitting and theindex term posting are performed by
separate recoverable atomic actions 1, as follows:

Node splitting: A Π-tree node is full and cannot accommodate an update. This
node, called thecontainer node, is split and part of its contents are moved to
a newly created node, called theextracted node. Node splitting concludes
by storing a sibling term in the container node (see Figures 1a and 1b).

Index term posting: An index term, that describes the space that was extracted
from the container, is posted to the parent of the container in the current
search path (see Figure 1c). An index term posting atomic action always
posts to a single parent. When the container node is a multi-parent node,
index posting may consist of several separate index term posting atomic
actions (one for each parent).

1Like transactions, atomic actions are atomic, and isolated. Unlike transactions, since there is
no communication of the changes to users, they need not be durable. Typically, these are made
durable by the commitment of transactions that use their results.

4 2 CONCURRENCY AND RECOVERY: THEΠ-TREE

A

B

A

B

A

B

A

BC

(a) Before Splitting A (b) After Splitting A
P P

A

A

B

A

BC

C C

C

A

P P
(d) After Deleting B(c) After Posting

Figure 1:Splitting, Posting, and Consolidating in theΠ-tree.

WhenΠ-tree restructuring is interrupted by system failures, theΠ-tree is left
in a consistent state. Searchers can always traverse or visit an extracted node by
going through its container node and following the sibling pointer. The same is
true when, in the case of a multi-parent container node, only some of the index
term posting atomic actions have been performed. That is, two instances of the
Π-tree can bestructurally different but semantically equivalent. An index term
posting atomic action for the missing index term is scheduled whenever a sibling
pointer is traversed.

2.4 Node Consolidation

A Π-tree node whose space utilization drops below a pre-specified threshold should
be consolidated with another node (its container node or one of its extracted nodes)
in order to improve the overall storage utilization.

In theΠ-tree we always move the contents of an extracted node to its container
node and we deallocate the extracted node. Also, all references to the deallocated
node must be removed from its parent(s) by the same atomic action. This is in
contrast to index term posting which can be performed using multiple independent
atomic actions.

Two conditions are required for node consolidation: (a) both the container and
the extracted nodes must be children of the same parent, and (b) the extracted
node must be a single-parent node. These conditions simplify node consolidation
and increase the degree of concurrency since only one parent node needs updating

2.5 Recovery Issues 5

during a consolidation. They also ensure that no other tree traversal operation will
reference the node being deleted via a different path.

In Figure 1c, we assume that node B is sparse and can be consolidated with
node A since both A and B have P as parent. A absorbs B’s contents, the reference
to B is removed from P, and the index term for A is adjusted (Figure 1d).

2.5 Recovery Issues

The above approach for concurrency works very well with various recovery
schemes as long as they provide two essential requirements. First, the write-
ahead logging protocol (WAL protocol) must be used to ensure that the atomic
actions are actually atomic, i.e., they have the all-or-nothing property. Second,
the transaction manager must know about atomic actions in the sense it knows
about database or system transactions. This is necessary because the transaction
manager has to provide the atomicity property by possibly rolling back (undoing)
incomplete executions of atomic actions [LS92].

3 The hB-tree as a Π-tree

A new access method which is suited for multi-attribute data cannot be used in
a general purpose DBMSs unless it uses well-understood and robust concurrency
and recovery methods. We have modified the hB-tree so that it becomes a special
case of theΠ-tree [LS92], which we call an hBΠ-tree. Then, the efficient algorithm
for concurrency and recovery of [LS92] is applicable on it.

3.1 Multi-attribute Indexing with the hB-tree

The hB-tree [LS90] is a multi-attribute point data indexing method with good
storage utilization. Its inter-node and growth processes are analogous to the
corresponding processes in B-trees. In this section, we describe the structural
modifications that transform the hB-tree into the hBΠ-tree. We present simple and
efficient tree restructuring algorithms in the next section.

The nodes of an hB-tree represent bricks (i.e., multi-dimensional rectangles),
or “holey” bricks, that is, bricks from which smaller bricks have been removed.
An hB-tree node stores index and sibling terms in a unified way using kd-trees
[Ben79].

6 3 THE HB-TREE AS AΠ-TREE

In Figures 2a and 2b we can see the intra-node organization of an index hB-tree
node Q and the corresponding space decomposition. Each path (from the root to a
leaf) in the kd-tree of node Q describes either the space of a sibling node or part of
the space of a child node. For example, the path (x1-left,y1-left) describes space
that has been extracted from Q (shaded region of Figure 2b). The remaining four
paths in the kd-tree of Q describe the decomposition of the space node Q is directly
responsible for among its children, namely nodes K, L, and M (white regions of
Figure 2b).

QQ

x1

x2

y2

y1

ext K K

(a) kd−tree (b) corresponding space

K

K

extM L

M

L

In the hB−tree

y1

y2

x1 x2

True

(c) kd−tree (d) corresponding space

x1

x2

y2

y1

K

L

M

R K

K

M

R

L

QQ

y2

y1

x1 x2
In the hB −tree

Figure 2:Intra-node organization of hB-tree and hBΠ-tree nodes using kd-trees.

