

PDP11

Extended

Instructions

Paqe 1

TITLE: PDPll Extended Instructions

ECO f

lB-Jan-79 Lloyd Dicdan

Site

EL1HI168-ee

Page 2

18 Janl.lary 1979

This standard providGs architectural definition and control for PDPll
instructions whose opcodes are in ~he reserved and extended opcode
spaces.

Revision History

Pass! Description Author

Pass 1 Original Standard L. Dickman
Pass 2 March 1978 T",:k Force L. Dickman

19 August 1917
::1 August 1978

This document is the prop ty of Digital Equlpment Corpo" ._on and is
not to be provided or disclosed to any non-Digit"l perso"ne1 "ithout
prior written authorization.

Copyright © 1916, 1977,1978 by Digital Equipment Corporation

• COMPANY CONFIDENTIAL •
•• *,o* •••• * •• *u.* •• *.***

DEC Standard 168 - Revision A
'rable of Contents

Page 3

1.1 NATURE OF THIS STANDARD. • •••• 1-2
1.1.1 Purpose.. • ••• 1-2
1.1.2 Scope. • • • 1-2
1.1.3 Motives.. • • • • • • 1-3
1.1.4 Applicability and Waivers. • • . • • 1-3
1.1.5 Goals. • • • • •• • •• 1-3
1.1.6 Non-Planned Effects of Goals • • • • ••••• 1-4
1.1.7 Non-Goals. • • • • • • • • • . • • • • •• • •• 1-4
1.1.8 History of Previous Standarization Efforts •• 1-4
1.1.9 Related Current Standards. • • • • • . • ••• 1-4
1.1.1~ Future Standards Activities •••• 1-4

~:~ ~=~SI~T~~~I~i~~~. (:C~':). • : ~=;
1.4 POLICIES •• 1-5

1.4.1 PDPll camily compatibility • . • • • • 1-5
1.4.2 PDPll I VAXll Cumpatibllity • • • • ••••• 1-5
1.4.3 Processor-Model Identification ••• 1-5
1.4.4 Instruction-Group Atomicity. • ••• 1-5

2.1 OPCODE UTILIZATION AND AVAILABILITY. • 2-2
2.2 OPCODE GROUPINGS • 2-2
2.3 INSTRUCTION-STREAM CONTENTS. • • • 2-2
2.4 FORMAT OF OPCODE • • • . • 2- 3
2.5 EXTENDED-INSTRUCTION GROUPS. • • • • . 2-3
2.6 EXTENDED INSTRUCTION CATEGORIES. • •• 2-4
2.7 OPERANDS FOR EXTENDED INSTRUCTIONS .•• 2-5

2.7.1 Implicit Operands. • • • • • • • • • • • ••• 2-5
2.7.2 Explicit Opcode-Speclfic Operands. • • . •• 2-5
2.7.3 Explicit General Operands 2-6

2.7.3.1 Number and Types of General Operand Formats ••• 2-6
2.7.3.2 Format of Single-Operand Specifiers - • • • 2-~

2.7.3.3 Format of Double-Operand Specifiers - ••••.• 2-6
2.7.3.4 Additional Instruction Stream Operand Words ••• 2-7

2.8 TRAPS. •• 2-7
2.8.1 Reserved-Instruction Tl.aps -- Vector 10(8) .• 2_7
2.8.2 Trace Traps -- Vector 14(8) •• 2-8
2.8.3 Fatal Traps -- Vector 4 (8) ••••• • .•• 2-8
2.8.4 Floacing Point Traps -- Vector 244(8) .•• 2-9
2.8.5 Other Traditional Traps. • • • • • •• . .••• 2-9

2.8S~SP~~~~~L~ni~~;R0~T~~~;nded. Instructions. ..:: : ;=~
2.9.1 Suspendabillty Classifications •• 2-10
2.9.2 Non-Suspendable Instructions • • • 2-10
2.9.3 Potentially Suspend able Instructions . 2-10

2.~:i9·:1r.~~s0~~g~~~I~~sp~n~i~n. • • • : ~=g
2.1l UNPREDICTABLE: CONDITIONS. • 2-13

DEC StandaCd 16B - Revisi.;m A
Table of Contents

Page 4

CHAPTER 2 Ii'AAMEWORlC FOR EXTENDING THE PDPll INSTRUCTION SET (Con't)

2.12 RESERVATtoN OF UNUSED FIELDS AND ENCODINGS •••••.• 2-13
2.13 MULTIPROGRAMMING INTEGRITY ••••.•••••••••• 2-14

EXTENDED-INSTRUCTION DATA T'lPES

3.1 CHARACTER DATA TYPES •••••••••••••••••• 3-2
3.1.1 Char-acter- ••••••.••••••••••.•••• 3-:<
3.1.2 Character- String ••.••••••.•••••••• 3-2
3.1.3 Character Set •••••••.•••••••••••• 3-3

3.2 DECIMAL STRING DATA TYPES •••••••••••••••• 3-4
3.2.1 Common Pr-operties •••••••••••••.•••• 3-4
3.2.2 Decimal String Descriptor-s ••••••••.•••• 3-6
3.2.3 Packed Str-ings ••..••••••••••.•••• 3-7
3.2.4 Zoned Str-ings ••••••.••••••••.•••• 3-9
3.2.5 OveE"punch StE"ings ••••.••••••••••••• 3-1B
3.2.6 Separ-ate Strings ••••.••••••••.•••• 3-12

3.3 LONG INTEGER ••••••.••••••.•••.•••• 3-15

4.1 PROCESSOR IDENTIFICATION INSTRUCTION ••• • • • • • • • 4-2
4.2 COMMERCIAL INSTRUCTION SET ••••••••••••.•• 4-2

4.2.1 Character String InstrtlCltions •••••••••••• 4-3
4.2.1.1 InstrtlCltions- ••••••••.•.••••.• 4-3

4.2.1.1.1 Character Strin9 Move Instructions - ••.• 4-3
4.2.1.1.2 Character String Search Instructions •••• 4-4

4.2.1.2 Condition Codes - ••••••••••••••• 4-4
4.2.1.3 Oper-and Deliver-y - ••••••••••••••• 4-5
4.2.1.4 Data OVerlap - ••••••••••.•••••• 4-6
4.2.1.5 Unpredictable Conditions - ••••••••••• 4-6
4.2.1.6 Implementation Notes - ••••••••••••• 4-7

4.2.2 Decimal String Instructions ••••••••••••• 4-8
4.2.2.1 InstE"uctions - •••.••••••••••••• 4-8
4.2.2.2 Condition Codes - ••••.•••••••••• 4-9
4.2.2.3 operand Delivery - ••••••••••••••• 4-lS
4.2.2.4 Oata OVerlap - ••••••••••••••••• 4-HI
4.2.2.5 Unpredictable Conditions - ••••••••••• 4-11
4.2.2.6 Implementation Notes - ••••••••••••• 4-12

4.2.3 ColllDere!al Load Descriptor Instructions ••••••• 4-13
4.2.3.1 Implementation Notes - ••••••••••••• 4-14

4.3 PROCESSOR SPECIFIC INSTRUCTIONS ••••.•••.•••• 4-15

~D~DDmD·.

DEC Standard 168 - Revision A
Table of Contents

EXTENDED-INSTRUCTION DEFINITIONS

Page 5

5.1 ADIlN / ADDP / ADooI / ADDPI - ADD DECIMAL •••••••• 5-2
5.2 ASHN / .-.sliP / ASlWI / ASHPI - ARITHMETIC SHIFT DE • • • • 5-"i
5.3 CMPC / CMPCI - CCJIIIPARE CHARACTER •••••••••••• 5-10
5.4 CMPN / CMPP / O'IPNI / OIPPI - COMPARE Of;CIMAl. •••••• 5-15
5.5 CVTLN / CV"l'I.P / CVTLNI / CVTl.PI - CONVERT t.ONG T •••• 5-18
5.6 CV't'Nl. / cvrPt. / CIrl.'Nl.I / CVTPl.l - DE:CIMAl. TO LON •••• 5-21
5.7 CVTNP / CVTPN / CVTNPI / CVTPNI - CONVERT DECIMA •••• 5-24
5.8 OIVP / DIVPI - DIVIDE DECIMAl. •••••••••••••• 5-27
5.9 LDCC / LOCCI - ['ocATE CHARACTER ••••••••••••• S-30
S.HI L2DR - LOAD 2 DESCRIPTORS ••••••••••••••• 5-34
S.U L30R - LOAD 3 DESCRIPTORS ••••••••••••••• 5-11;
:".12 MATC / MATeI - MATeH CHARAC'r .. a ••••••••••••• 5-39
5.13 MED6X - PDP:l/611 MAINTeNANCE, EXAI'IINE, DEPOSIT ••••• 5-44
5.14 MED74C - ~DPl1/74 CIS MAINTENANCE INSTRUCTlON ••••• 5-47
5.15 Ml'PT - MOVE FA~ PROCESSOR TYPE • • • • • • • • • • • • 5-49
5.16 l'IOVC / MOVeI - MOVE CHARACTER ••••••••••••• 5-51
5.17 JIIOVRC / M'JVRCI - MOVE REVERSE JUSTIFIED ~I>ACT •••• 5-56
5.18 MOVTC / JUWI'CI - MO\'E TRANSLATED CHARAC'l'ER • • • • • • • 5-61
';.19 MULP / MULPI - MULTIPLY DECIMAL •••••••••••• 5-6"i
5.211 5CANC / SCANCI - SCAN CHARACTER •••••••••••• 5-69
5.21 SKPC / SKPCI - SKlP CHARACTER ••••••••••••• 5-74
5.22 SPANC / SPANC:': - SPAN CHARACTER •••••••••••• 5-78
5.23 SUBN / SUBP / SUBNI / SUBPl - SUBTRACT DECIMAL ••••• 5-83

REINTERPRETATION OF TRADITIONAL PDPll INSTRUCTIONS

6.1 MULTJ"ROCESSING MEMORY LOCK •••••••••••••• 'i-2

7.1 PDPll/611 lACKING 'IFPT •••••••••••••••••• 7-2
7.2 LSI-11 COMMERCIAl. INSTRUCTlON SET •••••••••••• 7-3

Introduction Page 1-2
Bature of this Standard

1.1 NA'l"UlU. OF THIS S'l'ANDARD

1.1.1 Purpose

The purpose of thi!'l Standard is to provide iIIrchitec:turlJll definition
and control for PDPll instructions whose opcode!'l lie in the reserved
and extended opcode spaces. [lJ

1.1.2 Scope

The scope of this Standard covers all programmable aspects of PDPll
instructions in the reserved and extended opcode spaces.
·Programmable aspects· include all aspects of the instructions which
are controllable by, are visible to, or affect the behavior of PDPll
programs. 'the reserved and extended opcode spaces are defined in
Sectioli 2.1 and are enlDerated in Appendix S.

Except as specified in Chapter 6, the scope of this Standard does not
extend to the instructions histor~cally established in the
implementations of PDPll processors prior to March 1976, because the
definition of those instructior.s is fixed. Specifically this
exclusion refers to the instructions implemented in the following
models:

KAll-YA
KBll-A
KBll-B
KBll-C
KBll-D
KDll-A
KDll-B
KDll-D
KDll-!.

The exclusion of these historically established instructions from the
scope of this Standard does not ilDply that freedom or latitude exists
relative to their architectUfl!ll definitions.

{l] The work leading to this standard is described in
Instruction Extensions· by Lloyd Dickman, 1 March 1976, 8 ;>p.

Int!"oduction Page 1-3
Natu!"e of this Standard

This Standard is intended to provide designers with definitions that
will enSure architectu!"al consistency of new machine inst!"uctions
acros" processors of the PDPll Uy. This will consequently promote
th .. general transportability c software across members of the PDPll
system family, "ill reduce associated support problems In both the
hardware and soft",are areas, and ",ill control the variability that
might otherwise impede mig.ation of software structures to the VAXIl
family.

1.1.4 Applicability and Waivers

This star.datd appl ;es to all PDPll processors announced during or
after March 1976 and to any major revision of a PDPll processor.

8xceptions to this Standard will be aocl.1lllented In Chapter 7. The
doclmlentation must specify .n detail both the extent of the exception
and the reasons for the ""ception. The intended exception will then
be reviewed by t.he PDPll Architecture Manager, who will submit a
written recommendation to the Engineering COlIIIJIittee that it either
approve, reject or amend the proposed waiver. The Engineering
Committee's deCision shall be in"orporated by the PDPll Architecture
Group Manager into this Standard.

The goals of this standard "'re,

1. to specify the framework wilhin which ne", instructions can be
added to the PDPll architecture,

2. to serve as a centrally controlled repository for the
specific ,tions of all PDPll extended instructions, and

3. to Serve as a centrally controlled repository for all
necessary re-Interpretations of trdditional PDPll
instructions.

Introduction Page 1-4
Bature of this Standard

1.1.6 Non-Planned Effects of Goals

The effects, both planned and non-planned, will be documented in th ..
treatment of each extended instruction in the text of th .. standard.

1.1.7 Non-Goals

Non-Goals of this standard <'Ire:

1. This document does not attempt to define traditional PDPll
instructions, except as noted above in section 1.1.5, item 3.

This document does not attel!lpt to plan or deftne specific
future extensions to the PDPll instruction set. Its intent is
to define the framework within which such extensions can be
made and to record the specifications of extended instructions
that <'Ire actually implemented on PDPll processors.

History of Previous Standarization Efforts

1.1.9 Related CUrrent Standards

1. 2 CllMlGES TO THIS STANDARD (£CO' S J

The normal lIIethod for effecting changes to this Stand"rd is to sut.lit
the proposed cMll\Ie in the fonn of an ECO to the PDPll Archi tecture
Manager for review and approval. The mar,aqer will send the proposed
ECO, together with a reconnendation to the Engineering COIftIIIittee fot
final deciSion. The PDPll Atchitect.ure GtOUP ""ntlger will incotporate
approved BCO's into this Standard.

Introduction Page 1-5
Fnrmal !SPS Definitions

Formal descriptions in the I5PS language, when provided, are an
essential part of an instruction's specification. 'They are included
to specify, as accurately as possible, the architected results
obtained froco the e::ecution of the instructions but do not necessarily
imply implementation methods or algorithms. Where provided, tbe
formal ISPS descriptions are the authorative source of information
about che instructions; the English and pictorial descriptions SerVe a
secondary role. The machine state for each of these descriptions
appears in Appendix c. All ISPS statements uSe a semi-colon to
signify synchronization. Thus, the semi-colon is an implied 'next'
operator.

1.4.1 PDPll Family Compatibility

In general, PDP11 extended instructions shall b" 50 defined as to be
implementable on 'my processor of the PDP11 family. Optimization of
an instruction for a particular proceii30r sball not preclude the
possibility of its implementation "'l othel processors of the PDPIl
family. Exceptions to this licy 9re relegated to the
processor-specific instruction groups (-- See Section 2.1)).

1.4.2 PDPIl/VAXE Compatibility

Data types associated with extended PDPll instruc' ~ns shall be
consistent with corresp:lndinq Vl'.Xll data types. This will facilitate
migration of data files from PDPll systems to VAXll systems.

1.4.3 Processor-Model Identification

Any major .~vision to an existent PDPll processor and all neW PDPll
processors will inclllde implemem:ation of the MFPT instrllction (-- see
Chapter 5).

1.4.4 Instruction-Group Atomicity

Implementors will provide either all or nO,1e of the instructions of a
closed group (-- see Section 2.2).

Fr_ework for lxtendlnq the 1"01"11 In!ltruction Set

~DmDDmD .. :

Framework for Extending the POPll Instruction Set
Opcode Uti1iza~ion and Availability

Page 2-2

Opcodes in the following ranges are reserved and are not av<,iIable for
usage:

0~H:HHIl (8) -
0070110(8) -
H1701l1l(8) -
171l01l6(Sl
l71l1l11l(S)
1701l13(8) - 171l!l77(8)

In general, extended PDPll Instructions will utilize opeod'!s
rangeIl761l1l0(8) -1l76777(8).

The el"tende'd opcodespace is divided into 64groupsof8 instructions
each. Grc.ups are treated as integral entities. A group is declared
"closed- when all 8 instructions in it have been defined or when no
further instructlons are ad'flissible into it. Otherwise a group is
considered ·open~ and future instructions may be added ir.to it. The
opeode groups are specified In Section 2.5. Se .. also Section 1.4.4.

PDPll extended inst-ructions can Le defined (al to oper1'lte on
impl:citly sp .. cified operands andlor (b) to reqUlre explicit operand
specifiers in the Instruction stream. Explicit operand specifiers may
use either (i) a general operand-specifier format or (ii) an
opeode-specific operand-speCIfier format.

If an extended Instruction uses on Iv implicit operands, only the
opeode will appea-r in the instruction-stream (-- see Section 2.7).

If an extended instructlon uSeS explicit operands, the opeade word is
followed In the instru"t.i:on str"am by as many ope-rand specifiers and
operands f.S the speclflcation at the instruction requires. AS in
traditlonal PDPll instructions, expliCIt ",eneral oper"nd specifiers
using mode'S 6 or 7 or using R7 in modes 2 or] will also requlr<>
"ddltlonal words il' the instruction stream (-- 2ee Section 2. 7).

Framework for Extending the PDPll Instruction Set
Format of Opcode

Page 2-3

The extended instructir. 'f'Code word i" structured a.; [0110\0>5:

'~roup I instr I

Bits <8:3> contain the group "ode. Bits<2:3>specifytheinstru"tion
within the group.

The extended-instru"tion groups are defined in the following table,
where X represents the set of eight instructions in the group.

il763~X

\l76\llX
\l761!12x COlMlerciai Load 2 Descriptors
37603X C'haracter String Move
i'j761!14x Character String Search
3761!15X Numeric String
076\l6X Commercial Load:; Descriptors

:~~~~; Packed String

07611X
07612X
a7613X Character String Move (in-line)
37614X Character Strinq Search (in-line)
a7615X Numeric String (in-line)
a7616X
a7617X PIOckedString (in-line)
117621lX
1l762lx
117622)[
117623X
117624X
il7625X
117626X
07627X
11763~x
0763lX
"7632)(
a7633X
~7634X

OP""
OP""
closed
Closed
closed
closed
closed

Opo"
opo"

~io~ed
closed

open
closed
OP""
opo"
OP""
opo"
ope"
0",,"
opo"
0",,"
open
ope"
ope"
0",,"
open

FE"_awoE"k fOE" btendlnq the PDPll Il'lstE"~tlor. Set
lxtended.-Il1StE"uction Groups

COD! GROllP

1J7635X
1J7636X
il7637X
il7648X
il7641X
iJ7642X
il7643X
il7644X
1J7645X
1J7646X
1J7647X
il765.X
il765lX
117652X
17653X
~7654X
il7655X
il7656X
il76S7X
il7661X PE"ocessoE"-Specific til
1766lX PE"ocessor-8pecific tl
il7662X PE"ocess<'E"-Specific t2
117663X PE"OCOssoE"-Speciflc.3
il7664X PE"ocessoE"-Specific 14
87665X PE"ocessoE"-Specific.5
il7666X ProcessoE"-Specific."
87667X Processor-Specific 17
il7671JX CSS/CUst .. eE" II
il7671X CSS/CUst.aller tl
117672X CSS/CUstomer f2
il7613.< CSS/CUstalleE" 13
il7674X CSS/CUStomer,4
.7675X CSS/CustOlller IS
117676X CSS/CUstomer t6
.7677X CSS/CUstollleE" 17

Page 2-4

open

'PO'
'PO'
'PO'
,pe'
'PO' ,pe.
'PO'
'PO'
'PO'
'PO' ,pe.
'PO'
'PO'
'PO'
'PO'
'PO'
'PO' ,pe.
,pe.
'PO' ,pe.
'PO' 'PO'
'PO'
'PO'
'pen
'PO'
'PO'
'PO' 'PO' ,pen
'pen
'PO'
'PO'

The extended instr~tion qE"oups h11 into thE"ee major cateqories:

1. The qroups B76111ilX - 117657X are for instructions which will be
of general use across the ranqe ~f PDPll processors. The
opeodes 11'1 this ranqe will be characterl%ed as (a) uniquely
and ll1Qutably defined and (b) reaSOl'lable for implanentlltion on
all pE"ocassor lIIOdels of t'le PDPll hmUy.

Ft".-ewt>t"K for Extending the PDPll Instruction Set
Extended Instruction Cateqol:"ies

Paqe2-S

2. The groups "7660;'; - 1l7667X are for instructions .. hich .. ill be
"sed only on specific processors of the PDPll family. 'I1l.ese
too will be uniquely and i"""utably defined, but each o\X'ode
will be restrictively assigned to a specific processor model
and may net te implemented en other precessers.

3. The groups 07670X - 07677X .. ill neither be u!liquely nof
illllllutably dehned but .. ill be left available for free and
indiscriminate customer usage.

Operands for extended instructions may be implicitly or explicitly
specified. Explicit operands are specified, either in e general or in
an opcode spectfic manner, throlXlh information expressed directly in
the instruction stream. R7 is conceptually incremented by tW<l as each
word which contains an operand-specifier or operand in the instruction
stream is fetched (-- see Section 2.7.J.4).

Implicitly specified operands do not appear in the instruction stream.
If an instruction uttlizes an implictly specified operand. the
definition of that lnstruction .. ill specify the exact location and
format of such an operand.

2.7.1 Implicit Operands

Implicitly spedfiecl operands may be defined to be located:

1. inthegeneral-purp:>se registers,

2. in defined machine registers,

on the R6 stack,

4. in defined locat.ons in the virtual address space, of

S. in defined locations in the physical address space.

2.7.2 Explicit Opcode--Specific Operands

The definition of an instruction may specify t:lat operands illlllledi"tely
follow it in the instruction stream. The format and interpretation of
such operands can be specified in an opcode specific manner and will
So be defined in the description of the instruction.

~D~DDmD··

Framework for Extending the PDPll Instruction Set
Oparands for Extended Instructions

2.1.3 Explicit General Operands

Fage2-1i

2.7.3.1 Number and Types of General Operand Format." - When an
instruction utilizes expliCit ge"eral operand specifiers, the operand
specifiers shall immediately follow the extended opcode In the
instt"uction stream. As many op:rand specifiers as the instrucdon
requires follow in consecutive order.

Ins:tructions which utilize a single general op:rand will use the
sinqle-operand-specifi .. r format (-- see Section 2.7.3.2).
Instructions which require two consecutive explicit oper~nds will uSe
the double-operand-specifier format (-- See Section 2.7.3.3).
Instructions which use more than two consecutive explicit op:rands
will specify the operands in a succession of double-operand
specifiers, and the last op:rand, when there are an odd nwnber of
operands, will be specified in the single-operand format.

2.7.3.2 Format of Single-Operand Specifiers - The single-operand
specifier consists of a-.rord in the followingfonnat,

I mcd<>-reg I

Bits <15,6> must be II. Else a trap throlJ'lh vector 4(8) (invalid
instru.:tion specifier) will be taken.

Bits <5,11> sp:cify the operand in the traditional PDPll mode-register
format.

2.7.3.3 Format of Double-Operand Specifiers - The double-operand
specifier consists of a word in the following fomat,

I mode-reg I mode-reg I

Bits <15,12> lIIust be il. Else a trap through vector 4(8) (invalid
instruction specifier) will be taken.

Frallework for btending the PDPll Instruction Set
Operands for Extended Instructions

Page 2-7

Bits <11:6> specify the first of the two operar:ds, .,nd bits <S,IJ)
specify the second. Each operand is specified. in the traditional
PDPll mode-register fonnat.

