Are DSP Chips Obsolete?

Lawrence C. Stewart
Andrew C. Payne
Thomas M. Levergood

Digital Equipment Corporation
Cambridge Research Lab

CRL 92/10 November 16, 1992
|
)
) s
|| n
£ |
||| n ;
e d A

ll\ |
[

dlilgliltiall Al

CAMBRIDGE RESEARCH LABORATORY
Technical Report Series

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, Caifornia; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focusis applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’ s EASY net: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is atrademark of Digital Equipment Corporation.

il 1] Cotrig et b
Cambridge, Massachusetts 02139

Are DSP Chips Obsolete? !

Lawrence C. Stewart
Andrew C. Payne
Thomas M. Levergood

Digital Equipment Corporation
Cambridge Research Lab

CRL 92/10 November 16, 1992

Abstract

Today’s fastest general purpose microprocessors have performance equal-
ing or exceeding that of the fastest available DSP chips. This paper argues
that signal processing applications will migrate from specialized DSP copro-
cessors into the host processor of high performance personal computers and
workstations. DSP chips will have a place in synchronous, low latency data
handling, but increasingly, the computation of signal processing algorithms
will be handled by general purpose processors.

Keywords: digital signal processing, RISC
(©Digital Equipment Corporation 1992. All rights reserved.

1A version of this paper appeared in the International Conference on Signal
Processing Applications and Technology on November 2-5, 1992.

1 Introduction

The price/performance of computer hardware has been improving at a rate
of about 50 percent per year. FEach year, the same amount of money
will buy a machine 50 percent faster than the year before. This trend is
driven by semiconductor technology and shows no sign of changing well
into the future. In the past 10 years, personal computers have improved in
price/performance by about a factor of 60. In the next 10 years, we will
see another sizeable factor - and many industry analysts think that 50 per-
cent per year is a conservative estimate. Regardless of the exact figure, a
revolution is coming.

Today, personal computers and workstations rely on external devices
(such as modems) or DSP coprocessor boards to handle the processing re-
quirements of signal processing algorithms. We argue that these devices will
be replaced by simple - and less expensive - I/O devices, and that the signal
processing algorithms will be executed by the host processor.

Today’s fastest implementations of general purpose processor architec-
tures, such as the Digital Alpha AXP!, the HP PA-RISC, and others, have
performance equaling or exceeding the fastest available DSP chips. Next
generation personal computers based on the forthcoming Intel P5, for ex-
ample, will also have enough computational horsepower for many of today’s
DSP applications.

This paper argues that many signal processing applications, from modems
to speech synthesis and recognition, will be handled by time-shared general
purpose processors, while the DSP, if present at all, will be relegated to
handling the interrupts and data buffering requirements of the I/O system.

Our thesis is predicated on two points. First, the performance of general
purpose CPUs on signal processing tasks easily matches the performance
of more specialized DSPs. Second, many applications which appear to re-
quire dedicated signal processing can be implemented in a way which does
not require the the low-latency computation provided by a dedicated DSP.
(We also note that real-time capabilities are turning up in general purpose
operating systems such as OSF/1 - so perhaps low-latency applications are
viable as well.)

! The AXP mark is a trademark of Digital Equipment Corporation.

2 2 PERFORMANCE

2 Performance

The present state of the art in floating point DSP chips may be represented
by the Texas Instruments 320C40. The 320C40 can execute at a peak rate
of 150 MIPS 2 [TI91]. In contrast, the current state of the art in general
purpose CPUs may be represented by the Digital Equipment Alpha AXP
21064 processor [DEC92], which can execute at a peak rate of 400 MIPS.

At somewhat lower levels of absolute performance and substantially
lower prices, general purpose chips such as the MIPS architecture integrated
R3500A from IDT [IDT91] have enough horsepower for such tasks as speech
synthesis. In our laboratory, we have demonstrated the DECtalk speech
synthesizer as a purely software algorithm running in real-time while con-
suming about 37% of a 25 MHz R3000 processor. This work is discussed in
more detail later in this section.

Many of the special architectural features that allow DSP processors to
deliver high performance also exist in modern general purpose processors.
However, general purpose processors are missing most of the awkward fea-
tures that make DSPs hard to use. The net result is that modern general
purpose processors offer performance equal to or greater than today’s DSPs,
while remaining substantially easier to use.