In order to transform the hB-tree into a case of theΠ-tree we need to: (a) know
the actual address of an extracted node, (b) be able to determine the containment
order of the children of an index node (this simplifies the deletion algorithm), and
(c) have a means to detect whether a node is multi-parent or not by examining the
kd-tree of its current parent. We describe four important structural modifications
of the hB-tree which transform it into the hBΠ-tree.

3.2 Side-pointers

We replace the external markers by pointers to the extracted nodes, calledside-
pointers. This is an important modification and transforms the hB-tree into a
subcase of theΠ-tree. In Figure 2c the thick arrow with the address of node R
represents the side-pointer that is now used in the place of the external marker.
The address of R (the node that was extracted from Q) is known at the time of Q’s
splitting.

3.3 Splitting a Node at its kd-tree root 7

3.3 Splitting a Node at its kd-tree root

Another important modification is the way node splitting is done, when the kd-tree
of the node is split at its root. In the hB-tree, one of the subtrees remains in the
node that is split, and the other one becomes the kd-tree of the newly allocated
node. The original kd-tree root disappears and, as has been described earlier, there
is no pointer to the extracted node. For example, in Figure 2a, if hB-tree node Q
is split at its kd-tree rootx1 and the kd-subtree rooted atx2 is extracted, kd-tree
nodex1 is eliminated.

In the hBΠ-tree we keep the kd-tree root in the original node and we simply
extract the appropriate kd-subtree which again becomes the kd-tree of the new
hBΠ-tree node. The new node is now the extracted node, whereas the original
node is the container node. This modification is necessary, because in theΠ-tree
a node that is split (container node) continues to keep information that describes
the key space it is responsible for. For example, in Figure 2c, if the kd-subtree
rooted atx2 is extracted, kd-tree nodex1 remains in Q and its right child becomes
a side-pointer to the extracted node.

3.4 Decorations

The third modification deals with the way the addresses (pointers) of child hBΠ-
tree nodes are stored in the kd-tree of their parent. In the hB-tree we may have
multiple references to a child in a node’s kd-tree (for example, in Figure 2a K’s
address is stored twice). Every leaf node of the parent’s kd-tree that refers to data
directly contained in a child node contains a pointer to the child.

In the hBΠ-tree, we instead identify the node within the kd-tree that is the root
of the subtree that describes the space for which a child node is responsible, both
directly and via delegation. That subtree root is then tagged with the address of the
child node. We use the termdecoration for this child address. We call this subtree
the decorated subtree. Specific instances of decorated subtrees are referred to
using their decorations. For example, in Figure 2c, the decorated subtree rooted
at x1 is referred to as the K-subtree. The decorated subtree rootted aty2 is the
L-subtree. Decorated subtrees are nested.

Leaf nodes now contain one of three kinds of information:

1. a child node address: no index term has been posted for any extracted
siblings of this child and the path to this kd-tree leaf node describes the

8 3 THE HB-TREE AS AΠ-TREE

space for which the child is responsible. In this case the subtree for the child
is degenerate.

2. a sibling node address: the index node itself has been split and the path
to this kd-tree leaf node describes the space delegated to the sibling index
node.

3. a null address: the path to this kd-tree leaf describes space for which the
child node that decorates the smallest subtree including this node is directly
responsible (as of the time that this information was posted).

In Figure 2c, the right child of kd-tree nodey1 and the left child of kd-tree node
x2 have null pointers. They share the child node described by the decoration K at
the subtree rooted at kd-tree nodex1. Similarly, the right child of kd-tree nodey2
is null and describes the space that the decoration L aty2 is directly responsible
for. Note that decorations on non-leaf nodes are relevant to index nodes only. Data
nodes do not have children. Any sibling node decorations within data nodes are
at kd-tree leaves.

The collection of kd-tree nodes sharing a child node decorationC form a
decorated fragment that describes the partitioning ofC. These are all the nodes
in theC-subtree which are not nodes in a smaller nested decorated subtree.

One can determine the containment order of the children of a node by just
examining the kd-tree in that node. For example, the kd-tree of node Q in Figure
2c indicates that, first node L was extracted from K, and later node M was extracted
from L. The K-fragment consists of kd-tree nodesx1, y1, andx2, the L-fragment
of kd-tree nodey2, and the M-fragment is empty, indicating that either M has not
been split yet, or that no splitting of M has been posted yet. The containment order
of the children of node Q is indicated by the arrows in the space decomposition of
Figure 2d.

3.5 Continuation flags

Multi-parent nodes are created when an index hBΠ-tree node is split and a kd-
subtree that is not decorated, i.e., its root does not carry a decoration, is extracted.
The extracted kd-subtree is decorated with the same decoration as the split kd-
subtree. It is obvious that, after the completion of the split, the child hBΠ-tree
node that appears as decoration will be amulti-parent node. It will be pointed to
by both the original node and the newly created node.

