
Counting Networks

James Aspnes � Maurice Herlihy

Nir Shavit �

Digital Equipment Corporation
Cambridge Research Lab

CRL ����� August �� ����

�IBM Almaden Research Center� A large part of this work was performed while

the author was at Carnegie�Mellon University�
�MIT Laboratory for Computer Science� Author�s current address� Computer

Science Department� School of Mathematics� Tel�Aviv University� Tel�Aviv ������

Israel� This work was supported by ONR contract N			
���
�J�
	��� NSF grant

CCR���
�	�� DARPA contract N			
�����J�
���� and by a Rothschild postdoc�

toral fellowship� A large part of this work was performed while the author was at

IBM�s Almaden Research Center�

Abstract

Many fundamental multi�processor coordination problems can be expressed
as counting problems� processes must cooperate to assign successive values
from a given range� such as addresses in memory or destinations on an in�
terconnection network� Conventional solutions to these problems perform
poorly because of synchronization bottlenecks and high memory contention�

Motivated by observations on the behavior of sorting networks� we o�er
a new approach to solving such problems� by introducing counting networks�
a new class of networks that can be used to count�

We give two counting network constructions� one of depth log n	�

log n��� using n log n	�
log n�� �gates�� and a second of depth log� n using
n log� n�� gates� These networks avoid the sequential bottlenecks inherent
to earlier solutions� and substantially lower the memory contention�

Finally� to show that counting networks are not merely mathematical
creatures� we provide experimental evidence that they outperform conven�
tional synchronization techniques under a variety of circumstances�

This report supersedes CRL Tech Report ������ A preliminary version of
this work appeared in the Proceedings of the ��rd ACM Symposium on the
Theory of Computing� New Orleans� May �����
Keywords� Counting Networks� Parallel Processing� Hot�Spots� Network
Routing�
c�Digital Equipment Corporation� James Aspnes� and Nir Shavit ����� All
rights reserved�

� INTRODUCTION �

� Introduction

Many fundamental multi�processor coordination problems can be expressed
as counting problems� processors collectively assign successive values from
a given range� such as addresses in memory or destinations on an intercon�
nection network� In this paper� we o�er a new approach to solving such
problems� by introducing counting networks� a new class of networks that
can be used to count�

Counting networks� like sorting networks �� �� ��� are constructed from
simple two�input two�output computing elements called balancers� connected
to one another by wires� However� while an n input sorting network sorts a
collection of n input values only if they arrive together� on separate wires�
and propagate through the network in lockstep� a counting network can count
any number N � n of input tokens even if they arrive at arbitrary times�
are distributed unevenly among the input wires� and propagate through the
network asynchronously�

Figure � provides an example of an execution of a �input� �output�
counting network� A balancer is represented by two dots and a vertical line
	see Figure ��� Intuitively� a balancer is just a toggle mechanism �� alternately
forwarding inputs to its top and bottom output wires� It thus balances the
number of tokens on its output wires� In the example of Figure �� input tokens
arrive on the network�s input wires one after the other� For convenience we
have numbered them by the order of their arrival 	these numbers are not
used by the network�� As can be seen� the �rst input 	numbered �� enters
on line � and leaves on line �� the second leaves on line �� and in general�
the Nth token will leave on line N mod � 	The reader is encouraged to try
this for him�herself�� Thus� if on the ith output line the network assigns to
consecutive outputs the numbers i� i
� i
� �� ��� it is counting the number
of input tokens without ever passing them all through a shared computing
element�

Counting networks achieve a high level of throughput by decomposing
interactions among processes into pieces that can be performed in parallel�
This decomposition has two performance bene�ts� It eliminates serial bottle�
necks and reduces memory contention� In practice� the performance of many

�One can implement a balancer using a read�modify�write operation such as Compare
� Swap� or a short critical section�

� INTRODUCTION �

shared�memory algorithms is often limited by con�icts at certain widely�
shared memory locations� often called hot spots ����� Reducing hot�spot
con�icts has been the focus of hardware architecture design ���� ��� ��� ���
and experimental work in software ��� ��� �� ��� ����

Counting networks are also non�blocking� processes that undergo halt�
ing failures or delays while using a counting network do not prevent other
processes from making progress� This property is important because ex�
isting shared�memory architectures are themselves inherently asynchronous�
process step times are subject to timing uncertainties due to variations in
instruction complexity� page faults� cache misses� and operating system ac�
tivities such as preemption or swapping�

Section � de�nes counting networks� In Sections � and � we give two
distinct counting network constructions� each of depth less than or equal to
log� n� each using less than or equal to 	n log� n��� balancers� To illustrate
that counting networks are useful we use counting networks to construct
high�throughput shared�memory implementations of concurrent data struc�
tures such as shared counters� producer�consumer bu�ers� and barriers� A
shared counter is simply an object that issues the numbers � to m� � in re�
sponse to m requests by processes� Shared counters are central to a number
of shared�memory synchronization algorithms 	e�g�� ���� ��� ��� ����� A pro�
ducer�consumer bu	er is a data structure in which items inserted by a pool
of producer processes are removed by a pool of consumer processes� A barrier
is a data structure that ensures that no process advances beyond a partic�
ular point in a computation until all processes have arrived at that point�
Compared to conventional techniques such as spin locks or semaphores� our
counting network implementations provide higher throughput� less memory
contention� and better tolerance for failures and delays� The implementations
can be found in Section ��

Our analysis of the counting network construction is supported by exper�
iment� In Section �� we compare the performance of several implementations
of shared counters� producer�consumer bu�ers� and barrier synchronization
on a shared�memory multiprocessor� When the level of concurrency is su��
ciently high� the counting network implementations outperform conventional
implementations based on spin locks� sometimes dramatically� Finally� Sec�
tion � describes how to mathematically verify that a given network counts�

In summary� counting networks represent a new class of concurrent al�
gorithms� They have a rich mathematical structure� they provide e�ective

� NETWORKS THAT COUNT �

�

x

x

0

1

y =
0

x + x0 1

2

1
y =

x + x0 1

2

bbbbaaaallllaaaannnncccceeeerrrr

7 6 4 2 1

5 3

1 3 5 7

2 4 6

input output

Figure �� A Balancer�

solutions to important problems� and they perform well in practice� We
believe that counting networks have other potential uses� for example as in�
terconnection networks ���� or as load balancers����� and that they deserve
further attention�

� Networks That Count

��� Counting Networks

Counting networks belong to a larger class of networks called balancing net�
works� constructed from wires and computing elements called balancers� in a
manner similar to the way in which comparison networks ��� are constructed
from wires and comparators� We begin by describing balancing networks�

A balancer is a computing element with two input wires and two output
wires� 	see Figure ��� Tokens arrive on the balancer�s input wires at arbitrary
times� and are output on its output wires� Intuitively� one may think of a bal�
ancer as a toggle mechanism� that given a stream of input tokens� repeatedly
sends one token to the top output wire and one to the bottom� e�ectively
balancing the number of tokens that have been output on its output wires�
We denote by xi� i � f�� �g the number of input tokens ever received on the
balancer�s ith input wire� and similarly by yi� i � f�� �g the number of tokens
ever output on its ith output wire� Throughout the paper we will abuse this
notation and use xi 	yi� both as the name of the ith input 	output� wire and
a count of the number of input tokens received on the wire�

Let the state of a balancer at a given time be de�ned as the collection of
tokens on its input and output wires� For the sake of clarity we will assume

�In Figure � as well as in the sequel� we adopt the notation of ��� and and draw wires
as horizontal lines with balancers stretched vertically�

� NETWORKS THAT COUNT

that tokens are all distinct� We denote by the pair 	t� b�� the state transition
in which the token t passes from an input wire to an output wire of the
balancer b�

We can now formally state the safety and liveness properties of a balancer�

�� In any state x�
 x� � y�
 y� 	i�e� a balancer never creates output
tokens��

�� Given any �nite number of input tokens m � x�
 x� to the balancer�
it is guaranteed that within a �nite amount of time� it will reach a
quiescent state� that is� one in which the sets of input and output
tokens are the same� In any quiescent state� x�
 x� � y�
 y� � m�

�� In any quiescent state� y� � dm��e and y� � bm��c�

A balancing network of width w is a collection of balancers� where out�
put wires are connected to input wires� having w designated input wires
x�� x�� ��� xw�� 	which are not connected to output wires of balancers�� w des�
ignated output wires y�� y�� ��� yw�� 	similarly unconnected�� and containing
no cycles� Let the state of a network at a given time be de�ned as the union
of the states of all its component balancers� The safety and liveness of the
network follow naturally from the above network de�nition and the proper�
ties of balancers� namely� that it is always the case that

Pw��
i�� xi �

Pw��
i�� yi�

and for any �nite sequence of m input tokens� within �nite time the network
reaches a quiescent state� i�e� one in which

