
Counting Networks and Multi�Processor
Coordination

�Extended Abstract�

James Aspnes� Maurice Herlihyy Nir Shavitz

Digital Equipment Corporation
Cambridge Research Lab

CRL ����� September ��� ����

Abstract

Many fundamental multi�processor coordination problems can be expressed as counting problems�
processes must cooperate to assign successive values from a given range� such as addresses in memory or
destinations on an interconnection network� Conventional solutions to these problems perform poorly
because of synchronization bottlenecks and high memory contention�

Motivated by observations on the behavior of sorting networks� we o�er a completely new approach
to solving such problems� We introduce a new class of networks called counting networks� i�e�� networks
that can be used to count� We give a counting network construction of depth log� n using n log� n
	gates�
 avoiding the sequential bottlenecks inherent to former solutions� and having a provably lower
contention factor on its gates�

Finally� to show that counting networks are not merely mathematical creatures� we provide ex�
perimental evidence that they outperform conventional synchronization techniques under a variety of
circumstances�

c�Carnegie Mellon University� Digital Equipment Corporation� and Interational Business Machines
Corporation ����� All rights reserved�

�Carnegie Mellon University�
yDEC Cambridge Research Lab�
zIBM Almaden Research Center�

� Introduction

Many fundamental multi�processor coordination problems can be expressed as counting problems� pro�
cessors collectively assign successive values from a given range� such as addresses in memory or desti�
nations on an interconnection network� In this paper� we o�er a completely new approach to solving
such problems� by introducing counting networks� a new class of networks that can be used to count�

Counting networks� like sorting networks ��� � ��� are constructed from simple two�input two�output
computing elements called balancers� connected to one another by wires� However� while an n input
sorting network sorts a collection of n input values only if they arrive together� on separate wires�
and propagate through the network in lockstep� a counting network can count any number N � n of
input values even if they arrive at arbitrary times� are distributed unevenly among the input wires� and
propagate through the network asynchronously�

Figure � provides an example of an execution of a �input� �output� counting network� A balancer
is represented by two dots and a vertical line �see Figure ��� Intuitively� a balancer is just a toggle
mechanism �� repeatedly sending the inputs it receives� one to the left and one to the right� It thus
balances the number of values on its output wires� In the example of Figure �� input values arrive on
the network�s input lines one after the other� For convenience we have numbered them by the order of
their arrival �these numbers are not used by the network�� As can be seen� the �rst input �numbered ��
enters on line � and leaves on line �� the second leaves on line �� and in general� the N th value will leave
on line N mod � �The reader is encouraged to try this for him�herself�� Thus� if on the ith output line
the network assigns to consecutive outputs the numbers i� i� � i� � � � ��� it is counting the number of
input values without actually passing them all through a shared computing element�

Counting networks achieve a high level of throughput by decomposing interactions among processes
into pieces that can be performed in parallel� This decomposition has two performance bene�ts� It
eliminates serial bottlenecks and reduces memory contention� In practice� the performance of many
shared�memory algorithms is often limited by con�icts at certain widely�shared memory locations�
often called hot spots ����� Reducing hot�spot con�icts has been the focus of hardware architecture
design ��� �� ��� �� ��� and experimental work in software ��� �� ��� ��� ����

Counting networks are also non�blocking� processes that undergo halting failures or delays while
using a counting network do not prevent other processes from making progress� This property is im�
portant because existing shared�memory architectures are themselves inherently asynchronous� process
step times are subject to timing uncertainties due to variations in instruction complexity� page faults�
cache misses� and operating system activities such as preemption or swapping�

We show a depth log� n construction of a counting network� using n log� n balancers� and argue that
our construction produces low levels of contention� we feel that many other concurrent shared�memory
algorithms would bene�t from a similar contention analysis�

To illustrate the utility of counting networks� we show how to construct highly concurrent imple�
mentations of two common data structures� shared counters and producer�consumer bu�ers� A shared
counter is simply an object that issues the numbers � to n in response to n requests by processes� Shared
counters are central to a number of shared�memory synchronization algorithms �e�g�� ��� ��� ��� ����� A
producer�consumer bu�er is a data structure in which items inserted by a pool of producer processes are
removed by a pool of consumer processes� Compared to conventional techniques such as spin locks or
semaphores� our counting network implementations provide higher throughput� less memory contention�
and better tolerance for failures and delays�

�It is easy to implement a balancer using a Compare � Swap� Test � Set� or a randomized consensus primitive�

�

x

x

0

1

y =
0

x + x0 1

2

1
y =

x + x0 1

2

bbbbaaaallllaaaannnncccceeeerrrr

7 6 4 2 1

5 3

1 3 5 7

2 4 6

Figure �� A Balancer�

Our analysis of the counting network construction is supported by experiment� In the appendix�
we compare the performance of several implementations of shared counters and producer�consumer
bu�ers on an eighteen�processor Encore MultiMax� When the level of concurrency is su�ciently high�
the counting network implementations outperform conventional implementations based on spin locks�
sometimes dramatically�

In summary� counting networks represent a new class of concurrent algorithms� They have a rich
mathematical structure� they provide e�ective solutions to important problems� and they perform well
in practice� We believe that counting networks have other potential uses� for example as interconnection
networks ���� or as load balancers����� and that they deserve further attention�

� Networks that Count

��� Counting Networks

Counting networks belong to a larger class of networks called balancing networks� constructed from
wires and computing elements called balancers� in a manner very similar to that in which comparison
networks ��� are constructed from wires and comparators� We begin by describing balancing networks�

A balancer is a computing element with two input wires and two output wires� �see Figure ���
Tokens repeatedly arrive on one of the balancer�s input wires� at arbitrary times� and are repeatedly
output on its output wires� Intuitively� one may think of a balancer as a toggle mechanism� that given
a stream of input tokens� repeatedly sends one token to the upper output wire and one to the lower�
e�ectively balancing the number of tokens on its output wires� We denote by xi� i � f�� �g the number
of input tokens ever received on the balancer�s ith input wire� and similarly by yi� i � f�� �g the number
of tokens ever output on its ith output wire� Throughout the paper we will abuse this notation and
use xi �yi� both as the name of the ith input �output� wire and a count of the number of input tokens
received on the wire�

Let the state of a balancer at a given time be de�ned as the collection of tokens on its input and
output wires� We can now formally state the safety and liveness properties of a balancer�

�� In any state� x� � x� � y� � y� �i�e� a balancer never creates output tokens��

�In Figure � as well as in the sequel� we adopt the notation of ��� and and draw wires as horizontal lines with balancers
stretched vertically�

�

�� Given any �nite number of input tokens m � x��x� to the balancer� it is guaranteed that within
a �nite amount of time� it will reach a quiescent state� that is� one in which x��x� � y��y� � m
�i�e� a balancer never swallows input tokens��

�� In any quiescent state� y� � dm��e and y� � bm��c�

� In any quiescent state the set of input tokens and output tokens are the same�

A balancing network of width w is a collection of balancers� where output wires connected to input
wires� having w designated input wires x�� x�� ��� xw�� �which are not connected to output wires of
balancers�� w designated output wires y�� y�� ��� yw�� �similarly unconnected�� and containing no cycles�
Let the state of a network at a given time be de�ned as the union of the states of all its component
balancers� The safety and liveness of the network follow naturally from the above network de�nition
and the properties of balancers� namely� that it is always the case that

Pw��
i�� xi �

Pw��
i�� yi� and for

any �nite sequence of m input tokens� within �nite time the network reaches a quiescent state� i�e� one
in which

Pw��
i�� yi � m�

It is important to note that we make no assumptions regarding the timing of token transitions from
balancer to balancer in a balancing network� its behavior can be viewed as a completely asynchronous
process� and is de�ned in the usual way by a schedule�

To give the reader a feeling of what the above abstraction might represent� consider an implemen�
tation on a shared memory multiprocessor� A balancing network is implemented as a shared data
structure� where balancers are records and wires are pointers from one record to another� Each of the
machine�s asynchronous processors runs a program that repeatedly traverses the data structure from
some input pointer to some output pointer� each time shepherding a new token through the network�

We de�ne the depth of a balancing network to be the maximal depth of any wire� where the depth of
a wire is de�ned as � for a network input wire� and max�depth�x��� depth�x��� � � for the output wires
of a balancer having input wires x� and x��

A counting network of width w is a is a balancing network whose outputs y�� ��� yw�� have the
following additional step property in quiescent states�

In any quiescent state� � � yi � yj � � for any i � j�

To illustrate this property� consider an execution in which tokens traverse the network sequentially�
one completely after the other� Figure � shows such an execution on a Counter�� network which we
will de�ne formally in Section �� As can be seen� the network moves input tokens to output tokens
in increasing order modulo w� Balancing networks having this property are called counting networks�
because we can easily construct from them counters which count the total number of tokens that
have passed through� or are currently in� the network� Counting is done by adding a 	local counter

to each output wire i� so that tokens coming out of that wire are consecutively assigned numbers
i� i� w� i� �w� ��� i� �yi � ��w� �This application is described in greater detail in Section ��

The step property can be de�ned in a number of ways which we will use interchangeably� The
connection between them is stated in the following lemma�

Lemma ��� If y�� � � � � yw�� is a sequence of non�negative integers� the following statements are all
equivalent�

�

7 6 2

4 3 1

5

1 4

3

2 6

5 7

1 5

4 7

2 6

3

4

3 7

1 5
1 5

2 6
2 6

3 7

4

outputsinputs

Figure �� A sequential execution for a Counter�� counting network�

�� For any i � j� � � yi � yj � ��

�� Either yi � yj for all i� j� or there exists some c such that for any i � c and j � c� yi � yj � ��

�� If m �
Pw��

i�� yi� yi �
�
m�i
w

�
�

It is the third form of the step property that makes counting networks usable as counters�

The requirement that the outputs of a quiescent counting network have the step property might
appear to tell us very little about the behavior of a counting network during an asynchronous execution�
but in fact it is surprisingly powerful� The reason is that even in a state in which many tokens are
passing through the network� if no new tokens arrive the network must eventually settle into a quiescent
state� This fact constrains the behavior of the network� and makes it possible to prove such important
properties as the following�

Lemma ��� Suppose that in a given execution� a counting network with outputs y�� � � �yw�� is in a
state where m tokens have entered the network and m� tokens have left it� Then there exist non�negative
integers di� � � i � w� such that

Pw��
i�� di � m�m� and yi � di �

�
m�i
w

�
�

��� Counting vs� Sorting

Given a balancing network and a comparison network� we will say that they are isomorphic if one can be
constructed from the other by replacing balancers by comparators or vice versa� The counting network
in this paper is isomorphic to the Bitonic sorting network of Batcher ��� To see that constructing
counting networks is a challenging task� consider the following theorem�

Theorem ��� If a balancing network counts� then its isomorphic comparison network sorts� but not
vice versa�

Proof outline� The balancing networks isomorphic to the Even�Odd or Insertion sorting networks
��� are not counting networks�

To prove the other direction� we construct a mapping from the comparison network transitions to
the isomorphic balancing network transitions� so that if the balancing network counts� the comparison
network sorts�

By the ��� principle ���� a comparison network which sorts all sequences of ��s and ��s correctly sorts
all sequences� Take any arbitrary sequence of ��s and ��s as inputs to the comparison network� and for
the balancing network place a token on each � input wire and no token on each � input wire� If we run
both networks in lockstep� the balancing network will simulate the comparison network�

On every gate where two ��s meet in the comparison network� two tokens meet in the balancing
network� so two ��s leave on each wire in the comparison network� and both tokens leave in the balancing
network� On every gate where two ��s meet in the comparison network� no tokens meet in the balancing
network� so two ��s leave on each wire in the comparison network� and no tokens leave in the balancing
network� On every gate where a � and � meet in the comparison network� the � leaves on the lower
wire and the � on the upper wire� while in the balancing network the token leaves on the lower wire�
and no token on the upper wire�

If the balancing network is a counting network� i�e�� it has the step property� then the comparison
network must have sorted the input sequence of ��s and ��s�

��� Verifying That a Network Counts

The ��� law for comparison networks allows one to verify a supposed sorting network by testing it on
a relatively small range of possible executions� namely� those generated by input sequences of zeroes
and ones� Does a similar law exist for counting networks� The answer is mixed� on the one hand�
it is possible to show that a counting network can be tested by considering only a �nite subset of its
in�nitely many possible executions� On the other hand� the size of that �nite subset is dependent on
the network�s depth� and therefore may be very large�

We �rst prove that in testing a network� one need only consider sequential executions� that is�
executions in which tokens enter and leave the network one completely after the other�

Theorem ��� If a balancing network maintains the step property in all sequential executions� it main�
tains it in all executions�

Thus the problem of testing a supposed counting network is reduced from examining all possible
executions to examining all sequential executions� The problem can be reduced further by regarding the
network as a �nite�state automaton� Suppose we have a width�w network with a total of m balancers�
If the network is quiescent� we can describe its state completely by specifying for each balancer which of
its outputs the next token to arrive will appear on� thus the network has at most �m reachable quiescent
states� If we consider only sequential executions� we can treat the network as a �nite�state machine
whose states are the quiescent states and whose transitions correspond to running a token through the
network starting at some input�stage balancer� In this representation� an execution may be described
by specifying the sequence of input�stage balancers on which the tokens are introduced�

Lemma ��� Let b be a sequence of input tokens of length n which takes the network from a reachable
state q back to the same state q� Then if the network counts all sequences of up to �n� �m tokens� the

length of b is a multiple of w and exactly jbj
w tokens leave on each output wire�

Based on the above lemma� we can now prove that

Theorem ��� If a width�w balancing network with m balancers counts in all sequential executions in
which up to � � �m tokens pass through the network� it is a counting network�

�

x0
x

x

x

x

x

x

x

1

2

3

4

5

6

7

y0
y

y

y

y

y

y

y

1

2

3

4

5

6

7

MMMMeeeerrrrggggeeeerrrr[[[[8888]]]]MMMMeeeerrrrggggeeeerrrr[[[[8888]]]]

MMMMeeeerrrrggggeeeerrrr[[[[4444]]]]

x0
x1

x

x

2

3

x

x
4

5

x

x

6

7

y0
y1

y

y

2

3

y

y
4

5

y

y

6

7

MMMMeeeerrrrggggeeeerrrr[[[[4444]]]]

Figure �� A Merger ��� balancing network�

Proof outline� By Theorem �� it is enough to show that the network guarantees the step property
in sequential executions� Thus we may regard the network as a �nite�state machine as in the preceding
lemma�

Consider an input sequence a of length greater than �m� By the Pigeonhole Principal there exists
some subsequence b of length at most �m such that a � a�ba� and the state of the network after a� and
a�b is the same� Thus we can remove b without a�ecting the behavior of the network on a�a�� Since
Lemma ��� tells us that b contributes an equal number of tokens to each output� the network�s output
on a�ba� will have the step property if and only if its output on a�a� does� Repeating such contractions
will eventually yield an input sequence of length less than �m� for which the network guarantees the
step property�

Finally� we give a lower bound on the number of tokens required by a test as in Theorem ��� � Let
us construct a would�be counting network of the following form� Take two counting networks of width
w� labeling their outputs as a� � � �aw�� and b� � � � bw��� respectively� Combine the two networks by
running a balancer between a� and bw�� and a second balancer between b� and aw��� Now construct a
k stage periodic balancing network of width �w by joining k copies of the above network� the outputs
of each stage connected to the corresponding inputs of the next� We can now prove that�

Lemma ��� A periodic balancing network with k stages� constructed as above� will count in all execu�
tions involving up to O��kw� tokens� but is not a counting network�

� A Bitonic Counting Network

Counting networks� of course� would not be interesting if we could not exhibit an example of one� In
this section we describe how to construct a counting network whose width is any power of �� The
layout of this network is isomorphic to Batcher�s Bitonic sorting network �� ��� though its behavior and
correctness arguments are completely di�erent� We give an inductive construction� as this will later aid
us in proving its correctness�

�A similar counter example can be constructed having any width� not just a power of ��

�

De�ne the width w balancing network Merger�w� as follows� It has two sequences of inputs of
length w��� x and x�� and a single sequence of outputs y� of length w� Merger�w� will be constructed
to guarantee that in a quiescent state where the sequences x and x� have the step property� y will also
have the step property� a fact which will be proved in the next section�

We de�ne the networkMerger�w� inductively �see example in Figure ��� Since w is a power of �� we
will repeatedly use the notation �k in place of w � When k is equal to �� theMerger��k� network consists
of a single balancer� For k � �� we construct theMerger��k� network from �Merger�k� networks and
k balancers� Using aMerger�k� network we merge the even subsequence x�� x�� � � � � xk�� of x with the
odd subsequence x��� x

�
�� � � �x

�
k�� �i�e� the input to the Merger�k� network is x�� � � �xk��� x

�
�� � � �x

�
k���

while with a second Merger�k� network we merge the odd subsequence of x with the even subsequence
of x�� Call the outputs of these two Merger�k� networks z and z�� The �nal stage of the network
combines z and z� by sending each pair of lines zi and z�i into a balancer whose outputs yield y�i and
y�i���

The Merger�w� network consists of logw layers of w�� balancers each� This Merger�w� network
guarantees the step property on its outputs only when its odd and even input subsequences also have
the step property� but we can guarantee this by providing those inputs as the outputs of smaller
counting networks� We de�ne Counter�w� to be the network constructed by passing the outputs
from two Counter�w��� networks into a Merger�w� network� where the induction is grounded in the
Counter��� network which contains no balancers and simply passes its input directly to its output�
This construction gives us a network consisting of

�
logw��

�

�
layers each consisting of w�� balancers�

��� Proof of Correctness

In this section we show that Counter�w� is a counting network� Before examining the network itself�
we present some simple lemmas about the step property�

Lemma ��� If a sequence has the step property� then so do all its subsequences�

Lemma ��� If x�� � � � � xk�� has the step property� then

k����X
i��

x�i �

�
k��X
i��

xi��

�
and

k����X
i��

x�i�� �

�
k��X
i��

xi��

�

Lemma ��� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having the step property� IfPk��
i�� xi �

Pk��
i�� yi� then xi � yi for all � � i � k�

Lemma ��� Let x�� � � � � xk�� and y�� � � � � yk�� be arbitrary sequences having the step property� IfPk��
i�� xi �

Pk��
i�� yi � �� then there exists a unique j� � � j � k� such that xj � yj � �� and xi � yi for

i �� j� � � i � k�

We now show that the Merger�w� networks preserves the step property�

�

Lemma ��� If Merger��k� is quiescent� and its inputs x�� � � � � xk�� and x��� � � � � x
�
k�� both have the

step property� then its outputs y�� � � � � y�k�� have the step property�

Proof outline� We argue by induction on log k�

If �k � �� Merger��k� is just a balancer� so its outputs are guaranteed to have the step property
by the de�nition of a balancer�

If �k � �� let z�� � � � � zk�� be the outputs of the �rst Merger�k� subnetwork� which merges the even
subsequence of x with the odd subsequence of x�� and let z��� � � � � z

�
k�� be the outputs of the second�

Since x and x� have the step property by assumption� so do their even and odd subsequences �Lemma
����� and hence so do z and z� �induction hypothesis�� Furthermore�

P
zi � d

P
xi��e � b

P
x�i��c andP

z�i � b
P

xi��c � d
P

x�i��e �Lemma ����� A straightforward case analysis shows that
P

zi and
P

z�i
can di�er by at most ��

We claim that � � yi � yj � � for any i � j� If
P

zi �
P

z�i� then Lemma ��� implies that zi � z�i
for � � i � k��� After the �nal layer of balancers�

yi � yj � zbi��c � zbj��c�

and the result follows because z has the step property� Similarly� if
P

zi and
P

z�i di�er by one� Lemma
�� implies that zi � z�i for � � i � k��� except for a unique j such that zj and z�j di�er by one� The
di�erence � � yi�yj � � for any i � j can be expressed as the di�erence between earlier and later terms
either of z or of z�� and the result follows because these two sequences both have the step property�

The proof of the following theorem is now immediate�

Theorem ��� In any quiescent state� the outputs of Counter�w� have the step property�

� Applications

We illustrate the utility of counting networks by constructing highly concurrent implementations of three
common data structures� shared counters� producer�consumer bu�ers� and barriers� In Section � we
give some experimental evidence that that counting network implementations have higher throughput
than conventional implementations when contention is su�ciently high�

��� Shared Counter

A shared counter ��� ��� �� ��� ��� issues the numbers � to n � � in response to the �rst n requests it
receives� To construct the counter� start with an arbitrary width�w counting network� Associate an
integer cell ci with the i

th output wire� Initially� ci holds the value i� A process requests a number by
traversing the counting network� After it exits the network on wire i� it atomically adds w to the value
of ci and returns ci�s previous value�

Lemma ��� implies that�

Lemma ��� Let x be the largest number yet returned by any operation on the counter� Let S be the
set of numbers less than x which have not been returned by any operation on the counter� Then

�

�� The size of S is no greater than the number of operations still in progress�

�� If y � S� then y � x�wjSj�

�� Each number in S will be returned by some operation in time � d� c� where d is the depth of
the network� is the maximum gate delay� and c is the maximum time to update a cell on an
output wire�

��� Producer�Consumer Bu�er

A producer�consumer bu�er is a data structure in which items inserted by a pool ofm producer processes
are removed by a pool of m consumer processes� The bu�er algorithm used here is essentially that of
Gottleib� Lubachevsky� and Rudolph ����� The bu�er is an n�element circular array� There are two
m�process counting networks� a producer network� and a consumer network� A producer starts by
traversing the producer network� leaving the network with value i� It then atomically inspects the ith

bu�er element� and� if it is �� replaces it with the produced item� If that position is full� then the
producer waits for the item to be consumed �or returns an exception�� Similarly� a consumer traverses
the consumer network� exits on wire j� and if the jth position holds an item� atomically replaces it
with �� If there is no item to consume� the consumer waits for an item to be produced �or returns an
exception��

Lemma ��� implies that�

Lemma ��� Suppose m producers and m� consumers have entered a producer�consumer bu�er built
out of counting networks of depth d and maximum gate delay � Assume that the time to update each
bi once a process has left the counting network is negligible� Then if m � m�� every producer leaves the
network in time �d and the network reaches a quiescent state� Similarly if m � m�� every consumer
leaves the network in time �d and the network reaches a quiescent state�

� Performance

The following is a summary of the more complete performance analysis provided in the full paper�

We consider the performance of the network when each processor is assigned a �xed input wire�
ensuring that the number of input tokens that can arrive simultaneously at an input wire is bounded�
The network saturation S is de�ned to be the expected number of tokens at each balancer� For the
counter network� S � �n�wd� The network is oversaturated if S � �� and undersaturated if S � ��
This measure is motivated by the assumption that in a su�ciently long computation� tokens are likely
to be spread through the network in an approximately uniform distribution�

De�ne the contention at a balancer at a given time to be the number of tokens pending on its input
wires� An oversaturated network represents a full pipeline� hence its throughput is dominated by the
per�balancer contention� not by the network depth� If a balancer with S tokens makes a transition
in time �S�� then approximately w tokens emerge from the network every �S� time units� yielding
a throughput of w� �S�� is an increasing function whose exact form depends on the particular
architecture� but similar measures of degradation have been observed in practice to grow linearly or
worse ��� ���� The throughput of an oversaturated network is therefore maximized by choosing w and
d to minimize S� bringing it as close as possible to ��

�

The throughput of an undersaturated network is dominated by the network depth� not by the
per�balancer contention� since the network pipeline is partially empty� Every O���S� time units� w
tokens leave the network� yielding throughput O�wS�� The throughput of an undersaturated network
is therefore maximized by choosing w and d to increase S� bringing it as close as possible to ��

We implemented several data structures employing counting networks� as well as more conventional
implementations using spin locks �which can be considered degenerate counting networks of width one��
These implementations were done on an Encore Multimax� using Mul�T ����� a parallel dialect of Lisp�
The spin lock is a simple 	test�and�test�and�set
 loop ���� written in assembly language� and provided
by the Mul�T run�time system� Each balancer is protected by a single spin lock�

We compare four shared counter implementations� counting networks of widths ��� �� and � and a
conventional spin lock implementation� For each network� we measured the elapsed time necessary for
a ��� �approximately a million� tokens to traverse the network� controlling the level of concurrency�

The width��� network has �� balancers� the width�� network has � balancers� and the width�
network has � balancers� In Figure � the horizontal axis represents the number of processes executing
concurrently� The vertical axis represents the elapsed time �in seconds� until all ��� tokens had tra�
versed the network� With no concurrency� the networks are heavily undersaturated� and the spin lock�s
throughput is the highest by far� As saturation increases� however� so does the throughput for each of
the networks� The width� network is undersaturated at concurrency levels less than �� As the level
of concurrency increases from � to �� saturation approaches �� and throughput increases as the elapsed
time decreases� Beyond �� saturation increases beyond �� and throughput eventually starts to decrease�
The other networks remain undersaturated for the range of the experiment� their throughputs continue
to improve� Notice that as the level of concurrency increases� the spin lock�s throughput degrades in
an approximately linear fashion�

��� Producer�Consumer Bu�ers

Next� we compare the performance of several producer�consumer bu�ers� Each implementation has �
producer processes and � consumer processes� We consider bu�ers with networks of width �� � and ��
The width�� implementation is simply a pair of counters protected by spin locks� As a �nal control�
we tested a circular bu�er protected by a single spin lock� a structure that permits no concurrency
between producers and consumers� Figure � shows the time in seconds needed to produce and consume
��� tokens� Not surprisingly� the single spin�lock implementation is much slower than any of the others�
The width�� network is heavily oversaturated� the bitonic width� network is slightly oversaturated�
while the others are undersaturated�

� Acknowledgments

Orli Waarts made many important remarks and observations� Our thanks to Heather Woll� Eli Gafni
and Shanghua Teng for helpful discussions� The �rst and third authors also wish to thank David for
being quiet during phone calls�

References

��� A� Agarwal and M� Cherian� Adaptive Backo� Synchronization Techniques ��th Symposium on Computer

Architecture� June �����

��

��� M� Ajtai� J� Komlos and E� Szemeredi� An O	n log n
 sorting network� In Proceedings of the ��th ACM

Symposium on the Theory of Computing� ���� �����

��� T�E� Anderson� The performance implications of spin�waiting alternatives for shared�memory multiproces�
sors� Technical Report ������� University of Washington� Seattle� WA ������ April ����� To appear�
IEEE Transactions on Parallel and Distributed Systems�

��� K�E� Batcher� Sorting networks and their applications� In Proceedings of AFIPS Joint Computer Confer�

ence� ����������� �����

��� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algorithms� MIT Press� Cambridge MA�
����

��� C�S� Ellis and T�J� Olson� Algorithms for parallel memory allocation� Journal of Parallel Programming�
��	�
�������� August �����

��� E� Freudenthal and A� Gottlieb Process Coordination with Fetch�and�Increment In Proceedings of the

�th International Conference on Architecture Support for Programming Languages and Operating Systems�
April ����� Santa Clara� California� To appear�

��� G�H� P�ster et al� The IBM research parallel processor prototype 	RP�
� introduction and architecture�
In International Conference on Parallel Processing� �����

��� D� Gawlick� Processing �hot spots� in high performance systems� In Proceedings COMPCON���� �����

��� J� Goodman� M� Vernon� and P� Woest� A set of e�cient synchronization primitives for a large�scale
shared�memory multiprocessor� In �rd International Conference on Architectural Support for Programming

Languages and Operating Systems� April �����

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph� and M� Snir� The NYU ultracomputer
� designing an mimd parallel computer� IEEE Transactions on Computers� C���	�
��������� February �����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for the e�cient coordination of very
large numbers of cooperating sequential processors� ACM Transactions on Programming Languages and

Systems� �	�
��������� April �����

���� D� Kranz� R� Halstead� and E� Mohr� �Mul�T� A High�Performance Parallel Lisp�� ACM SIGPLAN ���

Conference on Programming Language Design and Implementation� Portland� OR� June ����� pp� �����

���� C�P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multiprocessors with shared memory�
In Fifth ACM SIGACT�SIGOPS Symposium on Principles of Distributed Computing� August �����

���� L� Lamport� A new solution of Dijkstra�s concurrent programming problem� Communications of the ACM�
��	�
��������� August �����

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable synchronization on shared�memory multi�
processors� Technical Report Technical Report ���� University of Rochester� Rochester� NY ������ April
����

���� L� Rudolph� Decentralized cache scheme for an MIMD parallel processor� In ��th Annual Computing

Architecture Conference	 ����� pp� �������

���� D� Peleg and E� Upfal� The token distribution problem� In
�th IEEE Symposium on Foundations of

Computer Science� October �����

���� G�H� P�ster and A� Norton� �hot spot� contention and combining in multistage interconnection networks�
IEEE Transactions on Computers� C���	��
��������� November �����

��� H�S� Stone� Database applications of the fetch�and�add instruction� IEEE Transactions on Computers�
C���	�
�������� July �����

���� U� Vishkin� A parallel�design distributed�implementation 	PDDI
 general purpose computer� Theoretical

Computer Science� ����������� �����

��

20100
0

20

40

60

80

ti
m

e

(s
e

c/
1

0
0

)

concurrency (num. of proc.)

spin lock

counter[16]

counter[8]

counter[4]

Figure � Shared Counter Implementations

spin � �
time �secs� ���� ����� ��� ����

Figure �� Producer�Consumer Bu�er Implementations

��

