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Abstract

Providing high concurrency in BT-trees has been studied extensively. But
few efforts have been documented for combining concurrency methods with a
recovery scheme that preserves well-formed trees across system crashes. We
describe an approach for this that works for a class of index trees that is a
generalization of the Bi™*-tree. A major feature of our method is that it works
with a range of different recovery methods. It achieves this by decomposing
structure changes in an index tree into a sequence of atomic actions, each one
leaving the tree well-formed and each working on a separate level of the tree.
All atomic actions on levels of the tree above the leaf level are independent
of database transactions, and so are of short duration.
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1 Introduction

1.1 Background

The higher a node is in an index tree, the more likely it is to be accessed. In
structures such as the BT-tree, where all data is stored in the leaves, upper
level index nodes are only written when the shape of the tree changes. It is
important then that these structure changes hold only short-term locks on
index nodes to facilitate concurrent access via the index.

The subject of concurrency in B*-trees has a long history [1, 6, 13, 14, 15,
16]. Most papers, with the exception of [13], have not treated the problem
of system crashes during structure changes. In this paper, we show how to
manage concurrency and recovery for a wide class of index tree structures,
single attribute, multiattribute, and versioned.

We have three goals.

1. Provide practical concurrency techniques for a wide class of index trees.

2. Provide an abstract description of our approach to make it clearly un-
derstandable, and to separate it from particular implementations.

3. Describe how the techniques mesh with surrounding recovery methods.
This provides a rationale for choosing among various schemes.

1.2 Owur Approach

We define a search structure, called a II-tree , that is a generalization of the
Blink_tree[6]. Our concurrency and recovery method is defined to work with
all search structures in this class. This generality means that our technique
has very broad applicability.

The three innovations that make it possible for us to hold only short term
locks on non-leaf nodes are the following:

1. TI-tree structure changes consist of a sequence of atomic actions|7].
These actions are serializable and are guaranteed to have the all or
nothing property by the recovery method. Searchers can see the in-
termediate states of the Il-tree that exist between these atomic ac-
tions. Hence, complete structural changes are not serializable. It is the
strength of the II-tree that these intermediate states are well-formed.
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We define separate actions for performing updates at each level of the
tree. A structure change can occur as a result, but the structure change
is confined to a single level. Thus, update actions and possible structure
changes on non-leaf nodes can be separate from the transaction whose
update triggers a structure change. Only re-structuring at the leaves
of a tree may need to be within an updating transaction in such a way
that locks associated with the re-structuring are held until the end of
the transaction..

. When a system crash occurs during the sequence of atomic actions that

constitutes a complete II-tree structure change, crash recovery takes no
special measures. A crash may cause an intermediate state to persist for
some time. The structure change is completed when the intermediate
state is detected during normal subsequent processing by scheduling a
completing atomic action. The state is tested again in the completing
atomic action to assure the idempotence of completion.

1.3 Organization of Paper

Section 2 defines the II-tree. In section 3, atomic actions are described in
general. Section 4 describes how Il-tree structure changes are decomposed
into atomic actions, and how to cope with such decomposed changes. Section
5 presents the specific logic of atomic actions. We show how a wide array of
search structures can be adapted so as to be forms of II-trees in section 6.
Section 7 is a short discussion of results.

2

2.1

The II-tree

Structural Description

Informally, a Il-tree is a balanced tree, and we measure the level of a node
by the number of child edges on any path between the node and a leaf node.

More precisely, however, a II-tree is a rooted DAG because, like the BUnk-
tree, nodes have edges to sibling nodes as well as child nodes. All these terms
are defined more precisely below.
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2.1.1 Within One Level

Each node is responsible for a specific part of the key space, and it retains
that responsibility for as long as it is allocated. A node can meet its space
responsibility in two ways. It can directly contain entries(data or index
terms) for the space. Alternatively, it can delegate responsibility for part
of the space to a sibling node.

A node delegates space to a new sibling node during a node split. A
sibling term describes a key space for which a sibling node is responsible
and includes a side pointer to the sibling. A node containing a sibling
term is called the containing node and the sibling node to which it refers
is called the contained node.

Any node except the root can contain sibling terms to contained nodes.
Further, a II-tree node is not constrained to have only a single sibling, but
may have several. A level of the II-tree is a maximal connected subgraph
of nodes and side pointer edges. Each level of the II-tree is responsible for
the entire key space. The first node at each level is responsible for the whole
space, 1.e. it is the containing node for the whole key space.

2.1.2 Multiple Levels

The Il-tree is split from the bottom, like the B-tree. Data nodes(leaves)
are at level 0. Data nodes contain only data records and/or sibling terms.
As the II-tree grows in height via splitting of a root, new levels are formed.

A split is normally described by an index term. Each index term, when
posted, includes a child pointer to a child node and a description of a key
space for which the child node is responsible. A node containing the index
term for a child node is called a parent node. Hence, a parent node indicates
the containment ordering of its children based on the spaces for which the
children indexed are responsible.

A parent node directly contains the space for which it is responsible and
which it has not delegated, exactly as with a data node. In Il-trees, as in
Blink_trees, parent nodes are index nodes which contain only index terms
and/or sibling terms. Parents nodes are at a level one higher than their
children. Unlike B trees, in the more general II-trees, the same child can
be referred to by two parents. This happens when the boundary of a parent
split cuts across a child boundary. Then the union of the spaces for which
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children nodes are responsible may be larger than (strictly include) the space
the index node directly contains.

2.1.3 Well-formed II-trees

Going down from the root, each level describes a partition of the space into
subspaces directly contained by nodes of that level. This gives the Il-tree its
name.

Side pointers and child pointers must refer to nodes which are responsible
for spaces that contain the indicated subspaces. A pointer can never refer
to a de-allocated node. Further, an index node must contain index terms
that refer to child nodes that are responsible for spaces, the union of which
contains the subspace directly contained by the index node. However, each
node at a level need not have a parent node at the next higher level. This is
an abstraction and generalization of the idea introduced in the Bi™* tree[6].
That is, having a new node connected in the B¥*-tree only via a side pointer
is acceptable. We never know whether a node directly contains the space of
interest or whether it is merely responsible for the space until we examine
the sibling terms.