Pw��
i�� yi � m�

It is important to note that we make no assumptions about the timing
of token transitions from balancer to balancer in the network � the net�
work�s behavior is completely asynchronous� Although balancer transitions
can occur concurrently� it is convenient to model them using an interleaving
semantics in the style of Lynch and Tuttle ���� An execution of a network
is a �nite sequence s�� e�� s�� � � � en� sn or in�nite sequence s�� e�� s�� � � � of al�
ternating states and balancer transitions such that for each 	si� ei��� si����
the transition ei�� carries state si to si��� A schedule is the subsequence of
transitions occurring in an execution� A schedule is valid if it is induced by
some execution� and complete if it is induced by an execution which results
in a quiescent state� A schedule s is sequential if for any two transitions
ei � 	ti� bi� and ej � 	tj� bj�� where ti and tj are the same token� then all
transitions between them also involve that token�

� NETWORKS THAT COUNT �

�

7 6 2

4 3 1

5

1 4

3

2 6

5 7

1 5

4 7

2 6

3

4

3 7

1 5
1 5

2 6
2 6

3 7

4

outputsinputs

Figure �� A sequential execution for a Bitonic�� counting network�

On a shared memorymultiprocessor� a balancing network is implemented
as a shared data structure� where balancers are records� and wires are pointers
from one record to another� Each of the machine�s asynchronous processors
runs a program that repeatedly traverses the data structure from some input
pointer 	either preassigned or chosen at random� to some output pointer�
each time shepherding a new token through the network 	see section ���

We de�ne the depth of a balancing network to be the maximal depth of
any wire� where the depth of a wire is de�ned as � for a network input wire�
and

max	depth	x��� depth	x���
 �

for the output wires of a balancer having input wires x� and x�� We can thus
formulate the following straightforward yet useful lemma�

Lemma ��� If the transition of a token from the input to the output by any
balancer
including the time spent traversing the input wire� takes at most �
time� then any input token will exit the network within time at most � times
the network depth�

A counting network of width w is a balancing network whose outputs
y�� ��� yw�� satisfy the following step property�

In any quiescent state� � � yi � yj � � for any i � j�

� NETWORKS THAT COUNT �

To illustrate this property� consider an execution in which tokens traverse
the network sequentially� one completely after the other� Figure � shows such
an execution on a Bitonic�� counting network which we will de�ne formally
in Section �� As can be seen� the network moves input tokens to output wires
in increasing order modulo w� Balancing networks having this property are
called counting networks because they can easily be adapted to count the
total number of tokens that have entered the network� Counting is done by
adding a �local counter� to each output wire i� so that tokens coming out of
that wire are consecutively assigned numbers i� i
w� � � � � i
	yi���w� 	This
application is described in greater detail in Section ���

The step property can be de�ned in a number of ways which we will use
interchangeably� The connection between them is stated in the following
lemma�

Lemma ��� If y�� � � � � yw�� is a sequence of non�negative integers� the fol�
lowing statements are all equivalent�

�� For any i � j� � � yi � yj � ��

�� Either yi � yj for all i� j� or there exists some c such that for any i � c
and j � c� yi � yj � ��

�� If m �
Pw��

i�� yi� yi �
l
m�i
w

m
�

It is the third form of the step property that makes counting networks usable
for counting�

Proof� We will prove that � implies �� � implies �� and � implies ��
For any indexes a � b� since � � a � b � w� it must be that � �l

m�a
w

m
�
l
m�b
w

m
� �� Thus � implies ��

Assume � holds for the sequence y�� � � � � yw��� If for every � � i � j � w�
yi � yj � �� then � follows� Otherwise� there exists the largest a such that
there is a b for which a � b and ya � yb � �� From a�s being largest we get
that ya�ya�� � �� and from � we get yi � ya for any � � i � a and yi � ya��
for any a
 � � i � w� Choosing c � a
 � completes the proof� Thus �
implies ��

Assume by way of contradiction that � does not hold and � does� Without
loss of generality� there thus exists the smallest a such that m �

Pw��
i�� yi and

� NETWORKS THAT COUNT �

ya ��
l
m�a
w

m
� If ya �

l
m�a
w

m
� then since

Pk��
i�� yi � m� by simple arithmetic

there must exist a b � a such that yb �
l
m�b
w

m
� Since � �

l
m�a
w

m
�
l
m�b
w

m
� ��

yb�ya � �� and no c as in � exists� a contradiction� Similarly� if ya �
l
m�a
w

m
�

there exists a b �� a such that yb �
l
m�b
w

m
� and ya � yb � �� Again no c as in

� exists� a contradiction� Thus � implies ��

The requirement that a quiescent counting network�s outputs have the
step property might appear to tell us little about the behavior of a counting
network during an asynchronous execution� but in fact it is surprisingly pow�
erful� Even in a state in which many tokens are passing through the network�
the network must eventually settle into a quiescent state if no new tokens
enter the network� This constraint makes it possible to prove such important
properties as the following�

Lemma ��� Suppose that in a given execution a counting network with out�
put sequence y�� � � � � yw�� is in a state where m tokens have entered the net�
work and m� tokens have left it� Then there exist non�negative integers di�
� � i � w� such that

Pw��
i�� di � m�m� and yi
 di �

l
m�i
w

m
�

Proof� Suppose not� There is some execution e for which the non�negative
integers di� � � i � w do not exist� If we extend e to a complete execution e�

allowing no additional tokens to enter the network� then at the end of e� the
network will be in a quiescent state where the step property does not hold�
a contradiction�

In a sequential execution� where tokens traverse the network one at a time�
the network is quiescent every time a token leaves� In this case the i�th token
to enter will leave on output imod w� The lemma shows that in a concurrent�
asynchronous execution of any counting network� any �gap� in this sequence
of mod w counts corresponds to tokens still traversing the network� This
critical property holds in any execution� even if quiescent states never occur�
and even though the de�nition makes no explicit reference to non�quiescent
states�

� NETWORKS THAT COUNT �

�

bbbbiiiittttoooonnnniiiicccc[[[[kkkk////2222]]]]

bbbbiiiittttoooonnnniiiicccc[[[[kkkk////2222]]]]

mmmmeeeerrrrggggeeeerrrr[[[[kkkk]]]]

x0
x

x

x

x

x

x

x

1

2

3

4

5

6

7

y0
y

y

y

y

y

y

y

1

2

3

4

5

6

7

Figure �� Recursive Structure of a Bitonic��� Counting Network�

��� Counting vs� Sorting

A balancing network and a comparison network are isomorphic if one can
be constructed from the other by replacing balancers by comparators or vice
versa� The counting networks introduced in this paper are isomorphic to
the Bitonic sorting network of Batcher ��� and to the Periodic Balanced
sorting network of Dowd� Perl� Rudolph and Saks ���� There is a sense in
which constructing counting networks is �harder� than constructing sorting
networks�

Theorem ��� If a balancing network counts� then its isomorphic compari�
son network sorts� but not vice versa�

Proof� It is easy to verify that balancing networks isomorphic to theEven�
Odd or Insertion sorting networks ��� are not counting networks�

For the other direction� we construct a mapping from the comparison
network transitions to the isomorphic balancing network transitions�

By the ��� principle ���� a comparison network which sorts all sequences
of ��s and ��s is a sorting network� Take any arbitrary sequence of ��s and ��s
as inputs to the comparison network� and for the balancing network place a
token on each � input wire and no token on each � input wire� We now show
that if we run both networks in lockstep� the balancing network will simulate
the comparison network� that is� the correspondence between tokens and ��s
holds�

� NETWORKS THAT COUNT �

The proof is by induction on the depth of the network� For level � the
claim holds by construction� Assuming it holds for wires of a given level k�
let us prove it holds for level k
 �� On every gate where two ��s meet in
the comparison network� two tokens meet in the balancing network� so one
� leaves on each wire in the comparison network on level k
 �� and one
token leaves on each line in the balancing network on level k
 �� On every
gate where two ��s meet in the comparison network� no tokens meet in the
balancing network� so a � leaves on each level k
 � wire in the comparison
network� and no tokens leave in the balancing network� On every gate where
a � and � meet in the comparison network� the � leaves on the lower wire
and the � on the upper wire on level k
 �� while in the balancing network
the token leaves on the lower wire� and no token leaves on the upper wire�

If the balancing network is a counting network� i�e�� it has the step prop�
erty on its output level wires� then the comparison network must have sorted
the input sequence of ��s and ��s�

Corollary ��� The depth of any counting network is at least 	log n��

Though in general a balancing network isomorphic to a sorting network
is not guaranteed to count� its outputs will always have the step property if
the input sequence satis�es the following smoothness property�

A sequence x�� ���� xw�� is smooth if for all i � j� jxi � xjj � ��

This observation is stated formally below�

Theorem ��� If a balancing network is isomorphic to a sorting network�
and its input sequence is smooth� then its output sequence in any quiescent
state has the step property�

Proof� The proof follows along the lines of Theorem ��� We will show
the result by constructing a mapping� this time from the transitions of the
balancing network to the transitions of the isomorphic sorting network� How�
ever� unlike in the proof of Theorem ��� we will map sets of transitions of
the balancing network to single transitions of the isomorphic sorting network�
We do this by considering the number of tokens that have passed along each
wire of a balancing network in an execution ending in a quiescent state� From
this perspective the transitions of a balancer gate can be mapped to those of

