
Providing High Availability using
Lazy Replication

Rivka Lawn1
, Barbara Liskov'',

Liuba Shrira", Sanjay Ghemawat''
Digital Equipment Corporation

Cambridge Research Lab

CRL 91/4

Abstract

September 1, 1991

I'-I')L/:?r I\[~CH LIBRARY
F,;~:; I I -} ,I\! i:~.tr~ ,~': I

To provide high availability for services such as mail or bulletin boards,

data must be replicated. One way to guarantee consistency of replicated

data is to force service operations to occur in the same order at all sites,

but this approach is expensive. For some applications a weaker causal order

operation order can preserve consistency while providing better performance.

This paper describes a new way of implementing causal operations. Our

technique also supports two other kinds of operations: operations that are

totally ordered with respect to one another, and operations that are totally

ordered with respect to all other operations. The method performs well

in terms of response time, operation processing capacity, amount of stored

state, and number and size of messages. it performs better than replication

methods based on reliable multicast techniques.

Keywords: high-availability, replication, client-server

@Digital Equipment Corporation 1991. All rights reserved.

lAddress: DEC, Cambridge Research Lab.
2Address: MIT. Laboratorv for Computer Science.

Table of Contents
1. Introduction
2. The Environment
3. The Replicated Service

3.1. Causal Operations
3.1.1. Implementation Overview
3.1.2. Processing at Each Replica
3.1.3. Optimizations
3.1.4. Analysis

3.2. Other Operation Types
3.2.1. Implementation or Forced Updates
3.2.2. Implementation or Immediate Updates

4. Performance
4.1. Normal case operation
4.2. Reliability and Availability

S. Scalability
5.1. Large Services
5.2. Multiple Services

6. Comparison with Other Work
7. Conclusion

1
2
3
3
5
8

10
11
16
17
18
19
19
22
24
25
26
26
28

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:

Figure 4-3:

ii

List of Figures
Specification of the Causal Operations Service.
The state of a replica.
Specification of the Service.
Number of messages for different kinds of operations.
Capacity of a Single Replica. This figure shows the average response time as
a function of operation arrival rate for selected operation mixes.
Capacity of the Unreplicated System.

4
6

16
20
22

23

1

1. Introduction
Many computer-based services must be highly available: they should be accessible with high probabilitydespite

site crashes and network failures. To achieve availability, the server's state must be replicated. One way to

guarantee consistency of replicatedstate is to force service operations to occur in the same order at all sites, but this

approach is expensive. For some applications it is possible to preserve consistency with a weaker, causal

ordering [18], leading to better performance. This paper describesa new technique that permits applications to take

advantage of the weaker ordering. An operation call is executed at just one replica; updating of other replicas

happens by lazy exchange of "gossip" messages- hence the name "lazy replication". Nevertheless, the method

guarantees that operations that are causally related are guaranteed to occur in the causal order. Furthermore, the

replicatedservice continuesto provide service in spite of node failures and networkpartitions.

We have applied the methodto a number of applications, including detectingorphans in a distributedsystem [23],

locating movable objects in a distributed system [15], garbage collection of a distributed heap [17,22], deletion of

unused versions in a hybrid concmrency control scheme [36], and deadlock detection in a distributed transaction

system [9]. Another systemthat can benefit from causally-ordered operations is the familiar electronicmail system.

Normally. the delivery order of mail messages sent by different clients to different recipients, or even to the same

recipient, is unimportant, as is the deliveryorder of messages sent by a single client to differentrecipients. However

suppose client cl sends a message to client c2 and then a later messageto c3 that refers to information in the earlier

message. If, as a result of reading cl's message,c3 sends an inquirymessage to c2, c3 would expect its message to

be delivered to c2 after cl's message. Therefore,read and send mail operationsneed to be causallyordered.

Applications that use causally-ordered operations may occasionaly require a stronger ordering. Our method

allows this. Each operation has an ordering type; in addition to the causal operations, there are forced and

immediate operations. Forcedoperations are performed in the same order (relative to one another) at all replicas.

Their orderingrelative to causal operationsmay differ at differentreplicasbut it is consistentwith the causal order at

all replicas. They would be useful in the mail system to guarantee that if two clients are attemptingto add the same

user-name on behalf of two different users simultaneously, only one would succeed. Immediate operations are

performedat all replicas in the same order relative to all other operations. They have the effect of being performed

immediately when the operation returns. and are ordered consistently with external events [12]. They would be

useful to remove an individual from a classified mailing-list "at once", so that no messages addressed to that list

would be delivered to that userafter the remove operation returns.

Our method makes it easy to construct and use highly-available applications. The user of a replicated application

just invokesoperationsand can ignore replicationand distribution,and also the ordering types of the operations. To

provide a highly-available service, an application programmer supplies a non-replicated implementation;

complicationsdue to distribution and replicationcan be ignored. In addition the programmerdefines the categories

of the different operations (e.g., for a mail service the designer would indicate that send_mail and read_mail are

causal, add_user and delete_user are forced, and delete_aconce is immediate). To determine the operation

categories, he or she can make use of techniques developed for determining permissible

concurrency[14, 35, 32, 33].

2

Our method does not delay updateoperations(such as send_mail),and typicallyprovidesthe response to a query

(such as read_mail) in one message round trip. It will perform well in terms of response time, amount of stored

state, number of messages, and availability in the presence of node and communication failures provided most

update operations are causal. Forced operations require more messages than causal operations; immediate

operationsrequire even more messagesand in additioncan temporarily slow responses to queries. However, these

operations will have little impact on overall system performance provided they are used infrequently. This is the

case, e.g., in the mail systemwhere sendingand readingmail is much morefrequent than addingor removinga user.

Our systemcan also be instantiated with only forcedoperations. In this case it will providethe same order for all

updates at all replicas, and will perform similarly to other replication teehniques that guarantee this property (e.g.,

voting [11] or primary copy [30]). Our method generalizes these other teehniques, however, because it allows

queries to be performedon staledata, whileensuringthat the information observedrespectscausality.

The idea of allowingan application to make use of operationswith differingorderingrequirements appears in the

work on ISIS [4] and Psync [27], and in fact we support the same three orders as ISIS. These systems provide a

reliable multicast mechanism that allows processes within a processgroup consistingof both clients and servers to

communicate; a possible application of the mechanism is a replicated service. Our teehnique is just a replication

method. While it is less general than a reliable multicast mechanism, it is better suited to providing replicated

services that are distinct from clients and as a result providesbetter performance: It requiresmany fewer messages

thanthe process-group approach,the messagesare smaller,and it can toleratenetworkpartitions.

Our implementation technique is basedon the gossipapproach first introduced by Fischerand Michaels [10],and

later enhancedin [37]and our own earlier work [22, 16]. We have extendedthe earlier work in two importantways:

by supporting causal ordering for updatesas well as queries and by encorporating forced and immediateoperations

to make a moregenerallyapplicablemethod. The implementation of causal operations is novel and so is the method

for combiningthe three types of operations.

The rest of the paper is organized as follows. Section 2 describes the assumptions about the environmenL

Section 3 describes the implementation teehnique. Section4 discussesthe performance, reliability,and availability

of the teehnique; it also describes a prototype implementation and gives some performance results that support the

performance expectations. Section 5 discusses the scalability of the method. Section 6 discusses related work. We

concludewitha discussionof what we have accomplished.

2. The Environment
Lazy replication is intended to be used in an environment in which individualcomputers, or nodes, are connected

by a communication network. The networkhas an arbitrary topology; for example, it mightconsist of a numberof

local area nets connected via gateways to a long-haul network. Both the nodes and the network may fail, but we

assume the failures are not Byzantine. The nodes are fail-stop processors O. The network can partition, and

messagescan be lost, delayed, duplicated, and deliveredout of order. The configuration of the system can change,

that is, nodescan leaveand join the networkat any time.

3

We assume that nodes have loosely synchronized clocks. The correctness of our protocol does not depend on

clocks being synchronized, but performance can suffer when clocks drift too far apart. There are protocols that with

low cost synchronize clocks in geographically distributed networks, e.g., the N1P protocol [26] provides a clock

skew on the order of a hundred milliseconds, which is satisfactory for our purposes.

3. The Replicated Service
A replicated application is implemented by a number of replicas running at different nodes in a network; we refer

to the group of replicas as the service. To hide the details of the replication from the clients, our system provides in

addition some front end code that runs at the client's node. To call an operation, a client makes a local call to the

front end, which selects one of the replicas of the service and makes a remote call to it requesting it to perform the

operation. When a replica receives a call message, it executes the requested operation and sends a reply message

back to the front end. Replicas communicate new infonnation (e.g., about updates) among themselves by lazily

exchanging gossip messages.

As mentioned earlier, there are two kinds of operations: update operations modify but do not observe the

application state, while query operations observe the state but do not modify it. (Operations that both update and

observe the state can be treated as an update followed by a query.) When requested to perform an update, the front

end returns to the client immediately and communicates with the service in the background. To perform a query, the

front end waits for the response froma replica, and then returns the result to the client

We assume there is a fixed number of replicas residing at fixed locations and that front ends and replicas know

how to find replicas; a technique for reconftguring services (i.e., adding or removing replicas) is described in [15].

We also assume that replicas eventually recover from crashes; Section 4.2 discusses how this happens.

In this section we describe how the front end and service replicas together implement the three types of

operations. Section 3.1 describes the implementation of causal operations; it includes a speciftcation of the service

interface and a proof that the replicas implement this speciftcation. Section 3.2 extends the implementation to

support the other two types of operations.

3.1. Causal Operations

In our method, the front end informs the replicas about the causal ordering of operations. Every reply message for

an update operation contains a unique identifier, uid, that names that invocation. In addition, every (query and

update) operation 0 takes a set of uids as an argument; such a set is called a label.2 The label identifies the updates

whose execution must precede the execution of o. In the mail service, for example, the front end can indicate that

one send_mail must precede another by including the uid of the first send_mail in the label passed to the second.

Finally, a query operation returns a value and also a label that identifies the updates reflected in the value; this label

is a superset of the argument label, ensuring that every update that must have preceded the query is reflected in the

result. Service replicas thus perform the following operations:

2A concept similarto a labeloccun in [4]but hasnot been implemented as far as we know.

4

update (prev: label. op: op) returns (uid: uid)
query (prev: label. op: op) returns (newl: label. value:value)

whereop describes that actual operation to be performed(i.e.•gives its name and arguments).

A specification of the service for causal operations is given in Figure 3-1. Since the client (via the front end) is

able to observe the state resulting from execution of updatesonly by executing queries. the specification relates the

updatesand their dependency constraints to what can be observedby queries. We view an executionof a service as

a sequence of events. one event for each update and query operationperformed by a front end on behalf of a client.

At some point between when an operation is called and when it returns. an event for it is appended to the sequence.

An event records the arguments and results of its operation. In a query event q, q.prev is the input label. q.op

defines the query operation.q.value is the result value. and q.newl is the result label; for update u. u.prev is the input

label. u.op defmes the update operation. and u.uid is the uid assigned by the service. If e is an event in execution

sequenceE. P(e) denotes the set of events precedinge in E. Also. for a set S of events. S.labeldenotes the set of uids

of updateevents in S.

Let q be a query. Then

1. q.newl c P(q)label.

2. q.prev ~ q.newl.

3. u.uid E q.newl ~ for all updates v S.L deptu, v), v.uid E q.newl.

4. q.value = q.op (Val (q.newl).

Figure 3-1: Specification of the Causal OperationsService.

The first clause of the specificationstates thatall updates identifiedby the label correspond to calls made by front

ends. The second clause states that the label returned by a replica identifies all required updatesplus possibly some

additional ones. The third clause states that the returned label is dependency complete: if some updateoperation u

is identified by the label. then so is every update thatu depends on. An update u depends on an update v if it is

constrained to be after v:

dep(u, v) == (v.uid E u.prev)

The dependencyrelationdep is acyclic becausefront ends do not create uids.

The fourth clause defmes the relationshipbetween the value and the label returned by a query: the result returned

must be computed by applying the query q.op to the state Val arrived at ;by performing the updates identifiedby the

label in an order consistentwith the dependency relation. For label L,

Val(L)= compute (init, (u I u.uid E L })

where "init" is the initial state of the service,and compute performs the updates identifiedby L in an order consistent

with the dependencyorder:

dep (u, v) ~ v.op is executed before u.op.

5

Note that operations not constmined by the dependencyrelation can be performed in an arbitrary order in computing

Val. Note also that this clause guarantees thatif the returned label is used later as input to another query. the result

of that query will reflect the effects of all updatesobserved in the earlier query.

The front end guaranteescausality for clientsas follows:
1. Client calls to the service. The front end maintainsa label for the service. Whenever it makes a call to

a service replica. it sends this label in the call message. When it receives a reply to this call. it merges
the uid or label in the reply with its label by performinga union of the two sets.

2. Client-to-elient communication. The front end intercepts all messages exchanged between its client
and other clients. When the client sendsa message. the front ends adds its label to the message. When
the client receives a message. the front end merges the label in the message with its label.

The resulting order may be stronger than needed. For example. if client CI communicates with C2 without

exposing any information about its earlier calls on service operations. it is not necessary to order C2's later calls

after CI's earlier ones. Our method allows a sophisticatedclient to use uids and labels directly to implement the

causality that really occurs;we assume in the rest of the paper. however. that all client calls go through the front end.

During normal operationa front end will always contact the same "preferred"replica. However. if the response is

slow. it might send the request to a different replica or send it to several replicas in parallel. In addition. messages

may be duplicatedby the network. In spite of these duplicates.update operations must be performedat mostonce at

each replica. To allow the service to recognize multiple requests for the same update. the front end associates a

unique call identifier.or cid, with each update. That cid is included in every message sent by the front end on behalf

of that update.

3.1.1. Implementation Overview

For the method to be efficient. we need a compact representation for labels and a fast way to determinewhen an

operation is ready to be executed. In addition. replicas must be able to generate uids independently. All these

propertiesare provided by a single mechanism.the multipart timestamp. A multipart timestamp t is a vector

t= <tl •...• ~>

where n is the number of replicas in the service. Each part is a nonnegative integer counter. and the initial (zero)

timestampcontains zero in each part. Timestampsare partially ordered in the obvious way:

t S s :; (t1 S sl 1\ ••• 1\ ~ S ~)

Two timestamps t and s are merged by taking their component-wise maximum. (Multipart timestamps were first

used in Locus [31].andlater in [22. 16. 13].)

Both uids and labels are represented by multipart timestamps. Every update operation is assigned a unique

multipart timestampas its uid. A label is created by merging timestamps;a label timestamp t identifies the updates

whose timestamps are less than or equal to t. The dependency relation is implementedas follows: if an update v is

identified by u.prev then u depends on v. Furthermore. if t and r are two timestamps that represent labels. t S t'

implies that the label representedby t identifiesa subset of the updates identified by t' •

A replica receives callmessages from front ends and also gossip messages from other replicas. When a replica

receives a call message for an update it hasn't seen before. it processes that update by assigning it a timestampand

6

appending infonnation about it to its log. The log also contains infonnation about updates that were processed at

other replicas and propagated to this replica in gossip messages. A replica maintains a local timestamp, rep_Is, that

identifies the set of records in the node's log and thus expresses theextent of the replica's knowledge about updates.

The replica increments its part of the timestamp each time it processes an update call message; therefore, the value

of the replica's part of rep_IS corresponds to the number of updates it has processed. It increments other parts of

rep_ISwhen it receives gossip from other replicas about messages it has not seen yet. Thevalue of any other part i

of rep_IS counts the number of updates processed at replica i that have propagated to thisreplica via gossip.

A replica executes updates in dependency order and maintains its current state in val. When an update is

executed, its uid timestamp is merged into the timestamp vaUs, which is used to determine whether an update or

query is ready to execute; an operations op is ready if its label op.prev ~ vatu. The replica keeps track of the cids

of updates that have been executed in the set inval, and uses the infonnation to avoid duplicate executions of

updates. Since the same update may be assigned more than one uid timestamp (because the front end sent the

update to several replicas), the timestamps of duplicates for an update are merged into vaUs. In this way we can

honor the dependency relation no matter which of the duplicates a front end knows about (and therefore includes its

uid in future labels).

Figure 3-2 summarizes the state at a replica. (In the figure, I.) denotes a set, [] denotes a sequence, oneof means

a tagged union with component tags and types as indicated, and < > denotes a record, with components and types as

indicated.) In addition to information about updates, the log also contains information about acks; acks are

discussed below.

node: int
log: (log-record)
rep_ts: mpts
val: value
val_ts:mpts
inval: (cid}
ts_table: [mpts]

where

% replica's id.
% replica's log
% replica's multipart timestamp
% replica's view of service state
% timestamp associated with val
% updates that participated in computing val
% ts_table(p)= latest multipart timestamp received from p

log-record = < msg: op-type, mode: mt, 18:mpts >
op-type = oneof [update: < prev: mpts, op: op, cid: cid, time: time >, ack: < cid: cid, time: time >]
mpts= [int]

Figure 3-2: The state of a replica.

The description above has ignored two important implementation issues, controlling the size of the log and the

size of inval. An update record can be discarded from the log as soon as it is known everywhere and has been

reflected in val. In fact. if an update is known to be known everywhere. it will be ready to be executed and therefore

will be reflected in val. for the following reason. A replica knows some update record u is known everywhere if it

has received gossip messages containing u from all other replicas. Each gossip message includes enough of the

sender's log to guarantee that when the receiver receives record u from replica i, it has also received (either in this

7

gossip message or an earlier one) all records processed at i before u. Therefore, if a replica has heard about u from

all other replicas, it will know about all updates that u depends on, since these must have been performed before u

(because of the constrainton front ends not to create uids). Therefore, u will be ready to execute.

The table ts_table is used to determine whether a log record is known everywhere. Every gossip message

contains the timestampof its sender; ts_table(k) contains the largest timestamp this replica has received from replica

k. Note that the current timestamp of replica k must be at least as large as the one stored for it in IS_table. If

tS...;table(k)j = t at replica t. then replica i knows that replica k has learned of the first t update records created by

replica j. Every record r contains the identity of the replica that created it in field r.node. Replica i can remove

update record r from its log when it knows that r has been received by every replica, i.e., when

isknown(r) == 'tJreplicas j, ts_table(j)r.node ~ r.tsr.node
holds at t.

The second implementation issue is controlling the size of inval. It is safe to discard acid c from inval only if the

replica will never attempt to apply c's update to val in the future. Such a guarantee requires an upper bound on

when messagescontaininginformationabout c's updatecan arrive at the replica.

A front end will keep sending messages for an update until it receives a reply. Since reply messagescan be lost,

the replicas have no way of knowing when the front end will stop sending these messages unless it informs them.

The front end does this by sending an acknowledgmentmessage ack containing the cid of the update to one or more

of the replicas. In most applications,separateack messageswill not be needed; instead, acks can be piggybackedon

future calls. Acks are added to the log when they arrive at a replica and are propagated to other replicas in gossip

the same way updatesare propagated. (The case of volatile clients that crash before their acknowledgements reach

the replicas can be handled by adding client crashcounts to update messages and propagating crash information to

replicas; a higher crash count would serve as an ack for all updates from that client with lower crash counts.)

Even though a replica has received an ack, it might still receive a message for the ack's update since the network

can deliver messages out of order. We deal with late messages by having each ack and update message contain the

time at which it was created. Each time the front end sends an update or ack message, it includes in the message the

current time of its node's clock; note that if multiple messages are sent for an update, they will contain different

times. The time in an ack must be greater than or equal to the time in any of the messages for the ack's update. An

update message m is discarded because it is "late" if

m.time + ~ < the time of the replica's clock

where ~ is greater than the anticipatednetworkdelay. Each ack a is kept at least until

a.time + ~ < the time of the replica's clock

After this time any messages for the ack's update will be discardedbecause they are late.