2.1 Architecture

Digital Signal Processors traditionally have a few unique architectural fea-
tures that have set them apart from general purpose processors:

e Single cycle multiplier

e Multiple operations per cycle
e Bit reversed addressing

e Circular buffers

e Zero overhead looping

These features are designed to perform well for signal processing algo-
rithms like convolutions and Fast Fourier Transforms. With the exception

ZAt 25 Mhz, the 320C40 can perform six operations per cycle: 2 data access, 2 address
register updates, 1 FP multiply and 1 FP ALU operation.

2.1 Architecture 3

of bit reversed addressing, all of these architectural features are matched by
mechanisms that appear in recent general purpose implementations.

Recent general purpose implementations offer very good floating point
performance. A fully pipelined floating point unit can issue one floating
point operation (multiply or accumulate) per cycle [DWYF92, MHR90].
Some architectures have a multiply/accumulate instruction that can effec-
tively perform two FP operations per cycle (IBM RS/6000 and HP PA-RISC
1.1.) There is typically a several cycle latency until the result of a opera-
tion is available, but these latencies can be hidden with software pipelining
- which is possible due to the large number of registers in general purpose
architectures [HP90, Smi92].

Most DSPs can perform several operations in a single cycle. The abil-
ity to fetch two operands and perform a multiply/accumulate gives good
performance for most signal processing algorithms. Many recent general
purpose processor implementations are superscalar: they can issue multiple
instructions per processor cycle [HP90]. For example, Digital’s 21064 can
issue two instructions per cycle. IBM’s RS/6000 and Texas Instruments’
SuperSPARC [BK92] can issue three instructions each cycle.

Superscalar general purpose processors are also more powerful than DSPs
in the combinations of operations that can be performed in a single cycle.
Most DSPs have very structured parallel operation instructions that can
perform a limited number of parallel combinations. In contrast, most su-
perscalar general purpose implementations contain instruction issue units
which fetch ahead in the instruction stream and aggressively issue multi-
ple instructions as long as the necessary resources (registers and functional
units) are available. For example, Digital’s 21064 has four functional units:
load/store, branch, integer, and floating point, and in general can issue two
instructions to different functional units. IBM’s RS/6000 can issue three
instructions to branch, fixed point, and floating point functional units.

Several general purpose architectures have been designed to facilitate
multiple issue implementations, but multiple issue is not a necessary part
of the architecture. Consequently, future implementations may issue more
instructions per cycle as implementation technology improves. In contrast,
most DSPs use special instruction encodings to specify parallel operations.
Therefore, changing the form of the parallel operations requires creating
a new, incompatible architecture. For general purpose architectures, only
the implementation needs to be changed, the architecture can remain the
same (and backwards compatible.) For example, the HP-PA architecture
has binary compatible single and multiple issue implementations, while TI’s

4 2 PERFORMANCE

four generations of DSP processors all have incompatible instruction sets.

Another popular feature for DSPs is zero overhead looping, that allows
a block of instructions to be repeatedly executed with no looping overhead.
One popular implementation uses two registers: a count and the end ad-
dress of the block to repeat. No branch instruction is required to iterate
the loop. General purpose implementations can achieve zero loop overhead
through other mechanisms. IBM’s RS/6000 has a special count register with
a decrement-and-branch-if-non-zero instruction. Since the RS/6000 can is-
sue a branch together with one integer and one floating point instruction,
the looping branch instruction is effectively free. Other general purpose
architectures may require an instruction to update the loop index. The
overhead is minor: in multiple issue implementations the update instruction
can be scheduled in an unused issue slot. The overhead can be reduced
even further by unrolling loops and by software pipelining (again, possible
because of the large number of registers available on general purpose ma-
chines.) Modern general purpose processors use branch prediction logic to
reduce looping overhead. This mechanism allows the instruction fetch unit
to feed the correct sequence of instructions to the processor pipeline with
no delays.