� A BITONIC COUNTING NETWORK ��

a mathematical device that receives integers x� and x� 	numbers of tokens�

and outputs integers
l
x��x�

�

m
and

j
x��x�

�

k
�

Given that the input sequence to the balancing network is smooth� there
is a quantity x such that each input wire carries either x or x
 � tokens�
By simple induction on the depth of the network� one can prove that the
inputs and outputs of any balancer in a network with x or x
 � tokens on
each input wire� will have as outputs x or x
 � tokens� and that for a given
balancer�

�� If both input wires have x tokens� then both outputs will have x�

�� If one input has x and the other has x
�� then the output on the top
wire will be x
 � tokens and on the bottom wire it will be x tokens�

�� If both input wires have x
� tokens� then both output wires will have
x
 � tokens�

This behavior� if one considers x and x
 � as integers� maps precisely
to that of comparators of numeric values in a comparison network� Conse�
quently� in a quiescent state of a balancing network isomorphic to a sorting
network� if the network as a whole was given a smooth input sequence� its
output sequence must map to a sorted sequence of integers x and x
 ��
implying that it has the step property�

� A Bitonic Counting Network

Naturally� counting networks are interesting only if they can be constructed�
In this section we describe how to construct a counting network whose width
is any power of �� The layout of this network is isomorphic to Batcher�s
famous Bitonic sorting network ��� ��� though its behavior and correctness
arguments are completely di�erent� We give an inductive construction� as
this will later aid us in proving its correctness�

De�ne the width w balancing network Merger�w� as follows� It has
two sequences of inputs of length w��� x and x�� and a single sequence of
outputs y� of length w� Merger�w� will be constructed to guarantee that in
a quiescent state where the sequences x and x� have the step property� y will
also have the step property� a fact which will be proved in the next section�

� A BITONIC COUNTING NETWORK ��

x0
x

x

x

x

x

x

x

1

2

3

4

5

6

7

y0
y

y

y

y

y

y

y

1

2

3

4

5

6

7

MMMMeeeerrrrggggeeeerrrr[[[[8888]]]]MMMMeeeerrrrggggeeeerrrr[[[[8888]]]]

MMMMeeeerrrrggggeeeerrrr[[[[4444]]]]

x0
x1

x

x

2

3

x

x
4

5

x

x

6

7

y0
y1

y

y

2

3

y

y
4

5

y

y

6

7

MMMMeeeerrrrggggeeeerrrr[[[[4444]]]]

Figure � A Merger ��� balancing network�

We de�ne the networkMerger�w� inductively 	see example in Figure ��
Since w is a power of �� we will repeatedly use the notation �k in place of w�
When k is equal to �� theMerger��k� network consists of a single balancer�
For k � �� we construct the Merger��k� network with input sequences x
and x� from two Merger�k� networks and k balancers� Using a Merger�k�
network we merge the even subsequence x�� x�� � � � � xk�� of x with the odd
subsequence x��� x

�
�� � � � � x

�
k�� of x

� 	i�e�� the sequence x�� � � � � xk��� x��� � � � � x
�
k��

is the input to the Merger�k� network� while with a second Merger�k�
network we merge the odd subsequence of x with the even subsequence of
x�� Call the outputs of these two Merger�k� networks z and z�� The �nal
stage of the network combines z and z� by sending each pair of wires zi and
z�i into a balancer whose outputs yield y�i and y�i���

The Merger�w� network consists of logw layers of w�� balancers each�
Merger�w� guarantees the step property on its outputs only when its inputs
also have the step property� but we can ensure this property by �ltering
these inputs through smaller counting networks� We de�ne Bitonic�w� to
be the network constructed by passing the outputs from two Bitonic�w���
networks into a Merger�w� network� where the induction is grounded in
the Bitonic��� network which contains no balancers and simply passes its
input directly to its output� This construction gives us a network consisting
of
�
logw��

�

�
layers each consisting of w�� balancers�

� A BITONIC COUNTING NETWORK ��

��� Proof of Correctness

In this section we show that Bitonic�w� is a counting network� Before ex�
amining the network itself� we present some simple lemmas about sequences
having the step property�

Lemma ��� If a sequence has the step property� then so do all its subse�
quences�

Lemma ��� If x�� � � � � xk�� has the step property� then its even and odd
subsequences satisfy�

k����X
i��

x�i �

�
k��X
i��

xi��

�
and

k����X
i��

x�i�� �

�
k��X
i��

xi��

�

Proof� Either x�i � x�i�� for � � i � k��� or by Lemma ��� there exists a
unique j such that x�j � x�j��
� and x�i � x�i�� for all i �� j� � � i � k���
In the �rst case�

P
x�i �

P
x�i�� �

P
xi��� and in the second case

P
x�i �

d
P
xi��e and

P
x�i�� � b

P
xi��c�

Lemma ��� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having
the step property� If

Pk��
i�� xi �

Pk��
i�� yi� then xi � yi for all � � i � k�

Proof� Let m �
P
xi �

P
yi� By Lemma ���� xi � yi �

l
m�i
k

m
�

Lemma ��� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having
the step property� If

Pk��
i�� xi �

Pk��
i�� yi
 �� then there exists a unique j�

� � j � k� such that xj � yj
 �� and xi � yi for i �� j� � � i � k�

Proof� Let m �
P
xi �

P
yi
 �� By Lemma ���� xi �

l
m�i
k

m
and yi �l

m���i
k

m
� These two terms agree for all i� � � i � k� except for the unique i

such that i � m� � 	mod k��

We now show that theMerger�w� networks preserves the step property�

Lemma ��� If Merger��k� is quiescent� and its inputs x�� � � � � xk�� and
x��� � � � � x

�
k�� both have the step property� then its outputs y�� � � � � y�k�� have

the step property�

� A PERIODIC COUNTING NETWORK ��

Proof� We argue by induction on log k�
If �k � �� Merger��k� is just a balancer� so its outputs are guaranteed

to have the step property by the de�nition of a balancer�
If �k � �� let z�� � � � � zk�� be the outputs of the �rst Merger�k� subnet�

work� which merges the even subsequence of x with the odd subsequence of
x�� and let z��� � � � � z

�
k�� be the outputs of the second� Since x and x� have

the step property by assumption� so do their even and odd subsequences
	Lemma ����� and hence so do z and z� 	induction hypothesis�� Furthermore�P
zi � d

P
xi��e
b

P
x�i��c and

P
z�i � b

P
xi��c
d

P
x�i��e 	Lemma ����� A

straightforward case analysis shows that
P
zi and

P
z�i can di�er by at most

��
We claim that � � yi � yj � � for any i � j� If

P
zi �

P
z�i� then Lemma

��� implies that zi � z�i for � � i � k��� After the �nal layer of balancers�

yi � yj � zbi��c � zbj��c�

and the result follows because z has the step property�
Similarly� if

P
zi and

P
z�i di�er by one� Lemma �� implies that zi � z�i

for � � i � k��� except for a unique � such that z� and z�� di�er by one� Let
max 	z�� z��� � x
 � and min 	z�� z��� � x for some non�negative integer x�
From the step property on z and z� we have� for all i � �� zi � z�i � x
 �
and for all i � � zi � z�i � x� Since z� and z�� are joined by a balancer with
outputs y�� and y����� it follows that y�� � x
 � and y���� � x� Similarly�
zi and z�i for i �� � are joined by the same balancer� Thus for any i � ��
y�i � y�i�� � x
 � and for any i � �� y�i � y�i�� � x� The step property
follows by choosing c � ��
 � and applying Lemma ����

The proof of the following theorem is now immediate�

Theorem ��� In any quiescent state� the outputs of Bitonic�w� have the
step property�

� A Periodic Counting Network

In this section we show that the bitonic network is not the only counting net�
work with depth O	log�n�� We introduce a new counting network with the

� A PERIODIC COUNTING NETWORK �

interesting property that it is periodic� consisting of a sequence of identical
subnetworks� Each stage of this periodic network is interesting in its own
right� since it can be used to achieve barrier synchronization with low con�
tention� This counting network is isomorphic to the elegant balanced periodic
sorting network of Dowd� Perl� Rudolph� and Saks ���� However� its behavior�
and therefore also our proof of correctness� are fundamentally di�erent�

We start by de�ning chains and cochains� notions taken from ���� Given
a sequence x � fxiji � �� � � � � n� �g� it is convenient to represent each index
	subscript� as a binary string� A level i chain of x is a subsequence of x whose
indices have the same i low�order bits� For example� the subsequence xE of
entries with even indices is a level � chain� as is the subsequence xO of entries
with odd indices� The A�cochain of x� denoted xA� is the subsequence whose
indices have the two low�order bits �� or ��� For example� the A�cochain of
the sequence x�� � � � � x� is x�� x�� x�� x�� The B�cochain xB is the subsequence
whose low�order bits are �� and ���

De�ne the network Block�k� as follows� When k is equal to �� the
Block�k� network consists of a single balancer� The Block��k� network for
larger k is constructed recursively� We start with two Block�k� networks A
and B� Given an input sequence x� the input to A is xA� and the input to
B is xB� Let y be the output sequence for the two subnetworks� where yA

is the output sequence for A and yB the output sequence for B� The �nal
stage of the network combines each yAi and yBi in a single balancer� yielding
�nal outputs z�i and z�i��� Figure � describes the recursive construction of a
Block ��� network� The Periodic��k� network consists of log k Block��k�
networks joined so that the ith output wire of one is the ith wire of the next�
Figure � is a Periodic��� counting network �

This recursive construction is quite di�erent from the one used by Dowd
et al� We chose this construction because it yields a substantially simpler
and shorter proof of correctness�

��� Proof of Correctness

In the proof we use the technical lemmas about input and output sequences
presented in Section �� The following lemma will serve a key role in the

�Despite the apparent similarities between the layouts of the Block and Merger

networks� there is no permutation of wires that yields one from the other�

� A PERIODIC COUNTING NETWORK ��

inductive proof of our construction�

Lemma ��� For i � ��

�� The level i chain of x is a level i� � chain of one of x�s cochains�

�� The level i chain of a cochain of x is a level i
 � chain of x�

Proof� Follows immediately from the de�nitions of chains and cochains�

As will be seen� the price of modularity is redundancy� that is� balancers in
lower level blocks will be applied to sub�sequences that already have the de�
sired step property� We therefore present the following lemma that amounts
to saying that applying balancers �evenly� to such sequences does not hurt�

Lemma ��� If x and x� are sequences each having the step property� and
pairs xi and x�i are routed through a balancer� yielding outputs yi and y�i� then
the sequences y and y� each have the step property�

Proof� For any i � j� given that x and x� have the step property� � �
xi � xj � � and � � x�i � x�j � � and therefore the di�erence between any

two wires is � � xi
x�i� 	xj
x�j� � �� By de�nition� for any i� yi �
l
xi�x�i

�

m
and y�i �

j
xi�x�i

�

k
� and so for any i � j� it is the case that � � yi� yj � � and

� � y�i � y�j � �� implying the step property�

To prove the correctness of our construction for Periodic�k�� we will
show that if a block�s level i input chains have the step property� then so
do its level i � � output chains� for i in f�� � � � � log k��g� This observation
implies that a sequence of log k Block�k� networks will count an arbitrary
number of inputs�

Lemma ��� Let Block��k� be quiescent with input sequence x and output
sequence y� If xE and xO both have the step property� so does y�

Proof� We argue by induction on log k� The proof is similar to that of
Lemma ����

For the base case� when �k � �� Block��k� is just a balancer� so its out�
puts are guaranteed to have the step property by the de�nition of a balancer�

� A PERIODIC COUNTING NETWORK ��

�
x0
x

x

x

x

x

x

x

1

2

3

4

5

6

7

y0
y

y

y

y

y

y

y

1

2

3

4

5

6

7

BBBBlllloooocccckkkk[[[[8888]]]]BBBBlllloooocccckkkk[[[[8888]]]]

BBBBlllloooocccckkkk[[[[4444]]]]

x0
x1

x

x

2

3

x

x
4

5

x

x

6

7

y0
y1

y

y

2

3

y

y
4

5

y

y

6

7

BBBBlllloooocccckkkk[[[[4444]]]]

Figure �� A Block ��� balancing network�

For the induction step� assume the result for Block�k� and consider a
Block��k�� Let x be the input sequence to the block� z the output sequence
of the nested blocks A and B� and y the block�s �nal output sequence� The
inputs to A are the level � chains xEE and xOO� and the inputs to B are xEO

and xOE� By Lemma ��� each of these is a level � chain of xA or xB� These
sequences are the inputs to A and B� themselves of size k� so the induction
hypothesis implies that the outputs zA and zB of A and B each has the step
property�

Lemma ��� implies that � �
P
xEEi �

P
xEOi � � and � �

P
xOEi �P

xOOi � �� It follows that the sum of A�s inputs�
P
xEEi

P
xOOi � and the

sum of B�s inputs�
P
xEOi

P
xOOi � di�er by at most �� Since balancers do

not swallow or create tokens�
P
zA and

P
zB also di�er by at most �� If they

are equal� then Lemma ��� implies that zAi � zBi � z�i � z�i��� For i � j�

yi � yj � zAbi��c � zAbj��c

and the result follows because zA has the step property�
Similarly� if

P
zAi and

P
zBi di�er by one� Lemma �� implies that z

A
i � zBi

for � � i � k� except for a unique � such that zA� and zB� di�er by one� Let
max 	zA� � z

B
� � � x
 � and min 	zA� � z

B
� � � x for some non�negative integer x�

From the step property on zA and zB we have� for all i � �� zAi � zBi � x
�
and for all i � � zAi � zBi � x� Since zA� and z

B
� are joined by a balancer with

� IMPLEMENTATION AND APPLICATIONS ��

outputs y�� and y����� it follows that y�� � x
 � and y���� � x� Similarly�
zAi and zBi for i �� � are joined by the same balancer� Thus for any i � ��
y�i � y�i�� � x
 � and for any i � �� y�i � y�i�� � x� The step property
follows by choosing c � ��
 � and applying Lemma ����

Theorem ��� Let Block��k� be quiescent with input sequence x and output
sequence y� If all the level i input chains to a block have the step property�
then so do all the level i� � output chains�

Proof� We argue by induction on i� Lemma �� provides the base case�
when i is ��

For the induction step� assume the result for chains up to i� �� Let x be
the input sequence to the block� z the output sequence of the nested blocks A
and B� and y the block�s �nal output sequence� If i � �� Lemma �� implies
that every level i chain of x is entirely contained in one cochain or the other�
Each level i chain of x contained in xA 	xB� is a level i� � chain of xA 	xB��
each has the step property� and each is an input to A 	B�� The induction
hypothesis applied to A and B implies that the level i� � chains of zA and
zB have the step property� But Lemma �� implies that the level i�� chains
of zA and zB are the level i� � chains of z� By Lemma ��� if the level i� �
chains of z have the step property� so do the level i� � chains of y�

By Theorem ��� the proof of Theorem � constitutes a simple alterna�
tive proof that the balanced periodic comparison network of ��� is a sorting
network�

� Implementation and Applications

In a MIMD shared�memory architecture� a balancer can be represented as
a record with two �elds� toggle is a boolean value that alternates between
� and �� and next is a ��element array of pointers to successor balancers�
A balancer is a leaf if it has no successors� A process shepherds a token
through the network by executing the procedure shown in Figure �� In our
implementations� we preassigned processes to input lines so that they were
evenly distributed� Thus� a given process always started shepherding tokens
from the same preassigned line� It toggles the balancer�s state� and visits
the next balancer� halting when it reaches a leaf� The network�s wiring

� IMPLEMENTATION AND APPLICATIONS ��

�

x0
x

x

x

x

x

x

x

1

2

3

4

5

6

7

y0
y

y

y

y

y

y

y

1

2

3

4

5

6

7

PPPPeeeerrrriiiiooooddddiiiicccc[[[[8888]]]]

1111sssstttt BBBBlllloooocccckkkk[[[[8888]]]] 2222nnnndddd BBBBlllloooocccckkkk[[[[8888]]]] 3333rrrrdddd BBBBlllloooocccckkkk[[[[8888]]]]

Figure �� A Periodic ��� counting network�

� IMPLEMENTATION AND APPLICATIONS ��

balancer � �toggle� boolean� next� array ������ of ptr to balancer�
traverse	b� balancer�

loop until leaf	b�
i �� rmw 	b�toggle �� � b�toggle�
b �� b�next�i�
end loop

end traverse

Figure �� Code for Traversing a Balancing Network

information can be cached by each process� and so the transition time of
a balancer will be almost entirely a function of the e�ciency of the toggle
implementation� Advancing the toggle state can be accomplished either by
a short critical section guarded by a spin lock�� or by a read�modify�write
operation 	rmw for short� if the hardware supports it� Note that all values
are bounded�

We illustrate the utility of counting networks by constructing highly con�
current implementations of three common data structures� shared counters�
producer�consumer bu�ers� and barriers� In Section � we give some experi�
mental evidence that counting network implementations have higher through�
put than conventional implementations when contention is su�ciently high�

��� Shared Counter

A shared counter ���� ��� ��� ��� is a data structure that issues consecutive
integers in response to increment requests� More formally� in any quiescent
state in which m increment requests have been received� the values � to
m � � have been issued in response� To construct the counter� start with
an arbitrary width�w counting network� Associate an integer cell ci with the
ith output wire� Initially� ci holds the value i� A process requests a number
by traversing the counting network� When it exits the network on wire i� it
atomically adds w to the value of ci and returns ci�s previous value�

Lemmas ��� and ��� imply that�

�A spin lock is just a shared boolean �ag that is raised and lowered by at most one
processor at a time� while the other processors wait�

� IMPLEMENTATION AND APPLICATIONS ��

Lemma ��� Let x be the largest number yet returned by any increment re�
quest on the counter� Let R be the set of numbers less than x which have not
been issued to any increment request� Then

