Ty,

@.o)
Q\Sv.

Lo

PDP11
Extended

Instructions

DEC STD 168 REV A Page 1
TITLE: PDPll Extended Instructions
DATE ECO § AUTHOR APPROVED ~ REV ~ SET PAGES
18-Jan-79 - Lloyd Dickman C. Woelcke A - ALl
size Code Number Rev.
A DS ELPOL68-00 A

DEC STD 168 REV A Page 2

DEC STANDARD 168
Revision A

PDP11 EXTENDED INSTRUCTIONS

18 January 1979

ABSTRACT

This standard provides architectural definition and control for PDP1l
instructions whose opcodes are in the reserved and extended opcode
spaces.

Revision History

Pass § Description Author Revised Date
pass 1 Original Standard L. Dickman 38 August 1977
Pass 2 March 1978 Task Force L. Dickman 23 August 1978

This document is the property of Digital Equipment Corpor is
not to be provided or disclosed to any non-Digitzl persoanel without
prior written authorization.

Copyright (C) 1976, 1977, 1978 by Digital Equipment Corporation

B

* COMPANY CONFIDENTIAL *
[EYeeetrtiosotrratbaran

DEC Standard 168 - Revision A

page 3
‘fable of Contents

CHAPTER 1 INTRODUCTION

Seope s L L1l

1

2

3 Motives

4 applicability and Wa

5 GOAlS « v v e e a4 u s
6 Non-Planned ELffects of Goals
7

8

9

1

Non=GOals + v v o v o v e 0 o 4.
History of Previous Standarization E
.1.9 Related Current Standards . .

.1.16 Future Standards Activities

TN
LLALLLLLLSLSS

s b b
T

4.1 POPI1 family Compatibilit y
4.2 PDP1l / VAXIl Compatibility
4.3 Processor-Model Identification
4.4 Instruction-Group Atomicity .

T
VIRV Y

forts

I

CHAPTER 2 FRAMEWORK FOR EXTENDING THE PDP11 INSTRUCTION SET

1 OPCODE UTILIZATION AND AVAILABILITY .
2 OPCODE GROUPINGS .

3 INSTRUCTION-STREAM CONTENTS . . .
4 FORMAT OF OPCODE

2 EXTENDED~INSTRUCTION GROUPS . . .
7
2
2
2

¥

EXTENDED INSTRUCTION CATEGORIES . .

OPERANDS FOR EXTENDED INSTRUCTIONS .

1 Implicit Operands
s

v

v
PRUNRUP S B VIR VRV

Explicit Opcode-Specific Operand:
Explicit General Operands . . .
1 Number and Types of General Operand Formats
2 Format of Single-Operand Specifiers - . . .
3 Format of Double-Operand Specifiers - . . .
4 Additional Instruction Stream Operand Words

TEYTY

I R R s

2 Vector 10(8)

¥

wyy

1
2
3
4 Floating Point Traps —- Vector 244(8)
5 Other Traditional Trap:
6
U
1

s
Traps Unique to Extended Instructions
SPENDABLE INSTRUCTIONS . .

. Suspendability Classifications .
.9.2 Non-Suspendable Instructions

1903 Potentially Suspendable Instructions
.9.4 Instruction Suspension
@ ST.CK UTILIZATION .
1 UNPREDICTABLE CONDITIONS .

v
ALl boom

PRy
KESss

... 2713

DEC Standard 168 - Revision A
Table of Contents

CHAPTER 2 FOR THE

2.12 RESERVATION OF UNUSED FIELDS
2.13 MULTIPROGRAMMING INTEGRITY .

CHAPTER 3 EXTENDED-INSTRUCTION DATA

CHARACTER DATA TYPES
1 Character . . -

2 Character String ..

3 character .
MAL STRING DATA TYPES

a.‘.
L8
Q

2

3 Ppacked Strings . . .
4 Zoned Strings . . .
Overpunch Strings .
Separate s:nnqs .

Decimal String Descripto
LONG INTEGER . .

CHAPTER 4 DESCRIPTION AND INTENT OF

2

P
COMMERCIAL INSTRUCTION SET

Instructions - . .

Condition Code .

Instructions - . .

Implementation Notes

Implementation

g
g

ROCESSOR IDENTIFICATION INSTRUCTION

haracter String Instructions . .

'S Unpredictable Conditions -
o Implementation Notes -
Decimal String Instructions

Unpredictable Conditions -
Commercial Load Descnpcor Instrict ion:

Notes .
SOR SPECIFIC INSTRUCTIONS

PDP11 INSTRI

AND ENCODINGS

TYPES

SET

EXTENDED INSTRUCTIONS

.1 Character String Move Instructions -

Character s:ran Search Instructions

page 4

(Con' £}

... 2-13
. 2-14

¥
LaLALAd

Ges

T
LLLE

TEE
LOLALGALLLLLS

P T T T
7

RORICRCRON?
LLLLLLLESh b
GaLRESs

sasanas

DEC Standard 168 - Revision A Page 5
Table of Contents

CHAPTER 5 EXTENDED-INSTRUCTION DEFINITIONS

5.1 ADDN / ADDP / ADDNI / ADDPI - ADD DECIMAL e .52
5.2 ASHN / ASHP / ASHNI / ASHPI - ARITHMETIC SHIFT DE 5-5
5.3 CMPC / CMPCI - COMPARE CHARACTER P]
54 CMPN / CMPP / CMPNI / CMPPI — COMPARE DECIMAL 5-15
5.5 CVTLN / CVTLP / CVTLNI / CVTLPI - CONVERT LONG T 5-18
5.6 CVINL / CVIPL / CVINLI / CVTPLI - DECIMAL TO LDN C...s2
5.7 CVINP / CVTPN / CVINPI / CVIPNI - CONVERT DECIMA 5-24
5.8 DIVP / DIVPI - DIVIDE DECIMAL « « . . . « 5-27
5.9 LOCC/ LOCCI - LOCATE CHARACTER . . - - - « + - « « . . . 5-3@
5.18 R - LOAD 2 DESCRIPTORS . . . « « & & + « « o o . « . 534
5.11!.3 LOAD 3 DESCRIPTORS . . &« « « + + + « + - « « - « 5=3A
2112 MATC / WATCI - WATCH CHARACTLA59
5113 MED6X - PDP11/60 MAINTENANCE, EXAMINE, DEPOSIT 5-44
5.14 MED74C - PDP1./74 CIS MAINTENANCE INSTRUCTION 5-47
5.15 MPPT - MOVE FROM PROCESSOR TYPE 5-49
5.16 MOVC / MOVCI — MOVE CHARACTER C e e .. 551
517 MOVRC / MOVRCI - MOVE REVERSE JUSTIFIED CHARACT 5-56
5.18 MOVIC / MOVICI - MOVE TRANSLATED CHARACTER 5-51
5.19 MULP / MULPI - MULTIPLY DECIMAL 5-56
5.20 SCANC / SCANCI - SCAN CHARACTER . . . - . « 569
5.21 SKPC / SKPCI - SKIP CHARACTER « 5-74
5.22 SPANC / SPANCi - SPAN CHARACTER 578
5.27 SUBN / SUBP / SUBNI / SUBPT - SUBTRACT DECIMAL 5-83
CHAPTER 6 REINTERPRETATION OF TRADITIONAL PDP11 INSTRUCTIONS
6.1 MULTTPROCESSING MEMORY LOCK . . = « « + « « & « « o « . 6-2
CHAPTER 7 WAIVERS
7.1 PDP11/6@ LACKING MFPT . e 12
7.2 LSI-11 COMMERCIAL INSTRUCTION SET 7-3
APPENDIX A TION OPCODE

APPENDIX B PDP1l OPCODE SPACE

APPENDIX C FORMAL DESCRIPTION OF MACHINE STATE

CHAPTER 1

INTRODUCTION

ol ot tla| B

Introduction Page 1-2
Nature of this Standard

1.1 NATURc OF THIS STANDARD

1.1.1 Purpose

The purpose of this Standard is to provide architectural definition
and control for PDPLl instructions whose opcodes lie in the reserved
and extended opcode spaces.[1]

1.1.2 Scope

The scope of this Standard covers all programmable aspects of PDP1L
instructions in the reserved and extended opcode spaces.
“Programmable aspects® include all aspects of the instructions which
are controllable by, are visible to, or affect the behavior of PDPIL
programs. The reserved and extended opcode spaces are defined in
Section 2.1 and are enumerated in Appendix B.

Except a3 specified in chapter 6, the scope of this Standard does not
the instructions historically established in the
Smprementations of BOELL prior to March 1976, because the
definition of those instructiors is fixed. Specifically this
exclusion refers to the instructions inplemented in the following
models

The exclusion of these historically established instructions from the
scope of this Standard does not imply that freedom or latitude exists
Telotive to their architectural definitions.

(1] The work leading to this standard is described in "PDP1L
Instruction Extensions® by Lloyd Dickman, 1 March 1976, 8 pp.

nn u(n. 010874 1A 16 HI17 35,
PRI

Introduction Page 1-3
Nature of this Standard

1.1.3 Motives

This Standard is intended to provide designers with definitions that
will ensure architectural consistency of new machine instructions
across processors of the PDP1l ily. This will consequently promote
the general transportability o software across members of the PDP1l
system family, will reduce associated support problems in both the
hardware and software areas, and will control the variability that
might n:herwise inpede migration of Software structures to the

£amil

1.1.4 Applicability and Waivers

This stardard applies to all PDPll processors announced during or
after March 1976 and to any major revision of a PDP1l processor.

Exceptions to this Standard will be documented in Chapter 7. The
documentation must specify .n detail both the extent of the exception
and the reasons for the e«ception. The intended exception will then
be reviewed by the EDPll Architecture Manager, who will submit a
uritcen recommendation to the Engineering Comnittee that it eithu
approve, reject or amend the proposed waiver. The Engineering
Committee's decision shall be incorporated by the PDP1l Arcmceczure
Group Manager into this Standard.

1.1.5 Goals
The goals of this standard are:

. to specify the framework within which new instructions can be
added to the PDPll architecture,

2. to serve as a centrally controlled repository for the
specific.tions of all PDP1l extended instructions, and

3. to serve ss a centrally controlles repasitory for all
PDPL

necessary re-interpretations of traditional
instructions.

mn nuanm 01087 14 1 0130
o e

Introductios Page 1-4
Nature of this Standard

1.1.6 Non-Planned Effects of Goals

The effects, both planned and non-planned, will be documented in the
treatment of each extended instruction in the text of the standard.

1.1.7 Non-Goals
Non-Goals of this standard are:

1. This document does not attempt to define traditional PDP1L
instructions, except as noted above in section 1.1.5, item 3.

2. This document does not attempt to plan or define specific

future to the PDP1l instruction set. Its intent is
to define the framework within which such extensions can be
made and to record the speci of extended in:

that are actually implemented on PDP1l processors.

1.1.8 History of Previous Standarization Efforts

None.

1.1.9 Related Current Standards

1.1.18 Future Standards Activities

None.

1.2 CHANGES TO THIS STANDARD (ECO'S)

The normal method for effecting changes to this Standard is to submit
the proposed change in the form of an ECO to the PDP1l Architecture
Manager for review and approval. The marager will send the proposed
ECO, together with a recommendation to the Engineering Committee for
final decision. The PDPll Architecture Group Manager will incorporate
approved ECO's into this Standard

lilolitlal 1 F

Introduction page 1-5
Formal ISPS Definitions

1.3 FORMAL ISPS DEFINI;IONS

Formal descriptions in the ISPS language, when provided, are an
essential part of an instruction's specification. They are included
to specify, as accurately as possible, the architected results
obtained from th ion of the instructions but do not necessarily
imply implementation methods or algorithms. Where provided, the
formal ISPS descriptions are the authorative source of information
about the instructions; the English and pictorial descriptions secve a

secondary role. The machine state for each of these descnptions
appears ‘{n Appendix Al oes statements use a lon to
signify Thus, the 15 an inplicd “next’

operator.

1.4 POLICIES

1.4.1 PDP11 Family Compatibility

In general, PDP1l extended instructions shall be so defined as to be

implementable on any processor of the PDP1l family. Optimization of
an” imstruction for’ a particulsr proceasor shall rot. preciude. the
possibility of its impl en other of the PDP1l

family. Exceptions to this ,ulicy are relegated to the
processor-specific instruction groups (-- See Section 2.6).

1.4.2 PDP11/VAXI: Compatibility

Data types associated with extended PDPll instruc’ sns be
consistent with corresponding VAX1] data types. This will PRt
migration of data files from PDP1l systems to VAX1l systems.

1.4.3 Processor-Model Identification

Any major ravision to an existent PDPll processor and all new PDP1l
processors will include e MFPT (-- see
Chapter 5).

1.4.4 Instruction-Group Atomicity

Implementors will provide either all or none of the instructions of a
closed group (-- see Section 2.2).

CHAPTER 2

Framework for Extending the PDP1l Instruction Set

11 R

Framework for Extending the PDP1l Instruction Set page 2-2
Opcode Utilization and Availability

2.1 OPCODE UTILIZATION AND AVAILABILITY

Opcodes in the following ranges are reserved and are not aveilable for
usage:

070010 (8) - 060077 (8)
807000 (8) - 007777(8)
187000 (8) - 167777 (8)
170006 (8)
170010 (8)
170013(8) - 170077 (8)

In general, extended PDP1l instructions will utilize opcodss in the
range 076008 (8) - 076777(8) .

2.2 OPCODE GROUPINGS

The extendsd opoode space is divided into 64 groups of 8 instructions
h. Grcups are treated as integral entities. A group is declared
“eTosed® when all 8 instructions in it have been Gofined or when no
further instructions are adnissible into it. Otherwise a group is
considered "open" and future instructions may be added into it. The
opcode groups are specified in Section 2.5. See also Section 1.4.4.

2.3 INSTRUCTION-STRFAM CONTENTS

PDP1l extended instructions can Le defined (a) to operate on
implicitly specified operands and/or (b) to require explicit operand
specifiers in the instruction stream. Explicit operand specifiers may
use either (i) a general operand-specifier format or (ii) an
opcode-specific operand-specifier format.

If an extended instruction uses only implicit operands, only the
opcode will appear in the instruction-stream (-- see Section 2.7).

If an extended inctruction uses explicit operands, the opcode word is
followed in the instruction stream by as many operand specifiers and
operands 2s the specification of the instruction requires. in
traditional PDPll instructions, explicit general operand spec\f\ers
using modes 6 or 7 or using R7 in modes 2 or 3 will also require
dditional words in the instruction stream (-- zee Section 2.7).

Framework for htendim; the PDP11 Instruction Set Page 2-3
Pormat of Opcod

2.4 FORMAT OF OPCODE
The extended instructie. -pcode word is structured as follows:

15 98 32 0

| 076 | group |instr|

Bits <8:3> contain the group code. Bits <2:6> specify the instruction
within the group.

2.5 EXTENDED-INSTRUCTION GROUPS

The extended-instruction groups are defined in the following table,
where X represents the set of eight instructions in the group.

CODE GROUP STATUS
87600 open
07681 open
€760 comercial foad 2 Descriptors closed
87683 Character String Mos closed
87684 Character Sr.nnq Search closed
07665X Numeric String closed
87606X Commercial Load 3 Descriptors closed
87687X Packed String closed
87610X open
87611 open
87612x open
87613 Character String Move (in-line) closed
87614 Character String Search (in-line) closed
67615X Numeric String (in-line) closed
87616X open
87617 Packed String (in-line) closed
87620X ope
87621 open
087622x open
87623% open
07624x open
87625 open
07626X open
87627X open
87630% open
87631 open
07632x open
87633x open
87634x open

nnan LN 010478 1A 16 1171320
oRa 118A

the PDP11 Set Page 2-4
Excendeds Thetrustion Groups

CopE GROUP STATUS
87635X open
97636x open
87637% open
67640 open
07641X open
97642X open
87643% open
87644x open
87645% open
87646X open
07647X open
87656 open
87651 open
97652% open
87653 open
a7654% open
67655% open
07656X open
B87657X open
07660 Processor-Specific 18 open
87661X Processor-Specific . open
67662X Processcr-Specific §2 open
87663X Processor-Specific #3 open
87664X Processor-Specific #4 open
97665X Processor-Specific ¥5 open
07666x Processor-Specific §6 open
87667X Processor-Specific #7 open
87678X CSS/Customer 8 open
87671X CSS/Customer #l open
87672X CSS/Customer 2 open
87673 CSS/Customer 3 open
87674X CSS/Customer #4 open
87675X Css/Customer #5 open
97676X CSS/Customer 16 open
87677X CSS/Customer #7 open

2.6 EXTENDED INSTRUCTION CATEGORIES
The extended instruction groups fall into three major categories:

1. The groups E7600X - B7657X are for instructions which will be
of genecsl use ‘actoss the cange JE POPLI processors.
opcodes in this range will be characterized as (a) wniquety
and immutably defined and (b) reasonable for implementation on
all processor models of the PDP1l family.

Enu n EN 010874 1A 16 BT /1 1s
ona118s

Pramework for Extending the PDP1l Instruction Set Page 2-5
Extended Instruction Categories

2. The groups 87666X - 97667X are for instructions which will be
used only on specifiz processors of the PDP1l family. These
too will be uniquely and immutably defined, but each opcode
will be restrictively assigned to a specific processor model
and may not te implemented on other processors.

3. The groups 87670X - 87677X will neither be uniquely noc
immutably defined but will be left available for free and
indiscriminate customer usage.

2.7 OPERANDS FOR EXTENDED INSTRUCTIONS

Operands for extended instructions may be implicitly or explicitly
specified. Explicit operands are specified, either in 2 general or in
an opcode specific manner, through information expressed directly in
the instruction stream. R7 is conceptually incremented by two as each
word which contains an operand-specifier or operand in the instruction
stream is fetched (e Section 2.7.3.4).

Isplicitly specified operands do not appear in the instruction strean.

If an instruction utilizes an implictly specified operand, the
definition of that instruction will specify the exact location and
format of such an operand.

2.7.1 Implicit Operands
Implicitly specified operands may be defined to be located:
1. in the general-purpose registers,
2. in defined machine registers,
2. on the R6 stack,
4. in defined locations in the virtual address space, or

S. in defined locations in the physical address space.

2.7.2 Explicit Opcode-Specific Operands

The definition of an instruction may specify that operands immediately
follow it in the instruction strean. ‘The forast and interpretation of

h operands can be specified in an opcode specific manner and will
oTbe Gefined in the desceiption of the instrustion-

20080

Framework for Extending the PDP1l Instruction Set Page 2-6
Operands for Extended Instructions

2.7.3 Explicit General Operands

2.7.3.1 Number and Types of General Operand Formats - When an
instruction utilizes explicit general operand specifiers, the operand
specifiers shall immediately follow the extended opcode in the
instruction stream. As many operand s the instruction
requires follow in consecutive order.

Instructions which utilize a single general operand will use the
single-operand-specifier format (-- see Section 2.7.3.2).
Instructions which require two consecutive explicit operands will use
the double-operand-specifier format (-- see Section 2.7.3.3).
Instructions which use more than two consecutive explicit operands
will specify the operands in a succession of double-operand
specifiers, and the last operand, when there are an odd number of
operands, will be specified in the single-operand format.

2.7.3.2 Format of Single-Operand Specifiers

The single-operand
specifier consists of a word in the following format

15 65)

| ° ! mode-reg |

Bits <15:6> must be se a trap through vector 4(8) (invalid
instruction specifier) Cainn e eakens

Bits <5:@> specify the operand in the traditional PDPll mode-register
format.

2.7.3.3 Format of Double-Operand Specifiers - The double-operand
specifier consists of a word in the following format

15 1211 65 0

I @ | mode-reg | mode-reg |

Bits <15:12> must be 0. Else a trap through vector 4(8) (invalid
instruction specifier) will e caken:

h or0ara 14 T

Framework for Extending the PDPLl Instruction Set Page 2-7
Operands for Extended Instructions

Bits <11:6> specify the first of the two operards, and bits <5:@>
specify the second. Each operand is specified in the traditional
PDP11 mode-register format.

2.7.3.4 Additional Instruction Stream Operand Words - For as many
general operand specifiers as utilize mode 6 or 7 (with any register)
or as utilize modes 2 or 3 with register 7, additional operand words
are requ he instruction stream. These additional operand
words l-mlledlately EoLlow the operand-specifice word which caiis for
them.

Thus, for example, a hypothetical instruction:
ZAP #A, (RL)+, B(R4), C, D

requiring explicit general operands would appear in the instruction
stream as the following eight words:

opcode z2z for ZAP 076222
specifiers for operands 1 & 2 802721
value of literal A aaaaaa
specifiers for operands 3 &4 866467
value of index B bbbbbb
displacement off PC for address of C ccecee
specifier for operand 5 200057
displacement off PC for address of D dddddd
2.8 TRAPS

2.8.1 Reserved-Instruction Traps — Vector 18(8)

When an instruction is fetched which has a reserved or an
i ced e shall trap through vector 16(8).
The program counter (PC) contents which are stored on the kernel stack
shall be the address of the word immediately following the trapped
opcode word (i.e. old PC + 2), the processor status (PS) contents
which are stored on the kernel stack shall contain the concition codes
which represent the machine state immediately before the
was fetched. If the trap occurs in other than kernel mode, that
node’s A6 15 unchanged; LE the tisp ecours while execyting in kernel
mode, the kernel mode R% will be 4 lower than its previous value. ALl
other processor state (i.e. R through RS of the selected general
register set and memory) shall be exactly the same as it was when the
trapped opcode was fetched.