3.6 Terminology 9

Node consolidation in theΠ-tree requires that the node being deleted be
referenced only by a single parent. So, we have to be able to detect whether a
node is multi-parent or not by examining its current parent. This is accomplished
by our fourth modification.

We keep a specialcontinues-to flag with every side-pointer. The continues-to
flag of a side-pointer is true or false indicating whether the kd-tree fragment that
contains that side-pointer is continued to the sibling node or not. This is a way
to determine if the child node that appears as the decoration is multi-parent or
not. The continues-to flag of the side-pointer to R in Figure 2c being set to TRUE
indicates that the child node K of node Q is multi-parent, and that node R is its
other parent.

In addition, R must contain an indication that K, the decoration at its kd-tree
root, is multi-parent. Each new sibling node contains acontinues-from flag which
determines whether the child decorating its kd-tree root is multi-parent.

3.6 Terminology

Table 1 summarizes the terminology that we will be using in the sections that
follow.

Term Description

decorated fragment collection of kd-tree nodes with common decoration
decorated subtree kd-subtree rooted at a decorated kd-tree node
P, C, X Parent, Container and eXtracted nodes
Cto-Ppath from P’s C-subtree root to null leaf in P’s C-fragment
CtoX-path from C’s kd-tree root to X’s sibling address

Table 1:Terminology.

In Figure 2c, the K-subtree is the whole kd-tree, the L-subtree is the same as
the L-fragment, and the M-subtree is empty. If we consider Q to be the parent node
(P) and K to be the container node (C), then we have two Cto-Ppath’s: (x1-left,
y1-right) and (x1-right,x2-left). Also, if we consider Q to be the container node
(C) and R to be the extracted node (X), then the CtoX-path is (x1-left,y1-left).

In the figures and examples of the following section we use the notation X and
C for an extracted node and its container node respectively, and P for the parent of
the container node where the index term that describes the split is posted.

10 4 HBΠ-TREE RESTRUCTURING

4 hBΠ-tree Restructuring

4.1 Data Space Boundaries

The directly contained space of a data hBΠ-tree node, i.e., the space that does
not include subspaces which have been delegated to sibling nodes, can be viewed
as a union of disjoint rectangular regions corresponding to the record-lists that
reside in the node. We call the boundaries of these disjoint spaces at the data
level, or of contiguous collections of themData Space Boundaries or DSBs. We
have found that if index nodes are split in such a way that the extracted space
and the remaining directly contained space of the nodes do not each correspond
to a union of DSBs, there will be search correctness problems. In [ELS94] we
show that the splitting/posting algorithm presented in [LS90] is flawed. Figure 3
shows a data level space decomposition and three possible space boundaries for
this decomposition. Two of them, namely (a) and (b), are DSBs, whereas (c) is
not.

x1

y1

x1x1

y1 y1

(a) (b) (c)

x1

y1

A kd−tree and the corresponding
data level space decomposition it
 defines Various space boundaries

Figure 3:Data level space decomposition and various data and non-data space boundaries.

What is needed to correct the hB-tree flaw is to perform index hB-tree node
splittings only at DSBs. This can be accomplished by imposing minor restrictions
on splitting and/or posting. In this section we consider the simplest algorithm that
accomplishes this. This algorithm splits index nodes only by extracting decorated
subtrees (D) and we post the full CtoX-path (fp). We call the resulting algorithm
D/fp. Two other algorithms that also split index nodes at data space boundaries
are briefly described in Section 4.4.

It is important to notice that since data nodes do not have decorated subtrees, if
their kd-tree has to be split, any subtree can be extracted (as in the hB-tree). Any

4.2 Splitting at Decorations (D) 11

place in a data node’s kd-tree defines data space boundaries. Thus, the restriction
we impose on splitting applies only to index nodes.

4.2 Splitting at Decorations (D)

When an hB-tree node had to be split, one had to find and extract a subtree whose
size was between one and two thirds of the size of an index hB-tree node [LS90].

When splitting is done at decorations this is still true for data hBΠ-tree nodes.
However, for index hBΠ-tree nodes, the extracted subtree must be a decorated
subtree, which may preclude it satisfying the size requirement. Fortunately, this
splitting convention simplifies the index term posting phase by not allowing multi-
parent nodes.

In general, the kd-tree of an index node must be exhaustively searched in order
to find the best possible decorated subtree, i.e., the one whose size is closest to
half the hBΠ-tree node size.

Finally, in the highly improbable situation when no decorated subtree exists
one can defer the splitting action (that would be the case in Figure 4a if kd-tree
nodex10 were missing). Remember that index hBΠ-tree nodes are split when they
have not enough space to accommodate an index term posted by a posting action.
By deferring a splitting action in an index node we actually defer a posting action.
This is acceptable, since the hBΠ-tree remains well formed.

y5
x5

K

D

E L

F

x15

y5

C

D

K

E L F

x5 x10 x15

x10

(a) C and its space before the subtree rooted
 at x10 is extracted to create node X.

y5

C

K

x5

D

E

x15

y5

X

D

K

E X

x5 x15

(b) C and its space after X has been extracted from C.
 NOTE: the dotted path is the CtoX−path.

Figure 4:Node X is extracted from node C. kd-tree nodes from the CtoX-path will have
to be posted to the parent of C.

Here is the algorithm for splitting an index hBΠ-tree node C by extracting a
decorated subtree of its kd-tree:

12 4 HBΠ-TREE RESTRUCTURING

SPLITTING AT DECORATIONS (D)

1. find a decorated subtree in C whose size is closest to half a node’s size, else
EXIT

2. create a new node X, extract the decorated subtree from C, and move it to X

3. in C, replace the extracted subtree with a pointer to X (this is the side-pointer)

In the next section we will show how to post the CtoX-path of Figure 4b to the
parent P of C.

4.3 Posting the Full Path (fp)

Index term posting has to “correctly” insert the posted kd-tree nodes into an
existing kd-tree. Intuitively, a kd-tree in an hBΠ-tree index node is well-formed
if its kd-tree nodes appear in the same order as their corresponding kd-tree nodes
at the level below. Two kd-tree nodes are corresponding if (a) they are located
in consecutive hBΠ-tree levels, and (b) the one at the higher hBΠ-tree level has
been created as a copy of the one at the lower hBΠ-tree level during an index term
posting atomic action.

In the hB-tree one posted thecondensed CtoX-path, i.e., only the kd-tree
nodes that were necessary to describe the extracted region, and had not already
been posted (see discussion in Section 4.4). One had to keep track of the kd-tree
nodes that have already been posted by marking them. Also, kd-tree nodes that
were ancestors of posted kd-tree nodes had to be marked.

In thefp variation of the hBΠ-tree we simplify the index term posting process
by posting the full CtoX-path, that is, all kd-tree nodes from the CtoX-path that
have not already been posted. Since we split at decorations, all hBΠ-tree nodes
have exactly one parent, so one need only post the index term for a split to one
hBΠ-tree node. Also, since the full paths are being posted, posting reduces to
bringing the Cto-Ppath leading to or including X up-to-date so that it reflects the
space decomposition described by the CtoX-path.

By posting the full CtoX-paths we preserve DSBs across the levels of the
hBΠ-tree. Any subtree (decorated or not) of an hBΠ-tree node’s kd-tree can be
extracted because it describes a region which is defined by DSBs.

The resulting posting algorithm is straightforward. All we have to do is
compare the Cto-Ppath for X against the CtoX-path. If it is equal or longer than

4.4 Other Splitting/Posting Algorithms 13

the CtoX-path, we simply X-decorate part of it. If it is shorter than the CtoX-path,
we append the extra kd-tree nodes of the CtoX-path to it, including a pointer to X.

In Figures 5 through 7 we demonstrate the three cases discussed above. Node
P corresponds to the parent of node C of Figure 4. In each case, P and the space it
is responsible for are shown before and after the posting takes place. The dotted
lines indicate the Cto-Ppath leading to or including X that in each case is compared
to the CtoX-path of Figure 4b. The algorithm is the following:

1. len(Cto-Ppath for X) � len(CtoX-path): this indicates that all kd-tree
nodes of the CtoX-path had already been posted by other posting actions.
All we have to do is X-decorate the first node of the Cto-Ppath which no
longer refers to space in C (see Figure 5).

P

D

x15

C

x5

y5

(a) Before posting

D

x15
C

y5

x5

x10E

F

C FE

x10 P

(b) After posting

D

x15

C

X

x5

y5

D

x15
C

y5

x5

E x10

F

X

FE

x10

Figure 5: len(Cto-Ppath for X)� len(CtoX-path): X-decorate the first kd-tree node of
the Cto-Ppath which no longer refers to space in C.

2. len(Cto-Ppath for X) � len(CtoX-path): again, all kd-tree nodes of the
CtoX-path had already been posted. We make the last kd-tree node of the
Cto-Ppath for X point to X (see Figure 6).

3. len(Cto-Ppath for X) � len(CtoX-path): that is, the Cto-Ppath is a prefix
of the CtoX-path. We append copies of the extra CtoX-path nodes to the
Cto-Ppath, with the last posted node pointing to X (see Figure 7).

4.4 Other Splitting/Posting Algorithms

Posting the full path (fp) may increase the size of the index terms posted. Especially
when the data is skewed, we may end up posting long CtoX-paths. Splitting at

14 4 HBΠ-TREE RESTRUCTURING

P

D

x15

C

x5

y5

(a) Before posting

C

D

x15
C

y5

x5

E

E

P

(b) After posting

D

x15

C

X

x5

y5
D

x15
C

y5

x5

XE

E

Figure 6: len(Cto-Ppath for X)� len(CtoX-path): make the last kd-tree node of the
Cto-Ppath point to X.