Like [16], we define the requirements of a well-formed general search struc-
ture. Thus, a [I-tree is well-formed if

1. each node is responsible for a subspace of the search space;

2. each sibling term correctly describes the subspace of its containing node
for which its referenced node is responsible.

3. each index term correctly describes the subspace of the index node for
which its referenced child node is responsible;

4. the space which an index node directly contains, i.e., which it has not
delegated to a sibling, is a subspace of the union of spaces that its child
nodes are responsible for at the next lower level;

5. the lowest level nodes are data nodes.

6. a root exists that is responsible for the entire search space.
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The well-formedness description above defines a correct search structure.
All structure changing atomic actions must preserve this well-formedness.
We will need additional constraints on structure changing actions to facilitate
node consolidation(deletion).

2.2 II-tree Operations

Here we describe the operations on Il-trees in a very general way. The steps
do not describe how to deal with either concurrent operations or with fail-
ures. In particular, we do not show how to decompose structure changes into
atomic actions. This is described in section 5, after we have discussed how
to realize atomic actions and the difficulty of dealing with multiple atomic
action structure changes in general.

2.2.1 Searching

Searches start at the root of the IlI-tree. The root is an index node that
directly contains the entire search space. In an index node whose directly
contained space includes a search point, an index term must exist that refer-
ences a child node that is responsible for the space that contains the search
point. There may be several such child nodes. Proceeding to any such child
node is correct in that the search will eventually succeed. However, it is desir-
able to follow the child pointer to the node that directly contains the search
point. This avoids subsequent sibling traversals at the next lower level.

Index terms describe the space for which a child is responsible, not its
directly contained space. Because the posting of index terms can be delayed,
we can only calculate the space approximately contained by a child with
respect to a given parent. This is the difference between that part of the space
of the parent node the child is responsible for and the subspaces that it has
delegated to other child nodes referenced by index terms that are present
in the index node. When all index terms for child nodes that have been
delegated space from a child C have been posted to an index node I, the
approximately contained space for C relative to I equals the intersection of
its directly contained space and the directly contained space of I. With this
precise information, a side pointer from C would not have to be followed after
the search proceeds from I to C.
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Thus, we minimize our search cost by proceeding to the child that approx-
imately contains the search point. This node will usually, but not always,
contain the search point, at least for the II-trees that we build. If the directly
contained space of a node does not include the search point, a side pointer
is followed to the sibling node that has been delegated the subspace contain-
ing the search point. Eventually, a sibling is found whose directly contained
space includes the search point.

The search continues until the data node level of the tree is reached. The
record for the search point will be present in the data node whose directly
contained space includes the search point, if it exists at all.

2.2.2 Node Splitting

We wish to build our Il-tree so as to permit our search procedure to mini-
mize side pointer traversals. Thus, we want the children of an index node to
be exactly the nodes at the next lower level with directly contained spaces
that intersect the directly contained space of the index node. However, when
we split index nodes, our information is incomplete. The best that we can
do is to partition index terms based on the spaces that their child nodes
approximately contain. Index terms are thus placed in the resulting index
node(s) whose directly contained space(s) intersects the approximately con-
tained space of the index term. This is acceptable in that searches will still
be effective. Over time, the missing index terms will be correctly posted(see
section 4.1).
A node split has the following steps:

1. Allocate space for the new node.

2. Partition the subspace directly contained by the original node into two
parts. The original node continues to directly contain one part. The
other part is delegated to the new sibling node. There is wide discretion
in this step. The goal is usually to achieve as close to an even split
of the original node’s contents as possible, but there may be other
considerations.

3. If the node being split is a data node, place in the sibling node all
of the original node’s data that are contained in the delegated space.
Include any sibling terms to subspaces for which the new node is now
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responsible. Remove from the original node all the data that it no
longer directly contains. This partitions the data. (What is dealt with
here is point data.)

4. If the node being split is an index node, we include in each node the
index terms that refer to child nodes whose approximately contained
spaces intersect the space directly contained by the node. Because an
index node split can divide the approximately contained space of a child
node, the index term for that node can end up in both of the resulting
index nodes.

5. Put a sibling term in the original node that refers to the new node.

6. Schedule the posting of an index term describing the split to the next
higher level of the tree. The index term describes the new node and the
space for which it is responsible. Posting occurs in a separate atomic
action from the action that performs the split.

Ezample: In a BY'*-tree , an index or sibling term is represented by a
key value and node pointer. It denotes that the child node referenced is
responsible for the entire space greater than or equal to the key. To perform
a node split, first allocate a new node. Find the the key value that evenly
divides the records of the node. Copy all records (“records” may be index
entries in index nodes or data records in data nodes) from the original node to
the new node whose keys are ordered after the middle record’s key. The new
node has been delegated the high order key subspace. Copy the link(sibling
term) from the old node to the new node. Then remove the copied records
from the old node. Replace the link in the old node with a new sibling term
(address of the new node and the split key value). Finally, post the address
of the new node and the split key value to the parent. This is the index term.

The entries of index nodes denote subspaces, not merely points. When
an index node is split, it is simplest, if possible, to delegate to the new sibling
a space which is the union of the approximately contained spaces of a subset
of child nodes. This is what happens in the Bi**.tree. Then, there will not
be an index term that needs to appear in both nodes resulting from the split.
It can be difficult to split a multi-attribute index node in this way because
either the space partitioning is too complex, resulting in very large index and
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sibling terms, or because the division between original and new sibling nodes
is too unbalanced, reducing storage utilization.