Framework for Extending the PDP1l Instruction Set Page 2-8
Traps

On a multi-mode machine, some instructions may only be executed in
kernel mode. If an attempt is made to execute them in a less
privileged mode, a trap through vector 10(8) (reserved instruction) is
to be taken. The processor state is preserved as stated above.

2.8.2 Trace Traps —— Vector 14(8)

T-bit traps are eligible for servicing only between instructions.
Suspendable instructions as described in Section 2.9 will neither
interfere with the servicing of T-bit traps nor stimu)ate T-bit traps
during their execution.

2.8.3 Fatal Traps -- Vector 4(8)

Fatal conditions encountered in attempting to execute an instruction
shall result, unless otherwise specified, in a trap through vector
4(8). wWhen fatal traps occur, the processor state may not be the same
as it was when the instruction was fetched, and the PC-address which
is stored on the stack has no predictable relation to the address of
the opcode word of the aborted instruction.

Events which result in a trap through vector 4(8) will set a bit in
the CPU error register (if implemented) to indicate the condition
which caused the trap. The CPU error register bits and conditions
a

illegal interrupt address access
USC parity error

red zone stack limit abort
yellow zone stack limit trap
bus time-out

non-existent memory

odd address error

illegal halt or micro break
invalid instruction specifier

PuanswNmS

O sddress ervor checking should be enabled to detect errors which
may occur from the of

Stack Linit violstions will refer to the furthest extant of the stack
(or temporary data) during instruction execution. the stack
extends in.o the YELLOW zone during kernel mode executlon, an internal
interrupt request is generated. This will be handled in a similar way
as externally generated interrupt requests. If the stack extends into
the RED zone during kernel mode execution, the instruction is aborted,
R6 is set to a value of 4, and a trap through vector 4(8) is taken.
Note that RED zone aborts superceed YELLOW zone traps.

Eﬂ ﬂn u - ot0e

Pramework for Extending the PDP1l Instruction Set Page 2-9
Traps

2.8.4 Floating Point Traps — Vector 244(g)

If a floating point processor is not present, all instructions in the
floating point opcode space (17XXXX(8)) trap as reserved instructions
throudh. vector 10(8). | TE ‘a floating Peint processer ia present,
illegal instructions in the floating point opcode space (170886 (8),
170818 (8) and 170613(8)-179377(8)) asynchronously trap through vector
244(8). Refar to the description of the floating point processor in
the PDP11 Processor Handbook for additional information.

2.8.5 Other Traditional Traps

Other cases of traps (memory parity errors, memory management aborts,
etc) are to be handled in the traditional PDP1l style (-- see Section
-10).

2.8.6 Traps Unique to Extended Instructions

Traps required by extended instructions (e.g. invalid pointer, data
exception, etc.) must not conflict with existing trap assignments and
fnust be explicitly specified in the definition of the instruction in
Chapte;

2.9 SUSPENDABLE INSTRUCTIONS

The intent of defining instruction suspendability is to establish a
means for providing reasonable interrupt latency and does not presume
to endow extended instructions with an ability to recover from trap
conditions from which sequences of basic instructions cannot recover.

Suspension-events refer primarily to events which occur asynchronously
to the instruction's execution; these are specifically the interrupts
generated by 1/0 peripheral devices, power-fail traps, and floating
point processor exceptions. Secondarily, suspension-events can refer
also to those Synchronous trap events which occur only for information
notification purposes and do not imply that the integrity of the
instruction's execution is in jeopardy. Such suspension events
include YELLOW zone traps.

ol it = Pt

Framework for Extending the PDP11 Instruction Set Page 2-18
Suspendable Instructions

2.9.1 Suspendability Classifications

Each extended instruction is classified either as "non-suspendable® or
as “potentially suspendable”.

As explained below, two implementation choices are possible for
now-suspendable instructions, and three are possible for pocentially
suspendable instructions. The following diagram can serve as a guide
to subsequent portions of this section.

architecture implementation
A) Non-Susperdable 1) non-interruptible

2) restartable

B) Potentially Suspendable 1) non-interruptible
2) restartable
3) suspendable

2.9.2 Non-Suspendable Instructions

A_"non-suspendable” instruction has no architectural mechanism to
allow it to be while a is serviced and chen
subsequently to be resumed.

A "non-suspendable® instruction may be impiemented either as
"non-interruptible® or as "restartable”.

If an insuuction is impleanen:ed as mn—interrupnble', then once its
11 defer service of all
suspension-evencs ntil atter the completion of the instruction.

If an instruction is implemented as “restartable”, then the
instruction may be aborr.ed to allow the processor to service
visible state will be restored to
That which existed immediately prier fo the instruction execution,
ipon the processor's return from servicing the suspension-event, the
instruction will be started afresh.

2.9.3 Potentially Suspendable Instructions

"potentiall " have a defined architectural
mechanism, viz. PS<8> as described below, by which they can be
suspended in mid-execution to allow the processor to service
1y to be resumed from the point

e and then
where they had been suspended.

5 nanw 010874 14 16 W1 1727,
oA 11aa

for the PDP11 Set. Page 2-11
Suspendable Instructions

A "potentially - may be her as
*non-interruptible® (-- see Section 2.9.2), as ‘resr_anable" (-— see
Section 2.9.2) or as "suspendable” (-- see below).

The presence of suspension events mi/ cause certain extended
to

15 suspended, Po<a> Wil be set, A7 will be hacked up o adarecs the
opcode word, and the suspension event trap will be taken. When the
instruction is resumed, PS<8> indicates that execution of the
instruction has previously begun.

In order to make these instructions suspendable on all processors, the
instruction state is part of the user state which is saved
interrupt handling routines. This includes the general reqisters,
condition codes and memory. This state is processor dependent when
suspended. Software should not attempt to interpret or modify this
state; it must only be saved and restored. Up to 64(18) words of
internal instruction state may also have been pushed onto the stack
(-- see Section 2.18). This state must not be modified by software.
The instruction will remove this state from the stack when it is
resumed.

If PS<8> is set prior to ing a * e
instruction, the effect of the instruction is unpredictable (-- see
Section 2.11) .

At the normal completion of an "potentially suspendable® instruction,
PS<8> will be cleared.

In order to promote uniform nomenclature, the name of the bit PS<8>
will be *Instruction Suspension® with the corresponding mnemonic *IS".

2.9.4 Instruction Susoension
All suspendable instructions will use PS<8> to indicate instruction
suspension. When a potentially suspendable instruction is executed,
PS<8> cleared means that the instruction is being commenced; set means
that the instruction is being resumed. It will be cleared upon
successful completion of any suspended instruction. PS<8> will be
cleared when:

1. A suspended instruction successfully completes.

2. Processor power-up.

3. New PS is fetched from vector location with PS<8> clear.

4. RTI or RT1 is executed with new PS<g> clear.

5. PS<8> explicitly cleared by an instruction.

n um 010814 a1 n1)
ona ran

for the PDP11 ion Set Page 2-12
Suspendable Instructions

PS<8> will be set when:

1. Potentially suspendable instruction is interrupted and wishes
to be suspended.

2. New PS is fetched from vector location with PS<8> set.

3. RTI or RTT is executed with PS<8> set.

4. PS<8> is explicitly set by an instruction.
The setting of this bit will have no affect on instructions which are
not potentially suspendable; such instructions will not implicitly
modify this bit.
When an instruction is suspended the following state may contain

information vital to the resumption of the instruction. This
information must be preserved, and restored prior to restarting the
model

it may vary from one executlen o€ the instruction to another.
1. General registers R8 through RS.
2. Condition code bits (PS<3:0>).

3. Up to 64(1p) words cn the stack of the context in which the
suspended instruction was executing.

4. Any destinations used by the instruction.

2.18 STACK UTILIZATION

Extended instructions may use the R6 stack for temporary "scratch”
state storage.

‘The maximum number of additional words which an extended instruction
may claim on the R6 stack is 64(16). The reason for imposing a limit
is to ensure that system software can aaequately provide for
worst-case stack allocation requirements. In addition to the above
restriction, the normal PDP11 stack-limit mechanism remains in effect
for extended instructions just as it does for any other instruction.

ol 1olit o] F

Framework for Extending the PDP1l Instruction Set Page 2-13
Stack Utilizati.

If an extended instruction is interrupted, R6 must have been updated
to encompass any additional stack storage still required for
completion of the instruction.

All extended instructions will support dyanmic stack allocation
facilities used by some software systems. This means that memory
management traps which result from over-extending the stack area must
be survivable. If insufficient stack space exists, the instruction
must terminate by a memory management abort in such a way that if
aaditional stack space were allocated, the instruction could be
successfully restarted.

2.11 UNPREDICTABLE CONDITIONS

"Unpredictable" means that the outcome is indeterminate and
non-repeatable. Either the results of an instruction or the effect of
an instruction can be unpredictable. When the results of an
instruction are unpredictable, the condition codes and destination
operands (but not their descriptors) will contain unpredictable
values; destinations may not even contain valid results. When the
effect of an instruction is unpredictable, the entire user or process
state, and not only the portion typically used by the instruction will
be unpredictable. In a machine with multiple modes and address
spaces, an unpredictable operation in a less privileged mode will not
affect the state of a more privileged mode, nor will it result in
accesses to memory from user mode which are outside the mapped limits
of the user's program.

Note that architectural constraints exist on unpredictable effects.
In particular, an unpredictable effect which manifests itself as a
trap must meet all the requirements for the particular trap (-- see
Section 2.8).

Implementors are encouraged to select the manifestations of
unpredictable results and effects to be such that their occurrence is
visible to software at the earliest possible time.

2.12 RESERVATION OF UNUSED FIELDS AND ENCODINGS

Helds and encodings which are available to an instruction, but are
are reserved by the architecture, This will permit future
GeEinivion of tness not to conflict with existing o ftware.

il it[o]| R

Framework for Extending the PDPll Instruction Set Page 2-14
Reservation of Unused Fields and Encodings

Any unused field {single it or contiguous group of bits) must be zero

if it is reserved by the architecture. Any non-zero value in the
field will cause the effect of such an instruction to be
unpredictable.

Any unused encoding (field of n bits where less than 2°n encodings are
defined) is reserved by the architecture. Use of such encodings will
cause the effect of such an instruction to be unpredictable.

2.13 MULTIPROGRAMMING INTEGRITY

Machine ‘mplementations shall ensure that, under all initial settings
of registers and memory, extended instructions shall not violate any
bound implicit in multiprogrammed operation. Specifically, the
following ars to be avoided:

1. A less-privileged program escaping into a higher-privileged
mode.

2. A program escaping beyond its address-mapping limits.
3. A non-interruptable or non-terminating sequence.

4. Excessive interrupt latency.

CHAPTER 3

Extended-Instruction Data Types

Extended-Instruction Data Types page 3-2
Character Data Types

3.1 CHARACTER DATA TYPES

There a.e three different character data types. The 'character' is a
single byte, and is an abbreviated string of length one. The
‘character string' is a contiguous group of bytes in memory. The
third is a ‘character set'.

3.1.1 Character
The character is an 8 bit byte:

Al char I

The character is used as an operand by CIS1l instructions. When it
appears in a general register, the character is in the low order half;
the high order half of the register must be zero. it appears_in
the Tttt ot ean, “ihe Shacaceai’®fs Pt " the" 10w rdnr TRF 5e 'S
word; the high order half of the word must be zero. If the high order
half of a word which contains a character is non-zero, the effect of
the instruction which uses it will be unpredictable.

3.1.2 Character String

A character string is a contiguous sequence of bytes in memory that
begins and ends on a by! cy. It is addressed by its most
significant character (lowest address). The highest address is the
least significant character. It is specified by a two word descriptor
with the attributes of length and lowest address. The length is an
unsigned binary integer which represents the number of characters in
the string and may range from 0 to 65,535. A character string with
zero length is said to be vacant; lts ddress is ignored. A character
string with non-zero length is said to be occupied.

The character string descriptor is used as an operand by CIS1l
instructions. It appears in two consecutive general registers, or in
consecutive words in memory pointed to by a word in the
instruction stream. The following figure shows the descriptor for a
character string of lengtk 'n' starting at address 'A' in memory:

15 0

uuau,.. 2108 414 16 112
ona 1A

Extended-Instruction Data Types Ppage 3-3
Character Data Types

The following figure shows the character string in memor

A+n-1 |least sig chrl

3.1.3 Character Set

A ‘character set' is a subset of :he 256 possible characters that can
be encoded in a byte. It is specified by a descriptor which consists
of the address of a 256 byte table and an 8 bit mask. The address is
of the zeroeth byte in the table. Each byte in the table specifies up
to eight orthogonal character subsets of which the corresponding
cnaracter is a member. The mask selects which combinations of these
Crthogonal subsats comprise the entire character set. In SEfsct, each
Bit in the mask corresponds to one of eight orthogonal subsets that
may be encoded by the table. The mask specifies the union ~f
Selected 'Subsets ' inte the character set.' ivpical seis weuld bt
upper case, lower case, non-zero digits, end of line, etc.

ly, a (char) is to be in the

set if the evaluation of (M[table.adrrchar] AND mask) is not equal to
zero. The character is not in the character set if the evaluation is
zero, Each byte in the table indicates which combination of

eight orthogonal character subsets (i.e. one for each of the eight
bit vectors 8¢999001(2), 00006010(2), 60000104(2), 80091608(2),
90012700 (2) , 00180006(2), 01880080(2) and wwuu(zn the
corresponding character is a member. The mask specifies which union
o Ene e lgh o thogenal dharacter ubsers conpris the tatal charscter
set. For example, if the eight bit vector 60000001(2) appearing in
the table corresponds to the character subset of all upper case
alphabetic characters, 00890019(2) appearing in the table corresponds
to the character sul ower case alphabetic characters, and
00000100 (2) appearing in (he atle corresponds to the decimal digits,
then using the mask 0B08BI1(z) with this table specifies the

aracter set 11 alphabetic characters, and usii
auumn(z) speclfles the character set of all phanumerlc
characters.

Extended-Instruction Data Types page 3-4
Character Data Types

The character set descriptor is used as an operand by CIS1l
instructions. It appears in two consecutive general registers, or in

consecutive words in memory pointed to by a word in the
instruction stream. 1If the high order half of the first descriptor
word is non-zero, the effect of an instruction which uses a character
set will be unpredictable.

15 87)

Rx prr |) 1 mask 1

or
Rx+l ptre2 | table address I

3.2 DECIMAL STRING DATA TYPES

M classes oE decmu string data types -- numeric strings and packed

-~ are Both have similar arithmetic and operational
ropeliias; ey b inarily Geter in The reproattation of Teigna and
the placement of digits in memory.

The numeric string data types are signed zoned, unsigned zoned,
trailing overpunch, leading overpunch, trailing separate and leading
separate. The packed string dats types are signed packed and unsigned
packed. Instructions which operate on numeric strings permit each
nuneric string operand to be separately specified; similarly, packed
string instructions permit each packed strinj operand to be separately
specified. Thus, within cach of the two classes of decimal stri

S of an instructions may be of any data type within the
appropriate class

3.2.1 Common Properties

Decinal strings exist in memory as contigwus bytes which begln and

byte boundary. They represent numbers consisting of 8 t
31(10) dng\cs in either sign-magnitude or absolute-value Eorm.
Sign-magnitude strings (SIGNED) may be positive or negative;
absolute-value strings (UNSIGNED) represent the absolute value of the
agnitude. Decimal numbers are whole integer values with an implied
Gedimal Tadix point immedistely beyond the least significant digics
they may be conceptuslly extended uith zero Gigits beyond the most
significant digit

A 4-bit binary coded decinal representation is used for most digits in
decimal strings. A four bit half byte is called a 'nibble' and may be
used to cqntaln 3,binary bit pattern which represents the value of 2
decimal digit. The following table shows the binary nibble contents
associated with each decimal digit:

=020080 ;o0

Extended-Instruction Data Types Page 3-5
Decimal String Data Types

digit nibble

Each decimal string data type may have several representations. These
representations permit certain latitude when accepting soutce
operands. Decimal String data types have a PREFERRED representaticn
which is a valid source representation and which is used to construct
the destination string. Additional ALTERNATE representations are
provided for some decimal cata types when accepting source operands.

Decimal strings used as source operands will not be checked for
validity. Instructions will produce upredictable results (-- see
section 2.11) if a decimal string used as a source operand contains an
invalid digit encoding, invalid sign designator, or in the case of
overpunched numbers, an invalid sign/digit encoding.

¥hen used ss a saurce, dectmal strings with ero magnitude are unigue,
regardless of Sign. sitive and negative zero have
identical m:erprecauons.

Conceptually, decimal string instructions first determine the correct
result, store the decimal string representztion of the
Correct result in the asstination string. A result of zero magnitude
is considered to be positively signed. If the destination string can
contain more digits than are significant in the result, the excess
most significant destination string digits have zero digits stored in
them. 1f the destination string can not contain all significant
digits of the result, the excess most significant result digits are
not stored; the instruction will indicate decimal overflow. Note that
negative zero is stored in the destination string as a side effect of
decimal overflow where the sign of the result is negative and the
destination is not large enough to contain any non-zero digits of the
esult

If the destination string has zero length, no result digits will be
stored. The sign of the result will be stored in separate and packed
Strings, DUt not in zoned and overpunched Strings. . becimal overflow
ULl indicate non-zers result.

Extended-Instruction Data Types Page 3-6
Decimal String Data Types

3.2.2 Decimal String Descriptors

Decimal strings are represented by a two word descriptor.
descriptor contains the length, data type, and address of the string.
IL appears in two consecutive general registers (register form of
instructions), or in two consecutive words in memory pointed to by a
word in the instruction stream (in-line form of insr.'urtions). rne
unused bits are reservad by the arch.tecture and must be

effect of an instruction using a desciiptor will be mpredictable e
any non-zero reserved fields in the descriptor contain non-zero values

s reserved data type encoding is used (-- see sections 2.11 and
2,12). The design of the numeric and packed string descriptors are

identical

First word:

length <4:0> - Number of digits specified as an unsigned binary
integer.

data type <14:12> - Specifies which decimal data type representation
is used.
Second Word:
address <15:0> - Specifies the address of the byte which contains
the most significant digit of the decimal string.

The following figure shows the descriptor for a decimal string of data
type 'T' whose length is 'L' digits and whose most significant digit
is at address 'A':

15 14 12 11 54)

Rx per |8l T | 2 1 L I

or
Retl ptr+2 | A |

The encodings (in binary) for the NUMERIC string data type field are:

000 signed zoned

201 unsitir) d zoned

818 tra:ling overpunch

811 leading overpunch

100 trailing separate

181 leading separate

116 -- reserved by ths architecture
- reserved by the architecture

ol 1ol o/ IERR

Extended-Instruction Data Types Page 3-7
Decimal String Data Type:

The encodings (in binary) for the PACKED string data type field are:

@09 -- reserved by the architecture
001 -~ reserved by the architecture
010 -- reserved by the architecture
a1l - reserved by the architecture
160 -- reserved by the architesture
101 ~-- reserved by the architecture

110 signed packed
111 unsigned packed

3.2.3 Packed Strings

Packed strings can . re two decimal digits .n each byte. The least
significanc (highest addressed) byte contains the the sign of the
nunt bits <3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings -

The preferred positive sign designator is 1100(2); alternate
positive sign designators are 1018(2), 1110(2) and 1111(2). The
preferred negative sign designator is 1101(2); the alternate
negative sign designator is 1011(2). Source strings will
properly accept both the preferred and alternate designators;
destination strings will be stored with the preferred designator.

Unsigned Packed Strings -

PACKED SIGN NIBBLE:

sign Preferred Alternate

Nibble Designator Designators

positive 1100 (2) 1610(2) 1114(2) 1111(2)
negative 1101(2) 1011.:2)

unsigned 1111(2)

For other than the least significant byte, bytes contain two
consecutive digits -- the one of lower significance in bits <3:0> and
the one of higher significance in bits <7:4>. For numbers whose
length is odd, the most significant digit is in bits <7:4> of the
lowest addressed byte. Numbers with an even length have their most
signlficant dlgi[in bits <3:0> of the lowest addressed byte; bits
<7:4> of byte must be zero for source strings, and are cleared to
506025 cor deatinarion Brek ngs. MNumbers with a length of one occupy
a single byte and contain their digit in bits <7:4>. The number of
bytes which represent a packed string is (length/2]+1 (integer
division wherc the fractional portion of the quotient is discarded).