D

x15

D

x15P

C

C

(a) Before posting

 D

x15P

C

D

x15
C

y5

x5

X

C X

x5

y5

(b) After posting

Figure 7:len(Cto-Ppath for X)� len(CtoX-path): append the extra kd-tree nodes of the
CtoX-path to the Cto-Ppath.

4.4 Other Splitting/Posting Algorithms 15

decorations (D) requires an exhaustive search of the whole kd-tree of the index
hBΠ-tree node to find the largest decorated subtree whose size is between one and
two thirds of the contents of the node. It may be the case that such a subtree does
not exist at all. In this case we will have a bad quality split. If bad splits are
too frequent, the utilization of the index nodes will decrease, and the size of the
index will increase. Despite the lack of worst case guarantees for index term size
or index node storage utilization, when algorithmD/fp is used, the hBΠ-tree has
demonstrated good performance in our study(see section 5.1).

Algorithm D/fp is but one of several alternatives one can use. There are other
splitting and posting strategies that also result in splitting only at DSBs. We
briefly describe two strategies for hBΠ-tree node splitting and two strategies for
index term posting.

Our two splitting strategies are: (a) split a kd-tree at arbitrary places (strategy
A = Arbitrary), or (b) split a kd-tree only at decorated subtrees (strategyD =
Decorated). In the example of figure 2c node Q can be split anywhere if we use
strategyA. On the other hand if we use strategyD it can be split only aty2.

Our two posting strategies are: (a) post the condensed path as in the hB-tree,
that is, only the kd-tree nodes of the CtoX-path that are necessary to describe the
extracted space (strategycp = condensed path), or (b) post all kd-tree nodes, or the
full CtoX-path (strategyfp = full path). In the example of figure 2c let us assume
that the subtree decorated with L is extracted. Then, if we use strategycp during
posting we must post only kd-tree nodex2 sincex1 is redundant (the extracted
space contains all points withx � x2). If we use strategyfp bothx1 andx2 must
be posted.

Depending on the splitting and posting strategy that is used, there are four
splitting/posting algorithms:D/fp, A/fp, D/cp, andA/cp.

Like D/fp, algorithmsA/fp andD/cp also split only at DSBs.A/fp posts full
paths, so any extracted subtree describes a region which is defined by DSBs
(exactly asD/fp does). In the case ofD/cp, although condensed paths are posted,
the index term that we post when we extract a decorated subtree describes a region
which is defined by DSBs.

Algorithm A/cp corresponds to the splitting and posting algorithm for the hB-
tree described in [LS90]. The strengths and weaknesses of the other algorithms
are summarized in Table 2.

16 5 VARIETIES OF MULTI-ATTRIBUTE DATA

Property Splitting Posting Worst case Worst case Multiple Concurrency
Algorithm algorithm algorithm split index term size parents

D/fp Restrictive Append Skewed Large No High
A/fp Flexible Append Balanced Large Yes High
D/cp Restrictive Merge Skewed Small No High

Table 2:Comparison of the various splitting/posting algorithms.

4.5 Node Consolidation

Following theΠ-tree algorithm for node consolidation, a sparse hBΠ-tree node is
consolidated with a sibling node and the parent of the deleted node is modified to
reflect the change. For reasons of simplicity and efficiency we always choose to
consolidate a sparse hBΠ-tree node with its container node. So, the two conditions
for hBΠ-tree node consolidation are: (1) the sparse (extracted) node shares the
same parent with its container, and (2) it is also a single-parent node.

Condition (1) is not true when the sparse (extracted) node’s decoration appears
at the root of its parent’s kd-tree, that is, the sparse node is the container of all
the children of that parent. This is not very common, since in the worst case
there are as many such nodes at a given level as parent nodes at the level above.
Similarly, condition (2) is not very restrictive either. There is a limited number
of nodes that are multi-parent when the splitting strategy allows multi-parent of
nodes. Since at most one kd-tree fragment is split per hBΠ-tree node split, at most
one multi-parent is introduced per split. In the worst case there will be as many
multi-parent nodes at a given level of the hBΠ-tree as parent nodes at the level
above. Our continuation flags are used to detect when a node is multi-parent by
checking only a single path to the node.

Since an hBΠ-tree node uses a kd-tree for its intra-node organization, we also
have to reorganize the kd-trees of the parent and container nodes of the extracted
node. In [ELS94], we show how one can determine whether a node can be deleted
by examining the kd-tree of its parent, how deletion is performed, and how kd-tree
node pruning is used to reorganize kd-trees.

5 Varieties of Multi-attribute Data

In this section we demonstrate the performance of the hBΠ-tree on multi-attribute
point data. We use both computer-generated data and geographic data from the
Sequoia project [SFGM93] and we measure node space utilization and range

5.1 Point Data Performance 17

search performance.