A final architectural feature unique to DSPs is circular buffering. This
feature increments or decrements a buffer index and automatically wraps
the index based on the length of the buffer, and is convenient for imple-
menting delays and convolutions. This feature can be easily implemented
on general purpose machines using, for example, the conditional move in-
struction available on Sun’s SPARC and Digital’s Alpha AXP architectures.
A decrement-modulo-N requires only two instructions (and no branches):

sub r0, #1, r0 ;rO =10 - 1
cmovelt r0, #127, r0 ;if (r0 < 0) themn r0 = 127

General purpose processors are missing most of the DSP’s awkward
features, such as a Harvard architecture with separate program and data
memories. Some DSPs such as Motorola’s 96K [Mot89] use this memory
architecture to achieve performance, but place the burden of managing the
memory on the programmer. The size of program and data memory are
fixed and complicated memory models or qualifiers are required for memory
access [Mot92].

General purpose machines can achieve the same memory performance
with split instruction and data caches. Unlike DSPs, this split is an im-
plementation detail: there is no distinction made at the architectural level

2.1 Architecture 5

(instruction set) between program and data memory. All memory is alike,
relieving the programmer of the management burden.

Another common DSP feature is fast on-chip memory. While this mem-
ory provides single cycle access, it is the programmer’s responsibility to al-
locate code and data between this memory and the slower off-chip memory.
While some general purpose implementations have on-chip memory, most
use caches to improve performance. Like the on-chip memory, the cache
provides single cycle access, but is automatically managed by the hardware.
If a datum is available in the cache, it is read or written in a single cycle.
Otherwise, a cache miss occurs and the processor automatically goes off chip
to retrieve the datum.

Cacheing helps average performance, but may perform badly on some
portions of a program due to cache conflicts, which occur when two or more
sections of code or data displace each other from the cache. However, the
same programming style that allocates data to X and Y memories (such as
for Motorola’s DSP 56000) can be used to arrange cached data so that it
does not collide and near optimal performance can be achieved. Similar tech-
niques can be used to manage instruction stream cacheing. It is therefore
possible to get predictable performance from a cached system. The pro-
gramming environment for the MIPS architecture even has an automatic
tool (CORD) for reorganizing code to minimize cache conflicts. CORD uses
profile information gathered at runtime to guide its modifications of the
program.

Modern DSPs and general purpose processors have about the same
amount of on chip memory, but they put the memory to different uses.
DEC’s 21064 has 16K bytes of on-chip cache (split between instruction and
data caches.) TT’s 320C40 has 8K of on-chip memory and a 512 byte cache.
But the 320C40’s on-chip memory must be managed by the programmer, so
the software must be changed for different model chips. In contrast, because
the general purpose cache is automatically managed, different implementa-
tions can offer different size caches without requiring code changes.

One area in which it might be argued that general purpose processors are
at an architectural disadvantage compared to DSPs is that general purpose
processor instructions tend to do less work than DSP instructions. This
effect is countered by the ability of superscalar general purpose machines
to issue multiple instructions per cycle, but it does lead to somewhat larger
programs. The requirement for compilers to unroll loops and to use software
pipelining to achieve peak performance also tends to result in a larger num-
ber of instructions for the general purpose architecture than for the DSP.

6 2 PERFORMANCE

However, modern general purpose implementations have sufficiently large
instruction caches coupled with instruction prefetch units that can antici-
pate cache misses, so that the somewhat larger programs do not result in
reduced performance.

2.2 Performance

We have argued that modern general purpose processors can approach DSPs
on cycle-per-cycle performance. However, most general purpose processor
implementations have very short cycle times that put them ahead of DSPs in
throughput. Table 1 compares the instruction cycle times for several general
purpose and DSP chips.

Device Cycle Period
(ns)

DEC 21064 5

HP 7100 10

Motorola 96K 30

TT 320C40 40

TT 320C30 60

Table 1: Cycle Times

To verify our theory that general purpose processors have good perfor-
mance for signal processing algorithms, we implemented a number of pop-
ular algorithms on general purpose processors and compared them to DSP
performance reported in the literature. It is important to remember that
our implementations may not be the best possible for the general purpose
processor, but instead represent lower bounds on achievable performance.

Fast Fourier Transform

Our first benchmark was a 1024 point complex FFT. Table 2 compares the
execution time on the Digital 21064 Alpha AXP with the best reported
times for other DSP chips [MS90].