2.7.3.4 Additiomll Instruction Stream Operand Words - For as mllny
qaneral operand. specifiers as utilize mode 6 or 7 {with any register}
or as utilize DOdes 2 or 3 with register 7, additional operand words
... re required in the instruction s'.realll. These .!tdditional operand
words immediately fOlloW the operand-specifier W<:Ird which calls for
them.

Thus, for example, a hypothetical instruction,

ZAP ,A, (RIJ+, BIR4), C, D

requiring explicit general operands would appear in the instruction
stream "'s the following eiqht '-Ords:

opeode zzz for ZAP il76zzz
specifiers for operands I '" 2 iliI272!
value of literal A
specifiers for opE-rands 3 '" 4 l!lil6467
value of index B bbbbbb
displacement off PC for address of C ecceec
specifier for operand 5 !!I!Hilil1i7
displacement off PC for .!Iddress of D dddddd

2.8.1 Reserved-lnstruct~on Traps - Vector Hl(8)

When an instruction is fetched which has a reserved or lin
unlmplemen::ed opeode, the processor shall trap through vector HI (8).
The proqram counter IPCI contents >lhich IiIre stored. on the kernel stack
shall be the address of the word illllllediately following the trapped
opeo"e word (i.e. old PC + 2), the processor status IPS} contents
which are stored on the kernel stack shall contain the conL'ition codes
>lhich represent the machine state illll1ediately before the instruction
WIiIS fetched. If the trap occurs in other than kernel mode, that
mode's R6 is unchanged; if the trap oecurs >lhile executing in kernel
mode, the kernel lIIOde R6 will be 4 lo_r than its prevlous value. A1l
other processor state (1.e. Ril through RS of the selected general
register Set and memory) shall be exactl!' the same as it was when the
trapped opeode .. as fetched.

Framework for Extending the POPll Instruction Set
Traps

Page 2-8

On a multi-mode machine, some instructions may only be exe<;uted in
kernel mode. If an attempt is made to execu":;e them in a less
privileged mooe, a trap through vsctor 10 (8) (reserved instruction) is
to be taken. The processor "tate is preserved as stated above.

2.8.2 Trace Traps - Vector H{B)

T-bit traps are ellgible for servicing only between instructlons.
Suspendable instructions as described in Section 2.9 will neither
interfere with the servicing of T-bit traps nor stimulate T-bit traps
during their execution.

2.8.3 FatiOl Traps -- Vector 4(8)

Fatal conditions encountered in attemptln,) to execute an Instruction
shall result, unless otherWlse specified, in a trap throug~ vector
4(8). When fatal traps occur, the processor state may not be the same
as it WaS when the instruction was fe"ched, and the PC-address Which
is stored on the stack has no predictable relation to the ~ddress of
the opccde wvrd of the aborted instruction.

i':vents which result in a trap through vector 4(8) w111
the CPU enor register (if implanented) to indicate
which caused the trap. The CPU error register bits

illegal interrupt address accesS
USC parity errOr
red zone stack limit abort
yellow zone stack limit trap
bus time-out

:r:~~~;::t e~~~~ry
illegal halt or mlcro break
invalid instructicnspecifier

Odd address error checking should be enabled to detect errors whicfo
may occur from the intermediate state of suspend able instructions.

Stack 11!'l1 t vlolations will refer to the ~ur~hest extent of the StilCK
(or temporary diltil' curing instruction execution. If the stack
exten<l,> in'.o the YELLO;; zone durin<J kernel mode execution, an internal
interrupt request is <Jenerated. This will be handled in a similar way
as externally generated interr'-1pt requests. If the stack extends into
the RED zone during kernel mode executlon, the instruction is ilborted,
R6 is set to a value of 4, and a trap t~rough vector 4 (8) is taken.
Note that RED zone aborts superceed YELLOW zone traps.

Fr_rk for btandlng the PDPll Instrl.lO:tion Set
Traps

2.8.4 Ploatinq Point Traps - Vector 2 (8)

p;,qe 2-9

If a floating point processor is not present, all instructions in the
floating point opcode spa<:a (l7XXXX (81) trap as reserved instrl.lO:tions
through vector 1111(111). If a floating point processor is present,
illegal instructions in the floating point opcode space (171101J6(8I,
1711111111181 and 17111113(8)-171111!l77{8» asynchronously trap through vector
244(8). Raf'Jr to the description of the floating point processor in
the PDPll Processor Handbook for additional information.

2.8.5 Other Traditional Traps

Other cases of traps (manory parit.y errors, memory mana9ement aborts,
etcl are to be handled in the traditional POPll style (- see Section
2.111).

2.8.6 Traps Unique to Extended InstrlJCtions

Traps required by extended instructions (e_g_ invalid pointer, data
exception, etc.) must not conflict with existing trap assigl1lDeftts and
must be explicitly specified. in the deUnition of the instruction in
Chapter 5.

2.9 SUSPEHDlUlLE INSTRUCTIONS

l"he intent of defining instruction suspendability Is to establish a
means for providing raasonable interr<lpt latency and does not presume
to encIow extended instruction.'J with an ability to recover from trap
conditions frOlll. which sequences of basic instructions cannot recover.

Suspension-events refer prilltarUy to events which occur asynchronously
tc. the instruction's executir.ml these are specifically the interrupts
generated by I/O peripheral devices, power-fail traps, and floating
point processor exceptions. Secondarily, suspension-events can rafer
also to those synchronous trap events which occur only for infonnation
notiUcation purposes and do not imply that the integrity of the
instruction's execution is in jeopardy. Such suspt'!nsion events
inclUCIe YELLQri' zone traps.

mamanmD ~::::::." ""Hm

FE"iDll!WOE"k fOE" Extending the PDPll InstE"uetion Set
Suspend~le InstE"uctions

2.9.1 Suspend~ility Classifieations

Page 2-1'

Each elI:tended instE"l1etion is classified eitheE" as "non-suspendable" or
as "potentially suspend able" •

As explained below, two implementat\on choiees aE"e possible for
no.-;-suspendable in$tructions, and thE"ee aE"e possible fOE" po,entilllly
suspendable instE"uctions. 'l1Ie following diaqE"alII can serve as a quide
to subsequent poE"tion~ of this section.

aE"chitec:ture imple.entation

A) IIIon-5usper.dable 1) non-inteE"E"uptible
2) E"estartable

BJ Potentially Suspendable 1) non-interruptible
2) E"estaE"table
3) suspendable

2.9.2 I!Ion-Suspendable Instructions

A "non-suspenda!)le" instE"uction has no aE"ehitectuE"al mechaniSPI to
allow it to be .suspended wr.ile a .suspension-event is serviced and chen
sabsequently to be res\Dlled.

A "non-suspendable" instE"uction may be h,plemented either as
"non-inteE"E"uptible" OE" as "re.startable".

If an instE"uction is implemented as "non-interruptible", then once its
execution has cOllllleneed, the proee.ssor will defer seE"viee of all
.suspension-events until after the eompletion of the instruction.

If an instE"uetion is implemented as "E"estartable", then the
instruetion may be aborted to allow the proeessoE" to .seE"vie'!
·~uspension-events. The pE"ogranmer visible st.ate will be restoE"ed to
~hat whieh existed illlllediately pE"iOE" to the instruction exeeution.
lJpon the proeessor's E"eturn from servieing the suspension-event, the
instE"lJetion will be staE"ted afresh.

2.9.3 Potentially SUspendable Instructions

·Potentially suspendable" instE"uctions have a defined arehiteetuE"al
meehanism, viz. PS<8> as descE"ibed below, by which they can be
suspended in mid-exeeution to allow the proeessoE" t.o seE"viee
swopension-events and then subsequently to be nSlDed frOOl the point
where they h.cl. been suspended.

Fr;ulework for E'(tending the POPll Instruction Set
Suspendable Instructions

Pa'le2-11

A "poLentially suspendable" instruction may be implemented either as
"non-interruptible" (-- See SectlOn 2.9.2), as "restattablett (-- see
Sectioi'1 2.9.2) or as nsuspendabl~" (-- see below).

The presence of suspension events mLI cause certain extended
instructions to be suspended on some processors. If the instruction
is suspended, PS<8> will be set, R7 will be hacked up to addr .. "", ehe
op:::ode word, and the suspension event trap will be taken. Y,hen the
instruction is reslDDed, PS<iI> indicates that execution of the
instruction has previously begWl..

In order to make these instructions sl.spendable on all processors, the
instruction state is p"rt of t"e uSer state which is saved by
interrupt handling routines. Thi:> includes the general registers,
condition codes and memory. This state is processor dependent when
suspended. Software should not attempt to interpret or modify this
state; it must only be saved and restored. Up to 64(1111) words of
internal instruction state may also have been pushed onto the stack
(-- see Section 2.1111). This state must not be modified by software.
The instrucdon will remove this state from the stack when it is
re,i;uned.

If PS<8> is set prior to executing a "potentially suspendable"
instruction, the effect o~ the instru.:tion is unpred ictable (-- see
Section2.11l.

At the nonnal completion of an ·potentially sU5pendable" instruction,
PS<8> will be clea.-ed.

In order to promote unifonn nomenclature, the name of the bit PS<8>
will be "Instruction Suspension" with the corresponding mnemonic "IS".

2.9.4 Inst..ructionSu,,-oensio{l

All suspendable instructions will use PS<8> to indicate instruction
suspension. \OIhen a potentially suspendable instruction is executed,
PS<8> cleared means that the instruction is being cOlMlenced; set means
that the instruction is being resumed. It will be cle"red upon
successful completivn of any suspended instruction. PS<S> will be
cleared when:

1. A suspended instruction successfully completes.

2. Processo. power-up.

3. New PS is fetched from vector location with PS<8} clear.

5. PS<9> explicitly cleared by an instruction.

Fr_rk for Extending tbe PDPll Instruction Set
Suspendeble Instructions

PiJge 2-12

1. Potentidly suspendable instruction is interrupted and wishes
to be suspendp1.

2. New PS is fetcbed from vector location with PS<8> set.

PS<8> is el(plic~tly set by an instruction.

The setting of this bit will have no affect on instructions which are
not potentially suspendo!lblel such instructions will not implicitly
modify this bit.

i'lhen an instruction is suspended the following state may contain
infoC1llat.ion vital to the reslllllption of the instruction. This
information must be preserved, and restored prior t.o restarting the
suspanded instruction. This information is processor llIodel dependent;
it lIIay vary from one execution of th<= instruction to another.

1. General reqisters R, through R5.

2. Condition code bits (PS<3:'».

3. Up to 64 (UI) ;,rords 0:'"1 the stack of the context in which the
suspended instruction was executing.

Any destinations used by the instruction.

Extended instructions may use the R6 stack for te!Dporary ~scratch~
state storage.

The maxilll" number of additional werds which an extended instruction
Dlay claim on the R6 stacie is 64(111). 'n\e reilSOn for imposing a limit
1s to ensure that system software can aoequately provide for
worst-case stack allocation requirenents. In addition to the above
restrict.ion, tile normal POPll staCk-limit ml'!ChaniSlll remains in effect
for extended instructions just as it does for any other instruction.

Fra.aework for Extending the PDPll Instruction Set
Stillck Utilization

Paqe2-1J

If iIIn extended instruction is interrupted. R6 lIIust have been updated
to encompass any additional stack storage still required for
completion of the instruction.

All extended instructions will support dyanlllic stack allocation
facilities used by SOllIe software SYStDDS. This means that memory
manageDIent traps which result frolll over-extending the stack are" must
be survivable. If insufficient stack space exists. th .. instruction
must tenainate by a memory management abort in such a way that if
iIiIaJltionilill stack space were allocated. t~e instruction could be
successfully restarted.

2.U IDIPREDICTASt.E CONDITIONS

·Unpredietable" means that the outcome is indeterminate and
non-repeatable. "Either the results of an instruction or the effect of
an instruction can be unpredictable. When the results of an
instruction are unpredictable, the condition eodes and destination
operands (but not their descriptors) will contain unpredictable
values; destinations lIIay not even contain valid results. When the
effect of an instruction is unpredictable. the entire usar or process
state, and not only the portion typically used by the instruction will
be unpredictable. In a machine with multiple modes and address
spaces, an unpredictable operation in a less pdvileged mode will not
affect the ~tililte of a lI\Ore privileged mode, nor will it result in
iIIccesses to memory from user mode which are outside the mapped limits
of the use ... ·s program..

Note that architectural constraints exist on unpredictable effects.
In particular, an unpredictable effect which manifests itself as a
trap lIIust meet all the requirements for the particular trap (-- see
Section 2.8).

Implementors are encouraged to select the manifestations of
unpredictable results and effects to be such that their occurrence is
v~sible to $Oftwillre at the earliest possible time.

Fields and encodings which are available to an instruction, but are
not used, are reserved by the architecture. 'I1lis will permit future
definition of thea .. not to conflict with existing software.

Framework tor Extendi....." the POii'll Instruetion Set
Reservation of unused Fields and £ncodinqs

Page 2-t4

My unused field (single bit ot contiquous gtOUp of bits) must be zeto
if it is tesetved by the architecture. Any non-zero value in the
field will cause the effect of such an instruction to be
unpredictable.

Any unused encodinq (field of n bits where less than 2~n encodings are
defined) is reserved by the architecture. Use of ~uch encoclings will
cause the effect of such <In instruction to be unpredictable.

Machine ',mplementations shiJll ensure th<Jt, under !Ill initiiJl settings
of reqisters and memory, extended instrl.l<:'t';ons shall not violate any
bound implicit in multiproqrammed operation. Specifically, the
following arg to be avoided:

1. A less-privileged program escaping into a higher-privileged
IIIOde.

2. A program escaping beyond its address-.appinq limits.

3. A non-interrupt!lble or non-terminating sequence.

4. Excessive interrupt latency.

EXtended-Instruction Data Types

Extended-Instruction Dillta Types
Character Data Types

Page 3-2

There a.e three different character data types. The 'character' is a
Single byte, and is an abbreviated string of length one. The
'character string' is a contiguous gruup of bytes in memory.
th1.rd is a 'character set'.

The character isan8bltbvte:

A'
The character is used as an operand by CISll instruc~ions. Wben it
appears in a genera! register, the character is in the lo orderhalf;
the ~igh order half of the register must b:o zero. When it appears in
the instruction-stream, l..he character is l.n the 10 order half of a
word; the high order half of the word must be zero. If the high order
half cf a word which contains a character is non-zero, the effect of
the instruction which uses it will be unpredictable.

3.1.2 Character String

A character string is a contiguous sequence of bytes in memory that
begins and ends on a byte boundary. It is addressed by it~ most
significant character (lowest address). The highest address loS the
least significant character. It is specifiedbya t""" """rddescriptor
with the attributes of length and lowest address. The length is an
unsigned binary integer which represents the no.mber of characters in
the string and ma~ range from II to fi5,S35. A character stdng with
zero length is said to be vacant; its address is ignored. A character
string with non-zero length is said to be occupied.

Tha character string descriptor is used as an operand by CISll
instrllctions. It appears in t""" consecutive general registers,or in
two consecutIve words in memory pointed to by a word in the
lnstruction stream. The following figure shows the descriptor for a
character strIng of lengt"- 'n' starting at address 'A' in memory,

ptr+2 I

ElCtended-InstrlJCtion oata Types
Character Data Types

The following fiqure shows the character string in memo~y:

A IlIIost siq chari

A+l I

PageJ-J

A 'character set' is a subset of ,:he 255 possible characters that can
be e!'lcoded in a byte. It is specified by a descriptor which consists
of the address of a 256 byte table and ,m 8 bit maSk. The address is
of the zeroeth byte in the table. Each byte in the table specifies up

~ar~~'t~~ f~t~o~~~;r.cha~~t'::;s,<s~'re~~s °!tti~i~':.mbti~"'atfo°r!":e~r~~!~
orthogonal subsets comprise thlJ! IJ!ntire character set. 1.1 effect, each
bit in the .,ask corresponds to one of eiqht orthogonal subsets that

~!recb;eden;~~~t~y i~~~ £~~leehar:~e~a~~t~pec*l~afhie~i':,ul~ ~~
upper case, lower case, non-zero digits, end of line. etc.

Operationally, a character (char) is considered to be in the character
set if the evaluati.:m of (M[table.adr+charl AND mask) is not equal to
uro. '!he charact:er is not in the charaet .. r set if the evaluetion is
zero. E:a.ch byte in the table indicates Which combination of up to
eight orthogonal character subsets (i.e. one for each of the eight
bit ve.;:tors 101HI01!1111 (2). 011111111010 (2), 1I1!I1I9010i1(2J, 1J00!'111J00 (2),
0I1i1l~~IHI (2), 1111111100(2), 0111008111(2) and llllillilll00 (2)) the
corresp;.ndinq character is a lIIember. The mask specifies which union
of the eight orthogonal character subsets comprise the totl!ll chClracter
set. For e>'.ample, if the eight bit vector lIillIllIllIl(2) appearing in
the table corresponds to the character subset of all upper case
alphabetic charl!lcters, ""Il'I0019(2) appearing in the table corresponds
to the character subsst of all lower Cl!lse alphabetic Characters, and
11110!1l1l11l1(2) appearing in the tacle corresponds to the decimal digits,
then ulling the lIIask 011'101111111(2) with this table specifies the

~~~~~Cl\e{ (2 iet spOefci :}!s ai~:b';;11aCra~~:~ac;.';,rtS, ° rdal ri~Ph~II.,':.nn:~f~ 
charllc~ers. 



Extended-tnstruction oata TYPes 
Character oata Types 

Page 3-4 

The character set descriptor is used as an operand by CtSl1 
instruction'l. It appears in two consecutive general registers, or in 
two c,;)nsecutive words in memory pointed to by II word in the 
instruction stream. If the high order half of tfJe first descriptor 
word is non-zero. the effect of an instruction which uses a character 
set will be unpredictable. 

ptr "1-----;-----, -------------1 

Vtt+2 I 

Two classes of decimal string data types -- nlDetic strings and pacl:. .. d 
strings -- are defined. 80th have similar arithmetic and oper"tional 
properties; they primarily differ in the representation of signs and 
the placement of digits in memory. 

The n!mleric string data types are signed zoned, unsigned zoned, 
trailing overpunch, leading overpunch, trailinq separate and leading 
separate. The packed string data types are signed packed and unsigned 
packed. Instructions which operate on nUllleric strings permit each 

~~~~c i~;~;~tfrn:a;:rmlOt ~~c~era~:~litl~rn;ciof~e:a'ndS~~i1~r;~Para~:~ 
specified. Thus, within each of the two classes of decimal strings,
the operands of an inst.ructions may be of any data type within the
appropriate class.

3.2.1 ColllllOn Properties

Decimal strings exist in memory as contiguous bytes which begin and

j'f1i6'l ~i~li~ ~n~~rt~ier ~~n_r .. e::~f~~~en':rbe~~s;1~ies_t';!1u~f f~r~~
Sign-magnitude strings (StGNED) may be positive or negative;
abSOlute-value strings (UNSIGNED) represent the absolute value of the

d~~;';~~adi~%~~l1,;:~ri~t~'i; ":e"io~intth"iere::;~~g~f~~c:~t i~f~t~~
they may be conceptually extended with zero digits beyond the most
significant digit.

A 4-bit binary coded decimal representation is used for most digits in
decimal strinqs. A four bit half byte is called a 'nibble' and may be

~:~1m~~ ~~~~~~n ~~inf~rl)O~i~~~~l~n s:t..;h t~;P1'i~~~~s nl'b11~a~~t~~t~
associated with each decimal digit:

Extended-Instruct.ion Data Types
Decimal Suing Data 'Ijp8S

digit nibble

00iH!
11001

::i~
B1Bil
BUn
Bllil
0111
1000
lllU

Page 3-5

Each decimal stE"ing dlltll type may have several representations. These
representations perllit certain latitude when accepting source
operands. Decimal String data types have a PREFERRED representllticn
which is a valid source representlltion lind which is used to construct
the destination stting. Additional ALTERNATE representations are
provided for sOllIe decil1lilll C:ata types when accepting source operands.

Decimal strings used as source operands will not be cheeked ~or
validity. Instructions will produce upredictable results (__ ~,ee

section 2.11) if a decimal stE"ing: used as a source operllnd (:ontllins ,1n
invlliid digit encoding, invalid sign designator, or in the case of
overpunched numbers, an invalid sign/digit encoding.

When used as a source, decimal strings with zero magnitude ate unigue,
regardless of sign. Thus, both positive and negative zero have
identical interpretations.

;~~~~;ua;;l' ~heeC;m;\o~~ri~e in3~r~!fonsst/i~st r~;i;~;g;tfb'~ ~~rr~~
correct result in the destination string. A result of zero magnitude
is considered to be p:!sitively signed. If the destination string can
contain IIIOre digits than are significant in the result, the excess
most significant destination string digits have zero digits stored in
th""', If the destination string clln not contain 1111 significllnt

~~'li;~O~~lt~he r~~~~~;~:n ~'i'isidd'l~;t:ij~~f~:;i;v:::IU;:. d~~~S t~~~
neqativezero is stored in the destination string asa side effect of
decimal over flo .. where the sign of the result is negative and the
destination is not large enough to contain any non-zero digits of the
result.

If the destination string has zero length, no result digits will be
stored. 'l'he sign of the result will be sto!ed in separate and packed
strings, but not in zoned and overpunched strings. Decimal overflow
will imlicate a non-zero result.

Extended-Instruction Data Types
Oeci.d String DlIta 'l}Ipes

3.2.2 Deei_l String Descriptors

Paqe3-6

Oecimal strings are represented by a two word descri!'tor. The

~~sc:~J'et~:s ci~tati!S ~~~s~~:!f~~ ~~;'!.r~lPe;eqar~t:~~r(~~1;t;~e f~~~i~f
instructions), or in two consecutive words in memory pointed to by a
word in the instruction stream (in-line form of instructions). The
unused bits are reserv~ by the arct •. tecture and must be 9. "!.'he
effect of an instruction USlng a descl.iptor will be unpredictable if
any non-zero reserv,;;:! fields in the dF.scriptor contain non-zero values
or i! reserved data type encoding is used (-- see sections 2.11 and
2.12). "!.'he design of the nIDerie and packed string descriptors are
identical:

length <4:9> - Number of digits speeified as an unSigned binary
integet;.

data type <14:12> - Specifies which decimal data type representation
is used.

add.ess <15:9> - speeifies the address of the byte which contains
the most significant digit of the deCimal string.

The foll"wtng figure shows the descriptor for a decimal string of data
type 'T' whose length is 'L' digits and whose most significant digit
is at addn'ss 'A':

ptr 101 T 1 I 1 -----------------------------
ptr+21

The encodings (in binary1 for the NUMSRIC string data type field .. re:

!Hl9 signed zoned

:~i ~~;!1i~ ~~~~unch
HI leading overpunch
HI9 trailing separate
Ull leading separah,
110 --reservedbythearchitecture
111 -- reserved by the architer:ture

Extended-Instruction Data Types
Decillial String Data Types

Page 3-7

The encodings (in binary) for the PACKED string data type field are:

-- reserved by the architecture
11111 - reserved by the architecture
11111 - reserved by the architecture
III -- reserved by the architecture
UIII - reserved bY the archite.::ture
1111 - reserved by the architecture
118 signed packed
111 unsigned packed

3.2.3 Packed Strings

Signed packed Strings -

Th~ preferred FOsitive sign designator is 111111 (2) i alternate
positive sign designators are 111111(2), 11111(2) and 1111(2). 'l'he
preferred negative sign desigMtor is 11111(2)i the alternate
neqative sign designator is 11111(2). Sour<:e strings will
properly accept both the preferred and alternate designators1
destination strings .. UI be stored with the preferred. designator.

Unsigned Packed Strings -

Sign Preferred Alternate
Nibble Designator DeSignators

positive 111111(2) 11!l11!l(2111U(211111(2)
negative 11111(2) 11!l1l\21
unsigned 1111(2)

For other them the least significant byte, bytes contain two
consecutive digits -- the one of lower significance in bits <3:8> and
the one of higher significance in bits <7:4>. For III.Wllbers whose
length 15 odd, the IIlOst significant digit is in bits <7,4> of the
lo_st addressed byte. N!ZIbers with an even length have their most
significant digit in bits <3:11> of the lo_at addressed by tel bits
<7,4> of this byte must be zero for source strings, and are cleared to
1101111(2) for destination strinqs. HUnbers with a lel19th of one occupy
ill single byte and contain their digit in bits <7:4>. The nlDlber of
bytes which represent a packed string is [length/2]+1 (integer
division where the fractional portion of the quotient is discarded).

Bl:tended-Instruction Data Types
Deci .. al Strill9 Data Types

Page 3-9

1toe following i.s a packed string with an odd number of digits:

A I mad I I

1 1 1

A+[length121 1 lsd I sign I --------
'l'he following is a packed string with an even nUltlber of digits:

A I 9 I iliad I

A+l I I I

A+[length/21 I lsd I .sign 1

A zero length pocked string occupies a .single byte of storagsl bits
<7:4> of this byte must be 1Oero for source strings, and are cleared to
OI!H1I0(2) for destination strings. Bits <3:1f> must be a valid sign for
source stdngs, and are used to store the sign of the result for
destination strinqs. \llhen used as a aource, zero length strings
represent operands with zero magnitude. When used as a destination,
they can only reflect a result of zero magnitude without indicating
overflow. 1toe following is a zero length packed string:

A I " I .sign I

A valid packed string is characterized by:

1. A length from II to 31(1C1) digits.

EXtended-Instruction Data Types
Decimal String Data Types

Page 3-9

2. Every digit nibble is i<'l the range 111100(2) to 10111(2).

3. For even length sources, bits <7:4> of the lowest addressed
byte are 0000(2).

4. Signed Packed Strings - sign nibble is either 1013(2),
1011(2),11110(2),1101(2),1110(2) orl11l(2}.

S. Unsigned Packed Strings - sign nibble is 1111 (2) •

3.2.4 Zoned Strings

<7:4» and the low order nibble (bits <3:1I>). The low order nibble
contains the v.lIlue of the corresponding deCimal di9it.

Signed Zoned Strings -

~;~i~~~n~S~t:o~~~iar~~i~~ ;~~n h~1h t6~d~~~~l~~fh'i~~ ~~~;~
nit:bles of all other bytes are ignored. Destination strings are
stored wi th the sign in the hi9h order nibble of the least

~~6~~f~~~;. bYii{l (~rr i~"f~J2~i':~ o~~~r h~I~bloerd~rrr~;~~s o~ ~li;
ASCII encodin1 for numeric digits. The positive sign desi9nator
is 01111(2); the ne;lative s19n designator is 11111 (21.

Unsigned Zoned Strings-

When used as a source string. the high orele-r nibbles of all bytes
are ignored. Destination strings are stored WiLh IIlnl {21 in the
high order nibble of all bytes.

'!he meber of bytes needed to contain a ... ned string is identical to
the length of tne decimal nUlllber.

A I I mad I

I I I

I sign I lad I 'sign' is present only
------------ signed :aonedstrings

Extended-Instruction oat" Types
D&ci.al String Data Types

Page)-11J

A ~ero length zoned string does not occupy memory~ the address pottion
of its descriptot is ignored. When used as a soutce, ~ero length
strings provide oper"ods with ~ero magnitude~ when used "s "
destination, they can only accurately refleet a result of zero
magnitude (the sign of the opetation is lost). An attempt to store a
non-zeto result. will be indicated by setting overflow.

A valid zoned string is characterb;ed by:

1. A lell9th fIOIII II to 31(111) digits.

2. The low order nibble of aach byte is in the Illnge 11111111 (2) to
111111(2).

3. Signed Zoned Stlings _ The hiqh oldet nibble of
significant byte is either 111111(2) or IIllI(2).

overpunch str inqs

Overpunch strings replesent one decimal digit in each byte. Trailing
overpunch strings eombine the encoding of the sign and the le"st
significant digit~ leading overpunch strings combine the encoding of
the sign and the most significant digit. Bytes other than the byte in
Which the sign is encoded are divided into two portions -- the high
order nibble (bits <7:4» and the low ordet nibble (bits <3:11». The
low order nibble contains the value of the corresponding decimal
digit. When used as a source string, the high order nibble of all
bytes Which do not contain the sign are ignored. Destination strings
ate stored with 11011(2) in the high otdet nibble of all bytes which do
not contain the sign. "011 (2) in the high order nibble corresponds to
the ASCll encoding fOI nlDetic digits.

The following table shows the sign of the decimal stting and the value
of the digit which is encoded in the sign byte. Source strings will
properly accept both the preferred and alternate designators~
destination strings will store the preferred designator. The
pIfferred designators correspond to the ASCII graphics 'A' to 'R', '{'
and '}'. The alternate designators correspond to the ASCII graphics
'", to '9', '[','''', '1','1' and ':'.

£ll;tended-Instruction Data Types
Decimal String Data Types

OVERPUNCH SIGN/DIGIT 8Y'l'E:

Overpunch
Sign/Digit Designator

Page 3-11

Designators

+,
H .,

IH11Ul11(2}
01000001(2)
010000111(2)
01000011(2)
0100010£'(2)
01000111(2)
1'1101'11'1111'1(2)
1'111'11'11'1111(2)
01001000(2)
011101001(2)
I'IlllllI'11{2)
011'101010(2)
010011'111(2)
11101'1111l!!l{2)
01001101{2)
'11100111!!l{2)
!!l11101111{2)
0lele000{2)
0l0l'll901{2)
!!llele910{2)

110110000(2). I'IlIH1011(2). III1UU11(2)

..
+5
+6

+,
+9 -, -, -,
-3 -.
-5

:~ -,
-9

::ti::~~gl
00110011(2)
0011'11l011(2)
(/J01101111(2)
001101le(2)
0'11ll11111(2)
011111000(2)
001110111(2)
111111111'11(2), 11010i1001(2J. 001110111(2}

The nUllber of bytes needed to contain an overpunch string is identical
to the lengtn of the decilllal nunber.

The following is a trailing overpunch string:

A \ I msd I

I I I

I signandlsdl

Extended-!nstruction Oata TypeS
Oeci.aal String Data ~.pe$

The following is a leading overpunch string:

A : Sign and msd)

I I ------------

A-tn-l)) lsd)

Page 3-12

A zero length overpunch string does not occupy memory~ the address
p:>rtion of its descripcor is ignored. When used as a source, zero
length strings provide operands with zero magnitw:le~ when used as a
destination, they can only accurately refle<::t a result of %ero
magnitude (the sign of the operation is lost). An attempt to store a
non-zero result will be indicated by .:etting overflow.

A va11d over punch string is characterized by:

1. A length frolll. II to 3lUII) digits.

2. The low order nibble of each digit byte is in the range
11111111(2) to H~lIl(2}.

3. The encoded sign/digit byte contains values from the a;,ove
table of preferred and alternate overpunch sign/digit values.

3.2.6 Separate Strings

Separate strings tepresent one decimal digit in each byte. Trailing
separate strings encode the sign in a byte iJlBllediately beyond the
least significant digit; leading separate strings encode the sign in a
byte immediately beyond the most significant digit. Bytes other than
the byte in wt-ich the sign is encoded are divided into two portions -­
the high order nibble (bits <7:4>) and the low order nibble (bits
O:0>). The low order nibble contains the value cf the corresponding
decimal digit.

Extended-Instrw:tion Data Types
Decimal String Oatil Types

page 3-13

When used as a source stdng the high order nibbles of all digit bytes
are ignored. Destination strings are stored with 1l1l11(2} in the high
order nibble of all digit bytes. 91111(2) in the high order nibble
corresp;lnds to the ASCII encoding for nUlledc diqits. '!he preferred
positive sign desiqnator is III1HlIUI(2) and the alternilte positive
sign designator is 111111111111111 (2). 'l11e negative siqn designator is
11111011111 (2). These designators corresp;lnd to the ASCII encoding for
'+', 'space' and '-'.

Sign Preferred Alterm.te
Byte Designator Designators

p;lsitive Illl1Ullll (2) IIDUlIIIIIIII(2)
negative 1111111101(2)

The nlmlber of bytes needed to cont ... in iI leading or trailing sepilute
string is identical to length+1.

The following is a tuiling sepante string:

A I I IIIsd I ----------

I I I -----

A+n-l I I lsd I

A+n I sign

btended-Instructlon oata Types
Decimal String Data Types

'!he following is a leading separate ~tring:

1 sign 1 -------
All msd 1 -----------

I I I -----------

A+n-l 1 1100 1

paqe]-14

A zer~ length separate string occupies a single byte of memory which
contains the sign. When used as a S<.ource, zero length strings provide
oper"nds with zero maqnitude~ when used as a destination, they can
only reflect a result of zero IIIlOCInitude without indicating overflow~
the sign of the result is stored.

The following is a zero length trailing separate string:

A 1 sign 1

Tbe .following is a zero length leading separate string:

1 sign 1 -----------

.. valid separate string is characterized by:

1. A length frOll 8 to 3l(1I!I) digits.

2. 'l1le low order nibble of each digit byte is in the range
8118"(21 to 1110'1(2).

3. The sign byte is either 8111811111111 (2). 11018UHl (2) or
8111811111(2).

Extended-Instruction Data Types
Long Integer

page 3-15

Long integers are 32 bit binary two's comple"'ent numbers organized ""S
two words in consecutive registers or in memory -- no descriptor is
used. One word contains the high order 15 bits. The siqn is in
bit<lS>1 bit<14> is the most significant. The other:.rd contains th'"
low order 16 bits with bit<ll> the least Significant. The [anqe of
nmtbers that can be represented is -2.147,483,648 to +2,147,483,647.

The register form of decimal convert instructions uSe a restrict,:,d
~~,::~]~f long Integer with the number in the general regi.,-~er pal[

,

Is I high

R3 I I ----------------------------------
The in-line form of decimal convert instructIons roference the long
!~~~:; by a word add res>.. po:'nLr WhlCb is part of the instruction

ptr I

ptr+2 Is I hiSh -----------------------------------
Note that these t""" represent~tions of long integers diffe,. There is
no "ingle representation of 10"" integer iIIIIOng RAE, EIS, FPP and
software. The -register form" was selected to be compatible with EIS;
the -in-line form" was selected to be compatible with current standard
software usage.

Description and Intent of Extended Instructions

Description and Intent of Extended Instructions
Processor Identification Instruction

Page 4-2

The MFP'l' instruction provides software with a means of identifying the
prGCessor model on which it is executing. 1'he instruction returns ...
word In Re whose low order hllif is lin 8 bit processor m"del code and
whose high order haH is an 8 bit processor subcode. 'rhe processor
1II0del code is uniquely assigned for each processor type which
implements the inst.ruction. A. processor type is differentiated by
having its own op·,ion designation (e.g., KDll-x). 11Ie processor
sUbcode m .. y be used in IIny meaningful way by the processor
implementor. Possiblo'l Ilses WDuld be to indicate the micro-code or
module revision, configur.:!tlon options which are present, etc. This
instruction will be incorporllted in the bll$ic instruction set of all
PDPll processors (-- see section 1.4.3). The processor model codes
will be assigned by the PDPll Architecture Group MIInaqer.

The PDPll Commercial Instruction Set (CISll) consists of the following
extended instruetiol'l groups:

07611J2lC COllMllercial Load 2 Descriptors
0761i13X Character String Move
07604X Charllcter String Search
1176i15X NUlleric Sl:ring
iJ7606X Commercilll Lolld 3 Descriptors
1!176i17X Packed String
1!17613X Character String Nove (in-line)
07614X Character String Search (in-line)
~761SX NllIIIeric String (in-line)
117617X Packed. String (in-line)

These include instructions which operate on character strings and on
decimal numbers. Each generic type of instruction is provided in two
forms. The essential difference between the two fonna is the manner
in which oper"nds "re delivered to the instruction. The first form is
the 'register for.' where operands are implicitly obtained from the
gener"l registers. The second fonn is the 'in-11ne' form where
operands or word address pointers to operllnds follow the op<:::xl.e ~,,=rd

in the in<!-truction !Stream. The mnemonic for the in-line fom is the
mnemonic for the register form suffixed with the letter 'I'. The
condition codes are set identically for both forms. The in-line forms
minimize register modificlltion.

In,;tructions are also provided which effie1ently load operands
the general registers.

~DmDDmD ',,:,::::;'" "'" '"

Description and Intent of btended Instructions
c-er<:~lal Instruction Set

4.2.1 Character String Instructions

paqe 4-3

The character string opentions conveniently provide most of the
CQl8lllOn, as _11 as time consuming functions that are encountered in
commercial data and text processing applications.

4.2.1.1 Instructions - Instructions are provided to move and to
search character strinqs:

Character String IIk>ve Instructions

Move (I) move character
MOVRCn) IDOve reverse justified character
MOV'l'C(I) IIIOve ttllnsldted character

Character String Search Instruct.ions

LOCC(I)
SKPC(I)
SCARC(I)
SPAHC(I)
CMPC(I)
MATe (I)

locate character
sklpcharacter
scancharact.er
span charact.er
campare character
match character

4.2.1.1.1 Character String IIk>ve Inst.ruct.ions - The character string
move instructions use charact.er st.ring descriptors as operanda. These
descript.ors specify a so,· ~e and a destination character st.ring. TIll!'
content.s of tlle source a . DOVed to the dest.inat.ion with alignment at
either the most significant chllracter as in MOVC(I) and MOVTC(I), or
the least significant character as in HOVRC(I). If t.he source is
longer than the destination, ch .. racters are truncated from the side
0pp3site that of the alignment.~ if the destinat.ion is longer t.han t.he
BOUrCe, the destination is completed with fill chaucters on the side
opp3site that of the alignment. The Jll.ovrC!Il instructions move a
trans1at.ed source st.:ing t.o a destination st.ring.

~DmDDmD··

Description and Intent of g",tended Instruct10r:S
CommerculInstructionSet

paqe4-4

4.2.1.1.2 Character String Sea~ch Instructions - The charac .e~ string
search instructions use a cha~acter string .oeser ,.,tor as one operand.
The other ope~and is either a character, i' character str ir.g
deSC~lptor, or a characte~ set d",scrirtor. "nlese instructions are
l.Ised to examine the source string tc find the presence or absence ~f
characters. orre source string is processed fr= most significant to
leastsiqnific3ntcharacter.

Conceptually, these instructions may be divided into 3 classes,

1. Character String Searches - CMPC(I) compares two character
strings. The condition codes are set accordinq to the
comparison :>f the correspondi'!q most significant unequal
characters. "IATe(l) finds an obJect string within a source
string. "nlis is the 'lnstring' function that languages and
text processing systems provid.:>.

2. Character Searches - LQCe(I} finds the first ocCurrence of a
given character in a string. SKPC(I) skips tn the first
non-nccurrence of a siven character in a string.