A replica can discard acid c from inval as soon as an ack for c's update is in the log and all records for c's update

have been discarded from the log. The former condition guarantees a duplicatecall message for c' s update will not

be accepted; the latter guarantees a duplicate will not be accepted from gossip (see Section 3.1.4 for a proof). A

replica can discard ack a from the log once a is known everywhere, the cid of a's update has been discarded from

8

inval, and all call messages for a's update are guaranteed to be lateat the replica. Note that we rely here on clocks

being monotonic. Typically clocks are monotonic both while nodes are up and across crashes. If they need to be

adjusted this is done by slowing them down or speeding them up. Also, clocks are usually stable; if not the clock

valuecan be saved to stablestorage [20] periodicallyand recoveredafter a crash.3

For the system to run efficiently, clocks of server and client nodes should be loosely synchronizedwith a skew

bounded by some E. Synchronized clocks are not needed for correctness, but without them certain suboptimal

situationscan arise. For example, if a client node's clock is slow, its messages may be discarded even though it just

sent them. The delay l) must be chosen to accommodate both the anticipated network delay and the clock skew.

The value for this parameter can be as large as needed because the penalty of choosing a large delay only affects

how long servers rememberacks.

It may seem that our relianceon synchronized clocks affects the availabilityof the system. A problemcould arise

only if a node's clock fails, the node is unable to carry out the clock synchronization protocol because of

communication problems,and yet the node is able to communicate with other nodes in the system. Such a situation

is extremelyunlikely.

3.1.2. Processing at Each Replica

This section describes the processing of each kind of message. Initially, rep_ts and vaUs are zero timestamps,

ts_table contains all zero timestamps, val has the initial value, and the log and inva! are empty.

Processing an update message:

Replica i discards an update message u from a front end if it is late (i,e., if usime + l) < the time of the replica's

clock) or it is a duplicate(i.e., its cid c is in inval or a record r such that r.cid = u.cid is in the log). If the messageis

not discarded, the replicaperforms the followingactions:

I. Advancesits local timestamprep_ts by incrementingits ith part by one while leavingall the other parts
unchanged

2. Comfutes the timestamp for the update, ts, by replacing the ith part of the input argument u.prev with
the it part of rep_ts.

3. Constructs the updaterecord r associatedwith this executionof the update,

r := makeUpdateRecord(u, i, ts)

and adds it to the local log.

4. Executes u.op if all the updates that u depends on have already been incorporated into val. Ifu.prev~
val_ts,then:

val:= apply(val, u.op) % performthe op
val ts:= merge(val ts, r.ts)
inval := invalu {r.cid }

5. Returns the update's timestampr.ts in a reply message.

The rep_ts and the timestamp r.ts assigned to u are not necessarily comparable. For example, u may depend on

3Writes to stable storagecan be infrequent;after a crash,a node must waituntil its clock is later than thetime on slAble storage+ P, wherePis
a boundon howfrequently writesto stablestonge happen,beforecommunicating with replicas.

9

update u', which happenedat another replicaj, and which this replica does not know about yet, In this case,r.tsj >

rep_tsi" In addition, this replica may know about some other updateu" that u does not depend on, e.g., u" happened

at replicak, and therefore,r.tsk < rep_15k,

Processingof updates (and other messages) can be sped up by maintaining both the log and inval as hash tables

hashedon the cid.

Processing a query message:

When replica i receives a query message q, it needs to fmd out whether it has all the information required by the

query's input label, q.prev. Since val ts identifies all the updates that are reflected in val, the replica compares

q.prev with val_ts. If q.prev ~ vaUs, it applies q.op to val and returns the result and val_ts. Otherwise, it waits

since it needs more information. It can either wait for gossip messages from the other replicas or it might send a

request to another replica to elicit the information. The two timestamps q.prev and val_ts can be comparedpart by

part to determinewhichreplicashave the missinginformation.

Processing an ack message:

A replica processesan ack as follows:

1. Advancesits local timestamp rep_tsby incrementing the ith part of the timestamp by one while leaving
all the other parts unchanged.

2. Constructsthe ack record r associatedwith this executionof the ack:

r := makeAckRecord(a, i, rep_ts)

and adds it to the local log.

3. Sendsa reply messageto the frontend.

Note thatack recordsdo notenter inval.

Processing a gossip message:

A gossip message contains m.ts, the sender's timestamp, and m.new, the sender's log. The processing of the

message consistsof three activities: merging the log in the messagewith the local log, computingthe local view of

the service state based on the new information, and discardingrecordsfrom the log and from inval.

When replica i receives a gossip message m from replica j, it proceeds as follows: If m.ts ~ j's timestamp in

ts_table, i discards the messagesince it is old. Otherwise, it continuesas follows:
1. Adds the new information in the messageto the replica's log:

log := log u {r E m.new I -,(r.ts~ rep_ts) }

2. Merges the replica's timestamp with the timestamp in the message so that rep_ts reflects the
information known at the replica:

rep_ts:= merge(rep_ts, m.ts)

3. Insertsall the updaterecords that are ready to be added to the value into the set comp:

comp := (r E log I type(r) = update/\ r.prev ~ rep_ts }

4. Computesthe new valueof the object:

whlle compis not empty do
select r from compS.L 3 no r' E comps.t, r' .ts~ r.prev

10

comp:« comp- {r }
if r.cid eo invalthen

val := apply(val, r.op)
inval := invaiu {r.cid }

vaUs:= merge(val_ts, r.ts)

5. Updates ts_table:

ts_table(j) := m.ts

6. Discards updaterecords from the log if they have been received by all replicas:

log := log- (r E log I type(r) = update A isknown(r) }

7. Discards records from inval if an ack for the update is in the log and there is no update record for that
update in the log:

inval := inval- (c E inval13 a E log S.L type(a) =ack A acid =CA.

3 no r' E logS.L type(r') = update A r' .cid= c }

8. Discards ack records from the log if they are known everywhere and sufficient time has passed and
there is no update for that ack in inval:

log := log- (a E log I type(a) = ack A isknown(a)A a.time + a< replica local time 1\

3 no c E invals.t, c = a.cid }

The new value can becomputedfaster by first sortingcompsuch that recordr is earlier than record s if rss S; s.prev.

Since the decision to delete records from the log uses informationfrom all other replicas, there may be a problem

during a networkpartition. For example, supposea partition divided the networkinto sides A and B and r is known

at all replicas in A and also at all replicas in B. If no replica in A knows that r is known in B, there is nothing we can

do. However, as suggested in [37], progress can be made if replicas include their copy of ts_table in gossip

messagesand receiversmerge this information with their own ts_tables. In this way, each replica would get a more

recent view of what other nodes know.

3.1.3. Optimizations

The most importantoptimizations are those that reduce the size and numberof messagesand the processing time

at the servers.

The size of gossip messagescan be reduced by not sendingrecords the receiver already knows. Furthermore, it is

not necessary to send information that another replica is likely to send. For example a sender might include in

gossip only the records it created in response to requestsit received from the client that the recipientdoesn't know;a

replica could request other records if necessary,e.g., if the originatingreplica isn't communicating with it right now.

The number of gossip messages can be reduced substantially by arranging the replicas in a communication

structuresuch as a spanning tree. Each replica wouldsend gossip only to its neighbors. If there is a failure (crash or

partition),the structurewould be reconstitutedby carryingout a view changealgorithm [8, 7]. This approach causes

informationto propagatemore slowly than having replicasgossip with all other replicas.

Communication between the front end and the service can be made more efficient by taking advantageof the fact

that a front end typicallycommunicates with the same replica This communication could be done over a streaming

connectionsuch as TCP [tep]or Mercury[24]. In this case, the front end need not wait to receive the uid timestamp

11

from an update it requested before sending the next operation (query or update) to the replica; instead, the replica

receiving the request can merge that uid with the timestamp of the new request before doing the operation.

Furthermore, the new request needn't contain a timestamp at all unless the front end has intercepteda message sent

to its client from another client and furthermore that message caused the front end's timestamp to increase. In

essence, the replica keeps a copy of the front end's timestamp, and the front end only needs to send its timestamp if

it might not beless than or equalto the replica's copy. (A similar optimization is used in ISIS [3].)

Streaming does not cause responses to queries to be delayed. Client-to-client communication may be delayed,

however; the front end cannot send on a message from its client to another client until it knows the timestampfor the

most recent update requested by its client The delay will occur only when the last operation was an update, and

furthermore, the response from the replica has not yet arrived.

A further optimizationis possible when using streaming: operations from the front end can be batched if they are

small. (Mercury streams [24] do this automatically.) A message would be sent from the front end when the client

does a query, when the buffer is full, or when its client is sending a message to another client This technique will

cause an additional delay only in the latter case; the front end may need to flush the stream and wait for a reply

before sending on the client message. Note that the reply from the replica need contain only one timestamp- the

one that would have been included in the reply to the last request in the batch. Batching will be most effective in

applications containing a large number of updates relative to queries, or when clients are able to continue doing

other work while a query is being processed(so that queries can be hatched too).

The saving in timestamps that is possible with streaming can also apply to information in the log and in gossip.

For example, a sequence of updates from a single front end can be associated with the timestampof the first update

in the sequence; the receiving replicacan compute the timestampsfor the other updatesby incrementingthe sender's

part of the timestampfor each of them.

Our method requires updates to be executed at all replicas. An alternative is to use value logging [value-log]. in

which a description of the effect of an update is recanted in the log instead of the call with its arguments. Value

logging will be effective if the amount of information to be logged is small and the cost of incorporating that

information into val is less than performing the update. (The b'adeoffhere is similar to the one between value and

operation logging in logs used for crash recovery.)

3.1.4. Analysis

In this section we argue informally that the implementation is correct and makes progress, and that entries are

removed from the log and inval eventuaIly. The discussion considers the protocol described in Section 3.1.2 and

ignores the optimizationsdescribed in Section 3.1.3.

The specification in Figure 3-1 defines a centralized service in which each update is performed only once and is

assigned a single uid. However, the implementation is distributed and a single update may be processed several

times at the different replicas and may thus be assigned several different uids. We will show that in spite of the

duplicates, the implementationsatisfies the specification, Le., as far as client can tell from the information received

12

fromqueries, each update is executedonly once.

The implementation uses timestamps to represent both uids and labels. As far as uids are concerned, we require

only uniqueness,and this is provided by the way the code assigns timestamps to updates. Several timestamps may

correspond to the same update; these correspond to duplicate requests that arrived at different replicas and were

assigned different timestamps. For labels, timestampsprovide a compact way of representinga set of uids: a label

timestampt identifiesan updateu if there exists a record r for u such that r.ts :5: t.

Correctness

We now consider the four clauses of the specification. The first clause requires that only updates requested by

front ends are executed by the service. It follows trivially from the code of the protocol, which only creates update

timestamps in response to updatemessagesfrom front ends.

The second clause requires that the updates identified by the query input label q.prev also be identified by the

query output label q.newl. This clause follows immediately from the timestamp implementation of labels and from

the query code, whichreturnsonly when q.prev :5: valfs.

The third clause requires that the label q.newl be dependency complete. This clause follows from the timestamp

implementation of uids and labels and from the update processingcode, which guaranteesthat if u dependson v then

there exists a record r for v such that r.ts :5: u.prev and therefore the set of updates identified by a label timestampis

triviallydependencycomplete.

The fourth clause of the specificationties together the label q.newland the value q.value returned by the query. It

requires that q.value be the result of applying the query q.op to the state derived by evaluating the set of updates

identified by q.newl in an order consistent with the dependency relation. Before proceeding with the proof of this

clause, we establish several useful facts about the implementation. Each fact is stated as a lemma that refers to the

state variables of a single replica. We assume in the proofs that each operation is performed atomically at a single

replicaand also that gossip is processedina single atomic step.

Lemma 1: After an ack record a enters the log at a replica, no duplicate of a's update will be accepted
from the front end or networkat that replica.

Proof: By inspection of the code we know that after an ackrecord a enters a replica's log, the following
holds: a is in the log or a left the log at a point when a.time + ~ < the time of the replica's clock. If a
message for a's update arrives later, it will be discarded by the update processingcode if a is in the log,

and otherwise it will be rejected because it is late, assuming the front end guarantees that an update

messagecontainsan earlier time than any ack messagefor its update,and the replica's clock is monotonic.

o

Lemma 2: After an update record r enters the log at a replica, no duplicate of the update will be
accepted from the front end or networkat that replica.

Proof: By inspection of the code we know that after a record r enters the log at a replica, the following

13

holds: r is in the log, or r' s cid has entered tnval, or r' s cid has left inval but at that point an ack for r was

in the log. The update processing code and Lemma 1 ensure that these conditions are sufficient to

eliminate all future duplicatesof r, whether these duplicatesare created by the network or by the front end.

o

Lemma 3: Replica i has received the first n records processed at replica k if and only if the k!h part of
replica i's timestampis greater than or equal to n, i.e., rep_'Slc~ n,

Proof: First note that part i of replica i's timestamp rep_'s counts the number of front end update

messages processed at i that entered i's log. A record in i's log is transmitted by gossip to other replicas

until it is deleted from the log. A record r is deleted from the log only when isknown(r) holds at i, i.e.,

when i knows r has reached all other replicas. Therefore, each replica knows a prefix of every other

replica's log. Since the gossip timestamp is merged into the timestampof the receiving replica, it is easy

to see that part j, i *' j, of replica i's timestampcounts the number of records processed at j that have been
brought by gossip to replica t. 0

Lemma 4: If isknowmr) holds at replica i, all duplicate records for r' s update have arrived at i:

Proof: Recall that a replica i knows that all replicas have received an update record r when it has

received a gossip messagecontaining r from each replica. But at this point it has also received from each

replica j all the records processed by j before receiving r. Therefore, at this point it has received all

duplicates of r that were processed at other replicas before they received r. By Lemma 2, no duplicatewill

be accepted from the front end or network at a replica after receiving r. Therefore, i must have received

all duplicates of r at this point 0

Lemma 5: If isknown(r) holds at replica i, all duplicate recordsd for r' s updatehave d.IS S repfs.
Proof: By Lemma 4 we know that all duplicates of r' s update " have arrived at this replica.

Furthermore, records for all updates that " depends on are also at this replica because front ends do not

manufacture uids: u.prevcan only contain uids generated by the service, so any update whose timestamp

was merged into u.prev must have been processed at a replica before that replica knew about update

record r, and therefore when all replicas have sent gossip containing r to replica t, they have also sent
records for all updates that" depends on. Now, let r' be either r, a duplicate of r. or a record for an update

that" depends on and let k be the replica where r' was created. By Lemma 3, we know thatrep_tslc~

r' .tsk: Since this is true for all such r' , rep_ts ~ d.lS for all duplicatesd. 0

Lemma 6: Whena record r for an updateu is deleted from the log, " is reflected in the value.

Proof: When r is deleted from the log at replica i, isknown(r) holds at i and therefore by Lemma 5, r.ts
S rep_ts. This implies that r.prev < rep_'s. Therefore r enters the set compand either" is executed,or r's

cid is in inval and therefore" was executedearlier. 0

Lemma 7: At any replica val_tsS rep_ts.

Proof: It is easy to see that the claim holds initially. It is preserved by the update processing code

because if an update is executed, only field i of vaUs changes and vaUSj = rep_'Sj' It is preserved by

gossip processing because for each record r in comp,r.prevS rep_ts. Since r.ts differs from r.prev only in

14

fieldj, where r was processed atj, and since r is known locally, r.tsj:::; rep_tsj by Lemma 3. 0

Lemma 8: For any update u, if there exists a record r for u s.t. r.ts :::; rep ts, u is reflected in the value.

Proof: The proof is inductive. The basis step is trivial since there is no record with a zero timestamp.

Assume the claim holds up to some step in the computation and consider the next time rep_ts is modified.

Let r be an update record for u s.t. r.ts s; rep ts after that step. We need to show that u is reflected in the

value. First, consider a gossip processing step. Since r.ts :::; rep_ts,we know u.prev :::; rep_ts. If r is in the

log, it enters comp and either u is executed now or u's cid is in the set inval and therefore u is already

reflected in the value. If r is not in the log, then r.ts :::; rep_'s implies (by Lemma 3) that r was deleted

from the log and by Lemma 6, u is already reflected in the value. Therefore we have shown that u is

reflected in the value after a gossip processing step. Now consider an update processing step. If r.ts :::;
rep_ts before this step, the claim holds by the induction assumption. Otherwise, we have ~(r.ts :::; rep_'s)
before this step and r.ts :::; rep_ts after the message was processed. In the processing of an update, replica

i's timestamp rep_ts increases by one: in part i with the other parts remaining unchanged. Therefore, the

record being created in this step must be r and furthermore u.prev :::; rep_'s before this step occurred.

Therefore, any v that u depends on has already been reflected in the value by the induction assumption,

and u.prev s: val_'s. Therefore u is reflected in the value in this step. 0

We are now ready to prove the fourth clause of the specification. Recall that a query returns val and val_ts.

Lemmas 7 and 8 guarantee that for any update record r such that r.tss; val_ts, r's update is reflected in the value val.

Therefore, all updates identified by a query output label are reflected in the value. We will now show that the

updates are executed only once and in the light order.

To prove that updates are executed only once at any particular replica, we show that after an update u is reflected

in the value, it will not be executed again. The cid c that entered the set inval when u was executed must be deleted

from inval before u can be executed again. However, when c is deleted from inval no duplicate record for u is

present in the log and an ack for c's update is present in the log. By Lemma I, the presence of the ack guarantees

that no future duplicate from the front end or the network will reenter the log. Furthermore, when c is deleted from

inval,isknown(r) holds for some update r for c, so by Lemma 4, all duplicates d of r have arrived at the replica By

Lemma 5, d.ts :::; rep_ts and therefore step 1 of the gossip processing code ensures that any future duplicate d

arriving in a gossip message will not reenter the replica's log.

We now show that updates are reflected in the value in an order consistent with the dependency relation.

Consider an update record r such that r.ts s: val_ts and an update v such that r's update u depends on v. We need to

show that v is reflected in the value before u. From the implementation of the dependency relation we know there

exists an update record s for v such that u..prev ~ s.ts. Therefore, by Lemmas 7 and 8 both u and v are reflected in

val. Consider the first time u is reflected in the value. If this happens in the processing of an update message, at that

step u.prev :::; val_ts; by Lemma 7, u.prev :::; rep_ts,and therefore by Lemma 8 v has already been reflected in val. If

this happens while processing a gossip message, a record for u has entered the set comp and so u.prev :::; rep_IS and

therefore s.ts :::; rep_ts. By Lemma 3, s has entered the log at this replica and will enter comp now unless it has

already been deleted. The code guarantees that when both s and a record for u are in comp either v is reflected

before u because u.prev ~ s.ts, or v's cid is in inval and so v was reflected earlier. If s was deleted from the log

15

earlier, then by Lemma6 v has alreadybeen reflected.

Making Progress

We have shown that the implementation is correct, i.e., that when queries return, their results satisfy the service

specification. To ensure system progress,we now need to show that updatesand queries indeedreturn. It is easy to

see that updates return provided replicas eventually recover from crashes and network partitions are eventually

repaired. These assumptions also guarantee that gossip messages will propagate information between replicas.

Therefore, from the gossip processing code and Lemma 3, replica and value timestamps will increaseand queries

will eventuallyreturn.

Garbage Collection

Next, we prove that records aregarbage collected from the service state. Update records will be removed from

the log assumingreplicacrashes and networkpartitionsarerepairedeventually. Also, acks will be deleted from the

log assuming crashes and partitions are repaired eventually and replica clocks advance, provided cids are deleted

from inval, To show that cids are deleted from inval, we need the following lemma, which guarantees that an ack

stays in the log longenough to preventits cid from reappearing in inval:

Lemma 9: Isknownia) A type (a) =ack => d.ts ~ rep_ts for all duplicates d of a's update.

Proof: Similar to Lemma 5. 0

Lemmas8 and 9 and the ack deletion code guarantee that an ack is deletedonly after its cid is deleted from inval.

By Lemma I, no duplicates of the update message from the front end or network arriving after this point will be

accepted assuming the time in the ack is greater than or equal to the time in any message for the update.

Furthermore, step 1 of gossipprocessing ensures that duplicates of the updaterecord arriving in gossipwill not enter

the replica's log. Thereforecids will be removedfrom invalassumingcrashesand partitionsare repairedeventually

and frontends sendacks with big enoughtimes.

Availability

Finally, we discuss how the implementation of uids and labels affects the availabilityof queries. The serviceuses

the query input label to identify the requested updates so it is important that the label identify just the required

updates and no others. However, labels in fact do sometimes identify extra updates. For example, consider two

independent updates u and v with u.prev =v.prev and assume that v is processedat replica i before u. This means

that r.ts > sis. wherer and S are the updaterecords createdby i for u and v, respectively. Whenr.ts is mergedintoa

label L, L also identifies vasa required update. Nevertheless, a replica never needs to delay a query waiting for

such an "extra" update to arrive becausethe gossip propagation schemeensures that wheneverthe "required" update

record r arrives at some replica, all update records with timestamps smaller than r's will be there. Note that the

timestampof an "extra" update record is always less than the timestamp of some "required" update record identified

16

by a label.

3.2.Other OperationTypes
The section shows how the implementation can be extended to support forced and immediate updates. These two

stronger orders are provided only for updates; queries continue to be ordered as specified by their input labels. As

mentioned, each update operation has a declared ordering type that is defined when the replicated application is

created. Recall that forced updates are performed in the same order (relative to one another) at all replicas;

immediateupdatesare performedat all replicas in the same order relative to all other updates.

Like causal updates, forced updates are ordered via labels and uids but their uids are totally ordered with respect

to one another. Labels now identify both the causal and forced updates, and the input label for an update or query

identifies the causal and forced updates that must precede it Uids are irrelevant for immediate updates, however,

because the replicas constraintheir orderingrelative to other operations.

The specification of the completeservice is given in Figure 3-3. As before we model the executionof a service as

a sequence of events, one for each update and query operationperformed by a front end on behalf of client. If e is

an event in execution sequence E, G(e) denotes the set containing all events up to and including the most recent

immediateupdate that precedese in E.

Let q be a query. Then

1. q.newl c P(q).label.

2. q.prev u G(q).labelc q.newl.

3. u.uid E q.newl ~ for all updates v s.t deptu, v), v.uid E q.newl.

4. q.value=q.op (Val (q.newl)).

Figure 3-3: Specificationof the Service.

The second clause of the specification now requires that queries reflect the most recent immediate update in the

execution as well as what the input label requires. The other clauses are unchanged except that the dependency

relation for clause4 is extendedas follows:

dep(u, v) == if immediate(u) then v E P(u)
else if immediate(v) then u E P(v)
else if forced(u) & forced(v) then v.uid< u.uid
else v.uid E u.prev

17

3.2.1. Implementation of Forced Updates

To implement forced updates we must provide a total order for them and a way to relate them to causal updates

and queries. This is accomplished as follows. As before, we represent uids and labels by multipart timestamps, but

the timestamps have one additional field. Conceptually this field corresponds to an additional replica R that runs all

forced updates; the order of the forced updates is the order assigned to them by this replica, and is reflected in R's

part of the timestamp. Therefore it is trivial to determine the order of forced updates: if u and v are forced updates,

u.uid < v.uid if u.uidR < v.uidR•

Of course, if only one replica could run forced updates, there would be an availability problem if that replica were

inaccessible. To solve this problem, we allow different replicas to act as R over time. We do this by using a variant

of the primary copy method [1,29,28,21] with view changes [8,7] to mask failures. An active view always

consists of a majority of replicas; one of the replicas in the view is the designated primary and the others are

backups. The current primary is in charge of R's part of the timestamp as well as its own, and all forced updates are

handled by it.

To execute a forced update u, the primary carries out a two-phase protocol. In phase 1 it assigns a uid to the

update by advancing R's part of the timestamp and merging it with u.prev, Then it creates a log record for u and

sends this record to the backups in a message that contains in addition the log records for any earlier forced updates

that have not yet committed. The update can commit as soon as a sub-majority of the backups acknowledge receipt

of this message. (A sub-majority is one less than a majority of all the replicas in the service; once a sub-majority of

backups know about the update, then a majority knows (since the primary does too), and therefore it is safe to

commit the update since its effects will persist into subsequent views.) When the operation commits, the primary

adds the record to its log, applies the update to the value if it is ready, and replies to the front end. The backups are

informed about the commit in subsequent gossip messages.

A view change is accomplished by a two phase protocol conducted by a coordinator who notices a failure or

recovery of a replica. The other replicas act as participants; the coordinator can go ahead with the view change if a

sub-majority of the replicas agree to act as participants. The view change must ensure that all committed forced

updates persist into the next view. In phase one of the view change, each participant informs the coordinator about

the most recent forced update it knows. Note that any update that may have committed in the old view will be

known to at least one member of the new view. When a sub-majority of replicas have responded, the coordinator

sets R's part of the timestamp for the new view to the largest value it knows for any forced update. The primary of

the new view will carry out the two-phase protocol for any uncommitted forced updates.

Forced updates do not interfere with the execution of causal updates or queries; all replicas proceed with these as

before, including replicas that are disconnected from the current active view. Furthermore, a view change has no

effect on what causal updates are known in the new view; instead, these continue to be propagated by gossip just as

before.

Since we assume forced updates are relatively rare, it is unlikely that the primary will be a bottleneck. Should this

occur, one possibility is to have several different orders for the forced operations. For example, in a mail system

18

there might be one order for add_user operations that add users whose names start with "a" through "m", and a

different one for users whose names start with "n" through "z". Each order would have a different part of the

timestamp, and would be managed by a different primary. Since there will not be many forced updates, a large

number of different orders will not be needed and therefore timestamps will remain relatively small.

If an application were configured to have only forced updates, our method would provide a fairly standard

primary copy implementation, with one exception: queries would be ordered relative to updates using timestamps.

This could be used to advantage to allow queries to be processed at backups, thus permitting the system load to be

spread among the replicas. Queries would see the effects of updates that causally preceded them, but might not

observe the effect of the most recent update. Such behavior is perfectly acceptable in many applications in which

stale data is permitted; in fact our system provides a good way of controlling how stale the information is pennitted

to be.

3.2.2. Implementation or Immediate Updates

To implement an immediate update u we need to carry out a global communication among all the replicas during

which the system determines what updates precede u and computes the label u.prev, which identifies all such

updates. At the end of this step u can actually be performed.

The implementation works as follows. The primary of the active view will carry out immediate updates, but only

if the view contains all replicas of the service. Timestamps for immediate updates are assigned in the same way as

for forced updates, by using the R part of the timestamp. We use a three-phase algorithm [34] to perform an

immediate update. Phase 1 is a "pre-prepare" phase in which the primary asks every backup to send its log and

timestamp. Once a backup replies to this message, it slops responding to queries; it can continue to process causal

updates, but it cannot reflect them in its val. (We discuss why these constraints are necessary below.) When the

primary receives infonnation from all the backups, it enters phase 2, the "prepare" phase; at this point it becomes

unable to process queries and to reflect causal updates into its val. The primary processes the reply messages as

gossip, assigns u a timestamp by advancing the R part of its timestamp, creates a log record for u, and sends the

record to the backups. When a sub-majority of backups acknowledge receipt of this record, the primary commits the

operation: it enters the record in its log, performs the update (it will be ready because the primary heard about all

updates in u.prev in the responses in phase 1), and sends the reply to the front end. The other replicas fmd out about

the commit in gossip; since they are unable to process queries until they know about the commit, the gossip is sent

immediately.

If a view change occurs, the participants tell the coordinator everything they know about immediate updates. Any

operation known to be prepared will survive into the new view, and the primary of the new view will carry out phase

2 again; such an operation must survive, since the old primary may have already committed iL An operation not

known to be prepared will be aborted; such an operation cannot have committed in the old view, since a commit

happens only after a sub-majority of backups enter the prepare phase, so at least one participant in the new view will

know about the prepare.

Now we discuss why backups cannot respond to queries once they enter the pre-prepare phase and why the

19

primary cannot respond to queries once it enters the prepare phase. (Causal updates cannot be reflected' in val

during these phases for the same reason.) Recall that once an immediate update happens, any query must reflect the

effects of that operation. However, once a backup is in the pre-prepare phase, or the primary is in the prepare phase,

it does not know the outcome of the operation. (The primary doesn't know because a view change may have

occurred.) Returning a value that does not reflect the update is wrong if the operation has already committed;

returning a value that reflects the update is wrong if the operation aborts. Therefore, the only option is to delay

execution of the query.

Immediate updates slow down queries. In addition, if a replica becomes disconnected from the others while in

phase 1 or phase 2, it will be unable to process queries until it rejoins a new active view. This is analogous to what

happens in other systems that support atomic operations: reading is not allowed in a minority partition, since if it

were inconsistent datacould be observed [7].

We chose a three-phase protocol for immediate updates because if a failure prevents the primary from

communicating with the other replicas, a new majority view will be able to decide whether to commit or abort the

immediate update without waiting for the old primary to recover and meanwhile preventing the processing of other

client requests. This is important because while an immediate update is running, queries are blocked. A two-phase

protocol would require fewer messages, but an inopportune failure would prevent the entire system from processing

queries.

4. Performance

This section discusses the performance of the system. It considers how well the service performs during normal

operation (i.e., in the absence of failures), and discusses the availability and reliability of the service in the presence

of failures.

4.1. Normal case operation
The performance of our system depends on the size and number of messages, the delay as perceived by clients,

and the load at the replicas. Message size is not a problem if services are small. We expect services to contain on

the order of three to seven replicas; this issue is discussed further in Section 5.

Figure 4-1 shows the number of messages required for carrying out different kinds of operations (the figure

ignores hatching at the front end). Here N is the number of replicas and K is the number of update/ack pairs in a

gossip message. We are assuming a gossiping scheme in which each replica gossips with all the others, but only

about the updates that it processed and that the recipient may not know. We are also assuming that acks are

piggybacked on subsequent messages so that separate ack messages are not needed; piggybacking acks may delay

them but this is not a problem because it only affects how long cids are kept in inval. In the case of the forced and

immediate operations, M is the smallest integer greater than Nfl. The second term for the forced operations

expresses the cost of phase 2 of the protocol, which is done by gossip; the third term for the immediate operations is

similar. It is clear from the figure that queries and causal updates require few messages, forced updates require

about the same number of messages as in primary copy schemes [28], and immediate updates are expensive.

operation

query
causal
forced
immediate

20

number of messages

2
2 + (N-I)/K
2M+(N-I)/K
2N + 2(M-I) + (N-I)/K

Figure 4-1: Number of messages for different kinds of operations.