Enu nu 0047 14 16 1
PIISII

tended-Instruction Data Types Page 3-8
Decimal String Data Types

The following is a packed string with an odd number of digits:

A+{length/2] | 1sd

The following is a packed string with an even number of digits:
7 43 o

At[length/2) | 1sd | sign |

A zero length packed string occuples » single byte of starage; bits
<7:4> of this byte must be zero for source strings, and are cleared to
0000 (2) cor deotination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the result for
destination strings. When used as a source, zero length strings
represent. operands with zero magnitude. When used as a destination,

hey can only reflect a result of zero magnitude without indicating
Svetefon. T £5T10uing 155 Yera” 18ng h "Fecked strings

A valid packed string is characterized by:
1. A length from @ to 31(10) digits.

Extended-Instruction Data Types page 3-9
Decimal String Data Types

2. Every digit nibble is in the range 9600 (2) to 1001(2).

3. For even length sources, bits <7:4> of the lowest addressed
byte are 0000(2).

Signed Packed Strings - sign nibble is either 1010(2),
1011(2), 1108(2), 1161(2), 1110(2) or 1111(2).

5. Unsigned Packed Strings - sign nibble is 1111(2).

3.2.4 Zoned Strings

<7:4>) and the low order nibble (bits <3:0>). The low order nibble
contains the value of the corresponding decimal digit.

Signed zoned Strings -

used as a source string, the nigh order nibble of the least
significant byte contains thé sign of the number; the high order
Ritbles of all other bytes are ignored. Destination strings are
stored with the sign in the high order nibble of the least
signiicant byte, and 0011(2) in the high order nibble of all
other bytes. 0011(2) in the high order nibble corresponds to the
ASCII encodinj for numeric digits. The positive sign designator
is 0011(2); the negative sign designator is @111(2).

Unsigned Zoned Strings -
Wnen used as a source string, the high order nibbles of all bytes
are ignored. Destination strings are stored with 9011(2) in the
high rder nibble of ali bytes.

The number of bytes needed to contain a zoned string is identical to
the length of the decimal number.

A+n-1 | sign | 1sd | ‘'sign' is present only
= signed zon6d strings

nnau 00T a1 1

Extended-Instruction Data Types Page 3-19
Decimal String Data Types

A zero length zoned string does not occupy memory; the address portion
of its descriptor is ignored. When used as a source, zero length
strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero
magnitude (the sign of the operation is lost). An attempt to store 2
non-zero result will be indicated by setting overflow.

A valid zoned string is characterized by:

A length from @ to 31(18) digits.

2. The low order nibble of 2ach byte is in the range 9808(2} to
1001(2) .

Signed Zoned Strings - The high order nibble of the least
significant byte is either 8011(2) or 0111(2).

3.2.5 Overpunch Strings

Overpunch strings represent one decimal digit in each byte. Trailing
overpunch strings combine the encoding of the sign and the least
significant digit; leading overpunch strings combine the encoding of

order nibble (bits <7:45) and the low order nibble (bits <3:8>). The
low order nibble contains the value of the corresponding decimal
digit. wWhen used as a source string, the high order nibble of all
Byies uniCh o met contain the sign are igmored- Destination strings
are stored with @911(2) in the high order nibble of all bytes which do
not contain the sign. 8911(2) in the high order nibble corresponds to
the ASCII encoding for numeric digits.

The following table shows the sign of the decimal string and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate designators;
destination strings will store the preferred designator. The
preferred designators correspond to the ASCIT graphics 'A' to 'R',

v naters correspond to the ASCIT graphics

Bxtended_Instruct ion Data Types page 3-11
Decimal String Data

OVERPUNCH SIGN/DIGIT BYTE:

Overpunch preferred Alternate
sign/Digit Designator Designators

+0 @1111611(2) ©01186606(2), 61911011(2), 08111111(2)
+1 01000001 (2) 00113001 (2)

+2 91000016 (2) 00110010 (2)

+3 01000011(2) 09110011 (2)

+3 91000100 (2) 00116100(2)

+5 01000101(2) 00116101 (2)

+6 01600110 (2) 00110116(2)

+7 61000111(2) 80110111(2)

+8 01001000(2) 60111006 (2)

+9 91001001(2) 00111901 (2)

-0 01111101 (2) 1011161(2), 00100601(2), 80111816(2)
-1 91001018 (2)

-2 21001011 (2)

-3 91001100 (2)

-4 81001101 (2)

-5 21001110(2)

-6 01081111 (2)

-7 01010000 (2)

-8 01810001 (2)

-9 91010018 (2)

The number of bytes needed to contain an overpunch string is identical
o the length of the decimal number.

The following is a trailing overpunch string:

A+n-1 | sign and lsd|

Extended-Instruction Data Types Page 3-12
Decimal String Data Types

The following is a leading overpunch string:

7 43 ¢

A ! sign and msd|

A zero length overpunch string does not occupy memory; the address
portion of its descripcor is ignored. When used as a Source, zero
length strings provide operands with zero magnitude; when used as a
destination, they can only accurately reflect a result of zero
agnitude (the sign of the operation is lost). An attempt to store a
non-zero result will be indicated by :e[tlr\q svertlon.

A valid overpunch string is characterized by:
. A length from @ to 31(18) digits.

2. The low order nihble of each digit byte is in the range
oeeum to 1201(2) .

3. The encoded sign/digit byte contains values from above
table of preferred and alternate overpunch sign/d)qit values

3.2.6 Separate Strings

Separate strings represent one decimal digit in each byte. Trailing

parate strings encode the sign in a byte immediately beyond the
Jeast significant digit; leading separate strings encode the sign in a
byte immedistely beyond the most significant digic. pytes other than
the byte in which the sign is encoded are divided into two pot —
the mign order mibble (bits <7:13) and the low order mivble. (hits
<2:0>). The low order nibble contains the value cf the corresponding
decimal digit.

Extended_instruction Data Types Page 3-13
Decimal String Data Type:

When used as a source string the high order nibbles of all digit bytes
are ignored. Destination strings are stored with 8611(2) in the high
order nibble of all digit bytes. d011(z) in the high orger nibble
corresponds to the ASCEI encading umeric digits. The preferred

IR0 Cion desionator 15 ABI10TE (3) and the Blternate pecitive
sign designator is 06100906(2). The negative sign designator is
90101101(2) . These designators correspond to the ASCII encoding for
"+', tspace’ and '-'.

SEPARATE SIGN BYTI

sign Preferred Alternate
Byte Designator Designators

positive 80101011(2) 00196000 (2)
negative 89101181(2)

The number of bytes needed to contain a leading or trailing separate
string is identical to length+l.

The following is a trailing separate string:
7 42 @

Al | msd |

A+n-1 | I 1sd |

A+n | sign 1

208008

Extended-Instruction Data Types Page 3-14
Decimal String Data Types

The following is a leading separate string:

7 43 0

A1) sign |

A zero length separate string occupies a single byte of memory which
contains the sign. When used as a source, zero length strings provide
operands with zero magnitude; when used as a destination, they can
only reflect a result of zero magnitude without indicating overflow;
the sign of the result is stored.

The following is a zero length trailing separate string:

A valid separate string is characterized by:
1. A length from @ to 31(10) digits.

2. The low order nibble of each digit byte is in the range
0600 (2) to 1001(2).

3. The sign byte is either 00100000(2), 00161011(2) or
00101121(2) .

nnan N 010878 a6 A1

Extended-Instruction Data Types Page 3-15
Long Integer

3.3 LONG INTEGER

Long integers are 32 bit binary two's complement numbers organized as
two words in consecutive registers or in memory -- no riptor is
used. One word contains the hlgh order 15 bits. The sign is in
bleci®y blecldy is the nost significant. e other word contains the
low order 16 bits with bit<®> 'the least significant. ihe tange of
numbers that can be represented is -2,147,483,648 to +2, 117 483,647

The register form of decinal convert instructions use a restricted
form of long integer with the number in the general regi
R2-R3:

15 14)

The in-line form of decimal convert instructions reference the 1l
integer by a word addres. pointir which is part of the instruction
stream:

15 14)

ptr | iow !

ptre2 s | high 1

Note that these tuo representations of long integers differ. There (s
i EAE, ET 3
Bottwars. The Freqioter forn was selscted to e compatible’ with E18;

the "in-line form" was selected to be compatible with current standard
software usage.

CHAPTER 4

Description and Intent of Extended Instructions

ol ol o) R

Description and Intent of Extended Instructions page 4-2
Processor Identification Instruction

4.1 PROCESSOR IDENTIFICATION INSTRUCTION

The MFPT instruction provides software with a means of identifying the
processor model on which it is executing. The instruction returns a
word in R@ whose low order half is an 8 bit processor madel code and
whose high order hal€ is an 8 bit processor subcode. The processor
model code is uniguely assigned for each processor type which
implements the instruction. A processor type is differentiated b
hoving its own option designation (e.g., KDll-x). The processor
Subcode may be used in any meaningful way by the processer
implementor. Possible nses would be to indicate the micro-code or
module revision, configurotion options which are present, etc. This
instruction will be incorporated in the basic instruction set of all
PDP1l processors (-- see section 1.4.3). The prncessor model codes
will be assigned by the PDPLl Architecture Group Manager

4.2 COMMERCIAL INSTRUCTION SET

The PDP1l Commercial Instruction Set (CIS1l) consists of the following
extended instructior groups:

07602X Commercial Load 2 nescripmrs
87603X Character String Mo

07604X Character String Sevzch

97685 Numeric String

87606X Commercial Load 3 Descriptors
87687X Packed String

87613X Character String Move (in-line)
87614X Character String Search (in-line)
87615X Numeric String (in-line

87617X Packed String (in-line)

These include instructions which operate on character strings and on
decimal numbers. Each generic type of instruction is provided in two
forms. The essential difference between the two forms is the manner
in which operands are delivered to the instruction. The first form is
the ‘register form' where operands are implicitly obtained from the

general registers. The second form is the 'in-line’ form where
operands or word address pointers to operands follow the opcode word
In the instruction stremn. The mnemonic for the in-line fora is the

mnemonic for the register form SuEfixed with the lstrer it
condition codes are set identically for both forms. The in-line roms
minimize register modification.

Instructions are also provided which efficiently load operands into
the general registers.

mB%6080 o

Description and Intent of Extended Instructions pPage 4-3
Commercial Instruction Set

4.2.1 Character String Instructions

The character string operations conveniently provide most of the
common, as well as time consuming functions that are encountered in
commercial data and text processing applications.

4.2.1.1 Instructions - Instructions are provided to move and to
search character strings:

Character String Move Instructions

MOVC(I) move character
MOVRC(I) move reverse justified character
MOVIC(I) move translated character

Character String Search Instructions

LOCC(I) locate character
SKPC(I) skip character
(1) scan character
SPANC(I) span character
CMPC(I) compare character

MATC(I) match character

4.2.1.1.1 Character String Move Instructions - The character string
move instructions use character string descriptors as operands. These
descriptors specify a sov ‘e and a destination character string. The
contents of the source a . moved to the destination with alignment at
either the most significant character as in MOVC(I) and MOVTC(I), or
the least significant character as in MOVRC(I). If the source is
longer than the destination, characters are truncated from the side
opposite that of the alignment; if the destination is longer than the
source, the destination is completed with fill characters on the side
opposite that of the alignment. The MOVTC(I) instructions move a
translated source stiing to a destination string.

Description and Intent of “xtended Instructiors Page 4-4
Commercial Instruction Set

4.2.1.1.2 Character String Search Instructions - The charac .er string
search instructions use a character string cescrintor as one operand.
The other operand is either a character, « character string
descriptor, or a character set descriptor. These instructions are
used to examine the source string tc find the presence or absence >f
characters. The source string is processed from most significant to
least significant character.

Conceptually, these instructions may be divided into 3 classes:

1. Character scrm; Searches - CMPC(I) compares two character
to the

strings. The condition codes are set according
comparison T che cofresponding most significant unequal
charactars. (1) £i n object string within a source

Cring. This Is the 'instcing function that langusges and
Text processing systens provids.

2. Character Searches - LOCC(I) finds the first occurrence of a
given character in a string. SKPC(I) skips to the first
non-occurrence of a given character in a string.

3. Charanter Set Searches - In these instructions, a string is
examined until a member of a character set is either found as
in SCANC(I), or not found as in SPANC(I). ~This aids the
search for one of several delimiters such as '/ ', CR, LF,
FF, etc, or the passing of combinations of characters such as
blanks, ' tabs, etc. LOCC(I) and SKEC(I) are optimizations of
SCANC(I) and SPANC(I) in which the set consists of a single
character.

4.2.1.2 Condition Codes - The setting of conditicn codes reflects the
result of the character string operations. For character string
moves, the condition codes indicate whether the source and destination
strings were of equal length, the source was shorter than the
destination such that fill characters were used, or the source was
longer than the destination such that characters were truncated. This
is accomplished by s-tl’.u\q the condition codes on the result of
arithmetically comparing the initial source and destination lengths.
For QWEC(1), the condition codes are the result of arithmetically
comparing the most significant corresponding pair of unequal
characters. For the other search insr.rucr.ions, they show whether or
not the operand strings were completely examined.

E Ennan £n 010474 14 16 8177120

Description and Intent of Extended Instructions Page 4-5
Commercial Instruction Set

The condition codes for some character string search instructions may
be interpreted according to the notion of success or failure. Success
is the accomplishment of the instruction's task; failure is the
inability to accomplish the task. Since the condition codes are set
based on the results of the instruction, there is an indirect
correspondence between these settings and success or failure. This
correspondence is invarient within an instruction, but it is not the
same for all search instructions. Therefore, differant branch
instructions must be used to test the operation of each instruction.
They are sumarized in the following table:

Instruction Success Failure

LOCC(T) BNE BEQ
SCANC (I) BNE BEQ
CMPC(I) BEQ BNE
MATC(T) BNE BEQ
4.2.1.3 Operand Delivery - The "register form" of character string

instractions implicitly find operands in the general registers. These
operands include character, character string descriptor, character set
descriptor, and translation table address. If an instruction does not

a register, its contents will be undisturbed. RO-Rl generally
contain a source character string descriptor; R2-R3 generally contain
a second source character string descriptor, or the destination string
descriptor. The low order half of R4 is used as an explicit
character. R4-R5 is used to contain a character set descriptor. RS
contains the starting address of a 256 byte table which is used for
character translatioa.

wWhen move instructions terminate, Rg contains the number of unmoved
source characters, and Rl, R2, and R3 are cleared. For search
instructions, the registers are updated to represent descriptors for
the resulting strings.

The “in-line form" of string

pointers to operands, in the instruction stream Toniated y (ollowing
the opcode word. Operands which appear directly in the instruction
stream include characters, and translation table addresses.
Descriptors are represented in the instruction stream by a single word
whose contents are interpreted as a word address pointer to the two
word descriptor. These descriptors specify character strings and
character sets. Some instructions return a character string
descriptor in RE-RI.

1] B

Description and Intent of Extended Instructions Page 4-6
Commercial Instruction Set

4.2.1.4 Data Overlap - In general, all character string instructions
are unaffected by the overlapping of source or destination strings.
The result of the move instxuctions is equivalent to having read the
entire source string before storing characters in the destination. If
the destination string of the MOVTC(I) instructions overlaps the
translation table, the characters stored in the destination string
will be unpredictable.

4.2.1.5 Unpredictable Conditions - The effect of character string
instructions will be unpredictable if:

1. PS<8> is non-zero when the instruction is first started --
this bit contains suspension information.

2. R6 is non-zerc when the instruction is first started —-
the stack pointer must contain a word address.

3. R6 does not contain the address of a 64(13) word stack —
temporary state for instructions.

4. Bits <15:8> of the word containing a character operand i
non-zero.

@

5. Bits <15:8> of the first word of a character set descriptor
is non-zero.

6. A source string overlaps the 54(1G) word stack ot T/0 page.

7. A destination string overlaps the opcode word, in-line
operands, 64(16) word stack, /0 page, or trap vectors.

8. A table overlaps the stack or 1/0 page.

9. The opcode word or in-line operands overlap the destination
string, 64(18) word stack or I/0 page.

18. The stack overlaps the source string, destination string,
table, opcode word, in-line operands, 1/0 page, or trap
vectors.

11. The 1/0 page overlaps the source string, destination string,
table, opcode word, in-line operands or 54(18) word stack.

) ERCR

Description and Intent of Extended Instructions Page 4-7
Commercial Instruction Set

Character string instructions will produce unpredictable results if:

1.

2.

MOVTC(I) -- Destination string overlaps the translation table.

MOVTC(I), SCANC(I), SPANC(I) -- The entire 255 byte
translation or character set tables are not in readable
memory.

4.2.1.6 Implementation Notes -

Source character strings, opcodes, words in the instruction
stream, and descriptors for in-line instructions must be
readable memory; they need not be in writable memory.
Destination strings must be in memory which is both readable
and writable. Stacks must be in memory which is both readzble
and writable.

Neither the order, width, number nor type of operand accesses
is architected.

On machines with multiple register sets, these instructions
will use the register set selected by PS<il>

On machines with multiple modes, these instructions will use
the stack pointer and memory map selected by PS<15:14>.

On machines with I and D memory spaces, the I space will be
used for instruction stream fetches (opcodes, in-line operands
and in-line pointers), and the D space will be used for
descriptors (in-line jnstruction form) and data refersnces.

For vacant strings, the address must not be used and no memory
references are to be made

Instructions can use as much as 64(18) words on the stack.
This stack space can be used whether the instruction is
suspended or not; it is however exclusive of the PC and PS
which is pushed on the stack if the instruction is suspended.
When instructions terminate normally, R6 will be restored to
its original value, but the contents of the 64(1@) words
immediately below the stack are unpredictable.

word pointers contain an odd address, set CPU Error
Register<6> and then trap through vector 4(8).

in 01080

Description and Intent of Extended Instcuctions Page 4-8
Commercial Instruction Set

4.2.2 Decimal String Instructions

The decimal string instruction groups aid manipulation of decinal

Several numeric (byte) and packed decimal data types are
suppor(ed. Instructions are provided for basic arithmetic operations,
as well as for compare, shift, and convert functions.

4.2.2.1 Instructions - Each arithmetic, shift and compare instruction
operates on a single class of data type. Both numeric and packed
string instructions are provided for most operations. Convert
instructions have a source operand of one data type and a destination
operand of another data type. Decimal string instructions specify to
which class each of their decimal string operands belong. The data
type supplied s part of each operand's descriptor may be any valid
data type of the class. This permits a general mixing of data types
within each of numeric and packed classes.

The data types on which an ion operates are desi by the
last letter(s) of the opcode mnemonic. ‘N’ denotes numeric strings,
‘' denotes packed strings, and ‘L' denotes long binary integers

The arithmetic instructions are ADDN(I), ADDP(I), SUBN(I), SUBP(I),
MULP(I) and DIVP(I). ASHN(I) and ASHP(I) shift a decimal string by a
specified number of digit positions (either direction) with optional
i store the result in the destination string. Thus, they
etEcatively multiply or divide by 3 power of tem: IE the shife count
is zero, thess shitt instructions can be used sinply to move decinal
strings (destinations are stored with preferred representation).
negated may be accomplished by using SUBN(I) or SUBP(I). Arittmetic
comparison instructions, CMPN(I) and CMPP(I), are provided to examine
the relative difference between two decimal strings.

VML) and DVIPL(I) convert o decimal string Lo o long (32 bit)
two's complement integer. VTLN () and CVTLP(I) convert a long
integer to a decimal string. cvmpm and CVTPN(I) convert between
numeric and packed decimal strings.

Z0%a080

Description and Intent of Extended Instructions Page 4-9
Commercial Instruction Set

The instructions are:

Numeric String Instructions

ADDN (I) 2dd numeric

SUBN (I) subtract numeric
ASHN(I) arithmetic shift numeric
CMPN (1) compare numeric

Packed String Instructions

ADDP (I) adc icked

SUBP (I) subtract packed

MULE (1) mulitply packed

DIVP(I) divide packed

ASHP(I) aritnmetic shift packed
CMPP (1) compare packed

Convert Instructions

CVINL convert numeric to long
CVTLM convert long to numeric
CVIPL convert packed to long
CVILP convert long to packed
CVINP convert numeric to packed
CVIPN convert packed to numeric

4.2.2.2 Condition Codes - For instructions which store a value in 2
destination string, the N and Z bits reflect the value stored. The N
bit indicates a negative destination; the Z bit indicates a
destination having zero magnitude. A destination string with zero
magnitude is considered to be positive (even if a negative zero was
stored as a consequence of decimal overflow). Thus, the setting of N
and z are mutually exclusive.

The V bit will indicate whether the destination string accurately
represents the true result of the instruction. It is also set if a
division by zero was attempted. If the V bit is se:, the destination
string will represent the least significant portion of the result
(truncated). If the V bit is cleared, the destination represents the
true result.

For DIVP(I), C indicates division by zero. Otherwise, C is always
cleared.