This approach to splitting nodes whose entries describe spatial informa-
tion by storing the entry in both nodes is called “clipping”. When a child
node is referenced from two index nodes (or more) because its index term
was clipped, then posting index terms describing the splitting of this child
may involve the updating of several of these parent index nodes. We must
be prepared to deal with this complication.

Because of the redundant paths to data that are provided by Il-trees,
we needn’t post index terms to all parents of a splitting node atomically.
Instead, we post an index term only to the parent that is on the current
search path to the splitting node. This is the lowest cost way of updating
this parent, since it has already been read, and merely needs to be updated
and written to complete the index posting.

Other parents can be updated when they are on a search path that results
in a sibling traversal to the new node. This exploits a mechanism that is
already present to cope with system failures in the midst of II-tree structure
changes. Using this mechanism does not usually increase the cost of the
structure change. Instead of reading a second parent and writing it, we
perform the write of the second parent later and incur an extra read to do
the sibling traversal. Subsequently, when we refer to “the parent”, we intend
this to denote the parent that is on the current search path.

2.2.3 Node Consolidation

Node consolidation is scheduled when a node’s storage utilization drops be-
low some threshold. This threshold can be fairly arbitrary. It is desirable,
however, to consolidate nodes before their utilization becomes too low so as
to maintain adequate overall utilization.

When a node becomes under-utilized, it may be possible to consolidated
it with either its containing node or one of its contained nodes. We always
move the node contents from contained node to containing node, regardless
of which is the underutilized node. Then the index term for the contained
node is deleted and the contained node is de-allocated. For this to work well,

e both containing and contained node must be referenced by index terms
in the same parent node, and



e the contained node must only be referenced by this parent.

These conditions mean that only the single parent of the contained node
need be updated during a consolidation. This node will also be a parent of
the containing node. This is important as a node cannot be deleted until
all references to it have been purged. It is also important so as to be sure
that others cannot reference the node being deleted via a different path.
The latch on the parent node (see below) protects the contained node from
such referencing. These conditions are used to simplify the consolidation.
Refusing to consolidate other nodes means that we will consolidate fewer
nodes. But the search structure will remain well-formed.

There is a difficulty with the above constraints. Whether a node is ref-
erenced by more than one parent is not derivable from the index term in-
formation we have described thus far. However, multi-parent nodes are only
formed when (1) an index node (the parent) splits, clipping one or more of its
index terms, or (2) when a child with more than one parent is split, possibly
requiring posting in more than one place. We mark these clipped index terms
as refering to multi-parent nodes. All other nodes are what we call single
parent nodes and are subject to consolidation. We schedule consolidations
only for nodes known to be single parent nodes.

In the hB-tree, the number of multi-parent nodes is small. No more than
one such node is created per index node split. A subsequent split of a multi-
parent node may cause the new (contained) node to be a multi-parent node.
While only one of containing or contained node has directly contained space
that intersects multiple parents’ directly contained spaces, because we do not
promptly post index terms, both nodes may end up being referenced by more
than one parent. In B"*.trees, no multi-parent nodes exist. In the TSB-tree,
many nodes may be multi-parent nodes, but these are all historical nodes.
No historical nodes ever split and nodes are never consolidated. Thus in the
TSB-tree, the existence of multi-parent nodes causes no extra difficulties. For
arbitrary Il-trees, there is no bound on the number of multi-parent nodes.

3 Atomic Actions for Updating

We need to assure that atomic actions are correctly serialized and have the
all or nothing property required of them. How this is done is described in
this section.
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3.1 Latching for Atomic Actions
3.1.1 Resource Ordering and Deadlock Avoidance

The only “locks” required for atomic actions that change an index tree at
the index levels, i.e. above the leaf level, are latches. Latches are short-term
low-cost locks for which the holder’s usage pattern guarantees the absence
of deadlock. Latches normally come in two modes, share(S) mode which
permits others with S latches to access the latched data simultaneously, and
exclusive(X) mode which prevents all other access so that update can be
performed.

Database locks are handled by a lock manager, which maintains a graph of
who delays whom. The lock manager detects cycles in this delay graph, which
indicate that deadlock has occurred, and aborts one of the parties involved.
With latches, the user assumes responsibility for ensuring that deadlock is
avoided. Thus, latch acquisition does not involve the lock manager.

For deadlock avoidance, each atomic action claims(declares) the set of
resources that it will use. Deadlock is avoided by PREVENTING cycles in a
“potential delay” graph [8] which includes conflicts between both locks and
claims. If resources are ordered and locked in that order, the potential delay
graph can be kept cycle-free without materializing it. The claimed resources
consist, implicitly, of those with higher numbers in the ordering than the
last(highest) resource that was locked. As new, higher numbered resources
are locked, the claim on lower numbered resources is implicitly relinquished,
except for those explicitly locked.

Promoting a previously acquired lock violates the ordering of resources
and compromises deadlock avoidance. Lock promotion is the most common
cause of deadlock [5]. For example, when two transactions set S latches on
the same object to be updated, and then subsequently desire to promote
their latches to X, a deadlock results.

Update(U) latches [4] support lock promotion by retaining an exclusive
claim on a resource that is currently shared [8]. They allow sharing by
readers, but conflict with X or other U latches. An atomic action is not
allowed to promote from a S to an X latch, because this increases its claim.
But it may promote from a U latch to an X latch. However, a U latch
may only be safely promoted to X under restricted circumstances. We must
prevent another action with an S latch on the resource from having to wait
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for higher numbered resources that might be locked by the requestor of the
lock promotion. The rule that we observe is that the promotion request is
not made while the requestor holds latches on higher numbered resources.

3.1.2 Latch Acquisition

Since a Il-tree is usually accessed in search order, we can order parent nodes
prior to their children and containing nodes prior to the contained nodes
referenced via their side pointers. Whenever a node might be written, a U
latch is used.

Space management information can be ordered last. Node splitting and
consolidation access it, but other updates and accesses do not. Changes
in space management information follow a prior tree traversal and update
attempt. Hence, latching and accessing this information last is convenient
and shortens its latch hold time.