We also examine the problem of using a multi-attribute point data method,
like the hBΠ-tree, for spatial data. First, we show that when mapping is used to
transform ak-dimensional objects to 2k-dimensional points, the resulting mapped
space has some interesting properties that are likely to enhance the performance of
spatial queries. Second, we claim that the hBΠ-tree is very well suited for indexing
the mapped space because it is fairly insensitive to dimension.

5.1 Point Data Performance

5.1.1 Node Space Utilization

In the first part of our experiment, whose results are shown in Figure 8, we
inserted half a million 32-byte records (eight 4 byte attributes in each record) into
the hBΠ-tree.

We attempted to test the limits of algorithmD/fp by making the values for
all indexed attributes follow a 90:10 skewed distribution, instead of the uniform
distribution. With reasonably large node sizes (greater than 1K bytes) space
utilization is very good regardless of the number of indexed attributes. Note that
the decline in utilization is due to increased control information and not index
term size (see Section 5.3). Also, the size of the index is very small: for node
sizes 0.5K, 1K, 2K, and 4K, 5%, 2.5%, 1.4%, and 0.75% of the total number of
hBΠ-tree nodes are index nodes respectively.

Finally, our performance results show that when the hBΠ-tree is used as a
single-attribute index it performs comparably to the B�-tree.

In the second part of our experiment, data from the Sequoia 2000 Storage
Benchmark [SFGM93] was inserted in the hBΠ-tree. These are 62,584 points
representing California place names. We tested two of the splitting/posting algo-
rithms we have described in this paper:D/fp, andA/fp. As expected, the more
relaxed index node splitting strategyA yielded better index node space utilization
compared to splitting strategyD (see Figure 9).

Note that the space utilization results are comparable to the ones we obtained
when using computer generated data. Also, the comparably low index node space
utilization when the node size is 4K is attributed to the low number of index nodes
(only 6 index nodes).

18 5 VARIETIES OF MULTI-ATTRIBUTE DATA

Data node
space utilization

1 2 4 6 8

58

60

62

64

66

68

70

dim

4K

2K

0.5K

1K

1 2 4 6 8

58

60

62

64

66

68

70

dim

4K

2K

0.5K

1K

Index node
space utilization

Figure 8: Node space utilization for computer generated data under varying node sizes
and dimensions when algorithmD/fp is used.

67

65

63

61

59
512 1024 2048 4096

69 Data NSU

Index NSU (A/fp)

Index NSU (D/fp)

20 6

5777 2713 1321 646
20 6

359
370

84
85

of index nodes (A/fp)
of index nodes (D/fp)

node size in bytes

of data nodes

SEQUOIA 2000 Storage Benchmark Point Data
62,584 points representing California place names

Average record size
29 bytes

(int, int, var−string)
Record format

hB −tree Node Space Utilization (NSU)

5 4 3 3 # of tree levels

Figure 9: Node space utilization for the Sequoia 2000 Storage Benchmark point data
under varying node sizes and index node splitting strategies.

5.2 Mapping Spatial Data to Point Data 19

5.1.2 Range Searches

Finally, we have tested the range seach performance of the hBΠ-tree. We performed
the same series of 104 range searches with varying query selectivity and node size.
The query window was rectangular and was formed by taking a randomly chosen
existing point as its center. To achieve various query selectivities, the extent of
the window for each attribute was a random fraction of the domain range for that
attribute.

The results, shown in Figure 10, indicate very good range search performance
for query selectivities greater than 0.5%, and sufficiently good even at smaller
query selectivities. Note that when the query selectivity is approximately equal to
the average number of records in a data node, 25% of the records retrived satisfy
the query. This is as expected because it is likely that in this case the query window
will overlap on average four data nodes.

0

10

20

30

40

50

60

70

80

90

100

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 20.48 40.96

%

query
selectivity

%

0.5K 1K 2K 4K

selectivity corresponding to a number of
records equal to the average number of
records that a data node can hold

=

matching records

retrieved records

Figure 10:hBΠ-tree range search performance in terms of the ratio of retrieved points
that satisfy the query over total number of retrieved points per range search, under various
node sizes (0.5, 1, 2, and 4 Kbytes) and query selectivity.

5.2 Mapping Spatial Data to Point Data

A spatial object ink-dimensional space can be indexed by its bounding box. The
boundaries of the box are mapped to a point in 2k-dimensional space [NH83]. This

20 5 VARIETIES OF MULTI-ATTRIBUTE DATA

mapping has some very interesting properties: if two points in the 2k-dimensional
space have similar values in all coordinates then thek-dimensional objects will (a)
be similar in size, (b) be close in space, if they are small, and (c) overlap, if they are
large. Thus, any multi-attribute point data indexing method which clusters nearby
points will group records of large objects together in pages with other overlapping
large objects. It will also group small objects together with nearby small objects
in pages.

This clustering is efficient for typical spatial queries. Large objects are likely to
be the answer to many queries. Having them clustered in disk pages will increase
the locality of reference. Having the small objects clustered together will decrease
the number of pages which must be accessed for a particular query [Lom91].

y

x

6

4

A

B
C

C D

D

Figure 11: Mapping of line segments to points. Points close to the linex � y will
represent small line segments.

To illustrate, we look at one dimensional spatial objects, which are line seg-
ments with a begin value and an end value. We map these objects to points in
two-dimensional space using thex-coordinate for the begin value of the line seg-
ment and they-coordinate for the end value. Since the begin value is always less
than or equal to the end value, all points will lie on or above the linex � y. Points
representing small line segments will be near the diagonal linex � y and points
representing large line segments will be far from the linex � y (figure 11).

Common spatial queries such as inclusion, intersection, or disjointness are
represented by rectangular bricks in the transformed (2k-dimensional) space. For
example, as illustrated in figure 11, all line segments containing the line segment
(begin = 4, end = 6), which is represented by point (4, 6), will be in area A, the
ones included in it in area B, the ones intersecting it in area C, and the ones that

5.3 The hBΠ-tree in High Dimensions 21

have no common points with it in area D.

5.3 The hBΠ-tree in High Dimensions

One main objection to using multiattribute point-based methods for spatial objects
is that the number of dimensions needed to represent the objects doubles, making
the index too large. But the hBΠ-tree is essentially insensitive to increases in
dimension.

A kd-tree node always stores the value of exactly one attribute. Thus, the size
of a kd-tree node (and, consequently, the size of the kd-trees that reside in the
hBΠ-tree nodes) does not depend on the number of indexing attributes.

But, in addition to a kd-tree, every hBΠ-tree node stores its own boundaries
(i.e., low and high values for all attributes that describe the space the node is
responsible for). These are 2k attribute values for ak-dimensional hBΠ-tree. An
increase on the number of dimensions does increase the space required to store a
node’s boundaries. This additional space is not significant for large page sizes.

Figure 12 illustrates this fact. Node space utilization is defined as the ratio of
the size of a node’s kd-tree and the size of a page. The decline in utilization is
due to increased control information and not index term size. With a page size
of 1K bytes and larger, there is almost no effect on the size of the hBΠ-tree and
the node space utilization as the dimensions increase. (Page sizes larger than 2K
bytes are not shown.) It is interesting to notice that these performance results were
obtained using algorithmD/cp and are comparable to the results of figure 8 where
algorithmD/fp was used.

This is in contrast, for example, with the R-tree [Gut84], where index entries
are bounding coordinates of objects plus a pointer. Thus, in the R-Tree (and its
variants) the size of the index is proportional to the dimension of the space. If data
is uniformly distributed with respect to all index attributes, the grid file [NHS84]
can be efficient for large dimension. However, in the case of correlated data, for
example, it can be anO�nk� size index, wheren is the number of points andk
is the dimension of the space. Z-ordering [OM84] usually requires that the field
expressing the interleaved attributes is appended to each record. This obviously
results in a substantial increase in data space consumed and hence index size,
which becomes worse as the dimension of the data increases.

22 6 SUMMARY

Data node
space utilization

Page size

2048
1024

512

dim54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10 11 12

dim54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10 11 12

Index node
space utilization

dim

1 2 3 4 5 6 7 8 9 10 11 12

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Size of the hB−tree
in Mbytes

5.6

Tree height = 5

Tree height = 4

Tree height = 3

Figure 12: Index and data hBΠ-tree node space utilization and size of the hBΠ-tree in
terms of height and Mbytes under different page sizes and dimensions (indexed attributes).
For page sizes greater than 1K bytes the hBΠ-tree is fairly insensitive to dimension. (In all
cases the same 150,000 24-byte records were inserted with their attribute values following
a 90:10 skewed distribution.)

6 Summary

The hBΠ-tree is a combination of the hB-tree [LS90] and theΠ-tree [LS92]. It
inherits the good performance of the hB-tree and the high concurrency of the
Π-tree.

We have implemented and tested various splitting/posting algorithms for the
hBΠ-tree. We have found that if we post more information than is actually needed
(the full path), or if we restrict index node splits to certain places on their kd-tree
(the decorated fragments), our algorithms become simpler. Our experiments show
that even with these simpler algorithms the performance is very good. We have
also developed a deletion algorithm for the hBΠ-tree [ELS94]. In addition, the
hBΠ-tree is very well suited for indexing spatial data that has been mapped to
points in higher dimensions. This is because it is fairly insensitive to increases in
the dimensions of the stored data [ES93].

We intend to further assess the performance of additional splitting/posting
algorithms, based on even more flexible splitting strategies and using polygon and
graph data from the Sequoia 2000 Storage Benchmark [SFGM93].

REFERENCES 23

References

[Ben79] J. L. Bentley. Multidimensional binary search trees in database applications.
IEEE Transactions on Software Engineering, SE-5(4):333–340, July 1979.

[BM72] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes.Acta Informatica, 1(3):173–189, 1972.