�� The size of R is no greater than the number of operations still in
progress�

�� If y � R� then y � x�wjRj�

�� Each number in R will be returned by some operation in time ��d
�c�
where d is the depth of the network� � is the maximum balancer delay�
and �c is the maximum time to update a cell on an output wire�

��� Producer�Consumer Bu�er

A producer�consumer bu	er is a data structure in which items inserted by a
pool of m producer processes are removed by a pool of m consumer processes�
The bu�er algorithm used here is essentially that of Gottlieb� Lubachevsky�
and Rudolph ����� The bu�er is a w�element array bu	 ����w � ��� There
are two w�width counting networks� a producer network� and a consumer
network� A producer starts by traversing the producer network� leaving the
network on wire i� It then atomically inspects bu	 �i�� and� if it is 	� replaces
it with the produced item� If that position is full� then the producer waits
for the item to be consumed 	or returns an exception�� Similarly� a consumer
traverses the consumer network� exits on wire j� and if bu	 �j� holds an item�
atomically replaces it with 	� If there is no item to consume� the consumer
waits for an item to be produced 	or returns an exception��

Lemmas ��� and ��� imply that�

Lemma ��� Suppose m producers and m� consumers have entered a pro�
ducer�consumer bu	er built out of counting networks of depth d� Assume
that the time to update each bu	 �i� once a process has left the counting net�
work is negligible� Then if m � m�� every producer leaves the network in time
d�� Similarly� if m � m�� every consumer leaves the network in time d��

��� Barrier Synchronization

A barrier is a data structure that ensures that no process advances beyond
a particular point in a computation until all processes have arrived at that

� IMPLEMENTATION AND APPLICATIONS ��

point� Barriers are often used in highly�concurrent numerical computations
to divide the work into disjoint phases with the property that no process
executes phase i while another process concurrently executes phase i
 ��

A simple way to construct an n�process barrier is by exploiting the fol�
lowing key observation� Lemma ��� implies that as soon as some process
exits with value n� the last phase must be complete� since the other n � �
processes must already have entered the network�

We present a stronger result� one does not need a full counting network
to achieve barrier synchronization� A threshold network of width w is a
balancing network with input sequence xi and output sequence yi� such that
the following holds�

In any quiescent state� yw�� � m if and only if mw �
P
xi �

	m
 ��w�

Informally� a threshold network can �detect� each time w tokens have passed
through it� A counting network is a threshold network� but not vice�versa�

Both the Block�w� network used in the periodic construction and the
Merger�w� network used in the bitonic construction are threshold networks�
provided the input sequence satis�es the smoothness property� Recall that a
sequence x�� ���� xw�� is smooth if for all i � j� jxi � xjj � �� Every sequence
with the step property is smooth� but not vice�versa� The following two lem�
mas state that smoothness is �stable� under partitioning into subsequences
or application of additional balancers�

Lemma ��� Any subsequence of a smooth sequence is smooth�

Lemma ��� If the input sequence to a balancing network is smooth� so is
the output sequence�

Proof� Observe that if the inputs to a balancer di�er by at most one� then
so do its outputs� By a simple induction on the depth of the network� the
output sequence from the balancers at any level of a balancing network with
a smooth input sequence� is a permutation of its input sequence� hence� the
network�s output sequence is smooth�

Theorem ��� If the input sequence to Block�w� is smooth� then Block�w�
is a threshold network�

� IMPLEMENTATION AND APPLICATIONS ��

Proof� Let xi be the block�s input sequence� zi the output sequence of
nested blocks A and B� and yi the block�s output sequence�

We �rst show that if yw�� � m� then mw �
P
xi � 	m
 ��w� We argue

by induction on w� the block�s width� If w � �� the result is immediate�
Assume the result for w � k and consider Block��k� in a quiescent state
where y�k�� � m� Since x is smooth by hypothesis� by Lemma �� so are
z and y� Since y�k�� and y�k�� are outputs of a common balancer� y�k�� is
either m or m
 �� The rest is a case analysis�

If y�k�� � y�k�� � m� then z�k�� � z�k�� � m� By the induction hy�
pothesis and Lemma ��� applied to A and B� mk �

P
xAi � 	m
 ��k and

mk �
P
xBi � 	m
 ��k� and therefore �mk �

P
xAi

P
xBi � �	m
 ��k�

If y�k�� � m
 �� then one of zAi and zBi is m� and the other is m
 ��
Without loss of generality suppose zAi � m
� and zBi � m� By the induction
hypothesis� 	m
��k �

P
xAi � 	m
��k and mk �

P
xBi � 	m
��k� Since x

is smooth� by Lemma ��� xB is smooth and some element of xB must be equal
m� which in turn implies that no element of xA exceeds m
 �� This bound
implies that 	m
 ��k �

P
xAi � It follows that �mk
 k �

P
xAi

P
xBi �

�	m
 ��k� yielding the desired result�
We now show that if mw �

P
xi � 	m
 ��w� then yw�� � m� We again

argue by induction on w� the block�s width� If w � �� the result is immediate�
Assume the result for w � k and consider Block��k� in a quiescent state
where �mk �

P
xi � �	m
��k� Since x is smooth� by Lemma �� m � y�i���

Furthermore� since x is smooth� by Lemma ���� eithermk �
P
xAi � 	m
��k

and mk �
P
xBi � 	m
��k or vice versa� which by the induction hypothesis

implies that zAk��
 zBk�� � �m
 �� It follows that y�k�� � m
 �� which
completes our claim�

The proof that the Merger�w� network is also a threshold network if its
inputs are smooth is omitted because it is almost identical to that of Theorem
���� A threshold counter is constructed by associating a local counter ci with
each output wire i� just as in the counter construction�

We construct a barrier for n processes� where n � � mod w� using a
width�w threshold counter� The construction is an adaptation of the �sense�
reversing� barrier construction of ���� as follows� Just as for the counter
construction� we associate a local counter ci with each output wire i� Let F
be a boolean �ag� initially false� Let a process�s phase at a given point in the
execution of the barrier algorithm be de�ned as � initially� and incremented

� PERFORMANCE ��

by � every time the process begins traversing the network� With each phase
the algorithm will associate a sense� a boolean value re�ecting the phase�s
parity� true for the �rst phase� false for the second� and so on� As illustrated
in Figure �� the token for process P � after a phase with sense s� enters the
network on wire P mod w� If it emerges with a value not equal to n�� mod n�
then it waits until F agrees with s before starting the next phase� If it emerges
with value n� � mod n� it sets F to s� and starts the next phase�

As an aside� we note that a threshold counter implemented from aBlock�k�
network can be optimized in several additional ways� For example� it is only
necessary to associate a local counter with wire w� �� and that counter can
be modulo n rather than unbounded� Moreover� all balancers that are not
on a path from some input wire to exit wire w � � can be deleted�

Theorem ��� If P exits the network with value n after completing phase ��
then every other process has completed phase �� and no process has started
phase �
 ��

Proof� We �rst observe that the input to Block�w� is smooth� and there�
fore it is a threshold network� We argue by induction� When P receives value
v � n � � at the end of the �rst phase� exactly n tokens must have entered
Block�w�� and all processes must therefore have completed the �rst phase�
Since the boolean F is still false� no process has started the second phase�
Assume the result for phase �� If Q is the process that received value n � �
at the end of that phase� then exactly �n tokens had entered the network
when Q performed the reset of F � If P receives value v � n� � at the end of
phase �
�� then exactly 	�
��n tokens have entered the network� implying
that an additional n tokens have entered� and all n processes have �nished
the phase� No process will start the next phase until F is reset�

� Performance

��� Overview

In this section� we analyze counting network throughput for computations
in which tokens are eventually spread evenly through the network� As men�
tioned before� to ensure that tokens are evenly spread across the input wires�

� PERFORMANCE �

barrier	�
v �� exit wire of traverse	wire P mod w�
if v � n � � 	mod w�

then F �� s
else wait until F � s
end if

s �� �s
end barrier

Figure �� Barrier Synchronization Code

each processor could be assigned a �xed input wire� Alternatively� processors
could choose input wires at random�

The network saturation S at a given time is de�ned to be the ratio of
the number of tokens n present in the network 	i�e� the number of proces�
sors shepherding tokens through it� to the number of balancers� If tokens
are spread evenly through the network� then the saturation is just the ex�
pected number of tokens at each balancer� For the Bitonic and Periodic
networks� S � �n�wd� The network is oversaturated if S � �� and undersat�
urated if S � ��

An oversaturated network represents a full pipeline� hence its throughput
is dominated by the per�balancer contention� not by the network depth� If
a balancer with S tokens makes a transition in time �	S�� then approxi�
mately w�� tokens emerge from the network every �	S� time units� yielding
a throughput of w���	S�� � is an increasing function whose exact form
depends on the particular architecture� but similar measures of degradation
have been observed in practice to grow linearly ��� ���� The throughput of
an oversaturated network is therefore maximized by choosing w and d to
minimize S� bringing it as close as possible to ��

The throughput of an undersaturated network is dominated by the net�
work depth� not by the per�balancer contention� since the network pipeline
is partially empty� Every ��S time units� w�� tokens leave the network�
yielding throughput wS