When the order above might be violated, as it would in an upward prop-
agation of node splitting, the activity is decomposed into separate atomic
actions. The first action is terminated and a second atomic action is initi-
ated to complete the structure change.

3.1.3 Early (non-2PL) Release of Latches

In the absence of knowledge about concurrent atomic actions, using two phase
locking is not only sufficient, it is also necessary, in order to guarantee serial-
izability via locking [2]. However, when dealing with index trees, the types of
possible atomic actions are known. Because of this, there are circumstances
in which early release of latches does not compromise serializability.

Suppose, for example, an atomic action holds a latch on the node whose
subspace contains the entry of interest. The higher level nodes are not re-
visited in the atomic action. Hence, latches on the higher level nodes can
be released. An atomic action commutes with other atomic actions that are
accessing or manipulating nodes outside the subtree rooted by the latched
node.

Other cases where early release is acceptable include (i) releasing a latch
when the resource guarded has not been changed and the state observed will
not be relied upon for subsequent execution, and (ii) demoting a latch from
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X to U mode when a lower level latch is sufficient to provide serializability
even when a higher level node has been changed.

3.2 Interaction with Database Transactions

3.2.1 Avoiding Latch-Lock Deadlocks

There are two situations where an index tree atomic action may interact with
database transactions and also require locks. Sometimes, but not always,
these actions are within a database transaction.

1. Normal accessing of a database record (fetch, insert, delete, or update
of a data record) requires a lock on the record.

2. Moving data records, whether to split or consolidate nodes, may require
database locks on the records to be moved.

Should holders of database locks be required to wait for latches on data
nodes, this wait is not known to the lock manager and can result in an unde-
tected deadlock even though no deadlock involving only latches is possible.
For example, transaction T1 updates record R1 in node N1 and releases its
latch on N1 while holding its database lock on R1. Transaction T2 latches
N1 in X mode and tries to update R1. It must wait. Transaction T1 now
tries to update a second record in N1 and is forced to wait for the N1 latch.

To avoid latch-lock deadlocks, we observe the:

e No Wait Rule: Actions do not wait for database locks while holding
a latch that can conflict with a holder of a database lock.

A universal strategy for dealing with an action that waits for a database
lock while holding a latch is to abort it, releasing all its latches and undoing
its effects. When the requested locks are acquired, the atomic action is re-
executed in its entirety, making use of saved information where appropriate.
However, for the specific operations of our method, this is not necessary.
Only certain latches need be released, i.e., those that can conflict with the
holder of a database lock. We then wait for the needed locks to be granted,
and resume the atomic action.

For our index tree operations, we must release latches on data nodes when-
ever we wait for database locks. However, latches on index nodes may be
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retained. Except for data node consolidation, no atomic action or database
transaction both:(i) holds database locks; and (ii) uses other than S latches
above the data node level. S latches on index nodes never conflict with
database transactions, only with index change atomic actions. Except for
consolidate, these actions never hold database locks. And consolidate never
requests a U-latch on the index node to be updated while it holds database
locks. Hence, its holding of this U-latch cannot conflict with another consol-
idate (or any other action) that holds database locks.

3.2.2 Move Locks

Data node splitting and consolidation require database locks for some(but
not all) recovery protocols. For example, if undos of updates on database
records must take place on the same page (leaf node) as the original update,
the records cannot be moved until this update transaction commits or aborts.
In this case, a move lock is required that conflicts with any such update
to prevent records from being moved until updating transactions complete.
Since reads do not require undo, concurrent reads can be tolerated. Hence,
move locks can be share mode locks.

A move lock can be realized with a set of individual record locks, a page-
level lock, a key-range lock, or even a lock on the whole relation. This depends
on the specifics of the lock manager. If the move lock is implemented using a
lock whose granule is a node size or larger, once granted, no update activity
can alter the locking required. This one lock is sufficient.

When the move lock is realized as a set of record locks, the need to wait for
one of these locks means that the node latch must be released. This permits
changes to the node that can result in the need for additional records to be
locked. Since the space involved—one node—is limited, the frequency of this
problem should be low. The node is re-latched and examined for changes
(records inserted or deleted). The following outcomes are possible.

1. No change is required to the locks needed to implement the move lock.
Proceed with the structure change.

2. The structure change becomes unnecessary. Abort the structure change
action.
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3. The structure change remains necessary, but different locks are needed
to implement the move lock. Request the new locks. If a wait is re-
quired, release the node latch and repeat this sequence until all needed

locks are held.

3.3 Providing All-or-Nothing Atomicity

We want our approach to index tree concurrency and recovery to work with
a large number of recovery methods. Thus, we indicate what our approach
requires from a recovery method, without specifying exactly how these re-
quirements are satisfied.

3.3.1 Logging

We assume that write-ahead logging (the WAL protocol) is used to ensure
that actions are atomic, i.e. all or nothing. The WAL protocol assures that
actions are logged so as to permit their undo, prior to making changes in the
stable database.

Our atomic actions are not user visible and do not involve user commit-
ment promises. Atomic actions need only be “relatively” durable. That is,
they must be durable prior to the commitment of transactions that use their
results. Thus, it is not necessary to force a “commit” record to the log when
an atomic action completes. This “commit” record can be written when the
next transaction commits, forcing the log. This transaction is the first one
that might depend on the results of the atomic action.

3.3.2 Identifying an Atomic Action

Atomic actions must complete or partial executions must be rolled back.
Hence, the recovery manager needs to know about atomic actions, as it is
the database system component responsible for the atomicity property, i.e.
the all or nothing execution of the action.

Three possible ways of identifying an atomic action to the recovery man-
ager are as (i) a separate database transaction, (ii) a special system transac-
tion, or (iii) as a “nested top level action” [12]. Our approach works with any
of these techniques, or any other that guarantees atomicity. One strength of
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the method is that it realizes high concurrency while providing independence
from the details of the surrounding database system.