4111 R

Description and Intent of Extended Instructions Ppage 4-18
Commercial Instruction Set

For comparisons using the CMPN(I) and CMPP(I) instructions, the N and
Z bits reflect the signed relationship between the source strings.
The signed branch instructions can test the result. V and C are
cleared.

For instructions which return a long integer value, N reflects the
sign of the two's complement integer, and Z indicates whether it was
zero. V indicates whether the long integer could not contain all
significant digits and sign of the result. CVINL(I) and CVTPL(I) also
use C to represent a borrow from a more significant portion of the
long binary result. Otherwise, C is cleared.

4.2.2.3 Operand Delivery - The "register form" of decimal string
instructions implicitly find their operands in the gemeral registers.
These operands include decimal string descriptors, long binary
integers, and shift descriptor words. If an instruction does not nuse
a register, its contents will be undisturbed. R@-R1l generally contain
the first source descriptor, R2-R3 generally contain the second source
descriptor, and R4-R5 generally contain the destination descriptor.

ASHP use R4 to contain a shift Jescriptor word. LN,
CVTLP, CVTNL and CVTPL use R@-Rl *o contain a decimal string
descriptor, and R2-R3 for the long integer. When the instruction is
completed, the sourcc descriptor registers are cleared

in-line form" of decimal string instructions find their operands,
or pointers to descriptors in the instruction stream immediately
following the opcode word. Operands which appear directly in the
instraction Stremn ats Shift descriptor words. Operands vhich are
represented in the instruction screas by a pointer containing the word
address of the descriptor are decimal string descriptors

Dinaty integers. No inline form of decimal strimg instrmctions
modify R8-RS.

4.2.2.4 Data Overlap - The operation of decimal s.ring instructions
is unaffected by any overlap of the source operands provided that each
source operand is a valid representation of the specified data type.

The overlap of the destination string and any of the source strings
Will, in general, produce unpredictsble results. However, ADDN(I),

ADDP (1), SUBN(I) and SUBP(I) will permit the destination string to
overlap'either or both source strings only if sll corresponding digits
of the strings are in coincident bytes in memnry. This facilitates
two address arithmetic.

ﬂnanm 010874 1416 1Tz
[RTSTIN

Description and Intent of Extended Instructions Page 4-11
Commercial Instruction Set

4.2.2.5 Unpredictable Conditions
instructions will be unpredictable if:

The effect of decimal string
1. PS> is non-zero when the instruction is first started —-
cthis bit contains suspension information.

2. R6P> is non-zero when the instruction is first started -
the stack pointer must contain a word address.

3. R6 does not contain the address of a 64(18) word scack -
temporary state for instructions.

4. A source string overlaps the 64(18) word stack or 1/0 page.

5. A destination string overlaps the opcode word, in-line
operands, 64(19) word stack, I/O page, or trap vectors.

6. The opcode word or in-line operards overlap the destination
string, 64(19) word stack or I/O page.

7. The stack overlaps the source string, destination string,
table, opcode word, in-line operands, I/0 page, or trap
vectors.

8. The 1/0 page overlaps the source string, destination string,
table, opcode word, in-line operands or 64(16) word stack.

9. Bits <15> and <11:5> of the decimal string descriptors
containing the string length are non-zero.

10. Reserved data tyre codes are used in bits <14:12> of decimal
string descriptors.

11. ASHN(I)/ASHP(I) -- Bits <15:12> of the shift descriptor word
are non-zero

Decimal string instructions will produce unpredictable results if:
1. Source operands are not valid Decimal Strings.
2. Destination strings overlap source strings (excep: if all

corresponding digits are coincident for ADDN(I), ADDP(T),
SUBN(I) and SUBR(I)).

DIVP(I) -- Division by zero is attempted (only destination
string, N and Z are unpredictable).

Jolifoli]| PR

Description and Intent of Extended Instructions Page 4-12
Commercial Instruction Set

-~

ASHN (I) /ASHP(I) -- Bits <11:8> of the shift descriptor word
are 1816(2) to 1111(2).

5. CVINP(I)/CVTPN(I) -- Source and destination strings overlap.

4.2.2.6 Implementation Notes -

1. Source decimal strings, opcodes, words in the instruction
stream, descriptors and long integer sources for in-line
instructions must be in readable memory; they need not be in
writable memory. Destination strings and long integer
destinations for in-line instructions must be in memory which
is both readable and writable. Stacks must be in memory which
is both readable and writable.

2. Neither the order, width, number nor type of operand accesses
is architected

3. On machines with multiple register sets, these instructions
will use the register set selected by PS<11>)

4. oOn machines with multiple modes, these instructions wili use
the stack pointer and memory map selected by PS<15:14>.

5. On machines with I and D memory spaces, the I space will be
used for instruction stream fetches (opcodes, !n—line operands
and in-line pointers), and the D space will used for
descriptors and long integers (in-line inatruction. foem) sns
data references.

6. For zero length decimal strings of type signed zoned, unsigned
zoned, leading overpunch and trailing overpunch, no memory
is occupied. The address must not be used and no memory
references are to oe made.

Instructions can use as much as 64(18) words on the stack.
This stack space can be used whether the instruction is
suspended or not; it is however exclusive of the PC and PS

its original value, but the contents of the 64(18) words
immediately below the stack are unpredictable.

8. If word pointers contain an odd address, set CPU Error
Register<6> and then trap "hrough vector 4(8).

E nn nm 01082 1416 1,

Description and Intont of Extended Instructions Pege 4-13
Commercial Instruction Set

4.2.3 Commercial Load Descriptor Instructions

The commercial load descriptor instructions augment the character and
decimal string instructions by efficiently loading the general
registers with string descriptors. Two forms of instructions are
provided. The L2Dr instructions load two string descriptors into the
general registers. The first descriptor is loaded into R@-Rl and the
second descriptor is loaded into R2-R3. This instruction supports the
followina:

equal length character string move
equal length character string compare
character string matching

decimal string compare

The second form, the L3Dr instructions, take three descriptors. The
£irst is loaged into RO-R1, the second into R2-R3, and the third into
This instruction supports the following:

3-address arithmetic
The condition codes are not affected.

The descriptors are accessed by the following mechanism. Words
containing the addresses of the descriptors (two for L2Dr and three
for L3Dr) are in consecutive locations in memory. The descriptor
addresses are found by applying the addressing mode €(Rr)+ once for
gach descriptor. he value of r is encoded 3 the low order three
bits of the instruction's opcode. then r can be thought
OF 35 the base sddress of a amail tabie in memsry. whete each enteyin
the table contains the address of a descriptor. . then the
instructions effectively pop the addresses of descriptors off of the
stac £ r=7, then the descriptor addresses are contiguous with the
instruction's opcode word.

The string descriptors are two words long. The address of the
descriptor is that of the low order word. It is loaded intc the
corresponding even register. The high order word of the descriptor is
loaded into the -orresponding odd register. Note that although these
instructions are described in terms of string descriptors, they are
applicable for other instances where two consecutive words in memory
referenced by a pointer are to be copied into even-odd general
register pairs.

Description and Intent of Extended Instructions Page 4-14

Commerc

The ins!

ial Instruction Set

tructions are:

Commercial Load Descriptor Instructions

descriptors using @(R)+
descriptors using @(R1)+

2

2
L202 load 2 descriptors using @(R2)+
L2D3 load 2 descriptors using €(R3)+
L2D4 load 2 descriptors using @(R4)+
L2D5 load 2 descriptors using @(RS)+
L2D6 load 2 descriptors using @(R6)+
L207 load 2 descriptors using @(R7)+
L308 lnad 3 descriptors using @(R8)+
L3l load 3 descriptors using @(RL)+
L3D2 load 3 descriptors using €(R2)+
L3D3 load 3 descriptors using @(R3)+
L3D4 load 3 descriptors using @(R4)+
L3D5 load 3 descriptors using @(RS)+

3

descriptors using @(R6)+
L3D7 load 3 descriptors using @(R7)+

Implementation Notes -

Opcodes, words in the instruction stream, and descriptors must
be in readable memory; they need not be in writable memory.

Neither the order, width, number nor type of operand accesses
is architected

On machines with multiple register sets, these instructions
will use the register set selected by PS<ll>.

On machines with multiple modes, these instructions will use
the stack pointer and memory map selected by PS<15:14>.

On machines with I and D memory spaces, the I space will be
used to fetch instructions as well as the descriptor addresses
for L2D7 and L3D7; D space will be used to fetch descriptor
address for L2D@-6, L3D8-6, and all string descriptors.

If word pointers contain an odd address, set CPU Error
Register<6> and then trap through vector 4(8).

Description and Intent of Extended Instructions Page 4-15
Commercial Instruction Set

4.3 PROCESSOR SPECIFIC INSTRUCTIONS

The processor specific instructions provide model dependent diagnostic
capability

Description and Intent of Extended Instrustions Page 4-16
Commercial Instruction Se

THIS IS A BLANK PAGE

nm 010474 14 16 12z
EPSION

CHAPTER 5

Extended-Instruction Definitions

thended -Instruction Definitions Page 5-2
DN / ADDP / ADDNI / ADDPI - Add Decimal

5.1 ADDN / ADDP / ADDNI / ADDPI - Add Decimal

Format:
15 98 32 0
ADDN | 876 | s 10 |
AppP | 076 | e 18 |
ADDNI | 876 [1518
| srel.dscr.ptr |
| src2.dscr.ptr |
| dst.dscr.ptr 1
ADDPI | 076 ! 17 18 |
| srcl.dscr.ptr |
| src2.dscr.ptr |
[dst.dscr.ptr [
Operation:

dst <- src2 + srcl
Condition Codes:

N: set if dst<®; cleared otherwise
set if dst=8; cleared otherwise

set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleare

Suspendability:

This instruction is potentially suspendable.

Extended-Instruction Definitions Page 5-3
ADDN / ADDP / ADDNI / Ai [- Add Decimal

Description:
Srcl is added to src2, and the result is stored in the destination
string. The conditicn codes reflect the value stored in the
destination string, and whether all significant digits were

stored

Register Form - ADDN and ADDP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RO-Rl, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4~RS:

15)
R |
- srcl.dscr
Rl |
R2 |
src2.dscr -
R3 | i
R4 |
dst.dscr -
I

When the instruction is completed, the source descripter registers
are cleared:

15)
RO | 2 I
RL | [l i
R2 | 0 |
R3 | 2 |

R4 | !
RS

dst.dscr

Extended-Instruction Definitions Page 5-4
ADI DP / ADDNI ,/ ADDPI - Add Decimal

In-line Form - ADDNI and ADDPI

Each word address pointer which follows the opcode word in the
Instruction stream refers to 3 two word decimal string descriptor.
RO-R6 are unchanged when the instruction is comple!

formel Description:

TBS;

Fxamples:

1. Three Address Add - Register Form

MoV SRC1.DSCR,K@ ; lst source descriptor
MoV SRC1.DSCR*2,R1
MoV SRC2.DSCR,R2 ; 2nd source descriptor
MoV SRC2.DSCR+2,R3
DST.DSCR, R4 ; destination descriptor

v DST.DSCR+2,RS
ACDN ,/ ADD! 5 add

S OVERFLOW i check for error
BLT NEGATIVE ; negative destination
BEQ EQUAL i zero destination

BGT GREATER positive destination

2. Three Address Add - In-line Form

ADDNI / ADDPI

.WORD SRC1.DSCR.PTR
JWORD SRC2.DSCR.PTR
.WORD DST.DSCR.PTR

add

ptr to sccl descriptor
ptr to src2 descriptor
ptr to dst descriptor

8VS OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination

BGT GREATER positive destination

3. Two Address Add - Register Form

MOV SRC.DSCP,RE 7 source descriptor
MOV SRC.DSCR+2,R1

MoV DST.DSCR, R2 ; destination descriptor
MoV DST.DSCR+2,R3

MoV R2,R4 ; duplicate destination
MOV R3,RS

ADDN / ADDP : add

BYUS OVERFLOW i check for error

BLT NEGATIVE ; megative destination
BEQ EQUAL ; zero destination

BGT GREATER i positive destination

Extended-Instruction Definitions Page 5-5
ADDN / ADDP / ADDNI / ADDPI - Add Decimal

‘Two Address Add - In-Line Foim

ADDNI / ADDPI
SRC.DSCR.PTR
woan DST.DSCK. PTR
(WORD DST.DSCR.PTR
OVERFLOW

add
ptr to src descriptor
ptr to dst descriptor
ptr Lo dst descriptor

BUS i check for error
BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination
BGT GREATER i positive destination

Notes:

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation of the specified data type.

2. Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in
memory

205080

Extended-Instruction Definitions Page 5-6

ASHN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimal

5.2 ASHN / ASHP / ASHNT / ASHPI - Arithmetic Shift Decimal

Format:
15 98 32
ASHN | 876 | 85 1 6 |
AsEP | 076 87 | 6 |
ASHNI | 276 i 15 [
1 src.dscr.ptr !
| dst.dscr.ptr 1
| shift.dscr |
AsEPT | 876 | 17 16 |
| src.dser.ptr |
| dst.dscr.ptr |
I shift.dscr 1
Operation:

dst <- stc * (18 ** shift count)
Condition Codes:

set if dst<@; cleared otherwise

set if dst=0; clea(cd otherwise

set if dst can not contain all significant digits of
Tesult; cleared ofherwise

c: cleared

Suspendability:

This instruction is potentially suspendable.

ﬂnanm 0164 LA w12

Extended-Instruction Definitions Page 5-7
ASHN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimal

Description:

The decimal number specified by the source descriptor is
arithmeticly shifted, and stored in the area specified by the
destination descriptor. The shifted result is aligned with the
least significant digit position in the destination string. The
shift count is a two's complement byte whose value ranges from
Z126(10) to +127010). I the Shift count is positive, a shift in
the direction of least to most significant digits is perfermed:
negative shift count per st to least
significant digit. Thus, fhe smite count is the power of ten oy
which the source is multiplied; negative powers of ten effectively
divide. tero digits are supplied for vacated digit positions. A
zero shift count will move the source to the destination.
Conaition codes reflect tne value stored in the destination
string, and whether all significant digits were stored.

A negative shift count invokes a rounding operatior The result
is cons:rucr.ed by h:.ftinq the source the specified number Of
digit positior The rounding digit is then added to the most
significant digu unich wag shifted out. If this sum is less than
18(18), the shifted result is stored in e Gestination string.
If the sum is 10(1@) or greater, the magnitude of the shifted
restlt is increased by 1 and then stored in the destination

string. If n is Gesired; the rounding dlgit shouid be
zero.

The shift count and rounding digit are represented in a sing
word referred to as the shift descriptor. Bits <15:12> of i
word must be zero:

15 1211 87 []

| 8 lrnd.dgtl shift.ent |

Register Form - ASHN and ASHP

When the inst:uction starts, the operands must have been placed in
the general registers. The source descriptor is placed in R-RI,
the destination desctiptor is placed in R2-R3, and the shift
descriptor is placed in R4

nnauw 01044 15 16 1772

Extended_Instruction Definitions Page 5-8
HN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimel

15 [)
RO |
src.dscr
RL |
R2 |
- dst.dscr
R3 | 1
R4 | shift.dscr !

When the instruction is completed, the source descriptor registers
and shift descriptor register are cleared:

15 [)
RO |) |
Ri | [i
R2 | |
dst.dscr -
R3 |
R4 |) |

In-line Form - ASHNI and ASHPI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string source
descript r, a word address pointer to a two word decimal string
destination descriptor, end a shift descriptor word. RB-R6 are
unchanged when the instruction is complet

Formal Description:

TBS;

Examples:

1. Multipling by 100 - Register Form

MoV SRC.DSCR, R ; source descriptor

MoV SRC.DSCR+2,R1

MOV DST.DSCR, R2 ; destination descriptor
MOV DST.DSCR+2,R3

MoV #2,R4 ; shift descriptor word
ASHN / ASHP i shift

ﬂnauw 010874 ta v sy
ana vna

Extended-Instruction Definitions

Page 5-9
ASHN / ASHP / ASHNI / ASHPI - Arithmetic Shift Decimal

BUS OVERFLOW ; check for error
BLT NEGATIVE i megative destination
BEQ ECUAL ; zero destination
BGT GREATER ; positive destination

2. Multipling by 106 - In-line Form
ASHNI / ASHPI ; shift

.WORD ~ SRC.DSCR.PTR ptr to src descriptor
WORD DST.DSCR.PTR ; ptr to dst descriptor

WORD 2 ; shift descriptor word
BUS OVERFLOW ; check for error
BLT NEGATIVE i negative destinaticn
BEQ EQUAL zero destination
BGT GREATER ; positive destination

3. Move decimal number - Register Form

MoV SRC.DSCR, RO ; source descriptor
MoV SRC.DSCR+2,R1

MOV DST.DSCR,RZ ; destination descriptor
MOV DST.DSCR+2,R3

CLR R4 ; shift gescriptor word
ASHN / HP i

BVS OVERFLOW B check for error

BLT NEGATIVE negative dest)nation
BEQ EQUAL 7 zero destinat

BGT GREATER ; positive destmatxon

4. Move decimal rumber - In-line Form

ASHNI / ASHPT 5 shift
.WORD = SRC.DSCR.PTR ; ptr to src descriptor
WORD ~ DST.DSCR.PTR ; Ptr to dst descriptor

.WORD € shife descriptor word
BVS OVERFLOW check for er

BLT NEGATIVE negative desnna:wn
BEQ EQUAL zero destinatior

positive dest ination

1. If bits <15:12> of the shift descriptor word are not zero, the
effect of the instruction is unpredictable.

2. If bits <11:8> of the shift descriptor cre not a valid decimal
digit, the results of the instruction are unpredictable.

3. Any cverlap of “he source and destinaticn strings will produce
unpredictable results.

Extended-Instruction Definitions Page 5-10
CMPCI - Compare Character

5.3 CMPC / CMPCL - Compare Character

Format:
15 987 32 @
cMEC | 076 | 0 14
cmecT | 876 | W oa
! srcl.dscr.ptr 1
| sre2.dscr.ptr i
1] [l £ill |
Operation:

Srcl is compared with src2 (stcl-src2).
Condition Codes:

The condition codes are based on the arithmetic comparison of the
most significant pair of unequal srcl and src2 characters
(srcl.byte-src2.byte) .

N: set if result< ; cleared otherwise

2: set if result=g; cleared otherwise

V: set if there was arithmetic overflow, that is, srcl.byte<7>
and src2.byte<7> were different, and src2.byte<7> was the same
as bit <7> of (srcl.byte-src2.byte); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:

This instruction is potentially suspendable.
Description:

Esch character of sicl is compared with the corresponding

of src2 by strings from most
significant o least signxflcan(ensraciern, 1t the character
strings are of unequal length, the shorter character string

Conceptually extended to the length of the longer character String
with £ill characters beyond its least significant character. The

instruction terminates when the first corresponding unegual
characters are found or when both character strings are exhausted.

Extended-Instruction Definitions Page S-11
CMPC / CMPCI - Compare Character

The condition codes reflect the last comparison, permitting the
unsigned branch instructions to test the result.

Register Form - CMPC

¥hen the instruction starts, the operands must have been placed in
the general registers. The first source character string
descriptor ‘is placed in RO-RL, the second Source characeer string
descriptor is placed in R2-R2, the fill character is placed in
R4<7:0>, and R4<15:8> must be zero:

15 87 [}

R i
srcl.dscr

Rl | I

R2 1
src2.dscr

R3 | 1

R4 | 0 | £i11 |

Tie igstruction terminates with sub-string descriptors in RO-R1
and R2-R3 which represent the portion of each source character
string beginning with the most significant corresponding
unequal characters. R@-Rl contain a descriptor for the unequal
ction of the original srcl string; R2-RJ contain a descriptor
or the unequal portion Of the original src2 string. A vacant
character string descriptor indicates that the entire source
character string was equal to the corresponding portion of the
other source character string, including extension by the fill
character; its address is one greater than tnat of the least
significant character of the character string.