� � The throughput of an undersaturated network is
therefore maximized by choosing w and d to increase S� bringing it as close
as possible to ��

This analysis is necessarily approximate� but it is supported by exper�

� PERFORMANCE ��

�

20100

0

10

20

30

40

50

60

70

concurrency (num. of proc.)

tim
e

(s
ec

) Spin-lock

Bitonic[4]

Bitonic[16]

Bitonic[8]

Figure �� Bitonic Shared Counter Implementations

� PERFORMANCE ��

imental evidence� In the remainder of this section� we present the results
of timing experiments for several data structures implemented using count�
ing networks� As a control� we compare these �gures to those produced by
more conventional implementations using spin locks These implementations
were done on an Encore Multimax� using Mul�T ����� a parallel dialect of
Lisp� The spin lock is a simple �test�and�test�and�set� loop ���� written in
assembly language� and provided by the Mul�T run�time system� In our
implementations� each balancer is protected by a spin lock�

��� The Shared Counter

We compare seven shared counter implementations� bitonic and periodic
counting networks of widths ��� �� and � and a conventional spin lock im�
plementation 	which can be considered a degenerate counting network of
width ��� For each network� we measured the elapsed time necessary for a
��� 	approximately a million� tokens to traverse the network� controlling the
level of concurrency�

For the bitonic network� the width��� network has �� balancers� the
width�� network has � balancers� and the width� network has � balancers�
In Figure �� the horizontal axis represents the number of processes executing
concurrently� When concurrency is �� each process runs to completion be�
fore the next one starts� The number of concurrent processes increases until
all sixteen processes execute concurrently� The vertical axis represents the
elapsed time 	in seconds� until all ��� tokens had traversed the network� With
no concurrency� the networks are heavily undersaturated� and the spin lock�s
throughput is the highest by far� As saturation increases� however� so does
the throughput for each of the networks� The width� network is undersatu�
rated at concurrency levels less than �� As the level of concurrency increases
from � to �� saturation approaches �� and the elapsed time decreases� Beyond
�� saturation increases beyond �� and the elapsed time eventually starts to
grow� The other networks remain undersaturated for the range of the exper�
iment� their elapsed times continue to decrease� Each of the networks begins
to outperform the spin lock at concurrency levels between � and ��� When
concurrency is maximal� all three networks have throughputs at least twice
the spin lock�s� Notice that as the level of concurrency increases� the spin
lock�s performance degrades in an approximately linear fashion 	because of
increasing contention��

� PERFORMANCE ��

�

20100

0

20

40

60

80

100

120

concurrency (num. of proc.)

tim
e

(s
ec

)

Spin-lock

Periodic[16]

Periodic[8]

Periodic[4]

Figure ��� Periodic Shared Counter Implementations

� PERFORMANCE ��

spin width � width width �
bitonic ���� ����� ��� ����
periodic ����� ����� �����

Figure ��� Producer�Consumer Bu�er Implementations

The performance of the periodic network 	Figure ��� is similar� The
width� network reaches saturation � at � processes� its throughput then
declines slightly as it becomes oversaturated� The other networks remain
undersaturated� and their throughputs continue to increase� Each of the
counting networks outperforms the spin lock at su�ciently high levels of
contention� At �� processes� the width� and width�� networks have almost
twice the throughput of the single spin�lock implementation� Each bitonic
network has a slightly higher throughput than its periodic counterpart�

��� Producer�Consumer Bu�ers

We compare the performance of several producer�consumer bu�ers imple�
mented using the algorithm of Gottlieb� Lubachevsky� and Rudolph ���� dis�
cussed in Section �� Each implementation has � producer processes� which
continually produce items� and � consumer processes� which continually con�
sume items� If a producer 	consumer� process �nds its bu�er slot full 	empty��
it spins until the slot becomes empty 	full��

We consider bu�ers with bitonic and periodic networks of width �� �
and �� As a �nal control� we tested a circular bu�er protected by a single
spin lock� a structure that permits no concurrency between producers and
consumers� Figure �� shows the time in seconds needed to produce and
consume ��� tokens� Not surprisingly� the single spin�lock implementation is
much slower than any of the others� The width�� network is heavily over�
saturated� the bitonic width� network is slightly oversaturated� while the
others are undersaturated�

� VERIFYING THAT A NETWORK COUNTS ��

Spin lock Barrier Barrier � Barrier ��
time 	seconds� ����� ���� ���� ����

Figure ��� Barrier Implementations

��� Barrier Synchronization

Figure �� shows the time 	in seconds� taken by �� processes to perform ���

barrier synchronizations� The remaining columns show Block�k� networks
of width � �� and ��� The last column shows a simple sense�reversing barrier
in which the Block network is replaced by a single counter protected by a
spin lock� The three network barriers are equally fast� and each takes about
two�thirds the time of the spin�lock implementation�

� Verifying That a Network Counts

The ���� law� states that a comparison network is a sorting network if 	and
only if� it sorts input sequences consisting entirely of zeroes and ones� a
property that greatly simpli�es the task of reasoning about sorting networks�
In this section� we present an analogous result� a balancing network havingm
balancers is a counting network if 	and only if� it satis�es the step property
for all sequential executions in which up to �m tokens have traversed the
network� This result simpli�es reasoning about counting networks� since it
is not necessary to consider all concurrent executions� However� as we show�
the number of tokens passed through the network in the longest of these
sequential executions cannot be less than exponential in the network depth�

We begin by proving that it su�ces to consider only sequential executions�

Lemma ��� Let s be a valid schedule of a given balancing network� Then
there exists a valid sequential schedule s� such that the number of tokens which
pass through each balancer in s and s� is equal�

Proof� Let s � s� � p � q � s�� where s�� s� are sequences of transitions� p and
q are individual transitions involving distinct tokens P and Q� and where ���
is the concatenation operator� If p and q do not occur at the same balancer�

� VERIFYING THAT A NETWORK COUNTS ��

then s� � q �p � s� is a valid schedule� If p and q do occur at the same balancer�
then s� �q �p�s�� is a valid schedule where s

�
� is constructed from s� by swapping

the identities of P and Q� In each case we can swap p and q without changing
the preceding sequence of transitions s� and without changing the number
of tokens that pass through any balancer during the execution�

Now suppose that s is a complete schedule� We will transform it into a
sequential schedule by a process similar to selection sorting� Choose some
total ordering of the tokens in s� Split s into s� � t� where s� is the empty
sequence and t� � s� Now repeatedly carry out the following procedure
which constructs si�� � ti�� from si � ti� while ti is nonempty let p be the
earliest transition in ti whose token is ordered as less than or equal to all
tokens in ti� Move p to the beginning of ti by swapping it with each earlier
token in ti as described above� and let si�� � si � p and ti�� be the su�x of
the resulting schedule after p� This procedure is easily seen to maintain the
following invariant�

�� After stage i� si � ti is a valid schedule in which each balancer passes
the same number of tokens as in s�

�� After stage i� si is sorted by token�

Thus when the procedure terminates� we have a valid sequential schedule
s� in which each balancer passes the same number of tokens as in s�

Theorem ��� A balancing network with m balancers satises the step prop�
erty in all executions if
and only if� it satises it in all sequential executions
in which at most �m tokens traverse the network�

Proof� Since the step property depends only on the number of tokens that
pass through the network�s output wires� it follows from Lemma ��� that a
balancing network satis�es the step property in all executions if 	and only
if� it satis�es it in all sequential executions�

We now show that any failure to satisfy the step property can be de�
tected in some execution involving at most �m tokens� Consider sequential
executions of a balancing network with m balancers� Any quiescent state is
characterized by specifying for each balancer the output wire to which it will
send the next token� yielding a maximum of �m distinct quiescent states� In
a sequential execution� each time a token traverses the network� it carries

� VERIFYING THAT A NETWORK COUNTS ��

the network from one quiescent state to another� Thus� in any execution�
after at most �m traversals� the network must reenter its initial state� Let
H be the shortest sequential execution needed to detect a violation of the
step property� If H involves more than �m tokens� then H can be split into
a pre�x H� and a su�x H� such that H� involves at most �m tokens and
leaves the network in its initial state� If H� sends �illegal� numbers of tokens
through two output wires� then H� alone su�ces to detect the violation� and
otherwise H� alone su�ces�

How tight is this bound! We now construct a balancing network that is
not a counting network� yet satis�es the step property for any execution in
which the number of tokens is less than exponential in the network depth�
Through the remainder of this section we will only consider networks in
quiescent states� so that we can ignore issues of timing and concentrate solely
on the total number of tokens that have passed along each wire�

First� consider the following balancing network Stage ��w�� Take two
counting networks A and B of width w having outputs wires a� through
aw�� and b� through bw�� respectively� Add a layer of w balancers such that
the i�th balancer has inputs ai and bw���i and outputs a

�
i and b�w���i� The

resulting network Stage ��w� is not a counting network� however� it is easily
extended to one by virtue of the following lemma�

Lemma ��� For any input to Stage ��w�� there exists a permutation �a of
the output sequence a��� � � � � a