2.2 Performance 7

Device Cycles Cycle Period Transform Time
(ns) (1)

DEC 21064 96,000 5 480

TT 320C40 38,629 40 15453

TT 320C30 40,457 60 2430*

Table 2: 1024 Point Complex FFT Performance

FIR Convolution

As another example, we tested an FIR convolution. On the 21064, an N
point convolution requires 23+2N cycles. Table 3 compares the convolution
performance of the 21064 with other DSP chips:

Device Cycles Cycle Period Convolution Time
(ns) (ns)

21064 234 2N 5 1154+ 10N

TI 320C40 7+ N 40 280 4 40N

TI 320C30 10+ N 60 600 4 60N

Table 3: N-Point Convolution Performance

In fact, for FIR convolution, the 21064 achieves peak performance of 400
MIPS and 200 MFLOPS when the filter coefficients fit in the on-chip cache.

Speech Synthesis

The previous sections reported on DSP algorithm performance running on a
new state-of-the-art general purpose microprocessor. We have also explored
the performance of an important signal processing application running on a
low cost commodity micro- processor - speech synthesis on a MIPS R3000
processor.

Developed by Dennis Klatt and Digital Equipment Corporation, DECtalk
is an algorithm that accepts arbitrary text as input and produces sampled
synthetic speech using as many as eight internal voices (speakers) [Kla87].
DECtalk comprises three major algorithms; the letter-to-sound system,
the phonemic synthesizer, and the vocal tract model.

The letter-to-sound system accepts arbitrary ASCII text as input and
produces a phonemic transcription as output. This component uses a pro-

3From TT’s databook [TI91].
*From [MS90].

8 2 PERFORMANCE

nunciation lexicon and a collection of letter-to-sound rules for English to
convert text to phonemes with lexical stress markings.

The phonemic synthesizer accepts the phonemic transcription output
from the letter-to-sound system and produces parameter control records for
the vocal tract model. Each parameter control record produced results in a
6.4 ms frame of synthesized speech.

The vocal tract model accepts the control records from the phonemic
synthesizer and updates its internal state in order to produce the next frame
of synthesized samples. The vocal tract model is a formant synthesizer based
on the model described by Klatt [Kla80]. The vocal tract model consists of
voiced and unvoiced waveform generators, cascade and parallel resonators,
and a summing stage. Frequency, bandwidth, and gain parameters in the
control record are used to compute the filter coefficients for the resonators.
The vocal tract model also receives speaker definition parameter records
which are used to update the internal state specific to a particular speaker.
The vocal tract model operates at an 8 KHz sampling rate.

DECtalk is an algorithm that has many implementations. In this sys-
tem, DECtalk is implemented in ‘C’ source code and is compiled using the
native Ultrix/RISC compilers using default optimizations. The tests were
performed on a system running V4.2a ULTRIX and V2.10 of the compiler.

The performance data were collected on a DECstation 5000 Model 200
workstation. This workstation uses a 25 MHz R3000 MIPS CPU with 128
KB (I+D) of external cache memory. All components of the DECtalk algo-
rithm execute on the workstation; no DSP coprocessor is needed to achieve
real-time synthesis.

Performance measurements were made by synthesizing samples from an
ASCII text file and measuring the execution times for the three components.
To synthesize 43.9 seconds of speech, the vocal tract model, phonemic syn-
thesizer, and letter-to-sound system require 15.4, 0.98, and 0.032 seconds
of CPU time. On average, this algorithm requires 370 milliseconds of CPU
time to produce 1 second of synthesized speech. In other words, an R3000
is nearly three times faster than necessary to synthesize speech. In fact,
all computations were done in fixed-point, and there is reason to believe
that converting the algorithm to floating point would result in still greater
performance, since the R3000 floating point multiply is substantially faster
than the integer multiply instruction.

2.3 Development Environments 9

2.3 Development Environments

The separation of architecture from implementation in most general purpose
processors results in improved software longevity. Because the architecture is
stable across several generations of implementations with increasing perfor-
mance, software for general purpose processors can remain useful for many
years. Historically, general purpose architectures have enjoyed much longer
lifetimes than their DSP counterparts.