15 87 2

sub.srcl.dscr -

sub.src2.dscr

R4 | 0 | £i11 1

Extended-Instruction Definitions Page 5-12
CMPC / CMPCI - Compare Character

In-line Form - CMPCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string srcl
descriptor, a word address pointer to a two word character string
scc2 descriptor, and a word whose low order half contains the f£il®
character and whose high order half must be zero. RO-R6 are
unchanged when the instruction is completed.
Formal Description:
srcl.len 1 CMPC only
srcliadr =
src2.len
src2.adr = R3;
£ill = R4<7:0>;

temp = it(R7]; ¢ CMECI only
srcl. len = M[temp); H .
= M{temp+2];

£i11 = M[R7]<7 e; !

found = 1;
while (srellen nequ 9) and (src2.len nequ 0)
and (“ound n
TSI L uisrc2.aar)) then
begin
srcl.len = srcl.len-1;
srcladr = seel.adr+l;
src2.len = src2.len-1;
src2.adr = src2.adr+l
end
else found =
wnile (srcl.len nequ 8 and (found neqs 0) do
£ Msrcl.adr) eqlu £ill then

begin
srcl.len = srcl.len-1;
srcl.adr = srcl.adr+l
end
else found =
while 1src2 len nequ 8) and (found necu 8) do
[srcz.adrl eqlu £ill then

begin
src2.len = szc2.len-1;

dlilolili]a]) Helione

Extended-Instruction Definitions Page 5-13
CMPC / CMPCI - Compare Character

src2.adr = src2.adr+l
end
else found = 0;

if (srcl.len eqlu 0) then btmpl = £ill
slse btpl = Nisrcl. adr],
if (src2.1an eqlu §) then b £i11
bemp2 ‘1[5(1:2 o

canyebmp = pempi-benp:
N = btmp<15>;
btmp eql B then 2 = 1 else
it (bmp137> neq btmp2<7>) Sha’ (br_mp2<7> eql btmp<7>) then
=1lelseV =8;
c= carry;

1 CMPC only
v

Examples:

1. Compare Strings - Register Form

MoV SRC1.DSCR,R8 ; lst source Gescriptor
MOV SRC1.DSCR¥2,R1

MoV SRC2.DSCR,R2 ; 2nd source descriptor
MoV SRC2.DSCR+2,R3

MOV t R4 ; extend with spaces
cuec 3 compare

BLO LESS ; srclcsre2

BEQ EQUAL . srcl=src2

BHI GREATER i srcldsre2

2. Compare Strings - In-line Form

compare

.WORD SRCL.DSCR.PTR ; ptr to srcl descriptor
.WORD SRC2.DSCR.PTR ; ptr to src2 descriptor
JWORD ! ; extend with spaces
BLO LESS i srclesrc2

BEQ EQUAL ; srcl=src2

BHI GREATER ; srcl>src2

3. Compare as far as the length of shorter of two strings -
Register Form

MoV SRC1.DSCR,R@ ; lst source descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 ; 2nd source descriptor
MOV SRC2.DSCR+2,R3

Extended-Instruction Definitions Page 5-14
CMPC / CMECI - Compare Character

Yotes:

1.

2.

4.
5.

cup RO,R2 ; length of shorter
BHI 1s
MOV RO, R2
15: MOV R2,RO
; no f£ill is ysed
cMpC 7 compare str
BEQ EQUAL i use uns)gned Sfanches
BNE NOTEQL

The operation of this instruction is unaffected by any overlap
of the source character strings.

If the srcl character string is vacant, the £ill character
will be compared with src2. If the stcs character string is
vacant, the fill character will be compared with srcl. If
both character strings are vacant, the condition codes will
indicate equality.

CMPC -- If an initial source character string descriptor is
vacant, the resulting sub-string descriptor is the same as the
original character string descriptor.

A test for success is BEQ; a test for failure is BNE.

when the instruction terminates, the condition codes will be
set as if a CMPB instruction operated on the most significant
unequal characters. If both strings are initially vacant or
are identical, the condition codes will be set as if the last
characters to be compared were identical. This results in
equality with N cleared, z set, V cleared, and C cleared.

Both CMPC and CMPCI update the condition codes. CMPC returns
sub-string descriptors.

Extended-Instruction Definitions Page 5-15
CMPN / CMPP / CMPNI / CMPPI - Compare Decimal

5.4 CMPN / CMPP / CMPNI / CMPPI - Compare Decimal

Format:

15 98 32 9
N | 876 | o5 | 2 |
cupe | 876 I 87 1 2 |
CMPNT | 876 l 15121
I srcl.dsce.ptr [
| src2.dscr.pt: 1
PRI | 876 [o2
1 srcl.dscr.ptr |
! src2.dser.pte [

Operation:

Srcl is compared with src2 (srcl-src2).
Condition Codes:

set if srcldsrc2; cleared otherwise
set if su "~src2; cleared otherwise
cleared
cleared

Suspendability:
This instruct.on is potentially suspendable.
Description:
Srcl is arithmetically compared with src2. The condition codes

reflect the comparison. The signed branch instruction can be used
to test the result.

026020

Extended-Instruction Definitions Page 5-16

CMPN / CMPP / CMPNI / CMPPI - Compare Decimal

Register Form - CMPN and CMPP
When the instruction starts, the operands must have been placed in
£

the general registers. irst source descriptor is placed in
RO-RI, and the second source descriptor is placed in R2-R3:

15 [)
RO | |
srcl.dser
R1 |
R2 | |
src2.dscr -
P3| !

¥hen the instruction is completed, the source descriptor regliters

are cleare
15]

RO | L) |

RL | '

R2 |) !

R3 i) |

In-line Form - CMPNI and CMPPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RO-R6 are unchanged when the instruction is completed

Formal Description:

TBS;
Examples:
1. Compare Decimal Strings - Register Form
MoV SRC1.DSCR,R8 ; lst source descriptor
MoV SRC1.DSCR+2, Rl
MoV SRC2.DSCR,R2 ; 2nd source descriptor

MoV SRC2.DSCR+2,R3

Extended-Instruction Definitions
CMPN / CMPP / CMPNI / CMPPI - Compare

CMPN / CMPP :
BLT LESS P
BEQ EQUAL
BGT GREATER
2. Compare Decimal Strings - In-
CMPNI / CMPPI P
. WORD SRC1.DSCR.PTR i
. WORD SRC2.DSCR.PTR P
BLT NEGATIVE :
BEQ EQUAL ;
BGT GREATER H
Notes:
1. The operation of these

instructions

Page
Decimal

comy

pare
use signed branches

line Form

compare
ptr to srcl descriptor
pt: to src2 descriptor
negative destination
zero destination
positive destination

is

5-17

unaffected by any

overlap of the source strings provided that each source string

is a valid representation of

the spec’ “ied data type.

Exterded- rnsuuctian Definitions Page 5-18
cvTl P / CVILNI / CVTLPI - Convert Long to Decimal

5.5 CVILN / CVILP / CVILNI / CVILPI - Convert Long to Decimal

Format:
15 98 32 0
CVILN |
cvrLe | 876 | a7 1 7 1
CVILNI | 276 1 15 07
I dst.dscr.ptr |
1 src.long.ptr i
CVILPI | 976 | w7
| dst.dscr.ptr |
1 src.long.ptr |
Operation:

decimal string <- long integer
Condition Codes:

set if dst<#; cleared otherwise
set if dst=g; cleared otherwise

set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleare

Suspendability:

This instruction is potentially suspendable.

28080 ...

Extended-Inatruction Detinitions Page 5-19
CVILN / CVILP / CVTLNI / CVTLPI - Convert Long to Decimal

Description:

The source long integer is converted to a decimal string.
condition codes reflect the result stored in the destination
decimal string, and whether all significant digits were stored.

Register Form - CVTLN and CVTLP

When the instruction starts, the operands must have been placed in
the general registers. The destination descriptor is placed in
RO-RI, and the Source long integer is placed in R2-R3:

15]
RO | !
dst.dscr
RL
R2 | [
- src.long -—
R3 | |

hen ihe instruction is completed, the source long integer
registers are cleared:

15 [)
RO | |
dst.dscr
RL | |
R2 | 2 I
R3 | [] |

In-line Form - CVILNI and CVILPI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string
estination descriptor, and a word address pointer to a two word
long integer source. R-R6 ar2 unchanged when the instruction is
completed

lilolift[a]) RS

Extended-Instruction nefuunons Page 5-20
CVELP / CVTLNI / CVTLPI - Convert Long to Decimal

Formal Description:
85;
Examples:

1. Convert Long to Decimal - Register Form

MoV DST.DSCR, RO ; destination descriptor

MOV DST.DSCR+2,R1

MoV SRC.LONG+2,R2 ; source long integer
SRC.LONG, P3

CVILN / CVILP ; conver

BYS LOW i check for error

BLT NEGATIVE : negative destination

BEQ EQUAL i zero destination

BGT GREATER ; positive destination

Convert Long to Decimal - In-line Form

CVTLNI / CVTLPL convert
ptr to dst descriptor

WORD DST.DSCR.PTR
WORD SRC.LONG.PTR ptr to long mr.eg

BVS OVERS! check for er:

BLT NEGATIVE negative seseination
BEQ EQUAL zero destination
BGT GREATER positive destination

1. Register forms use a long integer oriented with the siyn and
high order portion in R2, and the low order portion in R3.

2. In-line forms use a long integer oriented with the low order

portion in stc.long, and the sign and high order portion in
src.long+2.

Extended-Instruction Definitions Page 5-21
CVTNL / CVTPL / CVTNL]

/ CVIPLI - Convert Decimal to Long

5.6 CVINL / CVTPL / CVINLI / CVTPLI - Decimal to Long

Format:

15 98 32 2
cvINL | 876 i 85 1 3|
cvreL | 876 1 87 | 3 |

cviNLT | 876 [5103
i src.dscr.ptr 1
| dst.long.ptr |
cvreLr | 076 | 73
| src.dscr.ptr |
| dst.long.ptr I
Operation:

leng integer <~ decimal string

Condition Codes:

The condition codes are based on the long integer destination and
on the sign of the source decimal string.

: set if long.integer<d; cleared otherwise

: set if long.integer=0; cleared otherwise

: set if long.integer dst can not correctly represent the two's
complement form of the result; cleared otherwise

C: set if src<@ and long.integer#f; cleared otherwise

Suspendability:

This instruction is potentially suspendable.

Extended-Instruction Definitions

Page 5-22
CVINL / CVTPL / CVINLI / CVTPLI - Convert Decimal to Long

Description:
The source decimal string is converted to a long inceg

condition codes reflect the result of the operation, or whether
significant digits were not converted.

Register Form - CVINL and CVTPL

When the instruction starts, the operands must have been placed in

the general registers. The source decimal string descriptor is
placed in RE-R1:

src.dser -

When the instruction is completed, the source decimal string
descriptor registers are cleared, and the destination long integer
is returned in R2-R3:

15 [l
RO | [l |
RL | [i
Rz | [
- dst.long -
R3 | 1

In-line Form - CVINLI and CVTPLI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word decimal string source
descriptor, and a word address pointer to a two word long integer
destination. R@-R6 are unchanged when the instruction is
completed.

Formal Description:

TBS;

£0%m020

Extended-Instruction Definitions Page 5-23

CVTNL /

CVTPL / CVINLI / CVIPLI - Convert Decimal to Long

Examples:

1.

Notes:

Convert Decimal to Long - Register Form

MOV SRC.DSCR, RO ; source descriptor
MOV SRC.DSCR+2,R1

CVINL / CVTPL ; convert

BVS OVERF! i check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination

positive destination
Convert Decimal to Long - In-line Form

convert
ptr to src descriptor
ptr to dst long int

CVTNLI /_CVTPLI]
(WOPD SRC.DSCR.PTR ;
i check for error

.WORD DST.LONG.PTR

BUS OVERFLOW

BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

Register forms use a long integer oriented with the sign and
high order portion in R2, and the low order portion in R3.

In-line forms use a long integer oriented with the low order
portion in dst.long, and the sign and high order portion in
dst.long+2.

1f the V bit is set, the contents of the long integer
destination are the least significant 32 bits of the result.

A source whose value is +2#*31 can be represented as a 32 bit
binary integer. However, since the destination is a two's
complement long integer, the resulting condition codes will
be N set, 2 cleared, V set, and C cleared.

Extended-Instruction Definitions Page 5-24
CVINF / CVIPN / CVINPI / CVTPNI - Convert Decimal

5.7 CVINP / CVIPN / CVINPI / CVTPNI - Convert Decimal

Format:

cvrne | 276 ! 05 bos o

cvNer | 876 [15 105 |
| src.dscr.ptr !
[dst.dscr.ptr 1
CvTENT | 876 | 151 4
1 src.dscr.ptr |
| dst.dscr.ptr !
Operation:

CVINP / CVINPI packed scring <- numeric string
CVIPN / CVTPNI numeric string <- packed string

Condition Codes: .

N: set if dst<8; cleared otherwise

2: set if dst=8; cleared otherwise

V: set if dst can not contain all significant digits of the
result; cleared otherwise

C: cleared

Suspendability:

This instruction is potentially suspendable.

v ora7a 1A T
oRa Ba

Extended-Instruction Definitions Page 5-25
CVTPN / CVINPI / CVIPNI - Convert Decimal

Description:
These instructions convert between numeric and packed decimal
strings. The source decimal string is converted and moved to the

destination string. The condition codes reflect the result of the
operaticn, or whether all significant digits were stored.

Register Form - CVTNP and CVTPN

When the instruction starts, the operands must have been placed in
the general registers. The source descriptor is placed in RE-R1,
and the destination descriptor is placed in R2-R3:

15 °

src.dscr -

dst.dscr

When the instruction is completed, the source descriptor registers
are cleared:

15)

dst.dscr

In-line Form - CVINPT and CVTPNI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RO-R6 are unchanged when the instruction is completed.

Formal Description:

TBS;

it o] R

Extended-Instruction Definitions Page 5-26
CVINP / CVTPN / CVINP1 / CVTPNI - Convert Decimal

Examples:

1. Convert Between Numeric String and Packed String - Register

MoV SPC.DSCR, RO ; source descriptor
MOV SRC.DSCR+2,R1
MoV DST.DSCR, R2 ; destination descriptor
MoV DST.| DSCR*Z R3
CVINE / ; convert
BVS OVERFLON ; check for error
BLT NEGATIVE i megative destination
BEQ EQUAL i zero destinaf
BGT GREATER ; positive ucsnnanon
2. Convert Between Numeric String and Packed String - In-line

CUTNEI / CVTENI ; convert
SRC.DSCR.PTR ; ptr to src descriptor

uom DST.DSCR.PTR ; ptr tc dst descriptor

BYS LOW i check for error

BLT NEGATIVE ; negative destination

BEQ EQUAL i zero destinati

BGT GREATER ; positive destination

1. The results of the instruction are unpradictable if the source
and destination strings overlap.

2. These instructions use both a numeric and a packed decimal
string descriptor.

Extended-Instruction Definitions Page 5-27
DIVP / DIVPI - Divide Decimal

5.8 DIVP / DIVPI - Divide Decimal

Format:
15 98 32 @
DIVE | 876 | 07 15 |
DIVPL | 076 1 17 s
1 srel.dscr.ptn |
| src2.dscr.per |
| dst.dscr.ptr 1
Operation:

dst <- src2 / srcl
Condition Codes:
N: set if dst<d; cleared otherwise
Z: set if dst=8; cleared otherwise
V: set if dst can not contain all significant digits of the
result or if srcl=d; cleared otherwise
C: set if stcl=8; cleared otherwise
Suspendability:
This instruction is potentially suspendable.

Description:

Src2 is divided by srcl, and the quotient (fraction truncated) is
stored in the destination string. The condition codes reflect the
Value Stored in 'the destimstion strings and whether all
significant digits were stored.

Register Form - DIVE

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
R-RI, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS:

Extended-Instruction Definitions Page 5-28
DIVP / DIVPI - Divide Decimal

15)

RO | i
srcl.dsce

RL |

R2 | [
src2.dscr

RI | |

R4 I
dst.dscr

When the instruction is completed, ihe source descriptor registers
are cleared:

15 9

RS

R4 | '
dst.dscr

RS |

In-line Form - DIVPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word cecimal String descriptor.
RB-R6 are unchanged when the instructica is completed.

Formal Description:
8BS

Examples:

1. Divide - Register Form

MOV SRCL.DSCR,R8 ; divisor descriptor
MOV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 _ : dividend descriptor

MOV SRC2.DSCR+2,R3

Extended-Instruction Definitions

Page 5-29
DIVP / DIVPI - Divide Decimal

MOV DST.DSCR,R4 i quotient descriptor
MOV DST.DSCR+2,RS

DIVP ; divide

BVS OVERFLOW 7 check for error

BLT NEGATIVE ; negative destination
BEQ EQUAL ; zero destination
BGT GREATER P

positive destination

2. Divide - In-line Form

divide

ptr to divisor dscr
ptr to dividend dscr
Ptr to quotient dscr

.WORD SRC1.DSCR.PTR

BVS 'OVERFLOW check for error
BLT NEGATIVE negative destination
BEQ EQUAL zero destination
BGT GREATER positive destination

1. The operation of these instructions is unaffected by any
overlap of the source strings provided that each source string
is a valid representation oi the speci.fied data type.

2. The results of the instruction are unpredictable if the source
and destination strings overlap.

3. Division by zero will set the V and C bits. The destination
string, and the N and Z condition code bits will
unpredictable.

4. No numeric string divide instruction is provided.

Exiended-Instruction Definitions Page 5-30
LOCC / LOCCI - Locace Character

5.9 LOCC / LOCCI - Locate Character

Format:
15 987 32 0
Loce | 476 | [
Locer | 976 1 w9
| src.dscr.ptr
|] 1 char i
Operation:

Search source character string for a character.
Condition Codes:
The condition codes are based on the final contents of R3.

: set if RO<15> set; cleared otherwise
2: cet if R8=0; cleared otherwise

v: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least significant character until the first occurrence of the
search character. A charscter string descriptor is returned in
RO-R1 which represents the portion of the source character string
beginning with the located character. If the source character
string contains only characters not equal to the search charicter,
the instructions return a vacant character string descriptor with
an address one greater than that of the least significant
character of the source character string. The condition codes

reflect the resulting value in RO.

Extended-Instruction Definitions Page 5-31
LOCCI - Locate Char:ter

Register Form - LOCC

When the instruction starts, the operands must have been placed in
the gemeral registers. The source character string descriptor is
placed in RO-R1, the search character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 87 []
RO |
src.dscr
RL
R4 |) | char i

When the instruction is completed, R8-Rl contain a character set
descriptor which represents the sub-string of the source character
string beginning with the located character:

15 87 [

RO |
sub.src.dscr -

RL | |
R4 | [} | char [

In-line Form - LOCCI

The words which follow the opcode word in the instruction stream
are a word address pointer £o a two wor
descriptor, and a word whose low orde-
character and whose high order half aust be zero. When the
instruction is completed, RG-Rl contain a character string
descriptor which represents the sub-string of the source character
string beginning with the located character. R2-R6 are unchange

020080 -

Extended-Instruction Definitions Page 5-32
LOCC / LOCCI - Locate Character

15 87)

sub.src.dscr

Formal Description:
scc.len = RE; '
src.adr = R1; '
char = Ra<7:0>; !

LOCC only
temp = M[R7]; LOCCT only
src.len = M[temp
src.adr = H[cemp~21,
R7 = R7+!

Char = WIKTI<7:0>;
R7 = R742; .

found = 8;
while (src.len nequ @) and (found eglu 3) do
if M|src.adr] nequ char then

src.len = src.len-1;
src.adr = src.adr+l

end
else found = 1;
R@ = src.len;
Rl = src.adr;
R4 = 0<15:8>@char; ! LOCC only

N = RE<1S>;
7 = RO eqlu 8;

Examples:

1. Find the Beginning of a Comment - Register Form

MOV STR.DSCR, R® ; string to search
MOV STR.DSCR+2,R1

MoV 45 ,Re : search for semi-colon
Loce i

BNE FOUND ; RO and Rl are the

sub-string descriptor

Extended-Instruction Definitions
LOCC / LOCCT

2.

Notes:

1.

3.

dilgiltla

- Locate Character

Page 5-33

Find the Beginning of a Comment - In-Line Form

~occT ;
\WORD ~ SRC.DSCR.PTR ;
LWORD ' H
BNE FOUND ;

locate

ptr to src descriptor
search for semi-colon
RO and Rl are the
sub-string descriptor

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
no match was found. The original source character string
descriptor is returned in RO-RI.

A test for success is BNE; a test for failure is BEQ.

The condition codes will be set as if this instruction were

followed by TST RO.

Extended-Instruction Definitions Page 5-34
L2Dr - Load 2 Descriptors

5.10 L20r - Load 2 Descriptors
Format:

15 98 32 0

L2pc | 276 ! 02 1 ¢ |

Operation:
Load word pairs into R@-R1 and R2-R3.

Condition Codes:
The condition codes are not affected.
N: not affected

not affected

not affected
C: not affected

Suspendability:
This instruction is non-suspendable.
Description:

This instruction augments the character and decimal string
instructions by efficiently loading string descriptors into the
general registers.

A descriptor 'alpha' is 1oadea into RB-Rl; a second descriptor
‘beta' is loaded into R2-R3. The address of the descriptors are
determined by the addressmq mode @(Rr)+ where r is the low order
three bits of the opcode word. The address of the descriptor
‘alpha' is derived by applying this addressing mode once; the
address of the descriptor 'beta' is derived by applying this
addressing mode a second time. The addressing mode
auto-increments the indicated register by 2. The addressing mode
computation is not affected by the descriptors which are loaded
into the general registers. The words which contain the addresses
of tne descriptors are in consecutive words in memory; the
descriptors themselves may be anywhere in memory. The condition
codes are rot affected.