4 Multi-Action Structure Changes

The database activity that triggers a structure change is largely isolated
from the change itself. It is this isolation that enables the high concurrency
of our approach, independent of the particular recovery method that is used
by the database. (This is in contrast to the ARIES/IM method [13], where
the success of the method depends in an essential way on the fact that the
ARIES recovery method is used.) Isolation results from dividing a structure
change into a number of atomic actions.

Only if the multiple atomic actions involved in a structure change are
truly independent can they be scheduled independently. Only then can an
intervening system crash interrupt the structure change, delaying its comple-
tion for a potentially long period while leaving the II-tree well-formed.

4.1 Completing Structure Changes

There is a window between the time a node splits in one atomic action and
the index term describing it is posted in another. Between these atomic
actions, a Il-tree is said to be in an intermediate state. These states are, of
course, well-formed and can be successfully searched. However, searching a
tree in an intermediate state may result in more nodes on the search path or
in the existence of underutilized nodes which should be deleted. Hence, we
try to complete all structure changes. And, it is not always the case that we
have already scheduled atomic actions to do this.

There are at least two reasons why we ”"lose track” of which structure
changes need completion, and hence need an independent way of re-scheduling
them.

1. A system crash may interrupt a structure change after some of its
atomic actions have been executed, but not all. The key to this is
to detect the intermediate states during normal processing, and then
schedule atomic actions that remove them. Hence, database crash re-
covery does not need to know about interrupted structure changes.
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2. We only schedule the posting of an index term to a single parent. We
rely on subsequent detection of intermediate states to complete multi-
parent structure changes. This avoids the considerable complexity of
trying to post index terms to all parents, either atomically or via the
scheduling of multiple atomic actions.

Structure changes are detected as being incomplete by a tree traversal
that includes following a side pointer. At this time, we schedule an atomic
action to post the index term. Several tree traversals may follow the same side
pointer, and hence try to post the index term multiple times. A subsequent
node consolidation may have removed the need to post the index term. These
are acceptable because the state of the tree is testable. Before posting the
index term, we test that the posting has not already been done and still
needs to be done.

The need to perform node consolidation is indicated by encountering an
underutilized node. At this point, a node consolidation is scheduled. As with
node splitting, the II-tree state is tested to make sure that the consolidation
is only performed once, and only when appropriate.

4.2 Exploiting Saved State

Exploiting saved information is an important aspect of efficient index tree
structure changes. The bad news of independence is that information about
the II-tree acquired by early atomic actions of the structure change may have
changed and so cannot be trusted by later atomic actions. The II-tree may
have been altered in the interim. Thus, saved information may need to be
verified before it is used, and in general, later atomic actions must verify that
their execution remains appropriate.

The information that is particularly of interest consists of search key,
nodes traversed on the path from root to data node containing the search
key, and the location of the relevant index terms within those nodes. We
record state identifiers [9] that indicate the states of each node as well in
order to perform the necessary verification. The basic idea is that if a node
and its state id (stored in the node) equal a remembered node and state id,
then there have not been any updates to the remembered node since the
previous traversal. Hence, the remembered descendent can be used, avoiding
a second search of the node. State identifier checking is always useful, and
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is essential in the consolidation case (below) in verifying the validity of the
saved information.

Whether node consolidation is possible has a major impact on how we
handle this information. More than an additional “node consolidation” op-
eration is involved. The invariants upon which other atomic actions depend
are altered. Thus, the extent to which we can trust this saved information
changes.

4.2.1 No Consolidate Case

Consolidation Not Supported [CNS] Invariant: A node, once respon-
sible for a key subspace, is always responsible for the subspace.
This has three effects on our tree operations.

1. During a tree traversal, an index node is searched for an index or sibling
term for the pointer to the next node to be searched. We need not hold
latches so as to assure the pointer’s continued validity. The latch on an
index node can be released after a search and prior to latching a child
or sibling node. Only one latch at a time is held during a traversal.

2. When posting an index term in a parent node, it is not necessary to
verify the existence of the nodes resulting from the split. These nodes
are immortal and remain responsible for the key space assigned to them
during the split.

3. During a node split, the parent index node to be updated is either the
one remembered from the original traversal(the usual case) or a node
that can be reached by following sibling pointers. Thus "re-traversals”
to find a parent always start with the remembered parent. State iden-
tifier equality can be used to avoid a second node search. Should state
identifiers be unequal, the parent may have delegated responsibility for
part of its subspace to a sibling. But there is a side pointer from the
parent to its sibling which can be followed to find the entry of inter-
est. We choose to update only the first parent node encountered that
contains an index term for the split node that needs now to include
an index term for the new node. Subsequent sibling traversals will
complete the updating required for multiple parent nodes. The vast



18 4 MULTI-ACTION STRUCTURE CHANGES

majority of nodes will have only a single parent, however, and this
index term posting will complete the structure change.

4.2.2 Consolidate Case

Consolidation Possible [CP] Invariant: A node, once responsible for
a key subspace, remains responsible for the subspace only until it is de-
allocated.

De-allocated nodes are not responsible for any key subspace. When re-
allocated, they may be used in any way, including being assigned responsi-
bility for different key subspaces, or being used in other indexes. This affects
the “validity” of remembered state. While saved path information can make
re-traversals of an index tree in later atomic actions very efficient, it needs
to be verified before being trusted.

The effect this has on the tree operations is as follows:

1. During a tree traversal, latch coupling is used to ensure that a node
referenced via a pointer is not freed before the pointer de-referencing
is completed. The latch on the referenced node is acquired prior to the
release of the latch on the referencing node. Thus, two latches need to
be held simultaneously during a traversal.

2. When posting an index term in a parent node, we must verify that
the node produced by the split continues to exist. Thus, in the atomic
operation that posts the index term, we also verify that the node that
it describes exists by continuing our traversal down to this node. When
deleting an index term, we consolidate the node into its containing node
in the same atomic action as the index deletion.