[BS77] R. Bayer and M. Schkolnick. Concurrency of operations on B-Trees.Acta
Informatica, 9(1):1–21, 1977.

[Com79] D. Comer. The UbiquitousB-Tree.ACM Computing Surveys, 11(4):121–137,
1979.

[ELS94] G. Evangelidis, D. Lomet, and B. Salzberg. Node Deletion in the hBΠ-Tree.
Technical Report NU-CCS-94-04, College of Computer Science, Northeast-
ern University, Boston, MA, 1994 (submitted for publication).

[ES93] G. Evangelidis and B. Salzberg. Using the Holey Brick Tree for Spatial
Data in General Purpose DBMSs.IEEE Database Engineering Bulletin,
16(3):34–39, September 1993.

[Gue89] O. Guenther. The design of the cell tree: an object oriented index structure for
geometric databases. InProceedings of IEEE Data Engineering Conference,
pages 598–605, Los Angeles, CA, 1989.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of ACM/SIGMOD Annual Conference on Management of Data,
pages 47–57, Boston, MA, June 1984.

[Lom91] D. Lomet. Grow and Post Index Trees: role, techniques and future potential.
2nd Symposium on Large Spatial Databases (SSD91) (August, 1991) Zurich.
In Advances in Spatial Databases, Lecture Notes in Computer Science 525,
pages 183–206, Berlin, 1991. Springer-Verlag.

[LS90] D. Lomet and B. Salzberg. The hB-Tree: A multiattribute indexing method
with good guaranteed performance.ACM Transactions on Database Systems,
15(4):625–658, December 1990.

[LS92] D. Lomet and B. Salzberg. Access method concurrency with recovery. In
Proceedings of ACM/SIGMOD Annual Conference on Management of Data,
pages 351–360, San Diego, CA, June 1992.

[LY81] P. Lehman and S. B. Yao. Efficient locking for concurrent operations on
B-trees.ACM Transactions on Database Systems, 6(4):650–670, December
1981.

[ML89] C. Mohan and F. Levine. ARIES/IM: an efficient and high concurrency index
management method using write-ahead logging. IBM Research Report RJ
6846, IBM Almaden Research Center, San Jose, CA, August 1989.

24 REFERENCES

[NH83] J. Nievergelt and Hinrichs. The Grid File: A Data Structure to Support
Proximity Queries on Spatial Objects. InProceedings of the International
Workshop on Graph Theoretic Concepts in Computer Science, pages 100–
113, Linz, Austria, 1983.

[NHS84] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An adaptable,
symmetric, multikey file structure.ACM Transactions on Database Systems,
9(1):38–71, March 1984.

[OM84] J. A. Orenstein and T. Merrett. A class of data structures for associative
searching. InProceedings of SIGART-SIGMOD 3rd Symposium on Principles
of Database Systems, pages 181–190, Waterloo, Canada, 1984.

[SC91] V. Srinivasan and M. Carey. Performance of B-tree concurrency control algo-
rithms. InProceedings of ACM/SIGMOD Annual Conference on Management
of Data, pages 416–425, Denver, CO, May 1991.

[SFGM93] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000
Storage Benchmark. InProceedings of ACM/SIGMOD Annual Conference
on Management of Data, pages 2–11, Washington, DC, May 1993.

[SG88] D. Shasha and N. Goodman. Concurrent search structure algorithms.ACM
Transactions on Database Systems, 13(1):53–90, March 1988.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R�-tree: a dynamic index
for multi-dimensional objects. InInternational Conference on Very Large
Data Bases, pages 1–24, Brighton, England, 1987.

CONTENTS 25

Contents

1 Introduction 1

2 Concurrency and Recovery: The Π-tree 2
2.1 Π-tree Structure � 2
2.2 Searching � 3
2.3 Node Splitting and Index Term Posting� � � � � � � � � � � � � � � � � 3
2.4 Node Consolidation� 4
2.5 Recovery Issues� 5

3 The hB-tree as a Π-tree 5
3.1 Multi-attribute Indexing with the hB-tree� � � � � � � � � � � � � � � � 5
3.2 Side-pointers� 6
3.3 Splitting a Node at its kd-tree root� 7
3.4 Decorations � 7
3.5 Continuation flags� 8
3.6 Terminology � 9

4 hBΠ-tree Restructuring 10
4.1 Data Space Boundaries� 10
4.2 Splitting at Decorations (D) � 11
4.3 Posting the Full Path (fp) � 12
4.4 Other Splitting/Posting Algorithms� � � � � � � � � � � � � � � � � � � 13
4.5 Node Consolidation� 16

5 Varieties of Multi-attribute Data 16
5.1 Point Data Performance� 17

5.1.1 Node Space Utilization� 17
5.1.2 Range Searches� 19

5.2 Mapping Spatial Data to Point Data� � � � � � � � � � � � � � � � � � � 19
5.3 The hBΠ-tree in High Dimensions� 21

6 Summary 22