Extended-Instruction Definitions Page 5-35
L2Dr - Load 2 Descriptors

When the instruction is completed, the ‘'alpha' descriptor is in
RO-R] and the 'beta' descriptor is in R2-R3:

15 []
RE
- alpha.dscr
RL
R2 |
beta.dscr

Formal Description:

temp = R(r
adr.alpha = M[temp]; temp = temp+2;
adr.beta = M(temp); temp = temp+2;
if (r gequ 4) then R(r] = temp;

= M{adr.alphal ;

R1 = M{adr.alpha+2];

R2 = M[adr.betal;

R3 = M(adr.betas2);

=
E

Examples:

i. Cecimal String Compare

£207 ; load descriptors

. WORD SRC1

WORD SRC2

CMPN i compare
SRC1:.WORD SRCl.LEN ; lst src descriptor

+WORD SRC1.ADR

SRC2.LEN ; 2nd src desci iptor
SRC2.ADR

Notes:

Extended-Instruction Definitions Page 5-36
L3Dr - Load 3 Descriptors

5.11 L3Dr - Load 3 Descriptors
Format:

15 98 32 0

L3or | 076 | 06 bl

Operation:
Load word pairs into RO-Rl, R2-R3 and R4-RS.
Condition Codes:
The condition codes are not affected.
not atfected
not atfected

not affected
not affected

Suspendability:
This instruction is non-suspendable.
Description:

This instruction augments the character and decimal string
instructions by efficiently loading string descriptors into the
general registers.

A descriptor ‘alpha: is loaded into RE-R second desct iptor
'beta' is loaded into R2-R3; a third descriptor 'gamma' is loaded
into R4-RS. The address of the descriptors are determined by the
addressing mode @(Rr)+ where r is the low order three bits of the
opcode word. The address of the descriptor 'alpha’ is derived by
apelying this addressing mode once; the address of the descriptor

rived by applying this addressing mode a second time;
the address’ ot the descriptor ‘gamma’ is derived by applying this
addressing mode a third time. The address mode auto-increments
the indicated register by 2. The addressing mode computation is
not affected by the descriptors which are loaded into the general
registers. The words which contain the addresses of the
descriptors are in consecutive words in memory; the descriptors
themselyes may be anywhere in memory. The condition codes are not
affecte:

Extended-Instruction Definitions Page 5-37
L3Dc - Load 3 Descriptors

When the instruction is completed, the 'alpha' descriptor is in
R@-R1, the 'beta' descriptor is in R2-R3 and *the 'gamma’
descriptor is in R4-RS:

15 [)
RO | |
- alpha.dscr -
RL | !
I
beta.dscr

|
1

gamma.dscr

Formal Description:

temp = Rir];
adr.alpha = M(temp}; temp = temp+2;
adr.beta = M[temp]; temp = temp+2

adr.gamma = M[temp]; temp = temp+2;
if (r gequ 6) then R[r] = temp;

R = M(adr.alpha) ;

Rl = ¥{adr.alpha+2];

{
R2 = M[adr .betal;

R3 = M[adr.beta+2] ;
R4 = M[adr.gamma] ;
RS = M[adr.gamma+2] ;

Extended-Instruction Detinitions Page 5-38
Load 3 Descriptors

Examples:
1. Three Address Add

L3D7 5 load descriptors
.WORD SRCL
«WORD SRC2
.WORD DST
ADDN ; add
SRC1:.WORD SRC1.LEN i lst src descriptor

.WORD SRC1.ADR

SRC2: .WORD SRC2.LEN i 2nd src descriptor
JWCRD SRC2.ADR

DST:.WORD ~ DST.LEN i dst descriptor
\WORD DST.ADR

difgiltial

Extended-Ins:ruction Definitions Page 5-39

MATC / MATCI - Match Character

5.12 MATC / MATCI - Match Character

Format:
15 9 32 9
MATC | 076 04 1 s |
MATCI | 076 | IV
| src.dscr.ptr |
[obj.dscr .ptr
Operation:

Search source character string for object character string.

Condition Codes:

The condition codes are based on the final contents of RO.

N: set if R8<1S> set; cleared otherwise
2: set if RP=0; cleared otherwise

V: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least sxgnxflcant character for the first occurrence of the ennre
object character string. A character string descriptor is
returned in RO-Rl which represents the portion of the original
source character string beginning with the most significant
character to completely match the object character string. If the
object character string did not completely match any portion of
the source character string, the character descriptor returned in
RE-Rl is vacant with an address one greater than the least
significant character in the source string. The condition codes
reflect the resulting value in R@. If the Z bit is cleared, the
entire object was successfully matched with the source character
string; 1if the 2 bit is set, the match failed.

Extended-Instruction Definitions Page 5-48
MATCI - Match Character

Register Form - MATC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
claced in R#-Rl, and the object character string descriptor is
placed in R2-R3:

15 [l
RS | 1
src.dser
RL | |
R2 | [
obj.dscr
R3 | |
The i with sub-string descriptor
returned in RO which robresents the portion of the ofiginal
source character string beginning with the most significant
Gharacter o completely mateh the object character string:
15]
RO | i
sub.sre.dscs
RL | |
R2 | |

obj.dscr

In-line Fc:1 - MATCI

The words which follow the opcode word in the instruction stream
are a word address poxnter to a two word character string source
descriptor, and a word 2iress pointer to a two word character
String object descriptor. The inseruction terminates with &
character sub-striny descriptor recurned in RO-Rl which represents
the portion of the original source character string beginning with
the most significant character to completely match the object
character string. R2-R6 are unchanged when the instruction is
completed.

dilgiltla]

Extended-Instruction Definitions Page
MATC / MATCI - Match Character
15 L]
RO | !
sub.sre.dscr
RL
Formal Description:
stc.len I MATC only
src.adr oo
3. 1e [
ob] adr = R3, [
temp = M[R7]; ! MATCT only
n = M{templ; ! .
Mitemp+2]; ! .

RT = R742;
tmp.len
found

0;

71
= M[t .mp];
obj.adr = M(temp+2);

obj.len;

while (src.len gequ cbj.len) and (obj.len nequ @)
9) do

and (found jeale

while (obj.len nequ 8) and (same eglu 1) do

if (Mlobj.adr] eqlu Msrc.adr])
then
begin
obj.len = obj.len-1;
SBaoast < Shlidsmi:
src.len = src.len-1;
src.adr+l

stc.adr
obj.len
end;
if found eql 1
then
begin
RO = src

ot ol N

stc.

obj.adr+obj.len-tmp.len;
src.len+tmp.len-obj.len-l;
= src.adr+obj.len-tmp.len+l;
tmp.len

len+l;
adr-1

5-41

Extended-Instruction Definitions Page 5-42
MATC / MATCI - Match Character

else
begin
RO = 8;
Rl = src.adrscc.len
end;
2 = obj.len; 1 MATC only
R3 = obj.adr; [
N - RIS
7 = RO eqlu 0;
V= 0;
c=0;
Examples:

1. Find a Keyword - Register Form

MoV SRC.DSCR, RO ; lst source descriptor
MoV SRC.DSCR+2,R1

Mcv OBJ.DSCR,R2 7 2nd source descriptor
MoV OBJ.DSCR+2,R3

MATC ; search for keyword
BNE FOUND ; object was in string

2. Find a Keyword - In-line Form

search for kes
ptr to src descriptor
ptr to obj descriptor
object was in string

.WORD SRC.DSCR.PTR
.WORD OBJ.DSCR.PTR
BNE FOUND

Notes:

1. The operation of this instruction is unaffected by any over.ap
of the source and object character strings.

2. A vacant object character string matches any non-vacant
source character string. A vacant source character string
will not match any object character string. If the initial
source character string descriptor is vacant, the instruction
terminates with the condition codes indicating no match was
found. The original source character string descriptor is
returned in RO-RI.

:x:em}ed—lnsuucnon Definitiorns Page 5-43
MATC

MATCI - Match Character

If the length of the object character string is greater than
that of the source character string then no match is found;
R@-R1 and the condition codes will he updated.

A test for success is BNE; a test for failure is BEQ.

The conditior codes will be set as if this instruction were
followed by TST

Extended-Instruction Definitions Page 5-44
MED6X - PDP11/6@ Maintenance, Examine, Deposit

5.13 MED6X - PDP11/6@ Maintenance, Examine, Deposit

Format:

MED6X | 276 ! 68 [

Operation:
Access to internal processor registers.
Condition Codes:
The condition codes are not affected.
: not affected
1 not affected

not affected
not affected

o<nz

Suspendability:
This instruction is non-suspendable.
Description:

This_instruction reads or writes an internai processor register on
the PDP11/60.

R fs an implicit operand and either contains the source data
which is to be written into an internal processor register or
serves as the dest)natlon for a read-operation from an internal
processor registez. For MED codes 154 and 155, R2 and RJ also
Serve as implicit operands, as shown in the table below

The explicit opcode specific operand wl.ich immediately follows the
opcode in the instruction stream defincs whether the operation is
a "read" or a "write" and it specifies an internal processor
address by which the internal processor register can be accessed
Bits <15:8> of this operand are ignored

The condition codes are not affected.
The following table details this operation. In the table "xxx"

indicates that the valae of the high byte is a "don't care”. The
effects of executing unspecified operations are unpredictable.

Extended-Instruction Definitions Page 5-45
MED6X - PDPil/6@ Maintenance, Examine, Deposit

Operand Operation

xxx88n
xxx81n
xxx82n
xxx03n
xxx84n

read low half of A scratch pad Low, word n
read high half of A scratch pad Low, word n

read

low half of A scratch pad High, word n

read high half of A scratch pad High, word n

read

low half o cratch pad Low, word n

read high half of s scratch pad Low, word n

Jow half of B scratch pad High, word r

read high halt of B screten pad High, word n
read C scratch pad, w

resd ¢ scratch pad, Sord 10(@)4n

read Jam regis!

Service reqxste
Physical (Unibus) Address register

read Current Micro-address register

read
NoP
read

Flag register

Revision register

read Count register

read
read

Inval

Diagnostic Control Store register 1

Diagnostic Control Store register 2

idate cache location corresponding to physical address
where R3<1:8> contains bits <17:16 of the physical

2 contains bits <15:6> of the physical address

xxx155 read Cache Tag corresponding to the physical address in R3

and R2,

where R3<1:6> ccntains bits <17:16> of the physical

address and R2 contains bits <15:8> of the physical address

xxx20n,
xxx21n
xxx22n
xxx23n
xxx24n
xxx25n0
xxx26n
xxx27n
xxx30n

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
weite
NOP

Tow half of A scratch pad Low, word n
high half of A scratch pad Low, word n
low half of A scratch pad High, word n
high half of A scratch pad High, word n
low half of 8 scratch pad Low, word n
high half of o seraren pad Low, word n
low half of B scratch pad High, word n
high half of B scratch pad High, word n
C scratch pad, word n

C scratch pad, word 10(8)+n

shift register

Counter register

Next Micro-Address register
esidual Control regi

lnlt register

Extended-Instruction Definitions Page 5-46
MED6X - PDP11/60 Maintenance, Examine, Deposit

Formal Description:
TBS;
Examples:

1. Log abort-type error condition

MOV, +LOGBUF, R1

MED #1050 ; on abort-type error

MOV RO, (R1)+ ; condition move
internal

MED 3101 ; machine state to

MoV RE, (R1)+ ; error logging buffer

Notes:

1. This is a reser ved instruction in User Mode.

Extended~Instruction Definitions Page 5-47
MED74C - PDP11/74 CIS Maintenance Instruction

5.14 MED74C - PDP1i/74 CIS Maintenance Instruction

Format:

MED74C

s
3
&
ES

Operation:
CIS next micro-address <- R5<12:0>

Condition Codes:
The condition codes will be set by the PDP11/74 CIS processor.

Suspendability:
This instruction is potentially suspendable.

Description:
This is a maintenance and diagnostic instruction for the PDP11/74
CIS processor. It suspends operation of the PDP11/74 base
machine, and initiates operation of the PDP11/74 CIS processor by
loading its next micro-address register. The micro-address is in
RS<12:0>; RS5<15:13> is ignored. The effect of this instruction
is dependent upon the micro-program which is executed.

Formal Description:

cr .next. dd eg = RS<12:0>;
Examples:

1. Transfer control to CIS processor.

MOV NONZERO,@4177778 ; set micro-break
MOV MICRO.ADR,RS i CIS micro-address
MED74C i transfer control

dilgiltlall IS

Extended-Instruction Definitions Page 5-48

MED74C

Notes:

- PDP11/74 CIS Maintenance Instruction

This instruction is reserved if the high order 3 bits of the
PDP11/74 micro-program break register are cleared (PB<15:13).
The micro-program break register is at physical address
17777770(8); it is cleared during processor power-up, manual
activation of the front panel start switch, or successful
execution of a RESET instruction.

Refer to maintenance documentation for the values which are
obtained wher reading the contents of the micro-program break
register.

a1

Extended-Instruction Definitions Page 5-49
MFPT - Move From Processor Type

5.15 MFPT - Move From Processor Type
Format:

15 []

MFPT | 600207 |

Operation:

R8<7:0> <-- processor model code
RE<15:8> <-- processor subcode

Condition Codes:
The condition codes aré not affected.

not affected

not atfected
Suspendability:
This instruction is non-suspendable.
Description:
No source operands are used.
Upon execution, the MFPT instruction returns in the low byte of RO
a processor model code, as specified in the table below. The high
byte of R6 will be loaded with a processor specified Tubcode,
The condition codes are not affected.
The previous contents of RS are lost.
The codes to be returned in the low byte of RO are as follows:

code (octal) processor type

Formal Description:

RO<7:8> = processor.model.code;
RB<15:8> = processor.subcode;

ofiloll 1] |

Extended-Instruction Definitions Page 5-50
MFPT - Move

tove From Processor Type

Examples:

1.

Notes:

Get processor type-code

MoV RO, - (SP) ; save RO

MFPT ; get processor model
MOVB RO,CPUTYP i store it

MoV (SP)+,RD i restore RO

On processors where this instruction is not implemented, a
reserved instruction trap through vector 18(8) is taken.

The processor model codes are assigned by the PDPIL
Architecture Group Manager. This standard will be updated to
include the model codes for processors which have been
publicly

may also have been assxgnedA

Extended-Instruction Definitions

Page 5-51
1 - Move Character

5.16 MOVC / MOVCI - Move Character

format:
1s 987 32 9
Meve | 276 1 a3 [
MoveI | 876 | 1310 |
| src.dscr.ptr |
| dst.dscr.ptr |
1 [I £ily |
Operation:
dst <- sec

Condition Codes:

The conaition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len).

N: set if result<B; cleared otherwise

z: set if resul cleared otherwise

V: se. if there was arithmetic overflow, that is, src.len<l5> and
dst.len<15> were different, and dst.len<l5> was the same as
bit <15> of {src.len-dst.len); cleared otherwi

C: cleared if there was a carry from the most significant bit of
the result; set otherwise
Suspendability:

This instruction is potentially suspendable.

Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descriptor. It is
aligned by the most significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lengths. If the .ource string is shorter than the
destination string, the fill character is used to complete the
least significant part of the destination string. This is
indicated by the C bit set.

dlifgiltlall}

Extended-Instruction Definitions Page 5-52
MOVC / MOVCI - Move Character

If the source string is longer than the destination string, the
least significant characters of the source string are not moved.

is indicated by the Z and C bits cleared. If the source and
destination strings are of equal length, all characters are moved
with neither truncation nor Filling. This is indicated by the Z
bit set. The unsigned branch instructions may test the result of
the insfruction.

Register Form - MOVC

¥hen the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, CEhe destination chacacier string descriptor is
placed in R2-R3, the fill character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 87)
RO

src.dscr
RL | |
R2

dst.dscr
R3 | |
R4 |) 1 £i11 |

When the instruction is completed, R# contains the number of
unmoved source string characters, and RL through R3 are cleared:

15 87 [}
RO | max (8,src.len-dst.len) !
RL | [i
R2 | 0 |
R3 i L i
R4 |) | £il1 |

026020

Exr.ended Instruction Definitions Page 5-53
/C / MOVCI - Move Character

In-line Form - MOVCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word charicter string
destination descriptor, and a word whose low order half contains
The H111 Character and whose hign order half myst be zero. Ro-Ré
are unchanged when the instruction is completed.

Formal Description:
src.len = RO; MOV only

1 MOVCI only

Mitemp+2],

RT = R7+42; .
i1l = M(R7]<7:05; .
RT = R742; .

carry@temp = srcAlen—dst.len;
N= temp<l

7 = temp eql IR

V = (src.len<l5> neg dst.len<15>) and (src.len<15> eql
temp<15>)

¢ = carry;

if src.ad gequ dst.adr then
st to least significant
characters
while (szc.len nequ 0) and (dst.len nequ 8) do

begin

Widst.adr) = M(src.adr};
src.len = src.len-1;
src.adr = src.adr+l;
dst.len = dst.len-1;
dst.adr = dst.adr+l

end;
while dst.len nequ 0 do

gin
M[dst.adr] = fill;

dst.len = dst.len-1;
dst.adr = dst.adr+l

Extended Instruction Definitions
VCI - Move Character

end
end
else
begin
characters

! least to most significant

Page

rc.adr = src.len-1-max(@,src.lec-dst.len)+scc.adr;
dst.adr = dst.len+dst.adr-1;
while src.len lssu dst.len do

begin
M{dst.ade] = £ill;

dst.len
dst.adr

= dst.len-1;
= dst.adr-1

end
while dst.len nequ @ do
begin

end;

M[dst.adr] = M[stc

src.len
src.adr
dst.len
dst.adr
end

RO = src.len;
1

=a;

R2 = 0;

R3 = 0;

R4 = 8<15:8>
Examples:

1.

2.

Qfill;

= src.len-1;
= src.adr-1;
= dst.len-1;
= dst.adr-1

! MOVC only

' .
! .

Moving Data - Register Form

MoV SRC.DSCR,R@ :
MoV SRC.DSCR+2,R1
MoV DST.DSCR, R2 5
MOV DST.DSCR+Z,R3
MoV +' R4 i
move ;
BHI TRUNC :
BLO FILL ;
BEQ EQUAL ;
Moving Data - In-line Form
mMoveT
.WORD SRC.DSCR.PTR
‘WORD DST.DSCR.PTR
WORD
BHI TRUNC 5
BLO FILL ;
BEQ EQUAL

adrl;

source descriptor
destination descriptor
£ill with spaces

e

test for truncation
test for fill
test for equal length

move
ptr to src descriptor
ptr to dst descriptor
£ill is space

test for t:uncatlon
test for fil

test for equa] length

5-54

Extended-Instruction Definitions Page 5-55
MOVC /M

3.

Notes:

VCI - Move Character

Clearing Storage - Register Form

CLR ; zero length source
MOV DST.DSCR, R2 ; destination descriptor
MOV DST.DSCR+2,R3

CLR R4 1 store null characters
move i propagate fil

Clearing Storage - In-line Form

MoveT

\WORD SRC.DSCR.PTR

JWORD DST.DSCR.PTR
?

propagate f£ill
ptr to heaf e dser
Etr to dst descriptor
£i11 with nulls

The of this ion 1= by any overlap
of the source and destination strings. The result is
equivalent to having read the entire source string before
storing characters in the destination.

1f the source string is vacant, the fill character will be
propagated through the destination string. If the destination
string is vacant, no charactecs will be moved, The condition
codes will be updated. MOVC will update tne general
reqis:ers.

Move —- When the instruction terminates, RO is zero only if Z
or C are set

The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

Extenided-Instruction Definitions

Page 5-56
MOVRC / MOVRCI - Move Reverse Justified Character

5.17 MOVRC / MOVRCI - Move Reverse Justified Character

Format:
15 987 32 2
MOVRC | 076 1 LE] |
MOVRCI | 276 1 13 1
1 src.dscr.ptr 1
1 dst.dscr.ptr 1
1 o 1 fill]
Operation:

dst <- reverse justified src

Condition Codes:

The condition ccdes are based on the arithmetic comparison of the
initial character string lengths (result=stc.len-dst.len).

