
Randomized Wait�Free Concurrent Objects
�extended abstract�

Maurice Herlihy

Digital Equipment Corporation

Cambridge Research Laboratory

One Kendall Square

Cambridge MA� �����

Digital Equipment Corporation
Cambridge Research Lab

CRL ���� June �� ����

Abstract

A concurrent object is a data structure shared by concurrent processes� A
wait�free implementation of a concurrent object guarantees that every operation
completes in a �nite number of steps� regardless of how processes interleave� It
is known� however� that if concurrent processes communicate only by applying
read and write operations to a shared memory� then it is impossible to con�
struct wait�free implementations of many simple and useful data objects� In
this paper we show how to construct randomized wait�free implementations of
long�lived concurrent objects� implementations that guarantee that every oper�
ation completes in a �nite expected number of steps� even against a powerful
adversary�

This paper will appear in the Tenth Annual ACM Symposium on Principles
of Distributed Computing� August ���	�� Montreal� Canada�

c�Digital Equipment Corporation ����� All rights reserved�



� INTRODUCTION �

� Introduction

A concurrent object is a data structure shared by asynchronous concurrent pro�
cesses� An implementation of a concurrent object is wait�free if it guarantees
that every operation completes a �nite number of steps� regardless of how pro�
cess steps are interleaved� An implementation is randomized wait�free if it guar�
antees that every operation completes in a �nite expected number of steps� The
wait�free condition guarantees that no process can be prevented from completing
an operation by variations in other processes
 speeds� or by undetected halting
failures� This condition rules out many conventional algorithmic techniques
such as busy�waiting� conditional waiting� critical sections� or barrier synchro�
nization� since the failure or delay of a single process can prevent the non�faulty
processes from making progress�

In this paper� we propose new algorithms for constructing randomized wait�
free implementations of arbitrary objects in an architecture where processes
communicate by applying read and write operations to locations in shared mem�
ory� Randomization is necessary because this kind of architecture does not
support wait�free solutions to many fundamental problems ��� ��� ��� ��� 		
�
including basic decision problems such as consensus ���
� and implementations
of many simple data objects such as sets� queues� or lists� We give a general
algorithm for constructing a randomized implementation of any read�modify�

write ���
 operation� Our construction uses no unbounded registers� and has
worst�case time and space complexity identical to that of the best randomized
consensus protocols known for this model ��� �� 	�
�

The principal contribution of this work is to show how techniques developed
for short�lived decision problems can be adapted to long�lived data objects�
Much of the work on randomized wait�free synchronization algorithms concerns
decision problems� such as consensus� in which a protocol is run only once� Each
process simply executes its part of the protocol and halts� and the shared data
structures do not need to be reused� By contrast� practical applications such
as operating systems and data bases are organized around long�lived data ob�
jects� which are inherently more di�cult than decision problems� A data object
has an unbounded lifetime during which each process can execute an arbitrary
sequence of operations� Unlike a decision protocol� an object implementation
must ensure that the size of the object
s representation remains bounded even
when the number of operations applied to it increases without limit� It must
retain enough information to ensure that �sleepy� processes that arbitrarily sus�
pend and resume execution can continue to progress� while discarding enough
information to keep the object size bounded� A wait�free object implementa�
tion must also guard against starvation� since one operation can be �overtaken�
by an arbitrary sequence of other operations� a problem that does not arise in
decision protocols�



� PRELIMINARIES 	

� Preliminaries

A concurrent system consists of a collection of n processes that communicate
through shared typed objects� Processes are sequential � each process applies
a sequence of operations to objects� alternately issuing an invocation and then
receiving the associated response� We make no fairness assumptions about pro�
cesses� A process can halt� or display arbitrary variations in speed� In particular�
one process cannot tell whether another has halted or is just running very slowly�

Objects are data structures in memory� Each object has a type� which de�nes
a set of possible values and a set of primitive operations that provide the only
means to manipulate that object� Each object has a sequential speci�cation

that de�nes how the object behaves when its operations are invoked one at a
time by a single process� For example� the behavior of a queue object can be
speci�ed by requiring that enq insert an item in the queue� and that deq remove
the oldest item in the queue� In a concurrent system� however� an object
s
operations can be invoked by concurrent processes� and it is necessary to give
a meaning to interleaved operation executions� An object is linearizable ���

if each operation appears to take e�ect instantaneously at some point between
the operation
s invocation and response� Linearizability implies that processes
appear to be interleaved at the granularity of complete operations� and that the
order of non�overlapping operations is preserved�

We focus on an asynchronous multiple instruction�multiple data �MIMD�
architecture in which shared memory consists of a sequence of locations� called
registers� that can be written by �at least� one process and read by any pro�
cess� Our time and space complexity measures are expressed in terms of read
and write operations on registers of size O�n�� Polynomial�time algorithms
for implementing large single�writer�multi�reader registers from small ones are
well�known ���� 	�� 	�� 	�� 	�� 	�
�

A read�modify�write operation ���
 is de�ned as follows� Let x be an object�
v its current value� and f a function from values to values� The operation
RMW�x� f� atomically replaces the value of x with f�v�� and returns v �Figure
��� Although read�modify�write operations implemented in hardware typically
work on single words of memory� software implementations such as the one
given here can work on objects of arbitrary size� The class of read�modify�write

operations is universal� in the sense that one can implement any operation
�such as enq or deq� from a suitable read�modify�write operation� A second
approach to universality is to focus on a particular read�modify�write operation�
such as compare�swap� shown in Figure 	� Elsewhere ���
� we give a detailed
methodology for transforming a stylized sequential implementation of any object
into a wait�free linearizable implementation in which processes synchronize using
only read� write� and compare�swap operations�

Our construction also makes use of an atomic snapshot scan algorithm�
Given an n�element array A� where P is the only process that writes A�P 
�
the snapshot scan makes an instantaneous �linearizable� copy of A� Atomic



� RANDOMIZED CONSENSUS �

RMW�r� register� f � function� returns�value�
previous �� r
r �� f�r�
return previous
end RMW

Figure �� A Read�Modify�Write Operation

compare�swap�w� word� old� new� value�
returns�boolean�
if w � old
then w �� new

return true

else return false

end if

end compare�swap

Figure 	� The Compare�Swap Operation

snapshot scan algorithms have been proposed by Anderson �	
 �bounded regis�
ters and exponential running time�� Aspnes and Herlihy ��
 �unbounded registers
and O�n�� running time�� and by Afek et al� �bounded registers and O�n�� run�
ning time�� Of these� the last algorithm is the best suited for our purposes� since
it is both bounded and e�cient�

� Randomized Consensus

The heart of our construction is a binary consensus protocol� in which each of
n asynchronous processes starts with a preference taken from a two�element set
�typically f�� �g�� and runs until it chooses a decision value and halts� The proto�
col is correct if it is consistent� no two processes choose di�erent decision values�
valid� the decision value is some process
s preference� and randomized wait�free�

each process decides after a �nite expected number of steps� When computing
a protocol
s expected number of steps� we assume that scheduling decisions are
made by an adversary with unlimited resources and complete knowledge of the
processes
 protocols� their internal states� and the state of the shared memory�
The adversary cannot� however� predict future coin �ips�

Our technique can be applied to a variety of randomized binary consensus
protocols� but to keep our discussion as concrete as possible� we focus on the
simplest such protocol� due to Aspnes ��
� shown in Figure �� Here� n processes
collectively undertake a one�dimensional random walk centered at the origin
with absorbing barriers at �	n� The protocol makes use of three counters� P�
and P� are the respective number of processes that prefer � and �� and C is the



� FORMAL MODEL �

cursor for the random walk� Each process alternates between reading the three
shared counters �using a single atomic scan� and updating C� Eventually the
counter reaches one of the absorbing barriers� determining the decision value�
While the counter is near the middle of the region� each process �ips an unbiased
coin to determine the direction in which to move the counter� If the counter is
su�ciently close to one of the barriers� however� each process moves it determin�
istically toward that barrier� Each shared counter �Figure �� is implemented as
an n�element array of integers� one per process� To increment or decrement the
counter� a process updates its own �eld� To read the counter� it atomically scans
all the �elds� Careful use of modular arithmetic ensures that all values remain
bounded� The expected running time of this protocol� expressed in primitive
reads and writes� is O�n��� and the space complexity is O�n���

Any binary consensus protocol can be extended to a consensus protocol in
which process take their preferences from an arbitrary set� Consider a logn�
depth binary tree where each leaf is initially associated with a process� In the
�rst round� each process performs binary consensus with its immediate neighbor�
and each process adopts the resulting decision value as its next preference� At
round r� two groups of 	r�� processes� each with a common preference� achieve
binary consensus to decide the common preference for both groups at the next
level� The protocol terminates after logn rounds of binary consensus� when all
processes have a common preference� The simple inequalities

lognX

i��

	�i � �

lognX

i��

	i�� � �	n��

imply that the asymptotic expected running time for the multi�value consensus
protocol is identical to that of binary consensus�

O�

lognX

i��

	�i� � O�n��

The same property holds for any polynomial�time protocol� The space complex�
ity increases from O�n�� to O�n� logn��

� Formal Model

A more complete version of our formal model appears elsewhere ���
� Formally�
we model objects and processes as non�deterministic automata� a simpli�ed form
of the I�O automata of Lynch and Tuttle �	�
� Each automaton has a set of
states� sets of input� output� and internal events� and a transition relation given
by a set of triples �s�� e� s�� where s and s� are states and e is an event� Such a
triple is called a step� and it means that an automaton in state s� can undergo



� FORMAL MODEL �

shared data�
P�� counter with range �� � � �n

P�� counter with range �� � � �n

C� counter with range ���n � � ��n


consensus�prefer� returns�Boolean�
inc�Pprefer�

loop

p�� p�� c �� read�P��P�� C�
select

case c � �	n do return �
case c � 	n do return �
case c � ��p� � p�� or p� � � do inc�C�
case c � �p� � p�� or p� � � do dec�C�
otherwise do

if �ip��
then inc�C�
else dec�C�
end if

end select

end loop

end consensus

Figure �� A Randomized Binary Consensus Protocol

a transition to state s� and that transition is associated with the event e� If
�s�� e� s� is a step� we say that e is enabled in s�� Inputs cannot be disabled� for
each input event e and each state s�� there exist a state s and a step �s�� e� s��

An execution fragment of an automatonA is a �nite sequence s�� e�� s�� � � � en� sn
or in�nite sequence s�� e�� s�� � � � of alternating states and events such that each
�si� ei��� si��� is a step of A� An execution is an execution fragment where s�
is a starting state� A history fragment of an automaton is the subsequence of
events occurring in an execution fragment� and a history is the subsequence
occurring in an execution�

Automata can be composed if they share no output or internal events� A
state of the composed automatonS is a tuple of component states� and a starting
state is a tuple of component starting states� The set of events of S is the union
of the components
 sets of events� The set of output events of S is the union
of the components
 sets of output events� the set of internal events is the union
of the components
 sets of internal events� and the set of input events of S is
the set of input events of S that are not output events for some component� A
triple �s�� e� s� is in a step of S if and only if� for all component automata A�



� FORMAL MODEL �

��r� r
 is the range of the counter
m is any integer greater than 	r � �

inc�C�
v �� C�P 

write�v � � modm� C�P 
�
end inc

dec�C�
v �� C�P 

write�v � � modm� C�P 
�
end dec

read�C� returns�integer�
c �� scan�C�

v ��
Pn��

i�� c�i

return v� where �r � v� � r

and v� � v �mod m�
end read

Figure �� Counter Implementation

one of the following holds� ��� e is an event of A� and the projection of the step
onto A is a step of A� or �	� e is not an event of A� and A
s state components
are identical in s� and s� If H is a history of a composite automaton and A a
component� then HjA denotes the subhistory of H consisting of events of A�

Processes and objects are each modeled as automata� Operation invoca�
tions are modeled as output events of processes� and input events of objects�
while operation results are input events of processes and output events of ob�
jects� To capture the notion that a process represents a single thread of con�
trol� we say that a process history is well�formed if it begins with an invoca�
tion and alternates matching invocations and responses� A concurrent system

fP�� � � � � Pn�A�� � � � � Amg is an automaton composed from processes P�� � � � � Pn
and objects A�� � � � � Am� where processes and objects are composed by identify�
ing corresponding invocations and responses� A history of a concurrent system is
well�formed if each HjPi is well�formed� and a concurrent system is well�formed

if each of its histories is well�formed� Henceforth� we restrict our attention to
well�formed concurrent systems�

An execution is sequential if its �rst event is an invocation� and it alternates
matching invocations and responses� A history is sequential if it is derived from
a sequential execution� �Notice that a sequential execution permits process
steps to be interleaved� but at the granularity of complete operations�� If we



� FORMAL MODEL �

restrict our attention to sequential histories� then the behavior of an object can
be speci�ed in a particularly simple way� by giving pre� and postconditions for
each operation� We refer to such a speci�cation as a sequential speci�cation�

If H is a history� let complete�H� denote the maximal subsequence of H
consisting only of invocations and matching responses� Each history H in�
duces a partial precedence order �H on its operations� p �H q if the response
for p precedes the invocation for q� Operations unrelated by �H are said to
be concurrent� If H is sequential� �H is a total order� A concurrent system
fP�� � � � � Pn�A�� � � � � Amg is linearizable if� each history H can be extended to a
well�formed history H�� by adding zero or more responses� for each history H�
there exists a sequential history S such that�

� For all Pi� complete�H��jPi � SjPi

� �H��S

In other words� the history �appears� sequential to each individual process� and
this apparent sequential interleaving respects the real�time precedence ordering
of operations� Equivalently� each operation appears to take e�ect instanta�
neously at some point between its invocation and its response� A concurrent
object A is linearizable ���
 if� for every history H of every concurrent system
fP�� � � � � Pn�A�� � � � � Aj� � � � � Amg� HjAj is linearizable� A linearizable object is
thus �equivalent� to a sequential object� and its operations can also be speci�
�ed by simple pre� and postconditions� We restrict our attention to linearizable
concurrent systems�

An implementation of an object A is a concurrent system fF�� � � � � Fn�Rg�
where the Fi are called front�ends� and R is called the representation� Informally�
R is the data structure that implements A� and Fi is the procedure called by
process Pi to execute an operation� Each invocation of an operation of A is an
input event of Fi� and each response is an output event of Fi� An implementation
Ij of Aj is correct if the two systems are indistinguishable to the ensemble of
processes� for every history H of fP�� � � � � Pn�A�� � � � � Ij � � � � � Amg� there exists
a history H� of fP�� � � � � Pn�A�� � � � � Aj� � � � � Amg� such that HjfP�� � � � � Png �
H �jfP�� � � � � Png�

An implementation is wait�free ���
 if�

� It has no history in which an invocation of Pi remains pending across an
in�nite number of steps of Fi�

� If Pi has a pending invocation in a state s� then there exists a history
fragment starting from s� consisting entirely of events of Fi and R� that
includes the response to that invocation�

The �rst condition rules out unbounded busy�waiting� a front�end cannot
take an in�nite number of steps without responding to an invocation� The



� THE ALGORITHM �

second condition rules out conditional waiting� Fi cannot block waiting for
another process to make a condition true�

In this paper� the representation object R is an array of registers that provide
linearizable read and write operations� We also use a scan procedure� which has a
wait�free implementation using read and write� as well as a consensus procedure�
which has a randomized wait�free implementation� For brevity� our algorithms
are expressed in pseudocode� although it is straightforward to translate this
notation into automata de�nitions�

� The Algorithm

The processes execute a sequence of consensus protocols� called rounds� which
determine the order in which concurrent operations are applied� We say a
process wins round r if its preference is that round
s decision value� otherwise it
loses� A sleepy process is one that suspends execution in the middle of a round�
and resumes after a later round has started�

Recall that each shared counter C used by the consensus protocol is imple�
mented as an array of �bounded� integer values� where each integer represents
that process
s contribution to the counter
s value� A unbounded technique that
permits di�erent rounds to share the same data structures is simply to tag each
counter register with the current round number� When a process reads a regis�
ter� it ignores values tagged with earlier round numbers� treating those registers
as uninitialized� When a sleepy process reads a value tagged with a later round
number� it quits the protocol� since information it needs may have been over�
written� The sleepy process then inspects other data structures to reconstruct
whether it had won the interrupted round�

To avoid unbounded round numbers� we introduce the notion of a �bounded�
leadership graph� a concept adapted from the distance graph construction of
Attiya� Dolev� and Shavit ��
� A leadership graph is a graph whose vertices
are connected by directed or undirected edges� A path in a leadership graph
from vertex v� to vertex vk is a sequence of vertices v�� � � � � vk such that for
each vi� vi��� either there is an edge directed from vi to vi��� or there is an
undirected edge between them� A directed path is a path that includes at least
one directed edge� We say that w is ahead of v �w � v� if there is a directed
path from v to w� and that v and w are even �v 	 w� if neither is ahead of the
other� Informally� if w is ahead of v� then w
s consensus round preceded v
s�
A leader is a vertex with no directed paths to other vertices� A k�generation

leadership graph is one where there are k vertices associated with each process�
These k vertices will be connected by directed edges� and the last of these is the
process
s latest vertex�

A vertex in a leadership graph is represented by a round vector� which is
an n�element array of round counters� A round counter assumes values in the
range f�� � � � � 	kg� Value a is considered �greater� than a � �� � � �a � k� and



� THE ALGORITHM �

�less� than a� �� � � � � a� k� where all arithmetic is modulo 	k � �� If v and v�

are vectors associated with P and Q� then there is an edge directed from v to
v� if v�Q
 � v��P 
� and there is an undirected edge if v�Q
 � v��P 
� Our protocol
uses a 	�generation leadership graph�

New round vectors are created by the advance operation� shown in Figure
�� This procedure takes as arguments a leadership graph G and a process P �
It generates a new round vector for P �without modifying the graph itself��
It erases any outgoing edges from P 
s most recent vector� adds incoming edges
from any previously unrelated vectors� and leaves existing incoming edges alone�

A recycling counter implementation appears in Figure �� Each element of the
C array is now an entry consisting of an integer value tagged with one or more
round vectors� A process P reads the counter by scanning C� and reconstructing
a leadership graph from the round vectors� If P 
s latest round vector is not a
leader� then P is sleepy� and it exits the operation by signaling an exception�
Otherwise� it sums and returns the contributions of the other processes whose
most recent round vectors are leaders�

The recycling consensus protocol is constructed by replacing the counter in
Figure � with a recycling counter� This protocol allows a single data structure
to be reused for multiple consensus protocols� A sleepy process that attempts
to read the counters will receive an exception� In such a case� it is convenient
to de�ne the protocol to return the distinguished value 
�

When a sleepy process discovers that it is no longer a leader� it must de�
termine whether it won its last round� We incorporate a bounded amount of
history information by associating a boolean toggle value with each operation�
Each time a process starts a new operation� it complements its toggle bit� Each
preference has an additional �eld� an n�element boolean horizon array� The
toggle bit of the last round won by P is kept in p�horizon�P 
� When a sleepy
process P discovers it has been overtaken� it locates the winning preference p
from any later round �as described below�� P won the interrupted round if and
only if its own toggle bit matches p�horizon�P 
�

A process starting a round must be able to reconstruct the object
s current
state� Our protocol maintains a 	�generation leadership graph G in which each
process P keeps a past vector from the last round it completed� and a present

vector from the the last round it started� Each past vector is tagged with either
the winning preference from that round or with the distinguished value 
� A
leading past vector is one that has no directed paths leading to any other past
vectors� The latest procedure scans G� locates the leading past vectors� and
returns any associated preference distinct from 
�

The �nal issue concerns starvation� A naive approach is simply to use each
consensus round to decide which operation is scheduled next� Such an algorithm
is non�blocking� in the sense that the system as a whole continually makes
progress� but it is not wait�free� since an individual process may starve if it loses
every round� Instead� we use a form of software combining to guarantee that
each operation completes in at most two rounds� Each process announces its