The advantages of a single architecture are obvious: there is no learn-
ing curve for next year’s model, no re-writing of assembly language code,
and pin compatible upgrades. This is especially important since software
development is frequently the dominant cost of a system.

Software development costs are also reduced by the use of higher level
languages in preference to assembler. Programmers tend to be more produc-
tive when using a high level language, and the resulting software is easier to
debug and maintain. Historically, DSP software has been written primar-
ily in assembler, although in recent years the main program is frequently
written in a high level language with the inner loops written in assembler.
In contrast, almost all code for general purpose processors today is written
in high level languages. This trend is supported by the availability of very
good optimizing compilers for general purpose processors [CHKW86].

Optimizing compiler technology for general purpose architectures has
progressed farther and faster than that for DSP architectures. This has
happened for two reasons. First, it is easier to generate code for the very
regular instruction sets of general purpose architectures than for the some-
times peculiar instructions of DSPs. Second, competitive pressures of the
general purpose processor market force vendors and third party compiler
writers to concentrate on performance. In addition, while DSP parts ship in
large volumes, the number of DSP programs written is small compared to
the number of programs written for general purpose processors. This adds
to the market demand for high quality compilers and software development
tools.

Of course, ease of software development is not the whole story. The
design of a system is usually based on minimizing the sum of development,
manufacturing, and maintenance costs over the life of the system. Develop-
ers are willing to code in obscure minimalist assembler in order to reduce
the manufacturing cost of a high volume product - at the expense of devel-
opment and maintenance costs. However, as signal processing applications
become more common, the industry must do what it can to make signal

10 3 IS REAL TIME NECESSARY?
processing software easier to develop.

3 Is Real Time Necessary?

Section 2 of this paper presented the case that general purpose processor ar-
chitectures are competitive with DSP architectures, and that the extremely
short cycle times of modern general purpose processor implementations actu-
ally gives them higher throughput than a modern DSP. This section presents
the case that signal processing in the time shared host processor of a work-
station or PC is as effective as the dedicated processing of a DSP.

Signal processing is generally done in lockstep with I/O with a fixed (and
short) delay from input to output. In contrast, the operations of general
purpose processors running multiple tasks is bursty. Each task runs for a
while and is then suspended in favor of another higher priority task. This
results is a variable (and longer) delay from input to output.

Our argument in favor of general purpose processors is based on the idea
that “real-time” is application dependent, and that for many applications of
interest, the larger latency of a signal processing application does not cause
a problem.

3.1 Why is latency higher on a general purpose processor?

General purpose processors will handle signal processing tasks in larger
chunks for two reasons. First, they must devote some resources to other
tasks, and second, getting good performance from a modern general pur-
pose processor requires allocating each task a sufficiently large run interval
to amortize the cost of switching processes.

It will be the exception rather than the rule for a signal processing appli-
cation to be the only task competing for the attention of a PC or workstation.
It is not at all uncommon for a workstation to have thirty or forty processes
running at any given time and even on a PC, device interrupts and screen
updates will use some processing power.

When the processor must be shared among several activities, it is evident
that larger time slices will use the machine more effectively than small ones,
simply because there will be less overhead in switching.

Even if the overhead of switching is small, a given algorithm will use less
total run time if it is run for large blocks of data than for small ones. This
effect happens because of caches. A DSP is designed so that most or all
memory references will be single-cycle. In contrast, modern general purpose

3.2 Low latencies are usually not a concern 11

machines use a small automatically managed cache to hold frequently used
code and data. The first time a datum is referenced, it is fetched from main
memory, sometimes with a substantial delay. Later references to the datum,
or to nearby data that is fetched at the same time, are handled very quickly
from the cache. However, when a task begins to run, it experiences a “cold
start” effect until its working set is loaded into the cache. The cold start can
be effectively amortized by handling larger blocks of data per invocation of
a task.

3.2 Low latencies are usually not a concern

There are really two aspects to “real-time”. The first is whether the pro-
cessor has adequate performance to handle one time unit’s worth of input
data in less than one time unit. A certain level of performance is necessary
or the work cannot be done on time. The second aspect is latency - what is
the delay between input and output?