N: set if result<d; cleared otherwise

2: set if result: cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<lS> and
dst.len<15> were different, and dst.len<l5> was the same as
bit <15> of (src.len-dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Suspendability:
This instruction is potentially suspendable.
Description:

The character string specified by the source descriptor is moved
into the area specified by the destination descriptor. It is
aligred by the least significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lengths. If the source string is shorter than the
destination string, the fill character is used to complete the

most significant part of tne destination string. This is
indicated by the C bit set

il ift[al| RSN

Extended-Instruction Definitions Page 5-57
MOVRC / MOVRCI - Move Reverse Justified Character

If the source string is longer than the destination string, the
most significant characters of the source string are not moved.
This is indicated by the Z and C bits cleared. If the source and
destination strings are of equal length, all characters are moved
with neither truncation nor filling. This is indicated by the
bit set. The uns1qned branch instructions may test the result Of
the instruction

Register Form - MOVRC

When the instruction starts, the operands must ha e been placed in
the general registers. The source character string descriptor is
placed in 1S destination character. srring describtor i
placed in RZ-RJ, the £ill character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 87 2

R8 | !
- src.dscr

RL |

R2 | |

dst.dscr
R3
R4 | ° i £i11 |

the instruction is completed, R@ contains the number of
unmoved source string characters, and Rl through R3 are cleared:

15 87 [

RO | max (8,src.len-dst.len) !
RL |) 1
R2 | [|
R3 | [|
R4 | 0 | £i11 i

ol it =l R

Extended-Instruction Definitions Page 5-58
MOVRC / MOVRC

1 - Move Reverse Justified Character

In-line Form - MOVRCI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, and a word whose low order half contains
the £ill character and whose high order nalf must be zero. RO-R6

are unchanged when the instruction is complete

Formal Desct ip

srz.len = RO;
src.adr = Rl;
dst.Xen
ast

src.adr = d{temp+2];

dst.adr = M{temp+2] ;
R7 = R7+2;

£i11 = M[R7]<7:8>;
R7 = R7+2;

carey@temp = src.len-dst.len;
N = temp<l5:

Z = temp eqlu a;

V = (src.lencl5> neq dst.len<15>) and (src.len<lS: gl temp<ls>
C = carry;

if (src.len+src.adr-1) sea (dst.len+dst.adr-1) then
egin st to least sxthcant
characters
src.adr = max(8,src.len-dst. len) tazc.adt;
while stc.len lssu dst.len &
begin
uldst adr) = £ill;
t = dst.len-1;
Getiaar - detaorrl

end;
while dst.len nequ @ do
begin

M[dst.adr] = M[src.adr];
src.len = src.len-1;

src.adr
dst.len = dst.len-1;
dst.adr = dsc.adr+l

Extended-Instruction Definitions Page 5-59
MOVRC / MOVRCI - Move Reverse Justified Character

end;
end
else
begin ! least to most significant
characters

src.adr = src.lentsrc.adc-1;
dst.adr = dst.len+dst.adr-1;
whue (sxc Jen nequ @) and (dst.len nequ) do

M[dst.ud r) = M[src.adr];
c.len = src.len-1;

s(c.adr = src.adr-1;

dst.len = dst.len-1;

dst.adr = dst.adr-1
end;

vhxle dst.len nequ @ do
M{dst adr] = £ill;

ist.len-1;
dst.adr-1

MOVRC only

!
'
Examples:

1. Moving Data - Register Form

MOV SRC.DSCR, R ; source descriptor
MOV SRC.DSCR+2,R1

MoV DST.DSCR, R2 5 destination descriptor
MOV DST. Dscxn,m

MOV i ; £ill with spaces
MOVRC ; move

BHT TRUNC ; test for truncation
BLO FILL i test for fill

BEQ EQUAL ; test for equal length

2. Moving Data - In-line Form

MOVRCI ; move

.WORD SRC.DSCR.PTR ; ptr to src descriptor

\WORD ~ DST.DSCR.PTR ; ptr to dst descriptor
RD ' ; £ill is space

BHI TRUNC ; test for truncation

BI FILL ; test for

test for equal length

Extended-Instruction Definitions
MOVRC / M(

Notes:

Page 5-60
CI - Move Reverse Justified Character

The operation of this instruction is unaffected by any overlap
of the source and destination strings. The

Squivalent fo having read the entire source sering befors
storing characters in the destination.

If the source string is vacant, the fill character will be
through the destination string. he destination
string is vacant, no Characters will be moved. Condition

codes will be updated. MOVRC will update the genoral
registers.

MOVRC -- When the instruction terminates, R@ is zero only if 2

or C are set.

The condition codes will be set as if this instruction were
preceded by CMP scc.len,dst.len.

N 0N0ass a1

Extended-Instruction Definitions
MOVTC / MOVTC

Page 5-61
1 - Move Translated Character

5.18 MOVIC / MOVICI - Move Translated Character

Format:

15 987 32 @
MOVTC | 076 I 3 1 2 |
MOCTCT | 076 | 1312
I src.dscr.ptr 1
1 dst.dscr.ptr 1
| [] | £i1l [
! table.adr |

Operation:

dst <- translated src

Condition Codes:

The condition codes are based on the arithmetic comparison of the
initial character string lengths (result=src.len-dst.len)

N: set if result<@; cleared otherwise

2: set if result=8; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<15> and
gst.lendls, were different, and dst.lencls) was the same as

bit <155 of (src.len-dst.len); cleared othe

C: Cleared if there was a carfy from the mest sSignificant bit of
the result; set otherwise
Suspendability:

This instruction is potentially suspendable.

Extended-Instruction Definitions Page 5-62
MOVIC / MOVICI - Move Translated Character

Description:

The character string specified by the source descriptor is
translated and moved into the area specified by the destination
descriptor. It is aligned by the most significant character.
Translation is accomplished by using each source character as an
bit positive integer index into a 256 byte table, the address of
which is an operand of the instruction. The byte at the indexed
location in the table is stored in the destination string. The
condition_codes reflect an arithmetic comparison of the original
contents source and destination lengths

It the source 3tring is shorter than the destination string, the
untranslated fill character is used to complete the least
significant part of the destination string. This is indicated by
the C bit set. If the source string is longer than the
destination string, the least significant characters of the source
string are not moved. This is 1indicated by the Z and C bits
cleared. If the source and destination strings are of equal
length, all characters are translated and moved with neither
truncation nor filling. This is indicated by the Z bit set. The
unsigned branch instructions may test the result of the
instruction.

Register Form - MOVIC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, the destination character string descriptor is
placed in R2-R3, the fill character is placed in R4<7:8>, R4<15:8>
Bust be zero, and the translation tasle adress is placed in K.

15 87 2

RO | |
src.dscr -

RL | |

R2 | I
dst.dscr

R3

R4 | 0 | £i11 |

RS | table.adr !

When the instruction is completed, RO contains the number Of
unmoved source string characters, and RL through R3 are cleared:

Extended-Instruction Definitions Page 5-63
MOVTC / MOVICI - Move Tranmslated Character

15 87 [
RO | max (8,src.len-dst.len) !
Rl | K |
R2 | [] 1
R3 | 0 |
R4 |) | £ill 1

RS table.adr |

In-line Form - MOVTCT

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, a word address pointer to a two word character string
destination descriptor, a word whose low order half contains the
£i11 character and whose high order half must be zero, and a wor
containing the address of tne translation tsble. RB-RS are
unchanged when the instructicn is comple!

Formal Description:

scc.len = RO; 1 MOVIC only
src.adr = Rl; b .
dst.len R ! .
dst.adr = R3; [

i1l = R4CT:0); Lo
table.adr = R5; ! .

temp = M[R7]

scc-len = M(temp];
svc.adr - M{temp+2];

'
RT = TR
temp = H[R7)7 [
dst.len = M[temp]; ! .
dst.adr = Mtemp+2); ! .
R7 = R7+2 [
£ill = n[n71<7 o .
R7 = R7+ TR
table.adr = M(R7]; ! .
R7 = R7+2; [N

carry@temp = src.len-dst.len;
N = temp<lS>
7 = temp eqlu ;

Extended-Instructicn Definitions Page 5-64
MOVIC / MOVICI - Move Translated Character

(src.len<1S> neq dst.len<15>) and (src.len<15> eql temp<l5>)
carry

v
c

if src.adr gequ dst.adr then
! most to least significant

begin
characters
while (sre. len nequ @) and (dst.len nequ 8) do
beg
W{dst.2dc] = W[table.adc+(scc.ade]] ;
stc.len = src.len-1;
stc.adr = src.adr+l;
dst.len = dst.len-1;
ast.adr = dst.adr+l

wnite. dst len nequ 8 do

M(dst adr] = f£il
dst.len = dst.len-l;
dst.adr = dst.adr+l

en
end
else
begin ! least to most significant
characters
grc.adr = sre.den-1-max (8, src.len-dst.len) ssrc.ade;
dst.adr = dst.lenwdst.adr-1;

While sre.len 156 ast len do

begin
M[dst.adr] = £ill;

dst.len = dst.len<l;
dst.adr = dst.adr-1

end;
while dst.len nequ 8 do

egin
M(dst.adr] = M[table.adr+M(src.adr]];

src.len = s
src.adr = src.adr-1;
dst.len = dst.len-1;
dst.adr = dst.adr-1
end
end;
1 MOVIC only
vl
i .
1 .
RS = table.adr; R

020020 -

Extended-Instruction Definitions Page 5-65
MOVTC / MOVTC!

- Move Translate3 Character

Examples:

1.

2

Notes:

Character Code Conversion - Register Form

MoV SRC.DSCR, Rg ; EBCDIC source

MoV SRC.DSCR+2,R1

MoV DST.DSCR, R2 ; ASCTT destination

MoV DST.DSCR+2,R3

MoV + R4 ; £il1 with ASCIT spaces
Hov #TABLE, RS ; translation table
MOVTC ; translate and move
BHI TRUNC i source was truncated
BLO FILL i test for fill

BEQ EQUAL ; test for equal length

Character Code Conversion - In-line Form

MOVTCT translate and move

LWORD SRC.DSCR.PTR

ptr to src descriptor
.WORD DST.DSCR.PTR

ptr to dst descriptor

Wl i fill is space

BHT ‘TRUNC ; test for truncation
BLO FILL ; test for fill

BEQ EQUAL ; test for equal length

The operation of this instruction is unaffected by any overlap
of the source and destination strings. The result is
equivalent to having read the entire source string before
storing characters in the destination.

If the destination string overlaps the translation table in
any way, the results of the instruction will be unpredictable.

If the source string is vacant, the untranslated fill
character will be propajated through the destination string.
If the destination string is vacant, no characters will be
oved. Condition codes will be updated. MOVTC will update
the gemeral registers.

MOVIC -- When the instruction terminates, R@ is zero only if 2
or C are set.

The condition codes will be set as if this instruction were
preceded by CMP src.len,dst.len.

The effect of the instruction is unpredictable if zne entire
256 byte translation table is not in readable memor:

Extended-Instruction Definitions Page 5-65
MULP / MULPI - Multiply Decimal

5.19 MULP / MULPI - Multiply Decimal

Format:
15 98 32 0
MuLP | 276 | 27 14
MULPT | 076 | 704
i srcl.dscr.ptr |
| src2.dscr.ptr |
| dst.dscr.ptr |
Operation:

dst <- src2 * sccl

Condition Code

set if dst<d; cleared otherwise

set if dst=0; cieared otherwise

set if dst can not contain all significant digits of the
result; cleared otherwise

cleared

Suspendability:

This instruction is potentially suspendable.
Description:

Srcl and src2 are multiplied, and the result is stored in the
destination string. The condition codes reflect the value stored
in the destination string, and whether all significant digits were
stored.

Register Form - MULP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RO

-R1, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS:

Extended-Instruction Definitions Page 5-67
MULP / MULPI - Mulciply Decimal

15 e
RO |
srcl.dscr
Rl | I
R2 | !
sre2.dscr -—
R3 | '
R4 | !
dst.dscr

RS | |

When the instruction is completed, the source descriptor registers

are cleare
15 [

RO | e !
RL | [1
R2 | 2 I
R3 |] !
R4 I

dst.dscr -
RS 1

In-line Form - MULPI

Each word address pointer which follows the opcode word in the
instruction stream refers to a two word decimal string descriptor.
RO-R6 are unchanged when the Insteuction 1o completed.

Formal Description:

TBS;

Eramples:

1. Multiply - Register Form

MOV SRC1.DSCR,R8 ; lst source descriptor
MoV SRC1.DSCR+2,R1
MOV SRC2.DSCR,R2 ; 2nd source descriptor
MOV SRC2.DSCR+2,R3

Extended-Instruction Definitions Page 5-68
MULP / MULPI - Multiply Decimal

MOV DST.DSCR, R4 ; destination descriptor

MOV DST.DSCR+2,R5

MULP ; multiply

BVS OVERFLOW ; check for error

BLT NEGATIVE ; negative descination

BEQ EQUAL ; zero destination
GREATER ; positive destination

2. Multiply - In-line Form

MULPT ; multiply

.WORD SRC1.DSCR.PTR ; ptr to sccl descriptor
WORD SRC2.DSCF.PTR ; pEr o src- descriptor
LWORD DST.DSCR.PTR ; ptr to di: Jescriptor
BVS LOW i check for error

BLT NEGATIVE 1 negatic destination
BEQ EQU L } zero destiratio

BGT GREA'ER ; positive deatination

1. The opuration of these instructions is unalfected by an
overlay ot the source strings provided that each soutce String
is a valid representation of the specified data type.

2. The results of the instruction ave unpredictable if the source
descination sctings overlay.

3. No numeric string multiply irstcuction is provided.

Extended-Instruction Definitions Page 5-69
SCANC / SCANCI - Scan Character

5.20 SCANC / SCANCI - Scan Character

Format:

15 987 32 9
scanc | 076 [ga 1 2 |
scanct | 876 | w2

| src.dscr.ptr 1

! set.dscr.ptr 1

Operation:

Search source character string for a member of the character set.

Condition Codes:
The condition codes are based on the final contents of RO.

: set if RB<1S> set; cleared otherwise

set if RO=9; cleared otherwise

cleared

cleared

suspendability:
This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least significant character until the first occurrence of a
character which is a member Of the character set. A character
string descriptor is returned in R-Rl which represents the
portion of the source character string beginning with the located
member of the character set the source character string
contains only characters which are not in the character set, the
instructions return a vacant character string descriptor with an
address one greater than that of the least significant character
of the source character string. The condition codes reflect the
resulting value in R

To=epE0 oo

Extended-Instruction Definitions Page 5-78
SCANC / SCANCI - Scan Character

Register Form - SCANC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, and the character set descriptor is placed in
R4-R!

RS |
- src.dscr -
i

RL

set.dscr

wWhen the instruction is completed, RO-Rl contain a character
string descriptor which represents the sub-string of the source
character string beginning with the character which is a member of
the character set:

15 [}

sub.src.dscr

R4 | |
set.dscr

RS

In-line Form - SCANCI

The words waich follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descriptor. When the instruction is completed, RO-Rl contain a
character string descriptor which represents the sub-string of the
source character string beginning with the character which is a
member of the character set. R2-R6 are unchanged:

difolt{al) N

Extended-Instruction Definitions Page 5-71
SCANCI - Scan Character

15 0
RO | 1
sub.src.dscr
R 1
Formal Description:
src.len = RO; SCANC only
src.adr = R1; .

'

mask = R4<7:0>; v

table.adr = RS; [

temp = M(R7 1 SCANCT only

src.len = Mitempl; ! .

stc.adr = M[temp+2]; ! .
i

R7 = R7+2;

char = M[R7]<7:0>; .
R7 = R7+2; .
temp = M(R7); .
mask = M[temp]<7:0>; ! .
table.adr = M[temp+2]

R7 = R7+2; !

four 0;
whlle (src.len nequ B) and (found eglu @)
i [able.adr (scc. adr]] and mask) eqlu 9 then

src)en = src.len-1;
src.adr = src.adr+l

end
:lse found = 1;

RO = src.len;
Rl = src.adr;
R4 = 0<1S:8>€mask; !
RS = table.adr; '

N = R8<1S>;

7 = R8 eqlu 0;

vo=0;

c=9;
Examples:

1. Find Next Digit - Register Form

MoV STR.DSCR, R0 ; string to scan
MoV STR.DSCR+2,R1
MoV #1,Re mask for char set

MoV #TAB, RS i character set table

Extended-Instruction Definitions Page 5-72
SCANC / SCANCI - Scan Character

SCaNC 5 scan str ag for digits

BNE DIGIT ; digit found

BEQ NODIGIT i string had no digits
TAB:.BYTE ¢ ; ASCII 000

.BYTE 8 i ASCII 001

.BYTE @ ; ASCII 002

JBYTE 1 ASCIT

(BYTE 1 ASCII

JBYTE 1 ASCII

JBYTE 1 ASCII

JBYTE 1 ASCII

WBYTE 1 ASCII

JBYTE 1 ASCT.

WBYTE 1 ASCII

JBYTE 1 ASCIT

JBYTE 1 ASCII

.BYTE 8 ASCIT

JBYTE ASCTI

.BYTE 0 ; ASCIT 377

2. Find Next Digit - In-line Form

SCANCT i scan

.WORD SRC.DSCR.PTR ; bcr to src descriptor
.WORD SET.DSCR.PTR ; ptr to char set dscr
BNE DIGIT i digit found

BEQ NODIGIT ; string had no digits

Notes:

1. If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
that no characters in the set were found. The original source
character st.ing descriptor is returned in R8-Rl.

2. The source character string and character set tab.e may
overlap in any way.

. A test for success is BNE; a test for failure is BEQ.

Extended-Instruction Definitions Page 5-73
SCANC / SCANCI - Scan Character

4. The condition codes will be set as if this instruction were
followed by TST R

5. The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

Extended-Instruction Definitions Page 5-74
SKBC / SKECI - Skip Character

5.21 SKPC / SKPCI - Skip Character

Format:
15 987 32 @
SReC | 876 | 4 11
SKeCT | 876 | LT O
1 src.dscr.ptr |
|] 1 char |
Operation:

Search source character string until a character other than the
search character is found.

Cendition Codes:
The condition codes are based on the final contents of R@.

N: set if RA<1S> set; cleared othecwise
Z: set if R@=@; cleared otherwise

V: cleared

C: cleared

Suspendability:
This instruction is potentially suspendable.

Description:

The source character string is searched from most significant to
least sxgmfxcant character until the first occurrence of a
character which is not the search character. A character string
descriptor is returned in RA-Rl which represents the portion of
the source character string beginning which the most cignificant
character which was not equal to the search character. If the
source character string contains only characters equal to the
search character, the instructions return a vacant character
string descriptor with an address one greater than that of the
least significant character of the source character string. The
condition codes reflect the resuiting value in R

oliofit o] |

Extended-Instruction Definitions Page 5-75
SKPC / SKECI - Skip Character

Register Form - SKEC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in R#-Rl, the search character is placed in R4<7:8>, and
R4<15:8> must be zero:

15 87 0

RO | |
src.dscr -

R1 |
R4 |) | char [

When the instruction is completed, R@-Rl contain a character
string descriptor which represents the sub-string of the source
character string beginning with the most significant character
which was not equal to the scarch character:

15 87)
RO | |
== sub.src.dsct -
RL | |
R4 | 0 | char |

In-line Form - SKECI

The words which follow the opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word whose low order half contains the search
character and whose high order half must be zero. Whon the
instruction is ‘completed, RO-Rl contain a character strirg
descriptor which represents the suo-string of the source character
string beginning with the most significant character which was not
equal to the search character. R2-R6 are unchanged:

dlifgltlal

Extended-Instruction Defiritions

Page 5-76

SKPC / SKPCI - Skip Character

sub.src.dscr

Formal Description:

src.len = R9;

temp = M(R7];
src.len = M(temp];

I SKBC only
' .
SKECT only

sre. adr = n[:emp+21;
Char S Mik11<7:055 .
R7 = R7+2; 1 .

found = 1;
while (src.len nequ 9) and (found eqlu 1) do
if n[sx;.adr] eqglu char then
gin

src.len = src.len-
src.adr = src.adr+l
end

else’ found = 0;

RO = src.len;
Rl = src.adr

R4 = 0<15:8>6char; ! SKEC only

N = ROCIS>;

2 = RA eqlu 0;

V=0

C =8

Examples:

1. skip Leading Spaces - Register Form
MoV STR.DSC®, RO ; string to search
HOV STR.DSCR+2,R1
MOV ¥ R4 ; space character
SKPC i ski
BEQ BLANK line was blank

K|
i

Extended-Instruction Definit ions Page 5-77

SKPC / S|

Notes:

1.

- Skip Character

Skip Leading Spaces - In-line Form

SKeC1 skip

JWORD ~ SRC.DSCR.PTR ; ptr to stc descriptor
.WORD ' ; space character

BEQ BLANK i line was blank

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
the character string only contained search characters. The
atiginal source character string descriptor is returned in
RO

The condition codes will be set as if this instruction were
followed by TST Rd.

Extended-Instruction Definitions Page 5-78
SPANC / SPANCI - Span Character

5.22 SPANC / SPANCI - Span Character

Forma

SPANC | 076

SPANCI | 076 |

1 src.dscr.ptr

| set.dscr.ptr |

Operation:
Search source character string for a character which
member of the character set.

is not a a

Condition Codes:
The condition codes ar: based on the final contents of RO.

: set if RO<1S> set; cleared otherwise
2: set if R@=A; cleared otherwise

V: cleared
C: cleared
Suspendability:

This instruction is potentially suspendable.

Description:
The source character string is searched from most significant to
least significant character until the first occurrence of
character which is not a member of the character set. A character
string descriptor is returned in RO-Rl which represents the
portion of the source character string beginning with the
character which is not a member Of the character set. If the
source character string contains only characters which are in the
character set, the instructions return a vacant character string
descriptor with an address one greater than that of the least
significant character of the source character string. The
condition codes reflect the resulting value in RJ.

Extended-Instruction Definitions Page 5-79
SPANC / SPANCI - Span Character

Register Form - SPANC

When the instruction starts, the operands must have been placed in
the general registers. The source character string descriptor is
placed in RO-Rl, and the character set descriptor is placed in

R4-RS:
15 [)
R3 | I
-— src.dscr -—
Rl | |
R4 |
- set.dscr
RS | !