� CORRECTNESS ��

intention to execute an operation� and each process collects recently announced
operations� and constructs its preference by applying them in sequence�

We are now ready to present the complete protocol� We use the following
data types and structures� An invocation is a record with two �elds� a toggle bit
and a function� A preference is a record with three �elds� p�value is the object
s
new value if the process wins the consensus round� p�response an n�element
array of values� and p�horizon an n�element array of toggle bits�

An entry is a record with the following �elds�

� past is the round vector from the last round P completed�

� winner is the winning preference from that round� or 
�

� present is the round vector from the current round� This is the vector
used by the consensus protocol to detect sleepy processes �as in Figure ���

� counters is a ��logn�element array of integers used for the counters needed
by the recycling consensus protocol
s random walks�

The processes share an n�element arrayA of invocations� and an n�element array
of entries G� The entries
 past and present �elds de�ne a 	�generation leadership
graph� A leading past vector is one that has no directed paths leading to any
other past vectors� We use two auxiliary procedures� scan takes an atomic
snapshot scan of an arbitrary array� and latest scans G� locates the leading past
vectors� and returns an associated winner preference distinct from 
�

The pseudo�code for RMW�f�� where f is a function� appears in Figure ��
P �rst creates a new invocation� complements the previous invocation
s toggle
bit� and stores the new invocation in A� P reads its present vector from G� and
then calls latest to get the winning preference from the most recently completed
round� It then calls make�prefer �Figure �� to create a new preference� This
procedure copies the last winning preference� and scans the A array� It then
locates unapplied invocations by comparing the invocations
 toggle bits with
the corresponding bits in the preference
s horizon array� It applies any new
invocations� storing their responses in the new preference
s response �eld� and
their toggle bits in the horizon �eld� After creating the new preference� P then
joins the recycling consensus protocol� returning either the winning preference
or 
� P then creates a new entry for its next operation� setting past to the
current value of present� winner to the outcome of the protocol �if known� or 
�
present to the result of advance� and counters to an array of ��logn zeroes� After
executing this loop twice� P calls latest to locate the latest winning preference�
and extracts its response to its operation from the preference
s response �eld�

� Correctness

We give an explicit linearization� for any execution of the protocol� we construct
an equivalent legal serial execution� Because of space limitations� some proofs



� CORRECTNESS ��

are omitted or sketched�

Lemma � Being even is an equivalence relation� if u 	 v and v 	 w� then
u 	 w�

Proof� Every two vertices are joined by an edge� either directed or undirected�
hence if u 	 v� then there is an undirected edge between them� Suppose u 	 v
and v 	 w� but u � w� Then there is a directed path from v to w constructed
by joining the undirected edge from v to u to the directed path from u to v�
contradicting the hypothesis that u 	 v�

Since reasoning about round numbers is easier than reasoning about round
vectors� we introduce unbounded round numbers as auxiliary data� variables
which do not a�ect the protocol
s control �ow� We tag every round vector
v in G with an unbounded round number �v de�ned as follows� Initially� all
round vectors have round number zero� Suppose when P calls advance� g is
the scanned copy of G� r is the highest round number in g� and rP is P 
s
highest round number in g� If v is the round vector returned by advance� then
�v � max�rP � �� r��

Lemma � If advance returns a vector with round number r� then for every

integer between � and r� there exists a vector with that round number�

Proof� Initially all vectors have round number �� and each call to advance

increases the maximum round number by at most one�

If P sets its past vector to v� then we say that P writes �v to past�G�� and
similarly for present�G��

Lemma � If P is the �rst process to write r to present�G�� then it simultane�

ously writes r � � to past�G��

Proof� We show that if P 
s call to advance returns round number r� then P 
s
present vector must have round number r� �� By Lemma 	� if advance returns
r� then round vectors exist with round number r��� If P 
s present vector has a
round number less than r� �� then advance would return r� �� since no higher
round number appears in the graph�

The next lemma follows directly from the de�nition of round numbers�

Lemma � If v 	 w� then �v � �w�

Let presentP and pastP denote P 
s present and past vectors� The two next
lemmas follow from simple inductive arguments�

Lemma � jpresentP �Q
� presentQ�P 
j � �

Lemma � presentP �Q
� pastP �Q
 � �



� CORRECTNESS �	

Lemma � If v � w� then �v � �w�

Proof� Suppose the property is violated by vectors v and w� generated by P
and Q� such that �v � �w but v � w� We �rst claim that one can choose v and w
so that there is a directed edge from w to v �i�e�� v�Q
 � w�P 
�� Choose v and w
with a minimal�length directed path between them� If that path has the form
w�w�� � � � v� then either �w � �w�� in which case w and w� are closer� or �w � �w��
in which case w� and v are closer�

If �v � �w� then P 
s scan occurred before Q
s� We will show that if P 
s scan
occurs �rst� then there can be no directed edge from w to v �i�e� w�P 
 � v�Q
��

Suppose that v was present in G when Q performed its scan� If v is a
present vector� then Lemma � implies that w�P 
 � v�Q
 or w�P 
 � v�Q
 � �� If
v is a past vector� and Q
s present vector is v�� then� as before� w�P 
 � v��Q
 or
w�P 
 � v��Q
��� and Lemma� implies that either w�P 
 � v�Q
� w�P 
 � v�Q
���
or w�P 
 � v�Q
 � 	� In both cases� w�P 
 � v�Q
�

Suppose that v was not yet written to G when Q performed its scan� Let
v� be P 
s present vector during Q
s scan� and let w� be Q
s present vector
during P 
s scan� �Note that P 
s scan is earlier� and that Q can do an arbitrary
number of scans between P 
s scan and the scan in which it constructed w�
During Q
s scans� however� P 
s vectors remain �xed�� There are three cases to
consider� If v��Q
 � w��P 
� then v�Q
 � w��P 
 � � and w�P 
 � v��Q
 � �� hence
w�P 
 � v�Q
� If v��Q
 � w��P 
� then v�Q
 � w��P 
 and either w�P 
 � v��Q
 or
w�P 
 � v��Q
��� hence w�P 
 � v�Q
 or w�P 
 � v�Q
��� Finally� if v��Q
 � w��P 
�
then v�Q
 � w��Q
 and w�P 
 � w��P 
� hence v�Q
 � w�P 
� In all three cases�

w�P 
� v�Q
�

A round is complete if it has been written to past�G��
Lemmas � and � imply that we can view the consensus protocols as taking

place in disjoint rounds� where the decision value for r � � is chosen before
that of round r� A process joins consensus round r if it joins the consensus
protocol while its present vector has round number r� P completes the pro�
tocol successfully if it returns a preference distinct from 
� and unsuccessfully

otherwise�

Lemma � For each completed round r� some process joins consensus round r
and completes successfully�

Proof� Each process alternates executing the consensus protocol and writing a
new vector to present�G�� Consider the �rst process to write r�� to present�G��
By Lemma �� its previous present vector had round number r� hence it joined
consensus round r� It must have completed successfully� since it could not have
encountered any vectors with higher round numbers�

We now show that the latest procedure can always �nd a value to return�

Lemma 	 Some leading past vector is always associated with a preference�



� CORRECTNESS ��

Proof� The �rst process to write r� � to present�G� is also the �rst to write r

to past�G�� and its winner �eld is not equal to 
 �Lemma ���

Lemma �
 If P successfully completes consensus round r� then the value re�

turned by its call to latest is the decision value for round r � ��

Proof� Lemma � implies that the leading past vector is associated with the
most recent round in past�G�� Lemma � implies that this round is associated
with decision value distinct from 
� hence latest returns a value� Lemma �
implies that round r � � has been written to past�G�� so the decision value
returned belongs to a round greater than or equal to r��� If the latest round in
past�G�is greater than r� �� then the latest round in present�G�is greater than
r� and p could not have completed successfully� Therefore� the value returned
by latest must be the decision value for round r � ��

An invocation p is announced when it is written to A� it is observed by P
when P applies it to a value as part of constructing a preference� and it is
executed if P wins that round�

Lemma �� Each invocation is executed at most once�

Proof� After the invocation is executed� and before a new invocation is an�
nounced� the toggle bit in the invocation agrees with the corresponding toggle
bit in future winning preferences
 horizon �elds� so make�prefer will skip that
invocation�

Lemma �� If an invocation is announced during round r� then it will be exe�

cuted either in round r or r � ��

Proof� Suppose p is announced during round r but not executed in that round�
Let P be the process that wins round r � �� Since p
s announcement precedes
P 
s call to make�prefer� the invocation
s toggle bit will disagree with the corre�
sponding horizon bit in the preference returned by P 
s call to latest� and P will
observe p�

Theorem �� The protocol in Figure � implements a randomized wait�free lin�

earizable read�modify�write operation�

Proof� Executions of the consensus protocols occur as a sequence of rounds
�Lemma ��� where each round has a unique winner �Lemma ��� De�ne the
object
s state at round r to be the value �eld of the winning preference for that
round� The object
s state at round r is constructed by applying a sequence
of invocations to the object
s state at round r � � �Lemma ���� The resulting
execution is equivalent to a sequential execution in which operations are ordered



� DISCUSSION AND RELATED WORK ��

by the round number in which they were executed� and operations in the same
round are ordered by in the order they were observed by that round
s winner�
Every invocation is executed after at most two rounds �Lemma �	�� and every
invocation is executed exactly once �Lemma ���� If one operation starts after
another returns� then the later operation will have a higher round number� and
therefore the sequential order is a valid linearization order�

Finally� the protocol is randomized wait�free� since each execution of the
consensus protocol is randomized wait�free� and the encompassing protocol ter�
minates after a �xed number of steps�

� Discussion and Related Work

We remark that the universal protocol given here can be optimized when some�
thing is known about the function f � For example� Figure � shows an optimized
implementation of compare�swap � This implementation returns immediately
if the object
s state fails to match the old argument� and it eliminates the re�

sponse �eld by having each winner return true and each loser return false� A
read operation is even simpler� it just returns latest�G��value �

Fischer� Lynch� and Paterson ���
 show that there is no consensus protocol
for two processes that communicate by asynchronous messages� Dolev� Dwork�
and Stockmeyer ��	
 and Dwork� Lynch� and Stockmeyer ���
 give a compre�
hensive analysis of the circumstances under which consensus can be achieved
by message�passing� Ben�Or ��
 proposes a randomized consensus protocol with
exponential expected running time that tolerates up to n�� failures� where n is
the number of processes� Loui and Abu�Amara �		
 give several consensus pro�
tocols and impossibility results for processes that communicate through shared
registers with various read�modify�write ��test�and�set�� operations� Chor� Is�
raeli and Li ���
 give two randomized consensus protocols for shared read�write
registers� one for two processes� and one for three processes� These protocols�
however� run against a weaker adversary than the others cited here�

The �rst shared�memory protocol that runs against a strong adversary is
due to Abrahamson ��
� This protocol has exponential expected running time�
The �rst polynomial�time protocol is an unbounded protocol due to Aspnes and
Herlihy ��
� This protocol introduced the use of random walk� the basic tech�
nique behind all known polynomial�time protocols� Attiya� Dolev� and Shavit
��
 show how to eliminate unbounded counters from the original random walk
algorithm� and Saks� Shavit� and Woll �	�
 show how to make the protocol fast
when processes run in approximate synchrony� Bar�Noy and Dolev ��
 adapt the
random walk protocol to a message�passing model� yielding the fastest known
consensus protocol for that model�

�This procedure implements a slightly restricted compare�swap in which the old and new

arguments must be distinct�



REFERENCES ��

The author ���
 has shown that n�process consensus is universal in a sys�
tem of n processes� given a synchronization primitive that solves n�process
consensus� one can construct a deterministic wait�free implementation of any
object� Plotkin �	�
 also gives a universal construction using a particular read�
modify�write primitive called a sticky�bit� The author ���
 gives a more more
time� and space�e�cient universal construction using read� write and the well�
known compare�swap instruction� If the shared memory provides only read

and write operations� then Herlihy and Aspnes ��
 have shown that one can con�
struct a deterministic wait�free implementation of any object whose operations
either commute with or overwrite one another� The author ���
 gives a more
general characterization of the objects that do have deterministic wait�free or
non�blocking implementations in this model�

References

��
 K� Abrahamson� On achieving consensus using a shared memory� In Seventh
ACM SIGACT�SIGOPS Symposium on Principles of Distributed Comput�

ing� pages 	�� ��	� August �����

�	
 J� Anderson� Composite registers� In Proceedings of the �th ACM Sympo�

sium on Principles of Distributed Computing� pages �� ��� August �����

��
 J�H� Anderson and M�G� Gouda� The virtue of patience� Concurrent pro�
gramming with and without waiting� Private Communication�

��
 J� Aspnes� Time� and space�e�cient randomized consensus� In Proceedings

of the �th ACM Symposium on Principles of Distributed Computing� pages
�	� ��	� August �����

��
 J� Aspnes and M�P� Herlihy� Fast randomized consensus using shared mem�
ory� Journal of Algorithms� ��������� ���� September �����

��
 J� Aspnes and M�P� Herlihy� Wait�free data structures in the asynchronous
pram model� In Proceedings of the 	nd Annual Symposium on Parallel

Algorithms and Architectures� pages ��� ���� July �����

��
 H� Attiya� D� Dolev� and N� Shavit� Bounded polynomial randomized con�
sensus� In Eighth ACM SIGACT�SIGOPS Symposium on Principles of

Distributed Computing� pages 	�� 	��� August �����

��
 A� Bar�Noy and D� Dolev� Shared memory vs� message�passing in an asyn�
chronous distributed environment� In Eighth ACM SIGACT�SIGOPS Sym�

posium on Principles of Distributed Computing� pages ��� ���� August
�����



REFERENCES ��

��
 M� Ben�Or� Another advantage of free choice� completely asynchronous
agreement protocols� In Second ACM SIGACT�SIGOPS Symposium on

Principles of Distributed Computing� pages 	� ��� August �����

���
 J�E� Burns and G�L� Peterson� Constructing multi�reader atomic values
from non�atomic values� In Proceedings of the Sixth ACM Symposium on

Principles of Distributed Computing� pages 			 	��� �����

���
 B� Chor� A� Israeli� and M� Li� On processor coordination using asyn�
chronous hardware� In Proceedings of the Sixth ACM Symposium on Prin�

ciples of Distributed Computing� pages �� ��� �����

��	
 D� Dolev� C� Dwork� and L Stockmeyer� On the minimal synchronism
needed for distributed consensus� Journal of the ACM� �������� ��� Jan�
uary �����

���
 C� Dwork� N� Lynch� and L Stockmeyer� Consensus in the presence of
partial synchrony� Journal of the ACM� ���	��		� �	�� April �����

���
 M� Fischer� N�A� Lynch� and M�S� Paterson� Impossibility of distributed
commit with one faulty process� Journal of the ACM� �	�	�� April �����

���
 M�P� Herlihy� A methodology for implementing highly concurrent data
structures� In Proceedings of the 	nd ACM SIGPLAN Symposium on Prin�

ciples and Practice of Parallel Programming� pages ��� 	��� March �����

���
 M�P� Herlihy� Impossibility results for asynchronous pram� In Proceedings

of the 
rd ACM Symposium on Parallel Architectures and Algorithms� July
����� to appear�

���
 M�P� Herlihy� Wait�free synchronization� ACM Transactions on Program�

ming Languages and Systems� �������	� ���� January �����

���
 M�P� Herlihy and J�M� Wing� Linearizability� A correctness condition for
concurrent objects� ACM Transactions on Programming Languages and

Systems� �	������� ��	� July �����

���
 C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multi�
processors with shared memory� In Fifth ACM SIGACT�SIGOPS Sympo�

sium on Principles of Distributed Computing� pages 	�� 		�� August �����

�	�
 L� Lamport� Concurrent reading and writing� Communications of the ACM�
	��������� ���� November �����

�	�
 L� Lamport� On interprocess communication� parts i and ii� Distributed

Computing� ���� ���� �����



REFERENCES ��

�		
 M�C� Loui and H�H� Abu�Amara� Advances in Computing Research� vol�
ume �� chapter Memory Requirements for Agreement Among Unreliable
Asynchronous Processes� pages ��� ���� JAI Press� �����

�	�
 N�A� Lynch and M�R� Tuttle� An introduction to input�output automata�
Technical Report MIT�LCS�TM����� MIT Laboratory for Computer Sci�
ence� November �����

�	�
 R� Newman�Wolfe� A protocol for wait�free� atomic� multi�reader shared
variables� In Proceedings of the Sixth ACM Symposium on Principles of

Distributed Computing� pages 	�	 	��� �����

�	�
 G�L� Peterson� Concurrent reading while writing� ACM Transactions on

Programming Languages and Systems� ������� ��� January �����

�	�
 S�A� Plotkin� Sticky bits and universality of consensus� In Proceedings of

the Eighth ACM Symposium on Principles of Distributed Computing� pages
��� ���� �����

�	�
 M� Saks� N� Shavit� and H� Woll� Optimal time randomized consensus �
making resilient algorithms fast in practice� In Proceedings of the ACM

Symposium on Discrete Algorithms� January �����

�	�
 A�K� Singh� J�H� Anderson� and M�G� Gouda� The elusive atomic register
revisited� In Proceedings of the Sixth ACM Symposium on Principles of

Distributed Computing� pages 	�� 		�� August �����



REFERENCES ��

��r� r
 is the range of the counter
m is any integer greater than 	r � �

inc�C�
v �� C�P 

v�value �� v�value�� �mod m�
C�P 
 �� v
end inc

dec�C�
v �� C�P 

v�value �� v�value�� �mod m�
C�P 
 �� v
end dec

read�C� returns�integer� signals�quit�
c �� scan�C�
g �� leadership graph from c
p �� P 
s most recent vector in g
if p �
 leader�g�
then signal quit
end if

v �� �
for Q in � � � �n� � do

q �� Q
s most recent vector in g
if q 
 leader�g�
then v �� v � c�Q
�value
end if

end for

return v� where �r � v� � r
and v� � v �mod m�

end read

Figure �� Recycling Counter Implementation



REFERENCES ��

advance�G� P � returns�round�vector�
r �� new round�vector
g �� scan�G�
p �� P 
s most recent vector in g
for Q in ���n� � do

q �� Q
s most recent vector in g
select

case p�Q
 � q�P 
 do r�Q
 �� q�P 

case p�Q
 � q�P 
 do r�Q
 �� p�Q
 � �
case p�Q
 � q�P 
 do r�Q
 �� p�Q

end select

end for

return r
end advance

Figure �� The Advance Procedure

RMW�f � function� returns�boolean�
toggle �� � A�P 
�toggle
A�P 
 �� �toggle� toggle� function� f 

for i in ���	 do

last �� latest�G�
prefer �� make�prefer�last�winner�
decision �� consensus�prefer�
G�P 
 �� �past� G�P 
�present

winner� decision�
present� advance�G� P ��
counters� ��� � � � � �



end for

return latest�G��winner�response�P 

end RMW

Figure �� Read�Modify�Write



REFERENCES 	�

make�prefer�old� preference� returns�preference�
new �� copy�old�
a �� scan�A�
for Q in � � � �n� � do

if a�Q
�toggle �� old�horizon�Q

then new�horizon�Q
 �� � new�horizon�Q


new�response�Q
 �� new�value
new�value �� a�Q
�function�new�value�

end if

end for

return new
end make�prefer

Figure �� The Make�Prefer Operation

compare�swap�old� new� value� returns�boolean�
for i in ���	 do

last �� latest�G�
if last�value �� old
then return false

end if

prefer �� �value� new� horizon� last�horizon

toggle �� � last�horizon�P 

prefer�horizon�P 
 �� toggle
decision �� consensus�prefer�
G�P 
 �� �past� G�P 
�present�

winner� decision�
present� advance�G� P �


if latest�G��winner�horizon�P 
 � toggle
then return true

end if

end for

return false

end compare�swap

Figure �� Compare�Swap Construction