3. Cnarar.ter Set Searches - In these inst~uctions, a string is
examined until a member of a character set is either found as
in SCANC(I) , or not found as in SPANC(I}. This aids the
search for one of seve~al delimi ters such as '/', ',', CR, LF,
FF, etc, or the passing of combinations of characters such as
blanks, tabs, etc. LOCC(I) and SKPC(I] are optimizations at
~~~~~~r~nd SPANC(I) in which the set ~onsists of a single 

4.2.1.2 Condition Codes - The setting of conditien codes reflects the 
result of the ci.aracter string: operations. For character string 
moves, the condition codes indicate whether the source and destination 
striags were of equal lenogth, the source was shorter than the 
destination such th,.t fill characters were used, or the source was 
longer than the destination such that characters were truncat~. "nlis 
is accomplished by setting: the condition codes on the result of 
arithmetically comparing the Initial SourCe and d'.;stination lengths. 
For QoIPC(I) , the con:::lition codes are the result of arithmetically 
comparing the most significant corresponding pair <.>f unequal 
ch,.racteL!'. For the other search instructions, they show whether or 
not the operand strings were completely el<amined. 



Description and Intent of Bxtended Instructions 
Canmercial Instruction set 

Paqe 4-5 

The condition codes for SOllIe character string search instructions may 
be interpreted according to the notion of success or hilure. Success 
!s the aCCOlllplistunent of the instruction's task; failure is the 
inability to accOlllpUsh the task. Sinee the condition codes are set 
based on the results of the instruction, there is an indirect 
correspondence between these settings and success or failure. 'l'his 
correspondence is invarhnt within an instruction, but it is :'lOt the 
sallie for all se,ltch instructions. Therefore, differ"'nt branch 
instructions must be used to test the operation of each instruction. 
They are sUlllllarized In the following t~ble: 

LOCe(I) 
SCAHC(IJ 
CHPC(I) 
MA'1'C{l) 

.. , 
'"' ~ 

Failure 

"0 :: 
"'0 

4.2.1.) Opotrand Delivery - The "register form- of character stdng 
instructions i.alplicitly find operands in the qeneral registers. '!'hese 
operands include character, character string descriptor, eharacter set 
descriptor, and translation table address. If an instruction does not 
use a register, its contents will be undisturbed. RII-RI qenerally 
contain a source chancter string descriptor; R2-R) generally contain 
a second source em.raeter string descriptor, or the destination string 
descriptor. The low order half of R4 is used as an "pUeit 
character. R4-R5 is used to contosin a chosracter set descriptor. RS 
contains the startinq address of a 256 byte table which is used for 
character translatio.1. 

When lIIOYe instructions terllllnate, RIJ conte ins the nlmlber of unmoved 
source charaeters, and RI, R2, and R3 are cleared. For search 
instructions, the reqisters are updated to represent descriptors for 
theresultinqstrings. 

TIle "in-line form" of character string instructions find operands, or 
pointers to operands, in the instrootion stream ilDlll.!diately following 
the opcode word. Operands which appear directly in the instruction 
streillll include characters, and translation table addresses. 
Descriptors are represented in the inst.ruction stream by a single wol"d 
Whose eont.ents are interpreted as a word address pointer to the two 
word descriptor. These descriptors specify eharacter strings and 
character sets. Some instructions return a character string 
descriptor in Ril-RI. 



Description and Intent of Extended Instructions 
Commerci~l Instruction Set 

Page 4-6 

4.2.1.4 Dat~ Overlap - In general, all character string instroctions 
are unaffected by the overlapping of source or destination stdngs. 
The result of the move instructions is equivalent to having read the 
entire source string before storing characters in the destination. If 
the destination string of the JIIOVTC(I) instructions overlaps the 
translation table, the characters stored in the destination string 
will be unpredictable. 

4.2.1.5 Unpredictable Conditions - The effect of character string 
instructions will be unpredictable if: 

1. PS(8) is non-zero when the instruction is first started -
this bit contains suspension information. 

Z. R6(1t) is non-zero when the instruction is first stllrted -­
the stack pointer must contain a word address. 

3. R6 does not contain the address of a "i4 {lll} word sUck -
tempon.ry st~te for instructions. 

4. Bits <15,8> of the word containing a character operand is 

5. Bits <15:8> of the first word of a character set descriptor 
is non-zero. 

6. A source string overlaps the <;4{l~) word stack or t/O page. 

7. A destination string overlaps the opcoce word, in-line 
operands, 64 (III) word stack, I/O page, or trap vectors. 

8. A table overlaps the stack or I/O pa<;JOl'. 

9. The opcode word or in-line operands overlap the destination 
string. 64(111) word st~ck or I/O page. 

111. The stack overlaps the sol..rce string, destination string, 
;:~~;s.oPCode word, in-line ope,,;onds, I/O p!KJe, or trap 

The I/O page overlaps the source string, cestinlltion string, 
table, opcode word, in-line operands or "i4(111) word stllck. 



Description and Intent of g)[tended Instructions 
COImIercial Instruction Set 

P'"-ge 4-7 

Character string instructions will produce unpredictabLe results if: 

1. MOVTC(I) -- Destination string overlaps the tr"nslation tabLe. 

2. MOVTC(I), SCANC(I). SPANC(I) -- The entire 25~ byt" 
transl"tion or char"cter set tabL"s are not in r"ad~ble 

4.2.1.6 Impleme'lt"tion Notes -

1. Source ch"r"cter .,trings, opcodes, words in the instruction 
stream, and descriptors for in-line instructions mLlst be in 
readable memory; they need not be in writabl" memory. 
Destination strings must be in memory which is both readable 
:~~ :t!:~i:: Stacks must be in memory which is both readable 

2. Neither the order, width, nlElber nOr type of operand aCceSSes 
is architected. 

3. On machine!:' with multiple register sets, these instructions 
will use the register set sel"cted by PS<ll>. 

4. On machines with multiple modes, these instructions will lJse 
the st"ck point"r "nd memory map selected by PS<lS:!4>. 

5. On machines with I and 0 memory spaces, the I space will be 
used for instruction stream fetches (opcodes, in-line operands 
and in-line pointers), and the D spac" will b" used for 
descriptors (in-line ,i.nstruction form) and data ref"rences. 

7. Instructions c"n use as much as 64(1~} words on the st"ck. 
'11lis stack space "an be >.:sed whether the i"struction is 
suspended Or not; it is ho .... ver exclusiv" of the PC and PS 
which is pushed on the stack if the instruction is suspended. 
When instructions terminate normally, R6 will be restored to 
its original ""lue, but th" contents of the ~4 (l~) words 
immediately below the stack a,-e unprediccable. 

8. If word pointGrs contain an odd address, set CPU Error 
Register<6> and then trap through """ctor 4 (8). 



Description "nd Intent of Extended Instcuctions 
COII'IIIIerci"l Instruction Set 

4.2.2 Deci .. al String Instructions 

Page4-B 

The decimal string instruction groups aid manipulation of decimal 
Several numeric (byte) and packed decimal data types are 

supported. Instructions are provided for basic <lrithmetic operat~ons. 
as well 115 for compllre, shift, and convert functions. 

4.2.2.1 Insttuctions - Each arithmetic, shift and CompiH"" instruction 
operates on <I single class of data type. Both numeric and packed 
string instructions are provided for most operations. Convett 
instructions have a source operand of one data type and a destim.t!on 
operand of another data type. Decimal string il'structions specify to 
which class each of theit decillllll string operands belong. The data 
type supplied lOS PolIrt of each ope-.:and's descnptot may be any villid 
data type of the class. This permits a general mixing of datl!l types 
within each of nllllleric and packed classes. 

The data types on which an insttuction operates are designated by the 
last letter(s) of the opcode mnemonic. 'N' denotes nllllletic strings, 
'1" denotes packed strings, and 'L' denotes long binary integers. 

The arithmetic instructions are AIlON(I), NlDP(I) , SUBH(I), SUBP(I), 
MULP(I) and OIVPU). ASlIN (I) and ASHP(I) shift a decimal string by a 
specified number of digit positions (either direction) with optional 
rounding and store the result in the destinlltion string. -rhus, they 
effectively multiply or divide by a power of ten. If the shift count 
is zero, these shift instructions can be used simply to move decimal 
strings (destinations are stored with preferred representation). Move 
negated m<ly be l!Iccomplished by using SUBN(I) or SUSP(I). Atittnetic 
comparison insttuctions, CMPNU) and CMPP(I), ate provided to examine 
the relative difference between two decimal stdngs. 

CV'l'Nt.(I) and DVTPLU) convert a decimlll string Lo a long (32 bit) 
two's caaplement integer. CV'l'LN(O and CVfLPU) convert a long 
integer to a decimal string. CYI'NP(I) and CVTPN(I) convert between 
n .... eric and packed deciaaal strings. 



Description and Intent of Extended Instructions 
CDlllllercial Instruction Set 

Numeric String Instructions 

ADDN!I} add nWleric 
SUBM!t} subtract n ... eric 
ASIIN(I} arithmetic shift m.ner[c 
CMPN (I) cornpl!lre n~eric 

Packed String Instructions 

ADDP (II ade: lcked 
SUBP (I) subtract packed 
M.ut.P(I) I'Iulitply packed 
DIVP(Il divide packed 
ASHP(I) arithmetic shift packed 
CMPP(t) compare packed 

Convert Instructions 

convert numeric to long 
CVTL'! convert long to numeric 
CVTPL convert packed to long 
CVTLP convert long to packed 
CVTNP convert numeric to packed 
CVTPN convert packed to numeric 

Page 4-9 

4.2.2.2 Condition Codes - For instructions which store a value in a 
destination string. the N and Z bits reflect the value stored. The N 
bit indicates a negative destination; the Z bit indicates II 
destination having zero magnitude. A destination string with 'l;ero 
m~nitude is considered to be positive !even if a negative z"ro was 
stored as a consequence of decimal overflow). 'l1Ius, the setting of N 
and Z are llIutually exclusive. 

The V bit will indicate wether the destination string accurl'ltely 
represents the true result of the instruction. It is also set If a 
division by zero was attempted. If the V bit is set, the destination 
string will represent the least signifIcant portion of the result 
(truncated). If the V bit is clellred, the destination represents the 
true result. 

For DIW(I), C indicates division by zero. Otherwise, C is ah""vs 
cleared. 



Description and Intent of Extended Instructions 
COilaercial Instruction Set 

Paqe4-Ul 

For c~pu·1sons usinq the C"lPN{I1 and C"lPP(Il instructions, the N and 
Z bits reflect the signed relationship between the source strings. 
The signed branch instructions can test the result. V and Care 
cleared. 

For instructions which return a long integer value, N reflects the 
sign of the two's c_plement integer, and Z indicates whether it was 
zero. V indicates whether the long integer could not contain all 
Significant digits and. sign of the result. CVTNL(I) lind CYTPL(tJ also 
use C to represent II borrow from II IQOre significl!nt portion of the 
long binary result. otherwise, C is cleared. 

4.2.2.3 operand Delivery - The "register form" of decimal string 
instructions il!.plicitly find. their operands in the general registers. 
These operands include decimal string descriptors, long binllry 
integers, and shift descriptor wor<1s. If an instruction does not use 
II register, its contents will be undisturbed. RI-Al qenenlly contain 
the first $Ourc .. descriptor, A2-A3 generally contain the second. source 
descriptor. I!OO Rot-AS generally contain the destinlltion descriptor. 
ASlIN and ASHP use Aot to contain a shift Jescriptor wo,fl. CVfLM. 
CVTLP, CVTNL and CVTPL use RII-RI to contain a deCimal strinq 
descriptor. and A2-A3 for the !ong integer. When the instruction is 
completed, the sourc::: descriptor registers are cleared. 

The "in-line fOnl" of dedl'lal strill9 instructions find their operands, 
or pointers to descriptors in the instruction stream inunediately 
following the opcode word. Operal'\ds which appear directly in the 
instrootion stream ar~ shift descriptor words. Operand,. which are 
represented in the instruction stream by II pointer contalning the word 
address of the descriptor lire decilnal string descnptors lind long 
binary integers. Yo in-line form oJ: decimal string instructions 
lIIOdify A..-RI;. 

4.2.2.4 Data OVerlap - The operation of decimal s'~rinq instructions 
is unaffeet\ld by any overlilp of the source operands provided that eech 
source operand is a valid re~esentation of the specified data type. 

The overlap of the destination string and I!ny of the source strings 
will. in general. produce unpredictable results. Howeve!;" , MlDN (Il. 
ADtJP(:.j, SUBN(Ij and SUBP(IJ will permit the destinl!tion string- to 
overlap either or both source strings only if all corresponding- dlqits 
of the strings are in coincident bytes in IIII!!rI"ry. This fIIcilitates 
two address arithmetic. 

~DmDDmD ~::::;:" .. " .""" 



Description and Intent of btended Instructions 
c-ercial Instruction Set 

Page 4-11 

4.2.2.5 Unpredictable Conditions - The effect of decimal string 
instructions will be unpredictable if: 

1. PS<8> i.s non-~ero when the instruction is first 
this bit c;;lntains suspenSion 1:lformation. 

2. R6<fl> is non-~ero when the instruction is first 
the stack pointer must contain a word address. 

3. fl.6 does not contain the address of a 64 (HI) word 
telllporary state for instructions. 

4. 1\. source string overlaps the 64(18) word stack or I/O page. 

5. 1\. destination string overlaps the opcode word, in-line 
operands, 64(HI) word stack, I/O page, or trap vectors. 

6. The opcode word or in-line operands overbp the destination 
string. 64{lilJ word stack or I/O ~e. 

7. The stllC'lt overlaps the source string. destination string, 
!:~!~;s.oPCode word, in-line operands, 1/0 page, or trap 

8. The I/O page overlaps the source string, destiMtion string. 
table, opcode word, in-line operands or 64(\11) word stack. 

9. Bits <15> and <11:5> of the deeimal string descriptors 
containing the string length are non-zero. 

Reserved data tne codes are used In bits <14:12> of decimal 
string descriptors. 

ASflNIIJ/ASHP{IJ - Bits <15:12> of the shift descriptor word 

Deelmal string instructions will produce unpredictable results if: 

1. Source operands are not valid Decimal Strings. 

2. Destination strings overbp source strings (exeept 1£ all 
corresponding digits are "oincident for ADr.tiI (I), ADDP (11, 
SUBN(I) and SUBP(I». 

3. DIVP{I) - Division by zero is attempted (only destination 
string, N and z are unpredictable). 



Description and Intent of Blttended Instructions 
ConII.erclal Instruction Set 

PlM)e4-l2 

4. ASHN(I)/ASRP(I) - Bits <11:8> of the shift descriptor word 
are 11118(2) to 1111(2). 

5. CV'l'NPII)/CYTPNII) -- Source and destination strings overlap. 

4.2.2.6 Imple.entation Hotes -

1. Source decilQI!Il strings, opcod'!s, words in the instruction 
stream, descriptors and long integer sources for in-line 
instructions must be in readable PlllIIIory; they need not be in 
writable lD.e!llt)ry. Destination strinqs and 10nq integer 
destinations for in-line instructions must be in lII_ory wbieh 
is both readable and writable. Staeks must be in m!'lllOry whieh 
is both readable and writable. 

2. Neither the orde!", width, number nor type of operand aceesses 
is architected. 

3. On machines with mu1tipll! register sets, these instructions 
will use the register set se1eeted by PS<ll>. 

4. On machines with multiple modes, these instructions will use 
the stack pointer and m8ll.ory map selected by PS<l5:l4>. 

5. On maehines ..,ith I and D memory spaees, the I spaee will be 
used for instruction streitlll fetches (opcodes, in-line operands 
and in-line pointers), and the D spaee will be used for 
descriptors and long integers (in-line instruction form) and 
data references. 

6. For zero length decimal strings of type siqned zoned, unsiqned 
zoned, leading overpunch and trailing overpunch, no memory 
is occupied. The addre$ll llIust not be used and no memory 
references are to ce made. 

7. Instructions can use as much as 641l1i1J words on the stack. 
'l1!.is stack space can be used whether the instruction is 
suspended or not~ it is ho_ver exclusive of the PC and PS 
which is pushed on the stack if the instruction is suspended. 
'lihen instructions terminate normally, R6 will be restored to 
its oriqina1 value, but the contents of the 64(1111 wordS 
illllllediately below the stack are unpredictable. 

8. If word pointers contain an odd address, set 
Reqister<6> and then trap through vector 418). 



Description and lnt::nt of btended Instructions 
COftIIercial Instruction Set 

4.2.3 eo.n.ereial Loa<! Descriptor Instructions 

The commercial load descriptor instructions augment the character and 
decimal strinq instructions by efficiently loadinq the qeneral 
registers with strinq descriptors. Two fo['llls of instructions are 
provided. The ['2Dr instructions load two strinq descriptors into the 
qeneral reqisten.. The f:rst descriptor is loaded into Hit-HI and the 
second descriptor is loaded into R2-R3. This instruction supports the 
followi~. 

equal lenqth character strinq mOVe 
equal length chllracter string compare 
character string matching 
decimal string c<:Epare 

'n1e second form, the LJDr instructions, take three descriptors. The 
first is loaded into RI/I-RI, the second into R2-R3. and the third into 
R4-RS. This instruction supports the followinq. 

3-.KIdress arithmetic 

The descriptors are accessed by the followinq me<::hllnism. Words 
containinq the addresses of the descriptors (two for L2Dr and three 
for L3Dr) are in consecutive locations in J:lemory. The degeriptor 
"ddresses are found by applyinq the addressing mode @IHr)+ once for 
each descriptor. The value of r is encoded as thp. low order three 
bits of the instruction's opcode. If 1I<=r<",5, then r can be thouqht 
of as th'" base ;eddress of a 9IIall table 11'1 meJW,ry. where each entry in 
t.'le table contains the address of a descript. ... r. If r"'6. then the 
instructions effectively pop the addresses of descriptors off of the 
stack. If r=7, then the descriptor addresses are contiquous with t~e 
instruction's opcode word. 

The strinq descriptors are two words long. The address of the 
descriptor is that of the low order word. It is loaded into the 
correspondinq 8V"'n reqister. The hiqh order word of the descriptor is 
loaded into the '~orrespondlnq odd register. Note that although these 
instructions are described in terms of string descriptors, they are 
applicable for other instances where two consecutive words in memory 
refeorenced by a pointer are to be copied into even-odd qeneral 
reqister pairs. 

~DmDDmD ',::. ,,,. 



Oescrivtion and Intent of Extended Instructions 
Coan.ercialInstruetionSet 

COlIIIIIercial Load Descriptor Instructions 

L:2011 load 2 descriptors using @(R8)+ 
L2DI load 2 descriptors using @(RI)+ 
L2D2 load 2 descriptors usi1l9 @(R2)+ 
L2D) load 2 de$criptors using @(R))" 
L2D4 load 2 de$Criptor$ using @(R4)+ 
L2DS load 2 descriptors using @(R5)+ 
L2D6 loacl 2 descriptors using @(R6)+ 
L2D7 load 2 descriptors using @(R7J+ 

L3D1I Inad ) desctiptors usil19 @(RII)+ 
L3DI load) descriptors usil19 @CRI)+ 
L3D2 load) descriptors using @(R2)+ 
L303 load) descriptors using @(R3)+ 
L304 load) descripton usil19 @(R41+ 
L3D5 load 3 descriptors using @(R5)+ 
L3D6 load 3 descriptors usi1l9 @(R6)+ 
[.)07 load 3 descriptors usil19 @(R7)+ 

Implementation Motes -

Paqe4-l4 

1. Opcodes, words in the instruction stream, and descriptors must 
be in readable memory; they need not be in writable m .... ory. 

2. Neither the order, width, nwnber nor type of operand accesses 
isarchitected. 

3. On lIachines with multiple register sets, these instructions 
will use the register set selected by PS<ll>. 

4. On machines with multiple modes, thes., instructions will use 
the stack PJinter and memory map selected by PS<lS:14>. 

5. On lIachines with I i!lnd 0 ml!lllOry spaces, the I spa~e will be 
used to fetch instructions as well as the descriptor addresses 
for L207 and L307; D splice will be used to fetch descriptor 
i!lddress for L2O"-6, [,)011-6, i!lnd all string descriptors. 

6. If word pointers contain ~n odd address, set 
Register<6> and then trap through vector 4(8). 



Desctiption and Intent of Extended Insttuctions 
CoIIIaetcial Insttuction Set 

4.3 PROCESSOR Sl'ECIFIC INS'llIUCTtONS 

Page 4-15 

The ptocessot specific Insttuctions provide model dependent diaqnostic 
capability. 



Desc:riptionand Intent of Extended Instru:::tions 
COIIIaerciallnstruc:tionSet 

Paqe4-16 



Extended-Instruction Definitions 



Extended-InstructlonDeflnltions 
AnDN I ADDP I ADIlNI I ADDPI - Add Declmal 

5.1 ADDN I AIlDP I AnOOI I ADDPt - Add Dec1mal 

-----------------------------------
1 1 

ADDP I 
'" 1 

'" 1 ---------------------------------
I s·cl.dscr.ptr I 

I src2.dscr.ptr ----------------------------------
dst.dscr.ptr 

ADDPI I 
'" 1 -----------------------------------

I srcl.dscr.ptr I 

src2.dscr.ptr 
----------------------------------

dst.dscr.ptr I 

Operation: 

N: set 1£ dst<ll; cleared otherW1se 
Z: set 1£ dsts0; cleared otherwise 

P"ge5-2 

Ii: set 1£ dst can not con taw all 51gn1flCar.t dlglts of the 
result; cleared otherwise 

c: cleared 

Suspendabil1ty: 

This lnstLuction is potentlally suspendacle. 



Ezteooed-lnstl:'uction Defi.,itions 
AnDN / ADDP / ADDNI / AJ 1 - Add Decimal 

PaqeS-3 

Oescription: 

Srcl is added to src2, lind the result is stored in the destination 
string. The condition codes reflect the value stored in the 
destination string, and whether all significant digits were 
>;tored. 

Reqister FarAl - ADIlN and ADDP 

When th~ instruction starts, the operands must have been placed in 
the general registers. The first source descriptor is placed in 
Ri-RI, the second source descriptor is placed in R2-R3, and the 
destination descriptor is placed in R4-RS: 

RB' ., , 
----------------------

11.2 I I 

RJ' 

'5 , 

When the instruction is cOlllpleted, the sourcoe descriptor registers 
are cleared: 

.. , 
--------------------, , , 

-----------------------------, , , .. , 
dst.dscr 



EJ:tended-InstrUction Definitions Page 5-4 
ADIJH / ADOP / ADDNI I ADOPI - Add Dec i.al 

Each word address pointer wh:ch follows the opcode word in the 
im;truction stream. refers to a two word d~imal string descriptor. 
RIl-R6 are unchanged when the instruction 113 completed. 

!:'ona.?lDescription: 

TBS~ 

Examples: 

1. Three Address Add - Register Farm 

MOV SRCl.DSCR,F<lil 
MOV SRC1.DSCR+2,Rl 
KOV SRC2.OSCR,R2 
MOV SRC2.DSCR+2,R3 
MOV !lST.DSCR,R4 
MOV DS'l'.OSCR+2,RS 
ADDN / ADDP 
BVS OVERFLOW 
BLT NEGATIVE 
BI::Q EOUAL 
BGT GREATER 

~ 1st source descriptor 

~ 2nd source descriptor 

~ destination descriptor 

~ add 
~ check for error 
~ negative destination 
~ zero destination 
~ positive destination 

2. Three Address Add - In-line Form 

ADDNI / ADOPI 
.!tORn SRCl.n5CR.PTR 
.WOlUl SRC2.OSCR.PTR 
.WORD DS'l'.DSCR.PTR 
BVS OVERFLQoi 
BLT NEGATIVE 
BEQ EQUAL 
BGT GREATER 

~ add 
: ptr to srcl descriptor 
: ptr to src2 descriptor 
; ptr to dst descriptor 
: check for error 
~ negative destination 
; zero destination 
; positive destination 

3. Two Address Add - Register Form 

MOV SitC.DSCP,IU1 = ~:~::~2Rl 
MOV DST • DSCR+2, R3 
MOV R2,R4 
MOV RJ,R5 
ADDN / ADOP 
BVS OVERFLOW 
BLT N:;GATIVE 

:~ :ER 

~D~DDmD '" "', .. , 

~ source descriptor 

; destlnation descriptor 

~ duplicate destination 

c ... eckforerro· 
negative destin~tion 
zero destination 
positive destination 



Elltended-Instruction Definitions 
ADeN / ADDP / ADDN! / ADDPI - Add Decimal 

ADDNI / ADDPI 
.WORD 3RC.lJSCR.PTR 
.WORD DST.DSClt.PTR 
.liORD fIST. OSCR. PTR 
BVS OVERFLOK 
BLT NEGATIVE 

~ ~~ER 

~ add 
1 ptr to src descriptor 
1 ptr to dst descriptor 
1 ptr t.o dst descriptor 
; check for error 
~ negative destination 
1 2:",ro destination 
1 positive destinlltion 

Paqe 5-5 

1. 'ttle operation ot these instructions is unaffected by any 
overlap of the source strings provided that each source string 
is a valid representation of the specified data type. 

2. Source strings may overlap the destination string only if all 
corresponding digits of the strings are in coincident bytes in 
.aemory. 



ExtenCled-Instruction Definitions 
ASHlI / ASBP / ASlU'l1 / ASBPI - Adthlnetie Shift. Decimal 

5.2 ASHH / ASHP / ASIINI / ASBPI - "-rithmetic Shift Decimal 

15 '2 , 
AS"" I I 6 I 

-------------------------
I I I 6 I 
------------------------------

--------------------
I 161 -----------------
I src_dser_ptr I ------------------------

dsLdser.ptr 

I shift.dscr I --------------------------
----------------------------
I I 17 161 

I src.dser.ptr ---------------------
dst_dscr.ptr 

---------------------------
I shift.dser I 

~ration: 

dst (- src * lUI *. shift count) 

Condition Codes: 

II: set if dst(lh cleared otherwise 
Z: set if dst .. " ~ cleared otherwise 

P!lge5-6 

V: set if dst can not contain all significant digits of the 
result, cleared otherwise 

C: cleared 

Suspendability: 

This instruction is potentially suspendable_ 

momoomo '0:::::;""' "'" 



Extended-Instruction Definitions paqe 5-7 
ASHN / ASHP / ASHKI / ASHPI - Arithmetic Shift Decimal 

Description: 

The decimal number specified by the source dest.!riptor is 
arithileticly sbifted, and stored in the area specified by the 
destination descriptor. "l1Ie shifted result is align~d with the 
least significant digit position in the destination string. The 
srUt count is a two's complement byte whose value ranges from 
-128 (111) to +127 (11). If the shift count is positive, a shift in 

~~a<ii{:;tisO~iff l;;~~t tOp:'~~r~;gn;fi~~ritdil;~~ i~~rf~~~~as~ 
Significant digit. Tbus, the shift count is the power of ten ~ 
which the source is multiplied~ negative powers of ten effectively 
divide. Zero digits are supplied for vacated digit positions. A 
zero shift count will move the so"rce to the destination. The 
condition codes reflect toe value stored in the destination 
string, and whether all significant digits were stored. 

A negative shift count invokes ill. rounding operation. The result 
is constructed by shifting the source the specified nUMber of 
digit positions. 'nIe rounding digit is then added to the most 
significant digit which was shifted out. If this SUII is less than 
1I!I (11), the sbifted result is stored in the destination string. 
If the SUIII is 11 (11) or greater, the Jllagnitude of the shifted 
res>.:lt is increased by 1 and then :;tored in the destination 
string. If no rounding is desired, the rounding digit should tM;. 

The shift count ani: rounding digit are represented in ill. singl .. 
word referred to as the shift descriptor. Bits <15:12> of this 
word must be zero: 

e Irnd.dqtl shift.cnt 

Regist .. r FOrD - ASliN and ASHP 

When the instruction starts, the operands must bave been placefl in 
the genecal reg~sters. The source descriptor is placed in RI-Rl, 
the destination descriptor is placed in R2-R3, and the shift 
descriptor is placed in M: 



Extended-InstructlonDef1nitions 
ASlIN / ASAP / ASlINI / ASAPI - Arithmetic Shift Decimal 

PageS-a 

" I 

.. I 

When the 1nstruction 1S completed, the sOurce descriptor registe~s 
and shift descriptor reglster are cleared: 

-----------------------------------
I • 

Rl I 
-----------------------------------

I 

" I -----------------------------------
I • 

The words Wh1Ch follow the opcode word in the instruction st1Cearn 
are a word address powter to a two word decunal string source 
descrlpt r, a word address po1nter to a two word decimal string 
destlnat10n descriptor, and a shift descriptor word. RH-R6 are 
unchanged when the instruct10n 1S completed. 

Pormal Descr1ption: 

TBS; 

Examples: 

1. Multlphng by 100 - Reglster Form 

MOV SRC.DSCR,R0 ; sourCe descnptor 
MOV SRC.DSCR+2,RI 
MOV DST.DSCR,R2 ; dest1nation descriptor 
MOV DST.DSCR+2,R3 
MOV f2,R4 ; Shlft descnptor word 
ASHN ; ASHP ; Shlft 

~D~DDmD· .... 



ElI:tended-Instruction Definitions 
ASlnl / ASHP / ASHI!II / ASHPI - Aritimletic Shift Decimal 

BVS OVElIELOW 
BLT NEGATIVE 
BEQ EtUAL 
BGT GREATER 

I check for error 
I neSlative destination 
I zero destination 
1 positive destination 

2. Multipling by HIll - In-line Form 

ASHNI / ASHPI 
.WORD SRC.DSCR.PTR 
.WORD DST.DSCR.PTR 
.WORD 2 
BVS OVElIELCW 
BLT NEGATIVE 

""" ",UAL 
BGT GREATER 

1 shift 
1 ptr to src descriptor 
1 ptr to dst descriptor 
1 shift descriptor word 
1 che~k f:;lr enor 
1 negative destinatio.ln 
1 zero destination 
; positive destination 

3. MOve decimal number - Register Form 

KOV SRC.DSCR,R8 
MOV SRC.DSCR+2,Rl 
MOV DST.DSCR,R2 
MOV DST.OSCR+2,R3 
CLR R4 
ASHN / ASIIP 
avs OVERFLOW 
BLT NEGATIVE 
aEQ EQUAL 
BGT GREATER 

1 source descr:Lptor 

I destination descriptor 

1 shift d('scriptor word 
1 shift 
1 check for error 
1 negative destination 
1 zero d",stination 
1 positive destination 

4. Move decimal r.uatber - In-line Form 

ASIiNI / ASBPI 
.WORD SRC.DSCR.PTR 
.WORD DST.DSCR.PTR 
.WORD II 
BVS OVEIU'LCW 
BLT 

"'0 

"'" 
NEGATIVE 

~R 

1 shift 
I ptr to s::c descriptor 
1 ptr to dst descr iptor 
1 shift descriptor word 
: cheek for error 
1 negative destination 
1 zero destination 
1 positive destination 

Page 5-9 

1. If bits <15,12> of the shift dpscriptor word are not ~ero, the 
effect of the instruction is unpredictable. 

2. If blts <11:8> cf the shift descriptor e.ce not a valid decimal 
digit, the results of the instruction are unpreuictable. 

3. Any overlap of ':he source and destination strings .,ill produce 
unpredictable results. 



Eztended-Instruction Definitions 
CMPC I CMPCI - Compare Charecter 

5.3 CMPC I CMPCl - Compare Character 

---------------------------
I I 141 

CMPCI I 14 i 

I srcl.dscr.ptr 
------------------------

src2.dscr.ptr 

Operation: 

Srcl is compared with src2 (srcl-src2). 

Condition Codes: 

Page ')-11' 

The condition codes are based on the arithmetic comparison of the 
IIIOst significant pair of unequal srcl and src2 cbaracters 
(srcl.byte-sre2.byte) • 