3. During a node split, the remembered parent node to be updated may
have been de-allocated. How to deal with this contingency depends
upon how node de-allocation is treated. There are two strategies for
handling node de-allocation.

(a) De-allocation is NOT a Node Update: A node’s state iden-
tifier is unchanged by de-allocation. It is impossible to determine
by state identifier examination if a node has been de-allocated.
However, we ensure that the root does not move and is never
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de-allocated. Then, any node reachable from the root via a tree
traversal is guaranteed to be allocated. Thus, tree re-traversals
start at the root. A node on the path is accessed and latched
using latch coupling, just as in the original traversal. Typically, a
path re-traversal is limited to re-latching path nodes and compar-
ing new state ids with remembered state ids, which will usually
be equal.

De-allocation is a Node Update: Node de-allocation changes
not only space management information, but also the node’s state
identifier to indicate that de-allocation has taken place. This re-
quires the posting of a log record and possibly an additional disk
access. However, the remembered parent node in the path will
always be allocated if its state identifier has not changed and re-
traversals can begin from there. If it has changed, however, one
must go up the path, setting and releasing latches until a node
with an unchanged state id is found or the root is encountered. A
path re-traversal begins at this node. Since node de-allocation is
rare, full re-traversals of the tree are usually avoided.

4.3 Scheduling Atomic Actions

Atomic actions that are spawned as a result of a database transaction need
to be scheduled to run. Their performance is improved if they can exploit
saved state. Thus, in the scheduling of atomic actions, provision is made to
associate saved state with these actions.

1. required database locks: Locks that were identified as needed ahead
of time are indicated. When the action is executed, it will request these
locks prior to requesting any latches. This will frequently avoid the need

to release and then re-acquire data node latches.

2. saved path: It is always potentially useful to save the path traversed
by earlier atomic actions. Usually, this path information will remain
valid, and hence traversals during subsequent actions can be dramati-

cally faster. The saved information consists of <node, state id, record
location> for each node of the path and a search key. An equal compar-
ison of the saved state id for a node and its present state id replaces the
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search within the node and permits us to proceed to the next node on
the saved path without any check of the node contents. Saved location
is useful to avoid searching for the place in an index node where a new
index term should be posted because of a split of one of its children.

5 Structure Changes

There are many ways to realize [I-tree structure changes in detail. In this
section, we describe one way of doing this. Tree updates are decomposed into
a sequence of atomic actions, one for each node of the Il-tree that is being
updated. A node split is triggered by an update of the original node. Node
consolidation, which makes changes at two levels of the II-tree and moves
information from one node to another is considered to be an update at the
level of the parent of the consolidated nodes (where an index term is deleted).
Each atomic action is an instance of a single universal action, regardless of
the specifics of the update. This program treats both the CP and CNS cases.

5.1 Service Subroutines

We identify a number of subroutines that will be invoked as part of the
universal action at appropriate places.

5.1.1 Find_Node

Our Find_Node returns the address of a node at LEVEL whose approxi-
mately contained space includes a KEY. The parent node to this node is left
S latched. Latch coupling is used with CP, but a parent node latch can be
released before acquiring a child or contained sibling node latch with CNS.

This routine handles both new traversals and re-traversals. To do this,
each traversal updates the saved path associated with the structure change.
With CP, re-traversals start either at the root (when de-allocation is not an
update) or else at the lowest unchanged node of the path (when deallocation
is an update). With CNS, the saved parent of a node can be simply latched
and used.

When a side pointer is traversed during Find_Node, an index posting
action is scheduled for the parent level of the tree. (The root is not allowed
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to have side pointers.) Similarly (with CP), when an underutilized node
is encountered, except at the root level, an index delete action, which also
consolidates nodes, is scheduled for the parent level of the underutilized node.

5.1.2 Verify_Split

Verify_Split(needed only with CP) confirms that the node referenced by a
new index term still exists. The index NODE to which the term is to be
posted has been found and update latched beforehand. If the index term
has already been posted, false is returned, indicating that the posting is
inappropriate.

Otherwise, the child node which is the original splitting node is S latched.
It is accessed to determine whether a side pointer refers to a sibling node that
is responsible for the space that contains the space denoted in the new index
term. If not, then the node whose index term is being posted has already
been deleted and false is returned.

If a sibling exists that is responsible for space containing, but not equal
to the space denoted in the index term being posted, latch coupled searching
of siblings continues until either it is determined that the node denoted by
the new index term has been deleted (the prior case) or else that the node is
found. In this case, true is returned, indicating that index posting remains
appropriate. The S latches are dropped here so that the U latch on the parent
node can be safely promoted to an X latch. The new node whose index term
is being posted cannot be consolidated while a latch is held on a parent.

5.1.3 Split_Node

Split_Node divides the contents of a current node between the current node
and a new node. It is invoked whenever the current node has insufficient space
to absorb an update. The current node has been U latched beforehand. If
the current node is a data node, then a move lock is requested. If a wait is
required, the U latch on the current node is released. It is re-acquired after
the move lock has been granted.

The U latch on the current node is promoted to X. The space management
information is X latched and a new node is allocated. The key space and
contents directly contained by the current node are divided, such that the
new node becomes responsible for a subspace of the key space. A sibling
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term is placed in the current node that references the new node and its key
subspace. The change to the current node and the creation of the new node
are logged. These changes are ascribed to the surrounding atomic action or
database transaction.

If the split node is not the root, an index term is generated containing
the new node’s address as a child pointer, and an index posting operation is
scheduled for the parent of the current node. If the split node is the root,
a second node is allocated. The current node’s contents are removed from
the root and put into this new node. A pair of index terms is generated that
describe the two new nodes and they are posted to the root. These changes
are logged.

5.1.4 Verify_Consolidate

Verify_Consolidate checks whether a sparse node can be consolidated with
another node. The parent of the sparse node is already U latched. If the con-
solidation has already taken place, Verify_Consolidate returns indicating
that consolidation is inappropriate.

We prefer to treate the sparse node as the contained node and move
its contents to its containing node as there is less data to move. This is
possible, space permitting, when the sparse node is a single parent node and
its containing node is a child of its parent. In this case, containing and
contained nodes are uniquely identified and Verify_Consolidate returns
indicating which nodes are to be consolidated.

When the above condition does not exist, we make the sparse node the
containing node in the consolidation and try to find an appropriate contained
node. There may not be a unique contained node, and one may not even
exist. Either return indicating that consolidation is inappropriate or select
one contained node, and attempt consolidation with it. No latches are left
on any nodes checked.

5.1.5 Consolidate_Nodes

Consolidate_Nodes absorbs a contained node into its containing node. It
is invoked as part of the atomic action that deletes the contained node index
term. The single parent of the contained node has been U latched previously.
First the containing node is X latched, then the contained node. The con-
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taining node is checked to determine if it has a side pointer to the contained
node and it has sufficient space to absorb the contained node contents. If
not, consolidation is cancelled, the X latches are dropped, and the parent
U latch is promoted to X so as to enable the reinsertion of the previously
deleted index term. Otherwise, consolidation continues.

If the nodes to be consolidated are data nodes, a move lock is requested.
If a wait is required for the move lock, the X latches on the data nodes are
released, but the U latch on the parent is retained. When the move lock is
obtained, Consolidate_Nodes is re-executed from the start.

The contents of the contained node are then moved to the containing
node. The appropriate space management information is X latched and the
contained node is de-allocated. The changes to containing and contained
nodes are logged and ascribed to the node consolidate atomic action. Then
X latches are dropped.

5.2 The Universal Action

One should regard our universal action (called Universal) as encompassing
the operations necessary to perform an update at exactly one level of the
[I-tree. The form of the update will vary. During its execution, however, it
may be necessary to make a structure change to the II-tree.

Universal takes the following arguments.

e LEVEL of the tree to be updated;

e KEY value for the search; The KEY value can be more complex than a
simple byte string value. Such complexity is ignored here. For example,
see [3] for the specifics of how this works with hB-trees.

o LOCKS that need to be acquired in order for the operation to complete;

e OPERATION which is one of (i) posting an index term, (ii) dropping an
index term and consolidating two nodes, or (iii) accessing or updating
a data node. (The description below is written in terms of updates to
simplify the discussion. The access case is simpler and uses S latches
instead of U latches.) Again, we ignore the complexities of dealing
with specific data structures, both those representing the node and
those representing the update.
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When dealing with a data node, Universal executes as part of a database
transaction. However, posting or deleting index terms for index nodes are
all in short duration independent atomic actions.

Universal performs the following steps.

Request Initial Locks: If database locks are known to be needed, get
them now, prior to holding any latches. This avoids having to release
latches subsequently in order to get them.

Search: Execute Find_Node to find a node(NODE) at LEVEL whose
approximately contained space includes KEY. The parent of NODE
is left S latched, ensuring that re-searching the tree is avoided and
that node consolidations involving children of this node will not occur
during this action. (When the update is to the root, do not invoke
Find_Node and do not latch any nodes.)

Using a KEY, from a search argument, instead of attempting to locate
a subspace means that only one parent of a split child node will be
found. Most of the time, i.e. for single parent nodes, updating this
node will complete the index term posting for a split. When multiple
parent nodes exist for a split node, several executions of Universal may
be needed before all parents are updated. And these are scheduled as a
result of searches with other keys that required side pointer traversals.

Get Target Node: U latch NODE. Traverse sibling pointers, U latching
each node, and for CP, latch coupling, until the node is found whose
directly contained space includes KEY. Set NODE to be this node.
NODE is left U latched. U latches are used because we do not know
which node on this level will be updated until we read it.

Verify Operation Need: Verify that the operation intended is still ap-
propriate.

e Data Node UPDATE: the action is always appropriate.

e Index POSTING: Invoke Verify _Split to verify that posting the
index term remains appropriate.

e Index DROPPING: Invoke Verify _Consolidate to verify that
deleting an index term and consolidating nodes remains appropri-
ate.
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If the action is now inappropriate, terminate the atomic action.

Space Test: Test NODE for sufficient space to accommodate the update.
If sufficient, then X latch NODE and proceed to Request Remaining
Locks. Otherwise, split NODE by invoking Split_Node. (This will
not occur for index dropping.) Then check which resulting node has
a directly contained space that includes KEY, and make that NODE.
This can require descending one more level in the II-tree should NODE
have been the root where the split causes the tree to increase in height.
Release the X latch on the other node, but retain the X latch on NODE.
Repeat this Space Test step.

Request Remaining Locks: If NODE is a data node and database locks
have not been acquired because it was not known which were needed
a priori, they are requested here. If a wait is necessary, the U latch on
NODE is released. After the database lock(s) are acquired, return to
Get Target Node.

Update Node: Update NODE by performing the requested operation.
Post a log record describing the update to the log. If NODE is a data
node, this log record is associated with the database transaction. Oth-
erwise, it is associated with an independent atomic action. If the update
is not an index dropping, proceed to Sparse Node Check. Otherwise,
demote the X latch on NODE to U and proceed to Consolidate.

Consolidate: Invoke Consolidate_Nodes to consolidate the lower level
nodes. If it fails, cancel the index dropping atomic action, which undoes
the prior NODE update. Note that the U latch retained on the index
node permits us to perform the undo by promoting the U latch to X
and re-inserting the dropped index term.

Sparse Node Check: If NODE is now under-utilized and NODE is not
the root, schedule an index dropping atomic action to delete an index
term in the parent of NODE by consolidating NODE with a sibling. If
NODE is the root and it is under-utilized, but has more than one child,
we let this condition persist.