Now we consider delay to the client. Updates cause no delay since they are asynchronous. A client cannot

receive the answer to a query until one message round trip after making the call (although the client may be able to

do useful work in the interim if some fonn of non-blocking call is provided for it). In addition, the reply to a query

may be delayed because:

I. Information about some updates it depends on has not yet arrived at the replica that processed it This
is unlikely in the absence of failures because the front end always communicates with the same replica
and because gossip is frequent.

2. It follows a forced or immediate update whose execution is not complete.

3. An immediate update is in progress.

Delays for the latter two reasons will be rare if forced and immediate operations are rare.

Finally, we consider the load at the servers. Every update must be executed at all replicas (although this cost can

sometimes be reduced by using value logging as mentioned in Section 3.1.3). In addition, servers must receive and

process client requests, and must send and receive gossip. Since the sending and receiving of messages is

expensive, reducing the number of messages that servers handle decreases the load. This is what happens with our

gossip technique. In particular, our scheme places less load on servers than schemes such as the ISIS multicast [3]

in which every update causes a message to be received at every server.

To get a sense of how well lazy replication would perfonn in practice, we implemented a prototype causal

operation service and compared its performance with an unreplicated prototype. We considered only causal

operations because lazy replication is intended for applications where most operations are causal and therefore

forced and immediate operations have little impact on overall system performance. Our measurements indicate that

gossip is an effective technique; it enables a replica to handle more operations per second than it could if it needed to

receive a separate message for each update.

The prototypes implement a simple location service with insertion and lookup operations. They are implemented

in Argus [25] and run on a network of VAXStation 3200's connected by a 10 megabit-per-second ethernet. An

Argus program is composed of modules called guardians that may reside on different nodes of a network. Each

guardian contains local state information and provides operations called handlers that can be called by other

guardians to observe or modify its state; it carries out each call in a separate thread and in addition can run some

background threads. A computation in Argus runs as an atomic transaction [25]; transactions are not needed in our

system and add to the cost of using the service, but the additional cost is incurred equally in both the replicated and

unreplicated prototypes.

21

The replicated service is implemented as a number of guardians, one for each replica. Each guardian provides

handlers that can be called to do lookups, inserts, and acks; acks can also be piggybackedon lookup and insert calls

(as an additional argument). Each replica has a background thread that sends and receives gossip messages. The

gossip thread first processes all waiting gossip messages; then, if G milliseconds have passed since it last sent

gossip, it sends a gossip message to each of the other replicas. Each gossip message is constructed and sent

separately; we do not use a broadcast or multicast mechanism. A replica gossips only about records it created that

the recipient may not know.

The unreplicated service is implementedas a single guardian that is similar to the one that implementsa replica.

This guardian needs to handle dropped, re-ordered and duplicated messages from front ends, so it provides an ack

handler and allows acks to be piggybackedon inserts and lookups. An update is processed when it arrives (unless it

is a duplicate), and it's uid entered in inval; update records are not kept in the log, which contains only ack records.

When an ack arrives, its cid is removed from invaland an ack record enters the log where it remains until sufficient

time has elapsed.

The replicas simulated the front end calls in the experiments. This allowed us to control the rate at which calls

arrived at the server and the operation mix, i.e., the proportion of inserts and lookups in the experiment. We used a

uniform-arrival-rate distribution and generated an arrival sequence that approximated the required mix in each

prefix. Operation calls are simulatedby an Argus thread. Each call consists of two parts, the computation part and

the communication part. The computationpart includes the actual work of doing the operation, e.g., checking for a

duplicate, adding a record to the log, etc. The communicationpart is a busy loop that simulates the communication

overhead at the server node, namely the receipt of the operation message and delivery to the Argus guardian,

decoding of the message to obtain the arguments, construction of the reply message, and moving the message from

the guardian onto the network. The duration of the communication overhead was determinedby measuring the cost

of null calls; such calls incura cost of 5.6 ms at the server node (andanother 5.4 ms. at the client).

The experiments used a gossip rate G of 100 ms. Acks were piggybacked on inserts and lookups. Also,

operations were always ready to run when they arrived. This assumption holds during normal operation (which is

what is of interest here) because front ends communicate with their preferred replicas in this case and gossip is

frequent.

Figure 4-2 shows the behavior of a single replica in a three-replica system in which all three replicas are

processing the same mix of operations arriving at the same rate. Curves are given for different operation mixes (all

queries, 1% updates, 10%updates, 50% updates, 100% updates). The horizontal axis shows the request arrival rate

in operations per second; the vertical axis shows the mean response time for operations at that arrival rate and

operation mix. The response time measures only the time spent at the replica's node which in addition to the can

processing time includes the time spent in the replica queue waiting to be processed; the response time as seen by

the client (for queries) is 5.4 milliseconds larger, since it includes the overhead at the client node. Note that the

actual capacity of the service is three times what is shown in the figure, since each of the replicas is processing the

load that is shown.

22

i
E
:
! .~

UpdI1e Perc:enlage

0% ---
I'll._

10% ••••••••.
S09I. ..

100% - - --

,,,,
-~~......... : ,:-~.~~-+t.......-

" : I: : I
- .. -fu.~.,..,.;.....---_r.41l---~-~-H......;i--·.... , : I: ,

i , _.•: ! j
i , ~ .

.~u.um~..~...~______r~..~~ , • --r--~

- "~ ••• : ~ .1 i
"" i ~./ j.- :,' .- /:............"...J , ,._~.~I.: m .._ ~ ••_ ..-.b ..,e.' ., ~ -.4•••••••••••••••••···~ ~'. . i

:
!

I
so

..
:: 40
!
~

E=
~ 30

~
II

Ill:
20

10

o so 100 ISO

Anival Rate(opentioos persecond)

Figure 4·2: Capacityof a SingleReplica.This figureshows the averageresponse time
as a function of operationarrival rate for selectedoperationmixes.

Figure 4-3 shows the results for the unreplicated system with the same operation mixes and arrival rates. By

comparing the behavior of a replica with that of the unreplicated server, we can get a sense of the saving due to

gossip. For example, in the operation mix of half updates and half queries, a replica saturatesat approximately 90

operations per second, while the unreplicated system saturates at about 145 operations per second. However, a

replica is actually processing 180 operations per second. (It is handling45 queries, 45 updates from the cient, and

90 updates that it receives in gossip from the other replicas.) The differencein the two cases is that the unreplicated

server must process 290 messages per second, while the replica must process approximately 220 messages per

second (180 messages for communicating with front ends, plus it sends 20 gossip messages and receives 20 gossip

messages).

The performance of the system is likely to be sensitive to the relative priorities of gossip and operations. The

measurements above correspond to a system in which gossip has higher priority than operation processing: when

there is a gossip message to send or receive, the gossip process will run. If operations have higher priority than

gossip, this will probably lead to beuer response time, although gossip cannot be allowed to lag too far behind

because it is important to propagate information about updates reasonablyrapidly. We have not experimented with

changes in relative prioritiesbut it will be importantto do this in a real implementation.

4.2. Reliability and Availability

This section discusses service reliability (i.e., the probability that the service will retain information entrusted to

it) and availability (i.e., the probability that the service will be accessible when needed). Our goal is to provide the

same kind of reliability that could be achieved withoutreplication through the use of replicated storage media.4 In

4Quantifyingsystem availability IIId reliability precisely is known to be a difficult problan whose solution is outside the scope of this paper.

23

Updale Perc:enlage

0%­
1%

10%
SO%

100%

I ..
~ .-------- ---ri---

---- ~ I
····L.-------l:· ,· · ·..··..······ ·· ····..· ··· t· :-- : .

: ~ I· •

----------j------------i----+-il-
: ::, . ~

•••n .- ~ ~ r • .-. ••·•• , l.· _.~ f. i .
- -__ -- - - - _: - - - - - .. ~ -- ..- ~.t_. :.... :!

~ so..
"'0

~..
:: 40
].
4.le
i=

30III

l
u
Ill:

20

10

o so 100 I~

Arrival Rate (operations per second)

Figure 4-3: Capacity of the Unreplicated System.

addition we provide better availability for causal and forced operations than can be achieved in an unreplicated

system.

The traditional way of achieving high reliability is to record information on a sufficient number of nonvolatile

devices. For example, recording information on stable storage [20] insures that it will survive failure of its node and

also a single media failure. However, this solution is wasteful, since we already provide a different kind of

redundancy, namely recording updates at many replicas. Also it does not satisfy our availability goal. If the one

replica that records an update crashes or is partitioned from the other replicas before any of them know about the

update, queries based on that update will be delayed.

A better approach to reliablity takes advantage of replication. With this approach, an update is "stable" if it is

recorded reliably at a sufficient number of replicas. For example, if information must survive a single failure, an

update will be stable as soon as it is recorded at two replicas. Note that a majority of replicas need not be involved;

instead the number of replicas is chosen based simply on the reliability requirements (e.g., we might use two replicas

in a service containing seven of them). Recording the update on volatile storage will be adequate if these replicas

are geographically distributed; if the replicas are close, the update can be recorded on volatile storage provided

replicas have uninterruptible power supplies that allow them to copy volatile information to disk if there is a power

failure. (This technique has been used to good effect in the Harp system [21].) A replica that loses its state in a

crash will recover it by reading the state of some other replica.

Queries should not be permitted to observe the effects of an update until it is stable or else the following anomaly

can arise: A query q observes update u which is not stable, and all trace of u is then lost completely (e.g., because

the node that processed u and q failed before sending information about u to some other replica). A loss of causality

like this should not happen unless there is a catastrophe in which more failures occur simultaneously than the system

is configured to handle.

24

Replicas can delay sending replies for updates to front ends until the updates are stable; if streaming is used

between the front end and the replica, thereplica also will not process a query that follows an update until the update

is stable. Alternatively, the front end could send the update request to the appropriate number of replicas, and delay

a query that follows the update until all have replied. In either case, the cost for causal updates increases. For

example, in a system that survives one failure, a causal update now requires 4 + (N-2)/K. messages, assuming that if

the replica enforces the requirement, it notifies one other replica immediately (to reduce the delay until the update is

stable), and if the front end does the enforcement, the gossip scheme avoids unnecessary propagation of information

about the update. The scheme where the replica does the enforcement probably delays subsequent queries a little

less assuming the front end is streaming queries to the replica.

Achieving reliability through replication has an impact on availability. Availability is an issue primarily for

queries (since updates are asynchronous). However, a query cannot be executed until the updates it depends on are

stable. If a query depends on updates that happened in the past, it is highly likely that it can be performed as long as

one replica is up and accessible because gossip is frequent. However, a query that depends on a recent update might

be a problem. In particular, suppose a client issues a causal update followed by a query; since the query cannot be

executed until the update is stable, its availability is similar to that of the update. Thus if two replicas must record

the update, the query sometimes cannot be performed unless two replicas are up and communicating. Note that is

this case, the delay associated with receiving the query response will also increase.

Forced and immediate updates are likely to be stable as soon as they are completed, since the number of replicas

required for stability is probably less than a majority of replicas in the service. These updates have a larger effect on

the availability of queries than causal updates. Thus a query that follows a forced update probably requires a

majority of replicas to be up and accessible, since this is needed to carry out the forced update. Immediate updates

have an even larger effect, since queries are blocked while they are running. If a failure occurs while an immediate

update is running, this has no effect on replicas that can join a new majority view; we chose a three-phase protocol

for this reason. However, if a replica becomes disconnected from the others while running an immediate update, it

cannot process any queries until the partition is repaired These facts indicate that immediate updates must be rare if

the system as a whole is to perform well. Note that if they are rare, the probability of a replica becoming

disconnected while one is in progress is very small.

s. Scalability
In our scheme the service nodes are disjoint from the client nodes, which means that the number of replicas is

independent of the number of clients. Since typically there will be large numbers of clients, this is an important

consideration. Having fewer replicas reduces the size of the timestamps, the storage requirements (since each

replica needs to store the service state), and message traffic (since replicas need to communicate, even if gossip is

done infrequently). Thus we expect the technique to work well in large systems. For example, as the size of a

system increases, the number of servers can grow much more slowly than the number of clients. Below we discuss

ways of controlling cost in large replicated services, and also what happens when there are many replicated services

within a single system.

2S

5.1. Large Services

Some applications may need a large numberof replicas, either to provide adequate processing power, or to ensure

that every client is "close" to a replica. When most calls to a service are queries, having lots of replicascan improve

performance. However, having many replicas increases the cost of updates because more gossip messages must be

sent and also becauseeach update must be performed at every replica.

If many replicas are required, it will often be the case that most of them can be read-only. Read-onlyreplicas act

as caches located at convenient locations in the network, e.g., one in each local area net Such replicas can only

process queries; updates must still be sent to the regular read-write replicas. Having such replicas is effective

provided a substantial portionof the system load is queries, or if fast processing of queries is the main performance

issue. Timestamps need not contain entries for read-only replicas, so they will still be small. Read-only replicas

must receive gossip to bring them up to date, but need not send any gossip messages.

Sometimes the amountof gossip can be reduced by partitioningthe service state. Partitioningcan be used in any

application in which different parts of the state are independent, i.e., each operation can be performed using the

information in just one part of the state. For example, in a mail system there might be two partitions, the first

storing mail for users with names in the first part of the alphabet,and the second storing the rest

A partitioned service still appears to be a single entity to clients, but better performance can be achieved by

partitioning. The replicas are divided into disjoint groups, each of which is responsible for a disjoint part of the

state. All queries and updatesconcerning a particular part of the state are handled by the replicas in the group that

manages that part; the front end for such a system would maintain information about partitioning so that a client

request could be sent to a replica in the request's group. The timestamps wouldcontain componentsfor aU replicas;

this is necessary to preserve causal order across the partitions. However, the timestamp componentsfor replicas in

other groups can be ignored when processing a query or update: an operation is ready to execute if the timestamp

components for its group indicate that it is ready. Therefore, the extra componentsdo not delay operationexecution.

In addition, gossip is exchangedonly among group members.

Sometimesclients of a serviceexpose informationabout the service state only throughcalls on serviceoperations.

When this is true, front ends need not insert timestamps in client messages, since they are not needed to preserve

causality, thus reducing the size of client messages. In addition, it is possible to use a hierarchical sttueture for the

service. The idea is to partition the clients among a number of different replica groups, each consisting of a small

number of replicas, and each having its own timestamps. Clients communicate only with replicas in their own

group; they use only that group's timestampsand never exchange timestamps with one another. The replica groups

communicate with one another via a lower-level replica group, i.e., they are clients of the lower-levelgroup; in fact,

the scheme can be extended to an arbitrary number of levels. This scheme has been proposed for the garbage

collection service [17]; in this application, a client's query is ordered only with respect to its own updates,although

the speed with which inaccessible objectsare discarded dependson how quickly global informationpropagatesfrom

one replica group to another (via the lower-level replica group). Another application that could profit from this

approach is deadlock detection [9].

26

5.2. Multiple Services

We now consider a system containing many services. Causality can be preserved across a number of services by

using joint front ends (one per client node) that manage all of them. The front ends would maintain labels for each

replicated service. (The multipart timestamps for the different services can be distinguished by having each one

identify its service.) All the labels would be sent in client messages and merged into a front end's labels when a

client message is received. Also, a front end would send all the labels in each message to a replica. Replicas would

use only their own timestamps to determine when operations are ready, but they would keep copies of all the labels,

merge in the foreign ones, and send all the labels back in replies, at which point the front end would mergeagain. In

this way we can preserve all causality, both intra-service and inter-service, without clients having to be concerned

with the details.

This automatic technique would be a problem if there were many services that were causally related, since in this

case messages would contain lots of label timestamps, some of which might be large. In our experience, however, •

most services that can be implemented with lazy replication are not causally related, so there is no problem in

practice. Most replicated services are used by encapsulating code that hides their existence from the rest of the

system. For example, the garbage collection service is used only by the heap managersat the client nodes, while the

versiondeletion service is used only by the concurrencycontrol subsystem; neither of these is related to one another,

nor are they related to the mail system. Each such service can be provided with its own front ends (one per client

node), distinct from those for other services, that manage just the timestamps for that service and interceptonly the

client messages sent by the encapsulatingcode.

6. Comparison with Other Work
Our work builds on numerous previous results in the area of highly available distributed systems and algorithms,

includinggeneral replicationtechniquessuch as voting [11, 14,2] and primary copy [1, 29, 28]. However, it is most

closely related to approaches that provide high availability for applications where operations need not be ordered

identically at all replicas. This section discusses this closely related work and how it compares to lazy replication.

First it considers techniques that are based on simple message passing and then techniques that rely on reliable

multicastcommunication.

The idea of exploiting the semanticsof a system to enhance availabilityappears first in [10,37]. In these systems,

servers are coresident with clients and servers propagate informationabout updates by means of gossip. Causality is

easily preserved for a single client, since it always communicates with the server at its node; preservation of

causality for multiple clients is not discussed. However, having a server at every client wastes space (since the

server state must be stored at every client node) and also wastes networkbandwidth (since every client node must be

notified about every update).

By contrast, in the Grapevine system [6] and its successor [19] service nodes are distinct from client nodes. In

this system, every client operation is performed at a single server, and updates propagate in the background to other

replicas. Thus Grapevine solves the problems of wasted space and network bandwidthmentioned above. It does so,

however, by sacrificingcausality. For example, a single client's request may go to different replicas (e.g., if the first

27

replica used by that client fails); therefore a later query by a client may fail to observe an earlier update made by that

client. Also, different clients typically use different replicas, and therefore a client may not observe the effects of an

update it learned about in a message from another client.

The approach described in [22, 16] separates servers from clients and supports a limited form of causality. As in

the systems discussed above, client requests are executed at just one server, and information about updates is

propagated in gossip. Furthermore, queries can beforced to observe specified updates; this is provided by the use of

timestamps for uids and labels as in the current approach. However, there is no way to order updates; instead

updates are supposed to be commutative, so that they can beordered in different ways at different replicas without

affecting what clients observe via queries.

None of the systems described above allows the designer of an application to choose from a set of primitives of

differing strengths. This idea appears first in the work on ISIS [5,4] and later in the work on Psync [27]. Both of

these systems provide various multicast communication mechanisms that could be used to provide a replicated

service. The Psync approach is limited. It supports only two kinds of operations - commutative and totally

ordered. In addition, only one operation can be of the more efficient commutative type. For example, if a mail

system is implemented using Psync, the read_mail operation could be of the (more efficient) commutative type, but

then send_mail (and all other updates) would need to be totally ordered.

ISIS provides three multicast primitives, CBCAST, ABCAST, and GBCAST, that support orderings roughly

equivalent to those of the causal, forced, and immediate operation types. However, the implementation of ISIS (and

Psync) is different from ours. It is based on the notion of process groups that contain both clients and servers, where

intra-group communication is done using reliable multicast primitives. The basic idea is that every request is sent to

all group members, resulting in substantial message traffic unless the entire system is located on a single local area

net that supports broadcast. To ensure eventual delivery of requests, messages also contain information about past

history. In the earlier version of ISIS [5,4], messages contained descriptions of earlier requests; this insured that

earlier requests happened before later ones at all replicas, but resulted in very large messages and also in a garbage

collection problem (recognizing when descriptions of earlier requests need no longer be sent in messages because

every node knows about them).

More recently, ISIS has switched to a multipart timestamp scheme similar to ours [3], in which timestamps are

used to specify the ordering of client operations. Timestamps are used differently in ISIS, however. Timestamps

have fields for clients as well as servers. Each operation (both queries and updates) is assigned a timestamp by the

client node (by advancing the client part of the timestamp), and a server must know about all operations with smaller

timestamps before it can process a new request The client either multicasts the request to all replicas, or sends it to

a single replica, which multicasts to the others; in either case many more messages are sent than in our system, and

furthermore queries as well as updates need to be multicast In addition, messages contain large amounts of

timestamp information. If there is a single group consisting of all clients and servers, timestamps are very large if

there are a substantial number of clients. The alternative of having a separate group per client (consisting of that

client and all the servers) leads to a smaller group timestamp and messages need be sent to fewer places since

requests from one client need not be sent to all the other clients as well as the servers. However, messages are

28

bigger since timestamps for all such groups must be sent in all messages to preserve causality.

Thus. our system sends fewer messages than ISIS. and requires less space for timestamp information in messages.