N: set if result<' 1 cleared otherwise 
Z: set if result="l cleared otherwise 
V: set if there was aritlUletic overflow, that is, srcl.byte<1> 

and src2.byte<7> were different, and src2.byte<7> was the same 
as bit <7> of (srcl.byte-src2.byte)) cleared otherwise 
cleared if there was a carry from the most s'.gnificant bit of 
the result) set othe~ise 

Suspendability: 

This instruction is potentially suspenclable. 

Description' 

Each character of srcl is compared with the corresponding 
character of sre2 by eZaJllining the character strings frODl most 
significant to least significant characters. If the character 
strings are of unequal length, the shorter character string is 
conceptually extended to the length of the longer character string 
with fill characters beyond its least significant character. The 
instruction terminates when the first corresponding unequal 
characters are found or when both character strings are eXhausted. 



Estended-Instruction Definition!. 
CMPC / CMPCI - Campa!:e Character 

Page 5-11 

The conditlon codes reflect the last comparison, permitting 
unsigned branch instructions to test the result. 

Register Form - CMPC -----------------
When the lnstruction starts, the operands must have been placed in 
the general reqisters. The first source character st!:~ng 
descriptor is placed in IUI-RI, the second source cb;,racter string 
descriptor is placed in R2-R3, the fill character is placed in 
R4<7,I>, and R4<15:8> must be zero, 

---------------------------------
Ril I I 

" I ------------------------------
R2 I I 

RJI 
--------------------------------
I I ---------------------------------

The instruction tetl1linates with sub-strinq descriptors in RI-RI 
and R2-R3 ~hich represent the portion of each source character 
string beginning with the most sign;.ficant corresponding 
unequal characters. RI-Rl contain a descriptor for the unequal 
portion of the oriqin.al srcl strin,!:: R2-R3 contain a descriptor 
for the unequal portion of the orlgincol src2 string. A vacant 
character strinq descriptor indicates that the entire source 
character string was equal to the correspondinq portion of the 
other source character string, includinq extension by the fill 
character: its address is one greater than that of the least 
Significant character of the character stting. 

'" 
I -------------------------------

'2 I 
sUb.src2.dscr 

'3 I 

•• I 

~D~DDmD· 



Extended-Instruction Definitions 
CMPC I CMPCI - Compare Character 

In-line Form - CMPCI 

Page 5-12 

The words which follow the opc:ode word in the instruction strf!anl 
are a word address pointer to a two word character string sr<:l 
descriptor, a word address pointer to a two word character strin'i! 
src2 descriptor, and a word whose low order half contains the HI 
character and whose high order half l!Iust be zero. Rl!I-R6 are 
unchanged ... hen the instruction is completed. 

FOrlllal Desedption: 

srel.len = RII. 
srcl.adr ., IU; 
sre2.l.;" ~ lUi 
src2.a<h .. It3; 
fill" R4<"7:il>. 

: CMPC only 

temp .. i' [R71. ! CHFCI only 
srel.len = M[temp}: ! 
srel.aCt .. M[temp+21;! 
R7 .. ~'1+2; J 
telllP .. fIi[R7]; ! 
sre2.len .. M[temp]. ! 
sr("2.adr" M{t<'!lllP+2};! 
R7 .. R7+2; J 
fill = M[R7]<7:il>; ! 
R7 ... R7+2; 

found = 1: 
while (srcl.len nequ ill and (src2.len nequ ill 

and (~ound nequ ill do 
if iioi[srel.adr) eqlu M[src2.adrll then 

begin 
srel.len - s[cl.len-l: 
srcl.adr '" srel.adr+l; 
sre2.1en - sre2.1en-l, 
~re2.adr '" sre2.adr+1 
end 

else found = fill 
while (srel.len negu 01 and (found nequ iI) do 

if M[srel.adr] eqlu fill then 
begin 
3rel.len ;: s[e1.1en-l: 
srel.edr .. srcl.~dr+l 
end 

else found· il, 
while (sre2.len nequ ii, and (found neou 01 do 

if M[sre2.adrj eqlu fill then 
beo;Iin 
sre2.1en '" s:e2.1en-l; 



Extended-Instruction Definitions 
CMPC I CMPCI - Corapare Chtlracter 

srC"2.adr a src2.adr-+-l 

else found .. ~ ~ 

if (srcl.len eqlu I) then btmpl .. fill 
else btmpl = M[srcl.adr! ~ 

if (src2.1':!n eqlu I) then btlllp2 '= fill 
else btmp2 " ~[src2.adrJ ~ 

carry@btmp .. btmpl-btJllp2~ 
N .. btlllP<15>~ 

paqe 5-13 

if I::tmp eql ~ then Z .. 1 else Z .. I~ 
if (bt:lllpl<7> neq btmp2<7» and (bb1p2<7> eql btmp<7» then 

V" 1 else V ,. I; 
C = carry; 

R£' = src1.len ~ 
a:.. .. sr:::l.adrl 
R2 .. s;:c2.1en: 
R3 = src2.adr; 
R4 .. 1<15:8>@fill: 

Examples: 

: CMPC only 

, 

1. Compare Strin~s - Register Form 

SRCl.OOCR,Rl1I lIst source cescriptor 
SRCl.DSCR+2,Rl· 
SRC2.DSCR,R2 ; 2nd source descriptor 
SRC2.DSCR+2,R3 
f' ,R4 

LESS 
EQUAL 
GREATER 

; extend with spaces 
~ compare 
;srcl<src2 
, srcl=src2 
;srcl>src2 

2. Compare Strings - In-line Form 

: compare 
; ptr to srcl descriptor 
; ptr to slc2 descriptor 
; extend with spaces 
;srcl<src2 
; srcl:src2 
:srcl>src2 

3. Compare as far as the length of shorter of two strings 
Register Forlll 

MOV SRCl.DSCR,RiI : 1st source descriptor 
MOV SRCl.DSCR+2,Rl 
MOV SRC2.DSCR,R2 ; 2nd source descriptor 
MOV SRC2.DSCR+2,R3 



Extended-Instruction Definltions 
CMPC I OlPCI - COlllf>dr~ Character 

OM' R0,R2 

'"' " MOV R0,R2 
R2,R0 

mo 
BEQ EQUAL 

NOTEQL 

; length of shorter 

;nofi11 is used 
; compare stdngs 
;useunSlgnedbranches 

PageS-l4 

1. The operation of this Instruction 1S unaffected by any overlap 
of the source character strings. 

2. If the sl:cl character string IS vacant, the f111 character 
wlll be compared wlth src2. If the src2 character string is 
vacant, the fill character will be compared with srcl. If 
both character stnngs are vacant, the condition codes will 
lndlcate equality. 

3. CMPC -- If an Initlal source character strlng descriptor is 
vacant, the resulting sub-string descr1ptor is the same as the 
or1glnalcharacterstrlngdescriptor. 

4. A test for SucceSS is BEQ; a test for failure is BNE. 

5. When the instruction terminates, the condition codes I.ill be 
set as 1f a CMPB instructlOn operated on the most significant 
unequal characters. If both strings are inltially vacant or 
are Identic"l, the condltlon codes will be set "s If the last 
char"cters to be compared were identical. This results in 
equallty with N cleared, Z set, V cleared. and C cleared. 

6. Both CMPC and Cl'IPCI upd"te the comlitlOn codes. 
sub-string descrlptocs. 



Extended-Instruction Definitions 
CMPN I CMPP I CMPNI I CMPPI - Compare Decimal 

5.4 CMPN / CMPP I .::MPNI I CMPPI - Compare Decimal 

CMPN I I , I 

I 2 I 

! 2 I 
-----------------------------------
I srcl.dscr.ptr I 

sre2.dser .pt~ 

CMPPI I I , I 

srel.dser.ptr 
-----------------------------------

src2.d:';cLptr I 

Oper"tlon: 

Srcl is compared with sre2 (srcl-src2). 

N, set if srcl<src2; cleared otherwise 
Z, set if "L ·-src2; cleared otherwise 
v, cleared 

Suspendability: 

This lnstruct ,on is poter:tially suspendable. 

Deseriptivn: 

Page 5-15 

Srcl is a!lthmetically compared with src2. The cor.i!ition codes 
reflect the comparison. The slgned branch ;.nstruction can be used 
to test the result. 



Extended-Instruction Defin! t ion~ Page 5-16 
CMPH I OIPP I CMPNI I CMPPI - C<mapare Decimal 

Register Form - CMPN and QlPp 

When the instruction starts, the operands must have been placed in 
the general reqistp.rs. TIle first source descriptor is placed in 
Ril-Rl, and the second source descriptor is placed in R2-R3: 

R01 

lUI 

.,1 

"1 

When the instruction is completed, the source descriptor req~ .. ters 
ilre cleared: 

--------------------------
1 , 1 

., 1 
-------------------------------
1 , 1 

.3 1 

Each word address pointer which follows the opcode word 
instruction stream refers to a two word decimal string descriptor. 
RiI-R6 ilre unchanged when the instruction is completed. 

FOrJllill Qescription: 

TBS: 

E:.;alP1es : 

1. Compare Decimal Stri'lgs - Register Form 

NOV SRCl.DSCR,RiI : 1st source descrirtor 
MOV SRCl.DSCR+2,P.l 
MOV SRC2.DSCR,R2 : 2nd source descriptor 
MeV SRC2.DSCR+2,R3 

~D~DDmD 



Extel'Lded-Instruction Definitions 
CMPH I CMPP I CI'IPNI I CMPPI - Compare Decimal 

CMPN I CMPP ; compare 
BLT LESS I use signed branches 

:~ ~~~R 
2. Compare Decimal Strings - In-!ine Form 

CMPNI I CMPPI 
.WORD SRC1.D5CR.PTR 
.WORD SRC2.D5CR.PTR 
BLT NEGATIVE 
BEQ EQUAL 
BGT GREATER 

I compare 
1 ptr to srcl descriptor 
; pt. to src2 descriptor 
; negative destination 
1 zero destination 
; positive destination 

Page 5-17 

1. The operation of these instructions is unaffected by any 
overlap of the souece strings provided that each souece string 
is a valid representation of the spec· ~\ed data type. 



Ester.ded-Instruction Definitions Page 5-18 
cvrLN / cvrLP / CVTLNI / cvrLPI - Convert Long to Decimal 

5.5 CV'l'LH / CVTLP / CV"l'LN1 / CVTLPI - Convert Long to Decimal 

" .. "" I 
I 7 I 

---------------------------
CVTLPI 1 171 

CVTLNI 1 171 

dst.dscr.ptr 

src.long-.ptr I 
---------------------_.-

1 1 171 
----------------------------

dst.dscr.ptr 

I src.long.ptr -----------------------------
Oper.;l;tion: 

decimal string (- long integer 

set if dst(ill cleared otherwise 
Z: set if dst=ll cleared otherwise 
V: set if dst can not contain all significant digits of the 

result; cleared otherwise 
C: cleared 

Suspendability: 

This instruction is potentially suspendah1e. 

~DmDDmD ';:::::;"" '''''' 



Extenoeo-Instl'uction Defmitions P"ge 5-1'> 
CVTLN / CVTLP / CVTLNI I CVTLPI - Convel't LOng to Decimal 

Description, 

The source long integer is converteo to a oec1mal strlng. The 
cono1tlOn cooes reflect the result storeo in the oestmation 
decLmal string. and whether all significant d1glts were stored. 

Register Form - CVTLN and CV1'LP 

When the instruct~on starts, the operands m<.;st have been placed Ln 
the genel'al l'egisters. The destination descnptor 1S placed 1n 
RII-RI, and the source long integet is placed in R2-R3: 

-----------------------------------
'" 1 

" 1 -----------------------------------
1 1 

src.long 
R3 1 

When ~he 1nstruction is completed, the source long 1nteger 
registers are cleared: 

R1 1 

"1 

" 1 

The words Which follow the opccde wfled 1n the instruction stream 
are a word address pointer to a two word decimal string 
destination descriptor, and a word address pointet to .. twu word 
long integer source. Re-R6 ar.~ unchanged when the instructi,m 1S 
completed. 



Eztended-Instructior Definitions Page 5-211 
CVTLH / CVTLP / CV'l'UlI I CVTLPI - Convert Long to Deci-.l 

Formal Description: 

Ezamples: 

1. Convert Long to Decimal - Register rom 

MOV DST • DSCR, RII 
MOV DST.DSCR+2,Rl 
MOV SRC.LONG+2,R2 
MOV SRC.LONG,P3 
CV!LN / CVTLP 
BVS OV£RFt.C)oi 
BLT NEGATIVE 
BEQ EQUAL 
BGr GREATER 

; destination descriptor 

; source long integer 

; convert 
; cheek for error 
; negative destination 
: l:ero destination 
; positive destinanon 

2. Convert Long to Decimal - In-line Form 

CVTLNI / CVTLPI 
.WORD DST.DSCR.PTR 
.WORD SRC.LONG.PTR 
BVS OVEllFt.C)oi 
BLT NEGATIVE 
BEQ EQUAL 
BGT GREATER 

, convert 
; ptr to dEt descriptor 
; ptr to long integer 
; check for error 
; negativ!e destination 
: zero destination 
; positive de"tination 

1. Register forms use a long integer oriented with the si,::!,n and 
high order portion in R2, ana the low order portion in R3. 

2. In-line forms use a long integer oriented with the low order 
portion in src.long, and t.he sign and high order portion in 
src.long+2. 



Extended-Instruction Definitions P5qe 5-21 
CV'l'NL / CVTPL / CVTNLI / CVTPLI - Convert Decimal to Lonq 

5.6 CVTNL / CVTPL I CVTNLI I CVTPLI - Decimal to LOnq 

98 32 8 

"""" I I 3 I 

------------------------------
I I 13 I ---_._----------------------
-------------------------
I I 131 -----------------------------
I src.dacr.ptr I 

dst,long.ptr 

CVTPLI 1 131 -----------_._--------------
I src.dacr.ptr I 

dat.long.ptr 

Oper5tion, 

long inteqer (- decimal strinq 

The condition codes are based on the long inteqer destination and 
on the sign of the source decil!lal strinq. 

N, set if 10ng.inteqer(l'I~ cleared otherwise 
Z, set if l'1nq. integer=8 ~ cleared otherwise 
'J: set if long.integer dst can not correctly represent the two's 

cOlllPlelDent form of the result~ cleared otherwise 
C: set if src(8 and long.inteqert8; cleared otherwise 

Suspenclability: 

This instruction is potentially suspenc'lable. 

~D~DDmD·· 



Extended-Instruction Definitions paqe 5-22 
CVTNL I CVTPL I CV'l'NLI I CVTPLI - Convert Decimal to LOng 

Description: 

The source cecilllal string is converted to a long inreger. 'ttIe 
condition codes reflect the result of tile operation, or whether 
significant digits were not convette6. 

Register Form - CVTNL and CVTPL 

When the instruction starts, the operands must have been placed in 
the generdl registers. The sourc~ oeci.Dull string descriptor is 
placed in iUJ-Rl: 

" , ., , 
the instruction is completed, the source decilIlal string 

descriptor registers are dilared, and the destination long integer 
is returned in R2-RJ: 

---------_. --------------.. , 
" , 
." 

'3 , 
ost.long 

In-line Form - CVTNLI and CVTPLI 

The words which follow the opcode word in the instruction stream 
are a word address pointer to a tvo word deci.:mal string source 
descriptor, and a word address pointer to a two word long integer 
destination. RII-R6 are unchanged when the instruction is 
ca.pleted. 

Forl1lal Description: 



Extended-Instruction Def,nit10ns Page 5-23 
CVTNL / CVTPL .' CVTNLI / CVTPLI - Convert Decimal to Long 

Examples: 

1. Convert Declmal to Leng - Reqister Form 

SRC-DSCR,R~ 

MOV SRC.DSCR+2,Rl 

~~'L/~~ci:[,()W 
BLT NEGATIVE 
BEQ EQUAL 
BGT GREATER 

; SOurce descriptor 

; convert 
; check for error 
; negatlVedestination 
; zerodestlnatl0n 
; positlve destlnatlon 

2. Convert Decimal to Long - In-line Form 

CVTNLI I CVTPLI 
.WOPD SRC.OSCR.PTR 
.><OM 
BVS OVERFLOW 
BLT NEGATIVE 
SEQ EQUAL 

; convert 
; ptr to src descriptor 
; ptr to dst long lnt 
; check for errOr 
; negative destinatlon 
; zerodestlnatlon 
; pos1tive ilestination 

1. Reglster forms uSe a ~ong lnteger orlented with the s,gn and 
hlg~. order partion 1n R2, and the low o[de~ portlon ln RJ. 

forms use a long lnteger orlented wltn the low order 
dst.long. and the sign and high order port1on ,n 

3. If the V blt is set, the contents of the long integer 
destl.natlon are the least slg.,ificant 32 bits of the result. 



Ezt.ended-Inst.ruct.ion Definit.ions 
CV'l.'HP / CVTPI!l / CV"l'HPI / CYTPNI - Convert. De<:imal 

5.7 CV'l'HP / CV'l'PN / CV'l'NPI / CVTPNI - Convert. Decimal 

CV'l'NP I 151 

_. ---------------------------
CVTPNI I 141 

--------------------
I I 151 

src.dscr.pt.r --------------
1 dst..dscr.ptr I 

CVTl'NI I '" ---------------------
1 src.dscr.pt.r 1 ---------------------------

dst..dscr.pt.r 

Operation: 

CVTNP / CVTNPI packed .!;tnng <- numeric st.ring 
CV'l'PH / CV'l'PNI numeric string (- packed string 

Condition Codes: 

set if dat<lIh ..:::1eared otherwise 
Z: set if dst .. a r cleared otherwise 

Page 5-24 

V: set if dst can not contain all significant digits of the 
resultr cleared otherwise 

C: cleared 

Suspendability: 

This instruction is potentially suspendable. 



Eztended-Instruction Definitions paqe 5-25 
CVTNP / CY'l'PN / CVTNPI / CVTPtlI - Convert Decimal 

Description: 

These instructions convert between numeric and packed decimal 
strings. The source deciJDal string is conv~rted and ~d to the 
destination stri"9. The condition cOOes reflect the result of the 
operatien. or whether all significant digits were stored. 

Register Form - CVTNP and cvrP'il 

When the instruction starts. the operands must have been placed in 
the general registers. The source descriptor is placed in RB-Rl, 
and tne destination descriptor is placed in R2-RJ: 

-------------------------
RI I I 

Rli ---------------------
I I 

dst.dscr 
R3 I 

When the instruction is completed, the source descriptor registers 
are cleared: 

I ------------------------------
1 • I 

In-line Form - CVTNPI and CV'l'PNI 

Each word address pointer which follows the opcode word in the 
instruction stream refeu to a two word decimal string descriptor. 
RB-R6 are unchanged when the instructl.on is completed. 

Formal Description: 

~DmDDmD ',,:::::;", "" 



Extended-Instruction Definitions Page 5-26 
evTNP I CVTPN I CVTNPI I CVTPNI - Convert O<'cilllal 

Examples: 

1. ;~~~ert Between Numeric String and Packed String - Reg~ster 

SPC.DSCR,R0 
MOV SRC.DSCR+2,Rl 
MOV DST.DSCR,!>2 
MOV DST.DSCR+2,R3 
CVTNP I CVTPN 
8VS OVERFLOW 
BLT NEGATIVE 
BEQ EQUAL 
8Gr GRE.l\.TER 

2. Convert 8etween Numeric 
Form 

CVTNPI I CVTPNI 
.WORD SRC-USCR.PTR 
.WORD DST.DSCR.PTR 
BVS OVERFLOi'I 
BL"f NEGATIVE 
BEQ EQUAL 
BGr GRE.l\.TER 

; source deseri.ptor 

; destination descriptor 

; convert 
; check for enor 
; negative destinat~on 
; zero de",~ ination 
; positive a",stination 

Str ~ng and Pae~ed St.r ing 

; convert 
; ptr to Sre descriptor: 
; ptr t(" dst descr:iptor: 
; cheek for error 
; negative destination 
; zero destination 
; positive destin",tion 

1. The results of the instruction are unp[6dictable if the sOurCe 
and destination strings overlap. 

2. These instructions use both a nume~ic and a packed decimal 
str ing deser iptor. 



EIlt.ended-Instruction Definitions 
DIVP / DIVPI - Divide Decimal 

S.8 DIVP / DIVPI - Divide Decimal 

32 , 
----------------------------
I I I S I 

I ; I ---------------------------------

Operat~on: 

dst <- src2 / <;tcl 

COndition Codes: 

srcl.dscr.ptr I 

src2.dscr.ptr 

dst.dscr.ptr 

N: set if dst<e: cleated otherwise 
Z: set if dst=Il, cleared otherwise 

PageS-27 

V, set if dst can not contain all significant digits of the 
result or if srcl"8, cleared otherwise 

C: set if srcl=', cle"red other .... ise 

Suspendability: 

"!.bis instruction is potentially suspendable. 

Description: 

S-o:c2 is divided by srcl. and the quotient (fraction truncated) is 
stored in the destination string. "!.be condition codes reflect the 
value stored tn the destination string, and whether all 
significant digits were stored. 

Register Form - DIVF 

When the instruction starts, the operands must have been placed in 
the general registers. The first source descriptor is phlced in 
RIl-Rl, the second source descriptor is placed in R2-R3, and the 
destination descriptor is placed in R4-aS: 



Eztended-Instruction Definitions 
DIVP / DIVPI - Divide Decimal 

----------------------------------, , 
src2.dscr 

RJ' .. , 

?Bge5-2a 

When the instruction is completed, Lhe SO;Jr"e descriptor registers 
are cleared, 

Re' ., , 

--------------------------------, , , .. , 
dst.dscr 

~ch word address pointer which follOWS the opccde word in the 
l.nstructlon stream refers to a two word recimal string descriptQr. 
RIJ-R6 are unchanged when the instructj'jn is completed. 

Formal Description: 

TBS~ 

Ezamples: 

1. Divlde - Reglster Form 

KOV SRCl-DSCR,RO ; divisor descriptor 
MOV SRCl.DSCR';'2,Rl 
MOV SRC2.DSCR,R2 : dIvidend descriptor 
KOV SRC2.DSCR';'2,R3 

~D~DDmD . 



Elltended-Inst.cuction Cefinitions 
DIVP / DIVPl - Divide t)e(;~al 

MOV 
MOV 
om 
BVS 
BLT 
"EO 
am 

DST.DSCR,R4 
DST.DSCR+2,R5 

OVS,,"'" 
NEGATIVE 
EQUAL 
GREATER 

2. Divide - In-line Form 

DIVPI 
.WORD SRCl.DSCR.PTR 
.WORD SRC2.DSCR.PTR 
.WORD DST.DSCR.PTR 
SVS OVERFWW 
BLT NEGATIVE 
SEQ EQUAL 
BGT GREATER 

: quotient descrlptar 

:dlvide 
: check for error 
: neqative destination 
: zero destination 
: positive destination 

: divide 
1 ptr to divisor dscr 
: ptr to dividend dscr 
I ptr to quotient dscr 
1 check for error 
: negative destination 
: zero destiniiltion 
I positive destiniilt.ion 

Page 5-29 

1. The operation of these instructions 1S ..,niilffected by any 
C?verlap of the source ,;trings provide<!- that each source strir.g 
1S a valid representation o~ the spec'.fied data t:-1'E'. 

2. The results of the instructlon are unpredictable if the source 
",nd destination strlngs overlap. 

3 Division by Zf!'ro will set the V and C bits. The destinati~n 
string, and the Nand Z condition code bits will be 
unpredictable. 

4. No nUIneric string divide instruction is provided. 



EJ;~ended-Instructlon Definitlons 
UX:C / LetcI ~ Locace Character 

5.9 LOC: / LOCCI - Locate Character 

src.dscr.ptr 

OperatlOn: 

" 

Search sourCe character strlng for acha[acter. 

Page5-311 

The condltlon codes are based on the fJ.nal conte~ts of R0. 

N: set If R0<15> set; cleared otherWlse 
Z: 3et lf R0-11: cleared otherWlse 
V: cleared 
C: cl€'ared 

$uspendability: 

This LnstructlOn is potentlally suspendable. 

Description: 

The source character strlng ls searched from most .agniflcant to 
least significant character until the first occurrence of the 
search character. A character string descriptor is returned 1n 
R0-Rl which represents the portion of the source character strlng 
beginning wlth the located character. If the source character 
strlng contalns only characters not equal to the search cha- leter, 
the instr<Jctlons ret<Jrn a vacant character string descriptor wlth 
an addres:;; one greater than that of the least significant 
character of the source charact .. r strlng. The condltion codes 
reflect the resultlngvalue lnR0. 



Extended-Instruction Definitions 
LOCC / LOCCI - Locate Char"-~ter 

Register Fot1l1 - LOCC 

Page 5-31 

When the instruction starts, the operands must have been placed in 
the general registers. The source character string descriptor is 
placed in RI!I-Rl. the search character is placed in R4<7:1!I>. and 
R4<15:8> must be zero: 

" I 

R4 I 

When the instruction is completed, RfJ-Rl contain a chancter set 
descriptor which represents the sub-strinq of the source character 
string beginning with the located character: 

-----------------------------
I -.-!. 

R1 I 

------------------------------
R4 I I I 

In-line Form - LOCCI 

The words which follow the opcode word in the instruction stream 
are a word address pointer to a tWO word character strill9' source 
descriptor. and a word whose low orde v ',alf contains the search 
character and whose high order half illUst be zero. When the 
instruction is completed. Ril-Rl contain a character string 
descriptor which represents the sub-string of tl:.e source character 
string beginning with the located character. R2-R6 are unchanged: 

~D~DDmD·. 



E"t.ellded-Inst.-cuct.ion Definitions 
LOCC I LOCCI - Locat.e Charact.er 

----------- ------------------
I I 

., I 

Fonnal Descript.ion: 

src.len ~ RB: 
src.adr = Rl: 
char" R4<7:B>; 

i LCCC only 

;~l:n M!R~][~empl ~ ; LOCCI only 

src.adr - M]t.emp+21: ! 
R7 _ R7+2; ! 
char = M[R7]<7:B>; ! 
R7 = R7+2; ! 

found. = B; 
while (src.len nequ B) and (found. eqlu Bl do 

if M[src.adr] nequ char then 
begin 
src.len .. src.Len-l; 
src.adr-src.adr+l 
,od 

else found = 1; 

Rl!l-src.len; 
Rl .. src.adr; 
R4 .. B<15:8>@char; ! LOCC only 

N-RB<l5>; 
Z .. RB eqLu 0; 
V" 0; 
C=B; 

EXi1IIIples: 

1. Find the Beglnning of a Conunent - Register Form 

MOV STR.DSCR,RB ; strinq to search 
MOO STR.D5CR+2,Rl 
MOV t':,R4 ; search for semi-colon 
LOCC : locate 

; RB and Rl are the 
: sub-lOtting descriptor 

Page 5-32 



Extended-Instruction Definitions 
LCX::C I LOCCI - Locate Character 

2. Find the Beginning of a COllQ'llent - In-Line Form 

:.ocC! 
.WORD 
.WORD 
B", 

~~.DSCR.PTR 
~ locate 
~ ptr to src descriptor 
~ search for semi-colon 
; RIll and Rl are the 
; sub-string descriptor 

Page 5-33 

1. If the initial SOllrce character string descriptor is vacant, 
the instruction terminates with the condition codes indicating 
no match was found. The original source character string 
descriptor is returned in R0-R1. 

2. A test for success is ENE; a test for failure is BEQ. 

3. The condition codes will be set as if this instruction were 
followed by TST Ril. 



Exteno3eo3-Instruction Definitions 
L2Dr - Load 2 Descriptors 

5.lil L2Dr - Load 2 Descriptors 

L20r I 

Operation: 

Load word pairs into RS-Rl !lnd R2-Rl. 

N: not affected 
Z: not affected 
V: not affected 
c: not affected 

Suspendability: 

This instruction is non-suspendable. 

Description: 

P!lge 5-34 

I, I 

This instruction augments the character and decimal string 
instructions by efficiently 10ao3ing string descriptors into the 
gener!ll registers. 

A descriptor 'alpha' is loaded into Ra-RI; a second descriptor 
'beta' is loaded into R2-R3. The a<!aress of the descriptors are 
detennined by the addressinq mode @(Rr)+ where r is the low order 
three bits of the opcode word. The address of the descriptor 
'alpha' is derived by applying this addressing mode once; the 
address of the descriptor 'beta' is derived by applying this 
addressing mode a second time. The addressing mode 
auto-increments the indicated register by 2. The addressing mode 
cOlllpUtation is not affected by the descriptors which are loaded 
into the general registers. The words which contain the addresses 
of tne des'.:riptors are in consecutive words in memory; the 
descriptors th"lIIselves may be anywhere in memory. The condition 
codes are r.ot affected. 



Ext.ended-Instl'uetion Definitions 
LlD"t - Load 2 Desc"t iptore 

Page 5-35 

When the ~netruction is completed, the 'alph,,' desc"tiptor is 
rul-Rl and the 'beta' deseriptor is in R2- R3: 

.. , 
alpha.deer 

----------------------------------, , 
." 

Po.-mal ~scription: 

temp ~ R[r]: 
adr.alpha ~ M[telllPll telflP ~ telIlP+2i 
adr.beta = M[temp] i temp '" temp+2i 
if (t gegu 4) then R[rl '" tempi 
lUI - M[adr.alpha]; 
Rl = M[aCIr_alpha+2J; 
R2 = M[adr.beta1; 
R3 - M[adr.beta+2]1 

Examples: 

1. c."eimal String Compare 

L2D7 
.WORD SRC! 
.WORD SRC2 

"'" 
SRCl: .WORD SRC!.LEN 

.WORD SRCl.ADR 

SRC2: .WORt' SRC2.LEN 
.WORD SRC2.JI.DR 

: load descriptors 

; 1st src descriptor 

1 2nd sre dese.iptor 



Extended~Instruction Def~n~t1ons 

L3Dr - LOad 3 Descr~ptors 

5.11 L3Dr-Load3Descnptors 

L3Dr I 

Operation: 

I, I 

Load word pairs lI1to R0-RI, R2-R3 and R4-RS. 

N: not affected 
Z, not affected 
V: not affected 
C: not affected 

SusO'endabil1ty: 

'I'h1S instruct' on ~s non-suspend able. 

Descript1on: 

Page 5-36 

Th~s instruction augments the character and deClmal string 
instructions by efficiently ~oading string descriptors into the 
general registers. 

A descriptor 'alpha' is loaded lI1to R0-Rl~ a second descriptor 
'beta' 1S loadeu lI1to R2-R3; a third descriptor 'gamma' is loaded 
into R4-RS. The address of the descrlptocs are determined by the 
addressing mode @.(Rr)+ where r is the low order three bits of the 
opcode word. The address of the descriptor 'alpha' is derived by 
applying this addresS1ng mode once; the address of the descriptor 
'beta' is derlved by applying this address1ng mode a second time; 
the address of the descriptor 'gamma' 1S derlved by applying this 
addres:ang mode a thud time. The address mode autO-increments 
the indicated register by 2. The addressing mode computation is 
not affected by the descriptors wh~ch are loaded lr.to the general 
reg1sters. The words WhlCP contain the addresses of the 
descrlptors are 1n conSecutlve words ~n memory; the descr~ptors 
themselves may be anywhere ~n memory. The condltion cades are not 
affected. 



Eztencled-Instruct.ion Oefinitions 
L3Dr - Load 3 Descript.ors 

Page 5-37 

When the inst.ruct.ion is completed, the 'alpha' descr iptor is in 
alii-aI, the 'beta' descriptor is in R2~R3 and ':hE' 'gamma' 
descriptor is in R4-RS: 

----------------------
I I 

alpha.dscr 
., I ----------------------------

I I 

I 

.4 I 
ga!MIa.dscr 

I ---- ._---_._------------------
Formal Descript.' .. n: 

temp· R[r], 
adr.alpha - M[temp], temp - temp+2, 
adr.bet.a .. M[temp]; temp - temp+2, 
adr.gamma = M[temp] ~ temp = tel1lP+2, 
if (r gequ 6) then a[r] = temp; 
ail - M[adr.alpha], 
Rl = M[adr.alpha+2], 
a2 - M[adr.beta]; 
R3 = M[adr.beta+2], 
R4 = M[adr.gamma]. 
RS = M!adr.g:amma+2]. 



Extended-Instruction Definitions 
LJDr - IDad J Descriptors 

Example:>: 

1. Three Address Add 

.WORD SRC1 
.WORD SRC2 
.WORD DST 
ADCN 

SRC1:.WORD SRC1.LEN 
SRC1.ADR 

SRC2: .WORD SRC2.LEN 
.WORD SRC2.ADR 

DST:.WORD DST.LEN 
.WORD DST.ADR 

Page 5-38 

; load descriptors 

; add 

; 1sl src descriptor 

: 2nd src descriptor 

; dst descriptor 



Extended-Ins-.::ructlonDeflnltions 
MATC / MATeI - Match Character 

5.12 MATe / MATeI - Match Character 

MA'CO I lSi 

I ~ I 
-----------------------------------

src.dscr.ptr I 

ob).dscr.ptr 

Operation, 

Page 5-")9 

Searchsourcecnaracterstrir.q for ob)ect character strlnq. 

Suspendability: 

T'.lS lnstructlon is potentialcy suspendable. 

Description: 



Extended-Instruction Definhions 
MATe / MATeI - Match Character 

Reqister Form - MATC 

Paqe 5-41 

When the instruction starts, the operands must have been placed in 
the qeneral reqisters. The source charllcter string descriptor is 
placed in Ril-Rl, and the object character string descriptor is 
placed in R2-R3: 

--------------------------------, , 
<>, 

------------------------------, , 
obj.dscr 

R3 , 

The instruction terminates with II chllracter sub-string descriptor 
returned in Ril-Rl which represents the portion of the original 
source character string beginning with the most significant 
character to completely match the object character string • 

.. , 
, , 
-----------------------------

.2 , 
obj.dscr , , 

--------------------------------
In-line Fr, l - MATeI 

The words which follow the opcode word in the instruction strf'am 
are a word address pointer to a two word character strinq source 
descriptor, and a word "-'~':;ress pointer to a two word character 
string object descr:.,tor. The instruction teI'1Iinates wIth a 
charllcter sub-strir"~ descriptor returned in Ril-Rl which rel?resents 
the portion of th" onqmal source character strinq beginnIng with 
the most siqnificant character to completely match the object 
character string. R2-R6 are unchanged when the instruction is 
completed. 

~D~DDmD 



Extended-Instruction Definitions 
MATe / MATeI - Match Character 

" I 

Forlllal Description: 

src.len - R0; 
src.adr _ RI; 
obj.len - R2: 
obj.adr - R3; 

; MATe only 

!~~:l:/lR~][~emp]; ; MATeI only 
src.adr - M[temp+2]; ! 
R7 .. R7+2: ! 
temp ~ 101 [R7]: 
obj.len = M[t .mpl: 
obj.adr ~ M[temp+2]; ! 
R7 = R7+2; ! 

tmp.len = obj.len; 
found ;: ~: 

while (src.len gequ ob].len) and (obj.len nequ 0) 
and (found eqlu e) do 

begin 
same - I; 
while (obj.l<"n nequ 0) and ( .. arne eqlu 1) do 

if (M[obj.adr] eqlu M[src.adrj) 
then 

begin 

~g~:!j~ ~ ~g~:!a~:;:I; 

else 

src.len-src.len-l: 
src.adr-src.adr+l .,' 
same = e, 

found-sillllel 