When the instruction is completed, R@-Rl contain a character
string descnptor which represents the sub-string of the source
with which is not a

omber of the chacasear sa:

sub.src.dscr

R4 | i
-— set.dscr -
RS | !

In-line Form - SPANCI

The words which follow ctne opcode word in the instruction stream
are a word address pointer to a two word character string source
descriptor, and a word address pointer to a two word character set
descriptor. When the instruction is completed, R-Rl contain a
character string descriptor which represents the sub-string of the
source character string beginning with the character which is a
member of the character set. R2-R6 are unchanged:

1114 R

Extended-Instruction Definitions Page 5-80
SPANC / SPANCI - Span Character

|
- sub.src.dscr -
|

Formal Description:

src.len = Rd; t SPANC only
src.adr = Rl; 1 B

mask = R4<7: a>, '

table.adr = RS; '

temp = M[R7]); SPANCI only

src.len = Mitemp]; !

src‘ad: = M(temp+2];

R7 = R742; 1
!
'
!

char = M[R7]<7 0>;

temp HIR7]r

mask = M(temp]<7:8>;
table.adr = u(tempi2]; !
R7 = !

found = 1
while (src. len nequ @) and (found eglu 1)
(M[table+M(stc.adr]] and hask) ‘nequ 8 then

src.len = src.len-1;

src.adr = src.adc+l
end
else found =
RO = src.len;
RL = stc.adr;
R4 = 8<15:8>@mask; | SPANC only
RS = table.adr; '
N = R8<15>;
Z = RO eqlu @
v=0;
c=e;

Extended-Instruction Definitions Page 5-81
SPANC / SPANCI - Span Character

Examples:

1. Pass Tabs and Blanks - Register Form

MoV STR.DSCR, RO ; string to scan

MOV STR.DSCR+2,RL

MoV #2,R4 ; character set mask
MoV 4TAB,RS ; character set table
SpANC 5 span

BNE FOUND ; printing char found
BEQ EMPTY ; string contained only

tabs and spaces

1 The following toble can be conbined with the one
; in the SCANC example
TAB:.BYTE 0 ; ASCIT 000
BYTE @ ; ASCII edl
BYTE 0 i ASCII 902
LBYTE 2 5 ASCII 011 = TAB
BYTE i ASCII 012
BYTE 0 i ASCII 613
-BYTE ; ASCIT 048 = SPACE
BYIE @ ; ASCIT 841
BYTE @ } ASCII 942
BYTE 0 5 asCIr 377

2. Pass Tabs and Blanks - In-line Form

SPANCT

.WORD SRC.DSCR.PTR
.WORD SET.DSCR.®TR
BNE FOUND

BEQ EMPTY

scan
ptr to src descriptor
ptr to char set dscr
printing char found
string contained only
tabs and spaces

Excended_Instructfon Definitions Page 5-82

SPANC

Notes:

ANCI - Span Character

If the initial source character string descriptor is vacant,
the instruction terminates with the condition codes indicating
that only characters in the set were found. The original
source character string descriptor is returned in RE-RL.

The source character string and character set table may
overlap in any way.

The condition codes will be set as if this instruction were
followed by TST

The effect of the instruction is unpredictable if the entire
256 byte character set table is not in readable memory.

Extended-Instruction Definitions Page 5-83

SUBN / SUBP / SUBNI / SUBPT - Subtract Decimal

5.23 SUBN / SUBP / SUBNI / SUBPI - Subtract Decimal

Format:

15 98 32 9
SUBN | 076] as 1
susp | 876 ' 07 1 1 1
SUBNI | 1 15 o
| srcl.dscr.ptr |
[src2.dser.ptr [
| dst.dscr.ptr i
susp1 | 276 1 7
1 srcl.dscr.ptr l
1 src2.dscr.ptr i
| dst.dscr.ptr 1

Operation:

dst <- src2 - srel
Condition Codes:

set if dst<d; cleared othcrwise
set if dst=8; cleared otherwise
set if dst can not contain all significant digits of

result; cleared othervise
c: cle:

Suspendability:

This instruction is po.entially suspendable.

difliltial

7

Extended-Instruction Definitions Page 5-84
SUBN / SUBP / SUBNI / SUBPI - Subtract Decimal

Description:

Srcl is subtracted from src2, and the result is stored in the
destination string. The condition codes reflect the value stored
in the destination string, and whether all significant digits were
stored.

Register Form - SUBN and SUBP

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RO-RI, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS:

15 [

RS | |
srel.dscr

R1

R2 | |
src2.dscr

R3 | !

Re | |
dst.dscr

When the instruction is completed, the source descriptor registers
are cleared:

15]

RO | 1 |
R1 | e |
R2 |] |
R3 | [|
Re | |

- dst .dscr -
RS | 1

ol t]al1 HRNE

Extended—[nstructxon Definitior Page 5-85
SUBP / SUBNI / SUBPI - Subtract Decinal

In-line Form - SUBNT anc BPI

Each word address pointer which follows the opcode word in the
Thetruction screan Fefers to a two word decimal ering descriptor:
RE-RE are unchanged when the instruction is completed.

Formal Description:

TBS;

Examples:

1. Three address subtract - Register Form

MOV SRC1.DSCR,R0 ; subtrahend descriptor
MOV SRC1.DSCR+2,R1

MOV SRC2.DSCR,R2 _ ; minuend descriptor
MOV SRC2.DSCR+2,R3

MOV DST.DSCR, R4 ; difference descriptor
MoV DST.DSCR+2,R5

SUBN / SUBP ; subtract

BVS OVERFLOW i check for errol

BLT NEGATIVE i negitive destination
BEQ EQUAL : zero destination

BGT GREATER ; positive destination

2. Three address subtract - In-line Form

suBm / suBPI 5 subtract
SRC1.DSCR.PTR ; ptr to sub descriptor
.wom: SRC2.DSCR.PTR ; ptr to min descriptor
.WORD ~ DST.DSCR.PTR ; ptr to dif descriptor
BVS OVERFLOW i check for error
BLT NEGATIVE i negative destination
BEQ EQUAL i zero destination
BGT GREATER ; positive destination

3. Two address subtract - Register Form

MoV SRC.DSCR, RO ; subtrahend descriptor

MOV SRC.DSCR+2,R1

MoV DST.DSCR,R2 ; minuend descriptor

MOV DST.DSCR+2,R3

MOV R2, ; difference descriptor

MoV R3,R5

SUBN / SUEP ; subtract

BVS OVERFLCW : check for error

BLT NEGATIVE negative destination
UA] zero destination

=
&
3

positive destination

Extended-Instruction Definitions Page 5-86
SUBN / SUBP / SUBNI / SUBPI - Subtract Decimal

4. ™o address subtract - In-Line Form

subtract

ptr to sub descriptor
ptr to min descriptor
ptr to dif descriptor

SUBNI / SUBPI

.WORD SRC.DSCR.PTR
LWORD DST.DSCR.PTR
.WORD DST.DSCR.PTR

BVS OVERF} i check for error
BLT NEGATIVE ; negative destination
BEQ EQUAL : zero destination

T GREATER : positive destination

Notes:

1. The operation of these instructions is unaffected by any
Querlap of the source strings provided that each source string
is a valid representation of the specified dat t

Source strings may overlap the destination string only if all
corresponding digits of the strings are in coincident bytes in
memory .

CHAPTER 6

Reinterpretation of Traditional PDP1l Instructions

dlilita) I

Reinterpretation of Traditional PDP1l Instructions Page 6-2
Multiprocessing Memory Lock

6.1 MULTIPROCESSING MEMORY LOCK

‘The traditional ASRB instruction is now expected to be used for
setting semaphores ir. main memory which can be used by the processor
to "lock"™ access rights to designated system resources. In order to
serve this function, the ASRB instruction must be so implemented as to
ensure that the memory location specified as its operand be
inaccessible to any other processor on the system during the interval
in which the ASRB is executing.

If the machine is cached, the "copy” of the operand which the ASRB
accesses and modifies must be the same "copy" as is directly visible
to other processors on the system. This may mean that a cache-miss be
forced.

The PDP11/78 and PDF1l compatibility mode on VAX1l machires do not
implement the ASRB lock facility.

CHAPTER 7

Waivers

difgiltiall

Waivers
PDP11/60 Lacking MFPT

page 7-2
7.1 PDE11/68 Lacking MFPT
Date

requested -
approved -

11-dov-76

Requestor
Bob Magecs (76BM373-1543
Relevant Sections of this Standard
Sections 1.4.3 and 4.1.
Description of the Waiver
‘The PDP11/6@ (KD11-K) will not implement the MFPT instruction.
Reasons Justifying the Waiver
The PDP11/60 design and development anteceded the final
formulation, review, and approval of this Standard. Retrofit
implementation would imact project schedule. Current software

does not yet require or support the MFPT instruction. A retrofit
ECO is possible in the future.

ol 11| A

Waivers

Page 7-3
LSI-i1 Commercial Instruction Set

7.2 LSI-li Commercial Instruction Set

Date

Requested -

1-May-77, 14-Jul-78
Approved

Requestor
Ralph Platz
Relevant Sections of this Standacd
Sections 4.2 and 4.3.
Description of the Waiver

The [SI-11 uses a non-zero value in the high byte of R4 to
indicate instruction PS<8> is not

The LSI-11 does not implement all instructions in the closed
groups for character string moves, cheracter string searches, and
numeric strings. Only the register forms of instructions are
provided. packed string or load descriptor instructions are
provided. 1 unimplemented opcodes and features trap through
yector 18(8), the entire user visible statc is unchanged (except
for R6 and the EC and PS which are pushed on the scack).

In the Character String Move Group, MOVC and MOVRC are ;mplemgnted
according to this specification. MOVIC is not implemented

In the Character String Search Group, LOCC, SKPC, SCANC, SPANC and
CMPC are implemented according to this specification. MATCHC is
not implemented.

In the Numeric String Group, only the signed zoned decimal string

data type is supported Zero length source operands cause
instructions to trap through vecotr 19(8). CVINL oBoduces
unpredictable results in R2, R3, N and 2 if V is set. Other than

the stated considerations resulting from the limitations in data

type, data length and overflow, the ADD, SUBN, CMPN and CVINL are

implemented according to this specification. CUTPN, CVINP, ASHN
d CVILN are not implemented.

Waivers Page 7-4
LSI-11 Commercial Instruction Set

Reasons Justifying the Waiver

The LSI-11 Commercial Instruction Set implementation was in
progress before this specification had been finalized.
Archjtectural restrictions reflect the constraints of limited
micro-code expandability, product cost and performance
requirements. Zero length zoned source strings trap because of an
00D decision in force at the time the micro-code was committed.

The use of PS<8> to indicate instruction suspension was adopted
after the LSI-11 implementation was completed.

dilgiltlal}

APPENDIX A

Extended-Instruction Opcode Assignments

ion Opcode Assi Page A-2

Opcode Mnemonic Instruction

Included in Basic Instruction Set
200007 MFPT move from processor type ...

Commercial Load 2 Descriptors

076020 L2089 load 2 descriptors @(RO)+ -
876921 L2p1 load 2 descriptors 8(R1)+ ===
276022 L2D2 load 2 descriptors @(R2)+ - - -
076023 L2D3 load 2 descriptors 2(R3)+ -
076024 L2D4 load 2 descriptors @(R4)+ ---
276825 L2D5 load 2 descriptors @(RS)+ - - -
076026 L2D6 load 2 descriptors 2(R6)+ ----
076927 L2D7 load 2 descriptors @ (R7)+ ----

Character String Move

976038 MOVC move character LB
976631 MOVRC move reverse character raw
076832 MOVIC move translated (Character) e
976033 reserved
076034 reserved
276835 reserved
276836 reserved
076037 reserved

Character String Search

076240 LOCC locate character **g0
076041 SKBC skip character **80
875042 SCANC scan character **80
076043 SPANC span character **x00
876044 CMPC compare character *oxoxx
876045 MATC match character **a0
076046 reserved

076047 reserved

Numeric String

876056 ADDN add numer ic rxsg
876051 SUBN subtract numeric *x e
076852 CMPN compare numeric *xe0
976053 CVINL convert numeric to long i
976854 CVTPN convert packed to numeric “eag
876855 CVINP convert numeric to packed *xrg
87656 ASHN arithmetic shift numeric *weg
876837 CVTLN convert long to numeric LR}

-a

Extended-T-struction Opcode Assignments

Commercial Load 3 Descriptors

876460 L3DO load 3 Gescriptors &(Re)+
876661 L3D1 load 3 descriptors @(R1)+
@76862 L3D2 load 3 descriptors @ (R2)+
976863 L3D3 load 3 descriptors 8(R3)+
076064 L3D4 load 3 descriptors 2 (Rd)+
976865 L3DS load 3 Gescriptors @(RS)+
076066 L3D6 load 3 descriptors @(R6)+
876067 L3D7 load 3 descriptors @ (R7}+

Packed St:ing

076078 ADD!

° add packed
27687 suBP

subtract packed

compare packed

convert packed to long
multiply packed

divide packed
arithmetic shift packed
876077 CVTLP convert long tc packed
Character String Move (in-line)

076138 MOVCI move character
976131 MOVRCI move reverse character
876132 MOVICI move translated character

876133 reserved
976134 reserved
876135 reserved
076136 reserved
276137 reserved

Character String Search (in-line

876143 LOCCI
076141 SKPCI
876142 SCANCI
876143 SPANCI
876144 CMECI compare character
076145 MATCI match character
876146 reserved

876147 reserved

locate character
skip character
scan character
span character

Numeric String (in-line)

976150 ADDNI add numer ic

876151 SUBNI subtract numeric

076152 CMPNI compare numeric

€76153 CVTNLI convert numeric to long
€76154 CUTENI convert packed to numeric

976155 CVINEI convert numeric to packed

page

P —

a-3

srmses A e
sormrnes

PP

s rmes

srsses

Opeode Page

076156 ASHNI arithmetic shift numeric *
076157 CVINLI convert long to numeric *

Packed String (in-line)

076170 ADDPT add packed *
076171 SUBPI subtract packed *
976172 CMPPI compare packe: *
976173 CVIPLI convert packed to long *
€76174 MULPT multiply packed -
876175 DIVPI divide packed .
076176 ASHPI arithmetic shift packed *
876177 CVILPI convert long to packed *

Processor-Specific 46

2766080 MED6X PCP11/68 Maintainance -
276601 MED74C PDP11//4 CIS Maintainance *
0876602 reserved
876603 reserved
876604 reserved
8766085 reserved
976606 reserved
276607 reserved
* conditionally set/cleared
- not affected
8 cieared
1 set

[

se xs xssS

APPENDIX B

PDP11 Opcode Space

Z@=aeR0 -

PDP11 Opcode Space Page B-2

Legend

Note: Upper—case characters represent a full I-bit octal digit;
lower-case characters represent 1 or 2 b:

Ss general source opezand specifier ‘mode,register)
bits: <11:6>

Dd general destination operand specifier (mode,register)
bits: <5:0>

R register
bits: <8:6>,¢5:3>,<2:0>

P figld for SPL and microcode escape
<

Nn count for SOB
bits: <5:0>

cC condition code states
bits: <3:8>

XXX branch offset
bits: <7:0>

ill immediate data in Emt and Trap instructions
bits: <7:@>

Fs floating-point source operand specifier (mode,register)
bits: <5:0>

]
I

£loating-point destination operand specifier (mode,register)
bits: <5:

a floating-point accumulator specifier
bits: <7:6>

PDP11 Opcode Space Page B-3

space opcode mnemonic

| 000000 HALT

| 000001 WAIT

i 2980002 RTI

8. 200003 BPT

1 200004 ToT

1 200005 RESET

i 200006 RTT

1 800007 ¥FPT

! 200007
57. reserved instruction space
i 200077

i 060100 JMP
72. 000208 RTS

i 00021R maintenance (LSI-

16. 006220 escape to midrosods’ wsT-11
8. 00023p SPL

000240 Noe
8082 (4+c)C clear condition codes
241 LC

|
|
| s
I 242 cLv
l 244 cLz
1 258 cLy
| 257 cce
32. 000268 (NOP)

1 8802 (6+c)C set condition codes
1 261 SEC
1 262 SEV
i 264 SEZ
i 278 SEN
1 2717 sce

0803DD

208 (4+x) XX

001 (0+x) XX

681 (4+x) XX

002 (8+x) XX

002 (4+x) KX

863 (8+x) XY

803 (44x) XX

084RDD
1 085300 cLR

! 985100 cor:

=

PDP11 Opcode Space

Page B-4

05200 ™e

90530D DEC

80854DD NEG

925500 ADC

8056DD SBC

8057DD ST

2869DD ROR

806100 ROL

20620D ASR

90630D ASL.

8064DD HARK

006500 MFPI

8066DD MTPT

806700 sxr

207084

resered instruction space

027777

91SSDD MOV,

925SDD cxp

@3ssDD BIT

94SSDD BIC

058SDD BIS

86SSDD ADD

070RSS

8718SS

072RSS

873RSS

874RDD

075088

875018

275028

87583R

675040

maintenance (LSI-11)

875777

2876020 - -

EXTENDED-INSTRUCTION SPACE]

2876777

277RNN so8

100 (8+x)XX BPL

BHI
101 (4+x)XX BLOS

PDP11 Opcode Space Page B~5

2560. 182 (8+x)XX BVC
1 102(4+x)XX BVS
I 1@3(@+x)XX BCC,BHIS
! 1@3(4+x)XX BCS,BLO
| 194(8+1)11 EMT
I 104(4+1)1I TRAP
i 105000 CLRB
i 1us1oD comMs
| 105200 INCE
| 105300 DECB
i 185400 NEGB
1 105500 ADCB
768. 1056DD SBCB
| 185700 TST8.
{ 106200 RORE
1 1061DD ROLB
1 106200 ASRB
1 106300 asLe
| 1664Ss MTPS
] 1065SS MFPD
256. 1666DD MTPD
1 186700 MEPS
| 107000
s512. reserved instructicn space
] 107777
11sspD MOVB
125500 cueB
13sspp BITB
14sspD BICB
158SbD BISB
165500 suB
1760¢0 CFCC
170001 SETF
170002 SETI
| 170093 ;maintenance
3. 170004 maintenance
i 78085 maintenance
1. 178006 reserved floating point instruction
170007 maintenance

1. 170810 reserved floating point instruction |

PDP11 Opcode Space

493

dilgltlal}

170011
170012

170013

SETD
SETL

Page B-6

170077

reserved floating point instructions

1701
170200
1703FD

171 (0+a) FS
171 (4+a) FS
172(0+a) FS
172(4+a) FS
173 (8+a) S

174 (4+a)Fs
175 (8+a) FD
175 (4+a) FD
176 (8+a) FD
176 (4+a) FS
177 (8+a) FS
177 (4+a) FS

LDFPS
STEPS
STST
CLRF ,CLRD

SUBF, SUBD
CMPF , CMPD

/STCDI, STCDL

“DCTF,LDCID, LDCLF, LDCLD
LDCDF, LDCFD

APPENDIX C

Formal Description of Machine State

Formal Description of Machine State

! General Comments:

Details of this notation can be found in the
"1SPS Reference Manual®.

All statements are followed by an implied NEXT
The following relational tests are used:

Two's Complement Comparisions

iss less t

leq less than or equal
eql equal

neq not_equal

gtr greater than

9eq greater than or equal

Unsigned comparisons

! issu less than

' lequ less than or equal
' eqlu equal

' nequ not equal

! gtru greater than

' gequ greater or equal

! The max function returns the greatest of its arguments
! based on o two's complement comparison.
*+ Programmer.Visible.State *¥

H(o:ea) 70>, 1 memocy
| genetal registers

PS<15:0>, lp(ocessc(status
N<> 1= PS condition codus

Cer = PS<O>,

** Temporary.State **

diloliltal1

Page C-2

Formal Description of Machine State Page C-3

stc.len<15:8>,
src.adr<15:8>,
obj.len<l5:6>,
obj.adr<15:8>,
stcl.len<15:8,

src2.adr<ls:0>,
dst.len<15:8>,
dst.adr<15:8>,
part.lencl5:@>,
part.adr<15:0>,

opr.2<15:8>,
opr.3<15:8>,
opr.4<15:0>,
tup.len<15:8>,
£i11<7:05,

bemp<7:8>,
btmpl<7: 8>,
btmp2<7:8>,
carry <,
found<>,
alpha.2dr<15:0>,
beta.adr<15:6>,
gamma.adr<15: 8>

	0-001
	0-002
	0-01
	0-02
	0-03
	0-04
	0-05
	1-00
	1-02
	1-03
	1-04
	1-05
	2-00
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-00
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-00
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-00
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	6-00
	6-02
	7-00
	7-02
	7-03
	7-04
	A-00
	A-02
	A-03
	A-04
	B-00
	B-02
	B-03
	B-04
	B-05
	B-06
	C-00
	C-02
	C-03