In addition it performs better in the presence of failures and recoveries than ISIS. Both systems do view changes in

such situations (although we need not do view changes for a service in which all operations are causal). However.

the ISIS view change prevents processing of new requests while it is in progress and involves flushing the service

state to all replicas in the new view. By contrast, our replicas can continue to process causal updates and queries

during a view change and little information needs to be flushed (just ordering information about outstanding forced

and immediate updates). In addition. our system can tolerate network:partitions. while ISIS cannot

7. Conclusion

This paper has described a new replication method. The method supports three kinds of ordering for updates:

causal. forced. and immediate operations. The method can be used in many applications. including location

services. distributed garbage collection. and mail systems. It performs better than alternative techniques such as

reliable group multicast.

The method is generic and can be easily instantiated to provide a particular service. The instantiator provides a

nonreplicated implementation of the application's operations and defines the ordering types of the updates. The user

of the application just calls the operations. All details of replication and distribution are taken care of automatically.

The method is intended for applications in which most update operations are causal. In this case. it provides

excellent performance. Clients requests encounter low delay and the system has low overhead in terms of number

and size of messages and overhead at the replicas. Our performance expectations are backed up by the experiments

discussed in Section 4. A real implementation of a generic service that can be instantiated to provide replicated

services is underway.

The forced and immediate operations are important because they increase the applicability of the approach.

allowing it to be used for applications in which some updates require a stronger ordering than causality. Forced

updates are also interesting in their own right. They can be used in an application that requires identical update

orderings at all replicas with a cost comparable to techniques such as voting [11] and primary copy [30]. The

method generalizes these approaches. however. because it gives queries access to stale data while ensuring that

causality is preserved.

When confronted with the need for a highly available service. a designer has a limited number of choices if

preservation of consistency is a goal. One possibility is to use standard atomic methods. in which all operations run

in the same order at all replicas. However. some applications can tolerate having updates that run in parallel be

executed in different orders at different replicas. In this case our method can be used. It reduces delay and number

of messages in exchange for timestamp infonnation in messages. Our method will be worthwhile provided this

information remains reasonably small.

29

Acknowledgments

We wish to thank BoazBen-Zvi, Phil Bernstein, Andrew Black, Dorothy Curtis, JoelEmer, BobGruber, Maurice

Herlihy, PaulJohnson, ElliotKelodner, Murray Mazer, BillWeihl, and the referees for theirsuggestions on how to

improve thepaper.

30

References

[1] Alsberg, P., and Day, J.
A Principle for Resilient Sharing of Distributed Resources.
In Proc. ofthe 2ndInternational Conference on Software Engineering, pages 627-644. October, 1976.
Also available in unpublished form as CAC Document number 202 Center for Advanced Computation

University of Illinois, Urbana-Champaign, Illinois 61801 by Alsberg, Benford, Day, and Grapa.

[2] Bernstein, P. A.,and Goodman, N.
An Algorithm for Concurrency Control and Recovery in Replicated Distributed Databases.
ACM Trans. on Database Systems9(4):596-615, December, 1984.

[3] Schwarz, S. and A. Spector.
Lightweight Causal and Atomic Group Multicast
ACM Transactions on Computer Systems 9(3), August, 1991.

[4] Birman, K. P., and Joseph, T. A.
Reliable Communication in the Presence of Failures.
ACM Trans. on Computer Systems5(1):47-76, February, 1987.

[5] Birman, K., and Joseph, T.
Exploiting Virtual Synchrony in Distributed Systems.
In Proc. ofthe EleventhACMSymposium on Operating SystemsPrinciples, pages 123-138.. November,

1987.

[6] Birrell, A., Levin, R., Needham, R., and Schroeder, M.,
Grapevine: An Exercise in Distributed Computing.
Comm. ofthe ACM25(4):260-274, April, 1982.

[7] El-Abbadi, A., and Toueg, S.
Maintaining Availability in Partitioned Replicated Databases.
In Proc. of theFifthSymposium on Principles ofDatabase Systems, pages 240-251. ACM, 1986.

[8] EI-Abbadi, A., Skeen, D., and Cristian, F.
An Efficient Fault-tolerant Protocol for Replicated Data Management.
In Proc.ofthe Fourth Symposium on Principles ofDatabase Systems, pages 215-229. ACM, 1985.

[9] Farrell, A. K.
A Deadlock Detection Scheme for Argus.
S.B. Thesis, Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA, July 1988.

[10] Fischer, M. J., and Michael, A.
Sacrificing Serializability to Attain High Availability of Data in an Unreliable Network.
In Proc.of the Symposium on Principles ofDatabaseSystems, pages 70-75. ACM, March, 1982.

[II] Gifford, D. K.
Weighted Voting for Replicated Data.
In Proc.ofthe Seventh Symposium on Operating SystemsPrinciples, pages 150-162. ACM, December,

1979.

[12] Gifford, D.K.
Information Storage in a Decentralized Computer System.
Technical Repon CSL-81-8, Xerox Corporation, March, 1983.

[13] Heddaya, A. and Hsu, M. and Weihl, W.
Two Phase Gossip: Managing Distributed Event Histories.
Information Sciences: An International Journal49(1-2), OctlNov., 1989.
Special issue on databases.

[14] Herlihy, M.
A Quorum-consensus Replication Method for Abstract DataTypes.
ACM Trans. on Computer Systems 4(1):32-53, February, 1986.

31

[15] Hwang, D.
Constructing a Highly-Available Location Service for a Distributed Environment.
Technical Report MlT/LCS/fR-410, M.I.T. Laboratory for Computer Science,Cambridge, MA, January,

1988.

[16] Ladin, R., Liskov, B., and Shrira, L.
A Technique for ConstructingHighly-AvailableServices.
Algorithmica 3:393-420,1988.

[17] Ladin, R.
A Methodfor Constructing Highly Available Services and a Techniquefor Distributed Garbage Collection.
PhD thesis, M.LT.Departmentof Electrical Engineeringand Computer Science, Cambrige, MA, May, 1989.

[18] Lamport, L.
Time, Clocks, and the Ordering of Events in a DistributedSystem.
Comm. ofthe ACM 21(7):558-565,July, 1978.

[19] Lampson, B. W.
Designing a Global Name Service.
In Proc. of the 5th Symposium on Principles ofDistributed Computing, pages 1-10. ACM SIGACT­

SIGOPS, August, 1986.

[20] Lampson, B. W., and Sturgis, H. E.
Crash Recovery in a Distributed Data Storage System.
Technical Report, Xerox Research Center, Palo Alto, Ca., 1979.

[21] Liskov, B.,Ghemawat,S., Gruber, R., Johnson, P., Shrira,L., Williams, M.
Replication in the HarpFile System.
In Proc. of the 13th Symposium on Operating Systems Principles. ACM, Pasific Grove, Ca, October, 1991.

[22] Liskov, B., and Ladin, R.
Highly-AvailableDistributedServices and Fault-TolerantDistributedGarbage Collection.
In Proc. ofthe 5th ACM Symposium on Principles ofDistributed Computing. ACM, Calgary, Alberta,

Canada, August, 1986.

[23] Liskov, B., Scheifler,R., Walker, E., and Weihl, W.
Orphan Detection (ExtendedAbstract).
In Proc. of the 17th International Symposium on Fault-Tolerant Computing, pages 2-7. IEEE, Pittsburgh,

Pa., July, 1987.

[24] Liskov, B., Bloom,T., Gifford, D., Scheifler,R., and Weihl,W.
Communication in the Mercury System.
In Proc. of the 21st Annual Hawaii Conference on System Sciences, pages 178-187. IEEE, January, 1988.

[25] Liskov, B.
Distributed Programmingin Argus.
Comm. of the ACM 31(3):300-312, March, 1988.

[26] Mills, DL.
Network Time Protocol (Version 1) Specificationand Implementation.
DARPA-InternetReport RFC-I059.
July 1988.

[27] Mishra, S., Peterson, LL., Schlichting, R.D.
ImplementingFault-TolerantObjects Using Psync.
In Proc. ofthe Eighth Symposium on Reliable Distributed Systems. IEEE, October, 1989.

[28] Oki, B. M., and Liskov, B.
ViewstampedReplication: A New Primary Copy Method to Suppon Highly-Available DistributedSystems.
In Proc. of the 7th ACM Symposium on Principles ofDistributed Computing. ACM, August, 1988.

32

[29] Oki, B. M.
Yiewstamped Replicationfor HighlyAvailableDistributedSystems.
TechnicalRepon MIT/LCS/fR-423,M.I.T.Labomtory for ComputerScience,Cambridge, MA, August,

1988.

[30] Oki, B.
ReliableObjectStorageto SupportAtomicActions.
Technical Report MIT/LSC/fR-308,M.I.T.Labomtory for ComputerScience,Cambridge, MA, 1983.

[31] Parker,D. S., Popek,G. J., Rudisin,G., Stoughton, A., Walker,B., Walton,E., Chow,J., Edwards,D., Kiser,
S., and Kline,C.
Detection of MutualInconsistency in Distributed Systems.
IEEE Transactions on Software EngineeringSE-9:240-247, May, 1983.

[32] Schmuck, F.B.
The UseofEfficientBroadcast Protocolsin Asynchronous DistributedSystems.
Ph.D.Thesis TR 88-926, Dept.of ComputerScience,CornellUniversity, 1988.

[33] Schwarz, P., and Spector,A.
Synchronizing SharedAbstract Types.
ACMTrans.on Computer Systems2(3), August,1984.

[34] Skeen,D.
Non-blocking commitprotocols.
Proc.of3rd ACM SIGACT-SIGMOD Symp. on PrinciplesofDatabaseSystems :290-296, April, 1984.

[35] Weihl,W. and B. Liskov.
Implementation of Resilient, AtomicDataTypes.
ACM Transaction on Programming Languagesand Systems 7(2), April, 1985.

[36] Weihl,W.
Distributed Version Management for Read-only Actions.
IEEE Trans. on Software Engineering, SpecialIssue on DistributedSystems 13(1):55-64, 1987.

[37] Wuu,G. T. J., and Bernstein, A. J.
EfficientSolutionsto the Replicated Log and Dictionary Problems.
In Proc.of the ThirdAnnualSymposium on PrinciplesofDistributedComputing, pages233-242. ACM,

August, 1984.