If NODE is the root, and it has only a single child, we can schedule
a special atomic action that consolidates this child with the root, thus
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reducing the height of the tree by one. This action is similar to other
node consolidates in that it must: (i) test that it is still appropriate,
(ii)acquire appropriate latches and the necessary move lock, and (iii)
move the contents of the child node into the root, (iv) de-allocate the
child node, and (v) log the effects of the action. It differs from ordinary
consolidations only in that the parent serves as the containing node,
and that no index term dropping is involved.

Complete: Release all latches still held by Universal. If Universal was
an independent atomic action, release its database locks and commit
the action by writing an appropriate commit record. If this is a data
node update, however, the database locks are held by the surrounding
database transaction, and remain held.

Note that the description above causes data node splits to be part of
database transactions, such that the split is not committed until the trans-
action commits. This restricts concurrency somewhat at the data node level.
However, it is this feature that permits the method to be used with many
recovery schemes. It is possible to decompose the atomic actions so that data
node splits can commit independently of the surrounding database transac-
tion. However, it then becomes essential that the recovery scheme used be
able to cope, e.g., as ARIES does, with records that have moved.

Other structure changes take place within independent atomic actions.
These actions only execute for a short duration, and while occasionally hav-
ing to wait, even for a database lock, they never hold latches that prevent
normal database activity. The latches act to serialize other such indepen-
dent atomic actions. Normal database activity commutes (is compatible)
with these latches.

6 Applicability to Various Search Structures

We have used BY"-trees as a running example of how our concurrency
method works. This is the simplest case, since only a single attribute is
being indexed. In this section, we discuss a number of multi-attribute search
trees, showing how they can be described as II-trees, and hence exploit our
concurrency control and recovery method.
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6.1 Hyperplane Split Indexes

A multiattribute structure where all splits (both at the index and data nodes)
are made along hyperplanes, can be regarded as a II-tree. One direction is
considered to be the “contained” region and the other to be the “containing”.
For example, we may assume the region with the higher values of the split
attribute is the contained region. We can use the coordinates of the corners
to indicate the boundaries of split-off regions in an arbitrary k-dimensional
hyperplane-splitting structure as illustrated in Figure 1. This is a BY"*-tree
in the one-dimensional case.

6.2 The TSB-tree

A TSB-tree [10] provides indexed access to multiple versions of key sequenced
records. As a result, it indexes these records both by key and by time. We
take advantage of the property that historical nodes (nodes created by a split
in the time dimension) never split again. This implies that the historical
nodes have constant boundaries and that key space is refined over time.

The index nodes have exact boundaries for historical nodes and possibly
outdated boundaries for current nodes. At any level of the tree, some of the
index entries for splits which have already occurred may be missing.

Splits in the TSB-tree can be made in two dimensions, either by time or
by key. In Figure 2, the region covered by a current node after a number of
splits is in the lower right hand corner of the key space it started with. A
time split produces a new (historical) node with the original node directly
containing the more recent time. A key split produces a new (current) node
with the original node directly containing the lower part of the key space.

With time splits, a history sibling pointer in the current node refers to the
history node. The new history node contains a copy of prior history sibling
pointers. These pointers can be used to find all versions of a given record.

With key splits, a key sibling pointer in the current node refers to the
new current node containing the higher part of the key space. The new node
will contain not only records with the appropriate keys, but also a copy of
the history sibling pointer. This pointer preserves the ability of the current
node directly containing a key space to access history nodes that contain the
previous versions of records in that space. This split duplicates the history
sibling pointer. It makes the new current node responsible for not merely its
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Figure 1: General multiattribute index showing form of side pointers. Splits
are always by hyperplane. Sibling term space descriptions here are border
coordinates. Each node contains sibling terms for every node split from it.
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Figure 2: In the Time-Split B-tree, new current nodes contain copies of
old history node pointers and old key pointers. New historic nodes contain
copies of old history pointers. Current nodes are responsible for all previous
time through their historical pointers and all higher key ranges through their
key(side) pointers.
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current key space, but for the entire history of this key space.

6.3 The hB-Tree

In the hB-tree [11], the idea of containing and contained nodes is explicit
and is described with kd-tree fragments. The “External” markers can be
replaced with the addresses of the nodes which were extracted, and a linking
network established with the desired properties. In addition, when the split
is by a hyperplane, instead of eliminating the root of the local tree in the
splitting node, as in [11], one child of the root (say the right child) points
to the new sibling containing the contents of the right subtree. This makes
the treatment of hyperplane splits consistent with that of other splits. This
is illustrated in Figure 3. A complete description and explanation of hB-tree
concurrency, node splitting, and node consolidation is given in [3].

Any time a node containing entries representing spaces is split, it is pos-
sible for the split to also split the space described by one of the entries. This
is an intrinsic problem for multi-attribute methods where it is almost always
the case that no simple partitioning of entries into simply described spaces
exists that does not split an entry. The hB-tree splitting algorithm solves
this problem by ”clipping” the index terms whose spaces are split, produc-
ing nodes with multiple parents. Note that with hB-trees, at most one index
term needs to be clipped per index node split, which minimizes the occurence
of the problem.

7 Discussion

Our approach to index tree structure changes provides high concurrency while
being usable with many recovery schemes and with many varieties of index
trees. We have described it in an abstract way which emphasizes its generality
and hopefully makes the approach understandable.

Our techniques permit multiple concurrent structure changes. In addi-
tion, all update activity and structure change activity above the data level
executes in short independent atomic actions which do not impede normal
database activity. Only data node splitting might execute in the context of
a database transaction. This feature makes the approach usable with the
diverse recovery mechanisms, while only impacting concurrency in a modest
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Figure 3: An hB-tree index showing the use of k-d trees for sibling terms. Ex-
ternal markers (showing what spaces have been removed in creating "holes”)
have been replaced with sibling pointers.
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way. Should the recovery method support ”logical” undo in which updated

records can move while still being subject to undo recovery, structure changes

even at the data level can occur outside of the database transaction.
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