~~~:~~~ ~ ~~~:~~~~~:i~~:;~:i~~~I; 
src.adr-src.adr+obj.len-trop.len+l;
obj.len-trop.len
end:

if found eql 1
then

begin
Ril " src.len+l:
RI;: src.adr-l

Page 5-41

Extended-Instruction Definitions
MATe / MATeI - Match Character

begin
Ril - i1;
Rl ., src.adr+src.len
end;

R2 = obj.len;
R3 ,. obj.adq

N = RiI<lS>;
Z .. Ril eqlu i1;
V" i1;
C - i1;

Examples:

i MAtt only

1. Find a Keyword - Register FOOt

MOV SRC.DSCR,RII ; 1st source descriptor
MOV SRC.DSCR+2,Rl
MCV OBJ.DSCR,R2 ; 2nd source descriptor
MOV OBJ.IlSCR+2,R3
MATe ; search for keyword
aNB r object was in string

2. Find a Keyword - In-line Form

SRC.IlSCR.PrR
OBJ.IlSCR.PrR
FOUND

; search for keyword
; ptr to src descriptor
; ptr to obj descriptor
; object was in string

Page S-42

1. ttle operation of this instruction is unaffected by any over~ap
of the source and object character strings.

2. A vacant object character string matches any non-vacant

i!lU~UDmD·

source character string. A vacant source character string
will not match any object character string. If the initial
source Character string descriptor is vacant, the instruction
terminates with the conditilln codes indicating no match was
found. The original source character string descriptor is
returned in RiI-R1.

Extended-Instruction Definltior.s
MATC / MATCI - Match Character

3.1£ the length of the object
that of the source character
R0-Rl and the condltlOn codes

PageS-43

stnng ls greater than
then no match is found;
updated.

4. A test for S<leCeSS 1S BNE; a test for fail<lre 1S SEQ.

5. The cond1tior' codes will be set as 1f th15 ln5ttUctlon were
followed by TST Re.

E:IItended-Instruc:tion Definitions
MED6X - PDPll/68 ~lntenanc:e, E:IIamine, Depnsit

5.13 MED6X - PDPll/6e Maintenanc:l', E:IIamine, Deposit

MED6X I '"
I I MED code I ------------------------------

Operation:

Access to internal processor reqisters.

N: not affected
Z: nnt affected
V: not affected
c: not affected

Suspendability:

This instruction is non-suspendable.

Description:

Paqe 5-44

This instruction reads or writes an internai processor reqister on
the FDPll/6e.

RB is an implicit opecand and either contains the source data
which is to be written into an internal processor register or
serves as the destination for a read-operation from an internal
processor register. For MED codes 154 and 155, R2 and R3 also
serve aa implicit oPE-rands, as shown in the table below.

The explicit opcode specific operand w!.ich immediately follows the
opcode in the instruction stream defin<:'s whether the operation is
a "read· or a • ... rite· and it specifies an internal processor
address by which the internal processor register can be accessed.
Bits <15:8> of this operand are iqnored.

The followinq Uble details this operation. In the tahle ·xxx"
indicates that the vaLle of the high byte is a ·don't care". The
effects of executing unspecified operations are unpredictable.

~D~DDmD··

€xtenaed-Instruction IlE'finitions
M£D6X - PDPll/611 Maintenance, Exan..ine, :Jeposit

Ope~and Operation

'txxlliln read low half of A scr .. tch pad Low, word n
xxxilln read hiqh half of A scratch pad Low, word n
xxxil2n read low half of A scratch pad High, word n
xxxll3n read high half of 1'1 scratch pad High, word n
xxdl4n read low half of B scratch pad Low, word n
xxxll5n read h~gh half of B scratch pad Low, word n
xxxll6n read Jow half of B scratch pad Hi'1h, word I'

xxxll7n read high half of B scntcn pad H~gh, word n
xxxliln read C scratch pad, word n
xxxlln read C scratch pad, word Ill{8)+n
xxx1411 read Jam register
xxx141 read Service re9ister
xxxl42 read Physical (UnibuS) Address register
xxx143 read Currsnt Micro-ACicress register
xxx144 read Plaq register
xxx145 NOP
xxxl46 read Revision register
xxx147 read Count register
xxx152 read Diagnostic Control Store register 1
xxx153 read Diagnostic Control Store register 2

Page 5-45

xxx154 Invalidate cache location corresponding to physic"l address
in R3 and R2, where R3<I:II> contains bits <17:16> of the physical
address rutd R2 contains bits <15:i1> of the phySical address
xxx155 read Cache Tag corresponding to the physical address in R3
and R2, where R3<l:II> ccntains bits <17:16~ of t!\e ?hysical
address and R2 contains bits <15:8> of the physical address
xxx2i1n write low half of A scratch pad Low, word n
xxx21n write high half of A scratch pad Low, word n
xxx22n write low half of A scratch pad High, word n
xxx23n write hiqh half of A scratch pad High, word n
xxx24n write low half of B s~'ratch pad Low, word n
xxx25n write high half of B scratch pad Low, word n
xxx26n write low half of B scratch pad High, word n
xxx27n write high half of B scratch pad High, word n
xxx30n write C scratch pad, word n
xxx31n write C scratch pad, word 10{8)+n
xxx344 write Flag regi!:ter
xxx345 write 0 register
xxx346 write Shift register
xxx347 write Counter register
xxx356 wr~te Next Micro-Address register
xxx351 wnte Residual Control reqister
xxx352 wdte Init register
xxx353 NaP

Eztended-Instrl.!ction Definitions
MED6X - POPll/6i1 Maintenance, Examine, Deposit

Formal Descrlptlon,

TBS:

Examples:

1. Log "bort-type error condition

MOV
m
MOV

int~~al

MOV

tLOGBUF,Rl
fl~:l
RiI, (Rl)+

Uill
RiI,(Rl)+

: On abort-type erl;"or
: <-ondition move

: machine state to
: error logging buffer

1. This is a r<'se' 'eel. inStruction in User to.ode.

~D~DD~D··

Page 5-46

Extended-Instr"ct~on Deflnl.tl.Ons Page 5-47
MED74C - PDPll;74 CIS !'!,untenance Instruction

5.14 MED74C - PDPlI/74 CIS Malntenance Instruction

MED74C I I 1]

Operaticn:

The condltlOn codes wi!: be set by the PDPll/74 CIS O'rocessor.

Suspendablllty:

'ThlS lnstruct'onlspotentlil:lysllspendilble.

DeS('[lptlOn:

Form"l Descrl.pt~on:

CIS .processor .next .micro.address.reg ~ RS<12, ~>;

t;xamples:

1. Transfer control to CIS ;:>cocessor.

NONZr:RO,@U7777~ ;
MICRO •. ;DR,R5

Extended-Instruction Definitions Page 5-48
MED74C - PDPll/74 CIS Malntenance lnstructlon

1. This lnstructlOn lS reserved i~ the hlgh order 3 bltS of the
PDPll/74 mlcro-program break reglstec are cleared (PB<lS:13»_
The mlcro-program break register is at physlcal address
l777777~(8); It lS cleared during processor power-up, manual
actlvatlon of the front panel start SWltch, or successful
execution of a RESET lnstcuctlOn.

2. Refer to maintenance documentation for the values whl-ch are
obt,uned wher; ceadlng the contents of the micro-progcam break
regl-ster.

E:z;tended-InstructionDefiniticns
MFPT - Move From Processor Type

5.15 MFPT - Move From Processor Type

Operatlon:

R0<7:Il> (-- processor model code
R0<l5:8> (-- procf'ssor subcode

N: not affected
Z: not affect~d
V: not affected
C: not affected

Suspendabil1ty:

Ttl.s instructlonis non-suspendable.

Description:

No sOurce operands are llsed.

Page 5-49

Upon execution, the MFPT ~nstructlon retllrns In the low byte of.Re
a processor model code, as specified 1n the table below. The hlgh
byte of R0 will be loaded with a processor specif1ed slJbcode.

'Ihe prev10us contents of RII are lost.

The codes to be returned lfl the low byte of Ril are as follows:

code (octal) processor type

Formal Description:

RIl<7:1l> " processor.model.code;
RIl<15:S> " processor.subcode;

Extended-Instruction Definitions
MFPT - Move From Processor Type

EX2Il1ples:

1. Get processol: type-code

R0,-(SP)

R0,CPUTYP
(SP)+,R0

; get processor mOdel
; store it
; reet~l:e R0

Page 5-50

1. On processors ·~here this instruction 15 ncJt implemented, a
reserved instrLl<;tion trap through vector 10 (8) is taken.

updated to
have been

development

Eztended-Instruction Definitions
MOVe / MOVeI - Move Character

5.16 MOVC I MOveI - Move Character

15

"CVC I

MOVCI I

src.dscr.ptr

dst.dscr.ptr

Operation:

Page 5-51

I • I

" I

The condition codes are based on the arithmeti<; comparison of the
initial chancter string lengths (resultK src.1en-dst.len}.

N: set if result<lJl cleared otherwise
Z: set if result=ill cleared otherwise
V: so.' _ if there was arithmetic overflow, that is, src.1en<15> and

dst.len<15> were different, and dst.len<15> was the sallie as
bit <15> of isrc.len-dst.len} 1 cleared otherwise

C: cleared if there was a carry from the most significant bit of
the r<~sultl set otherwise

Suspendability:

This instruction is potentially suspendable.

Description:

The character string specified hy the aource descrij;ltor is moved
into the area specified by the destination descriptor. It is
aligned by the most significant character. The condition codes
reflect an arithmetic comparison of the original source and
destination lenqths. If the _curee strinq is shorter than the
destination strinq, the fill character is used to complet.e the
least significant part of the deStination string. TblS is
indicated by the C bit set.

Extended-Instruction Definitions
Move / MOVCI - Move Chat"actet"

Register Form

" I

R4 I I

PageS-52

When the instt"uction is completed, Rl! contains the number of
unmoved source string characters, and Rl through RJ are cleared:

R0 I max1l!,src.len-dst.len)

" I

" I

Extended~I"st~uction Deflnitlons
MOve / Movcr ~ Move Char acter

Forma.l Cescrlptlon:

Page 5~53

Extenned-Instruction Definitlons
MOVC / HOVCI - Have Character

begin ! least to most s~gnifH;ant
characters

PageS-54

src.adr_src.len_l_max(ll,src.le -dst.len)+src.adr;
dst.adr_dst.len-t-dst.adr_l;
Whllesrc.lenlssudst.lenda

Ril -
Rl"
R2 "
R} -
R4 "

Examples:

begin
M[dst.adr) - f111;
dst.len_dst.len_l;
dst.adr-dst.adr-l
end;

while ast.len negu 0 do
begln

end;

M[dst.adr] - M[srcadr];
src.len-src.len-l;
src.acr-o:rc.aar-l;
dst.len"dst.len-l;
dst.adr-dst.aar-l
eO'

~ Move only

1. Moving Data - Register Forn

SRC.DSCR,R0 ; source descriptor
SRC.DSCR+2,Rl
DST.DSCR,R2 ; destlnation descrlptor
DST .DSCR+~,R3
.' ,R4 flll with spaces

TRONC test for truncation
FILL test for fill
EQUAL test for equal length

2. Moving Data - In-line Form

.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR

.""<ill
BHI TRONC
BW FILL
BEQ EQUAL

ptr to Sre descr~pt"r
ptrtodstdescrlptor
filllsspace
test for truncation
test for fill
test for equal length

Extended-Instruction Definitions
Move I MOVC! - MOlle Character

3. Clear1ng Storage - Reg1ster Forn:

CLR Rtl ; zero lenglh SOurce
MOV OST.DSCR,R2 ; destination descriptor
MOV DST.DSCR,2,R3
CLR R4 ; store null characters
MOVC ; propagate fill

4. Clearing Storag .. - In-line Form

MOve! ; propagate fill
. WORD ; ptr to null str dscr
.WOP.D DST.DSCR.PTR ; Ftr to dst descnptor
.WORD a ; £111 with nulls

PageS-55

1. The operatlon of this Instructlon 1" unaffected by any overL,p
of the source and destlnation str1ngs. The result is
equivalent to having read the entire SOurce string before
stor1ng characters ln the destination.

2. If the source string is vacant, the fill character "111 be
[)ropagated through the destination string. If the dest~nation
string 13 vacant, nO characters wlll be moved. The condition
codes wlll be updatad. MOVC will update tne general
registers.

3. MOve -- When the instruction terminates, Rtl is zero only if Z
or C are set.

4. The condition codes Will be set as If this instruct10n were
preceded by CMP src.len,dst.len.

Extended-Instruction Def~nltlons
MOVRC / MOVrtCI - Move Reverse Just~fied Character

5.17 MOVRC / MOVRCI - Move Reverse Jllstified Chaeacter

MOVRC I

stc.dscr.pte

dst.dscr.ptr

dst <-reverse Justifiedsrc

CcndltlonCodes:

I , I

'"

PageS-56

The condltlon cedes aee based on the aeith;lletiC comparlson of the
1nitial charactee string lengths (result~src.len-dst.len).

N: set if result<0; cleared otherwlse
Z: set if result~0; cleared otherwise
V: set If there was arithmetiC overflOW, that 15, sec.len<15> and

dst.len<IS> were different, and dst.le:,<lS> waS the same as
blt <15> of (src.len-dst.len); clearedotherw1sP

c: cleared 1f there was a carry from the most sign1f1cant bit of
the reSlllt; set othen,lse

Sllspendabll~ty:

This lnstruct10n is potentially suspf"ndable.

DescrIption:

The chaeacter stnng specified by the SOll,ce descnptor
into the area specified by the dest1nation descriptor. It 15
align"d by the least !>igniflcant character. <;:he condition codes
reflect 01'1 arithmetic compar~son of the original SOllrce and
destination lengths. If the source strll1g 1S shorter than the
r.leStlnatiOn string, the flll character is used to complete the
most s~gn:f lcant par t of the destInation str 1ng. ThlS ~s
1nd~cated by the C bit :;et.

ElI:tended-Instruction Definitions PageS-57
MOVRC / MOVRCI - Move Reverse Justified Character

If tne source string is longer than the de .. tination string,
most significant characters of the source string are not moved.
This. is indicat~d by the Z and C bits cleared. If the source and
destl.nation strings are of equal length, ."111 characters are moved
with neither truncation nor filling. Tins is indicated by the Z
bit set. The unsigned branch instructions may test the result of
the instruction.

Register Form - MOVRC

When the instruction starts, the operands must have been placed in

~~~c~gn~~alR0:.~i,st~~:. de~~ni~r~~e c~~~i~i!;~r s~~ri;~g :::;;f~;~; t~ 
placed in R2-RJ, the fill character is placed in R4<7:1J>, and 
R4<lS,8> must be zero: 

R' I 

R2 I 

------------------
I i I ---------------------------------

When the instruction is completed, Rill contains the nlJlllber of 
unmoved source string characters, and Rl through R3 are cleared: 

----------------------------
I max(B,src.len-c.st.len) 

----------------------------------
I , I 

R3 I 
----------------------------

R4 I III I I 



Extende"-Inst~uctlon Definitions PageS-58 
MOVRC I MOVRCI - Move Reverse Justified Character 

The words ",hu:h ["11o,,, the opcode ",ord in the ln5t~uction stream 
are a ",ord add!Cess pOlnter to a t",o wo~d character strlng source 
descriptor, a ",ord address polnter to a two wo~d character string 
dest1,,-at10n descriptor, and a ",ord whose low order half contains 
the fill character and whose high o.rder naIf must be ZerO. R0-R6 
are ,-,.,changed ",hen the lnstructlon 1S completed. 

FOrmal DeSCtiptl""-' 

sr:.le'1"R0; 
src.adr " RI; 
dst.len"'R2; 
"st.ade '" R3; 
fill '" R4<7,~>; 

; MOVRC only 

;;~:l;n ; MOVRCI only 

sec.adr" 
R7 '" R7+2; 
temp'" M[R7j; 
dst.len - M[temp]; 
dst.ade " Mitemp+2]; ! 
R7 " R7+2; 
hll -M[R7]<7,II>; 
R7 '" R7+2; 

carry@temp '" src.len-C.st.lenl 
N ~ temp<lS>1 
Z '" temp eqlu ~1 

V'" (nc.len<15> neq dst.len<IS» and (src.len<E' ~ql tempOS» 
C"'carry; 

if (src.len+5rc.adr-l) gequ (dst.len+<lst.adr-l) then 
begln ! most to least slgnificant 

characters 
sec.adr ~ max(lI,src.len-dst.len)+src.adel 
whlle src.len lssu dst.len do 

beg].n 
M[dst.adr1 '" flll; 
dst.len-dst.len-l; 
dst.adt - dst.adr+l 
end; 

wh1le dst.len nequ 0 do 
begin 
M[dst.adr] -M[src.adrj; 
sec.len"' src.len-I; 
s rc . ad r '" sr c . ad r + I ~ 

dst.len"'r15t.len-l; 
dst.adr '" dSL.adr+l 



Extended-Instruct~on Definit~ons 

MOVRC / MOVRCI - Move Reverse JU'ltlfied Character 

nequ01 do 

end; 

1 MOVRC only 
Rl= 
R2= 

Examples, 

1. Movlng Data - Reglster Form 

2. Movlng Data 

.WORD SRC.DSCR.PTR 
.WORD DST.DSCR.PTR 

; sourCe descriptor 

; destination descr~ptor 

flllwlthspaces 

for truncation 
forf111 

test for equal lenqth 

PaqeS-S9 



Extended-Instruction DefinitlOns PageS-6!!1 
MOWC I MOVRCI - Move Reverse Justified Character 

1. The operation of thlS instruct1.on is unaffected by any overlap 
of the source and destination strings. The result loS 
equivalent to havl.ng read the entire source string before 
storinq characters 1n the destination. 

2. If the source string is vacant, the flU character wl.ll be 
propagated through the destinatwn string. If the destmation 
strlng is vacant, no characters will be moveo Condition 
cod",s will be updated. MOVRC will update the gen<:>ral 
reg1.sters. 

3. !'IOVRC -- When the instruction termlnates, R0 l.S zero only if 2 
or Care seL 

preceded by CMP src.len,:'Ist.len. 



Eztended-Instruction Definitions Page 5-61 
MOVTC I MOV'l'CI - Hove Translated Character 

5.18 MOV'l'C I MOV'l'CI - Move Translated Character 

15 
--------------------
I 121 

IIOCTCI I 121 
-------------------------

src.dscr.ptr I 

dst.dscr.ptr 
-------------------

I 
--------------------------
I table.adt I 
-------------------------------

Operation: 

dst <- translated src 

Condition Codes: 

The condition codes are based on the arithmetic comparison of the 
initial character string lengths (result-src.len-dst.len). 

N: set if result<il: cleared otherwise 
Z: set if result=il: cleared otherwise 
V: set if there was arithmetic overflow, that is, src.len<15> and 

dst.len<l5> were different, and dst.len<15> was the 10_ as 
bit <15> of (src.len-dst.len): cleared otherwise 
cleared if there was a carry from the most significant bit ·of 
the result: set otherwise 

Sllspendability: 

This instruction is potentially suspendable. 



E"tended-InstructionDefinit1ons Page 5-62 
MOVTC / MOVTCI - Move Translated Character 

DescriI'tlon: 

The character str1"g speCified by the source descr1ptor is 
translated and moved into t'te area specified by the dest:cnaUon 
descriptor. It is al1gned by the most slgn1f1cant chaeacter. 
Teanslatian is accompl1shed by using each source charactee as an 8 
bit I?Ositive mteger mdel{ 1nto a 256 byte table, the address of 
WhiCh is an operand of the instruction. The byte at the indexed 
location 1n the table is stored in the destination string. The 
condit1on codes eeflect an arithmet1c comparison of the original 
contents source and destlnatlon lengths. 

If the source str1ng is shorter than the dest1nat1on string, the 
untranslated fill characte;r '.5 used to cot1!plete. the least 
slgniflcant part of the destlnat10n stnng. Th1S is lndl.cated by 
the C bit set. If the source string is longer than the 
destinationstrlng, theleastsignificantcharactersofth,,-source 
stnng are not moved. Th1S is lndlcated by the Z and C bltS 
cleared. If the source and destination strings are of equal 
length, all characters are translated and moved With neither 
truncatJ.On nor filling. ThiS 15 indicated by the Z bit set. The 
'Jnsigned branch instructions may test the result of the 
instruction. 

Reg~ster Form - MOVTC 

" I 

" , 
" I 

-----------------------------------
I fill I ---------------------------------

" I 

When the instrUCtiOn 15 completed, R0 contalns the number of 
unmoved SoUrce string characters, and RI through R3 are cleared, 

~D~DD~D· 



ElIitendea-Insu:uetion DP.finitioLS 
MOVTC I MOVTCI - Move Translated Character 

Page 5-63 

Ril 1 max (iI.src.len-rlst..len) 
-----------------------------
1 , 1 

R2 1 
-------------------------------
1 , 1 

MI 
---------------------------- --
I table.adr 1 

The words which follow the opcode word in the instruction stream 
are a word address pointer to a two word character string source 
descriptor. a word address pointer to a two word character string 
destination descriptor. a word whose low order half contains the 
fill character and whose high order half Plust be 'l:ero. and a word 
containing the address of the translation table. IUI-R6 are 
unchanged when the instruction is completed. 

Formal Description: 

src.len = RiI; 
src.adr " Rl; 
dst.len= i{2: 
dst.adr = RJ; 
fill = R4<7:iI>; 
table.adr 5 R5; 

temp - MIR7]; 
src.len - M[tempi: 
sIc.adr - M{temp+2[; 
R7 - R7+2: 
temp - M[R7]: 
dst.len = M[telllp]I 
dst.adr = M{temp+2] I 
R7 .. R7+2; 
fill .. M[R7]<7:iI>; 
R7 .. R7+21 
table.adr '" M[tl71: 
R7 - 1<7+2: 

; MOVTC only 

MOVTCI only 

carry@temp - src.len-dst.1en; 
N - temp<lS>: 
z .. temp eqlu ill 



Extended-Instcuctl.cn Definitions Pilqe 5-64 
MOVTC / !KWTCI - Movi! Tcanslated Character 

v = (src.len<15> neq dst.len<15» and (5rc.len<15> eql temp<l5» 
C = carry; 

if src.adr gequ dst.adr then 
begin ! II'IOst to least significant 

characters 
while (src.len nequ iI) and (cst.len nEqu iI) co 

begin 
M(dst.aat] " M [table.ade+M[sn:.adrll J 
src.len ,. src.len-l; 
stc.adr .. src.adr+l: 
dst.len ;: dst.len-l: 
dst.adr - dst.adr+l 
end: 

while dst.len nequ II do 
':Iegin 

'"' 

M[dst.adr] = fill; 
dst.len = dst.len-l: 
dst.adr - dst.adr+l 
end; 

begin ! least to most significant 
characters 

stc.adr = src.len-l-max (lI,src.len-dst.len)+src.adr; 
dst.adr .. dst.len~st.adr-l: 
while src.len IsslJ dst.len do 

begin 
M[dst.adr] - fill; 
dst.len = dst.len-l: 
dst.adr-dst..adr-l 
(;ond; 

while dst.len nequ iI do 
begin 

end: 

M[dst.adrl .. M[table.adr+M[src.adrll J 
src.len - src.len-l: 
src.adr '" sec.adr-l: 
cst.len - dst..len-I; 
dst.adr = dst.adr-I 

'"' 
RIil = src.len; MOVTC only 
R1 = II: 
R2 - £; 
R3 = iI: 
R4 = 1I<15:8>@fill; 
RS = table.adr: 



Extended-Instruction Definitions 
MOVTC / ~VTCI - Move T~anslate] Cha~"cter 

Examples: 

1. Ch,,~acter Code Conversion - Register Fo~m 

"" MOV 
MOV 
",V 
",V 

"" ''''''' '" 'w 
"Q 

; ASCII dest ination 

; translate and move 

Page 5-65 

2. If t"e destination string overlaps the translation table HI 
any way, the results of the instruction "'ill be unpredictable. 

4. '10VTC -- When the illstruction terminates, R0 is zero only 1f Z 
or C a!:e set. 

5. The condition ",odes "'ill be set a5 :'f thi5 lnstruction ",ere 
preceded by CMP s~c.len,dst.len. 

Co The effect of the instruction is unpredictable if the entirE' 
256 byte translation table is not in readable memory. 



Extended-Instructwn [)eflnitions 
MULP I MULPI - Multiply Decimal 

5.19 MULP I MULPI - Multiply Decimal 

MULPI I 

srcl.dscr.ptt 

src2.dscr.ptr 

dst.dscr.ptr 

N, setifdst<O; cleared otherwise 
Z: setlfdst;0; c-,-earedotherwise 

Page 5-6.5 

'" 

V, set if dst can f'~t contain all slgnlflcant digits of the 
result; cleared otherwis" 

c: cleared 

Suspendablilty, 

~hlS mstructlon is potentially suspendable. 

Description: 

Srcl and src2 are multiplied, and the result los stored ln the 
destinatlon stIin",. The conaitlon cooeo reflect the value stored 
in tbedestlnation strmg, and whether allsignlficant digltS "'",Ie 
stored. 

Register Form - MULP 

When the lnstructlcn starts, the operands must have been placed ln 
tt,e general registers. The first source descriptor is placed in 
RB-Rl, the second source descriptor is placed in R2-RJ, and the 
destinatlon descriptor is placed m R4-RS, 

~D~DDmD ..•... 



Extended-Instruction Definitions 
MULP / IIULPI - Muldply Decimal 

ROI 

Rli 

.2 I 

RJI 
src2.dscr 

------------------------------
I I 

RSI 

Page 5-67 

When the instruction is completeC, the source descriptor registers 
are cleared: 

'" --------------------
I I 

.2 I ----------------------------I , I 
------------------
I I 

'5 I 

Each word address pointer which follows the opcode word ~n the 
instruction stream refers to a two word decilllal string descriptor. 
RII-R6 are unchanged when the inst!uction is completed. 

Formal Description: 

TBS; 

1. Multiply - Register Form 

SRC1.DSCR,R6 : 1st source descdptor 
MOV SRC1.D5CR+2,R1 
MeV SRC2.DSCR,R2 : 2nd source descriptor 
NOV SRC2.DSCR+2,R3 

~D~DDmD,::" '"' 



Extended-Instruction Definitions 
MULP / MULPI - Multiply DeciIDal 

MOV DST.DSCR,R4 ; destination dE>scriptor 
MOV DST.DSCR+2,R5 
MULP ; multiply 
BVS ; checl< for error 
BLT NEGATIVE ; negative desdnation 
BEQ EQUAL ; Zero destination 
BGr ; positive destination 

2. Multip~y - In-line Form 

.WORD SRCl.DSCR.PTR 
.WORD SRC2.DScr.PTR 
.WORD OST.DSCR.PTR 
BVS OVERFLOW 
BLT NF.GATlVE 
BEQ EQ[ L 

; multiply 
; ptr to s~cl 
; ptr to srr_ 
; ptr to d1 
; check for error 
; negativ destlnation 
; zerO destir:~cion 
; positive destination 

Page 5-68 

2. The resl'lts of the instruction ace unpredictable if "he source 
and desl:lnation »1:( ~ngs overla\ . 

3. No numeric string multiply U'3tcuction is provi<'ied. 



Extended-Instruction Definitions 
SCANC I SCANCI - Scan Character 

5.2~ SCANC I SCANCI - Scan Character 

I , I 

I , I 
------------------------------

src.dscr.ptr I 

set.decr.ptr 

Operation: 

Page 5-69 

Search source character string for a member of the character set. 

v, 
c, 

Suspendability: 

set; cleared otherwise 

This instruction is potentially suspendable. 

Description: 

The source character string is searched from most significant to 
least significant character until the first occurrenCe of a 
character which is a member of the character set. A character 
string descriptor is returned in R~-Rl which represem::s the 
portion of the source character string beginning with the located 
member of the character set. If the source character string 
contains only characters which are not in the character set, the 
instruct~ons return a vacant character string descriptor with an 
address one greater than that of the least sign~ficant character 
of the source character str ing. The condition codes reflect the 
resulting value 1.n RO. 



Extended-Instruction Definitions 
SCANC I SCANCI - Scan Character 

Register Form -

" I 

" I 

Page 5-711 



Extended-Instruction Oeflnit:ions 
SCANC I SCANCI - Scan Character 

Formal Description: 

round'" 0; 

Page ~-71 

0) do 
and mask) eqlL) ~ then 

! SCANC only 

EXillllples: 

1. Find Next Digit - Re']ister Form 

; string to scan 

; mask for char set 
; character set table 



Extended-Instruct~on DeilnitionS 

SCANC ! SCANCI - Scar. Character 

SCANC 
BNI:: DIGIT 
BEQ NODIGIT 

.BYTE 
• BYTE 
• BYTE 
. BYTE 
.BYTE 
• BYTE 

• BYTE 
.BYTE 

• BYTE 
.BYTE 

Iscanstr 19 for digits 
;cligitfound 
; string had nooigl.ts 

; ASCII 0101 
; ASCII 002 

. ASCII 860 ~ '0' 
; ASCII 061 '" '1' 
; ASCII 1162 '" '2' 
; ASCn 0163 ~ '3' 
; ASCII 064-'4' 
; ASCII 0165 .. '5' 
; ASCII 066 ""6' 
;IISCIIIl67'" '7' 
• ASCII 070 .. '8' 
I ASCII 0171 '" '9' 
; ASCn 1172 
I ASCII ~73 

; ASCII 377 

2. Find Next Digit - In-line Form 

SC ... -"1CI I scan 
.WORD ; ~Lr to src descri[)tor 

SET.DSCR.PTH ; ptr to char set dscr 
BNE DIGIT ; dig1t found 
BEQ NODIGIT ; string had no digits 

1. If the ~n1t1aI source character string descr~ptor is lTaCant, 
the instruction terminates with the conditlon codes indicating 
thdt no characters 1n the set were found. The original source 
character st. ing descr~ptor 1S returned ~n R8-Rl. 

2. The source character string and character set tab~e 

overlap in any way. 

3. A test for success is BNE; a test for f;ulure is BEQ. 

~D~DDmD·.·· 



Extended-Instruction Definitions 
SeANe / sellNeI - Scan ehara<:>ter 

Page 5-73 

4. The condition codes will be set as if this instruction were 
followed by TST R!3. 

5. The effect of the instl:uction 1S lmpredlctable if the entire 
256 byte cnaracter set table is not in readable memory. 

~D~DDmD'" .. 



Extenaed-Instruction Definitions 
SKPC / SKPCI - Skip Character 

5.21 SKPC / SKPCI - Skip Character 

------------------------------
I I III 

SKPCI I III 
-----------------------------
I src.dscr.ptr I 
-------------------------------

Operation: 

Paqe5-74 

Search source character string until a character oth~r than the 
search character is found. 

The condition codes are based on the final contents of Ra. 

N: set if Ra<l5> set; cleared otherwise 
Z: set if Ril=a: cleared otherwise 
V: cleared 
C: cleared 

Suspendability: 

This instruction is potentially suspendable. 

Description: 

The source character string is searcheCI from IIIOst siqnificant to 
least significant character until the first occurrence of a 
character which is not the search character. A cheracter string 
aescriptor is returned in RiI-Rl which represents the portion of 
the source character string beginning which the most ::ignificant 
character which was not equal to the seerch character. If the 
source character strinq contains only characters equal to the 
search character. the instructions return a vacant character 
string descriptor with an address one greater than thtlt of the 
least siqnificant character of the source character string. The 
condition codes reflect the resulting value in Rl!l. 



EJitended-Instruction Definitions 
SKPC / SKPCI - Skip Character 

Register Form - SKPC 

Page 5-75 

When the instruction starts, the ope~ands must have been placed in 
the general registers. The source character string descriptor is 
placed in Ril-RI, the search characte~ is placed in R4<7dl>, and 
R4<15,8> must be zero: 

----------------------------
Ril I I 

src.dscr 
., 1 

'" 
When the instruction is completed, IUI-RI contain a character 
string descripto~ which represents the sub-string of the source 
cha;:acter string beginning with the most signifi<.:ant character 
Which was not equal to the .<;carch character: 

-----------------------------
Ril I I 

1 1 -------------------------------

-----------------------------
I iI I I 

The words which follow the opcode word in the mstruction stream 
are a word address pointer to a two word character string source 
descripto~, and a word whose low order half contains the search 
character and whose high order half III\Ist be zero. wt\,m the 
lnstruction is completed, RII-RI contain a character stril,g 
descriptor which represents the suo-string of the source C'haracter 
string beginning with the most significant character which was not 
equal to the search charaC'ter. R2-R6 !Ire unchanged: 



Estended-Instruction Oefinitions 
SKPC / SKPCI - Skip Character 

--------------------------------
I 

I 
--------------------------------

Formal Description: 

src.len = Ril; 
src.adr = RI: 
char = R4<7,i1>: 

; SKPC only 

, 
~~~I:nM!R~l~€mpl: ; SKPCI onlz 

src.adr '" M[temp+2]: !
R7 = R7+2; 1
char = M(R7]<7,B>: !
R7 - R7+2: !

found'" 1:
while (src.len nequ iI) and (found eqlu I) do

if M[src.adr] eqlu char then
begin
src.len - arc.len-l;
src.adr = src.adr+l
.nd

else found ~ iI;

lUI "'src.len:
Rl = src.adr:
R4 = B<15:8>@char: I SKPC only

N '" RIJ<IS>;
Z .. RIJ eqlu ~;
V'" II:
C"II;

Examples,

L Skip Leading Spaces Register Form

MOV STR.DScn,Re : string to se"rch
!'IOV STR.DSCR+2,RI
MOV I' .R4 : space character
SKPC : skip
BEQ : line was blank

Page 5-76

Extended-Instruction Definitl.ons
SKPC/SKPCI-SkipCharacter

2. Slnp Leading Spaces - In-ll.ne pOLm

Page 5-77

2. The condltion codes w111 be set as if thls lnstruct,0n weLe
followed by TST Ril.

Extended-Instruction Definitions
SPANC ! SPANCI - Span Character

5.22 SPl'.NC! SPANCI - Span Character

src.dscr.ptr

set.dscr.ptr

Operation'

I ; I

I ,

Search source character strlng for a character wh1ch
member of the character set.

Page 5-78

The cC)ndition codes ar= based On the final contents of R0.

N, set lf R0<IS> set; cleared other-nse
Z, set If R0-~; cleared otherwlse
V: ch-ared
C, cleared

Suspendability,

ThlS lnstructlon is potentlally suspenda!:>le_

Description:

The source character string is searched from most Slgniflcant to
least significant character until the first occurrence of
character whiCh is not a memb .. r of the character set. A character
string descriptor is returned In R0-Rl which represents the
portion of the sOurCe charactE't string beginning wlth the
character which is not a member of the character set. If the
source character string ContalnS only characters WhiCh are in the
character set, the instructions return a vacant character string
descriptor with an address one greater than that of the least
significant character of the source character string. The
condition codes reflect the resultlng value in RI'l.

Ezt.ended-Inst.ruet.ion Definit.ions
SPAN<: / SPANCI - Span Charact.er

Register Form - SPANC

Page 5-7'J

When the inst.ruction starts, the operands must have b~n placed in
the general regist.prs. 'l'he SOUE:ce characteE: st.E:ill9 descE:iptoE: is
placed in Rill-RI, and the chaE:acter set descriptor is placed in
R4-R5:

15 -------------------, ,
src.dscr ., ,

--------------------, ,
."

When t.he inst.ruction is completed, RIlI··Rl contain a chaE:acter
strill9 descript.or which represent.s t.he sub-st.ring of t.he source
charact.er st.rill9 beginning wit.h t.he charact.er which is not a
member of t.he character set:

-------------------------, ,

-----------------, ,
.5 ,

'lbe words which follow tone opcode word in the instruction stream
are a word address pointer to a two word charact.er st.ring source
descriptor, and a word address pointer to a two word charact.er :let.
descript.or. When t.he instruction is crnnpleted, RiJ-RI contain a
character string- descript.or which represents the sub-string of the
source character string beginning with the character which is a
member of the character set.. R2-R6 are unchanged:

Extended-Instruction Definitions
SPANe / SPANeI - Span Character

Formal Description:

src.len"'R0;
src.adr ~ Rl;
mask ~ R4<7:ll>:
table.adr"'R5:

i SPANC only

;~~:1;nM~R~l~emp1 r ~ SPANCl only

src.adr " M[temp+21;
R7 '" R7"'2;
char'" M[R7]<7:0>:
R7 2 R7+2:
temp'" M[R71;
mask" M[temp]<I:ll>: !
table.adr "M[temp+2];!
R7 " R7+2: I

found-I:
while (src.len negu 0) and (found eqlu 1) do

if (M[table+M[src.adr11 and mask) nequ il then
begin
src.len-src.I"Cl-I:
src.adr"src.aor+l

else found "0;

Rl!-src.len;
Rl - src.adr;
R4 - 0<l5,8>@maslq
R5 '" table.adr;

N '" Rll<l5>;
Z ~ R0 eqlu II;
V - 0;
C"'0;

; SPANe only

page 5-8"

Extended-Instruction Definitions
SPAN(; / SPANCI - Span Character

Examples:

1. Pass Tabs and Blanks - Register Form

NOV STR.DSCR.RiI
HOV STR.DSCR+2,Rl
MOV f2,R4
NOV ~TAB,RS

~ANC
8",

,

; string to scan

; character set mask
; character set table
; span
; printing char found
; string contained only
; tabs and spaces

; The following table can be combined with the one
: in the SCANC example.

TAB •• BY'l'E
.8""
.BYTE

.8=

.BYTE

.BYTE

.. "" .. "" .8""

: ASCII ailil
: ASCII eOl
: ASCII ee2

: ASCII all ~ TAB
: ASCII a12
; ASCII ii13

; ASCII a4a 3 SPACE
: ASCII 041
; ASCII 042

2. Pass Tabs and Blanks - In-line Form

SPANeI

.""'" s:RD
"'Q

SRC.OOCR.PTR
SET.DSCR.PTR
fOUND

'"PIT

scan
ptr to src descriptor
ptr to char set dscI
printing ch;;;I found
string contained only
tabs and spaces

Page 5-61

Extended-Instruction Definitions
SPANC / SPANCI - Span Character

Page 5-B2

1. If the ~nitial source character string deSC[lptor is vacant.
the instruction terminates with the condition codes indicating
that only characters in the set were found. The onginal
SOurce character string descriptor is returned in R0-RI.

2. The somcce character strin1 and character set table IT'ay
ollerlap in any way.

3. The condition codes will be set as if this instruction were
followed by TST RO.

4. The effect of the instructlOn is unpredictable if the entin;
256 byte character set tC'ble is not in readable memory.

eztended-Instruction Definitions
SUBN / SUBP / SOONI / SUBPI - Subtract Decimal

5.23 SUBN / SIlBP / SUBm / SUBPI - Subtract Decimal

15

""" I
I 1 I

I 1 I I ---------------_._---------------

I I III

srcl.dscr.ptr

I src2.dscr.ptr I

I dst.dscr.ptr I

SUBPI I I : I I

srcl.dscr.ptr

Operation:

dst<-src2-srcI

src2.dscr.ptr I

dst.dscr.ptr

N: set if dst<e; cleared oth(.rwise
Z: set if dsto:8: cleared otherwise

Page 5-83

V: set if dst can not contain all significant digits of ~he

result: cleared otherwise
c: cleared

Suspendability:

This instruction is l?O_entially suspendaole.

Eztended-Instruction Definitions Page 5-84
SlJBN I SUBP I SlJBNI I SUBPI - Subtract Decimal

Description:

Srcl is subtracted from src2, and the result is stored in the
destination string. The conditioI'! codes reflect the value stored
in the destination string, and whether all sisnificant digits were
stored.

Reqist~r Form - SUBN and SOOt'

When the instruction starts, the operands must have been placed in
the general registers. The first source descriptor is placed in
RI-RI, the second source descriptor is placed in R2-R3, and the
destination descriptor is placed in R4-RS:

Rlil I I

" 1

.2 1

1 -------------------------
.. 1

1 1 -------------------------
When the instruction is completed, the source descriptor registers
ar",cleared:

1 , 1

Rli

1 1

R3 1 1

1 1

1

~DmDDmD·

EJ:tended-Inst~uction Definitions Page 5-85
SUBN / Sl)BP / SUBNI / SllSPI - Subtnct Decimal

each wu~d add~ess pointer which follows the opcode word in the
instruction stream refers to a two wo~d decimal strinq descriptor.
RiI-R6 are unchanged when the instruction is completed.

Formal Descripti~n:

Examples:

1. Three address subtract - Register Form

MOV SRC1.DSCR,R0
MOV SRC1.DSCR+2,Rl
MOV SRC2.DSCR,R2
MOV SRC2.OSCR+2,R3
MOV DST.DSCR,R4
I'IOV D5T.DSCR+2,RS
SOON / SUBP

:ri ~~~

~ =~R

: subtrahend descriptor

: minuend descriptor

; difference descriJ"tor

: subtract
: check for erro~
: neg .. ~ive destinatiJn
: 'l:ero destination
: poSitive destination

2. Three address subtract - In-line Form

SUBNI / SUBPI
.WORD SRC1.DSCR.PTR
.WORD SRC2.OSCR.P"l'R
.WORD DST.OSCR.Pl'R
BVS OVERFLOW
BLT NEGATIVE
SEQ EQUAL
BG'I' GREATER

: subtract
: ptr to sub descriptor
; ptr to min descriptor
; ptr to dif descriptor
: check for error
: negative destination
: zero destination
; positive destination

3. Two address subtract - Register Form

SRC.DSCR,R0
SRC.DSCR+2,Rl
CST.DSCR,R2
OST.DSCR+2,R3
R2,R4

MOV R3,RS
SUBN / SUBP
BVS OVERFLOW
BLT NEGATIVE
BEQ EQUAL
BGT GREATER

: subtrahend descriptor

; minuend descriptor

; difference descriptor

subtract
check for error
negative destination
zero destination
positive destination

E:xtended-lnstructlon Definitions
SOON / SUBP / SUBN! I SUBPt - Subtract Decunal

4. Two address subtract - In-Line f"orm

SOONI I SOOPI
.WORD SRC.DSCR.PTR
.WORD DST.DSCR.PTR
.WORD DST.DSCR.PTR
BVS OVERFLOW
BLT NEGATIVE

:~~ ~~;ER

; ptr to sub descriptor
; ptr to min descr~ptor
; pte to d~f descnpto(
. check for error
; negative dest~nation
; lerO dest~nation
; posit~ve destlnation

Page 5-86

1. The Operatl0n of these instructions ~s unaffected by any
overlap of the source str~ngs prov~de~ that each source strln'l
1S a valld representat10n of the speclfH;>d dat type.

2. Source strings may ollerl"p the destlnation stnng only if a~l
correspondlng d~glts of the strlngs "re In co~ncident bytes In
memory.

Reinterpretatlon of Tr<ld1tion<l1 PDPll Instcuctions

Reinterpretat10n of Traditional PDPll lnstructions
M.ultiprocessing ~ry Lock

Page 6-2

The traditional ASRB instruction is now expected to be used for
settlng seqphores ir. main memory which can be used by the processor
to "lockR access rights to designated system resources. In order to
serve this function, the ASRB instruction must be so lmplemented as to
ensure that the memory location specified as its operand be
inaccessible to any other processor On the system during the interval
In which the ASRB is executing.

If the machine is cached, the RCOpyR of the oper"nd which the ASRB
accesses and modifies must be the same ·CopyR as is directly viSible
to other processocs on the system. Tbis may mean that iI cache-miss be
forCed.

The PDPll/78 and PDFll compatibility mode on VAXll machines do not
1II1pleDIent the ASRB lock facility.

Waivers
PDPll/611i.'lclnngMFF'I'

7.:!. PDFll/6~ Lacking MFPT

req<Jested--ll-riov-76
. ."pproved --

Request.or

Bob Magers (76BM373-1S4J)

Relevant Sect~ons of th~s Standard

Descrlptior of the Waiver

Page 7-2

The PDPll/6~ (KD11-K) "'ill not l.lnp1ement the MFPT ~nstruct~on.

Reasons JustifY1ng the Waiver

llequesteci--l-f'lay-77,14-Jul-78
App(oved --

Requestor

Ralph platz

Descript10n of the Walver

Page 7-3

The L.SI-ll uses a non-zero value ln the :'igh byte of R4 to
indicate instruction suspenSlon; PS<8> is not lmplemented.

The LSI-ll does not irnple,nent all instructlons in the close~

groups for character strlng moves, ch<,racter strlng searches, and
nUmerlC strlngs. Only the reglster forms of l.nstructions are
provlded. No packed strl'lg Or load deSC~lptor lnstructions are
provlded. All unimplemented opcodes and features trap through
vector 10(8); the entue uSer visible state lS unch"nged (except
for R6 and the PC and PS WhlCh are pushed on the s~ack).

In the Ctaracter String Move Group, MOVC and MO\IRC are lmplemented
according to this speclfic"tion. MOVTC 1S not implemented.

In the Character Stnng Search Group, LOCC, SKPC, SCANC, SPANC "nd
CMFC are lmplemented accordlng to th,S speciflcation. MATCHC is
not implemented.

In the NumerlC Strlng Group, only the slgned zoned ceclrnal string
data type is supported. Zero length source operands caUSe
1nstructions to trap ~hrough vecotr 10 ral. CVTNT. prodUces
unpredictable results in R2, R), Nand Z if V is set. other than
the stated consl.derat,ons resultlng from the Ilmitatlons 1ndata
type, data length and :>verflow, the ADD, SUBN, CMPN and CVTNL are
lmplemented acco~dlng to thls Spec~flcation. C'l''':'PN, CVTNP, ASHN
and CVTLN a~e not 1mplemented.

Page 7-4

Reasons Justifying the Walller

The LSI-It Commerclal Instructlon Set lmplementatlon was in
progress before thlS specification had been finallzed.
Archl':ectllral restrlctions retlect the constraints of limlted
mlc,?-code expandabllity, product cost ~nd performance
requaements. Zero length zoned source strlngs trap because of an
OOD declslor.. in force at the time the micco-code · ... aJ; committed.

The uSe of PS<8> to indicate lnstructwn S<Jspension W"3 adopted
after the LSI-ll implementatlon was completed.

Extended-lnstrClCtl-Or. Opcode 1\551gt1lllents

Extended-Instruction Opcode Assignments

lnstruction

Included ~n Basic Instruction Set

move from processor type

CommerCla1 Load 2 Descriptors

07611211 L21l11
1176021 L2D1
076622 L2D2
076623 L2D3
076024 L2D4
676625 L2D5
1176026 L2D6
0761127 L2D7

Character String Mev!"

076"30 MOVe
076031 MOVRC
11761132
11761133
6761134
076035
1176036
1176037

Charact!"rStringSearch

0761140
11761141
1176642
676043
176644
1176645
076046
11761147

Numeric String

1176050 ADDN
1176651 StlBN
11761152 CI'Il'N
1176053 CVTNL
6761154 cvrl'N
076655 CVTNP
i176i!56 ASHN
1176057 CvrLN

load 2 descriptors @(RIl)+
load 2 descriptocs i!(Rl)+
load 2 d~ .. criptors (i!(R2)+
load 2 deo;cciptocs i!(R3)+
load 2 descriptors (i!(R4)+
load 2 descriptors (i!(RS)+
load 2 descriptors @(R6)+
load 2 descriptors (i!(R7)+

move character
move revecse charact!"r
move translated (Character)
reserved
reserved
reserved
reserved
reserved

locate character
skip charsoctec
scan character
span character
compare character
match character
reserved
resecved

add numeric
subtractnUlllf"ric
compare nurnerlC
convert nllllleric to long
convert packed to numeric
convert nl.Jllll!ric to packed
"rithmetic shift numeric
convect long to nUflleric

Page A-2

**61l
*"1111
·*eo
: : ~ ~

***6
***0
**1111

*"*6
.... ·11
***11
***11

£>:tended-J"lstrllction Opcode Assigrunents

COlllllerciil1 Load 3 Descriptors

076060 L3D0
076061 L3Dl
076062 L3D2
076063 L3D3
076064 L3D4
076065 L3DS
076066 L3D6
076067 L3D7

076070 ADDP
~76071 SUB ..
e76072 CMPP
076073 CVTPL
076074 i'lULP
~76075 DIVP
076076 ASHP
11761177 CVTLP

load 3 descriptors @(RII)+
load 3 descriptors @(Rl)+
load 3 des~riptors @(R2)+
load 3 descriptors @(R3)+
10ad3descriptors@(R4)+
load 3 descriptors @(RS)+
load 3 descriptors @(R6)+
load 3 descriptors @(R7)+

add packed
subtract packed
compare packed
convert packed to long
multiply packed
divide packed
arithmetic shift packEd
convert long t(; packed

Character Strmg Move (1n-liue)

:~n~~
076132
076133
076134
e76135
1176136
076137

MOVCI
.OVRe>
MOVTCI

:~~; ;~!~~~;e~haracter
move translated char"cter
reserved
reserved
reserved
reserved

Character String Search (in-line)

076140
1176141
076142
076143
076144
1176145
076146

com
SKPCI
SCANCI
SPANCI

~~i

Numeric Strmg (in-line)

076150
076151
1)76152
~76153
1176154
076155

ADDNI
~UBNI
CMPNI
CVl'NLI
CVTI:'NI
CVl'NPI

locate character
skip character
scan character
span Character
compare character
IlIateh character
reserved
reserved

add numeric
subtract nwneric
COUlpare numeric
convert noJJ!leric to long
convert packed to numeric
convert nUllleIlC to paeked

Page A-3

***0
***0
**1111

:::!
***0
"**11

**00
·"00
"*00
**il0

::::
**110

***11
***0

Ext.ended-Inst.ruction Opt:ode Assignments Page A-ol

076156
076157

Packed String {in-line}

076170
076171
"76172
076173
076174
076175
076176
076177

""'" CMPPI
C\'TPLI
MULP'
DIVPI
ASBP!

""'""
Processor-St1f!cificfll

076600 MED6X
076601 MED74C
0766112
11766113
9766114
1176605
9766116
0766117

arithmetic shift numeric
convert long to numeric

arld packed
subtract packed
compare packed
convert packed to 101'19
llIultiply packed
rlivide packed
arithmetic shift packed
convert 101'19 to packed

Pr:Pll/60 Maintainance
POPll/14 CIS Maintainance
reserved
reserved
reserved
reserved
reserved
reserved

***11
***11

***i1
* i1

::!!
*"*11

***11
***11

* conditionally s<1lt/cleared
-not affected
II cleared
1 set

PDPll Opcode Space

~D~DDmD··

POPll Opcode Space Page a-2

Legend:

Upper-case characters represent a full 3-bit octal digit;
lower-case characters represent 1 or 2 bits.

gener"l source operand specifier 'mode, register)
bits: <11:6),<5:11>

general destlnation operand specifier (mode,register)
bits: <5:11>

R register
bits: <8,6>,<5:3>,<2:11>

P field for SPL and microcode t:scape
biu: <2"'>

count for soa
bits: <5:11>

condition code states
bits: <3:11>

iII immediatE' data in Emt and Trap instrucLions
biU: <7,8>

~D~DD~D

floating-point source operand specifier (mode, register)
bits: <5:11>

floating-polnt destination operand speclfier (mode, register}
bits: <5:11>

floating-point accl.Dllulator apecifier
bits: <7:6>

PIlPll Opcode Space Page B-3

k.
I
I
I
I

opcode mnemonic

0000'H
006002
0011003
Uile04
0011005
i1i1i1i106
i1ailil07

WAIT

r..i
"" RESET ,,.,
'.F'"

I -----------------------------
57. reserved ~nstruction space

I --------------------------------

I
72.

I
16.

I
I
I

1792.
I
I
I

512.

i1i1021R
0ilil22P

ililil24i1
llilil2(4~)C

241

'" '" '" m
00026a
1l002(6+c}C

'" 26'
'" '" 277

000(4+x}XX
0U(o+x}XX
£Ii11(4i-x}Kl<
002 (il+x) XX
lIilZI4+x)XX
lIil3(e+x)X:O:
003(4+xlXX

00501l1l
011511l1l

"" RT'

maintenance (LSI-ll)
escape to microcode (LSI-Il)

"''' clear conrlition codes

OD'
CLV

~~
CCC
(NOP)
~~~ condition codes 

"" '" "N 
'CC 

" '" :~~ 
BL1: 
L';-:;' 

CLl;, 

"'" 



PDPll Opcode Space 

768. , 
1 
1 , 
1 
1 

1 
1 

256. 
1 

005200 

::~~~~ 
005500 
1i11iI5600 
1i11iI5700 
IiIB61100 
1i11I6100 
0&6200 
1il1iI6300 

1106400 
11116500 
886600 
1i11iI67DO 

n,c 

'" "'" AOC 
SOC 
"T 
"~OR 
rule 

AS' 
ru;L 

""" MrPI 

"''' SXT 

I ------------------------------
512. reser·.-ed instruction space I 

I ------------------------------- --

24576. , 
1 

1 
1 

256il. 
1 , 

1 
1 

32. 
1 

1 

1I1SSDD 
02SSDD 
IIlSSDO 
il4SSDD 
i1SSS0D 
06SS0D 

0711RSS 
071RSS 
072RSS 
il71RSS 
1174RDO 

07500R 
07511lR 

:~~:~~ 

MOV 
C", 
otT 

BIS 
'00 
MUL ---------
DIV I 
ASH EIS I 
ASHC-------­
XO, 

FAOD-------­
FSL'B I 

~~t---:::-~ 

480. maintenance (LSI-ll) 
1 

Page 8-4 

I 076000 -----------------------------------------------
512. EXT END E :l - INS T R U C T ION SPA C E I 

I 076777 -------------------------------------

512. 

100(i1+x}XX BPL 
lU(4+x)XX 8MI 
1111{II+x)XX BHI 
101(4+xJXX BLOS 



PDPll Opcode Space 

256~. 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

768. 

! 

I 
I 

256. 
I 

HI2{hXiXX 
HI2{4+x)XX 
:..e3{Il+x}XX 
U!3(4+x)XX 
lil4.(iHi)U 
104(4+i)II 

10501)0 
11:15100 
1115200 
111530D 
165400 
1115500 
1£15600 
lIS700 
lil611DD 
HI61DD 
1116200 
106300 

U64SS 
1116555 
HI660D 
106700 

,.0 ,vs 
BCC,BHIS 

~~.BLO 

"'" 
""" C"" 
INCE 

"'" NEGS 

'D'" seeB 
"'TB 
"''''' "'to 
""" '''<C' 
'TI'S 
MFPD 
MTPD 

'"'" 
I 107111111 ---------------------------------

512. reserved instruction space I 
I -------------------------------

llSSDD MOVB 
12SSDD C!'IPS 
13SSDD BITS 

24576. 14SSDD BICB 
I 155500 BISB 
I 16SSDD SUB 

I 17110110 CFCC 
3. 17011111 SETF 
I 17110~2 SETI 

I 1711003 ~mainten"nce 
J. 17011114 maintenance 

17111185 

Page B-5 

reserved floating point if'stJ:uction I 
----------------------------------------

reserved fl:)"t~ng point instruction I 

mOD~D 



POPll Opcode Space 

1.70011 
l.70012 

SETO 
SETL 

Page B-6 

reserved floatlng poht instructio:ls I 

1701SS 
l702DO 
1703FD 

LOFPS 
STFPS 
STST 
CLM ,CLRD 
TSTF ,TSTO 

1706FD AIlSF,ABSO 
1707FD NEGF,NEGO 
171 (0+a) FS MULF ,MULD 
171(4+a)PS MOOF,MODD 
1 n OHa) FS ADCF ,ADDD 
172{4+a)PS LOF,LDD 
173{0+a)?S SUBF,SUBD 
173{4+a)FS CMPF,CMPD 
174{0+a)FD STF,STD 
174(4+a)FS DIVF,DIVD 
175 (0+a) FD STEXP 
175 {4+a} FO STCFl. S.'-':f::'.STCDI ,STeDL 
176 (O+a) FD STCFD,ST{:DF 
176{4+a)FS 
177 (O+a) FS ::.DCJF ,LDCID,LOCLF ,LDCLD 
177(4+a)FS LDCDF,LlX:<'D 



Formal Description of Machine Stllte 

~D~DDmD 



Formal De'lcription of Machine State 

; General COQllents: 

Details of this notation can be found in the 
-lSi'S Reference Manual ~. 

All statez.ents are followed by an implied NEXT. 

i The fol\owinq relatio;ld tests are used: 

TwO's Complement Comparisions 

Iss less than 
leq less than or equal 
eql equal 
neq not equal 
gtr greater than 
geq geea::ee than or equal 

Unsignedcolllparisons 

lssu 
lequ less than or equal 
eqlu equal 
nequ not equal 
gtru greater than 
gequ greater or equal 

! The max function returns the greatest of its arguments 
! based on a two's complement comparison. 

** Programmer.Vis1ble.State ** 
M[IJ:64K]<7:8>, ! memory 
RiI<15:i1>, ! general registers 
RI<15:1I>, 
R2<l5:1I>, 
R3<15:1I>, 
R4<l5:1I>, 
R5<l5:1I>, 
R6<15:1I>, 
R7<15:B>, 

PS<l~~~>;,," p~<~~~cessor ~t~~~~ition coo"s 

2.<> ,"" PS<2>, 
V<> :- PS<l>, 
Co. :~ PS<i1>. 

** Temporary.State ** 

PageC-2 



Formal Description of Machine State 

src.len<15.1I>, 
src.adr<lS.II>, 
obj.len<lS.Ij>, 
ob).adr<lS;II>, 
srcl.len<lS;II>, 
srcl.adr<lS.0>, 
src2.len<15,1I>. 
src2.a.-lr<lS:0>, 
ast.len<lS;Il>, 
dst.adr<lS:Il>, 
part.len<15:1l>, 
pllrt.adr<15:1I>, 
opr.:i.<15:1I>, 
opr.2<15:1I>, 
opr.3<lS:II>. 
opr.4<lS:II>, 
tI!'P.len<lS:II>. 
fill<7:1I>. 
ch<lr<7:1I>, 
mask<7:1l>. 
table.adr<:15.1I>, 
temp<15:e>, 
btmp<7,1l>, 
btmpl<7:iI>, 
btmp2<7:iI>, 
carry<>, 
foundO. 
alpha.adr<lS:Il>, 
beta.adr<15:1I>, 
qaJlUtl<l.adr<lS.Il> 

Pa<;!eC-3 


	0-001
	0-002
	0-01
	0-02
	0-03
	0-04
	0-05
	1-00
	1-02
	1-03
	1-04
	1-05
	2-00
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-00
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	4-00
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-00
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	6-00
	6-02
	7-00
	7-02
	7-03
	7-04
	A-00
	A-02
	A-03
	A-04
	B-00
	B-02
	B-03
	B-04
	B-05
	B-06
	C-00
	C-02
	C-03