In many applications, latency is not a concern. For example, a fax
modem could be implemented with arbitrary latency, since the transmit
waveform can be precomputed, and the received signal can be recorded as a
waveform and processed off-line. Speech synthesis, for example in an appli-
cation reading electronic mail, could operate satisfactorily with latency of
one second. Depending on the application, a speech recognition application
might also operate with substantial delay.

In general, the latency required by a signal processing application is
controlled by the ultimate consumer of the data. While an interactive ap-
plication might require delays of a hundred milliseconds or less, a batch
application, such as the reception of documents via fax, can operate with
delays of minutes. Still further along the spectrum of latency, an applica-
tion using speech recognition to establish an index for voice mail might give
perfectly satisfactory operation overnight.

Some applications may even benefit from the relaxation of latency con-
straints. Consider the example of a V.32 modem. A DSP implementation
typically operates with a processing delay of a few milliseconds. This means
that only a limited amount of processing can be applied to each sample, and
that ancillary processes such as echo canceller training and line equalization
must be performed “off line” before data can be transmitted.

If a longer, or variable processing delay is acceptable, parameterized
soft decision decoding algorithms such as the M,L algorithm can be used,
which benefit from more processing during periods of lower signal to noise

12 3 IS REAL TIME NECESSARY?

ratio that during periods of high SNR [JAT71]. In addition, if the received
waveform is recorded, then echo canceller training and line equalization may
proceed jointly and in parallel with data transmission, allowing better line
utilization and lower communications costs.

Delay budgeting

It is customary in the design, for example, of optical datalinks to engineer the
link with a certain transmitted optical power and a certain required received
power to achieve a low error rate. This power ratio is then carefully budgeted
to different components, such as transmitter aging, fiber transmission losses,
connector losses, and so forth, leaving adequate margin for uncertainly.

The same kind of process is followed in the design of real-time systems,
where the total allowable input-output delay is carefully allocated to dif-
ferent components. One classic example of this process is in the telephone
industry, where years of human factors work has established the public re-
quirement for maximum round-trip delay of a telephone call as somewhere
around 300 milliseconds. This delay is then allocated to different parts of
the telephone system. Omne consequence is that frequently only one direc-
tion of a phone call will be carried by satellite, because two satellite hops
will exceed the delay budget. The other half of the call will be carried on
terrestrial facilities.

This same style of engineering can be used to first identify the actual
input to output delay requirements of signal processing applications and
then to assure that the requirements are met. In many cases, this analysis
reveals that there is no need for sample by sample processing in a dedicated
DSP, but instead “batch” processing by the host computer will be perfectly
satisfactory.

Examples

One interesting line of development is to consider the connection of telephony
and the personal computer. Today, most PC users of telecommunications
have specialized fax and data modems, and occasionally an interface for
voice communications as well. These devices permit the personal computer
to transmit and receive data (via modem), documents (via fax) and perhaps
voice mail (via waveform recording.) It is worth considering the possibility of
replacing all three of these devices by a single device containing only an A/D
converter, a D/A converter, and a telephone line data access arrangement

13

(DAA.) This device, plus software to emulate the fax and data modems,
could accomplish all three tasks at a lower cost than any single task today.

Use of the telephone interface for voice mail is particularly simple, as
there really is no signal processing required. The only functions required
are the recording and playback of digital voice waveforms. If desired for
reasons of storage economy, speech compression algorithms may be used, and
these may introduce additional timeliness requirements for decompression,
since the user may request playback of a recorded message at any time.
The compression side has no particular timeliness requirement, since the
message may be stored uncompressed until sufficient time is available to do
the compression - even overnight.

The fax modem presents a slightly more difficult case. The operation
of a fax session has two phases. In the first phase, the two modems follow
a protocol to establish the degree of compatibility between them. This
part of the process is “interactive” in the sense that the protocol requires a
particular pattern of signalling to occur within certain time limits. Once this
protocol negotiation phase is over, fax transmission becomes a half-duplex
transmission from sender to receiver. During this phase of operation, there
really are no “interactive” requirements. The sender is free to precompute
the transmit waveform as far ahead as desired, and the receiver is free to
simply record the received waveform and to process it at leisure.

In many ways, the operation of a data modem comes the closest to
traditional “real-time” requirements - not because low delay operation is
inherent in the data modem protocols, but because the ultimate user of the
data may be an interactive computer user whose requirements include small
round-trip delays for keyboard echoing. Even in this case, the actual delay
requirements for a data modem are related to human perceptible time scale,
rather than requiring sample by sample processing.

4 Conclusion

What then are DSPs good for?

Aside from their performance related internal architectural features, which
we discussed in the first section of this paper, modern DSPs are distinguished
by the ease which they may be applied to data handling. One common
feature of the DSP is an extremely capable serial port, often coupled with
low-latency interrupt facilities which permit, but do not require, program
intervention on every sample. Other new DSP designs have very flexible

14 4 CONCLUSION

interfaces for permitting multiprocessor systems to be built.

DSPs are often used in applications which exploit their data handling
features rather than computation. For example, DSPs are often used for
data reduction, where simple signal processing is performed to reduce the
output data rate. We expect this trend to continue, with DSP like devices
used as data handling front end processors - even just as smart DMA engines
- while fast general purpose processors handle the computation.

Summary

General purpose processors are faster, and easier to program than DSPs.
In applications where very low latency is not required, we think that signal
processing will be done in the central processor of a PC or workstation,
rather than in DSP coprocessors. The remaining market for DSP chips will
be in truly dedicated applications such as sample-rate changing in real-time
digital audio, and in video compression. Even in these low-latency applica-
tion areas, the use of general purpose processors will increase as real-time
capabilities are added to their operating systems. We urge the DSP industry
to concentrate on the design of flexible and efficient data handling devices
rather than on signal processing. In particular, there is a need for com-
ponents with the communications and data handling capabilities of today’s
DSPs, but without the expensive computational core. Another intriguing
possibility is to combine the data handling capabilities of a DSP with a
general purpose computational core. This would bring the performance,
architectural, and software development advantages of general purpose pro-
cessors to bear on many new problems.

REFERENCES 15

References

[BK92]

[CHKWS86]

[DEC92]

[DWYF92]

[HP90]

[IDT91]

[JAT1]

[K1a80]

[K1a87]

[MHR90]

[Mot89]

[Mot92]

G. Blanck and S. Krueger. The SuperSPARC microprocessor.
In COMPCON, pages 136-141, 1992.

F. Chow, M. Himelstein, E. Killian, and L. Weber. Engineering
a RISC compiler system. In COMPCON, pages 132-137, 1986.

Digital Equipment Corporation. DECchip 21064-AA RISC M-
croprocessor Data Sheet, Apr., 1992. Available for anonymous
ftp from crl.dec.com.

E. DeLano, W. Walker, J. Yetter, and M. Forsyth. A high speed
superscalar PA-RISC processor. In COMPCON, pages 116-121,
1992.

J. L. Hennessy and D. A. Patterson. Computer Architecture, A
Quantitative Approach. Morgan Kaufman, San Mateo, Califor-
nia, 1990.

Integrated Devices Technology. RISC 1991 Databook, 1991.

F. Jelinek and J. B. Anderson. Instrumentable tree encoding of
information sources. IEEFE Transactions on Information The-
ory, 17(1):118-119, January 1971.

Dennis H. Klatt. Software for a cascade/parallel formant syn-
thesizer. J. Acoust. Soc. Am., 67(3):971-995, 1980.

Dennis H. Klatt. Review of text-to-speech conversion for En-

glish. J. Acoust. Soc. Am., 82(3):737-793, 1987.

R. K. Montoye, E. Hokenek, and S. L. Runyon. Design of the
IBM RISC System/6000 floating-point execution unit. IBM
Journal of Research and Development, 34(1):59-70, January
1990.

Motorola. DSP96002 IEEFE Floating- Point Dual-Port Processor
User’s Manual, 1989.

Motorola. GCCS56K User’s Manual, 1992.

16 REFERENCES

[MS90] R. Meyer and K. Schwarz. FFT implementation on DSP-chips —
theory and practice. In Proceedings ICASSP, pages 1503-1506,
1990.

[Smi92] M. R. Smith. To DSP or not to DSP: Will a RISC chip do it
better? Circuit Cellar Ink, 28:14-25, August 1992.

[TI91] Texas Instruments. TMS320C4z User’s Guide, May 1991.