�
w�� and a permutation �b of the output sequence

b��� � � � � b
�
w�� such that the sequence �a	a��� � � � � a

�
w��� � �b	b

�
�� � � � � b

�
w��� has the

step property�

Proof� Observe that the total inputs to any two balancers in the last layer
di�er by at most ��

Thus there is always a k such that every balancer in the last layer outputs
either k or k
 � tokens� If k is even� then b�i � k�� for all i and a�i �
ai
 bw���i� k��� which is either k�� or k��
 �� One can obtain a sequence
with the step property by setting �a to sort the values in a�� If k is odd�
then each a�i is 	k
���� and each b

�
i is aw���i
 bi� 	k
����� which will be

either 	k
 ���� or 	k
 ����� �� In this case having �b sort the values in b
�

produces the desired result�

By Lemma ��� it follows that

� VERIFYING THAT A NETWORK COUNTS ��

Corollary ��� For anym tokens input to Stage ��w��
Pw��

i�� a�i �
Pw��

i�� dm�
i��we and

Pw��
i�� b�i �

P�w��
i�w dm� i��we�

In other words� the total number of tokens that end up on the a��� � � � � a
�
w��

and b��� � � � � b
�
w�� outputs wires is the same as in a proper counting network�

In fact� Lemma ��� guarantees an even stronger property� the actual number
of tokens on each wire correspond to the number of tokens that occur on
some wire in the output sequence of a proper counting network� However�
there is no guarantee that these numbers appear in the correct order 	or
even the same order given di�erent inputs�� Because of Theorem ���� we can
extend the Stage��w� network into a 	not very e�cient� counting network
by passing the outputs a��� � � � � a

�
w�� and b

�
�� � � � � b

�
w�� to two separate balanc�

ing networks isomorphic to sorting networks� But we are not interested in
getting a working counting network� instead we will use a modi�ed version
of Stage��w� to construct a balancing network which counts all input se�
quences with up to some bounded number of tokens� but fails on sequences
with more tokens�

We construct such a balancing network 	denotedAlmost ��w�� as follows�
Take a Stage ��w� network and modify it by picking some x other than � or
w � � and deleting the �nal balancer between ax and bw���x� Denote this
balancing network as Stagex��w�� Let Almost ��w� be the periodic network
constructed from k stages� for some k � �� each a Stagex��w� network� with
the outputs of each stage connected to the inputs of the next�

Let At and Bt be the sums of the number of tokens input to each of the two
subnetworks A and B in the t�th stage of Almost ��w�� A� and B� are thus
the numbers of tokens input to A and B respectively� Let y � fy�� � � � � y�w��g
be the sequence given by yi � d	A�
B��i���we� Thus� yi counts the number
of tokens that would exit on output wire i if Almost ��k� were a counting
network�

We now de�ne the quantities A� and B� used in the proofs below� They
measure the number of tokens that would have come out of the respective
parts of network in the last stage 	t �
� if it were a counting network�
Formally� let A� �

Pw��
i�� yi� and B� �

P�w��
i�w yi� Note that At
 Bt �

A�
 B� � A�
 B� for all t and that by Lemma ���� d	A� � i��we � yi
and d	B� � i��we � yw�i for all i�

Finally� let the imbalance �t � At � A� � �	Bt � B��� this quantity
represents �how far� the network is from balancing the tokens between the

� VERIFYING THAT A NETWORK COUNTS ��

A and B subnetworks in stage t� in other words� how many excess tokens
must be moved from the A part of the network to the B part 	or� if the
quantity is negative� how many tokens should be moved from B to A��

The following lemma follows from arguments almost identical to those of
Lemma ���

Lemma ��� If the input sequence to a balancing network has the step prop�
erty� then so does the output sequence�

Lemma ��� In the output sequence of stage t of Almost ��w�� each ai is
equal to yi
 ei� where ei � � when �t � �� and ei � � when �t � �� and each
bi is equal to yw�i
 ew�i� where ei � � when �t � �� and ei � � when �t � ��

Proof� For i � w we have

ei � ai � yi

� d	At � i��we � d	A� � i��we

� d	�t
A� � i��we � d	A� � i��we

which is at least zero when � � � and at most zero when � � ��
The claim for ew�i � bi � yw�i follows by a similar argument�

Corollary ��� If �t � � then the output sequences of stage t of Almost ��w�
have the step property�

Proof� If �t � � then by the preceding lemma each ai � yi and bi � yw�i�
so the output sequences of stage t form the sequence y� Since y has the step
property it is left unchanged by the �nal layer of balancers 	Lemma �����

Lemma ��	 �t�� �
j
d	At�x
�we�d	Bt�	w���x

�we

�

k
�

Proof� If a balancer were placed between a�x and b
�
w���x after stage t� then

the Stagex��w� network would become a Stage ��w� counting network� and
by Corollary ��� exactly A� tokens would emerge from the A half of the
network after stage t
�� giving an imbalance would be �� The above quantity
�t�� is simply the number of tokens that this balancer would move from the
A part of the network to the B part in order to bring the parts into balance�
and is thus the actual imbalance that results from deleting the balancer�

� VERIFYING THAT A NETWORK COUNTS �

The following lemmas show that the imbalance tends toward zero as more
stages are added�

Lemma ��
 If �t � � then �t�� � �� If �t � � then �t�� � ��

Proof� Suppose �t � �� Then At � A� and Bt � B�� and so

�t�� �

�
d	At � x��we � d	Bt � 	w � � � x���we

�

�

�

�
d	A� � x��we � d	B� � 	w � � � x���we

�

�

� ��

	The last equality holds because when the two parts of the network hold A�

and B� tokens there is no imbalance��
Reversing the inequalities gives the corresponding result for �t � ��

Lemma ���� If j�tj � � then j�t��j � j�tj � ��

Proof� By virtue of Lemma ��� we need only show that � decreases when
positive and increases when negative�

Let a�� � � � � aw��� b�� � � � � bw�� be the outputs of the A and B subnetworks
of the 	t
 ���th stage before the last layer of balancers� Because �t �� ��
this sequence does not have the step property� however� each of the two
subsequences a�� � � � aw�� and b�� � � � � bw�� is the output of a counting network
and so has the step property� Thus the step property of the whole sequence
must be violated by some ai� bj such that ai � bj is either less than � or
greater than ��

We will consider two cases� depending on the sign of �t�

Case �� �t � �� Then by Lemma ��� each ai � yi and each bj � yw�j � 	Recall
that yi is the number of tokens that would exit from the i�th output
of a counting network with the same input sequence�� So for each
ai and each bj we have� using the step property of the y sequence�
ai � yi � yw�j
 � � bj
 �� Thus�

�� For each ai and bw���i� ai � bw���i
 �� so the balancer between
these outputs moves no tokens from the A side to the B side�

� VERIFYING THAT A NETWORK COUNTS ��

�� Given some ai and bj that violate the step property� it cannot
be the case that ai � bj
 � and thus it must be the case that
ai � bj� But then aw�� � ai � bj � b�� and since aw�� and b� are
connected by a balancer� that balancer moves at least one token
from the B side to the A side�

Hence at least one token moves from the B side to the A side and
�t�� � �t�

Case �� �t � �� Then each ai � yi and each bi � yw�i� So ai � yi � yw�� � bi�
Thus�

�� For each ai and bw���i� ai � bw���i� so no �nal�stage balancer
moves tokens from the B side to the A side�

�� Given some ai and bj that violate the step property� it must be
the case that ai � bj
 �� But a� � ai � bj
 � � bw��
 �� so the
balancer between a� and bw�� moves at least one token from the
A side to the B side�

Hence at least one token moves from the A side to the B side and
�t�� � �t�

Lemma ���� �t�� � �t�w
 c where ���� � c � ����

Proof� From Lemma ��� we have�

�t�� �

�
d	At � x��we � d	Bt � 	w � �� x���we

�

�

Looking more closely at theBt term� notice that
l
B�	w���x

w

m
�
l
B�x��

w

m
�

�� If 	B�x��

w

is not an integer then this is just
j
B�x��

w

k
� which is equal toj

B�x
w

k
since subtracting � from the numerator cannot bring it below the next

integral multiple of w� Now if 	B�x��

w

is an integer then this is
j
B�x��

w

k
� �

which in this case is equal to
j
B�x
w

k
since subtracting � from the numerator

does bring it below an integral multiple of w� So in either case we havel
B�	w���x

w

m
�
j
B�x
w

k
� and we can rewrite the original expression as�

� VERIFYING THAT A NETWORK COUNTS ��

�t�� �

�
d	At � x��we � b	Bt
 x��wc

�

�

�

�
	At � x��w � 	Bt
 x��w
 c�

�

�

�
At �Bt

�w
�

x

w

c�
�
� c�

�
��t
 	A� �B��

�w
�

x

w

c�
�
� c�

where � � c� � � and � � c� � �� Using the fact that � � A� � B� � w
	hence � � 	A� � B����w � ����� and that � � x � w � � 	hence ��� �
�x�w � ��� we can rewrite all of the terms not containing � as a single value
c and get

�t�� �
�t
w

 c

where the bound ���� � c � ��� is obtained by summing the bounds on the
individual terms�

Theorem ���� Let w be a power of � greater than �� Then there exists a
width��w balancing network that has the step property in all executions with
up to w	k��
 tokens� yet is not a counting network�

Proof� From Lemma ���� we have j�t��j � j�tj�w
���� Let U	t� be de�ned
by the recurrence U	�� � j��j� U	t
�� � U	t��w
���� then U	t� is a strict
upper bound on j�tj for t � �� Solving the recurrence using standard methods

yields U	t� � j��jw�t
 	���

����w

�
�
	���

w��

�
w�t�

Now suppose the network is given an input involving at most wt tokens�
Then j��j cannot possibly exceed wt� and after t stages j�tj � U	t� � �

	���

����w �

�
	���

w��

�
w�t� which is at most if w � � and t � �� So by Lemma

����� j�t��j � � and thus by Corollary ��� the outputs of stage t
 have the
step property� Thus a network with k � t
 stages will count up to w	k��

tokens�
To see that this k�stage network is not a counting network� suppose j��j �

w	k��
� From Lemma ���� we have j�t��j � j�tj�w����� Let L	t� be de�ned
by L	�� � j��j and L	t
 �� � L	t��w � �� L	t�is a strict lower bound on j�tj

� DISCUSSION ��

for t � �� Solving the recurrence gives L	t� � j��jw�t � 	���

����w

�
	���

w��

�
w�t�

Dropping the last term and setting j��j � w	k��
 gives j�k��j � L	k
 �� �

 � 	���

����w

� �� Since �k�� �� �� the outputs of stage k 	and hence the entire

network� cannot have the step property�

� Discussion

Counting networks deserve further study� We believe that they represent
a start toward a general theory of low�contention data structures� Work is
needed to develop other primitives� to derive upper and lower bounds and
new performance measures� We have made a start in this direction by deriv�
ing constructions and lower bounds for linearizable counting networks �����
networks which guarantee that the values assigned to tokens re�ect the real�
time order of their traversals� Aharonson and Attiya ���� Felton� LaMarca�
and Ladner ����� and Hardavellas� Karakos� and Mavronicolas ���� have in�
vestigated the structure of counting networks with fan�in greater than two�
Klugerman and Plaxton ���� have shown an explicit network construction of
depth O	c log

� n log n� for some small constant c� and an existential proof of a
network of depth O	log n��

Work is also needed in experimental directions� comparing counting net�
works to other techniques� for example those based on exponential backo�
���� and for understanding their behavior in architectures other than the
single�bus architecture provided by the Encore� We have made a start in
this direction by comparing the performance of counting networks to that of
known methods using the ASIM simulator of the MIT Alewife machine �����
Preliminary results show that there is a substantial gain in performance due
to parallelism on such distributed memory machines�

Finally� we point out that smoothing networks� balancing networks that
smooth but do not necessarily count� are interesting in their own right since
they can be used as hardware solutions to problems such as load balancing
	cf� ������

� ACKNOWLEDGMENTS ��

� Acknowledgments

Orli Waarts made many important remarks� The serialization lemma and
the observation that smoothing
 sorting � counting� are products of our
cooperation with her and with Eli Gafni� to whom we are also in debt� Our
thanks to HeatherWoll� and Shanghua Teng for several helpful discussions� to
Cynthia Dwork for her comments� and to David Kranz and Randy Osborne
for Mul�T support� and to the helpful yet anonymous referees� Finally� the
�rst and third authors wish to thank David Michael Herlihy for remaining
quiet during phone calls�

References

��� A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Tech�
niques ��th Symposium on Computer Architecture� June �����

��� A� Agarwal et al� The MIT Alewife Machine� A Large�Scale Distributed�
Memory Multiprocessor� In Proceedings of Workshop on Scalable Shared
Memory Multiprocessors� Kluwer Academic Publishers� ����� An ex�
tended version of this paper has been submitted for publication� and
appears as MIT�LCS Memo TM��� �����

��� E� Aharonson and H� Attiya� Counting Network with Arbitrary Fan�
Out� In �rd Symposium on Discrete Algorithms� pages ��"���� ACM�
SIAM� January �����

�� M� Ajtai� J� Komlos and E� Szemeredi� An O	n log n� sorting network� In
Proceedings of the ��th ACM Symposium on the Theory of Computing�
���� �����

��� T�E� Anderson� The performance implications of spin�waiting alterna�
tives for shared�memory multiprocessors� Technical Report ��������
University of Washington� Seattle� WA ������ April �����

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting Networks and Multi�
Processor Coordination In Proceedings of the ��rd Annual Symposium
on Theory of Computing� May ����� New Orleans� Louisiana�

REFERENCES ��

��� K�E� Batcher� Sorting networks and their applications� In Proceedings
of AFIPS Joint Computer Conference� ���������� �����

��� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algo�
rithms MIT Press� Cambridge MA� �����

��� M� Dowd� Y� Perl� L� Rudolph� and M� Saks� The Periodic Balanced
Sorting Network Journal of the ACM� ��	�����"���� October �����

���� C�S� Ellis and T�J� Olson� Algorithms for parallel memory allocation�
Journal of Parallel Programming� ��	�����"��� August �����

���� E�W� Felton� A� LaMarca� and R� Ladner� Building Counting Networks
from Larger Balancers� Technical Report �������� University of Wash�
ington� Seattle� WA ������ April �����

���� E� Freudenthal and A� Gottlieb Process Coordination with Fetch�and�
Increment In Proceedings of the �th International Conference on Ar�
chitecture Support for Programming Languages and Operating Systems�
April ����� Santa Clara� California�

���� D� Gawlick� Processing �hot spots� in high performance systems� In
Proceedings COMPCON���� �����

��� J� Goodman� M� Vernon� and P� Woest� A set of e�cient synchro�
nization primitives for a large�scale shared�memory multiprocessor� In
�rd International Conference on Architectural Support for Programming
Languages and Operating Systems� April �����

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph�
and M� Snir� The NYU ultracomputer " designing an mimd parallel
computer� IEEE Transactions on Computers� C���	������"���� Febru�
ary ����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for
the e�cient coordination of very large numbers of cooperating sequential
processors� ACM Transactions on Programming Languages and Systems�
�	�����"���� April �����

REFERENCES �

���� N� Hardavellas� D� Karakos� and M� Mavronicolas� Notes on Sorting and
Counting Networks� in Proceedings of WDAG���� to appear�

���� D� Hensgen and R�Finkel and U� Manber� Two algorithms for bar�
rier synchronization� International Journal of Parallel Programming�
��	�������� �����

���� M�P� Herlihy� B�H� Lim� and N� Shavit� Low Contention Load Balancing
on Large Scale Multiprocessors� In �th Annual ACM Symposium on
Parallel Algorithms and Architectures� June ����� pp� ���"����

���� M�P� Herlihy� N� Shavit� and O� Waarts� Low�Contention Linearizable
Counting� In ��th IEEE Symposium on Foundations of Computer Sci�
ence� October ����� pp� ���"����

���� D� Kranz� R� Halstead� and E� Mohr� �Mul�T� A High�Performance Par�
allel Lisp�� ACM SIGPLAN ��� Conference on Programming Language
Design and Implementation� Portland� OR� June ����� pp� ��"���

���� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on
multiprocessors with shared memory� In Fifth ACM SIGACT�SIGOPS
Symposium on Principles of Distributed Computing� August �����

���� M� Klugerman and C�G� Plaxton� Small�depth Counting Networks� In
ACM Symposium on the Theory of Computing!!!�

��� N�A� Lynch and M�R� Tuttle� Hierarchical Correctness Proofs for Dis�
tributed Algorithms� In Sixth ACM SIGACT�SIGOPS Symposium on
Principles of Distributed Computing� August ����� pp� ���"���� Full
version available as MIT Technical Report MIT�LCS�TR"����

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable synchro�
nization on shared�memory multiprocessors� Technical Report Technical
Report ��� University of Rochester� Rochester� NY ����� April �����

���� L� Rudolph� Decentralized cache scheme for an MIMD parallel processor�
In ��th Annual Computing Architecture Conference� ����� pp� ������

REFERENCES �

���� J�M� Mellor�Crummey and M�L� Scott Synchronization without Con�
tention In Proceedings of the �th International Conference on Architec�
ture Support for Programming Languages and Operating Systems� April
����� Santa Clara� California� !!!

���� D� Peleg and E� Upfal� The token distribution problem� In ��th IEEE
Symposium on Foundations of Computer Science� October �����

���� G�H� P�ster et al� The IBM research parallel processor prototype 	RP���
introduction and architecture� In International Conference on Parallel
Processing� �����

���� G�H� P�ster and A� Norton� #hot spot� contention and combining in
multistage interconnection networks� IEEE Transactions on Computers�
C��	�������"���� November �����

���� H�S� Stone� Database applications of the fetch�and�add instruction�
IEEE Transactions on Computers� C���	�����"���� July ����

���� U� Vishkin� A parallel�design distributed�implementation 	PDDI� gen�
eral purpose computer� Theoretical Computer Science� ������"���� ����

