
MLR� A Recovery Method for

Multi�level Systems

David B� Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� July ��� ����

�

Digital Equipment Corporation has four research facilities: the Systems Research Center and the
Western Research Laboratory, both in Palo Alto, California; the Paris Research Laboratory, in
Paris; and the Cambridge Research Laboratory, in Cambridge, Massachusetts.

The Cambridge laboratory became operational in 1988 and is located at One Kendall Square,
near MIT. CRL engages in computing research to extend the state of the computing art in areas
likely to be important to Digital and its customers in future years. CRL’s main focus is applica-
tions technology; that is, the creation of knowledge and tools useful for the preparation of impor-
tant classes of applications.

CRL Technical Reports can be ordered by electronic mail. To receive instructions, send a mes-
sage to one of the following addresses, with the word help in the Subject line:

On Digital’s EASYnet: CRL::TECHREPORTS
On the Internet: techreports@crl.dec.com

This work may not be copied or reproduced for any commercial purpose. Permission to copy without payment is
granted for non-profit educational and research purposes provided all such copies include a notice that such copy-
ing is by permission of the Cambridge Research Lab of Digital Equipment Corporation, an acknowledgment of the
authors to the work, and all applicable portions of the copyright notice.

The Digital logo is a trademark of Digital Equipment Corporation.

Cambridge Research Laboratory
One Kendall Square
Cambridge, Massachusetts 02139

�

MLR� A Recovery Method for

Multi�level Systems

David B� Lomet

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� July ��� ����

Abstract

To achieve high concurrency in a database system has meant building a
system that copes well with important special cases� Recent work on multi�
level systems suggests a systematic way of providing high concurrency� A
multi�level system using locks permits restrictive low level locks of a sub�
transaction to be replaced with less restrictive high level locks when a sub�
transaction commits� hence enhancing concurrency� This is possible because
sub�transactions can be undone by executing high level compensation actions
rather than by restoring a prior lower level state� We describe a recovery
scheme� called Multi�Level Recovery 	MLR
 that logs this high level undo
operation with the commit record for the subtransaction that it compen�
sates� posting log records to only a single log� A variant of the method copes
with nested transactions� and both nested and multi�level transactions can
be treated in a uni�ed fashion�

Keywords� multi�level transactions� logging� recovery� hierarchical systems
c�Digital Equipment Corporation ����� All rights reserved�

�

� Introduction

��� Precursor Multi�level Methods

Most of our understanding of concurrency control and recovery� e�g� two
phase locking
��� serializability theory
��� and before�image�after�image re�
covery
�� is based on treating disjoint resources in a uniform �single level�
way� But� when examined in detail� database systems support multiple levels
of abstraction and exploit the levels to improve concurrency� Below are a few
of the multi�level cases exploited by some existing systems�

� Mutual exclusion via a semaphore guarantees atomicity of page writes�

� B�tree concurrency methods hold locks on index nodes only for the
duration of a tree structure change
��� ����

� The ARIES recovery method
��� logs operations that update disk
pages� but are re�interpreted 	if necessary
 during recovery to undo
a record update even if the record has moved to a di�erent page�

��� Explicit Multi�Level Systems

Multi�level transactions were made explicit in
��� ��� ��� Theoretical work
was reported in
�� ��� ���� and special cases were described in
�� �� ��� ����
An implementation of multi�level system recovery� restricted to two levels� is
described in
���� Here we brie�y characterize multi�level systems�

We begin by describing �layers� of a multi�layer system� and then dis�
tinguish two kinds of layers� a �multi�level� layer and a nested transaction
layer� Each layer of a multi�layer system realizes a set of abstract states� each
represented by a number of lower layer states� Each layer sees state transi�
tions in the form of atomic operations provided by the next lower layer� and
uses them to provide atomic operations to the next higher layer� A layer thus
transforms the sequence of operations that were supplied to it into operations
that it supplies to its users�

A multi�level ML system exploits the layers of abstraction common in
most systems to enhance concurrency� Concurrency control and recovery are
concerned ultimately with ensuring that the system behavior at the highest
layer is correct� By de�ning a layer to be a level of a multi�level system�

� � INTRODUCTION

an ML system can exploit the �exibility of choosing among the lower layer
states that realize a desired high layer state� ML concurrency control need
only ensure that committed transactions �nish in one of the low level states
that realizes a high level state providing high level serializability� More im�
portantly� on abort� a level of an ML system need only be returned to the
starting high level state� but not necessarily the starting low level state�

The lowest layer of an ML system directly provides abstractions upon
which succeeding layers can be built� The system also provides a set of
services to the implementor of a level� If an implementor desires to de�ne his
layer as a level� these enable the tailoring of concurrency control and recovery
to the needs of the level� An implementor can also ignore these services
and use nested transactions� thus exploiting the capabilities provided by the
recoverable abstractions of the lower levels� Such a nested transaction layer
is not a level�

The level�oriented services provided an implementor permit� e�g�� the de��
nition of lock modes� the requesting of locks� and the speci�cation of compen�
sation operations� The ML system framework is responsible for the interac�
tions between layers� for controlling implicit release or retention of locks� for
staging the recovery process that aborts transactions or recovers from system
crashes� for assuring that these operations are applied only to an �operation
consistent� database state and that idempotency of recovery is assured� etc�

An operation�s level number is determined when it is de�ned� A multi�
level layer�s 	see section �����
 level is Li��� where Li is the level of the layer
for the operations that it uses� We denote operations at a level Li as OPis�
We require here that all operations of a layer be at the same level� i�e� that
the leveling be uniform� as it would be in a hierarchy of �virtual machines�
as described in
���� 	In section �� we discuss brie�y a �layers of abstraction�
generalization that does not require this uniformity of level�
 Lowest level
operations are de�ned to be L�� 	Table � contains a list of the notation used
in this paper�

��� Our E�ort

In this paper we present an algorithm for recovery in multi�level systems�
Our recovery method� called MLR� is reminiscent of ARIES�NT
��� and
enjoys many of the same desirable features of that scheme� MLR copes

�

Table �� List of Acronyms

Li level i of a multi�level system
OPi normal forward database operation at Li

OP��i inverse	undo
 operation for OPi

ML multi�level
MLT multi�level transaction
NT nested transaction 	transaction itself or system

CT compensation transaction
LOCKi a lock at Li

CLR compensation log record 	for recording undo progress

LLi level list 	of undo actions for Li

TransT Transaction Table

correctly with both nested transactions	NTs
 and with multi�level transac�
tions	MLTs
� It uses a single log for all levels� and thus presents a uni�ed
way of dealing with all levels�

Multi�level systems are discussed in section �� Section � introduces the
fundamentals of layered recovery� Section � shows the way that the log is
used to prepare for MLR recovery� while section � describes the rolling back
of transactions both during normal operation and as a result of system crash
recovery� Section � discusses our results and suggests some generalizations�

� Multi�Level Systems

��� High Level Compensation

The essence of multi�level recovery for a new level is that a completed OPi��

is �undone� by the execution of its inverse operation 	OP��i��
 called a com�
pensation operation� The OP��i�� returns a system to a high level state in
which the e�ect of the original OPi�� has disappeared� OP��i��s require the
re�acquisition of LOCKjs� where j � i� �� and some of these may con�ict
with 	possibly implicit
 LOCKjs held by currently active OPjs� MLR recov�
ery must be prepared to deal with this� It does this by executing each OP��i��

� � MULTI�LEVEL SYSTEMS

within a compensation transaction	CT
� The CT holds the locks required
and can be rolled back should deadlocks occur� It is this use of CTs that
clearly distinguishes MLR recovery from prior methods�

It is also possible to undo a OPi�� by execution in reverse order of inverse
low level operations OP��i s for the OPis that constituted its original execu�
tion� This also returns the system to the same high level state� i�e� it does
this by returning the system to the original low level state� Low level recovery
requires retention of LOCKis for the duration of the higher level subtrans�
action to guarantee that the OP��i s can be executed without deadlock� In
an ML system� LOCKis are retained until their containing OPi�� completes�
An interrupted OPi�� cannot be compensated by its OP��i�� because only
complete executions of a forward operation can be so compensated� Hence�
an abort within an OPi�� operation can and must be recovered by execution
of lower level compensation operations�

��� Concurrency Control

Concurrency control requirements for recovery are nicely characterized in

�� as� �Recovery actions must participate in concurrency control protocols�
just like ordinary actions�� We assume that locking is used so as to ensure
serializability and recoverability� Thus� operations executed during recovery
must honor all locks held

� explicitly by other transactions during explicit rollback�

� implicitly by other interrupted transactions during crash recovery�

Redo recovery can repeat history� i�e� execute the original operations in an
order equivalent to their original order� These operations will honor both
implicit and explicit locks because their original execution honored them�
Undo operations are newly executed during recovery� Ensuring that they
correctly obey the concurrency control protocol is more di�cult�

Locks must guarantee not only serializability and but also absence from
deadlock during rollback� Completing an abort of a subtransaction is not
optional� An �abort of the abort� is not an acceptable outcome� Absence
of deadlock during rollback ordinarily requires that locks acquired for an
operation cover both its original execution and its undoing�

��� Layers in a Multi�Level System �

In traditional single level systems� the recovery process executes inverse
	undo
 operations in reverse order of the original sequence of operations�
The locks for the forward operations are su�cient for the execution of the
inverse operations� and hence recovery requires no additional locking� Hence�
single level system recovery satis�es the concurrency control protocols while
guaranteeing that recovery will not deadlock�

For an ML system� we assume that each level performs strict two phase
locking such that the locks acquired for the level are su�cient for both se�
rializability and for execution of inverse operations at that level� At level
Li��� high level locks	LOCKi��s
 will be acquired during OPi�� execution�
Once an OPi�� is completed and its LOCKi��s acquired� the low level locks
LOCKis used by its implementation OPis are released� There should be
fewer con�icts with the LOCKi��s than with the LOCKis�

The locking protocol above is an instance of an order preserving con�ict
based scheduler� In
��� these schedulers were shown to correctly serialize
multi�level systems� The order preserving condition simply means that lower
level transactions of a single higher level transaction must be scheduled in
the order determined by the higher level transaction� not in an arbitrary
serializable order�

��� Layers in a Multi�Level System

����� A New Level

When an abstraction implementor cannot achieve the concurrency he needs
when using lower level operations� he can de�ne a new multi�level transac�
tion	MLT
 layer which is a new level� This involves�

�� de�ning for each OPi�� an OP
��

i�� that compensates the OPi���

�� specifying the LOCKi��s that are needed by OPi��s to ensure that
subtransactions using OPi��s can be serialized and recovered� This in�
cludes de�ning the lock mode con�ict matrix for the LOCKi��s� Locks
are compatible exactly when the operations which use the locks on the
same resource commute�

�� implementing each OPi�� as a subtransaction over the OPis which ac�
quires the appropriate LOCKi��s during its execution� 	The ML sys�
tem will then release all acquired LOCKis when an OPi�� �commits��

� � RECOVERY FUNDAMENTALS

����� A Nested Transaction Layer

An implementor need not introduce a new MLT layer in the ML system to
export atomic and recoverable operations� If the concurrency achieved by
using LOCKis is satisfactory� the de�ner can realize his operations using
traditional nested transactions� A nested transaction retains LOCKis across
the operations that it de�nes instead of replacing them with newly de�ned
LOCKi��s� And a nested transaction is recovered by undoing each of the
OPis that was used to realize it� Thus� completed NTs that are parts of
aborted transactions are rolled back in a similar way to the rollback of in�
complete subtransactions� i�e� using lower level inverse operations� The level
of an NT layer is the same as the level of the operations that it uses�

Implementing an NT layer is easier than introducing a new MLT layer�
An implementor must balance his concurrency needs against the increased
cost of an MLT layer� What is important here is that ML systems provide
the choice between NT and MLT at every level of abstraction� independently
of how other layers of the system have made the choice�

� Recovery Fundamentals

��� Recovery Predicates

Recovery applies the actions speci�ed in log records to whatever happens
to be the available system state� Crashes can occur at arbitrary times� in�
dependent of operation boundaries� In addition� recovery must cope with
the fact that the preserved system state 	in stable storage
 is not usually
the same as the system state at the time of the crash� The stable system
state after a crash may include the e�ects of some operations while not in�
cluding the e�ects of others� And those included or excluded may be in
no particular order on the log� All recovery schemes must be prepared to
deal with these di�culties� To help in organizing the recovery process� we
introduce two properties that� once established� greatly simplify further re�
covery� These properties are essential when non�idempotent operations need
recovery� These are described below�

��� Recovery Predicates �

����� Operation Consistency

The operation consistency property 	OC
 states that the system state is such
that an operation has either been

� executed and the system state re�ects all of the results�

� not executed and the system state re�ects none of the results�

Essentially� an OC state is one in which no logged operation is currently
active� i�e� partially executed� In an ML system� a level Li is said to be OC
if no logged OPi is partially executed�

The OC property solves two problems in ML recovery�

Partial Results� Correct redo requires that the part of the system state
seen by the operation be the same as seen by the original execution�
Correct undo requires that the results from the original operation all
be present� With partially executed operations� recovery can leave the
system state unde�ned�

Implicit Locks� If an ML system is not OC at Li when undo recovery at�
tempts to execute OP��i operations� there may be LOCKis held 	im�
plicitly
 by interrupted OPis that con�ict with locks needed to execute
these inverse operations�

����� Determinable Execution

In order to guarantee recovery idempotence for non�idempotent operations�
it must be known which operations have been executed and are re�ected in
the system state� We call this property determinable execution or 	DE
�

If a logged operation must be executed because it is part of a committed
transaction and it does not have its e�ects re�ected in the available system
state� then the DE property enables us to detect this and to schedule the
redo of that operation� If an operation has been done and it is part of a
transaction that needs to be aborted� DE permits us to detect its execution
and to schedule an undo operation that purges the system state of the e�ects
of the operation�

� � RECOVERY FUNDAMENTALS

��� Higher Level Undo Recovery

At levels above L�� hardware atomicity will not normally guarantee OC�
Further� it is very di�cult and�or expensive to guarantee the DE property
by direct examination of system state� For these reasons� lower levels of
the system are recovered before higher levels� Recovery prior to Li will be
responsible for guaranteeing that

�� all logged operations have been executed� hence that operations are
DE�

�� all lower level interrupted transactions have been rolled back� and hence
the system is Li OC�

�� only OPj s� for j � i are in need of undo and those are indicated on the
log as incompletely executed subtransactions�

Li recovery undoes 	compensates
 the OPis as indicated on the log that
are part of incomplete OPi��s and logs what it has accomplished� This
ensures that the system becomes OC at level Li��� The DE property is
also preserved and the set of operations in need of undo is now restricted to
operations in incomplete transactions at levels above Li���

Logging undo recovery operations is essential because it permits redo
recovery 	see below
 to re�establish the system state as re�ected in what has
been written to the log� and hence to re�establish OC and DE should a crash
interrupt recovery� And it does this while not constraining the posting of
updated system state to stable storage�

In the detailed description of section �� we choose to write a compensa�
tion log record	CLR
 that documents that an OP��i has been executed that
compensates for a speci�c prior OPi� When we have completed the compen�
sation of all OPis within an OPi��� we mark the OPi�� operation as aborted�
This records the fact that this operation is complete and no longer needs
undo recovery�

��� Level L� Recovery

Recovery at L� is responsible for �breaking the recursion� in which higher
levels assume that the lower levels provide serializable and recoverable opera�
tions and which guarantees the OC and DE properties� Lowest level recovery

��� Level L� Recovery �

must be prepared to deal with the part of the database state that is stable
at the time of a system crash� It�s goals are to transform whatever is in
the stable system state into an a system state that is L� OC� to establish
the DE property� and to make sure that only the operations in incomplete
transactions above L� need undoing�

We perform redo recovery at L�� Redo is responsible for making sure
that all logged operations are installed in the system state� It establishes the
DE property� The paradigm of performing redo �rst and repeating history�
as in ARIES� works well with L� logging� When this is done� the L� undo
pre�condition is the same as the pre�condition for higher level undo� Hence�
it can simply remove the e�ects of incomplete L� operations by compensating
all their constituent OP�s� hence making the state L� OC�

ML systems can be built on top of a number of di�erent L� recovery
methods� We describe two possible L� techniques here� one which requires
both OC and DE� and the other which does not�

����� �Non�idempotent� Operation Logging

The non�idempotent operations that cause state transitions are logged� In
order for this to be e�ective� we must be able to guarantee the OC and DE
properties at the start of recovery� before L� recovery begins�

L� is the only level for which OC is needed as of the time of a crash�
Several approaches have been used� For example� System R
�� achieved RSS
operation consistency by installing RSS operation consistent shadows dur�
ing checkpoints� However� maximum �exibility in checkpointing and bu�er
management is achieved by having the OP�s act on single blocks that can be
atomicly written to disk� Blocks in the cache can be written to disk at any
time� and in any order� Only the need to observe the write�ahead�log 	WAL

protocol constrains the writing to stable storage�

The DE property also needs to be guaranteed� This is usually done
by a form of testable state 	TS
� The TS property states that whether an
operation has been executed or not can be determined by testing the system
state that is available 	this can be done in conjunction with information that
is stored in the log
� An easy way to do this is to write a state identi�er
��� in
each block� write the state identi�er seen by an operation in the log record for
the operation� and increase the value of the state identi�er to a new unique
value as a consequence of executing the operation� Then� by comparing the

�� � LOGGING FOR MLR RECOVERY

state identi�er in a block to the state identi�er in a log record� one can
determine whether or not the block includes the e�ects of the execution of
the operation�

����� �Idempotent� Before�After Image Logging

When before and after images of the portions of the state modi�ed by an
operation are logged� applying these �operations� to the designated parts
of the system state is idempotent� That is� one can �execute� these �state
installation� operations more than once without changing the result� No
e�ort need be made to ensure that the system state is OC and DE at time
of crash with this state based logging�

Only the order of installation of before and after images is important� and
this is determined from the placement of log records on the log� During redo
recovery� the after images of completed operations� as recorded in the log�
are installed� independent of the stable system state at time of crash� Again�
once redo recovery is completed via repeating history� the system state meets
the necessary precondition for our standard undo recovery� Undo by before
image installation can be treated just like any other undo operation�

An L� abstraction might be persistent virtual memory� Such an abstrac�
tion is very �exible� and perhaps is ideally suited for extendible or object�
oriented systems� The operations on persistent virtual memory are reads or
writes of byte strings� without concern for disk block boundaries� Blocks are
written to disk freely� without regard to the boundaries of write operations�
Hence� should the system crash� it is possible that parts of a logged write
operation are re�ected in the stable database while other parts are not� Us�
ing before and after image logging permits us to support this abstraction
without the need for the testable state property� This is important because
it permits the entire disk block to be available to support the virtual memory
abstraction� We do not need any part of it to store a state identi�er�

� Logging for MLR Recovery

��� Forward Operations

When a transaction at any level is initiated� it is entered into the Transaction
Table 	TransT
 used to keep track of system operation� In the TransT � its

��� Forward Operations ��

LENGTH PREV TRANS
ID

TYPE=(NON-L
UPDATE)

UNDO LENGTH PREV TRANS
ID

TYPE
(=COMMIT)

O

LSN
1(a)

LENGTH PREV TRANS
ID

TYPE
UNDO

LENGTH PREV TRANS
ID

TYPE (=REOPEN
-TYPE START)(=NON-L CLR)

LSN

O
NEXT

UNDO
NEXT

1(b)

LENGTH PREV TRANS
ID

TYPE
UNDO

LENGTH PREV TRANS
ID

TYPE
(=COMMIT)O

LSN

=(NON-L CLR)
NEXT

1(c)

Figure �� 	a
 MLR operation log record and subtransaction commit record�
which handles both NT and MLT subtransactions� 	b
 MLR CLR and CT
subtransaction start record for NTs� 	c
 MLR CLR and CT subtransaction
commit record for MLTs�

parent transaction and its level are recorded� Its initiation is documented
durably by writing a start�transaction record to the log�

MLR logs forward operations of subtransactions as if they were opera�
tions of an independent transaction� As each of its operations completes� a
log record is added to the transaction�s chain of log records to document its
execution� When a subtransaction commits� its commit record links it to the
chain of log records of its parent transaction� similar to ARIES�NT� MLR
does this by writing a log record that both commits the subtransaction and
that causes the committed subtransaction to be logged as an operation in
the parent� The format of this record is as a pair consisting of an opera�
tion log record for the parent transaction and a commit record for the child
subtransaction� This is illustrated in Figure �	a
�

Whether a subtransaction is an NT or an MLT is only distinguished

�� � LOGGING FOR MLR RECOVERY

S U

S U U U

S U C

Figure �� Normal operation logging for subtransactions� S denotes a start
record� U an update 	operation
 record� and C a commit record� Log records
are back linked within 	sub
transactions and are shown from left to right
as recorded on the log� left being earlier than right� When completed� a
subtransaction is linked to its parent by its commit record� which is paired
with an update record for its parent� These two components of a single
log record are shown linked by dotted lines� Prior to commit� one cannot
distinguish� based on log records� whether a transaction is an incomplete
subtransaction or an incomplete top level transaction�

by whether the commit record for the subtransaction contains an inverse
operation in the UNDO �eld of the operation part of the log record pair�
This inverse operation is used to execute high level compensation should the
completed MLT need to be rolled back� NTs have no such operation as they
will be rolled back by compensation of each of their constituent operations�

As an example� the log records for two subtransactions executing in paral�
lel during normal system operation are shown in Figure �� This will serve as
a running example� One subtransaction has committed and becomes linked
with the parent 	top level
 transaction� The other has not yet committed
and hence is indistinguishable from an active top level transaction�

��� Interrupted Transaction Undo Logging ��

��� Interrupted Transaction Undo Logging

We call a transaction that cannot �nish normally and hence must be rolled
back an interrupted transaction� MLR rolls back interrupted transactions of
any level in exactly the same way� whether they are top level transactions or
orphaned subtransactions of a parent transaction that is itself interrupted�
Each such interrupted transaction must have its constituent operations 	com�
pleted subtransactions or operations
 compensated�

MLR durably records undo recovery progress by writing compensation
log records� During rollback� a transaction�s chain of log records is scanned
backwards� Each operation encountered on the chain has its compensation
operation� stored as the UNDO operation in the log record� executed� and
logged with a CLR� Once compensation is complete� an abort record is writ�
ten for the interrupted transaction� The abort record documents that the
transaction is complete and needs no further undo recovery� Its e�ects have
been completely purged from the system state�

As in the ARIES method� we distinguish CLRs from other log records�
and indicate in them the next logged operation of a transaction on which
to perform undo� This is useful 	but not essential
 in that CLRs are never
undone� and undo recovery can continue fromwhere it was interrupted should
the system crash during recovery� The pointer to the next operation to be
rolled back is copied into the CLR� This permits undo recovery to proceed
from the point where it left o� should a crash occur during recovery� CLRs
do not need to be themselves undone� Thus� undo recovery progress always
advances�

We do not need the ARIES ability to support so�called �nested top
level actions� via distinguished CLRs whose pointer structure bypasses their
logged operations during undo� This can be achieved via explicit multi�level
subtransactions�

��� Undoing Completed Subtransactions

For each completed subtransaction� we initiate a separate compensation
transaction that undoes its e�ects� The CT is added to the TransT � as
if it were a normal subtransaction� Compensation for a subtransaction oc�
curs entirely in its CT� with the added proviso that once compensation is
assured� a CLR describing the compensation performed by the CT is writ�

�� � LOGGING FOR MLR RECOVERY

ten as a log record of the parent transaction� The form of this CLR di�ers
depending on whether a subtransaction is an NT or an MLT�

����� Nested Transaction Compensation

A nested transaction CT executes in the �backward� direction� and executes
only compensation operations� which are logged as CLRs� CLRs are written
as CT log records as compensation operations are executed� Each compen�
sation operation is performed when its forward operation from the original
completed NT is encountered in the backward undo scan of the log� CTs for
nested transactions contain only CLRs� and these CLRs always point to a
next operation to be undone� which is in the original completed NT�

Nested transaction CTs can always be completed� They never deadlock
since all needed locks have been acquired during forward operation� Should
recovery be interrupted� the last CLR written for each transaction points to
the next operation that is to be undone� Hence� the CT can be continued
after a crash� without needing rollback�

Because a nested transaction�s CT is guaranteed to complete� an NT is
e�ectively compensated once its CT is initiated� Hence� we pair the CLR
for the NT with the start record for its CT� This permits parent transaction
rollback to proceed to its next operation� This record is shown in Figure
�	b
�

By initiating a CT� handling multiple pointers in CLRs� as is done in
ARIES�NT� is avoided� Each transaction consists of only a single threaded
chain of log records keeping track of undo progress in a single level� The next
CLR of the parent points to the the paired record CLR as if it were a simple
atomic compensation operation that was part of �at transaction recovery� In
the start subtransaction part of the above log record is posted a Next�undo
pointer to the �rst 	next
 operation of the NT to be undone� This is the last
operation logged for the completed NT�

The NT chain of log records is scanned backwards� and CLRs are written
for each encountered operation� When the start record for an NT is reached�
a commit record for the CT is written� This commit record need not be
paired with a parent transaction record since the start subtransaction record
for the CT is already paired with the CLR for the original NT�

Figure � illustrates nested transaction recovery using the MLR approach�
applied to our running example�

��� Undoing Completed Subtransactions ��

S U

S U U U

S U C

C
L
R

C
L
R

C
L
R

S
C
L
R

C

Figure �� MLR log records for nested transaction recovery� The rollback
of both interrupted and completed NTs is illustrated� A system crash is
indicated by the jagged solid line� In addition to the normal back linking
of log records� compensation log records	CLRs also contain �next undo�
pointers� denoted by the arrows out of the bottom of these records�

�� � LOGGING FOR MLR RECOVERY

����� Multi�level Transaction Compensation

When a completed MLT subtransaction� representing the execution of an
OPi��� needs to be rolled back� the OP��i�� stored as the UNDO �eld of its
commit record pair is executed as a FORWARD operation in a CT� It is not
rolled back by compensating each of its OPis or included subtransactions�

An OP��i�� CT executes in the forward direction during rollback� must
observe concurrency control protocols� and hence may deadlock� Further�
it cannot be continued across a system crash� In both these cases� it must
be rolled back� An OP��i�� CT is made recoverable via the logging of its
constituent OPis as forward operations or lower level subtransactions� The
e�ects of an interrupted OP��i�� CT are undone by compensating each of its
OPis� and logging undo progress via CLRs� just as when undoing a forward
subtransaction� We need not know that it is a CT�

Because OP��i�� CTs are not guaranteed to complete� an MLT�s CT does
not compensate anOPi�� until it commits� As we do with forward operations�
we pair the OP��i�� operation log record with the Li CT commit record� Since
this is a CT� its Li�� log record is a CLR� See Figure �	c
�

Until its CT commits� a CLR for the original MLT subtransaction has
not been written� Hence� we will start another CT to compensate this MLT
when we again undo operations at Li��� This limits special processing for
MLTs to that required for log records describing their commit� whether they
be forward subtransactions or CTs� Handling of their other log records is as
if they were independent and �at�

Figure � illustrates the appearance of the log for our running example�
interpreted now as having multi�level transactions instead of nested transac�
tions�

��� Another CLR Logging Strategy

The logging we described for CLRs is consistent with how ARIES handles
CLRs� That is� CLRs are distinguished from forward operation log records
and are never undone� Recovery is made slightly simpler when CLRs are
indistinguishable from forward operation log records� This has three e�ects�

�� CLRs can then be treated during recovery just like forward operations�
reducing the number of cases to be handled�

��

S U

S U U U

S U C

C
L
R

C
L
R

C

C
L
R

C
L
R

L PassO

C

S U U

L Pass1

Figure �� MLR log records for multi�level transaction recovery� The rollback
of both interrupted and completed MLTs is illustrated�

�� Compensation operations for an NT can be logged as operations of the
higher level interrupted transaction� rather than as operations of a CT�

�� Failures during recovery require the undo of already compensated op�
erations and subtransactions� It can be argued that crashes during
recovery do not occur su�ciently often to justify trying to avoid the
rollback of compensation operations�

The unique property of MLR recovery� namely the initiation of a com�
pensation transaction for a completed multi�level subtransaction within an
interrupted higher level transaction� works regardless of which CLR logging
method is used�

� MLR Rollback

We describe here both the rollback that can occur via user or system initiated
aborts� e�g�� because of deadlock� during normal execution� and the rollback
necessary when the system crashes and the transactions interrupted by the
crash need to be aborted� The important issue for both forms of rollback is
that rollback must succeed� despite deadlocks or system crashes and while

�� � MLR ROLLBACK

honoring the normal concurrency control protocol� Completion of rollback�
including completion of inverse operations� is not optional� Inverse operations
that are halted by deadlock or system crash can be rolled back� but they
must then be re�executed to ensure that recovery of the original forward
transaction completes�

��� Rollback During Normal System Operation

In an ML system� rollback for incomplete subtransactions at any level is
achieved by executing inverse operations at the next lower level�

While any subtransaction is active� it retains the LOCKis needed by its
OPis� and these LOCKis permit the corresponding OP��i s to be executed�
Deadlock during rollback is not possible AT THIS LEVEL� But� the ex�
ecution of an OP��i can require the acquisition of new LOCKj s for j � i�
that enforce serialization at that lower levels of the system� The attempt
to acquire these lower level locks can result in deadlock during rollback� Of
course� deadlocks can arise during normal forward operation as well�

Rolling back to subtransaction start can be exploited to overcome dead�
locks� whether for forward or CT subtransactions� Once a subtransaction is
rolled back� all locks that it holds can be released� Subtransaction start is a
�savepoint� permitting partial rollback of a transaction� The subtransaction
can be re�executed once the partial e�ects of its prior execution have been
removed�

This technique has di�erent implications depending on whether a sub�
transaction is an NT or an MLT�

� NT	 Rollback of an Lj subtransaction does not guarantee the release
of all LOCKjs held by its top level transaction� Previously completed
subtransactions may have passed their LOCKjs to the parent� Another
subtransaction� holding and requesting LOCKjs might remain blocked
waiting for this parent to release these LOCKjs� Hence� clearing of the
deadlock is not guaranteed� Overcoming the deadlock might require
rollback at even higher levels� Rollback is� however� always possible
without deadlock since locks are not acquired during rollback� NT
deadlocks occur only during forward operation�

� MLT	 Rollback of an Lj subtransaction guarantees the release of all
LOCKjs held by its top level transaction� 	This is not quite true� but

��� Rollback for System Crash Recovery ��

can be made true by waiting for any concurrently executing subtrans�
actions at Lj to complete�
 Hence� any other subtransactions� holding
and requesting LOCKjs will no longer be blocked� thus clearing the
deadlock� The rolled back MLT can then be re�executed� While it may
deadlock again� repetitions of this process will ensure that the MLT
will eventually complete if the scheduling is fair�

Systems where transactions need to acquire locks during rollback and
that lack a subtransaction capability must make sure that a rolling back
transaction is not itself subject to further rollback� System R
�� is an ex�
ample� In special cases� it releases �low level� locks before commit� and then
needs to re�acquire them should the transaction roll back� It designates the
rolling back transaction as GOLDEN� constrains the system to permit only
one GOLDEN transaction at a time� and never victimizes GOLDEN trans�
actions in a deadlock� Rollback is hence single threaded� With an MLT
subtransaction capability� one can abort a CT subtransaction and clear the
deadlock� Hence multiple transactions can be permitted to rollback concur�
rently�

��� Rollback for System Crash Recovery

After a system crash� redo recovery is performed �rst and only at L�� We
then perform undo recovery level by level� To do this� we need to know
the level of each logged operation� One simple way to recover the level of an
operation is to record an operation�s level in its log record� Another� since all
operations of a subtransaction are at the same level� is to record the level in
the TransT during redo� and whether it is an NT or an MLT subtransaction�
NTs are at the same level as their highest level operations while MLTs are
at a level one more than the level of their highest level operations�

���� Multiple Scan Multi�Level Undo

The simplest multi�level undo by levels is to scan the log backward multiple
times� once for each level� After redo recovery has completed� we �rst do L�
undo by scanning the log backwards performing undo for L� operations that
occur within interrupted L� subtransactions� On each subsequent backward
pass of the log� we increment the level by one and perform undo for that

�� � MLR ROLLBACK

level� For Li undo� we begin at the tail of the log as of the time of the crash�
and scan the log until there are no more interrupted Li�� subtransactions in
the TransT � There are no more undo scans when the TransT is empty of
interrupted transactions�

We distinguish three sets of log records�

�� Log records for operations in Completed Transactions and
MLT Subtransactions	 Ignore these� These never require compen�
sation�

�� OPjs� j � i� Active Transaction	 Ignore these� These operations
will be undone in subsequent undo scans�

�� OPis� Active Transaction	 Perform undo recovery for these log
records�

The undo recovery in case �� includes recovery for OPis that occur within
completed NTs of active transactions as well as OPis that are directly in
active transactions� Those within an NT are compensated within a CT
for the NT� Above L�� OPi undo requires execution of a CT� These CTs
execute when no lower level locks are held� since lower level undo recovery
has already been performed� making the system state OC at Li� Further�
the OP��i s execute in reverse order of the original OPi execution order� thus
forming the required �palindromic� sequence� Each CT executes serially to
completion� and its operations are logged as indicated previously�

Should the system crash during recovery� redo and undo phases of recovery
are repeated� The state of the log is di�erent� however� Already recovered
subtransactions will not be active� However� lower level operations logged as
part of MLT CTs must be rolled back� so� in general� it is not possible to
skip levels during undo recovery� However� the previously completed levels
of undo can be greatly shortened 	see below
�

���� Reducing Multiple Scans to One

We can avoid multiple passes over the log by recording during each undo pass
what it is that still needs undo 	case �
 but that is at a higher level� Instead�
we write these log records in main memory into separate lists for each level
that we call Level Lists or LLs
� LLs must be linked in the same direction

��

that the log records are encountered during the backward scan of the log�
That means that each log record encountered at Li that needs compensation
is appended to LLi� Undo recovery for Li begins by scanning LLi� initiating
CTs for each operation in the order encountered on LLi� just as if it had
been encountered while scanning the log�

For each interrupted transaction at Li� there will usually be an interrupted
parent transaction at Li�� that started before it� Thus� we expect to usually
�nish the undo of all Li interrupted transactions before all the log records for
interrupted Li�� transactions have been seen� During the Li undo phase� we
may exhaust LLi without having compensated all active Li�� transactions�
The backward scan of the log is then resumed where it left o� during the Li��

undo level scan and continues until all active Li�� transactions are aborted�
When continuing the log scan� we once again add log records to the higher
level LLs� Since we can discard an operation on an LLi as soon as it is
undone� this �staggered� backward undo scan of the log reduces the sizes of
the LLs simultaneously needed in main memory�

� Discussion

��� Characterization of MLR Recovery Method

MLR is an integrated industrial strength multi�level recovery algorithm that
works for systems with arbitrary numbers of levels� Like ARIES� it supports
operation logging and provides �exible cache management� etc� During nor�
mal forward system operation� the additional MLR requirements are modest�
Essentially� extra overhead is incurred to acquire higher level LOCKs� and� as
with ARIES�NT� to link subtransactions with their parents upon subtrans�
action commit� It is these� of course� that enable the substantial increase in
concurrency�

Rolling back a 	sub
transaction is more complex in MLR than with �at
or NT systems because one must deal with multi�level concurrency control
and operation consistency� Undo recovery must be done level by level� MLR
minimizes the impact of this by performing only a single backward scan of the
log� We speculate that undo recovery is less than a factor of two longer than
for �at transaction undo� When the cost of the redo phase� which is usually
much more expensive and is essentially unchanged in MLR� is factored in�

�� � DISCUSSION

the relative performance di�erence should be much smaller than that�
An ML layer implementor does not need a detailed understanding of

MLR recovery� He need only supply a set of OP s and OP��s� a set of LOCK
de�nitions� and a compatibility matrix for these locks� and then implement
his operations� He need not be concerned with whether an operation is
executing as a forward or rollback operation� The ML system can determine
this� Hence� variations in logging and locking needs between normal and
rollback execution can be made invisible to the layer implementor�

��� Application to General Multi�level Systems

MLR recovery is useful in a wider setting than when only top level transac�
tions are durable and contain non�durable subtransactions�

� MLR is not sensitive to the constraints being enforced by the concur�
rency control protocol� Only locking needed for compensatability is
required and the MLR framework holds these locks until subtransac�
tion completion� Whether the locks involved enforce other constraints
is at the discretion of the implementor� including whether they enforce
serializability�

� While the write�ahead log protocol must be observed� whether the log is
forced at 	sub
transaction commit is optional� An ML layer implemen�
tor can determine the durability of the layer�s transactions� Durability
can be a declarative part of each layer�s de�nition and can be enforced
by the ML framework�

For example� MLR can be used in a system that supports sagas
�� ���
Transactions of a saga must be durable� But sagas need not be serializable�
Compensatability is su�cient� and this may need substantially weaker locks�
Traditionally� no locks are held between constituent transactions� Saga com�
pensation is assumed to be possible regardless of other system activity�

In general� some locks may be needed to ensure compensatability� Con�
sider a possible insurance company claims saga� The company wishes to
expose intermediate states of a claim saga to its headquarters employees�
Hence� locks held by the saga are compatible with locks used by headquar�
ters operations� On the other hand� agents should not know these internal
states� and hence locks of agent operations con�ict� Possible rationales are

��� Extension to Layered Abstraction Systems ��

	i
 compensation� where all agents are informed that a saga has been rolled
back� is di�cult and expensive because of the large number of agents and the
cost of communication and 	ii
 agents might leak information to claimants�
which the company views with alarm� MLR recovery can accommodate con�
currency control of this form�

��� Extension to Layered Abstraction Systems

The ML system discussed thus far is structured as a strictly layered hierar�
chical system� Each layer must use only the operations provided by the layer
immediately below it� More �exibility is possible� A system may permit the
de�ner of an abstraction 	which exports atomic and recoverable operations

to use instances of any abstraction previously de�ned� The abstractions so
used might not all be at the same level� Hence� the lower level OP s used in
the new abstraction�s OP s have di�erent levels� Can MLR recovery work for
such a system�

The answer is yes� MLR recovery will work� provided that the speci�c
instances of abstractions used to realize a new abstraction are not accessi�
ble outside of the new abstraction� This constraint is frequently satis�ed as
a natural result of our desire to hide the representation of an abstraction�
For example� if some instances of a disk block abstraction are used to sup�
port a record abstraction� the constraint requires that those disk blocks only
be accessed in operations supporting the accessing of records� Then� the
lower level operations can be recovered �rst even though this may not be a
palindromic ordering of forward and undo operations within a transaction�
The ordering can be made palindromic by commutativity� i�e� operations on
disjoint resources commute�

One example of the use of the layered abstraction technique is for build�
ing recoverable queues
�� on top of a database system� MLR solves two
signi�cant problems that arise in this�

�� Once an element is enqueued�dequeued from the queue� the low level
database locks for these operations can be released� Only enqueue or
dequeue locks need be retained� which can be de�ned to commute�
That is� e�g�� a dequeue operation for one transaction need not con�ict
with the dequeue operation on the same queue by another transaction�
This avoids the head of queue 	tail of queue
 bottleneck that arises

�� REFERENCES

if only single level database locks are used� This exploits the natural
capabilities of multi�level locking� MLR�

�� The abort of a containing transaction will usually cause a dequeued
element to be returned to the queue via the de�ned compensation op�
eration� However� this compensation operation can do more� e�g�� the
number of times the queue element was dequeued and its transaction
failed can be counted� After some number of failures� the queue el�
ement can be placed on an error queue� This exploits user de�ned
compensation operations that do not need to exactly undo their for�
ward operations�

Layered abstraction functionality� coupled with a persistent virtual mem�
ory abstraction for level L� may make MLR recovery ideal for extendible
and object�oriented transaction systems� Persistent virtual memory is a very
�exible basis from which to work� Layered abstractions with MLR recovery
permit implementors to achieve high concurrency while preserving transac�
tionality�

� Acknowledgements

In ����� Michael Melliar�Smith suggested to me that recovery for high level
operations might be accomplished in a hierarchically structured system by
executing inverses of higher level operations rather than inverses of the low
level operations that implement them� Recently� in conversations with But�
ler Lampson� I became convinced that the low level redo� high level undo
model of recovery was the correct model to provide operation consistency
and maximum concurrency�

References

�� Beeri� C�� Bernstein� P�� Goodman� N�� Lai� M�� and Shasha� D� A concur�
rency control theory for nested transactions� Proc� PODC 	August ����

������

REFERENCES ��

�� Beeri� C�� Schek� H��J�� and Weikum� G� Multi�level transaction man�
agement� theoretical art or practical need� Lecture Notes in Computer
Science� vol ���� Springer�Verlag� ����� ��������

�� Bernstein� P�� Hadzilacos� V�� and Goodman� N�Concurrency Control and
Recovery in Database Systems� Addison Wesley 	Reading� MA
 �����

�� Bernstein� P�� Hsu� M� and Mann� B� Implementing Recoverable Requests
Using Queues� Proc� ACM SIGMOD Conf� 	June ����
 ��������

�� Eswaran� K�� Gray� J�� Lorie� R�� Traiger� I� The notions of consistency
and predicate locks in a database system� Comm ACM ����� 	Nov ����

��������

�� Garcia�Molina� H� Using semantic knowledge for transaction processing
in a distributed database� ACM TODS ��� 	June ����
 ��������

�� Garcia�Molina� H� and Salem� K� Sagas� Proc� ACM SIGMOD Conf�
	June� ����
� San Francisco� CA� ��������

�� Gray� J� The transaction concept� virtues and limitations� Proc� VLDB
Conf� 	Sept� ����
 Cannes� France� ��������

�� Gray� J�� McJones� P�� Blasgen� M�� Lindsay� B�� Lorie� R�� Price� T��
Putzulo� F�� Traiger� I� The recovery manager of the System R database
manager� ACM Computing Surveys ���� 	June ����
 ��������

��� Korth� H�� Levy� E� and Silberschatz� A� A formal approach to recovery
by compensating transactions� Proc� VLDB Conf� 	August� ����
 Bris�
bane� �������

��� Lomet� D� Recovery for shared disk systems using multiple redo logs�
DEC Tech Report CRL���� 	Oct ����
� Cambridge Research Lab� Cam�
bridge� MA�

��� Lomet� D� and Salzberg� B� Concurrency and recovery for index trees�
draft report 	Dec ����
�

��� Lynch� N� Multilevel atomicity� a new correctness criterion for database
concurrency control� ACM TODS ��� 	December ����
 ��������

�� REFERENCES

��� Mohan� C�� Haderle� D�� Lindsay� B�� Pirahesh� H�� and Schwarz� P�
ARIES� A transaction recovery method supporting �ne�granularity lock�
ing and partial rollbacks using write�ahead logging� ACM TODS 	to ap�
pear
 and IBM Research Report RJ���� 	Jan ����
� IBM Almaden Re�
search Center� San Jose� CA�

��� Mohan� C� and Levine� F� ARIES�IM� an e�cient and high concurrency
index management method using write�ahead logging� IBM Research Re�
port RJ ���� 	Aug ����
� IBM Almaden Research Center� San Jose� CA�

��� Rothermel� K� and Mohan� C� ARIES�NT� A recovery method based on
write�ahead logging for nested transactions� Proc� VLDB Conf� 	August�
����
 Amsterdam� Netherlands� ��������

��� Traiger� I� Trends in systems aspects of database management� Proc�
ICOD Conf�� Cambridge� MA 	����

��� Weikum� G� and Schek� H��J� Architectural issues of transaction man�
agement in multi�layered systems� Proc� VLDB Conf� 	August� ����
�
Singapore� ��������

��� Weikum� G� A theoretical foundation of multi�level concurrency control�
Proc� ACM PODS Conf� 	March ����
 Cambridge� MA� ������

��� Weikum� G�� Hasse� C�� Broessler� P�� and Muth� P� Multi�level recovery�
Proc� ACM PODS Conf�� Nashville� Tenn 	April� ����
�

